ATTN: CHARLIE GIBBS

¥V 01120 '
. | CAV208M45541 UP 7536

SPERRY UNIVAC

SUITE 906

1177 WEST HASTINGS ST
VANCOUVER BC V6E 2K3

R1E

UAS

CAV

##

This update:incorporates a minor change to the manual.

5 pages plus Memo)

UD1-251 Rev, I3

BZ, CZ and MZ 28U,39,40,41,42,43,44,51,51D, 52,63,63D, 54,54D, 55,
55D,56,57,58,60,61,65,66,75,76,77 and 78
(Package E to UP-7536 Rev. 1,

’ Mailing Lists Mailing Lists AOO,BOO,A14,A15,B15,1'0,1 1,18,19,20,21,

General

Fundamentals of FORTRAN

Programmer Reference

This Library VMé"mo announces the release and availability of Updating Package E to “SPERRY UNIVAC
Fundamenga‘l_s of FORTRAN Programmer Reference”, UP-7536 Rev. 1.

Copies of Updating Package E are now available for redUisitioning. Either the updating package only or the complete
manual with the updating package may be requisitioned by your local Sperry Univac representative. To receive only
the updating package, order UP-7536 Rev. 1—E. To receive the complete manual, order UP-7536 Rev. 1.

Library Memo for
UP-7536 Rev. 1-E

RELEASE DATE:.
August, 1982

SPERRY==UNIVAC

COMPUTER SYSTEMS

General

Fundamentals of FORTRAN

Programmer Reference

This Library Memo announces the release and availability of Updating Package C to “SPERRY UNIVAC Fundamentals
of FORTRAN Programmer Reference’”, UP-7536 Rev. 1.

This update incorporates minor corrections to the manual.
Copies of Updating Package C are now available for requisitioning. Either the updating package only, or the complete

manual with the updating package may be requisitioned by your local Sperry ‘Jnivac representative. To receive the
updating package only, order UP-7536 Rev. 1—C. To receive the complete manual, order UP-7536 Rev. 1.

Mailing Lists Mailing Lists 10,11,18,19,20,21,28U,29U,39,40,41,42 Library Memo for
BZ,CZ and MZ 43,44,51,51D,52,53,63D,54,54D,55,55D,56,57,58,60, UP-7536 Rev.1—-C
.. ’ 61,65,66,75,76,77 and 78
(Package C to UP-7536 Rev. 1,
5 pages plus Memo) RELEASE DATE:
June, 1981

UD 1251 Rev, 373

ndaentals
of Fortran

Programmer Reference

SSSSSSSSSSSSSSS

This document contains the latest information available at the time of
publication. However, Sperry Univac reserves the right to modify or
revise its contents. To ensure that you have the most recent
information, contact your local Sperry Univac representative.

UNIVAC is a registered trademark of the Sperry Rand Corporation.

Other trademarks of the Sperry Rand Corporation inciude:

FASTRAND

MATED-FILM
PAGEWRITER
UNISCOPE

UNISERVO

© 1967, 1968, 1970, 1974 — SPERRY RAND CORPORATION

PRINTED IN US.A.

7536 Rev. 1

FUNDAMENTALS OF FORTRAN E PSS 1
UPRP-NUMBER PAGE REVISION PAGE
PAGE STATUS SUMMARY
ISSUE: Update E —UP-7536 Rev. 1
. Page Update . Page Update . Page Update
Part/Section| Numher | Level ||P2rt/Section| o iier | Level | |Part/Section| nnier | Level
Cover/Disclaimer A Index 1 thru 7 Orig.
PSS 1 E User Comment
Sheet

Contents 1thru b Orig,
1 1 thru 13 Orig.
2 1 thru 23 QOrig.

24 Cc

25 thru 27 Orig.

28,29 D
3 1thru d Orig.

.5 E

8 thru 14 Orig.
4 1thru 4 Orig.
5 1 thru 12 Orig,

13 D

14, 15 Crig.

16 A

17 thru 24 Orig.
6 1 thru 10 Orig.

11 D

12 Qrig.

13 D

14 thru 22 Qrig.

23 A

24 B

25 Orig.

26, 27 D

28 thru 32 Orig.)
7 1 thru 3 QOrig,

4 D

5 Orig.

6 D

7 Orig.
8 1thru8 Orig.

9 D

10 thru 22 Orig.

23 A

24 thru 26 Orig.

27 D

28 thru 32 Orig.

33 A

34 thru 37 Orig,
9 1thru 3 Orig.
Apoepdix A 1,2 Orig,

All the technical changes are denoted by an arrow (=) in the margin. A downward pointing arrow (f } next to a line indicates thatr

technical changes begin at this line and continue unti/ an upward pointing arrow (4) is found. A horizontal arrow (=) pointing to

a line indicates a technical change in only that line. A horizontal arrow located between two

changes in both lines or deietions.

Y

ive lines

technical

UP-7536 Contents
Rev. 1 FUNDAMENTALS OF FORTRAN secTions . pacE:
CONTENTS

CONTENTS lto$d

1. INTRODUCTION 1-1to1-13
1.1, GENERAL i-1
1.2, PROGRAMMING LANGUAGES 1-2
1.2.1. Machine Language 1-2
1.2.2. Assembly Language 1-3
1.2.3. FORTRAN Language 1-4
1.3. SOURCE AND OBJECT PROGRAMS 1-4
1.4, COMPILATION AND EXECUTION 1-4
1.5, THE COMPUTER SYSTEM 1-7
1.5.1. Computer Hardware 1-7
1.5.1.1. Input Devices 1-8
1.5.1.2, Main Storage 1-8
1.5.1.3. Central Processing Unit 1-8
1.5,1.3.1. Fixed-Point Representation 1-8
1.5.1.3.2, Floating-Point Representation 1-9
1.5.1.4. Auxiliary Storage 1-9
1.5.1.5. Output Devices 1-9
1.5.2. Computer Software 1-9
1.6. SAMPLE PROGRAM 1-9

2. WRITING A FORTRAN PROGRAM 2-1 to 2-29
2.1. GENERAL 2-1
2.2. ORGANIZATION 2-1
2.2.1, FORTRAN Program 2-1
2.2,2, Program Unit Qrganization 2-5
2.3. CHARACTER SET 2-1
2.4, FORTRAN PROGRAMMING FORM 2-7
2.4.1, Comment Line 9-7
2,4.2. End Line 7-8
2.4.3, Statements 2-9
2.4.4, Statement Labels 2-10
2.5. FORTRAN DATA 2-11
2.5.1. Data Types 2-11
2.5.1.1. Integer Type 2-12
2.5.1.2. Real Type 2-12
2.5.1.3. Double Precision Type 2-13
2.5.1.4, Complex Type 7-13
2.5.1.5, Logical Type 2-13
2.5.1.6. Hollerith Tyne 2-13

UP-7536 ' Contents 2
Rev. 1 FUNDAMENTALS OF FORTRAN secTions A

2.6. CONSTANTS : 2-13
2.6.1. integer Constant 2-14
2.6.2. Real Constant ' 7-14
2.6.3. Double Precision Constant 2-16
2.6.4, Complex Constant 2-16
2.6.5. Logical Constant 2-17
2.6.6. Hollerith Constant ‘ 2-18
2,7. SYMBOLIC NAMES 2-18
2.7.1. Uniqueness of Symbolic Names 2-19
2.7.2. Typing of Symbolic Names 2-20
2.7.2.1. Explicit Type Declaration 2-20
2,7.2,2. implied Type Declaration 2-20
2,7.2.3. Hollerith Values 2-22
2.7.3. Variables , » 2-23
2.7.4. Arrays) 2-23
2.7.4.1. Array Declaration 2-24
2.7.4.2, Amnay Element Reference 2-26
2.7.4.3. Location of Elements Within Array 2-29

3. FORTRAN EXPRESSIONS ' 3-1to 3-14
3.1. GENERAL 3-1
3.2, ARITHMETIC EXPRESSIONS 3-1
3.2.1. Arithmetic Operators 3-1
3.2.2. Formation of Arithmetic Expressions 3-2
3.2.3. Type Rules for Arithmetic Expressions 3-4
3,2.4. Evaiuation of Arithmetic Expressions 3-5
3.3, RELATIONAL EXPRESSIONS 3-7
3.3.1. Relational Operators 3-7
3.3.2. Type Rules for Relational Expressions 3-8
3.3.3. Applications of Relational Expressions 3-
3.4, LOGICAL EXPRESSIONS 3-10
3.4,1. Logical Operators 3-10
3.4.2. Formation of Logical Expressions 3-11
3,4,3. Evaluation of Logical Expressions 3-13
3.4.4. Applications of Logical Expressions 3-14

4, ASSIGNMENT STATEMENTS : 4-1 to 4~4
4.1. GENERAL 4-1
4,2, ARITHMETIC ASSIGNMENT STATEMENT 4-1
4,3. LOGICAL ASSIGNMENT STATEMENT . 4-4

5. CONTROL STATEMENTS 5-1to 5-24
5.1. GENERAL ' 5-1

5.2, GO TO STATEMENTS 5-1
5.2.1. Unconditional go To Statement 5-2
5.2.2. Computed go TO Statement 5-2
5.2.3. Assigned o TO Statement 5-6
5.2.3.1. GO Ta Assignment Statement 5-8

UP-7536 :
FUNDAMENTALS OF FORTRAN e ontents o
5.3. IF STATEMENT 5-9
5.3.1. Arithmetic IF Statement 5-9
5.3.2. Logical 1F Statement 5-11
5.4. DO STATEMENT 5-13
5.5. CONTINUE STATEMENT 5-21
5.6, PROGRAM CONTROL STATEMENTS 5-22
5.6.1, PAuUsE Statement 5-22
5.6.2. sTop Statement 5-23
. INPUT,/OUTPUT AND FORMAT STATEMENTS 6-1 to 6-32
6.1, GENERAL . 6-1
6.2. ELEMENTS OF READ AND WRITE STATEMENTS 6~2
6.2.1. Logical Unit Number §-2
6.2.2. Input/Qutput List -2
6.3. FORMAT STATEMENT 6-4
6.3.1. Record Demarcator 6~6
6.3.2. Field Separators §-6
6.3.3. Field Descriptors §-~7
6.3.3.1. Blank Field Descriptor 6-8
6.3.3.2. Numeric Data 6-8
6.3.3.2.1. Integer Type Conversion 6-8
6.3.3.2,2. input of Real Type Data §-11
6.3.3.2.3. Output of Real Type Data §-12
6.3.3.2.4. Double Precision Type Conversion §-14
6.3.3.2.5. Complex Type Conversion §~15
6.3.3.3. Logical Type Conaversion §~16
6.3.3.4. Hollerith Field Descriptors 6-17
6.3.3.5. Repeat Specifications 5-21
6.3.3.6. Scale Factor §~22
6.4. FORMATTED READ STATEMENT 6-23
6.5, FORMATTED WRITE STATEMENT §-125
6.6, FORMAT CONTROL 6-26
6.7. UNFORMATTED WRITE AND READ STATEMENTS §-28
6.2, AUXILIARY INPUT. QUTPUT STATEMENTS 629
6.8.1. REWIND Statement §-29
6.8.2. BACKSPACE Statement 5-30
6.3.3. ENDFILE Statement §-32
. SPECIFICATION STATEMENTS 7-1to 7-7
7.1. GENERAL 7-1
7.2. TYPE-STATEMENTS 7-1
7.3. DIMENSION STATEMENT 7-3
7.4. EQUIVALENCE STATEMENT 7-4

UP-7536 Contents
Rev.l FUNDAMENTALS OF FORTRAN
B . | R Strc'l'ilOﬂt PA?F: -
8. PROCEDURES AND PROCEDURE SUBPROGRAMS 8-1 to 8-37
8.1. GENERAL 8-1
8.1.1. Statement Functions and Intrinsic Functions §-2
8.1,2, External Pracedure Subprograms §-3
8.1.3. Communication Between Program Units 8-4
8.1.4, Valid Forms of Arguments §-4
8.2, STATEMENT FUNCTION : _ 8-5
8.2.1, Arithmetic Statement Function 8-5
8.2.2. Logical Statement Function §-8
8.3. INTRINSIC FUNCTIONS 8-9
8.4, RETURN STATEMENT 8-13
8.5. EXTERNAL FUNCTIONS - 8-13
8.5.1. Basic External Functions 8-13
8.5.2. Function Subprograms 8-15
8.5.2.1, FUNCTION Statement . 8-16
8.5.2.2. Function Subprogram Definition 8-16
8.5.2.3. References to Function Subprograms §-23
8.6. SUBROUTINE SUBPROGRAMS §-24
8.6.1. CALL Statement 8-24
8.6.2. SUBROUTINE Statement §~25
8.6.3. Subroutine Definition 8-25
8.7. EXTERNAL STATEMENT 8-30
8.8. COMMON STATEMENT ' 8-32
9. INITIALIZATION 9-1to 9-3
9.1. GENERAL 9-1
9,2, DATA STATEMENT 9-1
9.3. BLOCK DATA SUBPROGRAM 9-2
9.3.1. BLOCK DATA Statement 9-3
APPENDIX A, DIFFERENCES BETWEEN ANSI FORTRAN AND
ANS| BASIC FORTRAN A-1to A-2
INDEX 1to7
FIGURES
1-1. FORTRAN-Assembler-Machine Coding . 1-4
1-2. Compiler to Memory 1-5
1-3. The Compilation Process 1-5
1-4, The Compile and Execute Process 1-6

1-5. Elements of the Computer 1-7

Revt FUNDAMENTALS OF FORTRAN Contents
) SECTION: PAGE:

' 1-6. Sample Probiem Flowchart 1-10
1-7. Sample Program . 1-11
1-8. Sampie FORTRAN Program Deck and Data 1-13
2-1. Program Units of FORTRAN Program 2-2
2-~2. Control Path During Execution 2-4
2-3, FORTRAN Programming Form 2-8
2-4. Real Constants in FORTRAN: Statements 2-15
3-1. Structure of Arithmetic Expression 3-2
3-2. Structure of Logical Expression 3-11
5-1. Use of Assigned GO TO Statement 5-7
7-1. Effect of EQUIVALENCE Statement 7-4
8-1. Inline Coding of Statement Functioas and Intrinsic Functions §-3

TABLES

2-1. FORTRAN Statements 2-5
2-2; Ordering of FORTRAN Statements 2-6
2-3. FORTRAN Character Set 2-7
2-4. Memory Requirements for Data Types 2-1l1
2-5. Uses of Symbolic Names 2-19
2-6. Array Element Location in Array 2-29
3-1. Arithmetic Qperators 3=1
3-2. Type Rules for Exponentiation 3-4
3-3. Type Rules for Conventionai Arithmetic 3=4
3-4. Relational Qperators 3~7
3-5. Type Rules for Relational Expressions 3-8
3-6. Logical Operators 3-10
3-7. Truth Tables for Logical Operators 3-10
4~—l. Type Conversion by Arithmetic Assignment Statement 4-2
6-1. Form Control Characters 6-3
8-1. Forms of Argument 8-4
§-2. Intrinsic Functions 8=10
8-3. Basic External Functicns 8—-14

Up-7536
Rev. 1

FUNDAMENTALS OF FORTRAN

SECTION: PAGE:

1.1

1. INTRODUCTION

GENERAL

FORTRAN (from FORmula TRANslator) is a programming language designed for
extensive use in mathematical, scientific, and technological areas. The advantages
of FORTRAN are minimum programming time and cost, and maximum interchange-
ability of FORTRAN programs on different FORTRAN procossors.

FORTRAN statements resemble English statements and the equations of elementary
algebra, Therefore, FORTRAN statements are self-documenting, that is, the intended
operation is apparent from the statement itself. For example, to find the average ot
two numbers, the programmer can write a statement such as:

AVRGE = (A+B)/2.0

Since the FORTRAN programmer uses a programming language that resembles the
language ordinarily used for the solution of problems, relatively littie time is
required to leam the language. As a result, programming effort can be devoted to
the logic of the problem without being troubled by the intricacies of computer opera-
tion. This self-documenting feature of FORTRAN reduces debugging time and-
enables other programmers to readily grasp the logic of a program so that it can be
modified or adapted to other purposes with.minimal effort.

Because FORTRAN is the first programming language to be generally accepted as a
standard by the data processing community, a FORTRAN program written for a partic-
ular FORTRAN processor can be accepted by many different FORTRAN processors
with a minimum of change. The FORTRAN specifications described in this manual
are those of the American National Standards Institute, Inc. (ANSI), formerly known
as USA Standards Institute, Inc. (USASI), in FORTRAN, X3.9-1966. Another ANSI
standard in current use is Basic FORTRAN, X3.10-1966, which is a subset of
FORTRAN. Differences between the two standards are described in Appendix A.

Fundamentals of FORTRAN is designed to introduce FORTRAN to the novice
programmer while providing sufficient depth of coverage for experienced FORTRAN
programmers. The examples and descriptions of operation, therefore, will be partic-
ularly valuable for the novice.

UP-7536 | : ' r | .
Rev. 1 FUNDAMENTALS OF FORTRAN

SECTION: PAGE:

1.2. PROGRAMMING LANGUAGES '

The series of steps specified for the solution of a particular problem is called a
source program and the notation that the programmer uses for specifying these steps
is a programming language. Except in very few cases (where the programmer uses
machine language) the computer cannot ‘‘understand’’ the programming language;
the programming language must be translated into instructions that the computer can
comprehend. Any programming language that resembles Eaglish or the language of
mathematics must be translated into machine language before it can have any effect
upon computer operation. The combination of the mechanism that accomplishes the
translation from programming language to machine language and the data processing
system is called the processor.

The following paragraphs trace the development of programming languages from
machine language to assembly language to FORTRAN and show the application of
each to the problem of evaluating Z in the following equation:

_(R+S - DX
R

where the values of R, S, T, X, and Y are known.

1.2.1. Machine Language

The fundamental unit of information handled by a data processing system is the
bit (from binary digit). In the strictest sense, machine language is a combination
of bits interpreted by a data processing system as an instruction. Each bit has
two mutually exclusive states, represented by 0 and 1. However, almost every
data processing system has built-in facilities for accepting an abbreviated form
of machine language. In an ‘‘octal’’ computer, each of the octal digits, 0 through
7, represents a combination of three bits. For example, an octal 6 is the equiva-
lent of binary 110. In a “‘hexadecimal’’ computer, the digits 0 through 9 and A,
B, C, D, E, and F each represent four bits, e.g., the hexadecimal D represents
the binary 1101, In a ‘“decimal’’ computer, each of the digits, 0 through 9, repre-
sents four bits. For example, the decimal 91 may be represented internally as
1001 0001. The following descriptions of machine language refer to this abbreviated
form, using a typical octal computer.

- Each computer has its own unique set of instructions and machine language. Using
machine language, the programmer must know the cperation code {indicating the
operation to be performed), the location (in main storage) of at least one operand,
and the location which is to contain the result. Typical machine language coding
for the problem described in 1.2 is indicated after the following assumptions:

The value of R is in location 10002,
The value of S is in location 10010.
The value of T is in location 10020,
The value of X is in location 10030.
The value of Y is in location 10040.
The result, Z, is to be stored in location 10050.

UP-7536

Rev. 1

FUNDAMENTALS OF FORTRAN ‘ sECTION: PAGE:

1.2.2.

A typical machine language set of coded instructions for performing the evaluation
is:

772110002 moves the value of R to an arithmetic regdister. (A register is a fixed
location which stores an operand or the result of_an arithmetic operation.)

770110010 adds the value of S to the value in the register and retains the result in
the register, giving R + S.

770210020 subtracts the value of T from the value in the register and retains the
result in the register, giving R + S - T.

770310030 multiplies the value in the register by the value of X and retains the
result in the register, giving (R + S = T) X.

770510040 divides the value in the register by the value of Y and retains the result
in the register, giving (R + S - T)X] / Y.

N

772510050 moves the contents of the register to the location specified for Z.

The first four digits of each instruction in this example constitute the operation
code; the rightmost five digits specify a memory location.

Machine coding is tedious; it requires time for learning (since it is unique), the
programmer must keep track of all memory references, aad it requires many lines

of source coding for a relatively simple operation. However, machine coding requires
the least machine time since no language conversion is involved.

Assembly Language

The next logical step from machine language is what is commonly known as assembly
language. Assembly language requires a language translation program (an assembler).
Using assembliy language, the programmer is permitted to use symbolic references to
memory and specified mnemonic codes instead of numeric codes to designate the
operation to be performed. Typical assembly coding for the problem in 1.2 is:

ENT*R enters R into the register.

ADD*S adds S to R in the register.

ol

SUB*T subtracts T from the contents of the A register and retains the result in
the register.

MUL*X multiplies the contents of the register by X and retains the result in the
register.

DIV*Y divides the contents of the register by Y and retains the result in the register.

STR*Z stores the contents of the register in Z.

Assembly language coding is less tedious than machine coding, and the operation
code is more meaningful, making the language easier to learn. The assembler
assigns memory locations to the symbolic memory references, relieving the program-
mer of that chore, thus making the coding even more meaningful. However, it is
essentially a one-to-one source coding process (i.e., one source language instruction
generates one machine language instruction) when compared to machine coding and
still requires many lines of source coding for a simple problem.

UP-7536
Rev. 1

L » : ’ 1 4
FUNDAMENTALS OF FORTRAN ' Lcmm I-.m ._

1.2.3. FORTRAN Language

FORTRAN is one of many higher level languages than have evolved from assembly ‘
language. It is considered a higher level language because the translation of a

FORTRAN statement may result in many machine language instructioas. This

conversion is performed by a program called the FORTRAN compiler. The design

of a FORTRAN compiler is definitely machine-oriented and is not part of the
FORTRAN language.

Offsetting this relative complexity (and consequent increased overall computer time),
FORTRAN is a self-documenting language that cuts down the cost and time required
for learning, writing, debugging, and maintenance. In standard FORTRAN there are
approximately 30 statements to be remembered by the programmer; whereas, in
assembly language there may be from 50 to 350 mnemonics. The compactness and
self-documentation of FORTRAN are apparent in Figure 1-1. For instance, a
program that requires from 10 to 20 pages of assembly coding may.require only

one page of FORTRAN coding.

