SPERRY UNIVAC
SERIES 90

Data Base Management
System/90 (DMS/90)

Data Manipulation Language

Programmer Reference

2t

LJ N IVAC UP—8036 Rev. 1

AT, ;
e, § ot E:::s e a'{:: ‘?!
s o | t

]

A
Kid

q

SPERRY UNIVAC
SERIES 90

Data Base Management
System/90 (DMS/90)
Data Manipulation Language

Programmer Reference

This document contains the latest information available at the time of publication.
However, Sperry Univac reserves the right to modify or revise its contents. To ensure that
. you have the most recent information, contact your local Sperry Univac representative.

Sperry Univac is a division of Sperry Rand Corporation.

FASTRAND, PAGEWRITER, SPERRY UNIVAC, UNISCOPE, UNISERVO, and UNIVAC are
trademarks of the Sperry Rand Corporation.

©1972, BY THE B. F. GOODRICH COMPANY
REPRINTED BY PERMISSION
. ©1972, 1974, 1975— SPERRY RAND CORPORATION PRINTED iN U.S.A.

8036 Rev, 1 . A PSS 1
UP:NUMBER' SPERRY UNIVAC Series 90 PAGE REVISION | PpacGE
PAGE STATUS SUMMARY
. ISSUE: Update A — UP-8036 Rev. 1
. Page }Update Page |Update Page |Update
Part/Section Part/Section Par i
Number | Level Number | Level art/Section Number | Level
Cover A 12 1 Orig.
2,3 A
. " 4,5 Orig.
Title Pa A
% 6 A
PSS 1 A 13 1 A
2thru 9 Orig,
Acknowledgment|{ 1 Orig, ™ re
14 1 ig.
Preface 1 Orig. 2 2r|g
Contents 1,2 Orig. Appendix A 1 thru 4 Orig.
3 A
4 Orig. i -
Appendix B 1,2 Orig.
5,6 A ppendi rig
Appendix C 1thru 8 Orig.
1 1,2 Orig. 9,10 A
2 1 Orig. Appendix D 1,2 Orig.
2,3 A 3 A
4 Orig. 4 thru 9 Orig.
5thru 9 A
Appendix E 1thru g Orig.
3 1,2 Orig.
3,4 A Index 1thru b Orig.
5 Orig.
. User Comment
4 1 thru 10 Orig. Sheet
5 1 Orig.
6 1 Orig.
7 1 Orig.
2 A
3 Orig.
4,5 A
8 1,2 Orig.
3,4 A
5 Orig.
9 1thru 6 Orig.
10 1 thru 3 Orig.
4 A
5,6 Orig.
7 thru 9 A
1 1,2 Orig,
3 thru 6 A
7 Orig.
8 thru 10 A
11 Orig.
*New page

All the technical changes are denoted by an arrow (=) in the margin, A downward pointing arrow (*) next to a line indicates that

technical changes begin at this line and continue until an upward pointing arrow (4) is found. A horizontal arrow (=) pointing to

a line indicates a technical change in only that line. A horizontal arrow located between two consecutive lines indicates technical

changes in both lines or deletions,

8036 Rev. 1

UP,NUMBER:"

SPERRY UNIVAC Series 90

A
PAGE REVISION | PAGE

Contents 3

10.

7.2.2. CLOSE ALL Statement

7.2.3. IF Statement

7.3. RETRIEVAL STATEMENT SYSTEM STATUS
7.3.1. FIND/OBTAIN Statement

73.2. GET Statement

7.3.3. MOVE CURRENCY STATUS Statement

7.4. MODIFICATION STATEMENT SYSTEM STATUS
74.1. DELETE Statement

74.2. INSERT Statement

74.3. MODIFY Statement

744, REMOVE Statement

745, STORE Statement

CURRENCY

8.1. GENERAL

8.2. CURRENT OF RUN-UNIT

8.3. CURRENT OF RECORD TYPE

8.4. CURRENT OF SET

8.5. CURRENT OF AREA

8.6. CURRENCY AND DML STATEMENTS

8.6.1. Currency FIND/OBTAIN Statements

8.6.2. Currency GET, INSERT, and REMOVE Statements
8.6.3. Currency DELETE Statement

8.6.4. Currency STORE Statement .

8.7. SET CURRENCY FOR RECORDS WITH OPTIONAL SET MEMBERSHIP
CONTROL STATEMENTS

9.1, GENERAL

9.2, INVOKE STATEMENT

9.3. OPEN STATEMENT

94. CLOSE STATEMENT

9.5. IF STATEMENT

RETRIEVAL STATEMENTS

10.1.

GENERAL

Contents 4
PAGE

8036 Rev. 1 SPERRY UNIVAC Series 90

UP-NUMBER l PAGE REVISION

10.2. FIND/OBTAIN STATEMENT 10-1 .
10.3. GET STATEMENT 10-8
104. MOVE STATEMENT 10-9

11. MODIFICATION STATEMENTS

11.1. GENERAL 11-1
11.2. DELETE STATEMENT 11
11.3. INSERT STATEMENT 11-5
11.4. MODIFY STATEMENT 11-6
11.5. REMOVE STATEMENT 11-8
11.6. STORE STATEMENT 11-9

12. SUBSCHEMA DOCUMENTATION

12.1. GENERAL 121
12.2. DATA STRUCTURE DIAGRAM 12—-1
123. RECORD DATA DESCRIPTION 12-2
124. DATA MANIPULATION LANGUAGE CONSTRAINTS 124

13. PROGRAMMING STRATEGY

13.1. GENERAL 13-1
13.2. ENTRY INTO THE DATA BASE 13—-1
13.21. CALC Entry 13-1
13.2.2. Direct Entry 13—-1
13.2.3. Area Entry 13-2
13.3. DATA ACCESS THROUGH SET RELATIONSHIPS 13-2
134. ACCESS PERFORMANCE 13-4
135. EXAMPLE ACCESS STRATEGY 13-4
13.5.1. Problem 1: Access All Orders for a Specified Customer 13-5
13.6.2. Problem 2: Access All Orders for a Product 13-5

135.3. Problem 3: Store of a Customer Order 13-7

8036 Rev. 1

-
UP.NUMBER

\ ' SPERRY UNIVAC Series 90

A
PAGE REVISION

PAGE

Contents §

14 DIAGNOSTIC AND ERROR MESSAGES
14.1. GENERAL
14.2, DML PROCESSOR ERROR MESSAGES
14.3. ERROR-STATUS CONDITIONS
APPENDIXES
A. DATA BASE MANAGEMENT SYSTEM RESERVED WORDS
B. SUMMARY OF DATA MANIPULATION LANGUAGE FORMATS
C. SAMPLE DDL AND COBOL/DML PROGRAMS
C.1. GENERAL
C.2. THE SCHEMA DEFINITION
Cc3. THE SUBSCHEMA DEFINITION
ca4. THE DATA MANIPULATION LANGUAGE PROGRAM (DMSSAMP) .
C.5. DATA INPUT RECORDS
c.6. SAMPLE PROGRAM DATA INPUT
D. ERROR STATUS CONDITION CODES
D.1. GENERAL
D.2. SYSTEM ERROR CONDITIONS
E. DML PROCESSOR MESSAGES
E.1. CONFIRMATION MESSAGES
E.2. DIAGNOSTIC MESSAGES
INDEX
USER COMMENT SHEET
FIGURES
2-1. DML Compilation Process
2—-2. DMS/90 Application Program

2-3

8036 Rev. 1

UP-NUMBER

SPERRY UNIVAC Series 90 l

A

PAGE REVISION

'‘PAGE

Contents &

2—-3. Standard COBOL/DML Program Structure

2—-4, DMS-STATUS Section

3-1. Record Representation Fromat

3-2, Example Record Representation

4—1, ~ Example of Set Occurrence

4-2, Set Representation

4-3. Set Characteristics

4-4, Set Attributes

4--5, Set Order

8—1. Data Structure Diagram for a Record With Both Automatic and Manual Set Membership
12—1. Data Structure Diagram

12—2. Record Data Description for DMSSUBS Subschema
13—1. Problem 1: Access All Orders for a Specified Customer
13—2. Problem 2: Access All Orders for a Product

13—3. Problem 3: Store of a Customer Order

TABLES

4-1. Effect of Set Membership on DML Operations

7-1. Update of System Status Information

12—-1. DMSSUBS Subschema DML Constraints

14—1. DML Verb Codes

2-6
2-8

12-3
12-5

13—-6
137
13-9

8036 Rev. 1 I SPERRY UNIVAC Series 90

2-1
UP-NUMBER : PAGE REVISION | PAGE

2. Concepts

2.1. GENERAL

The SPERRY UNIVAC Series 90 Data Base Management System (DMS /90) provides separate language facilities for
description of data and the manipulation of data. This separation removes the data description function from the
scope of the COBOL program. This separation of data description facilities allows integration of all data and data
relationships into a base which is common to all applications programs which use it.

DMS /90 supports a network type of data structure. This facility permits the user a definition of structures which are
most suitable to the applications which operate upon the data.

2.2. DATA DESCRIPTION LANGUAGE (DDL)

‘ The DMS/90 DDL is a 2-part language used to describe the schema and subschema within the data base. A schema
is a complete description of a data base, which includes the names and descriptions of all the data items, records,
sets, and areas for all applications which access the data base. The language for describing a schema is called the
schema DDL.

The second part of the data description language is called the subschema DDL. A subschema is a separate descrip-
tion of only those data items, records, sets, and areas which are of interest to one or more specific applications pro-
grams. In all cases, the schema and subschema descriptions are logically consistent. While there is only one schema
for a data base, there may be any number of subschema descriptions, each describing a specific combination of
records, sets, and areas which apply to a given application or program.

Both schema and subschema DDLs are within the purview of the data base administration staff which is responsible
for the design, maintenance, and protection of the data base. The language is described in a separate reference
manual and is a part of the DMS /90 system.

2.3. DATA MANIPULATION LANGUAGE (DML)

The COBOL programmer can access a data base only through a predefined subschema. A subschema is made
available to a COBOL program by an INVOKE declarative statement in the Data Division. The DML processor
establishes the description of each record included in the subschema as record-level entries in working storage of
the COBOL Data Division. The record, sets, and areas included in the subschema place restraints on the use of DML
imperative statements within the Procedure Division. By implication, the subschema removes access to all other
records, sets, and areas not included in the subschema and thereby provides a measure of data privacy.

2-2

UP-NUMBER PAGE REVISION PAGE

8036 Rev. 1 SPERRY UNIVAC Series 90 l A

The imperative DML statements can be grouped into three categories:

1. Control .

2. Retrieval

3. Modification

Control statements are used to establish access to a portion of a data base. The OPEN ALL AREAS statement an-
nounces the user’s intention to begin processing within all areas specified in the subschema. The corresponding
CLOSE ALL AREAS statement announces the end of processing in the subschema areas included in the subschema
invoked. An area is a named subdivision of contiguous addressable storage within the data base. The IF statement
is used to evaluate the member status in a set or determine if a set is empty. The IF statement provides a DML pro-
gram with branching capability.

Retrieval statements are primarily concerned with locating data in the data base and making it available to the
program in working storage. The DMS /90 FIND, GET, OBTAIN, and MOVE CURRENCY STATUS statements are in-
cluded in this category. The FIND statement locates a record occurrence in the data base which satisfies the record-
selection-expression part of the FIND statement. The GET statement causes a movement of all data items in the
record which was most recently located into the like-named location in working storage of the COBOL program. The
MOVE CURRENCY STATUS statement causes movement of the data base key associated with the most recently
located record of a set, area, or record type into a named location in working storage. A data base key is used as a
unique identifier of each record occurrence in the data base. A complete description of the data base key will be
presented in a subsequent section. The OBTAIN statement is semantically equal to the combination of the FIND and
GET statements.

Modification statements result in a change to the contents of the data base. Changes include the addition of new
data, modification of existing data by replacement of existing data item values, update of set relationship by inser-
tion or removal of member occurrences, or deletion of data which currently exists in the data base. The STORE
statement uses data established by the user in working storage to create a new record occurrence in the data base.
The MODIFY statement is used to change the data content of an existing record in the data base. The INSERT and
REMOVE statements cause a change in the set relationship of an existing record occurrence in the data base. The
DELETE statement causes an existing record occurrence to be removed from the data base. The space previously
used to store a deleted record becomes available for the storage of a new record occurrence. Each DML statement
will be discussed in detail in subsequent sections.

2.4. COBOL/DML COMPILATION

The user must identify a predefined subschema in the schema section in the Data Division. The subschema allows
the user to manipulate only the sets, data items, records and areas included in the subschema. The DML statements
may appear anywhere in the Procedure Division. From a programming viewpoint, DML statements may be con-
sidered as an extension to the COBOL language. This means that they may be placed at the appropriate point in any
procedure and may be surrounded by other COBOL statements.

The compilation process is illustrated in Figure 2—1. The DMS/90 DML processor reads the COBOL/DML
source statements and searches within the Data Division for the Schema Section to obtain the name of the
subschema specified in the INVOKE statement. All COBOL (or non-DML) statements are copied directly to
output. Once the subschema name has been verified, the DML processor obtains the names of all valid records,
sets, and areas. The relationships between records, sets, and areas from subschema information stored in the
data base data dictionary are used to validate DML statements in the Procedure Division. The DML processor
establishes a 01 level record entry followed by data item entries in working storage for each record included in

the subschema. In addition, system control and communication data items are included following the last record
description.

8036 Rev. 1 SPERRY UNIVAC Series 90 l A I 2-3
PAGE

UP-NUMBER PAGE REVISION

COBOL/DML
SOURCE

l

DATA BASE DML
DESCRIPTION .PROCESSOR

'

COBOL
SOURCE

‘

coBOL
COMPILER

DML
DIAGNOSTIC
MESSAGES

Figure 2—1. DML Compilation Process

The DML processor inserts a group of CALL statements immediately following the Procedure Division statement
to bind the necessary working storage location of records and data items to the COBOL object subschema — =
interface routine. Each DML command is validated for correct syntax and usage of record-set-area relationships.
If the DML statement is correct, the processor will convert the DML statement into a COBOL comment statement
and generate an appropriate COBOL CALL statement to the COBOL object subschema interface routine. -—

All DML errors detected by the DML processor will be displayed with the source statement which was in error. When
input of COBOL/DML source is complete, statements output by the DML processor, along with all other COBOL
statements, will be directed to the COBOL compiler.

2.5. COBOL/DML OBJECT PROGRAM EXECUTION

The linkage editor combines the object version of the subschema and the run-time DMS /90 with the user's COBOL
relocatable object program prior to execution. Figure 2—2 illustrates the relationships which exist between the data
base, operating system, DMS/90, and the COBOL program.

The numbered arrows in Figure 2—2 illustrate the operations which take place when a DML statement is executed.
These operations, as numbered, are:

1. A DML statement appears in the object program as a call to the COBOL object subschema interface
routine. The call identifies the type of data base service desired and any additional information such as
record-name, set-name, or area-name required to properly interpret the call.

8036 Rev. 1

UP-NUMBER

SPERRY UNIVAC Series 90

PAGE REVISION

PAGE

24

10.

The COBOL object subschema interface routine analyzes the call using information stored in the object
subschema. If the call requires the use of DMS /90, the user-supplied information is augmented by in-
formation from the object subschema before control is passed to the DMS/90.

