Operating System/3 (0S/3)

Extended COBOL

Programmer Reference

This Library Memo announces the release and availability of Updating Package A to “SPERRY UNIVAC Operating
System/3 (08/3) Extended COBOL Programmer Reference’’, UP-8059 Rev. 3.

This update includes changes to the job control procedure for release 7.1:

L] Specification of catalog files

u Expanded explanation of parameters

Copies of Updating Package A are now available for requisitioning. Either the updating package only or the complete

manual with the updating package may be requisitioned by your local Sperry Univac representative. To receive only
the updating package, order UP-8059 Rev. 3-A. To receive the complete manual, order UP-8059 Rev. 3.

Mailing Lists Mailing Lists DE, GZ, HA, 18, 19, 20, Library Memo for
BZ, CZ, (less DE, 21,75 and 76 UP-8059 Rev. 3-A
GZ, HA) MZ, 18U, (Package A to UP-8059 Rev. 3,

19U, 20U, 21U, 23 pages plus Memo)

75U and 76U R

e
e

[3

September, 1981

Operating System/3 (0S/3)
Extended COBOL

Programmer Reference

This Library Memo announces the release and availability of “SPERRY UNIVAC® Operating System/3 (0S/3)
Extended COBOL Programmer Reference’”, UP-8059 Rev. 3.

This revision includes the following additions and changes:
L] Addition to Table 4—1 (Rules for Special Names)

» Change to BLKFAC formula

» Deletion in //& EXEC operand

= Change to Table 11—5 Exceptions to COBOL verbs
] Addition of error messages

L] Replace printout examples in Section E

] Addition of new pages and examples to Section E

- Addition to Reserved Word List

= Addition to DISPLAY rule

Other minor technica! changes were also made.

Additional copies may be ordered by your local Sperry Univac representative.

Mailing Lists Maifing Lists DE, GZ, HA, 18, 19, 20, 21, 75 and 76 Library Memo
BZ,CZ (less DE,GZ,HA) (Covers and 298 pages)
MZ,18U,19U,20U,21U,
75U and 76U ,
RELEASE DATE:
October, 1980

Extended COBOL

e

5 %ﬁ%ﬁ% e

R R R PR

Environment: 90/25, 30, 30B, 40 Systems

SRR an,
. -
. .

; .
e .

e m§§

.
e
- e
. - -
-
-

e

UP-8059 Rev. 3

This document contains the latest information available at the time of preparation.
Therefore, it may contain descriptions of functions not implemented at manual distribution
time. To ensure that you have the latest information regarding levels of implementation
and functional availability, please consult the appropriate release documentation or contact
your local Sperry Univac representative.

Sperry Univac reserves the right to modify or revise the content of this document. No ’
contractual obligation by Sperry Univac regarding level, scope, or timing of functional
implementation is either expressed or implied in this document. It is further understood

that in consideration of the receipt or purchase of this document, the recipient or

purchaser agrees not to reproduce or copy it by any means whatsoever, nor to permit such

action by others, for any purpose without prior written permission from Sperry Univac.

Sperry Univac is a division of the Sperry Corporation.
FASTRAND, SPERRY UNIVAC, UNISCOPE, UNISERVO, and UNIVAC are registered

trademarks of the Sperry Corporation. ESCORT, PAGEWRITER, PIXIE, and UNIS are
additional trademarks of the Sperry Corporation.

This document was prepared by Systems Publications using the SPERRY UNIVAC UTS 400
Text Editor. It was printed and distributed by the Customer information Distribution Center
(CIDC), 555 Henderson Rd., King of Prussia, Pa., 19406.

©1974,1975, 1976, 1977 — SPERRY CORPORATION PRINTED IN U.S.A.

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3 PSS 1
EXTENDED COBOL Update B
PAGE STATUS SUMMARY
ISSUE: Update B — UP-8059 Rev. 3
RELEASE LEVEL: 7.1 Forward
. Page Update . Page Update . Page Update
Part/Section| \mher | Level ||Part/Section| noiber | Level | |Part/Section| nter | Level
Cover/Disclaimer Orig. PART 4
Title Page Orig.
PSS 1 B
14 1 thru 4 Orig.
Acknowledgment 1 Orig.
PART 5
Preface 1thru 3 Orig. Title Page Orig.
Contents 1,2 Orig. Appendix A 1,2 Orig.
3 B
4 thru9 Orig. Appendix B 1,2 Orig.
PART 1 Appendix C 1,2 Orig.
Title Page Orig.
Appendix D 1 thru 33 Orig.
1 1,2 Orig. 34 A
2 1 thru 10 Orig. Appendix E 1 thru 15 Orig.
PART 2 Appendix F 1 thru 13 Orig.
Title Page Orig.
Appendix G 1 Orig.
3 1,2 Orig. 2thru 4 A
4a A
4 1thru 13 Orig. 5 thru 9 Orig.
10 A
5 1 thru 14 Orig. 10a thru 10c A
15 A 11 thru 13 A
16 thru 35 Orig. 14, 15 Orig.
6 1thru3 Orig. Appendix H 1,2 Orig.
4 B
5 thru 47 Orig. Index 1thru 4 Orig.
48 A 5 B
49 thru 61 Orig. 6 thru 8 Orig.
PART 3 User Comment
Title Page Orig. Sheet
7 1thru 7 Orig.
8 1,2 Orig.
9 1thrub Orig.
10 1thru 3 Orig.
1" 1thru 4 Orig.
5 B
6 thru 28 Orig.
12 1thrub Orig.
13 1t thru?7 Orig.

All the technical changes are denoted by an arrow () in the margin. A downward pointing arrow (*) next to a line indicates that

technical changes begin at this line and continue until an upward pointing arrow (4) is found. A horizontal arrow {=») pointing to

a line indicates a technical change in only that line. A horizontal arrow located between two consecutive lines indicates technical

changes in both lines or deletions.

UP-8059 Rev. 3 SPERRY UNIVAC 0S5/3 Acknowledgment 1

EXTENDED COBOL

Acknowledgment

This manual is based on American National Standard COBOL, X3.23—1974 developed by the American National
Standards Institute. In response to their request the following acknowledgment is reproduced in its entirety:

“Any organization interested in using the COBOL specifications as the basis for an instruction manual or for any
other purpose is free to do so. However, all such organizations are requested to reproduce this section as part of the
introduction to the document. Those using a short passage, as in a book review, are requested to mention ‘COBOL’
in acknowledgment of the source, but need not quote this entire section.

“COBOL is an industry language and is not the property of any company or group of companies, or of any
organization or group of organizations.

“No warranty, expressed or implied, is made by any contributor or by the COBOL Committee as to the accuracy
and functioning of the programming system and language. Moreover, no responsibility is assumed by any
contributor, or by the committee, in connection therewith.

“Procedures have been established for the maintenance of COBOL. Inquiries concerning the procedures for
proposing changes should be directed to the Executive Committee of the Conference on Data Systems Languages.

“The authors and copyright holders of the copyrighted material used herein

FLOW—MATIC Programming for the UNIVAC | and {l, Data Automation Systems copyrighted 1958, 1959,
by Sperry Rand Corporation; IBM Commercial Translator Form No. F28-8013, copyrighted 1959 by IBM;
FACT, DSI 27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell,

have specifically authorized the use of this material in whole or in part, in the COBOL specifications. Such
authorization extends to the reproduction and use of COBOL specifications in programming manuals or similar
publications.

“This complete USA Standard edition of COBOL may not be reproduced without permission of the USA Standards
Institute.”

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 Preface 1
EXTENDED COBOL

Preface

This manual is one of a series designed to instruct and guide the programmer in the use of the SPERRY UNIVAC
Operating System/3 (0S/3). This manual specifically describes the 0S/3 COBOL extended compiler and its effective
use. Its intended audience is not the novice, but the experienced programmer new to SPERRY UNIVAC operating
systems, and to OS/3 in particular.

Two other manuals also are available for instruction and guidance in the use of OS/3 COBOL: one is a fundamental
manual, and the other is the basic compiler manual. The fundamental COBOL manual, UP-7603.1 (current version)
is useful for reviewing the language in some depth; however, it does not present the COBOL implementation for
0S/3. The basic COBOL programmer reference manual, UP-8057 (current version) is intended for the novice
programmer; some of the enhancements included in the extended compiler, such as sorting, additional verbs, and
move options with various statements, are not discussed.

. This manual is divided into the following parts:

u PART 1. COBOL LANGUAGE STRUCTURE
Defines the rules, symbols, and minimum system configurations required to compile an 0S/3 COBOL
program. Also describes the character set, types of words, qualification, and subscripting and indexing and
presents the layout of a coding form.

] PART 2. DIVISIONS IN COBOL
Discusses the four divisions of COBOL, which are as follows:
IDENTIFICATION — labels a program, providing entries of pertinent information regarding the author and

installation of the program, when it was written and compiled, any security that might be involved, and its
intended use.

ENVIRONMENT — immediately follows the identification division entries and is coded to reflect specific user
system configurations.

DATA — divided into three sections:

File Section — describes the records to be processed and the physical structure of files on which these
records reside.

Working-Storage Section — describes areas for intermediate or temporary storage of data that does not

. belong to any file.

Linkage Section — describes data items that are passed by a calling program to a called program and are
referred to by both the calling and the called program.

PROCEDURE — specifies the instructions for the processor to use in solving the problem.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 Preface 2
EXTENDED COBOL

L PART 3. COMPILER FEATURES AND CAPABILITIES

Describes options that can be used with the extended COBOL compiler, in addition to furnishing pertinent
information that may be helpful in preparing a problem program.

COMPILER OPTIONS AND LIBRARY TECHNIQUES — explains how to use specific COBOL options, such
as generating certain listings in conjunction with compiling a problem program. The library techniques
paragraphs describe SOURCE and COPY library input specifications.

RERUN CLAUSE — provides a method of restarting the execution of a COBOL program at a checkpoint
position, rather than at the beginning of the execution.

USE OF ACCEPT AND DISPLAY STATEMENTS — defines the statements to use in retrieving or displaying
low-volume data from or to system hardware.

TABLE HANDLING — examines the methods of table definition and referencing available in OS/3 COBOL.
For a complete discussion of table handling, see the fundamentals of COBOL—table handling manual,
UP-7503.2 (current version).

PROCESSING TECHNIQUES FOR DIRECT ACCESS DEVICES — Explains the various access methods
available on the OS/3 system and describes the COBOL statements needed to interface with them.

SORTING — explains the use of the OS/3 COBOL SORT feature, which offers an efficient means for sorting
records against a set of specified keys and for adding, deleting, or modifying records in the sort file.

ASCI! PROCESSING — describes the option for using ASCII data and processing files encoded in ASCIl
(American Standard Code for Information interchange).

L] PART 4. DEBUGGING AIDS

IHustrates the techniques of detecting, diagnosing, and correcting errors in the COBOL source program with
the aid of the compiler.

L] PART 5. APPENDIXES
Presents the following appendixes:
A. CHARACTER SET — contains conversion tables for characters and the character collating sequence.

B. RESERVED WORDS — lists words that are part of the COBOL language structure but are not used as
user-defined words.

C. INTERMEDIATE RESULTS IN ARITHMETIC OPERATIONS — describes the internal work areas for
certain arithmetic statements.

D. COMPILER DIAGNOSTICS — lists the texts of the numbered diagnostic messages issued by the
compiler, their severity codes, the probable reason for the error or condition detected by the compiler,
the COBOL rules that apply, and the recovery actions taken by the compiler. Also listed are the system
console messages that require programmer action.

E. COMPILER LISTINGS — describes the listings received through the use of the PARAM statements in
the job control stream.

F. CONVERSION MODE — describes a facility allowing users of IBM/360 DOS COBOL level-D to transfer
into OS/3 COBOL.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 Preface 3

EXTENDED COBOL

G. JOB CONTROL STREAM REQUIREMENTS — lists and describes the keyword parameters of the

procedure call statement used to generate job control statements needed for compilation. Examples of
call statements and generated control streams are included.

H. SHARED CODE INTERFACE — describes the interface necessary when under control of the Series 90
Information Management System (IMS/90).

Other OS/3 publications, referenced in this manual, will be necessary or useful to the programmer working with the
extended COBOL compiler:

Supervisor user guide, UP-8075 (current version)

Provides information needed to access the communication region of the 0S/3, through which one job step
may communicate with a following job step.

Job control user guide, UP-8065 (current version)

Provides information on the format and usage of job control statements for accessing UPS! switches, allocating
devices, and passing parameters to the object program.

Data management system user guide, UP-8068 (current version)
Provides SPERRY UNIVAC 0OS/3 standard file label specifications.
Sort/merge user guide/programmer reference manual, UP-8074 (current version)

Contains detailed information, including job control language, on the use of the OS/3 sort/merge facility,
which the extended COBOL compiler employs for all sort operations.

Error messages programmer/operator reference manual, UP-8076 (current version)

Lists and describes the system console messages issued during compilation by the compiler, emphasizing error
conditions during execution, and relating to sort operations.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 Contents 1
EXTENDED COBOL

Contents
PAGE STATUS SUMMARY
ACKNOWLEDGMENT
PREFACE
CONTENTS
PART 1. COBOL LANGUAGE STRUCTURE
1. INTRODUCTION
1.1. SYMBOLS, RULES, AND NOTATIONS USED IN THIS MANUAL 1-1
‘ 1.2 EXTENDED COBOL COMPILER 1-2

2. GENERAL SPECIFICATIONS

2.1. COBOL CHARACTER SET 2-1
2.1.1. Characters Used for Words 2-2
2.1.2. Characters Used for Punctuation 2-2
2.1.3. Characters Used in Relational Expressions 2-3
2.1.4. Characters Used in Arithmetic Expressions 2-3
2.15. Characters Used in Editing 2--3

2.2, TYPES OF WORDS 2-4
2.3. QUALIFICATION 2-7
24. SUBSCRIPTING AND INDEXING 2-9
2.5. CODING FORM 2-9

PART 2. DIVISIONS IN COBOL
3. IDENTIFICATION DIVISION

3.1, GENERAL 31

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 Contents 2
EXTENDED COBOL

4. ENVIRONMENT DIVISION

4.1. GENERAL 41
4.2 CONFIGURATION SECTION 4—1
4.2.1. SOURCE-COMPUTER Paragraph 4-2
4.2.2. OBJECT-COMPUTER Paragraph 4-2
4.2.3. SPECIAL-NAMES Paragraph 4-3
4.3. INPUT-OUTPUT SECTION 4-8
4.3.1. FILE-CONTROL Paragraph 4—8
43.2. |-O-CONTROL Paragraph 4-11

5. DATA DIVISION

5.1. GENERAL 5-1
5.1.1. Data Definition 52
5.2. FILE SECTION 5-3
5.2.1. File Description 5-3
5.2.1.1. BLOCK CONTAINS Clause 5-3
5.2.1.2. RECORD CONTAINS Clause b-5
5.2.1.3. LABEL RECORDS Clause b—7
52.14. RECORDING MODE Clause 5—-8
5.2.1.5. VALUE OF Clause 5-9
5.2.1.6. DATA RECORDS Clause 5-9
5.2.2. Sort File Description 5—-10
5.3. DATA DESCRIPTION 5-11
5.3.1. Level Number and Unqualified-data-name/FIL.LER Clause 5-12
5.3.2. REDEFINES Clause 5-12
5.3.3. OCCURS Clause 5-13
5.3.4. PICTURE Clause 5-15
5.3.5. USAGE Clause 5-22
5.3.6. SYNCHRONIZED Clause 5—24
5.3.7. JUSTIFIED Clause 5—-28
5.3.8. VALUE Clause 5-28
5.3.9. BLANK WHEN ZERO Clause 5-30
5.3.10. MAP Clause 5-30
5.3.11. RENAMES Clause 5-30
5.3.12. Condition-name Clause 5—-31
5.3.13. SIGN Clause ’ 5-32
54. WORKING-STORAGE SECTION 5—33
54.1. [Independent Entries 5-33
5.4.2. Record Description Entry 5—33
5.5. LINKAGE SECTION 5—34
6. PROCEDURE DIVISION
6.1. GENERAL 6—1
6.1.1. USING Statement 6—1

6.2. DECLARATIVES SECTION 62

UP-8059 Rev. 3

‘@,

SPERRY UNIVAC 0S/3 Contents 3
EXTENDED COBOL Update B

6.3. SECTION 6—2

6.4. PARAGRAPH 6—3

6.5. STATEMENTS AND SENTENCES 6-3

6.5.1. Imperative Statements 6—3

6.5.2. Conditional Statements 6—4

6.5.3. Compiler-Directing Statements 6—4

6.5.4. Overlapping Operands 6—4

6.6. VERB TYPES 6-5

6.6.1. Arithmetic Verbs 6-5

6.6.1.1. ADD Statement 6—7

6.6.1.2. DIVIDE Statement 6—8

6.6.1.3. MULTIPLY Statement 6-9

6.6.1.4. SUBTRACT Statement 6-9

6.6.1.5. COMPUTE Statement 6—11
6.6.2. Procedure Branching Verbs 6—12
6.6.2.1. ALTER Statement 6—12
6.6.2.2, GO TO Statement 6-12
6.6.2.3. PERFORM Statement 6—14
6.6.2.4. EXIT Statement 6—19
6.6.3. Data Movement Verbs 6—19
6.6.3.1. EXAMINE Statement 6-—20
6.6.3.2. MOVE Statement 6—21
6.6.3.3. SET Statement 6—23
6.6.3.4. TRANSFORM Statement 6—24
6.6.4. Input/Output Verbs 6—27
6.6.4.1. ACCEPT Statement 6-—28
6.6.4.2. CLOSE Statement 6—29
6.6.4.3. DISPLAY Statement 6-30
6.6.4.4. OPEN Statement 6—31
6.6.4.5. READ Statement 6—31
6.6.4.6. WRITE Statement 6—32
6.6.4.7. INSERT Statement 6—34
6.6.4.8. REWRITE Statement 6-34
6.6.4.9. SEEK Statement 6-35
6.6.4.10. RELEASE Statement 6—36
6.6.4.11. RETURN Statement 6—36
6.6.4.12. SORT Statement 6-—37
6.6.5. Ending Verb (STOP) 6-39
6.6.6. Conditional Verbs 6—40
6.6.6.1. IF Statement 6—40
6.6.6.2. SEARCH Statement 6—45
6.6.7. Compiler-Directing Verbs 6—48
6.6.7.1. COPY Statement 6—48
6.6.7.2. ENTER Statement 6—-49
6.6.7.3. NOTE Statement 6—b1
6.6.7.4. USE Statement 651
6.6.8. Interprogram Communications 6-53
6.6.8.1. CALL Statement 6—53
6.6.8.2. ENTRY Statement 6—54
6.7. SEGMENTATION 6—54
6.7.1. Program Segments 6—54
6.7.1.1. Fixed Portion 654
6.7.1.2. Independent Segments 6—54

Contents 4

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3
EXTENDED COBOL
6.7.2. SECTION 6-55
6.7.3. Restrictions 6—55
6.7.3.1. ALTER Statement 6—55
6.7.3.2. PERFORM Statement 6—55
6.7.3.3. Linkage Editor Considerations 6-56
6.8. CALLING AND CALLED PROGRAMS 6—-56
6.8.1. Treatment of Data Items 6—56
6.8.2. Linking 6-57
6.8.3. 0S/3COBOL CALL/ENTRY Interface 6-57
PART 3. COMPILER FEATURES AND CAPABILITIES
7. COMPILER OPTIONS AND LIBRARY STATEMENTS
7.1. COMPILER OPTIONS 7—1
7.1.1. List Options 7-1
7.1.2. Output Options 7-2
7.2 SOURCE AND COPY LIBRARY INPUT SPECIFICATIONS 7—-3
7.2.1. Obiject Module Version/Revision Number 7—-4
7.2.2. Compiler Source Library Input and Copy Library Input 7-4
7.3. LIBRARY y
7.3.1. Using the COPY Statement 7-5
8. RERUN CLAUSE
8.1. GENERAL 8—1
8.2. RERUN CLAUSE 8-1
8.3. CHECKPOINTING 8-1
8.4. RESTARTING 8-2
8.5. NOTES AND RESTRICTIONS 8-2

9. USE OF ACCEPT AND DISPLAY STATEMENTS

9.1.
9.1.1.
9.1.1.1.
9.1.1.2.
9.1.1.3.
9.1.2.
9.1.3.
9.1.4.
9.1.5.
9.1.6.
9.1.7.

ACCEPT STATEMENT

Job Control Stream ACCEPT
80-Column Card ACCEPT
96-Column Card ACCEPT
8413 Diskette ACCEPT

Console ACCEPT

Current Date ACCEPT

Time of Day ACCEPT

Julian Date ACCEPT

UPS! Byte ACCEPT

Communications Region ACCEPT

|

LLL

!
N

(DCO(O(D(O(IO(DCO(OCQCO
WNN

Lobd

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 Contents 5
EXTENDED COBOL

. 9.2 DISPLAY STATEMENT 94
9.2.1. Console DISPLAY 9--4
9.2.2. Log File DISPLAY 94
9.2.3. UPSI Byte DISPLAY 94
9.2.4. UPSI Bit DISPLAY 9-5
9.2.6. Communications Region DISPLAY 9-5
9.2.6. Printer Listing DISPLAY 9-5

10. TABLE HANDLING

10.1. GENERAL 10—1
10.2. DEFINING A TABLE 10-1
10.3. TABLE REFERENCE 10—1
10.4. SUBSCRIPTING 10-2
10.5. INDEXING 10-2
106. SEARCHING 10—3

11. PROCESSING TECHNIQUES FOR DIRECT ACCESS DEVICES

. 11.1. INTRODUCTION 11-1
11.2. FILE ORGANIZATION 11-1
11.2.1. Sequential Organization 11-1
11.2.2. Relative Organization 11-2
11.2.3. Indexed Organization 11-2
11.3. ACCESS METHODS 11-2
11.3.1. Sequential Access 11-2
11.3.2. Random Access 11-2
11.3.3. Extended Access 11-2
11.4. CLAUSES REQUIRED FOR FILE PROCESSING 11-2
11.4.1. Sequential File Processing 11-3
11.4.2. Relative File Processing 11-4
11.4.3. Indexed File Processing 11-7
11.4.4. Summary of Imperative Statements and Error Conditions 11-13
11.4.4.1. ORGANIZATION 1S SEQUENTIAL Clause 11-13
11.4.4.2, ORGANIZATION IS RELATIVE Clause 11-13
11.4.4.3. ORGANIZATION 1S INDEXED Clause 11-14
11.4.4.4. SYSERR Messages 11-27
11.4.45. COBOL Disc Processing Techniques 1-27

12. SORTING

. 12.1. GENERAL 12-1

12.2. ORGANIZATION OF A SORT PROGRAM 12-1

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 Contents 6
EXTENDED COBOL

12.3. SORT STATEMENT FORMATS 12-2
12.3.1. Sort File SELECT Entry 12-2
12.3.2. SAME AREA Clause 12-2
12.3.3. Sort File Description 12-2
12.3.4. RELEASE Statement 12-3
12.3.5. RETURN Statement 12-3
12.3.6. SORT Statement 12-3
12.3.7. Use of the Sort Feature 124

13. ASCII TAPE PROCESSING

13.1. GENERAL 13-1
13.2. DECLARATION OF ASCII FILES 13-1
13.3. RECORDING MODE CLAUSE 13-2

PART 4. DEBUGGING AIDS

14. DEBUGGING LANGUAGE

141. GENERAL 14-1
14.2. READY TRACE 141
14.3. RESET TRACE 142
14.4. EXHIBIT 14-2
14.5. DEBUGGING PACKET 14-3

PART 5. APPENDIXES
A. CHARACTER SET
B. RESERVED WORDS

C. INTERMEDIATE RESULTS IN ARITHMETIC OPERATIONS

C1 GENERAL C—1
C.2. ADD AND SUBTRACT STATEMENTS c—1
C.3. EXPRESSIONS c-2

D. COMPILER DIAGNOSTICS

D.1. GENERAL D-1

D.2. DIAGNOSTIC MESSAGES D-1

D.3. SYSTEM CONSOLE MESSAGES D-32

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 Contents 7
EXTENDED COBOL

E. COMPILER LISTINGS
E.1. SOURCE CODE LISTING E-1
E.2. DATA DIVISION STORAGE MAP AND CROSS-REFERENCE LISTING E-3
E.3. PROCEDURE DIVISION STORAGE MAP AND CROSS-REFERENCE LISTING E—4
E4. OBJECT CODE LISTING AND EXTERNAL REFERENCES E—6
E.5. DIAGNOSTIC ERROR LISTING E-10
E.6. ALPHABETICALLY ORDERED DATA DIVISION CROSS-REFERENCE LISTING E-13

-

E.7. ALPHABETICALLY ORDERED PROCEDURE DIVISION CROSS-REFERENCE LISTING E-13

F. CONVERSION MODE
F.1. GENERAL F—1
F.2. CONVERSION MODE OPERATION F-1
F.3. CONVERSION MODE SYNTAX F-2
F.3.1. ldentification Division F-2
F.3.2. Environment Division F--2
F.3.3. Data Division F-5
F.3.4. Procedure Division F-6
F.3.5. Reserved Words F—9
F.4. PRINTER FILE SUPPORT F-10
F.5. DISC FiLE SUPPORT F-12
F.5.1. Sequential Organization F-12
F.5.2. Indexed Organization F-12
F.5.3. Direct Organization F—13
F.5.4. Error Testing in USE AFTER ERROR Procedures F-13

G. JOB CONTROL STREAM REQUIREMENTS
G.1. INTRODUCTION G—1
G.2. PROCEDURE CALL STATEMENT (COBOL) G-—1
G.3. COMPILER STATUS INDICATORS G-14
G.4. SOURCE CORRECTION FACILITY G-14
G.b. DATA DEFINITION (DD) JOB CONTROL STATEMENT KEYWORD PARAMETERS G—15 -
H. SHARED CODE INTERFACE

H.1. GENERAL H--1
H.2. ACTION PROGRAM H-1

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3

EXTENDED COBOL

Contents 8

INDEX

USER COMMENT SHEET

FIGURES

2-1.
2-2.

Example of Qualification Entries
COBOL Programming Form

. Example of Identification Division Entries
. Example of Environment Division Entries

. Example of Data Division Entries

PERFORM Logic: Varying Two ldentifiers
PERFORM Logic: Varying Three identifiers
SEARCH Logic

. Example of Calling Program
. Example of Called Program
. Exampie of Called Assembly Subprogram

. ASCIt Physical Tape Formats

Example of Source Code Listing
Example of Data Division Storage Map and Cross-Reference Listing
Example of Procedure Division Storage Map and Cross-Reference Listing

. Example of Object Code Listing and External References

Example of Diagnostic Listing
Example of Alphabetically Ordered Data Division Cross-Reference Listing
Example of Alphabetically Ordered Procedure Division Cross-Reference Listing

TABLES

. SPERRY UNIVAC 0S/3 COBOL Module/Level implementation
. User-Supplied Words

. Reserved Words

. Programming Form Column Usage

. Rules for SPECIAL-NAMES

. Main Storage Allocation
. Control Field Sizes

Block Size Ranges
Label Record Specifications

. PICTURE Symbols
. Precedence Rules in PICTURES
. Source and Receiving Fields

MOVE Sending and Receiving Fields

Combination of FROM and TO Options ina TRANSFORM Statement
Logical Operator/Condition Relationships

Logical Operator/Condition Combinations

Program/Subprogram Relationships

2-8
2-9

413

5-34

6-17
6—-18
6—47
6-58
659
6-59

5-2
54
5-6
5-8
5-18
5-20
521

6—22
6—26
6—41
6—41
6—61

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3

EXTENDED COBOL

Contents 9

11-1.
11-2.
11-3.

11-4.
11-5.
11-6.
11-7.

13-1.
13-2.

Logical Record Retrieval by Sequential Read

Warning Exception Conditions for Indexed File Processing

AT END/INVALID KEY Exception Conditions for Indexed

File Processing

Unrecoverable File Error Conditions for Indexed File Processing
Exception Handling for COBOL Verbs Used for Indexed File Processing
System Error Messages (SYSERR) for INDEXED and RELATIVE Files
Summary of COBOL Disc Processing Techniques

Characteristics of Tape Files Available to COBOL Users
ASCII/EBCDIC Conversion

. Diagnostic Messages
. System Console Messages

11-10
11-14

11-15
1115
11-18
11-27
11-28

13-4
13-5

D-2
D-33

PART 1. COBOL LANGUAGE STRUCTURE

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 1-1

EXTENDED COBOL

1. Introduction

1.1. SYMBOLS, RULES, AND NOTATIONS USED IN THIS MANUAL

The various language elements comprising a COBOL program must be written in formats that adhere to fixed and
precise rules of presentation. Each format statement indicates the following information:

order of presentation;

words requisite to proper functioning of the statement;
optional words included at the discretion of the user;
information that must be supplied by the user;

elements in the statement involving a choice by the user; and

optional functions of the statement.

In accordance with the foregoing, the following conventions are used in this manual:

The order of presentation is indicated by the format statement itself.
All COBOL reserved words appear in all capitals. They are also listed in Appendix B.

Words in underlined capitals are key words, which must be present when the functions in which they appear
are used. Those capitalized words not underlined are optional and may be included at the user’s discretion to
improve readability; there is no compiler action. All completely capitalized words, whether underlined or not,
are part of the COBOL language and must be spelled exactly as indicated.

All lowercase words represent generic terms to be supplied by the user when the functions of which they are a
part are used.

Braces {} enclose elements of a statement to indicate that one of the elements must be selected. If one of the
choices within the braces has no key words, it is a default option; i.e., if none of the elements within the
braces is specified, the action will be the same as if the default option had been specified.

Brackets [] enclose optional functions to indicate their inclusion or omission at the user’s direction. When two
or more options are stacked within brackets, one or none of them may be specified.

In some statements, certain portions may be used as many times as needed by the programmer. The ellipsis. . .
indicates this repeatability. If there is a choice to be made from stacked options or if there is only a single
possibility, brackets or braces are used as delimiters to indicate that portion of the statement which is
repeatable.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 1-2
EXTENDED COBOL

1.2. EXTENDED COBOL COMPILER
The SPERRY UNIVAC Operating System/3 (0S/3) extended COBOL compiler conforms to the specifications in the

American National Standard COBOL, X3.23—1968. The modules and levels implemented are shown in Table 1—1;
where 0S/3 COBOL features are an extension to these requirements, an annotation is made in the text.

Table 1—1. SPERRY UNIVAC 0S/3 COBOL Module/Level Implementation

Module Level
Nucleus 2
Sequential access 2
Random access 2
Sort 2
Segmentation 2
Table handling 3
Library 2

The minimum system configuration required for this compiler includes:
= 3 disc work areas and 1 system disc

] 1 card reader or substitute device

- 1 printer or substitute device

n 65,536-byte main storage

The extended COBOL compiler requires the micrologic expansion feature for both the compiler and the generated
object program.

The compiler and all compiler-produced object programs normally operate on data represented in Extended Binary
Coded Decimal Interchange Code (EBCDIC) under control of the 0S/3.

A COBOL source program can be entered in the compiler from the job stream file or from a disc library file. The
compiler produces, as its final output, a relocatable object program on disc. This object module must be processed
by the linkage editor being executed.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 2-1
EXTENDED COBOL

2. General Specifications

2.1. COBOL CHARACTER SET

The SPERRY UNIVAC Operating System/3 (0S/3) COBOL character set is a 52-character subset of the OS/3
character set, which contains 256 characters. ’

The COBOL. character set consists of the following characters:
01,..9
AB....2

Blank or space (written on coding form as A or a blank space)

Period
< Less than
(Left parenthesis

+ Plus sign

$ Currency sign

Asterisk (if used in column 7, indicates that the entire source line is commentary)
) Right parenthesis

; Semicolon

— Minus sign or hyphen

, Comma

> Greater than

Apostrophe (alternate character for quotation mark)
= Equal sign

Quotation mark (see apostrophe)

/ Slash

The collation sequence for these characters is given in Appendix A.

UP-8059 Rev. 3 SPERRY UNIVAC 0S§/3 2-2
EXTENDED COBOL

The 0S/3 COBOL character set may be used anywhere in a program; however, the additional characters, which
together with the COBOL set make up the system set, may be used only in the following instances:

u anywhere in the identification division except in the PROGRAM-ID paragraph;

= in the NOTE statement of the procedure division; or

= in nonnumeric literals.

The apostrophe or the quotation mark may be embedded in a nonnumeric literal by invoking the appropriate LST
PARAM option to specify one or the other as the delimiter. (See Section 7.} Only one of the parameters may be

used in any given program. The use of either overrides the interchangeability of the apostrophe and quotation mark.

The following paragraphs describe the general usage of the various 0S/3 COBOL characters.

2.1.1. Characters Used for Words

A COBOL word is a sequence of not more than 30 of the following characters:
01,..9
AB,..Z
- {hyphen)

A word may neither begin nor end with a hyphen, or contain a space.

2.1.2. Characters Used for Punctuation
COBOL punctuation characters are:

Apostrophe (character used as delimiter for a nonnumeric literal and as an optional character for the
quotation mark)

(Left parenthesis

)] Right parenthesis
Blank or space {written on coding form as A or a blank space)
Period

, Comma

; Semicolon

"

Quotation mark (See apostrophe.)

NOTE:

The normal mode for the compiler is to equate the apostrophe and the quotation mark as meaning the same thing.
To embed either character within a nonnumeric literal, the PARAM options described in 7.1 may be used.

The comma and semicolon, when used in the general format descriptions, are for readability only and are not
required. When used, the comma and semicolon always must be followed by a space.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3
EXTENDED COBOL

. 2.1.3. Characters Used in Relational Expressions

The COBOL characters used to represent relational operators are:

Equals
> Greater than

< Less than

2.1.4. Characters Used in ArithAmetic Expressions
The characters used in arithmetic expressions are:
+ Plus sign (addition}
- Minus sign {subtraction)
Asterisk (multiplication)
/ Slash {division}

Two asterisks (exponentiation)

. 2.1.5. Characters Used in Editing
The characters used in editing are:
B Blank or space insertion

0 Zero insertion

+ Plus sign

-— Minus sign
CR Credit
DB Debit

Z Zero suppression
Check protection
$ Currency symbol
Comma

Decimal point

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 2-4
EXTENDED COBOL

2.2. TYPES OF WORDS

Two types of words are used in OS/3 COBOL: user-supplied and reserved. The user-supplied words are listed and
defined in Table 2—1. Reserved words are used for syntactical purposes and may not appear as user-defined words.
The various types of reserved words are described in Table 2—2. Appendix B contains a complete list of 0S/3
COBOL reserved words.

Table 2—1. User-Supplied Words (Part 1 of 3}

User-Supplied Words Rules
Data-name 1. Contains 1 through 30 characters
2. Permissible characters are O through 9, A through Z, and hyphen (—).
3. Must include at least one alphabetic character
4, Hyphen (—) cannot be the first or last character.
5. May be qualified; may not be subscripted
Unqualified 1. Rules 1 through 4 for data-name
data-name
2. May not be qualified; may not be subscripted
Identifier 1. Rules 1 through 4 for data-name
2. May be qualified and/or subscripted
Condition-name 1. Rules 1 through 4 for data-name
2. Value may be established in a level-88 entry or in a SPECIAL-NAMES
switch status declaration.
3. Referenced only in conditions
Conditional 1. Rules 1 through 4 for data-name
variable
2. Data-name immediately followed by one or more associated level-number
88 entries
Procedure-name 1. Rules 1, 2, and 4 for data-name
2. Must precede each referenced paragraph
3. A procedure-name is a section-name if it is followed by the word
SECTION.
External-name 1. A nonnumeric literal of 1 to 8 characters
2. A user-supplied label that duplicates the LLFD name used in the job
control stream toc name a COBOL. file
File-name 1. Rules 1 through 4 for data-name
2. A word that names a file described in the data division
Sort-name 1. Rules 1 through 4 for data-name
2. A word that names a file described in the data division but which may
be used by the sort function only

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3
EXTENDED COBOL

Table 2—1. User-Supplied Words (Part 2 of 3}

User-Supplied Words

Rules

Index-name

Rules 1 through 4 for data-name

Value of index-name corresponds to an occurrence number for a table
dimension.

Initialized and modified only by the SET statement

Defined by the INDEXED BY clause

Table references using indexing are specified by the data-name of the
table element followed by parentheses including an index-name for each

table dimension.

Storage areas are assigned by compiler.

index data-item

Rules 1 through 3 for index-name
Defined by USAGE IS INDEX clause

May be part of a group referred to in a MOVE or I-O statement

Fixed-point
numeric literal

A string of not more than 20 characters, including O through 9, sign
(+ or —), and decimal point

Must contain at least one and not more than 18 digits plus a sign and
a decimal point

May contain only one sign, which must be leftmost character; if
unsigned, literal is positive

May contain only one decimal point, treated as an assumed decimal
point; if no decimal point, the literal is an integer

Decimal point cannot be the last character in a numeric literal.

When a literal is restricted to numeric, the only figurative constant
permitted is ZERO.

Floating-point
numeric literal

A string of not more than 22 characters, including O through 9, signs
{+ or —), decimal point, and the character E

A floating-point numeric literal must be of the form: [{ i}]
mantissa E [{i}] exponent.

The mantissa must contain at least one and not more than 16 digits
and a decimal point.

The exponent must contain one or two digits.

If the mantissa or the exponent is unsigned, it is assumed to be
positive.

The maximum magnitude is 0.72 x 1076

The minimum magnitude is 5.4 x 10779

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3 2-6

EXTENDED COBOL

Table 2—1. User-Supplied Words (Part 3 of 3)

User-Supplied Words

Rules

Nonnumeric literal

1. A string of any characters of the OS/3 character set, excluding the

quotation mark and the apostrophe (unless these have been embedded by
use of the appropriate LST parameter (7.1)}; reserved words may be used .

2. Must contain at least one and not more than 132 characters
3. Must be enclosed within quotation marks or apostrophes
4, Any spaces enclosed in the quotation marks are part of the literal

and, therefore, are part of the value.

5. All nonnumeric literals are in the alphanumeric category.

6. A figurative constant can be used whenever a nonnumeric literal appears

in the format.

Table 2—2. Reserved Words (Part 1 of 2)

Reserved Words

Rules

Verbs Denote actions performed by the object program or the COBOL compiler
Key words 1. A word which must be present in a particular clause
2. Key words are indicated by underlining where they appear in the general
formats.
Optional words 1. Used in COBOL to improve readability
2. Presence or absence does not alter handling of statement during

compilation or execution of program

3. Not underiined when shown in generalized format

TALLY

1. TALLY is the name of a special register designated by the compiler
whose implicit description is that of a COMPUTATIONAL-3 integer of five
digits without an operational sign.

2. TALLY holds the count produced by the EXAMINE statement.

3. TALLY may aiso be used in the procedure division as a data-name
whenever an elementary data item of integral value may appear.

Figurative constants

1. ZERO, ZEROS, or ZERQES generates one or more 0's.
2. SPACE or SPACES generates one or more spaces.

3. HIGH-VALUE or HIGH-VALUES generates one or more hexadecimal
FF characters (all binary 1’s); this character has the highest value in the
0S/3 collating sequence.

4. LOW-VALUE or LOW-VALUES generates one or more hexadecimal 00
characters (all binary O's); this character has the lowest value in the
0S/3 collating sequence.

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3 2-7
EXTENDED COBOL

Table 2—2. Reserved Words (Part 2 of 2)

Reserved Words

Rules

Figurative constants
(cont)

QUOTE or QUOTES generates one or more apostrophes ('), hexadecimal 7D;
QUOTE(S) cannot be used in place of quotation marks ("') or an apostrophe
to bound a nonnumeric literal.

The ALL literal generates one or more of the literals following the
ALL; the literal must be either a nonnumeric literal or a figurative
constant other than the word ALL; when a figurative constant is used,
the word ALL is redundant and is used for readability only; the ALL
literal may not be used with DISPLAY, EXAMINE, STOP, or COPY.

Connectives

The qualifier connectives OF and IN are used to associate a data-name
or paragraph-name with its qualifier.

The logical connectives AND, OR, and NOT are used to form compound conditions.

A series connective is the comma, which links two or more consecutive
operands or statements; the use of a series connective is optional.

2.3. QUALIFICATION

Every name used in an OS/3 COBOL source program must be unique either because of different spelling or because

of qualification.

Definition:

Qualification is a means of making a name within a hierarchy unique by appending a prepositional phrase
containing the name of a higher level of the hierarchy. It is accomplished by appending one or more phrases
composed of a qualifier preceded by IN or OF to a data-name or paragraph-name. IN and OF are logically

equivalent.

Rules:

1. The name associated with the highest ievel entry in a hierarchy is the highest level qualifier available for

a data-name within that hierarchy.

2. Each qualifier must be of a successively higher level and within the same hierarchy as the name it

qualifies.

3. The same name must not appear at two different fevels in the same hierarchy.

4. If a data-name or condition-name is assigned to more than one item, it must be qualified each time it is
referenced.

5. A data-name cannot be subscripted when it is being used as a qualifier.

6. A paragraph-name must not be duplicated within a section.

7. Only a section-name can qualify a paragraph-name; the word SECTION must not appear as part of the

qualifier.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 2-8
EXTENDED COBOL

8. A paragraph-name need not be qualified when referred to from within the same section.

9. A name may be qualified even though it does not require qualification.

10. FD names, SD names, level 77 names, level 66 names, level 01 names (not in the file section)}, and
section-names must be unique in themselves as they cannot be qualified.

11. A data-name being qualified may be subscripted or indexed. The subscripts/indexes must appear to the
right of the last qualifier name.

Format 1:
condition-name-1 IN data.) (sub1 w2 awpsl])
data-name-1 OF name- cen su , S ,

Format 2:

} section-name]

I>]F=

paragraph-name [{

NOTE:

Figure 2—1 illustrates examples of qualification entries.

CONTINUATION
T T >
7i8 1412 20 30 40 50 60

... .M THE FOLLOWING ENTRIES SHOW THE VSE dF QUALLFICATION. .
RN [S | IV BT PR VS RO S U T S VU S S ST W A S S S SN S
.. .| IDATA DIVISION. oid i L N S B
i | IWOIRKING, STORAGE SECTION., , ., | il i
. ll77 HELD PIC X(10) VALUE SPACEZ. N T
e O JALAL L T S S S ST S A U S O S R S ST S
. L1103 CLTY PIC, XC20) .- i o
L 03 WARD P IC XC10) - |
R T B U S U B R RO BT
LMo P PENNAL
L1103 CITY, PLC X200, 0 e b
il .. 1103 WARD P LC x(10),., T A A ST S O S
e ol L L. e T S
C R RS | b AT
... | PROCIEDYRE DIVIFION. .,| A S
Y L i | oAl i 1 ISP SR GRS NN TR S S A SR S S ST B i
R PARA-L., L e
i oLl IMEVE WARD OF PENNA TO HOLD..,, .. T
& Lot i SIS SR Lo L PR B | Lo bt i o i | [S B
.. . Y NOTE IF THE DATA NAMES CITY AND WARD WERE UNIQUE .THEN

L. P QUALTFICATION 18 UNNECESSARY,. . . |, N TR ‘

Figure 2—1. Example of Qualification Entries

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 2-9
EXTENDED COBOL

2.4. SUBSCRIPTING AND INDEXING
Definition:

Subscripting and indexing are techniques used to refer to individual table elements within a table of like
elements that have not been assigned individual data-names.

Rules:
1. Up to three levels of subscripting or indexing are permitted.
2. Subscripted or indexed identifiers may not be used as qualifiers.

3. When condition-names are assigned to items requiring subscripting or indexing, these condition-names
must be subscripted or indexed when referenced.

4, Relative indexing (index-name % integer) is permitted. The integer must not be zero. Zero is considered
out of the scope of an OCCURS clause.

IS

5. When more than one subscript or index is used in a reference, each must be separated by a comma and a
space.

NOTE:

Table handling is discussed in Section 10. For a complete discussion of table handling, see the fundamentals of
COBOL — table handling manual, UP-7503.2 (current version).

2.5. CODING FORM

Figure 2—2 shows the layout of the COBOL programming form. On this form the programmer enters all information
needed by the COBOL compiler, observing the rules of format and content defined in this manual. Each line of
written information represents the information to be entered into one 80-column punched card. The divisions of the
form are explained in Table 2—3.

CONTINUATION
SEQUENCE I
NUMBER A B TEXT » IDENTIFICATION
718 12 2 40 50 60 72

oy) N S e - Lot i T SR DU SR S [ETE SV S S

I L RO Y S S U VA T S U G GNP S A0 WU SO SOE S S G G S S L H L I Lot S S S

PN S T TN B TS PRSI W S S U S W W SUPUIS SO S Y FUN BRI I TR Losoa ol 1gd T T O S T T

Figure 2—2. COBOL Programming Form

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 2-10
EXTENDED COBOL

Table 2—3. Programming Form Column Usage

Columns Designation Contents

1-6 SEQUENCE NUMBER A numeric entry, used only by the programmer (not the COBOL

processor) 1o establish a sequence among the various lines of
coding (optional).

7 CONTINUATION A hyphen (-) is used when an entry extends past one
noncomment line. A break is used in the middle of a word,
and the hyphen is written in column 7 of the next contiguous
line on which the word is completed. A word may be interrupted
in any column, the rest of the line space filled, and the

word completed on the next line. If the continued line
contains a nonnumeric literal without a closing

delimiter (apostrophe or quotation mark}, the first

nonblank character in Area B of the continuation line must be
one of these delimiters and the continuation starts with the
character immediately after the delimiter.

7 COMMENT An asterisk (*) in column 7 signifies a comment line which

will be printed but ignored by the compiler. A comment

may appear anywhere in the program except between a continuation
set and can contain any printable combination of characters,
including reserved words. If a comment entry extending past one
line has a break occurring in the middle of a word, the continuation
line must contain an asterisk in column 7, (The hyphen is used only
for noncomment continuation lines.} This is an extension to
American National Standard COBOL (1968).

7 EJECT A slash (/) in column 7 signifies a comment line that causes the compiler
to direct the printer to skip to the head of the form and print the
comment. If the comment line is continued, it must follow the rules
for comment continuation, as explained in the preceding paragraph.

8-72 TEXT All COBOL-formatted information, in the form of names,
statements, information, instructions, etc., that is to be
compiled into the object program.

Note that two left-margin limits designated "“A"’ and 'B"’
are shown. These are needed for program alignment. Major
definitive names are begun at margin A {(column 8). Margin
B (column 12) is used for subordinate items and for
continuation of entries from the last preceding line.

73-80 IDENTIFICATION Card deck information {(optional)

®

PART 2. DIVISIONS IN COBOL

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 3-1
EXTENDED COBOL

3. Identification Division

3.1. GENERAL

The identification division identifies or labels the source program and provides other pertinent information
concerning the program. All information given in this division is listed by the printer during compilation; however,
only the PROGRAM-ID paragraph will affect the object program in the SPERRY UNIVAC Operating System/3
(0S/3).

Format:

IDENTIFICATION DIVISION.

. PROGRAM-ID. program-name.
[AUTHOR. [comment-entry.] ...]
[INSTALLATION. [comment-entry.] ...]
[DATE-WRITTEN. [comment-entry.] ...]

[DATE-COMPILED. [comment-entry.] ...]

[SECURITY. [comment-entry.] ...]
[REMARKS. [comment-entry.] ...]

Rules:
1. The identification division must be present in all source programs,

2. PROGRAM-ID always must be present as the first paragraph of the identification division.
Program-name may consist of 1 to 30 alphabetic or numeric characters, the first character being
alphabetic. The sequence formed by the first six characters must be unique (within user’s library) since it
will identify the source program, object program elements, and associated documents. Hyphens within
the first six characters are removed by the compiler due to 0S/3 naming conventions.

If the program name is not supplied or not accepted due to an error, the compiler automatically supplies
. the program name NOCOBNAM.

3. AUTHOR is for documentation only.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 3-2
EXTENDED COBOL

4. INSTALLATION is for documentation only.
5. DATE-WRITTEN is for documentation only.

6. DATE-COMPILED is for documentation only. Date of compilation appears on listing regardless of
whether this paragraph is present. Comment-entry is printed when this paragraph is present.

7. SECURITY is for documentation only.

8. REMARKS is for documentation only.

9. A comment-entry can consist of any printable combination of characters, including reserved words.
Example:

An example of identification division entries is shown in Figure 3—1.

e CONTINUATION

At
SEQU

UEN
NUMBE

1y

w M
LS IS

y . £ i A B TEXT e e o e e et et e e 0
1 41718 1112 20 30 » 44

001001 IIDENTIFICATION DIVISIAON. 1
001,002 PRIGRAM-1D.. TESTOI. L T
001,003 AUTHOR.. svsrsms PUBLIcArzaNs T
001 004 [INSTALLATION.: DEPT 6866, ., 1., L
001005 DATE-WRITTEN. OCT .12 J9;7:3:. g
001006 DATE-COMPILED. DEc 12 19713. . .,
001007 |SECURITY., NdNE — [

001,008 REMARKS. USER REPGRT #gh., N

p:

Figure 3—1. Example of Identification Division Entries

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3
EXTENDED COBOL

4. Environment Division

4.1. GENERAL

The environment division (Figure 4—1) specifies those elements of the COBOL program that depend upon the
physical aspects of the SPERRY UNIVAC 90/30, 90/25, or 90/40 System.

Format:

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. (UNIVAC-9030.
UNIVAC-9025.
UNIVAC-9040.

OBJECT-COMPUTER. (UNIVAC-9030
UNIVAC-9025
UNIVAC-9040

CHARACTERS
, MEMORY SIZE integer { MODULES [SEGMENT-LIMIT IS priority-number] .
WORDS

[SPECIAL-NAMES. entry.]

[INPUT-OUTPUT SECTION.
FILE-CONTROL.{entry.}. ..
| [1-0-CONTROL. entry.]

Rules:
1. The environment division must be present in all source programs in the SPERRY UNIVAC Operating
System/3 (0S/3). It may need to be rewritten when a program is to be compiled or executed on a
different system configuration.

2. Section and paragraph headers are required when their associated entries are present.

3. Section and paragraph headers must begin in margin A {columns 8-—10); their associated entries must
begin in margin B {columns 12--71).

4.2, CONFIGURATION SECTION
Definition:

The configuration section specifies the characteristics of the source and object processors and relates
implementor-names to user-names.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 4-2

EXTENDED COBOL

Format:

CONFIGURATION SECTION.
SOURCE-COMPUTER. entry.
OBJECT-COMPUTER. entry.
[SPECIAL-NAMES. entry.]

4.2.1. SOURCE-COMPUTER Paragraph
Function:
Names the processor that will compile the source program.

Format:

UNIVAC-9025.

SOURCE-COMPUTER. { UNIVAC-9030. }
UNIVAC-9040.

Rules:

The SOURCE-COMPUTER paragraph is for documentation only and does not affect the object program.

4.2.2. OBJECT-COMPUTER Paragraph

Function:
To specify the processor that will execute the object program and the size of main storage and the
segment-limit priority number.

Format:
OBJECT-COMPUTER. (UNIVAC-9030

UNIVAC-9025
UNIVAC-9040

CHARACTERS
MEMORY SIZE integer MODULES [SEGMENT-LIMIT IS priority-number] .
WORDS

Rules:

1. The OBJECT-COMPUTER paragraph has no effect on the object program unless the SEGMENT-LIMIT
clause is specified.

2, MEMORY SIZE is an optional clause defining main storage as an integer number (no sign, comma, or
decimal point permitted) of WORDS, CHARACTERS, or MODULES for documentation only. The
equivalent number of bytes for each is as follows:
= CHARACTER = 1 byte
n WORD = 4 bytes

n MODULE = 16,384 bytes

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3 4-3
EXTENDED COBOL

The SEGMENT-LIMIT priority number must be an integer ranging in value from 1 through 49.

When the SEGMENT-LIMIT clause is specified, only those sections having priority-numbers from O up
to, but not including, the priority number designated as the limit are considered as part of the fixed
permanent segment.

Sections having priority numbers from the SEGMENT-LIMIT through 49 are considered as fixed
overlayable segments.

When the SEGMENT-LIMIT clause is omitted, all sections having priority numbers from O through 49
are considered as belonging to the fixed permanent segment.

4.2.3. SPECIAL-NAMES Paragraph

Function:

Relates implementor-names to user-supplied mnemonic-names

Format:

SPECIAL-NAMES.

[cu

RRENCY SIGN IS literal]

[; DECIMAL-POINT IS COMMA]

[; SYSCOM IS mnemonic-name-1]

[; SYSDATE IS mnemonic-name-2]}

[; SYSTIME IS mnemonic-name-3]

[; SYSCONSOLE 1S mnemonic-name-4]

[; SYSCHAN-t IS mnemonic-name-5] . ..

[; SYSLST IS mnemonic-name-6]

L

—
; SYSSWCH[-n]

[SYSERR [-m]

ON STATUS IS condition-name-3 [, OFF STATUS IS condition-name-4]
OFF STATUS IS condition-name-4 [, ON STATUS IS condition-name-3]

1S mnemonic-name-7 [ON STATUS IS condition-name-5 [OFF STATUS IS condition-name-6]]
IS mnemonic-name-7 [OFF STATUS IS condition-name-6 [ON STATUS IS condition-name-5]] |

ON STATUS IS cendition-name-5 [QOFF STATUS IS condition-name-6]
OFF STATUS IS condition-name-6 [ON STATUS IS condition-name-5] _

{; SYSIN 1S mnemonic-name-8]

[; SYSIN-96 IS mnemonic-name-9]

[; SYSIN-128 IS mnemonic-name-10]
[; SYSLOG IS mnemonic-name-11].

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3 4-4
EXTENDED COBOL

where:

Rules:

Is any digit 1 through 15.

Is any digit O through 31.

Is any digit O through 7.

A comma or semicolon may separate each entry, and a period must follow the last entry.

The CURRENCY clause literal is used in the PICTURE clause to represent the currency symbol.
Absence of this clause specifies that $ is the currency symbol. The literal must be a nonnumeric literal
consisting of one character from the OS/3 COBOL character set and must not be one of the following
characters:

. Digits: 0 through 9
= Alphabetic characters: A,B,C,D, E,P, R, S, V, X, Z, or space

”

L] Special characters: * ,+—.; ()

The DECIMAL-POINT IS COMMA clause causes the functions of the decimal point and the comma to ‘
be interchanged in PICTURE clause character strings and in numeric literals.

Examples:

SPECIAL-NAMES. CURRENCY SIGN IS ‘F' DECIMAL-POINT IS COMMA,

Source PICTURE Source Data Receiving Field PICTURE | Receiving Field Result
9(6)V99 00003232 FFFFFF,99 MAF32,32

9(5)Vv99 1234567 F***** 99 F12.345,67
9(9)V9I(4) 0000098211289 | Z(3).ZZ9,9(4) /\9.821,1289

SYSCOM permits accessing the communications region in the preamble of the job in which the object
program is being executed via user-supplied mnemonic-name-1. See the supervisor user guide, UP-8075
(current version) for an explanation of data.

SYSDATE permits access to current date via the user-supplied mnemonic-name-2. Mnemonic-name-2
may not appear in a DISPLAY statement. Date may be set or changed in the job control stream.

SYSTIME permits access to time-of-day via a mnemonic-name-3. Mnemonic-name-3 may not appear in
DISPLAY statement.

SYSCONSOLE permits access to the system console {using ACCEPT or DISPLAY statement; see Section
9) via mnemonic-name-4.

SYSCHAN-t equates a particular channel (t} on the printer loop to mnemonic-name-5.
Mnemonic-name-5 may appear only in a WRITE statement. SYSCHAN 1 and 7 are normally used for
form overflow and top-of-page, respectively.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 4-5
EXTENDED COBOL

9. SYSERR [-m] permits access to system error codes. The status of a particular error (m) or the presence
of any error can be checked with the ON/OFF STATUS option. SYSERR [-m] is a feature of the
compiler random access module. Condition-names in ON/OFF STATUS phrases are defined and equated
with ON or OFF as required by the compiler and should not be defined elsewhere in the COBOL
program.

10. SYSSWCHI[-n] and its various options permit the programmer to access all or part of the user program
switch indicator (UPSI) byte. The eight bits in the UPSI byte (bits 0 through 7) constitute a set of eight
programmable software switches, SYSSWCH-0 through SYSSWCH-7. The status of these switches can be
set to ON or OFF, altered, or interrogated as required. A switch containing a 1 bit is ON; a 0 bit is OFF.
The following examples show the various ways of using SYSSWCH,

L To set or change the contents of SYSSWCH, the DISPLAY verb may be used as follows:

ENVIRONMENT DIVISION.

SPECIAL-NAMES.
SYSSWCH IS SWITCH
SYSSWCH-3 IS SWITCH-3.

PROCEDURE DIVISION.

DISPLAY 00010001 UPON SWITCH SYSSWCH will now contain 00010001.

DISPLAY 1 UPON SWITCH-3. SYSSWCH-3 will now contain 1; the other switches
remain unchanged.

DISPLAY identifier UPON SWITCH. The eight switches in SYSSWCH (0 through 7)
are set ON or OFF, depending on the contents
of the 8-character identifier.
NOTE:
Any character other than a hexadecimal FQ will set a switch to ON.
= An individual switch can be interrogated by using condition-name in the ON/OFF STATUS
option. For instance, in the following example control is transferred to procedure-name-1 if switch
5 is ON.
ENVIRONMENT DIVISION.
SPECIAL-NAMES.
SYSSWCH-5 ON STATUS IS FIVON, OFF STATUS IS FIVOFF.

PROCEDURE DIVISION.

IF FIVON GO TO procedure-name-1.

In essence, SYSSWCH-5 is a conditional variable with the condition-names FIVON and
FIVOFF, which are similar to level-88 entries.

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3 4-6
EXTENDED COBOL

The condition-names FIVON and FIVOFF are defined and equated with ON and OFF,
respectively, by the COBOL compiler and must not be defined elsewhere in the COBOL program.
The compiler uses the hexadecimal characters FO and F1, respectively, to represent the OFF and
ON status of a switch.
The entire UPSI byte may be interrogated by use of the ACCEPT verb. This is shown in the
following example where procedure-name-1 is performed if the SYSSWCH-2, SYSSWCH-4, and
SYSSWCH-6 switches are ON and the others are OFF.

ENVIRONMENT DIVISION.

SPECIAL-NAMES.

SYSSWCH IS mnemonic-name-1.

DATA DIVISION,

identifier PICTURE X(8).

PROCEDURE DIVISION.

ACCEPT identifier FROM mnemonic-name-1.

IF identifier = 00101010 PERFORM procedure-name-1.
Another way to interrogate switches is:

SPECIAL-NAMES.

SYSSWCH ON STATUS IS OK, OFF STATUS IS NIX.

PROCEDURE DIVISION.

IF OK GO TO procedure-name-1.
In this example, if any switch is set to 1, the program will branch to procedure-name-1.

The mnemonic-name option allows the user to equate his mnemonic-name with the
implementor-name SYSSWCH [-n]. For instance:

SPECIAL-NAMES.

SYSSWCH IS MYSWITCH, ON STATUS IS MYSWITCHON.,

or

SYSSWCH-4 IS TAKETAX, ON STATUS IS LOFICA; OFF STATUS IS EQFICA.

The mnemonic-name option is for use only with the ACCEPT or DISPLAY verbs.

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3 4-7
EXTENDED COBOL

11.

12.

13.

14.

15.

16.

NOTE:

] The UPS! switches also can be accessed by the following job control statements:
- SET statement — used to set switches ON or OFF (1 or 0).

- SKIP statement — used to conditionally bypass control statements. If the UPSI switch
settings match the bit pattern specified in the SKIP statement, the specified number of
statements will be skipped.

The format and usage of these statements are shown in the job control user guide, UP-8065
(current version).

SYSLST permits access to the printer by way of mnemonic-name-7 for DISPLAY functions.

SYSIN permits access to embedded data in the control stream when the embedded data is supplied on
80-column cards. Access is made via mnemonic-name-8 and the ACCEPT statement.

SYSIN-96 permits access to embedded data in the control stream when the embedded data is supplied
on 96-column cards. Access is made via mnemonic-name-9 and the ACCEPT statement.

SYSIN-128 permits access to embedded data in the control stream when the embedded data is supplied
on an 8413 diskette. Access is made via mnemonic-name-10 and the ACCEPT statement.

SYSLOG permits access to the system console and log file via mnemonic-name-11 and the DISPLAY
statement. ’

Table 4—1 shows how SPECIAL-NAMES are handled by the compiler. Note that if the PICTURE clause
is other than shown in the ““Implied Description’ column in the table, the rules for the MOVE statement
determine the storing of the resuit. The effect is that of a MOVE in which the sending item is described
as shown in the ’Stored as’” column and the receiving item description is that supplied by the user for
identifier when accepting. The sending and receiving fields are reversed when displaying.

See Section 9 for further discussion of ACCEPT and DISPLAY statements.

Table 4—1. Rules for SPECIAL-NAMES

Usable With Implied Description
SPECIAL-NAME Stored as Format for ACCEPT or Explenation
ACCEPT N OISPLAY oispLay @

SYSCOM 12 Yes Yes 12 EBCDIC PIC Xi12) See the supervisor user
alphanumeric characters guide, UP-8075 {eurrent version)
characters

SYSDATE & aumeric Yes No yymmdd PIC 9(6) Currentday
characters

SYSTIME 8 aumeric Yes No hhmmss00 PIC 918} Time of day
characters

SYSCONSOLE | Variablelength | Yes Yes For DISPLAY PIC Xta) System console
alphanumeric 55 characters.
characters per line,

up t0 250
For ACCEPT
60 characters
maximum

svscran: @ | Notapplicapte | No No Notapplicable | Not applicable To assign name to

printer loop channel

SYSERR|[:m) Not applicable | No No Not applicable | Not applicable Refer to Section 11

SYSSWCH 8 alphanumeric Yes Yes 8 EBCDIC PIC X{8} To call or change UPSI
characters characters | bits

SYSSWCH-n 4 slphanumeric | No Yes 1 EBCDIC PIC X To change UPSI bits
character character individually

SYSLST Variable-length | No Yas 120 characters/ | PIC Xia} Printer with LFD name
atphanumeric line of SYSLST
characters

SYSIN Variabledength | Yes No B0 characters! PIC Xin) Embedced control stream
siphanumertc card dats cards (80-column)
characters

SYSIN-9S Variabledength | Yes No 96 characters/ PIC Xin) Embedded control stream
alphanumenc card data cards (96-column)
characters it

SYSIN-128 Variable-tength Yes No { 128 characters P1C X{n} Embedded controf stream
alphanumeric | ondiskette data (8413 diskette}

{characters 1 {

SYSLOG Variable-length | No Yes 55 characters PIC X{n} System consale and log
alphanumeric tile {no operator
characters response)

ON STATUS ® Not applicable No No Not applicable Not applicable To interrogate user

orogram switch indicatars
{UPSI} for ON or OFF
condition

ofF status @ | Not appticabie | No No Not applicoble | Not applicable

NOTES:
(D Can be used anly in conditional variable tests. @ See4.23rule 4

@ Canbe used only in ADVANCING clause of WRITE statement.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 4-8
EXTENDED COBOL

4.3. INPUT-OUTPUT SECTION

Definition:
This section of the environment division is used to specify the input/output media for the files used by the
source program and to provide information needed for most efficient transmission of data between this media
and the object program.

Format:

INPUT-OUTPUT SECTION.
FILE-CONTROL. {entry.} ...

[1-O-CONTROL. entry.]

4.3.1. FILE-CONTROL Paragraph
Function:

The FILE-CONTROL paragraph names each file, identifies the hardware medium containing it, permits
specific hardware assignments for the program, and specifies alternate input/output areas. The clauses
following SELECT and ASSIGN under FILE CONTROL may be specified in any order.

Format:

FILE-CONTROL. {SELECT [OPTIONAL] file-name
ASSIGN TO [external-name] [integer-1] implementor-name-1 [OR implementor-name-2]

REEL
[FOR MULTIPLE {UNIT }]

. integer-2 AREA
[; RESERVE {_N_Q } ALTERNATE [AREAS]jl

FILE- i) . R
|: ; { ILE-LIMIT IS } {data name-1 } THRU {data name 2}

FILE-LIMITS ARE literal-1 literal -2
data-name-3 data-name4
[! {Iiteral-S } THRU {Iiteral-4 }] v }
EXTENDED
; ACCESS MODE 1S RANDOM
SEQUENTIAL

[; PROCESSING MODE !§ SEQUENTIAL]
INDEXED

; ORGANIZATION IS RELATIVE

| SEQUENTIAL

[{ ACTUAL KEY IS data-name-5
" | RELATIVE KEY |S data-name-6

[; SYMBOLIC KEY {S data-name-7]
[; RECORD KEY IS data-name-8] . } ...

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3
EXTENDED COBOL

Rules:

The comma or semicolon may separate each clause, and a period must follow the entry.

A SELECT clause must be specified for the following:
L] Every file that is the subject of an FD or SD.

] The external-name operand of a RERUN clause for which no FD or SD is supplied.

The keyword OPTIONAL, which may be applied to input files only, is required for files that are not
necessarily present each time the object program is run. The status of the optional file at run time is
determined by the job control stream. If the file is not present in the job stream, control takes the path
specified by the AT END statement on the first READ statement. The keyword OPTIONAL can be
applied to input files only, and these files must be sequential.

The ASSIGN clause designates a particular hardware device, or class of devices, to which a specific file is
assigned. External-name is a nonnumeric literal (1 to 8 characters) which is associated with a file. This is
the name used in the job control stream to assign devices to the file (using the LFD job control
statement). The external name must be unigue within a job step. If external-name is omitted, the first
eight characters of file-name are assumed for external-name. Integer-1 serves as documentation only,
referring to the number of devices associated with the file. SPERRY UNIVAC 0S/3 COBOL assigns the
following implementor-names:

Device Impiementor-Name
51-column card reader CARD-READER-51
66-column card reader CARD-READER-66
80- or 96-column card reader or 8413 diskette subsystem CARD-READER
Card punch or 8413 diskette subsystem CARD-PUNCH
Line printer PRINTER

SPERRY UNIVAC 8411 Disc Subsystem DiISC-8411
SPERRY UNIVAC 8414 Disc Subsystem DISC-8414
SPERRY UNIVAC 8415 Disc Subsystem DISC-8415
SPERRY UNIVAC 8416 Disc Subsystem DISC or DISC-8416
SPERRY UNIVAC 8418 Disc Subsystem DISC-8418
SPERRY UNIVAC 8430 Disc Subsystem DISC-8430
SPERRY UNIVAC 8433 Disc Subsystem DISC-8433
UNISERVO VI-C Magnetic Tape Subsystem TAPE-6

All other tapes . TAPE

The implementor-name, DISC, specifies an assignment to the 8416 disc subsystem. Because of track size
differences, the user must ensure that the proper implementor-name is used when assigning discs.

