
•

•

•

J. ,.,..

•. 1

System Service Programs
(SSP)

User Guide(Series 'Jo)
~r s,,t,,.. fOsce UP-lt~I

This Library Memo announces the release and availability of Updating Package B to "SPERRY
Operating System/3 (OS/3) System Service Programs (SSP) User Guide", UP-8062 Rev. 8.

This update documents the following new features for the 8.1 release:

• a new parameter for the SMCLIST canned job control stream to sort the SMC listing by the time alone
that SMCs were applied, not time and date; and

• Change in the default for the FMT parameter on the SMCLIST job control stream from full to condensed.

• an enhancement to the condensed listing produced by SMCLIST to show which SMCs were backed out,
replaced, or not installed because of an error during installation.

• Additions to the load code phase definition record format and block load module header record format
tables to identity Base 0 and Key 0 shared code .

All other changes are corrections or expanded descriptions applicable to features present in SSP prior to the
8.1 release.

Copies of Updating Package B are now available for requisitioning. Either the updating package only or the
complete manual with the updating package may be requisitioned by your local Sperry representative. To
receive only the updating package, order UP-8062 Rev. 8-B. To receive the complete manual, order UP-8062
Rev. 8.

Mailing Lists
BZ, CZ and MZ

Mailing Lists AOO, A01, 18, 18U, 19,
21, 21 U, 75, 75U, 76 and 76U

(Package A to UP-8062 Rev. 8,
31 pages plus Memo)

June, 1983

•

•

•

•

•

•

System Service
Programs (SSP)

User Guide

This Library Memo announces the release and availability of Updating Package A to "SPERRY UNIVAC Operating
System/3 (OS/3) System Service Programs (SSP) User Guide", UP-8062 Rev. 8.

This maintenance update for Release 8.0 corrects assorted typographical errors in Sections 2, 9, 10, and 13.

Copies of Updating Package A are now available for requisitioning. Either the updating package only or the complete
manual with the updating package may be requisitioned by your local Sperry Univac representative. To receive only
the updating package, order UP-8062 Rev. 8-A. To receive the complete manaul, order UP-8062 Rev. 8 .

Mailing Lists
BZ, CZ and MZ

ln\rc·:, , ,~"';::,
l\r~p 2' t~ J.:)C3

, .,
f :, ;, .

Mailing Lists AOO, A01, 18, 18U, 19, 19U, 20, 20U, 21,
21 U, 75, 75U, 76 and 76U

(Package A to UP-8062 Rev. 8, 23 pages plus Memo)

January, 1983

•

•

•

•

•
U'01-25l Rev. 3'73

System Service Programs

(SSP)

User Guide (Seri6S 'JO)
stuit 10 s-c-llP-IBbl

This Library Memo announces the release and availability of "SPERRY UNIVAC® Operating System/3 (OS/3)
System Service Programs (SSP) User Guide", UP-8062 Rev. 8.

Revision 8 of this manual incorporates the following changes:

• SAT Librarian:

Programming examples added

New PAGE statement

New II PARAM statements: ERROR, PRINT, PRTOBJ, TAPEFILES

COP statement expanded to replace ADD statement (ADD is still supported.)

New A option to process all groups in a file

Load module patch addresses can be expressed relative to start of phase.

New ORG directive for object and load module corrections

New syntax for canned librarian control streams

• New UNXFC parameter for disk and diskette preps

• New FDATA and PARTL parameters for diskette prep

• New COPYREL canned job control stream

• Executing SU$C16, SU$CSL, and DMPRST interactively.

• Other changes applicable to system service program routines for 8.0 and
prior releases.

Mailing Lists
BZ, CZ and MZ

Mailing Lists AOO,A01, 18, 18U, 19, 19U,
20,20U,21,21U,75,75U,76 and 76U

(Cover and 419 pages)

Library Memo for
UP-8062 Rev. 8

September, 1982

Destruction Notice: If you are going to OS/3 release 8.0, use this revision and destroy all previous copies. If you are
not going to OS/3 release 8.0, retain the copy you are now using and store this revision for future use.

Copies of UP-8062 Rev. 7, UP-8062 Rev. 7-A and UP-8062 Rev. 7-B will be available for 6 months after the release
of 8.0. Should you need additional copies of this edition, you should order them within 90 days of the release of
8.0. When ordering the previous edition of a manual, be sure to identify the exact revision and update packages
desired and indicate that they are needed to support an earlier release.

Additional copies may be ordered by your local Sperry Univac representative.

•

·•

•

•

System Service Programs (SSP)

•

Environment: 90/25, 30, 308, 40 Systems

•
H UNIVAC UP-8062 Rev. 8

This document contains the latest information available at the time of preparation.
Therefore, it may contain descriptions of functions not implemented at manual
distribution time. To ensure that you have the latest information regarding levels of
implementation and functional availability, please consult the appropriate release
documentation or contact your local Sperry Univac representative.

Sperry Univac reserves the right to modify or revise the content of this document. No
contractual obligation by Sperry Univac regarding level, scope, or timing of functional
implementation is either expressed or implied in this document. It is further understood
that in consideration of the receipt or purchase of this document, the recipient or
purchaser agrees not to reproduce or copy it by any means whatsoever, nor to permit
such action by others, for any purpose without prior written permission from Sperry
Univac.

Sperry Univac is a division of the Sperry Corporation.

FASTRAND, SPERRY UNIVAC, UNISCOPE, UNISERVO, and UNIVAC are registered
trademarks of the Sperry Corporation. ESCORT, MAPPER, PAGEWRITER. PIXIE, and
UNIS are additional trademarks of the Sperry Corporation.

This document was prepared by Systems Publications using the SPERRY UNIV AC UTS
400 Text Editor. It was printed and distributed by the Customer Information
Distribution Center (CIDC), 555 Henderson Rd., King of Prussia, Pa., 19406.

©1974, 1975, 1976, 1977 - SPERRY CORPORATION PRINTED IN U.S.A.

•

•

•

• ""

•

•

UP-8062 Rev. 8

Part/Section
Page

Number

Cover /Disclaimer

PSS 1

Preface 1 thru 3

Contents 1 thru 6
7

8 thru 10
11

12

PART 1

Title Page

1 1 thru 12

PART 2

Title Page

2 1 thru 6
7

8 thru 24
25

26 thru 40
40a

41 thru 64

64a

64b
64c

65 thru 84

85
86 thru 104

3 1 thru 13

PART 3

Title Page

4 1 thru 44

5 1 thru 3

6 1 thru 22

7 1 thru 9

8 1 thru 34

PART 4
Title Page

9 1, 2
3
4 thru 14
14a
15 thru 20

"New pages

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

PAGE STATUS SUMMARY

ISSUE:
RELEASE LEVEL:

Update B - UP-8062 Rev. 8
8.1 Forward

Update
Level Part/Section

Page Update
Number Level Part/Section

Orig. 9 (cont) 21, 22 B
22a thru 22d B"

B 23. 24 Orig.
25 thru 27 A

Orig. 28 B

Orig. 10 1, 2 Orig.
B 3, 4 A
Orig. 5 thru 7 Orig.
B
Orig. 11 1 thru 4 Orig.

12 1 thru 23 Orig.
Orig.

13 1 thru 23 Orig.
Orig. 24 A

25 thru 27 Orig.

Orig. 14 1 thru 16 Orig.

Orig. 15 1 thru 3 Orig.
A
Orig. 16 1, 2 B
A 2a B"
Orig. 3 thru 5 Orig.
Orig. 6, 7 B
Orig.

Orig. PART 5
A Title Page Orig.
Orig.

Orig. Appendix A 1 thru 3 Orig.
A
Orig. Appendix B 1 thru 10 Orig.

11 B
Orig. 12 thru 14 Orig.

15 B
16 thru 18 Orig.

Orig.

Index 1 Orig.
Orig. 2, 3 B

4 thru 10 Orig.
Orig. 11 B

12 thru 14 Orig.
Orig.

User Comment
Orig. Sheet

Orig.

Orig.

Orig.
A
Orig.
Orig.
Or.ifL

PSS 1
Update B

Page
Number

Update
Level

All the technical changes are denoted by an arrow (-) in the margin. A downward pointing arrow (JJ) next to a line indicates that

technical changes begin at this line and continue until an upward pointing arrow (11) is found. A horizontal arrow {-)pointing to a line

indicates a technical change in only that line. A horizontal arrow located between two consecutive lines indicates technical changes in both

lines or deletions.

•

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

Preface 1

Preface

This manual is one in a series designed to instruct and guide you in the use of the
SPERRY UNIV AC Operating System/3 (OS/3). Specifically described are the OS/3
system service programs and their effective use. The system service programs include
the system librarian, the linkage editor, and the standard system utilities.

This manual is intended for the novice programmer with a basic knowledge of data
processing, but with limited programming experience, and for the more sophisticated
programmer whose experience is limited to systems other than SPERRY UNIV AC
systems. Two other manuals are available that cover the system service programs; one
is an introductory manual and the other is a programmer reference manual (PRM). The
introductory manual briefly describes the system service programs and their facilities .
The PRM describes, in skeletal form, the characteristics of the system service programs
and is intended as a quick-reference document for the programmer experienced in the
use of the system service programs.

This user guide is divided into the following parts:

• PART 1. OS/3 SYSTEM SERVICE PROGRAM REPERTOIRE

Introduces you to the various system service programs through descriptions of their
intended purposes within the OS/3 operating system, their capabilities, and the
terms peculiar to their functional operation.

• PART 2. THE LIBRARIANS

Describes the functional characteristics of the system librarians relevant to you, the
control statements you may use to direct their operation, and the various library
mapping elements they are capable of producing.

• PART 3. THE LINKAGE EDITOR

Describes the functional characteristics, programming considerations, and control
statements required to allow you to effectively use the linkage editor as it is
intended to be used. Also describes the link-edit mapping data produced by the

• linkage editor for every load module it produces.

UP-8062 Rev. 8

• PART 4. SYSTEM UTILITIES

SPERRY UNIV AC OS/3
SYSTEM SERVICE PROGRAMS

Preface 2

Describes the utility programs provided by OS/3 to initialize disk, diskette, and tape
volumes; copy disk, diskette, and tape volumes; and list software maintenance
corrections.

• PART 5. APPENDIXES

Appendix A presents the canned job control streams and the document numbers
where they are described. Appendix B describes the code set components that,
when combined in a particular sequence, make up a program source module, a
macro/jproc source module, an object module, a load module, or a group code set
module.

Each of these parts consists of one or more sections, which cover the different aspects
of the subject matter contained in each part.

To fully understand and appreciate the functions performed by the system service
program, you should be familiar with the information contained in the current version of
the following SPERRY UNIV AC publications:

• 197 4 ANS COBOL programmer reference, UP-8613

• Assembler user guide, UP-8061

• Basic COBOL supplementary reference manual, UP-805 7

• Consolidated data management macro lanquage user guide/programmer reference,
UP-8826

• Data management user guide, UP-8068

• Dump analysis user guide/programmer reference, UP-8837

• Extended COBOL supplementary reference manual, UP-8059

• File cataloging concepts and facilities, UP-8860

• Interactive services commands and facilities, UP-8845

• Job control user guide, UP-8065

• Operations handbook for operators, UP-8072 (for 90/30 and 90/40 systems) and
UP-8511 (for 90/25 and 90/30B systems)

• Spooling and job accounting concepts and facilities, UP-8869

• Supervisor user guide, UP-8075

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

Preface 3

• • System installation user guide/programmer reference, UP-8074

• System messages programmer/operator reference, UP-8076

•

•

The degree of familiarity required varies with the product in question. For example, the
linkage editor user has to be familiar with almost all of the documents. On the other
hand, those using the librarian and the system utilities require only a few of the
documents. And, those interested only in the dump routines can find nearly all of the
information they need in this document alone .

•

•

•

•

•

•

UP-8062 Rev. 8

PAGE STATUS SUMMARY

PREFACE

CONTENTS

SPERRY UNIV AC OS/3
SYSTEM SERVICE PROGRAMS

Contents 1

Contents

PART 1 . OS/3 SYSTEM SERVICE PROGRAM REPERTOIRE

1. INTRODUCTION

1.1. GENERAL 1-1

1.2. THE SYSTEM LIBRARIANS 1-2

1.3. THE LINKAGE EDITOR 1-4

1.4. THE SYSTEM UTILITIES 1-5
1.4.1. Disk Utilities 1-5
1.4.2. Tape Utilities 1-5
1.4.3. Hardware Utilities 1-5
1.4.4. System Utility Symbiont 1.-6
1.4.5. Diskette Utility 1-6
1.4.6. List Software Maintenance Corrections (SMCLIST) 1-6

1.5. LOGGING AND CATALOGING FACILITIES 1-6

1.6. DUMP ROUTINES 1-6

1.7. PROGRAM ERROR CHECKING (UPSI BYTE) 1-7

1.8 . STATEMENT CONVENTIONS 1-10

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

PART 2. THE LIBRARIANS

2. SAT LIBRARIAN FUNCTIONAL CHARACTERISTICS

2.1. GENERAL

2.1.1. Capabilities
2.1.2. Additional Main Storage Requirements

2.2. CONTROL FUNCTIONS

2.3. MODES OF OPERATION

2.4. PROGRAM LIBRARY MANAGEMENT
2.4.1. Naming Conventions
2.4.2. Group Management
2.4.3. Gang Operations
2.4.3.1. Module Type Gang Mode
2.4.3.2. Module Name Gang Mode
2.4.3.3. Total Gang Mode
2.4.3.4. Current File Position
2.4.4. Program Source Module Management
2.4.5. Macro/Jproc Source Module Management
2.4.6. Object Module Management
2.4.7. Load Module Management
2.4.8. File Merging
2.4.9. File Extension
2.4.10. File Compression
2.4.11. File Deletion

2.5. RUN LIBRARY MANAGEMENT

2.6. MAPPING FACILITIES
2.6.1. Standard Map Layout
2.6.2. Source Module Listings
2.6.3. Object and Load Module Listings
2.6.4. Diagnostic Message Listings

2.7. PROGRAM LIBRARY DETAILS FOR SAT FILES
2.7.1. Library File Layout
2.7.1.1. Library Blocks
2.7.1.2. Library Records
2.7.1.3. Record Type Byte
2.7.2. Disk Library Directories
2.7.2.1. Directory Format
2.7.3. Card Libraries
2.7.4. Tape Libraries
2.7.5. Diskette Libraries

2.8. CONTROL STATEMENTS AND PATCH CARDS
2.8.1. Control Statement Conventions and Format
2.8.2. Patch Card Formats
2.8.3. Blocking Load Modules (BLK) Control

Statement

Contents 2

•
2-1

2-1
2-2

2-2

2-3

2-4
2-4
2-5
2-5
2-5
2-6
2-6
2-7
2-7
2-8
2-8
2-8
2-9 • 2-9
2-9
2-9

2-9

2-10
2-10
2-11
2-11
2-11

2-18
2-18
2-19
2-20
2-21
2-22
2-23
2-24
2-25
2-26

2-27
2-27
2-29 • (BLK) 2-29

UP-8062 Rev. 8

• 2.8.4.

2.8.5.
2.8.6.
2.8.7.
2.8.8.
2.8.8.1.
2.8.8.2.
2.8.9.

2.8.10.

2.8.11.

2.8.12.

2.8.13.
2.8.14.
2.8.15.
2.8.16.
2.8.17.
2.8.18.
2.8.19.
2.8.20.
2.8.21. • 2.8.22.

2.8.23.

2.8.24.
2.8.25.

2.8.26.

2.8.27.

2.8.28.

2.9.
2.9.1.
2.9.2.
2.9.3.

2.9.4.

2.10.
2.10.1.

• 2.10.2 .
2.10.3.
2.10.4.

SPERRY UNIV AC OS/3
SYSTEM SERVICE PROGRAMS

Write Beginning of Group (BOG) Record
Control Statement
Compare Elements (COM) Control Statement
Copy Elements (COP) Control Statement
Correct Module (COR) Control Statement
COR Correction Cards

Object or Load Module Corrections
Source Module Corrections

Delete Elements (DEL) Control
Statement
Add Card File Element (ELE) Control
Statement
Declare End-of-Data (EOD) Control
Statement
Write End of Group (EOG) Record
Control Statement
Escape (ESC) Control Statement
Declare File (FIL) Control Statement
Printing a File in Alphabetical Sequence
Pack File (PAC) Control Statement
Controlling Page Advancement for the Librarian Map
Specifying Error Handling during Librarian Execution
Suppressing the Librarian Map
Printing Source Modules in Hexadecima.1 Format
Creating a Multifile Tape

Specifying Date and Time during
Librarian Execution
Recycle Source Module Current Position
Pointer (REC) Control Statement
Rename Element (REN) Control Statement
Produce or Delete Control Statement
Records within Object Module (REPRO) Control
Statement
Reset File Current Position Pointer
(RES) Control Statement
Add, Replace, or Check Sequence Numbers
(SEQ) Control Statement
Skip Source Module Records (SKI)
Control Statement

LIBRARIAN CANNED JOB CONTROL STREAMS
Print Library Directory Partition
Print Directory for SVSRES Modules
List the Contents of the Release Volume
System Libraries
Pack SVSRES Modules and Print Directories

PROGRAMMING EXAMPLES
Repositioning Modules in a Disk Library File
Sorting Modules into Separate Files by Type
Building Module Groups
Copying a Card Deck to Disk

Contents 3

(BOG) 2-31
(COM) 2-32
(COP) 2-38
(COR) 2-41

2-43
2-43
2-46

(DEL) 2-48

(ELE) 2-50

(EOD) 2-52

(EOG) 2-52
(ESC) 2-53
(FIL) 2-58
(LST) 2-59
(PAC) 2-60
(PAGE) 2-62
(// PARAM ERROR) 2-63
(// PARAM PRINT) 2-64
(// PARAM PRTOBJ) 2-64 t (// PARAM
TAPEFILES) 2-64a
(// PARAM
UPDATE) 2-64c

(REC) 2-65
(REN) 2-69

(REPRO) 2-72

(RES) 2-75

(SEQ) 2-77

(SKI) 2-80

2-81
(DROP) 2-82
(LISTRES) 2-82

(MODLST) 2-83
(PACKRES) 2-83

2-84

t 2-84
2-92
2-97
2-102

UP-8062 Rev. 8 SPERRY UNIV AC OS/3
SYSTEM SERVICE PROGRAMS

3. MIRAM LIBRARIAN FUNCTIONAL CHARACTERISTICS

3.1. GENERAL

3.2. CONTROL FUNCTIONS

3.3. CONTROL STATEMENTS
3.3.1. Declare MIRAM File (FIL) Control Statement
3.3.2. Copy Modules (COP) Control Statement
3.3.3. Print (PRT) Control Statement
3.3.4. Delete Module (DEL) Control Statement
3.3.5. Change Name and Comment (CHG) Control Statement

3.4. MIRAM LIBRARY MODULE FORMATS

3.5. PROGRAMMING EXAMPLES
3.5.1. Typical MIRAM Librarian Job Stream

PART 3. THE LINKAGE EDITOR

4. FUNCTIONAL CHARACTERISTICS

4.1. GENERAL
4.1.1. The SAT Interface
4.1.2. Temporary Storage Usage

4.2. LINKAGE EDITOR INPUT AND OUTPUT

4.3. CONTROL STATEMENT FUNCTIONS

4.4. OBJECT MODULE FORMAT

4.5. LOAD MODULE FORMAT

4.6. LOAD MODULE STRUCTURE
4.6.1. Single-Phase Load Modules
4.6.2. Multiphase Load Modules
4.6.2.1. Phase Definitions
4.6.2.2. Phase Names
4.6.2.3. Node Points and Paths
4.6.2.4. Communications between Phases
4.6.3. Multiregion Load Modules

4.7. LINKAGE EDITOR OPERATION
4.7.1. Automatic Inclusion Processing
4.7.2. Automatic Deletion Processing
4.7.3. Common Storage Processing
4.7.4. Automatic Overlay Control Processing
4.7.4.1. Overlay Control Routine
4.7.4.2. Entry Point Table (NTAB)
4.7.4.3. Phase Table (PTAB)
4.7.4.4. Region Table (RTAB)

Contents 4

•
3-1

3-1

3-2
3-2
3-3
3-5
3-7
3-9

3-11

3-12
3-12

4-1
4-2 • 4-3

4-3

4-5

4-7

4-8

4-12
4-13
4-13
4-15
4-16
4-16
4-17
4-19

4-22
4-23
4-24
4-26
4-28
4-30
4-30 • 4-31
4-31

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

4.7.5. Multiple Definition Resolution Processing
4.7.5.1. Standard (Non-V-CON) References
4.7.5.2. V-CON References
4.7.6. Partial Include Processing
4.7.7. Shared Code (Reentrant Code) Processing
4.7.7.1. Share Facility
4.7.7.2. Linkage in Shared-Code Environment
4.7.7.3. Shared Constants
4.7.7.4. Link-Editing Reentrant Code
4.7.7.5. \ Shared Records
4.7.8. Internal Symbol Dictionary (ISO) Processing

4.7.8.1. Object ISD Records
4.7.8.2. Load ISD Records
4.7.9. User Program Switch Indicator (UPSI) Setting

5. PROGRAMMING CONSIDERATIONS

5.1. GENERAL

5.2. OVERLAY STRUCTURES AND DEPENDENCIES

5.2.1. Phase Dependencies
5.2.2. Control Section Dependencies

5.2.3. Program Length
5.2.4. Phase Origins and Node Points
5.2.5 . Use of Multiple Regions

6. CONTROL STATEMENTS

6.1. GENERAL

6.2. CODING FORMAT

6.3. PLACEMENT OF CONTROL STATEMENTS

6.4. EMBEDDED CONTROL STATEMENTS

6.5. BASIC CONTROL STATEMENT PROCESSING

6.6. CONTROL STATEMENT DESCRIPTIONS

6.6.1. Specify Linkage Editor Options

6.6.2. Begin Load Module
6.6.3. Include Object Code
6.6.4. Begin Overlay Phase
6.6.5. Begin New Region
6.6.6. Define Phase Execution Entrance
6.6.7. Define Label

6.6.8. Modify Location Counter

6.6.9 . Reserve Storage

Contents 5

4-31
4-31
4-32
4-34
4-36
4-37
4-38
4-38
4-39
4-39
4-42
4-43
4-43
4-44

5-1

5-1
5-2
5-2
5-2
5-2
5-2

6-1

6-2

6-2

6-3

6-3

6-5
(// PARAM or
LINKOP) 6-5
(LOADM) 6-14
(INCLUDE) 6-15
(OVERLAY) 6-16
(REGION) 6-17
(ENTER) 6-18
(EQU) 6-19
(MOD) 6-20
(RES) 6-21

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

7. THE LINK-EDIT MAP

7.1. GENERAL

7.2. PROCESS MAP

7.3. UNRESOLVED EXTRN REFERENCE LIST

7.4. DEFINITIONS DICTIONARY

7.5. PHASE STRUCTURE DIAGRAM

7.6. ALLOCATION MAP

Contents 6

7-1

7-1

7-2

7-3

7-5

7-6

7.7. ERROR LEGEND, ERROR COUNT LIST, AND UPSI SETTING 7-8

8. PROGRAM EXAMPLES

PART 4. SYSTEM UTILITIES

9. INITIALIZE DISK ROUTINE (DSKPRP)

9.1. GENERAL 9-1

9.2. PREPPING YOUR DISK PACK 9-1

9.3. SPECIFYING THE PREP OPTIONS 9-2
9.3.1. Testing Alternate Track Areas (ALTRK) 9-3
9.3.2. Indicating the Type of Initial Load Control Storage (ILOPT) 9-3
9.3.3. Automatically Recording Defective Tracks (INSRT) 9-3
9.3.4. Indicating Your Disk Pack Is an IPL Volume (IPLDK) 9-4
9.3.5. Renumbering Your Volume Serial Number or Replacing

Initial Load Control Storage (RPVOL) 9-4
9.3.6. Specifying a Partial Prep or Changing Your Volume

Serial Number and VTOC (PARTL) 9-5
9.3.7. How Accurate a Prep Do You Need@ (PREPT and RETRY) 9-5
9.3.8. Specifying Where Prepping Starts and Ends (PTBEG and PTEND) 9-6
9.3.9. Specifying Your Volume Serial Number (SERNR) 9-6
9.3.10. Specifying a Track Condition Table (TRCON and TRKCT) 9-6
9.3.11. Testing an Area before Prepping (VER FY) 9-9
9.3.12. Checking the File Expiration Date (UNXFC) 9-9
9.3.13. Specifying the VTOC Address (VTOCB and VTOCE) 9-10

9.4. FLAGGING DEFECTIVE TRACKS AUTOMATICALLY 9-11

9.5. CREATING THE STANDARD VOLUME LABELS 9-11

9.6. PREPPING YOUR DISKETTE 9-13

•

•

•

•

•

•

UP-8062 Rev. 8

9.7.
9.7.1.
9.7.2.
9.7.3.

9.7.4.
9.7.5.

9.8.

9.9.

9.10.

9.11.
9.11.1.
9.11.2.
9.11.2.1.
9.11.2.2.
9.11.3.

9.11.3.1.
9.11.3.2.
9.11.4.
9.11.4.1 .
9.11.4.2.
9.11.4.3.

9.11.5.

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

SPECIFYING THE PREP OPTIONS FOR A DISKETTE
Renumbering Your Diskette Volume Serial Number
Specifying File Allocation for DSL Diskettes
Changing Your Diskette Volume Serial Number and
VTOC
Specifying Your Diskette Volume Serial Number
Checking the File Expiration Date

INITIALIZING THE DATA SET LABELS

EXECUTING THE DISK PREP

ERROR PROCESSING

PREP CANNED JOB CONTROL STREAMS
Add COS to YSRC on SYSRES
Change a Volume Serial Number

System Console Keyin
Card Input

Reposition COS from YSRC on SYSRES
for COS-IPL

Card Input
System Console Keyin

Prep and Allocate RELEASE/SYSRES Files
System Console Keyin
Card Input
Diagnostics and Error Messages

Copy System Release Files

10. ASSIGN ALTERNATE TRACK (AAT)

10.1. AAT CAPABILITY

10.2. INTERFACING WITH DSKPRP

10.3. SPECIFYING AAT OPTIONS
10.3.1. Specifying Any Suspected Defective Tracks
10.3.2. Printing Your Records
10.3.3. Testing the Alternate Track
10.3.4. Patching or Modifying Existing Records
10.3.5. Specifying Your Volume Serial Number

10.4. EXECUTING AAT

11. TAPE PREP (TPREP)

11.1 . PREPARING YOUR TAPE FOR EXECUTION

11.2. TAPE PREP CODING INSTRUCTIONS

(RPVOL)
(FDA TA)

(PARTL)
(SERNR)
(UNXFC)

(DSKPRP)

(ADDnnCOS)

(CGV)
(CHGVSN)

(PRPnnCOS)

(SETR1 L)

(COPYREL)

(ASGTK)
(ASGPR)
(ASURF)
(ASUPD)
(SERNR)

Contents 7
Update B

9-13
9-13
9-13

9-14
9-14
9-14

9-14a

9-15

9-19

9-19
9-20
9-20
9-21
9-22c

9-22d
9-23
9-23
9-24
9-24
9-25
9-27

10-1

10-2

10-2
10-2
10-2
10-2
10-3
10-4

10-4

11-1

11-1

t

t

UP-8062 Rev. 8 SPERRY UNIV AC OS/3
SYSTEM SERVICE PROGRAMS

12. SYSTEM UTILITY COPY ROUTINES

12.1. SECTORED DISK COPYING (SU$C16)
12.1.1. SU$C16 Organization
12.1.2. SU$C16 Interfacing with Job Control
12.1.3. Executing SU$C16

12.2. NONSECTORED DISK COPYING (SU$CSL)
12.2.1. SU$CSL Organization
12.2.2. SU$CSL Interfacing with Job Control
12.2.3. Executing SU$CSL

12.3. EXECUTING SU$C16 IN AN INTERACTIVE ENVIRONMENT

12.4. EXECUTING SU$CSL IN AN INTERACTIVE ENVIRONMENT

12.5. STAND-ALONE DISK COPY (SU$1DA and
SU$SEL)

12.5.1. Load Procedures
12.5.2. Initialization Phase
12.5.3. Control Phase
12.5.4. Input and Output Phases·
12.5.5. Termination Phase
12.5.6. 1/0 Disk Error Handling Routine

13. DISK DUMP/RESTORE (DMPRST) ROUTINE

13.1. DMPRST CONCEPT

13.2. EXECUTING DMPRST IN A VOLUME ENVIRONMENT

13.3. EXECUTING DMPRST IN A FILE ENVIRONMENT
13.3.1. Performing a Disk Copy Operation in a File Environment
13.3.2. Performing a Dump Operation in a File Environment
13.3.3. Performing a Restore Operation in a File Environment
13.3.3.1. Using the Allocation Parameter to Control Restore Processing
13.3.3.2. Using the File Prefix Parameter
13.3.3.3. Using the New-name Parameter to Rename Files
13.3.3.4. Restoring from Tape in the File Environment
13.3.4. Copying Files in a Single Disk Environment

13.4. CHECKING FOR FILE EXPIRATION DATE

13.5. EXECUTING DMPRST IN AN INTERACTIVE ENVIRONMENT
13.5.1. Performing a Disk Copy Operation
13.5.2. Performing a Dump Operation
13.5.3. Performing a Restore Operation

Contents 8

•
12-1
12-1
12-2
12-3

12-5
12-5
12-6
12-6

12-8

12-12

12-16
12-17
12-17
12-20
12-21
12-22
12-22

•
13-1

13-2

13-8
13-8
13-10
13-12
13-13
13-14
13-14
13-15
13-17

13-17

13-18
13-19
13-22
13-25

•

UP-8062 Rev. 8 SPERRY UNIV AC OS/3
SYSTEM SERVICE PROGRAMS

• 14. THE DISKETTE UTILITY (CREATE)

•

•

14.1 . FUNCTIONS

14.2. USING THE DISKETTE UTILITY

14'.3. DISKETTE INDEX SCAN

14.4. DISKETTE UTILITY PROGRAMMING EXAMPLES

15. SYSTEM UTILITY SYMBIONT

16. LIST SOFTWARE MAINTENANCE CORRECTIONS (SMCLIST)

16.1. SMCLIST FUNCTION

16.2. EXECUTING SMCLIST

PART 5. APPENDIXES

A. CANNED JOB CONTROL STREAMS

A.1.

A.2.

GENERAL PURPOSE OF THE CANNED JOB CONTROL
STREAMS

COPYING RELEASE OR SYSRES LIBRARIES (COPYREL)

B. CODE SET COMPONENTS

B.1. GROUPED CODE SETS

B.2. SOURCE MODULE CODE SETS

B.3. OBJECT CODE SETS

B.4. LOAD CODE SETS

B.5. BLOCK LOAD CODE SETS

INDEX

USER COMMENT SHEET

Contents 9

14-1

14-1

14-5

14-6

16-1

16-1

A-1

A-3

B-2

B-4

B-5

B-11

B-14

+

t

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

FIGURES

1-1. Program Library Structure

2-1. Librarian Input/Output File Environment
2-2. Typical Librarian Map
2-3. Object Module Listing

2-4. Library Block Format
2-5. Library Record Format
2-6. Disk Library File Structure
2-7. Typical Librarian Map for Source Module Compare Operations
2-8. Typical Librarian Map for File Compare Operations
2-9. Example of Source Module Corrections
2-10. Example of Source Module Reordering Operation
2-11. Example of Source Module Add/Replace/Delete Operation Using SKI Control Statements
2-12. Example of the SEQ Statement in a Source Module Correction Deck
2-13. Librarian Map for Repositioning Modules
2-14. Librarian Map for Sorting Modules by Type
2-15. Librarian Map for Building Module Groups
2-16. Librarian Map for Copying a Card Deck to Disk

3-1. Typical MIRAM Librarian Job Stream
3-2. Sample Librarian Map

4-1. Functional Relationship among the Linkage Editor, SAT, and Related Files
4-2. Linkage Editor Input and Output
4-3. OS/3 Object Module Format
4-4. OS/3 Load Module Format
4-5. Typical Load Module Format When Loaded In Main Storage
4-6. Typical Multiphase Load Module Structure
4-7. Typical Multiphase Load Module Control Stream
4-8. Examples of Inclusive and Exclusive References
4-9. Program SAMPLE as a Multiregion Load Module
4-10. Control Stream Coding Required to Construct the Multiregion Load Module SAMPLE
4-11. Program SAMPLE as a Multiphase Load Module
4-12. Referencing Label Definitions in a Load Module
4-13. Example of Common Storage Promotion Scheme
4-14. Multiple Definition Resolution without V-CON References
4-15. Multiple Definition Resolution with V-CON References
4-16. Effect of Shared Code on Main Storage Requirements
4-17. EXTRN Resolution Processing in Shared-Code Environment
4-18. Format of a Nonreentrant Load Module That References Shared Code
4-19. Format of a Reentrant Load Module
4-20. Link-Edit of USER with NOSHARE Specified
4-21. Link-Edit of USER with SHARE Specified
4-22. Link-Edit of R 1 with RNT Specified
4-23. Link-Edit of T1 with RNT Specified

5-1. Example of a Program Structured as a Multiregion Load Module

6-1. Typical Linkage Editor Control Stream
6-2. General Linkage Editor Control Statement Format

Contents 10

• 1-3

2-1
2-12
2-15

2-19
2-20
2-23
2-35
2-36
2-47
2-66
2-68
2-69
2-87
2-94
2-99
2-104

3-12
3-13

4-1 • 4-4
4-8
4-9
4-12
4-14
4-15
4-18
4-19
4-20
4-21
4-25
4-28
4-33
4-35
4-36
4-38
4-40
4-41
4-41
4-41
4-42
4-42

5-3

6-1 • 6-2

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

7-1. Typical Link-Edit Process-Map Listing
7-2. Typical Unresolved EXTRN Reference List
7-3. Typical Link-Edit Definitions Dictionary List
7-4. Typical Phase Structure Diagram
7-5. Typical Allocation Map
7-6. Typical Error Legend and Count List

8-1. Typical Linkage Editor Job Control Stream
8-2. Link-Edit Example 1
8-3. Link-Edit Example 2
8-4. Link-Edit Example 3
8-5. Link-Edit Example 4
8-6. Link-Edit Example 5

9-1. Track Condition Table
9-2. VOL 1 Format
9-3. Sample Listing for CGV Job

10-1. AA T Using Update Records
10-2. AA T Using Update Records without Printing

11-1. Control Stream Coding Required to Prep Multiple Tape Volumes in a Single
Jop Step

11-2. A Typical COP Listing Showing TPREP Messages

13-1 . Hardware Utilities Menu Screen

14-1. File Creation and Record Correction
14-2. Sample Program to Add to and Son a File
14-3. Example of Diskette Index Scan

16-1. Example of Full SMC Listing
16-2. Sample of Condensed SMC Listing

8-1. Example of Nested Group Code Sets
8-2. Relocation Mask Field

TABLES

2-1. Record Type Byte Descriptions
2-2. Disk Directory Index Type Flags
2-3. Librarian Canned Job Control Streams

3-1. MIRAM Library Module Header Record Format

7-1. Special Process-Map Messages
7-2. Definitions Dictionary Type Identifications
7-3. Definitions Dictionary Phase Field
7-4. Definitions Dictionary Information Characters
7-5 . Error Legend and Count List Flag Code Descriptions

9-1. Default Starting VTOC Addresses
9-2. Default Ending VTOC Addresses
9-3. COPYREL Copy Order

Contents 11
Update B

7-2
7-3
7-3
7-5
7-7
7-9

8-1
8-3
8-6
8-12
8-16
8-21

9-6
9-12
9-22

10-6
10-7

11-3
11-4

13-19

14-6
14-12
14-15

16-3
16-6

B-2
8-9

2-21
2-24
2-81

3-11

7-2
7-4
7-4
7-4
7-8

9-10
9-10
9-28

~

+

t

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

12-1. Permissible Types of Input and Output Devices
12-2. Extent Addresses by Input Device Type

13-1. DMPRST Differences between Interactive and Batch Methods
13-2. Volume Mode PARAM Statements
13-3. File Mode PARAM and FILE Statements
13-4. File Allocation Parameters

14-1. Disk Index Scan Record Template Fields

15-1. SL$$SU Functions

A-1. Canned Job Control Streams

B-1. Beginning of Group (BOG) Header Record Format
B-2. End of Group (EOG) Trailer Record Format
B-3. End of File (EOF) Sentinel Record Format
B-4. Source Module Code Header Record Format
B-5. Source Module Code Statement Record Format
B-6. Compressed Source Module Code Statement Record Format
B-7. Object Code Header Record Format
B-8. Object Code Control Section Record Format
B-9. Possible Control Section Record Types
B-10. Object Code ESD Record Format
B-11. Possible ESD Record Types
B-12. Object Code ISO Record Format
B-13. Object Code T ext/RLD Record Format
B-14. Relocation Mask Formats
B-15. Object Code Transfer Record Format
B-16. Object Code Control Statement Record Format
B-17. Load Code Phase Definition Record Format
B-18. Load Module Shared Code Record Formats
B-19. Load Code ISO Record Format
B-20. Load Code T ext/RLD Record Format
B-21. Load Code Transfer Record Format
B-22. Partition 1 - Directory Entry
B-23. Partition 2 - Block Load Module Header Record
B-24. Partition 2 - Block Load Module RLD Record
B-25. RLD Mask
B-26. Partition 2 - Block Load Module Nonphase Text/RLD Record
B-27. Partition 2 - Block Load Module Transfer Record

Contents 12

12-16 • 12-19

13-2
13-3
13-8
13-22

14-6

15-1

A-1

B-3
B-3
B-3
B-4
B-4
B-5
B-6
B-6
B-7
B-7
8-7
B-8 • B-8
B-9
B-10
B-10
B-11
B-12
B-13
B-13
B-14
B-14
B-15
B-16
B-16
B-17
B-18

•

•

•

•

PART 1. OS/3 SYSTEM SERVICE
PROGRAM REPERTOIRE

•

•

•

•

•

•

UP-8062 Rev. 8

1 .1. GENERAL

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

1-1

1 . Introduction

The system service programs are those programs required to support the operation and
organization of the operating system in which your problem programs are to be
executed. These programs allow you to construct and reorganize the program libraries
in your system, create program modules for execution in your system, initialize tape and
disk volumes for the storage of your program and data files, and obtain printouts of
main storage.

The system service programs are introduced and outlined briefly in this section and
discussed in full detail in the subsequent parts of this document. The common and
program names of the system service programs are:

Common Name Program Name

System librarian for SAT files LIBS

System librarian for MIRAM files MLIB

Linkage editor LNKEDT

Initializing disk volumes DSKPRP

Assign alternate track DSKPRP
(nonsectored disk)

Disk dump/restore DMPRST

Tape prep TPREP

System utility copy (sectored) SU$C16

System utility copy (nonsectored) SU$CSL

Hardware utilities HU
(interactive DMPRST, SU$C 16,
and SU$CSL)

UP-8062 Rev. 8

Common Name

Stand-alone disk copy (IDA)

Stand-alone disk copy (SEL)

System log accumulation utility

JOBLOG report program

SPERRY UNIV AC OS/3
SYSTEM SERVICE PROGRAMS

Program Name

SU$1DA

SU$SEL

SY$LOG

JBLOG

Catalog manipulation utility routine JC$CAT

Diskette utility CREATE

1-2

In addition, a system service program symbiont, SL$$SU, is initiated from the system
console by the SU (system utility) or the TU (tape utility) command.

1.2. THE SYSTEM LIBRARIANS

There are two system librarians that can maintain and manipulate both your system and
user libraries. For all non-MIRAM library files, you use the SAT librarian (LIBS). For
MIRAM libraries, you use the MIRAM librarian (MLIB).

The librarians are also used during OS/3 system generation to tailor the SYSRES
program libraries. The librarians are capable of manipulating the library files at your
request and in the specific manner directed. The functions performed by the librarians
are controlled by a set of integrated subroutines, file tables, and overlay segments
associated with the supported indivdual functions.

Your OS/3 system can support several independent system and user program libraries,
and the librarians can be used to maintain each one. A program library consists of one
or more library files. A single library may contain both user and system files, or it may
be used exclusively for one or the other. Each file within the program library contains a
directory partition, the library file directory, and two data partitions.

The program library files can be composed of any combination of the following:

• Program source modules (language processor code)

• Macro/jproc source modules (language processor code/job control)

• Object modules (language processor output/linkage editor input)

• Load modules (linkage editor output)

• Module groups

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

1-3

• • Screen format modules

•

•

• Saved run library modules

The library files may be composed of system or user code used for either program
generation or execution. The code may be in any of the listed formats and may, from
time to time, change in form, content, or relative position within a given file. The mixing
and grouping of module types is a user option, and module groups can contain modules
of the same or different types. Figure 1-1 depicts the structure of a SAT program
library, showing various component configurations.

@ PROGRAM

~;~ - - - - - - - - - - - - - -._ __ L-IB-RA_R_Y _ __. (SYSTEM OR USER)

I
I
I

LIBRARY
FORMAT
LABELS --+. FILE1 1---·

PROGRAM
SOURCE (S)
MODULES

SOURCE
STATEMENTS

ASSEMBLER
COBOL
RPG
FORTRAN
CONTROL

STATEMENTS
SOURCE

DATA

(SYSTEM OR USER)

MACRO/ JPROC
SOURCE

MODULES (M)

ASSEMBLER
JOB CONTROL

LIBRARY LIBRARY
FILE2 t-- - ._ FILEn

(SYSTEM OR USER) (SYSTEM OR USER)

OBJECT (0)
MODULES

OBJECT
RECORDS

CSE CT
COM
ENTRY
EXTRN
ISO
V-CON
TEXT
TRANSFER

LOAD (L)
MODULES

HEADER
TEXT
TRANSFER

Figure 1-1. Program Library Structure

MODULE
GROUP

SOURCE
MODULES

J
MACRO/ JPROC

SOURCE MODULES

1
OBJECT

MODULES

1
LOAD

MODULES

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

1-4

The librarians can perform, on all or specific portions of library files, such tasks as
copying, merging, listing, or punching on cards the contents of specified files. The
librarian can also add to or delete from a file or files. In fact, the OS/3 librarians can
perform all the tasks you may be expected to require for program file management. The
librarians, however, cannot perform these tasks on multivolume tape files. The tasks are
initialized and directed through a set of control statements introduced to the librarian
through the control stream. The librarians and the function associated with each task
are fully explained in Part 2 of this document.

1.3. THE LINKAGE EDITOR

The OS/3 linkage editor converts and combines object modules and object module
elements (control sections and common sections), produced by the OS/3 language
processors, into modules that can be loaded into a system by the supervisor for
execution. The modules produced by the linkage editor are called load modules. Only
programs in load module form can be executed in an OS/3 environment, and the only
way to convert object modules into a load module is by using the linkage editor.

The linkage editor produces three types of load modules:

• Single-phase (reentrant or nonreentrant)

• Multiphase (nonreentrant)

• Multiregion (nonreentrant)

A single-phase load module consists of a single program segment loaded into main
storage each time the program is to be executed. Unless otherwise directed, the linkage
editor will always produce a single-phase load module. Multiphase and multiregion load
modules are composed of more than one program segment, each segment being a
program phase loaded into main storage and executed individually, as required by the
logic of the program. The linkage editor will create a multiphase or multiregion load
module from one or more object modules only if directed to do so by the user through
the linkage editor control statements. Savings in main storage space and increased
system performance can be realized through proper application of multiphasing and
multiregioning.

The capabilities of the linkage editor provide the system user with the following
advantages:

• If a program logic error is discovered in a particular object module or control
section of a program, only the incorrect element need be recompiled or
reassembled. Afterward, the entire program can be relinked without extensive
reassembling or recompiling.

• Subroutines or elements required in more than one program phase need be
preserved only once as relocatable object code because a single module can be
individually included in any number of load modules by the linkage editor.

•

•

•

•
UP-8062 Rev. 8 SPERRY UNIV AC OS/3

SYSTEM SERVICE PROGRAMS
1-5

• A single load module may actually consist of object elements produced by several
different language processors because all processors generate compatible output
object code acceptable to the linkage editor.

• Reentrant modules can be shared by other load modules, resulting in the overall
reduction of main storage requirements.

Part 3 details the capabilities of the linkage editor.

1.4. THE SYSTEM UTILITIES

The system utilities are available to do the following:

• Test and prepare all tape, diskette, and disk volumes for use by OS/3.

• Manipulate the system catalog file, YCAT.

• Create and maintain diskette files.

1 .4. 1 . Disk Utilities

• The disk utilities perform the following functions:

•

• Initialize sectored (SPERRY UNIVAC 8415, 8416, and 8418 Disk Subsystems) and
nonsectored (SPERRY UNIVAC 8411, 8414, 8424, 8425, 8430, and 8433 Disk
Subsystems) disk volumes; also 8413 diskettes

• Perform surface analysis for sectored and nonsectored disk volumes

• Assign alternate tracks on nonsectored disk volumes

• Dump, restore, or copy disk or tape volumes or files

• Place initial load control storage (ILCS) modules on disk

• Assign new volume serial numbers to active disks

1 .4.2. Tape Utilities

The tape utilities initialize tape volumes for use in the system. Up to 36 tapes can be
initialized at one time.

1 .4.3. Hardware Utilities

The hardware utilities consist of the dump/restore and disk copy routines performed
interactively. There are two types of disk copy routines: SU$C 16 (used when copying
sectored disks) and SU$CSL (used when copying nonsectored disks).

t

UP-8062 Rev. 8

1 .4.4. System Utility Symbiont

SPERRY UNIV AC OS/3
SYSTEM SERVICE PROGRAMS

1-6

The system utility symbiont is a multipurpose utility enabling the operator to perform
different utility operations from the system console, for example, reproducing cards and
printing a tape.

1.4.5. Diskette Utility

The diskette utility is available to create files on the 8413 diskette and to write job
control streams to the created diskette files. The diskette utility is executed by running
a canned job control stream (RV WRT) and then directed through a series of queries
appearing on the system console to which the user must respond.

1.4.6. List Software Maintenance Corrections (SMCLIST)

The SMCLIST canned job control stream produces a listing of all software maintenance
corrections (SMCs) contained in the SMCLOG file.

1.5. LOGGING AND CATALOGING FACILITIES

The logging and cataloging facilities include the system log accumulation utility, the job
log report program, and the catalog manipulation utility.

The system log accumulation utility is used to transfer job log and console log records
from the system spool file to a user disk or tape file. Once in the user file, they are
available for further processing by a job accounting and bookkeeping programs. The job
log report program is used to produce a job accounting report from the SYSLOG file
created by the system log accumulation utility. For a detailed description of the use and
function of the system log accumulation utility and the job log report program, see the
spooling and job accounting concepts and facilities manual, UP-8869 (current version).

The catalog manipulation utility (JC$CA T) is used to access the system catalog file
YCAT. Using JC$CAT, you can obtain a printout of the contents of YCAT; assign,
delete, or change a catalog password; and copy YCAT to another disk or tape
volume. For a detailed description of the use and function of the catalog manipulation
routine, see the file cataloging concepts and facilities manual, UP-8860 (current version).

1.6. DUMP ROUTINES

Several dump routines are available to you as an aid in debugging the system or a
single program if error conditions occur. The available dump routines are the SYSDUMP
routine, JOBDUMP routine, and USE EOJ DUMP routine.

•

•

•

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

1-7

The system dump routine (SYSDUMP) is provided to you as a system debugging aid. Its
primary function is to translate and print out the state of the operating system in the
event the system terminates abnormally or is terminated by the operator because of
abnormal operation. The abnormal termination of the system is commonly referred to as
a system crash. The SYSDUMP routine translates the bits and bytes of information
present in the system at the time it crashes into text and charts that can be recognized
and analyzed by one familiar with the structure of OS/3.

SYSDUMP is a feature of the supervisor and is automatically included in the supervisor
at system generation time unless specifically not included. Once included, it can be
called upon by the system operator to translate the state of the operating system at
any time. The execution of the SYSDUMP routine is always under the control of the
supervisor (it is not a stand-alone routine) and is designed to run in a multiprogram
environment.

JOBDUMP is a scaled down version of SYSDUMP designed to interpret the state of a
single user job if the job terminates abnormally. JOBDUMP, just as with SYSDUMP,
translates the state of the user job region into text and charts useful in interpreting and
debugging the program. The output format is the same as that of SYSDUMP for job
prologues and main storage hexadecimal/character dumps.

The user EOJ dump is a hexadecimal printout of the user job region initiated by either
the DUMP macro or an abnormal termination of the job. The user EOJ dump can be
used to determine the nature of an abnormal termination or as a diagnostic tool for
program debugging.

For a detailed description of the use and function of the dump routines, see the dump
analysis user guide/programmer reference, UP-8837 (current version).

1.7. PROGRAM ERROR CHECKING (UPSI BYTE)

The OS/3 system provides every job with a 12-byte communications region residing in
the job preamble. The last byte of this region is the user program switch indicator
(UPSI). The UPSI byte is used to pass information from one job step to the next job
step and to indicate the presence of program errors. The librarian, the linkage editor,
the utilities and dump routines, and other executable system components set the UPSI
byte if errors are detected. You can test the UPSI byte during program execution to
determine the nature and severity of any errors. The basic bit usage of the UPSI byte is:

• Bit 0

A 1 in the first bit (X'80') indicates a catastrophic error. Subsequent job steps
probably will not function and the job will terminate .

UP-8062 Rev. 8

• Bit 1

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

1-8

A 1 in this bit (X'40') indicates a serious error. A serious error could affect
subsequent job steps or result in incomplete or erroneous processing results.

• Bit 2

A 1 in this bit (X'20') indicates a statement format or syntax error. The affected
statement will not function, and this may or may not have an effect on subsequent
job steps.

The UPSI byte can be useful in contingency error processing. For example, the byte can
be examined and, if certain conditions prevail, can cause a branch to error handling
routines. The SKIP job control statement is used to perform the test. The following
examples show how you can use the SKIP job control statement.

Example 1:

1 10 16 72

1. II JOB DSKPRP
2. II DVC 20 II LFD PRNTR
3. II DVC 51 II VOL DSP028 II LFD DISKIN
4. II EXEC DSKPRP
5. 1$

6. SERNR=DSP028,PARTL=V
7. I*
8. II SKIP ENDS,1
9. • other
10. job
11. • steps go here
12. //ENDS NOP
13. I&
14. II FIN

In example 1, you check the UPSI byte to see whether a fatal error (X'SO') has
occurred. If the leftmost bit (bit 0) of the UPSI byte contains a binary 1 (line 8),
then all the other job steps are bypassed and control is transferred to the NOP job
control statement with the label ENDS (line 12). The NOP job control statement
provides you with an address for the SKIP with no function being performed. The
/& job control statement terminates your job while the // FIN terminates the card
reader operation.

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

1-9

• Example 2:

•

•

1 •
2.
3.
4.
5.
6.
7.
8.
9.
10.

1

II
II
II
II
/$

/*
II
II
II

10 16 72

JOB DSKPRP
DVC 20 II LFD PRNTR
DVC 51 II VOL DSP028 // LFD DISKIN
EXEC DSKPRP

SERNR=DSP028,PARTL=V

SKIP WARN,01
SKIP FATAL,1
SKIP EXIT

11. //WARN OPR 1 WARNING·A NON·FATAL ERROR HAS OCCURRED•
12. II SKIP EXIT
13. //FATAL OPR 1 FATAL ERROR·JOB TERMINATED-CORRECT AND RERUN 1

14. // SKIP ENDOFJOB
15. //EXIT NOP
16. other job steps
17. go here
18.
19. //ENDOFJOB NOP
20. !&
21. II FIN

In example 2, you check for both the fatal (X'80') and warning errors (X' 40') and
the display of appropriate messages on the system console. If a warning error has
occurred - bit 1 of the UPSI byte is a binary 1 (line 8) - then you skip to the label
WARN on the QPR job control statement and print the warning message (line 11).
After processing the OPR statement, the SKIP job control statement (line 12) is the
next job control statement processed. Here, you skip down to the label EXIT on
the NOP job control statement (line 15). As mentioned earlier, the NOP acts as an
ending point for the SKIP control statement. The remaining job steps follow the
NOP statement and are processed accordingly. Following the last job step, the NOP
statement on line 19 is processed with no action being performed. Your job then
terminates normally through the I& and 11 FIN job control statements.

If a fatal error occurs, bit 0 of the UPSI byte is a binary 1 (line 9) and you skip
down to the label FATAL on the OPR statement (line 13) and print the specified
message. The SKIP job control statement (line 14) skips down to the label
ENDOFJOB on the NOP statement, thus bypassing your remaining job steps, and
terminates your job.

If no errors occurred, neither SKIP (lines 8 and 9) will be taken, and the SKIP job
control statement (line 10) skips over the OPR statements to the remaining job
steps .

UP-8062 Rev. 8 SPERRY UNIV AC OS/3
SYSTEM SERVICE PROGRAMS

1-10

The UPSI byte setting and the error count appear on the printout or map listing for the
particular job. The UPSI byte value can also be retrieved by issuing the GETCOM
supervisor macroinstruction in your BAL program. For more information on the GETCOM
macro, refer to the current version of the supervisor user guide, UP-8075. For more
information on the SKIP job control statement, refer to the current version of the job
control user guide, UP-8065.

1.8. STATEMENT CONVENTIONS

The conventions used to illustrate the control statements and system console message
displays presented in this manual are:

• Positional parameters must be written in the order specified in the operand field
and must be separated by commas. When a positional parameter is omitted, the
comma must be retained to indicate the omission, except for the case of omitted
trailing parameters.

Examples:

Assume that LOADM is a linkage editor control statement with three optional
positional parameters: A, B, and C.

INCLUDE A
INCLUDE A,B
INCLUDE A,B,C
INCLUDE A,C

• A keyword parameter consists of a word or a code immediately followed by an
equal sign, which is, in turn, followed by a specification. Keyword parameters can
be written in any order in the operand field. Commas are required only to separate
parameters.

Examples:

Assume that LINKOP is a linkage editor control statement with three optional
keyword parameters: ALIB, RUB, and OUT.

LINKOP ALIB=OBJFIL,RLIB=SYSOBJ,OUT=SYSLOD
LINKOP ALIB=OBJFIL,RLIB=SYSOBJ
LINKOP RLIB=SYSOBJ,ALIB=OBJFIL
LINKOP OUT=SYSLOD

• A positional or keyword parameter may contain a sublist of parameters, called
subparameters, separated by commas and enclosed in parentheses. The
parentheses must be coded as part of the list. The subparameters within the
parentheses may be positional, in which case the comma must be retained if a
parameter is omitted, except for the case of trailing parameters, or they may be
nonpositional. The description of the subparameters indicates whether they are
positional or nonpositional.

•

•

•

•

•

•

UP-8062 Rev. 8

Examples:

SPERRY UNIV AC OS/3
SYSTEM SERVICE PROGRAMS

FIELDS=([ADDR] [,A2TD] [,FREQ])
REDO=CMERGE,label,reel,to)

1-11

• Capital letters, commas, equal signs, apostrophes, and parentheses must be coded
and displayed exactly as shown. The exceptions are acronyms, which are part of
generic terms representing information to be supplied by the programmer.

Examples:

CMcc NUMBCHAR=n
x 1 aa 1 <NOV)
ALIB=

• Lowercase letters and words are generic terms representing information that must
be supplied by the user. Such lowercase terms may contain hyphens and acronyms
(for readability).

Examples:

lfn
name
group-name
comments
s1, sn

• Information contained within braces represents mandatory entries of which one
must be chosen.

Examples:

{

filename}
(N)

SYSRUN

• Information contained within brackets represents optional entries that (depending
upon program requirements) are included or omitted. Braces within brackets signify
that one of the specified entries must be chosen if that parameter is to be included.

Examples:

[sequence- no]
[ALI B=f i l ename]

[{~~;RUN}]

UP-8062 Rev. 8 SPERRY UNIV AC OS/3
SYSTEM SERVICE PROGRAMS

1-12

• An optional parameter with a list of optional entries may have a default
specification that is supplied by the operating system when the parameter is not
specified by the user. Although the default may be specified by the user with no
adverse effect, it is considered inefficient to do so. For easy reference, when a
default specification occurs in the format delineation, it is printed on a shaded
background. If, by parameter omission, the operating system performs some
complex processing other than parameter insertion, it is explained under an "If
omitted" statement in the parameter description.

Examples:

['{1nput-lfn}]

['{~3-80}]

• An ellipsis (series of three periods) indicates the omission of a variable number of
entries.

Example:

param-1, ••• ,param-n

• Commas are required when positional parameters are omitted, except after the last
parameter specified.

Example:

positional-parameter-1,positional-parameter-2,,positional-parameter-4

NOTE:

There are three standard character sets used with SPERRY UNIVAC printers: two
are 48-character print sets, and the third is a 63-character print set. Thus, not all
characters are printable on all machines, and print code conversions are necessary
to represent nonprintable characters when a 48-character print set is being used.
The programming examples presented in this manual were produced by using the
standard 48-character business print set and, therefore, make use of some of these
conversion print characters. For example, an equals sign (=) is represented by a
percent symbol (%), a left parenthesis by a number symbol (#), and a right
parenthesis by an at symbol (@).

•

•

•

•

PART 2. THE LIBRARIANS

•

•

•

•

•

•

•

•

UP-8062 Rev. 8

2.1. GENERAL

2. 1 .1 . Capabilities

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

2-1

2. SAT Librarian Functional
Characteristics

The SAT librarian of the SPERRY UNIVAC Operating System/3 (OS/3) manages the
system and user libraries containing the modules making up the program environment
for a given system. Although the SAT librarian is primarily a disk utility, library files may
exist on magnetic tape, disk, diskette, or punched cards and may be converted from
one medium to another. The SAT librarian facilitates merging of all or parts of existing
library files, extending or adding to an existing library file, compressing fragmented files
and reclaiming unused file space, deleting unwanted or nullified modules within a given
library, and supplying appropriate printouts. (A map and associated ,listing can be
provided for each library function performed.) The output of a given SAT librarian job
can be an updated tape, disk library or diskette library, a new tape, disk library or
diskette library, punched cards, listings, or some combination of these. Figure 2-1
illustrates the environments under which the librarian can be expected to function. These
operational modes are normally selected at run time via parameter specifications. The
program name of the librarian is LIBS.

CARD
Ft LES

SYSTEM
LIBRARIAN

lLIBSI

MAPS6
LISTINGS

Figure 2-1. Librarian Input/Output File Environment

.....

UP-8062 Rev. 8 SPERRY UNIV AC OS/3
SYSTEM SERVICE PROGRAMS

2.1.2. Additional Main Storage Requirements

2-2

Librarian performance can be significantly improved by allocating additional main storage
space for the job in the / / JOB control statement. This additional space is allocated in
track-sized buffers. To determine the amount of main storage to allocate, compute the
number of buffers needed using the following recommendations:

Specify at least two buffers for disk access (four or more is optimal). Add one
more buffer for each variable block tape used (one for each Tn file declared in the
FIL librarian control statement).

Buffer Requirements Decimal Bytes Hex Bytes

Librarian base 28,672 7000

1 40,992 A020

2 51,264 C840

3 61,536 F060

4 71,808 11880

5 82,080 140AO

6 92,352 168CO

The second parameter in the / / JOB statement must specify the amount of additional
main storage in decimal or hex bytes. For example, each of the following I/ JOB
statements allocates enough main storage for the librarian base plus one buffer:

II JOB SAMPLE,,A020
II JOB SAMPLE,,X 1 A020 1

II JOB SAMPLE,,0 1 40992 1

2.2. CONTROL FUNCTIONS

The following control functions are provided by the SAT librarian for user management
of the program libraries in this system:

• BLK Convert standard load modules to block load modules

• BOG Write beginning-of-group record

• COM Compare elements

• COP Copy elements

• COR Correct elements

• DEL Delete elements

•

•

•

•

•

•

UP-8062 Rev. 8

• ELE

• EOD

• EOG

• ESC

• FIL

• LST

• PAC

• PAGE

• I I PARAM ERROR

• / / PARAM PRINT

• / / PARAM PRTOBJ

• / / PARAM T APEFILES

• // PARAM UPDATE

• REC

• REN

• REPRO

• RES

• SEQ

• SKI

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

Add card file element (module)

Declare end-of-data

Write end-of-group record

Read control statements from user-created file

Declare file

Print a file in alphabetic sequence

Pack (compress) files

Cause the printing of a new page

2-3

Specify, in the event of an error, whether the librarian
job should be canceled or just the librarian job step

Suppress the printing of the librarian map

Print source module listings in hexadecimal format

Allow multiple files to be written to the same tape
volume

Specify the data and time to be in effect during librarian
execution

Recycle source module current position pointer

Rename elements, revise the comments field of header
records, or mark object as reentrant or nonreentrant

Produce or delete control statement records within
object modules

Reset file current position pointer

Sequence or check sequence of elements

Skip source module records

See 2.8 for a detailed description of these statements.

2.3. MODES OF OPERATION

The SAT librarian operates in two modes. Functionally, these are:

1. an input file update and list/punch mode; and

2. an output file creation mode.

t

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

2-4

If no output file declarations are made, only input files may be updated and extended.
The following functions initiate different operations, depending on the selected mode:

ELE
DEL
COP

The librarian maintains a set of file information tables (DTFs) for up to six logical files at
one time. If a seventh file is accessed, the file information for the first is overlaid.
Included in this information is the name, type, and address of the last module accessed
on the file. Thus, while more than six files may be accessed by the user, six is the limit
that may be accessed concurrently.

The librarian can, through options in the operation field, print or punch entire modules.
The following functions allow such printing and punching:

COR
COP
DEL

ELE
REN
PAC

SEQ

With the ELE function, cards can be added to a library and be listed or punched at the
.....,. same time.

Module headers are listed with each prime directive used unless the no-list header
-. option (N) is specified by the user, in which case no listing of headers is supplied.

2.4. PROGRAM LIBRARY MANAGEMENT

2.4.1. Naming Conventions

Modules within library files (regardless of type) contain an 8-character EBCDIC identifier
that is used as the name of the module. (Modules of the same name and type are not
allowed in one file.) If the name assigned is less than eight characters, it is left-justified
and space-filled. Naming of specific modules can be performed at:

• assemble or compile time for object modules;

• link-edit time for load modules;

• library services time for program source definition modules; and

• job run time for macro/jproc source modules.

The librarian also can be used to rename specific modules or module groups. It can:

• rename a program source or macro/jproc source definition module;

• rename an object module or a specific CSECT;

•

•

•

•

•

•

UP-8062 Rev. 8 SPERRY UNIV AC OS/3
SYSTEM SERVICE PROGRAMS

• rename common sections and ESD records in object modules;

• rename all phases of a load module (retaining phase numbers); and

• rename the alias phase name of a load phase.

2.4.2. Group Management

2-5

The librarian can process the elements in a file individually or by groups. Any number of
modules, exclusive of type, can be grouped to form a single processing entity. Each
module group is given a name and is bracketed by group demarcator records. Any
number of module groups having the same name may reside in a single file. After a
group is created, the librarian can process all modules in the group at one time. Gang
operations also allow processing of all groups with a certain name or name prefix. If a
gang operation is not specified, only the first group with the specified name is
processed.

2.4.3. Gang Operations

Certain functions of the librarian are operable in gang mode in which several modules
may be copied, deleted, punched, compared, or displayed at one time. These options
are initiated via the appropriate command statements and the omission of the name
parameter (or name and type parameters), in the operand field.

There are three types of gang operations available to the librarian user. The first
depends on module type, the second on module name, and the third on the current
position pointer of the file.

2.4.3.1. Module Type Gang Mode

Library files may contain mixed module types; that is, object code, load code, program
source code, and macro/jproc source code can be intermingled within a given library
file. When gang operations are to be processed on modules of a specified type, the
module name is omitted and the type positional parameter is set as follows:

S For program source modules

M For macro/proc/jproc source modules

0 For object modules

L For load module

By setting the type as shown and omitting the name, the user instructs the librarian to
perform the designated operation on all modules of the type specified from the current
position of the library file up through end-of-file.

t

t

t

UP-8062 Rev. 8 SPERRY UNIV AC OS/3
SYSTEM SERVICE PROGRAMS

The following functions permit specification of a module type gang operation:

COP COM
DEL

2-6

When the gang mode is initialized in one of the foregoing operations, the referenced file
is scanned from its current position for the code set designated. When a module of the
type indicated is detected, the requested operation commences.

2.4.3.2. Module Name Gang Mode

When gang operations are to be performed on modules with a specified name, the
module type is omitted in the librarian control statement. These statements process all
modules from the current position to the end of the file whose names match the module
name field in the librarian control statement.

If gang operations are to be processed on modules with like name prefixes, the C
option designator is appended to the librarian function code. This option instructs the
librarian to compare the characters in the module name field of the control statement
with the names of the modules in the designated file from its current position to the
end of the file. Whenever a module is found whose name begins with the name prefix
contained in the control statement and is of the type specified in the control statement,
the requested operation is performed on the module. A module type need not be
specified when operating in the module name gang mode, in which case all modules
having the name prefix specified are operated on by the librarian .

._. Module name gang operations may be specified only for the COP and DEL functions.

2.4.3.3. Total Gang Mode

If the function to be performed does not concern itself with a specific module or code
set, the type and name positional parameters can be omitted from the librarian function
code. This instructs the librarian to perform the specific function on all the modules
contained in the designated file, from its current position to the end of the file. In this
manner, an entire library (or remainder of one pre-positional) may be manipulated via the
facility desired .

._. Total gang mode operations may be specified only for the COP and DEL functions.

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

2-7
Update A

• 2.4.3.4. Current File Position

•

•

All gang operations process the library file from its current position as defined by the
respective file table (DTF) contained within the program. The current position of a file
can be affected:

• by the reset (RES) function; and

• by any librarian function except the EOD function.

The RES function can aim the current position pointer to the first logical record on the
file specified, or the first record in a named module in the specified file.

All librarian functions except EOD affect the current position. When the function is
completed, the current position pointer for the processed file is the address of the
record immediately following the last record processed unless the pointer was at the
end of the file. In this case, the pointer is positioned at the beginning of the file.

A COP function may be initiated with no output file specified. This effectively aims the
current position pointer to the record after the last record of the module or module
group specified in the COP function without actually copying the module or group.

If the librarian needs to find a module in a library file, the search begins at the current
position of the directory and continues until the module is found, or the end of the file
is reached. If the end of the file is reached, the search begins anew at the beginning of
the file directory and continues until the module directory record is found or the original
current position of the file directory is reached again. The current position being arrived
at again signifies no find for that module on the file being searched.

2.4.4. Program Source Module Management

The librarian provides facilities for the maintenance of program source code modules.
Program source code modules can be listed, filed, punched, corrected, and renamed, as
well as manipulated, with the standard librarian-provided functions. Specific program
source records can be added and deleted from a program source element. Updated
program source modules may be mapped as corrections are applied. Program source
records are printed individually in EBCDIC format, exactly as they were coded. If the //
PARAM PRTOBJ statement is used, source modules are printed in hexadecimal format.

In addition to the librarian source module management, you can access assembler
source modules via the // USE LIB job control statement. Here, you can update or
create assembler source modules from another assembler program. For more
information, see the job control user guide, UP-8065 (current version) .

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

2.4.5. Macro/Jproc Source Module Management

2-8

Macro and jproc source modules are handled in much the same manner as program
source modules by the librarian; that is, these modules can be copied, corrected,
compared, renamed, added, and deleted. Since these modules can have more than one
name associated with them, the librarian performs some additional processing. Thus,
when one of these modules is added to a library, a separate directory entry (type A2)
must be created for each name associated with the module. All directory entries
reference the module being added so that the module may be located by any of its
given names. Because macro and jproc source modules are functionally identical and
have the same type code (type A3), a macro and a jproc source module of the same
name may not coexist in the same library file. Macro and jproc source modules with the
same directory entry name (type A2) may coexist in the same library file. A macro/jproc
source module with a directory entry name (type A2) may also coexist with a
macro/jproc directory entry name (type A3) in the same library file.

2.4.6. Object Module Management

Language processor output modules can be maintained by the librarian, in that object
code can be patched, listed, punched, filed, and renamed. Specific CSECTs or ESDs
also may be renamed. Patch corrections are inserted at the end of the object module.
Listings of object modules are hexadecimal printouts of object records. All standard
librarian functions regarding module manipulation apply to object elements. Whenever
nonsource elements are serviced, they are checked for proper content and record
sequence. Discrepancies trigger diagnostic processing.

All object modules produced by the various language processors are assumed to be
nonreentrant modules. If in fact they are reentrant, they may be flagged as such by the
librarian to enable them to produce reentrant load modules when they are link-edited.

2.4. 7. Load Module Management

Load modules generated by the linkage editor also can be managed by the librarian. The
facilities provided for load module management are much the same as those provided
for object module management, except that specific load module phases may be
patched. Applied patches are inserted at the end of the designated phase. Load
modules also may be listed, punched, filed, and renamed. Load module listings are
hexadecimal printouts of load module records. Load elements may be serviced via all
standard librarian functions. Phases within a load module also can have an alias phase
name given to it at link-edit time, in addition to the phase name assigned to the load
segment. This alias phase name also can be renamed by the librarian.

Most load modules produced by the linkage editor can be converted to blocked load
modules by the librarian. Blocked load modules can usually be loaded for execution
faster than their standard counterparts. The exceptions to this are discussed in the
description of the blocking load modules (BLK) control statement.

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

2-9

• 2.4.8. File Merging

•

•

The librarian can function in a library file merge mode; that is, one or more library files,
module groups, or individual modules may be merged into a new output library (or
libraries). Multiple file merging is permitted and the number of files involved is a function
of the user requirements. The librarian can merge up to six files concurrently (including
output files).

Reference to a seventh file (or more) causes the first file (and any succeeding files) to
be reopened whenever a new, interspersed file reference is detected. Thus, merging of
multiple files beyond a sixth may be more easily accomplished by first merging five files
together to form a sixth file, and then merging the sixth file with the remaining files by
repeating the desired merge operation.

2.4.9. File Extension

A current library file often can be updated (or effectively extended) without creating a
new output file. This may involve replacement of a given element within the file with a
new copy of the same element. Replaced elements are flagged as nullified and may be
removed via a subsequent file compression operation. Directory entries for replaced
elements in extended files are altered accordingly .

2.4.10. File Compression

The librarian can compress fragmented files (interspersed voided elements) and reobtain
dormant file space. The compression is automatic if merging or copying involving the
file in question occurs. If not, an existing file may be compressed by using the PAC
librarian function. File compression can be specified anywhere within a given librarian
job stream. Any associated directories also are compressed in the update job.

2.4.11. File Deletion

Individual modules, or entire code sets, may be deleted from library files by using the
facilities of the librarian. Deletions can occur while updating existing files or while
creating new ones. Deletions applied to existing files can cause file fragmentation (as in
the case of module replacement), which can, in turn, be remedied by later file
compression.

2.5. RUN LIBRARY MANAGEMENT

The job run library is processed in the same way as all other libraries by the librarian.
The job run library can be specified by designating YRUN as the file name on the
control statement FIL.

UP-8062 Rev. 8 SPERRY UNIV AC OS/3
SYSTEM SERVICE PROGRAMS

2-10

The job run library also is used as the default file if, on certain librarian commands, a file
is not specified. These commands are ELE, COP, REN, COR, SEQ, DEL, REPRO, and
PAC. If, for the DEL, ELE, PAC, REPRO, or REN functions, a logical file is not specified,
the job run library is used as the logical file to be processed. Because output files do
not need to be specified in the COP, COR, and SEQ functions, the default use of the job
run library applies only to the input file.

2.6. MAPPING FACILITIES

Each time the librarian is executed, a map of the functions it performs is output on the
system printer for the user. The map normally includes:

• a listing of all the librarian control statements processed;

• a printout of all the header records processed; and

• any appropriate diagnostic messages.

Additionally, the map can include:

• source module listings;

• object and load module listings; and

• module correction results (insertions versus deletions).

The map normally reflects the state or content of the output library files if one or more
were produced; otherwise, it reflects the state or content of the input file serviced by
the respective librarian function. In comparison functions, discrepancies are listed on a
record-by-record or block-by-block basis.

2.6.1. Standard Map Layout

The librarian map lists all the control statements input to the librarian in the order they
were processed, followed by any module data to be listed relative to each statement
(Figure 2-2). Diagnostic messages are listed as close as possible to the control
statements that initiated their generation, and are prefixed with a unique librarian
message number. These messages and their meanings are described in the system
messages manual, UP-8076 (current version). Unless suppressed by the user through a
control statement option, module and module group header records are listed in their
respective formats, as described in Appendix B. The location of each of these records
within its respective file also is printed on the map as a function of its block location
and record displacement within that block. (The OS/3 program library format also is
described in 2. 7 .)

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

2-11

• 2.6.2. Source Module Listings

Whenever a source module is listed, each source record is listed in standard EBCDIC
format exactly as it appears within the source module. A one-to-one relationship exists
between the number of source statements in a source module and the number of lines
printed for the source module. When source modules are being updated, lines deleted,
lines preceding insertions, and insertions are listed in the same format. Figure 2-2
illustrates an example of a source module printout.

If the // PARAM PRTOBJ statement is used, source modules will be listed in
hexadecimal format.

2.6.3. Object and Load Module Listings

Object and load modules are listed in hexadecimal form. Each byte appears on the map
as two printed hexadecimal digits. Because object and load module records are not
fixed in length, the listing is on a record-by-record basis. If patch records exist within
the module, they are flagged appropriately. Figure 2-3 illustrates an example of an
object module listing.

2.6.4. Diagnostic Message Listings

• Diagnostic messages are listed on the librarian map whenever a processing error is
detected by the librarian. The printed message identifies the type of error detected and
the message number identifier. All the messages capable of being produced by the
librarian are listed in the system messages manual, UP-8076 (current version), as well
as the meaning of each message and the corrective action required to remedy the cause
of the processing error. The librarian job is never aborted unless the processing error
detected is sufficiently critical to preclude continuing.

Figure 2-2 shows an example of a typical diagnostic message at the bottom of page
0003 of the librarian map. It reads B060***** NOTHING FOUND. .,_

•

UNIVAC OS/3 LIBRARIAN
DATE 82/07108 "Tl ME 15. 39

BLOCK - REC

• • COPUtANO • • • • • •• • •

• • C OMHAND •. •. • • • • •

•

NAME

FIL

0 l - VSN
0 2 - VS'I
o 3 - vs~
0 11 - VSN
0 5 - V Sl\I

COP

TYPE DATE TIME COMMENTS

01:RG,02:sc,03:oa,011:LO,OS=MC

IS 0001110, LFD IS RG t FILE LABEL IS ORIGINAL
IS 0001110, LFO IS SC , FILE LABEL IS ALLSRC
IS 0001110, LFO IS OB t FILE LABEL IS ALLOBJ
IS 0001110, LFD IS LO , FILE LABEL IS ALLLOO
IS 0001110, LFO IS MC t FILE LABLL IS ALLMAC

01

Figure 2-2. Typical Librarian Map (Part 1 of 3)

•

PAGE • 0001
VERUOltOl

•

c
"]'

~
"'
~
()I)

~w
m"U

s: !II
w ::D m-<
~c -Z
C') -m<
"ti)>
::D C')

00
G>W ::D ..._
)> w
s:
w

"' I
"'

• • •
P•GE It 0002 I I c

BLOCK REC NAME TYPE DATE TIME COMMENTS
,,

I co
0
O>

T•BLE OF CONTENTS I I N

::0
Ill
:i::

SOURCE MOOD l 801Ul3108 ii:.. 311 I I co
SOURCE MOO OZ ROIOUC'<I l&.35
SOURCE 1'10003 1101013108 l&.37
SOURCE 1100011 !IDIU811'18 l&.39
SOUHCE 1'10005 80108108 1b.111
SOUl!CE MOOO:> 8oJI08108 lb.Ill
SOURCE MOOAl 8110111?7 09.lc+
SOURCE "IOOAZ 81101+127 09.ZZ
LOAD MOOA moo 11110510& 11.lO
LOAD MOOAllOOO 811051~8 1 n.1111
SOUQCf '100A5 e11oc;1oa 11.0b
SOURCE HODA& !HIJ'>ll? l lo .. s
OllJEC T MOOA 7 ~llclS/12 l 'J." 8
SOURCE MOOC l '311U81l'+ ll.35
SOURC~ MOOCZ 811:18121 l 'l. I) 1
SOU QC:'. MOOC 3 ~llJSIZI+ l 0." l
SOURCE '10i>C11 C:lllJBl21+ l ('1 ... 7
LOAD 1'100CSOO'J 811081211 1 a. Sc+ en
SOUl!CE MOUCb H 10910 l l '.1.23 -<
LOAD MOOC70•10 81109111 oH.3:.J

en en -I ,,
LOAD 1100C~OJn 0110.:JIOJ 00.1~

mm
SOURC:'. "100" l ~11:15112 13.59

s:: ::D
en ::o

SOU~Cf. '100~ 2 811'.lblCl 12.3 3 m -<
LOAO MOOf! JDiJO Hl'Jblf'l l?.50 ::0 c
SOU~CE "101Hll ~llJ&IOS l2olf5 Sz
SOIJilCE M:lO'l'i 8ll'.J&iZ9 12. B

(') -m<
LOAD '1005b0i'Jfl ~ll011'lb 111. sz ,, >
LOAD "100~7:1011 81107110 111. l 4

::D (')

LOAD H00830llJ >Hl'1Hl4 13. H
00
G'l en

sou~cE '40Df. l S)JliJ'll(l~ 11 ::D -

SOU RC:'. MODE2 n1::i~1.1e 1 &.115
>w
s::

SOUl!C<: MODE 3 80118108 l <;. "5 en
sou~ci:: HODEii d')I J81:J'! lbo'47

dL OC KS ilE HA I "l I '4G OIRECTOQY llOOCOO PRIME •JOOOO THIRD 000000 IJ"IUSEO 1)1]1)000

• • co~~•AND ••••••••• CJP 01,s,,02

000001 005 1"0001 SOR 80108108 16.llf
0000011 052 140002 SOR SOICl8llJS lb.35
000005 067 HOOOl so~ 8010811)8 lb.37
000007 ODS "00Ulf SOR !10108108 16.3~

000008 005 140005 SOR 80/08108 16.lfl
000008 171 '1000& SOR so1081oa 16.lf 3
000009 118 1100Al SOR 811011127 !)9 .111 N

I

0000111 031 MOD"2 SOR 811011127 09.22 ~

w

Figure 2-2. Typcial Librarian Map (Part 2 of 3)

BLOCK REC

000015 179
000018 072
000019 071
000021 080
000022 07'1
000026 095
000027 tlb2
000029 005
000031 135
•JOOOll5 005
OOOO'lb 091
0000118 005
0000119 135
000050 1 30
000052 005

•• co"r1ANO •••••••••

000001 005

• • COMMA NO • • • •• •• • •

000001 005
0000011 U77
000005 tl21
000008 1 7b
00001& 16'1
000022 057
000030 021
000062 065
000118 021

, • COMtlANO

NAME

NQQAS
MOOA6
MOOCl
MOOC2
'10DC3
'100Cr+
"IODC6
"00::11
"10082
MOOt!'+
Ml)085
'10Df. l
'100E2
"100£ 3
"ODEii

COP

"IOOA7

COP

"ODA3000
"00A'+·JOL!
"03CS JOJ
>IOQC700 l
"0JC'l•l01
"0JS3U1·J
"IOJa&uO'l
MC[)17UOLJ
M·)DollUOO

COP

TYPE DATE

SOR 81/05/08
SOR 81/05/12
SOR 81/J8/lll
SOR IH/08/21
SOR 81/08/211
SOR 81/08/211
SOR 81/09/01
SOR 81/05/12
SOR 81/06/01
Sl)R 81/06/nS
SOR 61/06/29
SOR 80/08/0 9
SOR 80/Qd/08
SOR -i0/08/08
SOR 80/08/08

01,0,.03

oeJ 01105112

01,L,, Or+

LOO <'1105106
LOO H/05/0~

LOO IH/tl'l/211
LOO dl/i.l9/ll
LOU 00/0IJ/OC
LOO el/J6/0l
LOO 8l/tJ7/0b
LOO 81/07/10
LOO 81/08/111

Cll,f",.05

::IO&O•••••NOTHING FOUN:l

LIBRARrAN FINISHED
OATE 82/07/08 TIME 15.39
TOTAL NUMBER OF ERRORS ClJOl UPSI SETTING X'llO'

TIME

11. 06
13.115
13 .35
10.51
10o113
10. II 7
io.2a
13. 59
12035
12 .115
12. 38
1 b .1111
16 .115
160115
lb. II 7

13.11 a

11 olU
10. 1111
10.511
')II. 3'1
ar:i .o 'l
12.50
111. 5 2
l '1. 111
13 .31

COHHENTS

Figure 2-2. Typical Librarian Map (Part 3 of 3)

• •

PA&E # 0003

•

Cl>
-<

c
-0
clo g
N

w
CX>

~ Cl> m -o
3:: gj
Cl>~ m
:D c <z n­
m);;
"'ti (")

el~
G>._
~ c.>
3::
Cl>

';J
~ .,,.

UP-8062 Rev. 8

• '° 0

"" 0 ..,
..... :c
l::

- >
0
0
0

• ... ,_
.... ..
..!) 0 ..
a..

...
'E: ...
z

w
a.. ,..
....

• ;:>

"' 0
u
"'

0
z ..
x ...
a..
0

0
z ..
:I:
:I:

N 0
.n u .

z - ...J
::>

"' l::
.. :I: ,_
x- z
.0 ,_ ::J

u
...J

0
.., ' u

'"'
"' - l::
0'

o()

u • ...
> ... "" -J
z .. al
::> 0

SPERRY UNIV AC OS/3
SYSTEM SERVICE PROGRAMS

.....

.....

'
' o()

.....

.... ..
~

"' x

...,
al
:>

c;:)'
.... c

t::
(1)

~
c:r,
.s;
-~
-.J

-!!!
-5 c
~
<.>

~
0

<"i
I

C'l
.... ~ .. ::i

...J a.. ~ "' ... x ...,
:0

::J ::J

•
0 0

0

...J
...J,

"'

"" " <>-

"' 0
0

2-15

UP-8062 Rev. 8

"' 0
0
0

......
•..!) 0 ..
0.

w
:c ..
z

..J
0. ,.. ...

0
z ..
....
'1.
c

0
z
"' ;:
:c
c
v

u
UJ
:x

0
:r
0
r
0
r
0
:r

0
:r
0
:r
J

r
0
r

0
:r ...
:r
.....

0
:r

0 0"'
u u ·'X'
00~

- - 0
.II UI :
7 T i

00
0 0.

0 ':).
.., co ,
"':::> c.
c(...:> =
':)

:0 0 0
,..... => :"

N =:I ~ -"". 0"' c =· 0,..
:::> J
:0 :::>
<> ':)
- :::>

- -
"" = :r c
"' = ... =
()o ,,

v l)

0"'
.... 0- I
0 0:
JI v .
..() .:::> :
-o-
... .;)
v ft T
o :xi r
:::i =..('I' - ~:

u u :r-:
~~~~=ooooocri~~uor 
..::lr.:::.orrrr r-:r :rw.....i....J.r::: 

l:IOC:Cri..o::>OL.t'\-=>,.,a;, .Q J"l'X> c:C.:.O 
~:r~wu:r:r~:r~wo~u-~o 
~~~,.,~~~:r~~,.,~~..()~~~ 
~:rO~WTU~V~O~~~~~­
~o~-:r~~..()>-.0~~,.,,.,:::J~=
wrwuuooooow w u~:
~~~~,.,~~M~~~,.,~~~~= 
oro-wi..1 .... ...,u .... 000~.Il:o-• 

~~~>~~~D~----~~~­
O~-vu~CUICU~UV~~UI'

:: ,.. ~ :'!"" ;;-- - :;-. """. ""'i ~. -; .,.. --· •
~:roo~oo~ouuuuou~c
0:>0-.0..0,,.....:r~~,.....~,.....,.....~~~
o:r:>~woouo.:::.~~oo~u~
~~~~~~4~~~~T~~::>~: 
oro-r,co:ov~-..,oo~~ 

~~~~-~~~N~~~~::>~~~ 

~:r~----J-----~J>>
~~0~~~~~0j0Q000~..0
~:r0=8=>~~~~~~0~~N~
ooooccooooocooocc
~ :r ~ ~ ~ 8 ~ ~ ~ ~ = u ~ ~ :r Q ~
0=0000000=000:>0-~~
::l T :::::I ::!" :r ;r- T T :r 'T T T T T => 7

o~~~::>~~=>~~j=>::>...:>~-~
0 :r 0 :r :r :r :r :r :r :r :r :r :r :r >
o~ ----..a -~-~-=> oroccoococccooocc
~~o.:r:r-TT-OTTT.:rr~~~=
~:r-:J~~~:J~~O:J~~.:>~~X
,...:J~~~~l..l..~1..1..~~~~~.0N~
~::r--ooococccccc•N~

N

"" T
()o

"' 0
o

O-.:> :r..nN.,..-Dr"IO,....:r..n
-DO-- :JNO....,.....,:Ji"-:J>-·:JN.::>
--1'4 '=l=>:JO.=l.=> :::J

i>-C>-0-,,..DCOOOooo
:r :r TT ..n ..t'J ../'I ./'I ..n ..n J\ ..n ../'I
""' .,.. <>- 0-- ::>'- "" ,,.. ""' 0- .,. a-- .,. 0-
......._. ~-...,_. ~ "' N "I
::'l::>~.:>..:t.:>.:>=i::t..:>o~.=:i
0000000000000

SPERRY UNIV AC OS/3
SYSTEM SERVICE PROGRAMS

..,
0
0
0

...

..... ,_, :;) ..
0.

....
>.: ..

:::>
z ..
x
IL
c

0
z ..
J:
:c
c,
u

_,
::>

.>::
z .,,,
u

u
It:

~ 0
uo
..., 0
VO
0
r :r
.n"' u..,

r .n
OU
:r 0
..J
.... "'
::i .n
<> 0
00

.n
... :>
0::::
:r c
0 J
0 r
.n ':)
0 r
r ·:J
u :r
n c
'V r .., :;)

..Jr
0

•j,,.

11 T
'.) ·J
,. JI
uu
TT
::> J
0- ()o

oo
.II .0
v ~ .., .
:.J....,
0 o­
r o
N LO
uu

..,
oc

0
Or
0 .n
TU - " ... v

N ':) .n
u :::> v

"":xl - ·C
~I"\,! .:r ~
..n N _,....
u .=l :1"' ::r­
:J ..0 '° ..n
"'0 ""'i.tJ

.n 0
or
0 0
r :r
00
T :r
.n 0
ur

,.... -~ ..n ..n ,.... =>
:ruuu :::a:r
~O::J~ 030
0 I.I..~.... ...i :r
...... :--...., .:>
.J-r:r,.. ..a.JT
,.""1::>4.'..a.J.:>-:>
~::>..,·.JO&.'T:f°"

"1'I,.... ..0 .ti ,.... :r 0
>u:>-1=.iu:r
...J 0 =i .='! c:(O'- =>
,.... .:; '""',.... "'" 0 :r
.n .. .0',,. - :>
:..JO--:r.J....>'T
~"O.O'T:J....,:J
'X),.... :J'- ::i .JJ ..J :r

" ,..... :c ::> :>
TUUUJ"l:r:Z­
-=>:»....,0=> :>
4.....i..J...&J".:r.r
..() .,.,, ..n J1 "' ::>
UTTa--U.T
..._,, T ::J-:> ::>

:l 0 .J ..J T T

..n .0 4 ..n .n ..n ::>
,..,J,J..JTJT
cC 'Z' ::> :r ·=>
Nc:t-..M.OOT
o-- :-.. - •. n ,o .ll o
J.Jr·..JU.JT
:J.O-TT..-,:r
....... :°"14 ':::> ::> ..:(""" u

::>:....,. .;;c,.... ~ =:i .fl
J\.:l~.:lJTJ

U'=l,...,:r~:rc>­
_,....c.u:rua
"".J"I :-.... J'I ,.. .0 ::i
OVUU.:lu.'.:)T
C:::J.=>QCC..-,Lfl.::I
T..L,:jl"l,....W.::::::..r

:.:> ::J ::J
r :r r
000
:r :r r
000
T :r :r
000
:r :r r

;:; ·O 0
r T :r
000
rrr
OO:l
r :r :r
0 ':J 0
r :r :r

000
T :r r
.0 0 ':)
~ ::r- :r
:J :J"
r T T
',:) 0 '::>
:r T T

0 = :>
T :r r
0 J :J
T r :r
c -::i ':::>
:r :r r
J J = TrT

JI J'
u I. - ... u::
11)'
::i ~

~ ::> ::> - ""' ..
TTT-.J.J
:::I :J .:> .., T
.:r:r:ruo~

=> 0 Co ::;) :J'- .:i
T :r ::t' T ":> \,,.
::> .:> .:> ..() ..n :>
:19TT~UQ

-=i = .=.. -0,.,.., -
TrT.J.J..J
occ~o,..,

T:r:rw:ru
::> .:> ::> ,.::> =
.:r:r:r.:ru..;~

GC.8J"IO-t'
TT'TUU

..n :-..... NT
u:r o-- ::r­
::;, -- ..,..
.;) .0 ':) 0 '° •:l ,.....
:r v => u
.:;, .c :J ..n
.:> .'.'.) - :J

N - ,.... .:J C. c;,
uuu::r-:r'T
w I./\ 0- 0 :J :J
.J~u:rr:r

..n ..n :::J :J ::> ::J
::r- a :r ::r- .:r r

0 c
r 0 :r
~ l) ""
T i.6J "-
0..., ...
'T ..i ::

,.... J'o- 7' :J .:::::: _:; -= ·~·
""'u v :r

OOZ'N..O-,.....no:Jo-.:.;:J-:J=1,....:J
:ru-u.ruu·::i.::..J"~::r:u:­

-~ --.i;..-.;.. r _.:; ,..,.:
uo--ooo4ou:r:r7:rou
,._~-<~::>N~::>~=>:>O.:JO'-,_
oao-=>~uau~urrrru~'
-o-..,:o•or..,•oo-oo~•·
j~4..,.n.::>....,~rr~rT~J.

... <1-0llll',.._""~0.,,,-000"1-0Y
j~~=i~r.J:l=ir:r~rr~J~

O::::>~OO~::::J::::>o~o~~::::>~~.o
T.:r~oo~TOOWT~'TTUOC

.n,....coc~No~ooooo:r~o
~vOrr~O-TrTTrrrOr'.
-.o..n.o~o::::>TO:>::::>~:J::>Oaj:

OOM~O~~oo:r::r-o:rr.:r~~

::>c>-~~ • ..n,....o~-~..o~~J-x
:ruv-~ruui.nur:o:rrr•L
~N::::> 400-.:Jo-aoo
T0~=10~~00TT~TT'T~~
r..,,.._N-..•-~~~o~~~o~~

Uv:ro~ur~:l rc:r:rr:J~
o..n-~,...T"::>T::>...OOWOO::>~­
T UO~O'- cO C~ CT~TTT~U

..... .n
-o
NO

.0
JI

.....

