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SYSTEM SERVICE PROGRAMS

Preface

This manual is one in a series designed to instruct and guide you in the use of the
SPERRY UNIVAC Operating System/3 (0S/3). Specifically described are the 0S/3
system service programs and their effective use. The system service programs include
the system librarian, the linkage editor, and the standard system utilities.

This manual is intended for the novice programmer with a basic knowledge of data
processing, but with limited programming experience, and for the more sophisticated
programmer whose experience is limited to systems other than SPERRY UNIVAC
systems. Two other manuals are available that cover the system service programs; one
is an introductory manual and the other is a programmer reference manual (PRM). The
introductory manual briefly describes the system service programs and their facilities.
The PRM describes, in skeletal form, the characteristics of the system service programs
and is intended as a quick-reference document for the programmer experienced in the
use of the system service programs.

This user guide is divided into the following parts:
B PART 1. 0OS/3 SYSTEM SERVICE PROGRAM REPERTOIRE

Introduces you to the various system service programs through descriptions of their
intended purposes within the OS/3 operating system, their capabilities, and the
terms peculiar to their functional operation.

B PART 2. THE LIBRARIANS

Describes the functional characteristics of the system librarians relevant to you, the
control statements you may use to direct their operation, and the various library
mapping elements they are capable of producing.

W PART 3. THE LINKAGE EDITOR

Describes the functional characteristics, programming considerations, and control
statements required to allow you to effectively use the linkage editor as it is
intended to be used. Also describes the link-edit mapping data produced by the
linkage editor for every load module it produces.
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B PART 4. SYSTEM UTILITIES

Describes the utility programs provided by OS/3 to initialize disk, diskette, and tape
volumes; copy disk, diskette, and tape volumes; and list software maintenance
corrections.

M PART 5. APPENDIXES

Appendix A presents the canned job control streams and the document numbers
where they are described. Appendix B describes the code set components that,
when combined in a particular sequence, make up a program source module, a
macro/jproc source module, an object module, a load module, or a group code set
module.

Each of these parts consists of one or more sections, which cover the different aspects
of the subject matter contained in each part.

To fully understand and appreciate the functions performed by the system service
program, you should be familiar with the information contained in the current version of
the following SPERRY UNIVAC publications:

B 1974 ANS COBOL programmer reference, UP-8613

B Assembler user guide, UP-8061

B Basic COBOL supplementary reference manual, UP-8057

B Consolidated data management macro lanquage user guide/programmer reference,
UP-8826

B Data management user guide, UP-8068

B Dump analysis user guide/programmer reference, UP-8837

B Extended COBOL supplementary reference manual, UP-8059

B File cataloging concepts and facilities, UP-8860

B Interactive services commands and facilities, UP-8845

B Job control user guide, UP-8065

B Operations handbook for operators, UP-8072 (for 90/30 and 90/40 systems) and
UP-8511 (for 90/25 and 90/30B systems)

B Spooling and job accounting concepts and facilities, UP-8869

B Supervisor user guide, UP-8075
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B System installation user guide/programmer reference, UP-8074
B System messages programmer/operator reference, UP-8076

The degree of familiarity required varies with the product in question. For example, the
linkage editor user has to be familiar with almost all of the documents. On the other
hand, those using the librarian and the system utilities require only a few of the
documents. And, those interested only in the dump routines can find nearly all of the
information they need in this document alone.
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1. Introduction

1.1. GENERAL

The system service programs are those programs required to support the operation and
organization of the operating system in which your problem programs are to be
executed. These programs allow you to construct and reorganize the program libraries
in your system, create program modules for execution in your system, initialize tape and
disk volumes for the storage of your program and data files, and obtain printouts of
main storage.

The system service programs are introduced and outlined briefly in this section and
discussed in full detail in the subsequent parts of this document. The common and
program names of the system service programs are:

Common Name Program Name
System librarian for SAT files LIBS
System librarian for MIRAM files MLIB
Linkage editor LNKEDT
Initializing disk volumes DSKPRP
Assign alternate track DSKPRP
(nonsectored disk)
Disk dump/restore DMPRST
Tape prep TPREP
System utility copy (sectored) SU$C16
System utility copy (nonsectored) SUS$CSL
Hardware utilities HU

(interactive DMPRST, SU$C16,
and SU$CSL)
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Common Name Program Name
Stand-alone disk copy (IDA) SUSIDA
Stand-alone disk copy (SEL) SUSSEL
System log accumulation utility SY$LOG
JOBLOG report program JBLOG
Catalog manipulation utility routine JCSCAT
Diskette utility CREATE

in addition, a system service program symbiont, SL$$SU, is initiated from the system
console by the SU (system utility) or the TU (tape utility) command.

1.2. THE SYSTEM LIBRARIANS

There are two system librarians that can maintain and manipulate both your system and
user libraries. For all non-MIRAM library files, you use the SAT librarian (LIBS). For
MIRAM libraries, you use the MIRAM librarian (MLIB).

The librarians are also used during OS/3 system generation to tailor the SYSRES
program libraries. The librarians are capable of manipulating the library files at your
request and in the specific manner directed. The functions performed by the librarians
are controlled by a set of integrated subroutines, file tables, and overlay segments
associated with the supported indivdual functions.

Your OS/3 system can support several independent system and user program libraries,
and the librarians can be used to maintain each one. A program library consists of one
or more library files. A single library may contain both user and system files, or it may
be used exclusively for one or the other. Each file within the program library contains a
directory partition, the library file directory, and two data partitions.

The program library files can be composed of any combination of the following:

B Program source modules (language processor code)

Macro/jproc source modules (language processor code/job control)

Object modules (language processor output/linkage editor input)

Load modules (linkage editor output)

Module groups




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 1-3

SYSTEM SERVICE PROGRAMS

B Screen format modules

B Saved run library modules

The library files may be composed of system or user code used for either program
generation or execution. The code may be in any of the listed formats and may, from
time to time, change in form, content, or relative position within a given file. The mixing
and grouping of module types is a user option, and module groups can contain modules
of the same or different types. Figure 1-1 depicts the structure of a SAT program

library, showing various component configurations.

PROGRAM
DISK | ] LIBRARY
vTOC (SYSTEM OR USER)
]
|
| A
[ r
Y
LIBRARY LIBRARY LIBRARY
F&F;'z'g - — — ] FILE1 - — ~ 3 FILE2 — — — FILEn
(SYSTEM OR USER} (SYSTEM OR USER) (SYSTEM OR USER}
4
PROGRAM MACRO/JPROC MODULE
SOURCE (S) SOURCE OBJECT (0} LOAD (L) GROUP
MODULES MODULES (M) MODULES MODULES
3 \ Y SOURCE
MODULES
SOURCE SOURCE OBJECT LOAD
STATEMENTS STATEMENTS RECORDS RECORDS MACRG/JPROC
SOURCE MODULES
ASSEMBLER l: ASSEMBLER L csecT HEADER
COoBOL JOB CONTROL . com TEXT
RPG I — ENTRY TRANSFER
FORTRAN L EXTRN
CONTROL L 1SD OBJECT
STATEMENTS — V-CON MODULES
SOURCE — TEXT
DATA — TRANSFER
LOAD
MODULES
Figure 1-1. Program Library Structure
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The librarians can perform, on all or specific portions of library files, such tasks as
copying, merging, listing, or punching on cards the contents of specified files. The
librarian can also add to or delete from a file or files. In fact, the OS/3 librarians can
perform all the tasks you may be expected to require for program file management. The
librarians, however, cannot perform these tasks on multivolume tape files. The tasks are
initialized and directed through a set of control statements introduced to the librarian
through the control stream. The librarians and the function associated with each task
are fully explained in Part 2 of this document.

1.3. THE LINKAGE EDITOR

The OS/3 linkage editor converts and combines object modules and object module
elements (control sections and common sections), produced by the OS/3 language
processors, into modules that can be loaded into a system by the supervisor for
execution. The modules produced by the linkage editor are called load modules. Only
programs in load module form can be executed in an OS/3 environment, and the only
way to convert object modules into a load module is by using the linkage editor.

The linkage editor produces three types of load modules:
B Single-phase (reentrant or nonreentrant)

B Multiphase (nonreentrant)

B Muiltiregion (nonreentrant)

A single-phase load module consists of a single program segment loaded into main
storage each time the program is to be executed. Unless otherwise directed, the linkage
editor will always produce a single-phase load module. Multiphase and multiregion load
modules are composed of more than one program segment, each segment being a
program phase loaded into main storage and executed individually, as required by the
logic of the program. The linkage editor will create a multiphase or multiregion load
module from one or more object modules only if directed to do so by the user through
the linkage editor control statements. Savings in main storage space and increased

system performance can be realized through proper application of multiphasing and
multiregioning.

The capabilities of the linkage editor provide the system user with the following
advantages:

M If a program logic error is discovered in a particular object module or control
section of a program, only the incorrect element need be recompiled or
reassembled. Afterward, the entire program can be relinked without extensive
reassembling or recompiling.

B Subroutines or elements required in more than one program phase need be
preserved only once as relocatable object code because a single module can be
individually included in any number of load modules by the linkage editor.
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B A single load module may actually consist of object elements produced by several
different language processors because all processors generate compatible output
object code acceptable to the linkage editor.

B Reentrant modules can be shared by other load modules, resulting in the overall
reduction of main storage requirements.

Part 3 details the capabilities of the linkage editor.

1.4. THE SYSTEM UTILITIES

The system utilities are available to do the following:

B Test and prepare all tape, diskette, and disk volumes for use by OS/3.
B Manipulate the system catalog file, $YSCAT.

B Create and maintain diskette files.

1.4.1. Disk Utilities

The disk utilities perform the following functions:

B Initialize sectored (SPERRY UNIVAC 8415, 8416, and 8418 Disk Subsystems) and
nonsectored (SPERRY UNIVAC 8411, 8414, 8424, 8425, 8430, and 8433 Disk
Subsystems) disk volumes; also 8413 diskettes

Perform surface analysis for sectored and nonsectored disk volumes

Assign alternate tracks on nonsectored disk volumes

Dump, restore, or copy disk or tape volumes or files

Place initial load control storage (ILCS) modules on disk

Assign new volume serial numbers to active disks

1.4.2. Tape Utilities

The tape utilities initialize tape volumes for use in the system. Up to 36 tapes can be
initialized at one time.

1.4.3. Hardware Utilities

The hardware utilities consist of the dump/restore and disk copy routines performed

interactively. There are two types of disk copy routines: SU$C16 (used when copying
sectored disks) and SUSCSL (used when copying nonsectored disks).
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1.4.4. System Utility Symbiont

The system utility symbiont is a multipurpose utility enabling the operator to perform
different utility operations from the system console, for example, reproducing cards and
printing a tape.

1.4.5. Diskette Utility

The diskette utility is available to create files on the 8413 diskette and to write job
control streams to the created diskette files. The diskette utility is executed by running
a canned job control stream (RV WRT) and then directed through a series of queries
appearing on the system console to which the user must respond.

1.4.6. List Software Maintenance Corrections (SMCLIST)

The SMCLIST canned job control stream produces a listing of all software maintenance
corrections (SMCs) contained in the SMCLOG file.

1.56. LOGGING AND CATALOGING FACILITIES

The logging and cataloging facilities include the system log accumulation utility, the job
log report program, and the catalog manipulation utility.

The system log accumulation utility is used to transfer job log and console log records
from the system spool file to a user disk or tape file. Once in the user file, they are
available for further processing by a job accounting and bookkeeping programs. The job
log report program is used to produce a job accounting report from the SYSLOG file
created by the system log accumulation utility. For a detailed description of the use and
function of the system log accumulation utility and the job log report program, see the
spooling and job accounting concepts and facilities manual, UP-8869 (current version).

The catalog manipulation utility (JC$CAT) is used to access the system catalog file
$YSCAT. Using JCSCAT, you can obtain a printout of the contents of $Y$CAT; assign,
delete, or change a catalog password; and copy $Y$CAT to another disk or tape
volume. For a detailed description of the use and function of the catalog manipulation
routine, see the file cataloging concepts and facilities manual, UP-8860 (current version).

1.6. DUMP ROUTINES

Several dump routines are available to you as an aid in debugging the system or a
single program if error conditions occur. The available dump routines are the SYSDUMP
routine, JOBDUMP routine, and USE EOJ DUMP routine.
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The system dump routine (SYSDUMP) is provided to you as a system debugging aid. Its
primary function is to translate and print out the state of the operating system in the
event the system terminates abnormally or is terminated by the operator because of
abnormal operation. The abnormal termination of the system is commonly referred to as
a system crash. The SYSDUMP routine translates the bits and bytes of information
present in the system at the time it crashes into text and charts that can be recognized
and analyzed by one familiar with the structure of OS/3.

SYSDUMP is a feature of the supervisor and is automatically included in the supervisor
at system generation time unless specifically not included. Once included, it can be
called upon by the system operator to translate the state of the operating system at
any time. The execution of the SYSDUMP routine is always under the control of the
supervisor (it is not a stand-alone routine) and is designed to run in a multiprogram
environment.

JOBDUMP is a scaled down version of SYSDUMP designed to interpret the state of a
single user job if the job terminates abnormally. JOBDUMP, just as with SYSDUMP,
translates the state of the user job region into text and charts useful in interpreting and
debugging the program. The output format is the same as that of SYSDUMP for job
prologues and main storage hexadecimal/character dumps.

The user EOJ dump is a hexadecimal printout of the user job region initiated by either
the DUMP macro or an abnormal termination of the job. The user EOJ dump can be
used to determine the nature of an abnormal termination or as a diagnostic tool for
program debugging.

For a detailed description of the use and function of the dump routines, see the dump
analysis user guide/programmer reference, UP-8837 (current version).

1.7. PROGRAM ERROR CHECKING (UPSI BYTE)

The 0S/3 system provides every job with a 12-byte communications region residing in
the job preamble. The last byte of this region is the user program switch indicator
(UPSI). The UPSI byte is used to pass information from one job step to the next job
step and to indicate the presence of program errors. The librarian, the linkage editor,
the utilities and dump routines, and other executable system components set the UPSI
byte if errors are detected. You can test the UPSI byte during program execution to
determine the nature and severity of any errors. The basic bit usage of the UPSI byte is:

B BitO

A 1 in the first bit (X'80°) indicates a catastrophic error. Subsequent job steps
probably will not function and the job will terminate.
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Bit 1

A 1 in this bit (X'40’) indicates a serious error. A serious error could affect
subsequent job steps or result in incomplete or erroneous processing results.

Bit 2
A 1 in this bit (X'20’) indicates a statement format or syntax error. The affected

statement will not function, and this may or may not have an effect on subsequent
job steps.

The UPSI byte can be useful in contingency error processing. For example, the byte can
be examined and, if certain conditions prevail, can cause a branch to error handling
routines. The SKIP job control statement is used to perform the test. The following
examples show how you can use the SKIP job control statement.

Example 1:

O NNV S WN -

1 10 16 72

// JOB DSKPRP
/7 DVC 20 // LFD PRNTR
// DVC 51 // VOL DSP@28 // LFD DISKIN
// EXEC DSKPRP
/$
SERNR=DSP®28,PARTL=V
/*
// SKIP ENDS,1
other
job
. steps go here

.| //ENDS NOP
.| 7&
{7/ FIN

In example 1, you check the UPSI byte to see whether a fatal error (X'80°) has
occurred. If the leftmost bit (bit O) of the UPSI byte contains a binary 1 (line 8),
then all the other job steps are bypassed and control is transferred to the NOP job
control statement with the label ENDS (line 12). The NOP job control statement
provides you with an address for the SKIP with no function being performed. The

/& job control statement terminates your job while the // FIN terminates the card
reader operation.




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 1-9
SYSTEM SERVICE PROGRAMS

Example 2:
1 10 16 72
1. | // JOB DSKPRP
2. [ /7 DVC 20 // LFD PRNTR
3. |// DVC 51 // VOL DSP®28 // LFD DISKIN
4. | // EXEC DSKPRP
5. | /%
6. SERNR=DSP®28,PARTL=V
7. | /*
8. | // SKIP WARN,®1

0

// SKIP FATAL,1

10.| /7 SKIP EXIT

11.| //WARN OPR 'WARNING-A NON-FATAL ERROR HAS OCCURRED'

12.| 7/ SKIP EXIT

13.| //FATAL OPR 'FATAL ERROR-JOB TERMINATED-CORRECT AND RERUN'
14.| // SKIP ENDOFJOB

15.| //EXIT NOP

16. . other job steps
17. . go here

18. .

19.{ //ENDOFJOB NOP

20.| /&

21.1// FIN

In example 2, you check for both the fatal (X'80°’) and warning errors (X'40°) and
the display of appropriate messages on the system console. If a warning error has
occurred - bit 1 of the UPSI byte is a binary 1 (line 8) - then you skip to the label
WARN on the OPR job control statement and print the warning message (line 11).
After processing the OPR statement, the SKIP job control statement (line 12) is the
next job control statement processed. Here, you skip down to the label EXIT on
the NOP job control statement (line 15). As mentioned earlier, the NOP acts as an
ending point for the SKIP control statement. The remaining job steps follow the
NOP statement and are processed accordingly. Following the last job step, the NOP
statement on line 19 is processed with no action being performed. Your job then

terminates normally through the /& and // FIN job control statements.

If a fatal error occurs, bit O of the UPSI byte is a binary 1 (line 9) and you skip
down to the label FATAL on the OPR statement (line 13) and print the specified
message. The SKIP job control statement (line 14) skips down to the label
ENDOFJOB on the NOP statement, thus bypassing your remaining job steps and

terminates your job.

If no errors occurred, neither SKIP (lines 8 and 9) will be taken, and the SKIP job
control statement (line 10) skips over the OPR statements to the remaining job

steps.
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The UPSI byte setting and the error count appear on the printout or map listing for the
particular job. The UPSI byte value can also be retrieved by issuing the GETCOM
supervisor macroinstruction in your BAL program. For more information on the GETCOM
macro, refer to the current version of the supervisor user guide, UP-8075. For more
information on the SKIP job control statement, refer to the current version of the job
control user guide, UP-8065.

1.8. STATEMENT CONVENTIONS

The conventions used to illustrate the control statements and system console message
displays presented in this manual are:

Positional parameters must be written in the order specified in the operand field
and must be separated by commas. When a positional parameter is omitted, the
comma must be retained to indicate the omission, except for the case of omitted
trailing parameters.

Examples:

Assume that LOADM is a linkage editor control statement with three optional
positional parameters: A, B, and C.

INCLUDE A
INCLUDE A,B
INCLUDE A,B,C
INCLUDE A,C

A keyword parameter consists of a word or a code immediately followed by an
equal sign, which is, in turn, followed by a specification. Keyword parameters can
be written in any order in the operand field. Commas are required only to separate
parameters.

Examples:

Assume that LINKOP is a linkage editor control statement with three optional
keyword parameters: ALIB, RLIB, and OUT.

LINKOP ALIB=0BJFIL,RLIB=$Y$OBJ,0UT=$YSLOD
LINKOP ALIB=OBJFIL,RLIB=3Y$OBJ

LINKOP RLIB=$Y$0BJ,ALIB=0BJFIL

LINKOP OUT=8$YS$LOD

A positional or keyword parameter may contain a sublist of parameters, called
subparameters, separated by commas and enclosed in parentheses. The
parentheses must be coded as part of the list. The subparameters within the
parentheses may be positional, in which case the comma must be retained if a
parameter is omitted, except for the case of trailing parameters, or they may be
nonpositional. The description of the subparameters indicates whether they are
positional or nonpositional.
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Examples:

FIELDS=( [ ADDR] [ ,A2TD] [ ,FREQ])
REDO=(MERGE, Label ,reel,to)

B Capital letters, commas, equal signs, apostrophes, and parentheses must be coded
and displayed exactly as shown. The exceptions are acronyms, which are part of
generic terms representing information to be supplied by the programmer.