FORTRAN ASSEMBLER MACHINE
O Z=(RsS-TI*X)/Y | ENT*R : 772110002
O I ADD*s I 770110010
O | supsT : 770210020 O
O | MUL*X | 770310030 |
O : DIV*Y | 770510040 (.
o | STR*Z : 772510050 Ql

Figure 1-1, FORTRAN-Assembler—Machine Cading

1.3. SOURCE AND OBJECT PROGRAMS

1.4.

A FORTRAN program written by the programmer represents a series of logical steps
for the solution of a particular problem, This program is the source program.

A source program must be translated to machine language for a particular data
processing system. Translating the FORTRAN source program to machine language
is generally accomplished by a prewritten program, the FORTRAN compiler. (The
compiler is furnished with the data processing system and is_not the responsibility
of the programmer.) The output of this translation process (compilation) is the
object program.

COMPILATION AND EXECUTION
The complete compilation process follows the steps below:

(1) The source program is keypunched onto cards to produce the source program
deck.

(2) The FORTRAN compiler is read from auxiliary storage into the computer’s
memory (main storage) as shown in Figure 1-2,

UP-7536

Rev. 1

’

FUNDAMENTALS OF FORTRAN

SECTION:

FORTRAN
COMPILER

—))

AUXILIARY STORAGE

MAIN
STORAGE

Figure 1-2. Compiler to Memory

(3) The source deck is then read into main storage and control is turned over to the
compiler which determines the operations to be performed and generates the
required machine language instructions to create the object program. This trans-
lation process includes the assignment of memory locations for variables and
constants, and the utilization of routines stored in auxiliary storage when required.
The compiler produces an object program deck of machine instructions and a list-

ing of the source program as shown in Figure 1-3,

SOURCE
PROGRAM
DECK

INPUT

v

MAIN STORAGE

OUTPUT
SOURCE

PROGRAM
LISTING

FORTRAN
COMPILER

QUTPUT
OBJECT

PROGRAM
DECK

Figure 1 =3. The Compilation Process

(4) The object program and internal data are entered into main storage. The data
processing system can then execute the program: fetching data from input and
auxiliary storage devices as required, operating on data as directed by the

object program, and producing required output.

UP-7536
Rev. 1 FUNDAMENTALS OF FORTRAN [

1
' SECTION: l P AGE:

Steps 1 through 4 can be performed in a fairly rapid sequence referred to as ‘‘the
compile and execute process’’ shown in Figure 1-4. The object program is placed
in main storage as it is created by the compiler (rather than being transmitted in the
form of punched cards as described in step 3) and immediately executed.

COMPILATION l EXECUTION

SOURCE
PROGRAM

tNPUT DEVICE AND
AUXILIARY MEMORY

EXTERNAL DATA

et wee o . — G — — ST, T QTR PR P S Sy G

AUXILIARY
STORAGE | MAIN STORAGE MAIN STORAGE
FORTRAN ' FORTRAN QBJECT OBJECT
COMPILER COMPILER PROGRAM. _h PROGRAM
SOURCE
PROGRAM RESULTS

LISTING

|
i
|
|
|
|
I
i
|
]
|
|
|
I.
|
|
!
I
l
!
|
]
I

Figure 1 =4. The Compile and Execute Process

UP-7536 _ _ “ 1
Rev.1 FUNDAMENTALS OF FORTRAN

SECTION: PAGE:

. 1.5. THE COMPUTER SYSTEM

A computer system is made up of hardware components (equipment) and software
(operating system). The operating system is a program usually furnished by the
computer manufacturer made up of routines that coordinate hardware activity and
furnish various setrvices to the user.

1.5.1. Computer Hardware

A digital computer is a data processing system that processes data in accordance
with a set of instructions (program) and produces useful results. The programmer
may regard the computer as a complex of devices with the functions shown in
Figure 1-5.

STORAGE ‘
INPUT DEVICE i MEMORY o QUTPUT DEVICE

CENTRAL
PROCESSING
UNIT

°

AUXILIARY
STORAGE

Figure 1=5. Elements of the Computer

UP-7536
Rev.1

FUNDAMENTALS OF FORTRAN

SECTION: PAGE:

1.5.1.1,

1.5.1.2.

1.5.1.3.

Input Devices

An input device furnishes the program (and possibly data) to main storage. The '
central processing unit (CPU) fetches the program and data from main storage,

processes the data, and stores the result in main storage from where it is sent to

an output device. If the program requires, input may be obtained from auxiliary

storage devices and the result stored in auxiliary storage for updating or for

transmission to an output device at a later time. Similarly, the input program

can be held in auxiliary storage to be processed on demand by the CPU.

Input devices are varied in nature. Currently, the most widely used device is
the 80-column punched card reader and all descriptions presented here are
oriented toward such a device. Other commonly used input devices are the
console typewriter and punched paper tape readers.

Main Storage

Main storage retains the program, intermediate results, and output in addressable
memory storage units. The contents of these storage units are transferred to the
CPU for processing, and the storage units receive results from the CPU. Since
processing in the CPU is generally much faster than the rate at which data is
obtained from, and entered into, main storage, the processing speed of a com-
puter is determined by the time required to enter and retrieve information into
and from main storage.

Central Processing Unit

The central processing unit (CPU) decodes the machine language instruction,
performs the arithmetic and logical processing functions indicated, and supplies
the timing and control signals which synchronize the actions of the other
elements of the computer. Each machine language instruction must indicate

the operation to be performed and the location of the operands.

Internal representation of values depends upon the particular computer; however,
number representation is divided into two classes: fixed-point representation

and floating-point representation. All computers can represent fixed-point numbers;
however, some may use preprogrammed routines for the representation of floating-
point numbers. .

1.5.1.3.1. Fixed-Point Representation

In fixed-point number representation, any external string of digits (optionally
signed) is represented internally as a signed string of digits. A decimal point
(radix point) is implied to be a fixed number of positions (this fixed number may
be zero) from the rightmost position, hence the term ‘‘fixed point.”” When arith-
metic operations are performed on fixed-point operands, it is the programmer’s
responsibility to keep track of the decimal point to ensure that both the operands
and the result are correctly aligned. This is usually done by scaling the operands
(multiplying by a power of 2 or 10). However, when many numbers of widely dif-
fering magnitudes are involved, floating-point numbers are used because fixed-
point representation requires an extensive programming effort for the scaling
operations. The advantage of fixed-point representation is that any external
string of digits can be represented exactly provided it is within the limits of
range prescribed by rhe computer. This range provides limited representation
when compared to floating-point representation.

UP-7536 ' 1
Rev. 1 FUNDAMENTALS OF FORTRAN

SECTION: PAGHE:

. 1.5.1.3.2. Floating-Point Representation

In floating-point representation, any number can be represented as a fixed-
point number (mantissa) multiplied by an integral power (exponent) of 2 or 10,
The exponent part is also a fixed-point number.

The problems that arise from the use of floating-point representation of values
are truncations and roundoffs that result from arithmetic operations. For example,
the division operation 1.0/3.0 has as its true result, 0.333...3. However, since
the mantissa can only contain a limited number of significant digits, only an
approximation to the true result can be stored. Because of this, a floating-point
value actually represents an approximation to the true value of a number. These
errors are propéga_ted as successive operations are performed upon floating-point
operands and their results. With some computers another approximation is required
if the internal representation of the mantissa is in binary form, rather than in
binary coded decimal, because a decimal fraction cannot always be expressed
exactly in binary form. For these reasons, comparisons involving floating-point
numbers require special atteation from the programmer.

1.5.1.4. Aucxiliary Storage

Auxiliary storage is storage in addition to main storage and includes devices such
as tape (magnetic and paper), disc, drum, and card (magnetic and paper). The time
required to access data contained in auxiliary storage is significantly longer than
for main storage; however, the cost of auxiliary storage is lower and capacity is
generally larger. Auxiliary storage devices may contain files of data required for
. a program, different modules of the operating system, and or results of a program
. that will later be transcribed on an output device.

1.5.1.5. Output Devices

An output device usually furnishes a visual display of the results, as specified

in the program. In addition, an output device can inform the operator of various
conditions arising during operation. The most widely used devices are the console
typewriter, printer, and CRT (cathode ray tube) display.

The auxiliary storage devices described in the previous paragraph can also be
considered as output devices, depending on their end use. ’

1.5.2., Computer Software

The entire complex of software (programs furnished with the computer) is called
the operating system. The operating system may contain programs which control
scheduling, input/output, compilation, detugging, storage assignment, linking,
loading, assembly, and other necessary functions depending upon the individual
computer system.

1.6. SAMPLE PROGRAM

The following paragraphs present a simple executable program {a self-contained
computing procedure) for the purpose of introducing FORTRAN programming and
terminology. The concepts and terminology used in the description of the program
are described in detail in other sections of the manual.

UP-7536
Rev. 1

FUNDAMENTALS OF FORTRAN

SECTION: PAGE:

i0

This program calculates the average of a series of numbers, each of which is supplied
by a punched card. The program is general enough to calculate the average no matter
how many values are involved. The last card of the data deck contains a value known
to be outside the range of values expected. This card is used as an end data card.
After the end data card is detected, the average is calculated and printed, together
with explanatory text. -

Figure 1-6 is 2 flowchart, with explanatory text, outlining the program. A flowchart
should be constructed for any extensive program. It is a convenient means for detect-
ing logical errors and provides documentation for other programmers who may be able
to use or modify the same program. If the flowchart provides enough detail, the actual
writing of the program is greatly simplified.

INITIALIZE
RUNNING COUNT AND
RUNNING TOTAL TQ
ZERG

READ IN
DATA VALUE

1. initialize a running count and a running total to zero. The run-
ning caunt witl indicate the number of values (ome value per data
Card) to be averaged. Each time a vaiue is obtained, it wiil be
added to the running total.

VALUE> %(10%
?

2. Read in a value from 3 card.

3. Test the value for end data indicator. if the value is greater than

9.0(108) it indicates that the previous value read in was the jast

value to be used in computing the average, and the next step is

step 7. f the vaiue is less than or equal to 9.0(108). proceed to step 4.
Add the input vatue to the running total.

Increase the running count by I:

Read in the next value and repeat the processing steps by returning
to step 2.

Divide the running total by the running count to compute the average.

. Print this average with some expianatory text,

indicate that there are no more instructions to. be executed.

Figure 1 -6. Sample Prohlem Flowchart

UPDATE
RUNNING COUNT AND
RUNNING TOTAL

1]

REPEAT LOOP

COMPUTE AVERAGE

PRINT
AVERAGE
AND
EXPLANATORY

TEXT

UP-7536 : .) 1
Rev. 1 FUNDAMENTALS OF FORTRAN- SECTIONS PAGE:
Figure 1-7 is the FORTRAN program written from the procedure outline in Figure
. 1-6. It is not the only program that could have been written for the problem, nor is it

the shortest in terms of lines required. It does. introduce FORTRAN nomenclature and
basic concepts ~ the most important of which is the programmed loop. Such a loop

is shown in the flowchart portion of Figure 1-6. The purpose of a loop is to repeat

a series of operations without respecifying the steps for each repetition. In conjunction
with every loop, there must be some test that will make it possible to leave the loop;
otherwise, it will be performed without end, being limited only by the time allotted to
the program. In the sample program, detection of the end data card provides the exif,_. .
from the loop.

F "C" FOR COMMENT
i
*‘_’..‘J.‘.“:."' FORTRAN STATEMENT ————
51817 10 2 30 40 50-
(m g, .c.omiPlyTE (AVERAGE OF NUMBERS TO ,BE READ (FROM DATA CARDS 6 ,
@ |c , L

el A i

'l A e L Y i r 2 l A A ' L o i Al L 1 l A 1 1 1 A (] . 4 I i 1 'l 1 A i L A A] 1 A 1 1 A FI
@ le, i N0t AL 1;ZE, RUNNING COUNT AND RUNNING T0

PR A Y LJL

(‘) At .1 DAA1T|A| l&olulNITIIITIOJTLALLI/AOI’Iol']ol/| [A T N T S O S | [F DN I N O I S B T 1 l | I T N S N

L PR T R TN T SAT R

(5) MLT A 'lNl !v]AIELulEI 4 I A A L l 1 I i Il 1 L ’ 1 4 I I3 L i I 1 A 4 i i] 2 e " 3] i’ b k] LL S A & 4 Lk
% |, 3.0l IREAD(,1,,10) VALUE

el el

n 10| |[FORMAT (GT0.0)

YU W WO YOO N U VNN N S S S U VTR S W S U W WA ST S S H VS T S T T

PRSP UU SE U U AU T S W SN S Vi A ST ST S ST N ST SN T R S S W W Ui 10

® jc_TES|T FOR END DATA ,

lLLAl!lllln[lllr-J'l\nllL;Jnlllxu:lJ

9 PRI T IIFJ(JVIAILLULEI n'.G.T;'. |9|'|°1EL8|)|4610A ITxon :2101 : e by ey b
(o) jc, UPDIAITE RIUNNING TOTAL AND RUNNING COUNT
an TIOITAA]LI S IT.O.T.A,Lx 1+ AlelLluIEl YN SIS U S WP W ST RSN N VO WA S S SR ST W A PRI BN §

. (‘2)Alll KloLuleTAl=l1K1°Au|NxT|1+|l‘llanl’ll1|11114111illl]ll!lllxIIIIAL
anjc, REPEAT L00P

P ST U SE T ST AT ST TS ST WA I SO S A SUP R R S S T S S E S AR S S

(S0 ENEE 60, To, 3.0, . , o oo by e e v b e e b
as e, comPluTE AVERAGE AFTER LAST WVALUWE |
6}, 20| X KOUWNT = KOUNT . b bl s e e s
an s XM E AN, 42, T O0TAL |/, XXOUMNT 0 v] s i el iy

(18){C, PR IINIT, A VIERAGE AND l'l'lﬁlxj'l'1 T T T T T
a0, WRITE(3.,,40) XMEAN @ ool b
< (2, 40 FORMAT(17H AVERAGE ‘VIA‘L‘U‘EI = ‘,IFII‘OA.AS‘)I T T
@yic I,NDILICAT E END ,0F LEXIECUTILON L e by s s e s b s ey
(22) Lo S TOP v ey g] |‘| BTSSRI N 0 D ST Y Y U0 T S B S S N R o
@23 |Cc, ,IND|IICATE NO MORE DL]|1NIELSL T T O e N
@of . o LlENO L e e e e L

Figure 1~7. Sample Program

UP-7536

Rev. 1 . FUNDAMENTALS OF FORTRAN 12

SECTION: PAGE:?

Line 1 of the program is a comment line, indicated by the character C in column 1.
This line (including the C) is printed when the program is compiled, but does not
affect execution of the program. Comment lines provide documentation for the
programmer.

Line 2 is also a comment line with all blank characters producing a blank line
(except that the C is printed).

Each of the remaining comment lines applies to the statement(s) immediately follow-
ing it. Again, comment lines are not required, but are included to aid the reader in
following the program.

Line 4 is a DATA or initialization statement that sets an initial value of zero for
KOUNT (symbolic name for the running count) and TOTAL (symbolic name for the
running total). The DATA statement does this at compilation time rather than
execution time, in order to reduce execution time for the program. KOUNT will be
a fixed-point value; TOTAL, a floating-point value,

Line 6 is a READ statement that instructs the computef to read a punched card for
the number to be represented by VALUE.

Line 7 is a FORMAT statement that indicates the required number is found in the
first ten character positions of the punched card.

Line 9 is a logical IF statement. It tests the number that is read in for VALUE, if
the number is greater than 9.0 (108, program control is transferred to the statement
with a statement label of 20 (in columns 1 through 5). If the number is less than or
equal to 9.0 (108), the next executable statement which follows in physical order
is to be executed. The logical IF provides the exit from the loop.

Line 11 is an arithmetic assignment statement that updates the running total. It
obtains the current value of TOTAL, adds to it the number just read for VALUE,
and assigns this sum as the new value for TOTAL.

Line 12 is also an arithmetic assignment statement that increases the value of
KOUNT by 1 each time a number for VALUE is read.

< Line 14 is a GO TO statement that completes the loop. When executed, it transfers
control to the statement with statement label 30, so that the next card can be read.

Line 16 is executed only after the end data card, which contains a value greater than
9.0 (108), has been read. Its effect is to convert KOUNT to floating-point form to be
compatible with TOTAL so that one can be divided by another (line 17).

Line 17 is an arithmetic assignment statement that specifies the division necessary
to calculate the average, XMEAN.

Line 19 is a WRITE statement which specifies that the value of XMEAN is to be
printed.

Line 20 contains a FORMAT statement which specifies that the characters AVERAGE
VALUE = are to be printed, followed by 10 print positions for the value of XMEAN,
which is to be printed with five digits to the right of the decimal point.

UP-7536
Rev. 1

FUNDAMENTALS OF FORTRAN

SECTION: PAGE:

13

Line 22 is a program coatrol statement, the STOP statement, that terminates execution

of the program.

Line 24 is an end line, terminating compilation of the program unit.

Note that every statement (columns 7 through 72) except the assignment statements
starts with a keyword. (Comment lines are not considered statements.) The keyword
is an English word that describes the purpose of the statement. Every statement in
FORTRAN, except statement functions and certain assignment statements, begins
with a keyword. Keywords are not reserved words m FORTRAN they may be used

anywhere in the program as symbolic names.

Figure 1-8 is the complete deck of punched cards for the program in Figure 1-7.

This deck censists of the FORTRAN program cards followed by data cards and an

end data card. [t should be clearly understood that puached cards are not the only
means of primary input. Punched cards are shown here because of their widespread
use and because they are easily used for illustrative purposes in examples. At least
one system control card is required preceding the program, another preceding the data,
and possibly an end of file card after the last data card. Requirements of these control
cards depend upon the computer being used, and they are not part of the standard

FORTRAN language.

J/ 9.1E8

END DATA CARD

/13153

/ 0.9876

28

~48.

27

YA

26

/ 12345.678

END

/ C INDICATE NO MORE LINES

/ sTOP

C INDICATE END OF EXECUTION

/ 40 FORMAT (17H AVERAGE VALUE = ,F10.5)

WRITE(3,40) XMEAN

/C PRINT AVERAGE AND TEXT

XMEAN = TOTAL, XXOUNT

N 20 XKQUNT = KQUNT

/C COMPUTE AVERAGE AFTER LAST VALUE

GO 70 30 .

/C REPEAT LOOP

/ KOUNT = KOUNT + 1

TOTAL = TOTAL + VALUE

/C UPDATE RUNNING TOTAL AND RUNNING COUNT

IF(VALUE .GT. 9.0E8) GO TO 20

/C TEST FOR END DATA

/10 FORMAT (G10.0)

/30 READ(1.10) VALUE

C OBTAIN VALUE

DATA KOUNT, TOTAL/0,0.0/

/C INITIALIZE RUNNING COUNT AND RUNNING TOTAL

/e

/C COMPYTE AVERAGE OF NUMBERS TO BE READ. FROM DATA CARDS
1

unu"nuloneeolnln.|uuo|n||nnuuenunnuunnnluuuuuunnununlunonnuuu

Tt I AN U AN ANANSINARNNM IR DUBRIANN S L BRI AN TNU RSB TARNNCHBRTAAN I INNAIN AAN '—‘

1|||||||!x||||||||ll|1..|||||1!1|l1||||tll||tl| [RRI ARANERERRERRRRERRRRRARRAREAT |
22222222222222222222222202202222822222222222222222222202222222222222222222222222
B203333933333333333333332233283332333333333233320930333333323333333333333333333333
PO LY Ty { IR RN ey Py yy I PN TNy Ly YRR RN
5555555 S sUMES s s sS55I 55555555555555555555555559595559955555955¢§
s650656665666656csWsosccssos@esecoeccoloNecoe656666666685565666656565666666658
IRRRET YRR ARA AT LA R AR AR AR AR R R R R R R R R R R R R AR AR R AR R R R DR AR RO RRERRRRRRRRERD]
IR R R A R R R R R R R R R SRR A R R R R R R R R R R R R N RN R R R N RN R R RR RN ERERRSARERRENNER R NE]
99!339!!iliﬂ“!!!!il!!sss|!39'!!9!!!Il!!i!"9999!59'!'933'!5!3:3

TR LEEE R EF R TR P R PO T TR L PR DT R YN

98977992839598¢
EROE DR

Figure 1 -8. Sample FORTRAN Problem Deck and Data

UP-7536

Rev.1 | FUNDAMENTALS OF FORTRAN 2

SECTION: PAGE:

2. WRITING A FORTRAN
PROGRAM

2.1.. GENERAL

‘ This section discusses the organization of FORTRAN programs and the rules for
writing a source program, with particular attention to constants, variables, and arrays.

2.2. ORGANIZATION

Organization of a FORTRAN program necessitates discussion in two areas: the con-
cept of subprograms and the organization of program units.

2.2.1. FORTRAN Program

A FORTRAN program is made up of one, and only one, main program and as many
subprograms as required. The main program contains the steps required to solve
a given problem, the subprograms are subordinate program units used by the main
program. Both are referred to as program units.

2 2

SECTION: PAGE:

UP-7536 :
Rev. 1 FUNDAMENTALS OF FORTRAN

The various types of program units (see Figure 2—1) are as follows:

® A main program is a series of comments and statements which does not coatain
a FUNCTION, SUBROUTINE, or BLOCK DATA statement and is terminated by an
end line,

8 A function subprogram is a series of comments and statements starting with a
FUNCTION statement and terminated by an end line.

8 A subroutine subprogram is a series of comments and statements starting with a
SUBROUTINE statement and terminated by an end line.

® A specification subprogram is a series of comments and specification statements
starting with a BLOCK DATA statement and terminated by an end line.

MAIN
PROGRAM

............