.n
0-

" ':J
0

.Jl
UI
0-
.....
J
0

2-16

.., 0 ... 0

.., Lil 0 0
- 1l 0 0
T "1 C>- Ln
::::JN U ~
:;) N 0- ':J
0 ;Q c u
MUUO

"'° ;:): :J .J
~~~o u,...,.... 0 
U"T.Ti.Ji 

l""1 ..u - -
.:Jr--..::> .:J 
......... ~ 1) -=> 
e::i v - .n 

U Wl&.. \.fl W 
Ln i... i... ::> .:> 
.n "N:01""1 
,.., ::>""' u a 

' .0 4 J J :> 
,_ ..O~·JO 

'° u /'. ':'\6 ::> 
" U:::JO'-•.t\ 

:l J 0 ..0:... 
u UJ ..0,.... c 
::> :.0 .J 0 T 
l""1 ..n .J 'J ,,.. 
""O ""::>::'I ..... 
U'I ,.... ..... -o 
.J ::.i :X) ..c ~ 
.0 ,J .n J\ ..... 

c ::> ::> .J .. 
,J ;:,.. l) .,.. ':::> 
0 :::::> .:3 c ·=> 
~ UlvUJ'l 
,.... 0 i.. 0 ::::> 
r ......i ..... ., ':J 
....() C N,.... N 

" UO'-T~ 

~ ::> LM ;.,Jl ::,! 
J o .. ~.::> 
0 ,.... ,.... tO 0 
i1'l T 8 - t""I 

(Joo. JJ ..() .n ::> 
..n ,.... "'° 0 0 
0 oucco 
T UU.JiI'I 

co ~ .::> ;:j .... 

I.a... w I.a.. w 
~ LnllN~ 
...J 0-- U'I ,. I.I.. 

..n -1.1.. ..a..1::0 
0 0,...,.... v 
<l .::i.:::i '.".:l.J:< 

a:> ::iuuu 

M 0 LL. 0 0 
.:t. o- ~ a i.r. 

~~""\ii -
~ aJ0-0--~ 

D JJ '=> N"' 
n .o o "'o 
0 .llill:O.O 
C UUU:l 

<( ~ "::> ;:) :::i 
~ ::> ... :"l<r.ol :r 
.::i 0,....,.... -
=i ar:r.:r 
COO.T~C 
.:r I..)~ :::i,.... < 
0000.0~ 
0,.. 0 :::'I u u 
::r- 'X) u,.... .:> :> 
""' Ln •...J ,..... IJ"I ,...., 

0 - - C>- -:::l·=:IO:rr.n::r 
' "' :l Colil l) ...0 ..0 
• => 0 0 ::>,.... ......... 
1u,......:roou 
INT~OUU 

0 .n 
0 
0 

.., .., 
"" "' 0 
0 

• 

• 

• 



• 

• 

• 

UP-8062 Rev. 8 

r 
0 
0 
0 

.... 

• w .... 
we 
.!J ::i 
c 
(L 

w 
:c .. 

0 
0: 
0 
u .... 
% 

0 
z .. 
% 
w 
~ 
c 

0 
z .. 
:c 
::c 
0 
u 

..J 
::> 

"' .... 
.z 
D 
u 

00 
0 

r o 
r o 
... ::l 

::l 
.tl 0 

0 

w ::l 
,.. 0 
::l 0 
0 0 
::i ::i 

::i 
0 

-r 0 

0 0 
oo 
0 ::> 
" .() 
0 0 
r o 

"" ,.. :::> 

.., w ........ ....... 
-o 
;J)"" 
u " DU 
uu 

0 ~ 

" c 
- ::0 
r "" 
.J Xl ..., .... 
0"' 
vu 

0 c 
..., w 

"""' ..nr 
D :xi 
TU 
:0 " uu 

0 '=>"' 0 0 
::l':JU:>::r 
0 0 ,. 0 0 
o o o o r 
::::> ::::i .0 ::> ::::> 
::l ::> 0 0 ,.. 
c ::> ""0 ::J 
o o u or 

:'.) :> .J'I :J ."::) 
::::> 0 u 0 ::r 
-:> 0 N ::> :l 
oouoo 
0 0-:> ::> ::> 
0 0 ::i 0 ::i 
::i ::> 0 0 0 0 
'::> ':J ·,:, ·=> ".:) "t" 

SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

00000 
::r:T:::>::>-.:> 
OlllOO'O 
::r =:a 0 =- ::I 
:J'>-~:::>::i 
r u ::l ::l C'l 
o:iooo 
::r ::r 0 0 ::J 

.:> ,.... ::i ::i ::i 
::r a D 0-::> 
':> D 00 ::> 
::r ::r 0 ::J 0 
:l .0 ::> ::i :> 
.,.. ':l .:Ji~':) 

C') .0 0 0 0 
7 ".:) ::I:> :J 

..0 J .::> 0 ::> :::> '::) 
v::r::r::ro .:::>a 
::r :::i u ::i -::i ..:> :::i 
u ::r ..ti ::r ':) 0 => 
- 0 ':) => ::> :>'::I 
u::rr::r:> ::>:> 
Lt\OUO:J Q1:> 
\j ::r Ll1 ::r :::i 0 ':J 

;)o>Q:J.::>:> :::>:> 
.:l ::r :r ::r ::> CJ '::J 
:lOJ":IJ O::> 
'3" ::r ::r 'T 0 0 0 
.n:>~:J.::> :::>:> 
:l7'T'T:l ":l:J 

::'I 0- ..:> ....., :J '::> ':) ::> ::::> 
::>v::rv::r::>::>J":> 

0 ::i 'O 
0 .:> D 
.::: .::: ::i 
':) 0 c 
::l 0 0 
'O 0 0 
0 ::l 0 
DOC 

c: 

::i .:::l ::::> ::::J 
·::J 0 0 0 
0 :J ::::> :::> 
000 0 
0 ::i ::> 0 
::> .:> :l :> 
:> :::> .:i :> :::> 
::> ::i ::> :> => 

ooooo=cooooocoooooooooooo 
::>:>:J::J::J::r::r::r:>":l::>::>::rT::r::r::i:>:J:>~:lJ-::>::J 
ooooooor::iooo~o4oo::io::i::ioooo 
coooorruoooc~roroocooococ 
~ :J '.) j J :> :J ~ :J j j :J ~ .:i :J .:i .:i .:i ~ ::> :J :J :J j -
ooooor-roo:i::io~rrr::icoooooo 
":l:>=>=>~:>-::>-~o-::i~~~--::io~~=:>-=>~o 
~::>:>.:>O:T::rU=:JJ~J::r~::r::::>:>~:J:lU~8 

0 ::> :J ::> :> :> ::::> ~ ~ J :J ::> ~ .:> :J ::> :> :J :J w .:> :::> :> ::i 
ooooorruooo::iorrroo::iooooo• 
'J :> ::> :> :J ::::> :> :J .:> .::> ::i J ~, ::i ::> :> :J :> J .'.) ::i :::> := :> 
ooooorr-roooourr-roooooo::io 
~::>:>-=>:>:>:>~:>:::i:>oo:>~J::i-::i~-:>~:>::>:> 
ooooorruooo-:iorrroooooooo 
:>:J::>:>:>::>::i~~::>:>:>.::>~~:>..J:>~.:J:>.:J:>~ 
::o::>::>:>~-rrJ::>:>~J-:>rJrJ:>JJOJ~~-

;:) :=o 
0 0 
00 
oo 
::> 0 
OD 
co 
oo 
cc 
co 
D C'l = 0 oa 
oo 
::I c 
OD 

-:>j:J.::>~~:l:>.=>:>:>:JJ:J~:>.:>O~:> 
:>~-:>7T~:l:>:IJ")TTT:>:J:>.:>:J:t 

ooooo-ooooro.00000000 
occr~Jooooororocoooo 

=>.:JO.::J:J~.::>O::J:>.::>OO.::>:J.::>08.::>0 
::>:>o-rroJ:>oo::irrroco:>o:> 
~oo~~a::r:>:>o::iJo~oo:>.::i:>o 
oo~::r-::r-::ru:>8~8::rT::ro::i~ooo 

0 :I D :> 
.:» :l .::. :r 
o ::::i a c 
cao:r 
:J.:) .J .::> 
0 0 .:::> ::r 
::::: cc c 
0 .::i c ::r 

.:JO..n:J~::>-=:io.;::;.::>:lO:> 
:rT J:>.:J::>.:>:rr:r..:>::>..:J.:> 
o::r-,,.:::s:::>~c:r:::oowc 
:ru~c·o;:::c·:ru::r-.:..oco 

:>>-..o..:>:>.:>:>:>:>:>..:>:>..:>~ 
:ruoo:=ooa:r:r::ro:.::io..= 
;:;,,..,lf',co=.cc..t1c-=:icoc 
:r.::::.a=icoo:r~::r:>o:>=:. 

coooo-,o.::i..:ioocooo.::iooo 
ooc::r:ruuocco:r:r:rococo~ 
00000..no-ooooo.nooooooc 
ooorr~uocoorurooooco 

coooo.000000000000000 
ooo::r:rOT:>::i~o:r::r::rooocoo 
ccco::c>roccococccc-cc 
o.::i~::r-::ruu~~oo:r:r:ro~oo~.::> 

::J 0 ':) 
J J 0 
:::i .::> 0 
0:::: 0 
-:; 0 0 
::Jc:::> 
000 
coo 

.:l :J .::J .:: 
:> .::> ..:> c 
c 0 0 c 
-:; 0 c.. 
0 0 0 
(:).:> :J I 

sco 
DOW 

0 0 c 
coo 
::::) ":I cc. 
:J = 0: 
::>::>cc. 
0 0 0: 
..- ....... C.·~ 

o,. 00000000,.oooooooooococoo::lO 
::r~ oococ7~~c:::>:Jo:>~~~occuoocac~ 
c ...... 

r u 
o~ 
-r 
0 '" 0 0 

" 0 0 0 .:J 
::> 0 0 ":I 
0 D 0 ;:> 
'.'lr,l ~ 0 ,j 

~ ::l ":I :::i 

-o:r:r:r 
0 ":I~~ 
o:r:r:r 
::J ::J N 0 
.::> :r :>- :r 

-- ' _ _, - _; v :: 
'::>OD:Tl.t'l:T:r 
.=J ':) ::J :::> ~ :::> ":) 
coo:r:r::r-:r 
.:::> ::l N ::J ',j ::l .::I 
":l..:J""-T<..nT:r 

:::> c 0 
ODO 
DD;:> 
:::i 0 ·:> 
::i => ~ 

0 c 0 ::J 
;::i ':) 0 "j 

coo= 
::J ;::i N 
0 0.., 

~~ ~~oooJuo-,oo~~o:>~J~ o:>~J~ 
~- :J:>~JJ:t'J:t'~:>~:>:>:r:r::r-:r:>~J:IJ:>O:> 

u oooooooo~:>ooc:>u~;::i;::i~~~o::::Jo;::i 

ru ooocororro~oco..nrroao--oo~ 
~C~OOO~C800~~0C0080CCCO~C0~2 
oo-oroouorrroooororrroroocoor 
oNoooo..,oooorcoooo::ioooooooooc 
oucocouo:roroocoo::>:r~:r::>oooo8oo 

~~::>~O::l~:::io.~:ro=i~~o=i~8o~o.::>.::>o=i 
""IOoooowororwooooorrroooC"Jooo~ 

No-00-00 o~ooo-~o~c~-~:.::iooo­
rooooouororcoooourrr o~oooooc-
4<10~00~00No•ooo"..,000~"00000No 
~~o~~~~o:ro:r~;::iao~~77:roo~ao~Jo::J 
..,~o .... coooc .... 0.-.000 ..... C'lUOD .... OOOOD•C 
~ucwoOTCr~rucoo~~r~rc~coccc~c 

r 
4 

"" "' 0 
D 

..n 
0 
D 

"' .<J 
0-
..... 
.::> 
0 

"' 0 
0 
0 

"' :c .. 

0 
z ... 
:c 
w 
(L 

c 

0 
z ... 
:c 
:c 
0 
u 

..J 
::> 
0: .... 
z 
0 
u 

u .... 

0 .... 

0 

0 

0 
c 
D 
0 
0 
D 
0 

0 
0 
0 
0 
c 
0 ... 
0 

.., 
0 

0 .., 
0 

u"' 
NO 

2-17 



UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2.7. PROGRAM LIBRARY DETAILS FOR SAT FILES 

2-18 

The system program library files, composed of program source, macro/jproc source, 
object, and load modules, are created and used by the various components of the 
SPERRY UNIV AC Operating System/3 (OS/3) during the normal course of system 
operation. It is these library files that the librarian services and maintains based on 
particular system needs and constraints determined by the user. 

For you to realize the full extent of the capabilities of the librarian, you must be aware 
of the organization and content of the program libraries in the system. You also may 
elect to establish a program library of your own. If so, the librarian also can be used to 
maintain the object, program source, macro/jproc source, and load code sets contained 
in this library, under the same guidelines it uses when servicing the system program 
library files. 

2. 7 .1. Library File Layout 

The system library is composed of five permanent disk files and one temporary disk file 
for each job being processed in the system. All the files consist of at least a label, a 
single element, and an end-of-file marker; they are structured to support fixed-length 
block, variable-length record data and contain a directory partition. The directories are in 
fixed-length block, fixed-length record format. 

Each of the five permanent files are 3-partition SAT files. One partition is used to 
maintain a directory for the file, and the other two are used to store the program 
modules contained in the file. When these files are initialized by the librarian, the space 
allocated for each file is distributed as follows: 

• Two percent is allocated for the directory partition. 

• Forty-eight percent is allocated for the prime data partition. 

• No space is allocated for the second data partition. 

• Fifty percent of the space allocated to each file is initially unassigned. 

This initial allocation technique allows the librarian to assign file space to the various 
partitions in a file on an as-needed basis, and thus prevents space from being allocated 
for a partition that may never be used. (At present, only block load modules require the 
use of a third partition.) Thereafter, when a partition becomes full and requires more 
space, the librarian extends the partition by using some of the free space it has in 
reserve. Only the partition that was full is extended, and the amount of the extension is 
based on the file extension increment specified on the EXT job control statement used 
to create the file. When all the free space is allocated, the dynamic file expansion 
capability of the supervisor is called on to provide additional free space for the file in 
the same increments previously used to effect the file extensions performed by the 
librarian. 

• 

• 



• 

• 

• 

UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2-19 

The job temporary library files are special files established by job control at the time 
jobs are input to the system for processing. These files are dynamic in nature, in that 
their size and structure are variable and they exist only until the job is terminated. Any 
programs or data that may be in these files are unrecoverable once their associated 
jobs have been terminated. 

A program should not be executed from a library that is being restored, updated, or 
packed. In addition, it should be remembered that your files, excluding system files, 
may be sharable (depending on the FILELOCK parameter you specified during supervisor 
generation). See the system installation user guide/programmer reference, UP-8074 
(current verison). Because OS/3 allows multiple writers to concurrently access ·sharable 
files, these files could be destroyed in a multiprogramming environment. It is 
recommended, therefore, that critical user files be prefixed by $LOKnn to prevent them 
from being accessed concurrently by multiple writer programs. 

Providing information needed to create new files or extending existing files on disks is 
the function of the EXT job control statement. See job control user guide, UP-8065 
(current version) for details on this and other job control statements. 

2. 7 .1 .1 . Library Blocks 

Library blocks are fixed-length, 256-byte blocks (Figure 2-4). Each block is composed 
of a 5-byte block prefix and up to 251 bytes of variable-record data. The block prefix 
includes a 3-byte logical block number, a 1-byte value indicating a block length (not 
including the block prefix), and a 1-byte check sum reflecting an exclusive OR for 
relevant data. Records within the block are variable in length up to a maximum size of 
251 bytes for any given record including the record prefix. 

BYTE 
0-2 3 4 5~ NO. 

..... 255 

CONTENT bbb bl vr v j i r vr 

~ 

BLOCK PREFIX 

Figure 2-4. Library Block Format (Pan 1 of 2) 



UP-8062 Rev. 8 

Byte 
Position 

0-2 

3 

4 

5 - S+bl-1 

SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2-20 

BLOCK FIELD DESCRIPTIONS 

Field Contents 

Block number (bbb) Starting with 1 for the initial block, this is the logical block 
sequence number. 

Block length (bl) This is a binary value less than or equal to 251, indicating the 
number of bytes of relevant record data within the body of this 
block, not including the block prefix. 

Unused 

Variable records (vr) Variable-length records comprising the body of data contained 
in this block 

Figure 2-4. library Block Format (Part 2 of 2) 

2.7.1.2. Library Records 

Library records are variable in length. Each record is composed of a 2-byte record prefix 
and up to 249 bytes of record data (Figure 2-5). The record prefix includes a length 
byte and a type byte. The type byte indicates the specific type of record that follows 
the record prefix. The length byte indicates the size of the respective record (not 
including the record prefix) up to a maximum of 249 bytes. 

BYTE NO. 

CONTENT 

0 1 

rl t 

"-'v-' 

RECORD 
PREFIX 

Byte 
Position 

0 

1 

2 - 2+rl-1 

2 2+rl-1 

vr 

0 1 

rl t 

~ 

RECORD 
PREFIX 

2 

v} 
2+rl-1 

/__ r 

0 1 

rl t 

"-'v-' 

RECORD 
PREFIX 

2 2+rl-1 

vr 

RECORD FIELD DESCRIPTIONS 

Field Contents 

Record length (rl) This is a binary value, less than or equal to 249, indicating the 
length of the respective record (not including the record prefix). 

Type (t) This is a type byte indicating the specific type of record. (Refer to 
Table 2-1.) 

Variable-length Body of the particular record (up to 249 bytes each) 
record data (vr) 

Figure 2-5. Library Record Format 

• 

• 

• 



UP-8062 Rev. 8 SPERRY UNIV AC OS/3 
SYSTEM SERVICE PROGRAMS 

2-21 

• 2. 7 .1.3. Record Type Byte 

• 

• 

Associated with each record within a given library file is the type byte occurring in the 
respective record prefix. This byte is used to identify the record as to its code set and 
record particulars. Table 2-1 lists the record type byte values possible in an OS/3 
system library file and their meanings. Note that the type byte field also exists in disk 
library directory items. 

Table 2-1. Record Type Byte Descriptions (Part 1of2) 

Type Byte Value 
Description 

(hexadecimal) 

00 Nullified item records 

02 TEXT/RLO records in object modules 

03 Transfer records in object modules 

04 Standard ENTRY records 

06 Standard EXTRN records 

07 V-CON records 

08 Named CSECT records 

09 Unnamed CSECT records 

OA Named common records 

OB Unnamed common records 

oc Object code ISO records 

12 TEXT/RLO records in load modules 

13 Transfer records in load modules 

16 Load code ISO records 

1C Load code ISO records 

24 Program source or macro/jproc source module records 

25 Compressed source code item 

32 Blocked text or RLO records 

40 Control statement records 

80 Object module header records 

90 Load module header/phase header records 

AO Beginning of group demarcator records 

A1 EOF sentinel records 



UP-8062 Rev. 8 SPERRY UNIV AC OS/3 
SYSTEM SERVICE PROGRAMS 

Table 2-1. Record Type Byte Descriptions (Part 2 of 2) 

Type Byte Value Description 
(hexadecimal) 

A2 Marco/jproc name header records (in directory only) 

A3 Marco/jproc module header records 

A4 Program source module header records 

AB End of group demarcator records 

BO Blocked load module header/phase header records 

C4 Shared code ENTRY (SENTRY) records 

C6 Shared code EXTRN (SEXTRNI records 

CB Resource records 

2. 7 .2. Disk Library Directories 

2-22 

Library files existing on disk are supplemented with a disk file directory composed of 
13-byte records, each of which points to a specific demarcation record in the file. The 
directory precludes the need for scanning the library file to obtain a needed record. 
Instead, directory scanning suffices until the program is located. The pointers existing 
within the directory explicitly designate the position of the required element within the 
library file data partition. The format of the library file disk directories exists as a 
function of the needs of the prime routines accessing the directories. The directory 
format differs in record layout from the prime data partition of a library file, in that 
directory records are fixed, 13-byte blocked items. The directory block prefixes are 
identical to those of the file partition. 

Disk directory records are composed of: 

• a name field; 

• a type indication; and 

• a file pointer 

Directory entries are made whenever the respective file record is: 

• a module header for program source, macro/jproc, or object code; 

• a phase definition for each phase of a load module; 

• an entry ESD record for object code; 

• a beginning-of-group (BOG) or end-of-group (EOG) demarcator; 

• 

• 



UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2-23 

• • a named CSECT record for object code; or 

• 

• 

• a procedure name for a macro module in proc format. (This is the directory entry 
for which there is no unique corresponding record in the prime data partition. This 
item points to the module header record.) 

2. 7 .2.1. Directory Format 

System libraries are built and managed by using the system access technique (SAT) 
access method. Thus, the first partition of each standard library file in the system 
consists of an index of pointers to the prime data area of the file described by the 
second partition. This directory index consists of a series of 13-byte slots, each 
pointing to the corresponding record in the prime data area. The directory blocks may 
be 251 bytes in length; the last four bytes of each directory block are unused when the 
block is full (contains 19 items). As many directory blocks as are needed to 
accommodate the needed number of index entries for a given library are available. The 
last index entry for each library directory is the index to the EOF record in the prime 
data partition. Figure 2-6 illustrates the disk library file structure and the format of each 
directory record. 

INDEX PARTITION 

8-BYTE 
SYMBOLIC 

NAME 

DIRECTORY 
BLOCK 

DIRECTORY 
BLOCK 

DIRECTORY 
BLOCK 

DIRECTORY RECORD 

1-BYTE 
3-BYTE 

TYPE 
BLOCK 

FLAG 
RELATIVE 
POINTER 

--

Figure 2-6. Disk Library File Structure 

1-BYTE 
RECORD 

RELATIVE 
POINTER 

~ 

PRIME DATA 
PARTITION 

DATA 
BLOCK 

DATA 
BLOCK 

DATA 
BLOCK 



UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2-24 

The symbolic name field (bytes 1 through 8) of a directory record is used as the 
identifier of the module or demarcator existing in the prime data partition. The type field 
specifies the demarcation flag for the respective record. The values of the type flag field 
correspond to the record type field in the prime data area. Table 2-2 lists the type flags 
possible in an index item. 

The block relative pointer to the prime data area is a relative block number within the 
second file partition indicating the block containing the respective record. The record 
relative pointer is the number of bytes from the beginning of the block to the beginning 
of the record. The record relative pointer and block relative number are computed when 
the prime data area is constructed. The pointers for macro name header index items (in 
the proc format) always point to the beginning of the proc module regardless of where 
the name directive is contained within the body of the module. 

Table 2-2. Disk Directory Index Type Flags 

Hexadecimal Value Demarcation 

00 Nullified item 

04 ENTRY name (object module)* 

08 CSECT name (object module)* 

80 Object module header 

90 Phase header (load module) 

AO Beginning of group demarcator 

A1 EOF sentinel 

A2 Macro/jproc name header 

A3 Macro/jproc module header 

A4 Program source module header 

AB End of group demarcator 

BO Block module header record 

*Multiple duplicate names can appear in a library file directory. 

2. 7 .3. Card Libraries 

The librarian can punch libraries into cards and, in turn, can access card files as input. 
Source module items, element headers, phase definitions, CSECT, ESD, ISO, PHASE, 
and TRANSFER records are punched directly. Text/RLD records in object and load 
elements are treated specially since the record size is variable. Thus, punched card 
formats for text/RLD records may require multiple punched card records. 

Whenever object or load modules are punched into cards, a 5-digit sequence number is 
punched in columns 1 through 5, providing a card deck sequence check facility. When 
punching source modules, the librarian creates 80-byte source records (the source 
module header is eliminated) directly from the library. 

• 

• 

• 



• 

• 

• 

UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2-25 
Update A 

When librarian functions require punched card output, the name PUNCH must be 
specified on the I I LFD job control statement. With the punched card output, the 
librarian creates an ELE card to precede the module and an EOD card to end the 
module. The ELE card will be in the format: 

LABEL t>OPERATION.6. OPERAND 

ELE D1, module-type,module-name 

When filing object or load module card libraries, the librarian reconstructs the module 
from the card decks, checking the sequence number of each card and the record types 
within each module. When source modules are created from cards, the appropriate 
headers are created, prefixes attached, etc. 

2. 7 .4. Tape Libraries 

The formats for tape libraries are the same as those for disk libraries except that: 

• tape libraries have only a data partition, no directory partition; and 

• modules having the same name and type may exist in the same tape library. 
However, the first module encountered is the one processed . 

Because of the structure of a tape library, once a modi.lie is written to a library, that 
module cannot be deleted or altered in any way in that same library. Therefore, the 
input library and a new output library must be specified when making changes to a tape 
library. This new library can be another tape, disk pack, or punched cards. The 
following control statements are not supported for a tape library because the operation 
takes place in the input file or involves the directory: DEL, LST, PAC, REC, REN, REPRO, 
and SEQ. If a load module on tape is blocked, the BLK control statement must specify 
an output file that is different from the input file. 

The librarian provides the option of specifying a physical tape block length other than 
the standard length of 256 bytes. The variable block length is specified for each 
nonstandard length type in the job control stream via a DD job control statement. The 
format of this statement is: 

II DD BKSZ=n 

where: 

n 

Specifies the block length in bytes of the particular file. This block length can 
be: 

• any multiple of 256, 

• not greater than 8192; and 

• for an input file, at least as large as the value used when the file was 
allocated. 

t 



UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2-26 

The / / DD BKSZ = n statement informs the librarian to either produce a physical tape • 
output block or input a physical input tape block of the size specified. If the // DD 
BKSZ= n is omitted, a standard block size of 256 bytes is assumed. 

Additional main storage space must be allocated when processing variable-length block 
tapes. The formula for computing the necessary main storage space is: 

28,672 + 2048 + (10272 * number of tapes) 

Whenever more than one variable-length block is specified in your job control stream, 
the 1/0 buffer space must be allocated for the largest combination of block lengths used 
in any single library function. 

Your tape libraries must have the standard header and trailer label records and the 
name specified in the / / LBL job control statement must agree with the file header 2 
label of your tape library. The data management user guide, UP-8068 (current version) 
provides the information concerning the header and trailer label records associated with 

~ tape libraries. 

All tapes can be prepped by using either the prep option of the / / VOL job control 
statement or the tape prep routine (TPREP). 

NOTE: 

You should use extreme caution when specifying the PREP option of the 11 VOL job • 
control statement for a tape file to be processed by the librarian. With this option, the 
tape is prepped every time it is opened as an output file. If a tape file is used as both 
an input file and an output file during a single job, every time the file is reopened as an 
output file, all data on the tape as a result of previous operations will be overwritten if 
the PREP option has been specified. If the operation was intended as a continua/ 
building of the tape file, the results would be disastrous. 

When tape prep is specified in the same job step with a librarian file that contains more 
than six input files that output to the same tape, the seventh input will cause the tape 
to reset the output block to block number 1. 

To avoid these problems, you should prep the tape in a separate job step. 

2. 7 .5. Diskette Libraries 

The librarian can be either input from a diskette or punched to a diskette. Diskette 
library processing is the same as card library processing. 

• 



• 

• 

• 

UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2.8. CONTROL STATEMENTS AND PATCH CARDS 

2-27 

The system librarian of the SPERRY UNIV AC Operating System/3 (OS/3) is instructed in 
its task requirements via control statements presented by the user through the control 
stream. These statements designate information such as functions required, module or 
group name of code to be serviced, logical files associated with the various tasks, and 
options applying to the selected functions. The control statements and patch correction 
cards that permit the librarian to perform these various library file servicing jobs are 
described in this section. The control statements are presented in alphabetical 
sequence. 

2.8.1 . Control Statement Conventions and Format 

All of the librarian control statements adhere to the following statement conventions: 

• Control statements may be written in free form. 

• Each operation code is composed of an identifier that describes the function. The 
operation code may be followed by a character string signifying options that alter 
normal processing of the function. The character string is separated from the 
operation identifier by a period. 

• The operand field of each statement is composed of a variable set of positional 
parameters. Some positional parameters are optional. Optional parameters are 
indicated by brackets; choice alternatives are indicated by braces. Operands must 
be separated from the operation field by at least one blank space. Consecutive 
positional parameters must not contain embedded blanks. 

• Prime librarian control statements may appear in any logical sequence within the 
librarian update control stream. Subfunction control statements must follow their 
associated prime control statements. 

• File and module names may be composed of up to eight characters each. Inserted 
comments used to describe specific modules may consist of up to 30 characters 
including embedded blanks. 

• Macro, proc, or jproc definition modules may be specified by using the letter M in 
the positional parameter describing the type of module. 

The coding format of all the librarian control statements is: 

LABEL 

unused 

where: 

funct;on 

L::.OPERATIONL:l 

funct;on 
[.options] 

OPERAND 

p1,p2,p3,p4,p5 

Is the mnemonic of the librarian process to be performed. 

73 SEQUENCE 

seq-no 



UP-8062 Rev. 8 

options 

SPERRY UNIV AC OS/3 
SYSTEM SERVICE PROGRAMS 

2-28 

Is a string of one or more of the following letters, depending on the function 
specified. 

A Specifies that all groups with a specified name are to be processed. (Must 
be used with a G option) 

C Specifies that the name parameter in the operand field is a module name 
prefix or a group name prefix rather than a complete name. 

D Specifies that the entire module or module group being processed is to be 
listed on the librarian map. (This may also be used to obtain a table of 
contents for a specified library.) 

E Specifies that the card module is terminated when the librarian detects the 
first EOD statement following the ELE statement in the control stream. 

G Specifies that the name parameter in the operand field is a group name 
rather than a module name. This option will initiate processing of only one 
group of the name specified, unless the C or A option also is specified. 
Whenever this option is used, the module type parameter should be 
omitted from the operand field. 

M Specifies that the module identified in the parameter field is to be 
processed only if another module of the same name and type is in the 
output file. 

N Specifies that the printing of header records on the librarian map is to be 
suppressed. 

P Specifies that the entire module, or module group being processed, is to 
be reproduced in punched cards. 

0 Specifies that the module identified in the parameter field is to be 
processed only if no other module of the same name and type is in the 
output file. 

U Specifies that processing is to be performed on all modules from the 
current position of the file up to and including the module identified in the 
name parameter. Whenever this option is used, the type of the module 
identified in the name parameter must also be specified in the operand 
field, unless the G option is also being used. 

X Extend an unblocked, single-phase, load module. 

NOTES: 

1. If contradictory options are specified for a single librarian function, a 
diagnostic message is printed on the librarian map and the last option 
specified is honored. 

• 

• 

• 



• 

• 

• 

UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2-29 

p1 

p2 

p3 

p4 

p5 

2. Unless the RES control statement is specified, the file pointer is positioned 
at the current position of the file rather than at the beginning of the file. 
Therefore, when using options C, G, or U, specify the RES control 
statement to access the entire file. 

Is a logical file name or a group name. 

Is a module type, a logical file name, a module name, or a sequence control 
field. 

Is a module name or a sequence control field. 

Is a logical file name, a comment, or a sequence control field. 

Is a comment. 

seq-no 
Is a 1- to 8-character alphanumeric sequence control number of which at least 
one character must be numeric. 

2.8.2. Patch Card Formats 

Because there is no standard format for a librarian patch card, but rather, several 
standard formats, the patch (correction) card formats recognized by librarian functions 
are described immediately after the librarian control statement that makes use of a 
particular type of patch card. 

2.8.3. Blocking Load Modules (BLK) Control Statement 

Function: 

You use the BLK control statement to convert a standard load module to a block 
load module. Block load modules are intended to increase the efficiency of program 
loading in that all or large parts of the overlay phases may be loaded by a single 
1/0 operation. When the load module is in block format, fewer disk accesses are 
required because the loader can read the entire phase at once (if the phase is less 
than or equal to one track in length), or one track at a time until the entire phase is 
loaded (if the phase is more than one track in length). If the load module were in 
standard format, then each phase would be loaded piece by piece, that is, 256 
bytes at a time . 



UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2-30 

All files containing block modules must have three partitions, thus differing from the 
standard two-partition file. The block load module's first and second partitions are 
standard, but partition 3 is not. Partition 3 is not structured and is made up of 
contiguous text data, free of any control information, and is allocated by SAT when 
the file is first opened. The data in partition 2 describes the boundaries of each 
phase in partition 3. The text data in partition 3 is in sequential load order and is 
binary zero-filled when appropriate. 

In standard load format, no text records can be overlaid; however, in block load 
format, they can. An example of this overlaying would be when the load module 
detects the following coding: 

Loe Operation Operand 

0000 CLI R6,X 1 01 1 

0004 BC 8,STOR1 

0004 ORG *-4 

0004 BC 15,STOR2 

The BC 15 overlays the BC 8. In standard load module format, the bytes of text for 
the BC 8, R 1 continue to exist in the module although they are overlaid at load 
time. 

Since the objective of converting to a blocked format is to increase the efficiency 
of program loading, the following considerations should be kept in mind when 
making a decision on load module format: 

• Modules less than 4K bytes in length take longer to load if in blocked format, 
unless the resident loader (RESMOD.SM$LOD) is configured in your supervisor. 
In this case, block loading is as fast or faster than for standard load format. 

• Do not block modules having information passed from one phase to the next in 
a OS area. All OS areas are zero filled. 

• Patches to a blocked module phase will significantly slow down the loading of 
that phase. Patches do not affect the loading of standard load module phases. 

• Loading blocked load modules from a selector channel disk is slower than 
loading from an IDA disk. 

• Do not block modules written in assembly language and having address 
constants overlaid with text. This is the case where an unneeded address 
constant is used for patch space. It can also occur by using the assembler 
ORG statement and overlaying an address constant with instructions. 

• 

• 

• 



UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2-31 

• Format: 

• 

• 

LABEL 6,0PERATION.6, OPERAND 

unused BLK input-lfn,module-name[,output-lfn] 

Positional Parameter 1 : 

input-lfn 
Specifies the logical file name of the disk file on which the original load module 
resides. 

Positional Parameter 2: 

module-name 
Specifies the name of the load module to be converted. 

Positional Parameter 3: 

output- l fn 
Specifies the logical file name of the disk file to be used in the block operation. 

If omitted, the input file contains the blocked module, and the original load module 
is nullified. This parameter is required if the input file is a tape. 

Example: 

1 10 16 

BLK D1,STEP2,D2 

This example converts the standard load module named STEP2 residing on file D 1 
to a block load module and places it on file D2. 

NOTES: 

1. If a block load module with the same name is detected in the same file, the one 
already present is nullified and the new one added. 

2. Load modules generated from ANSI 1974 COBOL source code that includes the 
dynamic CALL or CANCEL verbs cannot be converted to block format. 

2.8.4. Write Beginning-of-Group (BOG) Record Control Statement 

Function: 

This statement is used to begin a module group by writing a beginning-of-group 
record in a specified file. The modules that are to comprise the group must be 
added to the file before the end-of-group (EOG) record is written on the file. 



UP-8062 Rev. 8 

Format: 

LABEL D.OPERATIOND. 

unused BOG 

Options: 

None 

Positional Parameter 1 : 

group-name 

SPERRY UNIV AC OS/3 
SYSTEM SERVICE PROGRAMS 

OPERAND 

group-name ·~}] 

2-32 

A 1- to 8-character alphanumeric character string that specifies the name of 
the module group being started. Module groups within a given file may have 
identical names. Only one group, however, is processed each time a process 
group function is performed by the librarian, unless the C or A option also is 
specified. 

Positional Parameter 2: 

lfn 
Specifies the logical file name of the disk or tape file on which the 
beginning-of-group record is to be written. 

If omitted, the job run library ($Y$RUN) is used. 

Examples: 

1 10 16 

1. BOG EXAMPLE1,D1 
2. BOG EXAMPLE2 

1 . Begins a module group named EXAMPLE 1 on file D 1 . 

2. Begins a module group named EXAMPLE2 on the $Y$RUN file. 

2.8.5. Compare Elements (COM) Control Statement 

Function: 

This control statement permits the comparison of two source modules in two 
separate files on a record-by-record basis or the comparison of two complete files 
on a block-by-block basis. No other options are available with this command. The 
two source modules to be compared must have the same name and type 
designations. 

• 

• 

• 



• 

• 

• 

UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2-33 

When comparing two source modules, the librarian first locates them in the two 
files to be used. The comparison then occurs on a record-by-record basis. When a 
discrepancy is detected, the two source items are listed in EBCDIC. The sequence 
control fields (columns 73-80 unless altered by user specification) are then 
examined and the module with the lowest value has its file pointer advanced one 
record. The comparison is then redone. (Source modules so compared should be 
presequenced in some fashion so that a control field is available.) If the sequence 
control fields are equal when such a discrepancy occurs, both file pointers are 
advanced one record. The comparison continues until the end of a module is 
reached. Figure 2-7 illustrates an example of the librarian map produced during a 
source module compare operation. 

If no source module name is provided, both files are compared in their entirety 
from beginning to end. This involves a block-by-block comparison. When a 
discrepancy occurs, both blocks are listed in hexadecimal, each file pointer is 
advanced one block, and the comparison continues. The process proceeds until 
end-of-file is detected on one of the libraries being scanned. Figure 2-8 illustrates 
an example of the librarian map produced during a file compare operation. 

Format: 

LABEL 60PERATION6 OPERAND 

COM 
[{

prim-lf. "}] [·{s}] ['{n-n }llc,name],sec-lfn 
. • M II '(JI u 

unused 

Options: 

None 

Positional Parameter 1 : 

prim-lfn 
Specifies the logical file name of the first disk or tape file to be used in the 
comparison. 

If omitted, the job run library ($Y$RUN) is used. 

Positional Parameter 2: 

S,M 
Specifies the type of modules being compared as either a program source 
module (S), or macro/jproc module (M). 

If omitted, all modules in both files will be compared . 



UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2-34 

Positonal Parameter 3: 

n-n 
Two decimal numbers, separated by a hyphen, that specify the starting and 
ending columns of the sequence control field to be used if a source module is 
to be compared. 

If omitted, columns 73-80 are assumed. If name is not specified, this parameter is 
ignored. 

Positional Parameter 4: 

name 
Specifies the name of a source module to be compared. The module named 
will first be located in both files, then compared. Each must be a source level 
module. 

If omitted, the files designated will be compared on a block-by-block basis from 
beginning to end, and positional parameters 2 and 3 are ignored. 

Positional Parameter 5: 

sec-lfn 
Specifies the logical file name of the second disk or tape file to be used in the 
comparison. 

Examples: 

1 • 
2. 
3. 
4. 

1 10 16 

COM D1,S,,EXAMPLE1,D2 
COM D2,S,1-8,SORCMOD,D3 
COM D11,S,,EXAMPLE3,D12 
COM D5,,,,D6 

1 . Compares the source module named EXAMPLE 1 in file 01 with the source 
module named EXAMPLE 1 in file 02. The sequence control field used is 
positions 73-80 of the source module records compared. 

2. Compares the source module SORCMOO in file 02 with the source module 
SORCMOO in file 03. The sequence control field used is positions 1-8 of the 
compared source module records. 

3. Compares the module EXAMPLE3 which exists in source code format in file 
011 with the source module EXAMPLE3 in file 012. The sequence control field 
used in positions 73-80 of the source module records compared. 

4. Compares all the modules in file 05 with all modules in file 06. The compare is 
terminated by end-of-file of either file. The compare is on a block-by-block 
basis from beginning to end of each file. 

• 

• 

• 



• 

UNIVAC OS/l LllRARIAN REVISION 
CONTROL 

• 

CoHHANO Op[ HANO 
r1L o••JCSLIB~tDZ.JC5L1&Z,D3•JCSLl83,0~•JCSLll~ 

CON oZ,,L11srOR1D1 
SOURCE HEAOER NAHE OATE T1HE COHH~NTS . 

LllS,OR D~ZZ71 l~IZ 
LllSFOR O~ZZ7~ Z21D 

SOURCE RECOROS THAT ARE NOT EQUAL 

LA RI It I 
HYI LBSCOH,x•Do• 

LUC011A3 HVI LISSI IT I 1X19Q • 
HVI LBSCl'R INT 

CLI QIR71 1C•T' 
us"'' R~,s,, 

• END Of SyNTAX CHECK 
USIN<i R~1f>1• 

STH RlitL•scoHU•~ 
MVI 

1.11Aeu'r oc AILlllHIUr+3'1 
swTco c11u 

END OF l'RIHE H00ULE 

PUT OhE INTO RE&ISTER 

RUNLI~ ND TYPE CHECK 

IF EQ• TAl'E ERROR 

DISl'l.ACEH[-T INTO cOOIN~ 
LBICl'IH NT, X 'OD 

• 

Figure 2-7. Typical Librarian Map for Source Module Compare Operations 

• 

AICDO•Uo 
ucoo•uo 

AICDDIDO 
AICDOIDO 

AICDOl3D 
AICDDllD 

AICDDl~O 

ABCDDl!O 

AICD319D 
ABCD31 !o 
ABCD~9ZO 
ABCDOZO 

en 
-< 

c .,, 
00 
0 
m 
N 

:0 
(!) 

~ 
co 

en en -I .,, 
mm s:: :0 
en :o 
m -< 
:0 c :::; z 
() -m< 
.,, )> 
:0 () 
00 
G> en :0 ....._ 
)> w 
s:: en 

N 
I w 

(J'1 



UP-8062 Rev. 8 

" ID 

~ 

"' u ., 
• 
" 0 

... .. 
~ 

"' u ., 
• ... 
c .. 
ID 

~ 

"' v ., 
• 

Cl"' zc 
c -ac­..,., 
L­
C~" 

c 

"'c 
v -., -. --N 
co 

z~ :E 
c- 0 
,., ... v 

:E 
0 
v 

z 
c~ 
-o 
"'"' _.,. 
>Z 
... 0 
"'v 
z 
c 

"' c .. 
ID 

~ 

... .... 
"' 0 

v 
c 
> 

z 
:> 

" 

.. Noeocooo .. 
Ct'lf .. W .......... V 
~ .. .:3c>OO::t:I0'1 
,., ...... 0 ............. u 
=NOl"lOOOOON 

r N.:r W r ........ ::I" U 
0 .. 0roftOOOOO­
:r a.-o:r:r ...... V 

a.. Noo"'oo:rooo 
u .... U .... N .. :r .. 

% ••00000000 
~ uo ........ "' ...... 
"' ,., .. 00000000 
Z QOrr .. or ... :r.-:r 
w :r•oooooooo 
..I vv .. :rrr~rr:r 

" u .riN::iooo-ooo 
0 ow ................. .. 
..I ~t\l~O::tOO::tOO 
~ vu .... r:r~t:r:r 

0 
c 

0 
0 
0 

. 
0 
z 

" u 
0 
~ 
CD 

... 
~ 

... 
~ 
z 
0 
v ... 
"' 

" ... 
:E ... 
"' z ... 
~ 

" v 
0 
~ 
IC 

0 
0 
c 
0 
0 . 
0 
z 

" u 
0 
~ .. 

... .... 
... 
... 
r 

"' IL 

00-0000 .. 000 
ovr:r .. 'P'J:r.-:r 
o..-.ooooMooo 
oortrrv:l"r .. 

~OOOOONIOOO 
oo.-r:r .. u .. :r:r 
000000-"' 00 
oorrrrvo .. :r 
00:1:raoa•oo 
oorN::rr:ror:r 
ooooeool"'too 
oo .. .,.w .... u .... 

OOOOl'tOOeoo 
o.,:,.r.rw:rr11tr#" 
OO':tO,.._O~N~O 

oorrorrvrr 
ooooroo.-.oo 
oo:rro:r:rorr 
C000,.,00000 
oo:rrurrrrr 

0~0031000000 
oorr11tr:rr .. r&.. 
o::::!~Nco-.:.co­
oo.,.rurrrr .. ~ 
0000..,00000-
ooo:ro ............. ... 
roooooooooo 
- O -r :r r :r r :r r IL 

.rroeocoocr 
c-:rw.r:rr:r .. v 
., .. 0 .. 00000,., 
"',....,.or r :r r r u 
ONO ... OOOOON 
................. ., .. u 
o:ro•ooooo­
:roror:rrr:ru 

Ncc..noc•ooo 
u:r:rv:r#'N:r:r .. 
••ooococ:co 
v 0 .................. .. 
,., ..eoooooooo 
oo:rrr .. 11.r•r 
#"400000000 
v v ....... :a- ........... 

.nNoooo-ooo 
owrr:r:a-11.. .. :a-r 
"'flriilOOOODCOO 
vu ............... ... 
0•0000 .. 000 
our:r.,.:r-u .. :r:r 
0_.,0000MOOO 
o c r r r .. u r r :r 

OOOOOONOOO 
oorrrrut:r• 
OOOC'00-'1100 
oor .. r .. ua;r.r 
000 .. 000•00 
oo:rN:rrr-or-:r­
ooooeooMoo 
oo;r.nwr-...-ur-:r-

oooa.-.001Doo 
0 0 .... w ......... 
ccco,...ooNoo 
cor:ro:rru:r:r 
cc-cc•cc,.,oc 
oo:r•o:r .. o:r:r 
0000f1'110QOOO 
c 0 .. :r u ..... .,. .... 

DDDOIDODODDO 
oo:r:r.n:r•r:r ..... 
OOOONOOODO­
OD .. :ru:r:r :r r:ra.. 
0000 ... 00000-
000 .. a:r .... :I" ...... 
r D flrll 0 0 0 0 0 DO 0 
-0- ................. .. 

• 

SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

mooooooo-N 
................... t vu 
.. oae>o,..ooa­
o.-ro:rw .. ,....ru 
.coo,.,..oi.11ro.no 
orrwroN'#'Ur 
t"tOOOO:rooc>o 
u .. r .. :rw"',...o .. 

• 

MOOODMDOON 
~:r:r:ra-o:r:r:rv 

c>.llOOOto.t::J:IO­
UU:r:rrurrru 
•roNOO:rflltOO 
~o:rv .. :rNwr:r 
N•OOOt"IO"'O:J 
,.,urr .. w111o:rr 

.... caoooo.oo'"'"'o .._ Cll•OD040•0o 
"'or:r:ro ... ur:r .nr:r:r.-a .... uu:r 

%: NOOOOfl't-•eo 
~ v:rrr:ru .... •ur 
"' ,-,oooao•o'"'o 

% ......... 000111••00 
~ uo:r:r:ro.._a .. :r 
'9 ,.,ONODo ....... oo 

z 0 ...................... .. z o:r~r:rr ... or:r 
w 00000•0 .... oo w oo..,oo:ro..,oo 

-1 :r:rua- .. u&..ur .. ..I .... r .. #'a ........ :rr 

" " u ooooo•r•t1i10 u 0011100111:reoo 
o :rr:rr .. ouow:r 
_. oo~~o•,.,o•o 
co rr:r:r:ruuru:r 

o :r:ru:r:rou111:r:r 
_. oo•OO-t1NOO 
co :r:ru:r .. uuu:r:r 

•OOOOONOOO 
urr:r:r:ru~r:r 
"'oooo"'-ooo 

•OMOOONl'tOO 
urua- .. ruo:r:r 
Ll'IOOOO--ooo 

N ltJ .. :r:r:rvu:rrr • w:r:r..-:ruu:r:r:r 
c 
0 
0 
0 

0 
z .. 
v 
0 
~ .. 
... 
~ 

... 
a 
z 
0 
v ... 
"' 

.. ... 
% ... .. 
z ... 
~ 

"' u 
0 
~ 

"' 
N 

0 
0 
0 
0 . 
0 
z 

"' u 
0 
~ 

"' 

... 
~ 

... 

... 
r 

"' L 

0 
.roo:ro"'o::too o 
o:r:rN:ror..-:r:r o 
00000 .. flrllOOO 0 
rrr"':row:r:r:r 
000000.n•oo 
:r:r:r&..r:ruu:r:r 
OOOD-flrllloftflltDD 0 
.r:r:r ...... woo:r:r z 

' ooo•-:r:r,.,ooo u 
r:r.r&.. ... wou:r .. o o 
0000•111z-oooo -1 
:rr:r ... oow:rr:ro ., 
ooo:reo-,.,ooNo 
:r:r:ru•uo:r:ro ... 
OOOMCD:r400.nN 
:ii- ..... :ru ... oorro.._ w 

~ 

OOONO"O,.,~D-• 
:r ... :rvorut:ru ... 
..ino-aaoc.c..,o .:l 
.. .._ .. ur:Pr .. :ror... z 
:r-ooooo•ooNr o 
N,...r-:r:r:rurtuu u 
O,.._ODOO•OOOM W 
111w:r:r:r:rorrru Vt 

o.noooooo-N 
:f"Q.r:r .. :r:rruu 
O•O•OMOOO­
.. O:rO•Wr .... ru 
-ooNoU\ro..no 
....... w:roN:f"u.- • 
m ... ooo:r-oo•o 11. 
..,..,,.,._.._.. ... '",..or 

% 
-.-000.cio,.,.no ~ 

... wr•:rOILUU#" "' 
- .... oco,.,-m•o z 
a.o:rrrv .... •u=r w 
01- OODOO•O,.,D -I 
o:r•rr:r11.111wr 
00000•0 .... oo v 
.,. .. .a- :r :r a ... M.. =r.,. u 

j 
ocooo•:r •No ., 
.. ... ... .. ... 0 uo ~ ... 
oo•cc"'°,.,o•o 
rr-o:r;ruuru ... 
OO&llOOONOOO 
;r#"u:r:r-:ru..,:r:r • 
-o,.,oo.n-ooo 
urw:r-ruu=r:r-:r o 

c 
0 

MON:trOll\0000 0 
o:rwN•Orr:rr 
oo•DO•NDOO 
:r..-u.a.-ow:r:rr o 
oo .... 0001i11•00 z 
.... u ... rtuv•;r 
OOi.AO-N\11,.,00 V 
:rru-..11.woo:r:r- u 

0 .... 
oo••- ..... ,..000 m 
..... aa..r...wou .... o 
D D D D • \II 'fZ' C Cl C D· 
......... oow:r:rro 
CO•reo-,..,C'ONC 
..... ov•uorror... 
00..,f1'11Ct .... OD.t1N 
;r:r-wva...oc:rroa.. ... 

~ 
OOi.AN•O ... DD-• 
r:l"ouo:ru:r:ru"- ... 
c.·o•-oooooMo 
:r:r-vu:r:r:r:r:ro.._ "" 
roocoo•ooN:r x 
N:r :r:r:rrur:ruu 
OOlllDC04000M m: 
.ntu:r;r:rorr:rv a. 

:roi.1trO#'OQO.:> 
O#'UN:l"Q:r:r:r:r 
oo,...o~:roooo 
:rro.n ... o:r:r .. :r 
DOe.:t-•Oo-0:1 
:r .. w ... uo:ru:r:r 
DOl'te:rMDlllOO 
rrw&..ou:rw:r:r 

000,...-ooo:rooo 
rr:r&.or:ror:ro 
00..00,..,.,::JQOOO 
:r .... o ... uw:r:rr:ro 
OO!ill:r.J3•DOOOO 
...... 0 "'"' 0 ............ 
040,.,Nll'IOOOOO 
r11..ruuo:rr:r ..... 

00\11Nfl100QOO• 
....... uua:r:rr ....... 
c ... ,.,-o~NCOO~ 
rwou:r:rorr:rs.. 
:rc•OOO"'OOO':I' 
N-ou:r:r:rorrru 
o-•000-000.., 
11111..urr:ru::r .... u 

l"IOOOOl"'INODN 
w:rrrrou .... :ru 
•.nOOONM .... •-
uu .. r:ruOWOU 
... 0Noore11to 
wcru:rrN•o .. 
N•OOOl"'ID-OC "'u..- ..... w"' ........ 

lll•ODO•O,.,NO 
..nor:r .. 01&.wur 
N .... ooo.n•••o 
uo:r':l'":ro&..vur 
,.,ONOOO ...... ..,O 
oro:rr:r11.wor 
oo,.,ooroNU'IO 
:r ::r u ::r r u .... wo::r 

OOU'IOO.n:rm:rc 
:r::rv:rrou..n&.J:r-
0011:100-""N•c 
::r::rur:rvuuor 
0-0fl"IOOON..,CO 
urur:r:rua:r:r 
"'0000--000 
W r ::r :r r V V':I' r r 

::roU'lro:roooo 
o:ruf'llif:ror:r:rr 
co,...o:r:roooo 
:rra.n ... o..-:r:rr 
OOIDO-•D•ON 
::rrwu..uo:rv:ro 
OOMct:rfl\Oll'IOfl'l 
::rr1.&1-..ou:rw.ru 

000,..,.aocrc"'o 
.... .,. ... a.,.:roruo 
CO-GClfl"l,.,COOeO 
r,...011..uw .. rruo 
C'IO"':r~•Ofl'tOMC 
r IA.. 0 VIII 0 :r II. :r. U II. 
Q .. O ... N.itO-OCO 
:r ... .-vuo:ru;r:r11. 

oo.nNl"tooro.n• 
:r,...uuo:r•o .. u11.. 
o .... M-OON•o .... a 
.. -..iou:r .. 00,...011.. 
:re•OOOlllll"IOer 
t1C•urr .. ou11..wu 
o-•ooo-••"'"' 
"'"-u!a"r··:rv.n.._wu 

• 

OQOOOOOOOflrf 
... .. ., ............... u 
o.no-:10000-
:ru .. u .... r .... u 
o :ro..,oo:raoo 
r O:I" or:rNW" :r ... 
00-00000000 
:rur:r:rr.n:rr:r 

... o•ooo.noooo 
:r 0 :r r r UY. .. r r 

% Qpo..QOO.ON•OO 
..- :ro:rr:ru11.. .... :rr 
" voooo ... ••oo z ~.,. ...... :r 0 a.. ....... 
w 00000•0"'00 
~ ............. u .......... 

" u ooooo•:r•oo 
o r r :r :r .. u u•,.,. 
_. OOOO~Ofllroo 
m :r:rr:r.-.-u ..... r 

•000 ........ 00 
w:rr .. .iuuor:r 
eooo..,•-ooo 

• o:r.r.rwou .... r 
0 
0 iftOQ:l"M00 .... 00 
o u:r.rflrfa.r .. u:rr 
0 OOOO•N0\1100 

r:rr11tuw .. ar .. 
rora•No•oo 
11..ru ... uw:rur .. 

0 -o•-elltONOO 
z u:ru11..11tu:rw:rr 

" u :ro ... •N•oroo 
o o.roa..uo:rw:r:r 
_. •o-o"lrOOOO 
• o:rua..au:r ...... 

'""Ollt .. Cll .. 0000 
v:rwu•u .. :rr#' 
CDOO"le-0000 

w 11tr .. ua..ur:r.,.r 
~ 

&.. NOlltN•O.:JDOO 

2-36 

uruuar':l':r:r .. 
:\ ""~"'-ooc.::oo 
z a:rau .. :rrr:rr· e ·~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 
W OO•OOOOOOO 
Vt lftru:r.r .......... 

• ... 
:E ... 
"' z ... 
~ 

"' u 
0 
~ 
CD 

... 
0 
0 
0 
0 

0 
z 

" u 
0 
~ 

"' 

... 
~ 

00000000,..N 
r • :r .r r r r r o u 
01i11 o-oooa•­
ru .. u ...... ,..uu 
o .. a,...oa.r"'"'o 
•c:ro:r .. Nww .. 
co- oaoooaoo 
ru•rr:ran,...:r• 

CJ• ooo.noMec 
:ror:r:rua..u .. :r 
a .... oco&11Nmeo 
.. orr-:rv ..... c:r 
U 0 0 O·D ,_, e Oilt 0 
.n:rr:rro11.a11u• 
OOOD0•0,...00 
.............. u .... "" .. :r 

ooooo•:r••O 
............ uuou .. 
OOCOOOMO•O 
:r :r,....,. :r .- u:r u :r 
.. OOOM..01111000 
w:r:r:r-wuu11.. ... :r 
•000,.., .. -000 
or'#":r-wov ..... r 

llllOO:l"flltOOOOO 
U .... l'lllC ...... 'F .. 
ccco•NDOOO 
r- .. r .a uw• .,..,._.. 
ro .. o•ND•oo 
..... vk..uwru .... 
-o•-•11tOMDO 
uru11.11tu•o•r-

.,.O..,eN•OflltOO 
a .. o .... uoru .. :r 
•c-c,... .. ooc• 
a:ru11..ou:r:r:ro 
,..,0111r ., .. oco• 
u.-wu•u.,.•:ro 
IDCD ... •-DDO• 
.na-:r-u11.u .. :r .. c 

NO .. N•OOOO• 
11. u:ruuo:r .... :ro 

M0,.._00000111 
.., o:r-au .......... u 
E :ro•ODOOOOO 

N .. U .. r .... r .. :r 
at 00•000000• 
a. an:ru.-:r-r:r:r:ru 

• 

• 

• 



• • 
CJC'IF'OF'8 F'JF''lOOOo CJC'lfuf8 flfOOOOO 

PR I HE F' I LE BLoCK NO, ooon1B BLOCK LENGTH f6 SECOiliU FILE BLOCK NO• 0Doo1B BLOCK LENGTH f6 

So2'1'IO'IO 'IQ'ln'lo'IO '10'10'IOC2 'IO'IO'IQ'IO "oalczse cJo7o•D7 SOZ'l'ln'IU 'lo'lo'IO'lo 'lo'IO'loCZ 'lo'IQ'IO'IO 'IODlC.ZS8 

f 1 'IO'IO'IO 'IQ'IO'IQ'IO 'IO'IO'IQ'IO '10'10'10'10 'IO'IO'lo'IO 'IQ'IO'IO'IO f I 'IO'lo'IO 'IO'IO'IO'IO 'IO'IU'IQ'IO 'IQ'IQ'IQ'IO 'IQ'IO'IO'IO 

'IQ'IO'IO'IO 'IQ'IO'IQ'IO 'IO'IO'IQ'IO 'IO'IO'IO'IO 'IQ'IO'IQ'IO 'IQ'IO'IQ'IO 'IO'IO'ln'IU 'IQ'IO'tO'IO "D"u"o"u 'IQ'tQ'IU'IO 'IQ'IO'IO'IO 

'lo'IOCIC2 ClC'lfQf8 F'7rosoz" SC'IO'IQ'IO 'IQ'IO'IO'IO 'loCSOSC'I 'IO'IOC1CZ ClC'lf0F'8 F'7F'OS02'1 'IO'IO'IO'IO 'IO'IO'ID'IO 

'IQ06(6'1o EZE8D5El CIE7'1QCl cecsc102 'IQ'IO'IO'IO 'IQ'IO'IQ'IO oSC7'1oD' f'l68fS68 f6'1Q'IO'IO 'IQ'IQ'IU'IO 'IO'IO'IO'IO 

'lo'IO'IQ'IO 'IO'IC lo'IO "D"D"o"o 'IQ'IQ'IQ'IO 'IQ'IO'IO'IO 'IQ'IQ'IQ'IQ 'IQ'IO'ln'll' 'IQ'IQ'IO'IO 'lo"o"o"u 'lo'lo'lo'lo 'IQ'IO'IO'IO 
'IO'IO'IQ'IO 'IQ'IO'IO'IO 'IO'IO'IO'IO CIC2clc'I fQf8f8f0 SQ2'1'1Q'IO 'IO'IO'IQ'IU 'IQ'IO'ID'IO 'IO'IO'IQ'IO Cl CZClC'I fQf8f8fO 

'IQ'IO'IO'IO 'IQ'IO'IOEZ o7CIC3CS 'IOfl'IQ'lo 'IQ'IO'IO'IO 'IQ'IO'IQ'lo 'IQ'IO'ln'IO 'IO'IO'IUE2 o7CIClCs 'IOF l'IU'IO 'IQ'IO'IO'IO 

'lo'lo'lo'lo 'IO'IO'IQ'IO 'ID'IO'lo'lo 'IO'IO'IO'IO 'IQ'IO'IO'IO 'IQ'IO'IQ'IO 'IO'IO'lu'IO 'IO'IO'IO'IO 'IQ'IQ'IQ'IQ 'IO'IQ'lu'IO 'IQ'IO'IO'IO 
'IQ'IO'IO'IO 'IQ'll)'IO'IO 'IO'ID'to'to 'IO'IQ'IO'llJ 'IQ'IO'IQ'IO 'tQ'IOCJC2 'IO'IQ'lq'IU 'IQ'IO'IO'IQ 1to'lo'lo'lo 'IO'IQ'IU'IO 'IQ'IO'IO'IO 
C3C'IFOF'8 F9F00000 ClC'lfoF8 F9FOQUOQ 

PR1HE FILE BLOCK NO, 000068 BLOCK LENGTH F6 SECIJNil FILE &LOCK NO• oOoo6B ilLOCK LEili<iTH f 6 

SQ2'1'1o'IO 'IO'ln'IO'IO 'IO'IO'IOC I cB'lo'lo'lo "oo9FS6B 1)3C2saCI 502'1'1,,'10 'IQ'IO'IO'lo 'IO'IQ'IQC I C8'1Q'IU'IO '1Qll9f56B 

E2E2C508 'IQ'IO'IQ'IO <tO'lo'lo'lo 'IO'IO'IO'IO 'IQ'IOC6C9 o9E2El'IO E2E2CS08 'IQ'IO'IO'IQ 'IO•o'lo'lu 'tO'IO'IU'IO 'IQ'IOC6C9 

0506'1B'IO 06C6'IOE2 C5Cl'IB'IO C6C9DlCS 'IO'IO'IO'IO 'IQ'IO'IO'IO 0506'1~'1" 06C6'1UE2 C5CJ'lll'IU C6(.9DJCS 'IQ'IU'IO'tO 

'IO'IOCICZ CJC'lf3f I r•rosoz'I 'IO'IO'IO'IO 'IJ'IO'lo'IO 'IQE2E3CB '10'10CtC2 ClC'lflFI f8FOSQ2'1 'IO'IO'lw'IO 'IQ'IO'lu'IO 
'10'10'1009 F56&0lC2 S8Cl060'I EZF 1 'IEF''I 'IQ'IO'tQ'IO 'lo'IO'IO'IO 'IO'IO'loO'I ESC9'10'IO 'tO'IQ'tQ'IO 'IQ'IQ'IQ'IO 'IQ'IO'IO'IO 

'10'10'10'10 C'IC9E207 0lCIClC5 o'IC5oSEl 'IQC905El 06'10CJD6 C25BcJu7 09C90SE3 68E77DFO fO'IO'IO'IO 'IQ'IO'ID'IO 

C'IC9DSC7 'IQ'IO'IO'IO '10'10'10'10 c1c2clc" flFIF9FO so2'loJCZ 'IO'IO'lo'IO 'IO'IO'IU'IO 'IO'IQ'IQ'IO Cl t2ClC'I f"lflf9fO 

5&CJ06D'I EZfl'IOCl DJCJ'IO'IO 't00JC258 EZo9EZEl E7'1Df'8!io 5BCl061)'1 E2fl'IDCJ aJCl'IO'IO 'IOUJC25B E2D9E2El 
6BOJC2SB EZD'E2El E760DlC2 SBEZo9EZ DJ07'1oo9 FI F' 150'10 6BDJC2SB E2D9E2EJ £7600JC2 SUZD9E2 DJD7'1DQ9 

'IO'IQ'IO'IO 'IO'lo'lo'lo 'IO'IO'lo'to 'IO'IO'IQ'IO 'IO'IO'IO'IO 'I0'10CtC2 'IO'IO'ln'IO 'IO'IO'ID'IO 'IO'IQ'IO'IO 'IO'IO'IO'IO 'IQ'IO'IO'IO 

CJC'IF'JFZ FOFOOOOO ClC'lfJf2 FOF'OODOO 

PRIM£ FILE BLOCK llDo OO'lOAl BLOCK LENGTH f6 SECONU FILE &LOCK NO• QDOQA2 BLOCK LEiliGTH f6 

5o2'103C2 5BCIC2E'I c6c6'10c" Cl'IQ'IO'IO "ocl'lool cz5Bc9D'I 502'1'1u'IO 'IQ'IO'fD'IO 'IQ'IO'IOE2 E6EJClD6 'IOC50l['I 

CZE'IC6'1E F'lfl,SQ'IQ 'IO'IO'IO'IO 'IO'IQ'IO'IO 'IQ'IO'IO'IO 'IQ'IO'IQ'IO 'IO'IO'lr.'IJ 'IQ'IQ'IO'IO 'IO'IO'IQ'IO 'IO!iC'IO'IO 'IO'IO'IO'IO 
'IQ'IO'IO'IO 'IQ'IO'IQ'IQ 'IO'lo'lo"o 'IQ'IO'IO'IO 'IQ'IO'IQ'IO 'IQ'IO'IQ'IO 'IQ'IO'to'IU 'IQ'IO'IO'tO 'tO'IO'IQ'IO 'IO'IQ'tu'IO 'IQ'IO'IO'IO 

'IO'IOCIC2 CJC'lf'lf9 F2F0502'1 oJczsBcs C2E'IC6C6 'IOC'ICJ'IO '10'10CtC2 ClC'ff'lf9 FZF050Z'I 01c2secs CZE'IC6" 
'IQ'IO'IOC I 'IOOJC259 C90'ICZE'I C6'1Ef7F'l 5o'ID'IO'IO 'IO'IO'IQ'IO 'IO'IO'luC I 'tQOJc2SB c9D'IC2E't c6'1cF7rJ 5o'IO't0'10 
'IO'IO'IO'IO 1to'IO'lo"o 'IQ'IO'IQ'IO 'IO'IO'IO'IO 'IO'IO'IO'IO 'IO'IO'IQ'IQ 'IO'IO'IO'IO 'IQ'IQ'IO'IQ 'IO'IQ'IQ'IQ 'IO'IQ'lo'IO 'lo'IO'IO'IO 
'IQ'IO'IO'IO 'IO'IO'IQ'IQ 'IO'IO'IQ'IO c1c2cJc" f'IF9fJFO 5o2'1QJC2 'IO'IO'lu'IO 'IQ'IO'IO'IO 'IO'IU'IQ'IO c1c2cJc'I r"FtrlFo 
5eo9C'IC9 E207'IOC'I Cl'IO'IO'IO 'IOC6 70F'O 7a'IO'I0'10 'IQ'IO'IO'IO seo•c.c9 E207'10C'I cl'IO'IO'IO 'IOC67oro 7o'IO'IO'IO 

'IO'IO'IO'IO 'IO'IO'IO'IO 'IO'IO'+o'lo 'IQ'IQ'IQ'IO 'IO'lo'IQ'IO 'IO'IO'IO'IO 'IQ'IO'lo'IO 'IQ'IO'IO'IO 'IO'IQ'IQ'lo 'IQ'IQ'IQ'IO 'IO'IO'IO'IO 
'IO'IO'IO'IO 'IQ'IO'ID'IO 'IO'IO'IO'IO 'IO'IO'IO'IO 'IQ'IO'IQ'IO 'IO'IOCI '-2 'IO'IO'lo'IO 'IO'IO'IO'IO 'IQ'IQ'IQ'IQ 'IQ'IO'IU'IO 'IO'IO'IO'IO 
CJC'IF''IF"9 F"'IFOOOOQ C3C'IF•f9 ,.. .. rooooo 

Figure 2-8. Typical Librarian Map for File Compare Operations (Part 2 of 2) 

Cl070607 
'IO'IO'IO'IO 
'IQ'IQ'IU'IO 
'IQEqE2C9 
'IQ'IO'IU'IO 
'IQ'IO'IO'IO 
SQ2'1'10'10 
'IO'IO'IU'IO 
'IQ'IO'IO'IO 
'IQ'IQCICZ 

DJCz511CI 
09EZEl'IO 
'IU'IO'ID'IO 
'IQ'IU'lu'IO 
'IQ'IU'IUOl 
'10'10'10'10 
SQZ'IDlCZ 
E7'1Uf8SD 
F1F1SD'IO 
'IO'IQCIC2 

'IQ'IQ'ID'IO 

'IQ'IQ'IO'IO 
'IQ'IO'IO'IO 
'IOC'tCl'IO 
'IQ'IO'IO'IO 
'IQ'IO'IO'ID 
5oz .. o3cz 
'IO'IO'IO'IO 
'IQ'IO'IO'IO 
'IO'IOCICZ 

• 

en 

c 
-0 
00 
0 
Cl> 
N 

::0 
Cl) 

< 
co 

-< 
~en m -o 
S:: m ::0 
en :o 
m -< 
::0 c 
:5 z 
(") -m< 
-0 )> 
::0 (") 

00 
C> en 
::0 -­)> w 
s:: en 

N 
I w ..... 



UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2-38 

2.8.6. Copy Elements (COP) Control Statement 

Function: 

The COP control statement is intended primarily to: 

• Copy the contents of one entire library file to another library file 

Compression of the file being copied is performed as the new file is created, 
thus eliminating file fragmentation created by deleted modules and module 
groups. Only the input-lfn and output-lfn parameters are specified to obtain this 
function. 

• Copy the contents of a library file from its current position up to and including 
a specified module or module group 

The U option must be specified in addition to the desired operands. 

• Copy individual modules or module groups based on module names and types, 
or on module or module group name prefixes, from one library file to another 

If both the name prefix and module group options are specified, all the module 
groups with the specified name prefix are copied. If only the module group 
option is specified, only the first module group of the name specified is copied. 
When module group processing is requested, the module type parameter must 
be omitted, as it is not appropriate. 

• Produce a table of contents for a library file, listing all the records contained in 
the directory partition if the D option is specified, or only the module header 
records if the D option is omitted 

When this function is desired, only the input-lfn parameter should be specified, 
with or without the D option code. All other option codes are invalid. 

While performing any of the previously mentioned copy operations, the librarian 
may also be requested to list (D option) and punch (P option) the modules copied, 
or suppress the module header record listing (N option) it would normally produce. 
Also, if the output file already contains any modules of the same name and type as 
those being copied to it, the old modules are nullified. 

The COP control statement also can be used to: 

• List and punch one or more modules or module groups without performing a 
copy operation 

• Position a library file pointer without performing a copy operation 

• 

• 

• 



• 

• 

• 

UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2-39 

These functions are obtained by simply omitting the output-lfn parameter. To 
produce listings of every module in a file, specify a D option, the input-lfn, and a 
trailing comma (COP.D DO,). This will distinguish it from the COP statement, which 
produces a table of contents for the file specified (COP DO). 

When using the copy facility to create a new tape and you want the modules being 
copied to make up the new file, you must use a previously prepped tape free of 
any data. You must follow this procedure because the copy facility does not 
reinitialize an output file and all modules being copied are automatically written to 
the end of the output file. Also, your input and output tape files must be on 
separate volumes. 

You should not attempt to copy an ICAM symbiont to a file that contains an active 
ICAM symbiont with the same name. The active ICAM symbiont is deleted. 

NOTE: 

You should use extreme caution when specifying the PREP option of the II VOL 
job control statement for a tape file to be processed by the librarian. With this 
option, the tape is prepped every time it is opened as an output file. If a tape file is 
used as both an input file and an output file during a single job, every time the file 
is reopened as an output file, all data on the tape as a result of previous operations 
will be overwritten if the PREP option has been specified. If the operation was 
intended as a continual building of the tape file, the results would be disastrous. 

When tape prep is specified in the same job step with a librarian file that contains 
more than six input files that output to the same tape, the seventh input will cause 
the tape to reset the output block to block number 1. 

To avoid these problems, you should prep the tape in a separate job step. 

Format: 

LABEL !:::.OPERATION!:::. OPERAND 

unused COP[ • options] [{~ L fnl] [ {~}l name][, output· L fnJ 

Options: 

A Process all groups in the input-lfn with the group name specified in the name 
parameter. (The G option must also be used.) 

C Name specified in the name parameter is either a module name prefix or group 
name prefix . 

D List all the modules copied, or if a table of contents is being produced, list all 
the records in the file directory. 



t 

UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2-40 

G Name specified in the name parameter is a module group name or module 
group name prefix if the C option is also specified. If neither the C or A option 
is used, process the modules in only the first group found with the specified 
name. If the C option is used, process all groups with the specified prefix. If 
the A option is used, process all groups with the specified name. When goup 
processing is requested, the module type parameter should be omitted, as it is 
inappropriate. 

M Copy a specified module from the input file to the output file only if the output 
file already contains a module with the same name and type. 

N Do not list any header records on the librarian map. 

P Punch the modules processed. This option cannot be used when requesting a 
table of contents for a file. 

0 Copy a specified module from the input file to the output file only if the output 
file does not already contain a module with the same name and type. 

U Process the modules from the current position of the input file, up to and 
including the specified module or module group. This option is ignored when 
producing a table of contents for a file. 

Positional Parameter 1 : 

input-lfn 
Specifies the logical file name of the disk or tape input file. 

If omitted, the run library ($Y$RUN) of the job is used. 

Positional Parameter 2: 

S,M,O,L 
Specifies the type of module being copied as either a program source module 
(S}, macro/jproc source module (M), object module (0), or load module (L). 

If omitted, all modules with the specified name from the current position to the end 
of the file are copied. 

Positional Parameter 3: 

name 

Specifies the name of the module or module group (G option) to be copied, or 
a name prefix (C option}, and may consist of up to eight characters. 

If omitted, all modules from current position to the end-of-file of the specified type 
are copied. If no type or name is specified, all modules from current position to 
end-of-file are copied. 

• 

• 

• 



• 

• 

• 

UP-8062 Rev. 8 

Positional Parameter 4: 

SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2-40a 

output- l fn 
Specifies the logical file name of the disk or tape unit output file to be used in 
the copy operation. The output file specification is not necessary to position a 
file, to list a disk file directory, or to list or punch specified modules in a file. 

If omitted, only a subfunction (list, punch, position) of the COP statement can be 
performed. (See examples 1 and 3.) However, if you specify an input-lfn, 
module-type, and module-name and omit the output-lfn, the file pointer is 
positioned to the next module after the specified module in the file. (See example 
7 .) 



• 

• 

• 



UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2-41 

• Examples: 

• 

• 

1 10 16 

1. COP 01 
2. COP.O 02,S,MYM00,03 
3. COP.GP 01,,MYGROUP 
4. COP.UN 00,M,MYMOO,T0 
5. COP.C T2,L,MY,01 
6. COP.O 01 
7. COP 01,S,COBOL4 

1 . Lists all the header records in the D 1 (compare with example 6). 

2. Copies source module MYMOD from file 02 to file 03 and provides a listing of 
module MYMOD. 

3. Punches all modules in the module group MYGROUP, from file 01. 

4. Copies to tape file TO all modules from current position of DO up to and 
including the procedure module MYMOD. Current position is reset to 
immediately follow MYMOD. The listing of header records is suppressed. 

5. Copies any load module whose name begins with MY from the current position 
to the end of the file on tape file T2 to disk file D 1 . 

6. Lists all directory records in file D 1 (compare with example 1). 

7. Positions the input-file to the next module following COBOL4. 

2.8. 7. Correct Module (COR) Control Statement 

Function: 

This statement is used to specify that the content of a source, object, or load 
module is to be corrected. Correction cards following the COR statement specify 
how the module is to be corrected. The librarian end-of-data (EOD) card indicates 
the end of the correction cards. Corrected modules may be output to either the 
same file or another file. For source modules, corrections are indicated via the 
sequence number field of the correction itself. Stand-alone deletions require the use 
of subfunction control statements. For object or load modules, the correction cards 



UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2-42 

construct a text record containing the data and instructions required as patch 
corrections necessary to the specified object or load module. Text patches are 
inserted in the corrected module just ahead of the transfer record. Then, whenever 
the module is loaded in main storage or linked, its corrected text is inserted in the 
appropriate places in the module, overlaying any text that may have been nullified 
because of their replacement. When patched modules are listed, patches are 
flagged. When making changes to object and load modules, control section and 
phase sizes may not be altered. Patches must be correctly sequenced for phased 
load modules. 

If errors are detected in the correction cards (for example, a wrong phase number), 
the librarian will not add these correction cards to your file. 

The librarian will not terminate the card module until an unattached EOD card is 
detected, unless the E option is specified. 

Format: 

LABEL t>.OPERATION.6. OPERAND 

unused COR[ • options] 

Options: 

E Terminate at the first EOD. 

N Do not list header records, subfunction control statements, or records added 
or deleted. 

P Punch module corrected. 

X Extend the load module if any of the supplied patch addresses are beyond the 
end of the module. This option can be used only for unblocked single-phase 
load modules. 

Positional Parameter 1 : 

input-lfn 
Specifies the logical file name of the disk or tape file containing the module to 
be corrected. If a tape is specified as input, then a different output-lfn must be 
specified. The librarian cannot read and write from the same tape file. 

If omitted, $Y$RUN is used. 

• 

• 

• 



• 

• 

• 

UP-8062 Rev. 8 

Positional Parameter 2: 

S,M,O,L 

SPERRY UNIV AC OS/3 
SYSTEM SERVICE PROGRAMS 

2-43 

Specifies the type of module being corrected as either a program source 
module (S), macro/jproc source module (M), object module (0), or load module 
(L). 

Positional Parameter 3: 

name 
Specifies the name of the module to be corrected. 

Positional Parameter 4: 

output-lfn 
Specifies the logical file name of the disk file into which the corrected module 
is to be placed. 

If omitted, the original module is deleted and the corrected version is added to the 
end of the input file. This parameter is required if the input file is a tape. 

2.8.8. COR Correction Cards 

2.8.8.1. Object or load Module Corrections 

Subfunction patch corrections for object and load modules must immediately follow the 
COR control statement. The last patch correction must be followed by a librarian EOD 
control statement. If the librarian detects an error within a correction card, it does not 
make the correction. Both text and relocation data (RLD) records may be supplied for 
the patch. RLD masks must be represented in hexadecimal 3-byte multiples exactly as 
required. Each patch supplied causes the generation of an appropriate text record. 
Contiguous patch addresses on succeeding patches do not cause the generated text to 
be merged. Load module patches must be correctly sequenced by phase number. 

The format of a patch correction card for an object or load module is: 

1 

{
-}address [{esid-no }][,text[,RLD]] 
P phase-no 

ORG 

Column 1: 

-(hyphen) 
Indicates that the specified address is relative to the object or load module 
address. 



UP-8062 Rev. 8 SPERRY UNIV AC OS/3 
SYSTEM SERVICE PROGRAMS 

2-44 

p 

Indicates that the specified address is relative to the load module phase being 
patched. 

Positional Parameter 1: 

address 
Specifies the hexadecimal address that is relative to the base address of the 
object or load module and not to the address of the CSE CT or phase area. 
This relative address is assigned to the generated text record. The address can 
be either positive or negative. A positive address begins in column 2, while a 
negative address has a hyphen in column 2 followed by the address. 

Positional Parameter 2: 

es id-no 
Specifies the external symbol identification number for the object module being 
patched. The number must be in the range of 01-255. 

If omitted, 01 is used. 

phase-no 

ORG 

Specifies the phase number of the load module being patched. The number 
must be in the range of 00-99. 

If omitted, 00 is used. 

Indicates that this is not a correction but specifies that the indicated address 
(positional parameter 1) is automatically added to all subsequent patch address 
fields until a new value is specified on another ORG correction card or an EOD 
statement is encountered in the control stream. When you use this parameter, 
text is not permitted. 

Positional Parameter 3: 

text 
Specifies a contiguous string of hexadecimal digits to be assigned at the 
resultant address (which is the sum of the specified address and, if specified, 
the most recent ORG address). The minimum amount of text patchable is one 
byte. Text is required unless ORG is specified in positional parameter 2. If text 
is not specified, the patch correction is flagged and the relocation data (RLD), if 
present, is disallowed. 

Positional Parameter 4: 

rld 
Indicates any relocation data for the specified object or load module text 
record being created. The rid data must be in 3-byte, 6-hexadecimal-digit 
multiples. 

• 

• 

• 



UP-8062 Rev. 8 SPERRY UNIV AC OS/3 
SYSTEM SERVICE PROGRAMS 

2-45 

• NOTES: 

• 

• 

1. Padding of zeros to the nearest half byte is automatic for the address, esid/phase 
number, and test specifications. 

2. If the esid/phase number is omitted, the comma still must be coded. 

Example: 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8 . 

In this example, a multiphase load module named MYLOAD is corrected. The 
original version of the module resides in file DO, while the corrected version will 
reside in file 02. 

1 10 16 

COR 00,L,MYLOA0,02 
-C90,4880D074 
P12D,1,9540C012 
-0124,0RG 
P250,3,AB 
--4878,0RG 
-5672,4,0A1C 
-0,0RG 
-02E,6,00012E,016F00 

EOO 

1 . The specified text is applied to load module address C90 of phase 0. 

2. The specified text is applied to phase relative address 120 of phase 1 . 

3. The value 0124 is entered as the ORG value. 

4. The specified text is applied at 250+ 124 bytes into phase 3. 

5. The value -4878 is entered as the ORG value. 

6. The specified text is applied at the load module address 5672-4878 of 
phase 4. 

7. The ORG value is cleared. 

8. The specified text and RLD are applied to load module relative address 
D2E of phase 6 . 



UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2.8.8.2. Source Module Corrections 

2-46 

To make source module insertions and replacements, the actual source module record 
to be inserted is used as the correction card. Replacements are performed by using a 
correction card with the same sequence number as the record to be replaced. Insertions 
are performed by using at least one correction card (always the first card) with a 
sequence number falling between the sequence number of the records between which 
the insertion is to be made. Any number of unsequenced correction cards may then 
follow. 

Source module corrections will appear in the listing in the following manner: 

• For source statement replacements, the statement being replaced and the 
replacement statement are printed. 

• For insertions of new statements, the line preceding the insertion and the inserted 
line are displayed. 

Figure 2-9 is an example of a source module correction showing the original source 
module, the librarian stream used to modify the module, and then the resultant 
corrected module as it appears after the librarian has completed its processing. 

If the corrections to a source module include the /$-/* job control statements, they 
must be paired. 

The source module always must contain record sequence identifiers for it to be 
corrected by the librarian; however, source modules are not required to carry sequence 
numbers to be in a given library. Sequence numbers optionally may be added to a 
source module whenever the user chooses, either at creation time from cards through 
the ELE control statement, or anytime afterwards, through the sequence (SEQ) control 
statement being used as a primary function. Cards that are out of sequence in a 
correction deck are inserted in the source module out of sequence (in the same order 
they appear in the correction deck), and the appropriate error message is printed on the 
librarian map. 

There are three control statements that are used as subfunctions of the COR control 
statement to correct or reorder a source module. These are the skip (SKI), recycle 
(REC), and sequence (SEQ) control statements. They are to be used strictly as control 
statements. 

• 

• 

• 



• 

• 

UP-8062 Rev. 8 SPERRY UNIV AC OS/3 
SYSTEM SERVICE PROGRAMS 

SM$ERR3 START 

1 

PRINT NOGEN 
SUPEQU 
PRINT GEN 
DC 1 DATE SOURCE && REF AMOUNT DATE SOURCE && REF 
DC REF-2 ORIG-DATE DATE SOURCE && REF AMOUNT 
LR R1,R6 
LR R4,RS 
END 

a. Original source module 

10 16 

COR D1,S,SMSERR3,D2 
MVC LBSERR,SMSERR 
L R3,LBSMIKE 
SKI SMS00090 

LBSBBBB 

++++++ 

++++++ 

'"' ;'t ..,,~ '"'';" •" 
++++++ 

EOD 

b. Correction card deck 

PRINT NOGEN 
MVC LB$ERR,SM$ERR 

DC REF-2 ORIG-DATE DATE SOURCE && REF AMOUNT 
L R3,LB$MIKE 

SKI SM$00090 

LR R4,RS 
LB$BBBB 

c. Librarian printout showing additions, deletions, and replacements 

SM$ERR3 START 

LB$BBBB 

MVC LB$ERR,SM$ERR 
SUPEQU 
PRINT GEN 
DC 'DATE SOURCE && REF AMOUNT 
L R3,LB$MIKE 
LR RI ,R6 
LR R4 ,RS 

d. Corrected source module 

DATE SOURCE && REF 

Figure 2-9. Example of Source Module Corrections 

2-47 

SM$00010 
SM$00020 
SM$00030 
SM$00040 
SM$00050 
SM$00060 
SM$00070 
SM$00080 
SM$00090 

72 

SMS00020 
SMS00060 
SMS00090 
SMS00110 

SM$00020 
SM$00020 

SM$00060 
SM$00060 

SM$00090 

St1$00080 
SH$00110 

SM$00010 
SM$00020 
SM$00030 
St1$00040 
St1$00050 
SM$00060 
St1$00070 
SM$00080 
SM$001 IO 



UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2.8.9. Delete Elements (DEL) Control Statement 

Function: 

2-48 

This facility allows you to eliminate certain modules or module groups within a 
specified library. The deletion is of one module, or is inclusive up to and including 
the named module or group existing in the specified file. When elements of a given 
file are being deleted, all referenced code is effectively nullified. These dead 
modules or groups can then be removed through an eventual copy or pack function 
to eliminate the resulting fragmentation. You should not attempt to delete an ICAM 
symbiont while it is actively processing. 

Format: 

LABEL t::,0PERATl0Nt::, OPERAND 

unused DEL[ • options] 

Options: 

A Delete all groups with the group name specified by the name parameter. (The 
G option must also be used.) 

C Delete all modules whose name begins with the prefix specified in the name 
parameter. 

D List modules being deleted. 

G Name specified in positional parameter 3 is a module group name rather than 
an individual module name. If neither the C or A option is used, delete all the 
modules in the first group encountered with that name. If the C option is used, 
delete all groups with the group name prefix specified by the name parameter. 
If the A option is used, delete all groups with that group name. Each operation 
starts from the current file position. When a group is deleted, the BOG and 
EOG records associated with that group are also deleted. When module group 
processing is requested, the module type parameter should be omitted, as it is 
inappropriate. 

N Do not list header records. 

P Punch modules being deleted. 

U Delete from current position up to and including specified module. If a module 
name is specified, then a type must also be included. If no module name is 
specified, delete all modules after current position. 

• 

• 

• 



• 

• 

• 

UP-8062 Rev. 8 

Positional Parameter 1 : 

lfn 

SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2-49 

Specifies the logical file name of the disk file in which the deletion is to occur. 

If omitted, the job run library file ($Y$RUN) is utilized. 

Positional Parameter 2: 

S,M,O,L 
Specifies the type of modules being deleted as either a program source module 
(S), macro/jproc source module (M), object module (0), or load module (L). 

If omitted, all modules with the specified name from the current position to the end 
of the file are to be deleted. 

Positional Parameter 3: 

name 
Specifies the module name, module group name, or module name prefix of the 
modules to be deleted. 

If omitted, modules of the specified type are deleted. If both type and name 
specifications are omitted, all modules are to be deleted. 

Examples: 

1 10 16 

1. DEL.D D1,S,EXAMPLE1 
2. DEL.P ,0 
3. DEL.C 02,0,EXA 
4. DEL.UN 00,L,MYMOD 

1 . Deletes and lists the source module named EXAMPLE 1 on file D 1. 

2. Deletes and punches all object modules from the job run library. 

3. Deletes all object modules from current position to end-of-file in file D2 whose 
name begins with EXA. 

4. Deletes all modules from current position to the load module named MYMOD 
in the DO. Also suppresses the listing of header records. 

NOTES: 

1. The DEL control statement cannot be used if processing tape libraries . 

2. Only root phase header records are printed during the delete operation; however, 
all overlays are deleted. 



UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2.8.10. Add Card File Element (ELE) Control Statement 

Function: 

2-50 

This statement is used to add a source, object, or load module that is contained in 
cards to a disk or tape file. If a card element is being added to a disk file that 
already contains a module of the same name and type, the old module is replaced 
by the new module. The ELE control statement causes a module header record to 
be inserted in the specified output file. All cards immediately following the ELE card 
down to the end-of-data (EOD) card are assumed to comprise the module to be 
added. Librarian control streams are valid source modules, but each EOD card that 
is a part of that control stream must be associated with its own COR or ELE 
control statement. The librarian will not terminate the card module until an 
unattached EOD card is detected, unless the E option is specified. 

Format: 

LABEL L::.OPERATIONL::. OPERAND 

unused ELE[ • options] W tn l]' {~r··c ,comments] 

Options: 

D List the module. 

E Terminate at the first EOD. 

N Do not list the header record. 

p Punch the module. 

Positional Parameter 1 : 

lfn 
Specifies the logical file name of the disk, diskette, or tape file to which this 
card module is to be added. 

If omitted, the job run library ($Y$RUN) is used. 

Positional Parameter 2: 

S,M,O,L 
Specifies the type of the module being added as either a program source 
module (S), macro/jproc source module (M), object module (0), or load module 
(L). 

• 

• 

• 



• 

• 

• 

UP-8062 Rev. 8 SPERRY UNIV AC OS/3 
SYSTEM SERVICE PROGRAMS 

2-51 

Positional Parameter 3: 

name 
A 1- to 8-character alphanumeric string that specifies a name for the module 
being added. 

For object and load modules, the name on the ELE card must be the same as 
the name of the module. 

Positional Parameter 4: 

comments 
Up to 30 characters of comments to be inserted in the module header record. 

If omitted, no comment is included in the header record. 

Examples: 

1 • 
2. 
3. 

1 10 16 

ELE D1,S,EXAMPLE1,NEW SOURCE MODULE 
ELE ,L,EXAMPLE2 
ELE D12,0,EXAMPLE3 

1. Adds a source module name EXAMPLE 1 to file D 1 and, if a source module 
named EXAMPLE 1 already exists therein, it will be nullified. The comment 
"new source module" will also be inserted into the comment field of the 
header record. 

2. Adds a load module named EXAMPLE2 to the job run library and, if a load 
module of the same name already exists therein, it will be nullified. 

3. Adds an object module named EXAMPLE3 to file 012 and, if an object module 
of the same name already exists therein, it will be nullified. 

NOTES: 

1. The add, replace, or check sequence numbers (SEQ) control statement is supported 
as a subfunction command to the ELE control statement to: perform a sequence 
check on a source module being filed, sequence a source module being filed, or 
resequence a source module being filed . 



UP-8062 Rev. 8 SPERRY UNIV AC OS/3 
SYSTEM SERVICE PROGRAMS 

2-52 

2. A source module cannot have an EOD control statement as pan of its coding since 
this statement is a terminator card. If detected in your source module, only that 
ponion of your source module up to the EOD is added. Whenever an EOD control 
statement is used, it must be paired with a COR or ELE control statement. 

2.8.11. Declare End-of-Data (EOD) Control Statement 

Function: 

This statement is used to terminate the card data that follows an ELE, COR, or 
REPRO control statement. Each EOD card must be associated with one and only 
one ELE or COR card. 

Format: 

LABEL .t..OPERATION.t.. OPERAND 

unused EOD unused 

Options: 

None 

2.8.12. Write End-of-Group (EOG) Record Control Statement 

Function: 

This statement is used to terminate a module group by writing an end-of-group 
record (Table B-2) in a specified file. 

Format: 

LABEL .t..OPERATION.t.. OPERAND 

unused EOG group-name[·{ l fn }] 

Options: 

None 

Positional Parameter 1 : 

group-name 
Specifies the name of the module group being ended. 

• 

• 

• 



..... _ ....... 

UP-8062 Rev. 8 

Positional Parameter 2: 

lfn 

SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2-53 

Specifies the logical file name of the disk or tape file on which the 
end-of-group record is to be written. 

If omitted, the job run library ($Y$RUN) is used. 

Examples: 

1 10 16 

1. EOG EXAMPLE1,D1 
2. EOG EXAMPLE2 

1 . Places an end-of-group record on file D 1 with the name EXAMPLE 1 . 

2. Places an EOG record named EXAMPLE2 on the job run library. 

2.8.13. ESCAPE (ESC) CONTROL STATEMENT 

Function: 

This statement causes the librarian to read all subsequent librarian control 
statements from either a SAM file or from a librarian disk source module rather 
than from the control stream. Your SAM file can reside on either a disk, diskette, 
or tape. You can think of the librarian control statements as a procedure module 
whereby the same control statements can be executed over again without change. 
You need to change only the FIL control statement to process different files. 

ESC processing terminates when the end of module or end of file is detected. All 
statements read by ESC processing appear on the librarian map with *ESC* in the 
control field. 

Format 1: 

LABEL 

unused 
C:.OPERATIONC:. 

ESC 

OPERAND 

1; l•n•••· {:~} [{mJ [{Bmd-length}] 

[{~ock- length}] 



UP-8062 Rev. 8 

Options: 

None 

Positional Parameter 1 : 

filename 

SPERRY UNIV AC OS/3 
SYSTEM SERVICE PROGRAMS 

2-54 

Name of your SAM file containing the librarian control stream to be processed. 
The maximum allowable length is seven characters. The first character must be 
alphabetic. 

Positional Parameter 2: 

TP,DK,DT 
Specifies the type of file to be read. The entries are TP, for a tape file; DK, for 
a disk file; and OT, for a diskette file. 

Positional Parameter 3: 

FU,FB,VU,VB 
Specifies the record type for the file being read. Permissible entries are: 

FU Fixed, unblocked records 

FB Fixed, blocked records 

VU Variable, unblocked records 

VB Variable, blocked records 

If this parameter is omitted, fixed, unblocked records are assumed. 

NOTE: 

SAM diskette files may not contain blocked records. 

Positional Parameter 4: 

record-length 
Specifies the length in bytes of fixed records. Maximum permissible entry is 
decimal 128. For tape, the minimum permissible entry is decimal 18. If this 
parameter is omitted, a record length of 80 bytes is assumed. This parameter 
is not required for variable-length records. For fixed, unblocked records, this 
field is ignored. 



• 
UP-8062 Rev. 8 

Positional Parameter 5: 

block-length 

SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2-55 

Indicates the length in bytes of the file blocks including all block header and 
record header fields. If the block length exceeds 1024 decimal bytes, see the 
section on additional storage requirements. For tapes, the minimum block 
length is decimal 18. For variable-length records, this entry indicates the 
maximum block size. If omitted, a block size of 80 bytes is assumed. 

NOTES: 

1. The block length must equal or exceed the specified record length. 

2. The ESC command can process tape files with or without block numbers. 

3. For diskettes, the maximum block length is 1024 decimal bytes. 

Format 2: 

LABEL ~OPERATION~ OPERAND 

unused ESC filename,LD,modulename 

• Options: 

• 

None 

Positional Parameter 1 : 

filename 
Specifies the name of the file containing the librarian control stream module. 

Positional Parameter 2: 

LD 
Indicates the control stream is in a librarian source module. 

Positional Parameter 3: 

modulename 
Specifies the name of the librarian source module containing the librarian 
control stream to be processed. 

Main Storage Considerations: 

When you use the ESC control statement, you must specify additional main storage 
on the / / JOB control statement. The amount of main storage required is 
dependent upon the file type being read and the extra storage required for block 
sizes in excess of 1024 bytes. To calculate the main storage amount, use the 
following equation: 



~ 

UP-8062 Rev. 8 SPERRY UNIV AC OS/3 
SYSTEM SERVICE PROGRAMS 

file type +excess block size+ x•sctt• 

where: 

file type 

2-56 

Is bytes (in hexadecimal) required for a particular file type. The values are: 

X' 1250' for a file type of TP (SAM tape) 

X'C50' for a file type of OT (SAM diskette) 

X'F50' for a file type of DK (SAM disk) 

X'780' for a file type of LO (librarian disk) 

excess block size 

Example 1. 

A hexadecimal value representing the number of bytes that the blocks in 
your program are in excess of 1024. Calculate this value by converting the 
decimal block size value to hexadecimal and subtracting X'400' from the 
resulting value. 

U:sing a librarian SAM disk file 

Librarian control stream: 

II JOB ESCRUN,,,8000 
II OVC 20 II LFO PRNTR 
II OVC 50 II VOL PUBRES 
II LBL PRGFIL II LFO PRGFIL 
II OVC 50 II VOL PUBRES 
II LBL LIBFIL II LFO LIBFIL 
II EXEC LIBS 
1$ 

FIL 01=PRGFIL,02=LIBFIL 
ESC LIBFIL,OK 

I* 
I& 
II FIN 

SAM disk file: 

i PAC 02 
COP 01,S,COBOL4,02 

6 LST 02 

Line 1 shows the JOB statement with the additional main storage required for the job. 

Lines 2-6 show the device assignment set for the system printer and our disk files. 

Line 7 shows the EXEC statement calling the librarian. 

• 

• 

• 



UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2-57 

• Lines 8 and 11 are the data delimiters for the librarian control stream. 

• 

Line 9 shows the FIL statement. 

Line 10 shows the ESC statement identifying our file and file type. 

Lines 12 and 13 end our job and card reader operation. 

Lines 14-16 show the librarian control statements to be executed during ESC 
processing. 

Example 2. Using a librarian source module 

The following coding shows an example of ESC processing. Our source module 
COBOL4 residing in 01 is copied to 02 and all the header records are listed from 
02. 

Librarian control stream: 

II 
II 
II 
II 
II 
II 
II 
1$ 

I* 
I& 
FIN 

JOB 
DVC 
DVC 
LBL 
DVC 
LFD 
EXEC 

ESCRUN,,,8000 
20 II LFD PRNTER 
50 II VOL PUBRES 
HAMMER II LFD HAMMER 
50 II VOL PUBRES 
SRCFIL II LFD SRCFIL 

LIBS 

FIL D1=HAMMER,D2=SRCFIL 
ESC SRCFIL,LD,LIBTEST 

Librarian source module: 

@ 
@ 

COP D1,S,COBOL4,D2 
LST D2 

Line 1 shows the JOB statement with the additional main storage required for ESC 
processing. 

Lines 2-6 show the device assignment set for the system printer and our disk files. 

Line 7 shows the EXEC statement calling the librarian. 

Lines 8 and 11 are the data delimiters for the librarian control stream. 

• Line 9 shows the FIL statement. 



UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

Line 10 shows the ESC statement identifying the module. 

Lines 12 and 13 end our job and card reader operation. 

2-58 

Lines 14 and 15 show the librarian control statements to be executed during ESC 
processing. 

2.8.14. Declare File (FIL) Control Statement 

Function: 

The control statement is used to declare to the librarian all the tape and disk files 
that will be referenced subsequently in the control stream through / / LFD control 
statement. At the same time, each file is assigned a type code (disk or tape) and a 
logical file number (0-15), which together form a logical file name that is to be 
used (rather than the file name) for all subsequent file references within the librarian 
control stream. File declarations may be strung out on one FIL card or be made 
individually on separate FIL cards. Up to 32 files can be declared: 16 tape files and 
16 disk files. For each file described by the FIL statement, an appropriate job 
control file declaration card is required in the job control stream (unless a standard 
system or job run library file is being used). 

Format: 

LABEL .6.0PERATION.6. OPERAND 

unused FIL {~~=f Hename· 1} [' ••• , {~~}=filename· n J 

Options: 

None 

Tn Keyword Parameter: 

Tn=filename 
Is used to equate a tape file (LFD name) with a logical file name of TO through 
T15. 

Dn Keyword Parameter: 

Dn=filename 
Is used to equate a disk file (LFD name) with a logical file name of DO through 
015. 

• 

• 

• 



• 

• 

• 

UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2-59 

NOTE: 

The file name specification may not exceed eight alphanumeric characters and must 
begin with an alphabetic character. When working with system files, you must equate 
the logical file name with the file identifier if DVC RES was used in the device 
assignment set for the resident volume. 

Examples: 

1. 
2. 

10 16 

FIL TO=SCRTAPE,T1=MASTAPE,D0=PROCLIB 
FIL T2=UPDATE,D1=LOADLIB 

1 . Declares the use of tape files SCRT APE and MAST APE, and of disk file 
PROCLIB, and assigns the logical file names TO, T1, and DO to the three files, 
respectively. Subsequent references to these files must specify the logical file 
names. 

2. Declares the use of tape file UPDATE and disk file LOADLIB, and assigns the 
logical file names T2 and D1 to these files, respectively. 

NOTE: 

Using the FIL statement to equate files to be processed with logical file names 
allows a single LIBS control stream to be used to maintain any number of 
different files. The functions performed by the control stream use the logical 
file specifications declared in a FIL statement. When the needed files change, 
only the FIL statements need be modified. Thus, each command to the librarian 
need not specify the actual file name used. 

2.8.15. Printing a File in Alphabetical Sequence (LST) 

Function: 

This command enables you to display a table of contents of a file in alphabetical 
sequence. The LST command has a built-in sort routine that sorts the directory 
records. At the completion of the sort, the LST command displays the listing in the 
form of module name, module type, date, and time. Groups and module header 
records are the only records printed; for example, the root phase of a load module. 

Format: 

LABEL L::.OPERATIONL::. OPERAND 

unused LST 

[{~}] 



UP-8062 Rev. 8 

Positonal Parameter 1 : 

input-lfn 

SPERRY UNIV AC OS/3 
SYSTEM SERVICE PROGRAMS 

2-60 

Specifies the logical file name of the disk file containing the modules to be 
listed. 

If omitted, the job run library is assumed to contain the modules. 

Positional Parameter 2: 

S,M,O,L 
Specifies the type of modules being operated on as either program source 
modules (S), macro/jproc source modules (M), object modules (0), or load 
modules (L). 

If omitted, the entire file is listed. 

Examples: 

1 10 16 

1.1 LST 01,L 
2. LST 

1 . Prints an alphabetic listing of only the load modules residing in file D 1 . 

2. Prints an alphabetic listing of the entire SYSRUN file. 

2.8.16. Pack File (PAC) Control Statement 

Function: 

This operation compresses a library file by discarding any elements that are flagged 
as nullified and squeezing the remaining code sets together, thus eliminating any file 
fragmentation and pushing unused space toward the end of the file. This function 
may be used in conjunction with the delete (DEL) control statement to build a 
reordered, updated, and packed library file. The user should not attempt to pack a 
file that contains an ICAM symbiont while that symbiont is active. 

The PAC printout shows both the modules being packed and the modules not 
being packed. The modules not being packed are printed first and are listed under 
the heading MODULES NOT MOVED. The modules being packed are then printed 
under the heading MODULES MOVED. 

Format: 

LABEL .60PERATION.6 OPERAND 

unused PAC[ .opt ions] ~}] 

• 

• 

• 



UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2-61 

• Options: 

• 

• 

N Do not list header records. 

Positional Parameter 1 : 

lfn 

Specifies the logical file name of the disk file that is to be compressed. 

If omitted, the job run library is compressed. 

Example: 

10 16 

PAC 01 

Eliminates all nullified modules in file D 1 . 

NOTES: 

1. The PAC control statement cannot be used if processing tape libraries . 

2. The file being packed should be lockable, giving you exclusive use. 

3. A file being packed cannot be updated. 

4. When a load file is being packed, the pack operation must complete before a 
program can be executed from the file . 



t 

UP-8062 Rev. 8 SPERRY UNIV AC OS/3 
SYSTEM SERVICE PROGRAMS 

2. 8 .1 7. Controlling Page Advancement for the Librarian Map (PAGE) 

Function: 

2-62 

The PAGE librarian control statement starts a new page on the librarian map. It 
may also specify a header line to be printed at the top of each new page. This 
header line remains in effect for the duration of the librarian job step or until it is 
changed by another PAGE control statement. 

If a PAGE librarian control statement is not used, the librarian starts a new page on 
the librarian map only when: 

• the current page is full; 

• an LST control statement is executed; or 

• a COP control statement is used to print a file table of contents. 

Format: 

LABEL LO. OPERATION LO. OPERAND 

unused PAGE [ 1 header-line 1 ] 

Options: 

None 

Positional Parameter 1: 

1 header-line 1 

Specifies the header line to be printed at the top of each succeeding page. It 
can contain up to 64 characters and must be enclosed in single quotation 
marks. 

This header line remains in effect for the duration of the job or until it is 
changed. If omitted, the current header line, if any, remains in effect. 

• 

• 

• 



• 

• 

• 

UP-8062 Rev. 8 SPERRY UNIV AC OS/3 
SYSTEM SERVICE PROGRAMS 

2-63 

Examples: 

1 • 
2. 
3. 

10 16 

PAGE 
PAGE 'PAYROLL MODULES (CONTINUED)' 
PAGE I I 

1. Starts a new page on the librarian map, printing the current header line, if any, 
at the top of that page. 

2. Starts a new page on the librarian map with new header line PAYROLL 
MODULES (CONTINUED) on that page and each succeeding page. 

3. Starts a new page on the librarian map and ends the use of any previously 
specified header. 

2.8.18. Specifying Error Handling during Librarian Execution (// PARAM ERROR) 

Function: 

This / / PARAM statement specifies whether the librarian should stop the job step 
or cancel the entire job in the event of a librarian error . 

Format: 

II PARAM ERROR={STOP } 
CANCEL 

Keyword Parameter: 

ERROR=STOP 
Causes the librarian to stop processing the job step where the error occurred. 
Any librarian control statements following the error are not executed. However, 
any subsequent job steps are executed. 

ERROR=CANCEL 

NOTE: 

Causes the librarian job to be terminated immediately. No subsequent job steps 
are executed. 

The II PARAM statement cannot appear within the librarian control stream. It must be 
coded between the 11 EXEC LIBS and the 1$ control statements . 



UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2.8.19. Suppressing the Librarian Map (// PARAM PRINT=OFF) 

Function: 

2-64 

This / / PARAM statement suppresses pnntmg of the librarian map. The printer 
device asignment set need not be present in your control stream when using this 
/ / PARAM statement. If a printer device assignment set is present, any subsequent 
job steps requiring the printer are not affected. 

Format: 

II PARAM PRINT=OFF 

Keyword Parameter: 

PRINT=OFF 
Suppresses printing of the librarian map. 

NOTE: 

This must be the first parameter card in the job step and therefore must immediately 
follow the 11 EXEC LIBS statement in your control stream. 

2.8.20. Printing Source Modules in Hexadecimal Format(// PARAM PRTOBJ) 

Function: 

This / / PARAM statement causes any source module listings generated by the 
librarian to be printed in hexadecimal format. 

Format: 

II PARAM PRTOBJ=ON 

Keyword Parameter: 

PRTOBJ=ON 
Causes any source module listings to be printed in hexadecimal format. 

NOTE: 

The II PARAM statement cannot appear within the librarian control stream. It must be 
coded between the 11 EXEC LIBS and the 1$ control statements. 

• 

• 

• 



UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2-64a 

• 2.8.21. Creating a Multifile Tape (II PARAM TAPEFILES=MULTI) 

Function: 

• 

• 

This I I PARAM statement allows the librarian to output more than one file to the 
same tape volume. If this statement is not used, only one file can be written to a 
tape. This statement is not required to read a file on a multifile tape. 

A multifile tape is created by copying files from another storage medium to output 
files on the tape. The tape must already be prepped and it may or may not already 
contain some files. The files must be copied in sequence as they are to be 
arranged on the tape. These files cannot be extended later. 

The librarian job, which copies the files to the tape, must contain this 11 PARAM 
statement. Also, the 11 LBL job control statement for each new tape file must 
include a file sequence number parameter (in positional parameter 4) to indicate the 
position of the output file on the tape. For example, if the tape already contains 
two files, the I I LBL statement for the first new tape file must specify a 3 for the 
file sequence number. If the tape is a newly prepped tape that does not yet contain 
any files, the file sequence number for the first new tape file must be 1. 

As the files are being output to the tape, only one tape file can be open at a time. 
Therefore, the librarian job step should use the same logical file name (Tn) for every 
tape file but redefine that logical file name in another FIL statement each time a 
new file is to be processed. 

Normally, after each file is written to the tape and then closed, the librarian would 
rewind the tape to the load point. then it would reopen the tape and advance to 
the end of the tape again to write the next file. However, a 11 DD job control 
statement with a rewind parameter can be used in the device assignment set for 
each tape to eliminate unnecessary rewinding at each open and close operation. 

The statement 11 DD OPRW=NORWD specifies no rewind at file open. 

The statement 11 DD CLRW=NORWD specifies no rewind at file close. 

Specifically, the device assignment sets for the tape files should specify: 

• CLRW NORWD for the first tape file 

• OPRW NORWD for the last tape file 

• Both OPRW = NORWD and CLRW = NORWD for all other files 

Format: 

II PARAM TAPEFILES=MULTI 



UP-8062 Rev. 8 

Keyword Parameter: 

TAPEFILES=MULTI 

SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

Allows multiple files to be output to the same tape volume. 

NOTE: 

2-64b 
Update A 

If used, this statement must be placed between the 11 EXEC LIBS statement and the 1$ 
job control statement. 

Example: 

The following sample job copies five files from disk to the same new tape volume: 

II JOB MULTFILE 
II DVC 20 II LFD PRNTR 
II DVC S0 II VOL D00410 II LBL DISKFIL1 II LFD DISK1 
II DVC S0 II VOL D00410 II LBL DISKFIL2 II LFD DISK2 
II DVC S0 II VOL D00410 II LBL DISKFIL3 II LFD DISK3 
II DVC S0 II VOL D00410 II LBL DISKFIL4 II LFD DISK4 
II DVC S0 II VOL D00410 II LBL DISKFILS II LFD DISKS 
II DVC 90 II VOL 501841 II DD CLRW=NORWD 
II LBL TFIL1,,,,1 II LFD TAPE1 
II DVC 90 II VOL 501841 II DD OPRW=NORWD,CLRW=NORWD 
II LBL TFIL2,,,,2 II LFD TAPE2 
II DVC 90 II VOL S01841 II DD OPRW=NORWD,CLRW=NORWD 
II LBL TFIL3,,,,3 II LFD TAPE3 
II DVC 90 II VOL 501841 II DD OPRW=NORWD,CLRW=NORWD 
II LBL TFIL4,,,,4 II LFD TAPE4 
II DVC 90 II VOL 501841 II DD OPRW=NORWD 
II LBL TFILS,,,,S II LFD TAPES 
II EXEC LIBS 
II PAR AM TAPEFILES=MULTI 
1$ 

FIL D0=DISK1,T0=TAPE1 
COP D0,,, T0 
FIL D0=DISK2,T0=TAPE2 
COP D0,,, T0 
FIL D0=DISK3,TO=TAPE3 
COP D0,,, T0 
FIL D0=DISK4,TO=TAPE4 
COP D0,,,T0 
FIL D0=DISKS,T0=TAPE5 
COP D0, , , T0 

I* 
I& 

• 

• 

• 



• 

• 

• 

UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2.8.22. Specifying Date and Time during Librarian Execution 
(// PARAM UPDATE) 

Function: 

2-64c 

This / / PARAM statement is used to specify the date and time to be in effect 
during the execution of a library job. This date and time is inserted in the header 
records of modules being corrected by the librarian. If a / / PA RAM UPDATE 
statement is not included in the librarian control stream, the date and time 
contained in the system information block (SIB) is used. This date and time remain 
in effect until the librarian job is terminated. 

NOTE: 

The 11 PARAM statement cannot appear within the librarian control stream. It must 
be coded between the 11 EXEC UBS and the 1$ statements. 

Format: 

II PARAM UPDATE=yymmddlhhmm 

Keyword Parameter: 

UPDATE=yymmddlhhmm 
Specifies a date and time to be used for modules being corrected during the 
execution of the job . 



• 

• 

• 



• 

• 

• 

UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2.8.23. Recycle Source Module Current Position Pointer (REC) 
Control Statement 

Function: 

2-65 

The REC control statement is used only in conjunction with the COR control 
statement to make source module corrections. It causes the record pointer for the 
original source module to be repositioned to the first record in the source module. 
In conjunction with the SKI statement, it allows the user to rearrange major 
segments of a source module. 

When a REC statement is processed, records are read from the original data set 
and written in the new data set up to and including the record whose sequence 
number matches the sequence number in the sequence field of the REC statement. 
Then, the record pointer for the original source module is reset to point to the first 
record in the module. If the sequence field of the REC statement is blank, 
repositioning of the record pointer takes place immediately. 

Format: 

LABEL .:'.::.OPERATION.:'.::. 

REC 

Options: 

None 

OPERAND 

unused 

72 73 
SEQUENCE 

[last -
sequence 
no] 



UP-8062 Rev. 8 

Sequence Field Parameter: 

last-sequence-no 

SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2-66 

Is a 1- to 8-character alphanumeric string that identifies the sequence number 
of the last record to be copied into the new data set before the record pointer 
is recycled to the first record in the module. This field begins in column 73 
unless a SEQ control statement dictates otherwise. 

If omitted, the recycling operation takes place without any records being copied 
into the new data set. 

NOTE: 

The REC control statement cannot be used if processing tape libraries. 

Examples: 

1 . Figure 2-10 exemplifies how the REC and SKI control statements can be used 
to reorder a source module. 

2. Figure 2-11 exemplifies how a source module can be corrected by using 
sequence data for control rather than for reordering purposes. 

3. Figure 2-12 exemplifies how the SEQ statement can be used in a source 
module correction deck. 

1 

EXAMPLE1 
EXAMPLE2 
EXAMPLE3 
EXAMPLE4 
EXAMPLES 
EXAMPLE6 
EXAMPLE? 
EXAMPLES 
EXAMPLE9 
EXAMPLE0 

10 16 

Source Statement 

Source Statement 

a. Original source module 

Figure 2-10. Example of Source Module Reordering Operation (Part 1 of 2) 

72 

LIBS0900 
LIBS0100 
LIBS0200 
LIBS0300 
LIBS0800 
LIBS0400 
LIBS0600 
LIBS0700 
LIBS0500 
LIBS1000 

• 

• 

• 



• 

• 

• 

UP-8062 Rev. 8 SPERRY UNIV AC OS/3 
SYSTEM SERVICE PROGRAMS 

2-67 

10 16 72 

1 • SKI LIBS0900 

2. UPDATE1 Source Statement LIBS0200 

3. SKI LIBS0800 LIBS0800 

4. SKI LIBS0700 LIBS0600 

5. REC 

6. SKI LIBS0400 LIBS0900 

7. UPDATE2 Source Statement LIBS0500 

UPDATE3 Source Statement LIBS0550 

8. REC LIBS0700 

9. SKI LIBS0300 LIBS0900 

10. REC LIBS0800 

11. SKI LIBS0500 LIBS0100 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 

9. 
10. 

11. 

b. Correction deck 

Skip source record LIBS0900. 
Replace EXAMPLE3 source statement with UPDATE 1 source statement. 
Copy all records up to LIBS0800. LIBS0300 is copied. LIBS0800 is skipped. 
Copy all records up to LIBS0600. LIBS0400 is copied. LIBS0600 and LIBS0700 are skipped. 
Reposition record pointer back to the first record. 
Start skipping at LIBS0900 and skip down to LIBS0400. No records are copied. 
Insert UPDA TE2 and UPDA TE3 source records immediately after LIBS0400 . 
Before repositioning record pointer, copy down to and including LIBS0700; then reposition record pointer to the 
first record. 
Start skipping at LIBS0900 and skip down to LIBS0300. No records are copied. 
Before repositioning record pointer, copy down to and including LIBS0800; then reposition record pointer to the 
first record. LIBS0800 is the only record copied. 
Start skipping at LIBS0100 and end skipping at LIBS0500. LIBS0900 and LIBS1000 are copied. 

1 10 16 

EXAMPLE2 Source Statement 

UPDATE1 

EXAMPLE4 

EXAMPLE6 

UPDATE2 

UPDATE3 

EXAMPLE? 

EXAMPLES 

EXAMPLES 

EXAMPLE1 

EXAMPLE0 Source Statement 

c. Corrected source module 

Figure 2-10. Example of Source Module Reordering Operation (Part 2 of 2) 

72 

LIBS0100 

LIBS0200 

LIBS0300 

LIBS0400 

LIBS0500 

LIBS0550 

LIBS0600 

LIBS0700 

LIBS0800 

LIBS0900 

LIBS1000 



UP-8062 Rev. 8 

1 10 

TEST EXAM EQU 

CR 

BE 

BH 

M 

L 

IC 

N 

BNZ 

LA 

TESTEXA1 EQU 

LR 

LA 

B 

BAL 

10 

COR 

1. CR 

2. XR 

3. SKI 

4. SKI 

5. EOD 

16 

* 
R0,W3 

LK$3PA20 

LK$3PA10 

W2,LKSCSGSZ 

W2,LKSCSEGT 

W3,0CW2,W3) 

W3,LK$CX7F 

LK$3PA00 

W3,LKSCROOT 

* 
R0,W3 

RRTNOD,4 

LKSCPOP 

R14,LBSCSTK 

16 

DO,S,TESTEXAM 

R1,W2 

W2,W2 

LINK0800 

LINK1400 

SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

a. Source module 

b. Correction deck 

1. Replaces the source record with sequence number LINK0200 with this record. 
2. Inserts this line between the lines with sequence numbers LINK0400 and LINK0500. 
3. Deletes the line with sequence number LINK0800. 
4. Deletes the lines starting with sequence number LINK 1100 and ending with LINK 1400. 
5. Must be associated with the COR statement. 

2-68 

72 

LINK0100 

LINK0200 

LINK0300 

LINK0400 

LINK0500 

LINK0600 

LINK0700 

LINK0800 

LINK0900 

LINK1000 

LINK1100 

LINK1200 

LINK1300 

LINK1400 

LINK1500 

72 

LINK0200 

LINK0450 

LINK0800 

LINK1100 

Figure 2-11. Example of Source Module Add/Replace/Delete Operation Using SKI Control Statements (Part 1 of 2) 

• 

• 

• 



• 

• 

• 

UP-8062 Rev. 8 

1 10 

TESTEXAM EQU 
CR 
BE 
BH 
XR 
M 
L 
IC 
BNZ 
LA 
BAL 

16 

* 
R1 ,W2 
LK$3PA20 
LK$3PA10 
W2,W2 
W2,LKSCSGSZ 
W2,LK$CSEGT 
W3,0CW2,W3) 
LK$3PA00 
W3,LK$CROOT 
R14,LB$CSTK 

SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

c. Corrected source module 

2-69 

72 

LINK0100 
LINK0200 
LINK0300 
LINK0400 
LINK0450 
LINK0500 
LINK0600 
LINK0700 
LINK0900 
LINK1000 
LINK1500 

Figure 2-11. Example of Source Module Add/Replace/Delete Operation Using SKI Control Statements (Part 2 of 2) 

1 10 16 72 

COR 00,S,TESTEXAM 
SEQ DO,S,TESTEXAM,1 

LINK0200 CR R1 ,W2 
LINK0450 XR W2,W2 
LINK0800 SKI LINK0800 
LINK1100 SKI LINK1400 

EOD 

NOTE: 

This example is the same as the one in Figure 2-1 Ob except for the SEQ statement and the relocated sequence 
numbers. 

Figure 2-12. Example of the SEQ Statement in a Source Module Correction Deck 

2.8.24. Rename Element (REN) Control Statement 

Function: 

This control statement is used to rename a specific module, module group, or 
record; to mark object and load modules as sharable or unsharable; or to change 
the comments field in a module header record. When a load module name is 
changed, the new name is reflected throughout each phase of the load module . 



UP-8062 Rev. 8 

Format: 

LABEL .60PERATION.6 

unused REN[ . options] 

Options: 

SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

OPERAND 

{~~-}][{SJ.~ 31;;:1_. M 

0 
L 

, old-n ... [ {:~t- type- and-name}] 

[,new-namen,comments] 

2-70 

G Names specified are group names. The first module group encountered with 
the name identified as the old-name is to be renamed. 

N Do not list header records. 

Positional Parameter 1 : 

lfn 

Specifies the logical file name of the disk file that contains the modules to be 
renamed or identified as reentrant or nonreentrant. 

If omitted, the job run library is assumed to contain the subject modules. 

Positional Parameter 2: 

S,M,O,L 
Specifies the type of modules being operated on as program source modules 
(S), macro/jproc source modules (M), object modules (0), or load modules (L). 

If omitted, all modules of the specified old name are affected. 

Positional Parameter 3: 

old-namer {:~t·type-and-name}] 

• 

• 

• 



• 

• 

• 

UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2-71 

Identifies the module, module group, or record to be processed, or the object 
module to be marked as reentrant (RON) or nonreentrant (ROFF). The record 
type codes that may be specified are as follows: 

c Indicates COM. 

E Indicates ENTRY. 

N Indicates procedure name. 

p Indicates alias phase name. 

s Indicates CSE CT. 

v Indicates V-CON. 

x Indicates EXTRN. 

Record names can be from one to eight characters long. The record type and 
name specification cannot contain any embedded blanks. An example of how 
this parameter might be coded is: 

MASTER.XT AG5 

When load, source, or object modules are being renamed or their header 
record comments field is being changed, the first 1- to 8-character name is 
sufficient. If a record within an object module is being renamed, record type 
and old record name also must be provided. If an alias phase name is being 
changed, record type and old alias phase name must be specified. 

Positional Parameter 4: 

new-name 
Specifies the new name to be substituted for the old name. If renaming a 
multiphase load module, only the first six characters can be changed; the last 
two remain the same. If you are changing the sharability status of a module or 
the comments field of a header record, the new name is not necessary. 

Positional Parameter 5: 

comments 
A string of up to 30 characters of identification information that is to be 
inserted into the header record of the identified module. 

If omitted, current comments remain unchanged . 



UP-8062 Rev. 8 

Examples: 

10 16 

SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

1. REN.N D2,,EXAMPLE2,NEWEXAM2 
2. REN ,O,EXAMPLE3,NEWEXAM3 
3. REN D3,0,EXAMPLE4.SEXAMPLE5,NEWEXAM5 
4. REN.G D5,,EXAMPLE6,NEWEXAM6 

2-72 

1. Renames all modules named EXAMPLE2 in file D2 to NEWEXAM2. No listing 
of headers is provided. Any old modules named NEWEXAM2 will be deleted. 

2. Renames the object module named EXAMPLE3 in the job run library to 
NEWEXAM3. If an object module named NEWEXAM3 already exists in the job 
run library, nullify that module. 

3. Renames the CSECT named EXAMPLES in the object module named 
EXAMPLE4 to NEWEXAM5. 

4. Renames the group named EXAMPLES in the file D5 to NEWEXAM6. 

NOTE: 

The REN control statement cannot be used if processing tape libraries. 

2.8.25. Produce or Delete Control Statement Records within Object 
Module (REPRO) Control Statement 

Function: 

This command is used to produce and delete control statement records within 
object modules. The named object module is recopied onto the original file. 
Insertion or deletion of control statement records may occur either after the object 
module header record or after the object module transfer record. 

If no deletion is required, new control statement records will be added after the 
control statement record already present in the named object module is copied. 

An EOD control statement delimits control statement insertions. Those seen prior 
to the first EOD are inserted in the object module header set. Those seen following 
the first EOD control statement are inserted in the object module transfer set. Both 
EOD control statements are always required, regardless of the presence of any 
insertion or deletion. 

• 

• 

• 



• 
UP-8062 Rev. 8 

Format: 

LABEL !:c.OPERATION!:c. 

SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

OPERAND 

2-73 

unused RE PRO[ • options] [{~~ ~II}], module-name[, #deletions][, #deletions] 

Options: 

D List entire module. 

N Do not list header records. 

P Punch module. 

Positional Parameter 1 : 

lfn 
Specifies the logical file name of the disk file on which the subject module is 
located. 

If omitted, the job run library file ($Y$RUN) is used. 

• Positional Parameter 2: 

• 

module-name 
Specifies the name of the object module to be modified. 

Positional Parameter 3: 

#deletions 
A decimal value indicating the number of control statement records to be 
deleted that currently follow the object module header record. This value 
represents the number of control statements to be dropped from the control 
statement set following the object module header record. Records are dropped 
from the end of the set. 

Positional Parameter 4: 

#de let ions 
A decimal value indicating the number of control statement records to be 
deleted that currently follow the object module transfer record. This value 
represents the number of control statements to be dropped from the control 
statement set following the object module transfer record. Records are 
dropped from the end of the set . 



UP-8062 Rev. 8 

Examples: 

SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2-74 

1. Add the source records INCLUDE A and INCLUDE B to the end of the control 
statement set following the module header record. No changes are made to the 
control statement set following the transfer record. List and punch the module 
modified. 

1 10 16 

REPRO.DP D1,EXAMPLE1 
INCLUDE A 
INCLUDE B 
EOD 
EOD 

2. Add the source records INCLUDE A and INCLUDE B to the end of the control 
statement set following the object module header record and the source record 
INCLUDE C to the end of the control statement set following the object module 
transfer record. 

REPRO D1, EXAMPLE 
INCLUDE A 
INCLUDE B 
EOD 
INCLUDE C 
EOD 

3. Add the source record INCLUDE A to the end of the control statement set 
following the object module transfer record. List the modified module. 

REPRO.D D1,EXAMPLE 
EOD 
INCLUDE A 
EOD 

4. Delete the last control statement currently following the object module header 
record and then add the source record INCLUDE A. Also, delete the last three 
control statement records currently following the object module transfer record and 
then add the source record INCLUDE B. List the module modified. 

REPRO.D D1,EXAMPLE,1,3 
INCLUDE A 
EOD 
INCLUDE B 
EOD 

• 

• 

• 



• 

• 

• 

UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2-75 

5. Add the source record INCLUDE A to the end of the control statement set 
following the object module header record. Delete the last three control statement 
records currently following the object module transfer record and then add the 
source record INCLUDE B. 

1 

NOTE: 

10 16 

REPRO D1,EXAMPLE,,3 
INCLUDE A 
EOD 
INCLUDE B 
EOD 

The REPRO control statement cannot be used if processing tape libraries. 

2.8.26. Reset File Current Position Pointer (RES) Control Statement 

Function: 

This statement is used to reset the current position pointer in disk files to the 
beginning of file or, for tape files, to rewind the tape to load point. If an output 
tape file is being rewound, a tape mark will be written before rewinding. If a 
module name and type are specified, the current position pointer in disk or tape 
files is aimed at the first record of the named module. If a module of the name and 
type specified is not found, the current position pointer remains as it was before 
the RES statement was processed, and an appropriate diagnostic is printed on the 
map. 

The current position of library files is maintained via a set of relative pointers in the 
respective disk or tape files being managed by the librarian. As each librarian 
command is processed, the current position of the file directory partition and the 
prime file partition are updated accordingly. Each executed function is essentially 
serial in fashion in that the referenced file is processed from wherever it was last 
positioned up to the module or group specified. The processing involved may be 
inclusive or exclusive, depending on the function and the selection of various 
options. If a referenced module or group is in a file, ahead of the current position, 
the user may choose to perform the RES function prior to performing the function 
in question. If no RES is submitted, the file will eventually wrap around from 
end-of-file to the initial position, and then to the requested module or group. If the 
module or group cannot be located within the named file, the search terminates at 
the point of origin established when the process began . 



UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2-76 

Format: 

LABEL l:. OPERATION l:. OPERAND 

RES[ .options] ~{ l fn, _ }~[{~}~[,name] 
~·••J 

0 
L 

unused 

Options: 

G Name parameter is the name of a group. The file position pointer points to the 
first record of the first group encountered with the name specified. 

Positional Parameter 1; 

lfn 
Specifies the logical file name of the disk or tape file to be reset. 

If omitted, the job run library file ($Y$RUN) is reset. 

Positional Parameter 2: 

S,M,O,L 
Identifies a module type as a program source module (S), macro/jproc source 
module (M), object module (0), or load module (L). 

If omitted, it is assumed that the reset operation is directed to a file rather than to 
a module or module group. 

Positional Parameter 3: 

name 
Specifies the name of the module or group to which the current position 
pointer is to be aimed. 

If omitted and a module type is not specified, it is assumed that the reset operation 
is directed to a file. Otherwise, an error message is listed to indicate its omission. 

Examples: 

10 16 

1. RES 01 
2. RES D3,0,EXAMPLE1 
3. RES T1,S,EXAMPLE2 
4. RES ,L,EXAMPLE3 

• 

• 

• 



• 

• 

• 

UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

1 . Resets the current position pointer of file D 1 to the file start. 

2-77 

2. Resets the current position pointer for file D3 to the first record of the object 
module named EXAMPLE 1 . 

3. Resets the current position pointer for tape file T 1 to the first record of the 
source module named EXAMPLE2. 

4. Resets the current position pointer for the job run library to the first record of 
the load module named EXAMPLE3. 

2.8.27. Add, Replace, or Check Sequence Numbers (SEQ) Control Statement 

Function: 

The sequence function is provided to permit source modules to be sequenced or 
resequenced. This function does not apply to object or load modules. This function 
also is supported as a subordinate command to the ELE and COR control 
statement. When using the SEQ control statement with a tape library, you must 
use the SEQ control statement as a subfunction control statement to the COR or 
ELE control statement. 

When the SEQ control statement is used in conjunction with the EL.E control 
statement, you can perform a sequence check on a source module being filed, 
sequence a source module being filed, or resequence a source module being filed. 
When this statement is used in conjunction with the COR control statement, you 
can correct a source module by using sequence numbers for control. An example 
of each of these uses is given in the examples portion of this statement 
description. When you use the SEO as a subfunction to an ELE or COR control 
statement, the options (if specified) are disregarded. 

Format: 

LABEL .6.0PERATION.6. OPERAND 

unused SEQ[ • options] [{~~}]' {~V· name] 

f.{, .. c~,lumn-position}] [{content .. )] L. SAME 

:I: l,lllI 

[{~ncrement}] 

Options: 

D List sequenced module . 

N Do not list header records. 

P Punch sequenced module. 



-------~-~-------------- ---------------------------~ 

t 

l..iP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2-78 

Positional Parameter 1 : 

lfn 
Specifies logical file name of the disk file in which the source module to be 
sequenced or resequenced resides. 

If omitted, the job run library ($Y$RUN) is assumed to contain the module to be 
sequenced or resequenced. If used with the ELE or COR statement, it must match 
the lfn in that statement. 

Positional Parameter 2: 

S,M 
Specifies the type of module being sequenced as either a program source 
module (S) or a macro/jproc source module (M). 

Positional Parameter 3: 

name 
Identifies the name of the source module to be sequenced or resequenced. 
This parameter is required when the SEQ control statement is being used to 
sequence or resequence a source module. If the SEQ control statement 
immediately follows a COR or ELE control statement, then the SEQ control 
statement is used to resequence the source module as it is corrected or 
sequenced as it is added, respectively. In this case, the name must match the 
name specified in the COR or ELE statement. 

If omitted: 

• and the SEQ control statement immediately follows an ELE control statement, 
the SEQ control statement can be used to check the sequence of a source 
module being filed. (See coding example 5.) 

• and the SEQ control statement immediately follows a COR control statement, 
the SEQ control statement can be used to identify a sequence field, in the 
source module being corrected, that is to be used to insert corrections. (See 
coding example 6.) 

Positional Parameter 4: 

column-position 
Specifies the first column pos1t1on in the source module where the sequence 
field begins and where the sequence data is incorporated. A sequence number 
eight characters in length and beginning in column 73 is referred to as a 
standard sequence number. 

If omitted, column 73 is assumed to be the first column of the sequenced field. 

• 

• 

• 



• 

• 

• 

UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2-79 

Positional Parameter 5: 

content 

SAME 

A 1- to 8-character value that specifies the initial value to be placed into the 
sequence field of the first record in the module. The length of this value 
determines the length of the sequence field. The mixing of sequence numbers 
with alphabetic and numeric characters is permitted, provided the alphabetic 
and numeric string remain intact and the alphabetic characters are left-justified. 
For example, MA400 is a valid sequence number but M4AOO is not. 

Indicates that the content of the sequence field of this first record of the 
module being resequenced is to remain as it was. This specification assumes 
that this field occupies eight character positions. If it does not, this parameter 
should not be specified. Instead, the initial sequence field content should be 
respecified. 

If omitted, the initial sequence field contents is assumed to be 00000000 (eight 
zeros). 

Positional Parameter 6: 

increment 
A decimal number, not to exceed 255, that specifies the sequence increment 
to be used in the sequencing process. 

If omitted, the increment is assumed to be 1. 

Examples: 

10 16 72 

1 . SEQ.DP D14,S,EXAMPLE1,20,LNK000,10 
2. SEQ.N D12,S,EXAMPLE2,,SAME 
3. ELE D5,S,BALSORC 

SEQ D5,S,BALSORC,,BAL00000,10 
-SOURCE MODULE CARD DECK-

EOD 
4. ELE D6,S,COBSORC 

SEQ D6,S,COBSORC,1,COB00001 
-SOURCE MODULE CARD DECK-

EOD 
5. ELE D7,S,BALSORC 

SEQ D7,S,,,SRC0000,1 
-SOURCE MODULE CARD DECK-

EOD 
6 . COR D0,S,TESTEXAM 

SEQ D0,S,,1,SRC00000 
-SOURCE MODULE CORRECTION CARD DECK 

EOD 



UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2-80 

1 . Causes the source module EXAMPLE 1 in file D 14 to be sequenced in column 
positions 20-25; the initial content {sequence number) is to be LNKOOO; the 
increment is 10. The sequenced module is to be punched and listed. 

2. Causes the source module EXAMPLE2 in the file D 12 to be resequenced in 
column positions 73-80; the initial content is unchanged; the increment is 1. 
No listing of headers is to be provided. 

3. Causes the source module named BALSORC to be added to file 05 and 
sequenced {or resequenced if the card file already has sequence numbers in it) 
in columns 73 through 80 with the initial value BALOOOOO, and each 
succeeding record to be incremented by a count of 10. 

4. Causes the source module named COBSORC to be added to file 06 and 
sequenced {or resequenced if the card file already has sequence numbers in it) 
in columns 1 through 8 with an initial value of COBOOOO 1, and each 
succeeding record to be incremented, by default, by a count of 1. 

5. Causes the source module BALSORC to be added to file 07 and its sequence 
numbers checked for agreement with the column position (73 through 79), 
content {SRCOOOO), and increment { 1) specifications of the SEQ control 
statement. 

6. Causes the source module TESTEXAM in file DO to be corrected in accordance 
with the source records contained in the correction card deck. The sequence 
number field in the source module TESTEXAM that is being keyed on to 
incorporate the source module corrections begins in column 1 and has a length 
of eight column positions. 

2.8.28. Skip Source Module Records (SKI) Control Statement 

Function: 

The SKI control statement is used only in conjunction with the COR control 
statement to make source module corrections. The SKI statement allows one or 
more original source module records to be bypassed by the COR function. 

When a SKI control statement is processed, records are read from the old data set 
and written into the new data set until a sequence number is detected that 
matches the sequence number in the sequence field of the SKI command. The skip 
operation is then initiated and continues until a sequence number that matches the 
operand field of the command is detected. If the sequence field of the SKI control 
statement is blank, the skip operation is initiated immediately. 

Format: 

LABEL I L::.OPERATIONL::. OPERAND 

SKI[ .options] last-sequence-no 
SEQUENCE 

[starting. 
sequence· 
no] 

• 

• 

• 



• 

• 

• 

UP-8062 Rev. 8 

Options: 

D List the records skipped. 

Positional Parameter 1 : 

last-sequence-no 

SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2-81 

Is a 1- to 8-character alphanumeric string that identifies the sequence number 
of the last source module record to be bypassed. 

Sequence Field Parameter: 

starting-sequence-no 
Is a 1- to 8-character alphanumeric string that identifies the sequence number 
of the first source module record to be bypassed. This field begins in column 
73 unless a SEO control statement dictates otherwise. 

If omitted, the skip operation is initiated immediately, starting with the source 
module record that immediately follows the last source module record operated on 
by the COR function. 

Examples: 

See examples under recycle source module current position pointer (REC) control 
statement. 

2.9. LIBRARIAN CANNED JOB CONTROL STREAMS 

The following librarian canned job control streams provide you with a more convenient 
method of performing certain library functions without having to punch the parameters 
and job control statements normally required to run them. These functions reside in the 
system load library file ($Y$LOD), and their corresponding job control streams reside in 
the system job control stream library file ($Y$JCS). The functions are initiated from the 
system console by keying in their associated job control stream name. 

Table 2-3 shows the job names associated with the functions performed. 

Table 2-3. Librarian Canned Job Control Streams 

Job Name Function 

DROP Prints directory partition of a librarian disk file 

LISTRES Prints directory for SYSRES modules 

MODLST Lists the contents of the system libraries 

PACKRES Compresses all modules on SYSRES and prints diectory of compressed modules 



UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2.9.1. Print Library Directory Partition (DROP) 

2-82 

You can display the directory partition of any librarian disk file. A canned job control 
stream is provided that initiates the display for most files. Key in the following 
command on the system console to initiate the job. 

~ RV DRDP,,V=vsn,L=file-identifier 

t 

The V (volume) keyword specifies the volume serial number of the volume containing 
the file. The L (label) keyword is the file identifier of that file; the maximum length is 11 
characters for this keyin. For those files with a file identifier of more than 11 characters 
specified on the LBL job control statement, the following job control stream must be 
used. 

II 
II 
II 
II 
II 
II 
II 
I& 
II 

2.9.2. 

10 16 

JOB DROP 
DVC 20 II LFD PRNTR 
DVC 50 II VOL vsn II LBL file-identifier 
LFD LUSDTFI 
OPTION JOBDUMP 
EXEC SULBD 
PARAH file-identifier 

FIN 

Print Directory for SYSRES Modules (LISTRES) 

The LISTRES job control stream prints the directory for all the modules residing on your 
SYSRES pack or just the modules contained in a particular file on your release volume, 
depending on how you key in the RUN command. The format of the RUN command 
used to call LISTRES is: 

RV LISTRES[,[,F=file-name][,V=vsn]] 

The F parameter specifies the file names of all the modules on your SYSRES pack to be 
printed. If more than one file is specified, then the file names must be enclosed by 
parentheses and separated by commas. 

If the F parameter is omitted, all modules contained in all system files are printed. 

The V parameter specifies the volume serial number of your release volume. 

• 

• 

• 



• 
UP-8062 Rev. 8 SPERRY UNIVAC OS/3 

SYSTEM SERVICE PROGRAMS 

The LISTRES supported file names are: 

LOD SG$JCS SCLOD HELP 

OBJ SG$LOD MIC SHR 

MAC SG$0BJ SAVE SDF 

SRC SG$MAC DLG IVP 

JCS SMC FMT MSG 

The following is an example of a typical LISTRES keyin: 

RV LISTRES,,F=(LOD,JCS,SRC) 

2-83 

Here, the system load, system job control stream, and system source files are listed. 

NOTE: 

L/STRES will not list the contents of any volume that is not a release volume. 

• 2.9.3. List the Contents of the Release Volume System Libraries {MODLST) 

MODLST lists the modules and macros in five system libraries ($Y$SRC, $Y$0BJ, 
$Y$LOD, $Y$JCS, and $Y$MAC). Each module and macro is given in alphanumeric 
sequence and is accompanied by a description of its function and its size. To run 
MODLST, key in the following command from the system console: 

• 

RV MODLST[,,VSN=vol-ser-no] 

where: 

VSN=vol-ser-no 
Specifies an optional work disk. MODLST uses 30 cylinders on this disk for its 
work space. If you don't specify this option, the work space for the job is 
allocated on the disk containing $Y$RUN. 

2.9.4. Pack SYSRES Modules and Print Directories (PACKRES) 

The PACKRES job control stream packs and prints the directories of all modules 
residing on your release volume. The format of the RUN command to call PACKRES is: 

RV PACKRES[,[,F=file-name][,V=vsn]] 

The F parameter specifies the file names (Table 2-5) of all the files to be packed and 
printed. You can list the file names in any order. If the F parameter is omitted, then all 
files on your release volume are packed and printed. 

t 

t 



t 

UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

The V parameter specifies the volume serial number of your release volume. 

The PACKRES supported file names are: 

LOD SG$JCS SCLOD HELP 

OBJ SG$LOD MIC SHR 

MAC SG$0BJ SAVE SDF 

SRC SG$MAC DLSG IVP 

JCS SMC FMT MSG 

The following is an example of a typical PACKRES operation: 

RV PACKRES,,F=(OBJ,SRC,LOD) 

Here, the system object, source, and load files are packed and printed. 

NOTE: 

2-84 

PACKRES assumes that a certain set of files exists on all release volumes. If your 
volume is not a release volume, open errors may occur if certain files are not present. 

2.10. PROGRAMMING EXAMPLES 

Some typical examples of librarian jobs follow. These jobs are illustrated as a function 
of the job control stream used to execute the librarian and the librarian maps produced 
for each job. 

2.10.1. Repositioning Modules in a Disk Library File 

This job rearranges modules in a disk file. it copies modules from the original file into a 
new file in the new sequence, as listed in the following job control stream. Names such 
as MODA 1 and MODA 7 are of the first and last modules in each series of consecutive 
modules that are copied with each COP statement. After all the modules are copied to 
the new file, the original file is scratched and the new file is renamed as the original. 
Figure 2-13 illustrates the librarian map for this job. 

• 

• 

• 



• 

• 

• 

UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

(ORIGINAL) (HOLD) 

MODAi MooDI 

MODA7 MODD6 
MODBI MODA1 

MODBB MODA7 
MODC1 MODCI 

MODCB MODCS 
MODDI MODBI 

MODD6 MODB8 
MODEi MODEi 

MODE4 MODE4 

Job Control Stream: 

1 . //JOB SHUFFLE 
2. II DVC 20 II LFD PRNTR 
3. II DVC 50 II VOL D00410 
4. II LBL ORIGINAL II LFD RG 
5. II DVC 50 II VOL D00410 
6. II EXT ST,,1,BLK,C256,4000) 
7. II LBL HOLD II LFD HD 
8. II EXEC LIBS 
9. /$ 

10. FIL D1=RG,D2=HD 
11. COP D1 
12. RES D1,S,MODD1 
13. COP.U D1,S,MODD6,D2 
14. RES D1,S,MODA1 
15. COP.U D1,0,MODA7,D2 
16. RES D1,S,MODC1 
17. COP.U D1,L,MODC8,D2 
18. RES D1,S,MODB1 
19. COP.U D1,L,MODB8,D2 
20. RES D1,S,MODE1 
21. COP.U D1,S,MODE4,D2 
22. COP 02 
23. /* 
24. II SKIP END,11111111 
25. II SCR RG 
26. II REN HD,ORIGINAL 
27. //END NOP 
28. !& 

2-85 
Update A 



t 

UP-8062 Rev. 8 

1 . Identifies the job. 

2. Assigns a printer to the job. 

SPERRY UNIV AC OS/3 
SYSTEM SERVICE PROGRAMS 

2-86 

3. Identifies logical unit number 50 for disk volume D00410, which contains the 
original file. 

4. Declares file name ORIGINAL and logical file descriptor RG for the original file. 

5. Identifies logical unit number 50 for disk volume D00410 to be used for the 
new file. 

6. Allocates file space for the new file. 

7. Declares file name HOLD and logical file descriptor HD for the new file. 

8. Initiates execution of the librarian. 

9. Indicates the start of the librarian control statements. 

10. Assigns a type code and a logical file number to the files in the job. Thus, in 
the control statements that follow, D1 refers to ORIGINAL and D2 refers to 
HOLD. 

11 . Prints a sequential list of the modules in file ORIGINAL before the modules are 
rearranged. 

12 through 2 1 . 
Copy modules. from file ORIGINAL to file HOLD, moving a series of consecutive 
modules at a time. Each RES statement sets the pointer in file ORIGINAL to the 
first module in the series. Then a COP statement copies all modules from the 
pointer to the module named in the COP statement. 

22. Prints a sequential list of the modules in file HOLD. 

23. Identifies the end of the librarian control statements. 

24 and 27. 
Skip the scratch and rename operation if any errors occur in the job. 

25. Scratches file ORIGINAL. 

26. Renames file HOLD to ORIGINAL. 

28. Indicates the end of job. 

NOTE: 

To save both the original file and the new file, omit lines 24 through 27. 

• 

• 

• 



t 

• 

• 

UNIVAC OS/3 LIBQARIAN 
DATE 8Z/07/0& TIME 11.58 

BLOCK REC NAME 

••COMMAND••••••••• FIL 

TYPE DATE TIME 

Ol=QG,OZ=HD 

0 l - VSN IS 000410, LFO IS RG 
D 2 - VSN IS 000410, LFO IS HO 

• • COMMAND • • ••• •• •• COP 01 

• 

COMMENTS 

, FILE LABEL IS ORIGINAL 
, FILE LABEL IS HOLD 

Figure 2-13. librarian Map for Repositioning Modules (Part 1 of 5) 

PAGE # 0001 
VER8201t01 

• 

C/'J 
-< 

c .,, 
~ 
"' 
w 
00 

~C/'J m.,, 
s:: !H 
C/'J ::0 
m -< 
::0 c 
:S z 
(") -m< 
.,, )> 
::0 (") 
00 
C> C/'J 
::0 ...... 
)> c.> 

~ 

~ ..... 



t 
BLOCK REC 

SOURCE 
SOURCE 
LOAD 
LOAD 
SOURCE 
SOURCE 
OBJECT 
SOURCE 
SOURCE 
LOAD 
SOURCE 
SOU~CE 

LOAD 
LOAD 
LOAD 
SOURCE 
SOURCE 
SOURCE 
SOURCE 
LOAD 
SOURCE 
LOAD 
LOAD 
SOURCE 
SOURCE 
SOURCE 
SOURCE 
SOURCE 
SOURCE 
SOURCE 
SOURCE 
SOURCE 
SOURCE 

.. COM MAND • • • •. • • • • 

• • COMMAND • • • • • •• • • 

000001 005 
0000011 052 
000005 067 
000007 005 
000008 005 

+ 

• 

NAHE TYPE DATE TIHE COHHENTS 

TABLE OF CONTENTS 

HOOAl 81/011/27 09.111 
MOOA2 81/04/27 09.22 
MOOA3000 81/05/06 11.10 
HOOAllOOO 81/05/08 10.44 
HODA 5 81/05/08 11.06 
MODA6 81/05/12 13.115 
HODA 7 81/05/12 13. 118 
MODBl 81/05/12 13.59 
MOOB2 81/06/01 12 .33 
MODB 3000 81/06/01 12.50 
MODB4 81/06/05 12.45 
MO DBS 81/06/29 12.38 
H00d6000 81/07/06 111.52 
MOOS 7000 81/07110 111. 111 
MOOBSOOO Bl/08/111 1 3. 31 
HOOC I 81/08/14 13.35 
MOOC2 ql/08/21 10.51 
HOOC 3 81/08/211 1o.II3 
HOOC4 81/08/211 10 .117 
MODC5 DOD ~l/08/24 10.54 
MOOC6 81/09/01 10.28 
MOOC7000 81/09/11 08.30 
MOOCSOOO DOI •J0/00 00.08 
MOOD! 80/ 08/08 16. 34 
MOOD.! 80/08/08 16.35 
MOOD3 80/06/03 16.37 
