
•

•
U0\-251 Rev. '4173

ATTN: CHARLIE GIBBS

01120
CAV208M45541

SPERRY UNIVAC
SUITE 906

UP 7536

1177 WEST HASTINGS ST
VANCOUVER BC V6E 2K3

RlE

UAS

Fundamentals of FORTRAN

CAV

II
Programmer Reference

This Library Memo announces the release and availability of Updating Package E to "SPERRY UNIVAC

Fundamen~ls of FORTRAN Programmer Reference", UP-7536 Rev. 1.
/

This update incorporates a minor change to the manual.

Copies of Updating Package E are now available for requisitioning. Either the updating package only or the complete
manual with the updating package may be requisitioned by your local Sperry Univac representative. To receive only

the updating package, order UP-7536 Rev. 1-E. To receive the complete manual, order UP-7536 Rev. 1 .

Mailing Lists
BZ, CZ and MZ

.

..

Mailing Lists AOO,BOO,A14,A15,815,10,11,18,19,20,21,
28U,39,40,41 ,42,43,44,51,510, 52,53,530, 54,540, 55,
550 ,56,57 ,58,60,61,65,66, 75, 76, 77 and 78

(Package E to UP-7536 Rev. 1,
5 pages plus Memo)

Library Memo for
UP-7536 Rev. 1-E

RELEASE

August, 1982

•

•

•

•

UD1 ... 251 Rev, 3/73

Fundamentals of FORTRA

Programmer Reference

This Library Memo announces the release and availability of Updating Package C to "SPERRY UNIVAC Fundamentals
of FORTRAN Programmer Reference", UP-7536 Rev. 1.

This update incorporates minor corrections to the manual.

Copies of Updating Package C are now available for requisitioning. Either the updating package only, or the complete
manual with the updating package may be requisitioned by your local Sperry ~nivac representative. To receive the
updating package only, order UP-7536 Rev. 1-C. To receive the complete manual, order UP-7536 Rev. 1 .

Mailing Lists
BZ,CZ and MZ

Mailing Lists 10, 11, 18, 19,20,21,28U,29U,39,40,41,42
43,44,51,510 ,52,53,530 ,54,540 ,55,550,56,57 ,58,60,
61,65,66,75.76,77 and 78

(Package C to UP-7536 Rev. 1,
5 pages plus Memo)

Library Memo for
UP-7536 Rev.1-C

RELEASE DATE:

June, 1981

... . ..

•

•

•

-·- - -:---·:;;:-c=-, ·----~~~-~-----~----

••

•

•

I
Fundamentals
of Fortran
Programmer Reference

H SPE~Y UNIVAC
COMPUTER SYSTEMS

UP-7536 Rev. 1

This document contains the latest information available at the time of
publication. However, Sperry Univac reserves the right to modify or
revise its contents. To ensure that you have the most recent
information, contact your local Sperry Univac representative.

UNIVAC is a registered trademark of the Sperry Rand Corporation.

Other trademarks of the Sperry Rand Corporation include:

FASTRAND

MATED-FILM

PAGEWRITER

UNI SCOPE

UNISERVO

© 1967, 1968, 1970, 1974 - SPERRY RAND CORPORATION

•

•

• PRINTED IN U.S.A.

•

•

•

7536 Rev. 1 FUHDAMENTALS OF FORTRAN E PSS 1
UP-NUM9E,. PAGE REVISION PAGE

PAGE STATUS SUMMARY

ISSUE: Update E -UP-7536 Rev. 1

Part/Section
Page Update

Number Level Part/Section
Page Update

Number Level Part/Section
Page Update

Number Level

Cover/Disclaimer A Index 1 thru 7 Orig.

PSS 1 E User Comment
Sheet

Contents 1 thru 5 Orig.

1 1thru13 Orig.

2 1 thru 23 Orig.
24 c
25 thru 21 Orig.
28,29 0

3 1 thru 4 Orig,
5 E
6 thru 14 Orig.

4 1 thru 4 Orig.

5 1 thru 12 Orig.
13 0
14, 15 Orig.
16 A

I
17 thru 24 Orig.

6 1 thru 10 Orig,
11 0
12 Orig.
13 0
14 thru 22 Orig.
23 A
24 B
25 Orig.
26,27 0 I
28 thru 32 Orig.

7 1 thru 3 Orig.
4 0
5 Orig.
6 0
7 Orig.

8 1 thru 8 Orig.
9 0
10 thru 22 Orig.
23 A
24 thru 26 Orig.
27 0
28 thru 32 Orig,
33 A
34 thru 37 Orig.

9 1 thru 3 Orig.

Appendix A 1, 2 Orig,

A// tne technical changes are denoted bv an arrow(-} in ,the margin. A downward pointing arrow (t} next to a line indicates that

technical changes btlgin at this line and continue until an upward pointing arrow (+)is found. A horizontal arrow(-} pointing to

a line indicates a technical change in only that line. A horizontal arrow located between two consecutive lines indicates techn1cal

changes in both lines or deletions.

•

•

•

•

•

•

UP-7536
Rev. 1 FUNDAMENTALS OF FORTRAN

CONTENTS

1. INTRODUCTION

1.1. GENERAL

1.2. PROGRAMMING LANGUAGES
L2. L Machine Language
L2.2. Assembly Language
1.2.3. FORTRAN Language

1.3. SOURCE AND OBJECT PROGRAMS

1.4. COM PILA TlON ANO EXECUTION

1.5. THE COMPUTER SYSTEM
1.5.1. Computer Hardware
1.5.1.1. Input Devices
1.5.1.2. Main Storage
1.5.1.3. Central Processing Unit
1.5.1.3.l. Fixed-Po int Representation
1.5.1.3.2. Floating-Point Representation
l.5.1.4. Auxilill1y Storage
1.5.1.5. Output Devices
1.5.2. Computer Software

1.6. SAMPLE PROGRAM

2. WRITING A FORTRAN PROGRAM

2.1. GENERAL

2.2. ORGANIZA TlON
2.2.1. FORTRAN Program
2.2.2. Program Unit Organization

2.3. CHARACTER SET

2.4. FORTRAN PROGRAMMING FORM
2.4.1. Comment Line
2.4.2. Eild Line
2.4.3. Statements
2.4.4. Statement Labels

2.5. FORTRAN DATA
2.5.1. Data Types
2.5.1.1. Integer Type
2.5.1.2. Real Type
2.5.1.3. Double Precision Type
2.5.1.4. Complex Type
2.5.1.5. Logical Type
2.5.1.6. Hollerith Tyoe

Contents

SECTION I

CONTENTS

1 to 5

1-1 to 1-13

i-l

1-2
1-2
l-3
1-4

1-4

1-4

1-7
1-7
l-8
1-8
1-8
1-8
l-9
l-9
1-9
1-9

1-9

2-1 to 2-29

2-1

2-1
2-1
2-5

2-7

2-7
2-7
2-8
2-9
2-10

2-11
2-11
2-12
2-12
2-13
2-13
2-13
2-13

1
PAGES

UP-7536
Rev. 1 FUNDAMENTALS OF FORTRAN

2.6. CON STAN TS
2.6.1. Integer Constant
2.6.2. Real Constant
2.6.3. Double Precision Constant
2.6.4. Complex Constant
2.6.5. Logica I Constant
2.6.6. Hollerith Constant

2.7. SYMBOLIC NAMES
2.7.1. UniqueRess of Symbolic Names
2.7 .2. Typing of Symbolic Names
2.7.2.1. Explicit Type Declaration
2.7.2.2. Implied Type Declaration
Z.7 .2.3. Hollerith Values
2.7 .3. Variables
Z. 7 .4. Arrays
Z. 7 .4.1. Array Declaration
2.7.4.2. Array Element Reference
Z.7.4.3. Location of Elements Within Array

3. FORTRAN EXPRESSIONS

3.1. GENERAL

3.2. ARITHMETIC EXPRESSIONS
3.Z.1. Arithmetic Operators
3.2.2. Formation of Arithmetic Expressions
3.2.3. Type Rules for Arithmetic Expressions
3.2.4. Evaluation of Arithmetic Expressions

3.3. RELATIONAL EXPRESSIONS
3.3.1. Relationa I Operators
3.3.2. Type Rules for Relational Expressions
3.3.3. Applications of Relational Expressions

3.4. LOGICAL EXPRESSIONS
3.4.1. Logical Opera tors
3.4.2. Formation of Logical Expressions
3.4.3. Evaluation of Logical Expressions
3.4.4. Applications of Logical Expressions

4, ASSIGNMENT STATEMENTS

4.1. GENERAL

4.2. ARITHMETIC ASSIGNMENT STATEMENT

4.3. LOGICAL ASSIGNMENT STATEMENT

5. CONTROL. STATEMENTS

5.1. GENERAL

5.2. GO TO STATEMENTS
5.2.l. Unconditional GO TO Statement
5,2.2. Computed GO TO Statement
5.2.3. Assigned GO TO Statement
5.2.3.1. GO TO Assignment Statement

Contents 2

SIECTIONs PAGES

2-13 • 2-14
2-14
2-16
2-16
2-17
2-18

2-18
2-19
2-20
2-ZO
2-20
2-22
2-23
2-23
2-24
2-26
2-29

3-1 to 3-14

3-1

3-1
3-1
3-2
3-4
3-5 • 3-7
3-7
3-8
3-8

3-10
3-10
3-11
3-13
3-14

4-1 to 4-4

4-1

4-1

4-4

5-1 to 5-24

5-1

5-1
5-2
5-2
5-6
5-8 •

•

•

•

UP-7536
Rev. l FUNDAMENTALS OF FORTRAN

5.3. IF STATEMENT
5.3.1. Arithmetic IF Statement
5.3.2. Logical IF Statement

5.4. DO STATEMENT

5.5. CONTINUE STATEMENT

5.6. PROGRAM CONTROL STATEMENTS
5.6.1. PAUSE Statement
5.6.2. STOP Statement

6. INPUT/OUTPUT AND FORMAT STATEMENTS

6.1. GENERAL.

6.2. ELEMENTS OF READ AND WRITE STATEMENTS
6.2.1. Logical Unit Number
6.2.2. Input/Output List

6.3. FORMAT STATEMENT
6.3.l. Record Oemarcator
6.3.2. Field Separators
6.3.3. Field Descriptors
6.3.3.1. Blank Field Descriptor
6.3.3.2. Numeric Data
6.3.3.2.l. Integer Type Conversion
6.3.3.2.2. Input of Real Type Data
6.3.3.2.3. Output of Real Type Data
6.3.3.2.4. Double Precision Type Conversion
6.3.3.2.5. Complex Type Conversion
6.3.3.3. Logical Type Conversion
6.3.3.4. Hollerith Field Descriptors
6.3.3.5. Repeat Specifications
6.3.3.6. Scale Factor

6.4. FORMATTED READ STATEMENT

6.5. FORMATTED WRITE STATEMENT

6.6. FORMAT CONTROL

6.7. UNFORMATTED WRITE AND READ STATEMENTS

6.8. AUXILIARY INPUT OUTPUT STATEMENTS
6.8.l. REWIND Statement
6.8.2. BACKSPACE Statement
6.8.3. ENDFILE Statement

7, SPECIFICATION STATEMENTS

7 .l. GENERAL

7.2. TYPE-STATEMENTS

7.3. DIMENSION STATEMENT

7 .4 . EQUIVALENCE STATEMENT

Contents
S1ECTION1

5-9
5-9
5-11

5-13

5-21

5-22
5-22
5-23

6-1 to 6-32

6-l

6-2
6-2
6-2

6-4

6-6
6-6
6-7
6-8
6-8
6-8
6-ll
6-12
6-14
6-15
6-16
6-17
6-21
6-22

6-23

6-25

6-26

6-28

6-29
6-29
6-30
6-32

7-l to 7-7

7-1

7-1

7-3

7-4

3
PAGIE1

UP-7536
Rev.1 _ ~ FUMDAMENT ALS OF FORT RAM

8. PROCEDURES AND PROCEDURE SUBPROGRAMS

8.1. GENERAL
8.1.1. Statement Functions and Intrinsic Functions
8.1.2. External Procedure Subprograms
8.1.3. Communication Between Program Units
8.1.4. Valid Forms of Arguments

8.2. STATEMENT FUNCTION
8.2.1. Arithmetic Statement Function
8.2.2. Logical Statement Function

8.3. INTRINSIC FUNCTIONS

8.4. RETURN STATEMENT

8.5. EXTERNAL FUNCTIONS
8.5.1. Basic External Functioos
8.5.2. Function Subprograms
8.5.2.1. FUNCTION Statement
8.5.2.2. Function Subprogram Definition
8.5.2.3. References to Function Subprograms

8.6. SUBROUTINE SUBPROGRAMS
8.6.l. CA LL Statement
8.6.2. SUBROUTINE Statement
8.6.3. Subroutine Definition

8.7. EXTERNAL STATEMENT

8.8. COMMON STATEMENT

9. IHITIALIZA TIOH

9.1. GENERAL

9.2. DATA STATEMENT

9.3. BLOCK DATA SUBPROGRAM
9.3.1. BLOCK DATA Statement

APPENDIX A. DIFFERENCES BETWEEN ANSI FORTRAN AND
AN-SI BASIC FORTRAN

INDEX

FIGURES

1-1. FORTRAN ·Assembler-Machine Coding

1-2. Compiler to Memory

1-3. The Compilation Process

1-4. The Compile and Execute Process

1-5. Elements of the Computer

Contents 4

SIECTIONI PAGt::

8-1 to 8-37 • 8-1
8-2
8-3
8-4
8-4

8-5
8-5
8-8

8-9

8-13

8-13
8-13
8-15
8-16
8-16
8-23

8-24
8-24
8-25
8-25

8-30

8-32 • 9-1 to 9-3

9-1

9-1

9-2
9-3

A-1 to A-2

1 to 7

1-4

1-5

1-5

1-6

1-7

•

•

•

•

UP·7536
Rev.1 FUNDAMENTALS OF FORTRAN

1-6. Sample Problem Flowchart

1-7. Sample Program

1-8. Sample FORTRAN Program Deck and Data

2-1. Program Units of FORTRAN Program

2-2. Control Path During Execution

2-3. FORTRAN Programming Form

2-4. Real Constants in FORTRAN· Statements

3-1. Structure of Arithmetic Expression

3-2. Structure of Logical Expression

5-1. Use of Assigned GO TO Statement

7-1. Effect of EQUIVALENCE Statement

8-1. lnline Coding of Statement Functions and lntrinsi.c Functions

TABLES

2-1. FORTRAN Statements

2-2. Ordering of FORTRAN Statements

2-3. FORTRAN Character Set

2-4. Memory Requirements for Data Types

2-5. Uses of Symbolic Names

2-6. Arra~· Element Location in Array

3-1. Arithmetic Operators

3-2. Type Rules for Exponentiation

3-3. Type Rules for Conventional Arithmetic

3-4. Relational Operators

3-5. Type Rules for Relational Expressions

3-6. Logical Operators

3-7. Truth Tables for Logical Operators

4-1. Type Conversion by Arithmetic Assignment Statemen~

6-1. Form Control Characters

8-1. Forms of Argument

8-2. Intrinsic Functions

8-3 • Basic External Functions

Contents 5
Sl:C:TION1 PAGEi

1-10

1-11

1-13

2-2

2-4

2-8

2-15

3-2

3-11

5-7

7-4

8-3

2-5

2-6

2-7

2-11

2-19

2-29

3-1

3-4

3-4

3-7

3-8

3-10

3-10

4-2

6-5

8-4

8-10

8-14

•

•

•

UP-7536
Rev. 1

•

•

•

1 FUNDAMENTALS OF FORTRAN SIECTION1

1. INTRODUCTION

1.1. GENERAL

FO~TRAN (from FORmula TRANslator) is a programming language designed for
extensive use in mathematical, scientific, and technological areas. The advantages
of FORTRA:-r are minimum programming time and cost, and maximum interchange­
ability of FORTRAN programs on different FORTRAN pro,·c-ssors.

FORTRAN statements resemble English statements and the equations of elementary
algebra. Therefore, FORTRAN statements are self-documenting, chat is, the intended
operation is apparent from the statement itself. For example, to find the average of
two numbers, the programmer can write a statement such as:

A VRGE = (A +8)/2.0

Since the FORTRAN programmer uses a programming language that res~mbles the
language ordinarily used for the solution of problems, relatively littie time is
required to learn the language. As a result, programming effort can be devoted to
the logic of the problem without being troubled by the intricacies of computer opera­
tion. This self-documenting feature of FORTRAN reduces debugging time and·
enables other programmers to readily grasp the logic of a program so that it can be
modified or adapted to other purposes with.minimal effort.

Because FORTRAN is the first programming language to be generally accepted as a
standard by the data processing community, a FORTRAN program written for a partic­
ular FORTRAN processor can be accepted by many different FORTRAN processors
with a minimum of change. The FORTRAN specifications described in this manual
are those of the American :-iational Standards Ins.titute, Inc. (ANSI), formerly known
as USA Standards Institute, Inc. (USASI), in FORTRAN, X3.9-1966. Another ANSI
standard in current use is Basic FORTRAN, X3.10-1966, which is a subset of
FORTRAN. Differences between the two standards are described in Appendix A.

Fundamt•ntals of FORTRAN is designed to introduce FORTRAN to the novice
programmer while providing sufficient depth of coverage for experienced FORTRAN'
programmers. The examples and descriptions of operation, therefore, will be partic­
ularly valuable for the novice •

1

UP-7536
R~v. 1

1
FUNDAMENTALS OF FORTRAN

l•C:TIONI

1.2. PROGRAMMING LANGUAGES

The series of steps specified for the solution of a particular problem is called a
source pro&ram and the notation that the programmer uses for specifying these steps
is a pro&ramming language. Except in very few cases (where the programmer uses
machine language) the computer cannot "understand" the programming language;
the programming language must be translated into instructions that the computer can
comprehend. Any programming language that resembles English or the language of
mathematics must be translated into machine language before it can have any effect
upon computer operation. The combination of the mechanism that accomplishes the
translation from programming language to machine language and the data processing
system is called the processor.

The following paragraphs trace the development of programming languages from
machine language to assembly language to FORTRAN and show the application of
each to the problem of evaluating Z in the following equation:

z = (R + S ·- T)X
y

where the values of R, S, T, X, and Y are known.

1.2.1. Machine Language

The fundamental unit of information handled by a data processing system is the
bit (from binary digit). In the strictest sense, machine language is a combination
of bits interpreted by a data processing system as an instruction. Each bit has
two mutually exclusive states, represented by 0 and 1. However, almost every
data processing system has built-in facilities for accepting an abbreviated form
of machine language. In an "octal" computer, each of the octal digits, 0 through
7, represents a combination of three bits. For example, an octal 6 is the equiva­
lent of binary 110. In a "hexadecimal" computer, the digits 0 through 9 and A,
B, C, D, E, and F each represent four bits, e.g., the hexadecimal D represents
the binary 1101. In a "decimal" computer, each of the digits, 0 through 9, repre­
sents four bits. For example, the decimal 91 may be represented interna~ly as
1001 0001. The following descriptions of machine language refer to this abbreviated
form, using a typical octal computer.

Each computer has its own unique set of instructions and machine language. Using
machine language, the programmer must know the operation code (indicating the
operation to be performed), the location (in main storage) of at least one operand,
and the location which is to contain the result. Typical machine language coding
for the problem described in 1.2 is indicated after the following assumptions:

The value of R is in location 10002.

The value of S is in location 10010.

The value of T is in location 10020.

The value of X is in location 10030.

The value of Y is in location 10040.

The result, Z, is to be stored in locaiion 10050.

2

•

•

•

UP•7536
Rev. 1

•

•

•

1
FUNDAMENTALS OF FORTRAN SIECTIONI PAGltl

A typical machine language set of coded in-structions for performing the evaluation
is:

772110002 moves the value of R to an arithmetic register. (A register is a fixed
location which stores an operand or the result of an arithmetic operation.)

770110010 adds the value of S to the value in the register and retains the result in
the register, giving R + S.

770210020 subtracts the value of T from the value in the register and retains the
result in the register, giving R + S - T.

770310030 multiplies the value in the register by the value of X and retains the
result in the register, giving (R + S - T) X.

770510040 divides the value in the register by the value of Y and retains the result

in the register, giving [(R + S - T)X] I Y.

772510050 moves the contents of the register to the location specified for Z.

The first four digits of each instruction in this example constitute the operation
code; the rightmost five digits specify a memory location.

Machine coding is tedious; it requires time for learning (since it is unique), the
programmer must keep track of all memory references, and it requires many lines
of source coding for a relatively simple operation. Ho•vever, machine coding requires
the least machine time since no language conversion is involved.

1.2.2. Assembly Language

The next logical step from machine language is what is commonly known as assembly
language. Assembly language requires a language translation program (an assembler).
Using assembiy language, the programmer is permitted to use symbolic references to
memory and specified mnemonic codes instead of numeric codes to designate the
operation to be performed. Typical assembly c"oding for the problem in 1.2 is:

ENT*R enters R into the register.

ADD*S adds S to R in the register.

SUB*T subtracts T from the contents of the A register and retains the result in
the register.

MUL*X multiplies the contents of the register by X and retains the result in the
register.

DIV*Y divides the contents of the register by Y and retains the result in the register.

STR*Z stores the contents of the register in z.

Assembly language coding is less tedious than machine coding, and the operation
code is more meaningful, making the language easier to learn. The assembler
assigns memory locations to the symbolic memory reference~, relieving the program­
mer of that chore, thus making the coding even more meaningful. However, it is
essentially a one-to-one source coding process (i.e., one source language instruction
generates one machine language instruction) when compared to machine coding and
still requires many lines of source coding for a simple problem .

3

UP-7536
Rev. 1

1
FUMDAM~MTALSOFFORTRAM

IECTIONI PAGEi

1.2.3. FORTRAN Language

1.3.

FORTRAN is one of many higher level languages than have evolved from assembly
language. It is considered a higher level language because the translation of a
FORTRAN statement may result in many machine language instructions. This
conversion is performed by a program called the FORTRAN compiler. The design
of a FORTRAN compiler is definitely machine-oriented and is not part of the
FORTRAN language.

Offsetting this relative complexity (and consequent increased overall computer time),
FORTRAN is a self-documenting language that cuts down the cost and time required
for learning, writing, debugging, and maintenance. In standard FORTRAN there are
approximately 30 statements to be remembered by the programmer; whereas, in
assembly language there may be from 50 to 350 mnemonics. The compactness and
self-documentation of FORTRAN are apparent in Figure 1-1. For instance, a
program that requires from 10 to 20 pages of assembly coding may.require only
one page of FORTRAN coding.

FORTRAN ASSEMBLER MACHINE

0 Z = ((R+S-T)*X)/Y
I

ENT*R 772110002 0 I
0 I ADD*S 770110010 0

lg
I SUB*T 770210020 O: I
I MUL*X 770310030 0

·o I DIV*Y 770510040 0

l~ I STR*Z 772510050 Qj _J -
Figure 1-1. FORTRAN-Asnmo/er-Mochine Coding

SOURCE AND OBJECT PROGRAMS

A FORTRAN program written by the programmer represents a series of logical steps
for the solution of a particular problem. This program· is the source program.

A source program must be translated to machine language for a particular data
processing sy:;tem. Translating the FORTRAN source program to machine language
is generally accomplished by a prewritten program, the FORTRAN compiler. (The
compiler is furnished with the data processing system and is.not the responsibility
of the ptogrammer.) The output of this translation process (compilation) is the
object program.

1.4. COMPILATION AND EXECUTION

The complete compilation process follows the steps below:

(1) The source program is keypunched onto cards to produce the source program
deck.

(2) The FORTRAN compiler is read from auxiliary storage into the computer's
memory (main storage) as shown in Figure 1-2.

4

•

•

•

UP-7536
Rev. 1

•

•

•

FUNDAMENTALS OF FORTRAN 1
SIECTION1 PAGlt:

FORTRAN MAIN
COMPILER 7 STORAGE

AUXILIARY STORAGE

Figure 1-2. Compiler to Memory

(3) The source deck is then read into main storage and control is turned over to the
compiler which determines the operations to be performed and generates the
required machine language instructions to create the object program. This trans­
lation process includes the assignment of memory locations for variables and
constants, and the utilization of routines stored in.auxiliary storage when required.
The compiler produces an object program deck of machine instructions and a list­
ing of the source program as shown in Figure 1-j,

SOURCE I PROGRAM 14-
LISTING

~

OUTPUT

SOURCE
PROGRAM

DECK

INPUT

i
MAIN STORAGE

FORTRAN

COMPILER

OUTPUT

.... ,..

Figure 1-3. The Compilation Process

//._ 7
// OBJECT

PROGRAM
DECK

JI

(4) The object program and internal data are entered into main storage. The data
processing system can then execute the ·program: fetching data from input and
auxiliary storage devices as required, operating on data as directed by the
object program, and producing required output •

5

UP-7536
Rev. 1 FUNDAMENTALS OF FORTRAN SKCTION1

1

Steps 1 through 4 can be perfonned in a fairly rapid sequence referred to as ''the
compile and execute process" shown in Figure 1-4. The object program is placed
in main storage as it is created by the compiler (rather than being transmitted in the
form of punched cards as described in step 3) and immediately execu.ted.

AUXILIARY
STORAGE

FORTRAN
COllPll.ER

COMPfLATIOM

SOURCE
PROGRAM

SOURCE
PROGRAM

DECK

MAIN STORAGE

FDlfTRAN
COMPILER

SOURCE
PROGRAM
LISTING

OBJECT
PROGRAll.

I
I
I
I
I
I
I
I
I
I
I
I
I
I .
I
I
I
I
I
I
I
I
I

Figure 1-4. The Compile oncl Execute Process

EXECUTIO"

l"PUT DEVICE ANO
AUXILIARY llEMORY

EXTERNAi. DATA

MAIN STORAGE

OBJECT
PROGRAll

llESULTS

6

•

•

•

UP-7536
Rev.l

•

•

•

1
FUNDAMENTALS OF FORTRAN

S&CTION1

1.5. THE COMPUTER SYSTEM

A computer system is made up of hardware components (equipment) and software
(operating system). The operating system is a program usually furnished by the
computer manufacturer made up of routines that coordinate hardware activity and
furnish various services to the user.

1.5.1. Computer Hardware

A digital computer is a data processing system that processes data in accordance
with a set of instructions (program) and produces useful results. The programmer
may regard the computer as a complex of devices with the functions shown in
Figure 1-5.

STORAGE
INPUT DEVICE MEMORY OUTPUT DEVICE .- 1----i

CENTRAL
PROCESSING

UNIT
(CPU)

-

.........., AUXILIARY
I---STORAGE

Figure 1-5. Elements of the Computer

7

PAG&:

UP-7536
Rev.l

1
FUNDAMENTALS OF FORTRAN

SEC:TIONI

1.5.1.1. Input Devices

An input device furnishes the program (and possibly data) to main storage. The
central processing unit (CPU) fetches the program and data from main storage,
processes the data, and stores the result in main storage from where it is sent to
an output device. If the program requires, input may be obtained from auxiliary
storage devices and the result stored in auxiliary storage for updating or for
transmission to an output device at a later time. Similarly, the input program
can be held in auxiliary storage to be processed on demand by the CPU.

Input devices are varied in nature. Currently, the most widely used device is
the SO-column punched card reader and all descriptions presented here are
oriented toward such a device. Other commonly used input devices are the
console typewriter and punched paper tape readers.

1.5.1.2. Main Storage

Main storage retains the program, intermediate results, and output in addressable
memory storage units. The contents of these storage un_its are transferred to the
CPU for processing, and the storage units receive results from the CPU. Since
processing in the CPU is generally much faster than the rate at which data is
obtained from, and entered into, main storage, the processing speed of a com­
puter is determined by the time required to enter and retrieve information in to
and from main storage.

1.5.1.3. Central Processing Unit

The central processing unit (CPU) decodes the machine language instruction.
performs the arithmetic and logical processing functions indicated, and supplies
the timing and control signals which synchronize the actions 9f the other
elements of the computer. Each machine language instruction must indicate
the operation to be performed and the loca tio11 of the operands.

Internal representation of values depends upon the particular computer; however,
number representation is divided into two classes: fixed-point representation

PAGE:

and floating-point representation. All computers can represent fixed-point numbers;
however, some may use preprogrammed routines for the representation of floating­
point numbers.

1.5.1.3.1. Fixed-Point Representation

In fixed-point number representation, any external string of digits (optionally
signed) is represented internally as a signed string of digits. A decimal point
(radix point) is implied to be a fixed number of positions (this fixed number may
be zero) from the rightmost position, hence the term "fixed point." When arith·
metic operations are performed on fixed-po~nt operands, it is the programmer's
responsibility to keep track of the decimal point to ensure that both the operands
and the result are correctly aligned. This is usually done by scaling the operands
(multiplying by a power of 2 or 10). However, when many numbers of widely dif­
fering magnitudes are irrvolved, floating-point numbers are used because fixed­
point representation requires an extensive programming effort for the scaling
operations. The advantage of fixed-point representation is that any external
string of digits can be represented exactly provided it is within the limits of
range prescribed by rhe computer. This range provides limited representation
when compared to floating-point represen ta ti on.

8

•

•

•

UP-7536
Rev. 1

•

•

•

1
FUNDAMENTALS OF FORTRAN S•CTIONI

1.5.1.3.2. Floating-Point Representation

In floating-point representation, any number can be represented as a fixed­
point number (mantissa) multiplied by an integral power (exponent) of 2 or 10.
The exponent part is also a fixed-point number.

The problems that arise from the use of floating-point representation of values

PAGltl

are truncations and roundoffs that result from arithmetic operations. For example,
the division operation 1.0/3.0 has as its true result, 0.333 ..• 3. However, since
the mantissa can only contain a limited number of significant digits, only an
approximation to the true result can be stored. Because of this, a floating-point
value actually represents an approximation to the true value of a number. These
errors are propagated as successive operations are performed upon floating-point
operands and their results. With some computers another approximation is required
if the internal representation of the mantissa is in binary form, rather than in
binary coded decimal, because a decimal fraction cannot always be expressed
exactly in binary form. For these reasons, comparisons involving floating-point
numbers require special attention from the programmer.

1.5.1.4. Auxiliary Storage

Auxiliary storage is storage in addition to main storage and includes devices such
as tape (magnetic and paper), disc, drum, and card (magnetic and paper). The time
required to access data contained in auxiliary storage is significantly longer than
for main storage; however, the cost of auxiliary storago: is lower and capacity is
generally larger. Auxiliary storage devices may contain files of data required for
a prog~am, different modules of the operating system, and/or results of a program
that will later be transcribed on an output device .

1.5.1.5. Output Devices

An output device usually furnishes a visual display of the results, as specified
in the program. In addition, an output device can inform the operator of various
conditions arising during operation. The most widely used devices are the console
typewriter, printer, and CRT (ca tho de ray tu be) dis play,

The auxiliary storage devices described in the previous paragraph can also be
considered as output devices, depending on their end use.

1.5.2. Computer Software

The entire complex of software (programs furnished with the computer) is called
the operating system. The operating system may contain programs which control
scheduling, input/output, compilation, debugging, storage assignment, linking,
loading, assembly, and other necessary functions depending upon the individual
computer system.

1.6. SAMPLE PROGRAM

The following paragraphs present a simple executable program ~a self-contained
computing procedure) for the purpose of introducing FORTRAN programming and
terminology. The concepts and terminology used in the description of the program
are described in detail in other sections of the manual.

9

UP-7536
Rev. l FUNDAMENTALS OF FORTRAN 1

SltC:TION1 PAGE:

This program calculates the average of a series of numbers, each of which is supplied
by a punched card. The program is general enough to calculate the average no matter
how many values are involved. The last card of the data deck contains a value known
to be outside the range of values expected. This card is used as an end data card.
After the end data card is detected, the average is calculated and printed, together
with explanatory text.·

Figure 1-6 is a flowchart, with explanatory text, outlining the program. A flowc·hart
should be constructed for any extensive program. It is a convenient means for detect­
ing logical errors and provides documentation for other programmers who may be able
to use or modify the same program. If the flowchart provides enough detail, the actual
writing of the program is greatly simplified.

l. Initialize a running count and a ranninll total to zero. The run•
nin11 count will indicate the number at values (one value per data
card) to be averaged. Each time a value is obtained, it will be
added to the running total.

2. Read in a vaJue from a card.

l. Test the vaJue for end data indicator. If the value is greater than
9.0(108) it indicates that Ute previo'.ls value read in was the last
value to be used in computing the average, and the next step is
step 7. If the value is less than or equal to 9.0(108}, proceed to step 4.

4. Add the input value ta the running total.

5. Increase the running count by 1:

6. Read in the next value and repeat the processin& step>1 by returning
to step 2.

7. Divi·de the running total by the runnint co.unt to compute the average.

8. Print this average with some explanatory text.

9. Indicate that there are no. more instructions to be executed.

Figure 1-6. Sample Prol,/em Flowchart

INITIALIZE
RUNNING COUNT AND
RUNNING TOTAL TO

ZERO

READ IN
DATA VALUE

UPDATE
RUNNING COUNT AND

RUNNING TOTAL

REPEAT LOOP

COMPUTE AVERAGE

PRINT
AVERAGE

AND
EXPLANATORY

TEXT

STOP

10

•

•

•

UP-7536
Rev. 1

•

•

•

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

1
FUNDAMENTALS OF FORTRAN- SllCTIONI PAGlll

Figure 1-7 is the FORTRAN program written from the procedure outline in Figure
1-6. It is not the only progr~m that could have been written for the problem, nor is it
the shortest in terms of lines required. It does. introduce FORTRAN nomenclature and
basic concepts - the most important of which is the programmed loop. S~ch a loop
is shown in the flowchart portion of Figure 1-6. The purpose of a loop is to repeat
a series of operations without respecifying the steps for each repetition. In conjunction
with every loop, there must be some test that will make it possible to leave the loop;
otherwise, it will be performed without end, being limited oniy by the time allotted to
the program. In the sample program, detection of the end data card provides the e.xU.....­
from the loop.