SPECIFICATION
SUBPROGRAM

BLOCK DATA

S

END

EXTERNAL PROCEDURES

/_/\A

PROCEDURE SUBPROGRAMS
external procedures

.t et written in other than
FUNCTION SUBROUTINE FORTRAN language
SUBPROGRAM SUBPROGRAM :
. FUNCTION ... SUBROUTINE . . .
END END

Figure 2~]. Program Units of FORTRAN Program

UP-7536
Rev. 1

2

SECTION: PAGE!

FUNDAMENTALS OF FORTRAN

Each program unit is independently compiled and then linked together by the operating
system to form an executable program starting with the main program unit. Program
units may be written in languages other than FORTRAN but must conform to the

rules for FORTRAN subprograms. Such program units and procedure subprograms
(function and subroutine subprograms) are termed external procedures.

Execution of a program always starts with the first executable statement of the
main program. In the first example shown in Figure 2—2, the main program proceeds
until it encounters a reference (call) to the external procedure. The external pro-
cedure assumes control until it encounters a RETURN statement, which sends
control back to the calling program unit (in this case, the main program). The main
program then continues processing until another reference transfers control to the
external procedure. The external procedure assumes processing until it encounters
a RETURN statement (not necessarily the same as the first RETURN statement)
and transfers control back to the main program. The main program then resumes
processing until it encounters the STOP statement, which transfers job control to
the operating system.

The second example in Figure 2-2 shows how a procedure subprogram can call upon
another procedure subprogram during execution.

A specification subprogram (with a BLOCK DATA header) consists entirely of
nonexecutable statements and therefore never assumes control during execution.

Subprograms are useful because they eliminate repetitive coding of procedures used
many times in a program. In addition, a library of mathematical external procedures,
called basic external functions, is present which contains debugged procedures for
computation of mathematical functions such as square root, sine, etc. The main
program of a large FORTRAN program can be coded as a logical skeleton consisting
primarily of references to subprograms; these subprograms can be independently
coded and compiled concurrently with the main program.

UP-7536

2

Rev. 1 FUNDAMENTALS OF FORTRAN secrion: mage:
EXAMPLE 1
MAIN PROGRAM sP URBOPCREODGURF;EM
heades
first executable statement /'first exec;:table statement
e RET:URN
/-
| RETURN
/
STOP END’
END
EXAMPLE 2
MAIN PROGRAM PROCEDURE SUBPROGRAM
he ader header

first executable statement

@
€)

®

STOP
END

NOTE: A header is either a FUNCTION or 3 SUBROUTINE statement.

\

/'ﬁ’st executable statement
: ©

@

first executable statement

RETURN
END

RETURN

END’

Figure 2=2. Controf Path During Execution

UP-7536

Rev. 1

2

SECTION: PAGE:

FUNDAMENTALS OF FORTRAN

2.2.2. Program Uait Organization

A program unit consists of comments, statements, and one end line. A FORTRAN
statement falls into one of two categories: an executable statement or nonexecutable
statement. An executable statement specifies an action; a nonexecutable statement
describes the characteristics and arrangement of data, editing information, statement
function definitions, and classification of program units. Nonexecutable statements
are generally intended as instructions to the compiler; ao executable machine language
instructions are generated. Executable stateménts result in executable machine
language instructions, effective at execution time. As an example, lines 6 and 7 of
Figure 1-7 are as follows:

| I S N b I I SO U R WOV N O I T | l S| [I N Y I SN I | l | S T T NS N
(| '3'0. R.EaAlo|(l]uLlloL)l |v|A|L|u|E| POSS TN N R ST WO W NN N VNS N N T
| lllo FIOLRlMlAlTl l(iclllol'lovl)l 1 1 1 1 4 1 L IJ) I Il 1 1

The READ statement is an executable statement specifying an action; the FORMAT
statement is a nonexecutable statement specifying the characteristics and arrange-
ment of data. Table 2-1 is a precise guide for determining whether a specific
FORTRAN statement is executable or nonexecutable. The order (sequence) of
statements within each program unit is shown in Table 2-2.

STATEMENT GENERAL CATEGORY

EXECUTABLE STATEMENTS

arithmetic assignment statement
logical assignment statement
GO TO assignment statement

assighment statements

GO TO statements
IF statements
CALL statements
CONTINUE statement control statements _
RETURN statement
STOP statement
PAUSE. statement
00 statement

READ statement
WRITE statement
REWIND statement - 1’0 statements
BACKSPACE statement
ENDFILE statement

Table 2-1. FORTRAN Stotements (Part 1 of 2)

UP-7536 ' ' 2 6
Rev.1 FUNDAMENTALS OF FORTRAN

SECTION: PAGE:

STATEMENT GENERAL CATEGORY

NONEXECUTABLE STATEMENTS

DIMENSION statement
COMMON statement
EQUIVALENCE statement
EXTERNAL statement
type-statements: specification statements

INTEGER statement

REAL statement

DOUBLE PRECISION statement

COMPLEX statement

LOGICAL statement

DATA statement . data initialization statement
FORMAT statement - format statement
statement function definition function defining statement

FUNCTION statement
SUBROUTINE statement subprogram statements
BLOCK DATA statement

NOTE: The end line is nonexecutabie and is not considered a statement.
Table 2-1. FORTRAN Statements (Part 2 of 2)

PROGRAM UNIT ORDER OF STATEMENTS

(1) specification statements and ‘FORMAT statements, in any combination

(2) statement function definitions, DATA statements, and FORMAT state-
MAIN ments, in apy combination
PROGRAM

(3) executable statements, FORMAT statements, and DATA statements,
in any combination

(4) end line

Minimum requirements: an executable statement and one end line.

(1) FUNCTION or SUBROUTINE statement)
(2) specification statements and FORMAT statements, in any combination

(3) statement function definitions, DATA statements, and FORMAT state-
PROCEDURE ments, in any combination

SUBPROGRAM (4) executable statements, FORMAT statements, and DATA statements,
in any combination

(5) end line

Minimum requirements: for function subprogram — one FUNCTION statement,
an executable statement, a RETURN statement, and an end line; for sub-
toutine subprograms — one SUBROUTINE statement, a RETURN statement,
and an end line.

(1) BLOCK DATA statement

SPECIFICATION (2) specification statements (except EXTERNAL), in any combination
SUBPROGRAM (3) DATA statements
(4) end line

Minimum requirements: one BLOCK DATA statement, a COMMON statement,
a DATA statement, and one end line,

Table 2-2. Ordering of FORTRAN Statements

UP-7536
Rev.l

o2

SECTION:

FUNDAMENTALS OF FORTRAN

PAGK:

2.3.

CHARACTER SET

The FORTRAN character set (see Table 2-3) consists of all the characters required
for writing FORTRAN statements.

LETTERS A through Z (only upper case letters)

ALPHANUMERIC{

DIGITS Q through 9

biank, represented by ¥ in text and
coding form

= equals

+ pius

- minus

* asterisk
SPECIAL CHARACTERS !
{ left parenthesis

stash

} right parenthesis
, comma
. decimal point

$ currency symbol

™~
P

2.4.1.

Toble 2=3. FORTRAN Character Set

In addition to this set, each processor has its own set of additional characters. The
FORTRAN character set and any additional characters in the processor set are
referred to collectively as the processor character set.

FORTRAN PROGRAMMING FORM

A typical FORTRAN programming form (for 80-column punched card input) is shown
in Figure 2—-3. A FORTRAN line uses only columns 1 through 72; the information in
columns 73 through 80, shown only in the program listing, may be (depending upon
the processor) used for documentation. (In Figure 1-7 these columns are used to
serially identify the lines of the program.} Columns 1 through 5 are used for state-
ment labels; column 6 is used to indicate the continuation of a statement; columas
7 through 72 contain the statement (or its continuation) or an end line.

In writing a FORTRAN program, blank characters may be used freely to improve read-
ability with these general exceptions: comment lines, the end line, and Hollerith

data. Except where noted, blank characters have no meaning and are ignored. Exceptions
to the general rule are explained in detail in the applicable paragraphs of the manual.

Comment Line

A comment line is printed only when a program unit is being compiled and is a
convenience for the programmer. Only characters from the FORTRAN character set
may be used. A comment line is indicated by the character C in column 1 (as shown
in Figure 1-7). Any blank character in a comment line will be printed as such. A
comment line may not be used between the initial line of a statement and its con-
tinuation lines, and must always be followed by an initial line, another comment
line, or an end line. No executable code is generated for a comment line.

UP-7536 2
Rev. 1 FUNDAMENTALS OF FORTRAN

SECTION: PAGE:

2.4.2. End Line

One end line must appear as the last line of each program unit to be compiled. Its
purpose is to indicate the end of compilation for a particular program unit. Columns
1 through 6 must be blank; columns 7 through 72 must contain the characters END.
The characters may be interspersed with, preceded by, and followed by blank
characters, Thus, starting from column 7, '

END ' .
E N D
EN D

are all valid end lines.

UNIVAC FOATRAN

PROGRAMMING FORM
PROGRAM PROGRAMMER DATE PAGE ..

"C* FOR COMMENT
{’Lﬁ?g‘." ﬁronnn STATEMENT— 5
s |4 2

7 10 30 40 50 40 72 80
— — —y
N . I PSS SV RS e e L PP — i S G SRS MR
N . - . e b ; PR bbbt
" R Y i PR N SN0 N S S S S SP U S VE VU WO T S WU Y " e L M | T S Y hm " P
- " T I PRI BT PN RO S SRS | M SN S NSRS RN TRV, PR
i " - L ‘ | MR i kel o " FEVES) i PN Y - " Ll " PR
PR it i i ! " i RO S S | —t T " H i " R T R W |
. " M SR PO | il L - i " L IR
- — i N PR ! i b0 TR B - NI ST AT ST S S I VI W S AP RIS U U S S '
A U - . bk ins I PO ST S ST T SV EA IS NP U U S U TN A S G R A - e i
. " B T P T ok PO . i Loy P UUUUT N R Y S T S S S S S Aok
— i | [PR BT GV E T G S A I B S AR S By P Loe oo oo s g iy ok —
P P SO U0 TV T ST R DA S HN TS VAT WA S SN W SN JU00 ST HNY SN S VAN S SN S VL S S ST WA SN ST S S0 S S G W PR S SN SR I TV S S N S ST SRR SV SRE W TS S Y S
. PR T L Lo e o PR | o dmiemtei TR I NS P BV
L PRIV NS S WA S S AN SO U S ST YO0 VAT S SN VAV S ST U G S S0 VO ST S SN T WA S0 SN TT S T S A ST A SO0 U S U0 S0 N Y T VT ST S S AT G TS VT S0 S T VU T S T Y W S O
i PR | NS TSN S M S PRI TN U U S S VI T VY USRI ST - dnvackinmmlemd i PSR | N N " hN s i .
NI OIS ST ST SR S S0 0 SO TS [ST S SN ST AV S SO WO S WA W AN SATI S BT PR T B A S AR ST Ot | L i N RN S R
PR PRI SRS PSS S TRV S ST S ST SV S U TOF EAPUR S S S WA S S WIS SO VUF U W S SR FURE S SN R U S RS R ST WA Y Rt L IR R
Ji) S USRS INOY S W TN TN SO S G S S WU VAV WO S SN SO A ST U VU VAN T O AT ST S ST YN Y WOU S S VO SOV Y Y ST UG T S N S S A S0 TUOY ST Y AU SN ST W SO IO PR el
* IR TRV G W0 S0 ST N S VA B S EEE SV N L TSI TONS SO0 S S T S YT S ST VU SN AN VUYWAY TURC NG N T VAR S S A0 VR0 WAV S U WY S S T S S NV S SN S Y SO Y B Ll L)
" T P . - . FURPRETOY S R S S U Y0 VTSR | Y ! P | b s P S
L L PRSI [T S SO SN W0 S G TSNS NTUR ST SRS VY YU S VA T N ST S0 ST S0 MU W0 SV S B SO RS SA ST IR N RSN S S0F N TN ST U AT S VT S ST T S AT T N
P PRVIRN 2 S S S S ST URT T SAT A SO NV S S S UNC U VA SOK G TN S S S S S TN A0 000 FET S SO T S YU SO ST S S ST S0 SN S W UYWAY 200 N R N S S S S A S bbb i1
PR i L ORI S S S UR TN NS SO0 U VU VA U ST SR (T S S WA N0 T TRV S T SN S SN VU W VU S S S0 U PSS A T W S bt TR ST SN S S A
i PRI B RS E TS N S S TS U RS S R i S S S T SR ! TR S R S N PN AR I S R I TENSWIS TR i
et " - — deamcbr L NETENVOR VTS i i e . ! i) b, e FEa
L PRI Y PR e Lo PP VU T S S S S S SR T ST S AT S S S VA SV V0 YU N S NS S I RS S N SR S T S U 1
" PR SO S ST ST SN U U ST S T S S VOO S S T S TS OO0 VAN SN VAT ES Y00 N0 VA T Y S U A St S S5 T HVUNND VAN N VU M S TS S0 WO RNC SO S S AV S U0 WP SO G W A
" - FERETOVINE U I TS ST S WSS T N I PN URT N SO W S TS (ST U S ST T Y S SN TN WU L O W0 WS W S AU ST PSR S B AT S IR L T B S
R ST IR S SO S S W S NS SN S VO S S EN S S S0 VT T S S S S S VU U L PRRTERN SV VN T S WAV OV S SN TS VU N SR S UUN S U ST SN ST S T S S
. e Lo — R R PRSI B! PSSO E I S T ST S S S S T T S S R R S PRSI S TR

Figure 2-3. FORTRAN Programming Form

UP-7536 _) 2 9
Rev. 1 FUNDAMENTALS OF FORTRAN
. SEC TION: PAGE:
2.4.3. Statements
‘ A statement consists of an initial line and, if required, up to 19 coatinuation lines
which follow in sequence. Each line of the statement is written in columns 7 through
72. An initial line must have either the digit 0 or a blank character in column 6 and
must not have the character C in column 1. Each continuation iine must have a
character other than the digit 0 or blank character in column 6, and must not have
the character C in column 1. Columns 1 through 5 are available to the programmer
for documentation (except for the character C in column 1). Each continuation line
must be immediately preceded by an initial line or another continuation line.
For example, line 20 in Figure 1-7 was written:
"C* FOR COMMENT
SFORTRAN STATEMENT >
5 337 10 _ 20 _ 30 40
L]Alo FlolRlMlAlL(L1|7lHl IAIVIE]RIAIGJELIVIAIL_luLEL l:l I’IFI‘LOK 51) I
It could be written as:
B I ' 2 1 l 1 1 L 1 L 3 i . | l L L 1 H 1 ! L { t] { J i 1 1 1 1 !
1.410 FnoxRiMiAnTr‘(nllL11L1L1L1|| I EE N S N ST S |
L1) A 71H1)AllelRLAlGLEl LVLAALLiUlEl Sl A TR ‘ | N S N U S N i l
. llLB'lFlllol'lsl)llLLALlllllljlLllJLlllllll ll
However, it can not be written as
1 L L [l L 1 l "]] Iy | -]] L l 1 1 Il] 1 1]] 1 ‘ L L, L. 1] 1 4 . l
L 14,0 EEORMAT (VZH, v L 0oy by IR T O W T S l
1 AIAVERIAGE, VALUE (= | vy by g Ll
. [Y BL1F1110[-L5J)11LL¢||]1111111:111LL111| 1L

because the 17H of the FORMAT statement means that the 17 characters immediately
following the H are Hollerith data. As was pointed out in 2.4, blank characters are
significant in Hollerith data.

Frequently, the character in column 6 of a continuation line indicates the sequence
of continuation lines (it is hoped that what is described as a common practice in
this manual is not deemed mandatory by the programmer). For example, the first
continuation line might contain the digit | in column 6; the second, the digit 2; and
so on. Also, since the first five columns of continuation lines are available for
documentation (using any characters from the FORTRAN set), these are sometimes
used to contain the statement label of the initial line.

UP-7536

. 2 10
Rev. 1 FUNDAMENTALS OF FORTRAN sEcTIoN: paGE:
2.4.4. Statement Labels ‘
A statement label is an unsigned integer (1 through 99999) that identifies a FORTRAN

statement and is written in columns 1 through 5. Only the digits 0-9 and blank charac-
ters may be used in a statement label. The same statement label cannot be used more
than once in a program unit; the same statement label can appear in more than one
program unit. The value of a statement label does not affect the order in which
statements are executed.

A statement label is meaningful only when used with the initial line of a statement;
it is ignored when used with continuation lines. It enables other statements of the
program unit to reference it; therefore, it is superfluous when used with a statement
that is not referenced by another statement. Some processors will print out a warning
diagnostic message that indicates an unreferenced statement label. The possibility
of the programmer having forgotten to insert the referencing statement is strongly
indicated. :

A maximum of five digits may be used in a statement label. All blanks and leading
zeros are neglected. '

For example, in the sequence

“C" FOR COMMENT

["
Sivaea Tl EFORTRAN STATEMENT >
51817 10 | 20 30
Por— e —— e
J N | I H L I'l) i L i I SN LJ I R W | I) I T L i l 1 L 1 1 Il 1
i1 L T 14;[:! i 't L Jowrt L N 1 l i 1 1 i 1 L L 5 I | ! L 1 1 X 1 1
- llJ‘le FL Izl;l(l;Al lll LE\ l;L ICL) IAL/ }_LDI i o1 L 1 1 1 | L
i L TR S S AL U S N T N YO T N (N N T T T NN S N | I T U WS IO |
IS N S < L;l'n l‘l O S N S LixLl IS N S N N | 1 T S S S Y
B N B S | ST SO IR L ST YA S Y VNN WU S N S AN SR YUY SHNN TR SN VU VAT SO S NS YT SO S N W
1 L i G 01 lTlol;l]lst7;__l H i I l Il L) 1 | L1 l i) 11 p
io4 4 P WO T UL VRN SO S W W U O T S A WU W S N AN R SN M N U A WA U W
| T S T I S R T B S S l TR SR SURS SN R SN U S | l I N N W N |
i | 1 s L ’ b L] N L] i | I V| ‘ £] 1 J I 1 1 1 H l 1 el L L {

the statement iabel of the arfthmetic assignmént statement could have been written:

i U S lll[lllll_lllLJ;lJ;lJ;llililll;l D,

1 5 7 F, o= 1CGA v+ 48 = Q) /0D

UP-73536

Rev. 1 FUNDAMENTALS OF FORTRAN 2

SECTION: PAGE!:

or
. [0 D P WO A TN VU WY TN U TN WO M NN N N N VU T WY WO NN NN N A NN NN WS I

|
|Ql‘1 5,7 F, o= 1GA + B = €D/ B v b
|
or
t }) | IN 11 I L | i | 1 1 1 L l | | 1 I] I | 1 [l 1 1 1 | 1 |
W5, 7 F, o= 1GA (+ 18 =~ CD ;J/n 1 I N I B Y R
but not as
L1y P S NN MO A NS WY N VA N NS NS DN TNET YN NN NN MY AT NN T NN N A SO IR OO
115I7l lo Fl l=l L(iAl |+l lBL l-] 1CI) 1_1/41; lDl] 1 1 ! i { l i 1 1 1

because control is being transferred to statement label 157, not 1570.

2.5. FORTRAN DATA

Data is information manipulated by a program. An item of data is classified as
arithmetic, logical, or Hollerith. Arithmetic data is used in computations restricted
to numbers. Logical data is used to indicate whether a specific condition is true or
. false. Hollerith data is information to be used literally; it may contain any and all
i characters of the computer set of characters and is generally used for printing
' messages, titles, and headings.

2.5.1. Data Types

The various forms in which data may appear are known as types. The term type,
when applied to data in FORTRAN, has a special meaning. An item of data, if
arithmetic, must be integer type, real type, double precision type, or complex
type. If not arithmetic, it must be [ogical type or Hollerith type. The different data
types are discussed in the remainder of this section.

} One important attribute of a data type is the number of storage units required for
| internal representation of a datum. This attribute is of special importance in the
i use of COMMON and EQUIVALENCE statements, and is listed in Table 2-4 for
reference purposes.

DATA TYPE STORAGE UNITS* REQUIRED
integer . 1
real 1
double precision 2
‘ compiex 2
togicai 1

*The term *‘storage unit’’ is defined different'y for different computers. !n one computer, it may
‘ mean a word; in another computer, it may mean five consecutive bytes, and so on.

Table 2-4. Memory Requirements ror Data Types

2 12.

SECTION:
—

UP-7536 | .
Rev. 1 FUNDAMENTALS OF FORTRAN

PAGE:

An item of data can be expressed as a constant or can be represented by a symbolic
name., For example, in

“C®" FOR COMMENT

Nimacn | SFORTRAN STATEMENT >
&7 10 2 =

| !ALI-:I]Bll+1lsl'10(lllllJllllllllll!ll

A and B are symbolic names used as variables and 5.0 is a constant. In the DATA
statement

1 1 L 1 DIALTIAI lNlAIMlEl/lsiﬂ.Tl']TILJgJ/I i] L 1 i l I 1 1 1) B

NAME is a variable; SHTITLE is a Hollerith constant representing the Hollerith
datum TITLE.

2.5.1.1. Integer Type

An integer type datum is always the exact representation of an integer (a string
digits without any decimal point). It may assume positive, negative, or zero
values (the value zero is considered neither positive nor negative). Each compu-
ter places a limit on the number of digits (or the maximum absolute value) that
may be contained in an integer type datum. An overflow condition occurs when
this is exceeded. The term ‘‘exact representation’’ is used because an integer
type datum is represented internally as a fixed-point number.

2.5.1.2. Real Type

A real type datum is the processor approximation to the value of a real number
(as opposed to a complex number) which may or may not have a decimal point.

- It is limited to a specific number of significant digits and a specific range of
values, both of which differ for different processors. The real type value may be
positive, negative, or zero (the value zero is regarded as neither positive nor
negative), When the range is exceeded for a value, an overflow condition occurs;
when the value is less than the lower limit of the range and is not zero, an under-
flow condition exists., A real type value is an approximation because it is repre-
sented, intemnally, in floating-point form.