MODD'I 80/03/08 16.39 
MOODS 80/ 08/ 08 16 •II I 
MOOD& a:J/08/D8 16. II 3 
HCDE l 80/ '.l8/08 lo. 114 
MOOE2 8G/08/!J8 16.45 
HOOE3 80/08/08 lo, 45 
MOOE'I 30/08/08 16.'17 

dLOCKS REMAINING DIRECTORY 000000 PRIME 00000 THIRD 000000 U"IUSEO oonooo 

RES 01,S,HODOl 

COP.U Dl,S,H0006,D2 

MOODl SOR 80/08/08 16.34 
MODD2 SOR 80/08/08 16.35 
110003 SOR 80/08/08 16.37 
MOOD4 SOR 80/08/08 16.39 
HOODS SOR 80/08/08 16.111 

Figure 2-13. Librarian Map for Repositioning Modules (Part 2 of 5) 

• 

PASE II OOOZ 

., 

~ 

c 
"'ti 
Co g 
"' ::0 

~ 
CX> 

Cf) 
-t Cf) 
m"'tl 
S: m ::0 
Cf) ::0 
m -< 
::0 c ::::; z o­m< 
"'ti> 
::0 (") 
oo 
G) Cf) 
::0 ....... >w 
s: 
Cf) 

"' I 
CX> 
CXl 



• • • t 
PAGE # 0003 I I 

c 
"ti 

BLOCK REC NA11E TYPE DATE Til1E COl111ENTS I 
Q) 

0 
O> 
N 

000008 171 HOOD& SOR 80/08/08 16.113 ::rJ 
CD 

COMMAND • • • • • •• • • RES Ol,S,1100Al :c:. 
Q) 

• • C 0'1MANO • • • • • • • • • COP.u 01,o,11o:>a1,02 

000009 118 HOO Al SOR 81/011/27 09.111 
0000111 031 MOOA2 SOR 31/011127 :>9.22 
000015 179 MOOA3000 LOO Sl/05/'lb 11.10 
000019 077 MOOAllOOO LOO Rl/05/08 1 o .1111 
000020 021 1100A5 SOR 81/05/08 11.06 
000022 150 HODA& SOR 81/05/12 13.45 
(l00023 126 ~OOA7 08.J 'll/05/12 13. 118 

COM~1ANO • • • • • •• • • RES 01,s,11ooc1 

COM:1ANO • • • • • •• • • COP.U Ol,L,MOOC8,02 

0000 32 005 '100Cl SOR 81/08114 13. 35 en 
000034 J34 MOOC2 SOR 81108/21 10.51 -< 
000035 034 '100C3 SOR 'll/08/24 10.43 en en 
JOOO 39 030 ~ODCll SOR ~1108/24 l0.47 

-i "ti mm 
000040 005 MOOC5000 LOO @1108124 10.54 3:: ::rJ 

000043 OZl MOOC6 SOR 81/09/0l 10.28 en ::rJ 
m -< 

000044 187 MODC7000 LOO !H/09/11 OS.30 ::rJc 
000052 16'1 HODCBJOO LOO OJ/Q0/00 oo.oa Sz 

n-

COM:1ANO •• I •••••• RES Dl,S,MOOBl 
m< 
"ti )> 
::rJn 

COMMAND • •,,. •• •, COP.U Ol,L,110088,02 

I 18 !il ::r1--
)> w 

000058 057 '100B l SOR 81/05/12 13.59 3:: 
000061 005 MOOB2 SOR 81/06/01 12.33 en 
OODOH 123 MOOB3000 LOO 81/06101 12.50 
000093 021 M0084 SOR 81/06/:15 12. "5 
000084 142 MOOB5 SOR 81/06/29 12.39 
0:10086 0 311 '1008&000 LOO 81/07/0b 14. 52 
000118 :165 M0037000 LOO 81/07110 14 .14 
000174 021 MODB8000 LOO 81/0811'1 13.31 

C0Mt1ANO , , , , , ••,, RES 01,S,MOOEl 

COMMAND • •,,, ••,, COP.LI Ol,S,MOOE4,02 

000182 180 MODEl SOR 80/09/08 16.4'1 
000184 07& MODE2 SOR 80/08/08 1&.45 
000185 0&5 MOOE3 SOR 80/08/08 16.115 
000186 149 MOOE4 SOR 80/08/08 l&.47 I I N 

I 
Q) 
CD 

I 
t 

Figure 2-13. Librarian Map for Repositioning Modules (Part 3 of 5) 



UP-8062 Rev. 8 

• Cl 
Cl 
Cl 

• 
w 
ID .. 
CL 

SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

LO" ..... 
0 

""'" t: 
~ ....:. 

(I) 

~ 
-6 
~ 
Ol .s 
c: 
:~ 

"' (I) ,_ 0 
z Q. .... ~ E 
E .... 
0 ~ u 

Q. 

~ 
c: 

w -~ E !!! .. ,_ :9 ...... 

~ 
w I ,_ C'\j 

c ~ 0 ::3 

~ 
w 
CL N ... 0 ,_ 

w 
E CL 
c 0 
z u 

u 
w 0 
111: z 

c 

E 

"" 0 
u u 
0 _. ... 

2-90 

• 

• 

• 



• • • 
t 

I 
c 

PAGE II 0005 .,, 
BLOCK REC NAME TYPE DATE TIME COMMENTS I co 

0 
a> 
N 

TABLE OF CONTENTS I I :::0 
(I) 

:c:. 

SOURCE MODDl 80/08/D8 16. 311 I I co 
SOURCE M0002 80/08/08 16.35 
SOURCE MOD03 80/08/08 lf>.37 
SOURCE MOOOll 80/08/08 16.39 
SOURCE MOODS 80/08/08 16.111 
SOURCE HOOD& 80/08/08 16.lf 3 
SOURCE HODA 1 81/04/27 09.llf 
SOURCE HODA2 81/0lf/27 09.22 
LOAD HODA 3DOO 81/05/06 11.1D 
LOAD HODAlfOOO 81/05/08 1 D. lflf 
SOURCE HODA 5 81/05/08 11.0& 
SOURCE HODA& 81/05/12 13.45 
OBJECT HODA7 81/05/12 13 .118 
SOURCE MOOCl 81/08/llf 13.35 
SOURCE HOOC2 81/08/21 10.51 
SOURCE MODC 3 81/08/24 10.43 
SOURCE MODC4 81/08/211 10.lf 7 
LOAD HODCSOOO 81/08/24 10.511 "' SOURCE HOOC& 81/09/01 10.28 -< 

"'"' LOAD HODC 7000 81/ 09/ ll 08.30 -t .,, 
LOAD HOOC 8000 00/00/00 00.08 mm 
SOURCE HOOIH 81/05/12 13. 59 s:: :::0 

"' :::0 SOURCE HOOB2 81/D&/Ol 12.~3 m-< 
LOAD HOO~ 3000 81/06/01 12.50 :::0 c 
SOURCE H00£4 81/06/05 12•45 Sz n-SOURCE HODB5 81/06/29 12.38 m< 
LOAD HOD!'\6000 81/07/06 14. 52 .,, )> 

LOAD HOOB 7000 8l/D7/10 14. 14 :::0 0 
LOAD MOOB8DOD 81/08/14 13. 31 gg 
SOURCE HOOEl 80/08/08 16.44 :::0 .._ 

SOURCE HOOE2 80/08/08 16.45 )>W 

SOURCE HOOE3 80/08/08 16.45 s:: 
"' SOURCE HODE4 80/08/D8 16.lf 7 

BLOCKS REMAINING DIRECTORY DOOOOD PRIME 00000 THIRD ooooon UNUsEn oonooo 

LIBRARIAN FINISHED 
DATE 82/07/06 TIME 11.58 
TOTAL NUMBER OF ERRORS 00000 UPSI SETTING x•oo• 

Figure 2-13. librarian Map for Repositioning Modules (Pan 5 of 5) 

• 
N 

~ 



t 

UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2-92 

2.10.2. Sorting Modules into Separate Files by Type 

This job sorts modules from one file into separate files for each module type. This job 
was run interactively, so the files for each module type were allocated with an 
interactive services ALLOCATE command before the job was run. Figure 2-14 illustrates 
the librarian map for this job. Notice that the last COP statement caused an error 
because there were no macro/jproc source modules in the original file. However, the job 
terminated normally. 

Job Control Stream: 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 

II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
1$ 

JOB 
DVC 
DVC 
LBL 
DVC 
LBL 
DVC 
LBL 
DVC 
LBL 
DVC 
LBL 
EXEC 

TYPSRT 
20 II LFD PRNTR 
50 II VOL 000410 
ORIGINAL II LFD RG 
50 II VOL 000410 
ALLSRC II LFD SC 
50 II VOL 000410 
ALLOBJ II LFD OB 
50 II VOL 000410 
ALLLOD II LFD LO 
50 II VOL 000410 
ALL MAC II LFD MC 

LIBS 

FIL D1=RG, D2=SC,D3=0B,D4=LD,D5=MC 
COP 01 
COP D1,S,,D2 
COP 01,0,,03 
COP 01,L,,04 
COP D1,M,,D5 

21. I* 
22. I& 

1. Identifies the job. 

2. Assigns a printer to the job. 

3. Identifies logical unit number 50 for disk volume 000410, which contains the 
original file. 

4. Declares file ORIGINAL and logical file descriptor RG for the original file. 

5 through 12. 
Are device assignment statements for the files for each module type. All are 
on disk volume 000410 with logical unit number 50. The files are named 
ALLSRC, ALLOBJ, ALLLOD, and ALLMAC. They are assigned logical file 
descriptors SC, OB, LD, and MC, respectively. 

• 

• 

• 



• 

• 

• 

UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

13. Initiates execution of the librarian. 

14. Indicates the start of the librarian control statements. 

2-93 

15. Assigns a type code and logical file number to the five files used in the job. 
Thus, in the control statements that follow, 01 refers to ORIGINAL, 02 to 
ALLSCR, 03 to ALLOBJ, 04 to ALLLOO, and 05 to ALLMAC. 

16. Prints a table of contents of all modules in file ORIGINAL. 

17. Copies all source modules from file ORIGINAL to file ALLSCR and prints a list 
of all of the modules copied. 

18. Copies all object modules from file ORIGINAL to file ALLOBJ and prints a list of 
all of the modules copied. 

19. Copies all load modules from file ORIGINAL to file ALLLOO and prints a list of 
all of the modules copied. 

20. Copies all macro/jproc modules from file ORIGINAL to file ALLMAC and prints 
a list of all of the modules copied. 

21 . Indicates the end of the librarian control statements . 

22. Indicates the end of job . 

t 



t 

t 

UNIVAC OS/3 LIBRARIAN 
DATE 82/07/08 TI~E 15.39 

BLOCK REC NAME 

•• COM:1ANO •• ••• •• •• FIL 

•. C OMMANO • ••••• • •. 

• 

D 1 - VSN 
D 2 - VSl\I 
o 3 - vs~ 
0 4 - VSN 
D 5 - VS"l 

COP 

TYPE DATE TIME COMMENTS 

01=RG,02=sc,03=0B,04=LD,OS=HC 

IS 000410, LFD IS RG , FILE LABEL IS ORIGI"lAL 
15 000410, LFD IS SC , FILE LABEL IS ALLSRC 
IS 000410, LFD IS OB , FILE LABEL IS ALLOBJ 
IS 000410, LFO IS LO , FILE LABEL IS ALLLOO 
IS 000410, LFD IS MC , FILE LABEL IS ALLHAC 

01 

Figure 2-14. Librarian Map for Sorting Modules by Type (Part 1 of 3) 

• 

PAGE I 0001 
VER820'601 

• 

c 

i 
N , 
co 

~(/) m.,, 
3:m 
(/) ~ m-< 
::D c 
Sz n­m< 
.,, )> 
::D () 
go 
::D ~ 
)> (A) 

3: 
(/) 

~ 
~ 



• t 
BLOCK REC 

SOURCE 
SOURCE 
SOURCE 
SOURCE 
SOURCE 
SOURCE 
SOURCE 
SOURCE 
LOAD 
LOAD 
SOURCE 
SOURCE 
OBJECT 
SOURCE 
SOURCE 
SOURCE 
SOl.IRCE 
LOAD 
SOURCE 
LOAD 
LOAD 
SOURCE 
SOUilCF. 
LOAD 
SOURCE 
SOURCE 
LOAD 
LOAD 
LOAD 
SOURCE 
SOU RC:'. 
SOU RC~ 
SOURCE 

•• co~~ANO ••••••••• 

000001 005 
000004 052 
000005 067 
000007 005 
000008 005 
000008 171 
000009 118 
00001'1 031 

• 

• 
NAME TYPE DATE TIME COMMENTS 

TABLE OF CONTENTS 

MOOD 1 SD/08/08 16 0 311 
MOOD2 RO/OB/08 16035 
110003 'l0/0'H08 16037 
MODD'I S0/08/'18 16039 
HODOS 80/06/08 16 0 '11 
MOOOo 80/08/08 160'13 
MOOAl 81/011/27 090 llf 
'100A2 81/011/27 D9o22 
MO DA 3000 81/05/06 11 olO 
MOOAlfOOO 81105/08 1 no .... 
'IODAS 81/05/0B llo06 
MOOA6 !ll/QS/12 13 0 '15 
HODA 7 IH/05/12 130 '18 
HOOC l 81/08/111 l3o35 
MODC2 81/08/21 lOoSl 
MODC 3 81/08/2'1 10 0 II 3 
'100C'I 81/08/2'1 lf10 .. 7 
MODCSODQ 81/0812'1 lDo5'1 
/10llC6 81/09/Dl l '.1o28 
MOOC7DOO 81/09/11 ll8o30 
MOOC8DJO 0'1/00/D'.1 0Do'l3 
'10091 81/JS/12 l3oS9 
Moon 8l/D6/0l l2o33 
MOO!l301JO >H/06/fll l2o50 
1100311 81/06/05 l2olf5 
M0085 81/06/29 l 2.38 
MOOB6000 81107/1)6 l '1o52 
'100117000 8 l / 07 / l 0 l If 0 111 
MOOB30ll0 81/()~/l'I l 3o 31 
MOOE l 8J/Q8/08 16 0 lf'I 
MOOE2 8J/3'l/08 l 60115 
MOOE 3 80/18/06 160115 
MOOE4 80/38/08 l 604 7 

BLOCKS ~EMAI"lI"lG DIRECTORY llOOOOO PRIME 00000 THIRD 000000 IJlllUSEO 1)00000 

COP 01,s,,02 

1"0001 SOR 80/08/08 1603" 
P'OD02 SOR 80/011/08 16.35 
M0003 so~ 80/08/1)8 16037 
"000'1 SOR 80/08/DB 160 39 
MOODS SOR 6J/J8/08 16041 
M0006 SOR 80/08/0B 16043 
MOOAl SOR 81/04/27 09ol'I 
H0042 SOR 81/04/27 09022 

Figure 2-14. Librarian Map for Saning Modules by Type (Pan 2 of 3) 

• 
PAGE ft 0002 c 

i 
"' 
~ 
00 

~~ ::D 

~~ 
~c 
-Z o­m< 
"'U )> 
::D () 

8&1 
::u­
)> W 

~ 

~ 
01 



t 

• 

BLOCK REC 

000015 179 
000018 072 
000019 071 
300021 080 
000022 074 
000026 095 
000027 ilb2 
000029 005 
000031 135 
000045 005 
000046 091 
000048 005 
000049 135 
000050 130 
000052 005 

•• COMt1ANO ••••••••• 

000001 005 

• • COMMAND • • • • • •• •, 

000001 005 
000004 IJ77 
000005 021 
000008 1 7& 
0000 lb 164 
000022 057 
000030 021 
000062 065 
000118 021 

, , COMtiAND 

NAME 

MOOA5 
1100A6 
MOOCl 
MOOC2 
"100C 3 
"10DC4 
MODC6 
"lODtH 
"!0062 
MOOB4 
MODB5 
"IODE 1 
"!OOE2 
MOOE3 
MODE'+ 

COP 

MOOA7 

COP 

MODA3000 
l"'ODA4000 
"00C5000 
MOOC700J 
"'00C8tl0•1 
MOJ930'El 
'"10:J8b000 
1'0037000 
MODil8000 

COP 

TYPE 

SOR 
SOR 
SOR 
SOR 
SOR 
SOR 
SOR 
SOR 
SOR 
SOR 
SOR 
SOR 
SOR 
SOR 
SOR 

DATE 

81105108 
81105112 
81/08114 
81108121 
81108124 
81108124 
81109/01 
81105/12 
81/06101 
81106105 
81/06/zq 
80/08108 
80/()8/08 
~0108108 

80108108 

01,0,,03 

OBJ 81105112 

01,L,,04 

LOO 81105/06 
LOO ~1105108 

LOO 81/08124 
LOO 81109111 
LOO 00/00100 
LOO 81106101 
LOO 81/0710& 
LOO 81107110 
LOO 81108114 

Dl,l',,D5 

806D*****NOTHING FOUND 

LIBRARIAN FINISHED 
DATE 82107108 TIME 15.39 
TOTAL NUMBER OF ERRORS 00301 UPSI SETTING X'40' 

TIHE 

11.06 
13.45 
13.35 
10.51 
10.43 
10.47 
10. 28 
13.59 
12.33 
12.45 
12.38 
16.44 
16.45 
16. 45 
16.47 

13.46 

11. l 0 
10,44 
10.54 
')8,30 
co.as 
12.50 
14.52 
14.14 
13 .31 

COHHENTS 

Figure 2-14. Librarian Map for Sorting Modules by Type (Part 3 of 3) 

• • 

P-GE II 0003 

• 

c 
"P 

~ 
N 

w 
co 

~w 
m '"O 
S:: m :D 
w:o m-< 
:De 
Sz 
(') -m< 
~ l:; 
go 
:D~ 
)>W 

s:: 
w 

~ 
O> 



• 

• 

• 

UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2-97 

2.10.3. Building Module Groups 

This job builds two module groups by copying modules from other files. All the files 
have already been allocated. Figure 2-15 illustrates the librarian map for this job. 

Job Control Stream: 

1 • 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 

II JOB GROUP 
II DVC 20 II LFD PRNTR 
II DVC 50 II VOL 000410 II LBL ORIGINAL II LFD RG 
II DVC 50 II VOL 000410 II LBL AL LL OD II LFD LO 
II DVC 50 II VOL 000410 II LBL ALLSRC II LFD SC 
II DVC 50 II VOL 000410 II LBL MIXED II LFD MX 
II EXEC LIBS 
1$ 

FIL D1=RG,D2=LD,D3=SC,D4=MX 
BOG GROUPMIX,04 
COP D1,S,MODA1,D4 
COP D3,S,MODC3,D4 
COP D1,0,MODA7,D4 
EOG GROUPMIX,04 
COP 04 
BOG LOADS,01 
RES D2,L,MODC5000 
COP.LI D2,L,MODC8000,D1 
EOG LOADS,01 
COP 01 

I* 
I& 

1. Identifies. the job. 

2. Assigns a printer to the job. 

3 through 6. 
Declare files for the job. All are on disk volume D00410 with logical unit 
number 50. Their names are ORGINAL, ALLLOD, ALLSRC, and MIXED with 
logical file descriptors RG, LD, SC, and MX, respectively. 

7. Initiates execution of the librarian. 

8. Indicates the start of librarian control statements. 

9. Assigns a type and logical file number to each of the files used in the job. 
Thus, in the control statements that follow, D 1 refers to file ORIGINAL, D2 to 
ALLLOD, D3 to ALLSRC, and D4 to MIXED . 



t 

-- ----- -------------------------------......... 

UP-8062 Rev. 8 

10 through 14. 

SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2-98 

Build group GROUPMIX in file MIXED. The BOG statement writes the 
beginning-of-group record in file MIXED. Line 11 copies source module MODA 1 
from file ORIGINAL; line 14 copies source module MODC3 from file ALLSRC; 
and line 15 copies object module MODA 7 from file ORIGINAL. The EOG 
statement writes the end-of-group record in file MIXED. 

15. Prints a table of contents for file GROUPMIX. 

16. Writes the beginning-of-group record for group LOADS in file ORIGINAL. 

17. Sets the pointer in file ALLLOD to load module MODC5. 

18. Copies all modules from MODC5 to MODC8 in file ALLLOD to group LOADS in 
file ORIGINAL. 

19. Writes an end-of-group record for group LOADS in file _ORIGINAL. 

20. Prints a table of contents for file original. 

21. Indicates the end of the librarian control statements. 

22. Indicates the end of job. 

• 

• 

• 



t 

• 

• 
UNIVAC OS/3 LIBRARIAN 
DATE 82/07/08 TIME 15.112 

BLOCK REC 

• • COMMAND • •. •. •• • • 

NAME 

FIL 

0 1 - VSN 
D 2 - V SN 
D 3 - V S"I 
0 4 - VSN 

• • COMMAND ••• • • ••.. BOG 

000001 005 GROUPMIX 

•. COMMA NO ••• , • •• •• COP 

000001 045 MOO Al 

• • COMMAND •• • •• •• •• COP 

000005 l 91 MOOC3 

• • COMMAND • • • •. • •• , COP 

000009 188 Mil0A7 

• • C0Mf1AND • • •,. •• • • EOG 

000017 228 GROUPMIX 

•• COM:4A~O • , • , , ••., COP 

TYPE DATE TIME 

Dl=RG,02=LO,D3=sc,o4=Mx 

IS 000410, LFD IS RG 
IS OOJ410, LFD IS LO 
IS 000410, LFO IS SC 
IS DOJ410, LFO IS MX 

GROUPHIX,D'I 

BOG 

01,S,HOOAl,O'I 

SOR 81/04/27 09o14 

03,S,HOOC3,04 

SOR 81/08/24 10.43 

Ol,O,HOOA7,04 

ORJ 81/05/12 13.48 

:iROUPHIX,04 

EOG 

04 

• 
COMMENTS 

, FILE LABEL IS ORIGINAL 
, FILE LABEL IS ALLLOO 
, FILE LABEL IS ALLSRC 
, FILE LABEL IS HIXED 

Figure 2-15. Librarian Map for Building Module Groups (Part 1 of 3) 

PAGE !I 0001 
VERS201t01 

• 

~ 

c 
" 00 
0 
Ol 
N 

:0 
(!) 

< 
00 

en -ten 
m " s:: ~ 
en :c 
m -< 
:cc 
Sz n­m< 
" )> :on 
00 
C> en 
:0-... 
)> w 
s:: en 

N 
I 

CD 
CD 



t 

+ 

BLOCK 

BOG 

EOG 

REC 

GROUPHIX 
SOURCE 
SOURCE 
OBJECT 
GROUPMIX 

•• COMMAND ••••••••• 

000187 tl58 

.. COMHAND • •. • • ••. • 

.. C OH~1ANO • • • • ••• •. 

000187 096 
000191 005 
OOU198 1611 

.. COMMAND . ........ 
0002011 057 

. . COMMAND •. • •• •• •• 

• 

NA"E 

MODAl 
MODC 3 
HOOA7 

TYPE 

81/011/27 
81/08/211 
81/05/12 

DATE TI"E 

TABLE OF CONTENTS 

D9.lll 
10.113 
13.118 

co""ENTS 

BLOCKS REMAINING DIRECTORY 000000 PRIME 000001 THIRD 000000 U~USEO nooooo 

BOG LOADS,Dl 

LOADS BOG 

RES D2,L,MODC5 

C OP.U D2,L,HOOC8,Dl 

"!OOCSOOO LOO Al/08/211 10. 511 
!'l00C7000 LOO 81/09/11 08.30 
HOOC8000 LOO 00/00/00 oo.os 

EOG LOADS,Dl 

LOADS EOG 

COP Dl 

Figure 2-15. Librarian Map for Building Module Groups (Part 2 of 3) 

• 

PASE I 0002 

• 

~ 

c .,, 
do 
0 
O> 
N 

:0 
(1) 

~ 
00 

Cf) 
-t Cf) 
m .,, 
S: m :0 
Cf) :0 
m -< 
:0 c 
~z n­m< 
.,, )> 
:0 ('") 
oo 
Gl Cf) 
:0 ....... 
)> w 
s: 
Cf) 

N 
I 
~ 

8 



• • 
t 

BLOCK REC NAME TYPE DATE TIME COMMENTS 

TABLE OF CONTENTS 

SOURCE HODDl 80/08/08 16.31t 
SOURCE HODD2 S0/08/08 16.35 
SOURCE HODD3 S0/08/08 16.37 
SOURCE HOOOlt 80/08/08 16.39 
SOURCE HODOS 80/08/08 16.ltl 
SOURCE H0006 80/08/08 l6.lt3 
SOURCE HOOAl 81/0lt/27 09.llt 
SOURCE HOOA2 81/011127 09.22 
LOAD HODA3000 81/05/0b 11.10 
LOAD HOOAltOOO 81/05/08 10 ..... 
SOURCE HODA5 81/05/08 11. 06 
SOURC~ HODA& 81/05112 13.115 
OBJECT HODA 7 81/05/12 13.118 
souqcE HOOCl 81/08/14 13. 35 
SOURCE HODC2 81/08/21 10.51 
SOURCE HOOC3 81/08/211 10.113 
SOURCE HOOC4 !H/08/211 10.47 
SOURCE HODC6 81/09/01 10.28 
SOURCE HOOB l 81/05/12 13.59 
SOURCE MOOB2 131/06/0l 12.33 
LOAD HODS 3000 81/06/01 12.50 
SOURCE MODB4 81/D&/OS 12.115 
SOURCE MO DBS 81106129 12.38 
LOAD HOD36000 81/07/06 14 .5 2 
LOAD 1'10087000 81/07/10 14. l It 
LOAD HODC!8000 81/011/111 13.31 
SOURCE MODE l S0/08/08 l 6. 1111 
SOURCE HOOE2 80/08/08 16.45 
SOURCE HOOE 3 80/08/08 16.45 
SOURCE MODE4 13.:l/D8/08 16. II 7 

BOG LOADS 
LOAD MOOCSOOO 81/08/24 10. 511 
LOAD MODC7000 81 / 09 / l l 08.30 
LOAD MOOC .:JQ:JO 00/00/00 oa.os 

EOG LOADS 

BLOCKS REHAINilllG DIRECTORY 000000 PRIME 00000 THIRD OOOOO'l UlllUSEO OOIJOOO 

LIBRARIAN FINISHED 
DATE 8~/07/08 TIHE 150112 
TOTAL NUMBER OF ERRORS 00000 UPSI SETTING x•oo• 

• 
Figure 2-15. Librarian Map for Building Module Groups (Part 3 of 3) 

• 
PA6[ I 0003 

J I 
I I 

c 
"ti 
00 
0 
a> 
N 

::0 
CD 
~ 
CX> 

CJ) 

-< 
CJ) CJ) 
-I "ti mm 
s:: ::0 
CJ) ::0 
m -< 
::0 c 
~z 
() -m< 

)> 
~ () 
00 
G> CJ) 

::0 --)> w 
s:: 
CJ) 

N 
I 

0 



t 

UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2.10.4. Copying a Card Deck to Disk 

2-102 

This job copies cards to a module in a disk file. In this case, the cards contain the 
sample job control stream explained in 2. 10.2, except that this time the job is called 
SRTFLS. Figure 2-16 illustrates the librarian map for this job. 

Job Control Stream: 

1. II JOB SAVED ECK 
2. II DVC 20 II LFD PRNTR 
3. II DVC 50 II VOL 000410 
4. II LBL YOURS RC II LFD YR 
5. II EXEC LIBS 
6. 1$ 
7. FIL D1=YR 
8. ELE.D 01,S,SRTFLS,SORTS MODULES BY TYPE 
9. II JOB SRTFLS 
10. II DVC 20 II LFD PRNTR 
11. II DVC 50 II VOL 000410 
12. II LBL ORIGINAL II LFD RG 
13. II DVC 50 II VOL 000410 
14. II LBL ALLSRC II LFD SC 
15. II DVC 50 II VOL 000410 
16. II LBL ALLOBJ II LFD OB 
17. II DVC 50 II VOL 000410 
18. II LBL ALLLOD II LFD LO 
19. II DVC 50 II VOL 000410 
20. II LBL ALLMAC II LFD MC 
21. II EXEC LIBS 
22. 1$ 
23. FIL D1=RG,D2=SC,D3=0B,D4=LD,D5=MC 
24. COP 01 
25. COP D1,S,,D2 
26. COP 01 ,0, ,03 
27. COP 01,L,,04 
28. COP 01,M,,05 
29. I* 
30. I& 
31. EOD 
32. I* 
33. I& 
34. II FIN 

1 . Identifies the job. 

2. Assigns a printer to the job. 

• 

• 

• 



• 

• 

• 

UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

2-103 

3. Identifies logical unit number 50 for disk volume D00410, which contains the 
file where the module is to be stored. 

4. Declares file YOURSRC and logical file descriptor YR for the file where the 
module is to be stored. 

5. Initiates execution of the librarian. 

6. Indicates the start of the librarian control statements. 

7. Assigns a type code and logical file number to file YOURSC. Thus, D 1 in line 8 
refers to file YOURSRC. 

8. Indicates the beginning of the cards. It also supplies a name, SRTFLS, for the 
module once it is added to desk file YOURSRC. The comment SORTS 
MODULES BY TYPE is included in the module header record. The D option 
causes the records in the module to be listed on the librarian map. 

9 through 30. 
Are the cards in the librarian control stream being saved. 

31 . Indicates the end of the cards . 

32. Indicates the end of the library control statements for the job. 

33. Indicates the end of job. 

34. Ends card reader operation . 

t 



t 

+ 

UNIVAC OSl3 LIBRARIAN 
DATE 8~107/08 TIME 15.53 

BLOCK REC NAME TYPE DATE TIME COMMENTS 

• • COMMAND • • •••• • •. FIL Ol=YR 

0 l - VSN IS 000410, LFO IS YR , FILE LABEL IS YOURSRC 

. . COH:1ANO ••••• •• •• ELE.D 01,S,SRTFLS,SORTS MODULES 9Y TY?E 

00001)1 00 5 SRTFLS SOR 8210710:! 15.S3 SORTS MODULES BY TYPE 
000001 0&3 // JOU SRTFLS 
000001 083 // ovc 20 II LFD PR'ITR 
000001 113 // DVC 50 II VOL 000413 
000001 l'"' II L9L ORIGI'lAL II LF::J RG 
000001 177 11 ave so II VOL 00041 0 
000001 208 II LBL ALLSRC II LFD SC 
000002 uos // DVC 50 II VOL OOrJ41iJ 
000002 03& II LSL ALL 0 ~J II LFD O'..\ 
000002 Ub7 II DVC SO II VOL 000410 
000002 li98 II LBL ALLLOO II LFD LO 
000002 129 // ovc so II VOL D00410 
000002 l&O II LSL 4LL'1AC II LFO MC 
000002 191 // EX£C LIRS 
000002 210 1$ 
000003 005 FIL Ol:RG,Ol=SC,D3:o~,04:L0,05:MC 

Qi)Q003 04& COP 01 
000003 ObO C:JP 01,s,,02 
'l00003 080 COP 01,0,,03 
uoooo3 100 COP Dl,L,,04 
000003 120 COP Ol,M,,05 
000003 l4J I* 
000003 149 If. 

Figure 2-16. Librarian Map for Copying a Card Deck on Disk 

• • 

PAGE II ODOl 
YER8201101 

• 

en 
-< 

c 
""O 
00 
0 
Ol 
N 

:IJ 
(!) 

< 

00 

en en 
-I ""O mm s:: :IJ 
en :JJ 
m -< 
:IJ c 
:5 z 
(') -
m< 
""O )> 
:IJ (') 

oo 
Gl en 
:IJ --)> w 
s:: en 

N 
I 

0 
~ 



• 
UP-8062 Rev. 8 

3.1. GENERAL 

SPERRY UNIV AC OS/3 
SYSTEM SERVICE PROGRAMS 

3-1 

3. MIRAM Librarian Functional 
Characteristics 

The MIRAM librarian provides limited file maintenance for the following module types: 

• Screen format 

• Help screen 

• Saved run library 

• • Menu 

The MIRAM librarian can copy modules from one file to another, delete modules from a 
file, print file directories and entire modules, change existing module names, and insert 
comments on the header record of the module. 

Although the MIRAM librarian is primarily a disk utility, the MIRAM library files may also 
exist on magnetic tape, diskette, or punched cards and may be converted from one 
medium to another. The output of a given MIRAM librarian job can be an updated tape, 
disk or diskette library, punched cards, listings, or any combination of these. The 
operational modes normally are selected at run time via parameter specifications. The 
program name of the MIRAM librarian is MLIB. 

The MIRAM librarian can be executed via the workstation by using a canned job control 
stream or via punched cards. Examples of both methods are shown in 3.5. 

3.2. CONTROL FUNCTIONS 

Five control functions are provided by the MIRAM librarian for user management of the 
program libraries in this system. They are: 

1. FIL 

• Defines user files. 



UP-8062 Rev. 8 

2. COP 

SPERRY UNIVAC OS/3 
SYSTEM SER\/ICE PROGRAMS 

Copies screen format and saved run library modules from one file to another. 

3. DEL 

Deletes screen format and saved run library modules from a file. 

4. PRT 

Prints entire modules and file directories. 

5. CHG 

3-2 

Changes the name of an existing module; inserts comments to the header record. 

These statements are described in detail in the following sections. 

3.3. CONTROL STATEMENTS 

The MIRAM librarian uses specific control statements within the job control stream to 
manipulate library information. These statements include such information as the module 
name, module type, logical file name, and any appropriate options. 

3.3.1. Declare MIRAM File (FIL) Control Statement 

Function: 

The FIL control statement is used to declare to the librarian all MIRAM files that are 
referenced subsequently in the control stream. At the same time, each file is 
assigned a logical file number (0-29), which forms a logical file name that is to be 
used (rather than the file name) for all subsequent file references within the control 
stream. File declarations may be strung out on one FIL card or be made individually 
on separate FIL cards. Up to 30 files can be declared in your job stream. 

Format: 

LABEL L::.OPERATION.6 OPERAND 

unused FIL Fn=f il ename-1 [, .•• ,filename- n] 

Options: 

None 

Positional Parameter 1 : 

Fn=filename 

Specifies that the MIRAM file (file name) is equated with the logical file name 
(FO-F29). 

• 

• 

• 



• 

• 

• 

UP-8062 Rev. 8 

NOTE: 

SPERRY UNIV AC OS/3 
SYSTEM SERVICE PROGRAMS 

3-3 

The file name specification may not exceed eight alphanumeric characters and must 
begin with an alphabetic character. 

Example: 

10 16 

FIL F0=FIL00,Fl=FIL01,F2=FIL02 

Files FILOO, FIL01, and FIL02 are given the logical file names FO, F1, and F2. 

3.3.2. Copy Modules (COP) Control Statement 

Function: 

The COP statement is used to: 

• Create a compressed output file by copying the nondeleted contents of an 
entire library file to another library file 

• Copy, from one file to another, individual modules based on module names 
and types or on module name prefixes 

Format: 

LABEL .6.0PERATION.6. OPERAND 

unused COP [options] input- l fn,[module-typeJ,[nameJ,output- l fn 

Options: 

c 
Specifies that the name specified in the name parameter is a module name 
prefix. 

Positional Parameter 1 : 

input-lfn 
Specifies the file number (as defined by the FIL statement) of the file to be 
used as input . 



UP-8062 Rev. 8 SPERRY UNIV AC OS/3 
SYSTEM SERVICE PROGRAMS 

3-4 

Positional Parameter 2: 

module-type 
Specifies the type of module being copied: 

F and FC 
Screen format modules. If you are copying a screen format module 
and the file contains other module types, you must specify two COP 
statements, one with F as the module type and the other with FC. It 
is unlikely that you would want to specify only one of the screen 
format module types, because you get both by default; however, you 
may refer to the screen format services concepts and facilities, 
UP-8802 (current version) for more information on the exact function 
of F and FC modules. 

HELP 
Help screen modules 

J 
Saved run library modules. 

MENU 
Menu modules. 

If no type is specified, all modules with the specified name are copied. 

Positional Parameter 3: 

name 
Specifies the name (up to eight characters) of the module. If no name is 
specified, all modules of the specified type are copied. 

Positional Parameter 4: 

output-lfn 

NOTE: 

Specifies the file number (as defined by the FIL statement) of the file to be 
used as output. No default is allowed. 

If the name and type specifications are both omitted, the entire file is copied. 

• 

• 

• 



• 
UP-8062 Rev. 8 SPERRY UNIVAC OS/3 

SYSTEM SERVICE PROGRAMS 
3-5 

Examples: 

1. 
2. 

3. 

4. 

1 10 16 

COP F0,,,F2 
COP F0,F,ABC,F2 
COP F0,,ABC,F2 
COP.C F0,,ABC,F2 

COP.C F0,J,ABC,F2 

1. All modules on file FO are copied to file F2. 

2. Screen format module ABC on file FO is copied to file F2. Two COP 
statements are needed because both F and FC module types are necessary to 
copy screen format modules. Other module types are present in the file; 
otherwise, the COP statement on line 4 could have been used. 

3. All modules on file FO having the prefix ABC are copied to file F2. 

4. All saved run library modules on file FO having the prefix ABC are copied to 
file F2. 

• 3.3.3. Print (PRT) Control Statement 

• 

Function: 

The PRT control statement is used to: 

• Print modules 

• Print the file directory 

Format: 

LABEL t!.OPERATIONL!. OPERAND 

unused PRT [.option] input-lfn(,module-typen,name] 

Options: 

c 

D 

Indicates that the specified name is a prefix. 

Indicates that a file directory is to be printed. If specified, the name parameter 
must be omitted . 



UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

3-6 

Positional Parameter 1 : 

input-lfn 
Specifies the file number (as defined by the FIL statement) of the input file. No 
default is allowed. 

Positional Parameter 2: 

module-type 
Specifies the type of module to be printed: 

F and FC 
Specifies that a screen format module is to be printed. F and FC must 
be specified on separate PRT statements. 

HELP 
Specifies help screen modules. 

J 
Specifies saved run library modules. 

MENU 
Specifies menu modules. 

If the type is omitted and the D option is specified, the entire directory is 
printed. If the type and the D option are both specified, only header records 
are listed. If both are omitted, all modules of the specified name are printed. 

Positional Parameter 3: 

name 

NOTE: 

Specifies the name or the prefix of the module to be printed. When you are 
using the D option, this parameter must be omitted. If the C option is used, 
the name is used as a prefix, and all modules of the specified type beginning 
with this prefix are printed. If this parameter is omitted, all modules of the 
specified type are printed. 

If no options are specified, and name and type are omitted, all modules in the specified 
file are printed. 

• 

• 

• 



• 

• 

• 

UP-8062 Rev. 8 

Examples: 

10 

1 • PRT 
2. PRT 

PRT 
3. PRT.C 
4. PRT.C 
5. PRT.D 
6. PRT.D 

16 

F0 
F0,F,ABC 
F0,FC,ABC 
F0,J,ABC 
F0,,ABC 
F0 
F0,HENU 

SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

1. All modules in file FO are printed. 

3-7 

2. Screen format module ABC in file FO is printed. Two PRT statements are 
needed because there are two screen format module types (F and FC). If no 
other types are present in the file, use one PRT statement and omit the type 
parameter. 

3. All saved run library modules having the prefix ABC are printed. 

4. All modules having the prefix ABC are printed . 

5. All active header records are printed. 

6. All menu header records are printed. 

3.3.4. Delete Module (DEL) Control Statement 

Function: 

The DEL control statement is used to: 

• Delete the active contents of an entire MIRAM library file 

• Delete individual modules based on prefixes, module names, and/or types 

Format: 

LABEL fl.OPERATION fl. OPERAND 

unused DEL [.options] input-lfn[,module-type][,name] 



UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

3-8 

Option: 

c 
Indicates that the name specified in the name parameter is a module name 
prefix. 

Positional Parameter 1 : 

input-lfn 
Specifies the logical file name of the input file. 

Positional Parameter 2: 

module-type 
Specifies the type of module being deleted: 

F and FC 
Specifies screen format modules. If other module types are present in 
the file, both F and FC must be specified by using two DEL 
statements. If omitted, all screen format modules with the specified 
name are deleted. 

HELP 
Specifies help screen modules. 

J 
Specifies saved run library modules. 

MENU 
Specifies menu modules. 

If omitted, all modules with the specified name are deleted. 

Positional Parameter 3: 

name 
Specifies the name or prefix of the module being deleted. 

NOTE: 

If no type is specified, you must be sure to specify a name or the entire file will be 
deleted. 

• 

• 

• 



• 

• 

• 

UP-8062 Rev. 8 

Examples: 

1 10 

1. DEL 
2. DEL 

DEL 
3. DEL 
4. DEL 
5. DEL.C 
6. DEL.C 

16 

F1 
F1,F 
F1,FC 
F1,J,ABC 
F1,,ABC 
F1,,ABC 
F1,MENU,ABC 

SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

1. All modules in file F 1 are deleted. 

3-9 

2. All screen format modules in file F1 are deleted. Two DEL statements are 
needed for this example because you must specify both types of screen 
format modules (F and FC). If no other module types are present in the file, 
use one DEL statement and omit the type parameter. 

3. Saved run library module ABC is deleted. 

4. Modules ABC of any type are deleted . 

5. All modules having the prefix ABC are deleted. 

6. All menu modules having the prefix ABC are deleted. 

3.3.5. Change Name and Comment (CHG) Control Statement 

Function: 

The CHG command is used to: 

• Change the name of an existing module 

• Insert comments on the header record 

Only one change operation per command can be performed. 

Format: 

LABEL 
unused 

fl.OPERATION fl. 

CHG 
OPERAND 

;nput-lfn,module-type,old-name,JN}'{new-name} 
le comments 



UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

3-10 

Options: 

None 

Positional Parameter 1 : 

input-lfn 
Specifies the file number (as defined by the FIL statement) of the file to be 
used as input. Also, the updated header record is written to this file. 

Positional Parameter 2: 

module-type 
Specifies the type of module being processed: 

F and FC 
Specifies a screen format module. You need two CHG statements to 
process a screen format module, one specifying F and the other 
specifying FC for the type ·parameter. 

HELP 
Specifies a help screen module. 

J 
Specifies a saved run library module. 

MENU 
Specifies a menu module. 

Positional Parameter 3: 

old-name 
Specifies the name of the module being processed. No default is allowed. 

Positional Parameter 4: 

N,C 
Specifies the type of change being performed as either a name change (N) or a 
comment insert (C). No default is allowed. 

Positional Parameter 5: 

new-name,comments 
Specifies the information required by the type of change parameter. 

If N was specified, a valid module name must be specified. If a module with 
the same name and type already exists in the file, an error occurs and the 
change does not occur. 

If C was specified, a comment (up to 30 characters) enclosed by single quotes 
must be specified. 

• 

• 

• 



• 

• 

• 

UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

3-11 

Examples: 

1 • 

2. 

10 16 

CHG 
CHG 
CHG 

F0,F,VERSION1,N,VERSION2 
F0,FC,VERSION1,N,VERSION2 
F0,J,ESCSRC,C, 1 MODULE ESCAPE SOURCE· 

1. The screen format module named VERSION 1 is renamed VERSION 2. Two 
statements are needed here, as explained in 3.3.4, example 2. 

2. The header record for the saved run library module named ESCSRC will contain 
the comment 'MODULE ESCAPE SOURCE'. 

3.4. MIRAM LIBRARY MODULE FORMATS 

MIRAM library modules are unique in that they don't have the same structure as SAT 
modules. For example, SAT modules can exist in either source, object, or load code 
forms. MIRAM library modules, however, are created by their own software component 
and consist of a single form of code that is executed at run time. Table 3-1 shows the 
format of the MIRAM library module header record . 

Table 3-1. MIRAM Library Module Header Record Format 

Byte Position Contents 

0-7 Module name 

8-11 Module type 

12-14 Creation date (yymmdd) 

15-17 Creation time (hhmmss) 

18-19 Number of active bytes in the last sector occupied by the module 

20-23 Number of data sectors 

24-27 Total number of sectors occupied by this module 

28-30 Reserved for flags 

31 Active flag: 

x·oo· - Deleted module 
X'FF' - Active module 

32-33 Record size 

34-68 Unused 

69-98 Comment field 

99-255 Unused 



UP-8062 Rev. 8 

3.5. PROGRAMMING EXAMPLES 

SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

3-12 

A typical job stream is presented in this section to guide you in the execution of the 
MIRAM librarian. Also included in this section is a sample of the librarian map that is 
generated when you run this job stream. 

3.5.1. Typical MIRAM Library Job Stream 

Figure 3-1 shows a typical librarian job stream. 

1 
/I 
II 
// 
// 
II 
II 
// 
/I 
/I 
// 
// 
/I 
/$ 

1. 

2. 
3. 

~10B 
D\..'C 
LFD 
DVC 
LBL 
LFD 
DVC 
VOL 
E:XT 
LBL 
LFD 
E:::r; t. c 

4. Control 

10 ·16 
;iLlBRUN 
20 
PRNTR 
RES 
:i;.)'~FrlT 

Ir~ 
50 
000309 
MI .. C.2,CYL .. 2 
ALEX 
ALEX 

1-iL IB 

FIL FO==IN.F1=AL£X 
FO .. F ,SFGH(l~1ES .. F1 
FO,F,TE$,f-; 
F1 

5. Statements 

COP 
COP.C 
PRT.D 
DEL F 1, F, SFGHOrlE~:; 

6. 
7. 

8. 
/* 
/~ 

// 1~ Ir~ 

CHG F1.F,TEISRNOT .. N .. TEiSRNOX· 
F1,F,TEiSRNOx,c, 'TEST MODULE' CHG 

PRT.D Fi 

Figure 3-1. Typical MIRAM librarian Job Stream 

In the job control portion of the job stream, you must always allocate a printer by 
assigning the name PRNTR via an / / LFD job control statement. As shown, a printer an 
two disk files (IN and ALEX) are assigned in this job stream. The number of files that 
you must specify, however, depends on the actual number of files being used in your 
job. Note that the program name specified on the // EXEC statement is MLIB. 

The MIRAM librarian control statements (lines 1 to 8) are included in the job stream as 
a set of embedded data inserted between the /$ and /* statements. 

• 

• 

• 



• 

• 

• 

UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

3-13 

On line 1 of the embedded data set is the FIL control statement that assigns each file in 
your job stream a logical file number. It is this logical file number that is used in the 
subsequent control statements to reference each file. Here, the logical file number FO is 
assigned to the file named IN, and F 1 is assigned to the file ALEX. 

NOTE 

When you are working with system files on your resident pack and you specify II DVC 
RES in the device assignment set, you must include an 11 LBL statement in that set. 

The COP control statement on line 2 copies the screen format module (F-type), 
SFGHOMES from the system file $Y$FMT on your resident volume to ALEX on volume 
D00309. On line 3, the COP control statement copies all of the modules beginning with 
TE$ from $Y$FMT to ALEX. Note here that the C option specifies that TE$ is the 
module name prefix. 

Since the PRT statement in line 4 uses the D option, a directory listing of all the 
modules in $Y$FMT is printed. The DEL control statement on line 5 deletes the 
contents of SFGHOMES from the file ALEX. 

Lines 6 and 7 contain CHG control statements. The statement in line 6 changes the 
name of the module TE$SRNOT on $Y$FMT to TF$SRNOX. The statement on line 7, 
however, doesn't change any names. Instead, it's used to insert the comment "TEST 
MODULE" on the header record. 

Line 8 is the same as line 4. The PRT control statement on this line prints a directory 
listing of the modules contained in $Y$FMT. Notice that you can use duplicate 
statements in your job stream. 

Figure 3-2 shows a sample librarian map for this job stream. This map is a printed 
record of the functions performed in your librarian job. 

PA&E I ODCl 
SPERRY UNIVAC OS/3 MIRAM LIBRARIAN VERIOD331 
DATE 80/Db/25 TIME 10.08 JOB R-ACF56 

" FIL FO=IN,F!=ALEX 
COP FO.F,SFGHOMES,Fl 

SF&HOMES OD/00/0D. oo.oa 
COP.C FO,F,TES,Fl 

F T[SSRNBI 8010•116 16.•D 
F TESSRNIN 8DID•l16 16·2• 
F TEsSRNOT 8D/D5/D2 16oD9 

PRToD Fl 
F SF&HO"ES OD/DO/OD Do.oa 
F TEsSRNBI 8010•116 16·•0 
F TEsSRfUN 8010•116 16·2• 
F TESSRNOT 80/D5/D2 16.09 

DEL fl,F,SFGHOMES 
F SF6HO"ES 001or100 oo.oe 

Cl<G Fl ,F, TE SSRNOT .~, TE5SR NOX 
CHG Fl,F,TEIS~NOX,;,• TEST P400ULE' 
PAT .O Fl 

F TESSRNBI 8010•116 16.•D 
F TESSRNIN 8010•116 16.24 

TEST "OOULE F TESSRNOX 801051"02 16.09 ,. 
LIBRARIAN FINISHED 
DATE Bn/06/25 TIME lD.2• 
"L02• ML18 TOTAL ERRORS= 0000~. UPSI= x•oo• 

Figure 3-2. Sample Librarian Map 



• 

• 

• 



• 

PART 3. THE LINKAGE EDITOR 

• 

• 



• 

• 

• 



• 

• 

• 

UP-8062 Rev. 8 

4.1. GENERAL 

SPERRY UNIV AC OS/3 
SYSTEM SERVICE PROGRAMS 

4-1 

4. Functional Characteristics 

The linkage editor of the SPERRY UNIV AC Operating System/3 (OS/3) is a multiphase 
load module that resides in the system load library file ($Y$LOD). It relies on the 
allocation of both system disk and main storage free space for intermediate processing 
efficiency, as well as one or more system or user object libraries for obaining the 
desired object code. The load modules that the linkage editor produces subsequently 
can be stored in either the system load library file or a user load library file. All 
reentrant load modules must be stored in the system load library file ($Y$LOD). The 
system access technique (SAT) is used in the management of all files accessed by the 
linkage editor. Figure 4-1 illustrates the functional relationships between the linkage 
editor, SAT, and the various interfacing files. 

SYSTEM 
LOAD 

LIBRARY 
FILE 

l$Y$LOD) 

LINKAGE 
EDITOR 

PHASED 
s LINKAGE 
A 
T 

EDITOR 

SAT 

USER 
OBJECT 

LIBRARY 
FILE 

SCRATCH 
FILE 

s 
A 
T 

LOAD 
MODULE 

INTERMEDIATE 
STORAGE 

USER 
LOAD 

LIBRARY 
FILE 

FINAL STORAGE 

Figure 4-1. Functional Relationship among the Linkage Editor, SAT, and Related Files 



UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

4-2 

The linkage editor relies on an input control stream for acquisition of control statement 
directives and parameter information. In the absence of such a control stream, the 
linkage editor defaults to the appropriate system job run library ($Y$RUN) file, to obtain 
the modules to be used in constructing the load modules. The program name of the 
linkage editor is LNKEDT. 

4.1 .1 . The SAT Interface 

The linkage editor uses the system access technique for the following purposes: 

• Reading system and user libraries to obtain the necessary object modules to be 
included in the load module 

• Managing an intermediate scratch file during the link-edit process 

• Creating the final output load module or modules 

Because the linkage editor produces standard load modules (as needed by the system) 
and accesses standard object modules (as produced by the various language 
processors), all of which are contained in disk program library files, the SAT file 
definitions (DTFs) describe three partitions for each file. The first partition is the 
directory partition used as an index into the second and third partitions, the data 
partitions of the library file. Because the output of the linkage editor is essentially a 
library file (load module type), it also contains both a directory partition and two data 
partitions (the directory is composed primarily of phase header pointers and the third 
partition is empty). 

The load modules produced by the linkage editor contain phase header records (one for 
each phase segment); text/RLD records comprising the actual instructions, constants, 
and relocation information making up each individual phase; transfer records (one at the 
conclusion of each phase); ISD records and, optionally, shared code records. Each 
phase header contains an appropriate entry in the load library directory (first partition), 
which identifies the load module and the particular phase and points to the relative 
position within the data body of the library file (second partition). For each phase header 
entered in the body of the load module (second partition), the necessary directory 
entries also are entered in the directory index (first partition) with the relative pointer 
obtained from the necessary DTF description for the second partition. Both the directory 
and prime data areas of the file contain blocked logical records. 

The object modules that the linkage editor uses in its construction of the load module 
also are retrieved through the SAT. These files are accessed through a file directory 
scan (first partition) in an attempt to locate the necessary module header, control 
section definition, or entry symbol definition. (Object library file directories are 
supplemented with named CSECTs, named COMs, and ENTRYs to facilitate this search.) 
When the desired directory item is found, the relative directory pointer is extracted from 
the record and copied into the second partition definition of the DTF to obtain the 
needed modules or control sections from the body of the module. 

• 

• 

• 



• 

• 

• 

UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

4-3 

The intermediate scratch file used by the linkage editor in the course of the link-edit job 
and seen only by the linkage editor for its processing also is accessed via SAT. This 
file is scratched when the link-edit job ·is finished. 

4.1 .2. Temporary Storage Usage 

The linkage editor uses open storage space at the end of its longest path for the 
management of temporary reference tables and buffers. This area is reserved by the 
linkage editor when it is first loaded into main storage. In a minimum storage system, 
the reserved area is always equal to the size of the maximum storage partition allowed 
any user program. In larger system configurations, this reserved area is dynamically 
expanded at linkage editor execution time. 

If any job step in a job containing a linkage editor job step requires an amount of 
storage in excess of the minimum linkage editor storage requirements, the linkage editor 
uses the excess for reference table and buffer expansion. Because job control assigns 
storage requirements for a given job based on the largest requirement for any job step, 
when not specified explicitly on the / / JOB control statement, the linkage editor adjusts 
its pointers (as originally established) to accommodate the availability of the extra 
tabling space (if any extra exists). The linkage editor determines the amount of storage 
space allocated for the job of which it is a step by examining the job prologue. The 
speed of the link edit is proportional to the amount of main storage space available to 
the linkage editor. 

If a given link-edit job involves a number of definitions with table entries exceeding the 
current internal storage space available for that job step, the linkage editor expands the 
reference table by using data blocks on the temporary output medium via the DTF 
partition assigned to the intermediate file. Thus, table overflow does not cause the 
link-edit job to be aborted. 

4.2. LINKAGE EDITOR INPUT AND OUTPUT 

The linkage editor uses as input both job control stream data in the form of linkage 
editor control statements and object module elements and produces, as output, one or 
more load modules and a link-edit map for each load module (Figure 4-2). Under normal 
operating conditions (no normal linkage editor options suppressed or superseded), the 
linkage editor uses the control statements contained in the job control stream to 
construct one or more load modules per job. These statements, which comprise the 
primary control stream input to the linkage editor, specify the object modules to be 
included in the load modules, the structure of the load modules to be produced, and the 
linkage editor options to be in effect during construction of the load modules. 

The object modules referenced in the primary control stream also may have linkage 
editor control statements embedded in them. When they do, these control statements 
are inserted in the primary control stream at the point the object module containing 
them was referenced, and thus become part of the primary control stream input. 



UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

INPUT 

LINKAGE EDITOR 
CONTROL 

STATEMENTS 

JOB CONTROL 
STREAM DATA 

PRIMARY CONTROL 
STREAM INPUT 

SOURCE MODULE 
REFERENCED CONTROL STATEMENTS 

SOURCE 
MODULES 

PROGRAM LIBRARY 
FILE 

EMBEDDED CONTROL STATEMENTS 
INCLUDED 

M~~~~~S OBJECT MODULE ELEMENTS 

PROGRAM LIBRARY 
FILE 

LINKAGE 
EDITOR 

Figure 4-2. Linkage Editor Input and Output 

OUTPUT 

LOAD 
MODULES 

PROGRAM LIBRARY 
FILE 

LINK·EDIT 
MAP 

SYSTEM PRINTER 

4-4 

The control statements contained in the primary control stream input also may identify 
source modules containing linkage editor control statements to be processed during the 
job step. When such statements are processed, the control statements they reference 
also are inserted in the primary control stream input, just like embedded control 
statements. These statements, however, have special processing significance attached 
to them and are thus referred to as source module control stream statements in this 
manual to differentiate them from the other two types of primary control stream 
statements ijob control data and embedded control statements). 

The load modules produced by the linkage editor normally are output to the system job 
run library file ($Y$RUN). The user, however, may direct his output to be stored in any 
library file he wishes, or he may elect to suppress this output entirely through the 
linkage editor control statement options available to him. The same is true for the 
linkedit map, which normally is output by the linkage editor for each load module it 
produces, whether or not the load module output is suppressed. This output also can 
be suppressed by the user through a linkage editor control statement option. Each 
link-edit map describes the control statements used to construct its associated load 
module, the symbols, or labels, detected in the object modules included in the load 
module, the structure of the load module produced, and any processing errors that 
might have been detected during construction of the load module. Section 7 gives 
detailed-ctesc:riptions and illustrations of the map components. 

• 

• 

• 



• 

• 

• 

UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

4.3. CONTROL STATEMENT FUNCTIONS 

4-5 

Control statements are available to the user to direct the linkage editor in construction 
of a load module. These statements allow the user to generate a load module that is 
structured in accordance with his program requirements, as these requirements exist in 
the object elements that are to make up the load module. Linkage editor control 
statements normally appear as data in a job control stream following an execute linkage 
editor job control statement (// EXEC LNKEDT). As previously indicated, however, 
linkage editor control statements also can be embedded in object modules or contained 
in source modules referenced by linkage editor control statements. Therefore, if no 
control statements are present in the job control stream following a / / EXEC LNKEDT 
control statement, the linkage editor constructs a load module by using all the object 
modules currently contained in the job's job run library file ($Y$RUN). If none of the 
object modules contained in this file contain embedded linkage editor control 
statements, the linkage editor constructs only one nonreentrant single-phase load 
module, named LNKLOD, consisting of all the object modules contained in the $Y$RUN 
library file; otherwise, if so directed by embedded control statements, the linkage editor 
may produce multiple load modules, reentrant or otherwise, with or without multiphase 
and multiregion structures. 

The name and basic function of each of the linkage editor control statements are 
described in the following paragraphs. Section 6 gives a more detailed description of 
these control statements . 

• LINKOP and I I PARAM Statements 

These statements specify the linkage editor processing options that are to be in 
effect during construction of a load module. These options include: 

a method of determining file name assumption to be used by the include 
mechanisms of the linkage editor when such file names are not explicitly 
designated by the user; 

disallowing the automatic inclusion of object modules in the load module by 
the linkage editor; 

disallowing the automatic overlay mechanism of the linkage editor from being 
included in the load module; 

disallowing the promotion of common storage sections by the linkage editor; 

selecting the output file in which the load module created by the linkage editor 
is to be stored; 

terminating a link-edit job if a processing error is detected; 

selecting the components of the link-edit map to be output for a given link-edit 
job; 



UP-8062 Rev. 8 SPERRY UNIV AC OS/3 
SYSTEM SERVICE PROGRAMS 

4-6 

inserting comments in the phase header records produced by the linkage 
editor; 

building reentrant load modules; 

ignoring the reentrancy of object modules; and 

suppressing the production of ISD records. 

• LOADM - Begin Load Module 

This statement requests the linkage editor to begin construction of an executable 
load module. This statement initiates the creation of the start of the root phase 
segment and specifies a name for the load module. It normally is the first control 
statement in each link-edit job. 

• INCLUDE - Include Object Code 

This control statement instructs the linkage editor to include, in the load module 
being constructed, an entire object module or specific object module sections. This 
statement specifies the name of the module and module sections, if a;:>plicable, 
required to be in the load module segment currently under construction. It may also 
identify the file in which the specified module is located. 

• OVERLAY - Begin Overlay Phase 

This statement directs the linkage editor to begin construction of a new load 
module phase separate from the initial phase and any other previously defined 
phase. Any and all INCLUDE requests for object code following an OVERLAY 
statement are included in the phase initiated by the OVERLAY statement up until 
the detection of another OVERLAY or REGION control statement or termination of 
the immediate link-edit job. The phase name assigned to the overlay phase is a 
combination of the name assigned to the load module plus a 2-digit number from 
00 to 99, which indicates the order in which the various phases of a load module 
were declared to the linkage editor. A unique 6-character alias phase name also 
may be assigned to each overlay phase. 

• REGION - Begin New Region 

This statement causes a new phase to be created in a new region of the load 
module. This statement has all the attributes of the OVERLAY statement, in 
addition to initiating the construction of a new load module region. 

• ENTER - Define Phase Execution Entrance 

This statement specifies the start-of-execution point for the phase currently under 
construction in a load module. This is the point to which control is optionally 
transferred once the phase has been loaded in main storage. The transfer point is 
optionally assigned by the linkage editor if no such statement is supplied for a 
phase. This statement is normally the last specified for each phase defined in a 
load module. 

• 

• 

• 



UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

4-7 

• • EQU - Define Label 

• 

• 

This statement is used to define an otherwise undefined label in a load module. 
The normal method of defining and satisfying cross-references by the linkage editor 
is via the proper INCLUDE directives and external symbol dictionary (ESD) records 
in object code included in the load module. This statement, however, allows you to 
equate two symbols (a symbol and a value, or a value only) that could not 
otherwise be resolved in the link-edit run. If one symbol is being equated to 
another, the equating symbol must have been previously defined. 

• MOD - Modify Location Counter 

• 

This statement is used to modify the current program counter that the linkage 
editor maintains during construction of a load module. This statement permits the 
user to accomplish boundary adjustments at link-edit time outside the realm of the 
makeup of modules and code being included. 

RES - Reserve Storage 

This statement directs the linkage editor to reserve additional storage at the end of 
the longest path in the load module being constructed. The additional storage 
requested is included in the overall length of the load module as recorded in the 
load module header record, and may be referenced by the object code included in 
the load module. 

4.4. OBJECT MODULE FORMAT 

Figure 4-3 illustrates the format of the object modules produced by all the language 
processors and used as input by the linkage editor. As shown, an object module 
consists of: 

• an object module header record that uniquely identifies the object module; 

• one or more control section records, each of which defines the symbolic name, 
external symbol identification (ESID), and length of each control section (CSECT and 
COM) comprising the object module; 

• possibly one or more external symbol dictionary (ESD) records, each of which is 
used by the linkage editor in satisfying cross-references (ENTRY, EXTRN, and 
V-CON references) between object modules during the link-edit operation; 

• possibly one or more internal symbol dictionary (ISO) records used to describe the 
internal symbols of the user program; 

• one or more text and relocation list dictionary (RLD) records contammg the data 
and instructions making up the object code, together with relocation masks used 
by the linkage editor to modify specific areas of the object code at link-edit time; 



UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

4-8 

• a transfer (TRF) record (normally the last record in any set of relocatable object 
code produced by a language processor) that may optionally indicate a 
start-of-execution address for the object module; or 

• one or more linkage editor control statements that may be embedded in an object 
module. Embedded control statements may appear only immediately following the 
object module header record or transfer record, as shown in Figure 4-3. 

OBJECT MODULE HEADER RECORD 

LINKAGE EDITOR CONTROL STATEMENTS 
(OPTIONAL) 

CONTROL SECTION RECORDS 

EXTERNAL SYMBOL DICTIONARY (ESD) 
RECORDS (OPTIONAL) 

ISO RECORDS (OPTIONAL) 

TEXT/RELOCATION LIST DICTIONARY 
RECORDS 

TRANSFER RECORD 

LINKAGE EDITOR CONTROL STATEMENTS 
(OPTIONAL) 

NOTE: 

All control section and ESD records must have unique names within 
a given object module. For example, an entry point and a CSECT 
must not have the same name and exist in the same object module. 

Figure 4-3. 05/3 Object Module Format 

4.5. LOAD MODULE FORMAT 

Figure 4-4 illustrates the format of the load modules produced by the linkage editor, as 
they are stored in a library file. As shown, all load modules consist of at least one 
phase, called the root phase. Multiphase and multiregion load modules consist of a root 
phase plus one or more additional phases. (A root phase is required in every load 
module because it contains the information necessary to allocate the load module space 
in main storage prior to its execution by the system.) The number of phases and 
regions comprising a load module is specified by the user in the linkage editor control 
stream that produces the load module. A load module may consist of up to 100 phases 
and up to 10 regions. 

• 

• 



• 

• 

• 

UP-8062 Rev. 8 

ROOT 
PHASE 
SEGMENT 

PHASE 1 
SEGMENT 

PHASE N 
SEGMENT 
(UPT099) 

SPERRY UNIV AC OS/3 
SYSTEM SERVICE PROGRAMS 

PHASE HEADER RECORD 

SHARED RECORDS 

1-~~~~~~~~~~~~~~~~--i 

ISO RECORDS 

AUTOMATICALLY INCLUDED 
OBJECT CODE 

!-~~~~~~~~~~~~~~~~---; 

AUTOMATIC OVERLAY CONTROL ROUTINE 
(KL$0CP OR KL$0CPR) 

I------------------------- - -------1 

} ONLY PRESENT IF REOUIREO 

} 

ONLY PRESENT IF REQUIRED 
AND AUTOMATIC INCLUSION 
FEATURE IS NOT INHIBITED 

ONLY PRESENT WHEN V-CON 
I PROCESSING IS SPECIFIED 

AND VALID V-CON 
REFERENCES EXIST IN 
MULTIPHASE OR MUL Tl­
REGION LOAD MODULES 

ENTRY POINT TABLE (NTAB) ) 

1----------------------------
PHASE TABLE (PTAB) l 

---- - - - - - - -- ----------- - ----·--! 
REGION TABLE (RTAB) 

SPECIFICALLY INCLUDED 
OBJECT CODE 

TRANSFER RECORD 

PHASE HEADER RECORD 

SPECIFICALLY INCLUDED 
OBJECT CODE 

TRANSFER RECORD 

PHASE HEADER RECORD 

SPECIFICALLY INCLUDED 
OBJECT CODE 

TRANSFER RECORD 

Figure 4-4. 05/3 Load Module Format 

4-9 



UP-8062 Rev. 8 SPERRY UNIV AC OS/3 
SYSTEM SERVICE PROGRAMS 

Each phase of a load module consists of at least the following: 

• A phase header record that identifies: 

the name of the phase; 

the size of the phase in bytes and its origin; and 

4-10 

the amount of main storage required to load the longest path of the load 
module. 

• At least one (and probably more) text/relocation (RLD) record that includes both 
data and instructions comprising the load module phase and possible relocation 
masks to be used to relocate the text at execution time 

• A transfer record identifying the end of the phase, and containing a transfer 
address at which point phase execution is to optionally begin 

In addition to these records, the root phase of a load module may contain: 

• , Any number of shared records 

A reentrant load module will have one or more SENTRY records indicating the 
availability of ENTRY points in that module. A nonreentrant load module will not 
have any shared records unless it references reentrant code. In this case, it will 
have a resource record and a SEXTRN record for each reference that was resolved 
to a reentrant object module. 

Resource records contain the name of the reentrant module referenced. 

SEXTRN records identify the EXTRNs that were resolved to the resource. 

• Any number of ISD records 

The ISD records can be one of the following: 

CSECT /COM ISD records identifying control and common sections included by 
the linkage editor; or 

ISD records produced as a result of being generated by any of the language 
processors within object modules. 

• Any automatically included object module sections needed to satisfy any 
cross-references not defined in any specifically included object module section 

• An automatic overlay control routine if the load module produced requires the 
automatic loading of its phases 

Two versions of this routine exist: One handles single-region structures (SL$0CP) 
and the other, multiregion structures (KL$0CPR). 

• 

• 

• 



• 

• 

• 

UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

4-11 

• An entry point table (NT AB) used in conjunction with the automatic overlay control 
routine to provide for automatic loading of phases 

This table contains the addresses of referenced ENTRY points and an index into 
the phase table (PT AB) that identifies the phases containing the ENTRY points. 

• A phase table (PT AB), also used in conjunction with the automatic overlay control 
routine, to provide for automatic loading of phases 

This table contains the overlay structure information required to load the various 
phases of the load module. 

• A region table (RT AB) used in conjunction with the automatic overlay control 
routine to control automatic loading of the various regions that may be in the load 
module 

This table describes the region structure of the load module and is present only if 
the KL$0CPR automatic overlay control routine, with multiregion control, is present. 

When a load module is loaded in main storage for program execution, only its 
instructions and data are loaded; phase header, shared records, ISD records, and 
transfer records are not included. These records are used only to: 

• relate the amount of main storage required to store the load module and the 
particular phase being loaded, including any common storage areas and reserved 
storage areas required by the load module program; 

• identify the phase load address; 

• identify the program starting address; 

• identify the resources (reentrant load modules) that are needed and SEXTRNs to be 
satisfied at execution time; 

• identify the entry points that are available in reentrant load modules at execution 
time; and 

• give JOBDUMP the necessary information to print a dump of segmented CSECTs of 
the program and internal symbols of the user program. 

Figure 4-5 illustrates the format of a typical load module as it might appear in main 
storage. As shown, it might have a common storage area and a reserve storage area. 
These areas are storage areas that the linkage editor reserves for the load module 
program in accordance with the common storage area definitions contained in the 
object module code included in the load module and the reserve storage (RES) control 
statements contained in the linkage editor control stream that created the load module. 
The size of the common storage area reserved for a load module is the sum of all the 
common storage areas requested and described by both the specifically included and 
automatically included object modules in the load module. Common storage areas may 
be labeled or unlabeled in the object module code. The size of the reserve storage area 
reserved for a load module is the sum of all the reserve storage areas specified by the 
user in all RES control statements. 



UP-8062 Rev. 8 

ROOT 
PHASE 

~ 

SPERRY UNIV AC OS/3 
SYSTEM SERVICE PROGRAMS 

COMMON STORAGE AREA* 
(AS REQUIREDI 

AUTOMATICALLY INCLUDED 
OBJECT MODULES 

(AS REQUIRED) 

OVERLAY CONTROL 

~ ROUTINE AND TABLES 
(IF REQUIRED) 

SPECIFICALLY INCLUDED 
OBJECT MODULE ELEMENTS 

(AS SPECIFIED BY 
INCLUDE STATEMENTS) 

SPECIFICALLY INCLUDED 
OBJECT CODE 
FOR OTHER 

PHASES ,.v 

RESERVE STORAGE 
AREA 

(AS SPECIFIED) 

Common storage areas also may be 
promoted to specific phases other than 
the root phase by the linkage editor. 
See 8.7.3. 

REQUIRED ONLY WHEN 
AUTOMATIC LOADING OF 
PHASES IS REQUIRED 

Figure 4-5. Typical Load Module Format When Loaded in Main Storage 

4.6. LOAD MODULE STRUCTURE 

4-12 

The structure of a load module is that form a load module takes when it is loaded in 
main storage by the program loader routine of the supervisor. This structure is defined 
by the phase and region data contained in the load module as placed there by the 
linkage editor in accordance with the control stream directives by the user. Three basic 
load module structures are capable of being constructed by the linkage editor: 

1. single-phase load modules; 

2. multiphase load modules; and 

3. multiregion load modules. 

• 

• 

• 



UP-8062 Rev. 8 SPERRY UNIV AC OS/3 
SYSTEM SERVICE PROGRAMS 

4-13 

• 4.6.1. Single-Phase Load Modules 

• 

• 

The storage structure of a single-phase load module can be represented by a single 
horizontal line whose length is relative to the amount of serial storage locations required 
to store the load module in main storage. All load modules generated by the linkage 
editor start out as single-phase load modules and are created only as multiphase or 
multiregion load modules if so directed through OVERLAY and REGION control 
statements in the input control stream. Thus, single-phase load modules are modules 
that consist solely of a root phase; multiphase and multiregion load modules consist of 
a root phase plus one or more additional phases. Reentrant load modules must be 
single-phase load modules. 

4.6.2. Multiphase Load Modules 

Multiphase load modules are constructed by a programmer ·to minimize the main storage 
requirements of a program. Multiphase load modules contain multiple phases, which can 
overlay each other in main storage. The structure of a typical multiphase load module is 
illustrated in Figure 4-6. As shown, multiphase load modules are represented by 
multiple horizontal lines, each of which represents a particular program phase and its 
relative length. The main storage location at which a phase is loaded is called a node 
point. Node points are shown as vertical lines whose lengths have no significance. All 
the phases in a multiphase load module excluding the root phase are loaded in main 
storage at a node point. Node points and phases are defined by the user through the 
linkage editor OVERLAY and REG.ION control statements. 

The INCLUDE statements following an OVERLAY or REGION control statement identify 
the object module elements that are to comprise the phase. Ignoring the root phase, the 
number of phases in a multiphase load module coincides with the number of OVERLAY 
and REGION control statements present in the control stream that caused its generation. 
The root phase of all load modules is initiated with the initiation of the load module, 
normally in response to a LOADM control statement . 



UP-8062 Rev. 8 

START ADDRESS 
OF LOAD MODULE 

I ROOT 
~ PHASE 

(PHASE 0) 
PHASE 1 

PHASE 2 

PHASE 3 

SPERRY UNIV AC OS/3 
SYSTEM SERVICE PROGRAMS 

4-14 

END ADDRESS 
OF LOAD MODULE 

PHASE 6 

PHASE 7 l • I 
I 

NODE1 NODE2 

PHASE 4 

PHASE 5 I 
I 

l 

NODE3 

--------- TOTAL MAIN STORAGE AREA REQUIRED TO------­
EXECUTE THIS PARTICULAR 8-PHASE 
LOAD MODULE 

NOTES: 

1. Heavy lines indicate an example of a path. 

2. The end address of the load module is at last addressable location of the longest path in the 
load module. This address is always defined and may be declared as an external reference 
(EXTRN) in any object module included in the program. The entry name assigned this end 
address is KE$ALP. 

Figure 4-6. Typical Multiphase Load Module Structure 

Figure 4-7 shows the OVERLAY control statements required to produce the multiphase 
load module illustrated in Figure 4-6. 

• 

• 

• 



• 

• 

• 

UP-8062 Rev. 8 

LOADM 

OVERLAY 

OVERLAY 

OVERLAY 

OVERLAY 

OVERLAY 

OVERLAY 

OVERLAY 

LOADM 

NOTE: 

SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

EXAMPLE 

} GENERATES 

PHASE 00 (ROOT PHASE) 

NODE1 

} PHASE 01 

NODE2 

} PHASE 02 

NODE2 

Noo'E3 

} PHASE 03 

} PHASE 04 

NODE3 

} PHASE 05 

NODE2 

} PHASE 06 

NODE1 

} PHASE 07 

NEXT 

The ellipses represent INCLUDE statements for object modules to be included in a particular 
phase. These statements must follow the proper LOADM or OVERLAY statement. 

Figure 4-7. Typical Multiphase Load Module Control Stream 

4.6.2.1 . Phase Definitions 

4-15 

Phases are defined by the user beginning with an OVERLAY or REGION control 
statement (root phases excepted) and usually followed by one or more INCLUDE control 
statements that identify the object module elements that are to comprise the phase. A 
load module phase may be thought of as a program segment that can perform one or 
more specific processing tasks. The order in which phases are defined by the user does 
not dictate the order in which the phases in a load module must be executed; the logic 
of the program determines the sequence of execution of the phases contained in a load 
module and, likewise, the number of times any specific phase will be loaded and 
executed. In some programs, not all phases are executed each time the program is 
executed, again, depending on the logic of the program. 



UP-8062 Rev. 8 SPERRY UNIV AC OS/3 
SYSTEM SERVICE PROGRAMS 

4-16 

Thus, the order in which phases are defined, which is also the order in which they are 
numbered by the linkage editor, does not necessarily have any bearing on the order in 
which the phases of a load module are executed. 

The node point assigned to each phase usually does, however, determine where the 
phase will be loaded in main storage. Thus, a program's logic must be considered 
before one phase of a load module is assigned the same origin as another phase in the 
load module, because these phases never can be in main storage simultaneously. 

4.6.2.2. Phase Names 

Phase names are used to identify the various phases of a load module when they are to 
be loaded in main storage for program execution. Programmers who wish to do their 
own program loading, rather than have the automatic overlay-region control mechanism 
of the linkage editor embedded in their load module, must reference a phase name in a 
FETCH or LOAD macroinstruction whenever a phase is to be loaded for execution. 

The linkage editor automatically assigns a name to each phase of a multiphase load 
module, based on the name assigned to the load module either by the programmer or 
the linkage editor. Phase names consist of eight alphanumeric characters. The first six 
characters are the same as the load module name, and the last two characters are the 
decimal number of the phase (00 through 99). Phase numbers are assigned to each 
phase consecutively, in the order in which the phases are defined by OVERLAY and 
REGION control statements. 

An alias phase name also may be assigned to each phase by the programmer through 
the OVERLAY or REGION control statement that causes its generation. The assignment 
of alias phase names allows the programmer to reference the phases of a load module 
in his subroutines or phrases, without knowing the order in which the phases will be 
defined in the linkage editor control stream. The linkage editor overlay control 
mechanism always refers to the linkage-editor-generated phase names. 

4.6.2.3. Node Points and Paths 

The starting address of each phase in a load module is called a node point. Node points 
are defined by the user as a symbol in the operand field of the OVERLAY or REGION 
control statements that are used to define each phase. The node point of the root 
phase is the name assigned to the load module. The starting address of one phase is 
normally the terminating address of a previous phase (it also could be a relative 
definition in the current path). The same node point may be the assigned origin of more 
than one phase in a load module; however, when an OVERLAY statement that refers to 
a node point previously defined is detected by the linkage editor, all intervening node 
points are eliminated. For example, in Figures 4-6 and 4-7, once phase 6 is defined, no 
additional phases may be defined starting at NODE3. Also, once phase 7 is defined, no 
additional phases may be defined starting at NODE2. If phase 7 were followed by an 
OVERLAY NODE2 statement, the linkage editor would construct a completely new 
NODE2 node point at the end of phase 7 for the new phase being defined. 

• 

• 

• 



UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

4-17 

• References to a given label in the load module may be traced along a path from one 
phase back to the root phase. Reference x is said to be on the path of phase y if they 
are in the same phase, or if they are on the same path and reference x is closer to the 
root phase than phase y. The root phase is usually on the path of every other phase in 
a load module, except when it is overlaid by a subsequent phase. In Figure 4-6, phases 
0, 1, 3, and 5 are on the path of phase 5, as indicated by the heavy line; however, 
phase 5 is not on the path of phases 0, 1, or 3. Phase 1 is not on the path of phase 7, 
and phase 7 is not on the path of phase 1 . The maximum number of phases allowed on 
any path is 14. 

• 

• 

The path concept of a load module must be understood before the user can appreciate 
how the linkage editor satisfies references between various load module phases. 

4.6.2.4. Communications between Phases 

Communications between phases is accomplished by an external reference in one phase 
whose name matches a definition (CSECT or ENTRY point) in another phase. The 
language processors may produce two types of external references. The first is a 
standard (A-type) address constant which, at execution time, will contain the 
linkage-editor-assigned address of the associated definition. The second is a V-type 
address constant, which, in effect, requests that an automatic load mechanism ensure 
that the definition being referenced is resident at the time the reference is made. A 
linkage editor option allows the user to convert, at link-edit time, all V-type EXTRNs to 
standard address constants. 

The phase structure of a particular load module determines another characteristic of a 
given reference. If the definition to which a particular EXTRN refers is on the path of the 
reference, the reference is said to be inclusive. All inclusive references are treated as 
standard address constants by the linkage editor regardless of the EXTRN type 
generated by the language processor. Conversely, if the definition that satisifies a 
particular reference is not on the path of the reference, the reference is said to be 
exclusive. It is these exclusive references that can be controlled by the user through the 
linkage editor (V /NOV) option. Figure 4-8 illustrates both inclusive and exclusive 
references. 

If a V-type exclusive reference is made, the linkage editor puts the address of the 
definition in a table it generates (NTAB) in the root phase of the load module. The 
reference address is then made to point to an automatic overlay control routine. This 
control routine ensures that the required path is loaded before transferring control to the 
required definition. All other references require that the user ensure that the required 
definition is loaded when referenced, through supervisor FETCH and LOAD 
macroinstructions contained in the text of his program . 



UP-8062 Rev. 8 

PHASE 0 
RS __l DS 

I 
"-v--' ~ 

CSE CT CSE CT 

LEGEND: 

D Definition 
R Reference 

2 

Inclusive References 

R2 to D2, D3, or DS 
R1 to D2 or DS 
R3 to D1 or DS 
R4 to D2, D4, or DS 
RS to DS 

PHASE 1 

R1 .J. 
I 

'-v--' 

SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

D2 

CSE CT 
3 

~ 

CSE CT PHASE 2 

PHASE 4 

D1 R3 

CSE CT 
8 

4 

Exclusive References 

R1 to D1, D3, or D4 
R2 to D1 or D4 
R3 to D2, D3, or D4 
R4 to D1 or D3. 
RS to D1, D2, D3, or D4 

D3 

----------­CSE CT 
s 

PHASE 3 

04 R4 

~ 

CSE CT 
7 

Figure 4-8. Examples of Inclusive and Exclusive References 

R2 

~ 

CSE CT 
6 

4-18 

• 

• 

• 



UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

4-19 

• 4.6.3. Multiregion Load Modules 

• 

• 

Multiregion load modules are basically the same as multiphase load modules, except 
that a multiregion load module is so constructed that the origin of the first phase of 
each region is at the end of the longest path defined in the previous region, rather than 
at the end of the phase previously defined. This feature prevents the phases in one 
region from overlaying any portion of a phase in any other region. Figure 4-9 illustrates 
the structure of a typical multiregion load module. As shown, the load module consists 
of 14 phases divided into three regions. Figure 4-10 illustrates the OVERLAY and 
REGION control statements required to produce this structure. If this same load module 
were defined by using only OVERLAY control statements, its structure would be as 
illustrated in Figure 4-11 . 

ROOT 
PHASE 

PHASE 1 

PHASE 2 

PHASE 3 
~ 

PHASE 4 

PHASE 5 

PHASE 6 

I 
NODE1 

SCALE: 1 inch = 256 bytes 

PHASE 7 

PHASE 8 

PHASE 9 

PHASE 10 PHASE 11 

PHASE 12 

PHASE 13 

NODE3 l 
NODE2 

----N._r REGION 3 REGION 1 ---- ---- REGION 2 

NOTES: 

TOTAL 
LENGTH 

1. The origin of each region is the end of the longest path of the previous region. 
2. The root phase is in the path of every region. 
3. Up to 10 regions are permitted per load module . 

Figure 4-9. Program SAMPLE as a Multiregion Load Module 



UP-8062 Rev. 8 

Figure 4-10. 

LO ADM 

OVERLAY 

OVERLAY 

OVERLAY 

OVERLAY 

OVERLAY 

OVERLAY 

REGION 

OVERLAY 

OVERLAY 

OVERLAY 

REGION 

OVERLAY 

OVERLAY 

NOTE: 

SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

SAMPLE 

} GENERATES 
PHASE 00 
(ROOT PHASE) 

NODE1 

} PHASE 01 

NODE1 

} PHASE02 

NODE1 

} PHASE 03 

NODE1 

} PHASE 04 

NODE1 

} PHASE 05 

NODE1 

} PHASE 06 

NODE2 

} PHASE 07 
AND REGION 2 

NODE3 

} PHASE 08 

NODE3 

} PHASE 09 

NODE3 

} PHASE10 

NODE4 

} PHASE 11 
AND REGION 3 

NODE4 

} PHASE 12 

NODE4 

} PHASE 13 

The ellipses represent INCLUDE statements for object modules 
to be included in a particular phase. These statements must 
follow the LOADM, OVERLAY, and REGION control statements. 

Control Stream Coding Required to Construct the Multiregion Load Module SAMPLE 

4-20 

• 

• 

• 



• 

• 

• 

UP-8062 Rev. 8 

ROOT 
PHASE 

I 

SPERRY UNIV AC OS/3 
SYSTEM SERVICE PROGRAMS 

SCALE: 1 inch= 256 bytes 

PHASE 1 

PHASE 2 

PHASE 3 

PHASE 4 

PHASE 5 

PHASE 6 

PHASE 7 

PHASE 8 

NODE1 PHASE 9 

NODE2 

TOTAL 
LENGTH 

PHASE10 

l PHASE 11 

PHASE 12 
NODE3 

PHASE13 

t 
NODE4 

Figure 4-11. Program SAMPLE as a Multiphase Load Module 

4-21 



UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

4-22 

As can be seen by comparing Figure 4-9 with Figure 4-11, a load module constructed 
as a multiregion load module normally requires more main storage space for execution 
than the same program configured as a multiphase load module. Multiregion structures 
are most useful, however, when a need exists for a phase to reside in an area where it 
will not be overlaid by other phases that may not be directly associated with it. Also, it 
is sometimes possible to realize an actual saving in main storage space with a 
multiregion construction when one or more control sections are required for two or 
more distinctly separate phases but are not required by any other phases. In this case, 
these CSECTs could be placed in a separate region, rather than being embedded in a 
phase common to the phases requiring them. Placing them in a common phase could 
unnecessarily affect the origins of succeeding phases even though the majority of these 
phases do not require these CSECTs. The opposite is true when these CSECTs are 
placed in a separate region; however, inasmuch as region origins always are assigned at 
the end of the longest path of the preceding region, unnecessary placement of CSECTs 
in separate regions may have an adverse effect on the overall length of the load 
module. 

Regions are declared by the programmer with the REGION control statement in much 
the same way a phase is declared with an OVERLAY control statement. Both 
statements initiate construction of a new phase at some symbolic starting address, or 
node point, specified in the control statement. The only difference between the two 
statements is in the way they cause the linkage editor to assign an origin to the phase 
being created. Region nodes are always logical and never reference a previously defined 
symbol because a new path is about to be constructed. 

4.7. LINKAGE EDITOR OPERATION 

When the linkage editor is called upon to perform its intended functions via a / / EXEC 
LNKEDT job control statement, it searches the appropriate control stream data set for 
control statement data. If control statements specifying the object modules to be 
included in the load module are found, the linkage editor links these modules together in 
accordance with the control statements that affect the structure of the load module that 
also may be in the control stream. If no control statements that identify the object 
modules to be included are found, the linkage editor links together all the object 
modules currently in the job's run library file, as previously described. 

Under normal operating conditions (no linkage editor capabilities suppressed or altered), 
the linkage editor performs the following operations for each link-edit job: 

• automatically includes any object modules needed to satisfy any references not 
defined in the object modules specifically included in the load module by the user; 

• automatically deletes control sections redundantly included in any nonunique path of 
a load module; 

• determines in what phase each common storage area is best located in the load 
module; 

• 

• 

• 



UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

4-23 

• • automatically includes an automatic overlay control routine and its associated 

• 

• 

control tables in the load module if it is required for execution of the program; 

• resolves multiple definition problems in the load module; 

• includes partial object module elements (CSECTs), if specified by the user, in the 
toad module; 

• detects object modules that are marked reentrant, deletes their text, and creates 
appropriate shared records to indicate the reentrant code requirement; 

• relocates ISO records detected in object modules and passes them to the load 
modules being created; and 

• produces CSECT /COM ISO records based on the CSECT /COM records being 
included. 

The processing involved in performing these operations is described in the remainder of 
this section. 

4. 7. 1 . Automatic Inclusion Processing 

The linkage editor is designed to automatically include object modules in a load module 
when such modules are needed to satisfy references in the object modules specifically 
included in the load module by the user. When a reference is found in a specifically 
included object module for which no definition exists, the linkage editor searches up to 
two object module library files looking for an object module containing the definition. 
The library files to be searched are specified by the user through the ALIB and RUB 
keyword parameters of the // PARAM or LINKOP linkage editor control statements. If 
the definition is found, the entire object module containing the definition is automatically 
included in the load module being constructed. If the required definition is not found, all 
references to the undefined label are flagged as errors in the link-edit map. All 
automatically included object modules are placed in the root phase of the load module 
being constructed. 

To facilitate use of the automatic inclusion feature and avoid redundant searches of 
object module files, library directories contain a cross-reference index that points to 
label definitions (CSECTs, COMs, and ENTRYs) in the object modules. These file 
directories are scanned for the required reference definitions, rather than the object 
module elements. The search for label definitions continues within the directories until 
all labels are defined or until the entire directory is scanned once without creating new, 
undefined references. All references that cannot be satisfied are flagged as errors in the 
link-edit map . 



UP-8062 Rev. 8 SPERRY UNIV AC OS/3 
SYSTEM SERVICE PROGRAMS 

4-24 

New, undefined references sometimes appear within an automatically included object 
module or in the object module elements introduced by INCLUDE control statements 
embedded in an automatically included object module. These embedded INCLUDE 
statements are processed in exactly the same way as INCLUDE statements embedded 
in specifically included object modules. Thus, an INCLUDE statement embedded in an 
automatically included object module could request the partial inclusion of an object 
module, as well as the inclusion of a complete object module. 

All object module elements included in a load module as a result of an INCLUDE 
statement being embedded in an automatically included object module are placed in the 
root phase of the load module as part of the automatically included object modules. 

If a label is defined in an automatically included object module, that definition is used to 
satisfy all references to that label appearing in the load module. If a label is defined in a 
specifically included object module and a second definition of the same label is 
contained in an automatically included object module, the second definition is ignored by 
the linkage editor. If a label is defined in two or more specifically included object 
modules that are in the same phase, the first definition obtained by the linkage editor is 
used to satisfy all references to the label. Figure 4-12 illustrates these three referencing 
techniques. 

If an automatically included object module contains a control section whose name is 
already defined by a label in a previously included object module, that control section is 
not included in the load module even if that control section contains an entry point 
definition that may be required in the load module. 

Another function of the automatic inclusion feature is to construct a single-phase load 
module from all the object modules in the system job run library ($Y$RUN) when the 
linkage editor is executed and no control statements defining the load module to be 
constructed are provided by the user. 

The automatic inclusion feature can be inhibited by the user through the NOAUTO 
keyword of a 11 PARAM or LINKOP control statement. This capability is provided to 
enable the user to check the completeness of the definitions within his own program. In 
this instance, all references to undefined labels are flagged in the link-edit map without 
an attempt by the linkage editor to satisfy them. 

4. 7 .2. Automatic Deletion Processing 

The linkage editor automatically deletes control sections and entry points previously 
defined in the phase currently under construction, or in a phase that is on the path of 
the current phase. When a newly included object module is found to contain a CSECT, 
or an ENTRY point with the same name as a CSECT or ENTRY point previously defined, 
the linkage editor deletes the second definition from the phase under construction. 
Unlabeled control sections are not automatically deleted, because each of them is 
considered a unique entity for lack of a name. Shared definitions are considered to be in 
the root phase, so any subsequent duplicate definitions will always be deleted. 
However, nonshared definitions that are accepted before a shared definition is 
encountered are not deleted. Also, if such definitions are themselves in the root phase, 
they will cause the automatic deletion of all subsequent definitions, shared or unshared. 

• 

• 

• 



• 

• 

• 

UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

4-25 

LOAD MODULE A 

DEFINITION REFERENCE 

r------...., 
I I ! LABELA 1 
'-------' 

LABELA" 

,.-------i 
I I 
~ LABELA 1 L.. _____ ...J 

AUTOMATICALLY 
INCLUDED ROUTINES 

1---------------- --
SPECIFICALLY 

INCLUDED ROUTINES 

·-----, 
I I 

l'""~~~'~_J 
r--- , 
I I 

-. LABELA I L _____ ...J 

I/ 
I I 

.1 
I I 

I \ 

r------., 
I 

I LA BELA I .... _____ _, 

LABELA" I 

r------.., 
I 

LAB ELA 
I 

I I 
L------' 

I 

"These definitions are deleted by the linkage editor. 

NOTE: 

The arrows indicate which definition is used to satisfy each reference . 

ROOT 
PHASES 

OTHER 
PHASES 

I 

LOAD MODULE B 

DEFINITION REFERENCE 

·------, 
----------i1 

LABELB 1 
1 I L _____ ..J 

LABELB" 

r-------. 
i--------....,1 LABELB I -. I 1- ____ _J 

AUTOMATICALLY 
INCLUDED ROUTINES 

r--- ------- --------

SPECIFICALLY 
INCLUDED ROUTINES 

r------, 
-------t1 LABELB I L ______ , 

\I~+------

I 
,.------, 
I I 

~'--L~~.:S_J 

,.--- _l, 
I I 
I LABELB I L--r--' \ 

r-----..., 
I I 
I LABELB I 
L _____ ...J 

LABELB" 

Figure 4-12. Referencing Label Definitions in a Load Module 



UP-8062 Rev. 8 SPERRY UNIV AC OS/3 
SYSTEM SERVICE PROGRAMS 

4-26 

The only exception to this rule for automatic deletion is when multiple CSECT s are 
found to have the same name as a labeled common storage area. In this instance, the 
CSE CT s are treated as block data subprograms and are used to initialize the associated 
common storage area. These multiple CSECTs, however, must be included in the load 
module after the inclusion of the related common section; otherwise, the second and 
subsequent CSECTs could be deleted automatically. Common (COM) sections in 
reentrant object modules are treated as DSECTs. In nonreentrant object modules, 
unnamed COM sections are never deleted. Deletion of named COM sections is subject 
to the rule that block-data/common relations are not permitted across 
nonreentrant/reentrant code boundaries. Thus, if a shared CSECT has been accepted 
and, subsequently, a nonshared COM with the same name is encountered, the COM 
section is deleted. On the other hand, if a nonshared COM section has been accepted 
and a subsequent shared CSECT with the same name is found, the CSECT is deleted. 

Thus, if a second definition for a name already defined on the path of the current phase 
is detected, the second definition is ignored. A single-phase program, therefore, 
contains only one definition for each label that does not match a common section 
name. Only one definition is accepted, even if the subsequent definition is for an 
absolute entry. All absolute entry items are treated as low-priority items and are always 
deleted whenever at least one duplicate definition exists in the load module. 

4. 7 .3. Common Storage Processing 

The linkage editor constructs a common storage area for each unique COM section 
contained in a load module. COM sections with the same name, however, are assumed 
to be referring to the same common storage area; therefore, the linkage editor creates a 
single common storage area for these COM sections. The size of each storage area is 
equal to the largest size requested by all object module elements referring to a COM 
section. Thus, if one object module indicates that COM section A requires 256 bytes of 
main storage, and another object module indicates that COM section A requires 1024 
bytes of main storage, the linkage editor creates a single common storage area of 1024 
bytes to satisfy all object module references to COM section A. Blank (unlabeled) 
common storage is allocated in the same way. 

The linkage editor assumes that the following rules concerning COM section 
specification have been adhered to by the object module element programmer: 

• An entry point in a load module cannot bear the same name as a labeled common 
storage area included in the load module. 

• When a phase containing a CSECT with the same name as a common storage area 
is loaded for execution, that section is treated as a block data subprogram and is 
loaded in all or a portion of the common storage area with the same name. (Block 
data subprograms can be used to initialize common storage areas. Blank common 
storage areas cannot be initialized during loading unless the text following the 
common storage area declaration is for that COM ESD.) 

• 

• 

• 



• 

• 

• 

UP-8062 Rev. 8 SPERRY UNIV AC OS/3 
SYSTEM SERVICE PROGRAMS 

4-27 

• All COM sections defined in an object module are processed by the linkage editor, 
even if only a partial include of an object module is taking place and the included 
object module element does not refer to any common storage area. 

• COM sections encountered in reentrant object modules are treated as DSECTS. 
They do not result in any space allocation during the creation of a reentrant load 
module. 

• Automatic deletion of nonshared common sections is subject to rules established 
for deletion processing. 

In the past, most linkage editors placed all common storage areas in the root phase of 
all load modules, regardless of the structure of the phases requesting access to the 
common storage area. This allocation scheme forces all phases of a load module to 
include the space required by all common storage areas in their main storage space 
requirements, even if they do not use any common storage space. The OS/3 linkage 
editor, however, is designed to promote the allocation of common storage areas. The 
promotion of a common storage area refers to its placement within a nonroot phase 
segment of a load module. The OS/3 linkage editor allocates common storage areas 
only as required by the structure of the phases referencing them. Figure 4-13 illustrates 
a load module in which a common section was promoted. As shown, common storage 
areas A, B, and C are located in the root phase because they are referenced by phases 
whose only common phase is the root phase. But, because common storage area D is 
referenced only in phases 2 and 3, it was promoted to the phase 1 segment because 
this segment also is common to both phases. In this way, phases 4, 5, and 6 do not 
need to pay for the storage space required by common section D because it will be 
loaded only when phase 1 is loaded. Thus, this promotion technique allows a load 
module to require less main storage space than would otherwise be required. It should 
be noted, however, that common storage area D is overlaid each time phase 4 is 
loaded, and the use of common storage area D must be planned carefully by the 
programmer to ensure that required common storage area data is not overlaid before 
that data is processed. Nonroot phase common sections normally are feasible only 
when phased programs are executed in a straightforward fashion. For example, let's 
assume phases 2 and 3 of Figure 4-13 were executed consecutively, followed by the 
execution of phases 4, 5, and 6, in that order, and the program was concluded without 
ever having to repeat either phases 2 or 3, common section D would probably fit very 
nicely in phase 1 . On the other hand, if we assume phase 2 was executed and stored 
data in common section D for use by the phase 3 program segment, but the phase 4 
program segment was loaded next, the common storage data for the phase 3 program 
would be overlaid and its data rendered useless to the subsequent execution of the 
phase 3 program segment. 

This capability of the linkage editor can be enabled and disabled through the PROM and 
NOPROM keyword parameters of the // PARAM and LINKOP control statements. Thus, 
to inhibit the promotion and force root phase assignment of common storage areas, the 
user need only specify the NOPROM keyword in his input control stream to the linkage 
editor; otherwise, the promotion of common storage is enabled . 



UP-8062 Rev. 8 

PHASE 0 
(ROOT PHASE) 

_l A B C _l _l 
I I I 
~ 

COMMON 
SECTIONS 

__l 
I 

SPERRY UNIVAC OS/3 
SYSTP,j ::;rnvlCE PROGRAMS 

PHASE 1 

D _l DA 
I 

"-v-' 

COMMON 
SECTION 

PHASE 4 

RC 
PHASE 5 

RB 

PHASE 2 

DB De 

PHASE 3 

Do 

PHASE 6 

LEGEND: RA 

D Definition of a common storage area 
R Reference to a common storage area 

Figure 4-13. Example of Common Storage Promotion Scheme 

4. 7 .4. Automatic Overlay Control Processing 

4-28 

DD 

The linkage editor can automatically load the various phases of a multiphase or 
multiregion load module in main storage in accordance with the execution requirements 
of the program. Normally, the loading and execution of the phases of a program is done 
by the programmer through the object code in each phase of the load module. If the 
programmer wishes, however, he may leave this responsibility up to the linkage editor 
for the minor cost of the storage space required to include the automatic overlay 
control routine and its associated control tables in his load module. The exact amount 
of storage varies with the number of control table entries required to describe the load 
module. 

" 

• 

• 

• 



UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

4-29 

• When the programmer wishes to have his program phases loaded automatically, he 
must reference the ENTRY s he wishes to transfer control to with V-CON (V-type 
address constants) references. Then, when he proceeds to link-edit his program as 
either a multiphase or multiregion load module, the linkage editor decides whether the 
automatic loading of phases is required based on: 

• 

• 

• the types of EXTRNs (A-type or V-type) contained in the object modules being 
included in the load niodule; 

• the types of references (inclusive or exclusive) in the load module; and 

• the V-CON processing option is effect (V-CON processing is normally enabled). 

If the V-CON processing option is in effect and at least one exclusive V-CON reference 
is in the object code being included in the load module, the linkage editor constructs a 
set of tables depicting the load module structure and includes them in addition to an 
automatic overlay control routine in the root phase of the load module. Also, it modifies 
the V-CON references in the load module to make them reference the automatic overlay 
control routine. The automatic load routine (KL$0CP or KL$0CPR) that is copied into 
the load module depends on the number of regions comprising the load module. The 
KL$0CPR routine is capable of handling the automatic overlay requirements of a 
multiregion load module; KL$0CP is not . 

When a load module containing the automatic overlay facilities is executed, its root 
phase is loaded in main storage, as is any other load module, by the supervisor, and 
program control is transferred to the program entry point for the phase. As program 
execution proceeds, V-CON references cause the needed phases to be loaded, thus 
satisfying the V-type address constant that referenced the label of the required entry 
point. A branch instruction is executed through register 15, forcing transfer of control to 
the overlay control routine because the V-type address constant was previously 
modified by the linkage editor to reference the routine. The automatic overlay routine 
then checks to see whether the required phase is in main storage. If it is, the overlay 
control routine branches directly to the proper address. If it is not, the automatic load 
routine: 

• determines the phases currently in main storage; 

• loads the required phase, and any phase on the path of the required phase, into 
main storage; 

• records the new path as loaded; and 

• branches to the proper address. 

The overlay control routine executes LOAD macroinstructions as needed to obtain the 
required phases and records this information in its control tables. The path information 
is examined by subsequent invocations of the automatic control mechanism and is 
altered if additional phases are loaded. Attempts made by the problem program to load 
phases directly do not cause an update of the path information; therefore, you would 
not issue any LOAD, LOADR, or FETCH macroinstructions in your problem program by 
using the automatic overlay control routine. 



UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

4-30 

The V-type address constant in register 15 for the automatic loading of overlays has 
the following characteristics: 

• It always occupies four bytes; the entire word is reserved for use by the linkage 
editor. Byte 0 of this word contains a number (zero or greater) that is an index into 
the list of NT AB entries. Bytes 1-3 consist of the address of the entry point table; 
however, a V-CON may have all zeros. 

• It is intended for branching only and may not be used for addressing data. Data 
references do not cause the referenced phase to be loaded automatically because 
transfer of control is essential for the process to be effective. 

• When a V-type address constant addresses a definition that is on the same path 
as the reference, the constant is treated as though it were a constant of type A. If 
such a constant is in register 15, the problem program branches directly to the 
required location, rather than transferring control to the overlay control mechanism. 

The data required by the automatic overlay control routine to perform these functions is 
contained in its associated control tables. Brief descriptions of the components of the 
automatic overlay mechanism follow. 

4. 7 .4. 1 . Overlay Control Routine 

The overlay control routine is a program used for automatic loading of segmented 
program structures. It is responsible for loading the program segments (phases) and 
maintaining the tree structure of the program. It supplies the needed interface and 
controls to allow you to use segmentation without difficulty. It causes automatic loading 
of the needed program phases as determined by exclusive V-CON references. An 
automatic entry point (KL$0CP) always is supplied to allow references to the standard 
automatic overlay control routine. A second routine (KL$0CPR) is used if the load 
module structure comprises multiple regions. The control routine is always placed in the 
root phase of a load module and is entered through the entry point table. 

4.7.4.2. Entry Point Table (NTAB) 

The NTAB table also is always in the root phase. It front-ends the overlay control 
routine and contains such control information as: The path being automatically loaded, 
where the phase is being loaded (or its relative position in main storage), and a list of 
entry points corresponding of the V-CON definitions in the problem program. The NTAB 
determines the phase to be loaded when a V-CON reference refers to a phase not in 
the same path as the reference. An NTAB entry is not created for any V-CON symbol 
already present in a phase higher in the current path (closer to the root phase). An 
automatic entry point (KL$NTB) always is supplied to allow references to NT AB. 

• 

• 

• 



UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

4-31 

• 4. 7 .4.3. Phase Table (PTAB) 

The phase table contains information concerning the relationships between the phases 
of the load module. Only one phase table is built for any multiphase load module that 
requires automatic loading, and it is always in the root phase. An automatic entry point 
(KL$PTB) always is supplied to allow references to PT AB. 

4.7.4.4. Region Table (RTAB) 

The region table is generated only for load module structures using V-CON references in 
which multiple regions are involved. This table describes the number of regions making 
up the load module and the highest phase contained in each region. The RTAB is used 
in conjunction with NTAB and PTAB, plus the region overlay control routine (KL$0CPR), 
to manage V-CON references in load modules with two or more regions. An automatic 
entry point (KL$RTB) always is supplied to allow references to RT AB. 

4. 7 .5. Multiple Definition Resolution Processing 

The multiple definition resolution processing performed by the linkage editor depends on 
the type of definition being referenced. 

• 4. 7 .5.1. Standard (Non-V-CON) References 

• 

If the user references a definition with a standard reference and the definition being 
referenced is not on the path of the reference, he is required to issue the appropriate 
supervisor FETCH and LOAD macroinstructions to ensure that the phase containing the 
proper definition is loaded when the definitions it contains are referenced. (The linkage 
editor allows standard EXTRN - ENTRY relationships to occur across phases without 
any special processing when V-CONs are not involved.) 

Because of the automatic deletion mechanism of the linkage editor, only one definition 
will ever be present on each path of a load module. If a definition is present in the root 
phase, no identical definitions will be in other phases unless the path involved overlays 
the root phase entirely. 

If there is only a single definition for a reference, the linkage editor obtains the 
appropriate phase number and value for the definition and applies it accordingly. But, 
when a reference is marked as being multiply defined, each phase number assigned to 
each definition is, in conjunction with the segment table, used to determine the 
relationship between definitions and references. The linkage editor then satisfies the 
reference in accordance with the following logic: 

1. If a definition that satisfies a reference is in the same phase as the reference, the 
linkage editor uses it to satisfy the reference . 

2. If a definition that satisfies a reference is on the path of the reference, the linkage 
editor uses it to satisfy the reference. 



-------------------------------------------------------

UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

4-32 

3. The linkage editor determines whether the reference is on the path of one or more 
definitions that can satisfy the reference. If it is, the linkage editor chooses the first 
definition following the reference to satisfy the reference. 

4. The linkage editor chooses the first definition following the reference (higher phase 
number), regardless of path associations, to satisfy the reference if one exists. 

5. The linkage editor uses the first backward definition (lower phase number) to 
satisfy the reference. 

Figure 4-14 illustrates these five reference-definition relationships. Further, wherever the 
linkage editor must satisfy a reference in accordance with C, D, or E, it is indicated on 
the link-edit map. 

4.7.5.2. V-CON References 

The resolution processing for V-CON references is much the same as that for standard 
references, except that: 

• A V-CON reference may be converted to an A-CON reference. 

• A V-CON reference forces control to the automatic overlay control mechanism. 

• Exclusive V-CON references do not initiate diagnostic messages. 

• A V-CON reference resolved to a shared definition is converted to an S-CON 
(shared constant). 

Thus, at resolution time, multiple definitions for any referenced symbol are handled as 
follows: 

1. If a definition is on the path of the reference, that definition is selected by the 
linkage editor to satisfy the reference. (Only one inclusive definition is possible.) 

2. Otherwise (definition is exclusive of the reference), the first forward definition is 
chosen by the linkage editor if one exists. If none exist, the first backward 
definition is chosen. 

When an object module incorporating V-CONs is being included, V-CON processing will 
include the following. Whenever a V-CON reference occurs, the linkage editor keeps 
track of the first such reference since the last definition. For multiply-defined V-CONs, 
separate NTAB entries may be constructed, as references are assigned to different 
definitions of the same symbol. This selection of definitions is a function of where the 
appropriate references occur with respect to path relationsips concerning those 
definitions. 

• 

• 

• 



• 

• 

• 

UP-8062 Rev. 8 

PHO 

PH1 

PH2 
01 

PH3 

PH4 
01 

PH5 
01 R1 PH6 ....._.... 

PH7 

(Al 

PHO 

PH1 

PH2 
04 

PH3 

04 

PH4 
R4 PH5 

PH6 

PH7 

04 

(DI 

LEGEND: 

PH Phase 
D Definition 
A Reference 

SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

PHO 

PHO 

PH1 

03 PH2 

PH3 

PH4 

03 

PH5 
R3 PH6 

-03 

PH7 
03 

(Cl 
PHO 

PH1 

D'-- PH2 

I- R2 

PH3 

PH4 

02 

PH5 
PH6 

02 

PH7 

(Bl 

PH1 

05 PH2 

PH3 

PH4 

05 

PH5 
R5 PH6 

PH7 

(E) 

Figure 4-14. Multiple Definition Resolution without V-CON References 

4-33 



UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

Multidefinition V-CON processing occurs as follows: 

4-34 

1. If a V-CON definition is on the path of the V-CON reference (or references), that 
reference will be treated as a direct A-CON reference and will be flagged 
accordingly. 

2. If a V-CON reference is on the path of a V-CON definition, it is a valid V-CON 
reference. 

3. If a V-CON reference is on the path of multiple definitions, the automatic deletion 
mechanism will eliminate the subsequent definitions (where such definitions are 
contained in the same path or phase) and the first definition will be used to satisfy 
that reference. 

4. If V-CON references and multiple definitions exist on separate paths, the first 
forward definition will be used if there is one; otherwise, the first backward 
definition is used. 

5. If V-CON references and multiple definitions are on separate paths but in the same 
direction (forward or backward), the first definition encountered is used. 

Figure 4-15 illustrates these five reference-definition relationships. 

4. 7 .6. Partial Include Processing 

The linkage editor can include only specific CSECTs of an object module in a load 
module, if you so desire. You specify these CSECTs in INCLUDE control statements that 
contain a CSECT name list as its second operand, as well as the name of an object 
module as its first operand. Up to nine control sections can be specified in any one 
INCLUDE statement. 

When CSECTs are specifically referenced in an INCLUDE statement, they are inserted in 
the load module in the order that they appear in the object module, regardless of the 
order in which they are specified in the INCLUDE statement. The rearrangement of 
CSECTs in a load module, however, can be accomplished by multiple INCLUDE 
statements, each of which references only a particular CSECT. In this way, the INCLUDE 
statements can be arranged to cause the resulting load module CSECT structure to 
assume any form desired. The smallest segment of object code that may be included in 
a load module is a CSE CT. 

Whenever an object module is accessed for a partial inclusion of its elements, any 
control statements that may be embedded in the object module are processed by the 
linkage editor as standard, embedded control statements, and any common sections 
defined in the object module are included in the load module. 

• 

• 

• 



• 

• 

• 

UP-8062 Rev. 8 

PHO 

DSJ:H1 

PH2 
-----

A-CON R 

(A) 

PHO 

PH1 

R D' 

PH4 

R' 

(D) 

LEGEND: 

PH Phase 
D Defnition 
R Reference 

PHO 

R 

SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

PHO 

R 

PH1 

D PH2 

R' PH1 

PH2 

D 
V-CON 

(8) 

o.............,_ AUTOMATICALLY 

PH3 

PH4 

(C) 

PHO 

PH2 

D'~ AUTOMATICALLY 
PH3 DELETED 

DEFINITION 
D 

PH5 

PH6 

D 

~DELETED 
DEFINITION 

PH1 

R' 

PH2 

D' 

PH3 

PH6 

(E) 

D 

Figure 4-15. Multiple Definition Resolution with V-CON References 

4-35 



UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

4. 7. 7. Shared Code (Reentrant Code) Processing 

4-36 

Shared or reentrant code is a piece of code that is not self-modifying. Thus, a number 
of programs can call upon a single copy of this code and run concurrently. Sharing code 
reduces the main storage requirements of the system. Consider two programs, X and 
Y, that call upon a reentrant routine, Z. It is obvious from Figure 4-16 that sharing Z 
allows both programs to be executed in less main storage space than would otherwise 
be required. 

MAIN 
STORAGE 
REQUIRED 

,...., 
MAIN STORAGE 

-
PROGRAM X 

ROUTINE Z 

PROGRAM Y 

ROUTINE Z 

FREE SPACE 

a. Nonsharing environment 

-

__. 

MAIN 
STORAGE 
REQUIRED 

MAIN STORAGE 

PROGRAM X 

PROGRAM Y 

ROUTINE Z 

FREE SPACE 

b. Sharing environment 

Figure 4-16. Effect of Shared Code on Main Storage Requirements 

The librarian is capable of marking object modules reentrant by setting a flag in the 
object module header record. Unless otherwise marked, object modules are 
nonreentrant. The flag can be turned on or off by the librarian RENAME control 
statement. 

It is the responsibility of the linkage editor to detect reentrant object modules, delete 
their text, and create the appropriate interfaces to enable linkages to be established at 
execution time. This feature can be enabled or disabled through options on 11 PARAM 
or LINKOP cards. 

Since the reentrant code itself does not appear in the load module produced, it must be 
link-edited separately. This is done in a special mode of the linkage editor through 11 
PARAM - LINKOP cards. 

• 

• 

• 



UP-8062 Rev. 8 SPERRY UNIV AC OS/3 
SYSTEM SERVICE PROGRAMS 

4-37 

• Thus, there are three processing modes controlled by // PARAM - LINKOP optons: 

• 

• 

1. Normal link-edit with no recognition of reentrant object modules (NOSHARE, 
NORNT). 

2. Link-edit with sharing capability enabled (SHARE option). 

3. Link-edit of a reentrant module by itself (RNT option). 

4. 7. 7 .1 . Share Facility 

The linkage editor detects reentrant object modules under either of the following 
conditions: 

1 . An INCLUDE control statement that was supplied referenced a specific object 
module, which, when located, was found to be marked reentrant. 

2. As a result of an unresolved EXTRN reference in the user module being link-edited, 
the automatic include mechanism was triggered. When the definition was detected, 
the object module containing the definition was found to be marked reentrant. 

Provided the share processing facility is enabled, the linkage editor, upon encountering 
the reentrant object module, performs the following: 

1 . The text from the object module (or part, if partial include) is dropped and does not 
contribute towards the load module being produced. 

2. The CSECT and COM lengths in the object module are not reflected in the load 
module size. 

3. COM sections and ISO records are ignored. 

4. All ESD items (except COMs) are entered into the linkage editor's internal symbol 
table and are processed normally. 

5. Shared definitions (definitions encountered in the reentrant object module) are 
treated as if they occurred in the root phase and are subject to automatic deletion 
processing rules. This includes block data/common conflicts between reentrant and 
nonreentrant code. 

6. A special record (the resource record) is created in the load module. This record 
contains the name of the object module. At program execution time, it informs job 
control of the requirement for a resource, namely the reentrant module. 

Satisfying shared resource requirements is a part of the total job scheduling process 
and is performed before actual program execution begins . 



UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

4. 7. 7 .2. Linkage in Shared-Code Environment 

4-38 

In the course of a link-edit with the share facility enabled, the linkage editor 
distinguishes between the different types of EXTRNs, as shown in Figure 4-17. Also, 
Figure 4-17 shows that reentrant code cannot call nonreentrant code. 

Each SEXTRN causes the creation of a SEXTRN record in the load module. This record 
contains the SEXTRN name and a unique number assigned to the SEXTRN called the 
SINDEX number. The SEXTRN record is used to link the load module with the reentrant 
code at execution time. 

EXTRN Found Resolved Nonreentrant Reentrant 
in-!- To~ Object Module Object Module 

Nonreentrant object Allowed. Normal Allowed. SEXTRN 
module EXTRN (shared EXTRN) 

Reentrant object Not allowed, un- Allowed provided 
module less the defi- requirements in 

nition is absolute 4.7.7.4 are met 

Figure 4-17. EXTRN Resolution Processing in Shared-Code Environment 

4. 7. 7 .3. Shared Constants 

A-type or V-type address constants associated with SEXTRNs are known as shared 
constants (S-CONs). You can transfer control to shared code by loading such a constant 
into register 15 and branching to it. Only type 1 linkages are allowed for calls from 
nonreentrant to reentrant code. Register 13 must be loaded with the address of an 18 
full-word save area. 

The shared constant in register 15 has the following characteristics: 

1. It always occupies four bytes; the entire word is reserved for use by the linkage 
editor. Byte 0 of this word contains an index - called th& SINDEX (shared INDEX) 
number - which is a unique number for every SEXTRN. Bytes 1-3 consist of the 
address of the preamble SEXTRN processor. This address is negative since the 
SEXTRN processor resides in the prologue. 

2. It is intended for branching only and may not be used for addressing data. The 
SEXTRN processor, after receiving control, converts the SINDEX number into an 
absolute address and branches to it. It uses the save area and user registers for its 
own housekeeping, and theri restores them before branching to reentrant code that 
must have its own mechani~m ·for saving registers if it needs to. 

3. It must be coded as· a symbol, hot as an expression. For example, V(X) and A(Y) 
(where Y is declared· as an EXTRN) are valid shared references, V(X +4) is not. 

• 

• 

• 



UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

4-39 

• 4. 7. 7 .4. Link-Editing Reentrant Code 

• 

• 

In order for reentrant code to be loaded, it must be link edited. This is done in a special 
mode of the linkage editor (RNT option on 11 PARAM - LINKOP cards). The link-edit of 
reentrant code has the following special characteristics: 

1. No overlay structures are permitted. 

2. The load module name may be up to eight characters. 

3. COM sections are treated as DSECTs. No storage allocation is performed for them. 

4. For each relative definition (CSECT, ENTRY, linkage editor EQU), a SENTRY record 
is created in the load module. This record informs job control at execution time that 
a definition is available in the module and can be used for establishing linkages. No 
SENTRY record is produced for absolute ENTRYs and EOUs. The relative definitions 
are known as SENTRY (shared ENTRY) items. 

5. Only specific INCLUDES are meaningful and the text encountered during the specific 
include process contributes to the load module. All references in the included 
object modules must be inclusive; that is, the reentrant load module must be 
self-contained. Option NOAUTO should be in effect in the course of the link edit. 

6. All address constants must be absolute. The code must relocate them if necessary . 

7. Normally, only one reentrant object module would be specifically included. The 
linkage editor will permit more than one reentrant object module to be specifically 
included, provided the user program directly references only one of the object 
modules being included. Stated another way, there must be only one object module 
that is at the highest level of the intercalling sequence within the group of reentrant 
object modules being included. The name on the LOADM control statement must 
be the same as the name of the highest level reentrant object module. 

8. The reentrant load module must be output on the system load library ($Y$LOD). 

9. The ISD records in the object module are ignored. 

4. 7. 7 .5. Shared Records 

The linkage editor creates special records in load modules that reference reentrant code 
and also in the reentrant load module. These records provide information on linkages to 
be established and the reentrant modules that are required . 



UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

4-40 

Figure 4-18 shows the format of a nonreentrant user load module that references 
reentrant modules. A flag is set in the phase header record, indicating that shared code 
is referenced. For each reentrant module referenced, a resource record is produced. This 
record contains the name of the reentrant load module and a unique number called the 
resource number. For each EXTRN in your module resolved to a definition 
(CSECT /ENTRY) in the reentrant module, a SEXTRN record is produced containing the 
CSECT /ENTRY name and number of the resource that contains the definition. If an 
EXTRN is resolved to an ENTRY which has the same location as its CSECT, the 
reference is considered being made to the CSECT. Therefore, the SEXTRN record 
contains the CSECT name rather than the ENTRY name. However, several SEXTRN 
records can be created for each resource record, depending upon the number of 
definitions referenced in the resource (reentrant object module). If your module 
references other reentrant modules, additional sets of resource and SEXTRN records will 
be created. 

PHASE HEADER RECORD (ROOT PHASE) 

RESOURCE RECORD 

SEXTRN RECORDS ASSOCIATED WITH THE RESOURCE 

SETS OF RESOURCE AND SEXTRN RECORDS 

ISO RECORDS 

TEXT RECORDS 

TRANSFER RECORD 

: PHASE HEADER RECORD (PHASE 1) I 

r---------------------------J 
I TEXT RECORDS I 
----------------------------~ 
I TRANSFER RECORD I 

L--------------------------~ 
I I 

l I I SETS OF PHASE HEADER, TEXT, AND TRANSFER RECORDS, DEPENDING UPON I 
I THE NUMBER OF PHASES IN THE LOAD MODULE I 
I I 
L - - - - - - - - - - - - - - - - - - - - - - - - _J 

OPTIONAL 
(MUL Tl PHASE 
LOAD MODULES 
ONLY) 

Figure 4-18. Format of a Nonreentrant Load Module That References Shared Code 

The format of a reentrant load module is shown in Figure 4-19. The phase header is 
marked with a flag, indicating that it is a reentrant load module. Relative definitions 
(CSECTs, ENTRYs, and EQUs) detected in your link-edit are called SENTRY (shared 
ENTRY) items and produce SENTRY records. However, a SENTRY record is not 
produced for a COMMON, an absolute ENTRY, an absolute EQU, or a relative ENTRY at 
the same location as its CSECT. A SENTRY item contains the SENTRY name, its link 
origin, and a unique number called the SENTRY number. No ISD records are produced in 
a reentrant load module. See Figure 4-19 for the format of a SENTRY record. 

• 

• 

• 



• 

• 

• 

UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

PHASE HEADER RECORD (ROOT PHASE) 

SENTRY RECORDS 

TEXT RECORDS 

TRANSFER RECORD 

Figure 4-19. Format of a Reentrant Load Module 

4-41 

When your load module is executed, its resource and SEXTRN records are examined to 
determine reentrant code requirements for the module. An attempt is made to resolve 
SEXTRNs against reentrant code already loaded. If the required reentrant code is .not 
already loaded, $Y$LOD is searched for the modules named in the resource records. 
When a required module is found, a match is attempted between the SEXTRNs in your 
module against the SENTRYs in the reentrant load modules. Linkages are then 
established based upon the matches, and the appropriate reentrant modules are loaded. 
Shared constants themselves remain unchanged. Satisfying shared resource 
requirements is a part of the total scheduling process and is performed before actual 
program execution begins. 

Consider the following example. Your object module USER has external address 
constants R2 and T1 and a V-type address constant T3. A reentrant object module R1 
exists with CSECT R 1 and entry points R2 and R3. Another reentrant object module, 
T1, has CSECTs T1 and T2 and entry point T3. Figures 4-20 through 4-23 depict the 
outputs of the link-edits of USER, with the NOSHARE and SHARE options specified, and 
the link-edits of R1 and T1, with the RNT option specified, respectively. 

PHASE HEADER RECORD FOR USER 

TEXT RECORDS (OBJECT CODE FROM USER, R1 AND T1) 

TRANSFER RECORD 

Figure 4-20. Link-Edit of USER with NOSHARE Specified 

PHASE HEADER RECORD FOR USER 

RESOURCE RECORD FOR R1 

SEXTRN RECORD FOR R2 

RESOURCE RECORD FOR T1 

SEXTRN RECORD FOR T1 

SEXTRN RECORD FOR T3 

TEXT RECORDS (OBJECT CODE FROM USER) 

TRANSFER RECORD 

Figure 4-21. Link-Edit of USER with SHARE Specified 



UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

PHASE HEADER RECORD FOR R1 

SENTRY RECORD FOR R1 

SENTRY RECORD FOR R2 

SENTRY RECORD FOR R3 

TEXT RECORDS (OBJECT CODE FROM R1) 

TRANSFER RECORD 

Figure 4-22. link-Edit of R 1 with RNT Specified 

PHASE HEADER RECORD FOR T1 

SENTRY RECORD FOR T1 

SENTRY RECORD FOR T2 

SENTRY RECORD FOR T3 

TEXT RECORDS (OBJECT CODE FROM T1) 

TEXT RECORDS (OBJECT CODE FROM T2) 

TRANSFER RECORD 

Figure 4-23. link-Edit of T1 with RNT Specified 

4-42 

Notice that, in Figure 4-21, no SEXTRN records were created for CSECTs R 1 and T2 or 
ENTRY R3. This is because USER does not require these definitions to satisfy any of its 
external references. 

4. 7 .8. Internal Symbol Dictionary (ISO) Processing 

The internal symbol dictionary (ISO) records describe your program symbols. These 
records can appear in either object or load modules. When the ISO records appear in 
object modules, they are generated by certain language processors; while in load 
modules, the linkage editor generates them. 

As just mentioned, the ISO records are used as descriptor records and, therefore, do 
not increase the size of the object or load module. When they appear in a load module, 
they are not loaded with the records at execution time, so no additional main storage is 
required. However, the ISO records do play an important role if your program has an 
abnormal termination and the JOBOUMP option was specified on the OPTION job 
control statement. In this case, JOBOUMP reads the ISO records in the load module 
and: 

• prints the dump segmented by the CSECTs of the user program; and 

• prints the user-defined symbols and tables. The dump produced is formatted and 
will include compile and link origins, source line number of the symbol, data type, 
and value. 

• 

• 

• 



UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

4-43 

• You can inhibit the generation of ISD records in your load module by using the linkage 
editor option NOISD on the / / PARAM or LINKOP control statement. If you inhibit the 
ISD record generation and an abnormal termination occurs in your program, then 
JOBDUMP will produce an unformatted dump of the load module area. 

• 

• 

4. 7 .8.1. Object ISO Records 

The object ISD records are generated in your object module by certain language 
processors. The linkage editor processes these records so that if an abnormal 
termination occurs while executing your load module, JOBDUMP can give you a 
formatted dump displaying user program symbols and their attributes. There are two 
types of object ISD records. 

• Type 3 ISD record 

• 

This record describes user-defined and compiler-generated symbols. The type 3 
record contains information such as symbolic name, source line number of the 
symbol, level number, data type, and compile origin of the symbol. 

Type 4 ISD record 

This record contains English text and is used by JOBDUMP to print titles and 
headings in the dump . 

4. 7 .8.2. Load ISO Records 

The load ISD records are generated in your load module by the linkage editor provided 
the ISD option on either the // PARAM or LINKOP control statement was specified. The 
ISD record generation is based on the following: 

• The presence of object ISD records in the object module. The linkage editor 
relocates their addresses and passes them into the load module. 

• CSECTs/COMMONs accepted during the link-edit job 

• ISD records are not produced for the link-edit of a reentrant load module (RNT 
parameter). 

• If you specified the SHARE parameter, the object ISD records in an included 
reentrant object module are ignored. Also, CSECTs and COMs in the reentrant 
object module do not result in the generation of either type 1 or type 2 ISD 
records. 

• Deleted CSECTs or COMs do not contribute toward the generation of load ISD 
records . 

• Object ISD records belonging to deleted CSECTs or COMs are ignored. 



UP-8062 Rev. 8 SPERRY UNIV AC OS/3 
SYSTEM SERVICE PROGRAMS 

There are four types of load ISD records: 

• Type 1 ISD record 

4-44 

This record describes a CSECT. It contains the CSECT name, compile and phase 
relative origins, size and phase number. 

• Type 2 ISD record 

This record describes a COMMON section. It contains the COMMON name, compile 
and phase relative origins, size and phase number. 

• Type 3 ISD record 

This record is the relocated form of the type 3 object ISD record. 

• Type 4 ISD record 

This record is the relocated form of the type 4 object ISD record. 

These records are not loaded at execution time but are used only if an abnormal 
termination occurs in your program. JOBDUMP, if specified, uses the type 1 and type 2 
ISD records to segment the dump by CSECT and COMMON sections. JOBDUMP uses 
type 3 and type 4 ISD records to print user program symbols and values converted to 
their proper data types. 

4. 7 .9. User Program Switch Indicator (UPSI) Setting 

The linkage editor prints the UPSI byte settings, along with the error count, at the end 
of the link-edit map. When external references remain unresolved, the linkage editor 
sets the UPSI byte to X'20'. Also, when the linkage editor issues an error message, the 
UPSI byte is set accordingly. The linkage editor error messages are found in the system 
message programmer/operator reference, UP-8076 (current version). 

• 

• 

• 



• 

• 

• 

UP-8062 Rev. 8 SPERRY UNIVAC OS/3 
SYSTEM SERVICE PROGRAMS 

5-1 

5. Programming Considerations 

5.1. GENERAL 

Because the allocation of main storage is a primary concern in a multiprogramming 
system, you should always consider the advantages of having the linkage editor 
construct this program either as a multiphase or multiregion load module. Further, you 
should consider this aspect of your program before you begin to code it because the 
use of certain object code facilities, such as common storage sections, enhance the 
ability of a program to be structured. 

This section concerns itself with the considerations involved with structuring a load 
module. To repeat, however, the most important factor in the construction of a load 
module is how its object code segments are coded, and whether these segments take 
advantage of the capabilities of the linkage editor. 

5.2. OVERLAY STRUCTURES AND DEPENDENCIES 

Programs can be overlaid to minimize their main storage requirements. The possibility of 
constructing an overlay program depends on the relationships between the various 
control sections and phases to be created. These can overlay each other only if they do 
not need to be in storage at the same time and do not reference each other, either 
directly or indirectly. 

The phase segments of an overlay program must be organized in an overlay tree 
structure. The following factors should be considered when organizing the tree structure 
of a load module: 

• phase and control section dependency: 

• the length of the multiphase program; 

• the frequency of usage of each control section; and 

• the possibility of using separate overlay regions . 

To begin building an overlay structure, the user should first form a root phase that 
contains the modules that will receive control from the start of execution and those 
which should always remain in main storage. The rest of the structure should then be 
developed in accordance with the information presented in the following paragraphs. 



UP-8062 Rev. 8 

5.2.1. Phase Dependencies 

SPERRY UNIV AC OS/3 
SYSTEM SERVICE PROGRAMS 

5-2 

Whenever a phase is in main storage or is being loaded in main storage, all the phases 
in its path also should be in main storage. Phases may be loaded in any sequence 
whatsoever and reloaded any number of times, as required by the logic of the program. 
The assigned location of the phases has no bearing on the order in which the phases 
are executed. Any part of a phase that is modified during its execution will remain so 
only until the phase is overlaid. 

5.2.2. Control Section Dependencies 

A control section can receive control from another control section but both sections 
must be in main storage before execution can continue beyond a given point in the 
program. The requirements of a control section for a given routine in another control 
section determine such dependency. Conversely, that control section is dependent upon 
any other control section from which it can receive control or where the other section 
has a need to process data of the former section. 

5.2.3. Program Length 

You must consider the length of a multiphase program in the construction of your 
program. The length of the longest path is the minimum storage requirement for a 
multiphase program. Also, when a program is constructed with the automatic overlay 
mechanism, the storage requirements of the necessary control routine, entry table, 
phase table, and possibly region table also must be considered. 

5.2.4. Phase Origins and Node Points 

The origin of the initial, or root phase, segment is assigned by the linkage editor at 
zero. The relative node point of each phase is determined as zero plus the length of all 
phases in the path. The characteristics of the first symbol in the operand field of an 
OVERLAY statement designate the phase origin and node point. 

5.2.5. Use of Multiple Regions 

Multiple region structures can, in certain instances, capitalize on loading efficiency and 
realize a saving in main storage space. Phases not on common paths can access each 
other and, where identical copies of one or more CSECTs are required at different times 
by different exclusive overlays, they may reside in a separate region not affected by the 
path loading in the opposite region. Region structures also decrease main storage needs 
when the creation of a common inclusive phase is not feasible or possible without 
increasing the length of the longest path of the current region. Such structures can 
provide a useful and convenient method of load module structuring where such 
concerns are paramount. 

• 

• 

• 



UP-8062 Rev. 8 SPERRY UNIV AC OS/3 
SYSTEM SERVICE PROGRAMS 

5-3 

• Figure 5-1 illustrates a program whose structure as a multiregion load module results in 
a saving of main storage space, given the phase and CSECT dependencies noted in the 
illustration. As shown, if CSECTs F, G, and J were root-phase resident, the load module 
storage needs would incease because these CSE CT s could no longer overlay each 
other. Creation of two additional phases in region 1, each containing the exclusive 
CSECTs, would not appear possible because a path conflict would be created. Thus, 
the region structure shown is the more feasible. 

• 

• 

If CSECTs F, G, H, I, and J were required by phases 1, 2, and 3, and if they were 
required at the same time, so that they could not be overlaid, root-phase residence 
would be practical. 

If CSECTs F, G, H, and I were needed by phases 1 and 2, and CSECT J only needed by 
phase 3, another common node point and phase could be constructed in region 1. In 
this case, a second region, as shown, would adversely affect the amount of storage 
required for the load module. 

PHASE 0 

_l 
T 

""--v-' ""--v-' 

CSE CT CSECT 
PHASE 1 

A B ""--v-' 
CSECT C 

PHASE 2 

""--v-' 
CSE CT 

D 
PHASE 3 

~ PHASE 4 

CSE CT -1. 

E ""--v-' ~ 

CSE CT CSE CT 
PHASE 5 

F G 
~ 

CSE CT 
H 

PHASE 6 

~ 

CSE CT 
I 

PHASE 8 

1------- REGION 1 ---1-----R=~=~ - ,) 
NOTES: 

Assumed program logic dictates the following: 2. Phases 1 and 3 require CSECTs F, G, and J. 

1. Phases 1, 2, and 3 can overlay each other. 3. Phase 2 requires CSECT J. 

Figure 5-1. Example of a Program Structured as a Multiregion Load Module 



-----------------------

• 

• 

• 



• 

• 

• 

UP-8062 Rev. 8 

6.1. GENERAL 

SPERRY UNIV AC OS/3 
SYSTEM SERVICE PROGRAMS 

6-1 

6. Control Statements 

The linkage editor control statements described in this section direct the construction of 
a load module for the SPERRY UNIVAC Operating System/3 (OS/3) from specific or 
implied object modules and object module elements. Linkage editor control statements 
normally appear in an OS/3 job control stream, as illustrated in Figure 6-1. However, 
linkage editor control statements also may be contained in a source module or 
embedded (nested) in the object modules called by the linkage editor INCLUDE control 
statements. The rules for coding and embedding linkage editor control statements 
follow . 

1 10 

II EXEC LNKEDT 
II PARAM 
IS 

I* 

16 

LINKAGE EDITOR CONTROL 
STATEMENTS COMPRISING 
LINKAGE EDITOR CONTROL 

STREAM 

Figure 6-1. Typical Linkage Editor Control Stream 



UP-8062 Rev. 8 SPERRY UNIV AC OS/3 
SYSTEM SERVICE PROGRAMS 

6-2 