~"C• ~a" COMM&NT

STATEMENT
~FORTRAN STATEMENT

NUllHll -.
5 7 10 20 30 .ta so

le ~M P i.!J.. T ...E_ .lA ~E R A G E 0 i:..t H U~l!i_E RS Tj_O BE R E AD 1F R 0 M DAT A JC A R D S

c .l I J_ _l _l

c IHI T I A L l_iZ E RUH H I H Gi C 0 UH T AH Dt RUHHIHG T10TAL _l

DA T A__l K 0 U HT T 0 TtA L I 0 , 0 • 0 I I I .l

~ OBT A I H Vj_A L U E _1 _l I .l
3 0 R E A I?.!_(1 , 1 0) V A L__iU E I I .l
1 0 F 0 R M..lA T (GfO.O)l J I .l

c T ES T F 0 1!i EH D DATAJ_ _l I l I -
I F (V_i A L U E • GT • 19. 0 E 8) G.O IT 0 2 0 J_ .l

c U PD A TE R_iUHHI HG T 01j_AL A.M D RU H_lH I NG C 0 U N T1 J_

TOTA1L = TOTAL 1+ VAL U E J_ I l
K 0 U H.lT = K 0 U NT J_ + 1 J_ i l

c REP E A T L_iOOP I I _l .l

GO TIO 3 0 I I _l l ...L

c COM P U T E _LA V E R A G E , A, FtT E R L AS T 'iALllE I J_

2 0 XKOUJNT = K 0 UN T1 I J_ I

X M E A_lH = TOTALJ_/ XK OU HT .l I r l
c p R I H T A VtE R A G E AH D 1TE XT I ...L _l__J_ ..L ..L ...Ll '...L ..L

WR I 'lj_E (...L!i_'...J.40 >...t_ x.i_~E ~NJ....J. ...J.J. ...L.l _j_....J. l _l .1 1 I I I I I I I - J.J.J.

4 0 F 0 R M_lA T (1 7 H ,A VE1R AGE YALU~ = '
F 1 0 • 5) _l _l

c I HD I CAT~ EH D .J.O F E X_lE C U T I .0 N _l I J

S T 0 P_i l I I I J

c I HD I C A T E1 HO M 0 il E L 11 H E S I I _l

EH D _l I I _lJ. __[1

Figure 1-7. Sample Program

11

..L

..L

...J.

UP-7536
Rev. 1 FUNDAMENTALS OF FORTRAN 1

SECTION1

Line 1 of the program is a comment line, indicated by the character C in column 1.
This line (including the C) is printed when the program is compiled, but does not
affect execution of the program. Comment lines provide documentation for the
programmer.

Line 2 is also a comment line with all blank characters producing a blank line
(except that the C is printed).

Each of the remaining comment lines applies to the statement(s) immediately follow­
ing it. Again, comment lines are not required, but are included to aid the reader in
following the program.

Line 4 is a DATA or initialization statement that sets an initial value of zero for
KOUNT (symbolic name for the running count) and TOTAL (symbolic name for the
running total). The DATA statement does this at comp-ilation time rather than
execution time, in order to reduce execution time for the program. KOUNT will be
a fixed-point value; TOTAL, a floating-point value.

Line 6 is a READ statement that instructs the computer to read a punched card for
the number to be represented by VALUE.

Line 7 is a FORMAT statement that indicates the required number is found in the
first ten character positions of the punched card.

Line 9 is a logical IF statement. It tests the number that is read in for VALUE; if
the number is greater than 9.0 (108), program control is transferred to the statement
with a statement label of 20 (in columns 1 through 5). If the number is less than or
equal to 9.0 (108), the next executable statement which follows in physical order
is to be executed. The logical IF provides the exit from the loop.

Line 11 is an arithmetic assignment statement that updates the running total. It
obtains the current value of TOTAL, adds to it the number just read for VALUE,
and assigns this sum as the new value for TOTAL.

Line 12 is also an arithmetic assignment statement that increases the value of
KOUNT by 1 each time a number for VALUE is read.

Line 14 is a GO TO statement that completes the loop. When executed, it transfers
control to the statement with statement label 30, so that the next card can be read.

P•GE:

Line 16 is executed only after the end data card, which contains a value greater than
9.0 (108), has been read. Its effect is to convert KOUNT to floating-point form to be
compatible with TOTAL so that one can be divided by another (line 17).

Line 17 is an arithmetic assignment statement that specifies the division necessary
to calculate the average, XMEAN.

Line 19 is a WRITE statement which specifies that the value of XMEAN is to be
printed.

Line 20 contains a FORMAT statement which specifies that the characters AVERAGE
VALUE= are to be printed, followed by 10 print positions for the value of XMEAN.
which is to be printed with five digits to the right of the decimal point .

•

12

•

•

•

UP-7536
Rev. 1

•

•

•

(

I
I

l

1
FUHDA.MEHTA.LS OF FORTRAN

SECTION! PAGE:

Line 22 is a program control statement, the STOP statement, that terminates execution
of the program.

Line 24 is an end line, terminating compilation of the program unit.

Note that every statement (columns 7 through 72) except the assignment statements
starts with a keyword. (Comment lines are not considered statements.) The keyword
is an English word that describes the purpose of the statement. Every statement in
FORTRAN, except statement functions and certain assignment statements, begins
with a keyword. Keywords are not reserved words in FORTRAN; they may be used
anywhere in the program as symbolic names.

Figure 1-8 is the complete deck of punched cards for the program in Figure 1-7.
This d~ck consists of the FORTRAN program cards followed by data cards and an
end data card. It should be clearly understood that punched cards are not the only
means of primary input. Punched cards are shown here because of their widespread
use and because they are easily used for illustrative purposes in examples. At least
one system control card is required preceding the program, another p.receding the data,
and possibly an end of file card after the last data card. Requirements of these control
cards depend upon the computer being used, and they are not part of the standard
FORTRAN language.

/ 9.tEI ENO DAT A CARO JO

/ 231.53 29

I 0.9176 21

/ -•5. 27

L -•21.s 26 ! L 123'5.•79

2·2s I I END

JC INOICAT! NO MORE LINES 23

L STOP :2
Le 1ND1CATe eHo OF execur10N 21

L 10 FORMAT (17"1 AVERAGE VAL.UE = ,F10.Sl 20

L WRITE{J,..CO XM!AN \9

Le PRINT .tveR•Ge ANO rexr 11

/ XMEAN ::: TOTAL, XICOUNT 17

L 20 XKOUNT = ICOUNT 16
/c COMPUTE A.YERAGE 4.FTER LAST VALUE 15

/ GO TO JO ..
/c •ePe4 T LOOP 13

L !COUNT ::: KOUNT + 1 \2

L '!'OTAL:;: TOTAL+ VALUE ti

Le uP01.re RUNNtNG rorAL ANO RUNNtNG couNr 10

/ IF(VALUE .GT. 9.0EI) GO TO 20 • -Le resr FOR END DA TA 9

L 10 FORMAT (GlO.Ol 7

L 30 REAO(l.10} VALUE • Le oa"!"A1N v•i.ue s

L OATA KOL:NT, TOTAl.10,0.0/ ' Le 1N1T1A1.1ze RUNNING COUNT &.NO RUNNING TOTAL)

Le 2

c COMPUTE AVERAGE OF NUMBERS ro ae READ FROM O.UA CARDS \

I I I I I Ill I II II Ill I II I II I

1111 I I I I I I I Ill I

o 111101100111oo111oto:1aa1010111oo1ooaooooo101111o1111111 a a o o o a o o o oo o 1 o o a a o o o 1o1
I t: I ~ ' I • t II":: i:• 1$." 1111a111!nlUfl'11'Klt•t1l1lU•:it•11•ft .. l'•~•l*••••• .. •11V!l51•9'1!1H••1na11••PQUll" l?nlHl:'ln 1'1'1•

1111 I I I 1 \ 1 I I I 1I1 I I I I \ I l l I I 1 \ I I 1 \ \ I \ I 1 I I \ I 11 \ I 1IlI1 1I11 I I I I I I I I I I I \ I \ 11 I I I \ I \ 1 I \I

2 2 22 2 2 2 2 l! !2 22 2 2 2 22 l 2 2 2 212 2122!212221222 2 2 ?l 2 ! 2 2!222!!12 2 2 ! 2 2 2 2 2 2 2 2 22 2 2 2 2 22 2 2 2 2 !

lllJ31 llll ll 3 3131lll2 l Ill l 3l JIJ Ill l l 33 33 3 3 3l l l 3ll3lll ?l ll ll l l l l ll l l ll l l J ll l ll ll l

....•.•...............•••... ,•....•.•.......•..........................
S 5 S 5 5 S 5 5155Ill5S15 5 5115 5 5 II 5 5 5 5 5 515 515 5 5 5 5 5 5 5 5 I 5 I 5 I 5 5 5 5 5 5 I 5 5 5 I 5 5 5 5 I 5 5 I 5 5 5 5 5 5 5 5 5 5

S&&I&&& & 1166666&&&11& & i&&S&&&&l&&&i I&&; &1&161i&5; i& Si& i 1666 5 & 5 i i&&S 66 s 5 5 i&& & ii' 6

111111111711111111117117171171111771117i77117777117 1 711 7 7; 7 7 7 7 7 7 7 7 7 1177771117711

111!1118 I". 11iaa11I'811s11jIi111II1111111111s11I111 ! 18111 I! 8 a a Is I 8 11 ! 8 I I I 111' 11 8

9,, n ! 9 99H s 919!! 9 9 9 919 IJ! 91~ .:i,999 9!1199 !919 B n 9! 9 9 !It 9 99 9 ! ! 9 9 9 9 9 IJ 9 'H ! 9 9 9 ! ! 9 ! 9 g'
- • • 1 ~ • ·1·,lL~~~:·· ·•l:"!lt1:1ri:1!"~:·"1:t.JOl•Jl'~l-<l~!'!ll:!''""'l<J ••,•ill<llt!tSlU\l~'S::l''~IUAO•il~Jiof~!.O>:: ;; ~' l.:114.,r.i"'':;,.~

Figure 1-8. Sample FORTRAN Problem Dec.I< and Data

13

•

•

•

UP-7536
Rev. 1

•

•

•

FUNDAMENTALS OF FORTRAN 2

2.1. GENERAL

SECTION!

2. WRITING A FORTRAN
PROGRAM

This section discusses the organization of FORTRAN programs and the rules for
writing a source P.rogram, with particular attention to constants, variables, and arrays.

2.2. ORGANIZATION

Organization of a FORTRAN program necessitates discussion in two areas: the con·
ce.pt of subprograms and the organization of program units.

2.2.1. FORTRAN Program

A FORTRAN program is made up of one, and only one, main program and as many
subprograms as required. The main program contains the steps required to solve
a given problem, the subprograms are subordinate program units used by the main
program. Both are referred to as program units .

l

UP-7536
Rev. 1

2
FUMDAMENTALS OF FORTRAN Sl:CTIONa PACiEI

The various types of program units (see Figure 2-1) are as follows:

• A main program is a series of comments and statements which does not contain
a FUNCTION, SUBROUTINE, or BLOCK DA TA statement and is terminated by an
end line.

• A function subprogram is a series of comments and statements starting with a
FUNCTION statement and terminated by an end line.

• A subroutine subp.rogram is a series of comments and statements starting with a
SUBROUTINE statement and terminated by an end line.

• A specification subprogram is a series of comments and specification statements
starting with a BLOCK DATA statement and terminated by an end line.

SPECIFICATION
SUBPROGRAM

BLOCK DATA

s
END

MAIN
PROGRAM

ENO

EXTERNAL PROCEDURES

PROCEDURE SUBPROGRAMS

FUNCTION SUBROUTINE
SUBPROGRAM SUBPROGRAM

••• FUNCTION SUBROUTINE ••.

s \
END END

external procedures
written in other than
FORTRAN language

Figure 2-1. Program Units of FORTRAN Program

2

•

•

•

•

•

•

UP·7536
Rev. l FUNDAMENTALS OF FORTRAN 2

SIECTION1 PAGEi

Each program unit is independently compiled and then linked together by the operating
system to form an executable program starting with the main program unit. Program
units may be written in languages other than FORTRAN but must conform to thEt
rules for FORTRAN subprograms. Such program units and procedure subprograms

(function. and subroutine subprograms) are termed external procedures.

Execution of a program always starts with the first executable statement of the
main program. In. the first example shown in Figure 2-2, the main program proceeds
until· it encounters a reference (call) to the external procedure. The external pro­
cedure assumes control until it encounters a RETURN statement, which sends
control back to the calling program unit (in this case, the main program). The main
program then continues processing until another reference transfers control to the
external procedure. The external procedure assumes processing until it encounters
a RETURN statement (not necessarily the same as the first RETURN statement)
and transfers control back to the main program. The main program then resumes
processing until it encounters the STOP statement, which transfers job control to
the operating system.

The second example in Figure 2-2 shows how a procedure subprogram can call upon
another procedure subprogram during execution.

A specification subprogram (with a BLOCK DATA header) consists entirely of
nonexecuta ble statements and therefore never assumes control during execution.

Subprograms are useful because they eliminate repetitive coding of procedures used
many times in a program. In addition, a library of mathematical external procedures,
called basic external functions, is present which con ta ins debugged procedures for
computation of mathematical functions such as square root, sine, etc. The main
program of a large FORTRAN program can be coded as a logical skeleton consisting
primarily of references to subprograms; these subprograms can be independently
coded and compiled concurrently with the main program •

3

UP-7536
Rev. 1 FUNDAMENTALS OF FORTRAN

MAIN PROGRAM

irst executable statement

STOP
END

MAIN PROGRAM

STOP
END

EXAMPLE l

EXAMPLE 2

header

PROCEDURE
SUBPROGRAM

first executable statement

header

RETURN

RETURN

PROCEDURE
SUBPROGRAM

NOTE: A header is either a FUNCTION or a SUBROUTINE statement.

Figure 2-2. Control Path During execution

2
SIECTIONt

header

PROCEDURE
SUBPROGRAM

first executable statement

END"

4

•

•

•

UP-7536
Rev. 1

•

•

•

FUNDAMENTALS OF FORTRAN PAGE:

2
S1ECTION1

2.2.2. Program Unit Organization

A program unit consists of comments, statements, and one end line. A FORTRAN
statement falls into one of two categories: an executable statement or none."Cecutable
statement. An executable statement specifies an action; a nonexecutable statement
describes the characteristics and arrangement of data, editing information, statement
function definitions, and classification of program units. Nonexecutable statements
are generally intended as instructions to the compiler; no executable machine language
instructions are generated. Executable statements result in executable machine
language instructions, effective at execution time. As an example, lines 6 and 7 of
Figure 1-7 are as follows:

The READ statement is an executable statement specifying an action; the FORMAT
statement is a nonexecutable statement specifying the characteristics and arrange·
ment of data. Table 2-1 is a precise guide for determining whether a specific
FORTRAN statement is executable or nonexecutable. The order (sequence) of
statements within each program unit is shown in Table 2-2 .

STATEMENT GENERAL CATEGORY

EXECUTABLE STATEMENTS

arithmetic assignment statement
logical assignment statement assignment statements
GO TO assignment statement -

GO TO statements
IF statements
CALL statements
CONTINUE statement control statements
RETURN statement
STOP statement
PAUSE statement
00 statement

READ statement
WRITE statement
REWIND statement I .'O statements
BACKSPACE statement
ENDFILE statement

Table 2-1. FORTRAN Statements (Part 1 of 2)

5

UP-7536
Rev.l

!
I
I

2
FUHDAMENT.ALS OF FORTRAN

SllCTION1

STATEMENT GENERAL CATEGORY

NONEXECUTABLESTATEMENTS

DIMENSION statement
COMMON statement
EQUIVALENCE statement
EXTERNAL statement
type-statements: specification statements

INTEGER statement
REAL statement
DOUBLE PRECISION statement
COMPLEX statement
LOGICAL statement

DATA statement data initialization statement

FORMAT statement format statement

statement function definition function defining statement

FUNCTION statement
SUBROUTINE statement subprogram statements
BLOCK DATA statement

NOTE: The end I ine is nonexecutable and is not considered a statement.

Tobie 2-1. FORTRAN Statements (Port 2 of 2)

PROGRAM UNIT ORDER OF STATEMENTS

(1) specification statements and ·FORMAT statements, in any combination

(2) statement function definitions, DATA statemer:ts, ana FORMAT state·
MAIN ments, in any combination

PROGRAM (3) executable statements, FORMAT statements, and DATA statements,
in any combination

(4) end I ine .
Minimum requirements: an executable statement and one end line.

(1) FUNCTION or SUBROUTINE statement

(2) specification statements and FORMAT statements, in any combination

(3) statement function definitions, DATA statements, and FORMAT state·
PROCEDURE ments, in any combination
SUBPROGRAM (4) executable statements, FORMAT statements, and DATA statements,

in any combination

(5) end line

Minimum requirements: for function .subprogram - one FUNCTION statement,
an executable statement, a RETURN statement, and an end line; for sub-
routine subprograms - one SUBROUTINE statement, a RETURN statement,
and an end I ine.

(1\ BLOCK DATA statement

SPECIFICATION
(2} specification statements (except EXTERNAL), in any combination

SUBPROGRAM (3) DATA statements

(4) end line

Minimum requirements: one BLOCK DATA statement, a COMMON statement,
a DATA statement, and one end line.

Tobie 2-2. Ordering of FORTRAN Statements

6
P4Gll:

•

•

•

UP-7536
Rev.1

•

•

•

2
FUNDAMENTALS OF FORTRAN SECTION&

2.3. CHARACTER SET

The FORTRAN character set (see Table 2-3) consists of all the characters required
for writing FORTRAN statements.

{LETTERS A through Z (only upper case letters)
ALPHANUMERIC

DIGITS a through 9

blank, represented by ~ in text and
codin11 form

= equals

+ plus

- minus .
• asterisk

SPECIAL CHARACTERS / slash

(left parenthesis

) ri11ht parenthesis

, comma

. decimal point

$ currency symbol

Table 2-3. FORTRAN Character Set

In addition to this set, each processor has its own set of additional characters. The
FORTRAN character set and any additional characters in the processor set are
referred to collectively as the processor character set.

2.4. FORTRAN PROGRAMMING FORM

A typical FORTRAN programming form (for SO-column punched card input) is shown
in Figure 2-3. A FORTRAN line uses only columns 1 through 72; the information in
columns 73 through 80, shown only in the program listing, may be (depending upon
the processor) used for documentation. (In Figure 1-7 these columns are used to
serially identify the lines of the program.) Columns 1 through 5 are used for state-
111ent labels; column 6 is used to indicate the continuation of a statement; columns
7 through 72 contain the statement (or its continuation) or an end line.

In writing a FORTRAN program, blank characters may be used freely to improve read­
ability with these general exceptions: comment lines, the end line, and Hollerith
data. Except where noted, blank characters have no meaning and are ignored. Exceptions
to the general rule are explained in detail in the applicable paragraphs of the manual.

2.4.1. Comment Line

A comment line is printed only when a program unit is being compiled and is a
convenience for the programmer. Only characters from the FORTRAN character set
may be used. A comment line is indicated by the character C in column 1 (as shown
in Figure 1-7). Any blank character in a comment line will be printed as such. A
comment line may not be used between the initial line of a statement and its con·
tinuation lines, and must always be followed by an initial line, another comment

line, or an end line. No executable code is generated for a comment line .

.1

UP-7536
Rev. 1 FUNDAMENTALS OF FORTRAN

2
Sl:CTION1

2.4.2. End Line

UNIVAC

One end line must appear as the last line of each program unit to be compiled. Its
purpose is to indicate the end of compilation for a particular program unit. Columns
1 through 6 must be blank; columns 7 through 72 must contain the characters END.
The characters may be interspersed with, preceded by, and followed by blank
characters. Thus, starting from column 7,

END

E N D

EN D

are all valid end lines.

