
•

•

•
UOi ··251 Rev. :..F!J

Job Control
,.· ,, ' ..
I : r-', ' "\.~

User Guide

This Library Memo announces the release and availability c;.f Updating Package to "SPERRY UNIVAC
Operating System/3 (05/3) Job Control User Guide", UP-8065 Rev. 9.

This update contains corrections or clarifications applicable to features present in job control for release 8.0
and prior releases.

Copies of Updating Package A are now available for requisitioning. Either the updating package only, or the
complete manual with updating package may be requisitioned by your local Sperry Univac representative. To
receive only the updating package, order UP-8065 Rev. 9-A. To receive the complete manual, order UP-8065
Rev. 9 .

Mailing Lists
BZ, CZ and MZ

Mailing Lists AOO, A01, BOO, 801, 18, 18U, 19, 1
20, 20U, 21, 21U, 28U, 29U, 75, 75U, 76 and 76U

(Package A to UP-8065 Rev. 9,
31 pages plus Memo)

Library Memo for
UP-8065 Rev. 9-A

1983

•

•

•

•

•

•
U01 -251 Rev. 3173

Job Control

User Guide

This Library Memo Announces the release and availability of "SPERRY UNIVAC® Operating Systeml3 (OSl3) Job
Control User Guide", UP-8065 Rev. 9.

This revision documents new job control features for the 8.0 release.

The following new job control statements have been added in support of DDP, menu services, source module access,
auxiliary workstation printers, alternate methods for specifying task switching priorites, and checking job and
system related variables.

II ROUTE II OPTION OUT

II DVC PROG II OPTION PRI

II INOJOB II USE LIB

II ING SYS II USE MENU

Changes (in the form of new parameters, altered parameters, or alternate formats) have been made to the following
statements:

II ALTJCS II JNOTE II OPTION NOSCHED

II DD II QPR II OPTION SAVE

II DVC II OPTION LOG II PAUSE

II DST II OPTION MAS II SPL

II EXT II OPTION ORI II UID

Changes in the majority of these statements reflect DDP support, increased workstation support, the ability to
specify an alterante library for saved, translated control streams, enhancements to screen format services, and
enhancements for controlling spooled output. While changes to the EXT job control statement reflect enhancements
(the ability to change the automatic allocation amount), most of the changes are reflected in the removal of

Mailing Lists
BZ, CZ and MZ

Mailing Lists AOO, A01, BOO, B01, 18, 18U, 19, 19U, 20,
20U, 21, 21U, 28U, 29U, 75, 75U, 76 and 76U

(Cover and 337 pages)

Library Memo for
UP-8065 Rev. 9

September, 1982

parameters for split cylinder file allocation.

• A new jproc (SPOOL) is available for controlling spooled output. It provides the same parameters as the SPL
job control statement but in keyword rather than positional format for easier coding.

• The DVCDKT jproc is new for diskette and parallels the function of the DVCVOL and DVCVTP jprocs.

All other changes are corrections, clarifications, or expanded descriptions applicable to features present in job
control for 7.1 and prior releases. This includes a complete revision of Sections 1 and 2, and expansion of Section 9
to include information on interactive job control previously contained in the interactive job control user guide,
UP-8822.

Destruction Notice: If you are going to OS/3 release 8.0, use this revision and destroy all previous copies of UP-8065
Rev. 8, UP-8065 Rev. 8-A, UP-8822 Rev. 1, and UP-8822 Rev. 1-A. If you are not going to OS/3 release 8.0, retain
the copies you are now using and store this revision for future use.

Copies of UP-8065 Rev. 8, UP-8065 Rev. 8-A, UP-8822 Rev. 1, and UP-8822 Rev. 1-A will be available for 6
months after the release of 8.0. Should you need additional copies of these editions, you should order them within
90 days of the release of 8.0. When ordering the previous edition of a manual, be sure to identify the exact revision
and update packages desired and indicate that they are needed to support an earlier release.

Additional copies may be ordered by your local Sperry Univac representative.

•

•

•

•

Job Control

•

•
H UNIVAC UP-8065 Rev. 9

© 1980 - SPERRY CORPORATION

This document contains the latest information available at the time of preparation.
Therefore, it may contain descriptions of functions not implemented at manual
distribution time. To ensure that you have the latest information regarding levels of
implementation and functional availability, please consult the appropriate release
documentation or contact your local Sperry Univac representative.

Sperry Univac reserves the right to modify or revise the content of this document. No
contractual obligation by Sperry Univac regarding level, scope, or timing of functional
implementation is either expressed or implied in this document. It is further understood
that in consideration of the receipt or purchase of this document, the recipient or
purchaser agrees not to reproduce or copy it by any means whatsoever, nor to permit
such action by others, for any purpose v.;;thout prior written permission from Sperry
Univac.

Sperry Univac is a division of the Sperry Corporation.

FASTRAND, SPERRY UNIVAC, UNISCOPE, UNISERVO, and UNIVAC are registered
trademarks of the Sperry Corporation. ESCORT, MAPPER, PAGEWRITER, PIXIE, and
UNIS are additional trademarks of the Sperry Corporation.

This document was prepared by Systems Publications using the SPERRY UNIV AC UTS
400 Text Editor. It was printed and distributed by the Customer Information
Distribution Center (CIDC), 555 Henderson Rd., King of Prussia, Pa., 19406.

PRINTED IN U.S.A.

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

PSS 1
Update A

PAGE STATUS SUMMARY

ISSUE:
RELEASE LEVEL:

Update A - UP-8065 Rev. 9
8.0 Forward

Part/Section
Page Update

Number Level Part/Section
Page Update

Number Level Part/Section
Page

Number
Update

Level

Cover/Disclaimer 76 (cont) 56 Orig.

PSS

Preface

Contents

PART 1

1

2

PART2

3

4

5

PART3

6

56a Orig.
1 A 57 thru 72 Orig.

1 thru 4 Orig. 7 1 thru 17 Orig.

1 thru 8 Orig. 8 1thru14 Orig.

9 1 thru 12 Orig.
Title Page Orig.

PART4
1 thru 13 Orig. Title Page Orig.

1 thru 7 Orig. Appendix A 1 thru 9 Orig.
8 A
9 thru 13 Orig. Appendix B 1 thru 11 Orig.

Appendix C 1 thru 6 Orig.
Title Page Orig. 6a Orig.

7 thru 14 Orig.
1 thru 3 Orig. 14a Orig.
4 A 15 thru 23 Orig.
5 thru 22 Orig.

Index 1 thru 12 Orig.
1 thru 4 Orig. 13 A
4a Orig. 14 thru 18 Orig.
5 thru 25 Orig.
26 A User Comment
27 Orig. Sheet
28 A
29,30 Orig.
31 A
32 thru 38 Orig.
38a Orig.
39 thru 47 Orig.
48 A
49 Orig.

1 thru 38 Orig.
39 A
40 Orig.

Title Page Orig.

1 thru 3 Orig.
4 thru 6 A
7 thru 10 Orig.
11 A
12 thru 30 Orig.
31 A
32 thru 51 Orig.
52 A

53,54 Orig.
55 A

All the technical changes are denoted by an arrow(+-) in the margin. A downward pointing arrow (t) next to a line indicates that

technical changes begin at this line and continue until an upward pointing arrow (t) is found. A horizontal arrow (+-)pointing to

a line indicates a technical change in only that line. A horizontal arrow located between two consecutive lines indicates technical

changes in both lines or deletions.

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

Preface 1

Preface

This manual is one of a series designed to instruct and guide the programmer in the use
of the SPERRY UNIVAC Operating System/3 (OS/3). It specifically describes job control
and its effective use. The intended audience is the novice programmer with a basic
knowledge of data processing but with little programming experience and the
programmer whose experience is not on SPERRY UNIV AC systems.

This user guide contains the following:

•

•

PART 1 . OVERVIEW OF JOB CONTROL

Tells you what job control is, and how 1t 1s used by the operating system. You
learn the basic concepts of a control stream and the general program logic.

PART 2. BASIC JOB CONTROL PROGRAMMING

In this part, you become familiar with the basic job control statements used to run
your programs. You also learn about job control procedure call statements (jprocs)
that can save you coding time and reduce control stream coding errors.

• PART 3. ADVANCED JOB CONTROL PROGRAMMING

In this part, we build upon what you learned in Part 2. You are going to see how
you can get better performance and response from the computer by using
advanced job control statements that perform functions that cannot be done with
the basic set. You learn how to write jproc definitions that you can store in the
system and how you can call them when needed.

• PART 4. APPENDIXES

Appendix A. Statement Conventions

This appendix discusses and illustrates the rules used in describing job control
statement formats. You also learn how you should code these job control
statements .

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

Appendix B. Operation Considerations

Preface 2

This appendix contains supplementary information that increases your
understanding of job control.

Appendix C. Job Control Statement Formats

This appendix contains an alphabetical listing of all the job control statements
and their parameters. This can be used as a quick reference chart.

Other current OS/3 publications, referenced in this manual, are useful to the
programmer working with job control.

• System 80

System service programs (SSP) user guide, UP-8841

Describes various system utilities

Consolidated data management macro language user guide/programmer reference,
UP-8826

Describes the data management macroinstructions

Operations handbook for operators, UP-8859

Describes system operator procedures

Supervisor concepts and facilities manual, UP-8831

Describes supervisor functions

Supervisor macroinstructions user guide/programmer reference, UP-8832

Describes supervisor macroinstructions

System installation user guide/programmer reference, UP-8839

Describes system installation procedures

Interactive services commands and facilities user guide/programmer reference,
UP-8845

Describes the use of the workstation

File cataloging concepts and facilities manual, UP-8860

Describes the OS/3 file cataloging facility

•

•

•

•
UP-8065 Rev. 9 SPERRY UNIV AC OS/3

JOB CONTROL
Preface 3

Spooling and job accounting concepts and facilities user guide/programmer
reference, UP-8869

Describes spooling and job accounting in OS/3

Screen format services concepts and facilities manual, UP-8802

Describes procedures for creating, maintaining, and using screen formats

Menu services concepts and facilities, UP-9317

Describes the procedures for creating and using menus

Dialog processor user guide/programmer reference, UP-8859

Describes the creation of user written dialogs

Distributed data processing concepts and facilities, UP-8811

Describes OS/3 distributed data processing

• Series 90 Systems

• System service programs (SSP) user guide, UP-8062

•

Describes various system utilities

Data management user guide, UP-8068

Describes the data management macroinstructions

Operations handbook for operators, UP-8072

Describes system operator procedures

Supervisor user guide, UP-8075

Describes supervisor functions

System installation user guide/programmer reference, UP-8074

Describes system installation procedures

Interactive services commands and facilities user guide/programmer reference,
UP-8845

Describes the use of the workstation

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

Menu services concepts and facilities, UP-9317

Describes the procedures for creating and using menus

Dialog processor user guide/programmer reference, UP-8859

Describes the creation of user-written dialogs

Distributed data processing concepts and facilities, UP-8811

Describes OS/3 distributed data processing

File cataloging concepts and facilities manual, UP-8860

Describes the OS/3 file cataloging facility

Preface 4

Spooling and job accounting concepts and facilities user guide/programmer
reference, UP-8869

Describes spooling and job accounting in OS/3

Screen format services concepts and facilities manual, UP-8802

Describes procedures for creating, maintaining, and using screen formats

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

PAGE STATUS SUMMARY

PREFACE

CONTENTS

PART 1. OVERVIEW OF JOB CONTROL

1. INTRODUCTION

1.1.

1.2.

1.3.

1.4.

1.5.

1.6.
1.6.1.
1.6.2.
1.6.3.
1.6.4.
1.6.5.
1.6.6.

WHY YOU NEED JOB CONTROL

JOB CONTROL STATEMENTS AND JOB CONTROL STREAMS

JOB STEPS

JOB CONTROL PROCEDURES (JPROCS)

JOB CONTROL AND THE OPERATING SYSTEM

PROCESSING A JOB CONTROL STREAM
Beginning Job Processing - the Run Processor
Considering Jobs for Execution - the Job Scheduler
Beginning Job Execution - the Job Initializer
Initializing a Job Step - the Job Step Processor
Ending the Job Step - the Job Step Processor
Ending the Job - the Job Terminator

Contents 1

Contents

1-1

1-1

1-2

1-3

1-4

1-5
1-6
1-7
1-8
1-8
1-9
1-9

1.7. BUILDING AND STORING JOB CONTROL STREAMS AND JPROCS 1-10

1.8.

1.9.

SAVING TRANSLATED, EXPANDED JOB CONTROL STREAMS
(SAVE/RESTORE FACILITY)

RUNNING JOB CONTROL STREAMS

1-11

1-12

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

2. BASIC CONCEPTS

2.1. ASSIGNING DEVICES AND FILES
2.1.1. Peripheral Devices and Logical Unit Numbers (DVC Statement)

2.1.2. Volume Serial Numbers for Disk, Diskette, and Tape (VOL Statement)

2.1.3. File Identifiers (LBL Statement)
2.1.4. Disk and Format-Label Diskette File Area (EXT Statement)
2.1.5. Data-Set-Label Diskette File Area (EXT Statement)
2.1.6. Logical File Names (LFD Statement)

2.2. DEVICE ASSIGNMENT SET PLACEMENT AND DURATION

2.3. JOB TERMINATION

2.4. RESTARTING A JOB

2.5. BRANCHING WITHIN A CONTROL STREAM

2.6. JOBS AND MAIN STORAGE
2.6.1. Job Roll-Out/Roll-In
2.6.2. Minimum and Maximum Main Storage
2.6.3. Dynamic Expansion of Main Storage

PART 2. BASIC JOB CONTROL PROGRAMMING

3. MINIMUM CONTROL STREAM REQUIREMENTS

3.1. WHAT IS A MINIMUM CONTROL STREAM?
3.1.1. Constructing the Minimum Control Stream
3.1.2. The Beginning of the Job
3.1.3. Identifying the Devices
3.1.4. Assigning a Logical File Name to the File
3.1.5. Executing the Program
3.1.6. Ending the Basic Control Stream
3.1.7. Ending the Card Reader Operation

3.2. THE CONTROL STREAM SO FAR - A REVIEW
3.2.1. Adding Card Input
3.2.2. Card Input and Embedded Data

3.3. THE PROGRAM IS CHANGED - ANOTHER DEVICE
3.3.1. What Is Needed to Use a Tape?
3.3.2. The Logical Unit Number and File Name for the Tape
3.3.3. Supplying a Volume Serial Number for the Tape
3.3.4. Labeled Tapes for File Identification

3.4. ANOTHER PROGRAMMING CHANGE - ANOTHER DEVICE ASSIGNMENT
3.4.1. The Device Assignment Set for a Disk or Format-Label Diskette
3.4.2. The Device Assignment Set for Data-Set-Label Diskette
3.4.3. The Device Assignment Set for a Workstation
3.4.3.1. The UID Job Control Statement
3.4.3.2. The USE Job Control Statements

Contents 2

• 2-1
2-2
2-3
2-4
2-5
2-7
2-7

2-9

2-10

2-11

2-11

2-12
2-12
2-12
2-13

•
3-1
3-1
3-3
3-4
3-5
3-6
3-7
3-8

3-9
3-9
3-11

3-13
3-13
3-14
3-14
3-15

3-17
3-18
3-20 • 3-20
3-20
3-21

•

•

•

UP-8065 Rev. 9

3.5.

3.6.

SPERRY UNIVAC OS/3
JOB CONTROL

JOB STEP TEMPORARY AND JOB TEMPORARY FILES

BASIC JOB CONTROL STATEMENTS

Contents 3

3-21

3-22

4. GETTING THE MOST OUT OF THE BASIC JOB CONTROL STATEMENTS

4.1.

4.2.
4.2.1.
4.2.2.
4.2.3.
4.2.4.
4.2.5.
4.2.6.
4.2.7.
4.2.8.

4.3.
4.3.1.
4.3.2.
4.3.3.
4.3.3.1.
4.3.3.2.
4.3.3.3.
4.3.3.4.

4.3.3.5.
4.3.4.
4.3.5.

OPTIONAL PARAMETERS CAN IMPROVE JOB PERFORMANCE

IMPROVING YOUR CONTROL OF THE JOB
A Selection Priority for the Job
Main Storage Needs
More Main Storage to Speed Up the Job
Multitasking Specification
The Processing Time for the Job
Debugging the Control Stream
Job Accounting and Spool Buffers
Printing the Job Log File and Page Headers

IDENTIFYING THE PERIPHERAL DEVICES A LITTLE FURTHER
Using Multiple Devices, SYSRES, or the Job's YRUN File
Specifying Multiple Workstations
More Control over Peripheral Devices

Assigning Devices by Physical Address and Assigning Real Devices

Is This Device Needed for This Particular Run?
Different Volumes on the Same Device
Multiple Volumes in a File? Use Alternate Devices to Decrease Operator
Setup Time
Ensuring that Workstations Are Connected to a Job

Specifying a Remote Disk File
Indicating Use of the DDP Program-to-Program Facility

4-1

4-1
4-2
4-2
4-3
4-4
4-5
4-5
4-7
4-7

4-8
4-9
4-10
4-10
4-11
4-11
4-12

4-13
4-14
4-16
4-16

4.4. MORE INFORMATION ABOUT THE CHARACTERISTICS OF YOUR VOLUMES 4-18
4.4.1.
4.4.2.
4.4.3.
4.4.4.
4.4.5.
4.4.6.

4.5.

4.5.1.
4.5.2.
4.5.3.
4.5.4.
4.5.5.
4.5.6.

4.6 .

More Than One Volume in a File
Special Characteristics of Tape Volumes
Extending Your Tape Volumes
Sharing Disk Volumes
Ignoring or Changing the Volume Serial Number
Multivolume Files Online Simultaneously

MORE INFORMATION ON DISK AND FORMAT-LABEL DISKETTE FILE
ALLOCATION
The File Type
Formatting a File and Using Contiguous Space
Your Disk or Format-Label Diskette File Needs More Space
Terms of Allocation
Allocation Amounts
Changing the Specifications of a Previously Allocated File

INFORMATION ABOUT DATA-SET-LABEL DISKETTE FILE ALLOCATION

4.7. USING YOUR FILE IDENTIFIER MORE EFFICIENTLY
4. 7 .1. Multivolume File? Assign Each Volume a File Serial Number
4.7.2. The Expiration and Creation Date of the File
4. 7 .3. Indicating the Position of the File when Several Are on a Tape Volume
4. 7 .4. Different Versions of a File

4-19
4-20
4-22
4-23
4-24
4-26

4-27
4-27
4-28
4-30
4-30
4-32
4-34

4-34

4-35
4-36
4-37
4-38
4-38a

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

4.8. CHANGING THE LABEL OF A DISK FILE

4.9. SPECIFYING QUALIFIERS FOR FILE IDENTIFIERS

4.10. MORE INFORMATION ABOUT THE LOGICAL FILE
4.10.1. Reserving an Extent Information Storage Area
4.10.2. Specifications for Existing Files

4.11. INDICATING WHERE THE LOAD MODULE IS LOCATED
4.11.1. Task Switching Priority
4.11.2. Avoiding Abnormal Termination Due to Program Errors

4.12. THE JOB CONTROL LANGUAGE SO FAR

5. DOING IT THE EASY WAY - WITH PROCEDURE CALLS

5.1. WHAT IS A PROCEDURE?

5.2. SETTING UP TEMPORARY WORK FILES
5.2.1. Using Your Own Volume
5.2.2. Providing the Extent Specifications

5.3. ACCESSING PREVIOUSLY ALLOCATED FILES

5.4. ALLOCATING A FILE WITH A JPROC CALL

5.5. TOO MANY DEVICES FOR THE SAME VOLUME

5.6. USING THE LINKAGE EDITOR
5.6.1. Generating LOADM and INCLUDE Linkage Editor Control Statements
5.6.2. Making the Linkage Editor Suit Your Needs

5.7. PERSONALIZING YOUR PRINT OUTPUT

5.8. CONTROLLING SPOOLED OUTPUT WITH A JPROC CALL

PART 3. ADVANCED JOB CONTROL PROGRAMMING

6. MAKING JOB CONTROL WORK FOR YOU

6.1. ADVANTAGES OF USING ADVANCED JOB CONTROL STATEMENTS

6.2. CONTROLLING SPOOLED OUTPUT WITH A JOB CONTROL STATEMENT
6.2.1. Sending Spooled Output to Remote Batch Processing Terminals
6.2.2. Sending Spooled Output to DDP Sites and Auxiliary Workstation Printers
6.2.3. Spooling Input Card Data
6.2.4. Spooling Diskette Files

6.3. EQUATING LOGICAL UNIT NUMBERS TO DEVICE TYPE CODES

6.4. SPECIFYING UNIQUE LOAD CODES

Contents 4

4-39 • 4-42

4-43
4-43
4-44

4-46
4-47
4-49

4-49

5-1

5-2
5-5
5-6

5-8

5-11 • 5-13

5-16
5-20
5-23

5-32

5-36

6-1

6-1
6-3
6-4
6-6
6-8

6-9 • 6-10

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

6.5. USING FORMS CONTROL

6.6. CONTROLLING TAPE UNITS

6.7. RELEASING (FREEING) A DEVICE AND VOLUME

6.8. SCRATCHING UNWANTED FILES

6.9. FILE CATALOGING

6.10. SELECTING OPTIONAL FEATURES

6.11. MODIFYING CONTROL FIELDS
6.11.1. Changing the Date
6.11.2. Setting the UPSI
6.11.3. The Communications Region

6.12. RESTARTING A JOB

6.13. ISSUING SYSTEM COMMANDS

6.14. CALLING CONTROL STREAMS
6.14.1. Using the RUN/RV Job Control Statement to Call Control Streams
6.14.2. Using CC SC/SI to Call Saved Translated Control Streams

6.15. COMMUNICATING WITH THE SYSTEM OPERATOR OR WORKSTATIONS

6.16. INTRODUCING PROCESSING OPTIONS

6.17. DEFINING SOFTWARE FACILITIES NEEDED BY YOUR JOB

6.18. MAKING TEMPORARY CHANGES TO A LOAD MODULE

6.19. CHANGING YOUR FILE DEFINITION AT RUN TIME

6.20. ADDING CARDS TO A STORED CONTROL STREAM

6.21. BYPASSING JOB CONTROL STATEMENTS

6.22. BYPASSING JOB CONTROL STATEMENTS TO AVOID ABNORMAL
TERMINATION

6.23. DYNAMIC SKIP FUNCTION FROM A WORKSTATION

6.24. SUBSTITUTING EMBEDDED DATA

6.25. REPLACING EMBEDDED DATA SETS IN EXPANDED CONTROL STREAMS

6.26. JOB CONTROL CONSIDERATIONS FOR SCREEN FORMAT SERVICES,
MENU SERVICES, AND DIALOG PROCESSING

6.26.1 . The USE Statement for Screen Format Services
6.26.2. The USE Statement for Menu Services
6.26.3. The USE Statement for Dialog Processing

6.27. SOURCE MODULE ACCESS VIA THE USE STATEMENT

Contents 5

6-16

6-20

6-21

6-23

6-25

6-25

6-36
6-36
6-37
6-38

6-38

6-41

6-42
6-42
6-43

6-45

6-47

6-48

6-51

6-53

6-57

6-58

6-63

6-63

6-64

6-65

6-66
6-66
6-68
6-69

6-71

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

Contents 6

7. RUN-TIME CONDITIONAL AND SET SYMBOL JOB CONTROL STATEMENTS

7.1. RUN-TIME CONDITIONAL JOB CONTROL STATEMENTS 7-1
7.1.1. Unconditional Branching 7-1
7.1.2. Conditional Branching 7-3
7.1.3. Providing Targets for Branching 7-5

7.2. RUN-TIME SET SYMBOLS 7-6
7.2.1. Global Status Set Symbols 7-6
7.2.2. Local Status Set Symbols 7-11
7.2.3. Specifying Set Symbol Values in Quotes 7-13
7.2.4. Using Symbols to Examine Job and System Related Values and Facilities 7-14

7.3. PRIORITIES AMONG SET SYMBOLS, KEYWORD PARAMETERS,
AND POSITIONAL PARAMETERS 7-17

8. HOW TO WRITE AND CALL A JOB CONTROL PROCEDURE DEFINITION

8.1. THE BENEFIT OF PROCEDURE DEFINITIONS 8-1

8.2. CODING RULES 8-1

8.3. PARAMETER TYPES 8-3

8.4. THE START OF THE JPROC DEFINITION 8-4

8.5. NAMING THE JPROC DEFINITION 8-4

8.6. ENDING THE JPROC DEFINITION 8-6

8.7. CALLING JPROC DEFINITIONS 8-7

8.8. HOW JPROC DEFINITIONS ARE STORED 8-8

8.9. SPECIFYING AN ALTERNATE LIBRARY FILE TO BE SEARCHED FOR JPROCS 8-9

8.10. PARAMETER REFERENCING 8-10

9. USING THE INTERACTIVE JOB CONTROL DIALOG

9.1. THE FUNCTION OF THE JOB CONTROL DIALOG 9-1
9.1.1. Building a Control Stream with the Job Control Dialog 9-3
9.1.2. Building a User Jproc with the Job Control Dialog 9-9
9.1.3. Entering Embedded Data 9-9

9.2. CHANGING DIALOG RESPONSES 9-10

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

PART 4. APPENDIXES

A. STATEMENT CONVENTIONS

A.1. JOB CONTROL STATEMENT FORMAT

A.2. HOW JOB CONTROL STATEMENTS ARE PRESENTED

A.3. CODING CONVENTIONS

A.4. STATEMENT CONTINUATION

A.5. SOFTWARE CONVENTIONS

B. OPERATION CONSIDERATIONS

B.1. SYSTEM LIBRARIES

B.2. VOLUME TABLE OF CONTENTS

B.3. LOGICAL UNIT NUMBERS

B.4 . DISK AND DISKETTE SUBSYSTEM CHARACTERISTICS

c. JOB CONTROL STATEMENT FORMATS

C.1. JOB CONTROL STATEMENTS FOR SERIES 90

C.2. JOB CONTROL STATEMENTS FOR SYSTEM 80

C.3. JOB CONTROL PROCEDURES FOR SERIES 90

C.4. JOB CONTROL PROCEDURES FOR SYSTEM 80

INDEX

USER COMMENT SHEET

FIGURES

1-1. Operating System/3
1-2. Job Processing Flow

2-1 . Job Region in Main Storage

9-1. Building a Job Control Dialog to Build a Control Stream or User Jproc

Stream from a Workstation

9-2. Audit Version of the Dialog Processor

9-3. Changing your Dialog Responses

Contents 7

A-1

A-2

A-6

A-7

A-9

B-1

B-2

B-2

B-9

C-1

C-5

C-10

C-17

1-4
1-6

2-13

9-2

9-11
9-12

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

TABLES

4-1.

6-1.
6-2.

7-1.

B-1.
B-2.

Mode Characteristics

DD Supported Keywords for Basic Data Management
DD Supported Keywords for Consolidated Data Management

Keywords and Symbol Values for 11 INQ JOB and 11 INQ SYS

Standard Logical Unit Number Assignments
Disk and Diskette Subsystem Characteristics

Contents 8

4-21

6-54
6-55

7-16

B-6
B-10

•

•

•

•

• PART 1. OVERVIEW OF JOB CONTROL

•

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

1-1

1. Introduction

1 .1 . WHY YOU NEED JOB CONTROL

To process any program, the operating system must have some necessary instructions
and information. Should the system compile, linkedit, or execute a program? Does it
know what files a program uses, which devices to reserve, and how much main storage
a program needs? Should it allocate space for a file? For the operating system to know
what specific work - what job you want it to do and how, you must supply this type of
information to that part of OSl3 called job control.

To communicate with job control, you use OSl3 job control language (JCL) which
consists of job control statements and job control procedures Oprocs). The statements
and jprocs you code make up a job control stream.

1.2. JOB CONTROL STATEMENTS AND JOB CONTROL STREAMS

Each of the many job control statements has a different function but they are combined
in a control stream to do a singular job. OSl3 requires that every job have a control
stream. Using three statements, 11 JOB, 11 EXEC, and I&, we can show you the
following outline job control stream required for executing a program:

Job control
stream for
executing
a program

I I JOB MY JOB - Identifies your job and indicates
the beginning of the control stream.

11 EXEC PROG1 - Specifies execution of the program PROG1.

1& - Indicates the end of the control stream.
(If the control stream is on cards, /&
must be followed by //FIN. See 3. 1. 7)

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

1-2

These three statements illustrate the idea of a job control stream but you'll see in later
sections that you must also include statements identifying files and devices. Additional
statements are used depending on the specific function needed to accomplish your job.
You can also include program data in the control stream.

In this manual we'll explain the function of each job control statement and its
parameters so you can build simple as well as complex job control streams.

NOTE:

All of the job control statements discussed in this manual are common to both System
80 and Series 90 systems; however, certain individual parameters may apply to one
system and not the other. This is noted in the text whenever possible, but for easy
reference, C. 1. lists job control statements for Series 90 and C.2 lists job control
statements for System 80.

1.3. JOB STEPS

Any job can have one or more steps. If, for example, you want to execute three
programs, one after the other, you can construct one job control stream with three Oob)
steps like this:

II JOB MYJOB

II EXEC PROG1

} Job "'P 1

Job named MY JOB } Job '1op 2

II EXEC PROG2

II EXEC PROG3

} Job "'P 3

!&

A job can have up to 254 job steps. The steps are processed serially and the EXEC job
control statement normally marks the end of each one.

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

1-3

• 1.4. JOB CONTROL PROCEDURES (JPROCS)

•

•

Besides using individual job control statements in your control stream, you can use job
control procedures (jprocs).

A jproc is a series of job control statements that performs a certain function or routine.
Jprocs are supplied as part of the system and you can also write your own. They are
filed in a library (see 1. 7) and each jproc has its own name. When referenced by that
name in a job control stream, the statements that make up the jproc are generated and
incorporated into the control stream.

You may frequently need some function that a specific group of job control statements
performs. Instead of coding the same group of statements in every job control stream
requiring that function, you can simply define the statements as a jproc, then code the
jproc name.

Compiling a source program, for example, is something that's done often. If you include
a certain system supplied jproc name in your job control stream, all the statements
necessary for the language processor to compile your source program are generaed.
The following simplified control stream specifies the COBOL language processor jproc.

II JOB MYJOB

II COBOL

I&

Causes the generation of job control
statements that identify files and

- devices needed by the COBOL language
processor. Executes the language
processor so that a source program can
be compiled.

System-supplied and user-written jprocs are explained in Sections 2 and 3.

NOTE:

Not all of the system-supplied jprocs apply to both System 80 and Series 90 systems.
For easy reference, C. 3 lists system-supplied jprocs for Series 90 and C.4 lists jprocs
for System 80 .

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

1.5. JOB CONTROL AND THE OPERATING SYSTEM

1-4

To better understand what job control does, it helps to know where job control fits into
the operating system.

SPERRY UNIV AC Operating System/3 (OS/3) is divided into two parts: the executive
and the system support software components. Job control is part of the executive
portion of OS/3. Together, the supervisor and job control manage job processing for
OS/3. Figure 1-1 shows the executive and system support software components of
OS/3.

EXECUTIVE

SUPERVISOR JOB CONTROL

DATA
MANAGEMENT

DATA BASE
MANAGEMENT

SYSTEM

SYSTEM SUPPORT SOFTWARE COMPONENTS

LANGUAGE
PROCESSORS

INTEGRATED
COMMUNICATIONS

ACCESS
METHOD

APPLICATIONS

SYSTEM
SERVICE

PROGRAMS

EMULATORS

Figure 1-1. Operating System/3

INFORMATION
MANAGEMENT

SYSTEM

DIAGNOSTIC
PROGRAMS

The supervisor controls the sequence and position of your programs and system
programs in main storage. For more information on supervisor facilities, see the System
80 supervisor concepts and facilities manual or the Series 90 supervisor user guide.

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

1-5

• Job control manages system facilities and prepares the system for job execution. In
general it:

•

•

• analyzes the job control stream;

• checks the order and syntax of control statements;

• expands job control procedures Oprocs);

• schedules jobs and queues them according to priority; and

• allocates peripheral devices and main storage.

These and some of the other functions that job control is responsible for are handled
by (system) programs called symbionts. Symbionts are normally executed in response
to a user request which may be in the form of a system console command, a
workstation command, or certain job control statements. Symbionts compete for main
storage and CPU time along with your jobs. The run processor, which begins
processing your job control streams is a symbiont. We'll be discussing the run
processor in the next section.

1.6. PROCESSING A JOB CONTROL STREAM

One way to build a job control stream is to code and keypunch job control statements
on cards.

II FIN

11 EXEC PRGRM1

II JOB MYJOB

The cards are placed in a card reader and a request to process the job is made either
by pushing the RUN button on the card reader or by issuing a RUN command from the
system console. When the request is accepted. the cards are read and job processing
begins. Looking at Figure 1-2 you can see that job processing (whether the control
stream is on cards, disk, or data-set-label diskette) involves several steps .

UP-8065 Rev. 9

REQUEST
TO RUN
A JOB

@
_Q

OR

JOB CONTROL
STREAM

SPERRY UNIVAC OS/3
JOB CONTROL

~---'---~ ~--'----,

[

RUN
PROCESSOR f--

JOB
SCHEDULER

JOB
INITIALIZER

JOB STEP JOB STEP
PROCESSOR PROCESSOR

(STEP INI- 7 (STEP TER-
TIALIZATION) MINATIONI

.____-_ I '------~

SYSRUN FILE

~
ACTUAL

EXECUTION
OF YOUR
PROGRAM

!CONTAINS TRANSLATED JOB CONTROL STREAM. INCLUDING EXPANDED JPROCS)

Figure 1-2. Job Processing Flow

1-6

JOB
TERMINATOR

A brief discussion of each step in the job processing flow should give you a general
idea of what happens after job control accepts a request to process a job.

1.6.1. Beginning Job Processing - the Run Processor

The run processor begins job processing by scanning the control stream, translating the
job control statements into tables on disk, and expanding jprocs. At this point it also
checks the stream for order and syntax errors. If there are errors, no further preparation
of the job is made and job control error messages are generated.

Once the control stream is translated, the run processor places it in a system file
YRUN (a YRUN file is created for every job being processed). The name of the job
(obtained from the I I JOB statement) is entered in a table called the job queue table.
The job queue table contains the names of all jobs waiting to be executed. The jobs are
ordered by a priority specified on the JOB statement (or, as you'll see later, on other
job control statements or workstation/console commands). Within a particular priority,
the jobs are ordered on a first-in first-out basis.

•

•

•

•

•

•

UP-8065 Rev. 9

•
•
•
•
•
•

SPERRY UNIVAC OS/3
JOB CONTROL

RUN PROCESSOR

Translates job control statements

Expands jprocs

Checks order and syntax of control stream

Builds control blocks

Enter job name in job queue table

Creates YRUN file

1.6.2. Considering Jobs for Execution - the Job Scheduler

1-7

After the run processor prepares your job control stream, processing control passes to
the job scheduler which checks the job queue table. If there are jobs in the queue table,
the scheduler determines which jobs will be executed next. The job priority and the
availability of system resources (peripheral devices and main storage) is the basis for
this determination.

A job can have one of three priorities: preemptive, high, or normal. At any one time,
the job queue table can contain the names of up to 15 preemptive priority jobs, 39 high
priority jobs, and 71 normal priority jobs. The job scheduler considers preemptive jobs
for execution first, followed by high and normal priority jobs (in that order). Jobs are
considered within each priority level on a first-in, first-fit basis. Lower priority jobs are
not considered until there are no other higher priority jobs in the job queue table. Jobs
in HOLD status are not considered at all.

Before job execution can start, sufficient main storage and the necessary peripheral
devices must be available. The job scheduler checks for both and if both are not
available, the job is left in the job queue table. A slightly different situation exists if
roll-out (see 2.6. 1) is configured with the system.

In addition to checking priority and the availability of main storage and peripheral
devices, the job scheduler maintains the shared code directory, reserves volumes,
maintains a volume use table for all jobs, deletes your job name from the job queue
table, and displays your job name at the system console.

JOB SCHEDULER FUNCTION

• Considers your job for execution by priority

• Reserves devices and main storage for your job so that job execution can begin

• Deletes the job name from the job queue table

• Displays the job name on the system console

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

1.6.3. Beginning Job Execution - the Job Initializer

1-8

Processing control passes to the job initializer when job execution is ready to begin. (Up
to 7 jobs can be executed concurrently with Series 90 systems and up to 14 with the
System 80.)

The job initializer also loads shared code modules, activates job accounting, and
updates job log status.

JOB INITIALIZER FUNCTION

• Builds job preamble

• Loads shared code modules

• Activates job accounting

• Updates job log status

1.6.4. Initializing a Job Step - the Job Step Processor

The job step processor performs the functions necessary for initializing and completing
a job step. At this point in job processing, the program specified on the EXEC
statement is loaded and executed.

JOB STEP PROCESSOR FUNCTION
(STEP INITIALIZATION)

• Reviews volume requirements

• Reviews device allocation

• Updates system volume use table

• Allocates devices and disk space

• Locates and updates file control blocks

• Locates and posts address of embedded data

• Stores logging data

• Performs utility functions (rewinding tapes,
scratching files, etc.)

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

1-9

• 1.6.5. Ending the Job Step - the Job Step Processor

•

•

The job step processor also performs the end-of-job-step housekeeping duties. If this is
the last step in the job, the job step processor passes processing control to the job
terminator; if not, it retains processing control for initialization of the next job step.

JOB STEP PROCESSOR FUNCTION
(STEP TERMINATION)

• Updates job preamble

• Initiates burst mode printing of spool files

• Records logging data

• Scratches job step temporary (work) files

1.6.6. Ending the Job - the Job Terminator

When the last step in the job has been processed, the job terminator receives control
to perform end-of-job housekeeping duties .

JOB TERMINATOR

• Deletes job name from system console

• Scratches job temporary files

• Scratches job's YRUN file

• Requests printing or punching of log and spool files

• Displays job termination message

• Frees memory and releases devices

• Clears job entries from system volume use table

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

1.7. BUILDING AND STORING JOB CONTROL STREAMS AND JPROCS

1-10

In addition to coding, then keypunching job control statements on cards, there are other
ways of building and storing control streams.

NOTE:

BUILDING/STORING CONTROL STREAMS

• If you have UDS-200 data entry equipment, you can use
it offline to place job control statements directly onto
data-set-label diskettes.

• If your system is interactive, you can use the general
editor (EDT) to build control streams at a workstation.
Depending on the instructions you give the editor, the
control stream can then be placed on data-set-label
diskette, in the spool file, or cards, or in a permanent
job control stream library on disk or format-label
diskette. You can specify a permanent SAT library of
your own as the stream's destination or you can use
YJCS, the system job control stream library. The
general editor user guide/programmer reference explains
the use of the general editor.

• If your system is interactive, you can use the job
control dialog to build control streams. The dialog
stores the completed stream in YJCS. Section 9
explains the interactive job control dialog.

• If the control stream is already on cards, data-set-label
diskette, or in the spool file, you can use a FILE system
console command or the FILE workstation command to
place the stream in a permanent SAT library. The FILE
system console command is explained in your
operations handbook and the FILE workstation
command is discussed in the interactive services
commands and facilities user guide/programmer
reference.

Many of the sample applications and coding examples in this manual are oriented
toward cards. You should remember, however, that all the job control functions
discussed here can also be used in an interactive environment.

For jprocs to function as intended, you must store them in YJCS or your own SAT
library. So whether you use EDT, the job control dialog, or whether you keypunch the
statements on cards, the eventual destination of the jproc is a permanent library. See
8.8 for more information on storing jprocs.

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

1.8. SAVING TRANSLATED. EXPANDED JOB CONTROL STREAMS
(SAVE/RESTORE FACILITY)

1-11

Before a job can be executed, no matter how often its been executed already, it must
be translated and have any jprocs expanded first. This is done by the run processor,
and for some jobs, especially those with many jprocs, this takes a long time. If,
however, your system is configured with consolidated data management, you can
reduce this time by saving the control stream in its translated, expanded state. Because
the run processor can skip the step of translating and expanding this type of control
stream when it is restored and job processing starts, the job's execution begins sooner.

To save a job control stream in its translated, expanded state, you simply include the //
OPTION SAVE or // OPTION NOSCHED statement (see 6.10) in the control stream.
When job processing is initiated and the run processor finishes expanding and
translating the control stream, a copy of the stream (as it appears in YRUN) is placed
in a permanent MIRAM library. You can specify your own library or you can use the
system library YSAVE.

Depending on which OPTION statement you used, processing then proceeds through
execution (OPTION SA VE) or stops as soon as the expanded, translated stream is
placed in the specified library (OPTION NOSCHED). In either case you'll have a copy of
the expanded stream in a permanent library.

When a translated stream is processed, the OPTION SA VE/NOSCHED statement is
ignored. If you intend to process the untranslated stream, you should remove the
OPTION SA VE/NOSCHED statement. A command different from the one used to initiate
processing of the untranslated stream is used for the translated one (see 1.9).

EXPANDED, TRANSLATED
CONTROL STREAM CONTAINING// OPTION SAVE/NOSCHED CONTROL STREAM

YJCS
OR

AN AL TERNA TE
SAT LIBRARY

CONTROL STREAM PROCESSING

YJCS
OR

AN AL TERNA TE
SAT LIBRARY

ORIGINAL CONTROL STREAM

YSAVE

ALTERNATE
MIRAM

LIBRARY

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

1-12

When deciding whether or not to save expanded, translated control streams, keep the
following in mind: these streams take up more disk space than untranslated ones, you
can't use them to update a file catalog (see 6.9), and you can't change parameters on
any of the job control statements. Replacing embedded data sets (see 6.25) is the most
extensive change you can make to these streams.

1.9. RUNNING JOB CONTROL STREAMS

Running a job control stream is a term commonly used in place of processing a control
stream. In OS/3 there are several ways you can initiate the running of a control stream.
These include the RUN/RV system console and workstation commands, the I I RUN/RV
job control statements, the SC/SI system console and workstation commands, and the
// CC SC/SI job control statements. The differences between these commands and
statements are summarized as follows:

• RUN system console or workstation command

This command initiates a job control stream from a workstation or system console
that needs an input device. This may mean the control stream to be run is on
cards, a data-set-label diskette, or in the spool file. It may also mean the control
stream is stored in YJCS or an alternate SAT library file but contains a CR job
control statement (see 6.20) and, therefore, will need an input device to complete
processing.

• RV system console or workstation command

This command initiates a stored control stream from a workstation or system
console that does not need an input device.

• I I RUN job control statement

This statement, when encountered in an executing job control stream, initiates the
running of another control stream. You can use // RUN if the control stream is on
cards or is stored in a library but contains a / / CR statement because card input is
needed to complete job processing.

• I I RV job control statement

This statement is used the same as / / RUN except that it initiates a stored control
stream that does not need a card reader.

• SC system console or workstation command

This command initiates an expanded, translated control stream (stored in YSA VE
or an alternate MIRAM library) that does not require replacement of embedded data
and, therefore, does not need an input device.

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

1-13

• • SI system console or workstation command

•

•

This command initiates an expanded, translated control stream from YSA VE or
an alternate MIRAM library that needs an input device for the replacement of
embedded data.

• I I CC SC job control statement

This job control statement when encountered in an executing control stream,
initiates an expanded, translated control stream from YSAVE or an alternate
MIRAM libray that does not require replacement of embedded data and, therefore,
does not need an input device.

• I I CC SI job control statement

This job control statement is used the same as / / CC SC except that it initiates
expanded, translated control stream from YSA VE or an alternate MIRAM library
requiring an input device for the replacement of embedded data.

For information about system console commands, see your operations handbook. For
information about workstation commands, see the interactive services commands and
facilities user guide/programmer reference. For information about the // CC SC/SI and
// RUN/RV job control statements, see 6.14.1 and 6.14.2, respectively .

----------~-----------

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

2-1

2. Basic Concepts

2.1. ASSIGNING DEVICES AND FILES

An important part of writing a job control stream is identifying devices and files and
establishing a logical connection between the files and the program using them. Enabling
you to do this is the function of the following job control statements:

DD EXT LFD UID VOL

DST LBL ROUTE USE

DVC LCB SPL VFB

The DVC and LFD statements (in that order) are required for every type of file and
device you use. The other statements (when used) must appear between the DVC and
LFD statements. They're necessary depending on the kind of file, or function you want
performed in relation to that file. As a group, these statements are called a device
assignment set.

Device
assignment
set for a
file used by
PROG1

II JOB MYJOB

r
ovc ...

II LFD •••

II EXEC PROG1
I&

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

2-2

The CAT, DECAT, EOU, FREE, REN, and SCR job control statements are not coded
between the DVC and LFD statements so, technically, they're not part of a device
assignment set, but their function is related. We'll talk about these in later sections. For
now, though, a brief description of the DVC, VOL, LBL, EXT, and LFD job control
statements should help you become familiar with the overall function of a device
assignment set.

2.1 .1. Peripheral Devices and Logical Unit Numbers (DVC Statement)

A peripheral device is any unit of equipment, distinct from the central processor and
main storage, that allows the system to send or receive data. Some devices, such as
card readers, only handle incoming data (input); some, such as printers and card
punches can only handle outgoing data (ouput); while others, such as disks, format-label
diskettes, tapes, and workstations, can handle both (input and output).

In OS/3, each type of peripheral device is assigned a specific number called a logical
unit number. You specify logical unit numbers in the DVC job control statement. This
tells job control (the job scheduler) which peipheral devices you need for your job.

Suppose you need a printer because your program produces printed output. The
following section from Table B-1 shows some logical unit numbers for printers.

04FFOOOO 20 Any printer, no features specified
04FFOOOO 21 Any printer, no features specified
04400000 22 077310778 printer. no optional features
04400000 23 0773/0778 printer, no optional features
04100000 24 0776 printer, no optional features
04100000 25 0776 printer. no optional features
04200000 26 0778 printer. no optional features
04200000 27 0778 printer, no optional features
04800000 28 0770 printer. no optional features
04800000 29 0770 printer. no optional features

If you need a SPERRY UNIV AC 0776 printer, specify either 24 or 25 on the DVC
statement. If any printer will do, specify 20 or 21.

Device assignment
for the 0776
printer

II JOB MYJOB

{II DVC 24 }
II LFD ...
II EXEC PROG1

Device
assignment
for any
available
printer

II JOB MYJOB

{II
II

DVC 20}
LFD ...

II EXEC PROG1

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

2-3

Each logical unit number you use corresponds to a device requirement for your job. So,
if you specify logical unit number 20 in one job step and logical unit number 21 in a
following step, two printers must be available in order for your job's execution to begin,
even if one is sufficient.

II JOB MYJOB

II DVC 20
II LFD •••

II EXEC PROG1

II DVC 21

II LFD •••

II EXEC PROG2

I&

Two printers must be
available for this
job to run.

Besides using logical unit numbers, disk devices can be assigned by specifying RES or
RUN. These and other functions of the DVC statement are further discussed in Sections
3 and 4.

2.1.2. Volume Serial Numbers for Disk, Diskette, and Tape (VOL Statement)

Volume serial numbers are used to uniquely identify disk packs, diskettes, (format and
data-set-label). and tape reels to the operating system. This number is written externally
(generally on a gummed label) and internally (on the actual recording surface). Both
numbers should match for identification purposes.

The assignment of volume serial numbers takes place when the prep routines
associated with disk, diskette, and tape are performed. (See the systems services
programs user guide for information about prep routines.)

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

2-4

When you specify a volume serial number in a VOL statement, job control checks to
make sure that a tape reel, diskette, or disk pack with the matching volume serial
number is mounted. If the wrong volume is mounted, the system notifies the operator.
In this example

II JOB MYJOB

Specifies any available

Device II I DVC 50 -~--~ disk device

assignment 11 VOL 12345A' Specifies a disk pack with
for a disk file I I L FD • • • ""-the assigned volume serial

II EXEC PROG1

I&

number of 12345A

the disk volume whose serial number is 12345A must be mounted for job processing
to continue.

We'll discuss other functions of the VOL statement in Sections 3 and 4.

NOTES:

1. OS/3 assumes that all volume serial numbers are unique. The mounting of two
volumes with the same volume serial number at the same time yields unpredictable
results.

2. OS/3 allows a maximum of 151 volumes to be in use by all active jobs. (The
maximum number of volumes allowed for a single job is also 151.)

2.1.3. File Identifiers (LBL Statement)

While a volume serial number identifies one tape, disk, or diskette volume, a file
identifier names (or identifies) a particular file on that volume. The file identifier is an
alphanumeric name physically written on the recording surface of the tape, disk, or
diskette (format and data-set-label). You specify a file identifier on the LBL job control
statement. If you're creating the file, the identifier you specify is assigned. If the file
already exists, job control checks to see that the file identifier specified with the LBL
statement matches one already recorded for a file on a particular volume. This ensures
usage of the correct file.

•

•

•

•

•

•

UP-8065 Rev. 9

II JOB MY JOB

DVC 50

SPERRY UNIVAC OS/3
JOB CONTROL

Device I I

{

I I
VOL 12345A

If the file is being created,
MYFILE is the identifier assignment set

for a disk file I I LBL MYF ILE - assigned. If the file exists,

II L FD • • • MYFILE is the identifier
job control checks for.

II EXEC PROG1

I&

2-5

A file identifier specified on an LBL statement is required for any file on disk, diskette,
or multifile tape volume. If a tape volume holds only one file, a file identifier may i.>e
specified but isn't required. As you'll see in a later section on spooling card input, it is
sometimes useful to specify an LBL statement (with a file identifier) in the device
assignment set for a card file that's been spooled.

The LBL statement has other functions that are covered in Sections 3 and 4.

NOTE:

The prep routine for data-set-label diskette automatically assigns a file identifier of
DAT A unless you specify otherwise during the prep.

2.1.4. Disk and Format-Label Diskette File Area (EXT Statement)

Whenever you're creating a disk or format-label diskette file, you allocate space for that
file in contiguous areas (on the recording surface) called extents. The amount of space
as well as other characteristics of the file's extent are specified using the EXT job
control statement. The device assignment set for every disk or format-label diskette file
you are creating must include an EXT statement. It is also required if you want to
change certain extent specifications for a file that already exists.

Using the EXT statement, space on disk or format-label diskette is allocated in terms of
one of the following:

• Number of Cylinders

•

You specify the number of cylinders needed for the file.

Absolute Cylinder Address

You specify the number of cylinders needed for the file and you also specify the
starting address of the file as an absolute cylinder address.

UP-8065 Rev. 9

• Number of Tracks

SPERRY UNIV AC OS/3
JOB CONTROL

You specify the number of tracks needed for the file.

• Absolute Track Address

2-6

You specify the number of tracks needed for the file and you also specify the
starting address of the file as an absolute track address.

• Number of Blocks (by Cylinder)

You specify the number and average length of the blocks needed for the file. Job
control converts this specification to the number of cylinders so the actual
allocation is by cylinder.

• Number of Blocks (by Track)

You specify the number and average length of the blocks needed for the file. Job
control converts this specification to the number of tracks so the actual allocation
is by track.

You'll learn more about file space allocation when we discuss the EXT statement in
Sections 3 and 4. For now, it is enough to know that an EXT statement must be
included in the device assignment set when you're allocating space or making certain
allocation changes for a disk or format-label diskette file.

II JOB MYJOB
DVC 50

I
I I

Device assignment I I
set for a I I
disk file. I I

II

VOL 12345A

LBL MYFILE This statement specifies
four cylinders of contiguous

EXT MI ,C, ,CYL,4- space for a MIRAM (disk)
L FD. . . file.

II EXEC PROG1
I&

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

2-7

• 2.1.5. Data-Set-Label Diskette File Area (EXT Statement)

•

•

The prep routine for a data-set-label diskette automatically allocates the entire diskette
for one file and assigns a file identifier of DAT A unless you specify otherwise. If the
space was already allocated by the prep routine, there is no need for you to include an
EXT statement in your device assignment set. If, however, the space was not
previously allocated, you must use the EXT statement to allocate the space yourself.
Allocating the space yourself allows you to have control over how many files the
diskette can contain.

Space on data-set-label diskette must always be allocated by block and it must be
contiguous. Data-set-label diskette files are always one-extent files. For information
about the EXT statement for data-set-label diskette, see 4.6.

2.1.6. Logical File Names (LFD Statement)

We've already talked about how you specify a file identifier (a name that's physically
recorded on the surface of a disk, tape, or diskette) on the LBL job control statement.
There is another name, however, that is required for every file (not just disk, tape, and
diskette) and must be included in every device assignment set. It is the logical file
name: the name your program references the file by.

You specify it on the LFD (logical file definition) job control statement, which is always
the last statement in any device assignment set. The name you specify logically (LFD)
links the file (name) you reference in your program with the physical file (LBL) defined in
your job stream's device assignment set. The names that you use are:

• In BAL

The name from the label field of the file definition macroinstruction.

If: Then:

10 16 II DVC 50 l Dov;oo ,.,;g,m•nt II VOL 12345A set for a newly
FILE1 DTFMI II LBL MYFILE allocated file

or II EXT MI,C,,CYL,4
referenced by the

10 16 II LFD FILE1
program as FILE 1 .

FILE1 CDIB

t

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

2-8
Update A

•

•

In COBOL

The LFD field of the implementor name from the SELECT clause.

If: Then:

12

II DVC 30 } Device assignment set
11 LFD INFIL for the card file.

SELECT CDS ASSIGN TO CARDREADER-INFIL-F

(In basic and extended COBOL, the LFD name corresponds to the file name from
the SELECT clause. If an external name is specified, however, then use the external
name instead.)

In FORTRAN

The device number from the READ or WRITE statement, prefixed by FORT.

If:

1 7 10

READC6,10)

Then:

II DVC 90

II VOL T APE01

II LBL PAYFIL

II LFD FORT6
}

Device assignment
set for a tape file

• RPG II

The file name from the file description specification.

If: Then:

FORMF FILE TYPE

TYPE FILE DESIGNATION
t------i ENO OF FILE

II DVC 20 } Device assignment
I I L FD PR I NT set for a print file

SEQUENCE

PAGE FILE FILE FORMAT

NO. LINE NAME
I-

NO. 0 a
~ u 0 BLOCK ::> ii: I- ~

LENGTH
0 ~ w ~ z

1 2 3 5 6 7 13 14 15 16 17 18 19 20 23

OJ. O.l.1 0 F ~'R.il..NJT: t!> i: _l

The file names used for printer and punch card files in Sperry Univac-supplied programs
(such as the compilers and the linkage editor) are standard system file names. A printer
file is always PRNTR and a punch card file is always PUNCH. So, if you want the printed
output from a compilation, for example, the LFD statement for the print file device
assignment set is / / LFD PRNTR. These logical file names apply only to Sperry
Univac-supplied programs. In job or job step that executes a user program, you must
supply your own logical file names (for the printer, punch, plus any other files) on the
LFD job control statement.

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

2-9

When using any other Sperry Univac routines (such as the data utility routines) specify
the standard system file names shown in the coding examples in the corresponding
user guide.

These and other applications of the LFD statement are discussed in Sections 3 and 4.

2.2. DEVICE ASSIGNMENT SET PLACEMENT AND DURATION

There is no strict rule for the placement of a device assignment set in a job control
stream: simply place the device assignment set somewhere between the JOB statement
and the EXEC statement.

II JOB MYJOB

other job control statements

II DVC 50
II VOL 12345
II LFD DSKFIL1
II LFD PAv°ROLL

other job control statements

II EXEC PROG1
1&

Where a multiple step job is concerned, just remember that a device assignment set
specified in one job step is normally effective for that step as well as any that follow.
Consider this example.

II JOB MYJOB

II DVC 20
II LFD PRTF IL Device assignment sets for a print
II DVC 90 file and a tape file. The assignments

II VOL T00001 are effective for job steps 1, 2,

II LBL TAPE1
and 3.

Job step 1 II LFD PAYRATE

II EXEC PROG1

(continued)

UP-8065 Rev. 9

Job step 2

SPERRY UNIVAC OS/3
JOB CONTROL

~ ~ ~~~ ~:34A } Device assignment set for a disk
file. The assignment is effective for

11 LBL DSKFIL 1 job steps 2 and 3.

II LFD PAYROL

II EXEC PROG2

Any of the device assignments
Job step 3 I I EXEC PROG3 specified in job steps 1 and

2 are effective for job step 3.

I&

2-10

In the preceding example, PROG 1 can reference only PRTFIL and PA YRA TE. It cannot
reference PA YROL. PROG2 and PROG3 can reference PRTFIL, PA YRA TE and PA YROL.

2.3. JOB TERMINATION

•

When a job steps, we say the job terminates. There are two ways in which a job can •
terminate: normally or abnormally.

1. Normal Termination

This is initiated by the control stream, the program, or the workstation or system
console operator. Generally, it occurs after the last job step, but it can also be
caused by the operator using the CANCEL or STOP operator command, or by the
program issuing a cancel instruction. If terminated by the CANCEL system
command or program instruction, the entire job terminates immediately. This
includes the currently executing job step plus all subsequent job steps (if any) in the
job. The STOP operator command terminates a job when the job step currently
executing is finished.

2. Abnormal Termination

This is caused by program errors or by control stream errors (syntax order). If
caused by program errors, you can get a main storage printout (dump), which can
be used to debug your program, provided that you have placed an OPTION DUMP
statement in the control stream prior to the job step that caused termination. The
OPTION job control statement is covered in 6.10. If caused by a control stream
error, a message explaining the error is displayed on the system console.

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

2-11

In ant1c1pation of program errors, you may use the ABNORM=labe/ parameter of the
EXEC statement. This parameter causes a skip forward in the job control stream so that
the job finishes executing and doesn't terminate abnormally. If, however, the operator
issues a cancel instruction, the job terminates normally.

All terminations result in the deallocation of the system facilities (peripheral devices,
main storage, disk work areas, etc.) allocated to the job.

2.4. RESTARTING A JOB

What if your job terminates abnormally - specifically when your program is executing? If
the program only processes a few records, you can rerun the job from the be~1inning
without any great loss; but, if the program processes many records rerunning the job
increases processing time and cost. To help avoid this, OS/3 provides a restart facility
for programs written in BAL or COBOL. See 6. 12 for more information about restarting
jobs.

2.5. BRANCHING WITHIN A CONTROL STREAM

When you write a program; you can set alternate paths for the program to take.
Normally, program statements execute consecutively, in the order of their appearance.
However, it is often necessary to alter this normal sequence and skip forward to a
different point in the program - this is called branching. Similarly, alternate paths can be
taken in job control streams. The SKIP and OPTION QUERY job control statements
allow you to skip forward in the job control stream during your program's execution to
another job control statement. The ABNORM parameter of the EXEC job control
statement allows you to skip forward in the job control stream if your program causes
an abnormal termination. (See Section 6.)

You can also branch from one job control statement to another in a control stream by
using run-time conditional job control statements (they're called run-time statements
because they are available and effective through the run symbiont). Run-time conditional
job control statements are interpreted and acted upon while the run symbiont is canning
the control stream. They are not placed in the job's YRUN file; their actions are
completed when the run processor has acted upon them. Only forward branches are
allowed. The job control statements belonging to this category are GO, IF, and NOP.
They are explained in 7. 1 .

UP-8065 Rev. 9

2.6. JOBS AND MAIN STORAGE

SPERRY UNIVAC OS/3
JOB CONTROL

2-12

After the supervisor is loaded into the system, the remaining main storage is available
to job control, symbionts (like the run processor and the job scheduler), your jobs,
shared code, and your programs. Naturally, the amount of available main storage varies
depending on the jobs, symbionts, and programs executing at the time. Job control
assigns a portion of main storage to each job as the space becomes available. The
amount of main storage assigned is that which is needed to execute the largest job
step in the job. When a job is completed, the space it occupied is returned to the
system.

2.6.1. Job Roll-Out/Roll-In

In 1.6.2, we mentioned that the job scheduler considers jobs for execution by pnonty
and the availability of main storage and peripheral devices. In general, if the necessary
main storage and peripheral devices are not available, the jobs execution, regardless of
its priority, cannot begin. A different situation exists if roll-out (ROLLOUT=YES) is
configured at SYSGEN time.

With roll-out, high or normal priority jobs are rolled out to disk to provide enough main
storage for preemptive jobs to be executed. When the preemptive priority section of
the job queue table is empty, the job scheduler rolls first the high, then the normal
priority jobs back into main storage for execution. Remember though, even if roll-out is
configured, the peripheral devices needed for the preemptive job must also be available,
otherwise roll-out does not occur.

2.6.2. Minimum and Maximum Main Storage

By minimum main storage size we mean the amount needed to successfully execute the
largest step of a job. The maximum size is the amount that can be used, if available, to
improve or speed up job step execution. As you'll see in Section 4, you can specify the
minimum and maximum main storage size on the JOB statement or on the OPTION
statement.

The total amount of main storage used by a job step also includes the size of the job
prologue. The prologue contains information (control tables) needed to regulate your
job. The size of the prologue, however, is automatically taken into consideration so you
don't have to include it in any main storage size that you specify. Just keep in mind
that the job prologue is part of the true main storage requirement for a job. This is
illustrated in Figure 2-1.

•

•

•

•

•

•

UP-8065 Rev. 9

JOB PREAMBLE

TASK CONTROL BLOCKS

SPERRY UNIVAC OS/3
JOB CONTROL

JOB
PROLOGUE

JOB ACCOUNTING TABLE

SHARED CODE TABLE

DISK STORAGE
EXTENT INFORMATION

SPOOL CONTROL TABLE AND BUFFERS

JOB REGION
LENGTH

JOB STEP LOAD MODULE MINIMUM
LENGTH

PROGRAM

_J_MAXIMUM
LENGTH

1f-----____________ - f I
Figure 2-1. Job Region in Main Storage

2.6.3. Dynamic Expansion of Main Storage

AREA

2-13

Your job may require dynamic expansion of its initial main storage allocation to load
software modules (data management modules, for example), or to accommodato other
program modules called by your job. This capacity for dynamic expansion of the job
region is called the DLOAD facility. For more information about this facility, see 6. 17 .

•

•

•

•

• PART 2. BASIC JOB CONTROL PROGRAMMING

•

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

3-1

3. Minimum Control Stream
Requirements

3.1. WHAT IS A MINIMUM CONTROL STREAM?

A minimum control stream consists of only those job control statements needed to
properly direct the execution of a job.

Let's assume you want to execute a porogram that has been compiled, link edited, and
stored in a library. This particular program does not use any input (cards, tape, disk,
etc) and the only output is directed to the printer. The purpose of the program is to
print constants on adhesive-backed mailing labels, like this:

ZIP CODE ------

Granted, this isn't a widely used application, but it illustrates a bare minimum control
stream.

3.1 .1. Constructing the Minimum Control Stream

In order to run this program, we have to construct a control stream to tell the operating
system what to do with it. Since the needs of the program are simple, we need very
few job control statements .

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

3-2

First, a JOB control statement is needed to indicate the beginning of the job to the
operating system. Every job entering the system must start with a JOB control
statement. Each job step does not need a JOB control statement, only one for the job
as a whole. Next, since there is a print output, a DVC job control statement is needed
to assign a printer to the job. And finally, every peripheral device we use has a file
associated with it; every file needs a file name. An LFD job control statement provides
the file name.

The DVC and LFD job control statements make up a basic device assignment set. Since
the printer is the only peripheral device used by our program, no other device
assignment sets are required.

In fact, there are no other processing options needed for this program. We are now
ready to initiate the execution of the job step (our entire job consists of only one job
step). We need an EXEC job control statement for this.

Now our program has all the job control statements that it needs to function. But, when
it is finished, we have to tell the system that our control stream is finished. We need a
/&job control statement.

Briefly, we have indicated all the job control statements needed for this simple program.
They are:

JOB

DVC

LFD

EXEC

/&

We will cover each of these job control statements in its proper sequence. We will
show all the parameters available for these job control statements, but, at first, only
those parameters that are required will be described, along with any parameters that are
generated by default. The optional parameters will be introduced into the discussion of
job control at the appropriate time.

But, before we start our control stream, you should read the statement conventions in
Appendix A. They explain how the job control statements are presented in text (how
you can tell which parameters are optional, which are required, how a default option is
shown, etc) and how you code them.

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

3-3

• 3.1 .2. The Beginning of the Job

•

•

The JOB control statement is the first job control statement that you need. Its format
is:

//[symbol] JOB
j obname [{~~ [,•;n I [,max][' l~asks l] [' 1;~; · t ;me l]
[,print-option-list][,acc-no][,nXm] , ACT

LOG
NOA CT
NO LOG
NONE
BOTH

['{:;DR}]

As you can see, it has quite a number of parameters. You can specify the name of the
job, the priority, how much main storage is needed, the amount of tasks in a job step,
how long the job should take, special information for display on the system console,
accounting information, spooling buffer size, and log information (where your accounting
record is kept).

The only parameter we are interested in right now is the jobname parameter, and any
default parameters (shown by shading) that are generated .

The jobname parameter does just what it implies: it names the job. It consists of one to
eight alphanumeric characters.

For example, we assign the name POCO to the job. It's coded as:

II JOB POCO

By default, the job has a normal scheduling priority (N) and one task (1).

There is a special feature of the jobname parameter that helps you ensure that unique
job names are always assigned - you can use trailing ampersands (&) in the job name.
You could, for example, code:

I I JOB POCO&&&&

When the stream is processed, the system replaces the ampersands with unique
numbers.

When would you use this feature? If you have a job control stream (POCO for example)
that is used frequently by different personnel - perhaps even concurrently from
workstations - all the users could use POCO&&&& and be assured of having unique job
names assigned. It is recommended that if you use this feature, you use at least three
trailing ampersands.

You can override the parameters specified on the JOB control statement through
selected features of the OPTION job control statement, which is explained in 6. 10.

UP-8065 Rev. 9

3.1.3. Identifying the Devices

SPERRY UNIVAC OS/3
JOB CONTROL

3-4
Update A

The next entry needed in the control stream is for the printer. The DVC job control
statement is used to request the assignment of peripheral devices to a job. Its format
is:

//[symbol] DVC lnnn[(n)]} , addr
RES OPT
RUN IGNORE

[,HOST=host-id]

ALT
I

0
REQ[Cn)]
REAL

The DVC job control statement specifies the logical unit number associated with a
peripheral device type. It can also be used to assign alternate devices, or to specify that
the job should be executed even if the requested devices are unavailable.

Here, again, we are only interested in the required parameter specifying the logical unit
number. There are no default parameters.

The nnn is a decimal number indicating the logical unit number of the device. By looking
at the following small section of Table B-1 , we see that the category for printers is in
the range of 20-29. If we are willing to use any printer that is available, we use logical
unit number 20 or 21 . But, it just so happens that there are two printers on the system
in use: a SPERRY UNIVAC 0773 Printer Subsystem and SPERRY UNIV AC 0770 Printer
Subsystem. Our program uses a special character that is only present on the 0773
printer so we will use logical unit number 22.

Device Type Logical
Device Type and Features

Code Unit No.

