Basic COBOL

Environment: 90/25, 30, 30B, 40 Systems

v=E=UNIVAC

©1974, 1975, 1976, 1977 — SPERRY CORPORATION

This document contains the latest information available at the time of preparation.
Therefore, it may contain descriptions of functions not implemented at manual
distribution time. To ensure that you have the latest information regarding levels of
implementation and functional availability, please consult the appropriate release
documentation or contact your local Sperry Univac representative.

Sperry Univac reserves the right to modify or revise the content of this document. No
contractual obligation by Sperry Univac regarding level, scope, or timing of functional
implementation is either expressed or implied in this document. It is further understood
that in consideration of the receipt or purchase of this document, the recipient or
purchaser agrees not to reproduce or copy it by any means whatsoever, nor to permit
such action by others, for any purpose without prior written permission from Sperry
Univac.

Sperry Univac is a division of the Sperry Corporation.
FASTRAND, SPERRY UNIVAC, UNISCOPE, UNISERVO, and UNIVAC are registere i

trademarks of the Sperry Corporation. ESCORT, PAGEWRITER, PIXIE, and UNIS a
additional trademarks of the Sperry Corporation.

This document was prepared by Systems Publications using the SPERRY UNIVAC UTS
400 Text Editor. It was printed and distributed by the Customer Information Distribution
Center (CIDC), 6565 Henderson Rd., King of Prussia, Pa., 19406.

PRINTED IN U.S.A.

SPERRY UNIVAC
Operating System/3 (0S/3)

Basic COBOL

Supplementary Reference

This document contains the latest information available at the time of preparation.
Therefore, it may contain descriptions of functions not implemented at manual distribution
time. To ensure that you have the latest information regarding levels of implementation
and functional availability, please contact your local Sperry Univac representative.

Sperry Univac reserves the right to modify or revise the content of this document. No
contractual obligation by Sperry Univac regarding level, scope, or timing of functional
implementation is either expressed or implied in this document. It is further understood
that in consideration of the receipt or purchase of this document, the recipient or
purchaser agrees not to reproduce or copy it by any means whatsoever, nor to permit such
action by others, for any purpose without prior written permission from Sperry Univac.

Sperry Univac is a division of the Sperry Rand Corporation.
FASTRAND, SPERRY UNIVAC, UNISCOPE, UNISERVO, and UNIVAC are registered

trademarks of the Sperry Rand Corporation. AccuScan, ESCORT, PAGEWRITER, PIXIE, and
UNIS are additional trademarks of the Sperry Rand Corporation.

This document was printed and distributed by the Customer Information Distribution
Center {CIDC), 555 Henderson Rd., King of Prussia, Pa., 19406.

©1974, 1975, 1976, 1977 — SPERRY RAND CORPORATION PRINTED IN U.S.A.

PSS 1

8057 Rev. 2 . D
P NUMBER SPERRY UNIVAC Operating System/3 UPDATE LEVEL | Pace
PAGE STATUS SUMMARY
ISSUE: Update D — UP-8057 Rev. 2
RELEASE LEVEL: 7.1 Forward
] Page Update . Page Update . Page Update
Part/Section Number Level Part/Section Number Level Part/Section Number Level
Cover/Disclaimer B8 PART 3 PART 6
Title Page Orig. Title Page Orig.
PSS 1 D
- 7 1 Orig. Appendix A 1,2 Orig.
Acknowiedgmeny 1 Orig. 2 C
3 Orig. Appendix B 1 A
Preface 1 thru 3 Orig. 4 B 2 B
5 Orig.
Contents 1,2 Orig. 6 B Appendix C 1 Orig.
3 D
4 thru 6 Orig. 8 1,2 Orig. Appendix D 1thru9 Orig.
7 thru 9 B 10 B
9 1 B 1 Orig.
PART 1 2,3 Orig. 12,13 B
Title Page Orig. 4 B 14 thru 35 Orig.
5 Orig.
1 1,2 Orig. Appendix E 1 Orig.
10 1 Orig. 2 B
2 1thru8 Orig. 2,3 B 3 Orig.
9 B 4,5 B
10 Orig. 1 1 thru 4 Orig. 6,7 Orig.
5 D 8 B
PART 2 6 thru 12 Orig. 9 thru 11 Orig.
Title Page Orig. 13,14 B 12 thru 16 B
15 thru 18 Orig.
3 1,2 Orig. 19, 20 B Appendix F 1thru 9 Orig.
21 Orig. 10 B
4 1,2 A 22 A 11 A
3 Orig. 23 Orig. 12 B
4 A 24 B 13 thru 15 Orig.
5 thru 7 Orig. 25 A
8 B 26, 27 Orig. Appendix G 1 Orig.
9 Orig. 2 thru 4 C
10 A 12 1,2 Orig. 5 thru 11 Orig.
11 thru 14 Orig. 3 B8 12,13 B
4 thru 7 Orig.
5 1thru3 Orig. Index 1 Orig.
4,5 B PART 4 2 B
6 thru 8 Orig. Title Page Orig. 3,4 Orig.
9 C 5 D
10 thru 17 Orig. 13 1 B 6 Orig.
18 C 2 thru 4 Orig. 7 B
19 thru 25 Orig. 8 Orig.
PART S5
6 1thru3 Orig. Title Page Orig. User Comment
4 D Sheet
S thru 21 Orig. 14 1 A
22 B 2thru6 Orig.
23 Orig.
24,25 B 15 Tthru 9 Orig.
26 thru 36 Orig.
37 B 16 1thru 6 Orig.
38 thru 44 Orig.
45 A
46 Orig.

All the technical changes are denoted by an arrow () in the margin. A downward pointing arrow (*) next to a line indicates that

technical changes begin at this line and continue until an upward pojnting arrow (4] is found. A horizontal arrow (=») pointing to

a line indicates a technical change in only that line. A horizontal arrow located between two consecutive lines indicates technical

changes in both lines or deletions.

Acknowledgment 1
PAGE

8057 Rev. 2 l SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL

Acknowledgment

This manual is based on American National Standard COBOL, X3.23 — 1968 developed by the American National
Standards Institute. In response to their request the following acknowledgment is reproduced in its entirety:

“Any organization interested in using the COBOL specifications as the basis for an instruction manual or for any
other purpose is free to do so. However, all such organizations are requested to reproduce this section as part of the
introduction to the document. Those using a short passage, as in a book review, are requested to mention ‘COBOL’
in acknowledgment of the source, but need not quote this entire section.

“COBOL is an industry language and is not the property of any company or group of companies, or of any
organization or group of organizations.

““No warranty, expressed or implied, is made by any contributor or by the COBOL Committee as to the accuracy
and functioning of the programming system and language. Moreover, no responsibility is assumed by any
contributor, or by the committee, in connection therewith.

“Procedures have been established for the maintenance of COBOL. Inquiries concerning the procedures for
proposing changes should be directed to the Executive Committee of the Conference on Data Systems Languages.

“The authors and copyright holders of the copyrighted material used herein

FLOW—MATIC Programming for the UNIVAC | and Il, Data Automation Systems copyrighted 1958, 1959,
by Sperry Rand Corporation; IBM Commercial Translator Form No. F28-8013, copyrighted 1959 by IBM;
FACT, DSI 27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell.

have specifically authorized the use of this material in whole or in part, in the COBOL specifications. Such
authorization extends to the reproduction and use of COBOL specifications in programming manuals or similar
publications.

“This complete USA Standard edition of COBOL may not be reproduced without permission of the USA Standards
Institute.”

8057 Rev. 2 | SPERRY UNIVAC Operating System/3 Preface 1
UP-NUMBER UPDATE LEVEL | PAGE
Preface

This manual is one of a series designed to instruct and guide the programmer in the use of the SPERRY UNIVAC
Operating System/3 (0S/3). This manual specifically describes the OS/3 COBOL basic compiler and its effective use.
Its intended audience is the novice programmer with a basic knowledge of data processing, but with limited
programming experience, and the programmer whose experience is limited to non-UNIVAC systems.

Two other manuals also are available for instruction and guidance in the use of 0S/3 COBOL; one is a fundamental
manual, and the other is the extended compiler manual. The fundamental COBOL manual, UP-7503.1 (current
version) is useful for reviewing the language in some depth; however, it does not present the COBOL implementation
for 0S/3. The extended COBOL supplementary reference manual, UP-8059 (current version) includes the same
information as this manual, but incorporates enhancements to the basic compiler, such as sorting, additional verbs,
and more options, for the basic compiler verbs to provide more efficient use of the COBOL language.

This manual is divided into the following parts:
. u PART 1. COBOL LANGUAGE STRUCTURE

Defines the rules, symbols, and minimum system configurations required to compile an 0S/3 COBOL
program. ALSO describes the character set, types of words, qualification, and subscripting and indexing and
presents the layout of a coding form.

L] PART 2. DIVISIONS IN COBOL
Discusses the four divisions of COBOL. which are as follows:
IDENTIFICATION — labels a program, providing entries of pertinent information regarding the author and
installation of the program, when it was written and compiled, any security that might be involved, and its

intended use.

ENVIRONMENT — immediately follows the identification division entries and is coded to reflect specific user
system configurations.

DATA — Divided into three sections:

File Section — describes the records to be processed and the physical structure of files on which these records
reside.

Working-Storage Section — describes areas for intermediate or temporary storage of data that does not belong

to any file.
' Linkage Section — describes data items that are passed by a calling program to a called program and are
referred to by both the calling and the called program.

PROCEDURE — specifies the instructions for the processor to use in solving the problem.

SPERRY UNIVAC Operating System/3 L
UPDATE LEVEL

8057 Rev. 2 Preface 2
UP-NUMBER PAGE
a PART 3. COMPILER FEATURES AND CAPABILITIES

Describes options that can be used with the basic COBOL compiler, in addition to furnishing pertinent
information that may be helpful in preparing a problem program.

COMPILER OPTIONS AND LIBRARY TECHNIQUES — explains how to use specific COBOL options, such
as generating certain listings in conjunction with compiling a problem program. The library techniques
paragraphs describe SOURCE and COPY library input specifications.

RERUN CLAUSE — provides a method of restarting the execution of a COBOL program at a checkpoint
position, rather than at the beginning of the execution.

USE OF ACCEPT AND DISPLAY STATEMENTS — the statements to use in retrieving or displaying
low-volume data from or to system hardware.

TABLE HANDLING — examines the methods of table definition and referencing available in 0OS/3 COBOL.
For a complete discussion of table handling, see the fundamentals of COBOL—table handling manual,
UP-7503.2 (current version).

PROCESSING TECHNIQUES FOR DIRECT ACCESS DEVICES — explains the various access methods
available on the 0S/3 system and describes the COBOL statements needed to interface with them,

ASCIl PROCESSING — describes the option for using ASCHl data and processing files encoded in ASCII
{American Standard Code for Information Interchange).
PART 4. DEBUGGING AIDS

lilustrates the techniques of detecting, diagnosing, and correcting errors in the COBOL source program with
the aid of the compiler.

PART 5. SAMPLE PROGRAMS

Some of the COBOL statements defined in this manual are collected and presented in example operating
programs.

PART 6. APPENDIXES
Presents the following appendixes:
A. CHARACTER SET — contains conversion tables for characters and the character collating sequence.

B. RESERVED WORDS — lists words that are part of the COBOL language structure but are not used as
user-defined words.

C. INTERMEDIATE RESULTS IN ARITHMETIC OPERATIONS — describes the internal work areas for
certain arithmetic statements.

D. COMPILER DIAGNOSTICS — lists the texts of the numbered diagnostic messages issued by the
compiler, their severity codes, the probable reason for the error or condition detected by the compiler,

the COBOL rules that apply, and the recovery actions taken by the compiler. Also listed are the system
console messages that require programmer action.

~E. COMPILER LISTINGS - describes the listings received through the use of the PARAM statements in

the job control stream.

F. CONVERSION MODE — describes a facility allowing users of I1BM/360 DOS COBOL level-D to transfer
into 0S/3 COBOL.

‘

8057 Rev. 2 | SPERRY UNIVAC Operating System/3 Preface 3
UP-NUMBER UPDATE LEVEL PAGE
. G. JOB CONTROL STREAM REQUIREMENTS — lists and describes the keyword parameters of the

procedure call statement used to generate job contro! statements needed for compilation. Examples of
call statements and generated control streams are included.

Other OS/3 publications, referenced in this manual, will be necessary or useful to the programmer working with the
basic COBOL compiler:

L Supervisor user guide, UP-8075 (current version)

Provides information needed to access the communication region of the 0S$/3, through which one job step
may communicate with a following job step.

n Job control user guide, UP-8065 (current version)

Provides information on the format and usage of job control statements for accessing UPSI switches, allocating
devices, and passing parameters to the object program.

L] Data management system user guide, UP-8068 {current version)
Provides SPERRY UNIVAC 0S/3 standard file label specifications.
] Error messages programmer/operator reference manual, UP-8076 (current version)

Lists and describes the system console messages issued during compilation by the compiter, emphasizing error
conditions during execution, and relating to sort operations.

8057 Rev. 2 i SPERRY UNIVAC Operating System/3

UP-NUMBER

Contents 1
UPDATE LEVEL PAGE

PAGE STATUS SUMMARY
ACKNOWLEDGMENT
PREFACE
CONTENTS
PART 1. COBOL LANGUAGE STRUCTURE
1. INTRODUCTION
1.1. SYMBOLS, RULES, AND NOTATIONS USED IN THIS MANUAL

1.2 COBOL COMPILER

2. GENERAL SPECIFICATIONS

2.1. COBOL CHARACTER SET

2.1.1. Characters Used for Words

2.1.2. Characters Used for Punctuation

2.1.3. Characters Used in Relational Expressions
2.1.4. Characters Used in Editing

2.2, TYPES OF WORDS

2.3. QUALIFICATION

24, SUBSCRIPTING AND INDEXING

25, CODING FORM

PART 2. DIVISIONS IN COBOL
3. IDENTIFICATION DIVISION

3.1. GENERAL

Contents

1-2

2-1

2-2
2-2
2-3
2-3

8057 Rev. 2

SPERRY UNIVAC Operating System/3

Contents 2
UP-NUMBER UPDATE LEVEL | PAGE
4. ENVIRONMENT DIVISION ‘
1.1. GENERAL 4-—1
4.2. CONFIGURATION SECTION 4-1
4.21. SOURCE-COMPUTER Paragraph 4-2
422, OBJECT-COMPUTER Paragraph 4-—2
4.23. SPECIAL-NAMES Paragraph 4-3
43. INPUT-OUTPUT SECTION 4-9
4.3.1. FILE-CONTROL Paragraph 4-9
4.3.2. 1-0-CONTROL Paragraph 4-12
5. DATADIVISION
5.1. GENERAL 5—1
5.1.1. Data Definition 5-2
5.2 FILE SECTION 5-2
5.2.1. File Description 5-3
5.2.1.1. BLOCK CONTAINS Clause 5-3
5.2.1.2. RECORD CONTAINS Clause 5—6
5.2.1.3. LABEL RECORDS Clause 5—6
5.2.14. RECORDING MODE Clause 5—7
5.2.1.5. VALUE OF Clause 5—-8
5.2.1.6. DATA RECORDS Clause 5-8
5.3. DATA DESCRIPTION 5-9
53.1. Level Number and Unqualified-data-name/FILLER Clause 5—9
5.3.2. REDEFINES Clause 5—-10
53.3. OCCURS Clause 5-11
5.3.4. PICTURE Clause 5-12
5.3.5. USAGE Clause 5—18
5.3.6. SYNCHRONIZED Clause 5—-19
5.3.7. JUSTIFIED Clause 5—19
5.3.8. VALUE Clause 5-20
5.3.9. BLANK WHEN ZERO Clause 5—-21
5.3.10. MAP Clause 5—21
5.3.11. Condition-name Clause 5—21
5.3.12, SIGN Clause 5-22
5.4. WORKING-STORAGE SECTION 5-23
54.1. Independent Entries 5-23
5.4.2, Record Description Entry 5-24
5.5. LINKAGE SECTION 5-24
6. PROCEDURE DIVISION
6.1. GENERAL 6—1 il
6.1.1. USING Statement 6—1 .
6.2. DECLARATIVES SECTION 6-—2

8057 Rev. 2 J SPERRY UNIVAC Operating System/3 D J Contents 3

UP-NUMBER UPDATE LEVEL | PAGE
6.3. SECTION 6—2
6.4. PARAGRAPH 6—3
6.5. STATEMENTS AND SENTENCES 6—3
6.5.1. Imperative Statements 6—3
6.5.2, Conditional Statements 6—4
6.5.3. Compiler-Directing Statements 6-4
6.5.4. Overlapping Operands 6-4 -
6.6. VERB TYPES 6—5
6.6.1. Arithmetic Verbs 6—5
6.6.1.1. ADD Statement 6—6
6.6.1.2. DIVIDE Statement 6—7
6.6.1.3. MULTIPLY Statement 6-—-8
6.6.1.4. SUBTRACT Statement 6—9
6.6.2. Procedure Branching Verbs 6—-10
6.6.2.1. ALTER Statement 6—-10
6.6.2.2. GO TO Statement 6—11
6.6.2.3. PERFORM Statement 6—-12
6.6.24. EXIT Statement 6—13
6.6.3. Data Movement Verbs 6—14
6.6.3.1. EXAMINE Statement 6—14
6.6.3.2. MOVE Statement 6—15
6.6.3.3. SET Statement 6-—17
6.6.3.4. TRANSFORM Statement 6—18
6.6.4. Input/Qutput Verbs 6-21
6.6.4.1. ACCEPT Statement 6—21
6.6.4.2. CLOSE Statement 6—22
6.6.4.3. DISPLAY Statement 6—23
6.6.4.4. OPEN Statement 6—24
6.6.4.5. READ Statement 6—25
6.6.4.6. WRITE Statement 6—25
6.6.4.7. INSERT Statement 6—27
6.6.4.8. REWRITE Statement 6—27
6.6.4.9. SEEK Statement 6—28
6.6.5. Ending Verb (STOP) 6—29
6.6.6. Conditional Verb (IF) 6—29
6.6.7. Compiler-Directing Verbs 6—-33
6.6.7.1. COPY Statement 6—33
6.6.7.2. ENTER Statement 6—34
6.6.7.3. NOTE Statement 6—35
6.6.7.4. USE Statement 6—36
6.6.8. Interprogram Communications 6—-38
6.6.8.1. CALL Statement 6—38
6.6.8.2. ENTRY Statement 6-39
6.7. SEGMENTATION 6—39
6.7.1. Program Segments 6—39
6.7.1.1. Fixed Portion 6—39
6.7.1.2. Independent Segments 6—39
6.7.2. Section 6—40
6.7.3. Restrictions 6—40
6.7.3.1. ALTER Statement 6—40
6.7.3.2. PERFORM Statement 6—41
6.7.3.3. Linkage Editor Considerations 6—41

-

8057 Rev. 2 SPERRY UNIVAC Operating System/3 Contents 4
UP-NUMBER UPDATE LEVEL | PAGE
6.8. CALLING AND CALLED PROGRAMS 6—41
6.8.1. Treatment of Data Items 6—41
6.8.2, Linking 6—42
6.8.3. 0S/3 COBOL CALL/ENTRY Interface 6—42
PART 3. COMPILER FEATURES AND CAPABILITIES
7. COMPILER OPTIONS AND LIBRARY STATEMENTS
7.1. COMPILER OPTIONS 7-1
71.1 List Options 7-1
7.1.2. Output Options 7-2
7.2 SOURCE AND COPY LIBRARY INPUT SPECIFICATIONS 7-3
7.2.1. Object Module Version/Revision Number 7-3
7.2.2. Compiler Source Library Input and Copy Library Input 7-4
7.3. LIBRARY 7-5
73.1. Using the COPY Statement 7-5
8. RERUN CLAUSE
8.1. GENERAL 81
8.2. RERUN CLAUSE 8—1
8.3. CHECKPOINTING 81
8.4. RESTARTING 8-2
8.5. NOTES AND RESTRICTIONS 8-2
* 9. USE OF ACCEPT AND DISPLAY STATEMENTS
9.1. ACCEPT STATEMENT 9—1
9.1.1. Job Control Stream ACCEPT 91
9.1.1.1. 80-Column Card ACCEPT 9--1
9.1.1.2. 96-Column Card ACCEPT 9-2
9.1.1.3. 8413 Diskette ACCEPT 9-2
9.1.2, Console ACCEPT 9-3
9.1.3. Current Date ACCEPT 9-3
9.14. . Time of Day ACCEPT 9-3
9.1.5. Julian Date ACCEPT 9-3
9.1.6. UPSI Byte ACCEPT 9-3
9.1.7. Communications Region ACCEPT 94
9.2. DISPLAY STATEMENT 9-4
9.2.1. Console DISPLAY 9-4
9.2.2, Log File DISPLAY 9-4
9.2.3. UPSI Byte DISPLAY 9—4
9.2.4. UPSI Bit DISPLAY 9-5
9.2.5. Communications Region DISPLAY 9-6
9.2.6. Printer Listing DISPLAY 9-5

Contents 5

8057 Rev. 2 l SPERRY UNIVAC Operating System/3 UPDATE LEVEL | paGE
UP-NUMBER i
' 10. TABLE HANDLING
10.1. GENERAL 10-1
10.2. DEFINING A TABLE 10-1
10.3. TABLE REFERENCE 10-1
10.4. SUBSCRIPTING 10-2
10.5. INDEXING 10-2
11. PROCESSING TECHNIQUES FOR DIRECT ACCESS DEVICES
11.1. INTRODUCTION 11-1
11.2 FILE ORGANIZATION 11-1
11.2.1. Sequential Organization 11-1
11.2.2, Relative Organization 11-2
11.2.3. Indexed Organization 1-2
11.3. ACCESS METHODS 11-2
11.3.1. Sequential Access 11-2
11.3.2. Random Access 11-2.
, 11.3.3. Extended Access 11-2
. 11.4. CLAUSES REQUIRED FOR FILE PROCESSING 11-2
11.4.1. Sequential File Processing 11-3
11.4.2 Relative File Processing 11-4
11.4.3. Indexed File Processing 1-7
11.4.4. Summary of Imperative Statements and Error Conditions 11-13
114.4.1. ORGANIZATION IS SEQUENTIAL Clause 11-13
11.4.4.2, ORGANIZATION IS RELATIVE Clause 11-13
11.4.4.3. ORGANIZATION IS INDEXED Clause 11-13
11.4.4.4, SYSERR Messages 11-26
11.4.45, COBOL Disc Processing Techniques 11-26
12. ASCIlI TAPE PROCESSING
12.1. GENERAL 121
12.2, DECLARATION OF ASCII FILES 121
12.3. RECORDING MODE CLAUSE 12--2

8057 Rev. 2 i
8057 Rev- 2 SPERRY UNIVAC Operating System/3 Soare LEVELJ PAGCEontents 6
PART 4. DEBUGGING AIDS .
13. DEBUGGING LANGUAGE

14.

15.

16.

13.1. GENERAL

13.2. READY TRACE

13.3. RESET TRACE

134. EXHIBIT

13.5. DEBUGGING PACKET

PART 5. SAMPLE PROGRAMS
SAMPLE PROGRAM 1

14.1. GENERAL

14.2. PROGO1

14.3. SOURCE CODE LISTING
144. OUTPUT LISTING

SAMPLE PROGRAM 2

15.1. GENERAL

15.2. PROGO2

15.3. SOURCE CODE LISTING
15.4. OUTPUT LISTING

SAMPLE PROGRAM 3

16.1. GENERAL

16.2. PROGO3

16.3. SOURCE CODE LISTING
16.4. OUTPUT LISTING

PART 6. APPENDIXES
CHARACTER SET
RESERVED WORDS

INTERMEDIATE RESULTS IN ARITHMETIC OPERATIONS

13-1

13—-1

13—1

13-2

16—1

16—1

16-2

15—-9

16—1

16—1

16-2

16—6

B

8057 Rev. 2 3 3 Contents 7
UP-NU!\:‘IIBER SPERRY UNIVAC Operating System/ UPDATE LEVEL | PacE

C.1. GENERAL Cc-1
c.2. ADD AND SUBTRACT STATEMENTS C—1

D. COMPILER DIAGNOSTICS
D.1. GENERAL D—1
D.2. DIAGNOSTIC MESSAGES D-1
D.3. SYSTEM CONSOLE MESSAGES D-33

E. COMPILER LISTINGS
E.1. SOURCE CODE LISTING E—-1
E.2. DATA DIVISION STORAGE MAP AND CROSS-REFERENCE LISTING E-3
E.3. PROCEDURE DIVISION STORAGE MAP AND CROSS-REFERENCE LISTING E—-4
E.4. OBJECT CODE LISTING AND EXTERNAL REFERENCES E—-6
E5. DIAGNOSTIC ERROR LISTING E—-11
E.6. ALPHABETICALLY ORDERED DATA DIVISION CROSS-REFERENCE LISTING E-14 *
E.7. ALPHABETICALLY ORDERED PROCEDURE DIVISION CROSS-REFERENCE

LISTING E-14 ’

F. CONVERSION MODE
F.1. GENERAL F-1
F.2. CONVERSION MODE OPERATION F—-1
F.3. CONVERSION MODE SYNTAX F-2
F.3.1. Identification Division . F-2
F.3.2. Environment Division F-2
F.3.3. Data Division F—5
F.3.4. Procedure Division F-7
F.3.5. Reserved Words F—-10
F4. PRINTER FILE SUPPORT F—-11
F5. DISC FILE SUPPORT F-13
F.5.1. Sequential Organization F—13
F.5.2. Indexed Organization F—-14
F.5.3. Direct Organization F-15
F.5.4. Error Testing in USE AFTER ERROR Procedure F—15

8057 Rev. 2 SPERRY UNIVAC Operating System/3 B Contents 8

UP-NUMBER UPDATE LEVEL | PAGE

G. JOB CONTROL STREAM REQUIREMENTS

G.1. INTRODUCTION G-1
G.2. PROCEDURE CALL STATEMENT {COBOLB) G-1
G.3. COMPILER STATUS INDICATORS G-12
Ga4a. DATA DEFINITION (DD) JOB CONTROL STATEMENT
KEYWORD PARAMETERS G-12
INDEX
USER COMMENT SHEET
FIGURES
2-1. Example of Qualification Entries 2-8
2-2, COBOL Programming Form 2-9
3-1. Example of Identification Division Entries - 3-2
41, Example of Environment Division Entries 4-14
5-1. Example of Data Division Entries 5—25
6—1. Example of Calling Program 6-43
6—2. Example of Called Program 6—44
6-3. Example of Called Assembly Subprogram 6—45
12-1. ASCII Physical Tape Formats 12-3
E—1. Example of Source Code Listing E-2
E-2. Example of Data Division Storage Map and Cross-Reference Listing E-5
E—3. Example of Procedure Division Storage Map and Cross-Reference Listing E-8
E—4. Example of Object Code Listing and External References E-12
E-5. Example of Diagnostic Listing E-13
E—6. Example of Alphabetically Ordered Data Plvision Cross-Reference Listing E-15
E—7. Example of Alphabetically Ordered Procedure Division Cross-Reference Listing E-16
TABLES
1-1. SPERRY UNIVAC 0S/3 COBOL Module/Level Implementation 1-2
2-1. User-Supplied Words 24
2-2. Reserved Words ’ 2-5
2-3. Programming Form Column Usage 2-10

4-1. Rules for SPECIAL-NAMES 4-8

8057 Rev. 2 l SPERRY: UNIVAC Operating System/3 B Contents 9
UP-NUMBER UPDATE LEVEL | PAGE
5—1. Main Storage Allocation 5-2
5—2. Control Field Sizes 5—4
5—3. Block Size Ranges 5-5
b—4. Label Record Specifications b-7
5—b5. PICTURE Symbols 5—-14
5—6. Precedence Rules in PICTURES 5-16
5—7. Source and Receiving Fields 5-17
6—1. MOVE Sending and Receiving Fields 6—16
6—2. Combination of FROM and TO Options in a TRANSFORM Statement 6—20
6—3. Program/Subprogram Relationships 6-46
11—-1. Logical Record Retrieval by Sequential Read 11-10
11-2. Warning Exception Conditions for Indexed File Processing 11-13
11-3. AT END/INVALID KEY Exception Conditions for Indexed File Processing 11-14
11—4. Unrecoverable File Error Conditions for Indexed File Processing 11-14
11-5. Exception Handling for COBOL Verbs Used for Indexed File Processing 11-17
11—6. System Error Messages (SYSERR) for INDEXED and RELATIVE Files 11-26
11-7. Summary of COBOL Disc Processing Techniques 11-27
—1. Characteristics of Tape Files Available to COBOL Users 12—4
2. ASCII/EBCDIC Conversion 12-5

PART 1. COBOL LANGUAGE STRUCTURE

8057 Rev. 2 l SPERRY UNIVAC Operating System/3 1-1
UP-NUMBER UPDATE LEVEL PAGE
1. Introduction

1.1. SYMBOLS, RULES, AND NOTATIONS USED IN THIS MANUAL

The various language elements comprising a COBOL program must be written in formats that adhere to fixed and
precise rules of presentation. Each format statement indicates the following information:

order of presentation;

words requisite to proper functioning of the statement;
optional words included at the discretion of the user;
information that must be supplied by the user;

elements in the statement involving a choice by the user; and

optional functions of the statement.

In accordance with the foregoing, the following conventions are used in this manual:

The order of presentation is indicated by the format statement itself.
All COBOL reserved words appear in all capitals. They are also listed in Appendix B.

Words in underlined capitals are key words, which must be present when the functions in which they appear
are used. Those capitalized words not underlined are optional and may be included at the user’s discretion to
improve readability; there is no compiler action. All completely capitalized words, whether underlined or not,
are part of the COBOL language and must be spelled exactly as indicated.

All lowercase words represent generic terms to be supplied by the user when the functions of which they are a
part are used.

Elements of a statement inyolving a choice, one of which must be chosen, are enclosed in braces{}. If one of
the choices within the braces has no key words, it is a default option; i.e., if none of the elements within the
braces is specified, the action will be the same as if the default option had been specified.

Optional functions, which may be included or omitted at the user’s discretion, are enclosed in brackets {].
When two or more options are stacked within brackets, one or none of them may be specified.

8057 Rev. 2 SPERRY UNIVAC Operating System/3 1-2
UP-NUMBER UPDATE LEVEL | PAGE
= In some statements, certain portions may be used as many times as needed by the programmer. The ellipsis. . .

indicates this repeatability. If there is a choice to be made from stacked options or if there is only a single
possibility, brackets or braces are used as delimiters to indicate that portion of the statement which is
repeatable.

Program examples are shown in 14.2, 15.2, and 16.2.

1.2. COBOL COMPILER

The SPERRY UNIVAC Operating System/3 (0S/3) COBOL compiler conforms to the specifications of the
American National Standards Institute entitled American National Standard COBOL, X3.23—1968. The modules
and levels implemented are shown in Table 1—1; where OS/3 COBOL features are an extension to these
requirements, an annotation is made in the text.

Table 1—1. SPERRY UNIVAC 0S/3 COBOL Module/Level Implementation

Module Level
Nucleus 1
Sequential access 2
Random access 2
Segmentation 1
Table handling 2
Library 1

The minimum system configuration required for this compiler includes:
u 3 disc work areas and 1 system disc

= 1 card reader or substitute device

] 1 printer or substitute device

a 32,768-byte main storage

The compiler and all compiler-produced object programs normally operate on data represented in Extended Binary
Coded Decimat Interchange Code (EBCDIC) under control of the 0S/3.

A COBOL source program can be entered in the compiler from the job stream file or from a disc library file. The
compiler produces, as its final output, a relocatable object program on disc. This output module must be processed
by the linkage editor before being executed.

21
PAGE

8057 Rev. 2 I SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL

®

2. General Specifications

2.1. COBOL CHARACTER SET

The SPERRY UNIVAC Operating System/3 {0S/3) COBOL character set is a 52-character subset of the OS/3
character set, which contains 256 characters.

The COBOL character set consists of the following characters:
0,1,..9
AB,..,Z
Blank or space (written on coding form as Aor a blank space)
Period
< Less than
(Left parenthesis
+ Plus sign
$ Currency sign
Asterisk (if used in column 7, indicates that the entire source line is commentary)
) Right parenthesis
; Semicolon
- Minus sign or hyphen
. Comma
> Greater than
Apostrophe (alternate character for quotation mark)
= Equal sign
" Quotation mark (see apostrophe)

/ Slash

8057 Rev. 2 SPERRY UNIVAC Operating System/3

UP-NUMBER

2-2
PAGE

UPDATE LEVEL

The collation sequence for these characters is given in Appendix A.

The 0S/3 COBOL character set may be used anywhere in a program; however, the additional characters, which
together with the COBOL set make up the system set, may be used only in the following instances:

L] anywhere in the identification division except in the PROGRAM-ID paragraph;

L] in the NOTE statement of the procedure division; or

. in nonnumeric literals.

The apostrophe or the quotation mark may be embedded in a nonnumeric literal by invoking the appropriate LST

PARAM option to specify one or the other as the delimiter. (See Section 7.) Only one of these parameters may be
used in any given program. The use of either overrides the interchangeability of the apostrophe and quotation mark.

The following paragraphs describe the general usage of the various 0S/3 COBOL characters.
2.1.1. Characters Used for Words
A COBOL word is a sequence of not more than 30 of the following characters:

0.1,..9

AB,..2Z

— {hyphen)

A word may neither begin nor end with a hyphen, or contain a space.

2.1.2. Characters Used for Punctuation

COBOL punctuation characters are:

Apostrophe (character used as delimiter for a nonnumeric literal and as an optional character for the
quotation mark)

(Left parenthesis

) Right parenthesis

Blank or space {written on coding form as Aor a blank space)

Period
) Comma
; Semicolon

”

Quotation mark (See apostrophe.)
NOTE:

The normal mode for the compiler is to equate the apostrophe and the quotation mark as meaning the same thing.
To embed either character within a nonnumeric literal, the PARAM options described in 7.1 may be used.

- The comma and semicolon, when used in the general format descriptions, are for readability only and are not
required. When used, the comma and semicolon always must be followed by, a space.

o

2-3
PAGE

8057 Rev. 2 I SPERRY UNIVAC Operating System/3

UP-NUMBER

UPDATE LEVEL

‘ 2.1.3. Characters Used in Relational Expressions

The COBOL characters used to represent relational operators are:

Equals
> Greater than

< Less than

2.1.4. Characters Used in Editing
The characters used in editing are:

B Blank or space insertion

0 Zero insertion

+ Plus sign

- Minus sign
CR Credit
DB Debit

4 Zero suppression
Check protection
$ Currency symbol
Comma

Decimal point

2.2. TYPES OF WORDS

Two types of words are used in OS/3 COBOL.: user-supplied and reserved. The user-supplied words are listed and
defined in Table 2—1. Reserved words are used for syntactical purposes and may not appear as user-defined words.
The various types of reserved words are described in Table 2—2. Appendix B contains a complete list of OS/3
COBOL reserved words.

8057 Rev. 2 SPERRY UNIVAC Operating System/3 2-4

UP-NUMBER UPDATE LEVEL | PAGE

Table 2—1, User-Supplied Words (Part 1 of 2)

User-Supplied Words Rules

Data-name 1. Contains 1 through 30 characters

2. Permissible characters are O through 9, A through Z, and hyphen ().
3. Must include at least one alphabetic character

4, Hyphen (=) cannot be the first or last character.

5. May be qualified; may not be subscripted

Unqualified 1. Rules 1 through 4 for data-name
data-name
2. May not be qualified; may not be subscripted

identifier 1. Rules 1 through 4 for data-name

2, May be qualified and/or subscripted

Condition-name 1. Rules 1 through 4 for data-name

2. Value may be established in a level-88 entry or in a SPECIAL-NAMES
switch status declaration.

3. Referenced only in conditions
Conditional 1. Rules 1 through 4 for data-name
variable
2. Data-name immediately followed by one or more associated level-number
88 entries
Procedure-name 1. Rules 1, 2, and 4 for data-name
2. Must precede each referenced paragraph
3. A procedure-name is a section-name if it is followed by the word
SECTION.
External-name 1. A nonnumeric literal of 1 to 8 characters
2. A user-supplied label that duplicates the LFD name used in the job
control stream to name a COBOL file
File-name 1. Rules 1 through 4 for data-name
2. A word that names a file described in the data division
Index-name 1. Rules 1 through 4 for data-name
2. Value of index-name corresponds to an occurrence number for a table
dimension.
3. Initialized and modified only by the SET statement

4, Defined by the INDEXED BY clause

5. Table references using indexing are specified by the data-name of the
table element followed by parentheses including an index-name for each
table dimension.

6. Storage areas are assigned by compiler.

8057 Rev. 2 SPERRY UNIVAC Operating System/3

UP-NUMBER

UPDATE LEVEL

2-5
PAGE

Table 2—1. User-Supplied Words (Part 2 of 2)

User-Supplied Words

index data-item

1. Rules 1 through 3 for index-name
2. Defined by USAGE IS INDEX clause

3. May be part of a group referred to in a MOVE or |-O statement

Numeric literal

1. A string of not more than 20 characters, including O through 9, sign
{+ or =), and decimal point

2. Must contain at least one and not more than 18 digits plus a sign and
a decimal point

3. May contain only one sign, which must be leftmost character; if
unsigned, literal is positive.

4, May contain only one decimal point, treated as an assumed decimal
point; if no decimal point, the literal is an integer

5. Decimal point cannot be the last character in a numeric literal.

6. When a literal is restricted to numeric, the only figurative constant
permitted is ZERO.

Nonnumeric literal

1. A string of any characters of the OS/3 character set, excluding the
quotation mark and the apostrophe (unless these have been embedded by
use of the appropriate LST parameter (7.1)); reserved words may be used

2. Must contain at least one and not more than 132 characters
3. Must be enclosed within quotation marks or apostrophes
4, Any spaces enclosed in the quotation marks are part of the literal

and, therefore, are part of the value.
5. All nonnumeric literals are in the alphanumeric category.

6. A figurative constant can be used whenever a nonnumeric literal appears
in the format.

Table 2—2. Reserved Words (Part 1 of 2)

Reserved Words Rules
Verbs Denote actions performed by the object program or the COBOL compiler
Key words 1. A word which must be present in a particular clause
2. Key words are indicated by underlining where they appear in the general
formats.
Optional words 1. Used in COBOL. to improve readability
2, Presence or absence does not alter handling of statement during

compilation or execution of program

3. Not underlined when shown in generalized format

8057 Rev. 2 SPERRY UNIVAC Operating System/3 2-6

UP-NUMBER UPDATE LEVEL | PAGE

Table 2—2, Reserved Words (Part 2 of 2)

Reserved Words Rules

TALLY 1. TALLY is the name of a special register designated by the compiler
whose implicit description is that of a COMPUTATIONAL-3 integer of five
digits without an operational sign.

2. TALLY holds the count produced by the EXAMINE statement.

3. TALLY may also be used in the procedure division as a data-name
whenever an elementary data item of integral value may appear.

Figurative constants 1. ZEROQ, ZEROS, or ZEROES generates one or more 0's.
2. SPACE or SPACES generates one or more spaces.

3. HIGH-VALUE or HIGH-VALUES generates one or more hexadecimal
FF characters (all binary 1’s); this character has the highest value in the
0S/3 collating sequence.

4, L OW-VALUE or LOW-VALUES generates one or more hexadecimal 00
characters (all binary 0’s); this character has the lowest value in the
0S/3 collating sequence.

5. QUOTE or QUOTES generates one or mare apostrophes ('), hexadecimal 7D;
QUOTE(S) cannot be used in place of quotation marks ("'} or an apostrophe
to bound a nonnumeric literal.

6. The ALL literal generates one or more of the literals following the
ALL; the literal must be either a nonnumeric literal or a figurative
constant other than the word ALL; when a figurative constant is used,
the word ALL is redundant and is used for readability only; the ALL
literal may not be used with DISPLAY, EXAMINE, STOP, or COPY.

Connectives 1. The qualifier connectives OF and IN are used to associate a data-name
or paragraph-name with its qualifier.

2. A series connective is the comma, which links two or more consecutive
operands or statements; the use of a series connective is optional.

2.3. QUALIFICATION

Every name used in an OS/3 COBOL source program must be unique either because of different spelling or because
of qualification.

Definition:
Qualification is a means of making a name within a hierarchy unique by appending a prepositional phrase
containing the name of a higher level of the hierarchy. It is accomplished by appending one or more phrases
composed of a qualifier preceded by IN or OF to a data-name or paragraph-name. IN and OF are logically
equivalent.

Rules:

1. The name associated with the highest level entry in a hierarchy is the highest level qualifier available for
a data-name within that hierarchy.

2. Each qualifier must be of a successively higher level and within the same hierarchy as the name it
qualifies.

8057 Rev. 2

SPERRY UNIVAC Operating System/3 2-7
UP-NUMBER UPDATE LEVEL | PAGE

3. The same name must not appear at two different levels in the same hierarchy.

4, I1f a data-name or condition-name is assigned to more than one item, it must be qualified each time it is
referenced.

5. Adata-name cannot be subscripted when it is being used as a qualifier.

6. A paragraph-name must not be duplicated within a section.

7. Only a section-name can qualify a paragraph-name; the word SECTION must not appear as part of this
qualifier.

8. A paragraph-name need not be qualified when referred to from within the same section.

9. A name may be qualified even though it does not require qualification.

10. FD names, level-77 names, level-66 names, level-01 names not in the file section, and section-names must
be unique in themselves as they cannot be qualified.

11. A data-name being qualified may be subscripted or indexed. The subscripts/indexes must appear to the

right of the last qualifier name.

Format 1:
data-name-1 IN
{con itionname- 1} [{ OF } data-name-Z] e [(sub-1 [, sub-2 [, sub-3]])]
Format 2:

IN .
paragraph-name [{a’z} sectlon-name]

8057 Rev. 2 SPERRY UNIVAC Operating System/3 2-8

UP-NUMBER UPDATE LEVEL | PAGE

NOTE: .

Figure 2—1 jllustrates examples of qualification entries.

CONTINUATION
SEQUENCE I A

NUMBER 8 TEXT »

61718 11112 20 30 40 50 60
... ¥ THE FOLLOWING ENTRIES SHOW THE USE OF QUALIFICATI®ON. ..
PN B St b4 b s bos PSS TR U S SR ST S IR R SO R VT S ST SO S S SO W W S S GRS U AT

- .
P S S DAnTlA DAIIVIISKIAUM.A bocdddd foddd i H L d £t P SPANT U SO W ST S EN W T SO S SO
PR walR‘KINxel—LsLTLOARNGJE IS=ELC‘TI'UXN‘k PR S SO W G R S S TN ST S SN NS S WO R S ST S NN SR E S S
e 177 HOLD PIC XC10) VALUE SPACES. . NN B

o
Lol Ql i AxLA-'quxxlx U U S S S U T SN SV SN S S SR ¢ TURN SRR S S S Bt PSS A SR BT
e L 1103 CITY PIIC XC20)0, 1y e
TR Lt o.al LWAARD. inLcl Xl(I‘IOI)J.‘ Lo U S ST U I Y AT NSRS BT RS S S
NN | PO S TN N T VT S o : PRGN B S SIS S S S U S
L ol | p.E:NN.A'I NI S PSSR VIS A TSN G VY S VT Wi G S S 0 S S G W S U VA S S S S Oy ST S S
Lab il 03 'ClIlTYJ LpLIJCL 'x-(1210=)1'x S ST S WSS SO0 W00 WA S S S AT N S W S N Lo

[N 1 1013 -WARDIPiLclix(IlIO)I'l:iJJ,..lJ_..!..,.l,,._‘_ii‘lnll'lllii'lll!lillll

PO Lol TR S SN IR VP S GRS VR L P S SR SO A TGS S
L PN N S S ST VAN S UV GO USRS N Y SO ST S0 TS SO S WY S S S PSRN T S G T B SR SO S S W N S O O
... .| |PROCEDURE DIVISION.,, 1 N N B
o : ; NS T R I FUNU S N W S RS T DO SO S | S S N AT S SN ST TN ST S S S0 WU WA TO N
Lo p& “he FUTIT SRS S Y TS ST U000 W 0 AT W WA S WSS ST WY YOS SO0 GHNE ST S S S ST W S U S SN G N B O
oo]y MOVE WARD OF PENNA T® MOLD.. . o, ...\ li. il .
A W W STE 0 N VR SO T U S0 T T S NS PN TN S NN S U VO S AN WY SRS S WO T PSS ST S W U SO W0 TS S S0 M B RO |
... D NoTEE IF THE DATA NAMES CITY AND WARD WERE UNIQUE, THEN
b P OQUAILTFICATION 19 UNNECESSARY . o | i e oo
T S PR 0 T U U YOO TN N U0 SN TOUT SO0 VUG T TN WO W SO O T S S VA U U0 U VOt W S S T ST N S S ST S S W Y U S A O

Figure 2—1. Example of Qualification Entries

8057 Rev. 2 SPERRY UNIVAC Operating System/3 B 2-9

UP-NUMBER UPDATE LEVEL | PAGE

2.4, SUBSCRIPTING AND INDEXING
Definition:

Subscripting and indexing are techniques used to refer to individual table elements within a table of like
elements that have not been assigned individual data-names.

Rules:
1. Up to three levels of subscripting or indexing are permitted.
2. Subscripted or indexed identifiers may not be used as qualifiers.

3. When condition-names are assigned to items requiring subscripting or indexing, these condition-names
must be subscripted or indexed when referenced.

4, Relative indexing (index-name * integer) is permitted. The integer must not be zero. Zero is considered
out of the scope of an OCCURS clause.

5. When more than one subscript or index is used in a reference, each must be separated by a comma and a
space.

NOTE:

Table handling is discussed in Section 10. For a complete discussion of table handling, see the fundamentals of
COBOL — table handling manual, UP-7503.2 (current version).

2.5. CODING FORM

Figure 2—2 shows the layout of the COBOL programming form. On this form the programmer enters all information
needed by the COBOL compiler, observing the rules of format and content defined in this manual. Each line of
written information represents the information to be entered into one 80-column punched card. The divisions of the
form are explained in Table 2—3.

UNIvac coBoOL - .
PROGRAMMING FORM CQOGRANLD._L‘,_,,., EU— ;,J
PROGRAM . _ PROGRAMMER R __. DATE . ._._.. PAGE
CONTINUATION
SES:E:? K B TEXT —» IDENTIFICATION
6{718 11112 20 40 50 80 72
L L ! L R S B SO . ¢ s . PRI L I
L L Lo s d ' i PN p . ek L L
L | s 5 L a PRI S S J S R N T U T EPERE S S TN Lo Lt L sl
PR J PRt Lo oo b L L _ GoddL P Lkt i Ak \ L
I | : i | i i L i L L s L i \
S S G U i I 1 Lo L Codoon d 41 1 T I L i 1 1 bk I N S 1
P L i I Ly PR i FEY L Lok Ao L beid
L U e 1. 1 4 L.l S SR G S S S ¥ L4 L,L e Lo I SESy SR U S W W L) Lol SN
L " L ek oA L i i 1 L RN S W
P | - — s . : L L i L] - L ; i

Figure 2—2. COBOL Programming Form

8057 Rev. 2 SPERRY UNIVAC Operating System/3 2-10

UP-NUMBER UPDATE LEVEL | PAGE

Table 2—3. Programming Form Column Usage

Columns Designation Contents

1-6 SEQUENCE NUMBER A numeric entry, used only by the programmer (not the COBOL
processor) to establish a sequence among the various lines of
coding (optional).

7 CONTINUATION A hyphen (-) is used when an entry extends past one -
noncomment line. A break is used in the middle of a word,

and the hyphen is written in column 7 of the next ¢ontiguous
line on which the word is completed. A word may be interrupted
in any column, the rest of the line space filled, and the

word completed on the next line. If the continued line

contains a nonnumeric literal without a closing

delimiter (apostrophe or quotation mark), the first

nonblank character in Area B of the continuation line must be
one of these delimiters and the continuation starts with the
character immediately after the delimiter.

7 COMMENT An asterisk {*) in column 7 signifies a comment line which

will be printed but ignored by the compiler. A comment

may appear anywhere in the program except between a continuation
set and can contain any printable combination of characters,
including reserved words. If a comment entry extending past

one line has a break occurring in the middle of a word, the
continuation line must contain an asterisk in column 7.

{The hyphen is only used for noncomment continuation

lines.) This is an extension to American National Standard

COBOL (1968).

7 EJECT A slash {/) in column 7 signifies a comment line that causes

the compiler to direct the printer to skip to the head of the
form and print the comment. If the comment line is continued,
it must follow the rules for comment continuation, as explained
in the preceding paragraph.

8-72 TEXT All COBO L-formatted information, in the form of names,
statements, information, instructions, etc., that is to be
compiled into the object program.

Note that two left-margin limits designated ‘A’ and “‘B"’
are shown. These are needed for program alignment. Major
definitive names are begun at margin A (column 8). Margin
B (column 12) is used for subordinate items and for
continuation of entries from the last preceding line.

73—-80 IDENTIFICATION Card deck information (optional)

PART 2. DIVISIONS IN COBOL

UP-NUMBER AGE

8057 Rev. 2 L SPERRY UNIVAC Operating System/3 l L 3-1
UPDATE LEVEL P

3. Identification Division

3.1. GENERAL

The identification division identifies or labels the source program and provides other pertinent information
concerning the program. All information given in this division is listed by the printer during compilation; however,
only the PROGRAM-ID paragraph will affect the object program in the SPERRY UNIVAC Operating System/3
{0S/3).

Format:

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.

. [AUTHOR. [comment-entry.] ...]
[INSTALLATION. [comment-entry.] ...]
'[DATEWRITTEN. [comment-entry.] ...]

[DATE-COMPILED. [comment-entry.] ...]

[SECURITY. [comment-entry.] ...]
[REMARKS. [comment-entry.] ...]
Rules:
1. The identification division must be present in all source programs.

2. PROGRAM-ID always must be present as the first paragraph of the identification division.
Program-name may consist of 1 to 30 alphabetic or numeric characters, the first character being
alphabetic. The sequence formed by the first six characters must be unique {within user’s library) since it
will identify the source program, object program elements, and associated documents. Hyphens within
the first six characters are removed by the compiler due to OS/3 naming conventions.

If the program name is not supplied or not accepted due to an error, the compiler automatically supplies
the program name NOCOBNAM.

. 3. AUTHOR is for documentation only.

8057 Rev. 2 SPERRY UNIVAC Operating System/3 3-2
UP-NUMBER UPDATE LEVEL | PAGE

4, INSTA LLATION is for documentation only. .

5. DATE-WRITTEN is for documentation only.

6. DATE-COMPILED is for documentation only. Date of compilation appears on listing regardless of

whether this paragraph is present. Comment-entry is printed when this paragraph is present.

7. SECURITY is for documentation only.

8. REMARKS is for documentation only.

9. A comment-entry can consist of any printable combination of characters, including reserved words.

Example:
An example of identification division entries is shown in Figure 3—1.
CONTINUATION
SEQUENCE i—; 8 TEXT e
NUMBER 6{7]8 1112 20 30 40
——% =

001001 |[IDENTIFICATION DIVISION. L
001,002 |PRO6RAM-1D.. TESTOI.. . . | o
001,003 AUTHODR. SYSTEMS PU BLIC,A 1.1, ONS S
001004 |[INSTALLATION. DEPT 6866, . L
00,1005 [DATE —quI.T,T‘E,N.L- (OcT 12 1973.. o A
QLO‘L(_Loolb DATlE ——CO Mp I L E D[D EC __;‘__L,%J_ _LLJQ;];;L&, PSR SR R B i i " 1
001,007 |SECURITY., NONE 0. g
qq anlois ‘REMARsz‘ b Us ER R E POR T .# ! ,‘_L' i 4 S0 W VI S S W,

Figure 3—1. Example of ldentification Division Entries

A
UPDATE LEVEL

4-1

. 8057 Rev. 2
PAGE

UP-NUMBER

SPERRY UNIVAC Operating System/3

4. Environment Division

4.1. GENERAL

The environment division specifies those elements of the COBOL program that depend upon the physical aspects of
the SPERRY UNIVAC 90/30, 90/25, or 90/40 System. -

Format:

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

UNIVAC-9030.
SOURCE-COMPUTER. < UNIVAC-9025.
UNIVAC-9040.

. UNIVAC-9030
OBJECT-COMPUTER., <{UNIVAC-9025
UNIVAC-9040 -

—

CHARACTERS
,MEMORY SIZE integer { MODULES
WORDS

[SPECIAL-NAMES. entry.]

T INPUT-OUTPUT SECTION.
FILE-CONTROL. {entry.} e
| {1-O-CONTROL. entry.]

Rules:

1. The environment division must be present in all source programs in the SPERRY UNIVAC Operating
System/3 (0S/3). It may need to be rewritten when a program is to be compiled or executed on a
different system configuration.

2. Section and paragraph headers are required when their associated entries are present.

3. Section and paragraph headers must begin in margin A {columns 8—11); their associated entries must
begin in margin B (columns 12—71).

4.2. CONFIGURATION SECTION

. Definition:

The configuration section specifies the characteristics of the source and object processors and relates
implementor-names to user-names.

8057 Rev. 2 SPERRY UNIVAC Operating System/3

UP-NUMBER

A 4-2
UPDATE LEVEL | PAGE

It

Format:

CONFIGURATION SECTION.
SOURCE-COMPUTER. entry.
OBJECT-COMPUTER. entry.
[SPECIAL-NAMES. entry.]

4.2.1. SOURCE-COMPUTER Paragraph
Function:
Names the processor that will compile the source program.

Format:

UNIVAC-9030.
SOURCE-COMPUTER.< UNIVAC-9025,
UNIVAC-9040.

Rule:

The SOURCE-COMPUTER paragraph is for documentation only and does not affect the object program.

4.2.2. OBJECT-COMPUTER Paragraph
Function:
To specify the processor that will execute the object program and the size of main storage.

Format:

UNIVAC-9025
UNIVAC-9040

UNIVAC-9030
OBJECT-COMPUTER.) 1NV AC.ONOR

CHARACTERS
MEMORY SIZE integer { MODULES
WORDS

Rule:

MEMORY SIZE is an optional clause defining main storage as an integer number (no sign, comma, or decimal
point permitted) of WORDS, CHARACTERS, or MODULES (for documentation only). The equivalent
number of bytes for each is as follows:

L] CHARACTER = 1 byte
L WORD = 4 bytes

. MODULE = 16,384 bytes

4-3
PAGE

8057 Rev. 2 | SPERRY UNIVAC Operating System/3

UP-NUMBER

UPDATE LEVEL

. 4.2.3. SPECIAL-NAMES Paragraph
Function:
Relates implementor-names to user-supplied mnemonic-names
Format:
SPECIAL-NAMES.
[CURRENCY SIGN IS literal]

[: DECIMAL-POINT IS COMMA]

[; SYSCOM IS mnemonic-name-1]

[; SYSDATE IS mnemonic-name-2]

[; SYSTIME IS mnemonic-name-3]

[: SYSCONSOLE IS mnemonic-name-4]
[: SYSCHAN-t IS mnemonic-name-5] ...

[; SYSLST IS mnemonic-name-6]

‘ [SYSERR [-m]

ON STATUS IS condition-name-3[, OFF STATUS IS condition-name-4]
OFF STATUS IS condition-name-4[, ON STATUS IS condition-name-3]
; SYSSWCH [-n]
IS mnemonic-name-7 [ON STATUS IS condition-name-5[QFF STATUS IS condition-name-6]
IS mnemonic-name-7[OFF STATUS IS condition-name-6[ON STATUS IS condition-name-5]]

ON STATUS IS condition-name-5 [QFF STATUS IS condition-name-6]
OFF STATUS IS condition-name-6{ON STATUS IS condition-name-5]

[; SYSIN IS mnemonic-name-8]
[; SYSIN-96 1S mnemonic-name-9]
[; SYSIN-128 IS mnemonic-name-10]

[;SYSLOG IS mnemonic-name-11] .

where:
t
Is any digit 1 through 15.
o m
Is any digit O through 31.
n

Is any digit O through 7.

8057 Rev. 2 SPERRY UNIVAC Operating System/3 A a4
UP-NUMBER UPDATE LEVEL | PAGE
Rules:
1. A comma or semicolon may separate each entry, and a period must follow the last entry.
2. The CURRENCY clause literal is used in the PICTURE clause to represent the currency symbol.
Absence of this clause specifies that $ is the currency symbol. The literal must be a nonnumeric literal
consisting of one character from the 0S/3 COBOL character set and must not be one of the following
characters:
- Digits: 0 through 9
L Alphabetic characters: A,B,C,D,P, R, S, V, X, Z, or space
m Special characters: * ,+~.; ()"
3. The DECIMAL-POINT IS COMMA clause causes the functions of the decimal point and the comma to

be interchanged in PICTURE clause character strings and in numeric literals.

Examples:

SPECIAL-NAMES. CURRENCY SIGN IS ‘F' DECIMAL-POINT IS COMMA.

Source PICTURE Source Data J Receiving Field PICTURE Receiving Field Result
9(6) V99 00003232 FFFFFF,99 AAAF 32,32

9(5)v99 1234567 F**.*** 99 F12.345,67

9(9)v9a(4) 0000098211289 Z(3).229,9(4) AN9.821,1289

SYSCOM permits accessing the communications region in the preamble of the job in which the object
program is being executed via user-supplied mnemonic-name-1. See the supervisor user guide, UP-8075
(current version) for an explanation of data.

SYSDATE permits access to current date via the user-supplied mnemonic-name-2. Mnemonic-name-2
may not appear in a DISPLAY statement. Date may be set or changed in the job control stream.

SYSTIME permits access to time-of-day via a mnemonic-name-3. Mnemonic-name-3 may not appear in
DISPLAY statement.

SYSCONSOLE permits access to the system console {using ACCEPT or DISPLAY statement; see Section
9) via mnemonic-name-4.

SYSCHAN-t equates a particular channel (t) on the printer loop to mnemonic-name-b.
Mnemonic-name-5 may appear only in a WRITE statement. SYSCHAN 1 and 7 are normally used for
form overflow and top-of-page, respectively.

SYSERRI[-m] permits access to system error codes. The status of a particular error (m) or the presence
of any error can be checked with the ON/OFF STATUS option. SYSERR[-m] is a feature of the
compiler random access module. Condition-names in ON/OFF STATUS phrases are defined and equated
with ON or OFF as required by the compiler and should not be defined elsewhere in the COBOL
program.

8057 Rev. 2 l SPERRY UNIVAC Operating System/3 4-5
UP-NUMBER UPDATE LEVEL | PAGE
. 10. SYSSWCHI-n] and its various options permit the programmer to access all or part of the user program
switch indicator (UPSI) byte. The eight bits in the UPSI byte (bits O through 7) constitute a set of eight

programmable software switches, SYSSWCH-0 through SYSSWCH-7. The status of these switches can be
set to ON or OFF, altered, or interrogated as required. A switch containing a 1 bit is ON; a 0 bit is OFF,
The following examples show the various ways of using SYSSWCH,

L] To set or change the contents of SYSSWCH, the DISPLAY verb may be used as follows:

ENVIRONMENT DIVISION.
SPECIAL-NAMES.
SYSSWCH IS SWITCH
SYSSWCH-3 IS SWITCH-3.
PROCEDURE DIVISION.
DISPLAY 00010001 UPON SWITCH SYSSWCH will now contain 00010001.
DISPLAY 1 UPON SWITCH-3. SYSSWCH-3 will now contain 1; the other switches
remain unchanged.

DISPLAY identifier UPON SWITCH. The eight switches in SYSSWCH (0 through 7) are set

ON or OFF, depending on the contents of the
8-character identifier.

NOTE:

Any character other than a hexadecimal FO will set a switch to ON.,

. An individual switch can be interrogated by using condition-name in the ON/OFF STATUS option.
. For instance, in the following example control is transferred to procedure-name-1 if switch 5
is ON.

ENVIRONMENT DIVISION.
SPECIAL-NAMES.
SYSSWCH-5 ON STATUS IS FIVON, OFF STATUS IS FIVOFF.

PROCEDURE DIVISION.

IF FIVON GO TO procedure-name-1.

In essence, SYSSWCH-5 is a conditional variable with the condition-names FIVON and FIVOFF,
which are similar to level-88 entries.

The condition-names FIVON and FIVOFF are defined and equated with ON and OFF,
respectively, by the COBOL compiler and must not be defined elsewhere in the COBOL program.
The compiler uses the hexadecimal characters FO and F1, respectively, to represent the OFF and

. ON status of a switch.

8057 Rev. 2 SPERRY UNIVAC Operating System/3
UP-NUMBER

4-6

UPDATE LEVEL | PAGE

= The entire UPSI byte may be interrogated by use of the ACCEPT verb. This is shown in the .
following example where procedure-name-1 is performed if the SYSSWCH-2, SYSSWCH-4, and
SYSSWCH-6 switches are ON and the others are OFF.

ENVIRONMENT DIVISION.

SPECIAL-NAMES.

SYSSWCH IS mnemonic-name-1.

DATA DIVISION.

identifier PICTURE X(8).

PROCEDURE DIVISION.

ACCEPT identifier FROM mnemonic-name-1.

IF identifier = 00101010 PERFORM procedure-name-1.
L Another way to interrogate switches is:

SPECIAL-NAMES.

SYSSWCH ON STATUS IS OK, OFF STATUS IS NIX.

PROCEDURE DIVISION.

IF OK GO TO procedure-name-1.
In this example, if any switch is set to 1 the program will branch to prccedure-name-1.

L] The mnemonic-name option allows the user to equate his mnemonic-name with the
implementor-name SYSSWCH [-n]. For instance:

SPECIAL-NAMES.

SYSSWCH IS MYSWITCH, ON STATUS IS MYSWITCHON.

or

SYSSWCH-4 1S TAKETAX, ON STATUS IS LOFICA; OFF STATUS IS EQFICA.

The mnemonic-name option is for use only with the ACCEPT or DISPLAY verbs.

8057 Rev. 2
UP-NUMBER

a4-7
UPDATE LEVEL | PAGE

SPERRY UNIVAC Operating System/3

L] The UPSI switches also can be accessed by the following job control statements: '
- SET statement — used to set switches ON or OFF (1 or 0).
- SKIP statement — used to conditionally bypass control statements. If the UPSI switch
settings match the bit pattern specified in the SKIP statement, the specified number of

statements will be skipped.

The format and usage of these statements are shown in the job control user guide, UP-8065
{current version).

11. SYSLST permits access to the printer by way of mnemonic-name-7 for DISPLAY functions.

12. SYSIN permits access to embedded data in the control stream when the embedded data is supplied on
80-column cards. Access is made via mnemonic-name-8 and the ACCEPT statement.

13. SYSIN-96 permits access to embedded data in the control stream when the embedded data is supplied
on 96-column cards. Access is made via mnemonic-name-9 and the ACCEPT statement.

14. SYSIN-128 permits access to embedded data in the control stream when the embedded data is supplied
on an 8413 diskette. Access is made via mnemonic-name-10 and the ACCEPT statement.

16. SYSLOG permits access to the system console and log file via mnemonic-name-11 and the DISPLAY
statement.

16. Table 4—1 shows how SPECIAL-NAMES are handled by the compiler. Note that if the PICTURE clause
is other than shown in the “Implied Description’” column in the table, the rules for the MOVE statement
determine the storing of the result. The effect is that of a MOVE in which the sending item is described
as shown in the ““Stored as’’ column and the receiving item description is that supplied by the user for
identifier when accepting. The sending and receiving fields are reversed when displaying.

NOTE:

See Section 9 for further discussion of ACCEPT and DISPLAY statements.

8057 Rev. 2
UP-NUMBER

4-8
PAGE

SPERRY UNIVAC Operating System/3 B

UPDATE LEVEL

Table 4—1. Rules for SPECIAL-NAMES

Usable With Implied Description
SPECIAL-NAME $ das Format for ACCEPT or Explanation
ACCEPT | DISPLAY DISPLAY (3)
SYSCOM 12 Yes Yes 12 EBCDIC PIC X(12) See the supervisor user
alphanumeric characters guide, UP-8075 {current version}.
characters 4
SYSDATE 6 numeric Yes No yymmdd PiC 9(6) Current day
characters
SYSTIME 8 numeric Yes No hhmmss00 PIC 9(8) Time of day
characters
SYSCONSOLE Variable-length Yes Yes For DISPLAY: PIC X(n) System console
alphanumeric 65 characters per
characters line, up to 250
For ACCEPT:
60 characters imax.)|
SYSCHAN-t® Not applicable No No Not applicable Not applicable To assign name to
printer loop channel
SYSERR([~—m)] Not applicable No No Not applicable Not applicable Refer to Section 11.
SYSSWCH 8 alphanumeric Yes Yes 8 EBCDIC PIC X(8) To call or change UPSI
characters characters bits
SYSSWCH-n 1 alphanumeric No Yes 1EBCDIC PIC X To change UPS| bits
character character individually
SYSLST Variable-length No Yes 120 characters/ PIC X{n) Printer with LFD name
alphanumeric line of SYSLST
characters
SYSIN Variable-length Yes No 80 characters/ PIC X(n) Embedded control stream
alphanumeric card data cards (80-column)
characters
SYSIN-96 Variabie-length Yes No 96 characters/ PIC X{n} Embedded control stream
alphanumeric card data cards (96-column)
characters
SYSIN-128 Variable-length Yes No 128 characters PIC X(n) Embedded control stream
alphanumeric on diskette data (8413 diskette)
characters
SYSLOG Variable-length No Yes 55 characters PIC X(n) System console and log
alphanumeric file (no operator
characters response)
ON STATUS® Not applicable No No Not applicable Not applicable To interrogate user
program switch indicators
{UPS1) for ON or OFF
condition
OFF STATUS® Not applicable No No Not applicable Not applicable

NOTES:

@ Can be used only in conditional variable tests.
@ Can be used only in ADVANCING clause of WRITE statement.