The implementor-name, CARD-READER, is used when reading 80- or 96-column cards or when reading
data from an 8413 diskette device. If the record size specified in the data division is greater than the
physical record size of the medium, the remaining character positions in the record will contain spaces.

The MULTIPLE clause, when present, specifies that the file exists on more than one volume. This clause
is accepted for documentation purposes only, since the actual function is provided via the job control
stream, which specifies the devices needed for the problem program,

The RESERVE clause indicates the number of additional 1/O areas desired. The keyword NO causes no
additional 1/O areas to be reserved; integer-2 reserves one additional 1/0 area. Integer-2 must be a 1; if
not and the word NO is not specified, a warning diagnostic will be issued. Omission of this clause may
result in the allocation of one additional 1/0 area as indicated in the following chart:

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3 4-10
EXTENDED COBOL

10.

11.

12.

Number of Additional R
. 1/O Areas Allocated eserve
Device . Integer
if Clause Al d
Not Specified owe

CARD-READER 1 Yes

CARD-PUNCH 1 Yes

PRINTER 1 Yes

TAPE 1 Yes
ORGANIZATION
SEQUENTIAL 1 Yes
{or omitted)

DiSC ORGANIZATION 0 Ye
INDEXED s
ORGANIZATION 0 N
RELATIVE o

FILE-LIMIT clause serves as documentation only.

ACCESS MODE specifies the manner in which the records of a file are read and/or written. Absence of
this clause results in assumption of sequentia! access.

PROCESSING MODE clause is for documentation only. Sequential processing is always assumed,
regardless of the absence or presence of this clause.

The ORGANIZATION clause designates the physical structure of the file. Sequential organization is
assumed if the clause is omitted. This clause is an extension to American National Standard COBOL
(1968).

ACTUAL KEY IS data-name-5. See RELATIVE KEY explanation.

For compatibility with SPERRY UNIVAC 9300 System COBOL, ACTUAL KEY may be specified in
place of SYMBOLIC KEY when used with indexed file organizations.

NOTE:
In this case, the ORGANIZATION clause must appear first.

RELATIVE KEY IS data-name-6 is used with relative organization files to supply the physical position
of a record with respect to the beginning of the file. Records in a relative organization file are addressed
as relative record numbers 1, 2, 3, and so on. The ACTUAL KEY clause may be substituted for the
RELATIVE KEY clause. Data-name-6 must be defined as an unsigned numeric integer according to the
rules for numeric items. The RELATIVE KEY clause is an extension to American National Standard
COBOL (1968).

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 4-11
EXTENDED COBOL

13. SYMBOLIC KEY IS data-name-7 is used for indexed file organizations to supply the record
identification for random retrieval and sequential positioning. The information associated with the
RECORD KEY clause must be identical with the information associated with the SYMBOLIC KEY
clause. Data-name-7 must consist of 3 to 249 characters (may be numeric computational). This clause is
an extension to American National Standard COBOL (1968).

14. RECORD KEY IS data-name-8 is used for indexed-organized files to supply the record identification
field. Data-name-8 must consist of 3 to 249 bytes. This clause is an extension to American National
Standard COBOL (1968).

A detailed explanation of the various keys and types of file organization is given in Section 11.

4.3.2. 1-O-CONTROL Paragraph
Function:

Specifies the following:

Input/output techniques
- Main storage area shared by various files

L Location of each file on multiple-file-reel

Intervals at which rerun is to be established
Format:

1-O-CONTROL.
[RERUN ON external-name EVERY integer-1 RECORDS OF file-name-1 [, file-name-2] ...] ...

RECORD ,
; ile-name- name4} ... |...
[,SAME [{SORT }] AREA FOR file-name-3 {, file-name-4 }]

[; MULTIPLE FILE TAPE CONTAINS file-name-5 [POSITION integer-2]
[file-name-6 [POSITION integer-3] 1 ...] ...
[; APPLY VERIFY ON file-name-8 [, file-name-n] ...] ...

file-name-9 [file-name-10] .. }:'
TAPES

+[; APPLY MASTER-INDEX ON file-name-11 [, file-name-12] ...] ...

[; APPLY CYLINDER-INDEX AREA OF integer-5 INDICES ON file-name-13 [, file-name-141 ...] ...

[; APPLY CYLINDER-OVERFLOW AREA OF integer-6 PERCENT ON file-name-15 [, file-name-16] ...1 ...
t [; APPLY EXTENDED-INSERTION AREA ON file-name-17 [, file-name-18] ...] ...

[; APPLY FILE-PREPARATION ON file-name-19 [, file-name-20] ...] ...

[; APPLY ASCII

|: ; APPLY BLOCK-COUNT ON {

LOCK-LENGTH-CHECK
[WITH BUFFER-OFFSET { FOR B }:l

OF integer CHARACTERS

ON file-name-21 [, file-name-22]1

tAccepted for SPERRY UNIVAC Operating System/4 (0S/4) and Operating System/7 (OS/7) compatibility only.

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3 4-12
EXTENDED COBOL

Rules:

10.

A comma or semicolon may separate each entry, and a period must follow the last entry.

The RERUN clause specifies that checkpoint records are to be written on the disc or tape unit specified
by external-name. A checkpoint record is the recording of the status of the processor at a given point
during the execution of the object program. All the information required to restart the program at that
point is contained in the checkpoint record. These records are written whenever integer-1 records occur
for file-name-1. File-name-1, file-name-2 ... can appear in only one RERUN statement; external-name
can appear in any number of RERUN statements. The allowable range of integer-1is 1 to 9,999,999.

The SAME AREA clause specifies that two or more files are to use the same main storage area during
processing. When the key word RECORD is omitted, the area being shared includes all storage areas
assigned to the files; therefore, only one file may be open at a time. If RECORD is specified, any
number of files may use the same storage area for processing the current logical record (the record
formats of such files must not conflict). The SAME RECORD AREA clause should be used only when
necessary because it reduces efficiency.

IF the SAME SORT AREA clause is used, at least one of the file-names must be a sort file and the
subject of an SD. Storage areas assigned to files that are not sort files will be allocated in the sort file
area if they appear in this clause. These files must not be open during the execution of a sort.

Files that appear in a SAME AREA and a SAME SORT AREA clause share the same space within the
sort file area. If any nonsort file is mentioned in both clauses, all files in the SAME AREA clause must
appear in the SAME SORT AREA clause.

The MULTIPLE FILE clause is for documentation only. This feature is supported by job control.

The APPLY VERIFY clause requests verification {READ after WRITE) of disc records after they have
been written. Absence of this clause results in no verification of records written.

The APPLY BLOCK-COUNT causes a 3-byte block number to be inserted at the beginning of each block
on tape for each file-name designated. If the TAPES option is specified, all tape files present are
affected. This clause must be present for all input files which contain a block count.

The APPLY FILE-PREPARATION clause indicates that the tracks allocated to a relative organized file
are to be recorded with initializing data prior to creation of a file. The track initialization occurs after an
OPEN OUTPUT command is issued.

The APPLY MASTER-INDEX clause is only accepted for OS/4 and OS/7 compatibility. In OS/3, this
clause serves for documentation only.

The APPLY CYLINDER-INDEX integer-5 clause, used only with indexed files, indicates that sufficient
main storage area is to be allocated to contain integer-5 top index entries.

The APPLY CYLINDER-OVERFLOW integer-6 clause, used only with indexed-sequential files, indicates
that integer-6 percent of each cylinder in the prime data area is to be reserved for the purpose of
cylinder overflow. If this clause is omitted, 20 percent of the cylinders specified are automatically
aliocated. If no overflow is desired, O percent should be specified. If no overflow exists, then no new
records can be inserted into the file. Integer-6 is an unsigned number.

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3 4-13
EXTENDED COBOL

11. The APPLY EXTENDED-INSERTION clause is accepted for 0S/4 and OS/7 compatibility. In OS/3, this
clause serves for documentation only.

12. The use of the APPLY ASCII clause, which identifies each file that contains or receives ASCII data, is
explained in Section 13.

NOTE:

APPLY clauses (rules 5 through 12) are extensions to American National Standard COBOL (1968).

discussion of I-O-CONTROL s given in Section 11.

Further

PROGRAM

r———CONT;NUATION
U howese” 7 : m% TEXT 2 30 > 40
001010 |[ENVIIRONMENT DIVISION., .| i,
00.10.1 1| ICONFITGURATION, SECTIGON.-. |
001012 [SOURCE-COMPUTER., UNIVAC-9030.. . . .1, ...,
001013 |OBJECT-COMPUTER., UNIVAC-9030. . . . |,
001014 ISPECITAL~-NAMES.. . . = e
001015 | .. [|8YSCONSOLE 15 TYPELTI.. . . .
001.0 16 [INPUT-OGUTPUT, SECTIEN.. v
Q01017 |[FILE-CONTROL, .\ . .\ v i, T
001018 { ISELECT. INPUT.! ASSIGN Td TAPEne L
001019 | .. ISELECT, L1ST ASSIGN 18 PRINTER., ,
001020 .1 ISELECT. ¢D5 ASSIGN TG CARD,.- READER
001021 (T~OC-COINTROL., & v ooy Lo b
001,022 . LIAPPLY. BLOCK -COUNT, UMXINPUTI \

Figure 4—1. Example of Environment Division Entries

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 5-1
EXTENDED COBOL

5. Data Division

5.1. GENERAL

Every data item referenced in the procedure division of a SPERRY UNIVAC Operating System/3 (0S/3) COBOL
program must be described in the data division (Figure 5—1) except for the special register TALLY, index-names,
figurative constants, and literals. File structures are described by file description entries; data items and records are
described by record description or single item entries as described in 5.3.

Format:

DATA DIVISION,
" FILE SECTION. T

L : .

WORKING-STORAGE SECTION.]

" LINKAGE SECTION.*]

*Extension to American National Standard COBOL (1968).

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 5-2
EXTENDED COBOL

Rules:

1. The division header DATA DIVISION must be present in all COBOL programs.
2. Sections are written in the order shown; if a section is not required, it may be omitted entirely.
3. Data-names used in FD, SD, or 77 level entries must be unique because they cannot be qualified. The

same is true for data-names used in 01 entries within the working-storage and linkage sections of the
source program.

5.1.1. Data Definition

Table 5—1 shows the allowable sizes of data items in OS/3 COBOL. Data type is determined by the PICTURE and
USAGE clauses. See 5.3.4 for legal PICTURE characters for each data type.

Table 5—1. Main Storage Allocation

COBOL Characters Area in Bytes
Data Type
Minimum Maximum Minimum Maximum

Group {(working- 1 65,535 1 65,535
storage)
Group (file or 1 4092 1 4092
linkage section)
Alphanumeric 1 4092 1 4092
Alphabetic 1 4092 1 4092
Alphanumeric 2 132 2 132
edited
Numeric edited 2 132 2 132
Decimal numeric 1 18 1 18
display
Floating-point 6 22 6 22
numeric display
Numeric COMP or 1 18 2 8
numeric COMP 4
Numeric COMP-1 Not applicable Not applicable 4 4
Numeric COMP-2 Not applicable Not applicable 8 8
Numeric COMP-3 1 (plus sign) 18 (plus sign) 1 10
Index name Not applicable Not applicable 8 8
{ndex data item Not applicable Not applicable 8 8

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 5-3

EXTENDED COBOL

5.2, FILE SECTION

The file section consists of:
n File description (FD) entries describing the structure of all files and naming the data records contained in each.

L] Record description entries immediately follow each file description entry and describe in detail each record
format used in the file.

Format:

FD file-name-1 (file description clauses)

{01 record-name-1 (record description clauses) } e

5.2.1. File Description
Function:

Provides information concerning the physical structure, labeling, and record names of a given file.

Format:

FD file-name

[; BLOCK CONTAINS [integer-1 TO] integer-2 {CHARACTERS }:l

RECORDS
[; RECORD CONTAINS [integer-3 TOI integer-4 CHARACTERS]
OMITTED

STANDARD

; LABEL {
data-name-1 [, data-name-2] . ..

RECORDS ARE
RECORD IS

; RECORDING MODE IS

I<IcImio

—
—

; VALUE OF

unqualified-data-name IS d'ata-name-3 .-
literal-1

RECORDS ARE
RECORD IS

; DATA {

} data-name4 [, data-name-5] ..] .

Rule:

The various clauses may appear in any order after file-name.

5.2.1.1. BLOCK CONTAINS Clause
Function:

Specifies the size of a physical record.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 5-4
EXTENDED COBOL

Format:

BLOCK CONTAINS [integer-1 TO] integer-2 { CHARACTERS }

RECORDS
Rules:
1. Integer-1 and integer-2 must be unsigned integers other than Q.

2. If the RECORDS option is specified and RECORDING MODE is F, this clause specifies the number of
records per block.

If the RECORDS option is specified and RECORDING MODE is V or D, this clause specifies the
number of the longest records per block. It is also possible for a block to contain a greater number of the
shorter records, depending on the differences in record sizes.

3. When CHARACTERS is specified, this clause specifies the number of characters (bytes) per block
(physical record).

a. For files not assigned to disc devices, this does not include the three bytes for the APPLY
BLOCK-COUNT for tape, but does include the block header and record header bytes if recording
mode is V. (The block header is four bytes per block, and the record header is four bytes per
logical record.)

b. For files assigned to disc devices, this number includes all the control fields associated with the
data portion of the disc block. This number does not include the key field and count field lengths
associated with those fields of the disc block. Table 5—2 shows the size of the control fields .
associated with the block.

Table 5—2. Control Field Sizes

Bytes per Field
Organization: Sequential, Relative Organization: Indexed
Field

Recording Mode Recording Mode

F v F v

Block Header (BLKHDR) 0 4 2 2
Record Header (RECHDR) 0 a4 0 2
Indexed Record Pointer (LINK) o] 0 5 5

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3 5-5
EXTENDED COBOL

The values are defined according to the recording mode and organization of the file. The programmer
must define the values for the logical record size and a blocking factor. The blocking factor (BLKFAC)
equals the number of logical records per physical block. The logical record size (LOGRECSIZE) is also
determined by the recording mode.

If the recording mode is F, the logical record size is the size of the 01 record defined in the file FD. If
the recording mode is V, the size of the logical record is equal to the size of the largest logical record.

Thus, the size of the physical block may be calculated according to the following formula:
BLKHDR + (BLKFAC * (RECHDR + LOGRECSIZE + LINK))

This clause may be specified for CARD-READER and CARD-PUNCH files to provide greater processing
efficiency if the device is an 8413 diskette subsystem. In this case, the BLOCK clause does not specify
the size of a physical block, but specifies the size of the buffer areas to be used for multisector /0.

a. If the RECORDS option is used, the size of the buffer area may be calculated by using the
following formula:

BLKFAC*(RECHDR + LOGRECSIZE)

The maximum buffer size is 1024 bytes; therefore, the blocking factor (BLKFAC) the programmer
selects must be equal to or less than 1024 divided by {RECHDR + LOGRECSIZE).

b. 1f the CHARACTERS option is used and RECORDING MODE IS F, the BLOCK CLAUSE integer
may be any multiple of (RECHDR + LOGRECSIZE) up to 1024.

When CHARACTERS and RECORDS are both omitted, CHARACTERS is assumed.

When this clause is omitted, it is assumed that records are recorded one per block and the record size is
fixed.

If both integer-1 and integer-2 are specified, integer-1 is treated as documentation only. Block size ranges
are given in Table 5—3.

5.2.1.2. RECORD CONTAINS Clause

Function:

Specifies the size of data records.

Format:

RECORD CONTAINS [integer-1 '_I_'_g] integer-2 CHARACTERS

Rules:

Integer-1 and integer-2 must be unsigned integers other than 0; integer-2 must be greater than integer-1.

The size of each data record is completely defined within the record description entry; therefore, this
clause is optional. When present, however, the following notes apply:

a if integer-2 is used alone, all the data records in the file must have the same size. In this case,
integer-2 represents the exact number of characters in the data record.

= If both integer-1 and integer-2 are shown, they refer to the minimum and maximum size data
record.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 5-6
EXTENDED COBOL

Table 5—3. Block Size Ranges

Bytes per Block

Hardware Device Organization: Sequential, Relative Organization: Indexed
Imple::;:tor Name Recording F & U Recording V Recording F & U Recording V
Min Max Min Max Min Max Min Max

CARD-READER 1 1024® 1 9 1004 ® - - _ _
CARD-READER-51 1 51 - — — - — -
CARD-READER-66 1 66 - - — — - _
CARD-PUNCH 1 1024® 9 1024 ® - - _ _
PRINTER 1 ® 9) - - - -
TAPED) 18®| 4006 180)| 4,006 - - - -

UNISERVO VI-C
(TAPE-6) with 18®)| 4002 18®)| 4,002 - _ _ -

block numbering

Other tapes @
(TAPE) 18@ 32,767 18@ 32,767 - — - -

Other tapes @
(TAPE) with 18@ 32,763 18@ 32,763 - - - -
block numbering

8411 disc
(DISC-8411) 1 3,625 9 3,625 4 3,625 14 3,625
8414 disc
(DISC-8414) 1 7,294 9 7,294 4 7,294 14 7,294
8415 disc
(DISC-8415) 1 10,240 9 10,240 10 10,240 12 10,240
8416 disc
(DISC-8416 or DISC) 1 10,240 9 10,240 10 10,240 12 10,240
8418 disc
(D1SC-8418) 1 10,240 9 10,240 10 10,240 12 10,240
8430 disc
(DISC-8430) 1 13,030 9 13,030 10 13,030 12 13,030
8433 disc
1 13,030 9 13,030 10 13,030 12 13,030
(DISC-8433)
NOTES:
() For 768 size = 132; for 770 size = 160; for 773 size = 144,
@ For 768 size = 140; for 770 size = 168; for 773 size = 152.
@ Minimum size is 20 if tape is RERUN receiver. /.
@ Maximum size is 8192 if multiplexer channel is used.
@ Note that the maximum physical block is 128 characters (8413 diskette), 96 characters {96column card), or 80

characters (80-column card). The larger block size is used to specify multisector 1/O when the device is an 8413
diskette. {See 5.2.1.1, Rule 4.)

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 5-7
EXTENDED COBOL

5.2.1.3. LABEL RECORDS Clause
Function:

Enables the compiler to cross-reference the description of a label record with its associated file.

Format:
OMITTED
LABEL { %SARE } STANDARD
—_— data-name-1 |, data-name-2] ...
Rules:

1. The OMITTED clause specifies that no standard labels exist for the file or the device to which the file is
assigned. Any nonstandard labels must be described and processed as data records.

2. The STANDARD clause specifies that standard file labels exist for the file or the device to which the file
is assigned, and the labels conform to OS/3 label specifications. (Refer to the data management user
guide, UP-8068 (current version).) Standard user labels may also be present, but the STANDARD clause
specifies that they are not to be checked on input files, or written on output files.

3. Data-name-1 [,data-name-2] ... specifies that standard labels are to be checked (or created), and that

0S/3 standard user labels are present. User labels must conform, in content and format, to the OS/3
standard uder label specifications.

The following rules apply when data-name-1 is specified:
L] Data-name-1 [,data-name-2] ... must have a record description subordinate to this file description.

- For input files, data management provides access to standard user label information in the area
described by data-name-1.

L For output files, the user moves user label information into the area described by data-name-1 for
data managment to write to the output file.

- User label records can be referenced only in USE procedures in the declaratives section (6.2).

4, The label record specifications for the various device types are as shown in Table 5—4.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 5-8
EXTENDED COBOL

Table 5—4. Label Record Specifications

Devi Labels Labels Labels
evice Omitted Standard Data-name

PRINTER Yes No No
CARD-READER Yes No No
CARD-PUNCH Yes No No
TAPE Yes Yes Yes

ORGANIZATION

SEQUENTIAL No Yes Yes
DISC ORGANIZATION

RELATIVE No Yes Yes

ORGANIZATION

INDEXED No Yes No

5.2.1.4. RECORDING MODE* Clause
Function:
Specifies the format of the logical record comprising the file.

Format:

RECORDING MODE IS

i<icImio

Rules:
1. The D mode may be specified for ASCII tape files with variable-length records.

2. The F mode (fixed-length format} is specified when all the logical records in the file are of the same
length.

3. The U mode (undefined format) states that the records of this file are not blocked and may vary in
length. This mode is not allowed in SORT files (SD), nor is it available for disc files.

4, The V mode (variable-length format) is specified when records within a file vary in length.

5. The following chart describes the recording mode assumed when the clause is omitted.

*Extension to American National Standard COBOL (1968).

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 5-9
EXTENDED COBOL

] Assumed
Device
Format
PRINTER F
CARD-READER F
CARD-PUNCH F
TAPE V]

ORGANIZATION
SEQUENTIAL Vv

ORGANIZATION

DISC RELATIVE F

ORGANIZATION
INDEXED F

5.2.1.5. VALUE OF Clause

Function:

Describes a particular item in the standard file label record associated with a file; this clause serves as
documentation only.

Format:

VALUE OF | unqualified-data-name IS d.ata-name-3
o literal -1

5.2.1.6. DATA RECORDS Clause
Function:

Specifies the names of the logical records in a file.

Format:
RECORDS ARE
DATA {————RECORD S } data-name-4 [, data-name-5] ...
Rules:
1. This clause is optional and serves as documentation only.

2. Each data-name specified must appear at a 01 level number following the FD entry.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 5-10
EXTENDED COBOL

5.2.2. Sort File Description
Function:

Identifies the beginning of a sort file description (SD) and supplies the name of the file.
Format:

SD file-name
[; RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS]

; RECORDING MODE IS

I<IMIQ

RECORDS ARE

RECORD IS data-name-1 [, data-name-2] ..]

[. DATA

Rules:
1. An SD clause is required for each file to be sorted.
2. Each data-name specified must appear as a 01 level-number following the SD entry.

3. The RECORD CONTAINS, RECORDING MODE¥, and DATA RECORD clauses are described under
the FD entry.

4, Recording mode V is assumed when the RECORDING MODE clause is omitted.
5. File-name may appear only in the SORT and RETURN statements within the procedure division, and
only those file-names which appear in SD entries may be used in those statements. File-name may also

appear in SAME RECORD AREA and SAME SORT AREA clauses in the environment division.

6. A summary of the OS/3 COBOL SORT formats is given in Section 12.

*Extension to American National Standard COBOL (1968).

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 ‘ 5-11
EXTENDED COBOL

5.3. DATA DESCRIPTION
Function:
Defines the characteristics of a particular data item.

Format 1:

FILLER
level-number —_—
unqualified-data-name-1

[; REDEFINES unqualified-data-name-2]

— ASCENDING

DESCENDING
[INDEXED BY index-name-1 [, index-name-2] ...}

; OCCURS [integer-1 TO] integer-2 TIMES DEPENDING ON data-name-1
[{ ASCENDING

OCCURS integer-2 TIMES [{ } KEY IS data-name-2 [, data-name-2] .. :‘ ee-

DESCENDING
| {INDEXED BY index-name-1 [, index-name-2] .. .1

gL IS character-stri
PICTURE character-string

comp]
COMPUTATIONAL
COMP-1
COMPUTATIONAL-1
COMP-2
COMPUTATIONAL-2
COMP-3
COMPUTATIONAL-3
COMP-4
COMPUTATIONAL -4
DISPLAY
- INDEX

[: MAP IS integer-3 CHARACTERS]

-

E; {g:gHRONIZED } [{ E_:EéF__rT?T }]]
{

JUST
JUSTIFIED } EI—Gi]

} KEY IS data-name-2 [, data-name-3] .. :l ce

; [USAGE IS]

[; VALUE IS literal]
[; BLANK WHEN ZEROI

LEADING
' {[SIGN 18] {T—RAILlNG} SEPARATE CHARACTER }

[SIGN IS] TRAILING

Format 2:
66 unqualified-data-name-1; RENAMES data-name-2 [THRU data-name-3]

Format 3:

VALUES ARE
VALUE IS

[literal-3 [THRU literal4]1] . ..

88 condition-name; { } literal-1 [THRU literal-2]

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 5-12
EXTENDED COBOL

5.3.1. Level Number and Unqualified-data-name/FILLER Clause

Function:

The level number shows the hierarchy of data within a logical record. In addition, it is used to identify entries
for condition-names, noncontiguous working-storage items, and the RENAMES clause.

Format:
FILLER
' - ———
evel-number { unqualified-data-name }
Rules:
1. A level number is required as the first element in each data description entry.

2. Level-number 01 through 09 may be expressed without the leading 0's.

3. Level-number 01 identifies the first entry in each record description.

4. Level numbers start at 01 for records, and become successively higher for subsets of records, such as
group and elementary items. The maximum level-number permitted is 49, except for levels 66, 77, and
88.

5. Level-number 66 is used only for the RENAMES clause.

6. Level-number 77 is used in the working-storage section to describe noncontiguous data items and
constants.

7. Level-number 88 is assigned to entries which defined condition-names associated with a conditional
variable.

8. FILLER may be used to name an elementary item in a record. Under no circumstances can a FILLER
item be referred to directly. Also, FILLER must not be used with a level-number 88, but may be used to
name the associated conditional variable.

5.3.2. REDEFINES Clause
Function:
Allows the same area of computer main storage to be described by different data descriptions.
Format:
level-number unqualified-data-name-1 ; REDEFINES unqualified-data-name-2
Rules:
1. The REDEFINES clause must immediately follow unqualified-data-name-1.

2. The level numbers of unqualified-data-name-1 and unqualified-data-name-2 must be identical, and may .
not be 66 or 88.

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3 5-13
EXTENDED COBOL

The REDEFINES clause must not be applied to level 01 entries in the file or linkage sections, although
this is permissible in the working-storage section.

Redefinition begins at unqualified-data-name-2 and continues until a level number less than, or equal to,
that of ungualified-data-name-2 is detected. A REDEFINES clause may be used within the range of
another REDEFINES with a maximum of five levels permitted.

When the level number being redefined is other than 01, unqualified-data-name-1 must specify a storage
area equal to the storage area for unqualified-data-name-2.

Unqualified-data-name-2 must not contain, or be subordinate to, an OCCURS clause.

Entries described under unqualified-data-name-1 must not contain VALUE clauses except in
condition-name entries (level-number 88).

Multiple redefinition of the same storage area is permitted. The entries giving the new descriptions of the
storage area must follow the entries defining the area being redefined; no intervening entries defining
new storage are permitted. Multiple redefinitions of the same storage area must use the data-name of the
entry thatoriginally defined the area.

See rule 5in 5.3.6 for use of REDEFINES with SYNCHRONIZED clause.

5.3.3. OCCURS Clause

Function:

Eliminates the need for separate entries for repeated data, and supplies information required for the
application of subscripts or indexes.

Format 1:

OCCURS integer-2 TIMES [{

Format 2:

OCCURS linteger-1 TO] integer-2 TIMES DEPENDING ON data-name-1 [{

Rules:

ASCENDING
DESCENDING } KEY IS data-name-2

[, data-name-3] ..] - [INDEXED BY index-name-1 [, index-name-2] . .. :I

ASCENDING
DESCENDING

KEY 18 data-name-2 [, data-name-3] ...] ... [INDEXED BY index-name-1 [, index-name-2] . . .]

The OCCURS cdlause is used in defining tables and other homogeneous sets of repeated data items.
Whenever the OCCURS clause is used, the data-name that is the subject of this entry must be either
subscripted or indexed whenever it is referred to in a statement other than the SEARCH statement.
Further, if the subject of this entry is the name of a group item, all data-names belonging to the group
must be subscripted or indexed whenever they are used as operands.

An INDEXED BY clause is required if the subject of this entry, or a group item within it, is to be
referenced by indexing. Index-name is not defined elsewhere by the user, since its format is dependent
on the hardware and storage is allocated by the compiler.

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3 5-14
EXTENDED COBOL

10.

11.

12.

13.

14.

The data description clauses associated with an item that includes an OCCURS clause apply to each
repetition of the item described.

The OCCURS clause cannot be specified in a data description entry that:
u contains an 01, a 66, a 77, or an 88 level-number; and

L] describes an item whose size is variable. The size of an item is variable if the data description of
any subordinate item contains format 2 of the OCCURS clause.

Three levels of subscripting and indexing are permitted.
Data-name-1, data-name-2, data-name-3, ... may be qualified.

The KEY IS clause is used to indicate that the repeated data is arranged in ascending or descending order
according to the values contained in data-name-2, data-name-3, etc. The data-names are listed in their
descending order of significance.

Data-name-2 must be either the name of the entry containing the OCCURS clause or the name of an
entry subordinate to the entry containing the OCCURS clause. If data-name-2 is not the subject of this
entry, then:

n all of the items identified by the data-names in KEY IS must be within the group item which is the
subject of this entry; and

L] none of the items identified by data-names in KEY IS can be described by an entry which either
contains an OCCURS clause or is subordinate to an entry which contains an OCCURS clause.

Data-name-3, etc., must be the name of an entry subordinate to the group item that is the subject of this
entry.

In format 1, the value of integer-2 represents the exact number of occurrences. The area allocated
multiplied by the number of occurrences cannot exceed 65,535.

Format 2 specifies that the subject of this entry has a variable number of occurrences. The value of
integer-2 represents the maximum number of occurrences and the value of integer-1 represents the
minimum number of occurrences. This does not imply that the length of the subject is variable but that
the number of occurrences is variable. Integer-2 must be a positive or unsigned integer (not 0). The area
allocated, multiplied by the number of occurrences, cannot exceed 65,535. Integer-1 may be positive or
0 but must be less than integer-2. The integer-1 TO option is an extension to American National
Standard COBOL (1968).

A data description entry that contains format 2 of the OCCURS clause may be followed, within that
record description, only by data description entries which are subordinate to it.

Any entry which contains, or has a subordinate entry which contains, format 2 cannot be the object of
the REDEFINES clause.

In format 2, the data item defined by data-name-1 must not occupy a computer storage position within
the range of the first computer storage position defined by the data description entry containing the
OCCURS clause and the last computer storage position defined by the record description entry
containing that OCCURS clause.

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3 5-156
EXTENDED COBOL Update A

16.

16.

17.

18.

19.

The value of data-name-1 is the count of the number of occurrences of the subject and its value must fall
within the range integer-1 through integer-2. Reducing the value of data-name-1 makes the contents of
data items, whose occurrence number now exceed the value of data-name-1, unpredictable. The data
description of data-name-1 must describe a positive integer.

When the user references a group item whose subordinate entry has a format 2 of the OCCURS clause,
the actual length of the group item is determined by the current value of data-name-1. The user,
therefore, should initialize the value of data-name-1 before any operation on the group item takes place.

The DEPENDING keyword (format 2) is required only, and should be used only when the end of the
occurrences cannot otherwise be determined.

The VALUE clause must not be stated in a data description entry containing an OCCURS clause or in
any entry subordinate to an entry containing an OCCURS clause. This rule does not apply to

condition-name entries.

See rule 3 in 5.3.6 for use of OCCURS with the SYNCHRONIZED clause.

5.3.4. PICTURE Clause

Function:

Describes the general characteristics and editing requirements of an elementary data item.

Format:

; PI_C IS character-strin
‘) PICTURE { > ®" "9

Rules:

The PICTURE clause can be present only with an elementary item.
The PICTURE character-string can consist of 1 to 30 characters.
Five categories of data can be described with a PICTURE clause:

L] Alphabetic

- Numeric

= Alphanumeric

. Alphanumeric edited

L Numeric edited

Table 55 lists the allowable picture symbols and the rules for their usage.

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3 5-16
EXTENDED COBOL

To define an item as alphabetic:
= Its picture character-string may consist of only the symbol A.

. I1s contents, when represented in standard data format, must be any combination of the 26 letters
of the alphabet and the space.

= Maximum number of character positions allowed is 4092,
To define an item as numeric:

There are two types of numeric items: fixed-point numeric items and floating-point numeric items. To
define an item as fixed-point numeric:

] The PICTURE character-string may consist of only the symbols 9, P, S, V, and H.
s The PICTURE character-string must contain at least one 9.

. The maximum number of digits is 18.

L The maximum number of occurrences of P in a picture-string is 17.

] The contents, when represented in standard data format, must be a combination of the numerals 0
through 9. The item may include an operational sign.

There are two kinds of floating-point numeric items*: computational (COMP-1 or COMP-2) and display.
To define a floating-point display numeric item:

n A floating-point display item has a picture-string in the form:
{¢} mantissaE {*} exponent

u A plus or minus sign must begin the picture-string. The plus sign is used when both plus and minus
signs are present in the data. When a positive quantity in the data is represented by a space, the
minus sign is used in the picture-string. This sign occupies one byte of storage.

L] Only certain symbols (. 9 V) may be used in the mantissa. Up to 16 occurrences of 9 are
permitted. The period is used to represent an actual decimal point, and V is used to represent an
assumed decimal point. One or the other is necessary in the mantissa. The V does not occupy any
storage.

L E is used to signal the exponent portion of the item. This character occupies one byte of storage.

- A second sign precedes the exponent. The same rules apply as described for the sign preceding the
mantissa.

a The exponent is represented by two 9 symbols.

L The value of a floating-point display numeric item is equal to the product of the mantissa and the
power of 10 represented by the exponent. The value must fall within the range:

5.4 x 107 7° to +0.72 x 1076.

*Extension to American National Standard COBOL (1968).

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3 5-17
EXTENDED COBOL

A VALUE clause cannot be associated with a floating-point display numeric item.

To define an item as floating-point numeric computational (COMP-1, COMP-2), the PICTURE clause is
not used; see USAGE clause, rule 9, 5.3.5.

6. To define an item as alphanumeric:

Its character-string is restricted to X's or at least two of the symbols A, X, and 9, and is treated as
if the picture-string were X's.

Its contents, when represented in standard data format, are any combination of characters in the
UNIVAC 0S/3 system character set.

Maximum number of character positions allowed is 4092.

7. To define an item as alphanumeric edited:

Its character-string is restricted to combinations of the symbols A, X, 9, B, and 0 and must
contain:

— at least one B and one X; or
- at least one 0 and one X; or
- at least one 0 and one A; or
- at least one A and one B.

Its contents, when represented in standard data format, are any combination of characters in the
08S/3 system character set.

The maximum number of character positions allowed is 132.

8. To define an item as numeric edited:

Its character-string is restricted to certain combinations of the symbols:
BPVZCRDBY,.*+—0(zero) $ (currency sign)

The allowable combinations are determined by the sequence in which the symbols appear, and by
the editing rules. The number of digit positions must not exceed 18.

The maximum number of P’s permitted is 17.

Its contents, when represented in standard data format, must consist of only the numerals O
through 9, plus editing symbols indicated.

The maximum number of character positions allowed is 132.

9. The following symbols may appear only once in a given picture-string:

SV.CRDBEH

UP-8069 Rev. 3

SPERRY UNIVAC 0S/3 5-18

EXTENDED COBOL

10. An integer enclosed in parentheses following any of the symbols:

A, X9PZ*B0O+—$%

indicates the number of consecutive occurrences of the symbol.

11. See Table 5—6 for the order of precedence for characters used as symbols in a character-string.

12. See Table 5—7 for examples of source fields and receivirg fields.

Table 5—5. PICTURE Symbols (Part 1 of 2}

Picture Represents Can Be Used in Special Picture
Symbol Combination With Position
9 A numeric character Any other symbol None
S An operational sign is associated PVOH Can be preceded
with the data item only by H; only one
S is permitted
A\ Assumed decimal point in data Any symbol except A Only one is permitted;
item and X; and is redundant can precede leading P
with P or foliow trailing P
P Assumed decimal point outside of Any symbol except A Must be first or last
data item; each P represents one and X symbol or symbols of
character position PICTURE except for
S CR DB V orssingle
+, — or $ but cannot be
both first and last
A An aiphabetic character or space X9BO None
X An alphanumeric character A9BO None
z Suppression of leading O's Any symbol except: * A Can be preceded only by:
(replaced by blanks or spaces) X S H or more than V.,$+—-PBO (zero)
one$ +or —
* Check protection, replaces Any symbol except: Z A Can be preceded only by:
leading 0’s with asterisks X S H or more than one V.,$+—PBO (zero)
$—or+
. Insert comma in character Any symbol except: A X None
{(comma) position unless the preceding SH
position is blank or
asterisk-filled
. Actual decimal point to be Any symbol except: A X May not be fast character
(period) inserted in character position PVSH
unless following positions have
been blanked
B Insert a blank or space in Any symbol except S and None
character position unless H
previous character is
blank or asterisk-filled
CR Insert the two characters CR Any symbol except: A X Must be last symbol except
if data item is of negative +—SDBH forPorV
value: insert two blanks or
spaces if value is positive

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3
EXTENDED COBOL

Table 5—5. PICTURE Symbols (Part 2 of 2)

Picture Represents Can B_e U_sed in- Special ‘Picture
Symbol Combination With Position
DB Insert the two characters DB Any symbol except: A X Must be last symbol except
if data item is of negative +—-8SCRH forPorV
value; insert two blanks if
value is positive
$ Insert $ sign in character Any symbol except: one $ Must be first symbols when
(currency position; if more than one, cannot be used with: A more than one except for
sign) indicates floating $ sign X S H; more than one $ single + or — P B O (zero).
cannot be used with: § if only one used, it can
HA X * Z or more than only be preceded by + — or
one + — PorVv
0 Insert O in character position Any symbol except None
(zero) unless previous character is Sand H
blank or asterisk-filled
+ Insert + in character position Any symbol except: one If only one + is used, it
if data item value positive + cannot be used with: must be either first or last
and — if value negative; if A X —SCRDBH; more (except for P and V, and
more than one +, indicates than one consecutive + excepting its use with E
floating sign cannot be used with A where it may be first and
X—-SCRDBZH*or also immediately follow the
more than one $ sign E); if more than one is used,
it must be the first symbol
except for the $ sign
- Insert — in character position Any symbol except: one if only one — is used, it
{minus) if data item value negative — cannot be used with: must be either first or last
and blank if positive; if more A X+ SCRDBH: more {except for P and V, and
than one —, indicates floating than one consecutive — excepting its use with E
sign cannot be used with: A where it may be first and
X+SCRDB*ZHor also immediately follow the
more than one $ sign E); if more than one is used,
it must be the first symbol
except for the $ sign
*| H COMP-3 SPV9 None
* E Denotes exponentiation +—-9.V Between mantissa and exponent
of a floating-point numeric
display item

*Extension to American National Standard COBOL (1968).

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3 5-20
EXTENDED COBOL

Table 5—6. Precedence Rules in PICTURES

Fixed Insertion Other Symbols
fr]+ 1] fert fa fzl [fz1 el g+
8 0 b= f| = s o8l s jix P P S vl g9 pt=-41- cs | cs
B X X X X X X X X X X X X X X X X
0 X X X X X X X X X X X X X X X X X
- X X X X X X X X X X X X X X X
2
H X X X X X X X X X X
g
3 |
x - X
f« 1
|- ’ X X X X X X X X X X X X
fcrli
|DB| X X X X X X X X X X X X
cs X X X
fal
X §| x X X X
P X X X
P X X X X X X X X X X X X X
S
\ X X X X X X X X X X X
« Yzl
2Ivlx] x| x X X X
£
o |1z 1
_s" I) X X X X X X X X X X
o
g X X X X X X X X X X X X X X
Ik
i— ’ X X X X X
s 1
1= f{ X X X X X X X X X
cs X X X X X
cs X X X X X X X X X
]

NOTES:

1. This chart shows the order of precedence when using characters as symbols in a character-string. An X at an
intersection indicates that the symbols at the top of the column may precede, in a given character-string, the
symbols at the left of the row. Arguments appearing in braces indicate that the symbols are mutually
exclusive. The currency symbol is indicated by the symbol cs.

2. At least one of the symbols A X Z 9 * or at least two of the symbols + — or ¢s must be present in a
picture-string.

3. P, fixed insertion +, and — appear twice. The first occurrence represents their use to the left of the numeric
character positions and the second their use to the right of the numeric character positions.

4, Z, *, nonfixed insertion cs, + and — appear twice. The first occurrence represents the use before the decimal

point position; the second, the use after the decimal point position.

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3
EXTENDED COBOL

5-21

Table 5—7. Source and Receiving Fields

Source Field Receiving Field
PICTURE Data To Be Moved PICTURE Data After Move
9(5)v99 1234500 2Z,222.99 12,345.00
9(5) 00123 22,722.99 123.00
9(4)v99 123456 $$,58$.99 $1,23456
9(4) 0012 $$,$$%.99 $12.00
59(4) +1234 $$.,$$$.99DB $1,234.00
$9(4) —1234 $%$,$$$.99D8 $1,234.00DB
S9(4)v99 +001209 $$,$$$.99CR $12.09
$9999Vv99 —000123 $$,$$$.99CR $1.23CR
S9(4) +1234 ++,44++.99 +1,234.00
$9(4) —0010 ————-99 -10.00
$999v99 001234 $**** 99 $**12.34
9999 1234 990099 120034
9(5) 12345 9B9B9B99 12A3A45
X{5) A1B2C XBX00XXX A A100B2C
Al(5) ABCDE ABBOAAADBX | AMOBCDOAE
9(4) 1234 9(5) 01234
9(5) 12345 999.99 345.00
9v9(s5) 123456 9(5).99 00001.23
AA AB A(5) ABMWA
A(5) ABCDE AA AB
99PPP 12 9(5) 12000
VPPP99 12 .9(5) .00012
V9(5) 12345 Z(5).99 LYWW 12
Vo(5) 12345 9(5).999 00000.123

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3 5-22
EXTENDED COBOL

b.3.5. USAGE Clause

Function:

Specifies the format of a data item in main storage.

Format:
cowmp
COMPUTATIONAL
COMP-1#
COMPUTATIONAL-1*
COMP-2*
COMPUTATIONAL-2*
USAGE |
[— S COMP-3*
COMPUTATIONAL-3*
comp-4*
COMPUTATIONAL-4*
INDEX
DISPLAY
Rules:

1. The USAGE clause can be written at any level. At a group level, it applies to each elementary item in
that group. The USAGE clause of an elementary item cannot contradict the USAGE clause stated for
the group to which the item belongs. The USAGE clause of an elementary item cannot contradict the
PICTURE clause for that item.

2. The USAGE IS DISPLAY option specifies that the item is stored in character form, one character per
byte; it is used for alphabetic, alphanumeric, alphanumeric edited, numeric edited, decimal numeric
display, and floating-point numeric display.

The compiler performs the necessary conversions when decimal numeric display items or floating-point
numeric display items are used for computations; for instance, the latter items are converted to their
equivalent floating-point values in the form of the number used in arithmetic operations.

3. An elementary item described with the USAGE IS INDEX clause is called an index data item and
contains a value corresponding to the occurrence number of a table element. PICTURE clause must not
be present in this instance.

4. An index data item can be referred to directly only in a SET statement or in a relation condition. Also,
an index data item can be part of a group which is referred to in a MOVE or an input-output statement,
in which case no conversion will take place.

5. Except for the level number and data-name necessary for definition, no additional clauses are used to
describe index data items.

6. COMP-3 specifies packed decimal format, where:

L] If the number of digits in the item is odd, the object program main storage area allocated for this
item is an even number of half bytes.

*Extension to American National Standard COBOL (1968).

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 5-23
EXTENDED COBOL

Example:
PIC 999 VALUE 123 USAGE COMP-3.
Main Storage:

HE

BYTE 1

T

BYTE 2

If the number of digits in an item is even, an extra half byte is in the object program main storage allocated for
this item. The item’s PICTURE is unchanged.

Example:
PIC S99 VALUE 12 USAGE COMP-3.

Main Storage:

o]

BYTE 1

Te]

BYTE 2

The compiler ensures that the unused half byte is always set to O when information is stored in this item. The
compiter assumes that when the item is referenced it contains a valid packed decimal number, with O in the
leftmost half byte.

7. If the USAGE clause is omitted, DISPLAY is assumed unless the PICTURE clause contains an H in its
character-string.

8. COMP and COMP-4 specify the binary format. The amount of storage allocated depends on the number
of digits in the PICTURE:

Number of 9's in the PICTURE Storage Allocated
1tod 2 bytes
bto9 4 bytes
10 to 18 8 bytes

COMPUTATIONAL items are logically equivalent to signed COMP-3 items except for their internal
representation and storage allocation.

In general, COMP-3 items may be manipulated more efficiently than COMP or COMP-4 items. COMP or
COMP-4 items are more efficient that COMP-3 items when used as subscripts.

9. COMP-1 and COMP-2 specify the floating-point computational format. COMP-1 specifies a single
precision floating-point item. A COMP-1 item occupies 4 bytes. COMP-2 specifies a double precision
floating-point item which occupies 8 bytes.

In the procedure division, a floating-point item is disallowed wherever an integral value is necessary.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 5-24

EXTENDED COBOL

5.3.6. SYNCHRONIZED Clause
Function:

When computations are performed in COBOL, the data items involved must be aligned before the operations
can be performed. Normally the compiled object program aligns the items automatically before performing
computations, but the user may align items requiring arithmetic operations in the data division by using the
SYNCHRONIZED clause. This results in the use of more storage for the program, but the execution times for
arithmetic operations may be greatly reduced.

Format:

SYNC LEFT
SYNCHRONIZED RIGHT

Rules:
1. The optional keywords LEFT and RIGHT are included in the format for compatibility only.

2. The SYNC clause operates by adding slack bytes to records containing items to be synchronized. Slack
bytes are unused bytes inserted preceding each synchronized item in the record and padding the record
so that the synchronized item appears on the proper boundary. The boundary used depends on the
format of the item as it is defined by the USAGE clause:

Item Length of Item Alignment Boundary
{COMP } One to four 9's in the PICTURE Half word
COMP4 Five to eighteen 9's in the PICTURE Full word
COMP-1 Full word
COMP-2 Double word

For DISPLAY and COMP-3 items, the SYNC clause has no effect.

The SYNCHRONIZED clause may appear on either an elementary item or a level-01 item. If used on a
level-01 item, the SYNCHRONIZED clause applies to every elementary item within the level-01 item.
The SYNCHRONIZED clause does not affect the length of elementary items.

Assume a record is described as:

01 A
02 A1
03 AIlA.

04 Al1A1PICX.

04 A1A2PIC S9 USAGE COMP.

03 A1B USAGE COMP-2.

02 A2 USAGE COMP-1.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3
EXTENDED COBOL

5-26

Without using the SYNC clause, this results in storage assigned as follows:

A1B

b 4

01 2|3 10

11

A2

14

If the fifth line is changed to specify that A1A2 is to be synchronized (04 A1A2 PIC S9 USAGE COMP

SYNC.), one slack byte is inserted to align A1A2 on a half-word boundary:

A1B

AO>Prom
MNP =

11

12

A2

15

The slack byte is inserted in position 1; in essence, it is a 04 level item and is included in the length of
ATA. Only this one slack byte was necessary to achieve the necessary alignment.

The SYNC clause could be specified for the entire record (01 A SYNC.). In this case, every elementary
item is affected, yielding storage assignments as follows:

Als| A S A1B
L] 1 L

Alal A A

1{C| 2 o]

K K

0|12 3|4 7(8

15

16

A2

19

In the example, ATA1 need not be aligned because it is not a computational item. A1A2 is a COMP item
and is aligned on a half-word boundary by the insertion of one slack byte. A1B is a COMP-2 item and
requires alignment on a double-word boundary; this is provided by the insertion of four slack bytes. A2
fell on a double-word boundary and since it required only a full-word boundary, no slack bytes were

needed.

The algorithm used by the compiler to determine the insertion of slack bytes is:

L] As each item to be synchronized is encountered, the total number of bytes occupied by al! the
elementary items up to but not including this one is added to the total number of slack bytes

already inserted.

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3 5-26
EXTENDED COBOL

This total divided by x, where:

X Item Length

2 COMmP 1 to 4 digits
4 comp 5 to 18 digits

4 COMP-1

8 COMP-2

If there is no remainder for the division, no slack bytes are necessary. If there is a remainder, the
number of slack bytes required is equal to x minus the remainder.

For the last example, the algorithm would be used as follows:

For the first synchronized item, A1A2, the total number of bytes in the record so far is 1; x for
this COMP item is 2; the remainder of the division is 1. Thus, x {2) minus 1 equals 1; therefore, 1
is the number of slack bytes required.

For A1B, a COMP-2 item, the storage already occupied is 1 (for A1A1) + 1 (the first slack byte) +
2 (for A1A2), a total of 4. The value of x to be used is 8, and the remainder of the division is 4;
therefore, x (8) minus 4 equals 4, so four slack bytes were inserted in positions 4 through 7 to
align A1B.

When A2 is encountered, the total storage already occupied is 16; when this is divided by 4, the
value of x for A2, there is no remainder. No slack bytes were required.

Should synchronized items be specified for a record which contains an OCCURS clause, slack bytes are
inserted as described in rule 2, and slack bytes may also be inserted between group items within the
record to ensure the alignment of each occurrence of the group.

NOTE:

Even without the SYNCHRONIZED clause, if the first occurrence of an item resides on its natural
machine boundary, the compiler adds any slack bytes necessary to ensure alignment of each occurrence.

For example:

01

02

03

03

03

03

A SYNC.

A1 OCCURS 3.

A1APIC X.

A1B PIC S9 USAGE COMP.

A1C USAGE COMP-1.

A1D PiC S9 USAGE COMP.

One occurrence would be synchronized as:

NN A1C A
L
1 1 1
Al% B D
c
K
ol1]2 3]s 718 gy

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3 5-27
EXTENDED COBOL

If the second occurrence began immediately with byte 10, slack bytes in the second occurrence would
have to be:

S S
Al L1 A L A1C A
Tl al 1 A 1
Alc| B c D
K K
101112 13[14 15|16 19120 21{2

because A1C must be aligned on a full-word boundary. Of course, the group cannot have different
lengths with each occurrence. Therefore, slack bytes are inserted between occurrences so that each
occurrence has the same length and the proper alignment of elementary items. The actual storage use for
the example is:

Al S| A AIC A S AlS1 A A1C S |A|S]| A A1C S
1|L 1 1 L 1|L 1 1 L 1i{Lt 1 1 L
AlA D A JAlA| B A |A|A| B A
o] o Cc C C c
K K K K K K
0l1({2 3[4 718 910 11112]13[14 15]16 19120 21]22 23(24{25]26 27]28 31]3233(34 35

The slack bytes in positions 10 and 11, and in positions 22 and 23, were inserted between groups. The
algorithm used is: -

u The total number of bytes occupied by the group, including slack bytes, is divided by the largest
value of x necessary in the group.

s If there is no remainder, no slack bytes are inserted between groups. Otherwise, the number of
slack bytes necessary is equal to x minus the remainder.

For the example given, the process would be:

L] The total number of bytes occupied in one occurrence of the group is 10 bytes. This is divided by
4, the x value for A1C, a COMP-1 item.

u The remainder of the division is 2; x (4) minus 2 equals 2, so the number of slack bytes necessary
for each occurrence of the record is 2.

The compiler aligns all 01 level entries on double-word boundaries.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 5-28
EXTENDED COBOL

The algorithm to be used by the programmer in these cases is:

L] Add the lengths of all elementary data items and slack bytes in this record. Add 4 more to the
total if variable-length records are used.

= Divide the total by the largest value of x required for an item in the record.
" If there is no remainder, no slack bytes are required. If there is a remainder, x minus the remainder
is the number of slack bytes which must be inserted. This can be accomplished by including a 02
level FILLER defined as the correct length.
5. If the SYNCHRONIZED clause appears on an item with a REDEFINES clause, the user must ensure that
the item being redefined is properly aligned for the data item that REDEFINES it. No slack bytes are
added.

Likewise, if synchronization is necessary for the first elementary item under an item with a REDEFINES
clause, no slack bytes are added.

5.3.7. JUSTIFIED Clause
Function:
Specifies nonstandard positioning of data within a receiving data item.

Format:

JUST
[! {JUSTIFIED} RIGHT]

Rules:

1. The JUSTIFIED clause may be specified only at the elementary item level.

2. This clause may not be used for numeric or numeric-edited data, because numeric data is aligned by its
decimal point, when present, or right-justified when not present.

3. Alphabetic, alphanumeric, and alphanumeric-edited data is left-justified with space fill when the
JUSTIFIED clause is not specified.

4. When the receiving data items is described with the JUSTIFIED clause and the sending data item is

larger, the leftmost characters are truncated. When the receiving data item is justified and larger than the
sending data item, the data is aligned at the rightmost character position in the data item with space fill.

5.3.8. VALUE Clause
Function:

Defines the initial value of a working-storage item, or specifies the value associated with a condition-name.

Format 1:) ‘

VALUE IS literal

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3 5-29
EXTENDED COBOL

Format 2:

Rules:

{

VALUES ARE
VALUE IS

} literal-1[THRU literal-2] ... [, literal-3[THRU literal-4]] . ..

Format 1 is used to specify the initial value of a data item in the working-storage section. The following
rules apply to format 1:

This format causes the item to assume the specified value at the start of the object program. If the
VALUE clause is not used in an item description, the initial value may be unpredictable.

The VALUE clause must not conflict with other clauses in the data description of the item or in
the data description within the hierarchy of the item.

In the file section and the linkage section, the VALUE clause must not be used except for
condition-name entries.

The VALUE clause cannot be used in a record-description entry containing a REDEFINES clause
or in an entry subordinate to an entry containing a REDEFINES clause.

The VALUE clause must not be stated in a record description entry containing an OCCURS clause
or in an entry subordinate to an entry containing an OCCURS clause except for condition-names
entries.

The VALUE clause must not be specified for a group item containing items with descriptions
including JUST, SYNC, any COMP usage, or USAGE INDEX.

The VALUE clause is not permitted for floating-point display entries,

If the VALUE clause is used in an entry at the group level, literal must be a figurative constant or a
nonnumeric literal, and the group area is initialized without consideration for the individual
elementary or group items contained within this group. The VALUE clause must not be stated at
the subordinate levels within the group.

Format 2 can be used only in a condition-name entry. The following rules apply to format 2:

All condition-name entries are level-number 88. See 5.3.12 for a full description of
condition-name.

When the THRU keyword is used, literal-1 must be less than literal-2, literal-3 less than literal-4,
and so on.

In the file section, only the VALUE clauses stated for condition-name entries are valid.

A figurative constant may be substituted in either format 1 or format 2 when a literal is specified.

During compilation, a diagnostic is issued when the VALUE and PICTURE clauses conflict in any
manner. Compilation continues with the VALUE clause ignored.

Floating-point numeric literals may be used only on COMP-1 and COMP-2 operands.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 5-30
EXTENDED COBOL

5.3.9. BLANK WHEN ZERO Clause
Function:

Sets the value of a receiving item to space when the value of the sending item is 0.
Format:

BLANK WHEN ZERO

Rules:
1. This clause can be specified only at the elementary item level, and can be used only with a numeric or
numeric-edited item. When used with a numeric item, the category of the item is considered

numeric-edited.

2. The effect is not necessarily the same as zero suppression editing via the PICTURE clause, because the
item is affected only when its numeric value is 0.

5.3.10. MAP* Clause

Function:

Specifies the size of a data item in bytes in main storage.

Format:
MAP IS integer-3, CHARACTERS
Rule:

The MAP clause does not affect the object program in 0S/3 COBOL ; however, it is acceptable to the compiler
for compatibility purposes.

5.3.11. RENAMES Clause
Function:

Permits alternate, possibly overlapping, groupings of elementary items.
Format:

66 unqualified-data-name-1 ; RENAMES data-name-2 [THRU data-name-3]

*Extension to American National Standard COBOL (1968).

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3 5-31
EXTENDED COBOL

Rules:

All RENAMES entries associated with a given logical record must immediately follow its last data
description entry.

Data-name-2 and data-name-3 must be names of elementary items or groups of elementary items in the
associated logical record, and cannot be the same data-name.

Level-numbers 66, 77, 88, and 01 cannot be renamed.

Neither data-name-2 nor data-name-3 may have an OCCURS clause in its data description, nor can it be
subordinate to an entry with an OCCURS clause.

Data-name-2 must precede data-name-3 in the record description.
Data-name-3 cannot be subordinate to data-name-2.
Data-name-2 and data-name-3 may be qualified.

One or more RENAMES entries can be written for a logical record.

5.3.12. Condition-name Clause

Function:

Assigns a name for a specific value or range of values.

Format:

VALUES ARE

88 condition-name; {_ImlE—IS } literal-1[THRU literal-2] [, literal-3 [THRU literal-4] . ..

Rules:

The VALUE clause is used as described in 5.3.8.
Each condition-name requires a separate entry with a separate {evel-number 88.

The condition-name entries for a particular conditional-variable must immediately follow the entry
describing the conditional-variable item with which the condition-name is associated.

A condition-name may be associated with any group or elementary item except a level-number 66 item,
or an index data item.

Examples of use of condition-name:
L] Elementary item:

02 data-name-1.
03 data-name-2 PIC XX.
88 condition-name VALUE 'AB’.
02 data-name-3
PROCEDURE DIVISION.
{F condition-name GO TO procedure-name.
Instead of:
IF data-name-2 = ‘AB’ GO TO procedure-name.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 5-32

EXTENDED COBOL

L] Group Item:

02 data-name-1.
88 condition-name VALUE IS ‘20 THRU ‘25,
03 data-name-2 PIC 9.
03 data-name-3 PIC 9.
02 data-name-4,
PROCEDURE DIVISION.
IF condition-name GO TO procedure-name.
Instead of:
IF data-name-1 NOT < ‘20" AND NOT > ‘25" GO TO procedure-name.

5.3.13. SIGN* Clause
Function:

Specifies the position and the mode of representation of the optional sign when it is necessary to describe
these properties explicity.

Format 1:
LEADING
[SIGN IS] {T——RAILING} SEPARATE CHARACTER
Format 2:

[SIGN IS] TRAILING

Rules:

1. The SIGN clause may be specified only for a numeric data description entry whose picture contains the
character S, or a group item containing at least one such numeric data description entry.

2. The numeric data description entries to which the SIGN clause applies must be described, either
explicitly or implicitly, as USAGE IS DISPLAY, excepting floating-point display.

3. At most, one SIGN clause may apply to any given numeric data description entry.

4, If format 1 is used, the character S in the picture is counted in determining the size of the item. The
operational signs for positive and negative are the characters + and —, respectively.

5. If the optional SEPARATE CHARACTER clause is not present, the character S in the picture is not
counted in determining the size of the item. Format 2 specifies that the operational sign is in the zone
portion of the least significant digit position of the item. A positive sign is represented by a hexadecimal
C, a negative sign by a hexadecimal D.

6. A numeric data item whose picture contains the character S, but to which no optional SIGN clause
applies, has an operational sign in the zone portion of the least significant digit position. The sign
representation is as described for format 2 of the SIGN clause.

*Extension to American National Standard COBOL (1968).

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 5-33
EXTENDED COBOL

. 5.4. WORKING-STORAGE SECTION
Defin tion:

That section of the data division used to describe areas of main storage that are to contain intermediate results
of processing and other temporarily stored data at object program run time, as well as named constants.

Format:

WORKING-STORAGE SECTION.

77-level-description-entry
record-description-entry

[88 (condition-name entry)]

5.4.1. Independent Entries
Function:

Describe noncontiguous single items in working-storage, each of which is neither subdivided nor a subdivision
of another data-name.

Format:
. 77 unqualified-data-name; { L1t } IS picture-string [optional clauses]
PICTURE
Rules:
1. Level-numer 77 is assigned only to single-item areas.
2. Each independent entry must have a unique data-name.

3. Ali level-number 77 entries should be grouped together in the beginning of the working-storage section.

4. The VALUE clause may be used to specify the initial or constant value of any level-number 77 entry.

5.4.2. Record Description Entry
Function:

Describes contiguous data areas which are not part of a file.
Format:

01 record-name
(subordinate data items and clauses)

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 5-34
EXTENDED COBOL

Rules:

1. Data elements in working-storage bearing a definite relationship to each other may be grouped into
records through the same descriptive clauses used in data-description entries in the file section, including
the OCCURS and REDEFINES clauses.

2. Each record-name must be unique because it cannot be qualified by a file-name or section-name.
Subordinate data-names need not be unique if they can be qualified.

5.5. LINKAGE SECTION*
Definition:

That section of the data division used to describe data available in a calling program, but referenced in both
the calling and the called programs.

Rules:
1. Organization and structure follow the rules described under the working-storage section, with one
exception: the VALUE clause may not be specified for other than level-number 88 entries.
2. Record description entries in the linkage section provide names and descriptions, but storage within the

program is not reserved because the data exists elsewhere.

3. The linkage section is required in any program containing an ENTRY statement with a USING option or
the procedure division USING option for a called program.

4, See 6.8 for examples of calling and called programs.

—=CONTINUATION

SEQUENCE

NUMBER é i: H;; TEXT 20 30 ’ 40
002001, DATA DIVISIGN.
002002 |FILE| SECTION-.
Q02003 |[FD |, DS e b
002008 | . . | LABEL. RECO’RDS ARE G’MITT ED
002005 | . | DATA _RECEORD IS CARDIN. - ‘
0020060 04, |CARDIN. . e
002007 |, . 103 CRDLOC . Plc XC6D.
002008 .. 1103 CRDID. .. PIC X-. | . ., i ‘
00,2009 . 1103 CRDCITY . PIc x(30).
002010 L1103 CRDNAME = PIC %(25).
002011 L1103 CRDPHONE PIC XK(V.72. l
002012 |, , ;|93 CRDCODE A PIC X.. i
0020.1.5 |FD | GuTPuTl
002016 | ILABEL RECORDS ARE GMITTED

Figure 5—1. Example of Data Division Entries (Part 1 of 2)

*Extension to American National Standard COBOL (1968).

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3
EXTENDED COBOL

5-36

Figure 5—1. Example of Data Division Entries (Part 2 of 2)

e CONTINUATION

SEQUENCE lA 8

NUMBER TEXT »
1 61718 112 20 30 40
E == s o
00,2017 | RECORDING MODE 1S Fl .
002018 . BLOCK CONTAINS 1.0 RECERDS , . .| .,
qoizloi‘ 19 Lo dd D{AiT (Al 1R1ECMRDI EI|s5 D,1;5’Cfd;‘ bedod i {
QLolziosLlo (e AT DlIisfcioxl‘l R N S W T T W OO : Lt L4
OLolzlotzil i i 3 0531 L’lglc(No !‘PAI C X (!b M =)i' E ¥ i]
OLQ 21012‘2 1.4 i q3 1‘D1 bk, H :piLCJ ix il | H i 4 i o4 i i i i
ootzxosz-xs Lot 03; CITY | -pitici éxacg3‘ot)v§ Ed bl ! i
QLOLZ|OIZ’4 i i I 031 IClMAEMIEI ‘P(I;Cg ixicizfsi)i'i i i i i i
qoleoizis H l 03! !‘leaiNfEl 1P§I‘c! ix i (3 ‘ 75) . i { i i 1
OLOtz'loiZée E 031 LCiol‘DvE‘ i ;p;I‘C =X-'» i ; i

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 6-1
EXTENDED COBOL

6. Procedure Division

6.1. GENERAL

The procedure division in the SPERRY UNIVAC Operating System/3 {(OS/3) COBOL program contains the
instructions or steps necessary to solve a given problem.

Format:

PROCEDURE DIVISION [USING unqualified-data-name-1 [unqualified-data-name-2] ...].

(DECLARATIVES.

{section-name SECTION. declarative-sentence.

{paragraph-name. { sentence} . } .. } ..
END DECLARATIVES.]

{ [section-name SECTION [priority-number] .]

{paragraph-name. { sentence} - } . } e

6.1.1. USING* Statement
Function:

When the USING statement immediately follows the heading PROCEDURE DIVISION, it serves as an entry
point declaration and can appear only if this program is a called subprogram.

Format:

USING unqualified-data-name-1 [unqualified-data-name-2]

Rules:
1. If the USING option is present, the external symbol (ENTRY name) associated with this entry point is
the same as PROGRAM-ID.
2. If the USING option is not presént, the beginning of the procedure division is not one of the entry

points in this particular subprogram.

3. Data-names present refer to data ‘items described in this subprogram. Their level numbers are restricted
to 01 or 77, and they must be defined in the linkage section.

*Extension to American National Standard COBOL (1968).

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 6-2
EXTENDED COBOL

6.2. DECLARATIVES SECTION

Function:

The declaratives section of the procedure division contains compiler-directing statements that specify the
circumstances under which a procedure is to be executed.

Format:

DECLARATIVES.

g section-name SECTION. declarative-sentence.
paragraph-name. {sentence} ...}...}..

END DECLARATIVES.

Rules:
1. Declarative sections are grouped at the beginning of the procedure division.
2. The keyword DECLARATIVES must immediately follow the division header PROCEDURE DIVISION
on a separate line. The keywords END DECLARATIVES must follow the last line of the declaratives on

a separate line.

3. Each declarative section must begin with a section-name, followed by a USE statement. The remainder
of the section consists of one or more procedural paragraphs.

4, No priority number is allowed on section-names in the declaratives section.

b. See 6.6.7.4, USE statement.

6.3. SECTION
Definition:

The most inclusive procedural unit in the procedure division to which a procedure name can be assigned.
Format:

[section-name SECTION [priority-number]]
{paragraph-name. {sentence}...}...

Rules:
1. The procedure division must be divided into sections with appropriate priority numbers when the
program is to be segmented or when the declarative section is present.
2, Priority-number must be an unsigned integer ranging in value from 0 through 99,

3. Sections belonging to the declaratives portion of the procedure division are associated with the fixed
segment, and must not contain priority-numbers in their section headings.

4, Priority-numbers O through 49 are used for the fixed and the fixed overlayable segments, and priority
numbers 50 through 99 designate independent segments. (See 6.7 for a complete discussion of
segmentation.)

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 6-3
EXTENDED COBOL

6.4. PARAGRAPH
Definition:

A body of one or more procedural sentences with a procedure name by which it may be identified and
referenced.

Format:
{paragraph-name. {sentence} . } .
Rules:
1. A paragraph must contain at least one sentence, and may consist of any practical number of sentences. it
must be headed by an identifying procedure name, since transfer references within the procedure
division are made to entire paragraphs.

2. Any practical number of paragraphs may be combined into a section.

3. Generally, the object coding for a single sentence must be less than 4096 bytes.

6.5. STATEMENTS AND SENTENCES
Definition:

A statement consists of a verb and any other reserved words and user-supplied words necessary to fulfill one of
the valid verb formats.

A sentence consists of one or more statements terminated by a period.
Format:

statement-1 [{statement-2 } ...].

6.5.1. Imperative Statements

Definition:
Those statements which are neither compiler-directing statements nor conditional statements (including
conditional-causing arithmetic or input-output statements), which indicate a specific action to be taken by the
object program.

Format:
verb word-string.

Rules:
1. The verb must be one of those listed in 6.6, excluding the compiler-directing and conditional verbs and

those input-output or arithmetic verbs for which the statement specifies one of the conditional options

AT END, SIZE ERROR, or INVALID KEY (6.5.2).

2. Word-string consists of all words (reserved words, names, literals) and punctuation necessary to complete
a valid format for that verb.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 6-4
EXTENDED COBOL Update B

6.5.2. Conditional Statements ‘

Conditional statements specify that the truth value of a condition is to be determined, and that the subsequent
action of the object program is dependent upon this truth value.

