
l

8062 Rev. 5
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

7. Program Library Details

7.1. GENERAL

The system program library files, which may be composed of program source. macro/ JPROC source, object, and
load modules. are created and used by the various components of the SPERRY UNIVAC Operating System/3
(OS/3) during the normal course of system operation. It is these library files that the librarian services and
maintains based on particular system needs and constraints determined by the user.

For the system user to realize the full extent of the capabilities of the librarian. he must be aware of the organization
and content of the program libraries in the system. Thus. the organization and content of the system program library
are presented in this section of the manual.

The user also may elect to establish a program library of his own. If so, the librarian also can be used to maintain
'-' the object. program source. macro/JPROC source. and load code sets contained in this library, under the same

guidelines it uses when servicing the system program library files.

7.2. LIBRARY FILE LAYOUT

The system library is composed of five permanent disk files and one temporary disk file for each job being
processed in the system. All the files consist of at least a label, a single element, and an end-of-file marker; they
are structured to support fixed-length block, variable-length record data and contain a directory partition. The
directories are in fixed-length block, fixed-length record format.

Each of the five permanent files are 3-partition SAT files. One partition is used to maintain a directory for the
file, and the other two are used to store the program modules contained in the file. When these files are
initialized by the librarian, the space allocated for each file is distributed as follows:

• Two percent is allocated for the directory partition.

• Forty-eight percent is allocated for the prime data partition.

• No space is allocated for the second data partition.

• Fifty percent of the space allocated to each file is initially unassigned.

This initial allocation technique allows the librarian to assign file space to the various partitions in a file on an
.. as needed" basis, and thus prevents space from being allocated for a partition that may never be used. (At
present, only block load modules require the use of a third partition.) Thereafter, when a partition becomes full
and requires more space, the librarian extends the partition using some of the free space it has in reserve. Only
the partition that was full is extended, and the amount of the extension is based on the file extension increment
specified on the EXT job control statement used to create the file. When all the free space is allocated, the
dynamic file expansion capability of the supervisor is called on to provide additional free space for the file in the
same increments previously used to effect the file extensions performed by the librarian.

7-1

8062 Rev. 5
UP-NUMBER

SPERRY UNIVAC Operating System/3 A 7-2
UPDATE LEVEL PAGE

t

The job temporary library files are special files established by job control at the time jobs are input to the system
for processing. These files are dynamic in nature, in that their size and structure are variable and they exist only
until the job is terminated.

Any programs or data that may be in these files are unrecoverable once their associated jobs have been
terminated.

In addition, it should be remembered that your files, excluding system files, may be sharable (depending on the
FILELOCK parameter you specified during supervisor generation). See the system installation user
guide/programmer reference, UP-8074 (current version). Because OS/3 allows multiple "writers" to
concurrently access sharable files. these files could be destroyed in a multiprogramming environment. It is
recommended therefore, that critical user files be prefixed by SLOKnn to prevent them from being accessed
concurrently by multiple writer programs.

Providing information needed to create new files or extending existing files on disks is the function of the EXT
job control statement. See job control user guide, UP-8065 (current version) for details on this and other job
control statements.

7.2.1. Library Blocks

library blocks are fixed-length, 256-byte blocks (Figure 7-1). Each block is composed of a 5-byte block prefix
and up to 251 bytes of variable-record data. The block prefix includes a 3-byte logical block number, a 1-byte
value indicating a block length (not including the block prefix}, and a 1 -byte check sum reflecting an exclusive OR
for relevant data. Records within the block are variable in length up to a maximum size of 251 bytes for any given
record including the record prefix.

BYTE
NO. 0-2 3 4 5 255

CONTENT bbb bl c vr v J vr

~

BLOCK PREFIX

BLOCK FIELD DESCRIPTIONS

Byte
Field Contents

Position

0-2 Block number (bbb) Starting with 1 for the initial block, this is the logical block
sequence number.

3 Block length (bl) This is a binary value less than or equal to 251, indicating the
number of bytes of relevant record data within the body of this
block. not including the block prefix.

4 Check sum (c) This is a binary value reflecting an exclusive OR of all bytes
in the block.

5 - 5+bl-1 Variable records (vr) Variable-length records comprising the body of data contained
in this block

Figure 7-1. Library Block Format

8062 Rev. 5
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

7.2.2. Library Records

Library records are variable in length. Each record is composed of a 2-byte record prefix and up to 249 bytes of record
data (Figure 7-2). The record prefix includes a length byte and a type byte. The type byte indicates the specific type of
record that follows the record prefix. The length byte indicates the size of the respective record (not including the
record prefix) up to a maximum of 249 bytes.

BYTE NO.

CONTENT

0 1

rl t

~

RECORD
PREFIX

Byte
Position

0

,

2 - 2+rl-1

2 2+rl-1 0 1 2 2+rl-1 0 1 2 2+rl-1

vr rl t v] [_ r rl t vr

-...,__... ~

RECORD
PREFIX

RECORD
PREFIX

RECORD FIELD DESCRIPTIONS

Field Contents

Record length (rl) This is a binary value, less than or equal to 249, indicating the
length of the respective record (not including the record prefix).

Type (t) This is a type byte indicating the specific type of record. (Refer to
Table 7-1.)

Variable-length Body of the particular record (up to 249 bytes each)
record data (vr)

Figure 7-2. Library Record Format

7.2.3. Record Type Byte

Associated with each record within a given library file is the type byte occurring in the respective record prefix. This
byte is used to identify the record as to its code set and record particulars. A list of the record type byte values possible
in an OS/3 system library file and their meanings is presented in Table 7-1. Note that the type byte field also exists
in disk library directory items, as described in 7.4.

