o ce .

L 2B Alaw, W3R

Operating System/3 (OS/3)

‘ ~ System Service Programs

User Guide(sel‘;u W)
For Sjsfen 0see UP-884)

This Library Memo announces the release and availability of Updating Package B to “SPERRY
Operating System/3 {0S/3) System Service Programs (SSP) User Guide”, UP-8062 Rev. 8.

This update documents the following new features for the 8.1 release:

a new parameter for the SMCLIST canned job control stream to sort the SMC listing by the time alone
that SMCs were applied, not time and date; and

Change in the default for the FMT parameter on the SMCLIST job control stream from full to condensed.

an enhancement to the condensed listing produced by SMCLIST to show which SMCs were backed out,
replaced, or not installed because of an error during installation.

Additions to the load code phase definition record format and block load module header record format
tables to identity Base O and Key O shared code.

All other changes are corrections or expanded descriptions applicable to features present in SSP prior to the
8.1 release.

Copies of Updating Package B are now available for requisitioning. Either the updating package only or the
complete manual with the updating package may be requisitioned by your local Sperry representative. To
receive only the updating package, order UP-8062 Rev. 8-B. To receive the complete manual, order UP-8062
Rev. 8. :

Mailing Lists Mailing Lists AOO, AO1, 18, 18U, 19, 19U, 20, 20U, Library Memo for
BZ, CZ and MZ 21, 21U, 75, 75U, 76 and 76U UP-8062 Rev. 8-B
(Package A to UP-8062 Rev. 8,
31 pages plus Memo)

Bl

June, 1983







eraig Syem/ ()

System Service
Programs (SSP)

User Guide

This Library Memo announces the release and availability of Updating Package A to “SPERRY UNIVAC Operating
System/3 (0S/3) System Service Programs (SSP) User Guide”, UP-8062 Rev. 8.

This maintenance update for Release 8.0 corrects assorted typographical errors in Sections 2, 9, 10, and 13.

Copies of Updating Package A are now available for requisitioning. Either the updating package only or the complete
manual with the updating package may be requisitioned by your local Sperry Univac representative. To receive only
the updating package, order UP-8062 Rev. 8-A. To receive the complete manaul, order UP-8062 Rev. 8.

Mailing Lists
BZ, CZ and MZ

UD1-281 Rey, 3773

Mailing Lists A0O, AO1, 18, 18U, 19, 19U, 20, 20U, 21,
21U, 75, 75U, 76 and 76U
(Package A to UP-8062 Rev. 8, 23 pages plus Memo)

Rl o el

Library Memo for
UP-8062 Rev. 8-A

HELEASE DATE:

January, 1983







Operating System/3 (0S/3)

System Service Programs
(SSP)

User Guide (Ser Ies 90)
sTem 80 sse {IP-8841

This Library Memo announces the release and availability of “SPERRY UNIVAC® Operating System/3 (0S/3)
System Service Programs (SSP} User Guide”, UP-8062 Rev. 8.

Revision 8 of this manual incorporates the following changes:

= SAT Librarian:

- Programiming examples added

— New PAGE statement

- New // PARAM statements: ERROR, PRINT, PRTOBJ, TAPEFILES

,,.. - COP statement expanded to replace ADD statement (ADD is still supported.)

— New A option to process all groups in a file

- Load module patch addresses can be expressed relative to start of phase.

— New ORG directive for object and load module corrections

— New syntax for canned librarian control streams

» New UNXFC parameter for disk and diskette preps

] New FDATA and PARTL parameters for diskette prep

L New COPYREL canned job control stream

. Executing SU$C16, SUSCSL, and DMPRST interactively.

L] Other changes applicable to system service program routines for 8.0 and

prior releases.

Mailing Lists

. BZ, CZ and MZ

UO1-251 Rev. 3173

ARY MEMO AND ATTACHMENTS

Mailing Lists A00,A01,18,18U,19,19U,
20,20V,21,21U,75,75U,76 and 76U
{Cover and 419 pages)

Library Memo for
UP-8062 Rev. 8

RELEASE DATE:

September, 1982



Destruction Notice: If you are going to OS/3 release 8.0, use this revision and destroy all previous copies. |f you are
not going to OS/3 release 8.0, retain the copy you are now using and store this revision for future use.

Copies of UP-8062 Rev. 7, UP-8062 Rev. 7-A and UP-8062 Rev. 7-B will be available for 6 months after the release
of 8.0. Should you need additional copies of this edition, you should order them within 90 days of the release of
8.0. When ordering the previous edition of a manual, be sure to identify the exact revision and update packages
desired and indicate that they are needed to support an earlier release.

Additional copies may be ordered by your local Sperry Univac representative.




System Service Programs (SSP)

SRS
N s i
. V‘“"’*5’3'5'%1;;:133@;%3‘t"w«;sa%zn . zz%’ﬂ::w .
. o §oqeﬁa€'~¢§§@W'%?‘;w;@wwgm . g»
P St S e . -
. ,%Ms%?;:%%? . . L
e .. .

s e i eRRsRn s .
b ot e S et Ponsnaihn.
- . . e . @gmmw e
a@ﬁeymﬁ fones Shaisian 0&@3&»*@%&&8@%”@&8&@& ¢ . .
Mgmwmm . - o o /v%wwm«mw e F
PR - T . . -
- A y"%%%”i@% ngmm%g‘gmimmmy o “{m%“ .- “;5% P g
. . L . N
- e . . W, W 4 . > B

. ... - e i
o . = . = - JF
SElias e Srinseiee s . o M r = ZI‘
o e Shenaie et S T ¢ . M
e e . e ] -9 F . -
B ﬂ%ﬂi@“?&&%ﬁ’%@a . i . e l - % "
e - - swg - B l & .
. . . 5 ¥ . -y .
e . . F - 5 W . M |
. .. = e . -
o o . gl é».‘z«:r;&;:ﬁ"‘“%&m%wé‘ewgm . .
i - - »“@z; Eﬁw;»:éﬁéi&&fﬁ%ﬁii&ﬁngﬁ?igW;?g?@i:?:a;‘i%é’é?i?»g”? . ... o
. . .;?%v* . ,«;z%“ . %g%@w:g?‘wﬁ%zw@%*g??é%;%gﬁ»e . . “Mg;%‘;mmw .

... . . . - . - ... .
;“;r@%»w»w%%ii;kﬁé:‘m . we«:;z‘:::;gzﬁ%@éﬁggéizﬂ%@ézzgm . éﬁ;rm%&m&y”@g “f:’i;@&mgg%wf@mégp . .
pnemmes o . . e oal i i e .. e .. .
Snnes e sl %%mmmzem@m e e esavwz»»é»»Wmmm@mmmﬁx - e cesiael srsiatogioniLii .
f ,,aswm:nwﬁai:’iiw onne e T ;;sm.wmmiygwm R e mmm&w@w G &e?@»ﬁs?é’lgff"w’\,:y%&y, swf»m@@gwm& e SR .
FmseniESaiE ety Gt Tmanas e .we@%;?«w,wéﬁ*;",m;;g S e EEaG By <§4§m§»q;0:o,éwdw ieos o céwc*@&iz@f’z??“ﬁg@pamv Sesns stacn Cod e .
. s chtiateen s . condisi ey oo e e e g"‘*’ms’»’“%‘www - -
foe s 4;‘??;»%@@;@5»@%»3@9&2 %qummze«zmw,, e Seesaa e e - e o G Ban = (,:%NM@smmmﬂg};%, . -
o **“"“mﬂwe@rm%;mmmwmw e . - e ... . .. .
B e Sl e e . i ndsndaco ,w, Snsnan Shusinaeeh cohaa smrmmm,,vegma;wxw@w o 5
S e i S - - .. .
L ?&%wmwmmw e e e | . S Sl ... .
. w%&»”we%w@:wwx»omw@%'%&?&és - . E ?»ﬁ*ﬂ;4@,mmwe‘¥;b@wew~gawz’a‘?mmémm
»m@@w‘gswg@»; ... - . [ e . .
Nﬁm»éaswwe ,gsm;%%’sg»swég‘mggn&ﬁmgi” - Ehw‘*“m@fmi;% .
b ... o . ... = Lo . .
. ... o . ... = . w.gzz:mwpmm%%;w“}s«:&%« -
L %&?;?Pgﬁﬁés@ﬁfme:s@@%@: e e %emﬁ»%&;«i»@i{%mm&we”‘;g‘ o = g L s
‘V:t%‘b:@yi,103@}3’95&%%@5558}2%&7&’33;"2@& . §@>mgm§u§§b§$ﬁ}m r . s o t Vﬁg@‘gﬁgf’&&zw&w,gg;;%g;agwamm
mw‘&%*”ﬂ f»;:??%%?sﬁ“gﬁﬁszz\zx&;%m%&;;g&%@ga;g%%&gﬁ&»@f‘ﬁ: . = . ﬁgééwx@?ﬁ’%%ﬁgﬁ@ -
. . ég“éﬁw%%ﬁ%%“&*ﬁﬂg . é%%;‘ffw,v N . e
. o . | ] s @ ..
e e . . | k. . .
. . .. | W .
o "w*%qg“’gw&f’i%"w%ﬁi . ﬁ««%@»&‘*;@w@iﬁw % . gﬁ»wz;:;:z@%§i§§g§‘w§.z.‘§%%§‘§g
0 . .. . - L

. ’Wﬁwnwwaiz Cossiiena o e e . Spiie s sea
e . = . .
. . . e -
s@@iﬁ’igwa&ﬁzﬁw@wﬁ%myf%a‘«;{m/m s»'a:w‘;;?@w?ﬁ%&?iif . e 1:' ﬂm &w‘;Mzgs:.,,g;gm;zmaﬁmgg . -
32@@@%&&@8&2&2%«@5&;;&vyégvv§3$7‘QQV°?‘§g - - sl s«s;gg»«w;,@w«,mWM e
%w&gﬁ&%&mﬁﬁMﬁgigg&%}@” “’3“‘%:»31@&@«%&?‘&%» - — e éswfa i G e
@gé‘%mﬁg\gg%msg gggw%ﬁ&mmﬁ&mz&%@a&’%wg?é;;v e e ,. o st ‘«ngrmg‘:%;g@?m;a
- . .. . - . g .
EsTaany Shatinennia et reRdeiinnidailny e Sy il . -

e e e e S e o :
o %gww%ﬂémm”e%wnwg . o | wmm”&%m w@g«é;«%m .
. - . ‘“*"“'"‘Ws»i» .. i ... . . .
SaeE fovag L Sl o “m% . : . - - | -
e . S e . ... e d ”22;,,@“’53})»3&&@“2@?‘wyé“‘%@?oiwww -
. gm%@&;jg«“ . - . Vf‘g"«? . §Wi’§§§§?§%§%§§« [ a0 &ig&@g;:%%&gmw L o
. . ;ﬁﬁe: mlms,gw . »gwﬁ = mnméﬁ‘%w\g .. - g*’;gw‘w
oo @w&@z&%m%ﬁg »’»&S‘?&?weﬁg‘m»g%w e e oot oon s b o w%@%g@;m:z&gwsemgx e istiesn e »’3’*23»?;5@@;%“}
. i . . e o | B . = - A"jmwmwwmw%iﬁmMwmc
. o . essil - . s & e e et derenen Bhe e .
ze@f@mﬁ»«V“Zwé&m%g&%?ﬁgﬁ%g&@ .. . = gﬁ%fﬁ‘iégméﬁéé@g@;m Wﬁ%ﬁ%ﬁi&wwm’syaxmahm
. . . .. ;zwwggmw | ... ... wmggwgmewymw
| &&%&izngw ﬁg%e&;‘g‘?ﬁlfggwxz’%g %mgwfg . gm»wg« %gw“,g - wf%&>
oo s v e o e wrwe&ﬁ?%f? T e o mEsSeel o SCSiRnan e ,,o» aisessedenes e -
e . ... - .. =B - . o .
S o seeasah Do e o waw e e i B e e 5»” m o ‘i“?‘”“"’?“*&&m“w““v'ﬁ“e?om:wM@Mwﬁ
B N*’g/n SGssatinn: - e nnae 0 Teen s Gosenenny e ot e Bagen o .
| . - e . - a,mm g&m . .- e . . . caloine .

. e D ? G i wsa,«mma\w e e Sescias s S e o "“@ S siem et -
ééx . . bl e oiasean e . . mmw»mmw@;;e o e :;tc.:wwaumg{gigﬁwmg&W%
: . e a GGG AR @1%m,ewe;%‘€4,w i 22 S i SEBSBLG e SESSRse SRR e, @@&QWW‘%&NM@W“ﬁl“
e . e S %.%*&5% ma@*&zgy ... . . .. . .
ce @ggzgs@s@,w:xmsﬁ:&%mv\g@g;ﬁ - o ﬁ%zgw“mgm«xwm%;ﬂ:?)” 's%%s* e »mng L e i?:ﬁﬁ';g’&ewswiyn52}3;@;@2mgtwaiwm?%%%:ﬁ;
o Wﬁf@g*’*{z&%*‘&w&;% e . . m - m,,wmmmﬁ . g:ezwew@gw;suwm:gw‘:;;g:\,,z»
. i Coiiho s i?’mm . Siien e s . o ...
Shas e o ;‘é«im»,m.m o Tresediisii s - - e . .
B S . . e ai@“’» = ‘,gwgg - a&mmaoe.m:s . . -
s . “g“’**"'f’if»uﬂwmwwsag«,@%s . - - ... .
.vm;ws“?w,mei»wg’;‘w@gwm‘z&.0 B . - o é,,gwmmwwewwzﬁeg &m .. Lo .. .
L &&L@W&Q%‘;’\“«%d@aeﬁh e Dol d a i S L S % ° me z‘g:wmm” qws«'g*amwwﬁmm“ .
e . She e - = ‘0&&%@« &3@‘3’;%3 e 3@ ms»\mmw S e . -
. . ... ?gm%x‘«m@gw;w& Co s Eom,;g,a;s, P . %gnsgx S . ég&iwmgzgm;}d .
Siaatn e mw;gwﬂ? e @mﬁ'ﬁ»w&%&%w e e e Pl al H “‘ﬁmiw:;a w R e e o «:x:iwamme o &2
Slnines Sshane il o e W“m\xm‘a}s@w»efv SaRemeseniaeion - . i & . - gp - a - 4km .
. e o .. e . 110 Blela e 28 L e - S ew&w S e S
- . .. . Nl L) o .. ... .
= ge”»w%‘ﬁnﬁgm ggﬁ;‘;*’m&;ﬁ e @;:&%‘Mﬁ&w%m . %m@gjm:&
?:\:;@Z‘w wzwwwme:*s - s o e B.gg;“%f.}”ﬂ%v&*;»:‘:’ﬁig;ﬁg;‘gh& e e e e *‘w;,m . L
o - . . . - o a0 B .. k}ym«mwmm o
e ... - ... . o . .
L . . s ... = . .
;zfgg%«,?%‘sws - et »:sgzxg e qs«@oiz?m&ggm~ cate a:»gggg»;g‘ . Qgg%;:m:g - w%«gmg&@ . .
L *‘*\i*““?%”:wvwg@,wi“‘m%%g . . . .
o . e . . . e -
. - o Cremeeenaal - - o %
ﬁmgmgw%g*”w“‘“wwﬁw%%“gﬁmuww - .
e slon et e cranen mgggwwmg aeiieaai e e :
- . caai e o . . -
e mm”:iw?ﬁsﬁz - o L . . &a«s@ -
S . - . . - .
o . . . . . gy . me
o - - - - . ,;;m& .
*‘::ﬂguw«g e - evzﬁes?&m SonEt mei %ﬁg@‘ &g\;q . . .
. ;ﬁ@;&wv??&v . -l w{&m&mgm@gm . . .
i %&:N%‘gg‘mmwm .. %"’ o L
. . . o
e i . o
S . = -
“W*‘ﬁfﬁ?%z&ﬁtﬁw%w
a0 .
L

stems
Environment: 90/25, 30, 308, 40 Sy

w=L=UNIVAC

UP-8062 Rev. 8



This document contains the latest information available at the time of preparation.
Therefore, it may contain descriptions of functions not implemented at manual
distribution time. To ensure that you have the latest information regarding levels of
implementation and functional availability, please consult the appropriate release
documentation or contact your local Sperry Univac representative.

Sperry Univac reserves the right to modify or revise the content of this document. No
contractual obligation by Sperry Univac regarding level, scope, or timing of functional
implementation is either expressed or implied in this document. It is further understood
that in consideration of the receipt or purchase of this document, the recipient or
purchaser agrees not to reproduce or copy it by any means whatsoever, nor to permit
such action by others, for any purpose without prior written permission from Sperry
Univac.

Sperry Univac is a division of the Sperry Corporation.

FASTRAND, SPERRY UNIVAC, UNISCOPE, UNISERVO, and UNIVAC are registered
trademarks of the Sperry Corporation. ESCORT, MAPPER, PAGEWRITER, PIXIE, and
UNIS are additional trademarks of the Sperry Corporation.

This document was prepared by Systems Publications using the SPERRY UNIVAC UTS
400 Text Editor. It was printed and distributed by the Customer Information
Distribution Center (CIDC), 555 Henderson Rd., King of Prussia, Pa., 19406.

©1974, 1975, 1976, 1977 — SPERRY CORPORATION PRINTED IN U.S.A.

'




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 PSS 1

SYSTEM SERVICE PROGRAMS Update B

PAGE STATUS SUMMARY

ISSUE: Update B — UP-8062 Rev. 8
RELEASE LEVEL: 8.1 Forward

. Page Update ) Page Update | | . Page Update
Part/Section Number Level Part/Section Number Level Part/Section Number Level
Cover/Disclaimer Orig. 9 (cont) 21, 22 B
22a thru 22d B*
PSS 1 B 23, 24 Orig.
25 thru 27 A
Preface 1 thru 3 Orig. 28 B
Contents 1 thru 6 Orig. 10 1,2 Orig.
7 B 3.4 A
8 thru 10 Orig. 5 thru 7 Orig.
11 B
12 Orig. 11 1 thru 4 Orig.
PART 1 12 1 thru 23 Orig.
Title Page Orig.
13 1 thru 23 Orig.
1 1 thru 12 Orig. 24 A
25 thru 27 Orig.
PART 2
Title Page Orig. 14 1 thru 16 Orig.
2 1 thru 6 Orig. 15 1 thru 3 Orig.
7 A
8 thru 24 Orig. 16 1,2 B
25 A 2a B*
. 26 thru 40 Orig. 3 thru b Orig.
40a Orig. 6,7 B
41 thru 64 Orig.
64a Orig. PART 5
64b A Title Page Orig.
64c Orig.
65 thru 84 Orig. Appendix A 1 thru 3 Orig.
85 A
86 thru 104 Orig. Appendix B 1 thru 10 Orig.
1 B
3 1 thru 13 Orig. 12 thru 14 Orig.
15 B
PART 3 16 thru 18 Orig.
Title Page Orig.
Index 1 Orig.
4 1 thru 44 Orig. 2,3 B
4 thru 10 Orig.
5 1 thru 3 Orig. 11 B
12 thru 14 Orig.
6 1 thru 22 Orig.
User Comment
7 1thru 9 Crig. Sheet
8 1 thru 34 Orig.
PART 4
Title Page Orig.
9 1,2 Orig.
3 A
4 thru 14 Orig.
143 Orig.
. 15_thru 20 Orig.

*New pages

All the technical changes are denoted by an arrow (=) in the margin. A downward pointing arrow (§) next to a line indicates that

technical changes begin at this line and continue until an upward pointing arrow (1) is found. A horizontal arrow (=) pointing to a line

indicates a technical change in only that line. A horizontal arrow located between two consecutive lines indicates technical changes in both

lines or deletions.







UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 Preface 1
SYSTEM SERVICE PROGRAMS

Preface

This manual is one in a series designed to instruct and guide you in the use of the
SPERRY UNIVAC Operating System/3 (0S/3). Specifically described are the 0S/3
system service programs and their effective use. The system service programs include
the system librarian, the linkage editor, and the standard system utilities.

This manual is intended for the novice programmer with a basic knowledge of data
processing, but with limited programming experience, and for the more sophisticated
programmer whose experience is limited to systems other than SPERRY UNIVAC
systems. Two other manuals are available that cover the system service programs; one
is an introductory manual and the other is a programmer reference manual (PRM). The
introductory manual briefly describes the system service programs and their facilities.
The PRM describes, in skeletal form, the characteristics of the system service programs
and is intended as a quick-reference document for the programmer experienced in the
use of the system service programs.

This user guide is divided into the following parts:
B PART 1. 0OS/3 SYSTEM SERVICE PROGRAM REPERTOIRE

Introduces you to the various system service programs through descriptions of their
intended purposes within the OS/3 operating system, their capabilities, and the
terms peculiar to their functional operation.

B PART 2. THE LIBRARIANS

Describes the functional characteristics of the system librarians relevant to you, the
control statements you may use to direct their operation, and the various library
mapping elements they are capable of producing.

W PART 3. THE LINKAGE EDITOR

Describes the functional characteristics, programming considerations, and control
statements required to allow you to effectively use the linkage editor as it is
intended to be used. Also describes the link-edit mapping data produced by the
linkage editor for every load module it produces.



UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 Preface 2
SYSTEM SERVICE PROGRAMS

B PART 4. SYSTEM UTILITIES

Describes the utility programs provided by OS/3 to initialize disk, diskette, and tape
volumes; copy disk, diskette, and tape volumes; and list software maintenance
corrections.

M PART 5. APPENDIXES

Appendix A presents the canned job control streams and the document numbers
where they are described. Appendix B describes the code set components that,
when combined in a particular sequence, make up a program source module, a
macro/jproc source module, an object module, a load module, or a group code set
module.

Each of these parts consists of one or more sections, which cover the different aspects
of the subject matter contained in each part.

To fully understand and appreciate the functions performed by the system service
program, you should be familiar with the information contained in the current version of
the following SPERRY UNIVAC publications:

B 1974 ANS COBOL programmer reference, UP-8613

B Assembler user guide, UP-8061

B Basic COBOL supplementary reference manual, UP-8057

B Consolidated data management macro lanquage user guide/programmer reference,
UP-8826

B Data management user guide, UP-8068

B Dump analysis user guide/programmer reference, UP-8837

B Extended COBOL supplementary reference manual, UP-8059

B File cataloging concepts and facilities, UP-8860

B Interactive services commands and facilities, UP-8845

B Job control user guide, UP-8065

B Operations handbook for operators, UP-8072 (for 90/30 and 90/40 systems) and
UP-8511 (for 90/25 and 90/30B systems)

B Spooling and job accounting concepts and facilities, UP-8869

B Supervisor user guide, UP-8075




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 Preface 3
SYSTEM SERVICE PROGRAMS

B System installation user guide/programmer reference, UP-8074
B System messages programmer/operator reference, UP-8076

The degree of familiarity required varies with the product in question. For example, the
linkage editor user has to be familiar with almost all of the documents. On the other
hand, those using the librarian and the system utilities require only a few of the
documents. And, those interested only in the dump routines can find nearly all of the
information they need in this document alone.






UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 Contents 1
SYSTEM SERVICE PROGRAMS

Contents

PAGE STATUS SUMMARY
PREFACE
CONTENTS
PART 1. 0S/3 SYSTEM SERVICE PROGRAM REPERTOIRE

. 1. INTRODUCTION

1.1. GENERAL 1-1
1.2 THE SYSTEM LIBRARIANS 1-2
1.3. THE LINKAGE EDITOR 1-4

1.4. THE SYSTEM UTILITIES
1.4.1. Disk Utilities

1.4.2. Tape Utilities

1.4.3. Hardware Utilities
1.4.4. System Utility Symbiont
1.4.5. Diskette Utility

- ed d et e ad
|
DRI O,

1.4.6. List Software Maintenance Corrections (SMCLIST) -6
1.5. LOGGING AND CATALOGING FACILITIES 1-6
1.6. DUMP ROUTINES 1-6
1.7. PROGRAM ERROR CHECKING (UPSI BYTE) 1-7
1.8. STATEMENT CONVENTIONS 1-10



UP-8062 Rev. 8

SPERRY UNIVAC 0S/3
SYSTEM SERVICE PROGRAMS

Contents 2

PART 2. THE LIBRARIANS

2. SAT LIBRARIAN FUNCTIONAL CHARACTERISTICS

2.1.

2.3.

24.

2.4.1.
2.4.2.
2.43.

243.1.
243.2.
2.433.
243.4.

244
2.45.
2.4.6.
247.
2.4.8.
249.

2.4.10.
2.4.11.

2.5.

2.6.

2.6.1.
2.6.2.
2.6.3.
2.6.4.

2.7.
2.7.1.

2.7.1.1.
2.7.1.2.
2.7.1.3.

2.7.2.

2.7.2.1.

2.7.3.
2.7.4.
2.7.5.

2.8.

2.8.1.
2.8.2.
2.8.3.

GENERAL

Capabilities
Additional Main Storage Requirements

CONTROL FUNCTIONS:
MODES OF OPERATION

PROGRAM LIBRARY MANAGEMENT
Naming Conventions
Group Management
Gang Operations
Module Type Gang Mode
Module Name Gang Mode
Total Gang Mode
Current File Position
Program Source Module Management
Macro/Jproc Source Module Management
Object Module Management
Load Module Management
File Merging
File Extension
File Compression
File Deletion

RUN LIBRARY MANAGEMENT

MAPPING FACILITIES

Standard Map Layout

Source Module Listings

Object and Load Module Listings
Diagnostic Message Listings

PROGRAM LIBRARY DETAILS FOR SAT FILES
Library File Layout
Library Blocks
Library Records
Record Type Byte
Disk Library Directories
Directory Format
Card Libraries
Tape Libraries
Diskette Libraries

CONTROL STATEMENTS AND PATCH CARDS

Control Statement Conventions and Format

Patch Card Formats

Blocking Load Modules (BLK) Control

Statement (BLK)

N
[ N R I R |
&b

|
O OWOWWOOWOOWONNOOO”ZOO O

NNMNNNN??)NNNNNNN

>
©

2-10
2-10
2-11
2-11
2-11

2-18
2-18
2-19
2-20
2-21
2-22
2-23
2-24
2-25
2-26

2-27
2-27
2-29




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 Contents 3
- SYSTEM SERVICE PROGRAMS

2.8.4. Write Beginning of Group (BOG) Record

Control Statement (BOG) 2-31
2.8.5. Compare Elements (COM) Control Statement (COM) 2-32
2.8.6. Copy Elements (COP) Control Statement (COP) 2-38
2.8.7. Correct Module (COR) Control Statement {COR) 2-41
2.8.8. COR Correction Cards 2-43
2.8.8.1. Object or Load Module Corrections 2-43
2.8.8.2. Source Module Corrections 2-46
2.8.9. Delete Elements (DEL) Control

Statement (DEL) 2-48
2.8.10. Add Card File Element (ELE) Control

Statement (ELE) 2-50
2.8.11. Declare End-of-Data {EOD) Control

Statement (EOD) 2-52
2.8.12. Write End of Group (EOG) Record

Control Statement (EOG) 2-52
2.8.13. Escape (ESC) Control Statement (ESC) 2-53
2.8.14. Declare File (FIL) Control Statement (FIL) 2-58
2.8.15. Printing a File in Alphabetical Sequence {LST) 2-59
2.8.16. Pack File {PAC) Control Statement (PAC) 2-60
2.8.17. Controlling Page Advancement for the Librarian Map (PAGE) 2-62
2.8.18. Specifying Error Handling during Librarian Execution (// PARAM ERROR) 2-63
2.8.19. Suppressing the Librarian Map {// PARAM PRINT) 2-64
2.8.20. Printing Source Modules in Hexadecimal Format (// PARAM PRTOBJ) 2-64
2.8.21. Creating a Muiltifile Tape {(// PARAM

TAPEFILES) 2-64a

2.8.22. Specifying Date and Time during {// PARAM

Librarian Execution UPDATE) 2-64c
2.8.23. Recycle Source Module Current Position

Pointer (REC) Control Statement (REC) 2-65
2.8.24. Rename Element (REN) Control Statement (REN) 2-69
2.8.25. Produce or Delete Control Statement

Records within Object Module (REPRO) Control

Statement (REPRO) 2-72
2.8.26. Reset File Current Position Pointer

(RES) Control Statement (RES) 2-75
2.8.27. Add, Replace, or Check Sequence Numbers

(SEQ) Control Statement (SEQ) 2-77
2.8.28. Skip Source Module Records (SKI)

Control Statement (SKH) 2-80
2.9. LIBRARIAN CANNED JOB CONTROL STREAMS 2-81
2.9.1.  Print Library Directory Partition (DRDP) 2-82
2.9.2. Print Directory for SYSRES Modules (LISTRES) 2-82
2.9.3. List the Contents of the Release Volume

System Libraries (MODLST) 2-83
2.9.4. Pack SYSRES Modules and Print Directories (PACKRES) 2-83
2.10. PROGRAMMING EXAMPLES 2-84
2.10.1. Repositioning Modules in a Disk Library File 2-84
2.10.2. Sorting Modules into Separate Files by Type 2-92
2.10.3. Building Module Groups 2-97
2.10.4. Copying a Card Deck to Disk 2-102



UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 Contents 4
SYSTEM SERVICE PROGRAMS

3. MIRAM LIBRARIAN FUNCTIONAL CHARACTERISTICS

31. - GENERAL 3-1
3.2 CONTROL FUNCTIONS 3-1
3.3. CONTROL STATEMENTS 3-2
3.3.1. Declare MIRAM File (FIL) Control Statement 3-2
3.3.2. Copy Modules (COP) Control Statement 3-3
3.3.3. Print (PRT) Control Statement 3-5
3.3.4. Delete Module (DEL) Control Statement 3-7
3.3.5. Change Name and Comment (CHG) Control Statement 3-9
3.4. MIRAM LIBRARY MODULE FORMATS 3-1
3.5. PROGRAMMING EXAMPLES ' 3-12
3.5.1. Typical MIRAM Librarian Job Stream 3-12