A conditional statement is:
u an IF statement, a SEARCH statement, or a PERFORM statement with the UNTIL option;
L an input/output verb that specifies an INVALID KEY or an AT END option; or

L] an arithmetic verb that specifies an ON SIZE option.

6.5.3. Compiler-Directing Statements
Definition:
Statements directing the compiler to take certain actions at compilation time.
Format:
verb word-string
Rules:

1. All rules for compiler-directing statements are stated in the discussion of the verbs:

COPY, ENTER, NOTE, USE

2. A word-string consists of reserved words and user-supplied words necessary to complete a valid format
for that verb.

3. Compiler-directing statements must not appear within conditional statements.

6.5.4. Overlapping Operands

When a sending and a receiving item in an arithmetic statement or in an EXAMINE, MOVE, or TRANSFORM
statement share portions of their storage areas, the results are undefined when these statements are executed.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 6-5

EXTENDED COBOL

6.6. VERB TYPES

A verb is a reserved word, used in the procedure division, denoting an action to be performed by the processor or the
compiler. There are eight general categories of verbs in 0S/3 COBOL. These categories, and the verbs in each, are:

n Arithmetic: ADD, DIVIDE, MULTIPLY, SUBTRACT, COMPUTE
] Procedure Branching: ALTER, GO TO, PERFORM, EXIT
= Data Movement: EXAMINE, MOVE, SET, TRANSFORM

a Input-Output: ACCEPT, CLOSE, DISPLAY, INSERT, OPEN, READ, RELEASE, RETURN, REWRITE,
SEEK, SORT, WRITE

u Ending: STOP

= Conditional: IF, SEARCH

L] Compiler Directing: COPY, ENTER, NOTE, USE
] Interprogram Communication: CALL, ENTRY

A description of the categories, and the verbs contained in each, is presented in the ensuing paragraphs.

6.6.1. Arithmetic Verbs

The arithmetic verbs permit basic calculations to be performed on the data. Four verbs corresponding to the four
basic arithmetic operations are provided: ADD, SUBTRACT, MULTIPLY, and DIVIDE. The COMPUTE verb is
provided to allow the programmer to specify arithmetic calculations through the use of arithmetic expressions.

Rules:

1. All data items referenced in arithmetic statements must represent numeric elementary data items
previously defined in the data division. A data item following the word GIVING, or a receiving identifier
of a COMPUTE verb, may be a numeric edited item.

2. All literals used in arithmetic statements must be numeric.

3. Except for floating-point items, the maximum size of each operand is 18 decimal digits. The composite
of operands (the data item resulting from the superimposition of all operands, aligned by decimal points)
must not contain more than 18 digits unless the receiving data item is defined as floating point.

4. The data descriptions (PICTURE) of the operands may differ from each other. Decimal point alignment
is supplied automatically throughout computations. Conversion of items with unlike usage also is
automatic.

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3 6-6
EXTENDED COBOL

If, after decimal-point alignment, the number of places in the fraction of the result of an arithmetic
operation is greater than the number of places provided for the fraction of the resultant identifier,
truncation is relative to the size provided for the resultant identifier. When the ROUNDED option is
used, the absolute value of the resultant identifier is increased by 1 whenever the most significant digit
of the excess is equal to or greater than 5. If the resultant identifer is a floating-point item, the
ROUNDED option is meaningless.

If, after decimal-point alignment, the value of the result exceeds the largest value that can be contained

in the associated resultant identifier, a size error condition exists. In the event of a size error condition,

one of two possibilities occurs, depending on whether the ON SIZE ERROR option has been specified:

L If ON SIZE ERROR is not specified, and a size error condition arises, the effect is unpredictable.

u If the ON SIZE ERROR option has been specified, and a size error condition arises, the value of
the resultant identifier will not be altered. The imperative-statement associated with the ON SIZE
ERROR option is executed after the last resultant identifier is considered.

L] An ON SIZE ERROR option is meaningless for a floating-point receiver, except in a DIVIDE
statement where the size error imperative statement is executed only on an attempt to divide by
zero.

The CORRESPONDING option may be used with the ADD and SUBTRACT verbs. In the following

paragraphs, d1 and d2 refer to the group items involved. A pair of data items, one from each group item,

correspond if the following conditions exist:

L] A data item in d, and a data item in d2 have the same name and qualification up to, but not
including, d1 and d2.

L] Both of the data items are elementary numeric items.
= Neither d, nor d, can be a data item with level-number 66, 77, or 88.
n A data item subordinate to d, or d, and containing a RENAMES, REDEFINES, or OCCURS

clause is ignored. However, d1 and d2 may have REDEFINES or OCCURS clauses, or be
subordinate to data items with REDEFINES or OCCURS clauses.

Statements with multiple results are considered by the compiler as though they were written:

L] as a statement that performs all the arithmetic necessary to arrive at the result to be stored in the
receiving items, and stores that result in a temporary storage location; or

u as a sequence of statements transferring or combining the value of this temporary location with a
single result. These statements are considered to have been written in the same left-to-right
sequence in which the multiple results are listed. For example, the result of the statement

ADDA,B,CTOC,D(C),E
is equivalent to

ADD A, B, C GIVING temp

ADD temp TOC

ADD temp TO D(C)

ADD temp TO E

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 6-7
EXTENDED COBOL

where:

temp
Is an intermediate result item.

6.6.1.1. ADD Statement
Function:

The ADD statement adds two or more numeric operands and stores the result.

Format 1:
App J identifier-1 o entifier2 |+ identifier-m [ROUNDED]
-—— |} literal-1 , literal-2 — _—
[,identifier-n [ROUNDEDI1] ... [;ON SIZE ERROR imperative-statement]
Format 2:
identifier-1 identifier-2 | + identifier-3
ADD {Iitera|-1 } ‘ { literal-2 } [. literal-3] --- GIVING
identifier-n [ROUNDED] [; ON SIZE ERROR imperative-statement]
Format 3:
CORR . L . .
AD {CORRESPONDING } identifier-1 TO identifier-2 [ROUNDED]
[; ON SIZE ERROR imperative-statement]
Rules:
1. In formats 1 and 2, each identifier must refer to an elementary numeric item, except identifiers to the

right of the word GIVING, which may be numeric edited items.

2, Each literal must be a numeric literal.

3. If floating-point operands are not used, the maximum size of each operand is 18 decimal digits. The
composite of operands, which is that data item resulting from the superimposition of all operands,
excluding the data items that follow the word GIVING, aligned on their decimal points, must not
contain more than 18 digits.

4, If format 1 is used, the values of the operands preceding the word TO are added together, and the sum is
added to the current value in each identifier, identifier-m, identifier-n, ..., and the result is stored in each
resultant identifier, identifier-m, identifier-n, ..., respectively.

5. If format 2 is used, the values of the operands preceding the word GIVING are added together; the sum
is stored as the new value of identifier-n, which is the resultant identifier.

6. If format 3 is used, data items in identifier-1 are added to, and stored in, corresponding data items in

identifier-2.

7. For a description of the ROUNDED, SIZE ERROR, and CORRESPONDING options, see 6.6.1, rules 5,
6, and 7.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 6-8
EXTENDED COBOL

6.6.1.2. DIVIDE Statement

Function:

The DIVIDE statement divides one numeric data item into another and sets the value of a data item equal to
the results; identifier-1 may be either dividend or divisor, depending on whether INTO or BY is specified.

Format 1:
DIVIDE :;:’r‘::f"’“ INTO identifier-2 [ROUNDED] [; ON SIZE ERROR imperative-statement]
Format 2:
pivipE { ‘dentifier-1(\ g Jidentifier2(o\ 0 dentifier3 [ROUNDED]
—— } literal-1 ——)literal-2 _— —_—
[; ON SIZE ERROR imperative-statement]
Format 3:
DIVIDE < 'dentifier-1 identifier-2% GIVING identifier-3 [ROUNDED]
— |} literal-1 — | literal-2 —_ —_—
[; ON SIZE ERROR imperative statement]ﬁi
Format 4:
DIvIDE < ‘dentifier-1 g Jidentifier2{ .\ dentifior3 [ROUNDED]
literal-1 — | literal-2 _—
REMAINDER identifier4 [; ON SIZE ERROR imperative-statement]
Format 5:
DIvIDE { 'dentifier-1h gy Jidentifier2{ o\ identifier-3 [ROUNDED]
literal-1 — {literal-2 —_— —_—
REMAINDER identifier-4 [; ON SIZE ERROR imperative statement)
Rules:
1. Each identifier must refer to a numeric elementary item, except identifiers immediately to the right of

the word GIVING may contain editing symbols.
2. Each literal must be a numeric literal.
3. The maximum size of each operand is 18 decimal digits. The composite of operands, which is the data

item resulting from the superimposition of all receiving data items aligned on their decimal points, must
not contain more than 18 digits. The rule does not apply if any of the operands are floating-point items.

4. When format 1 is used, the resulting quotient replaces identifier-2. ‘

5. When either format 2 or 3 is used, the result is stored in identifier-3.

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3 6-9
EXTENDED COBOL

For a description of the ROUNDED and SIZE ERROR options, see rules 5 and 6 in 6.6.1.

Formats 4 and 5 are used when a remainder from the division operation is desired, namely identifier-4. A
remainder in COBOL is defined as the result of subtracting the product of the quotient and the divisor
from the dividend. If the ROUNDED option is specified, the quotient is rounded after the remainder is
determined. When the REMAINDER option is specified, none of the operands may be floating-point.

6.6.1.3. MULTIPLY Statement

Function:

The MULTIPLY statement multiplies numeric data items and sets the value of a data item equal to the results.

Format 1:
identifier-
MULTIPLY < ‘dentifier-T R oy identifier-2 [ROUNDED]
— |} literal-1 —_— _—
[; ON SI1ZE ERROR imperative-statement]
Format 2:
identifier-1 . ifier-

MULTIPLY { 'dentifier py {'dentifier2 - - \VING identifier-3 [ROUNDED]

——— |} literal-1 —) literal-2 —_— _—
[; ON SIZE ERROR imperative-statement]

Rules:

1. Only identifier-3, in format 2, may refer to a data item containing editing symbols. All other identifiers
must refer to numeric elementary items.

2. Each literal must be a numeric literal.

3. When format 1 is used, the initial value of identifer-1 or literal-1 is multiplied by the initial value of
identifier-2. The value of the multiplier (identifier-2) is replaced by the product resulting from operation
on that identifier.

4, When format 2 is used, the initial value of identifier-1 or literal-1 is multiplied by identifier-2 or literal-2,
and the result is stored in identifier-3.

b. The maximum size of each operand, except for floating point, is 18 decimal digits.

6. For a description of the ROUNDED and SIZE ERROR options, see rules 5 and 6 in 6.6.1.

6.6.1.4. SUBTRACT Statement

Function:

The SUBTRACT statement subtracts one or the sum or two or more numeric data items from one or more
items, and sets the value of one or more items equal to the results.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3
EXTENDED COBOL

Format 1:
sugtaacr { enifer | [
FROM identifier-m [ROUNDED] [identifier-n [ROUNDED]] ...
[; ON SIZE ERROR imperative statement]
Format 2:
susraac { jerifert | [+ o]
FROM {if"’"ﬁﬁe”"‘ } GIVING identifier-n [ROUNDED]
literal-m -
[; ON SIZE ERROR imperative-statement]
Format 3:
SUBTRACT {%%ESPONDING} identifier-1
m’l identifier-2 [ROUNDED]
[; ON SIZE ERROR imperative-statement]
Rules:

1. When format 1 is used, all literals and identifiers preceding the word FROM are added together, and the
total is subtracted from identifier-m, identifier-n, etc. The result of the subtraction is stored as the new
value in identifier-m, identifier-n, etc.

2. Except for floating point, the maximum size of each operand is 18 decimal digits. The composite of
operands, which is that data item resulting from the superimposition of all operands, excluding the data
item that follows the word GIVING, aligned on their decimal points, must not contain more than 18
digits unless floating-point operands are used.

3. In format 2, identifier-n may refer to a data item that contains editing symbols. All other identifiers
must refer to numeric elementary items.

4, When format 2 is used, all literals or identifiers preceding the word FROM are added together, the total

is subtracted from literal-m or identifier-m, and the result of the subtraction is stored as the new value in
identifier-n.

5. If format 3 is used, data items under identifier-1 are subtracted from and stored in corresponding data
items under identifier-2,

6. For a description of the ROUNDED, SIZE ERROR, and CORRESPONDING options, see rules 5, 8, and
7in6.6.1.

®

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3 6-11
EXTENDED COBOL

6.6.1.5. COMPUTE Statement

Function:

The COMPUTE statement assigns to a data item the value of a numeric data item, literal, or arithmetic
expression.

Format:

arithmetic-expression

COMPUTE identifier-1 [ROUNDED] = < identifier-2

Rules:

literal

[; ON SIZE ERROR imperative-statement]

Literal must be a numeric literal.

Each identifier must refer to an elementary numeric item, except for identifier-1, which may be a
numeric edited item.

The arithmetic-expression option permits the use of any meaningful combination of identifiers, numeric
literals, and arithmetic operators, parenthesized as required.

The maximum size of each operand, except floating-point operands, is 18 decimal digits.

The identifier-2 and literal options provide a method for setting the value of identifier-1 equal to the
value of identifier-2 or literal.

The final result of operations evaluated in the arithmetic-expression is placed in identifer-1.

The arithmetic-expression option allows the user to combine arithmetic operations without the
restrictions on composite of operands or on receiving data items imposed by the arithmetic statements.

Intermediate results are possible in a COMPUTE statement containing two or more operands. The
compiler treats a statement as a succession of operations, and reserves memory areas for required
intermediate results. The compiler also determines the number of integer and decimal places reserved for
intermediate results. The ON SIZE ERROR option applies to division by zero and to final results. See
Appendix C for a discussion of how the compiler handles intermediate results.
n Arithmetic operators character representation:

Addition +

Subtraction —

Multiplication

Division /
* %

Exponentiation

Unary plus and minus +, —

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 6-12
EXTENDED COBOL

] Parentheses may be used to specify the order in which elements are to be evaluated. Expressions
within parentheses are evaluated first; within a nest of parentheses, evaluation proceeds from the
least inclusive set to the most inclusive set.

u When parentheses are not used or parenthesized expressions are at the same level of inclusiveness,
the following order of evaluation is implied:

unary + and — signs
* ¥
*and/

+and —

6.6.2. Procedure Branching Verbs

Normally, the statements in the procedure division are executed consecutively, in order of their appearance. This is
also true of the execution of each paragraph and section. However, it is often necessary to alter this normal sequence
of operation and branch to a different point in the program to execute a number of statements before returning to

the next statement. The procedure branching verbs permit this sequencing of logical operations:

ALTER, GO TO, PERFORM, EXIT

6.6.2.1. ALTER Statement
Function:

The ALTER statement modifies a predetermined sequence of operations.
Format:

ALTER procedure-name-1 1_'9 [PROCEED TO] procedure-name-2
[, procedure-name-3 TO [PROCEED TO] procedure-name-4] . ..

Rules:

1. Procedure-name-1, procedure-name-3, ... is the name of a paragraph that contains only one sentence
consisting of a GO TO statement without the DEPENDING ON option.

2. Procedure-name-2, procedure-name-4, ... is the name of a paragraph or section in the procedure division.
3. During execution of the object program, the ALTER statement modifies the GO TO statement in the
paragraph named procedure-name-1, procedure-name-3, ... replacing the object of the GO TO by

procedure-name-2, procedure-name-4, ..., respectively.

4, A GO TO statement in a section with a priority equal to or greater than 50 must not be referred to by an
ALTER statement in a section with a different priority.

UP-8059 Rev. 3

SPERRY UNIVAC 0S§/3 6-13
EXTENDED COBOL

6.6.2.2. GO TO Statement

Function:

The GO TO statement transfers control from one part of the procedure division to another. GO TQ (format 3)
is used as a special exit from a USE procedure.

Format 1:

GO TO [procedure-name]

Format 2:

G_O 1_1) procedure-name-1 [, procedure-name-2] ..., procedure-name-n

Format 3:

DEPENDING ON identifier

GO TO MORE-LABELS

Rules:

Each procedure-name is the name of a paragraph or section in the procedure division of the program.

Identifier is the name of a fixed-point numeric elementary item described without any positions to the
right of the assumed decimal point.

When format 1 is used, control is transferred to procedure-name or to another procedure-name if the GO
TO statement has been affected by an ALTER statement.

If procedure-name is omitted in format 1, an ALTER statement referring to this GO TO statement must
be executed prior to execution of this GO TO statement.

For a GO TO statement to be alterable, it must be the only statement in a paragraph. Only format 1 may
be altered.

When a GO TO statement is altered, control is transferred to the new procedure-name each time the GO
TO statement is executed, until the GO TO statement is altered again with a different procedure-name.

When format 2 is used, control is transferred to procedure-name-1, procedure-name-2, ...,
procedure-name-n, depending on the value of identifier being 1, 2, ..., n. If the value of identifier is
greater than n or equal to 0, control is passed to the sentence following this statement.

The maximum number of procedure-names allowed in format 2 is 64; the minimum is two.

Format 3 transfers control from a USE procedure to the |/O control system and is an extension to
American National Standard COBOL (1968). The following rules apply to the GO TO MORE-LABELS
option:

L Format 3 can appear only within a label-processing section in the declarative section.
= When an input file is being processed, format 3 is a request to the 1/0 control routine to make the

next standard user label record available, and transfer control to the beginning of the USE
procedure. If there are no more labels to be processed, control is returned to procedure division.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 6-14
EXTENDED COBOL

L] When an output file is being processed, format 3 requests the 1/O control routine to write the label
in the user label area and return control to the first statement in the USE procedure so as to
permit another label record to be created in the user label area.

6.6.2.3. PERFORM Statement

Function:
This verb permits a temporary departure from the normal sequence of execution to execute one or more
procedures, either a specified number of times or until a specified condition is satisfied, after which control is
automatically returned to the normal sequence.

Format 1:

PERFORM procedure-name-1 [THRU procedure-name-2]

Format 2:

PERFORM procedure-name-1 [THRU procedure-name-2] { TIMES

identifier-1 }
integer-1

Format 3:

PERFORM procedure-name-1 [THRU procedure-name-2] UNTIL condition-1

Format 4:

PERFORM procedure-name-1 [THRU procedure-name-2]

identifier-1 identifier-2
VARYING 3f FROM { index-name-2
——— }index-name-1 .
literal-2
|fient|f|er-3 UNTIL condition-1
— | literal-3 —_—
. ire identifier-5
AFTER | 'dentifier-4 FROM ! index-name5
index-name-4 — .
literal-5
gy {'dentifier6(Nt condition-2
—] literal-6
. . identifier-8
ArTer {identifier7 (conm { index-name-8
index-name-7 \ — .
literal-8

literal-9

3 'de"t'f'e"gs UNTIL condition-3]

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3 6-15
EXTENDED COBOL

"Rules:

Each procedure-name is the name of a section or paragraph in the procedure division.

Each identifier represents a numeric elementary item described in the data division. In format 2, the
identifier represents a numeric item with no positions to the right of the assumed decimal point; a
floating-point operand is not permitted in format 2.

Each literal represents a numeric literal.

When the PERFORM statement is executed, control is transferred to the first statement of
procedure-name-1. An automatic return to the statement following the PERFORM statement is
established as follows:

L] If procedure-name-1 is a paragraph-name and procedure-name-2 is not specified, return occurs
after execution of the last statement of procedure-name-1.

n If procedure-name-1 is a section name and procedure-name-2 is not specified, return occurs after
execution of the last statement of the last paragraph in procedure-name-1.

. If procedure-name-2 is specified and is a:
- paragraph-name, return occurs after execution of the last statement of the paragraph,

- section-name, return occurs after execution of the last sentence of the last paragraph in the
section.

If there are two or more direct paths to a return point in a group of procedures being performed,
procedure-name-2 may be the name of a paragraph consisting of the EXIT statement, to which all these
paths must lead. If control passes to these procedures by other than a PERFORM statement, control
passes through the last statement of the procedure to the following statement, regardless of use of the
EXIT statement.

Format 1 is the basic PERFORM statement. A procedure referred to by this type of PERFORM
statement is executed once after which control is passed to the statement following the PERFORM
statement.

Format 2 is the TIMES option. When the TIMES option is used, the procedures are performed the
number of times specified by identifier-1 or integer-1. Control then is transferred to the statement
following the PERFORM statement. The value of identifier-1 or integer-1 must not be negative, and if
the value is 0, control passes immediately to the statement following the PERFORM statement. Once
the PERFORM statement is initiated, any redefinition of identifier-1 has no effect in varying the number
of times the procedures are executed.

Format 3 is the UNTIL option. The specified procedures are performed until the condition specified by
the UNTIL option is true. Then, controt is transferred to the statement following the PERFORM
statement. Note that if the condition specified by the UNTIL option is true at the beginning of the
execution of the PERFORM statement, the specified procedure is not executed and control passes to the
statement following the PERFORM statement.

Format 4 is the VARYING option. This option is used to change the value of one or more identifiers or
index-names during the execution of a PERFORM statement. When index-names are used, the FROM
and BY clauses have the same effect as in a SET statement. In rules 10 through 12, references to
identifier as the object of VARYING and FROM phrases also refer to index-name.

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3 6-16
EXTENDED COBOL

10.

11.

12.

13.

When

one identifier is varied:
Identifier-1 is set to its initial value, either identifier-2 or literal-2.

If condition-1 is false, the sequence of procedures is executed once, and the value of identifier-1 is
incremented or decremented by identifier-3 or literal-3, and condition-1 is evaluated again. This
cycle continues until condition-1 is true, after which control is passed to the statement following
the PERFORM statement.

If condition-1 is true at the beginning of execution of the PERFORM statement, control passes
directly to the statement following the PERFORM statement.

When two identifiers are varied:

When

Identifier-1 and identifier-4 are set to their initial values, identifier-2 and identifier-5, respectively.
During execution, these initial values must be positive.

Condition-1 is evaluated. If true, control is passed to the statement following the PERFORM
statement. If false, condition-2 is evaluated.

¥ condition-2 is false, the sequence of procedures is executed once, after which identifier-4 is
changed by identifier-6, and condition-2 is evaluated again. This cycle continues until condition-2
is true.

When condition-2 is true, identifier-4 is set to initial value (identifier-5), identifier-1 is changed by
identifier-3, and condition-1 is reevaluated.

The PERFORM statement is completed when condition-1 is true; if false, the cycle continues until
condition-1 is true.

Figure 6—1 illustrates the logic of the PERFORM statement when two identifiers are varied. At
the termination of this PERFORM statement, identifier-4 contains its initial value, while
identifier-1 contains a value that differs from the last used setting by an increment or decrement
depending on identifier-3. f condition-1 was true when the PERFORM statement was initiated,
identifiers-1 and -4 contain their initial values.

three identifiers are varied:

Logic is the same as for two identifiers, except that identifier-7 goes through a complete cycle each
time identifier-4 is changed by identifier-6 which, in turn, goes through a complete cycle each time
identifier-1 is varied.

Figure 6—2 illustrates the logic of the PERFORM statement when three identifiers are varied. At
the termination of this PERFORM statement, identifier-<4 and identifier-7 contain their initial
values, while identifier-1 contains a value that differs from the last used setting by an increment or
decrement depending on identifier-3. If condition-1 was true when the PERFORM statement was
initiated, identifier-1, identifier-4, and identifier-7 each contains its initial value.

A PERFORM statement within a section which has a priority number less than the SEGMENT-LIMIT
can have, within its range, only the following:.

sections with priority numbers of less than 50; and

sections entirely contained in a single segment with a priority number greater than 49.

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3
EXTENDED COBOL

14.

15.

16.

LEGEND:

I = identifier
n

L = literal

n

C = condition
n

P’1 = procedure-name

A PERFORM statement that appears in a section which has a priority number equal to or greater than
the SEGMENT-LIMIT can have, within its range, only the following:

] sections with the same priority number as the section containing the PERFORM statement; and
L] sections with a priority number less than the SEGMENT-LIMIT.

Independent segments are made available in their initial state. Fixed overlayable segments are made
available in their last used state.

If a sequence of statements referred to by a PERFORM statement includes another PERFORM
statement, the sequence of procedures associated with the included PERFORM statement must itself be
either totally included in, or totally excluded from, the logical sequence referred to by the first
PERFORM statement. Thus, an active PERFORM statement, the execution of which begins within the
range of another active PERFORM statement, must not allow control to pass to the exit of the other
PERFORM statement; furthermore, two or more such active PERFORM statements may not have a
common exit.

SET
l1t0 I2 [L2]
14 to |5 [L5]

INITIALIZE VARY

DAL I5[L5] I1 by I3[L 1

EXECUTE

P, [THRUP,]

Y

VARY

l4 by I6 {LG]

Figure 6—1. PERFORM Logic: Varying Two Identifiers

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 6-18
EXTENDED COBOL

SET
I1 tol

I4tol

I7 tol

or L2

N

or L5

o

or L8

[+4]

TRUE

> EXIT
INITIALIZE VARY
lqtolgorl, o I;byljorly
INITIALIZE VARY
|7 tols or L8 |4byI60r L(5

EXECUTE

P1 [THRU P2]

VARY

I7 by |9 or L9

Legend:
| = identifier
n
L = literal
n
Cn = condition
Pn = procedure-name

Figure 6—2. PERFORM Logic: Varying Three Identifiers

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 6-19
EXTENDED COBOL

6.6.2.4. EXIT* Statement

Function:

The EXIT statement provides a common end point for a series of procedures, or marks the logical end of a
called program.

Format:

EXIT [PROGRAM]

Rules:

1. The EXIT statement must be preceded by a paragraph-name and be the only sentence in the paragraph.
The EXIT statement must appear in a sentence by itself.

2. The point to which control is transferred may be at the end of a range of procedures governed by a
PERFORM statement or at the end of a declarative section. The EXIT statement is provided to enable a
procedure-name to be associated with such a point.

3. if control reaches an EXIT statement without the optional word PROGRAM, and no associated
PERFORM or USE statement is active, control passes through the EXIT point to the first sentence of
the next paragraph.

4. If control reaches an EXIT PROGRAM statement while operating under the control of a CALL
statement, contro! returns to the point in the calling program immediately following the CALL
statement.

NOTE:

For examples of called or calling programs, see 6.8.

6.6.3. Data Movement Verbs
Four verbs are provided by 0S/3 COBOL for the specific purpose of moving or manipulating data:
EXAMINE, MOVE, SET, TRANSFORM
These are verbs in addition to the several verbs which, as a secondary function, move or manipulate data in some

manner. For example, an arithmetic verb may cause some data movement and/or manipulation. This, however, is
secondary to its main function of effecting an arithmetic calculation.

*Extension to American National Standard COBOL (1968).

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3 6-20
EXTENDED COBOL

6.6.3.1. EXAMINE Statement

Function:

The EXAMINE statement replaces or counts the number of occurrences of a given character in a data item.

Format:

ALL
TALLYING LEADING literal-1 [REPLACING BY literal-2]
UNTIL FIRST

EXAMINE identifier ALL

Rules:

REPLACING LEADING literal-3 BY literal-4
[UNTIL] FIRST

1. The description of the identifier must be such that USAGE IS DISPLAY (explicitly or implicitly).
Floating-point display identifiers are examined as if they were nonnumeric.

Each literal must consist of a single character belonging to a class consistent with that of identifier. A

literal may be any figurative constant except ALL.

Examination of identifier proceeds as follows:

Nonnumeric examination starts at the leftmost character and proceeds to the right; each character
is examined individually.

Numeric examination starts at the leftmost character and proceeds to the right. Each character
except the sign {(which is ignored) is examined individually.

The count derived as a result of the TALLYING option is placed in a special register called TALLY.

Depending upon which option is selected, the count represents the following:

ALL option: the number of occurrences of literal-1.

LEADING option: the number of occurrences of literal-1 prior to encountering a character other
than literal-1.

UNTIL FIRST option: the number of occurrences of characters not equal to literal-1 encountered
before the first occurrence of literal-1.

When either of the REPLACING options is used, the replacement rules are as follows:

ALL option: literal-2 or literal-4 substituted for each occurrence of literal-1 or literal-3.

LEADING option: the substitution of literal-2 or literal-4 terminates as soon as a character, other
than literal-1 or literal-3, is encountered.

UNTIL FIRST option: the substitution of literal-2 or literal-4 terminates as soon as literal-1 or
literal-3 is encountered.

FIRST option: the first occurrence of literal-3 is replaced by literal-4.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 6-21

EXTENDED COBOL

6.6.3

.2. MOVE Statement

Function:

The MOVE statement transfers data, in accordance with the rules of editing, to one or more data areas.

Format 1:
move {dentifierl o dentifier-2[, identifier-3] . . .
e literal-1 _—
Format 2:
CORR
MOVE {CORRESPONDING } identifier-1 TO identifier-2
Rules:
1. If the CORRESPONDING option is used, selected items within identifier-1 are moved to selected items

within identifier-2 according to rule 7 in 6.6.1, except that identifiers need not be numeric and may be
either both elementary items, or one elementary item and one group item.

Only one identifier may appear to the right of the word TO, and the results are the same as if the user
had referred to each pair of corresponding identifiers in separate MOVE statements.

2. When moving to more than one area, the data designated by literal-1 or identifier-1 is moved first to

identifier-2, then to identifier-3, etc.

3. Any MOVE in which both the sending and receiving items are elementary items is an elementary MOVE.

Every elementary item belongs to one of the following categories:
= Numeric

L] Alphabetic

u Alphanumeric

u Numeric edited

= Alphanumeric edited

Table 6—1 shows legal categories of sending and receiving fields.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 6-22
EXTENDED CO8O0L

Table 6—1. MOVE Sending and Receiving Fields

Receiving
) Sending Numeric Alphabetic Alphanumeric I::T:::;c Alpléadr::nezeric

Numeric Yes No Yes* Yes Yes*
Alphabetic No Yes Yes No Yes
Alphanumeric Yes Yes Yes Yes Yes
Numeric edited No No Yes No Yes
Alphanumeric

edited No Yes Yes No Yes

*A floating-point item or a numeric item with an implicit decimal point not immediately to the right of
the least significant digit must not be moved to an alphanumeric or alphanumeric edited data item.

4. The following rules apply to legal elementary moves:

L] When the receiving field is alphanumeric edited, alphanumeric, or alphabetic, justification and any
necessary space filling takes place as defined under the JUSTIFIED option. If the size of the
sending item is greater than the size of the receiving item, the excess characters are truncated after
the receiving item is filled.

L] When the receiving field is a numeric or numeric edited item, alignment by decimal point and any
necessary zero filling takes place, except where zeros are replaced because of editing requirements.
If the receiving item has no operational sign, the absolute value of the sending item is used.
Truncation occurs if the sending item has more digits to the left or right of the decimal point than
the receiving item can contain. The result at object time is undefined if the sending item contains
any nonnumeric characters.

L Any necessary conversion of data from one form of internal representation to another takes place
during the move, together with any specified editing in the receiving item.

u When the sending field is an edited item, it is treated as an alphanumeric item.
. An index data item cannot appear as an operand in a MOVE statement.

5. Any MOVE that is not an elementary MOVE is treated as if it were an alphanumeric-to-alphanumeric
elementary MOVE, except that no conversion of data from one form of internal representation to
another occurs.

6. The figurative constant ZERO (ZEROS, ZEROES) belongs in the numeric category. The figurative

constant SPACE (SPACES) belongs in the alphabetic category. All other figurative constants belong in
the alphanumeric category.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3
EXTENDED COBOL

6.6.3.3. SET Statement

Function:

The SET statement establishes reference points for table handling operations by setting index-names associated
with table elements.

Format 1:
identifier-1 . identifier-2 !dzntl.:er-s- .
SET < index-data-item-1 > | . index-data-item-2 | ... TO < Moox caaitem:
i i —) index-name-3
index-name-1 . index-name-2)
literal-1
Format 2:

SET index-name-1[, index-name-2] ... DOWN BY {identifier-1
literal-1

Rules:

1. All identifiers must be either index data items or numeric elementary items described without any
positions to the right of the assumed decimal point, i.e., no floating-point, except that identifier-1 in
format 2 must not be an index-data-item.

2. All literals must be positive integers; floating-point literals are not permitted.

3. All index-names are considered related to a given table and are defined by being specified in the
INDEXED BY clause.

4. In format 2, the contents of index-name-1, index-name 2... are incremented (UP BY) or c2cremented
{DOWN BY) by a value that corresponds to the number of occurrences represented by the value of
identifier-1 or literal-1.
5. The following explain the aliowable combinations of choices in the SET statement.
= SET index-name-1 TO index-name-3
The occurrence number value of index-name-3 computes a new displacement value for
index-name-1. Also, the occurrence number value of index-name-3 replaces that of index-name-1.
If the length of one occurrence is the same for both, no computation is necessary.

® SET index-name TO index-data-item
Same as SET index-name-1 TO index-name-2, except that no computation takes place. If the value

contained in the index-data-item does not correspond to an occurrence number of an element in
the table indexed by index-name, the result is undefined.

DOWN BY identifier
= SET index-name < TO {Iiteral }
— UP BY

When identifier or literal is a numeric data item and usage is not index. The value of identifier or
literal is treated as an occurrence number and is used to compute a new displacement value for
index-name. Identifier or literal must be elementary unsigned integer. Also, the value of identifier
or literal replaces, increments, or decrements the occurrence number value of index-name.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 6-24
EXTENDED COBOL

u SET index-data-item-1 TO { index-data-item-2 }

index-name

A move with no conversion is executed. Index-data-item-1 has no associated table element length;
therefore, there is no unique displacement value for a given occurrence number value.

u SET identifier TO index-name

The value of the occurrence number of index-name replaces the value of identifier with
appropriate conversion to the data type of identifier; i.e., conversion of binary occurrence number
to packed decimal. Rules for MOVE statement with integer numeric sending field apply. Identifier
must be a numeric data item, an alphanumeric data item, or a group item.

6. Internal format of index-name and index-data-item:
Description Occurrence Number | Displacement
of Contents in Binary in Binary
Format 32 bits 32 bits
Range 0 to 65,5635 0 to 65,5635

-+——8 bytes > I

Index-name items are word aligned, but index-data-items are not aligned.

7. Formula for calculating displacements for index-name:

Displacement = (occurrence-number—1) x {length of one occurrence)

6.6.3.4. TRANSFORM* Statement

Function:
The TRANSFORM statement may be used to alter characters of an identifier according to a user-defined
transformation rule or table. It may also be used to effect code base translation between EBCDIC and ASCli
via compiler-supplied tables.

Format 1:

TRANSFORM identifier-3[, identifier-4] . . . CHARACTERS

figurative-constant-1 figurative-constant-2
FROM ! identifier-1 TO < identifier-2
nonnumeric-literal-1 nonnumeric-literal-2

Format 2:

TRANSFORM identifier-3[, identifier-4] ... CHARACTERS

FROM {ASCII TO EBCDIC }

EBCDIC TO ASCII

*Extension to American National Standard COBOL (1968).

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3
EXTENDED COBOL

Format 3:

TRANSFORM identifier-3[, identifier-4] . . . CHARACTERS

Rules:

BY) . g
{ Qﬂ} identifier-5

All identifiers used in this statement must be described either explicitly or implicitly as USAGE IS
DISPLAY. identifier-1, identifier-2, or identifier-5 may not be variable-length operands.

The least significant digit position of a signed, decimal numeric display item without a SEPARATE
SIGN clause is treated as a single character, not as a signed digit.

In format 1, identifier-1 and identifier-2 must not exceed 256 characters in length. The length of
identifier-2 must equal the length of identifier-1, or identifier-2 must have a length of 1 character.

In format 1, all figurative constants are permitted except ALL.
In format 1, a character must not be repeated in identifier-1 or in nonnumeric-literal-1.
In format 3, identifier-5 must be a length of 256 characters.

The following paragraphs and Table 6—2 explain the allowable combinations of choices in the
TRANSFORM statement.

u The following rules apply to these combinations in format 1:

identifier-1 TO identifier-2

identifier-1 TO nonnumeric-literal-2

identifier-1 TO figurative-constant-2

nonnumeric-literal-1 TO identifier-2

nonnumeric-literal-1 TO nonnumeric-literal-2

nonnumeric-literal-1 TO figurative-constant-2

- If the FROM and the TO operands are the same length, any occurrence in identifier-3,
identifier-4, and so on, of a character (or the single character) in operand-1 is replaced by the
character (or the single character) in the corresponding position of operand-2.

— If the FROM operand exceeds one character and the TO operand is only one character, any

occurrence in identifier-3, identifier-4, and so on, of any character in operand-1 is replaced
by the single character in operand-2.

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3 6-26
EXTENDED COBOL

] The foliowing rule applies to these combinations in format 1:

figurative-constant-1 TO identifier-2

figurative-constant-1 TO nonnumeric-literal-2

figurative-constant-1 TO figurative-constant-2

Length of operand-1 and operand-2 must be one character. Any occurrence in identifier-3 of
the single character in operand-1 is replaced by the single character in operand-2.

] The following applies to format 2:

Identifier-3 is transformed from ASCI! to EBCDIC or from EBCDIC to ASCII, depending on
the FROM and TO operands.

L] The following rules apply to format 3:

Identifier-3 may be described as having any length up to a maximum of 65,5635 characters.

Identifier-b is a 0—255 binary value positional translate table, i.e., any character in
identifier-3 with a binary value of 0 will be transformed to the character in the first position
of identifier-b; any character in identifier-3 with a binary value of 1 will be transformed to
the character in the second position of identifier-b, etc.

Table 6—2. Combination of FROM and TO Options in a TRANSFORM Statement (Part 1 of 2}

Identifier-3 identifier-3
Operands Rule Before FROM TO After
FROM All occurrences of figurativeconstant-1 in the 11273 QUOTE 2ERO 102003
figurative-constant-1 item represented by identifier-3 are replaced by
TO figurative-constant-2. {Each operand must be a
figurative-constant-2 | single character.)
FROM All occurrences of figurative-constant-1 in the 180 A3 SPACE “7e 17273
figurative-constant-1 item represented by identifier-3 are replaced
TO by nonnumeric-literal-2. (Each operand must
nonnumeric-literal-2 | be a single character.)
FROM All occurrences of figurativeconstant-1 in the 1A2A3 SPACE ALPHA 18283
figurative-constant-1 item represented by identifier-3 are replaced by {current
TO the item represented by identifier-2, (Each value of
identifier-2 operand must be single character.) ALPHA =B)
FROM All occurrences of any character of nonnumeric- AB12X7P **1234567890" SPACE AB M X Ap
nonnumeric-literal-1 literal-1 in the item represented by identifier-3
TO are replaced by the single<character figurative-
figurativeconstant-2 | constant-2.
FROM Nonnumeric-literal-1 and nonnumeric-literal-2 ABCD12X “ABCDEFGHIJ" "1234567890" 123412X
nunnumeric-literal-1 must be equal in length, or nonnumeric-
TO literal-2 must be a single character.
nonnumeric-literal-2
If the operands are equal in length, any character
in the item represented by identifier-3 that is
equal to a character in nonnumeric-literal-1 is
replaced by the character in the corresponding
position of nonnumeric-literal-2.
If nonnumeric-iiteral-2 is a single character, then AB21X73 **1234567890" o ABLLXLL
all occurrences of any character of nonnumeric-
literal-1 in the item represented by identifier-3
are replaced by the single character in nonnumeric-
literal-2,

UP-8059 Rev. 3 SPERRY UNIVAC 0S8/3
EXTENDED COBOL

Table 6—2. Combination of FROM and TO Options in a TRANSFORM Statement (Part 2 of 2)

Identifier-3 identifier-3
Operands Rul
ule Before FROM TO After
FROM The two operands must be equal in length, or 1A2 ADEF “N12DEF” BETA EFDF21A
nonnumeric-literai-1 | identifier-2 must represent a single<character item. {current value
TO of BETA =
identifier-2 tf the operands are equal in length, any character FED21A)

in the item represented by identifier-3 that is
equal to a character in nonnumeric-literal-1 is
replaced by the character in the corresponding
position of the item represented by identifier-2.

If identifier-2 is a single character, then ail ABC ADE GAMMA 18C

occurrences of any character of nonnumeric-literal-1 {current valuye
in the item represented by identifier-3 are replaced of GAMMA = 1)

by the character represented by identifier-2.

FROM All occurrences of any character of the item repre- A128B GAMMA QUOTE “12"
identifier-1 sented by identifier-1 in identifier-3 are replaced {current

TO by the single character figurative-constant-2, value of

figurative-constant-2 GAMMA = ABC.)

FROM The two operands must be equat in tength, or ABCD ALPHA “DCBA" DACD
identifier-1 nonnumeric-literal-1 must be a single-character {current vatue

TO item. of ALPHA =

nonnumeric-literal-2 A128)

If the operands are equal in length, any character in
the itemn represented by identifier-3 that is equal to
a character'in the item represented by identifier-1
is replaced by the character in the corresponding
position of nonnumeric-fiteral-2.

tf nonnumeric-literal-2 is a single character, then ABCD DELTA 6" 6666
all occurrences of any character of the item repre- {current value
sented by identifier-1 in the item represented by of DELTA =
identifier-3 are replaced by nonnumeric-literal-2. ABCDEF}
FROM Any character in the item represented by 1AB4 ITEM-A ITEM-B AABD
identifier-1 identifier-3 that is equal to a character in the item {current value (current value
TO represented by identifier-1 is replaced by the of item-A = of iTEM-B =
identifier-2 character in the corresponding position of the 1234.) ABCD.)

item represented by identifier-2.

Both operands must be of equal tength. Each
of the operands may contain one or more
characters.

6.6.4. Input/Output Verbs

In any data processing application, quantities of data are passed between storage and external media such as card,
tape, or disc devices. The input/output verbs control and coordinate the flow of data, enabling the COBOL
programmer to obtain records for processing and return the processed record to the external media. The
input/output verbs are:

ACCEPT READ RETURN
CLOSE WRITE REWRITE :
DISPLAY INSERT SEEK

OPEN RELEASE SORT

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 6-28
EXTENDED COBOL

6.6.4.1. ACCEPT Statement

Function:

Reads low volume data from an appropriate hardware device, system main storage location, or UPS! (user
program switch indicator) byte.

Format: .
mnemonic-name
. g DATE*
ACCEPT identifier | FROM DAY*
TIME*

Rules:

1. The ACCEPT statement causes the next set of data available at the mnemonic-name to replace the
contents of the data item named by the identifier. Data is moved, left-justified.

2. The job control stream is assumed to be the input source when the FROM option is not specified. The
description of identifier determines the number of cards accepted. One card from the job control stream
contains up to 80 characters. The maximum length specified by identifier is 4095 characters, which
would require 52 cards.

3. To indicate that input is to be accepted from the system console, the following message is displayed:

CA10 ACCEPT READY

Program operation is suspended until a type-in occurs (CA10 indicates a COBOL ACCEPT). The
maximum number of characters that can be transmitted from the system console for a single ACCEPT is
60.

4, The mnemonic-name must be associated with an implementor-name in the SPECIAL NAMES paragraph
of the environment division. Special-names that can be the source of accepted data are:

SYSCOM
SYSDATE
SYSTIME

SYSCONSOLE
SYSIN

SYSIN-96
SYSIN-128
SYSSWCH
See Table 4—1 for specific interpretation of implementor-names.

5. The identifier must be defined implicitly or explicitly as USAGE IS DISPLAY.

6. The DATE and DAY options make the current date available in the formats yymmdd and yyddd,
respectively. The TIME option makes the current time of day available in the format hhmmss00.

NOTE: .

The use of ACCEPT statements is illustrated in Section 9.

*Extension to American National Standard COBOL (1968).

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3
EXTENDED COBOL

6.6.4.2. CLOSE Statement

Function:

Terminates processing of one or more input or output reels, units, or files with optional rewind with or

without lock.
Format:
_ REEL LOCK
CLOSE file- -
CLOSE file-name-1 [UNIT] [W'TH {L\'_Q REWIND }]

. REEL LOCK
[fnle-name-Z [UNIT] [W'TH {M REWIND }]

.Rules:
1. File-name must not be the name of a sort file.

2. After a CLOSE statement without a REEL/UNIT phrase has been executed for a file, an OPEN
statement must be executed before any other references are made to the file.

3. The REEL/UNIT option effects reel or unit swapping in a sequential file process. When specified, it
terminates the current reel or unit of a multivolume file. Processing continues with the next reel or unit
of the file. Unless early termination of the current reel or unit is desired, the REEL/UNIT phrase is
unnecessary because swapping occurs automatically at the end of the current reel or unit. If the reel/unit
is to be dismounted from the device, the LOCK option should be used. After execution of a CLOSE
statement with a REEL/UNIT option, the file is still open.

4. The UNIT option is applicable for direct access files only when ACCESS MODE IS SEQUENTIAL is
specified.

b. The REEL, NO REWIND, and LOCK options are applicable only to magnetic tape files and are
meaningless when operating with any other device.

6. When the LOCK option is specified for reel, the current reel of the tape file is rewound and unloaded.
When the LOCK option is used without a REEL option, the file is closed and the current volume is
rewound and unloaded. As a result, the file cannot be reopened without operator intervention.

7. Each file-name refers to an FD name in the data division.

8. If neither LOCK nor NO REWIND is specified, the current reel of the file is rewound and ali other reels
belonging to the file are rewound. However, this rule does not apply to those reels controlled by a prior
CLOSE REEL entry.

9. If the NO REWIND option is specified, the current reel of the file remains in whatever position it is in at
the time the CLOSE is given. ‘

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 6-30
EXTENDED COBOL

6.6.4.3. DISPLAY Statement

Function:
The DISPLAY statement writes low volume data to an appropriate hardware device or system main storage
location. it can also be used to set the UPSI switches. {See Section 9 for a detailed explanation of DISPLAY
statement usage.)

Format:

DISPLAY{'de"t'f'er'1} [, identifier-2

literal-1 ' literal-2] .. .[UPON mnemonic-name]
Rules:

1. When the UPON option is omitted, the data is written on the system console (SYSCONSOLE).

2. When the UPON option is specified, the mnemonic-name must be associated with an implementor-name
in the SPECIAL-NAMES paragraph (4.2.3) in the environment division.

3. The special-names that may be associated with the DISPLAY statement via mnemonic-name are:
SYSCOM

SYSCONSOLE

SYSLOG

SYSSWCH
SYSSWCH-n

SYSLST

See Table 4—1 for more detailed information.

4, If the system console is the hardware device, the sum of the sizes of operands in a DISPLAY statement
may not exceed 250 characters. The data is displayed on the system console a line at a time. Each line is

preceded by CD10A (CD11A if SYSLOG is used), followed by 55 characters of the contents of the
operands.

5. COMP-3 numeric items and binary items are converted to DISPLAY decimal. For signed numeric items,
a separate sign character is displayed immediately following the operand. Floating-point computational
items are converted to floating-point display items.

6. The number of printer characters displayed is a multiple of 120. An advance of one line precedes each

line of output. Each operand displayed is limited to 4092 characters. For signed numeric items, a
separate sign character is displayed immediately following the operand.

NOTE:

The use of DISPLAY statements Js illustrated in Section 9.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 6-31
EXTENDED COBOL

6.6.4.4. OPEN Statement
Function:

The OPEN statement initiates processing of both the input and output files. It initiates checking or writing of
labels and other input/output operations.

Format:
INPUT . REVERSED
INPUT | file-name | w711 NO REWIND
OPEN 1-0 {file-name}
OUTPUT {ﬁle-name [WITH NO REWINQ]}
Rules:

1. At least one of the options INPUT, OUTPUT, or I-O must be specified. They may appear in any order.
2, The 1-O option pertains only to mass storage files.
3. The REVERSED and NO REWIND options apply only to sequential single reel processing.

The REVERSED option requires that the file be positioned at its end prior to the execution of the
OPEN statement. The NO REWIND option requires that the file be positioned at its beginning prior to
the execution of the OPEN statement.

4, The OPEN statement must be applied to all files except sort files.
5. File-name refers to the FD name in the file section of the data division.

6. The OPEN statement for a file must be executed prior to the first READ, INSERT, REWRITE, SEEK,
or WRITE statement for that file.

7. A second OPEN statement for a file must not be executed prior to the execution of a CLOSE statement
for that file.

8. The OPEN statement do‘es not obtain or release the first data record. When checking or writing labels,
the user’s beginning label subroutine is executed if one was specified by a USE statement (6.6.7.4).

6.6.4.5. READ Statement

Function:

For sequential file processing, the READ statement makes available the next logical record from a file and
allows performance of a specified imperative-statement when end of file is detected.

For random file processing of mass storage files, the READ statement makes available a specific record from a
file, and allows performance of a specified imperative-statement if the contents of the associated keys are
found to be invalid.

Format:

_AT END

. - t
" INVALID KEY} imperative-statemen

READ file-name RECORD [INTO identifier] {

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 6-32
EXTENDED COBOL

Rules:

1. An OPEN statement (INPUT or I-O) must be executed for a file prior to the execution of the first
READ statement for that file.

2. When a file consists of more than one type of record, the records automatically share the same storage
area.

3. The AT END or INVALID KEY clause is required for all file organizations except indexed organization,
where its use is optional. The execution of the imperative statement AT END or INVALID KEY is
dependent upon file organization and file usage. See Section 11 for detailed information on these
conditions.

4, If an input file described with the keyword OPTIONAL is not present, the imperative-statement in the
AT END option is executed on the first READ statement.

b. The READ statement performs the functions of the SEEK statement implicitly for random access files.

6. The INTO option may be used only when the input file contains just one size record, and file-name
cannot be the name of a sort file. Reading INTO is performed according to the rules of a group MOVE
(6.6.3.2).

7. Data items of a logical record cannot be accessed prior to the read of the associated record. The record
area may not be accessed prior to a read or after the AT END condition is detected.

£6.6.4.6. WRITE Statement
Function:

The WRITE statement releases a logical record for an output file. It can also be used for vertical positioning of
the printer. The WRITE statement permits performance of a specified imperative statement if the contents of
the associated keys are found to be invalid.

Format 1:

WRITE record-name [FROM identifier-1]
identifier-2 LINES
ADVANCING { integer LINES
mnemonic-name

AFTER
BEFORE

F-rmat 2:

WRITE record-name [FROM identifier-1] ; INVALID KEY imperative-statement

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3 6-33
EXTENDED COBOL

Rules:

A file must be opened (OUTPUT or 1/0) prior to execution of the first WRITE statement for that file.

The record-name is the name of a logical record in the file section of the data division and must not be
part of a sort file.

When the FROM option is used, data is moved from identifier-1 to record-name according to the rules
specified for a group MOVE.

After the WRITE statement is executed, information in record-name is no longer available, but

identifier-1 information is available. The record area associated with an output file may not be accessed
prior to the open for that file.

The INVALID KEY clause in format 2 is used when processing direct access files and is required for
RELATIVE file organization; for SEQUENTIAL and INDEXED organizations its use is optional. The
conditions that cause execution of the INVALID KEY imperative statement depend upon file
organization and file usage. For more detailed information, see Section 11.

The ADVANCING option controls the vertical positioning of each record on the printed page. If this
option is omitted for a printer file, the printer automatically advances one line before printing (i.e.,
WRITE record-name AFTER ADVANCING 1 LINE). Any form of the ADVANCING option overrides
this automatic advance.

] The identifier represents a numeric item with no positions to the right of the assumed decimal
point; a floating-point operand is not permitted.

L] The contents of identifier-2 or the value of integer must not exceed 127. A value of O is
permissible (where overprinting is desired).

a Mnemonic-name specifies a channel in the forms control paper tape loop. This channel is identified
in the SPECIAL-NAMES paragraph of the environment division, using SYSCHAN-t IS
mnemonic-name, where t is the channel (4.2.3).

The USE FOR FORM-OVERFLOW clause in the declaratives section of the procedure division permits
the programmer to perform special procedures when a form overflow condition exists. Form overflow is
detected during the print and space functions of the printer. If form positioning by paper tape loop is
specified (ADVANCING mnemonic-name), the form overflow condition does not occur.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 6-34
EXTENDED COBOL

6.6.4.7. INSERT* Statement

Function:
The INSERT statement adds a logical record to indexed organization files.
Format:
INSERT record-name [M identifier-11 [; INVALID KEY imperative-statement]
Rutes:
1. The INSERT verb can be used only when access is random or extended and organization is indexed.
2. A file must be opened (I-O) prior to execution of the first INSERT statement for that file.

3. The record-name is the name of a logical record in the file section of the data division and must not be
part of a sort file.

4, When the FROM option is used, data is moved from identifier-1 to record-name, according to the rules
specified for a group MOVE.

b. After the INSERT statement is executed, information in record-name is no longer available, but
identifier-1 information is available.

6. The INVALID KEY clause is required for all file organizations except indexed organization, where its
use is optional. See Section 11 for detailed information on these conditions.

6.6.4.8. REWRITE* Statement

Function:

The REWRITE statement releases a logical record for an output file for the purpose of updating an existing
record.

Format 1:

REWRITE record-name [FROM identifier]
Format 2:

REWRITE record-name [ER_OM identifier] [; INVALID KEY imperative-statement]
Rules:

1. A file must be opened (I-O) and a record read prior to execution of the first REWRITE statement for
that file.

2. The record-name is the name of a logical record in the file section of the data division and must not be
part of a sort file.

*Extension to American National Standard COBOL (1968).

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3
EXTENDED COBOL

3. When the FROM option is used, data is moved from identifier-1 to record-name according to the rules
specified for a group MOVE.

4. After the REWRITE statement is executed, information in record-name is no longer available, but
identifier-1 information is available.

5. The INVALID KEY imperative statement in format 2 is used when processing direct access files. See
Section 11 for detailed information on these conditions.

The INVALID KEY clause is required for all file organizations except indexed organization, where its
use is optional.

6.6.4.9. SEEK Statement
Function:

The SEEK statement initiates access of a mass storage data record for subsequent reading or writing.

Format:
SEEK file-name RECORD

Rules:

1. A SEEK statement pertains only to the disc files specified in the following chart.

Organization Access
EEK A
Type Method S llowed
Sequential Sequential No
Sequential Yes
Relative
Random Yes
Sequential Yes
Indexed Random No
Extended Yes

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 6-36

EXTENDED COBOL

6.6.4.10.

Function:

The value of the identifier in the ACTUAL or RELATIVE key clause is used by the SEEK statement to
determine the location of the record to be accessed when ORGANIZATION is RELATIVE. When
ORGANIZATION is INDEXED, the value of the identifier in the SYMBOLIC KEY clause is used.

Two SEEK statements for the same file may logically follow each other. Any validity check associated
with the first SEEK statement is negated by the execution of a second SEEK statement.

RELEASE Statement

The RELEASE statement transfers records to the initial phase of a sort operation.

Format:

RELEASE record-name [FROM identifier]

Rules:

6.6.4.11.

Function:

Record-name must be part of a logical record described in the associated sort file description (SD).
Identifier in the FROM option must refer to a data item in working-storage or in an input record area.

The identifier and record-name must name different data items.

If the FROM option is used, the contents of the storage area associated with identifier are moved to the
storage area associated with record-name; the contents of the record-name area are released to the
sort-file. Moving takes place according to the rules specified for a group MOVE. The information in the
record-name area is no longer available, but the information in the data area associated with identifier is
available.

A RELEASE statement may be used only within the range of an input procedure associated with a
SORT statement for file-name.

RETURN Statement

The RETURN statement obtains sorted records from the final phase of the sort operation.

Format:

RETURN file-name RECORD [INTO identifier] ; AT END imperative-statement

Rules:

1.

2.

File-name must be a sort file with an SD entry in the data division.

A RETURN statement may be only used within the range of an output procedure associated with a
SORT statement for file-name.

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3
EXTENDED COBOL

6.6.4.12.

Function:

The identifier in the INTO option must be the name of a working-storage area or output record area, and
the output file must contain only one type of record. The data is available in both the output record
area and the identifier area.

The execution of a RETURN statement causes the next record to be made available in the order
specified by the keys listed in the SORT statement for processing in the record area associated with the
sort file.

Moving is performed according to the rules of a group MOVE.

After execution of the AT END phrase, no RETURN statements may be executed within the current

output procedure.

SORT Statement

The SORT statement creates a sort file by executing input procedures or by transferring records from another
file. It sorts the records in the sort file on a set of specified keys, and makes each record from the sort file {in
sorted order) available to one or more output procedures or to an output file.

Format:

SORT file-name-1 ON{MI-J-IN—G } KEY{data-name-1 } ..

DESCENDING
S LAl

ASCENDING
[, ON{DESCENDING } KEY {data-name-Z} .. :l ..

INPUT PROCEDURE IS section-name-1 {THRU section-name-2]
USING file-name-2

OUTPUT PROCEDURE IS section-name-3 [THRU section-name-4]
GIVING file-name-3

File-name-1 must be described in an SD entry in the data division (5.2.2).

Each data-name must represent data items described in records associated with file-name-1. Nonnumeric
key items must not exceed 256 characters. Floating-point display items are considered alphanumeric.
Key data-names may not be described with an OCCURS clause, nor may they be subordinate to an entry
which contains an OCCURS clause.

Section-name-1 and section-name-3 are names of an input and output procedure, respectively.

File-name-2 and file-name-3 must be described in an FD entry in the data division. They may not be
described in an SD entry. However, the record format of file-name-2 and/or file-name-3 must be
specified for the sort file. The size of the logical records described for file-name-2 and file-name-3 must
be equal to the size of the logical records described for file-name-1. File-name-2 and file-name-3 may not
be described as containing undefined format records (RECORDING MODE IS U).

More than one SORT statement may appear in the procedure division of a program, but none may
appear in the declarative section, nor in the input and output procedures associated with another SORT
statement. The use of the SORT feature is discussed in detail in Section 12.

s

| UP-8059 Rev. 3

SPERRY UNIVAC 0S/3 6-38
EXTENDED COBOL

10.

11.

12.

Input procedure

- This procedure must consist of one or more consecutive sections that do not form a part of any
output procedure.

L] This procedure must include at least one RELEASE statement in order to transfer records to the
sort file.

L] RELEASE statements in the input procedure have no meaning unless they are controlled by a
SORT statement; therefore, control must not be passed to the input procedure except when a
related SORT statement is being executed.

L The input procedure may include any procedures needed to select, create, or modify records.
L] The input procedure must not contain a SORT statement.
Output procedure

= This procedure must consist of one or more consecutive sections that do not form a part of any
input procedure.

u This procedure must include at least one RETURN statement in order to make sorted records
available for processing.

] The output procedure must not contain a SORT statement.

® RETURN statements in the output procedure have no meaning unless they are controlled by a
SORT statement; therefore, control must not be passed to the output procedure except when a
related SORT statement is being executed.

n The output procedure may include any procedures needed to select, modify, or copy the records
that are being returned, one at a time in sorted order, from the sort file.

ALTER, GO TO, and PERFORM statements are not permitted to refer to procedure-names outside the
input and output procedures. ALTER, GO TO, and PERFORM statements in the remainder of the
procedure division must not refer to procedure-names within the input and output procedures.

When the ASCENDING option is used, the sorted sequence is from lowest value of key to highest value
according to the character collating sequence shown in Appendix A. The sorted sequence is reversed
when the DESCENDING option is used. In the format, data-name-1 is the most significant key,
data-name-2 is the next most significant key, and so on. Floating-point display keys are considered
alphanumeric.

Every record description for the sort file must contain the key items data-name-1, data-name-2, and so
on. When the key item appears in more than one record, the data descriptions must be equivalent, and
their starting position must always be the same number of character positions from the beginning of
each record. Key items must not exceed 256 characters. When variable-length records are used, the key
items must be within the length of the shortest record.

If INPUT PROCEDURE is specified, control is passed to section-name-1 before file-name-1 is sequenced
by the SORT statement. When control passes the last statement of the input procedure, the records that
have been released to file-name-1 are sorted.

If the USING option is specified, all the records in file-name-2 are transferred to file-name-1. The SORT
statement automatically performs the functions of the OPEN, READ, USE, and CLOSE statements for
file-name-2. File-name-2 must be a sequential access file.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 6-39
EXTENDED COBOL

13. If OUTPUT PROCEDURE is specified, control passes to section-name-3 after file-name-1 has been
sequenced by the SORT statement. When control passes the last statement of the output procedure, the
sort is terminated and control is passed to the next statement after the SORT statement. The RETURN
statements in the output procedure are the requests for the next sorted record.

14. [If the GIVING option is specified, all the sorted records in file-name-1 are transferred to file-name-3 as
the implied output procedure for this SORT statement. File-name-3 is automatically opened before

transferring the records and closed after the last record in the sort file is returned. File-name-3 must be a
sequential access file.

6.6.5. Ending Verb (STOP)

This statement is used to halt execution of the object program either permanently or temporarily, with or without a
display of a literal.

Format:
literal
stoe {Fon |

Rules:

1. The literal may be numeric or nonnumeric, fixed- or floating-point, or any figurative constant except
ALL.

2. The literal is communicated to the operator through the system console, and continuation of the
program begins with execution of the next statement after the STOP statement. The literal option is
equivalent to a DISPLAY statement, but requires a reply from the operator to continue the program.
For example, the error routine

SEQ-ERROR.

STOP ‘CARDS OUT OF SEQUENCE, CORRECT SEQUENCE, REPLACE CARDS IN READER,
ANSWER R WHEN READY".

causes the literal to be displayed as follows:

CD10 CARDS OUT OF SEQUENCE, CORRECT SEQUENCE, REPLACE CARDS IN READER,
ANSWER R WHEN READY.

This is followed by
CA10 ACCEPT READY
and program operation is suspended pending operator reply.
3. When the RUN option is used, the object program is halted permanently; therefore, when this option

appears in an imperative statement, it should appear as the last statement in a sequence of imperative
statements.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 6-40
EXTENDED COBOL

6.6.6. Conditional Verbs

Conditional expressions are used in situations in which the outcome of a test determines the next logical step to be
performed. The verb IF is the principal conditional verb used with conditional expressions.

| The conditional verbs are |F and SEARCH.

6.6.6.1. IF Statement
Function:

The IF statement causes a condition to be evaluated. The subsequent action of the object program depends on
whether the value of the condition is true or false.

Format:
o « (NEXT SENTENCE . (ELSE NEXT SENTENCE
IF condition; [THENI {statement-1 } [' {OTHERWISE*} {statement-z }]
Rules:
1. Statement-1 and statement-2 represent either a conditional statement or an imperative statement.

2. The ELSE NEXT SENTENCE option may be omitted if it immediately precedes the terminal period of
the sentence.

3. Execution of an IF statement takes the following action:

n Condition TRUE: statements immediately following the condition (statement-1) are executed;
control then passes implicitly to the next sentence.

L] Condition FALSE: either statement-2 is executed or, if ELSE is omitted, the next sentence is
executed.

4. Statement-1 and statement-2 may contain an |F statement, and the IF is considered nested. |F
statements within |F statements are considered as paired IF and ELSE combinations, proceeding from
left to right. Thus, any ELSE statement encountered is considered to apply to the immediately
preceding IF statement that has not been already paired with an ELSE statement. The maximum
number of |F statements that may be nested is 30 in 0S/3 COBOL.

5. When control is passed to the next sentence, it is transferred to the next sentence as written or to a
return mechanism of a PERFORM or a USE statement.

6. The condition ih an IF statement causes the object program to select between alternate control paths,
depending on the true value of a test. Five types of conditions are possible:

n Relation condition
L Class condition
L] Condition-name condition

*Extension to American National Standard COBOL (1968).

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 6-41
EXTENDED COBOL

L Switch-status condition
L Sign condition
These conditions are discussed in rules 7 through 11.

The logical operators used in combination with these conditions are:

OR
AND
NOT
Table 6—3 indicates the relationship between the logical operators and conditions A and B.

Table 6—3. Logical Operator/Condition Relationships

Condition Condition and Value
A B IFA ANDB IFAORB IF NOT A
True True True True False
False True False True True
True False False True False
False False False False True

The ways in which conditions and logical operators may be combined are shown in Table 6—4.

Table 6—4. Logical Operator/Condition Combinations

First Second Symbol
Symbol Condition OR AND NOT {)
Condition No Yes Yes No No Yes
OR Yes No No Yes Yes No
AND Yes No No Yes Yes No
NOT Yes No No No Yes No
(Yes No No Yes Yes No
) No Yes Yes No No Yes

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 6-42
EXTENDED COBOL

1. Relation Condition

A relation condition causes a comparison of two operands, each of which may be an identifier, a literal,
or an arithmetic expression. General format for a relation condition is:

arithmetic-expression-1 arithmetic-expression-2
identifier-1 relational-operator identifier-2
literal-1 literal-2

The first operand is called the subject of the condition; the second operand is called the object of the
condition. The subject and object may not both be literals. The relational-operator specifies the type of

comparison to be made in a relational condition. The relational-operators and the format in which they
are used are:

Is{[l_\l_(_zll GREATER THAN }
[NOT] >
{ [NOTI LESS THAN }
arithmetic-expression-1 [NOTI] < arithmetic-expression-2
IF < identifier-1 s { [NOT] EQUAL 'I_'_(_)_} identifier-2
literal-1 [NOT] = literal-2
EQUALS*
UNEQUAL*
EXCEEDS*

When relation conditions are written in a consecutive sequence, any relation condition except the first
may be abbreviated by:

L] the omission of the subject of the relation condition; or
» the omission of the subject and relational-operator of the relation condition.

Within a sequence of relation conditions, both forms of abbreviation may be used. The effect of using
such abbreviations is as if the omitted subject were replaced by the last preceding stated subject, or the
omitted relational-operator were replaced by the last preceding stated relational-operator.

A logic error with unexpected results may follow the use of NOT with abbreviated relational conditions.

Programmers should remember that the compiler interprets NOT as a logical operator in these situations,
not as a part of a relational operator. Thus:

A>BAND NOT>CORD
is equivalent to:

A>BAND NOTA>CORA>D
or

A>B AND (NOTA>C)ORA>D

*Extension to American National Standard COBOL (1968).

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3 6-43
EXTENDED COBOL

Comparison of the various types of operands is accomplished as follows:

Numeric operands
For numeric operands comparison is made with respect to the algebraic value of the operands. The
number of digits in the operands is not significant. Zero is considered a unique value regardless of

the sign.

Comparison of these operands is permitted regardless of their usage. Unsigned numeric operands
are considered positive for purposes of comparison.

Nonnumeric operands

For nonnumeric operands or one numeric and one nonnumeric operand, a comparison is made

with respect to a specified collating sequence of characters. The size of an operand is the total

number of characters in the operand. Numeric and nonnumeric operands may be compared only

when their usage is the same. The two cases to be considered are operands of equal size and

operands of unequal size.

- Operands of equal size
Corresponding character positions are compared, starting from the high order end and
continuing until either a pair of unequal characters is encountered or the low order end of
the item is reached, whichever is first. The items are equal if all pairs of characters are equal.
The first pair of unequal characters encountered is compared for relative location in the
0S/3 COBOL collating sequence. The operand which contains that character which is
positioned higher in the collating sequence is determined to be the greater operand.