Table 7-1. Record Type Byte Descriptions (Part 1 of 2)

Type Byte Value Description
(Hexadecimal)

00 Nullified item records

02 TEXT /RLD records in object modules

03 Transfer records in object modules

04 Standard ENTRY records

06 Standard EXTRN records

07 V-CON records

7-3

8062 Rev. 6
UP·NUMBER

SPERRY UNIVAC Operating System/3

Table 7-1. Record Type Byte Descriptions (Pan 2 of 2)

Type Byte Value Description
(Hexadecimal)

08 Named CSECT records

09 Unnamed CSECT records

OA Named common records

OB Unnamed common records

oc Object code ISO records

12 TEXT/RLO recordsiin load modules

13 Transfer records in load modules

16 Load code ISO records

1C Load code ISO records

24 Program source or macro/JPROC source module records

25 Compressed source code item

32 Blocked text or RLD records

40 Control statement records

80 Object module header records

90 Load module header/phase header records

AO Beginning of group demarcator records

A1 EOF sentinel records

A2 Macro/JPROC name header records (in directory only)

A3 Macro/JPROC module header records

A4 Program source module header records

AB End of group demarcator records

BO Blocked load module header/phase header records

C4 Shared code ENTRY (SENTRY) records

cs Shared code EXTRN (SEXTRN) records

CB Resource records

7.3. CODE SET COMPONENTS

UPDATE LEVEL PAGE ?-4

Code set components are defined as those records that. when combined in a particular sequence, make up a
program source module, a macro/ JPROC source module, an object module, a load module, or a grouped code set
module. The elements, or records, comprising these code sets are listed, as follows, by module type (in
hexadecimal) and are described in detail in 7.3.1 through 7.3.4.

L

8062 Rev. 5
UP-NUMBER

SPERRY UNIVAC Operating System/3

A. GROUPED CODE SETS

1 beginning of group demarcator, type AO
Separate or mixed sets of source, macro/ JPROC, object, or load modules
1 end of group demarcator, type AB
1 EOF code sentinel, type A 1

B. PROGRAM SOURCE AND MACRO/JPROC SOURCE MODULE CODE SETS

header, type A3 or A4
or more source items, type 24 or 25

C. OBJECT CODE SETS

1 header, type BO
1 or more linkage editor control statements, type 40 (optional)
1 or more CSECT, types OB, 09, OA, OB
1 or more ESD, types 04, 06, 07 (optional)
1 or more text, type 02
1 transfer, type 03
1 or more linkage editor control statements, type 40 (optional)
1 or more ISO records, type QC

D. LOAD CODE SETS

header, type 90 or BO (root phase definition)

UPDATE LEVEL PAGE
7

- 5

'-" or more SENTRY, type C4 (optional)
or more sets of resource and SEXTERN records, type CB and C6 (optional)
or more text, type 12 or 32
transfer, type 13
or more sets phase definition (type 90 or 80), text (type 12 or 32), and transfer (type 13) records,

depending on the number of phases in the load module (optional)

1 or more ISO records, type 1 C

7.3.1. Grouped Code Sets

Library files may contain group demarcators that divide different sets of elements into specific groups. Groups may
be composed of any one code set type or may be a mixture of all sets in any order. The grouping is strictly optional and
can be performed by the librarian at the user's option. The librarian can manipulate code within libraries on a group
basis and these files may then, in turn. be accessed by processing routines at a group level.Groups may overlap other
groups and may be nested to any level. (Figure 7-3 illustrates the nesting of groups.) Beginning and end of group
(BOG and EOG) records (type AO and AB, respectively) demarcate and name the grouped code sets. The library items
peculiar to grouped code sets are described in Tables 7-2 through 7-4.

8062 Rev. 6
UP-NUMBER

NOTE:

SPERRY UNIVAC Operating System/3

GROUP

NEST

A

-----------------------BOG A

GROUP

NEST

B

SET 1

SET 2
SET 3

-----------------BOG B

GROUP

NEST

c

SET 4
---------BoG c

NEST

D

SET 5
BOG D

SET 6
SET 7

EOG C

SET 8
SET 9
EOG D

SET 10

----------------EOG B
SET 11

EOG A ----------------------

UPDATE LEVEL
7-6

PAGE

All sets are contained within Group Nest A. Some sets are subnested and overlapped as follows:

A. Sets 6, 7, 8, and 9 are contained within Group Nest 0, which is contained within Group Nest B, which is contained within

Group Nest A. Group Nest C and Group Nest D overlap within Group Nest B.

B. Sets 5, 6. and 7 are containedwithinGroupNestC, which iscontainedwithinGroupNestB, which is contained within Group

Nest A.

