8062 Rev. 5 SPERRY UNIVAC Operating System/3 7-1

UP-NUMBER UPDATE LEVEL | PAGE

7. Program Library Details

7.1. GENERAL

The system program library files, which may be composed of program source, macro/JPROC source, object, and
load modules, are created and used by the various components of the SPERRY UNIVAC Operating System/3
(0S/3) during the normal course of system operation. It is these library files that the librarian services and
maintains based on particular system needs and constraints determined by the user.

For the system user to realize the full extent of the capabilities of the librarian, he must be aware of the organization
and content of the program libraries in the system. Thus, the organization and content of the system program library
are presented in this section of the manual.

The user also may elect to establish a program library of his own. If so, the librarian also can be used to maintain
the object, program source, macro/JPROC source, and load code sets contained in this library, under the same
guidelines it uses when servicing the system program library files.

7.2. LIBRARY FILE LAYOUT

The system library is composed of five permanent disk files and one temporary disk file for each job being
processed in the system. All the files consist of at least a label, a single element, and an end-of-file marker; they
are structured to support fixed-length block, variable-length record data and contain a directory partition. The
directories are in fixed-length block, fixed-length record format.

Each of the five permanent files are 3-partition SAT files. One partition is used to maintain a directory for the
file, and the other two are used to store the program modules contained in the file. When these files are
initialized by the librarian, the space allocated for each file is distributed as foliows:

L Two percent is allocated for the directory partition.

. Forty-eight percent is allocated for the prime data partition.

L No space is allocated for the second data partition.

L] Fifty percent of the space allocated to each file is initially unassigned.

This initial aliocation technique allows the librarian to assign file space to the various partitions in a file on an
“as needed” basis, and thus prevents space from being allocated for a partition that may never be used. (At
present, only block load modules require the use of a third partition.) Thereafter, when a partition becomes full
and requires more space, the librarian extends the partition using some of the free space it has in reserve. Only
the partition that was full is extended, and the amount of the extension is based on the file extension increment
specified on the EXT job control statement used to create the file. When all the free space is allocated, the
dynamic file expansion capability of the supervisor is called on to provide additional free space for the file in the
same increments previously used to effect the file extensions performed by the librarian.

7-2
PAGE

8062 Rev. 5 SPERRY UNIVAC Operating System/3 J A

UP-NUMBER

UPDATE LEVEL

The job temporary library files are special files established by job control at the time jobs are input to the system
for processing. These files are dynamic in nature, in that their size and structure are variable and they exist only
until the job is terminated.

Any programs or data that may be in these files are unrecoverable once their associated jobs have been
terminated.

In addition, it shouid be remembered that your files, excluding system files, may be sharable (depending on the
FILELOCK parameter you specified during supervisor generation). See the system installation user
guide/programmer reference, UP-8074 (current version). Because 0S/3 allows multipie “writers” to
concurrently access sharable files, these files could be destroyed in a8 multiprogramming environment. It is
recommended therefore, that critical user files be prefixed by $LOKnn to prevent them from being accessed
concurrently by multiple writer programs.

Providing information needed to create new files or extending existing files on disks is the function of the EXT
job control statement. See job control user guide, UP-8065 (current version) for details on this and other job
control statements.

7.2.1. Library Blocks

Library blocks are fixed-length, 256-byte blocks (Figure 7—1). Each block is composed of a 5-byte block prefix
and up to 251 bytes of variable-record data. The block prefix includes a 3-byte logical block number, a 1-byte
value indicating a block length (not including the block prefix), and a 1-byte check sum reflecting an exclusive OR
for relevant data. Records within the block are variable in length up to a maximum size of 251 bytes for any given
record including the record prefix.

YTE '

B o 0-2 |[3]4a]| 5 = %5

CONTENT bbb bl c |vr v ; ; r vr
RS P g

BLOCK PREFIX

BLOCK FIELD DESCRIPTIONS

Byt.e Field Contents
Position
0—2 Block number (bbb) Starting with 1 for the initial biock, this is the logical block

sequence number.

3 Block length (bl) This is a binary value less than or equal to 251, indicating the
number of bytes of relevant record data within the body of this
block, not including the block prefix.

4 Check sum {c) This is a binary value reflecting an exciusive OR of all bytes
in the block.

5 — 54bi-1 Variable records {vr) Variable-length records comprising the body of data contained
in this block

Figure 7—1. Library Block Format

8062 Rev. 5
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL | PAGE

7-3

7.2.2. Library Records

Library records are variable in length. Each record is composed of a 2-byte record prefix and up to 249 bytes of record
data (Figure 7—2). The record prefix includes a length byte and a type byte. The type byte indicates the specific type of
record that follows the record prefix. The length byte indicates the size of the respective record (not including the
record prefix) up to @ maximum of 249 bytes.