PART 3. THE LINKAGE EDITOR

4. FUNCTIONAL CHARACTERISTICS

4.1. GENERAL 4-1

4.1.1. The SAT Interface 4-2

4.1.2. Temporary Storage Usage 4-3

4.2. LINKAGE EDITOR INPUT AND OUTPUT 4-3

4.3. CONTROL STATEMENT FUNCTIONS 4-5

4.4. OBJECT MODULE FORMAT 4-7

45. LOAD MODULE FORMAT 4-8

4.6. LOAD MODULE STRUCTURE 4-12
4.6.1. Single-Phase Load Modules 4-13
4.6.2. Multiphase Load Modules 4-13
4.6.2.1. Phase Definitions 4-15
46.2.2. Phase Names 4-16
4.6.2.3. Node Points and Paths 4-16
46.24. Communications between Phases 4-17
4.6.3. Multiregion Load Modules 4-19
4.7. LINKAGE EDITOR OPERATION 4-22
4.7.1. Automatic Inclusion Processing 4-23
4.7.2. Automatic Deletion Processing 4-24
4.7.3. Common Storage Processing 4-26
4.7.4. Automatic Overlay Control Processing 4-28
4.7.41. Overlay Control Routine 4-30
47.4.2. Entry Point Table (NTAB) 4-30
47.4.3. Phase Table (PTAB) 4-31

4744, Region Table (RTAB) 4-31



UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 Contents 5
SYSTEM SERVICE PROGRAMS

4.7.5. Multiple Definition Resolution Processing 4-31
475.1. Standard (Non-V-CON) References 4-31
475.2. V-CON References 4-32
4.7.6. Partial Include Processing 4-34
4.7.7. Shared Code (Reentrant Code) Processing 4-36
47.71. Share Facility 4-37
4.7.7.2. Linkage in Shared-Code Environment 4-38
47.7.3. Shared Constants 4-38
4.7.7.4. Link-Editing Reentrant Code 4-39
4.7.75.: Shared Records 4-39
4.7.8. Internal Symbol Dictionary (ISD) Processing 4-42
4.7.8.1. Object ISD Records 4-43
4.7.8.2. Load ISD Records 4-43
4.7.9. User Program Switch Indicator (UPSI) Setting 4-44

5. PROGRAMMING CONSIDERATIONS
5.1. GENERAL 5-1
5.2. OVERLAY STRUCTURES AND DEPENDENCIES 5-1
5.2.1. Phase Dependencies 5-2
5.2.2. Control Section Dependencies 5-2
5.2.3. Program Length 5-2
5.2.4. Phase Qrigins and Node Points 5-2
525. Use of Multiple Regions 5-2

6. CONTROL STATEMENTS
6.1. GENERAL 6-1
6.2. CODING FORMAT 6-2
6.3. PLACEMENT OF CONTROL STATEMENTS 6-2
6.4. EMBEDDED CONTROL STATEMENTS 6-3
6.5. BASIC CONTROL STATEMENT PROCESSING 6-3
6.6. CONTROL STATEMENT DESCRIPTIONS 6-5
6.6.1. Specify Linkage Editor Options (// PARAM or

LINKOP) 6-5

6.6.2. Begin Load Module (LOADM) 6-14
6.6.3. Include Object Code (INCLUDE) 6-15
6.6.4. Begin Overlay Phase (OVERLAY) 6-16
6.6.5. Begin New Region (REGION) 6-17
6.6.6. Define Phase Execution Entrance (ENTER) 6-18
6.6.7. Define Label (EQU) 6-19
6.6.8. Modify Location Counter (MOD) 6-20
6.6.9. Reserve Storage (RES) 6-21



UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 Contents 6
SYSTEM SERVICE PROGRAMS

7. THE LINK-EDIT MAP

7.1. GENERAL 7-1
7.2 PROCESS MAP 7-1
7.3. UNRESOLVED EXTRN REFERENCE LIST 7-2
7.4. DEFINITIONS DICTIONARY 7-3
7.5. PHASE STRUCTURE DIAGRAM 7-5
7.6. ALLOCATION MAP 7-6
7.7. ERROR LEGEND, ERROR COUNT LIST, AND UPSI SETTING 7-8

8. PROGRAM EXAMPLES

PART 4. SYSTEM UTILITIES

9. INITIALIZE DISK ROUTINE (DSKPRP)

9.1. GENERAL 9-1
9.2. PREPPING YOUR DISK PACK 9-1
9.3. SPECIFYING THE PREP OPTIONS 9-2
9.3.1. Testing Alternate Track Areas (ALTRK) 9-3
9.3.2. Indicating the Type of Initial Load Control Storage (ILOPT) 9-3
9.3.3. Automatically Recording Defective Tracks (INSRT) 9-3
9.3.4. Indicating Your Disk Pack Is an IPL Volume (IPLDK) 9-4
9.3.56. Renumbering Your Volume Serial Number or Replacing
Initial Load Control Storage (RPVOL) 9-4
9.3.6. Specifying a Partial Prep or Changing Your Volume
Serial Number and VTOC (PARTL) 9-5
9.3.7. How Accurate a Prep Do You Need® (PREPT and RETRY) 9-5
9.3.8. Specifying Where Prepping Starts and Ends {PTBEG and PTEND) 9-6
9.3.9. Specifying Your Volume Serial Number (SERNR) 9-6
9.3.10. Specifying a Track Condition Table (TRCON and TRKCT) 9-6 ‘
9.3.11. Testing an Area before Prepping (VERFY) 9-9
9.3.12. Checking the File Expiration Date (UNXFC) 9-9 |
9.3.13. Specifying the VTOC Address (VTOCB and VTOCE) 9-10 |
9.4. FLAGGING DEFECTIVE TRACKS AUTOMATICALLY 9-11 ‘
|
9.5. CREATING THE STANDARD VOLUME LABELS 9-11 ‘

9.6. PREPPING YOUR DISKETTE 9-13 |




11. TAPE PREP (TPREP)

11.1.

. 11.2.

PREPARING YOUR TAPE FOR EXECUTION

TAPE PREP CODING INSTRUCTIONS

UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 Contents 7
SYSTEM SERVICE PROGRAMS Update B
. 9.7. SPECIFYING THE PREP OPTIONS FOR A DISKETTE 9-13
9.7.1. Renumbering Your Diskette Volume Serial Number (RPVOL) 9-13
9.7.2. Specifying File Allocation for DSL Diskettes (FDATA) 9-13
9.7.3. Changing Your Diskette Volume Serial Number and
VTOC (PARTL) 9-14
9.7.4. Specifying Your Diskette Volume Serial Number (SERNR}) 9-14
9.7.5. Checking the File Expiration Date (UNXFC) 9-14
9.8. INITIALIZING THE DATA SET LABELS 9-14a
9.9. EXECUTING THE DISK PREP (DSKPRP) 9-15
9.10. ERROR PROCESSING 9-19
9.11. PREP CANNED JOB CONTROL STREAMS 9-19
9.11.1. Add COS to $Y$SRC on SYSRES (ADDNnCOS) 9-20
9.11.2. Change a Volume Serial Number 9-20
9.11.2.1. System Console Keyin (CGV) 9-21
9.11.2.2. Card Input (CHGVSN) 9-22¢
9.11.3. Reposition COS from $Y$SRC on SYSRES
for COS-IPL (PRPNnCOS}) 9-22d
9.11.3.1. Card Input 9-23
9.11.3.2. System Console Keyin 9-23
9.11.4. Prep and Allocate RELEASE/SYSRES Files (SETR1L) 9-24
9.11.4.1. System Console Keyin 9-24
. 9.11.4.2.  Card Input 9-25
9.11.4.3. Diagnostics and Error Messages 9-27
9.11.5. Copy System Release Files (COPYREL)
10. ASSIGN ALTERNATE TRACK (AAT)
10.1. AAT CAPABILITY 10-1
10.2. INTERFACING WITH DSKPRP 10-2
10.3. SPECIFYING AAT OPTIONS 10-2
10.3.1. Specifying Any Suspected Defective Tracks (ASGTK) 10-2
10.3.2. Printing Your Records (ASGPR) 10-2
10.3.3. Testing the Alternate Track (ASURF) 10-2
10.3.4. Patching or Modifying Existing Records (ASUPD) 10-3
10.3.5. Specifying Your Volume Serial Number (SERNR) 10-4
10.4. EXECUTING AAT 10-4

11-1

11-1



UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 Contents 8
SYSTEM SERVICE PROGRAMS

12. SYSTEM UTILITY COPY ROUTINES

12.1. SECTORED DISK COPYING (SUSC16) 12-1
12.1.1. SU$C16 Organization 12-1
12.1.2. SU$C16 Interfacing with Job Control 12-2
12.1.3. Executing SU$C16 12-3
12.2. NONSECTORED DISK COPYING (SUsSCSsL) 12-5
12.2.1. SUS$CSL Organization 12-5
12.2.2. SUSCSL interfacing with Job Control 12-6
12.2.3. Executing SUSCSL 12-6
12.3. EXECUTING SU$C16 IN AN INTERACTIVE ENVIRONMENT 12-8
12.4. EXECUTING SUSCSL IN AN INTERACTIVE ENVIRONMENT 12-12
12.5. STAND-ALONE DISK COPY (SUSIDA and

SUSSEL) 12-16
12.5.1. Load Procedures 12-17
12.5.2. Initialization Phase 12-17
12.5.3. Control Phase 12-20
12.5.4. Input and Output Phases" 12-21
12.5.5. Termination Phase 12-22
12.5.6. 1/0 Disk Error Handling Routine 12-22

13. DISK DUMP/RESTORE (DMPRST) ROUTINE

13.1. DMPRST CONCEPT 13-1

13.2. EXECUTING DMPRST IN A VOLUME ENVIRONMENT 13-2

13.3. EXECUTING DMPRST IN A FILE ENVIRONMENT 13-8

13.3.1. Performing a Disk Copy Operation in a File Environment 13-8

13.3.2. Performing a Dump Operation in a File Environment 13-10
13.3.3. Performing a Restore Operation in a File Environment 13-12
13.3.3.1.  Using the Allocation Parameter to Control Restore Processing 13-13
13.3.3.2.  Using the File Prefix Parameter 13-14
13.3.3.3.  Using the New-name Parameter to Rename Files 13-14
13.3.3.4. Restoring from Tape in the File Environment 13-15
13.3.4. Copying Files in a Single Disk Environment 13-17
13.4. CHECKING FOR FILE EXPIRATION DATE 13-17
13.5. EXECUTING DMPRST IN AN INTERACTIVE ENVIRONMENT 13-18
13.5.1. Performing a Disk Copy Operation 13-19
13.5.2. Performing a Dump Operation 13-22

13.5.3. Performing a Restore Operation 13-25




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 Contents 9
SYSTEM SERVICE PROGRAMS

. 14. THE DISKETTE UTILITY (CREATE)

14.1. FUNCTIONS 14-1
14.2. USING THE DISKETTE UTILITY 14-1
14.3. DISKETTE INDEX SCAN 14-5
14.4. DISKETTE UTILITY PROGRAMMING EXAMPLES 14-6
15. SYSTEM UTILITY SYMBIONT -

16. LIST SOFTWARE MAINTENANCE CORRECTIONS (SMCLIST)
16.1. SMCLIST FUNCTION 16-1

16.2. EXECUTING SMCLIST 16-1

PART 5. APPENDIXES

A. CANNED JOB CONTROL STREAMS

. Al GENERAL PURPOSE OF THE CANNED JOB CONTROL
STREAMS A-1
A2 COPYING RELEASE OR SYSRES LIBRARIES (COPYREL) A-3 -

B. CODE SET COMPONENTS

B.1. GROUPED CODE SETS B-2

B.2. SOURCE MODULE CODE SETS B-4

B.3. OBJECT CODE SETS B-5

B.4. LOAD CODE SETS B-11

B.5. BLOCK LOAD CODE SETS B-14
INDEX

USER COMMENT SHEET



UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 Contents 10
SYSTEM SERVICE PROGRAMS

FIGURES

1-1.  Program Library Structure 1-3
2-1 Librarian Input/Output File Environment 2-1
2-2 Typical Librarian Map 2-12
2-3 Object Module Listing 2-15
2—-4. Library Block Format 2-19
2-5. Library Record Format 2-20
2-6. Disk Library File Structure 2-23
2-7.  Typical Librarian Map for Source Module Compare Operations 2-35
2-8.  Typical Librarian Map for File Compare Operations 2-36
2-9. Example of Source Module Corrections 2-47
2-10. Example of Source Module Reordering Operation 2-66
2-11. Example of Source Module Add/Replace/Delete Operation Using SKI Control Statements 2-68
2—-12. Example of the SEQ Statement in a Source Module Correction Deck 2-69
2-13. Librarian Map for Repositioning Modules 2-87
2-14. Librarian Map for Sorting Modules by Type 2-94
2-15. Librarian Map for Building Module Groups 2-99
2-16. Librarian Map for Copying a Card Deck to Disk 2-104
3-1 Typical MIRAM Librarian Job Stream 3-12
3-2. Sample Librarian Map 3-13
4-1. Functional Relationship among the Linkage Editor, SAT, and Related Files 4-1
4-2.  Linkage Editor Input and Output 4-4
4-3.  0S/3 Object Module Format 4-8
4-4. 0S/3 Load Module Format 4-9
4-5. Typical Load Module Format When Loaded In Main Storage 4-12
4-6. Typical Multiphase Load Module Structure 4-14
4-7. Typical Multiphase Load Module Control Stream 4-15
4-8. Examples of Inclusive and Exclusive References 4-18
4-9. Program SAMPLE as a Multiregion Load Module 4-19
4-10. Control Stream Coding Required to Construct the Multiregion Load Module SAMPLE 4-20
4-11. Program SAMPLE as a Multiphase Load Module 4-21
4-12. Referencing Label Definitions in a Load Module 4-25
4-13. Example of Common Storage Promotion Scheme 4-28
4-14. Multiple Definition Resolution without V-CON References 4-33
4-15. Multiple Definition Resolution with V-CON References 4-35
4-16. Effect of Shared Code on Main Storage Requirements 4-36
4-17. EXTRN Resolution Processing in Shared-Code Environment 4-38
4-18. Format of a Nonreentrant Load Module That References Shared Code 4-40
4-19. Format of a Reentrant Load Module 4-41
4-20. Link-Edit of USER with NOSHARE Specified 4-41
4-21. Link-Edit of USER with SHARE Specified 4-41
4-22. Link-Edit of R1 with RNT Specified 4-42
4-23. Link-Edit of T1 with RNT Specified 4-42
5-1. Example of a Program Structured as a Multiregion Load Module 5-3

6-1. Typical Linkage Editor Control Stream 6-1
6-2. General Linkage Editor Control Statement Format 6-2




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 Contents 11

SYSTEM SERVICE PROGRAMS Update B

7-1.  Typical Link-Edit Process-Map Listing 7-2
7-2. Typical Unresolved EXTRN Reference List 7-3
7-3.  Typical Link-Edit Definitions Dictionary List 7-3
7-4. Typical Phase Structure Diagram 7-5
7-5. Typical Allocation Map 7-7
7-6.  Typical Error Legend and Count List 7-9
8-1. Typical Linkage Editor Job Control Stream 8-1
8-2. Link-Edit Example 1 8-3
8-3.  Link-Edit Example 2 8-6
8-4.  Link-Edit Example 3 8-12
8-5.  Link-Edit Example 4 8-16
8-6. Link-Edit Example 5 8-21
9-1 Track Condition Table 9-6
9-2 VOL1 Format 9-12
9-3 Sample Listing for CGV Job 9-22
10-1. AAT Using Update Records 10-6
10-2. AAT Using Update Records without Printing 10-7
11-1. Control Stream Coding Required to Prep Muitiple Tape Volumes in a Single

Jop Step 11-3
11-2. A Typical COP Listing Showing TPREP Messages 11-4
13-1. Hardware Utilities Menu Screen 13-19
14-1. File Creation and Record Correction 14-6
14-2. Sample Program to Add to and Sort a File 14-12
14-3. Example of Diskette Index Scan 14-15
16-1. Example of Full SMC Listing 16-3
16-2. Sample of Condensed SMC Listing 16-6
B-1. Example of Nested Group Code Sets B-2
B-2. Relocation Mask Field B-9
TABLES
2-1 Record Type Byte Descriptions 2-21
2-2. Disk Directory Index Type Flags 2-24
2-3 Librarian Canned Job Control Streams 2-81
3-1. MIRAM Library Module Header Record Format 3-11
7-1.  Special Process-Map Messages 7-2
7-2. Definitions Dictionary Type ldentifications 74
7-3. Definitions Dictionary Phase Field 7-4
7-4.  Definitions Dictionary Information Characters 7-4
7-5. Error Legend and Count List Flag Code Descriptions 7-8
9-1.  Default Starting VTOC Addresses 9-10
9-2. Default Ending VTOC Addresses 9-10
9-3 COPYREL Copy Order 9-28



UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 Contents 12
SYSTEM SERVICE PROGRAMS

12-1. Permissible Types of Input and Output Devices 12-16
12-2. Extent Addresses by Input Device Type 12-19
13-1. DMPRST Differences between Interactive and Batch Methods 13-2
13-2. Volume Mode PARAM Statements 13-3
13-3. File Mode PARAM and FILE Statements 13-8
13-4. File Allocation Parameters 13-22
14-1. Disk Index Scan Record Template Fields 14-6
15-1. SL$$SU Functions 15-1
A-1. Canned Job Control Streams A-1
B-1. Beginning of Group (BOG) Header Record Format B-3
B-2. End of Group (EOG) Trailer Record Format B-3
B-3. End of File (EOF) Sentinel Record Format B-3
B-4. Source Module Code Header Record Format B-4
B-5. Source Module Code Statement Record Format B-4
B-6. Compressed Source Module Code Statement Record Format B-5
B-7. Object Code Header Record Format B-6
B-8. Object Code Control Section Record Format B-6
B-9. Possible Control Section Record Types B-7
B-10. Object Code ESD Record Format B-7
B-11. Possible ESD Record Types B-7
B-12. Object Code ISD Record Format B-8
B-13. Object Code Text/RLD Record Format i 8-8
B-14. Relocation Mask Formats B-9
B-156. Object Code Transfer Record Format B-10
B-16. Object Code Control Statement Record Format B-10
B-17. Load Code Phase Definition Record Format B-11
B-18. Load Module Shared Code Record Formats B-12
B-19. Load Code ISD Record Format B-13
B-20. Load Code Text/RLD Record Format B-13
B-21. Load Code Transfer Record Format B-14
B-22. Partition 1 - Directory Entry B-14
B-23. Partition 2 - Block Load Module Header Record B-15
B-24. Partition 2 - Block Load Module RLD Record B-16
B-25. RLD Mask B-16
B-26. Partition 2 - Block Load Module Nonphase Text/RLD Record B-17

B-27. Partition 2 - Block Load Module Transfer Record B-18




PART 1. OS/3 SYSTEM SERVICE
PROGRAM REPERTOIRE






UP-8062 Rev. 8 SPERRY UNIVAC 0S§/3 1-1
SYSTEM SERVICE PROGRAMS

1. Introduction

1.1. GENERAL

The system service programs are those programs required to support the operation and
organization of the operating system in which your problem programs are to be
executed. These programs allow you to construct and reorganize the program libraries
in your system, create program modules for execution in your system, initialize tape and
disk volumes for the storage of your program and data files, and obtain printouts of
main storage.

The system service programs are introduced and outlined briefly in this section and
discussed in full detail in the subsequent parts of this document. The common and
program names of the system service programs are:

Common Name Program Name
System librarian for SAT files LIBS
System librarian for MIRAM files MLIB
Linkage editor LNKEDT
Initializing disk volumes DSKPRP
Assign alternate track DSKPRP
(nonsectored disk)
Disk dump/restore DMPRST
Tape prep TPREP
System utility copy (sectored) SU$C16
System utility copy (nonsectored) SUS$CSL
Hardware utilities HU

(interactive DMPRST, SU$C16,
and SU$CSL)



UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 1-2
SYSTEM SERVICE PROGRAMS

Common Name Program Name
Stand-alone disk copy (IDA) SUSIDA
Stand-alone disk copy (SEL) SUSSEL
System log accumulation utility SY$LOG
JOBLOG report program JBLOG
Catalog manipulation utility routine JCSCAT
Diskette utility CREATE

in addition, a system service program symbiont, SL$$SU, is initiated from the system
console by the SU (system utility) or the TU (tape utility) command.

1.2. THE SYSTEM LIBRARIANS

There are two system librarians that can maintain and manipulate both your system and
user libraries. For all non-MIRAM library files, you use the SAT librarian (LIBS). For
MIRAM libraries, you use the MIRAM librarian (MLIB).

The librarians are also used during OS/3 system generation to tailor the SYSRES
program libraries. The librarians are capable of manipulating the library files at your
request and in the specific manner directed. The functions performed by the librarians
are controlled by a set of integrated subroutines, file tables, and overlay segments
associated with the supported indivdual functions.

Your OS/3 system can support several independent system and user program libraries,
and the librarians can be used to maintain each one. A program library consists of one
or more library files. A single library may contain both user and system files, or it may
be used exclusively for one or the other. Each file within the program library contains a
directory partition, the library file directory, and two data partitions.

The program library files can be composed of any combination of the following:

B Program source modules (language processor code)

Macro/jproc source modules (language processor code/job control)

Object modules (language processor output/linkage editor input)

Load modules (linkage editor output)

Module groups




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 1-3

SYSTEM SERVICE PROGRAMS

B Screen format modules

B Saved run library modules

The library files may be composed of system or user code used for either program
generation or execution. The code may be in any of the listed formats and may, from
time to time, change in form, content, or relative position within a given file. The mixing
and grouping of module types is a user option, and module groups can contain modules
of the same or different types. Figure 1-1 depicts the structure of a SAT program

library, showing various component configurations.

PROGRAM
DISK | ] LIBRARY
vTOC (SYSTEM OR USER)
]
|
| A
[ r
Y
LIBRARY LIBRARY LIBRARY
F&F;'z'g - — — ] FILE1 - — ~ 3 FILE2 — — — FILEn
(SYSTEM OR USER} (SYSTEM OR USER) (SYSTEM OR USER}
4
PROGRAM MACRO/JPROC MODULE
SOURCE (S) SOURCE OBJECT (0} LOAD (L) GROUP
MODULES MODULES (M) MODULES MODULES
3 \ Y SOURCE
MODULES
SOURCE SOURCE OBJECT LOAD
STATEMENTS STATEMENTS RECORDS RECORDS MACRG/JPROC
SOURCE MODULES
ASSEMBLER l: ASSEMBLER L csecT HEADER
COoBOL JOB CONTROL . com TEXT
RPG I — ENTRY TRANSFER
FORTRAN L EXTRN
CONTROL L 1SD OBJECT
STATEMENTS — V-CON MODULES
SOURCE — TEXT
DATA — TRANSFER
LOAD
MODULES
Figure 1-1. Program Library Structure




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 1-4
SYSTEM SERVICE PROGRAMS

The librarians can perform, on all or specific portions of library files, such tasks as
copying, merging, listing, or punching on cards the contents of specified files. The
librarian can also add to or delete from a file or files. In fact, the OS/3 librarians can
perform all the tasks you may be expected to require for program file management. The
librarians, however, cannot perform these tasks on multivolume tape files. The tasks are
initialized and directed through a set of control statements introduced to the librarian
through the control stream. The librarians and the function associated with each task
are fully explained in Part 2 of this document.

1.3. THE LINKAGE EDITOR

The OS/3 linkage editor converts and combines object modules and object module
elements (control sections and common sections), produced by the OS/3 language
processors, into modules that can be loaded into a system by the supervisor for
execution. The modules produced by the linkage editor are called load modules. Only
programs in load module form can be executed in an OS/3 environment, and the only
way to convert object modules into a load module is by using the linkage editor.

The linkage editor produces three types of load modules:
B Single-phase (reentrant or nonreentrant)

B Multiphase (nonreentrant)

B Muiltiregion (nonreentrant)

A single-phase load module consists of a single program segment loaded into main
storage each time the program is to be executed. Unless otherwise directed, the linkage
editor will always produce a single-phase load module. Multiphase and multiregion load
modules are composed of more than one program segment, each segment being a
program phase loaded into main storage and executed individually, as required by the
logic of the program. The linkage editor will create a multiphase or multiregion load
module from one or more object modules only if directed to do so by the user through
the linkage editor control statements. Savings in main storage space and increased

system performance can be realized through proper application of multiphasing and
multiregioning.

The capabilities of the linkage editor provide the system user with the following
advantages:

M If a program logic error is discovered in a particular object module or control
section of a program, only the incorrect element need be recompiled or
reassembled. Afterward, the entire program can be relinked without extensive
reassembling or recompiling.

B Subroutines or elements required in more than one program phase need be
preserved only once as relocatable object code because a single module can be
individually included in any number of load modules by the linkage editor.




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 1-6
SYSTEM SERVICE PROGRAMS

B A single load module may actually consist of object elements produced by several
different language processors because all processors generate compatible output
object code acceptable to the linkage editor.

B Reentrant modules can be shared by other load modules, resulting in the overall
reduction of main storage requirements.

Part 3 details the capabilities of the linkage editor.

1.4. THE SYSTEM UTILITIES

The system utilities are available to do the following:

B Test and prepare all tape, diskette, and disk volumes for use by OS/3.
B Manipulate the system catalog file, $YSCAT.

B Create and maintain diskette files.

1.4.1. Disk Utilities

The disk utilities perform the following functions:

B Initialize sectored (SPERRY UNIVAC 8415, 8416, and 8418 Disk Subsystems) and
nonsectored (SPERRY UNIVAC 8411, 8414, 8424, 8425, 8430, and 8433 Disk
Subsystems) disk volumes; also 8413 diskettes

Perform surface analysis for sectored and nonsectored disk volumes

Assign alternate tracks on nonsectored disk volumes

Dump, restore, or copy disk or tape volumes or files

Place initial load control storage (ILCS) modules on disk

Assign new volume serial numbers to active disks

1.4.2. Tape Utilities

The tape utilities initialize tape volumes for use in the system. Up to 36 tapes can be
initialized at one time.

1.4.3. Hardware Utilities

The hardware utilities consist of the dump/restore and disk copy routines performed

interactively. There are two types of disk copy routines: SU$C16 (used when copying
sectored disks) and SUSCSL (used when copying nonsectored disks).



UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 1-6
SYSTEM SERVICE PROGRAMS

1.4.4. System Utility Symbiont

The system utility symbiont is a multipurpose utility enabling the operator to perform
different utility operations from the system console, for example, reproducing cards and
printing a tape.

1.4.5. Diskette Utility

The diskette utility is available to create files on the 8413 diskette and to write job
control streams to the created diskette files. The diskette utility is executed by running
a canned job control stream (RV WRT) and then directed through a series of queries
appearing on the system console to which the user must respond.

1.4.6. List Software Maintenance Corrections (SMCLIST)

The SMCLIST canned job control stream produces a listing of all software maintenance
corrections (SMCs) contained in the SMCLOG file.

1.56. LOGGING AND CATALOGING FACILITIES

The logging and cataloging facilities include the system log accumulation utility, the job
log report program, and the catalog manipulation utility.

The system log accumulation utility is used to transfer job log and console log records
from the system spool file to a user disk or tape file. Once in the user file, they are
available for further processing by a job accounting and bookkeeping programs. The job
log report program is used to produce a job accounting report from the SYSLOG file
created by the system log accumulation utility. For a detailed description of the use and
function of the system log accumulation utility and the job log report program, see the
spooling and job accounting concepts and facilities manual, UP-8869 (current version).

The catalog manipulation utility (JC$CAT) is used to access the system catalog file
$YSCAT. Using JCSCAT, you can obtain a printout of the contents of $Y$CAT; assign,
delete, or change a catalog password; and copy $Y$CAT to another disk or tape
volume. For a detailed description of the use and function of the catalog manipulation
routine, see the file cataloging concepts and facilities manual, UP-8860 (current version).

1.6. DUMP ROUTINES

Several dump routines are available to you as an aid in debugging the system or a
single program if error conditions occur. The available dump routines are the SYSDUMP
routine, JOBDUMP routine, and USE EOJ DUMP routine.




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 1-7
SYSTEM SERVICE PROGRAMS

The system dump routine (SYSDUMP) is provided to you as a system debugging aid. Its
primary function is to translate and print out the state of the operating system in the
event the system terminates abnormally or is terminated by the operator because of
abnormal operation. The abnormal termination of the system is commonly referred to as
a system crash. The SYSDUMP routine translates the bits and bytes of information
present in the system at the time it crashes into text and charts that can be recognized
and analyzed by one familiar with the structure of OS/3.

SYSDUMP is a feature of the supervisor and is automatically included in the supervisor
at system generation time unless specifically not included. Once included, it can be
called upon by the system operator to translate the state of the operating system at
any time. The execution of the SYSDUMP routine is always under the control of the
supervisor (it is not a stand-alone routine) and is designed to run in a multiprogram
environment.

JOBDUMP is a scaled down version of SYSDUMP designed to interpret the state of a
single user job if the job terminates abnormally. JOBDUMP, just as with SYSDUMP,
translates the state of the user job region into text and charts useful in interpreting and
debugging the program. The output format is the same as that of SYSDUMP for job
prologues and main storage hexadecimal/character dumps.

The user EOJ dump is a hexadecimal printout of the user job region initiated by either
the DUMP macro or an abnormal termination of the job. The user EOJ dump can be
used to determine the nature of an abnormal termination or as a diagnostic tool for
program debugging.

For a detailed description of the use and function of the dump routines, see the dump
analysis user guide/programmer reference, UP-8837 (current version).