The DMS /90 performs the requested data base service using information supplied by the interface
routine. The operation which is performed depends upon the type of DML statement executed. In the
event of a call to locate a record (FIND statement), DMS /90 searches the system buffers to see whether
the requested record occurrence is present. If the record is in the data base, a request will be made to
the operating system to input a data base page from the direct access storage to the DMS /90 system
buffers. No input occurs if the record is already present in the system buffers.

DMS /90 performs the requested data base service and uses additional information contained in the
object subschema. The object subschema contains a representation of the data structure, record place-
ment control, record characteristics, set characteristics, currency status, data base operation statistics,
and constraints on DML operations. In general, the object subschema controls the operations and access
of the data base for each COBOL program which invokes it.

Whenever a specified record occurrence is located by the control routines, the data base key and other
system information related to the record is moved from the system buffers to locations within the object
subschema. This information represents the currency status of the area, sets, and record type of the
record occurrence which has been located.

if the call to DMS /90 specified movement of the contents of a record to the user working area (GET
or OBTAIN statement), data will be moved from a system buffer to a specified record area in working
storage. Data movement from working storage to the system buffers occurs in response to a STORE or
MODIFY statement.

DMS /90 returns to the COBOL object subschema interface routine with an indication of the success or
failure of the data base service which was requested in step 3.

The COBOL object subschema interface routine moves status information regarding the outcome of the
DML statement executed in step 1 to system status information locations within working storage of the
COBOL program.

Control is returned to the user's COBOL program at the statement following the DML statement iust
executed.

The user must determine the status of the previous DML statement by examining the contents of the
system status information data items in working storage. For example, if a FIND statement was just
executed, the contents of a data item named ERROR-STATUS would indicate whether the specified
record occurrence was located or not.

2.6. COBOL/DML SOURCE PROGRAM

The formats of all data manipulation language (DML) statements used in the SPERRY UNIVAC Series 90 Data Base
Management System (DMS /90) were designed to conform as closely as possible to COBOL. From the programmer’s
viewpoint, DML is treated as an extension to COBOL.

A

PAGE REVISION

8036 Rev. 1 I SPERRY UNIVAC Series 90 2-5

UP-NUMBER,

PAGE

. DATA BASE
()

SYSTEM ha
> DMS/90
6 BUFFERS | A)
5] {4 3
W A
v s 3
USER SYSTEM P Y
WORKING AREA STATUS OBJECT COBOL E s
INFORMATION SUBSCHEMA SUBSCHEMA R T
INTERFACE A E
ROUTINE T M
21l l{I
WORKING STORAGE - G
8
| T |9
‘10 1| ‘
COBOL PROGRAM

Figure 2—2. DMS /90 Application Program Execution

. 2.6.1 Data Division Entries

Additional entries in the COBOL. Data Division are required to identify the subschema to be invoked in the program
and to provide a user working area for storage or output of a record to or from the data base and system status in-
formation locations within working storage. Figure 2—3 illustrates the placement of DMS /90 DML statements in
the Data Division.

= The SCHEMA SECTION statement (sequence number 300010) must appear immediately after the DATA
DIVISION statement. The statement may begin in any column after column 7.

[The INVOKE statement must follow the SCHEMA SECTION statement and may begin in any column after
column 7. The INVOKE statement {(sequence number 300020) corresponds to the subschema and schema
names in Figure 12—1. No other statements are permitted in the Schema Section.

u A WORKING-STORAGE SECTION statement must be present in the position required by COBOL
specifications. Any 77-level data item or O1-level record entries are positioned as required by COBOL.

a The DML processor automatically inserts O1-level record descriptions for all subschema records and system
status information locations between the last entry in the WORKING-STORAGE SECTION and either the next
section statement or the PROCEDURE DIVISION statement if no other sections are present.

. The DML processor automatically changes both SCHEMA SECTION and INVOKE statements to comment
statements by inserting an asterisk in column 7 of each statement.

L] The user may specify the parameter QUOTE=SINGLE or QUOTE=DOQOUBLE beginning in column 8 before
. the IDENTIFICATION DIVISION statement. if QUOTE=SINGLE is specified, single quotes {(apostrophes) are
used to bound nonnumeric literals generated by the DML preprocessor. If QUOTE=DOUBLE is specified,

double quotes are used for the same purpose.

8036 Rev. 1 SPERRY UNIVAC Series 90 A 2-6

UP-NUMBER PAGE REVISION | PAGE

CONTINUATION

SEQUENCE 1_—

A B TEXT » IDENTIFICATION
NUMBER fl7je nin 2 30 " @ 50 60 n 80
W | IQUOTE=DOUBLE | e e i
100000 IDENTIFICATION DIVISION., ., .. 1., ., NN S B I
L ROGRAM-ID-priogram-nameo, 0 b e s NP I
A R B B S ST B SR I ST BT I
N PP TS I U Ol H T S N WO W S S SIS S S U S S SO D DA S U A MR S U U S G S S U S S S VOO S S S S S S R St U ST T
L | P J U EUNN S S SO S S ST SN T S S E S S G S S S S G TS SR H S S A S S N SR YO S RS G IO S BT P

TR B O T U S T S (T N ST SO T S S S O T SO S S Y S T S T S N A U S S SO PRI P T N S §

PSS VS O VA TS G S A VOO O S S S U S0 WO TS S S0 UG S G VA O S G S WU SV 0 U U SOY A MO U S UV SO N U O S S S

N W PRSP S S S G S VT ST S S S U S R SV N U W VAU S S W S S S AP EAT S WP RS RSN S U S SR S S RS A S Sy

300000 PATAl DIVISION-, oo o v v v el o iaady e JNEEN B

00010 |SCHEMA, SECTION., v v b ia v b e ool s e
00020 [INVOKE SUBSCHEMA, DMSSUBIS OF DMSSCHM-. . . ., 1., NN S

oS00 IFILIE] SECTION.L v v v vl v v bbb n i e s b

A R P B SV S S , - —_ N U S S
L SRS N T A U U S S U PN S S S S S0 G S S Y S0 SN S SO SO T N G S S S S A SN H U S S SO S S SAVENY NS AU T S SR
4wl | P S S R S S ST S N WU W S U S SN U SO W WU ST A SV S SV | NIRRT N SR OO AN S S U S RNE U A
35,0000, WORKIING -S TORAGE, SECTION-C | vl e SIS U NS S SN S S ST A S HAU S U Y A Nt
S | I L 1 FE A A [N ENEr NS IRV I RV U SRS R R RS R A R S S G S A RS A AU G R A A S e
—— P U S U S S S Ul U S S S GOV VY b L
R AN N S IO R Sy S U VAU SV U S S S U RS RO P S S S N SV

s [PLINKIAGE, SECTION,. O P B S S S S ST

PV
L T PRI B P P I L sl v v e b | R TIPS S S W W
I P U U IS S S S S U SO VO S T S S S T S S G U VI B S S R T Y L a]
P M| " M- [E—— SN I UUTID S ST S N B S S S SV ST S S SOV SR T PR G
cv. . | |PROCIEDURE, DIVEISION-\ \ \ 1 i vvin Ly o P U BT
| oy ’-DLElclLAARlA\TJIVlElsl.lLLAII 1. S S S T S Y T S YO Y N VA W W WSV ENURY O T ST S SR S N WY W AU G N SIS S
PN | . N N | VUSRS S S U T U S VI RO SO S AU G R S SN | N L as
L P O S Y G U ST U U SR P U S U S T SO0 TN S U U S S S S S S WSO ST S G W P A LA S S G S A S RS R U TR S A S S
ekl P I ST ST VU U GRS WU ST S U S S T VA S S S | ey 1 n PSSR | U OO S U T S A ST S S S)
| ., JUEND DECLARATIVES., d 00 vyl v b v e b

s [pecitlion-name-l, SECTION [priority-inumperl ., I F I

| pevielgraphomame-Tie e e]
o sentlence T i e i e L]
L)) Ll S U G R TS S WA UV S S S SR WS Loik N M T Ll
. 0 T U WU I S S S S S SV SO A R S i FER R S AU B IO BTG PN S
. ,
PRI % TRV OR S Y AU T N U S T S Y G S S S U B IO ER U H RO NP PSS B A ST S IS S S S S U PRI S S U
T sentlemce-n- |, a0l O S B G S S UV U S S S S S S S G G S NG U R RIS
ol 1 L ! L 1
| N S T S S A S U A U (OSSP G S VOSSO ST S S S S R SO S ST G U U S R
TR P Y R NN S NI S P S S S S VO SV S S Lk M RS SR Cu e)
. . . .
T g S S T VU G S SO S SN SO S SR S IIVON GRS
| : . ‘
O O S S L S T S O S O R ST S S H NGO (SO S S II I RS S GG WY
L1 P S T T T S T O U U ST S U SR S N A SO NSNS S ST SIS
SR T S G U S S O S S S S T S 0 SO S SR N S GO S S SR TS SIS HE U O S SEDURV T SIS U H I SV S S S R

F— FUR S U S S . N T S R ST S SR T S SIS A S S S A - Lol o i

NOTE:

1. QUOTE=SINGLE may also be coded as the first line.

Figure 2—3. Standard COBOL/DML Program Structure

8036 Rev. 1 | SPERRY UNIVAC Series 90 I A l
PAGE

UP-NUMBER

PAGE REVISION

2-7

2.6.2 Procedure Division Entries

DML statements entered in the Procedure Division are written as conventional COBOL statements. DML statements
may appear anywhere in the Procedure Division and may be intermixed with COBOL statements subject to the
following restrictions:

= A DML statement may be preceded by a paragraph name conforming to the naming conventions of COBOL
(Figure 13—2, line 5);

u All DML statements must begin with a DML verb and end with a period followed by a space (Figure 13—1,
13—2, or 13—3); and

u A DML statement must not be combined with other COBOL statements to form a COBOL sentence. For
example, the following statement is not allowed.

IF CUST-IN IS EQUAL TO CUST-TEMP FIND NEXT
RECORD OF ITEM SET GO TO G410.

The DML processor automatically inserts several statements immediately following the first paragraph-name of
the Procedure Division to establish address linkages between the user's COBOL program and the object
subschema which is linked to the user's COBOL/DML program. The processor also converts the DMS/90 DML
statement to a comment statement by inserting an asterisk in column 7, validating the statement, and
generating an appropriate CALL statement to the COBOL object subschema interface routine.

Every DMS/90 COBOL/DML program must perform an OPEN ALL AREAS statement before any other DML
statement is executed and must execute a CLOSE ALL AREAS statement when all data base operations have
been completed.

The DML processor copies a COBOL section named DMS-STATUS into the Procedure Division to aid the program-
mer in detection and analysis of ERROR-STATUS values other than those specifically related to the logic of the
user’s program.

DMS-STATUS is a COBOL section which is used to provide a common method of analysis of the ERROR-STATUS
location and minimize the amount of COBOL coding required to check the status following a data manipulation
language (DML) statement. Figure 2——4 illustrates the coding of the DMS-STATUS SECTION, and its recommended
use is illustrated by the following 4-step process associated with the execution of a DML statement (Figures 13—1,
13—2, and 13—3}.

1. Execute DML statement.

2. Test for all nonzero values of the ERROR-STATUS location which are used to control logic of the program.
This step may be omitted if no nonzero values are valid.

3. Execute a PERFORM DMS-STATUS operation to determine whether an error condition exists.
4. Statements are performed when the DML statement executed in step 1 is successful.

The DMS-STATUS SECTION is copied into the user’s program by the DML processor following the last statement
of the user’'s COBOL/DML program.

When the DMS-STATUS SECTION is performed, an IF statement is executed to determine whether the value of
the ERROR-STATUS location is zero. If it is zero, the DMS-SUCCESS SECTION is performed and the statement
following PERFORM DMS-STATUS statement is executed next. However, if the ERROR-STATUS location is non-zero,
an error condition is assumed to exist and additional statements will be executed to document the error on the op-
erator’s console and the main system printer. Also a user section called DMS-ABORT is performed to allow the
user to terminate report files and produce any other output desired before the program is aborted. Therefore, the
user must place sections named DMS-SUCCESS and DMS-ABORT within the Procedure Division. The basic
format may be as follows:

8036 Rev. 1

UP-NUMBER

SPERRY UNIVAC Series 90

A
PAGE REVISION

PAGE

2-8

"

503100 DMS-ABORT SECTION.
(user COBOL statements)
503600 DMS-ABORT-EXIT. EXIT.
503700 DMS-SUCCESS SECTION.
(user COBOL statements)
; 503800 DMS-SUCCESS-EXIT. EXIT.

In Figure 2—4, THE-PRINTER and THE-CONSOLE are used in DISPLAY statements of DMS-STATUS SECTION;
therefore, the user must relate these mnemonic-names to the appropriate implementor names in the SPECIAL-

NAMES entry of the ENVIRONMENT DIVISION.

LK N 3 A J

DwS=STATUS
STATUS=PARA,
*

IF ERRUOR=STATYS tuuaL TO

SECTION.

ZEROS

PERFORM DMS=SUCCESS
GO 170 1SABEXx.
[3
ERFORM DMS=ABORT,
{SPLAY to 2008058008ttt taertsputypann
* ABORTING = ' PROGRAM=NAME
Yy ! ‘ ERROR=STATUS
¢ ' ERROR=RECORD
* waes RECOVER DMG wees ¢
UPON THE=CONSOLE.
DISPLAY *PROGRAM NAME =emaw=e ' PROGRAM=NAME
UPON THEPRINTERS
DISPLAY YERROR STATYUS ==ww== ? ERRCR=STATYS
UPON THE=PRINTER)
DISPLAY '"ERROR RECORD ====== ' ERROR=RECORD
UPON THE=PRINTERS
DISPLAY 'ERROR SET m=m==mw_.== ¢ ERROR-SET
UPUN THE-PRINTER.
DISPLAY '"ERROR ARfA ===ew_== ¢ ERROR=-AREA
UPUN THE=PRINTER
DISPLAY "LAST GO0Op RECORD == * RECORD=NAME
UPUN THE-PRINTER,
DISPLAY YLAST GOOpD AREA wa== * ARCA=NAML
UPON THE PRINTER
DISPLA *see RECOYER DMS ese?
UPON THE PRINTER
* CLOSE ALL AREAS.,
ENTER LINKAGE.,
CALL *XR7DMS?* USING IDBMSCOM (02).
ENTER COBOL
STYOP RUN
[
IcABEXs EXITo
L]
NOTE
THIS IS THE END
OF THE DMS STATUS cHECK SECTIONS

Figure 2—4. DMS-STATUS Section

l"i'}'*'i“ﬂtitililliiﬂtﬁtCOtl‘.tQ’l'.!0"“““"'0“'»
o DUMS STATUS CHECK SECTION

X 2 X Y P S RS N R R A N R RS R S R R LA A AR KRS

L]

8036 Rev. 1

UP.NUMBER"

I SPERRY UNIVAC Series 90 l A | 2-9
PAGE

PAGE REVISION

2.7 PROGRAMMING REQUIREMENTS

From a programming viewpoint, the DMS /90 input/output area for the data base resides in working storage. Each
record included in the subschema is automatically included in working storage as a 01 record level entry followed
by the statements which describe the name, picture attribute, and usage of each data item included in the record.
Input of a record from the data base always appears in its like-named area in working storage. Storage (or output)
of a record to the data base requires the movement of data from various locations in the user’s program to each of
the data items described for the specific record in working storage. Once this is completed by user COBOL statement,
the record is then physically moved from working storage into the data base using the STORE statement.