®@ see4.2.3,rule 14.

4-9

. 8057 Rev. 2 | SPERRY UNIVAC Operating System/3 PAGE

UP-NUMBER

UPDATE LEVEL

., 4.3. INPUT-OUTPUT SECTION
Definition:
This section of the environment division is used to specify the input/output media for the files used by the
source program and to provide information needed for most efficient transmission of data between this media

and the object program.

Format:

INPUT-OUTPUT SECTION.
FILE-CONTROL. {entry.} ...

[1-O-CONTROL. entry.]

4.3.1. FILE-CONTROL Paragraph
Function:

The FILE-CONTROL paragraph names each file, identifies the hardware medium containing it, permits
specific hardware assignments for the program, and specifies alternate input/output areas. The clauses
following SELECT and ASSIGN under FILE CONTROL may be specified in any order.

Format:

FILE-CONTROL. {SELECT {OPTIONAL] file-name
ASSIGN TO [external-name] [integer-1] implementor-name-1 [OR implementor-name-2]

REEL
[FOR MULTIPLE {UNIT }]

. integer-2 AREA
[, RESERVE {ﬂg } ALTERNATE [AREAS}j]

. JEILE-LIMIT IS data-name-1 THRU data-name-2
" | FILE-LIMITS ARE literal -1 —— literal-2

data-name-3 data-name4
|: ! {Iitera|-3 } THRY {Iitera|-4 }]:’

EXTENDED }

; ACCESS MODE IS { RANDOM
SEQUENTIAL

[; PROCESSING MODE IS SEQUENTIAL]

[INDEXED
: ORGANIZATION IS RELATIVE
L SEQUENTIAL

[. { ACTUAL KEY IS data-name-5
. | ° | RELATIVE KEY IS data-name-6

; SYMBOLIC KEY IS data-name-7]
; RECORD KEY |S data-name8] . } ...

o p—

L

8057 Rev. 2 .
4-10
P NUMOER SPERRY UNIVAC Operating System/3 UPDATEALEVEL l oaa
Rules:

The comma or semicolon may separate each clause, and a period must follow the entry.
A SELECT clause must be specified for the following:

~ Every file that is the subject of an FD.

. The external-name operand of a RERUN clause for which no FD is supplied.

The keyword OPTIONAL, which may be applied to input files only, is required for files that are not
necessarily present each time the object program is run. The status of the optional file at run time is
determined by the job control stream. If the file is not present in the job stream, control takes the path
specified by the AT END statement on the first READ statement. The keyword OPTIONAL can be
applied to input files only, and these files must be sequential.

The ASSIGN clause designates a particular hardware device, or class of devices, to which a specific file is
assigned. External-name is a nonnumeric literal (1 to 8 characters) which is associated with a file. This is
the name used in the job control stream to assign devices to the file (using the LFD job control
statement). The external name must be unique within a job step. If external-name is omitted, the first
eight characters of file-name are assumed for external-name. Integer-1 serves as documentation only,
referring to the number of devices associated with the file. SPERRY UNIVAC 0S/3 COBOL assigns the
following implementor-names:

Device Implementor-Name

CARD-READER-51
CARD-READER-66

51-column card reader
66-column card reader
80-column or 96column card reader or

8413 diskette subsystem CARD-READER

Card punch or 8413 diskette subsystem CARD-PUNCH
Line printer PRINTER
8411 disc subsystem DiISC-8411
8414 disc subsystem DISC-8414
8415 disc subsystem DISC-8415
8416 disc subsystem DISC or DISC-8416
8418 disc subsystem DISC-8418
8430 disc subsystem DiSC-8430
8433 disc subsystem DISC-8433
UNISERVO VI-C Magnetic Tape Subsystem TAPE-6

All other tapes TAPE

The implementor-name, DISC, specifies an assignment to the SPERRY UNIVAC 8416 Disc Subsystem.
Because of track size differences, the user must ensure that the proper implementor-name is used when
assigning discs.

The implementor-name, CARD-READER, is used when reading 80-column or 96-column cards or when
reading data from an 8413 diskette device. If the record size specified in the data division is greater than
the physical record size of the medium, the remaining character positions in the record will contain
spaces.

The MULTIPLE clause, when present, specifies that the file exists on more than one volume. This clause
is accepted for documentation purposes only, since the actual function is provided via the job control
stream, which specifies the devices needed for the problem program.

4-11

UPDATE LEVEL | PAGE

UP-NUMBER

8067 Rev. 2 l SPERRY UNIVAC Operating System/3

Number of Additional
. 1/O Areas Allocated Reserve
Device if Clause Integer
Not Specified Allowed
CARD-READER 1 Yes
CARD-PUNCH 1 Ves
PRINTER 1 Ves
TAPE 1 Ves
ORGANIZATION
SEQUENTIAL 1 Yes
(or omitted)
DISC ORGANIZATION 0 Yes
INDEXED
ORGANIZATION 0 o
RELATIVE

6. The RESERVE clause indicates the number of additional 1/0 areas desired. The keyword NO causes no

additional 1/0 areas to be reserved; integer-2 reserves one additional 1/0 area. Integer-2 must be a 1; if

. not and the word NO is not specified, a warning diagnostic will be issued. Omission of this clause may
result in the allocation of one additional 1/O area as indicated in the following chart:

7. FILE-LIMIT clause serves as documentation only.

8. ACCESS MODE specifies the manner in which the records of a file are read and/or written. Absence of
this clause results in assumption of sequential access.

9. PROCESSING MODE clause is for documentation only. Sequential processing is always assumed,
regardless of the absence or presence of this clause.

10. The ORGANIZATION clause designates the physical structure of the file. Sequential organization is
assumed if the clause is omitted. This clause is an extension to American National Standard COBOL
(1968).

11. ACTUAL KEY IS data-name-5. {See RELATIVE KEY explanation.)

For compatibility with SPERRY UNIVAC 9300 System COBOL, ACTUAL KEY may be specified in
place of SYMBOLIC KEY when used with indexed file organizations. (Note that in this case the
ORGANIZATION clause must appear first.)

12. RELATIVE KEY IS data-name-6 is used with relative organization files to supply the physical position
of a record with respect to the beginning of the file. Records in a relative organization file are addressed
as relative record numbers 1, 2, 3, and so on. The ACTUAL KEY clause may be substituted for the
RELATIVE KEY clause. Data-name-6 must be defined as an unsigned numeric integer according to the

‘ rules for numeric items. This clause is an extension to American National Standard COBOL (1968).

8057 Rev. 2 SPERRY UNIVAC Operating System/3 4-12
UP-NUMBER UPDATE LEVEL | PAGE
13. SYMBOLIC KEY IS data-name-7 is used for indexed file organizations to supply the record
identification for random retrieval and sequential positioning. The information associated with the

RECORD KEY clause must be identical with the information associated with the SYMBOLIC KEY

clause. Data-name-7 must consist of 3 to 249 bytes. This clause is an extension to American National
Standard COBOL (1968).

14. RECORD KEY IS data-name-8 is used for indexed-organized files to supply the record identification
field. Data-name-8 must consist of 3 to 249 bytes. This clause is an extension to American National
Standard COBOL (1968,).

A detailed explanation of the various keys and types of file organization is given in Section 11.

4.3.2. 1-O-CONTROL Paragraph
Function:

Specifies the following:

» Input/output techniques

- Main storage area shared by various files

L] Location of each file on multiple-file-reel

] Intervals at which rerun is to be established
Format:

1-O-CONTROL.

[RERUN ON external-name EVERY integer-1 RECORDS OF file-name-1 [, file-name-2] ...] ...

l-;SAME [RECORD] AREA FOR file-name-3 |, file-name-4 }]
[

{; MULTIPLE FILE TAPE CONTAINS file-name-5 [POSITION integer-2]
[file-name-6 [POSITION integer-31} ...1 ...

[; APPLY VERIFY ON file-name-8 [, file-name-n] ...] ...

file-name-9 [, file-name-10] . . .
[: APPLY BLOCK-COUNT ON {TAPES }]

t[; APPLY MASTER-INDEX ON file-name-11 [, file-name-12] ... 1 ...

[; APPLY CYLINDER-INDEX AREA OF integer-5 INDICES ON file-name-13 [, file-name-14] ... 1 ...

[; APPLY CYLINDER-OVERFLOW AREA OF integer-6 PERCENT ON file-name-15 [, file-name-16] ...] ...
t[; APPLY EXTENDED-INSERTION AREA ON file-name-17 [, file-name-18] ...] ...

[; APPLY FILE-PREPARATION ON file-name-19 [, file-name-20] ...] ...

[; APPLY ASCIi

[WITH BUFFER.OFFSET {FOR BLOCK-LENGTH-CHECK }]

OF integer CHARACTERS
ON file-name-21 [, file-name-22] ...] ...

tAccepted for SPERRY UNIVAC Operating System/4 (0S/4) compatibility only.

4-13
PAGE

8057 Rev. 2 | SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL

' Rules:

1. A comma or semicolon may separate each entry, and a period must follow the last entry.

2. The RERUN clause specifies that checkpoint records are to be written on the disc or tape unit specified
by external-name. A checkpoint record is the recording of the status of the processor at a given point
during the execution of the object program. All the information required to restart the program at that
point is contained in the checkpoint record. These records are written whenever integer-1 records occur
for file-name-1. File-name-1, file-name-2 ... can appear in only one RERUN statement; external-name
can appear in any number of RERUN statements. The allowable range of integer-1 is 1 to 9,999,999.

3. The SAME AREA clause specifies that two or more files are to use the same main storage area during
processing. When the key word RECORD is omitted, the area being shared includes all storage areas
assigned to the files; therefore, only one file may be open at a time. If RECORD is specified, any
number of files may use the same storage area for processing the current logical record (the record
formats of such files must not conflict). The SAME RECORD AREA clause should be used only when
necessary because it reduces efficiency.

4. The MULTIPLE FILE clause is for documentation only. This feature is supported by job control.

5. The APPLY VERIFY clause requests verification {(READ after WRITE) of disc records after they have
been written. Absence of this clause results in no verification of records written.

6. The APPLY BLOCK-COUNT causes a 3-byte block number to be inserted at the beginning of each block
on tape for each file-name designated. If the TAPES option is specified, all tape files present are
affected. This clause must be present for all input files which contain a block count.

' 7. The APPLY FILE-PREPARATION clause indicates that the tracks allocated to a relative organized file
are to be recorded with initializing data prior to creation of a file. The track initialization occurs after an
OPEN OUTPUT command is issued.

8. The APPLY MASTER-INDEX clause is only accepted for 0S/4 and OS/7 compatibility. In 08/3, this
clause serves for documentation only.

9. The APPLY CYLINDER-INDEX integer-5 clause, used only with indexed files, indicates that sufficient
main storage area is to be allocated to contain integer-5 top index entries.

10. The APPLY CYLINDER-OVERFLOW integer-6 clause, used only with indexed-sequential files, indicates
that integer-6 percent of each cylinder in the prime data area is to be reserved for the purpose of
cylinder overflow. If this clause is omitted, 20 percent of the cylinders specified are automatically
allocated. If no overflow is desired, 0 percent should be specified. If no overflow exists, no new records
can be inserted into the file. Integer-6 is an unsigned number.

11. The APPLY EXTENDED-INSERTION clause is accepted for 0S/4 and OS/7 compatibility. In 0S/3, this
clause serves for documentation only. :

12. The use of the APPLY ASCI!I clause, which identifies each file that contains.or receives ASCI| data, is
explained in 12.5.

8057 Rev. 2 SPERRY UNIVAC Operating System/3 4-14
UP-NUMBER UPDATE LEVEL | PAGE
NOTE:

APPLY clauses (rules 5 through 12) are extensions to American National Standard COBOL (1968). Further
discussion of [-O-CONTROL is given in Section 11,

An example of the envrionment division entries is shown in Figure 4—1.

r——CCNTiNUAT!ON

Figure 4—1. Example of Environment Division Entries

SEQUENCE
v NOMBER 7: mez TEXT 20 30 > 40
00,1010 |[ENV.IRONMENT DIVISION. T -
00.10.1.1| |CONFIIGURATION SECTION. = = | N
001012 |9DURICE-COMPUTER., UNIVAC~9030.
001013 |OBJECT-COMPUTER.. UNIVAC-9.030., .

001014 [SPECTAL-NAMEZ. : e
001015 | . | |9YSCONSHLE 15 TYPEITwLMLﬂmthM
00.1.016] [INPUT-OUTPUT SECTION., L B
Q01017 [FILEFCONTROL .« ., . . oo
001018 | . ISELECT INPUTI ASSIGN ToO TAPE-6..
001019 . ISELECT. L1ST ASSIGN TO.PRINrER ,
004020| | . .1 |SELECT cDS5 ASSIGN I«Q,,LCARD,—,‘REA.DLE.R-, ;
001021, |I-0-ICONTROL.., T 1 T A
001,022 L APPLY BLOCK - COUNT DN INPUT(L

5-1
PAGE

8057 Rev. 2 L SPERRY UNIVAC Operating System/3

UP-NUMBER

UPDATE LEVEL

5. Data Division

5.1. GENERAL

Every data item referenced in the procedure division of a SPERRY UNIVAC Operating System/3 (0S/3) COBOL

program must be described in the data division except for the special register TALLY, index-names, figurative
constants, and literals. File structures are described by file description entries; data items and records are described
by record description or single item entries as described in 5.3.

Format:

DATA DIVISION.
FILE SECTION., |

. —

WORKING-STORAGE SECTION.

L |

[LINKAGE SECTION.* |

*Extension to American National Standard COBOL (1968).

8057 Rev. 2 SPERRY UNIVAC Operating System/3 5-2
UP-NUMBER UPDATE LEVEL | PAGE
Rules:

1. The division header DATA DIVISION must be present in all COBOL programs.
2. Sections are written in the order shown; if a section is not required, it may be omitted entirely.
3. Data-names used in FD or 77 level entries must be unique because they cannot be qualified. The same is

true for data-names used in 01 entries within the working-storage and linkage sections of the source
program.

5.1.1. Data Definition

Table 5—1 shows the allowable sizes of data items in OS/3 COBOL. Data type is determined by the PICTURE and
USAGE clauses. See 5.3.4 for legal PICTURE characters for each data type.

Table 5—1. Main Storage Allocation

COBOL Characters Area in Bytes
Data Type
Minimum Maximum Minimum Maximum

Group {working- 1 65,535 1 65,535
storage)
Group (file or 1 4092 1 4092
linkage section}
Alphanumeric 1 4092 1 4092
Alphabetic 1 4092 1 4092
Alphanumeric 2 132 2 132
edited
Numeric edited 2 132 2 132
Decimal numeric 1 18 1 18
display
Numeric COMP or 1 {plus sign) 18 {plus sign) 1 10
Numeric COMP-3
Index name Not applicable Not applicable 8 8
Index data item Not applicable Not applicable 8 8

5.2. FILE SECTION

The file section consists of:

format used in the file.

File description (FD) entries describing the structure of all files and naming the data records contained in each.

Record description entries immediately follow each file description entry and describe in detail each record

UP-NUMBER

8057 Rev. 2 | SPERRY UNIVAC Operating System/3

UPDATE LEVEL

5-3
PAGE

Format:

{ FD file-name-1 (file description dauses)

{01 record-name-1 (record description clauses)} ..

5.2.1. File Description

Function:

Provides information concerning the physical structure, labeling, and record names of a given file.

Format:

FD file-name
CHARACTERS }]

[; BLOCK CONTAINS [integer-1 TO] integer-2 {RECORDS

[; RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS]

-OMITTED .
RECORD IS —_
; LABEL {RECORDS ARE} {STANDARD }
_— data-name-1 [, data-name-2] ...
B D
; RECORDING MODE IS El:'
L v
. data-name-3
: VALUE OF <{unqualified-data-name IS < . cen
— literal-1
[RECORD 1S
K DATA {RECORDS ARE} data-name4 [, data-name-5) :| .

Rule:

The various clauses may appear in any order after file-name.

5.2.1.1. BLOCK CONTAINS Clause
Function:
Specifies the size of a physical record.

Format:

CHARACTERS }

BLOCK CONTAINS [integer-1 TO] integer-2 { RECORDS

Rules:

1. Integer-1 and integer-2 must be unsigned integers other than 0.

2, If the RECORDS option is specified and RECORDING MODE is F, this clause specifies the number of

records per block.

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL | PAGE

B l 5-4

If the RECORDS option is specified and RECORDING MODE is V or D, this clause specifies the
number of the longest records per block. It is also possible for a block to contain a greater number of the
shorter records, depending on the differences in record sizes.

3. When CHARACTERS is specified, this clause specifies the number of characters (bytes) per block
{physical record).

For files not assigned to disc devices, this does not include the three bytes for the APPLY
BLOCK-COUNT for tape, but does include the block header and record header bytes if recording
mode is V. (The block header is four bytes per block, and the record header is four bytes per
logical record.)

For files assigned to the disc devices, this number includes all the control fields associated with the
data portion of the disc block. This number does not include the key field and count field lengths
associated with those fields of the disc block.

Table 5—2 shows the size of the control fields associated with the block.

Table 5—2, Control Field Sizes

Bytes per Field
Organization: Sequential, Relative Organization: Indexed
Field Recording Mods Recording Mode
F v F v
Bliock header (BLKHDR) 0 4 2 2
Record header (RECHDR) 0 4 0 2
Indexed record pointer (LINK) 0 0 5 5

The values are defined according to the recording mode and organization of the file. The
programmer must define the values for the logical record size and a blocking factor. The blocking
factor (BLKFAC) equals the number of logical records per physical block. The logical record size
(LOGRECSIZE)} is also determined by the recording mode.

If the recording mode is F, the logical record size is 01. If the recording mode is V, the size of the
logical record is equal to the size of the largest logical record.

Thus, the size of the physical block may be calculated according to the following formula:

BLKHDR + (BLKFAC * (RECHDR + LOGRECSIZE + LINK))

4, This clause may be specified for CARD-READER and CARD-PUNCH files in order to provide greater
processing efficiency if the device is an 8413 diskette. In this case, the BLOCK clause does not specify
the size of a physical block, but specifies the size of the buffer areas for multisector 1-O.

a.

tf the RECORDS option is used, the size of the buffer area may be calculated by using the
following formula:

BLKFAC*(RECHDR + LOGRECSIZE)

The maximum buffer size is 1024 bytes; therefore, the blocking factor (BLKFAC) the programmer
selects must be equal to or less than 1024 divided by (RECHDR + LOGRECSIZE).

8057 Rev. 2 SPERRY UNIVAC Operating System/3 B 5-5
UP-NUMBER UPDATE LEVEL | PAGE
b. If the CHARACTERS option is used and RECORDING MODE IS F, the BLOCK CLAUSE integer -
may be any multiple of (RECHDR + LOGRECSIZE) up to 1024.
5. " When CHARACTERS and RECORDS are both omitted, CHARACTERS is assumed.
6. When this clause is omitted, it is assumed that records are recorded one per block and the record size is
fixed.
7. If both integer-1 and integer-2 are specified, integer-1 is treated as documentation only. Block size ranges

are given in Table 5—3.

Table 5—3. Black Size Ranges

Bytes per Block

Hardware Device Organization: Sequential, Relative Organization: {ndexed, Direct @

Implena\::tor Name Recording F & U Recording V Recording F & U Recording V
Min Max Min Max Min Max Min Max

CARD-READER 1 1024® 9 1024® - - - -
CARD-READER-51 1 51 - - - - - —
CARD-READER-66 1 66 - - - - - -
CARD-PUNCH 1 1024® 9 | 104® - - - T
PRINTER 1 O] 9 @ - - - -
:JT'\:»EEE:IO e 18@ 4,096 18@ 4,096 - - - -

UNISERVO VI-C
{TAPE-6) with 18 @ 4,092 18@ 4,092 - - - -
biock numbering

Other tapes
(TAPE) @ 18@ 32,767 18@ 32,767 - - - -
Other tapes
(TAPE) with 18@ 32,763 18@ 32,763 - - - -

block numbering@

8411 disc
(DISC-8411) 1 3,625 9 3,625 10 3,625 12 3,625
8414 disc
(DI1SC-8414) 1 7,294 9 7,294 10 7,294 12 7,294
8416 disc
(DISC-8415) 1 10,240 9 10,240 10 10,240 12 10,240
8416 disc
{DISC-8416 or DISC) 1 10,240 9 10,240 10 10,240 12 10,240
8418 disc
(DISC-8418} 1 10,240 9 10,240 10 10,240 12 10,240
8430 disc
{DISC-8430) 1 13,030 9 13,030 10 13,030 12 13,030
8433 disc
(DISC-8433) 1 13,030 9 13,030 10 13,030 12 13,030
NOTES

For 768 size = 132; for 770 size = 160; for 773 size = 144,
For 768 size = 140; for 770 size = 168, for 773 size = 152,

Maximum size is 8192 if multiplexer channel is used.

®
@
® Minimum size is 20 if tape is RERUN receiver.
®
®

Note that the maximum physical block is 128 characters (8413 diskette), 96 characters (96column card), or 80
characters (80column card). The larger block size is used to specify multisector 1-O when the device is an 8413
diskette. {See 5.2.1.1, Rule 4.}

8057 Rev. 2 SPERRY UNIVAC Operating System/3 5-6
UP-NUMBER | UPDATE LEVEL | PAGE
5.2.1.2. RECORD CONTAINS Clause
Function:
Specifies the size of data records.
Format:
RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS
Rules:
1. Integer-3 and integer-4 must be unsigned integers other than 0; integer-4 must be greater than integer-3,

2, The size of each data record is completely defined within the record description entry; therefore, this
clause is optional. When present, however, the following notes apply:

n If integer-4 is used alone, all the data records in the file must have the same size. In this case,
integer-4 represents the exact number of characters in the data record.

u If both integer-3 and integer-4 are shown, they refer to the minimum and maximum size data
record.

5.2.1.3. LABEL RECORDS Clause

Function:

Enables the compiler to cross-reference the description of a label record with its associated file.

Format:
OMITTED
RECORD IS ——
LABEL { __RECORD.S ARE } STANDARD
—_—— data-name-1 [, data-name-2] ...
Rules:

1. The OMITTED clause specifies that no standard labels exist for the file or the device to which the file is
assigned. Any nonstandard labels must be described and processed as data records.

2. The STANDARD clause specifies that standard file labels exist for the file or the device to which the file
is assigned, and the labels conform to OS/3 label specifications. (Refer to the data management user
guide, UP-8068 (current version).} Standard user labels may also be present, but the STANDARD clause
specifies that they are not to be checked on input files, or written on output files.

3. Data-name-1 [, data-name-2] ... specifies that standard labels are to be checked (or created), and that
08S/3 standard user labels are present. User labels must conform, in content and format, to the OS/3
standard user label specifications.

The following rules apply when data-name-1 is specified:

L] Data-name-1 [, data-name-2]... must have a record description subordinate to this file description.

8057 Rev. 2
UP-NUMBER

5-7
PAGE

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

4,

5.2.1.4.

Function:

L For input files, data management provides access to standard user label information in the area
described by data-name-1.

= For output files, the user moves user label information into the area described by data-name-1 for
data managment to write to the output file.

L User label records can be referenced only in USE procedures in the declaratives section {6.2).

The label record specifications for the various device types are shown in Table 5—4.

Table 5—4. Label Record Specifications

Devi Labels Labels Labels
evice Omitted Standard Data-name

PRINTER Yes No No
CARD-READER Yes No No
CARD-PUNCH Yes No No
TAPE Yes Yes Yes

ORGANIZATION

SEQUENTIAL No Yes Yes
DISC ORGANIZATION

RELATIVE No Yes Yes

ORGANIZATION

INDEXED No Yes No

RECORDING MODE *Clause

Specifies the format of the logical record comprising the file.

Format:

RECORDING MODE IS

Rules:

4.

5.

IKlcImio

The D mode may be specified for ASCI! tape files with variable-length records.

v

The F mode (fixed-length format) is specified when all the logical records in the file are of the same

length.

The U mode (undefined format) states that the records of this file are not blocked and may vary in
length (not available for disc files).

The V mode (variable-length format) is specified when records within a file vary in length.

The following chart describes the recording mode assumed when the clause is omitted.

*Extension to American National Standard COBOL (1968).

5-8
PAGE

8057 Rev. 2 SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL

. Assumed
Device F
ormat
PRINTER F
CARD-READER F
CARD-PUNCH F
TAPE Vv
ORGANIZATION
SEQUENTIAL \YJ
ORGANIZATION
pisc RELATIVE F
ORGANIZATION
INDEXED F

5.2.1.5. VALUE OF Clause

Function:

Describes a particular item in the standard file label record associated with a file; this clause serves as
documentation only.

Format:

VALUE OF | unqualified-data-name 15 J 92t-name-3
T literal-1

5.2.1.6. DATA RECORDS Clause
Function:

Specifies the names of the logical records in a file.

Format:
RECORD IS
ST - 4 - 5] ...
DATA {RECORDS ARE} data-name-4 [, data-name-5]
Rules:
1. This clause is optional and serves as documentation only.

2. Each data-name specified must appear at a 01 level number following the FD entry.

C
UPDATE LEVEL

5-9
PAGE

8057 Rev. 2 ' SPERRY UNIVAC Operating System/3

UP-NUMBER

5.3. DATA DESCRIPTION

Function:
Defines the characteristics of a particular data item.

Format 1:

FILLER
unqualified-data-name-1

[; REDEFINES unqualified-data-name-2]

level-number {

[OCCURS integer-2 TIMES
| [INDEXED BY index-name-1 [, index-name-2] ...]]
- PIC ‘
| ; { PICTURE } IS character-string]
— COMP-3
[USAGE IS] | cCOMPUTATIONAL-3
DISPLAY
INDEX

[: MAP IS integer-3 CHARACTERS]

e oz} [{ e |
*) SYNCHRONIZED RIGHT
[JUST
K {JTJE?lFIED } R'GHT]
. [; VALUE IS literall
[; BLANK WHEN ZERO]
LEADING

TRAILING
[SIGN I1S] TRAILING

[SIGN IS] { },SEPARATE CHARACTER

Format 2:

88 condition-name; VALUE IS literal-1

5.3.1. Level Number and Unqualified-data-name/FILLER Clause

Function:

The level number shows the hierarchy of data within a logical record. In addition, it is used to identify entries
for condition-names and noncontiguous working-storage items.

Format:

FILLER }

level-number {unqualified-data-name

8057 Rev. 2 SPERRY UNIVAC Operating System/3) 5-10
UP-NUMBER UPDATE LEVEL | PAGE
Rules:
1. A level number is required as the first element in each data description entry.
2. Level-number 01 through 09 may be expressed without the leading O’s.
3. Level-number 01 identifies the first entry in each record description.
4, Level numbers start at 01 for records, and become successively higher for subsets of records, such as
group and elementary items. The maximum level-number permitted is 49, except for 77 or 88 levels.
5. Level-number 77 is used in the working-storage section to describe noncontiguous data items and
constants.
6. Level-number 88 is assigned to entries which define condition-names associated with a conditional
variable.

7. FILLER may be used to name an elementary item in a record. Under no circumstances can a FILLER
item be referred to directly. Also, FILLER must not be used with a level-number 88, but may be used to
name the associated conditional variable.

5.3.2. REDEFINES Clause
Function:

Allows the same area of computer main storage to be described by different data descriptions.

Format:

level-number unqualified-data-name-1 ; REDEFINES unqualified-data-name-2
Rules:

1. The REDEFINES dause must immediately follow unqualified-data-name-1.

2. The level numbers of unqualified-data-name-1 and unqualified-data-name-2 must be identical, and may
not be 88.

3. The REDEFINES clause must not be applied to level 01 entries in the file or linkage sections, although
this is permissible in the working-storage section.

4, Redefinition begins at unqualified-data-name-2 and continues until a level number less than, or equal to,
that of unqualified-data-name-2 is detected. A REDEFINES clause may be used within the range of

another REDEFINES with a maximum of five levels permitted.

5. When the level number being redefined is other than 01, unqualified-data-name-1 must specify a storage
area equal to the storage area for unqualified-data-name-2.

6. Unqualified-data-name-2 must not contain, or be subordinate to, an OCCURS clause.

7. Entries described under unqualified-data-name-1 must not contain VALUE clauses except in
condition-name entries {(level-number 88).

511
PAGE

8057 Rev. 2 I SPERRY UNIVAC Operating System/3

UP-NUMBER

UPDATE LEVEL

>

8. Multiple redefinition of the same storage area is permitted. The entries giving the new descriptions of the
storage area must follow the entries defining the area being redefined; no intervening entries defining
new storage are permitted. Multiple redefinitions of the same storage area must use the data-name of the
entry that originally defined the area.

5.3.3. OCCURS Clause
Function:

Eliminates the need for separate entries for repeated data, and supplies information required for the
application of subscripts or indexes.

Format:
OCCURS integer-2 TIMES [INDEXED BY index-name-1 [, index-name-2] ...]
Rules:

1. The OCCURS clause is used in defining tables and other homogeneous sets of repeated data items.
Whenever the OCCURS clause is used, the data-name that is the subject of this entry must be either
subscripted or indexed whenever it is referred to in a statement. Further, if the subject of this entry is
the name of a group item, all data-names belonging to the group must be subscripted or indexed
whenever they are used as operands.

2. An INDEXED BY clause is required if the subject of this entry, or a group item within it, is to be
referenced by indexing. Index-name is not defined elsewhere by the user, since its format is dependent
on the hardware and storage is allocated by the compiler.

3. The data description clauses associated with an item that includes an OCCURS clause apply to each
repetition of the item described.

4., The OCCURS clause cannot be specified in a data description entry that contains a 01, a 77, or an 88
level-number.

§

5. Three levels of subscripting and indexing are permitted.

6. In the format, the value of integer represents the exact number of occurrences. The area allocated
muliplied by the number of occurrences cannot exceed 65,535.

7. The VALUE clause must not be stated in a data description entry containing an OCCURS clause or in
any entry subordinate to an entry containing an OCCURS clause. This rule does not apply to
condition-name entries.

5—-12
UPDATE LEVEL | PAGE

8057 Rev. 2 SPERRY UNIVAC Operating System/3

UP-NUMBER

5.3.4. PICTURE Clause -

Function:
Describes the general characteristics and editing requirements of an elementary data item.

Format:

PIC .
[, { PICTURE } IS character-stnng]

Rules:
1. The PICTURE clause can be present only with an elementary item.
2. The PICTURE character-string can consist of 1 to 30 characters.
3. Five categories of data can be described with a PICTURE clause:
- Alphabetic
. Numeric
L Alphanumeric

] Alphanumeric edited

. Numeric edited

Table 55 lists the allowable picture symbols and the rules for their usage.
4, To define an item as alphabetic:

L 1ts picture character-string may consist of only the'symbol A.

a its contents, when represented in standard data format, must be any combination of the 26 letters
of the alphabet and the space.

= Maximum number of character positions allowed is 4092,
5. To define a fixed-point numeric item:
= The PICTURE character-string may consist of only the symbols 9, P, S, V, and H.
u The PICTURE character-string must contain at least one 9.
- The maximum number of digits is 18.
= The maximum number of occurrences of P in a picture-string is 17.

L The contents, when represented in a standard data format, must be a combination of the numerals
0 through 9. The item may include an operational sign. ‘

8057 Rev. 2 SPERRY UNIVAC Operating System/3 5-13
UP-NUMBER UPDATE LEVEL | PAGE
. 6. To define an item as alphanumeric:
L] Its character-string is restricted to X's or at least two of the symbols A, X, and 9, and is treated as
if the picture-string were X's.
. Its contents, when represented in standard data format, are any combination of characters in the
UNIVAC 0S/3 system character set.
u Maximum number of character positions allowed is 4092.
7. To define an item as alphanumeric edited:
L Its character-string is restricted to combinations of the symbols A, X, 9, B, and 0, and must
contain:
- at least one B and one X;
— at least one 0 and one X;
- at least one 0 and one A; or
— at least one A and one B.
L Its contents, when represented in standard data format, are any combination of characters in the

0S/3 system character set.
.] The maximum number of character positions allowed is 132.
8. To defined an item as numeric edited:
= Its character-string is restricted to certain combinations of the symbols:
BPVZCRDB9,. ™+ —0(zero) $ (currency sign)

The allowable combinations are determined by the sequence in which the symbols appear, and by
the editing rules. The number of digit positions must not exceed 18.

= The maximum number of P's permitted is 17.

- Its contents, when represented in standard data format, must consist of only the numerals O
through 9, plus editing symbols indicated.

L The maximum number of character positions allowed is 132.
9. The following symbols may appear only once in a given picture-string:
SV.CRDB
10. An integer enclosed in parentheses following any of the symbols:
A,X9PZ*B0+-$
. indicates the number of consecutive occurrences of the symbol.
11. See Table 5—6 for the order of precedence for characters used as symbols in a character-string.

12, See Table 5—7 for examples of source fields and receiving fields.

8057 Rev. 2
UP-NUMBER

5—-14
PAGE

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

Table 5-5. PICTURE Symbols (Part 1 of 2)

Picture R ts Can Be Used in Special Picture
Symbol epressn Combination With Position
9 A numeric character Any other symbol None
S An operational sign is associated PVO9H Can be preceded
with the data item only by H; only one
S is permitted
\") Assumed decimal point in data Any symbol except A Only one is permitted;
item and X; and is redundant can precede leading P
with P or fotlow trailing P
P Assumed decimal point outside of | Any symbol except A Must be first or last
data item; each P represents one and X symbol or symbols of
character position PICTURE except for
S CR DB V orsingle
+, — or $ but cannot be
both first and last
A An alphabetic character or space X980 None
X An alphanumeric character A9BO None
V4 Suppression of leading O’s Any symbol except: * A Can be preceded only by:
(replaced by blanks or spaces) X S H or more than V.,$+—-PBO(zero)
one$ + or —
* Check proteciion, replaces Any symbol except: Z A Can be preceded only by:
leading 0's with asterisks X S H or more than one V.,$+—PBO/(zero}
$—-or+
, Insert comma in character Any symbol except: A X None
{comma) position unless the preceding SH
position is blank or
asterisk-filled
. Actual decimal point to be Any symbol except: A X May not be last character
(period) inserted in character position PVSH
unless following positions have
been blanked
B Insert a blank or space in Any symbol except S and None
character position unless H
preceding character position
is asterisk-filled,
CR Insert the two characters CR Any symbol except: A X Must be last symbol except
if data item is of negative +-SDBH forPorVv
value: insert two blanks or
spaces if value is positive
DB Insert the two characters DB Any symbol except: A X Must be last symbol except
if data item is of negative +—SCRH forPorVv
value; insert two blanks if
value is positive

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

5~15
PAGE

Table 5-5. PICTURE Symbols (Part 2 of 2)

Picture Can Be Used in Special Picture
Symbol Represents Combination With Position
$ Insert $ sign in character Any symbol except: one $ Must be first symbols when
{currency position; if more than one, cannot be used with: A more than one except for
sign) indicates floating $ sign X S H; more than one $ single + or — P B 0 (zero).
cannot be used with: S If only one used, it can
HA X * Z or more than only be preceded by + — or
one + — PorvVv
0 Insert O in character position Any symbol except S and H None
(zero} uniess preceding character is <
blank or asterisk-filled
+ Insert + in character position Any symbol except: one If only one + is used, it
if data item value positive + cannot be used with: must be either first or last
and — if value negative; if A X — S CR DB H; more {except for P and V, and
more than one +, indicates than one consecutive + excepting its use with E
floating sign cannot be used with A where it may be first and
X—SCRDBZH*or also immediately follow the
more than one $ sign E); if more than one is used,
it must be the first symbol
except for the $ sign
— Insert — in character position Any symbol except: one If only one — is used, it
{minus) if data item value negative — cannot be used with: must be either first or last
and blank if positive; if more AX+SCRDBH: more {except for P and V, and
than one —, indicates floating than one consecutive — excepting its use with E
sign cannot be used with: A where it may be first and
X+SCRDB*ZHor also immediately follow the
more than one $ sign E); if more than one is used,
it must be the first symbol
except for the $ sign
H COMP-3 SPV9 None

*Extension to American National Standard COBOL (1968).

8057 Rev. 2 SPERRY UNIVAC Operating System/3 5-16

UP-NUMBER UPDATE LEVEL | PAGE

Table 5—6. Precedence Rules in PICTURES

Fixed Insertion Other Symbols
f+ L]+ 1] fert fal fzl |iz ! fet] it
B 0 , . {=fjl -] 1oBff[e [Ixf| P P S Vo[g9 =41 - cs cs
B8 X X X X X X X X X X X X X X X X
0 X X X X X X X X X X X X X X X X X
- X X X X X X X X X X X X X X X
°
'g x | x| x X X X X X | x X
@
- ‘* ‘
@ .
g 1= X
fr
b f] % b X X X X X X X X X X
fcrli
{DBf| X X X X X X X X X X X X
cs X X X
fal
X f| X X X X
P X X X
P X X X X X X X X X X X X X
S
\Y X X X X X X X X X X X
5 iz !
' v il x X X X X X
g
= |z .
B Dyl x X X X X X X X X X
X
g
9 X X X X X X X X X X X X X X
fe
)= f1 X X X X X
Jet
- f| x X X X X X X X X
cs X X X X X
cs X X X X X X X X X
NOTES:
1. This chart shows the order of precedence when using characters as symbols in a character-string. An X at an intersection

indicates that the symbols at the top of the column may precede, in a given character-string, the symbols at the left of the
row. Arguments appearing in braces indicate that the symbols are mutually exclusive. The currency symboi is indicated by the

symbol cs.
2. At least one of the symbols A X Z 9 * or at least two of the symbols + — or cs must be present in a picture-string.
3. P, fixed insertion +, and — appear twice. The first occurrence represents their use to the left of the numeric character positions

and the second their use to the right of the numeric character positions.

4, Z, *, nonfixed insertion cs, + and — appear twice. The first occurrence represents the use before the decimal point position,
the second the use after the decimal point position.

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

5-17
PAGE

Table 5—7. Source and Receiving Fields

Source Field

Receiving Field

PICTURE Data To Be Moved PICTURE Data After Move
9(5)v99 1234500 22,222.99 12,345.00
9(5) 00123 22,222.99 123.00
9(4)v99 123456 $$,$$$.99 $1,234.56
9(4) 0012 $5,$$$.99 $12.00

S9(4) +1234 $$,$$$.99DB $1,234.00
$9(4) —1234 $$.$$%.99DB $1,234.00D8
S9(4)ve9 +001209 $$,$$$.99CR $12.09
$9999V99 —000123 $$,5$$.99CR $1.23CR
S9(4) +1234 ++,+++.99 +1,234.00
S9(4) —-0010 | e 929 —10.00
$999v99 001234 $****09 $**12.34
9999 1234 990099 120034

9(5) 12345 9B9B9IB99 12A3/M5
X{5) A1B2C XBX00XXX AA10082C
AlB) ABCDE ABBOAAAOBX AMOBCDOAE
9(4) 1234 9(5) 01234

9(5) 12345 999.99 345.00
gvo(s) 123456 9(5).99 00001,23
AA AB A(5) AB MW

A(5) ABCDE AA AB

99PPP 12 9(5) 12000
VPPP99 12 9(5) 00012
Vv9(5) 12345 Z(5).99 MWW 12
Vvo(5) 12345 9(5).999 00000.123

8057 Rev. 2 SPERRY UNIVAC Operating System/3 c " 5-18
UP-NUMBER UPDATE LEVEL | PAGE
5.3.5. USAGE Clause
Function:
Specifies the format of a data item in main storage.
Format:
COMP-3*
- [USAGE IS] COMPUTATIONAL-3*
DISPLAY
INDEX
Rules:
1. The USAGE clause can be written at any level. At a group level, it applies to each elementary item in

that group. The USAGE clause of an elementary item cannot contradict the USAGE clause stated for
the group to which the item belongs. The USAGE clause of an elementary item cannot contradict the
PICTURE clause for that item.

2. The USAGE IS DISPLAY option specifies that the item is stored in character form, one character per
byte; it is used for alphabetic, alphanumeric, alphanumeric edited, numeric edited, and decimal numeric
display.

The compiler performs the necessary conversions when decimal numeric display items are used for
computations.

3. An elementary item described with the USAGE IS INDEX clause is called an index data item and
contains a value corresponding to the occurrence number of a table element. PICTURE clause must not
be present in this instance.

4, An index data item can be referred to directly only in a SET statement or in a relation condition. Also,
an index data item can be part of a group which is referred to in a MOVE or an input-output statement,

in which case no conversion will take place.

5. Except for the level number and data-name necessary for definition, no additional clauses are used to
describe index data items.

— 6. COMP-3 specifies packed decimal format; if the number of digits in the item is odd, the object program
main storage area allocated for this item is an even number of half bytes.

Example:
PIC 999 VALUE 123 USAGE COMP-3.
Main Storage:

HE

BYTE 1

T+

BYTE 2

8

If the number of digits in an item is even, an extra half byte is in the object program main storage
allocated for this item. The item’s PICTURE is unchanged.

*Extension to American National Standard COBOL (1968).

8057 Rev. 2 I SPERRY UNIVAC Operating System/3

UP-NUMBER

5-19
PAGE

UPDATE LEVEL

Example:
PIC S99 VALUE 12 USAGE COMP-3.
Main Storage:

BE

BYTE 1

2lc“

BYTE 2

The compiler ensures that the unused half byte is always set to O when information is stored in this item. The
compiler assumes that when the item is referenced it contains a valid packed decimal number, with 0 in the
leftmost half byte.

7. If the USAGE clause is omitted, DISPLAY is assumed unless the PICTURE clause contains an H in its
character-string.

5.3.6. SYNCHRONIZED Clause
Function:

Specifies positioning of data items within a processor word or words.

Format:
SYNC LEFT
SYNCHRONIZED RIGHT
Rules:

1. The SYNCHRONIZED clause does not affect the object program in OS/3 Basic COBOL; however, it is
acceptable to the compiler for compatibility purposes.

2. The LEFT and RIGHT optional keywords are included in the format for compatibility only.

5.3.7. JUSTIFIED Clauses
Function:

Specifies nonstandard positioning of data within a receiving data item.

Format:

JUST
l:' { JUSTIFIED } RIGHT]

8057 Rev. 2 SPERRY UNIVAC Operating System/3 I 5-20
UP-NUMBER UPDATE LEVEL PAGE
Rules:

1. The JUSTIFIED clause may be specified only at the elementary item level,

2. This clause may not be used for numeric or numeric-edited data, because numeric data is aligned by its
decimal point, when present, or right-justified when not present.

3. Alphabetic, alphanumeric, and alphanumeric-edited data is left-justified with space fill when the
JUSTIFIED clause is not specified.

4. When the receiving data item is described with the JUSTIFIED clause and the sending data item is larger,
the leftmost characters are truncated. When the receiving data item is justified and larger than the
sending data item, the data is aligned at the rightmost character position in the data item with space fill.

5.3.8. VALUE Clause

Function:

Defines the initial value of a working-storage item, or specifies the value associated with a condition-name.

Format:

VALUE IS literal

Rules:
1. This clause specifies the initial value of a data item in the working-storage section.

L The VALUE IS specifies the item to assume the specified value at the start of the object program.
If the VALUE clause is not used in an item description, the initial value may be unpredictable.

L The VALUE clause must not conflict with other clauses in the data description of the item or in
the data description within the hierarchy of the item.

L] In the file section and the linkage section, the VALUE clause must not be used except for
condition-name entries.

. The VALUE clause cannot be used in a record description entry containing a REDEFINES clause
or in an entry subordinate to an entry containing a REDEFINES clause.

» The VALUE clause must not be stated in a record description entry containing an OCCURS clause
or in an entry subordinate to an entry containing an OCCURS clause except for condition-names
entries.

] The VALUE clause must not be specified for a group item containing items with descriptions
including JUST, SYNC, any COMP usage, or USAGE INDEX.

]

If the VALUE clause is used in an entry at the group level, literal must be a figurative constant or a
nonnumeric literal, and the group area is initialized without consideration for the individual
elementary or group items contained within this group. The VALUE clause must not be stated at
the subordinate levels within the group.

5-21

UP-NUMBER UPDATE LEVEL | PAGE

8057 Rev. 2 I SPERRY UNIVAC Operating System/3

. 2. In the file section, only the VALUE clauses stated for condition-name entries are valid.
3. A figurative constant may be substituted in the format when a literal is specified.

4. During compilation, a diagnostic is issued when the VALUE and PICTURE clauses conflict in any
manner. Compilation continues with the VALUE clause ignored,

5.3.9. BLANK WHEN ZERO Clause
Function:

Sets the value of a receiving item to space when the value of the sending item is O.
Format:

BLANK WHEN ZERO

Rules:
1. This clause can be specified only at the elementary item leve!, and can be used only with a numeric or
numeric-edited item. When used with a numeric item, the category of the item is considered

numeric-edited.

2. The effect is not necessarily the same as zero suppression editing via the PICTURE clause, because the
item is affected only when its numeric value is 0.

5.3.10. MAP* Clause
Function:
Specifies the size of a data item in bytes in main storage.
Format:
MAP IS integer-3 CHARACTERS
Rule:

The MAP clause does not affect the object program in 0S/3 COBOL; however, it is acceptable to the compiler
for compatibility purposes.

5.3.11. Condition-name Clause
Function:
Assigns a name for a specific value or range of values.

Format:

88 condition-name; VALUE IS literal-1

*Extension to American National Standard COBOL (1968).

8057 Rev. 2 SPERRY UNIVAC Operating System/3 5-22
UP-NUMBER UPDATE LEVEL PAGE
Rules:

1. The VALUE clause is used as described in 5.3.8.
2. Each condition-name requires a separate entry with a separate level-number 88.

3. The condition-name entries for a particular conditional-variable must immediately follow the entry
describing the conditional-variable item with which the condition-name is associated.

4, A condition-name may be associated with any group or elementary item except an index data item.
b. Examples of use of condition-name:

. Elementary item:

02 data-name-1.
03 data-name-2 PIC XX.
88 condition-name VALUE "AB’.
02 data-name-3
PROCEDURE DIVISION.
IF condition-name GO TO procedure-name.
Instead of:
IF data-name-2 = ‘AB’ GO TO procedure-name.

L] Group Item:

02 data-name-1.
88 condition-name VALUE IS '20°.
03 data-name-2 PIC 9.
03 data-name-3 PIC 9.
02 data-name-4.
PROCEDURE DIVISION,
IF condition-name GO TO procedure-name.
Instead of:
IF data-name-1 = ‘20’ GO TO procedure-name.

5.3.12. SIGN* Clause

Function:

Specifies the position and the mode of representation of the optional sign when it is necessary to describe
these properties explicity.

Format 1:
LEADING
[SIGN IS] { TRAILING } SEPARATE CHARACTER
Format 2:

[SIGN 1S] TRAILING

8057 Rev. 2 . 5-23
UP.NUMBER I SPERRY UNIVAC Operating System/3 oroate LEVEL | pace
Rules:
1. The SIGN clause may be specified only for a numeric data description entry whose picture contains the

character S, or a group item containing at least one such numeric data description entry.

2. The numeric data description entries to which the SIGN clause applies must be described, either
explicitly or implicitly, as USAGE IS DISPLAY.

3. At most, one SIGN clause may apply to any given numeric data description entry.

4, If format 1 is used, the character S in the picture is counted in determining the size of the item. The
operational signs for positive and negative are the characters + and —, respectively.

5. If the optional SEPARATE CHARACTER clause is not present, the character S in the picture is not
counted in determining the size of the item. Format 2 specifies that the operational sign is in the zone

portion of the least significant digit position of the item. A positive sign is represented by a hexadecimal
C, a negative sign by a hexadecimal D.

6. A numeric data item whose picture contains the character S, but to which no optional SIGN clause

applies, has an operational sign in the zone portion of the least significant digit position. The sign
representation is as described for format 2 of the SIGN clause.

5.4. WORKING-STORAGE SECTION
Definition:

That section of the data division used to describe areas of main storage that are to contain intermediate results
of processing and other temporarily stored data at object program run time, as well as named constants.

Format:

WORKING-STORAGE SECTION.

77-level-description-entry
record-description-entry |~ °

[88 (condition-name-entry}]

5.4.1. Independent Entries

Function:

Describe noncontiguous single items in working-storage, each of which is neither subdivided nor a subdivision
of another data-name.

Format:

PIC

77 unqualified-data-name; { PICTURE

} IS picture-string[optional clauses]

8057 Rev. 2 SPERRY UNIVAC Operating System/3 5-24
UP-NUMBER UPDATE LEVEL | PAGE
Rules:
1. Level-numer 77 is assigned only to single-item areas.
2. Each independent entry must have a unique data-name.
3. All level-number 77 entries should be grouped together in the beginning of the working-storage section.
4, The VALUE clause may be used to specify the initial or constant value of any level-number 77 entry.
5.4.2. Record Description Entry
Function:
Describes contiguous data areas which are not part of a file.
Format:
01 record-name
(subordinate data items and clauses)
Rules:
1. Data elements in working-storage bearing a definite relationship to each other may be grouped into
records through the same descriptive clauses used in data-description entries in the file section, including
the OCCURS and REDEFINES clauses. .

2. Each record-name must be unique because it cannot be qualified by a file-name or section-name.
Subordinate data-names need not be unique if they can be qualified.

5.5. LINKAGE SECTION*
Definition:

That section of the data division used to describe data available in a calling program, but referenced in both
the calling and the called programs.

Rules:
1. Organization and structure follow the rules described under the working-storage section, with one
exception: the VALUE clause may not be specified for other than level-number 88 entries.
2. Record description entries in the linkage section provide names and descriptions, but storage within the

program is not reserved because the data exists elsewhere.

3. The linkage section is required in any program containing an ENTRY statement with a USING option or
the procedure division USING option for a called program.

4, See 6.8 for examples of calling and called programs.

*Extension to American National Standard COBOL (1968).

Usﬁfu';e;’éi | SPERRY UNIVAC Operating System/3 UPOATE LEVEL PAG55—25
‘ An example of the data division entries is shown in Figure 5—1.
CONTINUATION

1 553352256 7[2 mz __T_fXT 20 30 > 20
002001 DATA DINISION. . ., . N i : -
00,2002 [F1LE SECTION., R R [. .
002003| |[FD. | DS | N SRS BT Ly .
00200\W | |, | LA,B,EL, RECD‘R’DS’ ARE MMITTED L - -
002005 ., | IDATA RECORD, 1S5 CARDIN., o - .
002006 |Ql, CARDIN. . . | . . .\ oivo b -
002007 | ., 1103 CRDLE®C, . Pic X(su 44444 e L C -
002008 L. 1103 CRDID . PIC X- |, ..., bt
002009 | .. |03 CRDCITY PIC %(30).. Do .
002010| | ., | 103 CRDNAME k& PIC x¢25). . . L 1
Q0201 1| | ., 1103 CERDPHUNE PLC X(1 7). . l L 1
Q02012 | ., | |03 CRDCBPE A PIC X. |, , .. C
T N N TETETTT RN bttt
Q02015 F[D,xOUT'PUTIEJH(. i
00201 b .| |[LABEL RECORDS ARE OMITTED | L)

. 002017 | . .| RECURDING MYDE IS F | ‘ | l
002018 | ., BLYCK CONTAINS .\O ECD?DS - i
Q02019 | . i PATA RECORDIISEPlﬁch” l ,
0029020 0!, DISCOI.. | L L L
002021\ | 03 LOBCNp PIC &<67 ,
002022 L1103 1D | 'PIC)(HML‘;JH L L L
002023 L1103 c11Y | P1c X(30). o Lo

002025| | . .

031 !‘leB{N!EJ PLICI }xlc‘!7»),'i SN QNS S SO

]

{

| i
oloszlolel+ Ly OBL 1C1NA1ME 'P,I C) X‘CILSL)'L [.

|

|

qqz;oiZ,b L 031 ICIU(DEL i 1P.I Cl K"

Figure 5—1. Example of Data Division Entries

6—1
PAGE

[UPDATE LEVEL

8057 Rev. 2 | SPERRY UNIVAC Operating System/3

UP-NUMBER

6. Procedure Division

6.1. GENERAL

The procedure division in the SPERRY UNIVAC Operating System/3 (0S/3) COBOL program contains the
instructions or steps necessary to solve a given problem.

Format:

PROCEDURE DIVISION [USING unqualified-data-name-1 [, unqualified-data-name-2] ...] .

[DECLARATIVES.

{section-name SECTION. declarative-sentence.

. {paragraph-name. {sentence} .. } I T

END DECLARATIVES.]
{ [section-name SECTION [priority-number] .]

{paragraph-name. {sentence } ... } . } “es

6.1.1. USING* Statement

Function:

When the USING statement immediately follows the heading PROCEDURE DIVISION, it serves as an entry
point declaration and can appear only if this program is a called subprogram.

Format:

USING unqualified-data-name-1 [, unqualified-data-name-2] ...

Rules:
1. If the USING option is present, the external symbol (ENTRY name) associated with this entry point is
the same as PROGRAM-ID.
2. If the USING option is not present, the beginning of the procedure division is not one of the entry
points in this particular subprogram.
. 3. Data-names present refer to data items described in this subprogram. Their level numbers are restricted
to 01 or 77, and they must be defined in the linkage section.

*Extension to American National Standard COBOL (1968).

62
PAGE

8057 Rev. 2 SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL

6.2. DECLARATIVES SECTION

Function:

The declaratives section of the procedure division contains compiler-directing statements that specify the
circumstances under which a procedure is to be executed.

Format:

DECLARATIVES.

{ section-name SECTION. declarative-sentence.

{ paragraph-name. { sentence }...}...}...
END DECLARATIVES.

Rules:
1. DECLARATIVES sections are grouped at the beginning of the procedure division.
2. The keyword DECLARATIVES must immediately follow the division header PROCEDURE DIVISION
on a separate line. The keywords END DECLARATIVES must follow the last line of the declaratives on

a separate line.

3. Each DECLARATIVES section must begin with a section-name, followed by a USE statement. The
remainder of the section consists of one or more procedural paragraphs.

4, No priority number is allowed on section-names in the DECLARATIVES section. .

5. See 6.6.7.4, USE statement.

6.3. SECTION
Definition:

The most inclusive procedural unit in the procedure division to which a procedure name can be assigned.
Format:

[section-name SECTION [priority-number]]

{paragraph-name. {sentenoe } e } ..

Rules:

1. The procedure division must be divided into sections with appropriate priority numbers when the
program is to be segmented or when the declarative section is present.

2. Priority-number must be an unsigned integer ranging in value from O through 99.

3. Section priority-numbers must be in ascending sequence, and sections with the same priority number
must be contiguous. /.

4. Sections belonging to the declaratives portion of the procedure division are associated with the fixed
segment, and must not contain priority-numbers in their section headings.

8057 Rev. 2 l SPERRY UNIVAC Operating System/3 6-3
UP-NUMBER UPDATE LEVEL | PAGE
' 5. Priority-numbers O through 49 are used for the fixed segments, and priority numbers 50 through 99

designate independent segments. {See 6.7 for a complete discussion of segmentation.)

6. Sections comprising the fixed segment, if any, must precede all sections with priority numbers greater
than 49.

6.4. PARAGRAPH
Definition:

A body of one or more procedural sentences with a procedure name by which it may be identified and
referenced.

Format:
{paragraph-name. {sentenee } . } e
Rules:
1. A paragraph must contain at least one sentence, and may consist of any practical number of sentences. It
must be headed by an identifying procedure name, since transfer references within the procedure
division are made to entire paragraphs.

2. Any practical number of paragraphs may be combined into a section.

. 3. Generally, the object coding for a single sentence must be less than 4096 bytes.

6.5. STATEMENTS AND SENTENCES
Definition:

A statement consists of a verb and any other reserved words and user-supplied words necessary to fulfill one of
the valid verb formats.

A sentence consists of one or more statements terminated by a period.
Format:

statement-1 [{ statement-2 } ...].

6.5.1. Imperative Statements
Definition:
Those statements which are neither compiler-directing statements nor conditional statements {including

conditional-causing arithmetic or input-output statements), which indicate a specific action to be taken by the
object program.

8057 Rev. 2 SPERRY UNIVAC Operating System/3 |UPDATEDLEVEL L
Format:
verb word-string.
Rules:
1. The verb must be one of those listed in 6.6, excluding the compiler-directing and conditional verbs and

those input-output or arithmetic verbs for which the statement specifies one of the conditional options
AT END, SIZE ERROR, or INVALID KEY (6.5.2).

2. Word-string consists of all words (reserved words, names, literals) and punctuation necessary to complete
a valid format for that verb.
6.5.2. Conditional Statements

Conditional statements specify that the truth value of a condition is to be determined, and that the subsequent
action of the object program is dependent upon this truth value.

A conditional statement is:
u an |F statement;
L] an input/output verb that specifies an INVALID KEY or an AT END option; or

u an arithmetic verb that specifies an ON SIZE option.

6.5.3. Compiler-Directing Statements
Definition:
Statements directing the compiler to take certain actions at compilation time.
Format:
verb word-string
Rules:
1. All rules for compiler-directing statements are stated in the discussion of the verbs:
COPY, ENTER, NOTE, USE

2. A word-string consists of reserved words and user-supplied words necessary to complete a valid format
for that verb,

3. Compiler-directing statements must not appear within conditional statements.

6.5.4. Overlapping Operands

When a sending and a receiving item in an arithmetic statement or in an EXAMINE, MOVE, or TRANSFORM .
statement share portions of their storage areas, the results are undefined when these statements are executed.

UP-NUMBER

8057 Rev. 2 \ SPERRY UNIVAC Operating System/3

UPDATE LEVEL

6-5
PAGE

6.6. VERB TYPES

Averb is a reserved word, used in the procedure division, denoting an action to be performed by the processor or the
compiler. There are eight general categories of verbs in 0S/3 COBOL. These categories, and the verbs in each are:

] Arithmetic: ADD, DIVIDE, MULTIPLY, SUBTRACT

L] Procedure Branching: ALTER, GO TO, PERFORM, EXIT

u Data Movement: EXAMINE, MOVE, SET, TRANSFORM

= Input-Output: ACCEPT, CLOSE, DISPLAY, INSERT, OPEN, READ, REWRITE, SEEK, WRITE
] Ending: STOP

L Conditional: IF

n Compiler Directing: COPY, ENTER, NOTE, USE

] Interprogram Communication: CALL, ENTRY

A description of the categories, and the verbs contained in each, is presented in the ensuing paragraphs.

6.6.1. Arithmetic Verbs

The arithmetic verbs permit basic calculations to be performed on the data. Four verbs corresponding to the four
basic arithmetic operations are provided: ADD, SUBTRACT, MULTIPLY, and DIVIDE.

Rules:

All data items referenced in arithmetic statements must be represent numeric elementary data items
previously defined in the data division. A data item following the word GIVING may be a numeric
edited item.

All literals used in arithmetic statements must be numeric.

The maximum size of each operand is 18 decimal digits. The composite of operands (the data item
resulting from the superimposition of all operands, aligned by decimal points) must not contain more
than 18 digits.

The data descriptions (PICTURE) of the operands may differ from each other. Decimal point alignment
is supplied automatically throughout computations. Conversion of items with unlike usage also is
automatic.

If, after decimal-point alignment, the number of places in the fraction of the result of an arithmetic
operation is greater than the number of places provided for the fraction of the resultant identifier,
truncation is relative to the size provided for the resultant identifier. When the ROUNDED option is
used, the absolute value of the resultant identifier is increased by 1 whenever the most significant digit
of the excess is equal to or greater than 5.

8057 Rev. 2 SPERRY UNIVAC Operating System/3 -6
UP-NUMBER UPDATE LEVEL | PAGE
6. 1f, after decimal-point alignment, the value of the result exceeds the largest value that can be contained

in the associated resultant identifier, a size error condition exists. In the event of a size error condition,
one of two possibilities occurs, depending on whether the ON SIZE ERROR option has been specified:

L] if ON SIZE ERROR is not specified, and a size error condition arises, the effect is unpredictable.

u If the ON SIZE ERROR option has been specified, and a size error condition arises, the value of
the resultant identifier will not be altered. The imperative-statement associated with the ON SIZE
ERROR option is executed after the last resultant identifier is considered.

7. Statements with multiple results are considered by the compiler as though they were written:

L] as a statement that performs all the arithmetic necessary to arrive at the result to be stored in the
receiving items, and stores that result in a temporary storage location; or

. as a sequence of statements transferring or combining the value of this temporary location with a
single result. These statements are considered to have been written in the same left-to-right
sequence in which the multiple results are listed. For example, the result of the statement

ADDA,B,CTOC,D(C), E
is equivalent to

ADD A, B, CGIVING temp

ADD temp TO C

ADD temp TO D(C)
ADD temp TO E
where:

temp
Is an intermediate result item.

6.6.1.1. ADD Statement
Function:
The ADD statement adds two or more numeric operands and stores the result.

Format 1:

ApD J 'dentifier-1 . identifier-2 | L tifier-m [ROUNDED]
— | literal-1 , literal-2 — _—

[, identifier-n [ROUNDED]] ... [; ON S1ZE ERROR imperative-statement]

8057 Rev. 2 . 6—-7
UPNUMBER I SPERRY UNIVAC Operating System/3 UPpATE LEVEL | pack
Format 2:
identiﬁer-1 identifier-2 + identifier-3
ADD {Iiteral-1 } ' { literal-2 } [literal-3 :l --- SIVING
identifier-n [ROUNDED] [; ON SIZE ERROR imperative-statement]
Rules:
1. In formats 1 and 2, each identifier must refer to an elementary numeric item, except identifiers to the
right of the word GIVING, which may be numeric edited items.
2. Each literal must be a numeric literal.

3. The maximum size of each operand is 18 decimal digits. The composite of operands, which is that data
item resulting from the superimposition of all operands, excluding the data items that follow the word
GIVING, aligned on their decimal points, must not contain more than 18 digits.

4, If format 1 is used, the values of the operands preceding the word TQO are added together, and the sum is
added to the current value in each identifier, identifier-m, identifier-n, ..., and the result is stored in each
resultant identifier, identifier-m, identifier-n, ..., respectively.

b. If format 2 is used, the values of the operands preceding the word GIVING are added together; the sum
is stored as the new value of identifier-n, which is the resultant identifier.

6. For a description of the ROUNDED and SIZE ERROR options, see 6.6.1, rules b and 6.

6.6.1.2. DIVIDE Statement
Function:

The DIVIDE statement divides one numeric data item into another and sets the value of a data item equal to
the results; identifier-1 may be either dividend or divisor, depending on whether INTO or BY is specified.

Format 1:
pivipe < ‘dentifierIt \ 0 identifier-2 [ROUNDED]
literal _— ———
[; ON SIZE ERROR imperative-statement] -
Format 2:
pivipe J identifierl \po Jidentifier2{ o\ /NG identifier-3 [ROUNDED]
—_— literal-1 — }literal-2 —_— —_—

[; ON SIZE ERROR imperative-statement]

8057 Rev. 2 SPERRY UNIVAC Operating System/3 l 6-8
UP-NUMBER UPDATE LEVEL | PAGE
Format 3:
pivipg { ‘dentifier-1 identifier-2% ;| VING identifier-3 [ROUNDED]
—— | literal-1 — | literal-2 —_— —_—
[; ON SIZE ERROR imperative-statement]
Format 4:
DIVIDE { ‘dentifier1 (g (identifier-2L o1/ ING identifier-3 [ROUNDED]
literal-1 ——— | literal-2 . e
REMAINDER identifier4 [; ON SI1ZE ERROR imperative-statement]
Format 5:
DIVIDE { ‘dentifierdt gy lidentifier2 % o VING identifier-3 [ROUNDED]
literal-1 — |literal-2 ———
REMAINDER identifier-4 [; ON SIZE ERROR imperative-statement]
Rules:
1. Each identifier must refer to a numeric elementary item, except the identifiers immediately to the right

of the word GIVING may contain editing symbols.

2. Each literal must be a numeric literal.

3. The maximum size of each operand is 18 decimal digits. The composite of operands, which is the data
item resulting from the superimposition of all receiving data items aligned on their decimal points, must
not contain more than 18 digits.

4. When format 1 is used, the resulting quotient replaces identifier-2.

b. When either format 2 or 3 is used, the result is stored in identifier-3.

6. For a description of the ROUNDED and SIZE ERROR options, see rules b and 6 in 6.6.1.

7. Formats 4 and 5 are used when a remainder from the division operation is desired, namely identifier-4. A
remainder in COBOL is defined as the result of subtracting the product of the quotient and the divisor
from the dividend. If the ROUNDED option is specified, the quotient is rounded after the remainder is
determined.

6.6.1.3. MULTIPLY Statement

Function:

The MULTIPLY statement multiplies numeric data items and sets the value of a data item equal to the results.

8057 Rev. 2 H tem/3 6—9
UP-NUMBER - l SPERRY UNIVAC Operating Sys / UPDATE LEVEL | PAGE
‘ Format 1:
MuLTipLY < dentifier-1 8 oy dentifier-2 [ROUNDEDI]
——— |} literal-1 — _
[; ON SIZE ERROR imperative-statement]
Format 2:
identifier- identifier-2
MuLTIpLY ¢ ‘dentifierl g Jidentifier2 L - o ING identifier-3 [ROUNDED]
——) literal-1 — |} literal-2 — -
[; ON SIZE ERROR imperative-statement]
Rules:
1. Only identifier-3, in format 2, may refer to a data item containing editing symbols. All other identifiers
must refer to numeric elementary items.
2. Each literal must be a numeric literal.