1.7. PROGRAM ERROR CHECKING (UPSI BYTE)

The 0S/3 system provides every job with a 12-byte communications region residing in
the job preamble. The last byte of this region is the user program switch indicator
(UPSI). The UPSI byte is used to pass information from one job step to the next job
step and to indicate the presence of program errors. The librarian, the linkage editor,
the utilities and dump routines, and other executable system components set the UPSI
byte if errors are detected. You can test the UPSI byte during program execution to
determine the nature and severity of any errors. The basic bit usage of the UPSI byte is:

B BitO

A 1 in the first bit (X'80°) indicates a catastrophic error. Subsequent job steps
probably will not function and the job will terminate.



UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 1-8

SYSTEM SERVICE PROGRAMS

Bit 1

A 1 in this bit (X'40’) indicates a serious error. A serious error could affect
subsequent job steps or result in incomplete or erroneous processing results.

Bit 2
A 1 in this bit (X'20’) indicates a statement format or syntax error. The affected

statement will not function, and this may or may not have an effect on subsequent
job steps.

The UPSI byte can be useful in contingency error processing. For example, the byte can
be examined and, if certain conditions prevail, can cause a branch to error handling
routines. The SKIP job control statement is used to perform the test. The following
examples show how you can use the SKIP job control statement.

Example 1:

O NNV S WN -

1 10 16 72

// JOB DSKPRP
/7 DVC 20 // LFD PRNTR
// DVC 51 // VOL DSP@28 // LFD DISKIN
// EXEC DSKPRP
/$
SERNR=DSP®28,PARTL=V
/*
// SKIP ENDS,1
other
job
. steps go here

.| //ENDS NOP
.| 7&
{7/ FIN

In example 1, you check the UPSI byte to see whether a fatal error (X'80°) has
occurred. If the leftmost bit (bit O) of the UPSI byte contains a binary 1 (line 8),
then all the other job steps are bypassed and control is transferred to the NOP job
control statement with the label ENDS (line 12). The NOP job control statement
provides you with an address for the SKIP with no function being performed. The

/& job control statement terminates your job while the // FIN terminates the card
reader operation.




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 1-9
SYSTEM SERVICE PROGRAMS

Example 2:
1 10 16 72
1. | // JOB DSKPRP
2. [ /7 DVC 20 // LFD PRNTR
3. |// DVC 51 // VOL DSP®28 // LFD DISKIN
4. | // EXEC DSKPRP
5. | /%
6. SERNR=DSP®28,PARTL=V
7. | /*
8. | // SKIP WARN,®1

0

// SKIP FATAL,1

10.| /7 SKIP EXIT

11.| //WARN OPR 'WARNING-A NON-FATAL ERROR HAS OCCURRED'

12.| 7/ SKIP EXIT

13.| //FATAL OPR 'FATAL ERROR-JOB TERMINATED-CORRECT AND RERUN'
14.| // SKIP ENDOFJOB

15.| //EXIT NOP

16. . other job steps
17. . go here

18. .

19.{ //ENDOFJOB NOP

20.| /&

21.1// FIN

In example 2, you check for both the fatal (X'80°’) and warning errors (X'40°) and
the display of appropriate messages on the system console. If a warning error has
occurred - bit 1 of the UPSI byte is a binary 1 (line 8) - then you skip to the label
WARN on the OPR job control statement and print the warning message (line 11).
After processing the OPR statement, the SKIP job control statement (line 12) is the
next job control statement processed. Here, you skip down to the label EXIT on
the NOP job control statement (line 15). As mentioned earlier, the NOP acts as an
ending point for the SKIP control statement. The remaining job steps follow the
NOP statement and are processed accordingly. Following the last job step, the NOP
statement on line 19 is processed with no action being performed. Your job then

terminates normally through the /& and // FIN job control statements.

If a fatal error occurs, bit O of the UPSI byte is a binary 1 (line 9) and you skip
down to the label FATAL on the OPR statement (line 13) and print the specified
message. The SKIP job control statement (line 14) skips down to the label
ENDOFJOB on the NOP statement, thus bypassing your remaining job steps and

terminates your job.

If no errors occurred, neither SKIP (lines 8 and 9) will be taken, and the SKIP job
control statement (line 10) skips over the OPR statements to the remaining job

steps.



UP-8062 Rev. 8 SPERRY UNIVAC 0OS/3 1-10

SYSTEM SERVICE PROGRAMS

The UPSI byte setting and the error count appear on the printout or map listing for the
particular job. The UPSI byte value can also be retrieved by issuing the GETCOM
supervisor macroinstruction in your BAL program. For more information on the GETCOM
macro, refer to the current version of the supervisor user guide, UP-8075. For more
information on the SKIP job control statement, refer to the current version of the job
control user guide, UP-8065.

1.8. STATEMENT CONVENTIONS

The conventions used to illustrate the control statements and system console message
displays presented in this manual are:

Positional parameters must be written in the order specified in the operand field
and must be separated by commas. When a positional parameter is omitted, the
comma must be retained to indicate the omission, except for the case of omitted
trailing parameters.

Examples:

Assume that LOADM is a linkage editor control statement with three optional
positional parameters: A, B, and C.

INCLUDE A
INCLUDE A,B
INCLUDE A,B,C
INCLUDE A,C

A keyword parameter consists of a word or a code immediately followed by an
equal sign, which is, in turn, followed by a specification. Keyword parameters can
be written in any order in the operand field. Commas are required only to separate
parameters.

Examples:

Assume that LINKOP is a linkage editor control statement with three optional
keyword parameters: ALIB, RLIB, and OUT.

LINKOP ALIB=0BJFIL,RLIB=$Y$OBJ,0UT=$YSLOD
LINKOP ALIB=OBJFIL,RLIB=3Y$OBJ

LINKOP RLIB=$Y$0BJ,ALIB=0BJFIL

LINKOP OUT=8$YS$LOD

A positional or keyword parameter may contain a sublist of parameters, called
subparameters, separated by commas and enclosed in parentheses. The
parentheses must be coded as part of the list. The subparameters within the
parentheses may be positional, in which case the comma must be retained if a
parameter is omitted, except for the case of trailing parameters, or they may be
nonpositional. The description of the subparameters indicates whether they are
positional or nonpositional.




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 1-11
SYSTEM SERVICE PROGRAMS

Examples:

FIELDS=( [ ADDR] [ ,A2TD] [ ,FREQ])
REDO=(MERGE, Label ,reel,to)

B Capital letters, commas, equal signs, apostrophes, and parentheses must be coded
and displayed exactly as shown. The exceptions are acronyms, which are part of
generic terms representing information to be supplied by the programmer.

Examples:

CMcc NUMBCHAR=n
X'aa' (NOV)
ALIB=

B Lowercase letters and words are generic terms representing information that must
be supplied by the user. Such lowercase terms may contain hyphens and acronyms
(for readability).

Examples:
Lfn
name
group-name

comments
s1, sn

M Information contained within braces represents mandatory entries of which one
must be chosen.

Examples:

filename

(N)

$YSRUN

B Information contained within brackets represents optional entries that (depending

upon program requirements) are included or omitted. Braces within brackets signify
that one of the specified entries must be chosen if that parameter is to be included.
Examples:

[ sequence-no}
[ALIB=filename]

[t



UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 1-12
SYSTEM SERVICE PROGRAMS

B An optional parameter with a list of optional entries may have a default
specification that is supplied by the operating system when the parameter is not
specified by the user. Although the default may be specified by the user with no
adverse effect, it is considered inefficient to do so. For easy reference, when a
default specification occurs in the format delineation, it is printed on a shaded
background. If, by parameter omission, the operating system performs some
complex processing other than parameter insertion, it is explained under an “If
omitted’’ statement in the parameter description.

Examples:

[{ input- lfn}]

B An ellipsis (series of three periods) indicates the omission of a variable number of
entries.

Example:

param-1,...,param-n

B Commas are required when positional parameters are omitted, except after the last .
parameter specified.

Example:

positional -parameter-1,positional -parameter-2,,positional -parameter-4

NOTE:

There are three standard character sets used with SPERRY UNIVAC printers: two
are 48-character print sets, and the third is a 63-character print set. Thus, not all
characters are printable on all machines, and print code conversions are necessary
to represent nonprintable characters when a 48-character print set is being used.
The programming examples presented in this manual were produced by using the
standard 48-character business print set and, therefore, make use of some of these
conversion print characters. For example, an equals sign (=) is represented by a

percent symbol (%), a left parenthesis by a number symbol (#), and a right
parenthesis by an at symbol (@).




PART 2. THE LIBRARIANS






UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-1
SYSTEM SERVICE PROGRAMS

2. SAT Librarian Functional
Characteristics

2.1. GENERAL

2.1.1. Capabilities

The SAT librarian of the SPERRY UNIVAC Operating System/3 (0OS/3) manages the
system and user libraries containing the modules making up the program environment
for a given system. Although the SAT librarian is primarily a disk utility, library files may
exist on magnetic tape, disk, diskette, or punched cards and may be converted from
one medium to another. The SAT librarian facilitates merging of all or parts of existing
library files, extending or adding to an existing library file, compressing fragmented files
and reclaiming unused file space, deleting unwanted or nullified modules within a given
library, and supplying appropriate printouts. (A map and associated listing can be
provided for each library function performed.) The output of a given SAT librarian job
can be an updated tape, disk library or diskette library, a new tape, disk library or
diskette library, punched cards, listings, or some combination of these. Figure 2-1
illustrates the environments under which the librarian can be expected to function. These
operational modes are normally selected at run time via parameter specifications. The
program name of the librarian is LIBS.

TAPE
FILES

SYSTEM
LIBRARIAN
tL18st

FcI”LsEKS ! CARD
FILES

Figure 2-1. Librarian Input/Output File Environment

MAPS &
LISTINGS




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-2
SYSTEM SERVICE PROGRAMS

2.1.2. Additional Main Storage Requirements

Librarian performance can be significantly improved by allocating additional main storage
space for the job in the // JOB control statement. This additional space is allocated in
track-sized buffers. To determine the amount of main storage to allocate, compute the
number of buffers needed using the following recommendations:

Specify at least two buffers for disk access (four or more is optimal). Add one
more buffer for each variable block tape used (one for each Tn file declared in the
FIL librarian control statement).

Buffer Requirements | Decimal Bytes | Hex Bytes
Librarian base 28,672 7000
1 40,992 A020
2 51,264 C840
3 61,5636 FO60
4 71,808 11880
5 82,080 140A0
6 92,352 168C0

The second parameter in the // JOB statement must specify the amount of additional
main storage in decimal or hex bytes. For example, each of the following // JOB
statements allocates enough main storage for the librarian base plus one buffer:

// JOB SAMPLE, ,A020

// JOB SAMPLE, ,X'A®20'
// JOB SAMPLE,,D'49992'

\
2.2. CONTROL FUNCTIONS ‘
|

The following control functions are provided by the SAT librarian for user management
of the program libraries in this system:

m BLK Convert standard load modules to block load modules
m BOG Write beginning-of-group record

m COM Compare elements

m COP Copy elements

m COR Correct elements

m DEL Delete elements



UP-8062 Rev. 8

SPERRY UNIVAC 0S/3 2-3
SYSTEM SERVICE PROGRAMS

ELE
EOD
EOG
ESC
FIL
LST
PAC
PAGE

// PARAM ERROR

// PARAM PRINT
// PARAM PRTOBJ

// PARAM TAPEFILES
// PARAM UPDATE

REC

REN
REPRO

RES
SEQ

SKI

Add card file element (module)

Declare end-of-data

Write end-of-group record

Read control statements from user-created file
Declare file

Print a file in alphabetic sequence

Pack (compress) files

Cause the printing of a new page

Specify, in the event of an error, whether the librarian
job should be canceled or just the librarian job step

Suppress the printing of the librarian map
Print source module listings in hexadecimal format

Allow multiple files to be written to the same tape
volume

Specify the data and time to be in effect during librarian
execution

Recycle source module current position pointer

Rename elements, revise the comments field of header
records, or mark object as reentrant or nonreentrant

Produce or delete control statement records within
object modules

Reset file current position pointer
Sequence or check sequence of elements

Skip source module records

See 2.8 for a detailed description of these statements.

2.3. MODES OF OPERATION

The SAT librarian operates in two modes. Functionally, these are:

1.

2.

an input file update and list/punch mode; and

an output file creation mode.



UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-4
SYSTEM SERVICE PROGRAMS

If no output file declarations are made, only input files may be updated and extended.
The following functions initiate different operations, depending on the selected mode:

ELE
DEL
cop

The librarian maintains a set of file information tables (DTFs) for up to six logical files at
one time. If a seventh file is accessed, the file information for the first is overlaid.
Included in this information is the name, type, and address of the last module accessed

on the file. Thus, while more than six files may be accessed by the user, six is the limit
that may be accessed concurrently.

The librarian can, through options in the operation field, print or punch entire modules.
The following functions allow such printing and punching:

COR ELE SEQ
cop REN
DEL PAC

With the ELE function, cards can be added to a library and be listed or punched at the
same time.

Module headers are listed with each prime directive used unless the no-list header
option (N) is specified by the user, in which case no listing of headers is supplied.

2.4. PROGRAM LIBRARY MANAGEMENT

2.4.1. Naming Conventions

Modules within library files (regardless of type) contain an 8-character EBCDIC identifier
that is used as the name of the module. (Modules of the same name and type are not
allowed in one file.) If the name assigned is less than eight characters, it is left-justified
and space-filled. Naming of specific modules can be performed at:

B assemble or compile time for object modules;

B link-edit time for load modules;

B library services time for program source definition modules; and

B job run time for macro/jproc source modules.

The librarian also can be used to rename specific modules or module groups. It can:

B rename a program source or macro/jproc source definition module;

B rename an object module or a specific CSECT;




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-5
SYSTEM SERVICE PROGRAMS

M rename common sections and ESD records in object modules;
B rename all phases of a load module (retaining phase numbers); and

B rename the alias phase name of a load phase.

2.4.2. Group Management

The librarian can process the elements in a file individually or by groups. Any number of
modules, exclusive of type, can be grouped to form a single processing entity. Each
module group is given a name and is bracketed by group demarcator records. Any
number of module groups having the same name may reside in a single file. After a
group is created, the librarian can process all modules in the group at one time. Gang
operations also allow processing of all groups with a certain name or name prefix. If a
gang operation is not specified, only the first group with the specified name is
processed.

2.4.3. Gang Operations

Certain functions of the librarian are operable in gang mode in which several modules
may be copied, deleted, punched, compared, or displayed at one time. These options
are initiated via the appropriate command statements and the omission of the name
parameter (or name and type parameters), in the operand field.

There are three types of gang operations available to the librarian user. The first
depends on module type, the second on module name, and the third on the current
position pointer of the file.

2.4.3.1. Module Type Gang Mode
Library files may contain mixed module types; that is, object code, load code, program
source code, and macro/jproc source code can be intermingled within a given library

file. When gang operations are to be processed on modules of a specified type, the
module name is omitted and the type positional parameter is set as follows:

For program source modules

For macro/proc/jproc source modules

o 2 o

For object modules
L. For load module
By setting the type as shown and omitting the name, the user instructs the librarian to

perform the designated operation on all modules of the type specified from the current
position of the library file up through end-of-file.



UP-8062 Rev. 8 SPERRY UNIVAC 08/3 2-6
SYSTEM SERVICE PROGRAMS

The following functions permit specification of a module type gang operation:

COP CcomM
DEL

When the gang mode is initialized in one of the foregoing operations, the referenced file
is scanned from its current position for the code set designated. When a module of the
type indicated is detected, the requested operation commences.

2.4.3.2. Module Name Gang Mode

When gang operations are to be performed on modules with a specified name, the
module type is omitted in the librarian control statement. These statements process all
modules from the current position to the end of the file whose names match the module
name field in the librarian control statement.

If gang operations are to be processed on modules with like name prefixes, the C
option designator is appended to the librarian function code. This option instructs the
librarian to compare the characters in the module name field of the control statement
with the names of the modules in the designated file from its current position to the
end of the file. Whenever a module is found whose name begins with the name prefix
contained in the control statement and is of the type specified in the control statement,
the requested operation is performed on the module. A module type need not be
specified when operating in the module name gang mode, in which case all modules
having the name prefix specified are operated on by the librarian.

Module name gang operations may be specified only for the COP and DEL functions.

2.4.3.3. Total Gang Mode

If the function to be performed does not concern itself with a specific module or code
set, the type and name positional parameters can be omitted from the librarian function
code. This instructs the librarian to perform the specific function on all the modules
contained in the designated file, from its current position to the end of the file. In this
manner, an entire library (or remainder of one pre-positional) may be manipulated via the
facility desired.

Total gang mode operations may be specified only for the COP and DEL functions.




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-7
SYSTEM SERVICE PROGRAMS Update A

2.4.3.4. Current File Position

All gang operations process the library file from its current position as defined by the
respective file table (DTF) contained within the program. The current position of a file
can be affected:

B by the reset (RES) function; and

B by any librarian function except the EOD function.

The RES function can aim the current position pointer to the first logical record on the
file specified, or the first record in a named module in the specified file.

All librarian functions except EOD affect the current position. When the function is
completed, the current position pointer for the processed file is the address of the
record immediately following the last record processed unless the pointer was at the
end of the file. In this case, the pointer is positioned at the beginning of the file.

A COP function may be initiated with no output file specified. This effectively aims the
current position pointer to the record after the last record of the module or module
group specified in the COP function without actually copying the module or group.

If the librarian needs to find a module in a library file, the search begins at the current
position of the directory and continues until the module is found, or the end of the file
is reached. If the end of the file is reached, the search begins anew at the beginning of
the file directory and continues until the module directory record is found or the original
current position of the file directory is reached again. The current position being arrived
at again signifies no find for that module on the file being searched.

2.4.4. Program Source Module Management

The librarian provides facilities for the maintenance of program source code modules.
Program source code modules can be listed, filed, punched, corrected, and renamed, as
well as manipulated, with the standard librarian-provided functions. Specific program
source records can be added and deleted from a program source element. Updated
program source modules may be mapped as corrections are applied. Program source
records are printed individually in EBCDIC format, exactly as they were coded. If the //
PARAM PRTOBJ statement is used, source modules are printed in hexadecimai format.

In addition to the librarian source module management, you can access assembler
source modules via the // USE LIB job control statement. Here, you can update or
create assembler source modules from another assembler program. For more
information, see the job control user guide, UP-8065 (current version).



UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-8
SYSTEM SERVICE PROGRAMS

2.4.5. Macro/Jproc Source Module Management

Macro and jproc source modules are handled in much the same manner as program
source modules by the librarian; that is, these modules can be copied, corrected,
compared, renamed, added, and deleted. Since these modules can have more than one
name associated with them, the librarian performs some additional processing. Thus,
when one of these modules is added to a library, a separate directory entry (type A2)
must be created for each name associated with the module. All directory entries
reference the module being added so that the module may be located by any of its
given names. Because macro and jproc source modules are functionally identical and
have the same type code (type A3), a macro and a jproc source module of the same
name may not coexist in the same library file. Macro and jproc source modules with the
same directory entry name (type A2) may coexist in the same library file. A macro/jproc
source module with a directory entry name (type A2) may also coexist with a
macro/jproc directory entry name (type A3) in the same library file.

2.4.6. Object Module Management

Language processor output modules can be maintained by the librarian, in that object
code can be patched, listed, punched, filed, and renamed. Specific CSECTs or ESDs
also may be renamed. Patch corrections are inserted at the end of the object module.
Listings of object modules are hexadecimal printouts of object records. All standard
librarian functions regarding module manipulation apply to object elements. Whenever
nonsource elements are serviced, they are checked for proper content and record
sequence. Discrepancies trigger diagnostic processing.

All object modules produced by the various language processors are assumed to be
nonreentrant modules. If in fact they are reentrant, they may be flagged as such by the
librarian to enable them to produce reentrant load modules when they are link-edited.

2.4.7. Load Module Management

Load modules generated by the linkage editor also can be managed by the librarian. The
facilities provided for load module management are much the same as those provided
for object module management, except that specific load module phases may be
patched. Applied patches are inserted at the end of the designated phase. Load
modules also may be listed, punched, filed, and renamed. Load module listings are
hexadecimal printouts of load module records. Load elements may be serviced via all
standard librarian functions. Phases within a load module also can have an alias phase

name given to it at link-edit time, in addition to the phase name assigned to the load
segment. This alias phase name also can be renamed by the librarian.

Most load modules produced by the linkage editor can be converted to blocked load
modules by the librarian. Blocked load modules can usually be loaded for execution
faster than their standard counterparts. The exceptions to this are discussed in the
description of the blocking load modules (BLK) control statement.




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-9
SYSTEM SERVICE PROGRAMS

2.4.8. File Merging

The librarian can function in a library file merge mode; that is, one or more library files,
module groups, or individual modules may be merged into a new output library (or
libraries). Multiple file merging is permitted and the number of files involved is a function
of the user requirements. The librarian can merge up to six files concurrently (including
output files).

Reference to a seventh file (or more) causes the first file (and any succeeding files) to
be reopened whenever a new, interspersed file reference is detected. Thus, merging of
multiple files beyond a sixth may be more easily accomplished by first merging five files
together to form a sixth file, and then merging the sixth file with the remaining files by
repeating the desired merge operation.

2.4.9. File Extension

A current library file often can be updated (or effectively extended) without creating a
new output file. This may involve replacement of a given element within the file with a
new copy of the same element. Replaced elements are flagged as nullified and may be
removed via a subsequent file compression operation. Directory entries for replaced
elements in extended files are altered accordingly.

2.4.10. File Compression

The librarian can compress fragmented files (interspersed voided elements) and reobtain
dormant file space. The compression is automatic if merging or copying involving the
file in question occurs. If not, an existing file may be compressed by using the PAC
librarian function. File compression can be specified anywhere within a given librarian
job stream. Any associated directories also are compressed in the update job.

2.4.11. File Deletion

Individual modules, or entire code sets, may be deleted from library files by using the
facilities of the librarian. Deletions can occur while updating existing files or while
creating new ones. Deletions applied to existing files can cause file fragmentation (as in
the case of module replacement), which can, in turn, be remedied by later file
compression.

2.5. RUN LIBRARY MANAGEMENT

The job run library is processed in the same way as all other libraries by the librarian.
The job run library can be specified by designating $Y$RUN as the file name on the
control statement FIL. ‘



UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-10
SYSTEM SERVICE PROGRAMS

The job run library also is used as the default file if, on certain librarian commands, a file
is not specified. These commands are ELE, COP, REN, COR, SEQ, DEL, REPRO, and
PAC. If, for the DEL, ELE, PAC, REPRO, or REN functions, a logical file is not specified,
the job run library is used as the logical file to be processed. Because output files do
not need to be specified in the COP, COR, and SEQ functions, the default use of the job
run library applies only to the input file.

2.6. MAPPING FACILITIES

Each time the librarian is executed, a map of the functions it performs is output on the
system printer for the user. The map normally includes:

B a listing of all the librarian control statements processed;
B a printout of all the header records processed; and

B any appropriate diagnostic messages.

Additionally, the map can include:

B source module listings;

B object and load module listings; and

B module correction results {insertions versus deletions).

The map normally reflects the state or content of the output library files if one or more
were produced; otherwise, it reflects the state or content of the input file serviced by
the respective librarian function. In comparison functions, discrepancies are listed on a
record-by-record or block-by-block basis.

2.6.1. Standard Map Layout

The librarian map lists all the control statements input to the librarian in the order they
were processed, followed by any module data to be listed relative to each statement
(Figure 2-2). Diagnostic messages are listed as close as possible to the control
statements that initiated their generation, and are prefixed with a unique librarian
message number. These messages and their meanings are described in the system
messages manual, UP-8076 (current version). Unless suppressed by the user through a
control statement option, module and module group header records are listed in their
respective formats, as described in Appendix B. The location of each of these records
within its respective file also is printed on the map as a function of its block location
and record displacement within that block. (The OS/3 program library format also is
described in 2.7.)




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-11
SYSTEM SERVICE PROGRAMS

2.6.2. Source Module Listings

Whenever a source module is listed, each source record is listed in standard EBCDIC
format exactly as it appears within the source module. A one-to-one relationship exists
between the number of source statements in a source module and the number of lines
printed for the source module. When source modules are being updated, lines deleted,
lines preceding insertions, and insertions are listed in the same format. Figure 2-2
illustrates an example of a source module printout.

if the // PARAM PRTOBJ statement is used, source modules will be listed in
hexadecimal format.

2.6.3. Object and Load Module Listings

Object and load modules are listed in hexadecimal form. Each byte appears on the map
as two printed hexadecimal digits. Because object and load module records are not
fixed in length, the listing is on a record-by-record basis. If patch records exist within
the module, they are flagged appropriately. Figure 2-3 illustrates an example of an
object module listing.

2.6.4. Diagnostic Message Listings

Diagnostic messages are listed on the librarian map whenever a processing error is
detected by the librarian. The printed message identifies the type of error detected and
the message number identifier. All the messages capable of being produced by the
librarian are listed in the system messages manual, UP-8076 (current version), as well
as the meaning of each message and the corrective action required to remedy the cause
of the processing error. The librarian job is never aborted unless the processing error
detected is sufficiently critical to preclude continuing.

Figure 2-2 shows an example of a typical diagnostic message at the bottom of page
0003 of the librarian map. It reads BO60***** NOTHING FOUND.

o



UNIVAC 0S/3 LIBRARIAN

DATE 82/07/08 TIME 15.39

BLOCK . REC

oo COMUAND csvecceee

oo COMHMAND ecovecocesne

NAME

=R N=Re o]
Nt & -

copP

- VSN

VSN
VSN

- VSN

VSN

TYPE DATE

TINME

COMMENTS

D1=R6,02=5C,03=08B,04=LD,DS=MC

Is 000410,
IS DOJutQ,
IS 000410,
Is 000%10,
IS DDOO410,

L33

LFD
LFO
LFD
LFD
LFD

Is
Is
Is
Is
Is

RG
sC
08
Lo
MC

FILE
FILE
FILE
FILE
FILE

LABEL
LABEL
LABEL
LABEL
LABCL

IS
Is
IS
Is
Is

PAGE & 0001

VER820401

ORIGINAL
ALLSRC
ALLOBJ
ALLLOD
ALLMAC

Figure 2—2, Typical Librarian Map (Part 1 of 3)

8 ‘AeY 7908-dN

SWVHO0Ud 3DINHIS WALSAS
£/SO JVAINN AHY3IdS

(A4




PAGE & 0002 c
BLOCK  REC NAME TYPE DATE TIME COMMENTS T
]
[2]
TABLE OF CONTENTS N
=]
2
SOURCE MODD1 80708708 15434 ;»
SOURCE M0DD2 80/03/03 15435
SOURCE MODD 3 R0/08/58 1537
SOURCE HODDY 20/08/78  15.39
SQURCE M0DD5 80/33/08 16,41
SOURCE MODD 5 80708708 16,43
SOURCE MODA1 81/04/27  09.1%
SOURCE MODA2 81/04/27  09.22
LOAD MODASDO0  81/05/06  11.10
LOAD M00A4000  81/05/98 10,44
SOURCE M0DAS 21/05/08  11.06
SOURCE M0DAG 81795712 13,45
OBJECT MoDAT B1/35/12  13.48
SOURCE MODC1 81708714  13.35
SOURCE MODC2 81/38/21  1%.51
S0URCE M0DC3 21738724  10.43
SOURCE M00CH 51708724 10,47
LOAD MODCSOAN  #1/08/24  13.54 o
SOURCE MODC6 31709701  17.23 <
LOAD M0DC7390  A1/09/11  03.30 )
LOAD MODCS0JN  07/703/G3  00.73 m 3
SOURCE %0071 £1735/12 13.59 ggg
SOURCE, MOD22 81/26/01 12,33 @z
LOAD MODR3CIS  81/96/P1 12.50 - i
SOURCE 40034 81736735 12445 =2 |
SOURCE M2D3 S 31736729 12433 Q<
LOAD 40056000  31/G7/96  14.52 -3 |
LOAD MODR7IOU  B1/07/10  1lu.ls ]
L0AD MOD530UI  B1/73/14  13.31 23 ‘
SQURCE MODE 1 SJ/GR/05  16.44 D5
SOURCE MODE 2 83/33/38  16.45 > ‘
SOURCE MODE 3 30/78/08  16.45 5,
SOURCE MODE 4 39/38/33 16447 ‘
3LOCKS REMAINING DIRECTORY 0NOQOC PRIME NUDAD THIRD 000000 UNUSER naaann
eo COMMAND ccceecass COP D1,59¢02
000001 00S M00D1 SOR 80/08/08 16,34
000004 052 ¥00D2 SOR 30/708/08 16,35
000005 067 M0D03 S0R 80/08/08 16,37
000007 00S “oDLY SOR 85/08/08 16439
000008 005 n000S SOR 33/08/08  16.41
000008 171 M0DD6 SOR 80/38/03 16,43
000009 118 MODA1 SOR 81/04/27 D09.14 N
000014 031 MODAZ SOR 81/04/27 09.22 L
w
Figure 2-2. Typcial Librarian Map (Part 2 of 3)




PAGE # 0003

8LOCK REC NAME TYPE DATE TIME COMMENTS
000015 179 MODAS SOR 81/05/08  11.06
000018 072 MODAG SOR 81/05/12 13.45
000019 071 MODC1 SOR 81/38/14  13.35
000021 080 M00C2 SOR 81/08/21  10.51
000022 074 “0DC3 SOR 81/08/24 10,43
000026 095 “oDCH SOR 81/08/24  10.47
000027 062 MODCo SOR 81/09/01 10.23
000029 00CS %3031 SOR 81/05/712  13.59
000031 135 0082 SOR 81/06/91 12.33
200045 005 MODBY SOR 81/06/N5  12.45%
000046 091 LLEN SOR 61706729 12.38
000048  0d5 MODEL SOR 86/08/08 1644
200049 135 MOnE2 SOR 80/33/03  16.45
000050 130 MODE3 SOR 40/08/08 16445
000052 00S MODEY SOR 80/08/08  16.47
es COMMAND coseeesss COP n1,0,,03
000001 005 MODAT oeJ 81/05/12  13.48
oo COMMAND sosscoses  COP D1,L,,04
000001 345 “90A3N0N  LOD 21/35/706  11.10
000004 u77 M05A4J00  LOD 21/05/08  10.44
300005 021 M01C523)  LOD 81/08/24  10.54
000008 17e M0DC700)  LOD 81709/11  28.30
000016 164 “Q2C81N07  LOD 00sa2/3Cc  3N.03
030022 0S7 0283073  LOD 81736701 12.50
000030 021 0336000  LOD 81/07/36 14452
000062 065 MCDITUGY  LOD 81/07/10  14.14
006118 (021 MJD38030  LOD 81708714 13,31
oo COMHAND ceesesess COP D1,M,,05

3060#+%#*NOTHING FOUND
LIBRARIAN FINISHED
DATE 82/07/08 TIME 15439
TOTAL NUMBER OF ERRORS 1301 UPSI SETTING X'40°

Figure 2-2. Typical Librarian Map (Part 3 of 3}

SINVHOOHd JOIAHIS WILSAS

8 ‘A9Y 2908-dN

€/SO OVAINN AHY3dS

144




2-15

SPERRY UNIVAC 0S/3
SYSTEM SERVICE PROGRAMS

UP-8062 Rev. 8

JARVA T1/71179¢

ELRNY diva

RNENGLNIA
1000 8 39vd

Lvday!