The user is responsible for initializing all data items required to successfully execute a DML statement and must
ensure that the data is correct. DMS /90 has extensive run-time error diagnostic facilities and will update the con-
tents of the location ERROR-STATUS in the Working Storage section of a COBOL program following every DML
statement. The user must examine the ERROR-STATUS following each DML statement to determine the action
taken by the system in response to a DML statement. Three operations are required each time an access to the
data base is required:

1. Initialization of data items as required by the DML statement to be executed
2. Execution of the DML statement to initiate a data base operation

3. Error checking to determine the outcome of the preceding DML statement

Before a programmer can write any DML statements, the names of all areas, records, sets, and data items must be
known, along with their characteristics. The existence of data structures present in the data base, but notincluded in
the subschema, may affect the scope of the DML statements which can be used with the subschema. This subschema
information and any DML restrictions must be documented by the data base administration staff and understood by
the systems analyst and programmer before program specification and implementation can be accomplished.

The remainder of this programmer’s reference guide includes a complete description of all DML commands and
subschema representation and an example program and subschema illustrating the programming strategy involved
in the use of DMS/90.

3-3

PAGE

8036 Rev. 1 | SPERRY UNIVAC Series 90 l A

UP-NUMBER PAGE REVISION

‘ 3.5. LOCATION MODE

The location mode of a record defines the way a given record type is stored in the data base and specifies one of the
ways of selecting occurrences of the given record in the data base. Any given record type may have only one location
mode as specified by the data administration staff. Once specified, the location mode restricts the type of DML
statements which apply to the record type to the following three modes:

1. DIRECT
2. CALC
3. VIA

3.5.1 Direct (DIRECT) Location Mode

The format of the location mode for the DIRECT option is:

DIRECT

To store the record type with a DIRECT location mode, the user must initialize the system status location named
DIRECT-DBK with a —1 or a desired data base key before the execution of a DML STORE statement. For the
user’'s convenience, DIRECT-DBK is initialized with —1 by DMS/90. DMS/90 automatically examines the
contents of the location DIRECT-DBK and assigns an appropriate data base key (11.6).

This mode gives the greatest control of placement of record occurrences within the data base. It allows the user to

advise DMS /90 to store a record occurrence on (or near) a specific page within an area of the database. (See STORE
statement, 11.6.) ‘

3.5.2. Calculated (CALC) Location Mode

The format of the CALC location mode option is:

CALC

/ duplicates control

data-name y 4

3-4

UP-NUMBER PAGE REVISION PAGE

8036 Rev. 1 SPERRY UNIVAC Series 90 l A

where:

data-name
Is the name of a data item within the record.

duplicate control
Is required to specify how additional occurrences of this record are stored if the CALC key values are

identical to an occurrence already in the data base.

DN (duplicates not) Indicates that an additional occurrence with the same CALC key value is
not allowed to exist in the data base.

DF (duplicates first) Indicates that an additional occurrence with the same CALC key value
will be stored in a LIFO sequence.

DL (duplicates last) Indicates that an additional occurrence with the same CALC key value
will be stored in a FIFO sequence.

Figure 3—2 illustrates the CUSTOMER record type representation with a location mode of CALC and a data-name of

CUST-NO. When an occurrence of a CUSTOMER record is stored in the data base, a system defined procedure with-

in DMS /90 uses the value of data-name CUST-NO to determine a specific page within the data base where the rec-
* ord will be stored.

A standard randomizing module, XR7CALC, is provided with DMS/90 and is used by default. Otherwise, if the

user wishes to provide his own randomizing algorithm, he may create his own CALC module and link it with all

application programs. For details about this process, refer to the DMS /90 system support functions programmer
* reference for the appropriate operating system.

A given CUSTOMER record occurrence may be selected by moving a value into the CUST-NO data item before the
execution of the DML statement

‘ FIND CUSTOMER RECORD.

The same DMS/90 procedure (either system standard or user specified) transforms the value of the data-name
CUST-NO to a specific data base page as the first step in selecting a record occurrence. DMS /90 then proceeds
to locate the specific CUSTOMER record starting with the calculated page. (See FIND statement, 10.2, and
STORE statement 11.6.)

3.5.3. VIA Location Mode

The format of the VIA location mode option is:

VIA

set-name

where:

set-name
Is the name of a set in which the record type participates as a member.

8036 Rev. 1
UP-NUMBER-~

I SPERRY UNIVAC Series 90

l PAGE REVISION l PAGE

7-1

7.1.

7. System Status Information

GENERAL

Whenever a run-unit (user's program) executes a call to the SPERRY UNIVAC Series 90 Data Base Management
System (DMS /90) for a data base operation, the system furnishes information concerning the outcome of the re-
quested service in the system status locations in working storage of the user’s program. This establishes a com-
munication link between the data base management system and the user’s program.

The following is a list of the system status locations supplied by the data manipulation language (DML) processor:

PROGRAM-NAME
Is an alphanumeric data item which is used to hold the name of the program being executed. This value is
used for checkpoint and data base recovery operations and is initialized before an OPEN statement is
executed.

ERROR-STATUS
Is a data item that contains a value which indicates the outcome of the last DML statement executed
by the program. It is moved to the user program location immediately before returning control to the
user’s program. The meaning of error status condition will be discussed in a separate section.

DBKEY
Is the data base key of the last record accessed by the run-unit. For example, when a successful FIND
statement has been completed, DBKEY contains the data base key of the record. In the case of a STORE
statement, DBKEY will contain the data base key just assigned by DMS/90 when the record was stored
in the data base.

RECORD-NAME

Is the data item that holds the name of the record which has been last accessed by the run-unit. Itis left-
justified and space-filled.

AREA-NAME
Is the data item that holds the left-justified, space-filled name of the area in which the last accessed
record is stored.

ERROR-SET
Contains the name of a set that was encountered during an operation which produced an error condition.

ERROR-RECORD
Contains the name of the record involved in an operation which caused an error condition.

8036 Rev. 1 SPERRY UNIVAC Series 90 A 7-2
UP-NUMBER PAGE REVISION PAGE
ERROR-AREA
Contains the name of the area involved in an operation which produced an error.
DIRECT-DBK
Is a data-item which should be initialized in the user program with the data base key desired before a

— record with a DIRECT location mode is stored in the data base. This location is initialized with —1.

Table 7—1 summarizes the update of system status information for each successful and unsuccessful execution of
a DML statement. A yes in Table 7—1 indicates that the appropriate value for data base key, area name, and record
name will be updated by DMS/90. A no means that the system leaves the previous contents of the data item un-
changed. A null data base key is a binary value of minus 1. The ERROR-STATUS location always has a value of
zero whenever a DML statement has been completed successfully.

Whenever an error occurs, the ERROR-STATUS location contains a code which identifies the type of DML statement,
followed by a numeric code {shown as XX) which identifies the type of error. A complete discussion of each error
status condition for each DML statement can be found .in Appendix D.

Whenever a statement has been executed successfully, the ERROR-SET, ERROR-RECORD and ERROR-AREA loca-
tions will contain spaces. However, whenever a statement is unsuccessful, the DBKEY, RECORD-NAME, and AREA-
NAME locations remain unchanged.

7.2. CONTROL STATEMENT SYSTEM STATUS

7.2.1. OPEN ALL Statement

The OPEN ALL statement indicates the user’s intention to access information within the data base for all areas
included in the subschema invoked by the user. If the open statement is successful, the ERROR-STATUS location is
set to zero, the DBKEY location is set to a null value (—1), the RECORD-NAME location is set to spaces, and the
AREA-NAME location contains the name of the area just opened. If the subschema includes more than one area,
the AREA-NAME location will contain the last area opened.

If the open statement is unsuccessful, the ERROR-STATUS location will contain the error code (09XX), where XX
indicates the type of error. The values of the DBKEY, RECORD-NAME, and AREA-NAME locations remain un-
changed. The name of the area is placed in the ERROR-AREA location and spaces appear in the ERROR-SET and

ERROR-RECORD locations. If the subschema includes more than one area, the location ERROR-AREA contains the
first area name.

7.2.2. CLOSE ALL Statement

The CLOSE ALL statement indicates the user’s intention to terminate processing of information in the areas in-
cluded in the subschema. If the close is successful, the ERROR-STATUS location is set to zero and the AREA-NAME
location will contain the name of the area just closed. If more than one area is included in the subschema, then
the AREA-NAME location will contain only the last area closed. However, if the close statement was unsuccessful,
the ERROR-STATUS location will contain the error code (01XX) indicating the type of error. The name of the area
in error will be placed in the ERROR-AREA location and spaces will be placed in the ERROR-SET and ERROR-

RECORD locations. If the subschema includes more than one area, the location ERROR-AREA contains the first
area name.

Table 7—1. Update of System Status Information
System
Status Successful Unsuccessful
Info
DML DML
Category Statement ERROR-STATUS | DBKEY | RECORD-NAME | AREA-NAME | ERROR-STATUS | ERROR-SET | ERROR-RECORD | ERROR-AREA
Control Open all 0000 Null Spaces Yes 09XX Spaces Spaces Yes
Close All 0000 Nult Spaces Yes 01XX Spaces Spaces Yes
1601*
It {true) 0000** No No No - - - -
If (false) 1601* No No No 16X X Yes Spaces Spaces
0000**
Retrieval Find/Obtain 0000 Yes Yes Yes 03XX Yes Yes Yes
Get 0000 No No No 05X X Spaces Yes Spaces
Move Cur-
rency Status No No No No No No No No
Modifi- Delete 0000 Null No No 02XX Yes Yes Yes
cation
Insert 0000 Yes Yes Yes 07XX Yes Yes Yes
Modify 0000 Yes Yes Yes 08XX Yes Yes Yes
Remove 0000 Yes Yes Yes 11XX Yes Yes Yes
Store 0000 Yes Yes Yes 12XX Yes Yes Yes

*When the set is not actually empty or the record is not actuatly a member of the set
**When the set is actually empty or the record is actually a member of a set

s 2
T
ém
: 3
o <
mo
A
[72]
“V
m
X
o s}
<
C
2
<
>
(@]
(7]
@
-
@
v
©
o
hH
>
(1]
m
P
m
<
o
[o]
z
hl
>
(4]
m
~J

A

PAGE REVISION

8036 Rev. 1 SPERRY UNIVAC Series 90

UP-NUMBER

PAGE

7.2.3. IF Statement

The IF statement is used to evaluate the membership status in a set or determine whether a set is empty (that is,
= does not contain any member record occurrences). If the specified set in format 1 of the IF statement (9.5) is an
empty set (either with or without the optional word NOT), or the record of format 2 is a member of the named set
(either with or without the optional word NOT), the location ERROR-STATUS is set to zero and the previous state
- of locations DBKEY, RECORD-NAME, and AREA-NAME is unchanged. If the specified set in format 1 of the IF
statement is not an empty set (either with or without the optional word NOT) or the record is not a member of the
named set (either with or without the optional word NOT) a value of 1601 is placed in the location ERROR-
STATUS, and the previous content of the locations DBKEY, RECORD-NAME, and AREA-NAME is unchanged.

In the execution of an IF statement, an error condition will occur if the current set-name or the current record of
run-unit is null. When an error condition exists, the IF statement will be evaluated as false and an appropriate error
code will be placed in the ERROR-STATUS location. The name of the set used in the IF statement will be placed in
the ERROR-SET location and spaces will be moved to both the ERROR-RECORD and ERROR-AREA locations.

7.3. RETRIEVAL STATEMENT SYSTEM STATUS

7.3.1. FIND/OBTAIN Statement

The successful FIND/OBTAIN statement causes DMS /90 to place a value of zero in the ERROR-STATUS location.
The item DBKEY, RECORD-NAME, and AREA-NAME locations are updated with appropriate values to identify the
record which has been selected. The selected record is considered to be the current record of the run-unit (or pro-
gram) until superseded by a subsequent FIND/OBTAIN or STORE statement.

An unsuccessful FIND/OBTAIN statement updates the ERROR-STATUS location to indicate the type of error which
has occurred. In any case, the current of run-unit status as indicated by the DBKEY, RECORD-NAME, and AREA-
NAME locations remain unchanged. Where appropriate, the ERROR-SET, ERROR-RECORD, and ERROR-AREA
locations contain names associated with the error. Only the statements which include a set-name cause an update
of the ERROR-SET location.

7.3.2. GET Statement

A successful GET statement causes a zero to be placed in the ERROR-STATUS location. Since this statement is
operable upon only the current record of run-unit, the location of the DBKEY, RECORD-NAME, and AREA-NAME
locations remain unchanged.

An unsuccessful GET statement causes the system to place an error code (05XX) in the ERROR-STATUS location to
define the error which occurred. Only the ERROR-RECORD location contains the name of the record involved in the
error condition.

7.3.3. MOVE CURRENCY STATUS Statement

The MOVE CURRENCY STATUS statement involves only movement of appropriate data base keys from the system
locations in the object subschema into the user’s working storage area. This operation is performed without change
to any of the system status locations.

UP.NUMBER:

8036 Rev. 1 L SPERRY UNIVAC Series 90

A

PAGE REVISION PAGE

7-5

7.4. MODIFICATION STATEMENT SYSTEM STATUS

7.4.1 DELETE Statement

A successful DELETE statement causes a zero to be placed in the ERROR-STATUS location. Since a deleted record
is no longer in the data base, the DBKEY location is set to a null value (—1). The locations of the RECORD-NAME
and AREA-NAME locations remain unchanged to identify the record which has been deleted.

If the DELETE statement is unsuccessful, the ERROR-STATUS location will be updated with an error code (02XX)
to indicate the type of error which has occurred. The locations of the ERROR-SET, ERROR-RECORD, and ERROR-
AREA locations are updated to give additional documentation of the error condition.

7.4.2. INSERT Statement
A successful INSERT statement causes a zero to be placed in the location of the ERROR-STATUS location.

An unsuccessful INSERT statement causes an error code (07XX) to be placed in the ERROR-STATUS iocation to in-
dicate the type of error which has occurred. The name of the set in which the record was to be inserted is placed in
the ERROR-SET location. The name of the record specified in the INSERT statement is placed in the ERROR-RE-
CORD location. The name of the area affected is placed in the ERROR-AREA location.

7.4.3. MODIFY Statement
A successful MODIFY statement causes a zero to be placed in the ERROR-STATUS location.
An unsuccessful MODIFY statement causes an error code (08XX) to be placed in the ERROR-STATUS location to

indicate the type of error. The contents of the ERROR-SET, ERROR-RECORD, and ERROR-AREA locations are up-
dated appropriately to further document the error.

7.4.4. REMOVE Statement

A successful REMOVE statement causes a zero to be placed in the ERROR-STATUS location.

An unsuccessful REMOVE statement causes an error code (11XX) to be placed in the ERROR-STATUS location to
indicate the type of error which has occurred. The contents of the ERROR-SET, ERROR-RECORD, and ERROR-
AREA locations are appropriately updated to further document the error.

7.4.5. STORE Statement

A successful STORE statement causes a zero to be placed in the ERROR-STATUS location. The new record in the
data base becomes the current record of the run-unit. The data base key assigned to the new record by the system
is placed in the DBKEY location. The name of the record is placed in the RECORD-NAME location, and the name of
the area in which the record is stored is placed in the AREA-NAME location.

An unsuccessful STORE statement causes an error code (12XX) to be placed in the ERROR-STATUS location to
indicate the error which has occurred. The locations of the ERROR-RECORD, ERROR-SET, and ERROR-AREA
locations are appropriately updated to further document the error.

e T e T T T T

8-3

PAGE

A

PAGE REVISION

8036 Rev. 1 l SPERRY UNIVAC Series 90

UP-NUMBER

. 8.6.2. Currency GET, INSERT, and REMOVE Statements

These statements always apply to the current record of run-unit. The GET and REMOVE statements do not
change any currency information. A successful INSERT statement makes the object record the current of all sets
in which it now participates.

