
I

I H
I

UNIVAC UP-8043 Rev. 2

This document contains the latest information available at the time of
publication. However, Sperry Univac reserves the right to modify or
revise its contents. To ensure that you have the most recent
information, contact your local Sperry Univac representative.

Sperry Univac is a division of Sperry Rand Corporation.

AccuScan, FASTRAND, PAGEWRITER, SPERRY UNIVAC, UNISCOPE,
UNISERVO, and UNIVAC are trademarks of the Sperry Rand
Corporation.

cPl 974, 1975, 1976 - SPERRY RAND CORPORATION PRINTED IN U.S.A.

preface

This manual is one of a series designed to in­

troduce the software available with the SPERRY

UNIVAC Operating System/3 (OS/3). The actual

programming procedures required to use the

software described are not included in this in­

troductory series. Such detailed information is

beyond the scope and intent of these manuals and

is included in the appropriate User Guide and/or

Programmer Reference.

system service programs

Endless programming of tedious utility programs

would be necessary to set up and maintain any

modern data processing system - if manufac­

turers did not supply utility software packages. The

UNIVAC OS/3 System Service Programs are a set

of routines designed to provide essential services

to the UNIVAC OS/3 user. These service programs

assist the user during the initialization and opera­

tion of his operating system. The system service

programs fall into four categories:

• UNIVAC OS/3 Linkage Editor

• UNIVAC OS/3 Librarian

• Dump Routines

• Utilities

linkage editor

The UNIVAC OS/3 Linkage Editor is an integral

part of the UNIVAC OS/3 software system. It is

usually called as the last step of a compilation or

assembly process, and it transforms the compiled

(or assembled) object programs into a relocatable

load module that may be loaded into the system

and executed.

LINKAGE EDITOR INPUT

Any object module is appropriate input to the

linkage editor; an object module is defined as one

or more program control sections. A control section

consists of object code produced by a language

processor. A control section is either a unit of

coding containing instructions and constants, or it

is a common section (simply a storage area set

aside for data manipulation). An object module

used as input to the linkage editor must contain at

least one control section record that defines the ap­

propriate section by specifying: its symbolic name,

an external symbol identification (ESID, an index e/

2

number generated by the language processor), and

the length of that control section present within the

object module. Other information may be included

within the object module, such as special dic­

tionary symbols (used to satisfy cross-references),

text/relocation records (data and instructions, as

well as relocation masks used to modify areas of

object code), a transfer record (indicates the start­

of-execution address for a particular object

module), and control statements providing ad­

ditional mapping information to the linkage editor.

LINKAGE EDITOR OUTPUT

The output of the linkage editor is a single or mul­

tiphase load module that is ready for execution. A

phase, which is also termed a "load segment", is a

portion of a load module that may be loaded as an

overlay by a single execution of a supervisor LOAD

or FETCH macro instruction. A load module may

consist of up to 100 phases, with each phase con­

taining:

• a phase header record, defining the phase

name and length;

• possible text/relocation records selected from

the object modules included in this phase; and

3

• a transfer record signalling the end of the

phase and indicating the point at which ex­

ecution of the overlay is to begin.

When a multiphase output from the linkage editor

is specified, the first phase header record alw('Jys

includes the main storage needed for the longest

"path" of the load module. The path is defined by

the programmer and consists of a load module

phase and all such phases (traced backward)

between it and the root phase - all of which may

reside in main storage at once. As many as 14

phases may be included in a path. The root phase is

the first phase in the path to be loaded and can be

used as the base for several paths.

Besides the load module output by the linkage

editor, whether it is single or multiphase, the

linkage editor also provides a linkage editor map.