IWYN

ran

3IdAl

(€ 40 | lied) Bussr] 8inpoy 198/q0 ‘€—z anbly

I\/I\/|l\!/\<l.\/\\\\/\f\.\/\l\\/.\

ay¥033y

LvdsN1'pt1a

A1 4r8p=10

aNvH33d0

ZI1  4h6700

ge313

ONYHWWOD  InxNiN0nDd D3y bal:}

ZGeL1 3WIL L0/2Z1/79¢ 31va
NYTHYMETT €/50 DVAINN




2-16

SPERRY UNIVAC 0S/3
SYSTEM SERVICE PROGRAMS

UP-8062 Rev. 8

(€ J0 Z 1ied) Bunsi] 8inpow 108lq0 "£—z 2nbi4

00054020
400626V)
08452790
991h0N0E

0S0NNE0H

noos1nng
LEVA RN
04,03£0)
94323¢€070

A8V LNONZ

(hiTHNKOL 7
LA0Kh9IIQ NhOKKIGAH
DhOROROKE DHORNKOH
DHNKLOKDHE NhOKOKOH
OhOhOBDH NhNhNKNOH
OhOhOK0H NHOKOLNE
SONKOKSDY £083IFANG
EE]
S§I04LhST GI4474WD
ANTHTHII SINEZHNF
ZIRZZNA9A 2004/ kE0
3GGI0L (hEO/D 4
noNoThZeE SI01RSND
RICINKSI wOKIFOQC
ELR DY Jlvo
€000 » 3I9vV4d

INEANONS JUhALONS 4N0GO0NZA DNOENONS L3€482H) QS 1HG0NN
SNAdXNNZS 94£00NT1AS IAYI04LL SNBIGOE) N4Z&ILOD 00746228D
442467440 9977038S NRNIA4Z6 I4£099DD NIRGALOD 442460089D
34/4099D) NIKRGZLND NANGOIVD NQLKhILAD 44561000 06178399)

JGGEA19L NINERSIT VINALKLIL NI0S6G0h 81450V ¢gHi JasQv

72937373 Yo ayunt o o as0 1€ 0n,

S 4

SIIGTORD GIFIATIGA £IMWAKOSD €A0H736D OhZovyur Oheda09)

1IFINRI0 23€3INKHSD LARIETTL 13406227

ObOBNHEOL NKRNKLOKNR DRIEDKNKE NhOBNKEOL NDhNhORIE Oh KN KEDHK
OhNhOKOh NENKROKRNE OLORNOKENE DHOBNHOD DBEOLKNDKRYH 0Ok (0K NHK
ORDENKNL NHROKOKRNE NROROKLOLE NROBNKEOL DHDLALOE N K 0OK 4F

NHDkE OKOKRNDHEOLE D5 HhOKhNHE

OhOBNENE NEOLNKENLE NENKROLED GY46390G0 LDEINHPD) £1DEI0H
HIGATIED OKOKZANK SILAKIET OKKIAIED 1I63504D gL0NN9TI
(NVYZAINIT RGOLZINT ShI99IhY ZI4h7A8/. ZINDISKHLI GInYZIESF
SINL/HEN IFISHEETI SILAGIKO LNKEIGINE WHENLISN £D2QZ0kRN
GNNEQRTIS TINIAGHLTT 9INLTHIC RICULDIAN ZHT1NOONT 1H2QND04
LIDDTEPL ZINAGHTISD 9IKYZIZ ZNANLSION [H199I80 9I105A96
SAILEINR (h199D74 SAVYZEINT NESDIVOTH SINALHNN 21 i1YNARSE

Kl 411089

LOOOPKOD DHOLNKNE KDIGIHNAQ 909IA0SI LUDKSDITD NHYQEASED
SAINKLOAGA KICIEITD SAEIKLNALQA SICINKZI 9AT1A0KT S OH1DH0OTD

ELA AL

AdA L a¥0I23y

NpTHUVED
07¢(6920D
N04L6H0N00
Yn00DOKOD

0304
YaN0oK0o

H390UB vrun
AINON0KND
73626004
OLOKROKOK
NHOKRDKDH
900N0KLN0O
NHOROKOH
OHRE3000H
SNO0NKND
7n000K00
LIOKZAHD
I KhRL2I03
snO00KO0
Sn000RNC
anNOUN9E
990K LDS0Q
£30K65090Q

0€1h9732
N545920
LLThANOO
2310Z0md
fRSOONNLN
hZ102022

worJfA1D
19107049
NH0LOLNN
NhOkNKDH
NhOhNHOH
9R1IN703d
Oh0ORNKEOH
1J20h€£390
RG107NN9
nsonzZaad
(I0S1HN0O
ShV(ad9DdhV
19107026
nrinznge
SIN4LK10
6220€252
NE0LKI0H

ONYHIH0  ONYHWGD

ANNINOD

SN0

atz

LLA

snn

94l

sno
L2z

>3y

€96200

2946700

8GA700

RG472N0

LS4&700

LG46700
996210

bl

J

B¥co-.. - .
02015500

CLeutt 10U
(ngonton

ELAY] 3iva
Z000 ® 39vd

v e

—oeul ke, o vortUHUY LG 001

08700000 g/t0INA ARZAIN0 NGEUNTON FS9LEANT gG:ig 4704

IWVYN

0301SK00 2092YNR. ZINGNA9T NIPISKHY? 43030691 II0U1RDH VIZA0DNE gy i35a0N

L3 A394€3I4S qUAgLaANO
43 S390€3€0 1)2¢DL09¢€
€3 904N€3€A [IUDLaKT
Oh 83€09390 11FDH£0N4
Ok £3909060 1J¢320))
Oh OnSIAAEI gurarane
Oh G4hN90E€ED AG/aKINN
Oh OKED60YI gO4QLAVYY
Oh DpDKLEATT gNQ208¢2
Oh 92E€3HIET £1609IR0K
60 €3€AT1IF3 404091391
Oh PREITDLA HGLAFIHE 2100000
Oh DWOKOKDH Ok iROKNK

OHCHOLOL OhOWNKOL OhOh"HOL OLFHLLILT 11119/0NK OLEITILA AG40€3IN0 00-000N0

AdAt Qu0d3IN

Za92v0nAa1
Z492v08h
oANNokLeN
onpOan0e,
£10000NH
€100000H
2100000,
710000N4k
2100000
0nONQO0K
7100000k
Z10Nu0nNs
11n09N0k
01a0nnny,
nnnNoononon
BEDLIEIE
nnNonnoon

ANVHIdU

BRI ISIRE R 2
11tanngze
5410709V
nNHANLN 40
Op1060 40
NHI0KRD 40
NHI0OKO 40
0K TUKO U
OhINKEN 4L
NheNIN 40
NkT10OKO 40
Nhinhn 40
Nh10H040
Nhi0RN40
notoengl
NhOKNHOR
ooonnase

ONYHKOD

INHINDD

SN0
hel
Lnt
0an
€N
950
4€0
[240]
sgoon
w27
Lnz
nét
691

3y

1654700
0647200
0S47200
06467210
as6200
0846200
N&s&67n0
086700
0S67N0
bhé&7N0
6hé67N0
6h6700
6hb67200

6hb67N0

bRk




2-17

SPERRY UNIVAC 0S/3
SYSTEM SERVICE PROGRAMS

UP-8062 Rev. 8

(€ 40 € Meg) Bunsy enpoyy 108faQ "€-Z 8snbiy

IWTL 31va

vuuuy00n nononene

nn
noNEponNoo nnoppnnnn
nNnonnNnNo nononNnon
annennop noognNnnn
onooonno onoonnan
nnNoNooo naoonnnn

nn
nononNnNNo noepnnnn
DhOWOKOE ODhOBNKNE
NHEISOKIS OhOKRNKZD
OhOHh0K0HE OhOKNKNH
962138 400KGNED

nn
noOONNOn noonNoNo
00000000 ogonnoon
nnoonNnoo ocoonnnnn
NKESA6I06 LANDKOOGE
OhOROKOL DHOKNLOH

Nk
OhOKRNK0E NHOONOON
ongonnao noocnnonp
§2609Q09)> S2z2oNNON
ooonnnnn noognono
o0000nN0n noponaon
noonNonNoo nooononn
OThbhE191 Ib0ONTTH

IWTL J1va

000 ®# 39Vvd

ELA X

npouT
onnonNnoo
onoonnnn
onnonann
ongcgnoon
nnponnon
annunonn
onnpnnen
apoonngn
BN TaR Al ]
OhoaNy1Q
Oh0hNHOb
UKheNONKO
anoononn
gnngnooen
agooannon
onnanno
OkhIAQLID
Ob0OKNKH0OH
OWBEOKLOK
oonononNn
onnonnnn
nnoonronn
onnonnnn
anoonnen

anonnooz
10007914

3JUVYN

E-RY

R REWERY §
nonnnonn
nonanann
ngnonann
noronnna
ngnoonnn
nonAanpnn
annoonNn
nonNAangNnN
NN KRN
NhNHOHSI
NhNhNENY
Aa830000
nonnonnn
nnnooone
nognnonnp
nononnan
£INhgIEN
OhNHOKOH
DhOKROKOE
nonooone
nonnponn
nanannnn
nonnanne
nornoonn

ooneanza
nNnNZNK74A

Idr L

o

ongopnnn
nnoponao
nnponnNno
noraonNno
nanonnnn
anngonno
anpnonnn
nnaonnao
anNnonnan
NEOKNHOH
0L2Q0&04
NhOhOKNH
nesannno
nnaaoonne
nooonnnQe
nnononno
nnnanngd
£317,.00h
OhDpNKOH
NhOKOKNY
anopgonno
nonunNnNeoo
nnoaonNoo
anonoenon
nnanpnNnQ

34£0972DD
£7Y18I9)

Huu .. R

nnNeuINNoo
nNoadnNnouo
nngannoo
nnooNaon
ANNANNON
naganNnul
nnnunaan
0no0nNNon
naoiNneon
NLOLNEUH
NHehd0KGA
OhOHNKEOK
nNgnNNOun
nnNNOAaNo
aneoNnNoo
onuoNoun
5619050
OkhIAd€Q
NhOhNKROhH
NhOBNKHOH
anonNNoo
nnEaonoun
onounNnoo
nnNeonono
nnoanpuo

ingsRLZD
17143902

(0411000 QUGOONODND 0PONOOED €010E030

0¥023y

[PRCPVIRVET A

gouaaonan
aoponnoun
oonnoanHn
aounoonn
0go0noon
nuonoouonn
noooooun
ononoonn
20000000
OhNHNHOH
DhGI0hOH
Oh0ObNhHith
nooonnnn
noononon
auoonono
aononnon
£36I30b4D
1263504)
Op0Oh0ORUK
OhOKOKOK
agoonnouo
oo0000an
B00o0uaoa
nonnonuo
nponnaon

N3ISKHARDIAD
0gesohfd

ay0d3N

00a000G
nunNNN0zZeE
oouponnn
naoonann
notooono
noupenon
onronoano
ounpenzsg
agnnoonn
NOCHEOBOH
Or  hOhOkH
0rIS0HIS
0h "4 0Oh0Ok
onnnnoze
oprooonn
nocoanono
nouonone
6012€00h
OhUBpObHNH
Obiip0hZé
Oh  hOhOH
00100000
oganoann
0oa00000
noonoeno
gooonozea

4923 4h20
obvp0100

ANVX3IdY

S000 =& 39Vd

An00OHRND
nonNenono
ofnonnnen
nopuonen
onNonNco
nendgenon
IpN0UBKO0
nnonoNono
OphUR0K
O0pNhOKOE
0p2604K0H
NLNN0N0o
an000OKOO
onoounng
anCc0onoo
cno0nNona
14065060
0,0K0K 04
dn000K00
OaDbhOhNH
anoopnnn
nnooYdEd
0no0onoo
nno00ooNo
80000600

nooo
4100Vs2ZD
Sq1H8000

ANV HIdY

b4

GNVHWOD

Louwun?0o0
141020643
naonnnoo
noonnnEu
oogonooo
nanNonNOoo
nooonNnoo
101N70L4
noooroou
0L0HNHOK
OhNbNEIS
OhhNhNh
0NGIENe I
40107023
onooonno
nooononn
onnnnnou
h3€0A90€D
0hOLNKOH
40102024
OhOhOKOH
0oaonNnou
€313£00h
nooonnno
noooanoo
401020¢3
aonononu
aAnZOveE9D
EF1hooeH

ANVYWWO)D

AN¥INGD

I0MLINGD

AR

L}

sno

500

S00

23y

146700

¥I4q

AGL7N0

L96700

9946700

§94200

h962N0

N9




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-18
SYSTEM SERVICE PROGRAMS

2.7. PROGRAM LIBRARY DETAILS FOR SAT FILES

The system program library files, composed of program source, macro/jproc source,
object, and load modules, are created and used by the various components of the
SPERRY UNIVAC Operating System/3 (0S/3) during the normal course of system
operation. It is these library files that the librarian services and maintains based on
particular system needs and constraints determined by the user.

For you to realize the full extent of the capabilities of the librarian, you must be aware
of the organization and content of the program libraries in the system. You also may
elect to establish a program library of your own. If so, the librarian also can be used to
maintain the object, program source, macro/jproc source, and load code sets contained
in this library, under the same guidelines it uses when servicing the system program
library files.

2.7.1. Library File Layout

The system library is composed of five permanent disk files and one temporary disk file
for each job being processed in the system. All the files consist of at least a label, a
single element, and an end-of-file marker; they are structured to support fixed-length
block, variable-length record data and contain a directory partition. The directories are in
fixed-length block, fixed-length record format.

Each of the five permanent files are 3-partition SAT files. One partition is used to
maintain a directory for the file, and the other two are used to store the program
modules contained in the file. When these files are initialized by the librarian, the space
allocated for each file is distributed as follows:

B Two percent is allocated for the directory partition.

B Forty-eight percent is allocated for the prime data partition.

B No space is allocated for the second data partition.

B Fifty percent of the space allocated to each file is initially unassigned.

This initial allocation technique allows the librarian to assign file space to the various
partitions in a file on an as-needed basis, and thus prevents space from being allocated
for a partition that may never be used. (At present, only block load modules require the
use of a third partition.) Thereafter, when a partition becomes full and requires more
space, the librarian extends the partition by using some of the free space it has in
reserve. Only the partition that was full is extended, and the amount of the extension is
based on the file extension increment specified on the EXT job control statement used
to create the file. When all the free space is allocated, the dynamic file expansion
capability of the supervisor is called on to provide additional free space for the file in
the same increments previously used to effect the file extensions performed by the
librarian.




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-19
SYSTEM SERVICE PROGRAMS

The job temporary library files are special files established by job control at the time
jobs are input to the system for processing. These files are dynamic in nature, in that
their size and structure are variable and they exist only until the job is terminated. Any
programs or data that may be in these files are unrecoverable once their associated
jobs have been terminated.

A program should not be executed from a library that is being restored, updated, or
packed. In addition, it should be remembered that your files, excluding system files,
may be sharable (depending on the FILELOCK parameter you specified during supervisor
generation). See the system installation user guide/programmer reference, UP-8074
(current verison). Because OS/3 allows multiple writers to concurrently access ‘sharable
files, these files could be destroyed in a multiprogramming environment. It is
recommended, therefore, that critical user files be prefixed by $LOKnn to prevent them
from being accessed concurrently by multiple writer programs.

Providing information needed to create new files or extending existing files on disks is
the function of the EXT job control statement. See job control user guide, UP-8065
(current version) for details on this and other job control statements.

2.7.1.1. Library Blocks

Library blocks are fixed-length, 256-byte blocks (Figure 2-4). Each block is composed
of a 5-byte block prefix and up to 251 bytes of variable-record data. The block prefix
includes a 3-byte logical block number, a 1-byte value indicating a block length (not
including the block prefix), and a 1-byte check sum reflecting an exclusive OR for
relevant data. Records within the block are variable in length up to a maximum size of
251 bytes for any given record including the record prefix.

BYTE L .
NO. 0-2 | 3|45 = > 255
CONTENT bbb bl vr v ; ; r vr
N

BLOCK PREFIX

Figure 2-4. Library Block Format (Part 1 of 2)




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3

SYSTEM SERVICE PROGRAMS

2-20

BLOCK FIELD DESCRIPTIONS

Byte Field Contents
Position

0—2 Block number (bbb} Starting with 1 for the initial block, this is the logical block
sequence number.

3 Block length {bl) This is a binary value less than or equal to 251, indicating the
number of bytes of relevant record data within the body of this
block, not including the block prefix.

4 Unused

5 — 5+bi-1 Variable records (vr) Variable-length records comprising the body of data contained
in this block

Figure 2-4. Library Block Format (Part 2 of 2)

2.7.1.2. Library Records

Library records are variable in length. Each record is composed of a 2-byte record prefix
and up to 249 bytes of record data (Figure 2-5). The record prefix includes a length
byte and a type byte. The type byte indicates the specific type of record that follows
the record prefix. The length byte indicates the size of the respective record (not
including the record prefix) up to a maximum of 249 bytes.

BYTE NO.
0 1| 2 <t 2+71— 1} O 1] 2 e 24r1—-1{ 0 {1 2 P 24r|—1
CONTENT 4] t vr rl t v) / r rl t vr
N N’ N —
RECORD RECORD RECORD
PREFIX PREFIX PREFIX
RECORD FIELD DESCRIPTIONS
Bytg Field Contents
Position
o] Record length (rl) This is a binary value, less than or equal to 249, indicating the
length of the respective record (not including the record prefix).
1 Type (1) This is a type byte indicating the specific type of record. (Refer to
Table 2—1.)
2 — 24111 Variable-length Body of the particular record (up to 249 bytes each)
record data (vr)

Figure 2-5. Library Record Format




UP-8062 Rev. 8

SPERRY UNIVAC 0S/3
SYSTEM SERVICE PROGRAMS

2.7.1.3. Record Type Byte

Associated with each record within a given library file is the type byte occurring in the
respective record prefix. This byte is used to identify the record as to its code set and
record particulars. Table 2-1 lists the record type byte values possible in an 0S/3
system library file and their meanings. Note that the type byte field also exists in disk

library directory items.

Table 2-1.

Record Type Byte Descriptions (Part 1 of 2)

Type Byte Value
{hexadecimal)

Description

00

02

03

04

06

07

08

09

0A

0B

oC

12

13

16

1c
24

25

32

40

80

90

A0

A1

Nullified item records

TEXT/RLD records in object modules
Transfer records in object modules
Standard ENTRY records

Standard EXTRN records

V-CON records

Named CSECT records

Unnamed CSECT records

Named common records

Unnamed common records

Object code ISD records
TEXT/RLD records in load modules
Transfer records in load modules
Load code ISD records

Load code ISD records

Program source or macro/jproc source module records
Compressed source code item

Blocked text or RLD records

Control statement records

Object module header records

Load module header/phase header records

Beginning of group demarcator records

EOF sentinel records




UP-8062 Rev. 8 SPERRY UNIVAC 0S8/3 2-22
SYSTEM SERVICE PROGRAMS

Table 2-1. Record Type Byte Descriptions (Part 2 of 2)

Type Byte Value Description
(hexadecimal)

A2 Marco/jproc name header records (in directory only)
A3 Marco/jproc module header records
A4 Program source module header records
A8 End of group demarcator records
BO Blocked load module header/phase header records
ca Shared code ENTRY (SENTRY) records
cé Shared code EXTRN (SEXTRN) records
c8 Resource records

2.7.2. Disk Library Directories

Library files existing on disk are supplemented with a disk file directory composed of
13-byte records, each of which points to a specific demarcation record in the file. The
directory precludes the need for scanning the library file to obtain a needed record.
Instead, directory scanning suffices until the program is located. The pointers existing
within the directory explicitly designate the position of the required element within the
library file data partition. The format of the library file disk directories exists as a
function of the needs of the prime routines accessing the directories. The directory
format differs in record layout from the prime data partition of a library file, in that
directory records are fixed, 13-byte blocked items. The directory block prefixes are
identical to those of the file partition.

Disk directory records are composed of:

B a name field;

B a type indication; and

M a file pointer

Directory entries are made whenever the respective file record is:

B a module header for program source, macro/jproc, or object code;

a phase definition for each phase of a load module;

|
B an entry ESD record for object code;
[ ]

a beginning-of-group (BOG) or end-of-group (EOG) demarcator;



UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-23
SYSTEM SERVICE PROGRAMS

B a named CSECT record for object code; or

B a procedure name for a macro module in proc format. (This is the directory entry
for which there is no unique corresponding record in the prime data partition. This
item points to the module header record.)

2.7.2.1. Directory Format

System libraries are built and managed by using the system access technique (SAT)
access method. Thus, the first partition of each standard library file in the system
consists of an index of pointers to the prime data area of the file described by the
second partition. This directory index consists of a series of 13-byte slots, each
pointing to the corresponding record in the prime data area. The directory blocks may
be 251 bytes in length; the last four bytes of each directory block are unused when the
block is full (contains 19 items). As many directory blocks as are needed to
accommodate the needed number of index entries for a given library are available. The
last index entry for each library directory is the index to the EOF record in the prime
data partition. Figure 2-6 illustrates the disk library file structure and the format of each
directory record.

PRIME DATA
INDEX PARTITION DIRECTORY RECORD PARTITION
8-BYTE 1-8YTE $-BYTE 1BYTE
»| svymsoLic TYPE BLOCK RECORD
> e e RELATIVE RELATIVE
POINTER POINTER
N —— N ———
DIRECTORY > DATA
BLOCK BLOCK
DIRECTORY DATA
BLOCK BLOCK
DIRECTORY DATA
BLOCK BLOCK

Figure 2-6. Disk Library File Structure



UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-24
SYSTEM SERVICE PROGRAMS

The symbolic name field (bytes 1 through 8) of a directory record is used as the
identifier of the module or demarcator existing in the prime data partition. The type field
specifies the demarcation flag for the respective record. The values of the type flag field
correspond to the record type field in the prime data area. Table 2-2 lists the type flags
possible in an index item.

The block relative pointer to the prime data area is a relative block number within the
second file partition indicating the block containing the respective record. The record
relative pointer is the number of bytes from the beginning of the block to the beginning
of the record. The record relative pointer and block relative number are computed when
the prime data area is constructed. The pointers for macro name header index items (in
the proc format) always point to the beginning of the proc module regardless of where
the name directive is contained within the body of the module.

Table 2-2. Disk Directory Index Type Flags

Hexadecimal Value Demarcation
00 Nullified item
04 ENTRY name {(object module)*
08 CSECT name {object module)*
80 Object module header
90 Phase header {load module)
A0 Beginning of group demarcator
A1l EOF sentinel
A2 Macro/jproc name header
A3 Macro/jproc module header
Al Program source module header
A8 End of group demarcator
BO Block module header record

*Multiple duplicate names can appear in a library file directory.

2.7.3. Card Libraries

The librarian can punch libraries into cards and, in turn, can access card files as input.
Source module items, element headers, phase definitions, CSECT, ESD, ISD, PHASE,
and TRANSFER records are punched directly. Text/RLD records in object and load
elements are treated specially since the record size is variable. Thus, punched card
formats for text/RLD records may require multiple punched card records.

Whenever object or load modules are punched into cards, a 5-digit sequence number is
punched in columns 1 through 5, providing a card deck sequence check facility. When
punching source modules, the librarian creates 80-byte source records (the source
module header is eliminated) directly from the library.




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-25
SYSTEM SERVICE PROGRAMS Update A

When librarian functions require punched card output, the name PUNCH must be
specified on the // LFD job control statement. With the punched card output, the
librarian creates an ELE card to precede the module and an EOD card to end the
module. The ELE card will be in the format:

LABEL | noPERATIONA | OPERAND
| ELE l D1, module-type,modul e-name

When filing object or load module card libraries, the librarian reconstructs the module
from the card decks, checking the sequence number of each card and the record types
within each module. When source modules are created from cards, the appropriate
headers are created, prefixes attached, etc.

2.7.4. Tape Libraries
The formats for tape libraries are the same as those for disk libraries except that:
B tape libraries have only a data partition, no directory partition; and

B modules having the same name and type may exist in the same tape library.
However, the first module encountered is the one processed.

Because of the structure of a tape library, once a module is written to a library, that
module cannot be deleted or altered in any way in that same library. Therefore, the
input library and a new output library must be specified when making changes to a tape
library. This new library can be another tape, disk pack, or punched cards. The
following control statements are not supported for a tape library because the operation
takes place in the input file or involves the directory: DEL, LST, PAC, REC, REN, REPRO,
and SEQ. If a load module on tape is blocked, the BLK control statement must specify
an output file that is different from the input file.

The librarian provides the option of specifying a physical tape block length other than
the standard length of 256 bytes. The variable block length is specified for each
nonstandard length type in the job control stream via a DD job control statement. The
format of this statement is:

// DD BKSZ=n

where:
Specifies the block length in bytes of the particular file. This block length can
be:
m  any multiple of 256,
®  not greater than 8192; and

m for an input file, at least as large as the value used when the file was
allocated.



UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-26
SYSTEM SERVICE PROGRAMS

The // DD BKSZ=n statement informs the librarian to either produce a physical tape
output block or input a physical input tape block of the size specified. If the // DD
BKSZ=n is omitted, a standard block size of 256 bytes is assumed.

Additional main storage space must be allocated when processing variable-length block
tapes. The formula for computing the necessary main storage space is:

28,672 + 2048 + (19272 * number of tapes)

Whenever more than one variable-length block is specified in your job control stream,
the 1/0O buffer space must be allocated for the largest combination of block lengths used
in any single library function.

Your tape libraries must have the standard header and trailer label records and the
name specified in the // LBL job control statement must agree with the file header 2
label of your tape library. The data management user guide, UP-8068 (current version)
provides the information concerning the header and trailer label records associated with
tape libraries.

All tapes can be prepped by using either the prep option of the // VOL job control
statement or the tape prep routine (TPREP).

NOTE:

You should use extreme caution when specifying the PREP option of the // VOL job
control statement for a tape file to be processed by the librarian. With this option, the
tape is prepped every time it is opened as an output file. If a tape file is used as both
an input file and an output file during a single job, every time the file is reopened as an
output file, all data on the tape as a result of previous operations will be overwritten if
the PREP option has been specified. If the operation was intended as a continual
building of the tape file, the results would be disastrous.

When tape prep is specified in the same job step with a librarian file that contains more
than six input files that output to the same tape, the seventh input will cause the tape
to reset the output block to block number 1.

To avoid these problems, you should prep the tape in a separate job step.

2.7.5. Diskette Libraries

The librarian can be either input from a diskette or punched to a diskette. Diskette
library processing is the same as card library processing.




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-27
SYSTEM SERVICE PROGRAMS

2.8. CONTROL STATEMENTS AND PATCH CARDS

The system librarian of the SPERRY UNIVAC Operating System/3 (0S/3) is instructed in
its task requirements via control statements presented by the user through the control
stream. These statements designate information such as functions required, module or
group name of code to be serviced, logical files associated with the various tasks, and
options applying to the selected functions. The control statements and patch correction
cards that permit the librarian to perform these various library file servicing jobs are
described in this section. The control statements are presented in alphabetical
sequence.

2.8.1. Control Statement Conventions and Format
All of the librarian control statements adhere to the following statement conventions:
B Control statements may be written in free form.

B Each operation code is composed of an identifier that describes the function. The
operation code may be followed by a character string signifying options that alter
normal processing of the function. The character string is separated from the
operation identifier by a period.

M The operand field of each statement is composed of a variable set of positional
parameters. Some positional parameters are optional. Optional parameters are
indicated by brackets; choice alternatives are indicated by braces. Operands must
be separated from the operation field by at least one blank space. Consecutive
positional parameters must not contain embedded blanks.

B Prime librarian control statements may appear in any logical sequence within the
librarian update control stream. Subfunction control statements must follow their
associated prime control statements.

W File and module names may be composed of up to eight characters each. Inserted
comments used to describe specific modules may consist of up to 30 characters
including embedded blanks.

B Macro, proc, or jproc definition modules may be specified by using the letter M in
the positional parameter describing the type of module.

The coding format of all the librarian control statements is:

LABEL lAOPERATIONA ‘ OPERAND I 73 SEQUENCE
unused function p1,p2,p3,p4,p5 seqg-no
[-.options]
where:
function

Is the mnemonic of the librarian process to be performed.



UP-8062 Rev. 8

SPERRY UNIVAC 0S/3 2-28
SYSTEM SERVICE PROGRAMS

options

Is a string of one or more of the following letters, depending on the function
specified.

A

X

Specifies that all groups with a specified name are to be processed. {(Must
be used with a G option)

Specifies that the name parameter in the operand field is a module name
prefix or a group name prefix rather than a complete name.

Specifies that the entire module or module group being processed is to be
listed on the librarian map. (This may also be used to obtain a table of
contents for a specified library.)