04FFOOOO 20 Any printer, no features specified
04FFOOOO 21 Any printer, no features specified
04400000 22 0773/0778 printer, no optional features
04400000 23 0773/0778 printer, no optional features
04100000 24 0776 printer, no optional features
04100000 25 0776 printer, no optional features
04200000 26 0768 printer, no optional features
04200000 27 0768 printer, no optional features
04800000 28 0770 printer, no optional features
04800000 29 0770 printer, no optional features

You'll notice that there are two other choices for this parameter: RES and RUN. They
will be discussed and used in later examples.

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

3-5

• We can now add the DVC job control statement to our control stream as follows:

•

•

II JOB POCO

NOTES:

1. The (n) portion of the nnn parameter is only used when the logical unit number
indicates a workstation device.

2. Logical unit numbers can be changed at system generation (SYSGEN) time to suit
the needs of a particular installation. You must be aware of any changes because
they could cause device assignment problems within your control stream, especially
if you're using Sperry-Univac supplied jprocs.

3.1 .4. Assigning a Logical File Name to the File

Every device assignment set in the control stream ends with the LFD job control
statement. This associates the file. defined in the program with the file information in the
control stream. Its format is:

//[symbol] LFD {filename }['{n}LJ[IACCEPT~
*filename ILJ EXTEND

INIT

RELOD
PREP

The LFD job control statement specifies the file name of the file. It's also used to:
reserve main storage for information about disk file extents, write over the information
of the file, add to the data already in the file, or to specify that the information needed
by data management should be obtained from the Format 1 or Format 2 labels in the
volume table of contents (VTOC) instead of the file definition macroinstruction.

The filename parameter specifies the name of the file you are going to use, and must
correspond to the name given to the file in the program. The file name for the LFD job
control statement is determined in the following manner:

• The basic assembly language (BAL) programmer uses the name in the label field of
the file definition macroinstruction.

• The COBOL programmer uses the external name from the SELECT entry in the
environment division. (If the external name is omitted in COBOL 68, use the file
name from the SELECT entry.)

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

3-6

• The FORTRAN programmer uses the device number from the READ or WRITE
statement, prefixed by FORT.

• The RPG II programmer uses the file name from the file description specification.

The filename parameter is normally one to eight alphanumeric characters, but if you are
using a data management file, it has a maximum of seven characters. This is because
data management allows only one to seven characters in the label field of the file
definition macroinstruction.

If an asterisk is placed in front of the file name on the LFD job control statement, it
means this is an input-only file; you cannot write on it. The operator should be notified
of this so he can take appropriate action.

For our control stream example, we'll assume our program is a COBOL program. The
file name for the printer in the FD entry is WRITEOUT. We can now add the LFD job
control statement to our control stream.

II JOB POCO
II DVC 22

111~1•11&1B1i

3.1 .5. Executing the Program

We have defined all the requirements of the program to the operating system. Now we
have to provide a job control statement to call the sorted program from a library and
initiate execution. This is done with an EXEC job control statement. Before the program
is actually loaded, any outstanding tape and disk mounting requests are completed. ·

The format of the EXEC job control statement is:

I I [symbol] EXEC program-name ['{ .. l .. i_b .. r .. a. r. y-namel~ [,switch - priority] [,AB NORM= label]
YRUN

. , •. ,
The EXEC job control statement identifies the name of the load module. It is also used
to specify the library containing the load module, the task switching priority, and any
action to be taken if the program causes an abnormal termination.

Once more, we are only interested in the required parameter and any default parameters
generated.

The program-name parameter identifies the load module to be executed. Every program
that is successfully compiled and link edited creates a load module. Every load module
that is created and every Sperry Univac-supplied routine must have a name. The
LOADM linkage editor control statement assigns a name to a load module; the EXEC
job control statement calls the load module by a program name. These names must
agree.

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

3-7

For example, you link edit your program with the module name TESTR on the LOADM
linkage editor control statement. The linkage editor creates the load module with the
name TESTR. When you want to execute this program, your EXEC job control
statement uses this same name: TESTR.

If, when you link edit your object module, you do not use a LO ADM linkage editor
control statement, the load module name, by default, is LNKLOD.

Assume that this program is stored in a library from which it can be retrieved as many
times as needed. When the program was link edited, the linkage editor was instructed
to place the load module in a specific, permanent library; otherwise, it automatically
would have been placed in the job's YRUN file, which is only a temporary file.
Assume it is located in the system load library file (YLOD), and the load module
name is LABELS. Since YLOD is the default parameter generated for the load library,
we only need to specify the program name, which is the same as the load module
name: LABELS.

We can now add the EXEC job control statement to our control stream as follows:

II JOB POCO

II DVC 22
II LFD WRITEOUT

~Zill~ll-IQ~S

By default, the lowest available task switching priority established at system generation
time is used.

3.1.6. Ending the Basic Control Stream

So far, we have provided all the job control statements needed to construct a basic
control stream: JOB, DVC, LFD, and EXEC.

This control stream is all the system needs to execute our simple program. But, after
the program executes, the system returns to job control to obtain the next job control
statement. Because the job is finished, a /& job control statement is used to signal the
end of the job. Its format is:

I&

This statement has no parameters, but it can have comments. These comments have
no effect on the system; they only provide a means of annotation. The comments must
be separated from the /&job control statement by at least one blank column.

The statement conventions for coding more than one job control statement on a line
(multistatement coding) are presented in Appendix A. The /& job control statement,
however, must be the only job control statement on a line .

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

3-8

Adding the /& job control statement, along with some comments, our control stream
looks like this:

II JOB POCO
II DVC 22
II LFD WRITEOUT
I I EXEC LABELS

3.1. 7. Ending the Card Reader Operation

We have signaled the system we are finished processing. Now, we have to terminate
the card reader operation - this informs the system that there are no more cards
associated with the job. We do this with a FIN job control statement. Its format is:

//[symbol J FIN

There are no parameters.

We can now add a FIN job control statement to our control stream, as in the following
example:

II JOB POCO
II DVC 22
II LFD WR ITEOUT
II EXEC LABELS
I& END-OF-LABEL-JOB
II FIN

The FIN job control statement also signals the end of card input when merging job
control statements with stored control streams, submitting data cards as input for a
stored control stream, or storing a complete control stream.

NOTE:

Using the FIN job control statement is unnecessary when input is on data-set-label
diskette or in the input spool file.

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

3-9

• 3.2. THE CONTROL STREAM SO FAR - A REVIEW

•

•

We have defined everything the system needs to know about the job. It has been given
a name, the system was instructed what load module to use and has been assigned the
peripheral device it needs. The program is ready for execution.

This control stream represents only a minimum application. We have only scratched the
surface of the capabilities of the OS/3 job control. Throughout the rest of this user
guide, we are going to build on this minimum control stream by adding and modifying
job control statements.

Let's assume that the program with a load module name of LABELS was recompiled
and link edited after it was modified to accept input from the card reader. This new
input contains name and address information that will be printed on the
adhesive-backed labels along with the constant information as shown in the following
sample.

NAME JOHN A. SMITH

ADDRESS 143 S. 52ND. ST.

CITY HOMETOWN STATE PA.
---~-~-- _.....;;...;;..;...;,.. ___ _

ZIP CODE 18908-.-'-'--"-----

3.2.1. Adding Card Input

Since the job will now accept card input, we must provide a device assignment set for
the card reader. This means we have to insert a DVC and LFD job control statement for
the card reader into the control stream. Once again, their formats are:

//[symbol] DVC lnnn[(n)])', addr
RES OPT
RUN IGNORE

[,HOST=host-id]

//[symbol] LFD

ALT
I

0
REQ[(n)]
REAL

{f i ~ename } [·{ .. ·n· .• }][IACCEPT~ *f1lename I EXTEND
INIT
REL OD
PREP

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

3-10

The following section of Table B-1 indicates that the category for card readers is
30-35.

Device Type Logical Device Type and Features
Code Unit No.

08FFOOOO 30 Any card reader subsystem, no features specified
08FFOOOO 31 Any card reader subsystem, no features specified
08200000 32 0717 /0719** card reader, no features specified
08200000 33 0717 /0719** card reader, no features specified
08800000 34 0716 card reader, no features specified
08800000 35 0716 card reader, no features specified

For this example, we will assume the system you're using has only one card reader, a
0717 card reader. For a logical unit number, there are four alternatives. We can use 32
or 33, which assigns a 0717 card reader specifically, or, since the 0717 card reader is
the only one we have, we can use 30 or 31, which allows us to use any available card
reader.

If the system had two card readers, both of a different type, and a particular card
reader is needed, you must be more specific in your assignment. If it's immaterial which
card reader is used, you could assign the logical unit number for any card reader (30 or
31).

A point to remember about logical unit numbers: if you don't care about the specific
device type, use the logical unit number that assigns any device within the category (20
and 21 for printer, 30 and 31 for card readers, etc). In that way, if there is more than
one type of device, you get the first one available. For instance, suppose you selected
logical unit number 26 (SPERRY UNIV AC 0768 Printer Subsystem) but there is also a
0773 printer connected to the system. The 0768 printer has 40,000 lines waiting to
print, while the 0773 printer has a backlog of only 500 lines. By specifying only the
0768 printer, you must wait for the other 40,000 lines to finish printing. By specifying
any printer, the output is sent to the first available printer. The logical unit number we
are going to use for the card reader is 30.

NOTE:

When requesting the assignment of more than one device of the same type (two
printers, for example), be sure you request the assignment of any specific devices you
need before you request the assignment of general ones. This ensures that a specific
device you may need (the 0773 printer, for example) will not be allocated for use as a
general printer when it's needed as a specific device.

Now that we have a DVC job control statement for the card reader, we need a
corresponding LFD job control statement. Since this program is written in COBOL, we
check the SELECT entry in the COBOL program and find that the file name is CARDIN.
This filename is coded in the LFD job control statement.

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

3-11

We can now add the device assginment set for the card reader to the control stream. It
can be placed anywhere in the control stream, with the following restrictions:

• It must be before the EXEC job control statement.

• It cannot be within embedded data.

• It cannot be within the device assignment set (DVC through LFD sequence) for
another device.

3.2.2. Card Input and Embedded Data

To accept data input from a card reader, we must inform the card reader in some way
that it is data to be read. In many cases, this data is caused to be read at execution
time by data management. In this kind of application, the data cards follow the / / FIN
card that caused the card reader to be turned off previously. All that is additionally
needed is a /* card after the data signifying end of data. There are no other parameters
required, and no comments are permitted in the comment area of the card. This /*
statement is always required for any type data. Thus, to our control stream we can
now add the data, followed by the /* end-of-data statement, and run our job, which
consists of the LABELS program. Basically, we are saying to the processor, run my job
POCO which executes the program called LABELS - my data is a card file after the FIN
statement when you are ready to execute. This will print the name and address
information, plus constants, as shown, on adhesive-backed labels that the operator has
previously placed in his printer. The following example illustrates this control stream:

II JOB POCO
II DVC 22
II LFD WRITEOUT
II DVC 30

II LFD CARDIN
II EXEC LABELS
I& END-OF-LABEL-JOB
II FIN

NOTE:

You should be aware, however, that in the case of multiple files, if the first program in
the series does not read all of its data cards (along with the /* that signals end of
data), the next program step will pick up where the previous one left off. Additionally, if
you are programming in higher level languages, such as RPG, COBOL, or FORTRAN, you
cannot read multiple card files in a single program without closing and reopening the
files .

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

3-12

Another way in which data cards may be accepted, and which informs the card reader
that data is being input, is the embedded data method. This means that the data is
embedded within the control stream itself. All it requires is a start-of-data (/$) job
control statement immediately after the EXEC statement, followed by the data and the
/* end-of-data. /$ has no parameters, and may appear as the last job control statement
on a multistatement line.

The advantage of this method is that the device assignment set is no longer required
for the reader, since the control stream is already being read. Additionally, the data
being read is instantly accessible, which is discussed later in a section on jprocs. A
disadvantage is that embedded data in a prefiled job control stream is harder to change
than the data in a card file (which follows the // FIN job control statement). This is
because the embedded data is actually a part of your control stream rather than a
separate card file. Changing embedded data is discussed in 6.24 and 6.25. An example
of an embedded data control stream is:

II JOB POCO
II DVC 22
II LFD WRITEOUT
II EXEC LABELS
1$

I& END-OF-LABEL-JOB
II FIN

You can use this method when you become familiar with the programming techniques
needed by the language you're using; for example, a COBOL ACCEPT or FORTRAN
READ instruction. In fact, programs supplied by Sperry Univac (such as the COBOL
compiler and the data utility routines) use this method. It entails the use of a supervisor
macroinstruction in the program (if it's assembler language; if it's one of the other
languages, there are similar instructions that are used). Again, if you decide to use the
embedded data method, the changes to your job control stream are:

1. Remove the device assignment set for the card reader; it's not needed.

2. Place the data (/$, data cards, /*) after the EXEC job control statement. This is
what's known as embedded data.

When you use the embedded data method, and you have a 0716 card reader
supporting the 96-column card feature, your data file can use the full 96 characters.
With data-set-label diskette, you can use up to 128 characters. But, even though your
control statements also can be on 96-column cards and dataa-set-label diskette, only
the first 72 columns (characters) can be used for job control statements.

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

3-13

In addition to embedded data, that is what is known as a dummy data set. A dummy
data set consists of only a /$ and a /*. This is used with some language jprocs. More
information about dummy data sets can be found in the language manuals (COBOL,
FORTRAN, etc).

You can replace embedded data sets in translated, saved job control streams by using
the DATA STEP job control statement (6.23).

3.3. THE PROGRAM IS CHANGED - ANOTHER DEVICE

So far, the program has been written to read name and address cards and print the
information, plus constants, on adhesive-backed labels. The program has been refined
once more. It is still going to print constants. However, the name and address file is
now on magnetic tape, in ZIP code sequence. This tape was created by someone else's
job. We want to list only the name and addresses of certain zip codes, therefore we
modify the program to accept a table from the card reader. This table contains only the
ZIP codes we want to print. The program instructs the system to compare the ZIP
codes from the table with the file on the magnetic tape and print the names and
addresses that match the ZIP code table.

We have already provided the device assignment sets for the printer and the card
reader. Even though the format of the card reader input is different (previously it was
the name and address file, now it is the ZIP code table), no changes are needed to the
card reader device assignment set. It was a program change and does not affect the job
control stream. The logical unit number is still 30 (DVC job control statement), and the
file name in the program is still CARDIN (LFD job control statement). The only new item
we have to provide in the control stream is a device assignment set for tape.

3.3.1. What is Needed to Use a Tape?

We have already said that every peripheral device used needs the DVC and LFD job
control statements. For readers, printers, and punches, this is all that is needed to
complete the device assignment set. However, magnetic tapes have volume serial
numbers, and, optionally, file identifiers. So, the device assignment set for a tape file
could be either.

II DVC

II VOL

II LFD

or

II DVC

II VOL

II LBL

II LFD

The first step is to provide a logical unit number and file name.

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

3.3.2. The Logical Unit Number and File Name for the Tape

3-14

The range of logical unit number for magnetic tapes is 90-12 7. The name and address
tape is a 9-track, phase-encoded tape. We must be specific. The logical unit number
selected for the DVC job control statement is 100. This gives us any tape drive that
can read a 9-track, phase-encoded tape; the tape unit transfer rate is immaterial.

We can now add this partial device assignment set for tape to our control stream.

II JOB POCO
II DVC 22
11 LFD WRITEOUT
II DVC 30
II LFD CARDIN

II EXEC LABELS
!& END-OF-LABEL-JOB
II FIN
I*

These new DVC and LFD job control statements do not represent the entire device
assignment set needed for tape. If we tried to run the job now, it would abort.

3.3.3. Supplying a Volume Serial Number for the Tape

Every tape file used in a job must have a VOL job control statement in the device
assignment set. This identifies the volume to be used. Its format is:

//[symbol] VOL Mee
N

NMee
volsn-1

SCRATCH

~
w.··1·•··;···••· ~ volsn-1 {z.·; ii'. ~L .. ,#:.

CNS>
(NOV)
(PREP)

volsn-2~~~~>~
CRATCH

The VOL job control statement supplies the volume serial number of the volume to be
accessed by the job. However, a tape volume does not necessarily need a volume serial
number, but it still must have a VOL job control statement.

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

3-15

You can also use the VOL job control statement to: count the number of blocks in the
file; specify the mode characteristics of the tape; request data management to write a
volume serial number; inhibit the checking of volume serial numbers if they are not
known; or, to indicate that the volume may also be used by someone else at the same
time that you are using it (this only applies to disk).

Again we are only interested in the required parameter. This parameter has several
different options, but for this job, only the volume serial number is needed.

The volsn-1 parameter is the 1- to 6-alphanumeric-character volume serial number of
the first volume of the file. A file may span more than one volume. Perhaps the length
of the file made it necessary to use three tapes (volumes) to hold the entire file. Since
this file is on only one volume, only one volume serial number is needed. Assume it to
be TAP111.

We can now add the VOL job control statement to our control stream as follows:

II JOB POCO
II DVC 22
II LFD WR ITEOUT
II DVC 30

II LFD CARDIN
II DVC 100

II LFD NAMADD
II EXEC LABELS
II I& END-OF-LABEL-JOB
II FIN

data cards
I*

This control stream could now be run, provided that the tape is unlabeled (no file
identifier).

OS/3 data management supports a maximum of 151 explicit volume names per file for
disk, diskette, and tape files.

3.3.4. Labeled Tapes for File Identification

Just as there can be one or more volumes in a file, there can also be one or more files
in a volume. Suppose the tape volume contained five files. It would be necessary to
have file identifiers on each particular file to access the proper file. Single-file tape
volumes also can have file identifiers. This is done to ensure that the correct file is
used. Even though the volume serial number is checked to see if the proper tape is
mounted, it is possible that this tape does not have the proper file needed for the job.
For example, someone could have inadvertently written on the tape because it did not
have a file identifier to indicate that this tape already contains information to be saved .
By using a file identifier, you indicate this is a saved tape. Had there been a file identifier
on the tape, anyone trying to write on this tape would have been notified that this is a
saved tape.

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

3-16

The LBL job control statement is used to either check or create a file identifier. Its
format is:

//[symbol] LBL
{
file-identifier '}['{file-serial-number}][,expiration-date]
'file-identifier VCHECK

[,creation-date] [' {t
1
i le -sequence -number}] ['{,~~nerat ion- number}]

I I
[tiers ion -number}]

The LBL job control statement identifies the file. It also can be used to: ensure that the
correct members of a multivolume file are used; indicate the date the file can be deleted
(by a SCR job control statement); indicate the date the file was created; indicate the
position of the file in respect to the other files in a multifile tape volume; and, specify
the generation and version number of a tape file, thus ensuring the most current edition
of the tape file is used.

We only want to ensure that the proper file is on the tape volume, so we need only the
required parameter.

The file-identifier parameter is 1 to 17 alphanumeric characters for tape, card, and
diskette files, but can be 1 to 44 alphanumeric characters if you are using a disk file. If
you wish, you can use embedded blanks in the file identifier, but it must be enclosed
within single quotation marks.

Assume that MASTERFILE is the file identifier assigned to this tape file when it was
created. We can now add the LBL job control statement to the control stream as
shown in the example.

II JOB POCO

II DVC 22

II LFD WRITEOUT

II DVC 30

II LFD CARDIN

II DVC 100

II VOL TAP111

a111;;:::··· ·:rJ,,.J]a
II LFD NAMADD

II EXEC LABELS

!& END-OF-LABEL-JOB

!&
II FIN

data cards

I*

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

3-17

The default parameters generated indicate this is the only file on the volume (1), and it
is the only edition of the file(1).

NOTE:

File identifiers prefixed by $SCR refer to job step temporary files; those prefixed by
$JOB refer to job temporary files.

3.4. ANOTHER PROGRAMMING CHANGE - ANOTHER DEVICE ASSIGNMENT

The site manager has determined the label program doesn't fulfill all the requirements
for which it was intended. Once more, it must be changed.

The name and address file was copied from the tape volume to a disk volume by using
a Sperry Univac-supplied data utility routine. Now, the input name and address file is on
disk, the ZIP code table is still input from the card reader, and the selected names and
addresses, plus constants, are still printed on adhesive-backed labels. These selected
names and addresses are now going to be saved and outputted to a file on a tape
volume for a later processing application.

Although there may be many programming changes involved, the control stream
changes are minimal.

The device assignment set for the card reader, the printer, or the tape do not need
changing. Even though the tape was used previously as an input file, converting it to an
output file is only going to involve changes in the program; it is not reflected in the
control stream. After the tape was copied to disk, the information it contained was
deleted in another procedure. We can use this tape with a volume serial number of
TAP 111 as the output tape We can also use the same logical unit number in the DVC
job control statement. NAMADD is used as the file name for the output tape file in the
program. This allows us to continue using NAMADD as the file name in the LFD job
control statement. However, we are going to give this tape file a different file identifier.
In the previous device assignment set for the tape it was MASTERFILE. We want to
change it to reflect its purpose.

It is no longer a master file for input; 1t 1s an output tape - let's call it OUTPUTTAPE.
This requires a change to the fife-identifier parameter of the LBL job control statement
for the tape device assignment set. We do not need to change it, but to make the
purpose and the name agree, we will. Changing the LBL job control statement makes
our control stream look like this:

UP-8065 Rev. 9

II JOB POCO

II DVC 22

11 LFD WRITEOUT

II DVC 30

II LFD CARDIN

II DVC 100

VOL TAP111

, ·I .,1

II LFD NAMADD

II EXEC LABELS

I&

II FIN

data-cards

I*

SPERRY UNIV AC OS/3
JOB CONTROL

END-OF-LABEL-JOB

3-18

We still must provide a device assignment set for the name and address file input from
disk.

3.4.1. The Device Assignment Set for a Disk or Format-Label Diskette

•

The following chart lists the necessary job control statements for the basic disk and •
format-label diskette device assignment set.

Your SYSRES
Disk or or

Allocation Format- YRUN File
Label (Disk only*)

Diskette

DVC DVC

Previously VOL LBL

Allocated
LBL LFD

LFD

DVC DVC

VOL LBL

Not LBL EXT
Allocated

EXT LFD

LFD

•A format-label diskette volume cannot be used as your
SYSRES volume or the volume containing the YRUN •
file.

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

3-19

In our case we have a disk file, the extent was allocated, and the file is not SYSRES or
the job's YRUN file. So the following job control statements are needed: DVC, VOL,
LBL, and LFD.

The disk pack used for the name and address file fits on a SPERRY UNIV AC 8416 Disk
Subsystem. The logical unit number we are going to use for the DVC job control
statement is 60.

Within the program, the file name from the FD entry is DKNAME. This is the file name
for our LFD job control statement.

We need a VOL job control statement to indicate the volume serial number of the disk
we are going to use. We need only the required parameter for the volume serial
number. Assume the site manager had the name and address file copied to the disk
with a volume serial number of DSKOO 1 .

Since most disk volumes contain many files, each file needs a file identifier. When the
site manager copied this file, he allocated it with a file identifier of DSKMASTFIL. We
must specify this in an LBL job control statement.

We now have all the information needed for the disk file. We can add the device
assignment set for the disk input file to our control stream and run the job.

II JOB POCO

II DVC 22

II LFD WRITEOUT

II DVC 30

II LFD CARDIN

II DVC 100

II VOL TAP111

II LBL OUTPUTTAPE

II LFD NAMADD

I I EXEC LABELS

I&

II FIN

data-cards

I*

END-OF-LABEL-JOB

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

3.4.2. The Device Assignment Set for Data-Set-Label Diskette

3-20

The prep routine for data-set-label diskette automatically allocates the entire diskette for
one file and assigns a file identifier of DATA (unless you specify otherwise). When this
file is used, you must include a device assignment set in your job control stream which
consists of the DVC, VOL, LBL, and LFD job control statements. For example:

II DVC 130

II VOL DSL01

II LBL DATA

II LFD FILE01

You only include an EXT statement in the device assignment set (and specify your own
identifier on the LBL statement) if the space wasn't already allocated during the diskette
prep routine. See 4.6 for the EXT statement for data-set-label diskette.

3.4.3. The Device Assignment Set for Workstation

The DVC and LFD job control statements are required for a basic workstation device
assignment set. The UID, USE SFS, USE DP, and USE MENU statements are included
under certain circumstances.

3.4.3.1. The UID Job Control Statement

The UID job control statement may be used as part of the device assignment set for a
workstation when you want to ensure that specific workstations, identified by user-id or
device address, are automatically connected to a job. This is done before a job's
execution begins (if the workstation has not already been connected via the CONNECT
command.) Its format is:

//[symbol] UID luser-id-1)[•····iuser-id-255 l~
Caddr-1> Caddr-255>
user-id-1Caddr-1) user-id-255Caddr-255>

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

3-21

A maximum of 255 workstations may be specified. You can specify YMAS as a
user-id to assign the job's master workstation to a job. The user-id parameter is one to
six alphanumeric characters in length. A device assignment set that assigns the
workstation being used by user-id (JONES 1) could look like this:

II DVC 200

11 UID JONES1

II LFD WKSTN

Assigning workstations is discussed in more detail in 4.3.2.

3.4.3.2. The USE Job Control Statements

If you are preparing a control stream for a program that uses screen format services,
menu services, or the dialog processor, you must include a USE job control statement
as part of your workstation device assignment set. Three different forms of the USE
statement make it possible for you to specify which workstaiton service you want.
These are as follows:

I I USE SFS. • • (for screen format services)

I I USE MENU. • • (for menu services)

I I USE DP. • • (for dialog processing)

Each statement and its accompanying parameters is discussed further in 6.26.1, 6.26.2,
and 6.26.3, respectively.

3.5. JOB STEP TEMPORARY AND JOB TEMPROARY FILES

To satisfy the needs of the software components for disk work areas, files lasting for a
job step and for the length of the job are provided. These files are deleted at the end of
the job step or the end of the job. While these files are aimed primarily for the software
components, the ability to allocate and use tmeporary files is available to you .

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

3-22

Basically, you allocate job step temporary and job temporary files the same way you'd
allocate any disk file. The only difference is you must prefix your file identifier with
$SCR for a job step temporary file and $JOB for a job temporary file. For example, to
allocate a job step temporary file, you could include the following device assignment set
in your job control stream:

II DVC 50

II VOL 012345

II LBL $SCRWORK1

II EXT MI,,,CYL,2

II LFD WORKFIL

When a temporary file is allocated, the $ of the file identifier is replaced with the job
slot number of the job using the file. The $SCR or $JOB associated with job 1 becomes
1SCR or 1JOB, the $SCR associated with job 2 becomes 2SCR, etc. This allows
concurrent jobs using the same file identifiers to access the proper work file. For
example, two COBOL programs, using the COBOL job control procedure Uproc) call, are
compiling at the same time. The COBOL jproc call always sets up two work files with
file identifiers of $SCR 1 and $SCR2. Both compilers would have different job slot
numbers; let's say 4 and 5. The work files for job 4 would be 4SCR1 and 4SCR2; for
job 5 they would be 5SCR 1 and 5SCR2. Because the system has replaced the $ with
the job slot number, the correct work area is accessed by the correct job.

Job step temporary files are automatically deleted at the end of the job step, while job
temporary files are automatically deleted at the end of the job. If the system is
reinitialized in the middle of your job, job control automatically scratches job temporary
files and job step temporary files when it reallocates them.

See 5.2 for information about using jprocs to allocate job step temporary and job
temporary files.

3.6. BASIC JOB CONTROL STATEMENTS

This section has covered the job control statements needed to run most jobs. In the
following section, we are going to use the basic job control statements and add the
optional parameters, explaining how each paraameter affects the performance of the
job.

•

•

•

•
UP-8065 Rev. 9 SPERRY UNIVAC OS/3

JOB CONTROL
4-1

4. Getting the Most Out of the
Basic Job Control Statements

4.1. OPTIONAL PARAMETERS CAN IMPROVE JOB PERFORMANCE

So far, in our discussions of basic job control statements, we've concentrated on the
required parameters. A great deal of work can be accomplished using just these
parameters. Sometimes, however, required parameters won't provide enough
information. In other instances, the ability to provide more information to the system
will speed up job execution. Additional information about a job and its peripheral
devices is supplied via the optional parameters that are part of the basic job control
statements. This section describes these parameters and shows how they are used.

• 4.2. IMPROVING YOUR CONTROL OF THE JOB

•

The JOB control statement was used to give a name to the job. It is used also to
specify the following: a selection priority; the main storage size for the job; how many
tasks are in any one job step; how long the job should take; a list of the control
streams on the operator's system console for debugging purposes; and spooling buffer
sizes. Once again, its format is:

//[symbol] JOB jobnaml {;}]I ,m;n] I ,maxtl~asksl] ['l;~;-b••f]
[,print-option-list][,acc-no][,nXm] , ACT

LOG
NOA CT
NO LOG
NONE
BOTH

[·{=DR}]

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

4-2

As you can see, some optional parameters generate default values when they are
omitted. In the previous discussion of the JOB control statement, only the required
parameter - jobname - was coded. By so doing, we indicated that, by default, the job
is to have normal priority (N) and there is only one task (1). This points up the fact that
when only the required parameters are specified, you are, in many cases, providing
more information about the job than is contained in the required parameters. The default
values were selected because they conform to the most frequently used programming
practices. This allows you to code as short a control statement as possible. The less
there is to code, the less chance there is of making a coding error.

NOTE:

The OPTION job control statement can be used to override individual parameters of the
JOB control statement (see 6. 10).

4.2.1. A Selection Priority for the Job

Jobs are selected for execution on a priority basis. The second parameter on the JOB
control statement specifies the priority. There are three priorities: normal (N), high (H),
and preemptive (P). Remember our discussion on the use of priorities in Section 1,
where we outlined how the priority is used by the system for selecting jobs and what
each priority means?

Most jobs are normal priority, which is by default, the parameter generated. If you need
another priority, you have to specify it.

It so happens that the label job named POCO is needed in a hurry, so the system
administrator allowed you to assign high priority. Added to the existing JOB control
statement, it would be coded as:

11 JOB POC0,1!

4.2.2. Main Storage Needs

If the load module named on the //EXECUTE statement is in a load ltbrary on a
mounted disk volume, you don't have to indicate the minimum amount of main storage
to execute the load module. If the disk volume containing the load module is not already
mounted, you must indicate the minimum amount of main storage needed to execute
the module.

The min parameter does this. The minimum main storage size is specified in decimal or
hexadecimal. The smallest amount that can be specified is 8K decimal bytes (2000 in
hexadecimal). The area used by the job prologue is not included in this amount.

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

4-3

Assume the label program needs approximately 12K (12,288) decimal bytes (3000 in
hexadecimal) and that it's in a load library on your own volume. The JOB control
statement would now be:

II JOB POCO,H,3000
or

II JOB POCO,H,X 1 3000

You can also specify the minimum main storage size in decimal. This is done by coding
D'number for the min parameter as illustrated in the following JOB control statement:

II JOB POCO,H,0 1 12288

For the sake of illustrating the omission of positional parameters, this JOB control
statement is coded as follows when the priority is omitted (it would be assigned the
normal priority, by default, by the system):

11 JOB POCO, ,-

See A.3 for information about coding numbers in job control statements.

NOTE:

If a job consists of multiple job steps, specify only the minimum main storage size
needed by the largest load module.

Consider the possibility that you may be running a 3-job-step job, consisting of perhaps
a COBOL compile, followed by a link edit, and then the execution of the generated load
module. OS/3 knows how much main storage to allocate for both the COBOL compiler
and the linkage editor, but there is no way OS/3 can know how much is required for
the execution of your program, since is has not been generated until after all the job
control has been interpreted. If your generated load module does not use more main
storage than the COBOL compiler (which is larger than the linkage editor, thus the
largest known job step), then your load module will have sufficient main storage
allocated. On the other hand, if your load module is larger than the COBOL compiler, not
enough main storage will be reserved.

4.2.3. More Main Storage to Speed Up the Job

In addition to specifying the minimum main storage, you can also request additional
main storage. This is an amount that can be used, but is not required, to speed up job
execution. However, the program must be structured to take advantage of the additional
main storage; for example, a segmented COBOL program. Some of the Sperry
Univac-supplied routines that use extra main storage in this manner are sort/merge,
linkage editor, and the language translators. As the minimum main storage size is
specified in decimal or hexadecimal, so is the maximum; it is the fourth parameter (max)
shown in the format.

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

4-4

We'll assume that the label program was structured to use 41 K decimal bytes (A028
hexadecimal) of main storage, if it is available; also, that it uses the high scheduling
priority and needs at least 12K decimal bytes (3000 hexadecimal). Added to our JOB
control statement, it would be coded as follows:

II JOB POCO,H,3000,A028

You can also code X'A028 to represent the maximum main storage size in
hexadecimal.

You can specify the maximum main storage size in decimal by coding D'number for the
max parameter (e.g., 0'41000 instead of A028 or X'A028).

If we omitted the scheduling priority (it would default to normal) and the minimum main
storage size, it would be coded as follows:

II JOB POCO,,,A028

NOTE:

If either the min or the max parameter is omitted, the value specified for one is used for
the other. If both are omitted, and the load module is not located in YLOD (on
SYSRES) or in an alternate load library on either SYSRES or the volume containing the
job's YRUN file, job control automatically allocates BK decimal bytes of main storage
(2000 in hexadecimal). If you have requested a job dump through the OPTION
statement (JOBDUMP), and you have not specified min or max on the JOB statement,
job control nearly doubles the amount of main storage that is automatically allocated. If
you specify min or max and intend to request a job dump, specify at least 14K decimal
bytes (3500 in hexadecimal).

4.2.4. Multitasking Specification

If a program is written in BAL, you can create multiple tasks within it by using the task
parameter. This is called multitasking.

So far, we have been saying that job POCO is written in COBOL. For this example,
assume that it is written in BAL, and that we are going to allow for 18 tasks to be
active. The job still needs 12K decimal bytes to execute, but it can use 41 K decimal
bytes, and has a high scheduling priority. Adding the multitasking specification would
make our JOB control statement look like this:

II JOB POCO,H,3000,A028,18

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

4-4a

Each task specified requires 256 bytes in the job prologue. The maximum number of
tasks you can have within a job is limited by the maximum size of the prologue (65535
bytes). If we omit the task parameter, job control assumes 1 by default.

NOTE:

There are other tables which require prologue space and their size varies depending, for
example, on the number of files and spool buffers declared through job control. If you
exceed the prologue size (you receive an R289 message and the job is not scheduled)
you can reduce the number of tasks, files, or spoolbuffers specified.

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

4-5

• 4.2.5. The Processing Time for the Job

•

•

After the same job has run several times, you probably know how long it takes to
execute. Should it run longer, it may mean something is wrong - perhaps there is a
"bug" that has never been encountered before. Rather than waste processing time, you
can set a processing time limit using the max-time parameter. If the job executes
beyond this time limit, a message is sent to the operator, who can either cancel the job
or extend the time limit by any increment. If you specify max-time, you should tell the
operator what action to take if the specified processing time is exceeded.

The max-time limit is specified in minutes. It refers to elapsed wall-clock time or to
elapsed CPU time, depending upon how your supervisor is configured. If you want to
suppress the max-time function completely for a particular job, you can specify SUP in
the max-time parameter, rather than a number.

The system will adjust the max-time value to allow for the following conditions:

• Checkpoint/restart

• PAUSE job control statements

• SET CLOCK commands

• Roll-in/roll-out

If you omit max-time, the time limit set at system generation is used as the default
value. The max-time parameter is supported only on supervisors configured with
NORMAL or MAX timer services. If a timer service is not specified at system
generation, max-time specifications are ignored.

Suppose you know that the job POCO should take no more than 15 minutes to run.
Added to the other parameters of the JOB statement, the max-time parameter is coded
as follows:

II JOB POCO,H,3000,A028,18,15

4.2.6. Debugging the Control Stream

With the print-option-list parameter you can control the printing of job control
statements and jproc listing by specifying one or more available options. In a spooling
system, statements are printed in the job log; otherwise, they are displayed on the
system console. This gives a graphic display or printout of the control stream for
debugging purposes. For example, if a particular control stream is run for the very first
time and there are syntax errors in the coding, the system will generate an error
message telling you so. If you have used one of the debugging list options, you receive
a listing of your control stream. It's easier to find errors on this graphic display or
printout than having to look at the punched cards.

UP-8065 Rev. 9

The options for this parameter are:

SPERRY UNIV AC OS/3
JOB CONTROL

4-6

II Lists job control statements with symbol substitution. This is the default in a
spooling system.

D Lists job control statements (as they' re read in by the run processor) without
any symbol substitution.

P Lists completed job control statements, which are generated by a procedure
call statement in the control stream, showing the values assigned in the
procedure definition statements.

E Lists any data contained in the control stream

S Lists all the job control statements skipped as a result of an IF or GO job
control statement

A Combines all the options

W Suppresses the display of job control warning errors on the console or
workstation but not on the job log.

• None of the options are in effect. This is the default in a nonspooling system.

You may specify more than one option on a JOB control statement. However, if more
than one option is specified, the parameter group must be enclosed in parentheses.
Each option must be separated by a comma and can be specified in any order. For
example, {S,P,E) or {P,E,S); when only one option is specified, no parentheses are
needed.

When the 0, P, E, or S options are chosen (separately or in combination) you get a
listing of your basic job control statements with symbol substitution even if B is not
specified.

Let's assume this is the first time we are running job POCO, and we want to list the
basic job control statements with symbol substitution, the job control statements
generated by a procedure call, and the data. These are options B, P, and E, but since
the option B is in effect when either P or E is chosen, you don't have to specify it.
Added to the other parameters of our JOB control statement, it would be coded as
either:

II JOB POCO,H,3000,A028,18,15,lllffl

or
II JOB POCO,H,3000,A028,18,15,lllll

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

4-7

• 4.2. 7. Job Accounting and Spool Buffers

•

•

Use the ace-no parameter to provide the account number that has been assigned to you
at your installation. This 1- to 4-alphanumeric-character parameter creates an entry in
the job preamble for this account number, containing the total elapsed wall clock time.
Wall clock time can be defined as the point in time when a job is initiated for execution,
up to the time when the job terminates. Therefore, any time used by spool input and
spool output is not included.

This parameter may or may not be required, depending on the accounting procedures
used at your installation.

Suppose the account number assigned to you is AOO 1. Adding this information would
make the existing JOB control statement appear as:

II JOB POCO,H,3000,A028,18,15,(E,B>,illil

The nXm parameter sets up buffers for the file. This buffer holds data from the time it
first becomes available until the time it's needed for processing. Thus, the central
processor does not have to wait as long for data. The job log and any spooled files
that don't have their own buffers can share these buffers.

When coded, the n is the number of buffers, X is a constant, and the m is the number
of (256-byte) blocks. Whenever nXm is omitted, a single 256-byte buffer (1X1) is
reserved if only the job log is sharing the buffer with your spool files. If other spool files
are also sharing the buffer, two buffers of 512 bytes each (2X2) are allocated for a
total of 1024 bytes.

For example, if you wanted to allocate 2 buffers of 2048 bytes total, you would code:

II JOB POCO,H,3000,A028,18,15,(E,B>,A001,lll

The only values accepted for m are 1, 2, 4, 8, 16, and 32. Numbers larger than 32
default to 32. Numbers not in the acceptable range are changed to the lower acceptable
constant (e.g., 6 is changed to 4).

4.2.8. Printing the Job Log File and Page Headers

The job log file contains the job accounting records, dumps created as a result of an
OPTION job control statement with the DUMP parameter, and a log, or list, of
messages and job control statements that were displayed on the system console. You
can selectively print this job log file with your job, by using one of the following
parameter choices of the JOB control statement:

ACT
LOG
NOA CT
"lOLOG
NONE
BOTH

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

4-8

The ACT parameter forces the printing of accounting records, regardless of the system
options in effect. LOG forces the printing of job log records, regardless of the system
options in effect. The NOACT parameter, when used, suppresses the printing of
accounting records. The NOLOG parameter means do not print the log (which also
contains dumps generated by an OPTION DUMP job control statement). If you code the
NONE parameter, both the log and accounting records aren't printed. The BOTH
parameter allows both the log and accounting records to print. If you don't specify one
of these parameters, the system options in effect are used.

For example, if you want only the accounting information to print (no log records -
NOLOG'J, you would code:

II JOB POCO,H,3000,A028,18,15,CE,B>,A001,2X4,llUB

Cancel and snapshot dumps are never suppressed. If you're running in a nonspooling
environment, this parameter is ignored.

At the beginning of the job log and accounting record printout, a page header, which
consists of several lines of asterisks, is printed. This can be suppressed by coding the
NOHDR parameter on the job control statement; by default, HOR is generated. Coded, it
would be:

II JOB POCO,H,3000,A028,18,15,CE,B),A001,2X4,NOLOG,lllQI

This parameter is ignored if you're not spooling.

A job log report program is also available that will provide you with a job accounting
report based on the contents of the log file. For more information about the job log
report program, refer to the system service programs user guide, UP-8062 (current
version).

4.3. IDENTIFYING THE PERIPHERAL DEVICES A LITTLE FURTHER

The DVC job control statement associates a physical device type, specified by a logical
unit number, with your job. It can also be used to: assign multiple workstations to a
file; indicate an alternate device for handling more than one input or output volume;
indicate that the job can execute even if this device is not available; indicate that
different volumes are used on the same device, in a serial manner, during a job step;
provide the physical address of the unit for using a specific device; or (in a DDP
environment), indicate that a disk file is remotely located. Here, again, is its format:

//[symbol] DVC lnnn[(n)]) , addr
RES OPT
RUN IGNORE

ALT
I

0
REQ[(n)]
REAL

[,HOST=host-id]

Refer to this format when each new parameter is introduced.

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

4-9

• 4.3.1. Using Multiple Devices, SYSRES, or the Job's YRUN File

The first parameter has three choices: nnn, RES, or RUN. (Remember, the (n) portion of
nnn is only used when assigning workstations.)

We have already explained the use of nnn to specify a logical unit number (3.1.3).
However, if you want to use more than one print, punch, or card file in a job, you
should assign a different logical unit number to each file because the run processor flags
multiple occurrences of the same logical unit number in the same job step. If your
system contains only 0773 printers, for example, you can use the logical unit numbers
20, 21, 22, and 23. Sometimes, in a spooling environment, you may want to assign
more than four virtual printers or punches. To do this, you must use the EQU statement
(6.3) to equate additional logical unit numbers to your devices. You can use any logical
unit number that is not already in your system. The EQU statement is placed just before
the device assignment set. To get an 0773 printer when you have already used the
logical unit numbers 20, 21, 22, and 23, you might use the logical unit number 10, as
follows:

II EQU 10,0440
II DVC 10

The number used for the type parameter of the EQU statement, 0440, is listed in Table
B-1 as the device type code for the 0773 printer.

• NOTE:

•

The maximum number of unique devices allowed in a job is 255. The maximum number
of unit record devices (e.g., card readers, data-set-label diskettes, printers) allowed in
one job is 42.

You don't have to supply a logical unit number for files in SYSRES or the volume
containing the job's YRUN file. Use RES to indicate that the file is on the SYSRES
volume, or RUN to indicate that the file is on the volume containing the job's YRUN
file. Whenever RES or RUN is used, you can omit the VOL job control statement in the
device assignment set. The system differentiates between which volume is the SYSRES
volume and which volume contains the job's YRUN file. RES or RUN can only be
used for disk files.

In our control stream, we used this device assignment set for the name and address
disk input file as follows:

II DVC 60
II VOL DSK001
II LBL DSKMASTFIL
II LFD DKNAME

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

4-10

If, instead of using the disk with a volume serial number of DSKOO 1, the site manager
puts the name and address file on the SYSRES volume, still using the file identifier of
DSKMASTFIL, and assuming the file name in the program is still DKNAME, then the
device assignment set is:

II DVC Ill:;
II LBL DSKMASTFIL
II LFD DKNAME

The VOL job control statement is omitted because the file is on SYSRES.

4.3.2. Specifying Multiple Workstations

Suppose you want to access a workstation file from more than one workstation. The
(n) portion of the DVC statement's nnn parameter allows you to associate up to 255
workstations of the type and characteristics specified by (nnn) with one file. Consider
the following example:

II DVC 200(4)

II LFD WKSTF I LE

When the DVC statement is specified like this, up to four workstations can be logged
on and then optionally connected (via the workstation CONNECT command) to the same
job. These workstations access WKSTFILE.

If all four workstations must be connected for the job to begin execution, use the REQ
parameter of / / DVC, like this:

II DVC 200(4),REQ

The UID statement is used when you want specific required workstations automatically
connected to the job.

The REQ parameter and the UID job control statement are discussed further in 4.3.3.5.

4.3.3. More Control over Peripheral Devices

The format shows there are eight possible choices for the second parameter of the
DVC job control statement: addr, OPT, IGNORE, ALT, /, 0, REQ, and REAL. Each has its
own specific meaning. How and why you would use each are explained in the following
paragraphs, except for I and 0, which are explained when we discuss spooling diskette
files (6.2.3).

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

4-11

• 4.3.3.1. Assigning Devices by Physical Address and Assigning Real Devices

•

•

Every device has a physical address associated with it. This is a hexadecimal number
representing the channel number, control unit address, and device number. It is
assigned by a Sperry Univac customer engineer. You can specify it by using the addr
parameter of the DVC job control statement.

It is unlikely you will need to use the addr parameter because the system can best
assign devices, since it is aware of the requirements of all jobs being run. Your job may
have special needs, however. Suppose you are running in a spooling environment. You
have a large job where the format of the printed output is very important. You want to
bypass spooling so that you can check your printed output immediately and stop the
job, if necessary, to correct the format. Since it is a large job, you do not want it to go
first to a spool file and then print if there are formatting errors. You would specify the
physical address of a real (rather than a virtual) printer, like this:

II DVC 20,160

You may assign a real device and bypass spooling without specifying its physical
address if you use the REAL parameter. The following statement, for example, allows
you to request any real printer:

II DVC 20,REAL

If you use the addr parameter to request a specific tape or disk device, be sure the
volume you want is not mounted on another unit. The / / UID job control statement can
be used to assign workstations by physical address (see 4.3.3.5).

4.3.3.2. Is This Device Needed for This Particular Run?

Sometimes, all the peripheral devices normally used by the job are not absolutely
needed. You may have a case where a job normally produces print and tape output.
Your system administrator needs the print output in a hurry, but he is not worried about
the tape output at this time. If he can't get it, he can reschedule the job to produce the
tape output.

Our control stream has device assignment sets for tape and print files. In the DVC job
control statement of the device assignment set for the tape file, we can use the OPT
parameter. This indicates that the peripheral device is optional; it is not essential to the
running of the job. If it is not available at the time the job is put into execution, all
references to this device are bypassed.

Added to our DVC job control statement for the tape output file, it would be coded as
follows:

II DVC 100,llJ!

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

4.3.3.3. Different Volumes on the Same Device

4-12

Within a job step, job control normally allocates one device for each logical unit number
specified in the control stream. You might, however, have several different volumes to
be processed serially within the same job step. This could require several different
devices and your job would not be run until all the devices are free. You can suppress
job control's check for one volume per logical unit number within a single job step and
reuse the same device serially by specifying IGNORE on the DVC statement. Since
IGNORE reduces the number of peripheral devices a job needs, it increases the chances
of your job being run sooner.

If the first occurrence of a logical unit number does not specify IGNORE in the DVC
statement, all subsequent references to that logical unit number must have IGNORE
specified in the DVC statements.

If you use the IGNORE parameter, processing for the first volume must be completed
before the second volume is needed, and so forth.

A typical application for the IGNORE parameter might be a program that takes
information from a tape file, updates it with information from a card file, and creates a
new tape. But a job is scheduled that lasts most of the day, and it uses all but one of
the installation's tape drives. Since you need two tape drives, you would have to wait
until that job was finished. However, you wrote the program so that it reads the input
tape file completely, updates the information, and then writes it out to a new tape.
Since the processing of the tape volume containing the input file is finished before the
program creates the new tape file, you can use the same device by using the IGNORE
parameter of the DVC job control statement in the device assignment set for the next
file to be processed (the output file, in this case).

The IGNORE parameter tells the system to disregard the fact that there already has
been a device assignment set for this logical number in this job step.

Suppose the input file is on a tape with a volume serial number of TAP 111, a file
identifier of FIRST, and the file name for the input file is MASTIN. The output file will be
on a tape volume with a volume serial number of T AP222, have a file identifier of
SECOND, and the file is MASTOUT. The logical unit number we are going to use is
101.

The device assignment sets for the input and output files would be:

II DVC 101
II VOL TAP111
II LBL FIRST
II LFD MASTIN
II DVC 101,n1&1
II VOL TAP222
II LBL SECOND
II LFD MA STOUT

•

•

•

•
UP-8065 Rev. 9 SPERRY UNIVAC OS/3

JOB CONTROL
4-13

When you use this feature of job control, make sure you inform the operator of the
tape mounting sequence.

Users of the SPERRY UNIV AC sort/merge routine will find the IGNORE parameter useful
on tape sort applications that use tape volumes as input, work areas, and output.

When a job consists of more than one job step, the system assumes that the first
device assignment set for a logical unit number will be used in subsequent job steps
until a new device assignment set for the same logical unit number occurs. For instance,
if you wanted to use the tape file with a volume serial number of T AP222 in the next
job step, you would have to specify the device assignment set of

II DVC 101
II VOL TAP222
II LBL SECOND
II LFD xxxx (this depends on your program)

at the beginning of the new job step. Otherwise, the system would assume the tape
with a volume serial number of TAP 111 is to be used.

4.3.3.4. Multiple Volumes in a File? Use Alternate Devices to Decrease Operator
Setup Time

• The file is large - in fact, so large it needs four tape volumes to hold it. When the
program uses four tape volumes, the operator can mount them, one at a time, on the
device associated with the logical unit number on the DVC job control statement. When
a volume is processed, he removes it from the device and mounts the next volume on
the device. Meanwhile, processing time is wasted while the system waits for him to
mount the new volume. He must do this for every volume of the file.

•

One way of avoiding this is to use the ALT parameter on the DVC statement. This
allows you to alternate the same logical unit number between two devices provided that
two devices of the same type are available. One device uses the logical unit number
while the first volume is being used, then the logical unit number switches to the other
device for the next volume. After the second volume is finished, and if there are any
more volumes in the file, the logical unit number is switched back to the first device,
and so on, until all volumes are used. In this way, the operator can mount two tape
volumes, on two different physical devices associated with a logical unit number, in
their proper sequence. When the first volume is finished, the system switches to the
device containing the second volume. Meanwhile, the operator can unload the first
volume and mount the third volume on the device. In this way, no time is wasted
because of setup time. All alternate devices must be of the same type. This is
especially helpful when small tape reels are used. Note that alternating is restricted to
the boundaries of one job step, and that if only one device is available, a job will
execute with only one device (even though ALT is specified) .

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

4-14

Assume a job has four tape volumes, using logical unit number 100. You can switch
between the two physical devices associated with logical unit number 100 by coding
the DVC job control statement as follows:

II DVC 100,181~

Of course, the VOL job control statement must be modified to indicate the volume serial
numbers of the four different tape volumes. We'll discuss the use of optional
parameters for the VOL job control statement later. Briefly, the following example is
how multiple volume serial numbers are coded.

II DVC 100,ALT
II VOL T11111,T22222,T33333,T44444

To ensure that alternation occurs between devices, you may explicitly declare two
devices in your job control stream. This means you'll have two DVC statements, each
specifying a different logical unit number. Consider the following example:

II DVC 100
II VOL T11111,T33333
II DVC 101
II VOL T22222,T44444

In this case, the operator can always alternate between the two devices specified by
the logical unit numbers 100 and 101, until all volumes are used.

Users of the sort/merge routine will find it helpful to alternate when sorting many tapes
with the same label on a master tape.

4.3.3.5. Ensuring that Workstations Are Connected to a Job

You can use the REQ [(n)j parameter of the DVC statement or the UID job control
statement when you want to ensure that workstations are connected to a job.

REQ tells the system that the number of workstations you've specified through the
nnn[(n)j parameter of the I I DVC statement are required and must be connected (via the
workstation CONNECT command) for the job to begin execution. You can further tailor
the DVC statement by specifying that only a certain number of the workstations must
be connected before the job is executed. You do this with the (n) portion of the REQ
parameter. If you prepare your statement like this:

II DVC 200C8),REQ(1)

it tells the system that eight workstations can be connected to the job and that one of
the eight is required and must be connected for the job's execution to begin.

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

4-15

• NOTES:

•

•

1. The (n) portion of the nnn parameter and the REQ[(n)] parameter are used to assign
workstations only. Up to 255 workstations can be assigned to a single workstation
file.

2. The nnn parameter of II OVC is used differently for workstations than for other
devices. If you specify the logical unit number 200 (any workstation) and tailor the
specification by using the (n) portion of the nnn and REQ parameters, multiple
workstations (of any type) are assigned to the job.

Recall from 3.4.4.2 that the UID statement is used if you want specific workstations
connected to a job automatically. This is done before the job's execution begins (if the
workstations specified have not already been connected via a CONNECT command).
You identify a particular workstation by its user-id, physically devices address, or both.
Consider the following example:

II DVC 200

II UID WS1,C018),WS2C019)

11 LFD WKSTFILE

The UID statement in this example indicates that the following three workstations will
automatically be connected: any workstation logged on with a user-id of WS 1, the
workstation with the address 018 and logged on with any user-id, the workstation with
the address 019 and logged on with a user-id of WS2. If these three conditions are not
satisfied, the job remains in the scheduling queue. Remember that workstations
specified in the UID statement are required; therefore, the job will not run until these
devices are available (that is, logged on).

Although the (n) portion of the nnn parameter and the REO {(n)j parameter are generally
unnecessary in the DVC statement when the UID statement are used, you may
encounter a special situation. Consider the following example:

II DVC 200(4)

II UID WS1,WS2

II LFD WKSTFILE

The DVC statement indicates that the job can use up to four workstations. The two
identified in the UID statement are required and, provided they're logged on, will
automatically be connected at execution time. Two more workstations (any two) can
optionally log on and then connect to the job with the CONNECT command.

Remember, you can specify YMAS as a user-id to assign the job's master
workstation to a job .

UP-8065 Rev. 9

4.3.4. Specifying a Remote Disk File

SPERRY UNIV AC OS/3
JOB CONTROL

4-16

To indicate that a disk file is located at a remote host in a DDP network, specify the
HOST=host-id keyword parameter on the // DVC statement. The host-id is one to four
alphanumeric characters long and identical to the label-id of the LOCAP macroinstruction
in your ICAM network. $HOST (in place of a host-id) indicates that the file is located at
the job's remote originator (the remote host that initiated the job). Consider the
following:

II JOB MYJOB

II DVC 50,HOST=A123
II VOL 0000028
II LBL FILE1
II LFD REMOTE

II EXEC PROGA
!&

•

The DVC statement in the preceding device assignment set means that the disk file is •
located at host A 123

NOTE:

The host you specify (using either a host-id or $HOST) must be a remote host. If you
specify a local host, you 'If receive a data management error message (DM21 /NV AUD
DEVICE ASSIGNMENT).

For information about DDP facilities, see the distributed data processing concepts and
facilities manual. For more information about the originator, see the OPTION ORI
statement in 6. 10. See A.2 for information about coding job control statements
containing positional as well as keyword parameters.

4.3.5. Indicating Use of the DDP Program-to-Program Facility

If your program is written in BAL and uses consolidated data management macros, you
can use DDP' s program-to-program facility. In its simplest form, this facility allows a
program at one host (the primary) to initiate communication with a program at another
host (the surrogate). The job control stream for each program participating in this simple
conversation must contain a DVC PROG job control statement. Used in place of / / DVC,
11 DVC PROG begins the device assignment set for the program-to-program type file.
The format is:

//[symbol] DVC PROG [,job-name][,HOST=host-id] •

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

4-17

You can specify one 11 DVC PROG statement in any single-step job control stream. (A
single-step job requests the execution of only one program.) The device assignment set
must contain a I I LFD statement and may contain a I I LBL statement for cataloging
purposes.

The job-name parameter identifies the name of the other part1c1pant in the
program-to-program communication. For example, when specified in the 11 DVC PROG
statement for the primary, job-name identifies the surrogate. When specified in the 11
DVC PROG statement for the surrogate, job-name identifies the primary. This parameter
is required in the I I DVC PROG statement for the primary but is optional in the I I DVC
PROG statement for the surrogate.

The HOST=host-id parameter simply identifies a particular host in a DDP network. The
host-id is one to four alphanumeric characters long and identical to the label-id of the
LOCAP macroinstruction in your ICAM network. You use $HOST (in place of a host-id)
to indicate the originator (the host that initiated the job). Consider the following control
streams:

HOST AAAA

II JOB MYJOB

II DVC PROG,YOURJOB,HOST=BBBB
II LFD THISFIL

II EXEC PROG1
I&

HOST BBBB

II JOB YOURJOB

II DVC PROG
II LFD THATF IL

II EXEC PROG2
I&

The I I DVC PROG statement in MY JOB indicates that communication can only be
established with PROG2 - the program identified in YOURJOB at host BBBB. PROG 1, in
this case, must act as the primary. The 11 DVC PROG statement in YOURJOB means
that PROG2 is a surrogate in the program-to-program communication with PROG 1 .
PROG2 can also act as the surrogate when other job control streams declare I I DVC
PROG,YOURJOB,HOST=BBBB. Now consider the following:

HOST AAAA HOST BBBB

II JOB MYJOB II JOB YOURJOB

II DVC PROG,YOURJOB,HOST=BBBB II DVC PROG,MYJOB,HOST=AAAA
II LFD THISFIL II LFD THATFIL

II EXEC PROG1 II EXEC PROG2
I& I&

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

4-18

l"hese two job control streams indicate that only PROG2 at host 8888 and PROG 1 at •
host AAAA can communicate with each other. The first program to oepn the
program-to-program type file is considered the primary.

Although primarily intended for communication between programs executing on different
hosts, the program-to-program facility can be used between programs executing on the
same host. For more information about DDP' s program-to-program facility, see the
distributed data processing concepts and facilities manual.

4.4. MORE INFORMATION ABOUT THE CHARACTERISTICS OF YOUR
VOLUMES

We have used the VOL job control statement to specify the volume serial number. It
also has additional parameters for further identifying each volume to the system. Once
again, its format is:

//[symbol] VOL Mee
N

NMee

volsn-1~m:~,~

SCRATCH

Refer to this format when each new parameter is introduced.

NOTES:

1. If all the volumes used to contain a multivolume file are going to be online
simultaneously (mounted on different devices during the course of a single job
step), the NOV and PREP options, if used, must be specified for each volume.

2. The DVC specification in the device assignment set is used to determine if more
than one device is being used.

3. In a multivolume file, if the individual volumes are mounted on separate devices, the
NOV and PREP options can be specified only for the individual volumes.

4. If the PREP option is specified for any volume in a multivolume file sequentially
mounted on one device, it applies to all volumes in a multivolume file. NOV must
be specified for the last volume in the file for it to apply to all volumes in the file.

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

4-19

• 4.4.1 . More Than One Volume in a File

•

•

When we discussed the ALT parameter of the DVC job control statement (4.3.3.4), it
was stated that all volumes in the file must be specified on the VOL job control
statement of the device assignment set for the two devices sharing a logical unit
number. The example given was:

II DVC 100,ALT
II VOL T11111,T22222,T33333,T44444

Each group of numbers specified on the VOL job control statement (T 11111, T22222,
etc) represents the volume serial number of the volumes in the sequence in which they
are mounted.

Remember, whenever there is more than one volume in a file, notify the operator of the
mounting sequence.

If more than eight volume serial numbers are listed, a nonblank character must appear in
column 72 of the VOL job control statement and one or more continuation cards
(Appendix A) must follow. For example:

Column 72
(continuation)

II VOL T11111,T22222,T33333,T44444,T55555,T66666,T77777,T88888,
I ti T99999, T AAAAA

L Continuation Column
Indicator
(Optional)

l
" •.. t...·

You can also specify multivolume files by using separate VOL control statements, like
this:

II VOL T11111
II VOL T22222
II VOL T33333

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

4-20

This method has an advantage over the continuation method in that you can change •
VOL specifications easier if they are coded separately.

The VOL statement's (NOV) and SCRATCH parameters provide you with the option of
not listing each specific volume serial number in a multivolume file. For further
discussion of these parameters, See 4.4.5.

4.4.2. Special Characteristics of Tape Volumes

Tape volumes have certain mode characteristics, such as bytes per inch, parity, and the
number of tracks (7 or 9). The mode characteristics of tape volumes are specified using
the Mee parameter. The values for cc are given in Table 4-1.

Suppose you are using a UNISERVO 12 Magnetic Tape Subsystem, and the tape
volume is 7-track, 200 bytes per inch, even parity, with the translate and convert
features off. The mode setting is 20 and it would be coded as M20. The volumes being
used are coded as the remaining parameters.

II VOL lfll,T11111,T22222

If the Mee parameter is omitted, the mode settings specified at system generation time
are used.

If your supervisor supports block numbering and you have specified BKNO =YES in your
program's file definition macroinstruction (or the specification of BC$CLNM for PIOCS),
data management will check block numbers on input tape volumes or write sequential
block numbers on output tape volumes. If you want to suppress block numbering or
checking during initialized processing, you use the N parameter on the VOL job control
statement. Initialized processing includes use of the TPREP utility routine or the PREP
option on the VOL statement as well as processing of input or output files with
nonstandard labels or no labels. When you specify N, block numbering is suppressed
for all volumes included on the VOL statement. For noninitialized processing, the N
parameter is ignored. That is, if your supervisor supports block numbering and you have
specified it in the file definition macroinstruction, you cannot suppress checking or
writing of block numbers by using the N parameter. For details about block-numbered
tapes, see the data management user guide.

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

4-21

For example, to suppress block numbering on two tape output volumes with volume
serial numbers of T 11111 and T22222, code as follows:

II VOL ~,T11111,T22222

When both the N and Mee parameters are used, code them as one parameter. For
example:

II VOL llll,T11111,T22222

Table 4-1. Mode Characteristics

Tape cc Bytes per Inch Parity Translate Feature Convert Feature

UNISERVO 12/16 and 10/14 Magnetic Tape Volumes

7-track 10 200 Odd Off On
20 200 Even Off Off
28 200 Even On Off
30 200 Odd Off Off
38 200 Odd On Off
50 556 Odd Off On
60 556 Even Off Off
68 556 Even On Off
70 556 Odd Off Off
78 556 Odd On Off
90 800 Odd Off On
AO 800 Even Off Off
A8 800 Even On Off
BO 800 Odd Off Off
B8 800 Odd On Off

9-track C8 800 Odd Off Off
co· 1600 Odd Off Off

UNISERVO Vl-C Magnetic Tape Volumes

7-track 10 200 Odd On
20 200 Even Off
30 200 Odd Off
50 556 Odd On
60 556 Even Off
70 556 Odd Off
90 800 Odd On
AO 800 Even Off
BO 800 Odd Off

9-track 80 800 Odd Off

*Also applies to the UNISERVO 20 Magnetic Tape Subsystem

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

4.4.3. Extending Your Tape Volumes

4-22

If you recall, when we were assigning file names to files, we used the LFD job control
statement (3. 1.4). Well, now we'll use this same statement to extend our file. Once
again, here is the format:

//[symbol] LFD {fi~ename }['{ •. ·N···.·.·}ll[IACCEPT~
*filename ILJ EXTEND

INIT

REL OD
PREP

Looking at the format, we see the optional parameter EXTEND. The EXTEND parameter
allows us to add information to the present end of a tape or disk file, provided our
program allows us to do so and the following job control conditions are met:

• The prep option is not specified on the VOL job control statement.

• The file being extended is the only file on the volume.

• The file uses standard labels.

• The file specified is an output file.

The following example shows the use of the LFD statement to extend the file ADDR 1 :

II LFD ADDR1,,EXTEND

The following device assignment set, which includes this LFD statement, illustrates how
to extend a file (MAST) on volume T 11111 .

II DVC 100
II VOL T11111
II LBL MASTER
II LFD MAST,,EXTEND

If you expect additional volumes will be needed to accommodate extension of the file,
you can add the volume serial numbers of any new tapes to the VOL statement. The
following device assignment set indicates that the extension of MAST will result in a
multivolume file.

II DVC 100
II VOL T11111,T22222,T33333
II LBL MASTER
II LFD MAST,,EXTEND

•

•

•

•
UP-8065 Rev. 9 SPERRY UNIV AC OS/3

JOB CONTROL
4-23

If you are extending a tape file that already has multiple volumes, your VOL statement
has to specify only the last volume containing the file plus any additional volumes. You
must include the serial number of the file's first volume as the second parameter
(fife-serial-number) of the LBL statement (see 4. 7. 1). Suppose, for example, the file
MAST is on volumes T11111, T22222, and T33333. If you expect the file's extension
to require an additional tape volume, you would code the device assignment set as
follows:

II DVC 100
II VOL ,,,T33333,T44444
II LBL MASTER,T11111
II LFD MAST,,EXTEND

The volume serial number T 11111 is required to identify T33333 and T 44444 (the new
volume) as being part of the same file.

NOTE:

When referencing multivolume files on the VOL statement, any undeclared volume serial
numbers must be represented with commas. Additionally, if Mee, N, or NMcc are not
specified for the first positional parameter, you must supply a comma. In the VOL
statement in our previous example (// VOL ,,, T33333, T44444) the first comma
represents the first positional parameter. The second and third commas represent

• T 11111 and T22222, respectively.

•

Your data management user guide also contains information about extending tape files.

4.4.4. Sharing Disk Volumes

More than one job can share a disk volume. But suppose you are updating a file that
will be accessed by other user jobs. They should not access the file until the update is
completed, or else their output would not be the most current. You can indicate, on the
VOL job control statement, that the disk volume is nonsharable; thus the file cannot be
accessed. The system will not allow other jobs to begin execution until your job has
finished the update.

Assume the file being updated has a volume serial number of DSK083 and it should be
nonsharable. You indicate this by using the (NS) parameter. The parentheses are coded
as part of the parameter, and there is no comma separating the volume serial number
and the (NS) parameter. This is coded as:

II VOL DSK083CNS>

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

4-24

When there is more than one volume in the file (DSK083, DSK076, and DSK093, for •
instance) and they are all nonsharable, code it in this manner:

II VOL DSK083CNS),DSK076CNS) DSK0 93CNS>

Sharable disk volumes are the default condition.

4.4.5. Ignoring or Changing the Volume Serial Number

Through the VOL job control statement, you have the option of ignoring volume serial
numbers. This allows the use of any available volume or one with an unknown volume
serial number.

For example, you want to create a tape file. The operator is told that you can mount
any unused tape with a volume serial number (it does not contain a permanent file, and
you do not want a scratch tape because you are creating this file for other jobs). Since
you don't know what tape he is going to use, you don't know the volume serial number
for your VOL job control statement. By using the (NOV) parameter and a dummy
volume serial number, you can use a volume without specifying the correct volume
serial number. Code it this way:

II VOL DUMMYCNOV)

Notice that there is no comma separating the dummy volume serial number and the
(NOV) parameter. The parentheses are coded as part of the parameter.