The contents of the map are determined by the

programmer; it may contain:

• a listing of the linkage editor control

statements, interspersed with any errors en­

countered in the control stream;

4

CONTROL
STATEMENTS

BAL
OBJECT

MODULES

FORTRAN
OBJECT 1-----.+1

MODULES

LINKAGE
EOITOR

LINKAGE
EOITOR

MAP

5

• a listing of all unresolved references;

• an alphabetic listing of all reference

definitions, including type, address, and

phase number;

• a scaled map showing the phase structure and

sizes of individual load module segments;

• an allocation map; and

• a completion message.

LINKAGE EDITOR CONTROL

To produce a load module, the linkage editor re­

quires control statements in the control stream to

define the particular linkage editor job. By using the

supplied directives, a tailored load module may be

produced; i.e., the control section within the load

module may be reordered and sequenced to con­

form to the programmer's requirements. Control

statements may be used to:

6

• request construction of a load module

This statement, normally the first in any

linkage editor run, creates the initial root

phase segment.

• specify inclusion of object modules

This statement allows the programmer to

specify modules or control sections to be in­

cluded as part of the current program phase.

• request construction of a new phase

This statement is supplied to specify the con­

struction of a new phase segment overlay.

• request construction of a new region

This statement is supplied to specify the con­

struction of a new region within your load

module.

• satisfy cross-references

This statement allows the programmer to

satisfy cross-references that could not

otherwise be resolved automatically by the

linkage editor.

7

• modify the current program counter

This statement modifies the current program

counter maintained by the linkage editor. In

effect, this directive is similar to the ORG­

assembler directive because it allows the

programmer to accomplish boundary ad­

justments at linkage time.

• indicate phase execution starting points

This statement indicates the points to which

control is optionally transferred once the

phase or overlay segment has been loaded

into main storage.

• reserve storage

This statement is available to allow the

programmer to reserve main storage at the

end of the longest path in the load module.

• specify additional information

8

A parameter statement is available to control

the options available to the linkage editor dur­

ing the linking process. This statement es­

tablishes such options as whether or not an

automatic overlay feature is to be used,

whether or not named or unnamed common

sections are to be promoted into the root

phase, and which list options for the linkage

editor map should be considered as standard.

In short, this statement supplies all the details

of the linking operation to the linkage editor.

The control statements are described in detail in

the UNIVAC Operating System/3 System Service

Programs (SSP) User Guide.

CAPABILITIES OF THE UNIVAC
OS/3 LINKAGE EDITOR

The UNIVAC OS/3 Linkage Editor offers flexibility

in its operations. Consider the following examples

and their impact on user programming.

Because the linkage editor deals with individual

object modules, when errors are detected, only the

module in error need be recompiled, and it can

easily be linked to the rest of the program.

9

Since both input and output of the linkage editor

are, in effect, system library files, the editor can be

directed to select object modules from a reserved

library either at the option of the programmer or

automatically. And since the output of all UNIVAC

OS/3 language processors is acceptable to the

linkage editor, COBOL. FORTRAN, etc., object

modules may be linked together into a single

program.

Other examples of flexibility include the automatic

loading of overlay phases and the ability to

automatically modify object modules to be included

in the linkage editor's load module.

These and the other features of the linkage editor

are described in detail in the UNIVAC Operating

System/3 System Service Programs (SSP) User

Guide.

10

system librarian

The UNIVAC OS/3 System Librarian is a utility

package which provides program library file

maintenance for users of the UNIVAC OS/3

software system. But before describing the

librarian and its functions, the terms that apply to

the elements of a library should be defined. In this,

and other manuals that describe the system

librarian, "program library" is used to mean all

program modules that exist in the user environ­

ment. A program library is usually composed of a

"user program library", comprising all user

programs, and a "system program library", which

exists to support the operating system. Both

system and user program libraries are composed of

"library files", specific sets of programs residing

within the physical limits described by a file label

present in the volume table of contents. Normally,

each library file is organized into two partitions; the

first is the library file directory, which is an index of

the prime data partition that constitutes the

remainder; however, by using one of the librarian

control statements, a third partition can be created

containing only text information.