Examples:

CMcc NUMBCHAR=n
X'aa' (NOV)
ALIB=

B Lowercase letters and words are generic terms representing information that must
be supplied by the user. Such lowercase terms may contain hyphens and acronyms
(for readability).

Examples:
Lfn
name
group-name

comments
s1, sn

M Information contained within braces represents mandatory entries of which one
must be chosen.

Examples:

filename

(N)

$YSRUN

B Information contained within brackets represents optional entries that (depending

upon program requirements) are included or omitted. Braces within brackets signify
that one of the specified entries must be chosen if that parameter is to be included.
Examples:

[ sequence-no}
[ALIB=filename]

[t
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B An optional parameter with a list of optional entries may have a default
specification that is supplied by the operating system when the parameter is not
specified by the user. Although the default may be specified by the user with no
adverse effect, it is considered inefficient to do so. For easy reference, when a
default specification occurs in the format delineation, it is printed on a shaded
background. If, by parameter omission, the operating system performs some
complex processing other than parameter insertion, it is explained under an “If
omitted’’ statement in the parameter description.

Examples:

[{ input- lfn}]

B An ellipsis (series of three periods) indicates the omission of a variable number of
entries.

Example:

param-1,...,param-n

B Commas are required when positional parameters are omitted, except after the last .
parameter specified.

Example:

positional -parameter-1,positional -parameter-2,,positional -parameter-4

NOTE:

There are three standard character sets used with SPERRY UNIVAC printers: two
are 48-character print sets, and the third is a 63-character print set. Thus, not all
characters are printable on all machines, and print code conversions are necessary
to represent nonprintable characters when a 48-character print set is being used.
The programming examples presented in this manual were produced by using the
standard 48-character business print set and, therefore, make use of some of these
conversion print characters. For example, an equals sign (=) is represented by a

percent symbol (%), a left parenthesis by a number symbol (#), and a right
parenthesis by an at symbol (@).




PART 2. THE LIBRARIANS
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2. SAT Librarian Functional
Characteristics

2.1. GENERAL

2.1.1. Capabilities

The SAT librarian of the SPERRY UNIVAC Operating System/3 (0OS/3) manages the
system and user libraries containing the modules making up the program environment
for a given system. Although the SAT librarian is primarily a disk utility, library files may
exist on magnetic tape, disk, diskette, or punched cards and may be converted from
one medium to another. The SAT librarian facilitates merging of all or parts of existing
library files, extending or adding to an existing library file, compressing fragmented files
and reclaiming unused file space, deleting unwanted or nullified modules within a given
library, and supplying appropriate printouts. (A map and associated listing can be
provided for each library function performed.) The output of a given SAT librarian job
can be an updated tape, disk library or diskette library, a new tape, disk library or
diskette library, punched cards, listings, or some combination of these. Figure 2-1
illustrates the environments under which the librarian can be expected to function. These
operational modes are normally selected at run time via parameter specifications. The
program name of the librarian is LIBS.

TAPE
FILES

SYSTEM
LIBRARIAN
tL18st

FcI”LsEKS ! CARD
FILES

Figure 2-1. Librarian Input/Output File Environment

MAPS &
LISTINGS
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2.1.2. Additional Main Storage Requirements

Librarian performance can be significantly improved by allocating additional main storage
space for the job in the // JOB control statement. This additional space is allocated in
track-sized buffers. To determine the amount of main storage to allocate, compute the
number of buffers needed using the following recommendations:

Specify at least two buffers for disk access (four or more is optimal). Add one
more buffer for each variable block tape used (one for each Tn file declared in the
FIL librarian control statement).

Buffer Requirements | Decimal Bytes | Hex Bytes
Librarian base 28,672 7000
1 40,992 A020
2 51,264 C840
3 61,5636 FO60
4 71,808 11880
5 82,080 140A0
6 92,352 168C0

The second parameter in the // JOB statement must specify the amount of additional
main storage in decimal or hex bytes. For example, each of the following // JOB
statements allocates enough main storage for the librarian base plus one buffer:

// JOB SAMPLE, ,A020

// JOB SAMPLE, ,X'A®20'
// JOB SAMPLE,,D'49992'

\
2.2. CONTROL FUNCTIONS ‘
|

The following control functions are provided by the SAT librarian for user management
of the program libraries in this system:

m BLK Convert standard load modules to block load modules
m BOG Write beginning-of-group record

m COM Compare elements

m COP Copy elements

m COR Correct elements

m DEL Delete elements
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ELE
EOD
EOG
ESC
FIL
LST
PAC
PAGE

// PARAM ERROR

// PARAM PRINT
// PARAM PRTOBJ

// PARAM TAPEFILES
// PARAM UPDATE

REC

REN
REPRO

RES
SEQ

SKI

Add card file element (module)

Declare end-of-data

Write end-of-group record

Read control statements from user-created file
Declare file

Print a file in alphabetic sequence

Pack (compress) files

Cause the printing of a new page

Specify, in the event of an error, whether the librarian
job should be canceled or just the librarian job step

Suppress the printing of the librarian map
Print source module listings in hexadecimal format

Allow multiple files to be written to the same tape
volume

Specify the data and time to be in effect during librarian
execution

Recycle source module current position pointer

Rename elements, revise the comments field of header
records, or mark object as reentrant or nonreentrant

Produce or delete control statement records within
object modules

Reset file current position pointer
Sequence or check sequence of elements

Skip source module records

See 2.8 for a detailed description of these statements.

2.3. MODES OF OPERATION

The SAT librarian operates in two modes. Functionally, these are:

1.

2.

an input file update and list/punch mode; and

an output file creation mode.



UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-4
SYSTEM SERVICE PROGRAMS

If no output file declarations are made, only input files may be updated and extended.
The following functions initiate different operations, depending on the selected mode:

ELE
DEL
cop

The librarian maintains a set of file information tables (DTFs) for up to six logical files at
one time. If a seventh file is accessed, the file information for the first is overlaid.
Included in this information is the name, type, and address of the last module accessed

on the file. Thus, while more than six files may be accessed by the user, six is the limit
that may be accessed concurrently.

The librarian can, through options in the operation field, print or punch entire modules.
The following functions allow such printing and punching:

COR ELE SEQ
cop REN
DEL PAC

With the ELE function, cards can be added to a library and be listed or punched at the
same time.

Module headers are listed with each prime directive used unless the no-list header
option (N) is specified by the user, in which case no listing of headers is supplied.

2.4. PROGRAM LIBRARY MANAGEMENT

2.4.1. Naming Conventions

Modules within library files (regardless of type) contain an 8-character EBCDIC identifier
that is used as the name of the module. (Modules of the same name and type are not
allowed in one file.) If the name assigned is less than eight characters, it is left-justified
and space-filled. Naming of specific modules can be performed at:

B assemble or compile time for object modules;

B link-edit time for load modules;

B library services time for program source definition modules; and

B job run time for macro/jproc source modules.

The librarian also can be used to rename specific modules or module groups. It can:

B rename a program source or macro/jproc source definition module;

B rename an object module or a specific CSECT;
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M rename common sections and ESD records in object modules;
B rename all phases of a load module (retaining phase numbers); and

B rename the alias phase name of a load phase.

2.4.2. Group Management

The librarian can process the elements in a file individually or by groups. Any number of
modules, exclusive of type, can be grouped to form a single processing entity. Each
module group is given a name and is bracketed by group demarcator records. Any
number of module groups having the same name may reside in a single file. After a
group is created, the librarian can process all modules in the group at one time. Gang
operations also allow processing of all groups with a certain name or name prefix. If a
gang operation is not specified, only the first group with the specified name is
processed.

2.4.3. Gang Operations

Certain functions of the librarian are operable in gang mode in which several modules
may be copied, deleted, punched, compared, or displayed at one time. These options
are initiated via the appropriate command statements and the omission of the name
parameter (or name and type parameters), in the operand field.

There are three types of gang operations available to the librarian user. The first
depends on module type, the second on module name, and the third on the current
position pointer of the file.

2.4.3.1. Module Type Gang Mode
Library files may contain mixed module types; that is, object code, load code, program
source code, and macro/jproc source code can be intermingled within a given library

file. When gang operations are to be processed on modules of a specified type, the
module name is omitted and the type positional parameter is set as follows:

For program source modules

For macro/proc/jproc source modules

o 2 o

For object modules
L. For load module
By setting the type as shown and omitting the name, the user instructs the librarian to

perform the designated operation on all modules of the type specified from the current
position of the library file up through end-of-file.
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The following functions permit specification of a module type gang operation:

COP CcomM
DEL

When the gang mode is initialized in one of the foregoing operations, the referenced file
is scanned from its current position for the code set designated. When a module of the
type indicated is detected, the requested operation commences.

2.4.3.2. Module Name Gang Mode

When gang operations are to be performed on modules with a specified name, the
module type is omitted in the librarian control statement. These statements process all
modules from the current position to the end of the file whose names match the module
name field in the librarian control statement.

If gang operations are to be processed on modules with like name prefixes, the C
option designator is appended to the librarian function code. This option instructs the
librarian to compare the characters in the module name field of the control statement
with the names of the modules in the designated file from its current position to the
end of the file. Whenever a module is found whose name begins with the name prefix
contained in the control statement and is of the type specified in the control statement,
the requested operation is performed on the module. A module type need not be
specified when operating in the module name gang mode, in which case all modules
having the name prefix specified are operated on by the librarian.

Module name gang operations may be specified only for the COP and DEL functions.

2.4.3.3. Total Gang Mode

If the function to be performed does not concern itself with a specific module or code
set, the type and name positional parameters can be omitted from the librarian function
code. This instructs the librarian to perform the specific function on all the modules
contained in the designated file, from its current position to the end of the file. In this
manner, an entire library (or remainder of one pre-positional) may be manipulated via the
facility desired.

Total gang mode operations may be specified only for the COP and DEL functions.
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2.4.3.4. Current File Position

All gang operations process the library file from its current position as defined by the
respective file table (DTF) contained within the program. The current position of a file
can be affected:

B by the reset (RES) function; and

B by any librarian function except the EOD function.

The RES function can aim the current position pointer to the first logical record on the
file specified, or the first record in a named module in the specified file.

All librarian functions except EOD affect the current position. When the function is
completed, the current position pointer for the processed file is the address of the
record immediately following the last record processed unless the pointer was at the
end of the file. In this case, the pointer is positioned at the beginning of the file.

A COP function may be initiated with no output file specified. This effectively aims the
current position pointer to the record after the last record of the module or module
group specified in the COP function without actually copying the module or group.

If the librarian needs to find a module in a library file, the search begins at the current
position of the directory and continues until the module is found, or the end of the file
is reached. If the end of the file is reached, the search begins anew at the beginning of
the file directory and continues until the module directory record is found or the original
current position of the file directory is reached again. The current position being arrived
at again signifies no find for that module on the file being searched.

2.4.4. Program Source Module Management

The librarian provides facilities for the maintenance of program source code modules.
Program source code modules can be listed, filed, punched, corrected, and renamed, as
well as manipulated, with the standard librarian-provided functions. Specific program
source records can be added and deleted from a program source element. Updated
program source modules may be mapped as corrections are applied. Program source
records are printed individually in EBCDIC format, exactly as they were coded. If the //
PARAM PRTOBJ statement is used, source modules are printed in hexadecimai format.

In addition to the librarian source module management, you can access assembler
source modules via the // USE LIB job control statement. Here, you can update or
create assembler source modules from another assembler program. For more
information, see the job control user guide, UP-8065 (current version).



UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-8
SYSTEM SERVICE PROGRAMS

2.4.5. Macro/Jproc Source Module Management

Macro and jproc source modules are handled in much the same manner as program
source modules by the librarian; that is, these modules can be copied, corrected,
compared, renamed, added, and deleted. Since these modules can have more than one
name associated with them, the librarian performs some additional processing. Thus,
when one of these modules is added to a library, a separate directory entry (type A2)
must be created for each name associated with the module. All directory entries
reference the module being added so that the module may be located by any of its
given names. Because macro and jproc source modules are functionally identical and
have the same type code (type A3), a macro and a jproc source module of the same
name may not coexist in the same library file. Macro and jproc source modules with the
same directory entry name (type A2) may coexist in the same library file. A macro/jproc
source module with a directory entry name (type A2) may also coexist with a
macro/jproc directory entry name (type A3) in the same library file.

2.4.6. Object Module Management

Language processor output modules can be maintained by the librarian, in that object
code can be patched, listed, punched, filed, and renamed. Specific CSECTs or ESDs
also may be renamed. Patch corrections are inserted at the end of the object module.
Listings of object modules are hexadecimal printouts of object records. All standard
librarian functions regarding module manipulation apply to object elements. Whenever
nonsource elements are serviced, they are checked for proper content and record
sequence. Discrepancies trigger diagnostic processing.

All object modules produced by the various language processors are assumed to be
nonreentrant modules. If in fact they are reentrant, they may be flagged as such by the
librarian to enable them to produce reentrant load modules when they are link-edited.

2.4.7. Load Module Management

Load modules generated by the linkage editor also can be managed by the librarian. The
facilities provided for load module management are much the same as those provided
for object module management, except that specific load module phases may be
patched. Applied patches are inserted at the end of the designated phase. Load
modules also may be listed, punched, filed, and renamed. Load module listings are
hexadecimal printouts of load module records. Load elements may be serviced via all
standard librarian functions. Phases within a load module also can have an alias phase

name given to it at link-edit time, in addition to the phase name assigned to the load
segment. This alias phase name also can be renamed by the librarian.

Most load modules produced by the linkage editor can be converted to blocked load
modules by the librarian. Blocked load modules can usually be loaded for execution
faster than their standard counterparts. The exceptions to this are discussed in the
description of the blocking load modules (BLK) control statement.
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2.4.8. File Merging

The librarian can function in a library file merge mode; that is, one or more library files,
module groups, or individual modules may be merged into a new output library (or
libraries). Multiple file merging is permitted and the number of files involved is a function
of the user requirements. The librarian can merge up to six files concurrently (including
output files).

Reference to a seventh file (or more) causes the first file (and any succeeding files) to
be reopened whenever a new, interspersed file reference is detected. Thus, merging of
multiple files beyond a sixth may be more easily accomplished by first merging five files
together to form a sixth file, and then merging the sixth file with the remaining files by
repeating the desired merge operation.

2.4.9. File Extension

A current library file often can be updated (or effectively extended) without creating a
new output file. This may involve replacement of a given element within the file with a
new copy of the same element. Replaced elements are flagged as nullified and may be
removed via a subsequent file compression operation. Directory entries for replaced
elements in extended files are altered accordingly.

2.4.10. File Compression

The librarian can compress fragmented files (interspersed voided elements) and reobtain
dormant file space. The compression is automatic if merging or copying involving the
file in question occurs. If not, an existing file may be compressed by using the PAC
librarian function. File compression can be specified anywhere within a given librarian
job stream. Any associated directories also are compressed in the update job.

2.4.11. File Deletion

Individual modules, or entire code sets, may be deleted from library files by using the
facilities of the librarian. Deletions can occur while updating existing files or while
creating new ones. Deletions applied to existing files can cause file fragmentation (as in
the case of module replacement), which can, in turn, be remedied by later file
compression.

2.5. RUN LIBRARY MANAGEMENT

The job run library is processed in the same way as all other libraries by the librarian.
The job run library can be specified by designating $Y$RUN as the file name on the
control statement FIL. ‘
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The job run library also is used as the default file if, on certain librarian commands, a file
is not specified. These commands are ELE, COP, REN, COR, SEQ, DEL, REPRO, and
PAC. If, for the DEL, ELE, PAC, REPRO, or REN functions, a logical file is not specified,
the job run library is used as the logical file to be processed. Because output files do
not need to be specified in the COP, COR, and SEQ functions, the default use of the job
run library applies only to the input file.

2.6. MAPPING FACILITIES

Each time the librarian is executed, a map of the functions it performs is output on the
system printer for the user. The map normally includes:

B a listing of all the librarian control statements processed;
B a printout of all the header records processed; and

B any appropriate diagnostic messages.

Additionally, the map can include:

B source module listings;

B object and load module listings; and

B module correction results {insertions versus deletions).

The map normally reflects the state or content of the output library files if one or more
were produced; otherwise, it reflects the state or content of the input file serviced by
the respective librarian function. In comparison functions, discrepancies are listed on a
record-by-record or block-by-block basis.

2.6.1. Standard Map Layout

The librarian map lists all the control statements input to the librarian in the order they
were processed, followed by any module data to be listed relative to each statement
(Figure 2-2). Diagnostic messages are listed as close as possible to the control
statements that initiated their generation, and are prefixed with a unique librarian
message number. These messages and their meanings are described in the system
messages manual, UP-8076 (current version). Unless suppressed by the user through a
control statement option, module and module group header records are listed in their
respective formats, as described in Appendix B. The location of each of these records
within its respective file also is printed on the map as a function of its block location
and record displacement within that block. (The OS/3 program library format also is
described in 2.7.)
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2.6.2. Source Module Listings

Whenever a source module is listed, each source record is listed in standard EBCDIC
format exactly as it appears within the source module. A one-to-one relationship exists
between the number of source statements in a source module and the number of lines
printed for the source module. When source modules are being updated, lines deleted,
lines preceding insertions, and insertions are listed in the same format. Figure 2-2
illustrates an example of a source module printout.

if the // PARAM PRTOBJ statement is used, source modules will be listed in
hexadecimal format.

2.6.3. Object and Load Module Listings

Object and load modules are listed in hexadecimal form. Each byte appears on the map
as two printed hexadecimal digits. Because object and load module records are not
fixed in length, the listing is on a record-by-record basis. If patch records exist within
the module, they are flagged appropriately. Figure 2-3 illustrates an example of an
object module listing.

2.6.4. Diagnostic Message Listings

Diagnostic messages are listed on the librarian map whenever a processing error is
detected by the librarian. The printed message identifies the type of error detected and
the message number identifier. All the messages capable of being produced by the
librarian are listed in the system messages manual, UP-8076 (current version), as well
as the meaning of each message and the corrective action required to remedy the cause
of the processing error. The librarian job is never aborted unless the processing error
detected is sufficiently critical to preclude continuing.