FORTRAN
l'llOGRAMMING PORM

PROGRAM _______________________ PROGRAMMeR ______ OATe _____ PAGE_

,--"C"' l'D• COll ... NT

~~~':.~Tl)PORTRAM STATIMIMT 
5 7 10 lD JO ... 50 60 72 IO 

...L .l. ...L _L J_ I 

I ' J_ _L .l. '' 
.l. ...L .l. .l. 
J_ _l_ l .l. 

I 
I ...L ' .l. .l. 

_l_ I 

_l_ 

' _l_ _l_ _l_ J_ _l_ 

..L ..L ..L .l. J_ .l. 
_l_ _l_ .l .L 

_l_ .J. .J. .L .l .L 

I .l. _L _L .l _L 

..L ..L ..L ..L' .l .l. 

_L _L .1 ·..L .l _L 

.L .L -
_L _l_ _L ,J_ .L .l 
_L _L' _L _L J_ _L 

_L ..L J_ .l _L 

..L L L ..L .1 ..L 
I .L 

' .J. ..L _L ..L .l J_ 

.1 _L .J. .l .J. 

..L ..L .l. .l. .l .1.. 
_j_ _L _j_ I I 

...L _l_ _L .l I .L 

! I _l_ _L ..L _L .l. _L 

.1 .l .l .1 .1 .1 
J_ .1 _L .1 .1 .1 

_L _L _L J_ _L 

...L ..L _L' J_ '' 

Figure 2-3. FORTRAN Programming Form 

8 

• 

• 

• 



UP-7536 
Rev. 1 

• 

• 

• 

2 9 
FUNDAMENTALS OF FORTRAN 

SCCTIONt PAGC: 

2.4.3. Statements 

A statement consists of an initial line and, if required, up to 19 continuation lines 
which follow in sequence. Each line of the statement is written in columns 7 through 
72. An initial line must have either the digit 0 or a blank character in column 6 and 
must not have the character C in column 1. Each continuation iine must have a 
character other than the digit 0 or blank character in column 6, and must not have 
the character C in column 1. Columns 1 through 5 are available to the programmer 
for documentation (except for the character C in column 1). Each continuation line 
must be immediately preceded by an initial line or another continuation line. 

For example, line 20 in Figure 1-7 was written: 

r"C• •OR COMMENT 

STATEMENT 

} FORTRAN STATEMENT • NUMBER 
5 7 10 20 30 

4 0 F O_LR_iMlA T...1_( 1 7 H_L .l.A V E1R...lA.l.G E _L V A_L L U EJ .l..: _L , F...l l_LO 

It could be written as: 

40 FORMAT'( 

B,Fl0.5) 

However, it can not be written as 

4 0 FORMAT 7H 

AAVERAGE v A L I u I El I = I 

B FlO. 5) 

because the 17H of the FORMAT statement means that the 17 characters immediately 
following the Hare Hollerith data. As was pointed out in 2.4, blank characters are 
significant in Hollerith data. 

Frequently, the character in column 6 of a continuation line indicates the sequence 
of continuation lines (it is hoped that what is described as a common practice in 
this manual is not deemed mandatory by the programmer). For example, the first 
continuation line might contain the digit 1 in column 6; the second, the digit 2; and 
so on. Also, since the first five columns of continuation line5 are available for 
documentation (using any characters from the FORTRAN set), these are sometimes 
used to contain the statement label of the initial line . 

40 

._Ls> l 



UP-7536 
Rev. 1 

2 
FUNDAMENTALS OF FORTRAN · SIECTION& PAGIEI 

2.4.4. Statement Labels 

A statement label is an unsigned integer (1 through 99999) that identifies a FORTRAN 
statement and is written in columns 1 through 5. Only the digits 0-9 and blank charac· 
ters may be used in a statement label. The same statement label cannot be us-ed more 
than once in a program unit; the same statement label can appear in more than one 
program unit. The value of a statement label does not affect the order in which 
statements are eicecuted. 

A statement label is meaningful only when used with the initial line of a statement; 
it is ignored when used with continuation lines. It enables other statements of the 
program unit to reference it; therefore, it is superfluous when used with a statement 
that is not referenced by another s ta tern en t. Some processors will print out a wa ming 
diagnostic message that indicates an unreferenced statement label. The possibility 
of the programmer having forgotten to insert the referencing statement is strongly 
indicated. 

A maximum of five digits may be used in a statement label. All blanks and leading 
zeros are neglected. 

F·or example, in the sequence 

r-c• 'OR COMME•T 
STATEMENT 

~ FORTRAN STATEMENT .. NUMBER 
5 7 10 20 30 

l · ..l. J J ..l. I 

_l ...l --1 
J. 

...1 ~ ..I. J ..I. ..I. ..I. ..I. ..L l ..L --1 _l ...l 

1..L 5 7 F = I ( A + B - ~) ...t./ D J I I 

...l --1 ..l ...l. ...l. J '--1 ...l. ..l ...l. ..l ..l ..l ..l ..L 1 ..l ..l .J. .J. .J. ..J. .J I I I I I I I I I 

L I . i ..l ..l l ...l. ..l .J. ..l ..l ..l. ..l. .J. l ..J.. ...l. ...l_ --1 
~~ 

I . _l .-1 ...l. J .-1 ..l ..l. ...l. J I I 

G 0 r 1o 1 5 7~ 1 _l_ .L l .L _l 

l · -1. 1 .L I -1. .L .L l I I I 

I L· l .L ' -1. 1 _J I 

_L _l_ ...!.. l· ' _l_ 
I -1. .L 1 .L ..!. _L 

the statement label of the artthmetic assignment statement could have been written: 

10 

• 

• 

• 



• 

• 

• 

UP·7536 
Rev. 1 F'AGEI 

2 
FUNDAMENTALS OF FORTRAN 

Sl:CTIONI 

or 

or 

but not as 

because control is being transferred to statement label 15i, not 1570. 

2~5. FORTRAN DATA 

Data is information manipulated by a program. An item of data is classified as 
arithmetic, logical, or Hollerith. Arithmetic data is used in computations restricted 
to numbers. Logical data is used to indicate whether a specific condition is true or 
false. Hollerith data is information to be used literally; it may contain any and all 
characters of the computer set of characters and is generally used for printing 
messages, titles, and headings. 

2.5.1. Data Types 

The various forms in which data may appear are known as types. The term type, 
when applied to data in FORTRAN, has a special meaning. An item of data, if 
arithmetic, must be integer type, real type, double precision type, or cqmplex 
type. If not arithmetic, it must be logical type or Hollerith type. The different data 
types are discussed in the remainder of this section. 

One important attribute of a data type is the number of storage units required for 
internal representation of a datum. This attribute is of special importance in the 
use of COMMON and EQUIVALENCE statements, and is listed in Table 2-4 for 
reference purposes. 

-
DATA TYPE STORAGE UNITS* REQUIRED 

integer 1 

real 1 

double precision 2 

complex 2 

logical 1 

*The term "storage unit" is defined d1fferer.t!y for different computers. In one computer, :t riay 
:nean a word; 1n 3nother computer, ;t -nay ·-nean f;ve consecutive bytes, and so on • 

Table 2-4. Memory Requirements ior Data Types 

11 



UP-7536 
Rev. 1 

2 
FUNDAMENTALS OF FORTRAN 

SIEC:TION1 PAGE: 

An item of data can be expressed as a constant or can be represented by a symbolic 
name. For example, in 

r"C" FOR COMMENT 

ATEMENT c 
UMBER oFORTRA.N STATEMENT-------•• 

5 f 7 10 20 

A = 8 + 5 • 0 

30 

I I I 

A and 8 are symbolic names used as variables and 5.0 is a constant. In the DATA 
statement 

NAME is a variable; SHTITLE is a Hollerith constant representing the Hollerith 
datum TITLE. 

2.5.1.1. Integer Type 

An integer type datum is always the exact representation of an integer (a string 
digits without any decimal point). It may assume positive, negative, or zero 
values (the value zero is considered neither positive nor negative). Each compu­
ter places a limit on the number of digits (or the maximum absolute value) that 
may be contained in an integer type datum. An overflow condition occurs when 
this is exceeded. The term "exact representation" is used because an integer 
type datum is represented internally as a fixed-point number. 

2.5.1.2. Real Type 

A real type datum is the processor approximation to the value of a real number 
(as opposed to a complex number) which may or may not have a decimal p·oint. 
It is limited to a specific number of significant digits and a specific range of 
values, both of which differ for different processors. The real type value may be 
positive, negative, or zero (the value zero is regarded as neither positive nor 
negative). When the range is exceeded for a value, an overflow condition occurs; 
when the value is less than the lower limit of the range and is not zero, an under­
flow condition exists. A real type value is an approximation because it is repre­
sented, internally, in floating-point form. 

12. 

• 

• 

• 



• 

• 

• 

UP-7536 
Rev. 1 S£CT10N1 

2 FUNDAMENTALS OF FORTRAN 

2.5.1.3. Double Precision Type 

A double precision type datum, like a real type datum, is also the computer 
approximation of a real number, but the degree of approximation is greater than 
that of a real type datum because it can contain more significant digits. The 
number of significant digits is not necessarily double that of a real type value; 

PACiE: 

it will be greater than that of a real type value, and this number must be specified 
for each processor. In addition, its range of values may be the same as or greater 
than, rarely less than, that of a real type value. This range must also be specified 
for each processor. A double precision type datum may be positive, negative, or 
zero. Here, as for all arithmetic values, the value zero is treated as neither 
positive nor negative. 

2.5.1.4. Complex Type 

A complex type datum is the processor approximation to the value of a complex 
number. It is represented as a pair of real type values; the first of the pair 
represents the real part of the complex value, the second of the pair represents 
the imaginary part .of the complex value. Each part, therefore, has the same degree 
of approximation as a real type datum. 

2.5.1.5. Logical Type 

A logical type datum is an item that may assume only the values true or false. 
There is no standard internal representation for these values; internal representa­
tion depends upon the processor. 

2.5.1.6. Hollerith Type 

A Hollerith type datum is a string of characters taken from the processor set 
(which includes the FORTRAN set) of characters. The blank character is a sig­
nificant character in Hollerith type data. 

2.6. CONSTANTS 

A constant is a value (arithmetic, logical, or Hollerith) that is defined by its appear­
ance in a DATA or an executable statement. Once defined, it must not be -redefined 
during execution of the program. For example, in the arithmetic assignment statement 

the integer 300000 is an arithmetic constant. 

Throughout this manual the term "constant'' alone, when applied to an arithmetic 
constant, means a constant without a sign. An integer, real, or double precision 
constant is said to be signed when it is written immediately after a plus or minus 
sign. An optionally signed constant may have the plus sign omitted; the minus sign 
cannot be omitted for a negative value . 

13 



UP-7536 
Rev.l 

2 
FUHDAMEH'TALS OF FORTRAN 

SECTION! P4GE• 

In the following discussions it is arbitrarily assumed that an integer type datum can 
consist of up to nine digits and a sign; a real type datum, up to eight significant digits; 
and a double precision type datum, up to 15 significant digits. It is also assumed that 
one storage unit can contain five Hollerith characters. These assumptions are made 
for use in examples. These specifications differ for each processor and the programmer 
should consult the reference manual for the particular processor being used. 

2.6.1. Integer Constant 

An integer constant is a nonempty string of decimal digits. No decimal point, comma, 
alphabetic, or special character (except blank characters) may appear anywhere in 
the string. Blank characters and leading zeros are ignored except where noted. The 
value 0 is a valid integer constant. 

Examples: 

0 

0000 

123000123 

123,456 

valid integer constant 

valid integer constant 

valid integer constant 

invalid integer constant because of comma 

invalid integer constant because of decimal point .o 
o. also invalid integer constant 'Jecause of decimal point 

tb'bi:!'b invalid integer constant because the string must not be empty 

2.6.2. Real Constant 

A real constant may be written in any one of the following three ways: 

(1) As a basic real constant. A basic real constant consists of an intege: part, 
a decimal point, and a decimal fraction part, in that order. Both the integer 
and the decimal fraction part are strings of decimal digit:; and (possibly) 
blank characters. Either part may be empty (consisting of only blank characters), 
but not both. Except for this restriction, any blank characters in the constant 
are ignored by the processor. 

Examples: 

.0 valid real constant 

0. valid real constant 

0.0 valid real constant 

123.45678 valid real constant 

000123.45678 valid real constant. Leading zeros are ignored. 

123.456789 valid real constant. The presupposed limit of eight significant 
digits is exceeded, but the processor can approximate the 
written constant by an appropriate real type value. 

invalid real constant because integer part and decimal fraction 
part are empty 

14 

• 

• 

• 



• 

• 

• 

UP-7536 
Rev.l 

2 
FUNDAMENTALS OF FORTRAN SECTION I 

(2) As a basic real constant followed by a decimal exponent. A decimal exponent 
is the letter E followed by an optionally signed decimal integer. This decimal 
integer has a range unique to each processor, usually two or three digits, with 
leading zeros ignored. The decimal exponent- has the effect of multiplying the 
preceding constant by a power of 10, as specified by the optionally signed 
decimal integer. 

Examples: 

.OEO 

1.23E2 

valid real constant 

valid real constant. It could also have been written as a basic 
real constant, 123.0 

123456.0lE-2 valid real constant. It could also have been written as a basic 
real constant, 1234.5601 

123456.0lE+OS valid real constant. It could also have been written as the 
basic real constant 12345601000.0. The zeros trailing the 
rightmost 1 are not handled as significant digits, but as 
positional digits. 

There is no assurance that equivalent mathematical versions of a value will yield 
identical processor values; these will be equivalently approximated by the processor. 

(3) As an integer constant followed by a decimal exponent. 

Example: 

12345601£-4 valid real constant. It is equivalent to the real constant 
123456.0lE-2 or to the real constant 1234.5601. 

Figure 2-4 shows different ways of stipulating the values 0.1234 · 10-4 and 
-0.1234 · 104 as real constants in FORTRAN statements of a program. 

ALGEBRAIC VALUE FORTRAN EQUIVALENT 

I 0 I • I 1 I 2 I 3 I 4 I E, - , 4, 
( 
J I+ I I I 

3 4 
I 

E 
I I 2, 

0.1234·1 o-4 

I 1, 2 I 3. 4 IE I -, 0 I 8 I I 

( 
-1. il..L..L..L.l...L-1.-1...L 

I 

I -, 0 I < I 1 , 2 I 3 I 4 I E I + I 41 
-0.1234"104 ( 

I -, • I 1 I 2 I 3 I 4 I EI + I 0 I 4 I 

I I -, 1 I 2 I 3 I 4 I E I 0 I 

1 2 3 4 • 
l I 1 

Figure 2-4 . . <:/ea/ Constants in FORTRAN Starements 

I I 

4 
I 

l __L __L _L -1. _L 

15 



UP-7536 
Rev. 1 

2 
FUNDA.MENTA.LS OF FORTRA.H Sl:CTION1 

, 
2.6.3. Double Precision Constant 

A double precision constant may be written in either of the following ways: 

(1) As a real part (of exactly the same form as a basic real constant) followed by 

a double precision exp9nent. A double precision exponent is similar to a 
decimal exponent, except that the letter D is used instead of the letter E. 

Examples: 

12345678.901234500 valid double precision constant 

12345678.90123450-5 valid double precision constant 

123.003 valid double precision constant 

(2) An integer part followed by .a double precision exponent. 

Example: 

1234567890123450-5 valid double precision constant 

2.6.4. Complex Constant 

A comp/ex constant is the processor approximation of a complex number. It is 
written as a pair of optionally signed real constants enclosed in parentheses. The 
first of the pair is the real part. This is followed by a comma and then the second 
of the pair, which is the imaginary part. 

Examples: 

(1.2 , 3.4) 

(0.0 , 3.4) 

(-34E-2, -4.SE3) 

(-3400, -4.SE3) 

valid complex constant. It represents 1.2 - 3.4i. 

valid complex constant. It represents the imaginary 
number 3.4i. 

valid complex constant. It represents -0.34-4500i. 

invalid complex constant. Both constants of the pair 
must be real type constants. 

16 

• 

• 

• 



UP-7536 
Rev. 1 

• 

• 

• 

2 
FUNDAMENTALS OF FORTRAN 

.SEC:TIONs 

2.6.5. Logical Constant 

A logical constant is written as either .TRUE. or .FALSE. The periods are required, 
as shown. It represents a condition as either true or false, respectively. An analogy 
is a switch which is either on or off, with ~TRUE. corresponding to on, and .FALSE. 
corresponding to off; then, in a program, the programmer can test the setting of the 
switch and condition the sequence of execution accordingly. In the following 
sequence, a logical IF statement is used for testing. 

LOGICAL E VE N 

E V EN •= • TR U E • 

I I I I 

IF(EVEN)GO TO 1 0 0 

1 0 

1 0 0 

The first statement is a type-statement which informs the compiler that the variable, 
EVEN identifies a logical value, that is, either true or false. The second statement 
is a logical assignment statement that sets EVEN to true. The third statement is a 
logical IF statement that means: IF EVEN is true go to statement 100; otherwise, 
go to the next statement (statement 10) . 

17 



UP-7536 
Rev. 1 

2 
FUNDAMENTALS OF FORTRAN SICCTION1 

2.6.6. Hollerith Constant 

A Hollerith constant is written as the letter H p'receded by an integer constant 
which specifies the number of characters following the H that are part of the 
Hollerith constant. A Hollerith constant may appear only in a DATA statement 
and in a CALL statement. 

·Examples: 

SH TITLE 

'6HIS NOT 

SHA=$515 

NOTES: 

valid Hollerith constant 

valid Hollerith constant. The space character must be counted. 

valid Hollerith constant. All characters from the processor 
character set are permissible (see 2.3). 

PAGllEI 

(1) Although Hollerith constants can appear only in a DATA or CALL statement, 
Hollerith data may appear in input/output data and in the FORMAT statement. 

(2) The internal representation of a Hollerith value may be different from the 
internal representation of an arithmetic value. For example, lHl need not 
have the same internal representation as the arithmetic value 1, and, if they 
are compared, they will generally be treated as unequal. The FORTRAN 
language does not define any correspondence between Hollerith values and 
arithmetic or logical values. 

2.7. SYMBOLIC NAMES 

A symbolic name consists of one to six alphanumeric characters (anv blank charac­
ters are ignored, other symbols are prohibited), the first of which must be a letter. 
A symbolic name is followed by a subscript only when used as an array element 
reference. In a program unit, a symbolic name may identify an item in one (and 
usually only one) of the classes (array and array elements are considered the same 
class) shown in Table 2-5. The remainder of this section discusses the use of 
symbolic names for variables, arrays, and array elements. The programmer is 
entirely free in the choice of words for symbolic names. Keywords such as I'.ORMAT, 
GO TO, READ, etc., are not considered reserved words; these may be used as symbolic 
names, or ~he first letters of a symbolic name anywhere in the program. 

18 

• 

• 

• 



• 

• 

• 

UP-7536 
Rev. 1 2 FUNDAMENTALS OF FORTRAN 

Sl:CTIONI 

A SYMBOLIC NAME IS CALLED TYPE TEXT 
THAT IDENTIFIES A(N) ASSOCIATION?* REFERENCE 

A(N) l 
variable variable yes T see 2.7.3 

i 

array array name yes I see 2.7,4 

array element array element yes see 2.7.4 
reference 

statement function statement yes see 8.2 
function name 

intrinsic intrinsic yes see 8.3 
function function name 

subroutine subroutine name no see 8.6 

external fu:iction external function yes see 8.5 
name 

external procedure external procedure not necessarily see 8.7 
name a lone as an name 
actua I argument 

block block name no see 8.8 

*Type association means that the data type is either implied in the name or explicitly 
specified (see 2.7.2). 

Table2-S. Uses of Symbolic Names 

2.7 .1. Uniqueness of Symbolic Names 

PAGlt: 

A symbolic name cannot be used in a program unit for more than one purpose except 
as noted in the following rules. 

A block name can be used as an array name, variable, or name of a statement 
function in the same program unit. 

In a function subprogram, the function nam~ that follows FUNCTION in the header 
of the subprogram must also appear as a variable in the same program unit. 

Once a symbolic name is used as an external function name, subroutine name, 
procedure name, or block name in any program unit, it may not be used anywhere 
in the program for the same purpose except as originally used. 

A symbolic name that appears in an EXTERNAL statement of a program unit and 
is used only as an actual argument within that program unit must be the name of 
an external function or subroutine in the same program. However, that same name 
may be used in any other program unit for a 'l'alid purpose. 

A symbolic name used to identify an intrinsic function in one program unit may be 
used for any purpose in another program unit • 

19 



UP-7536 
Rev. 1 

2 
Sl!CTIONt 

FUNDAMENTALS OF· FORTRAN 

2.7.2. Typing of Symbolic Names 

It was indicated in Table 2-5 that certain uses of symbolic names have data type 
association. This means that the compiler must be informed of the data type for 
the symbolic name, that is, integer type, real type, double precision type, complex 
type, or logical type. There is no mechanism in FORTRAN for specifying Hollerith 
type; data of this type, other than Hollerith constants, are identified under the 
guise of a real, integer, or logical type variable or array element, as will be shown 
in one of the following paragraphs. 

The data type of a symbolic name can be explicitly declared or, if not explicitly 
declared, implied by the first letter of the symbolic name. A constant automatically 
defines its own type by the form of its appearance. 

2.7.2.1. Explicit Type Declaration 

Explicit type declaration means that the symbolic name is declared in a type­
statement. The one exception for explicit type declaration is the function name 
that appears in the FUNCTION statement of a subprogram. In the function sub­
program, this symbolic name can only be explicitly typed in the FUNCTION 
statement. 

r"C• •OA COMMENT 

STATEMENT c FORTRAN STATEMENT NUMBER f ... 
5 7 10 20 30 

...!. ...!. R...LE_i_A...LLJ ...Ll.J.O T.J.A.J.,, ...LL ·A. MJB...LD .J.A...L .J. ..!. ...!. ..!. l ..!. ..!. .J. ..!. ...!. 

...L ...!. . D 0 U BJL E P R...LE C I .J.S IJ0..1.N B E...LT...LA ·l G AMM"\_ 

...!. 

..L 

C 0 MP lL E...LX A.LP H Al A 2 4 
..l.. l .l. ...!. .l. .l. ...!. 

I N.J.TE1GER s I GM A..1. L ..!. ..L ..!. ..L ..I. I I I I I I ..I. ..!. ..I. 

..I. L 0 G...LIJC~..1.L..1. ..Lx X,X, 
"..!. 1Y..1. y.l. y...1.•..1. , K..1. K, K ..1. l ..L 

. 
..L ...!. ..L 

This group of five statem~nts consists of ty?e·state:nents. The first statement 
specifies that IOTA and LAMBDA represent real type data, the second. that 
BETA and GAMMA represent double precision data; and so on. 

Implied Type Declaration 

Implied type declaration means that the data type assoc:ated '.vith a symbolic 
name is implied by the first letter of its name. unless the data type of the 
symbolic name is declared explicitly. If the first letter of the svmbolic name is 
any of the six letters I, J, K, L, :\1, or N, the compiler will assume integer data 
type for that name; if the first letter is any of the other alphabetic characters 
the compiler will assume real data type for that :-iame. 

20 

• 

• 

• 



UP-7536 
Rev. 1 

• 

• 

• 

I I 

2 
FUNDAMENTALS OF FORTRAN SECTIONt PAGE: 

This rule for implied data type association clearly indicates that symbolic names 
representing double precision, complex, or logical data must always be typed 
explicitly. An exception to this rule is that references to intrinsic or basic 
external functions (see Section 8) do not require explicit type declaration in the 
referencing program unit. The function names involved already have the data 
type of the function names known to the processor. 

Examples: 

v 2 v 4 V6 

LOGICAL T E S T 

COMPLEX NM B R 5 NM B R 6 I I 

KA D D = N MB R 2 + NM 8 R 4 

IF( TEST VALUE: VALUE + l . 0 

I IV 2 • : V 41 v 6 

NMBR6 = ' ( 12 34,45.67)+NMBRS 

KADD is the sum of two integer values (all implied type declarations). In the 
next statement, if the logical value of TEST (explicitly declared) is true, 
VALUE is increased by one (implied real type). In the statement that follows, 
the double precision V2 is formed by the subtraction of V6 from V4 (all explicitly 
declared as double precision). In the last statement, the complex value NMBR6 
is formed by adding 12.34 to the real part of NMBRS and 45.67 to the imaginary 
part of the complex type NMBRS (explicitly declared) . 

21 



UP-7536 
Rev.1 

2 
PAGI!: 

FUHDAMEMTALSOFFORTRAM 
Sl!CTION1 

2.7.2.3. Hollerith Values 

STATIMIMT -· 5 

It has been stated that there is no mechanism in FORTRAN for srecifying 
Hollerith type, as such, and that it must be guised as a real, integer, or logical 
type. The following example shows how this can be done. 

~l'ORTRAM STA.T!MEllT 
__.. --.. 

7 Ht 2D 30 «I 50 60 

_j_ ...L -1. J_ ..L ..L 
LL .JL.li..j_U:. .L .J..G.C. ...L -1. _l ...L J_ 

DA T _At I T EJo!.. VAL U_iE L G C I 5 H N ..._Atlil E S , ~HHOHEj, 3HYES/ _l J_ 

_j_ _l ..l. L J_ J_ 

The symbolic names LGC, ITEM, and VALUE each can represent five Hollerith 
characters (from the original assumption in 2.6). The variable ITEM contains 
the characters NAMES; the variable VALUE, the characters NONE followed by 
a blank character; the variable LGC, the characters YES followed by two blank 
characters. It is the programmer's responsibility to remember that LGC, ITEM, 
and VALUE contain Hollerith data; there is no way for the processor to "remem• 
ber" this. In FORTRAN, there is no provision for moving Hollerith data from one 
internal bcation to another, or otherwise processing the data (as in comparisons). 
The Hollerith data from the previous example can be used in the following sequence: 

This will cause a line to be printed as: 

-ON A MESON ON EDDY ESDliD 

The AS in the FORMAT statement informs the processor that the contents of 
ITEM, VALUE, and LGC are to be treated as Hollerith data. 

If the variables ITE~ and VALUE are used in arithmetic statements, or the 
·variable LGC in a iogical expression, the results are unpredictable in standard 
FORTRAN and will vary, depending upon processor implementation. 

22 

• 

• 

• 



UP-7536 
Rey.1 

• 

• 

• 

2.7.3. 

2 
FUNDAMENTALS OF FORTRAN 

SltCTIONI PAGlt: 

Variables 

A variable is a symbolic name that identifies a single value. The rules for de­
claring the data type of a variable have already been discussed. Once the value 
for a variable has been defined, it may be redefined as many times as required 
by the program. It may be defined by a DATA statement (Figure 1-7, line 4), 
by an input/output statement (Figure 1-7, line 6), by an assignment statement 
(Figure 1-7, line 17), by its use as an argument in a subprogram reference 
(discussed in Section 8), by its use as a DO statement or DO-implied list control 
variable, or by association in a COMMON or EQUIVALENCE statement. A variable 
cannot be used unless its value has been defined at least once. For instance, in 
Figure 1-7, if the original value of KOUNT had not been defined as zero, its 
use as a running count would have been meaningless. The same is true for the 
variable TOTAL used as a running total. Failure to define a variable used for 
such purposes is quite common and leads to unpredictable results. 

2. 7 .4. Arrays 

An array is an ordered set of values, each of which is called an array element. The 
entire set of values is identified by a symbolic name called the array name. All 
element~ of the array must have the same data type, which is deten:iined by the 
data type of the array name. 

The use of array elements in FORTRAN corresponds to the use of subscripted 
variables in ordinary algebra. For instance, the algebraic expression a - b - c 
uses simple variables which correspond to the use of variables as defined in 
FORTRAN. However, the algebraic expression a 1 - a2 - a3 uses subscripted 
variables with one subscript; the algebraic expression bl,l - h1,2 - bl.3 uses 
what is c;:illed in FORTRAN two-dimensional array elements; the expression 
cl,1,1 - cl,1,2 - cl,l,3 uses three-dimensional array elements. The first expres­
sion is written in FORTRAN as A(l) - A(2) - A(3), for the one-dimensional array 
named A; the second is written as B(l;l) - B(l,2) - B(l,3), for the two-dimensional 
array named B; and the third is written as C(l,1,1) - C(l.1,2) - C(l,1,3), for the 
three-dimensional array named C. An array, therefore, is nothing more than an 
ordered list, any element of which can be identified by the array name followed by 
the appropriate subscript. -

If it is assumed that the maximum value of each dimension is 3, then the 'order of 
the elements in array A is: 

A(l) 
A(2) 
A(3) 

The order of elements in array B is: 

B(l, 1) 
B(2, 1) 
B(3, 1) 
B(l,2) 
B(2,2) 
B(3,2) 
B(l,3) 
B(2,3) 
B(3,3) 

23 



UP-7536 
Rev. 1 FUNDAMENTALS OF FORTRAN 

The order ·of elements in array C is: 

C(l,l,l) 
C(2,1,1) 
C(3,l ,l) 
C(l,2,1) 
C(2,2,I) 

C(3,3,l) 
C(l ,1,2) 
C(2,l,2) 

C(3,3,2) 
C(l,1,3) 
C(2,l,3) 
C(3,l,3) 
C(l,2,3) 
C(2,2,3) 
C(3,2,3) 
C(I ,3,3) 
C(2,3,3) 
C(3,3,3) 

c 2 • 

Note that the leftmost integer of the subscript varies most rapidly in the order 
of progression. 

The total number of storage units required for an array is the sum of the storage 
units required for its elements. If the data type of array name A is integer, real, 
or logical, array A will require 3 storage units (see Table 2-4); if array name A 
is double precision or complex, it will require 6 storage units. Under the same 
conditions, array B will require 3 · 3 or 2(3 · 3) storage units; array C will require 
3 · 3. • 3 or 2(3 • 3 · 3) storage units. 

In a simple situation, visualize a book with the title NAME consisting of only 
columns of statistics on each page. Let the leftmost subscript represent the row; 
the next subscript, the column; and the last subscript, the page. Then, to obtain a 
single statistic, reference the desired statistic by title; row, column, and-page. An 
example is NAME (3,4,5), referring to the third row of the fourth column of the fifth 
page of the book called NAME. This type of reference is called an array eJ:.ement 
reference (sometimes called a subscripted variable). 

2.7.4.1. Array Declaration 

Before an array or any of its elements can be referenced -in an executable state­
ment.of a program unit, the array must be declared. This mea.ns that the name, 
data type, and maximum number of array elements required must be stipulated. 

An array can be declared in a DIMENSION s"tatement, COMMON statement, or 
type-statement. The form of the declarator is 

v (i) 

where: vis a symbolic name called the array name, and i, the declarator sub­
script, is composed of l, 2, or 3 expressions, each of which may be either an 
integer constant or an integer type variable, except that a COMMON statement 
does not permit variables. 

24 

• 

• 

• 



• 

• 

• 

UP-7536 
Rev. 1 

c 

FUNDAMENTALS OF FORTRAN 
2 

SECTION I l"AGE: 

The parentheses are required as shown. Each expression is separated from the 
next by a comma. If any expression is an integer type variable, the array is known 
as an adjustable array. 

The data type of the array name is governed by the rules for implied and explicit 
typing of symbolic names. 

ExamP.les: 

P ,R E C I S I 0 M V C T R T R,X ( 2 , 3 ) , ST A T XI(, 1 5 ) , MAM Y 

0 M L I S Tl 2 6 ) 

I I ! I I I I I I I ! I 

DECLARED IY 

A DJ U ST A ISL E A RR A Y D EC L ,A R AT, I 0 M 

K2,4,K6) 

YPING 

The first statement shows array declaration with a type-statement. The arrays 
VCTR, MTRX, and STATX are double precision arrays: VCTR is a three-dimen­
sional array requiring 120 storage units; MTRX is a two-dimensional array 
requiring 12 storage units; STATX is a one-dimensional array requiring 30 storage 
units • 

The next group of three lines shows two different ways of declaring an array. The 
first is array declaration with a DIMENSION statement and a type-statement; the 
second shows array declaration in a COMMON statement of the double precision 
array MANY. 

The last group of lines shows array declaration for a three-dimensional adjustable 
array of integer type, INTGRS. Such a declaration (with integer type names as 
subscripts) can appear only in a procedure subprogram. The values for K2 and K6 
will be furnished at execution time when the subprogram is referenced. 

In a program unit, any appearance of an array name must be followed immediately 
by a subscript except, possibly, in any of the following cases: 

• in the I/O list of a READ or WRITE statement; 

• in the list of dummy arguments of a FUNCTION or SUBROUTINE statement; 

• in the list of actual a,rguments supplied in the reference to an ex~emal procedure; 

• in a COMMON statement; 

• in a type-statement; 

• in a formatted READ or WRITE statement, to designate the format specification • 

25 



UP-7536 
Rev. 1 FUNDAMENTALS OF FORTRAN 

2 
llECTIONI PAGEi 

2.7.4.2. Array Element Reference 

An array element is one of the items in the set that constitutes the array. An 
array element is identified by an array element reference of the form: 

array name ( se) 

or 

array name ( sel, se2) 

or 

a~ray name (se1,se2,se3) 

where array name must be the same as that in the array declaration and each se 
is a subscript expression. Parentheses and commas are required as shown. 

A subscript expression is any of the following forms. In these forms, the single 
asterisk is the FORTRAN symbol for multiplication. 

c 

v 

v + k 

v-k 

c * v 

c * v + k 

c * v - k 

Each c and k is an unsigned integer constant; each vis an integer variable name . 

13 

NMBRl 

NMBRl + 13 

NMBRl - 13 

2 * NMBRl + 13 

2 * NMBRl - 13 

Note that the order of the different elements must follow the order described in 
the previous paragraph. As an example: 2 * NMBRl + 13 is a valid subscript 
expression; NMBRl * 2 + 13 is not a valid subscript expression. 

Rules: 

(1) An array element may not be referenced unless the array has been declared 
previously. 

(2) Except in an EQUIVALENCE statement (where only constants are permitted), 
any and all forms of subscript expressions can be used. 

(3) Except in an EQUIVALENCE statement, the number of subscript expressions 
must correspond to the number of dimensions in the array declarator. 

(4) The value of a subscript expression must be greater than zero. 

26 

• 

• 

• 



• 

• 

• 

UP-7536 
Rev. 1 FUNDAMENTALS OF FORTRAN 

SECTION I 

2 
PAGE: 

Examples: 

(1) The following :>equence shows how the elements of one array, LIST!, can be 
added to the corresponding elements of a second array, LIST2, to compute 
the values -of the array elements i.n a third array, LIST3. 

~
"C" l'OR COMMENT · 

A.!.":ee:T JFORTRAM STATEMENT 
5 6 7 10 20 30 

1 0 

DIMENSION LIST (10) LIST2( 10) ,LIST3( 10) 

I S T 1 K + LIST2(K 

K = K + 

F K • LT. 11) GO TO 10 

(2) The following sequence shows how only the even-numbered elements of 
LISTl can be added to the corresponding even-numbered elements of LIST2 
to form a not her array, LIST4. 

I S T 1 1 0 LIS 2 10) LIST4(5) 

K = 
LI ST4 K) = LIST1(2 K ) + L I S K) 

K = K + 

T 0 0 

27 



UP-7536 
Rev. 1 FUNDAMENTALS OF FORTRAN D 2 

S CTIONI 

(3) The following sequence shows how, by means of a nested loop, the elements 
of a two-dimensional array can be printed out, one element per line. The 
operator .LT. in the logical IF statements means "less than." 

"C" FOR COMMENT 

~i;.e:E~NT jFORTRAN STATEMENT--------IJll 
5 6 7 10 20 . 30 

ION HARRAY 3 4 ) 

K = 1 

M = 
WR I TE 3 , 5 I 0 I) I I H, A1 R,R,A,Y I I ( ,M,, ,K,) I 

M = M + 1 

I F IM . L T • 4 ) GO TO 

2 0 K = K + 

I F K . L T • 5 ) GO TO 

The elements will be printed in the following order: 

NARRAY (1,1) 
NARRAY (2,1) 
NARRAY (3,1) 
NARRAY (1,2) 
NARRA Y (2,2) 
NARRA Y (3,2) 
NARRA Y (1,3) 
NARRA Y (2,3) 
NARRAY (3;3) 
NARRA Y (1,4) 
NARRA Y (2,4) 
NARRAY (3,4) 

1 0 

3 0 

28 

• 

• 

• 



• 

• 

• 

UP-7536 
Rev. 1 

D 2 
FUNDAMENTALS OF FORTRAN SECTIONc 