- Operands of unegual size

Comparison proceeds as though the shorter operand were extended on the right by sufficient
spaces to make the operands of equal size.

Index-names and/or index data-items
— Two index-names

The result is the same as if the corresponding occurrence numbers were compared.
— Index-name and data-item or literal

The occurrence number that corresponds to the value of the index-name is compared to the
data-item or literal, both of which must be elementary unsigned integers.

— Index data-item and index-name or two index data-items
The actual values are compared without conversion.

The result of the comparison of an index data-item with any data-item or literal not specified
above is undefined.

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3 6-44
EXTENDED COBOL

10.

1.

Class Condition

The class condition determines whether the operand is numeric or alphabetic. The general format for the
class condition is:

ALPHABETIC}

IF identifier 1S [NOT] {NUMERlC

The operand being tested must be described, implicitly or explicitly, as USAGE IS DISPLAY or USAGE
IS COMP-3.

u Numeric test

Identifier can be described as alphanumeric or numeric with usage COMP-3 or DISPLAY, but not
as floating-point display. If the record description of the item being tested does not contain an
operational sign, the item is considered numeric only if the contents are numeric and a sign is not

present.
L Alphabetic test

Identifier must be described as alphabetic. The item being tested is considered alphabetic only if
the contents consist of any combination of the characters A through Z and the space.

Condition-Name Condition

A conditional variable is tested to determine whether its value is equal to one of the values associated
with a condition-name. A condition-name may be associated with a range of values; the conditional
variable is then tested to determine whether its value falls within this range of values.

The format for a condition-name condition is:
IF [NOT] condition-name
Switch-Status Condition

Determines the ON or OFF status of a switch as described in 4.2.3, rule 10. The condition-name
specified in the ON or OFF STATUS IS option is tested in the following format:

IF [NOT] condition-name

Sign Condition

Determines whether the value of an operand is less than, greater than, or equal to zero. An operand is
positive if its value is greater than zero, negative if its value is less than zero, and zero if its value is equal
to zero. The format for a sign condition is:

NEGATIVE
} iS [NOT] < POSITIVE
ZERO

arithmetic-expression
— | identifier

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 6-45

EXTENDED COBOL

6.6.6.2. SEARCH Statement
Function:

The SEARCH statement is used to search a table for a table-element that satisfies the specified condition and
to adjust the associated index-name to indicate that table-element.

Format 1:

SEARCH identifier-1 [VARYING { identifier-2 }]
E— —— (index-name-1

[; AT END imperative-statement-11]

. . imperative-statement-2
; WHEN condition-1 { NEXT SENTENCE }

[;WHEN condition-2 { imperative-statement-3 }]

NEXT SENTENCE

Format 2:

SEARCH ALL identifier-1 [; AT END imperative-statement-1]

. . imperative-statement-2
; WHEN condition-1 { NEXT SENTENCE }

Rules:

1. In both formats 1 and 2, identifier-1 identifies the table to be searched and must not be subscripted or
indexed. Its description must contain an OCCURS clause and an INDEXED BY clause. The description
of identifier-1 in format 2 must also contain the KEY IS option in its OCCURS clause.

2. Identifier-2, when specified, must be described as USAGE IS INDEX or as a numeric elementary data
item without any positions to the right of the assumed decimal point. It may not be a floating-point

item,
3. In format 1, condition-1, condition-2, etc., may be any condition as described in 6.6.6.1.
4. In format 2, condition-1 may consist of a relation condition incorporating the relation EQUALS or

EQUAL TO or equal sign, or a condition-name condition, where the VALUE clause that describes the
condition-name contains only a single literal. Alternatively, condition-1 may be a compound condition
formed from simple conditions of the type just mentioned, with AND as the only connective. Any
data-name that appears in the KEY clause of identifier-1 may appear as the subject or object of a test or
be the name of the conditional variable with which the tested condition-name is associated; however, all
preceding data-names in the KEY clause must also be included within condition-1. No other tests may
appear within condition-1.

b. If format 1 of the SEARCH statement is used, a serial type of search operation takes place, starting with
the current index setting.

L If, at the start of execution of the SEARCH statement, the index-name associated with identifier-1
contains a value that corresponds to an occurrence number that is greater than the highest
permissible occurrence number for identifier-1, the SEARCH is terminated immediately. Then, if
the AT END option is specified, imperative-statement-1 is executed; if the AT END option is not
specified, control passes to the next sentence.

UP-80569 Rev. 3

SPERRY UNIVAC 0S/3 6-46
EXTENDED COBOL

10.

11.

L] If, at the start of execution of the SEARCH statement, the index-name associated with identifier-1
contains a value that corresponds to an occurrence number that is not greater than the highest
permissible occurrence number for identifier-1, the SEARCH statement operates by evaluating the
conditions in the order in which they are written, making use of the index settings, wherever
specified, to determine the occurrence of those items to be tested. {f none of the conditions is
satisfied, the index-name for identifier-1 is incremented to obtain reference to the next
occurrence. The process is then repeated, using the new index-name settings, unless the new value
of the index-name settings for identifier-1 corresponds to a table element which exceeds the last
element of the table by one or more occurrences, in which case the search terminates. |f one of the
conditions is satisfied upon its evaluation, the search terminates immediately and the imperative
statement associated with that condition is executed; the index-name remains set at the occurrence
which caused the condition to be satisfied.

In a format 2 SEARCH statement, the results of the SEARCH ALL operation are predictable only when
the data in the table is ordered in the same manner as described in the ASCENDING/DESCENDING
KEY clause associated with the description of identifier-1.

If format 2 of the SEARCH statement is used, a nonserial type of search operation takes place, in which
case the initial setting of the index-name for identifier-1 is ignored and its setting is varied during the
search operation using a binary search technique.

If condition-1 cannot be satisfied for any setting of the index within the range of the table, control is
passed to imperative-statement-1 when the AT END phrase appears, or to the next sentence when this
phrase does not appear; in either case the final setting of the index is set to the first occurrence. If
condition-1 can be satisfied, the index indicates an occurrence that allows condition-1 to be satisfied and
control passes to imperative-statement-2.

After execution of an imperative statement that does not terminate with a GO TO statement, control
passes to the next sentence.

In format 2, the index-name that is used for the search operation is the first {or only) index-name that
appears in the INDEXED BY clause of identifier-1. Any other index-names for identifier-1 remain
unchanged.

In format 1, if the VARYING option is not used, the index-name that is used for the search operation is
the first (or only) index-name that appears in the INDEXED BY clause of identifier-1. Any other
index-names for identifier-1 remain unchanged.

tn format 1, if the VARYING index-name-1 option is specified, and if index-name-1 appears in the
INDEXED BY phrase of identifier-1, that index-name is used for this search. If this is not the case, or if
the VARYING identifier-1 option is specified, the first {(or only) index-name given in the INDEXED BY
clause of identifier-1 is used for the search. In addition, the following operations will occur:

L If the VARYING index-name-1 option is used, and if index-name-1 appears in the INDEXED BY
clause of another table entry, the occurrence number represented by index-name-1 is incremented
by the same amount as, and at the same time as, the occurrence number represented by the
index-name associated with identifier-1 is incremented.

- if the VARYING identifier-2 option is specified, identifier-2 is incremented by the same amount
as, and at the same time as, the occurrence number represented by the index-name associated with
identifier-1 is incremented. If identifier-2 has a USAGE IS INDEX clause, it is assumed to contain
a value appropriate as an index setting for identifier-1.

UP-8059 Rev.-3

SPERRY UNIVAC 0S/3
EXTENDED COBOL

6-47

12.

If identifier-1 is a data item subordinate to a data item that contains an OCCURS clause {providing for a
2- or 3dimensional table), an index-name must be associated with each dimension of the table through
the INDEXED BY phrase of the OCCURS clause. Only the setting of the index-name associated with
identifier-1 (and the data item identifier-2 or index-name-1, if present) is modified by the execution of
the SEARCH statement. To search an entire 2- or 3-dimensional table, it is necessary to execute a
SEARCH statement several times. Prior to each execution of a SEARCH statement, SET statements

must be executed whenever index-names must be adjusted to appropriate settings.

A diagram of the Format 1 SEARCH operation containing two WHEN phrases is shown in Figure 6—3.

START

INDEX SETTING:
HIGHEST PERMISSIBLE
OCCURRENCE

NUMBER
?

CONDITION-1
?

CONDITION-2*
?

INCREMENT INDEX-
NAME FOR IDENTI-
FIER-1 (INDEX-NAME-1
IF APPLICABLE).

INCREMENT INDEX-
NAME-1 (FOR A
DIFFERENT TABLE)
OF I1IDENTIFIER-2.

AT END*

IMPERATIVE-
STATEMENT 1

TRUE

IMPERATIVE-
STATEMENT-2

IMPERATIVE
STATEMENT-3

*These operations are options included only when specified in the SEARCH statement.

**Each of these control transfers is to the next sentence unless the imperative-statement ends with a GO TO

staterment.

Figure 6—3. SEARCH Logic

'

B i o T T T T e T AT T I R T R N

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 6-48 .
EXTENDED COBOL Update A

6.6.7. Compiler-Directing Verbs

Certain verbs direct the compiler to perform a specific action and do not directly cause any object coding to be
produced. These verbs affect the object program indirectly, except for the verb NOTE which has absolutely no
effect on the object program.

The compiler-directing verbs are:

COPY, ENTER, NOTE, USE

6.6.7.1. COPY Statement
Function:

The COPY statement copies text from the COBOL library into the source program with a capability of word
substitution as the text is copied (7.3).

Format 1:

COPY library-name.

Format 2:
identifier-1 —
COPY library-name | REPLACING word-1 BY< literal-1
word-2
identifier-2
- word-3 BY < literal-2
word-4
Rules:

1. The COPY statement may appear anywhere in a COBOL program.

2. The library-name is an element name in the COBOL libraries. It may contain no more than eight

characters; the name may be composed of alphanumeric characters and the hyphen, but it must contain
at least one alphabetic character.

3. The remainder of the line on which a COPY statement is terminated must be blank. In other words,
nothing may follow a COPY statement on the same source program line.

4, The copying process is terminated by the end of the library text.

5. Both the COPY statement and the statements of the library text to which it refers appear in the output

listing, unless printing of the library text is suppressed through use of the LST=I option on the COBOL
compiler PARAM statement (7.1.1).

6. The text contained in the library must not contain any COPY statements.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 6-49
EXTENDED COBOL

7. If the REPLACING option is used, each occurrence of word-1, word-3, etc., in the text being copied
from the library is replaced by the word, identifier, or literal associated with it in the REPLACING
option.

8. Use of the REPLACING option does not alter the material as it appears on the library.

9. Word-1, word-2, etc., may be a data-name, procedure-name, condition-name, mnemonic-name, file-name,
or sort-name.

10. The literals may be numeric or nonnumeric, fixed or floating-point, or any figurative constant except
ALL.

6.6.7.2. ENTER* Statement

Function:
The ENTER statement, in conjunction with the CALL or ENTRY statements, permits run-time
communications between the main COBOL program and previously compiled subprograms in 0S/3 COBOL or
other languages. ENTRY also may be used with the EXIT PROGRAM or RETURN options.

Format 1:

ENTER LINKAGE.

file-name
identifier
procedure-name
sort-name

CALL entry-name USING

ENTER COBOL.

Format 2:

ENTER LINKAGE.
ENTRY entry-name [USING { unqualified data-name } ...] .
ENTER COBOL.

Format 3:

ENTER LINKAGE.
EXIT PROGRAM.
{RETURN. }

ENTER COBOL.

*Extension to American National Standard COBOL (1968).

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3 6-50
EXTENDED COBOL

Rules:

4.

Format 1 transfers control from one object program to another within the run unit.

Entry-name must be the external symbol of an entry point in the subprogram being called.
Entry-name may be a nonnumeric literal.

Each of the identifiers in the USING clause of the CALL statement must be a reference to any
level data item except an 88 level in the file, working-storage, or linkage sections of the calling
program.

Procedure-name, file-name, and sort-name can be used only if the called subprogram is written in a
language other than COBOL.

If the subprogram is written in COBOL, there are two ways to call the subprogram, depending on
the entry point of the subprogram:

- if the entry point is the beginning of the procedure division (USING after the division
heading), entry-name in format 1 must be the same as the PROGRAM-ID of the called
subprogram.

- if the entry point in the subprogram is designated by the ENTRY statement (format 2), the
entry-name in format 1 must be the same as the entry-name in format 2.

If the called program is written in assembler language, entry points are labels specified by
assembler directive ENTRY or labels of START and CSECT assembler directives.

Format 2, in the called subprogram, designates an ENTRY point; it may not appear in the declaratives
portion.

if the calling program is written in 0S/3 COBOL, entry-name in format 2 must be the same as
entry-name in format 1.

Data-name can be neither qualified nor subscripted.

Data-names are the names of 01- or 77-level data items specified in the linkage section of this
particular subprogram.

The sequence of appearance of the operands in the two USING clauses is extremely significant
because corresponding operands refer to a single common data item; i.e., correspondence is by
position and not by name. Each reference to an operand in the called program USING clause is
treated as if it were a reference to the corresponding operand in the USING clause of the calling
program.

An entry name may be enclosed in quotation marks.

Format 3, in the called subprogram, returns control to the calling program.

All 0S/3 COBOL subprograms must contain this clause.
Control retumns to the point in the calling program immediately following the CALL statement.

The EXIT PROGRAM and RETURN options are equivalent. RETURN is included for
compatibility with other COBOL implementations.

See 6.8 for sample calling and called programs.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 6-51

EXTENDED COBOL

6.6.7.3. NOTE Statement
Function:

The NOTE statement allows programmers to write commentary to be produced in the listing but not be
compiled.

Format:
NOTE character-string.
Rules:
1. Any combination of the characters from the character set may be included in the character-string.

2. If a NOTE sentence is the first sentence of the paragraph, the entire paragraph is considered a part of the
character-string, whereas a comment line is not (Table 2—3).

3. If a NOTE sentence appears as other than the first sentence of a paragraph, the commentary ends with
the first occurrence of a period followed by a space.

6.6.7.4. USE Statement
Function:

The USE statement specifies procedures for input/output label and error handling in addition to the standard
procedures specified by the input/output system. Three format options are available:

= Label writing and checking
L] Error checking
L] Printer form-overflow

Format 3 is an extension to American National Standard COBOL (1968).

Format 1:
FILE
AFTER BEGINNING —_—
USE BEFORE STANDARD [E—_—NDING :I REEL
—_— —_— UNIT
file-name-1 [file-name-2] . . .
LABEL PROCEDURE ON :_lgﬂl
OUTPUT
Format 2:

file-name-1 [file-name-2] . ..
INPUT

I-0

OUTPUT

USE AFTER STANDARD ERROR PROCEDURE ON

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3 6-52
EXTENDED COBOL

Format 3:

USE FOR FORM-OVERFLOW ON file-name-1

Rules:

A USE statement must immediately follow a section header in the declaratives section of the procedure
division, and must be followed by a period. The remainder of the section must consist of one or more
procedural paragraphs that define the procedures to be used.

The USE statement defines the conditions calling for the execution of the USE procedures; the USE
statement itself is never executed.

When format 1 is used:

L] If the file-name option is present, the FD entry for file-name-1 must contain a LABEL RECORDS
ARE data-name clause (5.2.1.3).

- if the BEGINNING or ENDING options are omitted, the designated procedures are executed for
both beginning and ending labels. The ENDING option is not applicable for direct access files
whose organization is other than sequential.

L If the REEL or UNIT option is used, the designated procedures are executed for each new reel or
unit of a file but not for the start or end of the file itself. If the FILE, UNIT, or REEL option is
omitted, the designated procedures are executed for the reel or unit, whichever is applicable, and
the file. The REEL option is not applicable to mass storage files and the UNIT option is not
applicable to files in the random access mode.

L] When the INPUT, OUTPUT, or I-O option is specified, the USE procedure refers to all appropriate
files except those described with the LABEL RECORDS OMITTED or STANDARD clause.

- The BEFORE option is not applicable to the 0S/3 COBOL but is accepted for compatibility. The
BEFORE option is processed as if AFTER were specified.

» For files opened for input, the designated USE procedure is executed only when a user label is
encountered. This label can be checked by referencing the record defined by the LABEL
RECORD clause in the FD. If further labels exist, they can be accessed by issuing a GO TO MORE
LABELS verb. User label processing is terminated upon execution of the last statement in the USE
procedure.

L] For files opened for output, the designated USE procedure is executed after system label
processing is completed. A user label is written from the record area defined by the LABEL
RECORD clause after execution of the last statement in the USE procedure. A label is also written
upon execution of a GO TO MORE LABELS verb and control is then transferred to the beginning
of the same USE procedure.

When format 2 is used, the USE procedure is initiated when system standard {/O error recovery
procedures are exhausted. After a format 2 USE procedure is executed, no attempt should be made to
access the file in error.

When format 3 is used, control is transferred to the USE procedure when a printer carriage overflow
condition is detected. See data management user guide, UP-8068 (current version).

Overflow is detected during the print and space functions of the printer. If form positioning by
ADVANCING mnemonic-name is specified, a form-overflow condition does not occur.

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3 6-53
EXTENDED COBOL

10.

File-name must not represent a sort file in any format.

Input/output statements or the STOP verb with the literal option are not allowed inside USE procedures
except for the following verbs:

n ACCEPT (not from jobstream or system console)
] DISPLAY

a WRITE to a printer within a FORM-OVERFL.OW procedure

NOTE:

At least one DISPLAY to SYSLST must be performed in the nondeclarative portion of the procedure
division before any are performed with the declarative section. Accepts from the job control stream are
not permitted inside a USE statement for LABEL PROCEDURE.

ENTRY statements are not allowed within USE procedures.

In a USE procedure, there must be no reference to any nondeclarative procedures. Conversely, in the
nondeclarative portion, there must be no reference to procedure-names that appear in the declarative
portion, except that PERFORM statements may refer to a USE declarative in formats 1 or 2, or to the

procedures associated with such a USE declarative.

See 6.2, declaratives section.

6.6.8. Interprogram Communications

Communications between an 0S/3 COBOL program (caller) and either an OS/3 COBOL or another language
program (called) are established by the CALL verb. An entry point in the called program is established by the
ENTRY verb.

6.6.8.1. CALL* Statement -

Function:

In conjunction with the ENTER verb in the main program, communicates with subprogram entry points.

Format:

B -
file-name
identifi
CALL entry-name |USING identifier
procedure-name
sort-name

Rule:

_ .

See the ENTER verb, 6.6.7.2, for information regarding use of the CALL statement.

*Extension to American National Standard COBOL (1968).

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 6-54
EXTENDED COBOL .

6.6.8.2. ENTRY* Statement

Function:

The ENTRY statement, in conjunction with the ENTER statement in a called program, establishes an entry
point.

Format:
ENTRY entry-name [USING unqualified-data-name . . .] .
Rule:

See 6.6.7.2.

6.7. SEGMENTATION

Segmentation is a method of communication with the compiler to specify object program overlay requirements.
Since 0S/3 COBOL deals just with segmentation of procedures, only the procedure division is considered in
determining segmentation requirements for an object program.

6.7.1. Program Segments
When segmentation is used, it is mandatory that the procedure division be written in sections. Each section must be

classified as belonging either to the fixed portion or to one of the independent segments of the object program.
Segmentation does not negate the need to qualify procedure-names to ensure uniqueness.

6.7.1.1. Fixed Portion

The fixed portion is that part of the object program which is logically treated as if it were always in main storage.
This portion of the program is composed of two types of segments, the fixed permanent segment and the fixed
overlayable segment.

A fixed permanent segment is a segment in the fixed portion which cannot be overlaid by any other part of the
program. A fixed overlayable segment is a segment in the fixed portion which, although logically treated as if it were
always in memory, can be overlaid by another segment to optimize memory utilization. Variation of the number of
fixed permanent segments in the fixed portion can be accomplished by using a special facility called the
SEGMENT-LIMIT clause (4.2.2). Such a segment, if called for by the program, is always made available in its last
used state.

if the SEGMENT-LIMIT clause is not specified, an implicit segment-limit of 50 is in effect.

6.7.1.2. Independent Segments

An independent segment is a part of the object program that can overlay, and be overlaid by, either a fixed
overlayable segment or another independent segment. An independent segment is in its initial state when control is
transferred to that segment from a segment with a different priority-number.

* Extension to American National Standard COBOL (1968).

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 6-55
EXTENDED COBOL

. 6.7.2. SECTION

Definition:
Segments are classified by priority numbers included in the section header.
Format:

section-name SECTION [priority number] .
{paragraph-name. { sentence } oo } ,

Rules:

1. The priority-number must be an integer ranging in value from 0 through 99.

2. If priority-number is omitted from the section header, the priority is assumed to be 0.

3. Sections in the declaratives must not contain priority-numbers in their section headers.

4, The logical sequence of the object program execution is the same as the physical sequence of the source
program except for specific user-supplied transfers of control. Sections with the same explicit or implicit
priority-number, however, physically comprise a single object program segment.

5. Sections with priority-number O up to, but not including, the SEGMENT-LIMIT priority-number
constitute the fixed permanent segment of the object program. Sections with priority-numbers ranging

. from the SEGMENT-LIMIT to 49 are fixed overlayable segments. Sections with priority-numbers 50
through 99 constitute independent segments. Sections with the same priority-number need not be
grouped together in the source program.

6.7.3. Restrictions

When segmentation is used, the following restrictions are placed on the ALTER and PERFORM statements.

6.7.3.1. ALTER Statement
Any GO TO statement in a fixed segment (priority-number 49 or less) can be altered by an ALTER statement

located in any other segment of the program. A GO TO statement in an independent segment (priority-number 50 or
greater) can be altered only by an ALTER statement located in the same segment as the GO TO statement.

6.7.3.2. PERFORM Statement

A PERFORM statement that appears in a section with a priority-number less than the implicit or explicit
SEGMENT-LIMIT priority-number can have within its range only the following:

L] Sections with a priority less than 50.

] Sections entirely contained in a single segment having a priority-number greater than 49.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 6-56
EXTENDED COBOL

A PERFQORM statement that appears in a section with a priority-number equal to or greater than the implicit or
explicit SEGMENT-LIMI T priority-number can have within its range only the following:

L Sections with the same priority-number as that containing the PERFORM statement.

L Sections with a priority-number less than the implicit or explicit SEGMENT-LIMIT priority-number.

6.7.3.3. Linkage Editor Considerations
When linking a segmented COBOL program, the linkage editor control stream must have a LOADM control
statement followed by an INCLUDE statement for the root section of the program {fixed-permanent segment). The

module-name parameter on the INCLUDE statement must be padded on the right with zeros for a total of eight
characters.

6.8. CALLING AND CALLED PROGRAMS

Run-time communication between a main 0OS/3 COBOL program and any other separately compiled or assembled
subprogram is accomplished by the ENTER statement and its associated statements:

L CALL
= ENTRY

= EXIT PROGRAM or RETURN

- USING clause with PROCEDURE DIVISION heading

Actual transfer of control from a calling program to a called program is effected via a CALL statement with an
entry-name identical with the entry-name in the ENTRY statement of the called program. Return of control to the
calling program is effected by execution of an EXIT PROGRAM statement in the called program. Control is
returned to the statement following the CALL statement in the calling program.

A called program need not be an OS/3 COBOL program. In such cases, the COBOL calling program may include
procedure-names in its USING argument list.

For a description of register usage requirements, see the CALL, SAVE, and RETURN macro instructions in the
supervisor programmer reference, UP-8241 (current version).

6.8.1. Treatment of Data Items

Data items declared in the calling program and referenced in the called program are described in the file or
working-storage sections in the data division of the calling program. In the called program, the data items are

escribed, once again, but in the linkage section. Items described in the linkage section are not allocated main
iorage by the compiler since these items already occupy storage in the calling program, which furnishes their
addresses to the called program at object time.

Data items common to both programs are shared by use of corresponding USING clauses in each program. The
operands in the USING clause of the calling program name the data items contained in the data division to be shared
with the called program. The USING clause in the called program can either follow the PROCEDURE DIVISION
heading or be contained in an ENTRY statement. The operands must name data items described by 01- or 77-level
entries in the linkage section.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 6-57
EXTENDED COBOL

The sequence of appearance of the operands in the two USING clauses is extremely significant since corresponding
operands refer to a single common data item; i.e., correspondence is by position and not by name. Each reference to
an operand in the called program USING clause is treated as if it were a reference to the corresponding operand in
the USING clause of the calling program. The calling program is responsible for ensuring physical data alignment if
the description of a linkage section data item implies a hardware alignment requirement.

A called program also may be a calling program sharing common data items in its data division (including linkage
section items) with still another called program.

6.8.2. Linking

A sample linker job stream for calling and called programs is:

$
LOADM CALLXX
INCLUDE CALLEROO
INCLUDE CALLEDOO
INCLUDE ADDROUT
/*

When an object module created by the COBOL compiler is included in a load module, it must be referred to in the
INCLUDE statement by the 8-character program name assigned by the compiler. The first six characters contain the
program name specified in the identification division of the source program; the last two characters, decimal
numbers from 00 to 99, indicate the segment number of the object module within the COBOL program. (All single
segment programs are numbered 00.) If the program name specified in the source program is less then six characters,
the compiler pads it with zeros before appending it with the 2-digit segment number.

6.8.3. 0S/3 COBOL CALL/ENTRY Interface

The following example is provided to illustrate the use of CALL and ENTRY statements. The example consists of a
COBOL program, CALLER (Figure 6—4), which shares data-items and calls upon a COBOL subprogram, CALLED
(Figure 6-5), and an assembly language subprogram, ADDROUT (Figure 6—6)}, for operations upon the shared
data-items. Table 6—5 shows the relationship between these programs.

For more detailed information concerning the linking of subprograms, refer to the system service programs user
guide, UP-8062 (current version).

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 6-58
EXTENDED COBOL

LINE NO. SOURCE STATEMENT

00001 IDENTIFICATION DIVISION.

00002 PROGRAM~ID. CALLER.

00003 ENVIRONMENT DIVISION.

00004 CONFIGURATION SECTION.

00005 SOURCE-COMPUTER. UNIVAC-9030.

00006 OBJECT-COMPUTER. UNIVAC-9030.

00007 DATA DIVISION.

00008 WORKING-STORAGE SECTION.

00009 77 DATAL PIC 9999.

00010 77 DATA?2 PIC 99.

00011 77 CTR PIC 99 VALUE Ol.

00012 01 DATAX.

00013 02 DATA3 PIC 99.

00014 02 DATA4 PIC 99.

00015 PROCEDURE DIVISION.

00016 PO.

00017 MOVE CTR TO DATA2, DATA3, DATA4.

00018 POD.

00019 ENTER LINKAGE.

00020 CALL ASMBLRAD USING DATA2, DATAX, DATAl.
00021 ENTER COBOL.

00022 DISPLAY ' CALLER RECVD ' DATA2 ' + ' DATA3 ' + ' DATA4 ' =
00023 DATAl ' FROM ASMBLRAD '.

00024 ADD 1 TO DATA4.

00025 Pl.

00026 ENTER LINKAGE.

00027 CALL COBOLADD USING DATA2, DATAX, DATAl.
00028 ENTER COBOL.

00029 P3.

00030 DISPLAY ' CALLER RCVD ' DATA2 ' + ' DATA3 ' + ' DATA4 ' =
00031 DATAl ' FROM COBOLADD'.

00032 P4. IF CTR LESS THAN 12 ADD 1 TO CTR GO TO PO ELSE
00033 DISPLAY 'END OF RUN' STOP RUN.

Figure 6—4. Example of Calling Program

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3
EXTENDED COBOL

LINE NO. SOURCE STATEMENT

00001 IDENTIFICATION DIVISION.

00002 PROGRAM-ID. CALLED,

00003 ENVIRONMENT DIVISION.

00004 CONFIGURATION SECTION.

00005 SOURCE-COMPUTER. UNIVAC-9030.

00006 OBJECT-COMPUTER. UNIVAC-9030.

00007 DATA DIVISION.

00008 LINKAGE SECTION.

00009 77 DATAL PIC 9999,

00010 77 DATA2 PIC 99.

00011 01 DATAX.

00012 02 DATA3 PIC 99.

00013 02 DATA4 PIC 99.

00014 PROCEDURE DIVISION.

00015 PO. ENTER LINKAGE. ENTRY COBOLADD USING DATA2 DATAX DATAI.
00016 ENTER COBOL.

00017 Pl. ADD DATA2 DATA3 DATA4 GIVING DATAl.

00018 P9, ENTER LINKAGE. EXIT PROGRAM. ENTER COBOL.

Figure 6~5. Example of Called Program

ADDROUT START O
PRINT NOGEN

R1$ EQU 1
R2$ EQU 2
R3$ EQU 3
R4$ EQU 4
RF$ EQU 15
RES EQU 14
RC$ EQU 12
RD$ EQU 13
PRINT GEN
DUMMY DSECT .
DATA2ASM DS CL2 A DSECT IS A DESCRIPTION NOT TO
DATAXASM DS OCL4 BE MAPPED SINCE IT WILL RESIDE
DATA3ASM DS CL2 ELSEWHERE AT OBJECT TIME

Figure 6—6. Example of Called Assembly Subprogram (Part 1 of 2}

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 6-60
EXTENDED COBOL

DATA4ASM DS CL2
DATAIASM DS CL4
ADDROUT CSECT

USING DATA2ASM,R2% R2 WILL BE USED TO COVER DATA2
USING DATAXASM,R3% R3 WILL BE USED TO COVER DATA3/4
USING DATA1ASM,R4% R4 WILL BE USED TO COVER DATAl
USING *,RF$ COVER FOR THIS ROUTINE

ASMBLRAD STM RE$,RC%,12(RD$) SAVE CALLERS REGS IN HIS SAVEAREA
ENTRY ASMBLRAD DECLARES ENTRY POINT LABEL
LR R2%,RD$ SAVE ADR OF CALLERS SAVEAREA
LA RD$, SAVEAREA LOAD RD$ WITH ADDR OF THIS ROUT S-A
STM R2%,R2%,4(RDS$) SAVE CALLER S-A ADR IN THIS ROUT SA
STM RD$,RD$,8(R2%) SAVE THIS ROUT SA ADR IN CALLER SA
LM R2%$,R4%,0(R1%) LOAD COVER REGS WITH ARG'S

PACK HOLD2(2),DATA2ASM(2)
ZAP ACCUM(3),HOLD2(2)
PACK HOLD2(2),DATA3ASM(2)
AP ACCUM(3),HOLD2(2)
PACK HOLD2(2),DATA4ASM(2)
AP ACCUM(3),HOLD2(2)
UNPK DATA1ASM(4),ACCUM(3)
01 DATA1ASM+3,X'FO'

L RD$,4(,RD$) ADDR OF CALLERS SA

LM RE$,RC$,12(RD$) RESTORES CALLERS REGS

MVI 12(RD$),X'FF' SET CALLED TO RETURIED STATUS
BR RES

SAVEAREA DS 18F

ACCUM DS CL3

HOLD2 DS CL2
END

Figure 6—6. Example of Called Assembly Subprogram (Part 2 of 2}

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 6-61
EXTENDED COBOL
Table 6—5. Program/Subprogram Relationships
Routine Type Language Interface Function Comment
CALLER Program COBOL Calis COBOLADD Sets values in data- Note that any 01- or 77-
in CALLED. Calls items and calls on level data-item can be
ASMBLRAD in subprograms to add used as operand in CALL
ADDROUT. values and provide statement (shared with
results. Results are subprogram).
displayed on console.
CALLED Subprogram COBOL Entry point is Adds values in items to be shared with
COBOLADD. Exit several shared data- a calling program are
accomplished via items and leaves described as 01- or 77-
exit program. results in a shared level data-items in
data-item. linkage section.
ADDROUT Subprogram ASM Entry point is Same as CALLED Items to be shared with
ASMBLRAD. Exit above. a calling program may be
accomplished via described within a DSECT.
BR RES$. The arguments passed
represent the address of
each item in the calling
program storage.

PART 3. COMPILER FEATURES AND CAPABILITIES

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 7-1
EXTENDED COBOL

7. Compiler Options and
Library Statements

7.1. COMPILER OPTIONS

In SPERRY UNIVAC Operating System/3 {(0S/3) COBOL, the optional PARAM statement provides a method of
presenting parameters to the compiler to exercise specific COBOL options. The format of the PARAM statement is:

//APARAMAparameters

When PARAM statements are used, they must be positioned immediately following the EXEC job control statement
in the compilation job control stream. The PARAM statements are printed on the first page of the compiler output
listing.

If a PARAM statement format error or an illegal parameter is encountered, a system console message is produced
and the compilation is terminated.

If no PARAM statements are supplied, the compiler produces a source program listing and a source program
diagnostic report, and generates an object module.

Only one blank may precede the P of the word PARAM.
Absence of PARAM statements implies:

/IAPARAMA LST=(S)

7.1.1. List Options
Format:

//APARAMA LST=(spec 1,...,spec n)
where:

spec 1,..., spec n
Is one or more of the following:

A Activate ambiguity mode of reference resolution. Normally, references are resolved by the first
appropriate definition encountered for the referenced name. The definition search process begins
with the first entry in the appropriate division and continues through to the last entry in that
division.

If the file-name is omitted, the name YSRC is automatically supplied.

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3 7-2
EXTENDED COBOL

In the ambiguity mode, the definition search process is not terminated when the reference is
resolved, but continues in an attempt to uncover and report duplicate definitions. When the search
of the division that corresponds to the reference type is completed, the other divisions also are
searched to determine if the highest possible qualifier rule has been violated. Diagnostic messages
151 through 154 report the presence of ambiguous references/definitions.

Cc Produce storage map and cross-reference listing for the data division and procedure division.

D Produce data division alphabetized cross-reference listing.

E Ignore printer mismatch errors during compilation.

| Inhibit listing of lines included from COPY libraries.

K Inhibit source item sequence number checking {columns 1 through 6 of the source item).

L Single-space all listings requested. If no listings were requested, a single-spaced diagnostic listing is
produced.

M Produce data division storage map listing.

N Inhibit all listable output except PARAM statement listing.

0 Produce object code listing.

P Produce procedure division storage map listing.

R Allow quote character to be used in a nonnumeric literal bounded by apostrophes.

S Produce source program listing.

T Allow apostrophe character to be used in a nonnumeric literal bounded by quotes.

W Inhibit listing of all precautionary diagnostics. These errors are identified by a severity code of P.

X Produce procedure division alphabetized cross-reference listing.

NOTES:

1. When LST=(C,M), only the data division storage map has cross-references. When LST=(C,P), only
the procedure storage map has cross-references.

2 LST=R and T are not allowed within the same program. Use of either option overrides the

interchangeability of the apostrophe and quotation mark.

7.1.2. Output Options

Format:

//APARAMAOUT=(spec 1,...,spec n)

where:

spec 1,....,specn
Is one or more of the following:

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 7-3
EXTENDED COBOL

o Conversion mode.
E Inhibit display of ISAM file status on system console.

K All data items described as USAGE IS COMP or COMPUTATIONAL are treated as packed decimal
{COMP-3 or COMPUTATIONAL-3).

L Inhibit generation of linker control statements in object module.

M Produce shared-code COBOL action program to be executed under the control of the information
management system (IMS/90).

N Inhibit generation of object module.
P Disregard mismatch errors for all object program print files.
R The word QUOTE is translated as quotation marks.

S Disable object program SORT PARAM card processing. If this parameter is not specified in the
compilation, during the execution of an object program SORT atatement, the SORT routine will
accept parameters from the job control stream. For a list of SORT/MERGE parameters, refer to
the SORT/MERGE user guide and programmer reference, UP-8054 (current version).

T inhibit compiler generation of a transfer address in the object modute. When invoked, the program
cannot be executed unless it is called.

A% Suppress automatic page overflow in the object program.

7.2. SOURCE AND COPY LIBRARY INPUT SPECIFICATIONS

The following PARAM statements describe the method of reading a source program either from the job control
stream or from a disc library.

The formats for the source and copy library PARAM job control statements are presented in the following
paragraphs.

L Source library {nput
Format:
//APARAMA IN=program-name/file-name
where:

program-name
{s a 1- to 8character name of source program to be compiled.

file-name _
Is a 1- to 8-character name used to identify the file on which the source program resides. This
name must appear on the LFD job control statement used to define the device to the job control
program.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 7-4
EXTENDED COBOL

L Copy Library Input

Format:
//APARAMA LIN=file-name
where:
file-name
Is a 1- to 8-character name used to identify the file on which the COPY library resides. This name
must appear onthe LFD job control statement used to define the device to the job control program.

If the file-name is omitted, the name COPY$ is automatically supplied.

The COPY element-name is supplied in the source program via the COPY clause.

7.2.1. Object Module Version/Revision Number

Format 1:
/IAPARAMAVER=wv/rr

where:

Is the version number.

rr
Is the revision number.

These numbers are applied to compiler output module.

It the source program is coming from a library and this PARAM statement is not specified, the version number from
that library module is used.

If the PARAM statement is not specified and the source program is coming from the job control stream, the version
and revision numbers 00/00 are used.

Format 2:

//APARAMA OBJ=file-name

where:

file-name
Is the file where the object mode generated is to be placed.

If this PARAM statement is omitted, the generated object module is placed in the temporary job run library file
{(SYSRUN).

7.2.2. Compiler Source Library Input and Copy Library Input .

The source program may be read from the job control stream or a disc library. Any copy library modules referenced
by the source program may be read from a disc library. Any library structures to be accessed by the compiler must
have been created by the OS/3 librarian.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 7-5

EXTENDED COBOL

Any library structures to be accessed by the compiler must be defined in the job control stream, and the LFD names
must appear on PARAM statements (keyword IN for the source library; LIN for the copy library). If no copy library
modules are referenced by the source program, the copy library need not be defined.

Example:

Source and copy library definitions:

//ADVCAS0 //AVO L Adspxxx

Job control statements for
//ALBLAfile-id-1 //ALFDAfile-name-1 source input
//ADVCAB0 /IAVOLAdspxxx

Job control statements
//ALBLAfile-id-2 //ALFD/file-name-2 for copy input

with PARAM statements:

/1P AR AMAIN=program-name/file-name-1

Source file copy file
//APARAMALIN=file-name-2

In the foregoing example, file-name-1 and file-name-2 are programmer-supplied names. File-id-1 and file-id-2 are
file-id names used at the time the disc library was created. Program-name is the name of the source library module
that contains the source program.

7.3. LIBRARY

The library module specifies text to be copied from the OS/3 COBOL library, which contains text available to a
source program at compile time. The effect of the compilation of library text is the same as if the text were actually
written as part of the source program. OS/3 COBOL library text is placed in the COBOL library as a function
independent of the 0S/3 COBOL program.

The following paragraphs contain library information applicable to the 0S/3 COBOL user. For a complete discussion
of the COBOL library module, see the fundamentals of COBOL — language manual, UP-7503.1 (current version).

7.3.1. Using the COPY Statement

The COBOL library contains text which, through the use of the COPY statement, may be included in a COBOL
source program during compilation. The rules for the COPY statement are given in 6.6.7.1.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 7-6
EXTENDED COBOL

In addition to referencing the library module through the COPY statement, the programmer must define the device
and file which contain the library module in his job control stream. The LFD name given to this file also must be
present on a PARAM statement with keyword LIN.

The compiler performs no editing of library modules. Whatever is contained in the library under the specified
library-name is copied into the program. Lines of code taken from the library are marked with a C to the right of the
line number on the source listing if the text is copied without replacement. Lines of code which have one or more
words of text replaced are marked with an R. Note that the source listing does not reflect the text change, as
replacement is internal. Any reference to a text word which has been replaced causes a diagnostic to be issued.

Example:
If a COBOL program contains the following lines of code:

FILE SECTION.
FD FILEO1 COPY LIB-FDO1 REPLACING DN-1 BY TAX-A.
01 TAX-A.

and the assigned library file contains a module named LIB-FDO1 with the lines:

LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 1 RECORD
DATA-RECORD IS DN-1.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 7-7
EXTENDED COBOL

at compilation time the source listing would be:

LINE NO. SOURCE STATEMENT

00033 FILE SECTION.
00034 FD FILEO1 COPY LIB-FDO1 REPLACING DN-1 BY TAX-A.

00035C LABEL RECORDS ARE STANDARD
00036C BLOCK CONTAINS 1 RECORD
00037R DATA-RECORD IS DN-1.

00038 01 TAX-A.

The effect on the program is the same as if the programmer had written:

FILE SECTION.

FD FILEO1
LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 1 RECORD
DATA-RECORD IS TAX-A.

01 TAX-A.

PARAM statements for use with the COPY statement are defined in 7.2.2.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 8-1
EXTENDED COBOL

8. RERUN Clause

8.1. GENERAL

The RERUN facility of the SPERRY UNIVAC Operating System/3 (0S/3) provides a means of recording the status
and environment of an 0S/3 COBOL program at a specified point in the processing of that program. Once recorded,
this status and environment may be reestablished and execution of the COBOL program may be resumed from this
point. The RERUN facility causes linkage between the COBOL program and the checkpoint facility. The restart
ability is provided by the original job control stream with the addition of an RST job control statement placed
immediately prior to the JOB job control statement.

8.2. RERUN CLAUSE

The RERUN clause may appear in the 1-O-CONTROL paragraph of the environment division. The format of the
RERUN clause is:

RERUN O_N external-name EVERY integer RECORDS OF file-name-1 [, file-name-2]

The external-name in the format must appear in a SELECT entry. The device specified by external-name is the
RERUN receiver, which receives the checkpoint records containing the status and environment of the COBOL
program. File-name-1, file-name-2, etc., are RERUN controllers and dictate when the checkpoint records are to be
issued. The same RERUN receiver may appear in any number of RERUN clauses; a RERUN controller may appear
in only one RERUN clause. The allowable range for integer is 1 through 9,999,999,

8.3. CHECKPOINTING

Checkpoint records are issued whenever integer records occur for a RERUN controller. The RERUN controller
record counter is set to 0 when the controller is opened and incremented by 1 before each READ, WRITE, or
INSERT statement is issued to the controller. When the RERUN controller is opened as 1-O, a WRITE statement
does not cause the record counter to be incremented.

If the RERUN receiver is a tape device, it may be dedicated to receiving checkpoint records or it may receive other
program output. If the RERUN receiver is dedicated, it is opened automatically with the assumption that label
records are standard. If the RERUN receiver is being shared with other program output, it is the programmer’s
responsibility to ensure that the receiver is opened for OUTPUT whenever checkpoint records are issued. Checkpoint
records are not issued if the receiver is not open for OUTPUT.

If the receiver is a disc device, it must be dedicated to receiving checkpoint records. The device must appear in a
SELECT entry but not in an FD entry.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 8-2

EXTENDED COBOL

84.

RESTARTING

To initiate the restart of a previously checkpointed program, an RST job control statement must immediately
precede the JOB job control statement in the original job control stream; the job may then be restarted. The format
of the RST job control statement is:

// RST filename, checkpoint-id, number

where:

8.5.

filename
Is the name of the checkpoint file.

checkpoint-id
Is the checkpoint number identifying the checkpoint to be used to restart the job.

number
Is the job step number within the job to be restarted.

NOTES AND RESTRICTIONS

A RERUN controller may have only one RERUN receiver and may appear in only one RERUN clause. If more
than one receiver is specified for a RERUN controller, the compiler writes the checkpoint records on the
first-mentioned external-name and ignores the second one.

ACCESS and ORGAN!IZATION, if specified for a RERUN receiver, must be SEQUENTIAL.

If the RERUN receiver is a magnetic tape unit, SD must not be specified. If FD is specified, the tape must have
standard labels and a block size greater than or equal to 20 bytes.

ASCII tape files are not permitted.
The USE declarative statement does not apply to a dedicated RERUN receiver file.

When errors occur on RERUN receiver files, diagnostic messages are displayed and processing continues.
However, no further attempts are made to issue checkpoint records to that receiver.

Checkpoints issued when a sort is active cannot be used for restarting due to the temporary nature of the sort
work-files.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 9-1
EXTENDED COBOL

9. Use of ACCEPT and
DISPLAY Statements

9.1. ACCEPT STATEMENT

Format:

mnemonic-name
DATE*

DAY*

TIME*

ACCEPT identifier | FROM

9.1.1. Job Control Stream ACCEPT

In the SPERRY UNIVAC Operating System/3 (0S/3), COBOL programs are permitted to access their control
streams to retrieve PARAM statements and data images.

9.1.1.1. 80-Column Card ACCEPT

An ACCEPT for which the FROM option is not specified or an ACCEPT for which mnemonic-name is associated
with SYSIN permits retrieval of data images and PARAM statements from the job control stream. A maximum of
4095 bytes of data may be retrieved with a single ACCEPT statement. The number of bytes accepted is not required
to be a multiple of 80. Two ACCEPT statements of 20 character items require two cards.

Job Control Stream Format:

//IANEXECAoperand 1, operand 2, operand 3

The EXEC statement (execute) is the last statement processed by job control before the execution of the

program (job step) named in the statement. PARAM statements, if any, must directly follow the EXEC
statement.

/%

The /$ statement is used to indicate the beginning of a stream of data that is to be diverted to a file for
subsequent retrieval by the job. All statements following the /$ statement up to and including the first /*
(end-of-data) statement are filed on the resident direct access storage device. Although this statement is
required by job control, it is not transferred to the COBOL program.

*Extension to American National Standard COBOL (1968).

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 9-2
EXTENDED COBOL

DATA IMAGE 1
DATA IMAGE 2

DATA IMAGE n
/*

The /* statement indicates the end of a data stream introduced with the job control stream. This statement is
required by job control but is not transferred to the 0OS/3 COBOL program. An attempt to retrieve this
statement results in an error condition in the COBOL program.

Job Control Stream Errors:

When the job control stream is unable to deliver an image to the COBOL program (that is, if the next
sequential record in the job control stream is not a PARAM statement, or a data image), control is transferred
to the object time error subroutine. The subroutine logs the following message on the system console:

CEO01 ERROR-DATA FOR ACCEPT NOT AVAILABLE

If the COBOL program attempts to retrieve a /* image from the job control stream, an error condition results.
Control is transferred to the object time error subroutine. The subroutine logs the following message on the
system console:

CE02 ERROR-INSUFFICIENT DATA FOR ACCEPT

These errors abort the run.

ACCEPTS from the job control stream are not permitted inside a USE for LABEL PROCEDURE.

9.1.1.2. 96-Column Card ACCEPT

An ACCEPT with mnemonic-name associated with SYSIN-96 allows the COBOL program to retrieve embedded data
cards from the job control stream when using 96-column cards with data extending beyond column 80. When the
job control stream is punched on 96-column cards, but the embedded data is contained in only the first 80 columns,
the SYSIN-96 option should not be used.

All rules regarding job control stream format and job control stream errors (9.1.1.1) apply to ACCEPT with
SYSIN-96.

9.1.1.3. 8413 Diskette ACCEPT

An ACCEPT with mnemonic-name associated with SYSIN-128 allows the COBOL program to retrieve embedded
data images from the job control stream when using an 8413 diskette with data extending beyond position 80. When
the job control stream is recorded on 8413 diskette, but the embedded data is contained in only the first 80
columns, the SYSIN-128 option should not be used.

All rules regarding job control stream format and job control stream errors (9.1.1.1) apply to ACCEPT with
SYSIN-128.

9.1.2. Console ACCEPT

An ACCEPT with mnemonic-name associated with SYSCONSOLE allows the program to receive data from the
system console.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 9-3
EXTENDED COBOL

The maximum number of characters that may be entered for a single ACCEPT is 60.
When the ACCEPT statement is encountered in the COBOL program, the following message is displayed:

CA10 ACCEPT READY

The operator, when replying to a system console ACCEPT, must enter “‘message number’’ followed by the text.

When the operator types less than the number of characters expected, the remaining positions are space-filled
(X'40').

The identifier must be implicitly or explicitly defined as USAGE IS DISPLAY (5.3.5).

9.1.3. Current Date ACCEPT

An ACCEPT with mnemonic-name associated with SYSDATE or an ACCEPT with the DATE option makes the date
available to the program in the format yymmdd (PIC 9(6)). This information is moved to the identifier under the
rules for a COBOL MOVE (6.6.3.2).

When the date is set through the job control stream (//ASETADATE, YY/MM/DD) the date is stored in the user’s job
preamble. If the date is not set via the job control stream, job control moves the date from the system information
block (SIB) into the user’s job preamble. The date in the SIB is entered via the system console by the operator. This
is accomplished by using the operator SET command to enter the current date.

By setting the date from the job control stream, the user can predate or postdate jobs.

9.1.4. Time of Day ACCEPT

An ACCEPT with mnemonic-name associated with SYSTIME or an ACCEPT with the TIME option makes the time
of day available to the program in the format hhmmssQ0 (PIC 9(8)), where hh is the hour, mm is the minute, and ss
is the second (hhmmss does not exceed 235959). This information is moved to the identifier under the rules for a
COBOL MOVE (6.6.3.2).

9.1.5. Julian Date ACCEPT

An ACCEPT with the DAY option makes the date available to the program in the format yyddd (PIC 9(5)). This
information is moved to the identifier under the rules for a COBOL MOVE (6.6.3.2). See 9.1.3, Current Date
ACCEPT, for information on setting the date with the job control //ASETADATE command.

9.1.6. UPSI Byte ACCEPT

An ACCEPT with mnemonic-name associated with SYSSWCH permits the COBOL program to access the user
program switch indicator (UPSI) byte, which is the last byte of the 12-byte communications region in the job
preamble. An 8-byte item is created containing EBCDIC O to represent the OFF status and an EBCDIC 1 to
represent the ON status of the individual UPSt bits/switches, respectively (e.g., if SYSSWCH-0 and SYSSWCH-2 are
ON and all others are OFF, the ACCEPT statement makes available to the program an 8-character item containing
10100000).

UP-80569 Rev. 3 SPERRY UNIVAC 0S/3 9-4
EXTENDED COBOL

9.1.7. Communications Region ACCEPT

An ACCEPT with mnemonic-name associated with SYSCOM allows the COBOL program to receive information
from the communication region in the job preamble. When this ACCEPT is encountered, the 12-byte
communication region is moved to the 12 bytes described by the identifier. It is through the communication region
that one job step may communicate with a following job step.

NOTE:

The twelfth byte of the communication region is the UPS/ byte.

9.2. DISPLAY STATEMENT

Format:
DISPLAY if.lentifier-1 [' ifientifier-z] . . . [UPON mnemonic-name)
— | literal-1 , literal-2 —_—

9.2.1. Console DISPLAY

A DISPLAY with mnemonic-name associated with SYSCONSOLE permits the COBOL program to display messages
upon the system console. A display on the system console is assumed if the UPON option is omitted. The sum of the
sizes of operands may not exceed 250 characters. The data is displayed a line at a time. Each line is prefixed with the
code CD10 and followed by a maximum of 55 characters of the contents of the operands. .

Al displays are action-type messages and must be responded to by the operator with a GO command.

9.2.2. Log File DISPLAY

A DISPLAY with mnemonic-name associated with SYSLOG permits the COBOL program to display messages to the
system console and the system log file. Message size is limited to 55 contiguous characters. COBOL displays are
prefixed with the code CD11. This display is an informational-type message and does not require the operator to
respond with a GO command (unlike SYSCONSOLE).

9.2.3. UPSI Byte DISPLAY

A DISPLAY with mnemonic-name associated with SYSSWCH permits the COBOL program to change the entire
UPSI byte.

The eight bytes described by the identifier are converted into individual bit settings, and the resultant eight bits are
stored in the UPSI byte. A value of X‘F1’ causes a bit (UPSI switch) to be turned ON (1 value).

The UPSI byte may be initialized prior to execution by the SET statement in the job control stream (//ASETAUPSI,
switch-setting).

UP-8059 Rev. 3 SPERRY UNIVAC 0S5/3 9-b
EXTENDED COBOL

9.2.4 UPSI Bit DISPLAY

A DISPLAY with mnemonic-name associated with SYSSWCH-n allows the COBOL program to change an individual
switch (bit setting) in UPSI. The eight switches in UPS!} are numbered O through 7 from left to right. A 1-byte
identifier (PIC X) is used to alter UPSI SWITCH-n. A value of 0 (X'FO’) causes the switch to be turned OFF (0
value); any other value causes the switch to be turned ON (1 value).

9.2.5. Communications Region DISPLAY

A DISPLAY with mnemonic-name associated with SYSCOM allows the COBOL program to alter the contents of the
communications region. The 12 bytes described by the identifier are moved into the 12-byte communications region
in the job preamble.

The communications region is initialized to binary 0’s prior to the first job step by job control. Through use of the

SET statement (//ASETACOMREG, character-string), the communications region may be set to an initial value.
Information may be passed from job step to job step in the region. The region is not changed during job steps.

9.2.6. Printer Listing DISPLAY

A DISPLAY with mnemonic-name associated with SYSLST permits the COBOL programmer to display messages on
the printer. Dispiays are in 120-character multiples and are printed after advancing paper one line. For signed
numeric items, a separate sign character is displayed immediately following the operand.

The LFD name assigned to the printer in the job control stream must be SYSLST.

At least one DISPLAY associated with SYSLST must be performed in the nondeclarative portion of the procedure
division before any are performed within the declarative portion.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 10-1
EXTENDED COBOL

10. Table Handling

10.1. GENERAL

The table-handling module provides a means of defining contiguous data items in a tabular form, thereby permitting
easy access to any item regardless of its position in the table.

This section contains the methods of table definition and referencing available to the COBOL user in the SPERRY
UNIVAC Operating System/3 (0S/3). For a complete discussion of table handling, see the fundamentals of COBOL
table handling manual, UP-7503.2 (current version).

10.2. DEFINING A TABLE

Each data item in a table {called a table element) must be the subject of an OCCURS clause in the data description.
This clause specifies the number of times that the table element appears in the table.

To define a 1-dimensional table, an OCCURS clause is written as a part of the data description for the repeated item.
Any practical number of occurrences may be specified (5.3.3).

Defining a 1-dimensional table within each occurrence of a table element gives rise to a 2-dimensional table. This is
done by writing an OCCURS clause for a data item subordinate (i.e., with a numerically larger level number) to
another item for which an OCCURS clause was written. Tables with up to three dimensions can be defined in this
manner in OS/3 COBOL. Each dimension must be defined by an OCCURS clause, and must be defined on a
different hierarchical level.

10.3. TABLE REFERENCE
To reference a table element, it is necessary to specify which occurrence of the table element is intended.

Occurrence numbers are specified by one of two methods: subscripting or indexing. In either method, the reference
is made by immediately following the data-name with a set of occurrence specifications (subscripts or index-names)
enclosed in parentheses.

Up to three subscript or index levels may appear in the reference, depending upon the number of dimensions
involved. One subscript or index level for each OCCURS clause must be in the defined hierarchy containing the
element name, including the one for the element name. Multiple subscripts and index-names are written left to right
in descending order of inclusiveness.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 10-2
P EXTENDED COBOL

7

10.4. SUBSCRIPTING

Definition:

- Subscripting is a technique used to reference individual table elements within a table of like elements not
AN - assigned individual data-names. A subscript value identifies elementary items in the table.

" Format:
data-name (subscript-1 [, subscript-2 [, subscript-3]])

Rules:

1. The subscript value must be a positive or unsigned integer and may be represented as a numeric literal or

as a data-name defined elsewhere as an elementary numeric data item with no character positions to the

oA right of the assumed decimal point. Data-name subscripts may be mixed with numeric literal subscripts
within a reference.

o g, The lowest valid subscript is 1; the highest valid subscript is the number of item occurrences specified in
the OCCURS clause. The area allocated, multiplied by the number of occurrences, cannot exceed
o ' 65,535.

¢ 3. References are made to individual items within a table of homogeneous elements by specifying the name
of the table, followed by one or more spaces, followed by its related subscripts in parentheses. A left
parenthesis may not be followed by a space; a right parenthesis may not be preceded by a space.

By 4;' When more than one subscript is used in a reference, each must be separated, within the parentheses, by
a comma and a space.

10.5. INDEXING
Definition:

Indexing is a technique used to reference individual table elements within a table of like elements not assigned
individual data-names. An index-name contains the occurrence number of a table element used for:

= direct indexing by using the index-name as a subscript; or

n relative indexing by appending to the index-name the + or — operator followed by an unsigned integer.
This integer must not be 0.

Format:
data-name (index-name 1 [{#} integer-1]

[.index-name-2 [{} integer-2]]
[.index-name-3 [{+} integer-3]1)

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 10-3
EXTENDED COBOL

. Rules:

1. Index-names are defined by the INDEXED BY option in the OCCURS clause. Further data description is
not used because allocation and format are hardware-dependent. The index-name may be used only in
reference to the table element described by the OCCURS clause or to one of its subordinate items.

2. Index-names are initialized and modified in the object program by the SET statement.

3. References are made to individual items within a table of homogeneous elements by specifying the name
of the table element, followed by its related index-names in parentheses.

4, When more than one index is used in a reference, each must be separated, within the parentheses, by a
comma and a space.

5. A data item in a file can be described by a USAGE IS INDEX clause. This data item value can then be
transferred to an index-name, without conversion by the SET statement.

10.6. SEARCHING

Data that has been arranged in the form of a table is often searched. In COBOL, the SEARCH statement provides
facilities, through its two options, for producing serial and nonserial (binary) searches. In using the SEARCH
statement, the programmer may vary an associated index-name or an associated data-name. This statement also
provides facilities for execution of imperative statements when certain conditions are true and includes an AT END
phrase (6.6.6.2).

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 11-1

EXTENDED COBOL

11. Processing Techniques
for Direct Access Devices

11.1. INTRODUCTION

This section describes the techniques available to the COBOL programmer for processing files assigned to direct
access devices. The technique chosen to process a particular file depends upon the file organization and the manner
in which records within the file are accessed. Each file organization has its particular advantages and disadvantages.
No attempt is made in this section to select one organization over another. In selecting a file organization, the user
should consider factors such as device characteristics, file size, activity, growth potential, etc. This section is
intended to inform the user of the capabilities, construction, and usage of the file organizations available on direct
access devices.

11.2. FILE ORGANIZATION

File organization specifies the format and control of the logical file structure. Once a file is created under a specific
organization, that organization cannot be altered for subsequent file processing. COBOL provides three classes of file
organizations:

1. Sequential
2. Relative
3. Indexed

A file organization is specified by the ORGANIZATION clause in the SELECT entry for this file.

11.2.1. Sequential Organization

The logical file structure is such that each logical record {except the first and last) has a unique predecessor and
unique successor record. The predecessor-successor relationship was established by the order of the WRITE function
when the logical file structure was created. The control of placing records to, or retrieving records from, a
sequentially organized file is the predecessor-successor relationship; i.e., the sequence in which records are created is
the sequence in which they are retrieved. No other control information is required to access records from sequential
files.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 11-2
EXTENDED COBOL

11.2.2. Relative Organization

The logical file structure is characterized by the physical relationship (location) of each record to the first record;
i.e., logical record 1 occupies the first physical location in the file, record 2, the second, etc. In addition to
sequential processing capabilities, records in a relative-organized file can be read or written directly by specifying the
record number of the desired record. This control of the file is referred to as random access. For example, the
fifteenth record of a relative-organized file may be accessed directly, whereas access to the fifteenth record of a
sequentially organized file can be achieved only after retrieving the first 14 records. The ability to randomly access
records provides an advantage over sequentially organized files; however, the data management techniques used with
relative files restrict the format of records to fixed-length, unblocked.

11.2.3. Indexed Organization

Indexed files comprise two elements: the prime data set consisting of the logical records of the file and an index
which expedites access to records in the prime data area. Each logical record of the file contains a field designated as
the key. The key is the control which the access method uses in constructing the file as well as for subsequent
retrievals. The access method uses a search of the index to locate the address of the record containing the requested
key. The access method requires that indexed files be created in key sequence; hence, the name, indexed sequential.
Records may be added to an existing indexed file; each added record is placed in overflow areas and the sequence of
the file is maintained logically. Retrieval time of records increases as the number of records in overflow increases.
Periodic reorganization of indexed files should be practiced to alleviate this condition.

11.3. ACCESS METHODS

Three modes of access (the manner in which records are read or written to a file) are available to the COBOL
programmer : sequential access, random access, and extended access.

11.3.1. Sequential Access
Sequential processing involves the serial placement or retrieval of records to or from a file. The control in a
sequential access method is the order in which records are written to or read from a file. No control information

(key) need be supplied by the programmer to the access method (data management) other than the request to read
or write a record. Any file organization can be accessed sequentially.

11.3.2. Random Access

Random processing assumes no serial dependency of records within a file. Each request to access a record is treated
individually, without regard to prior requests. Information (key) is supplied at the time of request to designate the
desired record. Random access is available only on files with relative or indexed organization.

11.3.3. Extended Access

Extended processing indicates that random and sequential access may be mixed. It is only available on files with
indexed organization.

11.4. CLAUSES REQUIRED FOR FILE PROCESSING

The specification of file organization, access method, and OPEN usage (input, output, 1/O) dictates the file
processing technique. Each file processing technique is described, in turn, with emphasis on the COBOL clauses
required to define the file, and the effects these clauses have during file processing. Refer to Table 11—8 for a
summary of the following information.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 11-3

EXTENDED COBOL

11.4.1. Sequential File Processing

The following COBOL clauses are used when processing sequentially organized files:

1.

ORGANIZATION IS SEQUENTIAL

The ORGANIZATION 1S SEQUENTIAL clause states that the file is organized in a serial manner. Records are
accessed one after the other. Sequential organization is assumed if this clause is omitted. Keys are not allowed
with sequential files.

ACCESS MODE IS SEQUENTIAL

The ACCESS MODE IS SEQUENTIAL clause specifies the manner in which the records are to be written or
retrieved from the file. Only sequential access is permitted indicating serial retrieval.

RECORDING MODE 1S { 5 }

F signifies fixed mode and V signifies variable mode. Fixed-length or variable-length records may be blocked or
unblocked.

integer-n AREA
RESERVE {@ } ALTERNATE [{ AREAS }]

The RESERVE ALTERNATE AREAS clause indicates the number of additional /O areas desired. Omission
of the clause results in the allocation of one additional I/O area. |f NO is specified no additional area is
allocated. The only allowable integer is 1.

BLOCK CONTAINS integer-n { CHARACTERS }

RECORDS

Indicates the number of records or characters per block. The actual space allocated to an |/O area is always a
multiple of 256 bytes.

The following input/output statements are applicable to sequential files:

1.

OPEN INPUT file-name

The OPEN INPUT statement indicates that the file operates in a read-only mode. Standard labels are checked
and user labels, if specified, are made available to the USE for beginning label procedure.

OPEN OQUTPUT file-name

The OPEN QUTPUT statement indicates that the file will operate in a write-only mode. Standard labels are
written and user labels, if specified, are made available to the user for beginning label procedure.

OPEN I-O file-name

The OPEN I-O statement indicates that the file is to be updated. Each WRITE statement must be preceded by
a READ statement. Alteration of record length, insertion of new records, or deletion of existing records is not
permitted.

READ file-name RECORD AT END imperative-statement

The READ AT END statement causes the next sequential record in the file to be made available (after

deblocking}, or if the end of file is detected, performs the special imperative statement following the AT END
clause.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 11-4

EXTENDED COBOL

WRITE record-name [; INVALID KEY imperative statement]

The WRITE statement causes the specified record to be written in the next sequential area of the file (after
blocking). An INVALID KEY condition occurs when there is insufficient space in the file to add another
record.

CLOSE file-name

The CLOSE statement causes orderly termination of file processing. (At the end of the file or volume, user
labels are checked and created if specified.)

11.4.2. Relative File Processing

The following COBOL clauses are used in processing relative organized files:

1.

ORGANIZATION IS RELATIVE

The ORGANIZATION IS RELATIVE clause designates the file as relatively organized. The file is accessed via
relative record number. The ORGANIZATION IS RELATIVE clause causes data management relative access
method routines to be linked into object program. This is a required clause.

ACCESS MODE IS { RANDOM }

SEQUENTIAL

The ACCESS MODE clause specifies the manner in which records are written to or retrieved from the file.

a. The RANDOM option indicates no serial dependency of record processing. The relative record to be
read, written, or sought is specified by the contents of the actual or relative key.

b. The SEQUENTIAL option demands serial processing of records to or from the file and requires no key
when accessing records. Sequential is assumed if this clause is omitted.

RECORDING MODE IS F

Only fixed-length record format is available for relative organized files.

RA
BLOCK CONTAINS integer-n { CHARACTERS }

RECORDS

Relative files may not be blocked. This clause is not required. Space allocated to the 1/O area is a multiple of
256 bytes.

{ ACTUAL

RELATIVE } KEY IS data-name

The ACTUAL or RELATIVE KEY IS clause specifies the data-name containing the relative record number to
be read, written, or sought. This field is set by the programmer and/or the data management access method
under the following conditions:

a. Random access

Programmer moves a relative record number to the field prior to every READ, WRITE, or SEEK verb.
The contents of the field are unchanged after execution of the 1/O command. .

UP-8059 Rev. 3 l SPERRY UNIVAC 0S/3 11-6

EXTENDED COBOL Update B

b. Sequential access

The contents of the actual or relative key are not required for READ or WRITE statements; therefore,
the field is ignored by the data management access method. Pointers to the next sequential record are
maintained by the access method while advancing through the file. After execution of a READ or
WRITE statement, the contents of the actual key reflect the relative record number of the record just
processed. Under sequential access, the programmer may issue a SEEK statement to position the file to a
particular record. in this case, the programmer’s relative record number is moved to the actual key prior
to issuance of the SEEK statement. This technique of issuing a SEEK statement before each READ or
WRITE statement has the effect of randomly accessing a relative file defined under sequential access.

c. File open output (either access method)
In the event that file preparation is requested on output files, the actual key should contain the relative
record number on which file preparation is to begin. The file is prepped from this point to the end of the
user’s file extent.

NOTE:

It is the programmer’s responsibility to ensure that the actual key contains the relative record number
prior to opening the file.

APPLY FILE-PREPARATION ON file-name

The APPLY FILE-PREPARATION clause specifies the relative-organized file name on which file preparation is
required. For relative-organized files, file preparation consists of writing initializing data on each track of the
user’s extent, starting at the relative record number contained in the actual key location and proceeding to the
end of the user’s extent. This initializing data, required by data management access methods, consists of an
8-byte count field plus a dummy record of length equal to the fixed size of records within the file. The
dummy record consists of an X’FF’ followed by all 0's up to a maximum of 255 bytes. (If the record size is
greater than 256, undetermined data follows byte 256.) This file prepping guarantees that a physical record
exists in every possible area of the user's extent, making it possible to access these record areas directly
{randomly).

When the initial allocation of disk space is exhausted, relative files are not extended automatically. if APPLY
FILE PREPARATION is specified and the relative key data item contains a record number one higher than the
highest record in the file (i.e., the first record in the next extent), the file is extended by one secondary
increment of disk space when the OPEN QUTPUT statement is executed.