Figure 2-2 shows an example of a typical diagnostic message at the bottom of page
0003 of the librarian map. It reads BO60***** NOTHING FOUND.

o
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DATE 82/07/08 TIME 15.39

BLOCK . REC

oo COMUAND csvecceee

oo COMHMAND ecovecocesne

NAME

=R N=Re o]
Nt & -

copP

- VSN

VSN
VSN

- VSN

VSN

TYPE DATE

TINME

COMMENTS

D1=R6,02=5C,03=08B,04=LD,DS=MC

Is 000410,
IS DOJutQ,
IS 000410,
Is 000%10,
IS DDOO410,

L33

LFD
LFO
LFD
LFD
LFD

Is
Is
Is
Is
Is

RG
sC
08
Lo
MC

FILE
FILE
FILE
FILE
FILE

LABEL
LABEL
LABEL
LABEL
LABCL

IS
Is
IS
Is
Is

PAGE & 0001

VER820401

ORIGINAL
ALLSRC
ALLOBJ
ALLLOD
ALLMAC

Figure 2—2, Typical Librarian Map (Part 1 of 3)
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PAGE & 0002 c
BLOCK  REC NAME TYPE DATE TIME COMMENTS T
]
[2]
TABLE OF CONTENTS N
=]
2
SOURCE MODD1 80708708 15434 ;»
SOURCE M0DD2 80/03/03 15435
SOURCE MODD 3 R0/08/58 1537
SOURCE HODDY 20/08/78  15.39
SQURCE M0DD5 80/33/08 16,41
SOURCE MODD 5 80708708 16,43
SOURCE MODA1 81/04/27  09.1%
SOURCE MODA2 81/04/27  09.22
LOAD MODASDO0  81/05/06  11.10
LOAD M00A4000  81/05/98 10,44
SOURCE M0DAS 21/05/08  11.06
SOURCE M0DAG 81795712 13,45
OBJECT MoDAT B1/35/12  13.48
SOURCE MODC1 81708714  13.35
SOURCE MODC2 81/38/21  1%.51
S0URCE M0DC3 21738724  10.43
SOURCE M00CH 51708724 10,47
LOAD MODCSOAN  #1/08/24  13.54 o
SOURCE MODC6 31709701  17.23 <
LOAD M0DC7390  A1/09/11  03.30 )
LOAD MODCS0JN  07/703/G3  00.73 m 3
SOURCE %0071 £1735/12 13.59 ggg
SOURCE, MOD22 81/26/01 12,33 @z
LOAD MODR3CIS  81/96/P1 12.50 - i
SOURCE 40034 81736735 12445 =2 |
SOURCE M2D3 S 31736729 12433 Q<
LOAD 40056000  31/G7/96  14.52 -3 |
LOAD MODR7IOU  B1/07/10  1lu.ls ]
L0AD MOD530UI  B1/73/14  13.31 23 ‘
SQURCE MODE 1 SJ/GR/05  16.44 D5
SOURCE MODE 2 83/33/38  16.45 > ‘
SOURCE MODE 3 30/78/08  16.45 5,
SOURCE MODE 4 39/38/33 16447 ‘
3LOCKS REMAINING DIRECTORY 0NOQOC PRIME NUDAD THIRD 000000 UNUSER naaann
eo COMMAND ccceecass COP D1,59¢02
000001 00S M00D1 SOR 80/08/08 16,34
000004 052 ¥00D2 SOR 30/708/08 16,35
000005 067 M0D03 S0R 80/08/08 16,37
000007 00S “oDLY SOR 85/08/08 16439
000008 005 n000S SOR 33/08/08  16.41
000008 171 M0DD6 SOR 80/38/03 16,43
000009 118 MODA1 SOR 81/04/27 D09.14 N
000014 031 MODAZ SOR 81/04/27 09.22 L
w
Figure 2-2. Typcial Librarian Map (Part 2 of 3)




PAGE # 0003

8LOCK REC NAME TYPE DATE TIME COMMENTS
000015 179 MODAS SOR 81/05/08  11.06
000018 072 MODAG SOR 81/05/12 13.45
000019 071 MODC1 SOR 81/38/14  13.35
000021 080 M00C2 SOR 81/08/21  10.51
000022 074 “0DC3 SOR 81/08/24 10,43
000026 095 “oDCH SOR 81/08/24  10.47
000027 062 MODCo SOR 81/09/01 10.23
000029 00CS %3031 SOR 81/05/712  13.59
000031 135 0082 SOR 81/06/91 12.33
200045 005 MODBY SOR 81/06/N5  12.45%
000046 091 LLEN SOR 61706729 12.38
000048  0d5 MODEL SOR 86/08/08 1644
200049 135 MOnE2 SOR 80/33/03  16.45
000050 130 MODE3 SOR 40/08/08 16445
000052 00S MODEY SOR 80/08/08  16.47
es COMMAND coseeesss COP n1,0,,03
000001 005 MODAT oeJ 81/05/12  13.48
oo COMMAND sosscoses  COP D1,L,,04
000001 345 “90A3N0N  LOD 21/35/706  11.10
000004 u77 M05A4J00  LOD 21/05/08  10.44
300005 021 M01C523)  LOD 81/08/24  10.54
000008 17e M0DC700)  LOD 81709/11  28.30
000016 164 “Q2C81N07  LOD 00sa2/3Cc  3N.03
030022 0S7 0283073  LOD 81736701 12.50
000030 021 0336000  LOD 81/07/36 14452
000062 065 MCDITUGY  LOD 81/07/10  14.14
006118 (021 MJD38030  LOD 81708714 13,31
oo COMHAND ceesesess COP D1,M,,05

3060#+%#*NOTHING FOUND
LIBRARIAN FINISHED
DATE 82/07/08 TIME 15439
TOTAL NUMBER OF ERRORS 1301 UPSI SETTING X'40°

Figure 2-2. Typical Librarian Map (Part 3 of 3}
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2.7. PROGRAM LIBRARY DETAILS FOR SAT FILES

The system program library files, composed of program source, macro/jproc source,
object, and load modules, are created and used by the various components of the
SPERRY UNIVAC Operating System/3 (0S/3) during the normal course of system
operation. It is these library files that the librarian services and maintains based on
particular system needs and constraints determined by the user.

For you to realize the full extent of the capabilities of the librarian, you must be aware
of the organization and content of the program libraries in the system. You also may
elect to establish a program library of your own. If so, the librarian also can be used to
maintain the object, program source, macro/jproc source, and load code sets contained
in this library, under the same guidelines it uses when servicing the system program
library files.

2.7.1. Library File Layout

The system library is composed of five permanent disk files and one temporary disk file
for each job being processed in the system. All the files consist of at least a label, a
single element, and an end-of-file marker; they are structured to support fixed-length
block, variable-length record data and contain a directory partition. The directories are in
fixed-length block, fixed-length record format.

Each of the five permanent files are 3-partition SAT files. One partition is used to
maintain a directory for the file, and the other two are used to store the program
modules contained in the file. When these files are initialized by the librarian, the space
allocated for each file is distributed as follows:

B Two percent is allocated for the directory partition.

B Forty-eight percent is allocated for the prime data partition.

B No space is allocated for the second data partition.

B Fifty percent of the space allocated to each file is initially unassigned.

This initial allocation technique allows the librarian to assign file space to the various
partitions in a file on an as-needed basis, and thus prevents space from being allocated
for a partition that may never be used. (At present, only block load modules require the
use of a third partition.) Thereafter, when a partition becomes full and requires more
space, the librarian extends the partition by using some of the free space it has in
reserve. Only the partition that was full is extended, and the amount of the extension is
based on the file extension increment specified on the EXT job control statement used
to create the file. When all the free space is allocated, the dynamic file expansion
capability of the supervisor is called on to provide additional free space for the file in
the same increments previously used to effect the file extensions performed by the
librarian.
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The job temporary library files are special files established by job control at the time
jobs are input to the system for processing. These files are dynamic in nature, in that
their size and structure are variable and they exist only until the job is terminated. Any
programs or data that may be in these files are unrecoverable once their associated
jobs have been terminated.

A program should not be executed from a library that is being restored, updated, or
packed. In addition, it should be remembered that your files, excluding system files,
may be sharable (depending on the FILELOCK parameter you specified during supervisor
generation). See the system installation user guide/programmer reference, UP-8074
(current verison). Because OS/3 allows multiple writers to concurrently access ‘sharable
files, these files could be destroyed in a multiprogramming environment. It is
recommended, therefore, that critical user files be prefixed by $LOKnn to prevent them
from being accessed concurrently by multiple writer programs.

Providing information needed to create new files or extending existing files on disks is
the function of the EXT job control statement. See job control user guide, UP-8065
(current version) for details on this and other job control statements.

2.7.1.1. Library Blocks

Library blocks are fixed-length, 256-byte blocks (Figure 2-4). Each block is composed
of a 5-byte block prefix and up to 251 bytes of variable-record data. The block prefix
includes a 3-byte logical block number, a 1-byte value indicating a block length (not
including the block prefix), and a 1-byte check sum reflecting an exclusive OR for
relevant data. Records within the block are variable in length up to a maximum size of
251 bytes for any given record including the record prefix.

BYTE L .
NO. 0-2 | 3|45 = > 255
CONTENT bbb bl vr v ; ; r vr
N

BLOCK PREFIX

Figure 2-4. Library Block Format (Part 1 of 2)
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BLOCK FIELD DESCRIPTIONS

Byte Field Contents
Position

0—2 Block number (bbb} Starting with 1 for the initial block, this is the logical block
sequence number.

3 Block length {bl) This is a binary value less than or equal to 251, indicating the
number of bytes of relevant record data within the body of this
block, not including the block prefix.

4 Unused

5 — 5+bi-1 Variable records (vr) Variable-length records comprising the body of data contained
in this block

Figure 2-4. Library Block Format (Part 2 of 2)

2.7.1.2. Library Records

Library records are variable in length. Each record is composed of a 2-byte record prefix
and up to 249 bytes of record data (Figure 2-5). The record prefix includes a length
byte and a type byte. The type byte indicates the specific type of record that follows
the record prefix. The length byte indicates the size of the respective record (not
including the record prefix) up to a maximum of 249 bytes.

BYTE NO.
0 1| 2 <t 2+71— 1} O 1] 2 e 24r1—-1{ 0 {1 2 P 24r|—1
CONTENT 4] t vr rl t v) / r rl t vr
N N’ N —
RECORD RECORD RECORD
PREFIX PREFIX PREFIX
RECORD FIELD DESCRIPTIONS
Bytg Field Contents
Position
o] Record length (rl) This is a binary value, less than or equal to 249, indicating the
length of the respective record (not including the record prefix).
1 Type (1) This is a type byte indicating the specific type of record. (Refer to
Table 2—1.)
2 — 24111 Variable-length Body of the particular record (up to 249 bytes each)
record data (vr)

Figure 2-5. Library Record Format
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2.7.1.3. Record Type Byte

Associated with each record within a given library file is the type byte occurring in the
respective record prefix. This byte is used to identify the record as to its code set and
record particulars. Table 2-1 lists the record type byte values possible in an 0S/3
system library file and their meanings. Note that the type byte field also exists in disk

library directory items.

Table 2-1.

Record Type Byte Descriptions (Part 1 of 2)

Type Byte Value
{hexadecimal)

Description

00

02

03

04

06

07

08

09

0A

0B

oC

12

13

16

1c
24

25

32

40

80

90

A0

A1

Nullified item records

TEXT/RLD records in object modules
Transfer records in object modules
Standard ENTRY records

Standard EXTRN records

V-CON records

Named CSECT records

Unnamed CSECT records

Named common records

Unnamed common records

Object code ISD records
TEXT/RLD records in load modules
Transfer records in load modules
Load code ISD records

Load code ISD records

Program source or macro/jproc source module records
Compressed source code item

Blocked text or RLD records

Control statement records

Object module header records

Load module header/phase header records

Beginning of group demarcator records

EOF sentinel records
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Table 2-1. Record Type Byte Descriptions (Part 2 of 2)

Type Byte Value Description
(hexadecimal)

A2 Marco/jproc name header records (in directory only)
A3 Marco/jproc module header records
A4 Program source module header records
A8 End of group demarcator records
BO Blocked load module header/phase header records
ca Shared code ENTRY (SENTRY) records
cé Shared code EXTRN (SEXTRN) records
c8 Resource records

2.7.2. Disk Library Directories

Library files existing on disk are supplemented with a disk file directory composed of
13-byte records, each of which points to a specific demarcation record in the file. The
directory precludes the need for scanning the library file to obtain a needed record.
Instead, directory scanning suffices until the program is located. The pointers existing
within the directory explicitly designate the position of the required element within the
library file data partition. The format of the library file disk directories exists as a
function of the needs of the prime routines accessing the directories. The directory
format differs in record layout from the prime data partition of a library file, in that
directory records are fixed, 13-byte blocked items. The directory block prefixes are
identical to those of the file partition.

Disk directory records are composed of:

B a name field;

B a type indication; and

M a file pointer

Directory entries are made whenever the respective file record is:

B a module header for program source, macro/jproc, or object code;

a phase definition for each phase of a load module;

|
B an entry ESD record for object code;
[ ]

a beginning-of-group (BOG) or end-of-group (EOG) demarcator;
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B a named CSECT record for object code; or

B a procedure name for a macro module in proc format. (This is the directory entry
for which there is no unique corresponding record in the prime data partition. This
item points to the module header record.)

2.7.2.1. Directory Format

System libraries are built and managed by using the system access technique (SAT)
access method. Thus, the first partition of each standard library file in the system
consists of an index of pointers to the prime data area of the file described by the
second partition. This directory index consists of a series of 13-byte slots, each
pointing to the corresponding record in the prime data area. The directory blocks may
be 251 bytes in length; the last four bytes of each directory block are unused when the
block is full (contains 19 items). As many directory blocks as are needed to
accommodate the needed number of index entries for a given library are available. The
last index entry for each library directory is the index to the EOF record in the prime
data partition. Figure 2-6 illustrates the disk library file structure and the format of each
directory record.

PRIME DATA
INDEX PARTITION DIRECTORY RECORD PARTITION
8-BYTE 1-8YTE $-BYTE 1BYTE
»| svymsoLic TYPE BLOCK RECORD
> e e RELATIVE RELATIVE
POINTER POINTER
N —— N ———
DIRECTORY > DATA
BLOCK BLOCK
DIRECTORY DATA
BLOCK BLOCK
DIRECTORY DATA
BLOCK BLOCK

Figure 2-6. Disk Library File Structure
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The symbolic name field (bytes 1 through 8) of a directory record is used as the
identifier of the module or demarcator existing in the prime data partition. The type field
specifies the demarcation flag for the respective record. The values of the type flag field
correspond to the record type field in the prime data area. Table 2-2 lists the type flags
possible in an index item.

The block relative pointer to the prime data area is a relative block number within the
second file partition indicating the block containing the respective record. The record
relative pointer is the number of bytes from the beginning of the block to the beginning
of the record. The record relative pointer and block relative number are computed when
the prime data area is constructed. The pointers for macro name header index items (in
the proc format) always point to the beginning of the proc module regardless of where
the name directive is contained within the body of the module.

Table 2-2. Disk Directory Index Type Flags

Hexadecimal Value Demarcation
00 Nullified item
04 ENTRY name {(object module)*
08 CSECT name {object module)*
80 Object module header
90 Phase header {load module)
A0 Beginning of group demarcator
A1l EOF sentinel
A2 Macro/jproc name header
A3 Macro/jproc module header
Al Program source module header
A8 End of group demarcator
BO Block module header record

*Multiple duplicate names can appear in a library file directory.

2.7.3. Card Libraries

The librarian can punch libraries into cards and, in turn, can access card files as input.
Source module items, element headers, phase definitions, CSECT, ESD, ISD, PHASE,
and TRANSFER records are punched directly. Text/RLD records in object and load
elements are treated specially since the record size is variable. Thus, punched card
formats for text/RLD records may require multiple punched card records.

Whenever object or load modules are punched into cards, a 5-digit sequence number is
punched in columns 1 through 5, providing a card deck sequence check facility. When
punching source modules, the librarian creates 80-byte source records (the source
module header is eliminated) directly from the library.
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When librarian functions require punched card output, the name PUNCH must be
specified on the // LFD job control statement. With the punched card output, the
librarian creates an ELE card to precede the module and an EOD card to end the
module. The ELE card will be in the format:

LABEL | noPERATIONA | OPERAND
| ELE l D1, module-type,modul e-name

When filing object or load module card libraries, the librarian reconstructs the module
from the card decks, checking the sequence number of each card and the record types
within each module. When source modules are created from cards, the appropriate
headers are created, prefixes attached, etc.

2.7.4. Tape Libraries
The formats for tape libraries are the same as those for disk libraries except that:
B tape libraries have only a data partition, no directory partition; and

B modules having the same name and type may exist in the same tape library.
However, the first module encountered is the one processed.

Because of the structure of a tape library, once a module is written to a library, that
module cannot be deleted or altered in any way in that same library. Therefore, the
input library and a new output library must be specified when making changes to a tape
library. This new library can be another tape, disk pack, or punched cards. The
following control statements are not supported for a tape library because the operation
takes place in the input file or involves the directory: DEL, LST, PAC, REC, REN, REPRO,
and SEQ. If a load module on tape is blocked, the BLK control statement must specify
an output file that is different from the input file.

The librarian provides the option of specifying a physical tape block length other than
the standard length of 256 bytes. The variable block length is specified for each
nonstandard length type in the job control stream via a DD job control statement. The
format of this statement is:

// DD BKSZ=n

where:
Specifies the block length in bytes of the particular file. This block length can
be:
m  any multiple of 256,
®  not greater than 8192; and

m for an input file, at least as large as the value used when the file was
allocated.
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The // DD BKSZ=n statement informs the librarian to either produce a physical tape
output block or input a physical input tape block of the size specified. If the // DD
BKSZ=n is omitted, a standard block size of 256 bytes is assumed.

Additional main storage space must be allocated when processing variable-length block
tapes. The formula for computing the necessary main storage space is:

28,672 + 2048 + (19272 * number of tapes)

Whenever more than one variable-length block is specified in your job control stream,
the 1/0O buffer space must be allocated for the largest combination of block lengths used
in any single library function.

Your tape libraries must have the standard header and trailer label records and the
name specified in the // LBL job control statement must agree with the file header 2
label of your tape library. The data management user guide, UP-8068 (current version)
provides the information concerning the header and trailer label records associated with
tape libraries.

All tapes can be prepped by using either the prep option of the // VOL job control
statement or the tape prep routine (TPREP).

NOTE:

You should use extreme caution when specifying the PREP option of the // VOL job
control statement for a tape file to be processed by the librarian. With this option, the
tape is prepped every time it is opened as an output file. If a tape file is used as both
an input file and an output file during a single job, every time the file is reopened as an
output file, all data on the tape as a result of previous operations will be overwritten if
the PREP option has been specified. If the operation was intended as a continual
building of the tape file, the results would be disastrous.

When tape prep is specified in the same job step with a librarian file that contains more
than six input files that output to the same tape, the seventh input will cause the tape
to reset the output block to block number 1.

To avoid these problems, you should prep the tape in a separate job step.

2.7.5. Diskette Libraries

The librarian can be either input from a diskette or punched to a diskette. Diskette
library processing is the same as card library processing.
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2.8. CONTROL STATEMENTS AND PATCH CARDS

The system librarian of the SPERRY UNIVAC Operating System/3 (0S/3) is instructed in
its task requirements via control statements presented by the user through the control
stream. These statements designate information such as functions required, module or
group name of code to be serviced, logical files associated with the various tasks, and
options applying to the selected functions. The control statements and patch correction
cards that permit the librarian to perform these various library file servicing jobs are
described in this section. The control statements are presented in alphabetical
sequence.

2.8.1. Control Statement Conventions and Format
All of the librarian control statements adhere to the following statement conventions:
B Control statements may be written in free form.

B Each operation code is composed of an identifier that describes the function. The
operation code may be followed by a character string signifying options that alter
normal processing of the function. The character string is separated from the
operation identifier by a period.

M The operand field of each statement is composed of a variable set of positional
parameters. Some positional parameters are optional. Optional parameters are
indicated by brackets; choice alternatives are indicated by braces. Operands must
be separated from the operation field by at least one blank space. Consecutive
positional parameters must not contain embedded blanks.

B Prime librarian control statements may appear in any logical sequence within the
librarian update control stream. Subfunction control statements must follow their
associated prime control statements.

W File and module names may be composed of up to eight characters each. Inserted
comments used to describe specific modules may consist of up to 30 characters
including embedded blanks.

B Macro, proc, or jproc definition modules may be specified by using the letter M in
the positional parameter describing the type of module.

The coding format of all the librarian control statements is:

LABEL lAOPERATIONA ‘ OPERAND I 73 SEQUENCE
unused function p1,p2,p3,p4,p5 seqg-no
[-.options]
where:
function

Is the mnemonic of the librarian process to be performed.
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options

Is a string of one or more of the following letters, depending on the function
specified.