2.7.4.3. Location of Elements Within Array 

Table 2-6 indicates how to find the relative location of an array element within 
an array. 

IF THE ARRAY THEN THE ARRAY REFERS TO THE Nth ELEMENT 
IS DECLARED ELEMENT WHERE H 

AS REFERENCE IS 

ARRAY (Al ARRAY (a) a 

ARRAY (A,Bl ARRAY (a,b) a+ A • (b - ll 

ARRAY (A,B,C) ARRAY (a,b,c) a + A • (b - 1) + A • B • (c -ll 

NOTE: A,B,C are the integer values of the array declarator; a,b,c are the integer values of 
the· subscript expressions in the array element reference. 

Table 2-6. Array Element Location in Array 

Examples: 

(1) If an array is declared as LISTl (15), the array element reference LISTl 
('.))refers to the ninth element in the array LIST!. 

PAGEi 

(2) If an array is declared as NARRAY (3,4), the array element reference 
NARRAY (2,3) refers to the Nth element where N is 2 + 3(3-1) or the eighth 
element. (Check with example (3) in 2.7.4.2.) 

(3) If an array is declared as INPUT (3,4,5), the array element reference INPUT 
(3,4,5) refers to the 60th element, since it is the last array element. By 
checking Table 2-6, it is found that N = 3 + 3(3) + (3) (4) (4) or 60. 

(4) If an array is declared as ARRAY (2,3,2), the array element reference 
ARRAY (1,3,2) refers to the 11th element. However, the array element refer­
ence ARRAY (3,2,2) also refers to the 11th element. Using the expression 
in Table 2-6 for a three-dimensional array, the relative location within the 
a!ray for the element is evaluated as: 3+2(1 )+6(1) or 11. · ~ 

29 



• 

• 

• 



UP-7536 
Rev.1 

• 

• 

• 

3 
FUNDAMENTALS OF FORTRAN 

SECCTION1 

3. FORTRAN EXPRESSIONS 

3.1. GENERAL 

An expression is a group of one or more elements and operators which, at each 
execution, is evaluated as a single value. FORTRAN expressions are: arithmetic 
expressions, relational expressions, and logical expressions. 

PAGE: 

Evaluation of expressions is governed by the priority of operators in the expression. 
Parentheses can be used to force the order of evaluation, regardless of the operators; 
innermost groups within parentheses are evaluated first. 

3.2. ARITHMETIC EXPRESSIONS 

An arithmetic expression is a group of one or more arithmetic elements and operators 
which, at execution time, is evaluated as a single arithmetic value. 

The rules for the formation of arithmetic expressions are much the same as those used 
in algebra, except that operations are restricted to exponentiation, multiplication, 
division, addition, and subtraction .operations, each indicated by the proper FORTRAN 
operator. With these fundamentc.l operations, more elaborate mathematical functions 
can be built up, such as trigonometric functions and definite integration. Some of these 
functions are supplied as basic external functions (see Section 8); others may be written 
by the programmer • 

3.2.1. Arithmetic Operators 

Table 3-1 is a list of the FORTRAN arithmetic operators and their meanings 
Associated.with each operator is a priority number that determines its order of 
evaluation within an arithmetic expression. 

EXAMPLE 
OPERATOR FUNCTION PRIORITY 

EXPRESSION WRITTEN AS 

** exponentiation 1 n k N**K 

* multiplication 2 a .b A*B 

division 2 a A 'B 
b 

- unary minus 3 -a -A 
(zero min us) 

+ unary plus 3 +a tA 
(zero plus) 

+ add it ion 4 a+ b A + B 

- subtraction 4 a - b A - B 

Table 3-1. Arithmetic Operators 

1 



UP-7536 
Rev.l 

3 
Sl£CTION1 FUNDAMENTALS OF FORTRAN 

3.2.2. Formation of Arithmetic Expressions 

An arithmetic expression is formed in much the same fashion as in algebra (except 
for the FORTRAN operators and format requirements for array element references and 
function references) using (as primary operands) constants, variables, array element 
references, and function references. Blank characters anywhere in the expression 
have no significance and are ignored during execution; they may be used freely by 
the programmer. Parentheses also may be used to indicate grouping of operands and 
operators. No two·arithmetic operators may appear in succession (two asterisks, even 
if separated by blank characters, are interpreted as the exponentiation operator). 
The unary plus, which is redundant, and unary minus operators must be preceded by 
a left parenthesis except when either one is the first (leftmost) nonblank character 
of the arithmetic expression. 

A more rigorous description of an arithmetic expression with formal FORTRAN 
nomenclature is shown in Figure 3-1 and accompanying text. Note that this figure 
implies the order of evaluation: primary, factor, term, signed term, simple arithmetic 
expression, arithmetic expression. 

arlU..•llc UIWHSion 

shop le 
arithmetic 

u111esaioa 

181• 

facttn 

si-d 1 .. 11+si11ple 
arttttmtlc eqwession 

sl1ned ter•shnpte 
aritb•etlc expression 

s..,le •II-tic sill!lle •illl11etlc 
UOIHSioa+simple eaciire1si~simpte 

attlt•tic eapressjoa aritlamUc expression 

1911/llCtlr ... tef .. 

••i•ltf• fuoctioa 
reffirence 

Figure 3-1. Structure of Arithmetic Express ion 

artu. .. ttc 
eapression 

ill --· 

2 

• 

• 

• 



UP-7536 
Rev. l 

• 

• 

• 

3 
FUNDAMENTALS OF FORTRAN 

· S•CTIONt 

An arithmetic primary is an arithmetic constant, an arithmetic variable, an arithmetic 
array element reference, an arithmetic function reference, or an arithmetic expression 
in parentheses. 

Examples: 

l 2 3.4 4.SE-2 5.603 (54E-2, 3.0) constants 

ALPHA BETA LISTl NAME variables 

SUM (IOTA, 2*NMBR-1, 5) array element reference 

SQRT (A**2 + B**2) function reference 

An arithmetic factor is an arithmetic primary or a construction of the form: 
primary* *primary. 

Examples: 

1 4.5E-2 K2**2 K3**NAME (3E-2,0.04) * CMPLX 

An arithmetic term is an arithmetic factor or a construction of one of the forms: 
term/factor or term*term. 

Examples: 

1 4.50-2 (3E-2. 0.04) K3**NAME SQRT (4.5), 

K3**NAME/34 K3**NAME/34/LIST, 

5*6 3.2*SQRT(4.5) K3**NAME/34*2 ALPHA*BETA/GAMMA 

A simple arithmetic expression is a term or two simple arithmetic expressions 
separated by a + or a -

Examples: 

l 4.502 32. *SQRT(4.5) 

3E·2-ALPHA CMPLX t- (3.2, 4E-1) 

3E-2-ALPHA+BETA 

A signed term is an arithmetic term preceded by - or +. 

Examples: 

+2.4 -2.402 t-SQRT(A-8) -{2.2,3.3) -ARRA Y(l,2,3) 

An arithmetic expression is a simple arithmetic expression, a signed term, or a 
signed term followed by a+ or - immediately followed by a simple arithmetic 
expression . 

3 



· UP-7536 
Rev. 1 FUNDAMENTALS OF FORTRAN 3 

SECTIONI llAGE: 

Example: 

( - B - SQRT(8**2 - 4.0 * A * C)) I (2.0 * A) which is one of the roots of a quadratic 
equation 

3.2.3. Type Rules for Arithmetic Expressions 

The data type of an arithmetic expression involving the exponentiation depends upon 
the data type of its operands, as shown in Table 3-2. 

primary 1 **primary2 

PRIMARY 1 
PRIMARY 2 

INTEGER REAL D.P. COMPLEX 

INTEGER integer u u u 

REAL real real d.p. u 

O.P. d.p. d.p. d.p. u 

COMPLEX complex u u u 

NOTES: O.P. means double precision. 
The letter u means that the result is not defined in standard FORTRAN and it depends 
upon processor implementation of exponentiation. 
If primary 1 has a negative value, primary 2 must not be real or double precision • 

Table 3-2. T~pe Rules for Exponentiation 

The data type of an arithmetic expression involving an arithmetic operator other 
than the exponentiation operator or the unary operators depends upon the data type 
of its operands, as shown in Table 3-3. The data type of a unary operation is the 
same as its operand. 

primary 1 op primary2 

PRIMARY2 
PRIMARY 1 

INTEGER REAL O.P. COMPLEX 

INTEGER integer u u u 

REAL u real d.p. complex 

O.P. u d.p. d.p. u 

COMPLEX u complex u complex 

NOTES: op is a non unary operator: +, -, *, '. 
O.P. means double precision. 
The letter u means that the result is not defined in standard FORTRAN and depends 
upon processor implementation of the operation. 

Table 3-3. Type Rules for Conventional Aritf.metic 

4 

• 

• 

• 



UP-7536 
Rev. 1 

•• 

• 

• 

E 3 
FUNDAMENTALS OF FORTRAN SCCTIONI PAGE: 

Of special importance in Table 3-3 is integer division. Only the integer portion of 
the quotient is retained; the remainder is dropped without roundoff. °Thus, the 
arithmetic expressions 0/4, 1/4, 2/4, and 3/4 are evaluated as the integer 0. 

3.2.4. Evaluation of Arithmetic Expressions 

Rules: 

(1) If the value of an arithmetic expression is not arithmetically defined, it cannot 
be evaluated. For example, the following arithmetic expressions must not be 
used: O**O, X/0.0, and 0**(-3). 

(2) In general, arithmetic expressions are evaluated from left to right governed by 
the priority of the operator (shown in Table 3-1). In the course of this evaluation, 
expressions in parentheses are evaluated before proceeding to the next evalu­
ation, with innermost parenthetical expressions evaluated first. 

There is a permissible exception. If mathematical use of operators is associative, 
commutative, or both, the order of evaluation may be changed internally to take 
advantage of these qualities, provided that integrity of parenthesized expressions 
is·not violated. (An operation is associative if A op B op C can be evaluated as 
A op (B op C) or A op B) op C with no algebraic change in the results; an operation 
is commutative if A op B can be evaluated as B op A with no algebraic change 
in the result.) The only associative FORTRAN arithmetic operators are + and *; 
the only commutative FORTRAN arithmetic operators are+ and *· Thus, in some 
processors the expression A + B + C can sometimes be evaluated as A + (B + C) 
and, at other times (in the same processor) as (A + B) + C; the expression A*B 
can sometimes be evaluated as if written B*A. The associative and commutative 
laws do not apply to evaluation of integer terms containing division; evaluation of 
such terms proceeds from left to right. For instance: K*M/N is evaluated as (K*M)/N. 

(3) The evaluation of any function references in the expression must not alter the 
value of any other element within the expression or statement that contains the 
function reference (see Section 8). 

Examples: 

(1) Evaluate (-8-SQRT(B**2.0-4.0*A*C))/(2.0*A) where A, B, and C have the values 
of 1.0, -3.0, and -10.0 respectively. The order of evaluation is: 

(-B-SQRT(B**2 .0-4.0*A *C))/(2.0* A) 
(a) (-B-SQRT(9.0-4.0*A *C))/(2.0*A) 
(b) (-B-SQRT(9.0-4.0*C))/(2.0*A) 
(c) (·B·SQRT(9.0-(-40.0)))/(2.0*A) 
(d) (-B-SQRT(49.0))/(2.0*A) 
(e) (-(-3.0)-SQ RT(49,0))/(2,0* A) 
(f) (3.0-SQRT(49.0))/(2.0*A) 
(g) (3.0-7.0)/(2.0*A) 
(h) (-4.0)/(2.0*A) 
(i) -4.0/(2.0*A) 
u) -4.0/(2.0) 
(k) -4.0/2.0 
(1) -2.0 

5 



UP·7536 
Rev. 1 

3 
FUNDAMENTALS OF FORTRAN 

S1ECTION1 PAGEi 

Note that in these steps, the successive evaluations are shown in terms of exact 
values. In actual practice, these values will be approximated. The degree of 
approximation will depend upon the processor implementation of real type 
arithmetic. 

(2) Evaluate the expression (N/2)*2-N. 

All possible results are shown in the following truth table. (Remember that, in 
integer division, the remainder is truncated.) 

N 
POSITIVE/NEGATIVE ODD/EVEN RESULT 

positive odd -1 

-positive even 0 

zero 0 

negative odd 1 

negativ-:i even 0 

Note that this expression can be used for odd/even testing of an integer value. 

(3) Intrinsic functions (see 8.3) or assignment statements can be used to get around 

6 -

• 

some. of the restrictions imposed by the mixed type requirements of Table 3-3. • 
It must be understood that some precision may be lost in this process and that 
it cannot always be done, since the range of a real or double precision value 
is always greater than the range of an integer value. (The restrictions on the 
use of an assignment statement for data type conversion are described in 4.2.) 
The following is an example of the need for such conversion in the calculation 
of the volume of a room where the length is originally given as an integer. 

C M EXT LI N E U S,E S I NT R I N S I C F UN CT I OAT 

C NEXT 

• 



UP-7536 
Rev, l 

• 

• 

• 

3 
FUNDAMENTALS OF FORTRAN 

SECTIONt 

3.3. RELATION AL EXPRESSIONS 

A relational expression defines a relation between two arithmetic expressions. At 
execution time this relation is evaluated as either true or false. 

3.3.1. Relational Operators 

PAC:E: 

A relational expression is made up of two arithmetic expressions separated by one 
of the relational operators shown in Table 3-4. Blank characters may be used freely 
to improve readability. 

OPERATOR MEANING 

.GT. greater than 

.GE. greater than or equa I to 

.LT. less than 

.LE • less than or equal to 

. EQ. equal to 

.NE. not equal to 

NOTE: The periods, as· shown, are necessary parts of relational 
operators • 

Table 3-4. Relational Operators 

Examples: 

If KO, Kl, K2, KKl, and KK2 represent the values 0, l, 2, -1, and -2, respectively, 
then the expression: 

Kl.EQ.l is true. 

K2.GT.KK2 is true. 

KK 1.NE.KO is true. 

KK1.LE.KK2 is false. 

Kl **Kl.NE.K2**KO is false . 

7 



UP-7536 
Rev. 1 FUMDiMENTALSOF FORTRAN 

3 
SIECTION1 

3.3.2. Type Rules for Relational Expressions 

Only the combinations indicated in Table 3-5 are permitted for the relational 
expression: 

exp[ op exp2 

PAGEi 

where: op is any relational operator, and exp/ and exp2 are arithmetic expressions. 

exp[ op exp2 

expl e~2 
INTEGER REAL D.P. COMPLEX 

INTEGER yes no no no 

REAL no yes yes no 

D.P. no yes yes no 

COMPLEX no no no no 

NOTE: D.P. means double precision. 

Table 3-5. Type Rules for Relational Expressions 

Where a real arithmetic expression appears with a double precision arithmetic 
expression, the relation is evaluated as if written as (expl -exp2) op ODO. 

3.3.3. Applications of Relational Expressions 

(1) In this sequence a set of data cards is read, each of which contains an integer 
value right-justified in the first 10 columns of the card. The program is to find 
the greatest value and print it out. It is assumed that none of these- values will 
be - 999999999, so that a card containing - 999999999 indicates the end of the 
set containing at least one integer. 

30 WRITE 

4 0 

I ' 

! t ! 

8 

• 

• 

• 



UP-7536 
Rev.1 

• 

• 

• 

I F 

S ·O 

3 
FUNDAMENTALS OF FORTRAN 

Sl:CTION1 PAGE: 

Note that the contents of the first data card must be read into NMBR to create 
a basis for comparison. Then the value of the next card is read into INFO. The 
fourth line is a logical IF statement with the relational expression INFO.EQ. 
-999999999. If this relation is true, the GO TO 30 statement causes a jump 
out of the loop and a printout of the contents of NMBR. If this relational ex­
pression is false, GO TO 30 is disregarded and the next line, which is 
another logical IF statement, is executed. This statement tests the value of 
INFO. If the value of INFO is greater than the value in NMBR, the value of 
INFO is transferred to NMBR. Then control returns to 20 and a new value for 
INFO is read. Cards are read until a card containing - 999999999 is reached. 
Note that it is necessary to test for -999999999 before the attempt to update 
NMBR; otherwise, the NMBR printed out will be -999999999. 

(2) This sequence compares two complex numbers, KMPLX2 and KMPLX4. If their 
real portions are equal and the imaginary part of KMPLX2 is greater than the 
imaginary part of KMPLX4, control is passed to one set of statements; otherwise, 
control is passed to another set of statements (in this case, beginning with the 
statement label 50). 

This sequence introduces two intrinsic functions, REAL and AIMAG. The 
intrinsic function reference REAL (x) obtains the real portion of the complex 
variable :c; the intrinsic function reference AIMAG (x) obtains the imaginary 
portion of the complex variable :c • 

REAL( KMPLX )) G 0 T 0 ~..1-..L 

! I ! ! I 

Note the numerous parentheses used in the logical IF statements. The format 
of a logical IF requires one set of parentheses around the relational expression; 
the format of a function reference requires a set of parentheses around the list 
of arguments. In writing such statements it is not unusual to occasionally mis­
place a parenthesis. It is a good idea to check such statements and ensure that 
the number of left parentheses is the same ·as the number of right parentheses . 

9 



. UP-7536 
Rev.l 

3 
FUNDAMENTALS OF FORTRAN 

SECTIONt PAGE• 

3.4. LOGICAL EXPRESSIONS 

A logical expression is a group of one or more logical elements and operators which, 
at execution time, is evaluated as either true or false. 

3.4.1. Logical Operators 

The three logical operators are shown in Table 3-6. 

OPERATOR MEANING PRIORITY 

.NOT. logical negation 

.AND. logical conjunction 2 

.OR. logical disjunction 3 

NOTE: Parentheses can force the order of evaluation. 

Table 3-6. Logical Operators 

The meanings of the logical operators are more precisely illustrated by Table 3-7 
where the format of a logical expression is lei .op.Le2 for the .AND. and .OR. 
operators, and . NOT. Ie3 for the .NOT. operator. Each le is a logical element. 

IF AND T HEN 
le 1 le2 /el.AND.I e2 lel.OR.le2 
IS IS IS IS 

true true true true IF THEN 
/e3 .HOT. le3 

true false false true IS IS 

false true false true true farse 

false false false false false true 

Table 3-7. Truth Tab/ e for Logical Operators 

10 

• 

• 

• 



UP-7536 
Rev. 1 

• 

• 

• 

3 
FUNDAMENTALS OF FORTRAN SCCTIONI PAc;E: 

3.4.2. Formation of Logical Expressions 

A logical expression is formed with logical elements and logical operators. A 
description of logical elements and their combination to form a logical expression 
is shown in Figure 3-2, and the text which follows the figure. Figure 3-2 also 
implies the order of evaluation: primary, factor, term, logical expression. 

logical 
express ion 

logical 
term 

logical 
factor 

logical 
primary 

logic.al 
constant 

l 
logical expression.OR.logical expression 

l 
logical term.AND.logical term 

l 
.NOT.logical primary 

1 J l 1 l 
logical iogica I logica I re la ti on a I logical 
variable array function expression expression 

ele1nent reference in 
parentheses 

Figure 3-2. Structure of Logical Expression 

A logical primary is a logical constant, a logical variable, a logical array element, 
a logical function reference, a relational expression, or a logical expression in 
paren th es es . 

11 



UP-7536 
Rev. 1 FUNDAMENTALS OF FORTRAN 

Examples: 

. FALSE. 

ALPHA 

SWITCH (K2, K4, K6) 

XXX(2) 

A.LE.0.034 

3 
SCCTIONt 

logical constant 

logical variable 

logical array element reference 

logical function reference 

re la ti on al expression 

A logical factor is a logical primary or a construction of the form: 
.NOT. logical primary. 

Examples: 

.TRUE. logical primary 

.NOT .. TRUE. evaluated as false 

A.NE.B logical primary 

.NOT .A.EQ.B equivalent to A.NE.B 

A logical term is a logical factor or a construction of the form: logical term .AND. 
logical term. 

Examples: 

ALPHA 

. TRUE .. AND .. FALSE 

.TRUE •. AND.ALPHA 

A.GT .B.AND.A.GT .C.AND.D 

logical facto• 

always evaluated as false 

evaluated as true only if ALPHA is true 

evaluated as true only if A is greater 
than B and greater than C, and D is true 

12 

• 

• 

• 



UP-7536 
Rev. 1 

• 

• 

• 

3 
FUNDAMENTALS OF FORTRAN. Sl:CTIONI 

A logical expression is a logical term or a construction of the form: 
logical expression .OR. logical expression. 

Examples: 

.TRUE .. OR •. FALSE. 

.FALSE .. OR.ALPHA 

A.GT .B.OR.C 

A.GT.(B.OR.C) 

A.GT .B.OR.A.GT .C 

A.AND .. NOT .B.OR .. NOT .A.AND.B 

(A.OR.B).AND .. NOT .(A.AND.B) 

3.4.3. Evaluation of Logical Expressions 

always evaluated as true 

evaluated as true only if ALPHA is 
true 

evaluated as true if C is true and/or A 
is greater than B 

an invalid expression because both 
operands of a relational expression must 
be arithmetic expressions 

evaluated as true if A is greater than C 
and/or A is greater than B 

called the exclusive OR function; evaluated 
as true only if either A or B is true, but 
not both 

another way of writing the exclusive OR 
function 

The order of evaluation of logical expressions is determined by the priority of the 
logical operator(s), as shown in Table 3-6, and the order of evaluation impli~d by 
Figure 3-2, without violating the integrity of elements in parentheses. When 
parentheses are present, innermost parenthetical expressions are evaluated first. 
Thus, parentheses can be introduced to force the order of evaluation. When two 
elements are combined by an operator (or an element follows .NOT.), the element(s) 
must be evaluated before the logical relation can be evaluated. 

Examples: 

.NOT .A.AND .. NOT .B 

.NOT .(A.AND.B) 

A.AND.B.OR.C 

A.AND.(B.OR.C) 

evaluated as true only if both A and B 
are false 

evaluated as true if A and/or B is false 

evaluated as true only if both A and B are 
true and/or C is true 

evaluated as true only if A is true and 
either, or both, B or C is true 

13 



UP-7536 
Rev. 1 

3 
FUNDAMENTALS OF FORTRAN 

PAGEi SECTION I 

3.4.4. Applications of Logical Expressions 

An application of logical expressions is shown in the -following example. 

In this program, an indicator called IND is set to -1 if integers K2 and K3 are both 
negative, to +1 if both are not negative, or to 0 if one is negative and the other is 
not. 

F K2. GE.O.AND.K3.GE.O IND= +1 

14 

• 

• 

• 



• 

• 

• 

UP-7536 
Rev. 1 FUNDAMENTALS OF FORTRAN 

4 
SECTION: PAGE: 

4. ASSIGNMENT STATEMENTS 

4.1. GENERAL 

Execution of an assignment statement causes assignment of a value to a variable 
or array. element. This new value becomes its current value until the variable or 
array element is redefined. 

There are three assignment statements in FORTRAN: the arithmetic assignment 
statement, the logical assi~nment statement, and the GO TO assignment statement. 
Because the GO TO assignment statement can only be used with an assigned GO TO 
statement (which is a control statement), it is discussed in Section 5 in conjunction 
with the assigned GO TO statement • 

4.2. ARITHMETIC ASSIGNMENT STATEMENT 

Function: 

The arithmetic assignment statement evaluates an arithmetic expression and assigns 
this value to an arithmetic variable or an arithmetic array element. 

v=e 

where: vis an arithmetic variable or arithmetic array element; 

e is any arithmetic expression. 

Operation: 

An arithmetic assignment statement is performed in up to three steps: 

(1) The arithmetic expression e is evaluated to yield a single numerical value. 

(2) The data type of this single numerical value is converted to the data type of v. 

(3) This converted single value replaces the contents. of v . 

1 



UP-7536 
Rev. 1 

4 FUNDAMENTALS OF FORTRAN Sl:CTION1 P AGEi 

With arithmetic assignment statements such as K = 3 or S = 3.0, no evaluation or 
conversion is required. Since the statement can be performed in three distinct steps, 
it is possible for the same variable or array element to appear in both v and e. For 
example, the sequence 

assigns the value of 7 .0 (its real type approximation) to the array element ARRA Y(6). 

The arithmetic expression is evaluated and its value assigned to the variable or array 
element in accordance with the rules in Table 4-1. 

~ INTEGER REAL DOUBLE 
P~EClSION 

INTEGER © ® ® 
REAL © © G) 

DOUBLE 
PRECISION © © CD 
COMPLEX 0 0 0 

NOTES: 

CD Assign e to v without change. 

® Truncate any fractional part of e and assign result to v as an integer. 

Q) Transform e to real type value and assign this val!le to v. 

© Transform e to double precision value and assign this value to v. 

COMPLEX 

0 
0 

0 
CD 

© Evaluate e by rules of 3.2.4 (or any more meaningful rules), transform to type of v, and assign 
to v. 

@ Prohibited combination. 

Table 4-1. Type Conversion by Arithmetic Assignment Statement 

2 

• 

• 

• 



·uP-7536 
Rev.l 

• 

• 

• 

FUNDAMENTALS OF FORTRAN 4 
F'AQE1 SECTION I 

Rules: 

(1) Some· arithmetic assignment statements should be avoided to save execution time 
or avoid possible inaccuracies. For example, the statements A = 1 and I= 10.0 
should be replaced, if possible, by the statements A= 1.0 and I= 10, respectively. 

(2) Some arithmetic operations can be avoided by using the appropriate form of 
constant, thus saving execution time. For example, the statement X = 2 E04 
is preferred to X = 2.0 * 10.0 ** 4.0. The two values may not be identical due 
to the approximations involved in the computer representation of real type data. 

(3) References to intrinsic functions are available (see Section 8) for handling complex 
type data and converting the real and imaginary parts as required. 

Examples: 

(1) This sequence shows how to compute and store the fractional remainder when the 
integer K2 is divided by the integer K3. 

PRECI uo 

' ! I ' I 

(2) This operation can be source coded more conveniently with the basic external 
function DMOD (see Table 8-3) as follows: 

DOUBLE PRECISION K22 K33 REM 

K22=K2 

(3) The next example introduces the intrinsic function FLOAT and shows how it can 
eliminate an arithmetic assignment statement used for type conversion . 

3 



u~-7536 
Rev.1 

4 
FUNDAMENTALS OF FORTRAN Sl:CTIONI P4GEI 

4.3. LOGICAL ASSIGNMENT STATEMENT 

Function: 

This statement evaluates a logical expression and assigns this value (either true or 
false) to a logical variable or logical array element. 

v= e 

where: v is a logical variable or logical array element. 

e is any logical expression. 

Rule: 

Execution of this statement consists of two parts: the evaluation of the logical 
expression as either true or false, and the assignment of this logical value to the 
logical variable or array element. 

Examples: 

(1) The following sequence evaluates x as true if K is an integer less than or equal 
to 3. 

I C .A L X 

(2) With each execution of the following loop, SWITCH will alternate in value from 
true to false and can be used as an odd/even counter within the loop. 

4 

• 

• 

• 



• 

• 

UP-7536 
Rev. 1 

• 

FUNDAMENTALS OF FORTRAN 5 
SEC TIONI PAGEi 

5. CONTROL STATEMENTS 

5.1. GENERAL 

Control statements modify the normal sequence of execution. Some of these statements 
specify unconditional modification of the normal sequence; others contain a test that 
determines whether or not the sequence of execution shall be changed. 

Execution of a program or procedure starts with th.e first executable statement and 
continues sequentially until a control statement is encountered. 

The control statements of FORTRAN are: 

• GO TO statement 

• IF statement 

• DO statement 

• CONTINUE statement 

• STOP statement 

• PAUSE statement 

• CALL statement 

• RETURN statement 

The CALL and RETURN statements are not described in this section because they are 
associated with external procedure subprograms. These statements are described in 
Section 8. The GO TO assignment statement, because it is associated with the assigned 
GO TO statement, is described in this section. 

5.2. GO TO STATEMENTS 

The GO TO statements are: 

• unconditional GO TO statement 

• computed GO TO statement 

• assigned GO TO statement 

. 1 



UP-7536 
Rev. 1 

s 
FUNDAMENTALS OF FORTRAN SSCTIONI 

5.2.1. Unconditional GO TO Statement 

Function: 

To transfer control, unconditionally, to a statement specified by statement label. 

GO TO sl 

where: sl is the statement label of an executable statement within the same 
program unit. 

Rules: 

(1) sf must be the statement label of an executable statement. 

(2) Any executable statement immediately following the unconditional GO TO 
statement in the program unit must have a statement label, otherwise it can 
never be executed. 

Example: 

After the following sequence is executed, the variable K will have a value of 8 • 

I I I I 

I ' 

5.2.2. Computed GO TO Statement 

Function: 

To transfer control to one of several listed statement labels, as determined by a 
previously defined integer value. 

where: each sf is a statement label of an executable statement in the same 
program unit, separated from the next sl in the list by a comma. 

i is an integer variable representing a value, such that 1 < i < n. 

2 

• 

• 

• 



• 

• 

• 

UP-7536 
Rev. 1 FUNDAMENTALS OF FORTRAN 5 

SIECTION1 

Rules: 

(1) If the value of i is 1, the statement with s1
1 

will be executed; if the value 
is 2, the statement with s1

2 
will be executed; and so on. 

·(2) The value of i must be defined before execution of the statement. 

PAGIE1 

(3) The parentheses around the list of statement labels and the comma before the 
integer variable are required as shown in the format. 

(4) There is no restriction on other uses for the integer variable 1. 

(5) There is no standard FORTRAN restriction on the maximum value of i or n, 
but it is possible that a particular processor may specify a maximun value. 

Examples: 

(1) After execution of this sequence, control is transferred to the statement with 
statement label 35 . 

3 



UP-7536 
Rev. 1 FUNDAMENTALS OF FORTRAN 

5 
ll:CTION1 

(2) Another application of the computed GO TO statement shows how it can be 
used to determine the course of processing in the main program. A data card 
having a decimal digit punched in the first character position is read in. If 
this digit is 1 through 4, it indicates a processing sequence. Any other digit 
(or the blank character) is treated as an end of file indication. 

INTEGER CHOI.CE 

G 0. T 

2 0 0 

I I 

TO 

END 

4 
PAGE: 

• 

• 

• 



UP-7536 
Rev. 1 

• 

• 

• 

5 
FUNDAMENTALS Of FORTRAN 

SECTION! PAGE: 

(3) The following example shows how the computed GO TO statement can be used 
to create a closed internal block (a group of statements that cannot be entered 
by normal sequential execution, but must be called for execution by control 
statements). 

= 0 

G 0 T 0 1 0 

20 K=K+l 

CLOSED 

1 0 0 2 0 0 3 0 0 

GO TO 20 

1 0,0 

GO TO 20 

2 0 0 

G 0 T 0 , 2, 0, , . 

3 0 0 

G 0 T 0 2 0, , 

4 0 0 I •••• I . 

5 



UP-7536 
Rev.1 5 

FUNDAMENTALS OF FORTRAN 
SIECTIONI 

5.2.3. Assigned GO TO Statement 

Function: 

To transfer control to one of several listed statement labels, as determined by an 
integer value previously defined by a GO TO assignment statement. 

"'AGE• 

where: each sf is a statement label of an executable statement in the same program 
unit, separated from the next sl in the list by a comma. 

Rules: 

i is an integer variable, followed by a comma, previously assigned a value 
by a GO TO assignment statement. This value is equal to an sl in the list. 

(1) Prior to execution of the assigned GO TO statement, the integer variable i must 
have been assigned a value by a GO TO assignment statement. 

(2) Although standard FORTRAN places no restriction on the number of statement 
labels in the statement (except that there must be at least one), a particular 
processor may specify a limit. 

(3) Standard FORTRAN specifies that the value assigned to i must be an s/ in the 
list. If the value of i is not an sl in the list, some processors will treat this 
condition as if the value of i were in the list. The manual for the processor will 
specify how this condition is handled. 

Example: 

Logically, the assigned GO TO statement can be used whenever a computed GO TO 
statement is used (see 5.2.2). The format requirements differ and the assigned GO TO 
statement requires at least one previous ASSIGN statement (GO TO assignm~nt 
statement). Figure 5-1 shows how the assigned GO TO statement can create a multi­
legged GO TO after a series of statements shared by different parts of the same pro­
gram unit. 

6 

• 

• 

• 



• 

• 

• 

UP-7536 
Rev.1 

42 A= .•. 

• • • 

5 7 
FUNDAMEtn ALS OF FORTRAN . 

SECTION I 

• 
• • • 
• • • 
• • 

ASSIGN 7 TO K2 

ASSIGN 18 TO K2 ASSIGN 20 TO K2 • • • • • • • • • • • 

I • 
I ASSIGN 42 TO K2 

• • • • • • 

GO TO K2, (18, 20, 7, 42) 

7 READ •.• 18 C(l. 2, 3) = ••. 

• • • • • • • • 

Figure 5-1. Use of Assigned GO TO Statement 



UP-7536 
Rev. 1 

5 
FUNDAMENTALS OF FORTRAN 

Sl:CTION1 

5.2.3.1. GO TO Assignment Statement 

Function: 

To assign a statement label to the integer variable that is used in an assigned 
GO TO statement. 

ASSIGN k TO i 

where: k is the statement label of an executable statement in the same 
program unit. 

i is an integer variable used in an assigned GO TO statement of the 
i>ame program unit. 

Rules: 

(1) The ASSIGN statement must be executed before the assigned GO TO statement 
to which it applies. 

(2) The statement ASSIGN 10 TO J does not have the same meaning as the 
arithmetic statement J = 10. In particular, the sequence 

1 0 

AS S I G N 0 TO J 

K = J 

will not produce a meaningful result. If J is to be used as an arithmetic 
variable after its use in an assigned GO TO statement, it must be defined 
as such at some point after the assigned GO TO statement. The following 
sequence illustrates proper use of the ASSIGN statement: 

AS S I G N 1 0 T 0 J 

GO TO J 2 0 3 0 

I I 

J = 1 5 

Control is transferred to statement 10 after execution of statement .J. The 
variable K is assigned a value of 14. 

Example: 

See Figure 5-1. 

8 

• 

• 

• 



• 

• 

• 

UP-7536 
Rev. 1 ·FUNDAMENTALS OF FORTRAN 5 

SIECTION& P.t.QE: 

5.3. IF STATEMENTS 

The IF statements are the decision-making elements of FORTRAN. The test specified 
in the IF statement may modify the normal sequence of execution. FORTRAN provides 
two IF statements: the arithmetic IF statement and the logical IF statement. 

5.3.1. Arithmetic IF Statement 

Function: 

To act as a three-way branch, as determined by evaluation of an arithmetic expression. · 

where: exp is any arithmetic expression except complex type. 

Rules: 

each sf is a statement label of an executable statement in the same 
program unit. 

(1) If exp is negative, control is transferred to s/
1

; if zero, to s/
2

; if positive, to 
s/3. 

- (2) The list must contain three statement labels; however, any two, or all three, 
may be the same. If all three are the same, the statement is, in effect, an 
unconditional GO TO . 

(3) An arithmetic IF statement must not branch to itself. For example, the following 
statement is illegal: 

(4) The first executable statement following an arithmetic IF statement must have a 
statement label or it can never be executed. 

(5) If the arithmetic expression is real or double prec1s1on type and contains trunca­
tions and roundoffs, caution must be exercised, especially when the expression 
is tested for the zero condition . 

9 



UP-7536 
Rev, 1 

5 
FUNDAMENTALS OF FORTRAN SIECTIONI PAGIEI 

Examples: 

(1) 

1 0 

2 0 

If, in solving the quadratic equation ax2 + bx + c, where all three coefficients 
are integer type numbers, the discriminant b2 - 4ac is negative, the result is 
two complex roots which are conjugates of each other; if zero, two equal real 
roots; if positive, two unequal real roots. The following sequence shows how an 
arithmetic IF statement can be used to select one of three root evaluation 
procedures based on the evaluation of the discriminant. 

M DI S C M 8 * * 2 • MA. M C 

F(MDISC) 1 0 ' 3 0 

two compl•x roots 

t w a • q u a I r • a I r o o t s 

real roots 

(2) Now consider another procedure for the problem in (1), but with the coefficients 
real type numbers. This sequence introduces the basic function reference ABS(xj 
which returns the absolute value of a real type argument, x. 

DI SC = B * * 2 - " . 0 • A. • c 

I F A. 8 s DI s c -.1 E - 1 0) 
" 0 

5 0 5 0 

" 0 D I s c 0 • 0 

5 0 I .F ( D s c) 1 0 2 0 • 3 0 

1 0 t w 0 c o m p I • x r o o t • 

2 0 r • a I r o o t s 

3 0 two unequa,1 .r•,al 
I I 

10 

• 

• 

• 



• 

• 

• 

UP-7536 
Rev. 1 FUNDAMENTALS OF FORTRAN 

SECTION! 

5 

In this program, all absolute values of the discriminant less than 10-lO are 
treated as zero. This handles possible errors occurring in the value of the 
discriminant due to computer representation of real type values, truncation, 
and roundoff. The criteria for these limits vary with the nature of the pr.oblem 
and the manner in which a particular computer treats real type values and 
computations. 

PAGE: 

(3) Paragraph 3.2.4, example (2), contains an arithmetic expression that could be 