C. Sets 4 through 10 are contained within Group Nest B, which is contained within Group Nest A.

D. Sets 1. 2, 3, and 11 are contained only within Group Nest A.

Figure 7-3. Example of Nested Group Code Sets

Table 7-2. 8~9innin9 of Group (BOG) Header Record Format

Byte
Position

Field Contents

0 Length prefix 38 (binary format)

1 Type prefix A01s

2-9 Group name Symbolic name of the logical group of code sets contained within this
group and terminated by this record (left-justified and space-filled)

10-39 Comments Up to 30 bytes of pertinent comments (as deemed necessary to identify
the group)

8062 Rev. 5
UP-NUMBER

Byte
Position

0

1

2-9

Byte
Position

0

1

2-13

14-21

SPERRY UNIVAC Operating System/3

Table 7-3. End of Group (EOG) Trailer Record Format

Field Contents

Length prefix 8 (binary format)

Type prefix A81s

UPDATE LEVEL
7-7

PAGE

Group name Symbolic name of the logical group of code sets contained within this
group and terminated by this record (left-justified and space-filled)

Table 7-4. End of File (EOFJ Sentinel Record Format

Field Contents

Length prefix 20 (binary format)

Type prefix A11e

Unused 00,6

Name ENDLIBM

7.3.2. Source Module Code Sets

Source module code sets within library files may be composed of any type of source module statements from
BAL macro definitions or own-code specifications up through specific language processor parameters and
JPROC's written in job control language. The library items peculiar to source code sets are described in Tables
7-5. 7-6. and 7-7.

Table 7-S. Source Module Code Header Record Format (Part 1 of 2)

Byte Field Contents
Position

0 Length prefix 56 (binary format)

1 Type prefix A3, 6 or A415

2 Unused 0016

3,4 Flags 0016, or 8016 if module has been corrected

5-13 Unused 0016

14-21 Module name Symbolic name of the source code set originated by this record
(left-justified and space-filled)

8062 Rev. 5
UP-NUMBER

Byte
Position

22-24

25-26

27

28-57

Byte
Position

0

,
2-81

Byte
Position

0

1

2-81

SPERRY UNIVAC Operating System/3
UPOl>.TE LEVEL PAGE

Table 7-5. Source Module Code Header Record Format (Part 2 of 2)

Field Contents

Date In the form as it appears in the preamble

Time In the form: hour-minute (packed decimal less zone field)

Unused 00,6

Comments Up to 30 bytes of pertinent comments as deemed necessary to
identify the source module.

Table 7-6. Source Module Code Statement Record Format

Field Contents

Length prefix Variable; 2+ length

Type prefix 2415

Source record Source statement

Table 7-7. Compressed Source Module Code Statement Record Format

Field Contents

Length prefix Variable; 2+ compressed source length

Type prefix 2515

Source record Compressed source statement

7.3.3. Object Code Sets

Object code within library files is composed mostly of text and relocation data generated as output of the various
language processors. This code exists in a format acceptable to the linkage editor and contains additional record
types used by the linkage editor for load module generation. Object module.records are variable in length and are
packed as densely as possible within a given library block. The desired order of appearance of all records within an
object code set is:

Object module header record

Control statement records*

*Control statement records are generated by certain language processors and may be used to designate control information

necessary to a subsequent linkage editor run.

7-8

8062 Rev. 5
UP-NUMBER

SPERRY UNIVAC Operating System/3

All control section records (must precede associated text and entry ESDs)

All ESD records (names must be unique)

• All ISO records

All text/RLD records

Object module transfer record

Control statement records

UPDATE LEVEL
. 7-9

PAGE

These records are described in Tables 7-8 through 7-17;

Tsble 7-8. Object Code Header Record Format

Byte
Position

Field Contents

0 Length prefix 55 (binary format)

1 Type prefix 80,s

2 ESID 00,s

3 Unused

4 Flag Bit 0 Set to indicate that the module has been patched
Bits 1-6 Not used
Bit 7 Set to indicate that the object module is reentrant

5-8 Address Assembled or compiled origin of the object module

9-12 Module length Total number of bytes required for the object module

13-20 Module name Symbolic name of the object module originated by this record
(left-justified and space-filled)

21-23 Date In the form as it appears in the preamble

24.25 Time Hour-minute (packed decimal less zone field)

26 Unused 00,s

27-56 Comments Up to 30 byes of pertinent comments as deemed necessary to identify
the object module

/SD records are also generated by certain language processors and are used by JOBDUMP to produce a formatted dump if sn,
abnormal termination occurs in your load module.

8062 Rev. 5
UP-NUMBER

Byte
Position

0

1

2

3,4

5-8

9-12

13-20

Type of Control Section

Named control section

Unnamed control section

Named common section

Unnamed common section

Byte
Position

0

1

2

3,4

5-8

9-16

SPERRY UNIVAC Operating System/3
UPDATE LEVEL

7-10
PAGE

Table 7-9. Object Code Control Section Record Format

Field Contents

·---I

Length prefix 19 (binary format)

Type prefix 0816. 091s. OA1 6. or 0816 (See Table 7-10.)

ESID Externa I symbol identification assigned to this control or common
section

Flag bytes 800016 indicates a deferred length specified in the transfer record
of this object module; ignore bytes 9-12

Section address Compiled address of the start of this control or common section

Section size Total length in. bytes of this control or common section

Section name Symbolic name of the control or common section (left-justified and
space-filled)

Table 7-10. Possible Control Section Record Types

Record Record Field Contents

Type Length 2 3,4 5-8 9-12 13-20

0000,. Control
08 ESID or 8000, 6

Address Length section name

09 " " " " Blanks (4016)

19
OA " " " " Common section name

OB " " " " Blanks (40, 6 l

Table 7-17. Object Code ESD Record Format

Field Contents

Length prefix 15 (binary format)

Type prefix 0416. 061 6• or 071 6 (See Table 7-12.)

ESID External symbol identification assigned to this ESD reference

Unused 00,6

Relative address Processor-generated address or value assigned to this ESD reference .
ESD name Symbolic name of the ESD reference

8062 Rev. 5
UP-NUMBER

ESD
Type

ENTRY

EXT RN

V-CON

Byte
Position

0

1

2

3

4

5-8

9-246

Record
Type

04

06

07

SPERRY UNIVAC Operating System/3
UPDATE LEVEL

7-11
PAGE

Table 7-12. Possible ESD Record Types

Record Field Contents

Length 2 3,4 5-8 9-16

ESID 000016 Assembled address Symbol

15
..