8.6.3. Currency DELETE Statement

The DELETE statement always applies to the current record of run-unit. This means that a successful FIND state-
ment must have been executed for this record prior to the delete.

When a record is deleted, the current of run-unit is set to a null value of —1. No other currency information is
changed. Retrieving deleted records by using FIND format 2 or FIND NEXT/PRIOR record-name RECORD of set-
name SET (format 3) results in a value of 0317 being placed in ERROR-STATUS. Retrieving deleted records by
using other formats results in a value of 0326 being placed in ERROR-STATUS.

Whenever a successful DELETE statement has been executed, the records associated with the deleted record are still
available. This means that the next, owner, or prior record of the set occurrence of the deleted record is still avail-
able, as well as the next or prior of area.

8.6.4. Currency STORE Statement

When the STORE statement is successful, the new record will become the current record of the run-unit and its
system-assigned data base key will be stored in location DBKEY. The new record also becomes the current of its

. record type, current of area in which it has been stored, and current of all sets in which the record participates as
either owner or member. All sets in which the record participates as owner or automatic member are empty at the
time the record is stored in the data base. The establishment of the stored record as current of all empty sets in which
it participates as owner identifies the proper set occurrence for subsequent storage of records that participate as
automatic members of the sets. Extension of this principle leads to the requirement that the appropriate currency
must be established for all set occurrences in which the stored record participates as an automatic member. In
Figure 12—1, this means that the programmer must establish the appropriate ORDOR set occurrence before execu-
ting a STORE CUST-ORDER RECORD statement. This is accomplished by finding the CUSTOMER type record which
corresponds to the customer who has placed an order.

If a stored record is a manual member of a set, it is not necessary to establish this set occurrence prior to the STORE
statement. In this instance, the programmer must find the appropriate owner of a manual set followed by an INSERT
statement to properly establish the stored record as a member in the manual set. It is assumed that the record to be
inserted has previously been stored in the data base.

8036 Rev. 1 SPERRY UNIVAC Series 90

UP-NUMBER

A 8-4

PAGE REVISION

PAGE

8.7. SETCURRENCY FORRECORDS WITH OPTIONAL SET MEMBERSHIP

When a record is described as having automatic set membership, the record occurrence automatically becomes a
member of the set when it is stored, whereas manual set membership requires use of the INSERT statement to
establish set membership. In either case, if the record is an optional member of a set, it may or may not participate
as a member in that set. When any record is successfully retrieved, it will become the current record of all sets in
which it actually participates as either an owner or member. Figure 8—1 is a data structure diagram that includes
the LOT-INV record type which is an optional automatic member of the LOT-DET set and an optional manual mem-
ber of the LOT-OH set. If the PKG-SUM record has just been retrieved, the statement

FIND NEXT LOT-INV RECORD OF LOT-DET SET.

will select the appropriate record occurrence and make it the current record of the LOT-DET set. In addition, if the
record occurrence is a member in an occurrence of a LOT-OH set, then it will become the current record of that set
type as well. However, if it has not been previously inserted in a LOT-OH set, no change will be made to the existing
currency status of the LOT-OH set. If no change occurs in the currency status of the LOT-OH set, then a different,
previously accessed occurrence of a LOT-INV record will remain as the current record of LOT-OH.

Even though the most recently accessed LOT-INV record is current of LOT-INV record type and current of LOT-DET
set, any operations involving the LOT-OH set will refer to the last LOT-INV or MFG-LOT record which actually
participated as member or owner in the LOT-OH set. For this reason, failure to properly test for the existence of set
membership before performing operations involving optional sets will give unpredictable results. For example, if the
programmer wanted to find a LOT-INV record and then access the MFG-LOT owner record associated with it, the
statements

FIND NEXT LOT-INV RECORD OF LOT-DET SET.

FIND OWNER RECORD OF LOT-OH SET.

would give unpredictable results because the programmer failed to determine if the LOT-INV record was actually a
member of any occurrence of a LOT-OH set. The correct sequence of statements in this case would be:

FIND NEXT LOT-INV RECORD OF LOT-DET SET.

IF RECORD NOT MEMBER OF LOT-OH SET GO TO G290.
FIND OWNER RECORD OF LOT-OH SET.

The following statements summarize the action of the system and the programming required for optional and
manual set membership:

" If a record is an optional member of a given set, then the DML IF statement must be performed to determine
whether the record is actually a member of any occurrence of the set before any FIND/OBTAIN statements
involving the given set are performed. The preceding discussion is an illustration of this rule.

8036 Rev. 1

UP-NUMBER,
=

SPERRY UNIVAC Series 90

PAGE REVISION PAGE

10-3

Rules:

An OPEN statement for all areas included in the subschema invoked by the program must be executed
successfuily before any FIND/OBTAIN statements can be executed.

The FIND verb causes retrieval of a record occurrence based on the remainder of the FIND statement. A
successful FIND statement does not cause movement of the retrieved record into working storage of the
program.

The OBTAIN verb is identical in operation to the FIND verb except that the successfully retrieved record
occurrence is moved to working storage. The OBTAIN statement is a combination of the FIND and GET
statements.

In all cases, the error status conditions following attempted execution of an OBTAIN statement are the
same as the FIND statement.

The object record of the FIND/OBTAIN statement is specified by the record-selection expression defined by
formats 1 through 6.

All records names, set names, area names and identifiers specified must have been defined in the
subschema invoked by the program. The only exception is identifier in format 1.

A successfully executed FIND/OBTAIN statement results in the record occurrence selected becoming the
current record of the run-unit. The value of the data base key is placed in the DBKEY location. The name of
the area in which the record was stored is moved to the AREA-NAME location. The name of the record is
moved to the RECORD-NAME location, The selected record also becomes the current record of its area, of
its record-name, and of all sets in which it is defined as an owner or in which it currently participates as a
member.

Format 1 Rules:

7.

The identifier refers to a location within the program which contains a data base key. The identifier must
be described as a computational synchronized data item with a picture of S9(8).

The name of the identifier must conform to COBOL data item naming conventions.

The user is responsible for initialization of the identifier with a data base key before execution of the format
1 FIND/OBTAIN statement. Any record included in the subschema invoked by the program may be accessed
directly in this manner, regardless of the location mode specified in the subschema. if the data base key sup-
plied identifies a record which is not an occurrence of record-name, or if no record is identified by the data
base key supplied, an error condition will exist and the statement will not be executed.

Format 2 Rules:

10.

11.

This format retrieves the record occurrence that is the current record of the specified record-name, set-
name or area-name; or it selects the current record of run-unit. If the OBTAIN option is used, the contents
of the record will be moved to working storage of the program after the record has been retrieved.

If the current record of the type specified is not known or its currency indicator is null, an error condition
will exist. Refer to Appendix D.

It is possible to establish a currency status for a record occurrence and then at some later time, execute an
operation which would delete the record from the data base. Any attempt to select a record which has been
deleted since it became current in this run-unit results in the value 0317 being placed in the ERROR-STATUS
location before returning to the program.

8036 Rev. 1

UP-NUMBER

SPERRY UNIVAC Series 90 A

PAGE REVISION | PAGE

10-4

Format 3 Rules:

12.

13.

If record-name and set-name are specified, record-name must have been defined as a member of set-
name. If record-name and area-name are specified, the area-name in which the record is stored must be
used. Refer to Section 3 and Figure 3—1.

If a set-name is specified, the set occurrence from which the object record is to be selected is identified by
the current record of the specified set. If the current record of that set is not known, or its currency
indicator is null, an error condition will occur. Refer to Appendix D.

If an area-name is specified, the object record is selected from the named area.

If the NEXT or PRIOR phrase is used and an area-name is specified, and the current record of the named
area is not known or its currency indicator is null, an error condition will occur.

If the NEXT or PRIOR phrase is used with a set-name specified and a deleted record indicated, an error
condition occurs.

If the optional record-name phrase is used, only occurrences of record-name will be considered in
evaluating the statement.

If the OBTAIN option is used, the contents of the record will be moved to working storage of the program
after the record has been retrieved.

If the sets or areas involved include occurrences of record types not known to the run-unit, then only the
records specified in the invoked subschema will be considered in evaluating the statement.

L NEXT RECORD OF set-name SET means the subsequent record relative to the current record of the
named set in the logical order of the set regardless of the data base key sequence. If the set is empty
(that is, no member record occurrences participate in the set), or the current record is the last record
in the set, the statement will not be executed and the ERROR-STATUS location will contain the value
0307 to indicate the end of set upon return to the program.

L NEXT RECORD OF area-name AREA means the record with the next higher data base key relative to
the current record of the named area. If there is no record in the area named with a higher data base
key, the statement will not be executed and ERROR-STATUS location will contain the value 0307 to
indicate the end of area upon return to the program.

] PRIOR RECORD OF set-name SET means the previous record relative to the current record of the
named set in the logical order of the set, regardiess of data base key sequence. If the set is empty,
(that is, no member record occurrence participates in the set), or the current record is the first record
in the set, the statement will not be executed and the ERROR-STATUS location wili contain 0307 to
indicate the end of set upon return to the program.

L PRIOR RECORD OF area-name AREA means the record with the next lower data base key relative to
the current record of the named area. If there is no record in the area named with a lower data base
key, the statement will not be executed and the ERROR-STATUS location will contain 0307 to
indicate the end of area upon return to the program.

a FIRST RECORD OF area-name AREA is the record occurrence with the lowest data base key in the
named area. If there are no records in the named area, ERROR-STATUS location will contain the
value 0307 to indicate the end of area upon return to the program.

L FIRST RECORD OF set-name SET is the first member occurrence in terms of the logical order of the
set. The record selected is the same as would be selected if the current record of the set was the
owner record and the NEXT RECORD OF set-name SET statement was used. If the set occurrence is
empty (that is, no member record occurrences participate in the set), the ERROR-STATUS location
will contain the value 0307 upon return to the program.

8036 Rev. 1 I SPERRY UNIVAC Series 90 l A L 10-7
PAGE

UP-NUMBER PAGE REVISION

. [Format 3

Refer to Figure 12—1. Assume that the PRODUCT-AREA area is to be scanned to find every occurrence of the
PRODUCT tecord. The following statement selects the first PRODUCT record in the PRODUCT-AREA area:

604020 FIND FIRST PRODUCT RECORD OF PRODUCT-AREA AREA.

The PRODUCT record occurrence selected becomes the current record of the PRODUCT-AREA area. The Fol-
lowing statement retrieves the PRODUCT record occurrence with the next higher data base key.

604100 FIND NEXT PRODUCT RECORD OF PRODUCT-AREA AREA.

All occurrences of the PRODUCT record are selected by repetition of the above statement until an end-of-
area (0307) condition appears in the ERROR-STATUS location.

If the record-name option is not used, the statement
600135 FIND FIRST RECORD OF ORDER-AREA AREA.

selects one of the records (CUST-ORDER, ORDER-ITEM, or ORD-REMARK), shown in Figure 12—1, with the
lowest data base key. The statement

600120 FIND NEXT RECORD OF ORDER-AREA AREA.

selects the next record from among those of CUST-ORDER, ORDER-ITEM, or ORD-REMARK record occur-
rences with the next higher data base key. The user must examine the contents of location RECORD-NAME
. to determine the record which has been retrieved.

Other examples of format 3 statements are included in Figure 13—1 and discussed in 13.5.1.
n Format 4
Refer to Figure 12—1. Assume that an occurrence of a CUST-ORDER record has been retrieved. It is now
the current record of run-unit, current record of CUST-ORDER, current record of the ORDER-AREA area, and
the current record of the ORDOR, SPEC-REMARK, and ITEM sets. The following statement selects the CUS-
TOMER record occurrence which is the owner of the ORDOR set:
600105 FIND OWNER RECORD OF ORDOR SET.

] Format 5

Refer to Figure 12—1. The CUST-ORDER record is described with a location mode of CALC which uses the
data item named FO-NO-620 as the CALC key. The FO-NO-620 data item is initialized in working storage
by the statement

601000 MOVE FO-NO TO FO-NO-620. -

The following statement selects an occurrence of the CUST-ORDER record with a factory order number
(FO-NO) data-item which matches the value previously stored in location FO-NO-620 in working storage.

601900 FIND CUST-ORDER RECORD.

. Additional examples of format 5 usage are inciuded in Figures 13—1, 13—2, and 13—3 and discussed in
13.5.1,13.5.2, and 13.5.3.

8036 Rev. 1
UP-NUMBER

SPERRY UNIVAC Series 90 l A

PAGE REVISION

PAGE

10-8

Format 6

In Figure 12—1, the PROD-ORD set is ordered in ascending sequence, based on the value stored in the LOT-
NO-621 data item in each ORDER-ITEM record occurrence. Retrieval of an ORDER-ITEM record with a lot
number value equal to 1230427 is accomplished by the following statements:

601920 MOVE "1230427' TO LOT-NO-621.
601930 FIND ORDER-ITEM RECORD VIA CURRENT OF PROD-ORD SET USING
601931 LOT-NO-621.

The above statements assume that the user had previously established an occurrence of a PROD-ORD set.

10.3 GET STATEMENT

Function:

Transfers the contents of an object record occurrence into working storage of the user’s program.

Format:

GET record-name RECORD.

Rules:
1. Record-name must be the name of a record included in the subschema invoked by the program.
2. The GET statement only operates on the current record of run-unit. If record-name is not the same as the
name of the record which is the current of run-unit, an error condition will exist.
3. All data items included in the object record are moved to like-named locations in working storage. These
locations appear following the 01-level entry in working storage for record-name.
4. The GET statement must be executed before access can be made to data within the record.
5. The GET function can be obtained automatically following a successful FIND statement by replacing the
FIND verb with the OBTAIN verb in the FIND statement.
6. If no current record of the run-unit is known, an error condition will result and the GET statement will not
be executed.
Example:
CONTINUATION
SEQUENCE !
A 8 TEXT . -
NUMBER —
1 617 358 1112 20 30 40

601,900 | .. | |GET CUSTAMER RECTIRD- . . T R
bxol l IQ_L i L [&ﬂ_‘PAR&GADAULQ‘_T: R) & ..‘..-.'.WA - i i 1 H i H k. i j 1 1 i 1. i i

8036 Rev. 1
UP-NUMBER +

SPERRY UNIVAC Series 90 I A

PAGE REVISION PAGE

10-9

10.4 MOVE STATEMENT

Function:

Moves the data base keys which represent the currency status to specified locations within the user’s program.

Format:

MOVE CURRENCY STATUS FOR

Rules:

RUN-UNIT TO identifier
record-name RECORD TO identifier
area-name AREA TQ identifier
set-name SET TO identifier

1. Record-name, area-name, and set-name must be names included in the subschema invoked by the program.
The identifier refers to a location within the user’s program which contains a data base key. The identifier
must be described as a computational, synchronized data item with a picture of S9(8) and must conform to
COBOL conventions for naming data items.

2. If the RUN-UNIT phrase is specified, the data base key for the current record of run-unit is placed in the
identifier. The current record of the run-unit is not altered. The same result can be accomplished by moving
the contents of the DBKEY location to the identifier.

If a record-name, area-name, or set-name is specified, the data base key for the current record of record-
name, area-name, or set-name is placed in the identifier. The current record of record-name, area-name,

or set-name is not altered.

Examples:

The DMSSUBS subschema (Figure 12—1) is used in the following samples; statement number 610030 is
equivalent to statement number 610020.