used for testing odd/even integers. The following example shows how this 
expression might be used. 

F ( IH/2)*2-H) GO TO 200, 100 

1 0 0 rout in• o r odd int 

2 0 0 n • 

5.3 .2. Logical IF Statement 

Function: 

To determine whether or not a single executable statement, written as part of the 
logical IF statement, shall be executed. 

IF (e) s 

where: e is any logical expression. 

s is any executable statement except a DO statement or another logical 
IF statement. 

Operation: 

Execution of the lF statement proceeds in two parts: evaluation of the logical 
expression and (possibly) execution of the statement. lf the logical expression, e, 
is evaluated as true, the statement, s, is executed; if false, the statement s is 
ignored and control is passed in normal sequence to the next executable statement. 

11 



UP-7536 
Rev. 1 

5 
t=UHDAMEHTALS OF FORTRAN 

Sl:CTIONI PAGEi 

Rules: 

(1) A logical IF statement cannot refer to itself. For example, the following statement 
is illegal. 

I 10 11' F( ·: •• " • • • l • ·: T • 10 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 
(2) Because execution of the statement proceeds in two parts, the same variable 

may appear in both the logical expression e and the statement s. For example: 

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : ; : : : : : : : : 
(3) ·caution must. be exercised if the logical expression involves the comparison 

of real or double precision arithmetic expressions. 

Examples: 

(1) The following program determines how many months it takes for a deposit to 
double its original value for three different compound interest rates. The rate 
is the interest computed at the end of each three-month period, starting from 
the month of deposit. The three interest rates are 13, 1.253, and 1.53. The 
months required for the three different rates are stored in the array '.\10NTHS. 

DIMENSION MONTHS(l) 

N = 1 

R A. T. E = 0 0 

1 s D PS T = 1 0 

R=RATE+l 0 

K = 0 

1 0 K = K + 

DPST=DPST • R 

I F ( D PST. LT. 2 0 G 0 T 0 1 D 

MONTHS(N = 3 • K 

GO T 0 2 0 . 3 D . ' 0 ) . N 

2 0 RA.TE=O D 1 2 s 
N = 2 

GO T 0 s 
3 0 RA.TE=O 0 1 s 

N = 3 

G 0 T 0 1 s 

' I) 
ST 0 P 

E N D 

12 

• 

• 

• 



UP-7536 
Rev. 1 

• 

• 

• 

FUND.lMENT ALS OF FORTRAN D 5 
SIECTION1 

(2) This program finds the values of y for y=3x2+2x+S for values of x between 0.1 
and 0.2 at intervals of 0.001, that is, x = 0.100, 0.101, 0.102, ... , 0.199, 
0.200. This gives 101 values of y, stored in array Y. 

DI ON Y(101) 

N = 0 

1 0 N=N+ 

K • 9 9 + .N 

X=FLOAT(IC)/1E3 

Y(N)=3.0 x 2 + 2 • 0 x 5 • 0 

IF(N.LT.10 T 0 1 0 

STOP 

E N D 

Because the integer type variable N is used for the counter and in the. logical 

PAGIE: 

+ 

IF statement, the result will be exactly 101 values. Because a division operation 
is used to compute X each time around the loop, each sample of X will be as 
close to the desired value as the processor approximation to a real number 
permits. This avoids any pitfails that might arise if X had been incremented 
each time around the loop by a real type value, by avoiding possible approximations 
due to successive truncations and roundoffs. 

5.4. DO STATEMENT 

Function: 

To initiate and control repeated execution of a set of executable statements: 

or 

where: n is the label of an executable statement called the terminal statement, 
which follows (not necessarily immediately) the DO statement. 

i is an integer variable called the control variable. 

m1 is an integer constant or an integer variable called the initial parameter. 

m
2 

is ·an integer constant or an integer variable called the terminal parameter. 

m
3 

is an integer constant or an integer variable called the incrementation 
parameter. In .the second form, its value is implicitly 1. 

13 



UP-7536 
Rev.l 

5 
FUN DAM ENT ALS 0 F FORTRAN 

SCC:TIONa 

Operation: 

For successive repetition of the same group of executable statements, the DO state­
ment eliminates separate statements that set a variable to a starting value, increments 
this value after the group has been executed, and tests the new value to determine 
whether the group shall be executed again, as was done in the sample program of 
1.6. The operation of a DO statement is shown in the following examples. 

WITHOUT DO STATEMENT WITH DO ST A TEMENT 

i=m 1 DO n i=m1 ,m2 ,m3 

label first statement of set \ first statement of set 

. DO 
range l n terminal statement of set 

n terminal statement of set 
i=i+m 
IF (i.tE.m2 ) GO TO label 

The steps in the execution of a DO statement are: 

(1) The control variable i is assigned a value represented by m1 . This value must 
be less than or equal to the value represented by m

2
. 

(2) The range of the DO is executed. If this range contains a reference to a function 
or subroutine, the function or subroutine is considered part of that range when it 
is executed. 

(3) After execution of the terminal statement, the control variable is incremented by 
the value of m

3
. 

(4) This new value of the control variable is tested. If it is less than or equal to 
the value of m

2
, program control is transferred back to the first statement of the 

DO range, witli the new value for the control variable; if it is greater than m2 , 
the DO is satisfie.d, and the control variable becomes undefined. 

(5) If this DO range is nested within another DO range, and both have the same 
terminal statement

1
when the inner DO is satisfied, the control variable of the 

next outer DO is incremented and tested, and its DO range (which includes the 
inner DO) will be repeated until satisfied. This will continue for all nested DO 
statements sharing the same terminal statement until the outermost DO is satisfied. 
If there is no nesting of DO's with the same terminal statement, after a DO 
statement is satisfied, its control variable becomes undefined and program control 
is passed to the first executable statement after the terminal statement. 

14 

• 

• 

• 



• 

• 

UP-7536 
Rev.I 

• 

5 
FUNDAMENTALS OF FORTRAN 

SIECTIONI 

Rules: 

(1) The terminal statement must be in the same program unit as the DO statement. 
It must not be a GO TO, arithmetic IF, RETURN, STOP, PAUSE, or a logical 
IF containing any of these forms. However, if the logic of a DO range indicates 
that such a statement is a terminal statement, such a statement can be followed 
by a CONTINUE statement (which has no logical function); the CONTINUE 
statement is then labeled and used as the terminal statement of the DO range. 
If the terminal statement is a CALL statement, the subroutine will be executed; 
after the RETURN of the subroutine is executed, the control variable is tested 
to determine whether the DO range shall be executed again. 

(2) At execution time the parameters of the DO statement must be defined as values 
greater than zero. 

(3) Because the control variable is tested at the end of the DO range execution, a 
DO statement will always be executed at least once when encountered. 

(4) No statement in a DO range may redefine the control variable or any parameter 
of the DO statement; however, the control variable may be referenced in the DO 
range, as in: 

K=i+ INT 

n terminal statement 

(5) If a control statement causes an exit from a DO range before the DO is satisfied, 
the control variable remains defined until redefined. 

(6) DO statements can be nested in outer DO statements with this restriction: the 
range of each nested DO must be completely contained in the range of ~ts next 
outer DO and may share the same terminal statement. 

15 



· UP-7536 
Rev. 1 FUNDAMENTALS OF FORTRAN 

VALID NEST 

DO 10 i=. 

DO 20 i= • •. 

DO 20 i= • .. 

20 executable statement 

10 executable statement 

A 5 
SIECTION1 

INVALID NEST 

(The range of the second DO is not 
contained within the range of the first 
DO.) 

DO 10 i= • . 

DO 20 i= . .. 

10 executable statement 

20 executable 'statement 

A special type of nest is a completely nested nest. This is a nest of DO 
statements which satisfies both of the following conditions: 

• The outermost DO statement of the nest is not contained in the range of 
another DO statement. 

• The first occurring terminal statement within the nest physically follows 
(not neces.sarily immediately) the last DO statement within the nest. 

PAGEi 

COMPLETELY NESTED NEST VALID NEST BUT NOT COMPLETELY 
NESTED NEST 

DO 10 •.. 

DO 20. 

DO 20 .•. 

20 executable statement 

10 executable statement 

(The first occurring terminal statement 
does not follow the last DO.) 

DO 10 ... 

DO 20 .. 

20 executable statement 
DO 30 ... 

30 executable statement 

10 executable statement 

16 

• 

• 

• 



• 

• 

• 

UP-7536 
Rev. 1 FUNDAMENTALS OF FORTRAN s 

llECTIONI PAGEi 

A DO range can have an extended range if it is a nonnested DO or the innermost 
nest of a completely nested nest and both of the following conditions are true: 

• The range contains a GO TO, or arithmetic IF, or a logical IF containing either 

of these two statements, that can pass control out of the range to another set 
of executable statements. 

• This set of executable statements contains a control statement that could return 
control back to the DO range. 

Examples of extended ranges are: 

DO 10 .•. DO 10 .. 

IF( ... )20,20,30 DO 10. 
20 executable statement 

IF ( •.• ) GO TO 20 
40 executable statement 

30 executable statement 
10 terminal statement 

10 terminal statement 
GO TO SO 
executable statement 

f° extended 20 executable statement I extended 
range 

IF ( ... ) GO TO ( 40, .. ),K \ 

) so executable statement 
GO TO (30, 40),-K 

40 executable statement 

The extended range of a DO must not contain, in the same program unit, a DO 
statement that has an extended range . 

range 

17 



UP-7536 
Rev. 1 

5 
FUNDAMENTALS OF FORTRAN SIECTIONI 

(8) A GO TO, arithmetic IF, or a logical IF with either of these two forms cannot 
pass control into the range of a DO unless that GO TO or arithmetic IF is being 
executed as part of the extended range of that DO. If more than one DO statement 
share the same terminal statement, only the innermost DO range may contain a 
GO TO or arithmetic IF that transfers control directly to the terminal statement. 
The following shows examples of legal and illegal transfers of control: 

VALID TRANSFERS OF CONTROL INVALID TRANSFERS OF CONTROL 

DO 

DO 

DO ;J 
DO 

:=J DO ::J 

~ 

t 
extended 

range 

1 

Examples: 

(1) The following sequence shows how to set all array elements of a one-dimensional 
array to zero. 

DIMENSION T AB L E 

D 0 0 K = 1 0 0 

1 0 TABLE(K)-0 0 

18 

• 

• 

• 



• 

• 

• 

UP-7536 
Rev. 1 

5 
FUNDAMENTALS OF FORTRAN 

SIECTION1 PAGEi 

(2) The following sequence shows how to set all array elements of a three-dimensional 

array to zero. 

INTEGER SET(3,4, 5) 

D 0 0 J = 5 

D 0 0 K = 
D 0 1 0 L = 3 

1 0 S ET = 0 

(3) The following example is an illustration of processing by DO statements. 

DIMENSION INTGRS 

i I 

D 0 0 K = 
10 IHTGRS 

2 0 

D 0 

H T G RS K = IHTGRS fK 

After the first DO (with terminal statement 10) has been satisfied, the array 
elements of INTGRS will contain, in succession, square numbers, l, 4, 9, ... , 
225. After the second DO has been satisfied, all odd-numbered array elemen~s 
will contain the value l; the even-numbered array elements are unchanged. 

(4) The following internal numerical sort program contains an extended range. 
Originally the array elements of array NMBRS contain a series of integers in 
random sequence. The program is to re-arrange the integers from low to high, 
with the lowest in the first array element. 

19 



UP-7536 
Rev. 1 

4 0 

FUNDAMENTALS OF FORTRAN 
5 

SECTION: . PAQE: 

The sorting method used is known as a "bubble" sort. The first array element 
is compared with the second array element; if the first is greater than the second, 
the two are interchanged. Then the second array element is compared with the 
third array element, and so on, until the next-to-last array element is compared 
with the last array element. This is the initial pass. The result is that the 
greatest number has "bubbled" through to the last position. A record is kept 
of the last positions interchanged. This record determines if another sorting pass 
is required and how many array elements must be compared in that next sort. 

DIMENSION HMBRS(100) 

KOUHT= 

J = 9 9 

0 0 2 0 M = 1 J 

I F NM BR S M • GT. HM BRS M + 1 G 0 T 0 3 0 

20 CONTINUE 

J = K 0 U NT -, 1 

F J E Q • 0 S T 0 P 

GO T 0 4 0 

30 KOUHT=M 

NSAVE=HMBRS M 

HMBRS( M) =HMBRS M + 1 ) 

NM B R S M + 1 ) = N,S AV E 

GO TO 2 0 

EH D 

Note the following: 

• The terminal statement cannot be a logical IF containing a GO TO; therefore, 
a CONTINUE statement is added and used as the terminal statement. The 

CONTINUE statement (also known as a "no-op") does not perform any logical 
operation and can be used to satisfy format rules of FORTRAN. 

• The extended range is considered part of the DO range being executed; therefore, 
parameters of the DO range can be referenced in the extended range. 

20 

• 

• 

• 



• 

• 

• 

UP-7536 
Rev. 1 

S.S. 

FUNDAMENTALS OF FORTRAN PAGEi 

5 
SECTION1 

(S) A DO statement can be used to advantage in cases where its use is not readily 
apparent. One such case is the evaluation of polynomials which have the form: 

1 0 

1 0 

2 0 

n n-1 a 1x + a2 x + .•• + anx + an+l 

where each a and the value of x are known as execution time. 

For polynomials where n is no greater than 3 or 4, an arithmetic assignment 
statement can be used, but as the value of n increases, execution time can be 
reduced with a DO statement. 

Consider a 1x3 7 a2 x2 + a3 x + a4 . By successive factoring of x, this can be 
represented as x(x(x(a1)+a 2)+a3)+a4 which consists of three "multiply by x 

and add a constant" operations. With the DO statement, this can be evaluated 
by: 

y = A 

D 0 0 = 

y = x * y + A 

For the general case, where n has the value N: 

y = A 

I F 0 GO T 0 2 0 

DO 0 = N 

y = x * y + A 

CONTINUE STATEMENT 

Function: 

To act as a dummy executable statement. It is used primarily as the terminal 
statement of a DO range. It may be used wherever a dummy executable statement 
is required. 

CONTINUE 

Rules: 

(1) The CONTINUE statement does not perform any logical operation. 

(2) The sequence of statement execution is not changed by the CONTINT,JE state­
ment . 

21 



UP-7536 
Rev.1 

5 22 
FUNDAMENTALS OF FORTRAN 

SllCTION1 PAGE: 

Example: 

The following sequence changes all negative values in array MAP to their corresponding 

positive values. Because the last logical operation is an arithmetic IF statement, a 
CONTINUE statement is added and made the terminal statement of the DO range. 

DI M 

D 0 t 0 K = 0 0 

I F 20 1 0 1 0 

2 0 MAP ( K) = - MA· P ( K 

10 CONTINUE 

5.6. PROGRAM CONTROL STATEMENTS 

A program control statement either temporarily halts execution of a program (the 
PAUSE statement) or terminates execution of a program (the STOP statement). 

5.6.1. PAUSE Statement 

Function: 

To temporarily halt execution of a program. 

PAUSE 

or 

PAUSE n 

where: n is a string of one to five octal digits (the digits 0 through 7). 

Rules: 

(1) A PAUSE of either form temporarily' halts execution of the program. The method 
of resuming execution differs with each processor and is described in the pro­
gramming manual for that processor. 

(2) The decision of resuming execution is not under program control, but is usually 
made by the operator under instructions from the programmer. 

(3) With the second form of the PAUSE statement, the digit string is displayed or 
accessible by other means. Use of these digits depends upon the particular 
processor used. 

(4) If execution is resumed without changing the state of the program, program 
control is passed to the next executable statement in normal sequence. 

• 

• 

• 



UP-7536 
Rev.l 

• 

• 

• 

FUNDAMENTALS OF FORTR~N 
SIECTIONI 

5 

Examples: 

The following sequence checks a list of account numbers in array LIST. If any 
of these numbers is not greater than zero, control is passed to an error routine 
and execution of the program is temporarily halted. 

DIMENSION LI ST(20,30,40) 

D 0 0 M = 4 0 

D 0 0 L = 3 o, 

D 0 · 1 0 K = 2 0 

F K L M L E . 0 ) GO T 0 2 0 

0 c N T NU E 

2 0 e r r 0 r r o u t n e 

PA.US E 

GO TO .10 

5.6.2. STOP Statement 

Function: 

To terminate execution of the program. 

STOP 

or 

STOP n 

where: n is a string of one to five octal digits (the digits 0 through 7). 

Rules: 

PAGE: 

(1) There must be at least one STOP stat~ment in a program to terminate execution 
of the program. 

(2) Action that follows execution of the STOP statemen.t depends upon the particular 
processor used. 

(3) The digits of the second form of STOP statement are not necessarily accessible, 
depending upon the particular processor used . 

23 



UP.,.7536 
Rev. 1 5 FUNDAMENTALS OF FORTRAN 

PAGE: SECTION: 

Example: 

The following program has read in a list of telephone numbers into array NUMBER. 
Each telephone number contains sevan decimal digits (no area code). To ensure 
that all values have been read in correctly, each number is checked tp see that it 
is greater than zero and not greater than 9999999. If any such error is detected, 
control is passed to an error routine (which may print a message) and execution of 
the program is terminated. The second STOP statement is assumed to be the STOP 
statement encountered during normal execution and is included to show that a program 
may have more than one STOP .statement. 

1 0 C 0,M, T! I ,M,U, E, I 1 

24 

• 

• 

• 



• 

• 

• 

UP-7536 
Rev. 1 FUNDAMENTALS OF FORTRAN 6 

SECTION! 

S. INPUT/OUTPUT AND FORMAT 
STATEMENTS 

6.1. GENERAL 

Input statements fetch data from input and auxiliary storage devices to be used in 
the program. The input statement is the READ statement. Output statements store 
results obtained in the program on auxiliary storage devices or display the results 
on output devices. The output statement is the WRITE statement. 

PAGE: 

The sample program deck of cards of Figure 1-8 illustrates use of the READ and 
WRITE statements. The same program can be used without change for different data 
decks. All that need be changed in a particular application is the deck of data cards. 

FORTRAN also gives the programmer some control over external devices with the 
BACKSPACE and REWIND statements for positioning such devices as magnetic 
tape, disc, and drum units. The ENDFILE statement can be used to demarcate files. 

These statements apply to the transfer of sequential files to and from the processor. 
A file .is the entire set of data on the 1/0 device designated in an I/O statement. A 
file may be subdivided into records. In an 80-column card reader, each record is an 
80-column punched card; in a printer, each line is a record; in a magnetic tape unit, each 
record may have a different size (in characters) up to a maximum which is specified for 
each computer. Tape records are usually separated by a gap which contains no data. 
Each record may be subdivided into fields, the size of which is determined by the 
programmer. 

The term sequential file is used as opposed to a random access or direct access file. 
For example, with standard I/0 statements it is not possible to read the fifth recorr! 
of a file directly; it is necessary to indicate that the preceding four records are to be 
passed over. Once the fifth record is read, it may be impossible (as in the case of a 
card reader) to go back and read the third record; however, this can be done where 
the BACKSPACE or REWIND statement is effective (as on magnetic tape). 

READ and WRITE statements may refer to a FORMAT statement which de~cribes the 
characteristics of the data being transferred. Such statements are called formatted 
statements. FORTRAN also provides for the transfer of information from one medium 
to another without change or conversion; these 1/0 statements are called unform:itted 
statements. In addition, a READ or WRITE statement usually contains a list that identi­
fies the items being transferred. 

The remainder of this section describes: 

• elements of 1/0 statements 

• FORMAT statement 

• formatted READ· and WRITE statements 

• unformatted READ and WRITE statements 

• auxiliary 1/0 statements 

1 



UP-7536 
Rev. 1 

6 
FUNDAMENTALS OF FORTRAN SllCTIONI PAGlll 

6.2. ELEMENTS OF READ AND WRITE STATEMENTS 

Each READ or WRITE sta ternent may reference a FORMAT statement or specification 
and a logical unit, and may contain an 1/0 list. 

6.2.1. Logical Unit Number 

The logical unit number is an unsigned integer that designates the 1/0 device contain­
ing the file being referenced. A file may be transferred from one medium to another. If 
it becomes necessary to access the same file later on, it will have a different logical 
unit number than the one originally used. In previous examples, the integers 1 and 3 
were used to denote a punched card reader and a printer, but these numbers were only 
for use in examples. There is no standard convention for assigning numbers to logical 
units. This information must be obtained from programming manuals for a particular 
processor. 

6.2.2. Input/Output List 

The purpose of an input/output list is to identify transferred items so that they can be 
referenced in the program. A transfer initiated by a READ or WRITE statement is not 
complete unless all items in the input/output have been transferred. It is convenient 
to define an input/output list in terms of a simple list and a DO-implied list. 

A simple list is a variable, array element, array name, or two simple lists separated 
by a comma. For example, 

V2 ,ARRAY ,MATRIX(S) 

is a simple list. Previous examples were restricted to simple lists in READ and WRITE 
statements. When an array name appears in a simple list, it refers to all elements of 
that array in the order described in 2.7.4. 

An 1/0 list is a simple list, a simple list enclosed in parentheses, a DO-implied list, 
or two lists separated by a comma. When there is no 1/0 list in a READ or WRITE 
statement, the 1/0 list is said to be empty. For example, 

V2,(ARRAY ,MATRIX(S),(NAME)) 

is an I/O list. No 1/0 list may contain a constant except in a subscript expression or as 
a parameter of a DO-implied list. 

A DO-implied list is a list followed by a comma and a DO-implied specification, all 
enclosed in parentheses. A DO-implied specification has the format: 

or 

/ 

2 

• 

• 

• 



• 

• 

• 

UP-7536 
Rev. 1 FUNDAMENTALS OF FORTRAN 6 

SECTION• PAGEi 

The italicized parameters and the control variable are the same as those for the DO 
statement (see 5.4). For example, the DO-implied list (ARRA Y(K), K=3,5) refers to 
the array elements ARRA Y(3), ARRA Y(4), and ARRA Y(S), in that order. This illustrates 
one of the advantages of a DO-implied list. It enables selected array elements to be 
referenced without the use of a DO statement. The DO-im_plied list (MATRIX(]), 
ARRAY(]), J=l,3) refers to the array elements MATRIX(l), ARRAY(l), MAT~IX(2), 
ARRA Y(2), MATRIX(3), and ARRA Y(3), in that order. 

Examples of DO-implied lists: 

(1) ((ARRAY(J,K),.J=l,5,2), K=3,4) 

refers to ARRA Y(l,3), ARRAY(3,3), ARRA Y(5,3), ARRA Y(l,4), ARRA Y(3,4), and 
ARRA Y(S,4), in that order. 

(2) (ARRAY(J,K), J=l,3) 

refers to ARRAY(l,K), ARRAY(2,K), and ARRAY(3,K), in that order, where K 
was defined previous to execution of the READ or WRITE statement containing 
the DO-implied llst. 

(3) (((ARRAY(] ,K,M), J=l,J2), K=l,K2), M=l,M2) 

refers to the array elements of ARRAY in their natural order if J2, K2, and M2 
were the declared dimensions. 

( 4) An example of an 1/0 list containing a DO-implied list is: 

A,B, (C,ARRAY(K), K=3,5) 

refers to A,B,C,ARRAY(3),C,ARRAY(4),C, and ARRAY(S), in that order. 

(5) The elements of an array can be referenced in any order. For example, 

((ARRA YU ,K), K=l,L), J=l,M) 

interchanges the order of subscripts of ARRAY. 

(6) An example of a DO-implied list within a DO-implied list is: 

((A(l,J), 1=1,!0,2), B(J ,3), J=l,K) 

The order of reference is clearer if shown as follows: 

[ 

DO J=l,K 

[
-DO I =l,10,2 

A(I,J) 

B(J ,3) 

Thus, the order of reference is: 

A( 1., l) ,A(3, l),A(5, 1), A(7, l ),A(9, l), B(l, 3), 
A( l, 2),A(3,2),A(5,2),A(i, 2), A(9 ,2), 8(2, 3), 

A(l ,K),A(3, K),A(5,K),A(7 ,K),A(9 ,K),B(K,3) 

3 



UP-7536 
Rev. 1 FUNDAMENTALS OF FORTRAN 

6 
SECTION: PAGE: 

6.3. FORMAT STATEMENT 

Function: 

To provide conversion and/or editing information between the internal representation 
and the external character strings in conjunction with a formatted READ and/or WRITE 
statement. 

Format: 

where: each q is a se.ries of one or more slashes (/) to act as a record demarcator and 
may be omitted. 

Rules: 

each t is a field descriptor or a group of field descriptors. 
each z is a field separator. 
The part (q1 t 1z 1 ••. q2) is called the format specification. 

(1) A FORMAT statement must have a label. It can be referenced by one or more 
formatted READ and/ or WRITE statements. 

(2) If a formatted READ or WRITE statement references a format specification by 
array name, only the format specification (including the enclosing parentheses) 
must be the first item in the array. Any information in the array after the rightmost 
parenthesis is ignored. For example, 

RE AD 0 K 2 K 3 K 4 K 5 K 6 K 7 

1 0 FORMAT 3 5 3 1 8 

indicates that K2, K3, and K4 are to be interpreted as integers occupying five 
character positions, and that KS, K6, and Ki are to be interpreted as integers 
occupying eight character positions. The READ statement could also have been 
written as: 

DI M EN S I 0 H. N T ( 2 

4 

• 

• 

DATA I N T ( 1 I 5 H 315,/,IHT( 2)/4H318) I 

R EA D ( 1 I I H T) K 2 I K, 3 I K 4 I K 5 I K 6 I K 7 

where the DAT A statement initializes the contents of array INT to the required 
format specification, using Hollerith constants. 

• 



• 

• 

• 

UP-7536 
Rev. 1 

6 FUNDAMENTALS OF FORTRAN 
S&CTION1 

The only restriction on the use of a format specification in an array is that the 
format specification cannot contain a Hollerith field descriptor of the form nH. 

(3) Blank characters may be used freely in the FORMAT statement or a format 
specification, except with a Hollerith field descriptor. 

(4) If there is an 1/0 list in the formatted READ or WRITE statement, the format 
specification must contain at least one field descriptor other than nH or nX. 

PAGEi 

(5) Format control (control by a FORMAT statement or specification) is initiated when 
execution of a formatted READ or WRITE is started. (Further details on format 
control are furnished in 6.6.) · 

(6) The first character of a record to be printed is not printed; it is used as a form 
control character as shown in Table 6-1. 

CHARACTER VERTICAL SPACING BEFORE PRINTING ~ 

BLANK ONE LINE 

0 TWO LINES 

1 TO FIRST LINE OF NEXT FORM 

+ NO ADVANCE 

Table 6-1. Form Control Characters 

There are many ways of assuring that the required form control character is the 
first character. The safest way is to use 1H5 or lX for the blank character and 
lHO, lHl, lH+, respectively, for the form control characters in Table 6-1. However 
the sequence 

K = 
w 

20 FORMAT(l2, •• 

will have the same effect as if the FORMAT statement had been written 

In both cases, the printer will advance to the start of the next line and print the 
digit 1 in the first print posit ion of the line • 

5 



UP-7536 
Rev.l 

6 
FUMDAMEHTALSOF FORTRAM SECTION1 PAGEi 

However, if the FORMAT statement had been written ~ 

the printer would have advanced to the first line of the next form before printing the 
remaining items of the 1/0 list. 

(7) A format specification without any field descriptors is valid. For example, the 
format specification (/ ////) is valid. It causes the printer to advance five lines. 

6.3 .1. Record Demarc at or 

The term record demarcator refers to the one or more consecutive slashes (/) that 
appear anywhere in a format specification. If there are n slashes at the beginning 
or at the end of the specification, n records will be skipped; if there are n slashes 
anywhere else, processing of the current record is terminated, and n-1 records are 
skipped. 

For example, in reading punched cards, the sequence 

will obtain the value of K2 from the current card and the value of K3 from the next 
card. The sequence 

R EA D 1 0 K 2 I K. 3 

1 0 F 0 R M A T ( I I 5 I I 5 I I ) 

causes skipping of two punched cards before obtaining the value of K2 from the third 
card; skipping the fourth card; obtaining the value of K3 from the fifth card; then skipping 
two cards for processing of the next READ statement (if any) for the same file. 

6.3.2. Field Separators 

A field separator is either a comma or a series of one or more consecutive slashes. 
It is used to separate field descriptors in the list of format specifications. The 
slash(es) also acts as a record demarcator and.ends processing of the current record. 

For example, in printing information, the sequence 

WR I T E 3 1 0 K 2 K 3 K 4 

1 0 F 0 R M A T x I 5 I 5 I 1 X , 5 ) 

will cause printing of the values K2 and K3 on one line, and the value of K4 on the 
next line. 

6 

• 

• 

• 



• 

• 

• 

UP-7536 
Rev.1 

6 
FUHDAMEHTALS OF FORTRAH -

SEC:TION1 PAGE: 

6.3.3. Field Descriptors 

function: 

To indicate how items from/to an input/output device shall be represented internally/ 
externally and provide editing information in the form of spacing, form control (printer 
only), and Hollerith data. 

xPrfw.d 
xPrEw.d 
xPrGw.d 
xPrDw.d 

rlw 
rLw 
rAw 
nHh1h2 ... hn 
nX 

where: the letters F, E, G, D, I, L, A, and H indicate the conversion and editing 
and are called conversion codes. 

Rules: 

w and n are unsigned integers greater than zero indicating the number of 
character positions in a field of the external medium. 

d is an unsigned integer constant indicating the number of.digits in the 
fractional part of the external character string (except for the G conversion 
code) . 

r is an optional nonzero unsigned integer, the repeat count, indicating how 
many times to repeat a basic field descriptor that follows it. 

xP (optional) indicates scaling, x being an unsigned integer representing 
the scale factor. 

h represents a character from the processor character set. 

(1) The field width must be specified for all descriptors. 

(2) For descriptors of the form w.d, d must be specified even if it is· 0, and w must 
be greater than or equal to d. 

(3) All output is right-justified in the output field width specified by w, preceded by 
leading blank characters (w permitting}. 

(4) The number of characters produced on output cannot exceed the field width, w . 

7 



UP-7536 
Rev. 1 

6 
FUNDAMENTALS OF FORTRAN 

SIECTIONt PAQIEI 

6.3.3.1. Blank Field Descriptor 

The field descriptor for blank characters is nX. On input, n characters of the input 
record are skipped; on output n blank characters are inserted in the output record, 
except for the carriage control character. 

6.3.3.2. Numeric Data 

There are five conversion codes for handling numeric data: 

• the rlw code for handling integer type data 

• the xPrFw.d code ~ 
• the xPrEw.d code 

• the xPrGw.d code 

for real type and complex type data 

• the xPrDw.d code for handling double precision type data 

·On all numeric conversions, a blank character in the specified field is treated as 
a O. A blank field is treated as the integer zero. Depending upon the processor anc! 
the field width specified, positive values may be preceded by a +or no character 
position; a negative value requires a character position in the field width for the 
minus sign. Leading blank or zero characters are not significant. 

6.3.3.2.L Integer Type Conversion 

The basic field descriptor lw indicates that the external field occupies w positions 
as an optionally signed integer and is represented internally as an integer type 
item. 

On input, th.e external field may contain only a sign followed by digits, with 
blank characters anywhere in the string. No other characters are permissible. If 
the sign is plus, it may be omitted; if the sign is minus, it is required. On 
output, the external field consists of blank characters (if necessary) and a minus 
sign or an cptional plus sign followed by the magnitude of the internal integer 
type value. 

Examples: 

(1) An input card contains 

Position 1 8 

8 

• 

• 

• 



• 

• 

• 

UP-7536 
Rev. 1. l=UMDAMEMTALS OF FORTRAN 

6 

1 0 

1 0 

1 0 

SIECTIONI PAGE• 

and the following statements are used: 

The first five columns will be read to obtain the value for NAivIE2, which is 
1. Then the next three columns will be read to obtain the value for N AME4, 
which is 2. 

If the following statements are used instead: 

R EA D 0 NAME H AM E 4 H 

FORM AT I 2 I 3 

the first four columns will define the value of NAME2 as O; the next two 
columns will define the value of N AME4, as 10; the next three columns will 
define the value of NAME6 as '.!0. Note that trailing blank characters are 
significant and treated as zeros. 

If the following statements are used instead: 

R EA D 0 H AME 7 

FORMAT 9 

the first nine columns will define the value of NAME7 as 10020. 

(2) A punched card contains 

1 2 3 4 8 
Position 1 0 0 0 0 O 

( 1501551234050 -12340-00123405 -l231i15+o115215341iDD ... 15 

and the following statements are used: 

DIMENSION IARAY(2) . 

. ' 

R E A D 0 K AR A Y K 2 K 3 K 

3 x 5 3 x I 6 8 5 1 0 

9 



UP-7536 
Rev. 1 

r:--~ ) 
/ 

\... --

6 
FUNDAMENTALS OF FORTRAN llECTIONt 

The first three columns are skipped; 
the next five columns read in the value for Kl, which is 1234; 
the next three columns are skipped; 
the next six columns define the value of IARA Y(l), which is -12340; 
the next eight columns define the value of IARA Y(2), which is -12340; 
the next five columns define the value of K2, which is -123; 
the next 10 columns define the value of K3, which.is 102034; 
the next five columns define the value of K4, which is 0. 
The list is now satisfied and any remaining items on the card are ignored. 

(3) After the following sequence is executed, 

MA e 2 + t 0 l. -1 
MA Iii! 4 - t 0 -1 -1 

1 0 MA 11!.1.! 2 MAM ! 4 .l 

;11 131X1 'II 3.l I I I I I I I I I 

the printed line is: 

lODlffi-10 starting in print position 1. 

If the output list items in the WRITE statement had been 

an error condition would result. The first print character is a minus character, 
which is not a legitimate form control character. If this minus sign is interpreted 
as a form control character (in some processor implementations), there is not 
enough field width provided for printing -10. In this case the FO.RMAT state­
ment requires a change such as: 

to ensure that NAME4 will be printed correctly. 

10 

• 

• 

• 



UP·7536 
Rev. 1 

• 

• 

• 

SECTION& 

D 6 
FUNDAMENTALS OF FORTRAN PAGEi 

6.3.3.2.2. Input of Real Type Data 

For input numerical data to be represented internally as real type data, three 
conversion codes are available: the F, E, and G codes. Operation of these three 
basic field descriptors is identical for input data (their operation differs on output 
data). 

The basic form of the external input field consists of an optional sign (optionally 
preceded by blank characters) followed by a string of digits and blank characters 
with one optional decimal point anywhere in the string. This basic form may be 
followed by an exponent, having any of the following forms: 

• a signed integer constant 

• the letter E followed by an optionally signed integer constant 

• the letter D followed by an optionally sign.ed integer constant 

A decimal point in the oasic form overrides the decimal point specified by the 
d designator. 

Example-: 

A punched card contains 

1 2 3 
Position 1 0 0 0 

3456789 345.6789 3456789+3 

and the following statements are used: 

1,10) A1,A2,A3,A<4, 

4 
0 

-67.89E-3 

5 
0 

-6789010 

6 
0 

-67.890-2 

Gl0.3 EI0.2 2X,GS.,1l 

Al is defined as 3456789.0; 
A2 as 345.6789; 
A3 as 3456789.0; 