~~~~~~~~~~~~~~~~~-

6.2. CODING FORMAT

The general format of a linkage editor control statement is the same as that of an OS/3
assembler statement (Figure 6-2). The label field begins in column 1, is terminated by a
blank column, and may contain up to eight alphanumeric characters. The label field is
blank for all linkage editor control statements except the equate (EQU) statement. The
operation field, which must be preceded and followed by at least one blank column,
contains the operation code of the function to be performed. If the label field is blank,
the operation field may start in column 2. The operand field begins with the first
nonblank character following the operation field, is terminated by a blank column, and
cannot extend beyond column 71. The operand field may contain any number of
operands, depending on the function to be performed, and operands must be separated
by commas. Continuation statements are not allowed.

1 LABEL LOPERATIONL OPERAND 71 72 80
Blank Must be Cannot extend beyond column 71 Not used
<1- to 8- delimited by continuation statements are not
character blank columns allowed:
string for
EQU only>

Figure 6-2. General Linkage Editor Control Statement Format

Comment statements, identified by an asterisk in column 1, may appear anywhere in a
linkage editor control stream. Comments do not initiate any processing by the linkage
editor but are printed out on the process map portion of the link edit map.

6.3. PLACEMENT OF CONTROL STATEMENTS

In keeping with their functional uses, the following guidelines apply to the placement
and sequencing of control statements:

• A LINKOP, LOADM, OVERLAY, or REGION control statement may be followed by
~ an INCLUDE, EQU, MOD, or RES statement.

• An INCLUDE statement must be followed by at least one object module header
record and then by any number of embedded control statements, followed by a
transfer record and, again, any number of embedded control statements. Any
linkage editor control statement may then follow the INCLUDE statements.

• An ENTER statement may not be followed by an INCLUDE statement.

• The LOADM statement normally is the first control statement in a control stream.

• The ENTER statement normally is the last control statement in each phase of a
control stream.

•

•

•

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

6-3

• Embedded control statements may be placed before or after the control sections in
an object module, but may not be placed within a control section.

• Embedded control statements that affect load module structure (LINKOP, LO ADM,
OVERLAY, REGION, and ENTER) cannot be embedded in an automatically included
object module.

6.4. EMBEDDED CONTROL STATEMENTS

Linkage editor control statements may be embedded in object modules either
immediately after the object module header record or immediately after the object
module transfer record. They may also be placed before or after the control sections in
an object module, but may not be placed within a control section. Embedded control
statements must be inserted in object modules prior to their being link edited. The
system librarian may be used to perform this function.

Embedded statements are processed as are other control statements, except when a
statement that affects the structure of a load module (OVERLAY, REGION, LINKOP,
LOADM, and ENTER) is detected in an automatically included module. Because
automatically included modules always are included in the root phase of a load module,
these statements are not permitted to be embedded in automatically included modules
and are flagged as errors in the link-edit map. If one or more object modules contain
embedded INCLUDE control statements for a module (including itself) that is already
being included, then an inclusion loop may result for the link edit in question.

All the control statements embedded in an object module are processed by the linkage
editor, even if the object module is being accessed for a partial inclusion of its object
code.

Whenever the control statements LINKOP and LOADM are encountered as embedded
control items, they immediately signal the end of the current link edit but are never
subsequently processed. Therefore, these control items must not be embedded in
object modules with the implied intention of triggering multiple link-edit operations or
(via LINKOP) supplying additional parameters to the current link edit.

6.5. BASIC CONTROL STATEMENT PROCESSING

The linkage editor cycles through two control modes for each load module it generates.
The exact processing done in each mode is determined by the control statements
processed in each mode. For this discussion, the control statements that affect the
operation of the linkage editor are divided into two groups. The first group comprises
all the control statements that direct the basic operation of the linkage editor and
includes:

• all job control statements directed to the linkage editor - start-of-data (/$),
parameter specification (/ / P ARAM), and end-of-data (/*);

UP-8062 Rev. 8

• all UNKOP statements; and

• the LOADM statement.

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

These statements are processed in the first control mode.

6-4

The second group of control statements consists of those that basically affect the
structure and content of the load module, rather than the operation of the linkage editor.
All remaining linkage editor control statements comprise this group and are processed
in the second control mode.

All the group 1 statements input to the linkage editor for the purpose of constructing
any given load module may come from the primary control stream, plus any number of
user source libraries. (See // PARAM and UNKOP CUB keyword description.) All group
2 statements, however, must come from a single source. The first group 2 statement
detected initiates mode 2 processing, and mode 2 processing continues until include
processing is terminated for the load module. A given load module may thus pick up
options and/or its load module name from multiple sources, but its structure must be
defined in a single input source (primary control stream input or user source library).

User source libraries for linkage editor control statements are specified by the CUB
keyword of the / / PARAM or UNKOP control statements. The processing performed
during construction of a load module depends, in some respects, on the source that
contains the CUB specification. In most cases, the statement containing the CUB
specification is the last statement processed for the current load module from the
source that contains the CUB specification. The only exception to this is if the source
specified by the CUB specification contains only group 1 control statements. If the
linkage editor control statements are being input from the primary control stream when
the CUB specification is processed, the current location in the control stream is saved
and is returned to when the control statements in the specified source are exhausted. In
contrast, if a CUB specification is processed while in a source library, the source library
is disconnected and can never be returned to. Thus, it can be seen that multiple CUB
specifications can be meaningfully specified only in the primary control stream because
only the first CUB specification in a source module will ever be processed.

A single link-edit job step that produces multiple load modules proceeds as follows:

1 . Enter mode 1 and process group 1 control statements for first load module to be
produced.

2. Enter mode 2 and process all group 2 control statements to produce first load
module.

3. Reenter mode 1 and process group 1 control statements for second load module.

4. Reenter mode 2 and process group 2 control statements to produce second load
module.

5. Repeat steps 3 and 4 until all load modules are produced.

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

6-5

• 6.6. CONTROL STATEMENT DESCRIPTIONS

•

•

The following detailed descriptions of the basic linkage editor control statements are
presented in their logical order of appearance in a linkage editor control stream. Each
description includes the function of the control statement, illustrates its coding format,
describes its parameters, and, when necessary, provides illustrated examples of how it
may appear in a control stream.

6.6.1. Specify Linkage Editor Options (II PARAM or LINKOP)

Function:

Specifies the linkage editor options that are to be in effect during construction of a
load module. The options are declared as keywords in the operand field of either a
11 PARAM or LINKOP control statement. Both control statements perform the same
function; however, the 11 PARAM statement cannot appear within a linkage editor
control stream and the LINKOP statement cannot appear outside the linkage editor
control stream. Thus, the initial linkage editor options may be specified either by a
11 PARAM or LINKOP control statement, but only the LINKOP statement can be
used to change them within a job step. Each time a LINKOP control statement is
processed by the linkage editor, it initiates the construction of a new load module.

All option specifications take effect as soon as they are detected, and remain in
effect until changed by a succeeding LINKOP control statement or until the job is
terminated. This applies to system-supplied (default) parameter specifications, as
well as those you specify. Once you override a default specification, your
specification remains in effect for the remainder of the job step unless you explicitly
respecify the default specification. When conflicting specifications are detected, the
linkage editor assumes that the last statement is correct and functions accordingly.

If no I I PARAM or LINKOP control statements are present in a control stream, the
linkage editor functions under the direction of the default parameter specifications,
as follows:

1. Performs automatic inclusion of required object modules, as necessary, and
assumes that the standard system object library file (Y0BJ) is the only file
that might contain the required modules.

2. Processes V-CON references, as required.

3. Stores the output load modules in the system job run library file (YRUN).

4. Uses only the control statements contained in the primary control stream to
produce load modules.

5. Generates phase header records that contain blank comment fields and do not
require the system loader to clear main storage before the phase is loaded.

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

6-6

6. Processes all the control statements contained in the control stream, even if
processing errors that would render a load module useless are detected.

7. Provides for the promotion of common storage areas.

8. Generates a link-edit for each load module generated that lists all the
information normally desired in the link-edit map.

9. Produces nonreentrant load modules.

10. Recognizes reentrant object modules and creates the shared records needed to
link their load module counterparts with the load module being created.

11. Creates internal symbol dictionary (ISD) records in the load module. At
execution time, these records enable JOBDUMP to print a formatted dump of
the load module area.

Format:

LABEL

[I/]

L::.OPERATIONL::.

{
PARAM }
LINKOP

OPERAND

•

•

•

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

6-7

NOTES:

1. System-supplied parameters are in effect only until you change them. Once you
change them within a job step, you must reset them to their default state
before the default option is effective again.

2. Keywords may be specified in any order but must be separated by commas
with no spaces between the keywords unless they identify a delimited
character string.

3. Private file names declared are always logical and must be accompanied by the
appropriate job control DVC/LFD statements.

Label:

II
Must be specified if PARAM operation is used.

Keyword Parameter AUB:

ALI B=f i l ename
Specifies the file to be searched during automatic inclusion processing. This
keyword essentially provides the capability of naming an additional library for
use during automatic inclusion processing. When specified, the AUB library
always is searched first in an attempt to locate a required object module, and
if necessary, the file identified by the RUB keyword is searched.

If omitted, only the RUB-specified file is searched during the automatic inclusion
process.

Keyword Parameter CUB:

CLIB=modulenamelfilename
Specifies the name of a source module, and the file in which it resides, that
contains the linkage editor control statements to be processed for this link-edit
job. When this parameter is detected in the primary control stream input, the
linkage editor branches to the source module identified in this parameter,
processes the control statements contained in the source module, then returns
to the primary control stream to complete the processing of the remaining
control statements, as applicable. When this parameter is detected in a source
module control stream input, the linkage editor branches to the new source
module identified in this parameter, processes the control statements contained
in the new source module, and returns to the primary control stream. The
linkage editor never returns to a source module control stream after processing
the first CUB keyword specification it detects in that control stream source.

If omitted, the current control stream source (primary input or source module input)
continues to be accessed for control statements.

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

6-8

Keyword Parameter CMT:

CMT= 1 character-string 1

Specifies a character string of up to 30 characters that is to be inserted in the
comment field of each phase header record produced for the generated load
modules. The character string must be enclosed in apostrophes and may
contain blanks, commas, and other special symbols.

CMT=faifii
Specifies that the phase header comment fields are to be blank.

If omitted, the phase header comment fields are left blank unless a previous CMT
keyword specified otherwise.

Keyword Parameter OUT:

OUT=filename
Specifies a library file name in which the output load module is to be stored. If
a load module with the same name already exists in the output file specified by
this keyword, it is replaced by the new load module. This file name
corresponds to the LFD name assigned to the file.

OUT=(N)
Indicates that the output load modules produced by the linkage editor are not
to be stored in any library file; however, the link-edit map will still be produced
if not inhibited by specification of the NOLIST keyword parameter.

OUT~IJtlUlt
Specifies that the output load modules produced by the linkage editor are to
be stored in the standard system job run library file (YRUN).

If omitted, the load modules produced are output to the system job run library file
(YRUN) unless a previous OUT keyword specified otherwise.

NOTE:

The file designated to store the output of the linkage editor is logically extended to
accommodate the load modules produced by the linkage editor.

Keyword Parameter RUB:

RLIB=filename
This parameter is used to identify the file to be searched by the linkage editor,
under the following conditions:

• during the automatic inclusion process, when no automatic include library
file (ALIB) has been specified (no previous ALIB keyword specification
present) or when the specified ALIB does not contain the required module;

•

•

•

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

6-9

• during the specific inclusion process, when no file name is specified on an
INCLUDE statement and:

the module is not found in the standard job run library file (YRUN);
or

the module is not found in the file last specified on a prior INCLUDE
statement or no prior INCLUDE statements exist.

RLIB=M.IB
Identifies the standard system object library file (Y0BJ) as the file to search
under the conditions just described.

If omitted, the standard system object library file (Y0BJ) is searched under the
foregoing conditions, unless a previous RUB keyword specified otherwise.

Keyword Parameters CNL and NOCNL:

CNL
Specifies that the link-edit job is to be canceled at the end of the link-edit
operation for the current load module if any diagnostic processing has been
triggered during the generation of the load module; otherwise, processing
continues, regardless of the number or type of error diagnostics triggered, until
the normal end-of-job function for the link-edit job step is detected.

·-Specifies that the link-edit job step is to be processed to completion,
regardless of the number or type of diagnostic errors detected.

If omitted, NOCNL is assumed unless the CNL keyword was previously specified.

Keyword Parameters ZRO and NOZRO:

ZRO

Specifies that the job region is to be cleared to binary zeros prior to loading
the root phase of the load module. This option is effective only if this load
module name is specified on the I/ EXEC job control statement. Specification
of this keyword sets a flag in the root phase header record to indicate the
clearing requirement to the system loader
Specifies that main storage is not to be cleared to zeros before the root phase
of the load module is loaded.

If omitted, NOZRO is assumed unless the ZRO keyword was previously specified .

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

6-10

Keyword Parameters AUTO and NOAUTO:

-Specifies that automatic inclusion processing is to be allowed for the load
modules being constructed.

NOAUTO

Specifies that automatic inclusion processing is not to be allowed for the load
modules being constructed.

If omitted, AUTO is assumed unless the NOAUTO keyword was previously
specified.

NOTE:

The NOAUTO specification does not affect the automatic inclusion of the overlay
control routine if V-CON processing is not inhibited (NOV keyword not specified)
and valid V-CON references exist in the object code being included in the load
modules being produced.

Keyword Parameters V and NOV:

NOV

Specifies that V-CON references are permitted to appear in the object module
elements to be included in the load modules and, therefore, that automatic
loading of required phases is to be enabled.

Specifies that V-CON references are to be treated as A-CON references and,
therefore, that automatic loading of phases is to be inhibited because it is not
required. This specification is significant only when valid V-CON references are
present in the object module elements being included.

If omitted, V is assumed unless the NOV keyword was previously specified.

Keyword Parameters PROM and NOPROM:

-Specifies that common storage areas are to be promoted to the most
reasonable phase within the load module being constructed.

NOP ROM

Specifies that all common storage areas are to be placed in the root phase of
the load module being constructed.

If omitted, PROM is assumed unless the NOPROM keyword was previously
specified.

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

6-11

• Keyword Parameters LIST and NOLIST:

•

•

-Specifies that all list options for the link-edit map are to be in effect for the
current link-edit job.

NOLI ST
Specifies that no link-edit map is to be produced for the current link-edit job.

If omitted, the standard link-edit map will be produced unless LIST or NOLIST was
previously specified.

Keyword Parameters CNTCD and NOCNTCD:

- Specifies that the process map portion of the link-edit map is to be produced.

NOC NT CD
Specifies that the process map is to be suppressed.

If omitted, CNTCD is assumed unless NOCNTCD was previously specified.

Keyword Parameters ERR and NOERR:

Specifies that diagnostic messages and unresolved references are to be
included in the link-edit map.

NOERR

Specifies that this information is to be suppressed.

If omitted, ERR is assumed unless NOERR was previously specified.

Keyword Parameters DICT and NODICT:

J!FJ£Ul
Specifies that the definitions dictionary and phase structure diagram portions of
the link-edit map are to be produced.

NOD I CT
Specifies that the definitions dictionary and phase structure diagram portions of
the link-edit map are to be suppressed.

If omitted, DICT is assumed unless NODICT was previously specified .

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

6-12

Keyword Parameters DEF and NODEF:

Specifies that object module headers (including dates and times) and CSECT,
COM, and ENTRY items are to be listed in the allocation map portion of the
link-edit map, along with their respective object module origin and ESID,
length, linked base address, and high limit after linking.

NODEF

Specifies that listing of ESDs is to be suppressed.

If omitted, DEF is assumed unless NODEF was previously specified.

Keyword Parameters PHS and NOPHS:

m.
Specifies that phase data (phase name, alias name, origin, length, transfer
address, etc.) is to be listed in the allocation map portion of the link-edit map.

NOP HS

Specifies that the phase data is to be suppressed.

If omitted, PHS is assumed; unless NOPHS was previously specified.

Keyword Parameters DEL and NODEL:

DEL

Specifies that all definitions including those automatically deleted due to
redundant inclusions on identical paths or items not included because of partial
include specifications are to be listed in the allocation map as long as
definitions are being listed (NODEF is not specified).

r····cm''1
Specifies that automatically deleted or excluded definitions are not to be listed.

If omitted, NODEL is assumed unless DEL was previously specified in the control
stream.

Keyword Parameters RCNTCD and NORCNTCD:

RCNTCD

Specifies that control statements are to be included in the allocation map
portion of the link-edit map. You can easily locate a particular control
statement and see its effect on the load module. Only action-type control
statements are included in the allocation map; // PARAM and LINKOP
statements are never listed here.

· ···m1,11
Specifies that control statements are not to be listed in the allocation map.

If omitted, NORCNTCD is assumed unless RCNTCD was previously specified.

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

6-13

• Keyword Parameters REF and NOREF:

•

•

REF

Specifies that the allocation map portion of the link-edit map is to list all
references (EXTRNs) and transfer records processed, the object module
assigned address and ESID, and the resolved value, if appropriate.

Biiii
Specifies that this information is to be suppressed.

If omitted, NOREF is assumed unless REF was previously specified.

Keyword Parameters SHARE and NOSHARE:

BIBI
Specifies that object modules marked reentrant are to be recognized during the
inclusion process (specific and automatic). The text from such modules is not
to be included. Instead, shared records are to be created for references made
to reentrant code. The load module produced is nonreentrant but may contain
references to reentrant code. This keyword is ignored if a reentrant load
module is being generated (the RNT keyword is specified) or the job control
GO option is in effect .

NOSH ARE

Specifies that all object modules are to be treated as a nonreentrant and no
shared records to be generated. A nonreentrant load module is produced that
contains no references to shared code.

If omitted, SHARE is assumed unless the NOSHARE keyword was previously
specified.

Keyword Parameters RNT and NORNT:

RNT

Specifies that a reentrant load module is to be produced and SENTRY records
are to be generated. Normally, only one object module would be included in
the link-edit, in which case, the load module name must be the same as the
object module name. Parameter NOAUTO should be specified when using this
keyword parameter.

IBlli
Specifies that a nonreentrant load module is to be produced, though references
may be made to reentrant code.

If omitted, NORNT is assumed unless RNT keyword was previously specified .

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

6-14

Keyword Parameters ISO and NOISD:

Specifies that type 3 and type 4 ISO records from the included object module
are relocated and passed to the load module. It also specifies that type 1 and
type 2 ISO records are generated based on the undeleted CSECTs and
COMMONs detected during the link-edit. If execution of the load module
terminates, these records are used by JOBDUMP (if specified) to print a
formatted dump, segmenting it by CSECTs and printing user program symbols.

NO I SD
Specifies that ISO record generation is to be suppressed.

If omitted, ISO is assumed unless NOISD keyword was previously specified.

6.6.2. Begin Load Module (LOADM)

Function:

This control statement is used to initiate construction of a load module. Also, it
specifies a program name for the load module. The LOADM control statement is
normally the first control statement in a control stream, but it may follow a LINKOP
or comment statement, or a complete set of previous control statements when
used in a control stream that is generating more than one load module.

If the LOADM control statement is omitted from an otherwise valid linkage editor
control stream and no LOADM control statement is embedded in an included object
module, by default, the load module produced by the linkage editor is assigned the
name LNKLOD.

Format:

LABEL .6.0PERATION.6. OPERAND

LOADM

Positional Parameter 1:

name
One to six (eight, if it is the link-edit of a reentrant module) alphanumeric
characters, the first of which must be alphabetic, that specifies the name to be
assigned to the load module. If the specified name is less than six (eight, if it
is the link-edit of a reentrant module) characters, it is padded on the right with
EBCDIC zeros. If the specified name is more than six characters (eight, if it is
the link-edit of a reentrant module), it is truncated to the maximum allowable
limit.

If omitted, the default name LNKLOD is assigned to the load module.

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

6-15

• 6.6.3. Include Object Code (INCLUDE)

•

•

Function:

Requests that a specific object module or selected control sections of a specific
object module be included in the current phase of the load module being
constructed. The INCLUDE statement may follow any linkage editor statement
except the ENTER statement. Also, it may be embedded in an object module.
Nesting of embedded INCLUDE statements may continue indefinitely. Nested
INCLUDE statements are identical in format and capability to those not nested and
may thus specify full or partial inclusion, as well as alternate files. The same applies
during the automatic inclusion process, although the initial module located and used
to satisfy a specific reference always is included in full.

If no INCLUDE statements are present in an otherwise valid linkage editor control
stream, all the object modules currently residing in the system job run library
(YRUN) are included in the load module phase being constructed.

Format:

LABEL l:.OPERATIONl:. OPERAND

INCLUDE [modu l enamel[(s 1, ... s9)][, filename]

Positional Parameter 1 :

modulename

Is an alphanumeric 1- to 8-character string that identifies the object module to
be included.

If omitted, it is assumed that the INCLUDE statement is nested and that the object
module being referenced immediately follows the previously referenced object
module in the library being accessed. Otherwise, an error message is output on the
link-edit map.

Subparameters:

S 1 I • • • S9

Is a list of from one to nine control section labels (one to eight characters in
length) that identify the control sections to be included in the load module
phase being constructed. The control sections referenced in this parameter
must be contained in the object module referenced by the INCLUDE statement;
otherwise, an error diagnostic is output on the link-edit map. The order in
which the control sections appear in the object module is the order in which
they will appear in the load module, regardless of the order in which they are
listed in this parameter .

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

6-16

When a subparameter list is specified, no unnamed CSECT in the module being
scannned is ever included in the load module, but all requests for common
storage are honored, as are all embedded control statements.

If omitted, the entire object module referenced is included in the load module
except for those control sections that may be automatically deleted by the linkage
editor.

Positional Parameter 2:

filename
Is an alphanumeric 1- to 8-character string that identifies the symbolic name of
the file in which the referenced object module is stored. This name must be
specified exactly as it is in the job control logical file definition (LFD) that
identified the file; otherwise, an error message is output on the link-edit map.
When this parameter is specified, it is the only file searched for the specified
object module.

If omitted, the object module is assumed to be in the system job run library
(YRUN) or, if not there, in the last library specified in an INCLUDE statement or,
if not there and a file name was specified in a previous RUB keyword in that file;
otherwise, if no RUB library was specified, the object module is assumed to be in
the default RUB library, the system object library file (Y0BJ).

6.6.4. Begin Overlay Phase (OVERLAY)

Function:

Identifies the beginning of an overlay phase (a phase other than the initial phase)
and defines the relative position of the phase within the load module structure. The
object modules included thereafter constitute a single, separate phase until the next
OVERLAY, REGION, LO ADM, UNKOP, or end-of-data (/*) control statement is
detected.

This statement must not be used in the link-edit of a reentrant module.

Format:

LABEL .6. OPERATION .6. OPERAND

OVERLAY symbol[, al ias-phasename]

Positional Parameter 1:

symbol

Is the name of a logical or relative node point that defines the starting address
of the phase. It may consist of one to eight alphanumeric characters. If the
symbol is relative (a CSECT, ENTRY, or EQU name), it must be on the path of
the phase. However, the relative symbol must not be a shared definition.

•

•

•

1.

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

6-17

The symbol specified may cause the phase to begin at an origin newly
established by this node name or may set that origin to an address defined by
a previous OVERLAY statement, the LO ADM statement, or a relative definition
(provided it is on the current path).

The starting address of a phase is not necessarily the entry point to that
phase; therefore, use of the symbol in the operand field of an OVERLAY
statement does not automatically define the symbol as an entry point. The
same symbol, however, may be used to define both the entry point to this
phase and the logical (or relative) origin of the phase (if in the current path). If
the symbol is on an exclusive path, a logical node is established.

Positional Parameter 2:

alias-phasename
Is a 1- to 6-character, user-supplied phase name that can be used in place of
the linkage-editor-supplied phase name, to address the phase being created by
the OVERLAY statement. If an alias phase name longer than six characters is
supplied, it is truncated to six. Alias phase names are always padded with two
trailing blanks.

6.6.5. Begin New Region (REGION)

Function:

Initiates construction of the first phase in a new region, starting at the end of the
longest path currently constructed for the load module. Once a region has been
started, no prior region structure may be continued. Thus, all parts of a given
region should be fully specified and structured before beginning a new region. The
only phase common to all regions in a load module is the root phase.

OVERLAY control statements may be interspersed among REGION control
statements to structure the phases within each region. The first of any region,
including the initial phase, may be overlaid by using an OVERLAY control statement
to reference the region node (or LOADM node) or a symbol with that address.
Inasmuch as the REGION statement effectively replaces an OVERLAY statement,
INCLUDE and other control statements used for the construction of a phase follow
immediately. Up to 10 regions may be declared for a single load module.

This statement must not be used in the link-edit of a reentrant module.

Format:

LABEL L:>OPERATIONL:> OPERAND

REGION symbol[, al ias-phasename]

UP-8062 Rev. 8

Positional Parameters 1 and 2:

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

6-18

Refer to parameter descriptions for the OVERLAY control statement. Note that
inasmuch as the implied origin of a new region always is at the end of the longest
path of the current region, a symbol in a REGION statement may specify only a
logical node name, and not a relative definition name as in an OVERLAY statement.

6.6.6. Define Phase Execution Entrance (ENTER)

Function:

Defines the program entry point of the load module phase being constructed. This
is the address to which program control is optionally transferred when the phase is
loaded by a supervisor FETCH macroinstruction. The ENTER statement, if present,
is normally the last control statement issued for a given phase. It may, however, be
followed by a MOD, EQU, RES, or comment statement in addition to an OVERLAY
statement for the next phase, a REGION statement for a new region, a LOADM or
LINKOP statement for a new load module, or an end-of-data (/*) statement, which
terminates execution of the linkage editor.

If an INCLUDE statement immediately follows an ENTER statement, a diagnostic
warning indicating the sequence error is listed on the link-edit map, but the
INCLUDE statement will, nonetheless, be processed for the current phase.

If no ENTER statement is provided for a phase, the phase entry point, or transfer
address as it is commonly referred to, is obtained from the first specifically
included object module in the phase that has a valid transfer address. If no
specifically included object module contains a valid transfer address, the entry point
address used by the linkage editor is the relocated address assigned to the first
CSECT specifically included in the phase. Automatically included modules are not
checked for valid transfer address. If no CSECTs have been included in the phase
(zero length phase), then the transfer address is assigned to the node point of the
phase.

Format:

LABEL L'.OPERATIONL'. OPERAND

ENTER [expression]

Positional Parameter 1 :

expression
Specifies the transfer address for the phase. This expression, which usually
represents a relative phase address, may have one of the following forms:

• A decimal number from 1 to 8 digits long

• A hexadecimal number from 1 to 6 digits long, in the form X'nnnnnn'

•

•

•

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

6-19

• A previously defined symbol (the name of a control section or an entry
point in an object module that was previously included or defined by a
previous EQU directive). For the link-edit of a nonreentrant module, this
symbol must not be a shared definition.

• A previously defined symbol plus or minus a decimal or hexadecimal
number as previously described

If omitted, the ENTER statement has no effect and the default criteria previously
described apply.

6.6. 7. Define Label (EQU)

Function:

The EQU control statement is used to provide the linkage editor with the value of a
label that might not otherwise be defined. The definition of a symbol by an EQU
statement is subject to the same rules for automatic deletion as entry points.

Format:

LABEL .0.0PERATION.0. OPERAND

symbol EQU expression

Label:

symbol
Is an alphanumeric 1- to 8-character string, which is the label to be defined.

Positional Parameter 1 :

expression
Specifies the value to be assigned to the label. The expression may have have
one of the following forms:

• A decimal number from 1 to 10 digits long

• A hexadecimal number from 1 to 8 digits long

• A previously defined label (the name of a control section or an entry point
in an object module that was previously included or defined by a previous
equate statement)

• A previously defined label plus or minus a decimal or hexadecimal number,
as previously described. For the link-edit of a nonreentrant module, this
label must not be a shared definition.

• An asterisk (*) to indicate a reference to the current value of the location
counter

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

6-20

Examples:

1.
2.
3.
4.
5.

10 16

DD SAC EQU 32
DDECT1 EQU x•20•
DPSCHK1 EQU DDECT1
DPSCHK2 EQU DDECT1+X 1 20 1

DPSCHK3 EQU *

1 . Equates the label DDSAC to the decimal value 32

2. Equates the label DDECT1 to the hexadecimal value 20

3. Equates the label DPSCHK 1 to the value of the label DDECT 1

4. Equates the label DPSCHK2 to the value of the label DDECT 1 plus the
hexadecimal value 20

5. Equates the label DPSCHK3 to the current value of the location counter

NOTES:

If the operand of the EQU statement is symbolic (a previously defined symbol is
involved) and the label of the EQU statement supplies a multidefinition, then no
such earlier definitions may occur between the definition of the operand symbol and
the EQU statement itself. If a symbolic operand is multiply defined, the label of the
EQU statement is equated to the last such definition.

KE$ALP and KE$RES, which are the addressable entry points to the reserve
storage area, cannot be used as operands of the EQU control statement.

6.6.8. Modify Location Counter (MOD)

Function:

The MOD control statement instructs the linkage editor to adjust its location
counter to coincide with a specific power of 2 and a specific remainder. Initially,
the location counter is set to zero by the LOADM control statement, and then
incremented by the length of each control section included in a phase. Also, it is
set to the value associated with a node point when an OVERLAY or REGION
control statement is detected in the control stream.

Format:

LABEL 60PERATION6 OPERAND

MOD power r {;;ainder}]

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

6-21

• Positional Parameter 1 :

•

•

power
Is a decimal or hexadecimal (X'n') number that specifies the power of 2
relative to which the location counter is to be adjusted. The only acceptable
powers of 2 that may be specified are 8, 16, 32, 64, 128, 256, 512, 1024,
2048, 4096, 8192, 16384, and 32,768.

Positional Parameter 2:

remainder
Is a decimal or hexadecimal (X'n') number that is a multiple of 4, which
specifies the desired remainder of the new value of the location counter
relative to the specified power of 2. If the decimal number specified for this
parameter is not a multiple of 4, it is rounded to the next higher multiple of 4,
then truncated to a value less than the specified power of 2.

If omitted, the remainder is assumed to be zero.

Example:

10 16

MOD 32,8

This control statement instructs the linkage editor to adjust its location counter, if
necessary, to a value that is 8 more than a multiple of 32. If the current value of
the location counter is 16,384, which is an exact multiple of 32 (32 x 512 =

16,384), the location counter would be incremented by 8 to a value of 16,392. If
the current value of the location counter were 16,392, no adjustment would be
required. If the current value were 16,400, which is 16 greater than a multiple of
32 (32 x 512 + 16 = 16,400), the new value would be adjusted to 16,424 (32 x
513 + 8 = 16,424).

6.6.9. Reserve Storage (RES)

Function:

Instructs the linkage editor to reserve additional load module storage space
following the end of the longest path in the highest region of the load module. The
additional storage requested by the RES statement adds to the total length of the
module and is recorded in each phase header record, but is not included in the size
requirements for any particular phase. One or more of these statements, therefore,
may be placed anywhere within the control stream for a load module. The sum of
all RES values processed during the construction of a load module is used to
extend the longest path of the load module .

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

6-22

The linkage editor automatically assigns two addressable entry points to the
reserve storage area. These entry points may be addressed by the user to access
the reserve storage area by declaring them as EXTRNS in your program. The two
addressable entry points assigned are:

• KE$ALP
Is the effective address of the end of the longest path in the load module or
the starting address of the reserve storage area.

• KE$RES
Is the effective address of the end of the longest path plus the sum of all the
reserve storage area size specifications (RES statements).

These two entry points cannot be used in the operand field of the EOU control
statement.

Format:

LABEL I .t:.OPERATION.t:. OPERAND

RES value

Positional Parameter 1 :

value
Specifies the number of bytes of storage to be reserved in one of the
following forms:

• a decimal number from 1 to 10 digits long; or

• a hexadecimal number 1 to 8 digits long, in the form X'nnnnnnnn'.