BYTE NO.
1] 1] 2 ¢——p-2+rl—1 O 1 2 - 4rj—-1]1 O | 1 2 P Dp| -1
CONTENT /((
rl t vr ri t v r r t vr
D N N~
RECORD RECORD RECORD
PREFIX PREFIX PREFIX
RECORD FIELD DESCRIPTIONS
Byt_e Field Contents
Position
0 Record iength (rl) This is a binary value, less than or equal to 249, indicating the
length of the respective record (not including the record prefix).
1 Type (t) This is a type byte indicating the specific type of record. (Referto
Table 7—1.)
2 — 2+rl-1 Variable-length Body of the particular record (up to 248 bytes each)
record data {vr)

Figure 7—2. Library Record Format

7.2.3. Record Type Byte

Associated with each record within a given library file is the type byte occurring in the respective record prefix. This
byte is used to identify the record as to its code set and record particulars. A list of the record type byte vaiues possible
in an 0S/3 system library file and their meanings is presented in Table 7—1. Note that the type byte field also exists
in disk library directory items, as described in 7.4. ‘

Table 7—1. Record Type Byte Descriptions (Part 1 of 2)

Type Byte Value
{Hexadecimal)

Description

00

02

03

04

06

07

V-CON records

Nullified item records

TEXT/RLD records in object modules
Transfer records in object modules
Standard ENTRY records

Standard EXTRN records

8062 Rev. b SPERRY UNIVAC Operating System/3

UPDATE LEVEL

PAGE

7—4

UP-NUMBER
Table 7—1. Record Type Byte Descriptions (Part 2 of 2)
Type Byte Value Description
{Hexadecimal)
08 Named CSECT records
. 09 Unnamed CSECT records

0A Named common records
0B Unnamed common records

—- oC Object code ISD records
12 TEXT/RLD recordsiin load modules
13 Transfer records in ioad modules
16 Load code ISD records

- 1C Load code ISD records
24 Program source or macro/JPROC source module records
25 Compressed source code item
32 Blocked text or RLD records
40 Contro} statement records
80 Object module header records
90 Load module header/phase header records
AD Beginning of group demarcator records
A1l EOF sentinel records
A2 Macro/JPROC name header records (in directory only)
A3 Macro/JPROC module header records
A4 Program source module header records
A8 End of group demarcator records
80 Blocked load module header/phase header records
ca Shared code ENTRY (SENTRY) records
cé Shared code EXTRN (SEXTRN] records
c8 Resource records

7.3. CODE SET COMPONENTS

Code set components are defined as those records that, when combined in a particular sequence, make up a
program source module, a macro/JPROC source module, an object module, a ioad module, or a grouped code set
module. The elements, or records, comprising these code sets are listed, as follows, by module type (in
hexadecimal) and are described in detail in 7.3.1 through 7.3.4.

8062 Rev. & SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL | page ' °
A. GROUPED CODE SETS
1 beginning of group demarcator, type AO
Separate or mixed sets of source, macro/JPROC, object, or load modules
1 end of group demarcator, type A8
1 EOF code sentinel, type A1
: B. PROGRAM SOURCE AND MACRO/JPROC SOURCE MODULE CODE SETS
1 header, type A3 or A4
1 or more source items, type 24 or 25
C. OBJECT CODE SETS
1 header, type 80
1 or more linkage editor control statements, type 40 (optional)
1 or more CSECT, types 08, 09, OA, 0B
1 or more ESD, types 04, 06, 07 (optional)
1 or more text, type 02
1 transfer, type 03
1 or more linkage editor control statements, type 40 (optional)
1 or more ISD records, type OC -
D. LOAD CODE SETS
1 header, type 90 or BO (root phase definition)
1 or more SENTRY, type C4 (optional)
1 or more sets of resource and SEXTERN records, type C8 and C6 (optional)
1 or more text, type 12 or 32
1 transfer, type 13
1 or more sets phase definition (type 90 or BO), text (type 12 or 32), and transfer (type 13) records,
depending on the number of phases in the load module (optional)
1 or more {SD records, type 1C -

7.3.1. Grouped Code Sets

Library files may contain group demarcators that divide different sets of elements into specific groups. Groups may
be composed of any one code set type or may be a mixture of all sets in any order. The grouping is strictly optional and
can be performed by the librarian at the user’s option. The librarian can manipulate code within libraries on a group
basis and these files may then, in turn, be accessed by processing routines at a group level. Groups may overlap other
groups and may be nested to any level. (Figure 7—3 illustrates the nesting of groups.) Beginning and end of group
(BOG and EOG) records {type AO and AB, respectively) demarcate and name the grouped code sets. The library items
peculiar to grouped code sets are described in Tables 7—2 through 7—4.

8062 Rev. 6
UP-NUMBER

]

SPERRY UNIVAC Operating System/3

] UPDATE LEVEL | PAGE

7-6

NOTE:

GROUP
NEST
A

GROuUP | C SET
NEST GROUPY SET
B NEST EOG

D SET

r4
m
1]
|
o
Q
9]
S 0OV OONOOTUOLDWN =

m
Q
@
u,O

SET 11

s — o — ——— - -

All sets are contained within Group Nest A. Some sets are subnested and overlapped as follows:

A,

Sets 6, 7, 8, and 9 are contained within Group Nest D, which is contained within Group Nest B, which is contained within
Group Nest A. Group Nest C and Group Nest D overlap within Group Nest B.

Sets 5, 6, and 7 are contained within Group Nest C, which is contained within Group Nest B, which is contained within Group

Nest A,

Sets 4 through 10 are contained within Group Nést B, which is contained within Group Nest A.

Sets 1, 2, 3, and 11 are contained only within Group Nest A.