A4 as - 0.06789; 
AS as - 678900000000.0; 
A6 as 0.6789 (note that the minus sign is lost) . 

11 



UP-7536 
Rev. 1 

6 
~UNDAMENTALSOF FORTRAN 

SECTION: PAGE: 

6.3.3.2.3. Output of Real Type Data 

On output of numerical data that is internally represented as real type data, three 
conversion codes are available: the F, E, and G codes. The output form is different 
for the F and E codes; the G code results in form similar to either the F or E code. 

On output, the Fw.d results in an output field consi~ting of blanks (if necessary), 
a minus sign or optional plus sign (depending upon the processor), followed by a 
string of digits containing a decimal point and a fractional part rounded to d 
fractional digits. 

On output, the Ew.d results in an output field of the form: 

or 

where: the choice of form depends upon the processor. 

x1 ... xd are the d most significant rounded digits of the value to be 
transmitted. 

y represents a digit of the decimal exponent, 

the plus sign following the letter E may be represented by a blank 
character (depending upon the processor); 

t is either no character position or a minus sign; the 0 may be replaced 
by no character position (depending upon the processor). 

On output with the Gw.d basic field descriptor, the form of the external field 
depends upon the absolute value of the internal real type value. If N is the 
absolute magnitude, the effect conversion is as follows: 

MAGNITUDE OF N 

0.1 :S. N < 1 

1 S. N < 10 

10d-:- 2 S. N < 1od- l 

1od- 1 s. N $.. 1od 

otherwise 

EFFECTIVE CONVERSION 

F(w- 4) .d,4X 

F(w-4) .(d-1) , 4X 

F(w-4) . 1, 4X 

F(w-4). 0, 4X 

Ew.d 

For effective F conversion, the absolute value of the real type item in stwage 
must be equal to or greater than 0.1 and equal to or less than 10d. 

12 

• 

• 

• 



• 
UP-7536 

Rev. 1 

•• 

• 

1 0 

FUNDAMENTALS OF FORTRAN D . 6 
IECTION1 PAGIEI 

Rule: 

In general, on output with the Ew.d, and possibly the Gw.d, basic field descriptors, 
w should provide: 

• four positions for the decimal exponent; 

• one position for the decimal point; 

• one position for the O; 

• one position for the sign. 

Therefore, this general rule pertains to these basic field descriptors: w must be at 
least 7 greater than don output. 

Exam>ples: 

(1) The successive elements of array table are 

.001234 

.001234 
-12.345 
-12.345 

and the following statements are used for printing: 

WRITE(3,10)TABLE 

FORMAT F 1 5 • 7 E 1 5 • 7 F 1 5 . 2 

The printed line will be (subject to processor options): 

E 1 5 • 7 

1 3 4 6 
Position 1 5 0 5 0 

060 b&l'>b .0012340bb0.1234000E-02bb&&&&bl'>&-l 2. 356-0. l 234500E +02 

(2) Examples for the basic field descriptor Gw.d on output for different values 
of the transmitted item are: 

ITEM CODE EFFECTIVE PRINTED 
VALUE DESCRIPTOR DESCRIPTOR ITEM 

-.0123456 Gl0.3 El0.3 - 0.123E- 01 

-23.456789 Gll.2 F7 .0,4X 1m15- 2 3 .D6015 

- 23.456789 Gll.3 F7.l,4X 05- 23.506D15 

-23.456789 Gll.5 F7.3,4X - 23.457001515 
-123.456780 Gll.2 Ell.2 Dti- 0.12E+03 

13 



UP-7536 
Rev.1 

6 
FUHDAMEMTALS OF FORTRAN 

SECTION I PAGEi 

6.3.3.2.4. Double Precision Type Conversion 

1 0 

2 0 

On input, the basic field descriptor Dw.d is used for items to be represented 
internally as double precision type data; on output, it is used for items that are 
represented internally as ·double precision type data. 

The form of the external input field is the same as that for real type conversion 
(see 6.3.3.2.2). The form of the external output field is the same as that for the 
Ew.d field descriptor (see 6.3.3.2.3) except that the letter D may replace the 
letter E. As with real type numbers on input, a decimal point in the input value 
overrides the d specification. 

The advantage of the D descriptor is that it can store and output more significant 
digits than the E descriptor can. 

Rule: 

The internal field must be explicitly declared as double precision type. 

Example: 

The following short program illustrates use of the D conversion code: 

D 0 U 8 L E PRECISION x , x 2 

R E AD x 
FORMAT D 1 5 • 5 

x 2 = 2 0 * x 
WRI TE 3 2 0 x 2 

FOR MA T D 1 7 5 

S T 0 P 

EMO 

14 

• 

• 

• 



• 

• 

• 

UP-7536 
Rev.1 

1 0 

FUMDAMEHT ALS OF FORT RAM Sl£CTION1 

6 
PAGE: 

6.3.3.2.5. Complex Type Conversion 

A complex data type item is represented internally as two consecutive real type 
items. Therefore, for each of the pair (the first is the real part and the second is 
the imaginary part), a real type conversion code is required .. 

Requirements for the external input field are the same as for real type conversion. 
Each successive pair of items is interpreted as a complex type item. 

The external output field requires a separate real type conversion code for each 
part of the complex value. 

Rule: 

The internal field requires explicit type declaration. 

Examples: 

(1) Input 

A punched card contains 

1 2 3 4 5 
!:losition 1 0 0 0 0 0 

( -123.56~ -123-3 45.6-02 123.-02 0.01231rb 

and the following statements are used: 

COMPLEX CPX1,CPX2 

R E A D 1 I 0 c p x 1 A I c p x 2 

FORM AT F 0 0 I F 1 0 ,Fl0.1,ElO. 0,GlO.O) 

-123.56- 0.0123i is read into CPXl; 

0.456 into A; 

l.23+0.0123i into CPX2. 

Since the input list is satisfied, the last GlO.O of the FORMAT statement is 
disregarded . 

15 



UP-7536 
Rev. 1 

5 

6 
FUNDAMENTALS OF FORTRAN 

llECTIONI PAGE; 

(2) Output 

After execution of the following program 

COMPLEX CPX2 CPX4 

c p x 2 = -123.56 -345E-3) 

c p x 4 = 789.56 -890.1 

A = 4 5 6 

5X F5.3/F8.2 2X F6.1 

S T 0 P 

EM D 

The first print line will be: 
-0.12356E+03'bb-0.34500E+031rbbbb-.456 

The second print line will be: 
1>789.561>1>-890. l 

Note that the first character of each print line (a blank character) is interpreted 
as the form control character and is not printed. 

6.3.3.3. Logical Type Conversion 

16 

• 

On input, the basic field descriptor Lw is used for items to be represented internally •. 
as logical type data; on output, for items that are represented internally as logical 
type data. 

Rules: 

(1) The internal field must be explicitly declared as logical type. 

(2) On input, the external field consists of optional blank characters, followed by 
either a T for true, or F for false, followed by optional characters which are 
ignored. · 

(3) On output, the external field consists of w- 1 blank characters followed by 
a T or an F. 

Example: 

An input card contains 

1 1 
Position 1 0 9 

(',----------.T-0-N----F=-=0-F-F,,..-~ 

and the program contains the sequence: 

• 



• 

• 

• 

UP-7536 
Rev. 1 

5 

FUNDAMENTALS OF FORTRAN 

SW T H 4 

SWTCH2 SWTCH4 

W R I TE 

The printed line will be: 

bbbbbbbblbbbbbbbbF 

6 
.IECTIONI F'4GE: 

6.3.3.4. Hollerith Field Descriptors 

Hollerith information may be transmitted by the field descriptors nH and Aw, 
as follows: 

(1) On input, the nH reads Hollerith data into the n characters following the nH 
field descriptor in the format specification. On output, it writes the last 
previously defined n characters of the format specification following the nH 

field deseriptor. 

(2) ·The Aw field descriptor reads or writes w Hollerith characters into or from 
an element of the I/O list. 

Rules: 

(1) The nH field descriptor must not be used in a format specification if a 
READ or WRITE statement references the format specification by array name . 

(2) For the Aw field descriptor, let g be the maximum number of characters that 
can be represented in a single storage unit (see 2.5.1). If w is greater than 
or equal tog on input, the rightmost g characters will be accepted and any 
remaining leftmost characters will be lost. If w is less than g on input, the 
w characters will be accepted left-justified internally with remaining storage 
positions filled with blank characters. If w is greater than g on output, the 
external.field will con ta in the g characters ri gh t-jus tified with the remainder 
of the field filled with blank characters .. If w is less than or equal·to g, the 
external field will contain only the leftm'ost w characters from the internal 
re pre sen ta ti on. 

[x;imples: 

For explanatory purposes, it has been assumed that no more than five characters 
can be stored internally in an integer, real, or logical data type item. The number of 
characters that can be stored in a single storage unit varies with processor implementa­
tion; there is not standard capacity . 

17 



UP-7536 
Rev. 1 FUNDAMENTALS OF FORTRAN lllCTIONt 

6 
PAGlll 

(1) In this program, the nH field descriptor causes printing of specified characters . 

+ K 

3 10 SUM 

10 ORMAT SH TOTAL 

S T 0 P 

EM D 

The printed line will be: 

TOTAL= 3 

(2) Consider the following short program which reads in one data card containing: 

1 
Position 1 0 

2 
0 

3 
0 

4 
0 

5 
0 

(CuRRENT ____ l._2 ___ .....,S,,...,6,.....=is=-----2"""'.3,----3..,.4'""'.s"""'6--

I 

1 0 

D 0 

20 AMPS 

WR I T 

ST 0 P 

EM D 

The printed output is: 

CURREN I bb666664i .326666615.03 

The READ and WRITE statements are processed as: 

(a) After the card was read in, the FORMAT statement became, in effect, 
10 FORMAT(l0H15CURRENTOD,Fl0.0,Fl0.0,Ft0.0,Fl0.0). 
On printing, the first o was interpreted as a carriage control character 
and was not printed. 

(b) It was not necessary to define all elements of the arrays since these 
were not used. 

(c) Although the WRITE statement required only two I/O list items, its 
FORMAT statement contained four field descriptors. As soon as an l/O 
list is satisfied (all items are accounted for), format control is terminated . 

18 

• 

• 

• 



• 

• 

• 

UP·7536 
Rev. 1 

2 

3 

4 

s 
6 

7 

a 
9 

6 
FUNDAMENTALS OF FORTRAN Sll:CTIONI PAGEi 

1 0 

The next example shows how the coding of repeated field d~scriptors can be 
simplified. 

(3) The program of the previous example is simplified and made more I/0 oriented by: 

(a) reading in the format specification; 

(b) reading in the number of array elements to be processed in the DO-implied 
lists; 

(c) simplifying coding of repeated field descriptors; 

(d) reading in the numbers for input/ output devices. 

The first input record from the card reader is organized as follows: 

(a) In columns 1 through 8, (8F10.0) is used as the format specification for 
input data for arrays RSTR and VOL TS. This specification is named 
INFORM. 

(b) In columns 11 through 31 (Al,1SX,A5,A2/(1X,Fl0.0)) is used as the 
output format specification, OUTFRM. 

(c) In columns 39,40, a two-digit unsigned integer denotes NIN, the input 
device for data for arrays RSTR and VOL TS. 

(d) In columns 44,45, a two-digit unsigned integer denotes NOUT, the output 
device for the computed data in array AMPS. 

(e) In columns 49,50 a two-digit unsigned _integer (not greater than 10) indicates 
NMBR, the number of array elements required in each of the arrays. 

(£) In columns 51 through 57, CURRENT denotes output heading. 

(Statements are continued for illustrative purposes only.) 

DIMEHSIOH RSTR t 0 

INFORM 

DATA CHTRL/lHO/ 

INFORM OUTFRM IH HOUT 

SAS 3 3X I 2 A 2 

READ H H HF 0 RM VOLTS K 

K = 1 

DO 20 M= H M B R 

10 2 0 A. M P S ( M ) = V 0 L T S ( M ) I R S T R ( M ) 

11 

12 

13 

14 

W R I T E 

A. M p 

S T 0 P 

E H D 

OUTFRM CNTRL TITLE 

= 1 H M,B R 

19 



UP-7536 
Rev, 1 

6 
FUNDAMENTALS OF FORTRAN 

SECTION: PAGE: 

Up to three of the remaining input records can contain, as before, the input 
values for voltages and resistors (RSTR and VOL TS) in fields of 10 positions 
per value. The input device for these records is designated by the programmer. 

The output contains a header and the calculated output values (AMPS), one 
value to a record. The output device for these records is also designated by 
the programmer. 

The repeat specifications and the use of seemingly redundant parentheses within 
a format specification are described in 6.3.3.S and 6.6, but their particular applications 
in this program are described in the following paragraphs. 

In lines 4 and 5, the 1/0 list requiresl2 items: 2 for INFORM, 5 for OUTFRM, 1 
each for NIN, NOUT, and NMBR, and 2 for TITLE. 

In line 6, the two items required for INFORM are covered by 2A5, which could 
also be written as A5,A5; and the five items required for OUTFRM are covered 
by SAS. However, a group repeat designator is used in this line. This indicates 
successive repetition of the group within the parentheses. The group repeat 
designator 3(3X,I2) could also be written as 3X,12,3X,12,3X,I2. 

Line 7 refers to the format specification in INFORM, which is (8Fl0.0). The 8 means 
that there can be 8 fields to a record with the basic descriptor FlO.O. However, as 
many as 20 values may be required: 10 for RSTR and 10 for VOL TS. If the DO-list 
indicates that more than 8 fields are required, the first 8 fields will be read in, a 
new record automatically started, and the same specification (8Fl0.0) used, and so 
on, until all values required for the I/O list are read in. 

The WRITE statement refers to the format specification in OUTFRM, which is (Al, 
15X,A5,A2/(1X,F10.0)). The Al refers to the carriage control character called 
CNTRL, that was initialized to lHO. It is not permitted to use an nH field descriptor 
directly in a format specification that is stored in an array; therefore, this indirect 
method must be used. (An alternative method would be to read it in.) The slash in 
this format· specification indicates the end of a record. The field descriptors that 
follow apply to the next record which permits only one FlO.O field descriptor to a 
record, applying to the output results in AMPS. If AMPS contains more than one 
value (indicated by NMBR), it will automatically start a new record and use the 
lX,FlO.O for each new value and record. If the lX,FlO.O was not·enclosed within 
its own parentheses, format control 1Nculd have been started at Al, instead of 
after the slash each time a new record was required. 

20 

• 

• 

• 



• 

• 

• 

UP-7536 
Rev. 1 

6 
FUNDAMENTALS OF FORTRAN 

S&C:TION1 PAGE: 

6.3.3.5. Repeat Specifications 

Repetition of a field descriptor. (except nH and nX) in a format specification is 
accomplished by using the repeat count r (see 6.3.3) immediately before the basic 
field descriptor. For example: 

SL3 is the same as L3,L3,L3,L3,L3. 

Repetition of a group of one or more field descriptors and/or field separators. is 
indicated by enclosing the group in parentheses and optionally preceding the 
group with an integer constant. If no group repeat count is indicated, its value 
is implicitly 1. This form, with or without a group repeat count, is called a 
basic group. For example: 

2(2X,215,Fl0.0) is the same as 2X,15,I5,Fl0.0,2X,IS,IS,Fl0.0. 

2(//) is the same as I 11 /. 

2(4HHALT) is the same as 4HHALT,4HHALT. 

A further grouping may be formed by enclosing field descriptors, field separators, 
and/or basiC groups within parentheses. Again, a group repeat count may be 
either specified or implicitly 1. The parentheses around this further gro~ping are 
called second level parentheses. Parentheses are permitted in a FORMAT state­
ment only to a second level; therefore, this further grouping may not be contained 
in another grouping by parentheses. 

The first left parenthesis and the last right parenthesis required of a format 
specification are not considered group delimiters . 

Example: 

RE AD (I H, 5) (Iii( K), IC= l, 2), H 2, (A (J), 8( J) , C( J), J = l, 2), H 

5 F 0 R Iii A T ( 31 2 , 2 ( l X, 2 ( 2 F 6 . 3, 2 X, F 6 • 4 ) ) , 4 X , I 2 ) 

The elements of the 110 list are read in as: 

M(l) with specification 12 
M(2) with specification 12 
N2 with specification 12 
skip three character positions 
A(l) with specification F6.3 
8(1) with specification F6.3 
skip two character positions 
C(l) with specification· F6.4 
A(2) with specification F6.3 
B(2) with specification F6.3 
skip two character positions 
C(2) with specification F6.4 
skip four character positions 
N with specification 12 

21 



UP-7536 
Rev.l 

6 
FUN DAM EH T ALS 0 F FORTRAN 

SIECTION1 FIA.GI:: 

6.3.3.6. Scale Factor 

Input and output using the F, E, G, and D conversion codes can be scaled up or 
down by a power of 10 if the conversion code has the form xP immediately pre­
ceding a repeat specification (if any), where x is an integer constant that may be 
preceded by a minus sign. The effect of x, the scale factor, is to multiply the 
corresponding 1/0 list item by a power of 10. 

Rules: 

(1) When format control is initiated (see 6.6), a scale factor of zero is established. 
Once a scale factor has been established, it applies to all subsequently inter­
preted F, E, G, and D field descriptors until another scale factor is encountered 
and then established. 

(2) The effect of the scale factor is temporarily suspended for input with F, E, G, 
and D conversions that contain an exponent in the external field. 

(3) For input with F, E, G, and D conversion and no exponent in the external field, 
the internally represented value is the external value divided by lox. 

(4) For output with F conversion, the external value is the internal value multiplied 
by lox. 

(5) For output with E or D conversion, the basic constant part of the output is 
multiplied by lox and the exponent is decreased by x. 

22 

• 

(6) If the effective use of E conversion is required for output with G conversion 
(see 6.3.3.2.3), the scale factor has the same effect as for E conversion. If • 
effective use of the F conversion code is required, the scale factor has no 

10 

effect. 

Example: 

Two identical punched ~ards have all values right-justified in their fields of 
10 positions each, as follows: · 

columns 1 through 10: 
columns 11 through 20: 
columns 21 through 30: 
columns 31 through 40: 
columns 41 through 50: 
columns 51 through 60: 
columns 61 through 70: 
columns 71 through 80: 

100.21 
100.21 

100. 210- 3 
100.21 

567890 
12345E- 2 

1234.5 
654321.321 

with the following statements: 

_J -1. _J_ 

DIM~MSIOM " ( 7 )_J_• I ( 7 ) _L 

DOUlaiLE PR EC I S '-1_0 H "8 • B 8 _J_ 

_i· -1. _J_ 

_i· -1. I 

RE A. DJ.( 1 1 0) A, 

~· 
, B , B 8 

..1 

F 0 R MtA T ( F 1 .0 . 0, !l_P2E1 0. 0, 2 G..11 0 

I -1. 
_L -1. 

_J_ -1. 

_J_ _l 

..1 -1. 

..1 -1. 
• 0 • 0 P 2 F l_J_O • 5,2PD10 ·_l' ) • 



UP-7536 
Rev.1 

• 

• 

• 

FUMDAMEMT ALS OF FORT RAM 
A 6 

SIECTION1 

A(l) is read in as 100.21 because the scale factor is established as 0 (unless 
stated otherwise) at the start • 
A(2) is read in as 1.0021 because the scale factor of 2 is effective. 

PAGEi 

A(3) is read in as 0.10021 because the scale factor of 2 is temporarily suspended 
by the exponent in the external field. 
A(4) is read in as 1.0021 because the scale factor of 2 is still established and 
effective. 
A(S) is read in as 5678.9 because the scale factor of 2 is still established and 
effective. 
A(6) is read in as 0.0012345 with the scale factor now established as 0. 
A(7) is read in as 1234.5 because the scale factor is still established as 0. 
AS is read in as 6543.21321 because a scale factor of 2 is now estaHlished and 
effective. 
Because a new record start is required by the list, the next card is read, but there 
has been no termination of format control. 
B(l) is read in as 1.0021 because the scale factor of 2 is still established and 
effective. 
B(2), .•. ,B(7), and 88 are read in with the same values as the corresponding A's. 

6.4. FORMATTED READ STATEMENT 

Function: 

To initiate input of data from a specified input device and to scan and interpret this 
data in accordance with a format specification. 

READ (u,I) l/O list 

or 

READ (11,f) 

where: u is either an integer constant or an integer variable that identifies an input 
unit. 
I is either the statement label of a FORMAT statement or the name of an array 
that contains the format specification. -
1/0 list is described in 6.2.2. 

Rules: 

(1) The number of records to be read depends upon the 1/0 list and the format speci­
fication. 

(2) Format control is started and terminated in accordance with the rules of 6.6. 

(3) There are no standard conventions for assignment of integers to input devices; the 
integer for a particular input device depends upon the computer being used . 

23 



UP-7536 
Rev. 1 

B 6 24 
FUNDAMENTALS OF FORTRAN SSCTION1 '"AGIEI 

Examples: • (1) 

(2) 

(3) 

(4) 

Eight values are read in: one value for A, and seven values for the elements of ARRAY. 

RE PUT,10) 4,(ARRAY(K),K:l,7), 

8 , K = 1 , 7 

1 0 

Regardless of the input device reptesented by INPUT, one value is read in for A, 
then seven values for ARRAY. A new record is automatically started, one value 
is read in for B, followed by seven values for BRRA Y • 

The first 10 characters of the record from INPUT replace HEADING150t5 in the 
format specification; the same FORMAT statement can then possibly be used in 
a WRITE statement to supply the header. • 

DI MENSI OM ARRAY( 1 

DATA ARRAY(l)/.CH //)/ 

READ( IN, ARRAY) 

The format specification for the READ statement is obtained from the array named 
ARRAY. The effect of the READ statement is to advance the input device by two 
records. 

• 



• 

• 

• 

UP-1536 
Rev. 1 FUHDAMEHT ALS OF FORT RAH 

PAGEi 

6 
SECTIONl 

6.5. FORMATTED WRITE STATEMENT 

Function: 

To indicate the output of data to a specified output device in accordance with a format 
specification. 

WRITE (u,f) l/0 list 

or 

WRITE (u,f) 

where: u is either an integer constant or an integer variable that identifies an input 
unit. 
f is either the statement label of a FORMAT statement or the name of an 
array that contains the format specification. 
l/O list is described in l';.2.2. 

Rules: 

(1) The number of records to be transmitted depends upon the 1/0 list and the format 
specification. 

(2) Format control is started and terminated in accordance with the rules of 6.6. 

(3) The first character of a print record is not printed; it is interpreted as a form 
control character (see Table 6-1). In standard FORTRAN the printed line may 
start in position l; however, many printers indicate the presence of the control 
character by printing a blank character, so that printing may start only with posi­
tion 2 of a print line. This characteristic should be checked for a particular 
processor. 

(4) There are no standard conventions for assignment of integers to part_icular output 
devices; this depends upon the processor being used. (In examples, 3 is used to 
indicate a printer.) 

.Examples: 

(1) 

WRITE(3 10) 

1 O FORMAT( 1H1, 1SX,1 SHH AME OF PROBLEM) 

(2) 

The printer starts at the first line of the next form, spaces 15 positions, and prints 
NAME OF PROBLEM. 

HOUT=6 

W R. I T E ( ,H 0 U T , 1 0 ) A , B , C 

O F,O RM AT ( 1 H I , 1 5 X , 1 5 H H AME 0 F PR 0 8 L EM I 1 6 X , ,3 F 1 0 •. 4 ) 

25 



UP-7536 
Rev. l 

D 6 
FUNDAMENTALS OF FORTRAN ll:CTIONI PAcu:s 

The output device, if magnetic tape (as an example), will contain the character • 
l, followed by 15 blank character~, followed by the characters NAME OF PROBLEM, 
all in the first record. The second record will contain 16 blank characters followed 
by the values of A, B, and C, each in accordance with the Fl0.4 conversion code. 
These records may be sent to a printer later on. 

6.6. FORMAT CONTROL 

The following rules describe the relation between format control and the 1/0 list 
(if any) of the formatted READ and WRITE statements. · 

(1) Format control is initiated with the start of each execution of a formatted READ 
or WRITE statement. 

(2) When the format control encounters an I, F, E, G, D, A, or L basic descriptor in 
a format specification, it determines if there is a corresponding element in the 
1/0 list. If there is no such element, format control is terminated; if there is a 
corresponding element, it is converted and transmitted, and format control proceeds. 

(3) If format controt proceeds to the outermost right parenthesis of the format speci­
fication, it determines whether another 1/0 list item is to be transmitted. If not, 
format control is terminated. If another list item is to be transmitted, format control 
starts a new record and control is transferred to that group repeat specification 
(which may be an implicit 1) terminated by the last preceding right parenthesis 
or, if none exists, to the first left parenthesis of the format specification. This 
action does not affect the scale factor that has been established. 

For example, if there are list elements to be transmitted, a new record is started • 
and format control continues at 

I 
( • •• x ( ••• ) ••• x ( ••• x ( •• • ) • • • ) • • • ) 

where: x is a group repeat specification (which may be an implicit 1). 
If the format specification does not contain any inner group parentheses, 
format control continues at 

I ( ... ) 
(4) There is no corresponding 1/0 list element for an X or H basic descriptor. An 

1/0 list requires at least one field descriptor other than nX or nH. 

Examples: 

(1) 

REA.D(INPUT 0) ("A.R.A.Y2 ( K) I K=l,8) 

1 0 FORMAT (8F10. 5) 

The eight values of ARA Y2 are obtained from one record. 

• 



• 

• 

• 

UP·7536 
Rev. 1 FUNDAMENTALS OF FORTRAN 

llAGIE: 

D 6 
SIECTION1 

(2) 

I H PUT 'K' = 1 8 ) 

1 0 FORMAT(FlO 5 ) 

The eight values of ARAY2 are obtained from eight successive records. 

(3) 

RE D.(IHPUT,10 K = 1 8 

1 0 FORMAT 2 F 1 0 5/3F10. 5 

(4) 

The first two values for ARA Y2 are obtained from the first record; the next three 
values from the se.cond record; the next two values from the third record; and the 
last value from the fourth record. 

R E PU T, 0 RAY2(K), K=l,8) 

0 F 0 RM A.T 2 F 1 0 51 3F10.5 

The first two values for ARA Y2 are obtained from the first record; the next three 
values from the second record; and the last three values from the third record . 

27 



UP-7536 
Rev. 1 

6 
FUNDAMENTALS OF FORTRAN 

Sl:CTION1 PAGE: 

6.7. UNFORMATTED WRITE AND READ STATEMENTS 

Function: 

To transmit the exact binary configuration of I/0 list elements to and from an external 
device. 

WRITE (u) l/0 list 

and 

READ (u) l/O list 

or 

READ (u) 

where: u is an unsigned integer constant or an integer variable designating an input 
or output device. 

l/O list is described in 6.2·.2. 

Rules: 

(1) An unformatted WRITE statement transmits the exact binary interned representation 
to an external device. An I/0 list is required with an unformatted WRITE. 

(2) An unformatted READ (of either form) can only be performed for records created by 
an unformatted WRITE. 

(3) The unformatted READ with I/O list transmits items until the list is ·satisfied, 
provided that the record contains at least as many items as required by the I/0 
list. 

(4) An unformatted READ without I/O list can be used for positioning the file to the 
next logical record. 

(5) A formatted READ should not be used for a record created by an unformatted WRITE. 

Example: 

Execution time of unformatted READ or WRITE statements is much faster than the 
corresponding formatted statements. They are generally used to write out large lists 
on temporary files and read them back when required by the program so that main 
memory is free for other processing. For example, 

28 

• 

• 

• 



UP-7536 
Rev. 1 

• 

• 

• 

FUNDAMENTALS OF FORTRAN 
6 

SEC:TION1 PAGll:I 

DI MENSI OM ARRAY 1 000 

WRITE(MTAPE) A RR A Y 

I I I I I I I I I I I I I 

R EA D MTAP E) ARR A Y 

where: MTAPE represents a temporary file on magnetic tape, drum, or disc. The binary 
contents (l's and O's) are written and then read back just as they appeared in the 
1000 storage units (see Table 2-4) reserved for ARRAY. 

6.8. AUXILIARY INPUT/OUTPUT STATEMENTS 

The auxiliary input/output statements are: 

• REWIND statement 

• BACKSPACE statement 

• ENDFILE statement 

6.8.1. REWIND Statement 

Func:tion: 

To cause an input/output device to be positioned at its initial point. 

REWIND u 

where: u is either an integer constant or an integer variable identifying an input/ 
output device. 

Rule: 

The REWIND statement is applicable to such 1/0 devices as magnetic tape, disc, 
and drum units. Its implementation on devices such as card readers and printers 
depends upon the computer being used . 

29 



UP-7536 
Rev.1 

6 30 
FUNDAMENTALS OF FORTRAN SIECTION1 PAGE1 

Example: -• 
1 0 FORMAT( . ) 

READ MTAPE 1 0 ) . . . . 

READ( MTAPE, l 0) ... 

I I I I I I I I 

REW I ND .MTAPE 

R EA D MTAPE, 10) .... 

The first READ references the first record on MTAPE, the second READ references • 
the second record, and the third READ references the first record. 

6.8.2. BACKSPACE State'!llent 

Function: 

To backspace one record on a specified input/output device. 

BACKSPACE u 

where: u is either an integer constant or an integer variable identifying an input/ 
output device. 

• 



UP-7536 
Rev.1 

• 

• 

• 

6 
FUNDAMENTALS OF FORTRAN 

S&CTION1 PAGEi 

Rules: 

(1) The BACKSPACE statement is applicable to such 1/0 devices as magnetic tape, 
disc, and dn:m units. Its implementation on devices such as card readers and 
printers depends upon the computer being used. 

(2) ff the unit identified by u is already at its initial point, the BACKSPACE state­
ment has no effect. 

Example: 

1 0 FORMAT 

I I I I I I I I I I 

READ MTAPE 10 

READ MT APE, 10) .. 

BACKSPACE MT AP E 

RE AD MT APE 1 0 

The first READ references the first record, the second READ references the second 
record, and the third READ references the second record on MTAPE . 

31 



UP-7536 
Rev. 1 

6 
FUNDAMENTALS OF FORTRAN SSCTIONt 

6.8.3. ENDFILE Statement 

Function: 

To record an endfile record on a specified input/output device. 

ENDFILE u 

where: u is either an integer constant or an integer variable identifying an input/ 
output device. 

Rules: 

PAGS1 

(1) Execution of this statement causes creation of a unique endfile record. The form 
of this record depends upon the processor being used. 

(2) When such an endfile record is encountered during execution of a READ statement, 
the action taken depends upon the processor being used. 

Example: 

10 FORMAT( ... ) 

WR I TE MT APE 1 0 

ENDFI LE M T A P E 

32 

• 

• 

• 



UP-7536 
Rev. 1 

• 

• 

7 
FUNDAMENTALS OF FORTRAN SIECTIONI PAGE: 

7. SPECIFICATION STATEMENTS 

7 .1. GENERAL 

Specification statements are nonexecutable and must precede all other statements in 
a program unit except the FUNCTION, SUBROUTINE, BLOCK DA TA (all in subprogram 
units), and FORMAT statements (see Table 2-2). 

The specification statements are: 

• type-statements 

• DIMENSION statement 

• EQUIVALENCE statement 

• COMMON statement 

• EXTERNAL statement 

This section describes all but the COMMON and EXTERNAL statements. Because of 
their association with procedure subprograms, these statements are described in 
Section 8. 

7.2. TYPE-STATEMENTS 

Function: 

To explicitly declare the data type of a symbolic name and/or declare an array. 

INTEGER v1, v2, 

·and 

and 

and 

where: each vis a variable, an array name. a function name, or an array declarator, 
separated from the next v by a comma . 

1 



UP-7536 
Rev. 1 7 

Sl:CTION1 FUNDAMENTALS OF FORTRAN PAGl:a 

Rules: 

(1) Explicit type declaration of a symbolic name applies to all appearances of that 
symbolic name in the same program unit. 

(2) Any symbolic name of data type double precision, complex, or logical must be 
typed explicitly, since these are not governed by the rules for implied typing. 

(3) Explicit type declaration of an array refers to each of its array elements. In a 
main program unit, the. array declarator m_ay contain only integer constants in the 
subscript. In a subprogram unit; the array declarator may contain integer constants 
and/or integer variables. 

(4) Type-statements of the forms shown may not be used for explicit type declaration 
of a function name in a function subprogram if that name appears in the FUNCTION 
statement. The FUNCTION statement provides for explicit type declaration of 
the function name of the function subprogram. 

Examples: 

(1) 

(2) 

, , ., IN IT IE l GI EI RI IM I A IT IR I I Ix l ( ,2 I , I 3 I, I 4 I ) I , Ix IQ IR IT I 

This statement types the array MATRIX and the variable XQRT as integ,er type. 
(This is redundant, since MATRIX is implied integer type.) It also declares the 
dimensions of array MATRIX. Such a statement can appear in any program unit. 

This statement can only appear in a procedure subprogram because it.contains an 
ad1ustable dimension. The function reference or subroutine call that must precede 
such a statement defines the value for N at execution time. 

2 

• 

• 

• 



• 

• 

UP-7536 
Rev. 1 PAGE: 

7 
FUNDAMENTALS OF FORTRAN 

7.3. DIMENSION STATEMENT 

Function: 

To declare one or more array(s). 

where: each v is an array declarator separated from the next by a comma. 

Rules: 

(1) If any of the arrays is adjustable, it can be declared only in a procedure subprogram. 

(2) An array may be declared in a DIMENSION statement and explicitly typed in a 
type-statement, although a type-statement can accomplish both these functions. 

Examples: 

(1) The statements 

D I N ARRAY ARRAY2 

I N T E G E R A R R A Y 1 

can also be written as: 

(2) The statement 

3 

DIMENSION ARRAY 1 ( J, K, L), ARR AY2 ( 1, 2, 3) 

can only appear in a procedure subprogram because of the adjustable array . 



UP-7536 
Rev. 1 

t 

FUNDAMENTALS OF FORTRAN D 7 
SIECTION1 

7.4. EQUIVALENCE STATEMENT 

Function: 

To permit sharing of the same storage space by two or more entities of the same 
program unit. 

where: each k, enclosed in parentheses and separated from the next k by a comma, 
is a list having the form: 

where: each a is either a va~iable or an array element (not a dummy argument) with 
only constants as subscript expressions; 
m is equal to or greater than 2. 

Opertition: 

The following series of statements causes sharing of storage units: 

DIMENSION V2(12),K(3,2) 

COMPLEX Vt( 1, 2 ,3), C 

DOUILI! PRECISION 0(2,2) 

L 0 GI C 4 L. L 

E QUI V4 LE NCE ( V 1 ( 1), V 2 ( 1)), ( D ( 2), K( 1, 2), L( 4), C) 

SHARED SHARED 

I K(l, 1) 

·- V2(1) 
V~2) 

0(1, 1) 
K(2, 1) 
K(3, 1) 

I I-
Vl(l, 1, 1) 

V2(3) 
V2(4) 

1--- K(l,2) 
0(2, 1) 

K(2,2) 
Vl(l,2, 1) 

V'.KS) 
V2(6) 

D(l,2) 
K(3,2) 

Vl(l,1,2) . 

V2(7) 
vusl 0(2,2) Vl(l,2,2) 

V2(9) 
V2(10) 

Vl( 1, 1,3) 

V2(11) 
V2(12) 

Vl(l,2,3) 

Figure 7-1. Effect of EQUIVALENCE Statement 

From Figure 7-1, it can be seen that: 

L(l) 
L(2) 
L(3) 

-- - L(4) -
L(S) 
L(6) 
L(7) 
L(8) 
L(9) 
L(lO) 

\ 

PAGIEI 

• Sharing is accomplished on the basis of storage units. For example, V2(4) shares 
the same storage space as the second storage unit of Vl(l,2,1). (See Table 2-4 
for storage unit attribute of the different data types.) 

• An array can be referred tc as a one-dimensional array in the EQUIVALENCE 
statement regardless of the number of dimensions in the array declarator. 

4 

• 

• 

• 



UP-7536 
Rev.1 

•• 

•• 

• 

7 
FUNDAMENTALS OF FORTRAN 

SECTION I 

Rules: 

(1) Each entity in a given list, k, is assigned the same storage or part of the same 
storage. The sequence of items in a list is unimportant. 

PAGE: 

(2) The number of subscript expressions for an array element must be either the 
same number as in the array declarator .or it must be 1. However, the number of 
storage units reserved by the array declarator must not be exceeded by the array 
element reference. 

(3) If a two-storage entity is equivalenced to a one-storage entity, the one-storage 
entity will share storage with the first storage unit of the two-storage entity. 

(4) If one array element is equivalenced to an element of another array, both arrays 
are equivalenced. (See· 2.7.4 for the order of the array elements.) 

(5) A dummy argument of a subprogram must not appear in an EQUIVALENCE state­
ment. 

(6) When one entity of a list, k, has its value defined, all its associaced entities of 
the same list are defined. For example, when 0(2,1) in Ffgure 7-1 is assigned a 
value, the contents of K(l,2), K(2,2), L(4), L(S), and C are defined. 

(7) The programmer must avoid contradictions when referring to the same array more 
than once in an EQUIVALENCE statement. For example, the following statement 