SEQUENCE
NUMBER

FCONTWUA‘HCN‘ ’
A %E« TEXT e - 3
7i8 11

12 20 30 AL 50

61,0020

MOV.E. CURRENCY STATUS FOR RUN-UNIT TO _MYy-DBKEY.

0.1,0,0,30

MOV.E DBKEY. .T& MY-DBKEY.-. R .

6‘ ‘ AOAO\‘*!O

MOV.E STATUS FOR CuST-8ROER RECERD TE .SAvE-REC.

_MEVE STATUS FER ERDER-ARLA AREA TE SAVE-AREA...

MEVE STATUS FJdR dRDAR SET TE SAVE-SET..

> 1L,OQE O
0

The following Data Division entries are applicable to the preceding examples.

i

77 MY-DBKEY . CEMP SYNC PIC S9(8)..

AVE-REC . COMP SYNC PIC S9(&).
AVE-AREA CEMp SYNC PIC S9C8)..

6.1.00.90

©.1.01.00| 7.7.19
01,0110 7.7 19
0.1.0,1.20, {7.7. S

AVE-SET _C¥MpP SynC PIC S9C8Y

8036 Rev. 1 I SPERRY UNIVAC Series 90 l A I -3
PAGE

UP-NUMBER: PAGE REVISION

7. The DELETE SELECTIVE form of the statement has the same results as the DELETE ONLY statement, with
. the following exceptions:

L] Optional members are deleted only if they do not currently participate as members in other set
occurrences.

. All deleted records which are, themselves, the owners of any set occurrences are treated as if they
were the object of a DELETE SELECTIVE statement.

8. The DELETE ALL form of the statement deletes the object record, together with all of its member records,
regardless of whether they are mandatory or optional. As with the DELETE ONLY form of the statement,
the delete process continues down the hierarchy, with the difference that all deleted records, which are
themseives the owners of any set occurrences, are treated as if they were the object record of a DELETE
ALL statement.

9. Following successful execution of a DELETE statement, the current record of the run-unit becomes null, A
null value is indicated by a —1 in the DBKEY system status location. All other currency information
remains unchanged. Retrieving deleted records by using FIND format 2 or FIND NEXT/PRIOR record-name
RECORD of set-name SET (format 3) results in a value of 0317 being placed in ERROR-STATUS. Retrieving
deleted records by using other formats results in a value of 0326 being placed in ERROR-STATUS.

10. The subschema documentation indicates restriction on the use of the DELETE statement {Table 12—1). Re-
strictions are required when the subschema invoked by the program does not include all sets in which a record
is an owner or participates as a member.

11. When an error occurs, the ERROR-STATUS location contains a nonzero value which is explained in
Appendix D. In addition, the data base and working storage remain in the state existing prior to the

. attempted execution of the DELETE statement.

Example 1:

This example uses the DMSSUBS subschema in Figure 12—1. Assume that an occurrence of a CUST-ORDER
record is current of run-unit. Execution of the statement

602020 DELETE CUST-ORDER RECORD ALL.
causes the following operations to be performed:
] All occurrences of the ORD-REMARK record in the current SPEC-REMARK set occurrence are deleted.
= Each ORDER-ITEM record occurrence is removed from the related PROD-ORD set occurrence.
- All ORDER-{TEM record occurrences in the current ITEM set occurrence are deleted.

L The CUST-ORDER record is removed from the ORDOR set.

] The CUST-ORDER record is deleted.

A
PAGE REVISION

114
PAGE

8036 Rev. 1 SPERRY UNIVAC Series 90

UP-NUMBER

Example 2:

Refer to the data structure in Figure 8—1. Assume that an occurrence of a MFG-LOT record is current of run-
unit. Execution of the statement

609120 DELETE MFG-LOT RECORD ONLY.
causes the following operations to be performed:

] Every occurrence of the LOT-INV record which participates in the current LOT-OH set occurrence is
removed from the LOT-OH set.

N The MFG-LOT record is removed from the current occurrence of the MFG-LOT-DET set (provided the
current MFG-LOT is a member in that set).

L The MFG-LOT record is deleted.

The effect of these operations is to delete the owner of the LOT-OH set (MFG-LOT record) without also deleting
the LOT-INV member records.

Example 3:

Refer to Figure 8—1 and the preceeding example 2. If the statement

610090 DELETE MFG-LOT RECORD SELECTIVE.
is executed in place of the DELETE ONLY statement in example 2, the same operations will occur, except that
each LOT-INV record occurrence will be examined to determine whether it is a member of a LOT-DET set .

occurrence. If the LOT-INV record is not a member in a LOT-DET set, then the LOT-INV record will be deleted.

8036 Rev. 1

UP.NUMBER*

PAGE REVISION

l SPERRY UNIVAC Series 90 I A | e

11.3. INSERT STATEMENT

Function:

Makes the object record a member of an occurrence of a specified set-name.

Format:

INSERT record-name RECORD INTO set-name SET.

Rules:

1.

Record-name must be defined as an optional automatic, optional manual, or mandatory manual member of
set-name included in the subschema invoked by the program.

2. All areas included in the subschema invoked by the program must be opened with a usage-mode of
exclusive update before the INSERT statement can be executed.

3. The object record occurrence of the INSERT statement is the current record of run-unit.

4. The object record is inserted into the current occurrence of set-name in accordance with the ordering
criteria defined in the subschema for that set. The record then becomes the current record of set-name. No
other currency information is changed.

5. The user must establish the desired occurrence of set-name before the INSERT statement is executed. The
set occurrence is defined by the current record of set-name.

6. Successful execution of an INSERT statement is indicated by a value of zero in the ERROR-STATUS
location. A nonzero value in the ERROR-STATUS location indicates an error condition, which is discussed
in Appendix D. When an error occurs, the data base and working storage remain in the state existing prior
to the attempted execution of the INSERT statement.

Example:

This example uses the DMSSUBS subschema shown in Figure 12—1. Assume that the user has established a
current occurrence of a CUST-ORDER record and wants to establish an occurrence of an ORD-REMARK
record.

The first operation is to initialize the data items defined in the ORD-REMARK record in working storage. The
statement

601920 STORE ORD-REMARK RECORD.

moves the record from working storage to the data base. The ORD-REMARK record is now the current of run-
unit. The statement

601960 INSERT ORD-REMARK RECORD INTO SPEC-REMARK SET.

establishes the ORD-REMARK record just stored as a member of the currentoccurrence of the SPEC-REMARK
set (established by CUST-ORDER record) and makes the ORD-REMARK record the current record of SPEC-
REMARK set.

116
UP.NUMBER PAGE REVISION | PAGE

8036 Rev. 1 SPERRY UNIVAC Series 90 J A

11.4. MODIFY STATEMENT

Function:

The MODIFY statement:

= replaces the values of all data items of the object record occurrence in the data base with values from
like-named locations in working storage; and

u alters the intraset position, so as tp maintain the data base in accordance with the set ordering
criteria specified in the subschema invoked by the program.

Format:
MODIFY record-name RECORD.
Rules:

1. Record-name must be defined in the subschema invoked by the program. In addition, all other record-
names and set-names affected by the MODIFY statement must also be included in the subschema.

2. The areas included in the subschema invoked by the program must be open for exclusive update before a
MODIFY statement can be executed.

3. The object record occurrence of the MODIFY statement is the current record of the run-unit. If the current
record of run-unit is not an occurrence of the named record type, an error condition will result.

4. The object record in the data base is modified with like-named data item values from working storage.

If the current record of record-name is not the same record occurrence as the object of a previous STORE,
OBTAIN, or GET statement for this record-name, an error condition will result. A successful MODIFY state-
ment occurs only when an occurrence of the named record type is the current record of record-name, is the
current of run-unit, and has been the object of a previous successful STORE, OBTAIN, or GET statement. The
STORE, OBTAIN, or GET statements provide the required initialization of all data items in working storage
before any of the data items are modified.

Other DML statements which affect the current of run-unit status may be executed between the STORE, OB-
TAIN, or GET statement and the MODIFY statement. The record occurrence to be modified may be re-
established as current of run-unit by execution of the following format 2 FIND statement:

FIND CURRENT record-name RECORD.

An error condition results if modification of an ASCENDING/DESCENDING control data item is attempted for
a set-name which is not included in the subschema invoked by the program. Restrictions in the use of the
MODIFY statement are part of the subschema documentation (Table 12—1).

5. if any of the modified data items are defined as ASCENDING /DESCENDING control data items in the object
record for any set occurrence in which the object is currently a member, then its modification causes the
* intraset occurrence position of the object record to be examined and, if necessary, the object record is
removed and reinserted in the set occurrence to maintain the set order specified in the subschema. The
NEXT and PRIOR pointers of the set occurrences involved are updated to reflect the new intraset
occurrence position of the object record.

8036 Rev. 1

UP-NUMBER,

| SPERRY UNIVAC Series 90

| PAGE REVISION l PAGE

11-7

10.

If a modified data item is defined as a CALC key for the object record, then the execution of the MODIFY
statement will enable the record to be found on the basis of the new value for the CALC key. However, the
data base key of the object record remains unchanged.

In order to change the set occurrence in which a record participates, the following operations must be
performed:

u The REMOVE statement must be performed to remove the record from the current set occurrence.

= Appropriate DML statements must be performed to select the set occurrence in which the record is to
be inserted.

n The INSERT statement must be performed.

If the modification of the value of any data item in the object record would result in the violation of a
DUPLICATES NOT ALLOWED clause defined for any of the sets or records involved, then the MODIFY
statement is not executed and an error condition results.

All data items involved must be updated in working storage with the required values prior to execution of
the MODIFY statement.

Upon successful completion of 8 MODIFY statement, the ERROR-STATUS location contains a zero value.
The DBKEY, RECORD-NAME, and AREA-NAME locations remain unchanged. A nonzero value for the ERROR-
STATUS location indicates an error condition. When an error occurs, the data base and working storage remain
in the state existing prior to the attempted execution of the MODIFY statement.

Example:

This example uses the DMSSUBS subschema documented in Figures 12—1 and 12—2 and Table 12—1. As-
sume that the customer name is incorrect within an existing CUSTOMER record in the data base. The problem
is to correct the value of the CUST-NAME-S-611 data item.

The first step is to retrieve the desired CUSTOMER record and move the contents into working storage.
This is done by the statements

601020 MOVE CUST-NO TO CUST-NO-611.
601030 OBTAIN CUSTOMER RECORD.
601040 PERFORM DMS-STATUS.

Statement number 601040 performs an error diagnostic section, which checks for error conditions and
returns to the following statement if the ERROR-STATUS location contains a zero value.

The next step is to move the correct customer name (CUST-NAME}) into the proper location {Figure 12—2)
in the CUSTOMER record in working storage. This is accomplished by the statement

601050 MOVE CUST-NAME TO CUST-NAME-S-611.

The following MODIFY statement returns all data items in the CUSTOMER record in working storage to the
data base.

601060 MODIFY CUSTOMER RECORD.

8036 Rev. 1 SPERRY UNIVAC Series 90 l A 11-8

UP-NUMBER PAGE REVISION

PAGE

11.5. REMOVE STATEMENT

Function:

Cancels the membership of the object record in the occurrence of the specified s=t-name in which it
currently participates as a member, provided that the object record is defined as an optional member of the
named set.

Format:

REMOVE record-name RECORD FROM set-name SET.
Rules:

1. Record-name must be defined as an optional member of set-name in the subschema invoked by the
program.

— 2, The object record of the REMOVE statement is the current record of run-unit.

3. The object record must currently participate as a member in an occurrence of the set named. Successful
execution of the REMOVE statement cancels that participation. The removed record is then not accessible
through this set occurrence, but continues to be accessible through any other sets in which it participates
as a member. This record may also be accessible, provided it has been defined as a CALC record. It is
always accessible either by means of a complete scan of the area in which it participates or directly,
through its data base key, if that is known.

- 4, No change occurs to any currency information.

5. All areas included in the subschema invoked by the program must be opened with a usage-mode of
exclusive update before the REMOVE statement can be executed.

6. When an error condition occurs, the data base and working storage remain in the state existing prior to the
attempted REMOVE statement execution. The ERROR-STATUS, ERROR-SET, ERROR-RECORD, and
ERROR-AREA locations are updated to document the error condition. Nonzero values of the ERROR-
STATUS location are discussed in Appendix D.

7. The ERROR-STATUS location is set to zero to indicate successful completion of a REMOVE statement.
Examples:

Refer to Figure 12—1. Assume that an occurrence of an ORDER-ITEM record is current of run-unit and that
it is @a member in an occurrence of both the ITEM and PROD-0ORD sets. Removal of the record from the current
occurrence of the PROD-ORD set is accomplished by the statement

601920 REMOVE ORDER-ITEM RECORD FROM PROD-ORD SET.

The ORDER-ITEM record remains as current of run-unit, current of ORDER-AREA area, current of ITEM
set, and current of PROD-ORD set.

8036 Rev. 1

UPNUMBER'

PAGE REVISION

SPERRY UNIVAC Series 90 I A | 11-9
PAGE

. 11.6. STORE STATEMENT

Function:

The STORE statement:
L acquires space and a data base key for a new record occurrence in the data base;

L causes the values of the appropriate data items in working storage to be included in the occurrence
of the object record in the data base;

u inserts the object record into all sets of the particular subschema for which it is defined as an automatic
member in the subschema invoked by the program;

L establishes a new set occurrence for each set for which the object record is defined as owner; and
" establishes the object record as:

— the current record of the run-unit;

— the current record of the area in which it is stored;

— the current record of record-name; and

— the current record of set for all set-names in which it is specified as an owner or automatic
member.

Format:

STORE record-name RECORD.

Rules:

Record-name must be included in the subschema invoked by the program.

All areas included in the subschema must be opened with a usage-mode of exclusive update before the
STORE statement is executed.

All sets in which the named record is defined as owner or member must be included in the subschema before
a STORE statement for the named record can be executed. If the subschema does not contain ali sets involved,
the STORE statement wiit notbe executed; the DMSSUBS subschema includes the PRODUCT and CUSTOMER
type records which are examples of this constraint (Figures 12—1 and 12—2 and Table 12—1).

Before execution of the STORE statement, the user must establish the required set occurrence for all sets
in which the stored record will participate as an automatic member. The set occurrence is defined by the
current record of set-name.

8036 Rev. 1
UP-.NUMBER

SPERRY UNIVAC Series 90 A

PAGE REVISION | PAGE

11-10

10.

11.

12.

Before execution of the STORE statement, the user must initialize all data items included in the object record
defined in working storage. This includes all control data items, such as CALC and ASCENDING/DESCENDING
keys.

The object record occurrence will be moved from working storage to the data base. The data base key and
space for the record will be assigned according to the location mode specified for the record type.

The object record occurrence is inserted into the current set occurrence for each set in which the record is
defined as an automatic member. The ordering rules for the set govern the insertion point of the object
record in all of the relevant set occurrences.

The object record is established as the owner of a set occurrence for each set in which it has been defined
as an owner. These set occurrences are empty at this time, that is, they have no member records.

The successfully stored record occurrence becomes the current record of the run-unit; its area name is
placed into the AREA-NAME location, its record name is placed into the RECORD-NAME location, and its
assigned data base key is placed in DBKEY location.

The object record also becomes the current record of the area in which it is placed, the current record of its
record-name, and the current record of all set-names in which it is defined as an owner or automatic
member.