Figure 7—3. Example of Nested Group Code Sets

Table 7—2. Bgginning of Group (BOG) Header Record Format

the Field Contents
Position
0 Length prefix 38 (binary format)
1 Type prefix AO,
2—8 Group name Symbolic name of the logical group of code sets contained within this
group and terminated by this record (left-justified and space-filled)
10—-39 Comments Up to 30 bytes of pertinent comments {as deemed necessary to identify

the group)

UP-NUMBER

8062 Rev. 5 J

SPERRY UNIVAC Operating System/3

J UPDATE LEVELl page |7

Table 7—3. End of Group (EOG) Trailer Record Format

Byte

’ Field Contents
Position
0 Length prefix 8 (binary format)
1 Type prefix A8,
2—-9 Group name Symbolic name of the logical group of code sets contained within this
group and terminated by this record (left-justified and space-filled)
Table 7—4. End of File (EOF) Sentinel Record Format
BYtg Field Contents
Position
0 Length prefix 20 (binary format)
1 Type prefix Al
2—13 Unused 00,6
14--21 Name ENDLIBAA

7.3.2. Source Module Code Sets

Source module code sets within library files may be composed of any type of source module statements from
BAL macro definitions or own-code specifications up through specific language processor parameters and
JPROC's written in job control language. The library items peculiar to source code sets are described in Tables

7—5, 7—6, and 7—7.

Table 7—5. Source Module Code Header Record Format (Part 1 of 2}

Byte

Position Field Contents
4] Length prefix 56 (binary format)
1 Type prefix A3, or Ad,,
2 Unused 00,6
3,4 Flags 00,4, or 8O, if module has been corrected
5—13 Unused 00,5
14—-21 Module name Symbolic name of the source code set originated by this record

{left-justified and space-filled)

8062 Rev. 5
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

PAGE

Table 7—5. Source Module Code Header Record Format (Part 2 of 2}

Bytg Field Contents
Position
2224 Date In the form as it appears in the preamble
' 25--26 Time in the form: hour-minute (packed decimal less zone fieid)
27 Unused 00,5
28—57 Comments Up to 30 bytes of pertinent comments as deemed necessary to
identify the source module.
Table 7—6. Source Module Code Statement Record Format
Byt'e Field Contents
Position
0 Length prefix Variable; 2+ length
1 Type prefix 24,
2—-81 Source record Source statement
Table 7—7. Compressed Source Module Code Statement Record Format
BYt.e Fieid Contents
Position
0 Length prefix Variable, 2+ compressed source length
1 Type prefix 25,
281 Source record Compressed source statement

7.3.3. Object Code Sets

Object code within library files is composed mostly of text and relocation data generated as output of the various
language processors. This code exists in a format acceptable to the linkage editor and contains additional record
types used by the linkage editor for load module generation. Object module. records are variable in length and are
packed as densely as possible within a given library block. The desired order of appearance of all records within an

object code set is:

Object module header record

Control statement records*

*Contro/ statement records are generated by certain language processors and may be used to designate control information

necessary to a subsequent linkage editor run.

8062 Rev. 5

abnormal termination occurs in your load module.

SPERRY UNIVAC Operating System/3 7.9
UP-NUMBER UPDATE LEVEL | PAGE
All control section records (must precede associated text and entry ESDs)
All ESD records {(names must be unique)
* Al 1SD records -
All text/RLD records
Object module transfer record
Control statement records
These records are described in Tables 7—8 through 7—17;
Table 7—8. Object Code Header Record Format
B\'n.e Field Contents
Position
0 Length prefix 55 (binary format)
1 Type prefix 80,¢
2 ESID 00,¢
3 Unused
4 Flag 8it 0 set to indicate that the module has been patched
Bits 16 Not used
‘Bit?7 Set to indicate that the object module is reentrant
58 Address Assembled or compiled origin of the object moduie
9-—-12 Module length Total number of bytes required for the object module
13—20 Module name Symbolic name of the object module originated by this record
{teft-justified and space-filied)
21-23 Date In the form as it appears in the preamble
24,25 Time Hour-minute (packed decimal less zone field)
26 Unused 00,6
27—56 Comments Up to 30 byes of pertinent cornments as deemed necessary to identify
the object module
ISD records are also generated by certain language processors and are used by JOBDUMP to produce a formatted dump if an -

8062 Rev. 5
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL | PAGE

7~

10

Table 7—8. Object Code Control Section Record Format

Byte Field Contents
Position
0 Length prefix 19 (binary format)
1 Type prefix 08,5, 08¢ OA,;. or 0B,¢ (See Table 7—10.)
2 ESID External symbol identification assigned to this control or common
section
3.4 Flag bytes 8000, indicates a deferred length specified in the transfer record
of this object module; ignore bytes 9—12
5—8 Section address Compiled address of the start of this control or common section
9-—12 Section size Total length in bytes of this contro! or common section
13—20 Section name Symbolic name of the control or common section (left-justified and
space-filled)

Table 7—10. Possible Contro!/ Section Record Types

Field Contents
Type of Control Section Record Record !
Type Length 2 34 5-8 9-12 13-20
0000, ’ c
i ontrol
Named control section ‘ 08 ESID | o 8000, Address Length section name
Unnamed control section 09 “ " Bianks {40,)
19

Named common section 0A Common section name
Unnamed common section o8 Blanks (40,¢)

Table 7—11. Object Code ESD Record Format

Pc?syi::: n Field Contents
o] Length prefix 15 (binary format)
1 Type prefix 04,5, 06,4 or 07, {(See Table 7—12))
2 ESID External symbol identification assigned to this ESD reterence
3.4 Unused 00,¢
5-—-8 Relative address Processor-generated address or value assigned to this ESD reference
9—16 ESD name Symbolic name of the ESD reference

8062 Rev. 5 SPERRY UNIVAC Operating System/3 7-11

UP-NUMBER UPDATE LEVEL { PAGE

Table 7—12. Possible ESD Record Types

ESD Record Record Field Contents

Type Type Length 2 34 5-8 9-16
ENTRY 04 ESID 0000, Assembled address Symbol
EXTRN 06 " o " " o o
V-CON 07 " v “ " "