Table 7-13. Object Code /SD Record Format

Field Contents

Length prefix Variable

Type prefix Oc16

ESIO External symbol identification of CSECT assigned to the ISO

Flag Bits 0-1 unused
Bit 2 set to indicate Type 3 ISO
Bit 3 set to indicate Type 4 ISO (comment)
Bits 4-7 unused

Flag Unused

Compile origin Processor generated address assigned to this ISO

Attributes Symbolic name and attributes of the ISO item

t

8062 Rev. 5
UP-NUMBER

Byte
Position

0

1

2

3

4

5

6-8

9-9+
Text length

9+ text length
+ RLD length
backward thru
9 + text length

Byte
Position

0

1

2

NOTES:

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

7
- 12

Table 7-14. Object Code Text/RLD Record Format

Field Contents

Length prefix Variable: 7 + text length + RLD length (binary format)

Type prefix 021e

ESID External symbol identification with which the text data in this record
is associated.

Text length Number of bytes less one byte of text data in this record

RLD length Number of bytes of relocation data in this record(a multiple of three
bytes)

Flag 01 16 if patched text item

Relative address Processor-assigned relative address of first byte of text data in this
record

Text data Instructions and/or data generated by a processor and relative to the
ESID specified

RLD data Three byte relocation masks used to modify the various fields of
preceding text data in this record (See Table 7-15.)

Table 7-15. Relocation Mask Formats

Field Contents

ESID External symbol identification of the external reference whose
subsequent value will be used to modify the addressed field

Flag Designator byte reflecting type, size, and position of the
modification field (Figure 7-4)

Address Relative record pointer indicating the most significant (leftmost)
byte of text data at which the modification is to begin (first text
byte. 0; 2nd byte, 1, etc.)

1. Each RLD data field in a given text record is composed of three bytes of relocation information designating the field size. field
position, and associated external index relevant to the modification of the addressed data bytes in this text record. The field
may be positively or negatively relocated at link edit time and can be modified by one or more relocation masks. The text and
its associated relocation masks always must appear within the same logical record.

2. Load module relocation masks are identical, except that the ESID field represents the phase number assigned to the
definition referenced by the address constant in the linked load module.

8062 Rev. 5
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

RLD FIELD

Address (in hexadecimal) pointing to the leftmost byte
of the field to be modified. The position is relative to
the first byte of text in the record (0 refers to the 1st
byte, 1 to 2nd, etc.)

FLAG
BYTE

This 5-bit field indicates the
number of bits to be modified.
This number is one less than
the actual number of bits
used (0-31). The 7-, 15-, 23-,
and 31-bit modifications
may apply only to load
module RLD.

Y 3 : 0- Rightmost bit of the modification
field is on a byte boundary. (Always
O for load module RLDs).

'-- ESI D. The ESI D referring to the ESD entry in the input module
on whose value the relocatable data depends.
If a load module RLD, this byte reflects the phase number of
the phase supplying the definition for this reference.

Figure 7-4. Relocation Mask Field

1 - Rightmost bit of the modification
field is on a half-byte (hexadecimal)
boundary.

1 - V-type address constants
O - Others (always 0 for load

module R LDs)

Type of relocation
0- Addition(+)
1 - Subtraction (-)

7-13

8062 Rev. 5
UP-NUMBER

0

2

3

4

5

Byte
Position

6-8

9-12

13-13 + RLD
length

Byte
Position

0

1

2-81

NOTE:

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

7
-

14

Table 7-16. Object Code Transfer Record Format

Field

Length prefix

Type prefix

ESID

Text length

RLD length

Flag

Deferred length

Transfer address

RLD data

Contents

11 + RLD (binary format)

External symbol identification assigned to the transfer reference

3 (binary format)

Number of bytes of relocation data in this record (a multiple of 3
bytes)

80, 6 if deferred length is present in bytes 6-8

4016 if the transfer record does not terminate the object
module (1 or more control statements follow)

One CSECT or common section (named, unnamed, or blank) may have
its respective record flagged to indicate that the object module
transfer record specifies the actual length

Processor-generated object module transfer address

Relocation data used to modify the transfer address

Table 7-17. Object Code Control Statement Record Format

Field Contents

Length prefix 80 (binary format)

Type prefix 40,6

Control statement Source control statement

Any control statements appearing in an object module must directly follow a header record or directly follow a transfer record.
The latter case is indicated by the appropriate setting of the flag byte in the transfer record.

8062 Rev. 5
UP-NUMBER

SPERRY UNIVAC Operating System/3

7.3.4. Load Code Sets

UPDATE LEVEL PAGE 7-15

Load modules are produced by the linkage editor and are loaded in the system at program execution time by the
system load facility. Load programs may be composed of more than one phase or program segment. The initial phase
is called the root phase. The composition of each phase of a load program is:

• a phase definition record;

• one or more SENTRY records (optional);

• one or more resource records (optional);

• one or more SEXTRN records (optional);

• one or more ISO records (optional);

• one or more text/RLD records; and

• a transfer record.

All load programs (segmented or not) contain root phases. If the automatic overlay mechanism is used, standard text
records reflecting that facility are generated into the root phase. (Automatically included modules also become
resident in the root phase.) Each phase segment contains its own transfer record signaling termination of the phase

and a possible start of execution address. The load code set records are described in Table 7-18 through 7-22.