A

X

Specifies that all groups with a specified name are to be processed. {(Must
be used with a G option)

Specifies that the name parameter in the operand field is a module name
prefix or a group name prefix rather than a complete name.

Specifies that the entire module or module group being processed is to be
listed on the librarian map. (This may also be used to obtain a table of
contents for a specified library.)

Specifies that the card module is terminated when the librarian detects the
first EOD statement following the ELE statement in the control stream.

Specifies that the name parameter in the operand field is a group name
rather than a module name. This option will initiate processing of only one
group of the name specified, unless the C or A option also is specified.
Whenever this option is used, the module type parameter should be
omitted from the operand field.

Specifies that the module identified in the parameter field is to be
processed only if another module of the same name and type is in the
output file.

Specifies that the printing of header records on the librarian map is to be
suppressed.

Specifies that the entire module, or module group being processed, is to
be reproduced in punched cards.

Specifies that the module identified in the parameter field is to be
processed only if no other module of the same name and type is in the
output file.

Specifies that processing is to be performed on all modules from the
current position of the file up to and including the module identified in the
name parameter. Whenever this option is used, the type of the module
identified in the name parameter must also be specified in the operand
field, unless the G option is also being used.

Extend an unblocked, single-phase, load module.

NOTES:

1.

If contradictory options are specified for a single librarian function, a
diagnostic message is printed on the librarian map and the last option
specified is honored.
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2. Unless the RES control statement is specified, the file pointer is positioned
at the current position of the file rather than at the beginning of the file.
Therefore, when using options C, G, or U, specify the RES control
statement to access the entire file.

p1
Is a logical file name or a group name.
p2
Is a module type, a logical file name, a module name, or a sequence control
field.
p3
Is a module name or a sequence control field.
ph4
" Is a logical file name, a comment, or a sequence control field.
p5
Is a comment.
seq-no

Is a 1- to 8-character alphanumeric sequence control number of which at least
one character must be numeric.

2.8.2. Patch Card Formats

Because there is no standard format for a librarian patch card, but rather, several
standard formats, the patch (correction) card formats recognized by librarian functions
are described immediately after the librarian control statement that makes use of a
particular type of patch card.

2.8.3. Blocking Load Modules (BLK) Control Statement
Function:

You use the BLK control statement to convert a standard load module to a block
load module. Block load modules are intended to increase the efficiency of program
loading in that all or large parts of the overlay phases may be loaded by a single
I/O operation. When the load module is in block format, fewer disk accesses are
required because the loader can read the entire phase at once (if the phase is less
than or equal to one track in length), or one track at a time until the entire phase is
loaded (if the phase is more than one track in length). If the load module were in
standard format, then each phase would be loaded piece by piece, that is, 256
bytes at a time.
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All files containing block modules must have three partitions, thus differing from the
standard two-partition file. The block load module’s first and second partitions are
standard, but partition 3 is not. Partition 3 is not structured and is made up of
contiguous text data, free of any control information, and is allocated by SAT when
the file is first opened. The data in partition 2 describes the boundaries of each
phase in partition 3. The text data in partition 3 is in sequential load order and is
binary zero-filled when appropriate.

In standard load format, no text records can be overlaid; however, in block load
format, they can. An example of this overlaying would be when the load module
detects the following coding:

Loc Operation Operand
2000 CLI R6,X'01!
0004 BC 8,STOR1
0004 ORG LA

0004 BC 15,STORZ2

The BC 15 overlays the BC 8. In standard load module format, the bytes of text for
the BC 8, R1 continue to exist in the module although they are overlaid at load
time.

Since the objective of converting to a blocked format is to increase the efficiency
of program loading, the following considerations should be kept in mind when
making a decision on load module format:

® Modules less than 4K bytes in length take longer to load if in blocked format,
unless the resident loader (RESMOD.SMS$LOD) is configured in your supervisor.
In this case, block loading is as fast or faster than for standard load format.

® Do not block modules having information passed from one phase to the next in
a DS area. All DS areas are zero filled.

m  Patches to a blocked module phase will significantly slow down the loading of
that phase. Patches do not affect the loading of standard load module phases.

B Loading blocked load modules from a selector channel disk is slower than
loading from an IDA disk.

® Do not block modules written in assembly language and having address
constants overlaid with text. This is the case where an unneeded address
constant is used for patch space. It can also occur by using the assembler
ORG statement and overlaying an address constant with instructions.
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Format:
LABEL | AOPERATIONA | OPERAND
unused I BLK I input-lfn,module-name[,output-Lfn]

Positional Parameter 1:
input-Lfn
Specifies the logical file name of the disk file on which the original load module
resides.

Positional Parameter 2:

module-name
Specifies the name of the load module to be converted.

Positional Parameter 3:

output-Llfn
Specifies the logical file name of the disk file to be used in the block operation.

If omitted, the input file contains the blocked module, and the original load module
is nullified. This parameter is required if the input file is a tape.

Example:

1 10 16

BLK D1,STEP2,D2

This example converts the standard load module named STEP2 residing on file D1
to a block load module and places it on file D2.

NOTES:

1. If a block load module with the same name is detected in the same file, the one
already present is nullified and the new one added.

2. Load modules generated from ANSI 1974 COBOL source code that includes the
dynamic CALL or CANCEL verbs cannot be converted to block format.

2.8.4. Write Beginning-of-Group (BOG) Record Control Statement

Function:

This statement is used to begin a module group by writing a beginning-of-group
record in a specified file. The modules that are to comprise the group must be
added to the file before the end-of-group (EOG) record is written on the file.
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Format:
LABEL AOPERATIONA OPERAND
unused BOG group-name [,
Options:
None

Positional Parameter 1:

group-name
A 1- to 8-character alphanumeric character string that specifies the name of
the module group being started. Module groups within a given file may have
identical names. Only one group, however, is processed each time a process
group function is performed by the librarian, unless the C or A option also is
specified.

Positional Parameter 2:
Lfn

Specifies the logical file name of the disk or tape file on which the
beginning-of-group record is to be written.

If omitted, the job run library (JY$RUN) is used.
Examples:

1 10 16

1. BOG EXAMPLE1,D1
BOG EXAMPLE2

1. Begins a module group named EXAMPLE1 on file D1.

2. Begins a module group named EXAMPLE2 on the $Y$RUN file.

2.8.5. Compare Elements (COM) Control Statement

Function:

This control statement permits the comparison of two source modules in two
separate files on a record-by-record basis or the comparison of two complete files
on a block-by-block basis. No other options are available with this command. The
two source modules to be compared must have the same name and type
designations.
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When comparing two source modules, the librarian first locates them in the two
files to be used. The comparison then occurs on a record-by-record basis. When a
discrepancy is detected, the two source items are listed in EBCDIC. The sequence
control fields (columns 73-80 unless altered by user specification) are then
examined and the module with the lowest value has its file pointer advanced one
record. The comparison is then redone. (Source modules so compared should be
presequenced in some fashion so that a control field is available.) If the sequence
control fields are equal when such a discrepancy occurs, both file pointers are
advanced one record. The comparison continues until the end of a module is
reached. Figure 2-7 illustrates an example of the librarian map produced during a
source module compare operation.

If no source module name is provided, both files are compared in their entirety
from beginning to end. This involves a block-by-block comparison. When a
discrepancy occurs, both blocks are listed in hexadecimal, each file pointer is
advanced one block, and the comparison continues. The process proceeds until
end-of-file is detected on one of the libraries being scanned. Figure 2-8 illustrates
an example of the librarian map produced during a file compare operation.

Format:
LABEL I AOPERATIONA | OPERAND
unused COM { i lfn} ,{s} [ n—n [,name],sec-Lfn
) "
Options:
None

Positional Parameter 1:
prim-lfn
Specifies the logical file name of the first disk or tape file to be used in the
comparison.
If omitted, the job run library ($Y$RUN) is used.
Positional Parameter 2:
S,M
Specifies the type of modules being compared as either a program source

module (S), or macro/jproc module (M).

If omitted, all modules in both files will be compared.
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Positonal Parameter 3:

n-n
Two decimal numbers, separated by a hyphen, that specify the starting and
ending columns of the sequence control field to be used if a source module is
to be compared.

If omitted, columns 73-80 are assumed. If name is not specified, this parameter is
ignored.

Positional Parameter 4:
name
Specifies the name of a source module to be compared. The module named
will first be located in both files, then compared. Each must be a source level
module.

If omitted, the files designated will be compared on a block-by-block basis from
beginning to end, and positional parameters 2 and 3 are ignored.

Positional Parameter 5:
sec-lfn
Specifies the logical file name of the second disk or tape file to be used in the
comparison.

Examples:

1 10 16

COM  D1,S,,EXAMPLE1,D2
COM D2,S,1-8,SORCMOD,D3
COM  D11,S,,EXAMPLE3,D12
coM D5,,,,D6

S UWN -
P T R

1. Compares the source module named EXAMPLE1 in file D1 with the source
module named EXAMPLE1 in file D2. The sequence control field used is
positions 73-80 of the source module records compared.

2. Compares the source module SORCMOD in file D2 with the source module
SORCMOD in file D3. The sequence control field used is positions 1-8 of the
compared source module records.

3. Compares the module EXAMPLE3 which exists in source code format in file
D11 with the source module EXAMPLES in file D12. The sequence control field
used in positions 73-80 of the source module records compared.

4. Compares all the modules in file D5 with all modules in file D6. The compare is
terminated by end-of-file of either file. The compare is on a block-by-block
basis from beginning to end of each file.
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Figure 2-8. Typical Librarian Map for File Compare Operations (Part 2 of 2)
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2.8.6. Copy Elements (COP) Control Statement

Function:
The

COP control statement is intended primarily to:
Copy the contents of one entire library file to another library file

Compression of the file being copied is performed as the new file is created,
thus eliminating file fragmentation created by deleted modules and module
groups. Only the input-ifn and output-ifn parameters are specified to obtain this
function.

Copy the contents of a library file from its current position up to and including
a specified module or module group

The U option must be specified in addition to the desired operands.

Copy individual modules or module groups based on module names and types,
or on module or module group name prefixes, from one library file to another

if both the name prefix and module group options are specified, all the module
groups with the specified name prefix are copied. If only the module group
option is specified, only the first module group of the name specified is copied.
When module group processing is requested, the module type parameter must
be omitted, as it is not appropriate.

Produce a table of contents for a library file, listing all the records contained in
the directory partition if the D option is specified, or only the module header
records if the D option is omitted

When this function is desired, only the input-lfn parameter should be specified,
with or without the D option code. All other option codes are invalid.

While performing any of the previously mentioned copy operations, the librarian

may

also be requested to list (D option) and punch (P option) the modules copied,

or suppress the module header record listing (N option) it would normally produce.
Also, if the output file already contains any modules of the same name and type as
those being copied to it, the old modules are nullified.

The

COP control statement also can be used to:

List and punch one or more modules or module groups without performing a
copy operation

Position a library file pointer without performing a copy operation
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These functions are obtained by simply omitting the output-lfn parameter. To
produce listings of every module in a file, specify a D option, the input-Ifn, and a
traiing comma (COP.D DO,). This will distinguish it from the COP statement, which
produces a table of contents for the file specified (COP DO).

When using the copy facility to create a new tape and you want the modules being
copied to make up the new file, you must use a previously prepped tape free of
any data. You must follow this procedure because the copy facility does not
reinitialize an output file and all modules being copied are automatically written to
the end of the output file. Also, your input and output tape files must be on
separate volumes.

You should not attempt to copy an ICAM symbiont to a file that contains an active
ICAM symbiont with the same name. The active ICAM symbiont is deleted.

NOTE:

You should use extreme caution when specifying the PREP option of the // VOL
job control statement for a tape file to be processed by the librarian. With this
option, the tape is prepped every time it is opened as an output file. If a tape file is
used as both an input file and an output file during a single job, every time the file
is reopened as an output file, all data on the tape as a result of previous operations
will be overwritten if the PREP option has been specified. If the operation was
intended as a continual building of the tape file, the results would be disastrous.

When tape prep is specified in the same job step with a librarian file that contains
more than six input files that output to the same tape, the seventh input will cause
the tape to reset the output block to block number 1.

To avoid these problems, you should prep the tape in a separate job step.

Format:
LABEL AOPERATIONA | OPERAND
unused COP[ .options] input-Lfn +{SY 11, name][,output-Lfn]
M
0
L
Options:

A Process all groups in the input-Ifn with the group name specified in the name

-
parameter. (The G option must also be used.)

C Name specified in the name parameter is either a module name prefix or group
name prefix.

D List all the modules copied, or if a table of contents is being produced, list all
the records in the file directory.
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G Name specified in the name parameter is a module group name or module
group name prefix if the C option is also specified. If neither the C or A option
is used, process the modules in only the first group found with the specified
name. If the C option is used, process all groups with the specified prefix. If
the A option is used, process all groups with the specified name. When goup
processing is requested, the module type parameter should be omitted, as it is
inappropriate.

M Copy a specified module from the input file to the output file only if the output
file already contains a module with the same name and type.

N Do not list any header records on the librarian map.

P Punch the modules processed. This option cannot be used when requesting a
table of contents for a file.

Q Copy a specified module from the input file to the output file only if the output
file does not already contain a module with the same name and type.

U Process the modules from the current position of the input file, up to and
including the specified module or module group. This option is ignored when
producing a table of contents for a file.

Positional Parameter 1:

input-lfn
Specifies the logical file name of the disk or tape input file.

If omitted, the run library ($Y$RUN) of the job is used.
Positional Parameter 2:
S,M,0,L
Specifies the type of module being copied as either a program source module

(S), macro/jproc source module (M), object module (O), or load module (L).

If omitted, all modules with the specified name from the current position to the end
of the file are copied.

Positional Parameter 3:

name
Specifies the name of the module or module group (G option) to be copied, or
a name prefix (C option), and may consist of up to eight characters.

If omitted, all modules from current position to the end-of-file of the specified type
are copied. If no type or name is specified, all modules from current position to
end-of-file are copied.
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Positional Parameter 4:

output-Lfn
Specifies the logical file name of the disk or tape unit output file to be used in
the copy operation. The output file specification is not necessary to position a
file, to list a disk file directory, or to list or punch specified modules in a file.

If omitted, only a subfunction (list, punch, position) of the COP statement can be
performed. (See examples 1 and 3. However, if you specify an input-ifn,
module-type, and module-name and omit the output-ifn, the file pointer is
positioned to the next module after the specified module in the file. (See example
7)
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Examples:

1 10 16

coP D1

COP.D D2,S,MYMOD,D3
COP.GP D1, ,MYGROUP
COP.UN D®,M,MYMOD,T®
COP.C T2,L,MY,D1
COP.D D1

COP D1,S,COBOL4

NOWNT NN -

1. Lists all the header records in the D1 (compare with example 6).

2. Copies source module MYMOD from file D2 to file D3 and provides a listing of
module MYMOD.

3. Punches all modules in the module group MYGROUP, from file D1.

4. Copies to tape file TO all modules from current position of DO up to and
including the procedure module MYMOD. Current position is reset to
immediately follow MYMOD. The listing of header records is suppressed.

5. Copies any load module whose name begins with MY from the current position
to the end of the file on tape file T2 to disk file D1.

6. Lists all directory records in file D1 (compare with example 1).

7. Positions the input-file to the next module following COBOLA4.

2.8.7. Correct Module (COR) Control Statement
Function:

This statement is used to specify that the content of a source, object, or load
module is to be corrected. Correction cards following the COR statement specify
how the module is to be corrected. The librarian end-of-data (EOD) card indicates
the end of the correction cards. Corrected modules may be output to either the
same file or another file. For source modules, corrections are indicated via the
sequence number field of the correction itself. Stand-alone deletions require the use
of subfunction control statements. For object or load modules, the correction cards
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construct a text record containing the data and instructions required as patch
corrections necessary to the specified object or load module. Text patches are
inserted in the corrected module just ahead of the transfer record. Then, whenever
the module is loaded in main storage or linked, its corrected text is inserted in the
appropriate places in the module, overlaying any text that may have been nullified
because of their replacement. When patched modules are listed, patches are
flagged. When making changes to object and load modules, control section and
phase sizes may not be altered. Patches must be correctly sequenced for phased
load modules.

If errors are detected in the correction cards (for example, a wrong phase number),
the librarian will not add these correction cards to your file.

The librarian will not terminate the card module until an unattached EOD card is
detected, unless the E option is specified.

Format:
LABEL AOPERATIONA | OPERAND
unused COR[ .options] {inp t-lfn} 1 (S),name[,output-Lfn]
o "
0
L
Options:

E Terminate at the first EOD.

N Do not list header records, subfunction control statements, or records added
or deleted.

P Punch module corrected.

X Extend the load module if any of the supplied patch addresses are beyond the
end of the module. This option can be used only for unblocked single-phase
load modules.

Positional Parameter 1:

input-Llfn
Specifies the logical file name of the disk or tape file containing the module to
be corrected. If a tape is specified as input, then a different output-Ifn must be
specified. The librarian cannot read and write from the same tape file.

If omitted, $YSRUN is used.
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Positional Parameter 2:

s,M,0,L
Specifies the type of module being corrected as either a program source
module (S), macro/jproc source module (M), object module (O), or load module

(L).
Positional Parameter 3:

name
Specifies the name of the module to be corrected.

Positional Parameter 4:

output-Lfn
Specifies the logical file name of the disk file into which the corrected module
is to be placed.

If omitted, the original module is deleted and the corrected version is added to the
end of the input file. This parameter is required if the input file is a tape.

2.8.8. COR Correction Cards

2.8.8.1. Object or Load Module Corrections

Subfunction patch corrections for object and load modules must immediately follow the
COR control statement. The last patch correction must be followed by a librarian EOD
control statement. If the librarian detects an error within a correction card, it does not
make the correction. Both text and relocation data (RLD) records may be supplied for
the patch. RLD masks must be represented in hexadecimal 3-byte multiples exactly as
required. Each patch supplied causes the generation of an appropriate text record.
Contiguous patch addresses on succeeding patches do not cause the generated text to
be merged. Load module patches must be correctly sequenced by phase number.

The format of a patch correction card for an object or load module is:

1

-)address [,[esid-no [,text[,RLD]}
{P} phase-no

ORG

Column 1:

-(Chyphen)
Indicates that the specified address is relative to the object or load module
address.
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Indicates that the specified address is relative to the load module phase being
patched.

Positional Parameter 1:

address
Specifies the hexadecimal address that is relative to the base address of the
object or load module and not to the address of the CSECT or phase area.
This relative address is assigned to the generated text record. The address can
be either positive or negative. A positive address begins in column 2, while a
negative address has a hyphen in column 2 followed by the address.

Positional Parameter 2:

esid-no
Specifies the external symbol identification number for the object module being
patched. The number must be in the range of 01-255.

If omitted, O1 is used.

phase-no
Specifies the phase number of the load module being patched. The number
must be in the range of 00-99.

If omitted, 0O is used.

ORG
Indicates that this is not a correction but specifies that the indicated address
(positional parameter 1) is automatically added to all subsequent patch address
fields until a new value is specified on another ORG correction card or an EOD
statement is encountered in the control stream. When you use this parameter,
text is not permitted.

Positional Parameter 3:

text
Specifies a contiguous string of hexadecimal digits to be assigned at the
resultant address (which is the sum of the specified address and, if specified,
the most recent ORG address). The minimum amount of text patchable is one
byte. Text is required unless ORG is specified in positional parameter 2. If text

is not specified, the patch correction is flagged and the relocation data (RLD), if
present, is disallowed.