[Rpr

2

UP-7536
' FUNDAMENTALS OF FORTRAN secTion: .

Rev. 1

‘ 2.5.1.3. Double Precision Type

A double precision type datum, like a real type datum, is also the computer
approximation of a real number, but the degree of approximation is greater than
that of a real type datum because it can coatain more significant digits. The
number of significant digits is not necessarily double that of a real type value;

it will be greater than that of a real type value, and this number must be specified
for each processor. In addition, its range of values may be the same as or greater
than, rarely less than, that of a real type value. This range must also be specified
for each processor. A double precision type datum may be positive, negative, or
zero. Here, as for all arithmetic values, the value zero is treated as neither
positive nor negative. '

2.5.1.4. Complex Type

A complex type datum is the processor approximation to the value of a complex
number, It is represented as a pair of real type values; the first of the pair
represents the real part of the complex value, the second of the pair represents
the imaginary part of the complex value. Each part, therefore, has the same degree
of approximation as a real type datum.

2.5.1.5. Logical Type

A logical type datum is an item that may assume only the values true or false.
There is no standard internal representation for these values; internal representa-
tion depends upon the processor.

2.5.1.6. Hollerith Type.

“ A Hollerith type datum is a string of characters taken from the processor set
(which includes the FORTRAN set) of characters. The blank character is a sig-
nificant character in Hollerith type data.

2.6. CONSTANTS

A constant is a value (arithmetic, logical, or Hollerith) that is defined by its appear-
ance in a DATA or an executable statement. Once defined, it must not be redefined
during execution of the program. For example, in the arithmetic assignment statement

S I | llllLllllllLllLJIllL!LLilllliL

K {3,0,0000

! PSC YT YNNG N TR TN S S UANS SO M GO TN N N R

the integer 300000 is an arithmetic constant.

Throughout this manual the term ‘‘constant’’ alone, when applied to an arithmetic
constant, means a constant without a sign. An integer, real, or double precision
constant is said to be signed when it is written immediately after a plus or minus
sign. An optionally signed constant may have the plus sign omitted; the minus sign
cannot be omitted for a negative value.

2 14

SECTION:

UP-7536) :
Rev.l - FUNDAMENTALS OF FORTRAN - -

PAGE:

In the following discussions it is arbitrarily assumed that an integer type datum can
consist of up to nine digits and a sign; a real type datum, up to eight significant digits;
and a double precision type datum, up to 15 significant digits. It is also assumed that
one storage unit can contain five Hollerith characters. These assumptions are made

for use in examples. These specifications differ for each processor and the programmer
should coasult the reference manual for the particular processor being used.

2.6.1. Integer Constant

An integer constant is a nonempty string of decimal digits. No decimal point, comma,
alphabetic, or special character (except blank characters) may appear anywhere in
the string. Blank characters and leading zeros are ignored except where noted. The
value 0 is a valid integer constant.

Examples:

0 valid integer constant

0000 valid integer constant

123000123 valid integer constant

123,456 invalid integer constant because of comma

.0 invalid integer constant because of decimal point

0. also invalid integer constant because of decimal point
‘bbbbb invalid integer constant because the string must not be empty

2.6.2. Real Constant

A real constant may be written in any one of the following three ways:

(1) As a basic real constant. A basic real constant consists of an integer part,
a decimal point, and a decimal fraction part, in that order. Both the integer
and the decimal fraction part are strings of decimal digits and (possibly)
blank characters. Either part may be empty (consisting of only blank characters),
but not both, Except for this restriction, any blank characters in the constant
are ignored by the processor.

Examples:
. .0 valid real constant
0. valid real constant
0.0 valid real constant

123.45678 wvalid real constant _
000123.45678 valid real constant. Leading zeros are ignored.

123.456789 valid real constant. The presupposed limit of eight significant
digits is exceeded, but the processor can approximate the
written constant by an appropriate real type value.

TE5. 558 invalid real constant because integer part and decimal fraction
part are empty

2 15

SECTION: | PAGE:

UP-7536
Rev.1

FUNDAMENTALS OF FORTRAN ‘ ’

(2) As a basic real constant followed by a decimal exponent. A decimal exponent
‘ is the letter E followed by an optionally signed decimal integer. This decimal
integer has a range unique to each processor, usually two or three digits, with
leading zeros ignored. The decimal exponent-has the effect of multiplying the
preceding constant by a power of 10, as specified by the optionally signed
decimal integer. '

Examples:
.0EQ valid real constant
1.23E2 valid real constant. It could also have been written as a basic

real constant, 123.0

123456.01E-2 wvalid real constant. It could also have been written as a basic
real constant, 1234.5601

123456 01E+05 valid real constant. It could also have been written as the
basic real constant 12345601000.0. The zeros trailing the
rightmost 1 are not handled as significant digits, but as
positional digits.

There is no assurance that equivalent mathematical versions of a value will yield
identical processor values; these will be equivalently approximated by the processor.

(3) As an integer constant followed by a decimal exponent,
Exumple:v

|
|

; 12345601E—-4 valid real constant. It is equivalent to the real constant
“ 123456.01E-2 or to the real constant 1234.5601.

Figure 2—-4 shows different ways of stipulating the values 0.1234 - 10—4 and
~0.1234 - 104 as real constants in FORTRAN statements of a program.

ALGEBRAIC VALUE FORTRAN EQUIVALENT

10,.,V2, 34 E-4 1 ., 1y L
Pk, e, V2 0y 34 E -y 4

0.1234-10—4
11,2, 3.4E =-0,8, , | . o
(0,.,0000 1234, = | T
b e e
=0, V234 E4 | vy
=0 V2 34E+ 4 0l 4y

-0.1234°104 (= 1, 23,4 Er 040 0 it i il i
- V23 4E0 0 L
(= 4234 - b

‘ Figure 2=d. Real! Constants in FORTRAN Starements

UP-7536 | | 2 . 16
Rev. 1 FUNDAMENTALS OF FORTRAN , ceion: -

= .
2.6.3. Double Precision Constant .
A double precision constant may be written in either of the following ways:

(1) As a real part (of exactly the same form as a basic real constant) followed by

a double precision exponent. A double precision exponent is similar to a
decimal exponent, except that the letter D is used instead of the letter E.

Examples:

12345678.9012345D0 valid double precision constant
12345678.9012345D-5 valid double precision constant
123.0D3 valid double precision constant

(2) An integer part followed by a double precision exponent.

Example:

123456789012345D-5 wvalid double precision constant

2.6.4. Complex Constant

A complex constant is the processor approximation of a complex number. It is
written as a pair of optionally signed real constants enclosed in parentheses. The
first of the pair is- the real part. This is followed by a comma and then the second
of the pair, which is the imaginary part.

Examples:
(1.2, 3.4) valid complex constant. It represents 1.2 - 3.4:. .
0.0, 3.4 valid complex constant. It represents the imaginary
number 3.4i.
(-34E-2, —4.5E3) valid complex constant. It represents =0.34—-4500:.
(-3400, —4.5E3) invalid compléx constant. Both constants of the pair

must be real type constants.

UP-7536

Rev. 1

FUNDAMENTALS OF FORTRAN

-SEC TION:

PAGE:

1

-

2.6.5.

Logical Constant

A logical constant is written as either .TRUE. or .FALSE, The periods are required,
as shown. It represents a condition as either true or false, respectively. An analogy
is a switch which is either on or off, with ., TRUE. corresponding to on, and .FALSE.
corresponding to off; then, in a program, the programmer can test the setting of the

switch and condition the sequence of execution accordingly. In the following
sequence, a logical IF statement is used for testing.

1 L] l Ld, 1 I L A] l

L|016|| lC.A.LL ;ElvlelNl

]

llll'LJllllLl

‘IFI(IEIVIEINI) IGIOJ Tlol

-
|
-
| o
I 4
[.
[
L
I g
|4
[
|
[1

ST T LS S WO AN N SN R A Y
1 111“1 § E VN ISR NN SR N
1 lll'l } IS W S SN WS B I
°1'121'l [R S Y N N N N |
RSN U L R N N N S N

[
L
|
|
| | |
11
L
[1
(1,00
[o
[
L
L+
|
[y
| 4

The first statement is a type-statement which informs the compiler that the variable,
EVEN identifies a logical value, that is, either true or false. The second statement
is a logical assignment statement that sets EVEN to true, The third statement is a

logical IF statement that means: [F EVEN is true go to statement 100; otherwise,

go to the next statement (statement 10).

UP-7536 : 2 18
Rev. 1 FUNDAMENTALS OF FORTRAN sECTION: —
2.6.6. Hollerith Constant
A Hollerith constant is written as the letter H preceded by an integer constant ‘

which specifies the number of characters following the H that are part of the
Hollerith constant. A Hollerith constant may appear only in a DATA statement
and in a CALL statement,

- Examples:
SHTITLE valid Hollerith constant
6HIS NOT valid Hollerith constant. The space character must be counted.
SHA=355 valid Hollerith constant. All characters from the processor
character set are permissible (see 2.3).
NOTES:

(1) Although Hollerith constants can appear only in a DATA or CALL statement,
Hollerith data may appear in input/output datz and in the FORMAT statement.

(2) The internal representation of a Hollerith value may be different from the
internal representation of an arithmetic value. For example, 1H1 need not
have the same intemal representation as the arithmetic value 1, and, if they
are compared, they will generally be treated as unequal. The FORTRAN
language does not define any correspondence between Hollerith values and
arithmetic or logical values,)

2.7. SYMBOLIC NAMES

A symbolic name consists of one to six alphanumeric characters (any blank charac- .

ters are ignored, other symbols are prohibited), the first of which must be a letter, ‘
A symbolic name is followed by a subscript only when used as an array element

reference. In a program unit, a symbolic name may identify an item in one (and

usually only one) of the classes (array and array elements are considered the same

class) shown in Table 2-5, The remainder of this section discusses the use of

symbolic names for variables, arrays, and array elements. The programmer is

entirely free in the choice of words for symbolic names. Keywords such as FORMAT,

GO TO, READ, etc., are not considered reserved words; these may be used as symbolic

names, or the first letters of a symbolic name anywhere in the program.

UP-7536

Rev. 1 FUNDAMENTALS OF FORTRAN sxcrion: 2 oaca:
A SYMBOLIC NAME IS CALLED TYPE TEXT
THAT IDENTIFIES A(N) ASSOCIATION?* REFERENCE

A(N) :
variable variable ‘ yes - see 2.7.3
array N array name yes see 2.7.4
array element array element yes see 2.7.4

reference
statement function statement yes see 8.2
function name
intrinsic intrinsic yes see 8.3
function function name
subroutine subroutine name no see 8.6
external function external function yes. see 8.5
name
external procedure external procedure not necessarily see 8.7
name alone as an name

actual argument

biock block name no see 8.8

*Type association means that the data type is either implied in the name or explicitly
specified (see 2.7.2).

Table 2=5. Uses of Symbolic Names

Uniqueness of Symbolic Names

A symbolic name cannot be used in a program unit for more than one purpose except
as noted in the following rules.

A block name can be used as an array name, variable, or name of a statement
function in the same program unit.

In a function subprogram, the function name that follows FUNCTION in the header
f the subprogram must also appear as a variable in the same program unit.

Once a symbolic name is used as an external function name, subroutine name,
procedure name, or block name in any program unit, it may not te used anywhere
in the program for the same purpose except as originally used.

A symbolic name that appears in an EXTERNAL statement of a program unit and
is used only as an actual argument within that program unit must be the name of
an external function ot subroutine in the same program. However, that same name
may be used in any other program unit for a valid purpose.

A symbolic name used to identify an intrinsic function in one program unit may be
used for any purpose in another program unit.

UP-7536
Rev. 1

FUNDAMENTALS OF FORTRAN . 2

SECTION: PAGE:
— —

20

2.7.2. Typing of Symbolic Names

It was indicated in Table 2-5 that certain uses of symbolic names have data type
association. This means that the compiler must be informed of the data type for
the symbolic name, that is, integer type, real type, double precision type, complex

_type, or logical type. There is no mechanism in FORTRAN for specifying Hollerith

type; data of this type, other than Hollerith constants, are identified under the
guise of a real, integer, or logical type variable or array element, as will be shown
in one of the following paragraphs.

The data type of a symbolic name can be explicitly declared or, if not explicitly
declared, implied by the first letter of the symbolic name. A constant automatically
defines its own type by the form of its appearance.

2.7.2.1. Explicit Type Declaration

Explicit type declaration means that the symbolic name is declared in a type-
statement. The one exception for explicit type declaration is the function name
that appears in the FUNCTION statement of a subprogram. In the function sub-
program, this symbolic name can only be explicitly typed in the FUNCTION
statement.

“C" FOR COMMENT

= .
TanMeNT] SFORTRAN STATEMENT >

siel7 0 2 30
N | 1 RLElAlLl IILOITIAI" lLI‘AiMlBlDlAl i bl i L L i ! S L i

i DJ‘OAULBL!"IEI lPlRlEkCL'lslllolNA

i

lBlElTlAl Ja l IGLAIMJMLél

Lo L CLoncplL iElxl L ,A,L,P,H,Al 1z} 1A12t41 R T l) IS N RS N N
i T S I | ILNLTIE'GLELRI ISQ|IG1MIA1 L I S W | IS i1 I L [1
Lol | LLOlGIIICIAlLL IX’X,X‘ (IR 'YleYl'l .iKiKrKLx l [WD n A R

o
o

This group of five statements consists of type-statements. The first statement
specifies that IOTA and LAMBDA represent real type data, the second. that
BETA and GAMMA represent double precision data; and so on.

Implied Type Declaration

Implied type declaration means that the data type associated with a symbolic
name is implied by the first letter of its name, unless the data type of the
symbolic name is declared explicitly. If the first letter of the syvmbolic name is
any of the six letters [, J, K, L, M, ot N, the compiler will assume integer data
tvpe for that name; if the first letter is any of the other alphabetic characters
the compiler will assume real data type for that name.

UP-7536

Rev. 1

2

FUNDAMENTALS OF FORTRAN l '

SECTIONS PAGE:

21

This rule for implied data type association clearly indicates that symbolic names
representing double precision, complex, or logical data must always be tvped
explicitly. An exception to this rule is that references to intrinsic or basic
external functions (see Section 8) do not require explicit type declaration in the
referencing program unit. The function names involved already have the data
type of the function names known to the processor.

Examples:

I DOOIUIB!LIEI lP[RIEIClIl§lJ lglNl leanlvl4ll|v!6l ! 1] |]

) LOGIICAL, TEST .| ., ., v v vy b vy oy
. COMPILEX NMBRS5, INMBRS, | | L 4 1 1 1 11
P I N P R R
1 Al |:x AR U S N R U U (SO O S T T T S SN S AN WY TN W SO W
. KADD;, = NMBR2 + NMBR4 = |
| PSRN S L S N R S USRS N A SN SN S NN S AN SAN UUOY SO S S S S W '
L PR R S S S S S T T S SR UG N VON0 AT SN WS SRS MO S S S N W W WY S B

i llFl([TlElslTl)l LVIA!LIUIE1=IVIAIL[U1EI 1t I”'lol] 11 |

| v12:1=jlvl4ii-iLviLéLJLIIL‘LllllllI!llll
NLMLBLRléL = :(1 ‘121‘|314l'14151°16171)1+|N|MIB|R|51

i ! ! L L

KADD is the sum of two integer values (all implied type declarations). In the
next statement, if the logical value of TEST (explicitly declared) is true;
VALUE is increased by one (implied real type). In the statement that follows,
the double precision V2 is formed by the subtraction of V6 from V4 (all explicitly
declared as double precision). In the last statement, the complex value NMBR6
is formed by adding 12.34 to the real part of NMBRS and 45.67 to the imaginary
part of the complex type NMBRS (explicitly declared).

UP-7536
Rev.1

2

SECTIONS

FUNDAMENTALS OF FORTRAN

PAGE:

22

2.7.2.3.

Hollerith Values

It has been stated that there is no mechanism in FORTRAN for specifying
Hollerith type, as such, and that it must be guised as a real, integer, or logical
type. The following exampie shows how this can be done.

T FOR COMMENY

&Lﬁ?’ ‘ﬁrouuu STATEMENT e
slely 10 n

] 2 __ 0 0 2 0
- P NN SN AP T T S |
PR I XX 110 S N X - ST P PR P
DA T A P TEM, VALUE LGC/SHNAMES 4HNONE, 3HYES/
A N NN BT ST A ST U SR S S AU S A ST BT S G |

The symbolic names LGC, ITEM, and VALUE each can represent five Hollerith
characters (from the original assumption in 2.6). The variable ITEM contains

the characters NAMES; the variable VALUE, the characters NONE followed by

a blank character; the variable LGC, the characters YES followed by two blank
characters. It is the programmer’s responsibility to remember that LGC, ITEM,

and VALUE contain Hollerith data; there is no way for the processor to ‘‘remem-
ber’’ this. In FORTRAN, there is no provision for moving Hollerith data from one
internal lacation to another, or otherwise processing the data (as in comparisons).
The Hollerith data from the previous example can be used in the following sequence:

MU ST | PP VISR G U N SIS ST U U ST VU NP VA S S PSP B UR SE Vr S E |

o Ll LTE 00, T Y ALME IVGE,
bad0f FORMAT CVX, 3 CASL VXY, L0 0 e v b o b
T PP ST ST VU U YUY SHPRS WP S S S U W SO VO S WU ST S0 N S0 N VOIT S O NSNS SR ST WU U0 SO0 ST S TSN N SO0 20N ST SR HAT SUF S0 VY T D N 1

This will cause a line to be printed as:

BNAMESTNONEDSHY ESTHE

The AS in the FORMAT statement informs the processor that the contents of
ITEM, VALUE, and LGC are to be treated as Hollerith data.

If the variables ITEM and VALUE are used in arithmetic statements, or the
variable LGC in a logical expression, the results are unpredictable in standard
FORTRAN and will vary, depending upon processor implementation.

UP-7536 B . . 2 ' 23
Rev.1 FUNDAMENTALS OF FORTRAN SECTION: PAGE:
2.7.3. Variables
. A variable is a symbolic name that identifies a single value. The rules for de-

claring the data type of a variable have already been discussed. Once the value
for a variable has been defined, it may be redefined as many times as required
by the program. It may be defined by a DATA statement (Figure 1-7, line 4),

by an input/output statement (Figure 1-7, line 6), by an assignment statement
(Figure 1-7, line 17), by its use as an argument in a subprogram reference
(discussed in Section 8), by its use as a DO statement or DO-implied list control
variable, or by association in a COMMON or EQUIVALENCE statement. A variable
cannot be used unless its value has been defined at least once. For instance, in
Figure 1-7, if the original value of KOUNT had not been defined as zero, its
use as a running count would have been meaningless. The same is true for the
variable TOTAL used as a running total. Failure to define a variable used for
such purposes is quite common and leads to unpredictable results.

2.7.4. Armays

An array is an ordered set of values, each of which is called an array element. The
entite set of values is identified by a symbolic name called the array name. All
elements of the array must have the same data type, which is determined by the
data type of the array name.

The use of array elements in FORTRAN corresponds to the use of subscripted
variables in ordinary algebra. For instance, the algebraic expression a -= b - ¢
uses simple variables which correspond to the use of variables as defined in
FORTRAN. However, the algebraic expression a; — ap — a3 uses subscripted

. variables with one subscript; the algebraic expression bl,l - b1'2 - b1'3 uses

.' what is called in FORTRAN two-dimensional array elements; the expression

°1,1,1 — ©1,1,2 ~ €1,1,3 uses three-dimensional array elements, The first expres-
sion is written in FORTRAN as A(1) - A(2) — A(3), for the one-dimensional array
named A; the second is written as B(1,1) - B(1,2) — B(1,3), for the two-dimensional
array named B; and the third is written as C(1,1,1) - C(1,1,2) - C(1,1,3), for the
three-dimensional array named C. An array, therefore, is nothing more than an
ordered list, any element of which can be identified by the array name followed by
the appropriate subscript.)

If it is assumed that the maximum value of each dimension is 3, then the order of
the elements in array A is:

A(l)
A(2)
A(3)

The order of elements in array B is:

B(1,1)
B(2,1)
B(3,1)
B(1,2)
B(2,2)
B(3,2)
B(1,3)
B(2,3)
B@3,3)

UP-7536

Rev. 1 FUNDAMENTALS OF FORTRAN I ¢ 2

2 -

SECTION: PAGE:

The order of elements in array C is:

Note that the leftmost integer of the subscript varies most rapidly in the order
of progression.

The total number of storage units required for an array is the sum of the storage

units required for its elements. If the data type of array name A is integer, real,

or logical, array A will require 3 storage units (see Table 2-4); if array name A .

is double precision or complex, it will require 6 storage units. Under the same

conditions, array B will require 3 - 3 or 2(3 -+ 3) storage units; array C will require .
3:3 3 0r2(3 -3 -3) storage units.

In a simple situation, visualize a book with the title NAME consisting of only

columns of statistics on each page. Let the leftmost subscript represent the row;

the next subscript, the column; and the last subscript, the page. Then, to obtain a

single statistic, reference the desired statistic by title, row, column, and-page. An

example is NAME (3,4,5), referring to the third row of the fourth column of the fifth

page of the book called NAME. This type of reference is called an array element
- reference (sometimes called a subscripted variable).

2.7.4.1. Array Declaration

Before an array or any of its elements can be referenced.in an executable state-
ment.of a program unit, the array must be declared. This means that the name,
data type, and maximum number of array elements required must be stipulated.

An array can be declared in a DIMENSION statement, COMMON statement, or
type-statement. The form of the declarator is

v (i)

where: v is a symbolic name called the array name, and 7, the declarator sub-
script, is composed of 1, 2, or 3 expressions, each of which may be either an
integer constant or an integer type variable, except that a COMMON statement
does not permit variables.

UP-7536

j 2
Rev. 1 FUNDAMENTALS OF FORTRAN
SECTION! PAGE:
The parentheses are required as shown. Each expression is separated from the
‘ next by a comma. If any expression is an integer type variable, the array is known

as an adjustable array.