Table 7-18. Load Code Phase Definition Record Format (Parr 1 of 2)

Byte
Field Contents

Position

0 Length prefix 67 (binary format)

1 Type prefix 9016

2 Phase number Linkage editor assigned phase number of this phase

3,4 flag ~
Bit 0 Set in root pha~ header to indicate clear module

partition as defined in bytes 27-30
Bit 1 Set to indicate that the load module calls reentrant

code
Bit 2 Set to identify the load module as reentrant
Bits 3-7 Not used

Byte 4
-BitO Set to indicate that module has been patched

Bits 1-7 Not used

5-8 Phase load address Linkage editor a55igned relative origin of this phase

9-12 Phase length Total number of bytes required for this phase segment; value represents
the highest zero relative address assigned to this phase

13-20 Phase name Symbolic name assigned to this loadable phase segment

21-23 Dete Month-day.year (packed decimal less zone field)

24, 25 Time Hour-minute (packed decimal less zone fieldl

8062 Rev. 5
UP-NUMBEFI

t

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

7
- 16

Table 7-18. Load Code Phase Definition Record Format (Part 2 of 2)

Byte
Field Contents

P01ition

26 SENTRY count Number of SENTRY records contained in the load module

27-30 Module length Total number of bytes required for loading the module; value
represents the highest zero relative address assigned to the load
module

31-38 Alias phase name Symbolic name assigned to this loadable phase segment by the
linkage editor OVERLAY or REGION control statement that created
the phase

39-68 Comments Up to 30 bytes of pertinent comments as deemed necessary to
identify the load module segment

Table 7-19. Load Module Shared Code Record Formats

Contents
Byte

Field SENTRY Position Resource SEXTRN
Records Records Records

0 Length prefix 15 (binary format) 15 (binary format) 15 (binary format)

1 Type prefix c8
16

c6
16 C416

2 Number Resource SIN DEX SENTRY
number number number

3,4 Unused

5-8 Length Resource Byte 5 has resource number Link
size Bytes 6-8 unused address

9-16 Name Resource name SEXTRN name left· SENTRY name left·
left-justified, justified and justified and
and zero-filled blank-filled blank-filled

Table 7-20. Load Code /SD Record Format (Part 1 of 2)

Byte
Field Contents

Position

0 Length prefix Variable

1 Type prefix le

2 Phase number Linkage editor assigned phase number of this phase

3 Flag Bit 0 set to indicate Type 1 ISO (CSECT)
Bit 1 set to indicate Type 2 ISO (comment)
Bit 2 set to indicate Type 3 ISO
Bit 3 set to indicate Type 4 ISO (comment)
Bits 4-7 unused

4 Flag Unused

5-8 Link origin Linkage editor assigned relative origin for this ISO record

.._

8062 Rev. 5
UP-NUMBER

Byte
Position

9-12

13-16

17-250

Byte
Position

0

1

2

3

4

5

6-8

9-9+ text length

9 + text length + RLO ·
length backward thru
9 + text length

Byte
Position

0

1

2

3

4

5-8

9-12

13-13 + RLO length

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Table 7-20. load Code /SD Record Format (Part 2 of 2)

Field Contents

Compile origin Language processor generated address to the ISO record

Size Size of this ISO record

Attributes Symbolic name and attributes of this ISO record

Table 7-21. load Code Text/RLD Record Format

Field Comments

Length prefix Variable: 7 + text length + RLD length (binary format)

Type prefix 1216

Phase number Linkage editor assigned phase number of text data in this record

Text length Number of bytes less 1 of text data in this record

RLO length Number of bytes of relocation data in this record (a multiple of 3
bytes)

Flag 01 16 if a patched text item

Load address Linkage editor assigned phase segment load address assigned to the
first byte of text data in this record

Text data Instructions or data to be loaded relative to the load address

RLD data Three byte relocation masks used to modify text in the record
(Table 7-15)

Table 7-22. load Code Transfer Record Format

Field

Length prefix

Type prefix

Phase number

Text length

RLO length

Unused

· Transfer address

RLO data

Comments

11 + RLO data length (binary format)

Linkage editor assigned phase number of this phase

3 (binary format)

Number of bytes of relocation data in this record (a multiple of 3
bytes)

Linkage editor assigned phase segment transfer address

Relocation data used to modify the transfer address

7-17

t

8062 Rev. 5
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

7.3.5. Block Load Code Sets

Unlike the standard load module, which has data in two partitions, the block load module has data in three
partitions. The data in partitions one and two are similar to the standard load module data in that they are
structured as index and data partitions. However, the data in partition three is not structured and is made up of
contiguous text data. free of any control information. In other words, partition three is made up of the actual
block module text records. The data in partition two describes the boundaries of each phase in partition three.
The block module text data (partition three) is in sequential load order and is binary zero-filled when appropriate.

The order of all modules within the block load code set is shown in Tables 7-23 through 7-28.

Table 7-23. Panition One-Directory Entry

Byte Field
Position

0-7 Symbolic name

8 Type flag (80,5)

9-11 Block relative pointer

12 Record relative pointer

Table 7-24. Partition Two - Block Load Module Header Record (Part 1 of 2)

Byte
Field Contents

Position

0 Length prefix 75 (binary format)

1 Type prefix 80,6

2 Phase number Linkage editor assigned phase number of this phase

3 Flag 80, 6 indicates clear module partition as defined in bytes 27-30.

40, 6 indicates that this module calls shared code.

2016 indicates that this is a shared load module.