After the job is processed, you should be informed, in some manner, of the volume
serial number of the created tape. This volume serial number must be used on the VOL
job control statement for any subsequent job using this tape volume.

NOTES:

1. The volume serial number DUMMY is used here just as an example. You can use
your own dummy volume serial number, but if it isn't a unique one, keep the
following in mind: If two or more jobs use the same dummy volume serial number
for a disk volume, these jobs can run concurrently and share the same disk volume.
This may or may not be desired. If a job uses the (NOV) parameter with a dummy
volume serial number for one type of volume (e.g., a tape), and a second job uses
the (NOV) parameter with the same dummy volume serial number for another type
of volume (e.g., a disk) or, for another nonsharable volume (e.g., another tape), the
second job is not executed until the first job is finished.

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

4-25

2. If you specify a volume serial number and the volume with that serial number is
mounted on a device before the job goes into execution, that volume (and the
device on which it's mounted) is used even if you've specified a different physical
device number on the DVC statement. If, however, you use II VOL DUMMY (NOV)
the physical request is not ignored.

With the VOL statement's SCRATCH parameter you can specify a multivolume file
without listing each volume's serial number. Consider this example:

II VOL VSN1,VSN2,SCRATCH

This statement declares a multivolume file and requests that the volume VSN 1 with the
serial number be mounted first and volume VSN2 be mounted second. The SCRATCH
parameter indicates that after VSN2, any volumes can be mounted.

When you request scratch processing, a message to mount a scratch volume is
displayed (after any explicitly requested volumes have been taken care of) on the
system console. Any volume will then be accepted until the end of file. Remember,
because data management cannot check for the proper serial numbers at this point, you
should make sure that the operator knows exactly what volumes to mount and the
sequence to mount them in.

The SCRATCH parameter can also be used alone. For example:

II VOL SCRATCH

This statement requests scratch processing for all volumes in the file.

You may want to use the SCRATCH parameter if you have a 20-volume diskette file for
example, and you don't want to list 20 volume serial numbers in your job control
stream. When coding job control statements remember that the SCRATCH parameter
can only appear once in a VOL statement and it is always the last parameter specified.

You can also suppress checking of volume serial numbers for all volumes of a
multivolume file by specifying NOV in the VOL statement for the last volume of the file.

You can change a volume serial number by specifying the new volume serial number
followed by the (PREP) parameter. You can also use this to assign a volume that
currently does not have a volume serial number (scratch volume or a new volume). Any
information that is currently on the volume is scratched .

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

4-26
Update A

Your job creates an output tape that you want saved and to be assigned the volume •
serial number of T AP099. It would be coded as follows:

II VOL TAP099CPREP)

Once again, there is no comma separating the new volume serial number and the (PREP)
parameter. The parentheses are coded as part of the parameter.

NOTE:

Extreme care should be taken when using the PREP option on a file to be processed by
the librarian. When PREP is specified, the tape is prepped every time it is opened as
output. The librarian closes output tape files whenever they are to be used as input and
then reopens them as output. If a tape file is to be reused as an output file within the
same job, the librarian will close it as input and reopen it as output. This reopening will
cause the tape to be reprepped (if PREP was specified), thereby effectively erasing all
the information previously produced. The PREP option, therefore, should only be used if

..- the job is going to prep the file in a separate job step. The PREP option cannot be
suppressed. If you don't want the file prepped, you must redefine the tape file without
specifying the PREP option on the VOL statement.

4.4.6. Multivolume Files Online Simultaneously

You may have an application, a data base system for example, that requires a large
multivolume file, with the volumes online simultaneously (since they are accessed in a
random manner). Suppose you have a 3-volume file (volumes A, B, and C). You would
code the device assignment set for the file like this:

II DVC 50
II VOL A
II DVC 51
II VOL B

II DVC 52
II VOL c
II LBL DATA
II LFD BASE

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

4.5. MORE INFORMATION ON DISK AND FORMAT-LABEL DISKETTE FILE
ALLOCATION

4-27

You use the EXT job control statement to allocate the space (extent) needed by a disk
or format-label diskette file. The format is:

I/[symbol] EXT

MI
NI
SQ

ST

[
,{mj

(bj,aj)

All the parameters are optional.

4.5.1. The File Type

, addr
Tccc:hh
Ill
TBLK

CYL
TRK

OLD

} I •• "] [I OLD] [IF Ix]

With the first parameter of the EXT statement specify the type of file you're allocating
the extent for.

A description of each file type (except for the system access technique files) and the
methods for accessing files are discussed in your data management user guide. System
access technique files are described in the supervisor user guide.

For the EXT job control statement, you can specify one of the following:

• DAM (direct access method) files, indicated by coding DA

• ISAM (indexed sequential access method) files, indicated by coding IS

• IRAM (indexed random access method) files, indicated by coding IR

• MIRAM (multiple indexed random access method) files, indicated by coding Ml

• Nonindexed (either direct or sequential access method) files, indicated by coding NI

• SAM (sequential access method) files, indicated by coding SQ.

• SAT (system access technique) files, indicated by coding ST

NOTE:

For System 80 users only MIRAM (Ml) and SAT (ST) file types are available. Also, data
files must be allocated as MIRAM files.

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

4-28
Update A

If, for example, you wanted to use the index sequential access method, you would
code:

II EXT IS,C,,CYL,1

NOTE:

If you're a System 80 user that has an 8417 disk subsystem with a fixed-head feature
use the FIX parameter when you want the extent allocated in the fixed-head area. See
the consolidated data management concepts and facilities manual for information about
the 8417 fixed-head disk.

4.5.2. Formatting a File and Using Contiguous Space

Files are formatted using the parameters F, BLK, and (bi,ai). These indicate that you are
going to format the file, F, in terms of blocks, BLK, to a certain length, (bi,ai). The bi
indicates the number of bytes in the block, and the ai indicates the number of blocks in
the file. Files can be formatted only in terms of blocks.

Suppose that you have a direct access file to allocate and it contains 5000 blocks, each
472 bytes long. Refer to the format of the EXT job control statement to see the correct
position of each of the parameters you are going to see: DA, F, BLK, and (bi{,ai]). It
would be coded as follows:

II EXT DA,F,,BLK,C472,5000)

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

4-29

• You can set up your program to access a particular block (or blocks) within the file.

•

•

The EXT job control statement is also used to allocate space contiguously. When you
allocate a file, there may not always be a single extent (a single contiguous area)
available on the disk or format-label diskette. Suppose, for example, you need 10
cylinders for a file but there aren't 10 contiguous cylinders anywhere on the volume.
Instead, there are 2 contiguous cylinders in one place, 3 in another, and 5 more in
another. If this is the case, OS/3 disk space management divides the file among 3
different areas resulting in a 3-extent file. The C parameter (shown as one of the
choices in the second parameter in the format) can prevent this from happening so that
if enough contiguous cylinders cannot be found, the file won't be allocated.

NOTE:

A single file on disk or format-label diskette can have no more than 16 physical
extents. If a file already occupies 16 extents but more are needed, you must use
another volume even if sufficient space is still available on the original volume. (The file
becomes a multivolume file.) A VTOC listing of the volume will tell you in advance how
many extents an existing file occupies. Just remember there can be only 16 extents for
a single volume file, 32 extents if the file occupies two volumes, 48 for three volumes,
and so on.

When you specify the absolute starting address (the addr parameter, explained in
4.5.4), you must allocate contiguously. You must also specify addr in hexadecimal. The
use of continguous space reduces file access time, thus reducing job processing time.

To allocate an indexed sequential file that contains 1000 blocks, each containing 1024
bytes, and you want contiguous disk space, code as follows:

II EXT IS,C,,BLK,(1024,1000)

The C and F parameters can be combined to form one parameter. Use this if you want
contiguous, formatted disk space. A comma is not needed to separate these
parameters.

For example, to allocate 300 blocks, each 256 bytes in a contiguous area, using the
indexed sequential access method, code the following:

II EXT IS,CF,,BLK,(256,300)

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

4-30

Notice that we've been coding BLK in these examples. BLK, however, is the default
condition - you could have coded the last example like this:

II EXT IS,CF,,,(256,300)

4.5.3. Your Disk or Format-label Diskette File Needs More Space

When a disk or format-label diskette file is allocated, a certain area is reserved for a
file. It is possible, however, the amount that you estimate may not be enough. There
may be more information than you realized; an update of the file made it larger than
originally intended, or, you may be replacing existing information with new information
(this requires the use of the /NIT parameter of the LFD job control statement, which is
explained in 4. 7 .2). This new information may require more space than you had
previously allocated.

Job control can extend the requested area, if necessary. Let's say you're setting up a
file to contain 700 or 800 entries for an accounts payable procedure, and you
estimated the file would need 100 blocks, each 256 bytes in length. Since this is only
an estimate, you can use a parameter in the EXT job control statement to allocate more
space if it is needed. This is called dynamic extension. If it isn't needed, it isn't
allocated. In this way, you don't waste space by allocating more than necessary.

The parameter used to provide this dynamic extension is the third parameter group in
the format. The inc parameter is the amount of additional space that you request. This
dynamic extension is in terms of cylinders.

Specifying 0 indicates you do not want to allow for dynamic extension of the file. Use
this when you want to limit the amount of information placed in the file. If nothing is
specified, by default, one cylinder is generated.

Assume for the accounts payable application, that we estimated 100 blocks, each 256
bytes long, on a formatted, indexed sequential file. We want two additional cylinders if
dynamic extension is necessary. The coding would be:

II EXT IS,F,IJ,(256,100)

4.5.4. Terms of Allocation

We've already covered some allocation terms in previous examples: BLK for allocating
in terms of blocks and CYL for allocating in terms of cylinders. With the addr parameter
you can also specify the absolute cylinder address in hexadecimal at which the file is to
begin. When you do this, allocation is in terms of cylinders.

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

4-31
Update A

• NOTE:

•

•

The absolute address can be specified in decimal by coding D 'number, or hexadecimal
by coding X'number. Any number not preceded by D' or X' is considered hexadecimal.

Let's say you need one indexed sequential file, allocated contiguously, allowing 5
cylinders for dynamic extension, and it must start at cylinder 78. This is the way you
would code it:

II EXT IS,C,5,111

Do you recall specifying the amount of blocks needed for the file? One of the examples
looked like this:

II EXT IS,C,,BLK,C1024,1000)

Specifying (1024, 1000) told job control how many blocks to allocate: 1000. When you
specify allocation in terms of cylinders or by absolute address, you must indicate how
many cylinders to allocate for the file by using the mi parameter.

If you wanted 10 cylinders, it would have been coded as:

II EXT IS,C,5,CYL,llt

The TRK parameter allows you to allocate disk and format-label diskette files in terms
of tracks. The TBLK parameter allows you to allocate a file in blocks by track rather
than in blocks by cylinder (BLK parameter). The Tccc:hh parameter is similar to the addr
parameter because it allows you to specify the absolute hexadecimal (X'number or
numberj or decimal (D'number) starting address of the file. The address, however, is a
track address in cylinder /head format and the allocation is in terms of tracks, not
cylinders. For more information about file allocation by track, see your data
management user guide.

NOTE:

You cannot allocate a disk file or format-label diskette file by track (using TRK, TBLK,
or Tccc:hh) when creating /SAM files, indexed /RAM files, or indexed /RAM
characteristic MIRAM files.

Remember that when you specify CYL, addr, TRK, or Tccc:hhh, you must specify the
number of cylinders or tracks with the mi parameter .

UP-8065 Rev. 9

4.5.5. Allocation Amounts

SPERRY UNIVAC OS/3
JOB CONTROL

4-32

The parameters for indicating the amount of space wanted were shown, indirectly,
when we discussed formatting and terms of allocation. These were coded as the fifth
parameter, mi or (bi,ai).

The mi parameter is used with either the CYL, addr, TRK, or Tccc:hh parameter, and
indicates the amount of cylinders or tracks needed by the file. These were covered in
the last example of 4.5.4.

The (bi,ai) parameter is used with the BLK or TBLK parameter for allocating in terms of
blocks (rounded up to cylinders or tracks, respectively). Remember BLK is the default
parameter so you don't need to specify it. The bi indicates the amount of bytes in the
block, and the ai indicates the number of blocks in the file. For instance, this example

II EXT IS,C,5,CYL,10

indicates an allocation of 10 cylinders, while either of these examples

II EXT IS,F,10,,l'.,.1 ..•••

II EXT

indicates an allocation of 100 blocks, each 256 bytes in length.

You can specify any number of separate disk areas (extents) for an individual file. A
reason for using several different extents for a single file would be to decrease data
access time, thus reducing processing time. Assume the program is designed such that
the file can be divided into two different extents. The first extent contains data used
only by the first part of the program; the second extent contains data used only by the
second part of the program.

For instance; the first extent contains hourly pay rates for calculating gross pay, and the
second extent contains payroll deductions to subtract from the gross pay to get the net
pay. Once the gross pay is calculated, the first extent is no longer needed; the program
will not need this information again. It only needs the deduction information in the
second extent to finish processing. In this way, one large extent is divided into two
smaller extents, reducing the amount of access arm movement for the disk unit.

For example, you have a file divided into two different extents. The total size of the file
is 20 cylinders. The first part of your program uses 12 cylinders, and the second part
needs 8 cylinders. They can both be specified on the same EXT job control statement.
The information in the first four parameters applies to both extents in the file.

Look at this portion of the format:

['{mi }] [' { m j } , .. ·]
Cbi,ai) Cbj,aj)

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

4-33

The mj parameter means the same as the mi parameter and the (bj,aj) parameter means
the same as the (bi,ai) parameter. The only difference is that mj and (bj,aj) are used for
additional extents in the file. So, we could code the two extent files (12 cylinders and 8
cylinders) as:

II EXT DA,C,1,CYL,12,8

'7~~
NOTES:

CD This applies to both extents.

® This is the allocation for the first extent.

@ This is the allocation for the second extent.

If you allocated in terms of blocks, with the first extent occupying 300 blocks, each
256 bytes in length, and the second extent occupying 700 blocks, each 256 bytes in
length, it would be coded as:

II EXT DA,C,1,BLK,(256,300),(256,700) .._,_,
CD @

NOTES:

CD This applies to both extents.

® This is the allocation for the first extent.

@ This is the allocation for the second extent.

You can also specify separate extents for an individual file by coding separate EXT
statements, as we did when we coded separate VOL statements for a multivolume file
(4.4. 1). You have coded separate extent specifications for our previous example,' like
this:

II EXT DA,C,1,BLK,(256,300)
II EXT DA,C,1,BLK,(256,700)

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

4.5.6. Changing the Specifications of a Previously Allocated File

4-34

Sometimes, you may want to change some of the information pertaining to a previously
allocated file. Use the OLD parameter to do this. The following portion of the EXT job
control statement format shows OLD as either the fourth or seventh parameter:

, addr
Tccc:hh -TBLK
CYL

TRK
OLD

'{mi } ['{mj }····][,OLD][,FIXJ
Cbi[,ai]) Cbj[,aj])

When coded as the fourth parameter, OLD means you want to change the automatic
allocation amount for dynamic extension (the third parameter) for a previously allocated
file. Suppose you specified one cylinder when a MIRAM file was originally created. To
change this specification to five, you code the EXT statement as follows:

II EXT ,,,5,0LD

You can omit the first and second parameters, since they are ignored if specified.

When OLD is coded following the allocation amount (mi, mj, etc.), it increases the
original allocation amount for your extents.

Let's assume your file was originally a 30-cylinder, sequential file and you discover you
really need 50 cylinders. To obtain these extra 20 cylinders, you can change the
allocation amount for the file by using this EXT job control statement:

II EXT ,,,,CYL,20,0LD

When changing the allocation amount you may omit the first, second, and third
parameters since they are ignored, if specified.

4.6. INFORMATION ABOUT DATA-SET-LABEL DISKETTE FILE ALLOCATION

To allocate space for a file on data-set-label diskette, include an EXT statement in the
device assignment set for the diskette.

A data-set-label diskette file is always a 1-extent, nonextendable, sequential file.
Therefore, several of the EXT statement parameters and options that we discussed in
the preceding section do not apply. To help you avoid confusion, refer to the following
EXT statement for data-set-label diskette:

//[symbol] EXT {:~} 1 C,0,BLK,(bi,ai)[,NDI]

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

4-35

Just as for disk, the first parameter of the EXT statement indicates file type. SQ or Ml
may be specified for Series 90 systems, but only Ml is used for System 80. The extent
for a data-set-label diskette file must be contiguous and cannot be dynamically
extended. So specify C for the second parameter and 0 for the third parameter. Space
on a data-set-label diskette is allocated by block, so BLK and (bi,ai) must be specified
for the fourth and fifth parameters respectively. Specify the last parameter, ND/
(non-data-interchange), for all System 80 data-set-label diskettes that are not basic data
exchange (BOE) diskettes. If you omit this parameter, it is assumed that you're allocating
a BOE diskette (a single-sided, single-density diskette having 128-byte sectors, 26
sectors per track, and 73 tracks.) For more information about the characteristics of
data-set-label diskettes, see your data management manual.

The following is an example of an extent statement for a data-set-label diskette file
having 100 blocks of 80 bytes each:

II EXT MI,C,0,BLK,C80,1000)

4.7. USING YOUR FILE IDENTIFIER MORE EFFICIENTLY

Thus far, the LBL job control statement was used to designate the individual files on a
volume by providing a file identifier. This is called labeling a file.

We are now going to explain the optional parameters, and a special variation of the
file-identifier parameter, that improve the efficiency of how your file is handled. Once
again, the format of the LBL job control statement is:

//[symbol] LBL {file-identifier } ['{file-serial-number}] [,expiration-date]
1 file-identifier 1 VCHECK

[,er eat ion-date] [· {t,i le - sequence - number}] [·{ renerat ion- number}]
I I

[' {;er s ion - number}]

As each individual parameter is introduced, refer to this format.

But first, we'll describe the special variation of the file-identifier parameter. Sometimes,
you may not want more than one job to access a particular file at the same time, for
example, when it is being updated. If it's a disk file, you can make it lockable by
assigning a 6-byte lock ID as a prefix to your file identifier. Ninety-nine lock IDs are
available: $LOK01 through $LOK99. The lock ID may be followed by up to 38
characters. The LBL statement for a lockable file might be coded this way:

II LBL $LOK15MASTERFILE

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

4-36

Once you have assigned a lock ID to the file, it is locked automatically each time it is
opened. The type of lock (read-only or write-only) is determined by the ACCESS or
LOCK keyword parameters in your file definition macroinstruction for the file. See the
data management user guide for a complete description of the file lock facility. For
Series 90, you must have configured the FILELOCK=YES parameter at system
generation in order to use the file lock feature. For System 80, if FILELOCK=SHARE is
configured at system generation, all files are considered lockable whether or not the file
identifier is prefixed with a lock ID.

4. 7 .1. Multivolume File? Assign Each Volume a File Serial Number

When using a file consisting of multiple volumes, a file serial number can be assigned to
identify each volume as being a member of the file. In this way, a volume that is not a
member of the file cannot be used.

The file serial number is identical to the volume serial number of the first volume of the
file. For instance, there are four volumes in a file, in this sequence:

1. XYZ

2. P10

3. A79

4. TPL

The file serial number for all the volumes in this file would be XYZ.

You use the VCHECK parameter to either create a file serial number on output volumes,
or to check the file serial number on input volumes. This VCHECK parameter instructs
job control to use the first volume serial number specified on the VOL statement as the
file serial number.

Once again, we have the four volumes, XYZ, P10, A79, and TPL, in that order, in a
file. We want to write a file serial number on them. Arbitrarily, the file identifier we are
going to use is OUTPUT. Your VOL and LBL statements would look like this:

II VOL XYZ,P10,A79,TPL
II LBL OUTPUT,VCHECK

If this file was already created with a file serial number (input rather than output), it
would be coded the same way. The VCHECK parameter writes on output and checks
on input.

The file-serial-number parameter is also used to write or check the file serial numbers of
volumes, but in a slightly different manner.

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

4-37

Again, we have these same four volumes (XYZ, P10, A79, and TPL) in the file. But,
you only want to use the last two volumes, A79 and TPL, in that order, on this run.
This is a previously created file; when it was created, the VCHECK parameter was used,
giving a file serial number of XYZ to each volume. If we used the VCHECK parameter
now, while trying to read only these two volumes, A79 and TPL, job control would use
the volume serial number of the first volume specified on the VOL statement, A 79, as
the file serial number value. Since these volumes were created with a file serial number
of XYZ, the job would not run. But, the file-serial-number parameter allows you to
specify the particular file serial number to use. This case would be coded like this:

II VOL ,,,A79,TPL

II LBL OUTPUT,XYZ

NOTE:

When referencing multivolume files on the VOL statement, any undeclared volume serial
numbers must be represented with commas. Additionally, if Mee, N, or NMcc are not
specified for the first positional parameter, you must supply a comma. In the VOL
statement in our previous example (// VOL ,,,A 79, TPL) the first comma represents the
first positional parameter. The second and third commas represent XYZ and P 1 O
respectively.

If either VCHECK or the file-serial-number parameter is omitted when a multivolume file
is created, there is no file serial number for the file, or, if ifs a tape volume, there is no
VOL 1 label.

4. 7 .2. The Expiration and Creation Date of the File

You can limit the life of files by writing an expiration date with the LBL statement. This
date indicates whether or not a file can be deleted by a scratch routine (by using the
SCR job control statement, explained in 6.8) or by a function of data management. This
is coded as the third parameter on the LBL job control statement, and can take either of
two forms:

• yyddd

In this form, yy is the year, and ddd is the day of the year. For example, February
10th is the 41 st day of the year (31 in January, plus 10).

• Rdddd

In this form, R is a constant, and indicates a retention cycle is being used based on
the creation date (either the next parameter, or the date set in the system). The
dddd indicates the amount of days (1-9999).

For instance, you create an output tape with a file identifier of XRA Y, and you want it
• to have an expiration date of the 98th day of 1979. This would be coded as:

II LBL XRAY,,79098

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

4-38

If you omit the expiration date when writing a file, the current date is inserted for you. If
you omit it when a/locating a file, no date is specified and zeros are inserted. If you
omit the date and allocate, then write to the file (in the same jobstep), the current
system date is used.

The creation-date parameter indicates the date the file is generated. If omitted for a
tape file or a disk output file, the date stored in the job preamble is used. If omitted for
a disk input file, this field is ignored.

The creation date has only one form: yyddd, where yy is the year and ddd is the day.

If you want a creation date of the file, identified by XRA Y, to be the 1 OOth day of
1979, code:

II LBL XRAY,,,79100

4. 7 .3. Indicating the Position of the File when Several Are on a Tape Volume

When you place more than one file on a single tape volume, you can indicate each file's
position on the tape by assigning sequence numbers. Later, if you want a particular file
on that volume, you simply reference the file (in the I I LBL statement) by its identifier
and sequence number. You can only assign sequence numbers to standard labeled tape
files.

When you create a tape file, you use the fifth positional parameter of the 11 LBL
statement (file-sequence-number) to assign a sequence number. The following
statement, for example, assigns a sequence number of 3 to PRMAST - the third output
file on a volume to contain 5 files:

I I LBL PRMAST,,,,3

Later, when you want to read (input) PRMAST, you can go directly to that file by
including the same statement U I LBL PRMAST,,,,3) in your device assignment set.
When you specify the file sequence number, data management searches for the first file
with that number. If it's found, data management then checks the file identifier for a
match. (If the file sequence number you specify is not found or if the file idnetifiers
don't match, a data management error results.)

Remember, you must assign file sequence numbers when a tape file is created in order
to reference that file by sequence number later. If you don't assign a sequence number
on output, data management assigns a number 1 to the file regardless of its position on
the tape volume. If you don't provide a sequence number on input, data management
does not check for a sequence number but expects to use the first file encountered. In
either case, omitting file sequence numbers means using another method to position the
tape to the file you want (e.g., the 11 MTC statement or reading and closing preceding
files without rewinding until the desired file is reached).

•

•

•

•

•

•

UP-8065 Rev. 9

4. 7 .4. Different Versions of a File

SPERRY UNIV AC OS/3
JOB CONTROL

4-38a

Ordinarily, only one generation of a file is used by a program. There are instances,
however, when more than one generation of the same file may be needed. For example,
one generation contains payroll deductions only used in January, March, and May, and
another generation has the payroll deductions used only in February, April, and June. To
indicate the different generations of a file, you can use the 1- to 4-digit
generation-number parameter of the LBL job control statement. This is used only with
tape files, and is the sixth parameter shown in the format. By using this parameter, you
can be sure the correct generation is used .

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

4-39

Suppose you did have two different generations of the payroll deduction file, with a file
identifier of CUSTMAST, and you want to use the second generation. This would be
coded as:

II LBL CUSTMAST,,,,,2

If you omit this parameter, data management assumes 0001.

Let's go one step further. Each generation of a file can have several different versions.
Again, we have these two different generations of the CUSTMAST payroll deduction
file. Generation 1 is used in January, March, and May, and generation 2 is used in
February, April, and June. But, suppose each of these generations had two unique
sections. Version 1 is used in odd-numbered years, and version 2 is used in
even-numbered years.

We could use the 1- to 2-digit version-number parameter to do this.

Suppose it is January, 1980. We need generation 1 (January) and version 2 (1980 is
even numbered). This would be coded as:

II LBL CUSTMAST,,,,,1,2

If the version-number parameter is omitted, data management assumes O 1 .

4.8. CHANGING THE LABEL OF A DISK FILE

The REN statement is used to permanently change the label of a disk file through job
control - a simpler procedure than the alternative methods for renaming disk files.

The format of REN is:

//[symbol] REN lfdname,{new-label } [,NTERM]
' new· label '

The lfdname parameter identifies the file to be renamed. It must match the lfdname in
the LFD statement for the file.

The file's new label is specified in the new-label parameter. New-label replaces the
existing label identified in the device assignment set for the file. If new-label contains
embedded blanks, it must be enclosed by single quotation marks. It may be from 1 to
44 alphanumeric characters in length.

Specifying the optional parameter NTERM indicates that fatal errors encountered during
the renaming process are to be ignored, and that the job is to be permitted to continue.
If this parameter is present, the job continues running if a renaming error occurs, but
the file is not renamed. If NTERM is omitted, the job terminates at the point of error .

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

4-40

The REN statement is examined for syntax errors by the run processor during job
stream validation. If no errors are detected, the job is queued and becomes a candidate
for scheduling. The run processor passes information from the REN statement to the
step processor, which performs the actual renaming during job execution.

The device assignment set for the file to be renamed must precede the REN statement.
It is a good idea to place the REN statement within the control stream as close to the
device assignment set for the file as possible, since I I REN is only effective against files
on volumes mounted when the REN statement is encountered.

A file is renamed in the job step containing 11 REN, prior to execution of the program
for that step, or prior to job termination if no EXEC statement follows 11 REN.
Subsequent references to the renamed file must use new-label in the LBL statement of
the device assignment set for the renamed file.

NOTES:

1. The REN statement can only be used to rename disk or format-label-diskette files;
REN statements may not reference device assignment sets for data-set-label
diskette or tape volumes.

2. REN statements are not permitted against files on SYSRES that begin with Y, or
against files on SYSRUN that begin with YR.

3. Do not use II SKIP (explained in 6.20) to bypass a device assignment set
referenced by a REN statement that is not also bypassed. If you do, you'll get an
error during the renaming process.

4. If you rename a cataloged file, you must recatalog the file under the new name.

Suppose you have a program that calculates the engineering department's payroll and
outputs a disk file labeled EGRPA Y. The control stream to rename the file EGRCOST
looks like this:

II DVC 50
II VOL DSK01
II LBL EGRPAY
II LFD DSKOUT

II REN DSKOUT,EGRCOST

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

4-41

The file's label is now EGRCOST. Suppose that a subsequent job step uses EGRCOST
as input for calculating company-wide costs. Building on our first example, the renamed
file is referenced subsequently in the control stream like this:

II DVC 50
II VOL DSK01
II LBL EGRPAY
II LFD DSKOUT

II REN DSKOUT,EGRCOST

II DVC 50
II VOL DSK01
II LBL EGRCOST
II LFD DSKIN

A single REN statement applies only to the first volume in a multivolume file. To rename
a multivolume file, therefore, you must specify a unique REN statement for each volume
in the file.

If EGRPAY in our first example had been a multivolume file, we would have renamed it
this way:

II DVC 50
II VOL DSK01
II LBL EGRPAY
II LFD DSKOUT1

II DVC 51
II VOL DSK02

II LBL EGRPAY
II LFD DSKOUT2

(continued)

UP-8065 Rev. 9

II REN DSKOUT1,EGRCOST
II REN DSKOUT2,EGRCOST

SPERRY UNIVAC OS/3
JOB CONTROL

4-42

The REN statement must be used carefully to avoid renaming a file concurrently in use
by another job. To help prevent this problem, you can establish nonshareable status (by
using the NS option of the VOL statement) for endangered disk volumes, or you can
use passwords known only to selected personnel.

4.9. SPECIFYING QUALIFIERS FOR FILE IDENTIFIERS

The QUAL job control statement is used to prefix a qualifier to all subsequent file
identifiers in a job. The format of the QUAL statement is:

//[symbol] QUAL qualname

The qua/name is a 1- to 8-character alphanumeric name. When specified, this name
followed by a slash becomes the qualifier, and is automatically prefixed to each
subsequent file identifier in your job control stream.

Consider the following example:

II QUAL SMITHCO
II DVC 60 // VOL DISK01
II LBL PAYABLES.TAXES
II LFD PAYFILE
II DVC 60 // VOL DISK01
II LBL INCOME.INTEREST
II LFD INFILE

In this example, SMITHCO is specified as the qualifier and will be prefixed, along with a
slash, to each subsequent LBL file identifier producing SMITHCOIPA Y ABLES.TAXES
and SMITHCOllNCOME.INTEREST. The qualifier remains in effect until the end of the job
or until another QUAL statement is encountered. If the next QUAL statement specifies
another qua/name, that name becomes the qualifier for any subsequent file identifiers. If
no name is specified (e.g., 11 QUAL), use of the qualifier is terminated.

An LBL file identifier that is already prefixed with an alphanumeric name and a slash
overrides the QUAL statement qualifier. Consider this example:

II QUAL SMITHCO
II DVC 60 // VOL DISK01
II LBL PAYABLES.TAXES
II LFD PAYFILE
II DVC 60 II VOL DISK01
II LBL INCOME /INTEREST
II LFD INF ILE

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

4-43

INCOME/ in the second LBL statement is already considered a unique qualifier;
therefore, SMITHCO/ will be prefixed to PAYABLES.TAXES but not to
INCOME/INTEREST.

Because the QUAL statement is especially useful in identifying cataloged files (see 6.9),
QUAL is also discussed in the file cataloging concepts and facilities manual.

4.10. MORE INFORMATION ABOUT THE LOGICAL FILE

So far, you know the LFD job control statement is used to provide a file name that
associates the file defined in the program with the file information in the control stream.
Now, by introducing the optional parameters, you will see some of the other functions it
provides.

Once again, its format is:

//[symbol] LFD {filename}
*filename ['{.·n.·}n [!ACCEPT~ •U EXTEND

INIT

RELOD
PREP

Refer to this format as each parameter is introduced .

We have already discussed the filename parameter. An asterisk (*) indicates that the file
label is lockable.

4.10.1. Reserving an Extent Information Storage Area

Files are defined on disk and format-label diskette volumes in terms of extents. An
extent is space on the volume made up of contiguous tracks. If you recall, we used the
EXT job control statement to split up a file into two extents. So, in the strict sense, an
extent is not always the entire disk area a file requires; at times it is, but at other times
it isn't.

Information about the extents is placed in the job's prologue along with other
information needed to regulate your job (see 2.6.2). On the JOB statement, you specify
the minimum and maximum amount of main storage needed to execute your largest job
step. However, in order for job control to reserve sufficient main storage for the extent
information in the prologue, you must specify the number of physical extents a file has
in the second parameter of the LFD statement. Assume, for example, that the file
named DSKOUT has 10 extents. To reserve space for information about these extents,
you code the LFD statement as follows:

II LFD DSKOUT,10

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

4-44

The space acquired by using this parameter influences the total main storage
requirement for the job. If you specify a value of zero, job control does not reserve
main storage for extent information. If you omit this parameter, main storage sufficient
for information about eight extents is reserved.

NOTE:

If you specify a greater number of extents on the LFD statement than a file actually has,
unnecessary main storage is used for the extent information. Although this should be
taken into consideration, problems are more likely to arise if you specify fewer extents
on the LFD statement than the file actually has.

4.10.2. Specifications for Existing Files

The third parameter of the LFD job control statement provides five different options:
ACCEPT, RELOD, /NIT, EXTEND, and PREP.

The ACCEPT option indicates that the file definition macroinstructions for a data
management file should be obtained from the format 1 and format 2 labels in the
VTOC. Data management does not need to do the entire file definition macroinstruction
expansion. This option is used only for files previously opened and closed by data
management.

Assuming a file name of SAMDFIL, an LFD job control statement using the ACCEPT
option would look like this:

II LFD SAMDFIL,,ACCEPT

With Series 90 systems, you can also indicate that an ISAM file is not to be
reformatted at file-open time when the file is being reloaded. You do this with the
RELOD option.

Assuming the file name is ISAMFIL, an LFD job control statement with the RELOD
option would look like this:

II LFD ISAMFIL,,RELOD

The INIT option is used to initialize an existing disk file; that is, INIT causes all
information except the allocated space and file identifier to be discarded when the
program using that file opens it. When you specify INIT for an output file, the output
will start at the beginning of the file. When INIT is specified for an input file, an
end-of-file will be indicated when your program reads the first record.

You can specify INIT for all disk and diskette files under consolidated data management,
and all disk files under basic data management except SAM output and unkeyed,
sequential IRAM output files (since output for these two file types normally starts at the
beginning of the file.)

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

4-45

Suppose you already have a file with a file identifier of WORK2 on disk volume
DSP028. The information on this file is no longer needed, but you have a job which
stores information on a disk. Why not use the disk area reserved for the old file rather
than allocate a new one? In this way, you are not leaving dead space on the disk
volume.

We'll assume that the file name is SORTOUT. The device assignment set to reuse
WORK2 on disk volume DPS028 would look like this:

II DVC 50
II VOL DSP028
II LBL WORK2
II LFD SORTOUT,,INIT

Notice the logical unit number for the DVC job control is 50. This indicates any disk
device can be used. Also note the absence of an EXT job control statement. It wasn't
needed; specifications for the new file are the same as the old one.

NOTE:

The /NIT parameter must not be used for a file that contains checkpoint records. The
use of this parameter causes writing to begin at the start of file every time you Jog a
checkpoint record to the file, thus overwriting any checkpoint records already existing
on the file .

The EXTEND option allows you to add information to the present end of an existing
output file, if the instructions in your program allow you to do so. Extend has no effect
on input files.

You can specifiy extend for tape files; diskette files under basic data management; and
SAM and sequential IRAM disk files under basic data management. EXTEND logically
does not effect disk and diskette files under consolidated data management or
sequential ISAM and MIRAM disk files under basic data management since output for
these files is normally appended to the end.

Suppose you allocated four cylinders for your file, and you filled only two cylinders with
information. Now, you have more information to add to this file, and your program
allows you to do so. You must also instruct job control that you intend to do this.

If the file name were ADDON, you could extend the file like this:

II LFD ADDON,,EXTEND

Remember, whether or not you can actually extend a file depends on the instructions
given in your program. In COBOL, for example, an OPEN OUTPUT statement does not
permit file extension even if you specify the EXTEND parameter on the LFD statement .

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

4.11. INDICATING WHERE THE LOAD MODULE IS LOCATED

4-46

An EXEC job control statement is required to call a load module and initiate execution.
Once again, the format is:

//[symbol] EXEC program-name ['{library-name}~ [,[±]switch-priority] [,ABNORM=label]
YRUN

•l!RJIR'

The second parameter indicates the name of the library (on disk) containing the load
module. This can be either YLOD, YRUN, or the LFD name of the alternate load
library you have previously specified in the control stream.

As you can see, the shaded default option is YLOD. This is where you would store
most of your programs. When you omit the second parameter, YLOD is searched. If
the load module is not found here, then the job's YRUN file is searched.

Another choice you have is the job's YRUN file, which is where the linkage editor
stores your load module if you have not indicated a specific library. You would code
YRUN in the EXEC job control statement if you have a load module with the same
program name in YLOD. Let's assume that you have a load module named PAYROL
in YLOD and that you want to make some changes to this program. Take the source
deck, make the necessary changes, and compile it with the same program name:
PAYROL. When it comes time to execute, the system is told that the load module to
fetch is PA YROL. Without specifying the library name on the EXEC job control
statement, the default (YLOD) is assumed, so the system fetches the PAYROL load
module from YLOD. But, you wanted the one from the job's YRUN file. You are
going to receive the wrong load module. So, in this case, you had better indicate that
you want to fetch from the job's YRUN file. Remember, the job's YRUN file is only
a temporary file. Any load module you store here is available only during that job.

Let's say your load module is named PAYROL and it is loaded in the job's YRUN file.
It would be coded as follows:

II EXEC PAYROL,YRUN

If the load module cannot be found in the job's YRUN file, YLOD is searched to
see if it was stored there.

The remaining choice for this parameter, library-name, is used when the load module is
stored in a private load library of your own. If you do this, you must define this library
in a device assignment set, and the library-name must agree with the file name on the
LFD job control statement. Normally, if the module is not found in this library, YLOD
and then YRUN are searched. If, however, you specify NSRCH on the OPTION job
control statement, only the library named on the EXEC statement is searched for the
load module; YRUN and YLOD are not searched. (See 6.10.)

•

•

•

•
UP-8065 Rev. 9 SPERRY UNIVAC OS/3

JOB CONTROL
4-47

Let's say the load module is named PA YROL, and it is stored in a library with a file
identifier of PA YLIBRARYMAST, on disk volume DISKO 1 . You used PA YLIB as the file
name on the LFD job control statement, and, as the file identifier on the LBL job control
statement, you would, of course, have to use PAYLIBRARYMAST. The device
assignment set and the EXEC job control statement would be coded as:

II DVC 50
II VOL DISK01
II LBL PAYLIBRARYMAST

11~1,~=:,;r .,,,"J:::J

If this library is not accessed by your program (if it is only accessed by the system to
obtain the load module named on the EXEC job control statement), the file name on the
LFD job control statement need not agree with any specification within your program
(such as the DTF or file name). It serves only to associate the library in the device
assignment set with the library on the EXEC job control statement. As the file name on
our LFD job control statement, we could have used any name as long as it agrees with
the specification on the EXEC job control statement.

If the load module is not located, YLOD, then the job's YRUN file is searched.

• 4.11.1. Task Switching Priority

•

The EXEC job control statement is also used to specify task switching priorities. This
synchronization and rotation of central processor control from task to task is a function
of the supervisor, and is described in the supervisor user guide.

The switch-priority is the third parameter of the EXEC job control statement. The
priority you specify can be an absolute value ranging from 1 to 60, with the lower
number representing the higher priority. (1 is the highest priority.) Assume, for example,
your job has one step and you want a switching priority of 10 assigned to the specified
program. (The load module name for the program-name is SWITCH and it is stored by
default in YLOD.) You could code the EXEC statement as follows:

II JOB MYJOB

II EXEC SWITCH,,10
I&

t

t

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

4-48
Update A

You can also specify a relative value such as + 3 or -3 to change priority for a program
specified in a particular job step with respect to the job's overall priority (as set, for
example, by a SWITCH operator command or an OPTION PRI job control statement).

When specifying priorities this way, remember that a plus (+) value decrements the
overall assigned value. This results in a higher task switching priority. A minus (-) value
increments the overall assigned value. This results in a lower task switching priority.
Suppose you code the following:

II JOB MYJOB
II OPTION PRI=7

II EXEC PROG1

II EXEC PROG2

II EXEC PROG3,,+2

II EXEC PROG4,,3

}
Assigns an overall task switching priority of 7

to each program.

)
}

The programs specified in these 2 job steps

have a task switching priority of 7.

The program specified in this job step has a

task switching priority of 5.

The program specified in this job step has a

task switching priority of 3.

II EXEC PROGS,.-4 }
The program specified in this job step has a

task switching priority of 11 .

I&

The OPTION PRI job control statement is discussed in 6. 10.

If you omit a task switching priority, the lowest available priority (the highest number) is
used.

You should understand that the task switching prronty specified on the EXEC job
control statement is only the initial switching priority for that job step. There are two
ways it can be changed during the job step:

• The operator can raise or lower the priority using the SWITCH console command.
He may want to do this if he decides your job is getting too much or too little CPU
time.

• The program itself may raise or lower its priority using the CHAP (change priority)
macroinstruction. This function is described in the supervisor user guide.

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

4-49

As you can see, the effect of the switching priority really depends on the task switching
priorities specified for other jobs running at the same time as your job. Your job will not
gain any advantage by specifying a task switching at priority of 1 (the highest priority) if
all other jobs also use priority 1. There is a case, however, where the assigned
switching priority is particularly significant. Recall from Section 1 that the RUN symbiont
is . one portion of job control that reads and analyzes job control streams. The RUN
symbiont is only one of many OS/3 symbionts that perform system functions, usually in
response to operator console commands. Normally, all symbionts run at priority 0, i.e.,
higher than any user job. A SYSGEN option, however, allows the supervisor to be
configured so that all symbionts run at some lower (user) priority. For example, suppose
symbionts run priority 2 under your supervisor. The only jobs that should be run with
task switching priority 1 would be those that are extremely time-critical and cannot
tolerate the loss of CPU time whenever a symbiont is active. Other jobs should be run
at priority 3 and lower.

4.11.2. Avoiding Abnormal Termination due to Program Errors

The ABNORM= label keyword parameter of the EXEC job control statement is used to
bypass job control statements if your program contains errors that may cause the job
to abnormally terminate. If the program has such errors, control of the job skips to the
statement whose label you specify in this parameter so that the job's execution can
continue. Any subsequent action depends on the contents of the target job control
statement. A more specific example for using this parameter is given in 6.22. For now,
just remember that ABNORM=label is a keyword parameter, not a positional parameter,
and therefore, may be coded in any position. For example:

II EXEC MYPROG,ABNORM=ERROR

Also remember that the operator can still cancel (normally terminate) your job even
though you specify this parameter.

4.12. THE JOB CONTROL LANGUAGE SO FAR

We have now covered the job control statements you'll probably use most frequently
for your jobs. The remaining section in this part of the user guide deals with system
jprocs provided in the basic OS/3 software package. Their use eliminates the need of
repeatedly coding a series of job control statements that perform a specific function .

•

•

•

•

•

•

PART 3. ADVANCED JOB CONTROL
PROGRAMMING

•

•

• !

•

•

•

UP-8065 Rev. 9

5.1. WHAT IS A PROCEDURE?

SPERRY UNIV AC OS/3
JOB CONTROL

5-1

5. Doing It the Easy Way
with Procedure Calls

Have you ever heard someone say: I've made that mistake before. There must be some
way, some procedure, to make sure it won't happen again''? Common errors are:
keypunching errors, forgotten commas, statements out of sequence, etc - errors that
occur because of repetition rather than unfamiliarity. If we could reduce the number of
job control statements coded, the bulk of these errors would also be reduced. What is
needed is a procedure that allows you to write a series of job control statements, store
them for later use, and, by writing a single job control statement, call in these job
control statements whenever needed .

This procedure exists - it allows you to write and call your own procedures, or to call
procedures supplied by Sperry Univac. In part 3, you'll learn how to write, store, and
call your own procedures. This section discusses how to use Sperry Univac-supplied
procedures. These procedures are called by job control procedure call statements Oproc
calls) in the control stream. Each jproc call generates a ready-to-use set of job control
statements. Optional parameters in the jproc call line enable you to tailor the job control
statements generated to suit your needs.

NOTE:

Not all of the jprocs supplied by Sperry Univac are common to both System 80 and
Series 90 systems. See C.3 for a complete listing of jprocs for Series 90 and C.4 for a
complete listing of jprocs for System 80.

When you use more than one jproc call, keep this in mind: only one jproc call can
appear on a single card. Jproc calls can be part of a multistatement line of coding, but:

a. it must be the only jproc in the line; and

b. it must be the last statement on the line .

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

5-2

You can code this: •

II job control statement II jproc call

but not this:

II jproc call II jproc call

and not this:

II jproc call II job control statement

5.2. SETTING UP TEMPORARY WORK FILES

Temporary work files are used extensively by programmers to store intermediate
processing results and data that will only be used in a particular job or job step.
Depending on file characteristics and the device used, from three to five job control
statements are needed in the device assignment set for each temporary work file. The
WORK and TEMP jproc calls allow you to generate any device assignment set needed
for temporary work files.

The difference between the two jprocs is that WORK sets up temporary files for one
job step and deletes them at the end of the job step. TEMP sets up temporary files for
the duration of the job, deleting them at the end of the job. WORK and TEMP also
generate different default file name values - we'll explain these in a moment.

The format for WORK and TEMP is:

ll[lfdname] {WORKn}
TEMPn

DVC=nn,VOL={vol-ser-nol
RES

RUN

VOL={vol-ser-no}
RES

RUN

[·{:~~-1n
CYL=nn U

Suppose your assignment is to write a program that reports the grades for each
student in the local school district. The program must list each student's name, grouped
by school, in descending grade order. The disk area that stores the data used to
calculate the order will never be used again once the job step terminates - an ideal
candidate for a temporary file created by WORK.

Ignoring all optional parameters, the basic WORK jproc call is:

II WORKn

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

5-3

Where n is a number in the range 1 through 10. Up to 10 temporary work files can be
set up for each job step (or job, if you're using TEMP). If no specific device or volume
is requested, the file is allocated on either SYSRES or the job's YRUN file;
odd-numbered files go to SYSRES and even-numbered files to YRUN. So, if you want
one temporary file allocated on the job's YRUN file, for the duration of the job step,
you would code

II WORK2

These job control statements would be generated:

II DVC RUN
II EXT ST,,1,BLK,C256,4000)
II LBL $SCR2,16
II LFD $SCR2

We'll discuss the generated EXT statement in conjunction with the BLK, EXTSP, and
TYPE parameters. For now, it's sufficient to know that 4000 blocks, each 256 bytes
long, are allocated by default.

The lfdname parameter of WORK and TEMP supplies a file name for the generated job
control statements. It is one to eight alphanumeric characters in length. The file
identifier on the LBL statement generated by WORK is always prefixed by $SCR, which
identifies job step temporary (scratch) files. The number after $SCR corresponds to n in
WORKn. If you omit the lfdname parameter of the WORK jproc call and code

II WORK1

the generated statements are:

II LBL $SCR1
II LFD $SCR1

The file name in your program must also start with $SCR. In addition, you must use the
same WORK jproc call each time the program is run. If the jproc call is changed to I I
WORK7, for example, the file name in your program must be changed to $SCR7 .

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

5-4

For TEMP, unlike WORK, the generated file identifier is $JOB if you omit the lfdname •
parameter. Therefore, if the file name in your program begins with $SCR, you must use
the lfdname parameter of the TEMP jproc call, like this:

//$SCR1 TEMP1

to generate:

II LBL $JOB1
II LFD $SCR1

If you had not used the lfdname parameter in this example, the generated file name
would have been $JOB 1, which would not have matched the file name in your program.

You can have the control statements generated by WORK and TEMP listed by
specifying the P option on the JOB statement. If you have spooling in your system, the
control statements will be printed in the job log. Otherwise, they will be displayed on
the system console.

When the job step terminates, all temporary files created by WORK are scratGhed. Files
created by TEMP are scratched at the end of the job.

The lfdname parameter can also indicate a file's function when using the WORK jproc
call. For example, if you code

llGRADEOUT WORK2

the generated job control statements are:

II DVC RUN
II EXT ST,,1,BLK,(256,4000)
II LBL $SCR2
II LFD GRADEOUT

It is easier to remember what GRADEOUT contains than it might be to remember what
$SCR2 contains.

The remaining optional parameters of the WORK and TEMP jproc calls are keyword
parameters. If you are unsure of the rules for coding them, turn to Appendix A to
refresh your memory.

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

5-5

• 5.2.1. Using Your Own Volume

•

•

By default, temporary work files are allocated on SYSRES or YRUN. But what if you
needed several work files and there isn't enough available space on these volumes? In
this case, you would use your own volume by specifying the VOL parameter. Building
on our last example, if your own volume is DISKO 1, you would code:

llGRADEOUT WORK2 VOL=DISK01

This device assignment set is generated:

II EXT ST,,1,BLK,(256,4000)
II LBL $SCR2
II LFD GRADEOUT

Note that the logical unit number generated for the DVC job control statement is 50.
The WORK and TEMP jprocs automatically assign the first available logical unit number
in the range 50 through 59, but you can use the DVC parameter to assign another
logical unit number (selected from Table B-1). In order to avoid a conflict, for example,
you may want to assign a different logical unit number to the temporary work file if
you've already assigned DVC 50 to a disk volume in your job control stream .

Suppose we select logical unit number 80 (indicating any 8414 disk) and add the DVC
parameter to our example, like this:

llGRADEOUT WORK2 VOL=DISK01,DVC=80

Since DVC and VOL are keyword parameters, they do not have to be in any specific
order. So, it could be coded:

llGRADEOUT WORK2 DVC=80,VOL=DISK01

Either of these two jproc calls generate these job control statements:

ll;i°lllllill!•
II VOL DISK01
II EXT ST,,1,BLK,(256,4000)
II LBL $SCR2
II LFD GRADEOUT

You can use the VOL parameter and omit the DVC parameter - job control will assign a
logical unit number. The converse is not true; if you use the DVC parameter, you must

use the VOL parameter .

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

5.2.2. Providing the Extent Specifications

5-6

When the WORK or TEMP jproc calls allocate temporary work files, they are, by
default, 4000 blocks - each 256 bytes long. However, you can change this by using
the BLK parameter or the CYL parameter.

Possibly, your file does not require 4000 blocks. Maybe you only need 1000 blocks.
Don't tie up 3000 blocks that your program isn't going to use. Use the BLK keyword
parameter to indicate that only 1000 blocks are needed:

llGRADEOUT WORK2 DVC=80,VOL=DISK01,BLK=1000

which would generate these job control statements:

II DVC 80
II VOL DISK01
II EXT ST,,1,BLK,(256,1000)
II LBL SSCR2
II LFD GRADEOUT

Suppose you want to allocate 3 cylinders for the file instead of 1,000 blocks. In this
case, specify the CYL parameter in the jproc as follows:

llGRADEOUT WORK2 DVC=80,VOL=DISK01,CYL=3

This jproc generates the following job control statements:

II DVC 80
II VOL DISK01
II EXT ST,,1,CYL,3
II LBL SSCR2
II LFD GRADEOUT

In 4. 10. 1, we used the second parameter of the LFD job control statement to tell the
system how many extents existed in the file. Job control used this to calculate the
amount of main storage needed to contain the information about the extents. For the
WORK and TEMP jproc calls, you do this with the EXTSP keyword parameter.

When the number of extents is omitted, 16 is assumed. If you know your data will take
less than 16 extents, it's a good practice to specify the EXTSP parameter. For example,
your data may only need one extent; it is foolish to let the system allocate 16.

Assuming only one extent, we would code:

llGRADEOUT WORK2 DVC=80,VOL=DISK01,BLK=1000,EXTSP=1

•

•

•

•

•

•

UP-8065 Rev. 9

These statements would be generated:

II DVC 80
II VOL DISK01
II EXT ST,,1,BLK,(256,1000)
II LBL $SCR2
II LFD GRADEOUT,1

SPERRY UNIVAC OS/3
JOB CONTROL

5-7

In 4.5.3, we discussed the dynamic extension of a disk file. You can indicate how much
additional area to allocate on the WORK and TEMP jproc calls, too. Use the SEGALL
keyword parameter.

In the grading report, we estimated 1000 blocks were needed for 5000 students. If this
amount is exceeded, you will, by default, receive one additional cylinder. The dynamic
extension process takes a little time, which increases processing time. Normally, one
additional cylinder is enough extra space to contain any additional information, but, at
different times in the school year, you are called upon to do the grading report for a
neighboring school district. This district has 15,000 students. This will no doubt exceed
the 1000 blocks, and the overflow of data will take up more than one cylinder; it will
be closer to five cylinders. Job control will keep on dynamically extending the file, in
increments of one cylinder, until the needed space is acquired. Since each dynamic
extension takes time, why not request that the extension be made all at once, by
increasing the dynamic extension amount? This additional space is only allocated when
needed (and most times you run this job, dynamic extension will not be needed). The
relative cost of extra temporary space acquired infrequently, by dynamic extension, is
minimal compared with the processing time cost required to allocate one cylinder five
times. Since you know when the special runs for the other school district will occur,
they can be scheduled when the use of these five additional cylinders will not hinder
jobs being run.

Let's add a 5-cylinder dynamic extension to the example we've been using:

llGRADEOUT WORK2 DVC=80,VOL=DISK01,BLK=1000,EXTSP=11,SECALL=5

This generates these job control statements:

II DVC 80
II VOL DISK01
II EXT ST,,5,BLK,(256,1000)
II LBL $SCR2
II LFD GRADEOUT,1

You should now be able to use the WORK and TEMP jproc calls and tailor them to your
own needs .

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

5-8

By default, both the WORK and TEMP jprocs set up temporary SAT files, but you can
specify one of the following file types using the TYPE parameter:

DA, IR, IS, Ml, NI, or SQ

For example, we can include the TYPE parameter in the previous example to indicate a
MIRAM file type. Code the jproc as follows:

II GRADEOUT WORK2 DVC=80,VOL=DISK01,BLK=2000,EXTSP=11,SECALL=5,TYPE=MI

This generates the following job control statements:

II DVC 80
II VOL DISK01
II EXT MI,,5,BLK,C256,1000)
II LBL $SCR2
II LFD GRADEOUT,1

5.3. ACCESSING PREVIOUSLY ALLOCATED FILES

Ordinarily, to access a previously allocated disk file, you use the DVC, VOL, LBL, and
LFD job control statements. These statements aren't needed, however, if you use the
ACCESS jproc call. Its format is:

This jproc call can be used to access any tape or previously allocated disk file, except a
multivolume file. For instance, to access multivolume files, a file serial number must be
specified (otherwise, data management returns an error indication). There is no
parameter in the ACCESS jproc call for this specification.

The ACCESS jproc call uses both positional and keyword parameters; if you're a little
hazy on the rules for coding, consult Appendix A.

Let's digress a moment, and discuss the DVC and VOL parameters. The rules governing
their use are exactly the same as for the WORK and TEMP jproc calls (5.2.1). If you
omit the VOL parameter, the file is assumed to be on the volume containing the job's
YRUN file.

•

•

•

•
UP-8065 Rev. 9 SPERRY UNIV AC OS/3

JOB CONTROL
5-9

Let's set up a situation where the ACCESS jproc call can be used to advantage.
Suppose we want to write an inventory control program for a metal fabricating plant.
This plant produces many different items: office furniture, aircraft parts, aluminum
siding, and such. Each item produced depletes a central metal inventory, and the
purchasing agent wants to know when he should order new stocks of metals. After
making some further assumptions (DVC=60 and VOL=DKWORK) we have the
information needed to code a useful ACCESS jproc call:

//MMIFIL ACCESS METALMASTINV,DVC=60,VOL=DKWORK

This ACCESS jproc call generates this device assignment set:

II DVC 60
II VOL DKWORK
II LBL METALMASTINV
II LFD MMIFIL

The ACCESS jproc call has two optional positional parameters that allow you to
generate a complete LFD job control statement. In 4. 10.2, we discussed how the
optional parameters of the LFD job control statement are used. Well, the optional
positional parameters of the ACCESS jproc call correspond exactly to the parameters of
the LFD job control statement.

• Compare these formats:

•

//[symbol] LFD {filename }
*filename

//lfdname ACCESS lblname

[{I}][!;:~;:~~
REL OD
PREP

The two enclosed portions are identical, both in format and function.

The n parameter specifies the number of extents reserved in main storage, and the
default value is 8 .

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

5-10

The other optional positional parameter provides four different options: ACCEPT,
EXTEND, /NIT, RELOD, and PREP.

As a brief recap of 4. 10.2, we can say that using the ACCEPT option indicates that the
DTF specifications for a data management file should be obtained from the format 1
and 2 labels in the VTOC. The EXTEND option allows you to add information to the
present end of the file. With the /NIT option, you can write over the existing information
in the file (except for the file identifier). The RELOD option (for Series 90 systems)
means do not reformat an ISAM file when it's reloaded.

When you code any of these options, or specify the number of extents in the file, with
the lb/name parameter, you have to enclose them all within parentheses.

Since the metal fabricating plant buys and sells a lot of materials, there are many
changes to the metal master inventory file. Thus, one of your applications involves
adding the new material purchased to the existing file. Each application that withdraws
material requires that you update the metal master inventory file to reflect this
withdrawal, along with performing the main processing function.

All new material is purchased on the tenth of the month. On the eleventh, it's time to
add the new material to the metal master inventory file. The EXTEND option allows you
to add information to the end of the existing file (we assume your update program is
written to do this). Adding this option to the ACCESS jproc call, our call line would look
like this:

llMMIFIL ACCESS CMETALMASTINV,,EXTEND},DVC=60,VOL=DKWORK

By default, space is reserved for eight extents. The following device assignment set is
generated:

II DVC 60
II VOL DKWORK
II LBL METALMASTINV
II LFD MMIFIL,,EXTEND

PREP specifies that a cataloged tape volume is to be prepped before it is used as an
output file.

While there are more minor limitations to the ACCESS jproc call, there are many
instances where it's very useful.

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

5-11

• 5.4. ALLOCATING A FILE WITH A JPROC CALL

•

•

You saw how we used the ACCESS jproc call to access an existing disk file. This
replaced four job control statements, helping to reduce the possibility of coding errors.
Additional savings in coding time are realized when you use the ALLOC jproc call to
allocate disk and diskette files. It's a combination of the ACCESS jproc call and the EXT
job control statement. The format is:

//lfdname ALLOC
I

((~~~~:me[· {9}] [{i~f !:~ID) [{~~~:{~~~} {~sn }~
'" [{HJ [{t}] , ~~~::hh [{;~;,ao}]
NI TBLK

MI Ill
SQ TRK

ST OLD

[
' { m j . . } , .. ·] [,OLD] [,FIX] [,ND I]

<b1,a1>

The EXT keyword parameter provides all the options available as positional parameters
on the EXT job control statement. The only difference is the equal sign and the
parentheses.

NOTE:

See 4. 5 through 4. 6 for the parameters and options available for data-set-label and
format-label diskette via the EXT statement.

Your site processes payrolls for 25 different companies. Each company has a file
containing each employee's name and hourly wage. This file is accessed during the
processing of the company payroll (a use for the ACCESS jproc call). Originally, though,
each company file was on punched cards, and each of them must be loaded into its
own disk area. (Here is one use for the data utility card-to-disk routines; why write your
own program when one is already provided?) To do this, there must be a device
assignment set for each file being created. This means 25 device assignment sets for
the 25 files. Looking back at 3.6, we see that the site manager needed five job control
statements to allocate his disk file: DVC, VOL, EXT, LBL, and LFD. This means 125 job
control statements would be needed. The ALLOC jproc reduces this to 25 .

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

5-12

For our example, assume that the file requirements (such as access method area
needed, etc) are identical for each of the 25 files, so most of the parameters for the job
control statements (and the ALLOC jproc call) would be the same. Of course, each file
must have its own unique file identifier, but the information about the extents is the
same, all the files can be stored on the same disk volume, and, since you're using the
same program to store them (the data utility routine, run 25 times), the file name is the
same.

We'll assume that disk volume DSP028 will hold these files. It's the only volume with
DSP028 as the volume serial number, so a logical unit number in the range of 50
through 59 (any disk device) suffices. If we omit the DVC keyword parameter, job
control assigns the first available number in this range. Assume that the first one
available is 50. The data utility card-to-disk routine uses OUTPUT 1 as the file name in
the LFD job control statement; this is the value we must use as the lb/name parameter.
All the file names for the different data utility routines can be found in the data utility
user guide/programmer reference.

We are going to take the default value for the number of extents (8), and we don't
want to use any of the options for a previously allocated file.

After defining the extent information, we'll have the parameters that are common to all
files. The only thing left will be to supply a unique file identifier for each file. All the files
are going to use the sequential access method (which is a default condition, SQ),
allocation is contiguous, with one cylinder for dynamic allocation. The initial allocation is
two cylinders. Now we have what we can call our master ALLOC jproc call for the 25
different files. The only thing missing is the file identifier.

From the information we've gathered, our master ALLOC jproc call would look like this:

210UTPUT1 ALLOC xx ... xx,VOL=DSP028,EXT=C,C,1,CYL,2)

This is for the file identifier.

Now, we need file identifiers for each file. Each of the 25 files must be given a unique
file identifier so the proper file can be accessed at the proper time. The names of two
of the companies are Target Manufacturing, Incorporated, and the Reality's Dress
Company. Why not use TARGET and REALITYS as the file identifiers? It makes them
easier to remember and identify. The ALLOC jproc call for Target Manufacturing, Inc.,
would be:

and the generated job control statements would be:

II DVC 50
II VOL DSP028
II EXT ,C,1,CYL,2
;;mrn1w11nNillfi!FT :LL&tLmhuLru
II LFD OUTPUT

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

5-13

• The ALLOC jproc call for the Reality's Dress Company would be:

•

•

//OUTPUT1 ALLOC .lfilll)Sl,VOL=DSP028,EXT=C,C,1,CYL,2>

The only difference in the generated job control statements is the file identifier of the
LBL job control statement: one is TARGET; the other is REALITYS.

NOTE:

With Series 90 systems, if the EXT keyword parameter is omitted, job control allocates
one cylinder of extent space for a direct access (DA) file. With System 80, job control
allocates one cylinder of extent space for a M/RAM (Ml) file. In both cases, job control
assumes one cylinder for dynamic extension.

Now, let's see how to avoid the error of assigning one volume to different devices.

5.5. TOO MANY DEVICES FOR THE SAME VOLUME

Many applications use two files on the same volume. A common mistake is to assign
the files - thus the volume - to two different devices during the job. Using the DVCVOL
jproc helps to avoid this. This jproc assigns logical unit numbers for the generated DVC
job control statements. It also generates a VOL job control statement with the volume
serial number you specify in the jproc call. The format is:

I I [symbol J DVCVOL{;~~ - ser - no} [, l un J [' NOVOL={~}]

RUN

The symbol in the label field is only used as a target for the job control statement that
causes a branch.

The DVCVOL jproc assigns the logical unit numbers 50 through 59, in ascending
sequence, to the different volume sequence numbers in the order they are encountered
in the control stream. if you had three volumes, A, B, and C, in that sequence, A
would be 50, B would be 51, and C would be 52. It is possible, however, to override
these volumes and assign a specific logical unit number to a specific volume by using
the fun parameter.

The NO VOL parameter (NO VOL= Y) performs the same function as the NOV parameter
of the VOL job control statement. It suppresses the checking of volume serial numbers.

Once a logical unit number is assigned by the DVCVOL jproc call to a volume, the same
logical unit number is assigned whenever this volume is encountered in the job. If
volume A was assigned 50 in one job step, and you tried to assign it to 51 in the next
job step, the system overrides the 51 and assigns 50 .

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

5-14

If you tried to do this by using just the DVC and VOL job control statements, assigning
50 in the first job step and 51 in the next job step, your job may run, but you may
have to demount the volume from DVC 50 and mount it on DVC 51 .

When you use the DVCVOL jproc call, the LBL and LFD job control statements for the
file must be present in the control stream after the DVCVOL jproc call. If you're
allocating a file on a disk volume, the EXT job control statement must, of course, also
be used.

There is a limit to the number of volumes you can assign using the DVCVOL jproc call
in a job: 10.

Another point worth remembering: the DVCVOL jproc call can be a member of a
multistatement line of coding, but it must be the last statement on the line.

Let's set up a control stream with some DVCVOL jproc calls, and see what job control
statements are generated. The numbers pertain to the explanation following the
example.

1.

2.

3.

4.

II DVCVOL DISK01
II LBL A
II LFD A II DVCVOL DSK002
II LBL B II LFD B
II DVCVOL DK0003,69
II LBL C II LFD c
II DVCVOL DISK01
II LBL X
II LFD X
II DVCVOL DK0003,67
II LBL Y
II LFD Y

1. This is an example of a multistatement line of coding. Note that the DVCVOL
jproc call is the last statement on the line. The next line and the line after
example 2 are also multistatement lines.

2. This line assigns a specific logical unit number, 69, to the volume DK0003.

3. This DVCVOL jproc call is used again for the volume DISKO 1 . It was also used
in the first DVCVOL jproc call on the first line. It will be assigned the same
logical unit number assigned to the first call for the volume DISK01. You'll see
this more clearly when we show the job control statements generated by
these DVCVOL jproc calls.

4. This is another example calling for the volume DK0003, which was already
assigned a logical unit by a DVCVOL jproc call. Notice that it also requests a
specific logical unit number: 67. Since this volume already was assigned to
logical unit number 69 in example 2, the request for logical unit number 67 is
ignored, and it is assigned to logical unit number 69.

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

5-15

Here are the generated job control statements. They should give you a clearer picture of
how each DVCVOL jproc call functioned.

1.

2.

3.

4.

5.

II DVC 50
II VOL DISK01
II LBL A

II LFD A

II DVC 51
II VOL DSK002
II LBL B
II LFD B
II DVC 69
II VOL DK0003
II LBL c
II LFD c
II DVC 50
II VOL DISK01
II LBL x
II LFD x
II DVC 69
II VOL DK0003
II LBL y

II LFD y

1. Volume DISK01 was the volume encountered in the first DVCVOL jproc call -
ifs assigned to logical unit number 50. The LBL and LFD job control
statements are not generated by the jproc call. Remember, these were
supplied in the control stream. If another DVCVOL jproc call for volume
DISK01 is encountered in this job, it is automatically assigned to logical unit
number 50.

2. A DVCVOL jproc call for volume DSK002 was the next one encountered. It's
assigned the next available logical unit number. Since 50 was already assigned
to volume DISKO 1, 51 is the next available logical unit number.

3. The next DVCVOL jproc call was for volume DK0003. Normally, it would be
assigned to logical unit number 52, which was the next one available. But, the
DVCVOL jproc call for this volume requested a specific logical unit number, 69,
so that's what is assigned.

4. Another DVCVOL jproc call for volume DISK01 was encountered. Since this
volume was already requested and assigned earlier in the control stream, this
occurrence is assigned the same logical unit number: 50.

5. The volume DK0003 was requested by another DVCVOL jproc call. Even
though a specific logical unit number, 67, was requested, it was assigned to
logical unit number 69, since this is the logical unit number assigned earlier in
the job. The first number encountered is used, and any other logical unit
numbers requested for the volume in the same job are ignored.