11

12

User library files are permanent files containing

user programs in specific formats. The system

library is composed of five permanent system

library files: the load, object, source, macro, and job

control stream files, and a temporary file called the

job run library. Each library file, whether it is a

system or user library, may contain modules in

program source, object, macro/ JPROC, or load for­

mats. Modules may also exist as a "group" within a

file; in this case, many modules can be treated as

an entity by the librarian. The various library con­

ventions that must be observed (e.g., naming con­

ventions for modules) are described in detail in the

UNIVAC Operating System/3 System Service

Programs (SSP) User Guide.

SYSTEM LIBRARIAN INPUT,
OUTPUT, AND CONTROL

The librarian manages system and user libraries

composed of modules that make up the program

environment for a given system. Input to the

librarian may be library files that exist on magnetic

tape, disc, or punched cards; the files may be con­

verted from one medium to another by the

librarian.

13

Control is provided by control statements directed

to the librarian through the job control stream.

Each of these statements is described and ii- e
lustrated by examples in the user guide.

The output for any given library services job can be

an updated magnetic tape or disc library, a new

library on either medium, or it can be punched

cards or printed listings, or any combination of the

above. The UNIVAC OS/3 System Librarian can

also provide a library map, which gives a complete

listing of the librarian's functions during the par­

ticular library job. The exact contents of the library

map depends on the options selected by the

programmer.

SYSTEM LIBRARIAN FUNCTIONS

As with all the UNIVAC OS/3 software, the

librarian provides flexibility to its users. The

librarian provides facilities to perform all the

following functions:

• It can copy one library file to another by

duplicating the entire file or by choosing

selected modules or groups from the file.

• It can add, delete, and compress existing

library files.

14

• It can build a new library file composed of

merged modules or groups from other

libraries and from sources other than

libraries.

• It can use punched cards either as input or

output.

• It can correct source modules using the

librarian's source code and delete/update

facility.

• It can correct object and load modules; this

function is performed by a data squeeze cor­

rection facility based on phase/section

definitions.

• It can rename any group, module, phase, con­

trol section, or entry name.

• It can produce listings of groups or modules in

the format appropriate to the code type.

• It can validate the library file and program

structures.

• It can introduce or delete linkage editor control

statements in your object modules.

15

• It can provide a library map of supplied control

directives and status information concerning

the content of files being manipulated.

Diagnostics can also be supplied on this

library map.

• It can provide gang operations where many

modules may be serviced at one time. Those

functions which may be ganged are listed in

the user guide and programmer reference,

where detailed explanations of the UNIVAC

OS/3 System Librarian functions and

operations are available.

• It can convert a standard load module, con­

taining two partitions, into a block load

module containing three partitions. Block load

modules are intended to increase the efficien­

cy of program loading when a multiphase load

module is being executed.

• It can specify a date and time, other than the

date and time stored in the system informa­

tion block (SIB) to be used for all modules be­

ing corrected during the execution of the

librarian job.

16

dump routines

SYSTEM DUMP ROUTINE (SYSDUMP)

The UNIVAC OS/3 SYSDUMP is more than just a

dump routine; it is really a translator. It is provided

so that a failure of the system may be readily

analyzed and the faults corrected. SYSDUMP is

read into the system after a failure has occurred; it

prints the contents of main storage, including

headers, indentations, and hexadecimal and

EBCDIC translations with zero relative and actual

addresses.

You can either print the contents of the entire

operating system or certain parts at the time of the

failure by selecting the appropriate SYSDUMP

parameters. The listings can be in hexadecimal,

EBCDIC, or both. SYSDUMP can be initiated by the

operator or through the supervisor.

17

The state of the operating system is printed out by

translating such internal data as the system infor­

mation block, physical unit blocks, command con­

trol block chains, low main storage, and switcher

list of tasking. Each active job has its preamble,

tasking information, and extent tables translated

for easier examination.