Table 7—13. Object Code ISD Record Format

pz:fon Field Contents

0 Length prefix Variabie

1 Type prefix Oce

2 ESID External symbol identification of CSECT assigned to the 1SD
3 Flag Bits 0—1 unused

Bit 2 set to indicate Type 3 ISD
Bit 3 set to indicate Type 4 ISD (comment)
Bits 4—7 unused

4 Flag Unused
5—8 Compile origin Processor generated address assigned to this 1SD
9—246 Attributes Symbolic name and attributes of the ISD item

8062 Rev. 5 IVAC Operating System/3 _
UP-NUMBER SPERRY UN A pe g Y UPDATE LEVEL PAGE7 12
Table 7—14. Object Code Text/RLD Record Format
BY‘.G Field Contents
Position
, 0 Length prefix Variable: 7 + text iength + RLD length (binary format)

1 Type prefix 02,6

2 ESID External symbol identification with which the text data in this record
is associated.

3 Text length Number of bytes less one byte of text data in this record

4 RLD length Number of bytes of relocation data in this record(a multiple of three
bytes)

5 Flag 01, if patched text item

6—8 Relative address Processor-assigned relative address of first byte of textdata in this
record

9—9+ Text data Instructions and/or data generated by a processor and refative to the

Text iength ESID specified

9+ text length RLD data Three byte relocation masks used to modify the various fields of

+ RLD iength preceding text data in this record (See Table 7—15.)

backward thru

9 + text length

Table 7—15. Relocation Mask Formats
Byt‘e Field Contents
Position

0] ESID External symbol identification of the external reference whose
subsequent value will be used to modify the addressed field

1 Flag Designator byte reflecting type, size, and position of the
modification field (Figure 7—4)

2 Address Relative record pointer indicating the most significant (leftmost)
byte of text data at which the modification is to begin (first text
byte, O0; 2nd byte, 1, etc.)

NOTES:

1. Each RLD data field in a given text record is composed of three bytes of relocation information designating the field size, field
position, and associated external index relevant to the modification of the addressed data bytes in this text record. The fieid
may be positively or negatively relocated at link edit time and can be modified by one or more relocation masks. The text and
its associated relocation masks always must appear within the same logical record.

2. Load module relocation masks are identical, except that the ESID field represents the phase number assigned to the

definition referenced by the address constant in the linked load module.

8062 Rev. 5 SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL | Page 3
RLD FIELD
X Y 2
Address (in hexadecimal} pointing to the leftmost byte
of the field to be modified. The position is relative to
the first byte of text in the record (0 refers to the 1st
byte, 1 1o 2nd, e1c.}
Y, Yo Ya Y, Ye Yo Yo ¥ FLAG
1 2 '3 4 5 '6 7 8 BYTE
——— T m—
Y4 -Y8: This 5-bit field indicates the
number of bits to be modified.
This number is one less than
the actual number of bits
used (0-31). The 7-, 15-, 23-,
and 31-bit modifications
may apply only to ioad
module RLD.
Y3: 0 - Rightmost bit of the modification
field is on a byte boundary. (Always
0 for load module RLDs}.
1 - Rightmost bit of the modification
field is on a hatf-byte (hexadecimal)
boundary.
Y2: 1 - V-type address constants
0 - Others {always O for load
module RLDs)
Y.I : Type of relocation
0 - Addition (+)
1 - Subtraction {-)
L— ESID: The ESID referring to the ESD entry in the input moduie

on whose value the relocatable data depends.
1f a load module RLD, this byte reflects the phase number of
the phase supplying the definition for this reference.

Figure 7—4. Relocation Mask Field

8062 Rev. 5 SPERRY UNIVAC Operating System/3 7-14
UP-NUMBER UPDATE LEVEL | PAGE
Table 7—16. Object Code Transfer Record Format
B\'{t'e Field Contents
Position
0 Length prefix 11 + RLD (binary format)
1 Type prefix 0346
2 ESID Externa! symbol identification assigned to the transfer reference
3 Text length 3 (binary format)
4 RLD length Number of bytes of relocation data in this record {a multiple of 3
bytes)
5 Flag 80, if deferred iength is present in bytes 6—8
40, if the transfer record does not terminate the object
module (1 or more control statements follow)
6—8 Deferred iength One CSECT or common section (named, unnamed, or blank) may have
its respective record flagged to indicate that the object module
transfer record specifies the actual length
9—12 Transfer address Processor-generated object module transfer address
13—13 + RLD RLD data Relocation data used to modify the transfer address
length
Table 7—17. Object Code Control Statement Record Format
Byt'e Field Contents
Position
0 Length prefix 80 (binary format)
1 Type prefix 40,5
2--81 Contro! statement Source contro! statement
NOTE:

Any control statements appearing in an object module must directly follow a header record or directly follow a transfer record.
The latter case is indicated by the appropriate setting of the flag byte in the transfer record.

8062 Rev. 5
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

PAGE

7—-

15

7.3.4. Load Code Sets

Load modules are produced by the linkage editor and are loaded in the system at program execution time by the
system load facility. Load programs may be composed of more than one phase or program segment. The initial phase
is called the root phase. The composition of each phase of a load program is:

[a phase definition record;

L] one or more SENTRY records (optional);

[one or more resource records (optional);

L] one or more SEXTRN records {(optional);

L] one or more ISD records {optional);

L] one or more text/RLD records; and

- a transfer record.