•

•

•

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

7-1

7. The Link-Edit Map

7 .1. GENERAL

Unless otherwise specified in a / / PARAM or LINKOP control statement, the linkage
editor produces a link-edit map for each link-edit job it performs. Basically, the map
details the load module produced by the linkage editor and is in six parts:

1. process map;

2. unresolved EXTRN reference list;

3. definitions dictionary;

4. phase structure diagram for multiphase load modules;

5. allocation map; and

6. error legend and count list.

However, via // PARAM or LINKOP parameter specifications, all or part of the link-edit
map may be suppressed. A detailed description of each map part follows.

7 .2. PROCESS MAP

The initial part of the link-edit map is a listing of the linkage editor control stream used
to produce the subject load module (Figure 7-1). Both the control statement
specifications you listed and those inserted by the linkage editor in the control stream
from referenced source and object modules are listed. Special process-map messages
also may appear in the process map. These messages, which are always enclosed in
asterisks, are used to explain the presence of some of the control statement data
included in the process map. Table 7-1 lists and describes the special messages .

UP-8062 Rev. 8 SPERRY UNIV AC OS/3
SYSTEM SERVICE PROGRAMS

JNIUC SJSTEN o.s. l LINk•GE rnITDR
DA TE- C.510211~ TlHE- 11.•S

CONT~OL STREAM EMCOUMTEREO ANO PROCESSED AS FOLLOWS-

II PARAH RLI3l08JNOS
II PAR AH OUTU Ni

LOADN CTL NKJ5 S
INCLUC.E L(S•SS,OBJHOS

-- ---Kon-INCL UOE NOOU LE NOT L OCAT EO
I NCLU OE LK lRDO T, 38 JNOS
OVERLAY U
I NCLU OE All IAll a !JC 'All 02:.c ,AJI 0 llC ,All O~JC i,Dd JNOS
I NCLU OE AO 2UO 20>0 ca,o BJllO s
INCLUDE AC3,3BJMJS
I NCLU OE AC !UC !i,O B.JIO S
I NCLU OE AO 29'0 20•0 c ,AO 2010 c ,AO 2020 c ,•a ZCIO c ,•o 2a,OBJllO s ,.

AO 20~0 C OJT O-INCLUOEO•
«LIOCP •A~TO-INCLUOED•

Figure 7- 1. Typical Link-Edit Process-Map Listing

Table 7-1. Special Process-Map Messages

Message Meaning

AUTO-INCLUDED Item was, of necessity, automatically included.

EMBEDDED Control statement, as processed, exists within an included object module.

GENERATED A necessary control statement was generated by the linkage editor.

7-2

SORS FILE Control statement processed resides within a source module of linkage editor directives.

RUN UBE MODULE Module was included by default from the job run library (/* item is not printed on

process map).

Diagnostic warnings also may be interspersed among in-error control statements and
the processing triggered by their presence. These messages always are delineated by
five leading dashes (- - - - -) and an error code. They are listed and described in
system messages programmer/operator reference, UP-8076 (current version).

The process map may be suppressed by the declaration of the NOCNTCD keyword
specification in the I I PARAM or LINKOP control statement.

7 .3. UNRESOLVED EXTRN REFERENCE LIST

If, after all include processing terminates, references are made to one or more symbols
for which no corresponding definitions exist, a list of the undefined symbols is output
on the link-edit map and the UPSI byte is set to X'20'. The symbols are not sorted into
any sequence and are listed only for your convenience (Figure 7-2). After this list is
generated - and all relocation and phase sizes, CSECT, and address assignments are
computed - diagnostic messages may be interspersed among the list of undefined
EXTRN references, as applicable.

•

•

•

•

•

•

UP-8062 Rev. 8

•U llR~S OLWE 0 U: FEiE NC~S •

lO 1010 C lO lOlCC AO lOJOC
lO 2070 C AO 2oao c AD 2090 C
lO 3010 C AO 3090 C l031JOC
lO 31JO I: lO 31'0 E Aa101ar
AO 2050 E lO 20&0 E lO 2010 E
lO 30&0 E lO 3010 E AO JO!O E

AO IO•O C
AO 3010 C
lO 3110 C
lO JOlO r
£0 zoao r
AO 30~0 E

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

AC2010C lO .Z020 C A02030C
Au 3020 c AO 3030 C All JO•D C
l03120C lOllJOC AO 31'0 C
AClDJOE lOlO•OE AOZOIOE
lO 2090 E l0301DE AO 1020 E

Figure 7-2. Typical Unresolved EXTRN Reference List

7.4. DEFINITIONS DICTIONARY

7-3

AO 20 .. oc 102osoc 1D2D•DC
AO 30 SOC ID 3D•D C ID JD JDC
10 31 ulJE 10 JUDE IDJIZ0£
A020ZOE I020JOE I02D•DE
AO 10 31JE 10 JD•DE 103050£

The definitions dictionary part of the link-edit map lists and describes all the symbols
referenced in the link-edit job. These symbols are listed alphabetically, in three
horizontal columns (Figure 7-3). Each symbol definition includes:

• a type identification;

• a phase assignment identification for nonshared items;

• a linkage-editor-assigned address when applicable; and

• an optional information character .

•DEFINITIONS orcrx oNAR Y•

SYMBOL. TYPE. PHASE. AO OR~S So iY MBOL. TY~E. PHASE. ADDR;:ss. SYMBOL. TYPE. PHASE• IODAESS.

lD lOIOC EXJR N --•V. -- ------ lC IOJO E EXTRN -- -------- AOlCZOC EXTRll --··· --------
lO J020 E EXTR N -- -- ------ AO J C30 C EXTRN --•V• -------- AO JOJO[rXTRll -- --------
lO lO•O C EXTR N - -n• -- ------ lO JO•OE EXTR Ill -- -------- A02010C [XTRll ---·· --------
AO 2010 E EXTR N -- -- ------ lO 2C20C EXTRN --•v• -------- A02020t: EXTRll -- --------
lO 2010 C EXIR N --n• -------- lO 2010 E EXTR 'I -- -------- A020•0C EXTRll --··· --------
lO 20•0 E EXTR N - - -- ---- -- AO 20SO C EUR"I --•w• -------- A020SOE EXTRll -- --------
lD 20&0 C EXTR N - -•W• -- ------ AO 2C&O E EXTRN -- -------- I02070C EXTRll --··· --------
AO 2070 E EXTR Ill -- -- ---- -- AO 2080 C EXTRN --•'I• -------- A02080E EXTRll -- --------
lO 2090 C EXfR N --•V* -- ------ AO 2C90 E EXTR Ill -- -------- A03010C EXTRll --··· --------
AD 3010 E EXTR N -- -- ----- lC 1020 C EXTR N --•V• -- ------ AO lOZOE EXTR• -- -------
lO 3030 C EXIR N --•V. -------- lO 3030 E EXTRN -- -------- AO lO•O C EXTRll ---·· --------
lO 30•0 E OTRN -- -- ---- -- lO 3CSO C EXTR Ill --•V• -- ------ AO 3050£ EXTRll -- --------
lO 30&0 C EXfli N - -•W• -- ---- -- lO 3060 E EXTR N -- -------- I03070C EXTR• --··· --------
lO 1070 E ExrR N - - -- ------ Au 3080 C EHR N --·~· -- ------ AO 301l0E EXTR• -- --------
lO 30~0 C EXTR N - -•V• -- ---- -- lO 3C90E EXfRN -- -------- AO ll lOC EXTRll --··· --------
lD 31JO E EXTR N -- -- ------ AO lJJOC EXTR N --*V• ------ -- AO 31JOE EXTRll -- --------
AO 3HOC EXfR N --H• -- ------ AO 3J20E EXTRlll -- -- ------ AO 3llOC EXTRll --•V• --------
AD 3130 E EXfR N -- -- ------ lO 31'0 C EXTR 111 --•II• -------- A031'0E EXTRll -- --------
lO SOIC CSO.C T 01 JO OOH 58 lU 501£ ENTRY OJ JO IJCIJ3 SE A0502C CSECT 02 OODOD361
lD 502E ENTR l Ol JO OOJl 72 ~~ 503C CSEC T 03 ~O UOJ3 78 AOSOJE ENTRY 03 DODOD316
•o sate csc:c r o• JO OOH 90 lU SOllE ENTRY o• JO llOJ3 AZ AO SOSC CSECT as OODOD3A8
lO SOSE ENTR I OS JO OOJ3 BE lO SO&C CSfC T 06 JO OOJ3'C8 AO SO&E ENTR1 06 OODOD3£2
lQ SQ7C CSoC T 07 JO uOllE8 lO 507E ENTRY 07 JO OCH 06 AO soac CSECT DI ODDOD'I 10
lO SOIE ENTR l OB JO OOJq 32 lU SC9C CSEC T 09 00 OOJll 38 10509E ENTRY 09 DDDD:l'I SE
lO SI JC cst:c r l:J JO OOH 68 lO SJJE E111TR Y 10 JO (JQJq 92 AO 511C CSECT l l OODOD'l91
lOSlJE ENTR l l 1 JO OQJq C6 lCl SJZC CSEC T JZ JO OOJll DD AO 51 ZE ElllTRY 12 DODODS02
•o sue ts:c T I J JO OOJS 08 lO 513E ENTRY I 3 JOuOJS3£ AOSJ.C CSECT " OQOOD3SI
AO SUE ENTR l I q JO OOJl 92 CE ULP ENTRY ABS J0001S•8 KESRES ENTRY ABS OOOODS'll
LK llUO T CSEC T ROOT JO (JOJO DO

- ~

Figure 7-3. Typical Link-Edit Definitions Dictionary List

Table 7-2 lists the type identifications that may be specified for a symbol and their
meanings.

UP-8062 Rev. 8 SPERRY UNIVAC OS/3

SYSTEM SERVICE PROGRAMS
7-4

Table 7-2. Definitions Dictionary Type Identifications

Type Meaning

coM0 \ 1 dentifies a common section name.

ENTRY I 1 dentifies an absolute or relative entry point definition.

CSECT0 I 1 dentifies a control section name.

EQU I 1 dentifies a link-time-defined symbol for an entry point.

EQU* I 1
dent1fies a link-time reference to the location counter for an entry point.

EXTRN I 1 dentifies a symbol referenced but never defined (also listed in the unresolved EXTRN references list).

CD If a COM or CSECT symbol name is blank, the item listed represents a blank common or unnamed control section,

respectively.

The phase assignment identification identifies the load module in which the symbol
appears. Table 7-3 lists and describes the phase identifications that may appear in this
field.

Table 7-3. Definitions Dictionary Phase Field

Phase Meaning

1-99 Load module phase number

ROOT Root phase

ABS Absolute ENTRY symbol (no phase assignment applicable)

EXTRN symbol (no phase assignment)

SHR Shared definition

The address field is expressed in hexadecimal and may be absolute or relocatable,
depending on the definition type. Dashes appear in the address field of EXTRN symbols.
Blanks appear in the address field of shared definitions since they do not have an
address.

Table 7-4 lists and describes the information characters that also may appear in a
symbol definition. When included, these characters are listed between the PHASE and
ADDRESS fields of a svmbol definition.

Character

G

M

v

Table 7-4. Definitions Dictionary Information Characters

Meaning

Used to identify a dictionary item referenced by text and included in the load module during a partial include
sequence, and defined in another CSECT of the same object module that was not to be included in the load
module. Whenever such a symbol is detected, the linkage editor generates an EXTRN label for the symbol in
hopes of satisfying the reference. No automatic include processing ever is triggered for such references and,
therefore, the symbol remains undefined unless specifically obtained by the user through an INCLUDE or EQU
statement.

Used to identify a symbol that is multiply defined and, therefort!, listed at least twice

Used to indicate that a symbol is a validV-type definition and is a candidate for residence in the entry point table
(KLSNTB) for V-references

•

•

•

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

7-5

Printing of the definitions dictionary can be suppressed by a / / PARAM or LINKOP
control statement that specifies the keyword NODICT; however, suppression of the
definitions dictionary also causes suppression of the phase structure map.

7.5. PHASE STRUCTURE DIAGRAM

A scaled pictorial drawing for multiphase load modules is provided next in the link-edit
map (Figure 7-4). This figure depicts the phase and overlay structure of the load module
being generated. Each phase is shown with its linked load origin in association with
other phases. Each phase is identified by a decimal phase number and its size is listed
in hexadecimal. Vertical bars (Is) represent established node origins; horizontal bars
(dashes) represent the phase lengths. Each printer bar is intended to depict a specific
number of bytes with regard to phase storage needs and is scaled to a predetermined
factor that is specified in the heading of the listing. In Figure 7-4, each horizontal bar
represents OD hexadecimal (13 decimal) bytes.

The phase structure diagram can be suppressed by a / / PARAM or LINKOP control
statement that specifies the keyword NODICT; however, suppression of the phase
structure diagram also causes suppression of the definitions dictionary. In either event,
no phase structure diagram is produced for single-phase load modules .

.. PHASE STRUCTURE•• ~l CH 0 AS~ RE~R ESEN TS 0 HEX en ES

I 13 ••o • ----I
I 12°38°

---- I
I 11 •31•

I 10°30°
----I
I 09°50°

---I
[08 •2 ••

---[

I 07°28°
-- I
I J6 °2J 0

--I
l J5°?0°

--I
I H 0 U 0

--I
I 03°11•

-I
I 02°10°

-I
I Jl 0 1J"
I I
I I J> 0 J 0

-----I
I H ·~J·

-- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----1
I 00°3 >8°

Figure 7-4. Typical Phase Structure Diagram

UP-8062 Rev. 8

7.6. ALLOCATION MAP

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

7-6

The allocation map provides a detailed description of the items processed during the
link-edit operation. The following information, depending on the // PARAM or LINKOP
specified parameters, may include:

• the name and size of the load module;

• the link-edit assigned name of each phase (and possible alias name) and an
indication of any common storage areas assigned to the phase (COMMON indicates
residence in current phase);

• the origin, length, and high address of each phase;

• the transfer address assigned to each phase;

• the name, type, and ESID of each definition or reference processed;

• the linked origin, high address, length, and object module origin (if applicable) of
each definition or reference processed;

NOTE:

Certain language processors omit the length field in the CSECT record but indicate
it in the transfer record. When the linkage editor lists such a CSECT, the high
address is omitted, the word DEFERRED appears under the LENGTH heading, and
the code L appears under the FLAG heading. The actual CSECT length is printed
when the transfer record is listed. Blanks appear in the link origin high address and
length field for shared definitions.

• a set of flag codes for items representing special conditions;

• a relist of interspersed control statements that triggered the results shown;

• an indication of the accessed object modules and whether they were automatically
included; and

• object module transfer records processed. If the deferred length is present, it is
printed under LENGTH and the code L appears under FLAG.

Figure 7-5 illustrates a typical allocation map.

•

•

•

UP-8062 Rev. 8

• L DAD "OJU LE - SK l JO 0

PHASE NA"E TRUS AlDll FLA S L AB~L
SlllJOOOJ N30 E - QOOT

••• S TUT OF Auro-nCLUOE 0 ~LEN~NTS -

• •• ENO OF AUTO-INCLUDED ELE"ENTS •••
- OJ/Ol/7' ZOoO - LK 1R30 T

LK lRJO T
C JO JOJO il

S 111JO DGl NOOE - 110 DE11
- OJ/Ul/7• l6 .5& - AO 5

AO SOlC
AC SO IE

0)0 0035 8
S 1110D DOZ NJDE - 110 OEJ2

- OJ/:J117• J6.5& - AO 5
AO 50lC
AO ';Olf

L.JO &JC 56 8
S lllJO OCJ NOOE - 110 :>EJJ

- CJ/Gll7• J6.5~ - lJS
lC'>OlC
ac:;cst

CJOOOJ78
S 111JO DO• NJO E - MO OEH

- CJ/Ol/711 J6.56 - AO 5
Ac sett
AC SO•l

0)000590
S UJO OGS hJDE - 110 OEJS

- CJ/0117• J6.56 - AC 5
AO SD>C
AO 50SE

GJO 003' 8
s 11uo ao~ NOOE - llD OEJ6

- OJ/ 0117• J6 .56 - AO 5
AO SOoC
AO SOoE

GJD003C8
s111Joao1 hOOE - 110 OEJ7 • - OJ/ 0117 • J6 .56 - AGS

&O SOIC
AG 507E

C JO !JU3E 8
SlllJOOOB N)O(- •o JEJ8

- OJ/0117·• Jb.56 - lO 5
AC SCiC
lO SO it:

GJG U0'1 Q

SlllJOil09 1130(- 110 OEJ9
- 0)/0117• J6.5b - lO 5

Aosoic
AO SOil

LJO uG•ld
S Ill JO Oll NJUE - ~o 01:10

- OJ/Ql/7q Jb.5~ - lO 5
A031JC
AO SIJE

CJO OIH6 8

PHASE NA" E T Rl~S llDR FLA Ii LlBi:L
SUJOOll N30E - llOi>Ell

- CJ/ 01'7 • J6 .56 - AO 5
ao sue
AO SHE

OJ0u0'98
SlllJOOIZ NJOE - 110 OEIZ

- uJ/ 0117 • J6 .s6 - lO 5
ACSIZC
AO 5 llE

UJ~ OO•O a
SUJ0\113 h30C - 110 OEIJ

- OJ/ 0117• J6 .s~ - lC 5
&O SBC
A05Ut:

CJOOC508
51111001' N30E - !110 OE1'

- Ol/0117• J6.5& - AO:;
ao snc
l051'E

OJ000358
s 11100 015 NGOE - 110 DEIS
-----11012 - iK IOJOIS ZEllO LE llGTH PH as::

CJOOOJ98 • .___ -

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

•• ALLJClTION ~AP••

SIZE - OJO &JCS• 8

TYPE EStl L NK 0 RG
JO OOJO ao

3BJ
cs:..c T 02 JO OOJO JO

(1000J3!i8
3tjJ

cs~c T (13 JO JOJ3 58
C:NTRY 13 JO:JOJ35E

JO D0J3&8
J8J

cs~c T]q JOODJ368
t:N TRY)4 JO'lCl372

JOOOJ378
;jflJ

cst:c T ilS JO OOJ3 78
ENTRY :JS JO J0J3 86

JO OOJJ 90
:l&J

cs::c T '.16 JO OOJ3 90
:N TRY)6 JO ODJ3A2

JO 00l3Aa
OBJ

cs:c T 07 JOCDJJU
i:N TRY 07 JOOOJJBE

JO OOJ3 ca
)bJ

cst:c T :l8 JO 00llC8
EN TRY 08 JO JOJ3E2

JOOOllEB
3&J

CSC.C T 09 JOOOJ3E8
ENTRY 09 JO OOJq 06

JOOOJq 10
OBJ

cs~c T Ol JO OOH 10
C.N TRt OA JOCCJq 32

JO OOJq 18
aaJ

CSEC T OB JO OCJq J8
~N TRY ne JO OCH SE

JOOC.lq &8
311J

CSEC T oc JO OCJq 68
ENTRY oc JOOOJq9z

TYPE ESIJ LNM ORG
JO r,QJq 98

OBJ
cs~c T JO JDOOJq 98

i:N TRY 00 JOOOJqC6

JO OOH DO
3BJ

CSEC T JE JO OOJq DO
i:N TIU JE J000l5:12

JO aOJ5 J8
;»OJ

cs~c T OF JO OOJ5 08
i:N TRY OF JOOOJS JE

JOJOJ358
~llJ

CS<:C T 10 JO ODJ358
:N TRt 10 J000l392

JO ODJ3 98

Figure 7-5. Typical Allocation Map

7-7

HlAi>DR LEN&TH OBJ OR&
J0(10J358 JO DD03 sa

J0\10)3 58 JD 0003 58 DDODODOD

JOOC.a368 JO!IDDD ID

JOOOJ368 JOOOilO 10 oDoDODDa
DODO OD DE

.)000:1378 JDDDDD ID

JOJOJ3 78 JO DODD 10 ODDDDD 11
DDODODZ2

:>OJOJ390 JODD:JD 18

JOOOJ39D ODOODD 18 DDDD:J021
DO DODD J6

JO 00 J3 A8 JODO:JD 18

JOJCJ3A8 JOOOOD 18 OODDDD•D
ODOODD52

JDOO!l3C8 JoooaDzo

JOOC:J3C8 JOOOJ020 00000058
ODDDDD6E

JOOCJ3!:8 JO::JO!J020

J0'10J3E8 '.lODO:J020 ODODDD11
DDODD092

JO JQiJq 10 JO uaoo 28

JOJCDq 10 JODOJ028 00DDD098
DDDODDl6

JO JQ!Jq J8 J0000028

JGJCJ•U JOilOD028 OOOOODCO
OODDOOEZ

.JO acaq i.a JO JO::JO JO

JOJOJq69 JO DOilO JO :JDDOiJDEI
OODDDI OE

.IOJOQq 18 J!lllOJO JD

JOJuJq 98 JO\IOJO JO DOODDl 11
DODDDI •z

HU DOR LENiTH OBJ OR&
JOOQJq DO JODODOJ8

JOOO!l• 00 :io ooao JI OODDOl '8
DOOOD176

JODO:J508 OOOODD JB

J0[)0!]5J8 JO DODO J8 OODDDI ID
ODOOOl 12

JOOOJ5'18 !lODDDO•O

ao aous •8 !JOOODO•O DD00Dll8
DDDDDIEE

()000i1398 OOOODO•O

JOOGJ398 JOOOOO •D !JDOOOI F8
00000232

J0000398 (10000000

,..

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

7-8

7.7. ERROR LEGEND, ERROR COUNT LIST, AND UPSI SETTING

The final part of the link-edit map concerns the termination of the link-edit job itself. An
error code legend is printed, indicating the meanings of flags that may have been
detected during the link-edit job. The error legend is followed by a printout showing a
count of the number of errors appearing in the link-edit map and an UPSI byte setting at
the end of the map. Table 7-5 summarizes the flag code legend.

Flag Code

B

D

E

G

L

M

N

p

R

s

u

v

Table 7-5. Error Legend and Count List Flag Code Descriptions

Descriptions

The control section is considered a block data CSECT and is to be used to load a common storage
area.

The item has been automatically deleted because another relative definition for the same symbol is
in the same path or one absolute definition already exists. If a transfer record is involved. the item
has not been accepted for processing because no valid address is in the record.

A direct A-type reference has been made, which is exclusive and whose definition may not be
resident with the reference.

An EXTRN has been generated because of the partial inclusion of a control section whose text
references a control section not included.

AV-type reference has been made to a definition that is inclusive and, therefore, has been converted
to a direct A-type reference.

A deferred CSECT or COMMON length is in effect and the actual length is listed with the object
module transfer record.

The item is validly multiply defined in this link edit.

The item has not been included because of a partial include, which purposely omitted it.

The item, which is a COM storage area, has been promoted to another phase based on the phases
in which it was declared, the references pointing to it, and the block data CSECTS, which load it.

A shared record has been produced for this item.

This is a shared item.

The item was unresolved and remains undefined in the load module.

The item is a V-CON item and will be loaded automatically when referenced by a V-type constant.

If the link-edit job has been successful, a completion message and the date time will so
indicate. Figure 7-6 illustrates a typical error legend and count listing.

•

•

•

•

•

•

UP-8062 Rev. 8

B - BLK O&TI CSFCT
l - llf'l'I' l'llfn lfll6TH
S - SH&llEO JTFM

n - &UTO-OELFT£0
11 - llUL TJPLY OEl'JllED
U - UNDEl'lllED l'fl'

•ANY OTHfll CODES llfPllFSENT PllOCFSS FllllOllS•

LJNK FDJT 01' 0 PllU06° COMPLFTED
DITf'- 17107106 TJllE- IJ.•5
fllllOllS F NCOUNTEllED- DODD UPSJ - x•oo.

SPERRY UNIV AC OS/3
SYSTEM SERVICE PROGRAMS

l'l 16 CODES -
f - fXCLUSJVE •&• llfl' 6 - 6ENflllTED EITllN
N - NOT INCLUDED P - PROMOTED COMMON
V - VCON ITEM

7-9

J - INCLUSIVE •v• llEI'
II - SH&llED llEC PllODUCED

1...-----------------~----------~----------------~--~------------~----~-----J
Figure 7-6. Typical Error Legend and Count List

•

•

•

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

8-1

8. Program Examples

A representative set of link-edit jobs is illustrated in this section. Figure 8-1 illustrates a
typical job control stream that could be used to execute the linkage editor, while Figures
8-2 through 8-6 illustrate the link-edit maps produced for each job. Figure 8-2
illustrates a rather simple single phase load module. Figures 8-3 through 8-5 illustrate
some typical multiphase load modules, and Figure 8-6 illustrates a rather sophisticated
multiphase load module.

1 10 16

II JOB LINKSTA

II DVC 20 II LFD PRNTR

II WORK1

II EXEC LNKEDT

/$

** LINKAGE EDITOR CONTROL STATEMENTS GO HERE **
I*
!&
II FIN

NOTES:

1. When storage is available, the job card should specify a maximum
storage size of X'8000' for optimum performance. If you omit the
maximum main storage parameter, job control allocates the
minimum and maximum main storage requirements to execute the
linkage editor. The speed of the linkage editor is directly related to
the amount of main storage allocated to the job.

2. The printer must always be allocated regardless of the fact that the
list options selected may cause only minimal printing.

3. If the keyword parameter EXTSP is coded on WORK 1 jproc, a
minimum value of 5 must be specified.

Figure 8-1. Typical Linkage Editor Job Control Stream (Part 1 of 2)

UP-8062 Rev. 8

4.

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

In addition to using the / / EXEC LNKEDT statement to call the
linkage editor, a job procedure call statement ijproc call) is also
available. The jproc call is an easier method for executing the linkage
editor. For example, if all the defaults associated with either the
LINKOPT or II PARAM statement were utilized, and the only other
linkage editor control statement required was the LOADM
statement, the following jproc call can be used:

//LINK

When you use this one statement, the following is automatically
generated:

• printer assignment:

• work file;

• EXEC LNKEDT statement;

• I I LOADM statement; and

• data delimiters (/$ and r1 job control statements.

You can alter the default conditions by using the optional
parameters. By choosing the optional parameters, you can use a
specific printer, a certain scratch file, a specific file containing the
load module, etc.

For more information about the jproc call, refer to the job control
user guide, UP-8065 (current version).

Figure 8-1. Typical Linkage Editor Job Control Stream (Pan 2 of 2)

8-2

•

•

•

•
UNIVAC SYSTEM OS/3 LINKAGE EDI OR
DATE- 7710olD9 TIHE- D7.33

CONTROL STREAM ENCOUNTERED AND PROCESSED AS FOLLOWS-

II PARAM RLIBIOBJHOS
II PARAH OUTUNiil
IS

LINKOP NOA T
LOADH SKl
ENTER LIB3MOD9

-----K031-CONTROL CARD PLACEMENT ERROR
-----KOOS-ENTER OPERAND UNKNOWN

INCLUDE LKlROOT,OBJMOS
-----K031-CONTROL CARD PLACEMENT ERROR

•

INCLUDE AOliADIDlOC,ADl020C,A0103DC,AD10qQCiil,OBJMOS
INCLUDE A02iAD2DSDCiil,OBJMOS
INCLUDE AD3,0BJMOS
INCLUDE ADliADliil,OBJMOS
INCLUDE AD2iAD2040C,A0203DC,A02020C,A0201DC,A02iil,OBJMOS
INCLUDE A02iA02090C,A02080C,A02070C,AD2060Ciil,OBJMOS

'*
•OEFI~ITIONS DICTIONARY•

SVM~OLo TYPE, PHASE, ADDRESS. SYMBOL, TYPE, PHASE• ADORE SS,

ADI C~ECT ROOT 0000117 A01010C CSE CT ROOT 00000358
A01020C CHCT ROOT OD0003ED A01020E ENTRY ROOT 00000468
AOI030E ENTRY ROOT 000004F t A01040C CSE CT ROOT 00000500
A02 CSE CT ROOT 0000118C A02010C CSE CT ROOT 00001188
A0202DC CSE CT ROOT 0000122 A02020E ENTRY ROOT DDOD12C4
A02030E ENTRY ROOT 0000136 A02040C CSE CT ROOT 00001370
A020SOC CSE CT ROOT 0000059~ AOZDSOE ENTRY ROOT 000006'10
AOZO&DE El'<TRY ROOT D00014C4 A02070C CSECT ROOT 000014C8
AD2080C CSE CT ROOT 00001580 A02080E ENTRY ROOT 00001034
A0209DE ENTRY ROOT 000016F c A03 CSE CT ROOT 00000648
A03DIOE ENTRY ROOT 000006F c A03.02DC CSE CT ROOT 00000700
A03030C CSECT ROOT 00000783 A03030E ENTRY ROOT 0000086C
AO 3040E ENTRY ROOT 0000092b A03050C CSE CT ROOT 00000930
A03060C CSE CT ROOT 000009F u A03060E ENTRY ROOT OOOOOABO
A03070E ENTRY ROOT DDDDDB7C A03080C CSE CT ROOT ODDDDB80
AD3090C CSECT ROOT OOOOOCSu A03090E EN·TRY ROOT OOODDOlC
A03100E fNTRY ROOT OOOOOOF C A03110C CSE CT ROOT OOODOOF8
A0312DC CSE CT ROOT OOOOOEOO A0312DE ENTRY ROOT OOOOOFA8
AD3130E ENTRY ROOT 0000108• AOJlqQC CSE CT ROOT 00001090
KEULP ENTRY ABS 000016f ~ KESRES ENTRY ABS 000016Fq

•• ALLOCATION HAP ••

LOAD MODULE - SKlOOO SIZE - 000016F4

JCL00130
JCLD0140
JCLDDlSD

JCLODloD

JCL00170
JCL00180
JCL00!90
JCLD0200
JCL00210
JCL00220

SYMROL. TYPE,

A01010E ENTRY
A01030C CSECT
A0104DE ENTRY
A02010E ENTRY
A02030C CSE CT
A02040E ENTRY
A02060C CSE CT
A02070E ENTRY
A02090C CSECT
A03010C CSECT
A0302DE ENTRY
AD 3040C CSECT
A03£150E ENTRY
AD 3070C CSECT
AO 3080E ENTRY
A0310DC CSE CT
A0311DE ENTRY
A03130C CSECT
A03140E ENTltY
LKlROOT CSECT

Figure 8-2. Link-Edit Example 1 (Part 1 of 3)

VER77050 3

PHASE. A00RE5S.

ROOT DDD003DC
ROOT 00000470
ROOT 00000•90
ROOT 00001220
ROOT DDDD12C8
ROOT 00001414
ROOT 00001q1e
ROOT 00001578
ROOT 00001638
ROOT 00000650
ROOT 000007BO
ROOT DODOO HO
ROOT 000009EC
ROOT 00000 ABS
ROOT DDOOOC48
ROOT 00000020
ROOT ooooor.cc
ROOT ooooorBo
ROOT 00001170
ROOT 00000000

•

~

c
-0
do
0
Ol
N

:::0
~
00

(J)
-I (J)
m -o
S:: m :::0
(J) :::0
m -<
:::oc
:5 z
(') -m<
-0)>
:::0 (')
00
G> (J)
:::o­
l> w
s::
(J)

00
I w

c ,,
00

HIADDR LENGTH OBJ ORG
0

PHASE NAPIE TRANS AOOR FLAG LABEL TYPE E SID LNK ORG 0)

SKIDDDDD NODE - ROOT 00000000 0000161'3 0000161'" "->

*** START OF AUTO-INCLUDED ELEPIENTS - ::0
*** ENO OF AUTO-INCLUOEO ELEMENTS - CD

- 75/07/02 11.q9 - LK !ROOT OBJ :<
LKIROOT CSECT OJ 00000000 00000353 0000035 .. 00000000 00

- 75/06/27 12.23 - AOJ OBJ
AOJDlOC CSECT 02 00000 358 000003DF 00000088 00000008
A01020C CSE CT lE 000003£0 00000 .. 68 oooooo8c 00000090
AOJ030C CSE CT If" 000001170 oooooqFF 00000090 00000120
ADlOqQC CSECT 20 00000500 00000593 0000009 .. OOOOOIBO
AOIOlOE ENTRY 02 DODOD3DC oooooo8c
AOI020E ENTRY IE 00000•68 00000118
AOI030E ENTRY IF oooooqrc 00000 !AC
AOJOqQE ENTRY 20 00000590 000002qo

- 75/06/27 12.25 - A02 OBJ
A02050C CSECT 21 00000598 000006 .. 3 OOOOOOAC 00000298
A02050E ENTRY 21 oopoo6qD 000003 .. 0

- 75/06/27 12.28 - A03 OBJ
A03 CSfCT OJ 000006 .. 8 000006 .. 9 00000002 00000000
A03010C CSE CT 02 00000650 000006FF 00000080 00000008
A03020C CSECT IE 00000700 000007B3 ooooooeq ooooone8
AO 3030C CSE CT IF 00000788 00000861' 00000088 00000170
AD 30 .. 0C CSEC'T 20 00000870 0000092R ODDOOOBC 00000728
A03050C CSE CT 21 00000930 000009EF ooooooco 000002[8
A03060C CSE CT 22 000009FO D0000AB3 oooooocq 000003A8 CJ)

AD3070C CSE CT 23 OOOOOA88 000008 7~ ooooooce oooooq10 -<
A03080C CSE CT 2q OODODRBO ooooocqe oooooocc 00000538 CJ) CJ)

AO 3090C CSECT 25 OOOOOC50 OOOOOOlF 00000000 00000608
-I ,,
mm

A03JOOC CSE CT 26 00000020 OOOOOOF3 0000000 .. 00000608 s: ::0
AO 311 OC CSECT 27 OOOOOOF8 OOOOOECF 00000008 00000780 CJ) ::0
A03120C CSECT 28 00000[00 OOOOOFAB oooooooc 00000888 m -<
A03130C CSE CT 29 OOOOOF80 0000108F OOOOOOEO 00000968 ::0 c
A031 .. 0C CSE CT 2A 00001090 00001173 OOOOOOfq oooooaq8 :5 z
A03010E ENTRY 02 000006FC OOOOOOB .. () -m<
A03020E ENTRY lE 00000780 0000016~ ,,)>
AO 30 JOE ENTRY IF 0000086C 0000022 .. ::0 ()
AO 30 .. 0E ENTRY 20 00000928 OOOOD2ED oo
A03050E ENTRY 21 DD0009EC DODOO JAq G> CJ)
AO 3060E ENTRY 22 OODDDABD 000001168 ::0 ..._

A03070E ENTRY 23 DDDDD87C 0000053 ..)> w
AO 3080E ENTRY 2 .. oooooc.,8 00000600 s:
A03090E ENTRY 25 DODOOOlC 0000060• CJ)

A031DOE ENTRY· 26 ODOOOOFO 000007A8
A03110E ENTRY 27 OODDDECC 0000088 ..
A03120E ENTRY 28 OODOOFA8 00000960
AO 3130E ENTRY 29 0000108C 00000
A031110E ENTRY 2A 00001170 00000828

- 75/06/27 12.23 - AOI OBJ
ADI CSECT DI 00001178 00001179 00000002 00000000

- 75/06/27 12.25 - A02 OBJ
A02 CSECT DI 00001180 00001181 00000002 00000000
AD2010C CSECT 02 00001188 00001223 ODDD009C 00000008
A02020C CSECT IE 00001228 000012C7 OOODODAO ODOOOOAI
A02030C CSECT IF ODD012C8 00001368 0000001" DDOOOlll8
A0201l0C CSE CT 20 00001370 000011117 OOOOOOA8 DOOOOIFD

Figure 8-2. link-Edit Example 1 (Part 2 of 3) I co
I
~

• • •

•

PHA~E NAHE TRANS AODR FLAG LABEL
AD20JOE
A02D20E
A02030E
AOZOqDE

- 1s1D6121 12.2s - A02
A0206DC
AD2070C
AD2080C
A0209DC
AD206DE
ADZD70E
AD2080E
A02090E

OOODDDDD

B - BLK DATA CSECT D - AUTO-DELETED
L - DEFERRED LENGTH M - MULTIPLY DEFINED
S - SHARED ITEM U - UNDEFINED REF
•ANY OTHER CODES REPRESENT PROCtSS ERRORS*

LINK EDIT OF .SKJDOD. COMPLETED
DATE- 77/06/D9 TIME- D7,Jq
EPRORS ENCOUNTERED- DDD3 UPSI- x.DD,

-

•

TYPE ESIO LNK ORG HIADDR
ENTRY 02 DOD01220
ENTRY IE Dooo12cq
ENTRY IF 00001368
ENTRY ZD ODDOJq)q
OBJ

CSECT 22 DODD1q1s DOD01qc1
CSECT 23 . ooDo 1 qc8 OOOOJS7R
CSECT zq ODDDJ58D 00001637
CSE CT 25 DODOl638 DDDOJ6F3

ENTRY 22 ooDoJqcq
ENTRY 23 DOODJ578
ENTRY zq DDODJ6Jq
ENTRY ZS ODODl6FD

FLAG CODES -
E - EXCLUSIVE •A• REF
N - NOT INCLUDED

G - GENERATED EXTRN
P - PROMOTED COMMON

V - VCON JTEH

Figure 8-2. Link-Edit Example 1 (Part 3 of 3)

LENGTH OBJ ~RG
DOOOOOAO
DDDDDJqq
00000 IE 8
OOOOD29q

OOODOOBO 000003-8
ODODDOBq 000003F8
DOOODOB8 ODODoqsD
ODOOODBC DOODD568

DDODOJFq
ODOOD08
DDOODS6q
OODDObZO

I - INCLUSIVE .v, REF
R - SHARED REC PRODUCED

•
c
"'O
Co
0
Ol
N

~
co

~
~en m -o
S:: m ::0
en :o
m -<
::0 c
~z
(") -m<
"'O)>
::0 (")
00
G> en
::0 -­)> w
s::
en

co
I

(11

•

UNIVAC SYSTEM OS/3 LINKAGE EOITOR
OATE- 77/06/09 TIHE- 07.30

CONTROL STREAM ENCOUNTERED IND PROCESSED AS FOLLOWS-

II PARAM RLIBIOBJHOc
II PARAH OUTUNil
a

LOIOH SKl
LINKOP NOi' T
INCLUDE LKIROOT,OBJHOS
OVERLI Y 11
INCLUDE ADllAD101DC,IDIDZDC,ADID3DC,IDIOqoca,oeJHOS
INCLUDE ID21102DSDCi,OBJMOS
INCLUDE 103,0BJMOS
INCLUDE IOllADJil,OBJMOS
INCLUDE 10211020,oc,10203oc,10202oc,10201oc,Ao2a,oeJMOS
INCLUDE 1021102090C,ID2080C,10207DC,102060Cil,OBJMOS'
OVERLAY II
INCLUDE •OlllDIDIOC,101D20C,AD1030C,IDJOqoca,osJMOS
INCLUDE 10211D2DSOCi,OBJMOS
INCLUDE A03,08JMOS
INCLUDE AOllAOli,OBJMOS
INCLUDE 1021Aozoqoc,1ozo3oc,10202oc,Ao201oc,102a,oeJMOS
INCLUDE A02tl02090C,A02080C,AD2070Ci,DBJMOS
ENTER IOZO·OC

-----K03D-,NTER OPERAND NOT IN CURRENT PITH
I•

•PNRESOLYED REFERENCES•

Kl\OCP

S Yf190L. TYPE• PHISl. llJDRESS.

ADI CSE CT DI M ODD0123U
AOIOIOC CSE CT 02 " ooDDDq1..;
AOID20C CSECT DI •V•H OODOOq9b
ADID2DE E~TRY 02 H OOODDS2J
AOID30E lNTRY 01 " 000005eq
101oqoc C!ECT 02 H 0000058;
A02 CSE CT 01 M OOODl23b
AOZDIOC CSE CT 02 H 0000123<,
A02020C CSE CT Ol•V•H 000012[0
A02020E ENTRY 02 H 0000137'
A02030E ENTRY 01 H 00001'20
Ao2oqoc CSE CT 02 M OCDDlqz~
AD205DC CSECT Ol•V•H 00000650
A0205DE ENTRY 02 H ODDDD6F o
A02070C CSE CT Dl•V•H 00001580

•DEFINITIONS DICTIONARY•

SYMBOL. TYPE. PHASE. ADDRESS•

AOI CSE CT 02 M 00D01230
AOIOIOE ENTRY 01 M 0000Dq9q
IDID2DC CSE CT 02 M ODDOOq98
AD1030C CSECT Dl•V•M 00000528
101030[EN·TRY 02 M OODDOSBq
Ao1oqoE ENTRY 01 M ODDD06q8
ADZ CSE CT oz " 00001,20
A0201DE ENTRY 01 M 000012D8
A0202DC CSE CT 02 H 000012D8
102030C CSE CT OUV•M 00001380
AD203DE ENTRY 02 M 000Dlql8
ADzoqoE ENTRY 01 H DDDDHCC
IDZOSDC CSECT 02 M 00000650
AD206DC CSE CT Dl•V• ODDO HOD
AD207DC CSECT 02 H DDDDHOO

JCLDDJ30
JCLOOJqO
JCLDD150
JCL00160
JCLDOJ70
JCLDD180
JCL00190
JCLOD200
JCL00210
JCL00220
JCLDD230
JCLDD2qO
JCLDD250
JCL0026D
JCL00270
JCLOD280
JCLD0290
JCL003DO

SYMBOL. TYPE.

AOIOIOC CSE CT
ADIOIOE ENTRY
A0102DE ENTRY
10103DC CSECT
101oqoc CSE CT
IDIOqOE ENTRY
A02010C CSECT
AD2010E ENTRY
A02020E ENTRY
AD203DC CSECT
1020,oc CSECT
Ao20,0E ENTRY
102DSDE ENTRY
A0206DE ENTRY
AD2070E ENTRY

Figure 8-3. Link-Edit Example 2 (Part 1 of 6)

•

VER77DSD3

PHASE. ADDRESS.

01•Y•H 000Doq10
02 " DOODoq9q
DI M 00000520
02 M 00000528
Ol•V•H 00000588
02 M DDOOObqs
Dl•V•H OODDl2qO
02 H D0001200
01 11 OODOl 37C
02 H 00001 378
Dl•V•M 00001428
02 H OOODlqCC
DI H DDDD06F8
DI DDDD157C
DI H 00001630

•

~

c
-a
00
0
a>
N

::0
CD
~
00

en
-I en
m""O
S: m ::0
en ::o
m -<
::0 c
:5 z
(") -m<
-a)>
::0 (")
oo
G> en
:::0-...
)> w
s:
en

00

b

• •

A02070E ENTRY 02 M 0000158 U A02080C CSECT Ol•V•H 00001638 A02080C
A02080E ENTRY 01 H 000016EC A02080E ENTRY 02 H 0000163C A02090C
A02090C CSHT 02 " 000016•0 A02090E ENTRY 01 " 000017'8 A02090E
AO 3 CSE CT 01 " 0000070J A03 CSE CT 02 " 00000700 A03010C
ao3010C C SECT 02 H 00000700 A03010E ENTRY 01 " 0000078• A03010E
A03020C CSE CT Ol*V•M 0000078d A03020C CSE CT 02 11 00000788 A0302DE
A03020E ENTRY 02 " 00000868 A03030C CSE CT Ol•V•H 00000870 A03030C
~03030E ENTRY 01 " 0000092• A03030E ENTRY 02 " 0000092'1 A030'10C
AD3Dooc CSE CT 02 " 00000928 A030'10E ENTRY 01 H 000009EO A030'10E
A03050C CSE CT Ol•V•H 000009[A03050C CSE CT 02 " 000009E8 A030SOE
A03050E ENTRY oz M OOOOOAA• A03060C CSE CT Ol•V•M OOOOOAA8 A03060C
A03060E E"TRY 01 11 00000868 A03060E ENTRY 02 11 00000968 A03070C
A03070C C SECT 02 11 OOOOOBL A03070£ ENTRY 01 H OOOOOC3'1 A03.070E
•o3osrc CSE CT Ol•V•M OOOOOC38 A03080C CSE CT 02 11 oooooc 38 A03080E
A03080E ENTRY 02 M uOOOOOOO A03090C CSE CT Ol•V•l1 00000008 A03090C
A03090E ENTRY 01 H 00000000 A03090E ENTRY oz M 0000000• A03100C
A03 IOOC CSE CT 02 H 0000000 o A03100E ENTRY 01 M OOOOOE A 8 A03100E
A0311DC CSE CT Ol•V•M OOOOOEBL A03110C CSECT 02 M OOOOOEBO AO 311 OE
~03110E ENTRY 02 H OOOOOFB• A03120C CSECT 01* V*l1 OOOOOf,88 A03120C
A03120E ENTRY 01 "' 00001060 A03120E ENTRY 02 11 00001060 A03130C
A03130C C~ECT 02 M 0000l06c A03130E ENTRY 01 11 000011 •• A03130E
A03l•OC CSE CT Ol•V•M OOOOll•B A03l•OC CSE CT 02 11 000011•8 A03l•OE
A03l•DE ENTRY 02 " 0000122 KESALP ENTRY ABS 00001 HC KESRES
KL\NTB ENTRY ROOT 00000000 KLSOCP EXTRN -- -------- KLSPT8
LKlROOT CSECT ROOT OOOOOOBc

Figure 8-3. Link-Edit Example 2 (Part 2 of 6)

CSECT 02 " 00001588
CSECT Ol*V•H 000016f0
ENTRY 02 11 000016f8
CSECT 0 l*V •H 00000708
ENTRY 02 H 00000780
ENTRY 01 " 00000~68
CSECT 02 " 00000870
CSE CT 01 •V •H 00000928
ENTRY 02 " 000009EO
ENTRY 01 H 00000 AA•
CSECT 02 M OOOOOAA8
CSECT 0 l •V *" 000009 70
ENTRY 02 H OOOOOC3•
ENTRY 01 H 00000000
CSE CT 02 M 00000008
CSECT Ol•V•H 00000008
ENTRY 02 H 00000'A8
ENTRY 01 11 OOOOOF8•
CSECT 02 11 00000 '88
CSE CT Dl*Y*M 00001068
ENTRY 02 11 000011••
ENTRY 01 H 00001228
ENTRY ABS 00001 HC
ENTRY ROOT 0000008•

•
c
"ti
do
0
a>
I\.)

:lJ
CD
~
00

en
-< en
-t en m "ti
~m :lJ
en :JJ
m -<
:lJ c
:5 z
(') -m<
"ti)>
:lJ (')

00
G> en
:lJ -­)> w
~ en

00
I,

UP-8062 Rev. 8

0 ,..

::z:

"' "' Q

x ..,
"' ...
,...
"'
Q
z ...
"' ...
"' a..
~

"'
"' ,...
"' x ...
::z:

* *
"' ~
u
::>

"' ...
"' ...
"' "' x
a..
* *

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

\

iQ"
0
I')

t:
~ ...,.
C\j

-91

~
Ill

I ~
·t:
~
~ .s:
-..I

~
2?
::i

~

..; ..;
"' "' "' ...

0:
0 0

...
I
I
I
I
I
I
I
I
I u I I 0
I " I
~ I

I 0
I
I

8-8

•

•

•

• • •
c
"'O
00
0
Ol

•• ALLOCATION MAP ** N

:0
LOAD MODULE - SKI ODO S IZf - OOOOl 7AC CD

~
PHASE NAME TRANS ACOR FLAG LABEL TYPE ESIO LNK ORG HIAOOR LENGTH OBJ ORG co
SKlOOOOO NOOE - ROOT 00000000 oooooqoe oooooqoc
••• START OF AUTO-INCLUDED ELEMENTS -
••• ENO OF AUTO-INCLUDED ELEMENTS -

- 75/07/02 11.q9 - LK !ROOT OBJ
LKlROOT CSECT 01 00000088 oooooqoa ODOD035q 00000000

OOOOOOB8
<•100001 NOOE - Al oooooq10 000017AB DDODl 39C

- 75/0b/27 12.23 - ADI OBJ
AOIOIOC CSECT 02 00000410 oooooq97 000000~8 OOOOOOOR
A01020C CSECT IE 00000498 00000523 0000008C 00000090
A0!030C CSECT IF 00000528 00000587 00000090 00000120
AOIQqQC CSECT 20 00000588 ooooo&qR 00000094 00000180
AOIOIOE ENTRY 02 oocaaq9q oocooo8c
A01020E ENTRY IE cccccs20 0000011 R
A01030E ENTRY IF oocoossq OCCOOIAC
AOIQqOE ENTRY 20 OOOOO&qe 000002•0

- 1510&121 12.25 - A02 OPJ
A02050C CSE CT 21 00000650 OOOOOH~ OOOOOOAC 00000298
A02050E ENTRY 21 000006F8 000003qc

- 75/06/27 12.28 - A03 OBJ Ul
A03 CSE CT 01 00000700 00000701 00000002 00000000 -<
A03010C CSE CT 02 00000708 00000787 OOOOOOBO 00000008 Ul Ul
A03020C CSE CT IE 00000788 000008&8 0000000q 00000088 -i "'O mm
A03030C CSECT IF 00000870 00000927 0000008R 00000170 s: :0
A03040C CSECT 20 00000928 000009E3 0000008C 00000228 Ul :0
A03050C C SECT 21 000009£8 OOCDOAA7 cccoacco 000002[8 m -<
A030&0C CSECT 22 OOOOOAA8 000008bP ooooooc• 000003A8 :0 c
A03070C CSE CT 23 00000870 OOOOOC37 OOOOOOC8 oooooq10 :s z
A03080C CSECT 2q OOOOOC38 00000003 oooooocc 00000538 n-m<
AO 3090C CSE CT 25 00000008 00000007 0000000(1 OOOOO&OA "'O)>
A03100C CSE CT 2b 00000008 OOOOOEAR 00000004 00000608 :0 ()
A03110C CSECT 27 00000£80 OOOOOF87 00000008 00000780 00
A03120C CSECT 28 OOOODF88 0000101>3 OOOOOODC OOOOOA88 G) Ul
A03!30C CSECT 29 0000101>8 000011q7 000000[0 00000%8 :0--..
Ao31qoc CSE CT 2A 000011q8 00001228 OOOOOOEq oooooaqe)> w
A0301DE ENTRY 02 OOOOD7Bq ooocoosq s:
AO 3020E ENTRY IE 000008&8 0000011>8 Ul

A03030E ENTRY IF 00000924 00000224
ao 3oqor ENTRY 20 000009[0 000002EO
A03050£ ENTRY 21 oooooAAq DODOO 3A4
A0301>CE ENTRY 22 DDDDDB&8 ococoq1>a
AO 307DE ENTllY 23 coccoC3q 0000053q
A03080E ENTRY 2q 00000000 00000600
AD 3090E ENTRY 25 cccooooq OCOOCl>Oq
AO 31 ODE ENTRY 21> OCOOOEA8 000007A8
AO 3110£ ENTRY 27 OCOCOF84 0000088q
AD 3120E ENTRY 28 000010&0 0000091>0
AC 313CE ENTRY 29 000011 qq OCOOQAqq
AO 31 qoE ENTRY 2A 00001228 occcc112s

- 75/06/27 12.23 - ADI OBJ
AO! CSE CT 01 00001230 00001231 00000002 00000000

Figure 8-3. Link-Edit Example 2 (Part 4 of 6)
co
I co

PHASE NAHE TRANS ADDR FLAG LABEL TYPE ESIO LNK ORG HlAOOR
- 75106/27 12.25 - A02 OBJ

A02 CSECT 01 00001238 00001239
A02010C CSECT 02 000012 .. 0 0000120B
A02020C CSE CT lE 000012EO 0000137F
A02030C CSE CT lF 00001380 OOOOH23
A020 .. 0C CSECT 20 00001•28 OOOOl•CF
A0201 OE ElllTRY 02 00001208
A02D20E ENTRY lE DODO I 37C
A02030E Ef\ITRY lF 00001 .. 20
A020 .. 0E ENTRY 20 OOOOHCC

- 15106121 12.25 - A02 OBJ
A02060C CSE CT 22 00001-rio 0000157F
A02070C CSE CT 23 00001580 00001633
A02080C CSECT 2" 00001638 00001 HF
A02090C CSE CT 25 000016FO OOOOl 7Ae
A02060E ENTRY 22 0000157C
A02070E Ef\ITRY 23 OOOOH30
A02080E ENTRY 2• 000016EC
A02090E ENTRY 25 000017A8

OOOOO•IO
SKI00002 NODE - Al 00000 .. 10 OO!l016f~

- 75/06/27 12.23 - AOI OBJ
AOIOIOC CSE CT 02 00000•10 00000 .. 97
A01020C CSECT lE 00000•98 00000523
AO 10 30C CSECT lF 00000528 0000058 7
AOIO .. OC CSE CT 20 00000588 000006"8
AO IOI OE ENTRY 02 00000"9"
A01020E ENTRY IE 00000520
AO 10 30E ENTRY IF 0000058•
AOlD"OE ENTRY 20 000006 .. 8

- 75106127 12 .25 - All2 OBJ
A02050C CSECT 21 00000650 OOOOObFB
A02050E ENTRY 21 000006F8

- 75/06127 12.28 - A03 OBJ
AO 3 CSE Cl 01 00000700 00000701
A03010C CSE CT 02 00000708 00000787
AO 3020C CSECT 1E 00000788 00000868
A03030C CSECT IF 00000870 00000927
AO 30 .. DC CSECT 20 00000928 000009E3
AO 3050C CSE CT 21 000009E8 OOOOOAA7
A03060C CSECT 22 0000008 OOOODB6B
A03070C CSE CT 23 OOOOOB70 00000C37
AO 3080C CSE CT 2• OOOOOC38 00000003
A03090C CSECT 25 00000008 00000007
A03100C CSE CT 26 00000008 OOOODEAB
A03110C CSE CT 27 OOOOOE80 OOOOOF87
AO 3120C CSE CT 28 OOOOOF88 00001063
A03130C CSE CT 29 000.01068 000011•7
A031110C CSECT 2A 00001 H8 0000122B
A03010E ENTRY 02 0000078 ..
A03020E ENTRY IE 00000868
A03030E ENTRY IF 0000092 ..
A030110E ENTRY 20 000009EO
A03050E ENTRY 21 ooooou ..
A03060E ENTRY 22 OOOOOBU

Figure 8-3. Link-Edit Example 2 (Part 5 of 6)

• •

LENGTH !)BJ OR&

00000002 00000000
0000009C 00000008
OOOOOOAO OOOOOOA8
OOOOOOA" OOOOOH8
oooooou OOOOOIFO

DDODODAO
000001
OOOOOIE8
0000029•

00000080 000003•8
0000008• 000003F8
OOOOOOB8 OOOOO•BO
0000008C 00000568

000003Fq
OOOOO•AB
0000056 ..
C0000620

000012EC

00000088 00000008
0000008G 00000090.
00000090 00000120
0000009• 00000180

0000008C
00000118
OOOOOIAC
000002•0

OOOOOOAC 00000298
00000 3qo

00000002 00000000
00000080 00000008
0000008" 00000088
00000088 00000170
OOOOOOBC 00000228
ooooooco 000002E8
ooooooc .. 000003A~
ooooooc8 00000•70
oooooocc 00000538
00000000 00000608
0000000 .. 00000608
00000008 00000780
OOOOOODC 00000888
OOOOOOEO 00000968
OOOOOOE• OOOOQAq8

0000008•
00000168
0000022•
000002EO
000003U
00000 .. 68

•

(/)

c
"lJ
00
0
a> ,..,,
::0
(1)

:::
CX>

~
-I (/)
m "lJ
S:: m ::0
(/) ::0
m -<
:cc
~z n­m<
"lJ :t>
::0 ('")

00
G> (/)
::0 -­:t> w

~

CX>
I -0

•
PHASE NAPIE TRANS ACOR FLAG LABEL

A03070E
AO 3080E
AO 3090E
A03100E
A03110E
AO 31 ZOE
AO 3130E
A03140E

- 75/06/27 12.23 - ADI
ADI

- 15106121 12.2s - ADZ
ADZ
A02010C
A02020C
A02030C
A02040C
A02010E
AOZOZOE
A02030E
A02040E

- 1s106121 12.2s - A02
A02070C
A02080C
A02090C
A02070E
A02080E
A0209DE

00001400

B - BLK DATA CSECT D - AUTO -CELE TED
L - DEFERRED LENGTH Pl - PIULTIPLV DEFINED
S - SHARED ITEPI U - UNDEFINED REF
•ANY OTHER CODES REPRESENT PROClSS ERRORS•

LINK EDIT OF .SKIOOO, COMPLETED
DATE- 77/06/09 TIME- 07,32
E~RORS ENCOUNTERED- 0002 UPSI- x.oo.

•
TYPE ESID LNK ORG HIADDR

ENTRY 23 OOOODC34
ENTRY 24 OOODODDO
ENTRY 25 00000004
ENTRY 26 OOOOOfAS
ENTRY 27 OOOOOF84
ENTRY 28 00001060
ENTRY 29 00001144
ENTRY 2A 00001228
OBJ

CSE CT DI 00001230 000012 31
OBJ

CSECT 01 00001420 00001421
CSECT 02 00001°238 00001203
CSECT IE 00001208 000013 77
CSE CT IF 00001378 0000141~
CSECT 20 00001428 OOOOl4CF

ENTRY 02 0000121lD
ENTRY IE 00001374
EllTRY If 00001418
ENTRY 20 OODDl4CC
OBJ

CSECT 23 00001400 00001583
CSE CT 24 00001588 0000163F
CSE CT 25 00001640 OOOOIHB

ENTRY 23 00001580
ENTRY 24 0000163C
ENTRY 25 DDODl6f8

FLAG CODES -
E - EXCLUSIVE ,A, REF G - GENERATED EXTRN
N - NOT INCLUDED P - PROMOTED COPIPION
V - VCON ITEPI

Figure 8-3. Link-Edit Example 2 (Pan 6 of 6)

LENGTH OBJ ORG
00000534
00000600
00000604
000007A8
00000884
00000960
OOOOOA44
OOODOR28

00000002 00000000

00000002 00000000
0000009C 0000000•
OOOOOOAO 000000A8
OOOOOOH 00000148
OOOOOOAS OOOOOIFO

OOOOOOAO
00000144
OOOOOIE8
00000294

OOOOOOB4 000003F8
OOOOOOBS OOOD04Bn
oooooosc 0000056•

000004A8
00000564
00000620

I - INCLUSIVE ,V, REF
R - SHARED REC PRODUCED

•

I

(J)

-<

c
""C
00
0 m
"" ::xJ
(1)

<
00

(J) (J)
-t ""C mm s: ::xJ
(J) ::xJ
m -<
::I:Jc
~z n-m<

)>
jl ("')
00

,~~)> w
s:
(J)

00
I

•

UNIVAC SYSTEM OS/3 LINKAGE EDI COR
DATE- 77/06109 TI"E- 07.28

CONTROL STREA" ENCOUNTERED AND PROCESSED AS FOLLOWS-

II PARAM RLIBIOBJMOS
II PARAM OUTUNil
15

LOA DH
-----KOl6-LOADH NA"E INVALID

INCLUDE
OVERLAY

GTLNKODO

LKIROOT,OBJHOS
CTLNKD

-----KDOO-ROOT PHASE OVERLAID
I~CLUDE

INCLUDE
INCLUDE
INCLUDE
INCLUDE

A01lAOIOIOC,AOID2DC 0 ADl030C,AOIO'IOCil,08JMOS
A02lA0205DCi,08JMOS

I•
A02060C •AUTO-lNtLUDED*

•UNRESOLVED REFERENCES•

KL\OCP

A03,0BJHOS
AOIUOli ,OBJMOS
A02lA020'10C,A02030C,AD2020C,AOZOIOC,AOZi,OBJMOS

•DEfI~ITIONS DICTIONARY•

SVHf?:OL. TYPE, PHASE, ADDRESS. SYMBOL, TYPE. PHASE. ADORE SS.

AO! CSE CT 01 OOOOOEZ C AOlOIOC CSE CT Ol•Y• 00000000
AOIOZOC C~ECT Ol•V• 00000086 A01020E ENTRY 01 00000110
A01030E ENTRY OJ OOOOOIA' AOlO'IOC CSE CT Ol*V* 000001A8
A02 C~ECT 01 DOOOOE2L AOZOIOC GSECT Ol*Y* 00000£30
A02020C CSE CT Ol*Y• OOOOOEO c A02020E ENTRY 01 00000f6C
A02030E ENTRY 01 OOOOIOlu AOZO'IOC CSE CT Ol•Y• 00001018
A02050C CSE CT Ol*V• 00000211~ A02050E ENTRY 01 OOOOOZE8
AOZOoOE ENTRY ROOT 0000015'1 A02070C CSE CT ROOT 00000158
AOZOBOC CSE CT ROOT UOOOOZlJ A02080E ENTRY ROOT 000002C'I
A02090E ENTRY ROOT 0000038 0 A03 CSE CT 01 000002f0
AC30JOE ENTRY 01 000003A'I A03020C CSECT Ol•V• 000003A8
A03030C CSE CT OJ •Y• 00000116" A03030E ENTRY 01 0000051'1
AD3D'IOE ENTRY DI 0000050C A03050C CSE CT Ol•V• OOOOOSD8
A03060C CSE CT Ol•V• 0000069b A03060E ENTRY 01 00000758
A03070E ENTRY 01 0000032'1 A03080C CSE CT Ol•V• 00000828
A03090C CSE CT Ol*V* 000008F 8 A03090E ENTRY 01 000009C'I
A03100E ENTRY 01 OOOOOA98 A03110C CSE CT Ol•V• OOOOOAAO
A03120C CSE CT Ol*V* 00000070 A03120E ENTRY 01 ooooocso
A03130E ENTRY 01 0000003 .. A031'10C CSE CT Ol•V• 00000038
MESALP ENTRY ABS OOOOlOCC KESRES ENTRY ABS OOOOIOCO
KLSOCP EXTRN -- -------- KLSPTB ENTRY ROOT OOOOOOA'l

JCLDOl'IO

JCLOOISO
JCL0016D

JCL00170
JCLDOl80
JCLOOl90
JCL00200
JCL00210

SYM~OL, TYPE,

AOJOIOE ENTRY
A01030C CSECT
ADI O'IOE ENTRY
AOZOlOE ENTRY
A02030C CSE CT
AOZ040E ENTRY
A02060C CSECT
AOZ070E ENTRY
A02090C CSE CT
A030JOC CSE CT
A03020E ENTRY
AO 30 .. 0C CSECT
A03050E ENTRY
AO 3070C CSE CT
A03080E ENTRY
A03IOOC CSECT
AO 311 OE ENTRY
A03130C CSECT
A031'10E ENTRY
KLSNTB ENTRY
LK I ROOT CSECT

Figure 8-4. Link-Edit Example 3 (Pan 1 of 4)

•

VER770503

PHAH. ADDRESS,

01 0000008'1
OJ •V * 00000118
01 00000238
01 OOOOOEC8
Ol•Y• 00000f70
OJ OOOOIOBC
ROOT OOOOOOA8
ROOT 00000208
ROOT 000002C8
Ol*V* 000002F8
01 000001158
Ol•V • 00000518
OJ 0000069'1
Ol*V* 00000760
01 OOOOO•FO
Ol•V • 000009C8
01 00000e7 ..
Ol•V• OOOOOC58
01 000001'18
ROOT 00000000
ROOT 00000388

•

c
""O

do
0
O'>
N

:xi
CD
<
CD

(/)

-<
(/)
-I (/)
m -o s:;:m

:xi
(/) :xi
m -<
:xi c :s z
(') -m<
""O)>
:xi (')
00
G> (/)
:xi -­)> w
s:::
(/)

CD
I

N

UP-8062 Rev. 8

•

•

•

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

~
0

l'.j

t::
~
~

('")

..!l1

~
<a
~

0 ~
"' ~ .s

...J

:i:
~ "' ...
«> 0

:i:
~ u ... ;)
~ ,.. ..

0 ,_
z
"'
a:
~
a:

"' ,_ ,.. ..
)(

UJ
:i:

* •
"" a:
:::> ,_
u
:::>
a: ,_
"' ..; 0

u
UJ 0 0

"' "'; x ... 0 0

* *

8-13

c
7'
()I)
0
O>
N

•• ALLOCATION MAP ••

I I
:J:J
CD

LOAD "OOULE - CTLNKO SIZE - OOOOIOCO '."=

PHASE NA"E TRANS AODR FLAG LABEL TYPE ESID LNK ORG HIAODR LENGTH OBJ ORG
()I)

CTLNKOOO NOOE - ROOT 00000000 00000608 000006DC
*** START Of AUTO-INCLUDED ELEMENTS -

- 75/06/27 12.25 - A02 OBJ
A02060C CSE CT 22 OOOOOOA8 00000157 00000080 000003118
A02070C CSE CT 23 00000158 00000208 0000008'1 000003F8
A020BOC CSE CT 211 00000210 000002C7 00000088 00000•80
A02090C CSECT 25 000002C8 00000383 OOOOOOBC 00000568
A02060E ENTRY 22 000001511 000003fll
A02070E ENTRY 23 00000208 0000008
A02080E ENTRY 211 000002C'I 00000~6 ..
A02090E E"TRY 25 00000380 00000620

••• ENO Of AUTO-INCLUDED ELEMENTS -
- 75/07/02 11.119 - LKJROOT O•J

LKIROOT CSE CT 01 D0000368 00000608 000003511 00000000
DOOOD388

CTLNKOOI NOOE - CTUIKO DOOOOOOO OOOOIOBF OOOOIOCO
- 75/06/27 12.23 - ADI OSJ

AOIOIOC CSE CT D2 OODOOOOO 00000087 00000088 00000008
A01020C CSE CT IE OOOOIJ088 00000113 ooooooec 00000090 en
A01030C CSE CT If 00000118 OOOOOIA7 00000090 00000120 -<
AOlOllOC CSE CT 20 1l0000JA8 000002 31' 0_0000091f DOOOOJRO en en
AO IOI OE ENTRY 02 000000811 ooooonac -t ,,
AOJ020E ENTRY IE 00000110 00000 II~ mm
A01030E ENTRY lf OOOOOJAlf OOOOOJAC s: :J:J

en :J:J AOIOlfOE ENTRY 20 00000238 0000021f0 m -<
- 15106121 12.zs - ADZ OBJ :J:Jc

A02050C CSECT 21 000002110 OOOOOZEa OOOOOOAC 00000298 :::; z
A02050E ENTRY 21 000002E8 00000 31f0 n-

- 75/06/27 12.2& - A03 OBJ m<
A03 CSE CT 01 000002f0 000002FI 00000002 00000000 ,,)>

A0301DC CSECT 02 000002F8 000003A7 00000080 00000008 :J:J ('")

A03020C CSECT IE 000003A8 000001158 000000811 ooooooae 00
A03030C CSECT 1f 000001160 00000517 00000088 000001 70 G> en

:J:J--
A0301f0C CSE CT 20 00000518 00000503 0000008C 00000728)> w
A03050C CSE CT 21 000005D8 OOOOD697 OOODDOCO 000002E8 s::
A03060C CSE CT 22 00000698 D000075e OOOOOOCll 00000 3A8 en
AD3070C CSECT 23 00000760 DODOO 82 7 ooooooce 000001170
AO 3080C CSECT 211 00000828 000008F3 oooooocc 00000538
A03090C CSE CT 25 000008F8 000009C7 ODDOOODO 00000608
AO 31 DOC CSECT 26 000009C8 OOOOOA9R 000000011 000006D8
AO 311 DC CSE CT 27 OOOOOAAO 00000877 OOOOOOD8 D00007BO
A03120C CSE CT 28 00000878 OOOOOC53 OOOOOODC 00000888
A03130C CSE CT 29 OOOOOC58 OOOOOD37 OOODOOEO 00000968.
A031110C CSE CT 2A 00000038 OOOOOEIB OOOOOOEll OOOOOA118
A03010E ENTRY D2 000003&11 000000811
A03020E ENTRY IE 000001158 00000168
A03030E ENTRY IF 000005111 000002211
A030110E ENTRY 20 OOOOOSDO Doooono
A03050E ENTRY 21 D000069'1 000003&'1
A03060E ENTRY 22 00000758 00000116R
A03070E ENTRY 23 000008211 00000~3 ..

link-Edit Example 3 (Part 3 of 4)
()I)

Figure 8-4. I
~

.i:.

• • •

•

"HASE NAHE TRANS ADDR FLAG LABEL
A03080E
A03090E
A03IOOE
AO 311 OE
AO 3120E
A03130E
AD3140E

- 75/06/27 12.23 - ADI
ADI

- 15106121 12.25 - A02
A02
A02010C
AO 2020C
A02030C
AO 2040C
A02010E
A02020E
A02030E
A02040E

00000000

e - BLK OATA CSECT 0 - AUTO-DELETED
L - DEFERRED LE~GTH H - MULTIPLY DEFINED
S - SHARED ITEH U - UNDEflNEO REF
•ANY OTHER CODES REPRESENT PROC, SS ERRORS•

LINK EDIT OF .CTLNKO. COHPLETlD
DATE- 77/06/D9 Tl~E- 07,z~

[ORORS ENCOUNTERED- 0003 UPSl- X,QQ,

__.......

TYPE ESID
ENTRY 24
ENTRY 25
ENTRY 26
ENTRY 27
ENTRY 28
ENTRY 29
ENTRY 2A
OBJ

CSE CT 01
OBJ

CSE CT 01
CSE CT 02
CSE CT IE
CSE CT IF
CSE CT 20

ENTRY 02
ENTRY IE
ENTRY IF
ENTRY 20

FLAG COOES -

•

LNK ORG
D00008FQ
OODOD9C4
OOOOOA98
00000874
ooooocso
OODOOD34
DDOOOE18

OOOOOE20

00000£28
OOOOOE30
ooooorno
OOOOOF70
00001018
OOOOQFC8
OOOOOF6C
00001010
,0000 I OBC

HIADDR

OOOOOE21

OOOOOE29
OOOOOECB
OOOOOF6F
00001013
OOOOIOBF

f - EXCLUSIVE .A. REF
N - NOT INCLUDED

G - GENERATED EXTRN
P - PROHOTEO COHHON

V - VCON ITEH

-
Figure 8-4. Link-Edit Example 3 (Part 4 of 4)

LENGTH

00000002

00000002
0000009C
OOOOOOAO
OOOOOOA•
000000A8

OBJ ORG
00000600
000006D4
000007A8
OOOOD~84
00000960
OOOOOA44
00000~28

00000000

OOOOO'lOO
OOD00008
OOOOOOAB
00000148
OOOOOIFO
OOOOOOAO
000001••
OOOOOIEB
000002<>•

I - INCLUSIVE .v. REF
R - SHARED REC PRODUCED

•

en

c
"'O
do
0
Ol
N

:lJ
CD
<
(X)

;Ji
--i en
m -o
S:: m :lJ
en ::i:J
m -<
:lJ c
:5 z
(") -m<
"'O)>
:lJ (")
00
G> en
:lJ -­)> w
s:: en

(X)
I

(11

•

UNIVAC SYSTE" OS/3 LINKAGE EDITOR
DATE- 77/07/08 TIME- 01.q5

CONTROL STREAM ENCOUNTERED ANO PROCESSED AS FOLLOWS-

II PAPAM RLIB#OBJHOS
II PAPAH OUTUNi

" LOA OM SKI
LlNKOP NO <UT
INCLUDE LKIROOT,OSJHOS
OVERLAY NOOEOI
INCLUDE ADSlADSOICi,OBJHO~

OVERLAY NOOED2
~NCLUDE AD5lA0502Ci,OBJHOS
OVERLAY NOOE 0 3
H•CLUOE A05lA0503Ci,OBJHOS
OVERLAY NODE cq
INCLUDE A05lAOSOqca,OBJHOS
OVERLAY NOOE 05
INrLUDE A05lAG505Ci,OBJHOS
OVERLAY !';ODE Ob
INCLUDE A05lA0506Co,OBJMOS
OVERLAY NOOE u7
INCLUDE A051A0507Co,OBJHOS
OVERLAY NODE uS
INCLUDE AOSlA0508Ci,OBJHOS
OVERLAY NODEu9
INCLUDE A05lA0509Ci,OBJHOS
OVERLAY NODEIO
I~CLUOE AOSlAOSJOCi,OBJHOS
OVERLAY NOOEll
INCLUDE AC5lA0511Ci,OBJHOS
OVERLAY NODE12
INCLUDE A05lA0512Ci,OBJMOS
OVERLAY NOOE! 3
INCLUDE A05lA0513Ci,08JHOS
OVERLAY NOOEJq

-----K002-NvDE ~OINT LIMIT - Jq PER PATH
INCLUDE AOSlAOSJqca,os~HOS

OVERLAY NOOE IS
I*

•UNRESOLVED REFERENCES•

AOIDIOE ADl020E A0!030" ADJQqQE A02DIDE
A02070E A02080E A02090f A030!0E AO 3020E
A03060E AO 3090E A03100t A03110E A03120E
AOIO .. OC A020 I OC A02020C A0203DC Ao2oqoc.
A03010C A03020C A03030C A0301JOC A030SOC
A0311DC A03120C A03130C A031 .. 0C

A02020E
A03030E
A03130E
A02050C
A03060C

•DEFINITIONS DICTIONARY•

A02030E A020 .. 0E
A03DIJOE A03050E
AOJ)qQ[AOIOJOC
A 02060C A02070C
A03070C A03080C

Figure 8-5. Link-Edit Example 4 (Part 1 of 5)

•

VER77062q

A0205 Ol A02060E
A0306 OE A03070E
A01020C AOJ030C
A0208 DC AD209DC
A0309 OC A03100C

•

Ul
-<

c
""O
00
0
Ol
N

:Il
Cll
<
co

Ul Ul
--i ""O mm s: :Il
Ul :Il
m -<
:Il c :s z n-m<
""O)>
:Il ('")

oo
G) Ul
:Il --)> w
s:
Ul

co
I
~

Ol

•

~ YHSOL, TYPE, PHASE, ADORES~.

lDIOIOC DTRN --•V• --------
AOIOZOl EXT RN -- --------
AOIO•OC EXT RN .:..-•W• --------
A02010f. EXTRN -- --------
A02030C EXT RN --•V• --------
AD20•0l EX TRt. -- --------
A020oOC EXTRt. --•v• --------
A0207LE EXT RN -- --------
A0209GC EXTRN --•V• --------
A03010l lXTRN -- --------
A03030C lXTRN --•v • --------
"O 30• OE DTRh -- --------
AC30oOC EXT RN --•V• --------
A03070l t X TRN -- --------
A03090C EXT Rh --•V• --------
A031u0l LXTR~ -- --------
A03120C EXTRN --•V• -.. ------
AU3130E l X TRN -- --------
AOSOIC C~t.CT 01 000003~8
A0502l ENTRY 02 00000372
A0504C C!>lCT oq 000003•0
AC505E ENTRY 05 000003oE
AG507C CSECT 07 000003E8
A0508£ ENTRY re 00000 .. .>2
AOSIOC C SECT 10 00000408
AO~llE ENTRY 11 00000.,c&
A05llC CSE CT 13 000005C8
ADS}qE ENTRY }q G00003<,2
LKIROOT CSECT ROOT ooooooco

•

SYHBOL, TYPE, PHASf., ADDRESS, SYMBOL.

ADIOl0£ EXT RN -- -------- AOI020C
AOI030C EXT RN --•V• -------- A01030E
AOI040E EXTRN -- -------- A020!0C
A02020C EXTRN --•v• -------- AD202DE
A02030E EXT RN -- -------- A02040C
A02050C EXTRN --•V• -------- A02050£
A020&0£ EXT RN -- -------- A02070C
A02080C EXT RN --•v• -------- A02080£
A02090[EXT RN -- -------- A030!0C
A03020C lXTRN --•V• -------- A03020E
A03030E EXT RN -- -------- A03040C
A03050C EXT RN --•V• -------- A03050E
A030&0E EXTRN -- -------- A03070C
A03080C EX 1 RN --•v• -------- A03080E
A03090E EXT RN -- -------- A03!00C
A03llOC EXT RN --•V• -------- A03!10E
A03120E EXTRN -- -------- A03130C
A03140C EXTRN --•V• -------- A03!40E
A0501E ENTRY 01 0000035E A0502C
A0503C CSE CT 03 00000378 A0503E
A050qf ENTRY 04 000003A2 A0505C
A050&C CSECT 06 000003C8 AOSOH
A0507E ENTRY 07 00000 .. 06 A0508C
A0509C CSECT 09 00000 .. 38 A0509E
A 05 IOE ENTRY 10 00000 .. 92 AOS llC
A0512C CSECT 12 00000400 A05!2E
A0513E ENTRY 13 0000053E A05 I 4 C
KESALP ENTRY ABS 00000542 KESRES

Figure 8-5. Link-Edit E"ample 4 (Part 2 of 5)

TYPE. PHAS £,

EXHIN --•V•
EXTRN --
EXTRN --•v•
EXTRN --
EXTRN --•V*
EXT RN --
EXTRN --•V•
fXTRN --
EXTRN --•V•
EXTRN --
EXTRN --•v•
EXTPN --
EXTRN --•V*
EXT RN --
EXT RN --•v •
EXTRN --
EXTRN --•V•
EXTRN --
CSE CT 02
ENTRY 03
CSECT 05
ENTRY O&
CSE CT 08
ENTRY 09
CSECT II
ENTRY 12
CSE CT 14
ENTRY ABS

•

ADDRESS,

--

000003&8
0000038&
000003A8
00000 3£ 2
00000410
0000045E
00000 q98
00000502
00000358
00000542

(/)

-<

c
7' co
0
Ol
N

"if?
<
co

en en
-I "ti mm s:: ::c
en ::c
m -<
::c c
::Sz
(") -m<
"ti > ::c ()
oo
G> en
::c ---}>W

s::
en

co
I
~

-.J

UP-8062 Rev. 8

c

%

"' ..
c
%
u
0
z ...
"' ...
a:
>:

"'
"'
>C ...
%

* * ...
a:
:2 ...
u
:2
a:
"' ..,
"' ..
r ...
* •

.
..... .

IN
I
I N I..,...,..,.. . - ...

- N
..... ci

I
. ..

N I I..,...,.• ...
0

...
N

SPERRY UNIV AC OS/3
SYSTEM SERVICE PROGRAMS

.... ~., f!rr,I
10 N : ,.: ~

IC
I
I

c
. ... "' .

... ~o • :=
I Ct

I "' a '"" ... a

Q .
"'

c,
N I •
0 - I

I -M 0 I
I '"'4- I

I I

8-18

•

it)
.....
()

~

t::
~
°'ii'

.S!
~
IQ

~ •
~

I
..l(.s
...i

I.ti
a!,
e
:;)

~

• .n

":
0
0

•

• • •
c
7'
co
0
Q')

** ALLOCATION MAP ** N

:ll
LOAD MODULE - SKlOOO SIZE - 000 005112 CD

:::.
PHASE ~AME. TRANS ADDR FLAG LABEL TYPE ESIO LNK ORG HIAOOR LENGTH OBJ ORG co
SK 100000 NOOE - ROOT 00000000 00000353 000003511
*** START OF AUTO-INCLUDED ELEHENTS -
*** ENO Of AUTO-INCLUDED ELEHLNTS -

- 75/07/02 11.119 - LKlROOT 09J
LKlROOT CSE CT 01 00000000 00000353 000003511 OOOOODOO

00000000
SKIOOOOl NOOE - NOUEOl 00000 358 00000361 OOOOOOOA

- 15106121 12.11z - A05 OBJ
AO SO 1 C CSE CT 02 00000 358 00000361 OOOOOOOA 00000008
AO SO lE ENTRY 02 00000 lSE OOOOO'lOE

00000358
SKI00002 NOOE - NOOE02 00000 368 0000037S OOOOOOOE

- 75/06/27 12.112 - AOS OBJ
AOS02C CSE CT 03 00000 368 00000375 0000000[00000018
AOS02E ENTRY 03 00000372 00000022

00000368
SKI00003 NuOE - NOOE03 00000 378 00000389 00000012

- 75/06/27 12.112 - ADS OBJ
AO SO 3C CSE CT 011 00000 378 00000389 00000012 00000028
AO 50 3E ENTRY 011 00000 386 00000036 en

.iooooH• -<
SK IUOOOll NOOE - NOOE 011 00000 390 000003A5 00000016 en en

- 75/06/27 12.112 - ADS OBJ -I \l mm
AOSoqc CSE CT OS 00000 390 OOOOOHS 00000016 ooooooqo s: :ll
AOSOllE ENTRY OS 00000 3A2 00000052 en :ll

00000390 m -<
SKI00005 NOOE - NOOEO 5 000003A8 000003Cl OOOOOOlA :ll c

- 1s106121 12.qz - ADS OBJ :5 z
A0505C CSE CT 06 00000 3A8 000003CI ODOOOOlA OOOOOOS8 (') -m<
AD SO SE ENTRY 06 00000 3BE 0000006E \l l>

000003.A& :ll (')
SK100006 N~OE - NOOE06 00000 3C8 000003ES OOOOOOlE 00

- 15106121 12.q2 - A05 OBJ G'l en
A0506C CSE CT 07 00000 3C8 000003E5 OOOOOOlE 00000078 :ll --
AO 506E ENTRY 07 00000 3E2 00000092 l> w

000003C8 s:
SK!il0007 NOOE - NOOE07 000003E8 000001109 00000022 en

- 75/06/27 12.112 - AOS OBJ
AOS07C CSECT 08 00000 3E 8 oooooqo9 00000022 00000098
A0507E ENTRY 08 000001106 OOOOOOB6

000003EB
SKIOOOO 8 NOOE - NOOE08 000001110 000001135 00000026

- 75/06/27 12.112 - ADS OBJ
AOS08C CSECT 09 000001110 000001135 00000026 ooooooco
A0508E ENTRY 09 000001132 OOOOOOE2

000001110
SKI00009 NOOE - NOOE09 OOOODll38 OODODll61 OODOOOZA

- 75/06/27 12 ... 2 - ADS OBJ
A0SD9C CSECT DA DD000ll38 D000Dll61 D000002A DOOOOOE8
AO 509E ENTRY QA OODOOllSE 0000010£

ODOOOll 38

Figure 8-5. Link-Edit Example 4 (Part 4 of 5) co
I
~

<D

•

PHASE NA"E TRANS AOOR FLAG LABEL
SKlOOOIO NOOE - NOOElO

- 75106/27 12.•2 - ADS
AOS!OC
AC510E

COOC0 .. 68
SKICDOll NOOE - NOOEll

- 1s106121 12.q2 - ADS
ADS! IC
AOSllE

CGCCCo98
SKJCCCl2 NOOE - NOOE! 2

- 75/Co/27 12 ... 2 - ACS
ACSIZC
A0512E

COOOOoDO
SKIODOl3 NOOE - NOOE 13

- 75106127 12.oZ - AOS
A0513C
A0513E

OOOOOSOB
SKJOOC!o NvOE - NOOE lo

- 1s106121 12.•z - ADS
AOSl oC
AOSI OE

0000035?,
SKIOOOJS NOOE - NOOE IS

-----K072-SKIOOOIS ZERO LENGTH PHASE
00000398

B - BLK OATA CSECT 0 - AUTO-DELETED
L - DEFEPREO LENGTH M - MULTIPLY DEFINED
S - SHAPED ITEM U - UNOtFINEO REF
•ANY OTHER CODES REPRESENT PROCESS ERRORS•

LINK EDIT OF .SKIOOO. COMPLETED
DATE- 77/07/08 TIME- 07.o9
ERRORS ENCOUNTERED- OOS6 UPSI- X.OD.

TYPE ESIO

OBJ
CSE CT OB

ENTRY OB

OBJ
CSE CT cc

ENTRY DC

OBJ
C SECT CD

ENTRY c'o

OBJ ,
CSE CT OE

ENTRY OE

OBJ
CSE CT Of

ENTRY -Of

FLAG CODES -
E - EXCLUSIVE .A. REF
N - NOT INCLUDED
V - VCON ITE"

LNK OR6 HIAOOR
oooooq1>8 oooooq95

00000 .. 68 oooooq95
cocooq92

oooooq98 oooooqc9

00000•98 CCOOOoC9
00000 •c6

DODOO •DO 00000505

00000 •DO DODOO SOS
OOOCIO 502

00000 508 00000 So I

00000 508 000005•1
00000 53E·

000003S8 00000395

00000 3S8 0000039S
00000 392

00000 398

G - GENERATED EXTRN
P - PROMOTED CO"MON

-
Figure 8-5. link-Edit Example 4 (Part 5 of 5)

•

LENGTH OBJ ORG
0000002[

0000002£ 00000118
coooo1q2

00000032

00000032 COODOl•8
00000176

00000036

00000036 00000180
OOOOOIB2

0000003A

0000003J OC000188
OOOOOIEE

OOC0003E

OC00003E 00000Jf8
00000232

00000000

I - INCLUSIVE .v. REF
R - SHARED REC PRODUCED

-

•

(/)

-<

c
""tl

00
0
0)

"' :0
c:D
:<
00

~ (/)
m ""tl
S:: m :0
(/) :0
m -<
:0 c
:5z
('") -m<
""tl l>
:0 ('")

oo
G> (/)
:0 .._
l> w
s::
(/)

00
I

"' 0

•
UNIVAC SYSTF" OS/1 LlNMAGE EDITOR
DATf- 11101/Db ll"f- 11.~b

co•TROL STREAM ENCOUNTERED AND PROCESSED AS FOLLOWS-

II PARAll RLIBSMOHOBJ
II

•
LOA OM LNKED T
LlNllOP NOAU TO

90/30 LINKER EST ~OIT ILlllll or llNKERil
INCLUDE PRSrsa,MDlfOBJ
INC LUOE l-NK EDTC AILNKEDT lilwMDHOB J
JllCLUDE LNKEDTC AILNKEDTil,llOHOBJ
ENTER LNKEDT
OVERLAY OWERl
INCLUDE LNll EOTC ULK IPilt MDlfO BJ

•

INC LUDC LNK EOfC AILNllEDTCA ol llKED TSA, LNK[DTPT eLNllEDT2il, MOHO BJ
JllC LUDE LNK EDTI NILNKE:JTINilw MOHO BJ
ENTER LNKEDTIN
OVERLAY DVERI
INCLUDE LNK EDTC AIL.K IPil, MONO BJ
OVERLAY OVER2
INCLUDE LNllEDTC AILNKEDTCAil, MONO BJ
OWE RLAY OIE Rl
INCLUDE LNKEDJC AILNKEDTSU, MONO BJ
OWE RLAY OWE Rlt
INCLUDE LNK EOTC AILNKEDTPT ,LllK~D 121, MDlfOBJ
OWE RLAY OVER 5
INCLUDE LNK EDTI NSLNKEDTI Iii, MONO BJ
OWE RUT OIE RS
INCLUDE Lllll EDTI CllNKEDTlCil, MONO BJ
OWE RLAY OVE RC.
lllC LUDC LNll EDTI CILll ICPN lDil, MONO BJ
OWE RLAY OWE R1
INC LUDC LllK EDTI CILK ICPHOllil, MONO BJ
OVERLAY OWERS
INCLUDE LNKEDTICILll ICPH 12il, MONO BJ
OWE RUY OVER7
INC WOE LllK EDTI CILll ICPH 3Dil, MONO BJ
INCLUDE lllK EDTI CILI(ICPHD9il, MONO BJ
OVERLAY OWER7
INCLUDE LNK EDTJ CIL.K ICPH lU, MONO BJ
DIE RUY DIE RI
INCLUDE LNK EDTI CIL.K ICPHDSil, MONO BJ
DIE RUY OWER9
INCLUDE LNK EDTI Cll..K ICPHD7il, MONO BJ
OVERLAY DVERID
INCLUDE LNKEDTICll..KICPHllil 0 MDNOBJ
OVERLAY 0 VEAi 0
lllC LUDE LNK EDTI CIL.K ICl'HDl>il, MONO BJ
OVERLAY OVERID
INCLUDE LNK EDTJ Cll..K ICPHSlil, MONO BJ
OVE RUf OIER9
IlllC LUDE LNK EDTI CILK ICPHD8il, MONO BJ
OVERLAY OVEH
INCLUDE LNK EDTI CIL.K ICPH'8ilt MONO BJ
OVERLAY OVER7
INCLUDE LNK EDTI CILll ICPH 70il, MONO BJ
INCLUDE lNK EDTI CILll ICPHD9il, MDlfO BJ
OVERLAY 0 VERS
INC LUDC LNK EDTI CIL.K ICPHD2ilt MONO BJ

Figure 8-6. Link-Edit Example 5 (Part 1 of 14)

•

(/)

-<

c
"1J
00
0
Ol
N

:JJ
(!)

<
00

~ (/)
m "1J
s: gJ
(/) :JJ
m -<
:JJ c
~z
() -m<
"1J l>
:JJ ()

00
G) (/)

:JJ -­l> w
s:
(/)

00
I

N

•

OVERLAY 0 VEll5
INCLUDE LNK EDTI Cll.ll ICPHD3i, llDHO BJ
OVE RLU OVE RI>
IllC LUDE LNK EDTI CILK ICPH lSi, llDHO BJ
OWE RLU OWE RI>
INCLUDE LNK EDTI CILK ICPH 1 JI, llDHO BJ
OVE RLAY OWE R5
INCLUDE LNK EDTI Cll.ll ICPH• U, llDHO BJ
OVE RLU OVE R5
IllC LUDE LNK EDTI CILK ICPH•Zi, llDHO BJ
ENTER LK5UUSP
OVERLAY OftR5
IllC LUDE LNKE DTIC ILK5CPH• Ji,11 DHOBJ
OVERLAY OVER•
INCLUDE LNK EDTI Cll.ll ICPH ll>i, llDHO BJ
ENTER LK5CPHU
OVERLAY OVER'I
INCLUDE LNK EDTI CILK ICPH 17il, llDHO BJ
ENTER LUCPH11
OWE RUY OVER•
INCLUDE LllllE DTIC ILUCPHlli 1 11 DHOB J
ENTER LllSCPHll
OWE llLU OVER•
INCLUDE LNK EDTI CILK ICPHSl>i, llDHO BJ
ENTER LllSCPHSI>
OVERLAY OVE R'I
INCLUDE LNll EDTI CILK SCPH 571, llDHO BJ
ENTER LlllCPH57
OVERLAY OVE"'
INCLUDE LllllE one ILU CPHS H,11 DHOB J
ENTER LKICPHSI
OVERLAY OVE R3
INCLUDE LKSltllLKUl i,llDHOBJ
OVERLAY OVER3
INCLUDE LKSlllLKSlli 1 11DH08J
OVERLAY OVE 113
INCLUDE LKlll llLKS~l i 1 11DHOBJ
OVERLAY OVE112
INCLUDE LKSNILKINi,llDHOBJ
ENTER LKSN
OVERLAY OVE R2
INCLUDE LKILLAS TIOA TALN&i,11 DHOB J
INCLUDE LKILLAS TILK SLLA S Ti 1 llDHO BJ
ENT ER LK 5LLAS T
OVERLAY OVER2
INCLUDE LKILLAS TIDA TASH Ti,11 DHOB J
INCLUDE LULL AS TILK ILLAS U, llDHO BJ
ENTER LULLAST
OVERLAY OVER3
INCLUDE LKILLAS TILA S TTX U,11 DHOB J
OVERLAY OVE R3
IMC LUDE LKSLLAS TILA S TOT Hi 1 11 DHOB J
OVERLAY OVE R3
INCLUDE LKILLAS TILASlPHSi 0 11DHOBJ
DIE RLAY OVE R2
INCLUDE LKSTILKIU,llDHOBJ
OVERLAY OVERl
INCLUDE LNK EDTC AILK IPi, llDHO BJ
INCLUDE LNK EDTC AILNKEDTCAi 1 llDHO BJ
INCLUDE LKllllLK Sll,LKl~2i,llDHOBJ
ENTER LK511
OVERLAY OVERl
INCLUDE LKllllLK lllZi ,llDHOBJ
RES X'8JD' llIN TBL SPACE

Figure 8-6. Link-Edit Example 5 (Part 2 of 14)

• •

c
-0
00
0
O>
N

::JJ
CD
<
00

CJ)

-<
CJ)
-i CJ)
m -o
~m ::JJ
CJ) ::JJ
m -<
:0 c
:5 z n­m<
-0 l>
:0 (")

00
G) CJ)

:0 -­l> w
~
CJ)

00
I

N
N

• •
•DEFINITIONS DICTIONARY•

SYllBOL. TYPE. PHASE. ADDRESS. SY"BOL. TYPE. PHASE• AD ORES s.

DAULN& CSECJ 31 DOOODF58 DA JA SHT CSECT 39 OOOOOF58
DPSCOlll ENTRY ROOT DODD DO JO DPSCOllZ EN TRY ROOT !IODODOOO
DPSCOll• ENTRY ROOT OODODOJO DPSC 0115 EN TRY ROOT 00000000
DPSCON7 ENTRY ROOT OOOOODJO KEULP EN TRY ABS DOD02S9D
US TOTH CSEC 1 H 0000 1620 LASTPHS CS ECT •2 00 0016 20
LB93USR ENTRY Dl " DODO 1S68 LB93USll EN TllY 05 " 00001568
LB93USS ENTRY OS II DODD 1868 LKSC DIFl EN TRY ABS DOD00998
LKSCOBPC ENTRY 01 II ODDO 1818 LKSC OBPC EN TRY as 11 DOD01818
LKSCOFPC ENTRY OS II DODO 18•0 LKSC PHJl EN TRY D7 000019[8
LKSCPH03 CSECT 22 000019E8 LKSCPHJ• CSECT 09 00001010
LKSCPH06 CSEC 1 16 OOD02250 LKSC PHH CSECJ n 00 002168
LKSCPH09 CSECT 11 " 0000 1070 LKSC PHJ9 CSECT 2J " 000010•0
LkSCPHll CSEC T 15 00002250 LKSC PH12 CSECT 1J 00002008
LKSCPHH csrcT 12 0000 1010 LKSC PHIS CSECT 23 ODOOlB•O
LKSCPH11 CSECT 29 DODD 13EO LKSCPH18 CSECT J] D00013EO
LKSCPHO CSECT 2S ooao 1908 LKSC PH•2 CSECT 26 000019E8
LKSCPHU CSEC T 19 00002168 LKSCPHSl CSECT 17 00002250
LKSCPH57 CSEC T 32 000013[0 LKIC PH58 CSECT J3 00 0013EO
LKSCPOll6 ENTRY ABS DOoooc50 LKSC PPCA EN TRY ROOT 000007E8
LKSCRfPC ENTRY ROOT D00006•0 LKSC RPCA ENTRY ROOT DO 000618
LKSCUllFP ENTRY 01 " 000019C0 LKSC UllFP EN TRY OS 11 00 0019CO
LKSCUllPC ENTRY OS " 00001998 LKSCUPCA EN TRY 01 " OOD01698
LKSCUPCF ENTRY 01 11 DOOO 16CO LKSC UPCF EN TRY 05 11 000016CO
LKSD8IllC ENTRY ABS 00000010 LKSDBTRN EN TRY ABS 00 000000
LllSDCHAL ENTRY ABS oooooon LK SDCNOF EN TllY ABS 00000000
LKSDDLll ENTRY ABS oooooon LKSOESDA EN TRY ABS 00000006
LKSDIBCD ENTRY ABS DODDOODO LKSOLIBS EN TRY ABS DOOODOOO
LKSDNOOP ENTRY ABS 000000)0 LK SO NESP EN TRY ABS OOOOD002
UISDOPSC ENTRY ABS OODDOOD6 LKSDROBl EN TRY ABS DODDD008
LKSDSCllA ENTRY ABS 0000 DD3• LKSOSCNC EN TRY ABS OOOOOD02
LKSDSClll ENTRY ABS OODOOOD2 LKSOSTSC ENTRY ABS 0000000•
LKSEALDF ENTRY ABS OOOD06B6 LKSE BCllT EN TRY ABS OOOOD65C
LKSEBDLB ENTRY ABS DOOOD3F7 LKSE BOLD EN TRY ABS 00000631
LKSEBORF ENTRY ABS OODOOOJ8 LKSE BDSN EN TRY ABS D00003CA
LKSECSllll ENTRY ABS OOIJODOF7 LKS[CSllO EN TRY ABS OOOODl 30
LKSEDllOP ENTRY ABS OODOOOJC LKSE ENCll EN TRY ABS 00 IJ002E8
LKSEENLA ENTRY ABS DDODDlCE LKSEENLll EN TRY ABS 00 DODO 83
LKSEEOPE ENTRY ABS DODDDlDE LKSEEQPH ENTRY ABS DODODIFO
U<SEillVL ENTRY ABS DODD DSFll LKSEINVO EN TRY ABS OODOD27C
LKSE JVJC ENTRY ABS DOIJOD6EI LKSE I VPN EN TRY ABS DODOD•Cll
LKSELBDE ENTRY ABS DOODD158 LKSE LllLB EN TRY ABS OOOOOJB8
LKSELNllF ENTRY ABS OOJOIJ .. 3 LKSEllIVO EN TRY ABS DOOOD2 3E
LKSEllNDF ENTRY ABS OODDD21E LKSE NOPN Ell TRY ABS DODOD2C7
LKSEllPSL ENTRY ABS OOD006FF LK SE llTDL EN TRY ABS DO ODD 30F
LKSEllCUP ENTRY ABS OOIJOOl•C LKSE NON EN TRY ABS DOOODozr
LKSEllODL ENTRY ABS OOOOD190 LKSE NOOP EN TRY ABS DODDD051
LKSEllORN ENTRY ABS OOIJ00552 LKSE NDRS EN TRY ABS 00 OOOS2F
LKSE NOSR ENTRY ABS OOOOD•E3 LKS[NOTE EN TRY ABS 00 OOD32C
LKSEllOUS ENTRY ABS OODOOSJ2 LKSE OPAB EN TRY ABS OOOODOAE
LKSEORNF ENTRY ABS 00000211 LKS[OVAB EN TRY ABS 000007'8
LKSEOVOP ENTRY ABS DODO D7B3 LKSEOVRG EN TRY ABS 0000078C
LKSEPNO ENTRY ABS ooaooou LK SE llE&ll EN TRY ABS OOOOD06E
LKSERTIO ENTRY ABS 00(100010 LK SE SllB EN TRY ABS DOOOD7011
LKSESTBO ENTRY ABS 0030o'.JOD• LKSE TBDF EN TRY ABS OOOOD68C
LKSEllTYP ENTRY ABS OOD00311 LK SE XNO EN TRY ABS DOOODOEl
LKSFRLM ENTRY ABS 0000 06 JC LKSI LONO ENTRY a& OOD022•0
LKSI0320 ENTRY O• 0000 lf82 LKSIDno EN TRY DJ OOD01F66

Figure 8-6. Link-Edit Example 5 (Part 3 of 14)

SY!IBOL. TYPE.

DPSC OllJ ENTRY
DPSC 0113 ENTRY
DPSC0116 ENTRY
KE SR ES ENTRY
LASTTXT CSECT
LB9JUSS ENTRY
LKSCDIF2 ENTRY
LKSCOFPC ENTRY
LKIC PHD2 CSECT
LKSCPHD5 CSECT
LKIC PH08 CSECT
LKSC PHlO CSECT
LKSC PH13 CSECT
LKSC PH16 CSECT
LKSC PH30 CSE CT
LKSCPH•3 CSECT
LKSCPH56 CSECT
LKICPH10 CSECT
LKSCREPC ENTRY
LKSC RTPC ENTRY
LKSCUllPC ENTRY
LKSCUPCA ENTRY
LKSDBEIT ENTRY
LKSOCALP ENTRY
LKSDCOllP ENTRY
LKSO&TCT ENTRY
LKSDllHDR ENTRY
LKSONS TK ENTRY
LKSDSARC ENTRf
LKSDSCllll ENTRY
LKSOllRRC ENTRY
LKSE BDCI ENTRY
LKSE BOU ENTRY
LKSE BPAR ENTRY
LKSECSNP ENTRY
LKSE ENEX ENTRY
LKSEl!:-NPC EN TRY
LKSE ILNF ENTRY
LKSE IVDE ENTRY
LKSE LABN ENTRY
LKSE L"NS ENTRY
LKSE MNDE ENTRf
LKSEllPDL ENTRY
LKSE llTllA Ell TRY
LK SE NOSZ EN TRY
LKSE NOPH ENTRY
LKSE llOSC EN TRY
LKSENOTF ENTRY
LKSE OPRN ENTRY
LK SE OVEX EN TRY
LKSE OVRT EN TRY
LKS[RNAL ENTRY
LK SE SOBJ ENTRY
LKSE UOBJ ENTRY
LKSFUM ENTRY
LKSI 0300 ENTRY
LKSI D350 ENTRY

PllA SE• ADDRESS.