NOTE:

For initial creation of a relative file, the programmer should set the ACTUAL KEY field to 1 prior to opening
the file.

The following input/output statements are applicable to relative files:

1.

OPEN INPUT file-name

The OPEN INPUT statement indicates that the file is used in a read-only mode. Standard fabels are checked
and user labels, if specified, are made available to the USE for BEGINNING LABEL procedure. For sequential
access, the file is positioned to the first record.

OPEN OUTPUT file-name

The OPEN OUTPUT statement indicates that the file is used in a write-only mode. The file is formatted if the
APPLY FILE-PREPARATION clause was specified starting at the record number contained in actual key and
proceeding to the end of the user’s extent. The USE for BEGINNING LABEL procedure is executed if
specified. The file is positioned to the first record for sequential access.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 11-6
EXTENDED COBOL

3. OPEN I-O file-name

The OPEN I-O statement designates the existing file as the one to be updated. (Both READ and WRITE
statements may be issued to the file.} Label processing is the same as when the file is opened for input. This
type of OPEN statement affects the manner in which WRITE statements function. Each WRITE statement is
dependent upon a READ or SEEK READ statement previously issued for the file. The WRITE order is issued
for the relative record specified on the previous READ or SEEK statement.

4, Sequential access
a. READ file-name RECORD AT END imperative-statement

The READ AT END statement for sequential access method delivers the next logical record from an
input file, or performs the specified imperative statement following the AT END clause if the end of the
file is detected.

b. WRITE record-name; INVALID KEY imperative-statement

The WRITE INVALID KEY statement releases a logical record to an output file. The imperative
statement following the INVALID KEY clause is executed when the end of file is detected and an
attempt is made to execute a WRITE statement for that file.

c. SEEK file-name RECORD

The SEEK statement positions the file to the relative record number specified by the contents of the
actual key. No error indication is available if the record is not located. Error indications are available on
the succeeding READ or WRITE statements.

5. Random access
a. READ file-name RECORD INVALID KEY imperative-statement

The READ INVALID KEY statement delivers the logical record specified by the contents of the actual
key, or executes the imperative statement following INVALID KEY clause if the record specified by the
actual key does not exist within the user’s extent.

WRITE
REWRITE

The WRITE or REWRITE INVALID KEY statement writes the logical record to the physical area of the
disc specified by the relative record number contained in the actual key. If that record does not exist in
the user’s extent, the INVALID KEY imperative statement in the INVALID KEY clause is executed.

} record-name INVALID KEY imperative-statement

¢. SEEK file-name RECORD

The SEEK statement positions the file to the relative record number specified by the contents of the
actual key.

6. CLOSE file-name

See CLOSE statement under sequential file processing (11.4.1).

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 11-7

EXTENDED COBOL

. 11.4.3. Indexed File Processing

The following clauses are used in processing indexed sequential files:

1.

ORGANIZATION IS INDEXED

The ORGANIZATION IS INDEXED clause denotes file organization as indexed sequential, and causes data
management indexed sequential access method (ISAM) routines to be linked into the object program.

RANDOM
ACCESS MODE 1S < SEQUENTIAL
EXTENDED

The ACCESS MODE clause specifies the order in which records are written to, or read from, the file.
a. Sequential

The sequential access mode requires a serial processing of records to or from the file; therefore, no key
need be presented when retrieving records. Indexed files can be created only under sequential access.

b. Random

The random access mode requires no serial dependency of record processing. The key of the record to be
read or sought is specified in the SYMBOLIC KEY clause. New records can be inserted into an existing
indexed file under random access.

c. Extended

The extended access mode combines sequential and random record processing.

RECORDING MODE IS { 5 }

The RECORDING MODE IS F clause indicates fixed-length records. The RECORDING MODE IS V clause
indicates variable-length records. Fixed- or variable-length blocked records are the only formats available for
indexed files.

RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS

The RECORD CONTAINS clause indicates the size of the records. If the records are variable in length, a
high/low range can be specified.

BLOCK CONTAINS integer-n { CHARACTERS }

RECORDS

The BLOCK CONTAINS ciause indicates the number of records or characters per block. Space allocated to the
1/O area is a multiple of 256 bytes.

SYMBOLIC KEY IS data-name

The SYMBOLIC KEY clause specifies the data-name containing the key of the record to be read or sought.
This key field must match the size and description of the record key field.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 11-8

EXTENDED COBOL

7.

10.

RECORD KEY IS data-name

The RECORD KEY clause specifies the field within each record containing the record identification. This field
is used at file creation time to build the indexes required for subsequent file processing. At retrieval time, the
contents of the programmer-supplied SYMBOLIC KEY field are compared against the defined RECORD KEY
field in accessing indexed records randomly. The key field must be greater than 2 and less than or equal to 249
bytes in length.

APPLY CYLINDER-INDEX AREA OF integer-n INDICES ON file-name

The APPLY CYLINDER-INDEX AREA clause establishes levels of indexes to expedite the retrieval of records.
When an indexed file is created, data blocks containing records are loaded sequentially. Each record contains
an embedded key (see RECORD KEY, item 7). As each data block is filled with records and written to disc,
the key of the highest record in the block is recorded in a block index entry, along with the disc address of the
biock. When a track on the disc becomes filled with blocks of block index entries, an entry in the top index is
created containing the highest key on the track of block index entries. Retrieval of records reverses the
process. To eliminate the disc reads required to access the top index for retrieval, sufficient storage should be
allocated to contain a number of top index entries. Integer-n specifies the number of top index entries to be
held in storage. If all top index entries can be held in storage, then all reads to access the top index are
eliminated.

The method used to calculate the value of integer-n in the APPLY CYLINDER-INDEX AREA clause is
described in detail in 10.2.4 (Calculating Space for the ISAM Index Area) in the data management user guide,
UP-8068, current version.

If the file already exists, use the following formula to determine the value of integer-n:

n=b/(s+3)

where:

Is integer-n of the APPLY clause.

b
Is bytes that are required for main storage and that can be obtained from a display of the VTOC.
The number of bytes is shown under the heading: Bytes Required for Main Storage.
s
Is size of the record key.
NOTE:

If the remainder of the divide operation in the above formula is not equal to zero, add 1 to the quotient, i.e.,
ton.

APPLY MASTER-INDEX ON file-name

The APPLY MASTER-INDEX clause is accepted for OS/4 and OS/7 compatibility. In OS/3, this clause serves
for documentation only.

APPLY CYLINDER-OVERFLOW AREA OF integer-n PERCENT ON file-name

To keep disc head movement to a minimum in retrieving records from overflow, a percentage of each cylinder
in the prime data area can be allocated to contain overflow records. If this clause is omitted, 20 percent of
each cylinder is set aside to contain overflow records. If no overflow is desired, O percent should be specified.
In this case, no new records may be inserted into the file. {f specified, integer-n is an unsigned number.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 11-9

EXTENDED COBOL

1.

12.

13.

14.

APPLY EXTENDED-INSERTION AREA ON file-name

The APPLY EXTENDED-INSERTION AREA clause is accepted for 0S/4 and 0S/7 compatibility. In OS/3,
this clause serves for documentation only.

APPLY VERIFY ON file-name

The APPLY VERIFY clause requests verification (READ after WRITE) of disc records after they have been
written. If this clause is omitted, no verification of records is performed.

integer-n

NO

RESERVE{ AREAS

} ALTERNATE [AREA]

The RESERVE ALTERNATE clause indicates the number of additional 1/O areas desired. The key word NO
causes no additional /O areas to be reserved; integer-n (which must be a one) reserves one additional |/O area.
If this clause is omitted, no additional 1/O areas are allocated.

RECORD IS

LageL { RO S e

}STANDARD

The reserved word STANDARD specifies that system file labels are to be checked (or created) ‘and that the
labels conform to OS/3 label specification.

The following input/output statements are used when processing indexed files:

1.

OPEN OUTPUT file-name

The OPEN OUTPUT statement indicates the file is to be loaded or extended. The creation of a file {load) with
standard labels is assumed unless the file already exists, in which case file extension is implied. This statement
can only be specified for sequential access or extended access.

OPEN INPUT file-name

The OPEN INPUT statement indicates that the file is to be used in a read-only mode. Standard labels are
checked. For sequential and extended access, the file is positioned to the first record. This statement can also
be specified for random access.

OPEN 1-O file-name
The OPEN 1-O statement indicates that the file is to be used in a read and write mode. Standard labels are
checked. For sequential and extended access, the file is positioned to the first record. This statement can also

be specified for random access.

SEEK file-name RECORD

For sequential file processing, the SEEK statement causes the programmer-supplied value in the SYMBOLIC
KEY item to specify the RECORD KEY value of the logical record within the file which is to be positioned
for subsequent sequential retrieval. If no logical record is found with that key, positioning is made to the
record with the next higher key.

The SEEK statement can be used only under sequential or extended access mode when opened for INPUT or
1-0.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 11-10
EXTENDED COBOL

. Sy AT END
READ file-name RECORD [INTO identifier] [; {INva KEY} imperative-statement] .

For sequential file processing, the READ statement makes available the next logical record from a file and

allows performance of a specified imperative-statement when the end of the file is detected. The logical record
retrieved is determined by the preceding input/output statements as shown in Table 11—1.

Table 11—1. Logical Record Retrieval by Sequential Read

Preceding Input/Output Logical Record Retrieved
Statement by Sequential Read
OPEN First record of file
SEEK Record with SEEK key or, if key does not exist,

record with next higher record key

READ Record with next higher record key after last
retrieved record

WRITE/REWRITE/INSERT Does not affect positioning for sequential read

For random file processing, the READ statement makes available the record specified by SYMBOLIC KEY,
and allows performance of a specified imperative-statement if a logical record with that key does not exist.

When AT END is specified, the READ statement is treated as a sequential read and the access mode must be
sequential or extended. When INVALID KEY is specified, the READ statement is treated as a random read
and the access mode must be random or extended. If neither AT END nor INVALID KEY is specified, the
type of read is determined by the accesss mode. If access is sequential, the read is a sequential read. If access is
extended or random, the read is a random read. The file must be opened for INPUT or |-O for the READ to be
valid.

6. WRITE record-name [FROM identifier-1] [; INVALID KEY imperative-statement]
The WRITE statement releases a logical record for an output file.
- Fite loading, extending

When loading or extending a file, the WRITE statement is used to add logical records sequentially in the
prime data area of the file and to create the necessary index entries for later retrieval of the logical
records. The logical records must be presented for loading in ascending record key sequence. If the file is
being extended, the RECORD KEY value of the first logical record written must be higher than the
highest RECORD KEY value currently in the file. The WRITE statement allows performance of a
specified imperative-statement if the RECORD KEY is equal to, or out of key sequence with, the last
RECORD KEY.

The WRITE statement can be used only for file loading or extension under sequential or extended access
when opened for OUTPUT.

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3 1-1
EXTENDED COBOL

Record update

When updating an existing record, the WRITE statement must be preceded by a successful READ
statement. The WRITE statement causes the updated record to be rewritten into its original physical
area. Neither the length nor the RECORD KEY value can be changed. The WRITE statement allows
performance of a specified imperative-statement if the length or key value have been modified.

The WRITE statement can be used only for record updating under sequential, random, or extended
access when opened for 1-0.

Record insertion

When inserting a new record into an indexed file, the WRITE statement causes a new logical record to be
added to the file at the logical position designated by its RECORD KEY value. No other logical record
may exist in the file with the same RECORD KEY value. The WRITE statement allows performance of a
specified imperative-statement if a logical record with the RECORD KEY already exists.

The WRITE statement can be used only for record insertion under random or extended access when
opened for 1-0.

7. REWRITE record-name [FROM identifier] [; INVALID KEY imperative statement]

The REWRITE statement can be used in place of the WRITE statement for record update. The same rules used
for record update for the WRITE statement apply.

8. INSERT record-name [FROM identifier-1] [; INVALID KEY imperative-statement]

The INSERT statement can be used in place of the WRITE statement for record insertion. The same rules used
for record insertion for the WRITE statement apply.

9. CLOSE file-name

See CLOSE statement for sequential file processing (11.4.1).

A summary of input/output statements permitted for each access method and open mode follows.

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3
EXTENDED COBOL

ORGANIZATION is INDEXED, ACCESS is SEQUENTIAL

Sequential
Output Processing

Sequential
Input Processing

Sequential
1-O Processing

OPEN OUTPUT
WRITE [INVALID KEY](D

CLOSE

OPEN INPUT
READ [AT END]@
SEEK

CLOSE

OPEN 1-0
READ [AT END]®

SEEK

WRITE [INVALID KEY]®
REWRITE [INVALID KEY]

CLOSE

NOTES:

@

2

When access is sequential and the file is opened for OUTPUT, the WRITE statement is a request for
loading or extending the file. When opened for |-O, the WRITE statement is a request for an update of

an existing record.

When access is sequential, a READ statement is always treated as a sequential read.

ORGANIZATION is INDEXED, ACCESS is RANDOM

READ [INVALID KEY] @

CLOSE

Random Random Random
Output Processing Input Processing 1-O Processing
Invalid OPEN mode OPEN INPUT OPEN I-O0

READ [INVALID KEY]®
WRITE [INVALID KEY]®
REWRITE [INVALID KEY]
INSERT [INVALID KEY]

CLOSE

NOTES:

@ When access is random and the file is opened for 1-O, the WRITE statement is either a request for an

update of an existing record or else a request for insertion of a new record.

@ When access is random, a READ statement is always treated as a random read.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 11-13
EXTENDED COBOL

. ® ORGANIZATION is INDEXED, ACCESS is EXTENDED
Extended Extended Extended
Output Processing Input Processing I-O Processing
OPEN OUTPUT OPEN INPUT OPEN I-0
WRITE [INVALID KEY]D READ [{AT END }]@ READ [{AT END }]@
INVALID KEY INVALID KEY
CLOSE SEEK SEEK
CLOSE WRITE [INVALID KEY] D
REWRITE [INVALID KEY]
INSERT [INVALID KEY]
CLOSE
NOTES:

@ When access is extended and the file is opened for OUTPUT, the WRITE statement is a request for
loading or extending the file. When opened for I-O, the WRITE statement is a request for either an
. update of an existing record or else a request for inserting a new record.

@ When access is extended and the file is opened for INPUT or I-O, if neither AT END or INVALID KEY
is specified for a READ statement, the READ statement is treated as a random read. If AT END is

specified, the READ is treated as a sequential read. If INVALID KEY is specified, the READ is treated
as a random read.

11.4.4. Summary of Imperative Statements and Error Conditions

The use of the AT END/INVALID KEY imperative-statement with the ORGANIZATION clause, system error
messages, and COBOL disc processing techniques are summarized in the following paragraphs.

11.4.4.1. ORGANIZATION IS SEQUENTIAL Clause

The AT END imperative-statement is executed when the logical end of file is detected.

The INVALID KEY imperative-statement is executed when no space is left on the file for the record to be written.

11.4.4.2. ORGANIZATION IS RELATIVE Clause

The AT END imperative-statement is executed when an access to a record beyond the file is attempted.

‘ The INVALID KEY imperative-statement is executed when the relative-record number is beyond the file extents.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 11-14

EXTENDED COBOL

11.4.4.3. ORGANIZATION IS INDEXED Clause

The AT END/INVALID KEY imperative-statement clauses are executed according to the explanation given in
11.4.3. See also Table 113 for a list of the AT END/INVALID KEY exception conditions.

Exception conditions for indexed files are handled in the following manner:

Warning Exceptions
When a warning exception condition arises during COBOL verb processing for indexed files, control is returned

immediately following the input/output verb with the appropriate SYSERR setting. The warning exception
condition is shown in Table 11-2,

Table 11-2. Warning Exception Conditions for Indexed File Processing

Waming Exception Condition COBOL Verb

End of file detected SEEK
when positioning unit for
subsequent sequential retrieval

End-of-File/Invalid Key Exceptions

When an end-of-file condition or invalid key condition arises during COBOL verb processing for indexed files,
SYSERR is appropriately set and the AT END/INVALID KEY imperative-statement is executed. If no AT
END/INVALID KEY imperative-statement clause is specified when this condition occurs, control is
transferred to the appropriate USE AFTER ERROR procedure. If this latter procedure is not specified, the
COBOL ERROR procedure is called and results in an end-of-job sequence. The AT END/INVALID KEY

exception conditions are shown in Table 11-3.

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3
EXTENDED COBOL

11-15

Table 11-3. AT END/INVALID KEY Exception Conditions for Indexed File Processing

AT END/INVALID KEY Exception Conditions

COBOL Verb

End of file detected (AT END

Sequential READ

condition)

During file creation or extension, Load WRITE

a record-key value is found out

of key sequence {(INVALID KEY

condition}.

A duplicate record-key value is Load WRITE

detected (INVALID KEY condition). Insert WRITE
INSERT

A specified record-key value
cannot be formed (INVALID KEY
condition).

Random READ

A record-key value or length
value for a record update has
been modified (INVALID KEY
condition)}.

Update WRITE
WRITE

a Unrecoverable File Errors

When unrecoverable file errors occur during COBOL verb processing for indexed files, control is transferred to
the applicable USE AFTER ERROR procedure with the appropriate SYSERR message set. If a USE AFTER
ERROR procedure is not provided, the COBOL ERROR procedure is called and results in an end-of-job

sequence. The unrecoverable file error conditions are shown in Table 11—4.

Table 11—4. Unrecoverable File Error Conditions for Indexed File Processing (Part 1 of 2)

Unrecoverable File Error Conditions COBOL Verb
General OPEN errors OPEN
General CLOSE errors CLOSE

Invalid use of COBOL verb:

COBOL verb not valid for open mode
OPEN issued to file currently

opened

Verb other than OPEN issued to file
not currently opened

Update not preceded by a successful
READ

Because of previous errors, only
CLOSE verb permitted

All COBOL verbs

Insufficient file space

CLOSE
Load WRITE
Insert WRITE

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 11-16
EXTENDED COBOL

Table 11—4. Unrecoverable File Error Conditions for Indexed File Processing (Part 2 of 2)

Unrecoverable File Error Conditions COBOL Verb

No AT END/INVALID KEY imperative- Sequential READ

statement specified for COBOL verb Random READ

and exception condition occurred Load WRITE

when processing the verb Update WRITE
Insert WRITE
REWRITE
INSERT

Hardware error All COBOL verbs

Invalid record size Load WRITE
Insert WRITE
INSERT

Data portion of track index OPEN

destroyed (invalid ID) or SEEK

invalid index search Sequential READ
Random READ
Insert WRITE
INSERT

- Storage Dump
If an unrecoverable file error occurs and control is transferred to the COBOL ERROR procedure, this
procedure takes a dump of the job region before job termination. The following information is available: .

— Register values

Register Value
0 SYSERR setting
1 Address of DTF of file in error
2 Address of prefix if file in error
14 Address of return locations in program if error had not occurred

— File prefix format

indicator 1 Indicator 2

Current Previous
COBOL Verb COBOL Verb

AO’L
Record Key Area

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 11-17
EXTENDED COBOL

. Name Byte Bits Description

Indicator 1 14 0-1 Used by COBOL internally
2-3 Access mode

00 — sequential
10 — random
01 — extended
4-7 Used by COBOL internally

Indicator 2 15 0-2 Open mode
100 — input
010 — output
001 - 1-0

3-7 Used by COBOL internally

Current COBOL 18 0-7 Code for COBOL verb processed for indexed file when exception
Verb condition occurred

Previous COBOL 19 0-7 Code for COBOL verb processed for indexed file that preceded
Verb current COBOL verb

Code COBOL Verb

00 OPEN
. 01 CLOSE
02 SEEK
03 READ (sequential)
04 READ (random)

05 WRITE {load)

06 WRITE/REWRITE (update)
07 Not used

08 WRITE/INSERT (insert)

RECORD KEY 40-20 - Record-key used for sequential retrieval positioning
Area

Table 11—5 summarizes the exception conditions for each input/output COBOL verb used for processing indexed
files.

Table 11—5. Exception Handling for COBOL Verbs Used for Indexed File Processing (Part 1 of 9)

COBOL Verb Prefix . s SYSERR File Processing Transfer of
for indexed Verb Exception Condition N
. Setting Status Control
File Code
OPEN 00 General OPEN error SYSERR-2, OPEN not completed. USE AFTER ERROR
SYSERR-4 File processing cannot procedure
continue.
File currently opened SYSERR-6 OPEN not completed. USE AFTER ERROR
File processing cannot procedure
continue.
Hardware error:
When one occurs, SYSERR-3 is always SYSERR-3 OPEN not completed. USE AFTER ERROR
set along with one or more of the File processing cannot procedure
following: continue.
Unrecoverable error SYSERR-9
Unique unit error SYSERR-10
Record not found (hardware search) SYSERR-11
Unit exception SYSERR-12
Wrong length found SYSERR-13
Command rejection SYSERR-16
Intervention required SYSERR-17
Output parity check SYSERR-18
Equipment check SYSERR-19
Data check SYSERR-20
Overrun SYSERR-21
STOP state SYSERR-22
Device check SYSERR-23
Invalid I-O when positioning to beginning of SYSERR-1 OPEN not completed. USE AFTER ERROR
file (opened INPUT, 1-O; access SEQUENTIAL File processing cannot procedure
or EXTENDED) continue. File may not
be valid.
Invalid index search when positioning to SYSERR-28 OPEN not completed. USE AFTER ERROR

beginning of file (opened INPUT, {-O;
access SEQUENTIAL or EXTENDED)

File processing cannot
continue. File may not
be valid.

procedure

70900 a3an3Lx3
€/S0 JVAINN AYYHIdS

€ 'A%y 6508-dN

8l-lt

Table 11—5. Exception Handling for COBOL Verbs Used for Indexed File Processing (Part 2 of 9)

COBOL Verb Prefix X R
for Indexed Verb Exception Condition SYSE.RR File Processing Transfer of
File Code Setting Status Control
CLOSE 01 General CLOSE error SYSERR-5 CLOSE not completed. USE AFTER ERROR
File may not be procedure
\ valid.
i File not currently opened SYSERR-6 CLOSE not completed. USE AFTER ERROR
File still valid. procedure
‘ Hardware error: SYSERR-3 CLOSE not completed. USE AFTER ERROR
When one occurs, SYSERR-3 is always File may not be procedure
set along with one or more of the valid.
following:
Unrecoverable error SYSERR-9
Unique unit error SYSERR-10
Record not found (hardware search) SYSERR-11
Unit exception SYSERR-12
Wrong length found SYSERR-13
| Command rejection SYSERR-16
Intervention required SYSERR-17
Output parity check SYSERR-18
Equipment check SYSERR-19
Data check SYSERR-20
Overrun SYSERR-21
STOP state SYSERR-22
Device check SYSERR-23
File not successfully loaded because of SYSERR-26 CLOSE not completed. USE AFTER ERROR
insufficient space File not valid and procedure
must be reloaded.
SEEK 02 File not currently opened SYSERR-6 SEEK not completed USE AFTER ERROR
procedure
SEEK not valid for open OUTPUT SYSERR-6 SEEK not completed USE AFTER ERROR
procedure

70909 @3anN3Lx3
€/S0 OVAINN AHY3dS

€ 'A3d 6508-dN

6i-L1

Table 11-5. Exception Handling for COBOL Verbs Used for Indexed File Processing (Part 3 of 9)

COBOL Verh Prefix . . SYSERR File Processing Transfer of
for indexed Verb Exception Condition X
. Setting Status Control
File Code
SEEK (cont) 02 (cont} Hardware error: SYSERR-3 SEEK not completed. USE AFTER ERROR
When one occurs, SYSERR-3 is always File may not be procedure
set along with one or more of the valid.
following:
Unrecoverable error SYSERR-9
Unique unit error SYSERR-10
Record not found (hardware search) SYSERR-11
Unit exception SYSERR-12
Wrong length found SYSERR-13
Command rejection SYSERR-16
fntervention required SYSERR-17
Output parity check SYSERR-18
Equipment check SYSERR-19
Data check SYSERR-20
Overrun SYSERR-21
STOP state SYSERR-22
Device check SYSERR-23
No record with key equal or greater SYSERR-11 SEEK completed, Immediately after

than SEEK key found (end of file

and SYSERR-25

If READ issued, AT END

SEEK

detected) (both always set) path will be executed.
and SYSERR-3 not Normal file processing
set may continue.
Invalid ID SYSERR-1 SEEK not completed. USE AFTER ERROR
File may not be procedure
valid.
Invalid index search SYSERR-28 SEEK not completed. USE AFTER ERROR
File may not be valid. procedure
Because of preceding error(s), only SYSERR-27 SEEK not completed USE AFTER ERROR

CLOSE verb permitted

procedure

70900 Q3AN3LX3
€/S0 JOVAINN AHY3dS

€ 'A®Y 6508-dN

0Z-t1

Table 11—5. Exception Handling for COBOL Verbs Used for Indexed File Processing (Part 4 of 9)

COBOL Verb

Prefix

for Indexed Verb Exception Condition SYSEjRR File Processing Transfer of
R Setting Status Control
File Code
Sequential 03 File not currently opened SYSERR-6 READ not completed USE AFTER ERROR
READ procedure
READ not valid for open OUTPUT SYSERR-6 READ not completed USE AFTER ERROR
procedure
Hardware error: SYSERR-3 READ not completed USE AFTER ERROR
When one occurs, SYSERR-3 is always procedure
set along with one or more of the
following:
Unrecoverable error SYSERR-9
Unique unit error SYSERR-10
Record not found (hardware search) SYSERR-11
Unit exception SYSERR-12
Wrong length found SYSERR-13
Command rejection SYSERR-16
Intervention required SYSERR-17
Output parity check SYSERR-18
Equipment check SYSERR-19
Data check SYSERR-20
Overrun SYSERR-21
STOP state SYSERR-22
Device check SYSERR-23
End of file detected SYSERR-25 READ not completed. If specified, AT
Before any further sequen- END path; if not
tial retrieval can continue, specified, USE AFTER
it is necessary to reposi- ERROR procedure
tion in the file. Normal
file processing can continue.
Invalid ID SYSERR-1 READ not completed. USE AFTER ERROR
File may not be valid. procedure
Invalid index search SYSERR-28 READ not completed. USE AFTER ERROR
File may not be valid. procedure
Because of preceding error(s), only SYSERR-27 READ not completed USE AFTER ERROR

CLOSE verb permitted

procedure

10900 @3aN3ixX3
£/S0 JVAINN AHY3dS

€ 'A9Y 6G08-dN

12-11L

Table 11—5. Exception Handling for COBOL Verbs Used for Indexed File Processing (Part § of 9)

COBOL Verb

Prefix

for Indexed Verb Exception Condition S;SE.RR File l;r::t::sssmg Trgnsf;r :)f
File Code tting ontro
Random 04 File not currently opened SYSERR-6 READ not completed USE AFTER ERROR
READ procedure
READ not valid for open OUTPUT SYSERR-6 READ not completed USE AFTER ERROR
procedure
Hardware error: SYSERR-3 READ not completed USE AFTER ERROR
When one occurs, SYSERR-3 is always procedure
set along with one or more of the
following:
Unrecoverable error SYSERR-9
Unique unit error SYSERR-10
Record not found (hardware search) SYSERR-11
Unit exception SYSERR-12
Wrong length found SYSERR-13
Command rejection SYSERR-16
Intervention required SYSERR-17
Output parity check SYSERR-18
Equipment check SYSERR-19
Data check SYSERR-20
Overrun SYSERR-21
STOP state SYSERR-22
Device check SYSERR-23
Specified record-key. Value cannot be SYSERR-11 READ not completed. If specified, INVALID
found because a record with that key value and not Record not retrieved, but KEY path; if not specified,
was never added to the file. SYSERR-3 normal file processing USE AFTER ERROR
may continue. procedure
nvalid ID SYSERR-1 READ not completed. File may | USE AFTER ERROR
not be valid. procedure
Invalid index search SYSERR-28 READ not completed. USE AFTER ERROR
File may not be valid; procedure
Because of preceding errors, only CLOSE SYSERR-27 READ not completed USE AFTER ERROR

verb is permitted

procedure

70900 g3aN3aLx3
€/S0 JOVAINN AHY3dS

€ 'A9Y 65908-dN

cZ-LL

Table 11—5. Exception Handling for COBOL Verbs Used for Indexed File Processing (Part 6 of 9)

£i
COBOL Verb Prefix . " SYSERR File Processing Transfer of
for Indexed Verb Exception Condition Setti Stat Control
File Code tting atus ontro
Load 05 File not currently opened SYSERR-6 WRITE not completed USE AFTER ERROR
WRITE procedure
WRITE not valid for open INPUT SYSERR-6 WRITE not completed USE AFTER ERROR
procedure
Hardware error: SYSERR-3 WRITE not completed USE AFTER ERROR
When one occurs, SYSERR-3 is always procedure
set along with one or more of the
following:
Unrecoverable error SYSERR-9
Unigue unit error SYSERR-10
Record not found (hardware search) SYSERR-11
Unit exception SYSERR-12
Wrong length found SYSERR-13
Command rejection SYSERR-16
Intervention required SYSERR-17
Output parity check SYSERR-18
Equipment check SYSERR-19
Data check SYSERR-20
Overrun SYSERR-21
STOP state SYSERR-22
Device check SYSERR-23
invalid record size SYSERR-24 WRITE not completed USE AFTER ERROR
procedure
Prime data area full or index SYSERR-1 WRITE not completed. USE AFTER ERROR
area full Record not written because procedure.
of inedequate space. File
should be closed.
Duplicate record key SYSERR-30 WRITE not completed. If specified, INVALID
SYSERR-29 because key already exists

(both always set)

in file. Normal file proces-
sing can continue.

KEY path; if not specified,
USE AFTER ERROR
procedure

104902 @3anN3Lx3
£/S0 JVAINN A”Y3IdS

€ 'A9Y 6508-dN

€C11

[
D
©
&
Table 11—5. Exception Handling for COBOL Verbs Used for Indexed File Processing (Part 7 of 9) ‘:g
2
w
COBOL Verb Prefix , L. SYSERR File Processing Transfer of
for Indexed Verb Exception Condition -
. Setting Status Control
File Code
Load 05 (cont) Record-key sequence error SYSERR-29 WRITE not completed If specified, INVALID
WRITE because key is not greater KEY path; if not specified,
(cont) than last key in file. USE AFTER ERROR
Normal file processing procedure
can continue.
Because of preceding error(s), only SYSERR-27 WRITE not completed USE AFTER ERROR
CLOSE verb permitted procedure
Update 06 File not currently opened SYSERR-6 Update not completed USE AFTER ERROR
WRITE/ procedure %]
REWRITE m ﬁ
3
Update not valid for open INPUT SYSERR-6 Update not completed USE AFTER ERROR % ;
or OUTPUT procedure g Z
o3>
Hardware error: SYSERR-3 Update not completed USE AFTER ERROR 8 O
When one occurs, SYSERR-3 is always procedure o] 8
set along with one or more of the - B
following:
Unrecoverable SYSERR-S
Unique unit error SYSERR-10
Record not found (hardware search) SYSERR-11
Unit exception SYSERR-12
Wrong length found SYSERR-13
Command rejection SYSERR-16
Intervention required SYSERR-17
Output parity check SYSERR-18
Equipment check SYSERR-19
Data check SYSERR-20
Overrun SYSERR-21
STOP state SYSERR-22
Device check SYSERR-23 =
|
N
Update not preceded by random or sequential SYSERR-6 Update not completed USE AFTER ERROR B
READ procedure
-

®

Table 11—5. Exception Handling for COBOL Verbs Used for Indexed File Processing (Part 8 of 9)

COBOL Verb

Prefix

for indexed Verb Exception Condition SYSE.RR File Processing Transter of
File Code Setting Status Control
Update 06 (cont) End of file detected for preceding sequential SYSERR-6 Update not completed USE AFTER ERROR
WRITE/ READ procedure
REWRITE
(cont) Record not found detected for preceding SYSERR-6 Update not completed USE AFTER ERROR
random READ procedure
-A record-key value or length value None Update not completed. If specified, INVALID
for a record update has been modified. Processing can continue. KEY path; if not specified,
USE AFTER ERROR
procedure
Because of preceding error{s}), only CLOSE SYSERR-27 Update not completed USE AFTER ERROR
verb permitted. procedure
Insert 08 File not currently opened SYSERR-6 tnsert not completed USE AFTER ERROR
WRITE/ procedure
INSERT
Insert not valid for open INPUT or SYSERR-6 Insert not completed USE AFTER ERROR
OUTPUT procedure
Hardware error: SYSERR-3 insert not completed USE AFTER ERROR
When one occurs, SYSERR-3 is always procedure
set along with one or more of the
following:
Unrecoverable error SYSERR-9
Uniqgue unit error SYSERR-10
Record not found (hardware search) SYSERR-11
Unit exception SYSERR-12
Wrong length found SYSERR-13
Command rejection SYSERR-16
Intervention required SYSERR-17
QOutput parity check SYSERR-18
Equipment check SYSERR-19
Data check SYSERR-20
Overrun SYSERR-21
STOP state SYSERR-22
Device check SYSERR-23

10809 A3aaN3LX3
£/S0 IVAINN AHYH3dS

€ 'A9Y 6508-dN

gZ¢-ti

Table 11—5. Exception Handling for COBOL Verbs Used for Indexed File Processing (Part 9 of 9)

COBOL Verb Prefix SYSER File P. . §
for Indexed Verb Exception Condition SE_ R He srocessmg Transfer of
File Code Setting tatus Control
Insert 08 (cont) Invalid record size SYSERR-24 insert not completed USE AFTER ERROR
WRITE/ procedure
REWRITE
(cont) Overflow area full SYSERR-26 Insert not completed. USE AFTER ERROR
Record not written because procedure
of inadequate space. Proces-
sing can continue.
Insert 08 ADD rejected because of error on SYSERR-31 Insert not completed. USE AFTER ERROR
WRITE/ preceding insert Processing can continue. procedure
INSERT
Duplicate record key SYSERR-29 Insert not completed If specified, INVALID
SYSERR-30 because key already exists KEY path; if not specified,
in file. Normal file proces- USE AFTER ERROR
sing can continue. procedure
Invalid ID SYSERR-1 Insert not completed. File USE AFTER ERROR
may not be valid. procedure
Invalid index search SYSERR-28 Insert not completed. Fite USE AFTER ERROR
may not be valid. procedure
Because of preceding error(s), only SYSERR-27 Insert not completed USE AFTER ERROR
CLOSE verb permitted procedure
Zero percent overflow allocated SYSERR-31 Insert not completed USE AFTER ERROR

procedure

70800 A3anN3Lx3
€/S0 OVAINN AHY3ILS

£ 'A8H 6508-dN

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 11-27
EXTENDED COBOL

. 11.4.4.4. SYSERR Messages

Table 11—6 contains the definitions of the 32 SYSERR messages for ORGANIZATION INDEXED and
ORGANIZATION RELATIVE. SYSERR is set whenever data management indicates an error has occurred. If no
error occurs, all SYSERR settings will be off.

Table 11—6. System Error Messages (SYSERR) for INDEXED and RELATIVE Files

Message Definition Message Definition
SYSERR-O Last block on track accessed SYSERR-17 Intervention required
SYSERR-1 Invalid ID SYSERR-18 Output parity check
SYSERR-2 Invalid DTF (indexed) SYSERR-19 Equipment check

invalid PCA/DTF (Relative)
SYSERR-20 Data check
SYSERR-3 Hardware error
SYSERR-21 Overrun
SYSERR4 Error found in OPEN
SYSERR-22 STOP state
SYSERR-5 Error found in CLOSE
SYSERR-23 Device check
SYSERR-6 Invalid macro sequence
SYSERR-24 Invalid record size
SYSERR-7 Reserved (Indexed)
WAITF required (Relative) SYSERR-25 L.ogical end of file
. SYSERR-8 1/0 complete SYSERR-26 File space exhausted (indexed)
Logical end of volume (Relative)
SYSERR-9 Unrecoverable error
SYSERR-27 Processing inhibited
SYSERR-10 Unique unit error
SYSERR-11 Record not found SYSERR-28 Invalid index (Indexed)}
Reserved (Relative)
SYSERR-12 Unit exception
SYSERR-29 Key sequence error {Indexed)
SYSERR-13 Wrong length found Reserved (Relative)
SYSERR-14 End of track SYSERR-30 Duplicate key error {Indexed)
Reserved (Relative)
SYSERR-15 End of cylinder
SYSERR-31 ADD rejected (Indexed)
SYSERR-16 Command rejection Reserved (Relative)

Additiona! information regarding error conditions can be found in the OS/3 data management user guide, UP-806%,
{current version).

11.4.4.5. COBOL Disc Processing Techniques

Table 11—7 contains a summary of COBOL disc processing techniques.

Table 11—7. Summary of COBOL Disc Processing Techniques c
o
o
&
Pr ing T iqu i
ocesslrfg echnique Addressing Required :ecovd Open Allowable 1/O Required Optional Restricted ©
Techniql)e Key ormat Verb Statements Clauses lauses Clauses P
Organization Access Clauses g
SEQUENTIAL SEQUENTIAL NONE F INPUT READ AT END SELECT ASSIGN SELECT OPTIONAL, APPLY RESTRICTED SEARCH, w
OR OR ALLOWED LABEL RECORDS MULTIPLE UNIT, APPLY FILE-PREPARATION,
OMITTED OMITTED OUTPUT | WRITE INVALID KEY RESERVE, SAME (RECORD) APPLY CYLINDER-OVERFLOW
STANDARD
ARE { DATA-NAME } AREA, BLOCK CONTAINS,
1-0 READ AT END RECORD CONTAINS, DATA
RECORDS, APPLY VERIFY,
\ WRITE INVALID KEY CLOSE USE LABEL, USE ERROR,
- CLOSE UNIT, READ INTO,
WRITE FROM
RELATIVE SEQUENTIAL RELATIVE ACTUAL INPUT READ AT END, SEEK
OR RECORD OR F
OMITTED @ RELATIVE OUTPUT | WRITE INVALID KEY,
SEEK
1-0 READ AT END,WRITE @ SAME (RECORD) AREA, RESERVE INTEGER, OPTIONAL,
INVALID KEY, SEEK @ RECORD CONTAINS, BLOCK BLOCK CONTAINS >1 RECORD,
CONTAINS 1 RECORD, DATA USE ENDING LABEL
RELATIVE RANDOM RELATIVE ACTUAL INPUT READ INVALID KEY, RECORD, APPLY VERIFY,
OR RECORD OR SEEK APPLY FILE-PREPARATION
OMITTED @ RELATIVE F RESERVE NO ALTERNATE wn
QUTPUT | WRITE INVALID KEY, AREA,READ INTO,WRITE m 2
SEEK FROM, INSERT FROM > g
m>D
-0 READ INVALID KEY, 2 =<
WRITE (&) INVALID KEY, O cC
SEEK (B) m2Z
°<
INDEXED SEQUENTIAL RECORD F INPUT READ (AT END], SELECT/ASSIGN FOR MULTIPLE UNIT, FOR MULTIPLE REEL, (203
OR AND - SEEK LABEL RECORDS ARE RESERVE NO ALTERNATE MULTIPLE FILE TAPE, 8 O
OMITTED [SYMBOLIC] v STANDARD AREA, RESERVE APPLY RESTRICTED SEARCH, o (@]
OUTPUT WRITE [INVALID KEY] INTEGER ALTERNATE APPLY BLOCK COUNT ON, r e
CLOSE AREA, FILE LIMIT, APPLY FILE PREPARATION ON, w
1-0 READ [AT END], PROCESSING MODE IS APPLY ASCII, w
SEEK SEQUENTIAL, RERUN ON, LABEL RECORDS ARE OMITTED |
WRITE [INVALID KEY], SAME (RECORD!} AREA, OR DATA NAME,
REWRITE {INVALID KEY] APPLY VERIFY, APPLY USE LABELS,
MASTER INDEX ON, APPLY OPTIONAL
INDEXED RANDOM RECORD F INPUT READ [INVALID KEY] CYLINDER OVERFLOW ON, |
AND - APPLY CYLINDER INDEX
[SYMBOLIC] v 1-0 READ [INVALID KEY], AREA OF, APPLY EXTEND-
WRITE [INVALID KEY], ED-INSERTION AREA ON, |
REWRITE [INVALID KEY], BLOCK CONTAINS, RECORD
INSERT [INVALID KEY] CONTAINS, VALUE OF,
DATA RECORDS ARE, USE |
INDEXED EXTENDED RECORD F INPUT READ [AT END]® ERROR INTO, FROM
— INVALID KEY,
AND
[SYMBOLIC] \ SEEK ‘
QUTPUT WRITE [INVALID KEY} :
AT END @
+o READ ['NVALID KEY]' |
- ‘
SEEK, - |
WRITE [INVALID KEY], N
REWRITE {INVALID KEY], o«
INSERT [INVALID KEY]
@ American National Standard language element extension @ REWRITE accepted as synonym for WRITE. @ ACTUAL KEY may be used in place of SYMBOLIC KEY for UNIVAC 9300 System compatibility.
- @ Requires preformatting of entire file prior to creation @ SEEK not permitted between READ and WRITE @ I AT END is specified, READ is treated as a sequential read.
® Default RECORD FORMAT is undertined.

35

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 12-1
EXTENDED COBOL

12. Sorting

12.1. GENERAL

In the SPERRY UNIVAC Operating System/3 (0S/3) the COBOL sort feature offers the user an efficient means of
sorting records against a set of specified keys in addition to a variety of processing considerations, such as adding or
deleting records, or modification of records within the file.

12.2. ORGANIZATION OF A SORT PROGRAM

A sort file, like any other file, is a set of records. It is described in the data division by a special type of file
description called a sort file description (SD) (5.2.2). The sort file may be thought of as an internally contained
intermediate representation of the file, following the initial input of unsorted records and preceding the final output
of sorted records.

A COBOL program may contain any number of sort operations. In general, a sort operation proceeds as follows:

1. Control passes to a SORT statement. The SORT statement specifies the sort file to be created and the data
keys that guide the sort operation. |t either identifies the input procedure and output procedure or names the
source of the unsorted input records and that file which is to receive the sorted output records.

2. The input procedure, if named in the SORT statement, is executed. This input procedure must contain at least
one RELEASE statement. If no input procedure is specified, the input file is named in the USING option of
the SORT statement. The effect of either option is to make input records available to the sort operation.

3. The records made available to the sort operation are sorted on a set of specified keys as shown in the KEY
clause.

4, The SORT statement passes control to the output procedure, if one is named. The output procedure must
contain at least one RETURN statement, the effect of which is to return the sorted record from the sort file to
the COBOL program. If no output procedure is used, the GIVING option must specify the output file.

5. The operation of the SORT statement is terminated and control passes to the next statement in sequence.

When the input or output procedure is in control, all transfers of control must refer to procedures contained within
that input or output procedure. Conversely, control cannot be transferred into an input or output procedure from
points in the procedure division outside the physical limits of the input or output procedure. Neither an input nor an
output procedure may contain a SORT statement.

For a detailed discussion of COBOL sorting, consult the fundamentals of COBOL sorting manual, UP-7503.3
(current version).

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 12-2
EXTENDED COBOL

12.3. SORT STATEMENT FORMATS

The following paragraphs summarize the entries used in 0S/3 COBOL sorts.

12.3.1.. Sort File SELECT Entry
Function:

The SELECT entry is used to name the sort file and to identify the hardware storage medium used during the
sorting process.

Format:

SELECT file-name ASSIGN TO [external-name] [integer-1] implementor-name-1 [OR implementor-name-2]
Rules:

1. The SELECT entry is discussed in detail in 4.3.1.

2. The external name is not required in the sort file SELECT entry, as fixed external names are used.

3. Tape or disc subsystems are the only applicable devices for a sort file. Note that, regardiess of which

device is specified, the temporary storage medium used is determined at execution time using the
external name (SM0O1, SM02, SMO03, . . ., SM06 for tape; DMO1, . . .,DMO08 for disc).

4. The optional OR clause serves only as documentation since the actual temporary medium is determined
at execution time through the job control stream.

12.3.2. SAME AREA Clause
Function:

The SAME AREA clause of the I-O-CONTROL paragraph is used to specify that two or more files are to use
the same main storage area during processing.

Format:
RECORD . "
SAME{SORT }AREA FOR file-name-1 [fnle-name-Z]
Rules:

This clause, and the effect of the SORT option, are discussed in detail in 4.3.2, rule 3.

12.3.3. Sort File Description
Function:

The sort file description (SD) defines the structure of the file to be sorted.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 12-3
EXTENDED COBOL :

Format:

SD file-name 7
[: RECORD CONTAINS [integer-5 '[9] integer-6 CHARACTERS]

D
; RECORDING MODE* IS E
v
RECORD IS 1Ld 2l
[; DATA{RECORDS ARE} data-name-1 [, data-name-2} ...

Rules:

Paragraph 5.2.2 lists the rules applicable to this statement.

12.3.4. RELEASE Statement
Function:

The RELEASE statement is used in the input procedure of a SORT statement to transfer records to the initial
phase of a sort operation.

Format:
RELEASE record-name [FROM identifier]
Rules:

This statement is discussed in detail in 6.6.4.10.

12.3.6. RETURN Statement
Function:

The RETURN statement is used in the output procedure of a SORT statement to obtain sorted records from
the final phase of a sort operation.

Format:
RETURN file-name RECORD [INTO identifier] ; AT END imperative-statement
Rules:

This statement is discussed in detail in 6.6.4.11.

12.3.6. SORT Statement
Function:

The SORT statement controls the creation of the sort file by specifying the means of input, the sorting keys,
and the means of output.

*Extension to American National Standard COBOL (1968).

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 12-4
EXTENDED COBOL

Format:

. ASCENDING
SORT file-name-1 ON{DESCENDING } KEY {data-name-1}.. .

ASCENDING
[, ON { DESCENDING } KEY{data-name-Z} ..] .

INPUT PROCEDURE IS section-name-1 [THRU section-name-2]
USING file-name-2

OUTPUT PROCEDURE IS section-name-3 [THRU section-name-4]
GIVING file-name-3

Rules:

The rules governing this format are discussed in detail in 6.6.4.12,

12.3.7. Use of the Sort Feature

The 0S/3 Extended COBOL compiler generates linkage code to the OS/3 subroutine sort merge for all SORT
operations. Tape-only, disc-only, or internal-only sorts are possible, depending on record volume and environment.
These sorts are specified through job control device assignments and, optionally, through PARAM statements in the
job control stream. (See the sort/merge user guide/programmer reference manual, UP-8074 (current version).)

Other considerations are:

= Record size
The maximum COBOL record size of 4092 characters may be sorted.
L] Record format

Record format may be fixed (F), ASCH (D), or variable (V). When variable-length records are to be sorted, the
BIN size (subrecord size used for internal sort purposes) provided to OS/3 sort merge by the compiler will be
the size of the smallest record described in the sort file description (SD).

NOTE:

If the USING/GIVING options of the SORT statement are used, the record format of the USING/GIVING
files must agree with the SD record format.

- Storage allocation
The compiler ensures that the object program obtains the minimum storage required for sorting by including a
RES linker control statement in the generated output module. Linking the compiler output then produces an
object program which includes an area reserved to satisfy the minimum sort needs. This area is referenced
within the object program module by an external reference (EXTRN) to label KESALP.

NOTE:

If the programmer inhibits the compiler generation of linker control statements (optional OUT=L (7.1.2}), he
must construct linker control specifications to satisfy this area requirement.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 12-5
EXTENDED COBOL

The method employed by the compiler ensures that the sort area is the last storage associated with the object
program. If the programmer allocates additional storage for program execution, all storage from KE$SALP to
the end of the program storage is used by the sort/merge processor for internal processing. Additional storage
can greatly increase the efficiency of the sort operation and should be allocated when possible.

L Device allocation

If the storage allocated for sorting is not adequate to allow an internal sort, external devices must be allocated
for intermediate storage. Magnetic tape or disc devices, but not both, may be assigned for this purpose through
job control statements. Tapes are assigned using fixed sort file-names of SMO1, SM02, ..., SMO0G6. If tapes are
assigned, a minimum of three is required, and a maximum of six may be used. Disc devices {(maximum of
eight), which must contain system scratch area, are assigned using fixed sort file-names of DMO1,
DMO02, . ..,DM08.

L Job control stream parameters

When the sort is executed by the object program, the job control stream is examined for the presence of SORT
// PARAM statements. Use of SORT job stream parameters allows the programmer to override or add to the
parameters specified in the object program.

L Multiple sorts

The 0S/3 extended COBOL compiler does not restrict the programmer from using two or more SORT
statements which refer to the same SD (sort file description), or from using a number of SORT statements
which refer to different sort file descriptions. However, only one SORT statement may be active at any one
time; multicycle sorting is not supported. A SORT statement may not appear in an input or output procedure
of another SORT statement. If an object program attempts to execute a sort during a previously initiated sort
operation, a system console message is displayed, and processing is terminated. (For a listing of system console
messages, see the error message programmer/operator reference manual, UP-8076 (current version).)

L Merging

American National Standard COBOL (1968) does not support a merge facility; consequently such a feature is
not supported in the UNIVAC 0S/3 COBOL compilers.

= Checkpointing

Checkpoints will not be issued if a sort is active. (See 8.5.)

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 13-1
EXTENDED COBOL

13. ASCII Tape Processing

13.1. GENERAL
When the user requests it, the SPERRY UNIVAC Operating System/3 (0S/3) COBOL compiler processes and

produces ASCI!| tapes. Data management automatically translates the tapes to EBCDIC when reading and to ASCI|
when writing.

13.2. DECLARATION OF ASCII FILES

ASCI! files must be declared to the compiler by the APPLY ASCII* ON file-name clause. A mix of ASCIl and
non-ASCII files is permitted in the COBOL program.

Format:

APPLY ASCII [WITH BUFFER-OFFSET {FOR BLOCK-LENGTH CHECK }]

(_)_F integer CHARACTERS

ON file-name [, file-name]
Rules:
1. The APPLY ASCII clause identifies each tape file that contains or receives ASCil data (4.3.2).

2. The integer CHARACTERS option specifies the number of additional characters that appear at the front
of each data block in the file. Integer may have a value of 0 to 99. The specified offset applies only to
files open for input. The offset area cannot be referenced by the program nor can it be created when the
file is open for output.

3. The BLOCK-LENGTH-CHECK option applies only to files with a RECORDING MODE 1S D clause.
When specified, input data blocks are assumed to possess a 4-character buffer offset, which contains the
length of the block. Data management routines validate that each block read contains the number of
characters specified in this field. When the file is being created, the block length is placed in the
4-character buffer offset area.

* Extension to American National Standard COBOL (1968).

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 13-2
EXTENDED COBOL

13.3. RECORDING MODE* CLAUSE

Format:

RECORDING MODE IS

I<lcIm|o

Rules:
1. The RECORDING MODE clause is expanded to include the specification of D-type records (5.2.1.4}.
2. A recording mode of D may be specified for ASCII tape files with variable-length records.

3. Tape files declared as ASCIl may also have a recording mode of V because, for ASCI| files, D and V are
synonymous. The D mode is provided for compatibility with other implementors.

4, The RECORDING MODE IS D clause may be specified for ASCIl tape files which contain
variable-length records. An option within the APPLY ASCII ON file-name clause allows the specification
of a buffer offset for any tape input file or the activation of the block length check feature on tape files
with RECORDING MODE D.

NOTE:

Figure 13—1 and Table 13—1 show the physical tape formats and characteristics.
Table 13-2 lists the ASCII/EBCDIC conversions.

* Extension to American National Standard COBOL (1968).

0 to 99 characters in length. This area cannot be referenced by
program nor can it be created on output files; presence specified by
the APPLY ASCIlI WITH BUFFER-OFFSET OF integer CHARACTERS clause.

DpDDDD — Optional block length field in an implified buffer offset area of four characters.
Block length is created and validated by data management programs. This option
is specified by the APPLY ASCil BUFFER- OFFSET FOR BLOCK-LENGTH-CHECK
clause.

dddd — Record length.

S, DDDD, dddd are alt in ASCII decimal format,

Figure 13—1. ASCI!!I Physical Tape Formats

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 13-3
EXTENDED COBOL
. U FORMAT RECORDS
A
| 1 buffer
t
| S | offset data
I
F FORMAT RECORDS
r———r——""7
unsLockep | s | buffer data
| | offset
L — -
|
BLOCKED | S | buffer data data
offset
| I —
D FORMAT RECORDS
r——Tr-——"-=
I
UNBLOCKED | S I DDDD dddd data’
I I,
°
BLOCKED | s } DDDD dddd data dddd data
L
S — Optional 1-character block sequence indicator whose presence is specified by the
APPLY BLOCK-COUNT clause.
buffer offset — Optional field at the front of each input data block. Offset may be

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 13-4
EXTENDED COBOL

Table 13—1. Characteristics of Tape Files Available to COBOL Users

File Apply Apply Apply
Recording Declared Label Records Buffer-Offset Block- Block-
Mode Is As Specifications Input ' Output L::gt:- Count
ec
EBCDIC
D
blocked or
unblocked
ASCHH STANDARD @ 0to 99 @ Optional Optional
data-name
OMITTED
EBCDIC | STANDARD @ Optional
F data-name
blocked or
unblocked
ASCII STANDARD @ 0t0 99 Optional
data-name
OMITTED
EBCDIC | STANDARD @ Optional
data-name
u
Ascll STANDARD @ 0to 99 Optional
data-name
OMITTED
EBCDIC STANDARD Automatic Optional
A data-name
blocked or
unblocked ASCII
NOTES:

De facto standard as defined by the data management system user guide, UP-8068 (current version)
American National Standard COBOL (1968)
Implies presence of system standard labels 1 or 2

BLOCK-LENGTH-CHECK specifies that a buffer offset of four characters contains the length of the block
for verification by data management programs.

ONOCICROXO.

Specifies a 1-character cyclic block sequence indicator (input files only)

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3

EXTENDED COBOL

13-6

Table 13—2. ASCII/EBCDIC Conversion {Part 1 of 3)

Ascll Control Character Symbol EBCDIC Signed
Hex | Dec Hex Dec Number
00 0 NUL 00 0
01 1 SOH 01 1
02 2 STX 02 2
03 3 ETX 03 3
04 4 EOT 37 55
05 5 ENQ 2D 45
06 6 ACK 2E 46
07 7 BEL 2F 47
08 8 BS 16 22
09 9 HT 05 05
OA | 10 LF 25 37
0B 11 VT 0B 11
oc | 12 FF oc | 12
oD 13 CR 0D 13
OE 14 SO OE 14
OF 15 Sl OF 15
10 16 DLE 10 16
" 17 DC1 L 17
12 18 DC2 12 18
13 19 DC3 13 19
14 | 20 DC4 3C 60
15 21 NAK 3D 61
16 22 SYN 32 50
17 23 ETB 26 38
18 24 CAN 18 24
19 25 EM 19 25
1A | 26 SUB R 3F 63
1B 27 ESC 27 39
1C 28 FS 1c 28
1D 29 GS 1D 29
1E 30 RS 1E 30
1F 31 us 1F 31
20 | 32 SP, SPACE 40 64
21 33 t 4F 79
22 34 " 7F 127
23 | 35 # 7B | 123
24 | 36 $ 5B 91
25 37 % 6C 108
26 38 & 50 80
27 39 ! 70 125
28 40 { 4D 77
2 {#M) 5D 93
2A | 42 * 5C 92
2B | 43 + 4E 78
2C 44 ' 6B 107
2D 45 — 60 96
2E 46 . 48 75
2F 47 / 61 97
30 48 0 FO 240

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 13-6
EXTENDED COBOL

Table 13—2. ASCII/EBCDIC Conversion (Part 2 of 3)

ASCH EBCDIC Signed

P Doc Control Character Symbol ox | Dec Number
31 [49 1 F1 | 241

32 | 50 2 F2 | 242

3 | 51 3 F3 | 243

34 | 52 4 F4 | 244

35 | 53 5 F5 | 245

36 | 54 6 F6 | 246

37 | 58 7 F7 | 247

38 | 56 8 F8 | 248

39 | 57 9 F9 : 249

3A | 58 : 7A . 122

3B | 59 ; 5E 94

3C | 60 < 4c 76

3D | 61 = 7E | 126

3E | 62 > 6E . 110

3F | 63 ? 6F : 111

40 | 64 @ 7C | 124

41 | 65 A c1 | 193 +1
42 | 66 B C2 | 194 +2
43 | 67 c C3 | 195 +3
44 | 68 D ca | 196 +4
45 | 69 E Cc5 | 197 +5
46 | 70 F cée | 198 +6
47 | 7N G C7 | 199 +7
a8 | 72 H Cc8 | 200 +8
4 | 73 | cg | 201 +9
4 | 74 J D1 | 209 -1
4 | 75 K D2 | 210 -2
ac | 76 L D3 | 211 -3
4D | 77 M D4 | 212 -4
4 | 78 N D5 | 213 -5
4 | 79 0 D6 | 214 -6
50 | 80 P D7 | 215 -7
51 81 Q D8 216 -8
52 | 82 R D9 | 217 -9
53 | 83 S E2 | 226

54 | 84 T E3 | 227

55 | 85 u E4 | 228

56 | 86 v ES | 229

57 | 87 w E6 | 230

58 | 88 X E7 | 231

59 | 89 Y ES | 232

BA | 90 z E9 | 233

58 | 9 [4A 74

5C | 92 \ EO | 224

5D | 93] 5A 90

5E | 94 A 5F 95

BF | 95 6D 109

60 | 96 ' 79 | 121

61 | 97 a 81 | 129

62 | 98 b 82 | 130

63 | 99 c 83 | 131

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3
EXTENDED COBOL

13-7

Table 13—2. ASCII/EBCDIC Conversion {Part 3 of 3)

Ascil Control Character Symbol EBCDIC Signed
Hex Dec Hex Dec Number
64 100 d 84 132
65 101 e 85 133
66 102 f 86 134
67 103 g 87 135
68 104 h 88 136
69 105 i 89 137
6A 106 j 91 145
6B 107 k 92 146
6C 108 | 93 147
6D 109 m 94 148
6E 110 n 95 149
6F 111 o 926 150
70 112 p 97 151
71 113 q 98 162
72 114 r 99 163
73 115 s A2 | 162
74 116 t A3 | 163
75 117 u A4 | 164
76 118 v A5 | 165
77 119 w A6 | 166
78 120 X A7 167
79 21 y A8 | 168
7A 122 z A9 169
78 123 { co | 192
7C 124 ! 6A 106
7D 125 } DO 208
7E 126 ~ A1l 161
7F 127 DEL 07 07
80 128 ISR 20* 32
81 129 SSB 21* 33
82 130 FSB 22* 34

*For edit mask conversion only.

PART 4. DEBUGGING AIDS

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 14-1
EXTENDED COBOL

14. Debugging Language

14.1. GENERAL

The source program debugging statements, READY TRACE, RESET TRACE, EXHIBIT, and *DEBUG in SPERRY
UNIVAC Operating System/3 {(0S/3) COBOL are extensions to American National Standard COBOL (1968).

The output resulting from the execution of a debugging statement is displayed upon the printer (LFD) name =
SYSLST. The output may be transferred to tape or disc by including the appropriate job control statement options
and format information. Printing is performed after a 1-line paper advance.

The debugging statements may be included between procedure division statements, or the statements may be put in

packet form at the end of the procedure division (14.5).

14.2. READY TRACE
Function:
The execution of a READY TRACE statement produces the output:
TRACE ON AT line-number.
When a section or a paragraph is entered for execution, the following output is produced:
section-name (or unqualified-paragraph-name) line-number
Format:

READY TRACE.

Rule:

This staternent may appear anywhere in the procedure division or in a compile time debugging packet.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 14-2

EXTENDED COBOL

14.3. RESET TRACE
Function:

The execution of the RESET TRACE statement terminates the functions initiated by READY TRACE and
produces the following output:

TRACE OFF AT line-number
Format:

RESET TRACE.

Rule:

This statement may appear anywhere in the procedure division or in a debugging packet.

14.4. EXHIBIT

Function:

The execution of the EXHIBIT statement results in a formatted display of identifiers or nonnumeric literals
listed in the statement.

Format:

CHANGED identifier-1 identifier-n
EXHIBIT {CHANGED NAMED icentitier-" , J ldentiiern .
NAMED nonnumeric-iteral-1 nonnumeric-literal-n

Rules:
1. An identifier may not be an index-data-item.
2. Anidentifier length may not exceed 256 bytes.
3. Nonnumeric literals may not exceed 132 characters in length.

4, Displayed operands are continued as described by the DISPLAY statement. A maximum logical record
size of 132 characters is assumed.

5. An EXHIBIT statement may appear anywhere in the procedure division or in a debugging packet.

6. The NAMED option produces a noncolumnar display of all operands specified in the EXHIBIT
statement. The operands are displayed in source order and are formatted as follows:

L Identifier
identifying-nameAequal-sign Aidentifier-value A

The identifying-name includes qualifiers and subscripts. A maximum of 130 characters is
displayed.

The identifiers-value may be a maximum of 256 characters. If the identifier is a signed numeric
elementary item, a sign is also displayed following the value.

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3 14-3
EXTENDED COBOL

10.

] Nonnumeric-literal
nonnumeric-literal

The CHANGED NAMED option produces a noncolumnar display of nonnumeric literals and,
conditionally, the identifiers specified in the EXHIBIT statement. The format sequence of the displayed
operands is as described in rule 6. If the value of the identifier has not changed since the previous
execution of this EXHIBIT statement, the identifier is not displayed and space is not reserved for the
value in the print record.

All identifier values are considered changed on the initial execution of the statement. If the EXHIBIT
statement does not contain nonnumeric literals and the value of all identifiers is the same as when this
EXHIBIT was previously executed, neither a display nor a form advance occurs.

The CHANGED option produces a columnar display of all nonnumeric literals and the changed values of
all identifiers.

If the value of the identifier has not changed since the previous execution of this EXHIBIT statement,
the positions reserved for the identifier value are displayed containing spaces. All identifier values are
considered changed on the initial execution of the EXHIBIT statement.

When the statement contains only identifiers and none of the values has changed, one line of space is
displayed. The operands are displayed in the order in which they appear in the statement and in the
following format:

L] Identifier

identifier-valueA

The identifier-value may be a maximum of 256 characters. If the identifier is a signed numeric
elementary item, its sign is displayed following the value.

L Nonnumeric literals
nonnumeric-literalA

If two distinct EXHIBIT CHANGED NAMED or two EXHIBIT CHANGED statements appear in one
program, each specifying the same identifiers, the changes in value of the identifiers are associated with
each of the two separate statements. Depending on the path of program flow, the values of the identifier
saved for comparison may differ for each of the two statements.

Variable-length identifiers are not permitted as operands with the CHANGED or CHANGED NAMED
options.

14.5. DEBUGGING PACKET

A packet contains debugging statements referring to a paragraph name or a section name in the procedure division.
The debug packets are grouped together and placed immediately following the source program. The packet
statements are compiled with the source program and are executed at object time; the packets produce the same
result as placing the debug statements directly in the source program following a section name or a paragraph name.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 14-4
EXTENDED COBOL

Each debug packet is preceded by a control card with the following format:

1 l 8

*DEBUG location

Location refers to a section or paragraph name which starts anywhere within margin A; a period is not permitted
immediately following location. The name, which may be qualified, indicates the starting point in the program
where execution of the packet is to begin. Location cannot be a paragraph name within any debug packet and the
same location must not be used in more than one debug control card.

A debug packet may consist of procedural statements such as GO TO, PERFORM, or ALTER, which may refer to a
procedure name in any debug packet or in the main body of the procedure division.

When the source COBOL program is on a library file, the library module containing the source program may also
contain *DEBUG control cards. Regardless of whether the library module contains any *DEBUG cards, when the
compiler reaches the end of the library module, it will determine if any additional *DEBUG cards are present in the
job control stream. {f *DEBUG cards are in the job control stream, they are processed as if they were contained at
the end of the library module. If no *DEBUG cards are present in the job control stream, the process of reading
COBOL input to the compiler is terminated.