All load programs (segmented or not) contain root phases. If the automatic overlay mechanism is used, standard text
records reflecting that facility are generated into the root phase. (Automatically included modules also become
resident in the root phase.) Each phase segment contains its own transfer record signaling termination of the phase
and a possible start of execution address. The load code set records are described in Table 7—18 through 7—22.

Table 7—18. Load Code Phase Definition Record Format (Part 1 of 2)

Byt! Field Contents
Position
0 Length prefix 67 (binary format)
1 Type prefix 80 16
2 Phase number Linkage editor assigned phase number of this phase
3,4 Flag Byte 3
Bit 0 Set in root phase header to indicate ciear module
partition as defined in bytes 27-30
Bit 1 Set to indicate that the load module calis reentrant
code
8it 2 Set 10 identify the load module as reentcant
Bits 3~7 Not used
Byte 4
Bit0 Set to indicate that module has been patched
Bits 1—-7 Not used
5-8 Phase load address Linkage editor assigned relative origin of this phase
9-12 Phase fength Total number of bytes required for this phase segment; value represents
the highest zero relative address assigned to this phase
13-20 Phase name Symbolic name assigned to this loadable phase segment
21-23 Date Month-day-year (packed decimal less zone field)
24,25 Time Hour-minute (packed decimal less zone field)

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

PAGE

7~

16

Table 7—18. Load Code Phase Definition Record Format (Part 2 of 2)
Byu Fieid Contents
Position
26 SENTRY count Number of SENTRY records contained in the load module
27-30 Module iength Totat number of bytes required for loading the module; value
represents the highest zero relative address assigned to the load
module
31-38 Alias phase name Symbolic name assigned to this ioadable phase segment by the
linkage editor OVERLAY or REGION controt statement that created
the phase
39-68 Comments Up to 30 bytes of pertinent comments as deemed necessary to
identify the load module segment
Table 7—18. lLoad Module Shared Code Record Formats
Contents
Byte Field
Position ie Resource SEXTRN SENTRY
Records Records Records
0 Length prefix 15 (binary format) 15 (binary format) 15 (binary format}
1 Type prefix C816 0616 0416
2 Number Resource SINDEX SENTRY
number number number
3.4 Unused
5-8 Resource Byte 5 has resource number Link
size Bytes 6—8 unused address
9-16 Resource name SEXTRN name left- SENTRY name left-
left-justified, justified and justified and
and zero-filled blank-filled blank-filled

Table 7—20. Load Code ISD Record Format (Part 1 of 2)

Byte

Position Field Contents
0 Length prefix Variable
1 Type prefix ic
2 Phase number Linkage editor assigned phase number of this phase
3 Flag Bit O set to indicate Type 1 {SD (CSECT)
Bit 1 set to indicate Type 2 ISD (comment)
Bit 2 set to indicate Type 3 ISD
Bit 3 set to indicate Type 4 ISD {comment)
Bits 4—7 unused
4 Flag Unused
5—8 Link origin Linkage editor assigned relative origin for this ISD record

8062 Rev. 5
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

Table 7—20. Load Code ISD Record Format (Part 2 of 2)

BY_‘? Field Contents
Position
9—12 Compile origin Language processor generated address to the ISD record
13—16 Size Size of this ISD record
17—250 Attributes Symbolic name and attributes of this ISD record
Table 7—21. Load Code Text/RLD Record Format
B\./t.e Field Comments
Position

6—8

9—9+ text length

9 + text length + RLD
length backward thru
9 + text length

Length prefix
Type prefix
Phase number
Text length

RLD iength

Flag

Load address

Text data

RLD data

Variable: 7 + text length + RLD length (binary format)

12,

Linkage editor assigned phase number of text data in this record
Number of bytes less 1 of text déta in this record

Number of bytes of relocation data in this record (a multiple of 3
bytes)

01,¢ if a patched text item

Linkage editor assigned phase segment load address assigned to the
first byte of text data in this record

Instructions or data to be loaded relative to the load address

Three byte relocation masks used to modify text in the record
(Table 7—15)

Table 7—22. Losd Code Transfer Record Format

Byte
Position

Field

Comments

5—-8
9—12

13—13 + RLD length

Length prefix
Type prefix
Phase number
Text iength

RLD length

Unused
* Transfer address

RLD data

11 + RLD data length (binary format)

13:6

Linkage editor assigned phase number of this phase
3 (binary format)

Number of bytes of relocation daté in this record (a muiltiple of 3
bytes)

0046
Linkage editor assigned phase segment transfer address

Relocation data used to modify the transfer address

PAGE

8062 Rev. 5
UP-NUMBER

SPERRY UNIVAC Operating System/3

7-18

UPDATE LEVEL PAGE

7.3.5. Block Load Code Sets

Unlike the standard load module, which has data in two partitions, the block load module has data in three
partitions. The data in partitions one and two are similar to the standard load module data in that they are
structured as index and data partitions. However, the data in partition three is not structured and is made up of
contiguous text data, free of any control information. In other words, partition three is made up of the actuai
block module text records. The data in partition two describes the boundaries of each phase in partition three.
The block module text data (partition three) is in sequential load order and is binary zero-filled when appropriate.

The order of all modules within the block load code set is shown in Tables 7—23 through 7—28.