3. When format 1 is used, the initial value of identifer-1 or literal-1 is multiplied by the initial value of
identifier-2. The value of the multiplier (identifier-2) is replaced by the product resulting from operation
on that identifier.

‘ 4. When format 2 is used, the initial value of identifier-1 or literal-1 is multiplied by identifier-2 or literal-2,
| . and the result is stored in identifier-3.

5. The maximum size of each operand is 18 decimal digits.

6. For a description of the ROUNDED and SIZE ERROR options, see rules 5 and 6 in 6.6.1.

| 6.6.1.4. SUBTRACT Statement
Function:

The SUBTRACT statement subtracts one, or the sum of two or more, numeric data items from one or more
items, and sets the value of one or more items equal to the results.

Format 1:

SUBTRACT {|dent|f|er-1 } [, |dent|f|er-2]

literal-1 , literal-2
FROM identifier-m [ROUNDED] [,identifier-n [ROUNDED]] ...

[; ON SIZE ERROR imperative-statement]

6—10
PAGE

8057 Rev. 2 l SPERRY UNIVAC Operating System/3

UP-NUMBER

UPDATE LEVEL

Format 2:
SUBTRACT lfientlfuer-1 , |fient|f|er-2
—— | literal-1 , literal-2
identifier-m . -
FROM . GIVING identifier-n [ROUNDED]
E— literal-m —— R —

[; ON SIZE ERROR imperative-statement]

Rules:

1. When format 1 is used, all literals and identifiers preceding the word FROM are added together, and the
total is subtracted from identifier-m, identifier-n, etc. The result of the subtraction is stored as the new
value in identifier-m, identifier-n, etc.

2. The maximum size of each operand is 18 decimal digits. The composite operand, which is that data item
resulting from the superimposition of all operands, excluding the data item that follows the word
GIVING, aligned on their decimal points, must not contain more than 18 digits.

3. In format 2, identifier-n may refer to a data item that contains editing symbols. All other identifiers
must refer to numeric elementary items.

4. When format 2 is used, all literals or identifiers preceding the word FROM are added together, the total
is subtracted from literal-m or identifier-m, and the result of the subtraction is stored as the new value in

identifier-n.

5. For a description of the ROUNDED and SIZE ERROR options, see rules 5 and 6 in 6.6.1.

6.6.2. Procedure Branching Verbs

Normally, the statements in the procedure division are executed consecutively, in order of their appearance. This is
also true of the execution of each paragraph and section. However, it is often necessary to alter this normal sequence
of operation and branch to a different point in the program to execute a number of statements before returning to

the next statement. The procedure branching verbs permit this sequencing of logical operations:

ALTER, GO TO, PERFORM, EXIT

6.6.2.1. ALTER Statement
Function:

The ALTER statement modifies a predetermined sequence of operations.
Format:

ALTER procedure-name-1 TO [PROCEED TO] procedure-name-2
[, procedure-name-3 TO [PROCEED TO] procedure-name-4] ...

8057 Rev. 2 SPERRY UNIVAC Operating System/3 ’ 6-11
UP-NUMBER UPDATE LEVEL | PAGE
' Rules:
1. Procedure-name-1, procedure-name-3, ... is the name of a paragraph that contains only one sentence
consisting of a GO TO statement without the DEPENDING ON option.
2. Procedure-name-2, procedure-name-4, ... is the name of a paragraph or section in the procedure division.

3. During execution of the object program, the ALTER statement modifies the GO TO statement in the
paragraph named procedure-name-1, procedure-name-3, ... replacing the object of the GO TO by
procedure-name-2, procedure-name-4, ..., respectively.

4. A GO TO statement in a section with a priority equal to or greater than 50 must not be referred to by an
ALTER statement in a section with a different priority.

4

6.6.2.2. GO TO Statement
Function:

The GO TO statement transfers control from one part of the procedure division to another. GO TO (format 3)
is used as a special exit from a USE procedure.

Format 1:

GO TO [procedure-name]

Format 2:

GO TO procedure-name-1 [, procedure-name-2] ..., procedure-name-n
DEPENDING ON identifier

Format 3:

GO TO MORE-LABELS
Rules:

1. Each procedure-name is the name of a paragraph or section in the procedure division of the program.

2. Identifier is the name of a fixed-point numeric elementary item described without any positions to the
right of the assumed decimal point.

3. When format 1 is used, control is transferred to procedure-name or to another procedure-name if the GO
TO statement has been affected by an ALTER statement.

4, If procedure-name is omitted in format 1, an ALTER statement referring to this GO TO statement must
be executed prior to execution of this GO TO statement.

b. For a GO TO statement to be alterable, it must be the only statement in a paragraph. Only format 1 may
be altered.

6. When a GO TO statement is altered, control is transferred to the new procedure-name each time the GO
TO statement is executed, until the GO TO statement is altered again with a different procedure-name.

8057 Rev. 2 SPERRY UNIVAC Operating System/3 6-12

UP-NUMBER UPDATE LEVEL | PAGE

7. When format 2 is used, control is transferred to procedure-name-1, procedure-name-2, ...,
procedure-name-n, depending on the value of identifier being 1, 2, ..., n. If the value of identifier is
greater than n or equal to 0, control is passed to the sentence following this statement.

8. The maximum number of procedure-names allowed in format 2 is 64; the minimum is two.

9. Format 3 transfers control from a USE procedure to the 1/0 control system and is an extension to
American National Standard COBOL (1968). The following rules apply to the GO TO MORE-LABELS
option:

L Format 3 can appear only within a label-processing section in the declarative section.

] When an input file is being processed, format 3 is a request to the 1/O control routine to make the
next standard user label record available, and transfer control to the beginning of the USE
procedure. If there are no more labels to be processed, control is returned to procedure division.

= When an output file is being processed, format 3 requests the 1/0 control routine to write the label

in the user label area and return contro! to the first statement in the USE procedure so as to
permit another label record to be created in the user label area.

6.6.2.3. PERFORM Statement

Function:

This verb permits a temporary departure from the normal sequence of execution to execute one or more
procedures, a specified number of times, after which control is automatically returned to the normal sequence.

Format 1:

PERFORM procedure-name-1 [THRU procedure-name-2}

Format 2:
identifier-1
PERFORM procedure-name-1 [THRU procedure-name-2] { I entitier } TIMES
_ _ integer-1
Rules:
1. Each procedure-name is the name of a section or paragraph in the procedure division.

2. An identifier represents a numeric elementary item described in the data division; it also can represent a
numeric item with no positions to the right of the assumed decimal point.

3. When the PERFORM statement is executed, control is transferred to the first statement after
procedure-name-1. An automatic return to the statement following the PERFORM statement is
established as follows:

» If procedure-name-1 is a paragraph-name and procedure-name-2 is not specified, return occurs
after execution of the last statement of procedure-name-1.

L If procedure-name-1 is a section name and procedure-name-2 is not specified, return occurs after
execution of the last statement of the last paragraph in procedure-name-1.

6—13
PAGE

8057 Rev. 2 I SPERRY UNIVAC Operating System/3

UPDATE LEVEL

UP-NUMBER

‘ L] If procedure-name-2 is specified and is a:
- paragraph-name, return occurs after execution of the last statement of the paragraph,

— section-name, return occurs after execution of the last sentence of the last paragraph in the
section.

4, If there are two or more direct paths to a return point in a group of procedures being performed,
procedure-name-2 may be the name of a paragraph consisting of the EXIT statement, to which all these
paths must lead. If control passes to these procedures by other than a PERFORM statement, contro!
passes through the last statement of the procedure to the following statement, regardliess of use of the
EXIT statement.

5. Format 1 is the basic PERFORM statement. A procedure referred to by this type of PERFORM
statement is executed once after which control is passed to the statement following the PERFORM
statement.

6. Format 2 is the TIMES option. When the TIMES option is used, the procedures are performed the
number of times specified by identifier-1 or integer-1. Control then is transferred to the statement
following the PERFORM statement. The value of identifier-1 or integer-1 must not be negative, and if
the value is 0, control passes immediately to the statement following the PERFORM statement. Once
the PERFORM statement is initiated, any redefinition of identifier-1 has no effect in varying the number
of times the procedures are executed.

7. A PERFORM statement within a section which has a priority number less than 50 can have, within its
range, only the following:

‘ L sections with priority numbers of less than 50; and
n sections entirely contained in a single segment with a priority number greater than 49.

8. Independent segments are made available in their initial state.

9. If a sequence of statements referred to by a PERFORM statement includes another PERFORM
statement, the sequence of procedures associated with the included PERFORM statement must itself be
either totally included in, or totally excluded from, the logical sequence referred to by the first
PERFORM statement. Thus, an active PERFORM statement, the execution of which begins within the
range of another active PERFORM statement, must not allow control to pass to the exit of the other

PERFORM statement; furthermore, two or more such active PERFORM statements may not have a
common exit.

6.6.2.4. EXIT* Statement
Function:

The EXIT statement provides a common end point for a series of procedures, or marks the logical end of a
called program.

Format:

. EXIT [PROGRAM]

*Extension to American National Standard COBOL (1968).

6—1i4
PAGE

8057 Rev. 2 SPERRY UNIVAC Operating System/3

UP-NUMBER

UPDATE LEVEL

Rules:
1. The EXIT statement must be preceded by a paragraph-name and be the only sentence in the paragraph.
2. The point to which control is transferred may be at the end of a range of procedhres governed by a
PERFORM statement or at the end of a declarative section. The EXIT statement is provided to enable a

procedure-name to be associated with such a point.

3. If control reaches an EXIT statement without the optional word PROGRAM, and no associated
PERFORM or USE statement is active, control passes through the EXIT point to the first sentence of
the next paragraph.

4, If control reaches an EXIT PROGRAM statement while operating under the control of a CALL
statement, control returns to the point in the calling program immediately following the CALL
statement.

NOTE:

For examples of called or calling programs, see 6.8.

6.6.3. Data Movement Verbs
Four verbs are provided by 0S/3 COBOL for the specific purpose of moving or manipulating data:
EXAMINE, MOVE, SET, TRANSFORM
These are verbs in addition to the several verbs which, as a secondary function, move or manipuiate data in some

manner. For example, an arithmetic verb may cause some data movement and/or manipulation. This, however, is
secondary to its main function of effecting an arithmetic calculation.

6.6.3.1. EXAMINE Statement

Function:
The EXAMINE statement replaces or counts the number of occurrences of a given character in a data item.
Format:

ALL
TALLYING LEADING literal-1 [REPLACING BY literal-2]
UNTIL FIRST
EXAMINE identifier ALL
REPLACING LEADING literal-3 BY literal-4
[UNTIL] FIRST

Rules:
1. The description of the identifier must be such that USAGE IS DISPLAY (explicitly or implicitly).

2. Each literal must consist of a single character belonging to a class consistent with that of identifier. A
literal may be any figurative constant except ALL.

,.

6-15

UPDATE LEVEL | PAGE

8057 Rev. 2 l SPERRY UNIVAC Operating System/3

UP-NUMBER

3. Examination of identifier proceeds as follows:

n Nonnumeric examination starts at the leftmost character and proceeds to the right; each character
is examined individually.

] Numeric examination starts at the leftmost character and proceeds to the right. Each character
except the sign (which is ignored) is examined individually.

4, The count derived as a result of the TALLYING option is placed in a special register called TALLY.
Depending upon which option is selected, the count represents the following:

L] ALL option: the number of occurrences of literal-1.

L] LEADING option: the number of occurrences of literal-1 prior to encountering a character other
than literal-1.
L] UNTIL FIRST option: the number of occurrences of characters not equal to literal-1 encountered

before the first occurrence of literal-1.
5. When either of the REPLACING options is used, the replacement rules are as follows:
L] ALL option: literal-2 or literal-4 substituted for each occurrence of literal-1 or literal-3.

L] LEADING option: the substitution of literal-2 or literal-4 terminates as soon as a character, other
than literal-1 or literal-3, is encountered.

L] UNTIL FIRST option: the substitution of literal-2 or literal-4 terminates as soon as literal-1 or
literal-3 is encountered.

] FIRST option: the first occurrence of literal-3 is replaced by literal-4.

6.6.3.2. MOVE Statement
Function:

The MOVE statement transfers data, in accordance with the rules of editing, to one or more data areas.

Format:
. ifier-
move Jdentifier Tl oo e ntifier-2(identifier-3] . . .
literal-1 i
Rules:
1. When moving to more than one area, the data designated by literal-1 or identifier-1 is moved first to

identifier-2, then to identifier-3, etc.

8057 Rev. 2
UP-NUMBER

6-16
PAGE

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

2. Any MOVE in which both the sending and receiving items are elementary items is an elementary MOVE.
Every elementary item belongs to one of the following categories:

u Numeric

Alphabetic

u Alphanumeric

] Numeric edited

L] Alphanumeric edited

Table 6—1 shows legal categories of sending and receiving fields.

Table 6—1. MOVE Sending and Receiving Fields

Receiving
Sending . N ., Numeric Alphanumeric
Numeric Alphabetic Alphanumeric Edited Edited

Numeric Yes No Yes* Yes Yes*
Alphabetic No Yes Yes No Yes
Alphanumeric Yes Yes Yes Yes Yes
Numeric edited No No Yes No Yes
Alphanumeric

edited No Yes Yes No Yes

*A numeric item with an implicit decimal point not immediately to the right of the least significant digit
must not be moved to an alphanumeric or alphanumeric-edited data item.

3. The following rules apply to legal elementary moves:

L] When the receiving field is alphanumeric edited, alphanumeric, or alphabetic, justification and any
necessary space filling takes place as defined under the JUSTIFIED option. If the size of the
sending item is greater than the size of the receiving item, the excess characters are truncated after
the receiving item is filled.

L] When the receiving field is a numeric or numeric edited item, alignment by decimal point and any
necessary zero filling takes place, except where zeros are replaced because of editing requirements.
If the receiving item has no operational sign, the absolute value of the sending item is used.
Truncation occurs if the sending item has more digits to the left or right of the decimal point than
the receiving item can contain. The result at object time is undefined if the sending item contains
any nonnumeric characters.

u Any necessary conversion of data from one form of internal representation to another takes place
during the move, together with any specified editing in the receiving item.

m When the sending field is an edited item, it is treated as an alphanumeric item.

] An index data item cannot appear as an operand in a MOVE statement.

8057 Rev. 2 H 6—-17

UP-NUMBER l SPERRY UNIVAC Operating System/3 UPDATE LEVEL I A
4, Any MOVE that is not an elementary MOVE is treated as if it were an alphanumeric-to-alphanumeric

. elementary MOVE, except that no conversion of data from one form of internal representation to

another occurs.
5. The figurative constant ZERO (ZERQS, ZEROES) belongs in the numeric category. The figurative

constant SPACE (SPACES) belongs in the alphabetic category. All other figurative constants belong in
the alphanumeric category.

6.6.3.3. SET Statement

Function:

The SET statement establishes reference points for table handling operations by setting index-names associated
with table elements.

Format 1:
identifier-1 , identifier-2 (;::“t':;z:fitem%
SET < index-data-item-1 3| , index-data-item-2| ... TO - "oox >
— . . — index-name-3
index-name-1 , 'index-name-2 ' . \
_literal-1
Format 2:
DOWN BY identifier-1
ET i - 10, - 2). . 8T —
. SET index-name-1{, index-name-2] {ﬂ’ BY } { literal-1 }
Rules:
1. All identifiers must be either index data items or numeric elementary items described without any

positions to the right of the assumed decimal point, except that identifier-1 in format 2 must not be an
index-data-item.

2. All literals must be positive integers.

3. All index-names are considered related to a given table and are defined by being specified in the
INDEXED BY clause.

4. In format 2, the contents of index-name-1, index-name 2... are incremented (UP BY) or decremented
(DOWN BY) by a value that corresponds to the number of occurrences represented by the value of
identifier-1 or literal-1.

5. The following explain the allowable combinations of choices in the SET statement.
L] SET index-name-1 TO index-name-3
The occurrence number value of index-name-3 computes a new displacement value for
index-name-1. Also, the occurrence number value of index-name-3 replaces that of index-name-1.
If the length of one occurrence is the same for both, no computation is necessary.
. - SET index-name TO index-data-item
Same as SET index-name-1 TO index-name-2, except that no computation takes place. If the value

contained in the index-data-item does not correspond to an occurrence number of an element in
the table indexed by index-name, the result is undefined.

|
8057 Rev. 2 SPERRY UNIVAC Operating System/3 6-13
UP-NUMBER UPDATE LEVEL | PAGE
DOWN BY identifier
L] SET index-name < TO {Iiteral }
UPBY
When identifier or literal is a numeric data item and usage is not index. The value of identifier or
literal is treated as an occurrence number and is used to compute a new displacement value for
index-name. Identifier or literal must be elementary unsigned integer. Also, the value of identifier
or literal replaces, increments, or decrements the occurrence number value of index-name.
. . index-data-item-2
L SET index-data-item-1 TO { }
-_— — |index-name
A move with no conversion is executed. Index-data-item-1 has no associated table element length;
therefore, there is no unique disptacement value for a given occurrence number value.
u SET identifier TO index-name
The value of the occurrence number of index-name replaces the value of identifier with
appropriate conversion to the data type of identifier; i.e., conversion of binary occurrence number
to packed decimal. Rules for MOVE statement with integer numeric sending field apply. Identifier
must be a numeric data item, an alphanumeric data item, or a group item.
6. Internal format of index-name and index-data-item:
Description Occurrence Number Displacement
of Contents in Binary in Binary
Format 32 bits 32 bits
Range 0t0 65,535 0 to 65,535
~——————— 8 bytes —|
Index-name items are word aligned, but index-data-items are not aligned.
7. Formula for calculating displacements for index-name:

Displacement=(occurence-number—1) x {length of one occurrence)

6.6.3.4. TRANSFORM* Statement

Function:

The TRANSFORM statement may be used to alter characters of an identifier according to a user-defined
transformation rule or table. It may also be used to effect code base translation between EBCDIC and ASCII
via compiler-supplied tables.

Format 1:
TRANSFORM identifier-3{, identifier-4] ... CHARACTERS
figurative-constant-1 figurative-constant-2
FROM < identifier-1 TO <« identifier-2

nonnumeric-literal-1 nonnumeric-literal-2

*Extension to American National Standard COBOL (1968).

8057 Rev. 2
UP-NUMBER

PAGE

SPERRY UNIVAC Operating System/3 ‘ UPDATE LEVEL

. Format 2:

TRANSFORM identifier-3[, identifier-4] . . . CHARACTERS

Format 3:

Rules:

ASCII TO EBCDIC }

FROM { EBCDIC TO ASCHI

TRANSFORM identifier-3{, identifier-4] ... CHARACTERS

BY | . .
{ oN } identifier-5

All identifiers used in this statement must be described either explicitly or implicitly as USAGE IS
DISPLAY. Identifier-1, identifier-2, or identifier-5 may not be variable-length operands.

The least significant digit position of a signed, decimal numeric display item without a SEPARATE
SIGN clause is treated as a single character, not as a signed digit.

In format 1, identifier-1 and identifier-2 must not exceed 256 characters in length. The length of
identifier-2 must equal the length of identifier-1, or identifier-2 must have a length of 1 character.

In format 1, all figurative constants are permitted except ALL.
In format 1, a character must not be repeated in identifier-1 or in nonnumeric-literal-1.
In format 3, identifier-5 must be a length of 256 characters.

The following paragraphs and Table 6—2 explain the allowable combinations of choices in the
TRANSFORM statement.

L] The following rules apply to these combinations in format 1:

identifier-1 TO identifier-2

identifier-1 TO nonnumeric-literal-2

identifier-1 TO figurative-constant-2

nonnumeric-literal-1 TO identifier-2

nonnumeric-literal-1 TO nonnumeric-literal-2

nonnumeric-literal-1 TO figurative-constant-2

— If the FROM and the TO operands are the same length, any occurrence in identifier-3,
identifier-4, and so on, of a character (or the single character) in operand-1 is replaced by the
character (or the single character) in the corresponding position of operand-2.

— If the FROM operand exceeds one character and the TO operand is only one character, any

occurrence in identifier-3, identifier-4, and so on, of any character in operand-1 is replaced
by the single character in operand-2.

619

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

6—20
PAGE

® The following rule applies to these combinations in format 1:

figurative-constant-1 TO identifier-2

figurative-constant-1 TO nonnumeric-literal-2

figurative-constant-1 TO figurative-constant-2

Length of operand-1 and operand-2 must be one character. Any occurrence in identifier-3 of
the single character in operand-1 is replaced by the single character in operand-2.

= The following applies to format 2:

Identifier-3 is transformed from ASCIl to EBCDIC or from EBCDIC to ASCII, depending on
the FROM and TO operands, according to Table 12—2.

] The following rules apply to format 3:

Table 6—2. Combination of FROM and TO Options in a TRANSFORM Statement (Part 1 of 2)

Identifier-3 may be described as having any length up to a maximum of 65,535 characters.

Identifier-b is a 0—2b65 binary value positional translate table, i.e., any character in
identifier-3 with a binary value of O will be transformed to the character in the first position
of identifier-5; any character in identifier-3 with a binary value of 1 will be transformed to
the character in the second position of identifier-b, etc.

Operands Rule ":;;::"‘3 FROM T0 "’Z’::'" 3
FROM Alt occurrences of figurative-constant-1 in the 1273 QUOTE ZERO 102003
figurative-constant-1 item represented by identifier-3 are replaced by
TO figurative-constant-2. (Each operand must be a
figurative-constant-2 | single character.)

FROM Al} occurrences of figurative-constant-1 in the 10 A3 SPACE R 17273
figurative-constant-1 item represented by identifier-3 are reptaced
TO by nonnumeric-literai-2. {Each operand must
nonnumeric-literal-2 | be a single character.)
FROM All occurrences of figurativeconstant-1 in the 1A2A3 SPACE ALPHA 18283
figurative-constant-1 item represented by identifier-3 are replaced by (current
TO the item represented by identifier-2. (Each value of
identifier-2 operand must be single character.) ALPHA = B)
FROM All occurrences of any character of nonnumeric- AB12X7P *1234567890"" SPACE AB MXx /P
nonnumeric-literal-1 literal-1 in the item represented by identifier-3
TO are replaced by the singie-character figurative-
figurative-constant-2 | constant-2.
FROM Nonnumeric-literal-1 and nonnumeric-literal-2 ABCD12X “ABCDEFGHIJ" 1234567880 123412X
nunnumeric-titeral-1 must be equal in length, or nonnumeric-
TO literal-2 must be a single character.
nonnumeric-titeral-2
tf the operands are equal in length, any character
in the item represented by identifier-3 that is
equal to a character in nonnumeric-literal-1 is
replaced by the character in the corresponding
position of nonnumeric-literal-2.
If nonnumeric-literal-2 is a single character, then AB21X73 **1234567890" L ABLLXLL

alt occurrences of any character of nonnumeric-
literai-1 in the item represented by identifier-3

are replaced by the single character in nonnumeric-
literal-2.

SPERRY UNIVAC Operating System/3

6—-21

UPDATE LEVEL | PAGE

Table 6-2. Combination of FROM and TO Options in a TRANSFORM Statement (Part 2 of 2)

Identifier-3 Identifier-3
Operands Rule Bofore FROM T0 After
FROM The two operands must be equal in length, or 1A2ADEF “NA12DEF” BETA EFDF21A
nonnumeric-literal-1 identifier-2 must represent a single-character item. {current value
T0 of BETA =
identifier-2 If the operands are equal in length, any character FED21A)
in the item represented by identifier-3 that is
equal to a character in nonnumeric-literal-1 is
replaced by the character in the corresponding
position of the item represented by identifier-2.
If identifier-2 is a single character, then all ABC ADE GAMMA 1BC
occurrences of any character of nonnumeric-literal-1 {current value
in the item represented by identifier-3 are replaced of GAMMA = 1)
by the character represented by identifier-2.
FROM Al occurrences of any character of the item repre- A12B GAMMA QUOTE 12"
identifier-1 sented by identifier-1 in identifier-3 are replaced {current
TO by the single character figurative-constant-2, value of
figurative-constant-2 GAMMA = ABC.)
FROM The two operands must be equal in length, or ABCD ALPHA “DCBA" DACD
identifier-1 nonnumeric-literal-1 must be a single-character {current value
TO item. of ALPHA =
nonnumeric-literal-2 A12B)
If the operands are equal in length, any character in
the item represented by identifier-3 that is equal to
a character in the item represented by identifier-1
is replaced by the character in the corresponding
position of nonnumeric-literal-2,
{f nonnumeric-literal-2 is a single character, then ABCD DELTA “g" 6666
all occurrences of any character of the item repre- {current value
sented by identifier-1 in the item represented by of DELTA =
identifier-3 are replaced by nonnumeric-literal-2. ABCDEF)
FROM Any character in the item represented by 1AB4 ITEM-A ITEM-B AABD
identifier-1 identifier-3 that is equal to a character in the item {current value {current value
TO represented by identifier-1 is replaced by the of item-A = of ITEM-B =
identifier-2 character in the corresponding position of the 1234)) ABCD.)

itam represented by identifier-2,

Both operands must be of equal length. Each
of the operands may contain one or more
characters.

6.6.4. Input/Output Verbs

In any data processing application, quantities of data are passed between storage and external media such as card,
tape, or disc devices. The input/output verbs control and coordinate the flow of data, enabling the COBOL
programmer to obtain records for processing and return the processed record to the external media. The
input/output verbs are:

ACCEPT
CLOSE

DISPLAY
OPEN

READ
WRITE

INSERT
REWRITE

SEEK

6.6.4.1. ACCEPT Statement
Function:

Reads low volume data from an appropriate hardware device, system main storage location, or UPSI (user
program switch indicator) byte.

Format: +

mnemonic-name
DATE*

DAY*

TIME*

ACCEPT identifier | FROM

*Extension to American National Standard COBOL (1968).

8057 Rev. 2 SPERRY UNIVAC Operating System/3 B 6-—22
UP-NUMBER UPDATE LEVEL | PAGE
Rules:
1. The ACCEPT statement causes the next set of data available at the mnemonic-name to replace the

contents of the data item named by the identifier. Data is moved, left-justified.
2. The job control stream is assumed to be the input source when the FROM option is not specified. The
description of identifier determines the number of cards accepted. One card from the job control stream

contains up to 80 characters. The maximum length specified by identifier is 4095 characters, which
would require 52 cards.

3. Toindicate that input is to be accepted from the system console, the following message is displayed:
CA10 ACCEPT READY

Program operation is suspended until a type-in occurs (CA10 indicates a COBOL ACCEPT). The
maximum number of characters that can be transmitted from the system console for a single ACCEPT is

60.
4, The mnemonic-name must be associated with an implementor-name in the SPECIAL NAMES paragraph
of the environment division. Special-names that can be the source of accepted data are:
SYSCOM
SYSDATE
SYSTIME
SYSCONSOLE
SYSIN-96
SYSSWCH
See Table 4—1 for specific interpretation of implementor-names.
5. The identifier must be defined implicitly or explicitly as USAGE IS DISPLAY.
— 6. The DATE and DAY options make .the current date évailable in the formats yymmdd and yyddd,

respectively. The TIME option makes the current time of day available in the format hhmmss00.

NOTE:

The use of ACCEPT statements is illustrated in Section 9.

6.6.4.2. CLOSE Statement
Function:

Terminates processing of one or more input or output reels, units, or files with optional rewind with or
without lock.

Format:
., REEL LOCK
CLOSE file-name-1 [—UNIT] [WITH { _—NO REWIND }]

. REEL LOcK
[flle-name-Z [UNlT] [W'TH { NO REWIND }]]

6—-23

UPDATE LEVEL § PAGE

UP-NUMBER

8057 Rev. 2] SPERRY UNIVAC Operating System/3

Rules:

1. After a CLOSE statement without a REEL/UNIT phrase has been executed for a file, an OPEN
statement must be executed before any other references are made to the file.

2. The REEL/UNIT option effects reel or unit swapping in a sequential file process. When specified, it
terminates the current reel or unit of a multivolume file. Processing continues with the next reel or unit
of the file. Unless early termination of the current reel or unit is desired, the REEL/UNIT phrase is
unnecessary because swapping occurs automatically at the end of the current reel or unit. If the reel/unit
is to be dismounted from the device, the LOCK option should be used. After execution of a CLOSE
statement with a REEL/UNIT option, the file is still open.

3. The UNIT option is applicable for direct access files only when ACCESS MODE IS SEQUENTIAL is
specified.

4, The REEL, NO REWIND, and LOCK options are applicable only to magnetic tape files and are
meaningless when operating with any other device.

5. When the LOCK option is specified for reel, the current reel of the tape file is rewound and unloaded.

When the LOCK option is used without a REEL option, the file is closed and the current volume is
rewound and unioaded. As a result, the file cannot be reopened without operator intervention.

6. Each file-name refers to an FD name in the data division.
7. If neither LOCK nor NO REWIND is specified, the current reel of the file is rewound and all other reels

belonging to the file are rewound. However, this rule does not apply to those reels controlled by a prior
CLOSE REEL entry.

8. If the NO REWIND option is specified, the current reel of the file remains in whatever position it is in at
the time the CLOSE is given.
6.6.4.3. DISPLAY Statement
Function:
The DISPLAY statement writes fow volume data to an appropriate hardware device or system main storage
location. It can also be used to set the UPSI switches. (See Section 9 for a detailed explanation of DISPLAY

statement usage.)

Format:

identifier-1} [, jdentifier-2 .
DISPLAY {Iiteral-1 }[literal-2] .. .[UPON mnemonic-name]

Rules:
1. When the UPON option is omitted, the data is written on the system console (SYSCONSOLE).

2. When the UPON option is specified, the mnemonic-name must be associated with an implementor-name
in the SPECIAL-NAMES paragraph (4.2.3) in the environment division.

3. The special-names that may be associated with the DISPLAY statement via mnemonic-name are:

SYSCOM SYSSWCH SYSLST
SYSCONSOLE SYSSWCH-n SYSLOG

8057 Rev. 2 SPERRY UNIVAC Operating System/3 B 6-24
UP-NUMBER UPDATE LEVEL | PAGE
* See Table 4—1 for more detailed information.
4. If the system console is the hardware device, the sum of the sizes of operands in a DISPLAY statement

may not exceed 250 characters. The data is displayed on the system console a line at a time. Each line is
preceded by CD10A (CD11A if SYSLOG is used), followed by 55 characters of the contents of the
operands.

5. COMP-3 numeric items are converted to DISPLAY decimal. For signed numeric items, a separate sign
character is displayed immediately following the operand.

6. The number of printer characters displayed is a multiple of 120. An advance of one line precedes each

line of output. Each operand displayed is limited to 4092 characters. For signed numeric items, a
separate sign character is displayed immediately following the operand.

NOTE:

The use of DISPLAY statements is illustrated in Section 9.

6.6.4.4. OPEN Statement
Function:

The OPEN statement initiates processing of both the input and output files. It initiates checking or writing of
labels and other input/output operations.

Format:
INPUT {ﬁle-name [

OPEN < 1-O {file-name}
OUTPUT {file-name [WITH NO REWIND] } ces

REVERSED
WITH NO REWIND

Rules:

1. At least one of the options INPUT, OUTPUT, or I-O must be specified. They may appear in any order.

2. The I-O option pertains only to mass storage files,

3. The REVERSED and NO REWIND options apply only to sequential single reel processing.
The REVERSED option requires that the file be positioned at its end prior to the execution of the
OPEN statement. The NO REWIND option requires that the file be positioned at its beginning prior to
the execution of the OPEN statement.

4. The OPEN statement must be applied to all files.

5. File-name refers to the FD name in the file section of the data division.

6. The OPEN statement for a file must be executed prior to the first READ, INSERT, REWRITE, SEEK,
or WRITE statement for that file.

7. A second OPEN statement for a file must not be executed prior to the execution of a CLOSE statement
for that file.

B
UPDATE LEVEL

6—25
PAGE

UP-NUMBER

8057 Rev. 2 | SPERRY UNIVAC Operating System/3

8. The OPEN statement does not obtain or release the first data record. When checking or writing labels,
the user’s beginning label subroutine is executed if one was specified by a USE statement (6.6.7.4).

6.6.4.5. READ Statement

Function:

For sequential file processing, the READ statement makes available the next logical record from a file and
allows performance of a specified imperative-statement when end of file is detected.

For random file processing of mass storage files, the READ statement makes available a specific record from a
file, and allows performance of a specified imperative-statement if the contents of the associated keys are
found to be invalid.

Format:

AT END

READ file-name RECORD [INTO identifier] ; { INVALID KEY

} imperative-statement

Rules:

1. An OPEN statement (INPUT or I-O) must be executed for a file prior to the execution of the first
READ statement for that file,

2. When a file consists of more than one type of record, the records automatically share the same storage
area.

3. The AT END or INVALID KEY clause is required for all file organizations except indexed organization,
where its use is optional. The execution of the imperative statement AT END or INVALID KEY is
dependent upon file organization and file usage. See Section 11 for detailed information on these
conditions.

4, If an input file described with the keyword OPTIONAL is not present, the imperative-statement in the
AT END option is executed on the first READ statement.

5. The READ statement performs the functions of the SEEK statement implicitly for random access files.

6. The INTO option may be used only when the input file contains just one size record. Reading INTO is
performed according to the rules of a group MOVE (6.6.3.2).

7. Data items of a logical record cannot be accessed prior to the read of the associated record. The record
area may not be accessed prior to a read or after an AT END condition is detected.

6.6.4.6. WRITE Statement
Function:
The WRITE statement releases a logical record for an output file. It can also be used for vertical positioning of

the printer. The WRITE statement permits performance of a specified imperative statement if the contents of
the associated keys are found to be invalid.

2 SPERRY UNIVAC Operating System/3 vroare ever | aa?8
Format 1:
WRITE record-name [FROM identifier-1]
a1En | oaone | e
—_— mnemonic-name
Format 2:
WRITE record-name [FROM identifier-1] [; INVALID KEY imperative-statement]
Rules:
1. A file must be opened {output or I-O) prior to execution of the first WRITE statement for that file.
2. The record-name is the name of a logical record in the file section of the data division.
3. When the FROM option is used, data is moved from identifier-1 to record-name according to the rules

specified for a group MOVE.

4, After the WRITE statement is executed, information in record-name is no longer available, but
identifier-1 information is available. The record area associated with an output file may not be accessed
* prior to the open for that file.

5. The INVALID KEY clause in format 2 is used when processing direct access files and is required for
RELATIVE file organization; for SEQUENTIAL and INDEXED organization, its use is optional. The
conditions that cause execution of the INVALID KEY imperative-statement depend upon file
organization and file usage. For more detailed information, see Section 11.

6. The ADVANCING option controls the vertical positioning of each record on the printed page. If this
option is omitted for a printer file, the printer automatically advances one line before printing (i.e.,
WRITE record-name AFTER ADVANCING 1t LINE). Any form of the ADVANCING option overrides

this automatic advance.

u The identifier represents a numeric item with no positions to the right of the assumed decimal
point.

L The contents of identifier-2 or the value of integer must not exceed 127. A value of 0 is
permissible (where overprinting is desired).

L Mnemonic-name specifies a channel in the forms control paper tape loop. This channel is identified
in the SPECIAL-NAMES paragraph of the environment division, using SYSCHAN-t IS
mnemonic-name, where t is the channel (4.2.3).

7. The USE FOR FORM-OVERFLOW clause in the declaratives section of the procedure division permits
the programmer to perform special procedures when a form overflow condition exists. Form overflow is
detected during the print and space functions of the printer. If form positioning by paper tape loop is
specified (ADVANCING mnemonic-name), the form overflow condition does not occur.

UP-NUMBER

8057 Rev. 2 | SPERRY UNIVAC Operating System/3

6-27
PAGE

UPDATE LEVEL

6.6.4.7. INSERT* Statement
Function:
The INSERT statement adds a logical record to indexed organization files.
Format:
INSERT record-name [FROM identifier-1] [; INVALID KEY imperative-statement]
Rules:
1. The INSERT verb can be used only when access is random or extended and organization is indexed.
2. A file must be opened (1-O) prior to execution of the first INSERT statement for that file.
3. The record-name is the name of a logical record in the file section of the data division.

4. When the FROM option is used, data is moved from identifier-1 to record-name according to the rules
specified for a group MOVE.

b. After the INSERT statement is executed, information in record-name is no longer available, but
identifier-1 information is available.

6. The INVALID KEY clause is required for all file organizations except indexed organization, where its
use is optional. See Section 11 for detailed information on these conditions.

6.6.4.8. REWRITE* Statement

Function:

The REWRITE statement releases a logical record for an output file for updating an existing record.
Format 1:

REWRITE record-name [FROM identifier]
Format 2:

REWRITE record-name [FROM identifier] [; INVALID KEY imperative-statement]

Rules:

1. A file must be opened {I-O) and a record read prior to execution of the first REWRITE statement for
that file.

2. The record-name is the name of a logical record in the file section of the data division.

3. When the FROM option is used, data is moved from identifier-1 to record-name according to the rules
specified for a group MOVE,

*Extension to American National Standard COBOL (1968).

6—28
PAGE

8057 Rev. 2 SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL

4. After the REWRITE statement is executed, information in record-name is no longer available, but
identifier-1 information is available.

5. The imperative statement INVALID KEY in format 2 is used when processing direct access files. The

INVALID KEY clause is required for all file organizations except indexed organization, where its use is
optional.

6.6.4.9. SEEK Statement
Function:

The SEEK statement initiates access of a mass storage data record for subsequent reading or writing.
Format:

SEEK file-name RECORD

Rules:

1. A SEEK statement pertains only to the disc files specified in the following chart.

Organization Access
Type Method SEEK Aliowed

Sequential Sequential No
Sequential Yes

Relative
Random Yes
Sequential Yes

Indexed Random No
Extended Yes

2. The value of the identifier in the ACTUAL or RELATIVE key clause is used by the SEEK statement to
determine the location of the record to be accessed when ORGANIZATION is RELATIVE. When
ORGANIZATION is INDEXED, the value of the identifier in the SYMBOLIC KEY clause is used.

UP-NUMBER

8057 Rev. 2 l SPERRY UNIVAC Operating System/3 lupom LeveL LP Y

AGE

3. Two SEEK statements for the same file may logically follow each other. Any validity check associated
with the first SEEK statement is negated by the execution of a second SEEK statement.

6.6.5. Ending Verb (STOP)

This statement is used to halt execution of the object program either permanently or temporarily, with or without a
display of a literal.

Format:
literal
STOP
I { RUN }
Rules:

1. The literal may be numeric or nonnumeric or any figurative constant except ALL.

2. The literal is communicated to the operator through the system console, and continuation of the
program begins with execution of the next statement after the STOP statement. The literal option is
equivalent to a DISPLAY statement, but requires a reply from the operator to continue the program.
For example, the error routine

SEQ-ERROR.

STOP ‘CARDS OUT OF SEQUENCE, CORRECT SEQUENCE, REPLACE CARDS IN READER,
ANSWER R WHEN READY".

causes the literal to be displayed as follows:

CD10 CARDS OUT OF SEQUENCE, CORRECT SEQUENCE, REPLACE CARDS IN READER,
ANSWER R WHEN READY.

This is followed by
CA10 ACCEPT READY
and program operation is suspended pending operator repiy.

3. When the RUN option is used, the object program is haited permanently; therefore, when this option

appears in an imperative statement, it should appear as the last statement in a sequence of imperative
statements.

6.6.6. Conditional Verb (IF)

Conditional expressions are used in situations in which the outcome of a test determines the next logical step to be
performed. The verb IF is used with conditional expressions. The IF statement causes a.condition to be evaluated.
The subsequent action of the object program depends on whether the value of the condition is true or false.

Format:
NEXT SENTENCE ELSE NEXT SENTENCE
s * .
iF condition; [Tl-l_E_N] {statement-1 } [{OTHERWISE*} {statement-Z }]

*Extension to American National Standard COBOL {1968).

8057 Rev. 2

SPERRY UNIVAC Operating System/3

6—30
UP-NUMBER UPDATE LEVEL | PAGE
Rules:

1. A condition must be simple. A simple conditional expression contains only one of the following: a
relational expression, condition-name, or item class test.

2. Statement-1 and statement-2 represent either a conditional statement or an imperative statement.

3. The NEXT SENTENCE option may be omitted if it immediately precedes the terminal period of the
sentence.

4, Execution of an IF statement takes the following action:

L] Condition TRUE: Statements immediately following the condition (statement-1) are executed;
control then passes implicitly to the next sentence.

L] Condition FALSE: Either statement-2 is executed or, if ELSE is omitted, the next statement is
executed.

5. Statement-1 and statement-2 may contain an |F statement, and the IF is considered nested. |F
statements within |F statements are considered paired |F and ELSE combinations, proceeding from left
to right. Thus, any ELSE statement detected is considered to apply to the immediately preceding IF
statement not already paired with an ELSE statement. The maximum number of |F statements that may
be nested in OS/3 Basic COBOL is 30.

6. When control is passed to the next sentence, it is transferred to the next sentence as written or to a
return mechanism of a PERFORM or a USE statement.

7. The condition in an IF statement causes the object program to select between alternate control paths,
depending on the truth value of a test. Five types of conditions are possible:

u Relation condition
L] Class condition
L] Condition-name condition
n Switch-status condition
] Sign condition
8. Relation Condition

A relation condition causes a comparison of two operands, each of which may be an identifier or a
literal. The general format for a relation condition is:

literal-1

identifier-1
literal-2

} . { identifier-2 }
relational-operator

8057 Rev. 2
UP-NUMBER

|

SPERRY UNIVAC Operating System/3 &

UPDATE LEVEL

The first operand is called the subject of the condition; the second operand is called the object of the
condition. The subject and object may not both be literals; they may, however, be an identifier and a
literal. The operator specifies the type of comparison to be made in a relational condition. The
relational-operators and the format in which they are used are:

‘|

identifier-1
literal-1

S [NOT EQUAL TO
[NOT] =
[NOT] GREATER THAN
[NOTI] >

1S

{ identifier-2 }
[NOT] LESS THAN literal-2
[NOT] <

IS

EQUALS*
UNEQUAL*
EXCEEDS*

Comparison of the various types of operands is accomplished as follows:

Numeric operands

For numeric operands, comparison is with respect to the algebraic value of the operands. The
number of digits in the operands is not significant. Zero is considered a unique value regardless of
the sign.

Comparison of these operands is permitted regardless of their usage. Unsigned numeric operands
are considered positive for purposes of comparison.

Nonumeric operands

For nonnumeric operands or one numeric and one nonnumeric operand, a comparison is with
respect to a specified collating sequence of characters. The size of an operand is the total number
of characters in the operand. Numeric and nonnumeric operands may be compared only when
their usage is thé same. The two cases to be considered are operands of equal size and operands of
unequal size.

- Operands of equal size
Corresponding character positions are compared, starting from the high-order end and
continuing until either a pair of unequal characters is detected or the iow-order end of the
item is reached, whichever is first. The items are equal if all pairs of characters are equal.
The first pair of unequal characters encountered is compared for relative location in the
0S/3 COBOL collating sequence. The operand containing the character that is positioned
higher in the collating sequence is the greater operand.

— Operands of unequal size

Comparison proceeds as though the shorter operand were extended on the right by sufficient
spaces to make the operands of equal size.

*Extensions to American Natjonal Standard COBOL (1968).

6—31

SS_EZUF::;-EZR J SPERRY UNIVAC Operating System/3 roare Lever | pads®
n Index-names and/or index data-items

- Two index-names
The result is the same as if the corresponding occurrence numbers were compared.

— Index-name and data-item or literal
The occurrence number corresponding to the value of the index-name is compared to the
data-item or literal, both of which must be elementary unsigned integers.

- Index data-item and index-name or two index data-items
The actual values are compared without conversion.

The result of the comparison of an index data-item with any data-item or literal not specified

above is undefined.

9. Class Condition

10.

1.

The class condition determines whether the operand is numeric or alphabetic. The general format for the
class condition is:

ALPHABETIC}

IF identifier IS [NOT] {NUMERIC

The operand being tested must be described, implicitly or explicitly, as USAGE IS DISPLAY or USAGE
IS COMP-3.

] Numeric test
The identifier can be described as alphanumeric or numeric with USAGE COMP-3 or DISPLAY. If
the record description of the item being tested does not contain an operational sign, the item is
considered numeric only if the contents are numeric and a sign is not present.

L] Alphabetic test

The identifier must be described as alphabetic. The item being tested is considered alphabetic only
if the contents consist of any combination of the characters A through Z and the space.

Condition-Name Condition

A conditional variable is tested to determine whether its value is equal to the value associated with a
condition-name.

The format for a condition-name condition is:
IF [NOT] condition-name
Switch-Status Condition

Determines the ON or OFF status of a switch, as described in 4.2.3, rule 10. The condition-name
specified in the ON or OFF STATUS IS option is tested in the format:

IF [NOT] condition-name

8057 Rev. 2 l SPERRY UNIVAC Operating System/3

UP-NUMBER

6—-33

UPDATE LEVEL | PAGE

12. Sign Condition

Determines whether the value of an operand is iess than, greater than, or equal to zero. An operand is
positive if its value is greater than zero, negative if its value is less than zero, and zero if its value is equal
to zero. The format for a sign condition is:

NEGATIVE
IF identifier IS [NOT] < POSITIVE
ZERO

6.6.7. Compiler-Directing Verbs

Certain verbs direct the compiler to perform a specific action and do not directly cause any object coding to be
produced. These verbs affect the object program indirectly, except for the verb NOTE which has absolutely no
effect on the object program.

The compiler-directing verbs are:

COPY, ENTER, NOTE, USE

6.6.7.1. COPY Statement
Function:

The COPY statement copies text from the COBOL library into the source program with a capability of word
substitution as the text is copied (see 7.3).

Format:
COPY library-name.

Rules:

1. The COPY statement may appear anywhere in a COBOL program.

2. The library-name may contain no more than eight characters; the name may be composed of
alphanumeric characters and the hyphen, but it must contain at least one alphabetic character.

3. The remainder of the line on which a COPY statement is terminated must be blank. In other words,
nothing may follow a COPY statement on the same source program line.

4, The copying process is terminated by the end of the library text.
5. Both the COPY statement and the statements of the library text to which it refers appear in the output
listing, unless printing of the library text is suppressed through use of the LST=I option on the COBOL

compiler PARAM statement. {See 7.1.1.)

6. The text contained in the library must not contain any COPY statements.

6—-34
PAGE

8057 Rev. 2 SPERRY UNIVAC Operating System/3

UP-NUMBEFK l UPDATE LEVEL

6.6.7.2. ENTER* Statement
Function:
The ENTER statement, in conjunction with the CALL or ENTRY statements, permits run-time

communications between the main COBOL program and previously compiled subprograms in 0S/3 COBOL or
other languages. ENTRY also may be used with the EXIT PROGRAM or RETURN options.

Format 1*

ENTER LINKAGE.

file-name
CALL entry-name | USING ¢ identifier
procedure-name

ENTER COBOL.

Format 2:

ENTER LINKAGE.
ENTRY entry-name [USING {unqualified-data-name } ...] .
ENTER COBOL.

Format 3:

ENTER LINKAGE.
EXIT PROGRAM. }

{RETURN.

ENTER COBOL.

Rules:
1. Format 1 transfers control from one object program to another within the run unit.

L Entry-name must be the external symbol of an entry point in the subprogram being called.
Entry-name may be a nonnumeric literal.

[] Each of the identifiers in the USING clause of the CALL statement must be a reference to any
level data item except an 88 level in the file, working-storage, or linkage sections of the calling

program.

L] Procedure-name and file-name can be used only if the called subprogram is written in a language
other than COBOL.

] If the subprogram is written in COBOL, there are two ways to call the subprogram, depending on
the entry point of the subprogram:

— If the entry point is the beginning of the procedure division (USING after the division
heading), entry-name in format 1 must be the same as the PROGRAM-ID of the called

subprogram.

- If the entry point in the subprogram is designated by the ENTRY statement (format 2), the
entry-name in format 1 must be the same as the entry-name in format 2.

*Extension to American National Standard COBOL (1968):

i 6—-35
8057 Rev. 2
3087 Rev. 2 ‘ SPERRY UNIVAC Operating System/3 eoare Level | pace
L] If the called program is written in assembler language, entry points are labels specified by
‘ assembler directive ENTRY or labels of START and CSECT assembler directives.

2. Format 2, in the called subprogram, designates an ENTRY point; it may not appear in the declaratives
portion.

n If the calling program is written in OS/3 COBOL, entry-name in format 2 must be the same as
entry-name in format 1.

= Data-name can be neither qualified nor subscripted.

- Data-names are the names of 01- or 77-level data items specified in the linkage section of this
particular subprogram.

= The sequence of appearance of the operands in the two USING clauses is extremely significant
because corresponding operands refer to a single common data item; i.e., correspondence is by
position and not by name. Each reference to an operand in the called program USING clause is
treated as if it were a reference to the corresponding operand in the USING clause of the calling
program.

= An entry name may be enclosed in quotation marks.

3. Format 3, in the called subprogram, returns control to the calling program.
] All OS/3 COBOL subprograms must contain this clause.

‘ L] Control returns to the point in the calling program immediately following the CALL statement.

L] The EXIT PROGRAM and RETURN options are equivalent. RETURN is included for
compatibility with other COBOL. implementations.

4, See 6.8 for sample calling and called programs.

6.6.7.3. NOTE Statement
Function:

The NOTE statement allows programmers to write commentary to be produced in the listing but not be
compiled.

Format:

NOTE character-string.

Rules:
1. Any combination of the characters from the character set may be included in the character-string.
2. If a NOTE sentence is the first sentence of the paragraph, the entire paragraph is considered a part of the
character-string, whereas a comment line is not (Table 2—3).
. 3. 1f a NOTE sentence appears as other than the first sentence of a paragraph, the commentary ends with

the first occurrence of a period followed by a space.

8057 Rev. 2

6-36
UP-NUMBER

PAGE

1
SPERRY UNIVAC Operating System/3 l

UPDATE LEVEL

6.6.7.4. USE Statement

Function:

The USE statement specifies procedures for input/output label and error handling in addition to the standard
procedures specified by the input/output system. Three format options are available:

n Label writing and checking

u Error checking

. Printer form-overflow

Format 3 is an extension to American National Standard COBOL (1968).

Format 1:

AFTER

Use BEFORE

FILE
STANDARD [BEGINNING]

REEL
ENDING UNIT

file-name-1 [, file-name-2]. ..
INPUT

10

OUTPUT

LABEL PROCEDURE ON

Format 2:

filename-1 [, file-name-2] ...
INPUT

10

OUTPUT

USE AFTER STANDARD ERROR PROCEDURE ON

Format 3:

USE FOR FORM-OVERFLOW ON file-name-1

B
UPDATE LEVEL

637

UP-NUMBER PAGE

8057 Rev. 2 l SPERRY UNIVAC Operating System/3

' Rules:

1. A USE statement must immediately follow a section header in the declaratives section of the procedure
division, and must be followed by a period. The remainder of the section must consist of one or more
procedural paragraphs that define the procedures to be used.

2. The USE statement defines the conditions calling for the execution of the USE procedures; the USE
statement itself is never executed.

3. When format 1 is used:

L] If the file-name option is present, the FD entry for file-name-1 must contain a LABEL RECORDS
ARE data-name clause (5.2.1.3).

L] If the BEGINNING or ENDING options are omitted, the designated procedures are executed for
both beginning and ending labels. The ENDING option is not applicable for direct access files
whose organization is other than sequential.

L] If the REEL or UN!T option is used, the designated procedures are executed for each new reel or
unit of a file but not for the start or end of the file itself. If the FILE, UNIT, or REEL option is
omitted, the designated procedures are executed for the reel or unit, whichever is applicable, and
the file. The REEL option is not applicable to mass storage files and the UNIT option is not
applicable to files in the random access mode.

L] When the INPUT, OUTPUT, or {-O option is specified, the USE procedure refers to all appropriate
files except those described with the LABEL RECORDS OMITTED or STANDARD clause.

L] The BEFORE option is not applicable to the OS/3 COBOL but is accepted for compatibility. The
BEFORE option is processed as if AFTER were specified.

= For files opened for input, the designated USE procedure is executed only when a user label is
encountered. This label can be checked by referencing the record defined by the LABEL
RECORD clause in the FD. If further labels exist they can be accessed by issuinga GO TO MORE
LABELS verb. User label processing is terminated upon execution of the last statement in the USE
procedure.

= For files opened for output, the designated USE procedure is executed after system label
processing is completed. A user label is written from the record area defined by the LABEL
RECORD clause after execution of the last statement in the USE procedure. A label is also written
upon execution of a GO TO MORE LABELS verb and control is then transferred to the beginning
of the same USE procedure.

4, When format 2 is used, the USE procedure is initiated when system standard 1/O error recovery
procedures are exhausted. After a format 2 USE procedure is executed, do not access the file in error.

5. When format 3 is used, control is transferred to the USE procedure when a printer carriage overflow
condition is detected. See data management user guide, UP-8068 (current version). -

Overflow is detected during the print and space functions of the printer. If form positioning by
ADVANCING mnemonic-name is specified, a form-overflow condition does not occur. -+

8057 Rev. 2 SPERRY UNIVAC Operating System/3 6—38
UP-NUMBER UPDATE LEVEL | PaGE
6. Input/output statements or the STOP verb with the literal option are not allowed inside USE procedures

except for the following verbs:

u ACCEPT (not from jobstream or system console)
= DISPLAY
L WRITE to a printer within a FORM-OVERFLOW procedure
NOTE:
At least one DISPLAY to SYSLST must be performed in the nondeclarative portion of the procedure
division before any are performed with the declarative section. Accepts from the job control stream are
not permitted inside a USE statement for LABEL PROCEDURE.

7. ENTRY statements are not allowed within USE procedures.

8. In a USE procedure, there must be no reference to any nondeclarative procedures. Conversely, in the
nondeclarative portion, there must be no reference to procedure-names that appear in the declarative

portion, except that PERFORM statements may refer to a USE declarative in formats 1 or 2, or to the
procedures associated with such a USE declarative.

9. See 6.2, declaratives section.

6.6.8. Interprogram Communications

Communications between an OS/3 COBOL program (caller) and either an OS/3 COBOL or another language
program (called) are established by the CALL verb. An entry point in the called program is established by the
ENTRY verb.

6.6.8.1. CALL* Statement

Function:

In conjunction with the ENTER verb in the main program, communicates with subprogram entry points.

Format:
file-name

CALL entry-name |USING < identifier
procedure-name

Rule:

See the ENTER verb, 6.6.7.2, for information regarding use of the CALL statement.

*Extension to American National Standard COBOL (1968).

8057 Rev. 2 I SPERRY UNIVAC Operating System/3

UP-NUMBER

6-39
PAGE

[UPDATE LEVEL

6.6.8.2. ENTRY * Statement
Function:

The ENTRY™ statement, in conjunction with the ENTER statement in a called program, establishes an entry
point.

Format:
ENTRY entry-name [USING unqualified-data-name . . .]
Rule:

See 6.6.7.2.

6.7. SEGMENTATION

Segmentation is a method of communication with the compiler to specify object program overlay requirements.
Since 0S/3 COBOL deals just with segmentation of procedures, only the procedure division is considered in
determining segmentation requirements for an object program.

6.7.1. Program Segments

When segmentation is used, it is mandatory that the procedure division be written in sections. Each section must be

classified as belonging either to the fixed portion or to one of the independent segments of the object program.
Segmentation does not negate the need to qualify procedure-names to ensure unigueness.

6.7.1.1. Fixed Portion

The fixed portion is that part of the object program which is always in main storage. This portion of the program
cannot be overlaid by any other part of the program.

6.7.1.2. Independent Segments

An independent segment is a part of the object program that can overlay, and be overlaid by, another independent
segment. An independent segment is in its initial state each time it is available to the program.

*Extension to American National Standard COBOL (1968).

8057 Rev. 2 SPERRY UNIVAC Operating System/3

UP-NUMBER

6—40
PAGE

UPDATE LEVEL

6.7.2. Section

Function:

SECTION classification is performed through a system of priority-numbers included in the section header.
Format:

section-name SECTION [priority-number].
Rules:

1. The priority-number must be an integer ranging in value from 0 through 99.

2, If priority-number is omitted from the section header, the priority is assumed to be 0.

3. Segments with priority-number 0 through 49 belong to the fixed portion of the object program.
Segments with priority-number 50 through 99 are independent.

4. All sections with the same priority-number must be together in the source program, because they
constitute a program segment. All priority-numbered sections must appear in sequentially ascending
sequence. Sections with a priority-number out of sequence will be diagnosed and assigned the last valid
priority-number.

5. Sections in the declaratives must not contain priority-numbers in section headers.

6.7.3. Restrictions

When segmentation is used, the following restrictions are placed on the ALTER and PERFORM statements.

6.7.3.1. ALTER Statement

Any GO TO statement in a fixed segment (priority-number 49 or less) can be altered by an ALTER statement
located in any other segment of the program. A GO TO statement in an independent segment (priority-number 50 or
greater) can be altered only by an ALTER statement located in the same segment as the GO TO statement.

8057 Rev. 2 J SPERRY UNIVAC Operating System/3 L
UPDATE LEVEL

UP-NUMBER

6—41
PAGE

6.7.3.2. PERFORM Statement

A PERFORM statement that appears in a section with a priority-number less than 50 can have within its range only
the following:

» Sections with a priority less than 50.
] Sections entirely contained in a single segment having a priority-number greater than 49.

A PERFORM statement that appears in a section with a priority-number equal to or greater than 50 can have within
its range only the following:

- Sections with the same priority-number as that containing the PERFORM statement.

- Sections with a priority-number less than 50.

6.7.3.3. Linkage Editor Considerations

When linking a segmented COBOL program, the linkage editor control stream must have a LOADM control
statement followed by an INCLUDE statement for the root section of the program (fixed-permanent segment),

6.8. CALLING AND CALLED PROGRAMS

Run-time communication between a main 0S/3 COBOL program and any other separately compiled or assembled
subprogram is accomplished by the ENTER statement and its associated statements:

[] CALL

- ENTRY

= EXIT PROGRAM or RETURN

. USING clause with PROCEDURE DIVISION heading

Actual transfer of control from a calling program to a called program is effected via a CALL statement with an
entry-name identical with the entry-name in the ENTRY statement of the called program. Return of control to the
calling program is effected by execution of an EXIT PROGRAM statement in the called program. Control is
returned to the statement following the CALL statement in the calling program.

A called program need not be an 0OS/3 COBOL program. In such cases, the COBOL calling program may include
procedure-names in its USING argument list.

For a description of register usage requirements, see the CALL, SAVE, and RETURN macro instructions in the
supervisor programmer reference, UP-8241 (current version).

6.8.1. Treatment of Data Items

Data items declared in the calling program and referenced in the called program are described in the file or
working-storage sections in the data division of the calling program. In the called program, the data items are
described, once again, but in the linkage section. {tems described in the linkage section are not allocated main
storage by the compiler since these items already occupy storage in the calling program, which furnishes their
addresses to the called program at object time.

6—42
PAGE

8057 Rev. 2 SPERRY UNIVAC Operating System/3

UP-NUMBER

UPDATE LEVEL

Data items common to both programs are shared by use of corresponding USING clauses in each program. The
operands in the USING clause of the calling program name the data items contained in the data division to be shared
with the called program. The USING clause in the called program can either follow the PROCEDURE DIVISION
heading or be contained in an ENTRY statement. The operands must name data items described by 01- or 77-level
entries in the linkage section.

The sequence of appearance of the operands in the two USING clauses is extremely significant since corresponding
operands refer to asingle common data item; i.e., correspondence is by position and not by name. Each reference to
an operand in the called program USING clause is treated as if it were a reference to the corresponding operand in
the USING clause of the calling program. The calling program is responsible for ensuring physical data alignment if
the description of a linkage section data item implies a hardware alignment requirement.

A called program also may be a calling program sharing common data items in its data division (including linkage
section items) with still another called program.

6.8.2. Linking

A sample linker job control stream for calling and called programs is:

%
LOADM CALLXX
INCLUDE CALLEROO
INCLUDE CALLEDOO
INCLUDE ADDROUT
/*

When an object module created by the COBOL compiler is included in a load module, it must be referred to in the
INCLUDE statement by the 8-character program name assigned by the compiler. The first six characters contain the
program name specified in the identification division of the source program; the last two characters, decimal
numbers from 00 to 99, indicate the segment number of the object module within the COBOL program. (All single
segment programs are numbered 00.) If the program name specified in the source program is less than six characters,
the compiler pads it with zeros before appending it with the 2-digit segment number.

6.8.3. 0S/3COBOL CALL/ENTRY Interface

Figures 6—1, 6—2, and 6—3 illustrate the use of CALL and ENTRY statements. The examples consist of a COBOL
program, CALLER (Figure 6—1), which shares data-items and calls upon a COBOL subprogram, CALLED (Figure
6—2), and an assembly language subprogram, ADDROUT (Figure 63}, for operations upon the shared data-items.
Table 6—3 shows the relationship between these programs.

For more detailed information concerning the linking of subprograms, refer to the system service programs user
guide, UP-8062 (current version).

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3

6-43
UPDATE LEVEL | PAGE

LINE NO.

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033

SOURCE STATEMENT

TDENTIFICATION DIVISION.
PROCRAM-ID. CALLER.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE~COMPUTER. UNIVAC-9030.
OBJECT-COMPUTER. UNIVAC-9030.
DATA DIVISION.

WORKING~STORAGE SECTION.

77 DATAl PIC 9999.

77 DATA2 PIC 99.

77 CIR PIC 99 VALUE Ol.
01 DATAX.

02 DATA3 PIC 99.

02 DATA4 PIC 99.
PROCEDURE DIVISION.
PO.

MOVE CTR TO DATA2, DATA3, DATA4.

POD.
ENTER LINKAGE.

CALL ASMBLRAD USING DATA2, DATAX, DATAl.

ENTER COBOL.

DISPLAY ' CALLER RECVD ' DATA2 ' + ' DATA3 ' + ' DATA4 ' =

DATA1 ' FROM ASMBLRAD ‘',
ADD 1 TC DATAA4.

P1.
ENTER LINKAGE.

CALL COBOLADD USING DATA2, DATAX, DATAl.

ENTER COBOL.
P3‘

DISPLAY ' CALLER RCVD ' DATA2 ' + ' DATA3 ' + ' DATA4 ' = °

DATAl ' FROM COBOLADD'.

P4. IF CTR LESS THAN 12'ADD 1 TO CTR GO TO PO ELSE

DISPLAY 'END OF RUN' STOP RUN.

Figure 6—1. Example of Calling Program

U3£5N7U'3*;-E 2R J SPERRY UNIVAC Operating System/3 PDATE LEVEL PASG—;4
LINE NO. SQURCE STATEMENT
00001 IDENTIFICATION DIVISION.
00002 PROGRAM-ID. CALLED.
00003 ENVIRONMENT DIVISION.
00004 CONFIGURATION SECTION.
00005 SOURCE-COMPUTER. UNIVAC-9030.
00006 OBJECT-COMPUTER. UNIVAC-9030.
00007 DATA DIVISION.
00008 LINKAGE SECTION.
00009 01 DATAX.
00010 02 DATA3 PIC 99.
00011 02 DATA4 PIC 99.
00012 77 DATAl PIC 9999,
00013 77 DATA2 PIC 99.
00014 PROCEDURE DIVISION.
00015 PO. ENTER LINKAGE. ENTRY COBOLADD USING DATA2 DATAX DATAl.
00016 ENTER COROL.
00017 Pl. ADD DATA2 DATA3 DATA4 GIVING DATAL.
00018 P9. ENTER LINKAGE. EXIT PROGRAM. ENTER COBOL.