ROOT DDJDDDDD
ROOT DD JO DODO
ROOT 0000 DODD
us DDJDZD90
•l DDJO 16ZD
01 11 0Dl01H8
ABS DOJOD7C8
01 11 DDlDU•D
21 000019EI
1J OOJO lFZI
11 OOJOZlH
01 ODJOlCSD
2• OOJO 18'0
21 00:1013[0
11 ODDO 1010
27 OOJO 19EI
31 OOJO 13EO
2D OOJ01010
RDO T OOJOD7CO
ROOT OOJ00798
01 " 00001991
05 11 ODDO 1698
AIS ODJODD06
AIS OOJDJOJO
AIS ODlO DOJD
AIS DDJDODJD
AIS DOJOOOO•
us DOD00030
AIS DODO DODD
AIS DOlOllOl2
AIS ODJOllOllA
us l1Dl0ll510
ABS llDJOll•ZD
ABS DODD007
AIS OO!JOD51•
AIS DOlOll1Z•
AIS OD JD Olli
AIS ODJD050F
AIS OOJOD112
us DOJDOD9C
us DODOOUI
ABS DOJD0255
AllS ODJDOlllC
ABS DOJ00291
AIS ODJDD391
ABS ODJD!IDU
us DO JO DD 111
ABS DOJDOl 1F
ABS OOlOOOC•
ABS DOJDIJU.D
ABS DDlD 11033
AIS DOJD D59B
ABS ODDD07D2
ABS OOJO 0703
ABS OOJOll6lC
o• DDJO lf7A
01 DOJD 1F72

•
c
-0
00
0
Ol
N

:0
CD
<
(X)

(J)

-<
(J)
-I (J)
m -o
S: m

:0
(J) :0
m -<
:0 c
~z
(") -m<
-0)>
:0 (")

00
G) (J)

:0 -­)> w
s:
(J)

(X)
I

N
w

UISLENS2 ENTRY ABS OODDDOJ'I lKILLAST CS ECT l9 " 00001190
LlllLPSTL ENTRY ABS ODDO 1r.a LKILPS TS EN TRY ABS 00DODF78
UISLPTOV ENTRY 39 11 DODO 13A6 LKIN CS ECT 0 00001168
LKSN2 CSECT "" " ODDO 12rn LKSNZ CS ECT q5 N ODOOOE5D
lKSN CSEC T 31 OODOOf58 LKIP CS ECT Dl " DDODOE 50
LIUP CSECT . " " DOODOE5D LKISCNDl EN TRY 06 DDOD2DAC
LKlll CSEC T 35 DODD 11&8 LKlll l CS ECT 3& 00001168
UIS'IAUSP ENTRY 26 ODD019EA LNllE OT CS ECT ROOT DODDOB 18
LNKEOTCA CSEC T 03 II ODDDDf58 LNllE OTCA CSECT .. N OOODOF58

LNKEDTIN CSECT 01 0000 19E8 LNKEDTil CSECT or. 000019E8
LNKE DTPT CSEC T 05 11 0000 13EO LNKE OTSA CS ECT 01 " 000011&8
LNKEDTI CSEC T ROOT DooooqEa LNKE OT2 CSECT Dl " DDOD15&8
PHNOA TIN ENTRY ABS DDDDf3F2 PHNOA TLG EN TRY ABS DODOf3F3
PHNOCTAT ENTRY ABS ODOOF2F6 PHNOOTH EN TRY ABS OOOOF'IFI
PHNOPHDl ENTRY ABS 00000017 PHNOPHJ2 EN TRY ABS 00000021
PHNOPHD'I ENTRY ABS 0000 0009 PHNOPH05 ENTRY ABS 00000013
PHNOPH07 ENTRY ABS DODO DO 1'1 PHNOPH08 EN TRY ABS 00000018
PHNOPHIO ENTRY ABS OOOOOOJ8 PHNOPHll EN TRY ABS 00000015
PHllOPH13 ENTRY ABS 0000002'1 PHNOPHH EN TRY ABS DO 0000 12
PH NO PHU ENTRY ABS ODDDD025 PHNOPH'l2 EN TRY ABS 00000026
PHNOPH'8 ENTRY ABS 00000019 PHNOPH'9 EN TRY ABS 00000020

PHNOSPIN ENTRY ABS ODODF2F9 PHNOSPLG EN TRY ABS OOOOFlFO
PHllOTXT ENTRY ABS OOOOF'IFO PNOLKIIN EN TRY ABS ODOOFDf I

PllOllClll ENTRY ABS DDDOF3F8 PNOLKILS EN TRY ABS DOODF3F9
PNOLKSlll ENTRY ABS OOOOF3F'I PNOLKSll2 EN TRY ABS DDODF'IF5
PNOLKST ENTRY ABS ODDO F'lf3 PNOLK14 EN TRY ABS OD00f3F5
PRNTR ENTRY 01 II OODODEEB PRNTR EN TRY 02 N OOODOEE8
PR NT RC ENTRY Dl II ODDODflA PRNTRC EN TRY 02 N ODDDOFU
PRSYSA CSECT ROOT ODDO ODDO ISCR EN TRY ROOT 00000668
SfSOBJ ENTRY 05 " DODD 16EB SYIRUN EN TRY ROOT ODDDO'IEB

--
Figure 8-6. Link-Edit Example 5 (Part 4 of 14)

• •

LKILLAS T CSECT 39
LKILPTOV ENTRY 31
LKIN 1 CSECT 3•
UUN2LEN ENTRY AIS
LKIP CS ECT 02
LKST CSECT 'I]
LKl3P09l ENTRY AIS
LNCE DTCA CSECT 01
LNCE DTIC CSECT OJ
LNKE DTPT CSECT 01
LNKE DTSA CS ECT o•
LNKE UTZ CSECf 05
PHNOATSH ENTRY ABS
PHNO PHS ENTRY ABS
PHNOPHH ENTRY us
PHNOPHJ6 EN TRY AIS
PHNOPHD9 ENTRY AIS
PH~OPH12 ENTRY ABS
PHNOPH15 ENTRY us
PHllOPH'I] ENTRY ABS
PHNOPH51 ENTRY AIS
PHNO SPSH ENTRY us
PN3llllI2 ENTRY us
PN3Llllll ENTRY us
PN3LllH ENTRY AIS
PN3LllS111 ENTRY ABS
PRNTR ENTRY ...
PRNTRC ENTRf ..
SYIOBJ ENTRY Dl

.......

" 00001190
11 DOJD13A6

DOlDllH
DDlD09'C

11 DOlODESO
ODJDOF58
DOlD02JI

11 ODJDOFSI
DDJD 19EI

II !JOJO 13ED
11 DDJDllU
11 DOOD15H

OD JO f3fl
DDJOF'IF2
DOJDDDZ2
DDJOD016
OOJO DD 11
ODJO DO 10
OOJDODZl
OOODDOZ7
DOl00017
DDJOF2FB
DOlDFOF6
OD JD fll F•
0Dl0Flf7
OOJDFlF6

11 DOlDDEEB
11 ODJDOFU
II ODlD 16EI

...._..

•

c
-0
00
0
O>
N

:0
(1)

<
00

en
-< en
-I en
m -o
S:: m

:0
en :o
m -<
:0 c
:5 z
(") -m<
-0 ~
:0 (")

oo
G1 en
:0
~w

s:: en

00
t!,
.j:>.

UP-8062 Rev. 8

•

. I • • I Cl . • I• • .
N I"' . "' . • . I . • . • ...
"' I

I
..

I •I • • 0 .. I ..,...,..,. I . • I 1
I

IN 0
I .
I "' I
I • I • I I ...

I N I ...
I . I • I
I ~ I .,
I I Of
I I I
I ' •I

•
"' ~ .. • ..
!!
0 ...
"' ..
z
"' "' ...
"' ..
Ill
z
"' ..
Cl

z
u
• •
:I ..
u
:I
£!
"' ...
"' c z .. • •

•

.
•
Q
N !' ..

•
I

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

I
I
I
I
I . I • I

Cl I .. I
I • I
I 0 . . I
IN .. • I
I • Cl I
I . ..

:. I
.. I • .

•
•

. c. 0
I I ... Ill I • .. 1

I IX :: ::: I u u
IN I N N I • I N ..
I • I . I I . . . I . .
I .. I '"I NI I • .. Ill I
I Q I N I .. N
I I I

N I N N
I

I ..- MI I M"""""" I
I
I
I
I
I
I
I ;, I
I ..
I ...
I .
I Ill
I Q

I "

.
N

CD ..
• N ..

.
0

• I

.
• N

......... I
I,..
IN
I • ,,,
I Cl
I I..,....,...,...,...,....,.

8-25

UP-8062 Rev. 8

. ,, .. . I
"'I
"'I

I . . • • I .. "' I "' ...
I . . ,,

"' I
I

... I ...

I
I
I
I
I
I
I
t
I
I . I

OI
m I . , . I
01

t
" I I I

I .. I
t
t
I
I
I o
to
I'"

It . I'°
Cl I"' ...

IN
t •
I.,
t Cl
t

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

I

I
I
I
I

I I
I I
I I
I t I
I I t I
I I I I
I I I I
t I I I
t I I I
I I I I

I • I I I . I
0 to I I I

"' '• I t I I ... I ... I t I I . t • I I I I ... t N I I I I ,, I • I I I I
t t I I I

..,.,.. I I I I I
t t I I t
I t I I I
I I t ,. I
I I I I I

I I I I I
I t I

I I I I I
I I I I I
t I I I I
I . I • :. I . I I
t • •• I Cl t I
t ... I"' ... I ,., I . I
t ... t Cl t .. t • I •
I . I • . •• ::, I .. ,...,
I .. t .. • Cl t I ... Ii..
I ,., I,., ,., "'t ,, I ... I Cl
t I I . t I .

.
I _ ... I t,.. I ,.. ... "'-I I ... I :,. "' I Cl t C'I

I I
t I.,.

I" ,,
I
I..,.,.

' t
I
I
I

I
I
I
I
I
I •
lo
I tn
I'"'
I •
I Cl
I Cl
I
I

8-26

•
(

~
....
0

(Q

t::
~
""' It)

.!!! • ~
lb

~ ...
~
' ~ .s;

<ci
<ii
~
::i

~

•

• • •
c
"'tl

•• ALLOCATION ~AP •• c:Xi
0

LOAD llODULE - LNKEDT SIZE - O!JOD2D9D O>
!'.>

PHASE NAME TllANS A DOii FLA6 LABEL TYPE E5IO LNK 0116 HU DOR LEN&TH OIJ 016 :c
LNllEDTDD NODE - ROOT DDDDDDOD DOlO DE5D DDJDOE50

(1)

<
••• START OF AUTO-INCLUDED ELEMENTS -
•••END OF AUTO-INCLUDED ELEMENTS••• 00

- l21D71•1 D8.3 l - PRHSA OBJ
PRSY SA CSECT J2 OD DD DODD DDJDD•E6 DD!JDD•E6 DODO OD JD
DP5C OM• ENTRY J2 OD:JDDDDD OD!JDODDD
DP5C OM3 ENTRY J2 DODD DD DD DD JD OD JD
DP5C0"7 ENTRY J2 DD DD DD DD OD JD OD JD
OP5C OP!ll ENTRY J2 ODDO DD DD DD3DDDDD
DP5C OMl ENTRY J2 DDDDDDOO DD!JDODDD
DP5COP16 ENTRY J2 OOOD!JOOD DDJDOD!JD
DP5C OMZ ENTRY DZ 000000 00 OOJO DO JO
OP5COM5 ENTRY Jl 000000 00 ODJO !JOJO

- 12/DTl•l 08.31 - LNKE area OBJ
LNKE OTI CSECT 19 OOODO .. E8 ODJDDBU OOJD 06 JD ODIW 15'8
SUR UN ENTRY 19 DODDO .. E8 DDJDISU
LKSC RPCA ENTRY 19 ODDDD6 18 DDJD 16 71
LKSC Rf PC ENTRY 19 oDoD06 •D ODJD16AD
SSCR ENTRY 19 000006 68 DDJD 16C8
LKSCRTPC ENTRY 19 00000798 OOJD 17FI
LKSCREPC ENTRY 19 DDDDD7CD ODJD llZO
LKSC PPCA ENTRY 19 000007E8 OOJD18'1

- l 21D71• l 08.31 - LNKE OTCA OBJ CJ)

LNKE DT CSECT 18 ODDDDB 18 !JOJO DE 50 DD!JDD3JB DDJD 1210 -<
ODD DD BU

CJ) CJ)
-i "'tl

LNllEDTD 1 NODE - OVER 1 DODD DE 50 ODJO 1FD8 DDJD 1118 mm
- 121011•1 08.31 - LNKE OTCA OBJ s: :c

LKIP CSECT u ODDDDE 50 DOJO OF58 DDlDOU8 DDJD 1B78 CJ) :c
PRNTR ENTRY u OOODDE [8 DOJD lClD m -<
PRNT RC ENTRY u DDDDOF IA ODJD lC'2 :c c

- 121071•1 08.31 - LNllEDTCA OBJ ::; z
LNKE DTCA CSECT J2 ODOOOF 58 OOJO 11&8 OOJO 0210 ODJD lDJD

() -
m<

LNllEDTSA CSE CT lB 00001168 ODJO l3ED ODJD0271 ODJDlCIO "'tl)>
LNKE OTPT CSECT lC DODD13ED OOJO 15&8 00100111 ODJDlEFI :c ()
LNKE DTZ CSECT lD DDDD1568 !JOJO l 9E8 ODJDO•ID 00102010 00
LKSC Of PC ENTRY 10 OOOD18 •D 00302351 G> CJ)

LB93USS ENTRY 10 ODDO l8 68 DDJD2310 :c --
LKSCUMPC ENTRY 10 ODDO 1998 OOJOZ'llD

)> w
LKSC UMFP ENTRY 10 ODDO 19CD OOJOZ•DI s:
LB9lUSR ENTRY 10 00001568 DOJD2DIO

CJ)

LKSCUPCA ENTRY 10 DODD 16 98 OOJDZllD
LK5CUPCF ENTRY 10 !JDOD 16 CD OOJD21DI
SUOBJ ENTRY 10 DODD 16 EB OOJD22iJO
LKSC OBPC ENTRY 10 ODDO 18 18 DOJDZ3JD

- 12/071'1 08.31 - LNllE DTIN OBJ
LNKE DTIN CSECT J2 000019[8 00)0 1Fll8 OOJO D5FO DDJD 1010
LK SI 03'0 ENTRY JZ DODD lf 66 DOJD157E
LKSI 0350 ENTRY J2 ODDO lf 72 DDJD lSIA

DODD19E8
LllllEDTD2 NOOE - OVER 1 :JO DODE SD DDJD D,.58 DDJDDllB

- 121D7/ .. 1 08.31 - LNKE OTCA OBJ
LKSP CSECT ll OOOO!JE 5D OOJO l)f58 DOJO OllB OOJD 1B71
PRNTR ENTRY u OOQOOE EB OOJDlClO
PRNT RC ENTRY IA OODODF IA ODJD ICU

OOODOESO
LNKEDTD 3 NOOE - OVERZ OOOOOF58 DOJO llU OOJO 0210

I I
00
I

N
......

Figure 8-6. Link-Edit Example 5 (Pan 7 of 14)

c
""1l

PHASE NAME TRANS A DOR fLAS LABEL TYPE ESI D LNK 0 R6 HUDDll LEN&TH OIJ 016 cXi
- 12107/H oe.11 - LN~[OTCA OBJ 0

LNKE DTCA CSECT il2 OOOOOf SS OOJO 11&8 OOJO 0210 ODJD lOlD
en
N

OOOOOFSS
LllKEDTO • NOOE - OVERl 00001168 001013[0 ODlDD211 :ll

CD
- 111011q1 oe.11 - LNKE OTCA OBJ ::::

LNKE OTSA CSECT 18 00001168
00001165

OOJD llED 00100211 DDlD lCID
00

LllKEDTOS NOOE - OVER• 000013[0 ODJO 19E8 0010 0638
- 12101,_1 09.11 - LNKE DTCA OBJ

LNKE DTPT CSECT IC 000013[0 DOJO 1S68 0010 0118 ODJO 1EF8

LNKE OTZ CSECT 10 000015 68 0010 19E8 00100•10 DDJDZDID
LKICOFPC ENTRY 10 DODO l8 •a DDJOZ351
LB9lUSS ENTRY 10 000018 68 00]02310
LKSC UKPC ENTRY 10 ODDO 19 98 DDlOZ•ID
LKIC UMfP ENTRY lD DDD019CO DDlOZ•DI
LB93USR ENTRY 10 00001568 DDJOZDID
LK SC UPCA ENTRY 10 ODDD16 98 DDlD ZllD
LKSCUPCF ENTRY 10 000016 co DDlDZlDI
SYSO BJ ENTRY 10 DODD 16 EB DDJDZZJD
LKSC OBPC ENTRY 10 DDOD 1118 DDJDZ33D

OOOilOF5S
LNKEDT06 NODE - OVERS 000019E8 0010 Z2•0 DDlO 0858

- 12/07/q) 08.31 - LNKE OTIN OBJ
LNKE. on I CSECT IC 000019[8 0010 zz•o 0010 0858 DOJDZAFD
LKSI LONO ENTRY lC OOOOZ21f0 OOJD33'1
LKSSCKi>l ENTRY IC DD0020AC DDJD3l9' Ul
LKSl Ql]Q ENTRY IC DODO lF 7A DDJD 3012 -<
LKU OlZD ENTRY IC DODO IF 82 00103DIA Ul Ul

DD0019ES -i ""1l
LllKEOTO 1 lllCIDE - OVERS 000019E8 OOJOleSO 0010 0268 mm

- 12107/H 08.31 - LlllKE one OBJ
s:: :ll

LNKE one CSECT J2 000019[8 OOJOle50 OOJO 0268 OD JD ODDO Ul :ll

LMSOCALP ENTRY JO 000000 DO ODJD JOJO
m -<

LKSDBINC ENTRY JO 000000 00 DDJD30[)0
:ll c :s z

LKSDeOllP ENTRY JO 00000000 OD JD OD JD n-
LKSDSeNM ENTRY JO 00000002 OOJDOD02 m<
LKSOllRRe ENTRY JD 000000 DA DOJOOOJA

)>

LK SD ROB I ENTRY 00 DDDOOO 08 ODJO(JO:J8
:g ('")

LKSDBTRN ENTRY JD OOODODDD OOlDODJO 00
LKIOCMDF ENTRY OD 00000000 ODlODDJO Gl Ul :ll ..._
LKSOSARC ENTRY JO 00003000 OD JD OD JD)>W
LKSDSCNe ENTRY JO 0000il002 DDJ00002 s::
LKSDLIBS ENTRY JO aooooooo OOJO iJOiJD Ul
LKSOSeNA ENTRY JD 0000000 .. DOlDiJDJ•
LKSDSTSC ENTRY JO 000000 Olf OOJDODJlt
LKSOESOA ENTRY OD 000000 06 ODJDOOJ6
LKSDSeNl ENTRY JD 00000002 OOJDDD:JZ
LKSOllHOR ENTRY JD 000000011 ODJDODJlt
LKSDCHAL ENTRY JO 00000002 ODJOOD02
LKSDDLN ElllTR Y JD 000000 02 DD JO :JD J2
LKIDBEXT ENTRY JD DD ODDO 06 DDJODDJ6
LKSDGTCT ENTRY JO ·00000000 DD JD DO JD
LKICPHH ENTRY JZ 000019E8 DDJOOOJO
LKl3P09L ENTRY JO 00000208 DDJDDZ08
LKSCPOR6 ENTRY JD OOOOJC 50 OOJDOC50
LKSOIBCD ENTRY JD 000000 DO DDJDODlD
LKSONSTK ENTRY JO 00000000 DDJDOOOO
LKSDNESP ENTRY JD 00000002 DD JD OD OZ

LKSDMODP ENTRY JD DDODOODD OD JD DODD
LKSDOPSC ENTRY JD 00000006 DOlDODiJ6

I I
00
I

N
00

I

Figure 8-6. Link-Edit Example 5 (Part 8 of 14)

• • •

• • •
c
""O

PHASE NA"E TRANS ADDR FLA& LAilEL TYPE ESI D LllK OR6 HUDDR LEN&TH OIJ 016 00
LK5C DI fl ENTRY JO 00000998 DOJOD991 0
LKIC 0If2 ENTRY JO D00007C8 OOJOD7CI O>

000019[1
N

LNllEDTO I NODE - OYER6 DODO lC SD OOJO IDID DOJDDOCO :;JJ
Cl)

- 12/07/ltl DB.31 - LNKE OTIC OBJ
LK5CPHIO CSECT 27 DODD IC SO OOJO 1010 OOJOOOCO DDJO ZD9D

:::.
OOOOlCSJ 00

LllllEDTO 9 NODE - OV(R7 DODO ID 10 OOJO 2038 OOJO D2FB
- 12/071•1 08.31 - LNCE DTIC OBJ

LKICPHDq CSECT 20 DODD 10 10 DDJO 20l8 DDJD iJ2F8 0Dl020U
OOODlDlJ

LllllEOTl 0 NOOE - OVERI 0D0020 DB DOJO 21'8 0000016D
- 12/071"1 DB.31 - LNKEDnC OBJ

LK5CPH12 CSECT 2A OODD20 08 DOJO 2168 OO:JO 0160 DOJOlllO
ODOD2DDI

LNKEDTl 1 NODE - OVER7 0DD01D10 DDJO lflB DOJD D2l8
- lZ/07/ltl 08.31 - LNKE DTIC OBJ

LKIC PHJD tSECT 2E 0DD01010 DOJD 1070 ODJODD•D OOJD3890
- 12/07/ltl DB.31 - LNKE DTIC OBJ

LKICPHJ9 CSECT 26 000D1070 OOJOlflB OOJ00118 ODJOZBEB
OODDlDU

LllKEDTl Z NOOE - OVER7 DODO 1010 DOJO 1f28 OOJOD218
- 121D1/H D8.31 - LNnDnC OBJ

LKICPHU CSECJ 2C DODO 10 10 DOJO 1F28 OOJOD218 DOJOJHB
OOODlDlJ

LNKEDTl J NODE - OVERI DODO IF 28 00102168 DOJOD2•D
Ul

- 12107/H DB.31 - LNCE DTIC OBJ -<
LK IC PHJS CSECT 21 ODDO IF 28 OOJO 2168 DOJO 02•0 OOJOZnD Ul Ul

ODOD1F28 --l ""O
LllllEDTllt NOOE - OVER9 00002168 DDJO 2250 DO JO DO El mm

- 12/071111 08.31 - LNKE DTIC OBJ s: :;JJ

LKIC PHJ7 CSECJ 23 00002168 DDJO 22SO OOJODDEI DDJ028EO Ul :;JJ

ODOD2161 m -<
LNKEDTl S NODE - OVER 10 DOD022 50 OD JO 21118 DDJ002H ::JJc

- 12107/H 08.31 - LNKE one OBJ
~z n-

LKIC PHll CSECJ 28 000022 so OOJO ZltB8 OOJDDZU DOJO 2E50 m<
OODJ225J ""O)>

LNKEDT16 NODE - OVER 10 000022 50 ODJD 2590 ODJODJ•D :;JJ ('")

- 12/07/ltl 08.31 - LNKE DTIC OBJ 00
LKIC PHD6 CSECJ Z2 000022 SD DDJD 2S90 DDJD DJ•O DDJD2SlD Gl Ul

DDDJ22SJ
:;JJ--
)> w

LllKEDTl 1 NODE - OVER 10 000022 50 ODJD 23"8 ODJD ODF8 s:
- 12/071'1 08.31 - LNKEDnt OBJ Ul

LKIC PHSl CSECJ 29 000022 SD DDJD 23'8 DD JO DOFB DDJD JOH
DD0022SJ

LNKEDTl I NODE - OVER9 00002168 DOJO 2250 JOJO DDEI
- 12107/H os.31 - LNKE DTIC OBJ

LKIC PHJB CS ECT Zit DOOOZI 68 0010 22SO DOJO DOE8 DOJ029CB
00002168

LNKEDTl 9 NOOE - OVER9 00002168 OOJOZZlD 0010 DlJ8
- 12/D7/ltl 08.31 - LNKE one OBJ

LKIC PHU CSECJ ZS 00002168 DDJD 22lD DOJDiJlJB DDJD ZA BO
OOOJ2161

LNKEDT2 D NOOE - OVER7 00001010 00101(08 DOJODlDI
- 121071"1 08.31 - LNCE one OBJ

LUCPH70 CSECT ZF DODO 10 10 DO JO lD•D 30JOOOJD OOJD JS FD
- 12/071111 08.31 - LNKE one OBJ

LKIC PHJ9 CSECJ 26 DODO ID •O OOJO 1EE8 OOJD DUB DOJDZBEB
OODOlDlJ

LNKEDJ2 1 NODE - OV<R S 000019[8 0010 1 BU OOJDDl&O
I I

00
I

N
co

I

Figure 8-6. Link-Edit Example 5 (Part 9 of 14)

c
" PHASE NAllE TRANS ADDR FLA& LABEL TYPE [51 D LNK OR6 HUDlll LEN&TH OIJ 016 a,

- 121071•1.08.31 - LNKE one OBJ
0
O>

LKICPHa2 CSECT IC ODDO 19EI OOJO IB'8 ODJOOlr.11 DDJD 1930 N
D00a19[8 ::0

LNKEOT22 NODE - OVERS ODDD19E& OOJO 18'0 00000158 (1)

- 121D71•1 08.31 - LNKE one OBJ :<-
LKICPHJ3 C5£CT 1E DODD19E8 ODJD 18'D ODJDDlSI DDJD 1050 to

000019[8
LNKEDT2 3 NODE - OVER ft 0000 lB•O OOJO lCDO OOJO 0190

- 121071'1 08.31 - LNllEDHC OBJ
LUC PHIS CSE CT ZD 0000 lB•O OOJO lCOD DOJD0190 OOJ037JO

oooau•J
LllKEOY2• NOOE - OVER6 ODDOlB•O ODJO 1011 ODJOOlDI

- 12/071•1 08.31 - LNKE one OBJ
LKICPH13 CSECT 2B ODDO lB •D DOJO 1011 DOJO 0101 00303310

DOO:JlB•J
LNKEDT2 5 NODE - OVERS 000019[8 ODJD 1810 OOJO DlCI

- 121D7/'1 08.31 - LNllE OTlC OBJ
LKICPHH CSECJ 1B DODO 19E8 DDJD lBl!IO OOllDDlCB 00ll017 ..

000019[8
LllllEOJZft NOOE - OVERS OODD19EI OOJDlCH OOJ002CO

- 121D71•1 !)8.31 - LNllE DTIC OBJ
LKIC PH•2 CSECT 10 ODD019E8 DDJD 1Cl8 ODJDD2CD DOJO 1A90
LKH AUSP ENJRY 10 :JDDD 19 EA OOJOU92

DD0019EA
LllKEDT2 7 NOOE - OVER!> DD0019EI DDJO lBAI DOJOOlCO

- 12/071•1 08.31 - LNKE one OBJ en
LKIC PH•3 CSECT IF 000019[8 OOJO 1811 DOJO DlCD DOJO lEll <

000019£8 en en
LNKEDT28 NODE - OVER• DDDD13ED DDJDl•IB DDJOllOIB -t "

- 121071"1 08.31 - LNKE one OBJ
mm

LUCPH16 CSECT 3D ODDD13ED DOJD 108 ODJOOOll 00)03920
s:: ::0

DODD13£J
en :o
m<

LNKEDT29 NOOE - OVER• ODDD13ED DDJO 108 DOJ000l8 :oc
- 121071"1 :18.31 - LNKE DTIC OBJ :::; z

LUCPH17 CSECT 32 JODD13ED :JOJO 101 DDJODDU DOJO 3170 (") -
DDOalJE!J

m<
LNKEOT30 NODE - OVER• ODD013ED DOJO 108 DDJO 0018 " >

- 12/D71•1 D8.31 - LNllE OTIC OBJ
::0 (")

LUCPH18 CSECT 3• ODD013ED DOJO nsa DOJD DOH OD JO 3BCO 00
Cl en

DDD013EJ ::0-...
LNKEOT3 l NOOE - OV[Rq ODOD13EO OOJD 108 ODJD 0018 >W

- 12107/H 08.31 - LNKE one OBJ s::
LK.C PHS6 CSECT 31 000013ED DOJO naa ODJD OOH OOJO 39C8 en

ODD013El
LNKEDT32 NODE - OVER• DODD 13£0 DOJO 108 OOJOODH

- 12107/ql 08.31 - LUE one OBJ
LKICPH57 CSECT 33 000013[0 DDJDl•U aOJO DOH 00 JO 3B 18

OOOD13El
LNKEDT3 3 NODE - OV£R• OOOD13ED OOJD 1"8'1 DDJDOOU

- 121011•1 !)8.31 - LNKE DTlC OBJ
LK5C PHS8 CS ECT 35 DODD13EO DDJO nn OOJOODU DDJO 3C68

OOOD13EJ
LNKEDT3• NODE - OVER3 DD!JD 1168 DDJD 1600 JOJO OS68

- 121D71'1 08. 31 - LK5H 1 OBJ
LK511 I CSECT J2 DODO 1168 OOJO 1600 00)00568 DOJO JO JO

00001168
LNKEDT3 S NODE - OVER 3 OOODll 68 OOJ019SO ODJD D7EB

- 121D71•1 08.31 - LK5W OBJ
LKIW CSECT J2 ODDO 1168 ODJO 1950 DOJO 07EI DO JD JOJO

00001161
I I

to
I w

0
I

Figure 8-6. Link-Edit Example 5 (Part 10 of 14)

• • •

UP-8062 Rev. 8

•

•

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

8-31

c
PHASE NAHE TRANS ADDR FLAG LABEL TYPE ESID LNK 0 R6 HU DDR LENGTH OIJ Olt6 7'

PHNOPH•9 ENTRY JO ODOOOO 20 OOJOOOZD 00

PHNOPH51 ENTRY JO OOOOOD 11 OOJDOO I7
0
Ol

PHNOSPSH ENTRY JO OOOOF2 F8 OOJOF2F8 N
PHNO SPIN ENTRY JO OOOOFZ F9 OOlDF2F9 :::0
PHNO SPLG ENTRY JO OOOOF3FO OOJOF3FO CD

PHNOAHH ENTRY JO OOOOF3Fl OOJOF3Fl ::::
PHNO ATIN ENTRY JO OOOOF3F2 OOJOF3F2 00
PHNOAlL6 ENTRY JO JOOOF3F3 OOJOF3F3
PHNO CTAT ENTR y JO OOOOFZ F6 OOJOF2F6
PN3LKSlt2 ENTRY JO OOOOF- FS OOJOF•FS
PN3LKS12 ENTRY JO OOOOFO F6 OOJOFOF6
PN3LKSIN ENTRY JO OOOOFO Fl OOlOFOFl
PN3LKSlt ENTRY JO OOOOfll Fii OOJOF.r•
PNJLKlltl ENTRY JO 0000F3Fll OOJO F3Fll
PNllLKIW ENtRY JO OOOOF3F5 :JOJOF3F5
PNDL KIWI ENTRY JO OOOOF3 F6 OOJOF3F6
PN3LKIN ENTRY JO OOOOF3F7 OOJOF3F7
Pll3LKILL ENTRY JO oooOF3Fa OOJOFlFI
PNllLKSLS ENTRY JO OOOOF3F9 OOJOF3F9
PHNO TXT ENTRY JO OOOOF• FD OOJOFllFO
PHNllOTH ENTRY JO OOOOFllFI DO JO Fii fl
PHNOPHS ENTRY JO OOOOF- F2 DOJOFllFZ
PN3LKST ENTRY JO DODOFll Fl DOJOfllFl
LUESTBO ENTRY JO OODODOO• DOJODOilll
LKSE BDRF ENTRY JO ODODOOOI OOJODODI
LK.r DNllP ENTRY JD ODDODDOC DDJODO:JC
LK.r RTIO ENTRY JO DOOOOO 10 OOJODO 10 (/)

LK.r NOPH ENTRY DO OOOODD 1• DO JO DO 111 -<
ODDDOFSB (/) (/)

LNKEDTll~ NODE - OVERl ODOOOE 50 DOJO lC.C OOJDDDFC -t "'U mm
- 12107/'1 08.31 - LNKE DTCA OBJ s:: :::0

LK•P CSECT u OOODOE 5D DOJOOF51 DOJODlll OOJO 1871 (/) :::0
PRNTR ENTRY u OOODOE El DOJO lC 10 m-<
PRNl RC ENTRY ll OOOOOF lA OOJO lC.2 :::0 c

- 12107/HIDB.31 - LN'E DTCA OBJ s; z
LNKE OTCA CSECT J2 OODDDF51 ooJo 1 ir.a D0l00210 OOJDlDDO (") -

- 12/07/111 08.31 - LKSlt OBJ m<
LK•H CSECT J2 ODDO 1168 DOJD 12ED 00l0Dl18 OD JO DD JD

"'U)>

LKSHZ CSECT lB 000012EO OOJO lC.C OOJOD9&C DD JO DD fl
:::0 (")
oo

LKSE SOBJ ENTRY JO DDOOD702 OOJOD702 G> (/)
LKSEUOBJ ENTRY :JO 00000703 i10JOD703 :::0
LKSE SLIB ENTRY !ID OOOD07D• OOJOD70")>W

LKSHZLEN ENTRY JO DODD096C DOJOD9•C s::
LKSE OVRT ENTRY JO DOOODOOl DO JO DOH (/)

LK•E PNCI ENTRY JO ODOODD 1A DDJOODlA
LK•E NON ENTRY :JD OD00002F DDJDDOZF
LK.C NOllP ENTRY JD 000000 51 DOJD DO 51
LKSE REliN ENTRY DO 000000 6E DOJDOD•E
LKKENLH ENTRY !ID 00000083 DOJDD013
LK.C LABN ENrRY JO OOOODO 9C DDJOD09C
LKKOPlB ENTRY JO OODODDAE DD JO DD IE
LKSEOPRN ENTRY JO DDDDDDCll DDJOOOC•
LKSE XN3 ENTRY DO DDDDODE l DD JO DO El
LKSECSNH ENTRY DO oooooon DOJODOF1
LKKIVDE ENTRY 30 00000112 DOJOD112
LKSECSNO ENTRY :JO OD DOD I 30 DOJO:JlJO
LK5E LBDE ENTRY JO DOODOl 51 DOJO Dl51
LKKNOTF ENTRY DD oooDD17F ODJOD17F
LKSE NODL ENTRY :JO 00000190 !IOJO:J190
Ll"E LllLB ENTRY JO 000001 Bl OOJD:Jlll

I I
00
I w

N
Figure 8-6 . Link-Edit Example 5 (Part 12 of 14)

• • •

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

.. ...
"' • "' _,

..
Cl
Cl
c
:z:

111wwo~ ~u-~e•uu••ec~o~eu~•~N•NOC•~•uu•uu~···~=u~
•uO~O"~~~~U~ON•~~CU~N•~ccu~-N~~~mo~o·M~•m~~N~~-m
O•••NNNNNNNNM~M~~~M~••••••·~~~~~~~~~~~~~~~~~~~~~

000
¥000000000000000COOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
zoooooooooooooooooooooooooooooooooooooocoooooooo
~000

000

Cl
~oooooooooooooooocooooooooooooooocoooooooooooooo
~ooon~"nonnnnnnnnnnnnnonononnoooononnnnnn~nn~nno

""

>>>
••• w•••••••••••••~•~•~•••••~•••••••••••••••••••••••
~zzz
~www ...

"' c _, ...

...
c
Cl
c

"' • c
w
E
c
z

"" "' c
f

u • ...
Cl
0 ...
0
Cl

u

"' -c
0
0

0
Ill

"" c
0
Cl
0
Cl

..
~
Cl
Cl
0 ...
0
Cl

... • ...
Cl
0 ...
0
0

u

"'
~
0
Cl

0
Ill

"" 0
0
0
0
Cl

ID -
..,

"' u

"' z: z:
"'"' _, _,

-"' "'' ..
Cl -
~ .. .

~ co
•lo -ow ...
c Cl. oo-.
oz~

Ill
c
w
I _,

0 ..
N

..
! -0
0
0
0

8-33

UP-8062 Rev. 8 SPERRY UNIV AC OS/3
SYSTEM SERVICE PROGRAMS

c ...
... "' ... :I
"'c

0 . "'
:" G.

u
""' ..
"'c
"'"'
UC
Z%
I I
zz
.. c
... I:
>CI:
... c

u
c ..,c
c ...
.. 0
zc
~G.

I I

~G.

... ...
"' I o
cc "' c

o"" j a
O> ...ti..t
"""'""' CJ~ Ill z ...
~::i­c.... z
..iu ... o
"-MOU ... z,.

I I I

... z ..

c •
z "' "'

C"- ~C
"'""Q: 0: ... 0 ..
... 0
Iii.I ... V'I
Cl A. "'
I ,...i...

0 """
~ .. c Q
=:I z GI:
C E :1 A.

I I I'"' z
Q .. ::::1

%
u~

Ill

t'
G.

... z "' "'""a..,,.
U ..ti..C

... 0
cc ... c..
c GI: Q 0:
c 0: ~ :
... c
-i z e
C OVI ...
I I I Z

c
c """'W"I *

.
0

~ ..
I ..
"' G.
:I

"'""
,_ • 0

i:: g
"' c OI u.., I
- I: c ,_
Q O-CI<

~ .. ~
~~~ 

... 0 
u. c .... 
0 ... z 
~~~ 
Q "' "'I Cl<
~ c·

~== _, c ...

J

)

8-34

•

•

•

•

PART 4. SYSTEM UTILITIES

•

•

•

•

•

•
UP-8062 Rev. 8

9.1. GENERAL

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

9-1

9. INITIALIZE Disk Routine
(DSKPRP)

Before any of your disk packs or diskettes may be used, the first thing you must do is
initialize the medium, a process commonly referred to as prepping. Because of the
difference in design of the disk packs and diskettes, the prepping functions and options
for each are different. In this section, we will discuss each type of prep separately.

In addition to the disk prep routine, there is another prep facility in the form of a canned
job control stream called SETREL. SETREL can prep and allocate SYSRES files. There
are other canned job control streams to copy, print, and pack SYSRES files. Appendix

• A explains all of the SYSRES canned job control streams.

9.2. PREPPING YOUR DISK PACK

Prepping a disk pack is made up of two functions. The first function is analyzing the
surface of your disk pack for possible defective tracks, keeping a history of these
defective tracks, and assigning alternate tracks. The result of this analysis is the track
condition table (TCT), which is printed out and used to determine the condition of your
disk pack. We will talk more about the TCT a little later.

The second function is building the initial records that must be written on the tracks of
your disk pack before it can receive any data or programs. The initial records include
the disk volume label records, known as the standard volume label (VOL 1) records, and
the volume table of contents (VTOC) records.

In addition to the two functions just discussed, you can also do the following
operations:

• Prepping specific tracks or groups of tracks

• Choosing options to specify prepping only, fast surface checking (fast prep), or an
extreme accuracy surface analysis with or without prepping your disk pack

• • Replacing the volume serial number only

• Adding or replacing IL (COS) only

• Creating a new volume serial number and a VTOC without generating a new TCT

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

• Checking the expiration date for all files

9-2

The name of the disk prep routine is called DSKPRP and it can prep any disk supported
by OS/3, IDA sectored, selector channel nonsectored, or IPC diskette. The IDA
sectored disk packs are 8415, 8416, and 8418; the selector channel nonsectored disk
packs are the 8411, 8414, 8424/8425, 8430, and 8433. The IPC diskette is the
8413.

9.3. SPECIFYING THE PREP OPTIONS

You choose the prep options by selecting one or more of the following keywords. The
only keyword you must select is the SERNR keyword identifying the volume serial
number of your disk pack. As many keywords as can be contained on one card are
permitted and as many cards as needed can be present in your control stream.
Remember also, keywords may be specified in any order.

The format of the keywords is:

[AL• ••~jif J [1 LOP •={tD[1 • s ••=i!t J

[IP LD K= li!J [RPVOL=j"] [PA RTL=i~ J

[

PRE PT=ul lJ[RE T RY=tnnfl [p TB EG= r'.c~/:~ h n
• B,"Jll

3
c
: ·-~:

'..::cl

[.PTEND=cccchh] .SERNR=volume serial number (six characters)

[TRCON1t}] [RKCT)l}][VERFY=1,n ~UNXFC=~J

[
VTOCB=i• '°'

_,,,B for
lw",_.ILll f 0 r

all non-IPL volumes
8411.8414 IPL volumes
8415,8416,8418,8424/25,8430,8433

for 8411 non-IPL volume
for 8414.8424/25 non-IPL volume
for 8415 fixed, non-IPL volume

,==for 8415 removable.non-IPL volume
I for 8416,8418 non-IPL volumes

for 8430.8433 non-IPL volumes
for 8411 IPL volume
for 8414 IPL volume
for 8415 fixed, IPL volume
for 8415 removable. IPL volume
for 8416.8418 IPL volumes
for 8424/25 IPL volumes
for 8430,8433 IPL volume

IPL "1,.JJ

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

9-3
Update A

• 9.3.1. Testing Alternate Track Areas (ALTRK)

•

•

By either specifying AL TRK = Y or omitting the AL TRK keyword, the alternate track ..,_
areas of your disk pack are tested. As stated earlier, one of the prep functions is
performing a surface analysis of your disk pack. During this process, any defective
tracks are flagged and an alternate track is assigned. The AL TRK keyword performs a
surface analysis of these alternate tracks ensuring that the track is usable as an
alternate track.

You can suppress the testing of the alternate tracks by specifying AL TRK=N.

9.3.2. Indicating the Type of Initial Load Control Storage (ILOPT)

By specifying one of the options associated with the ILOPT keyword, you indicate the
type of initial load (IL) control storage (COS) to be written on your disk pack.

You select the C option signifying that the IL (COS) is card input. In this case, the COS
card deck must be the second embedded data set passed to DSKPRP, as shown in 9.9,
example 3.

You select the 1 option, signifying that the IL (COS) is disk input and is 1 K capacity.

You select the 2 option, signifying that the IL (COS) is disk input but is 2K capacity .

You select the 3 option, signifying that the IL (COS) is disk input but is 2K fast
capacity.

When you specify ILOPT=N or omit the keyword, no IL (COS) is written.

In addition to the C option, there is also a canned job control stream (ADDnnCOS) that
performs the same function. However, when ADDnnCOS is run, immediately afterwards
a prep canned job control stream PRPnnCOS must be run to activate COS. See 9. 11 for
a description of both the prep and the add COS canned job control streams.

9.3.3. Automatically Recording Defective Tracks (INSRT)

The SPERRY UNIVAC 8415, 8416, and 8418 sectored disk packs go through an
extensive surface analysis during their manufacturing process. Any defective tracks
detected during this process are listed decimally and hexadecimally in cylinder and head
format (cccchh) in a defective track table. This table is located on the bottom of the
plastic cover on a label that also lists your pack's volume serial number. Regardless of
where the defective tracks are listed, the addresses of these defective tracks must be
specified hexadecimally on the INSERT control statement; however, you must also
specify the X or Y option in the INSRT keyword, telling the prep routine there are
INSERT control statements present in your control stream.

You use INSRT = X, indicating only INSERT control statements are used to designate
defective tracks, while the INSRT = Y indicates the INSERT control statements are used
together with the normal surface analysis function to flag any defective tracks on your
disk pack. The Y option is automatically set whenever the keyword TRCON=N is used
and a sectorized disk pack is being prepped.

--- -------------

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

9-4

If you specify INSRT = N or omit the keyword, you indicate that no INSERT control
statements are present in your control stream.

9.3.4. Indicating Your Disk Pack Is an IPL Volume (IPLDK)

If you specify IPLDK = Y or omit the keyword, you are indicating your disk pack is to be
used as an IPL volume. Your SYSRES pack is always an IPL volume.

If this pack is not to be used as an IPL volume, then you must specify IPLDK=N.

9.3.5. Renumbering Your Volume Serial Number or Replacing Initial Load
Control Storage (RPVOL)

When you want to renumber your volume serial number, you specify RPVOL=Y and
then insert your new volume serial number in the SERNA keyword. If you are
renumbering in a multiple volume environment, then you cannot use the VCHECK
parameter in the 11 LBL job control statement for volume checking. The volume check
function checks the sequence between the volume serial number and the file serial
number. Your volume serial number and file serial number are part of the VTOC. The
RPVOL keyword does not change the file serial number; therefore, in multiple volume
files, data management does not know the sequence of volumes being processed.

In addition to renumbering your volume serial number, you can also replace the existing
IL (COS) without destroying the existing information on your disk pack. You use the
ILOPT keyword in conjunction with RPVOL=Y keyword for this operation. However,
you cannot renumber your volume serial number and replace IL (COS) at the same time.
Whenever you use the RPVOL keyword, all other keywords except ILOPT and the
SERNR are ignored. As with any prep operation, the VOL 1 control statement must be
specified.

You may also replace the user address specified for this volume by specifying
RPVOL = Y and including the new user address on the VOL 1 card. If you do not wish to
change the user address, you must leave that field blank on the VOL 1 card.

If you need to renumber your volume serial number and the disk pack does not need to
be prepped, you can use the canned job control stream called CHGVSN.

NOTE:

If changing the volume serial number of a SYSRES, SYSRUN, or spooling disk pack,
extreme care should be used not to specify a previously assigned vsn. Such duplication
may not cause a system duplication warning message to be issued but will severely
impact the system. If a duplicate vsn is inadvenently assigned, the entire system must
be reinitialized (IPL).

9.3.6. Specifying a Partial Prep or Changing Your Volume Serial Number and
VTOC (PARTL)

•

•

•

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

9-5

If you only want to prep a portion of your disk pack, regardless of your pack being
allocated or not, then you would specify the PARTL=S keyword.

When you use PARTL=S, the keywords PTBEG and PTEND must be specified since
they indicate the area of your disk pack being prepped. The keywords TRCON=N and
TRKCT = P must not be specified since a partial prep does not include generating a new
track condition table. The testing of alternate tracks is automatically suppressed via the
keyword ALTRK=N. You may specify the INSRT and PREPT keywords; however, the
VTOCB, VTOCE, ILOPT, and IPLDK keywords are ignored if they are present in your
control stream. As with any prep, the keyword SERNA, which indicates the volume
serial number, and the VOL 1 card, which creates the standard VOL 1 labels, must be
specified.

When you specify this option, it is possible to destroy any and all information residing
in the area being prepped via the PTBEG and PTEND keywords. This area can also
include the volume serial number and the VTOC. All areas outside the prep area remain
unchanged.

If you want to specify a new volume serial number, then you would specify the
PARTL=V keyword. Your new volume serial number, which is specified on the SERNA
keyword, is written in the VOL 1 label. This keyword removes all the entries from the
VTOC, thus making your disk pack unusable unless you know the specific address of
your files. This addressing could have been done by using the ADDR parameter in the
EXT job control statement when you allocated your files. If you want to renumber your
volume serial number and still have your disk pack usable, and you did not use the
ADDR parameter in the / / EXT job control statement, you must use the RPVOL
keyword.

9.3.7. How Accurate a Prep Do You Need? (PREPT and RETRY)

The first time a disk pack is prepped, you should perform an extreme accuracy prep.
You select the extreme accuracy prep by specifying PREPT=3 or PREPT=C (complete
prep). In the case of unrecoverable data errors, a second complete prep (PREPT=C)
may be desirable. Once a disk pack has been prepped, all subsequent preps should be
specified with PREPT=F (fast prep). If you are prepping an 8416 disk pack, you
automatically receive the extreme accuracy prep, unless PREPT = F is specified. This
keyword indicates that only a minimum surface analysis is to be performed. There are
two other preps available, PREPT= 1 and PREPT=2. These two preps are more
accurate than the fast prep but less accurate than the extreme accuracy prep.

Regardless of the type of prep requested, DSKPRP will test a given track up to the
number of times specified by the RETRY keyword, in an attempt to have it pass the
surface analysis test. If a track is found defective the first time it is tested, it is retested
up to the number of times specified by the RETRY keyword before it is declared bad,
and an alternate track is substituted for it. Thus, lowering the RETRY specification has
the effect of making the disk prep routine perform a more critical surface analysis by
giving each track fewer chances to pass the surface analysis test. Conversely,
increasing the RETRY specification lowers the effectiveness of the surface analysis test
by giving each track more chances to pass the test.

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

9-6

The number of retries is specified as a hexadecimal number from 00 to FF. The default
number of retries is 10 (0A 16).

9.3.8. Specifying Where Prepping Starts (PTBEG) and Ends (PTEND)

When you omit both the PTBEG and PTEND keywords, disk prep starts at the primary
track address of 000000 and ends at the highest primary track address of your disk
pack.

If you want prepping to start other than at the beginning of the disk pack and end other
than at the highest primary track address, you would specify these addresses
(hexadecimal) in cylinder/head format (cccchh).

The use of PTBEG and PTEND does not prevent the initialization of the VOL 1 record,
the boot/IPL record, COS, or the VTOC. To suppress the initialization of these records,
you must specify the PARTL=S parameter.

9.3.9. Specifying Your Volume Serial Number (SERNR)

The volume serial number is six alphanumeric characters, which make up the serial
number of the disk volume being prepped, and may not contain any blank characters.
Your volume serial number may already have been assigned to the disk volume through
a previous prep or it may specify a new serial number. In either case, the SERNR
keyword must always be present in your disk prep control stream. If a new serial
number is being specified on a previously prepped disk pack, you should specify either
the RPVOL parameter or the NOV option on the VOL statement.

9.3.10. Specifying a Track Condition Table (TRCON and TRKCT)

The track condition table tells you the general condition of your disk pack and provides
subsequent preps with a history of the alternate track assignments. Figure 9-1 shows a
typical track condition table printout generated by DSKPRP.

VER 710625 ••••••••••••••• OSl3 DISC INITIALIZAllON •••••••••••••••

DUE 71106128

• CONTROL STREAM PARAMETERS •

VOLl

HRNR=D00028
IPLDK=N
lNSRT=l

•DEFAULT PARAMETERS•

Al TAK= Y
P1END=019JOE
VERFl=N

• INSERT FARAMElERS •

INSERT C0Alf03

IlOPT=N
RETR~=OA

VTOCB=OOOOOJ

PARll=N
RPVOL=N
V10CE=000006

PliEFI=F
TRCCN=D

0~13 TRACK CO~DJTJON TABLE
SERIAL NUMBER OC0028

Figure 9-1. Track Condition Table (Part 1 of 2)

llME 03:28:15.

PlBEs=ocoooo
TliKCT=D

•

•

•

•

•

•

UP-8062 Rev. 8

ALTERNATE TRACK CODE BYTE
CyLINOEli HEAD 0123 llS61

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

ntES
~RlllEN

PR !HAR Y TRAC• CN BAO
CHINOER HEAD llinK

9-7

F JR S 1
BAD
BYTE BHE BUE
F OllNC READ EXPECTED

--
019'1 00 l s 1 00111 00 0000 ocoo DO OD
OJ9S OD 3 6 0000 OD 0000 oooc DO Do
0196 00 2 0000 00 0000 ODDO DO DD
019) DO 2 ODDO 00 0000 DIJOli DO OD
0198 00 2 uOOO 00 0000 ODDO DO 00
0199 DO 2 0000 OD ODDO 0000 DD OD
Ol9A DO 2 DODO 00 0000 OCOIJ 00 00
019'1 01 l s 1 00112 OJ 0000 0000 DO DO
019S 01 l .. 1 ooec 01 0000 0000 00 DD
OJ96 01 J .. 1 0133 OJ 0000 ODDO 00 DO
019 l 01 2 ODDO OD 0000 OllOO DD DD
0198 01 2 0000 DO 0000 DODD OD DO
0199 01 2 0000 00 0000 DODD DO OD
OJ9A 01 2 DODO DO 0000 DODD 00 DO
01911 02 l s 1 OOltl 02 0000 0000 00 00
OJ9S 02 2 0000 00 ODDO 0000 OD DO
0196 02 2 0000 00 0000 0000 DO 00
0191• 02 2 0000 OD 0000 ,0000 OD 00
0198 02 2 0000 00 0000 0000 OD OD
OJ99 02 2 0000 00 0000 Ol!OD 00 OD
019A 02 2 DODO DD 0000 oaoo 00 00
OJ91t 03 J 5 1 DDltlt 03 0000 0000 DO OD
OJ9S 03 J 3 5 oon 03 0000· 0000 DO 00
OJ96 03 2 0000 00 0000 ODDO 00 OD
OJ9 l 03 2 0000 OD 0000 Ol!OD DO 00
OJ98 03 2 DODO 00 ODDO ODDO 00 DO
OJ9'i 03 2 0000 DD ODDO DODD DO OD
019A 03 2 0000 OD ODDO DODD DO 00
019'1 011 2 0000 00 0000 0000 DO OD
019S 011 2 ODDO OD 0000 0()00 OD OD
0196 O't 2 ODDO DD DODD ocoo DD OD
0191 011 2 0000 OD 0000 0000 DO OD
0198 011 2 ODDO DO ODDO DCOO DO DO
0199 D't 2 ODDO 00 ODDO 0000 DO OD
019A 011 2 uOOO OD 0000 0000 DO DO
01911 OS 2 0000 00 0000 0000 DD OD
0195 OS 2 0000 OD 0000 ocoo DO OD
01»6 OS 2 CODD OD 0000 oc:oo DO OD
0191 OS 2 ODDO 00 ODDO DODO DO DD
0198 05 2 0000 OD 0000 0000 00 DD
0199 05 2 0000 00 0000 0000 OD DO
019A OS 2 0000 DC ocoo DCOIJ DO OD
01911 . 06 2 uOOO 00 0000 0000 00 DO
019S D6 2 0000 OD ODDO 0000 DO OD
0196 06 2 0000 DO 0000 DODO 00 DO
0191 06 2 ODDO OD 0000 OOOIJ DO DD
Ol9a 06 2 0000 00 0000 0000 DO DO
0199 06 2 JOOO OD ocoo 0000 00 00
Ol9A 06 2 0000 00 0000 0000 DO OD

I! 11 c= ALTERNAlE TRACK LISTED JS OEFEClIVE
l = PlilHARY TRACK LISTED JS OEFEClIVE ANO All IL TERNA TE HA5 BEEN AHJGNEO
~= ALTERNAlE TRACK LISTED IS GOOD 1 B~T NOT ASSIGNED
3= ALTERNATE TRACK LISlEO IS GOOD AND HAS BEEN A5SIGNED BY THIS RLN
11= THIS DEFECTIVE TRACK FOlND BY SLRFACE A•ALY~IS

s= lHIS DEFECTIVE TRACK DESIGNATED BY CARD INSERT
t= THIS AL l TRACK CONUINS THE TRACK CONCH lAELE
J= THIS All TRACK llAS ASSIGNED BY A PREVIOLS RLN

US Ali l NCRl'Al EOJ - OlSK H 6000

UNI~AC SYSTEM OS/3 DISC INlllALIZAlION COHPLElE
DATE- ll/C6128 TlKE- 03 :30 :26 uPsJ- x•oo•
VS N- 000028 TYPE- 81118 LOii

Figure 9-1. Track Condition Table (Part 2 of 2)

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

9-8

Looking at our track condition table, we see that there are seven defective tracks
designated by a 1 bit in the code byte. Five of the tracks are designated by card inserts
(bit 5 in code byte) and two were found by surface analysis. When a defective track is
found, an alternate track is automatically assigned. The tracks reserved as alternates are
listed in the first two columns on the table. As shown, the last tracks (highest
addresses) on the disk pack are used as alternate tracks. Further, the first good
alternate track is used to store the track condition table. Bits 3 and 6 of the code byte
indicate the condition.

Looking at our track condition table, we see that there were no defective tracks found
through the surface analysis as indicated by zeros being in both the primary cylinder and
track head columns. The only track for which an alternate was assigned was the track
identified as bad on the INSERT statement (track 4 of cylinder 69). The tracks reserved
as alternates are listed in the first two columns on the table. As shown, the last tracks
(highest addresses) on the disk pack are used as alternate tracks. Further, the first good
alternate track is used to store the track condition table. Bits 3 and 6 of the code byte
indicate the condition. The only other alternate track being used is track 4 of cylinder
194. This track is being used in place of track 4 of cylinder 69. All other alternate
tracks are listed as good and are assigned.

There are two keywords associated with your track condition table: TRCON and
TRKCT. When you specify TRCON, the following options are available:

• You use TRCON=C, indicating the track condition is input from cards. Normally,
this option is not used, since the track condition table is in binary form when
punched in cards.

• You use TRCON=D, indicating the track condition table is input from disk. You use
this method when your disk pack has been in use and the current information is to
be retained.

• You use TRCON=N or TRCON=S, indicating a new track condition table is to be
generated. You must use this method when prepping the disk pack for the first
time or if you cannot recover the existing track condition table by using one of the
first methods.

It is worth noting that, when you prep an IDA disk pack using TRCON=N or TRCON=S,
INSERT processing is forced and INSRT=Y is automatically set.

When you specify TRKCT, the following options are available.

• You use TRKCT=C to indicate your track condition table is to be punched on
cards.

• You use TRKCT = D to indicate your track condition table is written to an alternate
track.

• You use TRKCT = L to indicate your track condition table is listed on the printer and
no other prepping functions are to take place. Your disk must already be prepped
with TRCON set to D. This option is useful for future references about the track
condition of your disk pack.

•

•

•

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

9-9

• You use TRKCT = P to indicate your track condition table is listed on the printer.
When you prep an IDA disk pack, this option is not permitted.

• You use TRKCT = X to indicate your track condition table is punched on cards and
listed on the printer.

• You use TRKCT = Z to indicate your track condition table is written to an alternate
track and listed on the printer.

It is recommended that either TRKCT = D or TRKCT = Z be selected so subsequent preps
may reap the benefits of previous surface analysis results and INSERT specifications.

9.3.11. Testing an Area before Prepping (VERFY)

If you are doing a partial prep, it is a good rule to test the area to be prepped first to
make sure that area is free of data. You use the VERFY=Y keyword to do this testing.
Whenever you specify VERFY=Y, the following keywords must also be specified:
PTBEG, PTEND, and SERNR; in addition, TRCON cannot be an N and TRKCT cannot be
a P. The keyword ALTRK=N is assumed while the keywords VTOCB, VTOCE, ILOPT,
and IPLOK are ignored if they are present in your control stream. The INSRT and PREPT
keywords may be used, if needed. As with all preps, the VOL 1 card must be specified.

When you specify VERFY=N or omit the keyword, no testing is performed .

NOTE:

If the area defined by the PTBEG and PTEND keywords is occupied, the prep will
automatically stop, a message will be posted, and no further action will take place.
Also, the VOL 1 label or the VTOC area is not rebuilt.

9.3.12. Checking the File Expiration Date (UNXFC)

You use the UNXFC keyword to check the expiration date for all files on your volume.
When you use this keyword, you prevent any file from being scratched if the expiration
date has not expired.

DSKPRP compares the system date to the expirat~on date for each file. Whenever the
expiration date is greater than the system date, a message is displayed that indicates
the expiration date has not expired (up to 10 files at a time can be displayed).
Associated with this message, DSKPRP gives you the option to ignore the message and
continue with the prep or cancel the prep. Normally, you would cancel the prep when
the expiration date has not expired.

If you want expiration date validation to be performed, you must override the default by
specifying UNXFC=Y .

t

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

9.3.13. Specifying the VTOC Address (VTOCB and VTOCE)

9-10

The VTOC is a directory containing the addresses of the files in your volume. You can
indicate where you want the VTOC to reside by specifying six hexadecimal numbers
representing the starting primary track address in cylinder /head format (cccchh) on the
VTOCB keyword. The starting address must be less than the end VTOC address and
must be at least one track in length; however, we recommend that one cylinder be
allocated for the VTOC. When you omit the VTOCB keyword, DSKPRP automatically
assigns the starting VTOC address for you. Table 9-1 shows the default VTOC starting
addresses for both IPL and non-IPL disk volumes.

Table 9-1. Default Starting VTOC Addresses

SPERRY UNIVAC
Non-IPL Volume IPL Volume

Disk

8411 000001 006400
8414 000001 006400
8415 000001 OOCAOO
8416 000001 OOCAOO
8418 000001 OOCAOO
8424125 000001 OOCAOO
8430 000001 OOCAOO
8433 000001 OOCAOO

NOTE:

On IPL volumes, the VTOC must start on a cylinder boundary.

After you have indicated the starting address of your VTOC, the next step is specifying
the ending address. You can specify the hexadecimal numbers to indicate the cylinder
and head address of the ending track on the VTOCE keyword. When you omit the
VTOCE keyword, DSKPRP automatically assigns the ending VTOC address for you.
Table 9-2 shows the VTOC ending addresses for both IPL and non-IPL disk volumes.

If you are prepping an 8415 with removable disk as an IPL volume, the disk prep
routine assumes there will be a small VTOC. If you suspect the need for a large VTOC,
due to amount of data or the number of files being stored, then you should specify the
VTOCB and VTOCE keywords.

Table 9-2. Default Ending VTOC Addresses

SPERRY UNIVAC
Non-IPL Volume IPL Volume

Disk

8411 000009 006409
8414 000013 006413
8415 fixed 000002 OOCA02
8415 removable 000001 OOCA01
8416 000006 OOCA06
8418 000006 OOCA06
8414125 000013 OOCA13
8430 000012 OOCA12
8433 000012 OOCA12

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

9-11

• 9.4. FLAGGING DEFECTIVE TRACKS AUTOMATICALLY

•

•

The INSERT control statement is used to flag any known defective tracks. An alternate
track is automatically assigned for each flagged track. As stated earlier, during the
manufacturing process of 8415, 8416, and 8418 disk packs, any tracks detected as
being defective are listed on the bottom of the plastic cover in decimal numbers. You
must identify these defective tracks on INSERT control statements by using their
hexadecimal equivalents. Only one defective track may be specified on each INSERT
control statement. Whenever INSERT control statements containing defective track
addresses are present, you must specify either the keyword INSRT = X or INSRT = Y.

The format of the INSERT control statement is:

10

INSERT
{
cccchh}
NONE

where:

cccchh

NONE

Is the hexadecimal address of the track to be flagged in cylinder/head format.
Note also, this specification must begin in column 10 .

Indicates that there are no defective tracks.

If you are prepping an IDA disk pack and TRCON=N or TRCON=S is specified,
INSRT = Y processing is automatically set, and your control stream must contain at least
one INSERT control statement in it or else it will be considered invalid. This is true even
if no defective tracks are listed on the plastic cover. Thus, if the pack you are prepping
contains no defective tracks, you must use an INSERT control statement coded as
follows:

10 16

INSERT NONE

If you are prepping an 8411, 8414, 8424/25, 8430, or 8433 disk pack and there are
no defective tracks listed on the plastic cover, INSRT=N is valid and the INSERT control
statement is not required.

9.5. CREATING THE STANDARD VOLUME LABELS

The VOL 1 label is the standard volume label in OS/3. It is used to identify your volume
by a unique serial number and is also used to locate the address of the VTOC. You
must specify a VOL 1 statement everytime you do a prep .

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

The format of the VOL 1 statement is:

1 11 42 51

VOL1 [r] [aaaaaaaaaaJ

9-12

When you code the VOL 1 statement, VOL 1 must start in column 1. The next entry to
specify is a volume security byte in column 11 (r). A 1 in this column implements the
volume security check, while a 0 assumes that there is no security check. The default is
zero. The last entry starts in column 42 and continues to column 51 for a name or
address of the disk pack. Normally, this is an installation-supplied identifier. Figure 9-2
shows the format of a VOL 1 label as it appears on a disk pack.

BYTES

0 1 2 J
0

v 0 L 1

4

li11bel identifier . label number

8

volume serial number

12

volume securi1y

16

volume table of contents address

24

reserved

44

owner name and

address code

56

reserved

80 L
Figure 9-2. VOL 1 Format

The VOL 1 label is identified by the word VOL 1 in the label identification field, which is
the first field in the label. The VOL 1 label is always written on cylinder 0, head 0,
record 3.

•

•

•

•

•

•

UP-8062 Rev. 8

9.6. PREPPING YOUR DISKETTE

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

9-13

Since a diskette is different in design from a disk pack, there are only four prep
functions available:

• initializing the data records;

• initializing the data set labels (VTOC);

• changing the volume serial number; and

• checking the file expiration date.

Because the diskettes are factory prepped, the formatting of the diskettes is neither
supported nor required by the prep routine.

Although no track condition table can be generated, an extensive surface analysis is
performed during the manufacturing process. If any tracks are found to be defective, the
manufacturer will automatically assign the defective tracks to alternate tracks.

9.7. SPECIFYING THE PREP OPTIONS FOR A DISKETTE

As was the case when prepping a disk pack, you choose the prep options by selecting
one or more of the following keywords. The only keyword you must select is the
SERNA keyword identifying the volume serial number of your diskette.

The format of the keywords is:

9. 7 .1. Renumbering Your Diskette Volume Serial Number (RPVOL)

When you want to renumber your volume serial number, you specify RPVOL=Y and
then insert your new volume serial number in the SERNA keyword.

9.7.2. Specifying File Allocation for DSL Diskettes (FDATA)

The disk prep routine automatically allocates the entire diskette (FDA TA= Y) as being
one file and names that file DAT A. Therefore, if you are using the diskette as a work
file, there is no need to allocate file space (using the // EXT statement). However, if
you later decide to use the diskette in a multifile environment or use a different name,
you must scratch the file before allocating a new one. You can scratch files by using
either the PARTL=V keyword (9.7.3.) or via the SCR job control statement.

You also can specify the diskette to be made available for any file allocation Oust as a
disk) by specifying FDATA=N. Once prepped, you then allocate the required file space
by using the / / EXT job control statement with the BLK parameter or the interactive
services ALLOCATE command.

t

t

t

UP-8062 Rev. 8

NOTE:

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

9-14

You also can scratch files interactively via the interactive services ERASE command.
See the interactive services commands and facilities, UP-8845 (current version) for
details.

9. 7 .3. Changing Your Diskette Volume Serial Number and VTOC (PARTL)

If you want to specify a new volume serial number and VTOC, then you would specify
the PARTL=V keyword. Your new volume serial number, which is specified on the
SERNR keyword, is written in the VOL 1 label. This keyword removes all the entries
from the VTOC, thus making your diskette unusable. The use of the PARTL=V
keyword also provides for a faster prep of your diskette since no surface analysis is
performed.

9. 7 .4. Specifying Your Diskette Volume Serial Number (SERNR)

The volume serial number is six alphanumeric characters, which make up the serial
number of the diskette being prepped, and may not contain any blank characters. Your
volume serial number may already have been assigned to the diskette through a
previous prep or it may specify a new serial number. In either case, the SERNR keyword
must always be present in your prep control stream.

If SERNR is the only keyword used, the prep will automatically perform the following:

1. Reinitialize the data set labels (VTOC).

2. Change the volume serial number of the value of SERNR.

3. Write a prep pattern to all data records of the diskette, ensuring their availability.

9. 7 .5. Checking the File Expiration Date (UNXFC)

Use the UNXFC keyword to check the expiration date for all files on your volume. When
you use this keyword, you prevent any file from being scratched if the expiration date
has not expired.

DSKPRP compares the system date to the expiration date for each file. Whenever the
expiration date is greater than the system date, a message is displayed, indicating the
expiration date has not expired (up to 10 files at a time can be displayed). Associated
with this message, DSKPRP gives you the option to ignore the message and continue
with the prep or cancel the prep. Normally, you would cancel the prep when the
expiration date has not expired.

If you omit the UNXFC keyword, no expiration date validation is performed.

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

9-14a

• 9.8. INITIALIZING THE DATA SET LABELS

•

•

The data set labels written on track 00 of your diskette are similar to the VTOC of a
disk pack. The data set labels are reserved for defining the name of a set of records
and the addresses associated with the maximum space the set of records can occupy.
You must specify a VOL 1 statement every time you do a prep.

The format of the VOL 1 statement is:

1

VOL1

Notice that VOL 1 is the only entry required .

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

9-15

• 9.9. EXECUTING THE DISK PREP (DSKPRP)

•

•

When executing DSKPRP to prep any kind of disk, there are two file names that must
always be specified on the // LFD job statements. The file name for the printer must be
PRNTR, while the file name of your disk pack must be DISKIN. No minimum or
maximum main storage sizes should be specified on the / / JOB card, as the minimum
amount of main storage needed by DKSPRP is automatically allocated for the job by job
control, provided any more than the minimum only wastes valuable main storage space.
DSKPRP is not a program that uses main storage dynamically. Also, because DKSPRP
only requires approximately 24K bytes of main storage to run, it is capable of running in
a minimum system configuration.

NOTE:

You can prevent the inadvertent accessing of a disk that is being prepped by specifying
the no-share (NS) parameter on the VOL statement in the prep job control stream. You
can use the NOV parameter in place of NS, but the name specified in the VOL
statement must be unique. The duplication of the name in another job stream or
interactive request allows access to the disk.

In the following control streams, you will see some typical DSKPRP examples:

Example 1 : Basic 84 16 Prep

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11 •

1 10 16

II JOB D16PREP
II DVC 20 II LFD PRNTR
II DVC 60 II VOL DS8416(NOV> II LFD DISKIN
II EXEC DSKPRP
1$

SERNR=DS8416,TRCON=N
VOL1
INSERT NONE
I*
I&
II FIN

Line 1 is your job control statement identifying your job D 16PREP. Next, you
specified the file name PRNTR for the printer; remember, this is the required file
name for the printer. On line 3, you specified your device assignment set for the
disk pack to be prepped. According to this assignment set, your disk pack is
mounted on device number 60 (which is an IDA type device), your volume serial
number is DS8416, and you are using the NOV option, indicating that no check is
required for your volume serial number. The file name DISKIN must be specified on
the // LFD job control statement since this is the required file name for the disk.
The EXEC job control statement (line 4) calls the disk prep routine (DSKPRP) from
YLOD. The /$ job control statement (line 5) indicates the start of the prep data.

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

9-16

All your prep keywords and control statements must immmediately follow the 1$
job control statement. In executing a basic IDA prep, there are only two keywords
that must be specified: SERNR, indicating your volume serial number (DS8416), and
TRCON=N, indicating a new track condition table is to be generated. Also, at least
one INSERT control statement must be specified. When you specify only these two
keywords, the following is assumed:

• The entire disk pack is being prepped.

• The alternate tracks are being tested.

• The disk pack is an IPL volume.

• A fast surface analysis is being performed.

• A track condition table is being generated and written to an alternate track and
listed on the printer.

• At least one INSERT control statement is present in the control stream.

• No IL (COS) is written on the disk pack.

• The VTOC is written on cylinder OOCA.

• No verification is being performed.

The VOL 1 card (line 7) must appear in most disk prep control streams and always
follows the last specified keyword. The only exception to this rule is when you are
using the assign alternate track (AA T) feature of the disk prep routine. The INSERT
control statement (line 8) flags any known defective tracks. In this case, since there
are no known defective tracks, you coded the word NONE starting in column 10.
Whenever you prep an IDA disk pack with the keyword TRCON=N, the INSERT
control statement must appear in the control stream. The /*, I&, and 11 FIN job
control statements (line 9-11) terminate your job.

Example 2: Basic 8414 Prep

1 10 16

II JOB D14PREP
II DVC 20 II LFD PRNTR
II DVC 82 II VOL DS8414CNOV) II LFD DISKIN
II EXEC DSKPRP
1$

SERNR=DS8414
VOL1
I*
I&
II FIN

•

•

•

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

9-17

When you execute a basic 8414 disk prep, the only keyword required is SERNR,
indicating your volume serial number (DS8414). By specifying only this keyword,
you assume:

• the entire disk pack is prepped;

• the alternate tracks are tested;

• the disk pack is an IPL volume;

• a fast surface analysis is performed;

• no INSERT control statements are present in the control stream;

• no IL (COS) is written on the disk pack;

• the VTOC is written on cylinder 0064;

• track condition table is input from disk and is written to an alternate track and
listed on the printer; and

• no verification is performed.

Example 3: 8414 Prep with Selected Options

II
II
II
II
II
1$

10 16

JOB D14PREP
DVC 20 II LFD PRNTR
DVC 40 II LFD PUNCH
DVC 82 II VOL DS8414 II LFD DISKIN
EXEC DSKPRP

SERNR=DS8414,TRCON=C,TRKCT=X,INSRT=Y
ILOPT=C

VOL1 DEPT 6944
(Track condition table cards go here)

INSERT 007205
INSERT 002111
I*
1$

I*
I&

(IL<COS) cards go here)

II FIN

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

9-18

Here, you are prepping an 8414 disk pack whose serial number is DS8414. You
specified the keyword TRCON=C, indicating that your track condition table is input
from cards, while TRKCT=X indicates your new track condition table is output
both to cards and the printer. The INSRT=Y keyword is specified, indicating that
both INSERT control statements and a surface analysis is used to flag all defective
tracks. Whenever you use the Y option with the INSERT keyword, there must be
an INSERT control statement present in the control stream. The ILOPT=C keyword
indicates that IL (COS) is input from cards rather than disk. As with any prep, the
VOL 1 statement must be present.

Example 4: Prepping a Select Portion of a Disk Pack

1 10 16

II JOB D30PREP
II DVC 20 II LFD PRNTR
II DVC 71 II VOL DS8430 II LFD DISKIN
II EXEC DSKPRP
1$

SERNR=DS8430,PTBEG=011400,PTEND=011F12
PREPT=2,INSRT=Y,VERFY=Y

VOL1
INSERT
I*
I&
II FIN

011E00

Here, you are prepping only a portion of your disk pack (DS8430), namely, from
cylinder /head 011400 to 011F12 as specified on the PTBEG and PTEND keywords.
The PREPT=2 keyword indicates the degree of accuracy to be performed. The
INSRT = Y keyword indicates that there are INSERT control statements present in
the control stream to flag known defective tracks. The VERFY = Y keyword checks
to make sure the area being prepped has not been allocated and is, therefore, free
of any data. When you use this keyword, the PTBEG, PTEND, and SERNR
keywords must also be specified, TRCON cannot be an N, TRKCT cannot be a P,
and the alternate track area is automatically not tested. As mentioned in previous
examples, the VOL 1 must appear following the last specified keyword. The INSERT
control statement follows the VOL 1 card and flags the specified track. Remember,
this is used in conjunction with the INSRT = Y keyword.

Example 5: Basic 8413 Prep

II JOB D13PREP
II DVC 20 II LFD PRNTR
II DVC 130 II VOL DS8413CNOV) II LFD DISKIN
II EXEC DSKPRP
1$

SERNR=DS8413
VOL1
I*
I&
II Fili

•

•

•

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

9-19

When you execute the basic 8413 diskette prep, the only keyword required is
SERNR, indicating your volume serial number (DS8413).

Example 6: Changing Volume Serial Number without Prepping

10 16

II JOB D13CHNG
II DVC 20 II LFD PRNTR
II DVC 130 II VOL DS8413CNOV) II LFD DISKIN
II EXEC DSKPRP
1$

SERNR=DUMMY1,RPVOL=Y
VOL1
I*
I&
II FIN

Here, you are changing the volume serial number from DS8413 to DUMMY 1 while ~
leaving the rest of the diskette unchanged.

9.10. ERROR PROCESSING

The prep routine always terminates normally, even if errors are detected during the
execution of your prep. Error messages, however, are listed on the printer. At prep
completion, the hexadecimal value of your program switch indicator (UPSI) byte is listed
on the printer. The UPSI byte indicates the severity of the errors detected.

9.11. PREP CANNED JOB CONTROL STREAMS

The following canned job control streams provide you with a more convenient method
of performing certain prep functions without specifying the parameters and job control
statements normally required to run them. They are:

• ADD1KCOS

Adds 1 K COS to YSRC on SYSRES.

• ADD2KCOS

Adds 2K COS to YSRC on SYSRES.

• ADD3KCOS

Adds 2K of fast COS to YSRC on SYSRES .

• CGV/CHGVSN

Changes the volume serial number on a previously prepped disk.

UP-8062 Rev. 8

• PRP1KCOS

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

Repositions 1 K COS from YSRC on SYSRES for COS-IPL.

• PREP2KCOS

Repositions 2K COS from YSRC on SYSRES for COS-IPL.

• PRP3KCOS

Repositions 2K of fast COS from YSRC on SYSRES for COS-IPL.

• SETREL

Preps and allocates RELEASEISYSRES files.

• COPYREL

Copies selected RELEASEISYSRES files.

9-20

These functions are initiated from the system console by keying in their associated job
control stream name.

9.11.1. Add COS to YSRC on SYSRES (ADDnnCOS)

The ADDnnCOS routine copies COS microcode from cards into the YSRC file on your
SYSRES pack. The value you give for nn (1 K, 2K, 3K) indicates which COS module is to
be filed. OSl3 disk intialization routines use the COS module to prepare an initial
program load (IPL) disk.

To execute ADDnnCOS, place the COS card deck, ended by a 11 FIN job control
statement, in the card reader. Then key in from the system console the ADDnnCOS
command that corresponds to the COS module you're loading in:

RU lADD1KCOS}
ADD2KCOS
ADD3KCOS

The COS card deck in the reader must correspond to the command entered.

The COS module placed in YSRC cannot be loaded into the system until PRPnnCOS
has been run.

9.11 .2. Change a Volume Serial Number

The CGV ICHGVSN system utility routine changes the volume serial number on a
previously prepped disk pack. The new volume serial number replaces the old volume
serial number in the VOL 1 record. The required parameters are supplied either on cards
in the card reader or as operands with a command keyed in at the system console.

•

•

•

•

•

•

UP-8062 Rev. 8

NOTE:

SPERRY UNIV AC OS/3
SYSTEM SERVICE PROGRAMS

9-21
Update B

Extreme care should be used if changing the volume serial number of a SYSRUN,
SYSRES, or spooling disk pack. Specification of a duplicate vsn may not cause a
duplication error message to be issued but will severely impact the system. If a
duplicate vsn is inadvertently assigned, the entire system must be reinitialized (IPL).

9.11.2.1. System Console Keyin (CGV)

When the parameters are entered as operands with a command keyed in at the system
console, the command has the following format:

RV CGV,,O=old-vsn,N=new-vsn,T=disc-type

Keyword Parameters:

O=old-vsn
Specifies the old volume serial number of the previously prepped disk pack.

N=new-vsn
Specifies the new volume serial number to be assigned to the prepped disk
pack .

T=disc-type
Specifies the type of disk subsystem being used. The values may be:

Value Disk Type

11 8411
13 8413
14 8414
15F 8415 fixed
15R 84 15 removable
16 8416
18A 84 18 low density
188 8418 high density
24 8424
25 8425
30 8430
33 8433

After you enter the RV CGV command, the CGV job executes the DSKPRP routine to
change your volume serial number. When the DSKPRP routine has completed, you
receive a printed listing like the one in Figure 9-3. It shows the job control for and
information about the CGV job, the old and new volume serial numbers in large print,
and the parameters that CGV includes for your DSKPRP routine. You can keep this
listing as a record of the way your disk is prepped. After you change a volume serial
number, make sure you physically change the label on the outside of the disk so that
the label always shows the correct volume serial number. For this sample listing, your
command would have been:

RV CGV,,O=D00410,N=REL080,T=16

t

t

•

II .IOI C&V

II NOP ••
II NOP •
II NOP ••
II NOP
II NOP •
II NOP •
II NOP •
II NOP
//&BLO,N,T·
II ALTJCS SGIJCS
II OPTION SCAN,SUB
II WRTOIG' DD0,10 TO','
II DVC 20
II LFD PRNTR
II NOP
//SD O~KTYP 8416
II VOL DOOlllO
II LFO DISKI"I
II OPTION SCAN,SUB
II EXEC DSKPRPOO

" llFINI~HED NOP

"

~ELll8'.l'

ACOl JOB CGV ACCT. ~o.

SB0-3 SUPl'IO os.J.OS2
ASStr.NED MEMOQY:oon'IE128 3YTES IPLUS J'.l~O??

JOB CGV EXECUTI"IG J08 STEP -~TQI>oo ~0~1 11:33:09

QVT[

AC02
JCOl
AClO
ACll
AC12
AC13
AC19

LFD - PR"ITR • FOR~ NAME - STA"IOl • COPifS - OJOl, PA>Es - DOJOJOJl, ST ? :001
STEP 1001 CWRTBIGOOI USED 00003229 BYTES ELAPSE~ wALL CLOCk TI~E=OO:'.lO '.l~.1nQ

TER~ CODE=ooo SJITCH-PRIOAITY:05 CPU TIME USEO =o~:O'.l 01.~q4

UPSI SETTU1G x•oo•

JCOl JOB CGV
USAJT WARNING
USAJT

DEVICE E~CP'S 1J4:J081014'1 P~T:JOJOOU?3

EXECUTING JOe ST.OP DSll?RP:J:J 01l2 11:33:15
WHEN CHANGING VS~ OF SYSRE5, SYS~UN, OR
SYSPOOL NO C~ECK FOR DUPLICATE VSN IS ~Aor.

AClO
ACll
AC12
AC13
AC19

LFO - PRNTR , FORM NAME - STA~Jl , COPIES - 0001, PASES - 00000011, STEP ~00?

STEP #002 IOSKPRPJOI USED 000'17572 BYTES ELAPSED JALL CLOCK TIME=oo:OO:J~.OQ~

TERM COOE=uoo Sw!TCH-PRIORITY:05 CPU TI"lf iJSEO :oJ:OJ:01.l'!!
UPS! SETTING x•oo•

AC21 JOB TOTALS
AC22
AC23

DEVICE EXCP'S
USED 000'17572

1D'l=ooooo329 P~T=oooooo2s

BYTES TOTAL ELAPSED WALL CLOCK TIME:OO:OO:l7.11Q
WALL CLOCK TIME OF ALL STEPS =00:00:13,201

.JCD2 JOB CGV TERMINATED NORMALLY
T-OTAL CPU TIME OF ALL STEPS :oo:OO:CF..01'1

11:33:25

Figure 9-3. Sample Listing for CGV Job (Part 1 of 3)

• •

PPIJLIJr.lJ<: I ~?/0~/'1~ JOB #01

Tl)T~L SVC C~LLS:onono?QC
TP~NS!E~T c~LLS="nonnn1~

TIJTAL SVC CALLS=nnono~n~
Tq~~S!ENT C~LLS=noonoo37

Tl)T~L JO~ SVC C~LLS=nonco~98

JIJB TP~~S!EMT C~LLS=nnocoos1

TOTAL JI)~ E~CP'S =nnoo0521

L ll 1 JZ1Sl
L ll:JZ:SJ
L 11:32:5•
L 11:32:5'
L 11:32:5•
L 11: 3?:5•
L 11:32:5•
L 11:32:5'
L 11:32:'5•
L 11:32:5'
L 11:32:5'
L 11:32:55
L 11:32:55
L 11:32:59
L 11:32:59
L 11:32:59
L 11:32:59
L 11:33:01
L 11:33:02
L 11:33:02
L 11:33:02
L 11:33:03
L 11:33:03
L 11: 33:03
• 11:33:08
• 11:33:08
L lli33:09
A 11:3~:1'1

A 11:33:114
~ 11:33:1'1
' 11:33:1'1
A 11:33:1'1
L 11:33:15
L 11:33:20
L 11:33:21
A 11:33:23
A 11:33:23
A 11 33:23
A 11 33:23
• 11 33:23
• 11 33:2'5
A 11 33:25
A 11 33:25
L 11 33:26

•

en
-<

c
7'
00
0
O>
N

:XJ
CD
:::.
00

~ en
m"'tl
S:: m ::c
en ::c
m -<
::c c
~z
(') -m<
"'tJ)>
::c (')
00
Cl en
::c-­
)> w
s:: en

c co
"C I
0. N
Ill N
lD
IX>

UP-8062 Rev. 8

•

•

•

C'CCCCCCC
C'OCC'OOOCC'C
C' C' C' C'
cc C'C'
cc cc
0 0 C' c
CC'OCC°'CCCCC"'

C'COC'OCOC'

..

OO"lC'OC'J
00000000

u C"" r"'
f'.'I 0
0
00

on co
000

.... _ -....
:t :t

:t :t :t :t "
,,

• :t :t :t ,, ,, ,, :t :t ,, ,, :t
:t ,, :t

" " :t :t :t

000000
oor.:100000

co on
0 Cl
0 C'
on co

OOOOC:.000
nooaoo

C'l:IOOOO
0.,000000

0 0 Cl C>
0 0
o n
00 00

OOOOC'OOC'.'
oooooc

ococooc:i
00000000

00 . 00
00 00
00 co
00 cc
coccoccoco oocoooococ

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

C'C' C'C'C-C:
C'C-C'C'C'C'C'O

C'C C:C
c C'
C' C'
r.=c C"C"

C'C'C'C"C:C'C'C'
oonnao

T "° a:IS"cn rc:r~cr
Cl'et''X>~«"'CC O"'I«'
CIC t1' Cl' ro rt> r.io
fl' ., C'.I (l['I ':O ""
C"U)l'("d"(W'Ct" Cl'"(l.l

tl'I (l['I ft"' • a.• Cl'!«'
«' tr

o c·· ~ o o c:.
r•onnnn~o

Cl c oc
t".': ~
C" 0
00 00

C't'.:C'OnOCIC'
Ot~OC"OO

...J ...J

...J...J

...J...J

...J...J

...J...J

...J ...J
...J ...J ...J ...J-' ...J ...J ...J ...J ...J
...J ...J ...J ...J ...J...J ...J ...J ...J ...J

'6.IW U.:W
Wi..J '6.JW
WW WW
W ~I h.J l.&J W ~
ll.1 W I.LI W WW
hJW WW WW
'4.1"" w w w"" "' w la.J i..t
ldWYJWl.Jl...iWWWW

~(l' Ct.Ct
:ra~cx atrt'r'

O'& O:::O'ft'CY
11'0: Q:Q:Q:
!XII' DIX

°' Q' I" "' !XO:D Q:CrQ'IXQ'!XD.'
'kD:IX"CDQ:O:Q:trQ:

9-22a
Update B

t

•

YER llOJlJ OS/3 ors• INITIALIZATION •••••••••••••••

DA TE IZ/08105

• CONTaOL STREA" PARAMETERS •

RPVOL:Y,SERNR:REL080
VOLl

• DEFAULT PARAMETERS •

ALTRK:Y
PREPT:F
TRKCT:z
UNXFC:N

ILOPT:N
PTBEG:oooooo
VERFY:N
FR"TG:O

INSRT N
PTE"IO 032706
VTOCB OOCAOO

IPLOK:Y
RE1RY:OA
VTOCE:QQCAO&

USAJT WARNING WHEN CHANGING VSN OF SYSRES, SYSRUN, OR
USAJT SYSPOOL NO CHECK FOR OUPLICATf. VSN IS ~ADE.
USAAl NORMAL EOJ - DISK IS GOOD

UNIVAC SYSTEM OSIJ DISK INITIALIZATION COMPLETE
DAT£• IZ/01105 TIME- 11:33:21 UPSI- x•oo•
YSN- RELOIO TYPE- 8-16

TIME 11:33:18

CGV00220
CGV0023C

PARTL:"I
TRCON:O
BAOTK:A

Figure 9-3. Sample Listing for CGV Job (Pan 3 of 3)

• • •

c
"'O
Oo
0
O'l
N

:::0
CD
'.'
co

Cf)

-<
Cf)
-i Cf)
m -o
:!!:m :::0
Cf) ::0
m -<
:::0 c
~z o­m<
"'O)>
:::0 ()
00
Gl Cf)

:::0 -­)> w
:!!::
Cf)

C CD
"C I
Q. N
Cll N
; er

°'

•

•

•

UP-8062 Rev. 8

9.11.2.2. Card Input (CHGVSN)

SPERRY UNIV AC OS/3
SYSTEM SERVICE PROGRAMS

9-22c
Update B

When the parameters are input via cards in the card reader, the following command is
keyed in at the system console:

RU CHGVSN

In addition, the following cards must be in the card reader.

1 10 16

//OLDVSN JSET 1 old-vsn 1

//NEWVSN JSET •new-vsn'
//TYPE JSET 1 disc-type 1

II FIN

where:

'old-vsn'
Specifies the old volume serial number of the previously prepped disk pack.

'new-vsn'
Specifies the new volume serial number to be assigned to the prepped disk
pack .

'disc-type'
Specifies the type of disk subsystem being used. The values may be:

Value

8411
8413
8414
8415F
8415R
8416
8418A
84188
8424
8425
8430
8433

Disk Type

8411
8413
8414
8415 fixed
8415 removable
8416
8418 low density
8418 high density
8424
8425
8430
8433

UP-8062 Rev. 8 SPERRY UNIV AC OS/3
SYSTEM SERVICE PROGRAMS

9.11.3. Reposition COS from YSRC on SYSRES for CQS...;.IPL (PRPnnCOS)

9-22d
Update B

The PRPnnCOS routine repositions the COS module from the YSRC file on SYSRES to
the COS-IPL area on a disk you specify. The value you give for nn (1 K, 2K, 3K)
indicates the type of COS module to be repositioned. PRPnnCOS repositions the COS
module from YSRC to an area immediately following the VOL 1 label on the disk;
from this position, it can then be loaded into the system. This routine must be run
before you try to load your COS module into the system.

The required parameters are supplied either on cards in the card reader or as operands
with a command keyed in at the system console.

•

•

•

UP-8062 Rev. 8 SPERRY UNIV AC OS/3
SYSTEM SERVICE PROGRAMS

9-23

• 9.11 .3.1. Card Input

•

•

When the parameters are input via cards in the card reader, one of the following
commands is keyed in at the system console:

RU {PRP1KCOS)
PRP2KCOS
PRP3KCOS

For either command, the following cards must be in the card reader:

1 10 16

//VSN JSET 1 vsn 1

//TYPE JSET 1 disc-type 1

II FIN

where:

•vsn'
Specifies the volume serial number of the disk being prepared with COS.

1 disk-type 1

Specifies the type of disk subsystem being used. The values may be:

Value

8411
8414
8415F
8415R
8416
8418A
84188
8424
8425
8430
8433

Disk Type

8411
8414
8415 fixed
8415 removable
8416
8418 low density
8418 high density
8424
8425
8430
8433

9.11.3.2. System Console Keyin

When the parameters are entered as operands with either command keyed in at the
system console, the command has the following format:

RV IPRP1KCOS),,V=vsn,T=disc-type
PRP2KCOS
PRP3KCOS

UP-8062 Rev. 8

Keyword Parameters:

V=vsn

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

Specifies the volume serial number of the disk being prepared with COS.

T=disc-type

9-24

Specifies the type of disk subsystem being used. The values are as follows:

Value

11
14
15F
15R
16
18A
188
24
25
30
33

Disk Type

8411
8414
8415 fixed
8415 removable
8416
84 18 low density
84 18 high density
8424
8425
8430
8433

9.11 .4. Prep and Allocate RELEASE/SYSRES Files (SETREL}

The SETREL system utility prepares a disk volume for use as a RELEASE or SYSRES
volume by executing a disk initialization (prep) run and allocating the standard SYSRES
files. The library size is allocated according to the type of volume required. Disk may be
initialized with or without full surface analysis. The required parameters are supplied
either as operands with a command keyed in at the system console or on cards in the
card reader. For the 8415 removable disk pack, SETREL must be run by using card
input.

NOTE:

SETREL preps the disk pack with 1 K COS. If 2K COS is required, you must run the
canned job control stream PRP2KCOS immediately after running SETREL. This also
applies to installations requiring 2K fast COS, in which case PRP3KCOS would be run.

9.11.4.1. System Console Keyin

When the disk being prepared is to be a copy of the current SYSRES volume, a keyin
at the system console may be used to initiate a SETREL run.

The console keyin as the following format.

RV SETREL,,V=vsn,T=disc-type,P=prep-type

•

•

•

UP-8062 Rev. 8 SPERRY UNIV AC OS/3
SYSTEM SERVICE PROGRAMS

9-25
Update A

• Keyword Parameters:

•

•

V=vsn ~
Specifies the volume serial number of the output disk pack being prepped. For
a full prep, this may be a new volume serial number to be assigned to the
disk. Otherwise, it must be the same as the current volume serial number. If
omitted, the card reader is activated to read the parameters from cards. t

T=disc-type
Specifies the type of disk subsystem being used. The values are as follows:

Value

11
14
15F
16
18
24
25
30
33

P=prep-type

Disk Type

8411
8414
8415 fixed
8416
8418 high and low density
8424
8425
8430
8433

Specifies the type of prep to be performed. The codes may be:

Code Meaning

N No prep performed, assign files only
F Full prep, with surface analysis
P Partial prep, without surface analysis

If omitted, P is assumed.

When P=F is specified, the INSERT .6..6..6.NONE or INSERT .6..6..6.cccchh card must be ~
present in the card reader. This card must be followed by a 11 FIN card.

If you selected the no prep option (N), it is assumed that your disk pack was previously
prepped by using SETREL.

9.11 .4.2. Card Input

An optional way of preparing a SYSRES volume is to run SETREL and specify the
required parameters on parameter cards. Note that, using this method, all files are
release volume size files.

To run SETREL in this mode, the following command is keyed in at the system console:

RU SETREL

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

9-26
Update A

The following cards must be in the card reader, depending on the type of prep being •
requested and the type of disk subsystem being used. The values of the parameters are
given following the listings of the card input.

• Partial prep without surface analysis

10 16

//PREP JSET •0•
//VSNO JSET •vsn•
//TYPE JSET 1disc-type 1

II FIN

• Full prep with surface analysis

//PREP JSET I 11

//VSNO JSET •vsn'
//TYPE JSET 1disc-type 1

II FIN
INSERT {NONE }

cccchh
II FIN

The values that may be assigned to the various parameters are as follows:

'vsn'
Specifies the volume serial number of the output disk pack.

'disk-type•

NONE

Specifies the type of disk subsystem being used. The values are:

Value

8411
8414

, 8415F
8415R
8416
8418
8424
8425
8430
8433

Disk Type

8411
8414
8415 fixed
8415 removable
8416
84 18 high and low density
8424
8425
8430
8433

Indicates that there are no defective cylinders and tracks on the disk pack. To
prep a selector channel device disk pack with no defective tracks, omit the

•

INSERT .6..6..6.NONE statement but still use both // FIN statements. •

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

9-27
Update A

cccchh

Specifies the hexadecimal address of the defective cylinder and track as listed
on the disk pack.

If you are using SETREL to prepare an 8415 removable device, you must run the
control stream twice, first for the primary disk and then again for the secondary disk.
On the first run, //VSNO (as shown in the examples) is replaced by //VSN 1 and with
//VSN2 in the second run. The respective volume serial numbers for the primary and
secondary disks are entered on the appropriate cards.

9.11 .4.3. Diagnostics and Error Messages

If unrecoverable errors occur during the prepping of the volume, a message is displayed
on the console and the job is terminated immediately. If other errors are encountered, a
warning message is displayed and the job continues processing.

NOTES:

1. The console message "PREP TERM/NA TED WITH ERRORS" is displayed if the UPS/
byte is set (4016 or 8016).

2 . The U response to PIOCS console error messages during the execution of DSKPRP
does not necessarily cause immediate termination. In several cases, especially
during track analysis, the U response will result in the assignment of an alternate
track.

9.11.5. Copy System/Release Files (COPYREL)

After successfully using SETREL to prep and allocate your disk volume containing the
system and release libraries, copy those libraries with COPYREL. Only the files listed in
Table 9-3 can be copied. Execute COPYREL by using the following console keyin:

RV6COPYREL,,V=vsn,T=disk-type,[,S=first-file][,E=last-file]

where:

V=vsn
Specifies the volume serial number of the output disk being copied.

T=disk-type
Specifies the type of disk subsystem being used. The values are as follows:

Value Disk Type

17 8417

19 8419

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

9-28
Update B

S=first-file
Specifies the code identifying the first file that is to be copied. Table 9-3
shows the order that COPYREL copies the system files and shows the codes
for each system file. If you omit the S keyword, COPYREL starts copying at
YSRC.

E=last file

NOTE:

Specifies the code for the last file to be copied. (See Table 9-3.) If you omit
the E keyword, copying ends at YTRANA.

Table 9-3. COPYREL Copy Order

Copy Order Code File Name

1 s YSRC

2 0 Y0BJ

3 L YLOD

4 M YMAC

5 j YJCS

6 G SG$JCS

7 SGMAC SG$MAC

8 SGOBJ SG$0BJ

9 SGLOD SG$LOD

10 SC LOO YSCLOD

11 MIC YMIC

12 IVP IVPLIB

13 SMCFILE SMCFILE

14 FMT YFMT

15 SAVE YSAVE

16 DIALOG YDIALOG

17 SDF YSDF

18 HELP YHELP

19 T YTRAN

20 A YTRANA

More detailed discussion of both SETREL and COPYREL are found in the current version
of the system installation user guide/programmer reference, UP-8074.

•

•

•

•

•

•

UP-8062 Rev. 8

10.1. AAT CAPABILITY

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

10-1

1 0. Assign Alternate Track (AA T)

The AA T routine is used to conditionally or unconditionally assign an alternate track for
a suspected defective track. The suspected defective track may be either a primary data
track or another alternate track. Assigned conditionally means that an alternate track is
assigned only after a surface analysis is performed and the analysis shows defects in
the track. Assigned unconditionally means that no surface analysis is done and the
track is assigned regardless of its condition.

For conditional assignment, an available alternate track is assigned by AA T and the
contents of the suspected defective track are copied to it, one record at a time. During
the copy procedure, any errors detected are listed on the printer. These errors can be
corrected in subsequent runs of AAT by using the record updating facility, ASUPD.
After the records are copied to the alternate track, a surface analysis is performed on
the primary track. If the track is found to be defective, it is marked as unusable and the
alternate track is permanently assigned. However, if the primary track is found to be
usable, then all the records on the alternate track are copied back to the primary track
and the alternate track is again made available for use.

For an absolute or unconditional assignment, the process is similar. The suspected
defective track is copied to an available alternate track on a record-by-record basis. Any
defective records are printed. At this point, the reassignment is made permanent and
no surface analysis is performed on the suspected track. Remember that a suspected
defective track can be an alternate track as well as a primary track. If it is an alternate
track, another alternate track is reassigned as the alternate track for the original primary
data track. The suspected alternate track is then assigned to itself so that it cannot be
used again.

NOTE:

For all JOA disks, the maximum number of defective primary tracks supported per head
address is 7. Defective tracks in excess of 7 will not have alternate tracks assigned to
them and the disk will be unusable .

-- - ---
UP-8062 Rev. 8 SPERRY UNIVAC OS/3

SYSTEM SERVICE PROGRAMS

10.2. INTERFACING WITH DSKPRP

10-2

The AAT function is a feature built into DSKPRP; therefore, you must execute DSKPRP
(specify DSKPRP on the EXEC job control statement) to use the AAT capability. Before

~ you assign any alternate tracks, your disk must have been previously prepped.

10.3. SPECIFYING AAT OPTIONS

There are five keywords associated with the assigning of any alternate tracks. You
must specify both the ASGTK and SERNR keywords; the remaining keywords are
optional and have default values. The format of the AAT keywords is:

ASGTK=cccchh [ASGPR={~}]

[ASU RF={~}] [ASU PD={~}]

,SERNR=volume serial number

10.3.1. Specifying Any Suspected Defective Tracks (ASGTK)

Since the AAT capability is a function of the disk prep routine, you must specify
ASGTK to indicate the function to be performed. You specify the suspected defective
track, in hexadecimal, in cylinder/head format (cccchh). Remember, you cannot assign
an alternate track to an active SYSRES pack. If you need to assign alternate tracks to
your SYSRES, another SYSRES or the current release volume must be used as the
operating system. If you omit ASGTK, the disk prep routine is executed; however, the
disk prep routine will be terminated because there is no VOL 1 statement present in the
control system. VOL 1 cards cannot be used in an AAT run.

10.3.2. Printing Your Records (ASGPR)

When you read the records from the primary track to the alternate track, any records
detected in error are listed on the printer automatically by assuming the ASGPR
keyword with the E option. However, if you need to print all the records being read,
you specify the A option. If you use the A option in conjunction with the ASUPD=Y
keyword, no records will be printed. In other words, ASGPR=A has no effect when
you specify A SU PD= Y.

10.3.3. Testing the Alternate Track (ASURF)

If you recall, you can assign the alternate track conditionally, that is, only after ensuring
that the primary track is defective, or unconditionally, meaning no surface analysis is
performed. When you omit ASURF or specify the S option, alternate tracks are assigned
conditionally. If you are certain the primary track is unusable, specify ASURF=N, and no
surface analysis will be performed.

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

10-3
Update A

• 10.3.4. Patching or Modifying Existing Records (ASUPD)

•

•

If any errors were detected in the reading of your records from the primary track for
writing on the alternate track, they will be listed on the printer. From this listing, you
keypunch the missing information into update records. These update records then patch
the incomplete record. However, if the missing information cannot be determined, you
must recreate your file.

Whenever update records are present in your control stream, you must specify the
keyword parameter ASUPD = Y. If there are no update records present, the default
ASUPD=N is assumed.