Table 7—23. Partition One—Directory Entry

Byte

Position Field
0—-7 Symbolic name
8 Type flag (BO,¢)
9—11 Block relative pointer
12 Record relative pointer

Table 7—24. Partition Two — Block Load Module Header Record (Part 1 of 2)

Byte .
Position Field Contents
0 Length prefix 75 (binary format)
1 Type prefix B0,¢
2 Phase number Linkage editor assigned phase number of this phase
3 Flag 80, indicates clear module partition as defined in bytes 27—30.
40, indicates that this module calls shared code.
20, indicates that this is a shared ioad module.
4 Flag 80,¢ indicates this module has been patched.
5—8 Phase foad Linkage editor assigned relative origin of this phase
address
912 Phase length Total number of bytes required for this phase segment; value
represents the highest relative zero address assigned to this phase.

8062 Rev. 5
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

PAGE

7-19

Table 7—24. Partition Two — Block Load Module Header Record (Part 2 of 2)

Byt'e Field Contents
Position

13—-20 Phase name Symbolic name assigned to this loadable phase segment

2123 Date in the form as it appears in the preamble

24 25 Time Hour-minute {packed decimal less zone field)

26 SENTRYs Number of SENTRYSs recorded

27—-30 Module length Total number of bytes required for loading the module; value
represents the highest relative zero address assigned to the load
module.

31—-38 Alias phase name Symbolic name assigned to this loadable phase segment by the
linkage editor OVERLAY or REGION control statement that created
the phase

3968 Comments Up to 30 bytes of pertinent comments as deemed necessary to
identify the ioad module segment

6S—71 Block number Pointer to text block {beginning of this phase in partition
three)

72—74 Block number Pointer to first text or transfer block of this phase in partition
two

75 Dispiacement Pointer to first text or transfer record of this phase in partition
two

76 Checksum XOR of first byte of each text biock of partition three

8062 Rev. 5
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL l PAGE

7-20

Table 7—25. Partition Two — Block Load Module RLD Record

P:s‘vlzieon Field Contents
0 Length prefix 1 + no. of RLD times 5 (binary format)
1 Type prefix 32
2 Length of RLDs Number of RLD masks times 5
3(3+nx5—1) RLD masks 5 byte RLD masks (see Table 7—26)
Table 7—26. RLD Mask
PoBs‘i'tti:m Contents
0 Phase number (in load module RLD mask)
1 Bits (in load module RLD masks)
2—4 Load module relative address

7-21

8062 Rev. 5 SPERRY UNIVAC Operating System/3
UP-NUMBER UPDATE LEVEL | PAGE
Table 7—27. Partition Two — Block Load Modules Nonphase Text/RLD Record
BY‘t.e Field Comments

Position
0 Length prefix Variable: 7 + text iength + RLD length {binary format)
1 Type prefix 124
2 Phase number Linkage editor assigned phase number of text data in this record
3 Text iength Number of bytes less 1 of text data in this record
4 RLD length Number of bytes of relocation data in this record {(a muitiple of 3

bytes)
5 Flag 01,5 if 2 patched text item
6—8 Load address Linkage editor assigned phase segment load address assigned to the
first byte of text data in this record
8—9 + text Text data instructions and/or data to be loaded relative to the load address
length)
9 + text RLD data Three byte relocation masks used to modify text in the record (Table
length + 7—15)
RLD ilength
backward
thru 8 +
text length
NOTE:

Nonphase text records are present in block load modules when text/RLD items are detected that are not part of a given phase.
Such text/RLD items outside the phase being loaded are to be loaded at the same time.

7-22
8062 Rev. 5 SPERRY UNIVAC Opersting System/3
UP-NUMBER UPDATE LEVEL | PAGE
Table 7—28. Partition Two — Block Load Module Transfer Record
Bytg Field Comments
Position

0 Length prefix 11 + RLD data length (binary format}

1 Type prefix 13

2 Phase number Linkage editor assigned phase number of this phase

3 Text length 3 (binary format)

4 RLD length Number of bytes of relocation data in this record (a multiple of

3 bytes)

5—8 Unused 00,6

9—12 Transfer address Linkage editor assigned phase segment transfer address

13—-13 + RLD RLD data Relocation data used to modify the transfer address

length

7.4. DISK LIBRARY DIRECTORIES

Library files existing on disk are supplemented with a disk file directory composed of 13-byte records, each of
which points to a specific demarcation record in the file. The directory precludes the need for scanning the
library file to obtain a needed record. instead, directory scanning suffices until the program is located. The
pointers existing within the directory explicitly designate the position of the required element within the library
file data partition. The format of the library file disk directories exists as a function of the needs of the prime
routines accessing the directories. The directory format differs in record layout from the prime data partition of a
library file, in that directory records are fixed, 13-byte blocked items. The directory block prefixes are identical to
those of the file partition.

Disk directory records are composed of:

] a name field;

L a type indication; and

. a file pointer

Directory entries are made whenever the respective file record is:

L a module header for program source, macro/JPROC, or object code;

= a phase definition for each phase of a load module;

] an entry ESD record for object code;

L 8 beginning-of-group (BOG) or end-of-group (EOG) demarcator.

8062 Rev. 6
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

PAGE

7-23

= a named CSECT record for object code; or

- a proceduré name for a macro module in proc format. (This is the directory entry for which there is not a
unique corresponding record in the prime data partition. This item points to the module header record.)

7.4.1. Directory Format

System libraries are built and managed by using the system access technique (SAT) access method. Thus, the first
partition of each standard library file in the system consists of an index of pointers to the prime data area of the file
described by the second partition. This directory index consists of a series of 13-byte slots, each pointing to the
corresponding record in the prime data area. The directory blocks may be 251 bytes in length; the last four bytes of
each directory block are unused when the block is full (contains 19 items). As many directory blocks as are needed to
accommodate the needed number of index entries for a given library are available. The last index entry for each
library directory is the index to the EOF record in the prime data partition. Figure 7—5 illustrates the disk library
file structure and the format of each directory record.