Figure 6—2. Example of Called Program

. 8057 Rev. 2 I

UP-NUMBER

A
UPDATE LEVEL

SPERRY UNIVAC Operating System/3

6—45
PAGE

ADDROUT START O

R1$
R2$
R3$
R4S
RF$
RES
RC$
RD$

DUMMY
DATA2ASM
DATAXASM
DATA3ASM
DATA4ASM
DATA1ASM
ADDROUT

ASMBLRAD

PRINT
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
PRINT
DSECT
DS
DS
DS
DS
DS
CSECT
USING
USING
ISTNZ
USING
STM
ENTRY
LR
LA
STM
STM
LM
PACK
ZAP
PACK
AP
PACK
AP

UNPK
oIl

NOGEN
1
2
3
4
15
14
12
13

GEN

CL2 A DSECT IS A DESCRIPTION NOT TO
OCL4 BE MAPPED SINCE IT WILL RESIDE
CL2 ELSEWHERE AT OBJECT TIME

CL2

CL4

DATA2ASM,R2% R2 WILL BE USED TO COVER DATA2
DATAXASM,R3% R3 WILL BE USED TO COVER DATA3/4
DATA1ASIA, R4S R4 WILL BE USED TO COVER DATAl

* RF$ COVER FOR THIS ROUTINE
RE$,RC$,12(RDS$) SAVE CALLERS REGS IN HIS SAVEAREA
ASMBLRAD DECLARES ENTRY POINT LABEL
R2%,RD$ SAVE ADR OF CALLERS SAVEAREA

RD$, SAVEAREA LOAD RD$ WITH ADDR OF THIS ROUT S-A
R2%$,R2%,4(RDS$) SAVE CALLER S-A ADR IN THIS ROUT SA
RD$,RD$,8(R2%) SAVE THIS ROUT SA ADR IN CALLER SA
R2%$,R4%,0(R1%) LOAD COVER REGS WITH ARG'S
HOLD2(2),DATA2ASM(2)

ACCUM(3),HOLD2(2)

HOLD2(2),DATA3ASM(2)

ACCUM(3),HOLD2(2)

HOLD2(2) ,DATA4ASM(2)

ACCUM(3) ,HOLD2(2)

DATALASM(4),ACCUM(3)

DATA1ASM+3,X'FQ’

Figure 6—3. Example of Called Assembly Subprogram (Part 1 of 2}

646

8057 Rev. 2 i
rating System/3 ,
UP-NUMBER SPERRY UN|VAC ope g oy UPDATE LEVEL PAGE
L RD$,4(,RD$) ADDR OF CALLERS SA
LM RE$,RC$,12(RD$) RESTORES CALLERS REGS
MVI 12(RD$) ,X'FF' SET CALLED TO RETURNED STATUS
BR RES$
SAVEAREA DS 18F
ACCUM Ds CL3
HOLD2 DS CL2
END
Figure 6—3. Example of Called Assembly Subprogram (Part 2 of 2}
Table 6—-3. Program/Subprogram Relationships
Routine Type Language Interface Function Comment
CALLER Program COBOL Calls COBOLADD Sets values in data- Note that any 01- or 77-
in CALLED. Calls items and calls on level data-item can be
ASMBLRAD in subprograms to add used as operand in CALL
ADDROUT. values and provide statement (shared with
results. Results are subprogram).
displayed on console.
CALLED Subprogram cOBOL Entry point is Adds values in 1tems to be shared with
COBOLADD. Exit several shared data- a calling program are
accomplished via items and leaves described as 01- or 77-
exit program. results in a shared level data-items in
data-item. linkage section.
ADDROUT Subprogram ASM Entry point is Same as CALLED {tems to be shared with
ASMBLRAD. Exit above. a calling program may be
accomplished via described within a DSECT.
BR RES. The arguments passed
represent the address of
each item in the calling
program storage.

() PART 3. COMPILER FEATURES AND CAPABILITIES

7

UP-NUMBER PAGE

UPDATE LEVEL

8057 Rev. 2 l SPERRY UNIVAC Operating System/3

7. Compiler Options and
Library Statements

7.1. COMPILER OPTIONS

In SPERRY UNIVAC Operating System/3 (0S/3) COBOL, the optional PARAM statement provides a method of
presenting parameters to the compiler to exercise specific COBOL options. The format of the PARAM statement is:

[IAPARAMAparameters
When PARAM statements are used, they must be positioned immediately following the EXEC job control statement
in the compilation job control stream. The PARAM statements are printed on the first page of the compiler output

listing.

If a PARAM statement format error or an illegal parameter is encountered, a system console message is produced
. and the compilation is terminated.

If no PARAM statements are supplied, the compiler produces a source program listing and a source program
diagnostic report, and generates an object module.

Only one blank may precede the P of the word PARAM.
Absence of PARAM statements implies:

[/BPARAMALST=(S)

7.1.1. List Options
Format:

[/DPARAMALST=(spec 1,...,spec n)
where:

spec 1,...,specn
Is one or more of the following:

A Activate ambiguity mode of reference resolution. Normally, references are resolved by the first
appropriate definition encountered for the referenced name. The definition search process begins
with the first entry in the appropriate division and continues through to the last entry in that

. division.

8057 Rev. 2
UP-NUMBER

C
UPDATE LEVEL

SPERRY UNIVAC Operating System/3 7-2

PAGE

X

NOTES:

In the ambiguity mode, the definition search process is not terminated when the reference is
resolved, but continues in an attempt to uncover and report duplicate definitions. When the search
of the division that corresponds to the reference type is completed, the other divisions also are
searched to determine if the highest possible qualifier rule has been violated. Diagnostic messages
151 through 154 report the presence of ambiguous references/definitions.

Produce storage map and cross-reference listing for the data division and procedure division.

Produce data divisions alphabetized cross-reference listing.

Ignore printer mismatch errors during compilation.

Inhibit listing of lines included from COPY libraries.
Inhibit source item sequence number checking (columns 1 through 6 of the source item).

Single-space all listings requested. If no listings were requested, a single-spaced diagnostic listing is
produced.

Produce data division storage map listing.

Inhibit all listable output except PARAM statement listing.

Produce object code listing.

Produce procedure division storage map listing.

Allow quote character to be used in a nonnumeric literal bounded by apostrophes.
Produce source program listing.

Allow apostrophe character to be used in a nonnumeric literal bounded by quotes.

Inhibit listing of all precautionary diagnostics. These errors are identified by a severity code of P.

Produce procedure division alphabetized cross-reference listing.

1. When LST=(C,M), only the data division storage map has cross-references. When LST=(C P}, only the
procedure storage map has cross-references.

2. LST=R and T are not allowed within the same program. Use of either option overrides the
fnterchangeability of the apostrophe and guotation mark.

7.1.2. Output Options

Format:

//APARAMADUT=(spec 1,...,spec n)

where:

spec 1,....specn
Is one or more of the following:

Cc

K

Conversion mode.

The word COMP or COMPUTATIONAL is permitted in the USAGE clause and is treated as
COMP-3 or COMPUTATIONAL-3.

Inhibit generation of linker control statements in object module.

8057 Rev. 2 l SPERRY UNIVAC Operating System/3

7-3
UP-NUMBER UPDATE LEVEL | PAGE
' N Inhibit generation of object module.
P Disregard mismatch errors for all object program print files.
R The word QUOTE is translated as quotation marks.
T Inhibit compiler generation of a transfer address in the object module. When invoked, the program

cannot be executed unless it is called.

\Y) Suppress automatic page overflow in the object program.

7.2, SOURCE AND COPY LIBRARY INPUT SPECIFICATIONS

The following PARAM statements describe the method of reading a source program either from the job control
stream or from a disc library.

The formats for the source and copy library PARAM statements are presented in the following paragraphs.

. Source library Input

Format:
//APARAMAIN=program-name/file-name

where:

. program-name

Isa 1- to 8-character name of source program to be compiled.

file-name

Is a 1- to 8-character name used to identify the file on which the source program resides. This

name must appear on the LFD job control statement used to define the device to the job control
program.

If the file-name is omitted, the name YSRC is automatically supplied.
L Copy Library Input
Format:

/IAPARAMALIN=file-name

where:
file-name
Is a 1- to 8-character name used to identify the file on which the COPY library resides. This name
must appear on the LFD job control statement used to define the device to the job control
program.
if the file-name is omitted, the name COPY$ is automatically supplied.
The COPY element-name is supplied in the source program via the COPY clause.
. 7.2.1. Object Module Version/Revision Number
Format 1:

| JIAPARAMAVER=vv/rr

8057 Rev. 2 SPERRY UNIVAC Operating System/3 L B J 7-4
U L

UP-NUMBER PDATE LEVE PAGE

where:

Is the version humber.

re
Is the revision number.

These numbers are applied to compiler output module.

If the source program is coming from a library and this PARAM statement is not specified, the version number from
that library module is used.

If the PARAM statement is not specified and the source program is coming from the job control stream, the version
and revision numbers 00/00 are used,

Format 2:
//APARAMAOBJ=file-name

where:

file-name 7
Is the file where the object mode generated is to be placed.

If this PARAM statement is omitted, the generated object module is placed in the temporary job run library file
($YSRUN).

7.2.2. Compiler Source Library Input and Copy Library Input

The source program may be read from the job control stream or a disc library. Any copy library modules referenced
by the source program may be read from a disc library. Any library structures to be accessed by the compiler must
have been created by the OS/3 disc librarian.

Any library structures to be accessed by the compiler must be defined in the job control stream, and the LFD names
must appear on PARAM statements (keyword IN for the source library; LIN for the copy library). If no copy library
modules are referenced by the source program, the copy library need not be defined.

Example:

Source and copy library definitions:

//ADVCAS0 // VOL dspxxx
Job control statements for
> //ALB LAfile-id-1 //OLFDAfile-name-1 source input
/IADVCAGO /IAVOLAdspxxx Job control statements for
> //ALBL fite-id-2 //ALFD Afile-name-2 copy input
with PARAM statements:
//PARAMAIN=program-name/file-name-1 Source file

//APARAMALIN=file-name-2 Copy file

UP-NUMBER PAGE

8057 Rev. 2 l SPERRY UNIVAC Operating System/3 L l 7-5
. UPDATE LEVEL

. In the foregoing example, file-name-1 and file-name-2 are programmer-supplied names. File-id-1 and file-id-2 are
file-id names used at the time the disc library was created. Program-name is the name of the source library module
that contains the source program.

7.3. LIBRARY

The library module specifies text to be copied from the 0S/3 COBOL library, which contains text available to a
source program at compile time. The effect of the compilation of library text is the same as if the text were actually
written as part of the source program. OS/3 COBOL library text is placed in the COBOL library as a function
independent of the 0S/3 COBOL program.

The following paragraphs contain library information applicable to the OS/3 COBOL user. For a complete discussion
of the COBOL library module, see the fundamentals of COBOL — language manual, UP-7503.1 (current version).

7.3.1. Using the COPY Statement

The COBOL library contains text which, through the use of the COPY statement, may be included into a COBOL
source program during compilation. The rules for the COPY statement are given in 6.6.7.1.

In addition to referencing the library module through the COPY statement, the programmer must define the device
and file which contain the library module in his job control stream. The LFD name given to this file also must be
present on a PARAM statement with keyword LIN.

. The compiler performs no editing of library modules. Whatever is contained in the library under the specified
library-name is copied into the program. Lines of code taken from the library are marked with a C to the right of the
line number on the source listing.

Example:

If a COBOL program contains the following lines of code:

FILE SECTION.
FD FILEO1 COPY LIB-FDO1.
01 TAX-A.

and the assigned library file contains a module named LIB-FDO1 with the lines:

LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 1 RECORD
DATA-RECORD IS TAX-A.

7-6
PAGE

8057 Rev. 2 SPERRY UNIVAC Operating System/3 l B

UP-NUMBER UPDATE LEVEL

at compilation time the source listing would be:

LINE NO. SOURCE STATEMENT

00033 FILE SECTION.
00034 FD FILEO1 COPY LIB-FDO1

00035C LABEL RECORDS ARE STANDARD
00036C BLOCK CONTAINS 1 RECORD

->- 00037C DATA-RECORD IS TAX-A.
00038 01 TAX-A.

The effect on the program is the same as if the programmer had written:

FILE SECTION.

FD FILEO1
LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 1 RECORD
DATA-RECORD IS TAX-A.

01 TAX-A.

PARAM statements for use with the COPY statement are defined in 7.2.2.

UP-NUMBER

8057 Rev. 2 i o
ev | SPERRY UNIVAC Operating System/3 [UPDATE LEVEL l

PAGE

8. RERUN Clause

8.1. GENERAL

The RERUN facility of the SPERRY UNIVAC Operating System/3 (OS/3) provides a means of recording the status
and environment of an 0OS/3 COBOL program at a specified point in the processing of that program. Once recorded,
this status and environment may be reestablished and execution of the COBOL program may be resumed from this
point. The RERUN facility causes linkage between the COBOL program and the checkpoint facility. The restart
ability is provided by the original job control stream with the addition of an RST job control statement placed
immediately prior to the JOB job contro! statement,

8.2. RERUN CLAUSE

The RERUN clause may appear in the I-O-CONTROL paragraph of the environment division. The format of the
RERUN clause is:

RERUN ON external-name EVERY integer RECORDS OF file-name-1 [, file-name-2]

The external-name in the format must appear in a SELECT entry. The device specified by external-name is the
RERUN receiver, which receives the checkpoint records containing the status and environment of the COBOL
program. File-name-1, file-name-2, etc., are RERUN controllers and dictate when the checkpoint records are to be
issued. The same RERUN receiver may appear in any number of RERUN clauses; a RERUN controiler may appear
in only one RERUN clause. The allowable range for integer is 1 through 9,999,999,

8.3. CHECKPOINTING

Checkpoint records are issued whenever integer records occur for a RERUN controller. The RERUN controlier
record counter is set to O when the controller is opened and incremented by 1 before each READ, WRITE, or
INSERT statement is issued to the controller. When the RERUN controller is opened as 1-O, a WRITE statement
does not cause the record counter to be incremented.

If the RERUN receiver is a tape device, it may be dedicated to receiving checkpoint records or it may receive other
program output. If the RERUN receiver is dedicated, it is opened automatically with the assumption that label
records are standard. If the RERUN receiver is being shared with other program output, it is the programmer’s
responsibility to ensure that the receiver is opened for OUTPUT whenever checkpoint records are issued. Checkpoint
records are not issued if the receiver is not open for OUTPUT.

If the receiver is a disc device, it must be dedicated to receiving checkpoint records. The device must appear in a
SELECT entry but not in an FD entry.

8057 Rev. 2 J ~ SPERRY UNIVAC Operating System/3

UP-NUMBER PAGE

UPDATE LEVEL

8.4. RESTARTING

To initiate the restart of a previously checkpointed program, an RST job control statement must immediately
precede the JOB job control statement in the original job control stream; the job may then be restarted. The format
of the RST job control statement is:

// RST filename, checkpoint-id, number

where:

filename
Is the name of the checkpoint file.

checkpoint-id
Is the checkpoint number identifying the checkpoint to be used to restart the job.

number
{s the job step number within the job to be restarted.
8.5. NOTES AND RESTRICTIONS
a A RERUN controller may have only one RERUN receiver and may appear in only one RERUN clause. If more
than one receiver is specified for a RERUN controller, the compiler writes the checkpoint records on the

first-mentioned external-name and ignores the second one.

L ACCESS and ORGANIZATION, if specified for a RERUN receiver, must be SEQUENTIAL.

L] If the RERUN receiver is a magnetic tape unit, SD must not be specified. If FD is specified, the tape must have
standard labels and a block size greater than or equal to 20 bytes.

= ASCII tape files are not permitted.
L] The USE declarative statement does not apply to a dedicated RERUN receiver file.

] When errors occur on RERUN receiver files, diagnostic messages are displayed and processing continues;
however, no further attempts are made to issue checkpoint records to that receiver.

9-1
PAGE

B
UPDATE LEVEL

8057 Rev. 2 l SPERRY UNIVAC Operating System/3

UP-NUMBER

9. Use of ACCEPT and DISPLAY Statements

9.1. ACCEPT STATEMENT
The format for the ACCEPT statement is:

mnemonic-name

. . DATE*
ACCEPT identifier {FROM D—_AY -
TIME*

P—e

9.1.1. Job Control Stream ACCEPT

in the SPERRY UNIVAC Operating System/3 (0S/3), COBOL programs are permitted to access their control
. streams to retrieve PARAM statements and data images.

9.1.1.1. 80-Column Card ACCEPT

An ACCEPT for which the FROM option is not specified or an ACCEPT for which mnemonic-name is associated
with SYSIN permits retrieval of data images and PARAM statements from the job control stream. A maximum of
4095 bytes of data may be retrieved with a single ACCEPT statement. The number of bytes accepted is not required
to be a multiple of 80. Two ACCEPT statements of 20 character items require two cards.

Job Control Stream Format:
[/AEXECAoperand1, operand 2, operand 3
The EXEC statement (execute) is the last statement processed by job control before the execution of the
program (job step) named in the statement. PARAM statements, if any, must directly follow the EXEC
statement.
/$
The /$ statement is used to indicate the beginning of a stream of data that is to be diverted to a file for
subsequent retrieval by the job. All statements following the /$ statement up to and including the first /*

{end-of-data) statement are filed on the resident direct access storage device. Although this statement is
required by job control, it is not transferred to the COBOL program.

*Extension to American National Standard COBOL (1968).

8057 Rev. 2 i
9-2

UPNUMBER SPERRY UNIVAC Operating System/3 IUPDATE Level | pane

/$

DATA IMAGE 1

DATA IMAGE 2

DATA IMAGE n

/*

The /* statement indicates the end of a data stream introduced with the job control stream. This statement is
required by job control but is not transferred to the OS/3 COBOL program. An attempt to retrieve this
statement results in an error condition in the COBOL program.

Job Control Stream Errors:
When the job control stream is unable to deliver an image to the COBOL program (that is, if the next

sequential record in the job control stream is not a PARAM statement, or a data image), control is transferred
to the object time error subroutine. The subroutine logs the following message on the system console:

CE01 ERROR-DATA FOR ACCEPT NOT AVAILABLE

if the COBOL program attempts to retrieve a /* image from the job control stream, an error condition results.
Control is transferred to the object time error subroutine. The subroutine logs the following message on the
system console:

CE02 ERROR-INSUFFICIENT DATA FOR ACCEPT

These errors abort the run.

ACCEPTs from the job control stream are not permitted inside a USE for LABEL PROCEDURE.

9.1.1.2. 96-Column Card ACCEPT

An ACCEPT with mnemonic-name associated with SYSIN-96 allows the COBOL program to retrieve embedded data
cards from the job control stream when using 96-column cards with data extending beyond column 80. When the
job control stream is punched on 96-column cards, but the embedded data is contained in only the first 80 columns,
the SYSIN-96 option should not be used.

All rules regarding job control stream format and job control stream errors (9.1.1.1) apply to ACCEPT with
SYSIN-96.

9.1.1.3. 8413 Diskette ACCEPT

An ACCEPT with mnemonic-name associated with SYSIN-128 allows the COBOL program to retrieve embedded
data images from the job control stream when using 8413 diskette with data extending beyond position 80. When
the job control stream is recorded on 8413 diskette but the embedded data is contained in only the first 80 columns,
the SYSIN-128 option should not be used.

All rules regarding job control stream format and job control stream errors (9.1.1.1) apply to ACCEPT with
SYSIN-128. .

UP-NUMBER

8057 Rev. 2 I SPERRY UNIVAC Operating System/3

9-3

UPDATE LEVEL } PAGE

9.1.2. Console ACCEPT

An ACCEPT with mnemonic-name associated with SYSCONSOLE allows the program to receive data from the
system console.

The maximum number of characters that may be entered for a single ACCEPT is 60.

When the ACCEPT statement is encountered in the COBOL program, the following message is displayed:

CA10 ACCEPT READY
The operator, when replying to a system console ACCEPT, must enter "“message number’’ followed by the text.

When the operator types less than the number of characters expected, the remaining positions are space-filled
(X'40').

The identifier must be implicitly or explicitly defined as USAGE IS DISPLAY (5.3.5).

9.1.3. Current Date ACCEPT

An ACCEPT with mnemonic-name associated with SYSDATE or an ACCEPT with the DATE option makes the date
available to the program in the format yymmdd (PIC 9(6)). This information is moved to the identifier under the
rules for a COBOL MOVE (6.6.3.2).

When the date is set through the job control stream (//ASETADATE, YY/MM/DD) the date is stored in the user’s job
preamble. If the date is not set via the job control stream, job control moves the date from the system information
block (SIB) into the user’s job preamble. The date in the SIB is entered via the system console by the operator. This
is accomplished by using the operator SET command to enter the current data.

By setting the date from the job control stream, the user can predate or postdate jobs.

9.1.4. Time of Day ACCEPT

An ACCEPT with mnemonic-name associated with SYSTIME or an ACCEPT with the TIME option makes the time
of day available to the program in the format hhmmss00 (PIC 9(8)), where hh is the hour and mm is the minute
(hhmmss does not exceed 235959). This information is moved to the identifier under the rules for a COBOL MOVE
(6.6.3.2).

9.1.5. Julian Date ACCEPT

An ACCEPT with the DAY option makes the date available to the program in the format yyddd {PIC 9(5)). This
information is moved to the identifier under the rules for a COBOL MOVE (6.6.3.2). For information on setting the
date with the job control // SET DATE command, see 9.1.3.

9.1.6. UPSI| Byte ACCEPT

An ACCEPT with mnemonic-name associated with SYSSWCH permits the COBOL program to access the user
program switch indicator (UPSI) byte which is the last byte of the 12-byte communications region in the job
preamble. An 8-byte item is created containing EBCDIC 0 to represent the OFF status and an EBCDIC 1 to
represent the ON status of the individual UPSI bits/switches, respectively (e.g., if SYSSWCH-0 and SYSSWCH-2 are
ON and all others are OFF, the ACCEPT statement makes available to the program an 8-character item containing
10100000).

9-4

UP-NUMBER UPDATE LEVEL | PAGE

8057 Rev. 2 SPERRY UNIVAC Operating System/3 l B

9.1.7. Communications Region ACCEPT

An ACCEPT with mnemonic-name associated with SYSCOM allows the COBOL program to receive information
from the communications region in the job preamble. When this ACCEPT is encountered, the 12-byte
communications region is moved to the 12 bytes described by the identifier. It is through the communications
region that one job step may communicate with a foliowing job step.

NOTE:

The twelfth byte of the communications region is the UPS/ byte.

9.2. DISPLAY STATEMENT

The format for the DISPLAY statement is:

identifier-1 i ifier-.
DISPLAY '. entitier ’ ul:lentlfler 2 . .. [UPON mnemonic-name]
—~———— | literal-1 , literal-2 —_—

9.2.1. Console DISPLAY

* A DISPLAY with mnemonic-name associated with SYSCONSOLE permits the COBOL program to display messages
upon the system console. A display on the system console is assumed if the UPON option is omitted. The sum of the
sizes of operands may not exceed 250 characters. The data is displayed a line at a time. Each line is prefixed with the
code CD10 and followed by a maximum of 55 characters of the contents of the operands.

All displays are action-type messages, and the operator must respond with a GO command.

9.2.2. Log File DISPLAY

A DISPLAY with mnemonic-name associated with SYSLOG permits the COBOL program to display messages to the
system console and the system log file. Message size is limited to 55 contiguous characters. COBOL displays are
prefixed with the code CD11. This display is an informational-type message and does not require the operator to
respond with a GO command (unlike SYSCONSOLE]).

9.2.3. UPSI Byte DISPLAY

A DISPLAY with mnemonic-name associated with SYSSWCH permits the COBOL program to change the entire
UPSI byte.

The eight bytes described by the identifier are converted into individual bit settings, and the resultant eight bits are
stored in the UPSI byte. A value of X’F1’ causes a bit {UPSI switch) to be turned ON (1 value).

The UPSI byte may be initialized prior to execution by the SET statement in the job control stream (//ASETAUPSI,
switch-setting).

9-5

UP-NUMBER l UPDATE LEVELl PAGE

8057 Rev. 2 L SPERRY UNIVAC Operating System/3

. 9.2.4. UPSI Bit DISPLAY

A DISPLAY with mnemonic-name associated with SYSSWCH-n allows the COBOL program to change an individual
switch (bit setting) in UPSI. The eight switches in UPSI are numbered 0 through 7 from left to right. A 1-byte
identifier (PIC X) is used to alter UPSI switch-n. A value of 0 (X‘FQ’) causes the switch to be turned OFF (0 value);
any other value causes the switch to be turned ON (1 value).

9.2.5. Communications Region DISPLAY

A DISPLAY with mnemonic-name associated with SYSCOM allows the COBOL. program to alter the contents of the
communications region. The 12 bytes described by the identifier are moved into the 12-byte communications region
in the job preamble.

The communications region is initialized to binary 0 prior to the first job step by job control. Through use of the

SET statement (//ASETACOMREG, character-string), the communications region may be set to an initial value.
Information may be passed from job step to job step in the region. The region is not changed during job steps.

9.2.6. Printer Listing DISPLAY

A DISPLAY with mnemonic-name associated with SYSLST permits the COBOL programmer to display messages on
the printer. Displays are in 120-character multiples and are printed after advancing paper one line. For signed
numeric items, a separate sign character is displayed immediately following the operand.

. The LFD name assigned to the printer in the job control stream must be SYSLST.

At least one DISPLAY associated with SYSLST must be performed in the nondeclarative portion of the procedure
division before any are performed within the declarative portion.

10-1
UP-NUMBER UPDATE LEVEL | PAGE

8057 Rev. 2 J SPERRY UNIVAC Operating System/3

10. Table Handling

10.1. GENERAL

The table-handling module provides a means of defining contiguous data items in a tabular form, thereby permitting
easy access to any item regardless of its position in the table.

This section contains the methods of table definition and referencing available to the COBOL user in the SPERRY
UNIVAC Operating System/3 {0S/3). For a complete discussion of table handling see the fundamentals of COBOL
— table handling manual, UP-7503.2 (current version).

10.2. DEFINING A TABLE

. Each data item in a table (called a table element) must be the subject of an OCCURS clause in the data description.
This clause specifies the number of times that the table element appears in the table.

To define a 1-dimensional table, an OCCURS clause is written as a part of the data description for the repeated item.
Any practical number of occurrences may be specified (5.3.3).

Defining a 1-dimensional table within each occurrence of a table element gives rise to a 2-dimensional table. This is
done by writing an OCCURS clause for a data item subordinate (i.e., with a numerically larger level number) to
another item for which an OCCURS clause was written. Tables with up to three dimensions can be defined in this
manner in 0S/3 COBOL. Each dimension must be defined by an OCCURS clause, and must be defined on a
different hierarchical level.

10.3. TABLE REFERENCE
To reference a table element, it is necessary to specify which occurrence of the table element is intended.

Occurrence numbers are specified by one of two methods: subscripting or indexing. In either method, the reference
is made by immediately following the data-name with a set of occurrence specifications (subscripts or index-names)
enclosed in parentheses.

Up to three subscript or index levels may appear in the reference, depending upon the number of dimensions
involved. One subscript or index level for each OCCURS clause must be in the defined hierarchy containing the
element name, including the one for the element name. Multiple subscripts and index-names are written left to right
in descending order of inclusiveness.

8057 Rev. 2 J SPERRY UNIVAC Operating System/3

UP-NUMBER

B 10-2
UPDATE LEVEL PAGE

10.4. SUBSCRIPTING
Definition:

Subscripting is a technique used to reference individual table elements within a table of like elements not
assigned individual data-names. A subscript value identifies elementary items in the table.

Format:
data-name (subscript-1 [, subscript-2 [, subscript-3]1)
Rules:

1. The subscript value must be a positive or unsigned integer and may be represented as a numeric literal or
as a data-name defined elsewhere as an elementary numeric data item with no character positions to the
right of the assumed decimal point. Data-name subscripts may be mixed with numeric literal subscripts
within a reference.

2. The lowest valid subscript is 1; the highest valid subscript is the number of item occurrences specified in
the OCCURS clause. The area allocated, multiplied by the number of occurrences, cannot exceed
65,5635.

3. References are made to individual items within a table of homogeneous elements by specifying the name
of the table, followed by one or more spaces, followed by its related subscripts in parentheses. A left
parenthesis may not be followed by a space; a right parenthesis may not be preceded by a space.

4, When more than one subscript is used in a reference, each must be separated, within the parentheses, by
a comma and a space.

10.5. INDEXING
Definition:

Indexing is a technique used to reference individual table elements within a table of like elements not assigned
individual data-names. An index-name contains the occurrence number of a table element used for:

L direct indexing by using the index-name as a subscript; or

n relative indexing by appending to the index-name the + or — operator followed by an unsigned integer.
This integer must not be 0.
Format:

data-name (index-name-1 [{i} integer-1]
[, index-name-2 [{£} integer-2]]
[, index-name-3 [{*} integer-3]1)

Rules:
1. Index-names are defined by the INDEXED BY option in the OCCURS clause. Further data description is
not used because allocation and format are hardware-dependent. The index-name may be used only in

reference to the table element described by the OCCURS clause or to one of its subordinate items.

2. Index-names are initialized and modified in the object program by the SET statement.

8057 Rev. 2 l SPERRY UNIVAC Operating System/3 B l 10-3
UP-NUMBER UPDATE LEVEL | PAGE
. 3. References are made to individual items within a table of homogeneous elements by specifying the name
of the table element, foliowed by its related index-names in parentheses.

4. When more than one index is used in a reference, each must be separated, within the parentheses, by a
comma and a space.

b. A data item in a file can be described by a USAGE IS INDEX clause. This data item value can then be
transferred to an index-name, without conversion by the SET statement.

8057 Rev. 2 I SPERRY UNIVAC Operating System/3

UP-NUMBER

111
PAGE

UPDATE LEVEL

11. Processing Techniques for
Direct Access Devices

11.1. INTRODUCTION

This section describes the techniques available to the COBOL programmer for processing files assigned to direct
access devices. The technique chosen to process a particular file depends upon the file organization and the manner
in which records within the file are accessed. Each file organization has its particular advantages and disadvantages.
No attempt is made in this section to select one organization over another. In selecting a file organization, the user
should consider factors such -as device characteristics, file size, activity, growth potential, etc. This section is
intended to inform the user of the capabilities, construction, and usage of the file organizations available on direct
access devices.

11.2. FILE ORGANIZATION

File organization specifies the format and control of the logical file structure. Once a file is created under a specific
organization, that organization cannot be altered for subsequent file processing. COBOL provides three classes of file
organizations:

1. Sequential
2. Relative
3. indexed

A file organization is specified by the ORGANIZATION clause in the SELECT entry for this file.

11.2.1. Sequential Organization

The logical file structure is such that each logical record (except the first and last) has a unique predecessor and
unique successor record. The predecessor-successor relationship was established by the order of the WRITE function
when the logical file structure was created. The control of placing records to, or retrieving records from, a
sequentially organized file is the predecessor-successor relationship; i.e., the sequence in which records are created is
the sequence in which they are retrieved. No other control information is required to access records from sequential
files.

8057 Rev. 2 SPERRY UNIVAC Operating System/3 11-2

UP-NUMBER UPDATE LEVEL | PAGE

11.2.2. Relative Organization .

The logical file structure is characterized by the physical relationship (location) of each record to the first record;
i.e., logical record 1 occupies the first physical location in the file, record 2, the second, etc. in addition to
sequential processing capabilities, records in a relative-organized file can be read or written directly by specifying the
record number of the desired record. This control of the file is referred to as random access. For example, the
fifteenth record of a relative-organized file may be accessed directly, whereas access to the fifteenth record of a
sequentially organized file can be achieved only after retrieving the first 14 records. The ability to randomly access
records provides an advantage over sequentially organized files; however, the data management techniques used with
relative files restrict the format of records to fixed-length, unblocked.

11.2.3. Indexed Organization

Indexed files are comprised of two elements: the prime data set consisting of the logical records of the file and an
index which expedites access to records in the prime data area. Each logical record of the file contains a field
designated as the key. The key is the control which the access method uses in constructing the file as well as for
subsequent retrievals. The access method uses a search of the index to locate the address of the record containing the
requestad key. The access method requires that indexed files be created in key sequence; hence, the name, indexed
sequential. Records may be added to an existing indexed file; each added record is placed in overflow areas and the
sequence of the file is maintained logically. Retrieval time of records increases as the number of records in overflow
increases. Periodic reorganization of indexed files should be practiced to alleviate this condition.

11.3. ACCESS METHODS

Three modes of access (the manner in which records are read or written to a file) are available to the COBOL
programmer: sequential access, random access, and extended access.

11.3.1. Sequential Access
Sequential processing involves the serial placement or retrieval of records to or from a file. The control in a
sequential access method is the order in which records are written to or read from a file. No control information

(key) need be supplied by the programmer to the access method (data management) other than the request to read
or write a record. Any file organization can be accessed sequentially.

11.3.2. Random Access
Random processing assumes no serial dependency of records within a file. Each request to access a record is treated

individually, without regard to prior requests. Information (key) is supplied at the time of request to designate the
desired record. Random access is only available on files with relative or indexed organization.

11.3.3. Extended Access

Extended processing indicates that random and sequential access may be mixed. It is only available on files with
indexed organization.

11.4. CLAUSES REQUIRED FOR FILE PROCESSING

The specification of file organization, access method, and OPEN usage (input, output, 1/O) dictates the file
processing technique. Each file processing technique is described, in turn, with emphasis on the COBOL clauses
required to define the file, and the effects these clauses have during file processing. Refer to Table 11—8 for a
summary of the following information.

8057 Rev. 2 l SPERRY UNIVAC Operating System/3 11-3
UP-NUMBER

UPDATE LEVEL PAGE

. 11.4.1. Sequential File Processing

The following COBOL clauses are used when processing sequentially organized files:

1. ORGANIZATION IS SEQUENTIAL

The ORGANIZATION IS SEQUENTIAL clause states that the file is organized in a serial manner. Records are
accessed one after the other. Sequential organization is assumed if this clause is omitted. Keys are not allowed
with sequential files.

2. ACCESS MODE IS SEQUENTIAL

The ACCESS MODE IS SEQUENTIAL clause specifies the manner in which the records are to be written or
retrieved from the file. Only sequential access is permitted indicating serial retrieval.

3. RECORDING MODE IS { 5 }
F signifies fixed mode and V signifies variable mode. Fixed-length or variable-length records may be blocked or
unblocked.
integer-n AREA
4, RESERVE {@ } ALTERNATE [{ AREAS

The RESERVE ALTERNATE AREAS clause indicates the number of additional 1/O areas desired. Omission
of the clause results in the allocation of one additional /O area. {f NO is specified no additional area is
allocated. The only allowable integer is 1.

5. BLOCK CONTAINS integer-n { CHARACTERS }

RECORDS

Indicates the number of records or characters per block. The actual space allocated to an 1/0 area is always a
multiple of 256 bytes.

The following input/output statements are applicable to sequential files:
1. OPEN INPUT file-name

The OPEN INPUT statement indicates that the file operates in a read-only mode. Standard labels are checked
and user labels, if specified, are made available to the USE for beginning label procedure.

2. OPEN OUTPUT file-name

The OPEN OUTPUT statement indicates that the file will operate in a write-only mode. Standard labels are
written and user labels, if specified, are made available to the user for beginning label procedure.

3. OPEN I-O file-name
The OPEN I-O statement indicates that the file is to be updated. Each WRITE statement must be preceded by

a READ statement. Alteration of record length, insertion of new records, or deletion of existing records is not
permitted.

4, READ file-name RECORD AT END imperative-statement
The READ AT END statement causes the next sequential record in the file to be made available (after

deblocking), or if the end of file is detected, performs the special imperative statement following the AT END
clause.

8057 Rev. 2 l SPERRY UNIVAC Operating System/3

UP-NUMBER

11-4
UPDATE LEVEL | PAGE

{

5. WRITE record-name [; INVALID KEY imperative statement]
The WRITE statement causes the specified record to be written in the next sequential area of the file (after
blocking). An INVALID KEY condition occurs when there is insufficient space in the file to add another
record.

6. CLOSE file-name
The CLOSE statement causes orderly termination of file processing. (At the end of the file or volume, user
labels are checked and created if specified.)

11.4.2. Relative File Processing

The following COBOL clauses are used in processing relative organized files:

1. ORGANIZATION IS RELATIVE

The ORGANIZATION IS RELATIVE clause designates the file as relatively organized. The file is accessed via
relative record number. The ORGANIZATION IS RELATIVE clause causes data management relative access
method routines to be linked into object program. This is a required clause.

2. ACCESS MODE IS { RANDOM }

SEQUENTIAL

The ACCESS MODE clause specifies the manner in which records are written to or retrieved from the file.

a. The RANDOM option indicates no serial dependency of record processing. The relative record to be
read, written, or sought is specified by the contents of the actual or relative key.

b. The SEQUENTIAL option demands serial processing of records to or from the file and requires no key
when accessing records. Sequential is assumed if this clause is omitted.

3. RECORDING MODE IS F

Only fixed-length record format is available for relative organized files.

TER
4. BLOCK CONTAINS integer-n { CHARAC S}

RECORDS

Relative files may not be blocked. This clause is not required. Space allocated to the }/O area is a multiple of
256 bytes.

{ ACTUAL

RELATIVE } KEY IS data-name

The ACTUAL or RELATIVE KEY IS clause specifies the data-name containing the relative record number to
be read, written, or sought. This field is set by the programmer and/or the data management access method
under the following conditions:

a. Random access

Programmer moves a relative record number to the field prior to every READ, WRITE, or SEEK verb.
The contents of the field are unchanged after execution of the 1/O command.

8057 Rev. 2
UP-NUMBER

l SPERRY UNIVAC Operating System/3 D 15

UPDATE LEVEL § PAGE

b. Sequential access

The contents of the actual or relative key are not required for READ or WRITE statements; therefore,
the field is ignored by the data management access method. Pointers to the next sequential record are
maintained by the access method while advancing through the file. After execution of a READ or
WRITE statement, the contents of the actual key reflect the relative record number of the record just
processed. Under sequential access, the programmer may issue a SEEK statement to position the file to a
particular record. In this case, the programmer’s relative record number is moved to the actual key prior
to issuance of the SEEK statement. This technique of issuing a SEEK statement before each READ or
WRITE statement has the effect of randomly accessing a relative file defined under sequential access.

c. File open output (either access method)

In the event that file preparation is requested on output files, the actual key should contain the relative
record number on which file preparation is to begin. The file is prepped from this point to the end of the
user’s file extent.

NOTE:

It is the programmer’s responsibility to ensure that the actual key contains the relative record number
prior to opening the file.

APPLY FILE-PREPARATION ON file-name

The APPLY FILE-PREPARATION clause specifies the relative-organized file name on which file preparation is
required. For relative-organized files, file preparation consists of writing initializing data on each track of the
user’s extent, starting at the relative record number contained in the actual key location and proceeding to the
end of the user’s extent. This initializing data, required by data management access methods, consists of an
8-byte count field plus a dummy record of length equal to the fixed size of records within the file. The
dummy record consists of an X'FF’ followed by all 0’s up to a maximum of 255 bytes. (If the record size is
greater than 256, undetermined data follows byte 256.) This file prepping guarantees that a physical record
exists in every possible area of the user’s extent, making it possible to access these record areas directly
(randomly).

When the initial allocation of disk space is exhausted, relative files are not extended automatically. If APPLY
FILE PREPARATION is specified and the relative key data item contains a record number one higher than the
highest record in the file {i.e., the first record in the next extent), the file is extended by one secondary
increment of disk space when the OPEN OUTPUT statement is executed.

NOTE:

For initial creation of a relative file, the programmer should set the ACTUAL KEY field to 1 prior to opening
the file.

The following input/output statements are applicable to relative files:

OPEN INPUT file-name

The OPEN INPUT statement indicates that the file is used in a read-only mode. Standard labels are checked
and user labels, if specified, are made available to the USE for BEGINNING LABEL procedure. For sequential
access, the file is positioned to the first record.

OPEN OUTPUT file-name

The OPEN QUTPUT statement indicates that the file is used in a write-only mode. The file is formatted if the
APPLY FILE-PREPARATION clause was specified starting at the record number contained in actual key and
proceeding to the end of the user’s extent. The USE for BEGINNING LABEL procedure is executed if
specified. The file is positioned to the first record for sequential access.

8057 Rev. 2
UP-NUMBER

1)

UPDATE LEVEL | PAGE

J SPERRY UNIVAC Operating System/3

11-6

OPEN [-O file-name

The OPEN I-O statement designates the existing file as the one to be updated. (Both READ and WRITE
statements may be issued to the file.) Label processing is the same as when the file is opened for input. This
type of OPEN statement affects the manner in which WRITE statements function. Each WRITE statement is
dependent upon a READ or SEEK READ statement previously issued for the file. The WRITE order is issued
for the relative record specified on the previous READ or SEEK statement.

Sequential access
a. READ file-name RECORD AT END imperative-statement

The READ AT END statement for sequential access method delivers the next logical record from an
input file, or performs the specified imperative statement following the AT END clause if the end of the
file is detected.

b. WRITE record-name; INVALID KEY imperative-statement
The WRITE INVALID KEY statement reieases a logical record to an output file. The imperative

statement following the INVALID KEY clause is executed when the end of file is detected and an
attempt is made to execute a WRITE statement for that file.

c. SEEK file-name RECORD

The SEEK statement positions the file to the relative record number specified by the contents of the
actual key. No error indication is available if the record is not located. Error indications are available on
the succeeding READ or WRITE statements.

Random access
a. READ file-name RECORD INVALID-KEY imperative-statement

The READ INVALID KEY statement delivers the logical record specified by the contents of the actual
key, or executes the imperative statement following INVALID KEY clause if the record specified by the
actual key does not exist within the user’s extent.

b { WRITE

REWRITE }record-name INVALID KEY imperative-statement

The WRITE or REWRITE INVALID KEY statement writes the logical record to the physicat area of the
disc specified by the relative record number contained in the actual lgey. If that record does not exist in
the user’s extent, the INVALID KEY imperative statement in the INVALID KEY clause is executed.

c. SEEK file-name RECORD

The SEEK statement positions the file to the relative record number specified by the contents of the
actual key.

CL.OSE file-name

See CLOSE statement under sequential file processing (11.4.1).

11-7
PAGE

8057 Rev. 2 | SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL

. 11.4.3. Indexed File Processing
The following clauses are used in processing indexed sequential files:

1. ORGANIZATION IS INDEXED

The ORGANIZATION IS INDEXED clause denotes file organization as indexed sequential, and causes data
management indexed sequential access method (ISAM) routines to be linked into the object program.

EXTENDED

2. ACCESS MODE IS < RANDOM
SEQUENTIAL

The ACCESS MODE clause specifies the order in which records are written to, or read from, the file.

a. Sequential

The sequential access mode requires a serial processing of records to or from the file; therefore, no key
need be presented when retrieving records. Indexed files can be created under sequential access.

b. Random

The random access mode requires no serial dependency of record processing. The key of the record to be
read or sought is specified in the SYMBOLIC KEY clause. New records can be inserted in an existing
indexed file under random access.

. c. Extended

The extended access mode combines sequential and random record processing.

3. RECORDING MODE@{% }

The RECORDING MODE IS F clause indicates fixed-length records. The RECORDING MODE IS V clause
indicates variable-length records. Fixed- or variable-length blocked records are the only formats available for
indexed files.

4. RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS

The RECORD CONTAINS clause indicates the size of the records. If the records are variable in length, a
high/low range can be specified.

5. BLOCK CONTAINS integer-n {

RECORDS }
CHARACTERS

The BLOCK CONTAINS clause indicates the number of records or characters per block. Space allocated to the
1/0 area is a multiple of 256 bytes.

6. SYMBOLIC KEY IS data-name

The SYMBOLIC KEY clause specifies the data-name containing the key of the record to be read or sought.
This key field must match the size and description of the record key field.

P NUMBER SPERRY UNIVAC Operating System/ soate Leved | pats
7. RECORD KEY IS data-name

10.

11.

The RECORD KEY clause specifies the field within each record containing the record identification. This field
is used at file creation time to build the indexes required for subsequent file processing. At retrieval time, the
contents of the programmer-supplied SYMBOLIC KEY field are compared against the defined RECORD KEY
field in accessing indexed records randomly, The key field must be greater than 2 and less than or equal to 249
bytes in length.

APPLY CYLINDER-INDEX AREA OF integer-n INDICES ON file-name

The APPLY CYLINDER-INDEX AREA clause establishes levels of indexes to expedite the retrieval of records.
When an indexed file is created, data blocks containing records are loaded sequentially. Each record contains
an embedded key. {See RECORD KEY, 11.4.3.) As each data block is filled with records and written to disc,
the key of the highest record in the block is recorded in a block-index entry, along with the disc address of the
block. When a track on the disc becomes filled with blocks of block-index entries, an entry in the top index is
created containing the highest key on the track of block-index entries. Retrieval of records reverses the
process. To eliminate the disc reads required to access the top index for retrieval, sufficient storage should be
allocated to contain a number of top index entries. Integer-n specifies the number of top index entries to be
held in storage. If all top index entries can be held in storage, all reads to access the top index are eliminated.

APPLY MASTER-INDEX ON file-name

The APPLY MASTER-INDEX clause is accepted for OS/4 and OS/7 compatibility. In 0S/3 this clause serves
for documentation only.

APPLY CYLINDER-OVERFLOW AREA OF integer-n PERCENT ON file-name

To keep disc head movement to a minimum in retrieving records from overflow, a percentage of each cylinder
in the prime data area can be allocated to contain overflow records. If this clause is omitted, 20 percent of
each cylinder is set aside to contain overflow records. If no cylinder overflow is desired, 0 percent should be
specified. In this case, no new records may be inserted into the file. If specified, integer-n is an unsigned
number.

APPLY EXTENDED-INSERTION AREA ON file-name

The APPLY EXTENDED-INSERTION AREA clause is accepted for 0S/4 and OS/7 compatibitity. In 0S/3,
this clause serves for documentation only.

11-9

UP-NUMBER UPDATE LEVEL lPAGE

8057 Rev. 2 I SPERRY UNIVAC Operating System/3

. 12. APPLY VERIFY ON file-name

The APPLY VERIFY clause requests verification (READ after WRITE) of disc records after they have been
written. If this clause is omitted, no verification of records is performed.

integer-n

13. RESERVE {N_Q

} ALTERNATE [AREA]

AREAS

The RESERVE ALTERNATE clause indicates the number of additional 1/O areas desired. The key word NO
causes no additional 1/0 areas to be reserved; integer-n {which must be a one) reserves one additional 1/O area.
1f this clause is omitted, no additional 1/O areas are allocated.

RECORD IS

14. LABEL {RECORDSARE

} STANDARD

The reserved word STANDARD specifies that system file labels are to be checked (or created) and that the
labels conform to OS/3 label specification,

The following input/output statements are used for processing indexed files:

1. OPEN QUTPUT file-name
The OPEN OUTPUT statement indicates the file is to be loaded or extended. The creation of a file {load) with
standard labels is assumed unless the file already exists, in which case file extension is implied. This statement

can only be specified for sequential access or extended access.

2. OPEN INPUT file-name

. The OPEN INPUT statement indicates that the file is to be used in a read-only mode, Standard labels are

checked. For sequential and extended access, the file is positioned to the first record. This statement can also
be specified for random access.

3. OPEN I-O file-name

The OPEN 1-O statement indicates that the file is to be used in a read and write mode. Standard labels are
checked. For sequential and extended access, the file is positioned to the first record. This statement can also
be specified for random access.

4. SEEK file-name RECORD

For sequential file processing, the SEEK statement causes the programmer-supplied value in the SYMBOLIC
KEY item to specify the RECORD KEY value of the logical record within the file which is to be positioned
for subsequent sequential retrieval. If a logical record is not found with that key, positioning is made to the
record with the next higher key.

The SEEK statement can only be used under sequential or extended access mode when opened for INPUT or
1-0.

AT END

5. READ file-name RECORD [INTO identifier] [; { INVALID KEY

} imperative-statement]
For sequential file processing, the READ statement makes available the next logical record from a file and
allows performance of a specified imperative-statement when the end of the file is detected. The logical record
‘ retrieved is determined by the preceding input/output statements as shown in Table 11-1.

8057 Rev. 2 SPERRY UNIVAC Operating System/3 11-10

PAGE

UP-NUMBER LUPDATE LEVEL

Table 11—1. Logical Record Retrieval by Sequential Read

Preceding Input/Output Logical Record Retrieved
Statement by Sequential Read
OPEN First record of file
SEEK Record with SEEK key or, if key does not exist, record

with next higher record key

READ Record with next higher record key after last retrieved
record

WRITE/REWRITE/INSERT Does not affect positioning for sequential read.

For random file processing, the READ statement makes available the record specified by SYMBOLIC KEY,
and allows performance of a specified imperative-statement if a logical record with that key does not exist.

When AT END is specified, the READ statement is treated as a sequential read, and the access mode must be
sequential or extended. When INVALID KEY is specified, the READ statement is treated as a random read,
and the access mode must be random or extended. If neither AT END nor INVALID KEY is specified, the
type of read is determined by the access mode. If access is extended or random, the read is a random read. The
file must be opened for INPUT or 1-O for the READ to be valid.

6. WRITE record-name [FROM identifier-1] [; INVALID KEY imperative-statement]
The WRITE statement releases a logical record for an output file.
L] File loading, extending.

When loading or extending a file, the WRITE statement is used to add logical records sequentially in the
prime data area of the file and to create the necessary index entries for later retrieval of the logical
records. The logical records must be presented for loading in ascending record key sequence. If the file is
being extended, the RECORD KEY value of the first logical record written must be higher than the
highest RECORD KEY value currently in the file. The WRITE statement allows performance of a
specified imperative-statement if the RECORD KEY is equal to, or out of key sequence with, the last
RECORD KEY.

The WRITE statement can only be used for file loading or extension under sequential or extended access
when opened for OUTPUT.

L] Record update

When updating an existing record, the WRITE statement must be preceded by a successful READ
statement. The WRITE statement causes the updated record to be rewritten into its original physical
area. Neither the length nor the RECORD KEY value can be changed. The WRITE statement allows
performance of a specified imperative-statement if the length or key value has been modified.

The WRITE statement can only be used for record updating under sequential, random, or extended
access when opened for [-O.

8057 Rev. 2 l SPERRY UNIVAC Operating System/3

UP-NUMBER

UPLATE LEVELJ

1111

PAGE

L Record insertion

When inserting a new record into an indexed file, the WRITE statement causes a new logical record to be
added to the file at the logical position designated by its RECORD KEY value. No other logical record
may exist in the file with the same RECORD KEY value. The WRITE statement allows performance of a
specified imperative-statement if a logical record with that RECORD KEY already exists.

The WRITE statement can only be used for record insertion under RANDOM or EXTENDED access

when opened for 1-O.

7. REWRITE record name [FROM identifier] [; INVALID KEY imperative-statement]

The REWRITE statement can be used in place of the WRITE statement for record update. The same rules used
for record update for the WRITE statement apply.

8. INSERT record-name [FROM identifier-l] [; INVALID KEY imperative-statement]

The INSERT statement can be used in place of the WRITE statement for record insertion. The same rules used
for record insertion for the WRITE staement apply.

9. CLOSE file-name

See CLOSE statement for sequential file processing {(11.4.1).

The following is a summary of input/output statements permitted for each access method and open mode:

= ORGANIZATION IS INDEXED, ACCESS 1S SEQUENTIAL

WRITE [INVALID KEY]<D

READ [AT END]®

Sequential Output Sequential Input Sequential 1-O
Processing Processing Processing
OPEN OUTPUT OPEN INPUT OPEN I-O

READ [AT END]@

CLOSE SEEK SEEK
CLOSE WRITE [INVALID KEY]<D
REWRITE [INVALID KEY]
CLOSE
NOTES:

@ When access is SEQUENTIAL and the file is opened for OUTPUT, the WRITE statement is a

request for loading or extending file. When opened for 1-O, the WRITE statement is a request for
an update of an existing record.

@ When access is SEQUENTIAL, a READ statement is always treated as a sequential read.

8057 Rev. 2 SPERRY UNIVAC Operating System/3 l 11-12
UP-NUMBER UPDATE LEVEL | PAGE
= ORGANIZATION IS INDEXED, ACCESS IS RANDOM .
Random Output Random input Random 1-O
Processing Processing Processing
Invalid OPEN mode | OPEN INPUT OPEN 1-O
READ [INVALID KEY]® READ [INVALID KEY]®
CLOSE WRITE [INVALID KEY]®
REWRITE [INVALID KEY]
INSERT [INVALID KEY]
CLOSE
NOTES:
@ When access is RANDOM and the file is opened for 1-O, the WRITE statement is
either a request for an update of an existing record or a request for insertion of a
new record.
@ When access is RANDOM, a READ statement is always treated as a random read.
] ORGANIZATION IS INDEXED, ACCESS IS EXTENDED
Extended Output Extended input Extended I-O
Processing Processing Processing
OPEN OUTPUT OPEN INPUT OPEN I-O
WRITE [INVALID KEY](D READ AT END) READ AT END)
INVALID KEY INVALID KEY
CLOSE
SEEK SEEK
CLOSE WRITE [INVALID KEY](D
REWRITE [INVALID KEY]
INSERT [INVALID KEY]
CLOSE
NOTES:
(1) When access is EXTENDED and the file is opened for OUTPUT, the WRITE statement is a .

request for loading or extending the file. When opened for 1-O, the WRITE statement is a
request for either an update of an existing record or a request for inserting a new record.

8057 Rev. 2 [SPERRY UNIVAC Operating System/3

UP-NUMBER

B
UPDATE LEVEL

PAGE

11-13

@ When access is EXTENDED and the file is opened for INPUT or {-O, if neither AT END nor
INVALID KEY is specified for a READ statement, the READ statement is treated as a
random read, If AT END is specified, the READ statement is treated as a sequential read. if
INVALID KEY is specified, the READ statement is treated as a random read.

11.4.4. Summary of Imperative Statements and Error Conditions

The use of the AT END/INVALID KEY imperative-statement with the ORGANIZATION clause, system error
messages, and COBOL disc processing techniques are summarized in the following paragraphs.

11.4.4.1. ORGANIZATION IS SEQUENTIAL Clause

The AT END imperative-statement is executed when the logical end of file is detected.

The INVALID KEY imperative-statement is executed when no space is left on the file for the record to be written.

11.4.4.2. ORGANIZATION IS RELATIVE Clause

The AT END imperative-statement is executed when an access to a record beyond the file is attempted.

The INVALID KEY imperative-statement is executed when the relative-record number or relative-track number is
beyond the file extents.

11.4.4.3. ORGANIZATION IS INDEXED Clause

The AT END/INVALID KEY imperative-statement clauses are executed according to the explanation given in
11.4.3. See also Table 11—3 for a list of the AT END/INVALID KEY exception conditions.

Exception conditions for indexed files are handled in the following manner:
= Warning Exceptions
When a warning exception condition arises during COBOL verb processing for indexed files, control is returned

immediately following the input/output verb with the appropriate SYSERR setting. The warning exception
conditions are shown in Table 11-2.

Table 11—2. Warning Exception Conditions for Indexed File Processing

Waming Exception Condition COBOL Verb

End of file detected when positioning SEEK
unit for subsequent sequential retrieval

8057 Rev. 2 SPERRY UNIVAC Operating System/3 °

UP-NUMBER UPDATE LEVEL] PAGE

» End-of-File/Invalid Key Exceptions

When an end-of-file condition or invalid key condition arises during COBOL verb processing for indexed files,
SYSERR is appropriately set, and the AT END/INVALID KEY imperative-statement is executed. If no AT
END/INVALID KEY imperative-statement is specified when this condition occurs, control is transferred to
the appropriate USE AFTER ERROR procedure. If this latter procedure is not specified, the COBOL ERROR
procedure is called and results in an end-of-job sequence.

The AT END/INVALID KEY exception conditions are shown in Table 11-3.

Table 11—3. AT END/INVALID KEY Exception Conditions for Indexed File Processing

AT END/INVALID KEY Exception Conditions COBOL Verb
- End of file detected (AT END Sequential READ
condition)
During file creation or extension, a Load WRITE

record-key value is found out of key
sequence {INVALID KEY condition)

A duplicate record-key value is detected Load WRITE

{INVALID KEY condition) insert WRITE
INSERT

A specified record-key value cannot be Random READ

found (INVALID KEY condition)

A record-key value or length value for a Update WRITE
record update has been modified (INVALID WRITE
KEY condition)

L Unrecoverable File Errors

When unrecoverable file errors occur during COBOL verb processing for indexed files, control is transferred to
the applicable USE AFTER ERROR procedure with the appropriate SYSERR message set. If a USE AFTER
ERROR procedure is not provided, the COBOL ERROR procedure is called and results in an end-of-job
sequence. The unrecoverable file error conditions are shown in Table 11—4.

Table 11—4. Unrecoverable File Error Conditions for Indexed File Processing (Part 1 of 2)

Unrecoverable File Error Conditions COBOL Verb
General OPEN errors OPEN
General CLOSE errors CLOSE
Invalid use of COBOL verb: All COBOL verbs

— COBOL verb not valid for open mode

- OPEN issued to file currently opened

— Verb other than OPEN issued to file
not currently opened

— Update not preceded by a successful
READ

- Because of previous errors, only CLOSE
verb permitted

Insufficient file space CLOSE
Load WRITE
Insert WRITE

8057 Rev. 2

SPERRY UNIVAC Operating System/3

11-15

UP-NUMBER UPDATE LEVEL | PAGE
Table 11—4. Unrecoverable File Error Conditions for Indexed File Processing (Part 2 of 2)
Unrecoverable File Error Conditions COBOL Verb
No AT END/INVALID KEY imperative-statement Sequential READ
specified for COBOL verb and exception Random READ
condition occurred when processing verb Load WRITE
Update WRITE
insert WRITE
REWRITE INSERT
Hardware error All COBOL. verbs
Invalid record size Load WRITE
Insert WRITE
INSERT
Data portion of track index destroyed OPEN SEEK
{invalid 1D) or invalid index search Sequential READ
Random Read
Insert WRITE
INSERT
n

Storage Dump

If an unrecoverable file error occurs and control is transferred to the COBOL ERROR procedure, this
procedure takes a dump of the job region before job termination. The following information is available:

—_ Register values

Register Value

0 SYSERR setting (Table 11—6)
1 Address of DTF of file in error
2 Address of prefix of file in error
14 Address of return location in program

if error had not occurred

- File prefix format

Indicator 1 Indicator 2

Current Previous
COBOL Verb COBOL Verb

Record Key Area

The shaded area is the prefix to the DTF module.

11-16
PAGE

8057 Rev. 2 SPERRY UNIVAC Operating System/3

UP-NUMBER I UPDATE LEVEL

Indicator 1 — Byte 14 -

Bits 0—1 Used by COBOL internally
Bits 2—3 Access mode

00 — Sequential

10 — Random

01 — Extended
Bits 4—7 Used by COBOL internally

Indicator 2 — Byte 15

Bits 0—2 Open mode

100 — Input
010 — Output
001 - 1/0

Bits 3—7 Used by COBOL internally
Current COBOL verb — Byte 18

Code for COBOL verb processed for indexed file when exception condition occurred
Previous COBOL. verb — Byte 19

Code for COBOL verb processed for indexed file that preceded current COBOL verb

Code COBOL Verb

00 OPEN

01 CLOSE

02 SEEK

03 READ (sequential)

04 READ (random)

05 WRITE (load)

06 WRITE/REWRITE (update)
07 Not used

08 WRITE/INSERT (insert)

RECORD KEY area — Bytes 40—n

Record-key used for sequential retrieval positioning.

The exception conditions for each input/output COBOL verb used for processing indexed files are summarized in
Table 11-5.

Table 11-5. Exception Handling for COBOL Verbs Used for Indexed File Processing (Part 1 of 9}

COBOL Verb

PREFIX

Indexed Verb E ion Conditi SYSERR File Processing Transfer of
or index er| xception Condition . Stat Control
File Code Setting atus on
OPEN 00 General OPEN error SYSERR-2 OPEN not completed; USE AFTER ERROR
SYSERR-4 file processing cannot procedure
continue
File currently opened SYSERR-6 OPEN not completed; USE AFTER ERROR
file processing cannot procedure
continue
Hardware error:
When one occurs, SYSERR-3 is SYSERR-3 OPEN not completed; USE AFTER ERROR
always set along with one or file processing cannot procedure
more of the following. continue
Unrecoverable error SYSERR-9
Unigue unit error SYSERR-10
Record not found {hardware search) SYSERR-11
Unit exception SYSERR-12
Wrong length found SYSERR-13
Command rejection SYSERR-16
Intervention required SYSERR-17
Output parity check SYSERR-18
Equipment check SYSERR-19
Data check SYSERR-20
Overrun SYSERR-21
STOP state SYSERR-22
Device check SYSERR-23
Invalid ID when positioning to beginning of file SYSERR-1 OPEN not completed; USE AFTER ERROR
{opened INPUT; |-O; access SEQUENTIAL or file processing cannot procedure
EXTENDED) continue; file may
not be valid
Invalid index search when positioning to SYSERR-28 OPEN not completed:; file USE AFTER ERROR
beginning of file {opened INPUT; I-O; processing cannot continue; procedure
access SEQUENTIAL or EXTENDED) file may not be valid
CLOSE 01 General CLOSE error SYSERR-5 CLOSE not completed; USE AFTER ERROR
file may not be valid procedure
File not currently opened SYSERR-6 CLOSE not completed; USE AFTER ERROR

file still valid

procedure

39vd l AI3A3T 3Lvadn

H3IaWNN-dN
Z '8y LS08

g/waisAg bunesadp JVAINN AHHIAAS

Li—LL

?