Specifies that the card module is terminated when the librarian detects the
first EOD statement following the ELE statement in the control stream.

Specifies that the name parameter in the operand field is a group name
rather than a module name. This option will initiate processing of only one
group of the name specified, unless the C or A option also is specified.
Whenever this option is used, the module type parameter should be
omitted from the operand field.

Specifies that the module identified in the parameter field is to be
processed only if another module of the same name and type is in the
output file.

Specifies that the printing of header records on the librarian map is to be
suppressed.

Specifies that the entire module, or module group being processed, is to
be reproduced in punched cards.

Specifies that the module identified in the parameter field is to be
processed only if no other module of the same name and type is in the
output file.

Specifies that processing is to be performed on all modules from the
current position of the file up to and including the module identified in the
name parameter. Whenever this option is used, the type of the module
identified in the name parameter must also be specified in the operand
field, unless the G option is also being used.

Extend an unblocked, single-phase, load module.

NOTES:

1.

If contradictory options are specified for a single librarian function, a
diagnostic message is printed on the librarian map and the last option
specified is honored.




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-29
SYSTEM SERVICE PROGRAMS

2. Unless the RES control statement is specified, the file pointer is positioned
at the current position of the file rather than at the beginning of the file.
Therefore, when using options C, G, or U, specify the RES control
statement to access the entire file.

p1
Is a logical file name or a group name.
p2
Is a module type, a logical file name, a module name, or a sequence control
field.
p3
Is a module name or a sequence control field.
ph4
" Is a logical file name, a comment, or a sequence control field.
p5
Is a comment.
seq-no

Is a 1- to 8-character alphanumeric sequence control number of which at least
one character must be numeric.

2.8.2. Patch Card Formats

Because there is no standard format for a librarian patch card, but rather, several
standard formats, the patch (correction) card formats recognized by librarian functions
are described immediately after the librarian control statement that makes use of a
particular type of patch card.

2.8.3. Blocking Load Modules (BLK) Control Statement
Function:

You use the BLK control statement to convert a standard load module to a block
load module. Block load modules are intended to increase the efficiency of program
loading in that all or large parts of the overlay phases may be loaded by a single
I/O operation. When the load module is in block format, fewer disk accesses are
required because the loader can read the entire phase at once (if the phase is less
than or equal to one track in length), or one track at a time until the entire phase is
loaded (if the phase is more than one track in length). If the load module were in
standard format, then each phase would be loaded piece by piece, that is, 256
bytes at a time.



UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-30
SYSTEM SERVICE PROGRAMS

All files containing block modules must have three partitions, thus differing from the
standard two-partition file. The block load module’s first and second partitions are
standard, but partition 3 is not. Partition 3 is not structured and is made up of
contiguous text data, free of any control information, and is allocated by SAT when
the file is first opened. The data in partition 2 describes the boundaries of each
phase in partition 3. The text data in partition 3 is in sequential load order and is
binary zero-filled when appropriate.

In standard load format, no text records can be overlaid; however, in block load
format, they can. An example of this overlaying would be when the load module
detects the following coding:

Loc Operation Operand
2000 CLI R6,X'01!
0004 BC 8,STOR1
0004 ORG LA

0004 BC 15,STORZ2

The BC 15 overlays the BC 8. In standard load module format, the bytes of text for
the BC 8, R1 continue to exist in the module although they are overlaid at load
time.

Since the objective of converting to a blocked format is to increase the efficiency
of program loading, the following considerations should be kept in mind when
making a decision on load module format:

® Modules less than 4K bytes in length take longer to load if in blocked format,
unless the resident loader (RESMOD.SMS$LOD) is configured in your supervisor.
In this case, block loading is as fast or faster than for standard load format.

® Do not block modules having information passed from one phase to the next in
a DS area. All DS areas are zero filled.

m  Patches to a blocked module phase will significantly slow down the loading of
that phase. Patches do not affect the loading of standard load module phases.

B Loading blocked load modules from a selector channel disk is slower than
loading from an IDA disk.

® Do not block modules written in assembly language and having address
constants overlaid with text. This is the case where an unneeded address
constant is used for patch space. It can also occur by using the assembler
ORG statement and overlaying an address constant with instructions.




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-31
SYSTEM SERVICE PROGRAMS

Format:
LABEL | AOPERATIONA | OPERAND
unused I BLK I input-lfn,module-name[,output-Lfn]

Positional Parameter 1:
input-Lfn
Specifies the logical file name of the disk file on which the original load module
resides.

Positional Parameter 2:

module-name
Specifies the name of the load module to be converted.

Positional Parameter 3:

output-Llfn
Specifies the logical file name of the disk file to be used in the block operation.

If omitted, the input file contains the blocked module, and the original load module
is nullified. This parameter is required if the input file is a tape.

Example:

1 10 16

BLK D1,STEP2,D2

This example converts the standard load module named STEP2 residing on file D1
to a block load module and places it on file D2.

NOTES:

1. If a block load module with the same name is detected in the same file, the one
already present is nullified and the new one added.

2. Load modules generated from ANSI 1974 COBOL source code that includes the
dynamic CALL or CANCEL verbs cannot be converted to block format.

2.8.4. Write Beginning-of-Group (BOG) Record Control Statement

Function:

This statement is used to begin a module group by writing a beginning-of-group
record in a specified file. The modules that are to comprise the group must be
added to the file before the end-of-group (EOG) record is written on the file.



UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-32
SYSTEM SERVICE PROGRAMS

Format:
LABEL AOPERATIONA OPERAND
unused BOG group-name [,
Options:
None

Positional Parameter 1:

group-name
A 1- to 8-character alphanumeric character string that specifies the name of
the module group being started. Module groups within a given file may have
identical names. Only one group, however, is processed each time a process
group function is performed by the librarian, unless the C or A option also is
specified.

Positional Parameter 2:
Lfn

Specifies the logical file name of the disk or tape file on which the
beginning-of-group record is to be written.

If omitted, the job run library (JY$RUN) is used.
Examples:

1 10 16

1. BOG EXAMPLE1,D1
BOG EXAMPLE2

1. Begins a module group named EXAMPLE1 on file D1.

2. Begins a module group named EXAMPLE2 on the $Y$RUN file.

2.8.5. Compare Elements (COM) Control Statement

Function:

This control statement permits the comparison of two source modules in two
separate files on a record-by-record basis or the comparison of two complete files
on a block-by-block basis. No other options are available with this command. The
two source modules to be compared must have the same name and type
designations.




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-33
SYSTEM SERVICE PROGRAMS

When comparing two source modules, the librarian first locates them in the two
files to be used. The comparison then occurs on a record-by-record basis. When a
discrepancy is detected, the two source items are listed in EBCDIC. The sequence
control fields (columns 73-80 unless altered by user specification) are then
examined and the module with the lowest value has its file pointer advanced one
record. The comparison is then redone. (Source modules so compared should be
presequenced in some fashion so that a control field is available.) If the sequence
control fields are equal when such a discrepancy occurs, both file pointers are
advanced one record. The comparison continues until the end of a module is
reached. Figure 2-7 illustrates an example of the librarian map produced during a
source module compare operation.

If no source module name is provided, both files are compared in their entirety
from beginning to end. This involves a block-by-block comparison. When a
discrepancy occurs, both blocks are listed in hexadecimal, each file pointer is
advanced one block, and the comparison continues. The process proceeds until
end-of-file is detected on one of the libraries being scanned. Figure 2-8 illustrates
an example of the librarian map produced during a file compare operation.

Format:
LABEL I AOPERATIONA | OPERAND
unused COM { i lfn} ,{s} [ n—n [,name],sec-Lfn
) "
Options:
None

Positional Parameter 1:
prim-lfn
Specifies the logical file name of the first disk or tape file to be used in the
comparison.
If omitted, the job run library ($Y$RUN) is used.
Positional Parameter 2:
S,M
Specifies the type of modules being compared as either a program source

module (S), or macro/jproc module (M).

If omitted, all modules in both files will be compared.



UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-34
SYSTEM SERVICE PROGRAMS

Positonal Parameter 3:

n-n
Two decimal numbers, separated by a hyphen, that specify the starting and
ending columns of the sequence control field to be used if a source module is
to be compared.

If omitted, columns 73-80 are assumed. If name is not specified, this parameter is
ignored.

Positional Parameter 4:
name
Specifies the name of a source module to be compared. The module named
will first be located in both files, then compared. Each must be a source level
module.

If omitted, the files designated will be compared on a block-by-block basis from
beginning to end, and positional parameters 2 and 3 are ignored.

Positional Parameter 5:
sec-lfn
Specifies the logical file name of the second disk or tape file to be used in the
comparison.

Examples:

1 10 16

COM  D1,S,,EXAMPLE1,D2
COM D2,S,1-8,SORCMOD,D3
COM  D11,S,,EXAMPLE3,D12
coM D5,,,,D6

S UWN -
P T R

1. Compares the source module named EXAMPLE1 in file D1 with the source
module named EXAMPLE1 in file D2. The sequence control field used is
positions 73-80 of the source module records compared.

2. Compares the source module SORCMOD in file D2 with the source module
SORCMOD in file D3. The sequence control field used is positions 1-8 of the
compared source module records.

3. Compares the module EXAMPLE3 which exists in source code format in file
D11 with the source module EXAMPLES in file D12. The sequence control field
used in positions 73-80 of the source module records compared.

4. Compares all the modules in file D5 with all modules in file D6. The compare is
terminated by end-of-file of either file. The compare is on a block-by-block
basis from beginning to end of each file.




UNIVAC ©0S/3 LIBRARIAN REVISION

STH

LesAsufy OC

OPERAND
pleyCsLiBl 102ayCst182,D3aCSL1B3,DY8ICSLIRY
D2, sLIBSFOR D4

LBsCON,x*00°

LBSSWIT X900

CONTROL CoMmaND
FiL
con
SOURCE HEADER NANME OATE TInME
LIBSFOR 042274 1412
L18SFOR 042274 2210
SOURCE RECORDS THAT ARE NOT EQual
LA
nvl
LasComnAy Myl
myl
cul

USING RY+596

. END OF SYNTAX CHECK
USING RY35¢6

RS,LBSCOMSI®Y

atrestinaufelds) ABCD4920
swTco EQU

END OF PRIME MOOULE

PUT ONE INTO REGISTER ABCOO6UD
ABCDOSVO

RUNLIb6 NO TYPE CHECK ABCDO8OQ
ABCDOB0D

IF EQs TAPE ERROR ABCDOS30
ABCPO830

ABCDDOSO
ABCDOBSO

DISPLACEMENT [NTO CODING ABCD3170
LBSCRRINT,x¢00 ABCD3170

. ABCDY4920

w

______’,4—"‘-‘___‘___-——"——__h"“~—~_____—r*

Figure 2-7. Typical Librarian Map for Source Module Compare Operations

SINVHOOHd 3DIAHIS WILSAS

8 "A8Y 7908-dN

£/SO DVAINN AHHIdS



2-36

SPERRY UNIVAC 0S/3
SYSTEM SERVICE PROGRAMS

UP-8062 Rev. 8

(¢ 40 | Led) suonetedp asedwo?) a4 jof deyy uelieiqr] (BaIdA |

8-z 2anbl4

ZI130604
OhOKCWOH
ONOKWOMOY
OhOhhZ0g
OhOhONOH
OhNHOKDH
Oh12€00H
OhOhOHOH
a96I%06d
OhONWDWOM

ZO120n0n
060K0n0H
OhNhEISA
OhDhhZ0g
£04230h€3
OhOnOKOWH
OhOKZI0N
OhOKWOKWOW
DhgIRA4D
¢34359323

23120004
12085360
OhOLON0,
OhOhh20S
0h€3ISAHhI
OhOBOKOH
0hs0Z30H
OhOKhOWO0H
OhONONWOH
e9,0Y0€D

[PI31 515
OhDHhOWOY
OhONOKOH
OhONONDH
OWOnO0H0h
0OhOhOKOH
8340€350
LEL T LTS
ZINLZTN0
hYRE R0y

L1119 1. 19
0h0hOWOH
OnedB954
04249404
$3g3€06)
OhOHOKO0H
OWDhOROn
OhOHhOKON
60,00404p
0h0hIgON

94 WHiIOoNTT

OnOhOW0H
OhOKOHON
6340L0€)
04442404
905004h)
Oh0hOn0p
Oh0hOKOH
OhOhZaCD
60200404
9523¢q0h

94 MiONIT

OhOn0K0s
$783¢30s
€3990gL4
04149404
90¢J0ns0
OwONOn0H
OnON0HO0H
ChOhOWOH
OGnOhOnOn
8623¢a0n

94 Wion3dn

ChOnOHKOH
Oh0n0HKO0N
OhOH0KOw
®Z0S0 404
On0n04H0p
OhOHh0OH0p
SJ)0h0n0y
OsOh0n0p
Ohs0909>
Tl49¢c0hd

&4 HIONIT

OnOnOn0H
OhOn0n0hH
A%h 16000
$J€232712
923049590
0nNy€IEI
OhOnON0H
OnDHpOH0H
OnOK0n0n
OnOnP390

OnONOnO0H
On0nOn0h
L3%a6323
OnOn0n0Oh
08232382
€067908S
h20S0414
OnOnhd6d
OnOpOn0n
S0k 413

%3079 410000 +ON

0»0On0nKO0H
OnOnOn0H
€5Z2¢A0H
"I€5I51)
Sa13041d
OhOnpOnOh
OnOnOK0H
§382€70h
0s0K0K0N
OnOné61S3

LI Y I
DnOn0p0h
I TYST ¥
OnOnOKOh
haha90€D
Op" 41000
hZ0SN 404
§3L083¢€3
OpOnONOH
500Hn0n0H

¥201¢g 810000 +ON

0hOp0pK0n
23670400
60040404
hI€DZ21D
9G93045)
OhCn0nOp
0nDp0p0K
OnNuOn0H
On0nONO0H
0nNK6I63

OnOnOn0n
OpOnpOp0h
040hs2¢C
08235250
50900423
0n0nOntd
»2050404
CpO0n0nOh
OnOp0On0n
hQ0n0n0»

3¥3071e 21Y0p0 e*ON

Oh0pOnln
Oh0HOHWOH
On04p0n0H
1404%5¢2
OnOn0n0H
On0H0K0K
On0p0n0H
OnNnu0nlh
232565¢40
€as30000

On0p0p0h
OpOpGn0on
On509a€)
23150400
Gp0p0K0H
OnOn0y83
OnOphz0S
Op0p0p0n
co0nop00
Np000g00

%3079 10YGp0 +ON

OnOhONOH
Ou0Oh0n0n
h3I0M0N0H
GnOhON0H
60821
T4 111 FI
940462€0
€0125304
OnOhOn0h
LL T 11

0hONONON
OhOnORO0N
LRI 1Y
NhUnOn0n
orOn0ONDs
PO LY TY 1Y
23130004
§3€0639)
OrUnOKOW
ZIc0hZ0S

%3018 3714 ONOD3S

00000404
OhOh0n0bh
OnDhOp0H
®A0h0n0W
OnOhOn0h
Onre390S4
90¢2952)
440402¢D
OhoQS00H
Ohas0494
OwOhOnOn

[FLFLEY )
ChOn0ONON
OhOnDNOn
OhUbh0n0h
0hZasS01)
0hOhOKOMN
¢Q0h0HO0N
2213080p
§3€04392
0LL3891 4
OhUhh20S

%3048 3114 ONDD3S

00000424
OnOhZASa
OnOhDHKON
€I0h0n0h
®0y3€090
h3gdsIn0
144099843
9404h2¢€2
OnDh0Oy0n
OhOh0n0y
OhOh0p0H

940460¢€D
17€0230n
OhUnOK0N
NeUKOhOH
€I049390
LLELI T Y
6Q0n0n0n
ZI1J0h00
OnOWOKNOhH
0404023
ohThhZ0S

¥J018 3114 ONOD3S

OhOhOnOn
OhOhON0Ok
9523¢Q0n
OnDRCHON
OnDhOp0H
€3,40%0¢€)>
OhOHOKOH
- OnOhOKO0n
00aq00000
cop00000

n4141404
0h0nONON
OhUnOnOH
OhIn0hOh
OhOnOhON
OhChOn0y
A6§Z5¢€Q0H
OhUnOKON
os'%0001
nouCoc00
0000001

¥J018 3714 ONOJ3S

2510000 OWOWORON QWONOWOMN

#O...ND

h@11SIr=eh0 cal1gIrde€Q*ZAIISIraZa’ 181SIF = U

Unvy3Ieo

OnONONON ON609060 405I00S)
La82¢300 909GSI0N 9360400 OM0K0WDN ONONOWON OWONOWOM
0p0.¢30L €2990SL4 60Ch0 400 OnOhedcQ €O0p0n0nr OnONDNO
OnOhaZ0S 04248404 §I€2Z23) OnORONON OnONCnOn ONOWONOH
OnONONON SI6D€04D 92009290 O0pZ3IZ3ISD 6GRINIID  OnONONOM
OnOhONON ONOKONOp ONOKCIEI C£Q439285 ZICQ9904 400N0M0p
On1J€Q0r OhOWONON ONONOWOL HZOGOJITd 8404HICI  ZI1J0804
OnOnONON OnONONOp ONOKOKON OnOhhI4d €ATISI0N §ICA6D9D
Q9SJOhQad 60,0040n OHKOWOKROH ONOWOKOH OKONONOW ONONOKON
0nOhONOL ONOWISOL OWOWHNIBA  SIONNdTD H090€J9s ZICOWZ0g
94 HION3T 3079 610000 *oN %207@ 3714 3WlNd
00000404 @40400€5
Z31J204#0b OnOWOWOn OCHONDRON OpOHKZOCD S282€I0n ¢D£093€3
On90%00n 2265¢050 #»3600n0ON OH4O0KOKOH ONONONON DwaL0464
Gee30914 ©3429323 85ZI€00n OpOhgIs3 HAONEJTI  »09ATI9g
ZI€0nZ0S 04p4L404 $I€Z51D OwOn0h0s OKOnOWOn OwZasO1D
€AZI0KEI 90500KhD SA1J0K1D  HANA9OED Op€3I90S0 OwOWOKOM
OnDnOKOh OROKONON OWOHOKLON Onhd124,0 90QEIHSZD €Q0H0KOH
OnOnZI0h OrOKLOKOw OnOWORON H20604g4 L40403ED 2Z31J000s
0K0nON0k OKOHKZOED §28ICI0n SI(083€3 OHp90500% §I€0C6I9D
OKSIn06) 60,00K0n OHhONOKON ONOHONOHN OWGLO4Y4 OLL38914
€3679323 98523¢00p 0hOh6I53 wQOKOKROR OWONONON OnOwnl0g
94  WiIONIT XHO®Me 810000 *ON %2078 3714 3INiNg
0060U4Z4 940442€D
Z251204s0n O0hONOKOp OWORORON OnOpONOH OnONZAST  1J€AZI04
19005260 6283¢30n 23620n0h OnOKONOH OnOWOKON ONONOKOH
0n0,0n0s €J890SL4 60Ah0IDN OnOHeIEO €I0KUNON OnONONOH
OnONK20S 04149409 #I€2ZD1) 0OK2Z3ISIGO HAHICOY0  CI0H9I9Q
On€36003  90gI0K60 9092065 60900423 $H3ISA6IN0 OnOnOHOp
OnONOHOH ONOWOWON OHROROKOH ONOWOWTd 14606984 4G0NONOH
OnsQz30h OWOKOROH ONOWOHKON H2060404 934048080 ZD120404
OnOHwOnOn ONOWOKON OK6TSIC3I ZI4D¢26) 600n90€3 606I04S)
$09004€3 »3.0040n OnOKNHRON OHOWOHLON OwOnOHO®L O0nOWOKOH
OnOMN1 489 147344G0% OWOKOR1D CGORONON OHOWUKON OWUNKZOg
94 MIOIN3IT X308 Z10000 *on %2018 3713 3Inlag
04141404
#3€32213 OnOnOWOw CwOHONO® OnpOnOHON OWONCHON OnOnOROH
OnONONOh OWONOWON OnOWONON OpOnONON OpONWODHNON ONOWOROH
OnOnONOH OWUNOKON OKONOKON OpSO90C) BgZIEAOHL OnONOWOM
OnOhOnOn w2060404 (40402€D 2ZD150406 OnpOnOWON DOuwOWOWOH
0h0nOn0On» OwOWOWOn OWGHOROH OpOKONOH OwOwOnON OWOWOKON
OnO#0ON0On OROKDHON OwOHOKRON OpOWONEI €3LQhACI ©SZI€Q04
8360¢3%50 SJ0h0NOK OhOROKON ONGHHZOG OWONONON OnONOWOM
OnOb0OHOK OHOWONOn OHOKOWON OnpOK0OKOH OnONUKDN OpOROOZI
wihizZ"0 0h60909> 23ZJ63¢d 00000000 00000000 0GOOD0OO
wvEEQHON 2ZD6D¢0n> 0520000 00000000 0Q00~000 00C00GHT
nd  WiAONIT NDON 100000 *OoN »207° 374 awjud

W0d

14

ANVYHKOD T0¥4iNOD

' 1 NOISIA3IN NVINVEEIT €/50 JVAINA




C3ICHFOF8 F3FNG000

PRINME FILE BLoCK NO. pO0O0O}1B
50244040 4p4n4g40  404040C2 40404040
F1404040 40404040 40904040 40404040
40404040 40404040 40404040 4040%0%40
4040C1C2 CICHFOFB FTFO5024 SCc404040
40D6C640 E2E8DSEI  CIETY0CI (8CS5¢3D2
40404040 4p4Ccio%0 “04%04%0%0 4pYo4o%o
404049040 40404040 40404040 ciC2cicH
4p404040 H0404DEZ2 DO7CI1C3ICS 4OFJ4Q40
4p404040 40404040 40404040 40404040
40404040 “04n4040 40404040 40404040
CICYFOFB F9FO000Q

PRIME FILE BLOCK NO. 000068
50244040 4g4nd404Q Y04040C1 (8404040
E2E2C508 40404040 40404040 40404040
D5D64B4C DeCO40E2 C5CI4BH0  €4C903CS
4040C€1€C2 C3CYFIF) FB8F0S024 40404040
40404009 FS568D3IC2 SBCIDSDY  E2F14EFY
40404040 CHC9E2D7 D3C1C3ICS DYCSpPSED
C4CIDSCT 4p40404p 40404040 crcC2celdct
SaC3p6DY E2F140C3 D3ICINO40 40D3IC2S8
4BD3IC258 €209E2E3 ET60D3IC2 SBE2DYE2
40404040 40404040 40404040 40404040
C3C4FAF2 FOFOO0QOD

PRIME FILE BLOCK NO, 0070A2
$024D3C2 SBCIC2E4 (C6C640CH (3404040
C2E4CHYE FIFASDYQ 40404040 4o404n40
40404090 4D404040 40404040 40404040
4040C1C2 CICYF4F9 F2F05024 DIC25BCS
404040C1 4pD3C258 CP04C2E4 (CSYEFTFI
40404040 4p40404Q0 40404040 40404040
40404040 4090%p4Q 40404040 CcfC2cacH
SBDPCYH4CY EZD740C4 C3IN04040 40CHTDFO
4o4040%0 40404040 40404040 «p40%4040
404D4040 40404040 40404040 40404040
C3ICY4F4F9 FHFO0D0Q

BLOCK LENGTH

4gp3c2s8
40404040
40404040
40404040
40404040
4p%04040
FOFBFBFD
40404040
40404040
40404040

BLOCK LENGTH

40p7F568
4040céc9
40404040
40404040
40404040
40C905€3
F3F1F9F0
E2DYE2E3
D3D74009
40404040

BLOCK LENGTH

40cl4oD3
40404040
409404040
C2E4C6CH
Sp404040
40404040
F4F9F3F0
Tp404040
40404040
40404040

.

Fé

c3D7ps07
40404040
40%040%40
40C505CH4
4g4o4g4o
40404040
50244040
40404040
40404040
4040€C1€2

Fé

n3C25aC)
DYE2EI4O
40404040
40E2E3C8
4404040
D640C3D6
§02403C2
E740F85D
F1FL15D4%0
4p40CceC2

Fé

c258¢9D4
49404040
404040%0
4pc4cado
40404040
404040%0
502403C2
4p404040
40404040
4p40ci1€2

C3C4FF8

F3F00000

SECONnD FILE gLock

50244740
F1404040
40404140
4040c1C2
pSC7400%?
40409040
404049040
H0N08n40
40404040
40404040
CIC4FOF8

40404040
40404040
40904040
CIC4FUF8
FubarF56p
4040404p
40404040
404%04UE2
4p4%04040
40404040
F9FODYOO

SECONL FILE BLock

50244140
E2E2(C508
0506441
4040¢C)¢C2
40404004
c€258c307
40404040
58C3D60%
6BD3C258
40404040
CIC4FIF2

4p404040
40404040
D6Co4UE2
C3CyFIF]
E5CP4040
DY9CODSE
40404040
E2F140c3
E2D9E2ED
40404040
FOF00000

SEConD FILE BLoCK

50244040
40404043
40404040
4p40c1C2
4o4040c!
40404040
40404040
SBDICLCY
40404040
40404040
CICHF «F?

40404040
40404040
40404040
CICUF4FY
4pb3c258
40404040
40404040
E20740Cy
4p404040
40404040

F4F00000

NOe 000018

4040%0C2
404u%p40
4040%0%0
F7F05024
Fa&40404D
404g4p40
404040%0
p7C1CacCs
40404040
404040%0

4g4p4040
40404040
40404040
40404040
40404040
40404040
clC2CacH
40F 349040
40404040
40404040

NOe 00UDe8 8LOCK

404040C1L
4040%040
¢5CakB4Q
FBF0SG2y
40404040
6BE770FQ
40404040
pAC3I40D4Y
g76003C2
404040%0

c8494040
40404u40
CoC9D3¢Cs
40404540
40404040
FO4Y04040
cl1C2Cacy
40V3C258
S8E209E2
40404040

NO+ QDOpA2 BLock

404040E2
40404040
40404040
F2F05024
CoD4C2EY
40%0%040
404040%0
c340404%0
40404040
40404040

E6EICIDS
405¢4040
40404040
p3Cc258CS
co4efFIFI
40404040
ci1c2cacH
40Cs7DF0
4p404040
40404040

Figure 2-8. Typical Librarian Map for File Compare Operations (Part 2 of 2)

BLOCK LENGTH Fp

4003c258
40404040
40404040
40404040
40404040
40404040
FoFaFerFD
40404040
40404040
40404040

LENGTH Fé

4009FSeB
4g40C6(CY
40404040
40404040
40404040
40404040
F3FIF9F0
E209E2€E3
03074009
40404040

LENGTH F6

40C5D8¢ 4
40404040
40404040
C2E4céce
Sp404040
40404040
FuF9FdFo
Tp404040
40404040
40404040

C3D7D6D7
40404040
40404U40
40E4E2CY
40404040
40404040
50244040
4049g4040
40404040
4040cCcic2

DaC58CH
D9E2E340
40404040
40404040
40494003
40404040
$02403C2
E74DF85D
F1F 5040
404pcClc2

40404040
40404040
40404040
40Cc4CIq0
40404040
40404040
$p2403C2
40404040
40404040
4o40Ccic2

SIWVHOO0Hd 3DIAHIS WIALSAS

8 ‘A9Y 7908-dN

€/S0 IVAINN AHYIdS

LE-C



UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-38

SYSTEM SERVICE PROGRAMS

2.8.6. Copy Elements (COP) Control Statement

Function:
The

COP control statement is intended primarily to:
Copy the contents of one entire library file to another library file

Compression of the file being copied is performed as the new file is created,
thus eliminating file fragmentation created by deleted modules and module
groups. Only the input-ifn and output-ifn parameters are specified to obtain this
function.

Copy the contents of a library file from its current position up to and including
a specified module or module group

The U option must be specified in addition to the desired operands.

Copy individual modules or module groups based on module names and types,
or on module or module group name prefixes, from one library file to another

if both the name prefix and module group options are specified, all the module
groups with the specified name prefix are copied. If only the module group
option is specified, only the first module group of the name specified is copied.
When module group processing is requested, the module type parameter must
be omitted, as it is not appropriate.

Produce a table of contents for a library file, listing all the records contained in
the directory partition if the D option is specified, or only the module header
records if the D option is omitted

When this function is desired, only the input-lfn parameter should be specified,
with or without the D option code. All other option codes are invalid.

While performing any of the previously mentioned copy operations, the librarian

may

also be requested to list (D option) and punch (P option) the modules copied,

or suppress the module header record listing (N option) it would normally produce.
Also, if the output file already contains any modules of the same name and type as
those being copied to it, the old modules are nullified.

The

COP control statement also can be used to:

List and punch one or more modules or module groups without performing a
copy operation

Position a library file pointer without performing a copy operation




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-39
SYSTEM SERVICE PROGRAMS

These functions are obtained by simply omitting the output-lfn parameter. To
produce listings of every module in a file, specify a D option, the input-Ifn, and a
traiing comma (COP.D DO,). This will distinguish it from the COP statement, which
produces a table of contents for the file specified (COP DO).

When using the copy facility to create a new tape and you want the modules being
copied to make up the new file, you must use a previously prepped tape free of
any data. You must follow this procedure because the copy facility does not
reinitialize an output file and all modules being copied are automatically written to
the end of the output file. Also, your input and output tape files must be on
separate volumes.

You should not attempt to copy an ICAM symbiont to a file that contains an active
ICAM symbiont with the same name. The active ICAM symbiont is deleted.

NOTE:

You should use extreme caution when specifying the PREP option of the // VOL
job control statement for a tape file to be processed by the librarian. With this
option, the tape is prepped every time it is opened as an output file. If a tape file is
used as both an input file and an output file during a single job, every time the file
is reopened as an output file, all data on the tape as a result of previous operations
will be overwritten if the PREP option has been specified. If the operation was
intended as a continual building of the tape file, the results would be disastrous.