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

5-16

To assign multiple diskette volumes through a jproc call, use the DVCDKT jproc. It
functions the same as the DVCVOL jproc except that it assigns the logical unit numbers
130 through 132. It's format is:

//[symbol] DVCDKT vol-ser-no[,lun][,NOVOL={;}]

There is also a jproc call for tape units: DVCVTP. Except for a few minor differences, it
functions the same as the DVCVOL and DVCDKT jprocs. Its format is:

II [symbol] DVCVTP vol - ser -no [, lun] ['PREP={~\}] [NOVOL= {;}]

The DVCVTP jproc call assigns the logical unit numbers 90 through 99. Additionally,
DVCVTP has the keyword parameter PREP= Y. If specified, this parameter functions the
same as the PREP option of the VOL job control statement (4.4.5); it causes any
information currently on the tape volume to be effectively erased.

5.6. USING THE LINKAGE EDITOR

So far, we've discussed how to execute programs stored in a library. These programs
were not always located in this library. At one time they could have been on punched
cards in one of the programming languages, such as COBOL or RPG II.

These programs are compiled or assembled using a language translator, which converts
the program instructions into a form understandable to the computer (an object
module). Each language translator has a jproc call you can use to generate the job
control statement needed to direct the operation of the language translator; in other
words, you get an object module from source input. The jproc call for each language
translator can be found in the assembler user guide, the COBOL supplementary
reference manuals, the FORTRAN supplementary reference manuals, and the RPG II user
guide.

In this guide, we'll explain the jproc call for the linkage editor. But, before we do, a
word or two about the linkage editor.

The linkage editor converts an object module into an executable load module. Only load
modules can be executed, and the only method of converting object modules to load
modules is by using the linkage editor. The function of the linkage editor is fully covered
in the system service programs user guide.

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

5-17

• The format of the linkage editor jproc call is:

•

•

//[symbol] LINK [input-module-name-1, ... ,input-module-name-10]
LINKG

,IN= Cvol-ser-no,label)
CRES)
CRES,label)
CRUN,label)

,OUT= Cvol-ser-no,label)
CRES,label)
CRUN,label)

[
RLIB={Cvol-ser-no,label)~[ALIB={Cvol-ser-no,label)~

CRES,label) CRES,label)
(RUN, label) CRUN,label)
<*,label) <*,label)

[' SCR 1={~ -ser -no}][' STD={:'}]

[AL TLOD=1~~ i.m~ ~~ L abe L)~

[,OPT= 1 options 1]

[
CLIB={Cvol-ser-no,label,modname)~

CRES,label,modname)
(RUN,label,modname)
C*,label,modname)

[,CMT= 1 comment 1][,ENTER=expression]

There are two choices in the operation field: LINK and LINKG. By specifying LINK, you
execute the linkage editor. By specifying LINKG, you execute the linkage editor and the
load module you just created (without using an EXEC job control statement).

As you can see, all the parameters are optional. But this jproc call has default values,
which generate the job and linkage editor control statements sufficient to accomplish a
link-edit, and assumes the following:

• All the object code you specifically want included in the load module is in the job's
YRUN file.

• Any object code that may have to be automatically included in the load module
(such as error processing routines) is in Y0BJ .

• The load module produced is given the name LNKLOD, and it's stored in the job's
YRUN file.

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

5-18

You can alter these default conditions using the optional parameters. There are also
parameters that allow you to choose special options (such as a specific printer, a
certain scratch work file, etc).

Let's see what job and linkage editor control statements are generated when you omit
all the parameters. We'll use both the LINK and the LINKG operations. For these
examples, assume that the program was just compiled (or assembled) by a language
translator, and the object code was placed in the job's YRUN file. This occurred in
the last job step, but it is still the same job. The job's YRUN file is only a temporary
file, lasting for the length of the job. So, if you placed the object code in the job's
YRUN file in one job and tried to locate it in another job, you wouldn't find it.

I* (this is the end of the language translator job step)
11 LINK
I&
II FIN

Here's what job control statements are generated:

1.

2.

3.

4.

5.1

I*
II

r II
II
II

r I*
I&
II

1.

(this is the end of the language translator job step)
DVC 20 II LFD PRNTR
DVC RES
EXT ST,C,1,BLK,C256,10)
LBL SSCR1 II LFD $SCR1
EXEC LNKEDT

LOADM LNKLOD

FIN

This is the device assignment set that's generated for the printer. Notice that
we've used multistatement coding, showing the DVC and LFD job control
statements on the same line.

2. The linkage editor always uses one scratch work area. The jproc call assigns it
to the SYSRES device, and makes it a job step temporary file. (The file
identifier begins with $.) This work area is scratched at the end of the job
step.

3. This calls the linkage editor from YLOD and initiates its execution.

4. The generated load module must be assigned a name. The default is LNKLOD.
This is on the LOADM linkage editor control statement, which is treated as
data by job control, thus the /$ and /* job control statements.

5. As always, this indicates the end of the job.

•

•

••

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

5-19

This example is fine if you don't want to execute the program, since default conditions
assign the load module to the job's YRUN file, which is only a temporary file. This
load module is not available to another job (but it is to another job step in the job). This
application is useful if you only want to see the output of the linkage editor; but it isn't
much help if you want to execute. This does not mean that you can never access a
load module in a job other than the one in which it was link-edited. You can. but you
have to assign it to a library other than the job's YRUN file. You'll see how later on,
when we discuss the optional parameters. But first, let's see how to execute the load
module that was placed, by default, in the job's YRUN file.

There are two ways you can execute a load module placed in the job's YRUN file:
first, you can execute it in a subsequent job step after link-editing, using the default
LNKLOD load module name on the EXEC job control statement; or, second, you can use
the LINKG operation, which automatically executes the load module.

Here's method 1 (LINK):

I* Cend of Language translator job step)
II LINK
II EXEC LNKLOD,YRUN
I&
II FIN

The job control statements generated are:

I* Cend of Language translator job step)
II DVC 20 II LFD PRNTR
II DVC RES
II EXT ST,C,1,BLK,C256,10>
II LBL $SCR1 II LFD $SCR1
II EXEC LNKEDT
1$

II FIN

The load module name on the LOADM linkage editor control statement and the program
name on the EXEC job control statement is the same: LNKLOD. Since we know the
linkage editor always assigns this as the default load module name, we use it as the
program name. Also note that YRUN is the second parameter on the EXEC job
control statement. Remember, in 4.9, we said this parameter indicates the name of the
library containing the load module. If omitted, YLOD is searched, then the job's
YRUN file. Since the job's YRUN file is searched eventually, why specify it? Time.
We know, it's in the job's YRUN file, so why search YLOD needlessly? Go directly
to the job's YRUN file.

UP-8065 Rev. 9

Now, here's method 2 (LINKG):

SPERRY UNIVAC OS/3
JOB CONTROL

/* <end of language translator job step>
II LINKG
!&
II FIN

And here are the generated job control statements:

/* <end of language translator job step)

1111111-.
II
II
II
II
II
/$

/*
I&

DVC 20 II LFD PRNTR
DVC RES
EXT ST,C,1,BLK,(256,10)
LBL SSCR1 II LFD $SCR1
EXEC LNKEDT

LOADM LNKLOD

II FIN

5-20

The only difference between this LINKG operation and the LINK operation is the
generated OPTION job control statement. The GO means the load module should be
automatically executed when linkage editing is completed. You don't need an EXEC job
control statement.

The LINKG operation generates a load module name of LNKLOD and is loaded, by
default, in the job's YRUN file. This means it is not available after the job is
completed. The LINKG operation is useful when you're testing programs or running
programs that are infrequently used.

So far, we've covered only the basic use of the linkage editor jproc call. Now, let's add
some optional parameters and make it do exactly what we want.

5.6.1. Generating LOADM and INCLUDE Linkage Editor Control Statements

Up until now, the module name for the generated LO ADM linkage editor control
statement has been LNKLOD (the default name). You can override this using the label
field of the jproc call, shown as symbol in this portion of the format:

//[symbol] {LINK } [input-module-name-1, ..•. ,input-module-name-10]
LINKG

The symbol parameter is a 1- to 6-alphanumeric-character name. If fewer than six
characters are specified, it's padded on the right with zeros. If it's omitted, the value for
the first input-module-name specified is used for the load module name. If the
input-module-name parameter is also omitted, LNKLOD is used.

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

5-21

Since we mentioned input-module-name, now is a good time to explain it. This
parameter allows you to specify up to 10 object modules to be included in the load
module you're constructing. In other words, it specifies the module names for the
INCLUDE linkage editor control statements. Each input-module-name can be from one to
eight alphanumeric characters long. If this parameter is omitted, the value specified as
symbol is also omitted, all object modules residing in the job's YRUN file are included
in the load module. An explanation of how the linkage editor jproc searches for input
modules to be included in the load module is given in the description of the IN
parameter (5.6.2).

If you are specifying more than one object module name, you may want to specify a
value in the symbol field that is representative of all the input-module-names to be
included. Also, if all eight positions are used for the first input-module-name and it is
also to be used as the symbol by default, the last two positions are truncated by the
linkage editor to obtain a 6-character symbol, and the linkage editor diagnostic message
K016 is issued.

NOTE:

If you're using COBOL-68 (extended or basic), you must remember that if you want to
indicate the specific object code to be included in the load module (for the generated
INCLUDE linkage editor control statement), you have to do it with the
input-module-name; you can't take the 6-character value of symbol. You must use all
eight positions, zero-filled to the right, if necessary. Whenever symbol is specified, you
must also specify an input-module-name; symbol cannot be used by itself. COBOL must
have an 8-character object module name. The input-module-name parameter, however,
can be used by itself; the first input-module-name is truncated to six characters for
symbol.

Let's look at examples showing different ways of assigning module names for the
generated LOADM and INCLUDE linkage editor control statements.

Here's the first example:

I* (end of language translator job step)
ifJllll LINK
II EXEC \llll,SY$RUN
I&
II FIN

UP-8065 Rev. 9

Here's what is generated:

I* (end of language translator
II DVC 20 II LFD PRNTR
II DVC RES
II EXT ST,C,1,BLK,C256,10>
II LBL $SCR1 II LFD $SCR1
II EXEC LNKEDT
1$

LOADM llB
INCLUDE ..

I*
I I EXEC Ila YRUN
1$
II FIN

SPERRY UNIV AC OS/3
JOB CONTROL

job step>

5-22

By using PROG as the symbol, you get PROG as the module name on the LOADM
linkage editor control statement. By default, it's also the module name for the INCLUDE
linkage editor control statement. (You'll notice there's no space between 11 and PROG
on the jproc call.) You also use it as the program-name parameter on the EXEC job
control statement.

The same job and linkage editor control statements would have been generated if you
specified it like this:

I* (end of language translator job step)

II LINK -
I I EXEC illll YRUN
I&
II FIN

Notice that PROG, in this case, is specified as the input-module-name, rather than the
symbol. Remember, one can substitute for the other if it's omitted.

You could make this job a little easier by getting rid of the EXEC job control statement,
like this:

I* <end of language translator job step>
11 r .. r 111, PRoG
I&
II FIN

Now let's see the rest of the parameters you can use with the linkage editor jproc call.
We'll also use examples, showing what job control statements result from what
parameters.

All the parameters will be listed and explained first, and then the examples will follow
(except in special cases, where an example is needed to clarify a point).

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

5-23

• 5.6.2. Making the Linkage Editor Suit Your Needs

Once again, the format of the linkage editor jproc call is:

•

•

//[symbol] {LINK } [input-module-name-1, ... ,input-module-name-10)
LINKG

,OUT= Cvol-ser-no,label)
CRES,label
(RUN,label
(*,label)
CN)
JIIL.i.. . r ti

Cvol-ser-no,label)
(RES)
CRES,label>
CRUN,label)
(*,label)
l!IRllll 1· ·rm

[
RLIB={Cvol-ser-no,label)~

CRES,label)
<RUN, label>
<*,label>

[ALIB={~~~~:~:~~~~ 1 label)~
CRUN,label)
(*,label)

['SCR1={~-ser-no}] [,STD={:'}]

[ALTLOD=1~~~~:~:~~~~ 1 label)ll
CRUN,label)

:~·:i : . \:~~ e. l ~. 'ffil'
[,OPT= 1 option 1]

[
CLIB={Cvol-ser-no,label,modname)~

CRES,label,modname)
CRUN,label,modname)
C*,label,modname)

[,CMT= 1 comment 1][,ENTER=expression]

We've already covered symbol and input-module-name, and the difference between
LINK and LINKG. The remaining parameters are used to define particular input and
output files, to indicate libraries to be searched for modules to be automatically
included, to define scratch work areas, and to specify the alternate library that contains
the linkage editor (normally it's YLOD). If you want to assign a specific printer,
there's a parameter for that. And, if you are going to provide your own linkage editor
control statements (you might want to do multiple link edits in a single job step), you
must use a parameter to indicate this .

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

5-24

Let's start with the PRNTR parameter. If PRNTR=N is specified, the LINK jproc does not
generate a device assignment set for a printer. Also, it is assumed the PRINT file is not
to be sent to a terminal. Remember, since no device assignment set is generated, you
must supply your own. The fun subparameter is used if you want to assign a logical unit
number for a specific printer (20 is the default, indicating that any printer can be used).
The dest subparameter indicates the remote destination identifier (one to six
alphanumeric characters) for the print output file when dealing with remote batch
processing, which requires that every unit record device must have a destination.

There may be times when you want to change the spooling environment, the standard
load code, or the vertical format buffer used by the linkage editor. (These buffers are
changed with the SPL, LCB, and VFB job control statements, 6.2, 6.4, and 6.5.) This is
accomplished by coding N as the value of the PRNTR parameter. When you code N, the
jproc will not generate a device assignment set for the printer; you must physically
insert the printer's device assignment set into the control stream before the jproc call.
This device assignment set consists of a DVC job control statement and an LFD job
control statement (which must have a value of PRNTR for the file name). The SPL, LCB,
or VFB job control statement you want to use is placed between the DVC and LFD job
control statements. For example:

II DVC 20
II VFB LENGTH=78,0VF=75
II SPL RETAIN
II LFD PRNTR
II LINK PRNTR=N

NOTE:

Other jprocs allow you to use the PRNTR = N parameter and supply your own device
assignment set for the printer. All the language jprocs and the jprocs for generating
control streams for data utility routines allow you to specify PRNTR=N. This parameter
is used in these jprocs exactly as it's described for LINK/LINKG.

Next, let's look at the parameter for the input file definition:

,IN= (vol-ser-no,label)
(RES>
(RES, label)
CRUN,label)
< *, label>

The linkage editor uses two processes to include modules - specific and automatic
inclusion. Modules specified in the input-name parameter and modules specified on
embedded INCLUDE statements are specifically included. For each input-module-name
specified, the linkage editor performs a specific inclusion search in the following manner:
If the IN parameter is specified, only the file it identifies is searched; if the IN parameter
is not specified, first, YRUN is searched for object modules to include. Then the file
defined in the RUB parameter is searched (if the RUB parameter was specified) and,
finally, Y0BJ is searched.

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

5-25

For automatic inclusion, the linkage editor performs a search in the following manner:
The file defined by the ALIB parameter is searched first (if the ALIB parameter was
specified). and then the file defined by the RUB parameter (or the default Y0BJ) is
searched. Modules are automatically included to satisfy the external requirements of
modules that have already been included by either automatic or specific inclusion.
Automatic inclusion may be suppressed by specifying the NOAUTO option.

Here are the options available to you through the IN parameter.

The first option is IN=(vol-ser-no,Jabel). The vol-ser-no is the volume serial number of
the disk volume you're using, and the label is the file identifier of the file used when the
file was created.

The next choice is IN=(RES). This means the file is on SYSRES in Y0BJ.

The following two choices are very similar: IN=(RES,label) and IN=(RUN,label). In both,
label stands for the file identifier. If you use RES, the file is on SYSRES; if you use RUN,
the file is on the volume containing the job's YRUN file. (Remember, YRUN can be
on the SYSRES device.)

The next choice is IN=(*,label). This means the file is cataloged, therefore, its location
is obtained from the file catalog.

The default parameter, (RUN,YRUN), should not be coded when you want to use the
default; its use in coding can cause an invalid file name.

Whenever you use the IN parameter, with both subparameters (vol-ser-no,label, for
example), and STD=NO is omitted, an INCLUDE module-name/IN linkage editor control
statement is generated.

The next parameter we'll discuss defines the output file. Here's what it looks like:

,OUT= Cvol-ser-no,label>
CRES,label>
CRUN,label)
<*,label)
CN>

Quite frequently, you will not want to permanently save the generated load module,
particularly when you don't have all the bugs out of your program. However, once the
program is working satisfactorily, you'll probably want to save the load module, rather
than compiling (or assembling) and link editing it every time you run it (unless it's used
only once a year, for example). This is done with the OUT parameter.

As we've said, most times you don't want to save the generated load module for any
length of time (but you'll probably want to execute it in the next job step to see how
close to the finished product you are). For this reason, the linkage editor jproc places
the generated load module in the job's YRUN file by default.

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

5-26

But, once the module is ready to be saved, you override the default in one of these
ways.

You can specify OUT=(vol-ser-no,/abel). This is the volume serial number and the file
identifier of the file where you want to store the load module.

The following two choices are similar: OUT=(RES,/abel) and OUT=(RUN,label). This is
like the IN parameter we just discussed. label is the file identifier; RES means the file is
on SYSRES; RUN means the file is on the volume containing the job's YRUN file.

The next choice is OUT=(*,label). This means the file is cataloged, therefore, its
location is obtained from the file catalog.

The last choice is OUT=(N). This means you don't want to save the load module at all;
not even for the next job step. When this option is used, all you get is a listing of the
load module, which you can use for debugging. The generated load module is not
placed in any file.

Just as with the IN parameter, the default (RUN,YRUN) should not be coded.

Whenever the OUT parameter is coded, a PARAM OUT=OUT job control statement is
generated to specify the linkage editor option that an output file has been defined for
the load module. The PARAM job control statement is explained in Section 7.

•

The linkage editor jproc call assumes the output file is already allocated. If it isn't, you •
must allocate the file by placing a device assignment set in the control stream before
the linkage editor jproc call. Let's clarify with an example. Suppose you want to store
the load module on disk volume DISKO 1, and you want it placed in the file identified by
SAVEDPROGRAM. This file has never before been allocated. So, what you have to do
is allocate the file before you can link-edit the module.

You've probably noticed that the logical unit number is not coded in the OUT parameter
(or any other except for the printer). This is because the linkage editor jproc call uses
the DVCVOL jproc call (a jproc call within a jproc call, which is in turn converted to DVC
and VOL job control statements). In 5.5 we explained how there can be conflicting
device assignments and the DVCVOL jproc call eliminates this conflict. So, we'll use the
DVCVOL jproc call in the device assignment set.

The OUT parameter generates a file name of OUT for the generated LFD job control
statement of the device assignment for the output file. So, we might as well use OUT
as the file name when we allocate the file. (We don't have to, since the program does
not have to have a match for this file name; it's only serving the purpose of completing
the device assignment to allocate a file. Think of it as a job step in itself.) Remember
that OUT is the file name used by the jproc. In 4.9, we said that, if the load module is
stored in a user library, which the OUT parameter does, you have to use the file name
of the device assignment set for this library as a parameter in the EXEC job statement.
This will be a lot clearer in the example.

•

•

•

•

UP-8065 Rev. 9

First we start to allocate the file

SPERRY UNIVAC OS/3
JOB CONTROL

using the DVCVOL jproc call.---- I I DVCVOL. DI SK01

Next, an EXT job control statement - --- I I EXT ST~ C, 3, CYL, 1

now the file identifier, I I LBL SAVEDPROGRAM

and then the file name \
that allocated the file. I I LFD OUT

Now, the linkage editor jproc call \
(let's call the load module XYZ) - - 11 XYZ LINK OUT=CDISK01,SAVEDPROGRAM)

andexecutetheprogram. II EXEC XYZ,O~T

5-27

If the file is already allocated, the load module created is appended to the present end
of the file. If a load module with the same name already exists in the file, it is replaced
by the new load module.

When you specify the LINKG operation, you can't use the OUT parameter to define a
specific output file. You must use the job's YRUN file.

Next, the parameters RUB and AUB name libraries that contain object modules, such as
your own (user-written) subroutines, for inclusion in the load module. To see exactly
how and why different object modules are included into your load module, see the
system service programs user guide .

By default, the linkage editor searches Y0BJ for the needed modules for automatic
inclusion processing. The AUB parameter allows you to specify an additional file to be
searched. This file is searched first. If all the needed modules are not found here,
Y0BJ, or the file named by the RUB parameter, is searched.

The RUB parameter names the file to be searched before Y0BJ during specific
inclusion processing, and in place of Y0BJ during automatic inclusion processing
when no AUB parameter is specified.

Both the RUB and AUB parameters look very much alike:

[
RLIB={Cvol-ser-no,label)~

CRES,label>

CRUN,label>

<*,label>

[
ALIB={Cvol-ser-no,label>~

(RES, label)

CRUN,label)

<*,label>

In RLIB=(vol-ser-no,/abel) and ALIB=(vol-ser-no,/abel), you provide the volume serial
number and the file identifier of the file containing the library you want .

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

5-28

RLIB={RES,label) and ALIB=(RES,/abel) are similar, just as are RLIB={RUN,label) and
ALIBE(RUN,label). The label provides the file identifier; RES means the file is on SYSRES;
RUN means the file is on the volume containing the job's YRUN file; the asterisk (*)
means the volume is identified in the file catalog.

Whenever you use the RUB or ALIB parameters, PARAM job control statements are
generated to specify the linkage editor option for libraries for inclusion processing.
These PARAM job control statements are:

• PARAM RLIB=RLIB

• PARAM ALIB=ALIB

The linkage editor needs one scratch work file. Normally, SYSRES is used, but, you can
use a different volume:

SCR1={vol~ser-no} -
This parameter, whether specified directly or indirectly through default, generates all the
job control statements needed to allocate a job step temporary work file.

The linkage editor jproc call often follows immediately after one of the language
translation jproc calls. Each of the language translators also uses scratch work files (the
SCR 1 parameter; some also use SCR2 and SCR3). The SCR 1 parameter coded for the
linkage editor must agree with the SCR 1 parameter for the language translator; you
can't contradict this assignment without getting errors. So, if you specified
SCR 1 EDSP028 in the language translator jproc call, you must do the same in the linkage
editor jproc call.

You've already seen that the symbol field provides a name for the generated LOADM
linkage editor control statement, and the input-module-name parameters provide the
names for the generated INCLUDE linkage editor control statements. However, there are
times when you want to physically place these linkage editor control statements in the
control stream as data; you don't want the jproc call to generate them. You indicate
this by using the STD parameter.

For instance, you may want to include only certain parts of an object module to form a
load module. Since there's no provision for doing this with the jproc, you have no
choice but to physically place the linkage editor control statements you need in the
control stream. But, you have to use the STD parameter to tell the linkage editor jproc
that you're going to do this, or else it automatically looks at the input-module-name
parameters, and then the symbol field, for the name of an object module to include.
Since you didn't specify the linkage editor control statements through the jproc call
(they're physically in the control stream), these fields would be blank.

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

5-29

Another case: you may want to use additional linkage editor control statements as well.
(OVERLAY, for example, there's no parameter for this.) Whenever you place any linkage
editor control statement physically in the control stream, all the needed linkage editor
control statements must be physically placed in the control stream.

The STD parameter looks like this:

ST D-{1· ··:·1··:::·1······;} - LI.~··;

NO

Indicating NO means you're going to physically place the linkage editor control
statements in the control steam. The default value, YES, means you want them
generated automatically.

STD=NO tells the jproc to ignore any specifications in the jproc call for automatically
generating INCLUDE and LOADM linkage editor control statements.

Next, let's look at the parameter telling the jproc where to find the linkage editor:

ALTLOD=1Cvol-ser-no,label)l
CRES,label)
(RUN, label
(*,label>

11111111111

Normally, the linkage editor resides in YLOD. However, you may want to use a copy
of the linkage editor that is not in YLOD. The AL TLOD parameter allows you to
identify the file that contains the linkage editor you want to use. You may specify a
volume serial number, RES, RUN, or an asterisk (*). RES means the file is on SYSRES;
RUN means the file is on the volume containing the job's YRUN file; and the asterisk
means the volume is identified in the file catalog. In all cases, the label provides the file
identifier. If the AL TLOD parameter is omitted, the normal procedure of searching
YLOD and the YRUN is performed.

The next parameter we discuss is one making available certain linkage editor options.
The parameter looks like this:

OPT ION= 1 options 1

The options that may be specified here are all the keywords appearing in the linkage
editor / /PARAM and LINKOP control statements that do not need to be equated to
subparameters as, for example, SHARE, NOSHARE, AUTO, and NOAUTO. Refer to the
linkage editor section of the system service programs user guide for all the options .

UP-8065 Rev. 9

The CUB parameter looks like this:

CLIB={Cvol-ser-no,label,modname>}
CRES,label,modname)
CRUN,label,modname)
C*,label,modname)

SPERRY UNIV AC OS/3
JOB CONTROL

5-30

You use this parameter to specify where the linkage editor control statements reside
that are to be processed for this link-edit job. As the parameter indicates, you must
supply the name of the source module and the file in which it resides. You must also
specify the disk volume on which the file resides.

The CMT parameter inserts a character string in the comment field of each phase
header record produced for the generated load module. Its format is:

CMT= 1 comment 1

The character string you choose may run up to a maximum of 30 characters and must
be enclosed in apostrophes. It may contain blanks, commas, and other special symbols,
excluding apostrophes.

The ENTER parameter specifies the transfer address. The ENTER parameter looks like
this:

ENTER=expression

The expression is a decimal number from one to eight digits, a hexadecimal number
from one to six digits in the form X'nnnnnn', a previously defined symbol, or a
previously defined symbol plus or minus a decimal or hexadecimal number, in the form
we've just discussed.

Now, let's do some coding.

1 •
2.

3.

II JOB LNKJPROC
Column 72 :-i

{
llBELLPR LINK PAYROLL,IN=CDISK01,PRAREA),
111 OUT=CDISK01,BELLHRLPR)

x

{
I&
II FIN

1. This, of course, is the JOB control statement telling the operating system that
the name of the job is LNKJPROC.

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

5-31

2. This is the jproc call. (We're only link editing, not automatically executing, also.

3.

Thus, the operation is LINK, not LINKG. Besides, the OUT parameter is used.
When an output file is specified, the LINKG operation can't be used.) As you
can see, we used the IN and OUT parameters. The source deck was already
compiled (let's say yesterday), and the IN parameter indicates it's stored in the
file identified by PRAREA, on disk volume DISKO 1. The OUT parameter
indicates we also want the load module to be stored on disk volume DISKO 1 .
This payroll is for the Bell Historical Library, so we chose a file identifier that
closely represents the name: BELLHRLPR. (Assume this file has already been
allocated; otherwise, we'd need a device assignment set to allocate the file.)

When the object module was created (compiled or assembled), it was given
the name PAYROLL. So, this is the name of the object module we want to
obtain from the file identified as PRAREA. This provides us with the
input-module-name parameter, which generates an INCLUDE linkage editor
control statement for this module.

We're providing a name for the load module by using the symbol field. We
also want to make this name readily identifiable with the company name. Since
the symbol field is limited to six characters maximum, we can't use
BELLHRLPR, as we did for the output file identifier. (Also, two identical names
in the same jproc call could cause confusion.) We'll shorten it to BELLPR. This
is what will appear on the generated LOADM linkage editor control statement.
When you want to execute this load module, this is the program-name you'd
use on the EXEC job control statement.

This ends the job and terminates the card reader operations.

Now here's what the jproc call generated:

II JOB LNKJPROC
II DVC 20 II LFD PRNTR

1. {II DVC 50 II VOL DISK01
II LBL PRAREA II LFD IN

{II DVC 50 II VOL DISK01
2. II LBL BELLHRLPR II LFD OUT

r DVC RES
3. II EXT ST,C,1,BLK,(256,10)

II LBL SSCR II LFD $SCR1
II EXEC LNKEDT

4. II PARAM OUT=OUT
1$

5. { LOADM BELLPR
INCLUDE PAYROLL,IN

I*
I&
II FIN

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

5-32

1 . This is generated by the JN parameter. The linkage editor uses the DVCVOL
jproc (which we're showing in its generated form: DVC and VOL). DISK01 is
the first volume requested in the job, so it receives the first logical unit
number: 50. The IN parameter always generates a file name of IN for the LFD
job control statement.

2. This is generated by the OUT parameter. Again, DISK01 was requested in the
jproc call, and since it was already assigned to logical unit number 50, this
number is assigned to this volume every time it's encountered in the job. The
OUT parameter always generates a file name of OUT for the LFD job control
statement.

3. This is the device assignment set for the scratch work area, which was
generated by default in this case.

4. This is the PARAM job control statement generated by the OUT parameter.

5. This is the object module name (PAYROLL) and the load module name
(BELLPR). These linkage editor control statements are generated by the
input-module-name parameter and the symbol field. The IN shown on the
INCLUDE linkage editor control statement is generated because both
subparameters on the IN keyword parameter are used.

We've now covered all the parameters of the linkage editor jproc call and provided
examples of their use. You should now be able to use this jproc call correctly.

5. 7. PERSONALIZING YOUR PRINT OUTPUT

Sperry Univac has provided the WRTBIG and WRTSML jprocs to produce block
characters on your printed output. Any type of information can be printed by WRTBIG
and WRTSML - your name or a message, for example.

WRTBIG and WRTSML function in the same way; the only difference between the two
is the size of the block characters produced. Those created by WRTSML are smaller
than those created by WRTBIG.

WRTBIG and WRTSML produce block characters formed by the characters themselves,
arranged in the pattern of the characters being printed. You can print the letters A
through Z and the numbers 0 through 9. In addition, you can use WRTBIG and
WRTSML to print these special characters:

() + & * - I ? : # = . $ embedded blank

NOTE:

Some printers cannot print all of these characters - check with your system
administrator.

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

5-33

• Up to eight blocks, or lines, of print can be generated by WRTBIG and WRTSML.

•

•

Each line produced by WRTBIG can contain up to 12 characters. A maximum of four
lines can be printed on each page. WRTBIG produces characters 10 characters high and
8 characters wide. The letter P, for example, prints like this:

PPPPPP
PPPPPPP
PP PP
PP PP
PPPPPPP
PPPPPP
pp
pp
pp
pp

WRTSML produces characters seven characters high and five characters wide. Up to 20
characters can be printed on each line, and up to 6 lines can be printed on each page.
The number 7 produced by WRTSML looks like this:

77777
7

7
7

7
7
7

Note that the character produced by WRTSML is 7 characters high and the one
produced by WRTBIG is 10 characters high.

The format for WRTBIG and WRTSML is:

//[symbol]
{

WRTBIG} 1 block-1 1
[,

1 block-2 1
, ••• ,

1 block-8 1
]

WRTSML [IN=1Cvol-ser-no,label>~

ll~~:I~
The 'block' parameter is where you code the actual information you want printed on a
line. Notice there are eight 'block' parameters - one for each line of print. Each
parameter is enclosed by apostrophes. You can use blanks anywhere in the field to
position the characters on the page .

UP-8065 Rev. 9

For instance, if you coded this:

II WRTSML I RETURN','

you get:

RRRR EEEEE TTTTT
R R E T
R R E T
RRRR EEE T
R R E T
R R E T
R R EEEEE T

JJJ 00000 H
J 0 0 H
J 0 0 H

ro•, •

u
u
u
u
u
u

SPERRY UNIVAC OS/3
JOB CONTROL

JOHN DOE'

u RRRR N
u R R NN

N
N

u R R N N N
u RRRR N NN
u R R N N
u R R N N

uuuu R R N N

H N N DODD
H NN N D D
H N N N D D

J 0 0 HHHHH N NN D D
J 0 0 H H N N D D

J J 0 0 H H N N D D
JJ 00000 H H N N DODD

5-34

TTTTT 00000
T 0 0
T 0 0
T 0 0
T 0 0
T 0 0
T 00000

00000 EEEEE
0 0 E
0 0 E
0 0 EEE
0 0 E
0 0 E
00000 EEEEE

Notice that even though the field can be 12 characters, it does not have to be. You can
put the end apostrophe after the last character for the line. Also, note that if there are
over 12 characters for WRTBIG or over 20 characters for WRTSML the field is
truncated.

You can also use WRTBIG and WRTSML to print the date, the time the job started, the
system version number, and the job name from the JOB control statement. This is done
by coding the following as the first four characters in any 'block' parameter (nothing
else can appear in the parameter; the last eight positions must not be used):

• TIM$

This prints the time of day in the form of hh:mm:ss (hours, minutes, seconds).

• DAT$

This returns the date, in the form of yy/mm/dd (year, month, day).

• VER$

This gives you the version number of the operating system in use.

• JOB$

This prints the job name from the JOB control statement.

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

5-35

• Each option can be used alone, or combined with other options or information.

•

•

Look at this example:

II JOB POCO
II WRTBIG '************ 1

111 1 JOB$ 1 ,

112 1 DAT$ 1 ,

113 '************'
(Remainder of your
control stream)

Column 72 t
x
x
x

Note the use of statement continuation. The printout would look like this:

. .
••

.
• •

• • •• •• • •

. .
•• •• ..

.. ..
• •

PPP PPP
PPPPPPP
pp PP
pp PP
PPP PP PP
PPP PPP
pp
pp

PP
pp

1171111
1111111

11
11
1

11
11

11
11
11

• • •• •• . .

. . ..
•• . .

000000
00000000
00 00
00 00
00 00
00 00
00 00
00 00
00000000

000000

8888
888888
88 88
88 88
8888

888888
88 88
88 88
888888

8888

• • •• •• • •

• • •• •• • •

CCC CCC
cccccccc
cc cc
cc
cc
cc
cc
cc cc
cccccccc
cccccc

I
II

Ill
Ill

Ill
Ill

Ill
Ill

" I

• • •• •• • •

• • •• •• . .

000000
00000000
00 00
00 00
00 00
00 00
00 00
00 00
00000000

000000

0000
00 00

00 00
OD OD
00 OD
OD OD
00 DO
OD DO

00 DD
DODD

• • •• •• • •

• • . .
•• . .

8888
888888
88 88
88 88
8888

888888
88 88
88 88

888888
8888

• • •• ••
• •

• • •• •• . .

II
Ill

Ill
Ill

Ill
Ill

Ill
II
I

• • • • • • . .

• • • • • • . .

0000
00 DO

00 00
OD DD
OD DD
DO OD
OD OD
DD DD

00 DO
ODDO

• • •• •• • •

• • •• • •

8888
888888
88 88
88 88

8888
888888

88 88
88 88

888888
8888

• • •• •• • •

• • • •
• • . .

• • •• • • • •

. . . .
• • . .

. .
• • • • • •

The IN parameter identifies the file containing either the load module WRTBIG or the
load module WRTSML. If you don't specify this parameter, it is assumed that the
module you want is on SYSRES in the file YLOD. If the load module is on SYSRES,
but in a file other than YLOD, specify (RUN,/abel), where label is the file identifier. To
indicate that the load module is on the volume containing the job's YRUN file, use
(RUN,/abel). If the file containing the load module is identified in the file catalog, use
(*,label) .

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

5-36

The LUN parameter provides the logical unit number of the printer to be used. By
default, 20 is used. But, if you want a specific printer, use the appropriate logical unit
number. (Make sure the rest of your print output goes to this printer.)

If the file name in the job is not PRNTR (which the Sperry Univac-supplied programs
use), you indicate this through the lfdname of the LUN parameter (this is similar to the
LFD job control statement).

The dest subparameter indicates the remote destination identifier (one to six
alphanumeric characters) for the print output file when dealing with remote batch
processing, which requires that every unit record device must have a destination.

You can change the standard load code or vertical format buffer used for the job by
coding N as the value of the LUN parameter. This indicates that the jproc is not to
generate a device assignment set for the printer; you must physically place the device
assignment set for the printer in the control stream before the jproc call.

Suppose you wanted to use WRTSML to print the date at the beginning of the printout,
and the file name for the printer in the program is LISTER. You would code it as:

II WRTSML 1 DAT$ 1 ,LUN=C,LISTER)

We have now finished our discussion of what is known as basic job control. From this
point on, we enter the area of advanced job control programming. You'll learn how to
use the advanced job control statements to perform functions that cannot be done with
the basic set. You'll also learn how to write your own job control procedure definitions,
which you can store and call when needed.

By now, your grasp of job control should be such that you could construct control
streams for the majority of jobs in your installation. When you complete Part 3, you
should be able to construct control streams for any job.

5.8. CONTROLLING SPOOLED OUTPUT WITH A JPROC CALL

The manner in which spooled output files (print, punch, or data-set-label diskette) are
handled is set at SYSGEN time, but you can alter the standard operation of individual
files with the SPOOL jproc. To fully understand the function of this jproc, you should be
familiar with spooling which is discussed in the spooling and job accounting concepts
and facilities user guide/programmer reference.

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

5-37

When used, the SPOOL jproc must be included in the device assignment set for the
spooled output file. The format of the jproc is:

//[symbol] SPOOL,

[REDIRECT=/~~~~ }l [, BUF=nXm] ['COP I ES={;}]

\DISKETTE J
[·SK I PCODE= {I}] [·RECORDS= {u}] ['FORMNAME=forms]

[,HDR={i~o }] [· TESTPAGE={~;~,,:}] [,PAGEBRK=n]

.Ill -

[
,UPDATE={ NO }] [,COMPRESS={ NO }] [,RETAIN={llil t]

,. J). YES(

['HOLD={:s}] ['SECURE={~~}]

NOTE:

When using the SPOOL jproc for a spooled data-set-label diskette output file, only BUF,
RETAIN, UPDATE, COMPRESS, and HOLD keyword parameters are meaningful.

The REDIRECT keyword parameter redirects spooled output (output that's already in the
spool file volume) to a disk, tape, or format-label diskette for temporary storage - the
output is printed or punched later. A spooling component known as the output writer
assigns the tape, disk, or format-label diskette volumes to be used for the redirected
output so you don't have to include a special device assignment set in your job control
stream for these volumes.

NOTES:

1. When you specify REDIRECT=TAPE, make sure that a DEV operator command,
directing all spooled output to a tape volume, is not in effect for this copy of the
output writer. A note to the operator should suffice.

2. With Series 90 systems, you can redirect spooled output to disk only if the system
is configured with basic dynamic buffer management. See the system installation
user guide/programmer reference for information about basic dynamic buffer
management.

3. REDIRECT= DISKETTE means redirect the spooled output to a System 80
format-label diskette only.

The COPIES keyword parameter allows you to specify the number of times (up to 255)
you want a spooled file printed or punched (output). If you don't specify this keyword,
the file is output only once and then deleted from the spool file. If you specify 0, the
output is written to the spool file but is immediately deleted instead of being printed or
punched .

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

5-38

The BUF keyword parameter sets up buffers to be used by the spool subfile being
created. The n specifies the number of buffers, X is a constant, and m specifies the
size of each buffer (in 256-byte increments). If you omit this parameter, the spooled file
shares the job log buffers along with other spooled files not having reserved buffers.

You must specify SKIPCOOE if you're requesting a_ filed vertical format buffer (via the //
VFB statement) that has more than seven skip codes or if the system default vertical
format buffer has more than seven skip codes. Three skip codes are always included in
this count: home position for current page, overflow for next page, and home position
for next page. The four remaining are for user-specified skip codes. This parameter,
therefore, specifies the total count of lines on a form where a skip code is allowed, plus
three. Zero indicates no skip codes.

The RECORDS keyword specifies the number of records (lines, including spaces and
skipped lines for print files, cards for punch files) the spool file can contain before a
message, asking if the job should be continued, breakpointed, or cancelled, is sent to
the operator. The operator receives this message only when the specified number is
reached and job processing stops until the operator replies. The specified number is
rounded to the next higher multiple of 1024. For example, if you specify 7,000, it's
rounded to 7, 168. The highest number you can specify is 262, 144.

NOTE:

If you're executing a COBOL program that uses the WRITE verb with the AFTER clause,
the number you specify for RECORDS should be double that of the actual number of
records.

If your spooled file is to be output on a special printer form or on special cards, you
must identify the special form or card type in the FORMNAME parameter. The form
name you specify is a 1- to 8-alphanumeric-character name assigned by your installation
to each form. A message identifying the form or card type to be used is issued to the
operator. Remember, a formname specified in a VFB statement (see 6.5) overrides a
formname specified in the SPOOL jproc.

The HOR parameter (HDR=NO) suppresses the printing of a page header in burst mode
at the beginning of the spooled file when it's output. If omitted, a page header is
automatically printed.

If you specify the FORMNAME parameter, a query is directed to the operator asking if a
sample test pattern page should be printed. Specifying TESTPAGE=NO suppresses this
query.

You use the PAGEBRK parameter to specify the number of pages or cards to be
spooled out before the file is breakpointed and printed or punched. The highest value
you can enter is 32000. When you omit this parameter, the file is printed or punched
according to the burst or nonburst operating mode in effect.

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

5-39
Update A

The UPDATE parameter (UPDA TE=NO) specifies that the spool file subdirectory entry is
to be updated only when a file is closed. (In this case, if the system halts, you lose any
output the program generated prior to restarting the IPL with spool file recovery.) If you
omit this parameter, the spooler updates the subdirectory each time it crosses a logical
track in the program file. (In this case, if the system halts, you can still print any output
the program created prior to starting the IPL again.

Using the COMPRESS keyword parameter (COMPRESS=NO) you can prevent the
system from attempting to compress data that's directed to the output spool file.
Normally, you should not specify COMPRESS=NO if the data contains a large number of
embedded blanks or if the file has a block size larger than 120. Specifying this
parameter when the block size is 121 or greater results in an output spool file ~
containing only one line per sector and requires that n x m be at least 2 x 4.

If you specify RETAIN= YES, the spooled output file is printed, punched, or placed on
data-set-label diskette, but it is also retained in the spool file to be printed, punched, or
output to data-set-label diskette again at a later time. If RETAIN is specified with
REDIRECT (the first keyword parameter), the output file is redirected to a tape, disk, or
format-label diskette and it is also retained in the spool file for printing, punching, or
outputting to data-set-label diskette at a later time.

The HOLD keyword parameter (HOLD= YES) simply holds the spooled print, punch, or
data-set-label diskette output file for later processing. (Files on hold are released when
the BEGIN SPL command is issued or when a CC job control statement specifying the
BEGIN SPL command is encountered in a job stream.) This parameter is useful if you
have a large spooled file that will take a long time to output and you don't want to tie
up the output device during peak processing time. Remember though, since the file
being held remains in the spool file, there is a possibility that the spool file's available
disk space may be exhausted. Also, if you specify HOLD= YES in conjunction with
RETAIN, REDIRECT, or both, the output file is put on hold and the RETAIN or REDIRECT
parameters are not acted upon until the file is released.

The last keyword parameter (SECURE) determines whether print output that's destined
for an auxiliary workstation printer is secured or not secured. (Spooled output is
directed to an auxiliary workstation printer via 11 ROUTE or 11 OPTION OUT.) We say
the print file is secured if the workstation to which the auxiliary printer is physically
connected must be logged on before the output file can be printed. If the workstation
isn't logged on, the file will not be printed. If the file is not secure (this is the default),
the file will be printed at the specified auxiliary workstation printer whether or not the
workstation is logged on. Here is an example of a job using the SPOOL jproc to control
output spooling .

UP-8065 Rev. 9

II JOB PAYROLL
II DVCVOL DSP028
II LBL JONESPAYROLL
II LFD JONESPAY
II DVC 1300
II SPOOL BUF=4X32
II LFD JONESYTD
II DVC 20
II SPOOL HOLD=YES
II LFD JONESCHK
II EXEC JONCKS
I&
II FIN

}
}
}

SPERRY UNIVAC OS/3
JOB CONTROL

Device assignment set for
the input file on disk.

Device assignment set for a
spooled data-set-label diskette
output file. (See 6. 2. 3 for
information about the DVC
statement for spooled data-

Device assigment set
set-label diskette files.)

for a spooled printer
output file.

5-40

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

6-1

6. Making Job Control Work for You

6.1. ADVANTAGES OF USING ADVANCED JOB CONTROL STATEMENTS

As you have just seen, quite a lot can be done by using the job control procedure calls
ijprocs) and the basic job control statements supplied by Sperry Univac. Now we'll see
how to increase performance by using the advanced job control statements and jprocs
that you write yourself. Your basic objective is to run jobs in the most efficient, most
economical, and quickest way possible. This objective is achieved not only by how you
write a program, but also in the way you use job control.

6.2. CONTROLLING SPOOLED OUTPUT WITH A JOB CONTROL STATEMENT

In 5.8 we discussed how you can alter the standard operation (established at SYSGEN
time) of spooled output files with the SPOOL jproc. The SPL job control statement
provides the same facilities and parameters as the SPOOL jproc, so the following brief
description of the SPL job control statement is essentially a review of 5.8. When
deciding whether to use the SPL job control statement instead of the SPOOL jproc,
keep the following in mind: although the SPOOL jproc is easier to code because of it's
keyword (rather than positional) parameters, it takes more time for the run processor to
process the SPOOL jproc.

The format of the SPL job control statement is:

//[symbol] SPL HOLD
RETAIN
DUMP
TAPE
DISK
DISKETTE

[·{10-skpcode}] [' {iiiirec}] [,forms J ['{;:DR}] [,NOTS TL J

[,brk-pge][,NOUPD][,NOCMP][,RETAIN][,HOLD][,SECURE]

UP-8065 Rev. 9

NOTE:

SPERRY UNIVAC OS/3
JOB CONTROL

6-2

When using the SPL statement for a spooled data-set-label diskette output file, only the
nXm, NOUPD, NOCMP, RETAIN, and HOLD parameters are meaningful. The remaining
parameters are ignored.

The HOLD parameter holds the spooled output file (print, punch, or data-set-label
diskette) for later processing. Files on hold are released by a BEGIN SPL command or
by a CC job control statement specifying a BEGIN SPL command. You'll notice that
HOLD is also the last parameter of the SPL statement. This is so you can specify HOLD
(as the first parameter) or choose one of the other options for the first parameter and
still specify HOLD (last).

With the RETAIN parameter, the spooled output file is processed (printed, punched, or
placed on data-set-label diskette), but is is also retained in the spool file for processing
at a later time. For the same reasons mentioned for HOLD, you can specify RETAIN as
the first or the twelfth parameter.

You use the DUMP, TAPE, DISK, and DISKETTE parameters to redirect spooled output
to tape, disk, or format-label diskette for temporary storage. The output can be
processed (printed, punched, or placed on data-set-label diskette) at a later time. DUMP
and TAPE have exactly the same function - they redirect spooled output to tape.
(DUMP is included in the SPL statement to provide compatibility with previous Series 90

•

releases.) DISK redirects the outpt to another DISKETTE (which is for System 80 only) •
redirects output to a format-label diskette.

The remaining parameters can be summarized as follows:

• The nXm parameter establishes buffers for use only by the spool subfile being
created.

• The no-cop parameter allows you to specify the number of times (from 0 to 255)
you want a spool file processed (printed or punched). Zero indicates no output.

• The no-skpcode parameter must be specified if a filed vertical format buffer
(requested via I/ VFB) or the system default vertical format buffer has more than
seven skip codes. One skip code for forms overflow and two for home paper
position are always included in this count.

• The max-rec parameter specifies the number of records the output file can contain
before a message is sent to the operator asking if the job should be continued,
breakpointed, or cancelled.

• The forms parameter identifies any special form or card type (other than the
standard paper or cards) needed when the spool file is output.

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

6-3

• The NOHDR parameter suppresses the printing of a page header at the beginning of
a print file.

• The NOTSTL parameter suppresses a query to the operator asking if a sample test
pattern page should be printed (when the forms parameter is detected).

• The brk-pge parameter indicates a specific number of pages or cards to be spooled
out before the file is breakpointed and printed or punched.

• The NOUPD parameter indicates that the spool file subdirectory entry be updated
only when a file is closed.

• The NOCMP parameter indicates the system should not attempt to compress data
that's directed to the output spool file.

• The RETAIN and HOLD parameters perform the same function they do when
specified as the first parameter. Remember, though, if you specify HOLD (as the
last parameter) with RETAIN; TAPE, DUMP, DISK, or DISKETTE; or with RETAIN
and TAPE, DUMP, DISK, or DISKETTE, the output file is first put on hold. The other
parameters are acted upon accordingly when the file is released. If you specify
RETAIN (the twelfth parameter) with TAPE, DUMP, DISK, or DISKETTE, the output
is redirected to the appropriate device and a copy of the file is also retained (in the
spool file) for later use .

• If specified, the SECURE keyword parameter indicates that the workstation to
which the auxiliary workstation printer is connected must be logged on before the
output file can be printed. If the workstation is not logged on and this keyword
parameter is specified, the file will not be printed.

Just as described in 5.8 for the SPOOL jproc, the SPL job control statement must be
placed in the device assignment set for the spooled file.

6.2.1. Sending Spooled Output to Remote Batch Processing Terminals

The DST job control statement is used to send spooled output (print or punch) to RBP
(remote batch processing) terminals in your ICAM network. The format of the DST
statement is:

//[symbol] DST dest-1[,dest-2, ... ,dest-16)

The dest parameter is one to six alphanumeric characters and defined by RBP. The
keywords OS3CTR or CENTRAL can be used to specify the local site's printer .

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

6-4
Update A

The DST statement must appear within the device assignment set for the print or punch
file. When specifying multiple destinations, you can list several destinations in one 11
DST statement or use several 11 DST statements each listing one or more destinations.
For example:

II JOB REMOTE II JOB REMOTE

II DVC 20 II DVC 20

II DST A,OS3CTR,C,D or II DST A

II LFD PRINT II DST OS3CTR

II DST C,D

II EXEC PROG1

!& II EXEC PROG1
!&

For more information on remote batch processing, see the ICAM utilities user guide.

NOTE:

RBP output (specified by 11 DST) and DDP and auxiliary printer output (specified by 11
ROUTE) cannot be mixed for any one job. For any job all output must be of one type or
the other.

6.2.2. Sending Spooled Output to DDP Sites and Auxiliary Workstation Printers

The ROUTE job control statement is used to route print or punch output to printers and
punches at DDP sites and to auxiliary workstation printers. You place the ROUTE
statement in the device assignment set for the file to be routed and its format is:

//[symbol] ROUTE destination-1(, ... ,destination-8]

As with the DST statement, you can specify multiple ROUTE statements in place of a
single ROUTE statement with multiple destinations.

You can specify up to eight destinations where the destination is as follows:

[host-id:]user-id

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

6-5
Update A

The host-id identifies a particular host in a DDP network. It is one to four alphanumeric
characters long and identical to the label-id of the LOCAP macroinstruction in an ICAM
network. You can also use $HOST to indicate the host that initiated the job (the
originator/master). The host in this case may be remote or local. A host-id is optional
but must be followed by a user-id if specified. Whenever you omit a host-id, the local
host (the processor on which the job is executing) is assumed.

To identify an auxiliary workstation printer, specify a 1- to 6-alphanumeric character
workstation user-id. You can also use YMAS to indicate an auxiliary printer at the
master workstation. The keyword CENTRAL in place of a user-id indicates a central
printer or punch. Any destinations that specify a user-id (Other than CENTRAL) or
YMAS denote auxiliary workstation printers and are valid only for print files.

Consider the following destinations:

• host-id:CENTRAL

The output goes to the central printer or punch at a DDP site (identified by host-id).

• CENTRAL

The output goes to the central printer or punch (at the local DDP host).

• user-id

The output goes to an auxiliary workstation printer (identified by a user-id). This ~
destination is valid only for print files.

• host-id:user-id

The output goes to an auxiliary workstation printer (identified by a user-id) at a
remote host (identified by a host-id). This destination is valid only for print files.

• YMAS

The output goes to the auxiliary printer at the master workstation. This destination
is valid only for print files.

• $HOST:CENTRAL

The output goes to the central printer or punch at the DDP host that initiated the
job (the originator /master). The host may be remote or local.

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

6-6
Update A

The following control stream contains a device assignment set for a print file which
includes the // ROUTE statement.

II JOB OUTPUT

I I DVC 20 } Print file
device II ROUTE A123:CENTRAL,$HOST:USER02,CENTRAL as~gnmem

II LFD PRTFIL sM

II EXEC PROG1
I&

The ROUTE statement is the preceding device assignment set routes the print output to
three destinations: the central printer at a remote host whose host-id is A 123, an
auxiliary printer at a workstation logged on with a user-id of USER02 at the initiating
host, and the central printer at the executing computer site.

NOTES:

1. RBP output (specified by // DST) and DDP or auxiliary printer output (specified by
// ROUTE) cannot be mixed for any one job. For any job, all output must be of one
type or the other. Also, DDP destinations and local auxiliary printer destinations
cannot be used for the same print file.

2. When a workstation initiates a job that directs printed output to an auxiliary printer
connected to another workstation (one that is not the originator), the user at the
other workstation must issue an RP command to initiate printing. See the
interactive services commands and facilities user guide/programmer reference for
more information about the RP command.

6.2.3. Spooling Input Card Data

A job that reads a large volume of data through the card reader ties up the operating
system by using a slow-speed device (card reader) as the means of supplying input to a
high-speed processor. You can avoid this by loading the card data into a spool file
(high-speed disk device) for later retrieval. In this way, the card reader can be used to
transfer data to the spool file while other jobs are being executed in the high-speed
processor. High-speed processing, therefore, goes on without interruption from a
slow-speed card reader.

The system operator uses the IN command to initiate spooling. You must identify the
card file to be spooled to the system operator, precede these cards with a DATA
statement, and follow them with a FIN job control statement or another DAT A
statement. DAT A is a control statement which identifies (to the input reader) the card
data you want spooled. Its format is:

II DATA FILEID=file-identifier[,RETAIN][,IGNORE]

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

6-7

When the operator places your cards in the card reader and issues the IN command at
the console, the card file is placed in the spool file along with the file-identifier from the
DAT A statement. The FIN or the final DAT A card terminates the card reader. The
spooled card file becomes a subfile.

Later, when your job stream is run, the subfile is read in Gust as the cards are read in at
the card reader, only much faster). Spooled data cards may be read by a job that's
entered at a card reader or by a stored job control stream.

NOTE:

Input data doesn't have to be spooled before your job's processing begins, but it must
be spooled by the time your program attempts to open its files.

The job control stream must contain a device assignment set for a card file. If you've
included an LBL job control statement in the device assignment set, the file identifier
specified on the DATA card must match the LBL statement's file identifier. If there isn't
an LBL statement, the file identifier on the DAT A card must be a concatenation of the
job's name and the file name from the LFD job control statement. Either way, an
association is made between the file you defined in your job control stream and the
subfile.

If this is the control stream,

II JOB BALANCE
II DVC 30
II LBL SPOOL1
II LFD READ
I&
II FIN

you code this DAT A statement:

II DATA FILEID=SPOOL1

If this is the control stream,

II JOB BALANCE
II DVC 30
II LFD READ
I&
II FIN

you code this DAT A statement:

II DATA FILEID=BALANCEREAD

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

6-8

The RETAIN parameter is used to maintain the subfile after it is processed. If you
specify RETAIN, only the DE SPL,RDR console command can delete the subfile. The
following example shows the use of the RETAIN parameter:

II DATA FILEID=BALANCEREAD,RETAIN
data cards

II FIN

You can, if necessary, place a // RUN/RV job control statement in the card deck. When
the deck is spooled, the run processor calls the specified job stream. Only one RUN/RV
statement may be placed within a DAT A ... DAT A or DAT A ... FIN card sequence. If more
than one RUN/RV statement is present, only the last statement is used.

The IGNORE parameter is used to permit RUN job control statements to be spooled as
data. It can be used, for example, for conversion jobs. Suppose you have a card deck
of control streams to be converted from OS/4 to OS/3 and you have several RUN
statements in the deck. When you spool the card deck, you don't want the RUN
statements to call stored control streams; you want them converted to OS/3 RUN job
control statements.

Let's assume we are running a conversion job named CNVT with an input card deck to
spooled named CARDIN. The DAT A FILEID job control statement is coded like this:

II DATA FILEID=CNVTCARDIN,,IGNORE

Because we specified IGNORE in this example, RUN statements in the card deck are
spooled as data cards.

6.2.4. Spooling Diskette Files

Just as card input can be spooled, so can input from data-set-label diskette. The
operator uses the IN command to initiate the spooling and the data is placed in the
spool file. It remains there as a subfile and is retrieved by either a control stream
entered at a card reader, or by a prefiled job control stream. The data set label from
the diskette provides the label for your spool file, while the /* statement indicates the
end of the data file.

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

6-9

Whenever you're using input that's spooled from data-set-label diskette, specify the I
parameter of the DVC statement for the diskette. Remember, the format of the DVC
statement is:

//[symbol] DVC {nnn[(n)J) , addr
RES OPT
RUN IGNORE

ALT
I

0
REQ[(n)]

REAL

The I tells job control that your data is in the spool file. The data cannot be retrieved
from this file unless the I is specified as follows:

II DVC 132,I

The 0 parameter is used when you want the spooled output to go to data-set-label
diskette.

6.3. EQUATING LOGICAL UNIT NUMBERS TO DEVICE TYPE CODES

Since logical unit numbers can be changed at SYSGEN time, the possibility exists that,
when running your control stream on a system other than the one it was designed for,
one of your logical unit numbers may indicate a different device on the other system.
For example, the system your control stream was designed for might have logical unit
number 60 associated with an 8416 disk subsystem. But on the system you are
running under, logical unit number 60 may be an 8411 disk subsystem - wrong device.
A way to get around this is to use the EQU job control statement, which equates
logical unit numbers to specific device type codes. (This device type code is always
associated with this device.)

The format of the EQU job control statement is:

//[symbol] EQU lun-1,type-1[,lun-2,type-2, ... ,lun-n,type-n]

The Jun parameter indicates the logical unit number you have on the DVC job control
statement in the control stream. The type parameter is the 4- to
8-hexdecimal-character device type code for the device you are using. See Table 8-1
for the codes.

The EOU job control statement, which you must place before the device assignment
sets in the control stream, is effective for the entire job .

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

6-10

Let's assume that a job is being run on a system other than the one it was written for
and that there's a possibility the logical unit numbers in the second system were
changed at SYSGEN time. On your system, logical number 60 is the 8416 disk
subsystem. To ensure that we get an 8416 on the other system, we insert and EQU
job control statement coded as follows (the device type code - 2010 - was obtained
from Table B-1).

II EQU 60,2010
II DVC 60
II VOL DISK01
II LBL XYZ

II LFD TEST

You can also use the EQU statement to specify additional logical unit numbers for
virtual readers, printers, or punches (4.3. 1).

6.4. SPECIFYING UNIQUE LOAD CODES

A load code buffer controls what characters are printed by your printer. Codes
corresponding to the characters on your print band, cartridge, or drum are placed in the
buffer and whenever a particular code is encountered, the character equated (via the
load code buffer) with that code is printed. (To simplify this discussion, we'll use the
term print cartridge from here on to mean print band, cartridge, or drum.)

For Series 90 printers (0768, 0770, 0773, 0776, and 0778) the default contents of the
load code buffer are set at SYSGEN time and there is a unique buffer for each printer
type. One of the uses of the LCB job control statement is to override these
specifications - to equate different codes with different characters so that you can
change print cartridges. You define a load code buffer by specifying an 8-bit code for
each character on the cartridge. Whenever that code is encountered, the corresponding
character is printed. You cannot specify unique load code buffer for the 9300 printer.

On System 80 printers (0776 and 0789), each print cartridge contains its own
corresponding load code buffer so that you don't need to define a unique buffer in an
LCB statement when you change cartridges. As you'll see, though, the // LCB
statement has other uses that apply to either system.

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

6-11
Update A

• The format of the LCB job control statement is:

•

•

II [symbol] LCB
{
X'hex-string-1 1 }[·{X'hex-string-2' }····•{X'hex-string-n }~
C'char-string-1 1 C1 char-string-2 1 C1 char-string-n 1 LJ

[,CARTNAME=symbol]

[NAME=1::~:~~~
63-STD
OWNLC1
OWNLC2

[' CARTID= {~: :~ 1 }]

[,NUMBCHAR=n]

0768
0770
0776
0778
0789

[SPACE=~}]

['MISM={REPORT fl

[
DUAL={X'xxyyxxyyxxyyxxyy•~

c•abababab
C1 bbbb 1

x•yyyyyyyy•

lMISMCHAR={i; ,:; ~ ~

Symbol, CARTNAME, NAME, TYPE, and MISM, are the only parameters that have
practical use for System 80 printers.

The symbol in the label field is a 1- to 8-alphanumeric character name and can have
one of the following uses:

• To specify a default cartridge name when you omit the CARTNAME parameter.

• To specify the name of a filed load code buffer that you're changing via the job
SG$PRB .

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

6-12

Use of symbol will become more clear after we discuss the CARTNAME and NAME
parameters.

You use the first parameter of the LCB statement to assign the codes for each graphic
symbol on the print cartridge by specifying either the X'hex-string' (hexadecimal) or
C'char-string'. You need two hexadecimal characters or one EBCDIC character for every
symbol. The position of each in the string of parameters must correspond to its
position on the print cartridge. As many parameters as you need to specify the entire
print cartridge may be used; you may intermix the character and hexadecimal strings as
required. Since the single quote (apostrophe) and ampersand (&) symbols have special
meanings to job control, they must always be coded in hexadecimal. Statement
continuation is only allowed between parameters; individual character strings can't be
coded on one job control statement and continued on another. When using hexadecimal
character strings, the number of digits must be even.

NOTES:

1. The character strings for your printer are shown in the appropriate subsystem
manual.

2. When describing print band characteristics for the 0773 and 0778 printers, you
must define a load code buffer 256 characters in length if the size of your print
band is greater than 64 characters. If this is the case, the character array may be
repeated until 256 bytes are defined.

The CARTNAME parameter specifies the name of the print cartridge to be used. Your
installation is responsible for assigning a unique, 1- to 8-alphanumeric character name to
each cartridge. SCIENCE, for example, could be used for a scientific character set.

When you provide a cartridge name in the I I LCB statement, the operator is requested
to mount the cartridge just before the file starts printing. The output is not printed until
the operator mounts the cartridge and replies to the message. Remember, if you don't
specify a cartridge name, the cartridge that's already on the printer is used. So, to
ensure use of the proper cartridge and to avoid printing of the wrong characters, you
should specify a cartridge name.

You can use the symbol in the label field of the LCB job control statement (instead of
CARTNAME) to specify a cartridge name. (This method of specifying a cartridge name
is provided for compatibility with previous Series 90 releases.) If you use both symbol
and CARTNAME to specify a cartridge name, the CARTNAME parameter takes
precedence.

You specify NAME when you want to use one of the filed load code buffers (48-BUS,
48-SCI, 63-STD, OWNLC1, or OWNLC2) established at SYSGEN time or by use of the
job SG$PRB. There is a unique 48-BUS, 48-SCI, 63-STD, OWNLC 1, and OWNLC2 for
each printer type. (There is also a default load code buffer for each printer type when
no // LCB statement is specified.) NAME indicates that you want a filed load code
buffer; you're not establishing your own. Therefore, CARTNAME, TYPE, and MISM are
the only other parameters you can specify when you use NAME.

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

6-13

In System 80, NAME specifies the name of the filed load code buffer which in turn
specifies a cartridge name. So, when NAME is specified, CARTNAME is unnecessary.

As mentioned earlier, you can also use symbol for the name of a filed load code buffer.
This is done only when you are executing the job SG$PRB to change a filed load code
buffer (48-BUS, 48-SCI, 63-STD, OWNLC1, or OWNLC2) via the job SG$PRB. If this is
the case, you use symbol to specify the name of the buffer to be changed. This is the
only time symbol indicates a load code buffer name. At all other times it indicates a
default cartridge name if you omit the CARTNAME parameter. See your system
installation user guide/programmer reference for more information about the job
SG$PRB.

The CARTID parameter specifies a cartridge identifier. It may be either two hexadecimal
digits (X'aa') or one EBCDIC character (C'c'). This parameter is required for the 0776
(Series 90) and 0770 printers and must agree with the number found physically on the
cartridge. It is optional for 0773 and 0778 printers, as some cartridges for these
printers do not have a cartridge identifier. CARTID is not used with the 0768 printer.

The NUMBCHAR parameter specifies the total number of graphic symbols expected on
the print cartridge. As a safety check to make sure you specified all characters, this
number should coincide with the number of characters specified in the character strings.
When you omit NUMBCHAR, the number of characters specified by the character
strings is assumed to be correct .

To specify the type of printer for which the LCB job control statement is constructed,
you use the TYPE parameter. By default, an 0773 printer is assumed. From this, we
can see that an LCB job control statement coded for one type of printer cannot be used
for another type.

You specify the space, or nonprinting code, through the SPACE parameter. This code is
not included in either the X'hex-string' or C'char-string' parameters. It may be either
two hexadecimal digits (X'aa') or one EBCDIC character (C'c'). The default value is
X'40'.

A mismatch occurs when you try to print a character that is not in the load code buffer
or has not been specified as a dualed character (covered in the next paragraph). You
can use the MISM parameter to record character mismatch errors in the system error
log by coding MISM=REPORT. The default, MISM=IGNORE, means that mismatches
aren't recorded.

Dualing is the process of equating up to four nonprintable characters with four printable
characters. This enables you to print data that has up to 52 different characters while
using a 48-character print cartridge. Also, dualing must be used if you specify
MISMCHARE to any character except the space code .

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

6-14

For the 0773 or 0778 printer, either the DUAL=C'bbbb' or DUAL=X'yyyyyyyy'
parameter applies. Assuming you specify the band id and the space code, 'bbbb' or
'yyyyyyyy' corresponds to the 41 st, 42nd, 46th, and 48th symbol, respectively,
physically located on the print cartridge. These numbers are equated with the load code
buffer positions 51, 52, 53, and 54, respectively. The characters you code are replaced
by the symbols in these positions on the print cartridge. You have no choice as to the
replacement symbol, so be aware of what is in these positions. You can specify from
one to four character substitutions.

For the 0770 or 0776 (Series 90) printer, you have a choice as to the replacement
symbol. If you specify in EBCDIC, you would use the DUAL=C'abababab' parameter,
with a being a character that is on the print cartridge and b being the character that a
replaces. For example, assume that the print cartridge contains the asterisk symbol (*),
but not the question mark symbol (?). You could substitute * for ? in the printout by
specifying DUAL =C'*?'. Every time the program outputs the EBCDIC code for a
question mark, an asterisk appears in the printed listing.

If you specify in hexadecimal, you would use the DUAL =X'xxyyxxyyxxyyxxyy'
parameter, where xx is the code for the character printed and yy is the code of the
character that xx replaces.

The 0768 printer does not have the dualing capability.