Positional Parameter 4:

rld

Indicates any relocation data for the specified object or load module text

record being created. The rld data must be in 3-byte, 6-hexadecimal-digit
multiples.
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NOTES:

1. Padding of zeros to the nearest half byte is automatic for the address, esid/phase
number, and test specifications.

2. If the esid/phase number is omitted, the comma still must be coded.

Example:
In this example, a multiphase load module named MYLOAD is corrected. The
original version of the module resides in file DO, while the corrected version will

reside in file D2.

1 10 16

COR  D®,L,MYLOAD,D2
-C90,4880D074
P12D,1,9540C012
-0124,0RG
P250,3,AB
--4B78,0RG
-5672,4, 0A1C
-0,0RG
-D2E,6,00012E,016F00
EOD

0O ~NONUVEES NN -
« = % e 2 5 v

1. The specified text is applied to load module address C90 of phase O.
2. The specified text is applied to phase relative address 12D of phase 1.
3. The value 0124 is entered as the ORG value.

4. The specified text is applied at 250+ 124 bytes into phase 3.

5. The value -4B78 is entered as the ORG value.

6. The specified text is applied at the load module address 5672-4B78 of
phase 4.

7. The ORG value is cleared.

8. The specified text and RLD are applied to load module relative address
D2E of phase 6.
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2.8.8.2. Source Module Corrections

To make source module insertions and replacements, the actual source module record
to be inserted is used as the correction card. Replacements are performed by using a
correction card with the same sequence number as the record to be replaced. Insertions
are performed by using at least one correction card (always the first card) with a
sequence number falling between the sequence number of the records between which
the insertion is to be made. Any number of unsequenced correction cards may then
follow.

Source module corrections will appear in the listing in the following manner:

B For source statement replacements, the statement being replaced and the
replacement statement are printed.

B For insertions of new statements, the line preceding the insertion and the inserted
line are displayed.

Figure 2-9 is an example of a source module correction showing the original source
module, the librarian stream used to modify the module, and then the resultant
corrected module as it appears after the librarian has completed its processing.

If the corrections to a source module include the /$—/* job control statements, they
must be paired.

The source module always must contain record sequence identifiers for it to be
corrected by the librarian; however, source modules are not required to carry sequence
numbers to be in a given library. Sequence numbers optionally may be added to a
source module whenever the user chooses, either at creation time from cards through
the ELE control statement, or anytime afterwards, through the sequence (SEQ) control
statement being used as a primary function. Cards that are out of sequence in a
correction deck are inserted in the source module out of sequence (in the same order
they appear in the correction deck), and the appropriate error message is printed on the
librarian map.

There are three control statements that are used as subfunctions of the COR control
statement to correct or reorder a source module. These are the skip (SKI), recycle
(REC), and sequence (SEQ) control statements. They are to be used strictly as control
statements.
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SMSERR3 START SM$00010
PRINT NOGEN SM$00020
SUPEQU SM$00030
PRINT GEN SM$00040
DC 'DATE SOURCE && REF AMOUNT DATE SOURCE && REF ! SM$00050
DC ' REF-2 ORIG-DATE DATE SOURCE && REF AMOUNT ! SM$00060
LR R1,R6 SM$00070
LR R4,R5 SM$00080
END SM$00090
a. Original source module
1 10 16 72
COR D1,S,SMSERR3,D2
MVC LB$ERR, SMSERR SM300020
L R3,LBSMIKE SM$00060
SK1 SM$00090 SM$00090
LB$BBBB SM$00110
EOD
b. Correction card deck
------ PRINT NOGEN SM$00020
++t MVC  LBS$ERR,SMS$SERR SM$00020
------ DC ' REF-2 ORIG-DATE DATE SOURCE && REF  AMOUNT ! SM$00060
bt L R3,LBSMIKE SM$00060
SKI SM$00090 SM$00090
Fdedodek LR R4, R5 SM$00080
++++++ LBS$BBBB SM$00110
c. Librarian printout showing additions, deletions, and replacements
SMSERR3 START SM$00010
MVC LBSERR,SMSERR SM$00020
SUPEQU SM$00030
PRINT GEN SM$00040
bC 'DATE SOURCE && REF  AMOUNT DATE SOURCE && REF ! SM$00050
L R3,LBSMIKE SM$00060
LR R1,R6 SM$00070
LR R4 ,R5 SM$00080
L B$SBBBB SM$00110

d. Corrected source module

Figure 2—9. Example of Source Module Corrections




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-48

SYSTEM SERVICE PROGRAMS

2.8.9. Delete Elements (DEL) Control Statement

Function

This facility allows you to eliminate certain modules or module groups within a
specified library. The deletion is of one module, or is inclusive up to and including

the
file

named module or group existing in the specified file. When elements of a given
are being deleted, all referenced code is effectively nullified. These dead

modules or groups can then be removed through an eventual copy or pack function
to eliminate the resulting fragmentation. You should not attempt to delete an ICAM
symbiont while it is actively processing.

Format:
LABEL AOPERATIONA | OPERAND 7
unused DEL[ .options] [{lfn ] ~ (SY [, name]
_ M
0
L
Options:

A Delete all groups with the group name specified by the name parameter. (The
G option must also be used.)

C Delete all modules whose name begins with the prefix specified in the name
parameter.

D List modules being deleted.

G Name specified in positional parameter 3 is a module group name rather than
an individual module name. If neither the C or A option is used, delete all the
modules in the first group encountered with that name. If the C option is used,
delete all groups with the group name prefix specified by the name parameter.
If the A option is used, delete all groups with that group name. Each operation
starts from the current file position. When a group is deleted, the BOG and
EOG records associated with that group are also deleted. When module group
processing is requested, the module type parameter should be omitted, as it is
inappropriate.

N Do not list header records.

P Punch modules being deleted.

U Delete from current position up to and including specified module. If a module

name is specified, then a type must also be included. If no module name is
specified, delete all modules after current position.
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Positional Parameter 1:

Lfn
Specifies the logical file name of the disk file in which the deletion is to occur.

If omitted, the job run library file ($Y$RUN) is utilized.

Positional Parameter 2:

s,M,0,L
Specifies the type of modules being deleted as either a program source module
(S), macro/jproc source module (M), object module (O), or load module {L).

if omitted, all modules with the specified name from the current position to the end
of the file are to be deleted.

Positional Parameter 3:
name
Specifies the module name, module group name, or module name prefix of the

modules to be deleted.

if omitted, modules of the specified type are deleted. If both type and name
specifications are omitted, all modules are to be deleted.

Examples:
7 1 10 16
1. DEL.D D1,S,EXAMPLE1
2. DEL.P ,0
3. DEL.C D2,0,EXA
4. DEL.UN D®,L,MYMOD

1. Deletes and lists the source module named EXAMPLE1 on file D1.
2. Deletes and punches all object modules from the job run library.

3. Deletes all object modules from current position to end-of-file in file D2 whose
name begins with EXA.

4. Deletes all modules from current position to the load module named MYMOD
in the DO. Also suppresses the listing of header records.

NOTES:
1. The DEL control statement cannot be used if processing tape libraries.

2. Only root phase header records are printed during the delete operation; however,
all overlays are deleted.
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2.8.10. Add Card File Element (ELE) Control Statement

Function:

This statement is used to add a source, object, or load module that is contained in
cards to a disk or tape file. If a card element is being added to a disk file that
already contains a module of the same name and type, the old module is replaced
by the new module. The ELE control statement causes a module header record to
be inserted in the specified output file. All cards immediately following the ELE card
down to the end-of-data (EOD) card are assumed to comprise the module to be
added. Librarian control streams are valid source modules, but each EOD card that
is a part of that control stream must be associated with its own COR or ELE
control statement. The librarian will not terminate the card module until an
unattached EOD card is detected, unless the E option is specified.

Format:
LABEL AOPERATIONA | OPERAND
unused ELE[ .options] {lfn } , {S),name[,comments]}
E M
0
L
Options:

D List the module.
E Terminate at the first EOD.
N Do not list the header record.
P Punch the module.
Positional Parameter 1:
Lfn
Specifies the logical file name of the disk, diskette, or tape file to which this
card module is to be added.
If omitted, the job run library ($Y$RUN) is used.
Positional Parameter 2:
S,M,0,L
Specifies the type of the module being added as either a program source

module (S), macro/jproc source module (M), object module {O), or load module .
(L).
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Positional Parameter 3:

name

A 1- to 8-character alphanumeric string that specifies a name for the module
being added.

For object and load modules, the name on the ELE card must be the same as
the name of the module.

Positional Parameter 4:

comments

Up to 30 characters of comments to be inserted in the module header record.

if omitted, no comment is included in the header record.

Examples:
1 10 16
1. ELE  D1,S,EXAMPLE1,NEW SOURCE MODULE
2. ELE ,L,EXAMPLE2
3. ELE  D12,0,EXAMPLE3

1. Adds a source module name EXAMPLE1 to file D1 and, if a source module
named EXAMPLE1 already exists therein, it will be nullified. The comment
“‘new source module’’ will also be inserted into the comment field of the
header record.

2. Adds a load module named EXAMPLE2 to the job run library and, if a load
module of the same name already exists therein, it will be nullified.

3. Adds an object module named EXAMPLE3 to file D12 and, if an object module
of the same name already exists therein, it will be nullified.

NOTES:

1.

The add, replace, or check sequence numbers (SEQ) control statement is supported
as a subfunction command to the ELE control statement to: perform a sequence
check on a source module being filed, sequence a source module being filed, or
resequence a source module being filed.
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2. A source module cannot have an EOD control statement as part of its coding since
this statement is a terminator card. If detected in your source module, only that
portion of your source module up to the EOD is added. Whenever an EOD control
statement is used, it must be paired with a COR or ELE control statement.

2.8.11. Declare End-of-Data (EOD) Control Statement

Function:

This statement is used to terminate the card data that follows an ELE, COR, or
REPRO control statement. Each EOD card must be associated with one and only
one ELE or COR card.

Format:
LABEL | AOPERATIONA | OPERAND
unused | Eop l unused
Options:
None

2.8.12. Write End-of-Group (EOG) Record Control Statement

Function:

This statement is used to terminate a module group by writing an end-of-group
record (Table B-2) in a specified file.

Format:

LABEL | noperaTIONA | OPERAND

unused ‘ EOG l group-name[,{lfn }]
Options:

None

Positional Parameter 1:

group-name
Specifies the name of the module group being ended.




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-563
SYSTEM SERVICE PROGRAMS

Positional Parameter 2:

Lfn
Specifies the logical file name of the disk or tape file on which the
end-of-group record is to be written.

If omitted, the job run library ($Y$RUN) is used.

Examples:

1 10 16
1. EOG  EXAMPLE1,D1
2. EOG  EXAMPLE2

1. Places an end-of-group record on file D1 with the name EXAMPLE1.

2. Places an EOG record named EXAMPLE2 on the job run library.

2.8.13. ESCAPE (ESC) CONTROL STATEMENT

Function:

This statement causes the librarian to read all subsequent librarian control
statements from either a SAM file or from a librarian disk source module rather
than from the control stream. Your SAM file can reside on either a disk, diskette,
or tape. You can think of the librarian control statements as a procedure module
whereby the same control statements can be executed over again without change.
You need to change only the FIL control statement to process different files.

ESC processing terminates when the end of module or end of file is detected. All
statements read by ESC processing appear on the librarian map with *ESC* in the

control field.
Format 1:
LABEL AOPERATIONA OPERAND
unused ESC filename, (TP) {, ,{record-length
DK FB 86
DT vu
VB
[,{block-length}:l
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Options:
None
Positional Parameter 1:

filename
Name of your SAM file containing the librarian control stream to be processed.

The maximum allowable length is seven characters. The first character must be
alphabetic.

Positional Parameter 2:
TP,DK,DT
Specifies the type of file to be read. The entries are TP, for a tape file; DK, for
a disk file; and DT, for a diskette file.

Positional Parameter 3:

FU,FB,VU,VB
Specifies the record type for the file being read. Permissible entries are:

FU Fixed, unblocked records
FB Fixed, blocked records
VU Variable, unblocked records
VB Variable, blocked records

If this parameter is omitted, fixed, unblocked records are assumed.

NOTE:

SAM diskette files may not contain blocked records.

Positional Parameter 4:

record-length
Specifies the length in bytes of fixed records. Maximum permissible entry is
decimal 128. For tape, the minimum permissible entry is decimal 18. If this
parameter is omitted, a record length of 80 bytes is assumed. This parameter

is not required for variable-length records. For fixed, unblocked records, this
field is ignored.



UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-55
SYSTEM SERVICE PROGRAMS

. Positional Parameter 5:

block-length
Indicates the length in bytes of the file blocks including all block header and
record header fields. If the block length exceeds 1024 decimal bytes, see the
section on additional storage requirements. For tapes, the minimum block
length is decimal 18. For variable-length records, this entry indicates the
maximum block size. If omitted, a block size of 80 bytes is assumed.

NOTES:
1. The block length must equal or exceed the specified record length.
2. The ESC command can process tape files with or without block numbers.

3. For diskettes, the maximum block length is 1024 decimal bytes.

Format 2:
LABEL |AOPERATIONA | OPERAND
unused ] ESC ] filename,LD,modulename
. Options:

| None
| Positional Parameter 1:
|
|
filename
Specifies the name of the file containing the librarian control stream module.

Positional Parameter 2:

LD
Indicates the control stream is in a librarian source module.

Positional Parameter 3:

modul ename
Specifies the name of the librarian source module containing the librarian
control stream to be processed.

Main Storage Considerations:

When you use the ESC control statement, you must specify additional main storage

. on the // JOB control statement. The amount of main storage required is
dependent upon the file type being read and the extra storage required for block
sizes in excess of 1024 bytes. To calculate the main storage amount, use the
following equation:
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file type + excess block size + X!5C00’

where:

file type
Is bytes (in hexadecimal) required for a particular file type. The values are:

X’1250’ for a file type of TP (SAM tape)
X’C50’ for a file type of DT (SAM diskette)
X'F50’ for a file type of DK (SAM disk)
X'780' for a file type of LD (librarian disk)

excess block size
A hexadecimal value representing the number of bytes that the blocks in
your program are in excess of 1024. Calculate this value by converting the
decimal block size value to hexadecimal and subtracting X°'400° from the
resulting value.

Example 1. Using a librarian SAM disk file
Librarian control stream:

// JOB ESCRUN,,, 8000

// DVC 20 // LFD PRNTR

// DVC 50 // VOL PUBRES

// LBL PRGFIL // LFD PRGFIL
// DVC 5@ // VOL PUBRES

// LBL LIBFIL // LFD LIBFIL
// EXEC LIBS

/$
FIL D1=PRGFIL,D2=LIBFIL
ESC  LIBFIL,DK
/*
/&
// FIN
SAM disk file:
a4 PAC D2
15 coP  D1,S,COBOL4,D2
16 LST D2

Line 1 shows the JOB statement with the additional main storage required for the job.
Lines 2-6 show the device assignment set for the system printer and our disk files.

Line 7 shows the EXEC statement calling the librarian.
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Lines 8 and 11 are the data delimiters for the librarian control stream.
Line 9 shows the FIL statement.

Line 10 shows the ESC statement identifying our file and file type.
Lines 12 and 13 end our job and card reader operation.

Lines 14-16 show the librarian control statements to be executed during ESC
processing.

Example 2. Using a librarian source module

The following coding shows an example of ESC processing. Our source module
COBOL4 residing in D1 is copied to D2 and all the header records are listed from
D2.

Librarian control stream:

// JOB ESCRUN,,, 8000

// DVC 20 // LFD PRNTER

// DVC 50 // VOL PUBRES

// LBL HAMMER // LFD HAMMER
// DVC 50 // VOL PUBRES

// LFD SRCFIL // LFD SRCFIL
// EXEC LIBS

/%
FIL D1=HAMMER,D2=SRCFIL
ESC SRCFIL,LD,LIBTEST
/%
/&
FIN

Librarian source module:

LST D2

COP D1,S,COBOL4,D2
@5

Line 1 shows the JOB statement with the additional main storage required for ESC
processing.

Lines 2-6 show the device assignment set for the system printer and our disk files.
Line 7 shows the EXEC statement calling the librarian.
Lines 8 and 11 are the data delimiters for the librarian control stream.

Line 9 shows the FIL statement.
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Line 10 shows the ESC statement identifying the module.
Lines 12 and 13 end our job and card reader operation.

Lines 14 and 15 show the librarian control statements to be executed during ESC
processing.

2.8.14. Declare File (FIL) Control Statement

Function:

The control statement is used to declare to the librarian all the tape and disk files
that will be referenced subsequently in the control stream through // LFD control
statement. At the same time, each file is assigned a type code (disk or tape) and a
logical file number (0-15), which together form a logical file name that is to be
used (rather than the file name) for all subsequent file references within the librarian
control stream. File declarations may be strung out on one FIL card or be made
individually on separate FIL cards. Up to 32 files can be declared: 16 tape files and
16 disk files. For each file described by the FIL statement, an appropriate job
control file declaration card is required in the job control stream (unless a standard
system or job run library file is being used).

Format:
LABEL ! AOQOPERATIONA | OPERAND
unused FIL {Tn=filename-1} ,...,{Tn}=filename-n
Dn Dn
Options:
None

Tn Keyword Parameter:

Tn=filename

Is used to equate a tape file (LFD name) with a logical file name of TO through
T15.

Dn Keyword Parameter:

Dn=filename

Is used to equate a disk file (LFD name) with a logical file name of DO through
D15.
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NOTE:

The file name specification may not exceed eight alphanumeric characters and must
begin with an alphabetic character. When working with system files, you must equate
the logical file name with the file identifier if DVC RES was used in the device
assignment set for the resident volume.

Examples:

1 10 16

1. FIL TO=SCRTAPE, T1=MASTAPE,D®=PROCLIB
FIL T2=UPDATE,D1=LOADLIB

1. Declares the use of tape files SCRTAPE and MASTAPE, and of disk file
PROCLIB, and assigns the logical file names TO, T1, and DO to the three files,
respectively. Subsequent references to these files must specify the logical file
names.

2. Declares the use of tape file UPDATE and disk file LOADLIB, and assigns the
logical file names T2 and D1 to these files, respectively.

NOTE:

Using the FIL statement to equate files to be processed with logical file names
allows a single LIBS control stream to be used to maintain any number of
different files. The functions performed by the control stream use the logical
file specifications declared in a FIL statement. When the needed files change,
only the FIL statements need be modified. Thus, each command to the librarian
need not specify the actual file name used.

2.8.15. Printing a File in Alphabetical Sequence (LST)

Function:

This command enables you to display a table of contents of a file in alphabetical
sequence. The LST command has a built-in sort routine that sorts the directory
records. At the completion of the sort, the LST command displays the listing in the
form of module name, module type, date, and time. Groups and module header
records are the only records printed; for example, the root phase of a load module.

Format:
LABEL AOPERATIONA [ OPERAND
unused LST [{in ut-lfn}] ;
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Positonal Parameter 1:

input-Llfn
Specifies the logical file name of the disk file containing the modules to be
listed.

If omitted, the job run library is assumed to contain the modules.
Positional Parameter 2:
S,M,0,L
Specifies the type of moduies being operated on as either program source
modules (S), macro/jproc source modules (M), object modules (O), or load
modules (L).
If omitted, the entire file is listed.