The location mode defined for the named record type in the subschema invoked by the program affects the
physical placement of the object record occurrence in the data base. (Further discussion of location mode is
included in 3.5.)

. in the case of DIRECT location mode, the contents of the location DIRECT-DBK (3.5.1) must be
initialized with a data base key or a null data base key value of —1. The DIRECT-DBK data item is pro-
vided by the DML processor in working storage as a computational synchronized data item with a picture
of S9(8) and the initial value of —1. If the DIRECT-DBK data item contains a valid data base key, the
system will assign this data base key if it is available to the stored record occurrence. If the specified
data base key is not available, the next available data base key will be selected, subject to the limits
of the area in which the record is to be stored.

If the DIRECT-DBK data item contains a value of —1, the first data base key available in the area in
which the record is to be stored will be selected.

In any case, the data base key of the stored record occurrence is placed in the DBKEY location.

L In the case of CALC location mode, a data base key is developed within the upper and lower page
limit of the area in which the record is to be stored.

. In the case of VIA set-name location mode, the user must establish a current occurrence of set-name
by retrieval of the owner record occurrence, regardless of whether the record being stored is an
automatic or manual member of that set. If it is an automatic member of the set, it will be logically
inserted into the selected set occurrence. If it is a manual member, it will not be inserted into the
selected set occurrence. In all cases, however, the record being stored is placed as close as possible
to the owner record of the specified set.

If a record to be stored would violate a DUPLICATES NOT ALLOWED clause defined for any of the sets
involved, an error condition will occur.

UP-NUMBER,

8036 Rev. 1 I SPERRY UNIVAC Series 90

PAGE REVISION PAGE

121

12. Subschema Documentation

12.1. GENERAL

The purpose of a subschema is to provide a definition of only those data items, records, areas and sets which are of
interest to one or more application programs. A subschema, by implication, removes all other data items, records,
sets and areas in the data base from the view of the programmer and provides a measure of data privacy.

In order to make effective use of the data manipulation language (DML) statements, a thorough understanding of the
characteristics of all records and sets is essential. Once this is accomplished, both analyst and programmer can
develop the strategy for access of desired information in the data base. Subschema documentation consists of the
following:

= The names of alf records, sets, and areas

» Names and attributes of all data items within each record
= Location mode for each record

L] Set characteristics

] Restrictions on use of DML statements

These are contained in three separate parts: the data structure diagram, record data description, and DML
constraints.

12.2. DATA STRUCTURE DIAGRAM

The data structure diagram is a graphical means of showing the set relationships which exist among record types
included in a subschema. Records are represented by a rectangular box containing the general characteristics of the
record. Records are discussed in Section 3 and illustrated in Figure 3—1. Sets are represented by arrows which
connect the rectangular boxes. The arrow points from the owner record type of the set to the member record type.
Sets are discussed in Section 4 and illustrated in Figure 4—4.

Figure 12—1 is a simple data structure diagram of a subschema named DMSSUBS consisting of five record types and
four sets. It is a typical structure for a manufacturing operation involving customers who place orders for items in
inventory. In this illustration, the order items are related both to a particular order for a given customer and to the
product inventory. Appendix C shows a real application of this subschema except that the location mode of ORD-
REMARK is DIRECT instead of VIA. This is due to the fact that the sample program is intended primarily to demon-
strate all three types of location modes. However, in the user’s environment, the location mode of ORD-REMARK
must be VIA mode to achieve high access performance.

The following detailed discussion of the DMSSUBS subschema in Figure 12—1 demonstrates the usefulness of data
structure diagrams. Reference to Figures 3—1 and 4—4 may be required by the reader to understand abbreviations
and representations in Figure 12—1.

A

PAGE REVISION

12-2

8036 Rev. 1 SPERRY UNIVAC Series 90

UP-NUMBER

P{\GE

{customer number) as the CALC control data item. This record, as well as others in this subschema, are stored within
the area named CUSTOMER-AREA. The CUSTOMER record is shown as the owner of the ORDOR set which con-
tains CUST-ORDER member records. For a given customer, then, there is one occurrence of a CUST-ORDER record
for every order the customer has placed. The set is maintained in ascending sequence based on the value of FO-
NO-620 (factory order number), and no duplicate FO-NQ-620 values are allowed. Each CUST-ORDER record is
the owner of a SPEC-REMARK (special remarks) set containing ORD-REMARK (order remarks) records. The order
of the SPEC-REMARK set is LAST, which means the first record stored in the SPEC-REMARK set is the first.
record encountered in the next direction of the set. This first in, first out (FIFQO) sequence causes remark record to
be retrieved in the same order as they were written and entered.

The CUSTOMER record which is shown as having a location mode of CALC, uses a data item named CUST-NO-611 .

The ORD-REMARK record has a location mode of VIA SPEC-REMARKS set. This means that ORD-REMARK record
occurrences are physically stored as close as possible to the CUST-ORDER records to which they belong. Usually the
ORD-REMARK records are on the same page, track, or cylinder in which the CUST-ORDER owner record is stored.
The ORDER-ITEM record is a member of the ITEM set, which also is located as close as possible to the CUST-ORDER
owner record. This is shown by the VIA ITEM location mode. The CUST-ORDER record, thus, is shown as a member
in the ORDOR set and an owner of the SPEC-REMARK and ITEM sets. Note that, when an occurrence of a CUST-
ORDER record is selected by the system, all occurrences of ORD-REMARK and ITEM records usually are found on
the same page and may be accessed in main storage without additional physical access to the data base. This was
done to improve operational performance of the system since greatest access to ORDER-ITEM and ORD-REMARK
records is through the SPEC-REMARK and ITEM sets associated with a CUST-ORDER record.

The PRODUCT record has a location mode of CALC based on the value of the data item PROD-NO-631 (product
number). It is the owner record of the set named PROD-ORD which contains ORDER-ITEM member records. The
PROD-ORD set thus contains an occurrence of an ORDER-ITEM record for every order which contains an item
corresponding to the given product identified by the PRODUCT record. Thus, the ORDER-ITEM record, being a
member in two different sets, aliows selection of all orders placed for a given product by first accessing the PROD-
UCT record and then selecting every ORDER-ITEM record in the PROD-ORD set. The product items appearing in
each order are selected by first accessing the CUST-ORDER record and then selecting each ORDER-ITEM record in
the ITEM set. The sample program in Appendix C illustrates the two accessing paths.

The data structure diagram shows the basic characteristics of records and sets included in the subschema. The set
relationships and location mode of each record show the paths which may be used to access record occurrences in
the data base.

The strategy of using this structure diagram is discussed in Section 13.

12.3. RECORD DATA DESCRIPTION

When a subschema is invoked in a user program, the DML processor automatically inserts the data items contained
in each record type of the subschema invoked in working storage of the user's COBOL program.

The order {or position) of each data item within a record is established by the data base administration staff when
the record is described in the data base. All of the data items in a record that are not described with VALUE clauses
must be initialized by using the COBOL MOVE statement prior to issuing a STORE statement. Whenever access to
one or more data items within an existing record occurrence is desired, the DML OBTAIN or GET statement will
move all data items from the system buffers into the defined record storage area in working storage.

The name of each data item is established at the time the record is described in the data base and cannot be

changed by the COBOL programmer. A given data item containing the same information may appear in more

than one record type. For example, the data item PROD-NO-631 (product number) in Figure 12—1 is the CALC

control data itern contained in the PRODUCT record. The same product number value is also stored in each

ORDER-ITEM record occurrence appearing in the PROD-ORD set for a given PRODUCT record. The reason for ’
this data redundancy is to obtain increased performance of the system. Increased performance is achieved by not

requiring an additional access to the PRODUCT record (to obtain product number) whenever a CUST-ORDER

record is accessed along with its nearby ORDER-ITEM and ORD-REMARK record occurrences. In this way, the

required product number is immediately available along with the other data items which make the ORDER-ITEM

records. The trade-off between disc space and time was decied in favor of time.

SUBSCHEMA NAME
DMSSUBS
SCHEMA NAME DMSSCHM
CUSTOMER CUST-ORDER ORD-REMARK
622 VIA
611 CALC ORDOR NPO MA 620 CALC SPEC-REMARK NP OM
ASC FO-NO-620 DN LAST
CUST-NO-611 DN FO-NO-620 DN SPEC-REMARK
CUSTOMER-AREA ORDER-AREA ORDER-AREA
<
s
o
o
2
s (&
wiliy
gl =

Y

PRODUCT ORDER-ITEM
631 CALC PROD-ORD NPO OA 621 VIA
PROD-NO-631 ASC LOT-NO-621 DN ITEM
PRODUCT-AREA ORDER.AREA

Figure 12—1. Data Structure Diagram

L HIEWNNN-AN
L "A8Y 9208

|

06 S8!48S JVAINN AHY3dS

NOISIAZN 39vd
\4

Fovd ‘

£—¢l

8036 Rev. 1 SPERRY UNIVAC Series 90

12-4
UP-NUMBER PAGE REVISION | PAGE

All data items in the example data base are made unique by appending a hyphen followed by the numeric record
identification to each data name. The product number which appears in both PRODUCT and ORDER-ITEM records
is made unique by naming it PROD-NO-631 in the PRODUCT record and PROD-NO-621 in the ORDER-ITEM record.

Figure 12—2 includes the record data description for the DMSSUBS subschema. The 01 level entry is the name of
the record and corresponds to the top line of each rectangular record representation shown in Figure 12—1. This
entry is preceded by a note comment which also contains the name of the record and the record identification num-
ber. The hyphen followed by the corresponding record identification number is appended to the name of each data
item following the 01 level entry.

12.4. DATA MANIPULATION LANGUAGE CONSTRAINTS

The areas, records, and sets which are included in a given subschema represent only the records and sets of interest
to a given application. By implication, all other areas, sets, and records are removed from view. Since the subschema
is a part of the total schema of the data base, set relationships may exist between records which are not included in
the subschema and records which are included. Whenever this condition occurs, certain restrictions must be placed
on the use of DML statements which modify the data base.

L] The STORE statement is not executed for a record that participates either as a member or as the owner of a set
which has not been specified as part of the subschema.

= The DELETE statement is not executed for any record that is an owner or participates as a member in any set
which has not been specified as part of the subschema.

This rule applies to the record named in the DELETE statement, as well as any other records affected by a
DELETE ALL or DELETE SELECTIVE statement.

L The MODIFY statement is not executed whenever modification of a data item value requires a logical
repositioning of the record occurrence in a set which has not been defined as part of the subschema.

The subschema DML constraints also contain characteristics of records which cannot be conveniently shown on the
data structure diagram. The constraint tabulation should show the following information for each record type.

Record-name

L STORE constraints
L] DELETE constraints
n MODIFY constraints

STORE constraints should specify whether or not a record can be stored by the user. If arecord canbe stored and itis
an automatic member in one or more sets, the names of the owner record types which must be selected prior to the
store of the subject record will be listed.

The duplicate control information for all sets in which the subject record participates as a member is shown inthe set
representation. However, a CALC record may be defined to notallow or to allow records with duplicate values for the
CALC control data item. Duplicate control information for CALC records are included. If a record type is an owner of a
singular set, then only one occurrence of the owner and set exists in the data base.

DELETE constraints arise from data structure and other data relationships which are not included in a given sub-
schema but are related to records included in the subschema. In some cases a record cannot be deleted under any
circumstances. In other cases a record may be deleted under one or more of the options provided by the DELETE
statement. In addition, any other special precautions or procedures which are involved in the delete process are
listed.

st

0l

01

Ccl

CUSTOMER.,

05 CUST-NO-611

05 CUST-NAME-S-611
05 DIV-NAME-S-611
0S5 STRT-ADDR-S-611
05 CITY-ADDR-5-611
05 AREA-CD-611

05 COUNTRY-CD-611
05 AR-STMT-CD-611
05 INV-DIST-CD-611
05 LOCK-BOX-CD-611
05 NORM-PAY-T-611
05 SLS-CLAS-CD-611
05 CR-CLASS-611

05 SPLC-611

05 SLS-TAX-CD-611
05 TAX-~CERT-NO-611
05 DATE-TAX-EXP-611
05 PROD-CERT-611
05 QLTY-RPT-CD-611
05 FILLER-611

ORD-REMARK .
03 ORD-REM-CD-622.

CUSTOMER RECORD

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

ORD-REMARK RECORD

io 611

X(11),
X(35).
x(3%).
X(35).
x(35).
X.
XXX,
X,

X.

X.

XX.

X.

X.
X(6).
X.
x(1l2).
x(6).
X.

X.
x(15).

ID 622

PIC X.

PIC X.

PIC X(75).
PIC XXX.

05 REMARK-CD-622
05 REMARK-SEQ-622
05 REMARK-622

05 FILLER-622
PRODUCT.

05 PROD-NO-631

05 GRADE-631

05 COMPANY-CD-631
05 PROD-DES-INT-631
05 PROD-DES-EXT-631
05 SLS-BRKD-CD-631
05 ALT-SBC-631

05 INTER-DIV-PR-631
05 PRICE-PKG-1D-631
05 PRICE-YR-631

05 PRICE-CAT-631

05 BASE-PRICE-631
05 PROPERTY-1-631
US PROPERTY-Z-631
05 PROPERTY-3-631
05 PROPERTY-4-631
05 IND-MGR-631

05 FRT-CATEGORY-631

[
05

SCHED-GRP-631
FILLER-631

PRODUCT RECORD

PIC
PIC
PIC
PIC
PIC
PIC
PIC
COMP-3 PIC
PIC
PicC
PIC
coMpP-3 PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

ID 631

x(12).
X.

X.
x(15).
x(30).
xCu).
X)),
9v9999.
X.

XX.

XX,
9v9999.
X(5).
x(5).
x(5).
X(5).
XX,
XXX,
XX.
x(7).

X

01

01

CUST-ORDER.
05 FO-NO-620

05 CUST-PO-NO-620
05 LOC-NO-620

05 ORD-STAT-620

05 DATE-STAT-CHG-620
05 DEPT-NO-620

05 ACCT-NO-620

05 BILL-CD-620

05 GOVT-REGN-620

05 GOVT-PRTY-620

05 PAY-TERM-620

05 FOB-TERM-620

05 HOW-SHIP-620

05 TYPE-ORD-620

05 w/ TE-SHIP-620

05 DATE-kEQ-620

05 DATE-PROM-620

05 ROUTING-620

05 MILES-OW-620

G5 TRANS-TIME-620
05 SHIP-MODE-620

05 SLSM-NO-620

05 TRADE-CD-620

05 INVOICE-DIST-620
05 INSTAT-NO-620

C5 SHIPSTAT-NO-620
05 DATE-DELIVER-620
05 DATE-PROCESS-620
05 TIME-PROCESS-620
05 DATE-ENTERED-620
05 DATE-TU-REL-620
05 DATE-CR-APP-620
05 TIME-CR-APP-620
05 REASON-CR-HELD-620
05 UNITS-CD-620

05 SLS-TAX-NO-620

05 SLS-TAX-CD-620
05 CLERK-CD-620
05 FILLER
: ORDER-ITEM
ORDER-1TEM,

05 PROD-NO-621

05 GRADE-621

05 PKG-CD-621

05 LOT-NO-621

05 SLS5-BRKD-CD-621

05 QTY-0RD-621 COMP-3
05 QTY-SHIP-621 COMP-3
05 NO-I1TEMS-621 COMP-3
05 PRICE-UNIT-621 COMP-3
05 CUST-MTL-CD-621

05 RES-CD-621

05 REASON-LATE-621

C5 FILLER-621

Figure 12—2. Record Data Description for DMSSUBS Subschema

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PlC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PicC
Fic
PIC
PIC
PIC
PIC
PIC
PIC
PIC

RECORD *

PIC
PIC
PIC
P1C
PIC
PIC
P1C
PIC
PIC
PIC
PiC
PI1C
PIC

CUST-ORDER RECORD #3#

x(8).
x(18).
XX.