Example:

// EXEC COBOL library-name

// PARAM IN = PROGNAME/LIBIN
// PARAM LST =(0,C,S)

/$
*DEBUG

+DEBUG

/*

PART 5. APPENDIXES

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 A-1
EXTENDED COBOL

Appendix A. Character Set

HEXA 80-CoL CONSOLE | compRESSED CONSOLE
- UMN KEYBOARD HEXA- 80-COLUMN KEYBOARD
DECIMAL | pecivaL | EBCPIC | caRp cope CobE o ® DECIMAL | pecpny | EBCDICD | CODE
(EBCDIC) DE (EBCDIC)
0 00 NUL 12-0-9-8-1 NO PUNCH 69 45 12-0-9-5
1 01 12-9-1 3R 70 46 12-0-9-6
2 02 12-9-2 4111 71 47 12-0-9-7
3 03 12-9-3 112,11 72 48 12:0-9-8
4 04 PF 12--4 slo 73 49 12-8-1 [
5 05 HT 12:9-5 2{12,0 74 4A [12-8-2
6 06 LC 12-9-6 7111,0 75 4B . 12-8-3 >
7 07 DEL 12-9-7 6)12,11,0 76 ac < 12-8-4
8 08 12-9-8 918 77 4D (12-8-5 {
9 09 12-9-8-1 9,318,12 78 4E + 12-8-6 +
10 0A 12-9-8-2 9.418.11 79 4F ! 12-8-7 !
11 0B 12-9-8-3 9,118,12,11 80 50 & 12 &
12 oc 12-9-8-4 9,58,0 81 51 12-119-1
13 oD 12.9-8-5 9,218,12,0 82 52 12:11-9-2
14 0 12-9-8-6 9,718,11,0 83 53 12-11-9-3
15 OF 12-9-8-7 9,618,12,11,0 84 54 121194
16 10 12-11-981 85 3 121195
17 1 1101 86 56 12-11.96
18 12 11.9.2 87 57 12-11-9-7
19 13 11-9-3 B B 88 8 12-11-9-8
20 14 RES 11-9-4 | | gg 22\ . Hg;]
21 15 NL 11-9-5 CARR.RET(CR)} T T ot A s e 5
22 16 BS 11-9-6 92 5¢ * 11-8-4 *
23 17 iL 11-9-7 P P 93 0) 1185)
24 18 11-9-8 0o o i e : 1184 :
25 19 11-9-8-1 58 95 SF A 11-87 A
26 1A 11-8+8-2 | 1 96 60 - 11 _
27 1B 11-9-8-3 T T 97 61 / 0-1 /
28 1C 11-9-8-4 ! I 98 62 11-0-9-2
29 1D 11-9-8-5 0 o] 99 63 11-0-9-3
30 IE 11-9-8-6 NN 100 64 11-0-9-4
31 1F 11.9-8.7 I 101 65 11-0-9-5
32 20 DS 11-0-9-8-1 102 66 11-0-9-6
33 21 S0S 0-9-1 0, 4, 103 67 11-0-9-7
34 22 FS 0-9-2 i, S, 104 68 11-0-9-8
35 23 0-9-3 g ‘; 105 69 0-8-1
36 24 BYP 0-9-4 : 106 6A | (Vert. Bar) | 12-11 | (Vert. Bar)
37 25 LF 0-9-5 LINE FEED(LF) 107 68 ,(Comma) | 0-8-3 (Comma)
108 6C % 0-8-4 %
38 26 EOB 0-9-6 109 6D _.(Underscore) | 0-8-5 —{Underscore)
39 27 PRE 0-9-7 110 6E > 0-86 >
40 28 o8 111 6F ? 0-8-7 ?
41 29 0-9-8-1
112 70 12-11-0
42 2A M 0-9-8-2
113 71 12-11-0-9-1
43 28 0-9-8-3 12-11-0-92
44 2 0-9-8-4 114 72
a5 20 0-9-8-5 115 73 12-11-0-9-3
46 2E 0-9-8-6 116 74 12-11-0-9-4
n7 75 12-11-0-9-5
47 2F 0-9-8-7 18 76 12-11-0-9-6
48 30 12-11-0-9-8-1 119 77 12-11-0-9-7
49 31 o1 120 78 12-11-0-9-8
50 32 2 121 79 8-1
51 33 9-3 122 7A : 8-2 :
52 34 PN 9-4 123 7B # 8-3 #
53 35 RS 95 124 7C @ 8-4 @
54 36 uc 9-6 125 70 '(PrimeorApos)| 8-5 (Prime or Apos.
55 37 EOT 9-7 S (EOM) 126 7E = 8-6 -
- 127 7F " (Quotes) 8-7 " (Quotes
;’? 2‘; 3.2.1 128 80 12-0-8-1 (Quotes)
58 3A 9-8-2 . 129 81 a 12-0-1
59 3R 9-8-3
60 3C 9-8-4 Lowercase letters are an industry standard and are not printabie on the
61 3D 9-8-5 SPERRY UNIVAC Series 90 Printers without special print options.
62 3E 32-‘73
22 25 SP NO PUNCHES SPACE (SP)
65 41 12-0-9-1
ce P 12-0-9-2 NOTE:
67 43 12-0-9-3
68 44 12-0-9-4 Some graphic, card code, and hexadecimal assignments may differ depending

upon the device, application, or installation policy.
@ Punch patterns used to store the corresponding hexadecimal
representation in the indicated bit positions of a byte.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 A-2
EXTENDED COBOL
CONSOLE Y SOeR
XA- 0- KEYBOARD
DECIMAL | HEXA- | egepic® | 80-COLUMN | KEYBOARD DECIMAL | prcws | EBCDIC S oL SeT
DECIMAL CARD CODE SET (EBCDIC)
(ERCDIC)
192 co PZ 12-0
130 82 b 12:0-2 193 c1 A 12-1 A
131 83 c 12-0-3 194 c2 8 12-2 B
132 84 d 12-0-4 195 Cc3 c 12-3 c
133 85 e 12-0-5 196 c4 0 12-4 D
134 86 f 12-0-6 197 Ccs E 12-5 E
135 87 g 12-0-7 198 c6 F 12-6 F
136 88 h 12-0-8 199 c7 G 12.7 G
137 89 i 12-0-9 200 cs H 12-8 H
138 8A 12-0-8-2 201 c9 | 129 !
139 8B 12-0-8-3 202 CA 12-0-9-8-2
140 8C 12-0-8-4 203 cB 12-0-9-8-3
141 8D 12-0-8-5 204 cc 12-0-9-8-4
142 8E 12-0-8-6 205 cD 12-0-9-8-5
143 8F 12-0-8-7 206 CE 12-0-3-8-6
144 90 12-11-8-1 207 CF 12-0-9-8-7
145 91 j 12-11-1 208 DO Mz 11-0
146 92 K 12-112 209 D1 J 11-1 J
147 93 I 12-113 210 D2 K 112 K
148 %4 m 12-11-4 21 03 L 11-3 L
149 95 n 12-11-5 212 D4 M 11-4 M
150 96 [12-11-6 213 DS N 11-5 N
151 97 P 12-11-7 214 D6 0 11-6 0
182 98 q 12-11-8 215 D7 P 11-7 P
153 39 r 12-11-9 216 D8 Q 11-8 Q
154 9A 12-11-8-2 217 D9 R 119 R
155 9B 12-11-8-3 218 DA 12-11-9-8-2
156 9 12-11-8-4 219 DB 12-11-9-8-3
157 90 12-11-8-5 220 DC 12-11-9-8-4
158 9E 12-11-8-6 221 DD 12-11-9-8-5
159 9F 12-11-8-7 222 DE 12-11-9-8-6
160 AD 11-0-8-1 223 DF 12-11-9-8-7
161 Al 11-0-1 224 EQ 0-8-2
162 A2 s 11-0-2 225 El 11-0-9-1
163 A3 t 11-0-3 226 €2 S 0-2 S
164 A4 u 11-0-4 227 E3 T 0-3 T
165 A5 ' 11-0-5 228 E4 u 0-4 U
166 At w 11-0-6 229 ES v 0-5 N
167 A7 x 11-0-7 230 E6 W 0-6 w
168 A8 y 11-0-8 231 E7 X 0-7 X
169 A9 2 11-0-9 232 E8 Y 0-8 Y
170 AA 11-0-8-2 233 E9 z 0-9 z
171 AB 11-0-8-3 234 EA 11-0-9-8-2
172 AC 11-0-8-4 235 EB 11-0-9-8-3
173 AD 11-0-8-5 236 EC 11-0-9-8-4
174 AE 11-0-8-6 237 ED 11-0-9-8-5
175 AF 11-0-8-7 238 EE 11-0-9-8-6
176 BO 12-11-0-8-1 eF 110567
177 Bl 12:11-0-1 220 Fo 0 0 0
178 B2 12-11-0-2 241 Fl1 1 1 1
179 B3 12-11-0:3 242 F2 2 2 2
180 B4 12-11-0-4 243 F3 3 3 3
181 BS 12-11-0-5 244 Fa 4 4 4
182 B6 12-11-0-6 25 Fs 5 5 5
183 87 12-11-07 246 Fé 6 6 6
184 B8 12-11-08 247 F7 7 7 7
185 B9 12-11-0-9 248 F8 8 8 8
186 BA 12-11-0-8-2 249 F9 g 9 9
187 BB 12-11-0-8-3 250 FA 12-11-0-9-8-2
188 BC 12-11-0-8-4 251 FB 12-11-0-9-8-3
189 BD 12-11-0-8-5 25 FC 12-11-0-9-8-4
190 BE 12-11-0-8-6 253 FD 12-11-0-9-8-5
191 BF 12-11-0-8-7 254 FE 12-11-0-9-8-6
255 FF 12-11-0-9-8-7

Lowercase letters are an industry standard and are not printable on the
SPERRY UNIVAC Series 90 Printers without special print options.

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3
EXTENDED COBOL

B-1

Appendix B. Reserved Words

Reserved words are part of the COBOL language structure and cannot be used for data or procedure names.

ACCEPT
ACCESS
ACTUAL
ADD
ADVANCING
AFTER

ALL
ALPHABETIC
ALTER
ALTERNATE
AND
APPLY*

ARE

AREA
AREAS
ASCENDING
AsCIlt*
ASSIGN

AT

AUTHOR
BEFORE
BEGINNING
BLANK
BLOCK
BLOCK-COUNT*

BLOCK-LENGTH-CHECK*

BUFFER-OFFSET*
BY

CALL®
CARD-PUNCH"
CARD-READER*
CARD-READER-51"
CARD-READER-66"
CHARACTER™
CHARACTERS
CHANGED*

CLOSE

COBOL

COMMA

cowmp

comp-1*

comp-2*

COMP-3*

comp-4*
COMPUTATIONAL
COMPUTATIONAL-1*
COMPUTATIONAL-2*
COMPUTATIONAL-3*
COMPUTATIONAL-4"
COMPUTE
CONFIGURATION
CONTAINS

COPY

CORR
CORRESPONDING
CURRENCY
CYLINDER-INDEX*
CYLINDER-OVERFLOW*
DATA
DATE-COMPILED
DATE-WRITTEN
DECIMAL-POINT
DECLARATIVES
DEPENDING
DESCENDING
DIRECT*

pisc*

DISC-8411*
DISC-8414*
DISC-8415"
DISC-8416"
DISC-8418*
DISC-8430*
DISC-8433*

DISPLAY

DIVIDE

DIVISION

DOWN

EBCDIC*

ELSE

*Extensions to American National Standard COBOL (1968).

END

ENDING

ENTER

ENTRY*
ENVIRONMENT
EQUAL

EQUALS*

ERROR

EVERY
EXAMINE
EXCEEDS*
EXHIBIT*

EXIT

EXTENDED
EXTENDED-INSERTION*
FD

FILE
FILE-CONTROL
FILE-LIMIT
FILE-LIMITS
FILE-PREPARATION*
FILLER

FIRST

FOR
FORM-OVERFLOW*
FROM
GENERATE
GIVING

GO

GREATER
HIGH-VALUE
HIGH-VALUES
-0

I-O-CONTROL
IDENTIFICATION
IF

IN

INDEX

INDEXED

INDICES*
INITIATE
INPUT
INPUT-OUTPUT
INSERT”
INSTALLATION
INTO

INVALID

IS

JUST
JUSTIFIED

KEY

LABEL
LEADING

LEFT

LESS

LINE

LINES
LINKAGE*
LOCK
LOW-VALUE
LOW-VALUES
MAP*
MASTER-INDEX*
MEMORY
MODE
MODULES
MONITOR*
MORE-LABELS*
MOVE
MULTIPLE
MULTIPLY
NAMED*
NEGATIVE
NEXT

NO

NOT

NOTE
NUMERIC
OBJECT-COMPUTER
OCCURS

\

\

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3
EXTENDED COBOL

OF
OFF
OMITTED

ON

OPEN
OPTIONAL
OR
ORGANIZATION*
OTHERWISE*
OUK-90-250*
OUK-90-300*
OUK-90-400*
OUK-90-600*
OUK-90-700*
OUTPUT
PERCENT*
PERFORM
PIC
PICTURE
POSITION
POSITIVE
PRINTER*
PROCEDURE
PROCEED
PROCESSING
PROGRAM*
PROGRAM-ID
QUOTE
QUOTES
RANDOM
READ
READY™*
RECORD
RECORDING*
RECORDS
REDEFINES
REEL
RELATIVE*
RELEASE
REMAINDER
REMARKS
RENAMES
REPLACING
RERUN
RESERVE
RESET
RESTRICTED*
RETURN
REVERSED
REWIND

REWRITE*
RIGHT
ROUNDED
RUN

SAME

SD

SEARCH
SECTION
SECURITY
SEEK
SEGMENT-LIMIT
SELECT
SENTENCE
SEPARATE*
SEQUENTIAL
SET

SIGN*

SIZE

SORT
SOURCE-COMPUTER
SPACE
SPACES
SPECIAL-NAMES
STANDARD
STATUS
sToP
SUBTRACT
SYMBOLIC*
SYNC
SYNCHRONIZED
SYSCHAN-1*
SYSCHAN-2*
SYSCHAN-3*
SYSCHAN-4*
SYSCHAN-5*
SYSCHAN-6*
SYSCHAN-7*
SYSCHAN-8*
SYSCHAN-9*
SYSCHAN-10*
SYSCHAN-11*
SYSCHAN-12*
SYSCHAN-13*
SYSCHAN-14*
SYSCHAN-15*

*Extension to American National Standard COBOL (1968).

syscom*

SYSCONSOLE*

SYSDATE*
SYSERR™
SYSERR-0*
SYSERR-1*
SYSERR-2*
SYSERR-3*
SYSERR-4*
SYSERR-5*
SYSERR-5*
SYSERR-6"
SYSERR-7*
SYSERR-8*
SYSERR-9*
SYSERR-10*
SYSERR-11*
SYSERR-12*
SYSERR-13*
SYSERR-14*
SYSERR-15*
SYSERR-16*
SYSERR-17*
SYSERR-18*
SYSERR-19*
SYSERR-20*
SYSERR-21*
SYSERR-22*
SYSERR-23*
SYSERR-24*
SYSERR-25*
SYSERR-26*
SYSERR-27*
SYSERR-28*
SYSERR-29*
SYSERR-30*
SYSERR-31*
SYSIN*
SYSIN-96*
SYSIN-128*
SYSLOG*
SYSLST*
SYSSWCH*
SYSSWCH-0*
SYSSWCH-1*
SYSSWCH-2*
SYSSWCH-3*
SYSSWCH-4*

SYSSWCH-5 * .

SYSSWCH-6*
SYSSWCH-7*
SYSTIME *
TALLY
TALLYING
TAPE
TAPE-6 *
TAPES*

TERMINATE
THAN

THEN*
THROUGH
THRU

TIME*

TIMES

TO

TRACE *
TRACKS *
TRAILING*
TRANSFORM*
UNEQUAL*
UNIT
UNIVAC-9000*
UNIVAC-9025*
UNIVAC-9030*
UNIVAC-9040*
UNIVAC-9060*
UNIVAC-9070*
UNIVAC-920011*
UNIVAC-9300*
UNIVAC-930011*
UNIVAC-9400*
UNIVAC-9480*
UNIVAC-9700*
UNTIL

uP

UPON

USAGE

USE

USING
VALUE
VALUES
VARYING
VERIFY*
WHEN

WITH

WORDS
WORKING-STORAGE
WRITE

ZERO
ZEROES
ZEROS

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 C-1
EXTENDED COBOL

Appendix C. Intermediate Results in
Arithmetic Operations

C.1. GENERAL

For certain arithmetic statements in the SPERRY UNIVAC Operating System/3 (0S/3) COBOL, the COBOL
compiler generates code that uses internal work areas for storage of intermediate results. Intermediate results may be
required in the following types of statements:

= Add, where more than one operand precedes TO or GIVING.
- SUBTRACT, where more than one operand precedes FROM or GIVING.
= Any statement containing an arithmetic expression which specifies more than one operation.

Arithmetic expressions are simplified by the compiler to become a series of simple arithmetic operations that store
partial results in intermediate result areas, which may then be used as operands in succeeding operations.

The compiler provides a description for an intermediate result which is appropriate for use in the operation or series
of operations for which it is required. The description can be expressed as a numeric PICTURE; however, an
intermediate result used in the evaluation of an expression may contain as many as 30 digits.

If at least one floating-point (COMP-1 or COMP-2) or floating-point display or floating-point literal operand is used,
the range of intermediate results is £5.4*10—79 10 £7.2+1075; the remainder of this appendix is applicable only to
nonfloating-point operands.

C.2. ADD AND SUBTRACT STATEMENTS

The description of the intermediate result area is determined by forming the composite of opérands (6.6.1.1) and
appending one additional digit in the most significant position to contain overflow when 10 or fewer operands
immediately follow the verb, or two digits for more than 10 operands.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 Cc-2
EXTENDED COBOL

C.3. EXPRESSIONS

The following abbreviations are used:
L Length in mappable digits.

pl Point location which is the number of places that the decimal point is displaced from the position
it would occupy if the mappable digits were considered an integer. For example, for the PICTURE
99V9, pl = 1, because the decimal point has been displaced one position: for the PICTURE PP999,
pl = 6. A negative value in pl indicates trailing P's in the associated PICTURE, eg., for the
PICTURE 99PP, pl = —2,

oP1 First operand

oP2 Second operand

ir Intermediate result
comp Composite of operands
mag Magnitude = L — pl

The maximum value that a variable can assume is 10™29—10~P!'—1

When expressions are evaluated, a composite of all operands except those immediately to the right of the
exponentiation operator is formed. The receiving data item, when present, is considered in determining the
composite. The following rules apply:

Operator Description
- plip = max (plopy, Plopy)
= +
Lir max (magop1, magopz) plir +1
* Pli = Plgpq.t Plopy

Lir = magopy + Magopy + Plie
/ plir = plcornp

Lir = Plop2 ~ Plopq + Lopq * Pli;

* %

NOTE:

When an expression appears in a COMPUTE statement and the ROUNDED option is specified, one digit is added in
the least significant position of the receiver description before the composite is formed,

When application of the preceding rules produces an intermediate result length that is greater than 30, the
description must be readjusted. In these cases, Lir = 30.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 D-1
EXTENDED COBOL

Appendix D. Compiler Diagnostics

D.1. GENERAL

The SPERRY UNIVAC Operating System/3 (0S/3) extended COBOL compiler generates system console and
diagnostic messages during compilation. System console messages relate to the compilation environment and are
displayed when the error condition is encountered. The job is terminated and the error condition must be corrected
before the job can be rerun. The diagnostic messages flag errors encountered in the source program during
compilation. A list of all diagnostic messages generated is output after all other printer options are satisfied.

D.2. DIAGNOSTIC MESSAGES

The diagnostic listing is produced as its last printed output. Each diagnostic message contains the compiler-generated
line number on which the error occurred, the diagnostic severity code, the diagnostic number, and the diagnostic
message text.

The diagnostic severity code definitions are:

P (precautionary)

No source language error was detected, but an unusual or potentially undesirable condition was noted by
the compiler.

C (changed)

A character, word, clause, entry, or statement in the source program is omitted or used incorrectly. To
compensate for the error, the item has been changed by the compiler to avoid its deletion and reduce the
probability of error propagation. Execution of the object time program may give unpredictable results.

U (uncorrectabie)

A source language error was detected which caused the compiler to delete a character, word, clause,
entry, or statement from the source program. The compilation continues, but other errors may result
because of the deleted item. Execution of the object program, in general, gives unpredictable results.

S (compiler restriction exceeded)

The compilation continues but, to generate code for the excessive items, a recompilation is necessary
after source program modification or with more storage assigned to the compiler.

Tabie D—1 explains the error messages and related recovery procedures. The messages are listed in ascending order
based on the message number.

Table D—1. Diagnostic Messages (Part 1 of 30)

Expianation

Message Severity Diagnostic Message
Number Code Reason Rule Recovery
001 P ERROR IN SOURCE LINE SEQUENCE The characters in columns The sequence number, The source line is processed
NUMBERING. 1 to 6 of the source line columns 1 to 6 of the as though the error had not
are alphanumerically fess source line, is an occurred.
than columns 1 to 6 of the optional entry used
previous source line. only by the programmer
to establish a sequence
among the various lines
of coding.
002 C AREA-A NON-BLANK WITH HYPHEN A nonblank character was When continuation is The first nonblank character
IN COLUMN 7. found in area A (columns specified by hyphen in after column 7 is accepted
8 to 11} when continuation column 7, the contin- as the beginning of con-
was specified by a hyphen ued portion must begin tinuation.
in column 7. in area B (columns 12
to 72).
003 C ERROR IN COLUMN 7 OF SOURCE An invalid character was The only acceptable A space is assurned to have
LINE. found in column 7. characters for column been found in column 7.
7 are the space, hyphen
{continuation}, or
asterisk (comment).
004 Cc SPACE FOLLOWING LEFT One or more spaces were In 0S/3 COBOL, spaces Processing continues as if the
PARENTHESIS. detected following a left must not separate left space had not occurred.
parenthesis. or right parentheses
from that which they
enclose.
005 C NON-NUMERIC LITERAL CONTINUA- The continued portion of a When continuation of a Processing continues as if a
TION DID NOT BEGIN WITH QUOTE nonnumeric literal did not nonnumeric literal is quote or apostrophe occurred
OR APOSTROPHE. begin with a quote or specified by a hyphen prior to the first nonblank
apostrophe. in column 7, the con- character.
tinued portion must
begin with a quote or
apostrophe in area B,
006 C IMPROPER TERMINATION OF NON- The second of the two quotes The terminating quote Processing continues as if a

NUMERIC LITERAL literal.

or apostrophes that enclose
a nonnumeric literal is not
followed by a space or
punctuation and a space.

or apostrophe enclosing
a nonnumeric literal
must be followed by a
space or punctuation
and a space.

space had occurred. The first
30 characters of the nonnumeric
literal are noted in the
diagnostic.

70803 @3an3Lx3
€/S0 JVAINN AYY3dS

£ 'A3Y 6508-dN

¢-a

Table D—1. Diagnostic Messages (Part 2 of 30)

Expianation

Message Severity Diagnostic Message
Number Code Reason Rule Recovery
007 C EXCESSIVE CHARACTER STRING A character string which Maximum legal sizes are: Processing continues after
char-string. is greater than its maximum 132 characters for non- the excessive characters
legal size was detected. numeric literals, 20 are discarded. The first
characters for numeric 30 characters of the string
literals (including sign are noted in the diagnostic.
and decimal point}, 30
characters for nonliterals.
008 U INVALID CHARACTER DETECTED An invalid character was An invalid character is The entire string is deleted.
IN char-string. found in the character one which is in the COBOL
string displayed in the character set but which is
diagnostic. made invalid by the context
in which it appears, e.g.,
P'CTURE.
009 U ILLEGAL CHARACTER DETECTED An illegal character was An illegal character is The entire string is deleted.
IN char-string found in the character one that is not in the
string displayed in the COBOL character set,
diagnostic. e.q., #
010 [NON-NUMERIC LITERAL OF Two quotes or apostrophes A nonnumeric literal A nonnumeric literal of one
SIZE 0 ENCOUNTERED with no intervening must have at least one space character is assumed.
characters were encountered. character between the
enclosing quotes or
apostrophes.
omn C HYPHEN EXPECTED IN COLUMN 7. A nonnumeric literal is A hyphen in column 7 and Processing continues as if a
being continued and a a quote or apostrophe in hyphen were encountered.
hyphen is missing from area B are needed to con-
column 7. tinue a nonnumeric literal.
012 [HYPHEN IN COLUMN 7 AND There is no terminating Continuation of a non- The nonnumeric literal is
QUOTE OR APOSTROPHE EXPECTED. quote or apostrophe on the numeric literal is specified terminated on the previous
previous source fine and no by a hyphen in column 7 source line at column 72.
hyphen in column 7 or quote and a quote or apostrophe
or apostrophe on the current in area B preceding the
source line to indicate continued portion of the
continuation. nonnumeric literal.
013 [SPACE PRECEDING RIGHT One or more spaces have been In OS/3 COBOL, spaces Processing continues as if

PARENTHESIS.

detected preceding right
parenthesis.

must not separate teft or
right parentheses from
that which they enclose.

the space had not occurred.

710802 g3aN3ix3
£/50 JDVAINN AHY3dS

€ 'A3Y 6G08-dN

£-a -

Table D—1. Diagnostic Messages (Part 3 of 30)

Explanation

Message Severity Diagnostic Message
Number d

um Code Reason Rule Recovery
014] SYNTAX REQUIRES clause, The character-string listed See applicable language If the error appears within

char-string INVALID.

as invalid in the message
text has produced a syntax
error. The required item
is @ source string that
would have correctly
completed the clause,
entry, or statement in
error,

formats in this manual.

a clause, such as ACCESS or
OCCURS, the clause is deleted.

If the error appears within

an entry, such as the assign
device type or an invalid name
following FD, the entire entry
is discarded.

If the error appears within a
statement, the statement is
ignored.

When a syntax error occurs,
source strings are ignored

untii one of the following

tisted recovery types is
detected, whereupon processing
resumes. Recovery is possible
on the string listed as invalid

in the diagnostic.

IDENTIFICATION, PROGRAM-
1D, AUTHOR, INSTALLATION,
DATE-WRITTEN, DATE-
COMPILED, SECURITY,
REMARKS, ENVIRONMENT
CONFIGURATION, SOURCE-
COMPUTER, OBJECT-
COMPUTER, SPECIAL-NAMES,
any SPECIAL-NAME definition,
INPUT-OUTPUT, FILE-
CONTROL, SELECT, FOR,
FILE-LIMIT, ACCESS, ACTUAL,
SYMBOLIC, RELATIVE,
ORGANIZATION, RESERVE,
1-O-CONTROL, RERUN, SAME,
APPLY, DATA, FILE, FD, SD,
BLOCK, RECORD, LABEL,
RECORDING, DATA, VALUE,
OCCURS, PICTURE, USAGE
SYNCHRONIZED, JUSTIFIED,
BLANK, COMPUTATIONAL,
COMP-1, COMP-2, COMP-3,
COMP-4, DISPLAY, INDEX,
SIZE, MAP, level-number
WORKING-STORAGE, LINKAGE,
PROCEDURE, Procedure-name
in Area A, any verb.

o

10902 g3AaN3Lxd
£/50 JVAINN AHY3dS

€ 'A3Y4 6608-dN

v-a

R I

Table D—1. Diagnostic Messages (Part 4 of 30)

Message Severity Explanation
Number Code Diagnostic Message
Reason Rule Recovery

015 S COMPILER ERROR This diagnostic is issued The occurrence of this
only as the result of a diagnostic should be
compiler/system error. reported using the SUR

procedure,

016 u FILE-NAME file-name NOT The file-name being refer- A file-name referenced The referenced file-name is

PREVIOUSLY SELECTED. enced has not been defined ina RERUN, MULTIPLE, deleted from the entry.
ina SELECT entry. VERIFY, BLOCK-COUNT
or SAME AREA entry
must appear in a
SELECT entry.
017 u EXTERNAL-NAME external-name The external-name being The external-name speci- The RERUN entry is deleted.
NOT PREVIOUSLY ASSIGNED. referenced was not assigned fied in a RERUN entry
ina SELECT entry. must match the assigned
external-name or, if
external-name was not
specified, the first eight
characters of the
SELECT file-name.
018 U clause PREVIOUSLY SPECIFIED An entry, such as APPLY An entry, such as APPLY The duplicate entry is deleted.
FOR filename. BLOCK-COUNT, was multiply BLOCK-COUNT, should be
specified for the listed specified only once for ,
file-name. a given file.

019 U name PREVIOUSLY DEFINED AS The listed name appears File-names and external- The entire SELECT entry is

EXTERNAL-NAME OR FILE-NAME. in more than one SELECT names specified in deleted.
entry. SELECT entries must be
unigue.

020 V] MISSING DATA DIVISION HEADER. The PROCEDURE DIVISION All four division headers Processing continues with the
header has been en- must appear in every source | FROCEDURE DIVISION header.
countered without prior program and conform to i data division entries exist,
detection of the DATA the following order: they are ignored.

DIVISION header. IDENTIFICATION, ENVI-
RONMENT, DATA,
PROCEDURE.
021 U MISSING DATA AND PROCEDURE The end of the source All four division headers If data division entries or
DIVISION HEADER. program has been reached must appear in every procedure division statements
without a DATA DIVISION source program and exist, they are ignored.
or PROCEDURE DIVISION conform to the following
header being encountered. order: IDENTIFICATION,
ENVIRONMENT, DATA,
PROCEDURE.

70902 d3AN3LX3
£/S0 JVAINN AHY3dS

€ 'A3H 6508-dN

S-a

Table D—1. Diagnostic Messages (Part 5 of 30)

Explanation

Message Severity Diagnostic Message
Number Cod
ode Reason Rule Recovery
022 C RESERVE INTEGER fiteral The number of alternate The RESERVE clause One aiternate area is atlocated
PROCESSED AS 1. areas specified in the must specify one alternate for this file.
RESERVE ctause is not area, or none.
acceptable.
023 u FILE-NAME file-name The tisted file-name appears A file-name cannot be The file-name in error
CONFLICTS WITH PREVIOUS in muitiple SAME AREA specified in more than is deleted from the SAME
SAME AREA CLAUSE. or SAME RECORD AREA one SAME AREA or SAME | AREA clause.
clauses. RECORD AREA clause.
024 U clause CLAUSE IS QUTSIDE A clause, such as SYM- Clauses associated with The clause is deleted.
SELECT ENTRY. BOLIC, is not associated a SELECT entry must
with the previously com- appear within the entry,
pleted SELECT entry. i.e., prior to the period
that terminates the entry.
025 U CURRENCY SIGN SYMBOL The currency sign specified The currency sign symbol The clause is deieted and the
character INVALID. is not contained within the must be within the currency sign remains a $.
valid currency sign character COBOL character set
set. but cannot be one of
the following: The digits
O through9ABCDEPR
SV X Zspace ¥, +—.;
{()or".
026 P EXTERNAL-NAME external-name The external-name contains Only the first eight charac- The excess characters in the
TRUNCATED more than eight characters. ters of the external-name external-name are deleted.
are meaningful.
027 C HEADER REQUIRED AT THIS POINT. The current source line The FILE-CONTROL header| The header is assumed to have

must be preceded by the
listed header.

must precede the first
SELECT entry, the
SPECIAL-NAMES header
must precede the first
special-name, and the
1-0-CONTROL header must
precede the first RERUN,
SAME, APPLY, or
MULTIPLE FILE entry.

been encountered.

70802 d3an3ix3
€/80 JVAINN AWY3dS

€ A8y 6G08-dN

9-a

Table D—1. Diagnostic Messages (Part 6 of 30)

Message Severity Explanation
Number Code Diagnostic Message
Reason Rule Recovery
028 Cc CLAUSE CONFLICTS WITH ACCESS OPTIONAL and RESERVE See Section 11, The clause in error is deleted.
METHOD SPECIFICATION. are applicable only to Line number reflects last state-
disc files with ACCESS ment in the SELECT clause.
SEQUENTIAL and
ORGANIZATION
SEQUENTIAL.
029 U file-name PREVIOUSLY SPECIFIED The listed file-name appears A given file may control The RERUN entry is deleted.
AS RERUN CONTROLLER. in muitiple RERUN entries no more than one RERUN
as the RERUN controller. receiver.
030 U INVALID SPECIFICATION OF The listed RERUN receiver RERUN receivers must be The RERUN entry is deleted.
RERUN RECEIVER external-name. is not a tape or disc. assigned to a tape or disc.
231 S ADDITIONAL MEMORY REQUIRED FOR The compiler does not have Each SELECT entry requires| This SELECT entry and all others
SELECT PROCESSING. sufficient main storage 26 bytes of main storage pius| that follow are deleted.
to process ali of the 1 byte for each character in
SELECT entries. the file-name. To increase
the number of SELECTS
that can be processed, recom+
pile using smaller file-names
or with more main storage
assigned to the compiler.
032 u DUPLICATE CLAUSE OR HEADER. A clause such as ACTUAL All clauses must be unique The duplicate clause or header
or a header such as within their associated is deleted.
AUTHOR has been multiply entries. All headers
specified. must be unique.
033 ¥} HEADER OUT OF SEQUENCE. The header on the indicated The order of headers must The header is deleted.
line number is out of sequence. be as defined.
034 V] CLAUSE APPLIES ONLY TO The clause or entry at the VERIFY, RANDOM, RE- The clause or entry is deleted.

RANDOM ACCESS FILES.

indicated line number applies
only to random access files.

STRICTED, ORGANIZA-
TION, ACTUAL, SYMBOL-
IC, RELATIVE, or MUL-
TIPLE apply only to

random access files.

704900 @3aN3Lx3
€/80 OVAINN AHY3AdS

€ 'ASY 6508-dN

Table D—1. Diagnostic Messages (Part 7 of 30)

Explanation

Message Severity
Number Code Diagnostic Message
Reason Rule Recovery
035 V] CLAUSE NOT APPLICABLE FOR The clause or entry at the . The following clauses The clause or entry is deleted.
file-name. indicated line number is or entries are not
not applicabie for the applicable for the
listed file-name. indicated devices:
BLOCK-COUNT, CARD-
READER, CARD-
PUNCH, PRINTER,
RANDOM ACCESS
DEVICE.
MULTIPLE — CARD-
READER, CARD-
PUNCH, PRINTER.
OPTIONAL — CARD-
PUNCH, PRINTER.

036 [INVALID ACCESS-TYPE. An invalid combination of The combinations of The file is classified as ACCESS
ACCESS, ORGANIZATION, ACCESS, ORGANIZATION, SEQUENTIAL, ORGANIZA-
and KEY clauses has been and KEY clauses are TION SEQUENTIAL.
specified. invalid. See Section 11.

037 C COPY STATEMENT REQUIRES Something other than a A period must follow the A period is assumed to have been

PERIOD. period was found following library name of a present.
the library name of a COPY COPY statement.
statement.
038 [LABEL RECORDS CLAUSE OMITTED A LABEL RECORDS clause The LABEL RECORDS LABEL RECORDS OMITTED
FROM file-name. has not been specified for clause is required for all is assumed.
the listed file-name. files.
039 U MISSING PROCEDURE DIVISION The end of the source pro- All four division headers If procedure division statements

HEADER.

gram has been reached
without detecting the
PROCEDURE DIVISION
header.

must appear in every

program and conform

to the following order:
IDENTIFICATION, ENVIRON-
MENT, DATA, PROCEDURE.

exist, they are deleted.

70903 d3aN31x3
£/S0 JVAINN AHY3dS

£ 'A8Y 6508-dN

8-da

Table D—1. Diagnostic Messages (Part 8 of 30)

x:::t Sg;::ty Diagnostic Message Reason EXP';':::OH Recovery
040 C literal NOT A VALID LEVEL NUMBER. The listed level number is 1. Level number values 1. If a level number other than
erroneous because of its are restricted to 01 01 through 49, 66, 77, or 88
value or use. through 49, 66, 77, is encountered, the level
or 88. number is changed to 49 if
2. The level number of the WORKING-STORAGE or
the first data descrip- LINKAGE SECTION header
tion following an FD has not been encountered;
or SD must be 01. otherwise, the level number
3. A level number 77 may is changed to 01.
not be used within the 2. If the first data descriptor
file section. in a record is not 01, a 01
filler is created by the com-
piler to precede the current
data description.
3. The level number is changed
to 01.
041 V] clause CLAUSE INVALID WITH The listed clause is not 1. A REDEFINES clause In rules 1 through 3, and 5
ASSOCIATED LEVEL NUMBER. allowed with the specified may not be used with through 7, the clause is
level number. a level number 66, deleted. For rule 4, the first
88, or a 01 in the value is accepted; all others
file section. are deleted.
2. A PICTURE clause
may not be used with
a fevel number 66 or
88.
3. The MAP clause is not
allowed with level
number 66 or 88.
4. Multiple values can only
appear with a level
number 88.
5. The OCCURS clause is
not permitted with a
level number 01, 66,
or 88.
6. A RENAMES clause can
only be used with a level
66.
7. The value clause cannot
be used with a level
number 66.
042 Cc REDEFINES MUST BE FIRST CLAUSE. The REDEFINES clause The REDEFINES clause The REDEFINES clause is
was not the first clause must immediately follow accepted.
in the data description. the name of the data
description.

*FD, RENAMES, and 66 available in extended compiler.

70803 AQ3AN3LX3
€/S0 JVAINN AHH3dS

€ 'ASH 6G08-dN

6-a

Table D—1. Diagnostic Messages (Part 9 of 30)
Soveri Explanation
x:::)g; C;:':ty Diagnostic Message
Reason Rule Recovery
043 u clause NOT SUPPORTED An obsolete COBOL clause The SIZE clause is not The SIZE clause is deleted.
has been encountered. within the OS/3 COBOL
language.
044 Cc LEVEL NUMBER number MUST BEGIN The level number 01 or 77 All 01 or 77 level numbers The level number is accepted.
IN AREA-A. did not begin in area A. must start in area A.
045 C COPY STATEMENT REQUIRES LIBRARY A COPY verb was not A library name: The first eight characters of the
NAME, character string INVALID. followed by a library name. string provided are used as a
® s composed of no more library name.
than eight characters of the
set A through Z, 0
through 9, and the
hyphen (-).
® has at least one al-
phabetic U character.
B does not have a hyphen
as the first or last
character.
® js not a COBOL reserved
word.
046 C OCCURS CLAUSE INTEGER INVALID. An OCCURS clause integer The minimum OCCURS If Ois used in Format 1 or as
is 0 or greater than 65,535. value is 1. The maximum integer-2 in Format 2, the
OCCURS value is 65,535. OCCURS clause is ignored.
{In Format 2 of the If an integer exceeds 65,535
OCCURS clause, integer-1 the integer is assumed to be 1.
may be 0.}
047 C LIBRARY NAME character string The library name following The name of a library The first eight characters of the
EXCEEDS EIGHT CHARACTERS. the COPY verb was found structure may be a max- name provided are used.
to be longer than eight charac- imum of eight characters.
ters.
048 U REMAINDER OF THE LINE A nonblank character was Since the COPY statement The remainder of the line is
FOLLOWING COPY STATEMENT found in the remainder of directs the compiler to deleted.
MUST BE BLANK. the line on which the access new lines of
COPY statement appears. COBOL code, nothing
may follow the COPY
statement on the same
line.
049 C DATA-NAME, FILE-NAME OR A, The name or number assigned File-names, data-names, The name or level number is

to the file or data descrip-
tion begins in area A.

level number, and filter
must not begin in area A.

accepted.

70800 Q3aN3LX3
€/S0 JVAINN AYY3dS

£ 'A%Y 65G08-dN

oL-a

Table D—1. Diagnostic Messages (Part 10 of 30)

Message Severity . . Explanation
Number Code Diagnostic Message Reason Rule Recovery
050 C APPLY CLAUSE OR SEGMENT-LIMIT Cytinder overfiow of disc Cylinder overflow percent The overflow percent is set to
INTEGER INVALID. was specified as being may not be greater than 80 percent. The buffer offset
greater than 80 percent. 80 percent. is set at 99, or the SEGMENT-
The buffer offset LIMIT is set at 49.
value is not from 0 to 99,
or the SEGMENT-LIMIT
value is not from 1 to 49.
051 Cc BLOCKING SPECIFIED WiITH A BLOCK CONTAINS Recording mode U states The BLOCK CONTAINS clause
RECORDING MODE U. RECORDS clause has been that records of the file is deleted. The recording mode
specified with a recording are not blocked and may U is accepted or the buffer
mode of U. Buffer offset vary in iength. offset value is set to 99.
value exceeds 99.
052 U CLAUSE NOT ASSOCIATED WITH A clause, such as DATA Clauses associated with The clause is deleted.
FD OR DATA-NAME. RECORDS or PICTURE, is file or data descriptions
not associated with the pre- must appear within the
viously completed file or entry; i.e., prior to the
data descriptor. period that terminates
the entry.
0563 C NO DATA ENTRY FOR PREVIOUS FD The previous FD or SD does A record description, with The compiler creates a record
OR SD. not have at least one record level number 01, must description whose name is
description associated with it. follow every FD or SD FILLER. The size of this record
description. is set to the number of bytes
specified in the RECORD
CONTAINS CHARACTERS
clause, if the clause was detected;
otherwise, the size is set to
30 bytes.
054 V] FD OR SD NOT IN FILE SECTION. An FD or SD was detected Every file or sort descrip- The file or sort description is
outside the file section. tion must be within the file deleted. Any record descrip-
section. tions following the FD or SD are
accepted. They are allocated to
either the working-storage or
linkage section, depending on
which header was last encoun-
tered.
055 C LEVEL NUMBER number ENCOUNTERED A data descriptor was en- If a data descriptor is the The compiler assumes the

PRIOR TO SECTION HEADER.

countered prior to detection
of a DATA DIVISION section
header.

first entry in the data
division, it must be
preceded by a WORKING-
STORAGE or LINKAGE
SECTION header.

WORKING-STORAGE SECTION
header has been encountered

and allocates the data item to
that section.

704800 Q3AN3LX3
£/S0 JVAINN AHY3dS

€ 'A3Y 6508-dN

L1-a

Table D—1. Diagnostic Messages (Part 11 of 30)

Message Severity Diagnostic Message Reason Explanation Recovery
Number Code Rule
056 U LANGUAGE ELEMENT NOT A COBOL language feature The following language The clause, entry, or statement
IMPLEMENTED. not supported by the compiler elements are not available: is deleted.
has been encountered. 1-O verbs in USE
ERROR or LABEL
procedure and ENTRY
within a USE procedure.
057 v} DATA ENTRY REQUIRES RENAMES A data descriptor with fevel A data descriptor whose The data description is deleted.
OR VALUE CLAUSE. number 66 has no RENAMES level number is 66 must
clause or a data descriptor have a RENAMES clause,
with a level number of 88 and a data descriptor whose
has no VALUE clause. level number is 88 must
have a VALUE clause.
058 U LEVEL 88 condition-name NOT The level 88 entry is the See rules for condition-name. The compiler creates a level 01
PRECEDED BY DATA ENTRY. first entry in the data named FILLER, length 1, signed
division. for the conditional variable.
059 u LEVEL 66 data-name MUST APPEAR The level number 66 entry See rules for RENAMES. A level number 01 named

ONLY AT END OF A HIERARCHY.

was not followed by one of
the following: a level number
01 entry, an FD or SD entry,
a level number 77 entry, a
level number 66 entry, or a
PROCEDURE D{VISION
header.

FILLER is created to follow the
level number 66 entry.

704900 Q3anN3Lx3
€/50 JVAINN AHY3dS

€ 'A9Y 6508-dN

(4%

Table D—1. Diagnostic Messages (Part 12 of 30)

Message Severity Explanation
Number Code Diagnostic Message
Reason Rule Recovery
060 u OCCURS DEPENDING ASSOCIATED The data-name with the See rutes for OCCURS The DEPENDING option of the
WITH data-name. DEPENDING option of the clause with the DEPENDING OCCURS clause is ignored {max-
OCCURS clause is not the option. imum number of occurrences is
last group entry in a 0t assumed).
hierarchy or the data-name
is subordinate to another
OCCURS clause.
061 V] LEVEL NUMBER literal IS NOT A data entry with a level See rules for level number. A level number 01 named FILLER
SUBORDINATE TO AN 01. number between 02 and 49 is created to precede the data
follows a level number 77 entry.
or DATA DIVISION header.
062 u CONSISTENCY ERROR: clause-1 Conflict between description See Section b for rules Clause-1 is deleted.
INVALID WHEN USED WITH clause-2. cluases of the data entry, e.g., on clauses in conflict.
USAGE COMP-3 and
ALPHANUMERIC PICTURE.
063 P GO TO DEPENDING OPTION CONTAINS At ieast two procedure names See Format 2 of GO TO Controi is transferred to
ONLY ONE PROCEDURE NAME. are required in a GO TO statement. procedure name if value of
statement with the DEPENDING identifier is 1. Otherwise,
option. control is passed to the next
sentence.
064 U PICTURE INVALID for group item The data entry was determined See rules for PICTURE. The compiler deletes the
data-name. to be a group item from tevel PICTURE clause on the
* number structure and a group item.
PICTURE clause conflicts with
agroup entry.
065 §] IMS ENVIRONMENT PROHIBITS USE The specified element is not IMS mode requirement The specified element is deleted.
OF LANGUAGE ELEMENT etement. attowed under IMS processing
mode.
066 V] PROCEDURE DIVISION USING-REQUIRED Procedure division USING The procedure division USING No action is taken by the compiler.
IN IMS ENVIRONMENT. must be present in the IMS is the only allowable entry
environment. point in a COBOL program
in the IMS environment.

70900 G3AN3LX3
€/S0 JVAINN AYY3dS

€ 'A9Y 6908-dN

€l-a

Table D—1. Diagnostic Messages (Part 13 of 30)

Message Severity ' ' Explanation
Number Code Diagnostic Message
Reason Rule Recovery
069 c SAME SORT OR SAME RECORD AREA Some, but not all, filenames If one or more filenames of No action is taken by the compiler,
CONFLICTS WITH SAME AREA CLAUSE. in a SAME AREA clause appear a SAME AREA clause appears
in a SAME RECORD or SAME in a SAME RECORD or
SORT AREA clause. SAME SORT AREA ciause;
all the filenames in that
SAME AREA clause must
appear in the SAME SORT
or SAME RECORD AREA
clause.
073 o} ONE LEVEL NUMBER ALLOWED PER More than one level number See formats of the data The level number is processed
LINE. appears on the indicated division. as though it were on a unique
line number. fine number.
074 C USAGE of data-name CONFLICTS WITH A data entry usage conflicts See rules for USAGE and Compiler assumes group entry’s
USAGE OF GROUP. with the usage of one or VALUE IS. usage as proper usage.
more of the group entries
which this data entry is
subordinate to or usage
conflicts with a value on
a group level.
075 V] THE OCCURS CLAUSE ON data-name A data entry with an OCCURS See rules for OCCURS. The compiler deletes the OCCURS
INVALID, 4 DIMENSIONAL TABLE clause which would cause clause on the data entry.
DESCRIBED. more than three levels of
subscripting was encountered.
076 U FILE file-name HAS NO DATA RECORD. A level 01 data record was Format violated; see file No action is taken by the compiler

not encountered for this file.

section. There must be a
data record description for
each file.

704902 d3AN3LxX3
€/50 JVAINN AHY3dS

£ 'A9Y 6G08-dN

v1-d

Table D—1. Diagnostic Messages (Part 14 of 30}

. Explanation
Message Severity . .
Number Code Diagnostic Message
Reason Rule Recovery
077 C BLOCK-LENGTH-CHECK CONFLICTS BLOCK-LENGTH-CHECK BLOCK-LENGTH-CHECK The BLOCK-LENGTH-CHECK
WITH RECORDING MODE FOR character- is not allowed with all is appropriate with recording is disregarded.
string. recording modes. mode V or D only.
078 S ADDITIONAL MEMORY REQUIRED There is not enough main N/A Compiler assumes that label name
FOR LABEL RECORDS PROCESSING. storage available to hold definitions that will not fit
all the label name definitions into main storage do not exist.
for this file. Main storage is required to hold
the SELECTS and label name
definitions. To allow processing
of more label names, allocate
more main storage, shorten the
size of the SELECTS, or define
fewer labe! names.
079 U BLOCK CONTAINS CHARACTERS NOT A A file with organization relative N/A The compiler deletes the BLOCK
MULTIPLE OF RECORD SIZE FOR FILE with an inconsistent blocking CONTAINS clause.
filename. factor was encountered {block-
ing from BLOCK CONTAINS
clause).
080 C FILE-NAME file-name DOES NOT APPEAR A file which does not have a See rules for FILE CONTROL. | Compiler assumes a SELECT entry
IN A SELECT. SELECT entry {matched by defined with file-name (of file)
file-name) was encountered. assigned to tape-6.
081 C INVALID RECORDING MODE FOR 1. A file assigned to card Device restriction (card Compiler assumes recording mode

FILE fite-name.

reader and recording mode
was V or U,

2. File assigned to DISC
with ORGANIZATION
RELATIVE, and
RECORDING MODE was
VorU.

reader) access method
restriction (DISC, DISC-8414)

F for this file.

10800 a3anarxa
€/S0 JOVAINN AHH3dS

€ 'A3H 6508-dN

S1-a

Table D—1. Diagnostic Messages (Part 15 of 30)

. Explanation
Message Severity . i
Number Code Diagnostic Message
Reason Rule Recovery
082 Cc 80 CHARACTER BLOCK LIMIT EXCEEDED A BLOCK CONTAINS clause See rules for BLOCK The compiler assumes the max-
BY CARD FILE file-name. exceeds the maximum for CONTAINS. imum size (80) for BLOCK
a card device. CONTAINS.
083 C BLOCK CONTAINS EXCEEDS 1 RECORD A file assigned to a card device Device restriction. Compiler assumes BLOCK
ON CARD-READER FILE file-name. was encountered with a CONTAINS one record.
BLOCK CONTAINS clause
specifying two or more records.
084 C FILE file-name MUST HAVE LABEL A file assigned to a unit Data management restric- Compiler assumes labels to be
RECORDS OMITTED. record device with other tion. omitted,
than LABEL RECORDS
OMITTED was encountered.
085 o BLOCK SIZE SPECIFIED FOR FILE BLOCK CONTAINS clause See BLOCK CONTAINS. The compiler assumes that the
fite-name EXCEEDS MAXIMUM. contains value which exceeds maximum length was specified.
maximum length for the
device the file is assigned to.
086 C BLOCK SIZE SPECIFIED FOR FILE A BLOCK CONTAINS clause See BLOCK CONTAINS. The compiler assumes the min-
file-name LESS THAN MINIMUM, value was encountered which imum length for the
is less than the minimum BLOCK CONTAINS clause.
allowed for the device.
087 V] DESCRIPTION FOR LABEL RECORD A label name (from LABEL See rules for label records. The compiler assumes that the
label name NOT ENCOUNTERED. RECORDS ARE clause) with label name does not exist.
no 01 label description was
encountered.
088 C FILE file-name MUST HAVE LABEL Filename is assigned to File assigned to disc must Compiler assumes LABEL
RECORDS STANDARD OR DATA NAME. direct access device but have a LABEL RECORDS RECORDS ARE STANDARD
the LABEL RECORDS specification. for the file.
clause specifies OMITTED.
089 C FILE file-name MUST HAVE LABEL Filename is assighed to a File with ORGANIZATION Compiler assumes label records

RECORDS STANDARD.

direct access device with
ORGANIZATION INDEXED,
and LABEL RECORDS ARE
OMITTED or data-name is
specified.

INDEXED must have
LABEL RECORDS
STANDARD.

to be standard for the file.

70802 d3anN3Lx3
€/S0 JVAINN AHY3dS

€ 'A%y 6G08-dN

91-a

Table D—1. Diagnostic Messages (Part 16 of 30}

Explanation
Message Severity . i
Number Code Diagnostic Message
Reason Rule Recovery
o9 U COPY SYNTAX REQUIRES character- The character-string listed See 6.6.7.1 for COPY The item in error and all items
string, character-string INVALID. as invalid has produced a verb rules. which follow it in the COPY
syntax error. The required clause are deleted.
type of character-string is
indicated.
092 S REPLACING character-string The main storage area used Compiler restriction. The compiler ignores the balance
OVERFLOW CAUSED BY character-string to save replacing items has of the clause which causes over-
been exhausted or the number flow. Recompile with additional
of gualifiers associated main storage allocated to the
with an identifier has compiler or reduce the number
exceeded internal storage. of items, amount of qualification,
or size of names in the REPLAC-
ING clause.
093 C Sign condition test requires figurative Literal O invalid unless When testing the condi- Literal constant O is treated
constant ZERO:; literal O is invalid. preceded by a relational tion of a data item for a as figurative constant ZERO
operator. 0 condition. Syntax with code being generated
requires the use of as if statement was written:
figurative constant ZERO {F DATA-NAME ZERO.
when no conditional opera-
tor is present in the test.
094 C CHARACTER NUMBER literal IS INVALID An invalid PICTURE character, See Section 5 for the In order to delete the data
IN type PICTURE picture-string. a PICTURE character incon- allowable PICTURE symbols descriptor, the compiler sets its
sistent with the PICTURE and the rules for their PICTURE to S8.
type, or a violation of the usage.
PICTURE precedence rules
was detected.
095 C THE type PICTURE picture-string IS As stated, the picture is See Section 5 for the in order not to delete the data
INCOMPLETE. incomplete and cannot be allowable PICTURE descriptor, the compiler sets its
processed, e.g., SPPPP. symbols and the rules for PICTURE to S9.
for their use.
096 & CHARACTER NUMBER literal 1S An invalid PICTURE See Section 5 for the The PICTURE characters prior to
INVALID IN PICTURE picture-string. character, a PICTURE allowable PICTURE the character in error are accepted.
character inconsistent with symbols and the rules for
the PICTURE type, or a their usage.
violation of the PICTURE
precedence rules was
detected.

70802 @3AN3LX3
€/S0 JVAINN AHY3dS

€ 'A9H 6G08-dN

L1-a

Table D~1. Diagnostic Messages (Part 17 of 30)

Explanation

Message Severity) .

Number Code Diagnostic Message P - Recovery

097 Cc SIZE LIMIT OF literal BYTES EXCEEDED The PICTURE specifies more The maximum size in bytes In order not to delete the data
BY PICTURE picture-string. storage than the maximum of numeric PICTURE is 18, descriptor, the compiler sets its

atlowed for the PICTURE type. alphabetic or alphanumeric PICTURE to S9.
is 4092, numeric edited or
alphanumeric edited is 132.

098 Cc THE NUMBER OF DIGIT POSITIONS The number of digit positions The maximum number of In order not to delete the data
IN PICTURE picture-string in the PICTURE exceeds 18. digits allowed in a numeric descriptor, the compiler sets
EXCEEDS 18. or numeric edited the PICTURE to S9.

PICTURE is 18.

099 C A VAL UE CONTAINED WITHIN A value contained within The number of times a The value within the parentheses
PARENTHESES IS =0 OR >>4092 IN parentheses is either O or PICTURE character is is set to 1 and processing of the
PICTURE picture-string. greater than 4092, repeated as specified by the PICTURE continues.

value in parentheses
following it, must be
greater than 0 and less
than 4093.

100 [of A NUMBER DOES NOT FOLLOW A LEFT A left parenthesis within the Within parentheses, a numeric In order not to delete the data

PARENTHESIS IN PICTURE picture-string. PICTURE is not followed by a integer is used to specify descriptor, the compiler sets the
numeric integer. the number of times the PICTURE to S9.
preceding PICTURE character
is repeated.

101 C RIGHT PARENTHESIS MISSING FROM A right parenthesis does not Each left parenthesis in a In order not to delete the data

PICTURE picture-string. follow a numeric integer PICTURE must be followed descriptor, the compiler sets
preceded by a left parenthesis. by a numeric integer and a the PICTURE to S9.
right parenthesis.

102 C BOTH LEADING AND TRAILING SIGN Two insertion sign characters Specification of both leading In order not to delete the data
INSERTION SPECIFIED IN PICTURE were detected in the numeric- and trailing sign insertion descriptor, the compiler sets the
picture-string. edited PICTURE. is not permitted. PICTURE to S9.

104 i 3 The literal being moved contains T . . .

P LITERAL literal-string TRUNCATED runcation occurs when any The literal is moved and
DURING MOVE. a greater number of character portion of the item being truncated.
positions Fhan th_e recglver, or, moved cannot be contained
when decimal-point aligned, in the receiving field.
contains a greater number of digit
positions than the receiver.
105 C INITIAL VALUE TRUNCATED. The valtue specified for the The initial value cannot The excess characters are trun-

data item contains a greater
number of characters than the
data item, or is a numeric
value that, when the decimal
point is aligned, is larger

than the maximum value the
data item can contain.

contain more characters
than can fit into the data
item.

cated.

704903 Q3aN3Lx3
€/50 IVAINN AdY3dS

£ 'A9Y 6508-dN

81-a

Table D—1. Diagnostic Messages (Part 18 of 30)

Explanation

Message Severity
Number Code Diagnostic Message
Reason Rule Recovery

106 U INVALID POSITIONING OF KEY data-name There must not be any item See rules for KEY under The named KEY is processed as a

IN HHERARCHY. with an OCCURS clause be- OCCURS clause. regular data item; the KEY infor-
tween the table item and its mation is ignored.
keys.

107 S ADDITIONAL MEMORY REQUIRED TO Not enough main storage is The compiler does not process the
PROCESS HIERARCHY CONTAINING available to contain all data entries not contained in
data-name. entries subordinate 10 the main storage. To compensate,

01 data entry, and too many shorten the hierarchy, shorten
entries for the 01 hierarchy names in data entries, or assign
for the amount of main more main storage to compiler,
storage allocated.

108 S data-name EXCEEDS REDEFINES There are too many levels of See rules for REDEFINES. The compiler assumes this entry
NESTING LIMIT. redefinition. This data entry does not contain a REDEFINES

exceeds the limit of re- clause.
definition,

109 C data-name HAS IMPROPER REDEFINES The redefined area is a See rules for REDEFINES. The compiler assumes the redefini-
OBJECT data-name. redefining area; i.e., the tion of the last-defined area

object of the REDEFINES with the same level as the
clause has or is subordinate subject of the REDEFINES clause.
to a REDEFINES clause.

110 S ADDITIONAL MEMORY REQUIRED TO Insufficient main storage is The compiler assumes the qualifier
PROCESS RENAMES QUALIFIER. available to contain the does not exist.

RENAMES qualifier because
of a large hierarchy and/or

a lot of RENAMES
qualifiers.

111 U DESCRIPTION OF data-name NOT The definition of the entry is See rules for quatification. The compiler assumes the qualifier
ENCOUNTERED. not in the current hierarchy. name in error does not exist.

112 C RENAMES OCCURS CONFLICT BETWEEN The object of the RENAMES See rules for level-number. The compiler assumes the last
data-name-1 AND data-name-2. clause on data-name-1 has elementary item in the hierarchy

or is subordinate to an is the object of the RENAMES
OCCURS clause. clause.

113 C REDEFINING AREA data-name UNEQUAL The calculated length of the See rules for REDEFINES. The compiler assumes the largest
TO SIZE OF REDEFINED AREA. redefined area is not the same length was calculated for both

as the length of the redefining areas.
area.
114 C SIZE OF ELEMENTARY ITEM data-name An elementary item with a See data definition. The compiler assumes the length

EXCEEDS MAXIMUM OF 4092.

length larger than the max-
imum was detected.

to be 4092 for the elementary
item.

10900 G3aN3ix3
£/S0 JVAINN ABH3dS

€ 'A8Y 6508-dN

61-a

Table D—1. Diagnostic Messages (Part 19 of 30}

Message Severity Explanation
Number Code Diagnostic Message
Reason Rule Recovery
115 C S1ZE OF WORKING-STORAGE GROUP A group entry in working- See data definition. The compiler assumes the length
ITEM data-name EXCEEDS storage is a length- calcu- of the group item to be 65,535.
MAXIMUM OF 65,535. lated to exceed the maximum. The entire area specified is,
however, allocated.
116 C SIZE OF NON-WORKING-STORAGE The length of a file or See data definition. The compiler assumes the maxi-
GROUP ITEM data-name EXCEEDS linkage section group item mum of 4092 was the calculated
MAXIMUM OF 4092. was calculated to be greater length of the group item.
than the maximum.
117 U INVALID LEVEL NUMBER STRUCTURE A level number equal to the The compiler assumes a level
ENCOUNTERED AT data-name. level of the data entry should number on a data entry directly
have appeared in the hierarchy subordinate to the 01, e.g.,
directly subordinate to the 0t. 01 A
LEVEL 02 MISSING
05B
02C
INVALID LEVEL STRUCTURE
118 C THE FIRST OBJECT OF THE LEVEL The first object of a RE- See rutes for RENAMES. The compiler assumes the second
66 ENTRY data-name ENDS AFTER NAMES clause does not object does not exist.
THE SECOND OBJECT. precede the area of the
second object of the
RENAMES clause.
119, C THE SECOND OBJECT OF THE The second object of a See rules for RENAMES. The compiler assumes the objects
LEVEL 66 ENTRY data-name STARTS RENAMES clause does not are reversed. (The first is the
BEFORE THE FIRST OBJECT. precede the first object second and the second is the
of the RENAMES clause. first.)
120 C USAGE INDEX INVALID FOR A condition name entry is See rules for condition The compiler assumes the alpha-
CONDITIONAL VARIABLE data-name. defined for a data entry name. numeric usage for the conditional
with a USAGE IS INDEX variable.
clause.
121 C RECORD data-name A file described as F RE- See rules for RECORDING The compiler assumes the largest
SIZE UNEQUAL TO PREVIOUS RECORDS CORDING MODE does not MODE. data record length for calculation
IN A FIXED RECORDING MODE FILE. have data records with the of record length for the file.
same length.
122 C LABEL RECORD data-name SIZE A label record description S/ 3 label specification The compiler assumes the length

NOT EQUAL 80 CHARACTERS.

with a length other than 80
was encountered.

has a length of 80 for labels.

of label records to be 80.

70809 @3anN3aLx3
€/S0 IVAINN AHY3dS

€ 'A%Y 65908-dN

0c-a

Table D—1. Diagnostic Messages (Part 20 of 30)

Message Severity Exptanation
Number Code Diagnostic Message
Reason Rule Recovery
123 U data-name NOT ALIGNED. The data-name is the subject of See rules for SYNCHRONIZED. | The SYNCHRONIZED clause is

a REDEFINES clause and ignored.
requires atlignment due to a
SYNC cdause. However, the
object of the REDEFINES
is not aligned.

124 C BLOCK SIZE FOR file-name SMALLER The BLOCK CONTAINS The compiler assumes the block

THAN LARGEST RECORD. CHARACTERS clause speci- tength to be the length of the
fies a block tength smaller largest record.
than length of fargest data
record.

125 C SIZE OF data-name GREATER THAN The RECORD CONTAINS The compiler assumes that the
RECORD CONTAINS FOR FILE clause specifies a record largest hierarchy subordinate to
fite-name. length smaller than largest the FD specifies the length of the

record. largest data record for the file,

126 C file-name clause LENGTH condition The BLOCK CONTAINS See BLOCK CONTAINS and The compiler assumes the limiting
ALLOWED FOR DEVICE. clause or the RECORD RECORD CONTAINS. length for the clause in error.

CONTAINS clause exceeds
maximum or is less than
minimum for the device to
which the file is assigned.

127 C RECORD CONTAINS CLAUSE FOR FILE The RECORD CONTAINS The compiler assumes that the
fite-name NOT EQUAL TO SIZE OF clause does not specify the length of the largest data record
LARGEST RECORD. length of the largest data is specified in the RECORD

record. CONTAINS clause.

128 P BLOCK LENGTH OF FILE file-name The length of the block for No action. Precautionary warning,
PROHIBITS RUN TIME SPECIFICATION the file is too large to allow
OF BLOCK NUMBERING. block numbering.

129 V] REDEFINES NOT PERMITTED FOR A file section level 01 with See rules for REDEFINES. The compiler assumes the RE-
RECORDS IN FILE SECTION. a REDEFINES clause was DEFINES clause does not exist.

encountered.

130 U SUBJECT OF REDEFINES, data-name, The subject of a REDEFINES See ruies for REDEFINES. The compiler assumes the RE-
NOT IN SAME SECTION AS OBJECT OF clause is not in same section DEFINES clause does not exist.
REDEFINES. as entry with REDEFINES.

10802 Q3aN3Lx3
€/80 JVAINN AHY3dS

€ 'A3Y 6508-dN

1¢-a

Table D—1. Diagnostic Messages (Part 21 of 30)

Explanation

Message Severity . i
Number Code Diagnostic Message
Reason Rute Recovery
131 V] OBJECT OF REDEFINES, data-name, The object of a REDEFINES See rules for REDEFINES. The compiter assumes the
WITHIN RANGE OF OCCURS. clause has or is subordinate REDEFINES clause does not
to an OCCURS clause. exist,
132 U REDEFINES OBJECT, data-name, AND The object and subject of the See rules for REDEFINES. The compiler assumes the
SUBJECT, data-name, UNEQUAL REDEFINES dause do not have REDEFINES clause does not exist
LEVEL NUMBER. the same level numbers.
133 S INDEX NAME data-name EXCEEDS The current compiler limit The compiler starts index-name
COMPILER LIMITS. of index-names is 265. This main storage assignment over
entry is the 256th specified and reassigns the main storage
index-name. to the index-names being
processed.
134 [ELEMENTARY ITEM data-name HAS NO An elementary item, deter- The compiler assumes a length of
LENGTH SPECIFIED. mined from level number 1, signed, was specified.
structure, with no length
specified or assumed was
encountered.
135 C OBJECT OF RENAMES data-name The object of the RENAMES See rules for RENAMES. The compiler assumes the last
NOT FOUND WITHIN HIERARCHY. cdause was not found in the elementary item of the hierarchy
immediate hierarchy. as the specified object of the
RENAMES clause.
136 C OBJECT OF RENAMES data-name The object of the RENAMES See rules for RENAMES. The compiler assumes the tast
HAS ILLEGAL LEVEL NUMBER. clause has an iltegal level elementary item as specified
number. object of the RENAMES clause.
137 V] REDEFINES CLAUSE IN data-name The object of the REDEFINES See rules for REDEFINES. The compiler assumes the REDE-
ENTRY HAS INVALID OBJECT. clause is not a legal level for FINES clause does not exit.
redefinition.
138 S ADDITIONAL MEMORY REQUIRED FOR The compiler needs more Each procedure-name This procedure-name definition

PROCEDURE NAME PROCESSING.

main storage in order to
process the rest of the section
and paragraph names.

definition requires 16

bytes of storage plus one
byte for each character in
the name. To increase the
number of procedure-names
that can be processed,
recompite using smaller
names or with more main
storage assigned to the
compiler.

and all others that foll ow are
deleted.

704803 d3aN3Lx3
€/S0 OVAINN A”Y3dS

€ 'A3Y 6508-dN

¢c-a

Table D—1. Diagnostic Messages (Part 22 of 30}
Message Severity . Explanation
Number Code Diagnostic Message
Reason Rule Recovery
139 C PRIORITY NUMBER INCORRECT OR Priority number value does not The priority number must be 1f segmentation has been specified
OUT OF SEQUENCE. fall in range of 0 to 99 or an integer ranging in value {a previous segment with priority
priority number >>50 is from O through 99. Segments number 2> 50) the last valid
not in ascending sequence. with priority number 50--99 priority number is assigned to
are independent segments this section. 1f segmentation
and must appear in the source has not been encountered, a
program in ascending numeric priority number of 0 is assumed.
order.
140 U NEITHER EXIT PROGRAM NOR An entry point has been All COBOL subprograms No corrective action is possible
RETURN STATEMENT ASSOCIATED specified for this program must contain either an for this error. If the program is
WITH ENTRY OR USING STATEMENT. but the program contains no EXIT PROGRAM or a executed as a subprogram it will
mechanism to return to caller. RETURN statement. not return to the calling program.
141 U NEITHER ENTRY NOR USING STATEMENT Program contains mechanism A COBOL program that is to No corrective action is possible
ASSOCIATED WITH EXIT PROGRAM OR 1o return to a calling program be used as a subprogram must for this error. It is impossible
RETURN STATEMENT. but no mechanism has been have an entry point. to execute this program as a
coded where the calling program subprogram.
may enter this program.
142 U NO ENTRY OR RETURN STATEMENT No entry point has been The use of the linkage No corrective action is taken.
ASSOCIATED WITH LINKAGE SECTION. specified for this subprogram. section implies that this
is a subprogram. Subprograms
must have entry and exit points
143 V] STRUCTURE OF CONDITIONAL ELSE encountered in {F In a conditional statement, The conditional statement is
SENTENCE INVALID, UNPAIRED statement with no preceding any ELSE encountered is terminated at this point.
ELSE ENCOUNTERED. IF verb to match it. considered to apply to the
immediately preceding |F
that has not been atready
paired with an ELSE.
144 P PROCEDURE DIVISION DOES NOT No STOP RUN statement is No rule has been violated; Results during execution are
CONTAIN A STOP RUN. coded in this program. There this diagnostic is strictly unpredictable.
is no way to bring this program informative.
to an orderly halt.
145 V] EXIT WAS NOT THE ONLY STATEMENT EXiT statement is in paragraph The EXIT sentence must be Nothing is deleted from the
IN PARAGRAPH. which contains statements preceded by a paragraph- program. The statement
other than EXIT. name and be the only following the EXIT
sentence in the paragraph. sentence is executed
before the EXITs
statements.
146 C THE BEFORE OPTION OF THE USE The BEFORE option is not The BEFORE option is not The AFTER option is assumed.
STATEMENT IS NOT APPLICABLE IN allowed in SPERRY UNIVAC applicable to SPERRY UNIVAC
SYSTEM. 08/3 COBOL. 0S/3 COBOL, but is accepted
for compatibility

10900 @3aN3alx3
€/S0 JVAINN AHH3dS

€ 'A3Y 6508-dN

g€¢-a

Table D—1. Diagnostic Messages (Part 23 of 30)

) Explanation
Message Severity i .
Number Code Diagnostic Message
Reason Rule Recovery
147 o THE PROGRAM NAME IN CALL Program name exceeds eight A maximum of eight characters| The program name in the CALL
STATEMENT EXCEEDS EIGHT characters in length. is allowed in subprogram statement is truncated to eight
CHARACTERS. names. characters.
148 v} REFERENCE TO name CANNOT BE A definition of the listed name Every name referenced must The statement containing the
‘ RESOLVED. has not been encountered. be defined. reference is deleted.
149 u QUALIFIED REFERENCE TO name A definition of the listed Every name referenced The statement containing the
CANNOT BE RESOLVED. name has not been encountered with qualification must reference is deleted.
under the specified qualifiers. be defined within the
hierarchy associated
with the highest feve!
qualifier.
150 C REFERENCE TO PROCEDURE name A definition of the listed A reference to a nonunique The reference is resolved by
IS AMBIGUQUS, DEFINITION AT paragraph-name has not paragraph-name where all the paragraph-name at the
LINE literal USED. been encountered within definitions are outside the tisted line number.
the section from which the section from which the
reference is made, while reference is made must
multiple definitions exist be qualified.
outside the section of
reference.
151 u REFERENCE TO name OF name Normally this diagnostic The qualifier in a procedure The statemnent containing the

CANNOT BE RESOLVED DUE TO
DEFINITION AT LINE iiteral.
name of name UNRESOLVED
DUE TO DEF AT LINE literal.

indicates that a definition

for the gualifier in a pro-
cedure reference has been
encountered but is not a
section-name. In the
ambiguity mode of reference
resolution {(PARAM LST=A},
this diagnostic is also
generated when:

1. The highest qualifier of a
data reference is not
encountered in the data
division but is encountered
in the procedure division.