Table 11—5. Exception Handling for COBOL Verbs Used for Indexed File Processing (Part 2 of 9)

COBOL Verb PREFIX i .
or Indexed Verb Exception Condition SYSE_RR File Processing Transfer of
File Code Setting Status Control
CLOSE (cont) 01 Hardware error:
When one occurs, SYSERR-3 is SYSERR-3 CLOSE not completed; file USE AFTER ERROR
always set along with one or may not be valid procedure
more of the following:
Unrecoverable error SYSERR-9
Unigue unit error SYSERR-10
Record not found (hardware search) SYSERR-11
Unit exception SYSERR-12
Wrong length found SYSERR-13
Command rejection SYSERR-16
Intervention required SYSERR-17
Output parity check SYSERR-18
Equipment check SYSERR-19
Data check SYSERR-20
Overrun SYSERR-21
STOP state SYSERR-22
Device check SYSERR-23
File not successfully loaded because of SYSERR-26 CLOSE not completed; USE AFTER ERROR
insufficient space file not valid and must procedure
be reloaded
SEEK 02 File not currently opened SYSERR-6 SEEK not completed USE AFTER ERROR
procedure
SEEK not valid for SYSERR-6 SEEK not completed USE AFTER ERROR
open OUTPUT procedure
Hardware error:
When one occurs, SYSERR-3 is SYSERR-3 SEEK not completed; file USE AFTER ERROR
always set along with one or may not be valid procedure
more of the following:
Unrecoverable error SYSERR-9
Unique unit error SYSERR-10
Record not found (hardware search) SYSERR-11
Unit exception SYSERR-12
Wrong iength found SYSERR-13
Command rejection SYSERR-16
Intervention required SYSERR-17
Output parity check SYSERR-18
Equipment check SYSERR-19
Data check SYSERR-20
Overrun SYSERR-21
STOP state SYSERR-22
Device check SYSERR-23

®

73A37 3Lvadn

39vd

HIBWNN-dN

C 'A8Y £S08

¢/waisAg bunesado JVAINN AHYHILS

8L—1il

Table 11—5. Exception Handling for COBOL Verbs Used for Indexed File Processing (Part 3 of 9)

COBOL Verb PREFIX . . SYSERR File Processing Transfer of
or Indexed Verb Exception Condition _
File Code Setting Status Control
SEEK {cont) 02 No record with key equal or greater SYSERR-11 SEEK completed; if READ Immediately after SEEK
than SEEK key found (end of file and SYSERR-25 issued, AT END patch will be
detected) (both always executed; normal file process-
set) and ing may continue
SYSERR-3 not
set
Invalid ID SYSERR-1 SEEK not completed; file USE AFTER ERROR
may not be valid procedure
Invalid index search SYSERR-28 SEEK not completed; file USE AFTER ERROR
may not be valid procedure
Due to preceding errors, only SYSERR-27 SEEK not completed USE AFTER ERROR
CLOSE verb permitted procedure
Sequential 03 File not currently opened SYSERR-6 READ not completed USE AFTER ERROR
READ procedure
READ not valid for open OUTPUT SYSERR-6 READ not compieted USE AFTER ERROR
procedure
Hardware error:
When one occurs, SYSERR-3 is SYSERR-3 READ not completed USE AFTER ERROR
always set along with one or procedure
more of the following:
Unrecoverable error SYSERR-9
Unique unit error SYSERR-10
Record not found (hardware search) SYSERR-11
Unit exception SYSERR-12
Wrong length found SYSERR-13
Command rejection SYSERR-16
Intervention required SYSERR-17
Output parity check SYSERR-18
Equipment check SYSERR-19
Data check SYSERR-20
Overrun SYSERR-21
STOP state SYSERR-22
Device check SYSERR-23

HIGWNN-dN

T3A3T 3Lvadn

3ovd

g/waysAg bunessdo JVAINN AHYICS

C 'A3y £S08

|

6L—11L

Table 11—5. Exception Handling for COBOL Verbs Used for Indexed File Processing (Part 4 of 9)

cz'?‘"::el’:;b PTZ::X Excsntion Conditi SYSERR File Processing Transter of
xception Condition . Stat)
File Code Setting atus Contro
Sequential 03 End of file detected SYSERR-25 READ not completed; before If specified, AT END
READ (cont) any further sequential retrieval path; if not specified,
can continue, it is hecessary USE AFTER ERROR
to reposition in the file; procedure
normal file processing may
continue
Invalid ID SYSERR-1 READ not completed; file may not USE AFTER ERROR
be valid procedure
Invalid index search SYSERR-28 READ not compieted; file may not USE AFTER ERROR
be valid procedure
Due to preceding errors, only CLOSE SYSERR-27 READ not completed USE AFTER ERROR
verb permitted procedure
Random READ 04 File not currently opened SYSERR-6 READ not completed USE AFTER ERROR
procedure
READ not valid for open OUTPUT SYSERR-6 READ not completed USE AFTER ERROR
procedure
Hardware error:
When one occurs, SYSERR-3 is SYSERR-3 READ not completed USE AFTER ERROR
always set along with one or procedure
more of the following:
Unrecoverable error SYSERR-9
“Unigue unit error SYSERR-10
Record not found (hardware search) SYSERR-11
Unit exception SYSERR-12
Wrong length found SYSERR-13
Command rejection SYSERR-16
Intervention required SYSERR-17
OQutput parity check SYSERR-18
Equipment check SYSERR-19
Data check SYSERR-20
Overrun SYSERR-21
STOP state SYSERR-22
Device check SYSERR-23

438WNN-dN
C 'A9Y LS08

T3A3T 34vadn

39vd

g/weisAg Bunesed) JVAINN AHYICS

|

oc—1ilL

Table 11—5. Exception Handling for COBOL Verbs Used for Indexed File Processing (Part 5 of 9)

COBlO:" V:‘:b PTIEFIX X . SYSERR File Processing Transfer of
or nF;: c:rdl: Exception Condition Setting Status Control
Random 04 Specified record-key: value cannot be SYSERR-11, not READ not completed; record not If specified, INVALID
READ (cont) found because a record with that key SYSERR-3 retrieved but normal file proc- KEY path; if not
value never added to file essing may continue specified, USE AFTER
ERROR procedure
Invalid ID SYSERR-1 READ not completed; fite may not USE AFTER ERROR
be valid procedure
Invalid index search SYSERR-28 READ not completed; file may not USE AFTER ERROR
be valid procedure
Due to preceding errors, only CLOSE SYSERR-27 READ not completed USE AFTER ERROR
verb permitted procedure
Load WRITE 05 File not currently opened SYSERR-6 WRITE not completed USE AFTER ERROR
procedure
WRITE not valid for open INPUT SYSERR-6 WRITE not completed USE AFTER ERROR
‘ procedure
Hardware error:
When one occurs, SYSERR-3 is SYSERR-3 WRITE not completed USE AFTER ERROR
always set along with one or procedure
more of the following:
Unrecoverabie error SYSERR-9
Unique unit error SYSERR-10
Record not found (hardware search) SYSERR-11
Unit exception SYSERR-12
Wrong length found SYSERR-13
Command rejection SYSERR-16
Intervention required SYSERR-17
QOutput parity check SYSERR-18
Equipment check SYSERR-19
Data check SYSERR-20
Overrun SYSERR-21
STOP state SYSERR-22
Device check SYSERR-23

g/weisAg bunessdQ IYAINN AHHILS

73A37 31vadn

3OVvd

HIBANN-dN
C "A3Y 908

1g—tLi

Table 11—5. Exception Handling for COBOL Verbs Used for Indexed File Processing (Part 6 of 9)

CgBlfz(I’.ell:;b PF‘t,Eel:ll,X . o Conditi SYSERR File Processing Transfer of
xception Condition . t
File Code Setting Status Control
Load 05 Invalid record size SYSERR-24 WRITE not completed USE AFTER ERROR
WRITE (cont) procedure
Prime data area full or index SYSERR-1 WRITE not completed; USE AFTER ERROR
area full record not written because procedure
of inadequate space; file
should be closed
Duplicate record key SYSERR-30 WRITE not completed; If specified,
and SYSERR-29 because key already exists INVALID KEY path;
{both always in file; normal file proc- if not specified,
set) essing can continue USE AFTER ERROR
procedure
Record-key sequence error SYSERR-29 WRITE not completed because If specified,
key not greater than last key INVALID KEY path;
in file; normal file processing if not specified,
continues USE AFTER ERROR
procedure
Due to preceding errors, only SYSERR-27 WRITE not completed USE AFTER ERROR
CLOSE verb permitted procedure
Update WRITE/ 06 File not currently opened SYSERR-6 Update not completed USE AFTER ERROR
REWRITE procedure
Update not valid for open INPUT SYSERR-6 Update not completed USE AFTER ERROR

or OUTPUT

procedure

H3I8NNN-dN

J3A3T 3Lvddn

59vd

g/weysAg bunesadQ JVAINN AHHILS

Tzl

C 'A3Y £S08

|

|

Table 11—-5. Exception Handling for COBOL Verbs Used for Indexed File Processing (Part 7 of 9)

cgﬁg:e;’:;b PF:/EB:.?)X Exception Condition SYSERR File Processing Transfer of
xception iti i

File Code Setting Status Control

Update WRITE/ 06 Hardware error:

REWRITE (cont)

When one occurs, SYSERR-3 is SYSERR-3 Update not completed
always set along with one or
more of the following:

USE AFTER ERROR
procedure

Unrecoverable error SYSERR-9

Unigue unit error SYSERR-10
Record not found (hardware search) SYSERR-11
Unit exception SYSERR-12
Wrong length found SYSERR-13
Command rejection SYSERR-16
intervention required SYSERR-17
Qutput parity check SYSERR-18
Equipment check SYSERR-19
Data check SYSERR-20
Overrun SYSERR-21
STOP state SYSERR-22
Device check SYSERR-23

Update not preceded by random or SYSERR-6 Update not completed USE AFTER ERROR

sequential READ

procedure

End of file detected for preceding SYSERR-6 Update not completed
sequential READ

USE AFTER ERROR
procedure

Record not found detected for SYSERR-6 Update not completed
preceding random READ

USE AFTER ERROR
procedure

Record-key value or length value None Update not completed; If specified,

for a record update was modified. processing can continue INVALID KEY path;
if not specified,
USE AFTER ERROR
procedure

Due to preceding errors, only CLOSE SYSERR-27 Update not completed USE AFTER ERROR

verb permitted

procedure

HISNNN-dN
C "A8Y [G08

g/wasAg bunesedg JVAINN AHYICS

T3A3TT 3ivadn

3oVvd

€11

Table 11—5. Exception Handling for COBOL Verbs Used for Indexed File Processing (Part 8 of 9)

OBO b
C L Ver PREFIX . » SYSERR File Processing Transfer of
or Indexed Verb Exception Condition Setti Status Control
File Code g
Insert WRITE/ 08 File not currently open SYSERR-6 Insert not completed USE AFTER ERROR
INSERT procedure
Insert not valid for open INPUT or SYSERR-6 Insert not completed USE AFTER ERROR
QUTPUT procedure
Hardware error:
When one occurs, SYSERR-3is SYSERR-3 Insert not completed USE AFTER ERROR
always set along with one or procedure
more of the following:
Unrecoverable error SYSERR-9
Unique unit error SYSERR-10
Record not found (hardware search) SYSERR-11
Unit exception SYSERR-12
Wrong length found SYSERR-13
Command rejection SYSERR-16
Intervention required SYSERR-17
Output parity check SYSERR-18
Equipment check SYSERR-19
Data check ~ SYSERR-20
Overrun SYSERR-21
STOP state SYSERR-22
Device check SYSERR-23
Invalid record size SYSERR-24 Insert not completed USE AFTER ERROR
procedure
Overflow area full SYSERR-26 Insert not completed; record USE AFTER ERROR
not written because of inadequate procedure
space; processing may continue
ADD rejected due to error on preceding SYSERR-31 Insert not completed; processing USE AFTER ERROR
insert can continue procedure
Duplicate record key SYSERR-29 Insert not completed because If specified,
SYSERR-30 key already exists in file; INVALID KEY path;

normal file processing can
continue

if not specified,
USE AFTER ERROR
procedure

T3A37 3ivadn

H3IgNNN-dN

A9vd

g/waysAg buneiedQ OVAINN AHYIdS

T 'A8Y LS08

ve—-1LL

Table 11—5. Exception Handling for COBOL Verbs Used for Indexed File Processing (Part 9 of 9)

P 1 .
cgﬁ(:;el';b ':,i::bx Excstion Condition SYSERR File Processing Transfer of
xception Conditi R
File Code Setting Status Control
Insert WRITE/ 08 Invalid ID SYSERR-1 Insert not completed; USE AFTER ERROR
INSERT (cont) file may not be valid procedure
Invalid index search SYSERR-28 Insert not completed; USE AFTER ERROR
fite may not be valid procedure
Due to preceding errors, only SYSERR-27 Insert not completed USE AFTER ERROR
CLOSE verb permitted procedure
Zero percent overflow SYSERR-31 Insert not USE AFTER ERROR
allocated completed procedure

H38WNN-dN
€ 'A8Y 908

g/walsAg Bunesadg JYAINN AHYHILS

T3IA3T 31vVadn
Y

39Vvd
SZ—1L1L

8057 Rev. 2 SPERRY UNIVAC Operating System/3 L 11-26,

UP-NUMBER UPDATE LEVEL | PAGE

11.4.4.4. SYSERR Messages .

Table 11—6 contains the definitions of the 32 SYSERR messages for ORGANIZATION INDEXED and
ORGANIZATION RELATIVE. SYSERR is set whenever data management indicates an error has occurred. If no
error occurs, all SYSERR settings will be off.

Table 11—6. System Error Messages (SYSERR) for INDEXED and RELATIVE Files

Message Definition Message Definition
SYSERR-0 Last block on track accessed SYSERR-17 Intervention required
SYSERR-1 Invalid ID SYSERR-18 Output parity check
SYSERR-2 Invalid DTF (Indexed) SYSERR-19 Equipment check

Invalid PCA/DTF (Relative)
SYSERR-20 Data check
SYSERR-3 Hardware error
SYSERR-21 Overrun
SYSERR-4 Error found in OPEN .
SYSERR-22 STOP state
SYSERR-5 Error found in CLOSE

SYSERR-23 Device check
SYSERR-6 Invalid macro sequence
SYSERR-24 Invalid record size
SYSERR-7 Reserved (Indexed)
WAITF required (Relative) SYSERR-25 Logical end of file

SYSERR-8 /O complete SYSERR-26 File space exhausted {Indexed)
Logical end of volume (Relative)
SYSERR-9 Unrecoverable error
SYSERR-27 Processing inhibited
SYSERR-10 Unique unit error
SYSERR-28 Invalid index {Indexed)
SYSERR-11 Record not found Reserved (Relative)

SYSERR-12 Unit exception SYSERR-29 Key sequence error {Indexed)
Reserved (Relative)
SYSERR-13 Wrong length found

SYSERR-30 Duplicate key error (Indexed)
SYSERR-14 End of track Reserved (Relative)

SYSERR-15 End of cylinder SYSERR-31 ADD rejected (Indexed)

Reserved (Relative)
SYSERR-16 Command rejection

Additional information regarding error conditions can be found in the OS/3 data management user guide, UP-8068
(current version).

11.4.4.5. COBOL Disc Processing Techniques

Table 11—7 contains a summary of COBOL disc processing techniques.

Table 11—7. Summary of COBOL Disc Processing Techniques

T ing Technique i
Processing hnia Addressing R?(q:"ad :::::‘rd Open Allowable 1/0 Required Optional Restricted
Technique Y at Verb Statements Clauses Clauses Clauses
Organization Access Clauses
SEQUENTIAL SEQUENTIAL NONE F INPUT READ AT END SELECT ASSIGN SELECT OPTIONAL, APPLY RESTRICTED SEARCH,
OR OR ALLOWED LABEL RECORDS MULTIPLE UNIT, APPLY FILE-PREPARATION,
OMITTED OMITTED OUTPUT | WRITE INVALID KEY RESERVE, SAME (RECORD) APPLY CYLINDER-OVERFLOW
STANDARD
ARE {DATA»NAME } AREA, BLOCK CONTAINS,
1-0 READ AT END RECORD CONTAINS, DATA
RECORDS, APPLY VERIFY,
Vv WRITE INVALID KEY CLOSE USE LABEL, USE ERROR,
- CLOSE UNIT, READ INTO,
WRITE FROM
RELATIVE SEQUENTIAL RELATIVE ACTUAL INPUT READ AT END, SEEK
OR RECORD OR F
OMITTED RELATIVE OUTPUT | WRITE INVALID KEY,
SEEK
1-0 READ AT END, WRITE @ SAME (RECORD) AREA, RESERVE INTEGER, OPTIONAL,
INVALID KEY,SEEK@ RECORD CONTAINS, BLOCK BLOCK CONTAINS >1 RECORD,
CONTAINS 1 RECORD, DATA USE ENDING LABEL
RELATIVE RANDOM RELATIVE ACTUAL INPUT READ INVALID KEY, RECORD, APPLY VERIFY,
OR RECORD OR SEEK APPLY FILE-PREPARATION
OMITTED RELATIVE F RESERVE NO ALTERNATE
QUTPUT | WRITE INVALID KEY, AREA, READ INTO, WRITE
SEEK FROM, INSERT FROM
-0 READ INVALID KEY,
WRITE (@) INVALID KEY,
SEEK (B)
INDEXED SEQUENTIAL RECORD F INPUT READ {AT END], SELECT/ASSIGN FOR MULTIPLE UNIT, FOR MULTIPLE REEL,
OR AND - SEEK LABEL RECORDS ARE RESERVE NO ALTERNATE MULTIPLE FILE TAPE,
OMITTED [SYMBOLIC) v STANDARD AREA, RESERVE APPLY RESTRICTED SEARCH,
OQUTPUT | WRITE [INVALID KEY} INTEGER ALTERNATE APPLY BLOCK COUNT ON,
AREA, FILE LIMIT, APPLY FILE PREPARATION ON,
I-0 READ (AT END], CLOSE PROCESSING MODE 1S APPLY ASCl,
SEEK, SEQUENTIAL, RERUN ON, LABEL RECORDS ARE OMITTED
WRITE {INVALID KEY], SAME (RECORD} AREA, OR DATA NAME,
REWRITE [INVALID KEY] APPLY VERIFY, APPLY USE LABELS,
MASTER INDEX ON, APPLY OPTIONAL
INDEXED RANDOM RECORD F INPUT READ [INVALID KEY} CYLINDER OVERFLOW ON,
AND - APPLY CYLINDER INDEX
[SYMBOLIC] v 1-0 READ [INVALID KEY], AREA OF, APPLY EXTEND-
WRITE [INVALID KEY], ED-INSERTION AREA ON,
REWRITE [INVALID KEY}, BLOCK CONTAINS, RECORD
INSERT [INVALID KEY] CONTAINS, VALUE OF,
DATA RECORDS ARE, USE
INDEXED EXTENDED RECORD F INPUT READ [AT END J@ ERROR INTO, FROM
—_— INVALID KEY,
AND
[SYMBOLIC} % SEEK
OUTPUT WRITE [INVALID KEY]
AT END @
10 READ [INVALID KEY:l'
SEEK,
WRITE [INVALID KEY],
REWRITE {INVALID KEY],
INSERT [INVALID KEY]
NOTES
(D American National Standard language element extension @ REWRITE accepted as synonym for WRITE. @ ACTUAL KEY may be used in place of SYMBOLIC KEY for UNIVAC 9300 System compatibility.
@ Requires preformatting of entire file prior to creation @ SEEK not permitted between READ and WRITE @ If AT END is specified, READ is treated as a random read.
® Default RECORD FORMAT is underlined.

Y3IgWNN-dN

g/waysAg bunessdp JYAINN AHHIS

T13A37 31vdadn

3OoVvd

C 'A9Y LS08

Lz

12—-1
PAGE

8057 Rev. 2 1 SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL

12. ASCIl Tape Processing

12.1. GENERAL

When the user requests it, the SPERRY UNIVAC Operating System/3 (0S/3) COBOL compiler processes and
produces ASCII tapes. Data management automatically translates the tapes to EBCDIC when reading and to ASCH
when writing.

12.2. DECLARATION OF ASCII FILES

ASCII files must be declared to the compiler by the APPLY ASCH™* ON file-name clause. A mix of ASCII and
non-ASCI files is permitted in the COBOL program.

. Format:

APPLY ASClI [WITH BUFFER-OFFSET {

FOR BLOCK-LENGTH-CHECK
OF integer CHARACTERS

ON file-name[, file-name]
Rules:
1. The APPLY ASCII clause identifies each tape file that contains or receives ASCI| data (4.3.2).

2. The integer CHARACTERS options specifies the number of additional characters that appear at the
front of each data block in the file. Integer may have a value of 0 to 99. The specified offset applies only
to files open for input. The offset area cannot be referenced by the program nor can it be created when
the file is open for output.

3. The BLOCK-LENGTH-CHECK option applies only to files with a RECORDING MODE IS D clause.
When specified, input data blocks are assumed to possess a 4-character buffer offset, which contains the
length of the block. Data management routines validate that each block read contains the number of
characters specified in this field. When the file is being created, the block length is placed in the
4-character buffer offset area.

*Extension to American National Standard COBOL (1968).

8057 Rev. 2 SPERRY UNIVAC Operating System/3

UP-NUMBER

12-2

UPDATE LEVEL | PAGE

12.3. RECORDING MODE* CLAUSE

Format:

RECORDING MODE IS

KICmIo

Rules:
1. The RECORDING MODE clause is expanded to include the specification of D-type records (5.2.1.4).
2. A recording mode of D may be specified for ASCII tape files with variable-length records.

3. Tape files declared as ASCIl may aiso have a recording mode of V because, for ASCII files, D and V are
synonymous. The D mode is provided for compatibility with other implementors.

4. The RECORDING MODE IS D clause may be specified for ASCH tape files which contain
variable-length records. An option within the APPLY ASCII ON file-name clause allows the specification

of a buffer offset for any tape input fite or the activation of the block length check feature on tape files
with RECORDING MODE D.

NOTE:

Figure 12—1 and Table 12—1 show the physical tape formats and characteristics. Table 12—2 lists the
ASCII/EBCDIC conversions.

*Extension to American National Standard COBOL (1968).

8057 Rev. 2 SPERRY UNIVAC Operating System/3 B 12-3
UP-NUMBER UPDATE LEVEL PAGE
. U FORMAT RECORDS
Y
| | buffer
| S | offset data
I P
F FORMAT RECORDS
~———r——"
unLockep | g | buffer data
1 | offset
. I N,
I ——
|
f
BLOCKED | S | buffer data data
offset
| N I, —_
D FORMAT RECORDS
- —"'r - ==
I
UNBLOCKED | S : DDDD dddd data
| O I,
o roTTT T
BLOCKED | s : DDDD dddd data dddd data
N
S — Optional 1character block sequence indicator whose presence is specified by the -

buffer offset

DDDD

dddd

APPLY BLOCK-COUNT clause.

Optional field at the front of each input data block. Offset may be
0 to 99 characters in length. This area cannot be referenced by

program nor can it be created on output files; presence specified by

the APPLY ASCII WITH BUFFER-OFFSET OF integer CHARACTERS clause.

Optional block length field in an implified buffer offset area of four characters.
Block length is created and validated by data management programs. This option

is specified by the APPLY ASCH BUFFER- OFFSET FOR BLOCK-LENGTH-CHECK

clause,

Record length.

S, DDDD, dddd are all in ASCIi decimal format.

Figure 12—1. ASCII Physical Tape Formats

8057 Rev. 2 SPERRY UNIVAC Operating System/3 12-4

UP-NUMBER UPDATE LLEVEL { PAGE

Table 12—1. Characteristics of Tape Files Available to COBOL Users

File APPLY APPLY APPLY
RECORDING | Declared | LABEL RECORDS | BUFFER-OFFSET I;‘;\'%CTKF" BLOCK-
MODE IS As Specifications " COUNT
pec INPUT |0UTPUT CHECK
EBCDIC
D
blocked or
unblocked
ASCII sTANDARD_(2) | 01099 |(3) Optional Optional
data-name
OMITTED
EBCDIC | STANDARD_(1) Optional
F data-name
blocked or
unblocked
ASCHI STANDARD @ 0 to 99 Optional
data-name
OMITTED
EBCDIC | STANDARD @ Optional
data-name
U
ASCH STANDARD @ 0to 99 Optional
data-name
OMITTED
EBCDIC STANDARD @ Automatic Optional
\} data-name
blocked or
unblocked ASCII
NOTES:

De facto standard as defined by the data management system user guide, UP-8068 (current version).
American National Standard COBOL (1968)
Implies presence of system standard labels 1 or 2.

BLOCK-LENGTH-CHECK specifies that a buffer offset of four characters contains the length of the block for
verification by data management programs. ‘

@ OO

Specifies a 1-character cyclic block sequence indicator {input files only).

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

12-5
PAGE

Table 12—-2. ASCII/EBCDIC Conversion (Part 1 of 3)

ASCIl EBCDIC .
Signed
Hex Dec Control Character Symbol Hex Dec Number
00 0 NUL 00 0
01 1 SOH 01 1
02 2 STX 02 2
03 3 ETX 03 3
04 4 EOT 37 55
05 5 ENQ 2D 45
06 6 ACK 2E 46
07 7 BEL 2F 47
08 8 BS 16 22
09 9 HT 05 05
0A | 10 LF 25 37
oB 1 VT 0B 11
oc 12 FF oC 12
oD 13 CR oD i3
OE 14 SO OE 14
OF 15 St OF 15
10 16 DLE 10 16
" 17 DC1 11 17
12 18 DC2 12 18
13 19 DC3 13 19
14 20 DC4 3C 60
15 21 NAK 3D 61
16 22 SYN 32 50
17 23 ETB 26 38
18 24 CAN 18 24
19 25 EM 19 25
1A | 26 suB 3F 63
1B 27 ESC 27 39
1C 28 FS 1C 28
1D (29 GS 1D 29
1E 30 RS 1E 30
1F 31 us 1F 31
20 32 SP, SPACE 40 64
21 33 ! 4F 79
22 34 " 7F 127
23 | 35 # 7B | 123
24 36 $ 58 91
25 37 % 6C 108
26 38 & 50 80
27 39 ' 70D 125
28 | 40 (4D 77
29 41) 5D 93
2A 42 * 5C 92
28 43 + 4E 78
2C | 44 ’ 68 | 107
2D | 45 - 60 96
2E 46 . 48 75
2F 47 / 61 97
30 48 0 FO | 240

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

12-6
PAGE

Table 12—2. ASCII/EBCDIC Conversion (Part 2 of 3)

ASCII EBCDIC Signed
Hex Dec Control Character Symbol Hex Dec Number

31 | 49 1 F1 | 241

32 | 50 2 F2 | 242

33 | 51 3 F3 | 243

34 | 52 4 F4 | 244

3 | 83 5 F5 | 245

36 | 54 6 F6 | 246

37 | 55 7 F7 | 247

38 | 86 8 F8 | 248

39 | 57 9 F9 | 249

3A | 58 : 7A | 122

3B | 59 : 5E 94

3¢ | 60 < 4c 76

3 | 61 = 7€ | 126

3E | 62 > 6E | 110

3F | 63 ? 6F | 111

40 | 64 @ 7C¢ | 124

41 65 A c1 | 193 +1
42 | 66 B Cc2 | 194 +2
43 | 67 c C3 | 195 +3
4 | 68 D Cc4 | 196 +4
45 | 69 E c5 | 197 +5
46 | 70 F c6 | 198 +6
47 | N G Cc7 | 199 +7
48 | 72 H c8 | 200 +8
49 | 73 l co | 201 +9
4A | 74 J D1 | 209 -1
48 | 75 K D2 | 210 -2
4C | 76 L D3 | 211 -3
4D | 77 M D4 | 212 -4
4E | 78 N D5 | 213 -5
4 | 79 o] D6 | 214 -6
50 | 80 P D7 | 215 -7
51 81 o] D8 | 216 -8
52 | 82 R D9 | 217 -9
53 | 83 S E2 | 226

54 | 84 T E3 | 227

55 | 85 u E4 | 228

56 | 86 Y ES | 229

57 | 87 w E6 | 230

58 | 88 X E7 | 231

59 89 Y E8 232

5A | 90 z E9 | 233

58 | 9N [4A 74

5C | 92 \ EC | 224

5D | 93] 5A 90

5E | 94 5F 95

5F | 95 - 6D | 109

60 | 96 ' 79 | 121

61 | 97 a 81 129

62 | 98 b 82 | 130

63 | 99 c 83 | 13

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

12-7
PAGE

Table 12—2. ASCII/EBCDIC Conversion (Part 3 of 3)

AScit Control Character Symbol EBCDIC Signed
Hex Dec Hex Dec Number
64 | 100 d 84 | 132
65 [101 e 85 | 133
66 | 102 f 86 | 134
67 | 103 g 87 | 135
68 | 104 h 88 | 136
69 | 105 i 89 | 137
6A | 106 j 91 | 145
68 | 107 k 92 | 146
6C | 108 ! 93 | 147
6D | 109 m 94 | 148
6E | 110 n 95 | 149
6F | 111 o 96 | 150
70 | 112 p 97 | 151
71 [113 g 98 | 152
72 | 114 r 99 | 153
73 | 115 s A2 | 162
74 | 116 t A3 | 163
75 | 117 u A4 | 164
76 | 118 v A5 | 165
77 | 119 w A6 | 166
78 | 120 x A7 | 167
79 | 121 y A8 | 168
7A | 122 z A9 | 169
78 | 123 { co | 192
7C | 124 : 6A | 106
7D | 125 } Do | 208
7E | 126 ~ A1 | 161
7F | 127 DEL 07 | o7
80 | 128 ISR 20* | 32
81 | 129 ssB 21* | 33
82 | 130 FsB 22* | 34

PART 4. DEBUGGING AIDS

8057 Rev. 2 l SPERRY UNIVAC Operating System/3 L B
UPDATE LEVEL

UP-NUMBER

13
PAGE

13. Debugging Language

13.1. GENERAL

The source program debugging statements, READY TRACE, RESET TRACE, EXHIBIT, and *DEBUG in the
SPERRY UNIVAC Operating System/3 {0S/3) COBOL, are extensions to American National Standard COBOL (1968).

The output resulting from the execution of a debugging statement is displayed upon the printer (LFD) name =

SYSLST. The output may be transferred to tape or disc by including the appropriate job control statement options
and format information. Printing is performed after a 1-line paper advance.)

The debugging statements may be included between procedure division statements, or the statements may be put in
packet form at the end of the procedure division (13.5).

13.2. READY TRACE
Function:
The execution of a READY TRACE statement produces the output:
TRACE ON AT line-number.
When a section or a paragraph is entered for execution, the following output is produced:
section-name (or unqualified-paragraph-name) line-number
Format:
READY TRACE,

Rule:

This statement may appear anywhere in the procedure division or in a compile time debugging packet.

13.3. RESET TRACE
Function:

The execution of the RESET TRACE statement terminates the functions initiated by READY TRACE and
produces the following output:

TRACE OFF AT line-number

13—-2

UP-NUMBER UPDATE LLEVEL l PAGE

8057 Rev. 2 J SPERRY UNIVAC Operating System/3

Format:

RESET TRACE.

Rule:

This statement may appear anywhere in the procedure division or in a debugging packet.

13.4. EXHIBIT

Function:

The execution of the EXHIBIT statement results in a formatted display of identifiers or nonnumeric literals
listed in the statement.

Format:
CHANGED identifier-1 identifi
EXHIBIT { CHANGED NAMED {' entitier-1 ; ”H:, {' entitier-n toral } }
NAMED nonnumeric-literal- nonnumeric-literal-n
Rules:
1. An identifier may not be an index-data-item.

2. An identifier length may not exceed 256 bytes.

3. Nonnumeric literals may not exceed 132 characters in length.

4, Displayed operands are continued as described by the DISPLAY statement. A maximum logical record
size of 132 characters is assumed.

5. An EXHIBIT statement may appear anywhere in the procedure division or in a debugging packet.

6. The NAMED option produces a noncolumnar display of all operands specified in the EXHIBIT
statement. The operands are displayed in source order and are formatted as follows:

- ldentifier
identifying-name/ equal-signAidentifiers-valueA

The identifying-name includes qualifiers and subscripts. A maximum of 130 characters is
displayed.

The identifiers-value may be a maximum of 256 characters. If the identifier is a signed numeric
elementary item, a sign is also displayed following the value.

L Nonnumericiteral

nonnumeric-literal

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3

13
UPDATE LEVEL | PAGE

10.

The CHANGED NAMED option produces a noncolumnar display of nonnumeric literals and,
conditionally, the identifiers specified in the EXHIBIT statement. The format sequence of the displayed
operands is as described in rule 6. If the value of the identifier has not changed since the previous
execution of this EXHIBIT statement, the identifier is not displayed and space is not reserved for the
value in the print record.

All identifier values are considered changed on the initial execution of the statement. If the EXHIBIT
statement does not contain nonnumeric literals and the value of all identifiers is the same as when this
EXHIBIT was previously executed, neither a display nor a form advance occurs.

The CHANGED option produces a columnar display of all nonnumeric literals and the changed values of
all identifiers.

If the value of the identifier has not changed since the previous execution of this EXHIBIT statement,
the positions reserved for the identifier value are displayed containing spaces. All identifier values are
considered changed on the initial execution of the EXHIBIT statement.

When the statement contains only identifiers and none of the values has changed, one line of space is
displayed. The operands are displayed in the order in which they appear in the statement and in the
following format:

n Identifier

identifier-valueA

The identifier-value may be a maximum of 256 characters. If the identifier is a signed numeric
elementary item, its sign is displayed following the value.

L Nonnumeric literals

nonnumeric-iteral A
If two distinct EXHIBIT CHANGED NAMED or two EXHIBIT CHANGED statements appear in one
program, each specifying the same identifiers, the changes in value of the identifiers are associated with
each of the two separate statements. Depending on the path of program flow, the values of the identifier

saved for comparison may differ for each of the two statements.

Variable-length identifiers are not permitted as operands with the CHANGED or CHANGED NAMED
options.

13.5. DEBUGGING PACKET

A packet contains debugging statements referring to a paragraph name or a section name in the procedure division.
The debug packets are grouped together and placed immediately following the source program. The packet
statements are compiled with the source program and are executed at object time; the packets produce the same
result as placing the debug statements directly in the source program following a section name or a paragraph name.

Each debug packet is preceded by a control card with the following format:

l 8

*DEBUG

location

13-4
PAGE

8057 Rev. 2 SPERRY UNIVAC Operating System/3

UP-NUMBER

l UPDATE LEVEL

Location refers to a section or paragraph name which starts anywhere within margin A; a period is not permitted
immediately following location. The name, which may be qualified, indicates the starting point in the program
where execution of the packet is to begin. Location cannot be a paragraph name within any debug packet and the
same location must not be used in more than one debug control card.

A debug packet may consist of procedural statements such as GO TO, PERFORM, or ALTER, which may refer to a
procedure name in any debug packet or in the main body of the procedure division.

When the source COBOL program is on a library file, the library module containing the source program may also
contain *DEBUG contro! cards. Regardless of whether the library module contains any *DEBUG cards, when the
compiler reaches the end of the library module, it will determine if any additional *DEBUG cards are present in the
job control stream. If *DEBUG cards are in the job control stream, they are processed as if they were contained at
the end of the library module. If no *DEBUG cards are present in the job control stream, the process of reading
COBOL input to the compiler is terminated.

Example:

// EXEC COBOL,library-name

// PARAM IN = PROGNAME/LIBIN
// PARAM LST = (0,C,S)

/$
*DEBUG

*DEBUG

/*

PART 5. SAMPLE PROGRAMS

A
UPDATE LEVEL

141
PAGE

UP-NUMBER

8057 Rev. 2 l SPERRY UNIVAC Operating System/3

14. Sample Program 1

14.1. GENERAL

In the SPERRY UNIVAC Operating System/3 {(OS/3), job control defines the job and directs its execution. The
control stream interfaces the 0S/3 COBOL program with the job control.

Each job executed in the system must have a unique name, which is used by the system to identify and locate the
job control stream. Devices are assigned for each input or output file required by job control and the program.
Device assignments for direct access devices must include the volume number (identifies disc pack}, extent request
{establishing a new file or extending an existing file), and file label information.

The following program does not show any job control statements required for compilation, linking, or execution.
See the job control user guide, UP-8065 (current version) for a complete discussion of job control; also see the
. system service programs user guide, UP-8062 (current version) for a complete discussion of the linkage editor.

14.2. PROGO1

This program illustrates the creation of an indexed sequential file from the card reader. The PROGRAM-ID is
PROGO1.

The disc file consists of 80 character records, 10 records per block. The sequence of the records is by department
number.

The INVALID KEY is activated when a sequence or duplicate error occurs within the department number field. The
record in error is printed on the report, with a message DUPLICATE OR SEQ ERROR, and is bypassed from being
written on the disc, and card processing from the reader continues until end of file is sensed.

The end-of-job routine prints the total number of records processed, prints the message END OF JOB, closes all files,
and terminates the job.

LINE NO.
o0o01
00002
00003
00004
nooos
00006
00007
Qgone
00009
000tn
00011
goo12
o001
oool4
00015
00oté
nool7
oo001l8
00019
ogQ20
noo2i
00022
00n23
00024
ngo2s
000246
ooc27

00028

SEQ.

0o0lo001)

golo02

00!0023

001009

00100%

ogines

oolou?

001008

001009

oni101Q

aniolt

ooio12

noiol13

001014

001018

01016

oclio017

nolots

oolole

ooiozo

golo2y

noio22

o0tp23

Q1024

00lo2s

001026

ooto2?

opjo28

SOURCE STATEMENT
IDENTIFICATION DIVISION,
PROGRAM=ID, PRAGO].

AUThQORe SYSTEMS PUB|I TCATIONS,.
INSTALLATION. DEPT 4B&6,
DATE=WRITTEN. OCY 12 1973,

DATE~COMPILEN., DEC 12 1973,

REMARKKSs CREATING AN INDEXED SEGUFENTIAL FILE. -

ENVIRONMENT DIVISION.
CONF JGURATION SECTInMN,
SOURCE«CQMPUTERs UNIVAC=-9030,
OBJUECT=COMPYTER. UNTVAC=9030,
SPECIAL=NAMES,
SYSLST 1S PRINTI1T,
INPUT«OUTPUT SECTIONM.
FILE-CONTROL,
SELECT NEWNFIL aSSIGN TO DISC-2416
ACCESS 15 SEQUENTIAL
ORGANIZATION 1S INDEXER),
RESERVE NO ALTERNAYE AREA
RECORD KEY IS OFPTMO,
SELECT DS ASSIGN TO CARD«READEP.
SELECT LIST ASSIGN TO PRINTER.
DATA DIVISINN,
FILE SECTION.
FO ANEWFIL
RECORDING MODE 1S F
LABEL RECORDS ARE STANDARD

BLOCK CONTAINS 0 RECORDS

1DEH,
PROGNI
PRIGO1I
PROGN]
PROGOI
PROGO]
PROGOI
PROGO]
PROGOI
PROGO]
PROGOI
PROGOY
PROGOL
PROGO)
PROGDY
PR0OGO1
PRNOGOIL
PROGO]
PROGO1
PROGD1
PROGOI
PRNOGO1
PRNGOY
PROGO1I
PROGD}
PROGO!
PROGOY
PROGOI

PROGOI

PAGE

connl

b
P
it
0
Q
c
X
0
m
Q
o
Q
m
C
wn
d
2
@

39Vd]13A31 3ivadn l

fam 4

HIgWNN-dN
C "AvY [S08

g/waysAg BunesedO JVYAINN AHHIdS

'LINE NO .
nooz2e9
00030
nonail
gon3z
10033
nnNo3y
0o03s
a003¢
ngn3?
noo3e
nuol9
ggoarn
nogYl
nony 2
noos3
o044
nUo4s
[I XY
No0&7
00048
0nggoue
0092%5n
1ans1
nogs?2
a00s3
nognNs 4
00085
10066

nnos?7

SEQe
001029
o0ln3o
002001
202002
no2003
nozo04
no2n0s
u0z2p06
anz2nuy
uo20uUs
nnaeye
cn2n1e
fp2011
no2cie
og2c13
o201 4
ae2a1s
d0201s
noz2617
G020l #
un2019
acz2p2n
02021
np2o22
UUZQZS
602024
06202%

aca2n2é

anz2n27”

ol

FD

SOURCE STATEMENT
DATA RECORD IS nlSco1.
DISCD1.
03 DEPTNG PIC XxXX,
N3 FILLER PIC X,
03 SUPPLY="0 Plc XXXX,
03 FILLFR PIC xt(4),
03 NAME PIC X(31).
03 FILLER PIC XxX.
N3 DuwYY PIC 99,
063 FILLER PIC X(5).
03 AMOUNT PIC 9(&).
03 FILLER PIC Xtl1),
03 PaTE PIC X(6),
03 DCODE elC x,
cos
LAREL RECORDS ARE OMITTED
RECORNING #ODF 1S F
RECORD CONTAINS PO CHARACTFRS
DATA RKECORD IS cARDIN,
CARD T,
03 COFPT PIC X(u)e
03 FILLEP PIC X.
63 CSUPNO PIC X(4),
N3 FILLER PIC X(&),
N3 CHAME PIC X131},
N3 FILLER PIC XxX.
03 CRTY PIC 99,
N3 FILLER PIC X(5),

63 CAMT PIC 9861y

IDEN,

PROGO1L
PROANY
PROGOI
PROGOI
PROGO1
PROGDIL
PROGAOL
PROGOI
PROGOL
PROGN |
PRIGOI
PROGOI
PROGO1
PROGO
PROGO1L
PROGOI
PROGO1
PROGO1
PROGOI
PROGE
PROGO)
PROGOL
PROGO!
PROGO1
PROGO1
PHOGO!
PROGN I
PROGO!

PROGOI

PAGE

oonD2

439WNN-dN

3OVvd
el

T "neY [S08

g/waysAg Bunessdg JVAINN AHYHILS

13A37 3ivadn]

LINE NO.
noogsek
0o00s9
20060
00061
n00é2
00043
o006
n00&S
nooséé
NanA?
nooeR
noeea%
ann7o
nnezil
ooo072
nonzl
70074
200756
0076
noe77
nonza
nno7e
nooan
70781
none2
nocK}
oonay
nonas

anoxe

SEG
n02028
unznee
np203n
nganiy
nn2032
0N2033
702034
no3001
no3no2
nganu3l
103004
n0300s
nn4neog
aneng2
ON4c03
nounos
-HDHﬁUS
104004
no4ouz
a04nN0H
no4n0ne
nnNygia
J04011
ao4012
no4nt3
nn4cl1y
no4olLs
np4nles

no4017

FU

G1

SOURCE

C3 FILLER PIC

03 C(DATE PIC

N3 COCONE PIC

LIST

LAREL RECNRDS

STATEMFNT
Xtll)e
Xth)e

X,

ARFE OMITTED

CATA RECORND IS aUT,

CUT.

03 FILLER PIC

03 POFPT PIC

N3 FILLER PIC

n3y PSypun pIC

N3 FILLER PIC

13 PLANME PIC

03 FILLFER PIC

Xein).

XxXXe

Xeto).

XXXXe

Xt101}a

X(31).

X(5),

n3 PETY PIC 99,

03 FILLER PIC

Kx XX,

(3 PAMY PIC 91(6&)e

03 FILLER FPIC

N3} PDATE PIC

03 FILLE® PIC

Xt11)a

Xté)e

Xthtld,

n3 PCODE PIC X

03} FILLER PIC

Xtt71.

AORKING=STORAGE SECTION,

77

ot

CTR PIC 9999 VAIUE ZERO.

TLINE.

03 FILLFR PIC

03 DESCRP PIC

X155) VALUF SPacES,

Xt23) VALUE

*TOTAL

N3 FILLER PIC X(5) VALUE SPACFS.

N} PCTh PIC Z12G.

NUMRER NF RFCOINS*,

IDEN,
PROGOI
PROGOI
PROGOL
PROGO!
PROGOI
PROGOI
PROGO!
PRNDGO1
PROGDI
PROGOI
PROGO!
PROGO}
PROGOI
PPOGOI
PROGOI
PROGD
PRCGOI
PROGNI
PROGOY
PRGGO]
PROGO]
PROGDI
PROGO1
PROGOIL
PROGO1
PROGAOI
PROGOL
PROGOI

FPROGOI

PAGE

0onn3

HIGWNNN-dN
Z 'A%y LS08

g/warsAg Bunnesadp JVAINN AHYIAS

T3IA3T 3LVALN

39Vd

r—vi

LINE NO.

00087

nopes

ngesse

nDa9n

opagl

00092

00093

20094

00095

0009é

nocs7

no0n9A

nonee

aotore

J010

00102

notlul

aoiny

0o01o0s

ng1cs

nein7

ng1na8a

00109

oolin

0ottt

oottl2

n0113

SEQe
004018
no4n01e
004020
on4g2y
oo4022
no4n23
on4p2s
ao4n2s
on4N2e
no4v27
orsn2s
Qou4nr2e
04039
no4G31
Q04532
004033
ansedl
nnsagz2
onsu03
anseoY
o500y
nnsoos
a0s00é
505007
npscca
oesone

anso1n

c3 FI

SOURCE STATEMENT

LLER PIC X(45) VALUE SPACES.

PROCEDURE DIVISION,

INITIALTZE.

RO

OPEN
OPEN

MOVE

KEAD
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
vRITE

«RITE

ERROR]L,

EQJ.

DISPL

CISPL

MOVE

60 To

MOVE

INPUT (DS,
CUTPUT MEWpIL, LIST,

SPACES TO nUT,

CDS AT END 60 TO EOJ,

CDEFT TO DEPTMA, PDEPT,

CSUPNG TO SUPPLY=NO, PS!HPMAO,
CNAME TD NaAME, PNAME,

CAMT 10 AMOUNT,y PANT,

COATE Te DaVTE, PPATE,

COCNDE TO nCODE, PCODE,

DISCAt INVALID KEY GO TH ERROR{.

OUT REFORf ADVANCING 2 LIHES. GO

ADD 1

TC¢ RO,

TO CTRe

AY *puPLICATE OR SEQ ERQORY UPON PRINTIT.

AY CARDIN PO PRINTIT.

RO

SPACES 10 nUT YRITE OUT AFTER ADVANCING 2 LINES,

CTR TN PCTre MOVE TLINE TN nULT. “RITE QuT BEFORF

ADVANCING t LINF.

DISPL
CLOSE

sTep

AY YEND OF JOE® UPON PRINTIT.
CNSy NESFYILs LIST.

RUN .

1DEN.

PROGO)

PROGO1

PROGO1

PROGOL

PROGO1

PROGO1

PROGOL

PROGO1

PROGOI

PROGDY

PROGDL

PROGO!

PROGOI

PROGOY

PROGO

PROGO1

PROGO]

PROGOI

PROGO

PROGOI

PROGOI

PROGO1

PR0OGO1

PROGGH

PROGO1

PROGO]

PRGCAOY

PAGE

oon0Y4

H3IgNNN-dN
C 'Aey LG08

g/waisAg Bunesedg DVAINN AHYILS

T3A3T 3LVvadN

39vd
S—vi

680C

6801

6802
CUFLICATE OR SEQ E&RROR
68z 1106 E G PAGE
‘ 6803
‘ 6804
‘ 6805
‘ 680¢
' 68U7
| 6608
6809
6810
81l
6812

6813

ENL OF yOB

lipl
l1lpé

1ige

1102
1igl
1102
Itgpt
113
t1us
1197
lig!
lipé
113

finl

K

CHICAGS
LIST

NUMBER

5 4s 10l973a

TOMAS
CARDS
GARKRY
KL INK
PAUL
KOBEKT
SANFORD
wiLLIAM
COMPARE
GONE
KL INE

TOTAL NUMBER OF kECORDS

20
45

45

25
20
25
20
30
40
50
20
45
30

20

1n0173
100173

1n0173

100173
190173
100173
101973
inl?973
101973
191?73
1pl®73
inl?73
151973

1nl973

ONILSIT LNdLNO ‘v'vL

TIA3T 31vadn

HIgWNN-dN
C "A8Y (508

I

g/waysAg bunessdO JVYAINN AHYIdS

39vd
9—vlL

UP-NUMBER

8057 Rev. 2 l SPERRY UNIVAC Operating System/3 LJPDATE LeveL l oplEt

15. Sample Program 2

15.1. GENERAL

In the SPERRY UNIVAC Operating System/3 (OS/3), job control defines the job and directs its execution. The
control stream interfaces the COBOL program with the job control.

Each job executed in the system must have a unique name, which is used by the system to identify and locate the
job control stream.

Devices are assigned for each input and output file required by job control and the COBOL program. Device
assignments for direct access devices must include the volume number (identifies disc pack), extent request
{establishing a new file or extending an existing file), and file label information.

The following program does not illustrate any job control statements required for compilation, linking, or execution.

See the job control user guide, UP-8065 (current version) for a complete discussion of job control; also see the
system service programs manual, UP-8403 (current version) for a complete discussion of the linkage editor.

15.2. PROGO02

The PROGRAM-ID is PROGO2. This program illustrates the use of random retrieval from the file created in the
previous program {PROGO1).

Newfil is now labeled as an input-output file (I-0). This allows both retrieval and updating.

The data division is basically the same as loading the file except that the ACCESS IS RANDOM clause is used in lieu
of ACCESS IS SEQUENTIAL.

SYMBOLIC and RECORD KEY clauses are required in this type of file organization. The data-names for these
clauses must be unique; however, the information must be identical.

The INVALID KEY is activated when a matching record is not found. The no-hit routine identifies the record and
then branches to read the next record from the card reader.

The end-of-job routine prints the total number of records, displays the END OF JOB message, closes all files, and
terminates the job.

LINE NO,
o000l
00002
00003
c0004
00005
00006
00007
00008
00009
oaain
00011
00012
00013
00014
goa1s
00016
poo17
00018
po019
ooo020
00021
c0022
00023
00024
00025
nooz2é
00027

00028

SEQ.
001001
001002
001003
001004
001005
001006
001007
0oil008
001009
ofiolo
ool011
ooigl2
oolola
001014
ooio0ils
00101s
001016
agclol?
00101A
0olo1e
001020
0nin2t
ool022
003001
nodoo2
003003
003004

003008

SOURCE STATEMENTY
IDENTIFICATION DIVISION,
PROGRAMeID. PROGOZ,
AUTHOR, YOUR NAME.
INSTALLATION, DEPT 48660
DATE=WRITTEN. OCT 12 1973,
DATE=COMPILED, OCT 22 1973,
REMARKSs SUPPLY REPORT BY DEPARTMENTY.
ENVIRONMENT DIVISION,
CONFIGURATION SECTIAN,
SOURCE=COMPUTERs UNIVAC=9030.
OBJECT=COMPUTERs UNTVAC=9030,
SPECIAL=NAMES, v
SYSCHAN=]S IS NFXT=PAGE"
SYSLST IS PRINTIT,
INPUT=0UTPUT SECTIONS
FILE=COMNTROL»
SELECT €DS ASSIGN TO CARD=READER.
SELECT NEWFIL ASSIGN TO DISC=a4lé
ACCESS IS RANDOM
ORGANIZATION IS INDEXED,
SYMBOLIC KEY IS KEY=ID
RECORD KEY 1S DFPTNO,
SELECT LIST ASSIGN TO PRINTER,
DATA DIVISIAN,
FILE SECTION.
Fu (DS
LABEL RECORDS ARE OMITTED

RECORDING MODE 1S F

IDEN.
PROGO2
PROGO2
PROGO2
PROGO2
PROGO2
PROGOD2
PROGD2
PROGO2
PROGD2
PROGOZ
PROGO2
PROGO2
PROGO2
PROGOD2
PROGO2
PROGO2
PROGO2
PROGO2
PROGO2
PROGO2
PROGO2
PROGN2
PROGO2
PROGO2
PROGO2
PROGO2
PROGD2

PROGOD2

PAGE

00no1

ONILSIT 3A0I I2HNOS "€l

d38WNN-dN
C 'A8Y £S08

T

g/waisAg Bunesadp JVAINN AHHIIS

q93A37 3Lvadn l

39Vd
Z—-Sl

LINE NO.
00029
gooao
00031
00032
00033
00034
00035
00036
Q0037
0oco03e
00039
coouo
0004l
00042
00043
00044
0004s
00046
00047
o0pu4s8
00Qou4e
goosn
00051
00052
00053
ngos4
00058
00056

000s7

SEQ.

003006
003007
003008
003009
003010
Qo3ol)
003012
003013
003014
003015s
003016
003017
003018
0o3ole
003020
003021

003022
003023
003024
003025
003026
oo3027
003028

003029
003030

003031

003032

003033

003034

01l

]

FD

o1

RECORD CONTAINS 80 CHARACTERS

DATA RECORD IS WOCARD,

SOURCE STATEMENY

HDCARD

03 DATE-CD PIC x(8),

03 FILLER PIC X(72),

CARDIN,

03

03

3

03

03

03

al

03

03

03

03

03

CDEPY PIC XXxXo
FILLER PIC X,
CSUPNO PIC X(4).
FILLER PIC X(b6),
CNAME PIC X(31).
FILLER PIC XxXo
cQTYyY PIC 99,
FILLER PIC X(5),
CAMT PIC 9999V99,
FILLER PIC X1t}
CDATE PIC Xtxl,

CDCODE PIC X,

NEWFIL

RECORDING MODE 1S5 F

LABEL RECORDS ARE STANDARD
BLOCK CONTAINS

GATA RECORD IS plScol.

pIsCole

[k}
03
03
03

03

DEPTNO PIC XxXXe
FILLER PIC X,

DSUPNO PIC X(4).
FILLER PIC X&)

DNAME PIC X(3l).

10 RECORDS

IDEN,
PROGO2
PROGO2
PROGD2
PROGD2
PROGO2
PROGO2
PROGODZ2
PROGO2
PROGO2
PROGO2
PROGD2
PROGO2
PROGO2
PROGOD2
PROGO2
PROGD2
PROGD2
PROGO2
PROGOD2
PROGO2
PROGO2
PROGO2
PROGO2
PROGO2
PROGO2
PROGOD2
PROGO2
PROGO2

PROGO2

PAGE

00no02

HIBNWNN-dN

39Vd
£—Gl

g/wasAg Bunessd0 JVAINN AHHIdS

T 'A8H LSG08

‘13A31 A1vadn

LINE NO,
00058
000s9
000sn
00041
00062
00063
00064
00065
00086
000s7
00048
00069
00070
00071
00072
00073
00074
0007s
00076
00077
00078
ooo7e
00080
ooo081
00082
gooel
o008«
gooes

000086

SEQ.
003035
003036
003037
0pagae
003039
NO3040
00304
00400
004002
004003
004004
a0400%
004006
a04007
004008
Nng4009
ap401l0
004011
004012
004013
004014
004018
004019
004020
00402]
004022
004023
004027

004028

FO

ol

ol

ol

03
03
03l
nd
03

03

SOURCE STATEMENT
FILLER PIC XxX,
DQTY PIC 99,
FILLER PIC X(S)s
AMOUNT PIC 9999V99.
FILLER PIC X(11)s
DATE PIC X(6),

DCODE PIC X.

LIST

LABEL RECORDS ARE OMITTED

DATA RECORD 1S OUT,

ouUT PIC X(132).

LINE],

03
03
03
al
nl
03
03
03
03
03
03
03
03
n3

03

FILLER PIC X(10),
PDEPT PIC XXXXo
FILLER PIC X(10),
POATE PIC X(8&).
FILLER PIC X(10).
PSUPNO PIC XXXXo
FILLER PIC Xi10).
PNAME PIC X(31).
FILLER PIC X(10).
PBAL PIC Z2122Z.99.
FILLER PIC X(S5).
PAMT PIC Z+222499.
FILLER PIC X(6),
PNBAL PIC 2Z,222.99,

FILLER PIC X,

TOTLINE,

03

FILLER PIC X(97)e

IDEN,
PROGO2
PROGO2
PROGOZ2
PROGO2
PROGO2
PROGO2
PROGO2
PROGO2
PROGO2
PROGO2
PROGO2
PROGO2
PROGO2
PROGO2
PROGO2
PRO502
PROGD2
PROGD2
PROGOR
PROGO2
PROGO2
PROGO2
PROGO2
PROGOD2
PROGO2
PROGO2
PROGD2
PROGO2

PROGO2

PAGE

00n03

39vd

Sl

HIgANN-dN
C 'A8Y [G08

g/walsAg Bunessdo JVAINN AHYILS

13A37 alvaanl

LINE NO.
00087
oopes
0po0s89
00090
00091
oop92
00093
oo0e4
00095
00096
00097
00098
00099
00100
00101
coi02
00103
ool04
00105
00106
00107
ao10e
oo109
gollo
OOill
coli2
00112
co114

0ot1is

SEQ.
oo04029
004030
004031
oD%032
006001
006002
006003
006004
006012
006013
006015
006021
006022
006023
006024
006025
006026
006027
0oé&028
oos029
006030
0046031
006032
n0é6cp33
006034
007001
007002
007003

007004

SOURCE STATEMENT
03 PFINAL PIC Xt11),
03 FILLER PIC X(14),
03 PTOT PIC 224222499,

03 FILLER PIC X,

WORKING=STORAGE SECTION,

77
77
77
77
77
77

ol

ol

PF PIC X(11) VALUE *FINAL TOTALS®,
TOYAMT PIC S9999V99 VALUE ZERO,
KEY=1D PiC XXXX.

LINE=COUNT PIC 9% VALUE ZEROD,
PGCT PIC 9999 VaLUE ZERO,

CAMT)] PIC S9999v99 VALUE ZERO,
HEADING1 o

03 FILLER PIC X(35) VALUE SPACES.
03 REPT PI1C Xt27) VALUE 'SuPpLY
03 FILLER PIC X(47) VALUE SPACES,
03 MODAYR,

04 MO PIC XX,

04 MOS PIC X VALUE /%,

04 DA PIC XX,

04 DAS PIC X VA UE v/,

04 YR PIC XX,

03 FILLER PIC X(5) VALUE SPACES.
03 PPAGE PIC X(5) VALUE 'PAGE",
03 PPAGNO PIC 2719 VALUE ZERO.

03 FILLER PIC X VALUE SPACES,
HEADING2,

03 FILLER PIC X(10) VALUE SPACES.
03 T1 BIC XxXX VALUE *DEPTV,

N3 FILLER PIC X(11) VALUE SPACES.

REPORT BY OEPARTMENT'.

1DEN,
PROGOD2
PROGO2
PR0OGO2
PROGO2
PROGO2
PROGOD2
PROGO2
PROGO2
PROGO2
PROGD2
PROGO2
PROGOD2
PROGD2
PROGO2
PROGO2
PROGO2
PROGD2
PROGOD2
PROGO2
PROGO2
PROGO2
PROGO2
PROGO2
PROGO2
PROGOD2
PROGOD2
PROGOD2
PROGO2

PROGO2

PAGE

00n04

H439WNN-dN

g/weysAg bunessdO IVAINN AHYICS

T3A37T 31vadn

39Vd
g—Gl

T "AeY LS08

LINE NO.
00116
oort7
Oﬁlle
o119
ao120
Qo121
ool122
oot2l
0Q124
00128
co126
ng127
no128
no129
0o13n
0013}
no132
00133
00134
no13s
0013¢
00137
Q0138
00139
00140
00141
00142
00143

Q014%

SEQ.

a0700s

0070046

po7007

007008

007009

go7030

007015

007016

co7017

co7018

Al Xol B

oo7020

nneaol

nosol1n

onsnll

necepi2

008013

008015

0onaotae

co8olL7

nosple

oo8otLe

npsnzo

npsp21

0o8p22

oo8n23

o08Dn24

oosQ2s

onsn2é

03
o3
P3
03
03
a3
03
03
n3
03
o3

03

“SOURCE

T2

FILLER
T3

FILLER
T4

FILLER
oLOBAL
FILLER
NENAMT
FILLER
NEABAL

FILLER

PIC

PIC

PIC

PIC

PIC

PIC

plcC

PIC

PIC

PIC

PIC

PIC

STATEMENT

XXXX VALUE *DATE".

X(9) VALUE SPACES.

X(7) VALUE *ITEM NO°*.
X(15) VALUE SPACES,

X(8) VALUE EMPLOYEE®,
X(246) VALUE SPACES.

X(11}) VALUE "OLD BALANCE®,
XXXX VALUE SPACES,

X(6) VALUE TAMOUNT®,

X(5) VALUE SPACES,

X(11) VALUE *NEW BALANCE®",

X VALUE SPACE.

PROCEDURE DIVISION,

INITIALLIZE.

RDa

kD) e

OPEN

OPEN

OPEN

MOVE

READ

MOVE

INPUT CDS,
T=n NFWFIL.
QUTPUT LISTS.

ZERD TO TOTAMT, LINE=COUNT,

CDS AT END 6O TO EUJ.

DATE=CD TO MODAYR, PERFOR™ PTITE,

READ CDS AT END GO TO EOJ.

IF LINE«COUNT > 60 PERFORM PTITF.

MOVE

READ

MOVE

MOVE

MOVE

NENFIL

COEPT TO KeY~1D,

INVALID KEY GO TO MO=hIT,
DEPTNO TO pDEPT,

ONAME TO PnAME,

AMOUNT TO pBAL,

IDEN,
PROGO2
PROGO2
PROGO2
PROGO2
PROGO2
PROGO2
PROGOZ
PROGO2
PROGOZ
PROGO2
PROGD2
PROGO2
PROGO2
PROGD2
PROGN2
PROGO2
PROGD2
PROGO2
PROGO2
PROGOZ
PROGODZ
PROGO2
PROGD2
PROGC2
PROGO2
PROGO2
PROGD2
PROGOZ

PROGOZ

PAGE

co0nos

.)

HI3gWNN-dN
¢ "heY LS08

g/weisAg Bunesad0 OVAINN AHHIAS [

93A37 3LvaAdN [

39Vvd
9—G1

LINE NO,
0014S
00146
00147
00148
n0149
00150
00151
00152
00153
00154
00155
00156
00157
00158
00159
00140
00161
onle2
00163
00164
00165
0D166
00167
nols8
00169
coL7n
oot71
0Qt72

00173

S;Qo
ooeo027
oo8on2s
ooeonze
008030
008031
008032
008033
008034
00803%
008036
nogeapar
008038
0080239
008040
00804y
ooep42
noepu3
0n8pus
0n8p4s
008n4s
0on9050
nne0s2
009053
cnY0sSy
00905%
0C90%6
009057
009060

009061

MOVE
MOVE
MOVE
MOVE
ADD
MOVE
ADD
MOVE
wRIT
ADD
wrRIT
MOVE
G0 7T
PTITE.
MOVE
ADD
MOVE
MOVE
MOVE
MOVE
EQJ,
MOVE
MOVE
S4RIT
DIsSP
cLoS
STOP
NO=H]T,

DlsP

SOURCE STATEMENY
DSUPNO TO PSUPNO,
COATE TO PDATE.
CAMT 10 PAmMT.
CAMT TO CAMTI,
AMOUNT To CaMTy,
CAMYTt TO PNBAL,
CAMT1 TO TOTAMT,
CAMT) TO AMOUNT,
E LINEY AFTFR ADVANCING 2 LINES.
3 TO LINE=CAUNT, MOVE SPACES T0O 0UT,
E DISCOl INVALID KEY GO TO KO=HITe
ZERO TO CArTl,.
0 RD1.
MOVE 0 TO LINE=COUNT,.
SPACES 10 oUT. WRITE OUT AFYER ADVANCING NEXT=PaGE.
1 T0 PGCTs MOVE PGCT TO PPAGNO,
HEADINGI To OUT. WRITE OUT AFTER ACVANCING 1 LINE,
SPACES TO nUTe. WRITE OUT AFTER ADVANCING | LINE.
HEADING2 Yo OUT W¥RITE O0T AFTER ADVAKNCING 2 LINES.

SPACES TO LT, ADD 4 To L INE=COUNT.

TOTAMT TO pTOT,

PF T0 PFINal,
£ TOTLINE AFTER AOVANCING 2 LINESe
LAY *END OF JOBY UPON PRIMTIT,

E CPSs NE®FILs LIST,

RUN

LAY *TWIS RFCORD IS NOT FOUND® UPON FRINTIT.

IDEN,
PROGOD2
PROGD2
PROGO2
PROGO2
PROGO2
PROGO2
PROGOD2
PROGO2
PROGO2
PR0OGO2
PROGO2
PROGOZ
PROGO2
PROGO2
PROGO2
PROGD2
PROGO2
PROGO2
PROGO2
PROGO2
PROGO2
PROGOD2
PROGO2
PROGO2
PROGOD2
PROGO2
PROGO2
PROGD2

PROGN2

PAGE

00n0é

H38WNN-dN
T 'AeyY LS08

3OV
L—Sl

g/wasAg bunesadQ JYAINN AHYICS

d] 13A37 31vadn

15—-8

PAGE

8057 Rev. 2

SPERRY UNIVAC Operating System/3

UPDATE LEVELI

UP-NUMBER

20%04d
Z0904d
Z0904d
2090¥8d

L0U00 139vd *N3ql

*INNOD
*3INIT | ONIIDNVAQy H3Ld4Y LNQ 3JLl¥e °*LNU
*11LNlY¥d NOJN

AIN3IW3LVLS

*10y 01 09
-3INIT 0L € Qav
04 S3IDvdS 3IAOW
al=A3x Av1dS1Q

324n0S

990600

h060GU

€90s00

290600

*d3s

LL100
94100
S4100
#l100

*ON 3NINT

15-9
PAGE

UPDATE LEVEL

SPERRY UNIVAC Operating System/3

15.4. OUTPUT LISTING

8057 Rev. 2
UP-NUMBER

$8°6

822

aoe*1

002

3]s A

09

0o0°*1

1] A

JONVIVE M3N

Sk

oz*

0s*

sZ*

oz

sZ°

Sh*

ANNONWY

wis01/710

Avi0d TWYN14
o8l
'] Ad
0s*1
S¢L°
09
SL°
SE°*1

3ONVYIVYE Q70

ELALLIP]
WY1
QYO 4NYS
ANYYD
squv)d
mczor
4817

33407dN3

INIWL¥YJIQ A8 L¥OJd3I¥ AddNS

9011

1011

L0t

Zotl

1011

Zot1

fot1

ON W3ll

tsio01
tL1001
cc1001
tL1008
€410t
tzi001
tLto01

3iva

tige
ole9
6089
s0e9
#0989
toe9
1089

ld3g

e0r 40 QN3

16-1
PAGE

UP-NUMBER UPDATE LEVEL

8057 Rev. 2 | SPERRY UNIVAC Operating System/3

16. Sample Program 3

16.1. GENERAL

In the SPERRY UNIVAC Operating System/3 (0S/3), job control defines the job and directs its execution. The
control stream interfaces the COBOL program with the job control.

Each job executed in the system must have a unique name which is used by the system to identify and to locate the.
job control stream. Devices are assigned for each input and output file required by job control and the COBOL
program. Device assignments for direct access devices must include volume number {identifies disc pack), extent
request (establishing a new file or extending an existing one}, and file label information,

The following program does not illustrate any job control statements required for either compilation, linking, or
execution. See the job control user guide, UP-8065 {(current version) for a complete discussion of job control; also
. see system service programs manual, UP-8403 (current version) for a complete discussion of the linkage editor.

16.2. PROGO3

The PROGRAM-ID is PROGO03. This program adds new records to the indexed sequential file created with program
PROGO1.

Newfil must be opened for |-O. The INSERT statement is used in placed of the WRITE statement. The clauses:
ACCESS IS RANDOM, SYMBOLIC KEY, and RECORD KEY must be specified when this type of processing is
desired.

The INVALID KEY no-hit is activated if a duplicate record is detected..

LINE NO.
00001
00002
00003
00004
00005
00004
80007
0ooos
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027

00028

SEQ.
001001
001002
001003
001004
001005
ngl1006
a01007
0oloos
001009
001010
001011
001012
poi014
oolo1s
001015
on1ols
001017
oo1018
001019
001020
001021
001022
002001
002002
003001
003002
003003

0031004

SOURCE STATEMENT

IDENTIFICATION DIVIGION,
PROGRAM=1Ds PRNGO3 .
AUTHOR, YOUR NAME.
INSTALLATION. NEPT 4866,
DATE=WRITTEN. OCT 12 1973,
DATE=COMPILED, 0CT 72 1973,
REMARKSe ADD NEW RECORDS TO EXISTING INDEXED SEQUENTIAL riILE.
ENVIRONMENT DIVISIONS
CONFIGURATION SECTInNG
SOURCE=COUMPUTEP. UNTIVAC-9030.
0BJECT=COMPUTER,s UNIVAC=9030,
SPECIAL=NAMES,

SYSLST 1S PRINTIT,
INPUT=QUTPUT SFCTIONS
FILE=CONTROL,

SELECT CDS ASSI!GM TO CARD=READER.

SELECT MEWFIL ASSIGN TO DISC-n414

ACCESS 1S RANDOM

ORGANIZATION 1S INDEXED,

SYMBOLIC KEY 1S KEY=ID

RECORD KEY IS DFPTNO.

SELECT LIST ASSIGN TO PRINTER.
{=Q=CONTROL,

APPLY VERIFY ON NEWFIL.
DATA DIVISION,
FILE SECTION,
FO ¢OS

LABEL RECORDS ARE OMITTED

IDEN,
PROGOJ
PROGO3
PROGO3
PROGO3
PROGO3
PROGOJ
PROGODJ
PROGO3
PROGOI

PROGOJ

" PROGO3

PROGDJ
PROGOJ
PROGO3
PROGO3
PROGO3
PROGOJ
PROGD]
PROGOJ
PROGO)
PROGDJ
PROGOJ
PROGO3
PROGOCJ
PROGO3
PROGOD3
PROGO3

PROGOCJ

PAGE

0ono1

—
o
w
wn
o}
c
X
0
m
Q
o
O
m
c
1]
=
=
o

H38WNN-dN
C 'A9Y [S08

¢/walsAg BunesadQ JYAINN AHHIAS

A3A3T 31lvadn

JOVvd
91

LINE NO,.

00029
00030
00031
00032
00033
000234
00035
0on3é
0a037
00038
00039
ago4o
00041
nan42
aon«3
00044
0004%
00n4s
noo4?
00048
nog4e
00050
noosi
00052
00053
ﬂDbSQ
000585
00056

noos?