4 Flag 80,6 indicates this module has been patched.

5-8 Phase load Linkage editor assigned relative origin of this phase
address

9-12 Phase length Total number of bytes required for this phase segment; value
represents the highest relative zero address assigned to this phase.

7-18

8062 Rev. 5
UP·NUMBEA

Bvte
Position

13-20

21-23

24. 25

26

27-30

31-38

39-68

69-71

72-74

75

76

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

7-19

Table 7-24. Partition Two - Block Load Module Header Record (Part 2 of 2)

Field Contents

Phase name Symbolic name assigned to this loadable phase segment

Date In the form as it appears in the preamble

Time Hour-minute (packed decimal less zone field)

SENTRYs Number of SENTRYs recorded

Module length Total number of bytes reQuired for loading the module; value
represents the highest relative zero address assigned to the load
module.

Alias phase name Symbolic name assigned to this loadable phase segment by the
linkage editor OVERLAY or REGION control statement that created
the phase

Comments Up to 30 bytes of pertinent comments as deemed necessary to
identify the load module segment

Block number Pointer to text block (beginning of this phase in partition
three)

Block number Pointer to first text or transfer block of this phase in partition
two

Displacement Pointer to first text or tr.ansfer record of this phase in partition
two

Checksum XOR of first byte of each text block of partition three

8062 Rev. 5
UP-NUMBER UPDATE LEVEL PAGE SPERRY UNIVAC Operating System/3

7-20

Table 7-25. Partition Two - Block Load Module RLD Record

Byte Field Contents
Position

0 Length prefix 1 + no. of RLD times 5 (binary format)

1 Type prefix 321s

2 Length of RLDs Number of RLD masks times 5

3 (3 + n x 5-1) RLD masks 5 byte RLD masks (see Table 7-26)

Table 7-26. RLD Mask

Byte Contents
Position

0 Phase number (in load module RLD mask)

1 Bits (in load module RLD masks)

2-4 Load module relative address

8062 Rev. 5
UP-NUMBER

Byte
Position

0

,

2

3

4

5

6-8

9-9 +text
length

9 +text
length+
RLD length
backward
thru 9 +
text length

NOTE:

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Table 7-27. Partition Two - Block Load Modules Nonphase Text/RLD Record

Field Comments

Length prefix Variable: 7 + text length + RLD length (binary format)

Type prefix 12,6

Phase number Linkage editor assigned phase number of text data in this record

Text length Number of bytes less 1 of text data in this record

RLD length Number of bytes of relocation data in this record (a multiple of 3
bytes)

Flag 01 16 if a patched text item

Load address Linkage editor assigned phase segment load address assigned to the
first byte of text data in this record

Text data Instructions and/or data to be loaded relative to the load address

RLD data Three byte relocation masks used to modify text in the record (Table
7-15)

Nonphase text records are present in block load modules when text/RLD items are detected that are not part of a given phase.
Such text/RLD items outside the phase being loaded are to be loaded at the same time.

7-21

8062 Rev. 5
UP-NUMBER

0

1

Byte
Position

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

Table 7-28. Partition Two - Block Load Module Transfer Record

Field Comments

Length prefix 11 + RLD data length (binary format)

Type prefix 13,s

2 Phase number Linkage editor assigned phase number of this phase

3 Text length 3 (binary format)

4 RLD length Number of bytes of relocation data in this record (a multiple of
3 bytes)

5-8 Unused 0015

9-12 Transfer address Linkage editor assigned phase segment transfer address

13-13 + RLD RLD data Relocation data used to modify the transfer address
length

7.4. DISK LIBRARY DIRECTORIES

Library files existing on disk are supplemented with a disk file directory composed of 13-byte records, each of
which points to a specific demarcation record in the file. The directory precludes the need for scanning the
library file to obtain a needed record. Instead, directory scanning suffices until the program is located. The
pointers existing within the directory explicitly designate the position of the required element within the library
file data partition. The format of the library file disk directories exists as a function of the needs of the prime
routines accessing the directories. The directory format differs in record layout from the prime data partition of a
library file, in that directory records are fixed, 13-byte blocked items. The directory block prefixes are identical to
those of the file partition.

Disk directory records are composed of:

• a name field;

• a type indication; and

• a file pointer

Directory entries are made whenever the respective file record is:

• a module header for program source, macro/ JPROC, or object code;

• a phase definition for each phase of a load module;

• an entry ESD record for object code;

• a beginning-of-group (BOG) or end-of-group (EOG) demarcator.

7-22

(

8062 Rev. 5
UP-NUMBER

•

SPERRY UNIVAC Operating System/3
UPDATE LEVEL PAGE

a named CSECT record for object code; or

• a procedure name for a macro module in proc format. (This is the directory entry for which there is not a
unique corresponding record in the prime data partition. This item points to the module header record.)

7 .4.1. Directory Format

System libraries are built and managed by using the system access technique (SAT) access method. Thus, the first
partition of each standard library file in the system consists of an index of pointers to the prime data area of the file
described by the second partition. This directory index consists of a series of 13-byte slots, each pointing to the
corresponding record in the prime data area. The directory blocks may be 251 bytes in length; the last four bytes of
each directory block are unused when the block is full (contains 19 items). As many directory blocks as are needed to
accommodate the needed number of index entries for a given library are available. The last index entry for each
library directory is the index to the EOF record in the prime data partition. Figure 7-5 illustrates the disk library
file structure and the format of each directory record.