The data type of the array name is gove-med by the rules for implied and explicit
typing of symbolic names.

Examples:
PR DO UBILE PREC!SION VETR(,3I,|14,5) MTRXG2,3),.STATXN(1S), MANY
L O MEINSIHON, (L, 1,8 T2 (4,5 36,0, 4 oy g b e e e]
o thhoGiica, L E ST b e e L ey]
L C.OMMONMN M ANY (2,030 0 gy 0o v Lo o0 s b g s by e g gt
C t.i,sltl2, couLDd HAVE 8EEN DECLARED, BY . |
i LM OGHICAL, LU ST 2004 806y b g b b]
L PERU AN N T EN UV W T S SIS IO O YA S HY SN SN WY SN S NN S T S S VOO VA A S S VUNC O WO N S S SO A AT S S W00 O W S SR R T |
C, T HEl |FOLLOWING 1S AN ADJUSTABLE ARRAY DECLARATION .
L DIMENSION I NTGRS (XK2,4, K8, {00y s
NOTIEl G MPW . LED TYPYNG]

The first statement shows array declaration with a type-statement. The arrays
VCTR, MTRX, and STATX are double precision arrays: VCTR is a three-dimen-
sional array requiring 120 storage units; MTRX is a two-dimensional array
requiring 12 storage units; STATX is a one-dimensional array requiring 30 storage
units.

' The next group of three lines shows two different ways of declaring an array. The
first is array declaration with a DIMENSION statement and a type-statement; the
second shows array declaration in a COMMON statement of the double precision
array MANY.

The last group of lines shows array declaration for a three-dimensional adjustable
array of integer type, INTGRS. Such a declaration (with integer type names as
subscripts) can appear only in a procedure subprogram. The values for K2 and K6
will be furnished at execution time when the subprogram is referenced.

In a program unit, any appearance of an array name must be followed immediately
by a subscript except, possibly, in any of the following cases:

B in the I/0 list of a READ or WRITE statement;

@ in the list of dummy arguments of a FUNCTION or SUBROUTINE statement;

8 in the list of actual arguments supplied in the reference to an ex*emal procedure;
8 in a COMMON statement;

® in a type-statement;

8 in a formatted READ or WRITE statement, to designate the format specification.

"UP-7536 :
Rev. 1 FUNDAMENTALS OF FORTRAN

SECTIONS PAGE:

26

2.7.4.2. Array Element Reference

An array element is one of the items in the set that constitutes the array. An
array element is identified by an array element reference of the form:

array name (se)
or

array name (sel,se2)
or

array name (sel,se2,se3)

where array name must be the same as that in the array declaration and each se
is a subscript expression. Parentheses and commas are required as shown.

A subscript expression is any of the following forms. In these forms, the single
asterisk is the FORTRAN symbol for multiplication.

+ k
-k
*yv
*vi+k

*v-k

O 60 0 €< < < 0o

Each c and & is an unsigned integer constant; each v is an integer variable name.

Examples:
13
NMBR1
NMBR1 + 13
NMBR1 - 13

2 * NMBR1 + 13
2 * NMBR1 - 13

Note that the order of the different elements must follow the order described in
the previous paragraph. As an example: 2 * NMBR1 + 13 is a valid subscript
expression; NMBR1 * 2 + 13 is not a valid subscript expression.

Rules:

(1) An array element may not be referenced unless the array has been declared
previously.

(2) Except in an EQUIVALENCE statement (where only constants are permitted),
any and all forms of subscript expressions can be used.

(3) Except in an EQUIVALENCE statement, the number of subscript expressions
must correspond to the number of dimensions in the array declarator.

(4) The value of a subscript expression must be greater than zero.

UP-7536
Rev. 1

2
FUNDAMENTALS OF FORTRAN

SECTION: PAGE:

27

Examples:

(1) The following sequence shows how the elements of one array, LIST1, can be
added to the corresponding elements of a second array, LIST2, to compute
the values of the array elements in a third array, LIST2.

C* FOR COMMENT
STATEMENT
NUMBER
{ 5 ¢

SSFORTRAN STATEMENT >
7 10 20 30 40

DL' lMlEllelnglNl lL||lslT1‘l(l ‘Iol) |IJLI |ISITBI(I ILL) l'lLlllslT! 31(1 ‘lo,L)l

'
IR NS T S VT S ST SN A SN YO VN W WA TN VU W AU VN WS TR WA A SU A T ST S SN N

IIl.llllllLALlLLllllllLlIIllllngLl||Illll

Lll'J__lI b | I Il lllll] bkl Ll I’ll i)) 2 N I | 1 LL| | H deah

KLnglL1ll.J_11L4L_llllllll|l||l|114Lll|llilllLl

LJJ.S.TIL(.KLL; F1| lLlllslTl‘l(_l_Kl)l 1+L1L||15|T121(1K|)| Al 1 l | S I N

&Lgllxll+ll‘lLLlLLLLulIlllltl.lllllll‘llllL

|1F| ((]Kx t'LLLTI'l L‘I‘l)l IGIOI LTIOI)llol I F IS TS [N NN T E T I | I T W I R

S TS T T Sk L‘l P ICHES N S DU MR S WA S l OIS SRS T OOF S R S T | ' { FOUNS IR SO NN N SN S R ‘ J ES N S R
[B S bl ||'I TR SN S S SN S SN o 1 ' F Y S SN WU N N B S) ! O SNy N WS DU P | L' bl 1
§ TN T I il 1-1 F IS N NS WU S W W T l J DY N R W | Il IJLIIIL | S S T I | l | S I D N |

(2) The following sequence shows how only the even-numbered elements of
LIST1 can be added to the corresponding even-numbered elements of LIST2
to form another array, LIST4.

TR WA SN SOOPUR TR RO ST ST WU SN ST SR AN SN NS YU YO SN TN SR TN N TN SN O WK S AT WO N S N S0 ST S S
IR D, MEIN,S 1,0 N Lt S TIY (Y0,),, L8, H2(,1,0,),,,L,1,S TI4(5),
Ll PRI S T T YO T O ST T O VYO S A T S O O TSI Y S WO S
L4 IYRETETILN SN0 TR SN S U T T N G A (U ST OO O M TN T U OO SO YOO NN S S0 U N A B Y A O
i, YRS YL S Y SO ST S VO T S O AN TR S SR R SRS A T S TS AU ST SRS YO SU WA S M S N S S S
[Ky o= WY 0 e by e by e ey b
Lo 100 Lt S T4 0K, s b L ST VG2 KD e 58T 202) 1t KD
TR Ko y= 1K oy oV o v o by s oo b e g b s
Ldry LB UK kT 163y 160 Y00 800 0 Ly sy ey Ly
—i, PRI RV ST T S SN UN NON SR N U S SO S SON N S S0 AN S SO A ST S TN ST SRS SOV SO
FRE I PR IS8 NS YO SN WY TR N00 TN U SO OO T S O N S WO S SN [N SUN SN S SO S WA SRUU SN SRR SN T W'
I U T T SN SO WA OE SO ST NSNS YOO T YA WO YA N NN T S SO A S S Y W S A T S S

UP-7536

Rev. 1 FUNDAMENTALS OF FORTRAN l D ,wmz l,ﬂ‘ 2
(3) The following sequence shows how, by means of a nested loop, the elements .
of a two-dimensional array can be printed out, one element per line. The
operator .LT. in the logical IF statements means ‘‘less than.”’
[C" FOR COMMENT
{‘:,.‘{,T,S‘E‘.{“ HFORTRAN STATEMENT >
51617 10 20 30
e MEIN,$;1L,ON NARRIAY (,3,,4), N - L L
L PASTARLE TS S ST T S SN S S S S S S TN RN AT R 1
PR [ERTERTILE NI S T R W0 N S WS SN0 N T S R NS W i B R L
L YRR N T T RO S S Y S WS U Y SOV ST ST ST S WU OO WY S AN N WO O \
— i K=ty . o g M R .
b 10301 M, = Ky s i) L .
., 1,0/ |[WR I, T/E,(,3,,5,0), NARRAY (M, K); .
L1 5.0 EEQRMIAT, (,1,5X,,0,2100), 4 4 ¢ 4 b 1
L M, ,=, M o+ Y b s . il L
-> L | F, .(iM, ,-,LT., ,4), 160 ,TO 10 1 , L
Lo .20 K, ,=, IK, .+ U {4 T N
Dy i1,F, (X, ,.,L.,T., ,5) (60 TO 30 | = N
o AL U T R S T SR WS N S SR S S S S ' R 1
L1y PRSI O Y N S S S S S T SR N S N TN SN S S ST N SO S SN S S B
i SV TN IO TN TR N N SNV 1O NS WU ST SO MY M S S ' R S R T

The elements will be printed in

NARRAY (1,1)
NARRAY (2,1)
NARRAY (3,1)
NARRAY (1,2)
NARRAY (2,2)
NARRAY (3,2)
NARRAY (1,3)
NARRAY (2,3)
NARRAY (3,3)
NARRAY (1,4)
NARRAY (2,4)
NARRAY (3,4)

the following order:

-

UPpP-7536
Rev. 1

FUNDAMENTALS OF FORTRAN

D ’ 2

SECTION: PAGE:

29

2.7.4.3.

Location of Elements Within Array

Table 2—6 indicates how to find the relative location of an array element within

an array.
IF THE ARRAY THEN THE ARRAY REFERS TO THE Nth ELEMENT
IS DECLARED ELEMENT WHERE N
AS REFERENCE IS
ARRAY (A) ARRAY (a) a
ARRAY (A,B) ARRAY (a,b) a+A-(b~-1)
ARRAY (A,B,C) ARRAY (a,b,c) a+A(b=-1)+A-B-(c-1)

NOTE: A,B,C are the integer values of the array deciarator; a,b,c are the integer vaiues of

the subscript exptessions in the array element reference.

Table 2-6, Array Element Location in Array

Examples:

¢

(2)

(3)

If an array is declared as LIST1 (15), the array element reference LIST1
(9) refers to the ninth element in the array LIST1.

If an array is declared as NARRAY (3,4), the array element reference
NARRAY (2,3) refers to the Nth element where N is 2 + 3(3—1) or the eighth
element. (Check with example (3) in 2.7.4.2.)

If an array is declared as INPUT (3,4,5), the array element reference INPUT
(3,4,5) refers to the 60th element, since it is the last array element. By
checking Table 2-6, it is found that N = 3 + 3(3) + (3) (4) (4) or 60.

If an array is declared as ARRAY (2,3,2), the array element reference
ARRAY (1,3,2) refers to the 11th element, However, the array element refer-
ence ARRAY (3,2,2) also refers to the 11th element. Using the eipression
in Table 2—6 for a three-dimensional array, the relative location within the
array for the element is evaluated as: 3+2(1)+6(1)or 11. ’

UP<7536
Rev.1

: 3
FUNDAMENTALS OF FORTRAN . :

SECTION:

3.1.

3.2.1.

3. FORTRAN EXPRESSIONS

GENERAL

An expression is a group of one or more elements and operators which, at each
execution, is evaluated as a single value. FORTRAN expressions are: arithmetic
expressions, relational expressions, and logical expressions.

Evaluation of expressions is governed by the priority of operators in the expression.
Parentheses can be used to force the order of evaluation, regardless of the operators;
innermost groups within parentheses are evaluated first.

ARITHMETIC EXPRESSIONS

An arithmetic expression is a group of one or more arithmetic elements and operators
which, at execution time, is evaluated as a single arithmetic value.

The rules for the formation of arithmetic expressions are much the same as those used
in algebra, except that operations are restricted to exponentiation, multiplication,
division, addition, and subtraction operations, each indicated by the proper FORTRAN
operator. With these fundamental operations, more elaborate mathematical functions
can be built up, such as trigonometric functions and definite integration. Some of these
functions are supplied as basic external functions (see Section 8); others may be written
by the programmer. :

Arithmetic Operators
Table 3—1 is a list of the FORTRAN arithmetic operators and their meanings

Associated with each operator is a priority number that determines its order of
evaluation within an arithmetic expression.

PAGE:

EXAMPLE
OPERATOR FUNCTION PRIORITY
EXPRESSION WRITT_EN AS
o exponentiation 1 nk N**K
* multiplication 2 a.b A*B
! division 2 a A'B
b

_— unary minus 3 -a -A

(zero minus)
+ unary plus 3 +a +A

(zero plus)
+ addition 4 ath A+B
- subtraction 4 a-»b A -8B

Table 3~]. Arithmetic Operators

UP-7536
Rev.1

' 3 2
FUNDAMENTALS OF FORTRAN . rccmion, N s

3.2.2.

Formation of Arithmetic Expressions ‘

An arithmetic expression is formed in much the same fashion as in algebra (except
for the FORTRAN operators and format requirements for array element references and
function references) using (as primary operands) constants, variables, array element
references, and function references. Blank characters anywhere in the expression
have no significance and are ignored during execution; they may be used freely by
the programmer. Parentheses also may be used to indicate grouping of operands and
operators. No two-arithmetic operators may appear in succession (two asterisks, even
if separated by blank characters, ate interpreted as the exponentiation operator).

The unary plus, which is redundant, and unary minus operators must be preceded by
a left parenthesis except when either one is the first (leftmost) nonblank character
of the arithmetic expression.

A more rigorous description of an arithmetic expression with formal FORTRAN
nomenclature is shown in Figure 3—1 and accompanying text. Note that this figure
implies the order of evaluation: primary, factor, term, signed term, simple arithmetic

expression, arithmetic expression.

l arithmetic expression J
signed signed term+simpie signed term-simpie
term) arithmetic expsession uithmetic expression

]
| el el

expression+simple expression-simpie
mithmetic expression arithmetic expression

] torm l simple arithmetic simple o thmetic

| 1

1 factor] l tarm/ tactor] I termeterm J
|
T R
! l ! |
Lomem | Lo | o |} e || e

parentheses

Figure 3=]. Structure of Arithmetic Expression

. UP-7536
Rev. 1

3 3
- SECTION: PAGE:

FUNDAMENTALS OF FORTRAN I

An arithmetic primary is an arithmetic constant, an arithmetic variable, an arithmetic
array element reference, an arithmetic function reference, or an arithmetic expression
in parentheses.

Examples:

1 2 3.4 4.5E-2 5.6D3 (54E-2, 3.0) constants

ALPHA BETA LIST1 NAME variables

SUM (I0TA, 2*NMBR-1, 5) ‘ array element reference
SQRT (A**2 + B**2) function reference

An arithmetic factor is an arithmetic primary or a construction of the form:
primary**primary. ’

Exumples:
1 4.5E-2 K2**2 K3**NAME (3E-2,0.04) * CMPLX

An arithmetic term is an arithmetic factor or a construction of one of the forms:
term/factor or term*term.

Exaomples:

1 4.5D-2 (3E-2,0.04) K3**NAME SQRT (4.5),
K3**NAME/34 K3**NAME/34/LIST,

S*6 3.2*SQRT(4.5) K3**NAME/34*2 ALPHA*BETA/GAMMA

A simple arithmetic expression is a term or two simple arithmetic expressions
separated by a + ora ~.

Examples:

1 4.5D2 32.*SQRT(4.5)
3E-2-ALPHA CMPLX + (3.2, 4E-1)
3E-2-ALPHA+BETA

A signed term is an arithmetic term preceded by - or +.

Examples:
+2.4 -2.4D2 +SQRT(A-B) -(2.2,3.3) -ARRAY(1,2,3)
An arithmetic expression is a simple arithmetic expression, a signed term, or a

signed term followed by a + or - immediately followed by a simple arithmetic
expression.

.UP-7536
Rev. 1

FUNDAMENTALS OF FORTRAN

3

SECTION:

3.2.3.

Example:

(-B-SQRT(B**2 -4.0 *A *C))/ (2.0 * A) which is one of the roots of a quadratic

equation

Type Rules for Arithmetic Expressions

The data type of an arithmetic expression involving the exponentiation depends upon

the data type of its operands, as shown in Table 3-2.

primary ! **primary2

PRIMARY 1 PRIMARY 2
INTEGER REAL 0.P. COMPLEX
INTEGER integer u u u
REAL real real d.p. u
D.P. d.p. d.p. d.p. u
COMPLEX complex u u u

NOTES: D.P. means double precision.
The letter u means that the result is not defined in standard FORTRAN and it depends

upon processor implementation of exponentiation.

If primary I has a negative value, primary 2 must not be real or double precision.

The data type of an arithmetic expression involving an arithmetic operator other
than the exponentiation operator or the unary operators depends upon the data type
of its operands, as shown in Table 3-3. The data type of a unary operation is the -

Table 3=2. Type Rules for Exponentiation

same as its operand.

primaryl op primary?2

PRIMARY?2

PRIMARY 1

Y INTEGER REAL D.P. COMPLEX
INTEGER integer] U} u
REAL u real d.p. compiex
D.P. u d.p. d.p. u
COMPLEX u complex u compiex
NOTES: opis a nonunary operator: +, —, *, .

D.P. means double precision.
The letter u means that the result is not defined in standard FQRTRAN and depends

upon processor implementation of the operation.

Table 3=3. Type Rules for Conventional Arithmetic

UP-7536 £ 3
Rev. 1 FUNDAMENTALS OF FORTRAN SEETION: PAGE:
. Of special importance in Table 3-3 is integer division. Only the integer portion of

the quotient is retained; the remainder is dropped without roundoff. Thus, the
arithmetic expressions 0/4, 1/4, 2/4, and 3/4 are evaluated as the integer 0.

3.2.4. Evaluation of Arithmetic Expressions
Rules:

(1) If the value of an arithmetic expression is not arithmetically defined, it cannot
be evaluated. For example, the following arithmetic expressions must not be
used: 0**0, X/0.0, and 0**(-3).

(2) In general, arithmetic expressions are evaluated from left to right governed by

" the priority of the operator (shown in Table 3~1). In the course of this evaluation,
expressions in parentheses are evaluated before proceeding to the next evalu-
ation, with innermost parenthetical expressions evaluated first.

There is a permissible exception. If mathematical use of operators is associative,
commutative, or both, the order of evaluation may be changed internally to take
advantage of these qualities, provided that integrity of parenthesized expressions
is'not violated. (An operation is associative if A op B op C can be evaluated as
A op (B opC) or A op B) op C with no algebraic change in the results; an operation
is commutative if A op B can be evaluated as B op A with no algebraic change
in the result.) The only associative FORTRAN arithmetic operators are + and *;
the only commutative FORTRAN arithmetic operators are + and *. Thus, in some
processors the expression A + B + C can sometimes be evaluated as A + (B +C)
' and, at other times (in the same processor) as (A + B) + C; the expression A*B
can sometimes be evaluated as if written B*A. The associative and commutative
laws do not apply to evaluation of integer terms containing division; evaluation of
such terms proceeds from left to right. For instance: K*M/N is evaluated as (K*M)/N.

(3) The evaluation of any function references in the expression must not alter the
value of any other element within the expression or statement that contains the
function reference (see Section 8).

Examples:

(1) Evaluate (-B-SQRT(B**2.0-4.0*A*C))/(2.0%A) where A, B, and C have the values
of 1.0, -3.0, and -10.0 respectively. The order of evaluation is:

(-B-SQRT(B**2.0-4.0%A*C))/(2.0%A)
(a) (-B-SQRT(9.0-4.0%A*C))/{2.0%A)
(b) (-B-SQRT(9.0-4.0%C))/(2.0%A)

(¢) (-B-SQRT(9.0-(-40.0)))/(2.0*A)

(d) (-B-SQRT(49.0))/(2.0*%A)

(e) (-(-3.0)-SQRT(49,0))/(2,0%A)

(f) (3.0-SQRT(49.0))/(2.0%A)

(g) (3.0-7.0)/(2.0*A)

(h) (-4.0)/(2.0%A)

(i) -4.0/(2.0%A)

(G) 4.0/2.00
(k) -4.0/2.0
1) -2.0

UP-7536
Rev. 1

FUNDAMENTALS OF FORTRAN

SECTION: PAGE:

Note that in these steps, the successive evaluations are shown in terms of exact
values. In actual practice, these values will be approximated. The degree of
approximation will depend upon the processor implementation of real type
arithmetic.

(2) Evaluate the expression (N/2)*2-N.

All possible results are shown in the following truth table. (Remember that, in
integer division, the remainder is truncated.)

POSITIVE/NEGATIVE . ODD/EVEN RESULT
positive odd -1
-positive even 0
zero 0
negative odd 1
negative even 0

Note that this expression can be used for odd/even testing of an integer value.

(3) Intrinsic functions (see 8.3) or assignment statements can be used to get around

some. of the restrictions imposed by the mixed type requirements of Table 3-3.
It must be understood that some precision may be lost in this process and that
it cannot always be done, since the range of a real or double precision value

is always greater than the range of an integer value. (The restrictions on the
use of an assignment statement for data type conversion are described in 4.2.)
The following is an example of the need for such conversion in the calculation
of the volume of a room where the length is originally given as an integer.

Cl NEX|T] L, INE USESI I NTRINS I C FUNCITIO N JELOAT & ;|

i VIO L UME = F LOIATCOLENGTH)/*WIDTH*HEIGHT , |, |

Cl NEXITI JLIILIMNES, SHiOlw (WWSEl OF AISISILGNMWMENT [SSTIATEMENT

: XILNGTIH= LENIGT Wy o Lo 0o o b o o by g by gy g by gy

L ViQULUMIES XGLNIGT H o« Wil Tbcsis el Gt o 0 o by o o L]

UP-7536 . 3 7
Rev. 1 FUNDAMENTALS OF FORTRAN

SECTION: PAGE:
i

‘ ‘ 3.3. RELATIONAL EXPRESSIONS
|

A relational expression defines a relation between two arithmetic expressions. At
execution time this relation is evaluated as either true or false.

3.3.1. Relational Operators

A relational expression is made up of two arithmetic expressions separated by one

of the relational operators shown in Table 3—-4. Blank characters may be used freely
to improve readability.