E Q u .I v A L E Mc E ( A ( 3 ) I c ( 2 ) ) I ( A ( 2 ) I D ( 2 ) ) I ( .c ( 2 ) ' D ( 1 ) ) 

causes equivalence of A(3) and D(l), which is a logical contradiction. 

(8) Special ~onsiderations apply when a COMMON statement is involved: 

• When two entities are equivalenced, both entities must not appear in COMMON 
statemer.ts of the same program unit. 

• Although it is always possible to equivalence an array past its end in an 
EQUIVALENCE statement (as was done in Figure 7-1), it is not always 
possible to extend an array ahead of its beginning (as was done to array DP 
in Figure 7-1) if one of the arrays is listed in a COMMON statement . 

5 



UP-7536 
Rev.1 

D 7 

FUNDAMENTALS OF FORT RAM 
SltCTIONI PAGltl 

Examples: 

(1) The primary intent of the EQUIVALENCE statement is conservation of storage. 
For example: 

D 0 1 0 

10 IMTGR(K) 

2 0 

3 0 F.O RM /I. T 

DO 'O K•l,500 

'O DP(K) 

The EQUIVALENCE statement cuts down storage requirements by 1000 storage 
units. 

(2) The EQUIVALENCE statement can force the storage of non-COMMON variables 
or arrays. In this example, the variables R, T, 8, and A are stored consecutively 
in memory: 

UIV/l.LEMCE R V I ) ) T V(2)),(l,V(3)),(/l.,V(,)) 

When the statement 

I: : : : 11.:.:~.:.:.:c:~.:.:.:,:.: :v:,:.:.: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 
is encountered, a value for R, T, 8, or A is read in depending on whether the 
value of K is l, 2, 3, or 4, respectively. 

6 

• 

• 

• 



• 

• 

• 

UP-.7536 
Rev. 1 FUNDAMENTALS OF FORTRAN 

7 
l•CTIONI PAG•a 

. (3) An EQUIVALENCE statement can make allowances for errors in spelling that 
occur in a program unit. For instance, if an array was declared as CHIEF(3,4,5) 
and the name CHEIF was occasionally used to refer to the array, it is only 
necessary to write 

EQUI VALEMCE E F ( 1 ) , 

rather than correct every statement containing CHEIF . 

7 



• 

• 

• 



• 

• 

• 

UP-7536 
Rev. 1 FUMDAMEN'TALS OF FORTRAN 8 

SltCTIONI PAGEi 

B. PROCEDURES AND 
SUBPROGRAMS 

PROCEDURE 

8.1. GENERAL 

Up to now, programs that contained only one program unit, the main program, have 
been considered, with little discussion of procedures. This section describes procedures 
that can be defined in a program unit and expands the concept of procedure subprograms, 
showing how the programmer can use these and, where they are not supplied with the 
compiler, create his own external procedure subprograms. 

The four categories of procedures and procedure subprograms are: 

• statement functions 

• intrinsic functions 

• external functions 

• external subroutines 

A procedure may be a single executable statement or it may be a fixed se.ries of 
statements. The operation(s) to be performed by a given procedure is always the same. 
Each time a procedure is invoked, the values to be used in it can be defined by the 
programmer if required and the procedure can return values. The advantage of using 
procedures is that the series of operations for a given procedure need Le defined only 
once, eliminating the necessity of redefining the procedure each time it is invoked. 

Th~re are two methods for passing values to and from procedures: (1) by use of argu­
ments, (2) by use of the COMMON statement. Either, or both, may be used, except 
that a function reference requires at least orie argument. 

A function procedure is invoked by a function reference of the form: 

where function name is the symbolic name that identifies the function procedure, and 

each a is an actual argument . 

l 



UP-7536 
Rev. 1 

8 
FUNDAMENTALS OF FORTRAN l•CTIONI 

A function reference appears as a primary either in an arithmetic or in a logical expres­
sion. For each actual argument in the function reference there must be a dummy argument in 
the definition of the function procedure that will be replaced by the value of its actual 
argument during execution. Some function procedures, namely intrinsic and basic ex-
ternal functions, are furnished with the processor and need not be defined by the 
programmer. Statement functions and function subprograms are written by the programmer. 
An example of a basic function reference is: 

THE TA = 1 • 5 

c = A * B * COS( THETA) 

The function reference is COS(THETA), and THETA is the actual argument that must 
be defined before the function reference is encountered. During execution of the 
arithmetic assignment statement, THETA is evaluated and a value for COS(THET A) 
is then returned to the arithmetic expression so that it can be computed and a value 
can be assigned to C. A function reference must have at least one actual argument, 
but may have many. For example, a function subprogram is called AREA and computes 
the area of a triangle, given the three sides, and is referenced in an arithmetic 
expression as Y = AREA(X, Y ,Z). This subprogram can be expanded to also return a 
value for the perimeter and reference it by Y = AREA(X,Y ,Z,PER), where the value 
of PER is used in any statement that follows the function reference. A function 
reference cannot redefine any other values in the same expression containing the 
function reference. 

A subroutine call invokes a procedure external to the calling program unit, but it 
does not necessarily return any values to the calling program unit and it need not have 
any '!ctual arguments. After the task of the subroutine (defined by the programmer) is 
completed, control is returned to the next executable statement of the calling program 
unit. For example, if the same list of records is read in many times in a program, the 
procedure can be defined once in an external subroutine subprogram and be called 
upon many times in the program by CALL READIN(ARRA Y), where ARRAY is the 
actual argument. 

8.1.1. Statement Functions and Intrinsic Functions 

Statement functions and intrinsic functions are function procedures requiring few 
computer (machine coded) instructions for execution. Therefore, when the program 
is submitted in machine code form for execution, it is feasible to insert these 
computer instructions inline for each reference. For example, if the intrinsic 
function ABS is referenced many times in a program, the instructions for this 
procedure will be repeated inline in the machine coded executable program as 
shown in Figure 8-1. 

2 

• 

• 

• 



• 

• 

• 

UP-7536 
Rev. 1 FUNDAMENTALS OF FORTR~N 

normal 
instruction 
sequence 

} instructions for A BS 

------- ~instructions for ABS 

}instructions for ABS 

SECTION I 

Figure 8-1. /n/ine Coding of Statement Functions and Intrinsic Functions 

8.1.2. External Procedure Subprograms 

8 
PAGE: 

External procedure subprograms (function and subroutine subprograms) are function 
procedures that generally require more than one FORTRAN statement for definition 
and many computer instructions for execution. Therefore, the set of instructions is 
recorded only once in the machine coded program and placed out-of-line so that it 
can be entered only by a machine coded control instruction. After execution; control 
is returned to the referencing program by another machine coded control instruction. 
For instance, if the cosine function COS is referenced many times in a program, the 
machine coded program will appear as in Figure 8-2. 

lA 

lB 

2A 
28 

last instruction to be executed 

------f data 

-------f cosine procedure 

Figure 8-2. Out-of-Line Coding of External Procedure Subprograms 

3 



UP-7536 
Rev. 1 

~--~-------;---------;---------:-------

FUNDAMENTALS OF FORTRAN 
8 

S1ECTION1 

8.1.3. Communication Between Program Units 

Values may be transmitted to a procedure or a procedure subprogram through the 
actual arguments of the reference or call and returned through a function name and 
actual arguments. The COMMON statement is another method of transmitting 
information between different program units. The EXfERNAL statement identifies 
a symbolic name used in the list of actual arguments as the name of an external 
subprogram. 

8.1.4. Valid Forms of Arguments 

Table 8-1 lists, for reference purposes, the valid forms of procedure arguments. 
These are explained, in more detail, in the applicable paragraphs. 

FORM OF ARGUMENT(S) 
PROCEDURE 

statement function 

basic external 
function 

function subprogram© 

ACTUAL 

arithmetic expression, logical 
expression 

arithmetic expression of required 
type 

arithmetic expression, logical 
expression, array name 

subroutine subprogram©! arithmetic expression, logical 
expression, array name, name 
of external procedure, Hollerith 
constant 

intrinsic function arithmetic expression of 
required type 

DUMMY 

variable 

variable, array 
name, name of 
external procedure 

variable, array 
name, name of 
external procedure 

CD If an actual argument corresponds to a d~mmy argument that is defined or rede­
fined in the subprogram, the actual argument must be a variable, array element, 
or array name. 

Tobie 8-1. Forms of Argument 

4 

• 

• 

• 



• 

• 

• 

UP-7536 
Rev. 1 

8 
FUNDAMENTALS OF FORTRAN SECTION: PAGE: 

8.2. STATEMENT FUNCTION 

There are two types of statement functions: arithmetic statement function and logical 
statement function. 

8.2.1. Arithmetic Statement Function 

Rules: 

Function: 

To define an arithmetic procedure with one FORTRAN statement. This procedure 
may be used in its program unit as many times as required. 

function name(a ,a , ... ,a ) = limited arithmetic expression 
1 2 n 

where: function name is a symbolic name identifying the procedure. 

the a's comprise the list of one or more dummy arguments, a list of variables 
enclosed in· parentheses and separated by commas. 

limited arithmetic expression is similar to an arithmetic expression except that it 
may not contain an array element as a primary, and it may not reference, in any 
way, the statement function of which it is a part. 

the maximum value of n is defined for each processor; there is no standard 
value . 

(1) An arithmetic statement function reference is a primary in an arithmetic expression. 
The actual arguments are arithmetic expressions and must correspond in number; order, 
and type with the dummy arguments. 

For example, tqe statement function 

can be used with the following statement: 

The value for the actual argument R is substituted for its dummy argument A, S for 8, 
and T for C. A value is returned to the statement function reference so that the arith­
metic expression Y - AVRGE(R,S.T) can be evaluated and assigned to Z. The state­
ment function reference 

5 



UP-7536 
Rev.l FUNDAMENTALS OF FORTRAN 

8 
llSCTION1 

is incorrect because the data type of N is inconsistent with the data type of C. The 
statement function reference 

is incorrect because there are only two actual arguments, and three are required by 
the statement function definition. 

PACllEr 

(2) All arithmetic state111ent functions must appear between the specification statements 
(if any) and the first executable statement of the program unit (see Table 2-2). The 
limited arithmetic expression may use references to previously defined statement 
functions as primaries. 

(3) The function name may not be used as a variable within the same program unit; it is 
used as part of a statement function reference. 

(4) Each dummy argument in the list must appear at least once in the limited arithmetic 
expression. 

(5) The arithmetic statement function definition is a nonexecutable statement and cannot 
have a statement label. 

(6) The function name is governed by the rules for implied and explicit typing of symbolic 
names; it need not have the same data type as its arguments. Evaluation of the limited 
arithmetic expression is subject to the rules for mixed type evaluation of arithmetic 
expressions, and assignment of a value to the function reference is subject to the 
rules of Table 4-1. -

(7) Variable names used as dummy arguments are purely local to the arithmetic statement 
, definition. They may be used elsewhere in the same program unit for any purpose. 

6 

• 

• 

• 



• 

• 

• 

UP-7536 
Rev.1 FUNDAMENTALS OF FORTRAN 

8 
PAGEi SECTION& 

Examples: 

(1) 

I OH ARRAY 

S UM SQ : A**2 + B** + c * * 2 

DO 10 H=l 3 

10 ARRAY H = H 

z = S U M S Q ( A R R A Y ( 1 ) , A R R A Y ( 2 ) , A R R A Y ( 3...J...J..i_ 

A value of 14.0 is assigned to Z. Note that the mixed data types in the limited 
arithmetic expression conform to the rules listed in Tables 3-1 and 3-2. 

(2) The same statement function can be defined with only variables in its limited arithme­
tic expression, but these variables must be defined prior to the reference. For example: 

A RR A Y 

A B c = A * * K 1 + B * * K 2 + C * * K 3 

K = 2 

K 2 = 2 

K 3 = 2 

3 

1 0 A R RAY H = H 

z = S UM S Q ( ARRAY( 1), ARRAY( 2), ARR AY ( 3 ) ) 

(3) A statement function definition may contain references to previously defined statement 
functions. Forexamp~: 

+ y 

SUMSQ(A,B =A**2 + 8**2 + SUM(A,B)**2 

• 0 

C=SUMSQ(Z+2.0,4.0) + Z 

The variable C will be evaluated as the real type approximation of 5.02 + 4.02 + 9.02 

+ 3.0 or 125.0 . 

7 



UP-7536 
Rev. 1 

8 
FUMDAMEMTALS OF FORTRAN 

Sll:C:TION1 PAGE: 

8.2.2. Logical Statement Function 

Function: 

To define a logical procedure with one FORTRAN statement that may be referenced 
in its program unit as many times as required. 

function name(a1,~, ... ,an)= limited logical expression 

where: function name is a symbolic name, explicitly typed as logical, that 
identifies the procedure. 

Rules: 

the a's comprise the list of one or more dummy argu:nents, a list of 
variables enclosed in parentheses and separated by commas. 

limited logical expression is similat to a logical expression except 
that it may not contain an array element as a primary, and it may not 
contain a reference, directly or indirectly, to the statement function 
cf which it is a part. 

the maximum value of n is defined for each processor; there is no 
standard value. 

(1) A logical statement function reference is a primary in a logical expression. 
The actual arguments may be arithmetic or logical expressions and must 
correspond in number, order, and type with their corresponding dummy arguments. 

(2) All logical statement functions must appear between the specification state­
ments and the first executable statement of a program unit. 

(3) The function name may not be used as a variable within the same program 
unit; it may only appear as part of a statement function reference. 

(4) Each dummy argument in the list must appear at least once in the limited 
logical expression. 

(5) The logical statement function definition is a nonexecutable statement and 
cannot have a statement label. 

(6) Evaluation of the limited iogical expression is subject to the rules for evalu­
ation of a logical expression (see 3.4), and it assigns a value of either true 
or false to the statement function reference. 

· (7) Variable names used as dummy arguments are purely local to the statement 
function and may be used elsewhere in the same program unit for any purpose . 

8 

• 

• 

• 



UP-7536 
Rev. 1 

• 

• 

• 

D 8 FUMDAMEMTALSOFFORTRAM 
PAGl:I 

(1) 

(2) 

Sl:CTIONI 

H 0 DD * 2 K l • H E • 0 

G 0 T 0 

In the logical IF, if I is an odd integer, the GO TO will be executed (see 3.2.4, 
example 2). 

In the logical JF, if Mis a positive odd integer, the GO TO will be executed. 

8.3. INTRINSIC FUNCTIONS 

Intrinsic functions (built-in functions) are provided with the processor and are not 
written or modified by the programmer. A list of standard FORTRAN intrinsic functions 
is presented in Table 8-2 . 

9 



UP-7536 
Rev. 1 

8 10 
FUHDAMEHTALS OF FORTRAN lll:CTIONI PAGEi 

NUMBER TYPE OF 
INTRINSIC FUNCTION DEFINITION OF SYMBOLIC • ARGUMENTS MAME ARGUMENT FUNCTION 

absolute value la I l ABS real real 
IABS integer integer 
DABS double double 

truncation sign ofa times largest 1 AINT real real 
integer:s.J a\ INT real integer 

IDINT double integer 

remaindering* a1 (mod~2 J 2 AMOD real real 
MOD integer integer 

choosing largest value max (a
1

, a
2

, ••• ) .::: 2 AMAXO integer real 
AMAXl real real 
MAXO integer integer 
MAXl real integer 
DMAXl double double 

choosing smallest value min (a
1

, a
2

, ••• ) .::: 2 AMINO integer real 
AMINl real real 
MINO integer integer 
MINI real integer 
DMINl double double 

float conversion from integer 1 FLOAT integer real 
to real 

fix conversion from rea I to 1 IFIX real integer 
integer • transfer of sign sign of a

2 
times ia

1 
I 2 SIGN real real 

ISIGN integer integer 
DSIGN double double 

positive difference a1 • min(a1 ,a2
) 2 DIM real real 

IDIM integer integer 
-

obtain most significant 1 SNGL double real 
part of double precision 
argument 

obtain real part of 1 REAL complex real 
complex argument 

obtain imaginary part 1 AIMAG complex real 
of complex argument 

express single precision l DBLE real double 
argument in double 
precision form 

express two rea I argu- a1 +a2\/·l 2 CMPLX real complex 
ments in complex form 

obtain conjugate of a 1 CON JG complex complex 
complex argument 

•The function MOD or AMOD (a
1 

,a
2

) is defined as a
1
-[x]a

2
, where(x1 is the greatest integer whose magnitude does 

not exceed the magnitude of a1 /a2 
and whose sign is the same as a 1 /a2 

(see example 3 ). • 

Table 8-2. Intrinsic Functions 



• 

• 

• 

UP·7536 
Rev. 1 

8 
FUNDAMENTALS OF FORTRAN 

PAGEi SECTION a 

Rules: 

(1) An intrinsic function is referenced as a primary in an arithmetic or relational expression, 
by name and list of actual arguments. The actual arguments must agree in type, number, 
and order with the specifications of Table 8-2 and may be any expression of the speci­
fied type. Note, however, that the number of arguments for the MAX and MIN intrinsic 
functions is variable. 

(2) The intrinsic functions AMOD, MOD, SIGN, ISIGN, and DSIGN are not defined when the 
value of the second argument is zero. · 

(3) It is not necessary to declare the type of an intrinsic function in the program unit that 
contains a reference to an intrinsic function. The data type is already known to the 
processor. 

(4) For a valid intrinsic function reference in a program unit, the symbolic name: 

(a) must appear as specified in Table 8-2, followed by the list of actual arguments, 
in parentheses, also specified in Table 8-2; 

(b) must not appear in an EXTERNAL statement or be used as a variable or array 
name in a program unit where it appears as a reference; 

(c) must not appear in any type declaration different from the implied type declara­
tion of Table 8-2. 

(5) If a particular intrinsic function is not referenced in a program unit, its symbolic 
name may be used for any valid purpose in that program unit. 

Examples: 

(1) This series of statements reads in the six complex type elements of array VCTR, 
then prints the conjugate of each array element, using intrinsic functions CMPLX, 
REAL, and AIMAG . 

11 



UP-7536 
Rev. 1 

8 
FUNDAMENTALS OF FORTRAN 

ll:CTIONI 

(2) This example uses the MAXO intrinsic function. 

= 2 0 

F( MAXO( I ,J,K)-40) 100,200,300 

In this case, the maximum value is 40, causing the arithmetic IF to jump to the 
statement labeled 200. 

(3) The remaindering function (also called the modulo or residue function) is useful in 
modulo·arithmetic. This intrinsic function divides one argument by the other and 
retains only the remainder prefixed by the sign of the quotient. For example, the 
reference MOD (9,8) returns a value of 1, and the reference AMOD (1.22, 1.1) 
returns a value of 0.12. In the statement 

a jump is made to the statement labeled 20 only if J is zero or an exact multiple of 
K (K can be multiplied by an optionally signed integer to obtain J). 

(4) The IFIX and FLOAT can be used to calculate the values of arithmt!tic expressions 
where certain combinations of data types are not defined in standard FORTRAN (see 
Table 3-3). For example: 

The FLOAT function uses the real type form of K for the multiplication. The !FIX 
converts the real type result of the multiplication to integer type f~rm so the sub­
traction can be performed. 

12 
p AC:I:: 

• 

• 



• 

• 

• 

UP-7536 
Rev. 1 

8 
FUNDAMENTALS OF FORTRAN 

SIECTIONt 

8.4. RETURN STATEMENT 

Function: 

To return program control from a function or subroutine subprogram to the program 
unit that referenced or called the subprogram. 

RETURN 

Rules: 

(1) There must be at least one RETURN statement in every function and subroutine 
subprogram. 

(2) When executed, the RETURN statement terminates further execution of the 
subprogram that contains it. 

Examples: 

See 8.5.2.2 and 8.6.3. 

8.5. EXTERN AL FUNCTIONS 

External functions are of two types: external subprograms written by the programmer 
in FORTRAN, and basic functions. Basic functions are external function procedures 
supplied with the processor and stored in auxiliary storage in non-FORTRAN repre­
sentation. These basic functions do not require compilation and can usually also be 
utilized by non-FORTRAN users of the processor. 

8.5.1. Basic External Functions 

Table 8-3 lists standard basic external functions . 

13 
PAGEi 



UP-7536 
Rev.1 

8 
FUMDAMEHTALSOFFORTRAN 

SIECTION1 PAGEi 

NUMBER 
TYPE OF 

BASIC EXTERNAL of SYMBOLIC 
FUNCTION DEFINITION ARGUMENTS** NAME ARGUMENT FUNCTION 

exponential ea 1 EXP real real 
1 DEXP double double 
1 CEXP complex complex 

natural logarithm log (a) 1 ALOG real real 
e l DLOG double double 
. 1 CLOG complex complex 

common logarithm log
10

1a) 1 ALOGlO real real 
1 DLOGlO double double 

trigonometric sine sin(a) 1 SIN real real 
1 DSIN double double 
1 CSIN complex complex 

trigonometric cosine cos (a) 1 cos real real 
1 DCOS double double 
1 ccos complex complex 

hyperbolic tangent tanh (al 1 TANH real real 

square root (a)l/2 1 SQRT real real 
1 DSQRT double double 
1 CSQRT complex complex 

arctangent arctan (a) 1 ATAN real real 
1 DA TAN double double 

arc tan (a1 /a2
) 2 ATAN2 real real 

2 DATAN2 double double 

remaindering• a1(mod ~) 2 DMOD double double 

modulus J J<real part)
2+ (imaginary part)21 1 CABS complex real 

*The function DMOD (a
1 
·~) is defined as a1 - (x]a2 where (x} is the largest integer whose magnitude does not 

exceed the magnitude of a1182 and whose sign is the.same as the sign of a1 ;~. 

**A II angles are expressed in radians. 

Table 8-3. Basic External Functions 

Rules: 

(1) A basic external function is referenced as a primary in an arithmetic expression. 

(2) The form of the reference is: 

function name (arg1) 

or 

14 

• 

• 

• 



• 

• 

• 

UP-7536 
Rev.1 

8 
FUNDAMENTALS OF FORTRAN lllCTION1 

where: function name corresponds to one of the function names listed in 
Table 8-3. 

PAGlll 

each a is a dummy argument, the list is enclosed in parentheses, and the 
a's are separated by commas. 

(3) lt is not necessary to explicitly type a basic function name in the referencing 
program unit. 

Examples: 

(1) The following sequence finds the sine of 30 degrees (which is 0.5): 

(2) This example shows a basic external function reference containing another 
function reference in the list of actual arguments: 

(3) This example shows a basic external function reference in a logical expression: 

8.5.2. Function Subprograms 

Function subprograms permit the programmer to create external arithmetic and logical 
procedures and refer to these many times in· the body of the program using function 
references. The first statement of the external function_ subprogram definition must 
be a FUNCTION statement, and the last line must be an END line; between these 
there must be at least one RETURN statement and a definition of the function name. 
Each reference to a subprogram in an arithmetic or logical expression will have a 
value returned to it at the point of reference. Additional values may be returned for 
us'! in statements that follow the reference . 

15 



UP-7536 
Rev. 1 

8 
FUNDAMENTALS OF FORTRAN 

SEC:TIONI 

8.5.2.1. FUNCTION Statement 

Function: 

To identify an external function subprogram. 

t FUNCTION function name (at•82• ...• 8tJ) 

where: tis explicit type declaration of the value to be returned in the function 
reference and may be omitted, in which case the implied type of 

function name determines the data type of the value. 

PAGEs 

function name is a symbolic name identifying the function subprogram; 
each a is a dummy argument; the list is enclosed in parentheses, and the 
a's are separated by cor.:mas. 

Rules: 

n must be at least 1, and its maximum value depends upon the processor 
being used. 

(1) If t, the explicit type declaration, is present, it must be INTEGER, REAL, 
DOUBLE PRECISION, COMPLEX, or LOGICAL. 

(2) Each dummy argument must be an external procedure name (see EXTERN AL 
statement), a variable, or an array name. 

(3) The function name used in the FUNCTION statement must not appear in any 
.other nonexecutable statement of the function subprogram. 

(4) The symbolic names of the dummy arguments must not appear in an 
EQUIVALENCE, COMMON, or DATA statement of the function subprogram. 

For examples, see 8.5.2.2. 

8.5.2.2. Function Subprogram Definition 

Function: 

To define the procedure that computes a result(s) returned to the referencing 
program unit. 

FUNCTION statement 

RETURN 

END 

16 

• 

• 

• 



UP-7536. 
Rev. 1 

• 

• 

• 

FUN DAME NT ALS OF FORTRAN 8 
SCCTION& PAGCI 

Rules: 

(1) All rules applicable to the FUNCTION statement are applicable to the external 
function definition. 

(2) The function name of the subprogram must appear as a variab.le at least once 
in the subprogram. During every execution of the subprogram, this variable must 
be defined before it may be referenced or redefined. The •:alue of the variable 
at the time of execution of any RETURN statement in this subprogram is the 
value of the function and is the value returned to the function reference. 

(3) The subprogram may define and redefine one or more of its arguments so as to 
effectively return results in addition to the value of the function. 

(4) The function subprogram may contain any statements except BLOCK DATA, 
SUBROUTINE, another FUNCTION statement, or any statement that directly 
or indirectly references the subprogram being defined. 

(5) The function subprogram must ~ontain at least one RETURN statement. 

(6) lf a function reference causes a dummy argument in the referenced function to 
become associated with another dummy argument· in the same function or with 
an entity in common (see COMMON statement), a definition of either within the 
function is prohibited. An example of such a function reference is: 
Y = ADD(A,A) 

(7) The following rules apply to arguments involving arrays or array elements: 

(a) If an actual argument is an array element, its dummy argument must be 
either a variable or an array name. 

(b) lf an actual argument is an array name, its dummy argument must be an 
array name and that array must be declared in the subprogram with a 
size (in elements) that does not exceed the actual argument array. 

(c) If the actual argumeri.t is the xth element of an array containing z elements 
and the dummy argument is an array name, that array must be declared in 
the subprogram with a size that does not exceed z - x +l elements. 

(d) A dummy array declarator· may use one, two, or three subscript expressions, 
regardless of how the actual array was declared. Each subscript expression 
of the dummy array declarator may be either an integer constant or an integer 
variable. If any subscript expression of the dummy array declarator is an 
integer variable, that array is called an adjustable array. 

An adjustable array declarator must have each of its integer variable sub­
script expressions listed as dummy arguments and each must be defined by 
its actual argument. These variables must not be redefined in the subprogram . 

17 



UP-7536 
Rev. 1 FUNDAMENTALS OF FORTRAN 1

1 

S•CTION~. PAGEi 

Examples: 

(1) This subprogram calculates the sum of the squares of all positive odd integers 
from 1 through the given positive integer K: 

1 0 

N t E G 

s M = 0 

K SW T CH = - 1 

D 0 0 N = 1 . K 

K = -KSWTCH 

K S WT CH E Q. S M = S M + N * * 2 

RETURN 

Thus, if this external function subprogram is referenced by 

INTEGER 

N 3 = 5 

M = 5 + S.M ( N 3 ) 

the actual argument N3, which has a value of 5, will be substituted for its 
dummy argument K in the subprogram. T.he value of SM is 12 + 32 + 52 = 35. 
When the RETURN statement is reached, this value is substituted for the 
function reference, so that the value assigned to M is 40. 

(2) This function subprogram, which has more than one RETURN statement, 
calculates the absolute sum of all array· element values in a 100-element 
array: 

18 

• 

• 

• 



• 

• 

• 

UP·7536 
Rev. 1 FUNDAMENTALS OF FORTRAN 

Sl:CTIONt 

8 
l"AGl:I 

FUNCTION SMARAY (ZRAY) 

SMA.RAY=O.O 

D 0 0 K = 1 1 0 0 

2 0 S MA.RA.Y=SMARAY+ ZRAY 

F A.RAY.Ge.o.o TURN· 

A RAY= -SMARAY 

RETURN 

E H 0 

The referencing program unit contains: 

s u = SMARAY ARRAY) + S M A R A, Y B R A Y 

(3) This function subprogram also returns a value through one of its dummy argu­
ments. Given the three sides of a triangle, it calculates the area and returns a 
value for the perimeter. 

FUMCT ON AREA A B C PER 

PER = A+ B · + IC 

s = P ER 2 0 

......,.__.__....._._ ___ A ..... R ,E I A I I = I Is IQ I R I TI ( I s I* I ( Is I - I A, ) I * I ( Is I - I B I ) I* I ( Is I - I c I ) I ) I 

RETURN 

END 

19 



UP-7536 
Rev. 1 FUNDAMENTALS OF FORTRAN 

8 
Slrr.TIONt 

The referencing program contains: 

T RM = AREA(X,Y,Z,PER 

Note that, in the referencing program, one value for AREA will be returned in 
the function reference. Another value will be returned as the value of PERIM. 
This value must not be used in the same statement as the function reference, 
but can be used in statements that are executed after the function reference. 
If a value is to be returned to an actual argument in the function reference, that 
actual argument must not be a constant; this would be an attempt to redefine a 
constant. 

(4) The following subprogram iilustrates the use of an adjustable array. The 
subprogram calculates the sum of the elements in an array, but each time 
the subprogram is referenced, the dummy array may have different dimensions . 

0 0 1 0 .K = 1 M 

= SIGMA+ ARRAY K 

E M 0 

20 

• 
.. 

• 

• 



• 

• 

• 

UP-7536 
Rev. 1 FUNDAMENTALS OF FORTRAN Sl:CTIONt 

8 
PAGIEI 

The referencing program unit may contain: 

DIM NSION SETl SET2 11 SET3(8,10) 

AV R = 

AV R I (8.0*1.0) 

Note that this last reference uses an array element as the actual argument. 
This array element is the 119th element (see Table 2-6) in an array that can 
contain a maximum of 120 elements. Hence, the function reference is obtaining 
the sum of the last two array elements of array SETl. 

(5) This example uses the Newton-Raphson method to find the cube root of a 
number, y, as follows: 

(a) Make an initial guess at the cube root of y. (In this program, y is divided 
by 3 if its absolute value is greater than or equal to l; otherwise, it is 
multiplied by 3.) This value is called x

1
. 

(b) Substitute x
1 

in the expression 

to arrive at a new value, x2 • 

(c) Compare x2 with xi· If the comparison satisfies a criterion set up by the 
programmer, x

2 
is the cu.be root of y; if not, x2 becomes x1, and this new 

x1 is substituted in the above expression to arrive at a new value for x2· 

21 



UP-7536 
Rev.1 FUNDAMENTALS OF. FORTRAN 8 

l1ECTION1 

Steps (b) and (c) are repeated until the comparison of x
2 

with Xi, is satisfied. 

F 

I F E Q .• X RE TUR H 

x = c T 

G 0 T 0 1 0 

EH D 

A reference to this subprogram could be: 

Using this subprogram, the following is a list of successive CBROOT's calculated 
in finding the cube root of 1.0, 0.9, 0.1, and -0.027. The solution is repeated 
several times because, for this particular processor, the arithmetic operations 
are performed internally with greater precision than was required for the output. 

cube root of 1.000 
3.2222223 
2.1802527 
1.5236256 
1.1593397 
1.0208964 
1.0004248 
1.0000002 
1.0000000 

cube root of . 900 
1.8411523 
1.3159345 
1.0505315 

.9721879 

.9655354 

.9654894 

. 9654894 

.9654894 

cube root of .100 
.5703704 
.4827094 
.4648626 
.4641599 
.4641589 
.4641589 

cube root of -.027 
-1.4257421 

-.9549222 
-.6464846 
-.4525238 
- .3456326 
-.3057596 
-.3001078 
-.3000000 
-.3000000 
-.3000000 

22 

• 

• 

• 



• 

• 

• 

UP-7536 
Rev.1 

A 8 
FUHDAMEHT ALS OF FORT RAH 

SIECTION1 PAGE: 

Such procedures can be refined by more accurate first estimates, the use of 
double precision, and different ~xits from the loop. For example, the precision 
of the result could be limited to a satisfactory value with the statement: 

where: DELTA is an additional argument. 

8.5.2.3. References to Function Subprograms 

Function: 

To obtain a single value for use in an expression, by reference to a function 
subprogram. 

where: name is the programmer-written symbolic name of the function. 

Rules: 

each a is an actual argument; the list is enclosed in parentheses, and 
the a's are separated by commas, 
n has a minimum value of 1. 

(1) Each actual argument may be a logical or arithmetic expression, an array 
name, or the name of an external procedure (see EXTERNAL statement). 

(2) If a value is to be returned through an actual argument, that actual argument 
need not have its value defined prior to the reference, and it mus_t not be a 
constant. 

(3) The actual arguments must agree in order, number, and type with the dummy 
arguments of the subprogram. 

(4) If the actual argument is an array element, its dummy argument may be either 
an array name or a variable; if the actual argument is an array name, its 
dummy argument must be an array name. 

(5) If an actual argument is the name of an external procedure, its dummy argument 

23 

must be used in the subprogram as the name of a function or subroutine external ~ 
to the proc.edure. 

(6) The operation of a RETURN statement in the function subprogram must 
intervene between e8:ch reference to the same function subprogram·. 

Examples: 

See FUNCTION, EXTERNAL, and COMMON statements . 



UP-7536 
Rev. 1 8 

FUNDAMENTALS OF FORTRAN 
PAGIEI SIECTIONt 

8.6. SUBROUTINE SUBPROGRAMS 

A subroutine subprogram is an external subprogram defined by FORTRAN statements, 
starting with the SUBROUTINE statement, and is invoked by a CALL statement. 

8.6.1. CALL Statement 

Function: 

. To invoke a subroutine subprogram. 

CALL name 

or 

where: name is the symbolic name of the subroutine subprogram. 

Rules: 

each a is an actual argument; the list is enclosed in parentheses, and the 
a's are separated by commas. 

(1) Each actual argument may be an expression (logical or arithmetic), an array 
name, a Hollerith constant, or the name of an external procedure (see EXTERNAL 
statement). 

(2) The actual arguments must agree in order, number, and (except for a -Hollerith 
constant) type with the corresponding dummy arguments of the subroutine. 

(3) ·If an actual argument corresponds to a dummy argument that is defined or rede­
fined in the subroutine, the actual argument must be a variable, array element, 
or array name. 

(4) If an actual argument is an external function name or subroutine name, the 
corresponding dummy argument must be used as an external function name or 
subroutine name, respectively. 

(.5) If an actual argument is an array element, its corresponding dummy argument 
must be either a variable or array name; if an actual argument is an array name, 
its corresponding dummy argument must be an array name. 

(6) If a subroutine reference causes a dummy argument in the referenced subroutine 
to become associated with another dummy argument in the same subroutine or 
with an entity in common (see COMMON statement), a definition of either entity 
is prohibited in the subroutine. An example of such a reference -is: CALL ADD(A, A) 

(7) Between any two successive calls on the same subroutine there must be the 
operation of a RETURN statement in the subroutine. 

24 

• 

• 

• 



• 