X.
x(6).
x(6).
XXX,
X.
XX,
X.
XX.
X.
X.
X.
X(6).
x(6).
X(6).
x(39).
xC4).
XX,

X.
XXX,
X(6).
X.
x(C4).
xCb).
x(6).
X(6).
Xy,
x(6).
x(6).
X(6).
XC4).
X.
XXX,
x(122.
X.

X

xill);

x(12).
X.

XX.
x(7).
X(4U).
$9(7).
$9C7).
S9ChU).

5v5999.

X(14).
X.

XX,
XC11).

ID 620

1D 621

HBaWAN-dN
L "A9Y 9€08

a

|

06 AL JVAINN AHYHIAdS

NOISIA3IY 39vd

Iovd |

S—2Ci

8036 Rev. 1 SPERRY UNIVAC Series 90

UP-NUMBER

A 12-6
PAGE REVISION | PAGE

MODIFY constraints arise from the fact that one or more data items in a given record may be a control data item for a
set which is not included in the given subschema. If a data item is an ascending key control data item, modification
would adversely affect the logical order of the set in the data base.

Table 12—1 illustrates the DML constraints for the DMSSUBS subschema. Here, the CUSTOMER and PRODUCT
records are associated with other sets in the schema DMSSCHM of the data base but not included in the
DMSSUBS subschema. For this reason the STORE and DELETE DML statements are not allowed. Whenever
either record type is retrieved, only one record occurrence wiil be found for a given CUST-NO-611 or PROD-NO-
631 CALC control data item. All data items within each record type may be modified except for the CALC control
data items.

The CUST-ORDER record can be stored by a program which uses the DMSSUBS subschema. This record also has a
CALC location mode; duplicate records with the same factory order number (CALC control data item FO-NO-620)
are not allowed. Remarks indicate that the appropriate CUSTOMER record (which is the owner of the ORDOR set)
must be retrieved prior to a store of a CUST-ORDER member record.

The ORDER-ITEM record can be stored successfully, provided that the user has first retrieved the appropriate CUST-
ORDER and PRODUCT record occurrences. ORDER-ITEM owner record occurrences also may be deleted and modi-

fied.

The ORD-REMARK record may be stored, provided that the appropriate CUST-ORDER owner record is first retrieved.

Table 12—1. DMSSUBS Subschema DML Constraints

CALC .
Record Name Store Duplicates Delete Modify Remarks
CUSTOMER Not No Not All Except
Allowed Aliowed CUST-NO-611
PRODUCT Not No Not All Except
Allowed Allowed PROD-NO-631
CUST-ORDER Alfowed No Allowed Allowed Store requires find of
CUSTOMER.
ORDER-ITEM Altowed - Allowed Allowed Store requires find of
CUST-ORDER and PRODUCT.
ORD-REMARK Altowed - Allowed Allowed Store requires find of
CUST-ORDER.

PAGE REVISION

8036 Rev. 1 l SPERRY UNIVAC Series 90 l A \
PAGE

UP-NUMBER ’

13. Programming Strategy

13.1. GENERAL

Programming strategy is a plan whereby the subschema documentation, currency status, and the data manipulation
language (DML} statements are used to access data in the data base as required by an application program.inmany
cases, required data may be accessed from several paths. One path or approach may be more efficientthan another
in terms of processing efficiency. Good strategy involves the proper use of the structure paths provided by sets and
access entries (e.g., CALC) in such a way as to reduce the total number of record occurrence accesses to a minimum.

This section discusses various approaches to the solution of data access requirements through the use of example
problems based on Figures 12—1 and 12—2 and Table 12—1.

. 13.2. ENTRY INTO THE DATA BASE

Knowledge of ali possible points of entry into the data base is the first step in developing an access strategy for the
data to be retrieved. The choice of entry point depends upon judgments involving the problem to be solved,
processing efficiency, and available input information.

13.2.1. CALC Entry

Entry into the data base can be made through any CALC record, provided the CALC control data item is known. In
Figure 12—1, the CUSTOMER, CUST-ORDER, and PRODUCT records can be accessed directly if the values of
CUST-NO-611, FO-NO-620, or PROD-NO-631 are known beforehand. Once accessed successfully, any set
associated with the record provides a path leading to other records in the data base. For example, if a PRODUCT
record was successfully accessed, the PROD-ORD set would provide a means of accessing the ORDER-ITEM
record for all orders associated with the PRODUCT record.

13.2.2. Direct Entry

Direct access of any record occurrence in the data base is possible provided that its data base key is known
beforehand. A data base key for a given record may be saved when the record was current of run-unit by executing
the statement:

MOVE DBKEY TO MY-DBKEY

The data base key in the item named MY-DBKEY can be used at any later time to directly retrieve the record iden-

. tified by the contents of the MY-DBKEY item. Since the data base key assigned to a record remains unchanged for
the entire time that the record is present in the data base, the value of the MY-DBKEY record may be outputfrom the
run-unit for reentry at some later time.

8036 Rev. 1 SPERRY UNIVAC Series 90 13-2

UP-NUMBER , PAGE REVISION ' PAGE -

A more common use of this type of data base entry is in situations where the programmer has found a record which
will be reaccessed after performing several intervening data base operations. For performance reasons, the
programmer may decide that use of the direct access path is more efficient than the path used to find the record the
firsttime. In either case, the programmer must know, the type of record which is to be accessed by the data base key.
The statement

FIND ORDER-ITEM RECORD USING MY-DBKEY

is successful provided that the record occurrence identified by MY-DBKEY is an ORDER-ITEM type record.

13.2.3. Area Entry

Access to an occurrence of any record in the subschema, regardiess of location mode, can be made by the FIND
statement option which specifies either the first or last record of the area. if the statement

FIND FIRST CUSTOMER RECORD OF CUSTOMER-AREA AREA.
is successfully executed, the CUSTOMER record with the lowest data base key value in the CUSTOMER-AREA area
will be made current of run-unit, current of CUSTOMER record type, current of ORDOR set, and current of CUS-
TOMER-AREA area. The statement

FIND NEXT CUSTOMER RECORD OF CUSTOMER-AREA AREA.

would access the CUSTOMER record occurrence with the next higher data base key. Repetitive execution of this
statement would proceed to access all occurrences of the CUSTOMER record in the CUSTOMER-AREA area in data
base key sequence. .

13.3. DATA ACCESS THROUGH SET RELATIONSHIPS

Once an entry has been made into the data base, currency status is updated for all sets in which the record par-
ticipates, and the record becomes the current of its record type, the current of the sets in which the record is an
owner or participates as a member, current of area, and current of run-unit. This enables the programmer to step
in any pathway provided by the set relationships. Two general rules for set processing are;

L] If the record participates as either an owner or member of a set, then the FIND NEXT statement will access the
next record in the named set. If the set is defined as linked prior, then the FIND PRIOR statement may also be
used.

- If the record is a member of a set, the FIND OWNER statement can be used to access the owner record

occurrence of the set.

If a set is ordered through use of an ascending or descending key, the record occurrence in a set with the desired key
may be selected by the following statements, which find a specific CUST-ORDER record in the ORDOR set with a
factory order number of 70016934, assuming that the appropriate CUSTOMER record has previously been found.

MOVE '70016934° TO FO-NO-620.
FIND CUST-ORDER RECORD VIA CURRENT OF ORDOR SET USING FO-NO-620.

The system searches the current ORDOR set occurrence to find the CUST-ORDER record occurrence which contains
a value of 70016934 for FO-NO-620.

UPNUMBER*®

8036 Rev. 1 | SPERRY UNIVAC Series 90

l PAGE REVISION I PAGE

141

14. Diagnostic and Error Messages

14.1. GENERAL

The first part of this section includes the diagnostic error messages produced by the data manipulation language
(DML) processor in its analysis and conversion of DML statements into COBOL CALL statements.

The second part includes a description of each ERROR-STATUS condition which can occur during an attempted
execution of a. DML statement and a discussion of possible causes for each condition.

14.2. DML PROCESSOR ERROR MESSAGES

The DML processor displays the statement which is in error followed by an error message that indicates the type
of error which has occurred. Appendix E contains a listing of these errors and an explanation to aid in correction.

14.3 ERROR-STATUS CONDITIONS

Whenever a DML statement is executed, extensive error checking occurs to ensure that the requested data base
operation can be performed without affecting the integrity of the data base. The nonzero values placed in the
ERROR-STATUS location indicate errors of the following types:

L] Conditions which are useful in the logical operation of the program. These are not errors as far as the data
base is concerned and are passed to the program for further analysis. Examples of this condition are END
OF SET and NO RECORD FOUND.

L Conditions which indicate an incorrect preparation for the statement to be executed. Examples of this
condition are NO CURRENT RECORD OF RUN-UNIT and NO CURRENT OF SET-NAME.

L] Conditions which would violate the integrity of the data base as defined by the subschema invoked by the
program and the usage-mode of the OPEN statement. Examples of this condition are INCORRECT USAGE-
MODE and VIOLATION OF DUPLICATES NOT ALLOWED.

= Conditions which indicate system-level errors that require attention of a systems programmer.

The ERROR-STATUS condition is described as a 2-part data item consisting of a major code and a condition code
formatted as follows:

Major Code
X X X X
Condition Code

8036 Rev. 1 SPERRY UNIVAC Series 90

UP-NUMBER

A 14-2
PAGE REVISION PAGE

values of each major code and its corresponding DML verb are shown in Table 14—1.

The 2-byte major code identifies the type of DML statement which was attempted prior to the error condition. The .

The 2-byte condition code defines the type of error which occurred. Condition code values from 01 through 59
are reserved for all error types other than system type errors. Condition code values from 50 through 99 are re-

served for system type errors.

Appendix D contains an explanation of the error and the possible causes to aid correction.

Table 14—1. DML Verb Codes

IMajor Code DML Verb
o1 CLOSE
02 DELETE
03 FIND/OBTAIN
05 GET
07 INSERT
08 MODIFY
09 OPEN
1 REMOVE
12 STORE
16 IF

CUSTOMER NO. CUSTOMER NAME - CUSTOMER ADDRESS

CUSTOMER
CREDIT

123456789 10111121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45/46 47 48 49 50 51 52 53 54 55 56 57 58 69 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75176 77 78 79180

CUSTOMER RECORD TYPE

FACTORY
ORDER CUSTOMER FILLER FILLER 2
NUMBER P.O.NO SHIPPED REQUESTED PROMISED

12345678l91011121314 151617 18 19 20 21 22 23 24 25 26127 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 62 53154 65 56 57 58 59160 61 62 63 64 65|66 67 68 69 70 71 727374 75 76 77 78 79I80

CUSTOMER ORDER RECORD TYPE

PRODUCT

Fi Lot Fio ary ary FILLER
NUMBER Leg NUMBER Leg ORDERED SHIPPED
12345678010 1112113 14 1616 17 18 19 20 21 22123 24 25 26127 28 20 30 31 32 3334 35 36 37 38 30 40141 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79180

ORDER ITEM RECORD TYPE

w

[3
UENCE

REMARKS

~ REMARK Cli
FILLER
)

213456789101112 1314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77178 79180

ORDER REMARK RECORD TYPE

PRODUCT NUMBER PRODUCT DESCRIPTION

{INTERNAL)

PRODUCT DESCRIPTION FILLER 5
(EXTERNAL)

FILLER

123456789101112[13 1411516 17 18 19 20 21 22 23 24 25 26 27 28 29130 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 43 50 51 52 53 54 55 56 57 68 69160 61 62 63 64 65 66 67 68 69 70 71 727374 75 76 77 78 79180

PRODUCT RECORD TYPE

sEFaNAN-dN
| ‘AeY 9E£08

SAdO093H 1NdNI vivad 'S0

06 s3li8S JVAINN AHY3dS

NOISIA3Y 35vd ‘

39VvVd |

6—0

8036 Rev. 1 SPERRY UNIVAC Series 90 A ¢-10

UP-NUMBER PAGE REVISION PAGE .
C.6. SAMPLE PROGRAM DATA INPUT .
3ITHIS 1S GENERAL REMARK 3 = USE ONLY FOR AAA CREDIT RATINGS 4
PRODUCT 0! cODE 5301 SWPER v RADIAL SPARE FR70-14)
PRODUCT 02 (¢OQQE 5302 TUBELESS BELTED GR7015 1
PRODUCT 03 CODE s3p) CUPROUS SULFATE cu2504 5
PRODUCT 04 CcODE 5304 BURN IT AWAY GLEANSER H2$04 s
PRODUCT 0% ¢cODE 3305 SBPER CLEANER HCL
PRODUCT 06 CODE s3pé TWBE VALVE STENMS TYS®NI5 s
PRODVCT 07 ¢coDE 5397 DMS/90 PKG. RFS~00} 5
CUSTOMER OIMELCHER OIL COMPANY 2100 SOUTH BAY STREET 1
ORDER OIMEL PO #)5 081572083072083072 2
PRODUCT 06 LOT 01 00000560000056
PRODVUCT ol LOT 0y 00000180000012
PRODUCTY Q3 LoTY 0y 00000010000Q01
PRODVCT 05 LoT 0} 00000200000019
JISEND DIRECT 70O STEVE SINGER) 4
12 1885 MAIN ST 4
21SPECIAL TERMS ARE = 758 OFF 4
CUSTOMER D2RED STAR SgRVICE 15203 Ne MAIN 1
ORDER Q2RED PO » 82 061772061572061672 2
PRODUCT 06 LOT 02 00000160000015
PRODVCT s} LOT 02 0000022000002
PRODUCT o4 LOT 02 00000180000018
PRODUCT 07 LOT Q2 00000010000001
PRODUCT 0s LOT 02 00000360000018
PRODUCT 03 LO6T 02 00000520000005
ORDER Q3RED PO # 56 021372031872031872 2
PRODUCT ol LOT 03 0000031 90000018
PRODUCT 06 LOT 03 00001500000080
PRODUCT 0S8 LOT 03 00010000Q01000
PRODUCT 02 LOT 03 000Q0210000021
CUSTOMER OJATLANTIC TIRES, INCo 1802 HIGHLAND SQUARE RrD)
CUSTOMER O4WALLHAVEN CHEM]CALS 111 CASCADE PLAZA 1
ORDER D4WAL PO # 93 . 051172051072051072 2
PRODUCT 07 LOT 04 0000001000000!

CUSTOMER OSCHIPPEWA SyUPPLY CO, 83 W, HAWKINS AVE, 1
CUSTOMER 06SHOEs BERT ENTERPRIZES INC ONE AMERICAN wAY BLVD, AAAL
ORDER 05SHO PO ® 56 121872121572122572 2
PRODUCT 03 LOT Os 0c00Q@180000017

PRODUCT 04 LO0T O3 00000}50000010

PRODUCT 07 LOT Os 0000010000000

CUSTOMER O07Qulx STOpP SERVICE 1895 MAIN STREET 1
CUSTOMER OB GOWAY, INC, 8888 OAK TREE BLVD, AAA
ORDER Q&6DON PO » 13 090272083672090172 2
PRODVUCT ol LOT Qs 0000001000000!