SEQ.
003004
0o3an0s
003006
003007
003008
003nas
Jn3olo
003011t
no3ioi2
0g3o0ta
003014
a03g1s
003016
a0ani17
0o3nie
003n19
og3n20
Dp3021
0Gac22
003023
003024
op3c2s
003024
003g27
gpanzs
on3oze9
co3oe3lo
003031

003032

ol

fFD

01

SOURCE STATEMENT
RECORDING MODE 1S F
RECORD CONTAINS 80 CHARACTERS
DATA RECORD 1S CARCIN,
CARDIN,

03 CDEPT PIC XXxX,

03 FILLER PIC X,

03 CSUPNO PIC X(4),

03 FILLER PIC X&),

03 CNAMF PIC X(31),

03 FILLER PIC XxX,

03 CRTY PIC 99,

03 FILLER PIC X(5),

03 CAMT PIC 9999V99,
03 FILLER PIC X(111,
03 CDATE PIC X(a),

03 CHCODE PIC X,
NEwFIL

RECORDING MODE 1S F
LAREL RECORDS ARE STANDARD
BLOCK CONTAINS 10 RECORDS
DATA RECORD 1S nDISCO1.
DISCOL

N3 DEPTNO PIC XXXX,

03 FILLER PIC X,

03 DSUPNO PIC X{4),

03 FILLER PIC 4A(64),

03 DNAME PIC X(31),

03 FILLER PIC XxXe

63 DRTY PIC 99,

IDEN,
PROGO3
PROGO3
PROGO3
PROGO3
PROGOJ
PROGOJ
PROGOD
PROGOJ
PROGO]
PROGOJ
PROGO]

PROGO3

' PROGO3

PROGD3
PROGOJ
PROGOJ
PROGO3
PROGO3
PROGO3
PROGO2
PROGOJ
PROGC]
PROGO3
PROGO3
PROGD3]
PROGO]
PROGO3
PROGO3

PROGO3

PAGE

oonc2

H38WNN-dN

g/walsAg BunessdQg JVAINN AHHIdS

T3A37 31vddn

3Jovd
€-91

C 'AeY [508

LINE NO,

n00s8

00059

0006n

00041

00062

00063

00064

0006S

00046

00067

00068

00069

n0070

ngo71

goo72

00073

00074

a007s

00076

00077

coo7e

00079

00080

ooos|

oops2

ocoo83

0go8y

00085

0008s

SEQ.
003033
003034
003035
003038
003037
no4001
oo4002
0040013
004004
004001
004004
008001}
aosailo
008011
008012
n08g1l
o08rlie
708017
ooénits
Q08019
008020
a08022
goeoas
ooeo27
oocen2s
noepa2e
009050
009052

009053

SOURCE STATEMENTY
03 FILLER PIC X(5).
03 AMOUNT PIC 9999V99,
03 FILLER PIC X(ll).
03 DATE PIC X(6),
03 DCODE PIC X,
FO LIST
LABEL RECORDS ARE OMITTED
DATA RECORD IS nUT,
01 OUT PIC Xt132),
WORK ING=STORAGE SECTION,
77 KEY=1D PIC XXXX,
PROCEDURE DIVISION,
INITIALIZE.
OPEN INPUT CDS.
OPEN 1=0 NENFIL.
OPEN OUTPUT LIST.
RO1
READ CDS AT END GO TO FOJ.

MOVF CDEPT TC KpY=1D.

READ NEWNFIL INVaALID KEY GO Tn NF+=RECORD.

NEN=RECORD.
MOVE CAQDIN TO nUT,
WRITE OUT AFTER ADVANCING
MOVE SPACES Y0 oUT.
INSERT 0ISC01 FROM CARDIN
GO TO RDt.

EOJ.

MOVE SPACES TO nUT.

? LINFS.

INVALED KEY GO TO NO=HIT,

ARITE OUT AFTER ADVANCING 2 LINFS,

I1DEN,
PROGNI
PROGOD]
PROGOJ
PROGO3
PROGOD3
PROGO3
PROGOJ
PROGO3
PROGO3
PROGOJ
PROGO3
PROGNJ
PRUGO3
PROGO3
éROGOJ
PROGOJ
PROGOI
PROGOJ
PROGO3
PROGD]
PROGO3
PROGO3
PROGOD
PROGO3
PROGOD
PROGO3
PROGODJ
PROGN3

PROGO3

PaAGE

00nD23

H38WNN-dN
C 'A8Y LS08

g/waisAg bunesadp JVAINN AHHIAS

73A3T 31vadn

39Vvd

9l

LINE NO,

000R7

0noes

anos9?

oonegQ

nNo9l

nooy2

ann9l

10094

SEde
009055
np9sSé
1094057
anenén
an9ne
nnvé62
00963

309065

DISPLAY

CLOSE CnS,

SOURCE SYATEMENTY

STOP RUN,

NOwn]T,

DISPLAY

YEND OF JOB' UPON PRIMTIT.

NEAF 1L LIST,

CISPLAY KEY=ID yPON PRIITIT,

MOVE SPaCES TO nuT, Y¥RITE nNuT AFTER ADVANCING

60 To

R,

*TH1IS RFCORD 1S MNOT FOUND' UPON PRINTIT,

1

LINF.

10EN,.

PROGOI

PROGD3

PROGO3

PROGNJ

PROGOD]

PROGOI

PROGOJ

PROGOJ

PAGE

00004

T3A3T 31Lvadn

39Vd
S—9l

HIgGWNN-dN

T 'A®Y LG08

g/waisAg buiesadg OVAINN AHYIADS

8057 Rev. 2 SPERRY UNIVAC Operating System/3 16-6

UP-NUMBER UPDATE LEVEL | PAGE

16.4. OUTPUT LISTING

< - < -« <
T T T T =
~ ~ ~ ~ ~
= > e e ©
~ ~N N8 NN
= (=] c c c
'y 1 i's [K
[[~ [T
> 2 =
x - < x
L x b bl —
: w - z =
- a x - <
- wn e = v
<« = < « =
-4 - woow i
N [t o ~ o <
(= - - o = =
- — - - - w
a
[= s - -~
@ « T - o o
a« @ @ « s =
~ < < - ° -

PART 6. APPENDIXES

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3

A—1

UPDATE LEVEL | PAGE

Appendix A. Character Set

Console Compressed Console
. Hexa- 80-Column Keyboard -) Hexa 80-Column Keyboard
Decimal | ocimal EBCDIC Card Code Code Card Decimal | ocimat escoic @ Card Code Code
(EBCOIC) Code D (EBCDIC)
0 00 NUL 12:098-1 NO PUNCH 69 a5
' o1 1291 3112 70 46
2 a2 12-9-2 4 ! " 71 47
3 03 1293 1li211 72 48
4 04 PF 1294 slo 73 a9
5 05 HT 12:9:5 20120 74 aA { {
[06 Lc 70110 75 48 . .
7 07 DEL 6112110 76 ac < <
8 08 9is 77 40 (‘
9 09 9.318,12 78 4 + +
10 0A 9.418.11 79 aF ! t
1 08 9.118,12,11 80 50 & &
12 oc 95180 81 51
13 0o 9,2]8,12.0 82 52
14 OE 9.718,11.0 83 53
15 OF 9.6(8,12,11,0 84 54
85 55 12.11.95
16 10 86 56 121196
17 1" 87 57 12.11.9.7
18 12 88 58 121198
19 13 81 8 89 59
20 14 RES i 1 90 5A 1)
21 15 NL CARR.RET(CR} |T T 91 58 B $
92 5C . .
22 16 BS PP 93 5D))
23 17 I o o 94 SE ; ;
24 18 s s 95 5F A A
25 19 |) 96 60 - -
26 1A T T 97 61 / /
27 8] I 98 62
28 1c o o 99 63
29 1D N N 100 64
30 1€ s s 101 65
3 1F 102 66
32 20 DS o, 4 103 67
33 21 s0s 1 5, 104 68
34 22 FS 2, 6 108 69
35 23 3 7, 106 6A |(vert. bar} |{vert, bar)
36 24 BYP 107 68 ,(Comma) , {Comma)
37 25 LE LINE FEEDILF) 108 6C % %
109 6D — (Underscore} ——{Underscore)
38 26 €08 096 110 6E > >
39 27 PRE 0.9.7 1 6F ? ?
40 28 0-9-8 112 70 12:11-0
a1 29 0981 113 7 1211091
42 2A SM 0.9.82 114 72 12:11-09-2
a3 2B 09-8:3 1185 73 1211093
4 2c 0-9-8-4 116 74 1211094
45 20 0.9-8-5 117 75 12-11-095
46 2E 0-9-86 118 76 12:11-08-6
119 77 12:11-09-7
a7 2F 09-8.7 120 78 12-11-098
48 30 12-11-0-9-8-1 121 79 81
49 31 91 122 TA : 82 H
50 32 92 123 78 # 83 #
51 33 9.3 124 7€ @ 84 @
52 34 PN 9.4 125 70 ‘Prime or Apos)| 85 (Prime or Apos)
53 35 RS 9.6 126 7€ = 86
54 36 uc 96 127 7F “{Quotes} 87 “{Quotes)
55 37 EOT 9.7 S{EOM) 128 80 12-08-1
129 81 o 12-0-1
56 38 98
57 39 9-8-1
58 3A 982
59 38 9.83
60 3c 9.84
61 30 985
62 3€ 9.86
63 3F 987
64 a0 SP NO PUNCHES SPACE (SP)
65 a4 12:09-1
66 42 12092
67 a3 12093
68 aa 12.094

8057 Rev. 2 SPERRY UNIVAC Operating System/3 A-2

UP-NUMBER UPDATE LEVEL] PAGE
Console Console
. Hexa- 80-Column Keyboard . Hexa- 80-Column Keyboard
Decimal | acimat escoic @ Card Code Code Decimal | 4 ocimal EBCDIC Card Code Code
{EBCDIC} (eBCOtC)

130 82 b 12-02 192 co [Z4 12:0
13t 83 c 12:0-3 193 c1 A 121 A
132 84 d 12-04 194 c2 B8 12.2 8
133 85 e 12-05 195 c3 c 123 c
134 86 [12-06 196 ca D 12-4 D
135 87 9 12:0-7 197 cs 3 125 E
136 88 h 12-08 198 c6 F 126 F
137 89 P 12:09 : 199 [ord G 127 G
138 8A 12:08-2 200 c8 H 128 H
139 8B 12-0-8-3 201 ce 1 12-9]
140 8C 12084 202 cA 120982
141 8D 12085 203 c8 12-09-8-3
142 8E 12-08-6 204 cc 12-:09-84
143 8F 12.08-7 205 ¢D 120985
144 90 121181 206 CE 12.09-86
145 91) 121149 207 CcF 120987
146 92 k 12112 208 Do [YF4 110
147 93 I 12-11-3 209 D1 J 11 J
148 94 m 12114 210 D2 K 12 K
149 95 n 12115 n 03 L 1.3 L
150 96 o 12116 212 04 M 114 Y
151 97 o 12117 213 D5 N 115 N
152 98 g 12118 214 D6 e} 16 [
153 99 r 12-119 215 D7 4 1.7 4
154 9A 121182 216 D8 Q 11-8 a
155 98 121183 217 09 R 119 R
156 9c 12-11.8-4 218 DA 1211982
157 9D 121185 219 DB 12-11.9-83
158 9E 121186 220 DC 1211984
159 9F 12.11.8.7 221 oD 12-11.9-8:5
160 AD 222 DE 12-11.9-86
161 Al 223 OF 1211987
162 A2 s 224 E0 082
163 A3 t 225 E1 11-09-1
164 A4 u 226 €2 H 0z s
165 A8 ¢ 227 €3 T 03 T
166 A6 w 228 E4 u 04 u
167 A7 x 229 3 v 05 v
168 A8 y 230 E6 w 06 w
169 A9 z 231 E7 X 07 X
170 AA 232 €8 Y 08 Y
171 AB 233 €9 z 09 z
172 AC 234 EA 11.0.9-8-2
173 AD 235 EB 11-09-8-3
174 AE 236 EC 11.09-84
175 AF 237 €0 11.09-85
176 80 238 €E 1110986
177 81 239 EF 11.09-87
178 82 240 FO 0 0 0
179 83 241 F1 1 1 1
180 B4 242 F2 2 2 2
181 85 243 F3 3 3 3
182 86 244 Fa 4 4 4
183 B7 245 5 5 5 5
184 B8 246 F6 [6 6
185 B9 247 F7 7 7 7
186 BA 248 F8 8 8 8
187 88 249 F9 9 9 9
188 8C 250 FA 12-11-0.9-8-2
189 8D 261 FB 12110983
190 BE 252 FC 12-11-09-84
191 BF 253 FD 12-11-0.9-86

254 FE 12.11-09-86

255 £F 12110987

NOTES:

@ Punch patterns used to store the
corresponding hexadecimal
representation in the indicated bit
positions of a byte.

@ Lowercase letters are an industry

/

standard and are not printable on the
SPERRY UNIVAC Series 90 Printers
without special print options.

Some graphic, card code, and
hexadecimal assignments may differ
depending upon the device,
application, or installation policy.

UP-NUMBER

8057 Rev. 2 I

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

A B-1

PAGE

Appendix B. Reserved Words

Reserved words are part of the COBOL language structure and cannot be used for data or procedure names.

ACCEPT
ACCESS
ACTUAL

ADD
ADVANCING
AFTER

ALL
ALPHABETIC
ALTER
ALTERNATE
AND

APPLY*

ARE

AREA

AREAS
ASCENDING
ASCI*

ASSIGN

AT

AUTHOR
BEFORE
BEGINNING
BLANK

BLOCK
BLOCK-COUNT™*
BLOCK-LENGTH-CHECK*
BUFFER-OFFSET*
BY

CALL*
CARD-PUNCH*

CARD-READER*
CARD-READER-51*
CARD-READER-66"
CHARACTER
CHARACTERS
CHANGED™*

CLOSE

COBOL

COMMA

compP

COMP-1*

COMP-2*

COMP-3*

COMP-4*
COMPUTATIONAL
COMPUTATIONAL-1*
COMPUTATIONAL-2*
COMPUTATIONAL-3*
COMPUTATIONAL-4*
COMPUTE
CONFIGURATION
CONTAINS

COPY

CORR
CORRESPONDING
CURRENCY
CYLINDER-INDEX*
CYLINDER-OVERFLOW*
DATA
DATE-COMPILED
DATE-WRITTEN
DECIMAL-POINT
DECLARATIVES
DEPENDING
DESCENDING
DIRECT*

DISC*

DISC-8411*
DISC-8414*
DISC-8415%
DISC-8416*
DISC-8418*
DISC-8430*
DISC-8433"

*Extension to American National Standard COBOL (1968).

DISPLAY
DIVIDE
DIVISION
DOWN

EBCDIC*

ELSE

END

ENDING
ENTER

ENTRY™
ENVIRONMENT
EQUAL
EQUALS*
ERROR

EVERY
EXAMINE
EXCEEDS*
EXHIBIT*

EXIT
EXTENDED
EXTENDED-INSERTION*
FD

FILE
FILE-CONTROL
FILE-LIMIT
FILE-LIMITS
FILE-PREPARATION*
FILLER

FIRST

FOR
FORM-OVERFLOW*
FROM
GENERATE
GIVING

GO

GREATER

HIGH-VALUE
HIGH-VALUES
-0
I-0-CONTROL
IDENTIFICATION
IF

IN

INDEX
INDEXED
INDICES™
INITIATE
INPUT
INPUT-OUTPUT
INSERT™
INSTALLATION
INTO

INVALID

IS

JUST
JUSTIFIED

KEY

LABEL
LEADING

LEFT

LESS

LINE

LINES
LINKAGE*
LOCK
LOW-VALUE
LOW-VALUES
MAP*
MASTER-INDEX*
MEMORY
MODE
MODULES
MONITOR*
MORE-LABELS*
MOVE

8057 Rev. 2

SPERRY UNIVAC Operating System/3

B

B-2

UP-NUMBER UPDATE LEVEL PAGE
MULTIPLE REPLACING SYSCHAN-14* TALLY
MULTIPLY RERUN SYSCHAN-15* TALLYING
NAMED* RESERVE syscom* TAPE
NEGATIVE RESET SYSCONSOLE* TAPE-6*
NEXT RESTRICTED* SYSDATE* TAPES*

NO RETURN SYSERR* TERMINATE
NOT REVERSED SYSERR-0* THAN
NOTE REWIND SYSERR-1* THEN*
NUMERIC REWRITE* SYSERR-2* THROUGH
OBJECT-COMPUTER RIGHT SYSERR-3* THRU
OCCURS ROUNDED SYSERR-4* TIME*
OF RUN SYSERR-5* TIMES
OFF SAME SYSERR-5* TO
OMITTED SD SYSERR-6* TRACE*
ON SEARCH SYSERR-7* TRACKS*
OPEN SECTION SYSERR-8* TRAILING*
OPTIONAL SECURITY SYSERR-9* TRANSFORM*
OR SEEK SYSERR-10* UNEQUAL*
ORGANIZATION* SEGMENT-LIMIT SYSERR-11* UNIT
OTHERWISE* SELECT SYSERR-12* UNIVAC-9000*
-» OUK-90-250* SENTENCE SYSERR-13* UNIVAC-9025*
OUK-90-300* SEPARATE™ SYSERR-14* UNIVAC-9030*
¥ ouk-90-400* SEQUENTIAL SYSERR-15* UNIVAC-9040*
OUK-90-600* SET SYSERR-16* UNlVAC-QOGO*
OUK-90-700* SIGN* SYSERR-17* UNIVAC-9070*
f OUTPUT SIZE SYSERR-18* UNIVAC-920011*
PERCENT* SORT SYSERR-19* UNIVAC-9300*
PERFORM SOURCE-COMPUTER SYSERR-20* UNIVAC-930011*
PIC SPACE SYSERR-21* UNIVAC-9400*
PICTURE SPACES SYSERR-22* UNIVAC-9480*
POSITION SPECIAL-NAMES SYSERR-23* UNIVAC-9700*
POSITIVE STANDARD SYSERR-24* UNTIL
PRINTER* STATUS SYSERR-25* upP
PROCEDURE STOP SYSERR-26* UPON
PROCEED SUBTRACT SYSERR-27* USAGE
PROCESSING SYMBOLIC* SYSERR-28*
PROGRAM* SYNC SYSERR-29* USE
PROGRAM-ID SYNCHRONIZED SYSERR-30*
QUOTE SYSCHAN-1* SYSERR-31* USING
QUOTES SYSCHAN-2* SYSIN* VALUE
RANDOM SYSCHAN-3* SYSIN-96* VALUES
READ SYSCHAN-4* SYSIN-128* VARYING
READY* SYSLOG* VERIFY*
RECORD SYSCHAN-5* SYSLST* WHEN
RECORDING* SYSSWCH* WITH
RECORDS SYSCHAN-6* SYSSWCH-0* WORDS
REDEFINES SYSCHAN-7* SYSSWCH-1* WORKING-STORAGE
REEL SYSCHAN-8* SYSSWCH-2* WRITE
RELATIVE SYSCHAN-9* SYSSWCH-3* ZERO
RELEASE SYSCHAN-10* SYSSWCH-4* ZEROES
REMAINDER SYSCHAN-11* SYSSWCH-5* ZEROS
REMARKS SYSCHAN-12* SYSSWCH-6*
RENAMES SYSCHAN-13* SYSSWCH-7*
SYSTIME*

*Extensions to American National Standard COBOL (1968).

8057 Rev. 2 | SPERRY UNIVAC Operating System/3

UP-NUMBER

Cc—1
PAGE

UPDATE LEVEL

Appendix C. Intermediate Results
in Arithmetic Operations

C.1. GENERAL

For certain arithmetic statements in the SPERRY UNIVAC Operating System/3 (0S/3) COBOL, the compiler
generates code that uses internal work areas for storage of intermediate results. Intermediate results may be required
in the following types of statements:

L ADD, where more than one operand precedes TO or GIVING.

n SUBTRACT, where more than one operand precedes FROM or GIVING.

The compiler provides a description for an intermediate result which is appropriate for use in the operation or series
of operations for which it is required. .

C.2. ADD AND SUBTRACT STATEMENTS

The description of the intermediate result area is determined by forming the composite of operands (6.6.1.1) and
appending one additional digit in the most significant position to contain overflow when 10 or fewer operands
immediately follow the verb, or two digits for more than 10 operands.

D-1

UP-NUMBER PAGE

8057 Rev. 2 { SPERRY UNIVAC Operating System/3

UPDATE LEVEL

Appendix D. Compiler Diagnostics

D.1. GENERAL

The SPERRY UNIVAC Operating System/3 (OS/3) basic COBOL compiler generates system console and diagnostic
messages during compilation. System console messages refate to the compilation environment and are displayed
when the error condition is encountered. The job is terminated and the error condition must be corrected before the
job can be rerun. The diagnostic messages flag errors encountered in the source program during compilation. A list of
all diagnostic messages generated is output after all other printer options are satisfied.

D.2. DIAGNOSTIC MESSAGES

' The diagnostic listing is produced as its last printed output. Each diagnostic message contains the compiler-generated
line number on which the error occurred, the diagnostic severity code, the diagnostic number, and the diagnostic
message text.

The diagnostic severity code definitions are:

P (precautionary)

No source language error was detected, but an unusual or potentially undesirable condition was noted by
the compiler.

C (changed)
A character, word, clause, entry, or statement in the source program is omitted or used incorrectly. To
compensate for the error, the item has been changed by the compiler to avoid its deletion and reduce the
probability of error propagation. Execution of the object time program may give unpredictable results.
U (uncorrectable)
A source language error was detected which caused the compiler to delete a character, word, clause,

entry, or statement from the source program. The compiiation continues, but other errors may result
because of the deleted item. Execution of the object program, in general, gives unpredictable results.

D-2
PAGE

8057 Rev. 2 l SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL

S {compiler restriction exceeded)

The compilation continues but, to generate code for the excessive items, a recompilation is necessary
after source program modification or with more storage assigned to the compiler.

The following chart explains the error messages and related recovery procedures. The messages are listed in
ascending order based on the message number,

Message
Number

Severity
Code

Diagnostic Message

Explanation

Reason

Rule

Recovery

ERROR IN SOURCE LINE SEQUENCE
NUMBERING.

The characters in columns
1 to 6 of the source line
are alphanumerically less
than columns 1 to 6 of the
previous source line.

The sequence number,
columns 1 to 6 of the
source line, is an
optional entry used
only by the programmer
to establish a sequence
among the various lines
of coding.

The source line is processed
as though the error had not
occurred.

AREA-A NON-BLANK WITH HYPHEN
IN COLUMN 7.

A nonblank character was
found in area A {columns
8 to 11) when continuation
was specified by a hyphen
in column 7.

When continuation is
specified by hyphen in
column 7, the contin-
ued portion must begin
in area B (columns 12
10 72).

The first nonblank character
after column 7 is accepted
as the beginning of con-
tinuation.

003

ERROR IN COLUMN 7 OF SOURCE
LINE.

An invalid character was
found in column 7.

The only acceptable
characters for column
7 are the space, hyphen
{continuation}, or
asterisk (comment).

A space is assumed to have
been found in column 7.

SPACE FOLLOWING LEFT
PARENTHESIS.

One or more spaces were
detected following a left
parenthesis.

In OS/3 COBOL, spaces
must not separate left
or right parentheses
from that which they
enclose.

Processing continues as if the
space had not occurred.

NON-NUMERIC LITERAL CONTINUA-
TION DID NOT BEGIN WITH QUOTE
OR APOSTROPHE.

The continued portion of a
nonnumeric literal did not
begin with a quote or
apostrophe.

When continuation of a
nonnumeric titeral is
specified by a hyphen
in column 7, the con-
tinued portion must
begin with a quote or
apostrophe in area B.

Processing continues as if a
quote or apostrophe occurred
prior to the first nonblank
character.

IMPROPER TERMINATION OF NON-
NUMERIC LITERAL literat.

The second of the two quotes
or apostrophes that enclose

a nonnumeric literal is not
followed by a space or
punctuation and a space.

The terminating quote
or apostrophe enclosing
a nonnumeric literal
must be followed by a
space or punctuation
and a space.

Processing continues as if a
space had occurred. The first
30 characters of the nonnumeric
literal are noted in the
diagnostic.

A3A37 31vadn

JOVd
£€—-a

"H38NNN-dN
C 'A3Y LS08

g/waysAg BunesadO JVAINN AHYIdS

Explanation

Message Severity Diagnostic Message
Number Code
Reason Rule Recovery
007 C EXCESSIVE CHARACTER STRING A character string which Maximum legal sizes are: Processing continues after
char-string. is greater than its maximum 132 characters for non- the excessive characters
legal size was detected. numeric literals, 20 are discarded. The first
characters for numeric 30 characters of the string
literals {including sign are noted in the diagnostic.
and decimal point), 30
characters for nonliterals.
008 U INVALID CHARACTER DETECTED An invalid character was An invalid character is The entire string is deleted.
IN char-string. found in the character one which is in the COBOL
string displayed in the character set but which is
diagnostic. made invalid by the context
in which it appears, e.g.,
P'CTURE.
009 V) ILLEGAL CHARACTER DETECTED An illegal character was An illegal character is The entire string is deieted.
N char-string. found in the character one that is not in the
string displayed in the COBOL character set,
diagnostic. eg., #
010 C NON-NUMERIC LITERAL OF Two quotes or apostrophes A nonnumeric literal A nonnumeric literal of one
SIZE O ENCOUNTERED with no intervening must have at least one space character is assumed.
characters were encountered. character between the
enclosing guotes or
apostrophes.

o C HYPHEN EXPECTED IN COLUMN 7. A nonnumeric literal is A hyphen in column 7 and Processing continues as if a
being continued and a a quote or apostrophe in hyphen were encountered.
hyphen is missing from area B are needed to con-
column 7. tinue a nonnumeric literal.

012 C HYPHEN IN COLUMN 7 AND There is no terminating Continuation of a non- The nonnumeric literal is

QUOTE OR APOSTROPHE EXPECTED. quote or apostrophe on the numeric literal is specified terminated on the previous
previous source line and no by a hyphen in column 7 source line at column 72.
hyphen in column 7 or quote and a quote or apostrophe
or apostrophe on the current in area B preceding the
source line to indicate continued portion of the
continuation. nonnumeric literal.
013 C SPACE PRECEDING RIGHT One or more spaces have been In OS/3 COBOL, spaces Processing continues as if

PARENTHESIS.

detected preceding right
parenthesis.

must not separate teft or
right parentheses from
that which they enclose.

the space had not occurred.

T3A3T 31vadn

Jovd
v—a

HIGWNN-dN

C 'A9Y £908

g/walsAg bunesddp JVAINN AHHICS

Explanation

Message Severity Diagnostic Message
Number Code

Reason Rule Recovery
014 U SYNTAX REQUIRES clause, The character-string listed See applicable language If the error appears within

char-string INVALID.

as invalid in the message
text has produced a syntax
error. The required item
is a source string that
would have correctly
completed the clause,
entry, or statement in
error.

formats in this manual.

a clause, such as ACCESS or
OCCURS, the clause is deleted.

{f the error appears within

an entry, such as the assign
device type or an invalid name
following FD, the entire entry
is discarded.

If the error appears within a
statement, the statement is
ignored.

When a syntax error occurs,
source strings are ignored

until one of the following

listed recovery types is
detected, whereupon processing
resumes. Recovery is possible
on the string listed as invalid

in the diagnostic.

IDENTIFICATION, PROGRAM-
ID, AUTHOR, INSTALLATION,
DATE-WRITTEN, DATE-
COMPILED, SECURITY,
REMARKS, ENVIRONMENT
CONFIGURATION, SOURCE-
COMPUTER, OBJECT-
COMPUTER, SPECIAL-NAMES,
any SPECIAL-NAME definition,
INPUT-QUTPUT, FILE-
CONTROL, SELECT, FOR,
FILE-LIMIT, ACCESS, ACTUAL,
SYMBOLIC, RELATIVE,
ORGANIZATION, RESERVE,
1-O-CONTROL, RERUN, SAME,
APPLY, DATA, FILE, FD, SD,
BLOCK, RECORD, LABEL,
RECORDING, DATA, VALUE,
OCCURS, PICTURE, USAGE
SYNCHRONIZED, JUSTIFIED,
BLANK, COMPUTATIONAL,
COMP-1, COMP-2, COMP-3,
COMP-4, DISPLAY, INDEX,
SIZE, MAP, level-number
WORKING-STORAGE, LINKAGE,
PROCEDURE, Procedure-name
in Area A, any verb.

HIgGWNN-dnN
g/waysAg Bunesadg JVAINN AHYHICS

T3IAIT 3ivdadn

39vd
S—a

C "heY [G08

Explanation

x::a: s:;::ty Diagnostic Message
Reason Rule Recovery

015 S COMPILER ERROR This diagnostic is issued The occurrence of this
only as the result of a diagnostic should be
compiier/system error. reported using the SUR

procedure,

016 u FILE-NAME file-name NOT The file-name being refer- A file-name referenced The referenced file-name is

PREVIOUSLY SELECTED. enced has not been defined ina RERUN, MULTIPLE, deleted from the entry.
ina SELECT entry. VERIFY, BLOCK-COUNT
or SAME AREA entry
must appear in a
SELECT entry.
0ot7 V] EXTERNAL-NAME external-name The external-name being The external-name speci- The RERUN entry is deteted.
NOT PREVIOUSLY ASSIGNED. referenced was not assigned fied in a RERUN entry
ina SELECT entry. must match the assigned
external-name or, if
external-name was not
specified, the first eight
characters of the
SELECT file-name.
018 u clause PREVIQUSLY SPECIFIED An entry, such as APPLY An entry, such as APPLY The duplicate entry is deleted.
FOR filename. BLOCK-COUNT, was multiply BLOCK-COUNT, should be
specified for the listed specified only once for
file-name. a given file.
019 U name PREVIOUSLY DEFINED AS The listed name appears File-names and external- The entire SELECT entry is
EXTERNAL-NAME OR FILE-NAME. in more than one SELECT names specified in deleted.
entry. SELECT entries must be
unique.

020 U MISSING DATA DIVISION HEADER. The PROCEDURE DIVISION All four division headers Processing continues with the
header has been en- must appear in every source | PROCEDURE DIVISION header.
countered without prior program and conform to If data division entries exist,
detection of the DATA the following order: they are ignored.

DIVISION header. IDENTIFICATION, ENVI-
RONMENT, DATA,
PROCEDURE.
021 V] MISSING DATA AND PROCEDURE The end of the source All four division headers If data division entries or

DiVISION HEADER.

program has been reached
without a DATA DIVISION
or PROCEDURE DIVISION
header being encountered.

must appear in every
source program and
conform to the following
order: IDENTIFICATION,
ENVIRONMENT, DATA,
PROCEDURE.

procedure division statements
exist, they are ignored.

H3IgWNN-dN
C 'A3Y £G08

T3A3T ALVadn

3OVd
9—a

g/waisAg bunesadQ OYAINN AHHIdS

Explanation

Message Severity Diagnostic Message
Number Code
Reason Rule Recovery
022 [of RESERVE INTEGER literal The number of alternate The RESERVE clause One alternate area is allocated
PROCESSED AS 1. areas specified in the must specify one alternate for this file.
RESERVE clause is not area, or none.
acceptable.
023 u FILE-NAME file-name The listed file-name appears A file-name cannot be The file-name in error
CONFLICTS WITH PREVIOUS in multiple SAME AREA specified in more than is deleted from the SAME
SAME AREA CLAUSE. or SAME RECORD AREA one SAME AREA or SAME | AREA clause.
clauses. RECORD AREA clause.
024 U clause CLAUSE IS OUTSIDE A clause, such as SYM- Clauses associated with The clause is deleted.
SELECT ENTRY. BOL.IC, is not associated a SELECT entry must
with the previously com- appear within the entry,
pleted SELECT entry. i.e., prior to the period
that terminates the entry.
025 U CURRENCY SIGN SYMBOL The currency sign specified The currency sign symbol The clause is deleted and the
character INVALID. is not contained within the must be within the currency sign remains a $.
vatid currency sign character COBOL character set
set. but cannot be one of
the following: The digits
Othrough 9ABCDEPR
SV X Zspace* ,+—.;
()or”,
026 P EXTERNAL-NAME external-name The external-name contains Only the first eight charac- The excess characters in the
TRUNCATED. more than eight characters. ters of the external-name external-name are deleted.
are meaningful.
027 C HEADER REQUIRED AT THIS POINT. The current source line The FILE-CONTROL header{ The header is assumed to have

must be preceded by the
tisted header.

must precede the first
SELECT entry, the
SPECIAL-NAMES header
must precede the first
special-name, and the
1-O-CONTROL header must
precede the first RERUN,
SAME, APPLY, or
MULTIPLE FILE entry.

been encountered.

H439WNN-dN

39Vd

C 'AdY LS08

g/wiaisAg bunessdQ JYAINN AHYIdS

| 13A37 3Lvadn

a

L—

Explanation

Message Severity Diagnostic Message
Number Code
Reason Rule Recovery
028 C CLAUSE CONFLICTS WITH ACCESS OPTIONAL and RESERVE See Section 11. The clause in error is deleted.
METHOD SPECIFICATION. are applicable only to Line number refiects last state-
disc files with ACCESS ment in the SELECT clause.
SEQUENTIAL and
ORGANIZATION
SEQUENTIAL.
029 U file-name PREVIOUSLY SPECIFIED The listed file-name appears A given file may control The RERUN entry is deleted.
AS RERUN CONTROLLER. in multipte RERUN entries no more than one RERUN
as the RERUN controller. receiver.
030 U INVALID SPECIFICATION OF The listed RERUN receiver RERUN receivers must be The RERUN entry is deleted.
RERUN RECEIVER external-name. is not a tape or disc. assigned to a tape or disc.
031 S ADDITIONAL MEMORY REQUIRED FOR The compiler does not have Each SELECT entry requires{ This SELECT entry and all others
SELECT PROCESSING. sufficient main storage 26 bytes of main storage plus| that follow are deleted.
to process all of the 1 byte for each character in
SELECT entries. the file-name. To increase
the number of SELECTS
that can be processed, recom-
pile using smatler file-names
or with more main storage
assigned to the compiler.
032 U DUPLICATE CLAUSE OR HEADER. A clause such as ACTUAL All clauses must be unique The duplicate clause or header
or a header such as within their associated is deleted.
AUTHOR has been multiply entries. All headers
specified. must be unique.
033 U HEADER OUT OF SEQUENCE. The header on the indicated The order of headers must The header is deleted.
line number is out of sequence. be as defined.
034 V) CLAUSE APPLIES GNLY TO The clause or entry at the VERIFY, RANDOM, RE- The clause or entry is deleted.

RANDOM ACCESS FILES.

indicated line number applies
only to random access files.

STRICTED, ORGANIZA-
TION, ACTUAL, SYMBOL-
1IC, RELATIVE, or MUL-
TIPLE apply only to

random access fites.

T3A3TT 3Lvadn

39Vd
8

H3IgWNN-dN
¢ "A8Y /508

g/weisAg BupeisdO IVAINN AHYIdS

—Q

Explanation

mb: Sg;;:ty Diagnostic Message
Reason Rule Recovery
035 U CLAUSE NOT APPLICABLE FOR The clause or entry at the The following clauses The clause or entry is deleted.
file-name. indicated line number is or entries are not
not applicable for the applic3ble for the
listed file-name. indicated devices:
BLOCK-COUNT, CARD-
READER, CARD-
) PUNCH, PRINTER,
RANDOM ACCESS
DEVICE.
MULTIPLE — CARD-
READER, CARD-
PUNCH, PRINTER.
OPTIONAL — CARD-
PUNCH, PRINTER.

036 C INVALID ACCESS-TYPE. An invalid combination of The combinations of The file is classified as ACCESS
ACCESS, ORGANIZATION, ACCESS, ORGANIZATION, SEQUENTIAL, ORGANIZA-
and KEY clauses has been and KEY clauses are TION SEQUENTIAL.
specified. invalid. See Section 11.

037 C COPY STATEMENT REQUIRES Something other than a A period must follow the A period is assumed to have been

PERIOD. period was found following library name of a present.
the library name of a COPY COPY statement.
statement.
038 C LABEL RECORDS CLAUSE OMITTED A LABEL RECORDS clause The LABEL RECORDS LABEL RECORDS OMITTED
FROM file-name. has not been specified for clause is required for atl is assumed.
the listed file-name. files.
039 U MISSING PROCEDURE DIVISION The end of the source pro- All four division headers If procedure division statements

HEADER.

gram has been reached
without detecting the
PROCEDURE DIVISION
header.

must appear in every
program and conform
to the following order:

IDENTIFICATION, ENVIRON-

MENT, DATA, PROCEDURE.

exist, they are deleted.

T3AIT 3ivadn

39Vvd
6—a

HIGNNN-dN

C "A9Y LS08

]

g/waisAg Bunesad) IVAINN AHHIAS

Explanation
Message | Severity Diagnostic Message
Number Code
Reason Rule Recovery
040 C literal NOT A VALID LEVEL NUMBER. The listed level number is 1. Level number values 1. if a level number other than
erroneous because of its are restricted to 01 01 through 49, 66, 77, or 88
value or use. through 49, 66*, 77, is encountered, the level
or 88. number is changed to 49 if
2. The level number of the WORKING-STORAGE or
the first data descrip- LINKAGE SECTION header
tion following an FD* has not been encountered;
or SD must be 01. otherwise, the tevel number
3. A level number 77 may is changed to 01.
not be used within the 2. If the first data descriptor
file section. in a record is not 01, a O1
filler is created by the com-
piler to precede the current
data description.
3. The level number is changed
to 01.
041 U clause CLAUSE INVALID WITH The listed clause is not 1. A REDEFINES clause In rules 1 through 3, and 5
ASSOCIATED LEVEL NUMBER. allowed with the specified may not be used with through 7, the clause is
level number, or a statement a level number 66*, deleted. For rule 4, the first
containing a value clause 88, or a 01 in the value is accepted; all others
is not terminated with a file section, are deleted.
period. 2, A PICTURE clause
may not be used with
a level number 66* or
88.
3. The MAP clause is not
allowed with level
number 66* or 88.
4. Multiple values can only
appear with a level
number 88.
5. The OCCURS clause is
not permitted with a
level number 01, 66*,
or 88.
6. A RENAMES* clause can
only be used with a level
66*.
7. The value clause cannot
be used with a level
number 66*,
042 o REDEFINES MUST BE FIRST CLAUSE. The REDEFINES clause The REDEFINES clause The REDEFINES clause is
was not the first clause must immediately foliow accepted.
in the data description. the name of the data
description.

*FD, RENAMES, and 66 available in extended compiler.

H3I8WNN-dN
C 'A%y LS08

g/welsAg bunessadp JYAINN AHHIS

TAATT 3LVvAdN
g

39vd
oL—-a

Message
Number

Severity
Code

Diagnostic Message

Explanation

Reason

Rule

Recovery

043

clause NOT SUPPORTED

An obsolete COBOL clause
has been encountered.

The SIZE clause is not
within the OS/3 COBOL
language.

The SIZE clause is deleted.

044

LEVEL NUMBER number MUST BEGIN
IN AREA-A.

The levet number 01 or 77
did not begin in area A.

All 01 or 77 level numbers
must start in area A.

The level number is accepted.

045

COPY STATEMENT REQUIRES LIBRARY
NAME, character string INVALID.

A COPY verb was not
followed by a library name.

A library name:

8 s composed of no more
than eight characters of the
set A through Z, 0
through 9, and the
hyphen {-).

8 has at least one al-
phabetic U character.

® does not have a hyphen
as the first or last
character.

B s not a COBOL reserved
word.

The first eight characters of the
string provided are used as a
library name.

046

OCCURS CLAUSE INTEGER INVALID.

An OCCURS clause integer
is O or greater than 65,535.

The minimum OCCURS
value is 1. The maximum
OCCURS vaiue is 65,535.
{In Format 2 of the
OCCURS clause, integer-1
may be 0.)

1f Ois used in Format 1 or as
integer-2 in Format 2, the
OCCURS clause is ignored.

If an integer exceeds 65,535
the integer is assumed to be 1.

LIBRARY NAME character string
EXCEEDS EIGHT CHARACTERS.

The library name following
the COPY verb was found

to be longer than eight charac-

ters.

The name of a library
structure may be a max-
imum of eight characters.

The first eight characters of the
name provided are used.

048

REMAINDER OF THE LINE
FOLLOWING COPY STATEMENT
MUST BE BLANK.

A nonblank character was
found in the remainder of
the line on which the

COPY statement appears.

Since the COPY statement
directs the compiler to
access new lines of
COBOL code, nothing
may follow the COPY
statement on the same
line.

The remainder of the line is
deleted.

DATA-NAME, FILE-NAME OR
A,

The name or number assigned
to the file or data descrip-
tion begins in area A.

File-names, data-names,
level number, and fitler
must not begin in area A,

The name or level number is
accepted.

438WNN-dN
C 'A9Y /508

g/wa)sAg bunesad IVAINN AHHILS

J3A37 31vadn

3OoVd
Li—a

Number

Severity
Code

Diagnostic Message

Explanation

Reason

Rule

Recovery

050

APPLY CLAUSE OR SEGMENT-LIMIT
INTEGER INVALID.

Cylinder overflow of disc
was specified as being
greater than 80 percent,
the buffer offset

value is not from 0 to 99,
or the SEGMENT-LIMIT
value is not from 1 to 49,

Cylinder overflow percent
may not be greater than
80 percent.

The overflow percent is set

to 80 or 90 percent according
to the type of buffer offset
disc, the buffer offset is set

at 99, or the SEGMENT-LIMIT
is set at 49.

H3IgWNN-dN
€ "A8Y [S08

051

BLOCKING SPECIFIED WITH
RECORDING MODE U.

A BLOCK CONTAINS
RECORDS clause has been
specified with a recording
mode of U. Buffer offset
value exceeds 99.

Recording mode U states
that records of the file
are not blocked and may
vary in length,

The BLOCK CONTAINS clause
is deleted. The recording mode
U is accepted or the buffer
offset value is set to 99.

052

CLAUSE NOT ASSOCIATED WITH
FD OR DATA-NAME.

A clause, such as DATA
RECORDS or PICTURE, is
not associated with the pre-
viously completed file or
data descriptor.

Clauses associated with
file or data descriptions
must appear within the
entry; i.e., prior to the
period that terminates
the entry.

The clause is deleted.

053

NO DATA ENTRY FOR PREVIOUS FD
OR SD*.

The previous FD or SO does
not have at least one record
description associated with it.

A record description, with
level number 01, must
follow every FD or SD
description.

The compiler creates a record
description whose name is
FILLER. The size of this
record is set to the number of
bytes specified in the RECORD
CONTAINS CHARACTERS
clause, if the clause was de-
tected; otherwise, the size is set
to 30 bytes.

FD OR SD* NOT IN FILE SECTION.

An FD or SD was detected
outside the file section.

Every file or sort descrip-
tion must be within the file
section.

The file or sort description is
deleted. Any record descrip-
tions following the FD or SD are
accepted. They are allocated to
either the working-storage or
linkage section, depending on
which header was last encoun-
tered.

g/waysAg BunesadQ JYAINN AHHIAdS

055

LEVEL NUMBER number ENCOUNTERED
PRIOR TO SECTION HEADER.

A data descriptor was en-
countered prior to detection
of a DATA DIVISION section
header.

If a data descriptor is the
first entry in the data
division, it must be
preceded by a WORKING-
STORAGE or LINKAGE
SECTION header.

The compiler assumes the
WORKING-STORAGE SECTION
header has been encountered

and allocates the data item to
that section.

J3A37 3lvadn

g

*SD available in extended compiler.

3OVd

¢i—a

Number

Severity
Code

Diagnostic Message

Explanation

Reason

Rule

Recovery

056

LANGUAGE ELEMENT NOT
IMPLEMENTED.

A COBOL language feature
not supported by the compiler
has been encountered.

The following language
elements are not available:

1-0 verbs in USE ERROR
or LABEL procedure and
ENTRY within a USE
procedure.

The clause, entry, or statement
is deleted.

057*

DATA ENTRY REQUIRES RENAMES

OR VALUE CLAUSE.

A data descriptor with level
number 66 has no RENAMES
clause or a data descriptor
with a level number of 88

has no VALUE clause.

A data descriptor whose
level number is 66 must
have a RENAMES clause,
and a data descriptor whose
level number is 88 must
have a VALUE clause.

The data description is deleted.

058

LEVEL 88 condition-name NOT
PRECEDED BY DATA ENTRY.

The level 88 entry is the
first entry in the data
division.

See rules for condition-name.

The compiler creates a level 01
named FILLER, length 1, signed
for the conditional variable.

059*

LEVEL 66 data-name MUST APPEAR
ONLY AT END OF A HIERARCHY.

The level number 66 entry
was not followed by one of
the following: a level number
01 entry, an FD or SD entry,
a level number 77 entry, a
level number 66 entry, or a
PROCEDURE DIVISION
header.

See rules for RENAMES.

A level number 01 named
FILLER is created to follow the
level number 66 entry.

*RENAMES available in extended compiler.

H38WNN-dN
€ "A3y LG08

g/waisAg bunessdp JYAINN AHHIdS

T3IAFT 3Lvadn
g

39Vd
€i—a

58
z3
23
W <
LN
Explanation
Message Severity Diagnostic Message
Number Code
Reason Rule Recovery
060 U OCCURS DEPENDING ASSOCIATED The data-name with the See rules for OCCURS The DEPENDING option of the
WITH data-name. DEPENDING option of the clause with the DEPENDING OCCURS clause is ignored (max- |
OCCURS clause is not the option. imum number of occurrences is
last group entry in a 01 assumed). ‘
hierarchy or the data-name 1
is subordinate to another o i
OCCURS clause. b
m
061 V] LEVEL NUMBER literal IS NOT A data entry with a level See rules for level number. A levet number 01 named FILLER g
SUBORDINATE TO AN 01. number between 02 and 49 is created to precede the data <
follows a level number 77 entry.
or DATA DIVISION header. %
062 U CONSISTENCY ERROR: clause-1 Conflict between description See Section 5 for rules Clause-1 is deleted. <
INVALID WHEN USED WITH clause-2. clauses of the data entry e.g., on clauses in conflict. g
USAGE COMP-3 and
ALPHANUMERIC PICTURE. _9
®
063 [GO TO DEPENDING OPTION CONTAINS At least two procedure names See Format 2 of GO TO Control is transferred to 3
ONLY ONE PROCEDURE NAME. are required in a GO TO statement. procedure name if value of g
statement with the DEPENDING identifier is 1. Otherwise, [7=%
option. control is passed to the next (7]
sentence. 'ﬁ
o
064 V] PICTURE INVALID for group item The data entry was determined See rules for PICTURE. The compiler deletes the 3
data-name. to be a group item from level PICTURE clause on the a
number structure and a group item,
PICTURE clause conflicts with
agroup entry.
065 U {MS ENVIRONMENT PROHIBITS USE The specified element is not IMS mode requirement. The specified element is deleted.
OF LANGUAGE ELEMENT element. allowed under IMS processing
mode.
066 U PROCEDURE DIVISION USING-REQUIRED Procedure division USING The procedure division USING | No action is taken by the compiler. c
IN IMS ENVIRONMENT. must be present in the IMS is the only allowable entry a
environment. point in a COBOL program >
in the IMS environment. a‘
r
m
<
m
r
v
>
[n Q]
m i
IS

Explanation
Message Severity Diagnostic Message
Number Code
Reason Rule Recovery
069 c SAME SORT* OR SAME RECORD AREA Some, but not all, filenames If one or more filenames of No action is taken by the compiler,|
CONFLICTS WITH SAME AREA CLAUSE. in a SAME AREA clause appear a SAME AREA clause appears
in a SAME RECORD or SAME ina SAME RECORD or
SORT AREA clause. SAME SORT AREA clause;
all the filenames in that
SAME AREA clause must
appear in the SAME SORT
or SAME RECORD AREA
clause.
073 C ONE LEVEL NUMBER ALLOWED PER More than one level number See formats of the data The ievel number is processed
LINE. appears on the indicated division. as though it were on a unique
line number. line number.
074 [USAGE of data-name CONFLICTS WITH A data entry usage conflicts See rules for USAGE and Compiler assumes group entry’s
USAGE OF GROUP. with the usage of one or VALUE IS. usage as proper usage.
more of the group entries
which this data entry is
subordinate to or usage
conflicts with a value on
a group tevel.
075 U THE OCCURS CLAUSE ON data-name A data entry with an OCCURS See rules for OCCURS. The compiler deletes the OCCURS
INVALID, 4 DIMENSIONAL TABLE clause which would cause clause on the data entry.
DESCRIBED. more than three levels of
subscripting was encountered.
076 U FILE file-name HAS NO DATA RECORD. A level 01 data record was Format violated; see file No action is taken by the compiler
) not encountered for this file. section. There must be a
data record description for
each file.

*SORT and 66 level available in extended compiler.

HIaWNN-dN

3IOVd

Si—a

¢ 'A8Y [G08

g/waisAg bunessdQ JYAINN AHHIS

93A37 3LVAdN]

Explanation
Message Severity Diagnostic Message
Number Code
Reason Rule Recovery
077 [BLOCK-LENGTH-CHECK CONFLICTS BLOCK-LENGTH-CHECK BLOCK-LENGTH-CHECK The BLOCK-LENGTH-CHECK
WITH RECORDING MODE FOR character- is not altowed with all is appropriate with recording is disregarded.
string. recording modes. mode V or D only.
078 S ADDITIONAL MEMORY REQUIRED There is not enough main N/A Compiler assumes that label name
FOR LABEL RECORDS PROCESSING. storage available to hold definitions that will not fit
alt the iabel name definitions into main storage do not exist,
for this file. Main storage is required to hold
the SELECTS and label name
definitions. To allow processing
of more label names, allocate
more main storage, shorten the
size of the SELECTS, or define
fewer label names.
079 V] BLOCK CONTAINS CHARACTERS NOT A A file with organization relative N/A The compiler deletes the BLOCK
MULTIPLE OF RECORD SIZE FOR FiILE with an inconsistent blocking CONTAINS clause.
filename. factor was encountered (block-
ing from BLOCK CONTAINS
clause)}.
080 C FILE-NAME file-name DOES NOT APPEAR A file which does not have a See rules for FILE CONTROL. | Compiler assumes a SELECT entry
IN A SELECT. SELECT entry {matched by defined with file-name {of file)
file-name) was encountered. assigned to tape-6.
081 o INVALID RECORDING MODE FOR 1. A fiie assigned to card Device restriction {card Compiler assumes recording mode

FILE file-name.

reader and recording mode
was V or U.

2. File assigned to DISC
with ORGANIZATION
RELATIVE, and
RECORDING MODE was
VorU.

reader) access method
restriction (DISC, DISC-8414)

F for this file.

HIgGWNN-dN
Z 'A%Y LS08

g/walsAg bunessdg JYAINN AHHIdS

[13/\31 3Lvadn

39vd
91—-a

Explanation
Message Severity
D stic M.
Number Code tagnostic Message
Reason Rule Recovery
082 C 80 CHARACTER BLOCK LIMIT EXCEEDED A BLOCK CONTAINS clause See rules for BLOCK The compiler assumes the maxi-
BY CARD FILE file-name. exceeds the maximum for CONTAINS. mum size (80) for BLOCK
a card device. CONTAINS.
083 C BLOCK CONTAINS EXCEEDS 1 RECGRD A file assigned 1o a card device Device restriction. Compiler assumes BLOCK
ON CARD-READER FILE file-name. was encountered with a CONTAINS one record.
BLOCK CONTAINS clause
specifying two or more records.
084 C FILE file-name MUST HAVE LABEL A file assigned to a unit Data management restric- Compiler assumes labels to be
RECORDS OMITTED. record device with other tion. omitted.
than LABEL RECORDS
OMITTED was encountered.
085 C BLOCK SIZE SPECIFIED FOR FILE BLOCK CONTAINS clause See BLOCK CONTAINS. The compiler assumes that the
filte-name EXCEEDS MAXIMUM. contains value which exceeds maximum length was specified.
maximum length for the
device the fiie is assigned to.
086 C BLOCK SIZE SPECIFIED FOR FILE A BLOCK CONTAINS clause See BLOCK CONTAINS. The compiler assumes the min-
file-name LESS THAN MINIMUM. value was encountered which imum length for the
is less than the minimum BLOCK CONTAINS clause.
allowed for the device.
087) DESCRIPTION FOR LABEL RECORD A label name (from LABEL See rutes for label records. The compiler assumes that the
label name NOT ENCOUNTERED. RECORDS ARE clause) with label name does not exist.
no 01 tabel description was
encountered.
088 Cc FILE file-name MUST HAVE LABEL Filename is assigned 1o File assigned to disc must Compiler assumes LABEL
RECORDS STANDARD OR DATA NAME. direct access device but have a LABEL RECORDS RECORDS ARE STANDARD
the LABEL RECORDS specification. for the file.
clause specifies OMITTED.
089 C FILE file-name MUST HAVE LABEL Filename is assigned to a File with ORGANIZATION Compiler assumes tabel records

RECORDS STANDARD.

direct access device with
ORGANIZATION INDEXED,
and LABEL RECORDS ARE
OMITTED or data-name is
specified.

INDEXED must have
LABEL RECORDS
STANDARD.

to be standard for the file,

H39NNN-dN
¢ 'A3Y £S08

g/waisAg Bunesad0 IVAINN AHHILS

T3IA3T 31LvaAdn

30Vd
LL—a

Explanation
:'::abt Sg:‘:ty Diagnostic Message
Reason Rule Recovery
031 U COPY SYNTAX REQUIRES character- The character-string listed See 6.6.7.1 for COPY The item in error and all items
string, character-string INVALID. as invalid has produced a verb rules. which follow it in the COPY
syntax error. The reguired clause are deleted.
type of character-string is
indicated.
092 S REPLACING character-string The main storage area used Compiler restriction. The compiler ignores the balance
OVERFLOW CAUSED BY character-string to save replacing items has of the clause which causes over-
been exhausted or the number flow. Recompile with additional
of qualifiers associated main storage allocated to the
with an identifier has compiler or reduce the number
exceeded internal storage. of items, amount of qualification,
or size of names in the REPLAC-
ING clause.
093 (o] Sign condition test requires figurative Literal O invalid unless When testing the condi- Literal constant O is treated
constant ZERO; literal 0 is invalid. preceded by a relational tion of a data item for a as figurative constant ZERO
operator. 0 condition. Syntax with code being generated
requires the use of as if statement was written:
figurative constant ZERO IF DATA-NAME ZERO.
when no conditional opera-
tor is present in the test.
094 C CHARACTER NUMBER literal IS INVALID An invalid PICTURE character, See Section 5 for the In order to delete the data
IN type PICTURE picture-string. a PICTURE character incon- allowable PICTURE symbols descriptor, the compiler sets its
sistent with the PICTURE and the rules for their PICTURE to S9.
type, or a violation of the usage.
PICTURE precedence rules
was detected.
095 C THE type PICTURE picture-string 1S As stated, the picture is See Section 5 for the In order not to delete the data
INCOMPLETE. incomplete and cannot be allowable PICTURE descriptor, the compiler sets its
processed, e.g., SPPPP, symbolis and the rules for PICTURE to S9.
for their use.
096 C CHARACTER NUMBER literal IS An invalid PICTURE See Section 5 for the The PICTURE characters prior to

INVALID IN PICTURE picture-string.

character, a PICTURE
character inconsistent with
the PICTURE type, or a
violation of the PICTURE
precedence rules was
detected.

allowable PICTURE
symbols and the rules for
their usage.

the character in error are accepted.

3Iovd

81—a

HIGWNN-dN

C 'A8Y £G08

g/waysAg bunesddo IVAINN AHHIdS

l T3IA3T 3Lvadn

Explanation
r::ab: Sg;::ty Diagnostic Message
Reason Rule Recovery
097 C SIZE LIMIT OF iiteral BYTES EXCEEDED The PICTURE specifies more The maximum size in bytes In order not to delete the data
BY PICTURE picture-string. storage than the maximum of numeric PICTURE is 18, descriptor, the compiler sets its
allowed for the PICTURE type. atphabetic or alphanumeric PICTURE 10 S9.
is 4092, numeric edited or
alphanumeric edited is 132.

098 c THE NUMBER OF DIGIT POSITIONS The number of digit positions The maximum number of In order not to delete the data
IN PICTURE picture-string in the PICTURE exceeds 18. digits allowed in a numeric descriptor, the compiler sets
EXCEEDS 18. or numeric edited the PICTURE to S9.

PICTURE is 18.

099 c A VALUE CONTAINED WITHIN A value contained within The number of times a The value within the parentheses
PARENTHESES IS =0 OR 4092 IN parentheses is either 0 or PICTURE character is is set to 1 and processing of the
PICTURE picture-string. greater than 4092. repeated as specified by the PICTURE continues.

value in parentheses
following it, must be
greater than O and less
than 4093.

100 C A NUMBER DOES NOT FOLLOW A LEFT A left parenthesis within the Within parentheses, a numeric In order not to delete the data

PARENTHESIS IN PICTURE picture-string. PICTURE is not followed by a integer is used to specify descriptor, the compiler sets the
numeric integer. the number of times the PICTURE to S9,
preceding PICTURE character
is repeated.

101 C RIGHT PARENTHESIS MISSING FROM A right parenthesis does not Each left parenthesis in a In order not to delete the data

PICTURE picture-string. follow a numeric integer PICTURE must be followed descriptor, the compiler sets
preceded by a left parenthesis. by a numeric integer and a the PICTURE to S9.
right parenthesis.

102 C BOTH LEADING AND TRAILING SIGN Two insertion sign characters Specification of both leading In order not to delete the data
INSERTION SPECIFIED | PICTURE were detected in the numeric- and trailing sign insertion descriptor, the compiler sets the
picture-string. edited PICTURE. is not permitted. PICTURE to S9.

104 P LITERAL titeral-string TRUNCATED The literal being moved contains Truncation occurs when any The literal is moved and
DURING MOVE. a greater number of character portion of the item being truncated.

positions than the receiver, or, moved cannot be contained
when decimal-point aligned in the receiving field.
contains a greater number of
digit positions than the receiver.
105 C INITIAL VALUE TRUNCATED. The value specified for the The initial value cannot The excess characters are trun-

data item contains a greater
number of characters than the
data item, or is a numeric
value that, when the decimal
point is aligned, is larger

than the maximum value the
data item can contain.

contain more characters
than can fit into the data
item,

cated.

C

13-
Z\l
C

23
m <
m*
m N

g/waisAg Bunessdp JVAINN AHYIdS

] T3A3T 31vadn

39vd

6i—a

Explanation
Message Severity Diagnostic Message
Number Code
Reason Rule Recovery

106 U INVALID POSITIONING OF KEY data-name There must not be any item See rules for KEY under The named KEY is processed as a

IN HHERARCHY. with an OCCURS clause be- OCCURS clause. regular data item; the KEY infor-
tween the table item and its mation is ignored.
keys.

107 S ADDITIONAL MEMORY REQUIRED TO Not enough main storage is The compiler does not process the
PROCESS HIERARCHY CONTAINING available to contain all data entries not contained in
data-name. entries subordinate to the main storage. To compensate,

01 data entry, and too many shorten the hierarchy, shorten

entries for the 01 hierarchy names in data entries, or assign
for the amount of main more main storage to compiler,
storage allocated.

108 S data-name EXCEEDS REDEFINES There are too many leveis of See rules for REDEFINES. The compiler assumes this entry
NESTING LIMIT. redefinition. This data entry does not contain a REDEFINES

exceeds the limit of re- clause.
definition.

109 C data-name HAS IMPROPER REDEFINES The redefined area is a See rules for REDEFINES. The compiler assumes the redefini-
QOBJECT data-name. redefining area; i.e., the tion of the last-defined area

object of the REDEFINES with the same level as the
dause has or is subordinate subject of the REDEFINES clause.|
to a REDEFINES clause.

110 S ADDITIONAL MEMORY REQUIRED TO Insufficient main storage is The compiler assumes the qualifier
PROCESS RENAMES QUALIFIER. available to contain the does not exist.

RENAMES qualifier because
of a large hierarchy and/or

a lot of RENAMES
qualifiers.

111 U DESCRIPTION OF data-name NOT The definition of the entry is See rules for qualification. The compiler assumes the qualifier
ENCOUNTERED. not in the current hierarchy. name in error does not exist.

112 C RENAMES OCCURS CONFLICT BETWEEN The object of the RENAMES See rules for level-number. The compiler assumes the Jast
data-name-1 AND data-name-2. clause on data-name-1 has elementary item in the hierarchy

or is subordinate to an is the object of the RENAMES
OCCURS clause. clause.

13 C REDEFINING AREA data-name UNEQUAL The calculated length of the See rules for REDEFINES. The compiler assumes the largest
TO SIZE OF REDEFINED AREA. redefined area is not the same length was calculated for both

as the length of the redefining areas.
area.
114 C SIZE OF ELEMENTARY ITEM data-name An elementary item with a See data definition. The compiler assumes the length

EXCEEDS MAXIMUM OF 4092.

length larger than the max-
imum was detected.

to be 4092 for the elementary
item.

HIGWNNN-dN
¢ 'A8Y L4908

g/waisAg bunesadQ JVAINN AHHIdS

T3A3T 3LvaAdn

39vd
0Zc—a

Diagnostic Message

Explanation

Reason

Rule

Recovery

SIZE OF WORKING-STORAGE GROUP
ITEM data-name EXCEEDS
MAXIMUM OF 65,535.

A group entry in working-
storage is a length calcu-
lated to exceed the maximum.

See data definition.

The compiler assumes the length
of the group item to be 65,535.
The entire area specified is,
however, allocated.

SIZE OF NON-WORKING-STORAGE
GROUP ITEM data-name EXCEEDS
MAXIMUM OF 4092.

The length of a file or
linkage section group item
was calculated to be greater
than the maximum.

See data definition.

The compiler assumes the maxi-
mum of 4092 was the calculated
length of the group item.

INVALID LEVEL NUMBER STRUCTURE
ENCOUNTERED AT data-name.

A level number equal to the
level of the data entry shouid
have appeared in the hierarchy
directly subordinate to the Ot.

The compiler assumes a level
number on a data entry directly
subordinate to the 01, e.g.,

01 A

LEVEL 02 MISSING

058

02¢C

INVALID LEVEL STRUCTURE

THE FIRST OBJECT OF THE LEVEL
66 ENTRY data-name ENDS AFTER
THE SECOND OBJECT.

The first object of a RE-
NAMES clause does not
precede the area of the
second object of the
RENAMES clause.

See rutes for RENAMES.

The compiler assumes the second
object does not exist.

THE SECOND OBJECT OF THE
LEVEL 66 ENTRY data-name STARTS
BEFORE THE FIRST OBJECT.

The second object of a
RENAMES claues does not
precede the first object

of the RENAMES clause.

See rules for RENAMES.

The compiler assumes the objects
are reversed. {The first is the
second and the second is the
first.)

USAGE INDEX INVALID FOR
CONDITIONAL VARIABLE data-name.

A condition name entry is
defined for a data entry
with a USAGE IS INDEX
clause.

See rules for condition
name.

The compiler assumes the alpha-
numeric usage for the conditional
variable.

RECORD data-name
SIZE UNEQUAL TO PREVIOUS RECORDS
IN A.FIXED RECORDING MODE FILE.

A file described as F RE-
CORDING MODE does not
have data records with the
same length.

See rules for RECORDING
MODE.

The compiler assumes the largest
data record length for calculation
of record length for the file.

Message Severity
Number Code
115 C
116 C
17 V]
118 C
119* (o}
120 C
121 C
122 Cc

LABEL RECORD data-name SIZE
NOT EQUAL 80 CHARACTERS.

A label record description
with a length other than 80
was encountered.

0S/3 label specification

has a length of 80 for labels.

The compiler assumes the length
of label records to be 80.

*RENAMES avaiiable i1 extended compiler.

g/waisAg Bunesed) JVAINN AHYIdS HIBANN-dN

I3A3T 3Lvadn

39vd
12—a

C 'A8H 508

Message
Number

Severity
Code

Diagnostic Message

Explanation

Resson

Recovery

123

data-name NOT ALIGNED.

The data-name is the subject of
a REDEFINES clause and
requires alignment due to a
SYNC clause. However, the
object of the REDEFINES

is not aligned.

See rules for SYNCHRONIZED,

The SYNCHRONIZED clause is
ignored.

124

BLOCK SIZE FOR file-name SMALLER
THAN LARGEST RECORD.

The BLOCK CONTAINS
CHARACTERS clause speci-
fies a block length smaller
than length of largest data
record.

The compiler assumes the block
length to be the length of the
largest record.

125

SIZE OF data-name GREATER THAN
RECORD CONTAINS FOR FILE
fite-name.

The RECORD CONTAINS
clause specifies a record
length smalier than largest
record.

The compiler assumes that the
largest hierarchy subordinate to
the FD specifies the length of the
largest data record for the file.

126

fite-name clause LENGTH condition
ALLOWED FOR DEVICE.

The BLOCK CONTAINS
clause or the RECORD
CONTAINS clause exceeds
maximum or is less than
minimum for the device to
which the file is assigned.

See BLOCK CONTAINS and
RECORD CONTAINS.

The compiler assumes the limiting
length for the clause in error.

127

RECORD CONTAINS CLAUSE FOR FILE
file-name NOT EQUAL TO SIZE OF
LARGEST RECORD.

The RECORD CONTAINS
clause does not specify the
length of the largest data
record.

The compiler assumes that the
length of the largest data record
is specified in the RECORD
CONTAINS clause.