OPERATOR MEANING
.GT. greater than
.GE. greater than or equal to
LT less than
.LE. less than or equal to
.EQ. equal to
.NE. not equal to

NOTE: The periods, as shown, are necessary parts of relational
operators.

.' Table 3-4. Relational Operators

Examples:

If KO, K1, K2, KK1, and KK2 represent the values 0, 1, 2, -1, and -2, respectively,
then the expression:

K1.EQ.1 is true.
K2.GT.KK2 is true.
- KK1.NE.KO is true.

KK1.LE.KK2 is false.
K1**K1.NE.K2**K0 is false.

UP-7536 L _ . 3 8
Rev. 1 FUNDAMENTALS OF FORTRAN |

SECTION: . PAGE:

3.3.2. Type Rules for Relational Expressions ‘

Only the combinations indicated in Table 3-5 are permitted for the relational
expression:

expl op exp2
where: op is any relational operator, and expl and exp2 are arithmetic expressions.

expl op exp2

expl exp2
INTEGER REAL D.P. COMPLEX
INTEGER yes no) no no
REAL no yes yes no
D.P. no yes yes no
COMPLEX no no no no

NOTE: D.P. means double precision.

Tabie 3-5. Type Rules for Relational Expressions

Where a real arithmetic expression appears with a double precision arithmetic
expression, the relation is evaluated as if written as (expl -exp2) op 0DO.

3.3.3. Applications of Relational Expressions

(1) In this sequence a set of data cards is read, each of which contains an integer
value right-justified in the first 10 columns of the card. The program is to find
the greatest value and print it out. It is assumed that none of these values will
be -999999999, so that a card containing - 999999999 indicates the end of the
set containing at least one integer.

Ll e by g e g b e g by s by e b s by e by b
Ly REVAD (J1s, Vo) INMi B R F 3 v v by v v by e v e e g s]
b 10 IBNORMATCOL LAY o0 0 by b v b b gy e by |
o220l READ(CIL Y0y NEQe by 0 0 by e e b e b e b s b
A g (el INBOL L IEQ,1-192199:9,9:919:9:91), | GO _IT,0 30! Pt
Lol 1,F, (IINFO ,.|GT . (NiIMBR,): INMBR =, (ENFIOE 5 5 Ly vy 0
Laa GO ,TO} 2.0, , { ¢+ sV ¢ o0y by ey by byl
1 30 IWRLTEI(,3,, 40D NMBRE 5 0 Loy b b e) b
y 40 IFORMAIT (G YYD ¢y by s Loy g b by e b |
il ssvoeRe |y b b e b e ey e e sy
AT 8. 10 » N T NS N N W N A N SN S NS TR SN TN W N R NN S VA W MO T S S S S U S0 S S S S

UP-7536

Rev.1

FUNDAMENTALS OF FORTRAN

3 9

SECTION: PAGE:

¢y

Note that the contents of the first data card must be read into NMBR to create
a basis for comparison. Then the value of the next card is read into INFO. The
fourth line is a logical IF statement with the relational expression INFO.EQ.
—-999999999, If this relation is true, the GO TO 30 statement causes a jump
out of the loop and a printout of the contents of NMBR. If this relational ex-
pression is false, GO TO 30 is disregarded and the next line, which is
another logical IF statement, is executed. This statement tests the value of
INFO. If the value of INFO is greater than the value in NMBR, the value of
INFO is transferred to NMBR. Then control returns to 20 and a new value for
INFO is read. Cards are read until a card containing - 999999999 is reached.
Note that it is necessary to test for -999999999 before the attempt to update
NMBR; otherwise, the NMBR printed out will be -999999999.

This sequence compares two complex numbers, KMPLX2 and KMPL X4. If their
real portions are equal and the imaginary part of KMPLX2 is greater than the
imaginary part of KMPLX4, control is passed to one set of statements; otherwise,
control is passed to another set of statements (in this case, beginning with the
statement label 50).

This sequence introduces two intrinsic functions, REAL and AIMAG. The
intrinsic function reference REAL (x) obtains the real portion of the complex
variable x; the intrinsic function reference AIMAG (x) obtains the imaginary
portion of the complex variable x.

oo b e e by by s by e b e b ey by e b i

CIOIMIE LIEAX| 1K|MIE LxX|2|, KlePIL.X"I J S '} ‘ I S ' l | S W | 1 il b L L LLLl

TSR S L N T S0 O S T SN N S T OIS Y U O UMNY N NOOY SO0% WU Y W U W S S MY S N BT N RV R |

toaopoge b oy by vy v by oy b b ey by e by by g b

llLl.lllLllLlllll‘lll!lll!IllLLll'l‘l!’lllllL[

l lFl l(IRLEIALLL(lKlMLPLLinzl) I lNl El'l lRlsiA] Ll(IKIM(PIt'lxl4 l) L) l lGloi XTIOI !S 10 Li

1LF, (AN MAG(KMPLX2) . LIE.AI MAG(KMPLX4)]), 60 (TO 50]

llll'llllllllll!lllLLLlLiLllllIl’llllll-tlkljll

lllll[llJ_LlllilLlllLllllll’ILllllltillLll

egegegete e oo bov oy g by v s b e b sy

Note the numerous parentheses used in the logical IF statements. The format

of a logical IF requires one set of parentheses around the relational expression;
the format of a function reference requires a set of parentheses around the list
of arguments. In writing such statements it is not unusual to occasionally mis-
place a parenthesis. It is a good idea to check such statements and ensure that
the number of left parentheses is the same -as the number of right parentheses.

.UP-7536 _ ' 3 10
Rev.1 \ FUNDAMENTALS OF FORTRAN

SECTION: PAGE:

3.4. LOGICAL EXPRESSIONS ‘

A logical expression is a group of one or more logical elements and operators which,
at execution time, is evaluated as either true or false.

3.4.1. Logical Operators

The three logical operators are shown in Table 3-6.

OPERATOR MEANING PRIORITY
.NOT. logical negation 1
AAND. logical conjunction) 2
.OR. logical disjunction 3

NOTE: Parentheses can force the order of evaluation.
Table 3-6. Logical Operators
The meanings of the logical operators are more precisely illustrated by Table 3-7

where the format of a logical expression is lel.op.le2 for the ,AND, and .OR.
operators, and .NOT. /e3 for the .NOT. operator. Each le is a logical element.

IF AND THEN
lel le2 le].,AND.|e2 lel,OR.le2

IS IS 13 IS
true true true true IF THEN

{e3 NOT, /e3

true faise false true IS IS
faise true fatlse true true false
faise faise false false faise true

Table 3~7. Truth Table for Logical Operators

UP-7536 _ ' 3
Rev. 1 FUNDAMENTALS OF FORTRAN seeTion:

PAGE:

3.4.2. Formation of Logical Expressions

A logical expression is formed with logical elements and logical operators. A
description of logical elements and their combination to form a logical expression
is shown in Figure 3—~2, and the text which follows the figure. Figure 3-2 also
implies the order of evaluation: primary, factor, term, logical expression.

Figure 3~2. Structure of Logical Expression

logical
expression
logical logical expression.OR.logicai expression
term
) logical term ,AND.logical term
logical
factor
logical .NOT.logical primary
primary
logicat logical iogical logicai relational logical
constant vatiable array function expression expression
element reference in
parentheses

A logical primary is a logical constant, a logical variable, a logical array element,
a logical function reference, a relational expression, or a logical expression in
parentheses.

UP-7536
Rev. 1

3

FUNDAMENTALS OF FORTRAN I

SECTION: PAGE:

12

Examples:

.FALSE. logical constant

ALPHA logical variable

SWITCH (K2, X4, K6) logical array element reference
XXX(2) logical function reference
A.LE.0.034 relational expression ‘

A logical factor is a logical primary or a construction of the form:
.NOT. logical primary.

Examples:

.TRUE. logical primary
.NOT..TRUE. evaluated as false
A.NE.B logical primary
.NOT.A.EQ.B equivalent to A.NE.B

A logical term is a logical factor or a construction of the form: logical term .AND.
logical term.

Examples:

ALPHA logical factor

.TRUE..AND..FALSE always evaluated as false
.TRUE..AND.ALPHA evaluated as true only if ALPHA is true
A.GT.B.AND.A.GT.C.AND.D evaluated as true only if A is grt;ater

than B and greater than C,and D is true

UP-7536 3
Rev. 1 FUNDAMENTALS OF FORTRAN sECTION: PAGE:
. A logical expression is a logical term or a construction of the form:
. logical expression .OR. logical expression.

Examples:

.TRUE..OR..FALSE. always evaluated as true

.FALSE..OR.ALPHA evaluated as true only if ALPHA is
true

A.GT.B.OR.C : evaluated as true if C is true and/or A
is greater than B

A.GT.(B.OR.C) an invalid expression because both
operands of a relational expression must
be arithmetic expressions

A.GT.B.OR.A.GT.C evaluated as true if A is greater than C
and/or A is greater than B

A.AND..NOT.B.OR..NOT.A.AND.B called the exclusive OR function; evaluated
as true only if either A or B is true, but
not both

(A.OR.B).AND..NOT.(A.AND.B) another way of writing the exclusive OR
function

‘ 3.4.3. Evaluation of Logical Expressions

The order of evaluation of logical expressions is determined by the priority of the
logical operator(s), as shown in Table 3-6, and the order of evaluation impliad by
Figure 3-2, without violating the integrity of elements in parentheses. When
parentheses are present, innermost parenthetical expressions are evaluated first.
Thus, parentheses can be introduced to force the order of evaluation. When two
elements are combined by an operator (or an element follows .NOT.), the element(s)
must be evaluated before the logical relation can be evaluated. .

Examples:

.NOT.A.AND..NOT.B evaluated as true only if both A and B
are false

.NOT.(A.AND.B) evaluated as true if A and/or B is false

A.AND.B.OR.C evaluated as true only if both A and B are
true and/or C is true

A.AND.(B.OR.C) evaluated as true only if A is true and

either, or both, B or C is true

3

SECTION:

UP-7536 I 14

Rev. 1 FUNDAMENTALS OF FORTRAN

PAGE:

3.4.4. Applications of Logical Expressions) '

An application of logical expressions is shown in the following example.

In this program, an indicator called IND is set to ~1 if integers K2 and K3 are both
negative, to +1 if both are not negative, or to 0 if one is negative and the other is

not.
L Lo i l U NV WD B S | bd, LL A | WS DR G W SUURNG G | l S | [1l Lol L ‘
1 1t | [S U S S B | 1 P | l o1t ot 1 S S | I i1 11 Ll I
IS R TR (T S YO TN VAN SN TR VAU SN AN N NN ST U WA NN TN S N SN A NN ST WA ST TS WS WS N N B
| |N|D| SN U S U MR N U (NN VO WA T T VU WA HAAT S VA SN T WA WA WY ST SO S WA U

llFl W ‘szu |G|§L'LO|GIAINIDXIIK13II 1G|§J¢|0|)| d lNlDl =yt |
lan !(IKLZI'ILLTI'|ol'lALN!Dl'lstl'lL!Tl'loL)I 1' 1N1°| 1=y 1-111 L

ILLIllll|llllLL1|l1];LlllLLllllLJ]I

UP-7536
Rev. 1

4

!ECTIONz

FUNDAMENTALS OF FORTRAN ‘ l

PAGE: i
~ ‘

4.1,

4. ASSIGNMENT STATEMENTS

GENERAL

Execution of an assignment statement causes assignment of a value to a variable
or array, element. This new value becomes its current value until the variable or
array element is redefined.

There are three assignment statements in FORTRAN: the arithmetic assignment
statement, the logical assignment statement, and the GO TO assignment statement.
Because the GO TO assignment statement can only be used with an assigned GO TC
statement (which is a control statement), it is discussed in Section 5 in conjunction
with the assigned GO TO statement.

ARITHMETIC ASSIGNMENT STATEMENT
Function:

The arithmetic assignment statement evaluates an arithmetic expression and assigns
this value to an arithmetic variable or an arithmetic array element.

v=e
where: v is an arithmetic variable or arithmetic array element;

e is any arithmetic expression.

Operation:
An arithmetic assignment statement is performed in up to three steps:
(1) The arithmetic expression e is evaluated to yield a single numerical value.

(2) The data type of this single numerical value is converted to the data type of v.

(3) This converted single value replaces the contents of v.

UP-7536
Rev. 1

FUNDAMENTALS OF FORTRAN - |

SECTION: | PAGE:

With arithmetic assignment statements such as K = 3 or S = 3.0, no evaluation or
conversion is required. Since the statement can be performed in three distinct steps,
it is possible for the same variable or array element to appear in both v and e. For
example, the sequence

I NN N U SRS A B B AN ST T S 1 Lo o b by
b o0 K= v v v v b b b b
L1 KK+ 20 00 b by v b by by
B 5 CLURIBEINIT: VIAILME, OIF Ky 85, NOWI 45 + ¢ | ¢ 2
| ARRAYI(\K+2)E K+ 3) | 3 o oo b v Loy by

assigns the value of 7.0 (its real type approximation) to the array element ARRAY(6).

The arithmetic expression is evaluated and its value assigned to the variable or array
element in accordance with the rules in Table 4-1.

e INTEGER REAL DOUBLE COMPLEX
v PRECISION

INTEGER ©)] @ @ ®
REAL ® ® ® ®
DOUBLE ’

PRECISION ® ® ® ®
COMPLEX ® ® ® ©)

NOTES:

@ Assign e to v without change.

Truncate any fractional part of e and assign result to v as an integer.

®

Transform e to real type value and assign this value to v.

Evaiuate e by rules of 3.2.4 (or any more meaningful rules), transform to type of v, and assign
tov.

Prohibited combination.

@ Transform e to double precision value and assign this value to v.

Table 4—1. Type Conversion by Arithmetic Assignment Statement

‘UP-7536
Rev.1

4

SECTION:

FUNDAMENTALS OF FORTRAN

PAGE:

‘ Rules:

(1) Some-arithmetic assignment statements should be avoided to save execution time
or avoid possible inaccuracies. For example, the statements A =1 and 1 = 10.0
should be replaced, if possible, by the statements A = 1.0 and [= 10, respectively.

)

€))

Some arithmetic operations can be avoided by using the appropriate form of

constant, thus saving execution time. For example, the statement X = 2 E04
is preferred to X = 2.0 * 10,0 ** 4,0. The two values may not be identical due
to the approximations involved in the computer tepresentation of real type data.

References to intrinsic functions are available (see Section 8) for handling complex

type data and converting the real and imaginary parts as required.

Examples:

integer K2 is divided by the integer K3.

(1) This sequence shows how to compute and store the fractional remainder when the

| B FURE SO TR0 YRR N NOE Y SN S A N SN S N N T SN T S AUV U T T A0 W A A O B
| TR D,0,UBLIE, P RIEIC 1,51 OIN, K2,/ 2f,. K 33 ,.IREM ., QU0
| PSRN NN SO0 I TN T R S Y SN SO ST S NV YU 0 N A G W U AN TS TR EAT S A S
Poaag PR S S WA A SN TN S S AT AT NN ATV SR O VAN NN S SN T S R WY S N A
L1y Kn2; =Kl ooy dy e by by e by
Y K3 =kl 00 R R N AU S N A SN R
‘ AN [P NI TEIY. S B JVAT 5 NI R RN U TR AN NG TN S R AV N T U A W G S N O O I
oyag RIEMi= KI2:21 /K313, QYO ¢ ¢ o o oo o b by
(2) This operation can be source coded more conveniently with the basic external
function DMOD (see Table 8-3) as follows:
L1 st b v b e b s b e ey by b g
| v 0,04, B, LIE, P RE|CI S OIN: K;2,2], K33, IREM_; | 5 |
| ! WIS VU O AT A SN S0 PN T S SR U SN SR AN VA UG AU WA TSN S0 S S S S W NN N
| PO U S TN . SN TN WU N S S S N S N N S SAVIONS AOUX ST SO U SN RS TS SO N WA S N S W
La g K22=2Kj2 , by v b e b by
Ly K3S3=KB, o ol e by v b by
| REM=DMOD (,KI2:2, K313 o Lo v v v oy by
(3) The next example introduces the intrinsic function FLOAT and shows how it can
eliminate an arithmetic assignment statement used for type conversion.
b g XLEMNMGITHS LENG Ty Lo oo b e b by
Py] IVOLUMES XL EINGTH*WI OTH*HEIGIHT 1 |«

Cl

NEXIT G UONEL U SiES B LOAT FUNICTIONN s b

L

[Vi, LIUME=FLOIAT (L,EINGTH) * W 1 D.TIH,*H E HGH T

4

SECTION:

UP-7536
Rev.1 FUNDAMENTALS OF FORTRAN '

PAGE:

4.3. LOGICAL ASSIGNMENT STATEMENT

Function:

This statement evaluates a logical expression and assigns this value (either true or
false) to a logical variable or logical array element.

v=e
where: v is a logical variable or logical array element.

e is any logical expression.

Rule:

Execution of this statement consists of two parts: the evaluation of the logical
expression as either true or false, and the assignment of this logical value to the
logical variable or array element.

Examples:

(1) The following sequence evaluates x as true if K is an integer less than or equal

to 3.
L g T T S N N T A TN SN TN S SN U Y S VAN T Y VO SN N U MY N SN S W AT NS W T
by 2 JILOGLCAL (X oy b b b
Loy ce e b e b e by e b e b
b g [ENEE N SN RN BT S i B S S R A AN A A S R R B A S
SR L T TR RSN N N N N SO0 SN S AU ST SO S TN S SN VTN S S S S W A W O
| BT XS K b (B Ny by g b e b g b ey e by

(2) With each execution of the following loop, SWITCH will alternate in valye from
true to false and can be used as an odd/even counter within the loop.

| LLolGl VCAL, S WY TCH b b e e
Lo WL T Al =, D IPALSE., o oy b s e b s by
Lo svol Iswi\TiClHy 1=y IO, SIWL TGl v oo by g b a1
Loog o 1 1:1 Y Y0 O WS NSO S VI SO NS S S S0 SO SN SN NS ST NS SNV SN TR M
Joi g JL‘JI'III!]IL!!'l(.llLLllllLJlllllllllL
L 13 GO 1,00 440 o |, 4 v 0t ooy by b b b
| I ST S R TN Y T U S N SN T U R S ST S T S YT S S (TSN Y VANV S S S YO0 W S AT OO W

UP-7536

Rev. 1 ' FUNDAMENTALS OF FORTRAN l >

SEC TION:

PAGE:

5. CONTROQOL STATEMENTS

5.1. GENERAL
Control statements modify the normal sequence of execution. Some of these statements
specify unconditional modification of the normal sequence; others contain a test that

determines whether or not the sequence of execution shall be changed.

Execution of a program or procedure starts with the first executable statement and
continues sequentially until a control statement is encountered.

The control statements of FORTRAN are:
8 GO TO statement

IF statement

® DO statement
. _ m CONTINUE statement
‘ ' a STOP statement
PAUSE statement
® CALL statement
8 RETURN statement
The CALL and RETURN statements are not described in this section because they are
associated with external procedure subprograms. These statements are described in

Section 8. The GO TO assignment statement, because it is associated with the assigned
GO TO statement, is described in this section.

5.2. GO TO STATEMENTS
The GO TO statements are:
8 unconditional GO TO statement

8 computed GO TO statement

a assigned GO TO statement

uP.7536 | A _ ; 5 2
Rev. 1 FUNDAMENTALS OF FORTRAN ' secTion: -

5.2.1. Unconditional GO TO Statement

Function:

To transfer control, unconditionally, to a statement specified by statement label.

GO TO s/

where: sl is the statement label of an executable statement within the same
program unit.

(1) si must be the statement label of an executable statement.

(2) Any executable statement immediately following the unconditional GO TQ
statement in the program unit must have a statement label, otherwise it can
never be executed.

Example:

After the following sequence is executed, the variable K will have a value of 8.

Lol TSN TR A U Y SN YO R WY S T T A WA WO TN T AN N T WA G Y TN T WY A0 AN MU O WS RO
| PSRN YT A SV S T U WO TN NN Y YHNN TN A TR T NN Y T NS WA T AN TN SO U G AN S S SR MY T S S O
T Kizde o by o by b e by g b g L1 | I |
1.1 O T 200 5 4oy ooy by g g by b e b e o
1 1130 ;t::zﬂn p by e by e by ey v b e b ey b 4y |
11240 K= Ke+odt oo 50 bovoy oo bov oo ey by e b o by |

5.2.2. Computed GO TO Statement
Function:

To transfer control to one of several listed statement labels, as determined by a
previously defined integer value.

GO TO (sll,slz,...,sln), 1

whete: each sl is a statement label of an executable statement in the same
program unit, separated from the next s/ in the list by a comma.

f is an integer variable representing a value, such that 1 < i< n.

UP-7536 5
Rev. 1 FUNDAMENTALS OF FORTRAN »

SECTION: PAGE:

‘ Rules:

(1) If the value of [is 1, the statement with s/, will be executed; if the value
is 2, the statement with sI2 will be executed; and so on.

(2) The value of { must be defined before execution of the statement.

(3) The parentheses around the list of statement labels and the comma before the
integer variable are required as shown in the format.

(4) There is no restriction on other uses for the integer variable i,

(5) There is no standard FORTRAN restriction on the maximum value of i or n,
but it is possible that a particular processor may specify a maximun value.