When tape prep is specified in the same job step with a librarian file that contains
more than six input files that output to the same tape, the seventh input will cause
the tape to reset the output block to block number 1.

To avoid these problems, you should prep the tape in a separate job step.

Format:
LABEL AOPERATIONA | OPERAND
unused COP[ .options] input-Lfn +{SY 11, name][,output-Lfn]
M
0
L
Options:

A Process all groups in the input-Ifn with the group name specified in the name

-
parameter. (The G option must also be used.)

C Name specified in the name parameter is either a module name prefix or group
name prefix.

D List all the modules copied, or if a table of contents is being produced, list all
the records in the file directory.



UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-40
SYSTEM SERVICE PROGRAMS

G Name specified in the name parameter is a module group name or module
group name prefix if the C option is also specified. If neither the C or A option
is used, process the modules in only the first group found with the specified
name. If the C option is used, process all groups with the specified prefix. If
the A option is used, process all groups with the specified name. When goup
processing is requested, the module type parameter should be omitted, as it is
inappropriate.

M Copy a specified module from the input file to the output file only if the output
file already contains a module with the same name and type.

N Do not list any header records on the librarian map.

P Punch the modules processed. This option cannot be used when requesting a
table of contents for a file.

Q Copy a specified module from the input file to the output file only if the output
file does not already contain a module with the same name and type.

U Process the modules from the current position of the input file, up to and
including the specified module or module group. This option is ignored when
producing a table of contents for a file.

Positional Parameter 1:

input-lfn
Specifies the logical file name of the disk or tape input file.

If omitted, the run library ($Y$RUN) of the job is used.
Positional Parameter 2:
S,M,0,L
Specifies the type of module being copied as either a program source module

(S), macro/jproc source module (M), object module (O), or load module (L).

If omitted, all modules with the specified name from the current position to the end
of the file are copied.

Positional Parameter 3:

name
Specifies the name of the module or module group (G option) to be copied, or
a name prefix (C option), and may consist of up to eight characters.

If omitted, all modules from current position to the end-of-file of the specified type
are copied. If no type or name is specified, all modules from current position to
end-of-file are copied.




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-40a
SYSTEM SERVICE PROGRAMS

Positional Parameter 4:

output-Lfn
Specifies the logical file name of the disk or tape unit output file to be used in
the copy operation. The output file specification is not necessary to position a
file, to list a disk file directory, or to list or punch specified modules in a file.

If omitted, only a subfunction (list, punch, position) of the COP statement can be
performed. (See examples 1 and 3. However, if you specify an input-ifn,
module-type, and module-name and omit the output-ifn, the file pointer is
positioned to the next module after the specified module in the file. (See example
7)






UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-41
SYSTEM SERVICE PROGRAMS

Examples:

1 10 16

coP D1

COP.D D2,S,MYMOD,D3
COP.GP D1, ,MYGROUP
COP.UN D®,M,MYMOD,T®
COP.C T2,L,MY,D1
COP.D D1

COP D1,S,COBOL4

NOWNT NN -

1. Lists all the header records in the D1 (compare with example 6).

2. Copies source module MYMOD from file D2 to file D3 and provides a listing of
module MYMOD.

3. Punches all modules in the module group MYGROUP, from file D1.

4. Copies to tape file TO all modules from current position of DO up to and
including the procedure module MYMOD. Current position is reset to
immediately follow MYMOD. The listing of header records is suppressed.

5. Copies any load module whose name begins with MY from the current position
to the end of the file on tape file T2 to disk file D1.

6. Lists all directory records in file D1 (compare with example 1).

7. Positions the input-file to the next module following COBOLA4.

2.8.7. Correct Module (COR) Control Statement
Function:

This statement is used to specify that the content of a source, object, or load
module is to be corrected. Correction cards following the COR statement specify
how the module is to be corrected. The librarian end-of-data (EOD) card indicates
the end of the correction cards. Corrected modules may be output to either the
same file or another file. For source modules, corrections are indicated via the
sequence number field of the correction itself. Stand-alone deletions require the use
of subfunction control statements. For object or load modules, the correction cards



UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-42
SYSTEM SERVICE PROGRAMS

construct a text record containing the data and instructions required as patch
corrections necessary to the specified object or load module. Text patches are
inserted in the corrected module just ahead of the transfer record. Then, whenever
the module is loaded in main storage or linked, its corrected text is inserted in the
appropriate places in the module, overlaying any text that may have been nullified
because of their replacement. When patched modules are listed, patches are
flagged. When making changes to object and load modules, control section and
phase sizes may not be altered. Patches must be correctly sequenced for phased
load modules.

If errors are detected in the correction cards (for example, a wrong phase number),
the librarian will not add these correction cards to your file.

The librarian will not terminate the card module until an unattached EOD card is
detected, unless the E option is specified.

Format:
LABEL AOPERATIONA | OPERAND
unused COR[ .options] {inp t-lfn} 1 (S),name[,output-Lfn]
o "
0
L
Options:

E Terminate at the first EOD.

N Do not list header records, subfunction control statements, or records added
or deleted.

P Punch module corrected.

X Extend the load module if any of the supplied patch addresses are beyond the
end of the module. This option can be used only for unblocked single-phase
load modules.

Positional Parameter 1:

input-Llfn
Specifies the logical file name of the disk or tape file containing the module to
be corrected. If a tape is specified as input, then a different output-Ifn must be
specified. The librarian cannot read and write from the same tape file.

If omitted, $YSRUN is used.




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-43
SYSTEM SERVICE PROGRAMS

Positional Parameter 2:

s,M,0,L
Specifies the type of module being corrected as either a program source
module (S), macro/jproc source module (M), object module (O), or load module

(L).
Positional Parameter 3:

name
Specifies the name of the module to be corrected.

Positional Parameter 4:

output-Lfn
Specifies the logical file name of the disk file into which the corrected module
is to be placed.

If omitted, the original module is deleted and the corrected version is added to the
end of the input file. This parameter is required if the input file is a tape.

2.8.8. COR Correction Cards

2.8.8.1. Object or Load Module Corrections

Subfunction patch corrections for object and load modules must immediately follow the
COR control statement. The last patch correction must be followed by a librarian EOD
control statement. If the librarian detects an error within a correction card, it does not
make the correction. Both text and relocation data (RLD) records may be supplied for
the patch. RLD masks must be represented in hexadecimal 3-byte multiples exactly as
required. Each patch supplied causes the generation of an appropriate text record.
Contiguous patch addresses on succeeding patches do not cause the generated text to
be merged. Load module patches must be correctly sequenced by phase number.

The format of a patch correction card for an object or load module is:

1

-)address [,[esid-no [,text[,RLD]}
{P} phase-no

ORG

Column 1:

-(Chyphen)
Indicates that the specified address is relative to the object or load module
address.



UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-44
SYSTEM SERVICE PROGRAMS

Indicates that the specified address is relative to the load module phase being
patched.

Positional Parameter 1:

address
Specifies the hexadecimal address that is relative to the base address of the
object or load module and not to the address of the CSECT or phase area.
This relative address is assigned to the generated text record. The address can
be either positive or negative. A positive address begins in column 2, while a
negative address has a hyphen in column 2 followed by the address.

Positional Parameter 2:

esid-no
Specifies the external symbol identification number for the object module being
patched. The number must be in the range of 01-255.

If omitted, O1 is used.

phase-no
Specifies the phase number of the load module being patched. The number
must be in the range of 00-99.

If omitted, 0O is used.

ORG
Indicates that this is not a correction but specifies that the indicated address
(positional parameter 1) is automatically added to all subsequent patch address
fields until a new value is specified on another ORG correction card or an EOD
statement is encountered in the control stream. When you use this parameter,
text is not permitted.

Positional Parameter 3:

text
Specifies a contiguous string of hexadecimal digits to be assigned at the
resultant address (which is the sum of the specified address and, if specified,
the most recent ORG address). The minimum amount of text patchable is one
byte. Text is required unless ORG is specified in positional parameter 2. If text

is not specified, the patch correction is flagged and the relocation data (RLD), if
present, is disallowed.

Positional Parameter 4:

rld

Indicates any relocation data for the specified object or load module text

record being created. The rld data must be in 3-byte, 6-hexadecimal-digit
multiples.




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-45
SYSTEM SERVICE PROGRAMS

NOTES:

1. Padding of zeros to the nearest half byte is automatic for the address, esid/phase
number, and test specifications.

2. If the esid/phase number is omitted, the comma still must be coded.

Example:
In this example, a multiphase load module named MYLOAD is corrected. The
original version of the module resides in file DO, while the corrected version will

reside in file D2.

1 10 16

COR  D®,L,MYLOAD,D2
-C90,4880D074
P12D,1,9540C012
-0124,0RG
P250,3,AB
--4B78,0RG
-5672,4, 0A1C
-0,0RG
-D2E,6,00012E,016F00
EOD

0O ~NONUVEES NN -
« = % e 2 5 v

1. The specified text is applied to load module address C90 of phase O.
2. The specified text is applied to phase relative address 12D of phase 1.
3. The value 0124 is entered as the ORG value.

4. The specified text is applied at 250+ 124 bytes into phase 3.

5. The value -4B78 is entered as the ORG value.

6. The specified text is applied at the load module address 5672-4B78 of
phase 4.

7. The ORG value is cleared.

8. The specified text and RLD are applied to load module relative address
D2E of phase 6.



UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-46
SYSTEM SERVICE PROGRAMS

2.8.8.2. Source Module Corrections

To make source module insertions and replacements, the actual source module record
to be inserted is used as the correction card. Replacements are performed by using a
correction card with the same sequence number as the record to be replaced. Insertions
are performed by using at least one correction card (always the first card) with a
sequence number falling between the sequence number of the records between which
the insertion is to be made. Any number of unsequenced correction cards may then
follow.

Source module corrections will appear in the listing in the following manner:

B For source statement replacements, the statement being replaced and the
replacement statement are printed.

B For insertions of new statements, the line preceding the insertion and the inserted
line are displayed.

Figure 2-9 is an example of a source module correction showing the original source
module, the librarian stream used to modify the module, and then the resultant
corrected module as it appears after the librarian has completed its processing.

If the corrections to a source module include the /$—/* job control statements, they
must be paired.

The source module always must contain record sequence identifiers for it to be
corrected by the librarian; however, source modules are not required to carry sequence
numbers to be in a given library. Sequence numbers optionally may be added to a
source module whenever the user chooses, either at creation time from cards through
the ELE control statement, or anytime afterwards, through the sequence (SEQ) control
statement being used as a primary function. Cards that are out of sequence in a
correction deck are inserted in the source module out of sequence (in the same order
they appear in the correction deck), and the appropriate error message is printed on the
librarian map.

There are three control statements that are used as subfunctions of the COR control
statement to correct or reorder a source module. These are the skip (SKI), recycle
(REC), and sequence (SEQ) control statements. They are to be used strictly as control
statements.




UP-8062 Rev. 8

SPERRY UNIVAC 0S/3
SYSTEM SERVICE PROGRAMS

2-47

SMSERR3 START SM$00010
PRINT NOGEN SM$00020
SUPEQU SM$00030
PRINT GEN SM$00040
DC 'DATE SOURCE && REF AMOUNT DATE SOURCE && REF ! SM$00050
DC ' REF-2 ORIG-DATE DATE SOURCE && REF AMOUNT ! SM$00060
LR R1,R6 SM$00070
LR R4,R5 SM$00080
END SM$00090
a. Original source module
1 10 16 72
COR D1,S,SMSERR3,D2
MVC LB$ERR, SMSERR SM300020
L R3,LBSMIKE SM$00060
SK1 SM$00090 SM$00090
LB$BBBB SM$00110
EOD
b. Correction card deck
------ PRINT NOGEN SM$00020
++t MVC  LBS$ERR,SMS$SERR SM$00020
------ DC ' REF-2 ORIG-DATE DATE SOURCE && REF  AMOUNT ! SM$00060
bt L R3,LBSMIKE SM$00060
SKI SM$00090 SM$00090
Fdedodek LR R4, R5 SM$00080
++++++ LBS$BBBB SM$00110
c. Librarian printout showing additions, deletions, and replacements
SMSERR3 START SM$00010
MVC LBSERR,SMSERR SM$00020
SUPEQU SM$00030
PRINT GEN SM$00040
bC 'DATE SOURCE && REF  AMOUNT DATE SOURCE && REF ! SM$00050
L R3,LBSMIKE SM$00060
LR R1,R6 SM$00070
LR R4 ,R5 SM$00080
L B$SBBBB SM$00110

d. Corrected source module

Figure 2—9. Example of Source Module Corrections




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-48

SYSTEM SERVICE PROGRAMS

2.8.9. Delete Elements (DEL) Control Statement

Function

This facility allows you to eliminate certain modules or module groups within a
specified library. The deletion is of one module, or is inclusive up to and including

the
file

named module or group existing in the specified file. When elements of a given
are being deleted, all referenced code is effectively nullified. These dead

modules or groups can then be removed through an eventual copy or pack function
to eliminate the resulting fragmentation. You should not attempt to delete an ICAM
symbiont while it is actively processing.

Format:
LABEL AOPERATIONA | OPERAND 7
unused DEL[ .options] [{lfn ] ~ (SY [, name]
_ M
0
L
Options:

A Delete all groups with the group name specified by the name parameter. (The
G option must also be used.)

C Delete all modules whose name begins with the prefix specified in the name
parameter.

D List modules being deleted.

G Name specified in positional parameter 3 is a module group name rather than
an individual module name. If neither the C or A option is used, delete all the
modules in the first group encountered with that name. If the C option is used,
delete all groups with the group name prefix specified by the name parameter.
If the A option is used, delete all groups with that group name. Each operation
starts from the current file position. When a group is deleted, the BOG and
EOG records associated with that group are also deleted. When module group
processing is requested, the module type parameter should be omitted, as it is
inappropriate.

N Do not list header records.

P Punch modules being deleted.

U Delete from current position up to and including specified module. If a module

name is specified, then a type must also be included. If no module name is
specified, delete all modules after current position.




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-49
SYSTEM SERVICE PROGRAMS

Positional Parameter 1:

Lfn
Specifies the logical file name of the disk file in which the deletion is to occur.

If omitted, the job run library file ($Y$RUN) is utilized.

Positional Parameter 2:

s,M,0,L
Specifies the type of modules being deleted as either a program source module
(S), macro/jproc source module (M), object module (O), or load module {L).

if omitted, all modules with the specified name from the current position to the end
of the file are to be deleted.

Positional Parameter 3:
name
Specifies the module name, module group name, or module name prefix of the

modules to be deleted.

if omitted, modules of the specified type are deleted. If both type and name
specifications are omitted, all modules are to be deleted.

Examples:
7 1 10 16
1. DEL.D D1,S,EXAMPLE1
2. DEL.P ,0
3. DEL.C D2,0,EXA
4. DEL.UN D®,L,MYMOD

1. Deletes and lists the source module named EXAMPLE1 on file D1.
2. Deletes and punches all object modules from the job run library.

3. Deletes all object modules from current position to end-of-file in file D2 whose
name begins with EXA.

4. Deletes all modules from current position to the load module named MYMOD
in the DO. Also suppresses the listing of header records.

NOTES:
1. The DEL control statement cannot be used if processing tape libraries.

2. Only root phase header records are printed during the delete operation; however,
all overlays are deleted.



UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-50
SYSTEM SERVICE PROGRAMS

2.8.10. Add Card File Element (ELE) Control Statement

Function:

This statement is used to add a source, object, or load module that is contained in
cards to a disk or tape file. If a card element is being added to a disk file that
already contains a module of the same name and type, the old module is replaced
by the new module. The ELE control statement causes a module header record to
be inserted in the specified output file. All cards immediately following the ELE card
down to the end-of-data (EOD) card are assumed to comprise the module to be
added. Librarian control streams are valid source modules, but each EOD card that
is a part of that control stream must be associated with its own COR or ELE
control statement. The librarian will not terminate the card module until an
unattached EOD card is detected, unless the E option is specified.

Format:
LABEL AOPERATIONA | OPERAND
unused ELE[ .options] {lfn } , {S),name[,comments]}
E M
0
L
Options:

D List the module.
E Terminate at the first EOD.
N Do not list the header record.
P Punch the module.
Positional Parameter 1:
Lfn
Specifies the logical file name of the disk, diskette, or tape file to which this
card module is to be added.
If omitted, the job run library ($Y$RUN) is used.
Positional Parameter 2:
S,M,0,L
Specifies the type of the module being added as either a program source

module (S), macro/jproc source module (M), object module {O), or load module .
(L).




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-51

SYSTEM SERVICE PROGRAMS

Positional Parameter 3:

name

A 1- to 8-character alphanumeric string that specifies a name for the module
being added.

For object and load modules, the name on the ELE card must be the same as
the name of the module.

Positional Parameter 4:

comments

Up to 30 characters of comments to be inserted in the module header record.

if omitted, no comment is included in the header record.

Examples:
1 10 16
1. ELE  D1,S,EXAMPLE1,NEW SOURCE MODULE
2. ELE ,L,EXAMPLE2
3. ELE  D12,0,EXAMPLE3

1. Adds a source module name EXAMPLE1 to file D1 and, if a source module
named EXAMPLE1 already exists therein, it will be nullified. The comment
“‘new source module’’ will also be inserted into the comment field of the
header record.

2. Adds a load module named EXAMPLE2 to the job run library and, if a load
module of the same name already exists therein, it will be nullified.

3. Adds an object module named EXAMPLE3 to file D12 and, if an object module
of the same name already exists therein, it will be nullified.

NOTES:

1.

The add, replace, or check sequence numbers (SEQ) control statement is supported
as a subfunction command to the ELE control statement to: perform a sequence
check on a source module being filed, sequence a source module being filed, or
resequence a source module being filed.



UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-52
SYSTEM SERVICE PROGRAMS

2. A source module cannot have an EOD control statement as part of its coding since
this statement is a terminator card. If detected in your source module, only that
portion of your source module up to the EOD is added. Whenever an EOD control
statement is used, it must be paired with a COR or ELE control statement.

2.8.11. Declare End-of-Data (EOD) Control Statement

Function:

This statement is used to terminate the card data that follows an ELE, COR, or
REPRO control statement. Each EOD card must be associated with one and only
one ELE or COR card.

Format:
LABEL | AOPERATIONA | OPERAND
unused | Eop l unused
Options:
None

2.8.12. Write End-of-Group (EOG) Record Control Statement

Function:

This statement is used to terminate a module group by writing an end-of-group
record (Table B-2) in a specified file.

Format:

LABEL | noperaTIONA | OPERAND

unused ‘ EOG l group-name[,{lfn }]
Options:

None

Positional Parameter 1:

group-name
Specifies the name of the module group being ended.




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-563
SYSTEM SERVICE PROGRAMS

Positional Parameter 2:

Lfn
Specifies the logical file name of the disk or tape file on which the
end-of-group record is to be written.

If omitted, the job run library ($Y$RUN) is used.

Examples:

1 10 16
1. EOG  EXAMPLE1,D1
2. EOG  EXAMPLE2

1. Places an end-of-group record on file D1 with the name EXAMPLE1.

2. Places an EOG record named EXAMPLE2 on the job run library.

2.8.13. ESCAPE (ESC) CONTROL STATEMENT

Function:

This statement causes the librarian to read all subsequent librarian control
statements from either a SAM file or from a librarian disk source module rather
than from the control stream. Your SAM file can reside on either a disk, diskette,
or tape. You can think of the librarian control statements as a procedure module
whereby the same control statements can be executed over again without change.
You need to change only the FIL control statement to process different files.

ESC processing terminates when the end of module or end of file is detected. All
statements read by ESC processing appear on the librarian map with *ESC* in the

control field.
Format 1:
LABEL AOPERATIONA OPERAND
unused ESC filename, (TP) {, ,{record-length
DK FB 86
DT vu
VB
[,{block-length}:l




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-54
SYSTEM SERVICE PROGRAMS

Options:
None
Positional Parameter 1:

filename
Name of your SAM file containing the librarian control stream to be processed.

The maximum allowable length is seven characters. The first character must be
alphabetic.

Positional Parameter 2:
TP,DK,DT
Specifies the type of file to be read. The entries are TP, for a tape file; DK, for
a disk file; and DT, for a diskette file.

Positional Parameter 3:

FU,FB,VU,VB
Specifies the record type for the file being read. Permissible entries are:

FU Fixed, unblocked records
FB Fixed, blocked records
VU Variable, unblocked records
VB Variable, blocked records

If this parameter is omitted, fixed, unblocked records are assumed.

NOTE:

SAM diskette files may not contain blocked records.

Positional Parameter 4:

record-length
Specifies the length in bytes of fixed records. Maximum permissible entry is
decimal 128. For tape, the minimum permissible entry is decimal 18. If this
parameter is omitted, a record length of 80 bytes is assumed. This parameter

is not required for variable-length records. For fixed, unblocked records, this
field is ignored.



UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-55
SYSTEM SERVICE PROGRAMS

. Positional Parameter 5:

block-length
Indicates the length in bytes of the file blocks including all block header and
record header fields. If the block length exceeds 1024 decimal bytes, see the
section on additional storage requirements. For tapes, the minimum block
length is decimal 18. For variable-length records, this entry indicates the
maximum block size. If omitted, a block size of 80 bytes is assumed.

NOTES:
1. The block length must equal or exceed the specified record length.
2. The ESC command can process tape files with or without block numbers.

3. For diskettes, the maximum block length is 1024 decimal bytes.

Format 2:
LABEL |AOPERATIONA | OPERAND
unused ] ESC ] filename,LD,modulename
. Options:

| None
| Positional Parameter 1:
|
|
filename
Specifies the name of the file containing the librarian control stream module.

Positional Parameter 2:

LD
Indicates the control stream is in a librarian source module.

Positional Parameter 3:

modul ename
Specifies the name of the librarian source module containing the librarian
control stream to be processed.

Main Storage Considerations:

When you use the ESC control statement, you must specify additional main storage

. on the // JOB control statement. The amount of main storage required is
dependent upon the file type being read and the extra storage required for block
sizes in excess of 1024 bytes. To calculate the main storage amount, use the
following equation:



UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-56
SYSTEM SERVICE PROGRAMS

file type + excess block size + X!5C00’

where:

file type
Is bytes (in hexadecimal) required for a particular file type. The values are:

X’1250’ for a file type of TP (SAM tape)
X’C50’ for a file type of DT (SAM diskette)
X'F50’ for a file type of DK (SAM disk)
X'780' for a file type of LD (librarian disk)

excess block size
A hexadecimal value representing the number of bytes that the blocks in
your program are in excess of 1024. Calculate this value by converting the
decimal block size value to hexadecimal and subtracting X°'400° from the
resulting value.

Example 1. Using a librarian SAM disk file
Librarian control stream:

// JOB ESCRUN,,, 8000

// DVC 20 // LFD PRNTR

// DVC 50 // VOL PUBRES

// LBL PRGFIL // LFD PRGFIL
// DVC 5@ // VOL PUBRES

// LBL LIBFIL // LFD LIBFIL
// EXEC LIBS

/$
FIL D1=PRGFIL,D2=LIBFIL
ESC  LIBFIL,DK
/*
/&
// FIN
SAM disk file:
a4 PAC D2
15 coP  D1,S,COBOL4,D2
16 LST D2

Line 1 shows the JOB statement with the additional main storage required for the job.
Lines 2-6 show the device assignment set for the system printer and our disk files.

Line 7 shows the EXEC statement calling the librarian.




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-57
SYSTEM SERVICE PROGRAMS

Lines 8 and 11 are the data delimiters for the librarian control stream.
Line 9 shows the FIL statement.

Line 10 shows the ESC statement identifying our file and file type.
Lines 12 and 13 end our job and card reader operation.

Lines 14-16 show the librarian control statements to be executed during ESC
processing.

Example 2. Using a librarian source module

The following coding shows an example of ESC processing. Our source module
COBOL4 residing in D1 is copied to D2 and all the header records are listed from
D2.

Librarian control stream:

// JOB ESCRUN,,, 8000

// DVC 20 // LFD PRNTER

// DVC 50 // VOL PUBRES

// LBL HAMMER // LFD HAMMER
// DVC 50 // VOL PUBRES

// LFD SRCFIL // LFD SRCFIL
// EXEC LIBS

/%
FIL D1=HAMMER,D2=SRCFIL
ESC SRCFIL,LD,LIBTEST
/%
/&
FIN

Librarian source module:

LST D2

COP D1,S,COBOL4,D2
@5

Line 1 shows the JOB statement with the additional main storage required for ESC
processing.

Lines 2-6 show the device assignment set for the system printer and our disk files.
Line 7 shows the EXEC statement calling the librarian.
Lines 8 and 11 are the data delimiters for the librarian control stream.

Line 9 shows the FIL statement.



UP-8062 Rev. 8 SPERRY UNIVAC OS/3 2-58
SYSTEM SERVICE PROGRAMS

Line 10 shows the ESC statement identifying the module.
Lines 12 and 13 end our job and card reader operation.

Lines 14 and 15 show the librarian control statements to be executed during ESC
processing.

2.8.14. Declare File (FIL) Control Statement

Function:

The control statement is used to declare to the librarian all the tape and disk files
that will be referenced subsequently in the control stream through // LFD control
statement. At the same time, each file is assigned a type code (disk or tape) and a
logical file number (0-15), which together form a logical file name that is to be
used (rather than the file name) for all subsequent file references within the librarian
control stream. File declarations may be strung out on one FIL card or be made
individually on separate FIL cards. Up to 32 files can be declared: 16 tape files and
16 disk files. For each file described by the FIL statement, an appropriate job
control file declaration card is required in the job control stream (unless a standard
system or job run library file is being used).

Format:
LABEL ! AOQOPERATIONA | OPERAND
unused FIL {Tn=filename-1} ,...,{Tn}=filename-n
Dn Dn
Options:
None

Tn Keyword Parameter:

Tn=filename

Is used to equate a tape file (LFD name) with a logical file name of TO through
T15.

Dn Keyword Parameter:

Dn=filename

Is used to equate a disk file (LFD name) with a logical file name of DO through
D15.




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-59
SYSTEM SERVICE PROGRAMS

NOTE:

The file name specification may not exceed eight alphanumeric characters and must
begin with an alphabetic character. When working with system files, you must equate
the logical file name with the file identifier if DVC RES was used in the device
assignment set for the resident volume.

Examples:

1 10 16

1. FIL TO=SCRTAPE, T1=MASTAPE,D®=PROCLIB
FIL T2=UPDATE,D1=LOADLIB

1. Declares the use of tape files SCRTAPE and MASTAPE, and of disk file
PROCLIB, and assigns the logical file names TO, T1, and DO to the three files,
respectively. Subsequent references to these files must specify the logical file
names.

2. Declares the use of tape file UPDATE and disk file LOADLIB, and assigns the
logical file names T2 and D1 to these files, respectively.

NOTE:

Using the FIL statement to equate files to be processed with logical file names
allows a single LIBS control stream to be used to maintain any number of
different files. The functions performed by the control stream use the logical
file specifications declared in a FIL statement. When the needed files change,
only the FIL statements need be modified. Thus, each command to the librarian
need not specify the actual file name used.

2.8.15. Printing a File in Alphabetical Sequence (LST)

Function:

This command enables you to display a table of contents of a file in alphabetical
sequence. The LST command has a built-in sort routine that sorts the directory
records. At the completion of the sort, the LST command displays the listing in the
form of module name, module type, date, and time. Groups and module header
records are the only records printed; for example, the root phase of a load module.

Format:
LABEL AOPERATIONA [ OPERAND
unused LST [{in ut-lfn}] ;




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-60
SYSTEM SERVICE PROGRAMS

Positonal Parameter 1:

input-Llfn
Specifies the logical file name of the disk file containing the modules to be
listed.

If omitted, the job run library is assumed to contain the modules.
Positional Parameter 2:
S,M,0,L
Specifies the type of moduies being operated on as either program source
modules (S), macro/jproc source modules (M), object modules (O), or load
modules (L).
If omitted, the entire file is listed.

Examples:

1 10 16

1. LsT D1,L
LST

1. Prints an alphabetic listing of only the load modules residing in file D1.

2. Prints an alphabetic listing of the entire SYSRUN file.

2.8.16. Pack File (PAC) Control Statement

Function:

This operation compresses a library file by discarding any elements that are flagged
as nullified and squeezing the remaining code sets together, thus eliminating any file
fragmentation and pushing unused space toward the end of the file. This function.
may be used in conjunction with the delete (DEL) control statement to build a
reordered, updated, and packed library file. The user should not attempt to pack a
file that contains an ICAM symbiont while that symbiont is active.

The PAC printout shows both the modules being packed and the modules not

being packed. The modules not being packed are printed first and are listed under
the heading MODULES NOT MOVED. The modules being packed are then printed
under the heading MODULES MOVED.

Format:

LABEL | AOPERATIONA | OPERAND
unused PAC[ .options]




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-61

SYSTEM SERVICE PROGRAMS

Options:

N Do not list header records.

Positional Parameter 1:

Lfn

Specifies the logical file name of the disk file that is to be compressed.

If omitted, the job run library is compressed.

Example:

1

10 16

PAC D1

Eliminates all nullified modules in file D1.

NOTES:

1.

2.
3

A

The PAC control statement cannot be used if processing tape libraries.
The file being packed should be lockable, giving you exclusive use.
A file being packed cannot be updated.

When a load file is being packed, the pack operation must complete before a
program can be executed from the file.

}

}



UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-62
SYSTEM SERVICE PROGRAMS

2.8.17. Controlling Page Advancement for the Librarian Map (PAGE)

Function:
The PAGE librarian control statement starts a new page on the librarian map. It
may also specify a header line to be printed at the top of each new page. This
header line remains in effect for the duration of the librarian job step or until it is
changed by another PAGE control statement.

If a PAGE librarian control statement is not used, the librarian starts a new page on
the librarian map only when:

m  the current page is full;
®m  an LST control statement is executed; or

m 3 COP control statement is used to print a file table of contents.