INDEX PARTITION

DIRECTORY RECORD

8-BYTE
SYMBOLIC
NAME

1-BYTE 3BYTE

TYPE BLOCK
FLAG RELATIVE
POINTER

1-BYTE
RECORD
RELATIVE
POINTER

DIRECTORY
BLOCK

DIRECTORY
BLOCK

DIRECTORY
BLOCK

vwfv

PRIME DATA
PARTITION

Figure 7—5. Disk Library File Structure

DATA
BLOCK

DATA
BLOCK

DATA
BLOCK

The symbolic name field (bytes 1 through 8) of adirectory record is used as the identifier of the module or demarcator
existing in the prime data partition. The type field specifies the demarcation flag for the respective record. The values
of the type flag field correspond to the record type field in the prime data area. The type flags possible in an index item

are listed in Table 7—29.

8062 Rev. 5 SPERRY UNIVAC Operating System/3

UP-NUMBER

UPDATE LEVEL

PAGE

7-24

Table 7—29. Disk Directory Index Type Flags

Hexadecimal Value

Demarcation

00

o8

80

90

AO

A1l

A2

A3

A4

A8

B8O

Nullified item

ENTRY name (object module)*

CSECT name (object module)*

Object module header

Phase header (load module)

Beginning of group demarcator

EOF sentinel

Macro/JPROC name header

Macro/JPROC module header

Program source medule header

End of group demarcator

Block module header record

*Multiple duplicate names can appear in a library file directory.

The block relative pointer to the prime data area is a relative block number within the second file partition
indicating the block containing the respective record. The record relative pointer is the number of bytes from the
beginning of the block to the beginning of the record. The record relative pointer and biock relative number are
computed when the prime data area is constructed. The pointers for macro name header index items (in the proc
format) always point to the beginning of the proc module regardless of where the name directive is contained

within the body of the moduie.

7.5. CARD LIBRARIES

The librarian can punch libraries into cards and, in turn, access card files are input. Source module items,
element headers, phase definitions, CSECT, ESD, ISD, PHASE, and TRANSFER records are punched directly.
Text/RLD records in object and load elements are treated specially since the record size is variable. Thus,

punched card formats for text/RLD records may require multiple punched card records.

7-~25
PAGE

A
UPDATE LEVEL

UP-NUMBER

8062 Rev. § J SPERRY UNIVAC Operating System/3

e

Whenever object or load modules are punched into cards, a 5-digit sequence number is punched in columns 1
through 5, providing a card deck sequence check facility. When punching source modules, the iibrarian creates 80-
byte source records (the source module header is eliminated) directly from the library.

When librarian functions require punched card output, the name PUNCH must be specified on the LFD job control

statement. With the punched card output, the librarian creates an ELE card to precede the module and an EOD card
to end the module. The ELE card will be in the format;

LABEL I AOPERATION A ' OPERAND

l ELE ' D1, module type, module name

When filing object or load module card libraries, the librarian reconstructs the module from the card decks, checking
the sequence number of each card and the record types within each module. When source modules are created from
cards, the appropriate headers are created, prefixes attached, etc.

7.6. TAPE LIBRARIES

The formats for tape libraries are the same as those for disk libraries except that:
L tape libraries have only a data partition, no directory partition; and

s modules having the same name and type may exist in the same tape library. However, the first module

p encountered is the one processed.

Because of the structure of a tape library, once a module is written to a library, that module cannot be deleted or
altered in any way in that same library. Therefore, the input library and a new output library must be specified
when making changes to a tape library. This new library can be another tape, disk pack or punched cards. The
following control statements are not supported for a tape library because the operation takes place in the input
file: BLK, DEL, PAC, REC, REN, and REPRO.

Your tape libraries must have the standard header and trailer label records and the name specified in the LBL job
control statement must agree with the file header 2 label of your tape library. The data management user guide,
UP-8068 {current version) provides the information concerning the header and trailer label records associated
with tape libraries. ’

All tapes can be prepped using either the prep option of the VOL job contro! statement or through the tape prep
routine (TPREP, Section 9).

7.7. DISKETTE LIBRARIES

The librarian can either be input from a diskette, or punch to a diskette. Diskette library processing is the same
as card library processing (7.5.).