Examples:

1 10 16

1. LsT D1,L
LST

1. Prints an alphabetic listing of only the load modules residing in file D1.

2. Prints an alphabetic listing of the entire SYSRUN file.

2.8.16. Pack File (PAC) Control Statement

Function:

This operation compresses a library file by discarding any elements that are flagged
as nullified and squeezing the remaining code sets together, thus eliminating any file
fragmentation and pushing unused space toward the end of the file. This function.
may be used in conjunction with the delete (DEL) control statement to build a
reordered, updated, and packed library file. The user should not attempt to pack a
file that contains an ICAM symbiont while that symbiont is active.

The PAC printout shows both the modules being packed and the modules not

being packed. The modules not being packed are printed first and are listed under
the heading MODULES NOT MOVED. The modules being packed are then printed
under the heading MODULES MOVED.

Format:

LABEL | AOPERATIONA | OPERAND
unused PAC[ .options]
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Options:

N Do not list header records.

Positional Parameter 1:

Lfn

Specifies the logical file name of the disk file that is to be compressed.

If omitted, the job run library is compressed.

Example:

1

10 16

PAC D1

Eliminates all nullified modules in file D1.

NOTES:

1.

2.
3

A

The PAC control statement cannot be used if processing tape libraries.
The file being packed should be lockable, giving you exclusive use.
A file being packed cannot be updated.

When a load file is being packed, the pack operation must complete before a
program can be executed from the file.

}

}
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2.8.17. Controlling Page Advancement for the Librarian Map (PAGE)

Function:
The PAGE librarian control statement starts a new page on the librarian map. It
may also specify a header line to be printed at the top of each new page. This
header line remains in effect for the duration of the librarian job step or until it is
changed by another PAGE control statement.

If a PAGE librarian control statement is not used, the librarian starts a new page on
the librarian map only when:

m  the current page is full;
®m  an LST control statement is executed; or

m 3 COP control statement is used to print a file table of contents.

Format:

LABEL | soPERATIONA | OPERAND

unused | PAGE I ['header-line']
Options:

None

Positional Parameter 1:

‘header-line'
Specifies the header line to be printed at the top of each succeeding page. It

can contain up to 64 characters and must be enclosed in single quotation
marks.

This header line remains in effect for the duration of the job or until it is
changed. If omitted, the current header line, if any, remains in effect.
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Examples:
1 10 16
1. PAGE
2. PAGE 'PAYROLL MODULES (CONTINUED)'
3. PAGE ¢

1. Starts a new page on the librarian map, printing the current header line, if any,
at the top of that page.

2. Starts a new page on the librarian map with new header line PAYROLL
MODULES (CONTINUED) on that page and each succeeding page.

3. Starts a new page on the librarian map and ends the use of any previously
specified header.
2.8.18. Specifying Error Handling during Librarian Execution (// PARAM ERROR)

Function:

This // PARAM statement specifies whether the librarian should stop the job step
or cancel the entire job in the event of a librarian error.

Format:

// PARAM ERROR=(STOP }
CANCEL

Keyword Parameter:

ERROR=STOP
Causes the librarian to stop processing the job step where the error occurred.
Any librarian control statements following the error are not executed. However,
any subsequent job steps are executed.

ERROR=CANCEL
Causes the librarian job to be terminated immediately. No subsequent job steps
are executed.

NOTE:

The // PARAM statement cannot appear within the librarian control stream. It must be
coded between the // EXEC LIBS and the /$ control statements.
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2.8.19. Suppressing the Librarian Map (// PARAM PRINT=O0FF)

Function:

This // PARAM statement suppresses printing of the librarian map. The printer
device asignment set need not be present in your control stream when using this
// PARAM statement. If a printer device assignment set is present, any subsequent
job steps requiring the printer are not affected.

Format:

// PARAM PRINT=0FF

Keyword Parameter:

PRINT=OFF
Suppresses printing of the librarian map.

NOTE:
This must be the first parameter card in the job step and therefore must immediately

follow the // EXEC LIBS statement in your control stream.

2.8.20. Printing Source Modules in Hexadecimal Format {(// PARAM PRTOBJ)

Function:

This // PARAM statement causes any source module listings generated by the
librarian to be printed in hexadecimal format.

Format:

// PARAM PRTOBJ=ON

Keyword Parameter:

PRTOBJ=ON
Causes any source module listings to be printed in hexadecimal format.

NOTE:

The // PARAM statement cannot appear within the librarian control stream. It must be
coded between the // EXEC LIBS and the /$ control statements.
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. 2.8.21. Creating a Multifile Tape (// PARAM TAPEFILES=MULTI)

Function:

This // PARAM statement allows the librarian to output more than one file to the
same tape volume. If this statement is not used, only one file can be written to a
tape. This statement is not required to read a file on a multifile tape.

A multifile tape is created by copying files from another storage medium to output
files on the tape. The tape must already be prepped and it may or may not already
contain some files. The files must be copied in sequence as they are to be
arranged on the tape. These files cannot be extended later.

The librarian job, which copies the files to the tape, must contain this // PARAM
statement. Also, the // LBL job control statement for each new tape file must
include a file sequence number parameter (in positional parameter 4) to indicate the
position of the output file on the tape. For example, if the tape already contains
two files, the // LBL statement for the first new tape file must specify a 3 for the
file sequence number. If the tape is a newly prepped tape that does not yet contain
any files, the file sequence number for the first new tape file must be 1.

As the files are being output to the tape, only one tape file can be open at a time.
Therefore, the librarian job step should use the same logical file name (Tn) for every
tape file but redefine that logical file name in another FIL statement each time a
new file is to be processed.

Normally, after each file is written to the tape and then closed, the librarian would
rewind the tape to the load point. then it would reopen the tape and advance to
the end of the tape again to write the next file. However, a // DD job control
statement with a rewind parameter can be used in the device assignment set for
each tape to eliminate unnecessary rewinding at each open and close operation.
The statement // DD OPRW=NORWD specifies no rewind at file open.

The statement // DD CLRW=NORWD specifies no rewind at file close.

Specifically, the device assignment sets for the tape files should specify:

®  CLRW NORWD for the first tape file

®  OPRW NORWD for the last tape file

m  Both OPRW=NORWD and CLRW=NORWD for all other files

Format:

// PARAM TAPEFILES=MULTI



UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-64b
SYSTEM SERVICE PROGRAMS Update A

Keyword Parameter:

TAPEFILES=MULTI
Allows muitiple files to be output to the same tape volume.

NOTE:

If used, this statement must be placed between the // EXEC LIBS statement and the /$
Jjob control statement.

Example:
The following sample job copies five files from disk to the same new tape volume:

// JOB MULTFILE

// DVC 20 // LFD PRNTR

// DVC 50 // VOL D®®410 // LBL DISKFIL1 // LFD DISK1
// DVC 50 // VOL D®®410 // LBL DISKFIL2 // LFD DISK2
// DVC 50 // VOL D®@®41¢ // LBL DISKFIL3 // LFD DISK3
// DVC 50 // VOL D®®410 // LBL DISKFIL4 // LFD DISK4
// DVC 50 // VOL DO®410 // LBL DISKFILS // LFD DISK5
// DVC 90 // VOL S©1841 // DD CLRW=NORWD

// LBL TFIL1,,,,1 // LFD TAPE1

// DVC 90 // VOL S®1841 // DD OPRW=NORWD, CLRW=NORWD
// LBL TFIL2,,,,2 // LFD TAPE2

// DNC 990 // VOL S01841 // DD OPRW=NORWD,CLRW=NORWD
// LBL TFIL3,,,,3 // LFD TAPE3

// DNC 90 // VOL S01841 // DD OPRW=NORWD,CLRW=NORWD
// LBL TFIL4,,,,4 // LFD TAPE4

// DNC 90 // VOL S©1841 // DD OPRW=NORWD

// LBL TFIL5,,,,5 // LFD TAPE5

// EXEC LIBS

// PARAM TAPEFILES=MULTI

/$
FIL D@=DISK1,TO=TAPE1
coP Do,,,To
FIL D@=DISK2,TO=TAPE2
cop  De,,,To
FIL  DO=DISK3,TO=TAPE3
cop Dpo,,,T0
FIL D@=DISK4,TO=TAPE4
cop Dpo,,,T0
FIL D@=DISK5,T@®=TAPES
cop Do,,,To

/*

/&
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2.8.22. Specifying Date and Time during Librarian Execution
(// PARAM UPDATE)

Function:

This // PARAM statement is used to specify the date and time to be in effect
during the execution of a library job. This date and time is inserted in the header
records of modules being corrected by the librarian. If a // PARAM UPDATE
statement is not included in the librarian control stream, the date and time
contained in the system information block (SIB) is used. This date and time remain
in effect until the librarian job is terminated.

NOTE:

The // PARAM statement cannot appear within the librarian control stream. It must
be coded between the // EXEC LIBS and the /$ statements.

Format:

// PARAM UPDATE=yymmdd/hhmm

Keyword Parameter:

UPDATE=yymmdd/hhmm
Specifies a date and time to be used for modules being corrected during the
execution of the job.
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2.8.23. Recycle Source Module Current Position Pointer (REC)
Control Statement

Function:

The REC control statement is used only in conjunction with the COR control
statement to make source module corrections. It causes the record pointer for the
original source module to be repositioned to the first record in the source module.
In conjunction with the SKI statement, it allows the user to rearrange major
segments of a source module.

When a REC statement is processed, records are read from the original data set
and written in the new data set up to and including the record whose sequence
number matches the sequence number in the sequence field of the REC statement.
Then, the record pointer for the original source module is reset to point to the first
record in the module. If the sequence field of the REC statement is blank,
repositioning of the record pointer takes place immediately.

Format:
72 73
LABEL AOPERATIONA OPERAND SEQUENCE
REC unused [Last-
sequence
no]
Options:
None
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Sequence Field Parameter:
last-sequence-no
Is a 1- to 8-character alphanumeric string that identifies the sequence number
of the last record to be copied into the new data set before the record pointer

is recycled to the first record in the module. This field begins in column 73
unless a SEQ control statement dictates otherwise.

If omitted, the recycling operation takes place without any records being copied
into the new data set.

NOTE:
The REC control statement cannot be used if processing tape libraries.
Examples:

1. Figure 2-10 exemplifies how the REC and SKI control statements can be used
to reorder a source module.

2. Figure 2-11 exemplifies how a source module can be corrected by using
sequence data for control rather than for reordering purposes.

3. Figure 2-12 exemplifies how the SEQ statement can be used in a source
module correction deck.

1 10 16 72

EXAMPLE1 Source Statement LIBS0900
EXAMPLE?2 LIBSO100
EXAMPLE3 . LIBS®200
EXAMPLE4 LIBSQ300
EXAMPLES . LIBS0800
EXAMPLEé LIBS0400
EXAMPLE7 . LIBS®600
EXAMPLES8 LIBSO700
EXAMPLE®9 LIBS9500
EXAMPLE® Source Statement LIBS1000

a. Original source module

Figure 2-10. Example of Source Module Reordering Operation (Part 1 of 2)
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1 10 16 72
1. SKI LIBS09¢0
2 UPDATE1 Source Statement LIBSO200
3. SK1 LIBSQ800 LIBS0800
4. SK1 LIBS®700 LIBSQ600
5 REC
6 SK1I LIBSP400 LIBS0900
7 UPDATEZ2 Source Statement LIBS0500
UPDATE3 Source Statement LIBS®550
8. REC LIBSO700
9. SK1 LIBSQ300 LIBS9900
10. REC LIBS0800
1. SKI LIBS0500 LIBS®100

b. Correction deck

Skip source record LIBSO900.

Reptace EXAMPLE3 source statement with UPDATE1 source statement.

Copy all records up to LIBSO800. LIBSO300 is copied. LIBSO800 is skipped.

Copy all records up to LIBS0600. LIBS0400 is copied. LIBSO600 and LIBSO700 are skipped.

Reposition record pointer back to the first record.

Start skipping at LIBSO900 and skip down to LIBS0400. No records are copied.

Insert UPDATE2 and UPDATE3 source records immediately after LIBS0400.

Before repositioning record pointer, copy down to and including LIBSO700; then reposition record pointer to the

first record.

Start skipping at LIBSOS00 and skip down to LIBSO300. No records are copied.

0. Before repositioning record pointer, copy down to and including LIBSO80O0; then reposition record pointer to the
first record. LIBSO800 is the only record copied.

11. Start skipping at LIBS0100 and end skipping at LIBS0500. LIBS0O900 and LIBS1000 are copied.

XN REWN =

= ©

1 10 16 72

EXAMPLE?2 Source Statement LIBS@100
UPDATE1 LIBS0200
EXAMPLE4 . LIBS0300
EXAMPLE6 LIBS0400
UPDATE2 . LIBS0500
UPDATE3 LIBS®550
EXAMPLE7 . LIBS0600
EXAMPLES LIBS0O700
EXAMPLES LIBS®800
EXAMPLE1 LIBS0900
EXAMPLE® Source Statement LIBS1000

c. Corrected source module

Figure 2-10. Example of Source Module Reordering Operation (Part 2 of 2)
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1 10 16 72
TESTEXAM EQU  * LINKO100
CR  RO,W3 LINKO200
BE LK$3PA20 LINKO300
BH  LKS$3PA10 , LINKO400
W2,LK$CSESZ LINKO500
W2,LKSCSEGT LINKO60®
IC  W3,0(W2,W3) LINKO700
N W3,LK$CX7F LINKO80OO
BNZ  LK$3PA0Q LINKO900
LA W3,LK$CROOT LINK 1000
TESTEXA1 EQU  * LINK1100
LR RO,W3 LINK 1200
LA RRTNOD,4 LINK1300
B LK$CPOP LINK1400
BAL  R14,LBS$CSTK LINK1500

a. Source module

1 10 16 72
COR DO,S, TESTEXAM
1. CR R1,W2 LINKO200
2. XR W2,uW2 LINK®4590
3. SK1I LINKO80O LINK0O8oo
4. SK1I LINK1400 LINK1100
5. EOD
b. Correction deck
1. Replaces the source record with sequence number LINKO200O with this record.
2. Inserts this line between the lines with sequence numbers LINKO400 and LINKO500.
3. Deletes the line with sequence number LINKO80O.
4.  Deletes the lines starting with sequence number LINK1100 and ending with LINK 1400.
5. Must be associated with the COR statement.

Figure 2-11. Example of Source Module Add/Replace/Delete Operation Using SKI Control Statements (Part 1 of 2)
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1 10 16 72

TESTEXAM EQU  * LINKO100
CR R1,W2 LINK®200
BE LK$3PA20 LINK®300
BH LK$3PA10 LINK@O4OO
XR we,w2 LINK0O450
M W2,LK$CSGSZ LINKO500
L W2,LK$CSEGT LINK@600
IC W3,0(W2,W3) LINK@700
BNZ  LK$3PA®® LINKO900
LA W3,LK$CROOT LINK1000
BAL  R14,LB$CSTK LINK1500

c. Corrected source module

Figure 2-11. Example of Source Module Add/Replace/Delete Operation Using SKI Control Statements (Part 2 of 2)

1 10 16 72

COR DO,S,TESTEXAM
SEQ DO,S,TESTEXAM,1
LINK®200 CR R1,W2
LINKO450 XR W2, w2
LINKO80® SKI LINKO809
LINK1100 SKI LINK1400

NOTE:

This example is the same as the one in Figure 2-10b except for the SEQ statement and the relocated sequence
numbers.

Figure 2-12. Example of the SEQ Statement in a Source Module Correction Deck

2.8.24. Rename Element (REN) Control Statement
Function:

This control statement is used to rename a specific module, module group, or
record; to mark object and load modules as sharable or unsharable; or to change
the comments field in a module header record. When a load module name is
changed, the new name is reflected throughout each phase of the load module.
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Format:
LABEL AOPERATIONA OPERAND
unused REN[ .options] {lfn } (S
0
L
(old-name [. (record-type-and-name
RON
ROFF
[,new-name][, comments]
Options:

G Names specified are group names. The first module group encountered with
the name identified as the old-name is to be renamed.

N Do not list header records.
Positional Parameter 1:
Lfn
Specifies the logical file name of the disk file that contains the modules to be
renamed or identified as reentrant or nonreentrant.
If omitted, the job run library is assumed to contain the subject modules.
Positional Parameter 2:
s,M,0,L
Specifies the type of modules being operated on as program source modules
(S), macro/jproc source modules (M), object modules (O), or load modules (L).
If omitted, all modules of the specified old name are affected.
Positional Parameter 3:

RON

old-name .[record-type-and-name
ROFF
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' Identifies the module, module group, or record to be processed, or the object
module to be marked as reentrant (RON) or nonreentrant (ROFF). The record
type codes that may be specified are as follows:
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|
C Indicates COM.
E Indicates ENTRY.
N Indicates procedure name.
P Indicates alias phase name.
S Indicates CSECT.
V  Indicates V-CON.
X Indicates EXTRN.
Record names can be from one to eight characters long. The record type and
name specification cannot contain any embedded blanks. An example of how
this parameter might be coded is:

MASTER.XTAGbH

When load, source, or object modules are being renamed or their header
record comments field is being changed, the first 1- to 8-character name is
sufficient. If a record within an object module is being renamed, record type
and old record name also must be provided. If an alias phase name is being
changed, record type and old alias phase name must be specified.

Positional Parameter 4:

new-name

Specifies the new name to be substituted for the old name. If renaming a
multiphase load module, only the first six characters can be changed; the last
two remain the same. If you are changing the sharability status of a module or
the comments field of a header record, the new name is not necessary.

Positional Parameter 5:

comments

A string of up to 30 characters of identification information that is to be

inserted into the header record of the identified module.

If omitted, current comments remain unchanged.
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Examples:
1 10 16
1. REN.N D2,,EXAMPLE2,NEWEXAM2
2. REN ,0,EXAMPLE3,NEWEXAM3
3. REN  D3,0,EXAMPLE4.SEXAMPLES,NEWEXAM5
4. REN.G D5, ,EXAMPLE6,NEWEXAM6

1. Renames all modules named EXAMPLE2 in file D2 to NEWEXAM2. No listing
of headers is provided. Any old modules named NEWEXAM2 will be deleted.

2. Renames the object module named EXAMPLE3 in the job run library to
NEWEXAM3. If an object module named NEWEXAMS already exists in the job
run library, nullify that module.

3. Renames the CSECT named EXAMPLE5 in the object module named
EXAMPLE4 to NEWEXAMS.

4. Renames the group named EXAMPLES in the file D5 to NEWEXAM6.
NOTE:

The REN control statement cannot be used if processing tape libraries.

2.8.25. Produce or Delete Control Statement Records within Object

Module (REPRO) Control Statement

Function:

This command is used to produce and delete control statement records within
object modules. The named object module is recopied onto the original file.
Insertion or deletion of control statement records may occur either after the object
module header record or after the object module transfer record.

f no deletion is required, new control statement records will be added after the
control statement record already present in the named object module is copied.

An EOD control statement delimits control statement insertions. Those seen prior
to the first EOD are inserted in the object module header set. Those seen following
the first EOD control statement are inserted in the object module transfer set. Both
EOD control statements are always required, regardless of the presence of any
insertion or deletion.
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Format:

LABEL | AOPERATIONA loPERAND

unused REPRO[.options][}lfn }],module-name[,#deletionsn,#deletions]
Options:

D List entire module.
N Do not list header records.
P Punch module.

Positional Parameter 1:

Lfn
Specifies the logical file name of the disk file on which the subject module is
located.

If omitted, the job run library file ($Y$RUN) is used.
Positional Parameter 2:

module-name
Specifies the name of the object module to be modified.

Positional Parameter 3:

#tdeletions
A decimal value indicating the number of control statement records to be
deleted that currently follow the object module header record. This value
represents the number of control statements to be dropped from the control
statement set following the object module header record. Records are dropped
from the end of the set.