We've already said that when a character mismatch occurs, you can use the MISM
parameter to record it in the error log. If you have an 0770 or 0776 printer, you may
also specify a character that's to appear on the printed output in case of a character
mismatch; otherwise, a blank will appear (the default value X'40'). This is done with the
MISMCHAR parameter. You can specify any character you want, in either hexadecimal
(X'aa') or EBCDIC (C'c'), as long as the character also appears in either the X'hex-string'
or C'char-string' parameter.

Here's an example of how the LCB job control statement is used:

1.
2.
3.
4.

II DVC
II LCB

111
112

Column 72 :i
28 l
c I I.=*· &!l!LLJ, c I+ I$' I)(-0123456789ABCDEFGH I JKLMNOPQRSTUVWXYZ I I x
NUMBCHAR=48,CARTID=X'02' ,TYPE=0770,DUAL=C'*?' '>+<'I x
CARTNAME=SCIENCE

5. II LFD PRINTOUT

1. The DVC job control statement has 28 for the logical unit number, indicating
that a 0770 printer must be used.

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

6-15

2. This gives the actual character set for the load code buffer. Notice the shaded
area; this is where a switch is made from specifying in EBCDIC (C) to
hexadecimal (X). We did this because we want to specify a single quotation
mark (apostrophe) for the load code. Since a single quotation mark begins and
ends each character string, coding the single quotation mark as an EBCDIC
character would have terminated the character string, and the remaining
characters would be invalid. So, we ended the character string after the last
character before the single quotation mark (the asterisk), specified the single
quotation mark in hexadecimal (7D), and then continued with the next character
(a plus sign) in EBCDIC. The comma character for the load code (after the plus
sign) will not end the character string because it's enclosed within single
quotation marks.

3. The NUMBCHAR parameter indicates that there are 48 characters in the print
cartridge. If we missed specifying a character in the character string parameter,
this would cause an error, so we'd know that we forgot a character. The
CARTID parameter indicates a cartridge identifier of 02, and we're using a
0770 printer (TYPE parameter). The DUAL parameter indicates that three
non printable characters (?, >, and <) are going to be appearing during the job,
and gives the printable characters (*, · ', and +) that will replace them.

4. When this print file is opened, the operator receives a message telling him to
mount the cartridge named SCIENCE .

5. Provides the file name for the print output file and completes the device
assignment set.

NOTE:

LCB job control statements directed to an 0773 printer with a 63-character print
cartridge must specify a load code of 64 (NUMBCHAR parameter and in the character
string). The 64th character you specify is the same as that character that is the 36th
character physically on the print cartridge.

Some points to remember when coding the LCB job control statement are as follows:

• You can always specify the CARTNAME and TYPE parameters.

• If you specify NAME to indicate a filed load code buffer, you cannot specify any
other parameters except CARTNAME, TYPE, and MISM.

• If you're using the job SG$PRB to change a filed load code buffer, use symbol to
specify the name of the buffer rather than NAME .

UP-8065 Rev. 9

6.5. USING FORMS CONTROL

SPERRY UNIV AC OS/3
JOB CONTROL

6-16

A vertical format buffer controls a printer's vertical form spacing. This applies to the
0770, 0773, 0776, 0778, 0786, and 9300 printers for Series 90 systems; and the
0776 and 0789 printers for System 80. (A forms control loop has this function on the
Series 90, 0768 printer.) Codes corresponding to specific lines on a printer form are
loaded into the vertical format buffer. You advance the form to a particular line by
issuing a skip command in your program and specifying the code. The default vertical
format buffer for each printer type is set at SYSGEN time. You can use the VFB job
control statement to specify a unique vertical format buffer for a print file.

You must place the VFB job control statement within the device assignment set for the
printer file to which it applies. The / / VFB statement becomes effective when your
program opens the print file. The format of the VFB job control statement is:

//[symbol] VFB [,FORMNAME=symbol]

[
,USE={ STAND 1}]

OWNVF1

[LENGTH=lines]

[,DENSITY={~fl

,TYPE= 0773 [,OVF=<Line-1, ... ,Line-n)]
0768
0770
0776
0778
9300
0789

[,OVF2=(line-1, ... ,Line-n)][,CD1=<Line-1, ... ,Line-n), .•.

[,CD15=(line-1, ... ,Line-n)]]

The symbol in the label field is a 1- to 8-alphanumeric character name and can have
one of the following uses:

• To specify a default form name when you omit the FORMNAME parameter.

• To specify the name of a filed vertical format buffer that you're changing via the
job SG$PRB.

Use of symbol will become more clear after we discuss the FORMNAME and USE
parameters.

The FORMNAME parameter specifies the name of the printer form to be used. (This is
very useful when you want your output printed on a special form.) Your installation is
responsible for assigning a unique, 1- to 8-alphanumeric character name to each form.
PA YCHK, for example, could be the name used for payroll checks.

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

6-17

When you provide a form name in the /I VFB statement, the operator is requested to
place that form in the printer before the file begins printing. The output is not printed
until the operator loads the form and replies to the message. Remember, if you don't
specify a form name, the form that's already in the printer is used. So, to ensure use of
the proper form and to avoid printing on any valuable special forms, you should always
specify a form name.

Remember, you can specify a form name using any of the following:

• The SPOOL jproc (see 5.8)

• The SPL job control statement (see 6.2)

• The symbol in the label field of the VFB job control statement. (A form name
specified this way takes precedence over a form name specified with / / SPOOL or
// SPL. This method of identifying a form is provided for compatibility with OS/4.)

• The FORMNAME parameter of the VFB job control statement. (A form name
specified this way takes precedence over a form name specified with // SPL, //
SPOOL, or the // VFB statement's symbol.)

You specify the USE parameter when you want to use one of the filed vertical format
buffers (either ST AND 1 or OWNVF 1) established at SYSGEN time or via the job
SG$PRB. There is a unique ST AND 1 and OWNVF 1 for each printer type. USE indicates
that you want a filed vertical format buffer - you're not establishing your own.
Therefore, FORMNAME and TYPE are the only other parameters you can specify when
you specify USE.

As mentioned earlier, you can use symbol for the name of a filed vertical format buffer.
This is done only if you are executing the job SG$PRB to change a filed buffer (ST AND 1
or OWNVF1). If this is the case, you specify either STAND1 or OWNVF1 in the symbol
field. You don't specify the USE parameter. This is the only time symbol indicates a
vertical format buffer name. At all other times it indicates a default form name if you
omit the FORMNAME parameter. See the system installation user guide/programmer
reference for more information about SG$PRB.

The LENGTH parameter indicates how many lines are on a form in the range of 1 to
192. You must use this parameter whenever you specify any of the VFB statement
parameters for forms overflow (OVF1,0VF2) or vertical line positioning (CD1, ... ,CD15).
LENGTH must also be specified whenever you specify DENSITY.

DENSITY indicates the number of print lines per inch. (The default is 8.) An 11-inch
form, for example, printed at a density of 8 lines per inch has 88 lines; this same form
printed at a density of 6 lines per inch would have 66 lines .

UP-8065 Rev. 9

NOTE:

SPERRY UNIVAC OS/3
JOB CONTROL

6-18

For the 0773 and 0778 printers, the maximum LENGTH specification is 144 if the
printer you're using does not have buffer expansion features. If it does, the maximum
LENGTH specification is 192.

We refer to the remaining parameters of the VFB job control statement as skipcodes.
These codes indicate forms overflow and vertical line positioning. When you specify
any one of these, you must also specify the LENGTH parameter because line is a
decimal number in the range of 1 to whatever amount is specified by the LENGTH
parameter. When only one line is specified for a code, you may omit the enclosing
parameter. If you accidentally repeat a code for the same line, the first one is accepted
and the others are ignored. (In this case, a warning message is displayed.)

The OVF parameter specifies the forms overflow line indicator. When an overflow code
is placed in the vertical format buffer, any space operation (such as print and space)
that advances the form to or beyond the overflow position causes the hardware to
detect and indicate forms overflow. You can specify multiple overflow indicators. For
example, you might indicate a forms overflow routine through your program that prints
subtotals, and another overflow routine that goes to the top-of-forms (home paper)
position of the next page.

The OVF2 parameter specifies a secondary forms overflow pos1t1on for use with the
0770 printer. You can specify multiple overflow indicators. For example, if you're going
to print payroll checks and there are only 10 print lines for each check, setting up a
vertical format buffer at only 10 lines is impractical. Every time 10 lines are printed, the
vertical format buffer is rechecked to find the specifications for the next paycheck
(spacing, etc), even though it's the same form with the same spacing. This takes time.
But if you set up the vertical format buffer length for, say, 60 lines, you could define 6
paychecks in one buffer. In this way, the vertical format buffer is checked after every
sixth form instead of after every form.

When you design the VFB, bear in mind that lines can be printed (and the form
advanced) beyond the overflow position. For printing of assemblies, librarian runs,
dumps, etc., you should provide at least four lines between the overflow position and
the bottom of the form.

The user should always specify an OVF parameter if the file is to be spooled or if you
specify the LENGTH parameter.

The CD 1 through CD 15 parameters are for the device independent control character
codes. These codes are used for vertical line positioning. For example, CD1 =5 means,
every time this code is detected, each page of your report is skipped to the fifth line.
Not all codes may be used with all printers. The data management user guide for your
system lists the appropriate control character codes for your printers in the section that
explains the control printer forms macroinstruction.

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

6-19

• NOTES:

•

•

1. Jn a spooling environment, space must be reserved for all lines with assigned skip
codes. If you specify a 11 VFB statement for a spooled file and provide a full
vertical format buffer specification (you do not specify a filed vertical format buffer
with USE or symbol), job control reserves enough space. If, however, you request
a filed vertical format buffer (STAND1 or OWNVF1) that has more than seven skip
codes, or if you use a system default vertical format buffer having more than seven
skip codes, you must specify the number of skip codes using the no-skpcode
parameter in the II SPL statement or the SKIPCODE parameter in the II SPOOL
jproc.

When you don't use a 11 SPL statement or 11 SPOOL jproc, the default is seven
skip codes. Three skip codes are automatically included in this count: home
position for current page, overflow for next page, and home position for next page.
The four remaining are user-specified skip codes. The 11 SPL statement and the 11
SPOOL jproc, therefore, specify the total count of lines on your form where a skip
code is allowed, plus three.

2. Repeat occurrences of the same skip code on more than one line are counted as
separate skip codes.

Consider the following. Suppose you want to produce a report on a special 11- by
14-inch form that prints 12 lines of data at 6 lines per inch (lpi), then skips 3 lines;
prints another 12, skips 3; and so forth down the page a total of 4 times. Your VFB
statement might look like this:

II VFB FO=WORKSHT,DE=6,LE=66,0V=61

You would have to identify your special printer form (WORKSHT) to the operator so
that it can be loaded on an available printer. Specify your desired printing density in
terms of lines per inch (lpi). Specify the overall length of the form as a function of the
number of lines that could be printed on the form; in this case, 66 (6 lpi x 11 inches).
And, finally, specify the line on the form at which you want the printer to advance the
paper to the top of the next page, which is called the home paper position. This
parameter is sometimes critical because the location of the home paper position
depends on where the operator physically aligns the form on the printer. If the home
paper position has been set by the operator to line 4 of the form and your program
prints before skipping any lines, the first print line will occur on line 4.

If we assume that the form we're using is meant to be loaded at line 4 and that our
program prints before skipping, our OV specification would be 61 as shown in the
example. This would allow us to print 48 lines and skip 9, before advancing the paper
to the next top-of-forms, or home paper position (4 + 48 + 9 = 61). If, however, the
operator loads our form at print position 2, instead of 4, our OV specification would
have to be 59, instead of 61, to maintain our desired page format. The obvious lesson
in this example is that you must tell the operator how to load a special form when your
output format is critical. Most of the time, you're not concerned with the exact number
of lines that are printed, but only that the printed output not continue beyond a
reasonable line on the form.

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

6-20

Some points to remember when coding the VFB job control statement are as follows:

• You can always specify the FORMNAME and TYPE parameters.

• If you specify USE to indicate a filed vertical format buffer (ST AND 1 or OWNVF 1),
you cannot specify any other parameter except FORMNAME and TYPE.

• If you're using SG$PRB to change ST AND 1 or OWNVF 1, use symbol to specify the
name of the buffer instead of USE.

• If you specify DENSITY, you must specify LENGTH.

• If you specify any codes (OVF1, OVF2, CDT through CD15), you must specify
LENGTH.

• If you specify LENGTH you should specify at least one overflow code (OVF).

6.6. CONTROLLING TAPE UNITS

You use the MTC job control statement to position a tape volume prior to or after job
step execution. With it, you can move the tape volume to a certain block within a file
or to a certain file within a multiple volume. A tape volume can also be rewound to a
load point, rewound and unloaded, or have tape marks written.

You must insert the MTC job control statement at a point after the device assignment
set for that tape unit. The format of the MTC job control statement is:

//[symbol] MTC Lfdname, BB,nn
BM,nn
FB,nn
FM,nn
WM,nn
RL
RU

The lfdname parameter specifies the same file name that was used in the device
assignment set for the tape volume.

The next parameter provides seven choices; they indicate the type of operation you
want done. They are:

BB - Backspace a specified number (nn) of blocks.

BM - Backspace a specified number (nn) of tape marks.

FB - Forward space a specified number (nn) of blocks.

•

•

•

•

•

•

UP-8065 Rev. 9

FM -

SPERRY UNIV AC OS/3
JOB CONTROL

Forward space a specified number (nn) of tape marks.

WM- Write a specified number (nn) of tape marks.

RL - Rewind to load point.

RU - Rewind and unload the tape volume.

The amount, nn, must be a decimal number.

6-21

The relationship between the number of tape marks to the number of files on a volume
is covered in the data management user guide.

The following example shows how the MTC job control statement is used:

11 JOB TAPELIST
II DVC 90
II VOL T123

II LFD TAPEIN
II DVC 20
II LFD PRNT

illi1&1ll!'!I'.·.:~ .. ·m11·11'.fll
II EXEC TPRNT
!ll;Jf'.'''l&llllllllff•
I&
II FIN

The first MTC job control statement spaces tape T 123 forward 10 blocks prior to job
step execution. The second MTC job control statement rewinds and unloads the same
tape after the job step is finished. Note that the lfdname parameter of both MTC job
control statements agrees with the filename parameter of the LFD job control
statement.

6. 7. RELEASING (FREEING) A DEVICE AND VOLUME

Once a device and a volume are assigned to a job, they remain assigned until the job is
finished. This assignment applies to all job steps of the job. But, what if your job has
10 job steps, and a certain device or volume is only used in the first job step? In effect,
they can't be used by any other job until this entire job is complete. You can use the
FREE job control statement to release the device and volume immediately after it is no
longer needed, even though the job is not completed. However, if a device and volume
are released during one job step and either one is requested in a later job step in the
same job, no release occurs. This protects you from not having a needed device or
volume available because it was released too soon. Remember, the entire control
stream is scanned before the job begins executing .

-- -

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

The format of the FREE job control statement is:

//[symbol] FREE lfdname-1[[CDEV)], ... ,lfdname-n[(DEV)]]

6-22

The lfdname parameter specifies the same file name used in the device assignment set
for the file.

The (DEV) parameter indicates that the device and volume are to be released. There is
no comma between the lfdname and (DEV) parameters.

NOTE:

You should always specify (DEV) even though it's shown as optional. Additionally, you
must specify (DEV) to free unit record devices such as card readers, card punches,
printers, and workstations.

Here's an example of a multiple-job-step job. The first job step needs the card reader.
After that, it's not needed.

II JOB PAYROL
II DVC 50
II VOL DISK01
II LBL DETAILS
II LFD PRDISC
II DVC 30
l'llillllilmlll
II EXEC CARDTP
ll?Jillllll!illllllllfilll1)
II EXEC EDIT
II EXEC BALANC } Job steps that
II EXEC NEGBAL don't need the
II EXEC WORKP
!&
II FIN

data file
I*

reader

You can also use I I FREE to allow a job to be scheduled that appears to use more
volumes or devices than are available.

Suppose, for example, that a job (PAYROL) uses four cataloged tape volumes. Your
system has only two tape drives. The system assumes, for cataloged volumes, that
each unique volume requires a unique device. Your job is not scheduled because there
are not enough unique devices available for each unique cataloged volume. You can get
the job scheduled, however, if you use the FREE statement to release the tape drives
once the first two volumes have been accessed.

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

6-23

During execution of the job, you are still protected from a needed device or volume
being unavailable, because no actual release occurs if 11 FREE specifies a device or
volume needed in a later job step.

Your job stream might look like this:

II JOB PAYROL
II LBL FILA
II LFD TAP1
II LBL FILB
II LFD TAP2
II EXEC STEP1
II FREE TAP1 CDEV)
II FREE TAP2CDEV)
II LBL FILC
II LFD TAP3
II LBL FILO
II LFD TAP4
II EXEC STEP2

Your job is scheduled, even though your system has only two tape devices, because
the drives are freed after the first job step. During execution of the job, volumes A and
C use one tape drive and volumes B and D use the other tape drive .

11 FREE can be used to release a workstation when it's no longer needed by a job. You
specify the workstation lfdname as it appears on the LFD statement in the
workstation's device assignment set. and code the FREE statement as follows:

II FREE WRKSTNCDEV)

If this statement is specified, all workstations connected to the file are freed.

6.8. SCRATCHING UNWANTED FILES

Once a disk or diskette file is no longer needed, it might as well be scratched, making
the space available for some other file. The SCR job control statement does this. Any
file or extent specified on this job control statement is scratched as soon as the SCR
job control statement is encountered by the job step processor. Therefore, the SCR
statement should only be specified after any job steps needing that particular file are
executed. Only files on volumes that are currently mounted when the SCR job control
statement is encountered are scratched. You can't use the SCR job control statement to
delete a file on SYSRES that has Y as the first three characters of the file label, and
you can't use it to delete the YRUN file from the RUN volume. Only one volume serial
number may be specified for any SCR job control statement .

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

The format of the SCR job control statement is:

I I [symbo L] SCR L fdname r,{DATE [I yyddd] }~
L PRE [, aaaa] ~

6-24

The lfdname parameter specifies the file name (of the file to be scratched) used in a
previous device assignment set in the control stream. Within that assignment set, you
must specify the volume serial number and the file identifier. But, if you're working with
a disk file and the next parameter is either DA TE or PRE, you may omit the LBL job
control statement from the relevant device assignment set.

The DA TE and PRE parameters are only used for disk files. When you use the DA TE
parameter, all files on the disk volume that have an expiration date equal to the current
system date are scratched. If you want the date to be different from the current system
date, use the yyddd parameter, where yy is the year and ddd is the day of the year.
Leading zeros must be specified.

The PRE parameter indicates that all files on a disk volume with a certain prefix are to
be scratched. You specify this prefix as the next 4-character parameter, aaaa. The first
three characters of this prefix, however, cannot be Y if the volume is SYSRES. If you
omit the aaaa parameter, the first four characters of the file identifier from the
associated LBL job control statement are used as the prefix.

If this parameter (DA TE and PRE} is omitted, the entire file specified by the lfdname
parameter is scratched.

Here are three examples:

II DVCVOL DSP028
II LBL PAYROLLDETAILS
II LFD PRDET
II SCR PRDET

In this first example, the entire file identified as PAYROLLDETAILS is scratched. The
filename parameter of the LFD job control statement and the lfdname parameter of the
SCR job control statement must agree.

II DVCVOL DSP028
II LFD DELETES
II SCR DELETES,DATE,76002

•

•

•

•
UP-8065 Rev. 9 SPERRY UNIV AC OS/3

JOB CONTROL
6-25

In this example, all files on disk volume DSP028 that have an expiration date of the
second day of year 76 are scratched. Notice the absence of an LBL job control
statement. When you use either the DA TE or PRE parameter, an LBL job control
statement isn't needed.

II DVC 130
II VOL DKT001
II LBL ADDRFILE
II LFD ADDR1
II SCR ADDR1

Our last example shows an entire file being scratched on our format-label diskette.
Remember, the filename parameter of the LFD job control statement and the lfdname
parameter of the SCR job control statement must agree.

NOTES:

1. The file to be scratched should not be in use by another job.

2. After an SCR job control statement is processed, the file is no longer available. You
can't even refer to this file with another SCR job control statement or a FREE
statement.

• 6.9. FILE CATALOGING

•

The file catalog (YCA T) is a system resident file. It contains entries consisting of file
information about tape, disk, and diskette files in the system. The catalog enables easy
access to this file information for jobs and can also restrict files to only authorized
users.

The CAT, DECA T, and QUAL job control statements and a special form of the LBL job
control statement are used to create, access, and decatalog cataloged files. Their use
and a complete description of the OS/3 file cataloging facility are contained in the file
cataloging concepts and facilities manual. The catalog manipulation routine (JC$CA T) is
also described in the file cataloging concepts and facilities manual.

6.10. SELECTING OPTIONAL FEATURES

SPERRY UNIV AC Operating System/3 provides optional features you can select
whenever you want. As you'll see, some options (such as DUMP and GO) are only
effective during the job step in which they are specified, some (such as GABRDUMP,
GDUMP, and GSYSDUMP) are effective from the time the option is encountered until
end-of-job. while others (such as ACN. BUF. OFT. LOG, and SCAN) are in effect for the
entire job because they are acted upon when the run processor prepares the control
stream for execution .

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

6-26

This is the format of the OPTION job control statement:

//[symbol] OPTION p-1[, ... ,p-n]

As you can see, you can specify as many features as desired, as long as they're
separated by commas (there can't be any spaces). The features available are:

ABRDUMP

Provides a main storage dump in the immediate v1c1rnty of the current TCB PSW
address. Displays current registers and buffers of all open DTFs.

ACN =account-number

Overrides the acct-no specified in the JOB control statement.

BOF

Your program is given control with binary overflow interrupt-enabled.

BUF=nXm

Overrides the nXm parameter specified in the JOB control statement.

DOF

Your program is given control with decimal overflow interrupt-enabled.

DUMP

Provides a job region dump at execution time in hexadecimal, if job step
termination is requested, or a snapshot dump in response to a SNAP
macroinstruction.

EOD=xx

Supplies substitute characters for the end-of-embedded-data (/*) job control
statement. Used when embedded data is DSL source code. The first character
specified must be a slash (/). The second character can be anything but a slash, an
asterisk, an ampersand, or a currency symbol (/, *, &, $).

GABRDUMP

Specifies that OPTION ABRDUMP is in effect for every job step from the time
GABRDUMP is encountered to end-of-job.

GD UMP

Specifies that OPTION DUMP is in effect for every job step from the time GDUMP
is encountered to end-of-job.

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

6-27

• GJOBDUMP

•

•

GO

Specifies that OPTION JOBDUMP is in effect for every job step from the time
GJOBDUMP is encountered to end-of-job.

Automatically executes a load module after link editing is completed. An OPTION
job control statement with the GO feature is generated automatically by the ASMLG
jproc call statement, for example.

GSYSDUMP

Specifies that OPTION SYSDUMP is in effect for every job step from the time
GSYSDUMP is encountered to end-of-job.

HOR= {NOHDR}
HOR

NOHDR suppresses the printing of page separators. HOR allows page separators to
be printed. OPTION HOR overrides page separator specification in the JOB control
statement.

HOLD

Places a job containing it in "hold" status while the job is in the job queue table. A
job containing this option is not released until a BEGIN operator command is
issued, or until a CC job control statement with BE specified is encountered in a
subsequent control stream. CC BE cannot be used to release a HOLD within the
same job.

JOBDUMP

LINK

Provides an edited version of a dump if a dump is requested and is 1n effect for
every job step from the time JOBDUMP is encountered to end-of-job ..

Automatically executes the linkage editor once the object module is created. This
allows you to compile and link edit without intervention from job control.

LOG= { logical-unit-number}
ORIGINATOR
CENTRAL

Directs the job log to a specific printer or a magnetic tape. The keywords
ORIGINATOR and CENTRAL refer only to printers. If you specify ORIGINATOR, the
log goes to the printer at the job's originator (this includes an auxiliary workstation
printer if the job's originator is a workstation). If you specify CENTRAL, the log
goes to the local site's control printer. E:>nly LOG=CENTRAL can be specified in
RBP initiated jobs. The default log destination for RBP is the originator.

UP-8065 Rev. 9

NOTE:

SPERRY UNIV AC OS/3
JOB CONTROL

6-28

In nonburst mode the job Jog is normally printed first (on the first available printer)
followed by the output file. If the DVC statement for the output file indicates a specific
printer (e.g., DVC 26) you should include the OPTION LOG statement with the same
logical unit number (e.g., OPTION LOG=26) so that the job log will be directed to the
same printer as the output file. If OPTION LOG isn't included the job log will be printed
first (on the first available printer) and the output file will be printed on DVC 26
provided the device is available. If the device is not available the output file will not be
printed.

If the DVC statement for the output file indicates any printer (e.g., DVC 20) and you
include an OPTION LOG statement indicating a specific printer (e.g., OPTION LOG=26),
both the job Jog and the output file will be printed (in that order) on DVC 26. For more
information on nonburst mode, output spooling, and job logs, see the spooling and job
accounting concepts and facilities manual.

MASTER= destination (where destination= [host-id:]user-id)

Assigns the specified workstation (at the specified host) as the job· s master - the
workstation that has control of the job when the job goes into execution. (By
default, the originator has control of the job so that master and originator are
usually the same unless you use this option. See OPTION ORI for a definition of the
originator.) The assignment as master takes effect when the job name is entered in
the job queue and this assignment does not change.

Specify OPERA TOR as the user-id to designate a system console as the master. If
your system has DDP, you can use a host-id to specify a particular host. If you
omit the host-id, the local host (the processor on which the job is executing) is
assumed. The host-id is optional but if specified, must be followed by a user-id. If
you include this option in a saved translated control stream, the option will be
effective when the stream is restored.

MASTER= destination(EXEC) (where destination= [host-id:]user-id)

Functions the same as MASTER=destination but takes effect only when the job is
in execution. The originator has control when the job is in the job queue.

MAX= maximum-main-storage-size

Overrides the max parameter specification in the JOB control statement. The max
value is interpreted as a hexadecimal value when you simply code the number or
X'number. You can also indicate that the max value be interpreted as a decimal by
coding MAX=D'number. If more than one maximum value is specified (via the
11 JOB statement or multiple 11 OPTION statements), the largest value is used.

MERGE=NO

Used to create a separate identifier for a job's log in the spool LOG file (when
spooling and log accumulation are configured for the system). By including
MERGE= NO you can determine if your job log is present in the accumulated LOG
file.

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

6-29

• MIN= minimum-main-storage-size

•

•

Overrides the min parameter specification in the JOB control statement. The min
value is interpreted as a hexadecimal value when you simply code the number or
X'number. You can also indicate that the min value be interpreted as a decimal by
coding MIN=D'number. If more than one minimum value is specified (via the
11 JOB statement or multiple 11 OPTION statements), the largest value is used.

MXT =maximum-time

Overrides the max-time parameter specified in the JOB control statement. The
maximum time can be specified in minutes, or you can specify SUP or DEF.
MXT=SUP suppresses the max-time function. MXT=DEF specifies that the system
default is to be used for the max-time value.

NOSCHED

Saves a job control stream in its translated state (in YSAVE), but prevents the
job from being scheduled and executed. See the SAVE option for information about
subsequent runs of the saved, translated jobstream.

NOSCHED: (alt-filename [{ ;~: }] [,write-password])

Functions like /I OPTION NOSCHED but is used when you want the saved
translated control stream placed in your own MIRAM library.

You must use the alt-filename parameter to specify a 1- to 44-character file
identifier.

Optionally, you can specify the volume to contain the job control stream. RES
identifies the SYSRES volume, RUN identifies the RUN pack, the vsn identifies the
volume serial number of a disk pack or format-label diskette. Keep the following in
mind:

If the file is cataloged, the volume you specify here (RES, RUN, or a vsn) is
used instead of the volume indicated (for that file name) in the catalog.

If the file is cataloged and you don't specify RES, RUN, or a vsn, the volume
indicated (for that file name) in the catalog is used.

If the file is not cataloged and you don't specify RES, RUN, or a vsn, the
SYSRES volume is used. When you omit RES, RUN, or a vsn, the parentheses
are optional and you can simply code I I OPTION NOSCHED:alt-filename.

If the file is cataloged with a 1- to 6-character write-password, you must specify
the password in the last parameter.

See the SA VE option for information about subsequent runs of the saved,
translated job stream.

UP-8065 Rev. 9

NSCAN

SPERRY UNIVAC OS/3
JOB CONTROL

6-30

Resets the SCAN facility. It should be used only with embedded data of a job step
for which SCAN has been specified. Subsequent job control statements normally
removed by SCAN are not removed. The OPTION NSCAN statement itself is
removed. When NSCAN is specified, SCAN cannot be used again in the same job
step.

NSRCH

Only the library named on the EXEC job control statement is searched for the load
module; the job run library file (YRUN) and the load library file (YLOD) are not
searched.

NSUB

Resets the SUB facility. It should be used only within the embedded data of a job
step for which both SUB and SCAN have been specified. Set symbols in embedded
data are not substituted until another SUB is encountered.

NULL

Specifies a no-operation for the OPTION statement.

OFT=+n

Tells the run processor to reserve space for an additional number (n) of files in the
open file table. The n parameter must be in the range 1 through 16 and must be
preceded by a plus sign. For IMS 90 users, n is the number of terminal classes
used to dynamically create files.

OPL =option-list

Overrides print-option-list specifications on the JOB control statement. Any of the
options available through the print-option-list parameter of the JOB control
statement may be specified via OPTION OPL.

ORIGIN A TOR= destination (where destination= [host-id:]user-id)

The originator is that workstation (and host) that physically m1t1ates a job and
subsequently has control of the job. OPTION ORI allows you to designate another
workstation as the originator regardless of the physical originator. This option takes
effect when it is encountered in the job control stream and can be specified several
times in one job stream.

Specify OPERA TOR as the user-id to designate a system console as the originator.
If your system has DDP, you can use the host-id to specify a particular host. If you
omit the host-id, the local host (the processor on which the job is executing) is
assumed. The host-id is optional but, if specified, must be followed by a user-id. If
you included this option in a saved translated control stream, the option will be
effective when the stream is restored.

•

•

•

•

•

UP-8065 Rev. 9

OUT= {ORIGINATOR }
CENTRAL
[host-id:]user-id

SPERRY UNIVAC OS/3
JOB CONTROL

6-31
Update A

Directs all job output (print files, punch files, and job logs) to the specified
destination as follows:

• ORIGINATOR

Directs all printed output to the printer at the job· s originator. Directs all punch
output to the central punch at the job's originator.

• CENTRAL

Directs all print or punch output to the local site's central printer/punch.

• [host-id:]user-id

Directs all printed output to the specified destination and all punch output to
the central punch at the specified host.

The host-id identifies a particular host in a DDP network, is 1 to 4
alphanumeric characters long, and identical to the label-id of the LOCAP
macroinstruction in your ICAM network. Use $HOST to indicate the job's
originator (the host that initiated the job). If the host-id is omitted, the local
host is assumed. The host-id is optional but, if specified, must be followed by
a user-id.

A 1- to 6-alphanumeric character workstation user-id identifies an auxiliary
workstation printer. The keyword CENTRAL in place of a user-id identifies the
central printer or punch. Any destinations that specify a user-id or YMAS
are valid only for print files. CENTRAL is valid for print and punch files.

This option is effective for all of the job's print and punch output but can be
changed for individual print or punch files by specifying / / ROUTE or / / DST in the
device assignment set for that file.

NOTE:

When a workstation initiates a job that directs printed output to an auxiliary printer ~
connected to another workstation (one that is not the originator), the user at the
other workstation must issue an RP command to initiate printing. See the
interactive services commands and facilities user guide/programmer reference for
information about this command.

PRI =switch-priority

• Establishes an overall task switching priority that applies to each program specified
on subsequent EXEC statements in that job. This priority can be changed for
particular programs by specifying a relative priority (e.g., +3 or -3) or an absolute
priority (e.g., 3) on the EXEC job control statement.

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

6-32

PRT= ACT
LOG
NO ACT
NO LOG
NONE
BOTH

Overrides the print option specified in the JOB control statement.

•
•
•
•

•

•
QUERY

ACT forces the printing of accounting records .

LOG forces the printing of job log records .

NOACT suppresses the printing of account records from the job log file .

NOLOG suppresses the printing of log information from the job log file
(including main storage dumps).

NONE suppresses the printing of both accounting records and log information
from the job log file.

BOTH forces the printing of accounting records and job log information .

The OPTION QUERY job control statement is for workstation users. It allows you
to change control stream execution by dynamically skipping parts of the control
stream at run time. To use this facility, specify an OPTION QUERY job control
statement when you create your control stream. Then, when you run the control
stream (key in RV job name) and the OPTION QUERY statement is processed, the
following messages are displayed at the workstation screen:

JC 36 ENTER SKIP PARAMETER (DISPLAY, CANC, STEP=,LABEL=,OFF,NONE)

JC 37 UPSl=xxxxxxxx QUERY LABEL=yyyyyyyy

If you enter a null response to the message, the system assumes you want to
proceed without a skip.

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

6-33

The type of skip you want is specified by keying in one of the following options:

Option

NONE

CANC

STEP=

LABEL=

OFF

DISPLAY

X=

Y=

Meaning

Discontinue this function in the job step

Cancels the job

Resume processing at the specified job step (program name)

Resume processing at the label specified on the NOP QUERY job
control statement.

Discontinue this function in the job

Display all labels and job steps names in the control stream. Step
names are preceded by an asterisk (*) to distinguish them from
labels.

UPSI setting

Label of QUERY job control statement.

To use the label skipping facility of OPTION QUERY, you must specify / / NOP
QUERY job control statements in the stream as targets for the skips. The NOP job
control statement is discussed in 7 .1.3.

REPEAT

The currently executing program is automatically restarted upon termination until all
embedded data files are exhausted. This gives you the ability to execute stacked
assemblies or compilations without job control intervention. The REPEAT option
does not clear the job region between executions, unless the ZRO option is used
when linking the program.

SAVE

Saves a job control stream in its translated state and schedules the job to be run.
A copy of the control stream as it appears in YRUN is stored in the system file
YSAVE. Subsequent runs of the job are initiated through the SC/SI system
command or through the // CC SC/SI job control statement. Saving a job control
stream with a large number of jprocs in its translated state eliminates the
time-consuming chore of jproc expansion by the run processor on subsequent runs.
Information about the SC/SI system command is found in the workstation user
guide and the operations handbook for your system. This option is available only if
your system is configured with consolidated data management .

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

6-34

SA VE: (alt-filename[{;~~}] [,write-password])

Functions like / / OPTION SA VE but is used when you want the saved translated
control stream placed in your own permanent MIRAM library.

You must use the alt-filename parameter to specify a 1- to 44-character file
identifier.

Optionally, you can specify the volume to contain the job control stream. RES
identifies the SYSRES volume, RUN identifies the RUN pack, the vsn identifies the
volume serial number of a disk pack or format-label diskette. Keep the following in
mind:

If the file is cataloged, the volume you specify here (RES, RUN, or a vsn) is
used instead of the volume indicated (for that file name) in the catalog.

If the file is cataloged and you don't specify RES, RUN, or a vsn, the volume
indicated (for that file name) in the catalog is used.

If the file is not cataloged and you don't specify RES, RUN, or a vsn, the
SYSRES volume is used. When you omit RES, RUN, or a vsn, the parentheses
are optional and you can simply code / / OPTION SA VE:alt-filename.

If the file is cataloged with a 1- to 6-character write-password, you must specify
the password in the last parameter.

SCAN

Acts upon and removes selected job control statements (CR, GBL, GO, IF, JSET,
NOP, and OPTION) from embedded data files. If this feature isn't selected, only the
terminators (FIN, END, /$, and /*) are detected.

SEVERE

SIG

SUB

Specifies that the run processor is to be terminated (the job is not to be scheduled)
if warning errors are encountered. Normally, warning errors would not terminate the
job.

Your program is given control with floating-point significant exception
interrupt-enabled.

Scans embedded data for parameters for set symbol substitution.

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

6-35

• SYSDUMP

•

•

A complete edited system dump is provided if job step termination is requested.

TEST

Specifies that the job is not to be queued or run.

TRACE

Fetches the monitor routine to record the effect of variable instruction parameters.
Optional monitor tasks may be selected as described in the supervisor user guide.

TSK =number-of-tasks

Overrides the tasks parameter specified in the JOB control statement. From 1 to
255 tasks can be active within any job step.

UNDEFINED

Specifies that from the time this option is encountered to the end of job, a warning
error message is to be generated whenever an undefined SET symbol is detected.

UNEQUAL

XUF

Specifies that a warning error message is to be generated whenever two character
strings of unequal length are compared.

Your program is given control with exponent underflow exception interrupt-enabled.

If no dumps are requested for a job step (JBDUMP,DUMP, or SYSDUMP), a NODUMP
feature is generated, which prohibits snapshot dumps, end-of-job-step dumps, and
abnormal termination dumps. This feature, NODUMP, is not to be specified on an
OPTION job control statement; job control assumes this feature.

The OPTION job control statement is generally inserted as the first job control
statement for the job step (unless, of course, this is the first job step, in which case the
JOB control statement is first). The OPTION statement may also be used in embedded
data when the NSCAN, NSUB, SCAN, or SUB features are specified.

In this example,

II OPTION JOBDUMP,TRACE

all the executed instructions of the program in this job step will be recorded. If the job
step terminates abnormally or a DUMP macroinstruction is encountered, an edited dump
is provided.

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

OPTION should not be placed between these job control statements:

• EXEC and /$

• EXEC and PARAM

• PARAM and PARAM

• PARAM and /$

• /* and /$ (where they delimit two separate embedded data sets)

6.11. MODIFYING CONTROL FIELDS

6-36

The SET job control statement modifies three fields: the date, the user program switch
indicator (UPSI), or the communications region in the job preamble. The SET job control
statement does not alter the contents of the system information block; you do this with
the SET system console command.

We can consider each field as using its own job control statement, so we'll look at
each one individually.

6.11 .1. Changing the Date

To temporarily change the date field of the job preamble until the end of the job, use
this format of the SET Job control statement.

//[symbol] SET DATE,yy/mm/dd[,t-date][,d-date]

The yy/mm/dd parameter is the date you want stored in the job preamble in place of
the current date. It's specified as year, month, day.

The t-date parameter specifies a 5-digit date for tape files, in the form yyddd (2-digit
year, 3-digit day). This date is stored, right-justified, in a 6-position field in the job
preamble, with the leftmost position set to a blank. This t-date parameter is flexible.
You can specify six digits, with the leftmost digit indicating the quarter of the year, and
the remaining five digits indicating the date. You use this parameter when you want to
compare the creation date of the first file header label (HOR 1) against a date different
from the date in the system information block.

The d-date parameter is the 5-digit date for disk files, also in the form yyddd. You use
this if you want the format 1 label to be compared against a date different from the one
stored in the system information block. If you omit the d-date parameter, the date
specified in the t-date parameter is used. If you also omit the t-date parameter, then the
date from the system information block is used.

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

6-37

• In this example,

•

•

II SET DATE,76/07/04

the date used for the job is July 4, 1976.

6.11 .2. Setting the UPSI

The SET UPSI job control statement allows you to set indicators that can be tested
during program execution. This UPSI area is one byte long (eight bits). You can assign a
specific meaning to any or all of the bits. For instance, say a program will run with
either card or tape input (two different sets of instructions defining the input device).
You could code the program such that when the first bit of the UPSI byte is 1, the
program instructions for card input are used; when the first bit is 0, the program
instructions for tape input are used. Then, through the SET UPSI job control statement,
you set the first bit of the UPSI byte to indicate which type of input is being used.

The format of the SET UPSI job control statement is:

//[symbol] SET UPSI,switch-setting

The switch-setting parameter is the 8-bit UPSI byte. The allowable characters are:

0 The bit is set to off.

The bit is set to on.

X The bit is unchanged.

Unspecified rightmost bit positions are assumed to be X (unchanged). Initially, the UPSI
byte is set to all zeros.

More than one SET UPSI job control statement may be specified for a job. However,
you must reset conditions you don't want that have been set by a previous SET UPSI
job control statement. For example, on the first SET UPSI job control statement, you
want to set bits 0, 1, an 7. Code it like this:

II SET UPSI,11000001

If, on a subsequent SET UPSI job control statement in the same job, you want to set
bits 0, 1, and 2, it would be coded like this:

II SET UPSI,XX1XXXX0

Since bits 0 and 1 were already set by the first SET UPSI job control statement and we
want them left on, we code an X in these positions, and code a 1 to set bit 2. Since
bit 7 is to be turned off, we code a 0 in this position, otherwise the 1 from the first
SET UPSI job control statement would still be effective.

UP-8065 Rev. 9

6.11.3. The Communications Region

SPERRY UNIVAC OS/3
JOB CONTROL

6-38

The communications region is a 12-byte field in the job preamble that passes
information from one job step to the next. For instance, assume your job has two job
steps. The first job step generates input for the second. But, if this input is incorrect,
you don't want to run the second job step. In the program for the· first job step, you
insert a routine that checks the validity of the output, and if it's incorrect, writes a code r

in the communications region. Then, in the program for the second job step, you insert
another routine that checks the communications region. If the code is there, control is
transferred directly to the end of the job.

Once you place these routines in your programs, they are there permanently unless you
remove the routines and recompile the programs. It may just happen that sometimes
you want to run the second job step even if the first job step was wrong (a test). Here
is where you would use the SET COMREG job control statement. This allows you to
change the code in the communications region.

The format of the SET COMREG job control statement is:

//[symbol] SET COMREG,char-string

The char-string parameter specifies the 1 to 1 EBCDIC characters or the 2 to 24
hexadecimal characters (even amounts only) to be stored in the communications region.
It is stored left-justified, and any unspecified rightmost characters remain unchanged.
Specify hexadecimal characters as X'ccc ... cc' and EBCDIC characters as C'ccc ... cc'.

At the beginning of the job, the communications region is set to O's.

Let's say you wanted the hexadecimal code of E2 E3 D6 D7 to be stored in the first
four bytes of the communications region; it would be coded as:

II SET COMREG,X'E2E3D6D7'

6.12. RESTARTING A JOB

In 2.4 we talked about the restart facility. Briefly, when you rerun a job that stopped
because of a computer malfunction, the restart facility allows a BAL or COBOL program
to resume its execution at or near the particular checkpoint record reached when the job
stopped.

As you know, the first step in using the restart facility is to establish checkpoint
records in your program. In BAL this is done with the CHKPT macroinstruction, but in
COBOL it's done with the RERUN clause. When these records are encountered during
the program's execution, they are written to a file that you identify either in the CHKPT
macroinstruction or the RERUN clause. You must provide a device assignment set for
this file in the job control stream.

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

6-39

The next consideration is what to do if the job stops. In general, all you have to do is
precede the job control stream with an RST statement and rerun the control stream.
The format of the RST job control statement is:

//[symbol] RST filename,checkpoint-id,number[,jobname[{rename}]][,pri]

[,key-1=[val-I, ... ,key-n=val-n]J

If the job is on cards, make the RST statement the first card in the deck and rerun the
job stream. If the job you warit to rerun is prefiled, simply submit an RST statement for
this job through the card reader. If you're a workstation user and the control stream is
prefiled, use the general editor (EDT) or the librarian to place the RST statement in the
control stream. Remember, 11 RST must be the first job control statement in the
stream.

The file that contains the checkpoint records must be defined in a device assignment
set. The file-name parameter of the RST job control statement must agree with the
filename parameter of the LFD job control statement for the file. A word of caution: the
LFD job control statement for the checkpoint file must not contain the INIT parameter
(4. 10.2), since the use of this parameter causes you to begin writing at the beginning of
the file.

Each time a checkpoint record is encountered in your program, a checkpoint number is
displayed at the system console. You use this number for the checkpoint-id parameter .

The number parameter specifies the number of the job step that executes the user
program you want restarted.

The jobname parameter specifies the name of the job you're rerunning. You must
provide a jobname if you're submitting the RST statement through a card reader for a
prefiled job control stream or if you're using the (rename) parameter for a prefiled
control stream. Otherwise, the jobname is unnecessary.

If a job with the same name is already in the job queue, use the (rename) parameter to
specify an alternate name for the prefiled job you want to restart. Remember, only one
job at a time can use a particular name.

The alternate name can be from one to eight alphanumeric characters, is enclosed in
parenthesis, and immediately follows the jobname.

The pri parameter is the priority at which the job is to be rerun. This is either P for
preemptive, H for high, or N for normal. The default is normal. This overrides the
priority of the JOB control statement .

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

6-40

The key=val parameters represent keywords and their values that may be referenced
like the parameters of a GBL job control statement (7 .2.2). The effect of these
parameters is as if a GBL job control statement were inserted as the first job control
statement of the job. The total length of the value for the parameters cannot exceed 44
characters.

Suppose you want to rerun a job named POCO. There is, however, a possibility that
there is another job named POCO scheduled for execution. So, to be safe, you rename
the checkpointed job to NEWNAME. The checkpoint number that was displayed on the
system console was 6, and it occurred in the second job step of the job. The file that
contains the checkpoint records was defined earlier in the control stream, and the file
name on its LFD job control statement was CHKPTLOG. The RST job control statement
would be coded like this:

II RST CHKPTLOG,6,2,POCOCNEWNAME)

When restarting a job, take the following into consideration:

• Only one RST job control statement may be submitted for any one job.

• If the program being executed at the time the checkpoint was recorded was in the
job's YRUN file (output of the linkage editor), the job to be restarted will not run
to normal completion if a program overlay is called after the job is restarted.

• If a restart is to be done after the job has terminated (normally or abnormally), the
restarted job step must not have originally had requests for temporary work areas.

• Tapes previously positioned via an MTC job control statement are not positioned to
the proper point in the restarted job.

• Card files cannot be repositioned.

• If a multifile tape is to be repositioned, the file sequence number must be included
on the LBL job control statement.

• If the file containing checkpoint records is a disk file, it cannot contain any of your
data.

• Scheduling may be delayed if all the resources needed by all job steps in the job
are not available, even if those needed only by the job step to be restarted are
available.

• Mount messages to the operator may be produced for volumes which were not
needed in the original run. This is due to the fact that SKIP job control statements
are ignored.

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

6-41

• 6.13. ISSUING SYSTEM COMMANDS

•

•

The CC job control statement allows you to issue OS/3 system console and
workstation commands, with their associated parameters, from within a job control
steam. Because there are many system commands, we will not attempt to discuss each
one here. You can find the formats and descriptions of system console commands in
your operations handbook. Workstation commands are described in the interactive
services commands and facilities user guide programmer reference. The format of the
CC statement is:

//[symbol] CC {command }
•command and parameters'

When enclosed in single quotes, any system console or workstation command and
parameters can be specified in the CC statement. When the command has no
associated parameters or when you do not specify any parameters, the quotes are not
used.

Let's say you want to release a job (JOB 1) that's being held as the result of a HOLD
system command. If you specify the BEGIN command in a CC job control statement,
you can include this statement in the job you're going to run. JOB 1 will be released
when this statement is processed (at your job's execution time). You would code the
CC statement as follows:

II CC 'BE JOB1'

Suppose you wanted to 1rnt1ate the general editor from a job control stream. The
workstation command for the general editor is simply EDT. Because there are no
parameters, you'd code the CC statement as follows:

II CC EDT

Whenever parameters are specified with a command, the total number of characters
within the quotes cannot exceed 60.

The CC statement is examined for syntax errors by the run processor during job stream
validation. If no syntax errors are found, the job is queued. The command and its
associated parameters are sent to the system when the CC statement is encountered
by the job step processor. The command is validated by the system independently of
your job, so errors associated with satisfying commands do not terminate a job stream.
If no EXEC statement follows a CC statement, the specified commands are acted upon
prior to job termination .

UP-8065 Rev. 9

NOTES:

SPERRY UNIV AC OS/3
JOB CONTROL

6-42

1. The following system console commands cannot be specified in the CC job control
statement: MIX, SWITCH, A VR, REBUILD, SHUTDOWN, SYSDUMP, and all SET
commands.

2. When the command string contains no blanks (other than the blank separating the
command from its first parameter), you can precede the first parameter with a
comma instead of enclosing the command and its parameters in single quotes.
For example: // CC BE,JOB 1

3. Unsolicited input messages (see the interactive services commands and facilities
user guide/programmer reference) and// PAUSE responses cannot be specified in
the CC job control statement.

6.14. CALLING CONTROL STREAMS

As we mentioned in 1.9, there are several methods available for calling control streams.
System console or workstation commands such as RUN/RV and SC/SI can be used, but
we'll discuss only the methods available through job control.

The following job control statements are used to call control streams:

II RUN

II RV

11 CC SC

11 CC SI

The RUN and RV job control statements are discussed in 6. 14. 1. Using the CC SC/SI
statement to call saved, translated streams is discussed in 6.14.2.

6.14.1. Using the RUN/RV Job Control Statement to Call Control Streams

The RUN and RV job control statements are used in a job control stream to call another
job control stream. They both select the stream you name and prepare it for execution;
however, RUN is normally used when the control stream you're calling needs a card
reader while RV should be used when you're calling a prefiled control stream that does
not need a card reader.

A card reader is necessary (therefore, / / RUN is used) when the control stream is on
cards or when the control stream is stored but contains a CR job control statement.
The CR statement in a control stream indicates that data on cards is to be accepted
from the input device and inserted into the stream (see 6.20).

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

6-43

An input device is unnecessary (/I RV is used) when the control stream you want is in
YJCS or an alternate library file and doesn't contain a CR job control statement.

Although you can use I I RUN when an input device is not required, you should use / /
RV. Using the RUN statement wastes time because your job will not be initiated until
the (unnecessary) card reader is available. On the other hand, your job will not be
initiated at all if you use an RV statement to call a control stream that needs a card
reader.

The format of the RUN/RV statement is:

//[symbol]{RUN n{ j obname[<new-name)]}]}
Ll <new-name)

RV jobname[(new-name)]

:alt-filename 'r t-f; lename, {:~~})

'(" l t-f; lename, m~~}] 'cead-passwocd)

['{~~~·}][,key-1=val-1,- .. ,key-n=val-n]

This statement's parameters are similar to those of the RUN/RV console command and
are explained in detail in your operations handbook. They are also explained in the job
control programmer reference.

6.14.2. Using CC SC/SI to Call Saved Translated Control Streams

Recall from earlier sections that a job control stream can be saved in its translated state
(after jprocs have been expanded) by including an OPTION SA VE or OPTION NOSCHED
job control statement in your control stream. When the stream is run, a copy of it is
stored in the system file YSAVE. Subsequent runs of the control stream can be
initiated through the SC/SI command or the CC job control statement specifying the
SC/SI command. We are interested in the CC job control statement here. The format of
the CC statement is:

//[symbol] CC {command }
•command and parameters'

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

The format of the command we want to specify is:

SI [{{did) }~ {[did],label)
{RDR,label)

SC

:alt-filename

jobname[{new-name)]

6-44

You use the SI command to initiate a job control stream that requires replacement of
embedded data from an input device (card reader, data-set-label diskette, or input spool
file). The SC command is used only to initiate a job control stream that does not require
the use of an input device to replace embedded data. Consider the following examples:

• 11 CC 'SC MYJOB'

This statement initiates the translated job control stream called MY JOB.

• I I CC 'SI MY JOB(NEWDA TA)'

This statement initiates the translated control stream MY JOB. MY JOB is to be run
under the new name NEWDAT A. The replacement embedded data for MY JOB is
expected to be found on the first available card reader.

NOTES:

1. Further explanation for the SC/SI command and its associated parameters can be
found in your operations handbook.

2. When substituting embedded data, the DAT A STEP statement must be used. It is
explained in 6.24.

3. When embedded data is submitted on diskette, the diskette must be a
data-set-label diskette, and the record size must be 128 bytes or less. The records
must be unblocked and unspanned.

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

6-45

• 6.15. COMMUNICATING WITH THE SYSTEM OPERATOR OR WORKSTATIONS

You can send a message to the system console or specific workstations with the QPR
job control statement. The message you specify is displayed at job step processor
time. The format of the QPR statement is:

•

•

//[symbol] OPR comment-Line[,destination-1, ... ,destination-n]

You use the comment-line parameter for the text of your message which can contain up
to 60 characters and must be enclosed in single quotes if it contains embedded blanks,
the slash character, or commas.

The destination parameter is provided for those systems with workstations or DDP. If
your system has neither, the destination parameter is ignored and your messages go to
the system console.

A destination is actually a host-id, user-id pair:

destination=[host-id:]user-id

The user-id directs the message to a particular workstation. The host-id allows users
who have DDP to direct the message to a workstation or system console at a particular
host. If your system does not have DDP, you'll only be interested in the user-id portion
of the destination.

The user-id can be any 1- to 6-alphanumeric character workstation user-id. You can
also specify the keyword OPERA TOR or YCON to denote the console workstation, or
YMAS to denote the master workstation. If you omit the destination, YMAS is
assumed. (See the OPTION MAS and OPTION ORI statements in 6. 10 for more
information about originator /master workstations.)

The host-id is 1- to 4-alphanumeric characters and is identical to the label-id of the
LOCAP macroinstruction in your ICAM network. The host-id is optional but if specified,
you must follow it with a user-id. You can also specify $HOST as a host-id. $HOST
simply means that the host of the master (the originator of // JNOTE) is used.

If you specify a user-id but omit the host-id, the local host (the processor on which the
job is executing) is assumed. Remember, if you omit a destination entirely, the message
goes to the job's master workstation.

Consider this example. Suppose you want to tell the operator an error is going to occur
but that the job is to continue processing. You could code the following:

fl OPR 1 AN ERROR WILL OCCUR - DO NOT CANCEL JOB 1
, OPERATOR

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

6-46

OPERA TOR is the destination, so the message is directed to the console and the local
host is assumed. (Without DDP, the processor is always a local host.) The following is
a list of other sample destinations you could specify in the I I OPR statement:

• USER01

The message is sent to workstation USER01. (The local host is assumed).

• YMAS

The message is sent to the master workstation. (The local host is assumed).

• No destination specified

The message is sent to the master workstation.

• A321 :USE RO 1

The message is sent to workstation USERO 1 at host A321 .

• $HOST:OPERA TOR

The message is sent to the console workstation at the originator/master host.

Messages sent to workstations that are not logged on are not rerouted unless they
were intended for the master workstation (YMAS). The system reroutes such
messages to the console.

The PAUSE job control statement allows you to send messages to the system operator
or specific workstations, however, it causes the job's processing to stop until the
message is acknowledged. (Processing of other jobs in the system continues without
interruption.) Regardless of the PAUSE statement's position within a job step, the
message is displayed just before execution of the program within the job step. The
PAUSE statement has the following format where the comment-line and destination
parameters are identical to the corresponding parameters in / / OPR:

//[symbol] PAUSE comment-Line[,destination-1, ... ,destination-n]

Suppose you want the operator to check a job's printer listing for errors before the job
is run. You might code the PAUSE statement like this:

II PAUSE 'CHECK FOR ERRORS - IF NONE, CONTINUE, OTHERWISE CANCEL', OPERATOR

Job processing stops until the operator acknowledges the message by cancelling or
continuing the job. When multiple destinations are specified, the acknowledgements are
requested one at a time, not all at once.

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

6-47

The JNQTE job control statement allows you to send messages to the system operator
or a particular workstation. Unlike 11 PAUSE, however, 11 JNQTE does not stop job
processing and does not require acknowledgement. I I JNQTE is like QPR except that
it's acted upon by the run processor so you can send messages earlier on in the job's
processing - before job execution actually begins. The format of the JNQTE statement
is:

//[symbol] JNOTE comment-line[,destination-1, ... ,destination-n]

The parameters function the same as 11 QPR and 11 JNQTE parameters, however, you
cannot specify YMAS as a user-id. You can specify YQRI to indicate the originator
of the job. This is also the default if no destination is specified. Messages sent (via
JNQTE) to workstations that are not connected are not rerouted unless they're intended
for the originator workstation (YQRI). The system reroutes such messages to the
console.

6.16. INTRODUCING PROCESSING OPTIONS

Some programs are written to perform a variety of functions in addition to their main
processing function. These programs must be told what variable functions to perform
when the job is run. A good example of this type of program is a language translator,
which can produce a series of special services if they are requested, but which are not
desirable with every compilation or assembly. You submit these requests with PARAM
job control statements.

Since PARAM job control statements are read by the individual program, you design the
content and format of the information when you write the program. PARAM statements
are prepared and read as embedded data.

There is no limit to the number of PARAM job control statements allowed in the control
stream, and each one can contain up to 62 characters of information. However, any
information beyond column 71 is ignored. You must place the PARAM job control
statements immediately following the EXEC job control statement.

The format of the PARAM job control statement is:

//[symbol] PARAM operand-1[, ... ,operand-n]

The operands are the variable information you want to introduce into the job. If the
information contains embedded blanks, it must be enclosed by single quotation marks.

Assume that in a program named LISTX, you set up a variable option called LST =,

which defines the line spacing on the printer. The values you defined in the program are
A for single space, B for double space, and C for triple space. On this running of the
program, you want to triple space, so it would be coded as:

11 EXEC LISTX

II PARAM LST=C

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

6-48

6.17. DEFINING SOFTWARE FACILITIES NEEDED BY YOUR JOB

OS/3 automatically loads all of the shared-code modules needed by your job; you do
not need to identify these shared code modules in order for them to be loaded. If,
however, you've written your own shared-code modules and they are not on YLOD
or the volume that contains your job's YRUN file, you must use the //SFT statement
to identify these modules to the system.

You can also use / / SFT to identify data management shared-code modules that you
want loaded prior to job initiation. This ensures that your job does not have to wait
until a particular shared-code module it needs becomes available. The data management
shared-code modules loaded prior to job initiation stay resident for the duration of the
job.

The I I SFT statement may also be used to indicate that dynamic loading is needed or
to override the system generation limits for dynamic expansion of the user job region.
(This feature is for ANSI 7 4 COBOL users.)

Let's review the applications for the SFT job control statement. You use // SFT to:

• identify user-written shared-code modules that are not in YRUN or YLOD;

• identify data management shared-code modules that you want loaded prior to job
initiation; and

• specify dynamic loading and/or override SYSGEN limits for dynamic expansion of
the user job region as established by the SYSGEN parameter DLOADBUFR.
(ANSl'74 COBOL users only.)

The format of SFT is:

I I [symbol J SFT!module-1 [, ... ,module-n J [' DLOAD=[c calls J, [{::~ans ion· limit }])JJ)
DLOAD= [Ccal ls], [{::~ansion- limit}])]

The module parameters are used to identify to the run processor the user shared-code
modules needed in a job step or the data management shared-code modules that you
want loaded prior to job initiation. (User shared-code modules are always loaded prior
to job initiation.) The data management user guide for your system lists all the shared
code modules and their functions.

The SFT statement identifies shared code modules only for the job step in which it
appears. If you need the same shared-code modules in three job steps, for example,
you must code an SFT statement for each of the three job steps.

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

6-49

Suppose you want to load prior to job initiation the data management module that
provides for magnetic tape file output in the last step of yourjob. The module that
performs this function is named DD$T100 (for Series 90 systems). You would code

II SFT 00$T100

and place it in the control stream for your job. The run processor would detect the SFT
statement while scanning the control stream and the shared-code module DD$T 100
would be loaded before your program is executed.

NOTES:

1. In preparing a job, you must take care not to request more shared-code modules
than were provided for when your system was generated, or the job will not be
scheduled.

2. Data management shared-code load modules reside in the system library
YSCLOD. You can use the SAT librarian to get a listing of these modules and to
obtain information related to each or if you have interactive facilities you can use
the FST command and specify YSCLOD.

3. There is a system generation parameter (IGNORESFT) that allows the Series 90
user to specify that // SFT job control statements be ignored. This system
generation option is useful because you can then take advantage of OS/3's
dynamic shared code feature without having to change existing control streams that
contain // SFT job control statements. Your system installation user
guide/programmer reference contains more information about this system
generation option.

The DLOAD parameter of the SFT job control statement may be used only with ANSI
74 COBOL programs. DLOAD tells the run processor that your job needs the OS/3
dynamic loading facility for externally referenced program modules and indicates the
space requirements for dynamic loading.

Normally, the run processor checks the load module and determines from the phase
header record whether a job needs dynamic loading of main storage. If it does, the
supervisor then allocates space for dynamic loading, immediately following the user job
region, according to the limits specified at system generation. In the following instances
however, the DLOAD parameter may be needed:

• If your COBOL program references modules not in YRUN or YLOD that
reference other program modules which would make it impossible for the run
processor to determine whether these externally referenced modules require
dynamic loading.

• If you want to override the SYSGEN-specified limits for dynamic expansion of the
user job region .

UP-8065 Rev. 9

The format of the DLOAD parameter is:

SPERRY UNIV AC OS/3
JOB CONTROL

DLOAD= [((cal ls], [{::~ansion- limit}])]

6-50

The calls specification indicates the maximum number of dynamically loaded modules
allowed for a job. The expansion-limit specifies the maximum number of bytes (total)
that can be added to a job in support of the DLOAD facility. The number is considered
hexadecimal if you code X'number or number. It is considered decimal if you code
O'number.

If you code

II SFT DLOAD=C5,5000)

five DLOAD calls will be allowed for in this job, and the job will be allowed to expand a
maximum of X'5000' bytes over its initial main storage allocation.

The MAX specification indicates that the size of the job is limited only by the amount of
main storage in the system.

If you omit the number of calls, the system default number of calls (as set by the
SYSGEN parameter DLOADT ABLE) are allowed. If you omit the expansion limit, the
system default for the expansion limit (as set by the SYSGEN parameter DLOADBUFR)
is used. If you code II SFT DLOAD= then both these defaults apply.

If your job region must be expanded to accommodate the DLOAD facility, the system
allocates contiguous main storage immediately following your job. This may involve
moving your job to a larger region in main storage. If a large enough region does not
exist, an error message is generated - unless your system is generated with the DLOAD
facility.

If the DLOAD facility has been specified at system generation and there is not enough
contiguous space to accommodate your expanded job, your job is rolled out to disk
until the required contiguous main storage is made available through:

• main storage consolidation;

• roll out of other lower priority jobs; or

• waiting until other jobs terminate, freeing the required contiguous space.

NOTE:

Other jobs can only be moved or rolled out to free main storage for your expanded job
after your job has been rolled out.

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

6-51

There are several points to keep in mind about DLOAD. If the DLOAD facility was not
specified at system generation, an error may occur if enough main storage does not
exist to dynamically expand your job. On the other hand, if you specified the DLOAD
facility at system generation, your job might be rolled out for a long time. Even if you
do not need to roll out jobs, the DLOAD facility takes time. One way to avoid this
problem is to allow for a larger initial main storage allocation for your job through the
JOB control statement. Suppose, however, that you do need the ability to dynamically
expand your job size and you have specified the DLOAD facility at system generation.
To avoid being rolled out for an extended period of time, you can:

• Run your job on a system generated with main storage consolidation.

• Run your job with preemptive priority (P) specified on the JOB control statement.

• Avoid running your job when other large or long-running jobs are using main
storage.

NOTE:

Jobs that use files with locks set cannot be rolled out to accommodate dynamic
expansion requirements.

For more information about specifying the DLOAD facility at system generation, see the
system installation user guide/programmer reference for your system .

Suppose your job needs the shared code module SINCOS and you want to override the
SYSGEN limits for dynamic expansion of your job. You need to allow for six DLOAD
calls with a total expansion limit of X'8000' bytes over your initial main storage
allocation. Your SFT job control statement would look like this:

II SFT SINCOS,DLOAD=C6,8000>

6.18. MAKING TEMPORARY CHANGES TO A LOAD MODULE

You use an ALTER job control statement to make minor temporary changes in up to
eight bytes of a load module to see if the changes have the desired effect before these
changes are made permanent. Recompiling and link-editing are time-consuming. As
many ALTER job control statements as you need to change the module are grouped
before the EXEC job control statement.

The format of the ALTER job control statement is:

//[symbol] ALTER [phase-name][,address][,change][,{~!~ET}]

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

6-52
Update A

The phase-name parameter is either the 8-alphanumeric-character name of the phase
assigned by the linkage editor or the 1- 6-alphanumeric-character alias name of the
phase. If you omit this parameter, the last phase name used on an ALTER job control
statement in this job step is used.

The address parameter is the 1- to 5-digit starting location address where the changed
information is to be stored. The number you specify for the address is considered
hexadecimal if you code X'number or number. It is considered decimal if you code
D'number. This is in relation to the first byte of the phase area. If you omit this
parameter and an address is required an address of zero is used. An address is not
required when RESET is used as the fourth parameter.

NOTE:

If the address given is invalid, a change does not take place.

The actual information to be placed in the phase is specified with the change parameter.
You can specify it in either EBCDIC or hexadecimal. EBCDIC information takes the form
C'c ... c'. The maximum number of characters is eight (eight bytes). If you omit the
change parameter, no modification is made for this ALTER job control statement alone,
but the information it does contain, such as phase name, is passed to subsequent
ALTER job control statements.

The ORG parameter indicates that the address specified in the address parameter
should be added to all the addresses on succeeding ALTER job control statements, until
one with a RESET parameter or a different phase name is encountered.

Once an ALTER job control statement is encountered, each and every phase of the load
module expects an ALTER job control statement. This is the reason for the RESET
parameter. It indicates that no other ALTER job control statements are in the control
stream.

Consider these examples:

II ALTER TSTPGM00
~ II ALTER ,4361,X 1 FAF3F9 1

II ALTER ,4700,X 1 F8 1

~ II ALTER ,,,RESET

If a RESET parameter is specified, the information is passed along to the program
execution phase. When the phase which had the RESET parameter specified is loaded
for the first time, the option is reset so that no other phases will be altered. This saves
time if a phase which is only loaded once is the only phase requiring alteration.

Suppose there is a phase named TSTPGMOO and it constantly needs changes
according to weather conditions. The first and last ALTER job control statements could
be placed permanently in the control stream, while the variable ALTER job control
statements could be inserted as needed. In the preceding example, the information
contained in addresses 4361 and 4 700 is changed.

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

6-53

• 6.19. CHANGING YOUR FILE DEFINITION AT RUN TIME

•

•

Sometimes, there is a need to change the file definition contained in one of your
programs. Regardless of the type of program (COBOL), assembly, etc), you would have
needed to either reassemble or recompile and relink your program with the updated file
definition. Now, by using the DD (data definition) job control statement, you can make
this change at run time, thus eliminating the need of either reassembling or recompiling
and relinking. The changes made using the DD statement, however, are effective only
during the execution of the job; therefore, if a permanent change is required you must
make the change in your source program.

You can have only one DD statement in each DVC-LFD sequence, and it must be placed
with the assignment set for that device.