INDEX PARTITION

8-BYTE
SYMBOLIC

NAME

DIRECTORY
BLOCK

DIRECTORY
BLOCK

DIRECTORY
BLOCK

DIRECTORY RECORD

1-BYTE
3-BYTE

TYPE
BLOCK

FLAG
RELATIVE
POINTER

-

Figure 7-5. Disk Library File Structure

1-BYTE
RECORD

RELATIVE
POINTER _ ...

PRIME DATA
PARTITION

DATA
BLOCK

DATA
BLOCK

DATA
BLOCK

The symbolic name field (bytes 1 through 8) of a directory record is used as the identifier of the module or demarcator
existing in the prime data partition. The type field specifies the demarcation flag for the respective record. The values
of the type flag field correspond to the record type field in the prime data area. The type flags possible in an index item
are listed in Table 7-29.

7-23

8062 Rev. 5
UP·NUMBEA

SPERRY UNIVAC Operating System/3

Table 7-29. Disk Directory Index Type Flags

Hexadecimal Value Demarcation

00 Nullified item

04 ENTRY name (object module)*

08 CSECT name (object module)*

80 Object module header

90 Phase header (load module)

AO Beginning of group demarcator

Al EOF sentinel

A2 Macro/ JPROC name header

A3 Macro/ JPROC module header

A4 Program source module header

AS End of group demarcator

BO Block module header record

*Multiple duplicate names can appear in a library file directory.

UPDATE LEVEL PAGE

The block relative pointer to the prime data area is a relative block number within the second file partition
indicating the block containing the respective record. The record relative pointer is the number of bytes from the
beginning of the block to the beginning of the record. The record relative pointer and block relative number are
computed when the prime data area is constructed. The pointers for macro name header index items (in the proc
format) always point to the beginning of the proc module regardless of where the name directive is contained
within the body of the module.

7.5. CARD LIBRARIES

The librarian can punch libraries into cards and, in turn, access card files are input. Source module items,
element headers, phase definitions, CSECT, ESD, ISD, PHASE, and TRANSFER records are punched directly.
Text/RLD records in object and load elements are treated specially since the record size is variable. Thus,
punched card formats for text/RLD records may require multiple punched card records.

7-24

8062 Rev. 5
Ul'-NUMBEA

-· ······-··········--~------·····-~--~--· ----
SPERRY UNIVAC Operating System/3 A 7-25

UPDATE LEVEL. PAGE

Whenever object or load modules are punched into cards, a 5-digit sequence number is punched in columns 1
through 5, providing a card deck sequence check facility. When punching source modules, the librarian creates 80-
byte source records (the source module header is eliminated) directly from the library.

When librarian functions require punched card output, the name PUNCH must be specified on the LFD job control l
statement. With the punched card output, the librarian creates an ELE card to precede the module and an EOD card T
to end the module. The ELE card will be in the format:

LABEL /:,.OPERATION/:,. OPERAND

ELE 01, module type, module name

When filing object or load module card libraries, the librarian reconstructs the module from the card decks, checking
the sequence number of each card and the record types within each module. When source modules are created from
cards, the appropriate headers are created, prefixes attached, etc.

7.6. TAPE LIBRARIES

The formats for tape libraries are the same as those for disk libraries except that:

•

•

tape libraries have only a data partition, no directory partition; and

modules having the same name and type may exist in the same tape library. However, the first module
encountered is the one processed.

Because of the structure of a tape library, once a module is written to a library, that module cannot be deleted or
altered in any way in that same library. Therefore, the input library and a new output library must be specified
when making changes to a tape library. This new library can be another tape, disk pack or punched cards. The
following control statements are not supported for a tape library because the operation takes place in the input
file: BLK, DEL, PAC, REC, REN, and REPRO.

Your tape libraries must have the standard header and trailer label records and the name specified in the LBL job
control statement must agree with the file header 2 label of your tape library. The data management user guide,
UP-8068 (current version) provides the· information concerning the header and trailer label records associated
with tape libraries.

All tapes can be prepped using either the prep option of the VOL job control statement or through the tape prep
routine (TPREP, Section 9).

7.7. DISKETTE LIBRARIES

The librarian can either be input from a diskette, or punch to a diskette. Diskette library processing is the same
as card library processing (7.5.).

t

:> l :> • I''< l N I AN tHHU'< ~t~~Abt ANU ltHHlNATE READING FOR THIS LIBRAR,.
516 •

zq'o 004AO 517 GETSP•~E ~.
-] 00(1-----·~-"C)<foo-6 ·····-5·1 B IN CR SPAC LA .9 1 NE:X TSP.A.~-------·· S U.R.LJJf .. .AVAll,.ABL f .SP...~.~~-----------·-

J 51019 ,l I END Of DESIRED ENTRY
24 A4 004A4 5 }9 C JS,ATABEND IS THERE ROOM?
2376 00376 520 BH CVERFLOW NO
24 -0 004AO 521 ST JS1NEXTSPAC UPDATE NEXT SPACE POINTER

522 BR)q EXIT
z5q<; --"'1ilF 005119 0078'.: 523 OVERFLOW HllC LINl'.f391,=CL39'**** l"IEHORY OVERFLOli - INPUT TERMINATED'

··22;; 0029c 5 21l BAL 1lf,PRiN1 ·---~--·--' ·-------· .,p·~·rN1 .. ···rRRoR ME-ss•GE ·-
223()._.. 00230 525 B PR~TxREF START XREF lMHfDIATELY