Positional Parameter 4:

#deletions
A decimal value indicating the number of control statement records to be
deleted that currently follow the object module transfer record. This value
represents the number of control statements to be dropped from the control
statement set following the object module transfer record. Records are
dropped from the end of the set.
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Examples:

1.

Add the source records INCLUDE A and INCLUDE B to the end of the control
statement set following the module header record. No changes are made to the
control statement set following the transfer record. List and punch the module
modified.

1 10 16

REPRO.DP D1,EXAMPLE1
INCLUDE A

INCLUDE B

EOD

EOD

Add the source records INCLUDE A and INCLUDE B to the end of the control
statement set following the object module header record and the source record
INCLUDE C to the end of the control statement set following the object module
transfer record.

REPRO D1, EXAMPLE
INCLUDE A

INCLUDE B

EOD

INCLUDE C

EOD

Add the source record INCLUDE A to the end of the control statement set
following the object module transfer record. List the modified module.

REPRO.D D1,EXAMPLE
EOD

INCLUDE A

EOD

Delete the last control statement currently following the object module header
record and then add the source record INCLUDE A. Also, delete the last three
control statement records currently following the object module transfer record and
then add the source record INCLUDE B. List the module modified.

REPRO.D D1,EXAMPLE, 1,3
INCLUDE A

EOD

INCLUDE B

EOD
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5. Add the source record INCLUDE A to the end of the control statement set
following the object module header record. Delete the last three control statement
records currently following the object module transfer record and then add the
source record INCLUDE B.

1 10 16

REPRO D1,EXAMPLE,,3
INCLUDE A

EOD

INCLUDE B

EOD

NOTE:

The REPRO control statement cannot be used if processing tape libraries.

2.8.26. Reset File Current Position Pointer (RES) Control Statement

Function;

This statement is used to reset the current position pointer in disk files to the
beginning of file or, for tape files, to rewind the tape to load point. If an output
tape file is being rewound, a tape mark will be written before rewinding. If a
module name and type are specified, the current position pointer in disk or tape
files is aimed at the first record of the named module. If a module of the name and
type specified is not found, the current position pointer remains as it was before
the RES statement was processed, and an appropriate diagnostic is printed on the
map.

The current position of library files is maintained via a set of relative pointers in the
respective disk or tape files being managed by the librarian. As each librarian
command is processed, the current position of the file directory partition and the
prime file partition are updated accordingly. Each executed function is essentially
serial in fashion in that the referenced file is processed from wherever it was last
positioned up to the module or group specified. The processing involved may be
inclusive or exclusive, depending on the function and the selection of various
options. If a referenced module or group is in a file, ahead of the current position,
the user may choose to perform the RES function prior to performing the function
in question. If no RES is submitted, the file will eventually wrap around from
end-of-file to the initial position, and then to the requested module or group. If the
module or group cannot be located within the named file, the search terminates at
the point of origin established when the process began.
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Format:
LABEL AQOPERATIONA | OPERAND
unused RES[ .options] {lfn } L (SY [, name]
:»;; M
0
L
Options:

G Name parameter is the name of a group. The file position pointer points to the
first record of the first group encountered with the name specified.

Positional Parameter 1;

Lfn
Specifies the logical file name of the disk or tape file to be reset.

If omitted, the job run library file ($Y$RUN) is reset.

Positional Parameter 2;

S,M,0,L
Identifies a module type as a program source module (S), macro/jproc source
module (M), object module (O), or load module (L).

If omitted, it is assumed that the reset operation is directed to a file rather than to
a module or module group.

Positional Parameter 3:
name
Specifies the name of the module or group to which the current position

pointer is to be aimed.

If omitted and a module type is not specified, it is assumed that the reset operation
is directed to a file. Otherwise, an error message is listed to indicate its omission.

Examples:

1 10 16
1. RES D1
2. RES  D3,0,EXAMPLE1
3. RES  T1,S,EXAMPLE2
4. RES  ,L,EXAMPLE3
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1. Resets the current position pointer of file D1 to the file start.

2. Resets the current position pointer for file D3 to the first record of the object
module named EXAMPLE1.

3. Resets the current position pointer for tape file T1 to the first record of the
source module named EXAMPLE2.

4. Resets the current position pointer for the job run library to the first record of
the load module named EXAMPLES.

2.8.27. Add, Replace, or Check Sequence Numbers (SEQ) Control Statement

Function:

The sequence function is provided to permit source modules to be sequenced or
resequenced. This function does not apply to object or load modules. This function
also is supported as a subordinate command to the ELE and COR control
statement. When using the SEQ control statement with a tape library, you must
use the SEQ control statement as a subfunction control statement to the COR or
ELE control statement.

When the SEQ control statement is used in conjunction with the ELE control
statement, you can perform a sequence check on a source module being filed,
sequence a source module being filed, or resequence a source module being filed.
When this statement is used in conjunction with the COR control statement, you
can correct a source module by using sequence numbers for control. An example
of each of these uses is given in the examples portion of this statement
description. When you use the SEQ as a subfunction to an ELE or COR control
statement, the options (if specified) are disregarded.

Format:

LABEL AOPERATIONA OPERAND
unused SEQ[ .options] [{lfn }],{S}[,name]
”
Hcolumn-position}] ,{content }
SAME
.} increment
[arere])

Options:

D List sequenced module.
N Do not list header records.

P  Punch sequenced module.
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Positional Parameter 1:

Lfn

Specifies logical file name of the disk file in which the source module to be
sequenced or resequenced resides.

If omitted, the job run library ($3Y$RUN) is assumed to contain the module to be
sequenced or resequenced. If used with the ELE or COR statement, it must match
the Ifn in that statement. '

Positional Parameter 2:

S,M
Specifies the type of module being sequenced as either a program source
module (S) or a macro/jproc source module (M).

Positional Parameter 3:

name

Identifies the name of the source module to be sequenced or resequenced.
This parameter is required when the SEQ control statement is being used to
sequence or resequence a source module. If the SEQ control statement
immediately follows a COR or ELE control statement, then the SEQ control
statement is used to resequence the source module as it is corrected or
sequenced as it is added, respectively. In this case, the name must match the
name specified in the COR or ELE statement.

If omitted:

B and the SEQ control statement immediately follows an ELE control statement,
the SEQ control statement can be used to check the sequence of a source
module being filed. (See coding example 5.)

B and the SEQ control statement immediately follows a COR control statement,
the SEQ control statement can be used to identify a sequence field, in the
source module being corrected, that is to be used to insert corrections. (See
coding example 6.)

Positional Parameter 4:

column-position
Specifies the first column position in the source module where the sequence
field begins and where the sequence data is incorporated. A sequence number
eight characters in length and beginning in column 73 is referred to as a
standard sequence number.

If omitted, column 73 is assumed to be the first column of the sequenced field.




UP-8062 Rev. 8 SPERRY UNIVAC 0S/3 2-79
SYSTEM SERVICE PROGRAMS

Positional Parameter 5:

content
A 1- to 8-character value that specifies the initial value to be placed into the
sequence field of the first record in the module. The length of this value
determines the length of the sequence field. The mixing of sequence numbers
with alphabetic and numeric characters is permitted, provided the alphabetic
and numeric string remain intact and the alphabetic characters are left-justified.
For example, MA400 is a valid sequence number but M4AQOO is not.

SAME
Indicates that the content of the sequence field of this first record of the
module being resequenced is to remain as it was. This specification assumes
that this field occupies eight character positions. If it does not, this parameter

should not be specified. Instead, the initial sequence field content should be
respecified.

if omitted, the initial sequence field contents is assumed to be 00000000 (eight
Zeros).

Positional Parameter 6:
increment
A decimal number, not to exceed 255, that specifies the sequence increment

to be used in the sequencing process.

If omitted, the increment is assumed to be 1.

Examples:
1 190 16 72
1. SEQ.DP D14,S,EXAMPLE1,20,LNK000, 10
2. SEQ.N D12,S,EXAMPLE2,,SAME
3. ELE  05,S,BALSORC

SEQ D5,S,BALSORC, ,BALOOO2D, 10
-SOURCE MODULE CARD DECK-

EOD
4. ELE D6,S,COBSORC

SEQ D6,S,COBSORC,1,C0BOOOO1
-SOURCE MODULE CARD DECK-

EOD
5. ELE D7,S,BALSORC

SEQ D7,S,,,SRC0000,1
-SOURCE MODULE CARD DECK-

EOD
6. COR DO,S,TESTEXAM

SEQ D®,S,,1,SRCOV000
-SOURCE MODULE CORRECTION CARD DECK

EOD
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2.8.28.

Function:

Causes the source module EXAMPLE1 in file D14 to be sequenced in column
positions 20-25; the initial content (sequence number) is to be LNKOOO; the
increment is 10. The sequenced module is to be punched and listed.

Causes the source module EXAMPLE2 in the file D12 to be resequenced in
column positions 73-80; the initial content is unchanged; the increment is 1.
No listing of headers is to be provided.

Causes the source module named BALSORC to be added to file D5 and
sequenced (or resequenced if the card file already has sequence numbers in it)
in columns 73 through 80 with the initial value BALOOOOO, and each
succeeding record to be incremented by a count of 10.

Causes the source module named COBSORC to be added to file D6 and
sequenced (or resequenced if the card file already has sequence numbers in it)
in columns 1 through 8 with an initial value of COBOOOO1, and each
succeeding record to be incremented, by default, by a count of 1.

Causes the source module BALSORC to be added to file D7 and its sequence
numbers checked for agreement with the column position (73 through 79),
content (SRCO000), and increment (1) specifications of the SEQ control
statement.

Causes the source module TESTEXAM in file DO to be corrected in accordance
with the source records contained in the correction card deck. The sequence
number field in the source module TESTEXAM that is being keyed on to
incorporate the source module corrections begins in column 1 and has a length
of eight column positions.

Skip Source Module Records (SKI) Control Statement

The SKI control statement is used only in conjunction with the COR control
statement to make source module corrections. The SKI statement allows one or
more original source module records to be bypassed by the COR function.

When a SKI control statement is processed, records are read from the old data set
and written into the new data set until a sequence number is detected that
matches the sequence number in the sequence field of the SKI command. The skip
operation is then initiated and continues until a sequence number that matches the
operand field of the command is detected. If the sequence field of the SKI control
statement is blank, the skip operation is initiated immediately.

Format:
LABEL l AOPERATIONA | OPERAND | SEQUENCE
SKI[ .options]| last-sequence-no [starting-
sequence-
noj
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Options:
D List the records skipped.
Positional Parameter 1:

tast-sequence-no

Is a 1- to 8-character alphanumeric string that identifies the sequence number
of the last source module record to be bypassed.

Sequence Field Parameter:

starting-sequence-no
Is a 1- to 8-character alphanumeric string that identifies the sequence number
of the first source module record to be bypassed. This field begins in column
73 unless a SEQ control statement dictates otherwise.

If omitted, the skip operation is initiated immediately, starting with the source
module record that immediately follows the last source module record operated on
by the COR function.

Examples:

See examples under recycle source module current position pointer (REC) control
statement.

2.9. LIBRARIAN CANNED JOB CONTROL STREAMS

The following librarian canned job control streams provide you with a more convenient
method of performing certain library functions without having to punch the parameters
and job control statements normally required to run them. These functions reside in the
system load library file ($Y$LOD), and their corresponding job control streams reside in
the system job control stream library file ($Y$JCS). The functions are initiated from the
system console by keying in their associated job control stream name.

Table 2-3 shows the job names associated with the functions performed.

Table 2-3. Librarian Canned Job Control Streams

Job Name Function

DRDP Prints directory partition of a librarian disk file

LISTRES Prints directory for SYSRES modules

MODLST Lists the contents of the system libraries

PACKRES Compresses all modules on SYSRES and prints diectory of compressed modules
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2.9.1. Print Library Directory Partition (DRDP)

You can display the directory partition of any librarian disk file. A canned job control
stream is provided that initiates the display for most files. Key in the following
command on the system console to initiate the job.

RV DRDP,,V=vsn,L=file-identifier

The V (volume) keyword specifies the volume serial number of the volume containing
the file. The L (label) keyword is the file identifier of that file; the maximum length is 11
characters for this keyin. For those files with a file identifier of more than 11 characters
specified on the LBL job control statement, the following job control stream must be
used.

1 10 16

// JOB DRDP

// DVC 20 // LFD PRNTR

// DVC 50 // VOL vsn // LBL file-identifier
// LFD LUSDTFI

// OPTION JOBDUMP

// EXEC SULBD

// PARAM file-identifier

/&

// FIN

2.9.2. Print Directory for SYSRES Modules (LISTRES)

The LISTRES job control stream prints the directory for all the modules residing on your
SYSRES pack or just the modules contained in a particular file on your release volume,
depending on how you key in the RUN command. The format of the RUN command
used to call LISTRES is:

RV LISTRESL,[,F=file-name]l[,V=vsn]]

The F parameter specifies the file names of all the modules on your SYSRES pack to be
printed. If more than one file is specified, then the file names must be enclosed by
parentheses and separated by commas.

If the F parameter is omitted, all modules contained in all system files are printed.

The V parameter specifies the volume serial number of your release volume.
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The LISTRES supported file names are:

LOD SG$JCS SCLOD HELP
OBJ SG$LOD MIC SHR
MAC SG$0OBJ SAVE SDF
SRC SG$MAC DLG VP
JCS SMC FMT MSG

The following is an example of a typical LISTRES keyin:

RV LISTRES,,F=(LOD,JCS,SRC)

Here, the system load, system job control stream, and system source files are listed.

NOTE:

LISTRES will not list the contents of any volume that is not a release volume.

2.9.3. List the Contents of the Release Volume System Libraries (MODLST)

MODLST lists the modules and macros in five system libraries ($Y$SRC, $Y$OBJ,
$YSLOD, $YSJCS, and $YSMAC). Each module and macro is given in alphanumeric
sequence and is accompanied by a description of its function and its size. To run
MODLST, key in the following command from the system console:

RV MODLST[,,VSN=vol-ser-no}

where:

VSN=vol-ser-no
Specifies an optional work disk. MODLST uses 30 cylinders on this disk for its
work space. If you don’'t specify this option, the work space for the job is
allocated on the disk containing $Y$RUN.

2.9.4. Pack SYSRES Modules and Print Directories (PACKRES)

The PACKRES job control stream packs and prints the directories of all modules
residing on your release volume. The format of the RUN command to call PACKRES is:

RV PACKRESL,[,F=file-namel[,V=vsn]]

The F parameter specifies the file names (Table 2-5) of all the files to be packed and
printed. You can list the file names in any order. If the F parameter is omitted, then all
files on your release volume are packed and printed.
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The V parameter specifies the volume serial number of your release volume.

The PACKRES supported file names are:

LOD SG$JCS SCLOD HELP
oBJ SG$LOD MIC SHR
MAC SG$0BJ SAVE SDF
SRC SGSMAC DLSG IVP
JCS SMC FMT MSG

The following is an example of a typical PACKRES operation:

RV PACKRES,,F=(0BJ,SRC,LOD)

Here, the system object, source, and load files are packed and printed.

NOTE:

PACKRES assumes that a certain set of files exists on all release volumes. If your
volume is not a release volume, open errors may occur if certain files are not present.

2.10. PROGRAMMING EXAMPLES

Some typical examples of librarian jobs follow. These jobs are illustrated as a function

of the job control stream used to execute the librarian and the librarian maps produced
for each job.

2.10.1. Repositioning Modules in a Disk Library File

This job rearranges modules in a disk file. it copies modules from the original file into a
new file in the new sequence, as listed in the following job control stream. Names such
as MODA1 and MODAY7 are of the first and last modules in each series of consecutive
modules that are copied with each COP statement. After all the modules are copied to
the new file, the original file is scratched and the new file is renamed as the original.
Figure 2—13 illustrates the librarian map for this job.
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(ORIGINAL) (HOLD)
MODA 1 MODD1
MODA? MODDS6
MODB 1 MODA 1
MODBS MODA?
MODC 1 MODC1
MODCS MOoDC8
MODD1 MODB1
MODD6 MODBS
MODE MODE 1
MODE4 MODE4

Job Control Stream:

1. //J0B SHUFFLE

2. // DVC 20 // LFD PRNTR

3. // DVC 50 // VOL DO0410

4. // LBL ORIGINAL // LFD RG

5. // DVC 50 // VOL DO0O410

6. // EXT ST,,1,BLK,(256,4000)

7. // LBL HOLD // LFD HD

8. // EXEC LIBS

9. /%

10. FIL D1=RG,D2=HD

1. cop D1

12. RES D1,S,MODD1

13. cop.U D1,S,M0ODD6,D2

14. RES  D1,S,MODA1

15. CoP.U D1,0,MODA7,D2

16. RES D1,S,MODC1

17. cop.u D1,L,MODC8,D2

18. RES D1,$,MODB1

19. cop.u D1,L,M0DBS8,D2

20. RES D1,S,MODE1

21. cop.U D1,S,MODE4,D2

22. cop D2

23, /*

24.| // SKIP END,11111111

25.| // SCR RG

26.| // REN HD,ORIGINAL

27.| //END NOP

28.1 /&
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10.

11.

Identifies the job.
Assigns a printer to the job.

Identifies logical unit number 50 for disk volume DO0410, which contains the
original file.

Declares file name ORIGINAL and logical file descriptor RG for the original file.

Identifies logical unit number 50 for disk volume DO0410 to be used for the
new file.

Allocates file space for the new file.

Declares file name HOLD and logical file descriptor HD for the new file.

Initiates execution of the librarian.

Indicates the start of the librarian control statements.

Assigns a type code and a logical file number to the files in the job. Thus, in
the control statements that follow, D1 refers to ORIGINAL and D2 refers to

HOLD.

Prints a sequential list of the modules in file ORIGINAL before the modules are
rearranged.

12 through 21.

Copy modules from file ORIGINAL to file HOLD, moving a series of consecutive
modules at a time. Each RES statement sets the pointer in file ORIGINAL to the
first module in the series. Then a COP statement copies all modules from the
pointer to the module named in the COP statement.

22. Prints a sequential list of the modules in file HOLD.
23. Identifies the end of the librarian control statements.
24 and 27.

25.
26.

28.

Skip the scratch and rename operation if any errors occur in the job.
Scratches file ORIGINAL.
Renames file HOLD to ORIGINAL.

Indicates the end of job.

NOTE:

To save both the original file and the new file, omit lines 24 through 27.