The format of the DD statement is:

//[symbol] DD

~
:~::n} =1: ~~~~~~ [' {:~~~n }=n] [{:~~~n} =n]

UNDEF
VARBLK
VARUNB

[' { ~:~~n} =n] [' {~ ~ ~~n} = {~UTO }] [' {~~~n }=1

[,{KLEN }=nl[·{KNOC }=n][,INDS=n]
KLENn j KLOCn

[ACCESSH~:ff REW I ND= l~~~~:. l]

[, OPRW=NORWD] [· CL RW= l :~:WD l] [Fl LAB L = {:~;o ~

[I TPMARK=NO] [' RECV= {;~aJ [' VSEC= {~ES}] [' VMNT= {~~E}] [' RCB= { ~~s}]

[,OFFSET=1]

In the format, we see all the allowable keyword parameters. If a parameter is specified
but not allowed, it is ignored. The n which is suffixed to some keywords (e.g., RCFMn)
refers either to partition n of a multipartitioned SAT or NI disk file or to KEYn of a
multikey MIRAM disk file. In Tables 6-1 and 6-2, we equate the keyword parameters
with their associated file definitions.

NOTE:

Extreme care must be used in specifying the BKSZ/BKSZn or RCSZ/RCSZn keyword
parameters. For a complete description of all parameters, see the appropriate data
management user guide.

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

Table 6-1. DD Supported Keywords for Basic Data Management

Card/Diskette
Keivword IDTFCDl

RCFM/RCFM1 x

RCFM2-7

BKSZ/BKSZ1 x

BKSZ2-7

RCSZ/RCSZ1 D

RCSZ2-7

LACE/LACE1

LACE2- 7

SIZE/SIZE1

SIZE2- 7

UOS/UOS1

UOS2- 7

KLEN/KLENl

KLEN2-7

KLOC/KLOC1

KLOC2-5

INDS

ACCESS

REWIND

OPRW

CLAW

FILABL

TPMARK

VSEC

RECV

VMNT

RCB

LEGEND:

X - allowable keyword
D - diskette only

Printer

IDTFPRl

x

x

M - only KLEN2 'through 5 are supponed

Paper Tape
IDTFPTl

x

x

S - ACCESS~ SADD is no1 supported (Series 90 syslemsl
A - only SIZE - AUTO is supported
N - only SIZE/SIZEn ~AUTO is no1 supported

Magnetic Disk Files

Tape SAT SAM DAM NI
IDTFMTl IDTFPFl IDTFSDl IDTFDAl IDTFNI)

x x x x

x

x x x x x

x x

x x x

x

x x x x

x x

N N

x N

x x

x x

x x x

x x

s s s s

x

x

x

x

x

6-54

•
ISAM IRAM MIRAM

IDTFISl IDTFIRI IDTFMI)

x

x x x

x x x

A A

x x x

M

x x x

x

x x x

s s s

•
x x

x x

x x

x

•

UP-8065 Rev. 9

•

•

•

SPERRY UNIVAC OS/3
JOB CONTROL

Table 6-2. DD Supported Keywords for Consolidated Data Management

Keyword
Format Label Data Set Label Tape Card Printer Diskette/Disk Diskette

RCFM* x x x

BKSZ* x x x x x

· Rcsz· x x x

KLENl-5* x

KLOCl-5* x

INDS* x

SIZE A

ACCESS x

VSEC v

RECV x

VMNT x x

RCB x x

OFFSET x

REWIND x

OPRW x

CLRW x

FILA BL x

TPMARK x

•Care must be taken when specifying this keyword parameter. If the program
accessing the file is dependent on predefined (e.g., compile time) file or
processing characteristics, it may not be prepared for such a change at
execution time. You may obtain unexpected results unless the program is a
user-written BAL program prepared for this type of specification change or if
the user documentation for the product explicitly states that tis specification
can be changed at execution time.

LEGEND:

X - allowable keyword
A - only SIZE=AUTO is supported
V - applies to nonsectorized disk devices only

6-55
Update A

t

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

6-56

The definitions for keyword parameters of the file definition macroinstructions are found •
in the data management user guide. The definitions for the keyword parameters
associated with the SAT file are found in the supervisor user guide.

NOTE:

OFFSET= 1 is used under consolidated data management for conversion purposes (IBM
Systeml34 to OSl3). It indicates that a data-set-label diskette was created by an IBM
utility and has a file header as the first physical record. 11 DD OFFSET= 1 allows
processing of the diskette to begin at the first logical record (the second physical
record).

Now, let's change a file definition macroinstruction associated with an assembly
program. Our original DTFPR looked like this:

10 16

DTFPR BLKSIZE=120,CONTROL=YES,
ERROR=ERR,IOAREA1=101,
PRAD=1,PRINTOV=SKIP,
RECFORM=FIXUNB,WORKA=YES

72

x
x
x
x

We want to change our block size from 120 bytes to 130 bytes and our record format
from fixed unblocked to variable unblocked. Our DD statement must be:

II DD BKSZ=130,RCFM=VARUNB •

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

6-56a

Suppose we had an FD entry in a COBOL program to be changed. Our original FD
looked like this:

1 8 12

FD SAVEIT
RECORDING MODE IS F
LABEL RECORDS ARE OMITTED
RECORD CONTAINS 133 CHARACTERS
BLOCK CONTAINS 10 RECORDS

Our FD describes an output magnetic tape file. We want to change the record size from
133 characters to 140 characters. Our DD statement would be:

II DD RCSZ=140

Notice that the format of the DD statement does not vary with the type of program file
definition being changed.

When a file is cataloged, the DD information does not get cataloged. When you call the
file using the catalog, if the DD information is required, you must specify the DD
statement in your control stream following the LBL statement. For example, when you
cataloged the file, the following assignment set was used .

II DVC 60
II VOL DISK01
II DD BKSZ=200
II LBL DISKMAST
II LFD DISKM
II CAT DISKM

Now, when you call the file using the catalog, and the DD information is required, you
would use the following:

II LBL DISKMAST
II DD BKSZ = 200

When you use the DD statement with a cataloged file, it must appear following the LBL
statement. Otherwise, it can appear anywhere in the DVC-LFD sequence.

NOTE:

The file cataloging facility is described in the file cataloging concepts and facilities m
manual .

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

6-57

• 6.20. ADDING CARDS TO A STORED CONTROL STREAM

•

•

The CR job control statement is used in a stored control stream to indicate that other
job control statements or embedded data (on cards, data-set label diskette, or input
spool file) is to be accepted from the input device and temporarily inserted into a stored
control stream. You indicate the type of input device in the RU command or the 11 RUN
job control statement. The CR job control statement has no parameters, it's just
specified as:

//[symbol] CR

Let's examine one application of the CR statement. Suppose you're constructing a job
control stream to execute programs that use low volume card input in the form of
embedded data. Assume that you also want to store the control stream in YJCS, but
you know that the embedded data will have to be periodically changed. Because the
embedded data is part of the control stream, you'll actually be changing the stream
when the data is changed. This somewhat defeats the purpose of storing a control
stream in the first place.

You could change the programs to accept the data as card files submitted from the
card reader (the card files can be changed without disturbing the control stream).
Another alternative is to place CR statements in the control stream. When the stored
stream is initiated (with an RU command or a I I RUN statement), the run processor will
expect to find data in the card reader when a CR statement is encountered. This data is
temporarily inserted in the control stream. The following example illustrates this:

The stored stream is:

II JOB MYJOB

I I EXEC PROG 1
II CR

I I EXEC PROG2
11 CR
I&
11 FIN

In the card reader you've placed:

1$

embedded data for PROG 1

/*
11 FIN

1$

embedded data for PROG2
I*
I I FIN (This last FIN statement is

unnecessary if the input
is on data-set-label
diskette or in the spool file.)

When the first CR statement is encountered, control is directed to the card reader
where you've placed the embedded data for PROG 1 between the 1$ and /* statements.
The first FIN statement ends card reader operations and control is returned to the
stored stream until the next CR statement is encountered. Then the embedded data for
PROG2 is accepted. Using this method you can place different data in the card reader
for each job run if necessary.

UP-8065 Rev. 9

NOTE:

SPERRY UNIVAC OS/3
JOB CONTROL

6-58

This application of the CR statement cannot be used with saved translated control
streams. Embedded data that's already included in such streams may, however, be
replaced using the DA TA STEP statement as described in 6.25.

As you'll see when we talk about bypassing job control statements, I I CR is also used
when you want other job control statements temporarily inserted in the stored stream.

Depending upon your application, a CR statement may be placed anywhere in the
control stream. If, however, it is placed between a 1$ and /* in the stored stream (e.g.
for inserting job control statements within embedded data), you must include an
OPTION SCAN statement in your control stream. For example:

II JOB MYJOB
I I OPTION SCAN

I I EXEC PROG 1
1$
embedded data

11 CR
embedded data

/*
I&
11 FIN

If the OPTION SCAN statement is omitted, the CR statement is ignored.

NOTE:

Filed control streams should be limited to control information or other low-volume data
sequences that remain relatively constant. These control streams and any constant data
(not entered from the input reader on each run) are considered permanent and occupy
space otherwise available to the system.

6.21. BYPASSING JOB CONTROL STATEMENTS

You use the SKIP job control statement to skip forward in the control stream to another
job control statement. SKIP is effective during execution of your program. Here's where
the label field of all the job control statements comes into use. You put a symbol in this
field of the job control statement that's the target of the branch and specify this same
symbol in the SKIP job control statement. The skip can be conditional or unconditional,
depending on the parameters used.

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

6-59

• NOTE:

•

•

Although both are used to bypass job control statements, 11 SKIP, which is effective at
execution time, must not be confused with 11 GO which is effective at run processor
time. See 7. 1. 1 for further explanation of 11 GO.

Neither the SKIP job control statement nor the target job control statement can be
within a device assignment set or embedded data. All the devices assigned within a
skipped section are still required before the job can be scheduled; however, skipped
devices can't be referenced subsequently in the same control stream because (even
though they are available) they aren't completely identified to the system. In view of
this, you cannot bypass device assignment sets referenced subsequently in the control
stream by REN or SCR job control statements. If you use SKIP to bypass the device
assignment set for a cataloged file, you must specify a complete device assignment set
for the file, not just the // LBL statement, and skip to a target label beyond the device
assignment set for the cataloged file. (File cataloging is explained in the file cataloging
concepts and facilities manual.) The skip function ends following the completion of the
advance or upon the detection of a /& job control statement, whichever occurs first.

The format of the SKIP job control statement is:

//[symbol] SKIP target-Label[,mask]

The target-label parameter corresponds to the symbol in the label field of the job
control statement that's to receive the branch.

The mask parameter tests the UPSI byte (6.11.2) and makes the SKIP job control
statement conditional. It's one to eight characters long, and each character is a binary
number that corresponds to the bits of the UPSI byte. If you use fewer than eight
characters, the unspecified rightmost positions are assumed to be zero., If any of the
UPSI bits indicated by the mask are set, the skip condition is satisfied and the
statement is processed; otherwise, it's ignored and processing continues with the next
job control statement in the control stream.

The allowable characters are 0 and 1; 0 means not set, and 1 means set.

If you omit the mask parameter, the skip is unconditional.

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

6-60

Let's set up a hypothetical situation. Suppose there's a program like the one described
under the SET UPSI job control statement (6.11.2). The program accepts input either in
the form of cards or tape. In this case, bit 1 set means card input, no bits set means
tape input. In edits details for an accounts receivable application and is run many times
daily. So, you want to store this control stream in YJCS, rather than have it input
through the card reader each time it's run - but then there would be two different
device assignment sets for one input file (card or tape). Using the SKIP and SET UPSI
job control statements, you could set and test the UPSI byte to see which device
assignment set is needed and skip over the unwanted device assignment set. You could
code the control stream to be stored as follows:

II JOB BALANCE
II CR

1. II SKIP CARD,1
II DVC 90
II VOL MAST01
II LBL DETAILS
II LFD TAPEIN

2. II SKIP DOIT
3. //CARD DVC 30

II LFD CARDIN
4. //DOIT EXEC EDIT

!&
II FIN

and then precede the data cards to be processed with a SET UPSI job control
statement that would identify the type of input device required.

In the sample control stream, the first SKIP job control statement I(1) specifies that if
the first bit of the UPSI byte is set to 1 (on), go to the job control statement with a
symbol of CARD (3). This provides the device assignment set for the card reader, and
the device assignment set for tape is bypassed. If this bit is off, the device assignment
set for a tape is processed until the second SKIP job control statement (2) is reached.
This causes an unconditional branch to the job control statement with a symbol of
DOIT, which is the EXEC job control statement (4), and bypasses the device assignment
set for the card reader.

Now, let's use input. Assume it's in the form of a card file. Look back at the example
of the stored control stream. When it's read, the first CR job control statement
switches control to the card reader, where we place a SET UPSI job control statement
to turn the UPSI byte to on (which indicates card input). It's followed by a FIN job
control statement, which terminates the card reader operation - control returns to the
stored control stream. Since the UPSI byte is set to on, the tape device assignment set
bypassed, and the card reader device assignment set is used. The load module is then
called. Here's what the stream to set the UPSI byte and provide the card input would
look like.

•

•

•

•

•

•

UP-8065 Rev. 9

II SET UPSI,1 }
II FIN

} data cards
/*

SPERRY UNIVAC OS/3
JOB CONTROL

Control statements inserted in the stored stream
when I I CR is encountered

Input card file

6-61

If the input were on tape, you would place a single FIN job control statement in the
card reader. When the first CR job control statement transfers control to the card
reader; FIN job control statement transfers it right back. Since the UPSI byte is not set,
the device assignment set for tape is used, and the device assignment set for the card
reader is bypassed.

Several system programs, such as the assembler, dump/restore, and disk prep, set the
UPSI byte when an error occurs. For example, when an error occurs during a disk prep,
the prep routine, by its nature, will continue to normal termination. If the error is fatal,
you wouldn't want to run any subsequent job steps in the job, as they in turn would
also be in error; you'd want to continue processing. The UPSI byte is automatically set
on error conditions, and you can test it with the SKIP job control statement. The
system programs use the following conventions when errors occur:

• A binary 1000 0000 (X'80') represents a fatal error. If this occurs, you would not
want to run the remaining job steps. This can also be specified as a binary 1 .

• A binary 0100 0000 (X'40') represents a warning error condition, which means
that subsequent job steps can be processed. (However, it's up to you to determine
whether the job should be rerun for total accuracy.)

The following two examples show how you can use the SKIP job control statement to
check for errors in the system programs. (We're using the disk prep routine, whose
control statements are explained in the system service programs user guide.)

Example 1:

1 . II JOB DSKPRP
2. II DVC 20 II LFD PRNTR
3. II DVC 50 II VOL DSP028 II LFD DISKIN
4. II EXEC DSKPRP
5. /$

6. SERNR=DSP028,PARTL=V
7. /*
8. II SKIP ENDS,1
9. other
10. job steps
11 . go here
12. //ENDS NOP
13. !&
14. II FIN

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

6-62

In example 1, you check the UPSI byte to set whether a fatal error has occurred. If
the UPSI byte contains bit 1 set (line 8), then all the ohter job steps are bypassed
and control is transferred to the NOP job control statement with the label ENDS
(line 12). The NOP job control statement provides you with an address for the skip,
with no function being performed. THe /& job control statement terminates your
job while the FIN job control statement terminates the card reader operation.

Example 2:

1. // JOB DSKPRP
2. II DVC 20 // LFD PRNTR
3. II DVC 50 // VOL DSP028 // LFD DISKIN
4. // EXEC DSKPRP
5. /$

6. SERNR=DSP028,PARTL=V
7. I*
8. // SKIP WARN,01
9. II SKIP FATAL,10
10. // SKIP EXIT
11. //WARN OPR 1 WARNING-A NON-FATAL ERROR HAS OCCURRED'
12. // SKIP EXIT
13. //FATAL OPR 1 FATAL ERROR-JOB TERMINATED-CORRECT AND RERUN'
14. // SKIP ENDOFJOB
15. //EXIT NOP
16. other
17. job steps
18. go here
19. //ENDOFJOBNOP
20. I&
21. //FIN

In example 2, you check for both the fatal and warning errors and the display of
appropriate messages on the system console. If a warning error has occurred, that
is, bit 2 set in the UPSI byte (line 8), then you skip to the label WARN on the QPR
job control statement, the SKIP job control statement (line 12) is the next job
control statement processed. Here, you skip down to the label EXIT on the NOP
job control statement (line 15). As mentioned earlier, the NOP acts as an ending
point for the SKIP control statement. The remaining job steps follow the NOP
statement and are processed accordingly. Following the last job step, the NOP
statement on line 19 is processed, with no action being performed. Your job then
terminates normally through the /& and FIN job control statements.

If a fatal error occurs, which is bit 1 set in the UPSI byte (line 9), you skip down to
the label FATAL on the QPR statement (line 13) and print the specified message.
The SKIP job control statement (line 14) skips down to the label ENDOFJOB on the
NOP statement, thus bypassing your remaining job steps and terminating your job.

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

6.22. BYPASSING JOB CONTROL STATEMENTS TO AVOID ABNORMAL
TERMINATATION

6-63

The ABNORM =label keyword parameter of the EXEC statement is used to skip forward
in the job control stream if your program contains errors that will cause an abnormal
termination. Recall that the format for the EXEC statement is:

II [symbol] EXEC program·name['{library-name}][,[±]switch·priority][,ABNORM=label]
YRUN
YLOD

The label that you specify with the ABNORM parameter corresponds to the symbol (in
the label field) of the job control statement that is the target of the skip. Since
ABNORM is a keyword parameter rather than a positional parameter it may be coded in
any position. For example:

II EXEC MYPROG,ABNORM=ERR
or

II EXEC MYPROG,MYLIB,ABNORM=ERR

Now consider the following job control stream:

II JOB MYJOB
II DVC 20
II EXEC MYPROG,ABNORM=ERR
II QPR 'MYPROG TERMINATED NORMALLY'
II SKIP EOJ
//ERR QPR 'MYPROG TERMINATED ABNORMALLY'
//EOJ NOP
!&

Should MYPROG contain errors that will cause abnormal termination, the ABNORM
parameter in this example specifies a skip to the job control statement with the label
ERR. In this case the message MYPROG TERM I NA TED ABNORMALLY will be displayed
on the system console. If MYPROG terminates normally, this skip will not occur.
Instead, the console message MYPROG TERMINATED NORMALLY will be displayed.

Remember, if the operator issues a cancel instruction for your job, the job still
terminates normally, even though you've specified the ABNORM= parameter.

6.23. DYNAMIC SKIP FUNCTION FROM A WORKSTATION

The interactive user can change control stream execution from the workstation by
dynamically skipping parts of the control stream. This is accomplished through the
OPTION QUERY job control statement (6.10). When a control stream containing the
OPTION QUERY job control statement is processed, a message is displayed at the
workstation screen asking you to indicate the type of skip function you want.

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

6.24. SUBSTITUTING EMBEDDED DATA

6-64

Data can be embedded within a stored control stream, but there may be times when
not all of this is used. For example, you may have a payroll application using a file with
the names and pay rates of all the employees. The first quarter of the file may consist
of salaried employees, and the remainder is the hourly employees. This job is run every
week, but the salaried employees only get paid every two weeks, so you don't need to
use their portion of the file on every run.

You can place job control statements within the embedded data to control this. By
using the SCAN parameter in the OPTION job control statement, the embedded data is
scanned to detect and act upon the job control statements embedded in the data. Thus,
the data you do not want is skipped. If the OPTION job control statement is omitted,
the job control statements are passed over without action.

The following rules are used by the run processor, and must be followed when placing
job control statements in embedded data:

• There can be only one job control statement per card.

• Job control statements cannot be on the same card as data.

• The job control statement must be the target of an IF or GO job control statement.

When scanning embedded data for job control statements, two situations exist:

1 . Embedded data is scanned when the OPTION job control statement is not present
in the following manner:

• Data is divided into sets - a particular /* job control statement is paired with
its corresponding /$ job control statement in order to determine the true end
of embedded data. The number of /* and /$ job control statements must be
equal.

• The FIN job control statement and the END proc definition statement are acted
upon when detected.

2. If the SCAN parameter of the OPTION job control statement is used, the following
job control statements are also acted upon:

CR

GBL

GO

IF

•

•

•

•
UP-8065 Rev. 9

JSET

NOP

OPTION

SPERRY UNIV AC OS/3
JOB CONTROL

6-65

We'll discuss replacing embedded data sets in a saved, translated job control stream in
6.25.

6.25. REPLACING EMBEDDED DATA SETS IN EXPANDED CONTROL STREAMS

Embedded data in a saved translated control stream can be replaced for only one run of
the job. The replacement data must be preceded by a / / DAT A STEP statement and
submitted from a card reader, data-set-label diskette, or an input spool file. The format
of the DAT A STEP statement is:

II DATA STEP=nnn

The nnn parameter is a decimal number in the range 1-255 that specifies the number of
the job step within the job for which you're submitting new embedded data. Step one,
for example, is specified like this:

• II DATA STEP=1

•

The DAT A STEP statement is followed by a PARAM statement (if needed), the
start-of-embedded-data statement (/$), the new data set, and the
end-of-embedded-data statement (/*). If the job step specified in // DATA STEP has
more than one data set, you must replace the old data sets in the job step with an
equal number of new data sets. If you don't, an error occurs and the function is not
performed. For example, let's say you want to replace the embedded data sets (two of
them) in job step 3 of your job with new data sets. You would prepare these
statements:

II DATA STEP=3
1$

I*
/$

I*

new embedded data

new embedded data

-- --

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

6-66

A DAT A STEP statement must be submitted for each job step that contains embedded
data you want to replace. If your job has four job steps, for example, and you want to
replace the embedded data sets in steps 2 and 4 with new data, you would prepare
these statements. For this example, assume step 2 has one data set and step 4 has
two data sets:

II DATA STEP=2
/$

new embedded data
/*

II DATA STEP=4
/$

new embedded data
/*
/$

new embedded data
/*

Since the DAT A STEP sequence of statements (including the new embedded data) are
submitted to the saved, translated stream from a card reader, diskette, or spool file,
you must use the SI command or the / / CC SI job control statement to initiate the
running of the saved translated stream.

The data sets you submit through the DAT A STEP statement last for the duration of
the run only because the copy of the job's YRUN file stored in YSAVE contains a
copy of the original embedded data. To permanently change a saved, translated stream,
submit a new stream to be translated and saved.

6.26. JOB CONTROL CONSIDERATIONS FOR SCREEN FORMAT SERVICES,
MENU SERVICES, AND DIALOG PROCESSING

If you are preparing a control stream for a job that uses screen format services, menu
services, or dialog processing, you must include the USE statement in your workstation
device assignment set. The USE statement has different formats depending on which of
the three interactive components your job uses. Only one USE statement may be
specified in each workstation device assignment set.

6.26.1. The USE Statement for Screen Format Services

When your program needs to use screen format services from a workstation, the USE
statement you specify takes this form:

//[symbol] USE SFS ['l[format-file-LFD-1]/[format-file-LFD-2])]
format-file-LFD •••:

[,initial-screen] ['{;~n}]

[,screen-format-1=alias-1[, ... ,screen-format-12=alias-12]]

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

6-67

• The symbol parameter is used as the target of a branching statement, is one to six
alphanumeric characters long, and the first character must be alphabetic.

-

In the first positional parameter, you can provide an LFD name for up to two screen
format files. Any name you use must match an LFD name specified in a previously
defined device assignment set for a screen format file. (Screen format files are always
MIRAM files.) The format-file-LFD is one to eight alphanumeric characters long.

When coding this parameter, remember the following:

• If you omit a format-file-LFD name, it is assumed that all screen formats used
reside in the system file YFMT.

• If you code /format-file-LFD-2 alone, YFMT is examined first then the file
indicated by format-file-LFD-2.

• If you code format-file-LFD-1 I alone, the file indicated by format-file-LFD-1 is
examined first, then YFMT.

• If you code format-file-LFD alone, only the file indicated by format-file-LFD is
examined.

The initial-screen parameter specifies the name of the first screen format to be used by
the application program. It is one to eight alphanumeric characters in length. Use of this
parameter depends on the program's language. For more information, see the screen
format services concepts and facilities manual (current version).

The nnn parameter specifies the number of screens to be resident in main storage at
one time, in the range 1 to 255. The default value is 1.

The screen-format=a/ias parameter equates a screen format name specified in an
application program (alias) to the actual screen format name generated by the screen
format generator. A maximum of 12 alias name sets may be specified. The
screen-format name and alias name may each be from one to eight alphanumeric
characters in length.

The control stream for a job that uses screen format services could include these job
control statements:

II JOB YOURJOB

II DVC 50
II VOL ABC

II LBL FRMTF I LE } Device assignment set for the screen

II LFD FORMAT format file

(continued)

UP-8065 Rev. 9

II DVC 200
II USE SFS,FORMAT
II LFD WORKS TN[

II EXEC PRGRM2
I&

SPERRY UNIV AC OS/3
JOB CONTROL

} Device assignment

workstation

set for the

., Screen format file LFD name

6-68

When you run YOURJOB, PRGRM2 is executed. PRGRM2 contains an instruction to
open WORKSTN, which opens the screen format file FORMAT.

For more information about screen formats, see the screen format services concepts
and facilities manual.

6.26.2. The USE Statement for Menu Services

When your program needs to use menu services from a workstation, the USE
statement you specify takes this form:

//[symbol]
USE MENU [, ~~t~- ~; ~:~~ '. ~ :: ,;;~ ~; q l

[,initial-menu]['{ Inn}]

[,menu-format-1=alias-1[,- .. ,menu-format-12=alias-12]]

The USE MENU statement is similar to the USE SFS statement except that the
parameters refer to menu formats instead of screen formats.

The symbol parameter is used as the target of a branching statement, is one to six
alphanumeric characters long, and the first character must be alphabetic.

The first positional parameter provides an LFD name for up to two menu format files.
Any name you use must match· an LFD name specified in a previously defined device
assignment set for a menu format file. {Menu format files are always MIRAM files.) The
menu-file-LFD is one to eight alphanumeric characters long. When coding this parameter,
remember the following:

• If you omit a format-file-LFD name, it is assumed that all menus used reside in the
system file YFMT.

• When you code /menu-fi/e-LFD, YFMT is examined first then the file indicated by
menu-fi/e-LFD.

• When you code menu-fi/e-LFD/, the file indicated by menu-file-LFD is examined
first, then- YFMT.

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

6-69

The initial-menu parameter specifies the name of the first menu format to be used by
the application program. It is one to eight alphanumeric characters in length.

The nnn parameter specifies the number of menus to be resident in main storage at one
time, in the range 1 to 255. The default value is 1.

The menu-format=alias parameter equates a menu format name specified in an
application program (alias) to the actual menu format name (given when the menu was
created). A maximum of 12 alias name sets may be specified. The menu-format name
and alias names may each be from one to eight alphanumeric characters in length.

The control stream for a job that uses menu format services could include these job
control statements:

II JOB YOURJOB

II DVC 50
II VOL ABC
II LBL MENUFILE
II LFD MENU1

II DVC 200
II USE MENU,MENU1
II

}

)

Device assignment set for the menu

format file

Device assignment set for the

workstation
LFD WORKSL

.__ ________ .,.., Menu format file LFD name

II EXEC PRGRM1
!&

When you run YOURJOB, PRGRM 1 is executed. PRGRM 1 contains an instruction to
open WORKSTN, which opens the menu format file MENU 1 .

For more information about menu services, see the menu services concepts and
facilities manual.

6.26.3. The USE Statement for Dialog Processing

When your job needs the dialog processor to manage a dialog session at a
workstation, the USE statement you specify takes this form:

//[symbol] USE DP,dialog-name[,printer-lfd][,new-audit-lfd][,old-audit-lfd]

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

6-70

The files specified in the USE DP statement must have been previously identified
(through device assignment sets) in the control stream.

The symbol parameter is used as the target of a branching statement. It is one to six
alphanumeric characters in length, with the first character being alphabetic.

The dialog-name parameter specifies the name of the dialog you want to use; it must
match the LFD statement of the dialog file's device assignment set. It is one to eight
alphanumeric characters in length.

The printer-lfd parameter specifies the name of the printer file. It must match the LFD
statement of the printer's device assignment set. It is one to eight alphanumeric
characters in length. This parameter is specified when you want to produce a printed
summary of the dialog session.

The new-audit-lfd parameter specifies the name of the new audit file output by the audit
version of the dialog processor. It must match the LFD statement of the new audit file's
device assignment set. The new audit file contains a record of your responses to a
current dialog session. This parameter is one to eight alphanumeric characters in length.

The old-audit-lfd parameter specifies the name of the old audit file used as input to the
audit version of the dialog processor. It must match the LFD statement of the old audit
file's device assignment set. It is one to eight alphanumeric characters in length. The old
audit file contains a record of your responses to a previous dialog session.

The control stream for a job that calls the dialog processor could contain these job
control statements:

II JOB MYJOB

I DVC 20

II LFD PRNTR

II DVC 50

II VOL DSK01
II LBL NEWAUDITFILE
II LFD AUDIT1

} Device assignment set for the printer

}
Device assignment set for the new

audit file

(continued)

UP-8065 Rev. 9

II DVC 51
II VOL DSK02
II LBL DIALOGFILE
II LFD DIALOG1

II DVC 200

SPERRY UNIVAC OS/3
JOB CONTROL

}
Device assignment set for the

dialog file

II USE DP,DIALOG1,PRNTR,,AUDIT1
II LFD WKSTN }

Device assignment set for the

workstation

II EXEC PRGRM1
!&

-----~ New audit file lfd
....._ ________ Printer lfd

Dialog name

6-71

When you run MY JOB, PRGRM 1 is executed. PRGRM 1 contains an instruction to open
WKSTN, which, when processed, causes DIALOG1 to execute at the workstation. Your
responses to DIALOG 1 are routed back to PRGRM 1 .

For more information about dialog processing see the dialog processor user
guide I programmer reference.

6.27. SOURCE MODULE ACCESS VIA THE USE STATEMENT

If your system supports consolidated data management, your programs can write
(create) or read a source module that you identify in the USE LIB job control statement.
When included in the device assignment set for a library file, 11 USE LIB indicates that
the file contains source modules and the specified module will be accessed by your
program.

The format for I I USE LIB is:

//[symbol] USE LIB,module-name

The module name you specify can be from one to eight alphanumeric characters long
and the first character must be alphabetic. The following job control stream indicates
that PROG 1 will access a source module named MODULE 1 .

UP-8065 Rev. 9

II JOB READMOD

II DVC 50
II VOL 01234
II LBL SRCLIB1
II USE LIB,MODULE1
II LFD SRCMOD

II EXEC PROG1
I&

NOTE:

SPERRY UNIV AC OS/3
JOB CONTROL

6-72

Access of a source module by your program is limited to either a sequential read or
sequential write operation.

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

7-1

7. Run-Time Conditional and Set
Symbol Job Control Statements

7.1. RUN-TIME CONDITIONAL JOB CONTROL STATEMENTS

GO, IF, and NOP are run-time conditional job control statements. They allow you to
branch to other job control statements in the control stream. Unlike SKIP job control
statements (effective during execution of your program), they are interpreted and acted
upon while the run processor is scanning the control stream, and then stripped from the
stream. Therefore, any devices and volumes specified on the bypassed job control
statements need not be available. Only forward branches are allowed for run-time
conditional statements. Because GO, IF, and NOP are processed only by the run
processor and their actions are completed when the run processor has acted upon
them, they are extremely useful when writing job control procedure Oproc) definitions .

7 .1 .1 . Unconditional Branching

The GO job control statement causes an unconditional branch to another job control
statement identified by a symbol. The destination can be a set symbol with a value
determined when the job stream is analyzed.

The format of the GO job control statement is:

//[symbol] GO destination

The symbol is only used when this job control statement is the target of another GO or
IF job control statement.

The destination parameter identifies the target job control statement and must agree
with the symbol in the label field of that statement.

Like the other run-time conditional statements, the GO job control statement is acted
upon by the run processor, before a job is scheduled, and then deleted from the control
stream. For this reason, the devices and volumes skipped by a GO statement need not
be available when the run symbiont is scanning the control stream .

UP-8065 Rev. 9

NOTE:

SPERRY UNIVAC OS/3
JOB CONTROL

7-2

Unlike GO, SKIP is effective during the execution of a program. Because a job is not
executed until all the devices and volumes it uses are available to the system, devices
and volumes bypassed by SKIP must be available or the job won't be scheduled.
However, devices and volumes bypassed by a SKIP statement can't be referenced in
subsequent job control statements in the control stream because, even though they are
available, they have not been completely identified to the system.

The following is a stored control stream similar to the one shown with the SKIP job
control statement (6. 2 1).

II JOB BALANCE
II CR
II DVC 90
II VOL MAST01
II LBL DETAILS
II LFD TAPEIN
11 GO DOIT
//CARD DVC 30
II LFD CARDIN
I /DOIT EXEC ED IT
!&
II FIN

If the input is on cards, you would place the following stream in the card reader:

II GO CARD
II FIN }
/*

data cards }

Job control statements inserted in the stored stream

when I/ CR is encountered.

Input card file

When the first CR job control statement from the stored control stream is encountered
by the run processor, it transfers control to the card reader, where the GO job control
statement causes the device assignment set for the tape to be skipped without any
processing. The tape volume and the device that would use it do not have to be
available. Therefore, they can be used by another job. If the input is on tape, a FIN job
control statement is all that's needed in the card reader. The tape device assignment
set would be read, and the stored GO job control statement would cause the device
assignment set for the card reader to be bypassed.

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

7-3

• 7 .1 .2. Conditional Branching

•

•

The IF job control statement causes a conditional branch to another job control
statement, depending upon certain test conditions. This is similar to using the SKIP job
control statement conditionally, except that it's interpreted and acted upon by the run
processor, just like the GO job control statement.

The format of the IF job control statement is:

//[symbol] IF Ca op b)destination

The symbol is only used when this job control statement is the target of another GO or
IF job control statement.

The test for a conditional branch is specified as (a op b), where a and b are the two
operands to be compared. You can compare two numeric operands (1 op 2) or two
alphabetic operands (a op b) but a run processor error results if you attempt a
comparison between one numeric and one alphabetic operand (1 op b).

The op in the expression is the relational operator that specifies the type of comparison
to be done. The values for op are:

EO - a is equal to b

NE - a is not equal to b

GT - a is greater than b

LT - a is less than b

GE - a is greater than or equal to b

LE - a is less than or equal to b

Remember, whenever you enclose an operand in quotes, the quotes are considered a
part of the operand. For example, ('a' EO a) is an allowable comparison but the
operands are not equal because one value is 'a' and the other is a. (See 7 .2.3 for
information concerning set symbols in quotes.)

The operands are separated from the relational operator by spaces and the entire
parameter is enclosed within parentheses .

UP-8065 Rev. 9

NOTE:

SPERRY UNIV AC OS/3
JOB CONTROL

7-4

If a numeric comparison is made and neither a nor b is numeric, both the greater than
and less than conditions are set, resulting in all conditions except equal being allowed
to branch. If a character compare is being used and the two operands are not of the
same length, then the comparison is made on the number of characters present in each,
rather than on the contents of the operands. Thus, a string of five characters will
always be less than a string of six characters, regardless of the character content of the
comparands. If you have specified 11 OPTION UNEQUAL, an error message is generated
whenever character strings of unequal length are compared. (See 6. 10.)

The destination parameter identifies the target job control statement that will receive
control if the transfer condition is true. This entry must agree with the symbol in the
label field of the target job control statement.

When scanning for the target job control statement, only the FIN job control statement
is acted upon. Therefore, you cannot branch out of the current job stream; any
procedure calls or CR job control statements that are skipped are not acted upon.

The comparand fields may be variable symbols, or dummy arguments, that can be set
in a jproc definition. They're called dummy arguments because the variable symbol can
be modified when called by the jproc call.

Let's look at an example. At first, this example will not be totally clear, but when
combined with the explanations of the remaining job control statement in this section
and the jproc definitions in the next section, it will become clearer. The only purpose
here is to explain how the IF job control statement functions.

Consider this example:

II IF C1 &IN 1 EQ 1 N1)EXIT

This job control statement is in a jproc definition. When the PROC directive was written,
it contained a parameter called IN. The ampersand of &IN identifies this as a variable
symbol; this means, use the value of the IN parameter. EQ is the relational operator. N
is a value that can be supplied as a value for IN. Thus, if the value specified by the IN
parameter is equal to N, transfer control to the destination supplied by the next
parameter, which is EXIT. If IN is not equal to N, control is transferred to the job
control statement immediately following the IF job control statement. Note in the
example that spaces precede and follow both IF and the operator EO. Note also the
lack of spaces between the parentheses and the '&IN' and 'N' terms and the lack of
spaces or a comma before the word EXIT.

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

7-5

• 7 .1 .3. Providing Targets for Branching

•

•

The symbols in the label field of the job control statements provide the targets for
branching job control statements. But the /$, /*, and /& job control statements don't
have a label field. You may also want to branch to the end of a jproc, which is an END
directive. This doesn't have a label field that can be accessed by a branching job
control statement. The NOP job control statement allows you to branch to an otherwise
unaccessible position in the control stream.

The format of the NOP job control statement is:

//symbol NOP [QUERY]

This job control statement provides a target for a branching job control statement. The
symbol must agree with the target defined in the sending job control statement. The
optional QUERY parameter is used when you want to take advantage of the
label-skipping facility of / / OPTION QUERY. This facility is available to workstation
users and console operators.

The following is an example, based on the IF job control statement example (7.1.2.),
and using the END directive as the target (it's still within a jproc definition):

11 EXEC LISTX
II IF C'&IN' EQ 'N'>EXIT
II PARAM SPACE=TWO
//EXIT NOP

END

Notice that the IF job control statement was placed afer the EXEC job control
statement. This is allowable since it's a run-time conditional job control statement,
which is acted upon by the run processor, and then stripped from the control stream.

NOTE:

You can use the NOP statement to place comments in your control stream. The
comment is used in place of the QUERY parameter, is separated from the NOP
statement by one or more blanks, and is enclosed in single quotes. When used for this
purpose, the NOP statement does not have to be the target of a branching statement .

UP-8065 Rev. 9

7 .2. RUN-TIME SET SYMBOLS

SPERRY UNIV AC OS/3
JOB CONTROL

7-6

A set symbol is a type of variable that can be set to a value and used by the run
processor as a counter, switch, or value to control a job. Because the run processor is
responsible for making set symbols effective, they are called run-time set symbols.
There are two types of set symbols:

• GLOBAL

A global set symbol, once declared, can be referenced anywhere in the basic
control stream as well as in any jproc definition the control stream calls.

• LOCAL

A local set symbol can only be declared and referenced within a jproc definition. (If
a local and a global set symbol have the same name, the local symbol is used
within the jproc.)

You use the following to declare run-time set symbols.

• // GBL, // OGBL, RUN/RV (command), // RUN/RV

Declare global set symbols only.

• /I JSET

Declares local set symbols and (if specified in a basic control stream after / / GBL
or I I OGBL) can be used to supply or change the value of a global set symbol
(without changing the symbol's status to local).

7 .2.1. Global Status Set Symbols

The GBL job control statement can be used to declare global set symbols. This
statement may appear anywhere in the control stream, and the symbols are global from
the point of declaration forward.

The format of the GBL job control statement is:

ll[symbol]GBL set-id-1[=init-1][,set-id-2[=init-2], ... ,set-id-n[=init-n]]

The set-id parameter specifies the name of the set symbol. The init parameter assigns a
value to the set symbol provided a value has not already been assigned. For example:

II JOB MYJOB

II GBL PRNTR=20

•

•

•

•
UP-8065 Rev. 9 SPERRY UNIVAC OS/3

JOB CONTROL
7-7

The set symbol defined in the preceding / / GBL statement is PRNTR and the value of
PRNTR (&PRNTR) is 20. The value 20 is substituted any time you reference this symbol
by &PRNTR later in the control stream, or in any jproc the control stream calls. For
example:

II JOB MYJOB

II GBL PRNTR=20

II DVC &PRNTR
II LFD PRTFIL

I&

NOTE:

}
The value 20 is substituted for &PRNTR when the

run processor encounters this statement. The

result is // DVC 20.

The & used when referencing a set symbol is never used when defining the set symbol
• in the GBL job control statement.

•

The value assigned by the init (value) parameter is used only if a value is not assigned
by a preceding / / GBL statement; is not assigned in the RUN/RV command (the
RUN/RV job control statement if you're initiating one job from another); is not changed
later in the control stream by a // JSET statement. Consider the following:

II JOB MYJOB

II GBL PRNTR=20

II GBL PRNTR=26

The value assigned by the first GBL job control statement applies for the entire control
stream any time &PRNTR is referenced. The second GBL job control statement does not
result in an error condition but has no effect on the value of PRNTR. (You can use a
JSET job control statement in place of the second GBL job control statement to change
the value of PRNTR. JSET is discussed in 7 .2.2.)

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

7-8

The effect of specifying a global set symbol and value in the RUN/RV command is as if
/ / GBL is inserted directly after the I/ JOB statement in the control stream. If, for
example, you use RV MYJOB,,PRNTR=26 to initiate a job, // GBL PRNTR=26 is
considered the first statement in the stream. You can reference &PRNTR any place in
the job stream and the run processor will substitute the value 26. Consider the
following:

II JOB MYJOB

11 DVC. &PRNTR }
11 LFD PRTFIL

NOTE:

The global set symbol PRNTR was defined and given

a value of 26 in the RUN/RV command. The run

processor substitutes 26 for &PRNTR resulting in

II DVC 26.

R~member to include a 11 OPTION SUB statement in your control stream if you want
values substituted for set symbols referenced in embedded data.

If you include a I I GBL statement for PRNTR in your control stream specifying one
value, and initiate that stream with a RUN/RV command specifying another value for the
same symbol, the value specified on the RUN/RV command is used. If, for example,
you use RV MYJOB,,PRNTR=26 to initiate the following stream:

II JOB MYJOB

II GBL PRNTR=20

II DVC &PRNTR
II LFD PRTFIL

the value 26 is substituted for &PRNTR. The value 20 is used only if you don't supply a
value for PRNTR in the RUN/RV command.

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

7-9

Whenever you specify a set symbol in the // GBL statement without a value (e.g., //
GBL PRNTR), you must use the RUN/RV command to supply the value, or provide a
value using the // JSET statement before the symbol is referenced. Otherwise, the
value of the symbol is considered null. This may or may not be desired. Consider the
following GBL job control statement:

II GBL PRNTR,TOKEN=DKIN

This statement declares global status for the set symbols PRNTR and TOKEN. The value
of TOKEN is OKIN. The value of PRNTR was previously defined in the RUN/RV
command, will be defined later in a JSET job control statement before &PRNTR is
referenced, or is a null value.

When coding the GBL job control statement, you cannot use the statement
continuation; specify separate // GBL statements.

With the QGBL job control statement, interactive users can declare global set symbols
in a job control stream and then specify values for those symbols through the
workstation at job run time. The format of the OGBL job control statement is:

//[symbol] QGBL set-id-1[=init-1][,set-id-2[=init-2], ... ,set-id-n[=init-n]]

The set-id parameter may be a maximum of eight characters and the init (value)
parameter may be a maximum of 60 characters. When you run a control stream
containing a / / OGBL statement, the specified set symbol is displayed at the
workstation and you're asked to provide a value for the set symbol. A null response
may indicate that a (default) value specified in the QGBL statement is valid. Suppose
you build a job control stream that includes these statements:

II JOB MYJOB
II QGBL DVC=20
II DVC &DVC
II LFD PRNTR

!&

When you initiate the control stream (RV MY JOB) and the run processor encounters the
// QGBL statement, the following is displayed on the workstation screen:

03 ? JOB=MYJOB SYMBOL=DVC VALUE=20 *ENTER VALUE

If you don't enter a value on the following line (e.g., 03 22, indicating a specific printer),
the value specified in the / / OGBL statement (20) is substituted for &DVC .

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

7-10

Suppose you write the following job control stream to prep a data-set-label diskette:

II
II
II
II
II
II
II
II
II
1$

I*
I&

JOB PREPDSL
QGBL ADDR,VSN,RCSZ,SPIRL,IPL
DVC 20
LFD PRNTR
DVC 130,&ADDR
VOL XCNOV)
LFD DISKIN
OPT ION SCAN, SUB
EXEC DSKPRP

SERN=&VSN,RECSZ=&RCSZ,SPIRL=&SPIRL,IPLDK=&IPL
VOL1

The / / QGBL statement declares five global set symbols. One is referenced in the DVC
statement for the diskette device. The other four are referenced in the embedded data.
(The embedded data consists of keyword parameters whose values provide necessary
information for the diskette to be prepped.) When you initiate the job at your
workstation using RV PREPDSL, and the run processor begins job processing, the
following occurs:

• A workstation screen display asks you to supply values for each of the set
symbols declared by the / / QGBL statement. For example:

JOB=PREPDSL SYMBOL=ADDR VALUE IS NULL *ENTER VALUE

(Assume that 320, DK001, 128, Y, and Y are the values you specify for ADDR,
VSN, RCSZ, SPIRL, and IPL, respectively.)

• When DVC 130,&ADDR is encountered, the run processor substitutes the value
320 resulting in // DVC 130,320. (Had a null response been entered, then a
physical device would not be assigned.)

• When the embedded data is encountered, the run processor substitutes the
specified values (provided, of course, you included a I/ OPTION SUB statement in
the job control stream) resulting in

SERN=DK001, RECSZ=128, SPIRL=Y, and IPLDK=Y.

For information about prepping diskettes, see your systems service programs (SSP) user
guide.

If global symbols declared by /I OGBL are given values through any other means (a
RUN/RV command, a // GBL statement in the control stream, a // JSET statement in
the control stream). you won't be asked to submit a value at the workstation even
though the stream includes a / / QGBL statement.

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

7-11

• 7.2.2. Local Status Set Symbols

•

•

The JSET job control statement can be used to define a local set symbol or to change
the value of a global set symbol without changing its status to local.

The format of the JSET job control statement is:

//symbol JSET value

The symbol specifies the name of the set symbol. The value of this set symbol is
coded as the value parameter. It may be a character string up to eight characters long
enclosed by apostrophes, if it contains blanks. For example:

//PRNTR JSET 20 The symbol PRNTR

is given a value of 20.

Now, consider the following:

//PRNTR JSET &DEVICE

In this statement, PRNTR will have whatever value is given to DEVICE. The value for
DEVICE can be supplied via the RUN/RV command, in a preceding // GBL or I I OGBL
statement, in a jproc call, or even in / / JSET statement specified later in the control
stream (e.g., //DEVICE JSET 20).

The value can also be a simple 2-term expression such as &A +&B. The operations
allowed in a 2-term expression are:

Operator Description

II Covered quotient, A/ /B is equivalent to (A+ 8-1) /B.

I A/B means arithmetic quotient of A and B.

* A *B means arithmetic product of A and B.

A-B means arithmetic difference of A and B.

+ A+ B means arithmetic sum of A and 8.

** A **B means logical product AND of A and B.

++ A++ B means logical sum OR of A and B.

A--B means logical difference XOR of A and B .

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

7-12

Whenever you're performing an operation using a JSET statement, the operands upon
which the operation is to act must be numeric. Look at this example:

II GBL M=1,X=2
//MX JSET &M+&X

The result of this operation is MX = 3.

If both the operands are not numeric, the operation is not performed and the result is a
concatenation of the values. If M had been set with the value of A in the preceding
example, the result would have been MX=A+2. The operation would not have been
performed.

You can also use the JSET control statement to establish a null value. This can be done
by specifying either:

//symbol JSET

or

//symbol JSET 1 1

Leading zeros are not maintained for multiple-digit numeric values in a JSET control
statement. If a leading zero is required when the symbol is used, it must be created via
a second JSET control statement. For example, if you want the value of symbol P to be
08, assign another symbol (K in this example) the value of 0, like this:

//K JSET 0

Assign symbol P the value of 8, like this:

//P JSET 8

When P is referenced it must be prefixed by K. Thus, the value of &K&P is 08.

As mentioned earlier, when you define a set symbol in a jproc using // JSET, the
symbol is considered local and can only be referenced within the jproc. JSET, however,
also allows you to change the value of a global set symbol without changing it's status
to local. For example:

II JOB MYJOB

II GBL PRNTR=20

llPRNTR JSET 26
This statement changes &PRNTR to 26.

PRNTR is still a global set symbol.

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

7-13

If you define a global set symbol in the RUN/RV command or a GBL statement and you
don't specify a value (e.g., RV MY JOB,,PRNTR or // GBL PRNTR) you can simply use //
JSET to provide one or more values for PRNTR.

For example:

II JOB MYJOB

llPRNTR JSET 26

II PRNTR JSET 20

PRNTR was defined in the RUN/RV command or a

previous I I GBL statement. / / JSET assigns 26 for

the value of PRNTR. Any time the run processor

encounters &PRNTR, 26 is substituted until the

next // JSET is encountered.

This statement changes &PRNTR to 20. Any time the

run processor encounters &PRNTR. 20 is substituted

until the end of job.

7 .2.3. Specifying Set Symbol Values in Quotes

There are certain considerations you should take when assigning a value enclosed in
quotes to a set symbol.

Whenever you use I/ GBL or /I QGBL to assign a quoted value to a set symbol, the
quotes are always considered part of the value. For example:

II GBL X='ABC',Y=XYZ

The value of X (&X) in this case is 'ABC' while the value of Y (& Y) is XYZ. This is
worth remembering especially if &X will be involved in a comparison using the IF job
control statement (see 7 .1.2). If, for example, the value of X is set to ·ABC' as follows:

II GBL X= 1 ABC 1

the following statement represents a character comparison match:

II IF c&x EQ 'ABC')LABEL

This statement results in a branch to LABEL because the value of X is 'ABC' and the
value you're comparing X to is 'ABC'. Consider the following statement:

II IF C&X EQ ABC)LABEL

This is not a character comparison match because the value of X is still ·ABC' while the
value you're comparing X to is ABC .

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

7-14

A different situation exists when you use / / JSET to assign a quoted value because / /
JSET always removes one level of quotes (if any). Consider the following:

/IX JSET 1 ABC 1 The value of X (&X) is ABC

/IX JSET I ·ABC I I The value of X (&X) is 'ABC'

/IX JSET ABC The value of X (&X) is ABC

f /X JSET I 'ABC I I The value of X (&X) is 'ABC'

/IX JSET &x X is now ABC

This should also be considered when specifying a comparison with / / IF that involved a
quoted value assigned by I I JSET.

7 .2.4. Using Symbols to Examine Job and System Related Values and Facilities

Through the use of symbols, the INQ job control statement allows you to examine job
and system related values (such as job name, system time, and system date) or to
determine the availability of certain facilities (such as DDP and workstations).

The / / INQ statement has two formats:

//symbol INQ JOB,keyword
//symbol INQ SYS,keyword

You use I I INQ JOB to examine job related values and facilities and / / INQ SYS to
examine system related values and facilities. In both formats, symbol defines the
variable symbol which is set to a value specified by keyword.

The keyword ORI, for example, sets the value of the symbol X in the following
statement to the user-id of the job's originator (the workstation that initiated the job).

/ /X INQ JOB,ORI

If you refer to the value of X (&X) elsewhere in the job control stream, the user-id of
the originator will be substituted for that value.

Consider the following:

II JOB MYJOB

/IX INQ JOB,ORI
II OPR 1 DELIVER OUTPUT TO &X'OPERATOR

!&

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

7-15

If USERO 1 initiates the job, the run processor substitutes USERO 1 for &X so that the
operator receives the message 'DELIVER OUTPUT TO USER01 '. If USER02 initiates the
job, the operator receives the message 'DELIVER OUTPUT TO USER02'.

Suppose you want to execute a program that can receive input either from a
workstation or diskette. (Workstation entry is desired but diskette input will do if a
workstation isn't initiated for the job.) The 11 INO JOB statement, used with the
keyword WKS, allows you to determine whether a workstation is initiated for the job.
This way you can configure a job control stream that assigns a diskette device or a
workstation depending on the situation.

The keyword WKS sets the value of the symbol X in the following statement to either
1 or 0:

/IX INQ JOB,WKS

If the value of X is 0, it means that a workstation is not initiated for this job. If the
value of X is 1, a workstation is initiated for the job. With this in mind, consider the
following job stream:

II JOB MY JOB

/IX INQ JOB,WKS
II IFC&X EQ 0)DSKT
II DVC 200
II USE SFS
II LFD WKSTN
II GO NEXT
//DSKT DVC 130
II VOL A123
II LBL FILE1
II LFD INFO
//NEXT EXEC PROG1

!&

This job stream is configured so that the device assignment set for the workstation is
skipped if the workstation isn't initiated (connected to the job) and the device
assignment set for the diskette is skipped if the workstation is initiated. Table 7-1 lists
all of the keywords that you can use with // INO JOB and // INQ SYS .

UP-8065 Rev. 9

For /I INQ JOB

For I I INQ SYS

SPERRY UNIV AC OS/3
JOB CONTROL

Table 7-1. Keywords and Symbol Values for II /NO JOB and II !NO SYS

Keyword Value of Symbol

NAME The job name

ORI The user-id of the originator

HOST The host-id of the originator (null if none)

ORIO device-id of the originator if a local workstation

WKS 0 if workstation is not initiated
1 if workstation is initiated

DDP 0 if remote DDP is not initiated
1 if remote DDP is initiated

RES SYSRES volume serial number

RUN SYSRUN volume serial number

DATE The system date (YY /MM/DD)

TIME The system time (HH.MM.SS.)

HOST The system's own host-id

COM 0 if consolidated data management is not configured

1 if consolidated data management is configured

DDP 0 if DDP is not available
1 if DDP is available

WKS 0 if workstation support is not configured
1 if workstation support is configured

S/80 0 if not running on System 80
1 if running on System 80

7-16

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

7 .3. PRIORITIES AMONG SET SYMBOLS, KEYWORD PARAMETERS, AND
POSITIONAL PARAMETERS

7-17

External to a jproc definition, the only possibility of substitution is for set symbols.
Inside of a jproc definition, however, the possibility of a set symbol matching a
keyword parameter or positional parameter name does exist.

The positional parameter name is maintained as a separate entity. Global set symbols
are maintained in a single list. Keyword parameter names and local set symbols are
maintained together, with a new definition replacing the old. The effect of keyword
parameter names and local set symbols being maintained together is to force keyword
parameter names to local status if they are mentioned in JSET job control statements
within the procedure.

When it's determined that substitution should be performed, the following steps occur,
in the order given:

1. A comparison is made with the positional parameter name. This test is done first,
since there is one name with many values, but it's a relatively fast test. Care must
be taken to make the positional parameter name unique with respect to all set
symbols and keyword parameter names. A sublisted reference to a keyword
parameter cannot be distinguished from a reference to a positional parameter.

2. The list of local set symbols and keyword parameter names is scanned .

3. The list of global set symbols is scanned.

The result is that if a keyword parameter name matches a local or global set symbol
within a procedure, the following occurs:

1 . A reference to the name obtains the keyword parameter value up until the
occurrence of a JSET job control statement for the name.

2. From the point of occurrence of the JSET job control statement to the end of the
jproc definition, the value of the most recent JSET job control statement is used.

3. At the end of the jproc definition, the value reverts to the value of the global set
symbol at the time of entering the procedure.

NOTE:

Remember that set symbol substitution may increase the number of characters in a
value .

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

8-1

8. How to Write and Call a Job
Control Procedure Definition

8.1. THE BENEFIT OF PROCEDURE DEFINITIONS

Section 5 discussed the Sperry Univac-supplied job control procedure Gproc) call
statements. In this section, we'll discuss how to write your own jproc definitions and
how to call them.

A jproc definition is similar to an assembler procedure definition, which is explained in
the assembler user guide. However, the jproc definition is a series of job control
statements and procedure directives, as opposed to assembler instructions and
directives. It consists of a PROC directive, one or more NAME directives, a series of job
control statements, and ends with an END directive .

The PROC directive signals the beginning of the procedure, the NAME directive declares
a label by which the jproc can be called, and the END directive signals the end of the
jproc. Each time the series of job control statements is needed, a jproc call is used. Job
control then inserts the necessary job contol statements at the point where the jproc
call was placed. The jproc definition defines the coding and job control statements
needed for a particular operation, and the jproc call specifies the values for the variable
parameters of the jproc definition.

8.2. CODING RULES

The directives used in writing jproc definitions take this form:

LABEL LO. OPERATION LO. OPERAND

The label field extends from column 1 to column 8. At least one space must separate
the label field from the operation field, and also the operation field from the operand
field. Column 72 is used to indicate continuation, and columns 73 through 80 can
contain identification or sequence information .

UP-8065 Rev. 9

NOTE:

SPERRY UNIV AC OS/3
JOB CONTROL

8-2

For compatability with job control statements, you can precede the label field with two
slashes (//) in columns one and two. Jn this case the label field extends from column 3
to column 10.

The job control statements within a jproc definition follow the same conventions as
regular job control statements. These are listed in Appendix A.

The characters that are allowable in directives and job control statements are as
follows:

Letters
Special letters
Digits
Special characters

A through Z
? $ #@

0 through 9
+ - * I , = · blank () . > < & ! : ;

The terms you can use in the operand field of a directive may be symbols or character
strings, which are explained in the following paragraphs.

A symbol is a group of up to 240 alphanumeric characters used for parameter
identification and as labels. The first character must be alphabetic. Special characters or
blanks may not be contained within a symbol. The following are examples of valid
symbols:

V CARD AREA

GS279 R$1NTRN

DAVE

The $ of R$1NTRN is allowable, because ifs a special letter, not a special character.

For a symbol to be recognized by job control as a parameter identifier, it must be
immediately preceded by an ampersand.

The following are not valid symbols:

READ ONE embedded blank

SPEC'L special character

8AGN first character not alphabetic

The operand field in a NAME directive may be obtained by referencing the symbol p(O},
where p is the symbol used to reference any positional parameter in the definition. The
zero indicates the parameter of an operand field.

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

8-3

A character string can represent up to 252 valid characters, all of which must be
printable. Character strings containing embedded blanks or commas must be enclosed
in either quotation marks or parentheses. The enclosing quotation marks or parentheses
are considered part of the character string. Embedded quotation marks are not allowed
in the character string.

A null character string is represented by two consecutive quotation marks.

All parameter values are evaluated as character strings.

8.3. PARAMETER TYPES

Parameters are used to pass information from the jproc call to the jproc definition.
These parameters can be equated to values, symbols, or character strings, and may be
used to specify file identifiers, file names, volume serial numbers, etc.

There are two types of parameters: positional and keyword. Positional parameters are
identified by their position within the operand field of the jproc call; keyword parameters
are identified by the symbols assigned to them in the jproc directive. The rules for
specifying positional and keyword parameters with respect to position, order, omission,
and format are covered in Appendix A.

Both positional and keyword parameters may be sublisted. Thus, each operand of the
jproc call may represent one value or a series of values which may be referenced
independently. When a parameter is sublisted, the subparameters must be separated by
commas, and the entire list must be enclosed by parentheses.

For sublisted positional parameters, an operand would appear as:

Cval-1,val-2, ... ,val-n)

For sublisted keyword parameters, an operand would appear as:

key=(val-1,val-2, ..• ,val-n)

An omitted positional parameter in a jproc call takes the value of a null character string.
When a keyword parameter is given a value in the jproc definition, it takes that value if
the keyword parameter is omitted in the jproc call. When no value is given to a
keyword parameter in the jproc definition, it takes the value of the null character string
when omitted.

Now, let's explain the three jproc directives .

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

8.4. THE START OF THE JPROC DEFINITION

8-4

The PROC directive signals the start of a jproc definition. It defines the number and type
of parameters which may be specified in the jproc call.

The format of the PROC directive is:

LABEL !::,QPERATION!::, OPERAND

[[//]symbol] PROC [pos , n] [, k , ... , k]

The symbol is a dummy label of one to eight alphanumeric characters. It's used as an
entry point to the jproc definition when it's expanded and inserted into the control
stream. If the jproc call also has a symbol, it replaces the symbol of the PROC directive
when the jproc definition is called. If the jproc call has no symbol, the dummy label is
replaced by a null character string. The characters & . () · , + ~ / may not be
embedded in the symbol.

The pos parameter represents the symbol by which any positional parameter in the
body of the jproc definition is referenced. If this parameter is omitted, no positional
parameters can be used in the jproc call. The n is a decimal number that represents the
total number of positional parameters permitted in the jproc call. If omitted, zero is
assumed. If you omit the pos and n parameters in this directive (thereby indicating there
are no positional parameters), you must still code two commas before you can code
any keyword name values.

The k parameter represents the name or names used in referencing keyword parameters
and their default values (if any).

To preset a keyword value, the k parameter takes the form:

[,k-1=value, ... ,k-n=value]

In the following example, MOD1 is the symbol used as an entry point. One positional
parameter is allowed, and it's referenced by the symbol P in the jproc definition. There
are three keyword parameters allowed in the jproc call; PRINTER, INPUT, and OUTPUT.
If the PRINTER keyword parameter is omitted, it defaults to 20.

MOD1 PROC P,1,PRINTER=20,INPUT,OUTPUT
or

//MOD1 PROC P,1,PRINTER=20,INPUT,OUTPUT

8.5. NAMING THE JPROC DEFINITION

The NAME directive supplies the name by which a jproc definition is referenced. It must
immediately follow the PROC directive. More than one NAME directive can be used, but
all must be grouped at the beginning of the jproc definition. Each such NAME directive
specifies a different name for the same jproc definition. Multiple NAME directives allow
you to specify a different parameter in the operand field of each directive.

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

8-5

• NOTE:

•

•

You may not give a jproc any valid job control statement names (DVC, QGBL, etc.).

When you call the particular NAME directive on the jproc call, you can reference the
parameter of the NAME directive with p(O), where p is the symbol used to reference
positional parameters. This will be shown in an example, which should make this much
clearer.

The format of the NAME directive is:

LABEL D. OPERATION D. OPERAND

[//]symbol NAME pa ram

The symbol specifies the name of the jproc definition. This is the name that's used on
the jproc call to obtain the jproc definition. The param is a parameter or parameter
sublist that may be selected at job execution time.

Here's an example of this procedure:

MOD1 PROC P,1 //MOD1 PROC P,1
DUMPJOB NAME Y //DUMPJOB NAME Y
DUMPSYS NAME X //DUMPSYS NAME X
II GO LABEL&PC0> or II GO LABEL&PC0>
I /LABEL Y OPTION JOB DUMP I /LABEL Y OPTION JOB DUMP
II GO NEXT II GO NEXT
//LABELX OPTION SYSDUMP I /LABELX OPTION SYSDUMP
//NEXT NOP //NEXT NOP

This jproc definition has two names: DUMPJOB and DUMPSYS. Positional parameters
are referenced by the symbol P, so the parameter of the NAME directive is referenced
as P(O). Assume that DUMPSYS is the name used on the jproc call. The parameter on
this NAME directive is X. When the first GO job control statement is interpreted, it
would mean go to the job control statement with a symbol of LABEL&P(O). This &P(O)
references the parameter of the selected NAME directive. In this case, it's X. So X is
added to LABEL, giving the symbol LABELX. This job would have an OPTION
SYSDUMP job control statement inserted at execution time. The procedure would then
go to the next job control statement, the NOP.

If DUMPJOB is the name used on the jproc call, the parameter on the NAME directive
would be Y. When the GO job control statement is interpreted, it would mean go to the
job control statement with a symbol of LABEL Y (from the LABEL&P(O)). This job would
have an OPTION JOBDUMP job control statement inserted at execution time; the GO job
control statement means go to the job control statement with a symbol of NEXT. This
is the NOP job control statement; the OPTION SYSDUMP job control statement is
skipped .

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

8.6. ENDING THE JPROC DEFINITION

8-6

The END directive indicates the end of the jproc definition. Therefore, it's the last item
in a jproc definition. Everything between the PROC and END directives is considered to
be the body of the jproc definition.

The format of the END directive is:

LABEL b.OPERATIONb. OPERAND

[//]symbol END unused

and, added to the PROC and NAME directives of 8.5, looks like the following example:

MOD PROC P,1
DUMPJOB NAME Y
DUMPSYS NAME X

any
job control
statements

needed

END

If you are submitting embedded data as part of a jproc definition and the embedded
data contains the characters END, a special situation arises because the run processor
interprets the characters END as the END jproc directive. To avoid this problem, you
must use a I I GBL job control statement to replace the END characters in the
embedded data. This is an example:

I I OPTION SUB
II GBL X=END
II EXEC program-name
/$

&X

I*

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

8-7

• 8.7. CALLING JPROC DEFINITIONS

•

•

Once you've written and debugged a jproc definition, use the file symbiont to store it in
the job control stream library file (YJCS) or an alternate library file, and then call it
when you need it. Until that time, you can test it by placing the jproc definition within a
control stream and issuing a jproc call containing the name you supplied on the NAME
directive. (In this way, you can test a jproc without having to actually file it.) The jproc
definition is stored temporarily, in the job's YRUN file. We'll explain this in a little
more detail in 8.8.

To call the jproc, you use a jproc call in the control stream. When the run symbiont
encounters the jproc call, it searches the job's YRUN file, then the specified library
file for the named jproc definition, and then inserts the selected job control statements
from the jproc definition into the control stream at this point.

The format of the jproc call statement is:

//[symbol] procname [p1,p2, ... ,pn,ki=vi,kj=vj, ..• ,km=vm]

The symbol is a dummy label and is optional. When used, the symbol is substituted for
the symbol specified in the label field of the PROC directive.

The procname specifies the name of the jproc definition. This must be the same as that
specified in the label field of a NAME directive in the jproc definition being called .

The p represents positional parameters, and the k=v represents keyword parameters
and their values.

Positional parameters specified in a jproc call are associated with positional parameters
specified in job control statements in the body of the jproc definition. The PROC
directive specifies the number of positional parameters allowed.

All parameters specified in the jproc call must be separated by commas. Positional
parameters must precede any keyword parameters. When a positional parameter is
omitted, the comma must be retained to indicate the omission, except in the case of
omitted trailing positional parameters. When there are no positional parameters
preceding keyword parameters, two commas must precede the keyword parameters to
indicate the omission of the positional parameters.

Keyword parameters are identified by name, not by pos1t1on, so an omitted keyword
parameter does not require a comma to indicate its omission. Keyword parameters may
be specified in any order.

No more than one jproc call can be on a single line .

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

8.8. HOW JPROC DEFINITIONS ARE STORED

8-8

The file symbiont stores jproc definitions in YJCS or an alternate SAT library file
(1 . 7). The values to be used are not substituted for any preset values until the jproc call
is issued. Substitution then takes place, and the jproc definition is then considered to be
expanded.

A jproc definition may be called as often an necessary, or until it's deleted from the
library file.

The reading, verifying, and expanding of the entire control stream is a function of the
run symbiont.

A job input directly from a reader device may include jproc definitions in its control
stream. The jproc definition must appear in the control stream before any reference to it
is made. Therefore, if a jproc definition pertained to assigning devices to a job, it should
be placed before any device assignment sets. Such jproc definitions apply only to that
particular job; they aren't stored in YJCS or an alternate library file, they're stored
temporarily in the job's YRUN file. They also cannot be embedded within data.