At least two cards are required for each update record; one to identify the record and
field to be updated and another to contain the correction data. The number of the
record to be updated must always be specified as a hexadecimal number and must
always begin in column 1 . The record numbers on a given track appear on the listing of
errors found during the recovery of data during a previous AAT run. The location and
type of field being corrected must also be identified by specifying either KEY= ([d],1) or
DATA=([d],I), where d represents a displacement value and I, a length value. The
displacement value, relative to 0, may be up to four hexadecimal characters long, or
may be omitted, to indicate that the patch is to be made beginning with the first
character in the identified record field. The length value must be specified and can be
from one to four hexadecimal characters long. Both of these parameters cannot be
coded on the same card, as the correction data for a key field must immediately follow
the KEY keyword parameter and the correction data for a data field must immediately
follow the DATA keyword. Any one of them, however, can be coded on the card
containing the number of the record (rn parameter) to be patched. If coded with the rn
parameter, a comma must separate the two specifications. If coded alone, the keyword
must begin in column 1. Thus, the format of an identifier update record could be
illustrated as:

rn or

The actual data that is to be written must be submitted on a separate card apart from
the update record. The actual data must be in hexadecimal format (0-9, A-F) and start
in column 1 . The length of the data must equal the length value specified in the KEY or
DAT A parameters. No embedded blanks are permitted and as many cards as needed
may be used. The first blank character found in the data cards indicates the end of the
record.

It should also be noted that only one KEY or one DAT A keyword may appear in any
one set of update records; when updating records on an IDA unit disk pack, the KEY
parameter cannot be specified; and when updating records on a selector unit disk pack,
only existing key and data fields may be updated, the count field cannot be altered, and
the length of key and data fields must remain unchanged. When ASUPD=Y is specified,
the ASGPR and ASURF keywords are ignored.

t

UP-8062 Rev. 8 SPERRY UNIV AC OS/3
SYSTEM SERVICE PROGRAMS

A typical example of an update control stream could look like:

1

/$

I*
/$

10 16

job control statements

ASGTK=001A06,SERNR=DSP001
ASUPD=Y

1B,KEY=C3,2)
F0F1
DATA=C3C,A)
C1C2C3C4C5C6C7C8C9D1
I*
!&

10-4
Update A

Notice the KEY parameter was specified on the same line as the record number
(18), while the DATA keyword is on a separate line. The length of your key field
(2) equals the length of the actual data (F.i1'F1).

In this example, record 1 B is being updated. There is a displacement value of 60 bytes
(3C 16) and a length of 10 bytes (A 16). The new data being written is specified on a
separate card and must be in hexadecimal format. If more than one record is to be
updated, an additional data set is needed for each record. See 10.4 for more typical
examples of using update records.

10.3.5. Specifying Your Volume Serial Number (SERNR)

The volume serial number is six alphanumeric characters which make up the serial
number of the disk volume being used. The SERNR keyword must always be present in
your assign alternate track control stream.

10.4. EXECUTING AAT

When executing the assign alternate track routine, the same file names that were
required in the disk prep routine must be specified here. Namely, PRNTR must be
specified on the LFD job control statement for assigning the printer while DISKIN must
be specified for assigning the disk pack. In the following control streams, you will see
some typical examples of assigning alternate tracks.

•

•

•

UP-8062 Rev. 8 SPERRY UNIV AC OS/3
SYSTEM SERVICE PROGRAMS

10-5

• Example 1:

•

•

1 10 16

II JOB AA TRACK
II DVC 20 II LFD PRNTR
II DVC 51 II VOL DSP028 II LFD DISKIN
II EXEC DSKPRP
1$

ASGTK=00C106,SERNR=DSP028
I*
I&
II FIN

Here is the basic AA T control stream. Your suspected defective track is on
cylinder OOC1, head 06, on disk pack DSP028. You are omitting the ASGPR,
ASURF, and ASUPD keywords, thus using the default options. Any records in error
are listed on the printer (ASGPR=E), a surface analysis is performed on the track
(ASURF=S), and there are no update records present in your control stream.

Example 2:

II JOB UPDATE
II DVC 20 II LFD PRNTR
II DVC 51 II VOL TST93J II LFD DISKIN
II EXEC DSKPRP
1$

SERNR=TST93J
ASUPD=Y
ASGTK=00010D

I*
1$
14,DATA=(,32)
1122334455
66778899
KEY=(8,8)
C8C940E3C8C5D9C5
I*
I&
II FIN

Here, you are using update records to patch specific key and data fields on your
disk pack. The volume serial number of your disk pack is TST93J, which is
equated with the VOL job control statement. Since your control stream contains
update records, you specified ASUPD=Y. As you can see, all the keyword
parameters are part of the first data set. The record data set contains the update
records themselves. The record number in error is 1416 (decimal 20). The data
being corrected has a length of 32 16 (decimal 50) bytes and is shown on the next
two cards. You are also patching the key field, which has a displacement and
length of 8 16 bytes.

t

UP-8062 Rev. 8

NOTE:

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

10-6

If more than one data card is required, the previous card must have all 80 columns
used (example 2).

Figure 10-1 shows the output generated from the control stream.

******************** 9030 DISC PREP *********************

+ SERNR=TST93J

ASUPD=Y
ASGTK=00010D

DATE 00100100 TIME 00 16 33

14,DATA=(,30)
1122334455

.! 66778899
T KEY=<8,8)

C8C940F3C8C5D9C5

Figure 10-1. AAT Using Update Records

Example 3:

10 16 72

II JOB UPDATE
II DVC 20 II LFD PRNTR
II DVC 51 II VOL TST93J II LFD DISKIN
II EXEC DSKPRP
1$

SERNR=TST93J
ASUPD=Y

ASGTK=006002
I*
1$
3
DATA=CFF,1)
5C
I*
!&
II FIN

Here, you are again using update records but you omitted the ASGPR keyword.
The last byte of sector 3 is being changed to 5C. Since you are using the update
function, the record is not printed.

•

•

•

UP-8062 Rev. 8 SPERRY UNIV AC OS/3
SYSTEM SERVICE PROGRAMS

10-7

• Figure 10-2 shows the output produced by this control stream.

•

•

SERNR=TST93J

ASUPD=Y
ASGTK=0006002

3
DATA=CFF,1)
SC

******************** 9030 DISC PREP *********************

DATE 00/00/00 TIME 00 20 37

Figure 10-2. AAT Using Update Records without Printing

•

•

•

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

11-1

11 . Tape Prep (TPREP)

11.1. PREPARING YOUR TAPE FOR EXECUTION

Magnetic tapes are shipped blank. You must prepare (prep) these tapes before using
them in the SPERRY UNIVAC Operating System/3 (OS/3). The tape prep utility (TPREP)
can prep up to 36 tapes in one job step, and will prep them for use with or without
block numbers, depending on whether your system is configured to support tape block
numbering. If your system is configured to support tape block numbering, you have the
option to prep tapes for use without block numbers. You cannot, however, prep a tape
for use with block numbers if your system is not configured to do so. You submit all
the required information for tape prepping through job control statements. TPREP uses
the prep facilities of data management to prep your tapes. The various tape record
formats that are generated by the prep facility can be found in the data management
user guide, UP-8068 (current version). After your tape has been prepped, it is rewound
to load point.

11.2. TAPE PREP CODING INSTRUCTIONS

As mentioned earlier, all the information required for tape prepping is submitted through
job control statements. The following job control statements are used for tape 1
prepping:

• I I DVC job control statement

You must specify a logical unit number for the tape being prepped. The range of
logical unit numbers is from 90 to 127. An example of the // DVC job control
statement used when prepping tapes is shown in the following example:

10 16

II DVC 90

UP-8062 Rev. 8

• I I VOL job control statement

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

11-2

You must specify a unique volume serial number for every tape being prepped. The
volume serial number can be any alphanumeric character string from one to six
characters long, other than the word SCRTCH. Immediately following the last
character of your volume serial number, the character string (PREP) must appear.
An example of the / / VOL job control statement used when prepping tapes is
shown in the following example:

II VOL DSP028CPREP>

Notice how the parentheses are coded as part of the parameter.

To prevent your tapes from being prepped for use with block numbers when your
system is supporting block numbering, you must include an N parameter in your I I
VOL statement as follows:

10 16

II VOL N,DSP028CPREP)

• I I LBL job control statement

You specify the / / LBL job control statement only when you want to assign a file
identifier to a tape volume you are prepping. You can assign the same label to
multiple volumes to prepare for a multivolume file. If you are familiar with the / /
LBL job control statement, then you would have recognized that there is a file
sequence number parameter used for numbering of files in a multifile tape volume.
However, TPREP ignores the file sequence number parameter. An example of the //
LBL job control statement is:

II LBL MASTERFILE

• I I LFD job control statement

You must specify a unique file name for each tape being prepped. The // LFD file
name must be in the form T APExy: under x is any alphanumeric character A
through Z or 0 through 9; under y is the character A for ASCII mode or blank for
EBCDIC mode. An example of the LFD job control statement used when prepping
tapes in both EBCDIC and ASCII modes is:

II LFD TAPE1

II LFD TAPE1A

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

11-3

• • I I EXEC job control statement

•

•

You must specify the program TPREP in your / / EXEC job control statement to
start the prepping of one or more tapes using TPREP. The / / EXEC job control
statement calls the tape prep utility from YLOD. You code the II EXEC job
control statement as:

II EXEC TPREP

Figure 11-1 shows two tape prep examples using TPREP; example a shows the job
control statement for prepping of six tapes using two magnetic tape drives, while
example b shows the job control statements for prepping six tapes using six different
tape drives, with the last three tapes being prepped in ASCII mode. All other tapes are
prepped in EBCDIC mode.

1 10 16

II JOB TAPEPREP
II DVC 90
II VOL TP0001CPREP),TP0002CPREP),TP0003CPREP)
II LFD TAPE1
II DVC 91
II VOL TP0004CPREP),TP0005CPREP),TP0006CPREP)
II LFD TAPE2
II EXEC TPREP
I&
II FIN

Example a.

II JOB TAPE PREP
II DVC 90 II VOL TAPE01CPREP> II LFD TAPE1
II DVC 91 II VOL TAPE02CPREP) II LFD TAPE2
II DVC 92 II VOL TAPE03CPREP) II LFD TAPE3
II DVC 93 II VOL TAPE04CPREP> II LFD TAPEAA
II DVC 94 II VOL TAPE05CPREP) II LFD TAPE BA
II DVC 95 II VOL TAPE06CPREP) II LFD TAPE CA
II EXEC TPREP
I&
II FIN

Example b.

Figure 11-1 . Control Stream Coding Required to Prep Multiple Tape Volumes in a Single Job Step

All messages are displayed on the system console and are written to the
communications output printer (COP) if available. Figure 11-2 shows a typical COP
listing.

--------- ----- -----------------------------.

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

14 JC01 JOB TAPEPREP EXECUTING JOB STEP TPREPOOO #001

15 TP01 TAPE SP0001 (LFDNAME=TAPE1A) PREPPED IN ASCII, NO BKNO

16 JC02 JOB TAPEPREP TERMINATED NORMALLY

Figure 11-2. A Typical COP Listing Showing TPREP Messages

The following message is displayed for each tape successfully prepped:

TP01 TAPE vsn (LFDNAME=filename) PREPPED IN {~~2~ic}• {~TH}BKNO

11-4

The absence of this message for any of the tapes specified in your job or job step
indicates that the tape has not been prepped because of incorrect job control
specifications.

If you are creating a file through data management, you may do tape prepping and file
creation in one job step. See the data management user guide, UP-8068 (current
version).

•

•

•

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

12-1

12. System Utility Copy Routines

12.1. SECTORED DISK COPYING (SU$C16)

You use SU$C 16 to make multiple copies with or without verification of any IDA type
disk to a similar disk pack and regardless of the disk pack's content (data or libraries).
You can execute SU$C 16 either in a batch environment or interactively from a terminal.
See 12. 3 for interactive processing of SU$C 16.

12.1.1. SU$C16 Organization

SU$C 16 is made up of seven parameters. All these parameters have default values and
are associated with the // PARAM statement. However, if you choose all the defaults,
you must still have the // PARAM statement present in your control stream.

The format of SU$C 16 is:

[
,UNXF=tNO }] -

,EDAD= ccc, 8

ccch, 8

ccchrr, 8

l,,J.:1IR!l for 8416 and 8418 low
lllllll for 8418 high
, ••. for 8415R
~111111 for 8415F

You use the COPY parameter to indicate how many copies of your input disk pack are
to be made. The value of n may be from 1 to 7. If you omit COPY, one copy is made.

You use the VEFY parameter to verify your new output. If VEFY=YES is specified,
each copy is verified against the input. If you omit VEFY, then no verification is
performed.

You use the PRNT parameter to print any records found to be in error. If an error is
detected, both the input and output records are listed with its corresponding output
disk address (ccchrr), in hexadecimal. You would normally choose PRNT =YES if you
had chosen VEFY=YES. If you omit PRNT, only fatal errors are written on the system
console.

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

12-2

You use the BGAD parameter to indicate the starting address of your copy in
hexadecimal. The address you specify may be a cylinder number (ccc16), a cylinder and
head number (ccch 16), or a cylinder, head, and record number (ccchrr16). If you omit
BGAD, then the beginning address is cylinder 000, head 0, and record 01.

You use the OVEF parameter to indicate that a verify-only operation is to be performed.
No copy will be made. If you omit OVEF, one or more copies will be made, with or
without specification, depending on other parameter specifications. OVEF may be used
in conjunction with BGAD and EDAD.

You use the EDAD parameter to indicate the ending address of your copy in
hexadecimal. As explained in the BGAD parameter, the address you can specify can be
either ccc16, ccch 16, or ccchrr 16 • If you omit EDAD, the default values for the
hexadecimal ending addresses are as follows:

Disk Subsystem Cylinder Head Record

8416 193 6 28
8418 low 193 6 28
8418 high 327 6 28
84 15 removable 193 1 28
8415 fixed 327 2 28

By using both the BGAD and EDAD parameters, you can copy only one record from
your input pack to your output pack. It is worth remembering that the input starting and
ending addresses are the same as your output addresses, and any information
contained in your specified output area is destroyed and the new information is written
in that area. For example, if you were copying from cylinders 10-20, any information
residing in cylinders 10-20 in your output pack is destroyed and the new information is
written in that area.

You use the UNXF parameter to check for the file expiration date of any file on the
output disks. If the file date has not expired, a message is displayed that asks you
either to continue processing or to skip the file and continue to the next file (providing
you are processing more than one file). Using the UNXF parameter eliminates the time
and expense of keeping outdated files. It also eliminates the overlaying of files that
should not be destroyed.

12.1 .2. SU$C16 Interfacing with Job Control

The file name DISCIN must be specified on the / / LFD job control statement for your
input disk pack. The file name DISCOT must be specified on the // LFD job control
statement for your output disk pack. If you are copying onto more than one disk pack,
DISCOTO 1 through DISCOT06 must be specified for each disk pack being copied. If you
are running in a minimum system (32K), you must specify X'5800' in the main storage
size parameter (MIN) of the / / JOB job control statement. Only copy functions are
executed in minimum systems; no verification can be performed.

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

12-3

• 12.1 .3. Executing SU$C16

•

•

In a multijobbing environment, the use of SU$C 16 can cause space allocated to a file to
be lost; files may be added to or portions deleted, or a disk pack may be incorrectly
copied. These situations can occur when another job is updating the VTOC of a disk
pack at the same time SU$C 16 is copying that VTOC to another disk pack, or when
SU$C 16 is copying a file while another job is extending or scratching that file.
Therefore, the job executing SU$C 16 must be the only job running when the 1/0 device
is either SYSRUN or SYSRES. If the device is not SYSRUN or SYSRES, it must be set
to nonsharable by the operator. This ensures that an exact copy will be made by
SU$C16.

The following control streams show some typical examples of using SU$C 16:

Example 1:

1 10 16 72

II JOB STD COPY
II DVC 60 II VOL DSP001 II LFD DISCIN
II DVC 61 II VOL DSP002 II LFD DI SCOT
II EXEC SU$C16
II PAR AM
I&
II FIN

Notice that, even though you did not specify any parameters, the / / PARAM
statement still appears in your control stream. This is the basic 8416 disk copy.
The printer is not specified; therefore, no printer output is available.

Example 2:

10 16 72

II JOB VP COPY
II DVC 50 II VOL DSP001 II LFD DISC IN
II DVC 51 II VOL DSP002 II LFD DI SCOT
II DVC 20 II LFD PRNTR
II EXEC SU$C16
II PARAM VEFY=YES,PRNT=YES
I&
II FIN

Since you are using the print option, the device assignment set for the printer must
be specified. The file name PRNTR must be specified on the // LFD job control
statement. The verification and printing are specified. If you do not specify a
printer, your job is executed but only fatal errors detected are displayed on the
system console .

UP-8062 Rev. 8

Example 3:

1 10 16

II JOB COPY?
II DVC 50 II VOL
II DVC 51 II VOL
II DVC 52 II VOL
II DVC 53 II VOL
II DVC 54 II VOL
II DVC 55 II VOL
II DVC 56 II VOL
II DVC 57 II VOL
II DVC 20 II LFD
II EXEC SU$C16

DSP001 II
DSP002 II
DSP003 II
DSP004 II
DSP005 II
DSP006 II
DSP007 II
DSP008 II
PRNTR

LFD
LFD
LFD
LFD
LFD
LFD
LFD
LFD

SPERRY UNIV AC OS/3
SYSTEM SERVICE PROGRAMS

DISC IN
DI SCOT
DISCOT01
DISCOT02
DISCOT03
DISCOT04
DISCOT05
DISCOT06

II PAR AM COPY=7,VEFY=YES,PRNT=YES,UNXF=YES
I&
II FIN

12-4

72

Here, you are copying your input disk pack to seven output packs with verification,
printing, and file expiration date checking. Note the required file names specified on
the / / LFD job control statements.

Example 4:

1

II
II
II
II
II
II

10 16

JOB COPYTRK
DVC 20 II PRNTR
DVC 60 II VOL DSP001
DVC 61 11 VOL DSP002
DVC 62 II VOL DSP003
EXEC SUSC16

II LFD DISCIN
II LFD DI SCOT
II LFD DISCOT01

II PARAM COPY=2,BGAD=0054,EDAD=0054,VEFY=YES
I&
II FIN

72

This example makes two copies of one track and verifies the copies. There is no
printer output and verification of the output is written to the console.

Example 5:

1 10 16 72

II JOB COPYCYL
II DVC 60 II VOL DSP001 II LFD DISCIN
II DVC 61 II VOL DSP002 II LFD DI SCOT
II EXEC SU$C16
II PARAM BGAD=07A,EDAD=07A
I&
II FIN

•

•

•

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

12-5

This example makes one copy of one cylinder. There is no printer output and no
verification.

12.2. NONSECTORED DISK COPYING (SU$CSL)

You use SU$CSL to copy an 8411, 8414, 8424/25, 8430, or 8433 disk pack to a
similar device. As was the case with SU$C 16, you can copy as little as one track or up
to an entire volume regardless of your disk pack's contents. You can execute SU$CSL
either in a batch environment or interactively from a terminal. See 12.4 for interactive
processing of SU$CSL.

12.2.1. SU$CSL Organization

SU$CSL is made up of seven parameters. All these parameters have default values and
are associated with the / / P ARAM statement as was the case with SU$C 16. However,
if you choose all the defaults, you must still have the / / PARAM statement present in
your control stream. SU$CSL checks the file control block to determine the type of disk
pack being copied.

The format of SU$CSL is:

[
,BGAD={ccchh,.}]

1,,1·11

[,UNXF={m} J

,EDAD= ccchh, 8

Bl.B for 8411
llL1il for 8414
r~rmnr for 8424/25
;_ · · " " for 8430

11111 for 8433

You use the COPY parameter to indicate how many copies of your input disk pack are
to be made. The value of n may be from 1 to 7. If you omit COPY, one copy is made.

You use the VEFY parameter to verify your new output. If you are making more than
one copy, each copy is verified against the input. If you omit VEFY, no verfication is
performed.

You use the PRNT parameter to print any records found to be in error. If an error is
detected, both the input and output record is listed with its corresponding output disk
address (ccchhrr), in hexadecimal. You would normally choose PRNT=YES if you had
chosen VEFY =YES. If you omit PRNT, only fatal errors are written on the system
console.

You use the OVEF parameter to indicate that a verify-only operation is to be performed.
No copy will be made. If you omit OVEF, one or more copies will be made, with or
without verification, depending on other parameter specifications. OVEF may be used in
conjunction with BGAD and EDAD.

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

12-6

You use the BGAD parameter to indicate the starting address of the first track to be
copied, in hexadecimal. The address you specify must be the cylinder and head number
(ccchh). If you omit BGAD, the beginning address is cylinder 000, head 00.

You use the EDAD parameter to indicate the ending address of the last track to be
copied in hexadecimal. As explained in the BGAD parameter, the address you specify
must be ccchh. If you omit EDAD, the values will be defaulted for each device as
shown in the format.

Since the programming logic of SU$CSL is similar to SU$C 16, the input addresses are
the same as your output addresses and any information contained in your specified
output area is destroyed and the new information is written in that area.

You use the UNXF parameter to check for the file expiration date. If the file date has
not expired, a message is displayed that asks you either to continue processing or to
skip the file and continue to the next file (providing you are processing more than one
file). Using the UNXF parameter eliminates the time and expense of keeping outdated
files. It also eliminates the overlaying of files that should not be destroyed.

12.2.2. SU$CSL Interfacing with Job Control

The file name DISCIN must be specified on the / / LFD job control statement for your
input disk pack. The file name DISCOT must be specified on the / / LFD job control
statement for your output disk pack. If you are copying onto more than one disk pack,
then DISCOTO 1 through DISCOT06 must be specified for each additional disk pack
being copied.

If you are running in a minimum system (32K) then you must specify X'5COO' in the
minimum main storage size parameter (MIN) on the job control statement; however, like
SU$C 16, only the copy function is permitted under the minimum system using the 8430
or 8433 disk pack. Both copy and verification can be used on 8411 and 8414 disk
packs.

12.2.3. Executing SU$CSL

In a multijobbing environment, the use of SU$CSL can cause space allocated to a file to
be lost, files may be added to or portions deleted, or a disk pack may be incorrectly
copied. These situations can occur when another job is updating the VTOC of a disk
pack at the same time SU$CSL is copying that VTOC to another disk pack, or when
SU$CSL is copying a file while another job is extending or scratching that file.
Therefore, the job executing SU$CSL must be the only job running when the 1/0 device
is either SYSRUN or SYSRES. If the device is not SYSRUN or SYSRES, it must be set
to nonsharable by the operator. This ensures that an exact copy will be made by
SU$CSL.

The following control streams show some typical examples of using SU$CSL.

•

•

•

•

•

•

UP-8062 Rev. 8

Example 1:

1 10 16

II JOB COPY8411
II DVC 50 II VOL
II DVC 51 II VOL
II EXEC SU$CSL
II PARAH
I&
II FIN

DSP001 II LFD
DSP002 II LFD

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

DISC IN
DI SCOT

12-7

72

Here is the basic 8411 disk copy. There is no printing or verification. Your starting
address is cylinder 000, head 00, while your ending address is cylinder OC7, head
9.

Example 2:

II JOB COPY8411,,,5C00
II DVC 50 II VOL DSP001 II LFD DISC IN
II DVC 51 II VOL DSP002 II LFD DI SCOT
II DVC 20 II LFD PRNTR
II EXEC SUSCSL
II PARAH PRNT=YES,VEFY=YES,EDAD=050
I&
II FIN

Since you are running in a minimum system (32K), our job control statement has
the minimum main storage size specified. You are only copying up to cylinder
X'50', as indicated by EDAD=050. You are also using the verification and print
options, making sure the information written is the same as that read.

Example 3:

1 10 16

JOB COPY8430
DVC 50 II VOL
DVC 51 II VOL
DVC 52 II VOL
DVC 20 II LFD

II
II
II

II
II
II EXEC SU$CSL

DSP001 II LFD DISC IN
DSP002 II LFD DI SCOT
DSP003 II LFD DISCOT01
PRNTR

II PARAH COPY=2,VEFY=YES,PRNT=YES,BGAD=010,EDAD=100,UNXF=YES
I&
II FIN

72

Here, you are using all the parameters. You are making two copies by using the
8430 disk packs. Your copy starts at cylinder X'10' and ends at cylinder X'100'
with verification and printing of any errors being detected, as well as file expiration
date checking.

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

12.3. EXECUTING SU$C16 IN AN INTERACTIVE ENVIRONMENT

12-8

Interactive processing of the SU$C 16 routine (and SU$CSL as well) consists of a
question and answer session (dialog) using a UNISCOPE 100, UNISCOPE 200, or UTS
400 terminal. The procedures for executing the SU$C 16 routine are the same,
regardless of which type of terminal you use except for a few adjustments necessitated
by differences in the terminal keyboards. With the UTS 400 terminal, for example, use
the XMIT key to transmit work screens and function keys 13 and 14 to obtain and exit
help screens. For UNI SCOPE 100 and 200 terminals, use the TRANSMIT key to
transmit work screens. To use function key 13 or 14, you must simulate it in the
following manner. Press the MESSAGE WAITING key, then alphabetic F, then the pound
sign (#), and then the number 13 or 14.

The following example shows the SU$C 16 routine for a UTS 400 terminal. When using
a UNISCOPE 100 or 200 terminal, you must adjust the instructions in the manner just
discussed.

Help screens are provided for all work screens. To obtain help for any screen, press
function key 13. To return to the work screen, press function key 14 or the XMIT key.
If multiple help screens are being displayed, press the XMIT key after each help screen.
When the last help screen is displayed, press the XMIT key or function key 14; the
current work screen is redisplayed.

When you use dialog, your entries are checked and any errors detected are blinked on
the screen. For example, invalid entries such as unsupported device types and
misspellings of YES or NO are blinked.

Before executing SU$C 16, you must have successfully logged onto the system via the
LOGON command. After logging on, key in HU in system mode and press the XMIT
key. After pressing the XMIT key, the HARDWARE UTILITIES menu screen appears:

HARDWARE UTILITIES HU00A

1. DUMP FILES FROM A DISK
2. RESTORE FILES TO A DISK
3. COPY FILES FROM DISK TO DISK
4. COPY AND/OR VERIFY IDA DISK
5. COPY AND/OR VERIFY SELECTOR DISK
6. NONE OF THESE

ENTER SELECTION_~

Looking at the menu screen, select 4 to start execution of the SU$C 16 routine.

•

•

•

UP-8062 Rev. 8 SPERRY UNIV AC OS/3
SYSTEM SERVICE PROGRAMS

12-9

• After you press the XMIT key, the following information screen is displayed.

•

•

HU00AI04

A CONVERSATIONAL JOB CHU$016) TO COPY THE CONTENTS OF ONE IDA
DISK TO ONE OR MORE DISKS OR TO VERIFY THE CONTENTS OF ONE OR
MORE IDA DISKS HAS BEEN INITIATED IN YOUR BEHALF. YOU MUST BE
IN SYSTEM MODE FOR THE JOB TO BE SCHEDULED. IF YOU ENTERED
HARDWARE UTILITIES THROUGH THE HU COMMAND YOU WILL BE IN SYSTEM
MODE AFTER TRANSMITTING. IF YOU ENTERED THROUGH THE MENU
COMMAND YOU ARE RESPONSIBLE FOR GOING INTO SYSTEM MODE.

***** TRANSMIT TO CONTINUE *****

After you press the XMIT key, the following screen appears:

Screen 1 (HU09): Indicating the Specific Disk Device Type and the Volume Serial
Number

COPY INPUT DEVICE INFORMATION HU09

ENTER SPECIFIC DISK DEVICE TYPE:~

ENTER VOLUME SERIAL NUMBER:ir.ft"tfl

******** FUNCTION KEYS: F13=HELP, F14=EXIT HELP ********

Looking at screen 1 , we entered 8416 for the disk device type and 123456 for the
volume serial number. The device type entered on this screen must be one of the IDA
type disks: 8415, 8416, and 8418.

NOTE:

Regarding the screens, all the default values are shaded while the user entries are
shown in reverse lettering (white characters on black background) .

- - ---- --.

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

Since help is not required, press the XMIT key and the next screen appears:

12-10

Screen 2 (HU 13): Indicating the Number of Copies, Starting and Ending Addresses,
and Verification Option

COPIES - UP TO 7

BEGIN ADDRESS (CCC)

END ADDRESS (CCC)

ONLY VERIFY

COPY-VERIFY HU13

COPY=ll

BGAD=•

EDAD=•

OVEF=•

******** FUNCTION KEYS: F13=HELP, F14=END HELP ********

Looking at screen 2, we entered 3 for the number of copies (overriding the default of
1). We took the default values, which appear on the screen, for the beginning and
ending addresses (cylinder 000 for beginning and 193 for ending), as well as the default
option NO, indicating that we are doing a copy operation and not a verify-only
operation. Since help is not required, press the XMIT key.

Screen 3 (HU 14): Indicating the File Options

COPY

UNEXPIRED FILE CHECKING

VERIFY

HU14

UNXF­

VEFY=lll

******** FUNCTION KEYS: F13=HELP, F14=END HELP ********

•

•

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

12-11

On this screen, we want unexpired file checking and output verification. We entered
YES for output verification and allowed the unexpired file checking option (UNXF) to
default to YES. Unexpired file checking checks the output volume for file expiration
dates. If the date has not expired and your terminal is in system mode, your screen
displays a message. This message asks you either to terminate or to skip the file and
continue processing. You can skip up to 10 files at a time. Verification ensures that an
exact copy of your input is produced. Any errors detected are printed by using the print
option (next screen).

Screen 4 (HU 15): Indicating the Print Option

COPY-VERIFY HU15

PRINT ALL ERRORS PRNT=lll

Since we specified the verify option on the last screen, we recommend that you take
the default YES to print any errors detected during the copy process. Press the XMIT
key.

Screen 5 (HU 11): Specifying Output Device Information

COPY OUTPUT DEVICE INFORMATION HU11

ENTER SPECIFIC DISK DEVICE TYPE:Ellll

ENTER VOLUME SERIAL NUMBER(S):

******** FUNCTION KEYS: F13=HELP, F14=EXIT HELP ********

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

12-12

On this screen, we entered 8416 as our output disk device type. Table 12-1 lists the
output disk device types that can be used with a given input disk device type. Next, we
entered our output volume serial numbers. The number of underscored input fields
requesting volume serial numbers that appear on the screen are equal to the number of
copies specified on screen 2. All fields that appear must be filled in. Since we specified
three copies, fields for three volume serial numbers appear on the screen. We entered
volume serial numbers DISKO 1, DISK02, and DISK03 for the three copies of our output.
Press the XMIT key to complete the copy operation. After you press the XMIT key, the
terminal becomes free for other uses. When the job is finished, your terminal screen
displays an end-of-job message.

12.4. EXECUTING SU$CSL IN AN INTERACTIVE ENVIRONMENT

Interactive processing of the SU$CSL routine consists of a question and answer session
(dialog) using either a UNISCOPE 100, UNISCOPE 200, or UTS 400 terminal. The
procedures for executing the SU$CSL routine are the same, regardless of which type of
terminal you use, except for a few adjustments necessitated by differences in the
terminal keyboards. With the UTS 400 terminal, for example, use the XMIT key to
transmit work screens and function keys 13 and 14 to obtain and exit help screens. For
UNI SCOPE 100 and 200 terminals, use the TRANSMIT key to transmit work screens.
To use function key 13 or 14, you must simulate it in the following manner. Press the
MESSAGE WAITING key, then alphabetic F, then the pound sign (#), and then the
number 13 or 14.

The following example shows the SU$CSL routine for a UTS 400 terminal. When using
a UNI SCOPE 100 or 200 terminal, you must adjust the instructions in the manner just
discussed.

Before executing SU$CSL, you must have successfully logged onto the system via the
LOGON command. After logging on, key in HU in system mode and press the XMIT
key. After you press the XMIT key, the HARDWARE UTILITIES menu screen appears:

HARDWARE UTILITIES HU00A
1. DUMP FILES FROM A DISK
2. RESTORE FILES TO A DISK
3. COPY FILES FROM DISK TO DISK
4. COPY AND/OR VERIFY IDA DISK
5. COPY AND/OR VERIFY SELECTOR DISK
6. NONE OF THESE

ENTER SELECTION a_

•

•

•

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

12-13

Looking at the menu screen, select 5 to start execution of the SU$CSL routine. After
you press the XMIT key, the following informational screen appears:

HU00AI05

A CONVERSATIONAL JOB (HU$CSL) TO COPY THE CONTENTS OF ONE
SELECTOR DISK TO ONE OR MORE DISKS OR TO VERIFY THE CONTENTS OF
ONE OR MORE SELECTOR DISKS HAS BEEN INITIATED IN YOUR BEHALF.
YOU MUST BE IN SYSTEM MODE FOR THE JOB TO BE SCHEDULED. IF YOU
ENTERED HARDWARE UTILITIES THROUGH THE HU COMMAND YOU WILL BE IN
SYSTEM MODE AFTER TRANSMITTING. IF YOU ENTERED THROUGH THE MENU
COMMAND YOU ARE RESPONSIBLE FOR GOING INTO SYSTEM MCDE.

***** TRANSMIT TO CONTINUE *****

After you press the XMIT key, screen 1 is displayed:

Screen 1 (HU10): Indicating the Specific Disk Device Type and the Volume Serial
Number

COPY INPUT DEVICE INFORMATION HU10

ENTER SPECIFIC DISK DEVICE TYPE: 11111

ENTER VOLUME SERIAL NUMBER: ld:iirij

******** FUNCTION KEYS: F13=HELP, F14=EXIT HELP ********

Looking at screen 1 , we entered 8433 for the disk device type and ABC 123 for the
volume serial number. The device type entered on this screen can be an 8411, 8414,
8424/25, 8430, or 8433 disk pack. Since help is not required, press the XMIT key and
the next screen appears:

UP-8062 Rev. 8 SPERRY UNIV AC OS/3
SYSTEM SERVICE PROGRAMS

12-14

Screen 2 (HU 13): Indicating the Number of Copies, Starting and Ending Addresses,
and Verification Option

r

COPIES - UP TO 7

BEGIN ADDRESS CCCC)

END ADDRESS CCCC)

ONLY VERIFY

COPY-VERIFY HU13

COPY=B

BGAD=f [:J

EDAD=llll!

******** FUNCTION KEYS: F13=HELP, F14=EXIT HELP ********

Looking at screen 2, we entered 3 for the number of copies (overriding the default of
1), took the default for the beginning and ending addresses (cylinder 000 for beginning
and 327 for ending), and took the default option NO, indicating that we are doing a
copy operation and not a verify-only operation. Since help is not required, press the
XMIT key.

Screen 3 (HU 14): Indicating the File Options

COPY HU14

UNEXPIRED FILE CHECKING UNXF-' , ';
..... , .. ,.,.,.

VERIFY VEFY=•

******** FUNCTION KEYS: F13=HELP, F14=EXIT HELP ********

- _ _,

On this screen, we want unexpired file checking and output verification. We entered
YES for output verification and allowed the unexpired file checking option (UNXF) to
default to YES. Unexpired file checking checks the output volume for file expiration
dates. If the date has not expired and you are in system mode, the terminal displays a
message. This message asks you either to terminate or to skip the file and continue
processing. You can skip up to 10 files at a time. Verification ensures that an exact
copy of your input is produced. Any errors detected are printed by using the print
option (next screen).

•

•

•

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

Screen 4 (HU 15): Indicating the Print Option

COPY-VERIFY

PRINT ALL ERRORS

12-15

HU15

PRNT=lll,

Since we specified the verify option on the last screen, we recommend that you take
default YES to print any errors detected during the copy process. Press the XMIT key.

Screen 5 (HU 11): Specifying Output Device Information

COPY OUTPUT DEVICE INFORMATION HU11

ENTER SPECIFIC DISK DEVICE TYPE:~

ENTER VOLUME SERIAL NUMBERCS):

******** FUNCTION KEYS: F13=HELP, F14=EXIT HELP ********

On this screen, we entered 8433 as our output disk device type. Table 12-1 lists the
output disk device types that can be used with a given input disk device type. Next, we
entered volume serial numbers DISK04, DISK05, and DISK06 for the three copies of our
output.

The number of underscored input fields requesting volume serial numbers that appear
on the screen are equal to the number of copies specified on screen 2. Press the XMIT
key to complete the copy operation. After you press the XMIT key, the terminal
becomes free for other uses. When the job is finished, your terminal screen displays an
end-of-job message.

t

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

12.5. STAND-ALONE DISK COPY (SU$1DA and SU$SEL)

12-16

Once the stand-alone disk copy routine has been loaded into main storage, it is capable
of copying any disk pack to another disk pack of a similar type. As the name implies,
this routine does not run under the control of the supervisor nor does it require a
SYSRES disk pack to be online. This approach allows the user with only two disk
drives to create backup copies of non-SYSRES disk packs. Table 12-1 lists the types
of input and output devices that the stand-alone disk copy routine processes.

Table 12-1. Permissible Types of Input and Output Devices

Input Output Input Output

8415R 8415R 8418L 8416
8415F 8415F 8411 8411
8415R 8415F 8414 8414
8415F 8415R CD 8424/25 8424/25
8416 8416 8430 8430
8418L 8418H @ 8433 8433
8418 8418 8430 8433 ~
8418H 8416 @ 8433 8430 2
8416 8418H @
8416 8418L

NOTES:

CD It requires three removable disk packs to store the data of
one fixed disk pack.

@ Only half of the disk is copied to the new disk.
The VTOC shows that 808 cylinders are available.

@ The VTOC for the 8418 disk shows 404 cylinders are
available.

The stand-alone disk copy routine executes as a dialog with the operator via console
messages. The routine consists of a control phase that determines which of four other
phases are to receive control. The control phase first branches to the initialization
phase. After the necessary main storage areas have been initialized, the control phase
branches to the input processing phase, followed by a branch to the output processing
phase. When all processing is completed, the control phase branches to the termination
phase.

When control is transferred in either direction, messages are displayed on the console
that either are informational or require a reply. If an invalid reply is given, a message is
displayed indicating this fact. A message is displayed that also indicates that the correct
reply was entered.

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

12-17

• 12.5.1. Load Procedures

•

•

The routine is loaded into main storage by using the absolute load ability of IPL. When
the following message appears, the name of the program that you key in is substituted
for the underscores.

IPL TO LOAD STANDARD SUPERVISOR UNLESS NEW NAME KEYED IN -------,-

You should then key in one of the following:

SU$1DA,L - to copy an 8415, 8416, or 8418

SU$SEL,L - to copy an 8411, 8414, 8424/25, 8430, or 8433

Control is then transferred to the initialization phase.

12.5.2. Initialization Phase

This phase updates various tables and areas in main storage. It also determines the
type of operation, device type, and device address.

The following message appears on the top line of the console:

OS/3 ST AND ALONE COPY vv /rr

where vv is the version number and rr is the revision number.

Then the following messages are displayed. In responding to any message, only the
first character is required; the remaining characters are optional.

DC01 TYPE OF OPERATION REQUESTED (COPY,VERIFY)?

Keyin:
Type in either COPY or VERIFY. The default is COPY.

Response:
DC 11 YOU HA VE REQUESTED A { COPY }

VERIFY

OPERATION BE PERFORMED

DC02 DEVICE TYPES SUPPORTED: 8415R,8415F ,8416 ,8418L,8418H
8411,8414,8424,8430,8433

Which line appears depends on whether SU$1DA (top line) or SU$SEL (bottom line)
was specified at load time .

UP-8062 Rev. 8

DC03 INPUT DEVICE TYPE?

Keyin:

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

One of the input device types listed in Table 12-2.
Response:

DC 12 INPUT DEVICE TYPE REQUESTED IS (device type)
If keyin is invalid, response is:

DC 13 INPUT DEVICE REQUESTED IS (device type)
THIS DEVICE NOT SUPPORTED.

12-18

The DC03 message is repeated to allow another device type to be
selected.

DC04 INPUT DEVICE ADDRESS?

Keyin:
The 3-digit device address is entered (channel, subchannel, and device
number).

Response:
DC 14 INPUT DEVICE ADDRESS REQUESTED IS (cnn)

If keyin is invalid, response is:
DC 15 INPUT DEVICE ADDRESS REQUESTED IS (cnn)
DEVICE ADDRESS IS INVALID.
The DC04 message is repeated to allow another device address to be
entered.

DC05 OUTPUT DEVICE TYPE?

Keyin:
One of the device types listed in Table 12-2.

Response:
DC 14 OUTPUT DEVICE TYPE REQUESTED IS (device type)

If keyin is invalid, response is:
DC 16 INPUT-OUTPUT DEVICE ADDRESSES ARE EQUAL
This message is output if the address of the output device address is
equal to the input device address. The DC03 message is displayed again
and the 1/0 device addresses are resubmitted. Also, a check is made of
the correct device address for the 8415R or 8415F disk. If incorrect, the
following message is displayed:
DC 19 8415 DISC DEVICE ADDRESS INV AUD
The 1/0 devices are then rechecked beginning with the DC03 message.

DC07 OPERATIONAL TYPE: FULL,PARTIAL,COPY ,ALLOCATE,RESTORE-FIXED.

Keyin:
FULL

The entire extent of the input device type is used, as listed in Table
12-2. The extent addresses are in the form ccc,hh,rr in decimal.

•

•

•

•

•

UP-8062 Rev. 8

PARTIAL

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

Table 12-2. Extent Addresses by Input Device Type

Device Type Beginning Extent Ending Extent

8415R 000,00,01 403,01.40
8415F 000,00,01 807,02.40
8416 000,00,01 403,06.40
8418L 000,00,01 403,06.40
8418H 000,00,01 807,06.40
8411 000,00,01 202,09.40
8414 000,00,01 202, 19,72
8424/25 000,00,01 399, 19,72
8430 000,00,01 403, 18,96
8433 000,00,01 807, 18,96

12-19

This keyin can be used on like disk types only. This operation is
invalid for the 8415 disk.

COPY
The allocated space on an 8415 removable disk pack is copied to the
unallocated space on an 8415 fixed disk pack.

ALLOCATE
The allocated space on the input device is copied to the output
device.

RESTORE-FIXED
A multi-input 8415 removable disk pack can restore an 8415 fixed
disk pack.

Response:
DC 17 OPERATIONAL TYPE (operational type)

If keyin is invalid, response is:
DCOD OPERATIONAL TYPE (operational type) INV AUD
The DC07 message is repeated.

DC08 BEGINNING EXTENT IN DECIMAL: (CCC,HH)?

Keyin:
Cylinder and head address (ccc,hh) of the beginning extent. This message
is displayed only when the operational type chosen is PARTIAL.

If keyin is invalid, response is:
DCOA INV AUD EXTENT
The extent value does not fall between the permissible beginning and
ending extent values. The DC08 message is repeated.
DCOB PARTIAL EXTENT CONTAINS NON NUMERIC
One of the characters in your keyin was nonnumeric. The DC08 message
is repeated .

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

DC09 ENDING EXTENT IN DECIMAL: (CCC,HH)?

Keyin:

12-20

Cylinder and head address (ccc,hh) of the ending extent. This message is
displayed only when the operational type chosen is PARTIAL.

If keyin is invalid, response is:
DCOA INV AUD EXTENT
The extent value does not fall between the permissible beginning and
ending extent values. The DC09 message is repeated.
DCOB PARTIAL EXTENT CONTAINS NON NUMERIC
One of the characters in your keyin was nonnumeric. The DC09 message
is repeated.
DC20 INPUT BEGIN EXTENT ADDRESS HIGHER THAN END
The DC08 message is repeated.

DC 18 INPUT EXTENT

BEGINNING EXTENT
ENDING EXTENT

DC 19 OUTPUT EXTENT

BEGINNING EXTENT
ENDING EXTENT

=DECIMAL CCC=ccc HH=hh RR=rr
=DECIMAL CCC=ccc HH=hh RR=rr

=DECIMAL CCC=ccc HH=hh RR=rr
=DECIMAL CCC=ccc HH=hh RR=rr

These two messages are displayed to give the user information regarding the
extents allocated to the job.

DC25 INITIALIZATION COMPLETE: (GO, REINIT)?

Keyin:
GO

Processing begins.
REINIT

The initialization process begins again with message DCO 1.

12.5.3. Control Phase

Program control is returned to the control phase after the completion of each of the
other phases. If an interrupt has occurred during these phase operations, the following
messages appear on the screen.

DC30 REQUEST TYPE OF OPERATION: (DUMP, CANCEL, STATUS, NONE)?

Keyin:

DUMP
After the status information has been displayed, a SYSDUMP is
taken.

•

•

•

•

•

•

UP-8062 Rev. 8

CANCEL

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

12-21

After the status information has. been displayed, the job is terminated.

STATUS
Status information is displayed in the following messages and
processing continues.

DC31 INPUT DEVICE ADDRESS: cnn
DC32 OPERATIONAL TYPE:
FULL,PARTIAL,COPY ,ALLOCA TE,RESTORE-FIXED
DC33 EXTENT FORMAT IN DECIMAL: ccc,hh
DC34 CURRENT EXTENT=ccc,hh ENDING EXTENT=ccc,hh
DC35 OUTPUT DEVICE ADDRESS: cnn

NONE:
This keyin turns the console attention interrupt bit off and returns
control to the next instruction in the control routine.

If the keyin is omitted, NONE is assumed.

DC36 MOUNT NEXT SCRATCH ON cnn. REPLY R WHEN READY

Keyin:
R, when the next scratch 8415 removable disk has been mounted .

DC38 RESTORE OPERATION REQUIRES DISC n OF 3 BE MOUNTED. REPLY R
WHEN READY

Keyin:
R

DC39 COPY TO FIXED COMPLETED MOUNT SCRATCH ON cnn. REPLY R WHEN
READY

Keyin:
R

12.5.4. Input and Output Phases

The input phase reads data one track at a time and stores it in a buffer area. The
output phase processes the data and writes it out one track at a time. No messages
are displayed during these phases .

UP-8062 Rev. 8

12.5.5. Termination Phase

SPERRY UNIV AC OS/3
SYSTEM SERVICE PROGRAMS

When the job has terminated, the following message is displayed.

DC37 ST AND ALONE DISC COPY TERMINATED: {ABNORMALLY}
NORMALLY

12-22

If you keyed in a dump or cancel operation as a reply to message DC30, an abnormal
termination is indicated.

12.5.6. 1/0 Disk Error Handling Routine

The following messages are displayed, depending on the type of 1/0 disk error.

DC40 DEVICE cnn IN STOP ST A TE: (RETRY OR DUMP)?

Keyin:
RETRY

The 1/0 order is reissued.

DUMP
After the status information has been displayed, a SYSDUMP is
taken.

DC41 DEVICE cnn FILE PROTECTED ON WRITE: (RETRY OR DUMP)?

Keyin:
RETRY

The 1/0 order is reissued.

DUMP
After the status information has been displayed, a SYSDUMP is
taken.

DC42 DEVICE cnn 1/0 ERROR SENSE BYTE=xxxxxxxxxx:
ERROR=error-message- - - - - - - - - - - - - (RETRY,IGNORE,DUMP)?

Keyin:
RETRY

The 1/0 order is reissued.

IGNORE
The error is ignored and the 1/0 order is bypassed.

DUMP
After the status information has been displayed, a SYSDUMP is
taken.

•

•

•

•

•

•

UP-8062 Rev. 8 SPERRY UNIV AC OS/3
SYSTEM SERVICE PROGRAMS

12-23

The following message is displayed when an error is detected during verification
processing.

DC43 ERROR IN VERIFICATION CYLINDER=ccc HEAD=h RECORD=rrr CONTINUE
OR DUMP?

Keyin:
CONTINUE

Verification processing continues.

DUMP
After the status information has been displayed, a SYSDUMP is
taken .

•

•

•

•
UP-8062 Rev. 8 SPERRY UNIVAC OS/3

SYSTEM SERVICE PROGRAMS
13-1

13. Disk Dump/Restore (DMPRST)
Routine

13.1. DMPRST CONCEPT

DMPRST permits you to create backup libraries or data files for possible future use at
your installation. You can:

• copy a disk or a portion of a disk to a magnetic tape, called a dump operation;

• copy a magnetic tape to a disk, called a restore operation;

• copy a disk or a portion of a disk to another disk, called a disk copy operation; or

• • copy a tape created by DMPRST to another tape, called a tape copy operation.

•

You must specify similar devices for both the dump and restore operations. However,
when you use the copy operation, like devices must be specified except for copying
either 8416 or 8418 disk packs. The allowable combinations for copying these packs
are: 8416 to 8418 (dual), 8418 (dual) to 8416, 8418 (single) to 8418 (dual), and 8418
(dual) to 8418 (single).

It is important to remember the number of usable tracks per disk pack when
downgrading your copy operation. For example, when you copy an 8418 (dual) to an
8416, the 8418 has 808 usable tracks while the 8416 has only 404 usable tracks.
Therefore, if you are copying more than 404 tracks, DMPRST will issue a diagnostic
message indicating some of your files have been lost.

When you are using a tape as a go-between device, then the disk type that was your
input to the tape must also be the same disk type as the output from the tape. For
example, if you were dumping an 8411 disk to a UNISERVO Vl-C tape, then the
UNISERVO Vl-C tape must be restored to another 8411 disk. All of the devices you are
using must be prepped.

DMPRST does not require a printer in a batch environment. If a fatal error is detected, ~
the error message is displayed on the system console. If you do specify a printer, the
11 PARAM statements, the FILE statements, and all error messages are listed .

You can perform the dump, restore, and copy operations on either a volume or file
basis.

- - - --.

t

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

13-2

In a multijobbing environment, the use of DMPRST can cause space allocated to a file
to be lost; files may be added to or portions deleted, or a disk pack may be incorrectly
copied. These situations can occur when another job is updating the VTOC of a disk
pack at the same time DMPRST is copying that VTOC to another disk pack, or when
DMPRST is copying a file while another job is extending or scratching that file.
Therefore, the job executing DMPRST must be the only job running when the 1/0 device
is either SYSRUN or SYSRES. If the device is not SYSRUN or SYSRES, it must be set
to nonsharable by using the SET 10 operator command. See the current version of the
operations handbook for operators, UP-8072 or UP-8511 for details. This will ensure
that an exact copy will be made by DMPRST.

NOTE:

DMPRST cannot restore or copy system files (prefixed by Y) on an active SYSRES,
i.e., the SYSRES pack you are executing from. To process these files, see the current
version of the system installation user guide, UP-8074.

You can execute DMPRST either in a batch environment or interactively from a terminal.
Both the interactive and batch methods accomplish the same result; however, there are
some differences between what each method supports. Table 13-1 lists these
differences. See 13.5 for interactive processing of DMPRST.

Table 13-1. DMPRST Differences between Interactive and Batch Methods

Item Interactive Batch

Modes of processing File Volume and file

Tape-to-tape copy Not supported Supported - volume mode

Printer assignment Automatically User responsibility
assigned

13.2. EXECUTING DMPRST IN A VOLUME ENVIRONMENT

As stated before, DMPRST enables you to execute four different types of operations:
dump, restore, disk copy, and tape copy. // PARAM statements are used to indicate
the type of operation to be performed. For convenience, Table 13-2 summarizes the //
PARAM statements, along with the appropriate LFD names and the type of operation
that will be performed. A complete description of these statements is provided in the
paragraphs associated with the appropriate operation.

•

•

•

•

•

•

UP-8062 Rev. 8 SPERRY UNIV AC OSl3
SYSTEM SERVICE PROGRAMS

13-3

•

Table 13-2. Volume Mode PARAM Statements

Type of Operation Param Statement LFD Name

Copy disk to disk I I PARAM IN=DISC DISCIN
I I P ARAM OUT= DISC DI SCOT

Dump disk to tape I I PARAM IN=DISC DISCIN
II PARAM OUT=TAPE TAPEOT

Restore tape to disk II PARAM IN=TAPE TAPEIN
I I P ARAM OUT= DISC DI SCOT

Copy tape to tape II PARAM IN=TAPE TAPEIN
II PARAM OUT=TAPE TAPEOT

Suppress file expiration I I P ARAM NOEXPCK
date checking

Dump operation

Here, you are writing from a disk pack to a magnetic tape. Any magnetic tape or
disk device may be used. Multiple volume tapes are permitted. Since the dump
operation means a disk pack or part of a disk pack is being written to a magnetic
tape, the disk pack is your input; therefore, you would use 11 PARAM IN=DISC.
The output is going to a magnetic tape; therefore, you would use 11 PARAM
OUT=TAPE. Notice that we did not indicate what type of disk pack or magnetic
tape is being used. DMPRST checks the physical disk or magnetic tape unit for the
proper device type. However, DISCIN and TAPEOT must be specified as the file
names on the LFD job control statement.

If you are dumping to multivolume tapes, you may specify all of your output tape
file names on a single 11 VOL card. If you do this, only one 11 DVC card and one
I I LFD card with the file name T APEOT specified are needed. Only one tape drive
is required, with the operator mounting new tape volumes as needed. However,
you may enter a separate device assignment set for each tape volume. If you do
this, you must enter a I I DVC and I I LFD for each tape, and the numbers 01
through 99 must be added to each additional output tape LFD name (TAPE OTO 1).
You must have a separate tape drive for each output tape volume.

If you are dumping the disk to a tape unit connected to a selector channel, but
prefer to have the output tape produced in a blocked format that can be read by
either multiplexer or selector channel tape units, add the parameter MUX to the I I
PARAM OUT statement, as shown in example 1. We recommend the MUX
parameter be specified for all output tapes because both types of tape units can
read the tape and not impact DMPRST processing .

t

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

13-4

If you wanted only to dump a portion of a disk pack, you would include a I I
PARAM END=ccc or END= LAST statement in your control stream. The // PARAM
END statement is used to terminte the dump operation after a specific cylinder
(END=ccc) has been dumped, or after the last cylinder that contains any user data
has been dumped (END=LAST). If the // PARAM END statement is omitted, the
entire contents of the input disk is dumped to the output tape (including test
pattern data written by the disk prep routine), even if only a few cylinders contain
user data.

If the // PARAM END=ccc statement is used, ccc must be specified in decimal.

The first record written to your magnetic tape is called the control record. The control
record contains the following information in the order shown:

Bytes Contents

0-1 Control record ID x·coco·

2-5 System time (packed decimal)

6-9 System date (packed decimal)

10-15 Volume serial number of dumped disk pack

16-17 Unused

18-21 Device type of dumped disk pack

22 Device type of tape

23 Tape channel number

24-25 Unused

26 X'FF'-shows file processing

2 7-30 Volume table of contents of dumped disk if file processing

31-79 Unused

The following examples show a single and a multiple-volume dump:

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

13-5

• Example 1 - Single-Volume Dump:

•

•

10 16

II JOB DUMP1
II DVC 20 II LFD PRNTR
II DVC 90 II VOL SP0366 II LFD TAPEOT
II DVC 50 II VOL OS3RES II LFD DISC IN
II EXEC DMPRST
II PARAM IN=DISC
II PAR AM OUT=TAPE,MUX
II PAR AM END= LAST
I&
II FIN

Example 2 - Multiple-Volume Dump:

10 16

II JOB DUMP2
II DVC 20 II LFD PRNTR
II DVC 90 II VOL SP0366,SP0367 II LFD TAPEOT
II DVC 50 II VOL OS3RES II LFD DISC IN
II EXEC DMPRST
II PARAM IN=DISC
II PAR AM OUT=TAPE
I&
II FIN

Remember, when doing a dump operation, you must specify the 11 PARAM
IN=DISC and 11 PARAM OUT=TAPE.

• Restore operation

Here, you are writing from a magnetic tape to a disk pack. Remember, whatever
disk type that was used to produce the tape, that same disk type must be used
when you are restoring the tape to the disk. Since the restore operation means you
are writing from a magnetic tape to a disk pack, the I I PARAM IN= TAPE and I I
PARAM OUT=DISC must be specified. If the input tape was created on a selector
channel tape unit and was not specifically produced in the multiplexer blocked
format, only a selector channel tape unit can be used to read the input tape. Tapes
created in multiplexer blocked format can be read by any tape unit. The file names
T APEIN and DISCOT also must be specified on the I I LFD job control statements.

If restoring from multivolume tapes, you may enter your input tape file names on a
single 11 VOL card. If you do this, only one 11 LFD card with the name TAPEIN is
required. The tape volumes are then mounted on a single drive as they are needed .
However, you may enter a device assignment set for each tape appending the
numbers O 1 through 99 to each additional tape LFD name (TAPE I NO 1). If you do
this, all tape volumes must be mounted on the appropriate tape drive.

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

13-6

•

The following examples show a single- and a multiple-volume restore operation:

Example 1 - Single-Volume Restore:

10 16 72

II JOB RESTORE1
II DVC 20 II LFD PRNTR
II DVC 90 II VOL SP0366 II LFD TAPE IN
II DVC 50 II VOL 051111 II LFD DI SCOT
II EXEC DMPRST
II PARAM IN=TAPE
II PARAM OUT=DISC
I&
II FIN

Example 2 - Multiple-Volume Restore:

II JOB RESTORE2
II DVC 20 II LFD PRNTR
II DVC 90 II VOL SP0366,SP0367 II LFD TAPE IN
II DVC 50 II VOL DS1111 II LFD DI SCOT
II EXEC DMPRST
II PARAM IN=TAPE
II PARAM OUT=DISC
I&
II FIN

Disk copy operation

Here, you are writing the contents of one disk pack to another disk pack. Both disk
packs must be of the same device type except for 8416 and 8418. As stated
before, either data or library files are accepted. The 11 PARAM IN=DISC, and the
I I PARAM OUT=DISC, along with the file names DISCIN and DISCOT on the LFD
job control statements, must be specified. In addition, a 11 PARAM END=ccc or
END= LAST statement can be used to terminate the copy operation after a specific
cylinder (END=ccc) has been copied, or after the last cylinder that contains any
user data has been copied (END= LAST). If the I I P ARAM END statement is
omitted, the entire contents of the input disk is copied to the output disk (including
test pattern data written by the disk prep routine), even if only a few cylinders
contain user data.

If the 11 PARAM END=ccc statement is used, ccc must be specified in decimal.

•

•

•

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

13-7

•

The following is an example of a typical copy operation:

10 16

II JOB COPY
II DVC 20 II LFD PRNTR
II DVC 50 II VOL OS3RES II LFD DISC IN
II DVC 51 II VOL DSP368 II LFD DI SCOT
II EXEC DMPRST
II PARAM IN=DISC
II PARAM OUT=DISC
II PARAM END= LAST
I&
II FIN

Tape copy operation

Here, you are copying the contents of one tape volume to another. The tape being
copied must have been created by a previous DMPRST dump or tape copy
operation that was performed in a volume environment. Only tapes created by
DMPRST are supported by this function. The tape being copied may have been
created on either a multiplexer or selector channel tape drive unit. Likewise, the
output tape may be on a multiplexer or selector channel unit. Input tapes created
on a selector channel unit, however, cannot be read by a multiplexer channel tape
drive unit unless they were created in multiplexer blocked format. Input tapes
created on a multiplexer channel tape unit, or in multiplexer format, on a selector
channel tape unit can be read by any tape unit. Output tapes produced on a
selector channel tape unit can be blocked in multiplexer format by adding the MUX
parameter to the / / PARAM OUT statement.

DMPRST will not copy a tape produced in the file environment.

The following is an example of a typical job stream used to perform a tape copy
operation:

1 10 16

II JOB TAPE COPY
II DVC 20 II LFD PRNTR
II DVC 90 II VOL REL030 II LFD TAPE IN
II DVC 91 II VOL SP1234 II LFD TAPEOT
II EXEC DMPRST
II PAR AM IN=TAPE
II PAR AM OUT=TAPE
I&
II FIN

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

13.3. EXECUTING DMPRST IN A FILE ENVIRONMENT

13-8

You may execute DMPRST in the file mode to create backups of individual files on your
disk. Choose disk or tape as your backup, depending on which DMPRST procedure
used. In addition, you can copy, dump, and restore an entire volume of active
permanent files. As in volume mode, you can assign a printer to list the // PARAM and
FILE statements and any error messages.

For convenience, Table 13-3 summarizes the // PARAM and FILE statements, along
with the appropriate LFD names and the type of operation to be performed. A complete
description of these statements is provided in the paragraphs associated with the
appropriate operation.

Table 13-3. File Mode PARAM and FILE Statements

Type of Operation Param Statement LFD Name

Copy disk to disk II PARAM IN=DISC DISCIN
II PARAM OUT=DISC DISCOT
II PARAM TYPE=FILE

Dump disk to tape 11 PARAM IN=DISC DISCIN
II PARAM OUT=TAPE TAPEOT
II PARAM TYPE=FILE

Restore tape to disk II PARAM IN=TAPE TAPEIN
11 PARAM OUT=DISC DISCOT
II PARAM TYPE=FILE

Process only active II PARAM TYPE=FILE,ALL
permanent files

A void waiting for file to II PARAM TYPE=FILE,NOWAIT
be available

Suppress file expiration I I PARAM NOEXPCK
date checking

13.3.1 . Performing a Disk Copy Operation in a File Environment

When performing a disk copy operation in a file environment, you copy the contents of
individual files residing on one disk pack to another disk pack. Both disk packs must be
of the same device type, except for 8416 and 8418. Either library or data files are
accepted.

Input and output in a disk copy operation are always disks. Therefore, specify //
P ARAM IN= DISC as your input parameter and / / PARM OUT= DISC as your output
parameter. In addition, you must specify the file names DISCIN on the input // LFD
statement and DISCOT on the output / / LFD statement.

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

13-9

• Since you are copying files, specify // PARAM TYPE=FILE to inform DMPRST that file
rather than volume processing is performed. Associated with the // PARAM
TYPE=FILE parameter are FILE statements. By including these statements as embedded
data in your control stream, you can name which files you want copied by either file
name or file prefix.

•

•

The FILE statements are free-formatted, meaning that the first character may start
anywhere. However, you must place a blank character between the FILE statement and
the first operand to act as a delimiter. If you specify a file name containing embedded
blanks, enclose it in quotation marks (i.e., FILE "PAY BACKUP").

The following example shows a disk copy operation in the file environment:

II JOB DFILCPY
II DVC 20 II LFD PRNTR
II DVC 50 II VOL DISK01 II LFD DISCIN
II DVC 51 II VOL DISK02 II LFD DI SCOT
II EXEC DMPRST
II PARAH IN=DISC
II PARAH OUT=DISC
II PARAH TYPE=FILE
1$

FILE MONEY
FILE INTEREST
FILE BILLS
FILE.P BANKS

I*
I&
II FIN

Files MONEY, INTEREST, and BILLS, along with all files having the prefix of BANKS on
disk volume DISK01, are copied to disk volume DISK02. Notice that the FILE
statements are included as embedded data in the control stream.

If you want to copy an entire volume of active permanent files, use the FILE,ALL
statement. This signifies that all active permanent files on the volume are copied. By
active permanent files, we mean all files that have entries in the VTOC and that are not
job temporary files (run libraries and scratch files). Any files deleted but not physically
removed are not copied. (In volume mode, everything is copied.)

+

t

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

13-10

The following example shows a disk copy operation in file mode but copying the entire
volume of active permanent files:

II JOB COPY ALL
II DVC 20 II LFD PRNTR
II DVC 50 II VOL DISK01 II LFD DISCIN
II DVC 51 II VOL DISK02 II LFD DI SCOT
II EXEC DMPRST
II PAR AM IN=DISC
II PAR AM OUT=DISC
II PARAM TYPE=FILE,ALL
I&
II FIN

NOTE:

Job temporary files (run libraries and scratch files) are not processed in this file
environment.

Before DMPRST processes any files, it locks them. Therefore, if you copy, dump, or
restore a file currently being used in the system, DMPRST waits until the file is available
before processing it. You can avoid this delay by specifying the NOWAIT parameter on
the FILE statement. DMPRST, upon detecting NOWAIT, skips processing of any of the
unavailable files and goes to the next available one. All files skipped are listed on the
printer, so you can process them later. The following example shows a disk copy
operation in file mode by using the NOW AIT parameter:

II JOB COPY ALL
II DVC 20 II LFD PRNTR
II DVC 50 II VOL DISK01 II LFD DISCIN
II DVC 51 II VOL DISK02 II LFD DI SCOT
II EXEC DMPRST
II PARAM IN=DISC
II PARAM OUT=DISC
II PARAM TYPE=FILE,NOWAIT
1$

FILE CREDIT
FILE ASSETS
FILE INVENTORY

I*
I&
II FIN

13.3.2. Performing a Dump Operation in the File Environment

Here, you can dump one or more files residing on your disk volume to a magnetic tape
or dump the entire volume of active permanent files. Since you are writing from disk to
tape, the 11 PARAM IN=DISC and I I PARAM OUT=TAPE must be specified. Also, the
file names DISCIN and T APEOT on the 11 LFD job control statements must be specified.

•

•

•

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

13-11

Up to this point, everything is the same as in the dump operation in the volume
environment. Now for the additions: the / / PARAM TYPE= FILE must be specified,
telling DMPRST that a file is being processed rather than a volume. The // PARAM
TYPE=FILE card sets the file operation in motion. Next is your FILE card. You use this
card to specify the file name or the file prefix (up to 16 bytes) of the files you want
dumped. As stated earlier, the FILE card is free form. When specifying file names, use
the word FILE.

Immediately after the word FILE, a blank character must be present; then insert the
name of your file to be dumped. If you dump more than one file, a FILE card for each
file must be specified. When specifying a file prefix, use the word FILE.P. Again,
immediately after the word FILE.P, a blank character must be present; then insert the
prefix of the files to be dumped.

When you want to dump the entire volume of active permanent files, use the I I
PARAM TYPE= FILE,ALL statement. This indicates that all active permanent files
(entries in VTOC) are dumped.

Whether you dump individual or active permanent files, the // PARAM END statement
cannot be used:-------------

NOTE:

Within a single execution of the restore operation, the files selected for restoration must
be requested in the same order in which they appear on the tape. Because of this, we
suggest that you dump your files in alphanumeric order. This way, you know the order
to put your FILE cards in when restoring.

In example 1, files MYCOBOLMASTER and PROCFILE, as well as all files with the prefix
TAXES, are dumped from disk volume DSPOO 1 to magnetic tape SPTOO 1. Notice that,
even though you are accessing files on your disk pack, there is no / / LBL job control
statement present in your job control stream.

Example 1:

1 10 16

II JOB DUMP FIL
II DVC 20 II LFD PRNTR
II DVC 54 II VOL DSP001
II DVC 90 II VOL SPT001
II EXEC DMPRST
II PARAM IN=DISC
II PARAM OUT=TAPE
II PARAM TYPE=FILE
1$

FILE MYCOBOLMASTER
FILE PROCFILE
FILE.P TAXES

I*
I&
II FIN

II LFD DISCIN
II LFD TAPEOT

t

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

13-12

In example 2, the entire volume of active permanent files is dumped to multivolume
tapes by using a single device assignment set.

Example 2:

II JOB DUMP ALL
II DVC 20 II LFD PRNTR
II DVC 50 II VOL MYPACK II LFD DISC IN
II DVC 90 II VOL BACK01,BACK02
II LFD TAPEOT
II EXEC DMPRST
II PARAM IN=DISC
II PARAM OUT=TAPE
II PAR AM TYPE=FILE,ALL
I&
II FIN

13.3.3. Performing a Restore Operation in the File Environment

When you dump files from a disk, the backup created is not an exact copy of the
original. Therefore, you cannot use the backup on your system in the event your original
data is lost. Before actually using any backup data on your system, you must restore it
to the original disk or a disk of the same type as the original.

In a restore operation, the output is always a disk. Therefore, specify // PARAM
OUT=DISC as your output parameter, and DISCOT as the file name on your disk // LFD
statement.

Since you are restoring files, include the // PARAM TYPE=FILE parameter in your job
stream. This parameter informs DMPRST that file rather than volume processing is
performed. If you want to restore an entire volume of active permanent files, use //
PARAM TYPE=FILE,ALL.

Associated with the // PARAM TYPE=FILE parameter are FILE statements. Like the
FILE statements used in file dump operations, they name which files you want
processed. In a restore operation, however, they also allow you to rename files and
specify the type of processing you want performed.

The FILE statements are free-formatted, meaning that the first character may start
anywhere. However, you must place a blank between the FILE statement and the first
operand, and a comma between the operands to act as a delimiter. If you specify a file
name containing embedded blanks, enclose it in quotation marks.

The formats of the FILE statement used in a restore operation are:

•

•

•

i
UP-8062 Rev. 8 SPERRY UNIV AC OS/3

SYSTEM SERVICE PROGRAMS
13-13

• Format 1:

•

•

FILE old-namT{~~n]
[,new -name]

The old-name parameter specifies the name of the file you are restoring to disk.

Format 2:

FILE.P

The prefix-name parameter specifies the prefix name of all the files to be restored.
Regardless of the format, when restoring more than one file, you must restore the files
in the order they were dumped. Also, when you restore files by prefix, the files to be
restored must be in the order on the tape. Once it has begun, processing of files by
prefix is terminated when a file is found without that prefix name. For example, suppose
you have a tape containing files in the following ,order: three files with the prefix BANK,
one file with the prefix AMT, and two more files with the prefix BANK. If you use the
prefix name BANK to restore these files, only the first three files will be restored.

13.3.3.1. Using the Allocation Parameter to Control Restore Processing

The second parameter in the FILE statement is the allocation parameter. This optional
parameter enables you to control file processing. The allocation parameters are:

ABS

REL

LOG

PRE

Locates a file on the same absolute extents. If a file cannot be allocated to the
same extents, an error message is issued and DMPRST processes the next
FILE statement.

Relocates a file. If relocation to the same size file is not possible, a file large
enough to hold the original file is allocated. If this is unsuccessful, an error
message is issued and DMPRST processes the next FILE statement.

Relocates a file and deletes all unassigned space for that file.

Relocates a file in a space that was preallocated .

You can only specify one allocation parameter in each FILE statement. Enter it after the
old-name parameter, with a comma separating the two.

t

t

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

13-14

When you want to perform standard restore processing, omit the allocation parameter.
However, if you omit the allocation parameter and specify the new-name parameter,
substitute a comma for the missing allocation parameter.

During standard restore processing, DMPRST scratches the file from the output disk and
makes up to three attempts to reallocate it on the disk.

When reallocating the file, DMPRST first attempts to allocate the same absolute extents
occupied by the original file. If this is unsuccessful, the file relocation facility attempts to
allocate the same size file at a different location. If this second try is also unsuccessful,
the file relocation facility determines how much of the original space is actually
assigned. It then tries to allocate a file large enough to hold the assigned space from
the original file. If all three attempts fail, an error message is issued to the system
console.

13.3.3.2. Using the File Prefix Parameter

The file prefix parameter gives you the capability to restore all files having a certain
prefix in the file name. For example, suppose you want to restore all files having the file
name prefix of OLD. In addition, the restored files are to be located on the same
absolute extents. The following example shows this restore operation by using the
prefix-name and ABS parameters:

II JOB UPDATE
II DVC 20 II PRNTR
II DVC 90 II VOL SAVE01,SAVE02,SAVE03
II LFD TAPEIN
II DVC 50 II VOL NEVOL1,NEVOL2,NEVOL3
II LFD DISCOT
II EXEC DMPRST
II PARAM IN=TAPE
II PARAM OUT=DISC
II PARAM TYPE=FILE
1$

I*
I&
II FIN

FILE.P OLD,ABS

13.3.3.3. Using the New-name Parameter to Rename Files

The third parameter in the FILE statement is the new-name parameter. You use it to
change the name of a file being restored to disk.

For example, suppose you want to restore the disk file MYFILE to a file named
PAYROLL on disk. In order to copy MYFILE to PAYROLL, you specify PAYROLL as the
new-nameparameter in the FILE statement with the old-name MYFILE.

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

13-15

• In this case, DMPRST first scratches any file having the name PAYROLL from the output
disk. Next, DMPRST allocates a file large enough for MYFILE. The old file, MYFILE,
bearing the new name, PAYROLL, is then written to the allocated space on the output
disk.

•

•

The following example shows a restore operation using the new-name parameter:

II JOB RENAME
II DVC 20 II LFD PRNTR
II DVC 90 II VOL SAVE01,SAVE02,SAVE03
II LFD SEQDIN
II DVC 50 II VOL BAKVOL II LFD DISCOT
II EXEC DMPRST
II PARAM IN=DISC
II PAR AM OUT=DISC
II PAR AM TYPE=FILE
1$

FILE OLDNAME,REL,NEWNAME
FILE OLDACCOUNTS,,NEWACCOUNTS

I*
I&
II FIN

The files are restored to disk with the new file name specified by the new-name
parameter. For the first file, OLDNAME, DMPRST scratches any file having the name
NEWNAME from the output disk. DMPRST then allocates a file large enough for the file
OLDNAME. The old file OLDNAME bearing the new file name NEWNAME is then written
to allocated space on the output disk. The same procedure is followed for the second
FILE statement. Here, however, a comma is substituted for the missing allocation
parameter. As in all restore operations, the files are restored in the same order they
were dumped.

13.3.3.4. Restoring from Tape in the File Environment

If you are using magnetic tape as input, specify I I PARAM IN= TAPE as your input
parameter, and TAPEIN as the file name on your tape 11 LFD statement. When using
more than one tape as your input, you can assign them in your control stream in one of
two ways.

One way uses a single device assignment set (DVC - LFD sequence), having a file name
of TAPEIN. Included in this set are 11 VOL statements listing the volume serial numbers
of the restore operation's input tapes.

Another way is to supply a separate device assignment set for each tape. Here, a
separate device is assigned for each tape volume. Again, the file name on your 11 LFD
statement is TAPEIN. However, the numbers 01 through 99 are attached to each tape
file name, following the first (i.e., FILE II LFD TAPEIN01).

UP-8062 Rev. 8

NOTE:

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

13-16

If you perform a tape dump operation using separate device assignment sets and then
restore by using a single device assignment set, you will receive an error message from
data management. The method of assigning tapes used in the dump operation should
also be used in the related restore operation.

Since you are executing DMPRST in the file environment, include the I I PARAM
TYPE=FILE parameter in your job stream. Also, supply the appropriate FILE statements
as embedded data. Remember, files must be restored in the same order they were
dumped. If you want to restore the entire volume of active files, use 11 PARAM
TYPE= FILE,ALL.

The following examples show restore operations using magnetic tape.

Example 1 : Multiple-file restore from single-volume tape file

II JOB TFILRST1
II DVC 20111 LFD PRNTR
II DVC 90 II VOL PAY002 II LFD TAPE IN
II DVC 50 II VOL DISK01 II LFD DI SCOT
II EXEC DMPRST
II PARAM IN=TAPE
II PARAM OUT=DISC
II PARAM TYPE=FILE
1$

FILE CREDT,ABS
FILE ASSETS,REL

I*
I&
II FIN

The first file, CREDIT, is restored to the same absolute extents that it originally
occupied. This function is controlled by the allocation parameter, ABS. The second file,
ASSETS, is restored to a different location on disk by the REL allocation parameter.

Example 2: Restoring only active files from a single-volume tape file

II JOB TFILRST1
II DVC 20 II LFD PRNTR
II DVC 90 II VOL PAY002 II LFD TAPE IN
II DVC 50 // VOL DISK01 II LFD DI SCOT
II EXEC DHPRST
II PARAH IN=TAPE
II PARAH OUT=DISC
II PARAH TYPE=FILE,ALL
I*
I&
II FIN

Here, the entire volume of active files (entries in VTOC) are RESTORED.

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

13-17

• 13.3.4. Copying Files in a Single Disk Environment

•

•

You can make copies of a file on the same disk using the new-name parameter of the
FILE statement. Here, the copy you create is written on the same disk as the original
file. The new file, however, is assigned a new file name.

Since the same disk is used as both the input and output volume, the same device
must be assigned having the // LFD names of DISCIN and DISCOT. Also, specify //
PA RAM IN= DISC and I I PARAM OUT= DISC.

The new-name parameter of the file statement must be specified when you're copying
files on the same disk, since two files with the same name can't exist on the same disk
volume. With the new-name parameter, you can copy the file and give it a new name.

For example, suppose you are copying the MYFILE file on your disk. In order to copy
MYFILE, specify the name MYFILE02 as the new-name parameter on the FILE
statement.

In this case, DMPRST first scratches any file having the name MYFILE02 from the disk.
Next, DMPRST allocates a file large enough for MYFILE. The old file, MYFILE, is then
copied to the allocated space and given the new name, MYFILE02. Now, two identical
files having different file names exist on the disk.

The following example shows a single volume file copy operation:

II JOB FI LCOPY
II DVC 20 II LFD PRNTR
II DVC 50 II VOL DISK01 II LFD DISC IN
II DVC 50 II VOL DISK01 II LFD DI SCOT
II EXEC DMPRST
II PAR AM IN=DISC
II PA RAM OUT=DISC
II PA RAM TYPE=FILE
1$

FILE MYFILE,,MYFILE02
I*
I&
II FIN

In this example, LFD names DISCIN and DISCOT are still required, even though you are
using the same volume.

13.4. CHECKING FOR FILE EXPIRATION DATE

The DMPRST routine automatically checks for file expiration dates on your output
volume, thus saving you the time and expense of keeping outdated files. DMPRST
checks the file expiration date by comparing that date with the system date. If the date
has not expired, a message is displayed that asks you to process the file (ignoring the
date) or terminate the job. The expiration date function is used in both volume and file
modes when copying or restoring files.

t

t

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

13-18

To suppress the file expiration date checking feature, you must include the // PARAM
NOEXPCK statement.

The following example shows a typical control stream using the expiration date
checking function in the file mode:

II JOB DSKRST
II DVC 20 II LFD PRNTR
II DVC 90 II VOL PAY003 II LFD TAPE IN
II DVC 50 II VOL DISK01 II LFD DI SCOT
II EXEC DMPRST
II PARAM IN=TAPE
II PARAM OUT=DISC
II PAR AM TYPE=FILE
1$

FILE TAXES
FI LE CREDITS
FILE.P MAST

I*
I&
II FIN

In this example, the file expiration date function is done automatically since we omitted
the // PARAM NOEXPCK statement. In this tape-to-disk restore operation, we specified
the FILE PREFIX statement, which will restore all files having the prefix MAST.

13.5. EXECUTING DMPRST IN AN INTERACTIVE ENVIRONMENT

Interactive processing of the DMPRST routine consists of a question and answer
session (dialog) using a UNISCOPE 100, UNISCOPE 200, or UTS 400 terminal. The
procedures for executing the DMPRST routine are the same, regardless of which type of
terminal you use, except for a few adjustments necessitated by differences in the
terminal keyboards. With the UTS 400 terminal, for example, use the XMIT key to
transmit work screens and function keys 13 and 14 to obtain and exit help screens. For
UNI SCOPE 100 and 200 terminals, use the TRANSMIT key to transmit work screens.
To use function key 13 or 14, you must simulate it in the following manner. Press the
MESSAGE WAITING key, then alphabetic F, then the pound sign (#), and then the
number 13 or 14.

The answers you give during the dialog tell the DMPRST routine what function to do,
assign the necessary input and output devices, and execute DMPRST in the file mode.
The DMPRST routine supplies default values whenever possible. When you use the
dialog, your entries are checked and any errors detected are blinked on the screen with
explanatory messages. For example, invalid entries such as unsupported device types
and misspellings of YES or NO are blinked.

The following examples show the DMPRST routine for a UTS 400 terminal. When using
a UNISCOPE 100 or 200 terminal, you must adjust the instructions in the manner just
discussed.

•

•

•

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

13-19

Help screens are provided for all work screens. To obtain help for any screen, press
function key 13. To return to the work screen, press function key 14 or the XMIT key.
If multiple help screens are being displayed, press the XMIT key after each help screen.
When the last help screen is displayed, press the XMIT key or function key 14; the
current work screen is redisplayed.

To conduct an interactive dialog with the DMPRST routine, you must first log onto the
system by entering the LOGON command. After you have successfully logged on, key
in HU in system mode and then press the XMIT key. After you press the XMIT key, the
following menu screen appears (Figure 13-1):

HARDWARE UTILITIES HU00A

1. DUMP FILES FROM A DISK
2. RESTORE FILES TO A DISK
3. COPY FILES FROM DISK TO DISK
4. COPY AND/OR VERIFY IDA DISK
5. COPY AND/OR VERIFY SELECTOR DISK
6. NONE OF THESE

ENTER SELECTION

Figure 13-1. HARDWARE UTILITIES Menu Screen

Depending on the number you select, an appropriate set of screens is displayed. You
simply enter the requested information on the screen and DMPRST does the rest.

NOTE:

After you transmit the menu screen, an informational message is displayed on your
terminal screen, indicating that an interactive job has been initiated. Press the XMIT key
to continue.

The next three subsections (13.5.1 - 13.5.3) show typical examples of the DMPRST
functions: copy, dump, and restore.

NOTE:

Regarding the screens, all the default values are shaded while the user entries are
shown in reverse type (white characters on a black background).

13.5.1. Performing a Disk Copy Operation

During a disk copy operation, you are copying the contents of a disk to another disk of
the same type. You perform a disk copy by selecting 3 on the menu screen. Up to
three screens will be displayed. They are: t

UP-8062 Rev. 8

• Screen 1 (HU 12)

SPERRY UNIV AC OS/3
SYSTEM SERVICE PROGRAMS

Asks you to specify the input and output device information.

• Screen 2 (HU 16)

Asks you to specify the file options that are in effect.

• Screen 3 (HU 17)

13-20

Appears only if an individual file is being copied and it asks you for the file names,
relocation option, and rename specifications.

Now, let's see a typical disk copy operation.

Screen 1 (HU 12): Defining Our Input and Output Devices

COPY INPUT-OUTPUT DEVICE INFORMATION

ENTER SPECIFIC INPUT DISK DEVICE TYPE: CrllJ

ENTER
ENTER
ENTER

INPUT VOLUME SERIAL NUMBER: ~
SPECIFIC OUTPUT DISK DEVICE TYPE: :
OUTPUT VOLUME SER I AL NUMBER: • •

HU12

******** FUNCTION KEYS: F13=HELP, F14=EXIT HELP ********

Looking at screen 1, we see that both our input and output device type is 8433, our
input volume serial number is INPUT 1, and our output volume serial number is OUTPT 1.
Since we don't need any help, press the XMIT key.

•

•

•

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

Screen 2 (HU 16): Indicating File Options

COPY

WAIT FOR UNLOCK

COPY ALL FILES

UNEXPIRED FILE CHECKING

HU16

WAIT=lml_

ALL=lml_

UNXF

******** FUNCTION KEYS: F13=HELP, F14=EXIT HELP ********

13-21

On screen 2, we entered NO, overriding the default of YES for the WAIT FOR UNLOCK
option (indicating whether the file is unavailable to be locked), skip the file, and continue
to the next one. Any file skipped has its file name listed on the printer. In a subsequent
run, we would copy all the unavailable files (all file names printed). Since we do not
want to copy all the files, we overwrite the default (YES) with NO. This provides for file
selection. Finally, because we want UNEXPIRED FILE CHECKING, we simply press the
XMIT key (assume the default YES). This option prevents copying over on the output
volume any files whose dates have not expired. (The expiration date was generated at
file creation time by using the / / LBL job control statement.)

Screen 3 (HU 17): Specifying File Names

COPY HU17

ENTER

.P IF FILENAME IS THE 16-BYTE PREFIX OF A GROUP OF FILES
=FILENAME,ALLOCATION,NEWNAME

FILE = INPUTMASTER1

FILE = INPUTMASTER2

FILE __ =------------------------------------'---'

ARE MORE FILES TO BE ENTERED? •
;:::::::;:::m~

**********FUNCTION KEYS: F13=HELP, F14=EXIT HELP **********

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

13-22

Here, we specified our file names as INPUTMASTER 1 and INPUTMASTER2. Any other
files residing on our volume are not copied. You also have the option of specifying a file
prefix rather than the entire file name. To indicate a prefix, enter .P immediately before
the equal sign (=); enter the prefix name (up to 16 characters) immediately after the
equal sign. Since we don't need to copy our file to a specific area on our output
volume, we ignore the allocation and rename options. Since we are copying only two
files, we take the default (NO) to the query ARE MORE FILES TO BE ENTERED? and
press the XMIT key.

NOTES:

1. If you answered YES to COPY ALL FILES on screen 2 (HU 16), then screen 3
(HU 1 7) is not displayed and the copy operation starts immediately after you press
the XMIT key.

2. For a brief description of the file allocation parameters, see Table 13-4. For a
complete description, see 13. 3. 3. 1.

Table 13-4. File Allocation Parameters

Parameter Function

ABS Locates a file on the same absolute extents. If a file cannot be allocated to the
same extents, an error message is displayed, the file is bypassed, and
processing continues.

REL Requests that the file be relocated to a file the same size as the original

LOG Relocates a file and deletes all unassigned space

PRE Relocates a file in a space that was preallocated

Omit parameters Standard restore processing: DMPRST scratches the file from the output disk
and makes up to three attempts to reallocate it on the disk.

13.5.2. Performing a Dump Operation

As we mentioned earlier, when you perform a dump operation you also must do a
restore operation. The dump operation copies the contents of your disk volume to a
magnetic tape, while the restore operation copies the information back to your original
disk volume from tape. We'll discuss the dump opertion here. See 13.5.3 for the
restore operation.

You perform a dump operation by selecting 1 on the menu screen. Up to four screens
are displayed. They are:

• Screen 1 (HU 18)

Asks you for the input device information.

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

13-23

• • Screen 2 {HU20)

•

•

Asks you to specify your volume serial numbers.

• Screen 3 {HU22)

Asks you to specify the file options.

• Screen 4 {HU23)

Appears only if individual files are being dumped rather than dumping all the files
on the volume; and it asks you for the file names.

Now, let's do a dump operation.

Screen 1 {HU 18): Defining Our Input Device

DUMP INPUT DEVICE INFORMATION HU18

ENTER SPECIFIC DISK DEVICE TYPE: 11111

ENTER VOLUME SERIAL NUMBER: li@ilii

******** FUNCTION KEYS: F13=HELP, F14=EXIT HELP ********

On screen 1, we indicated that our disk device type is an 8433 and its volume serial
number is INPUT1. No help is required, so press the XMIT key .

UP-8062 Rev. 8 SPERRY UNIV AC OS/3
SYSTEM SERVICE PROGRAMS

Screen 2 (HU20): Specifying Our Output Volumes

DUMP OUTPUT DEVICE INFORMATION

ENTER VOLUME SERIAL NUMBERCS):

HU20

******** FUNCTION KEYS: F13=HELP, F14=EXIT HELP ********

13-24
Update A

On screen 2, we entered volume serial number TAPE01 for out output. When you
specify volume serial numbers, the first entry contains your first volume serial number,
the second your second volume serial number, and so on. Up to 16 volume serial
numbers can be specified. Since no help is required, press the XMIT key.

Screen 3 (HU22): Indicating File Options

DUMP HU22

WAIT FOR UNLOCK WAIT]JU

DUMP ALL FILES ALL=riB

******** FUNCTION KEYS: F13=HELP, F14=EXIT HELP ********

•

•

•

•
UP-8062 Rev. 8 SPERRY UNIVAC OS/3

SYSTEM SERVICE PROGRAMS
13-25

On this screen, we took the default value YES for WAIT FOR UNLOCK (waiting for our
file to be available) and entered YES for DUMP ALL FILES. Press the XMIT key.

NOTES:

1. If certain files (rather than all the files) on the volume are to be dumped, then
screen 4 (HU23) is displayed, asking you for the file names.

2. When you dump all files, only active files are dumped. (This is the same as
dumping the entire volume.) Active files are defined as those having entries in the
VTOC and are not job temporary files (run libraries and scratch files).

13.5.3. Performing a Restore Operation

After you have successfully completed a dump operation, you must use the restore
operation to copy the files back to disk. You execute the restore operation by selecting
2 on the menu screen. Up to four screens are displayed.

These screens are:

• Screen 1 (HU03)

• Asks you for your input volume serial numbers.

•

• Screen 2 (HU05)

Asks you for the output device type, which must be the same device type as the
original device that was dumped.

• Screen 3 (HU07)

Asks you to specify the file options.

• Screen 4 (HU08)

Appears only if you are restoring individual files rather than all files on the volume;
and it asks you to specify the file names.

Now let's do a typical restore operation. Remember, in our dump operation we used
magnetic tape as our medium. This same tape is now used as input for our restore
operation .

UP-8062 Rev. 8 SPERRY UNIV AC OS/3
SYSTEM SERVICE PROGRAMS

13-26

Screen 1 (HU03): Specifying Our Input Volume Serial Number •

RESTORE INPUT DEVICE INFORMATION HU03

ENTER VOLUME SERIAL NUMBER(S):

******** FUNCTION KEYS: F13=HELP, F14=EXIT HELP ********

On this screen, we entered T APEO 1, which identifies the volume we are using as input
for our restore operation. When you specify more than one volume serial number, the
first entry contains your first volume serial number, the second your second volume
serial number, and so on. Up to 16 volume serial numbers can be specified. Since no
help is needed, press the XMIT key.

Screen 2 (HU05): Specifying Our Output Device Type

RESTORE OUTPUT DEVICE INFORMATION HU05

ENTER SPECIFIC DISK DEVICE TYPE: Efll1

ENTER VOLUME SERIAL NUMBER: H.t.HH

******** FUNCTION KEYS: F13=HELP, F14=EXIT HELP ********

We indicated our device type is 8433 and the volume serial number is 000010. Press
the X~--key.

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

13-27

• Screen 3 (HU07): Indicating the File Options

RESTORE

WAIT FOR UNLOCK

RESTORE ALL FILES

UNEXPIRED FILE CHECKING

HU07

WAIT=l1ll

ALL=ili,
::::::::::::::::::::m::=··

UNXF=1llfi:

******** FUNCTION KEYS: F13=HELP, F14=EXIT HELP ********

On this screen, we are taking the default values, specifically, YES for all file options.
Our result is:

• • DMPRST will not start processing until the file becomes available;

•

• all files are restored; and

• the file expiration date is checked on the output volume. If the date has not
expired, then don't process the file.

Press the XMIT key.

Since we are restoring all the files on the volume, no other screens will be displayed.
The restore operation is executed and, upon completion, a message indicating that the
job is terminated is displayed at our terminal.

t

•

•

•

•

•

UP-8062 Rev. 8

14.1. FUNCTIONS

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

14-1

14. The Diskette Utility (CREATE)

The diskette utility provides a way for you to create and maintain files on diskettes by
using the system console as the input device. You can, for example, place job control
streams, normally kept on punched cards, onto diskettes for easier access and
maintainability. The record images that you place in the created diskette files can be
altered and sorted; added to or deleted from; or completely overwritten by using the
diskette utility.

To use the diskette utility, you first run a canned job control stream named WRT, and
then communicate with the diskette utility via the system console. If the RUN command
used to call WRT indicates that the diskette file being addressed is to be sorted, WRT
will cause the execution of three programs: CREATE, CPYFLE, and SORT. CREATE is
the utility that allows you to build and maintain diskette files, CPYFLE transfers an
image of the created diskette file into a SYSRES work file for sorting, and SORT
performs the actual sorting operation. If sorting is not called for, only CREATE is
executed.

There must be four cylinders of space available on your SYSRES volume to support the
file maintenance functions of the utility. These cylinders provide space for file sorting
and copying and are completely scratched after the utility has completed processing. If
this space is not available, the job WRT will not be run.

14.2. USING THE DISKETTE UTILITY

The first step in using the diskette utility is to create, or access, the required file space
on the diskette device. You do so by running the canned control stream, named WRT,
that identifies the file and also specifies the processing options you want performed on
that file. The format of the RUN command used to call the canned job control stream is:

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

14-2

You use the D =, V =, and F = keywords to locate an already existing file or to allocate
a new file. The D= keyword identifies the diskette device required. The default is 130.
The V = keyword specifies the volume serial number of the diskette to be used. You
must make a 1- to 6-character entry for this keyword parameter. The F = keyword
specifies the file name of your file. If you do not enter a file name, it is defaulted to
IMAGE.

Your file automatically has 52 sectors assigned to it. If your file requires more or fewer
sectors, you can specify the required amount with the B= keyword. The maximum
number of sectors you can specify is limited only by the total number of sectors
available on the diskette.

The remaining keyword parameters are all used to specify the function you wish to
perform on the file. You must specify the appropriate keyword parameter with the Y
(yes) option selected to have the function performed. The default is N (no) in every
case. The functions of the keyword parameters are:

• 0 Open an existing file.

• s Scratch all or part of a file.

• E Extend (add to) an existing file.

• R Recreate (overwrite) an existing file.

• A Sort the file in numeric order.

Suppose, for example, you want to create a file on a diskette but do not have any
record information to go into the file and want to reserve space on a diskette other
programmers are also using. Assume the volume serial number of the diskette is
TSDSDT; you wish to reserve 78 sectors; and the name you want to assign to your file
is JOB 1. The RUN command you enter is:

RV WRT,,V=TSDSKT,F=JOB1,B=78

The job control stream effectively run is:

II JOB WRT*
II DVC 130*
II VOL TSDSKT
II EXT SQ,C,0,BLK,C128,78)
II LBL JOB1
II LFD DI MAGE*
II EXEC CREATE*

*Supplied by the canned job control stream

•

•

•

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

14-3

After you enter the RUN command, several lines of text relative to your job are
displayed on the system console. The first two lines (prefixed with JC) give your
diskette device assignment and volume serial number, and inform you that the system
is executing the CREA TE program. The third line states the CREATE program writes JCL
streams to diskette files. The fourth line is an informational line stating that, if you enter
an M in column 54, the format for columns 54 through 80 will be displayed and you
will be able to insert record information into those columns. The next line asks whether
the special character space value should be set. You respond to this by either entering
any nonblank character or making no entry and transmitting a blank line. If you make an
entry, the utility will suppress all leading spaces on any record containing that character.
For example, if you enter a pound sign (#), any record containing a pound sign will have
any leading spaces suppressed, even if you enter the record with them.

You can now begin to enter your record data into the file. The data is entered in
response to a series of queries displayed on the system console. Each query consists
of a 2-digit hexadecimal message number; followed by a question mark; a C; four Ns
for the record number; and the column format for that line. You respond with the
message number and one of the following commands, depending upon which function
you wish performed:

• A To put a record into a file

• c To identify a line you wish to change

• R To change a line identified

• To have a previously issued C command ignored

• L To list the contents of a file

• F To close a particular file

• E To terminate the utility

• D To display the available commands and their functions

Getting back to our example, since you do not intend to put any data into the file,
terminate the utility by entering an E command.

Suppose you are now ready to begin inserting records into the file. To open the file and
to have processing begin at the first record, enter the following run command:

RV WRT,,V=TSDSKT,F=JOB1,0=Y

You can now start adding your records. The record images you put into the diskette
files are handled as if they are sequential cards. Therefore, you must number your
records (lines). The numbering enables you to more easily locate and alter records and
insert new records into a file. The numbering of the records is also essential for sorting.
The diskette utility uses the OS/3 independent sort/merge routine to sort a diskette file
after the CREATE program is terminated.

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

14-4

To add a record to a file, you enter the requesting message number, an A, then the
record number, and finally the record information itself. Do this until all the information
is in the file.

If you make an error in one of the lines, you enter a C followed by the line number of
the line in error. The system responds by displaying the present contents of the line. To
change the line, enter an R followed by the correct line information. If after viewing the
displayed line you do not wish to change the line, enter an I, and the request for a
change is ignored. After the information is in the file, enter an E to terminate the utility.

Suppose you wish to add new information to the file, sort the new information, and
merge it with the original file. To do so, enter this command:

.,._ RV WRT,,V=TSDSKT,F=JOB1,0=Y,E=Y,A=Y

The job control stream effectively produced is the same as the previous example except
the I I EXT statement will not be produced and the I I LFD card will have the EXTEND
parameter specified.

If you wish to recreate a file, that is you want to overwrite all the record information in
the file, you can do so by entering the following command:

RV WRT,,V=TSDKST,F=JOB 1,0=Y,R=Y

Enter the data just as you would for a newly created file. The file pointers are reset
when the file is opened.

The following command can be used to completely scratch a file from the diskette:

RV WRT,,V=TSDSKT,F=JOB1,S=Y

The effectively produced job control stream is the same as for the first example except
the 11 EXT statement is not produced and a 11 SCR DIMAGE is included.

To obtain a listing of the contents of a file, enter the L command. The file is displayed
five lines at a time; after each five lines, you are given the option to display the next
five lines or terminate the listing.

To close a file without terminating the diskette utility, enter the F command. The
system responds by asking whether processing is to continue with the same file. If you
respond with a yes, processing continues. If, however, you respond with a no, the
diskette utility terminates.

As an added convenience, you can have the available diskette utility commands
displayed on the system console by entering the D command.

•

•

•

•

•

•

UP-8062 Rev. 8

14.3. DISKETTE INDEX SCAN

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

14-5

The diskette index scan allows access to the diskette index track from sectors C7
through C26 and provides the ability to create, alter, or re-create the VOL 1/HDR1 index
data set labels. The index scan is executed via a RUN command entered at the system
console. The format for the RUN command is:

You use the D keyword to identify the desired diskette device; the default is 130. The
V keyword is used to specify the volume serial number of the diskette. If the parameter
is not specified, the volume serial number will default to the volume serial number of the
diskette mounted on the device specified in the D keyword.

After entering the RUN command, you are asked to set the special character space
value. You respond by entering any nonblank character or transmitting a blank line. This
functions as explained for a normal diskette utility operation. The following message
then appears:

?SS=07-26

Your response is to enter the sector number of the data set label to be manipulated. If
you wish to terminate the index scan, enter END in response to this query. After the
desired sector number is entered, the following template appears on the screen:

i 10 20 30 40 50
1234S678901234S678901234S678901234S678901234S67890
LBL. DATA----SET---ID.BKLH. BOE .• EOE .. BP MS.CDA

E X I S T I N G D A T A I N R E C 0 R D

60 70 80

123456789012345678901234567890
TE.RLH.NXRSP EDATE.V.EOD .•

E X I S T I N G D A T A I N R E C 0 R D

See Table 14-1 for an explanation of the template fields. The template display is
followed by:

?C=CHANGE,I=IGNORE

If, after examining the exisiting data in the record, you determine that no change is
required, enter I. You will then be asked to enter another sector number. If C is entered,
the template is displayed again with the data lines blank. You then enter the data you
wish to appear in that index label. You must rewrite the entire record if you enter the C.
Figure 14-3 is an example of a typical !SCAN operation .

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

Table 14-1. Disk Index Scan Record Template Fields

Field Explanation

LBL. Label ID
DATA Data set name
BKLH. Block/record length
BOE .. Address of first sector of data set
EOE .. Address of last sector of data set
B Bypass data set
p Write protect
M Multivolume indicator
s Volume sequence number
COATE Creation date
EDATE. Expiration data
v. Verify mark
EOD .. Address of next unused sector

14.4. DISKETTE UTILITY PROGRAMMING EXAMPLES

14-6

The following figures illustrate typical ways of using the diskette file creation utility.
Figure 14-1 illustrates the commands and messages used to create and insert records
into a file. This example also shows how to correct an error in the file. Figure 14-2 is
an example of how new records can be inserted into a file, then sorted numerically.