}

{

SDI5 % FRINT AN LEKRUK MESOSADBL AND TERMINATE RCEADING FCR THIS LIBRARY .
: 516 *
2840 00420 517 GEVSPACE L S yNEXTSPAC STARY OF AVAILABLE SPACE
1000 - 00009 518 INCRSPAC LA 1540194135 - END OF DESIRED ENTRY
24 A4 OOu Ay 519 C 15,ATABEND - 1S THERE ROOM?
237¢ 00376 520 BH CVERFLOW NO
24 A0 004 AD 521 (3] 15+NEXTSPAC UPDATE NEXT SPACE POINTER
522 BR 14 EXTT
2545 278F 00549 0078C 523 OVERFLOW MVC LINEU(3S),=CL39"#%%3 WMEMORY OVERFLOW - INPUT TERMINATED®
229 002sC 524 " "BAL 14,PRINT PRINT ERROR MESSAGE
2230 00230 525 B PRNTXREF START XREF IMMEDIATELY
526 *
527 % LIBRARY FILE GET ROUTINE
£28 * THE CURRENT RECORD, IF A SOURCE RECORD, WILL BE PROPERLY EXPANDED
529 * INTO ™CARD® - CUTHRERWISE IT WILL BE LGADED ! “CARD™ &S IS. o
T 830 9 IN EITHER CASE, THE RECORD TYPE CODE wILL 8 CED INTO “RECTYPE®, 7~
53} % 1F THE RECCRD IS AN EOF SENTINEL, THIS ROUTINE WILL BRANCH
532 % DIRECTLY TU “PRNTXREF™,
: 523 »
24AC OC4AC 534 GETS ST 14,SAVELS SAVE RETURN ADORESS
249¢ ocuss 525 L 15+8PSOUKCE __CURRENT POSITION IN BLOCK
ZASATTTT 06758 S %6 T T CTTT T 15, A I0L1BINeSY T START OF A NEW BLOCK?
2384 00384 517 BH GETSREC ND
538 WAITF LIBIN WAIT FOR COMPLETION OF READ
S54yy SR 141
ZR9F 008GF 545 1c 1.JOLIRIN+3 BLOCK LENGTH
2aAl 00881 546 LA 1,J0LIBIN®S (]} ;
Sene O AR BT T ey 3 a0 CKERG ~CBETERT ERD ¥ BLOCK"
2498 00453 S48 L 15,8P SCURCE RESTORE REGISTER 1S *
26ED FOO01 QUGED 00001 549 GETSREC Mv(C RECTYPE,1t15) RECORD TYPE CODE
24T 8 O04F 8 550 MV1 CARD.C* * CLEAR RECORD IMAGE ARER
2uFS 24F-8 OGUFS OO4FS 551 MVC CARD+1(79),CARD
52 SR 11 . :
GG 60000 583 T 1 RECORTLENGTH — -
F 002 00002 5y LA 15,201,151} SKIP OVER RECORD PREFIX
55 LTR 141 IS RECORD LENGTH Z2ERgQ?
ZU 7€ 0064256 556 BZ GETSREXT YES - THERE 'S NOTHING TO MOVE
24F8 00uf3 557 LA 14,CARD R18 SCANS CARD IMAGE
2eFD OC6ED 553 cLl RECTYPE 42%25°* COMPRESSED SOURCE RECORD?
TRRCC 003FC 559 BE GETSCOMP o " YES - USE SPECIAL ROUTINE
|
CROSS-REFERENCE UTILITY PAGE 1
T CODE ADDR1 ADDR2 LINE SOURCE STATEMENT 0S/3 ASHM 17/12/1:
.S60 BCTR 1,0 : DECREMENT FOR EXECUTE
23F¢ _003F6 s€l EX 1sGETSMOVE LOAD RECORD IMAGE &S IS
FOO1 0000} 562 LA 15:1114151} INCREMENT BLOCK POINTER
26ED 0G6ED S63 i RECTYPE ,X%A&1" END OF FILE SENTINEL?
2426 00426 564 BNE GETSREXT ND
2230 00230 565 B8 PRNTXREF START PRINTING CROSS-REFERENCE
ECO0 FOO0O0 00000 00000 S66 GETSMOVE MVC 0i0,18}1,0815) EXECUTED TO MOVE PART OF RECORD
S67 % EXPANSION ROUTINE FOR COMPRESSED SOURCE RECORDS
S¢8 GETSCOMP LR 0,15 CURRENT POSITION IN BLOCK
569 AR’ C,! ADD RECORD LENGTH
24838 00488 570 ST 04 WORK THE RECORD ENDS HERE
FCO1 00001 571 GETSCMPL IC 111415} NUMBER OF pLANKS
572 AR 14,1 INCREMENT CARD IMAGE POINTER
FOOO 00000 573 1C 1,00,15) LENGTH OF FOLLOWING TEXT
F002 00002 574 LA 15,2t,151 SXIP OVER CONTROL FIELD
23F6 003F6 576 EX 1 ,6ETSMOVE MOVE FOLLOWING TEXTY
EQO1 0000) 576 LA 19,161,14) INCREMENT CARD IMAGE POINTER
FOOi 00001 €77 LA 15,111,1%) INCREMENT BLOCK PDINTER
2488 00488 578 , C 15 4MORK END OF COMPRESSEpD RECORD?
2504 00404 579 BL GETSCMPL NO - CHECK FOR MORE
2898 00458 S80 GEISNEXT ST 15+8BP SOURCE UPDATE BLOCK POINTER
24 A8 004AS8 581 c 15+BLOCKEND END OF BLOCK?
2444 LT 582 BL GETSX NO - EXIY o
LYk GET TIBIN,LIBINZ START REAOING THE NEXT aLucu T
2498 2753 008498 00758 590 Ve BPSOURCE,ZA{IDLIBIN®S) RESEY BLOCK POINTER
29AC 004 AC $61 GETSX L 19,SAVELN RESTORE RETURN ADDRESS
52 BR 1% EXIT
| — 593 =*
- 594 * 1/0 ERRCOR ROUTINES
€95 % .
2585 27BS 00549 OO07BS 566 ERLIBIN MVC LINEt23)4=CL23*#3%s LIBIN 1/0 ERROR aV°*
2438 00488 567 B 1 18 ,4QRK
2561 2488 00561 00a83 5§93 UNPK LINESZ4(17}) 4WORK(S)
2561 25ED 00561 OOSED 569 R LINE+28(6 JHXTR-X *FO°
2567 27CC 00567 007CC 600 MVC LINE+430{171,3CL17* — STATUS svres =
25719 2822 00579 00822 601 UNPX LUINE«RET8) ,LTBINSSO (3T
|25 79 2SED 00579 OOSED 602 R “LINE+S4BIM) HXTR-X*FO*