2. The qualifier of a pro-
cedure reference is not
encountered in the pro-
cedure division but is
encountered in the data
division.

This implies that when the
definition that will resolve the
reference is added to the source
program, the highest possible
qualifier rule is violated.

reference must refer to a
section-name. Highest
possible qualifiers (level
indicator names, section-
names, level 01 and 77
names) must be unique in a
program since a reference
to the name cannot be
qualified.

reference is deleted.

10902 Q3AaN3Lx3
€/S0 JVAINN A¥Y3dS

€ 'A3Y 6908-dN

vc-a

Table D—1. Diagnostic Messages (Part 24 of 30)

Message
Number

Severity
Code

Diagnostic Message

Explanation

Reason

Rule

Recovery

152

C

REFERENCE TO name AMBIGUOUS
DUE TO DEF AT LINE literal, DEF
AT LINE literal USED.

This diagnostic is generated
only in the ambiguity mode
of reference resolution
(PARAM LST=A) for an
unqualified reference when a
duplicate definition of the
listed name has been en-
countered within the COBOL
division implied by the
reference type, e.g., GO TO
implies procedure division;
MOVE implies data division.

Every name in a COBOL
program must be unique,
either because of different
spelling, or because of
gualification.

The reference is resolved by the
name at the listed line number,

153

IMPROPER DEFINITION OF name
AT LINE literal IMPLIED BY MANNER
OF REFERENCE.

This diagnostic is generated
only in the ambiguity mode
of reference resolution
(PARAM LST=A} for an
ungualified reference when a
duplicate definition of the
listed name has been en-
countered in a COBOL
division, other than the
division implied by the
reference type, and consti-
tutes a violation of the
highest possible qualifier
rule.

Highest possible qualifiers
{level indicator names,
section-names, level 01 and
77 names} must be unique
since a reference to the
name cannot be qualified.

If the reference cannot be
resolved within the COBOL
division corresponding to the
reference type, the statement
is deleted.

154

name MUST BE UNIQUE, DUPLICATE
DEFINITION FOUND AT LINE literal.

This diagnostic is generated
only in the ambiguity mode

of reference resolution
(PARAM LST=A) for qualified
references when a redefinition
of the highest qualifier

violates the highest possible
qualifier rule.

Highest possible qualifiers
(level indicator names,
section-names, level 01
and 77 names) must be
unique since a reference
t0 the name cannot be
qualified.

If the reference cannot be
resolved within the COBOL
division corresponding to
the reference type, the
statement is deleted.

155

BEFORE OPTION NOT APPLICABLE
IN C-MODE.

The WRITE BEFORE
ADVANCING option is
not available in the
conversion mode.

Compatibility requirement

The BEFORE option is treated
as though the AFTER option
had been specified.

name STATEMENT OPERAND name IS
IMPROPERLY INDEXED

Index name used to address
table element is not asso-
ciated with the table but

is associated with another
tabte which has the same
element size.

When an item is indexed
by an index name, that
index name must be
associated with that
table name.

Precautionary warning.
No corrective action is
taken.

70900 G3AN3LX3
€/80 JVAINN AHY3dS

€ "A%Y 6G08-dN

s¢-d

Table D—1. Diagnostic Messages (Part 25 of 30)

Explanation
Message Severity i .
Number Code Diagnostic Message
Reason Rule Recovery
158 P verb CONTAINS WORKING-STORAGE Due to the shared nature of Do not madify WORKING No action. Precautionary warning.
OPERAND data-name WHICH SHOULD programs operating under IMS STORAGE operands in the
NOT BE MODIFIED mode, errors could occur if IMS environment.
working-storage elements are
modified at object program
execution time.
159 U verb STATEMENT CONTAINS INVALID The specified data item does See the general rules The statement containing the
OPERAND data-name. not satisfy the requirements specified for the desig- listed operand is deleted.
for the designated verb, for nated verb.
example, an alphabetic
operand in an ADD
statement.
160 V] verb STATEMENT OPERAND data-name The data item contains too References to items in a The statement containing the
IS IMPROPERLY SUBSCRIPTED. many subscripts, too few, or table must have the correct subscript error is deleted.
an improper type of subscript. number of subscripts or
indexes, subnumeric integers,
subscripts must be unsigned,
subscripts and indexes must
not be moved in a single
data reference, and
references to items not in
a table must not be subscripted
161 U verb STATEMENT CONTAINS INCONSISTENT The combination of operands See the rules for the indicated The statement containing the
OPERAND data-name. in the statement conflict in verb statement. inconsistent operand is deleted.
their usage, for example,
moving a numeric item to an
alphabetic operand.
162 C verb STATEMENT CONTAINS SIGNED A signed literal has been See the specific rules for The sign of the literal is deleted.
LITERAL literal. encountered. the designated verb.
163 u COMPOSITE OF OPERANDS IN verb The superimposition of all See rules for composite of The statement containing the
STATEMENT EXCEEDS 18 DIGITS. operands to the left of the operands for the specified composite error is deleted.
word GIVING exceeds 18 digits. verb.
164 U GO TO PRECEDES IMPERATIVE A GO TO statement is A GO TO statement must be The statements between the GO

STATEMENT.

followed by other imperative
statements,

the last statement in a

series of imperative state-
ments. In a conditional
statement, a GO TO must be
followed by ELSE, IF, or a
period.

TO and the ELSE, IF, or period
are deleted.

704902 a3aN3Lx3
€/80 JVAINN AHY3dLS

€ "A8Y 6G08-dN

9¢-a

Table D—1. Diagnostic Messages (Part 26 of 30)

Message
Number

Severity
Code

Diagnostic Message

Explanation

Reason

Rule

Recovery

165

U

verb STATEMENT OPERAND data-name
NOT DEFINED IN LINKAGE SECTION.

An operand not defined in
the linkage section has been
encountered in an entry or in
the procedure division USING
statement.

Data-names in an entry or
procedure division USING
statement must be defined
in the linkage section.

The statement containing the
listed operand is deleted.

166

verb STATEMENT OPERAND data-name
IS NOT LEVEL NUMBER 01 OR 77.

An operand with a level
number other than 01 or
77, has been detected in
an ENTRY or procedure
division USING statement.

Data items in an ENTRY
or procedure division
USING statement are
restricted to items whose
level number is 01 or 77.

The verb is deleted from further
compilation.

167

ADDITIONAL MEMORY REQUIRED TO
PROCESS STATEMENT CONTAINING
verb.

This statement exceeds the
internal main storage area
available to process statements
with multiple operands.

The main storage necessary
to process a single operand
varies from 18 to 250 bytes,
depending on the number of
characters in the data-name
and whether the item
OCCURS, has an edited
picture, or is subscripted.
The maximum main storage
available for statement
processing is a function of
the total main storage
available to the compiler.

A limit of 100 symbols
exists for a single condition
A symbol in this context is an
operand, an arithmetic opera-
tor, a logical operator, a rela-
tional operator, or a class. (A
condition-name test expands
to multiple symbols depending
on the number of values asso-

ciated with the condition-
name.)

The statement is deleted. Addi-
tional main storage should be
assigned to the compiler or the
statement must be rewritten as
multiple statements.

168

verb EXCEEDS LIMIT OF TEMPORARY
DATA AREAS.

The maximum number of
temporary arithmetic data
areas has been exceeded.

Reduce the complexity of the
expression or reduce the number
of expressions in the statement.

169

verb STATEMENT OPERAND name IS NOT
RECORD OR FILE-NAME.

The input-output statement
does not reference a record-
name or file-name.

The following verbs must
refer to record or file-

names: OPEN, CLOSE, READ

WRITE, SORT, RELEASE,
RETURN, INSERT, SEEK.

The statement in error is deleted.

70803 @3anN3Lxa
€/S0 OVAINN AdYH3dS

€ 'A8Y 6508-dN

L¢-d

Table D—1. Diagnostic Messages (Part 27 of 30)

Message Severity Explanation
Number Code Diagnostic Message
Reason Rule Recovery
170 U SENTENCE PRODUCES EXCESSIVE Object code cannot be Generally, a complete Reduce the sentence size by
OBJECT CODE. produced for the entire sentence is limited to rewriting it as several sentences/
sentence because of the between 2048 and 4096 paragraphs.
sentence size. bytes depending on the
sentence structure,
17m V] PERIOD ELSE OR WHEN MUST NEXT SENTENCE must be Inan IF, NEXT The NEXT SENTENCE phrase is
FOLLOW NEXT SENTENCE followed by ELSE, period, SENTENCE must be followed ignored.
or WHEN. by ELSE or a period. in
a SEARCH, NEXT SENTENCE
must be fotlowed by
WHEN, ELSE, or a period.
172 P PERFORM STATEMENT REFERENCES A PERFORM within the Within a USE procedure, No action. Precautionary
A NON-DECLARATIVE PROCEDURE declarative section there must not be any warning.
referenced a procedure reference to any non-
outside of the declarative declarative procedures.
section.
173 U verb STATEMENT OPERAND name Both operands in the The operand specified in The statement is deleted.
REFERS TO FILE RECORD AREA. statermnent refer to the same the WRITE FROM, INSERT
storage area. FROM, or READ INTO
options, may not occupy
the same storage area as
the record or file-name.
174 U verb STATEMENT RECORD-NAME The listed operand is not WRITE, INSERT, and The statement is deteted.
name {S NOT DEFINED IN FILE defined in the file section. RELEASE refer to items
SECTION. defined in the file section,
175 P COMPARISON FOR EQUALITY MAY BE A floating-point operand in a No rule has been violated. Expected results may not
MEANINGLESS FOR A FLOATING POINT relational condition may cause Message is strictly occur at execution time.
OPERAND. the two operands not to be informative.
exactly equal.
176 U DIVIDE STATEMENT PRODUCES The description of the The DIVIDE statement is deleted.

MEANINGLESS RESULT.

operands in a DIVIDE
statement is such that only
zeros could result for the
quotient in the specified
receiver.

708090 d3AN3Lx3
€/80 JVAINN AYY3IdLS

€ 'AY 6G08-dN

8¢-a

Table D—1. Diagnostic Messages (Part 28 of 30)

Message
Number

Severity
Code

Diagnostic Message

Explanation

Reason

Rule

Recovery

177

u

verb STATEMENT CONFLICTS WITH
SEGMENTATION RULES.

A procedure-branching verb
is invalidly specified with
respect to the rules of
segmentation, or an ALTER
statement refers to a
paragraph that does not
begin with a GO TO.

See the rules on segmentation
for the listed verb.

The statement in error is deleted.

178

verb STATEMENT INCOMPLETE OR
CONTAINS INVALID OPERAND OR OPTION.

An operand conflicts with a
specified option or with
another operand, or an
option that must be specified
for a given statement was
not encountered. For
example, a WRITE to a mass
storage device must contain
an INVALID KEY clause.

See the rules for the specified
verb.

The statement is deleted.

179

INTERNAL L ABEL TABLE OVERFLOW.

Either a sentence requires
more than 256 internal labels
or more than 24 internal
labels are active.

Requirements for internal labels
may be lowered by reducing the
number of statements in a sen-
tence.

180

CLASS OF LITERAL CONFLICTS WITH
CLASS OF data-name.

A nonnumeric literal con-
taining numeric characters
is being moved to an alpha-
betic item, or a nonnumeric
literal containing non-
numeric characters is being
moved to a numeric item.

The class of all characters
contained in nonnumeric
literal must be consistent
with the class of the
receiving item,

The statement is deleted.

181

data-name TRUNCATED
DURING MOVE.

The data-name being moved
contains a greater number
of character positions

than the receiver or,

when decimal point aligned,
contains a greater number
of digit positions than

the receiver.

Truncation occurs when
any portion of the item
being moved cannot be
contained in the receiving
operand.

The data-name is moved and
truncated.

182

COMPLETE TRUNCATION OF
name/literal/result.

Decimal point alignment is
such that no portion of the
item being moved can be
contained in the receiving
operand.

The MOVE statement or arith-
metic GIVING statement is
deleted.

70803 G3aN3LX3
€/S0 JVAINN AHH3dS

€ 'A8Y 6508-dN

6¢-d

Table D—1. Diagnostic Messages (Part 29 of 30)

Explanation
Message Severity . .
Numbaer Code Diagnostic Message
Reason Rule Recovery
183 P REDUNDANT ROUND OPERAND The numeric description Rounding is possible only The round operation is deleted.
data-name. of the arithmetic result is when an arithmetic result
such that no excess digit contains at least one ex-
positions are available for cess digit from which the
rounding into the listed round operation can be
operand. based.
184 P REDUNDANT SIZE ERROR OPERAND The numeric description A size error is possible The size error test is performed.
data-name of the arithmetic result is only if the arithmetic
such that its value could result contains more
never exceed the largest significant digit positions
value that can be contained than the resultant
in the listed operand. identifier.
185 U FILE-NAME IN insert STATEMENT The file-name referenced For ORGANIZATION The record key is
REQUIRES SYMBOLIC KEY by the verb requires the INDEXED files, if used.
SYMBOLIC KEY clause ACCESS is
under the SELECT SEQUENTIAL or
clause. EXTENDED, a
symbolic key is
required for the
SEEK verb. If
ACCESS is
EXTENDED, a
symbotic key is
required for a
READ that does
not have the
AT END clause.
186 Cc PERFORM STATEMENT LITERAL The TIMES literal in the The maximum value of a The accepted TIMES count is the
EXCEEDS 32,767. perform statement exceeds PERFORM TIMES literal rightmost 15 bits of the original
the maximum allowable value. is 32,767. value when converted to binary.
This value is between 1 and
32,767.
187 C ADVANCING LITERAL EXCEEDS The WRITE ADVANCING The maximum number of The advancing line count is set

LIMIT.

literal exceeds the maxi-
mum allowable value.

lines that can be advanced

is 127 in the normal mode

and three in the conversion
mode.

to1.

70800 @3anNn3Lx3a
£/50 JVAINN AHH3dS

€ A8y 6508-dN

og-a

Table D—1. Diagnostic Messages (Part 30 of 30}

Message Severity . . Explanation
Number Code Diagnostic Message
Reason Rule Recovery
188 U FILE AT LINE literal NOT An OPEN or CLOSE has not Every file must be Results during execution are
CLOSED} WITHIN PROGRAM been specified for the opened and closed. Files unpredictable.
{OPENED ’ file, or the OPEN is written on must be opened
inconsistent with the for output or 1-O, files
activity associated with read from must be opened
the file. for input or 1-0.
189 u verb STATEMENT PROHIBITED The only 1-O verbs allowed in See rules for USE verb. The 1-O verb is dropped.
WITHIN USE PROCEDURE. a USE procedure are:
ACCEPT (not from system con-
sole or job control stream)
DISPLAY
WRITE (to0 a printer only in
USE FOR FORM OVERFLOW)
190 S ADDITIONAL MAIN STORAGE The compiler does not have The object module is produced.
REQUIRED TO PRODUCE OBJECT sufficient main storage to Recompilation is necessary
CODE LISTING produce the object code with more main storage
listing. assigned to the compiler.
191 S ADDITIONAL MEMORY REQUIRED The compiler does not have A recompilation is necessary
TO PRODUCE OBJECT PROGRAM. sufficient main storage to with more main storage
maintain the compile time assigned to the compiler.
tables necessary to create
the object module output
for this program.
192 C KEY SIZES FOR FILE AT LINE Record key size unequal to Record key and symbolic Symbolic key size is changed to
literal NOT EQUAL. symbolic key size. key sizes must be equal. record key size.
193 P TRUNCATION OF FLOATING POINT In any move from a floating- No rule has been violated. Truncation may occur.

OPERAND literal MAY OCCUR.

point operand to a nonfloating-
point operand, the floating-
point value may not be able

to be represented exactly in
fixed-point format.

Message is strictly
informative.

£ "oy 6G08-dN

70802 d3aN3al1xX3
€/50 JVAINN AHH3dS

L€-a

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 D-32
EXTENDED COBOL

D.3. SYSTEM CONSOLE MESSAGES

During compilation, COBOL source programs may encounter an error condition as indicated by a system console
message. All operator system console messages are listed and described in the error messages programmer/operator
reference manual, UP-8076 (current version). The programmer system console messages, those that are directed to
the programmer, are given in Table D—2. The messages are listed in ascending order based on the message number
and include the meaning and the corrective action to be taken.

®

.

Table D—2. System Console Messages (Part 1 of 2)

Message . . .
Diagnostic M Meani i
Number iagnostic Message eaning Corrective Action
CCo1 INSUFFICIENT MEMORY Insufficient main storage provided to Allocate sufficient main storage
accommodate the processor. The job step is and rerun the job.
terminated.
CCo02 LOAD ERROR An error occurred while attempting to Check the LOAD library to make sure
locate and load a job phase in the that the phase is entered. If not‘,
LOAD library. The job step is terminated. enter it and rerun. If the phase is
in the library, contact your Sperry
Univac customer representative.
CcCo4 PATCH s aaaa IGNORED, SIZE INVALID A patch card format error has occurred Correct the card format and rerun.
in the control stream. The job step is
terminated.
where:
s
Is the segment number,
aaaa
Is the address where the error
occurred.,
CC05 PATCH s aaaa IGNORED, NO DELIMITER A patch card format error has occurred in the Correct the card format and rerun,
control stream. The job step is terminated.
CCo06 SNAP s aaaa IGNORED A snap card format error has occurred in the Correct the card format and rerun,
control stream. The job step is terminated.
CcCo7 NO SOURCE PROGRAM An error occurred when the end-of-file card Correct the control stream and
was read prior to the first source card in rerun the job.
the control stream. The job step is terminated.
ccos PARAM CARD ERROR An error was detected in the PARAM card Correct the PARAM card and rerun,
which specifies job options. The job step is
terminated.
CC10 SOURCE PROGRAM NOT FOUND A program designated as existing on a Mount the correct library file
library file cannot be found. The job step is and rerun the job.
terminated.
CcC11 SOURCE LIBRARY FILE NOT ALLOCATED COBOL compiler cannot access the library Correct volume mounting or control
file designated as containing the COBOL stream error and rerun the job.
source program, Job step is terminated.

10809 G3AN3LX3
€/S0 JVAINN A"Y3dS

€ 'A%y 6508-dM

£€-a

Table D—2. System Console Messages (Part 2 of 2)

Message Diagnostic Message Meaning Corrective Action

Number

CcC12 filename For filename: Rerun the job. If the error persists,

1/0 ERROR ON {JOB-STRM }.CODE=nnnn An 1/O error occurred on a work file, contact your Sperry Univac customer
CORSCARD source, copy, or object module file, representative.

The 4-digit code is a copy of the
error status field settings.

For JOB-STRM:
An 1/0 error occurred during job control
stream processing. The 4-digit code is a
copy of the control stream error code.

For CORSCARD:
An error was detected in the library
update correction cards. CODE=0006 indicates
error in the correction cards. CODE=0007
indicates error in the SEQ card.

In all cases, the job step is terminated.

cc13 COMPILER ERROR phase indication An error has occurred while attempting to Submit a Software User Report (SUR).
position a file, or attempting to process
a phase, The job step is terminated. A
storage dump is provided.

c14 COPY LIBRARY MODULE module-name NOT FOUND| The source COBO_L program has requested Mount the correct library or correct
that a module be included from the copy the module-name reference and rerun
library, and the module cannot be found. the job.

The job step is terminated.

CC15 COPY LIBRARY FILE filename NOT ALLOCATED The source COBOL program has requested Correct the volume mounting or
that a module be included from the copy control stream error and rerun the
library and the compiler cannot access job.
the designated library file. The job step is
terminated.

cCc17 PRINTER NOT ASSIGNED An error has occurred while attempting Correct the control stream and rerun
to open the print filte PRNTR. The DVC the job.
and LFD statements are missing or
incorrect. The job step is terminated.

cc19 EXTENDED COBOL REQUIRES MICROLOGIC The extended COBOL compiler requires the Load the expanded microcode (2K

EXPANSION

micrologic expansion feature (2K COS), but
the standard (1K COS) microcode has been
loaded. The job step is terminated.

COS) or use the Basic COBOL.
compiler,

70909 g3aN3ix3
€/S0 JVAINN AHYIdS

v a1epdn

€ 'A8d 6508-dN

ve€-a

£

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 E-1
EXTENDED COBOL

Appendix E. Compiler Listings

E.1. SOURCE CODE LISTING

A source code listing header line appears at the start of each source code listing. It identifies the compiler, the
compiler version, the date of the compilation, and the time of day at which the COBOL program was compiled. If
the date and time are to appear correctly in the source code listing header line, they must be set by the operator
through the operator commands when the supervisor is loaded. The page heading of the source code listing locates
the following information:

(D LINENO.

The line number (LINE NO.) is a compiler-generated number which identifies the particular line of COBOL
source code with which it appears. The line number is used to reference lines of COBOL source code in the
diagnostic listing, the object program listing, the data division memory map, the procedure division memory
map, and the cross-reference listing.

@ CorR

If the COPY verb is used, the letter C appears after the compiler-generated line number, to indicate lines of
source code taken from the copy library. The letter R is used to indicate lines on which word substitution was
made.

(3) sea

The source item sequence number is listed under SEQ (card columns 1 to 6). The sequence number field {card
columns 1 to 6) is optional.

(4) SOURCE STATEMENT
The text (card columns 7 to 72) of the COBOL source program is listed.

@ IDEN,

Under IDEN., program identification information (card columns 73 to 80) is listed. This is an optional entry
made by the programmer to provide identification or card deck information. The compiler takes no action
upon it.

() PAGE

Page number associated with compilation listing.

A sample source code listing is shown in Figure E—1.

COMPILED BY UNIVAC 0S/3E COBOL COMPILER VERSION 07.00/02

/7 PARAM INZTBL3T
7/ PARAM LST=(S,L,0,C,0,X,A)

SOURCE CREATION DATE LCo/sC1/74 TIME 10,03

DATE 79/07/26 TIME 01.05.43

@IDEN-

LINE NO. SEC,. SCURCE STATEMENT

nudol IDENTIFICATION DIVISION,

05002 PROGRAM-IL. TBL3T.

noces REMARKS, THIS IS A TEST PROGRAM TO VALIDATE COMPILER PROCESSING
Cul0u OF VARIABLE TYAELES, VARIABLE GROUP ITEMS AND THE SEARCH VERSB.
jaJsjelvp:t ENVIRONMENT DIVISICN.

oecle CONFICURATICN SECTION.

cooo? SOURCE-COMPLTER. UNIVAC-940C,

goeope CBJECT-COMPUTER, UNIVAC-94C3.

CuCos SPECTAL-NAMES, SYSLST IS P,

cigle INPLT-CUTPLT SECTICON.

CeCill FILE-CONTRCL.

cocCiz SELECT A ASSIGN TC TPFIL1 TAPE,.

nool13 SELECT B ASSIGN TO TPFIL2 TAPE.

CLBly I-C-CONTFOL .

0C015 SAME RECORD AREA FOR A, B

£o0le CATA UDIVISICN,

coer? FIiLE SECTICN.

0Gc18 FL A

cL019 RECOFDING MOCE V

cuozd BLOCK CCNTAINS 20L0 CHARACTERS

ngn21 LAKEL RECORDS ARE OMITTED

cuee? DATA RECORDS ARE AA, AB.

cgoes Ci AA.

siviapar} 02 AAA PIC £999 CCOMP,

cnoes C3 AAR,

nulze 05 AABA OCCURS 0O TC 1CL TIMES DEPENDING ON AAR,
cuoz? INDEXED BY AABAX1, AABAX2, AABAX3,
ggc2eg ASCENDING KEY AABRAB,

ngoes DESCENDING KEY AABAA IN AAB OF AR,
oen3e ASCENGING KEY AABAC,

coo031 C? AAEAA PIC S99,

suaz2 47 AAbAB PIC $99.

03033 U7 ABBAC PIC S99.

00034 C1 AE.

oeo3s 03 ABA PIC S$999 CCMP.

0g03e 03 #BBR.

00037 €5 ABEA OCCURS 1060 TIMES

cug3le INDEXED BY AB8AX1,.

nuoze9 C7 ABBAA PIC S99.

00040 G7 ABBAB PIC $99.

nogul U7 ABBAC PIC $S99.

0Gou2 FC R

00043 RECORDING MOCE U

afels 1 LABEL RECORDS ARE OMITTED

00C4s OATA RECORD IS BA.

Qo046 01 BA.

(:)PAGE' 00001

Figure E—1. Example of Source Code Listing

‘

70902 Q3AaN3ix3
£/80 JVAINN AHYH3dS

€ 'A9Y 6508-dN

¢3

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 E-3

EXTENDED COBOL

E.2. DATA DIVISION STORAGE MAP AND CROSS-REFERENCE LISTING

The storage map heading line contains the PROGRAM-ID name, the compiler version, and the date and time of
compilation.

The page heading locates the following information:

Q)

©)

LINE
The compiler-generated line number on which the data item is defined.
LEVEL

The level indicator or level number assigned to the item. An * indicates that the item was generated by the
compiler, as with TALLY.

DATA-NAME
The name of the item.

REG

Where applicable, the hardware register number which contains the address used as a base value for referencing
the item. {f a permanent register has not been dedicated to cover the item, an * is listed.

DisP

The displacement of the item relative to the address contained in the item’s cover register. The number is
expressed in hexadecimal.

ADDR

The address of the item, relative to the first byte of the program. If blank, the address varies due to blocking,
double buffering, etc. The number is expressed in hexadecimal.

LENGTH
The length in bytes of the item.

TYPE

The class or type of the item where:

GP Group

A/N Alphanumeric

A Alphabetic

NUP Numeric unpacked

IDN Index-data-name

IDX Index-name

AE Alphabetic edited

NE Numeric edited

NP Numeric packed

VGP Variable group

B Binary (USAGE COMP, USAGE COMP-4)
FPD Floating-point display

LFP Long floating point (USAGE COMP-2)

SFP Short floating point (USAGE COMP-1)

* UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 E-4

EXTENDED COBOL

(@ pTLOC

The decimal point location of the item where:

— integer indicates the number of fractional digit positions plus the number of leading P’s in the PICTURE,
e.g., —b for PIC PP999 or PIC 9.99999 or P!IC 99V99999,

+ integer indicates the number of trailing P's in the PICTURE, e.g., +5 for PIC 99P(5)
occ

The number of occurrences of the item as specified by the OCCURS clause.
@ LINE NUMBERS OF REFERENCES

If the cross-reference list has been specified, the line numbers where one or more procedural references to the
item were made are listed here.

Figure E—2 is a sample data division storage map. The data division storage map is listed in ascending order
according to line number. The information that is presented in the data division storage map may also be listed in
alphabetical order based on the data names (7.1.1, the alphabetized cross-reference listings).

E.3. PROCEDURE DIVISION STORAGE MAP AND CROSS-REFERENCE LISTING

The storage map heading line will contain the PROGRAM-ID name, the compiler version, and the date and time of
compilation.

The page heading locates the following information:

() uNE

The compiler-generated line number on which the item is defined.

SECTION
If the item is a section-name, it is listed here.

PARAGRAPH
If the item is not a section-name, it is listed here.

PRIOR
The priority number of the section-name.

ADDR
The address of the procedure, relative to the first byte of the program. If the name is not referenced in
the program, NO REF is listed here. The number is expressed in hexadecimal.

@ ® ©® ©

GO TO
An E indicates that the procedure is the object of a GO TO.

PERFORM

ENTRY
An E indicates that the procedure is the object of a PERFORM.

EXIT
An X indicates that the procedure contains a PERFORM exit point.

@ @ ©

PROGRAM-ID, TBL3T COMPILED EY UNIVAC 0S/3E COBOL COMPILER VERSION 07.00/02 DATE 79/07/26 TIME 01.05,.43 c
. - o
DATA DIVISION MEMCRY MAP PAGE 00068 %
(4]
LINE LEVEL DATA NAME RtEG DISP A R LENGTH TYPE PTLOC 0CC LINE NUMBERS OF REFERENCES g
o) ©) ® 0 ® 0) 3
. - w
* % % SPECTAL NAMES % % %
93009 77 = 00452 004SYy OO462 0O04e6Y DOUT3
00475
* % % FILE SECTION % % =
k& wmk * TALLY * ococ CoCc19QC 2 NP
37018 FL A 00152 00420 0OCu21 0026 00431
03022 01 AA 5 cLCy cG189¢C 602 VGP G002z 00429
237224 SN -N Y 5 guly C0189C 2 BIN 00026 UD1S8 QCl166 00174 Q0182

00191 00199 0C2C09 00218 00226
00238 L0248 0C251 00258 00261
00272 CCz2e2 ©BC293 CO302 00307
00315 (D321 CC361 00368 00375
00386 003%& GC407 00419
0302zt U3 #AAE 5 CL0e cCols9z 6L0 VGP G0160 00168 0OC176 00184 00193
G0201 0N211 CO0220 00227 00239
00242 L0249 00252 00259 00262
00273 00274 0C275 00277 00284
00285 uD286 0C287 CO0295 00297
00305 00306 CC308 00316 00322
00323 00363 GC370 00371 00377
GD380 00381 (C388 00400 00402
00402 GO409
001892 6 GP 160 00iel GOle9 0OC177 00185 00202
G0212 00221 0C228 00243 00253
00263 (0292 C0313 00379 CO38S

0J0ce CS AAEA

(o)
[g
o
o™
10900 @3anN3Lx3
£/S0 DVAINN AHH3AdS

cou23

30026 # AARAX] x (G188 00ClAg B IDX 00423 00425 00440

03026 - = AABAXZ = Lp2C COQO0183C 8 I0x

03Cz2¢ ® AABAX3 * 0(28 COC1BE e IDX

03031 07 AABAR S CoCe 001892 2 NUP

03632 07 AABAE 5 TC0e ©C1894 2 NUP

03032 G7 AABAC S Cuca 001896 2 NUP

03034 C1 re 5 CCO04 C0189C 602 GP onpz22

0303% G2 ABA 5 Cu0u4 0ols9r 2 &IN

0acze 03 AES 5 10CO0e CO1892 60C GP 00155 00165 0G173 00181 00190
U0198 00208 0€217 00225 00362
0C369 00376 G0387 00408 00410
00418 00422 0C433 00437

02037 CS AERA S G40e 001892 & 6P 1600

03037 * ABRAX1 * Cu3C Cooice 8 IDX

0JC39 07 AGBAS 5 C0Ce CO1892 2 NUP m

gac40 07 AbBAB S €008 0061894 2 NUP &

Jac41 07 ABBAC 5 r00A 00189¢ 2 NUP

0J042 FD 8 00152 00435 GO0436 00443 00448

00046 01 BA 6 00CC D0O01s88 60G2 VvGP 0004S 00446

00047 03 BAA 6 CUCC COQ1888 2 BIN 00050 00434

Figure E—~2. Example of Data Division Storage Map and Cross-Reference Listing

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 E-6

EXTENDED COBOL

©

ALTER
An A indicates that the procedure is altered.

SORT

ENTRY
An E indicates that the procedure is the entry point of a SORT procedure.

@ ExIT

An X indicates that the procedure contains a SORT procedure exit point.

DEBUG

An = indicates that the procedure is the object of a debug packet.

® ©

If the cross-reference list has been specified, the line numbers where one or more references to the procedure have
been made are listed under LINE NUMBERS OF REFERENCES. A sample procedure division storage map is shown
Figure E-3.

The procedure division storage map is listed in ascending order according to priority number above
SEGMENT-LIMIT, and within priority number in ascending order according to line number. The information that is
presented in the procedure division storage map may also be listed in alphabetic order based on the procedure names
(7.1.1, the alphabetized cross-reference listings).

E.4. OBJECT CODE LISTING AND EXTERNAL REFERENCES

The object code listing heading line contains the compiler version number and the date and time of the compilation.

Following the report heading line is a list of external reference symbols (EXTRN and ENTRY names). These are the
symbols whose object time address cannot be calculated at compile time and must be resolved by the linker. The
program name and segment names are also listed here so that their object time address can be determined by the
linker. A 2-character ESID number (External Symbol Identification) follows each name. This number is used as a
link between the ESID associated with all address constants and the element base to which that address is relative.

The first entry in the list is the program name and its ESID number of 02. The program name is the PROGRAM-ID
name from the identification division. if the COBOL program is segmented, the segment names follow. The
8-character segment name is composed of the first six characters of the program-name and a 2-character segment
number. The segment number 01 will be assigned to the first section-name whose priority number exceeds 49; 02 to
the next section with a different priority number greater than 49, etc. The ESID of the first segment is 03, the next
is 04, etc.

The next group of names identifies various external programs required in the execution of the COBOL program,
such as the data management modules and special COBOL object time subroutines.

The symbols in the last group are names that appear in CALL statements.

The object code listing page heading identifies the following information:

LINE #
The compiler-generated line number on which each procedure division statement exists.

BASE/DISPL
This field lists the hardware base register number used to contain the cover address for the line of code.
The displacement from the address in the cover register to this line of code is also displayed.

If this field is blank, either no cover is needed for the line of code, or the cover register assignment at
object time varies and cannot be defined.

®
®

LINE SECTIO; NAME

03150
93150
03150

03151
03154
03164
23172
00180
23189
03197
123267
03216
83224
03232
03227
03247
03257
802265
03271
00281
03291
033C1
03212
03319
33330
03337
33346
03385
03360
00367
03374
03285
03392
03357
30406
03417
0Quz28
00435
03432
0J 445
03447
00 449
02451
00460
03465

PROCEDURE DIVISION MEMORY MAP

(;) (;) ----- VERE REFERENCES - - - -
OR AD C PERFORM ALTER SORT(;> DEBUG
PARAGRf:H NAME TC ENf R Ef EN;ER (3 ‘
® % % % DEPENDING SECTION # % % % %

DP$LCOCO 002738 E
0P3CTO01 002752 3 X
BPsCGCO02 0G276C 3 X
* & % % END GEPENDING SECTION =% * % x
C010 00278¢
10C0-MOVE-V-TO~F-PADDED 002744
1010-MOVE-V-TO-F-TRUNC goz2s84c
1020-MOVE-V~TO=-F-JUST-PAD RE28Fo
103C~MOVE-V-TC-F-JUST-TRUNC 0C299¢E
104G-ZERC-LENGTH-TC-F 002A48
1050-MOVE-F-TO~-V-PADCED CG2AEe
1060-MOVE-F-TO-V-TRUNC 0c2BAC
1076-MOVE-F-TO0-ZEROQO-LENGTH-V 00G2CSE
1080-MOVE-FIGURATIVE-TC-V 0G2CFC
1690~-0DECISION 00205SC
11C00~MOVE-V-TO-V-PADCED BG2CRe
111C-MOVE-V-TO-V-TRUNC 0C2ED6
1124-MOVE-V-TO~-V-ZERO-LENGTH CC2FF4
20CL-DECISICN 0EC31Ce
2010-IF-V-VS-LONGER-F 003122
2020~IF-V=VS-SHORTER-F 0C32tue
2030-IF~-CEPO-LENGTH-VS-F o033¢€A
2040-IF-V=-VS~V CG3442
205C~1F-2-Vs-2 003s5CaA
Z06L-IF~-V-VS-FIGURATIVE Co366y4
2070-IF-ZERO-LENGTH-V-VS-FCON 0G37A8
Z0BL-IF-V-ALPHAEBETIC 00387¢C
20SC-IF-V-NUMERIC 003952
30CU-DECISICN 0C3A28
3010-EXAMINE-V~TALLY-ALL 0C3 A4y
3020-EXAMINE-V-TALLY-REP-ALL O0G2ACY
3030~-EXAMINE-V-TALLY-REP-TIL 003874
304C-EXAMINE-ZERO-LENGTE-V 0G3C84
400C-DECISION 003DCE
401C-TRANSFCRM-V 003024
4520U-TRANSFORM-ZERO-LENGTH-V 003EC2
S010-wRITE-V-REC-MOCE-V CO3FSy
5020 goatea E X
5030 0Le4Ged E X
504U-WRITE-v-REC-MOCE-U co41Cs E
5050 CC421E E X
5060 0L42scC 3 X
S070 0Qo42BY E
9000-SUMMARY 0Q42BYy E
S0CC-UISPLAY oue390 E X
S01G-PASS oou4cCs E X

PAGE 00071

LINE NUMBERS OF REFERENCES

00419
00423
00427
COu43y
couzs
0044y
00477
oou4s57
00162 00170 00178 00187 GO195
00205 00214 00222 00230 00245
00255 00264 00278 00288 00298
00309 00317 00327 00335 00343

Figure E—~3. Example of Procedure Division Storage Map and Cross-Reference Listing

70900 @3dN31xX3
€/S0 IVAINN AHY3dS

€ 'A9H 6G08-dN

L3

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 E-8

EXTENDED COBOL

ADDRESS
The program-relative address where the line of code resides.

CONTENTS OF MEMORY

The actual hexadecimal description of the code or constants produced. An ESID number appears to the
right of each address constant (DC A).

OPERAND ADDRESS

The program-relative address of the data or constant area being referenced. If this field is blank, the item
is being addressed indirectly.

OPCODE
The mnemonic name for the constant or instruction produced on this line. If this field is blank, and the
‘contents of memory’ field contains zeros, alignment is being effected for the next line of code.

COMMENTS
This field defines the purpose for which the code was generated. For code in the procedure division, the
source program verb is listed.

Prior to the procedure division, the following numbers, displayed under COMMENTS, are used to locate the
indicated items and areas.

®

@

@ ©® 6

Q

Intersegment GO TO Subroutine

Used when control is passed from one segment of a segmented program to another.
Intersegment PERFORM Subroutine

Used when a PERFORM references a section or paragraph in another segment.
PERFORM EXIT Subroutine

Called at end of paragraph or section referenced as PERFORM EXIT to determine if PERFORM is active or
not.

cvB

Converts packed decimal to binary.

CvD

Converts binary to packed decimal.

Multiply Half-Word Subroutine

Determines product of two binary half words.

CVB and Multiply Half-Word Subroutine

Converts a packed decimal number to binary and multiplies it by another binary number.
GO TO DEPENDING Subroutine

PERFORM function required by GO TO DEPENDING function.

Converts separate sign to embedded sign.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 E-9
EXTENDED COBOL

Converts embedded sign to separate sign.

Same as 10.

Calculate occurrence number.

@6 0 6

Transient Storage Area

Storage area used to perform certain intermediate calculations.

®

Special Constants
Constants required by verb generators.
@ Address of USING Argument Area

Pointer to area used to pass USING arguments to called routines; also used by ACCEPT and DISPLAY
functions.

Address of USE Procedure Table
Pointer to table of USE procedure addresses.
Address of Altered GO TO Table
. Pointer to table of altered GO TOs in priority segements.
@0) Start of BAT Table
A table of addresses used to reference data division entries.
@) Start of PEP Table
A table of addresses of referenced procedures.
@ Start of DTF Block Addresses
A table of addresses which define the starting points of DTFs and the COBOL prefixes for each.
@ Start of EXTRNs for COBOL Subroutines
EXTRNed address of subroutines required by certain COBOL functions.
VCON Reference Table
A table of addresses created by CALL statements compiled as VCONs.

@5 PERFORM EXIT Storage Area

Area used to save address and other indicators for PERFORM functions.

. @ Index-Name Storage Area

Area used to store values of indexes: the value of TALLY is also stored in this area.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 E-10
EXTENDED COBOL

@7 PERFORM n TIMES Counters

A table containing the counters for the PERFORM verb.
Start of DTF Tables
A series of tables used to define files for input/output functions.
@9 Start of Altered GO TO Table
A table of altered GO TOs in priority segments.
@ Start of USE Procedure Table
A table used to reference USE procedures containing necessary indicators and addresses.
@ Start of Data Division Initial Values
Start of listing of constants produced by VALUE clause in working-storage section.
@ Start of Procedure Division Constants
Area contains those values and constants required by procedure division literals and functions.

A sample object code listing is shown in Figure E—4.

E.5. DIAGNOSTIC ERROR LISTING

The diagnostic listing header line contains the program-ID name, the compiler version, the date, and the time of
compilation. The page headings locate the following information:

(1) LINE#

Compiler-generated number which identifies the particular line of source code with which it appears.

@ svc

Severity code letter

(3 ERROR

Diagnostic number

(@) DIAGNOSTIC MESSAGE
Brief explanation of the error condition

Explanation of the text of the diagnostic error listing is in Appendix D.

A sample diagnostic listing is shown in Figure E—5.

@

;
'.
3

PROGRAM-ID,

T3L37T000 02
CMAVMOVE QO#

LINE #

TBL 3T

CCaEXM9y 03

COMPILED BY UNIVAC OS/3E COBOL COMPILER

bDsT111

BASE/DISPL

P> B> P >PDEEREREDEDERERPIPEREEDEPEREDEREREREREELPRPTITIIIIMITITYTYT

coe
cou
0g6
oca
DCE
nie
ciz
Clie
gia
C1iE
£e2?
sieh1]
Cy
oy
0C»
OCE
ci2
tie
C1a
n1ie
c22
rzau
nes
cz2c
QcE
czn
cze
ce8
0eC
070
C74
C78
e7c
cen
DEY
0g8
08cC
09g
gy
098
g9cC
CAC
Cay
CAS8
CAC
[87:183
CB4

CCaBJERR 04
CCaBJER3 0OC

VERSION 07.00702 DA

EXTERNAL REFERENCES

CBaCAD 21
CFapce coD

CS3ALPH Oe
Cwd3TRANS OQE

CSaNnumu 07
CWaEB2AS OF

TE 79707726 TIME 01.05.43

CS3ANRP 08
CBaoPCL3 10

ADDRESS CONTENTS OF MEMORY " OPERAND ADDRESSES 0PCODE COMMENTS
GOCooo 05 FO BALR

cceeco? 45 EU F CCé op0G0s BAL

0CCoos6 07 FC BCR

cecnos 98 AD F C12 0C0014 LM

goceaoc 98 59 A CFC 0c0124 LM

gogolio C4 AQ SPM

ccLo12 7 fFE BCR

Gocols zocreoozs 02 DC A

Geeonie COoCD1028 02 DC A

oegolc C0GD02766 02 0Cc A

gcLoze 00CD26EE 02 DC A~

GoLocy spooeceoo

o0cozs 58 FO 1 COU L
geeLonzc 41 0C € COU LA

oeeonsn 19 FQC CR

¢eceeos?2 47 8CG E 0OC BC

ceense 58 CC 1 COu L

sconza ¥5 0C 1 CCG cLl

cCeo3e 90 0C 1 COG STM

coLos? 47 DL F COU BC

0CGCO46 45 €Q A C12 ouDC3A BAL

GCCO4A coco

CCCauc S6 OF A C37 0GOGSF 01l (:)
¢ccoso 4F 1C A Q30 ouoGsa cve

COCes5e C71 FE BCR

gecLose Goco

GCCo58 gogoocooceooooeco DeC X (:)
GCCO6C LS 48

LCccron UDGOO3ZES DC X (:)
gcce9y uoun2734 C2 oc A<——-—-——-(:)
occn9s uou02738 02 DC A (:)
Gcoosc $oLe2752 €2 DC A

GoLoan ¢oco27eC 02 DC A

CCCoAY Louo4uu8 0z DC A

UCCOoA8 CoU0442A C2 DC A

GCCOAC GOCD4uA2 C2 DC A

.00GOBO goub40eA 02 DC A

ocCoBse (0CO40B0D G2 0DC A

occose o000o41L8 02 DC A

£CCoBC GOUD421€ 02 DC A

0ocoCo LCC0425C 02 DC A

sogecy U0004284 02 DC A

goooce 0000444C 02 DC A

gececocce $0C0439C 02 DC A

0ocooo couo42B4 02 DC A

GoceoY 60000210 02 DC A @
gocoDs 00000210 02 DC A

Geuooc 00000308 02 DC A

CBaANR 09

-

PAGE 00010

€ 'ASY 6508-dN

704900 a3aN3aix3a
€/S0 JOVAINN AdY3dS

Li-3

Figure E—4. Example of Object Code Listing and External References

€ 'A3Y 6508-dN

pR0§f§H§f§ 18L3 7 CCMPILED BY UNIVAC OS/3E COBOL COMPILER VERSION D7.00/02 DATE 79/07/26 TIME 01.05.43
(:21~ vE-ERROR (:%IAGNOSTIC MESSAGE PAGE 00077
00160 P 181 AAE TRUNCATED DURING MCVE.,
00168 P 181 AAE TRUNCATED DURING MCVE.
00176 P 181 AAP TRUNCATED DURING MCVE.
03184 P 181 AAB TRUNCATED DURING MCVE.
D319 P 181 AAF TRUNCATED CDURING MCVE,
03274 P 181 AAB TRUNCATED DURING MCVE,
#x&2#ERPORS U~ LCLO s- COoo ¢~ ooco P- G006 *xx%x
CS/3E CCbOL COMPILATION COMPLETE TuL3Y START 0U1.C5.43 END 01.07.59

Figure E-5. Example of Diagnostic Listing

104900 g3gN3aix3
£/50 JVAINN AHH3dS

cl-3

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 E-13
EXTENDED COBOL

. E.6. ALPHABETICALLY ORDERED DATA DIVISION CROSS-REFERENCE LISTING

This listing presents the same information as the data division storage map (Figure E~2), but the items are presented
in ascending sequence by data-names.

Figure E—6 is a sample alphabetically ordered data division cross-reference listing.

E.7. ALPHABETICALLY ORDERED PROCEDURE DIVISION CROSS-REFERENCE LISTING

This listing presents the same information as the procedure division storage map {Figure E—3), but the items are
listed in ascending sequence by procedure-names.

Figure E—7 shows a sample alphabetically ordered procedure division cross-reference listing.

PROGRAM-ID. THEL3T COMPILED

DATA NAME

AA
AA R

AAF

AAEA

AdC AL
AAEAE
AAZAC
AASAX1
AAFAXZ
AAEAX3
A3

"3 A
LERS

A3 EA
A3 FPAA
A3 EAP
A3EAC
A3 BAX1
3

BA

3AA
3AB
BABA
BARAX]

FATILURE
p

TALLY
WA
WA A

BY

LEVEL

FU

03

]
(S

c7
67
r7

Tl
r3

ol
o7
o1
07
*

FU
o1
€3
03
os
%

88
71

*
01
03

UNIVAC

LINE

cccas
coees
ccozuy

reeczs

CLCcee

co31
coes?
£Go33
ceees
rccze
cueze
CLC3a
reess
CLC3é

coniy
cucle
cogan
ciiyl
ccesz
roos?
CCCyxe
cugu?
Catus®
ceous
ctulu9
CCius
cooos
Raknk

Ceoss3
CoCsy

0s/3E CoBOL

COMP ILER

VERSION 07.00/02 DATE

DATA DIVISION CROSS REFERENCE

REG

wn

!

[ELRE NI R NV,)

~N % o000 00 AN WM

#

-~

DIsP

CCCu
LeCy

LQoce

Lecce

Lece
cece
CCCaA
vCle
uceC
Lcze
LCCy
uCCy
uCCcé

uecce
ucce
cocs
coca
ggz2c

CCcCo
uGCC
gocz
caocz
0G3s
oaz20

uCce
coco
ccco

ADDR

ocl1890
oci1890

griesz

tei8s2

uc1892
0C1894
cCci8se
LCO1A8
Geclen
uooles
GC18%0
Gc1850
CCc18%2

aCi892
gc1892
0C18S4
oc1896
geolcn

cor8¢8
ccl18ss8
CC188A
Cor86A
coo1cs
ggozasia

000190
OC1AFO
GC1AFQ

LENGTH

602
2

600

o =}
[opd o
DN OD®ooNNDN

N NN

602
2

600

TYPE PTLOC OCCURS

VeGP
BIN

VGP

GP

NUP
NUP
NUP
IDX
16X
10X

BIN
GF

GF

NUP
NUP
NUP
10X

VGP
BIN
VGP
A/N
10X
NuP

NP
VGP
BIN

100

1CO

100

oc1se2
00022
Gro2e
00191
ce23s
00272
ue31s
00386
0C160
cgoacl
crzu2
00273
grzas
geses
crszs
0c3eg
Cr4c3
001el
trzle
gcze:
GCy23

Cl423

CO1%%
CC198
C0369
CCy18

oc1s52
GCO4sS
ueosa

00438
00438
00233
gous2
0047s

C00Se

79707726

TIFE D01.05.,43

PAGE

£o073

LINE NUMBERS OF REFERENCES

00420
u0429
00158
0o199
gn2us
60282
un321
oe3ss
go1e68
goz11
Go249
uB274
ume8e
00306
g0363
ucsel
ugues
uol1es
unz221
60292

Lou2s

oc165
u0z0g
00376
cey22

or43s
U446
004324

00267
00454

00238

00421

00166
go209
gcest
orae3
0C3eé1
ocu4g07
0Cc176
gczau
gres2
0c27s
oczszr
oC308
oc370
co38s

oci77

orc22s
ocz213

co440

gc173
GC217
gcsey
0Cu33

GCu43e6

oc3se
00462

0C241

00426

00174
goz18
g02ss
00302
00368
00419
00184
Qo227
onz2se
00277
00295
00316
ae37)
Ggu400

00185
00243
00379

oo181
Q022s
Go408
00437

oo443

00393
00464

00248

00431

00182
g022e
gozel
00307
0037s

00193
00239
00262
oo284
00297
00322
00377
00402

gozce2
00253
00389

00190
00362
00410

00448

00473

00258

@

@
4

Figure E—6. Example of Alphabetically Ordered Data Division Cross-Reference Listing

70800 d3anaLx3
€/80 JDVAINN AHH3dS

€ 'A9Y 6508-dN

vi-3

i
(.

PROCEDURE NAME

LR Jerelsiofs]

D2 FUCCOolL

D2¢0rQC2

0016

1306G-MOVE-V-TO0-F-PADDED
1310-M0VE=V=-TO-F=-TPUNC

1) 20=%0VvE-y-TO-F~JUST-PAD

13 2C-MOVE-V-TO~F~JUST-TRUNC
104C-ZERC-LENGTH-TC-F
1350-MOVE~F-TQO-v-PADLED
1036C-MOVE-F-TO-V-TRUNC
1370C-MCVE-F~TG-2FRC-LENGTH=V
1J8C~MCVE-FIGURATIVE~-TO-V
1390~DECISICN

11 CC-MOVE-V-TO-Vv-PADDRLD

11 1C-MOVE-V-TO-Vv-TRUNC

11 2C-MOVE-v-T0-Vv-2ERO-LENGTH
JCL-GECISION
201G6-1F-V-VS-LONCGER-F
2220~1F~-V-VS-SHOFTER-F

20 20-IF~ZERO-LENCTH=-VS-F

23 4C-1F-Vv=-VvS-V
20%C~1F-7~y5~2

20 60-IF=V-VS=-FIGURATIVE
237C~1F-ZERCG-LENGTH=-V=-VS~FCCN
20 60-1IF-V-ALPHABETIC
2390-IF-V=-NUMERIC
JJC0-CECISICON
3J10-EXAMINE-V-TALLY-ALL

303 2C-EXAMINE~V~TALLY-REP-ALL
303C-EXAMINE-V-TALLY-REP-TIL

304C-EXAMINE-ZERC-LENGTH-V

4000-DECISICN

40 1C-TRANSFORM=V

43 2C-TRANSFORM-ZERO-LENGT 1=V
501C~-wRITE-V~REC-MODE~-V

5320

5030

SJ40-aRITE-V-REC-MODE-U

5350

5060

53070

93 00-DISPLAY

90 CC-SUMMARY

9010~PASS

9020-FAIL

PROCEDURE DIVISION CROSS REFERENCE

TYPE LINE

PAR CC1S5D
PAR CC15C
PAR CCl1S¢C
PAR (0151
FAR CU154
PAR CCles
PAR CL172
PAR CC18C
PAR CCl&9
PAR CCl197
PAR CC2CG7
PAR (G216
PAR [0G224
FAR C0232
PAR CO0237

PAR CL247
PAR C0257

PAR [CZ66E
FAR CLZT1
FAR CL2¢1
PAR CC291
PAR CL301
FAR CC312
PAK CC319
PAR (CC33n
PAR C0337
PAR CC246
PAR C£0355
PAR CC3enN
PAR CGC367
PAR CU374
PAR CL365S

PAR CL252
PAR CL397

PAR CCl4C6
PAR CCu417
PAR (CQu28
PAR CC430
PAR CQu432
PAR CCu44s
PAR CQo447
PAR CGHu49
PAR CgQ46C
PAR COQuS51
PAR CC4e65
PAR CQues8

PRI

ADOR

C0273s
cuz278¢
c027¢€¢C
cczree
CG27A4
cu2euc
Ci2¢eFe
CG299¢
CO2A48
Co2aEe
CG2BAC
cuzcse
CC2CFC
co209¢C
ccaees
CC2EDE
CU2FF 4
062106
Cu312¢z
Culzue
CG336A
Cu3442
£G3cCa
CC3ebh
CC3748
£U387C
CL29%¢
CGIA26
CLIALY
0G3ACH
CL3ETA
cu3ces
co3eet
cu3D2a
CG3ECe
CO3FS4
CCuC6A
CO4CEBC
CCu1lCs
CC421E
cGu25¢C
COu2BY
CG4390
CouzB4
co4ug0e

O0442A

GO PERFORM

TO ENTER EXIT

€
£
3

3

X
X
X

>

>

ALTER

SORT
ENTER EXIT

DEBUG

uo419
00423
0c427
00434
G438
0044y

LINE NUMBERS OF REFERENCES

Co4s7T -

00477
g0162
0cz0s
00255
00309
go3s52
00404
00163

00176
o021y
00264
00317
u0365
00411
00171

PAGE

00178 00187
00222 00230
00278 00288
00327 00335
00372 00382
00425 00441
00179 co0188

0co07s

00195
00245
g0298
00343
060390

00196

Figure E—7. Example of Alphabetically Ordered Procedure Division Cross-Reference Listing

70900 Q3aN3iX3
€/S0 JVAINN AHH3dS

£ 'A8d 6508-dN

Ggl-3

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 F-1
EXTENDED COBOL

Appendix F. Conversion Mode

F.1. GENERAL

To facilitate the conversion of IBM/360 DOS COBOL level D to SPERRY UNIVAC Operating System/3(0S/3)
COBOL, a conversion facility has been built into the 0OS/3 extended COBOL compiler. This facility, called the
conversion mode (C-mode) accepts COBOL source code and alters it to American National Standard specifications,
or issues diagnostics so the programmer is made aware of the need for changes.

F.2. CONVERSION MODE OPERATION

A PARAM statement option is available to energize the conversion mode of the 0S/3 COBOL compiler,

The conversion mode availability does not imply total source program transfer capability. Its intent is to minimize
the volume and complexity of source program alterations necessary to compile successfully a given COBOL-D
program. Every attempt is made to provide software support for those language differences that would, under a
totally manual conversion process, require a knowledge of the source program intent and logic flow. Source program
statements that must be altered prior to compilation are, in most cases, independent of program design.

The conversion mode may sometimes assume the presence of a particular 0S/3 COBOL clause in order to ensure the
proper processing of a COBOL-D clause. An example of this technique is the fabrication of a SYNCHRONIZED
clause for each appearance of a COBOL-D COMP, COMP-1, or COMP-2 clause.

In the conversion mode, various compiler processing paths are altered to effect a change in the semantic
interpretation of a COBOL-D clause or statement, as in the case of contradiction across compilers associated with
the IF NUMERIC statement.

Occasionally, an entire processing philosophy can be reversed. In the conversion mode, the compiler assumes that
ASCII print control characters are utilized in all print files. In addition, a special COBOL-supplied object time
subroutine is provided to ensure acceptable object program print speed. This software bridges the gap between the
exclusive use in COBOL-D programs of the WRITE AFTER ADVANCING statement and the associated UN{VAC
90/30 System hardware limitation.

This appendix describes the known differences that exist between COBOL-D and UNIVAC 0S/3 COBOL. It also
defines the language differences that the conversion mode renders transparent. Those language differences for which
no automatic software support is possible also are identified here, along with the appropriate source program change
requirement.

When functioning in the conversion mode, many of the compiler American National Standard language features are
disabled. Therefore, it is not recommended that a COBOL-D program, once converted, be modified to take
advantage of the many additional OS/3 COBOL language capabilities without first being totally converted to
American National Standard COBOL.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 F-2
EXTENDED COBOL

In the normal American National Standard COBOL mode, COBOL-D language differences are not permitted. The
special processing interpretations and software extensions available in the conversion mode are not supported in the
American National Standard mode; that is, control character print files are unique to the conversion mode.

F.3. CONVERSION MODE SYNTAX

The differences between COBOL-D and OS/3 COBOL are described in the following paragraphs within each program
division.

F.3.1. Identification Division

n PROGRAM-ID. program-name.

COBOL-D
Program-name is one to eight characters enclosed in quotation marks.

0S/3 COBOL
Program-name is 1 to 30 characters not enclosed in quotation marks. Only the first 6 characters,
excluding hyphens, are used to identify the object program.

C-mode
0S/3 accepts a 1- to 8-character name enclosed in quotation marks. Only the first 6 characters,
excluding hyphens, are used to identify the object program.
F.3.2. Environment Division

= CONFIGURATION SECTION heading.

COBOL-D
Optional

0S/3 COBOL
Required

C-mode
Optional

u SOURCE/OBJECT COMPUTER clause.

COBOL-D
{BM-360 model-number

0S/3 COBOL
UNIVAC-9030

C-mode
The compiler accepts any SOURCE/OBJECT COMPUTER entries valid for COBOL-D.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 F-3
EXTENDED COBOL

] SPECIAL-NAMES paragraph/DECIMAL-POINT IS COMMA clause

COBOL-D
Does not exist. Reversal of decimal point and comma is activated by a parameter on the CBL control
card.

0S/3 COBOL
Reversal of decimal point and comma controlled by SPECIAL-NAMES entry.

C-mode
No automatic support. The converter must insert a special-names paragraph and the DECIMAL-POINT
IS COMMA clause into the source program before compiling.

If the CONSOLE or SYSLST option of an ACCEPT/DISPLAY statement is used in the program, the

compiler automatically produces a special-names entry, internally, for the program. CONSOLE is
equated to SYSCONSOLE, and SYSLST is equated to SYSLST.

] SELECT/ASSIGN clause

CoBOL-D
DIRECT-ACCESS
ASSIGN TO ‘external-name’ UNIT-RECORD
UTILITY

device-number UNIT(s)

0S/3 COBOL
ASSIGN TO ‘external-name’ integer implementor-name

C-mode
No automatic support. The COBOL-D SELECT statement, with respective ASSIGN clauses, must be
replaced by the appropriate SELECT/ASSIGN clauses before compilation.

n ACCESS clause

COBOL-D
The word ‘IS’ is optional.

0S/3 COBOL
The word ‘IS’ is required.

C-mode
The word ‘IS’ is optional.

L KEY clauses

COBOL-D
The word ‘IS’ is optional.

0S/3 COBOL
The word ‘IS’ is required.

C-mode
The word ‘IS’ is optional.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 F-4
EXTENDED COBOL

= I-O-CONTROL paragraph entries

COBOL.-D
Allows the clauses of the I-O-CONTROL paragraph to be separated by periods.

0S/3 COBOL

Allows the clauses to be separated by a comma or a semicolon. A period must follow the last entry in
the paragraph.

C-mode
No automatic support. The embedded periods within the I1-Q-CONTROL paragraph must be removed
prior to compilation or diagnostics will result.

= RERUN clause

COBOL-D

RERUN ON ‘external-name’ { DIRECT ACCESS

UTILITY

} device-number
UNIT(s) EVERY integer RECORDS OF file-name.
External-name may not be the same as the external-name in an ASSIGN clause.

Allows a maximum of 20 external devices to be used to store checkpoint records, only one of which can
be a direct access device.

Checkpoint records are written preceding the execution of integer for a READ, WRITE, or REWRITE
statement. Integer may not exceed 8,388,607.

0S/3 COBOL
RERUN ON ‘external-name’ EVERY integer RECORDS OF file-name

The external-name must be specified in an ASSIGN clause.
The only restriction on the devices is the compiler limit of 63 devices per program.
Integer may not exceed 9,999,999,
C-mode
No automatic support. The RERUN clause must be replaced by one that conforms to the 0S/3 COBOL
format. A SELECT statement must be added for each external-name in each RERUN clause.

] APPLY clause for FORM-OVERFLOW

COBOL-D
APPLY overflow-name TO FORM-OVERFLOW ON file-name.

0S/3 COBOL
This clause is not supported.

C-mode
No automatic support. Remove the APPLY FORM-OVERFLOW clause from the source program. Add a
USE FOR FORM-OVERFLOW procedure in the declaratives portion of the procedure division for
detection of page breaks.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 F-5
EXTENDED COBOL

. u APPLY clause for RESTRICTED SEARCH

COBOL-D
The word ‘ON’ is optional.

0S/3 COBOL
The word ‘ON’ is required.

C-mode
The word ‘ON’ is optional.

- COPY library-name

COBOL-D
Library names are enclosed in quotation marks.

0S/3 COBOL
Library names are not enclosed in quotation marks.

C-mode
Library names are enclosed in quotation marks. All libraries are expected to be in OS/3 format.

F.3.3. Data Division
. L] LABEL RECORDS clause

COBOL-D
Optional clause. If omitted, LABEL RECORDS OMITTED is assumed. For LABEL RECORDS ARE
data-name, the data names must be 01- or 77-level items in the linkage section.

0S/3 COBOL
Required clause. If the clause is omitted, a diagnostic is produced and OMITTED is assumed {unless
device is disc, then labels are assumed to be STANDARD). For LABEL RECORDS ARE data-name, the
data-name record description must be subordinate to the file description.

C-mode
Optional clause. Same default as COBOL-D. Label data-names must be in linkage section as 01- or
77-level items,

a PICTURE clause

COBOL-D
The sterling currency feature may be specified by extensions to the PICTURE clause.

0S/3 COBOL
The sterling currency feature is not supported in UNIVAC -9030 COBOL.

C-mode
The sterling currency feature is not supported.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 F-6
EXTENDED COBOL

L] COPY specifications

COBOL-D
The COPY statement is allowed on level-number 77 items in the working-storage and linkage sections.

0S/3 COBOL
The COPY statement is not allowed on level-number 77 items.

C-mode
The COPY statement is allowed on level-number 77 items in the working-storage and linkage sections.
However, the implied replacing feature is not supported. Replacing can be accomplished by use of
explicit REPLACING clauses. All COPY libraries are expected to conform to OS/3 COBOL formats.

F.3.4. Procedure Division
u ACCEPT statement

COBOL-D
A maximum of 72 characters may be accepted from the console.

When the FROM option is not used, one logical record will be retrieved from the system logical input
device (SYSIPT).

Since a special-names paragraph is not available, the only acceptable FROM option is CONSOLE.

If /* is encountered on an ACCEPT statement, a fall through to the next source statement is effected.
End-of-file detection is the user’s responsibility.

0S/3 COBOL
A maximum of 60 characters may be accepted from the system console.

When the FROM option is not used, a maximum of 4095 characters (52 card images) is retrieved from
the job stream.

If /* is encountered on an ACCEPT statement, an object-time diagnostic is issued and the program is
terminated.

C-mode
SYSIPT is equivalent to the UNIVAC OS/3 job control stream file.

The compiler creates an internal special-name definition to equate CONSOLE to SYSCONSOLE.
L] DISPLAY statement

COBOL-D
When UPON option is omitted, SYSLST is assumed.
Displays may be directed to SYSPUNCH.
The sign of a numeric item is not displayed as a separate character, e.g., -32 displayed as 3K.

0S/3 COBOL
When the UPON option is omitted, SYSCONSOLE is assumed.
Displays to a punch are not supported.
The sign of a numeric item is displayed as a separate character, e.g., -32 displayed as 32-.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 F-7
EXTENDED COBOL

C-mode

When the UPON option is omitted, SYSLST is assumed. The compiler creates an internal special-name
definition to equate SYSLST to SYSLST.

Restriction. Displays to a punch are not supported. The sign of a numeric item is displayed as a separate
character.

L] IF statement

COBOL-D

A class test may be performed on an item whose usage is either DISPLAY or COMP-3 (packed decimal).
An IF NUMERIC test always assumes the item is signed, for example:

DATA-AA PIC X VALUE IS ‘A",

An [F NUMERIC test on DATA-AA yields a 'yes'.

0S/3 COBOL

A class test may be performed on an item whose usage is either DISPLAY or COMP-3, but not
floating-point display.

An IF NUMERIC test does not assume an item is signed. The sign is interrogated only if the item is
declared to be signed; for exampile:

DATA-AAPIC X VALUE IS ‘A",
An IF DATA-AA NUMERIC results in a ‘no’.

C-mode

No automatic support. The item to be tested should be defined as signed.

] INCLUDE Statement/COPY Function

COBOL-D
An INCLUDE statement in the procedure division implies a COPY function.

0S/3 COBOL
The INCLUDE statement is not supported. The COPY verb must be used.

C-mode

The INCLUDE statement is equated to the COPY function. Library names enclosed in quotation marks
are accepted. COPY libraries are expected to be in OS/3 format.

= MOVE statement

COBOL-D

When an unsigned numeric item is moved to a signed numeric item, the sign of the receiver is set to ‘F’.