526 •
521 • LIBRARY FILE GET ROUTINE
528 • THE CUkRENT kfCORQ, If A SOURCE R[CQRD, Will BE PROPERLY EXPANDED
529 • INTO •cARD" - OTH[RWISE JT WILL BE LOADED INT~ •cARD" AS IS.
s 3 o-·- ----i ;,,-"[il HE:.R c·A S[, t HE RECri~O-·r··iP_E_COO"E·-- Wlll--··e~E·-·"Pl"A CED "JN To •RE CT·v.PE --~- ____ ,, ____ h---··,.··-·-·--

5? I • IF THE RE CORO JS AN EOF SENTINEL, THIS ROUTINE Will BIUNCH
532 • OJRECTLY TL .•PRNltREF"•
533 •

zq AC oc11n 5 3q GETS ST 14,SAllEJll SAVE RETURN AOORESS
249f 004'i8 S :!S L 15 1 fiPSOUJiCF.: CURRENT POSITION IN BLOCK
-275~

--·-~·- ___ , -~ ·-·~ oo 15;i---5 3b ----··--····- - -c:· J 5, :Al IOllB 1i~;5y ····----- SHRT-OF A NEW Bl OCK'?
23~'l 0038'1 537 BH GElSREC NO

538 liAl TF l Je IN Ii All FOR CflHPlfTIOI\. OF READ
5q q SI<) • J

2 .~ 9F 008SF 5115 IC J , IOL lB ltH 3 BLOCK LENGTH
2 3 A] 008,1 5116 LA J ,IOLIBIN•SClt
-;;·ti Ali OO'lA8. 5q7 ST i ~«LOCKEt•D ··-----·----·---·- --coG!fi[-END-oF" Bl OCK.
24 9., 004'ill 5118 l 15,BPSOURCE RES TORE RE6I STER 15 ,.
26ff r or1 006[0 00 001 549 GETSREC HllC RECTVPE,1'J5t RECORD TYPE CODE
zq F fl OO'IF 8 550 MVI CARo,c• • CLEAR RECORD IMAGE AREA
21l f9 2 qf A 00qf9 004f ll 55 l HVC CAR0• 11791 ,CARD

552 SR) 1 l " ·Fcoo 00000 5'i3 IC 1,cc,1s1 , - w --~-· ----·· --·-- R-EtoiH5-l[NGfH
F 002 0000? .,.,q LA J5,2t,J51 SKIP OVER RECORD PPEF Ill

5 ~5 LTR l ,1 IS RE CORO LENGTH ZERo?
.<:ll 2t 004:?6 556 62 GETSNEXT YES - THERE'S NOTHING TO MOVE
24f P OO'IF'3 sq LA J4 1 CARO R Jll SCANS CARO IMAGE
2Hr 0('6(D 558 Cll RtCTYPE1x•2s• COP'PRESSED SOURCE PECOR 0?

;: 3f (003FC 559 BE GETSCOMP YES - USE SPECIAL ROUTINE

PAGE l <

SOURCE STATEMENT OS/3 ASH 77/12/J:
BCTR 1,0 DECREMENT FOR EXECUTE
Ex J,GETSHO'E LOAD RECORD lHAGE AS IS
LA 1s,1c1,1s1 INCREMENT BLOCK POINTER
Cll RECTlPE,X'Al' ENO OF FILE SENTINEL?

----"B-~~--6-fUflJ_~ T,__ _______ --"'N'-'O.__ __ _
B PRNTXREF START PRINTING CROSS-REFERENCE

GETS"OVE MVC 010,Jlll,OflSl EXECUTED TO HOVE PART OF RECORD
• EXPANSION ROUTINE FOR COMPRESSED SOURCE RECORDS
GETSCOHP LR O,JS CURRENT POSITION IN BLOCK

AR O,J ADD RECORD LENGTH
ST O,WORK THE RECORD ENOS HERE

GETSCMPl 1c:--1.1c-,JS) NUHBER .. OF--BLANis·-·-
AR Jll,J INCREHENT CARD IMAGE POINTER
IC 1,01,JSJ LENGTH or FOLLOWING TEXT
LA l5,2C,15J SKIP OVER CONTROL FIELD
Ex J,GETSMO\E HO\E FOLLOWING TEXl
LA 1q,Jll1lllJ INCREMENT CARO IHAGE POIN_T=E~R ___ _
u 1s,111,TS1 INCREMENt-8l"fifi<f>-oi'N··f€R
C 15,WORK ENO Of COMPRESSED RECORD?
BL GETSCHPl NO - CHECK FOR HORE

GETSNEXT ST JS,BPSOURCE UPDATE BLOCK POINTER
C JS1BlOCKENO ENO Of BLOCK?
Bl GETSll NO - EXIT

___ _:;_GET i.TIHN· ;u BIN 2 s J"i"iH-R [A OJ NG Tiff"Nfil ·-elociC ___ -~ - ..
MVC BPSOURCEe=AIIOLIBIN•SJ RESET BLOCK POINTER

GETSX l lll,SAVElll RESTORE RETURN ADDRESS
BR 1- EXIT

HVC llNEtl31e=Cl23'•••• llBIN I/O ERROR AT'
ST Jll,llORI<
UNPK 1 E•2lll7J,WORKl5J
TR lINE•2lllt.f 1 HllTR-X"FO•
MVC llNE•30<17S.=Cll'J 1 - STATUS BYTES :•

i...,......,,..__,;...,..,...,.._,..,..;.~~...x-.-----:z:n.--'------.lTNPk---nij"r·•-liaTsT~nsrN•SocJ1 . .:..:::.::_..::...:~:.:::..-=---------------
lR LINE•ll8C .. l.HXTR-X 1 FO'