Because the job's YRUN file is the first file searched for a jproc definition, by placing
a jproc definition in the job control stream you have the ability to test the jproc
definition without storing it permanently. You can also use this facility to temporarily
override a jproc definition that's already stored. Whenever a jproc definition being called
is found in the job's YRUN file, YJCS or the alternate library file is not searched.

A sample job using this facility would look like this:

II JOB TESTPROC
MOD PROC P,1
DUMPJOB NAME Y
DUMPSYS NAME X

any job control statements needed

END
II DUMPJOB
I&
II FIN

In this example, the jproc named as either DUMPJOB or DUMPSYS would be entered as
a temporary jproc definition, which is referenced later by the jproc call of 11 DUMPJOB.
Upon encountering the PROC directive, the run processor will file the statements up to
the END directive into the job's YRUN file, which is scanned when the jproc call is
encountered.

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

8-9

8.9. SPECIFYING AN ALTERNATE LIBRARY FILE TO BE SEARCHED FOR
JPROCS

The ALT JCS job control statement tells the run processor which alternate library file is
to be searched for jprocs. An alternate library file is one other than YJCS. / /
ALT JCS specifies an alternate library file to be searched for jprocs only, not job control
streams. An ALT JCS job control statement specification overrides an alternate library
specification on the RUN/RV command that initiated processing of the job control
stream.

You can specify multiple ALT JCS control statements in a control stream; the last library
file specified is searched for jprocs until the next ALT JCS statement is processed.

NOTE:

If your job control stream is in an alternate library, you cannot use the 11 ALT JCS
statement to specify a different library. You can only use it to specify the options FREE,
ONLY, OFF, or ON. (If the job stream is in YJCS, the 11 ALT JCS statement can
reference any alternate library.)

The format of ALT JCS is:

//[symbol] ALTJCS [file-Label-id]['{:~: 1~ [,rpw][{~:~~~ [,LUN=nnn]

[,vol-ser-noU OFF

•
The file-label-id is 1 to 44 alphanumeric characters long. It is optional if you're not
searching a new library, but changing the last parameter (FREE, ONLY, OFF, or ON) for
an alternate library already defined in a previous ALT JCS statement. We'll discuss these
options later. If you don't specify a file-label-id, you can't specify vol-ser-no or rpw.

The vol-ser-no parameter specifies the volume serial number of the disk where the
alternate library file resides. In System 80 this parameter can also specify the volume
serial number of a format-label diskette. RES, RUN, or the actual volume serial number
of the disk or diskette may be specified. If no vol-ser-no is specified, the cataloged
vol-ser-no is used; if it is not cataloged, RES is used.

The rpw parameter specifies a read password associated with the alternate library file.
It must be specified if the file is cataloged with a read password. It is ignored if no read
password exists for the file or if the file is not cataloged.

The ONLY, OFF, and ON parameters specify order-of-search options. ONLY specifies
that only the identified alternate library file is to be searched. OFF specifies that only
YJCS is to be searched. When OFF is specified, the alternate library file remains
open to the run processor and can be searched again by the use of the ON or ONLY
options. You specify this option if you no longer want an alternate library file searched
for jprocs. ON specifies that the identified alternate library file is to be searched first and
then YJCS. ON is the default option. FREE is equivalent to OFF, except that it also
frees the alternate device (from the run processor).

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

8-10

Using the LUN keyword parameter, you supply a logical unit number to indicate the
device type and characteristics for the alternate library. LUN is never specified unless a
volume serial number is also specified. It is especially useful in System 80 where either
a disk or format-label diskette can be the alternate library volume.

In System 80, the volume serial numbers for disk and format-label diskette are
syntactically the same. As a result, the system cannot determine if a disk or
format-label diskette is required unless the volume is already mounted, or unless you
use the LUN parameter. If you don't specify a logical unit number and if the proper
volume isn't already mounted, mount messages suggesting a disk drive, for example,
could be directed to the operator when a format-label diskette is actually required. The
LUN parameter helps avoid such confusion.

NOTES:

1. LUN is used only to determine the device type and characteristics. It has no
relationship to logical unit numbers used elsewhere in the job control stream.

2. Confusion with mount messages is also avoided if the DVC-LFD sequence for the
file is cataloged (see 6.9). By simply providing a file-label-id in the AL TJCS
statement, the correct volume serial number as well as device type is extracted
from the catalog (according to the label specified).

You can use the LUN parameter with Series 90 although the required device type for
the alternate library is always a disk.

You can identify alternate libraries for control streams and jprocs through the FILE
system console command and the RUN/RV workstation or console command.
Workstation commands are explained in the current version of the interactive services
commands and facilities user guide/programmer reference (current version). System
console commands are explained in the operations handbook for your system.

8.10. PARAMETER REFERENCING

The parameters of job control statements that require substitute values at execution
time must begin with an indicator of &.

For example, if, in the body of a jproc definition, you have a DVC job control statement
in which you wanted to vary the logical unit number, it could be coded as follows:

II DVC &PC2>

The P is an arbitrary symbol assigned by you in the PROC directive; the (2) indicates
that the logical unit number to be inserted is coded as the second positional parameter
on the jproc call. The parentheses around the 2 are required.

In this example,

II DVC &PC1,2)

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

8-11

the (1,2) indicates that the logical unit number to be inserted is coded as the second
subparameter under the sublist for the first positional parameter.

For each character string following the single ampersand, a substitution is made. If the
character string is invalid (not defined in the PROC directive), a null character string is
inserted.

Any job control statement may be continued between parameters, or between the
operation and the first parameter. No job control statement can exceed column 71. This
means that the total number of characters cannot exceed column 71, even after
substitution. The maximum of 71 characters includes embedded spaces. Column 72 is
used to indicate continuation.

The length of a single parameter is 242 characters. For positional parameters, this is
the value; for keyword parameters, it is the keyword and the value. If a parameter is
sublisted, the maximum length is decreased by 2 for each element of the sublist.

NOTE:

The maximum length of a single operand of a job control statement is 252 characters.
Thus, if you have a parameter of 242 characters, there are only 10 characters left for
other parameters.

Here are some examples .

Example 1:

In this portion of a jproc definition, we'll see how a value is given to the DVC job
control statement in the body of the jproc definition.

PROC POS,1
ACTI NAME

II DVC &POSC1>

END

Let's say that the jproc call is this:

II ACTI 10

the DVC job control statement that would be generated and inserted to the control
stream would be as follows:

II DVC 10

UP-8065 Rev. 9

Example 2:

SPERRY UNIVAC OS/3
JOB CONTROL

If part of the jproc definition looked like this:

PROC KEY1=90
ACT2.NAME

II DVC &KEY1

END

and the following jproc call was issued:

II ACT2 KEY1=20

this job control statement would be generated:

II DVC 20

8-12

If the jproc call was issued without the KEY1 parameter, the value of 90 set in the
jproc definition would be used.

Example 3:

This jproc definition has one positional and one keyword parameter, and two
NAME directives.

1. LAB PROC POS,1,KEY1=10
2. MASTER NAME 20
3. DETAIL NAME 30

4. //&LAB DVC &POS(0)
5. II DVC &POSC1>
6. II DVC &KEY1

END

•

•

•

•

•

•

UP-8065 Rev. 9

When this jproc call is issued:

llL1 MASTER 40,KEY1=50

SPERRY UNIVAC OS/3
JOB CONTROL

these job control statements are generated:

llL1 DVC 20
II DVC 40
II DVC 50

8-13

Line 4 in the jproc definition means to take the value of the parameter in the NAME
directive which matches the name on the jproc call - MASTER. So the first DVC
job control statement has a logical unit number of 20. Line 5 means to take the
value of the first positional parameter in the jproc call; the second DVC job control
statement has a logical unit number of 40. Line 6 means take the value of the
KEY 1 keyword parameter; the third DVC job control statement has a logical unit
number of 50. LI is specified by the jproc call as being the substitute value for the
symbol in the PROC directive. Line 4 will use this value. So, the first DVC job
control statement has a symbol of LI.

Example 4:

A parameter sublist may be referenced. This is done with a secondary level of
indexing, which is shown in the following example:

PROC POS,1,KEY=C10,20)
EXAM NAME (30,40)

1. II DVC &KEY(1)
2. II DVC &KEYC2)
3. II DVC &POSC0,1)
4, II DVC &POSC0,2)

END

When the following jproc call is used

II EXAM KEY=C50,60)

these job control statements are generated:

II DVC 50
II DVC 60
II DVC 30
II DVC 40

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

8-14

Line 1 of the jproc definition means use the first subparameter of the KEY keyword
parameter. The jproc call uses this keyword parameter, so its new values (50 and
60) override the values assigned in the jproc definition (10 and 20). Line 2 means
use the second subparameter of the KEY keyword parameter. Line 3 means use
the first subparameter on the NAME directive (0, 1), and line 4 means use the
second subparameter on the NAME directive (0 ,2).

Example 5:

A reference to a parameter may occur anywhere in the body of a procedure
definition. If the reference is the only field, and therefore naturally delimited, there is
not much likelihood of confusion. If the possibility of confusion exists, the reference
may be terminated with a period, which is a concatenation operation. The period is
dropped during the expansion of the control stream.

The following jproc definition has two keyword parameters: KEY 1 and LABEL;
neither has default conditions.

PROC KEY1,LABEL
COM NAME

II OPR &KEY1.IS&LABEL.1976

END

If this jproc call was used

II COM KEY1=TODAY-,LABEL=-MAY-14-

this would be generated:

II OPR TODAY-IS-MAY-14-1976

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

9-1

9. Using the Interactive
Job Control Dialog

9.1. THE FUNCTION OF THE JOB CONTROL DIALOG

The job control dialog is an interactive facility of OS/3 that guides you through the
process of building a job control stream or user jproc from a workstation. To begin a
job control dialog session, key in SC JC$BLD. This activates the dialog processor and
opens the job control dialog file. Dialog text is displayed at the workstation screen and
your responses to the dialog are entered at the workstation keyboard. The dialog
processor passes your responses to the system program JC$BLD, which creates your
control stream or jproc and stores it in the system file YJCS. The functions of the
dialog processor, which manages a dialog session, are detailed in the dialog processor
user guide .

NOTE:

If you encounter system errors when keying in SC JC$BLD, key in RV JC$BLD and
press XMIT. A short paragraph explaining RUN libraries is then displayed followed by
the question DO YOU WANT TO SAVE RUN LIBRARIES? (Y OR N). Key in Y so that
you 'II be able to enter the SC JC$BLD command without encountering any errors in the
future.

The job control dialog introduces the concept of job control and (if you're building a
control stream) presents job control statements in the form of menu items from which
you choose the statements you want. If you need a dialog concept or particular
statement explained, you can ask for help - by keying in HELP or a choice that
generates HELP screens. HELP screens explain the choice or statement parameters to
you. When you make a valid choice, the dialog resumes at the point where it was
interrupted. The HELP screen facility of the job control dialog can be used selectively
(statement-by-statement) so that you receive detailed explanations only when you need
them. More experienced users, then, can execute the dialog session quickly while still
being constrained to build syntactically correct statements. Figure 2-1 presents an
overview of the process of using the job control dialog to build a control stream or user
jproc .

UP-8065 Rev. 9

STEP 1

Key in the SC JC8BLD
command to initiate a
job control dialog session.

STEP 2

The dialog processor is
activated and the job
control dialog file is opened
in response to the command ...
begin executing the dialog.

STEP 3

The dialog processor routes
your dialog responses to the
system program JC$BLD.

STEP 4

JC$BLD uses your responses
to the dialog to build a job
control stream or user jproc
and stores it in YJCS.

SPERRY UNIVAC OS/3
JOB CONTROL

SC JC$BLD ...

DIALOG
PROCESSOR

DIALOG
PROCESSOR

DIALOG
RESPONSES

t

JC$BLD

Figure 9-1. Using the Job Control Dialog to Build a Control Stream or User Jproc

9-2

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

9-3

• 9.1.1. Building a Control Stream With the Job Control Dialog

•

•

Let's begin a sample job control dialog session. First, you perform the system LOGON
procedures described in the workstation user guide. Then, you key in SC JC$BLD and
its associated parameters. The first dialog screen looks like this:

DIALOG FOR JOB CONTROL

PROGRAM=
THIS DIALOG PREPARES A JOB CONTROL STREAM OR PROCEDURE
CJPROC). FOR AN EXPLANATION OF THE DIALOG PROCESS, ENTER
'HELP' IN THE SPACE PROVIDED. tl~k~

If you key in HELP, these screens are displayed:

NOTE:

THE DIALOG FOR JOB CONTROL IS A METHOD OF CONSTRUCTING
JOB CONTROL STREAMS AND PROCEDURES CJPROCS) USING COMPUTER
ASSISTANCE. PROMPTING FOR DATA ENTRY OR SELECTING FROM
AMONG AVAILABLE OPTIONS IS ALWAYS PROVIDED, AND YOU CAN
ASK FORMORE DETAILED EXPLANATIONS OF STATEMENTS,
PARAMETERS, AND OPTIONS. AFTER A STATEMENT IS COMPLETED,
THE IMAGE BUILT BY THE COMPUTER AS A RESULT OF YOUR CHOICES
IS DISPLAYED ON THE WORKSTATION SCREEN. YOU MAY ACCEPT IT
FOR OUTPUT, CORRECT IT, OR REJECT IT ALTOGETHER.

To proceed from one screen to the next, you usually press the transmit key. Whenever
necessary, a note will appear at the bottom of the screen reminding you to do this .

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

THE JOB CONTROL SETS ARE FORMED BY MAKING SELECTIONS FROM
MENUS OF AVAILABLE OPTIONS, AND ENTERING SOME TYPES OF
DATA DIRECTLY. THIS ALLOWS YOU AS MUCHFREEDOM IN YOUR JOB
CONTROL AS OTHER MEDIA, BUT AT THE SAME TIME PROVIDES
A STRUCTURE TO JOB CONTROL CREATION WHICH HELPS TO
PREVENT MANY COMMON ERRORS. REMEMBER, HOWEVER, THAT THE
DIALOG DOES NOT RECOGNIZE THE SAME JOB CONTROL ERRORS AS
THE RUN PROCESSOR. DIALOG ERROR CHECKING IS LIMITED TO
DIALOG OPERATION ERRORS, AND DATA TARGET MISMATCHES
(SUCH AS TRYING TO PUT ALPHABETIC DATA IN A STRICTLY
NUMBER FIELD).

The next screen asks what type of module you want to build:

JOB CONTROL MODULE TYPES

USE THIS MENU TO SELECT THE TYPE OF MODULE TO BE PREPARED:

1. JOB CONTROL STREAM

2. USER WRITTEN JOB CONTROL PROCEDURE CJPROC)

3. HELP
SELECT ITEM BY ENTERING NUMBER. IJll. __

9-4

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

• If you ask for HELP, these screens are displayed:

•

•

IN ORDER TO EXECUTE ANY JOB, IT IS NECESSARY TO CONVEY TO
THE COMPUTER EXACTLYWHAT YOU WANT TO DO, AND WHAT RESOURCES
(PRINTER, READER, DISKS, ETC) ARENEEDED. THIS IS ACCOMPLISHED
THROUGH THE USE OF JOB CONTROL. THERE ARE TWO TYPES OF JOB
CONTROL MODULES. THE COLLECTION OF JOB CONTROL STATEMENTS USED
TO RUN A JOB IS CALLED A JOB CONTROL STREAM, SOMETIMES REFERRED
TO AS THE JOB STREAM OR CONTROL STREAM. IN IT, THERE MAY BE JOB
CONTROL STATEMENTS, CALLS TO SYSTEM SUPPLIED PROCEDURES, AND THE
SECOND TYPE OF MODULE - USER-WRITTEN PROCEDURES (JPROCS) .

•
JOB CONTROL PROCEDURES HAVE TWO PARTS - THE DEFINITION
AND THE CALL. THE DEFINITION IS THE JPROC MODULE CREATED
BY THE DIALOG. THE CALL IS A STATEMENT IN THE CONTROL
STREAM WHICH HAS THE JPROC NAME AS THE COMMAND, AND
PROVIDES ANY NECESSARY PARAMETERS. THE JPROC CALL IS USED
AS AN ABBREVIATION TO PREVENT CODING THE DEFINITION MANY
TIMES. WHEN THE CONTROL STREAM IS PROCESSED, EACH CALL IS
REPLACED BY THE APPROPRIATE DEFINITION WHICH HAS BEEN PUT
AT THE BEGINNING OF THE STREAM OR STORED IN A SYSTEM FILE
(YJCS). THE RESULT IS THE SAME AS IF THE DEFINITION HAD
BEEN CODED INSTEAD OF THE CALL .

9-5

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

Once again, you're asked what type of module you want to build.

JOB CONTROL MODULE TYPES

USE THIS MENU TO SELECT THE TYPE OF MODULE TO BE PREPARED:

1. JOB CONTROL STREAM

2. USER WRITTEN JOB CONTROL PROCEDURE (JPROC>

3. HELP

SELECT ITEM BY ENTERING NUMBER __

9-6

You can ask that HELP screens explaining the choices be displayed again (by keying in
3), but let's assume you want to build a control stream. The next screen displayed is
the JOB control statement screen:

STATEMENT: JOB

FORMAT: //SYMBOL JOB JOBNAME,PRI,MINSTORE,MAXSTORE,TASKS,

TIME,OPTIONS,ACCT,BUFFERS,LOG,HDR

FUNCTION: THIS STATEMENT IDENTIFIES A JOB AND INDICATES
THE BEGINNING OF CONTROL INFORMATION FOR THE
JOB. THE SAME NAME IS GIVEN TO THE JOB'S RUN
FILE (SYSRUN).

IF YOU WILL NEED HELP WITH THIS STATEMENT, ENTER HELP.

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

9-7

What if you didn't need HELP screens? The job control dialog screens vary according to
the responses you make to the dialog. The initial screen is the same:

DIALOG FOR JOB CONTROL

THIS DIALOG PREPARES A JOB CONTROL STREAM OR PROCEDURE
CJPROC). FOR ANEXPLANATION OF THE DIALOG PROCESS, ENTER
'HELP' IN THE SPACE PROVIDED.

Because you don't need HELP screens to explain the dialog process, simply press the
transmit key to display the next screen. The next screen displayed is:

JOB CONTROL MODULE TYPES:

USE THIS MENU TO SELECT THE TYPE OF MODULE TO BE PREPARED:

1. JOB CONTROL STREAM

2. USER WRITTEN JOB CONTROL PROCEDURE CJPROC)

3. HELP

1

You key in 1, indicating that a job control stream is being prepared. The next screen
displayed (since HELP screens weren't requested) is the JOB control statement screen:

ST A TEMENT: JOB

FORMAT: //SYMBOL JOB JOBNAME,PRI,MINSTORE,MAXSTORE,TASKS,

TIME,OPTIONS,ACCT,BUFFERS,LOG,HDR

FUNCTION: THIS STATEMENT IDENTIFIES A JOB AND INDICATES
THE BEGINNING OF CONTROL INFORMATION FOR THE

-·

JOB. THE SAME NAME IS GIVEN TO THE JOB'S RUN
FILE (YRUN).

IF YOU WILL NEED HELP WITH THIS STATEMENT, ENTER 'HELP' .

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

9-8

As you can see, there is a big difference in the path the job control dialog takes,
depending on your responses to the dialog.

Let's take the dialog one step further. If you key in HELP in response to the JOB
statement screen, each parameter of the JOB statement is explained. If HELP is not
requested, you are simply asked to key in the parametric values, without benefit of
prompting screens. When the JOB statement is built, it is displayed and you have a
final chance to change the parameters of the statement, with or without HELP screens,
or accept the statement as it appears. When the JOB statement is accepted, the next
screen presented is the job control statement master menu.

JOB CONTROL STATEMENT MASTER MENU

1 . ALTER 11. EXEC 21. MTC 31. ROUTE 41. /$

2. ALT JCS 12. EXT 22. NOP 32. RUN/RV 42. I*

3. CAT 13. FREE 23. OPR 33. SCR 43. !&

4. cc 14. GBL 24. OPTION 34. SET 44. SYSTEM
5. CR 15. GO 25. PARAM 35. SFT JPROCS

6. DATA 16. IF 26. PAUSE 36. SKIP 45. GENERAL
7. DE CAT 17. JNOTE 27. QGBL 37. SPL ENTRY

8. DST 18. JSET 28. QUAL 38. UID 46. END;SESSION

9. DVC 19. LBL 29. REN 39. USE 47. HELP

10. EQU 20. LFD 30. RST 40. VOL

ENTER SELECTION BY NUMBER
IF YOU WILL NEED HELP WITH THIS STATEMENT, ENTER 'HELP'

The rest of the job control dialog works in the same way as for the initial module-type
choice and the JOB statement screens. Each statement you choose from the master
menu is displayed and you are asked if you need help to build it. If you do, HELP
screens are displayed that explain the parameters of each statement.

NOTE:

The DD, LCB, and VFB job control statements are not provided on the job control
statement master menu. To include these statements in your job control stream, make
the GENERAL ENTRY menu selection (45), then enter the statement and its parameters
in the space provided.

The control stream you create is stored in YJCS. A printed summary of the dialog
session, organized by sequentially-numbered paragraphs, is produced by the dialog
processor. The default logical unit number of the printer file (printed summary) output is
20 - any printer. You can accept this default or, during the dialog session, provide a
specific printer's logical unit number. Table B-1 lists the OS/3 logical unit numbers for
printers.

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

9-9

• 9.1.2. Buildng a User Jproc with the Job Control Dialog

•

•

The dialog for creating a jproc guides you through the process of defining your jproc
and building the job control statements and system jprocs you want to include in the
body of the jproc definition.

The procedure for initiating the dialog is the same as for building a job control stream:
perform the system LOGON procedures and key in SC JC$BLD.

When the job control dialog asks you whether you're building a job control stream or
user jproc, key in the choice for user jproc. The dialog then presents menus for:

• Beginning the jproc (PROC, NAME)

• Choosing job control statements

• Choosing system jprocs

• Ending the jproc (END)

As is the case when you're building a job control stream, these menus generate other
menus based on your responses to the dialog.

You can request HELP screens at any point in the dialog where you need choices or
parameters explained. After the HELP screens are displayed and you make a valid
choice, the dialog returns to the point where it was interrupted.

JC$BLD uses your dialog responses to create a jproc.

NOTE:

If you store a jproc in your own (alternate) library file instead of YJCS, you must
include the ALT JCS job control statement in any subsequent job control stream that
calls the jproc. ALT JCS identifies the jproc and applies only to jprocs.

9.1.3. Entering Embedded Data

To enter embedded data from a workstation, first choose the /$ (start-of-data)
statement from the job control statement master menu. Then, when the master menu is
redisplayed, make the GENERAL ENTRY selection (45). Once this is done, you'll be able
to enter your embedded data. When all embedded data is entered and the master menu
is presented again, choose the /* (end-of-data) job control statement.

If you plan to enter dialog specification language (DSL) source code as embedded data
from the workstation, a special situation arises because the characters that denote the
start of a DSL comment are the same as the end-of-data job control statement (/*). It's
necessary, then, to substitute another set of characters for the end-of-data job control
statement. You do this through the OPTION job control statement.

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

9-10

When the OPTION statement menu is displayed at the workstation screen, choose an
OPTION EOD statement. The format is OPTION EOD=xx. The first character you select
must be a slash (/). The second character can be anything but a slash (/), an asterisk
(*), an ampersand (&), or a currency symbol ($). Let's say you choose /Z. Then, when
the end-of-data statement is displayed as part of the job control dialog menu, you
choose GENERAL ENTRY and key in your substitute characters; /Z in this case. The
control stream you create, then, will include these job control statements:

11 OPTION EOD=IZ

1$ (start of data)

CDSL source code>

IZ (end of data)

You key in your DSL source code when the dialog requests it. By substituting different
characters for the end-of-data job control statement, you avoid any conflict with the
DSL start-of-comment delimiter.

9.2. CHANGING DIALOG RESPONSES

Once you build a control stream or jproc from a workstation, you may be able to use it
for other jobs by making only a few changes to it or, you may discover that you need
to correct it. Rather than building a new control stream or jproc from scratch to
incorporate the changes you want, you can use the audit version of the dialog
processor to change or edit the responses you made in a previous job control dialog
session. The audit version of the dialog processor outputs an audit file containing a
complete record of your dialog responses; or, it accepts as input an existing audit file of
your responses to a previous dialog, or both. An existing audit file used as input is
considered an old audit file. The audit file produced as output of the current dialog
session is considered a new audit file.

You begin a dialog session, which uses the audit version of the dialog processor, by
performing the system LOGON procedures and keying in RV JC$BLD. When you identify
a new and/or old audit file (by volume serial number and file label) during the resulting
dialog session, the system loads the audit version of the dialog processor.

NOTE:

Old and new audit file names cannot be the same when responding to JC$BLD queries.

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

9-11

The audit version of the dialog processor (Figure 9-2) also outputs a printed summary
of a dialog session that is used as a guide to changing dialog responses in a
subsequent session. The summary is organized by sequentially-numbered paragraphs.
When you use the audit file as input to the dialog processor in a subsequent session,
the job control dialog asks you to enter the numbers of the paragraphs you want to
change. The summary lists these paragraph numbers.

NOTE:

DIALOG
PROCESSOR

WORKSTATION

YOUR DIALOG
RESPONSES

Figure 9-2. Audit Version of the Dialog Processor

Audit files must be previously allocated MIRAM files.

The audit version of the dialog processor allows you to present the job control dialog
quickly and create a "new" control stream or user jproc by changing only the
responses that need to be changed. Unchanged responses are automatically routed
from the old audit file by the dialog processor to JC$BUILD - without your intervention.
During the same session, you enter your new responses to the job control dialog. You
can also produce a new audit file (if you've specified it in the build command) that
contains a mix of responses from the old audit file and responses entered during the
current session. This audit file can then be used as input to the dialog processor in a
subsequent session.

NOTE:

Only control streams and user jprocs created using the job control dialog can be
changed in a subsequent dialog session.

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

9-12

Suppose you build a control stream for a job that runs nearly every day with only a few
changes to the control stream. Perhaps you want disk and print output on some days,
and disk output only on other days. You first build the control stream on Monday,
specifying that a new audit file and a printed summary of the session be produced. You
use the audit file as input to Tuesday's dialog session and use the summary report as
your guide to changing the appropriate dialog responses. Figure 9-3 traces the process
of changing your dialog responses in a subsequent session.

The dialog processor user guide has more information about using the audit version of
the dialog processor, including information about breaking off a session and continuing
it at a later time - without losing your changed dialog responses.

DIALOG
PROCESSOR

SESSION1
(NEW AUDIT

FILE)

I
SESSION1 IS SPECIFIED AS THE OLD
AUDIT FILE FOR TUESDAY"S SESSION

I

ON MONDAY, you create a job control stream and
output a new audit file (SESSION1) that contains
your responses to the job control dialog.

SUMMARY
PARA 1
PARA 2

JCS BUILD

SESSION1
(OLD AUDIT

FILE)

t

nn
~ t -

ON TUESDAY, you create a new control stream, using
SESSION1 and the job control dialog as input to the dialog
processor. You change only those responses that need to be
changed, using Monday's printed summary as a guide.
Unchanged responses are automatically routed from SESSION1
(old audit file) to JCSBUILD. In addition, you create a new audit
file (SESSION2) and a printed summary of Tuesday's session,
which can be used as input to a subsequent dialog session ...

DIALOG
PROCESSOR

SESSION2
(NEW AUDIT

FILE)

SUMMARY
PARA 1
PARA 2

JCS BUILD

Figure 9-3. Changing Your Dialog Responses

•

•

•

•

! •

PART 4. APPENDIXES

•

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

A-1

Appendix A. Statement Conventions

A.1. JOB CONTROL STATEMENT FORMAT

A job control statement has a maximum of five fields, which must appear in the
following order:

1 . Indication Field

Distinguishes job control statements from data. It is required and begins with either
I I, I&, 1$, or /*.

2. Label Field

Contains a 1- to 8-alphanumeric-character symbol; the first character must be
alphabetic. Unless this field is explained in a specified control statement, it is the
target address of a SKIP, GO, or IF control statements or the ABNORM=label
keyword parameter of the EXEC statement. This field is not separated from the
indication field by a space; it immediately follows the 11.

3. Operation Field

Contains the name of the function to be performed. It is required for all job control
statements having an indication field of 11. At least one space must separate the
operation field from the label field.

4. Operand Field

5.

Contains the specific information concerning the items upon which a job control
function is to operate or the manner in which the function is to be performed. At
least one space must separate the operand field from the operation field.

Comments Field

Contains any descriptive information desired but not processed. The field must not
contain a slash character. For those job control statements in which an operand is
not permitted, such as the FIN control statement, all information beyond the
operation field is treated as the comments field.

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

A-2

Excluding the indication and label fields, consecutive fields must be separated by one or
more spaces. A space may not appear in a field except within apostrophes
(hexadecimal code 70) or parentheses in an operand field.

Example:

//MYTARGAD LBL 'MASTER CUST 1 NAME FILE
---~------------....--.--..._......_v~----~----------

®®® ® ® ®
NOTES:

G) Indication field

® Label field

@ Operation field

@) Operand field: Note that spaces are allowable, because of the use of
apostrophes.

@ Comments field

@ Field separation spaces

A.2. HOW JOB CONTROL STATEMENTS ARE PRESENTED

The conventions used to delineate job control statements are:

• Positional parameters must be written in the order specified in the operand field
and must be separated by commas. When a positional parameter is omitted, and
subsequent positional parameters are being specified, the commas associated with
positional parameters must be retained; otherwise, the specified parameters will not
be processed as required. If no subsequent parameters are being specified, their
associated commas should also be omitted.

For example, the ALTER job control statement has four optional positional
parameters. This is presented in text in the following format:

//[symbol] ALTER [phase-name][,address][,change][,{~!~ET}]

Then, the statement may be written:

II ALTER phase-name,address,change,RESET
II ALTER phase-name,address,change
II ALTER phase-name,address
II ALTER phase-name
II ALTER phase-name,,change
II ALTER ,,,RESET
II ALTER phase-name,,,ORG

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

A-3

Note that three commas are required in both the last and next-to-last examples. In
the next-to-last example, the three commas are encountered before any parameters
and are thus used to imply that the first, as well as the second and third
parameters, were omitted. In the last example, a parameter is encountered before
any commas, and thus the first comma is used to separate the first parameter from
the omitted second and third parameters.

11 ALTER ,, ,ORG

If the last example used four commas, it would appear that ORG was the fifth
parameter. And, because job control only associates four parameters with the
ALTER job control statement, the ORG parameter specification would be invalid.

• A keyword parameter consists of a word or a code immediately followed by an
equal sign, which is, in turn, followed by a specification. Keyword parameters can
be written in any order in the operand field. Commas are required only to separate
parameters.

The VFB job control statement has the following format:

//[symbol] VFB LENGTH= lines[' DENS ITV={~}] [, FORMNAME=symbo l] [, USE=stand]

,TYPE= 0768 [,OVF=<line-1, ••. ,line-n)]
0770 -0776
0778
9300

[,OVF2=(line-1, ... ,line-n)][,CD1=<line-1, .•. ,line-n), ...]

[,CD15=<line-1, ... ,line-n)]

However, for the purpose of explaining the use of keyword parameters, we'll use
only the first four parameters. Thus, we arrive at the following format:

//[symbol] VFB LENGTH=lines[1 DENSITY={~}] [,FORMNAME=symbol][,USE=stand]

Then, this job control statement may be written as:

II VFB
II VFB
II VFB
II VFB
II VFB

LENGTH=lines,DENSITY=6,FORMNAME=symbol,USE=stand
USE=stand,FORMNAME=symbol,DENSITY=6,LENGTH=lines
DENSITY=6,LENGTH=lines
LENGTH=lines
FORMNAME=symbol,USE=stand

UP-8065 Rev. 9 SPERRY UNIV AC OS/3

JOB CONTROL
A-4

• A job control statement may consist of a group of positional parameters followed
by a keyword parameter (as the last parameter).

For example:

//[symbol] EXEC program-name[' l-l i brary-name}J [, [±]switch-priority]
SYSRUN

IL. '
[,ABNORM=label]

Since the last parameter is a keyword (not the last positional) parameter, this
statement may be written as follows:

II EXEC program-name,ABNORM=label
II EXEC program-name,library-name,ABNORM=label

Commas for the omitted positional parameters may be retained if desired. For
example:

II EXEC program-name,,,ABNORM=label
II EXEC program-name,library-name,,ABNORM=label

The conventions for coding commas when a positional parameter is omitted and
subsequent positional parameters are being specified still apply. When the second
positional parameter is omitted for example, the EXEC statement must be coded as
follows:

II EXEC program-name,,switch-priority,ABNORM=label

• A positional or keyword parameter may contain a sublist of parameters called
subparameters, which are separated by commas and enclosed in parentheses. The
parentheses must be coded as part of the list. The subparameters within the
parentheses may be positional, in which case the associated commas must be
retained if a parameter is omitted, except for the case of trailing parameters, or
they may be nonpositional. The description of the subparameters will indicate
whether or not they are positional or nonpositional.

For example:

[,OVF=Cline-1, ... ,line-n)][,OVF2=Cline-1, •.. ,line-n)]

•

•

•

•

•

•

U 1-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

A-5

• Capital letters, commas, equal signs, and parentheses must be coded exactly as
shown.

CM cc

X'aa'

NUMBCHAR=n

(NOV)

• Lowercase letters and words are generic terms representing information that must
be supplied by the user. Such lowercase terms may contain hyphens and acronyms
(for readability). For example:

phase-name

max-time

destination

filename

• Information contained within braces represents mandatory entries of which one
must be chosen, such as:

BB,nn
BM,nn
FB,nn
FM,nn
WM,nn
RL

RU

• Information contained within brackets represents optional entries that (depending
upon program requirements) are included or omitted. Braces within brackets signify
that one of the specified entries must be chosen if that parameter is to be included.
For example:

[sched-priority]

~m:J

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

A-6

• An optional µarameter having a list of optional entries may have a default
specification that is supplied by the operating system when the parameter is not
specified by the user. Although the default may be specified with no adverse
effect, it is considered inefficient to do so. For easy reference, when a default
specification occurs in the format delineation it is printed on a shaded background.
If, by parameter omission, the operating system performs some complex
processing other than parameter insertion, it is explained in the parameter
description.

[{

library-name}]

:r~RUN'

TYPE= 7701
0768 -0776

.0778 J
300

• An ellipsis (series of three periods) indicates the presence of a variable number of
entries.

• When a portion of a parameter is underlined, only that portion need be specified.
For example:

f.QRMNAME=symbol

can be coded as:

FO=symbol

A.3. CODING CONVENTIONS

All the job control statement information starts in pos1t1on 1 and is not permitted to
extend for more than 71 positions. Job control statements begin with either one or two
slashes. In those with only one slash, no space is permitted between the slash and the
next character. However, one space must appear between this character and the
operand field. In job control statements beginning with two slashes, at least one space
must appear between the last slash and the operation field (except when using the
continuation statement (//n) or the label field).

More than one job control statement of the type beginning with two slashes may be
written on a card, but must not extend beyond position 71. At least one space must
precede the slashes denoting the beginning of the second job control statement; this is
referred to as multistatement coding.

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

A-7

Numbers required for particular parameters can be expressed in decimal or hexadecimal.
Numbers preceded by o· are considered decimal. Numbers preceded by x· are
considered hexadecimal. (A trailing quote may optionally be specified.) All of the
following represent the same value:

X'FF

X'FF'

0'255

0'255'

Numbers not preceded by X' or O' are automatically considered decimal except in the
following cases when they default to hexadecimal:

• main storage sizes specified on the JOB statement (min and max parameters);

• memory sizes specified on the OPTION MIN and OPTION MAX job control
statements;

• absolute disk addresses specified on the EXT statement (addr or Tccc:hh
parameters);

• address on the ALTER statement (address parameter); or

• expansion limit on the SFT statement's OLOAO option (expansion-limit parameter).

Character strings on the ALTER, LCB, and SET job control statements must be specified
as shown in their formats.

A.4. STATEMENT CONTINUATION

A continuation line is not considered to be a job control statement in itself. It is a line
that contains the continuation of a job control statement in a preceding line. A nonblank
character must appear in position 72 of the line containing the statement to be
continued. Continuation may be used with any job control statement that contains at
least the first two fields.

A continuation statement must begin with either the 3-character sequence //n, or just a
simple / /, which then must be separated by one or more blanks from the continued
portion of the job control statement. The continued statement takes the form:

//[n] param-1 ... param-n

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

A-8

The n is a decimal number in the range of 1 through 9. The numbers do not need to be
consecutive; however, each number must be greater than or equal to the preceding
number used in the control stream. This is an optional field and may be left blank, or
numbers can be used so you can keep a visual record of the amount of continuation
statements used.

For example, you could code the continuation as either

or

or

II parameters
111 parameters
112 parameters

II parameters
111 parameters
111 parameters

II parameters
II parameters
II parameters

Column 72--"""J

x
x

x
x

x
x

The param-1 ... param-n are the parameters required to continue the immediately
preceding job control statement.

Continuation can only occur at the blanks following the operation or operand fields, or
after the comma following a parameter in the operand field. When you continue job
control statements, the positions between the last used position and position 72 must
be blank. Any information you intended as a comment for this line would be treated as
data.

An error message occurs if:

• column 72 contains a nonblank character and the card is not a valid continuation;

• comments extend past column 71; or

• a parameter list is not delimited by a comma.

An example of the continuation of a multistatement line of coping is as follows:

II DVC 50 II VOL ABC123,T12345,T57341 II EXT ST,C,3,
111 CYL,1 II LBL MASTER II LFD FILEX

x

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

A-9

• A.5. SOFTWARE CONVENTIONS

•

•

The following rules and conventions apply to the processing of job control statements
and directives:

• Data cannot l;>e contained on a job control statement.

• Embedded data is normally assumed to be 80 characters long; when input from
diskette, data can be 80 or 128 characters long.

• Comments cannot contain a slash.

• Job control does not scan past position 72, however, embedded data of up to 128
bytes is passed through.

• The CR job control statement, and a jproc call when used, must be the last
statement on the card.

• The following job control statements and jproc directives cannot be part of a
multistatement line:

II JOB

11 FIN

11 PROC

I I NAME

II END

The 11 need not start in column 1, but must be first on the card. The 11 is optional
for PROC, NAME, and END.

• The following job control statements cannot be part of a multistatement line. They
need not start in column 1, but must be first on the card.

I*

I&

1$

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

B-1

Appendix B. Operation Considerations

B.1. SYSTEM LIBRARIES

There are five primary system program libraries stored on the system resident device
(SYSRES). The format of these libraries conforms to the standards established by the
librarian. For a description of these standards see the system service programs user
guide. As in all disk files, an entry for each library file is maintained in the volume table
of contents (VTOC) on SYSRES. These files may be accessed by your program without
specifying a DVC-LFD sequence provided the file name you use in your program is the
same as the file identifier. For example: YLOD.

The five library files are:

• System Load Library File

This file contains the load modules that are generated as output from the linkage
editor or the librarian. This includes system software load modules. This file is used
as the default input file to the system loader.

The file identifier for this file is YLOD.

• System Object Library File

This file contains the object modules generated as output from the language
translators. This includes system software object modules. This file is the default
input file to the linkage editor.

The file identifier for this file is Y0BJ.

• System Macro Library File

This file contains the standard system macro definitions, and is used as the default
input file for these definitions by the assembler.

The file identifier is YMAC .

UP-8065 Rev. 9

• System Source Library File

SPERRY UNIVAC OS/3
JOB CONTROL

8-2

This file provides permanent storage for source modules which consists of source
coding processed by the language translators. This file is used only when
specifically referenced in the control stream. It's never used as a default input or
output file.

The file identifier is YSRC.

• System Job Control Stream (JCS) Library File

This file provides for the permanent storage of control streams and jprocs. It's
used as the default output file by the file symbiont and as the default input file by
the run symbiont.

The file identifier is YJCS.

8.2. VOLUME TABLE OF CONTENTS

For each file on a direct access volume, there exists a set of control blocks in the
VTOC area of the volume. Each set indicates the attributes and extents of the file, and
may contain up to two control blocks. The information contained in these blocks is
used by data management to control access to files. In case of multivolume files, there
is a set of control blocks for the file in the VTOC of each volume.

For a complete description of these control blocks, see the data management user
guide (current version).

8.3. LOGICAL UNIT NUMBERS

Job control must assign a device for each input or output file. Every device has a logical
unit number. When you issue this number, you are requesting the assignment of a
particular device type to your file.

Certain ranges of numbers refer to certain categories of devices. Within each category
may be several types of devices. For example, tape is a category; the different SPERRY
UNIV AC tape units are the types within that category.

The association of logical unit number to the category and type of device is maintained
as a 1024-byte table on SYSRES. The logical unit number is used as an index to this
table.

Table B-1 lists the standard logical unit numbers assigned by Sperry Univac.

Each of the device type codes in Table 8-1 is four bytes long. As shown in the
following illustration, the first byte specifies the device category; the second byte, the
device type; and the third and fourth bytes, any special hardware features installed on
the particular device.

•

•

•

•

•

•

UP-8065 Rev. 9

1

DEVICE
CATEGORY

2

SPERRY UNIVAC OS/3
JOB CONTROL

BYTE

3

DEVICE FEATURES
TYPE

B-3

4

HARDWARE

The following paragraphs summarize the logical unit number values for each device
category.

• Special Device Category

The value range of logical unit numbers for special devices is 1-15. The standard
logical unit number assignments are listed in Table B-1.

The special devices that may be used only with the SPERRY UNIVAC 90/30
System* are:

SPERRY UNIVAC 0920 Paper Tape Subsystem

SPERRY UNIVAC 2703 Optical Document Reader

SPERRY UNIVAC 9200/9300 Series Subsystem

The byte-bit settings for the 2703 optical document reader and the 0920 paper
tape subsystem (read mode) are the same as for the card reader subsystems. The
byte-bit settings for the 0920 paper tape subsystem in the punch mode are the
same as for the card punch subsystems.

• Printers

The value range of logical unit numbers for printers is 16-29. The values 20 and
21 indicate that any printer may be used. If a specific type of printer is required,
the proper logical unit number must be used in assigning the device. The standard
logical unit number assignments are listed in Table B-1.

The printer units that may be used with the 90/30 system are:

SPERRY UNIV AC 0768 Printer Subsystem

SPERRY UNIV AC 0770 Printer Subsystem

SPERRY UNIV AC 0773 Printer Subsystem

SPERRY UNIV AC 0776 Printer Subsystem

SPERRY UNIV AC 0778 Printer Subsystem

*90/30 terminology includes the 90/25 and 90/40 systems.

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

System 80 uses the following printers:

SPERRY UNIV AC 0789 Printer Subsystem

SPERRY UNIVAC 0776 Printer Subsystem

• Card Reader Subsystems

B-4

The value range of logical unit numbers for card readers is 30-39. The values 30
and 31 indicate that any reader may be used. If a specific type of reader is
required, the proper logical unit number must be used in assigning the device. The
standard logical unit number assignments are listed in Table B-1 .

The reader units that may be used with the 90/30 system are:

SPERRY UNIV AC 0716 Card Reader Subsystem

SPERRY UNIV AC 0717 Card Reader Subsystem

System 80 uses the following card readers:

SPERRY UNIV AC 0719 Card Reader Subsystem

SPERRY UNIV AC 0723 Card Reader Subsystem

• Card Punch Subsystems

The value range of logical unit numbers for punch units is 40-49. The values 40
and 41 indicate that any punch may be used. If a specific type of punch is required,
the proper logical unit number must be used in assigning the device. The standard
logical unit number assignments are listed in Table B-1.

The punch units that may be used with the 90/30 system are:

SPERRY UNIV AC 0604 Card Punch Subsystem

SPERRY UNIV AC 0605 Card Punch Subsystem

System 80 uses the following card punch subsystem:

SPERRY UNIV AC 0608 Card Punch Subsystem

• Disk Subsystems

The value range of logical unit numbers for disk units is 50-89 and 160-177. The
values of 50, 51, 52, and 53 indicate that any disk unit may be used; the specific
type of disk unit is not essential to the execution of the program. If a specific type
of disk unit is required, the proper logical unit number must be used in assigning
the device. The standard logical unit number assignments are listed in Table B-1.
Additional charaeter-istics of disk subsystems are presented in Table 8-2.

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

B-5

• The disk drives that may be used with the 90/30 system are:

•

•

SPERRY UNIV AC 8411 Disk Subsystem

SPERRY UNIV AC 8414 Disk Subsystem

SPERRY UNIV AC 8415 Disk Subsystem

SPERRY UNIV AC 8416 Disk Subsystem

SPERRY UNIV AC 8418 Disk Subsystem

SPERRY UNIV AC 8430 Disk Subsystem

SPERRY UNIV AC 8433 Disk Subsystem

SPERRY UNIV AC 8424/8425 Disk Subsystem

System 80 uses the following disk subsystems:

SPERRY UNIV AC 8417 Disk Subsystem

SPERRY UNIV AC 8419 Disk Subsystem

• Diskette Subsystems

The range value of logical unit numbers for diskettes is 130-153. The values
130-133 indicate that any diskette may be used. Series 90 subsystems use the
SPERRY UNIV AC 8413 diskette, and System 80 uses the SPERRY UNIV AC 8420
and 8422 diskettes.

• Magnetic Tape Subsystems

The range value of logical unit numbers for tape units is 90-127. The value of 90
indicates that any tape unit may be used; the specific type of tape unit is not
essential to the execution of the program. If a specific type of tape unit is required,
the proper logical unit number must be used in assigning the device. The standard
logical unit number assignments are listed in Table B-1.

The magnetic tape units that may be used with the 90/30 system are:

UNISERVO Vl-C Magnetic Tape Subsystem

UNISERVO 12/ 16 Magnetic Tape Subsystem

UNISERVO 20 Magnetic Tape Subsystem

UNISERVO 10 Magnetic Tape Subsystem*

UNISERVO 14 Magnetic Tape Subsystem

*This is the only magnetic tape subsystem common to all OS/3 systems.

UP-8065 Rev. 9

• Workstations

SPERRY UNIV AC OS/3
JOB CONTROL

B-6

The range value of logical unit numbers for workstations is 200-219. The values
200-215 indicate that any workstation may be used.

Table 8-1. Standard Logical Unit Number Assignments (Pan 1 of 4)

Device Type Logical
Device Type and Features

Code Unit No.

08020000 1 Reader of 0920/0930 paper tape subsystem
08020000 2 Reader of 0920/0930 paper tape subsystem
02020000 3 Punch of 0920/0930 paper tape subsystem
02020000 4 Punch of 0920/0930 paper tape subsystem

08010000 5 2703 optical document reader
08010000 6 2703 optical document reader

04080000 7 9200/9300 printer, no features specified
08080000 8 9200/9300 card reader, no features specified
02080000 9 9200/9300 card punch, no features specified
FFFFFFFF 10 Spare
FFFFFFFF 11 Spare
FFFFFFFF 12 Spare
FFFFFFFF 13 Spare
04040000 14 0744 printer, no features specified*
04040000 15 0744 printer, no features specified*
04010000 16 0798/0786 printer, no features specified
04010000 17 0798/0786 printer, no features specified
04020000 18 0789 printer
04020000 19 0789 printer

04FFOOOO 20 Any printer, no features specified
04FFOOOO 21 Any printer, no features specified
04400000 22 0773/0778** printer, no optional features
04400000 23 0773/0778** printer, no optional features
04100000 24 0776 printer, no optional features
04100000 25 0776 printer, no optional features
04200000 26 0768 printer, no optional features
04200000 27 0768 printer, no optional features
04800000** 28 0770 printer, no optional features
04800000** 29 0770 printer, no optional features

08FFOOOO 30 Any card reader subsystem, no features specified
08FFOOOO 31 Any card reader subsystem, no features specified
08200000 32 0717 /0719*** card reader, no features specified
08200000 33 0717 /0719*** card reader, no features specified
08800000 34 0716 card reader, no features specified
08800000 35 0716 card reader, no features specified
08400000 36,37 Spare
08100000 38,39 0723 card reader

02FFOOOO 40 Any card punch subsystem, no features specified
02FFOOOO 41 Any card punch subsystem, no features specified
02200000 42 0605 card punch, no features specified
02200000 43 0605 card punch, no features specified
02400000 44 0604 card punch, no features specified
02400000 45 0604 card punch, no features specified
02010000 46,47 0608 card punch
04FF8000 48 Any remote printer, no features specified
FFFFFFFF 49 Spare

NUK only
Device type is changed to 04100000 if the 0776 printer subsystem is used in
place of the 0770.
Configured with the 90/25 system

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

Table 8-1. Standard Logical Unit Number Assignments (Part 2 of 4)

Device Type Logical
Device Type and Features Code Unit No.

20FFOOOO 50 Any disk
20FFOOOO 51 Any disk
20FFOOOO 52 Any disk
20FFOOOO 53 Any disk
20FFOOOO 54 Any disk
20FFOOOO 55 Any disk
20FFOOOO 56 Any disk
20FFOOOO 57 Any disk
20FFOOOO 58 Any disk
20FFOOOO 59 Any disk

20100000 60 8416/8419 disk subsystem
20100000 61 8416 /84 19 disk subsystem
20100000 62 8416/8419 disk subsystem
20100000 63 8416/8419 disk subsystem

20020000 64 84 1 8 MODI disk subsystem
20020000 65 8418 MODI disk subsystem
20020000 66 84 18 MODI disk subsystem
20020004 67 84 18 MODll disk subsystem
20020004 68 84 18 MODll disk subsystem
20020004 69 8418 MODll disk subsystem

20200000 70 8430 disk subsystem
20200000 71 8430 disk subsystem
20200000 72 8430 disk subsystem
20200000 73 8430 disk subsystem
20200000 74 8430 disk subsystem
20200004 75 8433 disk subsystem
20200004 76 8433 disk subsystem
20200004 77 8433 disk subsystem
20200004 78 8433 disk subsystem
20200004 79 8433 disk subsystem

20400000 80 84 14 disk subsystem
20400000 81 84 14 disk subsystem
20400000 82 84 14 disk subsystem
20400000 83 84 14 disk subsystem
20400000 84 84 14 disk subsystem
20400000 85 84 14 disk subsystem

20800000 86 84 11 disk subsystem
20800000 87 84 11 disk subsystem
20800000 88 84 11 disk subsystem
20800000 89 84 11 disk subsystem

10FFOOOO 90 Any tape, no features specified
10FFOOOO 91 Any tape, no features specified
10FFOOOO 92 Any tape, no features specified
10FFOOOO 93 Any tape, no features specified
10FFOOOO 94 Any tape, no features specified
10FFOOOO 95 Any tape, no features specified
10FFOOOO 96 Any tape, no features specified
10FFOOOO 97 Any tape, no features specified
10FFOOOO 98 Any tape, no features specified
10FFOOOO 99 Any tape, no features specified

B-7

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

Table 8-1. Standard Logical Unit Number Assignments (Part 3 of 4)

Device Type Logical
Device Type and Features Code Unit No.

10FFOOOA 100 Any tape, 9-track phase encoded
10FFOOOA 101 Any tape, 9-track phase encoded
10FFOOOA 102 Any tape, 9-track phase encoded

10FF0006 103 Any tape, 9-track NRZI
10FF0006 104 Any tape, 9-track NRZI
10FF0006 105 Any tape, 9-track NRZI

10FF0005 106 Any tape, 7-track NRZI
10FF0005 107 Any tape, 7-track NRZI
10FF0005 108 Any tape, 7-track NRZI
10FF0005 109 Any tape, 7-track NRZI

10C8000A 110 Slow tape, 9-track phase encoded*
10C8000A 111 Slow tape, 9-track phase encoded*
10C8000A 112 Slow tape, 9-track phase encoded*

10C80006 113 Slow tape, 9-track NRZI*
10C80006 114 Slow tape, 9-track NRZI*
10C80006 115 Slow tape, 9-track NRZI*

10C80005 116 Slow tape, 7-track NRZI*
10C80005 117 Slow tape, 7-track NRZI*
10C80005 118 Slow tape, 7-track NRZI*
10C80005 119 Slow tape, 7-track NRZI*

1034000A 120 Fast tape, 9-track phase encoded**
1034000A 121 Fast tape, 9-track phase encoded**
1034000A 122 Fast tape, 9-track phase encoded**

10340006 123 Fast tape, 9-track NRZI**
10340006 124 Fast tape, 9-track NRZI**
10340006 125 Fast tape, 9-track NRZI**

10340005 126 Fast tape, 7-track NRZI**
10340005 127 Fast tape, 7-track NRZI**

128-129 Reserved
40FFOOOO 130-133 Any diskette
40800000 134, 135 8413 diskette
40010000 136, 137 8420/8422 diskette
400F0001 138, 139 Any diskette, 128-byte
400F0002 140,141 Any diskette, 256-byte
400F0004 142, 143 Any diskette, 512-byte
400F0008 144, 145 Any diskette, 1024-byte

146,147 Spare
40FF0020 148, 149 Double-density diskette
40FF0100 150, 151 Any diskette, auto-load
40FF0040 152, 153 Any diskette, double-sided

154-159 Spare

20080004 160 8415 disk subsystem-fixed
20080000 161 8415 disk subsystem-removable
20080004 162 8415 disk subsystem-fixed
20080000 163 8415 disk subsystem-removable
20180020 168,169 Any fixed-head disk
20080000 170-173 8417 disk subsystem

174, 179 Reserved

UNISERVO 10, UNISERVO 12, UNISERVO Vl-C
UNISERVO 14, UNISERVO 16, UNISERVO 20

8-8

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

Table 8-1. Standard Logical Unit Number Assignments (Part 4 of 4)

Device Type Logical
Device Type and Features

Code Unit No.

20400004 180-185 8424, 8425 disk subsystem
186-199 Reserved

01FFOOOO 200-215 Any workstation
01FF0004 216-219 Any workstation with 24 x 80 screen

04FF0001 220-223 Any printer, class= 1
04FF0011 224-227 Any printer, class=2
04FF0111 228-231 Any printer, class=3
FFFFFFFF 232-254 Spare
01FF0080 255,256 Any workstation with printer attached

B.4. DISK AND DISKETTE SUBSYSTEM CHARACTERISTICS

B-9

Table B-2 summarizes the characteristics of disk and diskette subsystems listed in
Table B-1 .

Table 8-2. Disk and Diskette Subsystem Characteristics (Part 1 of 2)

Description

Characteristics 8411 8413 8414 8415 8416
Disk Subsystem Diskette Subsystem Disk Subsystem Disk Subsystem Disk Subsystem

Data capacity (8-bit bytes) 7.25 million 242,944 bytes (using 29.17 million 33.l million 28.95 million
tracks 1-73 for data)

Number of disk units 1 to 8 2 to 4 2 to 8 1 to 2 2 to 8

Disk/diskette speed (rpm) 2400 360 2400 2800 2800

Rotation period 25 166.7 25 21.5 21.5
(ms/rotation)

Data bit rate (MHz) 1.25 .250 2.5 5.0 5.0

Bit density (ppi) 1100 3268 2200 4040 fixed 4040
4040 removable

Track density 100 48 200 370 fixed 192
(tracks/inch) (free format) 185 removable

Track capacity (bytes/track) 3625 3,328 7294 10,240* 10.240*

Number of tracks 200 + 3 spare 77 total, 73 for data 200 + 3 spare 808 + 7 spare tracks 404 + 7 spare
usable tracks per use per disk surface usable tracks per 404 + 4 spare tracks usable tracks per
disk surface disk surface disk surface

Number of surfaces per 10 1 20 Data 3 Data 7
disk unit positioning 1 fixed positioning 1

Data 2 removable

Positioning time (seek time)
Minimum (ms) 25 - 25 10 10
Average (ms) 75 83.33 60 33 30
Maximum (ms) 135 - 130 60 60

Transfer rate 156 128 bytes in < 6ms 312 625 625
(kilobytes/second)

* In fixed 256-byte sectors. 40 sectors per track

• •

8417
Disk Subsystem CD

118.2 million

1 to 8

3400

17.6

9.05

6366

476

15,360

550 + 10 spare
tracks per disk
surface

14

7
35
70

1130

8418
Disk Subsystem

28.9 million or
57.9 million

2 to 8

2800

21.5

5.0

4040

370

10,240

404 or 808 + 7 spare
usable tracks per
disk surface

Data 7
positioning 1

10
27
45

628

•

c
-0

00
0
Ol
t11

:::0
CD
<
co

(/)
-0
m

c.... :::0 o:::o
OJ -<
(') c
oz z­
--l<
:::0)>
0 (')
'O

(/)

---w

OJ
I

0

• • • Table 8-2. Disk and Diskette Subsystem Characteristics (Part 2 of 2)

Description

Characteristics 8419 8420/8422 8424 8425 8430 8433
Disk Subsystem CD Diskette Subsystem CD Disk Subsystem Disk Subsytem Dis.k Subsystem Disk Subsystem

Data capacity (8-bit bytes) 72.39 million Single density © Double density© 58.35 million 58.35 million 100 million 200 million
1 side 303,104 0 1 side 563,320
2 sides 606,208 2 sides 1,136,640 ®

Number of disk units 1 to 8 1 to 4 1 to 4 2 to 8 1 to 8 (with optional 1 to 8 (with optional
feature up to 16) feature up to 16)

Disk/diskette speed (rpm) 2800 360 2400 2400 3600 3600

Rotation period 21 166 25 25 16.7 16.7
(ms/rotation)

Data bit rate (MHz) 6.2 - 2.5 2.5 6.45 6.45

Bit density (ppi) 5050 - 2200 2200 4040 4040

Track density - - 400 400 192 370
(tracks/inch)

Track capacity (bytes/track) 12,800 3328 to 7680 © 7294 7294 13,030 13,030

Number of tracks 808 + 7 spare 77 total, 75 ® for data 400 + 6 spare 400 + 6 spare 404 + 7 spare 808 + 7 spare
usable tracks per use per diskette usable tracks per usable tracks per usable tracks per tracks per disk
disk surface surface surface surface disk surface surface

Number of surfaces per 7 2 20 20 19 19
disk unit

Positioning time (seek time)
Minimum (ms) 10 3 10 7.5 7 10
Average (ms) 33 15 30 29 27 30
Maximum (ms) 60 35 55 55 50 55

Transfer rate 784 Dependent on sector sequence 312 312 806 806
(kilobytes/ second) arrangement

NOTES:

CD

CV
@

System 80

242,944 for data set label BOE (basic data exchange) diskette file.

971,776 for format label diskette file

®

®

Maximum value. Actual value 1s dependent on diskette type (single sided, single density; single sided,
double density; double sided, single density; double sided, double density). physical sector size (128, 256,
or 512 bytes) and file type (format label or data set label).

73 for format label diskette file and data set label BOE (basic data exchange) file.
75 for other data set label non-BOE files.

c
"'O
00
0
O'l
(Jl

::0
Cll
<
c.o

(fl
"'O
m

(_ ::0
0 ::0
OJ -<
nC oz
~<
::0)>
on
ro

(fl

---w

OJ
I

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

C-1

Appendix C. Job Control
Statement Formats

C.1. JOB CONTROL STATEMENTS FOR SERIES 90

//[symbol] ALTER [phase-name][,address][,change]['{~:~ET}]

ALT JCS [file- label- id]['{:~: }~ [, rpw] [{~:~~~ [,LUN=nnn]

vol-ser-noU OFF

••
//[symbol]

//[symbol] CAT Lfdname[,catpw][,SCR][,{~~:=nn}]

//[symbol] CC {command }
•command and parameters'

//[symbol] CR

II DATA FILEID=file-identifier[,RETAIN][,IGNORE]

II DATA STEP=nnn

//[symbol] DD[{:~::n} =1:~~~~~~[{:~~~n}=nJ ['{:~~~n}=nJ
UN DEF
VARBLK
VARUNB

[· t:~~n}=n] C g~~~n} ={~urn}] [{~~~n}=n]
[

,{KLEN }=nl['{KLOC }=nJ[,INDS=n]
KLENn J KLOCn

[ACCESS=m~:~ l REW! ND= { ~~~~~o}]

[, OP RW= NORWD] [" L RW= {:~:WO}] l FI LAB L = m~D }]

[, TPMARK=NO] [' RECV= {;~~}] [' VSEC= eES}] [' VMNT= { ~~E}] [' RCB= {~~S }]

[,OFFSET=1]

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

//[symbol] DECAT Lfdname[,catpw][,SCRJ[,{~~~}]

//[symbol] DST dest-1[,dest-2, .•. ,dest-16)

//[symbol] DVC lnnn[Cn>Jl , addr [,HOST=host-id]
RES OPT
RUN IGNORE

ALT
I

0
REQ[(n)]
REAL

//[symbol] DVC PROG[,job-name][,HOST=host-id]

//[symbol] EQU Lun-1,type-1[,lun-2,type-2, ... ,Lun-n,type-n]

C-2

//[symbol] EXEC program-name['llibrary-namel~[,[±]switch-priority][,ABNORM=Label]
YRUN

11,.:1111:

For disk:

II [symbol] EXT addr
Tccc:hh

Bl
NI TBLK
MI CYL
SQ TRK
ST OLD

[
,{mj .. }•···][,OLD]

(bJ,aJ)

For data-set-label diskette:

//[symbol] EXT SQ,C,0,BLK,Cbi,ai)

//[symbol] FIN

//[symbol] FREE lfdname-1 [CDEV)], ... ,Lfdname-n[CDEV>J

//[symbol] GBL set-id-1[=init-1][,set-id-2[=init-2], ... ,set-id-n[=init-n]]

//[symbol] GO destination

//[symbol] IF (a op b> destination

//[symbol] JNOTE comment-Line[,destination-1, ... ,destination-n]

//[symbol] JOB

[,print-option-List]

[,acc-no][,nXm] , ACT
LOG
NOA CT
NO LOG
NONE
BOTH

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

//symbol JSET value

//[symbol] LBL{file-identifier }[·{file-serial-number}][,expiration-date]
•file-identifier' VCHECK

\

[,creation-date]

[' {;ji le- sequence-number}][· {ienerat ion-number}]

[
··{.v .. ers ion- number}]

I

C-3

//[symbol] LBL [qual/] level- id-1 [,level- id-2 ... [,level- id-n]] [{:~ lT' rpw/wpwl l

II [symbol]

//[symbol]

'[qual/Jlevel-id-1[,level-id-2 ..• [,level-id-n]][{:~}][Crpw/wpwl]'

[
, {f i le - serial -number}] [,exp i rat on - date] [,creation - date]

VCHECK

[{~i le- sequence- number}][' {lenerat ion-number}] [' {lers ion-number}]

Lcen{x•hex-string-1' }l [{X'hex-string-2' }·····{X'hex-string-n' }] c c•char-string-1 1 u c•char-string-2 1 C1 char-string-n 1

c, ~AME=symbo l 1 [NAME=,48- eus~r, ~ D={X • aa • }] c ,~HAR=n 1
48-SCI L c•c•
63-STD
OWNLC1
OWNLC2

[

SPACE={·x I aa ·~ [,MISM={fifl'"'lit}]
C1 c 1 REPORT
~
~

[

DUAL={X I xxyyxxyyxxyyxxyy ·~ ['~HAR={X I a. a I l~
C'abababab' C'c'
c 1 bbbb 1 11111
X'yyyyyyyy'

LFD{filename }[·{n.}l[IACCEPT~
*filename IU EXTEND

INIT
RELOD
PREP .