UNIVAC 0S/3 LIBRARIAN
DATE 82707706 TIME 11.58

BLOCK REC NAME TYPE OATE TIME COMMENTS

es COMMAND cosccsnee FIL D1:=RG,D2=HD
01 - VSN IS DOO410, LFD IS RG s FILE LABEL IS ORIGINAL
D 2 - VSN IS DOO413, LFO IS HOD s FILE LABEL IS HOLD

ee COMMAND ocevrvesne cop D1

PAGE # 0001
VER220401

Figure 2-13. Librarian Map for Repositioning Modules (Part 1 of 5)
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BLOCK

REC

SOURCE
SOQURCE
LOAD

LOAD

SOURCE
SOURCE
0BJECT
SOURCE
SOURCE
LOAD

SOURCE
SOURCE
LOAD

LOAD

LOAD

SOURCE
SOURCE
SOURCE
SOURCE
LOAD

SOURCE
LOAD

LOAD

SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SQURCE
SOURCE
SOURCE

NAME

MODAL
MODA2
MODA 3000
MODAWO000
MODAS
MODAG
MODAT
M0DB1
M00B2
M0D8 3000
MODBY
MODBS
M0D36000
M0DB7000
M00880209
MODC1
MOODC2
MODC3
M0DC4
MODCS5000
MODCH
M00CT7000
MODC8OO0C
MODD1
MODD2
MO003
MODD&
MODDS
MODD6
MCDE1L
MODE2
MODE3
MO0E4

TYPE

81/04/27
81/04/727
81/05/06
81/05/08
81/05/08
81705712
81/05/712
81/05/712
81/06/01
81/06/01
81/36/05
81706729
81/07/06
81707710
81/08/71u
81/3a/14
81708721
81/08/2u
81/08/24
81703724
81709701
81/09/11
Q0s2av/00
80s08s08
30708708
80/s08/03
80703708
207087308
agsossns
80/78/08
8Grsa8sn08
8Gso8/08
30/08/708

BLOCKS REMAINING

DATE

TIME

TABLE OF CONTENTS

0%9.14
09,22
11.10
10.44
11.06
13.45
13.48
13.59
12.33
12.50
12.45
12.38
14,52
l4.14
13,31
13.35
13.51
10.43
10.47
10.54
10.28
88.30
00.08
16434
16.35
16437
16439
16.41
16.43
16.u44
16.45
16.45
16.47

COMMENTS

DIRECTORY 00000C PRIME 00000 THIRD 000000

UNUSED 0An000

PAGE # 0002

oo COMMAND seasccess RES D1,5,M0001
e COMMAND coececose COP.U D1,S,M0DD6,02

000001 005 MODD1 SOR 80/08/08 16434

000004 052 MODD2 SOR 80/08/08 16.35

000005 Q067 MODD3 SOR 80708708 16,37

000007 005 MODD4 SOR 80/08/08 16439

000008 005 MODOS SOR 80/08/08 1641

Figure 2—13. Librarian Map for Repositioning Modules (Part 2 of 5)
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PAGE # 0003

BLOCK REC NAME TYPE DATE TIME COMMENTS
000008 171 M0DD6 SOR 80/08/08 16.43
oo COMMAND RES 01,SyMODAL
+o COMMAND CoP.U D1,0,M0DA7,02
006009 118 MODAL SOR 81704727 09.14
000014 031 MODA2 SOR 31/04/27 09,22
200015 179 MODA3G0O  LOD 81705796  11.10
go0019 077 MODA4000  LOD 81/05/08  10.44
000020 021 MODAS SOR 81735738  11.06
000022 150 MODAG SOR 81/05/12  13.45
200023 126 MODAT 084 81/05/12 13.48
e« COMMAND RES D1,5,M00C1
oo COMMAND COP.U D1,L,MODC8,D2
000032 005 MODC1 SOR 81/08/14 13,35
000034 034 MODC2 SOR g1/08/21 10.51
000035 034 M0ODC3 SOR 81/08/24% 10,43
200039 030 MODCH SOR 21/08/724  10.47
000040 005 MODCS000  LOD 81/08724 10.54
003043 021 MO0OC6 SOR 81/09/901 10.28
000044 187 MODC700Q  LOD 81/09/11  08.30
0U0052 164 MODC8JOC  LOD 03/00/00  Q0.03
«s COMHAND RES D1,$,M0081
o« COMMAND COP,U 01,L,M0088,02
000058 057 MODB1 SOR 81/05/12  13.59
000061 005 MODB2 SOR 81/06/01 12.33
000074 123 MODB300J  LOD 81/06/01 12.59
000083 021 MODBY SOR 81/36/35  12.45
300084 142 MODBS SOR 81706729  12.38
090086 034 M0DB60D0  LOD 81/C7/06  14.52
000118 965 MOD37000  LOO 81/G7/10  14.14
000174 021 M0DB8000  LOD 81/08/714 13,31
«e COMMAND RES D1,S,M00EL
«s COMMAND coP.U 01,5S,MODEH, D2
000182 180 MODE1 SOR 807087038 16.44
000184 076 MODE2 SOR 80/08/08  16.45
0003185 065 MODE3 SOR 80/08/08 16,45
000186 149 MODEY SOR 80/08/08  16.47

Figure 2—13. Librarian Map for Repositioning Modules (Part 3 of 5)
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BLOCK REC

SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
LOAD

LOAD

SOURCE
SOURCE
0BJECT
SOURCE
SOURCE
SOURCE
SOURCE
LOAD

SOURCE
LQAD

LOAD

SOURCE
SOURCE
LOoAD

SOURCE
SOURCE
LOAD

LOAD

LOAD

SOURCE
SOURCE
SOURCE
SOURCE

LIBRARIAN FINISHED

NAME

MODOD1
MOODD2
MODD3
MODD4
MODOS
MODDS6
MODA1
MODA2
MODA 3000
MODA4000
MODAS
MODA S
MODA7
MODC1
MODC2
MODC3
MODCH
MODCS000
MODCs
MODC 7000
M00C8000
MOOR1
Mo082
M008 3000
MODE#4
MODBS
MoDR600Q
MODB 7000
MODBBOOO
MODEL
MODE2
MQODE3
MODE4

TYPE

80/08/08
80/08/08
8Q0/08/08
80/08/08
80/08/08
80/08/08
81/04/27
81704727
81/05/06
81/0S/08
81/05/08
81/08/12
81/05/12
81/08/14
81/7a8r21
81/08/24
81708724
81/08/724
81709701
81709711
0a/Qcsa0
81708712
81706701
81/06/01
81706705
81706729
81/07/06
81/07/10
81/08/714
807087038
30/08/08
80/s08/s08
80/08/08

BLOCKS REMAINING

DATE 82/07/06 TIME 11.58
TOTAL NUMBER OF ERRQRS 00000 uPSI SETTING X'00°

DATE TINME COMMENTS

TABLE OF CONTENTS

16.34
16.35
16.37
16.39
16.41
1643
09.14
09.22
11.10
10.44
11.06
13.45
13.48
13.35
10.51
10,43
10,47
10.54
10.28
08.30
00.08
13.59
12.33
12.50
12445
12.38
14.52
14.14
13.31
1644
16.45
164,45
16,47

DIRECTORY 000000 PRIME 00000 THIRD 00000N UNUSEND 00NN00

PAGE % 000S

Figure 2—13. Librarian Map for Repositioning Modules (Part 5 of 5)
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2.10.2. Sorting Modules into Separate Files by Type

This job sorts modules from one file into separate files for each module type. This job
was run interactively, so the files for each module type were allocated with an
interactive services ALLOCATE command before the job was run. Figure 2—14 illustrates
the librarian map for this job. Notice that the last COP statement caused an error
because there were no macro/jproc source modules in the original file. However, the job
terminated normally.

Job Control Stream:

1. | // JOB TYPSRT

2. | 77 pvec 20 // LFD PRNTR
3. | /7 pvc 50 // voL Doo41e
4. | 7/ LBL ORIGINAL // LFD RG
5. | /7 DVC 50 // VOL DO®410
6. | /7 LBL ALLSRC // LFD SC
7. 1 77 pvc 50 7/ voL Doo410
8. | // LBL ALLOBJ // LFD OB
9. | 77 bvec 50 /7 VOL DOO410
10.| // LBL ALLLOD // LFD LD
11.| /7 DVC 50 // VOL D@Q410
12.| // LBL ALLMAC // LFD MC
13.| // EXEC LIBS

14.| /3

15. FIL D1=RG, D2=SC,D3=0B,D4=LD,D5=MC
16. coP D1

17. cop »1,S,,D2
18. cop 01,0,,D3
19. coP D1,L,,D4
20. COP D1,M,,D5
21.| 7+

22.1 /8

1. Identifies the job.
2. Assigns a printer to the job.

3. Identifies logical unit number 50 for disk volume DO0410, which contains the
original file.

4. Declares- file ORIGINAL and logical file descriptor RG for the original file.

5 through 12.
Are device assignment statements for the files for each module type. All are
on disk volume D0O0410 with logical unit number 50. The files are named
ALLSRC, ALLOBJ, ALLLOD, and ALLMAC. They are assigned logical file
descriptors SC, OB, LD, and MC, respectively.
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13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

Initiates execution of the librarian.

Indicates the start of the librarian controi statements.

Assigns a type code and logical file number to the five files used in the job.
Thus, in the control statements that follow, D1 refers to ORIGINAL, D2 to
ALLSCR, D3 to ALLOBJ, D4 to ALLLOD, and D5 to ALLMAC.

Prints a table of contents of all modules in file ORIGINAL.

Copies all source modules from file ORIGINAL to file ALLSCR and prints a list
of all of the modules copied.

Copies all object modules from file ORIGINAL to file ALLOBJ and prints a list of
all of the modules copied.

Copies all load modules from file ORIGINAL to file ALLLOD and prints a list of
all of the modules copied.

Copies all macro/jproc modules from file ORIGINAL to file ALLMAC and prints
a list of all of the modules copied.

Indicates the end of the librarian control statements.

Indicates the end of job.



UNIVAC 0S/3 LIBRARIAN
DATE 82/07/08 TIME 15,39

BLOCK . REC NAME

oo COMIIAND evecesces FIL

[wle NoRe v
N E NN

oo COMMAND sevvecens copP

VSN
VSN
VSN
VSN
VSN

TYPE DATE

TIME

COMMENTS

D1=RG,02=SC,D3=0B,D4=LD,D5:=MC

IS DOOos10,
Is DOJ419,
Is ooouto,
IS Gooul0,
IS DOQu10,

0t

LFOD
LFD
LFD
LFO
LFD

Is
IS
Is
IS
Is

RG
SC
[o]:}
LD
MC

14
A4
?
’
?

FILE
FILE
FILE
FILE
FILE

LABEL
LABEL
LABEL
LABEL
LABCL

Is
Is
Is
Is
IS

ORIGINAL
ALLSRC
ALLOBY
ALLLOD
ALLMAC

PAGE # 0001
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Figure 2-14. Librarian Map for Sorting Modules by Type (Part 1 of 3)
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BLOCK

ee COMMAND covescsses

Q00001
000004
420005
000007
Q00ags
000008
0Q0009
000014

REC

SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
SOURCE
LOAD

LOAD

SOURCE
SOURCE
0BJECT
SOURCE
SOURCE
SOURCE
SOURCE
LOAD

SOURCE
LOAD

LOAD

SOURCE
SOURCE
LOAD

SOURCE
SGURCE
LOAD

LOAD

LOAD

SOURCE
SOURCE
SOURCE
SOURCE

gaos
052
Ge7
0os
aas
171
118
a31

NAME

MODD1
M00D2
MOODD3
MODDY
MODDS
MOODS
MODAL
MODA2
MODA3D0D
MODA4QQ0
MODAS
MO0DAS
MODA7
MODC1
MODC2
MODC3
M00CH
M0DCS5000
MODCH
MODC 7090
M0DC 3030
M0031
M0DR2
MODR30NC
MOD34
MOD3S
MODES00D
M0087300
MODE30UT
MODE1
MODE2
MODE 3
MODE4

TYPE

80708708
83/03/03
80/09/08
30/08/08
80/33/708
80708708
81/04/27
81704727
81/705/06
81/05/78
e1/05/038
817925712
217as712
81/08/14
81/728r21
31/38/724
8l/708/724
81708724
31709701
31/09/11
01/00/702
21735712
81/06/01
81/7906/0D1
81736705
31706729
81737796
31701710
31/03/714
3J/3G8/08
827348/08
80/138/08
33,38/703

BLOCKS REMAINING

cop

MO00D1
MODD2
MO0D3
MODD4
M000S
M00D6
M0oDAL
MODA2

DATE

TIME

TABLE OF CONTENTS

16.34
16.35
15437
16.39
16.41
16.43
G9.14
09.22
11.10
10.u4
11.06
13.45
13.48
13.35
1%.51
10.43
10.47
13.54
17.28
J8. 30
0G.03
13.59
12.33
12.50
12.45
12.38
14452
l4.14
13.31
l6.44
16,45
16.45
16.47

COMMENTS

DIRECTORY 900000 PRIME 00000

D1,%44D2

SOR 80/08/08
SOR 80s048/08
SOR 80s08/08
SOR 84/08/08
SOR 83s38/708
SOR 80/7G8/03
SOR 81704727
SOR 81704727

16,34
16435

1637

16.39
16441
16«43
09.14
09.22

THIRD QoOoCn

UNUSED n0aann

PAGE # 00N2

Figure 2-14. Librarian Map for Sorting Modules by Type (Part 2 of 3)
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c
PAGE # 0003 g
BLOCK  REC NAME TYPE DATE TIME COMMENTS o
&
Y
000015 179 MODAS SOR 81/05/08 11.06 z
000018 072 MODAG SOR 81705712 13.45 =
000019 071 MODC1 SOR 81/08/14 13.35 ©
200021 08¢ MODC2 SOR 81708721 10.51
000022 074 MODC3 SOR 81/08/24 10.43
000026 095 MODCY SOR 81/08/24 10.47
000027 V62 MODC6 SOR 81/09/01 10,28
pD00029 00S 30381 SOR 81705712 13.59
000031 135 M0ODB2 SOR 81/06/01 12433
200045 005 MODBY SOR 81/06/05 12.45
000046 091 M0ODBS SOR 81/06/29 12,38
000048 035 MODE1 SOR 80708708 16.44
200049 135 MODEZ SOR 80/038/08 1645
000050 130 MODE3 SOR 30/08/08 16445
0000s2 005 MODEY4 SOR 80708708 15.47
so COMHAND sosovacses copP D1,0,,03
000001 005 MODAT oedJ 81705712 13.48 o
<
ee COMMAND eeeovecona cop Dl,L,,D4 E”..m ‘
m 9 |
000001 305 M0DA3000 LoD 21/95706 11.10 29
000004 077 MODA4J00  LOD 31/0%5/08 10.44 wnX
200005 021 M00CS300 LOD 81/08/24 10.54 g'<
000008 176 MODCT7003  LOD 81/09/11 8,30 <<z:
000016 164 M0DC8NGY LoD 00/s002/00 00.08 62
030022 US7 M0D33079 LOD 81/36/01 12.50 myg
000030 021 M0036000 LOD 81/07/06 14.52 3o
000062 065 MCO37000  LOD 81/07/10 14,14 80
000118 021 MJD38000 LOD 81/08/14 13.31 :uQ
>w
se COMMAND coeoneesns corp Dl,M,,05 %
BO60*%***xNOTHING FOUND
LIBRARIAN FINISHED
DATE 82/07/08 TIME 15.39
TOTAL NUMBER OF ERRORS 03301 UPSI SETTING X'40°
Figure 2-14. Librarian Map for Sorting Modules by Type (Part 3 of 3)
n»
©
o
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2.10.3. Building Module Groups

This job builds two module groups by copying modules from other files. All the files
have already been allocated. Figure 2—15 illustrates the librarian map for this job.

Job Control Stream:

1. | 77 JOB GROUP

2. | 77 pbvc 20 /7 LFD PRNTR

3. | 77/ pvec 50 7/ VOL DO®410 // LBL ORIGINAL // LFD RG
4. | 77 pvc 50 7/ voL pee410 7/ LBL ALLLOD // LFD LD
5. | /7 pvc 50 // vOL DO®410 // LBL ALLSRC // LFD SC
6. | 77 pvc 50 /7 VvOL DOO410 // LBL MIXED // LFD MX
7. | 77/ Exec LiBs :

8. | /%

9. FIL D1=RG,D2=LD,D3=SC,D4=MX

10. BOG  GROUPMIX,D4

1. COP  D1,S,MODA1,D4

12. COP  D3,S,MODC3,D4

13. COP  D1,0,MODA7,Dé&

14. EOG  GROUPMIX,D&

15. COP D&

16. BOG  LOADS,D1

17. RES D2,L,MODC5000

18. COP.U D2,L,MODC8000,D1

19. EOG  LOADS,D1

20. coP D1

21.| /*

22.1 /18

1. Identifies the job.
2. Assigns a printer to the job.

3 through 6.
Declare files for the job. All are on disk volume D0O0410 with logical unit
number 50. Their names are ORGINAL, ALLLOD, ALLSRC, and MIXED with
logical file descriptors RG, LD, SC, and MX, respectively.

7. Initiates execution of the librarian.
8. Indicates the start of librarian control statements.
9. Assigns a type and logical file number to each of the files used in the job.

Thus, in the control statements that follow, D1 refers to file ORIGINAL, D2 to
ALLLOD, D3 to ALLSRC, and D4 to MIXED.
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10 through 14.

15.

16.

17.

18.

19.

20.

21.

22.

Build group GROUPMIX in file MIXED. The BOG statement writes the

" beginning-of-group record in file MIXED. Line 11 copies source module MODA1

from file ORIGINAL; line 14 copies source module MODC3 from file ALLSRC;
and line 15 copies object module MODA7 from file ORIGINAL. The EOG
statement writes the end-of-group record in file MIXED.

Prints a table of contents for file GROUPMIX.

Writes the beginning-of-group record for group LOADS in file ORIGINAL.

Sets the pointer in file ALLLOD to load module MODCS5.

Copies all modules from MODC5 to MODCS in file ALLLOD to group LOADS in
file ORIGINAL.

Writes an end-of-group record for group LOADS in file ORIGINAL.
Prints a table of contents for file original.
Indicates the end of the librarian control statements.

Indicates the end of job.




UNIVAC 0S/3 LIBRARIAN
DATE 82/07/08 TIME 1S.42

BLOCK REC NAME

oo COMMAND ceevecene FIL

oo
£ WN -

oo COMMAND osevsscsns BOG
0googor  00s
oo COMHUAND seersesse cop
000001 OusS
oo COMMAND caeecscce cop
000005 191
ee COMMAND cvesscnnn corp
000009 188
ee COMMAND coavecoee E£0G
000017 228

os COMMAND cscesceas cop

MODAL

M0DC3

MODAT

VSN
VSN
VSN
VSN

GROUPMIX

GROUPMIX

TYPE DATE

TIME

D1=RG,D2=LD,D3=SC,D4=MX

IS DOOu10, LFD IS
IS D3J410, LFOD IS
Is 000410, LFD IS
IS DOJ410, LFD IS
GROUPMIX, 04
BOG
01,5,M00A1,04
SOR 81/04/27
03,5,M00C3, 04
SOR 81708724

01,0,M0DA7,04

0BY 81705712
SROUPMIX,D4
EQG

04

09.14

10.43

13.48

- e e .

COMMENTS

FILE
FILE
FILE
FILE

LABEL
LABEL
LABEL
LABEL

Is
Is
IS
Is

ORIGINAL
ALLLOD
ALLSRC
MIXED

PAGE # 0001
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Figure 2-15. Librarian Map for Building Module Groups (Part 1 of 3)
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c
PASE # 0002 -
BLOCK  REC NAME TYPE DATE TIME COMMENTS S
N
n
TABLE OF CONTENTS z
o4}
BOG GROUPMIX
SOURCE MODA1 81704727  09.18
SOURCE MODC 3 81,/08/24 10443
- 0BJECT MODAT 81/05/12  13.48
£06G GROUPMIX .
BLOCKS REMAINING DIRECTORY 000000 PRIME 000001 THIRD 000G0N UNUSED 000000
ve COMMAND eeveseees BOG LOADS,D1
000187 ass LOADS 8OG
ve COMMAND eouwseess RES D2,L,M00C5 .
-<
wU)
ee COMMAND eeeeeence  COPWU 02,L,M0DC8,D1 ! 3
=3
006187 098 »00CS000  LOD 41/08/24  10.54 03
000191 005 ¥00C7A00  LOD 81709711  08.30 m
00U198 164 MODC80OO0  LOD 00/00/00  00.08 s
=2
<
ve COMHAND eeesveews EOG LOADS,D1 My
g(’)
000204 357 L0ADS £0G Do
: O &
I ~
ee COMHAND ssvescsee cop D1 > w
<
»

Figure 2—15. Librarian Map for Building Module Groups (Pa