Examples:

(1) After execution of this sequence, control is transferred to the statement with
statement label 35.

| AR TR TN N T T S YOO N VA WA U N U TS YA I U Y S OANY N Y SN WA SN SR T NN N SO W T

. 1 1 H l..l 1 1 l i] i 1 l L 1 J J l J i L l 1 1 L 1 l RS U D | l L L 1 1 I ! i1 L

| e b e by e b e by

I Ki2o=v2y oo by ooy o b s by b by e by

P | o :T:0l (1,0, 12,00, 0300y K2y b ooy 4oy oy L b
.‘ bogoi got ey b b e b e e by by b by
| ! sy b e Loy by b e b e b

IR etegegegeleey o v vy gy b g by e e by s b e b

Lo [SN ST AN T NS N U VU S T N AN W VUU N0 VAN T WY O O NN M SO0 TN W AN U S S WO SO S ST

L1 Tl SIS U N S N S VAN SN TN Y S A NN S O N S S M H NAR SN AN ST ST U RS RN

| 1120 VTEMSIK 20 Y, 4 o b b e e e T

[G0, (T Ol ((:1,5,,1215:,13:50) T s U 7Y | A A S R _]_L,__L__L_L._.L_L._;?_L_L_-_L

UP-7536 ' ~ ‘ | 5 4
Rev.1 - FUNDAMENTALS OF FORTRAN

iECTIONx PAGE:
(2) Another application of the computed GO TO statement shows how it can be B
used to determine the course of processing in the main program. A data card '

having a decimal digit punched in the first character position is read in. If
this digit is 1 through 4, it indicates a processing sequence. Any other digit
(or the blank character) is treated as an end of file indication.

11 L IlNlTlElGlElRl lclHIoll 'ClEl ' 1 1 i [Ll 1 i l N W N J_Ll A ;LJ | i 1 1
| I A RAEAD (T, 2100t ceHolerEs b o v v b v v by
Lo 31:0) IEFORIMAITY e s3Iy s ¢ ¢ o b4y s by ey e b

St e (CHO0 CIEL B0l L ORL] CHIOIICE . GTL 40, (SITIOP: .
Lo G

L1000 Joverwr s by v v by e b b b b
| T I:llLl!llLlll!llJLlllllllllLlllllLLJltll
| eev v g b v b e b oy by s e b b by

‘lll GlQJTqu]llL[llllllIlL‘lll!LLllllllLllIllLJ

2001 1. o epey b0y o by o b b ey b e b b
Loy 1:1 v by e s by v ey Loy oy v by v v b b by
d a1 JUR W0 W TS T SN NN NN R TN WO YUN S AN NN SN ONY SN SN SO VUY SN SE S NN SO TR S SN NS WO T Y N AN A R

Ly G01T10A|11L||||1liilnnlLllnl111L4L111Ll11L|

1.3,00] fovoneyer bouogov o by by by by e b e by

dt I IS EE N S RN S S N EIT T S S TN A A N B AT N A A BN B T S BN R
Lot EXURNN A AR ST AV I BN BN SRS AN SN N AT AN S BT A B S AT SN A I I R S T R
L1 GO, TO vy by v by oy by b e by e Uy

_lz4L01° '1'|'|°1l\||11111|11xvalnlxll1111L111~|||‘

L' [l i l.L l#l Lt i 1 l L Loy 1 l 1 1 L 1 L L i i 1 l 1 1 | 1 l i . H , 1 T
T
L b v b ey g by e b e by e

]]]1 GLo!lTloll](llil1lllLLllllliI|lll'LlllL!X!'l

Ly ENDy oy s o b b b e b

|
iy NS N AN AU ST SN I BT S ET N SN A S AN NN ET R N BTSN S N R A

UP-7536
Rev. 1

FUNDAMENTALS OF FORTRAN

5

SECTION:

PAGE:

(3) The following example shows how the computed GO TO statement can be used
to create a closed internal block (a group of statements that cannot be entered

by normal sequential execution, but must be called for execution by control

statements).

el [S R S | N NN NG A SR W WY S IS W N T S N S N
L 1 i i L: ' 1 1 3 i i 1 1 L J l i ! b1 b I S | L i l L 1 i A L 1 N B T—
el) Ke=00 v ooy by e b e
i d QLOL |T|°| 11101 | IR S RN | ’ J SN W TS WA N N N | l | SV W TR NN NI WU O B
2 1210 Kl=1Kl+l]| 1 1 1 H J] } I | ']]] 1] y) b q y] J] L L 1 ki ' 1 i 1
1 I\ 1 b1 l:A I 1 1 L 1 4 ! 4 1 1 l L i 1 L 1 1 1 i 1 l i H CLOSED I
1 i 1 N | l L i i 1 I 1 i 1 1 ' H 1 b L i L L 1 1 1 LL&]'NTERNAL 1
- BLOCK
TR 6.0 .,T7TlO ,(!00,,,20,01,,30,0,,,4,06,0), (K, 1)1 PR S DA S R
1 l] .ﬂ 'J‘l'l‘l'l L 1 J, d) il L i l i 1 1 1 L A 1 N 1 1 1 y i 1 i | 1 i
H 1 1 4 i L l i ! i I] 1 L i 1 1 " L L 4 i 4 1 ! l 1 A i L L 1 H] i}
bkl f I Y L U NS § IS S S S 1 ‘ il) | | B N I | I j I S SO YRS SUUNS NN Sy |
TN 6o ,TIO 2,0, , v , ¢ vV gy l TSN TS R NS N S N 0 1
Lllo\o ‘l'l'l'l‘A F I WO SN 1 1 I I, l F N SN NUUE N | J S | 1 I i1 1 - Il dk]
[Lot by J I S | I I T PO NN SN W § Ll F IS NOUE S NS NN TO SN
b i e L 1 L l L L A) 1 L L [l L l L Il e 4 S 1 1 l 1 1 1 1 L i) i L
L i Gx ox leox 1210L VIS S A W | l § RN TS SN WY TS W N I l I VO U (N UV S W N
12,0, 0 STNCSE WU LS 30 S TRE TN N AN TN SR SN NN AUNY SN SN TN SAE TNY VOIS WANE YOS TSN ESUON TN SN SO TN WA S S WY
Lol i PRI N S S TN N N S S S T A P TN SR SN T WO SO0 ONE VRN W S T A T S W
b PR CIN SR DU NOY OO N S YA S Y T T Y NN VORS SU SH TN S T T Y N T T T SN A S A
2 1 1 Gl°1 ITlol VZVO | H l ! L - L L L H 1 I 1 L i i L 1 L H
0 3,0,0 PSSRV W (0 NN SN AU ST ST S WU AT T VNN SN T WA S NS SR W ST VU SN WA SO WO W0 O S WY
TR L VU W T WO WY NS NN WY SN UONS VNN SR VA A0 VO DA R B I | HE SOOE SN VA IO U S B |
T R UM NSNS W NS T S VS ST S SO H T VA S O U 0O T T R S S S T G U
Lo G, 0 1Tl°1 L210' I S S| T S S TN WY NN VU N NS N ST SO TN TOOC T W WA I
l4l010 A S | | b - S I ed, l D, U L 14 i - I i Il L Ak 2

UP-7536

Rev.1 FUNDAMENTALS OF FORTRAN > °

SECTIONt PAGE:

5.2.3. Assigned GO TO Statement

Function:

To transfer control to one of several listed statement labels, as determined by an
integer value previously defined by a GO TO assignment statement.

GO TO i(sly, sk, . . .)

where: each s/ is a statement label of an executable statement in the same program
unit, separated from the next s/ in the list by a comma.

{ is an integer variable, followed by a comma, previously assigned a value
by a GO TO assignment statement. This value is equal to an s/ in the list.

Rules: .

(1) Prior to execution of the assigned GO TO statement, the integer variable [must
have been assigned a value by a GO TO assignment statement.

(2) Although standard FORTRAN places no restriction on the number of statement
labels in the statement (except that there must be at least one), a particular
processor may specify a limit.

(3) Standard FORTRAN specifies that the value assigned to { must be an s/ in the
list. If the value of { is not an s/ in the list, some processors will treat this
condition as if the value of { were in the list. The manual for the processor will
specify how this conditfion is handled.

Example:

Logically, the assigned GO TO statement can be used whenever a computed GO TO
statement is used (see 5.2.2). The format requirements differ and the assigned GO TO
statement requires at least one previous ASSIGN statement (GO TO assignment
statement). Figure 5~1 shows how the assigned GO TO statement can create a multi-
legged GO TO after a series of statements shared by different parts of the same pro-
gram unit.

UP-7536
Rev.1

FUNDAMENTALS OF FORTRAN ~

5

SECTION: PAGE:

l+—0 & @

ASSIGN 18 TO K2

|

42 A= ...

0 0«

°
. .
)
. {
i ASSIGN 7 TO K2
ASSIGN 20 TO K2 L]
° °
I . .
® l °
. }
™
ASSIGN 42 TO K2
®
°
g ™
™
° ?
GO TO K2, (18, 20, 7, 42)
v 1
20 WRITE. .. 7 READ. .. 18C(1,2,3=..
° ® i
[J [J °
[J ® °

Figure 5~1. Use of Assigned GO TO Statement

UP-7536 ‘ 5 8
Rev. 1 FUNDAMENTALS OF FORTRAN

SECTION: PAGE:

5.2.3.1. GO TO Assignment Statement

Function:

To assign a statement label to the integer variable that is used in an assigned
GO TO statement.

ASSIGN k¥ TO :

where: k is the statement label of an executable statement in the same
program unit.

I is an integer variable used in an assigned GO TO statement of the
same program unit.

Rules:

(1) The ASSIGN statement must be executed before the assigned GO TO statement
to which it applies.

(2) The statement ASSIGN 10 TO] does not have the same meaning as the
arithmetic statement J = 10. In particular, the sequence

S S T T PYSNE O S SN YT T T T VN WA S S l I S S N S S | LLI N TR S WS R S |
) S S T N AlslslliclNJ 1]101 lTlol i'” | TR N TS T N S SO W | | N S VS S U N
S W W | KI Loy 1J4_1-1 111 | S T L I SR N S S WA T A TN NN N TS SO M S S

will not produce a meaningful result. If J is to be used as an arithmetic
variable after its use in an assigned GO TO statement, it must be defined
as such at some point after the assigned GO TO statement. The following
sequence illustrates proper use of the ASSIGN statement:

[N Alslsl' lGLNJ 11 LOL leox 1"'1 TS VT A U AR W B U S S N

R AR EE VAN U S NS T N OO0 T S T N O VO N S 0 TN YA U VU A A OO 0 TUR W N O

- - . i L l)1 L i 1 L 1 L L 3 1 1 e 1 ! L 1 1 1 1 [1 i L { 1 3 1l
Lo 160, Tog a1 (1,0,,,2000, 030000 o 4y L

S TG S I PR RO R U S AN S TN S TN VA AN SN Y SN SN SN N S S U 1 N S N W S T |

S T O W | SRR AT S T S W S WA R S | T Lol li SRS W S VS RS S S
L 10 J, o= MVS oy DU S T TS N S T | | N

I S S KL NN B At ' EE i el e bt —t— | SRS S W USROS TS SO S |

Control is transferred to statement 10 after execution of statement J. The
variable K is assigned a value of 14.

Example:

See Figure 5~1.

UP-7536) ' ' 5 ‘ 9
Rev.1 | "FUNDAMENTALS OF FORTRAN i

SECTIONS PAGE:

5.3. IF STATEMENTS

The IF statements are the decision-making elements of FORTRAN. The test specified
in the IF statement may modify the normal sequence of execution. FORTRAN provides
two IF statements: the arithmetic IF statement and the logical IF statement.

5.3.1. Arithmetic IF Statement

Function:

To act as a three-way branch, as determined by evaluation of an arithmetic expression.

IF (expj sIl,s12,513
where: exp is any arithmetic expression except complex type.

each s/ is a statement label of an executable statement in the same
program unit.)

Rules:

(1) If exp is negative, control is transferred to sIl; if zero, to sl2; if positive, to
sI3,
~ (2) The list must contain three statement labels; however, any two, or all three,
may be the same. If all three are the same, the statement is, in effect, an

’ unconditional GO TO.

(3) An arithmetic [F statement must not branch to itself. For example, the following
statement is illegal:

i i Lzlo ||F4 1(1KL It 1J-)1 1110|1[210L113|01 i

|) (4) The first executable statement following an arithmetic IF statement must have a
statement label or it can never be executed.

(5) If the arithmetic expression is real or double precision type and contains trunca-
tions and roundoffs, caution must be exercised, especially when the expression
is tested for the zero condition.

UP-7536 5 10

Rev. 1 FUNDAMENTALS OF FORTRAN . sECTIONS PAGE:
Examples:
(1) If, in solving the quadratic equation ax2 + bx + ¢, where all three coefficients .

are integer type numbers, the discriminant b“ — 4ac is negative, the result is
two complex roots which are conjugates of each other; if zero, two equal real
roots; if positive, two unequal real roots. The following sequence shows how an
arithmetic [F statement can be used to select one of three root evaluation
procedures based on the evaluation of the discriminant.

i 1 1. N ADIl ls lEL l=J;INA£L'ILIZI l-l LL A. lgNlAL I'I l"lcl (! L 'l A d L Ll S, W L% l__L
I S | lan(.NM LSS.)x L‘lolitzlcql zaLon PRSI S YIRS I S U S UG VAP VUi O Y G U S T SRR S |
o)l o pyrocedure For, two e mp e et
PO PR UETUE PR ST S0 S SN SO0 S Y SO N WO ST ST YU ST WS W WA T (SN NS0 WY WY TO00 WY WU S S A0 S SN WUOT S SO GO S U |
L .LJILLx':anggl‘lllLJ_Aj_Lnfcj;Ll_L_xrij_l_Lz_xJ_x;zyx_L
. 1210 A l?ch.ldjiL'L.l n‘ °.F lileoJ 29 nul‘1| " 1'11.1.‘ A 1’3]31, L‘J TR
PR S Y S T T O T ST S U S W T SR SN A S0 WO S T U BT S ST N Y S TS SAT ST VSR TS ST S SRR |
. -
ek, FTERY B UL VU W S TN DA WY SN SO N ST S SN W W SNV U S I S S ST WS U T T ST S S A A SR W O 4
L. ALO LJ_"I' A.J‘%l’dli}r 1L .‘ ‘°1'L JLI"JL XLEl.quuL.Lll I'I.Acle L' !olol'l‘Ll), ,_L
X e 1 Srads l‘LI L L kI T I | l A & A 5 " A, 'y 1 3 I L " & Il I i1 } 'Y LI L i W 3 4 X_L
W T W ISR SN S SV S U G ST UNS NN U S ST T U S T GRS S TR ST S ST S W S SN J_LIJAIA_L

(2) Now consider another procedure for the problem in (1), but with the coefficients
real type numbers. This sequence introduces the basic function reference ABS(x)
which returns the absolute value of a real type argument, x.

S S S S § Dll ilcliLBL'L*lzl_L‘l.lolt IAI'LELI Lod i Lt l C I W NN GRS N A N S Ll I D SV T W S I L
R 1 F(AtBS(D1 S,C) ~1|E-10), 40, ,50,,50, , , . . .t o .}
Il l‘_lo Dl' JiQCJiLPL'ng PR S YO0 A TV S T U SN VOO S U AT S W S YT NN TN TV U NS W S WA T ST S Y S T
R I UL S U R I L T T S S B S |
Lo 10 e ol atwe compliex root s |, vy b ey s b
PO B AT R S ST SN S T VY SN ST SN S SN T YOO S SV VU A RS S G ST S SN VPR U HE T S0 VT WY 00 WY S T
- Ll A P IR SV S U VAR SN SO DA U VAN S ST S WOOY S VU S ST SN SN AN T W S S U H0 WP S ST S S SO T
b, 200, twe, equel) reel reetys L
el RTINS S Y S S S H SO S S S SV T A SIS N S DT SN AT SUP RS S SRS A
FI B PSRN S S ST VU GG TV TS0 TR SO ST ST SN S AT SN S VT SO SN SN S SAND VOO SN OO0 YA W VY S S G S |
.30 Lo 1 tywoe, wnegujal real rojot s P S O S R T S WO WY SR S S0 S G W
bl AA'IiLlLlLJL#AJ_J;LJ_I!A]LIL\IL[LAILI[LJ_]J_LIIAA_‘L
d i 11 o | YT SRR TN WA ST YA U SV ST W VO T SV SO SO el AN VAT SN WY WS S WHT S UV S A ST S W ST S

UP-7536 . B . 5 1
Rev. 1 FUNDAMENTALS OF FORTRAN

SECTION: PAGE:

In this program, all absolute values of the discriminant less than 10-10are

. treated as zero. This handles possible errors occurring in the value of the
discriminant due to computer representation of real type values, truncation,
and roundoff. The criteria for these limits vary with the nature of the problem
and the manner in which a particular computer treats real type values and
computations.

(3) Paragraph 3.2.4, example (2), contains an arithmetic expression that could be

used for testing odd/even integers. The following example shows how this
expression might be used.

0

Lt 1 | 1F|(|(i' INL/LZI) ltlzl_lNl)J lGlol 17101 L] 10 |°|'121°|°1' l‘lol
J0.0 g arofutiyne for, lod,d ,iat e giefrs, |
W 1 L i L A L Ll Ll 1 H l.l L l Lol]] 1 1 ' i L I 1 L A L 1 i] L I
o 1 1 1 Lol l Y - Lt 1 i JI |] LL 1 1 J 11 | 1 i l 1 I L 1 L L 1) L l
L Lz lo lo 1 lr l° l“l’ Ii ln l.l If I° Lrl l. lv l. l“l li ln 1' I.Igr Jr ls L oL 1 1 L 1 l
1L i L i J. i l 1 i 1 L 1 1 L.I 1 l 1 i Lt " i 1 1 I L 1 1 i '] 1 i 1 l
et L L lll‘kll!lll'lilLllllIllllllllllll|l
5.3.2. Logical IF Statement
Function:
. To determine whether or not a single executable statement, written as part of the

logical IF statement, shall be executed.

IF (e) s
where: e is any logical expression.

s is any executable statement except a DO statement or another logical
- IF statement.

Operation:

Execution of the IF statement proceeds in two parts: evaluation of the logical '
expression and (possibly) execution of the statement. If the logical expression, e,
is evaluated as true, the statement, s, is executed; if false, the statement s is
ignored and control is passed in normal sequence to the next executable statement.

UP-7536

Rev. 1

5 C 12

FUNDAMENTALS OF FORTRAN

SECTION: PAGE:
- —

(1) A logical IF statement cannot refer to itself. For example, the following statement
is illegal.

1,0 |1Fl(lAl'LAINlpl. 8)n lcnol lTlol 10 1]

el Lok I I |

(2) Because execution of the statement proceeds in two parts, the same variable
may appear in both the logical expression e and the statement s. For example:

1 |F 1(lA[')GlTu' :Bx' |°1RA'xA|' LLLTI' lcl) L |A|=13|+1c1

llLLJ_LIILJ;ll F

Lok lLIllLllllll||llllLllll|lll'llLL;LlllJ;llIll

(3) Caution must be exercised if the logical expression involves the comparison
of real or double precision arithmetic expressions.

Examples:

(1) The following program determines how many months it takes for a deposit to
double its original value for three different compound interest rates. The rate
is the interest computed at the end of each three-month period, starting from
the month of depesit. The three interest rates are 1%, 1.25%, and 1.5%. The
months required for the three different rates are stored in the array MONTHS.

L D.'.M,EINAS.‘.OLNg,M.o.N.Tlﬂ.s.(l:’.)L, T
— S b e
b | RATE=0 O Y e
RN R LERIER N N T S T
o I R=RMTE LV 8 o e L
P B L0 T S T RV SO S S ST S0 N S S S W U S A S T S MR G
., 1.0 L I T S T I T
L, DPST=DPST "R v b e oyt D e gy
L, N F(DPST. LT.2.0) 60 TO 10, g
s o L MONTHS(NY =3 K | e
L, ., 160, TO (20,30,410),. N o Vo b
,, 2,0 IRATEI=0,..0125 1+ v % 0y v b e et oot a b
e N2 e e e
paa o Mo o vs b b b
., 30| [RATE=0.015 T T N
i I N=ES e b e e b
Ly 60 Ti0 1.5 g e b e s sy
A S TPy e b
Lot E.Nuoxl|111|||1L;1|1111.1L||11|111111|1i~!~1

UP-7536 5 . 13

Rev. 1 FUNDAMENTALS OF FORTRAN D S ros
‘ (2) This program finds the values of y for y=3x2+.2x+5 for values of x between 0.1

and 0.2 at intervals of 0.001, that is, x = 0.100, 0.101, 0.102, . .., 0.199,
0.200. This gives 101 values of y, stored in array Y.

o | DY MENSTON Y(VO) o b *

[T | Nl=1°LllLJAL+lILLIlLJIILIIIALIILIIIALIIJLllllL

Lo N0 N N s b s e b ey e b

T N S | Kl'[’l}l"'";_jjlllllLllllllllllLllllIlLlllJllJ;l

§ N N U | xl=1FLLl°1A|T1(lxl)éllualsl TR DU NS N S S NN B 1 l,L S N NS Y N T Y} l) SN RS WA VR B |

S T Yl(|N1)1=13L' lol l'glxl I.l'l lzl]+l IEJ;lol l'L le ,\:l lsl.lol ‘ J I b U N

b ded | Arl(*ul'nLLL'lllonl .)1 IGLOA lTnox llloLl PO N W N T S VN S N VN S WOV ST

Lol I sxTnolpluleLg;ullllx|11|L|1LL1||\1L41LL!|1!1 *

[V N B} EINIDlIILllL#lllllllllllllllllLll\LllLJll,‘

N W | LLALl'lllll_lngllllLJ!IIII‘LIILIIILIILJIII]
Because the integer type variable N is used for the counter and in the logical
IF statement, the result will be exactly 101 values. Because a division operation
is used to compute X each time around the loop, each sample of X will be as
close to the desired value as the processor approximation to a real number
permits. This avoids any pitfalls that might arise if X had been incremented
each time around the loop by a real type value, by avoiding possible approximations

. due to successive truncations and roundoffs.

5.4. DO STATEMENT
Function:)

To initiate and control repeated execution of a set of executable statements.

DO n i=m1,m2,m3
or »

DO 'i= ml.] m2

where: n is the label of an executable statement called the terminal statement,
which follows (not necessarily immediately) the DO statement.

1 is an integer variable called the control variable.
‘ ml is an integer constant or an integer variable called the initial parameter.

m, is 'an integer constant or an integer variable called the terminal pataméter.

m, is an integer constant or an integer variable called the incrementation-
. parameter. In the second form, its value is implicitly 1.