//[symbol] HTC lfdname, BB,nn
BM,nn
FB,nn
FM,nn
WM,nn
RL
RU

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

C-4

•

//[symbol] NOP[QUERY]

//[symbol]

//[symbol]

//[symbol]

//[symbol]

//[symbol]

//[symbol]

//[symbol]

//[symbol]

//[symbol]

OPR comment-line[,destination-1, ••• ,destination-n]

OPTION p-1[, ••. ,p-n]

PARAM operand-1[, .•• ,operand-n]

PAUSE comment-line[,destination-1 •.• ,destination-n]

QGBL set-id-1[=init-1][,set-id-2[=init-2], .•• ,set-id-n[=init-n]]

QUAL [qualname]

REN lfdname,{new-label }[,NTERM]
• new - label '

ROUTE destination-1[, ••• ,destination-8]

RST filename,checkpoint-id,number[,jobname[(rename)]][,pri]

[,key-1=val-1, •.• ·,key-n=val-n]

//[symbol]{RUN [J j obname [(new-name) l }J}
\<new-name)

RV jobname[(new-name>l
:alt-filename

:(alt-f;lena••·{:~:})

:(alt-f;Lename,[{:~:}]'read-password)

·1~RE l~[,key-1=val-1, •.• ,key-n=val-n]
!:!IGH
NOR

/ / [symbol] SCR l fdname [·{DATE [, yyddd] }]
PRE[,aaaa]

//[symbol] SET COMREG,char-string

//[symbol] SET DATE,yy/mm/dd[,t-date][,d-date]

II [symbol]

//[symbol]

//[symbol]

//[symbol]

SET UPSI,switch-setting

SFT lmodule-1 [I ••• ,module-n] ['DLOAD=[ecal ls] I [{::~ansion-l imit}])]]\

DLOAD= [([cal ls], [{::~ansion- limit}])] -f
SKIP target-label[,mask]

SPL~~~~~IN~[,nXm] [·{10-cop}] [·{10-skpcode}] [·{-ec }] [,forms]

Q~MP

DISK
TAPE

[· { :oaH;DR}] c ,.t!QI.STL l c, brk -pge 1 c ,!!Q.!!PD 1 c, rm£,MP 1 c, RETA 1N1 c, HOLD 1 c, SECURE 1

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

//[symbol]UID {user-;d-1)['"""'{user-;d-255)~
Caddr-1) Caddr-255>
user-;d-1Caddr-1> user-;d-255Caddr-255)

C-5

//[symbol]USE DP,d;alog-name[,pr;nter-lfd][,new-aud;t-lfd][,old-aud;t-lfd]

//[symbol] USE LIB,module-name

//[symbol] USE MENU ['{m .. ~ ~u~f .. ;le+LFD!j~:· !Ill}~[,;n;t;al-menu]['{nnn}J
ll1111/menu-f1 le+LFD •

. ...
[,menu-format-1=al;as-1[, ... ,menu-format-12=al;as-12]]

I I [symbol l USE SFS [' {~;=~,- f; le- LFD-1] I [format -f; le- L FD -2] format -f; le -LFD}]

[,; n H fa l -screen] [' { ~nn }]

[,screen-format-1=al;as-1[, ... ,screen-format-12=alias-12]]

//[symbol] VFB [, FORMNAME=symbo l] [USE={~::~~~}] [LENGTH= l ; nes] ['DENS I TY={~}]

0768
0770
0776
0778
9300

[,OVF2=Cl;ne-1, ... ,l;ne-n)]

[,CD1=Cl;ne-1, ... ,l;ne-n), ... [,CD15=Cl;ne-1, ... ,l;ne-n)]

//[symbol] VOL Mee
N , volsn-1~:~) , volsn-2~~~> TI

/$

/*

!&

NMcc

volsn-1~~) ~
CNOV>
CPREP)

SCRATCH

~CPREP) ~CPREP)~
volsn-2~~~) volsn-3~~~) r

~(PREP) ~(PREP)~
SCRATCH SCRATCH

C.2. JOB CONTROL STATEMENTS FOR SYSTEM 80

//[symbol] ALTER [phase-name][,address][,change]['{~:~ET}]

ALTJCS [fHe-label-;d]['{:~~ }LJ[,rpw][{~:~~~[,LUN=nnn]
vol-ser-noU OFF

•
//[symbol]

I • • •

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

//[symbol] CAT Lfdname[,catpw][,SCRJ[,{~~:=nn}]

//[symbol] CC {command }
•command and parameters•

II [symbo L CR

II DATA FILEID=file-identifier[,RETAIN][,IGNORE]

II DATA STEP=nnn

//[symbol]
DDlRCFM} =1FIXBLKl~['{BKSZ }=n]['{RCSZ }=n] RCFMn FIXUNB BKSZn RCSZn

UN DEF
VARBLK
VARUNB

[,{LACE }=nl[·{SIZE }={n }]['{uos }=nJ
LACEn j SIZEn AUTO UOSn

[, {KLEN }=n] [·{KLOC }=n] [, INDS=nl
KLENn KLOCn

[ACCESS= 1~11:1) [•REW I ND= l~~~~~D }]

c, OPRW=NORWDJ [, CLRW= { :~:wo }] [, FILABL= 1:;~o I]
[, TPMARK=NO] [' RECV= { ;~~ }][, VSEC={ ~ES}] [, VMNT= { ~~E}] [, RCB={ ~~S}]

[,OFFSET=1l

//[symbol] DECAT Lfdname[,catpw][,SCR][,{~~~}]

//[symbol] DST dest-1[,dest-2, ... ,dest-16]

//[symbol] DVC lnnn[(n)]l , addr [,HOST=host-id]
RES ALT
RUN IGNORE

OPT
I

0

REQ[(n)]
REAL

//[symbol] DVC PROG[,job-name][,HOST=host-id]

//[symbol] EQU lun-1,type-1[,lun-2,type-2, ... ,Lun-n,type-n]

C-6

//[symbol] EXEC program-name[Library. -name}] [,[±]switch-priority][,ABNORM=Label]
SYSRUN

: . ' :

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

• For disk and format-label diskette:

//[symbol] EXT

•

•

t:a[{HJ [{~'}] · ~::hh~ u~~, .. ,)n
TBLK

CYL

TRK

OLD

[
,{mj .. }'···][,OLD][,FIX]

CbJ,aJ)

C-6a

•

•

•

-----------·---~---

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

C-7

• For data-set-label diskette:

•

•

//[symbol] EXT MI,C,0,BLK,(bi,ai)[,NDI]

//[symbol] FIN

//[symbol] FREE lfdname-1 [[(DEV)], ..• ,lfdname-n[(DEV)]]

//[symbol] GBL set-id-1[=init-1][,set-id-2[=init-2], •.. ,set-id-n[=init-n])

//[symbol] GO destination

//[symbol] IF (a op b) destination

//[symbol] JNOTE comment-line[,destination-1[, ... ,destination-n]

//[symbol] JOB

[,print-option-list]

[,acc-no][,nXm] , ACT
LOG
NOA CT
NO LOG
NONE
BOTH

//symbol JSET value

//[symbol) LBL {file-identifier }['{file-serial-number}~ [,expiration-date]
•file-identifier• VCHECK j

[,creation-date]

[' { ~ i le- sequence- number} J [' {Benerat ion-number}]

['{lersion-number}]

//[symbol] LBL [qual/]level-id-1 [,level-id-2 ... [,level-id-nJ] {~~~J[(rpw/wpw)J

'[qual /]level - ;d-1 [•level - ;d-2 ••. [,level·; d-nJ] {:~}]][(rpw/wpw) I

[,{file-serial-number}~ [,expiraton-date][,creation-date]
VCHECK Ll

[' {~i le- sequence-number}] [' { lenerat ion-number}] ['{le rs ion-number}]

/![symbol] LCB , [,~AME=symbol) [NAME=1~:~:~~1~[TYPE={:;~~}] [,MISM={RE~oRT}]
63-STD
OWNLC1

OWNLC2

11 !symbol J LFD { :: :7:~::e} [{B}] m~r~:~ }]

UP-8065 Rev. 9

//[symbol] MTC lfdname, BB,nn
BM,nn
FB,nn
FM,nn
WM,nn
RL

RU

//[symbol] NOP [QUERY]

SPERRY UNIVAC OS/3
JOB CONTROL

//[symbol] OPR comment-line[,destination-1, ... ,destination-n]

//[symbol] OPTION p-1[, ... ,p-n]

//[symbol] PARAH operand-1[, ... ,operand-n]

//[symbol] PAUSE comment-line[,destination-1, ... ,destination-n]

C-8

//[symbol] QGBL set-id-1[=init-1][,set-id-2[=init-2], ... ,set-id-n[=init-n]]

//[symbol] QUAL [qualname]

//[symbol] REN lfdname,{new-label }[,NTERM]
1 new - label 1

//[symbol] ROUTE destination-1[, ... ,destination-8]

//[symbol] RST filename,checkpoint-id,number[,jobname[(rename)]][,pri]

[,key-1=val-1, ... ,key-n=val-n]

I I [symbol] {RUN [J j obname [C new- name) l }] l
l<new-name>

RV jobname[(new-name)] .

//[symbol]

:alt-filename

:(alt-f;lename,{:~~))

:(alt-f;lename,[{:~~)]•'ead-passwo'd)

rn~HJ I. key-1=val -1, ... ,key-n=va l -n]

SCR lfdname['{DATE[,yyddd]}J
PRE[,aaaa]

//[symbol] SET COMREG,char-string

//[symbol] SET DATE,yy/mm/dd[,t-date][,d-date]

//[symbol] SET UPSI,switch-setting

II [symbol] SFT {module -1 (, ... ,module- nl] [,DLDAD= [([cal Ls], [l::~ans ion· l imit}])JJ}
DLOAD= [Ccal ls], [{::~ansion- limit}])]

//[symbol] SKIP target-label[,mask]

•

•

•

•

•

•

UP-8065 Rev. 9

//[symbol] SPL HOLD
RETAIN
~!,!MP

DISK
TAPE

ISKETTE

SPERRY UNIVAC OS/3
JOB CONTROL

C-9

[·{~~~R}][,NOTSTL][,brk-pge][,NOUPD][,NOCMP][,RETAIN][,HOLD][,SECURE]

J~::~~:~;1 }[·····J~::~~:~~~~5 }LJ
luser-id-1Caddr-1) luser-id-255Caddr-255>LJ

//[symbol]UID

//[symbol]USE DP,dialog-name[,printer-lfd)[,new-audit-lfd][,old-audit-lfd)

//[symbol] USE LIB,module-name

//[symbol] USE MENU ['l.menu-file-LFD/ llil~C,initial-menu]['{nnn}J
1111! j[il]!menu-file-LFD 1
11::::m1

[,menu-format-1=alias-1[, ... ,menu-format-12=alias-12J]

SFS [• { [fo.rma,~ -file- L FD - 1 I [format - f i le -L FD -2] format - f i le - L FD}]
mi•

//[symbol]USE

[,initial-screen] ['{~nn}]

[,screen-format-1=alias-1[, ... ,screen-format-12=alias-12]

//[symbol] VFB [, FORMNAME=symbo l] [' USE=g:::~ ~}] [LENGTH= lines] ['DENSITY={~}]

//[symbol]VOL

/$

I*

I&

[,TYPE={:~~~}][,OVF=Cline-1, ... ,line-n)]

[,OVF2=Cline-1, ... ,line-n)]

[,CD1=Cline-1, ... ,line-n), ... [,CD15=Cline-1, ... ,line-n)]

Mee
N
NMcc

volsn-10{!:!~) }0
u(PREP)u

SCRATCH

, volsn-1 ~§CNS> ~
CNOV)
(PREP)

volsn-2 CNS> ~
CNOV)
(PREP)

SCRATCH

, volsn-2~. . ~ CNS)
CNOV)
(PREP)

volsn-3 . ~
CNS)
(NOV>

. (PREP)
SCRATCH

I • • •

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

C.3. JOB CONTROL PROCEDURES FOR SERIES 90

//[symbol] procname [p1,p2, ••. ,pn,ki=vi,kj=vj, ... ,km=vm]

11 l fdname ACCESS (lb~~~==• r {;}] [!~:;;:~ • f ~~=,~~~j{~sn}~
REL OD
PREP

/ / l fdname ALLOC I (~~::. [(;.}] mm:IDl ff~~=,~~~}{~ sn }}]

~ W·}Jl~'~ . ~~~::hh [,{mi .. }][•{mj .. }•···][,OLD]
(b1,a1) (bJ,aJ)

NI
MI
ST

TBLK -TRK

OLD

//[symbol] {ASM }['PRNTR=
ASML
ASMLG

lun.[,dest]JJ[' IN=1<vol -ser-no, label>~ N[,dest] (RES)
"''Y "'. ·,, (RES,label)

(RUN, label)
(*,label>

,OUT= (vol-ser-no,label)
(RES, label)
(RUN, label)
<*label>
(N)

vol-ser-no-1,label-1
RES,label-1
RUN,label-1
*,label -1
N

vol-ser-no-1,label-1
RES,label-1
RUN,label-1
*,label -1
N

, vol-ser-no-2,label-2
RES,label-2
RUN,label-2
*,label-2
N

, vol-ser-no-2,label-2
RES,label-2
RUN,label-2
*,label-2
N

[,LST={option l][,SCR1={vol-ser-no}]
Copt-1, .•. opt-n>f RES

C-10

(continued)

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

[,SCR2=h;,;~.-ser-no}] ,AL TLOD= ~~~~:~:~~~~,label)
CRUN,label)
(*,label)
I Nl 'L"'ll.
11 ·m.·· ifil!Pll

//[symbol]{AUTO }[PRNTR=jlun[,destllJ ,IN=1vol-ser-no,label)l
AUTRPG \ N[,dest] CRES)
AUTRPGL L,,. .cl CRES,label)
AUTRPGLG CRUN,label)

<*,label)

,OUT= Cvol-ser-no,label>
CRES,label)
CRUN,label)
<*,label)
CN)

[,OUTSRC={Cvol-ser-no,label,lfd-name)}~ C.8£.S,label,lfd-name) LJ

[' SCR 1={;· ser -no}][' SCR2={·· ser -no}]

[

ALTLOD= Cvol-ser-no,label)~
CRES,label)
CRUN,label)
(*,label)

, ,

[· EMB= {ii.}] [""={L.~ [. SK !P=C I

[
,COPYn=1Cvol-ser-no,label,lfd-name))~

CRES,label,lfd-name>
CRUN,label,lfd-name)

[,ERRFIL=Cvol-ser-no,label,module-name)]

//[symbol]{COBL74 }[PRNTR={lun[,dest]}]
COBL74L N[,dest]
COBL74LG . . ~

C-11

[

IN=i:::~'.:::~~:· l•b•l)~[LIN=u(~.:.:+.·.~::. :.~;· l•b•l)J~
CRUN,label <*,label)
C * label) · / ··· 0;'11· : . ··· 'llM\lil

' .•. ,<·=., :>".« -~<inu,~ .<..£ .

(continued)

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

[

OBJ= c vol -ser -no, label>~[· SCR 1={.v·o.l- ser -no }n
CRES,label) Ill; U
CRUN,label)
(*,label>

.... ,. ··:··:-······"''''"''
. . .

[' SCR2={;~:- ser -no}][' SCR3= { vftj- ser -no}]

,ALTLOD= Cvol-ser-no,label
CRES,label)
CRUN,label)
(*,label>

[,option=specif ication]

[,ERRFIL=Cvol-ser-no,label,module-name)]

C-12

11 [symbol]{COBOL }[PRNTR={lun[,dest]}] [IN=1Cvol -ser-no, label >l~
COBOLL N[,dest] CRES)
COBOLLG I I JIB[CRES,label)

(RUN, label)
(*,label>

ll[symbol]ICOBOLB }
COBOL BL
COBOLBLG

[

OBJ= ::~::I::::t•bell~ [LIN=1:::::~::~~:,Label 'l~
(*,label) CRUN,label)
, , 1111 C *, label >

[,OUT=Cp-1, ... ,p-n)][,LST=p-1, •.. ,p·n)][,SCR1={ii;l;-ser-no}]

['SCR2={~.i-ser-no}] [,SCR3={ vol,-ser-no}]

·[ALTLOD=1~;~~:~:~~~~ 1 label)~
CRUN,label)
C *,label)

, ' . .

PRNTR= lun[,dest] }] [IN=1Cvol -ser-no, label >l~
N[,dest] CRES)

. CRES,label)
CRUN,label)
<*,label>

[

OBJ= cv. ol-ser-no,label)l~[LIN=1Cvol-ser-no,label)l~ CRES,label) CRES label)
(RUN, label) CRUN,label)
(*,label> (*,label)

, .. '

A •••• •

[,OUT= C p- 1, •.• , p- n >] [, LST=p- 1, ..• , p- n >] [' SCR 1 =to l · ser -no}]

[' SCR2={v. o l -ser -no}] [' SCR3={,_vo l -ser -no}]

Ill -

(continued)

•

•

•

•

•

•

UP-8065 Rev. 9

//[symbol] DVCDKT

//[symbol] DVCVOL

SPERRY UNIV AC OS/3
JOB CONTROL

,ALTLOD= (vol-ser-no,label)
(RES, label)
CRUN,label)
<*,label>
:r"7:·:11:·1:1r,1n1:
i' -~---~:;; ' './'' .. ''',, ,

vol -ser -no [, l un] [' NOVOL={~}]

{ ;~~ -ser -no) [, l un] [' NOVOL= {~}]

RUN

//[symbol] DVCVTP vol-ser-no[, lun] [,PREP={~}] rNOVOL={~}]

//[symbol]{FORT)[PRNTR={lun[,dest]}~ ,IN=1(vol-ser-no,label)l
FORTL N[,dest] (RES>
FORTLG 1·1anr• (RES, label)

(RUN, label)
(*,label>

,OUT= ~~~~:~:~~~~,label> [SCR1={;~-ser-nofl
(RUN, label)
(*,label)
N

1:111111rnn1

[ALTLOD=~label}]

[,OPT=CD,N,X)][,MDE=l][,STX=options]

[,CNL=kl[,LIN={f~!i~~name}]['LST=t~ption}]

[,MAP=CS,A,L)][,SIZE={~}]

I I [symbol] {FOR }[PRNTR={ l un [, d. e.st·]l~[' IN=1< vol -ser -no, label >l~ FORL N[,dest] <RES)
FORLG ·1m11 !Jr.:::·· I <RES, label>

CRUN,label)
<*,label)

~OUT= Cvol-ser-no,label)
CRES,label)
CRUN,label)
C *,label>
N
'l'!Ul Jiiit .. . Bil

C-13

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

[

ALTLOD= Cvol-ser-no,label)l~[,OPT=CD,N,X)][,MDE=I]
CRES,label)
CRUN,label)
(*,label>

...... ·:r,,,,. ".:.":'I;
[,STX=option][,CNL=k][,LIN={:;~~name}][,LST=option]

C-14

I I [symbol] {:~::L l[PRNTR=i~ ~. ~ ~ .. ~:.: .. ~t]l~ [IN=,~;~~; ser -no, label)~
FOR4LG 111•r:a· ~ CRES,label)

CRUN,label)
(*,label)

,OUT= Cvol-ser-no, label) [,SCR1={vol,.-ser-no}]
CRES,label) llll
CRUN,label)
(*,label)
N

·m . • lEIIJ filll

[

AL TLOD=1Cvol -ser -no, label>~ [,OPT= CS, N, X)] [, LIN=f i lename]
CRES,label)
CRUN,label)
<*,label)

,······· .. 'l!L·~ lTlJ
[,LST=option][,MAP=CS,A,L)][,SIZE={L}][,ERRFIL=Cvol-ser-no,label,

S module-name)]

//[symbol]{LINK }[input-module-name-1, ... ,input-module-name-10]
LINKG

[•••TR~ •T~:~.1~1)]
,IN= Cvol-ser-no,label>

(RES)
CRES,label)
CRUN,label)
(*,label>

::>:::»"""

,OUT= Cvol-ser-no,label)
CRES,label)
CRUN,label)
<*,label)
CN)

[
RLIB={Cvol-ser-no,label)~

CRES,label>
CRUN,label>
(*,label>

[

ALI B={(VO l -ser -no I label)~ [· SCR 1={ VO··· l -ser -no}] [·STD={-}]
CRES,label> lflj NO
CRUN,label)
(*,label)

[

AL TLOD=1Cvol -ser-no, label)~ [,OPT=• opt ions•]
CRES,label)
(RUN, label)
(*,label>

•

•

•

------------------- - ------------

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

[
CLIB={(vol-ser-no,label,modname)~[,CMT= 1 comment 1]

CRES,label,,modname)
(RUN,label,modname)
(*,label,modname)

[,ENTER=expression]

//ignored LNKUPL [PRNTR={n }]'FILn={vsn,label,filename}
20 RES,label,filename

RUN,label,filename

11c•y•boL1 {::~~J[""r•= =}] [1 •= (: ;~1 ~i~~: ~~. lab• l ')]

C-14a

•

•

•

•

•

•

UP-8065 Rev. 9

//[symbol] SPOOL

SPERRY UNIVAC OS/3
JOB CONTROL

,OUT= Cvol-ser-no,label)
CRES,label)
CRUN,label)
<*,label)
(N)

[SCR 1= {~-ser -no}][' SCR2= {~~-ser -no}]

[
ALTLOD=1~~~~:~:~~~~ 1 label)~

CRUN,label)
<*,label)

mu , 11 ~ 1111,

C-15

[EMB= 1•0. lJ[MOD={t •• ~ [, COL=7J[, ERRF IL=Cvol -sec -no, label ,module- name> I

rREDIRECT=1~~:~ }LJ[,BUF=nXm] [,COPIES={;}]

L DISKETTE u
['SK IPCODE= {I}] [' RECORDS=t~"''. ,,,,}] [, FORMNAME=forms J

['HOR={:.}][' TESTPAGE={;~}] [,PAGEBRK=n]

['UPDATE={:.}][' COMPRESS={:.}] [,RETAIN={~S}]

[' HOLD={;:s}] [·SECURE= {~s}]

//Ignored UDO IN= (1:~~ -sec -no}, label[· l;oext}] [,ACCEPT])

,OUT\l:~:-m-no}, label [l;oext}] rnm:~m

[

,PRNTR=1lun[,dest]}]
N[,dest]
111: nmmm1

(continued)

UP-8065 Rev. 9

//ignored UDT

SPERRY UNIVAC OS/3
JOB CONTROL

[·PUNCH= {~~s}] [· COMPARE={:s }]

:: UHJlf }] ·
NI
MI

addr
Tccc:hh -TBLK
CYL
TRK
OLD

[
,{mi }'{mj }•···•][,OLD]

Cbi,ai) Cbj,aj)

IN=({:~:· ser ·no}, label[· J;oext l] [,ACCEPT I)
,OUT=Cvol-ser-no,label)~PRNTR={({~"}[,vol-ser-noJ)~

[PUNCH={:s}] ['COMPARE={~s}]

//ignored UPLCNV [PRNTR={nlJ ,FILn={vsn,label,filename}
Ill. RES,label,filename

RUN,label,filename
//ignored UTD IN=Cvol-ser-no,label>,

//[lfdname]{WORKn}
TEMPn

OUT=~:~:· ser ·no}, label[• ~u [{f m:~m

[,PRNTR={lun[.,dest])~[·PUNCH={• }n [,COMPARE={•}]
NC,destJ YEsU YES
Ill I .. M,

:: [{HJ[~'}] .
NI
MI

[{mj. . }' ... '] [,OLD]
CbJ,aJ)

DVC=nn,VOL=1RES }
RUN
vol-ser-no

VOL=1:~~ }

vol-ser-no

addr
Tccc:hh -TBLK
CYL
TRK
OLD

C-16

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

C-17

[

, {BLK: '1111}] [,EXTSP={nn .. }n [,SECALL={,~,~}n [· TYPE={.t,i Le type}~
BLK- nnnn II LJ 111 LJ • Ll
CYL= nn

//[symbol]{WRTBIG} 1 block-1 1
[,

1 block-2 1
, ••• ,

1 block-8 1
]

WRTSML

[

IN=1(vol-ser-no, Label)l[l

~u
[' LUN= I (I ~K 1~: :~~ame o [, des t 1) l]

C.4. JOB CONTROL PROCEDURES FOR SYSTEM 80

//[symbol] procname [p1,p2, ••• ,pn,ki=vi,kj=vj, ••• ,km=vm]

DVC=nn,VOL=t~sn}

VOL=~vot sn} -*
addr
Tccc:hh
BLK
TBLK -TRK
OLD

[
,{mj .. }•···][,OLO][,FIX][,NDI]

(bJ,aJ)

UP-8065 Rev. 9

//[symbol]

SPERRY UNIVAC OS/3
JOB CONTROL

{
ASM } [,PRNTR={lun[,dest.]l~[IN=1Cvol-ser-no,label>l~ ASML N[,dest] (RES)
ASMLG • TIIf If CRES,label>

CRUN,label)
(*,label>

,OUT= Cvol-ser-no,label)
CRES,label>
(RUN,label)

vol-ser-no-1,label-1
RES,label-1
RUN,label-1

vol-ser-no-1,label-1
RES,label-1
RUN,label-1
*,label
N

'Rlfi[I l!ILll

, vol-ser-no-2,label-2
RES,label-2
RUN,label-2
*,label -2
N

, vol-ser-no-2,label­
RES,label-2
RUN, label -2
*,label -2
N

[,LST={option }] [,SCR1=p_ol·.··ser-no}]
Copt-1, ... opt-n \'111!:

[
,SCR2={vol-.ser-nol] ,ALTLOD= Cvol-ser-no,label>

II.II f. CRES,label)
CRUN,label>

/ / [symbol]{AUTO }[PRNTR={ l un [' .. d .. es t] l~ [I N=1(vol -ser -no, label)l~ AUTRPG N[,dest] CRES)
AUTRPGL • HJJI (RES, label>
AUTRPGLG . CRUN,label)

<*,label)

,OUT= Cvol-ser-no,label>
(RES, label)
CRUN,label)
(*,label>
CN>
:111. Ii

[,OUTSRC= {:;;~: ~=~~~~l ::b~:~~:d-name) }] [ST= {rn

C-18

•

•

•
(continued)

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

[

AL TLOD=1< vol -ser -no, label)~
(RES, label)
CRUN,label)
< *, label>

·r·-:-;··.. "

[• EMB= l:.}] [MOD={~ RAM~ [, SK I P=C I

[

,COPY n= {(vol-ser-no,label,lfd-name)}~
CRES,label,lfd-name)
CRUN,label,lfd-name)

[,ERRFIL=Cvol-ser-no,label,module-name)]

//[symbol]{COBL74 }[PRNTR={lun[,dest]l]
COBL74L N[,dest]
COBL74LG BllJU[It

[

IN=1< vol -ser -no, label>~ [LIN=1Cvol -ser -no, label)l~
CRES) CRES,label)
CRES,label) CRUN,label)
CRUN,label> <*,label>
(*I label) '

11111111 I n

[

OBJ=1< v. ol -ser -no, label)~[' SCR 1={ vo. l -ser -no}]
CRES,label) Ill Ll
CRUN,label)

•. ;IBL•
<*,label>

[SCR2={~ -ser -no}][' SCR3=t;ot,-ser -no}]

ALTLOD= (vol-ser-no,label) [,option=specification]
CRES,label)
CRUN,label>
C*, label>
ltlr•T ·1111

[,ERRFIL=Cvol-ser-no,label,module-name)]

//[symbol] DVCDKT vol-ser-no[,lun][,NOVOL={;}]

I I [symbol] DVCVOLlvol -ser -no} [, l un] [' NOVOL={ Y }]
RES JI
RUN

• II [syobo l] DV C VTP vol - ser - no [,l un] [• PREP= {;l] [NOVOL= {; l]

C-19

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

C-20

II [symbol] {FOR4 } [PRNTR={lun[,de .. st]}~ [IN=(Cvol -ser-no, label)~
FOR4L N[,dest] CRES)
FOR4LG • . , CRES,label)

CRUN,label)
(*,label)

,OUT= Cvol-ser-no,label>
CRES,label>
CRUN,label)
<*,label>
N

[' SCR 1= tol
1

-ser-no}]

[
ALTLOD=(Cvol-ser-no,.label)~[,OPT=CS,N,X)][,LIN=filename]

CRES,label>
CRUN,label)
<*,label>

[,LST=option][,MAP=CS,A,L)][,SIZE={L}~[,ERRFIL=Cvol-ser-no,label,
S ~ module-name)]

//[symbol]{LINK }[input-module-name-1, ... ,input-module-name-10]
LINKG

[,PRNTR={lun[,dest]}~ N [,dest] LJ

,IN= Cvol-ser-no,label
CRES)
CRES,label)
CRUN,label>
<*,label>

,RLIB={Cvol-ser-no,label)}
CRES,label)
CRUN,label)
<*,label)

,ALIB={Cvol-ser-no,label>}
CRES,label)
CRUN,label)
C*, label>

,OUT= Cvol-ser-no,label>
CRES,label)
CRUN,label)
<*,label>
CN>

[

AL TLOD={C vo. l -ser -no ,.label)~ [,OPT=• options']
CRES,label>
CRUN,label)
<*,label>

. .

[

CLIB={Cvol-ser-no,label,modname)IJ[,CMT= 1 comment 1
]

CRES,label,modname>
CRUN,label,modname)
C*,label,modname)

[,ENTER=expression]

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

ll[symbol]{RPG)[PRNTR={Lun[,dest])J [IN=1Cvol-ser-no,Label>~
RPGL N[,dest] (RES)
RPGLG RIJr .! J CRES,Label>

(RUN, label)
(*,label>

,OUT= (vol-ser-no,label)
(RES, label)
CRUN,label)
< *, label)
(N)

111r111··1·n,11

[,SCR1={vol-ser-no}~ [,SCR2={v·o\·ser-no}]

- J -

[

AL TLOD=,~;~~:::~~~~, label)~
CRUN,label)
<*,label>

11111!1 H . II !I iii

C-21

[EMB= t"~m}] [MOD={~ RAM~ [.COL= 7][.ERR' IL= (vol -... -no, label, module -name) l

11 [symbol) SPOOL rREDIRECT={~~~~ in [, BUF=nXm] [COPIES=t1}]

L DISKETTE u
[SK I PCODE={m}] ['RECORDS= {I.}] [, FORMNAME=forms]

[' HDR=t:.}] [' TESTPAGE= {~~J}] [, PAGEBRK=n]

['UPDATE={:.}] ['COMPRESS={:.}] [RETAIN={~S}]

[' HOLD={~s}] [' SECURE={;s}]

Jn gnoced UDD IN=({:~~ -m-nol, label [l;oext UC ,ACCEPT])

,OUT= ({:~:-ser-nl label [j;oext}] [G~;;:~)])

rRNTRl~ ~~~ss, JJ
['PUNCH= {~~s}] [' COMPARE={;s}]

(continued)

UP-8065 Rev. 9

//ignored UDT

//ignored UTD

SPERRY UNIVAC OS/3
JOB CONTROL

,EXT= 1H11 [{HJ [{t}], addr
Tccc:hh -TBLK
CYL

TRK
OLD

[
,{mi }'{mj }·····][,OLD][,FIXJ

Cbi,ai) Cbj,aj)

IN= ({:~:-m-no}, label ['/Boext}] [,ACCEPT])

,OUT=Cvol-ser-no,label) ~PRNTR={({~n}[,vol-ser-no])~

[' PUNCH={~s}] [· COMPARE={:s}]

IN=<vol-ser-no,label),

ouT=({:~:-••r -"°}' label ['{a}] [r::~;:~}J)

[

,PRNTR= lun[,dest]jll[·PUNCH={• }~[,COMPARE={• }n
N[,dest] u YEsLJ YES~

,EXT= 1H1T {HJ [{~"'}J . addr
Tccc:hh -TBLK
CYL
TRK
OLD

[
,{mi .. }n ·[{mj .. }·····][,OLD][,FIX]

Cb1,a1>LJ (bJ,aJ)

//[lfdname]{WORKn
TEMPn

DVC=nn,VOL={RES l
RUN
vol-ser-no

VOL=1RES }
RUN
vol-ser-no

C-22

[,BLK={~ }~ [' EXTSP={•}] [' SECALL={;}] ['TYPE={~ le type}]

CYL=nn LJ

•

•

•

•

•

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

//[symbol]{WRTBIG} 1 block-1 1
[,

1 block-2 1
,_ •• ,

1 block-8 1
]

WRTSML

[

IN=1Cvol-ser-no,Label)lll

·~ ~
[

LUN= (((:•n~,~1 [' { L.~d-;n:me }] [, dest]))]
~ ••• il

C-23

•

•

•

UP-8065 Rev. 9

•

Term Reference

A

ABNORM parameter, EXEC statement 6.22

Abnormal termination 2.3

ABRDUMP option 6.10

• Absolute address 2.1.4

ACCEPT option, ACCESS 1proc call 5.3

ACCESS 1proc call 5.3

Access method, specifying 4.5.l

Account numbers 4.2.7

Account records, suppressing printing 6.10

ACN =account-number option 6.10

ALIB parameter, LINK jproc call 5.6.2

ALLOC 1proc call 5.4

ALTER JOb control statement
description 6.18

Alternate library files,
for 1ob control streams 1.7
for 1procs 1.7

8.9
for saved, translated control

streams 1.8
6.10

• storing control streams 1.7
storing saved, translated control

streams 1.8
6.10

SPERRY UNIV AC OS/3
JOB CONTROL

Page Term

ALT JCS 1ob control statement

6-63 AL TLOD parameter, LINK 1proc call

2-10 Audit version, dialog processor

6-25
Automatic inclusion

2-5

5-8

5-8

4-27

4-7

6-30

6-25

5-25

5-11

6-51
Backspacing

1-10 BAL

1-10
8-9 Basic assembler language (BAL)

1-10 Binary overflow interrupt
6-25
1-10 BLK parameter. changing extent

specifications
1-11
6-25 Block characters, printing

Index 1

Index

Reference Page

8.9 8-9

5.6.2 5-29

3.4.3.l 3-20
9.2 9-10

5.6.2 5-23

B

6.6 6-20

2.1.6 2-7

2.1.6 2-7

6.10 6-25

5.2.2 5-6

5.7 5-32

UP-8065 Rev. 9

Term

Block numbering, tape volumes

Blocks
allocation amounts
changing extents, temporary work

files
file allocation

BOF option

Branching
conditional
directing program control
providing targets
unconditional

Breakpoint
CC statement
SPL statement

BRKPT macroinstruction

Building job control streams
description
using the job control dialog

Buffers
load code

spool
vertical format

BUF = nXm option

c
Card data, input spooling

Card input, adding

Card reader
device assignment set
ending operation
start of data and end of data

Reference

4.4.2

4.5.5

5.2.2
2.1.5

6.10

7.1.2
2.5
7.1.3
7.1.1

6.13
6.2

6.12

1.7
9.1

See load
code.
4.2.7
See vertical

SPERRY UNIV AC OS/3
JOB CONTROL

Page Term

4-20 CARTID parameter. LCB statement

CARTNAME parameter. LCB statement
4-32

Cartridge
5-6
2-7

CAT job control statement
6-25

Catalog, file

7-5
2-11 CC 1ob control statement
7-5 calling saved translated control
7-1 streams

description

6-41 CDl through CD 15 parameters,
6-1 VFB statement

6-38 Changing dialog responses

Character strings
1-10 LCB statement
9-1 phase header record comment field,

load modules

Characters, block

4-7 Checkpoints
INIT parameter

format buffers. restart facility
RST statement

6.10 6-25
CHKPT macroinstruction

GLIB parameter, linkage editor
1proc call

CMT parameter, linkage editor
1proc call

COBOL
linkage editor control statements
naming your files

Coding conventions

6.2.3 6-6 Commands, issuing (CC statement)

3.2.1 3-9 Comments field

Communications region. SET statement
3.2.1 3-9 (SET COMREG)
3.1.7 3-8
3.2.2 3-11 Conditional branching

Index 2

Reference Page • 6.4 6-11

6.4 6-13

See print
cartridge.

6.9 6-25

See file
cataloging.

6.14.2 6-43
6.13 6-41

6.5 6-16

9.2 9-10

6.4 6-10

5.6.2 5-30 • 5.7 5-32

4.10.2 4-44
2.4 2-11
6.12 6-38

6.12 6-38

5.6.2 5-29

5.6.2 5-30

5.6.1 5-21
2.1.6 2-7

A.3 A-6

6.13 6-41

A.1 A-1

6.11.3 6-38 • 7.1.2 7-3

UP-8065 Rev. 9

• Term

Continuation lines

Control fields, modifying

Control streams

CR job control statement

Creation date, file

Cylinders, file allocation

•

•

Reference

A.4

6.11

SPERRY UNIV AC OS/3
JOB CONTROL

Page Term

A-7

6-38 Data
compressing

D

See job control definition
streams. embedded

6.20 6-57 start of data and end of data

4.7.2 4-37 DATA job control statement

2.1.4 2-5 Data management
4.5.4 4-30 assigning a file name

DTF specifications obtained
from VTOC, existing file

modules not in YLOD or YRUN

DATA STEP job control statement

Date
block characters
changing
file expiration and creation

DATE parameter, SCR statement

DD job control statement
description and format
keyword parameters

DDP program-to-program facility,
DVC PROG statement

Debugging control streams

DECAT job control statement

Decimal overflow interrupt

DENSITY parameter, VFB statement

Destination, specifying for
DST statement
JNOTE statement
QPR statement
OPTION LOG statement
OPTION MAS statement
OPTION ORI statement
OPTION OUT statement
PAUSE statement
ROUTE statement

DEV parameter, FREE statement

Index 3

Reference Page

6.2 6-4
6.19 6-53
See em bedded
data.
3.2.2 3-11

6.2.3 6-6

3.1.4 3-5

4.10.2 4-44
6.17 6-48

6.25 6-65

5.7 5-32
6.11.1 6-36
4.7.2 4-37

6.8 6-23

6.19 6-53
Table 6-1 6-54
Table 6-2 6-55

4.3.5 4-16

4.6 4-34

6.9 6-20

6.10 6-25

6.5 6-16

6.2.1 6-3
6.15 6-45
6.15 6-45
6.10 6-28
6.10 6-28
6.10 6-28
6.10 6-31
6.15 6-45
6.2.2 6-4

6.7 6-21

UP-8065 Rev. 9

Term Reference

Device assignment sets
card reader 3.2.1
different volumes on same device 4.3.3.3
disk 3.4.1
diskette 3.4.3
DVCVOL jproc call 5.5
file name assignment 3.1.4
job control statements 2.1
minimum control stream 3.1.l
renamed file 4.8
tape 3.3
temporary work files 5.2
workstation 3.4.3.1

3.4.3.2
See also devices.

Device independent control
character codes 6.5

Device type codes, equating
logical unit numbers 6.3

Devices
adding 3.3
assigning by physical address 4.3.3.1
assigning multiple workstations

to a file 4.3.2
different volumes on same device 4.3.3.3
identifying 3.1.3

4.3
logical unit numbers See logical

unit numbers.
multiple volumes in a file 4.3.3.4
optional device assignment 4.3.3.2
releasing (freeing) 6.7
using 2.1.l
using multiple, SYSRES, or

YRUN file 4.3.1

Dialog processor
audit version 3.4.3.1

9.2
device assignment set for

workstation 3.4.3. l

Dialog session, control stream Section 9

Disk, device assignment set 3.4.1

Disk and diskette characteristics B.4
Table B-2

Disk file area allocation
amounts 4.5.5
changing specifications 4.5.6
contiguous space 4.5.2

SPERRY UNIV AC OS/3
JOB CONTROL

Page Term

cylinders
3-9 description
4-12 EXT statement
3-18 formatting the file
3-20 more disk space needed
5-13 new files
3-5
2-1 Disk files
3-1 changing label
4-39 reinitializing
3-13 scratching
5-2
3-20 Disk volumes
3-21 file allocation

reserving extent storage area
sharing
temporary work files

6-16 See also volumes.

Diskette, device assignment set
6-9

Diskette files
area allocation

3-13 data-set-label
4-11 EXT statement

format-label
4-10 scratching
4-12 spooling
3-4
4-8

Diskette volumes, multifile
(DVCVOL 1proc call)

4-13
4-11 DLOAD facility
6-21
2-2

DLOAD parameter, SFT statement
4-9

DOF option

3-20 DST job control statement
9-10

DTF macroinstruction, naming your files
3-20

DTFPR, changing

DUAL parameter, LCB statement
3-18

Dummy data set
B-9
B-10 Dump, edited

DUMP option
4-32
4-34
4-28

Index 4

Reference Page •
4.5.4 4-30
2.1.4 2-5
4.5 4-27
4.5.2 4-28
4.5.3 4-30
3.4.2 3-20

4.8 4-39
4.10.2 4-44
6.8 6-23

2.1.4 2-5
4.10.l 4-43
4.4.4 4-23
5.2.l 5-5

3.4.3 3-20

2.1.4 2-5
2.1.5 2-7
4.6 4-34 • 2.1.4 2-5
6.8 6-23
6.2 6-1
6.2.3 6-8

5.5 5-13

2.6.3 2-13
6.17 6-48

6.17 6-48

6.10 6-25

6.2.1 6-3

2.1.6 2-7

6.19 6-53

6.4 6-11

3.2.2 3-12

6.10 6-25

6.10 6-25 •

UP-8065 Rev. 9 SPERRY UNIV AC OS/3
JOB CONTROL

Index 5

UP-8065 Rev. 9

Term Reference

Expiration date, file 4.7.2

Exponent underflow exception interrupt 6.10

EXT JOb control statement for disk
allocating disk area for new files 3.4.2
allocation amounts 4.5.5
changing specifications of

previously allocated file 4.5.6
cylinder allocation 4.5.4
description 4.5
device assignment set for diskette 3.4.3
dynamic extension 4.5.3
formatting a file and using

contiguous space 4.5.2
specifying file access method 4.5.1

EXT JOb control statement for diskette 4.6

EXT parameter, ALLOC jproc call 5.4

EXTEND option, access Jproc call 5.3

Extending files 4.10.2

Extents
allocating disk area for new files 3.4.2
allocating file with jproc call 5.4
allocation amounts 4.5.5
changing specifications 5.2.2
description 2.1.4

2.1.5
data-set-label diskette EXT

statement 4.6
disk EXT statement 4.5
format-label diskette EXT statement 4.5
LFD statement 3.1.4
reserving 4.10.l

EXTSP parameter 5.2.2

SPERRY UNIV AC OS/3
JOB CONTROL

Page Term

4-37 F

6-29 FD entry, changing

File access methods
3-20
4-32 File allocation

data-set-label diskette
4-34 disk
4-30 format-label diskette
4-27 Jproc call
3-20
4-30 File cataloging

description
4-28 prepping cataloged tape volume
4-27 SKIP statement

4-34 File definition
changing at run time

5-11 linkage editor iproc call

5-9 File 1dent1fiers
description

4-44 1ob step temporary files
Jproc calls

3-18 labeled tapes
5-11 using efficiently
4-32
5-6 File names
2-5 assigning
2-7 description

jproc calls
4-34 tape
4-27
4-27 File serial numbers. multivolume files
3-5
4-43 File symbiont, storing Jproc definitions

5-6 FILE system console command

FILE workstation command

FILEID parameter, DATA statement

Index 6

Reference Page •
6.19 6-53

4.5.1 4-27

2.1.5 2-7
2.1.4 2-5
2.1.4 2-5
5.4 5-11

6.9 6-21
4.10.2 4-44
6.21 6-58

6.19 6-53
5.6.1 5-20

2.1.3 2-4
3.5 3-21
5.2 5-2 • 5.4 5-11
3.3.4 3-15
4.7 4-35

3.1.4 3-5
2.1.6 2-7
5.2 5-2
3.3.2 3-14

4.7.1 4-36

8.8 8-8

1.7 1-10

1.7 1-10

6.2.2 6-5

•

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

Index 7

UP-8065 Rev. 9

Term

!CAM modules, loading

IF job control statement
branching
description

IGNORE parameter, DATA statement

· IN parameter, linkage editor jproc call

INCLUDE linkage editor control
statement

Inclusion

Indexed sequential access method
(ISAM) files

Indication field

!NIT option, ACCESS 1proc call

Initialized processing

Input card data, spooling

Input file definition

Input module names

Input reader, loading

INQ job control statement

Interactive job control dialog

lnterstep function

Reference

6.13

2.5
7.1.2

6.2.3

5.6.2

5.6.1
5.6.2

5.6.2

4.10.2

A.l

5.3

4.4.2

6.2.3

5.6.2

5.6.1
5.6.2

6.13

7.2.4

SPERRY UNIV AC OS/3
JOB CONTROL

Page Term

J

6-41 JNOTE JOb control statement

Job accounting
2-11
7-3 Job control dialog

definition
6-8 building a control stream

building a user Jproc
5-24 changing dialog responses

entering embedded data
HELP screens

5-20 JOb control statement master menu
5-24 SC JC$BLD command

5-24 Job control language

Job control procedures
4-44

JOB control statement
A-1 beginning the job

debugging control stream
5-8 improving control of your JOb

1ob accounting and spool butters
4-20 job processing time

main storage needs
6-6

minimum conlrol stream
5-24 overriding parameters

printing job log file and
5-21 page separators
5-24 priority

6-41 Job control statements
advanced

7-14 bypassing
coding conventions

See job control continuation
dialog. descriptt0n

formats, Series 90
1.6.6 1-13 formats, System 80

general format
Jproc definitt0ns, parameter

referencing
optional parameters
presentation
removing from embedded data files
run-time conditional
set symbol
software conventions
substituting embedded data

Index 8

Reference Page •
6.15 6-45

4.2.7 4-7

Section 9
9.1 9-1
9.1.1 9-3
9.1.2 9-9
9.2 9-10
9.1.3 9-9
9.1 9-1
9.1 9-1
9.1 9-1

1.1 1-1

See procedures.

3.1.2 3-3
4.2.6 4-5
4.2 4-1
4.2.7 4-7 • 4.2.5 4-4
4.2.2 4-2
4.2.3 4-3
3.1.1 3-1
6.10 6-25

4.2.8 4-7
4.2.1 4-2

Section 6
6.21 6-58
A.3 A-6
A.4 A-7
1.1. 1-1
C.l C-1
C.4 C-17
A.l A-1

8.9 8-9
4.1 4-1
A.2 A-2
6.10 6-25
7.1 7-1
7.2 7-6
A.5 A-9
6.24 6-64

•

UP-8065 Rev. 9

• Term Reference

Job control streams
building 1.7
building from a workstation 9.1

bypassing statements (SKIP) 6.21
6.23

debugging 4.2.6

description 1.1
dialog session 3.4.3

ending 3.1.l
3.1.6

filing in YJCS 1.7
library file See YJCS.

minimum 3.1

preparing 1.7
replacing embedded data sets 6.25

running 1.9

saving in expanded state 6.10

screen format services 3.4.3
stored, adding cards 6.20

stored, calling 6.14

storing 1.7

Job initializer 1.6.3

• Job log file
directing, LOG option 6.10

printing 4.2.8
suppressing printing 6.10

Job name, block characters 5.7

Job preamble, 1ob step processor 1.6.4

Job queue table 1.6.2

Job queues, displaying contents 6.13

Job scheduler 1.6.2

Job step processor 1.6.4

Job step temporary files
description 3.5
See also temporary work files.

Job steps
definition 1.3
ending 1.6.5
preparing for execution 1.6.3

JOBDUMP option 6.10

•

SPERRY UNIV AC OS/3
JOB CONTROL

Page Term

Jobs
1-10 definition
9-1 deleting
6-58 naming
6-63 preparation
4-5 processing flow
1-1
3-20 processing time
3-2
3-7 renaming
1-10 restarting

3-1 scheduling
1-10 terminating
6-65
1-12 Jproc calls
6-29 allocating a file (ALLOC)
3-20 assigning previously allocated
6-57 files (ACCESS)
6-43 calling 1proc definitions
1-10 controlling spooled output (SPOOL)

description
1-8 formats, Series 90

formats, System 80
1proc definitions

6-27 linkage editor (LINK, LINKG)
4-7
6-27

personalizing print output
5-32 (WRTBIG and WRTSML)

setting up temporary work
1-8 files (WORK and TEMP)

too many devices for same
1-7 volume (DVCVOL and DVCVTP)

6-41 Jproc definitions
calling

1-7 coding rules
description

1-8 ending (END directive)
naming (NAME directive)
parameter referencing

3-21 parameter types
priorities among set symbols,

keyword parameters, and
positional parameters

1-2 set symbols
1-9 starting (PROC directive)
1-8 storing

6-26 JSET 1ob control stream
description
priorities among set symbols,

keyword parameters, and
positional parameters

Index 9

Reference Page

1.1 1-1
6.13 6-41
3.1.2 3-3
1.6.1 1-6
1.6 1-5
Fig. 1-2 1-6
3.1.2 3-4
4.2.5 4-4
6.14.1 6-41
2.4 2-11
6.12 6-38
1.6.2 1-7
1.6.5 1-9

5.4 5-11

5.3 5-8
8.7 8-7
5.8 5-36
5.1 5-1
C.3 C-10
C.4 C-17
8.3 8-4
5.6 5-17
5.6.1 5-21
5.6.2 5-23

5.7 5-32

5.2 5-2

5.5 5-16

8.7 8-7
8.2 8-1
8.1 8-1
8.6 8-6
8.5 8-4
8.9 8-9
8.3 8-3

7.3 7-16
7.2 7-6
8.4 8-4
8.8 8-8

7.2.2 7-11

7.3 7-17

UP-8065 Rev. 9

Term Reference

L

Label field A.l

Labels
changing disk file 4.8
See also LBL 1ob control statement.

Language translators 5.6

LBL job control statement
description 4.7
device assignment set for disk 3.4.1
device assignment set for diskette 3.4.3
device assignment set for tape 3.3.4
different versions of a file 4.7.4
expiration and creation date of file 4.7.2
file cataloging 6.9
identifying files 2.1.3
job step temporary files 3.5
multivolume files 4.7.1
position of file on tape volume 4.7.3

LCB 1ob control statement
description 6.4
linkage editor 1proc call 5.6.2

LENGTH parameter. VFB statement 6.5

LFD job control statement
adding card input 3.2.1
extending tape volumes 4.4.3
device assignment set for disk 3.4.1
device assignment set for diskette 3.4.3
device assignment set for tape 3.3.2
device assignment set for workstation 3.4.3.1
minimum control stream 3.1.1
naming files 2.1.6

3.1.4
naming print and punch files for

system programs 2.1.6
optional parameters 4.10
reserving extent storage area 4.10.1
specifications for existing files 4.10.2

Library files
alternate, searching for Jprocs 8.9
description B.l
load module location 4.11

LINK and LINKG jproc call calls
description 5.6
LOADM and INCLUDE statements 5.6.1
parameters 5.6.2

SPERRY UNIVAC OS/3
JOB CONTROL

Page Term

LINK option

A-1 Linkage editor
automatic execution
generating LOADM and INCLUDE

4-39 statements
Jproc call parameters
program name

5-16 using

LNKLOD
4-35
3-18 Load code
3-20 buffer
3-15 changing
4-38a name
4-37 unique. specifying
6-25
2-4 Load library file
3-21
4-36 Load modules
4-38 automatic execution

changing contents
1dent1fying

6-10 linkage editor
5-23 locating

main storage needs
6-16 program name

saving
searching for. option

3-9 SFT statement
4-22 temporary changes
3-18
3-20 LOADM control statement
3-14
3-21
3-1 Local status set symbols
2-7
3-5 Lock ID

2-7 LOG option
4-43
4-43 Logical unit numbers
4-44 ALT JCS statement

card reader
description

8-9
B-1 different volumes on same device
4-42 DVC statement

DVCVOL Jproc call
equating to device type code

5-17 multiple volumes in a file
5-21 printing block characters
5-23 standard assignments

tape

Index 10

Reference Page •
6.10 6-27

6.10 6-27

5.6.1 5-21
5.6.2 5-23
3.1.5 3-6
5.6 5-16

5.6 5-18

6.4 6-10
5.6.1 5-21
6.4 6-11
6.4 6-9

See YLOD.

6.10 6-25
6.18 6-51
3.1.5 3-7
5.6 5-16
4.11 4-45 • 4.2.2 4-2
3.1.5 3-6
5.6.2 5-25
6.17 6-48
6.17 6-48
6.18 6-51

3.15 3-6
5.6.1 5-21

7.2.2 7-11

4.7 4-35

6.10 6-27

8.9 8-9
3.2.1 3-9
2.1.1 2-2
B.3 B-2
4.3.3.3 4-12
3.1.3 3-3
5.5 5-12
6.3 6-9
4.3.3.4 4-13
5.7 5-32 • Table B-1 B-6
3.3.2 3-14

UP-8065 Rev. 9 SPERRY UNIVAC OS/3
JOB CONTROL

Index 11

UP-8065 Rev. 9

Term Reference

0

Object codes, linkage editor 5.6

OFT option 6.10

Open file table 6.10

Operand field A.I

Operating System/ 3
components Fig. 1.1
general concepts 1.5

Operation field A.I

Operator messages 6.15

OPL =option-list option 6.10

OPR job control statement 6.15

OPTION job control statement
abnormal 1ob termination 2.3
description 6.10
dynamic skip function

from a workstation 6.23
embedded data 6.24
linkage editor jproc call 5.6
parameters 6.10
running a 1ob control stream 1.6

Order-of-search options 8.9

ORG parameter. ALTER statement 6.18

Originator
assigning 6.10
definition 6.10

ORIGINATOR= destination option 6.10

OUT option 6.10

OUT parameter. linkage editor jproc call 5.6.2

Output. spooled See spooled
output.

Output file definition, linkage
editor jproc call 5.6.2

Overflow. forms 6.5

OVF parameters
VFB statement 6.5

SPERRY UNIV AC OS/3
JOB CONTROL

Page Term

p

5-18 Page separators
HOR option

6-30 printing
spooled output

6-30
PARAM job control statement

A-1 ALIB and RUB parameters (LINK
Jproc call)

description
1-4 OUT parameter (LINK jproc call)
1-4

Parameters
A-1 jproc definitions, referencing

jproc definitions, types
6-45 presentation

priorities among set symbols,
6-30 keyword parameters, and

positional parameters
6-45 referencing

PAUSE job control statement
2-10
6-29 Peripheral devices

6-63 Phase names
6-64
5-16 PRE parameter. SCR statement
6-29
1-5 PREP option, cataloged tape volume

ACCESS jproc call
8-9 LFD statement

6-51 PREP option, tape volume
DVCVTP Jproc call
VOL statement

6-30
6-30 Print band characteristics. 0 773 printer

6-30 Print cartridge
definition

6-31 identifier
name

5-26
Pnnt lines. number per inch

Print output. block characters

Printer
5-26 forms control

linkage editor Jproc call
6-16 specifying unique load codes

Priorities, set symbols and parameters
6-19

Index 12

Reference Page •
6.10 6-27
4.2.8 4-7
6.2 6-1

5.6.2 5-26
6.16 6-47
5.6.2 5-25

8.9 8-9
8.3 8-4
A.2 A-2

7.3 7-17
8.10 8-10

6.15 6-45

See devices.

6.18 6-51 •
6.8 6-23

5.3 5-9
4.4.5 4-24

5.5 5-13
4.10.2 4-44

6.4 6-10

6.4 6-10
6.4 6-11
6.4 6-10

6.5 6-16

5.7 5-32

6.5 6-16
5.6.2 5-23
6.4 6-10

7.3 7-17 •

UP-8065 Rev. 9

• Term Reference

Priority
calling control streams 6.14.1
changing (CC command) 6.13
job preparation 1.6.1
job scheduling 1.6.2
restarting a job 6.12
task switching See task

switching
priority.

PRI option 6.10

PRNTR parameter, linkage editor
jproc call 5.6.2

PROC directive 8.4

Procedures
alternate library file 8.9
call statements See jproc

calls.
coding rules 8.2
definition 5.1

8.1

• description 1.1
statement formats, Series 90 C.3
statement formats, System 80 C.4
storing 8.8
See also jproc definitions.

Processing time, job 4.2.5

Program name, assigning 3.1.5

Programs
automatic restart 6.10
changing, adding device

assignments 3.4
execution 1.6.4

Prologue 2.6.2

PRT option 6.10

•

SPERRY UNIVAC OS/3
JOB CONTROL

Page Term

6-42
6-41 QGBL job control statement
1-6
1-7 QUAL job control statement
6-38

QUERY option

Queue table

6-31

5-24

8-4

8-9

8-1
5-1
8-1
1-1
C-10
C-17
8-8

4-5

3-6 Read password, alternate library file

6-31
RELOD option, ACCESS jproc call

3-17
REN job control statement

1-8 Renaming a job

2-12 REPEAT option

6-32 RES parameter of I I DVC

RESET parameter, ALTER statement

Restart facility

RETAIN parameter
DATA statement
SPL statement

Rewinding tape

Q

R

Index 13
Update A

Reference Page

7.2.1 7-11

4.10 4-43

6.10 6-32

1.6.2 1-7

8.9 8-9

5.3 5-9

4.8 4-39

6.14.1 6-42

6.10 6-33

4.3.l 4-9

6.18 6-51

2.4 2-11
6.12 6-38

6.2.3 6-6
6.2 6~1

6.6 6-20

UP-8065 Rev. 9

Term

RLIB parameter, linkage editor
Jproc call

Rollout facility
description
job scheduling

ROUTE job control statement

RST JOb control statement
desrnption
restart facility

RU/RV 1ob control statement

RUN 1ob control statement

RUN parameter of I I DVC

Run processor
description
run-time set symbols
SFT statement
task switching priority
terminating if errors
validating input

RUN statement. DATA statement

Run-time conditional JOb control
statements

Run-time set symbols

RV JC$BLD command, initiating job
control dialog audit file processing

RV job control statement

Reference

5.6.2

2.6.1
1.6.2

6.2.2

6.12
2.4

6.14.1

6.14.1

2.1.1

1.6.l
7.2
6.17
4.11.1
6.10
6.15

6.2.2

7.2

SPERRY UNIVAC OS/3
JOB CONTROL

Page Term

5-24
SAVE option

2-12 Saved tapes
1-7

SCAN fac11ity
6-4

SCAN option

6-38 SCAN parameter
2-11

s

SC JC$BLD command, initiating the job
6-42 control dialog

6-42 Scheduling priority

2-2 SCR Job control statement

Scratch files
1-6 1proc calls
7-6
6-48 linkage editor
4-47
6-36 SCRATCH parameter, VOL statement
6-45

Scratching unwanted files
6-6

SCRl parameter, linkage editor
1proc call

7-1
Screen format services

See set symbols.
SEGALL parameter

Section 9 SECURE parameter
SPOOL jproc

6.14.1 6-42 SPL statement

Sequential access method (SQ)

SET 1ob control statement
changing the date (SET DATE)
communications region (SET COMREG)
description
setting UPSI (SET UPSI)

Set symbols
assigning values with keywords
enclosed quotes
global

local
priorities
substitution in embedded data

SEVERE option

Index 14

Reference Page •
6.10 6-33

3.3.4 3-14

6.10 6-34

6.10 6-34

6.10 6-34

9.1 9-1

4.2.1 4-2

6.8 6-23

5.2 5-2
5.2.1 5-5
5.6.2 5-25

4.4.5 4-24 • 6.8 6-23

5.6.2 5-28

3.4.3.1 3-21

5.2.2 5-6

5.8 5-36
6.2 6-1

4.5.1 4-27

6.11.1 6-36
6.11.3 6-38
6.11 6-36
6.11.2 6-37

7.2.4 7-14
7.2.3 7-13
See global
set symbols.
7.2.2 7-11 • 7.3 7-17
6.10 6-30

6.10 6-34

UP-8065 Rev. 9

• Term

SFT 1ob control statement
description
DLOAD facility

Shared code data management

SIG option

SKIP codes, vertical format buffer

SKIP 1ob control statement
branching
description
setting program switches
unconditional branching
workstation

Snapshot dump

Software conventions

Source library file

SPACE parameter, LCB statement

• Specific inclusion

SPL 1ob control statement
description
linkage editor Jproc call

Spool buffers

SPOOL 1proc

Spool subdirectory entry, updating

Spooled output
controlling
sending to auxiliary printers
sending to DDP sites
sending to RBP sites

Spooling
changing environment
diskette files
input card data
sending output to aux1l1ary printers
sending output to DDP sites
sending output to RBP sites
SPL statement

• Start of data (/$) job control statement

Statements, job control

Reference

6.17
2.6.3

6.17

6.10

6.2

2.5
6.21
6.11.2
7.1.l
6.23

6.10

A.5

B.l

6.4

5.6.2

6.2
5.6.2

4.2.7

5.8

6.2

6.2
6.2.2
6.2.2
6.2.1

5.6.2
6.2.4
6.2.3
6.2.2
6.2.2
6.2.1
6.2

3.2.2

SPERRY UNIVAC OS/3
JOB CONTROL

Page Term

STD parameter, linkage editor

6-48 jproc call
2-13

STOP command
6-48

SUB facility, resetting

6-34
SUB option

6-1
Supervisor

2-11 Switch setting, UPSI
6-58
6-37 Switching priority
7-2
6-63

6-26 Symbionts

A-9 Symbols, set

B-2
YCAT

6-11
SYSDUMP option

5-24
YJCS

adding cards to control streams
6-1 calling control streams
5-23 description

restarting a JOb
4-7 storing job control streams

5-36 YLOD
description

6-1 locating load module

YMAC
6-1
6-4 Y0BJ
6-4 ALIB and RUB parameters
6-3 (LINK jproc call)

description

5-24 SYSRES, temporary work files
6-8
6-6
6-4 YRUN
6-4 locating load module

6-3 preparing a job for execution
6-4 temporary work files

using the linkage editor

3-11
YSAVE, running a job control stream

See job control
statements.

Index 15

Reference Page

5.6.2 5-25

2.3 2-10

6.10 6-34

6.10 6-34

1.5 1-4

6.11.2 6-37

See task
switching
priority.

1.5 1-4

See set
symbols.

6.9 6-20

6.10 6-35

6.20 6-57
6.14.1 6-42
B.l B-2
6.12 6-38
1.4 1-3

B.l B-1
4.11 4-46

B.l B-1

5.6.2 5-25
B.l B-1

5.2 5-3
5.2.1 5-4

4.11 4-46
1.6.l 1-6
5.2 5-2
5.6 5-16

1.5 1-4

UP-8065 Rev. 9

Term Reference

YSRC B.l

System commands 6.13

System libraries B.l

System obiect library file B.l

System support software 1.5

T

Tape
device assignment set 3.3.1
DVCVTP JProc call 5.5
files, specifying date 6.11.1
labeled 3.3.4
logical number and file name 3.3.2
marks 6.6
MTC statement 6.6
units, controlling 6.6
volume serial number 3.3.3
volumes See tape

volumes.

SPERRY UNIVAC OS/3
JOB CONTROL

Page Term

B-2 Tape volumes
extending

6-41 indicating position of one of
several files

B-1 positioning
special characteristics

B-1 See also volumes.

1-4 Task switching priority
specifying with the EXEC statement

specifying with PRI option

TBLK parameter, EXT statement

TEMP Jproc call
changing extent specifications
description
using your own volume

Temporary work files
changing extent specifications
1ob step
setting up
using your own volume

Termination, 1ob

TEST option

Test pattern page

Time of day, block characters

TRACE option
3-13
5-16 Tracks
6-36
3-15 Transfer address, ENTER parameter
3-14 (LINK Jproc call)
6-20
6-20 TSK option
6-20
3-14 TYPE parameter

LCB statement
VFB statement

Index 16

Reference Page •
4.4.3 4-21

4.7.3 4-38
6.6 6-20
4.4.2 4-21

3.1.5 3-6
4.11.1 4-47
6.10 6-31

4.5.4 4-30

5.2.2 5-6
5.2 5-2
5.2.1 5-5

5.2.2 5-7
3.5 3-21
5.2 5-2
5.2.1 5-4 • 2.3 2-10

6.10 6-35

6.2 6-4

5.7 5-34

6.10 6-35

2.1.4 2-5

5.6.2 5-30

6.10 6-35

6.4 6-10
6.5 6-16

•

UP-8065 Rev. 9

• Term

u
UID 1ob control statement

Unconditional branching

UNDEFINED option

UNEQUAL option

USE job control statement
for dialog processor
for library services
tor menu services
for screen format services

USE parameter, VFB statement

User-id, host-id pair

User program switch indicator (UPS!)
setting

• testing (SKIP statement)

v
Version number

block characters
file

Vertical format buffers
changing

skip codes
VFB statement

Vertical line positioning

- VFB job control statement
description
linkage editor 1proc call
SPL statement

Reference

3.4.3.1
4.3.2
4.3.3.5

7.1.l

6.10

6.10

6.26.3
6.27
6.26.2
6.26.1

6.5

SPERRY UNIV AC OS/3
JOB CONTROL

Page Term

VOL job control statement
description

3-20 device assignment set for disk

4-10 device assignment set for diskette

4-14 device assignment set for tape
DVCVOL jproc call

7-1 extending tape volumes
ignoring or changing volume

6-35 serial number
multivolume files

6-35
sharing disk volumes
tape volumes, special

6-69 characteristics

6-71
6-68 VOL parameter, temporary work files

6-66
Volume serial numbers

6-16 alternate library file
description

See destination. ignoring or changing
multivolume files

6.11.2 6-37 tape

6.21 6-58 temporary work files
VOL statement

Volume table of contents (VTOC)
description
obtaining DTF specifications

for data management file

Volumes
data-set-label diskette file

allocation
different on same device
disk, sharing
disk file area allocation
format-label diskette file

allocation
identifying files

5.7 5-34 multiple, assigning file serial

4.7.4 4-38a numbers
multiple, online simultaneously
releasing (freeing)

5.6.2 5-24 tape, extending

5.7 5-35 tape, special characteristics

6.2 6-1 tape labels

6.5 6-16 temporary work files

6.5 6-16 too many devices
VOL statement

6.5 6-16
5.6.2 5-24
6.2 6-3

Index 17

Reference Page

4.4 4-18
3.4.1 3-18
3.4.3 3-20
3.3.3 3-14
5.5 5-13
4.4.3 4-22

4.4.5 4-24
4.4.1 4-19
4.4.6 4-26
4.4.4 4-23

4.4.2 4-20

5.2.1 5-5

8.9 8-9
2.1.2 2-3
4.4.5 4-24
4.4.1 4-19
4.7.1 4-36
3.3.3 3-14
5.2.1 5-5
4.4 4-18

B.2 B-2

4.10.2 4-44

2.1.5 2-7
4.3.3.3 4-12
4.4.4 4-23
2.1.4 2-5

2.1.4 2-5
2.1.2 2-4

4.7.1 4-36
4.4.6 4-26
6.7 6-21
4.4.3 4-22
4.4.2 4-20
3.3.4 3-15
5.2 5-2
5.2.1 5-5
5.5 5-13
3.3.3 3-14

UP-8065 Rev. 9

Term Reference

w
Work files

linkage editor 5.6.2
temporary, setting up 5.2
See also scratch files.

WORK Jproc call
changing extent specifications 5.2.2
description 5.2
using your own volume 5.2.1

Workstation
assigning more than one to a file 4.3.2

4.3.3.5
building a job control stream Fig. 9-1
changing control stream execution 6.10
communicating with operator 6.15
device assignment set 3.4.3.2

3.4.3.1
dynamic skip function 6.23
master, reassigning 6.10
originator, reassigning 6.10
releasing (FREE statement) 6.7

WRTBIG jproc call 5.7

WRTSML jproc call 5.7

SPERRY UNIVAC OS/3
JOB CONTROL

Page Term

XUF option
5-28
5-2

5-6
5-2
5-5

4-10
4-14
9-2
6-30
6-45
3-21
3-20
6-63
6-33
6-34
6-21

5-32

5-32

Index 18

Reference Page • x
6.10 6-35

•

•

•

a.i
c

Cl • c
0
iii ..,
:i
(.)

•

UNIVAC

USER COMMENT SHEET

Your comments concerning this document will be welcomed by Sperry Univac for use in improving

subsequent editions.

Please note: This form is not intended to be used as an order blank.

(Document Title)

(Document No.) (Revision No.) (Update No.)

Comments:
~---

From:

(Name of User)

(Business Address)

Fold on dotted lines. and mail. (No postage stamp is necessary if mailed in the U.S.A.)
Thank you for your cooperation

FOLD

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE

SPERRY UNIVAC

ATTN.: SYSTEMS PUBLICATIONS

P.O. BOX 500

BLUE BELL, PENNSYLVANIA 19424

FOLD

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

•

•

•

ai
c

• "' c
0
c;;
....
:i
(.)

•

UNIVAC

USER COMMENT SHEET

Your comments concerning this document will be welcomed by Sperry Univac for use in improving
subsequent editions.

Please note: This form is not intended to be used as an order blank.

(Document Title)

(Document No.) (Revision No.) (Update No.)

Comments:

From:

(Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.)
Thank you for your cooperation

FOLD

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE

SPERRY UNIVAC

ATTN.: SYSTEMS PUBLICATIONS

P.O. BOX 500

BLUE BELL, PENNSYLVANIA 19424

FOLD

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

()
c

•

~.

•

•

•

Cl>

~I
~I
::i

ul
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

UNIVAC
-..... .

USER COMMENT SHEET
Your comments concerning this document will be welcomed by Sperry Univac for use in improvin

subsequent editions.

Please note: This form is not intended to be used as an order blank.

(Document Title)

(Document No.) (Revision No.) (Update No.)

Comments:

From:

(Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.)
Thank you for your cooperation

FOLD

I II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE

SPERRY UNIVAC

ATTN.: SYSTEMS PUBLICATIONS

P.O. BOX 500

BLUE BELL, PENNSYLVANIA 19424

FOLD

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

0
c
-I •

•

I
I
I ,,
I
I
I
I
I
I
I
I
I
I
I
I
I
I

. I .,
c:

~I

·~I ::i
(.)

•

SFE~Y+UNIVACC

USER COMMENT SHEET

Your comments concerning this document will be welcomed by Sperry Univac for use in improving
subsequent editions.

Please note: This form is not intended to be used as an order blank.

(Document Title)

(Document No.) (Revision No.) (Update No.)

Comments:

From:

(Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.)
Thank you for your cooperation

FOLD

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE

SPERRY UNIVAC

ATIN.: SYSTEMS PUBLICATIONS

P.O. BOX 500

BLUE BELL, PENNSYLVANIA 19424

FOLD

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

•

•