PRODUCT 02 LOT Q¢ 00000020000002

PROOUCT 03 LOT O 00000030000003

PRODUCT o4 LOT O 00000040000004

PRODVUCT 05 LOT O¢ 00000050000005

PRODUCT 0é LOT O¢ 000000460000006

PRODUCT Q7 LOT O¢ 00000150000015

EQF

8036 Rev. 1

«
UP-RUMBER

SPERRY UNIVAC Series 90 A

PAGE REVISION PAGE

D-3

DML Verb

ERROR-STATUS
Code

Explanation

FIND/
OBTAIN
{cont)

0307

End of set or area. Normally this condition exists when the next or prior record of set or
area is referenced and the most recently retrieved record was the last occurrence in the
set or area. This condition also occurs if a set occurrence is empty.

0308

Invalid record-name or set-name was used.
The causes are:

- Misspelled record-name or set-name

n Incorrect subschema invoked by program

L) Record-name not defined as a member of set-name

0313

No current record of run-unit.

The current of run-unit option in format 2 was used and no current status exists for
run-unit.

0317

Deleted record involved. The record name has been deleted by this or another run-unit.

0323

lilegal area-name used.

This is caused by using an area-name which was not included in the subschema. This
also occurs when an area-name and record-name are used in format 3 and record-name
is not defined within area-name.

0326

The object record of this statement was not found. This applies to formats 1, 5, and 6.

0331

The statement format used conflicts with the location mode defined for the object record.
Causes are:
] Use of format 5 to retrieve a record which does not have a CALC location mode

- Use of format 6 to retrieve a record which is not stored on the basis of an ascending
or descending key

0332

Format 5 with the NEXT DUPLICATE option was attempted and the value of the CALC
data i* .n in working storage does not equal the value of the CALC data item in the
current record of run-unit in the data base.

The first record of a number of duplicate records must be retrieved with a FIND state-
ment, without the NEXT DUPLICATES option. Subsequent use of FIND with the NEXT
DUPLICATE option retrieves the remaining records with CALC keys equal to the CALC
key of the first record.

0335

In format 1, the identifier is not aligned on the word boundary. The user must include
SYNC in the description of the identifier.

GET

0508

Record-name specified is not included in this subschema.
Causes are:

[] Wrong subschema invoked by this program

- Incorrect or misspelled record-name

0513

No current record of run-unit.

This statement operates on the current of run-unit. Causes are:
a A previous DELETE statement was executed and made the current of run-unit null.

a A previous FIND statement was not executed successfully.

8036 Rev. 1 SPERRY UNIVAC Series 90 D-4

URP-NUMBER PAGE REVISION P‘AGE d

DML Verb] ERROR-STATUS

Code Explanation

GET 0520 The current record of the run-unit is not of the same type as that specified by record-
{cont) name in this statement.

Causes are:
[] incorrect record-name in the statement

- Failure to properly establish the current record of run-unit

INSERT 0701 The areas included in the subschema were not opened prior to the execution of this state-
ment.

Causes are:
[] The OPEN statement is missing or was bypassed by program logic.

[] The CLOSE statement was executed prior to this statement.

0705 Insertion of the named record violates the duplicates not allowed restriction on set
membership.

Possible causes are:
L] Program logic error

[] Input data error

0706 No current record of record-name exists.

Possible causes are:
- Failure to establish the record to be inserted as the current of record-name

u Program logic error

0708 Record-name specified in this statement is not included in the subschema invoked by the
program.

Possible causes are:
L] Incorrect subschema invoked

[] Misspelled record-name

0709 Areas included in this subschema are open with an incorrect USAGE-MODE option.
Causes are:
] The INSERT statement is disallowed for this subschema.

] The OPEN statement specified USAGE-MODE IS RETRIEVAL instead of
EXCLUSIVE UPDATE.

0714 The object record is not defined as an optional automatic, optional manual, or
mandatory manual member of set-name.

Cause is an incorrect use of the INSERT statement or an incorrect set-name.

CcuUT

13

Comments concerning this manual may be made in the space provided below. Please fill in the requested information.

System:

Manual Title:

UPNo: Revision No: Update:

Name of User:

Address of User:

Comments:

P

FIRST CLASS
PERMIT NO. 21
BLUE BELL, PA.

B U S I N E SS R E p LY M A I L NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY

I
ER‘QY%,L—UNIVAC I
P.O. BOX 500]

I

. 1N

BLUE BELL, PA.
19422

ATTN: SYSTEMS PUBLICATIONS DEPT.

—— e e, s — — s — ——— —— —— . Sy T —— e — — it e — . —_ Sy S T— — Siro—— — vt Sh— T—— b S —— — —— —— —— —— —— — ——— — i —

- S — o S S S S, S — ——, — —" et o— it v S— S, — o e S

Changes to UP-8036 Rev. 1 (with Update B)

Page

Page

Page

Page

Page

Page

Page

PCN 5

2-5

The third paragraph (second bulleted item) of 2.6.1 should be changed as
follows:

L] The INVOKE statement must follow the SCHEMA SECTION statement and
may begin in any column after column 7, but cannot continue onto
separate lines. The INVOKE statement (sequence number 300020)
corresponds to the subschema and schema names in Figure 12-1. No
other statements are permitted in the Schema Section.
2-7

In the sixth paragraph, line 3, of 2.6.2, change ‘‘Figure 2-4 illustrates?’
to ¢‘Figure 2-4a and Figure 2-4b illustrate...?’

2-8

Delete the paragraph preceding the illustration which reads:
¢¢In Figure 2-4, THE-PRINTER and THE -CONSOLE are used in DISPLAY
statements of the DMS-STATUS SECTION; therefore, the user must relate
these mnemonic-names to the appropriate implementor names in the
SPECIAL-NAMES entry of ENVIRONMENT DIVISION,??

Replace Figure 2-4 with Figure 2-4a and Figure 2-4b.

7-3

Change the line in Table 7-1 of the ¢‘Move Currency Status®’ DML Statement,

The ERROR=STATUS column under ¢‘Unsuccessful’’ should read €¢15XX*’; and,

the ERROR-SET, ERROR-RECORD, and ERROR-AREA columns should read °‘Yes?’’.

7-4

In 7.3.3, delete the last sentence in the first paragraph that begins with
¢“This operation is performed...?’

Replace the second paragraph that begins ‘‘A MOVE CURRENCY STATUS...’’ with:
An unsuccessful MOVE CURRENCY STATUS statement causes the system to
place an error code (15XX) in the ERROR-STATUS location to define the
error which occurred. The ERROR-SET, ERROR-RECORD, and ERROR=-AREA
locations contain names associated with the error.

8-1

In the last sentence of the last paragraph of 8.2, delete ¢°INSERT,’’,

8-3

In the title of 8.6.2, insert ¢*MODIFY’® after ¢‘GET’’.

In the second sentence of 8.6.2, insert ¢‘MODIFY®® after ¢<GET’’.

1 UP=-8036

0001 p000 *
000200060 * FEB S AEBSIE LA ILFIPESIR SR PR SRR RS EL L BEESEREBES ST S S
00030000 * ¢ Dus STATUS CHECK SECTION L
00040000 » TR I I T I I L s e s Y ST R YIS TIIIIIINYYT
00050000 *
00060000 DMS~-STATUS SECTICN
00070000 STATUS-PARA.
00080000 *
00090000 1F ERROR-STATUS EQUAL TO 2ZEROS
00100000 PERFCRM DMS-SUCCESS GO TO ISABE Xe.
00110000 DISPLAY *s¢ DMS/790 RUN-UNI1T TERMINATED BY DML gRRCR®
00120000 UPON CONSOLE.
00130000 c1sPLay v PROGRAM NAME -----= ' PROGRAM-NANME
00140000 UPON CONSOLE.
00150000 DISPLAY d ERROR STATUS <===-= * ERROR-STATUS
00160000 UPON CONSOLE .
00170000 DISPLAY . ERROR RECORD -~—=~=-- * ERROR=-RECORD
00186000 UPON CONSOLE-
00190000 DISPLAY s EXECUTE DBBAR IF DATA BASE WAS UPDATED®
00200000 UPON CCNSOLE -~
00210000 DISPLAY *s% DMS/790 RUN-UNITY TERMINATED BY DML ERROR"®
00220000 UPON TERMINAL,
00230000 DISPLAY . PRCGRAM NAME -wc--o ®* PROGRAM-NAME
00240000 UPON TERMINAL.
00250000 DISPLAY . EKROR STATUS -—-===-- * ERROR-~-STATUS
00260000 UPON TERMINAL .
00270000 DISPLAY . ERROR RECCORD ====-= ® ERROR-RECORD
00280000 UPON TERMINAL -
00290000 DISPLAY * ERROR SET ===w===w= ' ERROR-SET
0030000C UPON TERMINAL .
00310000 DISPLAY * ERROR AREA ——-===-=~ * ERROR-AREA
00320000 UPON TERMINAL «
00330000 DIsPLAaY . L AST 00D RECORD -~ * RECORD-NAME
00340000 UPON TERMINAL «
00350000 DISPLAY * LAST GOOD AREA —=-= ¢ AREA-NAME
00360000 UPON TERMINAL -
00370000 D1ISPLAY *#% EXECUTE DBBAR IF DATA BASE WAS UPDATED'
oo3egooo UPON TERMINAL.
00390000 PERF ORNM DMS~-ABCRT.
00400000 * CLOSE ALL AREAS.
00410000 ENTER L INKAGE «
004%20000 CALL AR7DMS USINE 1DBMSCOM (D2).
00430000 ENTER COBCL.
00440000 STOP RUN.
00450000 *
00460000 ISABEX. EXIT.
00470000 %
00492C00D NCVE
00490000 THIS 1S THE ENCD
00500000 OF THE DMS STATUS CHECK SECTION.
Figure 2-4A, DMS=-STATUS SECTION for VS/9
PCN 5 2 UP=-8036

00010000 *
00020000 * XX BFEB ST A AE SIS AR E L SRR ABBE BB RS S BE SR LR AP DA HEB L BB & $
pC030000 * ¢ Dps STATUS CHECK SECTION *
00040000 * 2400985 VDX ARSI SABSBARS X IBVS IR S VDS SSRTESBE ISR RS
00050000 =
00060000 DMS-STATUS SECTICN-
00070000 STATUS-PARA.
00080000 *
00090000 1F ERROR-STATUS EQUAL TO ZgEROS
oolooogoo PERFCRM DMS~-SUCCESS GO TO ISABE X.
00110000 DISPLAY *ss DMss/790 RUN-UNIT TERMINATED BY DML ERRCR?®
00120000 UPON CONSOLE.
00130000 cisPLay . PROGRAM NAME --=<-- ' PROGRAM-NAME
00140000 UPON C(ONSOLE.
001s0000 DISPLAY * ERROR STATUYS ===w-== * ERROR=-STATUS
00160000 . UPON CONSOLE »
00170000 DISPLAY s ERKOR RECORD ——==-- * ERROR-RECORD
00180000 UPON CONSOLE.
00190000 DISPLAY “#3 EXECUTE DBBAR IF DATA BASE WAS UPDATEC®
00200000 UPON CCNSOLE -
006210000 DISPLAY "% DMS/90 RUN-UNIT TERMINATED BY DML ERROR"®
00220000 UPON TERMINAL.
00230000 DISPLAY o PRCGRAM NAME --cco-- ®* PROGRAM-NAME
00240000 UPON TERMINAL.
00250000 DISPLAY i ERROR STATUS «====-=- * ERROR-STATUS
00260000 UPON TERMINAL.
00270000 DISPLAY * ERROR RECCRD -===-- * ERROR-RECORD
00280000 UPON TERMINAL -
00290000 DISPLAY * ERROR SET -—=-=««ww- ¢ ERROR-SET
00 30000C UPON TERMINAL .
00310000 DISPLAY . ERROR AREA —=ce- =« % ERROR-AREA
00320000 UPON TERMINAL .
00330000 D1IsPlLay . LAST ¢O00OD RECORD == * RECORD-NAME
00340000 UPON TERMINAL «
00350000 DISPLAY ¢ LAST GOOD AREA —=== % AREA-NAME
60360000 UPON TERMINAL »
00370000 DISPLAY s+ EXECUTE DBBAR 1F DATA BASE WAS UPDATED'®
oo3egooo UPON TERMINAL.
00390000 PERF ORM DMS-ABCRT.
00400000 * CLOSE ALL AREAS.
00410000 ENTER LINKAGE «
00420000 CALL XR7DMS USINe 1DBMSCOM (02).
00430000 ENTER COBCGL.
00440000 STOP RUN.
00450000 *
00460000 I1SABEX. EXIT.
00470000 %
D048C0O00 NCYE
00490000 THIS 1S THE END
00500000 OF THE DMS STATUS CHECK SECTION.

Figure 2-4B, DMS=STATUS SECTION for 0S/3
PCN 5 3 UP-8036

In the second sentence of the first paragraph of 8.6.3, insert ¢‘or OBTAIN®’
after ¢‘FIND’’.

Page 9-2

Insert an additional sentence at the end of rule 2 that reads ¢‘The INVOKE
statement should not span more than one line.?’

Page 10-9
Change the last part of the format of the MOVE statement to read:

RUN -UNIT
record-name RECORD
area-name AREA
set-name SET

TO0 identifier.

Page 11-3
Replace rule 10 with:
The DELETE statement is not executed for any record that is:

] an owner or member of any set that has not been specified as part
of the subschema,

n an owner of a set whose members are not specified as part of the
subschema, or

. an owner of a set whose members are themselves nondeletable.
Page 11-5
In 11.3, insert an additional sentence at the end of rule 1 that reads:

All member record types of set name must also be included in the sub-
schema.

Pages 11-6 and 11-7
Delete the last sentence of rule 1.
Insert a new rule 2 that reads:

2. The MODIFY statement is not executed for any record that is a
member of a sorted set that has not been specified as part of the
subschema or is a member of a sorted set whose numbers are all
not part of the subschema.

Change the rule numbers for 2 through 10 to 3 through 11.

Page 11-8

Insert an additional sentence at the end of rule 1 that reads:

PCN 5 4 UP-8036

Page

Page

Page

Page

PCN 5

All member record types of set name must also be included in the sub-
schema,

11-9
Replace rule 3 with:

All sets in which the named record is defined as an automatic member
must be included in the subschema before a STORE statement for the
named record can be executed. Also, for each set type in this category,
all member record types must be included in the subschema. 1If the sub-
schema does not contain all required records and sets, the STORE state-
ment will not be executed.

12-6

In the second sentence of the second paragraph, replace °‘associated with??
with ‘‘owners of?’. In the same sentence following ‘‘of the data base but?’
insert ¢‘the sets and member records are’’. In the third sentence replace
‘‘now’’ with “‘not’’. In the last sentence delete ‘‘except for the CALC
control data items®?,

In Table 12-1, in the CUSTOMER row under the Modify column, replace ¢°¢All
Except CUST-NO-611°? with ““Allowed’’; under the Remarks column insert

¢ <CUST-NO=-611 cannot be duplicated.’’ In the PRODUCT row under the Modify
column replace ¢‘All except PROD-NO-631?° with “‘Allowed’’ and under the
Remarks column insert ¢‘PROD-NO-631 cannot be duplicated.?’’

D-5

Under the DML Verb MODIFY, delete the 0806 ERROR-STATUS code and its
Explanation.

D-8

Between the STORE and IF DML Verbs, insert the DML Verb MOVE with ome
ERROR-STATUS code: 1508.

The Explanation is:

The record-name specified is not defined within the subschema involved
by this program. Possible causes are:

- Incorrect subschema involved.

] Misspelled record name,

5 UP-8036