128

BLOCK LENGTH OF FILE file-name
PROHIBITS RUN TIME SPECIFICATION
OF BLOCK NUMBERING.

The length of the block for
the file is too large to atlow
block numbering.

No action. Precautionary warning,

129

REDEFINES NOT PERMITTED FOR
RECORDS IN FILE SECTION.

A file section level 01 with
a REDEFINES clause was
encountered.

See rules for REDEFINES.

The compiler assumes the RE-
DEFINES ctause does not exist.

130

SUBJECT OF REDEFINES, data-name,
NOT IN SAME SECTION AS OBJECT OF
REDEFINES.

The subject of a REDEFINES
clause is not in same section
as entry with REDEFINES.

See rules for REDEFINES.

The compiler assumes the RE-
DEFINES clause does not exist.

HIBWNN-dN
C ‘A8Y LS08

T3aA37] 3ivadn

39vd

[AAe]

g/walsAg BunesadQ JVAINN AHYIAS

Explanation
Message Severity Diagnostic Message
Number Code Reason Rule Recovery
131 U OBJECT OF REDEFINES, data-name, The object of a REDEFINES See rules for REDEFINES. The compiler assumes the
WITHIN RANGE OF OCCURS. clause has or is subordinate REDEFINES clause does not
to an OCCURS clause. exist.
132 V] REDEFINES OBJECT, data-name, AND The object and subject of the See rules for REDEFINES. The compiler assumes the
SUBJECT, data-name, UNEQUAL REDEFINES clause do not have REDEFINES clause does not exist
LEVEL NUMBER. the same level numbers.
133 S INDEX NAME data-name EXCEEDS The current compiler {imit The compiler starts index-name
COMPILER LIMITS. of index-names is 255. This main storage assignment over
entry is the 256th specified and reassigns the main storage
index-name. to the index-names being
processed.
134 C ELEMENTARY ITEM data-name HAS NO An elementary item, deter- The compiler assumes a length of
LENGTH SPECIFIED. mined from level number 1, signed, was specified.
structure, with no length
specified or assumed was
encountered.
135* C OBJECT OF RENAMES data-name The object of the RENAMES See rules for RENAMES. The compiler assumes the last
NOT FOUND WITHIN HIERARCHY. clause was not found in the elementary item of the hierarchy
immediate hierarchy. as the specified object of the
RENAMES clause.
136* C OBJECT OF RENAMES data-name The object of the RENAMES See rutes for RENAMES. The compiter assumes the last
HAS ILLEGAL LEVEL NUMBER. clause has an illegat level elementary item as specified
number. object of the RENAMES clause.
137 V] REDEFINES CLAUSE IN data-name The object of the REDEFINES See rules for REDEFINES. The compiler assumes the REDE-
ENTRY HAS INVALID OBJECT. clause is not a legal level for FINES clause does not exit.
redefinition.
138 S ADDITIONAL MEMORY REQUIRED FOR The compiler needs more Each procedure-name This procedure-name definition
PROCEDURE NAME PROCESSING. main storage in order to definition requires 16 and all others that follow are
process the rest of the section bytes of storage plus one deleted.
and paragraph names. byte for each character in
the name. To increase the
number of procedure-names
that can be processed,
recompile using smaller
names or with more main
storage assigned to the
compiler,

*RENAMES available in extended compiler.

"438WNN-dN
C "A3Y LG08

g/walsAg bunesadg JYAINN AHHIIS

T3A3T 31vadn

3ovd

£z2—a

Explanation

Message Severity Diagnostic Message
Number Code
Reason Rule Recovery
139 C PRIORITY NUMBER INCORRECT OR Priority number value does not The priority number must be If segmentation has been specified
OUT OF SEQUENCE. fall in range of 0 to 99 or an integer ranging in value (a previous segment with priority
priority number > 50 is from O through 99. Segments number >80} the last valid
not in ascending sequence. with priority number 50—99 priority number is assigned to
are independent segments this section. If segmentation
and must appear in the source has not been encountered, a
program in ascending numeric priority number of 0 is assumed.
order.
140 V] NEITHER EXIT PROGRAM NOR An entry point has been All COBOL subprograms No corrective action is possible
RETURN STATEMENT ASSOCIATED specified for this program must contain either an for this error. If the program is
WITH ENTRY OR USING STATEMENT. but the program contains no EXIT PROGRAM or a executed as a subprogram it will
mechanism to return to caller. RETURN statement. not return to the calling program.
141 0] NEITHER ENTRY NOR USING STATEMENT Program contains mechanism A COBOL program that is to No corrective action is possible
ASSOCIATED WITH EXIT PROGRAM OR to return to a calling program be used as a subprogram must for this error. It is impossible
RETURN STATEMENT. but no mechanism has been have an entry point. to execute this program as a
coded where the calling program subprogram.
may enter this program.
142 U NO ENTRY OR RETURN STATEMENT No entry point has been The use of the linkage No corrective action is taken.
ASSOCIATED WITH LINKAGE SECTION. specified for this subprogram. section implies that this is
a subprogram. Subprograms
must have entry and exit points.
143 V] STRUCTURE OF CONDITIONAL ELSE encountered in IF In a conditional statement The conditionat statement is
SENTENCE INVALID, UNPAIRED statement with no preceding any ELSE encountered is terminated at this point.
ELSE ENCOUNTERED. IF verb to match it. considered to apply to the
immediately preceding IF
that has not been atready
paired with an ELSE.
144 P PROCEDURE DIVISION DOES NOT No STOP RUN statement is No rule has been viotated; Results during execution are
CONTAIN A STOP RUN. coded in this program. There this diagnostic is strictly unpredictable.
is no way to bring this program informative.
to an orderly halt.
145 U EXIT WAS NOT THE ONLY STATEMENT EXIT statement is in paragraph The EXIT sentence must be Nothing is deleted from the
IN PARAGRAPH. which contains statements preceded by a paragraph- program. The statement
other than EXIT. name and be the only following the EXIT
sentence in the paragraph. sentence is executed
before the EXITs
statements.
146 [} THE BEFORE OPTION OF THE USE The BEFORE option is not The BEFORE option is not The AFTER option is assumed.

STATEMENT IS NOT APPLICABLE IN
SYSTEM.

alloned in UNIVAC 0S/3
COBOL.

applicable to UNIVAC OS/3
COBOL, but is accepted for
compatibility.

HIFWNN-dN
C "AdY [S08

g/waisAg Bunesadg JVAINN AHYHICS

T3AA3T 3ivadn

3OVvd

ve—-a

Explanation

Message | Severity Diagnostic Message
Number Code
Reason Rule Recovery
147 C THE PROGRAM NAME IN CALL Program name exceeds eight A maximum of eight characters| The program name in the CALL
STATEMENT EXCEEDS EIGHT characters in length. is allowed in subprogram statement is truncated to eight
CHARACTERS. names. characters.
148] REFERENCE TO name CANNOT BE A definition of the listed name Every name referenced must The statement containing the
RESOLVED. has not been encountered. be defined. reference is deleted.
149 u QUALIFIED REFERENCE TO name A definition of the listed Every name referenced The statement containing the
CANNOT BE RESOLVED. name has not been encountered with qualification must reference is deleted.
under the specified qualifiers. be defined within the
hierarchy associated
with the highest level
qualifier.
150 C REFERENCE TO PROCEDURE name A definition of the listed A reference to a nonunique The reference is resoived by
IS AMBIGUQUS, DEFINITION AT paragraph-name has not paragraph-name where all the paragraph-name at the
LINE literal USED. been encountered within definitions are outside the listed line number.
the section from which the section from which the
reference is made, while reference is made must
multiple definitions exist be qualified.
outside the section of
reference.
151 V] REFERENCE TO name OF name Normally this diagnostic The qualifier in a procedure

CANNOT BE RESOLVED DUE TO
DEFINITION AT LINE literal.
name of name UNRESOLVED
DUE TO DEF AT LINE literal.
section-name. In the

indicates that a definition
for the qualifier in a pro-
cedure reference has been
encountered but is not a
names, level 01 and 77
ambiguity mode of reference
resolution (PARAM LST=A),
this diagnostic is also
generated when:

1. The highest qualifier of a
data reference is not
encountered in the data
division but is encountered
in the procedure division.

2. The qualifier of a pro-
cedure reference is not
encountered in the pro-
cedure division but is
encountered in the data
division.

This implies that when the
definition that will resolve the
reference is added to the source
program, the highest possible
qualifier rule is violated.

reference must refer to a
section-name. Highest
possible qualifiers (level
indicator names, section-

names) must be unique in a
program since a reference
to the name cannot be
quatified.

The statement containing the
reference is deleted.

g/waisAg bunesado JVAINN AHYHAS H3NAN-dN

T3A3T 31Vvadn

3OVd
62—a

C 'A9H /S08

Message
Number

Severity
Code

Diagnostic Message

Explanation

Reason

Rule

Recovery

152

REFERENCE TO name AMBIGUOUS
DUE TO DEF AT LINE literal, DEF
AT LINE literat USED.

This diagnostic is generated
only in the ambiguity mode
of reference resolution
(PARAM LST=A) for an
unqualified reference when a
duplicate definition of the
listed name has been en-
countered within the COBOL
division implied by the
reference type, e.g., GO TO
implies procedure division;
MOVE implies data division.

Every name in a COBOL
program must be unique,
either because of different
spelling, or because of
qualification.

The reference is resolved by the
name at the listed line number.

153

IMPROPER DEFINITION OF name
AT LINE literal IMPLIED BY MANNER
OF REFERENCE.

This diagnostic is generated
only in the ambiguity mode
of reference resolution
(PARAM LST=A) for an
unqualified reference when a
duplicate definition of the
listed name has been en-
countered in a COBOL
division, other than the
division implied by the
reference type, and consti-
tutes a violation of the
highest possible qualifier
rule.

Highest possible qualifiers
(level indicator names,
section-names, level 01 and
77 names) must be unique
since a reference to the
name cannot be gualified.

If the reference cannot be
resolved within the COBOL
division corresponding to the
reference type, the statement
is deleted.

154

name MUST BE UNIQUE, DUPLICATE
DEFINITION FOUND AT LINE literal.

This diagnostic is generated
only in the ambiguity mode

of reference resolution
(PARAM LST=A) for qualified
references when a redefinition
of the highest qualifier

violates the highest possibte
qualifier rule.

Highest possible qualifiers
(level indicator names,
section-names, level 01
and 77 names) must be
unique since a reference
to the name cannot be
qualified.

If the reference cannot be
resolved within the COBOL
division corresponding to
the reference type, the
statement is deleted.

155

BEFORE OPTION NOT APPLICABLE
IN C-MODE.

The WRITE BEFORE
ADVANCING option is
not available in the
conversion mode.

Compatibility requirement

The BEFORE option is treated
as though the AFTER option
had been specified.

157

name STATEMENT
OPERAND name IS
IMPROPERLY INDEXED.

Index name used to
address table element is
not associated with the
table but is associated
with another table which
has the same element size.

When an item is
indexed by an index
name, that index
name must be as-
sociated with that
table name.

Precautionary warning.
No corrective action
is taken.

H3INNN-dN
C 'A8Y £G08

g/wasAg Bunessdg JYAINN AHHIIS

C
0
O
>
_|
m
r
m
<
m
r
>
o7
m N
o

Explanation
Message Severity Diagnostic Message
Number Code
Reason Rule Recovery
158 P verb CONTAINS WORKING-STORAGE Due to the shared nature of Do not modify WORKING No action. Precautionary warning.
OPERAND data-name WHICH SHOULD programs operating under {MS STORAGE operands in the
NOT BE MODIFIED mode, errors could occur if IMS environment.
working-storage elements are
modified at object program
execution time.
159 V] verb STATEMENT CONTAINS INVALID The specified data item does See the general rules The statement containing the
OPERAND data-name. not satisfy the requirements specified for the desig- listed operand is deleted.
for the designated verb, for nated verb.
example, an alphabetic
operand in an ADD
statement.
160 V] verb STATEMENT OPERAND data-name The data item contains too References to items in a The statement containing the
IS IMPROPERLY SUBSCRIPTED. many subscripts, too few, or table must have the correct subscript error is deleted.
an improper type of subscript. number of subscripts or
indexes, subnumeric integers,
subscripts must be unsigned,
subscripts and indexes must
not be moved in a single
data reference, and
references to items not in
a table must not be subscripted
161 u verb STATEMENT CONTAINS INCONSISTENT The combination of operands See the rules for the indicated The statement containing the
OPERAND data-name. in the statement conflict in verb statement. inconsistent operand is deleted.
their usage, for example,
moving 8 numeric item to an
alphabetic operand.
162 C verb STATEMENT CONTAINS SIGNED A signed literal has been See the specific rules for The sign of the literal is deleted.
LITERAL literal. encountered. the designated verb.
163 V] COMPOSITE OF OPERANDS IN verb The superimposition of all See rules for composite of The statement containing the
STATEMENT EXCEEDS 18 DIGITS. operands to the left of the operands for the specified composite error is deleted.
word GIVING exceeds 18 digits. verb.
164 U GO TO PRECEDES IMPERATIVE A GO TO statement is A GO TO statement must be The statements between the GO

STATEMENT.

followed by other imperative
statements.

the last statement in a

series of imperative state-
ments. |n a conditional
statement, a GO TO must be
followed by ELSE, IF, or a
period.

TO and the ELSE, |F, or period
are deleted.

H3IAWNN-dN
g/walsAg Bunesadg JVYAINN AHHIdS

T3A3TT 31vadn

39vd
Lz—-a

C 'A3Y LG08

Explanation

Message Severity Diagnostic Message
Number Code
Reason Rute Recovery

165 u verb STATEMENT OPERAND data-name An operand not defined in Data-names in an entry or The statement containing the

NOT DEFINED IN LINKAGE SECTION, the linkage section has been procedure division USING listed operand is deleted.
encountered in an entry or in statement must be defined
the procedure division USING in the linkage section.
statement.

166 U verb STATEMENT OPERAND data-name An operand with a level Data items in an ENTRY The verb is deleted from further
ISNOT LEVEL NUMBER 01 OR 77. number other than 01 or or procedure division compilation.

77, has been detected in USING statement are
an ENTRY or procedure restricted to items whose
division USING statement. level number is 01 or 77.

167 S ADDITIONAL MEMORY REQUIRED TO This statement exceeds the The main storage necessary The statement is deleted. Addi-
PROCESS STATEMENT CONTAINING internal main storage area to process a single operand tional main storage should be
verb. available 10 process statements varies from 18 to 250 bytes, assigned to the compiler or the

with multiple operands. depending on the number of statement must be rewritten as
characters in the data-name multiple statements.
and whether the item
OCCURS, has an edited
picture, or is subscripted.
The maximum main storage
available for statement
processing is a function of
the total main storage
available to the compiler.
A limit of 100 symbols
exists for a single condition.
A symbol in this context is an
operand, an arithmetic opera-
tor, a logical operator, a rela-
tional operator, or a class. (A
condition-name test expands
to multiple symbols depending
on the number of values asso-
ciated with the condition-
name.)

168 U verb EXCEEDS LIMIT OF TEMPORARY The maximum number of Reduce the complexity of the
DATA AREAS. temporary arithmetic data expression or reduce the number

areas has been exceeded. of expressions in the statement.

169 U verb STATEMENT OPERAND name IS NOT The input-output statement The following verbs must The statement in error is deleted.

RECORD OR FILE-NAME.

does not reference a record-
name or file-name.

refer to record or file-

names: OPEN, CLOSE, READ
WRITE, SORT, RELEASE,
RETURN, INSERT, SEEK.

H4I8WNAN-dN
C 'AdY /G088

g/walsAg bunessdp DYAINN AHY3IdS

T3A37 3ivadn

39vd
8¢—a

Explanation

Message Severity Diagnostic Message
Number Code
Reason Rule Recovery
170 u SENTENCE PRODUCES EXCESSIVE Object code cannot be Generally, a complete Reduce the sentence size by
OBJECT CODE. produced for the entire sentence is limited to rewriting it as several sentences/
sentence because of the between 2048 and 4096 paragraphs.
sentence size. bytes depending on the
sentence structure.
171 U PERIOD ELSE OR WHEN MUST NEXT SENTENCE must be Inan IF, NEXT The NEXT SENTENCE phrase is
FOLLOW NEXT SENTENCE followed by ELSE, period, SENTENCE must be followed ignored.
or WHEN, by ELSE or a period. In
a SEARCH, NEXT SENTENCE
must be followed by
WHEN, ELSE, or a period.
172 P PERFORM STATEMENT REFERENCES A PERFORM within the Within a USE procedure, No action. Precautionary
A NON-DECLARATIVE PROCEDURE declarative section there must not be any warning.
referenced a procedure reference to any non-
outside of the declarative declarative procedures.
section.
173 V] verb STATEMENT OPERAND name Both operands in the The operand specified in The statement is deleted.
REFERS TO FILE RECORD AREA. statement refer to the same the WRITE FROM, INSERT
storage area. FROM, or READ INTO
options, may not occupy
the same storage area as
the record or file-name.
174 U verb STATEMENT RECORD-NAME The listed operand is not WRITE, INSERT, and The statement is deleted.
name IS NOT DEFINED IN FILE defined in the file section. RELEASE refer to items
SECTION. defined in the file section.
175 P COMPARISON FOR EQUALITY MAY BE A floating-point operand in a No rule has been violated. Expected results may not
MEANINGLESS FOR A FLOATING POINT relational condition may cause Message is strictly occur at execution time.
OPERAND. the two operands not to be informative.
exactly equal.
176 U DIVIDE STATEMENT PRODUCES The description of the The DIVIDE statement is deleted.

MEANINGLESS RESULT.

operands in a DIVIDE
statement is such that only
zeros could result for the
quotient in the specified
receiver.

H3IaNNN-dN
C 'A3Y [G08

3IOVd

6¢—a

g/walsAg bunesedp JYAINN AHHIALS

493A37 31vadn |

Message
Number

Severity
Code

Diagnostic Message

Explanation

Reason

Rule

Recovery

177

verb STATEMENT CONFLICTS WITH

SEGMENTATION RULES.

A procedure-branching verb
is invalidly specified with
respect to the rules of
segmentation, or an ALTER
statement refers to a
paragraph that does not
begin with a GO TO.

See the rules on segmentation
for the listed verb.

The statement in error is deleted.

178

verb STATEMENT INCOMPLETE OR
CONTAINS INVALID OPERAND OR OPTION.

An operand conflicts with a
specified option or with
another operand, ot an
option that must be specified
for a given statement was

not encountered. For
example, a WRITE to a mass
storage device must contain
an INVALID KEY clause.

See the rufes for the specified
verb.

The statement is deleted.

179

INTERNAL LABEL TABLE OVERFLOW.,

Either a sentence requires
more than 256 internal labels
or more than 24 internal
labels are active.

Requirements for internal labeis
may be lowered by reducing the
number of statements in a sen-
tence.

180

CLASS OF LITERAL CONFLICTS WITH

CLASS OF data-name.

A nonnumeric literal con-
taining numeric characters
is being moved to an aipha-
betic item, or a nonnumeric
literal containing non-
numeric characters is being
moved to a numeric item.

The class of all characters
contained in nonnumeric
literal must be consistent
with the class of the
receiving item.

The statement is deleted.

181

data-name TRUNCATED
DURING MOVE.

The data-name being moved
contains a greater number
of character positions

than the receiver or, when
decimal point aligned,
contains a greater number
of digit positions than

the receiver.

Truncation occurs when
any portion of the item
being moved cannot be
contained in the receiving
operand.

The data-name is moved and
truncated.

182

COMPLETE TRUNCATION OF
name/literal/result.

Decimal point alignment is
such that no portion of the
item being moved can be
contained in the receiving
operand.

The MOVE statement or arith-
metic GIVING statement is
deleted.

H3IGWNN-dN
Z 'A3Y LS08

g/waisAg Bunessdp JVAINN AHYHIS

T3A3T 3ILvadn

3Iovd

0e—-a

Explanation

Message Severity Diagnostic Message
Number Code
Reason Rule Recovery
183 [REDUNDANT ROUND OPERAND The numeric description Rounding is possible onfy The round operation is deleted.
data-name. of the arithmetic result is when an arithmetic resuit
such that no excess digit contains at least one ex-
positions are available for cess digit from which the
rounding into the listed round operation can be
operand. based.
184 P REDUNDANT SIZE ERROR OPERAND The numeric description A size error is possible The size error test is performed.
data-name. of the arithmetic result is only if the arithmetic
such that its value could result contains more
never exceed the largest significant digit positions
value that can be contained than the resultant
in the listed operand. identifier.
185 U FILE-NAME IN insert STATEMENT The file-name referenced For ORGANIZATION The record key is used.
REQUIRES SYMBOLIC KEY by the verb requires the INDEXED files, if
SYMBOLIC KEY clause ACCESS is SEQUENTIAL
under the SELECT clause. or EXTENDED, a symbolic
key is required for the
SEEK verb. If ACCESS
is EXTENDED, a symbolic
key is required for a
READ that does not have
the AT END clause.
186 C PERFORM STATEMENT LITERAL The TIMES literal in the The maximum value of a The accepted TIMES count is the
EXCEEDS 32,767. perform statement exceeds PERFORM TIMES literal rightmost 15 bits of the original
the maximum allowable value. is 32,767. value when converted to binary.
This value is between 1 and
32,767.
187 C ADVANCING LITERAL EXCEEDS The WRITE ADVANCING The maximum number of The advancing line count is set
LIMIT. literal exceeds the maxi- lines that can be advanced to 1.
mum allowable value. is 127 in the normal mode
and three in the conversion
mode.
188 U FILE AT LINE literal NOT An OPEN or CLOSE has not Every file must be Results during execution are

{CLOSED

WITHIN PROGRAM.
OPENED

been specified for the
file, or the OPEN is
inconsistent with the
activity associated with
the file.

opened and closed. Files
written on must be opened
for output or -0, files
read from must be opened
for input or I-O.

unpredictable.

g/wasAg bunesadg JVAINN AHHICS

A3A3T 3Lvadn

3IDVd
le—a

C »
"UO
E‘\."
2
o<
m
mM

Explanation
Message Severity Diagnostic Message
Number Code
Reason Rule Recovery
189) verb STATEMENT PROHIBITED The only I-O verbs allowed in See rules for USE verb. The 1-O verb is dropped.
WITHIN USE PROCEDURE. a USE procedure are:
ACCEPT (not from system con-
sole or job control stream)
DISPLAY
WRITE (to a printer only in
USE FOR FORM OVERFLOW)
190 S ADDITIONAL MAIN STORAGE The compiler does not have The object module is produced.
REQUIRED TO PRODUCE OBJECT sufficient main storage to Recompilation is necessary
CODE LISTING. produce the object code with more main storage
' listing. assigned to the compiler.
191 S ADDITIONAL MEMORY REQUIRED The compiler does not have A recompilation is necessary
TO PRODUCE OBJECT PROGRAM. sufficient main storage to with more main storage
maintain the compile time assigned to the compiler.
tables necessary to create
the object modute output
for this program.
192 C KEY SIZES FOR FILLE AT LINE Record key size unequal to Record key and symbolic Symbolic key size is changed to
literal NOT EQUAL. symbolic key size. key sizes must be equal. record key size,
193 * [TRUNCATION OF FLOATING POINT In any move from a floating- No rule has been violated. Truncation may occur.
OPERAND literal MAY OCCUR. point operand to a nonfloating- Message is strictly
point operand, the floating- informative.
point vaiue may not be able
to be represented exactly in
fixed-point format.

*Floating point available in extended compiler.

H38WNN-dN

T3IA3T Jivadn

39Vvd
ze—a

g/waisAg Buinesadp JVAINN AHYIJS

€ "A3Y LS08

D-33

UP-NUMBER UPDATE LEVEL | PAGE

8057 Rev. 2 l SPERRY UNIVAC Operating System/3

. D.3. SYSTEM CONSOLE MESSAGES

During compilation, COBOL source programs may encounter an error condition as indicated by a system console
message. All operator system console messages are listed and described in the error messages programmer/operator
reference manual, UP-8076 (current version). The programmer system console messages, those that are directed to
the programmer, are given in the following table. The messages are listed in ascending order based on the message
number and include the meaning and the corrective action to be taken.

Message . " .
| Number Diagnostic Message Meaning Corrective Action
ccol INSUFFICIENT MEMORY Insufficient main storage provided to Aliocate sufficient main storage
accommodate the processor, The job step and rerun the job,
is terminated.
CCo02 LOAD ERROR An error occurred while attempting to Check the LOAD library to make sure
locate and load a job phase in the that the phase is entered. If not,
LOAD library. The job step is terminated. enter it and rerun, If the phase is
in the library, contact your Sperry
Univac customer representative.
CC04 | PATCH s aasa IGNORED, SIZE INVALID A patch card format error has occurred Correct the card format and rerun,
in the control stream. The job step is
terminated.
where:
s
Is the segment number,
aaaa
Is the address where the error
occurred.
CCo05 PATCH s aaaa IGNORED, NO DELIMITER A patch card format error has occurred in the Correct the card format and rerun.
control stream. The job step is terminated.
CCo06 SNAP s aaaa IGNORED A snap card format error has occurred in the Correct the card format and rerun,
control stream. The job step is terminated.
CCco7 NO SOURCE PROGRAM An error occurred when the end-of-file card Correct the control stream and
was read prior to the first source card in rerun the job.
the control stream. The job step is terminated.
CC08 PARAM CARD ERROR An error was detected in the PARAM card Correct the PARAM card and rerun,
which specifies job options. The job step is
terminated,
cc10 SOURCE PROGRAM NOT FOUND A program designated as existing on a Mount the correct library file

library file cannot be found. The job step is
terminated.

and rerun the job.

H3I8WNN-dN
C 'AeH [LG08

g/weisAg bunessdo JYAINN AHHIAS

C

b

2]

P

]

m

r

m

<

m

r

R

>

@

m
T
LY
H

Message
Number

Diagnostic Message

Meaning

—

Corrective Action

CC11

SOURCE LIBRARY FILE NOT ALLOCATED

COBOL compiler cannot access the library
file designated as containing the COBOL
source program. Job step is terminated.

Correct volume mounting or control
stream error and rerun the job,

CC12

filename
1/O ERROR ON{JOB-STRM Y. CODE=nnnn
CORSCARD

For filename:
An /O error occurred on a work file,
source, copy, or object module file.
The 4-digit code is a copy of the
error status field settings.

For JOB-STRM:
An 1/0 error occurred during job control
stream processing. The 4-digit code is a
copy of the control stream error code,

For CORSCARD:
An error was detected in the library
update correction cards. CODE=0006 indicates
error in the correction cards. CODE=0007
indicates error in the SEQ card.

in all cases, the job step is terminated.

Rerun the job. If the error persists,
contact your Sperry Univac customer
representative.

CC13

COMPILER ERROR phase indication

An error has occurred while attempting to
position a file, or attempting to process

a phase, The job step is terminated. A
storage dump is provided.

Submit a Software User Report (SUR).

C14

COPY LIBRARY MODULE module-name NOT FOUND

The source COBOL program has requested
that a module be included from the copy
library, and the module cannot be found.
The job step is terminated.

Mount the correct library or correct
the module-name reference and rerun
the job.

CCis

COPY LIBRARY FILE filename NOT ALLOCATED

The source COBOL program has requested
that a module be included from the copy
library and the compiler cannot access

the designated library file. The job step is
terminated.

Correct the volume mounting or
control stream error and rerun the
job,

cc17

PRINTER NOT ASSIGNED

An error has occurred while attempting
to open the print file PRNTR. The DVC
and LFD statements are missing or
incorrect. The job step is terminated.

Correct the control stream and rerun
the job.

"HIGWNN-dN
C "A3Y £S08

g/waisAg bunesed JVYAINN AHYAIS

T3A3T 3Lvadn

3ovd

s€—a

E-1

UP-NUMBER UPDATE LEVEL l PAGE

8057 Rev. 2 ‘ SPERRY UNIVAC Operating System/3

Appendix E. Compiler Listings

E.1. SOURCE CODE LISTING

A source code listing header line appears at the start of each source code listing. It identifies the compiler, the
compiler version, the date of the compilation, and the time of day at which the COBOL program was compiled. If
the date and time are to appear correctly in the source code listing header line, they must be set by the operator
through the operator commands when the supervisor is loaded. The page heading of the source code listing locates
the following information:

(1) LINENO.

The line number (LINE NO.) is a compiler-generated number which identifies the particular line of COBOL
source code with which it appears. The line number is used to reference lines of COBOL source code in the

. diagnostic listing, the object program listing, the data division memory map, the procedure division memory
map, and the cross-reference listing.

@ c

If the COPY verb is used, the letter C appears after the compiler-generated line number, to indicate lines of
source code taken from the copy library.

3 sea

The source item sequence number is listed under SEQ (card columns 1 to 6). The sequence number field (card
columns 1 to 6) is optional.

(4) SOURCE STATEMENT
The text {card columns 7 to 72) of the COBOL source program is listed.

(6) IDEN.

Under IDEN., program identification information {(card columns 73 to 80) is listed. This is an optional entry
made by the programmer to provide identification or card deck information. The compiler takes no action
upon it.
(6) PAGE Page Number
. Page number associated with compilation listing.

A sample source code listing is shown in Figure E—1.

COMPILED BY UNIVAC 0S/3E COBOL COMPILER VERSION 07.00/02 DATE 79/07/26 TIME 01.05.43
// PARAM INZTBL3T
/7 PARAM LST=(S,L,C,C,D4X,A)
SOURCE CREATION DATE U0/01/774 TIME 1C.03
LINE NO. SEC. SOURCE STATEMENT (:>IDEN. <:>PAGE' ogo0l
naoct IGENTIFICATION DIVISION.
00002 PROGRAM-IC. TBL3T.
ngeoez REMARKS, THIS IS A TEST PROGRAM TO VALIDATE COMPILER PROCESSING
Cul0u OF VARIABLE TABLES, VARIABLE GROUP ITEMS AND THE SEARCH VERSB.
0ggocs ENVIRONMENT DIVICSICN.,
gecee CONFIGURATION SECTION,
cgoo? SOURCE-COMPLTER. UNIVAC-940C.,
gocoe 0BJECT-COMPUTER. UNIVAC-94CO.
cacos SPECIAL-NAMES. SYSLST IS P,
aégle INPLT-QUTPLUT SECTION,
culll FILE-CONTROL.
cagi2 SELECT A ASSIGN TC TPFIL1 TAPE.
ngol3 SELECT B ASSIGN TO TPFIL2 TAPE.
Cul1i4 I-C-CONTROL »
0co1s SAME RECORD AREA FOR A, B.
coole DATA ODIVISICN,
coLCl? FILE SECTION.
0s0o18 FC A
gL019 RECORDING MOCE V
cup2c BLOCK CCNTAINS 2000 CHAKACTERS
00021 LAREL RECORDS ARE OMITTED
gLeez DATA RECCRDS ARE AA, AB.
cgoes 01 A&,
0Gco24 02 AAA PIC $999 CCMP.
000es 03 AAB.
nucee 0S5 AABA CCCURS 0O TO 1CUL TIMES DEPENDING ON AAR,
goo27 INDEXED BY AABAX1, AARBAX2, AABAX3,
ngeae ASCENDING KEY AABAB,
00029 DESCENDING KEY AABAA IN AAB OF AA,
guo3g ASCENGING KEY AABAC.
co031 07 AABAA PIC S99,
006032 U7 AABAB PIC $£99.
00033 07 AABAC PIC S$S99.
00034 01 AB.
0Go3s 03 ABA PIC S999 COMP.
00036 03 ABB.
00037 05 ABBA OCCURS 100 TIMES
oco3s INDEXED BY ABBAX1.
ouo39 CT7 ABBAA PIC S99.
0004C 07 ABBAB PIC S99.
00041 G7 ABBAC PJIC S99,
06042 FO B
00043 RECORDING MOCE U
00044 LABEL RECORDS ARE COMITTED
00045 DATA RECORD 1S BA.
00046 01 BA.

Figure E—1. Example of Source Code Listing

H3IawnN-dn
C "AeY LS08

g/waisAg BunesadQ JVAINN AHHIAS

A3A37 3ivadn

39Vvd
Z2—3

8057 Rev. 2
UP-NUMBER

E-3
PAGE

l SPERRY UNIVAC Operating System/3

UPDATE LEVEL

E.2. DATA DIVISION STORAGE MAP AND CROSS-REFERENCE LISTING

The storage map heading line contains the PROGRAM-ID name, the compiler version, and the date and time of
compilation.

The page heading locates the following information:

@

)

LINE
The compiler-generated line number on which the data item is defined.
LEVEL

The flevel indicator or level number assigned to the item. An * indicates that the item was generated by the
compiler, as with TALLY.

DATA-NAME
The name of the item.
REG

Where applicable, the hardware register number which contains the address used as a base value for referencing
the item. If a permanent register has not been dedicated to cover the item, an * is listed.

DiSP

The displacement of the item relative to the address contained in the item’s cover register. The number is
expressed in hexadecimal.

ADDR

The address of the item, relative to the first byte of the program. If blank, the address varies due to blocking,
double buffering, etc. The number is expressed in hexadecimal.

LENGTH
The length in bytes of the item.

TYPE

The class or type of the item where:

GP = Group

A/N = Alphanumeric

A = Alphabetic

NUP = Numeric unpacked
IDN = Index-data-name
IDX = Index-name

AE = Alphabetic edited
NE = Numeric edited
NP = Numeric packed

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3 B

UPDATE LEVEL

E—4
PAGE

®

@)

PTLOC
The decimal point location of the item where:

— integer indicates the number of fractional digit positions plus the number of leading P’s in the PICTURE,
e.g., —5 for PIC PP999 or PIC 9.99999 or PIC 99V99999.

+ integer indicates the number of trailing P’s in the PICTURE, e.g., +5 for PIC 99P(5)

occC

The number of occurrences of the item as specified by the OCCURS clause.

LINE NUMBERS OF REFERENCES

If the cross-reference list has been specified, the line numbers where one or more procedural references to the
item were made are listed here.

A sample data division storage map is illustrated in Figure E—2.

The information in the data division storage map is listed in ascending order according to line number. The

information presented in the data division storage map may also be listed in alphabetical order based on the
data-names (see 7.1.1).

E.3.

PROCEDURE DIVISION STORAGE MAP AND CROSS-REFERENCE LISTING

The storage map heading line will contain the PROGRAM-ID name, the compiler version, and the date and time of
compilation.

The page heading locates the following information:

®

®@ ® ©® 06

©)

LINE

The compiler-generated line number on which the item is defined.

SECTION

If the item is a section-name, it is listed here.
PARAGRAPH

If the item is not a se€tion-name, it is listed here.
PRIOR

The priority number of the section-name.
ADDR

The address of the procedure, relative to the first byte of the program. If the name is not referenced in the
program, NO REF is listed here. The number is expressed in hexadecimal.

GO TO

An E indicates that the procedure is the object of a GO TO.
PERFORM

HIGWNN-dN
C 'AY LG08

PROGRAM-ID,., TBL3T COMPILED RBY LNIVAC O0S/3E COBOL COMPILER VERSION O07.00/02 DATE 79707726 TIME 01.05.43
DATA DIVISION MEMORY MAP PAGE 00068
L@E LE;)EL DATA_ NAME Qé)ﬁ D@P A@R LENOfTH E PT@OC LINE NUMBERS .OF REFERENCES
* % % SPECIAL NAMES % % =%

30009 77 P 00452 00454 00462 00464 00473

oc47s
* &% % FILE SFCTION % % =%

ok ok * TALLY * Cg0C G©QO190 3 NP

03018 FL A 00152 UC420 DCu421 0C426 Q0431

0acCcz23 01 AA 5 CLC4 CG1e9cC 602 VGP G0022 00429

33024 03 AAA 5 OLiC4 CO0189¢C 2 BIN 00026 00158 0C166 00174 00182
00191 00199 002C9 00218 00226
00238 00248 JC251 (00258 00261
00272 CC282 00293 C0302 0D307
00315 (0321 0OC361 00368 00375
C0386 Q039& CC40T 00419

[sh ayd) G3 AAB 5 Cule Cols92 6L0 VGP 00160 00165 0OC176 00184 00193
00201 00211 00220 00227 00239
Q0242 L0249 00252 00259 00262
00273 00274 0C275 00277 00284
00285 0286 00287 ©0D29S5 00297
00305 00306 CGC308 00316 00322
00323 Q0363 GO370 00371 00377
00380 00381 (C388 00400 GO402
00402 (0409

02026 GS AAEA 5 000e (0CU1892 6 6P 160 0016l GO169 0C177 00185 00202
C0212 00221 0C228 00243 ©0253
00263 10292 CC313 00379 00389
couzs

00026 * AASAX] % 0018 DOC1iAs 8 IDX 00423 00425 00440

03C26. * AARAXZ * [Cg2C CO013C 8 1Ibx

03Cze % AABAX3 * [Cg28 COClss 2 10X

00031 07 AAEAR 5 CG0Ce 0GC189%92 2 NUP

93G32 07 AAZAE) ncoe 001894 2 NUP

00032 07 AABAC 5 CucA 001896 2 NUP

03034 C1 31 5 C€CC4 0©0189C 602 GP 00022

23035 2 ABA 5 CuB4 CUl1soL 2 BIN

03036 03 AER § 0COe CO1892 60C GP 00155 00165 06173 00181 00190
U0198 00208 0C217 00225 00362
00369 00376 GC387 CGO408 00410
OC418 006422 0OCu433 00437

03037 S AERA 5 0006 001892 6 &GP 100

03037 % ABBAX1 *» ©Ou3C Cgoice 8 10X

03039 07 ABRAS 5 roce CO18%92 2 NUP

03040 07 ABBAB S CQoC8 0Q1894 2 NUP

J3Cu1 G7 ABBAC: S CQO0A C0€O0189¢ 2 NUP

0JCuz FD 8 00152 00435 00436 00443 0OOu448

00046 01 BA 6 0000 0QOo1888 6062 V6P 00045 00446

00047 03 BAA 6 COCC 001888 2 BIN 00050 00434

Figure E—2, Example of Data Division Storage Map and Cross-Reference Listing

A3A37 31Lvadn

39vd
g—3

g/weisAg Bunesadg JVAINN AHYIAS

8057 Rev. 2 SPERRY UNIVAC Operating System/3

UP-NUMBER

E-6
PAGE

UPDATE LEVEL

ENTRY

@

An E indicates that the procedure is the object of a PERFORM.
EXIT

An X indicates that the procedure contains a PERFORM exit point.

®@ @

ALTER

An A indicates that the procedure is altered.
SORT*

ENTRY™

® ©

An E indicates that the procedure is the entry point of a SORT procedure.

EXIT*

®

An X indicates that the procedure contains a SORT procedure exit point.

DEBUG

®

An * indicates that the procedure is the object of a debug packet.

If the cross-reference list has been specified, the line numbers where one or more references to the procedure have
been made are listed under LINE NUMBERS OF REFERENCES. A sample procedure division storage map is shown
in Figure E-3.

The information in the procedure division storage map is listed in ascending order according to priority number
above SEGMENT-LIMIT, and within priority number in ascending order according to line number. The information
presented in the procedure division storage map may also be listed in alphabetical order based on the procedure
names (see 7.1.1). :

E.4. OBJECT CODE LISTING AND EXTERNAL REFERENCES

The object code listing heading line contains the compiler version number and the date and time of the compilation.

Following the report heading line is a list of external reference symbols (EXTRN and ENTRY names). These are the
symbols whose object time address cannot be calculated at compile time and must be resolved by the linker. The
program name and segment names are also listed here so that their object time address can be determined by the
linker. A 2-character ESID number (External Symbol ldentification) follows each name. This number is used as a
link between the ESID associated with all address constants and the element base to which that address is relative.

The first entry in the list is the program name and its ESID number of 02. The program name is the PROGRAM-ID
name from the identification division. If the COBOL program is segmented, the segment names follow. The
8-character segment name is composed of the first six characters of the program-name and a 2-character segment
number. The segment number 01 will be assigned to the first section-name whose priority number exceeds 49; 02 to
the next section with a different priority number greater than 49, etc. The ESID of the first segment is 03, the next
is 04, etc.

The next group of names identifies various external programs required in the execution of the COBOL. program,
such as the data management modules and special COBOL. object time subroutines.

*SGRT, ENTRY, and EXIT will appear in the heading but these verbs are not avaifable in the basic compiler,

8057 Rev. 2 J SPERRY UNIVAC Operating System/3 l E-7
UP-NUMBER UPDATE LEVEL | PAGE
. The symbols in the last group are names that appear in CALL statements.

The object code listing page heading identifies the following information:

LINE #
The compiler-generated line number on which each procedure division statement exists.

BASE/DISPL

This field lists the hardware base register number used to contain the cover address for the line of code.
The displacement from the address in the cover register to this line of code is also displayed.

If this field is blank, either no cover is needed for the line of code, or the cover register assignment at
object time varies and cannot be defined.

ADDRESS
The program-elative address where the line of code resides.

CONTENTS OF

MEMORY
The actual hexadecimal description of the code or constants produced. An ESID number appears to the
right of each address constant (DC A).

OPERAND

ADDRESS
The program-relative address of the data or constant area being referenced. If this field is blank, the item
is being addressed indirectly.

OPCODE
The mnemonic name for the constant or instruction produced on this line. If this field is blank, and the
‘contents of memory’ field contains zeros, alignment is being effected for the next line of code.

COMMENTS
This field defines the purpose for which the code was generated. For code in the procedure division, the
source program verb is listed.

Prior to the procedure division, the following numbers, displayed under COMMENTS, are used to locate the
i‘ndicated items and areas.

®

@

Intersegment GO TO Subroutine

Used when control is passed from one segment of a segmented program to another.
Intersegment PERFORM Subroutine

Used when a PERFORM references a section or paragraph in another segment.
PERFORM EXIT Subroutine

Called at end of paragraph or section referenced as PERFORM EXIT to determine if PERFORM is active or
not.

PRCCEDURE DIVISION MEMORY MAP PAGE 00071

@ @ @ @ « - = = = VERB REFERENCES -, = = =
LINE SECTION NAME PRTOR ADDR 5C PERFORM ALLER som(;) DEBUG
pnment:n NAME T0 ENTER EXIT Enisn EXYT @ LINE NUMBERS OF REFERENCES
X

LR R DEPENDING SECTION »# % % *x %
00150 DP$ULCOCO : 002738 E
0150 pPECN001 002752 E X
Dd150 0P$5Q002 0G6276C E X
* &% % % END DEPENDING SECTION % * * %
00151 0010 002786
03154 10C0-MOVE-V-TO-F-PADDED 002744
0J1let 101G-MOVE-V-TO0-F~-TRUNC op28uc
20172 1020-MOVE-V=-TO-F-JUST-PAD 0028F¢6
00180 1030~-MOVE-V-TO0-F-JUST-TRUNC 0C299¢E
0189 104C~-ZERC-LENGTH-TC-F DU2A4E
00197 1050-MOVE-F-T0-¥-PADDED 002AE6
93267 1060-MOVE-F-TO0-V-TRUNC 0C28AC -
03216 1070-MOVE-F-TC-ZERO~-LENGTH-V 0G2C5E
00224 1080-MOVE-F IGURATIVE-TC-V 0G2CFC
03232 189G-0UECISION 0G2DscC
03237 1100-MOVE~-V-TO=-V-PADCED oo20Be
03 247 1110-MOVE-V-TO-V~TRUNC 002¢ED6
03257 112U-MOVE-V=-TO0-V-ZERO-LENGTH 0C2FF 4
0d 265 20CU-DECISICN o031lce
03271 2010-1F~Vv-VS~LONGER-F no3122
00281 2020-1F~-V-VS-SHORTER-F 0c3zu6
0J 291 2030-IF-2EPO-LENGTH-VS-F 0033¢6A
83 3C1 2040-1IF-V-VS-V 0G3442
0l1312 208C-1F=-2-vS-2 0035CA
0J 319 206L-1F~-V-VS-FIGURATIVE CO36e4
0J 330 2070-1F-ZERO-LENGTH=-V-V S-FCON nGc3748
03337 Z08U-IF-V-ALPHAEETIC noon3s87cC
323346 20S0~IF-V=-NUMERIC c03952
0J 385 30CU-DECISION 0C3A28
03360 3C010-EXAMINE-V-TALLY-ALL 003 Aun
00367 3020~EXAMINE-V-TALLY-REP-ALL OG3ACY
N3 374 3030~EXAMINE-V-TALLY-REP-TIL 003874
0J 285 ID40-EXAMINE-ZERO-LENGTE-YV 063Cc8y
03392 400GC-DECISION ot3pre
03397 4010G-TRANSFORM-V 003D2A
o0 406 4020~TRANSFORM=-ZERC-LENGTH=-V N03EC2
03417 S010-wRITE-V-REC-MOCE-V CO3FS4
00428 5620 OU4GeEA E X 00419
00430 5030 CC4GPO E X 00423
0J432 S504U-wRITE-V-REC-MODE-U cpeiCs E 00427
00 u4ys 5050 COu21E E X co434
00447 5060 ocu2sSC E X go438
00 449 S070 004284 E 00444
DJ 451 9000-SUMMARY op4284 E 00477
00 460 90C0-DISPLAY 04390 E X 004s7
0D 4¢€S S01C-PASS oo44cs E X 00162 00170 00178 00187 00195

00205 00214 0C222 00230 00245
00255 00264 QC278 00288 00298
Q0309 00317 00327 00335 00343

Figure E—3. Example of Procedure Division Storage Map and Cross-Reference Listing

HIgWNN-dN
C "AeY £908

g/wasAg bunessdg JVAINN AHYHIdS

|

T3IAFT 3.LVAdN
g

3OVd
8—3

E-9

UPDATE LEVEL | PAGE

8057 Rev. 2 l SPERRY UNIVAC Operating System/3

UP-NUMBER

. @ cvs

Converts packed decimal to binary.

(® cvp

Converts binary to packed decimal.
@ Multiply Half-Word Subroutine

Determines product of two binary half words.

S

CVB and Multiply Half-Word Subroutine

Converts a packed decimal number to binary and multiplies it by another binary number.

©)

GO TO DEPENDING Subroutine

PERFORM function required by GO TO DEPENDING function.
Converts separate sign to embedded sign.

Converts embedded sign to separate sign.

Same as 10.

Calculate occurrence number.

® 06 ®

Transient Storage Area

Storage area used to perform certain intermediate calculations.

@

Special Constants
Constants required by verb generators.
@ Address of USING Argument Area

Pointer to area used to pass USING arguments to called routines; also used by ACCEPT and DISPLAY
functions.

Address of USE Procedure Table
Pointer to table of USE procedure addresses.
Address of Altered GO TO Table

Pointer to table of altered GO TO’s in priority segments.

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3
UPDATE LEVEL

E—-10
PAGE

@

Start of BAT Table

A table of addresses used to reference data division entries.

Start of PEP Table

A table of addresses of referenced procedures.

Start of DTF Block Addresses

A table of addresses which define the starting points of DTF’s and the COBOL prefixes for each.
Start of EXTRN's for COBOL Subroutines

EXTRNed address of subroutines required by certain COBOL. functions.

VCON Reference Table

A table of addresses created by CALL statements compiled as VCON'’s.

PERFQORM EXIT Storage Area

Area used to save address and other indicators for PERFORM functions.
Index-Name Storage Area

Area used to store values of indexes: the value of TALLY is also stored in this area.
PERFORM n TIMES Counters

A table containing the counters for the PERFORM verb.

Start of DTF Tables

A series of tables used to define files for input/output functions.

Start of Altered GO TO Table

A table of altered GO TO's in priority segments.

E—-11
PAGE

8057 Rev. 2 | SPERRY UNIVAC Operating System/3

UP-NUMBER

UPDATE LEVEL

. @ Start of USE Procedure Table

A table used to reference USE procedures containing necessary indicators and addresses.
@ Start of Data Division Initial Values
Start of listing of constants produced by VALUE clause in working-storage section.
@ Start of Procedure Division Constants
Area contains those values and constants required by procedure division literals and functions.

A sample object code listing is shown in Figure E—4.

E.5. DIAGNOSTIC ERROR LISTING

The diagnostic listing header line contains the program-ID name, the compiler version, the date, and the time of
compilation. The page headings locate the following information:

(1) LINE#

Compiler-generated number which identifies the particular line of source code with which it appears.

. @ svc

Severity code letter
(3® ERROR
Diagnostic number
(@ DIAGNOSTIC MESSAGE

| Brief explanation of the error condition

Explanation of the text of the diagnostic error listing is given in the system messages programmer/operafor
reference, UP-8076 (current version).

A sample diagnostic listing is shown in Figure E—5.

PIOGRAM-ID, TBL3T COMPILED BY UNIVAC OS/3E COBOL COMPILER VERSION 0O7.00/02 DATE 79/07/26 TIME 01.05.43 PAGE 00010 %§
EXTERNAL REFERENCES 29
D
T3L3TGO0 02 CCREXM94 03 CCaBJERR GY CE&GCAD 05 CSaALPH 06 CSaNuMu 07 CSaANRP 08 CBaANR 09 52"
CMAVMOVE OA DO$T111 Ok CCRBJER3 GC CFabCP €D Cw3TRANS OF CWAREBZAS OF €BAOPCL3 10 oe
LINE & BASE/DISFL ADDRESS CONTENTS CF MEMORY OPERAND ADDRESSES 0PCODE COMMENTS
GRCOOD Us FO BALR
FooiC ceecoz 45 EC F CCé 060G08 BAL
Foous ocCoos C7 FC B CR
F0ce GCCOu8 98 AD F C12 ocoo14 LM
F CcCA goceoc 98 59 A C(CFC 000124 LM
FoCE 0oGo1o Gk AC SPM
F o010 cceo12 o7 FE BCR
Foooi2 cocois LOCCa0zs G2 nC &
FoCle GCCD1Eg COCO1028 0% pC A (%)
Y 0cco1c CCC02766 02 bC A ~
FCLE pooc2e onCcozeEs 02 0C A~ -
Forz2 CGLosY 20COGEGT 2
A 000 00C0z8 58 FO 1 COL L < =
& Ciw Leepze 41 OC 0 COU LA c }
A 0uE GCen3sn 19 FO CR > \
A ooCs 6CLO32 47 BC E COC RC =
A OCE Lroense 58 CC 1 COw L <
A Ciz LCoo3a ¥S 0C 1 OCL Ll g
A Cle CCLO3E $0 0C 1 COC STHM
A C1A cCcLos2 47 DL F €OU BC (@)
A DLE 0rCoue 45 EG A C12 oLOC3A BAL 3
& Ce2 CCCO4A coco =
A C24 ccecoac S6 OF A C37 DLOUSF 01 =8
A nzs cccose 4F 1C A ©£3C ouoLSs cve a
s c2¢ GOCOS4 L7 Ft BCR »
b CzE UCCess oeeo <
A C3D CCLG58 CCo0OCo0CeGoonco pC X @ 4
A C38 GCCres Cs 4g 4
A Ces Leersn UCUOGZEE 0C X Y 2
A DeC oreeoy G0u02734 €2 oc A‘_—® w
A G670 acceos pou02738 02 oC A @
A CT4 creosc 00602752 Cz DC A
A 078 UCLOAD ¢oco27e6C Oz DC A
A e7C COCCAU LOLD4ace 02 oC A
A csn CCCOAs8 coula4cA C2 DC A
A Ol GCCOAC GOCOD4UAZ B2 DC A
A Ob8 60G0&0 g0U04DeA 02 DC A
A osC ooLoBY LOCO40ED 02 DC A
A 090 00C0B8 GOCO4ILE 02 DC A c
A 0S4 GCCOBC COLD421E 02 DC A . b
A 098 GOGDCo (CGU425C 02 DC A >
& 09C sececy C0DC042B4 02 DC A i
A CAD gococs C0GO444C 02 oC A -
A OA4 gecoce 00C0429C 02 DC A m
A O0AB 0Ocooo COCO42E4 02 DC A S
A CAC GOCODY 40600210 02 0C A @ r
& OBO 00CoDs 00000216 02 DC A
A CBY Geoonc 00C0G308 02 0C A > m
2N
N

Figure E—4. Example of Object Code Listing and External References

PROG?AH-fD
EIN v

03160
03168
03176
07184
03192
03274

v B v Bin e B o i e B v §

181
181
181
181
181
181

TBL3T

RROR C:%IAGNOSTIC MESSAGE

AAP. TRUNCATED DURING
AAR TKUNCATED DUFING
AAF TRUNCATED CURING
AAE TRUNCATED DURING
AAF TRUNCATED DURING
AAR TRUNCATED DURING
xxx?r2fRPORS u- Croo

MCVE .
MCVE.
MCVE .
MCVE,
MCVE.
MCVE .

S-

£aoco ¢- poceo P- (0OCe o o e o ok

CS/3E CCbOL COMPILATION COMPLETE TplL3T START 01.05.43 END

CCMPILED BY UNIVAC OS/3E COBOL COMPILER VERSION 07.00/02 DATE 79707726

01.07.59

TIME

01.05.43

PAGE

ao077

Figure E—5. Example of Diagnostic Listing

H3IAWNN-dN
C 'A8Y L908

T3A3T 3Lvdadn

39Vd
el—3

g/waisAg Bunesadp JVAINN AHHICS

2]

8057 Rev. 2 SPERRY UNIVAC Operating System/3

UP-NUMBER

B
UPDATE LEVEL | PAGE

E.6. ALPHABETICALLY ORDERED DATA DIVISION CROSS-REFERENCE LISTING

This listing presents the same information as the data division storage map (Figure E—2), but the items are presented
in ascending sequence by data-names.

Figure E—6 is a sample alphabetically ordered data division cross-reference listing.

E.7. ALPHABETICALLY ORDERED PROCEDURE DIVISION CROSS-REFERENCE LISTING

This listing presents the same information as the procedure division storage map (Figure E—3), but the items are
listed in ascending sequence by procedure-names.

Figure E—7 shows a sample alphabetically ordered procedure division cross-reference listing.

PROGRAM-ID, TBL3T COMPILED

DATA NAME

AA
AAA

AAR

AAEBA

AACSAA
AABAB
AABAC
AASAX]
AABAXZ
AAEAX3
A3

A3 A
A3 R

A3EA
A3 BAA
A3 BAR
A3 BAC
A3 BAX1
3

BA

BAA
8AB
BABA
BABAX1
FAILURE
P

TALLY
NA
WA A

BY

LEVEL

Fu

03

03

LNIVAC

LINE

coce
coezs3
cooz24

runes

tCoze

o031l
coe3z
€Go33
ceoze
£C026
cuoze
ccc3s
CLO35
CLC3é

€go3?
cuo39
CCo40
CO0ous1
coo37
coos2
Cooueé
coou47
Co04s
coous9
Co049
Colu8
co009

¥k
Co0sS3
cooss

0S/3E COBOL

COMP ILER

VERSION 07.00/02 DATE

DATA DIVISION CROSS REFERENCE

REG

TN % R # NN

~#toooro0o NI WD

-~ -~ *

DISP

cocy
UGCu

ucce

Goce

gece
occe
coca
cols
gczc
uoee
GCCy
uetCH
goce

gcce
ocCe
cocs
00CA
go3c

oceo
goco
goc2
00C2
oo3s
OA20

geoo
ooco
0cCo

ADDR

oo1890
001890

or1892

goi8s2

001892
grc1894
0c18%e6
GCO1aA8
0CC1EQ
0001kE8
0C1890
001890
601892

g01892
601892
oc18s4y
0p1896
gooico

001888
cCl1888
cC1884A
G01884A
goo1ce
g02s510

go0o190
001AF0
OC1AFO

LENGTH

602
2

600

o
o
NSO oOo®DDNNN

TYPE PTLOC OCCURS

VGP
BIN

VeGP

GP

NUP
NUP
NUP
1pX
10X
1DX

BIN
GP

GP

NUP
NUP
NUP
I0X

VeGP
BIN
VGP
A/N
10X
NUP

NP
veP
BIN

100

100

100

00152
ggc22
opo2e
00191
00238
00272
00315
00386
00160
gozel
gt242
00273
gezss
ge3os
ce323
oc3eg
0c403
o016l
gnz1z
00263
00423

cl423

coozz

00155
00198
€0369
Goy18

ge1s2
oco4s
Gooso

c0u438
co438
00233
00452
00475

000Se

LINE NUMBERS OF REFERENCES

00420
00429
00158
00199
gn248
00282
00321
op3se
go168
go211
00249
60274
ooz86
00306
060363
uo3el
00409
00169
gnz21
00292

0042%

00165
np2ose
00376
00422

00435
O0uke
00434

00267
00454

00238

79707726

PAGE

00421 00426

00166 00174
00209 00218
0c251 00258
0C293 00302
0C361 00368
0C407 00419
00176 00184
00220 00227
0g2s2 00259
0C275 00277
0C287 00295
00308 00316
oc370 00371
0c388 §go400

0C177 00185

D0228 00243
6C313 00379

cou440

0C173 00181
60217 QD225
0C387 (gD408
00433 00437

0cu3e 00443

00356 00393
00462 00464

0C241 00248

TIYE O1.05.43

00073

00431

ooi82
00226
gozel
00307
00375

00193
00239
00262
00284
00297
00322
00377
00402

00202
00253
go389

00190
00362
00410

00448

00473

00258

Figure E—6. Example of Alphabetically Ordered Data Division Cross-Reference Listing

HIGWNN-dN
C 'A3Y £908

T3IA3T 34vadn

39Vd

g/wasAg bunesadQ JYAINN AHHICS

2]

G1—3

PROCEDURE DIVISION CROSS REFERENCE PAGE 0007S
PROCEDURE NAME TYPE LINE ADDR 60 PERFORM ALTER SORT DEBUG
PRI 70 ENTER EXIT ENTER EXIT LINE NUMBERS OF REFERENCES

DP $0G0000 PAR CO0150 002738 3 X

DP $00001 PAR CO0150 002782 E X

D°$0C002 PAR (0150 00276C E X

0010 PAR CO0151 002786

1000-MOVE-V-TO-F-PADDED PAR CO1S4 C027A4

1010-MOVE-V-TO-F-TRUNC PAR COlé4 gp284c

10 20-MOVE-V-TO-F~JUST-PAD PAR CC172 CD28F6

13 30-MOVE-V-TO-F~JUST-TRUNC PAR CO0180 C0299E

1040-ZERC-LENGTH~TO-F PAR CO0189 CO2A48

1050-MOVE-F-T0-V-PADDED PAR CO0197 002AE®6

1060-MOVE-F-TO-V-TRUNC PAR C0207 C02BAC

1070-MOVE-F-TO-2ERO-LENGTH-V PAR €O0216 CU2CSE

10 80-MOVE-FIGURATIVE~-TO-V PAR (0224 CO2CFC

1390-DECISICN PAR C€0232 - 00209¢C

11 00-MOVE-V-T0-¥-PADDLD PAR (C0237 0020B8

11 10-MOVE-V-TO-V-TRUNC PAR £0247 CG2ED6

11 20-MOVE-V-T0-V-ZERO~LENGTH PAR (€D257 OG2FF 4

200G-DECISION PAR CC266 063106

2010-1F-V-VS-LONGER-F PAR CC2171 003122

2020-1F~V-VS-SHOPTER~F PAR (D2¢&1 oo3zue

2030-1F-ZERO-LENGTH-VS-F PAR [€C291 00336A

20 40-1IF-Vv~VS-V¥ PAR C(301 CO3442

2050-1F-2-Vv5-2 PAR CU312 co3sCa

2060-IF-V~-VS-FIGURATIVE PAR CC319 003e64

207C-1F-ZERO-LENGTH-V-VS-FCON PAR (0330 0C374A8

2080-1F-V-ALPHABETIC PAR CO0337 cu3s7cC

2090-IF-V-NUMERIC PAR CO3u46 003952

30 00-DECISION PAR €0355% 0G34A28

3010-EXAMINE-V-TALLY~ALL PAR €O0360 003ALY

302C-EXAMINE-V-TALLY-REP-ALL PAR (0367 DO3ACH

3030-EXAMINE-V-TALLY-REP-TIL PAR CU374 OG3BTA

3040-EXAMINE-ZERO-LENGTH=-V PAR CG385 co3cs4

4000-DECISION PAR CC252 CG3D0E

40 10-TRANSFORM-V PAR C0397 003D2A

4020-TRANSFORM=ZERO-LENGTH-V PAR CCH06 0C3EC2

S010-WRITE-V-REC-MODE-V PAR COu417 003FS4

5020 PAR TCQu28 0G406A £ X uouly

5030 PAR CQ430 004CBO E X 00423

S0 40-wRITE-V-REC-MODE-U PAR CQu32 004108 E 00427

5350 PAR 0445 COu21E £ X 00434

5060 PAR COU47 0ou25¢C 2 X 00438

5070 PAR CGH49 004284 E 00444

93 00-DISPLAY PAR CO460 co4390 3 X 004s7

90 00-SUMMARY PAR CD451 Co4284 E 00477

9010-PASS PAR CC465 004408 E X 00162 00170 001T8 -00187 0O195
00205 00214 00222 00230 QD245
00255 00264 00278 00288 00298
00309 00317 00327 00335 00343
00352 00365 00372 00382 00390
00404 00411 00425 00441

90 20-FAIL PAR CQ468 004424 E X 00163 00171 00179 00188 00196

‘\

Figure E—7. Example of Alphabetically Ordered Procedure Division Cross-Reference Listing

H3I8WNN-dN
¢ 'A9YH LS08

g/wasAg bunesad) JVAINN AHHILS

T13A371 31vadn
|

aaval

—3

91

UP-NUMBER

8057 Rev. 2 ‘ SPERRY UNIVAC Operating System/3

F—1
PAGE

UPDATE LEVEL

Appendix F. Conversion Mode

F.1. GENERAL

To facilitate the conversion of IBM/360 DOS COBOL level D to SPERRY UNIVAC Operating System/3(0S/3)
COBOL, a conversion facility has been built into the OS/3 extended COBOL compiler. This facility, called the
conversion mode {C-mode), accepts COBOL source code and alters it to American National Standard specifications,
or issues diagnostics so the programmer is made aware of the need for changes.

F.2. CONVERSION MODE OPERATION
A PARAM statement option is available to energize the conversion mode of the 0S/3 COBOL compiler.

The conversion mode availability does not imply total source program transfer capability. lts intent is to minimize
the volume and complexity of source program alterations necessary to compile successfully a given COBOL-D
program. Every attempt is made to provide software support for those language differences that would, under a
totally manual conversion process, require a knowledge of the source program intent and logic flow. Source program
statements that must be altered prior to compilation are, in most cases, independent of program design.

Several methods are available by which the conversion mode operates on a COBOL-D source program. In addition to
accepting portions of the alien syntax and interpreting that syntax in a COBOL-D manner, the compiler alters the
meaning of certain source clauses and statements.

In the conversion mode, various compiler processing paths are altered to effect a change in the semantic
interpretation of a COBOL-D clause or statement, as in the case of contradiction across compilers associated with
the IF NUMERIC statement.

Occasionally, an entire processing philosophy can be reversed. In the conversion mode, the compiler assumes that
ASCIl print control characters are utilized in all print files. In addition, a special COBOL-supplied object time
subroutine is provided to ensure acceptable object program print speed. This software bridges the gap between the
exclusive use in COBOL-D programs of the WRITE AFTER ADVANCING statement and the associated UNIVAC
90/30 System hardware limitation.

This appendix describes the known differences that exist between COBOL-D and UNIVAC 0S/3 COBOL. it also
defines the language differences that the conversion mode renders transparent. Those language differences for which
no automatic software support is possible also are identified here, along with the appropriate source program change
requirement.

When functioning in the conversion mode, many of the compiler American National Standard language features are
disabled. Therefore, it is not recommended that a COBOL-D program, once converted, be modified to take
advantage of the many additional OS/3 COBOL language capabilities without first being totally converted to
American National Standard COBOL.

[
F—2
PAGE

8057 Rev. 2 SPERRY UNIVAC Operating System/3 l
UP-NUMBER UPDATE LEVEL

In the normal American National Standard COBOL mode, COBOL-D language differences are not permitted. The
special processing interpretations and software extensions available in the conversion mode are not supported in the
American National Standard mode; that is, control character print files are unique to the conversion mode.

F.3. CONVERSION MODE SYNTAX

The differences between COBOL-D and 0S/3 COBOL are described in the following paragraphs within each program
division.

F.3.1. Identification Division

L] PROGRAM-ID. program-name,

COBOL-D

Program-name is one to eight characters enclosed in quotation marks.

0S/3 COBOL

Program-name is 1 to 30 characters not enclosed in quotation marks. Only the first 6 characters,
excluding hyphens, are used to identify the object program.

C-mode

0S/3 COBOL accepts a 1- to 8-character name enclosed in quotation marks. Only the first 6 characters, .
excluding hyphens, are used to identify the object program.

F.3.2. Environment Division
] CONFIGURATION SECTION heading.