Counters are printed out in decimal and hex­

adecimal formats; disc addresses are printed in

cylinder/head/record format; clock values are in

millisecond as well as hour/minute/second for­

mat.

There is even a routine which translates opcodes to

their instruction mnemonics and which supplies 9,
the names for supervisor calls.

All this is provided to make debugging procedures

easier forthe UNIVAC OS/3 user. Complete details

are available in the UNIVAC Operating System/3

System Service Programs (SSP) User Guide.

18

USER EOJ DUMP

The user EOJ dump is printed in hexadecimal and

is divided into four sections: problem program

registers, job preamble, task control blocks, and

your program.

You initiate the user EOJ dump by using the DUMP

macro in place of the EOJ macro in your assembler

program. It is also initiated by the operating system

upon the abnormal termination of a job.

The user EOJ dump is intended for the experienced

programmer.

19

utilities

PREP ROUTINES

Magnetic tape and disc initialization routines are

part of the system service programs. Magneti_c

tapes are initialized in the standard label format by

writing an initial volume label, a dummy file header

label, and a tape mark. A succession of tapes may

be prepped by one execution of this utility. Up to 36

tapes may be prepped within one job step, depen­

ding on the number of tape units attached to the

system.

The disc initialization routine, commonly called the

disc prep routine, will prepare any disc pack for use

by OS/3, sectored or nonsectored. Preparation

consists of analyzing the disc pack for defective

tracks, assigning alternate tracks to replace them,

and building the initial records that must be written

before the disc pack can receive any data or

programs. These initial records include the disc

volume label records; that is, the standard volume

label (VOL 1) records and the volume table of con­

tents (VTOC) records.

20

ASSIGN ALTERNATE TRACK ROUTINE

This disc utility, which is part of the disc prep rou­

tine, provides the capability to assign an alternate

disc track to substitute for a defective track on the

disc pack. The utility also can change the flags in­

dicating a track's condition and, if update records

are supplied as input, it can also replace bad

records.

DISC DUMP/RESTORE

The disc dump/restore utility is used to copy either

files or an entire disc pack to another disc or to a

printer. If an entire disc is copied, its contents are

transferred to another disc pack, without regard to

the file type or file organization. If only files are to

be copied, selected files - even selected records­

can be copied, records deleted, and indexes

reorganized. This routine is useful in creating

backup libraries.

SYSTEM UTILITY COPY ROUTINES

There are two copy routines, one for sectored and

the other for nonsectored discs, which enable you

to make from 1 to 7 copies of a volume, a file, or

specific records.

21

SYSTEM UTILITY PATCH VERIFIER

The system utility patch verifier allows you to verify

the system patches supplied by Sperry Univac.

These patches are restricted to the fol lowing areas:

• the initial program load (IPL) boot record

• the IPL routine

• the control storage (COS) microcode

• the transient routines and their overlap

residing in the system transient library file

CYTRAN)

• the load modules residing in the system load

library file (YLOD)

SYSTEM PATCH UTILITY

Once the patch is verified (system utility patch

verifier), the system patch (SU$PAT) utility is used

to patch one of the restricted areas. Without

SU$PAT, these critical areas of the operating

system could not be modified in the field.

22

SYSTEM UTILITY SYMBIONT

The system utility symbiont is a multipurpose utility

that allows you to perform 30 different functions

using punched cards, tapes, or discs. This utility

frees the OS/3 user from writing his own utility

programs to perform such common utility jobs as

listing and reproducing cards and printing tapes.

summary

A detailed description of the features and

capabilities of the UNIVAC OS/3 System Service

Programs, complete with illustrations and ex­

amples drawn from actual practice, is available in

the UNIVAC Operating System/3 System Service

Programs (SSP) User Guide. A review of the

programming used with SSP, written for ex­

perienced personnel, is also available; see the

UNIVAC Operating System/3 System Service

Programs (SSP) Programmer Reference.

23