Format:

LABEL | soPERATIONA | OPERAND

unused | PAGE I ['header-line']
Options:

None

Positional Parameter 1:

‘header-line'
Specifies the header line to be printed at the top of each succeeding page. It

can contain up to 64 characters and must be enclosed in single quotation
marks.

This header line remains in effect for the duration of the job or until it is
changed. If omitted, the current header line, if any, remains in effect.




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-63
SYSTEM SERVICE PROGRAMS

Examples:
1 10 16
1. PAGE
2. PAGE 'PAYROLL MODULES (CONTINUED)'
3. PAGE ¢

1. Starts a new page on the librarian map, printing the current header line, if any,
at the top of that page.

2. Starts a new page on the librarian map with new header line PAYROLL
MODULES (CONTINUED) on that page and each succeeding page.

3. Starts a new page on the librarian map and ends the use of any previously
specified header.
2.8.18. Specifying Error Handling during Librarian Execution (// PARAM ERROR)

Function:

This // PARAM statement specifies whether the librarian should stop the job step
or cancel the entire job in the event of a librarian error.

Format:

// PARAM ERROR=(STOP }
CANCEL

Keyword Parameter:

ERROR=STOP
Causes the librarian to stop processing the job step where the error occurred.
Any librarian control statements following the error are not executed. However,
any subsequent job steps are executed.

ERROR=CANCEL
Causes the librarian job to be terminated immediately. No subsequent job steps
are executed.

NOTE:

The // PARAM statement cannot appear within the librarian control stream. It must be
coded between the // EXEC LIBS and the /$ control statements.



UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-64
SYSTEM SERVICE PROGRAMS

2.8.19. Suppressing the Librarian Map (// PARAM PRINT=O0FF)

Function:

This // PARAM statement suppresses printing of the librarian map. The printer
device asignment set need not be present in your control stream when using this
// PARAM statement. If a printer device assignment set is present, any subsequent
job steps requiring the printer are not affected.

Format:

// PARAM PRINT=0FF

Keyword Parameter:

PRINT=OFF
Suppresses printing of the librarian map.

NOTE:
This must be the first parameter card in the job step and therefore must immediately

follow the // EXEC LIBS statement in your control stream.

2.8.20. Printing Source Modules in Hexadecimal Format {(// PARAM PRTOBJ)

Function:

This // PARAM statement causes any source module listings generated by the
librarian to be printed in hexadecimal format.

Format:

// PARAM PRTOBJ=ON

Keyword Parameter:

PRTOBJ=ON
Causes any source module listings to be printed in hexadecimal format.

NOTE:

The // PARAM statement cannot appear within the librarian control stream. It must be
coded between the // EXEC LIBS and the /$ control statements.




»

UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-64a

SYSTEM SERVICE PROGRAMS

. 2.8.21. Creating a Multifile Tape (// PARAM TAPEFILES=MULTI)

Function:

This // PARAM statement allows the librarian to output more than one file to the
same tape volume. If this statement is not used, only one file can be written to a
tape. This statement is not required to read a file on a multifile tape.

A multifile tape is created by copying files from another storage medium to output
files on the tape. The tape must already be prepped and it may or may not already
contain some files. The files must be copied in sequence as they are to be
arranged on the tape. These files cannot be extended later.

The librarian job, which copies the files to the tape, must contain this // PARAM
statement. Also, the // LBL job control statement for each new tape file must
include a file sequence number parameter (in positional parameter 4) to indicate the
position of the output file on the tape. For example, if the tape already contains
two files, the // LBL statement for the first new tape file must specify a 3 for the
file sequence number. If the tape is a newly prepped tape that does not yet contain
any files, the file sequence number for the first new tape file must be 1.

As the files are being output to the tape, only one tape file can be open at a time.
Therefore, the librarian job step should use the same logical file name (Tn) for every
tape file but redefine that logical file name in another FIL statement each time a
new file is to be processed.

Normally, after each file is written to the tape and then closed, the librarian would
rewind the tape to the load point. then it would reopen the tape and advance to
the end of the tape again to write the next file. However, a // DD job control
statement with a rewind parameter can be used in the device assignment set for
each tape to eliminate unnecessary rewinding at each open and close operation.
The statement // DD OPRW=NORWD specifies no rewind at file open.

The statement // DD CLRW=NORWD specifies no rewind at file close.

Specifically, the device assignment sets for the tape files should specify:

®  CLRW NORWD for the first tape file

®  OPRW NORWD for the last tape file

m  Both OPRW=NORWD and CLRW=NORWD for all other files

Format:

// PARAM TAPEFILES=MULTI



UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-64b
SYSTEM SERVICE PROGRAMS Update A

Keyword Parameter:

TAPEFILES=MULTI
Allows muitiple files to be output to the same tape volume.

NOTE:

If used, this statement must be placed between the // EXEC LIBS statement and the /$
Jjob control statement.

Example:
The following sample job copies five files from disk to the same new tape volume:

// JOB MULTFILE

// DVC 20 // LFD PRNTR

// DVC 50 // VOL D®®410 // LBL DISKFIL1 // LFD DISK1
// DVC 50 // VOL D®®410 // LBL DISKFIL2 // LFD DISK2
// DVC 50 // VOL D®@®41¢ // LBL DISKFIL3 // LFD DISK3
// DVC 50 // VOL D®®410 // LBL DISKFIL4 // LFD DISK4
// DVC 50 // VOL DO®410 // LBL DISKFILS // LFD DISK5
// DVC 90 // VOL S©1841 // DD CLRW=NORWD

// LBL TFIL1,,,,1 // LFD TAPE1

// DVC 90 // VOL S®1841 // DD OPRW=NORWD, CLRW=NORWD
// LBL TFIL2,,,,2 // LFD TAPE2

// DNC 990 // VOL S01841 // DD OPRW=NORWD,CLRW=NORWD
// LBL TFIL3,,,,3 // LFD TAPE3

// DNC 90 // VOL S01841 // DD OPRW=NORWD,CLRW=NORWD
// LBL TFIL4,,,,4 // LFD TAPE4

// DNC 90 // VOL S©1841 // DD OPRW=NORWD

// LBL TFIL5,,,,5 // LFD TAPE5

// EXEC LIBS

// PARAM TAPEFILES=MULTI

/$
FIL D@=DISK1,TO=TAPE1
coP Do,,,To
FIL D@=DISK2,TO=TAPE2
cop  De,,,To
FIL  DO=DISK3,TO=TAPE3
cop Dpo,,,T0
FIL D@=DISK4,TO=TAPE4
cop Dpo,,,T0
FIL D@=DISK5,T@®=TAPES
cop Do,,,To

/*

/&




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-64c
SYSTEM SERVICE PROGRAMS

2.8.22. Specifying Date and Time during Librarian Execution
(// PARAM UPDATE)

Function:

This // PARAM statement is used to specify the date and time to be in effect
during the execution of a library job. This date and time is inserted in the header
records of modules being corrected by the librarian. If a // PARAM UPDATE
statement is not included in the librarian control stream, the date and time
contained in the system information block (SIB) is used. This date and time remain
in effect until the librarian job is terminated.

NOTE:

The // PARAM statement cannot appear within the librarian control stream. It must
be coded between the // EXEC LIBS and the /$ statements.

Format:

// PARAM UPDATE=yymmdd/hhmm

Keyword Parameter:

UPDATE=yymmdd/hhmm
Specifies a date and time to be used for modules being corrected during the
execution of the job.






UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-65
SYSTEM SERVICE PROGRAMS

2.8.23. Recycle Source Module Current Position Pointer (REC)
Control Statement

Function:

The REC control statement is used only in conjunction with the COR control
statement to make source module corrections. It causes the record pointer for the
original source module to be repositioned to the first record in the source module.
In conjunction with the SKI statement, it allows the user to rearrange major
segments of a source module.

When a REC statement is processed, records are read from the original data set
and written in the new data set up to and including the record whose sequence
number matches the sequence number in the sequence field of the REC statement.
Then, the record pointer for the original source module is reset to point to the first
record in the module. If the sequence field of the REC statement is blank,
repositioning of the record pointer takes place immediately.

Format:
72 73
LABEL AOPERATIONA OPERAND SEQUENCE
REC unused [Last-
sequence
no]
Options:
None



UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-66
SYSTEM SERVICE PROGRAMS

Sequence Field Parameter:
last-sequence-no
Is a 1- to 8-character alphanumeric string that identifies the sequence number
of the last record to be copied into the new data set before the record pointer

is recycled to the first record in the module. This field begins in column 73
unless a SEQ control statement dictates otherwise.

If omitted, the recycling operation takes place without any records being copied
into the new data set.

NOTE:
The REC control statement cannot be used if processing tape libraries.
Examples:

1. Figure 2-10 exemplifies how the REC and SKI control statements can be used
to reorder a source module.

2. Figure 2-11 exemplifies how a source module can be corrected by using
sequence data for control rather than for reordering purposes.

3. Figure 2-12 exemplifies how the SEQ statement can be used in a source
module correction deck.

1 10 16 72

EXAMPLE1 Source Statement LIBS0900
EXAMPLE?2 LIBSO100
EXAMPLE3 . LIBS®200
EXAMPLE4 LIBSQ300
EXAMPLES . LIBS0800
EXAMPLEé LIBS0400
EXAMPLE7 . LIBS®600
EXAMPLES8 LIBSO700
EXAMPLE®9 LIBS9500
EXAMPLE® Source Statement LIBS1000

a. Original source module

Figure 2-10. Example of Source Module Reordering Operation (Part 1 of 2)




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-67
SYSTEM SERVICE PROGRAMS

1 10 16 72
1. SKI LIBS09¢0
2 UPDATE1 Source Statement LIBSO200
3. SK1 LIBSQ800 LIBS0800
4. SK1 LIBS®700 LIBSQ600
5 REC
6 SK1I LIBSP400 LIBS0900
7 UPDATEZ2 Source Statement LIBS0500
UPDATE3 Source Statement LIBS®550
8. REC LIBSO700
9. SK1 LIBSQ300 LIBS9900
10. REC LIBS0800
1. SKI LIBS0500 LIBS®100

b. Correction deck

Skip source record LIBSO900.

Reptace EXAMPLE3 source statement with UPDATE1 source statement.

Copy all records up to LIBSO800. LIBSO300 is copied. LIBSO800 is skipped.

Copy all records up to LIBS0600. LIBS0400 is copied. LIBSO600 and LIBSO700 are skipped.

Reposition record pointer back to the first record.

Start skipping at LIBSO900 and skip down to LIBS0400. No records are copied.

Insert UPDATE2 and UPDATE3 source records immediately after LIBS0400.

Before repositioning record pointer, copy down to and including LIBSO700; then reposition record pointer to the

first record.

Start skipping at LIBSOS00 and skip down to LIBSO300. No records are copied.

0. Before repositioning record pointer, copy down to and including LIBSO80O0; then reposition record pointer to the
first record. LIBSO800 is the only record copied.

11. Start skipping at LIBS0100 and end skipping at LIBS0500. LIBS0O900 and LIBS1000 are copied.

XN REWN =

= ©

1 10 16 72

EXAMPLE?2 Source Statement LIBS@100
UPDATE1 LIBS0200
EXAMPLE4 . LIBS0300
EXAMPLE6 LIBS0400
UPDATE2 . LIBS0500
UPDATE3 LIBS®550
EXAMPLE7 . LIBS0600
EXAMPLES LIBS0O700
EXAMPLES LIBS®800
EXAMPLE1 LIBS0900
EXAMPLE® Source Statement LIBS1000

c. Corrected source module

Figure 2-10. Example of Source Module Reordering Operation (Part 2 of 2)




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 » 2-68
SYSTEM SERVICE PROGRAMS

1 10 16 72
TESTEXAM EQU  * LINKO100
CR  RO,W3 LINKO200
BE LK$3PA20 LINKO300
BH  LKS$3PA10 , LINKO400
W2,LK$CSESZ LINKO500
W2,LKSCSEGT LINKO60®
IC  W3,0(W2,W3) LINKO700
N W3,LK$CX7F LINKO80OO
BNZ  LK$3PA0Q LINKO900
LA W3,LK$CROOT LINK 1000
TESTEXA1 EQU  * LINK1100
LR RO,W3 LINK 1200
LA RRTNOD,4 LINK1300
B LK$CPOP LINK1400
BAL  R14,LBS$CSTK LINK1500

a. Source module

1 10 16 72
COR DO,S, TESTEXAM
1. CR R1,W2 LINKO200
2. XR W2,uW2 LINK®4590
3. SK1I LINKO80O LINK0O8oo
4. SK1I LINK1400 LINK1100
5. EOD
b. Correction deck
1. Replaces the source record with sequence number LINKO200O with this record.
2. Inserts this line between the lines with sequence numbers LINKO400 and LINKO500.
3. Deletes the line with sequence number LINKO80O.
4.  Deletes the lines starting with sequence number LINK1100 and ending with LINK 1400.
5. Must be associated with the COR statement.

Figure 2-11. Example of Source Module Add/Replace/Delete Operation Using SKI Control Statements (Part 1 of 2)




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-69
SYSTEM SERVICE PROGRAMS

1 10 16 72

TESTEXAM EQU  * LINKO100
CR R1,W2 LINK®200
BE LK$3PA20 LINK®300
BH LK$3PA10 LINK@O4OO
XR we,w2 LINK0O450
M W2,LK$CSGSZ LINKO500
L W2,LK$CSEGT LINK@600
IC W3,0(W2,W3) LINK@700
BNZ  LK$3PA®® LINKO900
LA W3,LK$CROOT LINK1000
BAL  R14,LB$CSTK LINK1500

c. Corrected source module

Figure 2-11. Example of Source Module Add/Replace/Delete Operation Using SKI Control Statements (Part 2 of 2)

1 10 16 72

COR DO,S,TESTEXAM
SEQ DO,S,TESTEXAM,1
LINK®200 CR R1,W2
LINKO450 XR W2, w2
LINKO80® SKI LINKO809
LINK1100 SKI LINK1400

NOTE:

This example is the same as the one in Figure 2-10b except for the SEQ statement and the relocated sequence
numbers.

Figure 2-12. Example of the SEQ Statement in a Source Module Correction Deck

2.8.24. Rename Element (REN) Control Statement
Function:

This control statement is used to rename a specific module, module group, or
record; to mark object and load modules as sharable or unsharable; or to change
the comments field in a module header record. When a load module name is
changed, the new name is reflected throughout each phase of the load module.



UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-70
SYSTEM SERVICE PROGRAMS

Format:
LABEL AOPERATIONA OPERAND
unused REN[ .options] {lfn } (S
0
L
(old-name [. (record-type-and-name
RON
ROFF
[,new-name][, comments]
Options:

G Names specified are group names. The first module group encountered with
the name identified as the old-name is to be renamed.

N Do not list header records.
Positional Parameter 1:
Lfn
Specifies the logical file name of the disk file that contains the modules to be
renamed or identified as reentrant or nonreentrant.
If omitted, the job run library is assumed to contain the subject modules.
Positional Parameter 2:
s,M,0,L
Specifies the type of modules being operated on as program source modules
(S), macro/jproc source modules (M), object modules (O), or load modules (L).
If omitted, all modules of the specified old name are affected.
Positional Parameter 3:

RON

old-name .[record-type-and-name
ROFF




SYSTEM SERVICE PROGRAMS

' Identifies the module, module group, or record to be processed, or the object
module to be marked as reentrant (RON) or nonreentrant (ROFF). The record
type codes that may be specified are as follows:

UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-71

|

|

|

|

|

|
C Indicates COM.
E Indicates ENTRY.
N Indicates procedure name.
P Indicates alias phase name.
S Indicates CSECT.
V  Indicates V-CON.
X Indicates EXTRN.
Record names can be from one to eight characters long. The record type and
name specification cannot contain any embedded blanks. An example of how
this parameter might be coded is:

MASTER.XTAGbH

When load, source, or object modules are being renamed or their header
record comments field is being changed, the first 1- to 8-character name is
sufficient. If a record within an object module is being renamed, record type
and old record name also must be provided. If an alias phase name is being
changed, record type and old alias phase name must be specified.

Positional Parameter 4:

new-name

Specifies the new name to be substituted for the old name. If renaming a
multiphase load module, only the first six characters can be changed; the last
two remain the same. If you are changing the sharability status of a module or
the comments field of a header record, the new name is not necessary.

Positional Parameter 5:

comments

A string of up to 30 characters of identification information that is to be

inserted into the header record of the identified module.

If omitted, current comments remain unchanged.



UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-72

SYSTEM SERVICE PROGRAMS

Examples:
1 10 16
1. REN.N D2,,EXAMPLE2,NEWEXAM2
2. REN ,0,EXAMPLE3,NEWEXAM3
3. REN  D3,0,EXAMPLE4.SEXAMPLES,NEWEXAM5
4. REN.G D5, ,EXAMPLE6,NEWEXAM6

1. Renames all modules named EXAMPLE2 in file D2 to NEWEXAM2. No listing
of headers is provided. Any old modules named NEWEXAM2 will be deleted.

2. Renames the object module named EXAMPLE3 in the job run library to
NEWEXAM3. If an object module named NEWEXAMS already exists in the job
run library, nullify that module.

3. Renames the CSECT named EXAMPLE5 in the object module named
EXAMPLE4 to NEWEXAMS.

4. Renames the group named EXAMPLES in the file D5 to NEWEXAM6.
NOTE:

The REN control statement cannot be used if processing tape libraries.

2.8.25. Produce or Delete Control Statement Records within Object

Module (REPRO) Control Statement

Function:

This command is used to produce and delete control statement records within
object modules. The named object module is recopied onto the original file.
Insertion or deletion of control statement records may occur either after the object
module header record or after the object module transfer record.

f no deletion is required, new control statement records will be added after the
control statement record already present in the named object module is copied.

An EOD control statement delimits control statement insertions. Those seen prior
to the first EOD are inserted in the object module header set. Those seen following
the first EOD control statement are inserted in the object module transfer set. Both
EOD control statements are always required, regardless of the presence of any
insertion or deletion.




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-73
SYSTEM SERVICE PROGRAMS

Format:

LABEL | AOPERATIONA loPERAND

unused REPRO[.options][}lfn }],module-name[,#deletionsn,#deletions]
Options:

D List entire module.
N Do not list header records.
P Punch module.

Positional Parameter 1:

Lfn
Specifies the logical file name of the disk file on which the subject module is
located.

If omitted, the job run library file ($Y$RUN) is used.
Positional Parameter 2:

module-name
Specifies the name of the object module to be modified.

Positional Parameter 3:

#tdeletions
A decimal value indicating the number of control statement records to be
deleted that currently follow the object module header record. This value
represents the number of control statements to be dropped from the control
statement set following the object module header record. Records are dropped
from the end of the set.

Positional Parameter 4:

#deletions
A decimal value indicating the number of control statement records to be
deleted that currently follow the object module transfer record. This value
represents the number of control statements to be dropped from the control
statement set following the object module transfer record. Records are
dropped from the end of the set.



UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-74
SYSTEM SERVICE PROGRAMS

Examples:

1.

Add the source records INCLUDE A and INCLUDE B to the end of the control
statement set following the module header record. No changes are made to the
control statement set following the transfer record. List and punch the module
modified.

1 10 16

REPRO.DP D1,EXAMPLE1
INCLUDE A

INCLUDE B

EOD

EOD

Add the source records INCLUDE A and INCLUDE B to the end of the control
statement set following the object module header record and the source record
INCLUDE C to the end of the control statement set following the object module
transfer record.

REPRO D1, EXAMPLE
INCLUDE A

INCLUDE B

EOD

INCLUDE C

EOD

Add the source record INCLUDE A to the end of the control statement set
following the object module transfer record. List the modified module.

REPRO.D D1,EXAMPLE
EOD

INCLUDE A

EOD

Delete the last control statement currently following the object module header
record and then add the source record INCLUDE A. Also, delete the last three
control statement records currently following the object module transfer record and
then add the source record INCLUDE B. List the module modified.

REPRO.D D1,EXAMPLE, 1,3
INCLUDE A

EOD

INCLUDE B

EOD




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-75
SYSTEM SERVICE PROGRAMS

5. Add the source record INCLUDE A to the end of the control statement set
following the object module header record. Delete the last three control statement
records currently following the object module transfer record and then add the
source record INCLUDE B.

1 10 16

REPRO D1,EXAMPLE,,3
INCLUDE A

EOD

INCLUDE B

EOD

NOTE:

The REPRO control statement cannot be used if processing tape libraries.

2.8.26. Reset File Current Position Pointer (RES) Control Statement

Function;

This statement is used to reset the current position pointer in disk files to the
beginning of file or, for tape files, to rewind the tape to load point. If an output
tape file is being rewound, a tape mark will be written before rewinding. If a
module name and type are specified, the current position pointer in disk or tape
files is aimed at the first record of the named module. If a module of the name and
type specified is not found, the current position pointer remains as it was before
the RES statement was processed, and an appropriate diagnostic is printed on the
map.

The current position of library files is maintained via a set of relative pointers in the
respective disk or tape files being managed by the librarian. As each librarian
command is processed, the current position of the file directory partition and the
prime file partition are updated accordingly. Each executed function is essentially
serial in fashion in that the referenced file is processed from wherever it was last
positioned up to the module or group specified. The processing involved may be
inclusive or exclusive, depending on the function and the selection of various
options. If a referenced module or group is in a file, ahead of the current position,
the user may choose to perform the RES function prior to performing the function
in question. If no RES is submitted, the file will eventually wrap around from
end-of-file to the initial position, and then to the requested module or group. If the
module or group cannot be located within the named file, the search terminates at
the point of origin established when the process began.



UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-76
SYSTEM SERVICE PROGRAMS

Format:
LABEL AQOPERATIONA | OPERAND
unused RES[ .options] {lfn } L (SY [, name]
:»;; M
0
L
Options:

G Name parameter is the name of a group. The file position pointer points to the
first record of the first group encountered with the name specified.

Positional Parameter 1;

Lfn
Specifies the logical file name of the disk or tape file to be reset.

If omitted, the job run library file ($Y$RUN) is reset.

Positional Parameter 2;

S,M,0,L
Identifies a module type as a program source module (S), macro/jproc source
module (M), object module (O), or load module (L).

If omitted, it is assumed that the reset operation is directed to a file rather than to
a module or module group.

Positional Parameter 3:
name
Specifies the name of the module or group to which the current position

pointer is to be aimed.

If omitted and a module type is not specified, it is assumed that the reset operation
is directed to a file. Otherwise, an error message is listed to indicate its omission.

Examples:

1 10 16
1. RES D1
2. RES  D3,0,EXAMPLE1
3. RES  T1,S,EXAMPLE2
4. RES  ,L,EXAMPLE3




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-77

SYSTEM SERVICE PROGRAMS

1. Resets the current position pointer of file D1 to the file start.

2. Resets the current position pointer for file D3 to the first record of the object
module named EXAMPLE1.

3. Resets the current position pointer for tape file T1 to the first record of the
source module named EXAMPLE2.

4. Resets the current position pointer for the job run library to the first record of
the load module named EXAMPLES.

2.8.27. Add, Replace, or Check Sequence Numbers (SEQ) Control Statement

Function:

The sequence function is provided to permit source modules to be sequenced or
resequenced. This function does not apply to object or load modules. This function
also is supported as a subordinate command to the ELE and COR control
statement. When using the SEQ control statement with a tape library, you must
use the SEQ control statement as a subfunction control statement to the COR or
ELE control statement.

When the SEQ control statement is used in conjunction with the ELE control
statement, you can perform a sequence check on a source module being filed,
sequence a source module being filed, or resequence a source module being filed.
When this statement is used in conjunction with the COR control statement, you
can correct a source module by using sequence numbers for control. An example
of each of these uses is given in the examples portion of this statement
description. When you use the SEQ as a subfunction to an ELE or COR control
statement, the options (if specified) are disregarded.

Format:

LABEL AOPERATIONA OPERAND
unused SEQ[ .options] [{lfn }],{S}[,name]
”
Hcolumn-position}] ,{content }
SAME
.} increment
[arere])

Options:

D List sequenced module.
N Do not list header records.

P  Punch sequenced module.



UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-78
SYSTEM SERVICE PROGRAMS

Positional Parameter 1:

Lfn

Specifies logical file name of the disk file in which the source module to be
sequenced or resequenced resides.

If omitted, the job run library ($3Y$RUN) is assumed to contain the module to be
sequenced or resequenced. If used with the ELE or COR statement, it must match
the Ifn in that statement. '

Positional Parameter 2:

S,M
Specifies the type of module being sequenced as either a program source
module (S) or a macro/jproc source module (M).

Positional Parameter 3:

name

Identifies the name of the source module to be sequenced or resequenced.
This parameter is required when the SEQ control statement is being used to
sequence or resequence a source module. If the SEQ control statement
immediately follows a COR or ELE control statement, then the SEQ control
statement is used to resequence the source module as it is corrected or
sequenced as it is added, respectively. In this case, the name must match the
name specified in the COR or ELE statement.

If omitted:

B and the SEQ control statement immediately follows an ELE control statement,
the SEQ control statement can be used to check the sequence of a source
module being filed. (See coding example 5.)

B and the SEQ control statement immediately follows a COR control statement,
the SEQ control statement can be used to identify a sequence field, in the
source module being corrected, that is to be used to insert corrections. (See
coding example 6.)

Positional Parameter 4:

column-position
Specifies the first column position in the source module where the sequence
field begins and where the sequence data is incorporated. A sequence number
eight characters in length and beginning in column 73 is referred to as a
standard sequence number.

If omitted, column 73 is assumed to be the first column of the sequenced field.




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-79
SYSTEM SERVICE PROGRAMS

Positional Parameter 5:

content
A 1- to 8-character value that specifies the initial value to be placed into the
sequence field of the first record in the module. The length of this value
determines the length of the sequence field. The mixing of sequence numbers
with alphabetic and numeric characters is permitted, provided the alphabetic
and numeric string remain intact and the alphabetic characters are left-justified.
For example, MA400 is a valid sequence number but M4AQOO is not.

SAME
Indicates that the content of the sequence field of this first record of the
module being resequenced is to remain as it was. This specification assumes
that this field occupies eight character positions. If it does not, this parameter

should not be specified. Instead, the initial sequence field content should be
respecified.

if omitted, the initial sequence field contents is assumed to be 00000000 (eight
Zeros).

Positional Parameter 6:
increment
A decimal number, not to exceed 255, that specifies the sequence increment

to be used in the sequencing process.

If omitted, the increment is assumed to be 1.

Examples:
1 190 16 72
1. SEQ.DP D14,S,EXAMPLE1,20,LNK000, 10
2. SEQ.N D12,S,EXAMPLE2,,SAME
3. ELE  05,S,BALSORC

SEQ D5,S,BALSORC, ,BALOOO2D, 10
-SOURCE MODULE CARD DECK-

EOD
4. ELE D6,S,COBSORC

SEQ D6,S,COBSORC,1,C0BOOOO1
-SOURCE MODULE CARD DECK-

EOD
5. ELE D7,S,BALSORC

SEQ D7,S,,,SRC0000,1
-SOURCE MODULE CARD DECK-

EOD
6. COR DO,S,TESTEXAM

SEQ D®,S,,1,SRCOV000
-SOURCE MODULE CORRECTION CARD DECK

EOD




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-80
SYSTEM SERVICE PROGRAMS

2.8.28.

Function:

Causes the source module EXAMPLE1 in file D14 to be sequenced in column
positions 20-25; the initial content (sequence number) is to be LNKOOO; the
increment is 10. The sequenced module is to be punched and listed.

Causes the source module EXAMPLE2 in the file D12 to be resequenced in
column positions 73-80; the initial content is unchanged; the increment is 1.
No listing of headers is to be provided.

Causes the source module named BALSORC to be added to file D5 and
sequenced (or resequenced if the card file already has sequence numbers in it)
in columns 73 through 80 with the initial value BALOOOOO, and each
succeeding record to be incremented by a count of 10.

Causes the source module named COBSORC to be added to file D6 and
sequenced (or resequenced if the card file already has sequence numbers in it)
in columns 1 through 8 with an initial value of COBOOOO1, and each
succeeding record to be incremented, by default, by a count of 1.

Causes the source module BALSORC to be added to file D7 and its sequence
numbers checked for agreement with the column position (73 through 79),
content (SRCO000), and increment (1) specifications of the SEQ control
statement.

Causes the source module TESTEXAM in file DO to be corrected in accordance
with the source records contained in the correction card deck. The sequence
number field in the source module TESTEXAM that is being keyed on to
incorporate the source module corrections begins in column 1 and has a length
of eight column positions.

Skip Source Module Records (SKI) Control Statement

The SKI control statement is used only in conjunction with the COR control
statement to make source module corrections. The SKI statement allows one or
more original source module records to be bypassed by the COR function.

When a SKI control statement is processed, records are read from the old data set
and written into the new data set until a sequence number is detected that
matches the sequence number in the sequence field of the SKI command. The skip
operation is then initiated and continues until a sequence number that matches the
operand field of the command is detected. If the sequence field of the SKI control
statement is blank, the skip operation is initiated immediately.

Format:
LABEL l AOPERATIONA | OPERAND | SEQUENCE
SKI[ .options]| last-sequence-no [starting-
sequence-
noj




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-81
SYSTEM SERVICE PROGRAMS

Options:
D List the records skipped.
Positional Parameter 1:

tast-sequence-no

Is a 1- to 8-character alphanumeric string that identifies the sequence number
of the last source module record to be bypassed.

Sequence Field Parameter:

starting-sequence-no
Is a 1- to 8-character alphanumeric string that identifies the sequence number
of the first source module record to be bypassed. This field begins in column
73 unless a SEQ control statement dictates otherwise.

If omitted, the skip operation is initiated immediately, starting with the source
module record that immediately follows the last source module record operated on
by the COR function.

Examples:

See examples under recycle source module current position pointer (REC) control
statement.