0S/3 COBOL
When an unsigned numeric item is moved to a signed numeric item, the sign of the receiver is set to plus.

C-mode
When an unsigned numeric item is moved to a signed numeric item, the sign of the receiver is set to ‘F’.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 F-8
EXTENDED COBOL

n ON statement

COBOL-D
This statement is supported.

0S/3 COBOL
This debugging statement is not supported.

C-mode
No automatic support. This clause is not supported.

n READ statement
See F.b for disc considerations.
. STOP statement
COBOL-D
When the STOP RUN statement is encountered in a called program, control is returned to the calling

program.

0S/3 COBOL
A STOP RUN statement causes an end-of-job termination sequence.

C-mode
When a STOP RUN statement is encountered in a called program, it is treated as an EXIT PROGRAM
statement.

n USE AFTER STANDARD ERROR PROCEDURE

COBOL-D
The word ‘PROCEDURE’ is optional.

0S/3 COBOL
The word ‘'PROCEDURE’ is required.

C-mode
The word ‘PROCEDURE’ is optional.

. USE FOR LABEL PROCEDURE

COBOL-D
CHECKING BEGINNING
USE FOR {CREATING} {ENDING } LABELS
INPUT .
ON { 0U_I_PU_I,}flle-name
0S/3 COBOL
FILE
AFTER BEGINNING —
USE {—_BEFORE} STANDARD {_——_ENDING } REEL > LABEL
—_— - UNIT
file-name
PROCEDURE ON :—Ngyl

| OUTPUT

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3
EXTENDED COBOL

F-9

C-mode

No automatic support. The USE statement for label procedures must be rewritten in accordance with

0S/3 COBOL format.

n WRITE statement

See F.4 for printer considerations, and F.5 for disc considerations.

L *DEBUG card

COBOL-D

*DEBUG packets precede the source deck.

0S/3 COBOL

*DEBUG packets follow the source deck.

C-mode

No automatic support. The *DEBUG packets must be moved from in front of the source program and

placed behind the source program.

F.3.5. Reserved Words

C-mode

The following OS/3 COBOL reserved words may currently exist in COBOL-D source programs as
user-defined words. Their use as user names will not be allowed by the 0S/3 extended COBOL compiler.

ASCENDING
ASCII

BEFORE
BLOCK-COUNT
BLOCK-LENGTH-CHECK
BUFFER-OFFSET

CARD-PUNCH
CARD-READER
CARD-READER-b61
CARD-READER-66
CHARACTERS
COMMA
COMPUTATIONAL
COMPUTATIONAL-3
COMPUTATIONAL-4
COmMP

COMP-3

COMP-4

CORR
CORRESPONDING
CURRENCY
CYLINDER-INDEX
CYLINDER-OVERFLOW
DECIMAL-POINT
DESCENDING

DISC
DISC-8411
DISC-8414
DISC-8415
DISC-8416
DISC-8418
DISC-8430
DISC-8433
DOWN

EQUALS

EXTENDED
EXTENDED-INSERTION
EBCDIC

FILE-LIMIT
FILE-LIMITS
FILE-PREPARATION
INDICES

INDEX

INSERT

JUST

LINE

MAP
MASTER-INDEX
MEMORY
MODULE
MORE-LABELS
MULTIPLE

OFF
OPTIONAL
OUK-90-250
OUK-90-300
0OUK-90-400
OUK-90-600
QUK-90-700

PERCENT
PIC
POSITION
PRINTER
PROGRAM

RELEASE
REMAINDER
RENAMES

SEARCH
SEGMENT-LIMIT

SEPARATE
SEEK

SET

SIGN
SORT

SPECIAL-NAMES

STATUS
SYNC

SYNCHRONIZED

SYSCHAN-1
SYSCHAN-2
SYSCHAN-3
SYSCHAN-4
SYSCHAN-5
SYSCHAN-6
SYSCHAN-7
SYSCHAN-8
SYSCHAN-9
SYSCHAN-10
SYSCHAN-11
SYSCHAN-12
SYSCHAN-13
SYSCHAN-14
SYSCHAN-15
SYSCOM

SYSCONSOLE

SYSDATE

¢4

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 F-10
EXTENDED COBOL
SYSERR SYSERR-17 SYSSWCH UNIVAC-9000
SYSERR-0 SYSERR-18 SYSSWCH-C UNIVAC-9025
SYSERR-1 SYSERR-19 SYSSWCH-1 UNIVAC-9030
SYSERR-2 SYSERR-20 SYSSWCH-2 UNIVAC-9040
SYSERR-3 SYSERR-21 SYSSWCH-3 UNIVAC-9060
SYSERR-4 SYSERR-22 SYSSWCH-4 UNIVAC-9070
SYSERR-5 SYSERR-23 SYSSWCH-5 UNIVAC-920011
SYSERR-6 SYSERR-24 SYSSWCH-6 UNIVAC-9300
SYSERR-7 SYSERR-25 SYSSWCH-7 UNIVAC-930011
SYSERR-8 SYSERR-26 SYSTIME UNIVAC-9400
SYSERR-9 SYSERR-27 UNIVAC-9480
SYSERR-10 SYSERR-28 TAPE UNIVAC-9700
SYSERR-11 SYSERR-29 TAPES upP
SYSERR-12 SYSERR-30 TAPE-6
SYSERR-13 SYSERR-31 THROUGH VALUES
SYSERR-14 SYSIN TIME VERIFY
SYSERR-15 SYSIN-96 TRACKS
SYSERR-16 SYSIN-128 TRAILING WORDS
SYSLOG WHEN

F.4. PRINTER FILE SUPPORT

Support is available for printer files in the conversion mode of the compiler; the aim is to be as compatible as
possible with COBOL-D printer file processing within the limits of hardware differences.

In the conversion mode, the compiler produces object code to change logical advance-then-print commands into
physical print-then-advance operations. This causes full-speed operation of the printer subsystem. All printer files
must be defined and referenced according to COBOL-D rules. COBOL-D control characters must be used:
consequently, neither a BEFORE ADVANCING nor an ADVANCING mnemonic-name is supported in the source
language. The only acceptable format for a printer WRITE statement is:

WRITE record-name FROM identifier

identifier } LINES

AFTER ADVANCING < |
— literal

Rules:
1. The printer file must have fixed recording mode.
2. Each logical record defined in the printer file must have the first character position reserved for a control

character. The contro! character is used to control printer spacing, but is not actually printed. The legal
control characters are as follows:

blank Print and space 1 line.
0 Print and space 2 lines.
— Print and space 3 fines.
+ Print and space 0 lines.
1 through 9 Print and skip to channel.

A through C Print and skip to channei.

3. When the FROM phrase is used, the identifier specified in the FROM phrase must also reserve the first
character position to contain a control character.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 F-11
EXTENDED COBOL

4, When the AFTER phrase is used, the identifier specified in the AFTER phrase must be a 1-character
alphanumeric item that contains a control character.

5. When a literal is specified in the AFTER phrase, the literal must be numeric, with only the following

being valid:

0 Print and skip to home paper.
1 Print and space 1 line.

2 Print and space 2 lines.

3 Print and space 3 lines.

Restrictions:

COBOL-D allows an APPLY FORM-OVERFLOW clause in the 1-O-CONTROL paragraph of the environment
division. The APPLY FORM-OVERFLOW clause mus be converted to a USE FOR FORM-OVERFLOW procedure
in the declaratives portion of the procedure division.

In COBOL-D, when APPLY FORM-OVERFLOW is specfied, one line is printed after the overflow punch in the
carriage control loop is detected. Because of the manner in which the logical write commands are converted into
physical commands, three lines are printed after overflow is detected.

To overcome the problem of three lines being printed, the overflow punch must be moved back on the carriage
control loop by two logical print commands (two lines if single spacing, four lines if double spacing, etc.). If the
overflow punch crosses or coincides with another carriage control punch, the program cannot produce the proper
print formats when the program is executed and manual conversion is required.

No action is taken when form overflow is detected unless specified by a USE FOR FORM-OVERFLOW procedure.

Testing of the condition-name specified in the APPLY FORM-OVERFLOW clause must be deleted from the existing
procedure division and must not be used in the USE FOR FORM-OVERFLOW procedure. An alternate method is to
leave testing of the condition-name as is and to use the USE FOR FORM-OVERFLOW procedure as a place to set
the condition-name to the true state.

The IBM model 1403 printer supports carriage-control channels 1 through 12. The SPERRY UNIVAC printer
subsystems support various carriage control channels, depending on the printer subsystem on line. The COBOL-D
carriage control references are translated as follows:

COBOL-D Carriage Control Punch
Control Character 0773 0770 0768
1 (Home paper) 7 7 14, 15
2 2 2 12
3 3 3 13
4 4 4 4
5 5 5 5
6 6 6 6
7 7 7 15
8 2 8 8
9 1 9 9
A 3 10 10
B 4 " 11
C (Form overfiow) 1 12 9

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 F-12

EXTENDED COBOL

F.5. DISC FILE SUPPORT

The following paragraphs detail considerations for conversion of COBOL source programs dealing with files assigned
to direct access devices.

To facilitate an understanding of the differences between the COBOL compilers, a clause-by-clause, verb-by-verb
difference description follows, by file organization.

F.5.1. Sequential Organization

SELECT/ASSIGN clause

The SELECT/ASSIGN clause requires a source program change to meet the format requirements of OS/3
COBOL.

APPLY VERIFY clause (not available in COBOL-D)

When in C-mode, the compiler automatically sets the verify function without regard to the APPLY clause
present in the source program.

LABEL RECORD definition

In C-mode, the compiler accepts the LABEL RECORD definition in the linkage section.

REWRITE verb

In C-mode, the compiler accepts the REWRITE verb when the file is opened for §/0.

INVALID KEY phrase

When C-mode is active, the compiler causes transfer to the USE FOR ERROR procedure or initiates an

end-of-job sequence when an INVALID KEY condition is detected and there is no INVLAID KEY phrase
specified.

F.5.2. Indexed Organization

SELECT/ASSIGN clause

The SELECT statement with its ASSIGN clause requires a source program change to meet the format
requirements of 0S/3 COBOL.

APPLY VERIFY clause (not available in COBOL-D)

In C-mode, the compiler automatically sets the verify function without regard to the APPLY clause.
APPLY MASTER-INDEX clause (not available in COBOL-D)

In OS/3, this clause serves for documentation only.

NOTE:

COBOL-D specifies this option via the job control stream.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 F-13
EXTENDED COBOL

] APPLY CYLINDER-OVERFLOW clause (not available in COBOL-D)

If this clause is not inserted in the source program, the compiler specifies that 20% of each prime data cylinder
is to be reserved for cylinder overflow area.

L] APPLY CYLINDER-INDEX AREA clause (not available in COBOL-D)

If this clause is not specified in the source program, the compiler does not allocate main storage area to
accommodate the cylinder index.

= APPLY EXTENDED-INSERTION AREA clause {not available in COBOL-D)
IN OS/3, this clause serves for documentation only.
= RECORD KEY description
In C-mode, the record key size must not be less than 3 or greater than 249 bytes.
L] SYMBOLIC KEY description
in C-mode, the symbolic key size must not be less than 3 or greater than 249 bytes.
u OPEN verb

In C-mode, the file is positioned to the logical record specified in the SYMBOLIC KEY item, or, if none is
specified, the file is positioned to the first record.

F.5.3. Direct Organization

No conversion mode support is provided for ORGANIZATION IS DIRECT.

F.5.4. Error Testing in USE AFTER ERROR Procedures

When testing in USE AFTER ERROR procedures, the programmer should replace any calls on DTF interrogation
subprograms by tests of SYSERRs (4.2.3) to determine error status. SYSERRSs are described in Section 11.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 G-1
EXTENDED COBOL

Appendix G. Job Control Stream
Requirements

G.1. INTRODUCTION

Any COBOL program you write must be compiled before it can be run. A language translator converts the
instructions in your program into a form {an object module) understandable to the computer. The facilities of 0OS/3
job control are used to relay information to the operating system regarding the requirements for compiling your

| program. There are two ways to do this:

L] Code and keypunch all the job control statements needed to execute the COBOL compiler. See the OS/3 job
control user guide, UP-8065 (current version) for details on coding these statements.

n Use a single job control procedure call statement (jproc call) provided by Sperry Univac.

. A jproc call generates all the job control statements needed to execute the COBOL compiler. When you specify the
proper options for the keyword parameters, you tailor the generated control stream to meet the individual needs of
your job. The jproc calls give you the ability to compile your source program (COBOL); compile and link-edit the
generated object module to create a load module (COBOLL); or compile, link-edit, and immediately execute this
load module (COBOLLG).

G.2. PROCEDURE CALL STATEMENT (COBOL)
Function:

This procedure call statement generates the necessary job control statements to run the COBOL language
processor. Optionally, it can generate the job control statements that specify the following:

a Input-source library

s Output-object library

Copy library

- PARAM control statements to define the format of the compiler listing

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 G-2 . p
EXTENDED COBOL Update A

Format:
{vol-ser-no,label)
COBOL (RES)
* // [symbol] < COBOLL PRNTR= [,vol-ser-nol) AN=< (RES, label)
COBOLLG (RUN, label)
(* label)
B (vol-ser-no label) 7]
(RES, label)
,0BJ=4 (RUN label)
(* label)
| (RUN,YRUN)) |
[_ (vol-ser-no,label) T
(RES label)
,LIN=< (RUN,label)
(* label)
L ‘(RES,YSRC)
[,0UT=(p-1,...,p-n)] [, LST=(p-1,...,p-n)]
[vol-ser-no vol-ser-no
SCR1= =
K {55_8] [sone {_RE }]
[vol-ser-no
SCR3=
o { ™
B (vol-ser-no,label)
(RES, label)
LALTLOD=4 {(RUN label)
(* label)
| (RES,YRUN)
Label:
symbol
Specifies the 1- to 6-character source module name; only needed when the IN parameter is used.
Operation:
COBOL
This form of the procedure call statement is used to compile a COBOL source program.
COBOLL
This form of the procedure call statement is used to compile a COBOL source program and link-edit the
object modules.
COBOLLG
This form of the procedure call statement is used to compile a COBOL source program, link-edit the
object modules, and execute the load moduie.™
*The COBOLLG procedure call statement cannot be used when operating with the shared code data management feature. Instead, .

use the COBOLL procedure call statement and provide a separate EXEC statement to execute the load module.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 G-3
EXTENDED COBOL Update A

PRNTR Keyword Parameter:

PRNTR= [,vol-ser-no])

Specifies the logical unit number of the printer. N specifies that the device assignment set for the printer
is to be manually inserted in the control stream.

IN Keyword Parameter:

This parameter specifies the input file definition and generates a PARAM IN control statement. The options
are:

IN=(vol-ser-no label)
Specifies the file identifier {label) and the volume serial number {vol-ser-no) where the source input is
located.

IN=(RES)
Specifies that the source input is located on the SYSRES device in YSRC.

IN=({RES, label)
This is used if the source input is located on the SYSRES device, but the file identifier {label) is of
user-own specification, not YSRC.

IN=(RUN,label)
Specifies that the source input is located on the volume containing the job YRUN file, with the file
identifier {label) of user-own specification. '

IN=(* label)
Specifies that the source input is located on a catalog file identified by the file identifier (label).

If omitted, the source input is in the form of embedded data cards {/$, source deck, /¥).

Note that when this parameter is specified, it is assumed that the first embedded data set following the PARAM
statements contains changes for the source program (G.4), the second contains input to the linkage editor (COBOLL
or COBOLLG jproc only), and the third is control stream input to the COBOL source program (COBOLLG jproc
only). It may be necessary to insert dummy data sets (/$ followed immediately by /*) into the job stream to ensure
that the embedded data sets remain in the sequence just described. For example, if only the third data set is needed,
two dummy data sets must be inserted between the last PARAM statement and the third data set. For more
information, see example 3c in this section.

OBJ Keyword Parameter:

This parameter specifies the output file definition and generates a PARAM OBJ control statement. The
options are:

OBJ=(vol-ser-no label)
Specifies the file identifier (label) and the volume serial number (vol-ser-no) where the object module is
located.

OBJ={RES,label)
Specifies that the object module is located on the SYSRES device, with the file identifier specified by
the label parameter.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 G-4 ’
EXTENDED COBOL Update A

OBJ=(RUN,label)

Specifies that the object module is located on the volume containing the job YRUN file, with a file
identifier (label) of user-own specification.

OBJ=(* label)
Specifies that the object module is located on a catalog file identified by the file identifier (label).

If omitted, the object module is located on the job YRUN file.

NOTE:
The OBJ keyword parameter must not be used with COBOLL or COBOL LG.

LIN Keyword Parameter:

LIN=(vol-ser-no label)
Defines the volume serial number (vol-ser-no) and the file identifier (label) where the copy modules are
located. The LFD name is COPYS$.

LiN=(RES,label) .
Specifies that the copy modules are located on the job’s SYSRES device, in the file identified by the file
identifier (label).

LiIN=(RUN., label)
Specifies that the copy modules are located on the job’s $YSRUN file with the file identifier (labet)
specified by the user.

LIN=(* label)
Specifies that the copy modules are located on a catalog file identified by the file identifier (labetl).

if omitted, the copy modules are located on the SYSRES device in YSRC.

OUT Keyword Parameter:

ouT=(p-1,....p-n}
Specifies the parameter definitions for the COBOL compiler. This parameter generates a PARAM QUT
control statement. See 7.1.2.

LST Keyword Parameter:

LST=(p-1....,p-n}
Specifies the format of the compiler listing. Generates a PARAM LST control statement. See 7.1.1.

SCR1 Keyword Parameter:

vol-ser-no
SCR1= { RES }
Specifies the volume serial number of the work file with an identifier of $SCR1.

SCR2 Keyword Parameter:

SCR2= { vol-ser-no }

RES
Specifies the volume seriat number of the work file with an identifier of $SCR2.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 G-4a
EXTENDED COBOL Update A

SCR3 Keyword Parameter:

SCR3= { vol-ser-no}

RUN
Specifies the volume serial number of the work file with an identifier of $SCR3.

ALTLOD Keyword Parameter:

ALTLOD=(vol-ser-no, label)
Specifies the location of the compiler to be used, if other than YLOD.

ALTLOD=(RES,label) .
Specifies that the alternate load library is located on the job’s SYSRES device, in the file identified by
the file identifier (iabel).

ALTLOD=(RUN,}abel) .
Specifies that the alternate load library is located on the job’s $YSRUN file with the file identifier
(label) specified by the user.

ALTLOD=(* label)
Specifies that the alternate load library is located on a catalog file identified by the file identifier (label}.

If omitted, the compiler is loaded from YSRUN,
Example 1a:

The following illustrates the use of the COBOL procedure call statement in its basic form:

LABEL . AOPERATIONA OPERAND A
10 16

1Y/ Jes Bl A T U B SRS S S S SE G I S SV R S B R N
2 CEBEL g e by b v b e b by
54$111111 Lva Lo b b b e b b v 1y
4 L1 byoge Ly 1 Coe o e by sy v bv e b v by 1y
5M_Hlelcd<l Lo by v b v by by g by b
bl bl i AT S S U S U S U O S S S A
7

l%lllll | IR lllllllllllllllllllllllliklllll

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3

EXTENDED COBOL

G-5

Line

Explanation

indicates that the name of the job is COBOL1A

Indicates the name of the procedure being called {COBOL). There are no

keyword parameters specifying special options for this compilation.

Indicates start of data

Indicates end of data

Represents the source deck to be compiled

As coded, this example can be the first step in a job to be followed by the link-edit jproc call, or it can be an
entire job in itself by specifying a /& (end-of-job) statement and a // FIN {terminate card reader operations)
statement on lines 8 and 9, respectively. The latter case could be used to test-compile a new program or an
updated version of an existing program.

Example 1b:

The basic form given in example 1a generates the following control stream:

LABEL

AOPERATIONA

10

OPERAND

16

l/l 131&'61 IC

ol

Ll B

[T T U

[

//\ PNC, 12

(8]

\ i/

L

FD PRNTR

L

/1 DVIC R

=

L b

1

{

I/ | lElxlT] ls

C

b

I/L IEIxn_I Is

s

ICIRI[

AKI-ISI 4
7 7 v

YlLl;lll Lo o]
L LED| $SCRIL

mJox A m

Glll

IS B |

I

|

1

C

/y LBIL, l$

CIRZ,

‘61A131 o
4 7 L4

YILI-;llllI(Illl
L LEDE $SCRIZ

/ 1 IDIVLL lR

N,

Illl!lll

1

TOP AT LB~ —

A/ EXT 8

nLlaﬂsl a
4 4 4

C

\{l(-dylllllllll

—

l/l lL'JBILI I$

CIR.3,

1

L LED $SCRIB

)

l/ i lElx]aCl

0 i 9 JC o A

BROL,

T N N S B

lLl

>

Iglll

L

llll

llllllll

I

}

I

' AT U AU,

1

|

5
16

| H0ULCE

CCK

IR I IS UL

1

I

*-llllll

Ill

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3 G-6
EXTENDED COBOL

Exam

e B M+ IR ~NT OO SR

Line

6—8

12

13

14—-16

17

Explanation

Indicates that the name of the job is COBOL1B
Indicates the default logical unit number and LFD name of the printer

Indicates that the first work file needed for compiling is, by default, on the
SYSRES device, has both a file identifier and LFD name of $SCR1, and uses
the sequential access technique; that allocation is contiguous, with three
cylinders allocated for the secondary increment and one cylinder of initial
allocation.

Identifies the second work file needed for compiling. The only difference
between this work file and the first work file is that the file identifier and
LFD name are $SCR2 rather than $SCR1.

Indicates that the third work file needed for compiling is, by default, on the
device containing the job’s YSRUN file. Both the file identifier and the LFD
name are $SCR3, and the file extent specification is the same as the first

and second work files.

.oads the COBOL compiler from YLOD

Indicates start of data

Represents the source deck to be compiled

Indicates end of data

As with example 1a, this example can be the first step in a job, or it can be the entire job in itself by specifying
the /& statement and the // FIN statement on lines 18 and 19, respectively.

ple 2a:

The following example illustrates the use of a COBOL procedure call statement that defines many of the
keyword parameters:

LABEL AOPERATIONA OPERAND A
10 16 72
AA_.IQI&.(,GI L2Al § oo b e b b b
y/ LOBOL| PRNTRI=2.1 ., LiN=(REIS , O$SIRC) 15 |\ 1
dao g Ly i = (DB C (=]
/21 Lo o | LIN=(DSC] i C@PYLTBI) 1y X
VA< T Lot 8, = () =DS8CI ILEST =

é&llllll | S NN TN U N SN SN N O A A B S SIS BTSN O S St

/1 FIIN L AN S S T T TN N T T T O N U000 Y SIS U ST G M (A S M

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3
EXTENDED COBOL

G-7

Line

Explanation
Indicates that the name of the job is COBOL2A

Indicates the name of the procedure being called (COBOL). The source
module name is PROGNM. The logical unit number of the printer is 21,

and the input file is on the SYSRES device, with a file identifier of U$SRC.

Indicates that the output file volume serial number is DSC2, with a file
identifier of U$OBJ

Indicates that the copy module volume serial number is DSC1, with a file
identifier of COPYLIB1

Indicates that the second work file needed for compiling is on the device
with a volume serial number of DSC4, and the third work file is on the
device with a volume serial number of DSC1. By default, the device for the
first work file is the SYSRES device. The format of the compiler listing is
supplied by the LST parameter.

End of job

Terminates card reader operations

As written, this example is a one-step job that compiles your source program. It produces a nonexecutable
object module. Before your program could be executed, a job step would have to be inserted in the control
stream that would link-edit the object module to produce an executable load module.

Example 2b:

Based on the keyword parameters specified in example 2a, the following control stream is generated:

LABEL AOPERATIONA OPERAND A
1 10 16
{ L WJ@1B (O L2 6 cooaa v e by by ' I W
2 OVIC, 2B/ WED PRINTR 0 by L i ol
3 Dv ES 1 TSR U U U U SN TN S S S U T T O A AN SR O A 4oy T
s L LBIL JQ$SJR6I 1 S LIEDD INCPWTY] 0 | e 1oy L
S5/ 0viE Sol | o a/livel, DSCZ e b T I
b LBl 1055&3'- 1 /1 LFD @QOTICPOT, | v v 0 0 b L1 i
T DVC B S VBL OBCH b s] L1 L
Bl LBIL celPy LIB] A/ ILED cOPY$ | 0, L T
9 |LW/a DV, .B]ESL L i e b v v by e b g Ly I !
oy EXIMT SITIIC W3 N L by | o0 Ly b g] - Ll
A/, LBl $BKIR L /i LED $SCIRE v oty Ly Cl Ll
2 L DVIC, 512] 1, 1/1/ VEL, DBSCY 1 g i Ll
Bl EXT ST BN Ll 1 0 b v b o Ll c

(continued)

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 G-8
EXTENDED COBOL

; LABEL AOPERATIONA OPERAND A
1 16
4/ LBIL, $5ILR2, | /i LED $SCR2 b L b
‘5£|£|_-‘_DIVLIIllll/l/vglLll.DscdllIllllllllllllllllLLlll
IbJ/l|ElxméT¢IQ,|51;CY|L1.;II|111|1L11|1|lxxllllxnlxlxlll
r’ll_é‘_l‘_—M%Cl&sll i LED $ACRA L L L
'6 , EXEL POIAREL e by v b v v b sy b v g b by
'9 P, TN =P POTE 0 v b o L g il
20 = I v o b b e b b
ZlAA_EﬂIBMLT'—' -a)lllllllllllllllLlllllllLlllll
alﬁllllll llll llllJlllllllILLllllllIl(llllILl
23[]41_;_':11“1 Loy IR IO SN AR I SN SN A il BN A SN E S SN AN AN A AR A
Line Explanation
1 Indicates that the name of the job is COBOL2B
2 Indicates that the printer is to be assigned to the logical unit number 21,
with an LFD name of PRNTR. This was obtained from line 2 in example 2a.
3 Indicates that the input file is on the device containing the SYSRES
volume. This was obtained from the IN parameter on line 2 in example 2a.
4 Indicates that the input file has a file identifier of U$SRC,
with an LFD name of INCPUT. This was obtained from the IN
parameter on line 2 in example 2a.
5 Indicates that the output file volume serial number is DSC2. This was
obtained from the OBJ parameter on line 3 in example 2a. It is assigned to
the device with a logical unit number of 50, which was the first available
number in the range of 50—54.
6 Indicates that the output file has a file identifier of U$SOBJ,
with an LFD name of OUTCPUT. This was obtained from the
OBJ parameter on line 3 in example 2a.
7 Indicates that the copy library has a volume serial number of DSC1. It is
assigned to the device with a logical unit number of 51, which was the
next available number in the range of 50—54. Logical unit number 50 was
already assigned to the device with a volume serial number of DSC2 (line
5}, so the next available logical unit number is used. This was obtained
from the LIN parameter on line 4 in example 2a.
8 Indicates that the copy library is labeled COPYLIB1, with an LFD name of

COPYS$. This was obtained from the LIN parameter on line 4 in example 2a.

YP-8059 Rev. 3

SPERRY UNIVAC 0S/3 G-9
EXTENDED COBOL

Line

9-11

12-14

16-17

18

19--21

22

23

Explanation

Indicates that the first work file needed for compiling is, by default, on the
SYSRES device, has both a file identifier and LFD name of $SCR1, uses
the sequential access technique; that allocation is contiguous, with three
cylinders allocated for the secondary increment and one cylinder of initial
allocation.

Indicates that the second work file needed for compiling has a volume

serial number of DSC4. This volume serial number has not been previously

used in this job, so the next available logical unit number (52) is assigned

to this device. This work file has both a file identifier and LFD name of $SCR2,
and has the same file extent specification as the first work file. This was
obtained from the SCR2 parameter on line 5 in example 2a.

Indicates that the third work file needed for compiling has a volume serial
number of DSC1. Since this volume serial number was already used, this

work file uses the same device logical unit number of 51. This work file

has both a file identifier and LFD name of $SCR3, and has the same file extent
specification as the first and second work files. This was obtained from the
SCR3 parameter on line 5 in example 2a.

Loads the COBOL compiler from YLOD

PARAM control statements which identify the processing options for the
COBOL compiler. These are generated in the following manner:

Line 19 — The module name PROGNM is generated from the label field in
line 2 of example 2a. The filename INCPUT is generated automatically

when the IN parameter is specified.

Line 20 — The filtename OUTCPUT is generated automatically when the
OBJ parameter is used.

Line 21 — The S and O COBOL list options are generated by the LST
parameter on line 5 in example 2a.

End of job

Terminates card reader operations

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 G-10 ~ o
EXTENDED COBOL Update A

\

Example 3a:

The following example illustrates the use of the COBOLL procedure call statement:

LABEL AOPERATIONA16 OPERAND A

] /. Tab MASTER v by e b e b v b b b n
20, 0MC 4ol 1y e e e
3 Lvial, Delgl, Y S U W U U U N Y S T U T [SO SN S B S O B O
4104 (LBIL JUELI&QI AT SN VN U N U U O SO0 VAU N U TS OO VA T U (N S S S S Y S S M
5la0 LPD WNMLTG [
b Ot 1haT=(JS, b €00 v v Ly b L vl b
7&111!1: | T S S O S S 0 O U S N WO O H S S B ST A N S T O AT R
i by SR cte v b e b v v b by b ey by gy
81’ coBa dewye @ﬁola‘l(xénm v b v v v e vy L v by
nd R R T B L1 cov o b e b b b e by
i Vr .S B R B PR SV AR AT B A SV ATEETe IR
|10 $|11|11 byoo g ce oy by e b e b s b e v b g ey g
M LIINKOP iouT=llINKLT® v Lo oo Lo b ben
lZ_._l_LbQIA.BM_JAiaGl.Z3 IR B B R U A S SAT U A RN SN NN SN S N S S N ST U N NN S
(311?6111111 L 11 AN WO T NN U W VT U O SO S T ST N S O S N NSO S S O W

[44&111:1 AN NSV S A T U T W T A U WO S N S AU U L Y S B BN A A
l‘)—[|[|gFI|IN|| L1 AT N U N T U U U T YWV (U VY S GO G 0 S N B SO

Line Explanation
1 Indicates that the name of the job is MASTER
2-5 Defines a file USLOD on volume DSC1 to be used to hold the linked

object module

6 Indicates the name of the procedure being called (COBOLL) and
indicates the compiler options for this compilation

7 Indicates start of data

8 Indicates the COBOL source program

9 Indicates end of data

10 Indicates start of data

11 Indicates that the linkage editor is to write the load module to the file

with the Ifdname LNKLIB

12 Indicates that the name of the load module is ABC123

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 G—-10a
EXTENDED COBOL Update A

. Line Explanation
13 Indicates end of data
14 Indicates end of job
15 Terminates card reader operations
Example 3b:

Based on the keyword parameters specified explicitly and implicitly in example 3a, the following control
stream is generated:

S

JillilililllliJiiLIlllllllJJlllL

+ CeBal [Hauve,d preq.riam . .

o

LABEL A?(I;ERATIONA 1 OPERAND A COMMENTS
AR Y N s A | T,
Z|4f Due G 14/ Vel Deat. A wdl usleD . /) LED LNKLIB .]
140 Dvie (A0 Ll LIFD PRNTR Lo b o by bv o b oo by oy
LAl DviG RES L EXT ST G Bl el b Ll ILBLL SSCRL LA/ LIED SSicR)
Slal, oV "esi /| ExT gr e B bl /) 11BL $IScRE | /M D $SCR2
CLAL DViC REB L EXT. ST Gt Gl L] LBl $19CRS 1 /). LED $SicR3,
7//1:5)([6616@&01[/1 FARTERNN GO WO S T Y U U TSN U A G G SN0 UUOY U S S U G S U U S W Y N SN S 0 S5 G O SO W A A O
| e lplAlgA‘yl a-rl=1<$€xL1‘xCL)l e by Lo b Lo L Lo bya g
i 7/1?11111 Ly P T 0 U U (S TS G G S 0 S [V U U GO S S N U W0 T U G N N W U SN RO
‘ . (SN BN U B [v by e b e e Lo v by vy by by
\

lllllll llll llll{]lllllllllll¢llill lllllLAIllil_L

| |

i 1 i

8 V. S R U R I O S U E U AU R B AR AU SRS A,
| 1214/ DNIC HEa L XT ST, CpdeYl i Al bel $SCRL AL LED $SCRL ..
| Pl L BXEC WINKEDT | 00 by e b L |

M\L/A;ﬁ:IIAL [oo e b by e b e bl e ool [
150 1 s b INKAP] IOATALINKLES 00 Lo b o b e b v b el e by
I(D Bol A% v e e b g

[71&111111 I Lo v v b b e b e by e b b by
L
]
i

111111L1lllll

ISR SO TN S S N S

18,[__8(111111 L1y AR SR AR
lq//lLF)JlNll Ly o1 AN B R

AR S T N [N S S U A S A S S S0 S G B) A A

IllllALLJ]]lll]JJlAliilLlA‘iJ')ll

Line Explanation
| 1 Indicates that the name of the job is MASTER
2 Defines a file USLOD on volume DSC1 to be used to hold the linked

object module

| 3 Indicates that the printer is to be assigned to logical unit number 20
‘ with an Ifdname of PRNTR

. 4-6 Defines the three work files necessary for compiler execution

|
\ 7 Loads and executes the COBOL compiler

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 G—10b°

EXTENDED COBOL Update A

* Line_ Explanation

8 Indicates parameter options

9 Indicates start of data

10 Indicates the COBOL source program

1 Indicates end of data

12 Defines the work file necessary for LNKEDT execution

13 Loads and executes the linkage editor

14 Indicates start of data

15 Indicates that the linkage editor is to write the load module to the file

with the Ifdname LNKLIB

16 Indicates that the name of the load module is ABC123

17 Indicates end of data

18 Indicates end of job
* 19 Terminates card reader operations

Example 4a:

The following example illustrates the use of the COBOLLG procedure call statement. The input file and the
format of the output listings are defined.

LABEL AOPERATIONA OPERAND
10 16 72

1 L JOB MASIT;E'IR AU S K N S N RS R U S S S SR R RN | T
2 MAST, CEeBOELILG | JIN-A(lA BRCI .2 3 5 P.AY J&lé[ﬁfrx) T YR 1 Ld
3 % T ! | I LSH‘l:l(lAn?lCl 1 9161)1 b e by g g L
4Z&L1IJ| Lo RTINS N S N S NS S0 NS N S S S SN S0 SRS GAT N S N S T | L
5//. ETIN | Lo peao b e b e b by gl 1

Line Explanation

1 Indicates that the name of the job is MASTER

2 Indicates that the name of the source module is MASTER

and that the name of the procedure being called is COBOLLG.
Therefore, this example compiles, link-edits, and executes the

source program MASTER. The input file is on the device with

a volume serial number of ABC123 and has a file identifier of

PAYMAST.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3
EXTENDED COBOL

G—-10c
Update A

. Line Explanation
3 Indicates the format of the compiler listing
4 End of job
5 Terminates card reader operations
Example 4b:

Based on the keyword parameters specified explicitly and implicitly in exampie 4a, the
stream is generated:

following contro!

LABEL AOPERATIONA OPERAND A
10 16
J_/l 1Jelbl I MAISITJE) S O s | 1 | S | L l S S BONS | l 3 I N | l | 1 11 1 11 Lt 1 Il

l/l laPﬂ‘lIBN l lL!IINK ;Gla (l) l L1} J.L.L L1) i U

/1 DVIC, 210, | 7/ LED PRNTR L b

[/ ONIG 50 1 . /i NOILL ABCILZ3

l/l lLlaLl 1 PHIYI STK L X/I/! lLlFJDL lIlNlClPUﬂ”i el |] g)

/1 DviC, | | RES, | YT R N NN VY SN N N NN SN SN U NN U N SN Y S N

EXIT slTl:’.lCI-}-S —,.IClYlLu,.Hn IS I I N R T U N A ST R B

Lo LBl | BISCRI Y/ LEDL$SCRY L oo L L
i DMVIG CJRES L b b e L L
A/ EXIT en‘l,lCI;e)g!ClYlLl.;Hl R BRI N N S S B T O S B SR A
L LB $1aC.R2 Ly FD 151%@1sz IS R S A N A I N A A

ST OVPLCOEOBN
N
o~

L DVIG RN v b o e b boee o by

®

l/l lElxm H iTl,Lclg'B ?LlYlLl?lll F S J L1 1 4 l | S |l L4 4
I"L /l/l ILIBH—I i $1661R45 /l/l ILIFIIDI l$l§LlR6\ - l F S W l SIS W

‘ISI/I/IQ&IXlECI Cﬁaﬁ‘JLLlllllllxllllltllllli

1o|4/, P IIN=MAIBITER/INCPUT v v Lo vl ol
1T/ PAIRA BT =(A _‘161 5! 1.,.161)1 T I R I B S A A i AR R B I A A e
IQ f l 11 I 1__1 1 | I | I | I S l | 1 l | S S l [| i L) N S | l |

l9/l/llFlI]Nl | e b b b e by

Line Explanation
1 Indicates that the name of the job is MASTER
2 Indicates that the source program is to be link-edited and

then executed after it has been compiled. This was obtained
from COBOL LG specified on line 2 in example 4a.

~UP-8059Rev. 3

SPERRY UNIVAC 0S/3
EXTENDED COBOL

G-11
Update A

Line

1214

Explanation

Indicates, by default, that the printer is to be assigned to the
lagical unit number 20, with an LFD name of PRNTR

Indicates that the input file is on the device with the logical
unit number of 50 and has a volume serial number of ABC123. This
was obtained from the IN parameter on line 2 in example 4a.

Indicates that the input file has a file identifier of PAYMAST,
with an LFD name of INCPUT. This was obtained from the IN
parameter on line 2 in example 4a.

Indicates, by default, that the first work file needed for
compiling is on the SYSRES device, has both a file identifier
and LFD name of $SCR1, uses sequential access technique; that
allocation is contiguous, with three cylinders allocated for

the secondary increment and one cylinder of initial allocation

Indicates, by default, that the second work file needed for
compiling is on the SYSRES device. This work file has both a file
identifier and LFD namd of $SCR2, It has the same file extent
specification as the first work file.

Indicates, by default, that the third work file needed for
compiling is on the SYSRUN device. This work file has both a file
identifier and LFD name of $SCR3. It has the same file extent
specification as the first and second work file.

UP-8059 Rev. 3 SPERRY UNIVAC 08/3

EXTENDED COBOL

G-12 ¥
Update A

Line Explanation

15 Loads the COBOL compiler from $YSLOD

16-17 PARAM contro! statements that identify the processing options
for the COBOL compiler. These are generated as follows:
Line 16 — The module name MASTER is generated from the label field
on line 2 of example 4a. The filename INCPUT is generated automatically
when the IN parameter is specified.
Line 17 — The A, C, O, and S COBOL list options are generated by
the LST parameter on line 3 in example 4a.

18 End of job

19 Terminates card reader operations

Implicit in the // OPTION LINK,GO statement on line 2 of example 4b is the creation of a load module
named LNKLOD by the linkage editor and the execution of that load module. This is performed after the
source program has been compiled. Any output is temporarily stored on the SYSRUN device.

Example 4c:
If the job requires that additional modules be included from a library, input to the linkage editor must be

included in the job control stream. The following example shows where that input would be inserted in job
MASTER as described in example 4a.

LABEL AOPERATIONA OPERAND A
10 16 72

VAR 1‘.]—10/13 t IMJA&T'ﬂ coes o b b v v v b b e 1|

21// MASTER] [CeBOLLG . . LIM_—.LA‘EQJ&#JEAMM_&IM LN
3147000 1 | lélr-l(lAl 1(‘,1,10[.451)1 ol [I | L
S T4 W L SN S SR O S SR S N SR S A S S B R B 1
sI/f& 1, [111 U S R A RGN S U N SN G R N S S N WS S AN B !
(0/|$| [Loeu oy v s b v v b e b b L
4 ENEENEE B Lo YN SO T N ST N S S U (N S S AN NS S S U IO i
8| . linKagdel leditler impud, o1 ,
9 ... e Loy vy v ey v e b e e by v v e e b 1
{o /1 AN A L s b e e b e by by |
] /1& I A | BT AT G NN S RN ST U N S SO WA S S S U U SN SUV N N SR

12|/, FIN . | N TS OO S SR U N S S N U S SO S S U Y SO SO |

*UP-805% Rev. 3

SPERRY UNIVAC 0S/3 G-13
EXTENDED COBOL Update A

Line

Explanation

1-3

12

Same as example 4a

Dummy data set to show there are no source corrections for the compiler.
This must be included to keep the linkage editor input in proper sequence.
{See page G-3.)

Data set that is input to linkage editor

End of job

Terminates card reader operations

The generated control stream would be the same as in example 4b, except for the inclusion of the two data
sets between lines 17 and 18,

Example 4d:

If job MASTER as described in example 4a had its source program on cards, and both linkage editor input and
control stream input to the program were to be included in the run, the control stream would be set up as

follows:
LABEL AOPERATIONA OPERAND A
10 16

A/ JOB MASTEIR 1l b
21// MASITER KOBOULG, L&T={A L, 0, S) (1 il L
/s 1 b AR ST T YU (N U I O W W W Y A B B O O |
4 T S B Lo e b v e ey e e by e v v b e
S|, deuree AiBnCAKl i b v b b b e by g
4 I TN B TP I S R B U DY IO AR
T/ . 1. L 1 v v b e b e be v e b g |
8/l$lLllll | IS cvn o b s b s b v Ly e Ly |
) ENUTENENT BN B I R U R R S AN UN R S ATIN RV TR
tol limKeglel ledider impad 0t]
1} IR) by A T S S ST ST I
VA VE. ;SN RN 1 I SRR B AR U SR RIS AR UTRTIN A RIS BN
131/ 1. L T RIS BTN ST SV BN
K« PR UL I O U EEEN O ST U ST SN SrUTETErE SRR G TSR SO
(ol comtrofl| igtirelaim dmpiad v o
|17 I L | IS PRI N T AT T T U0 S U U Y S0 G0 T S A S R T W SO0 B O B
I.I.*flllll R cayoc b e b e b b b
8.6 11 L1 v vy by e by e e v e
(o] VAVARR =% o1\ N I ARSI) NV DR E N AU RN AT SRR R AT

UP-8059 Rev. 3 SFERRY UNIVAC 0S/3 G-14
EXTENCED COBOL

Line Explanation

1 indicates that the name of the job is MASTER
2 Indicates that the name of the source module is MASTER and that the name of
the procedure being called is COBOLLG. The LST parameter indicates the format
of the compiler listing.
3-7 Source program
8—12 Linkage editor data set
13—17 Data set that contains control stream input to the source program
18 End of job
19 Terminates card reader operations
The generated control stream would be the same as in example 3b, except that lines 4 and 5 describing the
source input file would not be present, line 16 would be eliminated, and the three embedded data sets would
be inserted between fines 17 and 18. Note that, if control streamn input is to be included and there is no linkage

editor input, a dummy data set must be inserted after the source deck to keep the control stream input data
set in ifs proper sequence. '

G.3. COMPILER STATUS INDICATORS

The compiler sets the following status indicators in the user program switch indicator (UPS1) byte. These indicators
may be used in conjunction with the // SKIP job control card:

» Switch-0 (X’80') is set to 1 if the compiler does not create a complete object module. This condition might be
caused by an “insufficient memory available” diagnostic or a compiler abort.

n Switch-1 (X’40°) is set to 1 if the compiler issues any diagnostic message with severity code S or U.

L] Switch-2 (X'20°) is set to 1 if the compiler issues any diagnostic messages with the severity code C.

These bit settings are logically superimposed onto the UPSI byte; therefore, any of the 8 UPSI bits that were set
before the compilation still will be set after the compilation.

G.4. SOURCE CORRECTION FACILITY

When the source program resides on a library file, it is possible to change the source as it is read into the compiler. A
/$ and /* data set immediately following the PARAM statements may contain correction cards for the source
program. The method of correction is the same as the OS/3 system librarian correct module (COR) function. For

details, refer to the OS/3 system service programs (SSP) user guide, UP-8062 (current version). The corrections apply
only to the compilaticn. The original source program on the library is not changed.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 G-15
EXTENDED COBOL

G.5. DATA DEFINITION (DD) JOB CONTROL STATEMENT KEYWORD PARAMETERS

The DD job control statement is used to change data management keywords at execution time. Instead of changing
the COBOL source code, the user can override data management keyword specifications when the COBOL object
program is executing. The DD statement keyword parameters that may be specified for a COBOL program are as

follows:

LACE=n

SIZE=n

UOS=n

ACCESS=(EXC
EXCR
SRDO
SRD
SUPD
SADD

FILABL= {(NO
NSTD
STD

TPMARK=NO

VMNT=0NE

When the user specifies these keyword parameters, extreme care must be used so that the effect of changing one
parameter does not cause a conflict. To avoid conflicts, the user should carefully examine the file usage specified in
COBOL source programs and the default parameters set by the compiler-generated data management specifications.

The DD statement applies to basic data management users and consolidated data management users. For keyword
parameter information, see the basic data management user guide, UP-8068 (current version) or the consolidated
data management macroinstructions user guide, UP-8826 (current version). A complete description of the DD job
control statement is explained in the job control user guide, UP-8065 (current version).

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 H-1

EXTENDED COBOL

Appendix H. Shared Code Interface

H.1. GENERAL

COBOL programs to be executed under control of the SPERRY UNIVAC Series 90 Information Management
System (IMS/90) should be compiled by using the shared-code parameter when used with the SPERRY UNIVAC

0S/3 Operating System (0S/3).
The format of the PARAM statement is:

// PARAM OQUT=(M)

H.2. ACTION PROGRAM

A COBOL program running under control of IMS/90 is called an action program. A COBOL action program
compiled under the shared-code parameter is reentrant at CALL interrupts. The following rules and restrictions of
COBOL action programs are checked for, and diagnosed at compile time when QUT=(M) is activated.

Rules:

1. The following COBOL verbs, clauses, and sections are illegal in the shared-code mode. They will be
diagnosed and deleted from the program.

ALTER RETURN SYSLST
CLOSE REWRITE WRITE
DECLARATIVE SECTION SEEK

ENTRY SEGMENT-LIMIT

EXHIBIT SORT

EXIT-PROGRAM STOP

FILE SECTION SYSCHAN-t

INPUT-OUTPUT SECTION SYSCONSOLE

INSERT SYSERR [-m]

OPEN SYSIN

READ SYSIN-96

READY TRACE SYSIN-128

RELEASE SYSLOG

RESET TRACE

2. The PROCEDURE DIVISION header must contain a USING clause and can be the only entry point in
the program.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 H-2
EXTENDED COBOL

3. For a list of the valid IMS/90 function names, refer to the Series 90 information management system/90 .
programmer reference, UP-8083 (current version).

4, A section priority number 250 will be diagnosed and changed to 0.

5. The SPECIAL-NAMES paragraph may define only the following four implementor names.
SYSCOM
SYSDATE

SYSTIME
SYSSWCH

In conjunction with this restriction, the ACCEPT and DISPLAY verbs may be used only to reference the
allowable system names.

6. The following verbs must not have working-storage items as receiving operands. Upon detection of this
condition, the compiler will generate the statement and issue a precautionary diagnostic.

ADD PERFORM (varying option)
COMPUTE SEARCH (varying option)
DIVIDE SET

EXAMINE (replacing option) SUBTRACT

MOVE TRANSFORM

MULTIPLY

7. All USING arguments of the CALL verb must be datanames of any level (except 88) in the working-storage or
linkage sections.

For the COBOL object program to be reentrant at CALL interrupts, the volatile work area used by the program
must be saved and restored by the IMS/90 system. The size of the area (which varies between programs) is displayed
in decimal by the printer immediately prior to the COBOL COMPILATION COMPLETE message. The message
reads:

SHARED CODE VOLATILE DATA AREA =nnnn BYTES

This size is used in computing the SHRDSIZE parameter in the IMS/90 configurator. (Refer to the Series 90
information management system/90 programmer reference, UP-8083 (current version)).

Normally, execution-time errors result in a CE error message and program termination. In an action program,
execution-time errors result in a program check interrupt and a snapshot dump of the action program with the
address of the CE message in register 1. The action program is terminated.

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3
EXTENDED COBOL

Index 1

Term Reference
A
ACCEPT statement
description 6.6.4.1
job control stream 9.1

ACCESS MODE clause

FILE-CONTROL paragraph 43.1

indexed files 1143

relative files 1142

sequential files 1141
Action program H.2
ACTUAL KEY clause

FILE-CONTROL paragraph 431

relative file 1142
ADD statement 6.6.1.1
Alphabetic data 534
Alphabetic move 6.6.3.2
Alphanumeric data 534
Alphanumeric edited data 534
Alphanumeric edited move 6.6.3.2
Alphanumeric move 6.63.2

ALTER statement
description 6.6.2.1
segmentation restriction 6.73.1

APPLY ASCH clause
declaration 13.2
I-0-CONTROL paragraph 432

APPLY BLOCK-COUNT clause 432

Page

6—12
6—55

13—1
4—13

Term

APPLY CYLINDER-INDEX clause
I-0-CONTROL paragraph
relative files

APPLY CYLINDER-OVERFLOW clause
I-0-CONTROL paragraph
relative files

APPLY EXTENDED-INSERTION clause

APPLY FILE-PREPARATION clause
I-0-CONTROL paragraph
relative files

APPLY MASTER-INDEX clause

APPLY VERIFY clause
1-0-CONTROL paragraph
relative files

Arithmetic expressions

Arithmetic operators

Arithmetic verbs

ASCENDING KEY clause
description
SORT statement

ASCII

ASCHI files

ASCIl tape format

ASSIGN clause

AUTHOR paragraph

Index

Reference Page

432 4—12
1142 118
432 4—12
1142 11-38
432 4—13
432 4—12
1142 11-5
432 4—12
432 4—12
1142 11-38
214 2—3

6.6.1.5 6—11
6.6.1 6—5

533. 5—13
6.6.4.12 6—37

Table 13—213—5

13.1 13—1
Fig. 13—1 13—3
431 4—9
31 3—1

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3
EXTENDED COBOL

Index 2

Term

BLANK WHEN ZERO clause

BLOCK CONTAINS clause
block sizes
control field sizes
description

Block sizes

CALL statement
Calling/called programs

Characters
arithmetic expressions
editing
punctuation
relational expressions
set
words

Checkpointing
description
restriction

Class condition

CLOSE statement

Coding form

Comment

COMP option

Compiler

Compiler diagnostics
diagnostic messages

system console messages

Compiler-directing statement

Compiler listings

data division storage map and
cross-reference

diagnostic error

object code

procedure division storage map
and cross-reference

source code

Reference

539

Table 5—3
Table 5—2
5211

Table 5—3

6.6.8.1
63
214
215
212
213

211
83

6.6.6.1
6642

25

25

535

1.2

D2

Table D—1
D.3

Table b—2

6.5.3

Page

6—53
6—56

Term

Compiler status indicators
COMPUTE statement
Condition-name
Condition-name clause
Condition-name condition
Conditional statement
Conditional variable
Configuration section
Connectives
Continuation
Conversion mode
disc files
operation
printer files
syntax
COPY statement

description
library

CORRESPONDING option

description
MOVE statement

CURRENCY SIGN clause

Data definition (DD)
job control statement

Data description entry
condition-name clause
description
RENAMES clause

Data division
conversion mode
cross-reference listing,
alphabetically ordered

data description

description

FILE SECTION

storage map and cross-reference
listing

WORKING-STORAGE

Data-name

Reference Page i

G3 G—12
66.15 6—11
22 2—4
53.12 531
6.6.6.1 6—40
6.5.2 6—4
22 2—4
42 4—1
22 2—7
25 2—10
F5 F—12
F.2 F—1
F4 F—10
F3 F—2
6.6.7.1 6—48
731 7—5
6.6.1 6—5
6.6.3.2 6—21
423 4—4
G5 G—15
9.3.12 5-31
53 5—11
53.11 5—30
F3.3 F—5
E.6 E—13
Fig. E—6 E—14
53 5—11
51 5—1
52 5—2
E2 E—3
54 5—33

22 2—4

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3
EXTENDED COBOL

index 3

Term

DATA RECORDS clause
DATE-COMPILED paragraph
DATE-WRITTEN paragraph
Debugging

description

packet
DECIMAL-POINT clause
Declaratives section
DEPENDING ON clause
DESCENDING KEY clause

description

SORT

Diagnostic messages

Direct access
file organization
processing
Disc processing

DISPLAY option

DISPLAY statement
description
use

DIVIDE statement

EBCDIC

Editing

Eject

ENTER statement
CALL statement
description
ENTRY statement

ENTRY statement

Environment division
conversion mode
description

EXAMINE statement

EXHIBIT statement

Reference Page

5216 5—9
31 3—1
3.1 3—1
14.1 14—1
145 14—3
423 4—4
6.2 6—2
533 5—13
533 5—13
D.2 D—1
Table D—1 D—2
E5 E—10
112 11—1
111 11—1

Table 11—711—28

535 5-—-22
6.6.4.3 6—30
Section 9

6.6.1.2 6—8

Table 13—213—5

215 2—3
25 2—10
6.6.8.1 6—53
6.6.7.2 6—49
6.6.8.2 6—54
6.6.8.2 6—54
F3.2 F—2
41 4—1

6.6.3.1 6—20

144 14—2

Term

EXIT statement
Extended access
External-name

External references

FD entry
description
SORT statement
Figurative constant
description
MOVE statement
FILE-CONTROL paragraph
FILE-LIMIT clause
File-name
FILE SECTION
description
FD entries
FILLER clause

Fixed portion

Floating-point numeric literal

GIVING clause
DIVIDE statement
MULTIPLY statement
SUBTRACT statement

GO TO statement

Identification columns

Identification division
conversion mode
description

Identifier

IF statement

Reference

6.6.2.4
1133
22

E4

52.1
6.6.4.12

22
6.6.3.2
431
431
22

5.2
521
531
6.7.1.1

22

6.6.1.2
66.1.3
66.1.4

6.6.2.2

25
F3.1
3.1
22

6.66.1

Page

6—19

11-2

2—4

E—6

6—38
6—9
6—9

6—13

2—10

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3 Index 4
EXTENDED COBOL
Term Reference Page Term Reference Page
Imperative statement 65.1 6—3 L
Implementor names LABEL RECORDS cl
ACCEPT statement 6641 6—28 description 5213 57
ASSIGN clause 431 4—9 specifications Table 5—4 5—8
Independent entries 54.1 5—33 | |evel-number clause 53.1 512
Independent segment 6.7.12 6—54 | Library module 73 7—5
Index data-item 22 25 | LINKAGE section 55 534
Index-name 2.2 25 Linking 6.8.2 6—57
INDEX option 5.35 5=22 | |ogical operators 6.6.6.1 6—40
INDEXED BY clause 533 5—13
. M
Indexed files
conversion mode F.5.2 F—12 | MAP clause 53.10 530
description 11.23 11-2
processing 1143 11—-7 MEMORY SIZE clause
. OBJECT-COMPUTER paragraph 422 4—2
Indexing SEGMENT LIMIT 422 4—2
description 24 29 :
tables 105 10—=2 | Mnemonic-name
ACCEPT statement 6641 6—28
I-0-CONTROL paragraph 432 4-11 DISPLAY statement 6643 6—30
) SPECIAL-NAMES paragraph Table 4—1 4—7
Input-output section 43 4—8
MOVE statement 6.6.3.2 6—21
INSERT statement
description 6.6.4.7 6—34 | MULTIPLE FILE clause 432 4—11
indexed files 1143 11-11
MULTIPLE REEL/UNIT clause 431 4—9
INSTALLATION paragraph 31 3—1
o MULTIPLY statement 66.1.3 6—9
Interprogram- communications
CALL statement 6.6.8.1 6—53
description 6.6.8 6—53 N
ENTRY statement 6.6.8.2 6—54
Nonnumeric literal 22 2—6
J NOTE statement 6.6.7.3 6—51
Job control stream G.1 G—1 Numeric data 534 5—16
Jproc call G2 G—1 Numeric edited data 534 5—17
JUSTIFIED clause 537 5—-28 Numeric edited move 66.3.2 6—21
Numeric move 6.63.2 6—21
K
Key words 22 2—6

- -

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 Index 5
EXTENDED COBOL Update B
Term Reference Page Term Reference Page
(@) Procedure branching verbs 6.6.2 6—12
Object code listing E4 E—6 Procedure call statement G2 G—1
OBJECT-COMPUTER paragraph 422 4—2 | Procedure division
conversion mode F34 F—6
OCCURS clause cross-reference listing,
description 533 513 alphabetically ordered E7 E—13
table handling 102 10—1 o Fig E=7 E-15
description - 6.1 6—1
ON SIZE ERROR option 66.1 6—5 storage map and cross-reference
listing E3 E—4
OPEN statement
description 6.6.4.4 6—31 | Procedure-name 22 2—4
indexed files 1143 11—7
relative files 1142 11—4 PROCESSING MODE clause 431 410
sequential files 1141 113
q PROGRAM-ID paragraph 3.1 3—1
Optional words 22 2—6
4 Program segments
ORGANIZATION clause description 6.7.1 6—54
FILE-CONTROL paragraph 431 4—8 fixed portion 6711 654
indexed files 1143 11—7 independent segment 6.7.1.2 6—54
relative files 1142 114 . ’
sequential files 1141 11—3 | Punctuation 212 22
Overlapping operands 6.5.4 6—4
P Qualification 23 2—1
Paragraphs 6.4 6—3
PARAM statement Random access 11.3.2 11—-2
copy library input 1.2 7—3
description 7.1 7—1 READ statement
list options 711 7—1 description 6645 6—31
object module 721 7—4 indexed files 11.4.3 11—7
output options 712 7—2 relative files 1142 114
source library input 72 73 sequential files 1141 11—-3
Parameters, PARAM statement READY TRACE statement 14.2 14—1
copy library input 12 7—3
listing 7.1.1 7—1 Receiving field
object module 7121 7—4 description Table 5—7 5—21
output 712 71—2 MOVE statement Table 6—1 6—22
source library input 12 1-3
RECORD CONTAINS clause 5212 55
PERFORM statement
description 6.6.2.3 6—14 | RECORD KEY clause
segmentation restrictions 6.7.3.2 6—55 FILE-CONTROL paragraph 431 4—11
indexed files 1143 11—10
PICTURE relative files 1142 11—-8
clause 534 5—15
symbols Table 5—5 5—18 RECORDING MODE clause
ASCHI files 133 13—2
Priority number description 5214 5—8
ALTER statement 6.7.3.1 6—55 indexed files 1143 11—7
description 6.7.2 6—54 relative files 1142 11—4
PERFORM statement 6.7.3.2 6—55 sequential files 1141 11-3

UP-8059 Rev. 3 SPERRY UNIVAC 0S/3 Index 6
EXTENDED COBOL
Term Reference Page Term Reference
REDEFINES clause 532 5—12 SD entry
description 522 5—10
Relational condition 6.66.1 6—40 SORT statement 6.6.4.12 6—37
Relational expression 213 2—3 SEARCH statement
description 6.6.6.2 6—45
RELATIVE KEY clause table handling 10.6 10—3
FILE-CONTROL paragraph 431 4—10
relative files 1142 11—4 | Sections
descripticn 6.3 6—2
Relative organized files . segmentation 6.7.2 6—55
description 1122 11—2
processing 1142 11—4 SECURITY paragraph 31 3—1
RELEASE statement 6.6.4.10 6—36 | SEEK statement
description 6649 6—35
REMAINDER clause 6.6.1.2 6—8 relative file 1142 114
REMARKS paragraph 3.1 3—1 SEGMENT-LIMIT clause 422 42
RENAMES clause 5311 5—-30 Segmentation
description 6.7 6—54
REPLACING clause 6.6.3.1 6—20 restrictions 6.7.3 6—55
RERUN clause Sending field Table 6—1 6—22
checkpointing 8.3 8—1
description 8.2 8—1 Sentences 6.5
[-0-CONTROL paragraph 432 4—11
restrictions 85 8—2 Sequence numbers 25
RESERVE clause Sequential access 11.3.1 11-2
FILE-CONTROL paragraph 431 4—8
indexed-files 1143 11—7 | Sequential files
sequential files 1141 11-3 description 11.211 11—1
processing 1141 113
Reserved words
conversion mode F35 F—9 SET statement 66.3.3 6—23
list Appendix B
Shared code parameter H.1 H—1
RESET TRACE statement 14.3 14—2
SIGN clause 5313 5—-32
Restarting 84 8—2
Sign condition 6.66.1 6—40
RETURN statement 6.64.11 6—36
Sort file description See SD entry.
REWRITE statement
description 6.64.8 6—34 Sort-name 2.2 2—4
indexed files 1143 11—11
relative files 1142 11—4 SORT statement
description 6.64.12 6—37
ROUNDED option 6.6.1 6—b5 use 12.3 12—2
Sorting
organization 122 12—1
use 1237 12—4 .
SAME RECORD/SORT clause 432 4—12
Source code listing El E—1

UP-8059 Rev. 3

SPERRY UNIVAC 0S/3
EXTENDED COBOL

Index 7

Term

SOURCE-COMPUTER paragraph

Source correction facility
description
use with COBOL jprocs

Source field

SPECIAL-NAMES paragraph
description
DISPLAY statement

Statements
compiler-directing
conditional
description
imperative

STOP statement
Storage allocation

Subscripting
description
tables

SUBTRACT statement
Switch-status condition

SYMBOLIC KEY clause
FILE-CONTROL paragraph
indexed files

SYNCHRONIZED clause
SYSCHAN-t

SYSCOM clause
ACCEPT statement
SPECIAL-NAMES paragraph

SYSCONSOLE clause
ACCEPT statement
SPECIAL-NAMES paragraph

SYSDATE clause
ACCEPT statement
SPECIAL-NAMES paragraph

SYSERR clause
INDEXED and RELATIVE files
messages
SPECIAL-NAMES paragraph
USE FOR ERROR procedures

Reference

421

G4

G2

Table 5—7

423
6.6.4.3

6.5.3
6.5.2
6.5
6.5.1
6.6.5
51.1
24
10.4
6.6.1.4
66.6.1
43.1
1143
53.6
423

917
423

921
423

9.13
423

Table 11—6
11444
423

F5.4

Page

9—4
44

9—3
4—4

11--27
11-27
4—-5
F—13

Term

SYSIN
ACCEPT statement
SPECIAL-NAMES paragraph

SYSIN-96
ACCEPT statement
SPECIAL-NAMES paragraph

SYSIN-128
ACCEPT statement
SPECIAL-NAMES paragraph

SYSLOG clause
DISPLAY statement
SPECIAL-NAMES paragraph

SYSLST clause
DISPLAY statement
SPECIAL-NAMES paragraph

SYSSWCH
DISPLAY statement
SPECIAL-NAMES paragraph

System configuration

System console messages

SYSTIME clause
ACCEPT statement
SPECIAL-NAMES paragraph

Table
defining
indexing
reference
searching
subscripting
Table handling
TALLY
TALLING clause
Text

TRANSFORM statement

Reference

9.1.1.1
423

9.1.1.2
423

9.1.13
423

922
423

926
423

923

423

1.2

D3

Table D—2

9.14
423

10.2
105
103
10.6
104
10.1
22
6.6.3.1
2.5

6.6.3.4

Page

UP-8059 Rev. 3 . SPERRY UNIVAC 0S/3 Index 8
EXTENDED COBOL

Term Reference Page Term Reference Page .
U data movement 6.6.3 6—19
ending 6.6.5 6—39
UPSI bit, DISPLAY statement 9.24 9—5 input-output 6.6.4 6—27
interprogram communications 6.6.8 6—53
UPSI byte procedure branching 6.6.2 6—12
ACCEPT statement 9.16 9—-3 types 6.6 6—5
DISPLAY statement 9.24 9—5
SKIP job control statement G3 G—14
w
USAGE clause 535 5-22
Words
USE statement 6.6.7.4 6—51 characters used 211 2—2
reserved Table 22 2—6
USING statement 6.1.1 6—1 Appendix B
types 22 2—4
v user-supplied Table 2—1 2—4
WORKING-STORAGE section 54 5—33
VALUE clause 538 5—28
WRITE statement
VALUE OF clause 5215 5—9 conversion mode F4 F—10
description 6.6.4.6 6—32
Verbs indexed files 1143 11—7
arithmetic 66.1 6—5 relative files 1142 114
compiler-directing 66.7 6—48 sequential files 114.1 11-3
conditional 6.6.6 6—40

sPERRY <= UNIVAC

USER COMMENT SHEET

Your comments concerning this document will be welcomed by Sperry Univac for use in improving
subsequent editions.

Please note: This form is not intended to be used as an order blank.

(Documment Title)

(Name of User)

{Business Address}

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A\)
Thank you for your cooperation

'
I
I
I
|
I
I
I
I
l (Document No.) {Revision No.) (Update No.)
: Comments:
l
I
I
I
I
|

g |

o :
I
I
|
|
|
|
|
|
I
I
|
|
I From:
|
I
I
I
I
I
|
I

—— T . T—— — —— — — —— —— —— L, i T i —— T R Si— ———— ——— —— — S S— — — ——- — A S— —— V— — — i ——— A— ———— . S—— — — — ———— — —" —— ——

| || || | NO POSTAGE

NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

ind

POSTAGE WILL BE PAID BY ADDRESSEE
SPERRY UNIVAC

ATTN.: SYSTEMS PUBLICATIONS

P.0. BOX 500
BLUE BELL, PENNSYLVANIA 19424

EY -

SPERRY<=UNIVAC |

USER COMMENT SHEET

Your comments concerning this document will be welcomed by Sperry Univac for use in improving
subsequent editions.

Please note: This form is not intended to be used as an order blank.

(Document Title)

{Document No.) (Revision No.) /Updaté Nb.}
Comments:
o
£
‘ @
\ =4
| . o
©
| 5
| o
From:

(Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A))
Thank you for your cooperation

|
|
|
|
|
|
|
|
|
|
|
l
l
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
l
I
I
l
I
I
|

| “ |I | NO POSTAGE

NECESSARY
IF MAILED
IN THE
UNITED STATES

1nd

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE
SPERRY UNIVAC

ATTN.: SYSTEMS PUBLICATIONS

P.O. BOX 500
BLUE BELL, PENNSYLVANIA 19424

Cut aI!ng line.

I
I
I
I
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

SPERRY <= LINIVAC

USER COMMENT SHEET

Your comments concerning this document will be welcomed by Sperry Univac for use in improving

subsequent editions.

Please note: This form is not intended to be used as an order blank.

(Document Title)

{Document No.)

Comments:

From:

{Revision No.) {Update No.)

{Name of User)

{Business Address)

Fold on dotted lines, and mail. {No postage stamp is necessary if mailed in the U.S.A))

Thank you for your cooperation

| " || I NO POSTAGE

NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE
SPERRY UNIVAC

ATTN.: SYSTEMS PUBLICATIONS

P.O0. BOX 500
BLUE BELL, PENNSYLVANIA 19424