COBOL-D
Optional

0S/3 COBOL
Required

C-Mode
Optional

8057 Rev. 2 i F-3
UP_NUMeE:’ER I SPERRY UNIVAC Operating System/3 [UPDATE P
‘ s SOURCE/OBJECT COMPUTER clause.
COBOL-D
1BM-360 model-number
0S/3 COBOL
UNIVAC-9030
C-mode
The compiler accepts any SOURCE/OBJECT COMPUTER entries valid for COBOL-D.
u SPECIAL-NAMES paragraph/DECIMAL-POINT IS COMMA clause
COBOL-D
Does not exist. Reversal of decimal point and comma is activated by a parameter on the CBL control
card.
0S/3 COBOL
Reversal of decimal point and comma controlled by SPECIAL-NAMES entry.
C-mode
No automatic support. The converter must insert a special-names paragraph and the DECIMAL-POINT
IS COMMA clause into the source program before compiling.
If the CONSOLE or SYSLST option of an ACCEPT/DISPLAY statement is used in the program, the
compiler automatically produces a special-names entry, internally, for the program. CONSOLE is
. equated to SYSCONSOLE, and SYSLST is equated to SYSLST.
L] SELECT/ASSIGN clause
COBOL-D
DIRECT-ACCESS
ASSIGN TO ‘external-name’ UNIT-RECORD
UTILITY
device-number UNIT(s)
0S/3 COBOL
ASSIGN TO ‘external-name’ integer implementor-name
C-mode
No automatic support. The COBOL-D SELECT statement, with respective ASSIGN clauses, must be
replaced by the appropriate SELECT/ASSIGN clauses before compilation.
u ACCESS clause

COBOL-D
The word ‘IS’ is optional.

0S/3 COBOL
The word ‘IS’ is required.

C-mode
The word ‘IS’ is optional.

F—4
PAGE

8057 Rev. 2 SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL

| KEY clauses

COBOL-D
The word ‘IS’ is optional.

0S/3 COBOL
The word ‘IS’ is required.

C-mode
The word ‘1S’ is optional.

] 1-O-CONTROL paragraph entries

COBOL-D
Allows the clauses of the I1-O-CONTROL paragraph to be separated by periods.

0S/3 COBOL
Allows the clauses to be separated by a comma or a semicolon. A period must follow the last entry in
the paragraph.

C-mode
No automatic support. The embedded periods within the |-O-CONTROL paragraph must be removed
prior to compilation or diagnostics will result.

a RERUN clause

COBOL-D

DIRECT ACCESS
UTILITY

RERUN Qy_‘external-name’ { } device-number

UNIT(s) EVERY integer RECORDS OF file-name.

External-name may not be the same as the external-name in an ASSIGN clause.

Allows a maximum of 20 external devices to be used to store checkpoint records, only one of which can
be a direct access device.

Checkpoint records are written preceding the execution of integer for a READ, WRITE, or REWRITE
statement. Integer may not exceed 8,388,607.

0S/3 COBOL
RERUN ON ‘external-name’ EVERY integer RECORDS OF file-name
The external-name must be specified in an ASSIGN clause.

The only restriction on the devices is the compiler limit of 63 devices per program.
Integer may not exceed 9,999,999.

C-mode
No automatic support. The RERUN clause must be replaced by one that conforms to the 0S/3 COBOL
format. A SELECT statement must be added for each external-name in each RERUN clause. '

F-5

UPDATE LEVEL | PAGE

8057 Rev. 2 I SPERRY UNIVAC Operating System/3

UP-NUMBER

. L APPLY clause for FORM-OVERFLOW

COBOL-D
APPLY overflow-name TO FORM-OVERFLOW ON file-name.

0S/3 COBOL
This clause is not supported.

C-mode
No automatic support. Remove the APPLY FORM-OVERFLOW clause from the source program. Add a
USE FOR FORM-OVERFLOW procedure in the declaratives portion of the procedure division for
detection of page breaks.

u APPLY clause for RESTRICTED SEARCH

COBOL-D
The word ‘ON’ is optional.

0S/3 COBOL
The word ‘ON’ is required.

C-mode
The word ‘ON’ is optional.

u COPY library-name

' COBOL-D
Library names are enclosed in quotation marks.

0S/3 COBOL
Library names are not enclosed in quotation marks.

C-mode

Library names are enclosed in quotation marks. All libraries are expected to be in UNIVAC 0S/3
format.

F.3.3. Data Division
L Data formats

COBOL-D

COMPUTATIONAL-1 specifies short floating-point format; COMPUTATIONAL-2 specifies long
floating-point format.

0S/3 COBOL
COMPUTATIONAL-1 and 2 are not supported.

C-mode
COMP-1 and 2 are not supported.

8057 Rev. 2

UP-NUMBER -

F—6
PAGE

SPERRY UNIVAC Operating System/3 L
UPDATE LEVEL

LABEL RECORDS clause

COBOL-D
Optional clause. If omitted, LABEL RECORDS OMITTED is assumed. For LABEL RECORDS ARE
data-name, the data names must be 01- or 77-level items in the linkage section.

0S/3 COBOL
Required clause. If the clause is omitted, a diagnostic is produced and OMITTED is assumed (unless
device is disc, then labels are assumed to be STANDARD). For LABEL RECORDS ARE data-name, the
data-name record description must be subordinate to the file description.

C-mode
Optional clause. Same default as COBOL-D. Labe! data-names must be in linkage section as 01- or
77-level items.

PICTURE clause

COBOL-D
An external floating-point item may be defined by a PICTURE, which contains an E and two sign
characters. The sterling currency feature may be specified by extensions to the PICTURE claus~

0S/3 COBOL
Neither the sterling currency feature nor the external floating-point PICTURE description is supported.

C-mode
Neither the sterling currency feature nor the external floating-point PICTURE description is supported.

USAGE clause

COBOL-D
The USAGE IS COMPUTATIONAL clause indicates that the data is in binary format.

If USAGE IS COMP, COMP-1, or COMP-2, intra-record slack bytes are added by the compiler to ensure
that the data is aligned on a half-word, full-word, or double-word boundary.

0S/3 COBOL
USAGE IS COMPUTATIONAL indicates that the data is in packed decimal format. Binary data formats

are not supported. COMP-1 and 2 are not supported.

C-mode
There is no support for binary or floating-point data formats.

Working-storage section

COBOL

All 01's are aligned on a double-word boundary.

0S/3 COBOL
All level 01's in working-storage section are aligned on a full-word boundary.

C-mode
All level 01's in working-storage section are aligned on a full-word boundary.

8057 Rev. 2
UP-NUMBER

F-7
UPDATE LEVEL \ PAGE

| SPERRY UNIVAC Operating System/3

COPY specifications

COBOL-D
The COPY statement is allowed on 77 items in the working-storage and linkage sections.

0S/3 COBOL
The COPY statement is not allowed on 77 items.

C-mode
The COPY statement is allowed on level-number 77 items in the working-storage and linkage sections;
however, the implied replacing feature is not supported. Replacing can be accomplished by use of
explicit REPLACING clauses. ALL COPY libraries are expected to conform to UNIVAC OS/3 formats.

F.3.4. Procedure Division

ACCEPT statement

COBOL-D
A maximum of 72 characters may be accepted from the console.

When the FROM option is not used, one logical record will be retrieved from the system logical input
device (SYSIPT).

Since a special-names paragraph is not available, the only acceptable FROM option is CONSOLE.

If /* is encountered on an ACCEPT statement, a fall through to the next source statement is effected.
End-of-file detection is the user’s responsibility.

0S/3 COBOL
A maximum of 60 characters may be accepted from the system console.

When the FROM option is not used, a maximum of 4095 characters (52 card images) is retrieved from
the job stream.

If /* is encountered on an ACCEPT statement, an object-time diagnostic is issued and the program is
terminated.

C-mode
SYSIPT is equivalent to the UNIVAC 0S/3 job control stream file.

The compiler creates an internal special-name definition to equate CONSOLE to SYSCONSOLE.
DISPLAY statement

COBOL-D
When UPON option is omitted, SYSLST is assumed.
Displays may be directed to SYSPUNCH.
The sign of a numeric item is not displayed as a separate character, e.g., —32 displayed as 3K.

0S/3 COBOL
When the UPON option is omitted, SYSCONSOLE is assumed.
Displays to a punch are not supported.
The sign of a numeric item is displayed as a separate character, e.g., —32 displayed as 32—.

F-8

8057 Rev. 2 SPERRY UNIVAC Operating System/3 l
UPDATE LEVEL PAGE

UP-NUMBER

C-mode
When the UPON option is omitted, SYSLST is assumed. The compiler creates an internal special-name
definition to equate SYSLST to SYSLST.

Restriction. Displays to a punch are not supported. The sign of a numeric item is displayed as a separate
character.

u IF statement

COBOL-D
— A class test may be performed on an item whose usage is either DISPLAY or COMP-3 (packed decimal).
An IF NUMERIC test always assumes the item is signed, for example:

DATA-AA PIC X VALUE IS 'A’.

An IF NUMERIC test on DATA-AA vyields a 'yes’.

0S/3 COBOL
A class test may be performed on an item whose usage is either DISPLAY or COMP-3.

An IF NUMERIC test does not assume an item is signed. The sign is interrogated only if the item is
declared to be signed; for example:

DATA-AAPIC X VALUE IS ‘A",

An IF DATA-AA NUMERIC results ina ‘no’.

C-mode

- No automatic support. The item to be tested should be defined as signed.

[INCLUDE Statement/COPY Function

COBOL-D
An INCLUDE statement in the procedure division implies a COPY function.

0S/3 COBOL
The INCLUDE statement is not supported. The COPY verb must be used.

C-mode
The INCLUDE statement is equated to the COPY function. Library names enclosed in quotation marks
are accepted. COPY libraries are expected to be in UNIVAC OS/3 format.

L] MOVE statement

COBOL-D
When an unsigned numeric item is moved to a signed numeric item, the sign of the receiver is set to ‘F’.

0S/3 COBOL
When an unsigned numeric item is moved to a signed numeric item, the sign of the receiver is set to plus.

C-mode
When an unsigned numeric item is moved to a signed numeric item, the sign of the receiver is set to ‘F’.

8057 Rev. 2 l SPERRY UNIVAC Operating System/3 F-9
UP-NUMBER UPDATE LEVEL | PAGE
L] ON statement
. COBOL-D
This statement is supported.
0S/3 COBOL
This debugging statement is not supported.
C-mode
No automatic support. This clause is not supported.
L] READ statement
See F.5 for disc considerations.
] STOP statement
COBOL-D
When the STOP RUN statement is encountered in a called program, control is returned to the calling
program,
0S/3 COBOL
A STOP RUN statement causes an end-of-job termination sequence.
C-mode
When a STOP RUN statement is encountered in a called program, it is treated as an EXIT PROGRAM
statement.
’ L USE AFTER STANDARD ERROR PROCEDURE
COBOL-D

The word ‘PROCEDURE’ is optional.

0S/3 COBOL
The word ‘PROCEDURE’ is required.

C-mode
The word ‘PROCEDURE’ is optional.

= USE FOR LABEL PROCEDURE

COBOL-D

CHECKING BEGINNING
USE FOR {CREATING} {ENDING

INPUT .
ON {OUTPUT}flle-name

} LABELS

0S/3 COBOL
FILE
AFTER BEGINNING ——
USE {_BEFORE } STANDARD {-—_—_ENDlNG } REEL LABEL
—_— - UNIT
S file-name
PROCEDURE ON %U—T

OUTPUT

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3

B F—10
UPDATE LEVEL | PAGE

C-mode
No automatic support. The USE statement for label procedures must be rewritten in accordance with
0S/3 COBOL format.

] WRITE statement
See F.4 for printer considerations, and F.5 for disc considerations.
= *DEBUG card

COBOL-D
*DEBUG packets precede the source deck.

0S/3 COBOL
*DEBUG packets follow the source deck.

C-mode
No automatic support. The *DEBUG packets must be moved from in front of the source program and
placed behind the source program.

F.3.5. Reserved Words

C-mode
The following 0S/3 COBOL. reserved words may currently exist in COBOL-D source programs as user-defined
words. Their use as user names will not be allowed by the 0S/3 COBOL compiler.

ASCENDING DECIMAL-POINT MAP SEPARATE
ASCII DESCENDING MASTER-INDEX SEEK
DISC MEMORY SET
BEFORE DISC-8411 MODULE SIGN
BLOCK-COUNT DISC-8414 MORE-LABELS SORT
DISC-8415 SPECIAL-NAMES
BLOCK-LENGTH-CHECK DISC-8418 MULTIPLE
BUFFER-OFFSET DISC-8416 STATUS
DISC-8430 OFF SYNC
CARD-PUNCH DISC-8433 OPTIONAL SYNCHRONIZED
> CARD-READER DOWN OUK-90-250 SYSCHAN-1
CARD-READER-51 EQUALS OUK-90-300 SYSCHAN-2
> CARD-READER-66 EXTENDED OUK-90-400 SYSCHAN-3
CHARACTERS EXTENDED-INSERTION OUK-90-600 SYSCHAN-4
COMMA EBCDIC OUK-90-700 SYSCHAN-5
COMPUTATIONAL SYSCHAN-6
COMPUTATIONAL-3 FILE-LIMIT PERCENT SYSCHAN-7
COMPUTATIONAL-4 FILE-LIMITS PIC SYSCHAN-8
COMP FILE-PREPARATION POSITION SYSCHAN-9
COMP-3 PRINTER SYSCHAN-10
COMP-4 INDICES PROGRAM SYSCHAN-11
CORR INDEX SYSCHAN-12
CORRESPONDING INSERT RELEASE SYSCHAN-13
CURRENCY REMAINDER SYSCHAN-14
CYLINDER-INDEX JUST RENAMES SYSCHAN-15
CYLINDER-OVERFLOW SEARCH SYSCOM
LINE SYSCONSOLE

SEGMENT-LIMIT

SYSDATE

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3

A
UPDATE LEVEL

F—11
PAGE

SYSERR SYSERR-17 SYSSWCH-0 UNIVAC-9000
SYSERR-0 SYSERR-18 SYSSWCH-1 UNIVAC-9025
SYSERR-1 SYSERR-19 SYSSWCH-2 UNIVAC-9030
SYSERR-2 SYSERR-20 SYSSWCH-3 UNIVAC-9040
SYSERR-3 SYSERR-21 SYSSWCH-4 UNIVAC-9060
SYSERR-4 SYSERR-22 SYSSWCH-5 UNIVAC-9070
SYSERR-5 SYSERR-23 SYSSWCH-6 UNIVAC-920011
SYSERR-6 SYSERR-24 SYSSWCH-7 UNIVAC-9300
SYSERR-7 SYSERR-25 SYSTIME UNIVAC-93001i
SYSERR-8 SYSERR-26 UNIVAC-9400
SYSERR-9 SYSERR-27 TAPE UNIVAC-9480
SYSERR-10 SYSERR-28 TAPES UNIVAC-9700
SYSERR-11 SYSERR-29 TAPE-6 uP
SYSERR-12 SYSERR-30 THROUGH
SYSERR-13 SYSERR-31 TIME VALUES

SYSIN VERIFY
SYSERR-14 SYSIN-96 TRACKS

SYSIN-128 WORDS
SYSERR-15 SYSLOG TRAILING WHEN
SYSERR-16 SYSSWCH

F.4. PRINTER FILE SUPPORT

Support is available for printer files in the conversion mode of the compiler; the aim is to be as compatible as
possible with COBOL-D printer file processing within the limits of hardware differences.

In the conversion mode, the compiler produces object code to change logical advance-then-print commands into
physical print-then-advance operations. This causes full-speed operation of the printer subsystem. All printer files
must be defined and referenced according to COBOL-D rules. COBOL-D control characters must be used;
consequently, neither a BEFORE ADVANCING nor an ADVANCING mnemonic-name is supported in the source
language. The only acceptable format for a printer WRITE statement is:

WRITE record-name FROM identifier

identifier }

. LINES
literal

AFTER ADVANCING {

Rules:
1. The printer file must have fixed recording mode.
2. Each logical record defined in the printer file must have the first character position reserved for a control

character. The control character is used to control printer spacing, but is not actually printed. The legal
control characters are as follows:

Control Character Meaning

blank Print and space 1 line

0 Print and space 2 lines
-_ Print and space 3 lines

+ Print and space O lines

1 thru 9 Print and skip to channel
AthruC Print and skip to channel

3. When the FROM phrase is used, the identifier specified in the FROM phrase must reserve the first
character position to contain a control character.

B
UPDATE LEVEL

F-12
PAGE

8057 Rev. 2 SPERRY UNIVAC Operating System/3

UP-NUMBER

4. When the AFTER phrase is used, the identifier specified in the AFTER phrase must be a 1-character
alphanumeric item that contains a control character.

5. When a literal is specified in the AFTER phrase, the literal must be numeric and only the following .
control characters are legal:

Control Character Meaning

0 Print and skip to home paper
1 Print and space 1 line

2 Print and space 2 lines

3 Print and space 3 lines

Restrictions:

COBOL-D allows an APPLY FORM-OVERFLOW clause in the 1-O-CONTROL paragraph of the environment
division. The APPLY FORM-OVERFLOW clause must be converted to a USE FOR FORM-OVERFLOW procedure
in the declaratives portion of the procedure division.

in COBOL-D, when APPLY FORM-OVERFLOW is specified, one line is printed after the overflow punch in the
carriage control loop is detected. Because of the manner in which the logical write commands are converted into
physical commands, three lines are printed after overflow is detected.

To overcome the problem of three lines being printed, the overflow punch must be moved back on the carriage
control loop by two logical print commands (two lines if single spacing, four lines if double spacing, etc.). If the
overflow punch crosses or coincides with another carriage control punch, the program cannot produce the proper
print formats when the program is executed and manual conversion is required.

No action is taken when form overflow is detected unless specified by a USE FOR FORM-OVERFLOW procedure.

Testing of the condition-name specified in the APPLY FORM-OVERFLOW clause must be deleted from the existing
procedure division and must not be used in the USE FOR FORM-OVERF LOW procedure. An alternate method is to
leave testing of the condition-name as is and to use the USE FOR FORM-OVERFLOW procedure as a place to set
the condition-name to the true state.

The IBM model 1403 printer supports carriage-control channels 1 through 12. The UNIVAC Printer Subsystems
support various carriage control channels, depending on the printer subsystem on line. The COBOL-D carriage
control references are translated as follows:

COBOL-D Carriage Control Punch
Control Character 0773 0770 0768
1 (Home paper) 7 7 14,15
2 2 2 12
3 3 3 13
4 4 4 4
5 5 5 5
6 6 6 6
7 7 7 15
8 2 8 8
9 1 9 9
A 3 10 10
B 4 1 11

> C (Form overflow) 1 12 9

F-13
PAGE

8057 Rev. 2 l SPERRY UNIVAC Operating System/3

UP-NUMBER UPDATE LEVEL

. F.5. DISC FILE SUPPORT

The following paragraphs detail considerations for conversion of COBOL source programs dealing with files assigned
to direct access devices.

To facilitate an understanding of the differences between the COBOL compilers, a clause-by-clause, verb-by-verb
difference description follows, by file organization.

F.5.1. Sequential Organization

u SELECT/ASSIGN clause

The SELECT/ASSIGN clause requires a source program change to meet the format requirements of 0S/3
COBOL.

. APPLY VERIFY clause {not available in COBOL-D)

When in C-mode, the compiler automatically sets the verify function without regard to the APPLY clause
present in the source program.

= LABEL RECORD definition
In C-mode, the compiler accepts the LABEL RECORD definition in the linkage section.
. = REWRITE verb
In C-mode, the compiler accepts the REWRITE verb when the file is opened for 1/0.
L] INVALID KEY phrase
When C-mode is active, the compiler causes transfer to the USE AFTER ERROR procedure or initiates an

end-of-job sequence when an INVALID KEY condition is detected and there is no INVALID KEY phrase
specified.

8057 Rev. 2 SPERRY UNIVAC Operating System/3 F-14
UP-NUMBER UPDATE LEVEL | PAGE
F.5.2. Indexed Organization .

L SELECT/ASSIGN clause

The SELECT statement with its ASSIGN clause requires a source program change to meet the format
requirements of 0S/3 COBOL.

L APPLY VERIFY clause (not available in COBOL-D)

In C-mode, the compiler automatically sets the verify function without regard to the APPLY clause.
u APPLY MASTER-INDEX clause (not available in COBOL-D)

In OS/3, this clause serves for documentation only.

NOTE:

COBOL-D specifies this option via the job control stream.
L] APPLY CYLINDER-OVERFLOW clause {not available in COBOL-D)

If this clause is not inserted in the source program, the compiler specifies that 20% of each prime data cylinder
is to be reserved for cylinder overflow area.

L] APPLY CYLINDER-INDEX AREA clause {not available in COBOL-D)

If this clause is not specified in the source program, the compiler does not allocate main storage area to .
accommodate the cylinder index.

® APPLY EXTENDED-INSERTION AREA clause {not available in COBOL-D)
In OS/3, this clause serves for documentation only.
L] RECORD KEY description
In C-mode, the record key size must not be less than 3 or greater than 249 bytes.
» SYMBOLIC KEY description
In C-mode, the symbolic key size must not be less than 3 or greater than 249 bytes.
L] OPEN verb

In C-mode, the file is positioned to the logical record specified in the SYMBOLIC KEY item, or if none is
specified, the file is positioned to the first record.

F-16

UP-NUMBER PAGE

8057 Rev. 2 I SPERRY UNIVAC Operating System/3

UPDATE LEVEL

. F.5.3. Direct Organization

No conversion mode support is provided for ORGANIZATION IS DIRECT.

F.5.4. Error Testing in USE AFTER ERROR Procedures

Replace any calls on DTF interrogation subprograms by tests of SYSERRs (defined in SPECIAL-NAMES paragraph,
4.2,3) to determine error status.

8057 Rev. 2 I' 7 SPERRY UNIVAC Operating System/3

UP-NUMBER

UPDATE LEVEL | PAGE

G-1

Appendix G. Job Control Stream
Requirements

G.1. INTRODUCTION

Any COBOL program you write must be compiled before it can be run. The language translator converts the
instructions in your program into a form (an object module) understandable to the computer. The facilities of
SPERRY UNIVAC Operating System/3 {0S/3) job control are used to relay information to the operating system
regarding the requirements for compiling your program. There are two ways to do this:

L] Code and keypunch all the job control statements needed to execute the COBOL compiler. See the OS/3 job
control user guide, UP-8065 (current version) for details on coding these statements.

L] Use a single job control procedure call statement (jproc call} provided by Sperry Univac.

A jproc call generates all the job control statements needed to execute the COBOL compiler. When you specify the
proper options for the keyword parameters, you tailor the generated control stream to meet the individual needs of
your job. The jproc calls enable you to compile your source program (COBOLB); compile and link-edit the

generated object module to create a load module (COBOLBL); or compile, link-edit, and immediately execute this
load module (COBOLBLG).

G.2. PROCEDURE CALL STATEMENT (COBOLB)

Function:

This procedure call statement generates the necessary job control statements to run the COBOL. language
processor. Optionally, it can generate the job control statements that specify the following:

| input-source library;

L output-object library;

copy library; and

PARAM control statements to define the format of the compiler listing.

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL

Format:

—

//[symbol] { COBOLBL

COBOLB }
COBOLBLG

-

N
lun

PRNTR= } { {g_g } [,vol-ser-no])

N

(vol-ser-no label)
(RES)

IN= 4 (RES,label)
{RUN label)
(* label)

(vol-ser-no label)
(RES, label)
O0BJ=4 (RUN label)
(*,label)
(RUN,SY$SRUN)

(RES, label)
(RUN, label)
(*,label)

L (RES,YSSRC)

LIN= <

((vol-ser-no,label) |]

—

7]

g

y

[,OUT=(p-1,...,p-n)] [,LST= (p-1,

e pn)]

SCR1= { vol-ser-no }]

RES

{vol-ser-no label)
(RES, label)
(RUN. label)

(*, label)
(RES,8Y$SRUN)

JALTLOD=

L

}

Label:

symbol
Specifies the 1- to 6-character source module name; only needed when the {N parameter is used.

Operation:

COBOLB
This form of the procedure call statement is used to compile a COBOL source program.

COBOLBL

This form of the procedure call statement is used to compile a COBOL source program then link-edit the
object modules.

COBOLBLG

This form of the procedure call statement is used to compile a COBOL source program, link-edit the
object modules, and execute the load module.™

*The COBOLBL G procedure call statement cannot be used when operating with the shared code data management
feature. Instead, use the COBOLBL procedure call statement and provide a separate EXEC statement to execute the
load module.

C

UP-NUMBER UPDATE LEVEL

8057 Rev. 2 ’I SPERRY UNIVAC Operating System/3

PAGE

Keyword Parameter PRNTR:

N
lun
PRNTR= {420 ¢ [,vol-ser-nol)
N

Specifies the logical unit number of the printer. N specifies that the device assignment set for the printer
is to be manually inserted in the control stream.

Keyword Parameter IN:

This parameter specifies the input file definition and generates a PARAM IN control statement. The options
are:

IN=({vol-ser-no,label)
Specifies the file identifier (label} and the volume serial number {vol-ser-no) where the source input is
located.

IN={RES)
Specifies that the source input is located on the SYSRES device in YSRC.

IN=(RES label)

This is used if the source input is located on the SYSRES device, but the file identifier (label) is a
user-own specification, not YSRC,

IN={RUN ,label)

Specifies that the source input is located on the volume containing the job SYSRUN file, with the file
identifier (label) of user-own specification.

IN=(* label)
Specifies that the source input is located on a catalog file identified by the file identifier {label).

If omitted, the source input is in the form of embedded data cards (/$, source deck, /).

Keyword Parameter OBJ:

This parameter specifies the output file definition and generates a PARAM OBJ control statement. The
options are:

0BJ=({vol-ser-no label)
Specifies the file identifier (label} and the volume serial number (vol-ser-no) where the object module is
located.

OBJ=(RES, label)
Specifies that the object module is located on the SYSRES device, with the file identifier specified by
the label parameter.

OBJ=(RUN,label)
Specifies that the object module is located on the volume containing the job YRUN file, with a file
identifier (label) of user-own specification.

OBJ=(* label)
Specifies that the object module is located on a catalog file identified by the file identifier (label).

1f omitted, the object module is located on the job YRUN file.

G-3

8057 Rev. 2 J SPERRY UNIVAC Operating System/3 [c -

UP-NUMBER UPDATE LEVEL

PAGE

NOTE:

The OBJ keyword parameter must not be used as the COBOLBL or COBOLBLG.

Keyword Parameter LIN:

— LiN=(vol-ser-no,labetl)

Defines the volume serial number (vol-ser-no) and the file identifier {label} where the copy modules are
located. The LFD name is COPYS$.

LIN=(RES label)

Specifies that the copy modules are located on the job’s SYSRES device, in the file identified by the file
identifier (label).

LIN=(RUN label}

Specifies that the copy modules are located on the job’s $YSRUN file with the file identifier (label)
specified by the user.

LIN=(* label)
Specifies that the copy modules are located on a catalog file identified by the file identifier (label}.

If omitted, the copy modules are located on the YSRC file.
Keyword Parameter QUT:
ouUT=(p-1,....p-n}

Specifies the parameter definitions for the COBOL compiler. This parameter generates a PARAM OUT .
controf statement. See 7.1.2.

Keyword Parameter LST:

LST(p-1.....p-n}
Specifies the format of the compiler listing. Generates a PARAM LST control statement. See 7.1.1.

Keyword Parameter SCR1:
SCR1= {vol-ser-no
RES
Specifies the volume serial number of the work file with an identifier of $SCR1. OS/3 basic COBOL
requires only one work file.

Keyword Parameter ALTLOD:

ALTLOD={vol-ser-no label}
* Specifies the location of the compiler to be used, if other than YLOD.

ALTLOD=(RES, label)
Specifies that the alternate load library is located on the job’s SYSRES device, in the file identified by
the file identifier {label).

ALTLOD={(RUN label)
Specifies that the alternate load library is located on the job’s YRUN file with the file identifier
(label) specified by the user. .

ALTLOD=(* label)
Specifies that the alternate load library is located on a catalog file identified by the file identifier (label).

If omitted, the compiler is loaded from YRUN,

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL lPAGE

G-5

Example 1a:

The following illustrates the use of the COBOL procedure call statement in its basic form:

LABEL AOPERATIONA OPERAND A
10 16

| /1/x JPJBL CdexLll A [N NN S SN N ST ST N SN N N EN N S N SN U RO AN RN AN A A W B A
2 /l/l CLQ%J}‘.B l 1 1 1 1 1 L l 1 1 1 i l i i 4 i 1 1 L 1 1 | 1 1 11 I 1 1 1 1 I i
3J1$|11111 Lo v v b v v b s o v by L L
‘* Lt 11 g oge IR Laev o b e by v o b v b v v e e 4
5 L Souiree Jl&gl([T U N WA HE N U0 VOO T T U U U T WS SN N SO SN SN S N U N S N
b PR W S U Y U L1y PN VO N AN U0 YOO U WA N N A U SN U UK SN SN WO NN G N W U NI N N N A
7 /l*; | - | l £ 1 l 1 11 J I | [| S T | l | I I) I | I S S | l | I A | l 11 1 1 l |

Line Explanation

1 Indicates that the name of the job is COBOL1A.

2 Indicates the name of the procedure being called (COBOLB). There are no keyword parameters

specifying special options for this compilation.

3 Indicates start of data.

4-6 Represents the source deck to be compiled.

7 Indicates end of data.

As coded, this example can be the first step in a job to be followed by the link-edit jproc call. It also can be an
entire job in itself by specifying a /& (end-of-job) statement and a // FIN (terminate card reader operations)
statement on lines 8 and 9, respectively. The latter case could be used to test-compile a new program or an
updated version of an existing program.

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3

UPDATE LEVEL | PAGE

G—6

Example 1b:

The basic form given in example 1a generates the following control stream:

LABEL NAOPERATIONA OPERAND A
10 16
| //l !:ILOIBL'C lL-l(B by v b v e b e e by s b 111‘|11
2l//, Dyvc. 2001 S/ WFD PRNTR Lo lo e o b b L
3/|/1|DVIC| EEIEAIIII PO N W N SN U SUON T NN Y NN Y U SN WY SN SRS NS SNV U N AN N MR A
4 //1 EXT, 1$;p131313CY1L4%1|1 Vovvov b v v v o by e o by
51/ LBk $SCRE W/ LFD $SCRE
6//11E1X|E£4 an caa o e b s b e g by v o by o b
7/111|11 L 14 [V R N YNV W T N WO N R N N S M SRS N NN U A A N N RO Y
8Lllllll' lll ALIIIIIJIliL4lllLJLlIllllllllllL
q 1 |3|Q!lrlcfe Agclm i1 1 i l | S T | 1 N A | l | ’ J I | LJL I | l 1
10 Lia 1l ® Ly (IS N RN Y N0 U NS O M T N N N0 UUN SN U MO U (S O T N A
|lA*llllll l 14 cvv o b g b v v b v s b v by e g

_L_i_rE Explanation

1 Indicates that the name of the job is COBOL1B.

2 Indicates the default logical unit number and LFD name of the printer.

3-5 Indicates that the work file needed for compiling is, by default, on the SYSRES device, has both a
file identifier and LFD name of $SCR1, and uses the sequential access technique; that allocation is
contiguous, with three cylinders allocated for the secondary increment and one cylinder of initial
allocation.

6 Loads the COBOL compiler from YLOD.

7 Indicates start of data.

8—10 Represents the source deck to be compiled.

11 Indicates end of data.

As with example 1a, this example can be the first step in a job, or it can be the entire job in itself by specifying
the /& statement and the // FIN statement on lines 12 and 13, respectively.

8057 Rev. 2
UP-NUMBER

J SPERRY UNIVAC Operating System/3 J | G~7
UPDATE LEVEL PAGE

. Example 2a:

The following illustrates the use of a COBOL procedure call statement that defines most of the keyword
parameters: ‘

LABEL AOPERATIONA OPERAND A
10 16 72
| /;/1 @ICXEi ‘:" J-;qu o v b e b v b v by b L !
2|/,/PROGNM COBOLE | PRNTR=211,IN=(RES,, USSR)1y 1 X .
3 /2/J. [L1 1ICﬁ3;ﬁ=1(ﬁxsﬁlﬁa,Jliﬂﬁﬂiiﬂ).,.l S Y LX),
M2] LINE(DSCL, COPYLIBIN . 1, 1 X,
f;/ﬂ/ﬁi i B [11L5311=1(553:))1 JRRT IS ST WY N N A W S N]]
LY V47N B N B B S AU NS PR AP N
T /1/1 EON Lo cr e b v ey b be e b g by | 1

Iﬂa Explanation

1 Indicates that the name of the job is COBOL2A.

2 Indicates the name of the procedure being called (COBOLB). The source module name is PROGNM. The
logical unit number of the printer is 21, and the input file is on the SYSRES device, with a file identifier
of USSRC.

3 Indicates that the output file volume serial number is DSC2, with a file identifier of USOBJ.

4 Indicates that the copy module volume serial number is DSC1, with a file identifier of COPYLIB1.

5 The format of the compiler listing is supplied by the LST parameter.

6 End of job.

7 Terminates card reader operations.

By default, the device for the work file is the SYSRES device.

8057 Rev. 2
UP-NUMBER

SPERRY UNIVAC Operating System/3

G-8
PAGE

UPDATE LEVEL

Exam

ple 2b:

~

Based on the keyword parameters specified in example 2a, the following control stream is generated:

LABEL AOPERATIONA OPERAND A
10 16
,//IIJ‘QBCbmJ_LKQB llJl[Xlllllllil Ili lll[[lllli
2|4/, NG 2t} 1 L/ MFDLPRNTR o v vl b i 1 ;
|
3//1;DVIC|1 R TR BT B B B A B A S JERTE B E R O N R S G |
‘+ /1/1 J-fﬁl—; UI$5[RCL 1 /1 /1 LFD INCPUT | | | TR S SUS S SR TN N Y
SM%II/JVIOL.WQMHHL el
6 /1/1 .L.'BIL. 1U Ba—l 1 //1 LLIFD D“KIC-I‘PLUTI | N [SR R
7/1/1 ID\ID 15‘ lll/l/ VIQLi mCl(l | llll ll LLLLJAIJ) S | ll
8 m; lebpleLjI:B U, 1/1/1 LFD 1CDP1\(1$ | ! S ST T O S
q/I/I |D!ﬁ;!§i§ | S | llllLllllllllll 111 Lll[l]llll
ol//, EXT, SMC3)N [1y U e L]
(l /4/1 LB 1$$CR|1 L /1/1 LFED 1$SC[R1‘L | L | [T R R N B
(2 /1/1 EXEEC CQ&LB T S N BN A S SR N B SR SRS o | Lo | T S S SN T S N
lg /l/l :PlArRlAl Ilu::l 1 %NM/‘I[MCIP“I{) T . I e L R | l it 1 1 I i
4|/./, PARAM OBI=OWTCPUTL ., o Lo ol Lo Ll
lS/ LﬁlTF.(,Dl)l I A AT SR R | b - IS)
b Ll Lo a g Lo b ey e bl TR S N T O N U N N S G N I
l'.’/l/llFlIlMl Illl Illllllllllllll llllllllllilL
Line Explanation
1 Indicates that the name of the job is COBOL2B.
2 Indicates that the printer is to be assigned to the logical unit number 21, with an LFD name of
PRNTR. This was obtained from line 2 in example 2a.
3 Indicates that the input file is on the device containing the SYSRES volume. This was obtained from
the IN parameter on line 2 in example 2a.
4 Indicates that the input file has a file identifier of U$SRC with an LFD name of INCPUT. This was
obtained from the IN parameter on line 2 in example 2a.
5 Indicates that the output file volume serial number is DSC2. This was obtained from the OBJ

parameter on line 3 in example 2a. It is assigned to the device with a logical unit number of 50, which
was the first available number in the range of 50—54.

6 Indicates that the output file has a file identifier of U$SOBJ, with an LFD name of OUTCPUT. This
was obtained from the OBJ parameter on line 3 in example 2a.

8057 Rev. 2
UP-NUMBER

l UPDATE LEVEL

SPERRY UNIVAC Operating System/3

PAGE

G-9

Line Explanation

Example 3a:

NE WN—

7

9-11

12

13—-15

16

17

Indicates that the copy library has a volume serial number of DSC1. It is assigned to the device with a
logical unit number of 51, which was the next available number in the range of 50—54. Logical unit
number 50 was already assigned to the device with a volume serial number of DSC2 (line 5), so the
next available logical unit number is used. This was obtained from the LIN parameter on line 4 in
example 2a.

Indicates that the copy library has a file identifier of COPYLIB1, with an LFD name of COPY$. This
was obtained from the LIN parameter on line 4 in example 2a.

Indicates that the work file needed for compiling is, by default, on the SYSRES device, has both a
file identifier and LFD name of $SCR1, uses the sequential access technique; that allocation is
contiguous, with three cylinders allocated for the secondary increment and one cylinder of initial
allocation.

Loads the 0S/3 Basic COBOL compiler from YLOD.

PARAM control statements that identify the processing options for the COBOL compiler. These are
generated in the following manner:

Line 13 — The module name PROGNM is generated from the label field on line 2 of example 2a. The
filename INCPUT is generated automatically when the IN parameter is specified.

Line 14 — The filename OQOUTCPUT is generated automatically when the OBJ parameter is used.

Line 15 — The S and O COBOL list options are generated by the LST parameter on line 5 in example
2a.

End of job.

Terminates card reader operations.

The following example illustrates the use of the COBOLBLG procedure call statement. The input file and the
format of the output listings are defined.

LABEL AOPERATIONA OPERAND

10 16 12

//111310;81 MASTIE'R1111111111111111111[1111|1 |

//MASTER| ICORDLBLG, . TN=(ABC\ 23, PAYMAST)s, 1. 1

/1/|‘|4141 | Llsl-rl-——l(lAl)LCl’lQ}lSl)l [NS R R N TS RO W A |

7

/&1111| Lo TRSY RN U SN NI S0 U N NN U0 TN SN N SN G G SN S AN S NN NN O AN |

/I/IIEIINI Lo SR N S K AT S N NS O WA N VOO0 N N SV U S S S N |

- R E R

Line Explanation

1

2

Indicates that the name of the job is MASTER.

Indicates that the name of the source module is MASTER and the name of the procedure being called is
COBOLBLG; therefore, this example compiles, link-edits, and executes the source program MASTER.
The input file is on the device with a volume serial number of ABC123 and has a file identifier of
PAYMAST.

8057 Rev. 2 SPERRY UNIVAC Operating System/3 =10

UP-NUMBER l UPDATE LEVELJ PAGE

Line Explanation .

3 Indicates the format of the compiler listing.
4 End of job.

5 Terminates card reader operations.

Example 3b:

Based on the keyword parameters specified explicitly and implicitly in example 3a, the following control
stream is generated:

LABEL AOPERATIONA OPERAND A
10 16

/,/, PARAM [IN=MARITER/TIINCPUT 0 0 100 by L
/1/1 PARA L5.T.=1(3C13D1}61)1 b by v v e b e 4
1&11111 140 v by v b o by b o by oy oy 1
/ACFIN b b e e e L

l/l/lla—qulll'M$TrlE PR T N S ET RO UG Y MU (NS SN WU [S S S0 N S0 U WO O
21/, OPVION | LINKIGGO 10l e b1
3//J:DVIC1I .o I /l/llLlFll:P;RLNrr‘lRllllIllllillllllllll
4/1/1 DVC, 15]011/1/1 VQLHA;BCI‘ZlalIlllJ_LLillllllllllllli
S14/ YMAST |/ LFD INCPUT, | 1]
ol// DvC RES . . . AR ETRN TR SrAETETEN B TR R S
7/1/1 EXT srrl’lCI=3’C1\(1Ll’lllll1111111111111L11111111¢
81// LBk, | BSCRU| |/ LFD $SCRG 4 101w L 1
q/1/11E1X|EC| CDuBQL vov v v by v b v by g b v e by g g
e}

i

12

&

Line Explanation

1 Indicates that the name of the job is MASTER.

2 Indicates that the source program is to be link-edited and executed after it has been compiled. This
was obtained from COBOLBLG specified on line 2 in example 3a.

3 Indicates that, by default, the printer is to be assigned to the logical unit number 20, with an LFD
name of PRNTR.

4 Indicates that the input file is on the device with the logical unit number of 50 and has a volume
serial number of ABC123. This was obtained from the IN parameter on line 2 in example 3a.

5 Indicates that the input file has a file identifier of PAYMAST with an LFD name of INCPUT. This
was obtained from the IN parameter on line 2 in example 3a.

6—8 Indicates that the work file needed for compiling is on the SYSRES device, has both a file identifier
and LFD name of $SCR1, uses sequential access technique; that allocation is contiguous with three
cylinders allocated for the secondary increment and one cylinder of initial allocation.

SPERRY UNIVAC Operating System/3 uPoATE LEVEL | PacE

8057 Rev. 2
UP-NUMBER

. Line Explanation

9 Loads the OS/3 Basic COBOL compiler from YLOD.

10—11 PARAM control statements that identify the processing options for the COBOL compiler, which are
generated as follows:
Line 10 — the module name MASTER is generated from the label field on line 2 of example 3a. The
filename INCPUT is generated automatically when the IN parameter is specified.
Line 11 — The A, C, O, and S COBOL list options are generated by the LST parameter on line 3 in
example 3a.

12 End of job.

13 Terminates card reader operations.

implicit in the // OPTION LINK,GO statement on line 2 of example 3b is the creation of a load module
named LNKLOD by the linkage editor and the execution of that load module. This is performed after the
source program has been compiled. Any output is temporarily stored on the SYSRUN device.

Example 3c:

If linkage editor input or control stream input to the source program is needed for job MASTER as described
in example 3a, the following job stream could be used:

LABEL AOPERATIONA OPERAND
10 16 72
1|4/ T66 . | MASTE T BRI VR BT ST NI ENUETET N o I B
2|// MAGTER COBOLIBLE . TIN=(ABC 123 ,PAYMAST) .o 1 X| . . 1
3 dy | A lﬂsl-rl:lOAl?lG'.lallsl)l NIRRT ! B |
¢ L logg o1y T EN IS BN AT I IR B I B R R] Lo
; IR B La [ERT T ST A SN AN R N N S BT A SN N O S A R l L
¢l LThnkagle ledithlr Tnpeud 1t L o
7 I BT) Ly P S ST N SR S NN S S S U S U O N A I R BB L d
31*1|||| Lo v by e e b L by ey b I |
aﬁlllnl [cee o b v b e b e b | L)
o] a1ty e L TSR EN B i A U B S N R N N AN A BTSN | |
e contorsl| 1strepm Toput 0o tecs]
74 I) B T R BT UTET I ETAT SR ETUTET S B B BT
13 T Ly N SR I SIS BT DR cal
72 V7 - AP B R N T T IR ST ST ol B
lgmﬂll | RS N N U S YO T Y S SN ST S N SN GV WO Y S S 4 Lt

8057 Rev, 2 SPERRY UNIVAC Operating System/3

UP-NUMBER

S

B
UPDATE LEVEL

G-12
PAGE

Line Explanation .

1-3 Same as described in example 3a.

4-8 Embedded data set containing input to the linkage editor.

9—-13 Embedded data set containing control stream input to the source program.

14 End of job.

15 Terminates card reader operations.

The generated control stream would be the same as in example 3b, except that the two embedded data sets
would be inserted between lines 11 and 12. Note that if there is no linkage editor input, but control stream
input to the program is to be included, a dummy data set {/$ followed immediately by /*) must be inserted
into the job stream where the linkage editor input data set would have been included.

G.3. COMPILER STATUS INDICATORS

The compiler sets the following status indicators in the user program switch indicator (UPSI) byte. These indicators
may be used in conjunction with the // SKIP job control card:

= Switch-0 (X’'80°) is set to 1 if the compiler does not create a complete object module. This condition might be
caused by an “insufficient memory available’’ diagnostic or a compiler abort.

n Switch-1 (X’40') is set to 1 if the compiler issues any diagnostic messages with severity code S or U.

] Switch-2 (X‘20°) is set to 1 if the compiler issues any diagnostic messages with the severity code C,

These bit settings are logically superimposed onto the UPSI byte; therefore, any of the eight UPSI bits that were set
prior to the compilation will still be set after the compilation.

G.4. DATA DEFINITION (DD) JOB CONTROL STATEMENT KEYWORD PARAMETERS

The DD job control statement is used to change data management keywords at execution time. Instead of changing
the COBOL source code, the user can override data management keyword specifications when the COBOL object
program is executing. The DD statement keyword parameters that may be specified for a COBOL program are as
follows:

LACE=n

SIZE=n

UOS=n

ACCESS=f EXC
EXCR
SRDO
SRD
SUPD
SADD

FILABL= {NO
{NSTD}
STD

TPMARK=NO

VMNT=ONE

UP-NUMBER UPDATE LEVEL § PAGE

8057 Rev. 2 SPERRY UNIVAC Operating System/3 B l G-13

When the user specifies these keyword parameters, extreme care must be used so that the effect of changing one
parameter does not cause a conflict. To avoid conflicts, the user should carefully examine the file usage specified in
COBOL source programs and the default parameters set by the compiler-generated data management specifications,

The DD statement applies to basic data management users and consolidated data management users. For keyword
parameter information, see the basic data management user guide, UP-8068 (current version) or the consolidated
data management macroinstructions user guide, UP-8826 (current version). A complete description of the DD job
control statement is explained in the job control user guide, UP-8065 (current version).

8057 Rev. 2 l SPERRY UNIVAC Operating System/3 index 1
UP-NUMBER UPDATE LEVEL | PAGE
Index
Term Reference Page Term Reference Page
A APPLY ASCII clause
declaration 12.2 12—1
ACCEPT statement I-0-CONTROL paragraph 432 4—12
communications region 9.17 9—4
console 9.12 9-—-3 APPLY BLOCK-COUNT clause, 1-0-CONTROL
current date 9.13 93 paragraph 432 4—12
description 6.64.1 6—21
format 9.1 9—1 APPLY CYLINDER-INDEX ciause
job control stream 9.1.1 9—1 indexed files 1142 11-8
Julian date 9.15 93 |-0-CONTROL paragraph 432 4—12
time of day 9.14 93
. UPSI byte 9.16 9—3 APPLY CYLINDER-OVERFLOW clause
80-column cards 9111 9—1 indexed files 1142 11-8
96-column cards 9112 92 I-0-CONTROL paragraph 432 4—12
8413 diskette 9113 92
APPLY EXTENDED-INSERTION clause
ACCESS MODE clause ’ indexed files 1142 11—8
FILE-CONTROL paragraph 431 4—9 I-0-CONTROL paragraph 432 4—12
indexed files 1143 11—7
relative files 1142 11—4 APPLY FILE-PREPARATION clause
sequential files 114.1 11-3 indexed files 1142 118
I-0-CONTROL paragraph 432 412
ACTUAL KEY clause
FILE-CONTROL paragraph 431 4—-9 APPLY MASTER-INDEX clause
relative file 1142 11—4 indexed files 114 11—8
[-0-CONTROL paragraph 432 4-—-12
ADD statement 6.6.11 6—6
€2 C—1 APPLY VERIFY clause
indexed files 1142 11-8
Alphabetic data 534 5—12 {-0-CONTROL paragraph 432 4—12
Alphabetic move 6.6.3.2 6—15 Arithmetic expression, characters used 214 2—3
Alphanumeric data 534 5—12 Arithmetic operations, immediate
results : Appendix C
Alphanumeric edited data 534 5—12
Arithmetic verbs 6.6.1 6—5
Alphanumeric edited move 6.6.3.2 6—15
ASCENDING KEY clause, description 533 5—I11
. Alphanumeric move 6.6.3.2 6—15
ASCII code Table 12—2 12—5
ALTER statement

description 6621 6—10 ASCII files, processing 12.1 12—1
segmentation restriction 6.7.3.1 6—40

8057 Rev. 2 SPERRY UNIVAC Operating System/3 B Index 2
UP-NUMBER UPDATE LEVEL | PAGE
Term Reference Page Term Reference
ASCII tape format Fig. 12—1 12—3 Compiler-directing statement 6.5.3
ASSIGN clause, FILE-CONTROL paragraph 431 4—9 Compiler listings
data division storage map and
AUTHOR paragraph 3.1 3—1 cross-reference E2 E—3
diagnostic error E5 E—11
object code E4 E—6 -
B procedure division storage map
and cross-reference E3 E—4
BLANK WHEN ZERO clause 539 5—=21 source code El E—1 °
BLOCK CONTAINS clause Compiler status indicators G.3 G—12
block sizes Table 5—3 5—5 -
control field sizes Table 5—2 5—4 Condition name 22 2—4
description 5211 5—3
Conditional statement 6.5.2 6—4
Block sizes Table 5—3 5—5
Conditional variable 2.2 2—4
C Condition-name clause 5.3.12 521!
CALL statement 6681 6—38 Condition-name condition 6.6.6 6—29
Calling/called programs 6.8 6—41 | Configuration section 42 4—1
Character set Appendix A Connectives 22
Characters Console
set 21 21 ACCEPT statement 9.12 93
used for editing 214 23 DISPLAY statement 921 9—4
used for punctuation 212 22 o _
used in relational expressions 213 2—3 Continuation, coding form 25 2—10
used for words 211 22
Conversion mode
Checkpointing disc files F5 F—13
description 83 8—1 operation k2 F—1
restriction 85 8—2 printer files F4 F—11
syntax F.3 F—2
Class condition 6.6.6 6—29
COPY statement
CLOSE statement 6642 6—22 description 6.6.7.1 6—33
library use 731 715
Coding form, description 25 2—9
CURRENCY SIGN clause, SPECIAL-NAMES
Comment, coding form 25 2—10 paragraph 423 4—3
Communications region Current date ACCEPT 913 93
ACCEPT statement 9.1.7 9—4
DISPLAY statement 9.25 9—5 D
COMP option, USAGE clause 535 5—18
Data definition (DD) G4 G—12
Compiler, description 1.2 1—2 job control statement
Compiler diagnostics Data description entry
diagnostic messages D.2 D—1 condition-name clause 5.3.11
system console messages D3 D—33 description 53

8057 Rev. 2 1 SPERRY UNIVAC Operating System/3 Index 3
UP-NUMBER UPDATE LEVEL | PAGE
. Term Reference Page Term Reference Page
Data division ENTER statement
conversion mode F33 F—5 CALL stqtement 6.6.8.1 6—38
data description 53 59 description 66.7.2 6—34
description 51 51 ENTRY statement 6.6.8.2 6—39
FILE SECTION 52 5—2
storage map and cross-reference ENTRY statement 6.6.8.2 6—39
listing E2 E—3] o
WORKING-STORAGE 54 5—23 | Environment division
conversion mode F3.2 F—2
Data name 29 24 description 41 4—1
DATA RECORDS clause 5216 58 EXAMINE statement 66.3.1 6—14
DATA-COMPILED paragraph 3.1 3—1 EXHIBIT statement 134 13—2
DATE-WRITTEN paragraph 31 3—1 EXIT statement 66.24 6—13
Debugging Extended access 1133 11-2
description 131 13--1
packet 135 13—5 External name 22 2—4
DECIMAL-POINT clause, SPECIAL-NAMES External reference E4 E—6
paragraph 423 4—3
Declaratives section description 6.2 6—2 F
. Diagnostic messages D.2 D—1 FD entry, description 521 5—3
ES E—10) .
Figurative constant
Direct access description 2.2 2—6
file organization 112 11—1 MOVE statement 6632 6—15
processing 111 11-1 o
FILE-CONTROL paragraph, description 431 4—9
Disc processing Table 11—7 11—27
FILE-LIMIT clause, FILE-CONTROL
DISPLAY option, USAGE clause 535 5—18 paragraph 431 49
DISPLAY statement File-name 22 2—4
communications region 925 9-5
console 9.2.1 9—4 FILE SECTION
format 92 9—4 description 52 5—2
log file 922 94 FD entries 521 5—3
printer listing 9.26 9—-5
UPS! bit 924 9-—5 FILLER clause 531 5—9
UPSI byte 923 94 .)
Fixed portion 6.7.1.1 6—39
DIVIDE statement 6.6.12 6—7
G
E
GIVING clause
EBCDIC code Table 12—2 12—5 DIVIDE statement 6.6.1.2 6—7
MULTIPLY statement 6.6.1.3 6—8
‘ Editing, characters used in 2.15 2—3 SUBTRACT statement 66.14 6—9
Eject, coding form 25 210 GO TO statement 6.6.2.2 6—11

8057 Rev. 2 SPERRY UNIVAC Operating System/3 tndex 4
UP-NUMBER UPDATE LEVEL | PAGE
Term Reference Page Term Reference Page
I J
Identification columns, coding form 25 2—10 JobAcCoCnEtIrJoTl rs;;iairerents 911 9—1
Identification division Gl 61
conversion mode F3.1 F—2 .
description 31 31 iproc call E:ﬁ, procedure
Identifier 22 2—4 | Julian date ACCEPT 9.15 9—3
IF statement 6.6.6 6=23 | JUSTIFIED clause 537 519
Imperative statement 65.1 6—3
K
Implementor names
ACCEPT statement 6.6.4.1 6—21
ASSIGN clause 431 4—9 Key words 22 2=5
Independent entries 541 5—-23 - L
Independent segment 6.7.12 6—39 LABEL RECORDS clause
description 5213 5—6
INDEXED BY clause 53.3 5—11 specifications Table 5—4 5—7
Index data item 22 2—5 Level-number clause 53.1
indexed files .
7.
conversion mode F5.2 F—14 Library module 3
description 1123 11-2 . 524
processing 1143 11—-7 LINKAGE section 53
. Linking 6.8.2 6—42
Indexing
description 24 29 ' .
tables 105 10—2 Log file DISPLAY statement 9.2.2 9—4
Index-name 22 2—4 M
INDEX option, USAGE clause 5.35 5—18 Main storage allocation Table 5—1 5—2
Input-output section 43 4—-9 MAP clause 5310 521
INSERT statement .
description 6647 6—37 MEMORY SIZE clause 422 4—2
indexed files 1143 11—-7 Mnemonic-name
ACCEPT statement 6.64.1 6—21
INSTALLATION paragraph 31 3—1 DISPLAY statement 6643 6—23
. SPECIAL-NAMES paragraph Table 4—1 4—8
Interprogram communications
CALL statement 6.68.1 6—38 _
description 668 6—38 MOVE statement 66.3.2 6—15
ENTRY statement 6682 639 | MULTIPLE FILE clause, I-0-CONTROL
-0-CONTROL paragraph, description 432 4—12 paragraph 432 412
MULTIPLE REEL/UNIT clause, FILE-
CONTROL paragraph 43.1
MULTIPLY statement 6.6.1.3 6—8

') . D 5
8057 Rev. 2 l SPERRY UNIVAC Operating System/3 J Index
UP-NUMBER UPDATE LEVEL | PAGE
Term Reference Page Term Reference Page
N Parameters, PARAM statement
copy library input 1.2 73
Nonnumeric literal 22 25 listing 711 7-1
object module 721 7—4
NOTE statement 6.6.7.3 6—35 output 712 12
source library input 1.2 7—3
Numeric data 534 5—12
PERFORM statement
Numeric edited data 534 5—12 description 6623 6—12
segmentation restrictions 6.7.3.2 6—41
Numeric edited move 6.6.3.2 6—15
PICTURE
Numeric move 6.6.3.2 6—15 clause 534 5—12
symbols Table 5—5 5—14
(9] Printer listing DISPLAY 926 9-5
Object code listing E4 E—6 Priority number
ALTER statement 6.7.3.1 6—40
OBJECT-COMPUTER paragraph 422 4—2 description 6.7.2 6—40
PERFORM statement 6.7.32 6—41
OCCURS clause
description 533 5—13 Procedure branching verbs 66.2 6—10
table handling 10.2 10—1
Procedure call statement G.2 G—1
ON SIZE ERROR option 6.6.1 6—5
Procedure division
OPEN statement conversion mode F34 F—7
description 6.6.4.4 6—24 description 6.1 6—1
indexed files 1143 11—7 storage map and cross-reference
relative files 11.4.2 11—4 listing E3 E—4
sequential files 1141 11-3
Procedure-name 22 2—4
Optional words 22 2—5
PROCESSING MODE clause, FILE-CONTROL
ORGANIZATION clause paragraph 431 4—9
* FILE CONTROL paragraph 431 4—-9
indexed files 1143 11—7 PROGRAM-ID paragraph 31 3—1
relative files 1142 114
sequential files 1141 11—3 | Program segments
d_escnptlon 6.7.1 6—39
Overlapping operands 6.5.4 6—4 fixed portion 67.11 6—39
independent segment 6.7.12 6—39
Punctuation, characters used 212 2—2
Paragraphs 6—4 6—3 v
Q
PARAM statement o o
copy ||'brary input 72 7—=3 Qua'lflcatlon, descrlptlon 23 2—6
description 7.1 7—1
list options 7.11 7—1
object module 721 7—4 R
output options 712 7—2
source library input 7.2 7—3 Random access 11.3.2 11-2

8057 Rev. 2 . Index 6
UP-NUMBE R SPERRY UNIVAC Operaflng System/3 UPOATE LEVEL | pace
Term Reference Page Term Reference Page .
READ statement Reserved words
description 6.6.4.5 6—25 conversion mode F35 F—10
indexed files 1143 11—7 list Appendix B B—1
relative files 1142 114
sequential files 1141 11—3 | RESET TRACE statement 143 14—2
READY TRACE statement 132 13—1 Restarting, description 84 8§—2
Receiving field REWRITE statement
description Table 5—7 5—17 description 6648 6—27
MOVE statement Table 6—1 6—16 indexed files 1143 11—11
relative files 114.2 114
RECORD CONTAINS clause 5212 5—6
ROUNDED option 6.6.1 6—5
RECORD KEY clause
FILE-CONTROL paragraph 431 4—9
indexed files 1143 11—8 S
RECORDING MODE clause Sections
ASCII files 12.3 12—-2 description 6.3 6—2
description 5214 5—7 segmentation 6.7.2 6—40
indexed files 1143 11—7
relative files 1142 114 SECURITY paragraph 3.1 3—1
sequential files 114.1 11-3
' SEEK statement
REDEFINES clause 53.2 5—12 description 6.6.49 6—28
relative files 1142 114
Relational condition 6.6.6 6—30
Segmentation
Relational expression, characters description 6.7 6—39
used 213 2—3 restrictions 6.7.3 6—40
RELATIVE KEY clause SEGMENT-LIMIT clause, OBJECT-COMPUTER
FILE-CONTROL paragraph 431 4-9 paragraph 422 42
relative files 1142 114 :
Sequence numbers 25 2—10
Relative organized files
description 1122 11-2 Sequential access 11.3.1 11-2
processing 1142 114
Sequential files
REMAINDER clause 66.1.2 6—8 description 11.21 11—1
processing 114.1 11-3
REMARKS paragraph 31 3—1
Sending field, MOVE statement Table 6—1 6—16
REPLACING clause 66.3.1 6—14
Sentences 6.5 6—3
RERUN clause
checkpointing 83 8—1 SIGN clause 53.12 5—22
description 8.2 8—1
I-0-CONTROL paragraphs 432 4—11 Sign condition 6.6.6 6—33 |
restriction 85 8—2
Source code listing E.l E—1
RESERVE clause
FILE-CONTROL paragraph 43.1 4—9 SOURCE-COMPUTER paragraph 421 4—2
indexed files 1143 11-7
sequential files 1141 11-3 Source field Table 5—7 5—17

8057 Rev. 2 . B Index 7
UP-NUMBER I SPERRY UNIVAC Operating System/3 oPOATE LEVEL | pacE
Term Reference Page Term Reference Page
. SPEC'AL'NAMES paragraph SYSLOG clause
description 423 43 DISPLAY statement 9.2.2 9—4
DISPLAY statement 6643 623 SPECIAL-NAMES paragraph 423 4—3
Statements
L SYSLST clause
compiler-directing 6.5.3 g—j DISPLAY statement 9256 95
gggg:fgm ggz - SPECIAL-NAMES paragraph 423 4—3
' imperative 6.5.1 6—3 SYSSWCH
. . ACCEPT statement 9.16 9—3
Status indicators, compiler G3 G—10 DISPLAY statement 923 9—4
STOP statement 665 6—29 SPECIAL-NAMES paragraph 423 4—3
Subscripting System configuration 12 1-2
?aeslzrsiption %‘ 1 %0—_92 System console messages D3 D—33
SYSTIME clause
Subtract statement oot ACCEPT statement 914 93
) SPECIAL-NAMES paragraph 423 43
Switch-status condition 6.6.6 6—32
SYMBOLIC KEY clause T
FILE-CONTROL paragraph 43.1 4—9 Table
indexed files 1143 11—7 defining 10.2 10—1
I indexing 105 10—2
. SYNCHRONIZED clause, description 536 5—19 referencing 103 10—1
searching 10.6 10—3
SYSCHAN-t, SPECIAL-NAMES paragraph 423 4—3 subscripting 104 10—2
SYSCO,XIC(CDIEFl’Jiestatement 9.17 9—4 Table handling, description 10.1 10—1
DISPLAY statement 925 9—5
SPECIAL-NAMES paragraph 423 4—3 | ™ 22 26
SYSCONSOLE clause TALLYING clause 6.63.1 6—14
ACCEPT statement 912 9—3 .
DISPLAY statement 921 g4 | et codigform 23 2—10
SPECIAL-NAMES paragraph 423 4—3 Time of day ACCEPT 9.14 93
SYSDATE cl
P oot 613 9.3 | TRANSFORM statement 6634 6—18
SPECIAL-NAMES paragraph 423 4-—3
SYSERR clause U
11.4.4. 11—26)
SPECINL.NAMES paragraph st 27| upsi bit, DISPLAY statement 924 95
UPSI byte .
SYSIN
ACCEPT statement 911l 9-1 ngCFELP JYS;f;fé"nfggt 3;2 g“g
SPECIAL-NAMES paragraph 423 43 “ -
paragrap SKIP job control statement G.3 G—12
SYSIN-96
ACCEPT statement 9112 9—3 | USAGE clause 535 5—18
-NA h 42, 4-—-3
. SPECIAL-NAMES paragrap 3 USE statement 6674 6—36
SYSIN-}\%EEPT statement 9113 9—2 USING statement, procedure division 6.1.1 6—1
SPECIAL-NAMES paragraph 423 4—3

8057 Rev. 2

SPERRY UNIVAC Operating System/3 Index 8
UP-NUMBER UPDATE LEVEL | PAGE
Term Reference Page Term Reference Page .
\'/ w
VALUE clause 53.8 5—20 Words
characters used 211 2--2
VALUE OF clause 5215 5—8 reserved Table 2—2 25
Appendix B
Verbs types 22 2-3
arithmetic 66.1 6—5 user-supplied Table 2—1 2—4
compiler-directing 6.6.7 6—33 WORKING-STORAGE section, description 54 5—23
conditional 6.6.6 6—29
data movement 6.6.3 6—14 WRITE statement
ending 665 6—29 conversion mode F4 F—11
input/output 6.6.4 6—21 description 6.6.4.6 6—25
interprogram communications 6.6.8 6—38 indexed files 1143 11—7
procedure branching 6.6.2 6—10 relative files 1142 114
types 66 6—5 sequential files 1141 11--3

Cut along line.

I
I
I
|
I
I
I
I
I
I
I
I
I
|
I
I
I
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
I
I
|
|
I
I
I
|

SPERRY <= LINIVAC

USER COMMENT SHEET

Your comments concerning this document will be weicomed by Sperry Univac for use in improving
subsequent editions.

Please note: This form is not intended to be used as an order blank.

{Document Title)

({Document No.) (Revision No.) (Update No.)

Comments:

From:

(Name of User)

{Business Address)

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A)
Thank you for your cooperation

| || || | NO POSTAGE

NECESSARY
IF MAILED
IN THE
UNITED STATES

T U — — T G ———— o it S—— —— ——" A Ul e S e S — ——— — ——— S —— ————— ————— v—— — —— —— $AAN2 oroi ———— A —— V——— ————— ——" So— — b i e S— it o o S S

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE
SPERRY UNIVAC

ATTN.: SYSTEMS PUBLICATIONS

P.O. BOX 500
BLUE BELL, PENNSYLVANIA 19424

1nd

i

.

Cut along line.

I
I
|
|
|
I
I
I
I
|
I
I
I
I
|
I
I
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
I
I
|
|
I
!
I

e
SPERRY <= UNIVAC

USER COMMENT SHEET

Your comments concerning this document will be welcomed by Sperry Univac for use in improving
subsequent editions.

Please note: This form is not intended to be used as an order blank.

{Document Title)

{Document No.) (Revision No.) (Update No.)

Comments:

From:

{Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A)
Thank you for your cooperation

iNnd

| || " | NO POSTAGE

NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

POSTAGE WILL BE PAID BY ADDRESSEE
SPERRY UNIVAC

ATTN.: SYSTEMS PUBLICATIONS

P.O. BOX 500
BLUE BELL, PENNSYLVANIA 19424

Comments concerning this manual may be made in the space provided below. Please fill in the requested information.

System:

Manual Title:

BC No: Revision No: Update:

Name of Customer:

Address of Customer:

Comments:

NOTE: Do not use this form to order manuals.

-

FIRST CLASS
PERMIT NO, 21
BLUE BELL, PA.

BUSINESS REPLY MAIL NO POSTAGE STAMP NECESSARY {F MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY

N2

I
LINIVAC I
P.O. BOX 500]

I

BLUE BELL, PA.
19424

ATTN: SYSTEMS PUBLICATIONS DEPT.

Comments concerning this manual may be made in the space provided below. Please fill in the requested information.

System:

Manual Title:

UP No: Revision No: Update:

Name of User:

Address of User:

Comments:

FIRST CLASS
PERMIT NO. 21
BLUE BELL,PA.

BUSINESS REPLY MAIL NO POSTAGE STAMP NECESSARY {F MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY

I
LINIVAC I
P.O. BOX 500 T

]

BLUE BELL, PA.
19424

ATTN: SYSTEMS PUBLICATIONS DEPT.