2.9. LIBRARIAN CANNED JOB CONTROL STREAMS

The following librarian canned job control streams provide you with a more convenient
method of performing certain library functions without having to punch the parameters
and job control statements normally required to run them. These functions reside in the
system load library file ($Y$LOD), and their corresponding job control streams reside in
the system job control stream library file ($Y$JCS). The functions are initiated from the
system console by keying in their associated job control stream name.

Table 2-3 shows the job names associated with the functions performed.

Table 2-3. Librarian Canned Job Control Streams

Job Name Function

DRDP Prints directory partition of a librarian disk file

LISTRES Prints directory for SYSRES modules

MODLST Lists the contents of the system libraries

PACKRES Compresses all modules on SYSRES and prints diectory of compressed modules




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-82
SYSTEM SERVICE PROGRAMS

2.9.1. Print Library Directory Partition (DRDP)

You can display the directory partition of any librarian disk file. A canned job control
stream is provided that initiates the display for most files. Key in the following
command on the system console to initiate the job.

RV DRDP,,V=vsn,L=file-identifier

The V (volume) keyword specifies the volume serial number of the volume containing
the file. The L (label) keyword is the file identifier of that file; the maximum length is 11
characters for this keyin. For those files with a file identifier of more than 11 characters
specified on the LBL job control statement, the following job control stream must be
used.

1 10 16

// JOB DRDP

// DVC 20 // LFD PRNTR

// DVC 50 // VOL vsn // LBL file-identifier
// LFD LUSDTFI

// OPTION JOBDUMP

// EXEC SULBD

// PARAM file-identifier

/&

// FIN

2.9.2. Print Directory for SYSRES Modules (LISTRES)

The LISTRES job control stream prints the directory for all the modules residing on your
SYSRES pack or just the modules contained in a particular file on your release volume,
depending on how you key in the RUN command. The format of the RUN command
used to call LISTRES is:

RV LISTRESL,[,F=file-name]l[,V=vsn]]

The F parameter specifies the file names of all the modules on your SYSRES pack to be
printed. If more than one file is specified, then the file names must be enclosed by
parentheses and separated by commas.

If the F parameter is omitted, all modules contained in all system files are printed.

The V parameter specifies the volume serial number of your release volume.




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-83
SYSTEM SERVICE PROGRAMS

The LISTRES supported file names are:

LOD SG$JCS SCLOD HELP
OBJ SG$LOD MIC SHR
MAC SG$0OBJ SAVE SDF
SRC SG$MAC DLG VP
JCS SMC FMT MSG

The following is an example of a typical LISTRES keyin:

RV LISTRES,,F=(LOD,JCS,SRC)

Here, the system load, system job control stream, and system source files are listed.

NOTE:

LISTRES will not list the contents of any volume that is not a release volume.

2.9.3. List the Contents of the Release Volume System Libraries (MODLST)

MODLST lists the modules and macros in five system libraries ($Y$SRC, $Y$OBJ,
$YSLOD, $YSJCS, and $YSMAC). Each module and macro is given in alphanumeric
sequence and is accompanied by a description of its function and its size. To run
MODLST, key in the following command from the system console:

RV MODLST[,,VSN=vol-ser-no}

where:

VSN=vol-ser-no
Specifies an optional work disk. MODLST uses 30 cylinders on this disk for its
work space. If you don’'t specify this option, the work space for the job is
allocated on the disk containing $Y$RUN.

2.9.4. Pack SYSRES Modules and Print Directories (PACKRES)

The PACKRES job control stream packs and prints the directories of all modules
residing on your release volume. The format of the RUN command to call PACKRES is:

RV PACKRESL,[,F=file-namel[,V=vsn]]

The F parameter specifies the file names (Table 2-5) of all the files to be packed and
printed. You can list the file names in any order. If the F parameter is omitted, then all
files on your release volume are packed and printed.



UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-84
SYSTEM SERVICE PROGRAMS

The V parameter specifies the volume serial number of your release volume.

The PACKRES supported file names are:

LOD SG$JCS SCLOD HELP
oBJ SG$LOD MIC SHR
MAC SG$0BJ SAVE SDF
SRC SGSMAC DLSG IVP
JCS SMC FMT MSG

The following is an example of a typical PACKRES operation:

RV PACKRES,,F=(0BJ,SRC,LOD)

Here, the system object, source, and load files are packed and printed.

NOTE:

PACKRES assumes that a certain set of files exists on all release volumes. If your
volume is not a release volume, open errors may occur if certain files are not present.

2.10. PROGRAMMING EXAMPLES

Some typical examples of librarian jobs follow. These jobs are illustrated as a function

of the job control stream used to execute the librarian and the librarian maps produced
for each job.

2.10.1. Repositioning Modules in a Disk Library File

This job rearranges modules in a disk file. it copies modules from the original file into a
new file in the new sequence, as listed in the following job control stream. Names such
as MODA1 and MODAY7 are of the first and last modules in each series of consecutive
modules that are copied with each COP statement. After all the modules are copied to
the new file, the original file is scratched and the new file is renamed as the original.
Figure 2—13 illustrates the librarian map for this job.




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-85

SYSTEM SERVICE PROGRAMS Update A

(ORIGINAL) (HOLD)
MODA 1 MODD1
MODA? MODDS6
MODB 1 MODA 1
MODBS MODA?
MODC 1 MODC1
MODCS MOoDC8
MODD1 MODB1
MODD6 MODBS
MODE MODE 1
MODE4 MODE4

Job Control Stream:

1. //J0B SHUFFLE

2. // DVC 20 // LFD PRNTR

3. // DVC 50 // VOL DO0410

4. // LBL ORIGINAL // LFD RG

5. // DVC 50 // VOL DO0O410

6. // EXT ST,,1,BLK,(256,4000)

7. // LBL HOLD // LFD HD

8. // EXEC LIBS

9. /%

10. FIL D1=RG,D2=HD

1. cop D1

12. RES D1,S,MODD1

13. cop.U D1,S,M0ODD6,D2

14. RES  D1,S,MODA1

15. CoP.U D1,0,MODA7,D2

16. RES D1,S,MODC1

17. cop.u D1,L,MODC8,D2

18. RES D1,$,MODB1

19. cop.u D1,L,M0DBS8,D2

20. RES D1,S,MODE1

21. cop.U D1,S,MODE4,D2

22. cop D2

23, /*

24.| // SKIP END,11111111

25.| // SCR RG

26.| // REN HD,ORIGINAL

27.| //END NOP

28.1 /&




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-86

SYSTEM SERVICE PROGRAMS

10.

11.

Identifies the job.
Assigns a printer to the job.

Identifies logical unit number 50 for disk volume DO0410, which contains the
original file.

Declares file name ORIGINAL and logical file descriptor RG for the original file.

Identifies logical unit number 50 for disk volume DO0410 to be used for the
new file.

Allocates file space for the new file.

Declares file name HOLD and logical file descriptor HD for the new file.

Initiates execution of the librarian.

Indicates the start of the librarian control statements.

Assigns a type code and a logical file number to the files in the job. Thus, in
the control statements that follow, D1 refers to ORIGINAL and D2 refers to

HOLD.

Prints a sequential list of the modules in file ORIGINAL before the modules are
rearranged.

12 through 21.

Copy modules from file ORIGINAL to file HOLD, moving a series of consecutive
modules at a time. Each RES statement sets the pointer in file ORIGINAL to the
first module in the series. Then a COP statement copies all modules from the
pointer to the module named in the COP statement.

22. Prints a sequential list of the modules in file HOLD.
23. Identifies the end of the librarian control statements.
24 and 27.

25.
26.

28.

Skip the scratch and rename operation if any errors occur in the job.
Scratches file ORIGINAL.
Renames file HOLD to ORIGINAL.

Indicates the end of job.

NOTE:

To save both the original file and the new file, omit lines 24 through 27.




UNIVAC 0S/3 LIBRARIAN
DATE 82707706 TIME 11.58

BLOCK REC NAME TYPE OATE TIME COMMENTS

es COMMAND cosccsnee FIL D1:=RG,D2=HD
01 - VSN IS DOO410, LFD IS RG s FILE LABEL IS ORIGINAL
D 2 - VSN IS DOO413, LFO IS HOD s FILE LABEL IS HOLD

ee COMMAND ocevrvesne cop D1

PAGE # 0001
VER220401

Figure 2-13. Librarian Map for Repositioning Modules (Part 1 of 5)

8 A8y 7908-dn

SINVHOOUd IDIAHIS WIALSAS
€/S0 OVAINN AHH3dS

L8-T



BLOCK

REC

SOURCE
SOQURCE
LOAD

LOAD

SOURCE
SOURCE
0BJECT
SOURCE
SOURCE
LOAD

SOURCE
SOURCE
LOAD

LOAD

LOAD

SOURCE
SOURCE
SOURCE
SOURCE
LOAD

SOURCE
LOAD

LOAD

SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SQURCE
SOURCE
SOURCE

NAME

MODAL
MODA2
MODA 3000
MODAWO000
MODAS
MODAG
MODAT
M0DB1
M00B2
M0D8 3000
MODBY
MODBS
M0D36000
M0DB7000
M00880209
MODC1
MOODC2
MODC3
M0DC4
MODCS5000
MODCH
M00CT7000
MODC8OO0C
MODD1
MODD2
MO003
MODD&
MODDS
MODD6
MCDE1L
MODE2
MODE3
MO0E4

TYPE

81/04/27
81/04/727
81/05/06
81/05/08
81/05/08
81705712
81/05/712
81/05/712
81/06/01
81/06/01
81/36/05
81706729
81/07/06
81707710
81/08/71u
81/3a/14
81708721
81/08/2u
81/08/24
81703724
81709701
81/09/11
Q0s2av/00
80s08s08
30708708
80/s08/03
80703708
207087308
agsossns
80/78/08
8Grsa8sn08
8Gso8/08
30/08/708

BLOCKS REMAINING

DATE

TIME

TABLE OF CONTENTS

0%9.14
09,22
11.10
10.44
11.06
13.45
13.48
13.59
12.33
12.50
12.45
12.38
14,52
l4.14
13,31
13.35
13.51
10.43
10.47
10.54
10.28
88.30
00.08
16434
16.35
16437
16439
16.41
16.43
16.u44
16.45
16.45
16.47

COMMENTS

DIRECTORY 00000C PRIME 00000 THIRD 000000

UNUSED 0An000

PAGE # 0002

oo COMMAND seasccess RES D1,5,M0001
e COMMAND coececose COP.U D1,S,M0DD6,02

000001 005 MODD1 SOR 80/08/08 16434

000004 052 MODD2 SOR 80/08/08 16.35

000005 Q067 MODD3 SOR 80708708 16,37

000007 005 MODD4 SOR 80/08/08 16439

000008 005 MODOS SOR 80/08/08 1641

Figure 2—13. Librarian Map for Repositioning Modules (Part 2 of 5)

8 'A8Y 7908-dN

SINVHDOUd 30IAHIS WILSAS
£/SO IVAINN AHY3dS

88-¢




PAGE # 0003

BLOCK REC NAME TYPE DATE TIME COMMENTS
000008 171 M0DD6 SOR 80/08/08 16.43
oo COMMAND RES 01,SyMODAL
+o COMMAND CoP.U D1,0,M0DA7,02
006009 118 MODAL SOR 81704727 09.14
000014 031 MODA2 SOR 31/04/27 09,22
200015 179 MODA3G0O  LOD 81705796  11.10
go0019 077 MODA4000  LOD 81/05/08  10.44
000020 021 MODAS SOR 81735738  11.06
000022 150 MODAG SOR 81/05/12  13.45
200023 126 MODAT 084 81/05/12 13.48
e« COMMAND RES D1,5,M00C1
oo COMMAND COP.U D1,L,MODC8,D2
000032 005 MODC1 SOR 81/08/14 13,35
000034 034 MODC2 SOR g1/08/21 10.51
000035 034 M0ODC3 SOR 81/08/24% 10,43
200039 030 MODCH SOR 21/08/724  10.47
000040 005 MODCS000  LOD 81/08724 10.54
003043 021 MO0OC6 SOR 81/09/901 10.28
000044 187 MODC700Q  LOD 81/09/11  08.30
0U0052 164 MODC8JOC  LOD 03/00/00  Q0.03
«s COMHAND RES D1,$,M0081
o« COMMAND COP,U 01,L,M0088,02
000058 057 MODB1 SOR 81/05/12  13.59
000061 005 MODB2 SOR 81/06/01 12.33
000074 123 MODB300J  LOD 81/06/01 12.59
000083 021 MODBY SOR 81/36/35  12.45
300084 142 MODBS SOR 81706729  12.38
090086 034 M0DB60D0  LOD 81/C7/06  14.52
000118 965 MOD37000  LOO 81/G7/10  14.14
000174 021 M0DB8000  LOD 81/08/714 13,31
«e COMMAND RES D1,S,M00EL
«s COMMAND coP.U 01,5S,MODEH, D2
000182 180 MODE1 SOR 807087038 16.44
000184 076 MODE2 SOR 80/08/08  16.45
0003185 065 MODE3 SOR 80/08/08 16,45
000186 149 MODEY SOR 80/08/08  16.47

Figure 2—13. Librarian Map for Repositioning Modules (Part 3 of 5)

8 'A%y 7908-dN

SWVHO0Ud IDIAHIS WILSAS
€/SO OVAINN AYH3dS

68-¢



2-90

SPERRY UNIVAC 0S/3
SYSTEM SERVICE PROGRAMS

UP-8062 Rev. 8

(G Jo ¢ Lied) seinpo Buiuonisoday Joy dey ueueiqil 'gf -z aunbi4

%000 # 39vd

SIN3WKOD

IWIL

ilvae

r41]

3dAl

d0D  crTeecece ONWHWOD °°

3WYN

3348

%J019




BLOCK REC

SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
LOAD

LOAD

SOURCE
SOURCE
0BJECT
SOURCE
SOURCE
SOURCE
SOURCE
LOAD

SOURCE
LQAD

LOAD

SOURCE
SOURCE
LOoAD

SOURCE
SOURCE
LOAD

LOAD

LOAD

SOURCE
SOURCE
SOURCE
SOURCE

LIBRARIAN FINISHED

NAME

MODOD1
MOODD2
MODD3
MODD4
MODOS
MODDS6
MODA1
MODA2
MODA 3000
MODA4000
MODAS
MODA S
MODA7
MODC1
MODC2
MODC3
MODCH
MODCS000
MODCs
MODC 7000
M00C8000
MOOR1
Mo082
M008 3000
MODE#4
MODBS
MoDR600Q
MODB 7000
MODBBOOO
MODEL
MODE2
MQODE3
MODE4

TYPE

80/08/08
80/08/08
8Q0/08/08
80/08/08
80/08/08
80/08/08
81/04/27
81704727
81/05/06
81/0S/08
81/05/08
81/08/12
81/05/12
81/08/14
81/7a8r21
81/08/24
81708724
81/08/724
81709701
81709711
0a/Qcsa0
81708712
81706701
81/06/01
81706705
81706729
81/07/06
81/07/10
81/08/714
807087038
30/08/08
80/s08/s08
80/08/08

BLOCKS REMAINING

DATE 82/07/06 TIME 11.58
TOTAL NUMBER OF ERRQRS 00000 uPSI SETTING X'00°

DATE TINME COMMENTS

TABLE OF CONTENTS

16.34
16.35
16.37
16.39
16.41
1643
09.14
09.22
11.10
10.44
11.06
13.45
13.48
13.35
10.51
10,43
10,47
10.54
10.28
08.30
00.08
13.59
12.33
12.50
12445
12.38
14.52
14.14
13.31
1644
16.45
164,45
16,47

DIRECTORY 000000 PRIME 00000 THIRD 00000N UNUSEND 00NN00

PAGE % 000S

Figure 2—13. Librarian Map for Repositioning Modules (Part 5 of 5)

8 'A8Y 2908-dN

SINVHOO0Ud IDIAHIS WILSAS
£/S0 JVAINN AHHIdS

16-¢



UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-92
SYSTEM SERVICE PROGRAMS

2.10.2. Sorting Modules into Separate Files by Type

This job sorts modules from one file into separate files for each module type. This job
was run interactively, so the files for each module type were allocated with an
interactive services ALLOCATE command before the job was run. Figure 2—14 illustrates
the librarian map for this job. Notice that the last COP statement caused an error
because there were no macro/jproc source modules in the original file. However, the job
terminated normally.

Job Control Stream:

1. | // JOB TYPSRT

2. | 77 pvec 20 // LFD PRNTR
3. | /7 pvc 50 // voL Doo41e
4. | 7/ LBL ORIGINAL // LFD RG
5. | /7 DVC 50 // VOL DO®410
6. | /7 LBL ALLSRC // LFD SC
7. 1 77 pvc 50 7/ voL Doo410
8. | // LBL ALLOBJ // LFD OB
9. | 77 bvec 50 /7 VOL DOO410
10.| // LBL ALLLOD // LFD LD
11.| /7 DVC 50 // VOL D@Q410
12.| // LBL ALLMAC // LFD MC
13.| // EXEC LIBS

14.| /3

15. FIL D1=RG, D2=SC,D3=0B,D4=LD,D5=MC
16. coP D1

17. cop »1,S,,D2
18. cop 01,0,,D3
19. coP D1,L,,D4
20. COP D1,M,,D5
21.| 7+

22.1 /8

1. Identifies the job.
2. Assigns a printer to the job.

3. Identifies logical unit number 50 for disk volume DO0410, which contains the
original file.

4. Declares- file ORIGINAL and logical file descriptor RG for the original file.

5 through 12.
Are device assignment statements for the files for each module type. All are
on disk volume D0O0410 with logical unit number 50. The files are named
ALLSRC, ALLOBJ, ALLLOD, and ALLMAC. They are assigned logical file
descriptors SC, OB, LD, and MC, respectively.




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-93

SYSTEM SERVICE PROGRAMS

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

Initiates execution of the librarian.

Indicates the start of the librarian controi statements.

Assigns a type code and logical file number to the five files used in the job.
Thus, in the control statements that follow, D1 refers to ORIGINAL, D2 to
ALLSCR, D3 to ALLOBJ, D4 to ALLLOD, and D5 to ALLMAC.

Prints a table of contents of all modules in file ORIGINAL.

Copies all source modules from file ORIGINAL to file ALLSCR and prints a list
of all of the modules copied.

Copies all object modules from file ORIGINAL to file ALLOBJ and prints a list of
all of the modules copied.

Copies all load modules from file ORIGINAL to file ALLLOD and prints a list of
all of the modules copied.

Copies all macro/jproc modules from file ORIGINAL to file ALLMAC and prints
a list of all of the modules copied.

Indicates the end of the librarian control statements.

Indicates the end of job.



UNIVAC 0S/3 LIBRARIAN
DATE 82/07/08 TIME 15,39

BLOCK . REC NAME

oo COMIIAND evecesces FIL

[wle NoRe v
N E NN

oo COMMAND sevvecens copP

VSN
VSN
VSN
VSN
VSN

TYPE DATE

TIME

COMMENTS

D1=RG,02=SC,D3=0B,D4=LD,D5:=MC

IS DOOos10,
Is DOJ419,
Is ooouto,
IS Gooul0,
IS DOQu10,

0t

LFOD
LFD
LFD
LFO
LFD

Is
IS
Is
IS
Is

RG
SC
[o]:}
LD
MC

14
A4
?
’
?

FILE
FILE
FILE
FILE
FILE

LABEL
LABEL
LABEL
LABEL
LABCL

Is
Is
Is
Is
IS

ORIGINAL
ALLSRC
ALLOBY
ALLLOD
ALLMAC

PAGE # 0001
VER320401

Figure 2-14. Librarian Map for Sorting Modules by Type (Part 1 of 3)

8 ‘AeH T908-dN

SWVHOO0Ud 30IAHIS WILSAS
€/SO JVAINN AYH3dS

¥6-C




BLOCK

ee COMMAND covescsses

Q00001
000004
420005
000007
Q00ags
000008
0Q0009
000014

REC

SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
LOAD

LOAD

SOURCE
SOURCE
0BJECT
SOURCE
SOURCE
SOURCE
SOURCE
LOAD

SOURCE
LOAD

LOAD

SOURCE
SOURCE
LOAD

SOURCE
SGURCE
LOAD

LOAD

LOAD

SOURCE
SOURCE
SOURCE
SOURCE

gaos
052
Ge7
0os
aas
171
118
a31

NAME

MODD1
M00D2
MOODD3
MODDY
MODDS
MOODS
MODAL
MODA2
MODA3D0D
MODA4QQ0
MODAS
MO0DAS
MODA7
MODC1
MODC2
MODC3
M00CH
M0DCS5000
MODCH
MODC 7090
M0DC 3030
M0031
M0DR2
MODR30NC
MOD34
MOD3S
MODES00D
M0087300
MODE30UT
MODE1
MODE2
MODE 3
MODE4

TYPE

80708708
83/03/03
80/09/08
30/08/08
80/33/708
80708708
81/04/27
81704727
81/705/06
81/05/78
e1/05/038
817925712
217as712
81/08/14
81/728r21
31/38/724
8l/708/724
81708724
31709701
31/09/11
01/00/702
21735712
81/06/01
81/7906/0D1
81736705
31706729
81737796
31701710
31/03/714
3J/3G8/08
827348/08
80/138/08
33,38/703

BLOCKS REMAINING

cop

MO00D1
MODD2
MO0D3
MODD4
M000S
M00D6
M0oDAL
MODA2

DATE

TIME

TABLE OF CONTENTS

16.34
16.35
15437
16.39
16.41
16.43
G9.14
09.22
11.10
10.u4
11.06
13.45
13.48
13.35
1%.51
10.43
10.47
13.54
17.28
J8. 30
0G.03
13.59
12.33
12.50
12.45
12.38
14452
l4.14
13.31
l6.44
16,45
16.45
16.47

COMMENTS

DIRECTORY 900000 PRIME 00000

D1,%44D2

SOR 80/08/08
SOR 80s048/08
SOR 80s08/08
SOR 84/08/08
SOR 83s38/708
SOR 80/7G8/03
SOR 81704727
SOR 81704727

16,34
16435

1637

16.39
16441
16«43
09.14
09.22

THIRD QoOoCn

UNUSED n0aann

PAGE # 00N2

Figure 2-14. Librarian Map for Sorting Modules by Type (Part 2 of 3)

8 "A8Y Z908-dN

SINVHOOHd IDIAHIS WILSAS
£/S0 OVAINN AYY3dS

§6-¢



c
PAGE # 0003 g
BLOCK  REC NAME TYPE DATE TIME COMMENTS o
&
Y
000015 179 MODAS SOR 81/05/08 11.06 z
000018 072 MODAG SOR 81705712 13.45 =
000019 071 MODC1 SOR 81/08/14 13.35 ©
200021 08¢ MODC2 SOR 81708721 10.51
000022 074 MODC3 SOR 81/08/24 10.43
000026 095 MODCY SOR 81/08/24 10.47
000027 V62 MODC6 SOR 81/09/01 10,28
pD00029 00S 30381 SOR 81705712 13.59
000031 135 M0ODB2 SOR 81/06/01 12433
200045 005 MODBY SOR 81/06/05 12.45
000046 091 M0ODBS SOR 81/06/29 12,38
000048 035 MODE1 SOR 80708708 16.44
200049 135 MODEZ SOR 80/038/08 1645
000050 130 MODE3 SOR 30/08/08 16445
0000s2 005 MODEY4 SOR 80708708 15.47
so COMHAND sosovacses copP D1,0,,03
000001 005 MODAT oedJ 81705712 13.48 o
<
ee COMMAND eeeovecona cop Dl,L,,D4 E”..m ‘
m 9 |
000001 305 M0DA3000 LoD 21/95706 11.10 29
000004 077 MODA4J00  LOD 31/0%5/08 10.44 wnX
200005 021 M00CS300 LOD 81/08/24 10.54 g'<
000008 176 MODCT7003  LOD 81/09/11 8,30 <<z:
000016 164 M0DC8NGY LoD 00/s002/00 00.08 62
030022 US7 M0D33079 LOD 81/36/01 12.50 myg
000030 021 M0036000 LOD 81/07/06 14.52 3o
000062 065 MCO37000  LOD 81/07/10 14,14 80
000118 021 MJD38000 LOD 81/08/14 13.31 :uQ
>w
se COMMAND coeoneesns corp Dl,M,,05 %
BO60*%***xNOTHING FOUND
LIBRARIAN FINISHED
DATE 82/07/08 TIME 15.39
TOTAL NUMBER OF ERRORS 03301 UPSI SETTING X'40°
Figure 2-14. Librarian Map for Sorting Modules by Type (Part 3 of 3)
n»
©
o




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-97
SYSTEM SERVICE PROGRAMS

2.10.3. Building Module Groups

This job builds two module groups by copying modules from other files. All the files
have already been allocated. Figure 2—15 illustrates the librarian map for this job.

Job Control Stream:

1. | 77 JOB GROUP

2. | 77 pbvc 20 /7 LFD PRNTR

3. | 77/ pvec 50 7/ VOL DO®410 // LBL ORIGINAL // LFD RG
4. | 77 pvc 50 7/ voL pee410 7/ LBL ALLLOD // LFD LD
5. | /7 pvc 50 // vOL DO®410 // LBL ALLSRC // LFD SC
6. | 77 pvc 50 /7 VvOL DOO410 // LBL MIXED // LFD MX
7. | 77/ Exec LiBs :

8. | /%

9. FIL D1=RG,D2=LD,D3=SC,D4=MX

10. BOG  GROUPMIX,D4

1. COP  D1,S,MODA1,D4

12. COP  D3,S,MODC3,D4

13. COP  D1,0,MODA7,Dé&

14. EOG  GROUPMIX,D&

15. COP D&

16. BOG  LOADS,D1

17. RES D2,L,MODC5000

18. COP.U D2,L,MODC8000,D1

19. EOG  LOADS,D1

20. coP D1

21.| /*

22.1 /18

1. Identifies the job.
2. Assigns a printer to the job.

3 through 6.
Declare files for the job. All are on disk volume D0O0410 with logical unit
number 50. Their names are ORGINAL, ALLLOD, ALLSRC, and MIXED with
logical file descriptors RG, LD, SC, and MX, respectively.

7. Initiates execution of the librarian.
8. Indicates the start of librarian control statements.
9. Assigns a type and logical file number to each of the files used in the job.

Thus, in the control statements that follow, D1 refers to file ORIGINAL, D2 to
ALLLOD, D3 to ALLSRC, and D4 to MIXED.



UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-98

SYSTEM SERVICE PROGRAMS

10 through 14.

15.

16.

17.

18.

19.

20.

21.

22.

Build group GROUPMIX in file MIXED. The BOG statement writes the

" beginning-of-group record in file MIXED. Line 11 copies source module MODA1

from file ORIGINAL; line 14 copies source module MODC3 from file ALLSRC;
and line 15 copies object module MODA7 from file ORIGINAL. The EOG
statement writes the end-of-group record in file MIXED.

Prints a table of contents for file GROUPMIX.

Writes the beginning-of-group record for group LOADS in file ORIGINAL.

Sets the pointer in file ALLLOD to load module MODCS5.

Copies all modules from MODC5 to MODCS in file ALLLOD to group LOADS in
file ORIGINAL.

Writes an end-of-group record for group LOADS in file ORIGINAL.
Prints a table of contents for file original.
Indicates the end of the librarian control statements.

Indicates the end of job.




UNIVAC 0S/3 LIBRARIAN
DATE 82/07/08 TIME 1S.42

BLOCK REC NAME

oo COMMAND ceevecene FIL

oo
£ WN -

oo COMMAND osevsscsns BOG
0googor  00s
oo COMHUAND seersesse cop
000001 OusS
oo COMMAND caeecscce cop
000005 191
ee COMMAND cvesscnnn corp
000009 188
ee COMMAND coavecoee E£0G
000017 228

os COMMAND cscesceas cop

MODAL

M0DC3

MODAT

VSN
VSN
VSN
VSN

GROUPMIX

GROUPMIX

TYPE DATE

TIME

D1=RG,D2=LD,D3=SC,D4=MX

IS DOOu10, LFD IS
IS D3J410, LFOD IS
Is 000410, LFD IS
IS DOJ410, LFD IS
GROUPMIX, 04
BOG
01,5,M00A1,04
SOR 81/04/27
03,5,M00C3, 04
SOR 81708724

01,0,M0DA7,04

0BY 81705712
SROUPMIX,D4
EQG

04

09.14

10.43

13.48

- e e .

COMMENTS

FILE
FILE
FILE
FILE

LABEL
LABEL
LABEL
LABEL

Is
Is
IS
Is

ORIGINAL
ALLLOD
ALLSRC
MIXED

PAGE # 0001
VERS20401

Figure 2-15. Librarian Map for Building Module Groups (Part 1 of 3)

8 'A3Y Z908-dN

SIWVHOOHd IDIAHIAS WILSAS
€/S0 IVAINN AHH3dS

66-C



c
PASE # 0002 -
BLOCK  REC NAME TYPE DATE TIME COMMENTS S
N
n
TABLE OF CONTENTS z
o4}
BOG GROUPMIX
SOURCE MODA1 81704727  09.18
SOURCE MODC 3 81,/08/24 10443
- 0BJECT MODAT 81/05/12  13.48
£06G GROUPMIX .
BLOCKS REMAINING DIRECTORY 000000 PRIME 000001 THIRD 000G0N UNUSED 000000
ve COMMAND eeveseees BOG LOADS,D1
000187 ass LOADS 8OG
ve COMMAND eouwseess RES D2,L,M00C5 .
-<
wU)
ee COMMAND eeeeeence  COPWU 02,L,M0DC8,D1 ! 3
=3
006187 098 »00CS000  LOD 41/08/24  10.54 03
000191 005 ¥00C7A00  LOD 81709711  08.30 m
00U198 164 MODC80OO0  LOD 00/00/00  00.08 s
=2
<
ve COMHAND eeesveews EOG LOADS,D1 My
g(’)
000204 357 L0ADS £0G Do
: O &
I ~
ee COMHAND ssvescsee cop D1 > w
<
»

Figure 2—15. Librarian Map for Building Module Groups (Pa