• 

• 

UP-7536 
Rev. 1 

8 
FUNDAMENTALS OF FORTRAN 

ll:CTIONI 

8.6.2. SUBROUTINE Statement 

Function~ 

To identify a subroutine subprogram. 

SUBROUTINE name 

or 

where: name is a symbolic name that identifies the subprogram. 
each a is a dummy argument; the list is enclosed in parentheses, and the 
a's are separated by commas. 

Rule: 

Each dummy argument is a variable, an array name, or an external procedure name 
(see EXTERNAL statement). 

8.6.3. Subroutine Definition 

Function: 

To completely define the step-by-step procedure for a subroutine. 

SUBROUTINE statement 

RETURN 

END 

Rules: 

PAGl:s 

(1) The first statement in the subroutine must be the SUBROUTINE statement, and 
the last line must be the END line. The subroutine definition must contain at 
least one RETURN statement. 

(2) The symbolic name of the subroutine must not appear in any statement of the 
subroutine except the first. 

(3) The symbolic names of the dummy arguments may not appear in an EQUIVALENCE, 
COMMON, or DATA statement of the subroutine . 

25 



UP-7536 
Rev. 1 

8 

FUNDAMENTALS OF FORTRAN llECTIONI llAGIEI 

(4) The subroutine may contain any statements except BLOCK DATA, FUNCTION, 
another SUBROUTINE statement, or any statement that directly or indirectly calls 
this subroutine. 

(5) The subroutine may define or redeffne one or more of its arguments so as to return 
results through its arguments. If the subroutine returns a result through a dummy 
argument, its actual argument must not be a constant. 

(6) Adjustable arrays may be used in the subroutine, in which case any adjustable 
dimensions may be passed as actual and dummy arguments for use in the array 
declarator of the subroutine. 

(7) The RETURN statement returns program control to the next executable statement 
following the CALL statement in the calling program unit. 

Examples: 

(1) This subprogram clears the elements of any array to 0.0. 

s BROUTINE A R1R1A1Y1. 1NI> I 

DIMENSION ARRAY 

A calling program unit contains: 

CALL A.RAY 4*5* 

I I 

CA L L CL E,A R ( A R A Y ( l , l , l ) , I 0 O ) 

26 

• 

• 

• 



-

----··---· 

• 

• 

• 

UP•7S36 
Rev. 1 

(2) 

D 8 
SIECTIONI PAGIEI 

The first three subroutine calls will clear all of the referenced arrays; the last 
subroutine call will clear only the first 100 elements of the array ARAY. 

The foilowing subroutine subprogram, UPDATE, computes the current value of 
a savings bank account given a starting value, V, the number of interest periods, 
M, and the interest rate per interest period, R. 

DO 0 K:l,,M 

10 V:V*R2 

RETURN 

This subroutine subprogram is invoked ·in the following .program. The program 
computes the current value of an account based on the assumption that the 
interest is computed and accrued at the end of each three-month period from 
the month of deposit . 

27 



UP-7536 
Rev, 1 

8 
FUNDAMENTALS OF FORTRAN Sl!CTION1 PA<aE: 

The first card of the data deck is organized as follows: 

columns 1 and 2 - the· current month (1-12), right-justified 

column 3 - blank character 

columns 4 through 7 - current year 

Each succeeding data card is organized as follows: 

column 1 

columns 2 through 7 

column 8 

columns 9 through 48 

column 49 

columns 50, 51 

column 52 

columns 53 through 56 

column 57 

columns 58 through 66 

columns 67, 68, 69 

column 70 

blank character 

account number, right-justified 

- blank character 

- name of depositor, left-justified 

- blank character 

month of last update or (if no previous update) 
month of deposit, right-justified 

- hyphen ( - ) or minus character 

year of last update or (if never updated) year 
of deposit 

- $ (dollar sign) 

- dddddd .. dd, the last updated value or original 
deposit, where each d is a decimal digit 

blank characters 

months (0, 1, 2, or 3) from last update or original 
deposit to end of next interest period. (If original 
deposit and no update, it must be 3.) 

The last card of the data deck contains all blank characters, except for column 
70, which contains a digit greater than 3. 

The subroutine is invoked by the following program which prints the updated 
record and punches an ~pdated card record .concurrently (assuming output device 
5 is a card punch). 

28 

• 

• 

• 



• 

• 

• 

UP-7536 
Rev. 1 FUNDAMENTALS OF FORTRAN llAGEI 

8 
IECTION1 

(3) The following simple example shows how a Hollerith constant might be used in 
a CALL statement. The printed line will print LOW, AVRGE, or HIGH, depending 
upon the income read from an input card . 

F I S , A 5 ) 

29 



UP-7536 
Rev.l FUMDAMEMTALSOFFORTRAM 

8 
Sl:CTION1 

8.7. EXTERNAL STATEMENT 

Function: 

To indicate that a symbolic name (with no arguments) in a list of actual-arguments is 
the name of a subroutine or external function. 

where: each v is the symbolic name of an external procedure. 

(1) If an external procedure name is used as an actual argument in 2 function reference 
or subroutine call, the name must appear in an EXTERNAL statement of the program 
unit that contains the function reference or subroutine call. 

(2) If a symbolic name appears in an EXTERNAL statement of a program unit, it can 
appear in a type-statement of the same program unit only if that name is also being 
used as the function name in a function reference within the same program unit. 

(3) If an actual argument is the name of an external procedure, its corresponding dummy 
argument must be used as the name of an external procedure. 

(4) If a symbolic name is being used as the name of an intrinsic function or a statement 
function within a program unit, it must not appear in an EXTERNAL statement of 
the same program unit. 

(5) The EXTERNAL statement is a specification statement; its position in a program 
unit is shown in Table 2-2. 

Examples: 

(1) The following subroutine can be used to print a table of eith;r sine values or 
cosine values for tenths of a degree, from 0.0 degrees to 90.0 degrees. 

30 

• 

• 

• 



• 

• 

• 

UP-7536 
Rev.l PAGl:I 

8 
FUNDAMENTALS OF FORTRAN 

Sl:CTIONt 

The calling program contains: 

The first call causes printing of double precision sine values; the second, double 
precision cosine values. 

(2) In the following program unit: 

EXTERllAL IC 

z = x 

The use of the EXTERNAL statement is not warranted. It is not the function name 
ABC that is being passed as an argument, but the value of the function reference 

· ABC(D) . 

31 



UP-7536 
Rev. 1 8 

FUMDAMEMTALS OF FORTRAN 
SllCTION1 

8.8. COMMON STATEMENT 

Function: 

To permit communication between program units without the use of arguments. 

where: each xis either a symbolic name, called a block name, or empty (no 
character or one or more blank characters). 
each a is a nonempty list of variables, array names, and/or array declarators, 
with each item in the list separated from the next by a comma. 
If x1 is empty, the first pair of slashes before a

1 
is optional. 

Operation: 

The COMMON statements of a program unit cause the processor to set aside locations 
for the listed variables and arrays in an area of main storage called the common area. 
These locations can be shared by the different program units that make up a program. 
This common area is composed of blank CQmmon and labeled common blocks. If an x 
in the COMMON statement is empty, its associated variables and arrays are stored in 
the blank common block. If an x is a block name, its associated variables and arrays 
are stored in that block of the common uea identified by the block name. The total 
size (in storage units) of blank common and each labeled common block is determined 
by COMMON and EQUIVALENCE statements. The order of the locations in blank 
common and in each labeled common block is determined by the order of their appearance 
in COMMON statements. 

In the following sequence: 

COllllllOM Al ,A2,Al. Al(2,2)/LILl/11(5) ,11//Cl,CI( 2) 

L S L 2 I .0 I ( 2 , 2 , 2 I , D I I L I L ! I I I ( 3 ) 

COllllllOM //Wl,WR(3)/LIL2/Xl,X2 

DlllllMSI M Xl(l) 

32 

• 

• 

• 



• 

• 

UP-7536 
Rev. l 

A 8 
FUHDAMENT ALS OF FORTRAN 

SIECTIONI 

the common area will consist of: . 

BLANK COMMON 

Al A2 A3 A...&. CJ CR Wl 
1, 1 I 2, 11 1, 2 I 2. 2 1 I 2 1 I t I I I I 

BLOCK LBLl 

i-1....---.B:---3---1-4--"""'5..-1 Bll 1---,-....,.......;E::,;,:;....,.--":"3 ~ 

BLOCK LBL2 

D....!t 01 XR 
1, 1, 1I2,1, 1 I 1, 2, 1-f2, 2, 1 I 1, 1, 2 I 2, 1, 2 I 1, 2, 2-12, 2, 2 1 I 2 ~ 3 

I J I l l l l l l 

An EQUIVALENCE statement can lengthen a block (blank or labeled); the only 
lengthening permitted is that which extends a block past the last assignment for 
that block made directly by a COMMON statement. F_or example, if the following 
sequence is added to the previous sequence, 

DIMENSIO 

the labeled common block LBL2 is lengthened by two units. 

EQUIVALENCE" L OR J l-1 7- 1 .. 2 I 3 I 4 I 5 I 6 ' 7 I 8 L I 

I I I • I . I 

WR 
2 ·~ _!_ 

X2 

TR 

2 ' 3 

COMMOI~ DR 01 XR X2 
1, 1, 1 :2, 1, 1 I 1, 2, 1 ]2, 2, 1 IJ, 1, 2 1 2, 1, 2J2, 2, 2: 2, 2, 2 1 I 2 I 3 I I 

However, in the same program unit, the statements 

D I N s I 0 N Z, R,( ,4 I) I I I I I I I I I I I I I I I 

33 

PAGIE1 

7 
7 4 7 

i. --



UP-7536 
Rev. 1 

8 
FUNDAMENTALS OF FORTRAN Sl:CTIONt 

are illegal, since this is an attempt to extend a common block ahead of its first 
assignment for that block, DR. 

.. AGl:I 

In each program unit. the size (in storage units) of a labeled block with the same 
block name must be the same, if it is present in a COMMON statement. The size 
of blank common need not be the same in all storage units. The total size of blank 
common is equal to the largest number of storage units assigned to blank common 
by a program unit of the program. However, association of a common variable or 
array is by storage unit in a labeled block of the same name or in blank common. 
The nth storage of blank common in one storage unit is shared with the nth storage 
unit of blank common in any other program unit. The nth storage unit of a labeled 
common block with a given name in one program unit is shared with the nth storage 
unit of a labeled common block bearing the same block name in any other program 
unit. 

For example, if one program unit contains 

COM M10,N 1 ,f,T,A,B,L,E,11/,A., ,B,, ,C 111 D,/,/tK,1.,,K,2,,,K,3, 

and a second program unit contains 

the correspondence would be: 

K3 

BLANK COMMON 

ITEMS(l) 
~--~ITEMS(2) 

TABLE 1 

i-----~VALUES(l)" 

----~•VALUES(2) i---- V ALUES(3) 
VALUES(4) 

This means that the variable A of the first program unit is the same value as the 
array element VALUES(l) in the second program unit. Note that the second program 
unit cannot access K3 of the first program unit because of the difference in blank 
common size. However, KE of the first program unit could corresP'ond to a blank 
common item in still another program unit of the same program. 

Since correspondence is by storage unit: 

34 

• 

• 

• 



• 

• 

• 

UP-7536 
Rev. 1 SECTION a 

8 
FUNDAMENTALS OF FORTRAN 

If program unit 1 contains 

and program unit 2 contains 

the following correspondence occurs·: 

PROGRAM UNIT 1 PROGRAM UNIT 2 

real part of Al ARAY_{_l_l 
imaginary part of Al ARAY(2) 
real part of A2 ARAY(3) 
imaginary part of A2 ARAY(4) 

Rules: 

(1) A COMMON statement is a specification statement; its order within a program 
unit is shown in Table 2-2. 

(2) An array declarator in a COMMON statement must not contain dummy arguments. 

(3) A block name is not related to any variable or array in the same or any other 
program unit; it has no data type or value associated with it. Once a -symbolic 
name is used as a block name, no other name can be used to identify the same 
block throughout the entire program. However, the same symbolic name- can be 
used as an array name, variable, or statement function name in the same program 
unit or any other program unit of the program. 

(4) The same block name can occur more than once in a COMMON statement or in 
more than one COMMON statement of a program unit. All entities of the same 
block (blank or labeled) are stored consecutively, in the order of their appearance. 

(5) An EQUIVALENCE statement may extend. a block only past its end, not ahead 
of its beginning. 

(6) The size, in storage units (see Table 2-4), of a common block for a program unit 
is the sum of the storage required for the elements introduced through COMMON 
and EQUIVALENCE statements. The sizes of labeled common blocks with the same 
block name must be the same in all program units of a program; the sizes of 
blank common in all the program units need not be the same . 

35 



UP-7536 
Rev. 1 FUNDAMENTALS OF FORTRAN 

8 
Sl:CTION1 PAGI:: 

(7) It is incorrect to equivalence two entities of a COMMON statement to each other, 
either directly or indirectly. 

(8) Any program unit requiring access to a common block must have a COMMON 
statement. 

(9) In a subprogram, a symbolic name appearing in a COMMON statement may not 
identify an adjustable array. 

(10) Correspondence between different entities of the same common block in different 
program units is determined by order and by storage unit(s). 

(11) In any procedure subprogram, symbolic names of dummy arguments must not appear 
in a COMMON statement. 

(12) An item in blank common must not appear in a DA TA statement; an item in 
labeled common may appear in a DATA st&tement. 

Examples: 

(1) A subroutine subprogram contains: 

Program unit 2 contains: 

The CALL CLARA Y statement in program unit 2 causes all the arrays in the 
labeled common block ARRAYS to have their elements cleared to 0.0. The DO 
range in program unit 2 causes .clearing of all elements in the array TABLE!. 

36 

• 

• 

• 



• 

• 

• 

UP-7536 
Rev. 1 SECTIONt 

8 
FUNDAMENTALS OF FORTR~N 

(2) If program unit 1 contains 

.and program unit 2 will only access MTRX(3,4,5), it must provide space in its 
COMMON statement for those items in blank common that precede MTRX, even 
though they will not be used in program unit 2. For example: 

37 
PAGEi 



• 

• 



UP-7536 
Rev. 1 

• 

• 

• 

9 
. FUNDA.MENTA.LS OF FORTRAN SIECTIONt PAGEi 

9. INITIALIZATION 

9.1. GENERAL 

This section describes the DATA statement (data initialization statement) and the 
block data subprogram (specification subprogram). 

9.2. DAT A ST A TEMENT 

Function: 

To initialize the values of specified variables and/or array elements at compilation 
time. 

where: each k is a list of variables and/or array elements separated by commas. 
each dis a list of constants and optionally signed constants separated 
by commas, any of which may be preceded by j*, where j is an integer 
constant indicating repetition of a constant j times. 

Rules: 

(1) Dummy arguments may not appear in a DATA statement. 

(2) Each subscript expression in an array element reference must be an integer 
constant. 

(3) A Hollerith constant may be used in a list d. 

(4) There must be a one-to-one correspondence between the list-specified items and 
the constants. 

(5) An initially defined variable or array element must not be in blank common. An 
item in a labeled common block can only be .initialized if the DATA statement 
is in a block data subprogram. 

(6) No item can be initialized more than once in the entire program. 

(7) Array names may not appear in DAT A statements. To initialize an entire array, 
each array element must be listed separately. 

(8) A program unit may contain as many DAT A statements as required . 

1 



UP-7536 
Rev.1 FUMDAMEHTALS OF FORTRAN 

Example: 

MENS I 

The values will be initialized as follows: 

A to 0.0 
B to 0.0 
MATRIX(l) to all blank characters 
MA TRIX(2) to 0 
MATRIX(3) to 0 

9.3. BLOCK DATA SUBPROGRAM 

Function: 

ll:CTION& 

To initialize values of labeled common blocks, at compilation time. 

Rules: 

BLOCK DATA 

data initialization and specification 
statements (except EXTERNAL) 

END 

9 

(1) The first statement of a block data subprogram must be the BLOCK DAT A 
statement. 

l"AGEs 

(2) The body of the block data subprogram consists of one or :nore DATA statements, 
one or more COMMON statements, and all other required specification statements 
except the EXTERNAL statement. These specification statements are type­
statements, DIMENSION, and EQUIVALENCE statements. 

(3) All specification statements must precede the DATA staternent(s). 

(4) The last line of the subprogram must be aa end line. 

(5) The block data subprogram, although independently compiled, is a specification 
subprogram and should not be confused with an external procedure. 

(6) There may be as many block data subprograms as required. 

2 

• 

• 

• 



• 

• 

• 

UP-.7536 
Rev.1 SCCTION1 

9 
FUMDAMEMTALS OF FORTRAN 

(7) If any entity of a common block is initialized in a block data subprogram, all 
items of that block must have their required specification statements, even 
though some of these items do not appear in a DAT A statement. 

(8) Initial values may be entered into more than one common block in a single block 
data subprogram. , 

. 
(9) A block data subprogram cannot be referenced in a progra~. 

(10) No executable instructions are generated by the processor for a block data sub­
program. Therefore, execution time of a program is decreased and less storage 
space is required for execution. 

Example: 

PAGE: 

I I I I I I I I I I I I ! I 

2. 71828182800/ 

9.3.1. BLOCK DATA Statement 

Function: 

To identify a block data (specification) subprogram. 

BLOCK DATA 

Rule: 

The BLOCK DATA statement must (and can only) appear as the first line of a 
specification subprogram . 

3 



• 

• 

• 



• 

• 

• 

UP-7536 
Rev. 1 

Appendix A 
FUNDAMENTALS OF FORTRAN Sll:C:TION1 l"ACit:: 

APPENDIX A. DIFFERENCES BETWEEN 
ANSI FORTRAN AND 

ANSI BASIC FORTRAN 

ANSI (American National Standards Institute, Inc.) Basic FORTRAN lacks some of the 
features found in ANSI FORTRAN. The following is a list of the features which Basic 
FORTRAN lacks, and the sections of this manual affected by the differences: 

(1) There is no DATA statement or specification (block data) subprogram (2.2.1, 2.2.2, 
Section 9). 

(2) There is no explicit type declaration of any kind; tltere are no type-statements (2.2.2, 
2.7.2.l, 7.2). 

(3) There is no EXTERNAL statement (2.2.2, 7 .1, 8. 7). 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

There are no ASSIGN or assigned GO TO statements (2.2.2, 4.1, 5'.2.3, 5.2.3.1). 

There is no logical assignment statement (2.2.2, 4.1, 4.3). 

All DIMENSION statements must precede all COMMON statements; all COMMON state­
ments must precede all EQUIVALENCE statements (2.2.2). 

There is no $ character in the Basic FORTRAN character set (2.3) . 

There is a maximum of five continuation lines instead of 19 (2.4.3). 

There is a maximum of four digits in a statement label instead of five (2.4.4). 

A real constant may not be written as an integer constant followed by a decimal 
exponent (2.6.2). 

Hollerith data is permitted only in a FORMAT statement; there are no Hollerith 
constants and no A field descriptor (2.5, 6.3.3, 6.3.3.4). 

There is a maximum of five characters in a symbolic name instead of six (2. 7). 

There are no double precision, complex, or logical data types (2. 7 .2). 

There is no provision for type declaration in a FUNCTION statement (2.7 .2.1, 7 .2, 
8.5.2.1). 

Arrays are limited to two dimensions instead of three (2. 7 .4). 

There are no adjustable arrays and no array declaration in COMMON statement (2.7.4.1, 
8.8). 

There are no relational or logical expressions (Section 3). 

There are no double precision or complex type arithmetic expressions (3.2.3). 

1 



UP-7536 
Rev:t 

Appendix A 
PAGE• 

FUNDAMENTALS OF FORTRAN 
SECTION& 

(19) There is no logical IF statement (5.3). 

(20) There is no provision for extended range in a DO loop (5.4). 

(21) There is a maximum of four instead of five octal digits in a PAUSE statement (5.6.1). 

(22) There is no form control character for formatted output records (6.3). 

(23) There are no D, G, or L field descriptors (6.3.3). 

(24) There is no provision in FORMAT statement for scale factor (6.3.3), data exponent 
on input for F field descriptor (6.3.3.2.2), or second level of parentheses (6.3.3.5, 6.6). 

(25) In numeric fields, blanks are permitted only to the left of the first nonblank character 
and between the sign of the field and the next nonblank character (6.3.3.2). 

(26) In formatted READ and WRITE statements,£ must be the statement label of the FORMAT 
statement; no array name is permitted (6.4, 6.5). 

(27) There are no logical statement functions (8.2). 

(28) Basic FORTRAN provides only the following intrinsic functions: ABS, IABS, FLOAT, 
IFIX, SIGN, and ISIGN (8.3). 

(29) Basic FORTRAN provides only the following basic external functions: EXP, A LOG, 
SIN, COS, TANH, SQRT, and ATAN (8.5.1). 

(30) Function subprograms may not define or redefine any of their arguments or alter any 
entity in common or entity associated with common by an EQUIVALENCE statement 
(8.5.2, 8.8). 

(31) There is no provision for labeled common blocks (8.8). 

2 

• 

• 

• 



• 

• 

• 

UP-7536 
Rev. 1 FUNDAMENTALS OF FORTRAN 

Term Reference Page 

A 
ASS Basic External Function, see external 

functions, basic 

example of 8.5.1 8-13 

Actual Arguments see arguments 

Addition, 

operator 3.2.1 3-5 
order of evaluation in 

arithmetic expression 3.2.1. 3.2.4 3-1, 3-5 

Adjustable Array, 2.7.4.l 2-25 
in DIMENSION statement 7.3 7-3 
in function subprogram 8.5.2.2 8-17 
in subroutine subprogram 8.6.3 8-25 

Advance to Next Form, 

form control character for 6.3 6-5 

AIMAG Intrinsic function, see intrinsic 

functions 

example of 3.3.3 3-9 

.AND. 3.4.l 3-10 

Arguments, 8.1, 8.1.3, 8.1.4 8-1, 8-4, 8-4 
basic function actual 8.5.1 8-13 
function subprogram actual 8.5.2.2, 8.5 .2.3 8-16, 8-23 
function subprogram dummy 8.5.2.l, 8.5.2.2 8-16, 8-16 
intrinsic function actual 8.3 8-9 
statement function actua I 8.2.l, 8.2.2 8-5, 8-8 
statement function dummy 8.2. l, 8.2.2 8-5, 8-8 
sli>routine subprogram actual 8.6.l 8-24 
sli>rout ine subprogram dummy 8.6.2, 8.6.3 g...25, B-25 

Index 1 
SCCTION1 PAGl!:I 

INDEX 

Term Reference Page 

Arithmetic, 

assignment statement see arithmetic 

assignment 

statement 

data types 2.5.1, 3.2.3 2-11, 3-

expression 3.2 3-1 

expression, I imited 8.2.1 8-5 
IF statement see arithmetic 

IF statement 

1/0 data see numeric 

data 

operators 3.2.1 3-1 
statement function 8.2.1 8-5 

Arithmetic Assignment Statement, 4.2 4-1 
in sample program l.& 1-12 

Arithmetic IF Statement 5.3.1 5-9 

Array, 2.7.4 2-23 
COMMON statement declaration of 8.3 8-32 

declaration of 2.7.4.1 2-24 

declaration of adjustable 8.5.2.2 8-17 
DIMENSION statement 

declaration of 7.3 7-3 
elements see array 

element 

· example of adjustable 8.5.2.2 8-20 
function subprogram 

arguments involving 8.5.2.2 8-17 
location of elements in 2.7.4.3 2-29 
using name of 2.7.4°.l 2-25 



UP-7536 
Rev. 1 FUNDAMENTALS OF FORTRAN 

Term Reference Page 

Array Element • 2.7.4.2 2-26 

EQUIVALENCE statement for 7.4 7-5 

function sl.bprogram arguments 

involving 8.5.2.2 8-17 

location of 2.7.4.3 2-29 

number of subscript expressions 

required by 7.4 7-5 

subscript expression in 

reference to 2.7.4.2 2-26 

Assembly Language 1.2.2 1-3 

ASSIGN Statement 5.2.3.1 5-8 

Assignment Statements, 

arithmetic 4.2 4-1 

GO TO 5.2.3.l 5-8 
logical 4.3 4-4 

Assigned GO TO Statement 5.2.3 5-6 

B 
BACKSPACE Statement 6.8.2 6-30 

Basic External Functions 2.2.l 2-3 

Basic Field Descriptor in 

FORMAT St2tement 6.3.3 6-7 

Bit. Definition of i.:u 1-2 

Blank Characters. 

in comment lines 1.6, 2.4. l 1-12, 2-7 

!!lend line 2.4.2 2-8 

fie Id descriptor 6.3.3.1 6-8 

in FORMAT statement 6.3 6-5 

1n FORTRAN coded lines 2.4 2-7 

in Holler 1th data 2.4.3 2-9 

in I O numeric data 6.3.3.2 6-8 

in statement labels 2.4.4 2-10 

1n symbolic names 2.7 2-18 

Blank Common see COMMON 

statement 

BLOCK DATA statement 9.3.1 9-3 

Block Data Subprogram. 2.2.1. 9.3 2-2. 9-2 
order of 3tatements in Table 2-2 2-6 

Block name see COMMON 

statement 

Index 2 
SECTIONS PAGE: 

Term Reference Page • c 
CALL statement, 8.6.l 8-24 

within DO range see DO 

statement 

Central Processing Unit, 1.5.1.3 1-8 
representation of fixed-point 

numbers 1.5.1.3.1 1-8 
representation of floating· 

;>oint nuonbers 1.5 .1.3 .2 1-9 

Characters. 

alphanumeric 2.3 2-7 
form control Table 6-1 6-5 
FORTRAN set of 2.3 2-7 
prccessor set of 2.3 2-7 
specia! 2.3 2-7 

Closed Internal Block, 

example of 5.2.2 5-5 

Comment Line, 2.4.1 2-7 
sample 1.6 1-9 • COMMON Statement 8.8 8-32 

Compilation Process 1.4 1-4 

Compiler 1.3 1-4 

Completely Nested Nest see DO 

statement 

Complex Type. 2.5 .1, 2.5 .1.4 2-11, 2-13 

constant 2.6.4 2-16 

field descriptor 6.3.3.2.3 6-12 
memory requirements Table 2-4 2-11 

Computed GO TO Statement 5.2.2 5-2 

Computer. 

decimal 1.2.1 1-2 

hexadec i ma I 1.2.1 1-2 

octal 1.2.1 1-2 

Constant(sl. 2.6 2-13 
basic real 2.6.2 2-14 
integer 2.6.1 2-14 
real 2.6.2 2-14 

Continuation Line1s I of Statement 2.4.3 2-9 • 



• 

• 

• 

UP-7536 
Rev. 1 FUNDAMENTALS OF FORTRAN 

Term Reference Page 

CONTINUE Statement, 5.5 5-21 
as terminal statement see DO 

statement 

Control Statements 5.1 5-1 

Control Variable, 

in DO statement 5.4 5-13 
in DO-implied list 6.2.2 5-3 

Conversion Codes in FORMAT 

Statement 6.3.3 6-7 

CPU see central 

processing unit 

Cube Root, 

function subprogram for 

calculation of 8.5.2.2. 8-21 

D 
DATA Statement, 9.2 9-l 

in sample program 1.6 1-12 

Data Types, 2.5.1 2-11 

Conversion of 4.2 4-2 
declaration of Hollerith 2.7.2.3 2-22 
exp I ic it dee larat ion of 2.7.2.1 2-20 
implied declaration of 2.7.2.2 2-20 
in arithmetic expressions 3.2.3 3-4 

in relational expressions 3.3.2 3-8 
memory requirements for Table 2-4 2-11 
of function name 8.5.2.1. 8-16 
of symbolic names 2.7.2 2-20 

Decimal Computer 1.2.1 1-2 

Decimal Exponent 2.6.2 2-15 

Declaration, 

array 2.7.4.l 2-24 
DIMENSION statement array 7.3 7-3 
explicit type 2.7.2.l, 7.2 2-20, 7-1 
Hollerith value 2.7.2.3 2-22 
implied type 2.7.2.2 2-20 

DIMENSION Statement 7.3 7-3 

DMOD Basic External Function, see external 

functions, basic 

example using 4.2 4-3 

Index 3 
SECTION: PAGE: 

Term ~eference Page 

DO· implied, 

list 6.2.2 6-2 

specification 6.2.2 6-2 

DO Statement 5.4 5-13 

Double Precision Exponent 2.6.3 2-16 

Double Pree is ion Type, 2.5.1, 2.5.1.3 2-11. 2-
constant 2.6.3 2-16 
field descriptor for 1/0 data 6.3.3.2.4 5-14 
memory requirements Table 2-4 2-11 

Dummy Arguments see arguments 

E 
ENDFILE Statement 6.8.3 5-32 

End Line, 2.4.2 2-8 
in function subprogram definition 8.5.2.2 8-16 
in sample program 1.6 1-13 
in subroutine subprogram 

definition 8.6.3 8-25 

EQUIVALENCE Statement· 7.4 7-4 

Executable Statements 2.2.2 2-5 

Execution, 

halt, temporary see PAUSE 

statement 

process 1.4 1-4 

sequence 2.2.1 2-1 
sequence modified by control 

statements 5.1 5-1 

termination see STOP 

statement 

Explicit Declaration of 

data type 2.7.2.1 2-20 

Exponentiation, 

type rules for 3.2.3 3-4 

Expressions, 3.1 3-1 

arithmetic 3.2 3-1 

I imited arithmetic 8.2.l 8-5 
limited logical 8.2.2 8-8 
logical 3.4 3-10 
relational 3.3 3-7 

subscript 2.7.4.2 2-26 



UP·7536 
Rev. 1 FUNDAMENTALS OF FORTRAN 

Term Reference Page 

Extended range see DO 

statement 

External Function(s), 8.5 8-13 

basic 8.5.l 8-13 

subprograms 8.5.2 8-15 

External Procedure(s ), 2.2.1 2-2 

name as an argument see EXTERNAL 

statement 

subprograms, out-of-line 

machine coding of 8.1.2 8-3 

EXTERNAL Statement 8.7 8-30 

F 

Factor, 

in arithmetic expression 3.2.2 3-2 

in logical expression 3.4.2 3-11 

.FALSE. 2.6.5 2-17 

field descriptor1s) in FORMAT 

Statement, 6.3.3 6-7 

blank 6.3.3.1 6-8 

repetition of 6.3.3.5 6-21 

Field Separator(s) 6.3.2 6-6 

Field Width i1; Field Descriptors 6.3.3 6-7 

File 6.1 6-1 

Fi xei:l·Point Representation of 

Numbers 1.5.1.3.1. 2.5.l.l 1-8, 2-12 

FLOAT Intrinsic Function, see intrinsic 

functions 

example of 3.2.4, 4.2 3-6.4-3 

Floating-Point Representation of 

Numbers 1.5.1.3.2, 2.5.1.2 1-9. 2-12 

Flowchart. sample 1.6 1-10 

Form Control Characters Table 6-1 6-5 

Form. Typical FORTRAN 

programming 2.4 2-i 

Index 4 

SECTION I PAGE: 

Term Reference Page • Format Control and I /0 list, 

relation between 6.6 6-26 

FORMAT Statement, 6.3 6-4 

in sample program 1.6 1-11 

Function Reference, 8.1 8-1 

as primary in arithmetic 

expression 3.2.2 3-2 

as primary in logical 

expression 3.4.2 3-11 

FUNCTION Statement 8.5.2.1 8-16 

Function Subprogram(s) 2.2.1, 8.5.2 2-2. 8-15 

definition of 8.5.2.l 8-16 

order of statements in Table 2-2 2-6 

references to 8.5.2.3 8-23 

G 
GO TO Statements, 5.2 5-1 

assigned 5.2.3 5-6 

computed 5.2.2 5-2 

unconditional 5.2.1 5-2 • H 
Hexadecimal Computer 1.2.l 1-2 

Hollerith, 

constants 2.6.6 2-18 

constant in CALL statement, 

example of 8.6.3 8-26 

Cllnstants in OAT A statement, 

example of 6.3 6-4 

data 2.5 2-11 

in DATA statement 9.2 9-1 

in input,'output statement 6.3.3 6-7 

field descriptors 1n FORMAT 

statement 6.3.3.4 6-18 

integer or logical type 2.7.2 2-20 

represe'ntation by rea I 2.5.1, 2.5.1.6 2-11. 2-13 

I 
IF Statement(sl 5.3 5-9 

arithmetic see arithmetic IF 

statement 

logical see logical IF 

statement 

• 



• 

• 

• 

UP-7536 
Rev. 1 

Term 

Implied Type Declaration 

Incrementation Parameter, 

in DO-implied list 

in DO statement 

Initialization Statement 

Initial Line of Statement 

Initial Parameter, 

in DO-implied list 

in DO statement 

Input De'lice(s), 

logical unit number of 

Input List 

Input Statement(s), 

auxiliary 

Integer Type, 

constants 

conversion of I /0 data 

memory requirements 

Intrinsic Functions, 

inline machine coding of 

1/0 List 

K 
Keyword, 

use as symbolic name 

L 
Labe I, Statement 

Labeled Common Block, 

initialization of 

Language(s), Programming, 

assembly 

FORTRAN 

machine 

FUNDAMENTALS OF FORTRAN 

Reference Page 

2.7.2.2 2-20 

see DO statement 

6.2.2 6-2 
5.4 5-13 

see DATA 

statement 

2.4.3 2-9 

6.2.2 6-2 
5.4 5-13 

1.5.1.1 1-8 

6.2.1 6-2 

6.2.2 6-2 

6.1 6-1 

6.8 6-29 

2.5.1, 2.5.1.1 2-11, 2-12 

2.6.1 2-14 

6.3 6-4 
Table 2-4 2-11 

8.3 S-9 
a.1.1 S-3 

6.2.2 6-2 

1.6 1-13 

2.7 2-18 

see statement 

label 

see COMMON 

statement 

see block data 

subprogram 

1.2 1-2 
1.2.2 1-3 

1.2.3 1-4 
1.2.1 1-2 

Index 5 
SECTION: PAGE: 

Term Reference Poge 

Logical Assignment Statement 4.3 4-4 

Logical Expression. 3.4 3-10 

limited a.2.2 8-8 

Logical IF Statement, 5.3.2 5-11 

in sample program 1.6 1-11 

Logical Operators 3.4.1 3-10 

Logical Statement Function a.2.2 S-8 

Logical Type, 2.5.1, 2.5.1.5 2-11, 2-

constant 2.6.5 2-17 

field descriptor 6.3.3.3 6-16 

memory requirements Table 2-4 2-11 

Logical Unit Number in I 'O Statement 6.2.1 6-2 

Loop, 

example of nested 2.7.4.2 2-28 
in sample program 1.6 1-11 

M 
Main Program, 2.2.1 2-1 

order of statements in Table 2-2 2-6 

N 
Name(s), 

symbolic see symbolic 
name 

Newton·Raphson Method, 

in computation of cube root a.5.2.2 a-21 

Nonexecutable Statements 2.2.2 2-5 

.NOT. 3.4.1 3-10 

Numeric Data. 

· in I O data 6.3.3.2 6-8 

0 
Octa I Computer 1.2.1 1-2 

Operating System 1.5' 1.5 .2 1-7. 1-9 



UP-7536 
Rev. 1 

Term 

Operators, 

arithmetic 

OR. 

Output Device(s), 

logical unit number of 

Output List 

Output Statement(s), 

auxiliary 

p 

Parameter(s), 

of DO-implied list 

of DO statement 

PAUSE Statement 

Polynomial Evaluation, 

by DO statement 

Primary. 

in arithmetic expression 

in logical expression 

Procedure1s). 

external 

Procedure Subprograms. 

order of statements in 

Pr.ocessor, Definition of 

Program, 

compilation of 

execution of 

FORTRAN source 

main 

obiect 

sample executable 

source 

units of 

Program Unit(s l, 

communication between 

definition of 

execution of 

organization of 

FUNDAMENTALS OF FORTRAN 

Referenc:e Page 

3.2.l 3-1 

3.4.l 3-10 

1.5.l.5 1-9 

6.2.l 5-2 

6.2.2 5-2 

6.1 5-1 

6.8 5-29 

6.2.2 5-2 

5.4 5-13 

5.5.l 5-22 

5 .4 5-21 

3.2.2 3-2 

3.4.2 3-11 

8.1 8-1 

2.2.1 2-2 

2.2.1 2-1 

Table 2-2 2-6 

1.2 1-2 

1.4 1-4 

see execution 

1 3 1-4 
2.2.l 2-1 

1.3 1-4 

1.6 1-9 

1.2 1-2 

see program units 

8.1.3 8-4 
2.2.l 2-1 
2.2.l 2-3 

2.2.2 2-5 

Index 6 

SECTION: 

Term Referenc:e Page • Programming Form, 

ty11ica1 FORTRAN 2.4 2-7 

Punched Cards 

for sample program 1.6 1-9 

ca 
Quadratic Equation, 

solution of 5.3.l 5-10 

R 

READ Statement, 

formatted 6.4 5-23 

samplP program 1.6 1-9 

unformatted 6.7 5-28 

REAL Intrinsic Function, see intrinsic 

functions 

example of 3.3.3 3-9 

Real Type, 2.5.1, 2.5.1.2 2-11. 2-12 

constant 2.6.2 2-14 

data input 6.3.3.2.2 5-11 

data output 6.3.3.2.3 6-12 • memory requirements Table 2-4 2-11 

Record(s), 6.1 5-1 

demarcat0t· 6.3.l 5-6 

Relational. 

expression 3.3 3-7 

operators 3.3.1 3-7 

Repeat Count, 

in FORMAT statement 6.3.3, 6.3.3.5 5-7. 5-21 

RETURN statement. 8.4 8-13 

multiple use of 8.5.2.2 8-16 

REWIND Statement 6.8.1 5-29 

s 
Scale Factor. 

with field descriptors 6.3.3. 6.3.3.6 6-7. 5-22 

Sequentia I Fi le 6.1 6-1 

• 



UP-7536 
Rev. 1 FUNDAMENTALS OF FORTRAN 

• Term Reference Page 

Simple List in 1/0 List 6.2.2 6-2 

Software, Definition of 1.5.2 1-9 

Sort, Internal 

example 5.4 5-20 

Specification Statements 7.1 7-1 

Specification Subprogram see block data 

subprogram 

Statement Label(s), 2.4.4 2-10 
in sample program 1.6 1-9 

Statement Functions, 8.2 S-2 
arithmetic 8.2.1 S-5 

inline machine coding of 8.1.1 S-2 
logical 8.2.2 S-8 

Statements, 2.4.3 2-9 

continuation I ine of 2.4.3 2-9 

executable see executable 

statements 

initial line of 2.4.3 2-9 

• labels of see statement 

labels 

list of FORTRAN Table 2-1 2-5 

nonexecutable see nonexecutable 

statements 

order of Table 2-2 2-6 

terminal see DO statement 

STOP Statement(s), 5.6.2. 5-23 

. in sample program 1.6 1-9 

Storage, 

auxiliary 1.5.1.4 1-9 
EQUIVALENCE statement 

conservation of main 7.4 7-4 
main 1.5.1.2 1-8 

Subprograms, 

description of 2.2.1 2-1 

block data see block data 

subprograms 

function see function 

subprograms 

subroutine see subroutine 

subprograms 

• SUBROUTINE Statement 8.6.2 S-25 

Index 7 
SECTION& PAGEi 

. Term Reference Page 

Subroutine Subprogram(s), 2.2.1, 8.6 2-2, s-2~ 

definition of 8.6.3 S-25 

invoking of 8.6.l S-24 

order of statements in Table 2-2 2-6 

Subscript; 2.7.4.l 2-24 

expression 2.7.4.2 2-26 

Symbolic Names, 2.7 2-18 

uniqueness ot 2.7.1 2-19 

T 
Term, 

in arithmetic expression 3.2.2 3-2 

in logical expression 3.4.2 3-11 

Terminal Parameter see DO statement 

Terminal Statement see DO statement 

Termination, 

of compilation see end line 

of execution see STOP statement 

TRUE. 2.6.5 2-17 

Types of Data see data types 

Type-Statement( s), 7.2 7-1 

examples of 2.7.2.l 2-20 

u 
Unconditional GO TO Statement s.2.1 5-2 

v 
Variable(s), 2.7.3 2-23 

control see DO statement, 

DO·implied list 

defining values of 2.7.3 2-23 

·type declaration of 2.7.2.2, 2.7.2.3 2-20, 2-

w 
WRITE Statement, 

formatted 6.5 6-25 

unformatted 6.7 6-28 



• 

• 

• 



I 
I 51=e~+uNIVAc:: 

• 
I 
I 
I 
I 
I 
I 
I 
I 
I 

~I 
e;1 

ul 
I 
I 
I 
I 
I. . 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

.: 
I 
I 
I 
I 

USER COMMENT SHEET 

Your comments concerning this document will be welcomed by Sperry Univac for use in improving 
subsequent editions. 

PletlStl note: This form is not intended to bll used as an order blank. 

(Dacumllllt Title} 

(Document No.J (Rtl'lision No. J (Update No.J 

Comments: 

From: 

(Name of UsarJ 

(Busmess Address} 

Fold on doned lines. and mail. (No postage stamp is necessary if mailed in the U.S.A.) 
Thank you for your cooperation 



·: ...... ..... . "'\. 

FOL.D 

111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 21 BWE BELL., PA. 

POSTAGE WILL BE PAID BY ADDRESSEE 

SPERRY UNIVAC 

ATTN.: SYSTEMS PUBLICATIONS 

P.O. BOX 500 
BLUE BEU.. PENNSYLVANIA 19424 

FOL.D 

NO POSTAGE 
NECESSARY 
IF MAILED 

INTHE 
UNITED STATES 

• 

• 