CD RV WRT,,D=l30,V=VANBRO,F=TEST1 ,B=78
11 JC06 USING DEV=OlO VSN=VANBRO

12 JCOl JOB WRT EXECUTING JOB STEP CREATEOO #001 12:29:07

13 THIS PROGRAM WRITES JCL IMAGES TO DISKETTE FILE

14 IF COL. M IS SPECIFIED YOU WILL GET COLS 54 THRU 80

157SET SPECIAL CHARACTER SPACE VALUE

® 15 #

(1) 16 -----1 10 20 30 40 50 .. 54

Q!) 177CNNNN12345678901234567890123456789012345678901234567890123M
~ 17 A0005// JOB EXAMPLE

18 -----1 10 20 30 40 so .. 54

197CNNNN12345678901234567890123456789012345678901234567890123M
19 AOOIO// DVC 20

IA -----1 10 20 30 40 50. ,54

1B7CNNNN12345678901234567890123456789012345678901234567890123M
lB A0015// LFD PRNTR

lC -----1 10 20 30 40 50 .. 54

Figure 14-1. File Creation and Record Correction (Part 1 of 5)

•

•

•

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

1D7CNNNN12345678901234567890123456789012345678901234567890123M
JD A0020// DVC RES

1 E -----1 10 20 30 40 50 .. 54

1F7CNNNN12345678901234567890123456789012345678901234567890123M

lF A0025// LBL YLOD

11 -----1 10 20 30 40 50 .. 54

12?CNNNN12345678901234567890123456789012345678901234567890123M
12 A0030// LFD IN

13 -----1 10 20 30 40 50 .. 54

14?CNNNN12345678901234567890123456789012345678901234567890123M

14 A0035// EXEC LIBS

15 -----1. e' • e' .10. '• •' • • .20 .. e • • • • ,30. I e I I I I .40. I I I I I I .so. ,54

16?CNNNN12345678901234567890123456789012345678901234567890123M

16 A0040/$

17 -----1 10 20 30 40 50 .. 54

18?CNNNN12345678901234567890123456789012345678901234567890123M

18 A0045 FIL DO=IN

19 -----1 10 20 30 40 50 .. 54

1A?CNNNN12345678901234567890123456789012345678901234567890123M
lA A0050 COP.D DO
lB -----1 10 20 30 40 50 .. 54

1C?CNNNN12345678901234567890123456789012345678901234567890123M

@ 1 C A0055
lD -----1 10 20 30 40 50 .. 54

1E7CNNNN12345678901234567890123456789012345678901234567890123M

lE A0060/&

lF -----1 10 20 30 40 50 .. 54

117CNNNN12345678901234567890123456789012345678901234567890123M
11 A0065/ I FIN

12 -----1 10 20 30 40 50 .. 54

137CNNNN12345678901234567890123456789012345678901234567890123M

Figure 14-1. File Creation and Record Correction (Part 2 of 5)

14-7

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

(j) 13 F

@

14 END OF FILE REACHED-FILE BEING CLOSED

15 OPTION POINT REAHCED-IF YOU WANT TO KEEP PROCESSING

16?SAME FILE KEVIN Y OR N

16 y

17 -----1 10 20 30 40 50 .. 54

18?CNNNN12345678901234567890123456789012345678901234567890123M

18 L

19 II JOB EXAMPLE

lA 0005

1 B 11 DVC 20

1 c 0010

1 D 11 LFD PRNTR

1 E 0015

1 F 11 DVC RES

11 0020

12 II LBL YLOD

13 0025

14?CONTINUE

14 y

15 II LFD IN

16 0030

17 II EXEC LIBS

18 0035

19 1$

lA 0040

1 B FIL DO=IN

1 c 0045

1 D COP.D DO

l E 0050

1 F?CONT I NUE

1 F y

11

Figure 14-1. File Creation and Record Correction (Pan 3 of 5)

14-8

•

•

•

•
UP-8062 Rev. 8

12

13 /&

14

15 //

16

FIN

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

0055

0060

0065

17 OPTION POINT REACHED-IF YOU WANT TO KEEP PROCESSING

18?SAME FILE KEVIN Y OR N

18 y

19 -----1 10 20 30 40 50 .. 54

1A?CNNNN12345678901234567890123456789012345678901234567890123M

{]) lA C0055

lB 0055

(@) lC
lD TYPE IN RAND RECORD KEYED IN WILL REPLACE ABOVE

l E TYPE IN ·1 AND ABOVE RECORD WI LL BE RESTORED

l F -----1 l O 20 30 40 50 .. 54

14-9

~ ll?CNNNN12345678901234567890123456789012345678901234567890123M

•

@ 11 R0055/>'~

12 -----1 10 20 30 40 50 .. 54

13?CNNNN12345678901234567890123456789012345678901234567890123M

13 F

14 END OF FILE REACHED-FILE BEING CLOSED

15 OPTION POINT REACHED-IF YOU WANT TO KEEP PROCESSING

16?SAME FILE KEVIN Y OR N

16 y

17 -----1. I I I e I .10. I I I I I I .20. I I I I I I ,30. I I I I I 1140. I I I I I I .50. ,54

18?CNNNN12345678901234567890123456789012345678901234567890123M

18 L
19 // JOB EXAMPLE

lA 0005

lB // DVC 20
lC 0010

lD // LFD PRNTR

Figure 14-1. Fife Creation and Record Correction (Part 4 of 5)

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

@

1 E 0015
IF// DVC RES

11 0020

12 // LBL YLOD

13 0025

147CONTINUE
14 y

15 // LFD IN

16 0030

17 // EXEC LIBS

18 0035

19 /$

lA 0040

1 B FIL DO=IN

1 c 0045

1 D COP.D DO

1 E 0050
1F7CONTINUE

1 F Y

11 I*

12 0055

13 /&

14 0060

15 // FIN

16 0065

17 OPTION POINT REACHED-IF YOU WANT TO KEEP PROCESSING

18?SAME FILE KEVIN Y OR N

@ 18 N

19 JC02 JOB WRT TERMINATED NORMALLY

Figure 14- 1. File Creation and Record Correction (Pan 5 of 5)

14-10

•

•

12 :41: 07

•

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

14-11

Explanation for Figure 14-1 :

CD

@

®
©

®
(j)

Initiates the diskette utility requesting DVC 130, VSN VANBRO, assigning a file
name of TEST 1, and requesting 78 sectors for the file

Specifies special character to suppress leading spaces

System responds by displaying record column format.

Second line of system reply: Question mark requests a reply; C represents a
command identifier, NNNN indicates record number field; 123 ... 123 indicates
record data columns; M indicates continuation column.

First record is being added to the file. Record number is 0005 and increment
by 5 for ease of insertion of any new records.

Blank record accidentally written

End-of-file (F) command entered

@ List (L) command entered. System responds with display of file contents.

@ Change (C) command entered with line number of record to be changed

@ Lines 1 B and 1 C display the present contents of record 0055, which is empty.

@ Replace (R) command entered with line number and new record data

@ Display shows new record data properly inserted.

@ Response to terminate diskette utility

-- - - -- --------~--------~-----------------------------.

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

G) RV WRT,,D=l30,V=VANBRO,F=TEST1 ,O=Y,E=Y,A=Y

lA JC06 USING DEV=OlO VSN=VANBRO

lB JCOl JOB WRT EXECUTING JOB STEP CREATEOO #001 12:43:11

lC THIS PROGRAM WRITES JCL IMAGES TO DISKETTE FILE

lD IF COL. M IS SPECIFIED YOU WILL GET COLS 54 THRU 80

1E7SET SPECIAL CHARACTER SPACE VALUE

1 E #

1 F -----1 10 20 .•..•... 30 40 50 .. 54

117CNNNNl2345678901234567890123456789012345678901234567890123M

~ 11 A0017// OPR 'THIS IS A TEST LINE SHOWING AN ADDITION AND M

12 60 70 80

137456789012345678901234567890

13 AN INSERTION'

14 -----1 10 20 ...•••.. 30 40•... 50. ,54

157CNNNN12345678901234567890123456789012345678901234567890123M

15 F

16 END OF FILE REACHED-FILE BEING CLOSED

17 OPTION POINT REACHED-IF YOU WANT TO KEEP PROCESSING

187SAME FILE KEVIN Y OR N

Q) 18 N

19 JC06 USING DEV=OlO VSN=VANBRO

lA JCOl JOB WRT EXECUTING JOB STEP CPYFLEOO #002 12:49:25

lB JCOl JOB WRT EXECUTING JOB STEP SORTOOOO #003 12:49:38

lC SORT MIOO END OF SORT

lD SORT Al86 RECORDS IN 00000000014 RECORDS DELETED 00000000000

lE JC06 USING DEV=OlO VSN=VANBRO

lF JCOl JOB WRT EXECUTING JOB STEP RPLACEOO #004 12:50:14

14-12

11 JC02 JOB WRT TERMINATED NORMALLY 12:50:38

@ RV WRT,,D=l30,V=VANBRO,F=TEST1,0=Y
12 JC06 USING DEV=OlO VSN=VANBRO

13 JCOl JOB WRT EXECUTING JOB STEP CREATEOO #001 12:51 :47

14 THIS PROGRAM WRITES JCL IMAGES TO DISKETTE FILE

15 IF COL. M IS SPECIFIED YOU WILL GET COLS 54 THRU 80

167SET SPECIAL CHARACTER SPACE VALUE

Figure 14-2. Sample Program to Add to and Sort a File (Part 1 of 3)

•

•

•

•

•

•

UP-8062 Rev. 8 SPERRY UNIV AC OS/3
SYSTEM SERVICE PROGRAMS

16 #

17 -----1 10 ••...... 20 30 ...•.... 40 50 .. 54

187CNNNN12345678901234567890123456789012345678901234567890123M

® 18 L

19 // JOB EXAMPLE

lA 0005

1 B // DVC 20

1 c 0010

lD // LFD PRNTR

1 E 0015

l F // OPR 'THIS IS A TEST LINE SHOWING AN ADDITION AND A INSER

® 11 TION' 0017

12 // DVC RES

13 0020

147CONTINUE

14 y

15 // LBL YLOD

16 0025

17 // LFD IN

18 0030

19 // EXEC LIBS

lA 0035

1 B /$
l c 0040

1 D FIL DO=IN

1 E 0045

l F7CONT I NUE

1 F y

11 COP.D DO

12 0050

1 3 I~"

14 0055

15 /&

16 0060

Figure 14-2. Sample Program to Add to and Sort a File (Part 2 of 3)

14-13

UP-8062 Rev. 8

17 // f""IN

18

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

0065

19 OPTION POINT REACHED-IF YOU WANT TO KEEP PROCESSING

IA?SAME FILE KEVIN Y OR N

lA Y

1 B -----1 10 20 30 40 ..•..... 50 .. 54

IC?CNNNN12345678901234567890123456789012345678901234567890123M

(j) lC D

lD L LIST FILE

lE C =CHANGE LINE SEQ NO REQ

lF A= ADD TO FILE

11 R = REPLACE LINE

12 D =DISPLAY OPTIONS

13 E = END FUNCTIONS

14 = IGNORE CHANGE

15 F =FINISHED WITH ADD

16 -----1 10 20 30 40 50. ,54

17?CNNNN12345678901234567890123456789012345678901234567890123M

@ 17 E

18 JC02 JOB WRT TERMINATED NORMALLY 12: 54: 15

Figure 14-2. Sample Program to Add to and Son a File (Pan 3 of 3)

Explanation for Figure 14-2:

14-14

Initiates the diskette utility, opens the specified file, indicates your intention to
add to the file, and requests a numeric sort

®

This is the new record to be added. The selected line number will place the
line in its proper sequence when the file is sorted. The M in column 54
indicates the line is continued.

Informs the utility that no more changes are being made to the file

© Initiates the diskette utility and opens the specified file

® The list (L) command causes a display of the file.

@ Display shows the added line in proper sequence in the file.

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

14-15

• (J) The display (D) command causes the utility to display the available commands.

@ Terminates the diskette utility

•

•

CD

@)

®

®

®

RV ISCAN,,D=Ol0,V=DSKT20
lF THIS PROGRAM WILL SCAN OR ALLOW INDEX/VOLi CHANGE
ll?SET SPECIAL CHARACTER SPACE VALUE
11 =
12?SS=07-26
12 08
13 1 10 20 30 40 50
14 12345678901234567890123456789012345678901234567890
15 LBL. DATA----SET---ID.BKLH. BOE .. EOE .. BP MS.CDA
16 HDRl MODABC 128 01001 01016
17 60 70 80
18 123456789012345678901234567890
19 TE.RLH.NXRSP EDATE.V.EOD •.
lA 01017
lB?C =CHANGE I = IGNORE
lB C
1 c 1 10 20 30 40 50
lD 12345678901234567890123456789012345678901234567890
1E?LBL. DATA----SET---ID.BKLH. BOE .. EOE .• BP MS.CDA

IE HDRl MODBCD 128 01001 01016
lF 60 70 80
11 123456789012345678901234567890
12?TE.RLH.NXRSP EDATE.V.EOD ••
12 01017
13?SS= 07-26
13 08
14 1 10 20 30 40 50
15 12345678901234567890123456789012345678901234567890
16 LBL. DATA----SET---ID.BKLH. BOE •. EOE .. B P MS.CDA
17 HDRl MODBCD 128 01001 01016
18 60 70 80
19 123456789012345678901234567890
lA Tf.RLH.NXRSP EDATE.V.EOD •.
lB 01017
lC?C : CHANGE I = IGNORE
1 C I
lD?SS = 07-26
1 D END
lE JC02 JOB ISCAN TERMINATED NORMALLY 10:20:35

Figure 14-3. Example of Diskette Index Scan

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTt:lli' SERVICE PROGRAMS

14-16

Explanation for Figure 14-3:

CD
@

@)

©
®

®

(j)

®

RUN command to begin index scan

Request for sector number. Your response, 08, entered on following line

System responds by displaying the template fields and the existing information
in sector 08.

System query for change or ignore. Your response for change (C) follows.

System displays template, leaving data lines blank. You respond by typing in
new information.

Query for new sector number. You enter 08 and system responds by
displaying sector.

Query for change or ignore. You enter I for ignore. System responds by
querying for new sector.

You enter END and index scan terminates.

•

•

•

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

15-1

15. System Utility Symbiont

The system utility symbiont (SL$$SU) is a multipurpose utility that allows you to
perform various functions using cards, tapes, disks, or diskettes. Table 15-1 breaks
down the different functions to the media associated with them.

Table 15- 1. SL$$SU Functions (Part 1 of 2)

Function Code Function Performed

Card Functions

cc Reproducing cards punched in Hollerith code

CC96 Reproducing 96-column cards

CCB Reproducing cards punched in binary and Hollerith code

ccs Reproducing and resequencing source programs

CS96 Reproducing and resequencing source programs contained on 96-column cards

CT Writing card to tape in unblocked format

CT96 Writing 96-column cards to tape in unblocked format

CTR Writing card to tape in blocked format

CP Listing cards

CP96 Listing 96-column cards in character format

CH Listing cards containing compressed mode

CH96 Listing 96-column cards in vertical hexadecimal format

JCP Punching cards from the system console

UP-8062 Rev. 8

Function Code

TI

TH

THR

TP

TPR

TRS

TRL

TC

INT

FSF

BSF

FSR

BSR

WTM

REW

RUN

ERG

DD

DOR

VTP

SVT

+ AVX

DID

DD

VTP

DID

Table 15-1.

SPERRY UNIV AC OS/3
SYSTEM SERVICE PROGRAMS

SL$$SU Functions (Pan 2 of 2)

Function Performed

Tape Functions

Copying a tape to another tape

Printing a tape in character and hexadecimal format

Printing a tape in character, hexadecimal, deblocked format

Printing a tape containing only standard characters

Printing a tape in character and deblocked format

Locating a specific record on tape

Changing existing records on tape

Punching cards from tape

Prepping a tape

Forward space to a specific file

Backward space to a specific file

Forward space to a specific record

Backward space to a specific record

Writing tape marks

Rewinding a tape

Rewinding a tape with interlock

Erasing a portion of a tape

Disk Functions

Printing a disk in unblocked format

Printing a disk in reblocked format

Printing the volume table of contents of a disk

Printing a short format VTOC file

Displaying available disk extents on console screen

Changing the volume serial number

Diskette Functions

Printing a diskette in unblocked format

Printing the data set labels of a diskette

Changing the volume serial number

15-2

•

•

•

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

15-3

Two system utility symbionts are available under OS/3: SU and TU. The two symbionts
are interchangeable; both respond to the same function codes, and both are requested
and controlled from the system console. However, we recommend the TU symbiont be
used for tape operations, since doing so will increase the buffer size for all selector
channel tapes from the 8189 bytes used for SU to 32, 767 bytes.

For detailed information on the system utility symbiont, refer to the appropriate
operations handbook for operators for your system .

•

•

•

•

•

•

UP-8062 Rev. 8 SPERRY UNIV AC OS/3
SYSTEM SERVICE PROGRAMS

16-1
Update B

16. List Software Maintenance
Corrections (SMCLIST)

16.1. SMCLIST FUNCTION

You can use the SMCLIST canned job control stream to print a listing of the software
maintenance corrections contained in the SMCLOG file. This listing may be printed in
either a full or condensed format. Also, by specifying certain parameters, you can
produce listings sorted by SMC number, component number, program-product-type
number, date, and time.

16.2. EXECUTING SMCLIST

The format of the SMCLIST canned job control stream is:

RV SMC LI ST, [' FMT=t1~u , SEQ 1 ~!~~!,

where:

FMT={:~:}
I

TIME

COMP
DATE
TIME
PP-TYPE ..

Specifies the format of the listing being produced.

FMT=F
Specifies that a full listing is printed.

FMT=li
Specifies that a condensed listing is printed.

A full listing is a listing sorted primarily by component number and then by SMC
number. It gives more information about each SMC than a condensed listing, such as
the regenerations an SMC requires or the method used to install it .

t

t

UP-8062 Rev. 8 SPERRY UNIV AC OS/3
SYSTEM SERVICE PROGRAMS

16-2
Update B

Since you don't always need as much information as the full listing shows, we also
provide a condensed listing. A condensed listing contains only SMC numbers in
ascending order and an indication of whether any SMCs were backed out, replaced, or
not installed because of an error during installation. See Figures 16-1 and 16-2 for an
example of each listing.

The default for the FMT parameter is C for condensed. Unless you specify FMT=F on
your SMCLIST run command, you will always receive a condensed listing of the SMCs
in the SMCLOG file.

SEQ1=1:~: l
TIME
PP-TYPE
SMC#

Specifies the primary sorting key to be used.

SEQ1=COMP
Specifies component number.

SEQ1=DATE
Specifies the date the SMCs were applied.

SEQ1=TIME
Specifies the time the SMCs were applied.

SEQ1=PP-TYPE
Specifies program-product-type number.

SEQ1=SMC#
Specifies SMC number.

If you omit this keyword, the full listing is sorted primarily by component number.

SEQ2=1.c·.•o···.· M·· ... p·.·. l DATE
TIME
PP-TYPE
SMC#

Specifies the secondary sorting key to be used.

SEQ2=COMP
Specifies component number.

SEQ2=DATE
Specifies the date the SMCs were applied.

SEQ2=TIME
Specifies the time the SMCs were applied.

•

•

•

•

•

•

UP-8062 Rev. 8

SEQ2=PP·TYPE

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

Specifies program-product-type number.

SEQ2=SMC#
Specifies SMC number.

If you omit the SEQ2 keyword, the secondary sorting key is the SMC number.

NOTE:

The SEQ 1 specification may not be the same as the SEQ2 specification .

16-2a
Update B

•

•

•

•
OS/3 S"C LOG FILE DISPLAY

SHC PP-TYPE
NU HS ER COMP ~UM~ER

CD @ @
C07118~ AOOO b2lri-nu
C07l ~5 .. AOOO b21 J-0,J
C07216~ AOOO 6z1 a-oo
Ci.7223" Anuo b2l J-na
ci;122s~ A01.1'1 621!'1-'h.1
C07236" An11n b21"-nu
Cil72'+7" Anl.o'1 621 n-Nl
CJ725u9 A'JO'.J 6 21J-('0
Cu72521! AOOO 6211-00
C07253? A"UO b2l'J-CD
Cu725'+Z A 'II.I" bll '1-C'U
Cu72&6., Al1"n 621'1-l'IJ
Cu727l: Ao.in &21'.l-,.U
Cu7278Z AOOO 62lJ-0"
Cu 7<.BO'.' AOOO b21J-:JO
T070:Jll AC'OO r:. 21 J -r J
C072~le A'll, b2lS-"u
c.;,122H A01'' b216-" ..
C;,172112 .. A!llO b2l&-l"(j
C072r+H A'llO r:.216-""
C072'+7e AOHl b Z 16 -D..;
CD72118., AOlJ f:>216-C'O
C07£52:' AOl'J 1)215-'10
ru1zr;3~ AOlC 6 21 & -a.:i
Ci.)722'+? A f111 62lil-r'IJ
C1,17257" AOll 621 '1-fli..

Cu7251~ AOll b2l'l-"J
C07239~ AJH :. 21 i+ -no
Cu 7t63" AOl2 62111-rJ
Cu72301 A0l4 f:>21J-DO
C;;7242~ A014 6210-00
Cu72'+3~ A0l4 :>2 l ri-r.:i
CJ728S!J A 0111 621,,-""
C.J72871 AOl'+ r:.210-~o

C07239S A!! 15 1>21'.1-"tJ
Ci,72117! AOl 5 f:>21"-l"IU
co12c;1ri Ao15 621"-""'
Cu7267? A015 6?1 '.l-!J J
Cu7280!, A015 621 J-CD
C(J73'17! A015 621 J-ro
Cu72274 A017 c.210-00
Cu7252! A019 6216-ru
Ci;72S85 A019 &216-!'w
CG7H56 A02fJ 621 '1-r;J
C072115 A021J 621 :J-00
CL7221~ A020 !>Zl:J-00
CQ7223! A '12 'l 6211)-00
C07227~ A02!J 1>21 '!-l"w
c111229:: A020 621 n-"i<
C072334 AOZIJ 5211J-rtu

•
RELEAS~-rD= 7a0• -1 FORHAT=F' SEQl=COHP SEQ2=SHCI

' REQUIRED APPLICATION
SYSTEM qE-GENS DATE TIME HETHOO CHr.RACTF'R

@ @ ® (j) ®
a .. ONL'f 12/l7/8U 15:45 SMC
900NLY 12/l7/8J 15:54 SMC
BOONL'f 12/17180 15:57 SMC

!Jl/l0/81 16:31,. SMC
12/17/Bu 15:59 SMC
01/10/81 16:33 SMC
,,111n1e1 l6: 37 SMC
"1/l!'/l?l 16:41 SMC
.,1/26181 19:?9 SMC
Ol/26/81 19:52 SMC
02/10/81 !7:42 SMC
02110/81 18:45 SMC
.,~, ~"181 l Q: "l !,MC

YES "3/L..7181 lS:ns SMC
"'21111/81 13:43 S"C

CCJMMO!ll "7/L,,9/P,l 13:22 S"'C
12117/Su l6:f-2 !,MC
12/l7/8u l6:Du SMC
01/26/Sl l fl: '5 l SMC
"1/ 10/81 16:43 SMC
"111n1~1 16: 4'+ SMC
n111n101 16:4b S"'C
"lf ll"/IH l6:4a S"'C
'.ll/23181 111: r5 ~MC

12/l7/8J 16:11 S"'C
nit26181 21:31 S"IC
"ll~&/i!l ;13: ~2 SMC
n111r,1e1 15:49 SMC
"l/27/Bl J": 3b SMC
12/l7/8w 16:13 !.MC
Dlll01Bl 16:51 SMC
:Jl/ l'.1/~l 16:52 S"IC
o3n11n 12: "l SMC
"13/31/Bl 12 :lib SMC
Ol/ 10/81 16:54 SMC
Jl/ 10/91 16:56 !."'C
nl/10/Bl 16:57 SMC
"211"/Bl 18:47 SMC

Yf..S 1"3/L..7/Bl 15:12 SMC
C0"1H01' "7/i..q/81 l2:4u S"C

IJl/ l!J/81 16: 511 s,.c
'11/10/81 17:00 SMC
'.ll/26/81 22:25 SMC
Su/8"/BJ sn:BO !.MC
12/17/B,J l6:2J SMC
12/17/8~ 16:22 SMC
12/17/SJ 16:24 SMC
12/17/BO 16:25 SMC
12/17/80 16:27 SMC
12/17/80 16:29 SMC

Figure 16-1. Example of Full SMC Listing (Part 1 of 3)

•
n112s1111 17: 311 PAGE=ooo1

SMC /SMP STATUS
@

NOT FIAC'KED-UP
NOT PACKF'D-UP
NOT ~ArKFD-uP

NOT PACKfO-UP
NOT PA('KF'Q-UP
NOT RAC'KfO-UP
NOT DA('JlfO-UP
NOT BAC'KfO-UP
NOT E'ACKfO-uP
NOT PA('Kf O-UP
NOT PAC'KfO-UP
~IOT RACKF'O-UP
l\IQT PACKfO-UP
NOT PAC'KfO-uD
~IQT PA('KF"D-UP

••PUN oRnCFSSOP :RPOP
l\IQT oArK<"(J-UD
NOT PACKF'D-uP
NOT DA('i<f(J-UP
~IOT l>AC'llFO-uP
NOT DAr"KfD-UP
NOT RAr'o<fO-UP
llfOT l>Ar1<F'[,-uP
NOT !'ACKfO-UP
MOT !"ArKF'u-UP
MOT PAC'i<fO-UP
NOT !>A('JlfD-UP
•!OT PA('KF'D-UD
1110.,. 1>Ari<FD-uP
NOT DACKF'D-uP
PJOT "ACKf[J-U 0

'!QT PAr1<FO-UP
PJOT PArKFD-uP
NOT f!A('KfQ-UD
NOT !'A('KfO-UP
NOT BA'.'KF'O-UP
lllOT P•rKfO-UP
•fQT PAC'KFD-UP
NOT PAC'KfQ-uO
llfOT PACllfO-uP
~IOT PACi<F'Q-UD
NOT RACKf 0-UP
fJQT E'A('KF'D-UD

••PROGPA" f RPOP
l\IOT ElAC'KF'D-uP
NOT PACKF'D-UP
'JOT 8ACllF"D-UP
NOT PArKF'D-UP
!\!QT ~A('Kf O-UP
NOT PA('KfO-UP

~

c
-0
Co
0
Ol
N

:JJ
CD
<
CXl

en
-i en
m -o
S: m :JJ
en :JJ
m -<
:JJ c
:5 z n­m<
-0 l>
:JJ ('")

00
Gl en
:JJ -­l> w
s:
en

Ol
I w

OS/3 s~c LOG FI~E DISPLAY Rt:,LlASE-ID=

SMC PP-TYPE
NUMBE'l COMP NU'13EP SYSTEM

© @ @ @
CG7234':> A020 b210-00
co12soe A020 b210-00
C(l7252~ A02D 6210-nu
CU72561 A020 b2l 'l-l'.'IJ
cu121,r An2n 6?10-1'.'IJ
co1232q A rl21 b211J-f!U
C0723'+" AOZ? 621 o-oo
Cu723S~ AOlZ b 211 -0 D
Cll7253! Anz;> b2l'J-OO
Cv71Q9" Arl2 3 b2ln-l"!u
Cu7157:' A02 3 6?1"-"u
CD74:?3'1 Ar23 b21"'-"U
C072?7:' A'J2 3 621 J-'."IJ
can111~ AC123 6 21 J-0 J
Cu7259" A023 62lJ-rO
C07215! A'l24 b2 l "-""
Ct;72!5f A '124 6?11J-11J
CD72~0~ An211 b2l,.-"iJ
C.;7211J~ A"24 6211-nJ
Cu7245" t.024 oZl'.'-r.o
Cu72~52 Ari24 62l'.J-Cu
C.;721162 k0l4 62 l "-'!"'
1":~72S8!' Af'24 621,.-ri..
CJ7235~ Ar.25 b2l "-"i.;
r.c7t:4a" A025 b2l'.J-r'G
Cc7257" Al"'25 :. ? 11-r J
Cl..17251'.' AIJ26 6210-!10
CiJ7272~ An27 b7 l '1-"'J
Cy7Z73" AfJi7 621"-"u
Cu7210S Af'SO b2 l "-""
Cu7d7~ A05'1 :.21::i-no
C"07235M A'151 xxxx-xx
Ci.7257~ A050 62lJ-r.J
Cw7217~ Arl6n 621J-OJ
c .. 12~51: All&" 621"-ru
Cu7211~! A09rJ 6211-"J
CU7211l~ ii 11 'l 6233-nu
Cu7256~ A llD 6 2 3 3-r' iJ
Cu 7218 • Al20 6219-!lJ
C07219'.' Al 2::J 621Y-C'O
Cll722J:". A120 62P-'10
C(l7227" Al20 6219-ru
C1J723U8 Al2rJ 6219-!"IJ
Cu72H" Al2n 62P-ri;
c.-1216q A12D 6219-nJ
C07262~ Al20 6219-CO
C072!>Sf. A120 6219-nJ
CIJ72572 Al21 622n-nJ
Cu72589 A121 6220-!"l:J
cons99 Al21 6220-nu

••

1.0. -1 FORMAT=i:- SEQl=COMP Sf:lZ=SMC#

REQUIRED APPLICATION
RE-GrNS DATE TIME METHOD CHARACTfR

@ ® Q) @
12/l7/8u 16:31 SMC
"'1110181 17:r'l SMC
!Jl/26181 19:35 SMC
01126/Bl 20:53 Sl"C

YES rJ21 ll/Rl 12: 11 SMC
12117/8u 16:33 Sl"C
12/l7/8U 16:35 SMC
"'ll lil/Pl 17:02 Sl"C
01/21>/81 19:41 Sl"C
'Jl/ 40/P l 17:04 S"C
'll/10/81 17:nb SMC
1<:117/8[) 16:37 SMC
12/l718w !6:38 SMC
111/26/81 1R:39 SMC
~l/~6181 22:49 SMC
12/17/BJ 16:110 SMC
121.i.7/8J l6:4l SMC
"lll"/81 l7:r!l S"C
riud/Bl 13:18 S"C
"lid/Bl 13:15 S'"IC
'111 l!ltBl 17:22 SMC
Ol/ lCl/P l 17:25 S'1C
Oi/26/81 22: 3l S"C
1U17/8J 16:113 SMC
"ll lf'/Bl 17:77 SIAC
'11/ L.6/ Bl 21:5b SMC
'.Jl/l0/81 17:28 SMC
[1~/ 1(1/Bl 19: r,9 s~c

02110/81 19:12 SMC
12/l7/8w 16:45 SMC
121!7/SJ 16:47 S"C
r1/23/Bl 14: 117 SMC
"Ut:6/Bl £1 :113 SMC
12118/SJ i 4: 11 SMC
fll/26/E\l 20:35 S"'C
'.H/ ln/Bl l 7: 31 SMC
"llln/81 17:33 s"c
"1126/Bl 21:16 S"4C
12/l8/8u 111:12 Sl"C
12/lP./f'J 14:15 SMC
12118/SJ 14:18 S"4C
1211s180 14:?0 s"c
1 i./ lB/8J 14:73 s~c
1U18/8u 14:24 s"c
12/l~/8J 14:77 S"4C
n11n18l u1':29 SMC
n21101!ll l!l:nz SMC
Ql/26/81 21:37 SMC
01/26/81 22:3b SMC
"1126/81 23:21 SMC

Figure 16-1. Example of Full SMC Listing (Part 2 of 3)

•

t'17/25/P.l 17:311 P•GE="ul"2

SMrtSMP SHTUS
®

NOT PACKfO-uP
NOT P.ArKfD-uP
NOT E'ArKf[J-UP
NOT PAC'KfO-UP
NOT PAC'Kf O-UP
NOT P,AC'KfO-UP
NOT PACKFO-UP
NOT ~AC'KfD-uP
NOT flAC'KFO-UP
NOT E'AC'Kf D-uo
NOT PACKfO-uP
NOT PACKfO-UP
NOT i>ArKFD-uP
NOT flAC'Kf O-uP
NOT PArKf(J-uP
NOT E'AC'Kf O-uP
NOT 8AC'KfiJ-UP
NOT ~AC'KfO-uP

••OT f'ArKro-uo
NOT PAC'KfO-uP
NOT <lA'.'K[O-UP
NOT f'AC'Kfi.J-UP
NOT f'AC'KF(J-UP
•lOT flAC'l\flJ-uP
•iOT PA('Kl'D-UP
NOT f'AC'Kfu-uP
NOT flArKfl)-UP
•!OT E'AC'KfO-uP
NOT PAC'KFu-uP
•IOT PAC'KFD-UP
MOT RAC'r\FlJ-UP
NOT "ACKf[;-UP
lllOT flAC'KFD-uP
NOT PAC'KFD-UP
NOT E'AC'KF"D-UP
~JOT p Ar Kr [;-UP
••OT PAC'KfO-UP
NOT flAC'KfD-UP
NOT ?ArKfO-UP
1\10.,. PAC'KfD-UP
NOT ~ArKFu-uo

NOT DAC'KfO-UP
~IOT PAC1'.f(J-UP
NOT ~AC'KfD-UP

NOT E'AC'Kf D-UP
NOT E'AC'KfO-uP
MOT PArKro-uo
NOT ~ArKtO-UP

NOT ~ArKfo-uP

MOT flAC'KfU-UP

.I

c
-u
00
0
Ol
N

:::0
Cl>
<
CXl

(/)

-<
(/)
--t (/)
m -u
S:: m :::0
(/) :::0
m -<
:::0 c :::; z
() -m<
-u l>
::0 ()
oo
Gl (/)
:::0 --­l> w
s::
(/)

Ol
I ..,,.

•

•

•

UP-8062 Rev. 8

Field

Q)sMC NUMBER

0coMP

©PP-TYPE
NUMBER

©SYSTEM

©REQUIRED
RE-GENS

©APPLICATION
DATE - TIME

0METHOD

©CHARACTER

®sMC/SMP
STATUS

Description

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

Software maintenance correction number assigned

Software component number (internal use only)

Program product type number; e.g., control system (6210)

No entry indicates SMC is common to both System 80 and Series 90.
80 only indicates SMC pertains to System 80 only.
90 only indicates SMC pertains to Series 90 only.

YES indicates some SYSGEN was required.
No entry indicates SYSGEN was not required.

Date and time SMC or SMP was applied.

SMC applied via the librarian
SMP applied via dump/restore

No entry indicates SMC/SMP was required.
OPTIONAL indicates SMC/SMP was not required.

Not BACKED UP indicates SMC/SMP cannot be deleted but was successfully applied.

16-5

NOT APPLIED.DEPENDENCY indicates other SMCs not contained on the volume were
needed; SMC/SMP was not applied.

**SMC LOOPED indicates SMC was not applied because specified time limit was exceeded
for applying SMC .

**SMC EXECUTION ERROR indicates SMC was not applied due to abnormal termination.
**RUN PROCESSOR ERROR indicates SMC, not being scheduled, was not applied.

Figure 16- 1. Example of Full SMC Listing (Part 3 of 3)

t
OS#3 SRC LO' FILE Y•l!.o.c RELEASE-ID= e.o.O-A FOUUT=C SEQ1=CO"P SEQ2=Sl'ICll "2104/fl.3 15: 14 FA:JE =0001

R - REPLACED B - BACKED CUT I - INFORl'IATION ONLY F - nT!fEP ERPOP

C0l!1l!17 C081819 CCl81912 C082081 C082086 CC8t.089 C082091 CC81799 CO'l1"42·E C0'!2!'141 CO'l20 44 c Cl!2056
Ce! 1l!H c Cl! 2029 C082045 C082067 C08 2134 CC81815 C081821 COi! 18 36 COP 1P 5'7 co11102o; con1111 CCll2132
C0!1906 C0l!202l! C082000 C081919 C082034 CC84:035 C082068 COP 211'3-R COii 1 n1> coo101n-B C0P204?. C081928
<8!210! C081885 C081887 .C081893 cos 2027 CC8C757 C0t'0150 C081790 co111an c 0111'!3n CO'l1115~ CCll1865
Hl!11166 C081896 C081915 C082006 C08 2046 CC81779 c 08 2122 CC820C8 c Qll 1/t 3c; C0'31924 co•2f'a11-s c c11209a
COl!2212 C0@1991! C082187-R C082270 C081999 CC82017 C081804 ccezo.,9 CO/t 2051'1 co1111101 rOP1026 COR2032
C082011 CC81907 C081760 C081859 C082014 C082098 C01!2156 CC8176!1 C0/t1/t71'.1 co111750 C0/t1!!Qo COfl.1883
C0!2025 C082064 C082152 C082234 C082271 C C81710 C081780 CG81903 c 0111?8r; rOl!1757 c GP 1'1 52 1.:0111690
CO! U!9~ C081776 C081869 C081917 C082005-8 CC81916 C08192J CGPt.093 COii 212/. CQ'!21')6<; CQplM44 C0'!1l!10
COl!2001 COl!2136 C082074 C081824 C08t080 CC.82043 C01!2057 CCJ82072 COii 2C' 54 Ct'll2"'8C'I C0"'2031 Ctfl.1873
C01!19t! Ct8200! COl!11!84 C082058-E C082059 CC81775 COP 18 27 CC81e49 c 011111 c;1 ".0"1 '19? co,_ 2ri 3ri !:C'11798
C0~1ll47 Ct81888 C082026 C082021 C08 202 2 CC82047 C081863 cc1'2n19 c Q/t2'.'121J ro11205 1 c O!! 21'15? ~Ml'l8A
BACKUP -I C01!2092 <01!0576 XESC-E~-I X460-0C-I X60C-10-I X6~G-2C-I X600-30-I x6no-~n-! ~6'la-6~-J X600-8"-! ~7~~-C0-1
xacc-tc-1 61!0-00-I ~130-0~-I 6201-00-I 6201-03-I 621G-00-I 6211-00-I 6212-vO-I 6213-on-~ ~214-00-! ~2'5-0"-I ~216-UO-I
6217-00-I 6218-00-J 6219-00-I 6220-0C-I 6221-0C-I 6224:-00-I ~222-01-I t£23-00-I 62?4-0"-! 62~5-0r-r f226-0'l-I ~2?S-00-I
622c;-01-1 6229-02-I 1!229-03-I 6230-00-1 6231-0'.l-J 6232-on-1 6233-uJ-J 6247-u:-1 6247-01-! 6247-0?-I ~248-01'1-J ~4:48-01-J
6241!-02-I 6(4~-03-I ~248-04-I 6248-05-I 6248-u6-l 6248-07-I 6254-~1-I 6255-00-1 C0°,F5T (QI' 21 51')

f
Figure 16-2. Sample of Condensed SMC Listing

• • •

c
"'O
00
0
O>
N

:IJ
CD
<
CX>

(/)

-<
(/)
-t (/)
m "'O
~m :IJ
(/) :IJ
m -<
:IJ c
:5 z
() -m<
"'O)>
:IJ ()

oo
G) (/)

:IJ -­)> w
~
(/)

c~

"C O> a. I
Q) CJ)

CD"

CD

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

16-7
Update B

This condensed listing shows all of the SMCs contained in the SMCLOG file. It is sorted
by SMC number and shows all of the SMCs in ascending order. Some of the SMCs
show codes after them, indicating that they were:

• replaced by Sperry Univac because they produced adverse effects on OS/3. Any
SMCs of this kind show a code of -R after them. For example: co82187-R;

• backed out by you under the direction of a Sperry Univac representative because
they produced adverse effects on your particular system. Any SMCs of this kind
show a code of -B after them. For example: C082005-B; and

• not applied to your system because of an error during installation. These SMCs are
followed by a code of -E. For example: C082058-E.

NOTE:

An additional code of -I may also appear on your condensed listing. This code applies
to non-SMC records and indicates that Sperry Univac recorded information about that
record in the SMCLOG file to be used by the SMC job stream. You can ignore any
records containing this code .

t

- --------------

•

•

•

•

PART 5. APPENDIXES

•

•

•

•

•

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

A-1

Appendix A. Canned Job Control Streams

A.1. GENERAL PURPOSE OF THE CANNED JOB CONTROL STREAMS

The following canned job control streams provide you with a more convenient method
of performing some system utilities without the need of punching the parameters and
job control statements normally required to run them. The utilities reside in the system
load library file (YLOD), and their corresponding job control streams reside in the
system job control stream library file (YJCS). The utilities are initiated from the
system console by keying in their associated job control stream name.

Table A-1 shows the job names associated with the utilities, the functions performed,
and the manuals where they can be found.

Table A-1. Canned Job Control Streams (Pan 1 of 2)

Job Name Function Described in Document
(current version)

COPYREL Copies SYSRES files to a new SYSRES volume System installation UG/PR
UP-8074; SSP UG UP-8062

COPY$10 Creates a backup copy of an 8410 disk Emulation/conversion (360/20)
UG/PR UP-8064

COPY$11 Creates a backup copy of an IBM 2311 disk Emulation/conversion (360/20)
onto a disk supported by Series 90 UG/PR UP-8064

DCOP Copies SYSRES from one disk to another System installation UG/PR
UP-8074

DUMPLOG Dumps job or console log records to disk Spooling and job accounting
concepts and facilities
UP-8869

DUMPLOGT Dumps job or console log records to tape Spooling and job accounting
concepts and facilities
UP-8869

DUMP20 Dumps the image of an IBM 360/20 disk pack Emulation/conversion (360/20)
UG/PR UP-8064

ECDC Feeds in cards with names for an emulation Emulation/ conversion (9200 /
carriage tape loops display 9300) and (360/20) UG/PR

UP-8063 and UP-8064

UP-8062 Rev. 8

Job Name

ECDK

IMPLDSKT

JBLOG

JBLOGT

LNKUPL

PIMA GE

PNCH9300

PRNT9300

SCLIST

SYSDUMP

SYSDUMPO

UPLCNV

UPLDELT

UPLDMPN

UPLDUMP

t VTOC20

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

Table A- 1. Canned Job Control Streams (Pan 2 of 2)

Function
Described in Document
(current version)

Keys in names for an emulation carriage Emulation/conversion (9200/
tape loops display program 9300) and (360/20) UG/PR

UP-8063 and UP-8064

Creates an IMPL diskette System installation UG/PR
UP-8074

Produces a job accounting report with Spooling and job accounting
SYSLOG residing on disk concepts and facilities

UP-8869

Produces a job accounting report with Spooling and job accounting
SYSLOG residing on tape concepts and facilities

UP-8869

Executes UTS 400 upline linker routine UTS 400-0S/3 interface
UG/PR UP-8611

Creates a copy of an 84 10 disk image onto Emulation/conversion (9200/
a disk supported by Series 90 9300) UG/PR UP-8063

Punches card deck to use 9300 system as Emulation/conversion (9200/
a peripheral device 9300) UG/PR UP-8063

Prints source module needed to use 9300 Emulation/conversion (9200/
system as a peripheral device 9300) UG/PR UP-8063

Lists the shared code (YSCLOD) modules System installation UG/PR
UP-8074

Prints a complete system dump from SYSRES Dump analysis UG/PR
or another system disk UP-8837

Prints a complete system dump or a portion Dump analysis UP /PR
of a system dump from SYSRES or another UP-8837
system disk

Executes UTS 400 upline conversion routine UTS 400-0S/3 interface UG/PR
UP-8611

Deletes the specified UTS 400 upline dump UTS 400-0S/3 interface UG/PR
file UP-8611

Prints the specified UTS 400 upline dump UTS 400-0S/3 interface UG/PR
file UP-8611

Prints and deletes the specified UTS 400 UTS 400-0S/3 interface UG/PR
upline dump file UP-8611

Prints a volume table of contents listing Emulation/conversion (360/20)
of an IBM 360/20 disk pack image UG/PR UP-8064

A-2

•

•

•

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

A.2. COPYING RELEASE OR SYSRES LIBRARIES (COPYREL)

A-3

For convenience, we are showing the format of the COPYREL canned job control
stream. Not only is it useful during your system installation, it can be used any time you
need to copy all the RELEASE or SYSRES volume libraries to a second disk pack of any
type.

The format of COPYREL is:

RV~COPYREL,[,V=vsn][,T=disk-type][,S=first-file]

[,E=last-file]

For a complete description of COPYREL, see the current version of the system
installation user guide, UP-8074.

t

-----------~---------------- -

•

•

•

•
UP-8062 Rev. 8 SPERRY UNIVAC OS/3

SYSTEM SERVICE PROGRAMS
8-1

Appendix B. Code Set Components

Code set components are defined as those records that, when combined in a particular
sequence, make up a program source module, a macro/jproc source module, an object
module, a load module, or a grouped code set module. The elements, or records,
comprising these code sets are listed, as follows, by module type (in hexadecimal).

1 . GROUPED CODE SETS

1 beginning of group demarcator, type AO
Separate or mixed sets of source, macro/jproc, object, or load modules
1 end of group demarcator, type AB
1 EOF code sentinel, type A 1

• 2. PROGRAM SOURCE AND MACRO/JPROC SOURCE MODULE CODE SETS

•

1 header, type A3 or A4
1 or more source items, type 24 or 25

3. OBJECT CODE SETS

1 header, type BO
1 or more linkage editor control statements, type 40 (optional)
1 or more CSECT, types OB, 09, OA, OB
1 or more ESD, types 04, 06, 07 (optional)
1 or more text, type 02
1 transfer, type 03
1 or more linkage editor control statements, type 40 (optional)
1 or more ISO records, type OC

4. LOAD CODE SETS

1 header, type 90 or BO (root phase definition)
1 or more SENTRY, type C4 (optional)
1 or more sets of resource and SEXTERN records, type CB and C6 (optional)

or more text, type 12 or 32
1 transfer, type 13
1 or more sets phase definition (type 90 or BO), text (type 12 or 32), and transfer
(type 13) records, depending on the number of phases in the load module (optional)
1 or more ISD records, type 1 C

UP-8062 Rev. 8

B.1. GROUPED CODE SETS

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

B-2

Library files may contain group demarcators that divide different sets of elements into
specific groups. Groups may be composed of any one code set or may be a mixture of
all sets in any order. The grouping is strictly optional and can be performed by the
librarian at your option. The librarian can manipulate code within libraries on a group
basis and these files may then, in turn, be accessed by processing routines at a group
level. Groups may overlap other groups and may be nested to any level. (Figure B-1
illustrates the nesting of groups.) Beginning- and end-of-group (BOG and EOG) records
(type AO and AS, respectively) demarcate and name the grouped code sets. Tables B-1
through B-3 describe the library items peculiar to grouped code sets.

GROUP

NEST

A

NOTE:

-----------------------BOG A

GROUP

NEST

B

SET 1

SET 2

SET 3
-----------------BOG B

SET 4
---------BOG C

GROUP SET 5

NEST BOG D

c SET 6

SET 7

NEST EOG C

D SET 8

SET 9
EOG D

SET 10
________________ EOG B

SET 11

EOG A

All sets are contained within Group Nest A. Some sets are subnested and overlapped as follows:

A. Sets 6, 7, 8, and 9 are contained within Group Nest D, which is contained within Group Nest B, which is contained
within Group Nest A. Group Nest C and Group Nest D overlap within Group Nest B.

B. Sets 5, 6, and 7 are contained within Group Nest C, which is contained within Group Nest B, which is contained
within Group Nest A.

C. Sets 4 through 10 are contained within Group Nest B, which is contained within Group Nest A.

D. Sets 1, 2, 3, and 11 are contained only within Group Nest A.

Figure 8-1. Example of Nested Group Code Sets

•

•

•

UP-8062 Rev. 8

•
Byte

Position

0

1

2-9

10-39

Byte
Position

0

• 1

2-9

Byte
Position

0

1

2-13

14-21

•

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

B-3

Table B-1. Beginning-of-Group (BOG) Header Record Format

Field Contents

Length prefix 38 (binary format)

Type prefix A016

Group name Symbolic name of the logical group of code sets contained with in this
group and terminated by this record (left-justified and space-filled)

Comments Up to 30 bytes of pertinent comments (as deemed necessary to identify
the group)

Table B-2. End-of-Group (EOG) Trailer Record Format

Field Contents

Length prefix 8 (binary format)

Type prefix A816

Group name Symbolic name of the logical group of code sets contained within this
group and terminated by this record (left-justified and space-filled)

Table B-3. End-of-File (EOF) Sentinel Record Format

Field Contents

Length prefix 20 (binary format)

Type prefix Al ,e

Unused 0016

Name ENDLIBL'>L'>

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

B-4

B.2. SOURCE MODULE CODE SETS

Source module code sets within library files may be composed of any type of source
module statements from BAL macro definitions or own-code specifications up through
specific language processor parameters and JPROCs written in job control language.
Tables B-4, B-5, and B-6 describe the library items peculiar to source code sets.

Table 8-4. Source Module Code Header Record Format

Byte Field Contents
Position

0 Length prefix 56 (binary format)

1 Type prefix A3 16 or A416

2 Unused 0016

3,4 Flags 0016 , or 8016 if module has been corrected

5-13 Unused 0016

14-21 Module name Symbolic name of the source code set originated by this record
(left-Justified and space-filled)

22-24 Date In the form as it appears in the preamble

25-26 Time In the form: hour-minute (packed decimal less zone field)

27 Unused 0016

28-57 Comments Up to 30 bytes of pertinent comments as deemed necessary to
identify the source module.

Table 8-5. Source Module Code Statement Record Format

Byte
Position

Field Contents

0 Length prefix Variable; 2+ length

1 Type prefix 2415

2-81 Source record Source statement

•

•

•

•

•

•

UP-8062 Rev. 8

Byte
Position

0

1

2-81

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

Table 8-6. Compressed Source Module Code Statement Record Format

Field Contents

Length prefix Variable; 2+ compressed source length

Type prefix 25 16

Source record Compressed source statement

B.3. OBJECT CODE SETS

B-5

Object code within library files is composed mostly of text and relocation data
generated as output of the various language processors. This code exists in a format
acceptable to the linkage editor and contains additional record types used by the linkage
editor for load module generation. Object module records are variable in length and are
packed as densely as possible within a given library block. The desired order of
appearance of all records within an object code set is:

1 . Object module header record

2. Control statement records*

3. All control section records (must precede associated text and entry ESDs)

4. All ESD records (names must be unique)

5. All ISD records**

6. All text/RLD records

7. Object module transfer record

8. Control statement records

Tables B-7 through B-16 describe these records .

• Control statement records are generated by certain language processors and may be used to designate control
information necessary to a subsequent linkage editor run.

•• /SD records also are generated by certain language processors and are used by JOBDUMP to produce a formatted
dump if an abnormal termination occurs in your load module.

UP-8062 Rev. 8

Byte
Position

0

1

2

3

4

5-8

9-12

13-20

21-23

24, 25

26

27-56

Byte
Position

0

1

2

3,4

5-8

9-12

13-20

---------------------------------------.

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

B-6

Table 8-7. Object Code Header Record Format

Field Contents

Length prefix 55 (binary format)

Type prefix 8015

ESID 0016

Unused

Flag Bit 0 Set to indicate that the module has been patched
Bits 1-6 Reserved
Bit 7 Set to indicate that the object module is reentrant

Address Assembled or compiled origin of the object module

Module length Total number of bytes required for the object module

Module name Symbolic name of the object module originated by this record
(left-justified and space-filled)

Date In the form as it appears in the preamble

Time Hour-minute (packed decimal less zone field)

Unused 0016

Comments Up to 30 bytes of pertinent comments as deemed necessary to
identify the object module

Table 8-8. Object Code Control Section Record Format

Field Contents

Length prefix 19 (binary format)

Type prefix 081s. 0915, OA1 6• or 0816 (See Table B-9.)

ESID External symbol identification assigned to thiscontrolorcommon
section

Flag bytes 800016 indicates a deferred length specified in the transfer record
of this object module; ignore bytes 9-12

Section address Compiled address of the start of this control or common section

Section size Total length in bytes of this control or common section

Section name Symbolic name of the control or common section (left-justified and
space-filled)

•

•

•

UP-8062 Rev. 8

•
Type of Control Section

Named control section

Unnamed control section

Named common section

l Unnamed common section

Byte
Position

0

1

2

• 3,4

5-8

9-16

ESD Record
Type Type

ENTRY 04

EXTRN 06

V-CON 07

•

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

B-7

Table 8-9. Possible Control Section Record Types

Record Record Field Contents

Type Length 2 3,4 5-8 9-12 13-20

08
Control
section name

09
0000,6

Blanks (40, 6)
19 ESID Address Length

QA or 800015 Common section name

OB Blanks (4015)

Table 8-10. Object Code ESD Record Format

Field Contents

Length prefix 15 (binary format)

Type prefix 04, 6 , 0616, or 0716 (See Table B-11.)

ESID External symbol identification assigned to this ESD reference

Unused oo,s

Relative address Processor-generated address or value assigned to this ESD reference

ESD name Symbolic name of the ESD reference

Table 8- 11. Possible ESD Record Types

Record Field Contents

Length 2 3,4 5-8 9-16

15 ESID 000016 Assembled address Symbol

UP-8062 Rev. 8

Byte
Position

0

1

2

3

4

5-8

9-246

Byte
Position

0

1

2

3

4

5

6-8

9-9+
text length

9+ text length
+ RLD length
backward thru
9 + text length

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

B-8

Table 8-12. Object Code ISO Record Format

Field Contents

Length prefix Variable

Type prefix Oc15

ESIO External symbol identification of CSECT assigned to the ISO

Flag Bits 0-1 unused
Bit 2 set to indicate Type 3 ISO
Bit 3 set to indicate Type 4 ISO (comment)
Bits 4-7 unused

Flag Unused

Compile origin Processor-generated address assigned to this ISO

Attributes Symbolic name and attributes of the ISO item

Table 8-13. Object Code Text/RLD Record Format

Field Contents

Length prefix Variable: 7 + text length + RLO length (binary format)

Type prefix 0215

ESID External symbol identification with which the text data in this record
is associated.

Text length Number of bytes less one byte of text data in this record

RLD length Number of bytes of relocation data in this record (a multiple of three
bytes)

Flag 01 16 if patched text item

Relative address Processor-assigned relative address of first byte of text data in this
record

Text data Instructions and/ or data generated by a processor and relative to the
ESID specified

RLD data Three-byte relocation masks used to modify the various fields of
preceding text data in this record (See Table B-14.)

•

•

•

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

B-9

Table 8-14. Relocation Mask Formats

Byte
Position

Field Contents

0 ESID External symbol identification of the external reference whose
subsequent value will be used to modify the addressed field

1 Flag Designator byte reflecting type, size, and position of the

modification field (Figure B-21

2 Address Relative record pointer indicating the most significant (leftmost)
byte of text data at which the modification is to begin (first text
byte, O; 2nd byte, 1, etc.)

NOTES:

1.

2.

Each RLD data field in a given text record is composed of three bytes of relocation information designating the field
size, field position, and associated external index relevant to the modification of the addressed data bytes in this
text record. The field may be positively or negatively relocated at link-edit time and can be modified by one or
more relocation masks. The text and its associated relocation masks always must appear within the same logical
record.

Load module relocation masks are identical, except that the ESID field represents the phase number assigned to
the definition referenced by the address constant in the linked load module .

RLD FIELD

'-- ESID:

Address (in hexadecimal) pointing to the leftmost byte on the field to be
modified. The position is relative to the first byte of text in the record
(0 refers to the 1st byte, 1 to 2nd, etc.)

FLAG
BYTE

This 5-bit field indicates the number of bits to be

modified. This number is one less than the actual
number of bits used (0-31). The 7-, 15-, 23-,and

31-bit modifications may apply only to load
module RLD.

Y 3 0 - Rightmost bit of the modification field is on

v,

a byte boundary. (Always 0 for load module RLDs).

1 - Rightmost bit of the modification field is on
a half-byte (hexadecimal) boundary.

1 - V-type address constants
O - Others (always 0 for load module RLDs)

Type of relocation
0 - Addition (+)

1 - Subtraction (-)

The ESI D referring to the ESD entry in the module on whose value the relocatable data depends.
If a load module RLD, this byte reflects the phase number of the phase supplying the definition

for this reference.

Figure 8-2. Relocation Mask Field

UP-8062 Rev. 8

Byte
Position

0

1

2

3

4

5

6-8

9-12

13-13 + RLD
length

NOTE:

Byte
Position

0

2-81

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

B-10

Table 8-15. Object Code Transfer Record Format

Field

Length prefix

Type prefix

ESID

Text length

RLD length

Flag

Deferred length

Transfer address

RLD data

Contents

11 + RLD (binary format)

External symbol identification assigned to the transfer reference

3 (binary format)

Number of bytes of relocation data in this record (a multiple of 3
bytes)

8016 if deferred length is present in bytes 6-8

4016 if the transfer record does not terminate the object
module (one or more control statements follow)

One CSE CT or common section (named. unnamed. or blank) may have
its respective record flagged to indicate that the object module
transfer record specifies the actual length

Processor-generated object module transfer address

Relocation data used to modify the transfer address

Table 8-16. Object Code Control Statement Record Format

Field Contents

Length prefix 80 (binary format)

Type prefix

Control statement Source control statement

Any control statements appearing in an object module must directly follow a header record or directly follow a transfer
record. The latter case is indicated by the appropriate setting of the flag byte in the transfer record.

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

B-11
Update B

• 8.4. LOAD CODE SETS

•

•

Load modules are produced by the linkage editor and are loaded in the system at
program execution time by the system load facility. Load programs may be composed
of more than one phase or program segment. The initial phase is called the root phase.
The composition of each phase of a load program is:

• a phase definition record;

• one or more SENTRY records (optional);

• one or more resource records (optional);

• one or more SEXTRN records (optional);

• one or more ISD records (optional);

• one or more text/RLD records; and

• a transfer record.

All load programs (segmented or not) contain root phases. If the automatic overlay
mechanism is used, standard text records reflecting that facility are generated into the
root phase. (Automatically included modules also become resident in the root phase.)
Each phase segment contains its own transfer record signaling termination of the phase
and a possible start of execution address. Tables B-17 through B-21 describe the load
code set records.

Table 8-17. Load Code Phase Definition Record Format (Pan 1 of 2)

Byte Field Contents
Position

0 Length prefix 67 (binary format)

1 Type prefix 901s

2 Phase number Linkage editor assigned phase number of this phase

3, 4 Flag Byte 3 ---
Bit 0 Set in root phase header to indicate clear module

partition as defined in bytes 27-30
Bit 1 Set to indicate that the load module calls reentrant code
Bit 2 Set to identify the load module as reentrant
Bit 3 Set to identify the load module as base 0 shared code
Bit 4 Set to identify the load module as key 0 shared code
Bits 5-7 Reserved

Byte 4
--BitO Set to indicate that module has been patched

Bit 1 Reserved
Bits 2-7 Reserved

t

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

Table 8-17. Load Code Phase Definition Record Format (Part 2 of 2)

Byte
Field Contents

Position

5-8 Phase load address Linkage editor assigned relative origin of this phase

9-12 Phase length Total number of bytes required for this phase segment; value represents

the highest zero relative address assigned to this phase

13-20 Phase name Symbolic name assigned to this loadable phase segment

21-23 Date Month-day-year (packed decimal less zone field)

24,25 Time Hour-minute (packed decimal less zone fieldl

26 SENTRY count Number of SENTRY records contained in the load module

27-30 Module length Total number of bytes required for loading the module; value
represents the highest zero relative address assigned to the load
module

31-38 Alias phase name Symbolic name assigned to this loadable phase segment by the
linkage editor OVERLAY or REGION control statement that created
the phase

39-68 Comments Up to 30 bytes of pertinent comments as deemed necessary to
identify the load module segment

Table 8-18. Load Module Shared Code Record Formats

Contents
Byte

Field
Position Resource SEXTRN SENTRY

Records Records Records

0 Length prefix 15 (binary format) 15 (binary format) 15 (binary format)

1 Type prefix C8 16 C6 16 C416

2 Number Resource SINO EX SENTRY
number number number

3,4 Unused

5-8 Length Resource Byte 5 has resource number Link
size Bytes 6-8 unused address

9-16 Name Resource name SEXTRN name left- SENTRY name left-
left-justified, justified and justified and
and zero-filled blank-filled blank-filled

B-12

•

•

•

UP-8062 Rev. 8

•
Byte

Position

0

1

2

3

4

5-8

9-12

13-16

17-250

•
Byte

Position

0

1

2

3

4

5

6-8

9-9+ text length

9 + text length + RLD
length backward thru
9 + text length

•

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

B-13

Table 8-19. Load Code ISO Record Format

Field Contents

Length prefix Variable

Type prefix 1c

Phase number Linkage editor assigned phase number of this phase

Flag Bit 0 set to indicate Type 1 ISD (CSECT)
Bit 1 set to indicate Type 2 ISD (comment)
Bit 2 set to indicate Type 3 ISD
Bit 3 set to indicate Type 4 ISD (comment)
Bits 4-7 unused

Flag Unused

Link origin Linkage editor assigned relative origin for this ISD record

Compile origin Language processor generated address to the ISD record

Size Size of this ISD record

Attributes Symbolic name and attributes of this ISD record

Table 8-20. Load Code Text/RLD Record Format

Field Comments

Length prefix Variable: 7 + text length + RLD length (binary format)

Type prefix 1216

Phase number Linkage editor assigned phase number of text data in this record

Text length Number of bytes less 1 of text data in this record

RLD length Number of bytes of relocation data in this record (a multiple of 3
bytes)

Flag 01 16 if a patched text item

Load address Linkage editor assigned phase segment load address assigned to the
first byte of text data in this record

Text data Instructions or data to be loaded relative to the load address

RLD data Three-byte relocation masks used to modify text in the record
(Table B-14)

UP-8062 Rev. 8

Byte
Position

0

1

2

3

4

5-8

9-12

13-13 + RLD length

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

B-14

Table 8-21. Load Code Transfer Record Format

Field Comments

Length prefix 11 + RLD data length (binary format)

Type prefix 13 16

Phase number Linkage editor assigned phase number of this phase

Text length 3 (binary format)

RLD length Number of bytes of relocation data in this record (a multiple of 3
bytes)

Reserved 0016

Transfer address Linkage editor assigned phase segment transfer address

RLD data Relocation data used to modify the transfer address

8.5. BLOCK LOAD CODE SETS

Unlike the standard load module, which has data in two part1t1ons, the block load
module has data in three partitions. The data in partitions 1 and 2 are similar to the
standard load module data in that they are structured as index and data partitions.
However, the data in partition 3 is not structured and is made up of contiguous text
data, free of any control information. In other words, partition 3 is made up of the
actual block module text records. The data in partition 2 describes the boundaries of
each phase in partition 3. The block module text data (partition 3) is in sequential load
order and is binary zero-filled when appropriate.

Tables B-22 through B-27 show the order of all modules within the block load code
set.

Table 8-22. Panition 1-Directory Entry

Byte
Field

Position

0-7 Symbolic name

8 Type flag (80 16)

9-11 Block relative pointer

12 Record relative pointer

•

•

•

•

•

•

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

B-15
Update B

Table 8-23. Partition 2 - Block Load Module Header Record (Part 1 of 2)

Byte
Position

0

2

3

4

5-8

9-12

13-20

21-23

24, 25

26

27-30

31-38

39-68

69-71

Field

Length prefix

Type prefix

Phase number

Flag

Flag

Phase load
address

Phase length

Phase name

Date

Time

SENTRYs

Module length

Alias phase name

Comments

Block number

Contents

75 (binary format)

Linkage editor assigned phase number of this phase

8016 indicates clear module partition as defined in bytes 27-30.

4016 indicates that this module calls shared code.

2016 indicates that this is a base 0 shared load module.

1016 indicates that this is a key 0 shared load module.

8016 indicates this module has been patched.

Linkage editor assigned relative origin of this phase

Total number of bytes required for this phase segment; value represents the highest
relative zero address assigned to this phase.

Symbolic name assigned to this loadable phase segment

In the form as it appears in the preamble

Hour-minute (packed decimal less zone field)

Number of SENTRYs reported

Total number of bytes required for loading the module; value represents the highest
relative zero address assigned to the load module

Symbolic name assigned to this loadable phase segment by the linkage editor
OVERLAY or REGION control statement that created the phase

Up to 30 bytes of pertinent comments as deemed necessary to id.entity the load
module segment

Pointer to text block (beginning of this phase in partition 3)

t

UP-8062 Rev. 8

Byte
Position

72-74

75

76

0

1

2

SPERRY UNIV AC OS/3
SYSTEM SERVICE PROGRAMS

Table B-23. Partition 2 - Block Load Module Header Record (Part 2 of 2)

Field Contents

Block number Pointer to first text or transfer block of this phase in partition 2

B-16

Displacement Pointer to first text or transfer record of this phase in partition 2

Checksum XOR of first byte of each text block of partition 3

Table B-24. Partition 2 - Block Load Module RLD Record

Byte
Field Contents

Position

Length prefix 1 + no. of RLD times 5 (binary format)

Type prefix 32, 6

Length of RLDs Number of RLD masks times 5

3 (3 + n x 5-1) RLD masks Five-byte RLD masks (Table B-25)

Table B-25. RLD Mask

Byte Contents
Position

0 Phase number (in load module RLD mask)

1 Bits (in load module RLD masks)

2-4 Load module relative address

•

•

•

•

•

•

UP-8062 Rev. 8

Byte
Position

0

1

2

3

4

5

6-8

9-9 +text
length

9 +text
length +
RLD length
backward
thru 9 +
text length

NOTE:

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

B-17

Table 8-26. Partition 2 - Block Load Module Nonphase Text/RLD Record

Field

Length prefix

Type prefix

Phase number

Text length

RLD length

Flag

Load address

Text data

RLD data

Comments

Variable: 7 + text length + RLD length (binary format)

Linkage editor assigned phase number of text data in this record

Number of bytes less 1 of text data in this record

Number of bytes of relocation data in thi srecrod (a multiple of three
bytes)

01 16 if a patched text item

Linkage editor assigned phase segment load address assigned to the
first byte of text data in this record

Instructions and/or data to be loaded relative to the load address

Three-byte relocation masks used to modify text in the record
(Table B-14)

Nonphase text records are present in block load modules when text/RLD items are detected that are not part of a given
phase. Such text/RLD items outside the phase being loaded are to be loaded at the same time .

UP-8062 Rev. 8

Byte
Position

0

1

2

3

4

5-8

9-12

13-13 + RLD
length

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

B-18

Table 8-27. Partition 2 - Block load Module Transfer Record

Field Comments

Length prefix 11 + RLD data length (binary format)

Type prefix 13,6

Phase number Linkage editor assigned phase number of this phase

Text length 3 (binary format)

RLD length Number of bytes of relocation data in this record (a multiple of
three bytes)

Unused 00,6

Transfer address Linkage editor assigned phase segment transfer address

RLD data Relocation data used to modify the transfer address

•

•

UP-8062 Rev. 8

•

Term Reference

A

AA T capability 10.l

ABS parameter, DMPRST routine 13.3.3

Add card file element (ELE)
control statement 2.8.10

• Adding COS to SYSRES 9.11.1

Additional main storage requirements 2.1.2

ADDlKCOS, canned control
stream name 9.11.l

ADD2KCOS, canned control
stream name 9.11.1

ADD3KCOS, canned control
stream name 9.11.l

Alias phase name parameter
OVERLAY linker control statement 6.6.4
REGION linker control statement 6.6.5

ALIB keyword parameter, PARAM or
LINKOP linker control statement 6.6.l

Allocation map 7.6

AL TRK keyword parameter,
DSKPRP routine 9.3.l

ASGPR keyword parameter,
AAT routine 10.3.2

•

SPERRY UNIV AC OS/3
SYSTEM SERVICE PROGRAMS

Page Term

ASGTK keyword parameter,
AAT routine

10-1
Assigning alternate tracks

13-13 AA T capability
executing AA T
interfacing with DSKPRP

2-50 specifying AA T options

9-20 ASUPD keyword parameter,
AAT routine

2-2
ASURF keyword parameter,

AAT routine

9-20
AUTO keyword parameter, PARAM

or LINKOP linker control

9-20 statement

Automatic deletion processing

9-20
Automatic entry point

6-16 Automatic inclusion

6-17
Automatic load routine

6-5 Automatic overlay control processing
entry point table

7-6 overlay control routine
phase table
region table

9-3
Automatic recording defective

tracks (INSRT)

10-2

Index 1

Index

Reference Page

10.3.1 10-2

10.1 10-1
10.4 10-4
10.2 10-2
10.3 10-2

10.3.4 10-3

10.3.3 10-2

6.6.l 6-5

4.7.2 4-24

4.7.4.2 4-30

4.7.1 4-23

4.7.4 4-28

4.7.4.2 4-30
4.7.4.l 4-30
4.7.4.3 4-31
4.7.4.4 4-31

9.3.3 9-3

UP-8062 Rev. 8

Term Reference

B

Basic control statement processing 6.5

Begin load module (LOADM) control
statement 6.6.2

Begin new region (REGION) control
statement 6.6.5

Begin overlay phase (OVERLAY)
control statement 6.6.4

BGAD keyword parameter
SU$CSL copy routine 12.2.1
SU$C16 copy routine 12.1.1

Block load code sets B.5

Blocking load modules (BLK)
control statement 2.8.3

BSF. function code SL$$SU Table 15-1

BSR. function code SL$$SU Table 15-1

Building module groups 2.10.3

c
Canned job control streams

add COS to YSRC on SYSRES 9.11.1
change VSN on a previously prepped

disk 9.11.2
list contents of release volume libraries 2.9.3
pack SYSRES modules 2.9.4
prep RELEASE/SYSRES modules 9.11.4
print directory for SYSRES modules 2.9.2
reposition COS 9.11.3

Capabilities
dump routines 1.6
general 2.1.1
linkage editor 1.3
system librarians 1.2
system utilities 1.4

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

Page Term

Card functions

6-3 Card libraries

Cataloging facilities

6-14
CC. function code SL$$SU

6-17 CCB. function code SL$$SU

CCS, function code SL$$SU

6-16
CC96, function code SL$$SU

12-5 CGV utility routine

12-1
CH, function code SL$$SU

B-14
Change name (CHG) and comment

control statement

2-29
Changing a volume serial number

15-2
Checking file expiration dates

15-2 DSKPRP routine (UNXFC)

2-97 SU$CSL routine (UNXF)
SU$C 16 routine (UNXF)

CHG MIRAM librarian control
statement

CHGVSN. canned control stream
name

CH96. function code SL$$SU

CUB keyword parameter, PARAM or
LINKOP linker control statement

CMT keyword parameter, PARAM or
9-20 LINKOP linker control statement

9-20 CNL keyword parameter, PARAM or
2-83 LINKOP linker control statement
2-83
9-24 CNTCD keyword parameter, PARAM or
2-82 LINKOP linker control statement
9-22d

Code sets

1-7 Coding format
2-1
1-4 Comments parameter
1-2 ELE control statement
1-5 REN librarian control statement

Index 2
Update B

Reference Page

Table 15-1 15-1

2.7.3 2-24

1.5 1-6

Table 15-1 15-1

Table 15-1 15-1

Table 15-1 15-1

Table 15-1 15-1

9.11.2.1 9-21

Table 15-1 15-1

3.3.5 3-9

9.11.2 9-20

9.3.12 9-9
9.7.5 9-14
12.2.1 12-5
12.1.1 12-1

3.3.5 3-9

9.11.2.2 9-21c

Table 15-1 15-1

6.6.1 6-5

6.6.1 6-5

6.6.1 6-5

6.6.1 6-5

Appendix B

6.2 6-2

2.8.10 2-50
2.8.24 2-69

•

•

•

UP-8062 Rev. 8

• Term Reference

Common storage processing 4.5
4.7.3
6.6.9

Communications between phases 4.6.2.4

Compare elements (COM) control
statement 2.8.5

Compare tiles 2.8.5

Compare source modules 2.8.5

Console keyins, canned job control
streams Appendix A

Control functions 2.2

Control-only storage
adding to YSRC on SYSRES 9.11.1
repositioning from YSRC to COS-IPL 9.11.3

Control section dependencies 5.2.2

• Control section labels parameter,
INCLUDE linker control statement 6.6.3

Control statement conventions and
formats 2.8.1

Control statement descriptions
add card file element (ELE) 2.8.10
add, replace, or check

sequence numbers (SEQ) 2.8.27
advance page 2.8.17

begin load module (LOADM) 6.6.2
begin new region (REGION) 6.6.5
begin overlay phase (OVERLAY) 6.6.4
change name (CHG) control

statement 3.3.5
compare elements (COM) 2.8.5
control page advace, librarian map

(PAGE) 2.2.17
copy elements (COP) 2.8.6
copy modules (COP) MIRAM

librarian 3.3.2
correct module (COR) 2.8.7
create multitile tape (/I PARAM

TAPE FILES) 2.8.21
declare end-of-data (EOD) 2.8.11
declare file (FIL) 2.8.14

• declare tile (FIL) MIRAM
librarian 3.3.1

define label (EQU) 6.6.7
define phase execution

entrance (ENTER) 6.6.6
delete elements (DEL) 2.8.9

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

Page Term

4-8 Control statement descriptions (cont)
4-26 delete module control
6-21 statement (DEL)

escape (ESC)
4-17 include ob1ect code (INCLUDE)

list elements (LST)
modify location counter (MOD)

2-32 pack tile (PAC)
produce or delete records (RtPRO)

2-32 print module (PRT)

2-32
print source modules, hex format

(// PARAM PRTOBJ)
recycle current position

pointer (REC)
rename element (REN)
reserve storage (RES) (link-edit)

2-2 reset tile current position
(RES) (librarian)

skip source module record (SKI)
9-20 specify date and time
9-22d (// PARAM UPDATE)

specify error handling, librarian
5-2 execution (// PARAM ERROR)

specify linkage editor option
(// PARAM or LINKOP)

6-15 suppress librarian map (/I PARAM
PRINT)

write beginning-of-group
2-27 record (BOG)

write end-of-group record

2-50
(EOG)

Control statement functions
2-77
2-62 Control statements
6-14 BLK
6-17 BOG
6-16 CHG (MIRAM librarian)

COM
3-9 COP
2-32 COP (MIRAM librarian)

COR
2-62 DEL
2-38 DEL (MIRAM librarian)

ELE
3-3 ENTER
2-41 EOD

EOG
2-64a EQU
2-52 ESC
2-58 FIL

FIL (MIRAM librarian)
3-2 INCLUDE
6-19 LINKOP

6-18
2-48

Index 3
Update B

Reference Page

3.3.4 3-7
2.8.13 2-53
6.6.3 6-15
2.8.15 2-59
6.6.8 6-20
2.8.16 2-60
2.8.25 2-72
3.3.3 3-5

2.8.20 2-64

2.8.23 2-65
2.8.24 2-69
6.6.9 6-21

2.8.26 2-75
2.8.28 2-80

2.8.22 2-64c

2.8.18 2-63

6.6.1 6-5

2.8.19 2-64

2.8.4 2-31

2.8.12 2-52

4.3 4-5

2.8.3 2-29
2.8.4 2-31
3.3.5 3-9
2.8.5 2-32
2.8.6 2-38
3.3.2 3-3
2.8.7 2-41
2.8.9 2-48
3.3.4 3-7
2.8.10 2-50
6.6.6 6-18
2.8.11 2-52
2.8.12 2-52
6.6.7 6-19
2.8.13 2-53
2.8.14 2-58
3.3.1 3-2
6.6.3 6-15
6.6.1 6-5

UP-8062 Rev. 8

Term

Control statements (cont)

LOADM
LST
MOD
OVERLAY
PAC
PAGE
placement
PRT (MIRAM librarian)
REC
REGION
REN
REPRO
RES (librarian)
RES (link-edit)
SEQ
SKI
I I PARAM ERROR
I I PARAM or LINKOP
I I PARAM PRINT
I I PARAM PRTOBJ
I I PARAM TAPEFILES
I I PARAM UPDATE

Copy elements (COP) control statement

COPY keyword parameter
SU$CSL copy routine
SU$Cl6 copy routine

Copying card deck to disk

COPYREL, canned control stream name

COPYREL copy order

COPY module (COP) control
statement

Copy system release files (COPYREL)

COR correction cards
object or load module corrections
source module corrections

Correct module (COR) control statement

cos

CP, function code SL$$SU

CP96, function code SL$$SU

Creating multifile tape, I I PARAM
TAPEFILES control statement

Reference

6.6.2
2.8.15
6.6.8
6.6.4
2.8.16
2.8.17
6.3
3.3.3
2.8.23
6.6.5
2.8.24
2.8.25
2.8.26
6.6.9
2.8.27
2.8.28
2.8.18
6.6.l
2.8.19
2.8.20
2.8.21
2.8.22

2.8.7

12.2.l
12.1.1

2.10.4

9.11.5
Table A-1
A.2

Table 9-3

3.3.2

9.11.5

2.8.8.l
2.8.8.2

2.8.7

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

Page Term

6-14
Creating standard volume labels

2-59 CS96, function code SL$$SU
6-20
6-16 CT, function code SL$$SU
2-60
2-62 CTR, function code SL$$SU
6-2
3-5 CT96, function code SL$$SU
2-65
6-17 Current file position
2-69
2-72
2-75
6-21
2-77
2-80
2-63
6-5
2-64
2-64
2-64a
2-64c Date and time parameter,

I I PARAM UPDATE control
2-40 statement

DCOP, canned control stream name
12-5
12-1 DD, function code SL$$SU

2-102 DOR, function code SL$$SU

9-27 Declare end-of-data (EOD) control
A-3 statement
A-3

Declare file (FIL) control statement
9-28

DEF keyword parameter,
3-3 PARAM or LINKOP linker control

statement
9-27

Defective track address,
INSERT utility control statement

2-43
2-46 Define label (EQU) control statement

2-41 Define phase execution entrance
(ENTER) control statement

D

See control-only
storage. Definitions dictionary

Table 15-1 15-1 DEL keyword parameter,
PARAM or LINKOP linker control

Table 15-1 15-1 statement

Delete elements (DEL) control statement
2.8.21 2-64a

Index 4

Reference Page •
9.5 9-11

Table 15-1 15-1

Table 15-1 15-1

Table 15-1 15-1

Table 15-1 15-1

2.4.3.4 2-7

2.8.22 2-64c • Table A-1 A-1

Table 15-1 15-2

Table 15-1 15-2

2.8.11 2-52

2.8.14 2-58
3.3.1 3-2

6.6.1 6-5

9.4 9-11

6.6.7 6-19

6.6.6 6-18

7.4 7-3

6.6.l 6-5 •
2.8.9 2-48

UP-8062 Rev. 8

• Term Reference

Delete module (DEL) control
statement 3.3.4

Delete records in object modules
(REPRO) control statement 2.8.25

Deletions, REPRO librarian control
statement 2.8.25

Diagnostic message listings 2.6.4

DICT keyword parameter,
PARAM or LINKOP linker control
statement 6.6.1

Disk copy routines
stand-alone 12.5
SU$CSL 12.2
SU$Cl6 12.1

Disk dump restore
DMPRST concept 13.1
executing DMPRST in a file

• environment 13.3
executing DMPRST in an interactive

environment 13.5
executing DMPRST in a volume

environment 13.2

Disk library directories format 2.7.2
2.7.2.1

Disk options, alternate track (ATT)
ASGPR 10.3.2
ASGTK 10.3.1
ASUPD 10.3.4
ASURF 10.3.3
SERNR 10.3.5

Disk prep options
ALTRK 9.3.1
ILOPT 9.3.2
INSRT 9.3.3
IPLDK 9.3.4
PARTL 9.3.6
PRE PT 9.3.7
PTBEG 9.3.8
PTEND 9.3.8
RPVOL 9.3.5
SERNR 9.3.9
TRCON 9.3.10

• TRKCT 9.3.10
UNXFC 9.3.12
VER FY 9.3.11
VTOCB 9.3.13
VTOCE 9.3.13

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

Page Term

Disk utility capabilities
3-7

Diskette index scan

2-72 Diskette libraries

Diskette prep options
2-72 RPVOL

FDATA
2-11 PARTL

SERNR
UNXFC

6-5 Diskette utility

DMPRST concepts
12-16
12-5 DRDP, canned control stream name
12-1

DSKPRP routine

13-1 Dump routines

13-8

13-18

13-2 EDAD keyword parameter
SU$CSL copy routine

2-22 SU$Cl6 copy routine

2-23
Embedded control statements

10-2 Entry point table

10-2
10-3 ERG, function code SL$$SU

10-2
10-4 ERR keyword parameter,

PARAM or LINKOP linker control
statement

9-3
9-3 Error checking (UPSI byte)

9-3
9-4 Error handling, 1/0 disc

9-5
9-5 Error processing

9-6
9-6 Escape (ESC) control statement

9-4 function

9-6 main storage considerations

9-6
9-6 Exclusive reference

9-9
9-9 Executing AAT

9-10
9-10 EXTRN references

Index 5

Reference Page

1.4.1 1-5

14.3 14-5

2.7.5 2-26

9.7.1 9-13
9.7.2 9-13
9.7.3 9-14
9.7.4 9-14
9.7.5 9-14

Section 14

13.1 13-1

2.9.1 2-82

9.1 9-1

1.6 1-7

E

12.2.1 12-5
12.1.1 12-1

6.4 6-3

4.7.4.2 4-30

Table 15-1 15-2

6.6.1 6-5

1.7 1-7

12.5.6 12-22

9.10 9-19

2.8.13 2-53
2.8.13 2-53

4.6.2.4 4-17

10.4 10-4

4. 7.7.1 4-37
Fig. 4-17 4-38

UP-8062 Rev. 8

Term Reference

F

FDATA keyword parameter, DSKPRP
routine 9.7.2

FIL librarian control statement 2.8.14

FIL MIRAM librarian control
statement 3.3.1

FILE cards 13.3.3

File expiration date, checking (UNXFC) 9.7.5

File lock protection, DMPRST
routine (NOWAIT) 13.3.1

File manipulation
compression 2.4.10
deletion 2.4.11
extension 2.4.9
merging 2.4.8

Filename parameter, disk
FIL librarian control statement 2.8.14
INCLUDE linker control statement 6.6.3

Filename parameter, tape
FIL librarian control statement 2.8.14
INCLUDE linker control statement 6.6.3

File prefix parameter, DMPRST
routine 13.3.3.2

FSF, function code SL$$SU Table 15-1

FSR, function code Sl$$SU Table 15-1

G

Gang operations
current file position 2.4.3.4
module name gang mode 2.4.3.2
module type gang mode 2.4.3.1
total gang mode 2.4.3.3

Grouped code sets B.l

Grouped management 2.4.2

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

Page Term

H

Hardware utilities
9-13

Header line parameter, PAGE
2-58 librarian control statement

Help screen modules
3-2 CHG librarian control statement

COP librarian control statement
13-13 DEL librarian control statement

PRT librarian control statement
9-14

13-10

2-9
2-9
2-9

ILOPT keyword parameter,
2-9

DSKPRP routine

Include object code (INCLUDE)
2-58

control statement
6-15

Inclusive reference

2-58
Index scan, diskette

6-15

Indicate disk pack is IPL volume

13-14
Indicate type of IPL storage

15-2
Initialize disk routine (DSKPRP)

15-2
preparing your disk pack for

execution
specifying prep options

Input
file update
list mode
punch mode

INSRT keyword parameter,
DSKPRP routine

INT, function code SL$$SU

2-7
2-6 Internal symbol dictionary

2-5
2-6 IPLDK keyword parameter,

DSKPRP routine

B-2
ISD

2-5

Index 6

Reference Page •
1.4.3 1-5

2.8.17 2-62

3.3.5 3-10
3.3.2 3-4
3.3.4 3-8
3.3.3 3-6

9.3.2 9-3

6.6.3 6-15 • 4.6.2.4 4-17

14.3 14-4

9.3.4 9-4

9.3.2 9-3

9.1 9-1
9.1 9-1

2.3 2-3
2.3 2-3
2.3 2-3

9.3.3 9-3

Table 15-1 15-2

4.7.8 4-42

9.3.4 9-4 • 4.7.8 4-42

UP-8062 Rev. 8

• Term Reference

J

JCP, function code SL$$SU Table 15-1

L

Language processor object module
format 4.4

LFD control statement 2.8.14

• Librarian maps 2.6.1

Librarian modes of operation
object or load module correction

cards 2.8.8.1
source module correction cards 2.8.8.2

Library control statement descriptions See control
statement
descriptions.

Library control statements See control
statements.

Library directories, disk 2.7.2

Library file directory 1.2

Link edit map
allocation 7.6
definitions dictionary 7.4
error legend and count list 7.7
general 7.1
phase structure 7.5
process 7.2
unresolved EXTRN reference list 7.3

Link editing reentrant code 4.7.7.4 • Linkage editor
capabilities 1.3
system overview 1.3

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

Page Term

Linkage editor control statement
descriptions

15-1

Linkage editor inputs and outputs

Linkages in shared code environment

LIST keyword parameter,
PARAM or LINKOP linker control
statement

List software maintenance corrections

Listing contents of release volume system
libraries

LISTRES, canned control stream name
4-7

Load module
2-58 corrections

format
2-10 listings

management
structure

2-43 LOG parameter, DMPRST routine
2-46

Logging facilities

Logical file name parameter
BLK librarian control statement
BOG librarian control statement
COM librarian control statement
COR librarian control statement
DEL librarian control statement

2-22 ELE librarian control statement
EOG librarian control statement

1-2 LST control statement
PAC librarian control statement
PAGE librarian control statement

7-6 REN librarian control statement
7-3 REPRO librarian control statement
7-8 RES librarian control statement
7-1 SEQ librarian control statement
7-5
7-1
7-2

4-39

1-4
1-4

Index 7

Reference Page

See control
statement
descriptions.

4.2 4-3

4.7.7.2 4-38

6.6.1 6-5

1.4.6 1-6
16.1 16-1

2.9.3 2-83

2.9.2 2-82

2.8.8.2 2-46
4.5 4-8
2.6.3 2-11
2.4.7 2-8
4.6 4-12

13.3.3 13-13

1.5 1-6

2.8.3 2-29
2.8.4 2-31
2.8.5 2-32
2.8.7 2-41
2.8.9 2-48
2.8.10 2-50
2.8.12 2-52
2.8.15 2-59
2.8.16 2-60
2.8.17 2-62
2.8.24 2-69
2.8.25 2-72
2.8.26 2-75
2.8.27 2-77

UP-8062 Rev. 8

Term

M

Macro/ Jproc source module
management

Main storage requirements, additional

Mapping facilities
diagnostic message listings
ob1ect and load module listings
source module listings
standard map layout

MIRAM librarian
control functions
control statements
module formats

programming examples

Menu modules
CHG librarian control statement
COP librarian control statement
DEL librarian control statement
PRT librarian control statement

Modes of operation, librarian

Modify location counter (MOD) control
statement

MODLST

Module group name parameter
BOG librarian control statement
EOG librarian control statement
REN librarian control statement

Module name parameter
BLK librarian control statement
COM librarian control statement
COP librarian control statement
COR librarian control statement
DEL librarian control statement
ELE librarian control statement
INCLUDE librarian control statement
LOADM linker control statement
REN librarian control statement
REPRO librarian control statement
RES librarian control statement
SEQ librarian control statement

Module type parameter
CHG librarian control statement
COM librarian control statement
COP librarian control statement

Reference

2.4.5

2.1.2

2.6.4
2.6.3
2.6.2
2.6.1

3.2
3.3
3.4
Table 3-1
3.5

3.3.5
3.3.2
3.3.4
3.3.3

2.3

6.6.8

2.9.3

2.8.4
2.8.12
2.8.24

2.8.3
2.8.5
2.8.6
2.8.7
2.8.9
2.8.10
6.6.3
6.6.2
2.8.24
2.8.25
2.8.26
2.8.27

3.3.5
2.8.5
2.8.6
3.3.2

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

Page

2-8

2-2

2-11
2-11
2-11
2-10

3-1
3-2
3-11
3-11
3-12

3-10
3-4
3-8
3-6

2-3

6-20

2-83

2-31
2-52
2-69

2-29
2-32
2-38
2-41
2-48
2-50
6-15
6-14
2-69
2-72
2-75
2-77

3-10
2-32
2-38
3-3

Term

COR librarian control statement
DEL librarian control statement

ELE librarian control statement
PRT librarian control statement
REN librarian control statement
RES librarian control statement
SEQ librarian control statement

Multifile tape creation

Multiphase load modules
communications between phases
mode points and paths
phase definitions
phase names

Multiple definition resolution processing
standard (non-V-CON) references
V-CON references

Multiregion load modules

Naming conventions

NOAUTO keyword parameter,
PARAM or LINKOP linker control
statement

NOCNL keyword parameter,
PARAM or LINKOP linker control
statement

NOCNTCD keyword parameter,
PARAM or LINKOP linker control
statement

Node point (starting address of
phase) parameter

N

OVERLAY linker control statement
REGION linker control statement

Node points and paths

NODEF keyword parameter,
PARAM or LINKOP linker control
statement

NODEL keyword parameter,
PARAM or LINKOP linker control
statement

Index 8

Reference

2.8.7
2.8.9
3.3.4
2.8.10
3.3.3
2.8.24
2.8.26
2.8.27

2.8.21

4.6.2.4
4.6.2.3
4.6.2.1
4.6.2.2

4.7.5
4.7.5

4.6.3

2.4.1

6.6.1

6.6.1

6.6.1

6.6.4
6.6.5

4.6.2.3

6.6.1

6.6.1

Page

2-41
2-48
3-8
2-50
3-5
2-69
2-75
2-77

2-64a

4-17
4-16
4-15
4-16

4-31
4-31

4-19

2-4

6-5

6-5

6-5

6-16
6-17

4-16

6-5

6-5

•

•

•

UP-8062 Rev. 8

• Term Reference

NODICT keyword parameter,
PARAM or LINKOP linker control
statement 6.6.l

NOERR keyword parameter,
PARAM or LINKOP linker control
statement 6.6.l

NOEXPCK parameter, DMPRST routine 13.4

NOLIST keyword parameter,
PARAM or LINKOP linker control
statement 6.6.l

Nonsectored disk copying (SU$CSL) 12.2

NOPHS keyword parameter,
PARAM or LINKOP linker control
statement 6.6.1

NOPROM keyword parameter,
PARAM or LINKOP linker control
statement 6.6.1

• NORCNTCD keyword parameter,
PARAM or LINKOP linker control
statement 6.6.l

NOREF keyword parameter,
PARAM or LINKOP linker control
statement 6.6.l

NORNT keyword parameter,
PARAM or LINKOP linker control
statement 6.6.l

NOSHARE keyword parameter,
PARAM or LINKOP linker control
statement 6.6.l

NOV keyword parameter,
PARAM or LINKOP linker control
statement 6.6.1

NOWAIT parameter, DMPRST routine 13.3.l

NOZRO keyword parameter,
PARAM or LINKOP linker control
statement 6.6.1

Number reserved storage bytes parameter,

• RES linker control statement 6.6.9

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

Page Term

0

6-5 Object module
code sets
corrections
format

6-5 listings
management

13-17
Options, opcode

COP librarian control statement
COR librarian control statement

6-5 DEL librarian control statement
ELE librarian control statement

12-5 librarian control statements, general
PAC librarian control statement
REN librarian control statement
REPRO librarian control statement

6-5 RES librarian control statement
SEQ librarian control statement

OUT keyword parameter,
6-5 PARAM or LINKOP linker control

statement

Output file creation
6-5

OVEF keyword parameter
SU$CSL copy routine
SU$Cl6 copy routine

6-5
Overlay control routine, linkage editor

6-5

6-5

6-5

13-10

6-5

6-21

Index 9

Reference Page

8.3 B-5
2.8.8.l 2-43
4.4 4-7
2.6.3 2-11
2.4.6 2-8

2.8.6 2-39
2.8.7 2-41
2.8.9 2-48
2.8.10 2-50
2.8 2-27
2.8.16 2-60
2.8.24 2-69
2.8.25 2-72
2.8.26 2-75
2.8.27 2-77

6.6.1 6-5

2.3 2-3

12.2.l 12-5
12.1.1 12-1

4.7.4.l 4-30

UP-8062 Rev. 8

Term Reference

p

Pack file (PAC) control statement 2.8.16

Pack SYSRES modules 2.9.4

PACKRES, canned control stream name 2.9.4

Page advance (PAGE) control
statement 2.8.17

Partial include processing 4.7.6

PARTL keyword parameter,
DSKPRP routine 9.3.6
use with PTBEG, PTEND 9.3.8

Patch card formats 2.8.2

Patching or modifying existing records 10.3.4

Phase definition, load modules 4.6.2.1

Phase dependencies 5.2.1

Phase names, load modules 4.6.2.2

Phase origins and node points 5.2.1

Phase structure diagram, link-edit 7.5

Phase table (PTAB) load modules 4.7.4.3

PHS keyword parameter,
PARAM or LINKOP linker control
statement 6.6.1

Power of 2 parameter,
MOD linker control statement 6.6.8

PRE parameter, DMPRST routine 13.3.3

Preparing your tapes 11.1

Prepping and allocating RELEASE/SYSRES
files 9.11.4

PREPT keyword parameter,
DSKPRP routine 9.3.7

Print, alphabetic sequence (LST) 2.8.15

Print library directory partition 2.9.1

Print (PRT) control statement 3.3.3

Print source module in hexadecimal
format, I I PARAM PRTOBJ control
statement 2.8.20

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

Page Term

Printing your records

2-60 PRNT keyword parameter
SU$CSL copy routine

2-83 SU$Cl6 copy routine

2-83 Process map, link-edit

Program length
2-62

Program library details
4-34 card

disk directories
diskette

9-5 file layout
9-6 tape

2-29 Program library management
file compression

10-3 file deletion
file extension

4-15 file merging
gang operations

5-2 group
load module

4-16 macro/ Jproc source module
naming conventions

5-2 object module
program source module

7-5
Program source module management

4-31

Programming examples
6-5 librarian

linkage editor

6-20 PROM keyword parameter,
PARAM or LINKOP linker control

13-13 statement

11-1 PRPlKCOS, canned control stream name

PRP2KCOS, canned control stream name
9-24

PRP3KCOS, canned control stream name

9-5 PRT MIRAM librarian control
statement

2-59
PTBEG keyword parameter,

2-82 DSKPRP routine

3-5

2-64

Index 10

Reference Page •
10.3.2 10-2

12.2.1 12-5
12.1.1 12-1

7.2 7-1

5.2.3 5-2

2.7.3 2-24
2.7.2 2-22
2.7.5 2-26
2.7.1 2-18
2.7.4 2-25

2.4.10 2-9
2.4.11 2-9
2.4.9 2-9
2.4.8 2-9
2.4.3 2-5
2.4.2 2-5
2.4.7 2-8 • 2.4.5 2-8
2.4.1 2-4
2.4.6 2-8
2.4.4 2-7

See program
library
management.

2.10 2-84
7.1 7-1

6.6.1 6-5

9.11.1 9-20

9.11.1 9-20

9.11.1 9-20

3.3.3 3-5

9.3.8 9-6 •

UP-8062 Rev. 8

• Term Reference

R

RCNTCD keyword parameter,
PARAM or LINKOP linker control
statement 6.6.1

Record type bytes 2.7.1.3

Record type codes parameter,
REN librarian control statement 2.8.24

Recycle source module current position
pointer (REC) control statement 2.8.23

REF keyword parameter,
PARAM or LINKOP linker control
statement 6.6.1

Region table (RTAB) 4.7.4.4

RELEASE files 9.11.4

REL parameter, DMPRST routine 13.3.3

• Remainder parameter, MOD
linker control statement 6.6.8

Rename element (REN) control statement 2.8.24

Renumbering volume serial number (RPVOL) 9.3.5

Replacing initial load control storage
(RPVOL) 9.3.5

Reposition COS 9.11.3

Repositioning modules in a disk
library tile 2.10.l

Reproduce files 2.8.6

Reserve storage (RES) control statement 6.6.9

Reset file current position pointer
(RES) control statement 2.8.26

Restore operation 13.2
13.3.3
13.5.3

RETRY keyword parameter,

• DSKPRP routine 9.3.7

REW, function code SL$$SU Table 15-1

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

Page Term

RUB keyword parameter,
PARAM or LINKOP linker control
statement

6-5 RNT keyword parameter,
PARAM or LINKOP linker control

2-21 statement

RPVOL keyword parameter,
2-69 DSKPRP routine

RUN, function code SL$$SU
2-65

Run library modules, saved

6-5

4-31

9-24

13-13

6-20

2-69

9-4

9-4

9-22d

2-84

2-40

6-21

2-75

13-4
13-12
13-25

9-5

15-2

Index 11
Update B

Reference Page

6.6.1 6-5

6.6.1 6-5

9.3.5 9-4

Table 15-1 15-2

See saved
run library
modules.

UP-8062 Rev. 8 SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

Index 12

UP-8062 Rev. 8

• Term Reference

Statement conventions 1.8

Suppressing file expiration date,
DMPRST routine (NOEXPCK) 13.4

Suppressing librarian map, I I PARAM
PRINT control statement 2.8.19

SU$CSL
batch processing 12.2.3
interactive processing 12.4
interfacing with job control 12.2.2
organization 12.2.l

SU$C16
batch processing 12.1.3
interactive processing 12.3
interfacing with job control 12.l.2
organization 12.1.l

SYSRES
add COS 9.11.l
pack modules and print directories 2.9.4
prep and allocate files 9.11.4

• print directory for modules 2.9.1

System librarian
capabilities 1.2
system overview 1.2

System overview
dump routines 1.6
linkage editor 1.3
logging and cataloging

facilities 1.5
system librarian 1.2
system utilities 1.4

System utilities
accumulate log 1.5
catalog manipulation 1.5
disk 1.4.1
hardware 1.4.3
joblog report program 1.5
overview 1.4
symbiont 1.4.4

tape 1.4.2

System utility copy routines
nonsectored disk copying (SU$CSL) 12.l
sectored disk copying (SU$Cl6) 12.2

• System utility symbiont (SL$$SU) 15.l

System utility symbiont capabilities 1.4.4

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

Page Term

1-10 T

Tape libraries

13-17
Tape prep

coding instructions

2-64 preparing for execution

Tape utility capabilities

12-6
12-12 TC, function code SL$$SU

12-6
12-5 Temporary storage usage

Testing alternate track areas (ALTRK)

12-3
12-8 Testing an area before prepping (VERFY)

12-2
12-1 Testing the alternate track after

assigning (ASURF)

9-20 TH, function code SL$$SU

2-83
9-24 THR, function code SL$$SU

2-82
TP, function code SL$$SU

1-2 TPR, function code SL$$SU

1-2
TPREP routine

1-6 Track condition table

1-4
Transfer address of phase,

1-6 ENTER linker control statement

1-2
1-5 TRCON keyword parameter,

DSKPRP routine

1-6 TRKCT keyword parameter,

1-6 DSKPRP routine

1-5
1-5 TRL, function code SL$$SU

1-6
1-5 TRS, function code SL$$SU

1-6
1-5 TT, function code SL$$SU

TU symbiont

12-1
12-5

15-1

1-6

Index 13

Reference Page

2.7.4 2-25

11.2 11-1
11.1 11-1

1.4.2 1-5

Table 15-1 15-2

4.1.2 4-3

9.3.1 9-3

9.3.11 9-9

10.3.3 10-2

Table 15-1 15-2

Table 15-1 15-2

Table 15-1 15-2

Table 15-1 15-2

11.l 11-1

9.1 9-1

6.6.6 6-18

9.3.10 9-6

9.3.10 9-6

Table 15-1 15-2

Table 15-1 15-2

Table 15-1 15-2

15.1 15-3

UP-8062 Rev. 8

Term Reference

u
Unresolved EXTRN reference list 7.3

UNXF keyword parameter
SU$CSL copy routine 12.2.1
SU$Cl6 copy routine 12.1.l

UNXFC keyword parameter,
DSKPRP routine 9.3.12

9.7.5

UPSI byte, error checking 1.7

Use of multiple regions 5.2.5

User program switch indicator
description 1.7
DSKPRP 9.9
linkage editor 4.7.9

SPERRY UNIVAC OS/3
SYSTEM SERVICE PROGRAMS

Page Term

7-2 Write beginning-of-group record
control statement

w
(BOG)

12-5 Write end-of-group record (EOG)
12-1 control statement

WTM, function code SL$$SU
9-9
9-14

1-7

5-2

1-7
9-15
4-44

Index 14

Reference Page •
2.8.4 2-31

2.8.12 2-52

Table 15-1 15-2

•
6.6.1 6-5

•

I

I
I

•' I
I
I
I
I
I
I
I
I
I
I
I
I
I

. I
"' c

~I

·~,

•

::i

ul
I
I

UNIVAC

USER COMMENT SHEET

Your comments concerning this document will be welcomed by Sperry Univac for use in improving
subsequent editions.

Please note: This form is not intended to be used as an order blank.

(Document Title)

(Document No.) (Revision No.) (Update No.)

Comments:

From:

(Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.)
Thank you for your cooperation

FOLD

I II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE

SPERRY UNIVAC

ATTN.: SYSTEMS PUBLICATIONS

P.O. BOX 500

BLUE BELL, PENNSYLVANIA 19424

FOLD

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

•

("') !:i.

•

•

.;
c:

"' • c:
0
a; ...
::i
(.)

•

USER COMMENT SHEET

Your comments concerning this document will be welcomed by Sperry Univac for use in improving
subsequent editions.

Please note: This form is not intended to be used as an order blank.

(Document Title)

(Document No.) (Revision No.) (Update No.)

Comments:

From:

(Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.)
Thank you for your cooperation

FOLD

I II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE

SPERRY UNIVAC

ATTN.: SYSTEMS PUBLICATIONS

P.O. BOX 500

BLUE BELL, PENNSYLVANIA 19424

FOLD

--~~~~--~---

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

•

•

•
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

. I
"'
~I

·~I

•

::>

ul
I
I
I

UNIVAC

USER COMMENT SHEET

Your comments concerning this document will be welcomed by Sperry Univac for use in improving
subsequent editions.

Please note: This form is not intended to be used as an order blank.

(Document Title)

(Document No.) (Revision No.) (Update No.)

Comments:

From:

(Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.)
Thank you for your cooperation

FOLD

I II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE

SPERRY UNIVAC

ATTN.: SYSTEMS PUBLICATIONS

P.O. BOX 500
BLUE BELL, PENNSYLVANIA 19424

FOLD

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

•

0

~.

•