UP-7536
Rev.l

5 14

SECTION: PAGE:

FUNDAMENTALS OF FORTRAN

Operation: ‘

For successive repetition of the same group of executable statements, the DO state-
ment eliminates separate statements that set a variable to a starting value, increments
this value after the group has been executed, and tests the new value to determine
whether the group shall be executed again, as was done in the sample program of

1.6. The operation of a DO statement is shown in the following examples.

WITHOUT DO STATEMENT WiTH DO STATEMENT
i=m1 DO n f=m1.m2,m3
label first statement of set g first statement of set
.. DO

range .
n terminal statement of set
n terminal statement of set
=rm
IF (i.iE.mz) GO TO label

The steps in the execution of a DO statement are:

(1) The control variable i is assigned a value represented by m, . This value must .
be less than or equal to the value represented by m,.

(2) The range of the DO is executed. If this range contains a reference to a function
or subroutine, the function or subroutine is considered part of that range when it
is executed.

(3) After execution of the terminal statement, the control variable is incremented by
the value of ms.

(4) This new value of the control variable is tested. If it is less than or equal to
the value of m,, program control is transferred back to the first statement of the
DO range, with the new value for the control variable; if it is greater than m,
the DO is satisfied, and the control variable becomes undefined.

(5) If this DO range is nested within another DO range, and both have the same
terminal statement,when the inner DO is satisfied, the control variable of the
next outer DO is incremented and tested, and its DO range (which includes the
inner DO) will be repeated until satisfied. This will continue for all nested DO
statements sharing the same terminal statement until the outermost DO is satisfied.
If there is no nesting of DO’s with the same terminal statement, after a DO
statement is satisfied, its control variable becomes undefined and program control
is passed to the first executable statement after the terminal statement.

UP-7536
Rev.1

3 15
FUNDAMENTALS OF FORTRAN | szeTion: PAGE:

Rules:

(1)

2

3

C))

()

(6)

The terminal statement must be in the same program unit as the DO statement.
It must not be a GO TO, arithmetic IF, RETURN, STOP, PAUSE, or a logical
IF containing any of these forms. However, if the logic of a DO range indicates
that such a statement is a terminal statement, such a statement can be followed
by a CONTINUE statement (which has no logical function); the CONTINUE
statement is then labeled and used as the terminal statement of the DO range.
If the terminal statement is a CALL statement, the subroutine will be executed;
after the RETURN of the subroutine is executed, the control variable is tested
to determine whether the DO range shall be executed again.

At execution time the parameters of the DO statement must be defined as values
greater than zero. '

Because the control variable is tested at the end of the DO range execution, a
DO statement will always be executed at least once when encountered.

No statement in a DO range may redefine the control variable or any parameter
of the DO statement; however, the control variable may be referenced in the DO

range, as in:

DO n i=m1,m2,m3

K=#INT

n terminal statement

If a control statement causes an exit from a DO range before the DO is satisfied,
the control variable remains defined until redefined.

DO statements can be nested in outer DO statements with this restriction: the
range of each nested DO must be completely contained in the range of its next
outer DO and may share the same terminal statement.

-UP-7536 ' | A 5
Rev. 1 FUNDAMENTALS OF FORTRAN sEcTIONS PAGES
VALID NEST INVALID NEST
DO10:+=... (The rangé of the second DO is not
contained within the range of the first
DO.)
DO20:=... DO10:=...
DO20ii=... DO 20 =, ..
20 executable statement 10 executable statement
10 executable statement ' 20 executable statement
— A special type of nest is a completely nested nest. This is a nest of DO

statements which satisfies both of the following conditions:

8 The outermost DO statement of the nest is not contained in the range of

another DO statement.

®m The first occurring terminal statement within the nest physically follows

(not necessarily immediately) the last DO statement within the nest.

COMPLETELY NESTED NEST
NESTED NEST

(The first occurring terminal statement

does not follow the last DO.)

DO 10. .. DO 10. ..

DO 20. .. DO 20...

DO 20... 20 executable statement
DO 30. ..

-

20 executable statement 30 executable statement

10 executable statement 10 executable statement

VALID NEST BUT NOT COMPLETELY

UP-7536
Rev. 1

FUNDAMENTALS OF FORTRAN

5

SEC TIONS 1 PAGE:

17

A DO range can have an extended range if it is a nonnested DO or the innermost
nest of a completely nested nest and both of the following conditions are true:

m The range contains a GO TO, or arithmetic IF, or a logical IF containing either

of these two statements, that can pass control out of the range to another set

of executable statements.

This set of executable statements contains a control statement that could return

control back to the DO range.

Examples of extended ranges are:

DO 10...

.

IF (. . .)20,20,30
20 executable statement

40 executable statement
10 terminal statement

GO TO 50
30 executable statement

extended
range

(IF(...)GO TO (40, .

50 executable statement

.),K

DO10...

DO10...

IF(...)GO TO 20

30 executable statement
10 terminal statement

20 executable statement ?

extended
range

GO TO (30, 40),.K
40 executable statement

The extended range of a DO must not contain, in the same program unit, a DO

statement that has an extended range.

UP-7536
Rev. 1

5 18
FUNDAMENTALS OF FORTRAN sECTIONS PAGE:

(8) A GO TO, arithmetic IF, or a logical IF with either of these two forms cannot
pass control into the range of a DO unless that GO TO or arithmetic IF is being
executed as part of the extended range of that DO, If more than one DO statement
share the same terminal statement, only the innermost DO range may contain a
GO TO or arithmetic IF that transfers control directly to the terminal statement.
The following shows examples of legal and illegal transfers of control:

VALID TRANSFERS OF CONTROL INVALID TRANSFERS OF CONTROL

DO DO

DO

‘DO

WL

extended
range

i

Examples:

(1) The following sequence shows how to set all array elements of a one-dimensional
array to zero.

o D,IMEN,S, 1 ON, TABLIE (,1,00), , o 1,
1 PRI KLU S S N S S SRS NN T S S WU SN TN ST S SN S S ST
T PSS K YN Y R Y UV TS YN SN SO SO SN S S VA S S SN N ST S S S T S
ISR po, ,1i0, Ky=,%;,,%,0,0, [+ v ;4 4 v 4oy 1oy
, ,1,0f I TABLJE(,K),=.0,..0, , | , , , v 3 | 3 4 0 g 4

UP-7536
Rev. 1

5

SECTION: PAGE:

FUNDAMENTALS OF FORTRAN l

(2) The following sequence shows how to set all array elements of a three-dimensional
array to zero.

| N S | B T I [S W/ NV N (N U SN SN | l | N O T N NN WO S T] S I NS N |
) S | . l U WA SN SN TR S S W l S U S (Y WS N N N S § l 3t 1 1 1
i i Dlol llmj IJL=I»IIIISI 11 IAL L S S TN N R | 1 l Lo] 1Ll !

g D0, 10, K=,1,, 4, e oy

[| Dx°1|”°11'—|=|1u|3(||l||11|1|tlll'|1|||

1 1‘10 S|E|T|(“=J. 1K1,|J|)L=101 1 l N A AN R S Y B L1 ‘l I .|

(3) The following example is an illustration of processing by DO statements.

— PRSI VNS N N N T O WA S S S SR N TN S ST WA T SR SO SO NS AN Y S W WY A 1
L1 D, MEIN;S;1 ON} I NTGIR:;S; (150 v ¢+ ¢ 0 v ¢ gy
L) oo dew v v e b e e vy by
b L !:n P R S W S Ut T JUNE YO SN ST S ST WO NN S W TS SN N X
Lo D,O, 10, Ky=Vy,,¥s58 by ooy ey by gy
., , 1,0 I NTGIRS, (K) = K. = K L v ¢ o o oo b
PR DO, ,210, Ki=.3:,4Vv:5: 21 4 4 ¢ 40wy oy
, ,2,0 I NTGIRS (K) =, IINTGIR, S, ((Ky=2), v v L v 4 vy 1
T B B PR AT BT ST A ST R
R I T S I R A U ST

After the first DO (with terminal statement 10) has been satisfied, the array
elements of INTGRS will contain, in succession, square numbers, 1, 4, 9, ...,
225, After the second DO has been satisfied, all odd-numbered array elements
will contain the value 1; the even-numbered array elements are unchanged.

(4) The following internal numerical sort program contains an extended range.
Originally the array elements of array NMBRS contain a series of integers in
random sequence. The program is to re-arrange the integers from low to high,
with the lowest in the first array element.

UP-7536 ’
Rev. 1 FUNDAMENTALS OF FORTRAN

The sorting method used is known as a ‘““bubble’’ sort. The first array element

is compared with the second array element; if the first is greater than the second,
the two are interchanged. Then the second array element is compared with the
third array element, and so on, until the next-to-last array element is compared
with the last array element. This is the initial pass. The result is that the
greatest number has ‘‘bubbled’’ through to the last position. A record is kept

of the last positions interchanged. This record determines if another sorting pass
is required and how many array elements must be compared in that next sort.

N DI!MEINSI ON NMBRIS(100), , | vy dy
b U S WS S E VT S U S S W VA BV S S SO VA S S
Lo L'.;L:.L4[g..41LJ..ll'..A..LLllL.L.LLll
R KOUMNIT,=, v o v oo v b vy vy b s oy g g b
L 3,=9.91 e e by
, 4 440 DO, 210, M=V, ,,Jd, o 4 ooy by o b

F N | L. IJEI(LNMLBL&SI(IMI)QLGITJ'_XNIMJ‘BLRISI(1M1+lll)l)l lclol |T|°x L3l0L

L1 2,0l [CONTIINUE | o v L 0 o g b
PR J=KOWUNT -1, v Vv v b e ey
T 1 F(J].,EQ. 0), STOIP, . Ly vy b
GO, ,Tio, .40,} ooy by gy g L
b1 13,0 KOUNIT,=M, , , o v b vy v v by vy by
A N\SAVIE-=-NMBRS (M)}, , v vy v by vy v by
Loy o [INMBRIS,(M) S NMBRSICMe VY vy
b NMB RIS (M+ 1) =NSAVE , |
L1 Go, 70, 20, , , , o by oy by e b
L1 ENO, | v vy v v b v e v by L

Note the following:

® The terminal statement cannot be a logical IF containing a GO TO; therefore,
a CONTINUE statement is added and used as the terminal statement. The
CONTINUE statement (also known as a £‘no-op”) does not perform any logical
operation and can be used to satisfy format rules of FORTRAN.

m The extended range is considered part of the DO range being executed; therefore,
parameters of the DO range can be referenced in the extended range.

UP-7536 S) : 5
Rev. 1 | FUN_DAMENTALS OF FORTR.AN) SECTION: PAGE:
; (5) A DO statement can be used to advantage in cases where its use is not readily
‘ apparent. One such case is the evaluation of polynomials which have the form:
apx + a2x““1 ... +agx +ag,.
where each a and the value of x are known as execution time.
For polynomials where n is no greater than 3 or 4, an arithmetic assignment
statement can be used, but as the value of a increases, execution time can be
reduced with a DO statement.
Consider a1x3 + azx2 +a3x + aq. By successive factoring of x, this can be
tepresented as x(x(x(al)+a2)+a3)+a4 which consists of three ‘““multiply by x
and add a constant’’ operations. With the DO statement, this can be evaluated
by:
[N S S Yll=llA1(1]x)lll!llllllllLXLl'llllll
| S W B | DlOlt‘lOll'a=|‘J.13l it ILl PR N S . | lll TN VN SN M S |
L0 Y, = 01X * Y oy A ey VY
For the general case, where n has the value N:
i B SO N N | Lll||£lll]llL!Lll!lllll[J_LJLlL
‘ i L] Yl |=L LAl(lll)l il i | L l L L I L 1 1 J L 1 ' L 1 1 i)| 1
T 1 1 | lFl I(INl'lElgl‘ 101)1 lGIol lTLol 12101 1 1 1 ! 1 Iy A 1 ! i
I SN S B D0, (i, W= %V, Ny] PSR SR NN WY SRS S T S S R N SO
p oo 11,0 Y. o= Xy o Y o+ A e Y Y sy
Ll lglo o | e | ¢ I [L i 1] i H { I 1 e i 1 4 | L] 1 1 1 Fl i 1 1 il

5.5. CONTINUE STATEMENT
Function:

To act as a dummy executable statement. It is used primarily as the terminal
statement of a DO range. It may be used wherever a dummy executable statement
is required.

CONTINUE

Rules:

(1) The CONTINUE statement does not perform any logical operation.

(2) The sequenée of statement execution is not changed by the CONTINUE state-
ment.

UP-7536
Rev.l

FUNDAMENTALS OF FORTRAN

SECTION:

5

PAGE:

22

Example:

The following sequence changes all negative values in array MAP to their corresponding

positive values. Because the last logical operation is an arithmetic IF statement, a
CONTINUE statement is added and made the terminal statement of the DO range.

i

1

i 1 L I i 1] I 1 i1 1 i M i LLl
L DI M s ON MAP(11,00)
i1 i] ! L i I L+ 1 L 1 1 i L gl l

) I S S A 1 i1 I | R S S SO N TR S A | L

| T DLOL 1”01 IK1=111111101°1 |

{

LF.(MAP ((K)), 420,11,0,,,1,0

L 1210 MnALPA(lKJ)Jfl 1-|M1A1P|(1Kl)(

1

e

L1 L]lo cloINlTlllNLULEI Y N I N |]

L1

5.6. PROGRAM CONTROL STATEMENTS

A program control statement either temporarily halts execution of a program (the
PAUSE statement) or terminates execution of a program (the STOP statement).

5.6.1. PAUSE Statement
Function:

To temporarily halt execution of a program.

PAUSE
or

PAUSE n

where: n is a string of one to five octal digits (the digits O through 7).

Rules:

(1) A PAUSE of either form temporarily halts execution of the program. The method
of resuming execution differs with each processor and is described in the pro-

gramming manual for that processor.

(2) The decision of resuming execution is not under program control, but is usually
made by the operator under instructions from the programmer.

(3) With the second form of the PAUSE statement, the digit string is displayed or
accessible by other means. Use of these digits depends upon the particular

processor used.

(4) If execution is resumed without changing the state of the program, program
control is passed to the next executable statement in normal sequence.

UP-7536 . 5 23
Rev.l FUNDAMENTALS OF FORTRAN sECTION: paGE:
) Examples:
' The following sequence checks a list of account numbers in array LIST. If any
of these numbers is not greater than zero, control is passed to an error routine
and execution of the program is temporarily halted.
Ly DI MEIN,S,1 ON LI STy(,20,,3,0,, 40) , ., , ., ,,
T TSR B S S SRS S NS S S SO SN ST S R ST S G S
Ly DO, 1410, M=1,,.40, | , \ |, ¢ v by
T po ,%jo0, ,L,=,1,,30 , |, L [
I Do, 110, K=, %,,,2,0, , } , o 4 4 v 3oy by
L LEO LIS TOK, L, M), LE.O), GO TO ,20
b o 1,0 ICONTIV NUE, , , o by g b g
Ly 12,0 , ,erlr,o,r, ,r,0o0,t i njle, o, b
Ly oo oy g
o e e
R PAUSIE, | v v b v by
Ly GO, T0 1.0 . . .]l sy e s

5.6.2. STOP Statement

Function:

To terminate execution of the program.

sTOP

or

STOP n

where: n is a string of one to five octal digits (the digits O through 7).

Rules:

(1) There must be at least one STOP statement in a program to terminate execution
of the program.

(2) Action that follows execution of the STOP statement depends upon the particular
processor used.

{(3) The digits of the second form of STOP statement are not necessarily accessible,
depending upon the particular processor used.

UP-7536
Rev. 1

FUNDAMENTALS OF FORTRAN

5

SECTION:?

PAGE:

24

Example:

The following program has read in a list of telephone numbers into array NUMBER.

Each telephone number contains seven decimal digits (no area code). To ensure

that all values have been read in correctly, each number is checked to see that it

is greater than zero and not greater than 9999999, If any such error is detected,

control is passed to an error routine (which may print a message) and execution of
the program is teminated. The second STOP statement is assumed to be the STOP
statement encountered during normal execution and is included to show that a program
may have more than one STOP statement.

S o Dl MEINS) . ON, NUMBIER (,1.00,0,0, ot o oo o by b s e g
i, U PR PP DS T SRS NI RO S ST S I NP RSN IPIIT S B G A S A WPV NS
e, PPN PIPU PP S SO P RPN VA SPr VST R AP ST ST SV I8 SO T SR N SPU S S WP UIT T SN S SO S ST S ST RN S
—— 0,0, 10, X =V, ,%V000} ..o by gl e e v b g s f
e L NI R G 00 AND L USRI L LB ,9,909.9.9,9,90) . 16,00 TOL 101 L
N N TSN YR FUSU Y YU T8 FUIY 1 £ TSP S WU U W Ul H VTS W S WA ST WU BTS00 TS T S SO S S0 VN S S VAT SS O S S G N U BT S
b IRV L3 SR U WS T S VO ST RS SUC WU AT AP IR S ST YA ST S N S Y U SPUT O SN IR ST T VAN S S S WS N0 W VS AT U S Y S S
bk, PRI LI S S Lo o uana g boa PR ST SOV ENT U U ST T T SV S T S W S ST A ST T WA SO0 ST S
i s.YoPy | P T bk PR EITUE SO S S SO SR SRS S GRPENT S VPN ST G R
el 0L ICONTIENUE |, P U0 WP N S T S SO S U S A
NI T B . | BT TR PR PR SEPTIT T T AU WA S SN PSS S T SO VU VAT S TP U T S S SO
it a0 LI:ILIIL;!A | ST TPV ST ST I R I S S ST Y S S WIS WO R HE WU Y S SV W S ST 'Y
i, OPl , . 2 | BT SRR b o b e by | o
b L) ENO | o | ST G SR S W N S S A M S AU A S U I S U N A S S S S S S RS I
AP B P SN R R B

UP-7536

Rev.1 | FUNDAMENTALS OF FORTRAN 6

SECTIONS PAGE:

"'y - 6. INPUT/OUTPUT AND FORMAT
- STATEMENTS

6.1. GENERAL

Input statements fetch data from input and auxiliary storage devices to be used in

. the program. The input statement is the READ statement. Output statements store
tesults obtained in the program on auxiliary storage devices or display the results
on output devices. The output statement is the WRITE statement.

The sample program deck of cards of Figure 1-8 illustrates use of the READ and
WRITE statements. The same program can be used without change for different data
decks. All that need be changed in a particular application is the deck of data cards.

FORTRAN also gives the programmer some control over external devices with the
BACKSPACE and REWIND statements for positioning such devices as magnetic
tape, disc, and drum units. The ENDFILE statement can be used to demarcate files.

These statements apply to the transfer of sequential files to and from the processor.

A file is the entire set of data on the [/O device designated in an I/O statement. A

file may be subdivided into records. In an 80-column card reader, each record is an
80-column punched card; in a printer, each line is a record; in a magnetic tape unit, each
record may have a different size (in characters) up to a maximum which is specified for
each computer. Tape records are usually separated by a gap which contains no data.
Each record may be subdivided into fields, the size of which is determined by the

. programmer.

The term sequential file is used as opposed to a random access or direct access file.
For example, with standard I/0O statements it is not possible to read the fifth record
of a file directly; it is necessary to indicate that the preceding four records are to be
passed over. Once the fifth record is read, it may be impossible (as in the case of a
card reader) to go back and read the third record; however, this can be done where
the BACKSPACE or REWIND statement is effective (as on magnetic tape).

READ and WRITE statements may refer to a FORMAT statement which describes the
characteristics of the data being transferred. Such statements are called formatted
statements. FORTRAN alsc provides for the transfer of information from one medium
to another without change or conversion; these [/O statements are called unformatted
statemeats. In addition, a READ or WRITE statement usually contains a list that identi-
fies the items being transferred.

The remainder of this section describes:

B elements of /O statements

8 FORMAT statement

® formatted READ -and WRITE statements

8 unformatted READ and WRITE statements

& auxiliary I/0 statements

UP-7536
Rev. 1

. . , : 6 [2
FUNDAMENTALS OF FORTRAN sEcTioN: PAGE:

6.2, ELEMENTS OF READ AND WRITE STATEMENTS

Each READ or WRITE statement may reference a FORMAT statement or specification
and a logical unit, and may contain an I/0 list.

6.2.1.

6.2.2.

Logical Unit Number

The logical unit number is an unsigned integer that designates the I/O device contain-
ing the file being referenced. A file may be transferred from one medium to another. If
it becomes necessary to access the same file later on, it will have a different logical
unit number than the one originally used. In previous examples, the integers 1 and 3
were used to denote a punched card reader and a printer, but these numbers were only
for use in examples. There is no standard convention for assigning numbers to logical
units. This information must be obtained from programming manuals for a particular
processor.

Input/Output List

The purpose of an input/output list is to identify transferred items so that they can be
referenced in the program. A transfer initiated by a READ or WRITE statement is not
complete unless all items in the input/output have been transferred. It is convenient
to define an input/output list in terms of a simplé list and a DO-implied list.

A simple list is a variable, array element, array name, or two simple lists separated
by a comma. For example,

V2,ARRAY MATRIX(5)

is a simple list. Previous examples were restricted to simple lists in READ and WRITE
statements. When an array name appears in a simple list, it refers to all elements of
that array in the order described in 2.7.4,

An I/0 list is a simple list, a simple list enclosed in parentheses, a DO-implied list,
or two lists separated by a comma. When there is no I/0 list in a READ or WRITE
statement, the I/0 list is said to be empty. For example,

V2,(ARRAY MATRIX(5),(NAME))

is an I/0 list. No I/0 list may contain a constant except in a subscript expression or as
a parameter of a DO-implied list.

A DO-implied list is a list followed by a comma and a DO-implied specification, ail
enclosed in parentheses. A DO-implied specification has the format:

i= ml',mz,m3
or

[= my ,my

UP-7536
Rev. 1

FUNDAMENTALS OF FORTRAN

6

SECTION: PAGE:

The italicized parameters and the control variable are the same as those for the DO
statement (see 5.4). For example, the DO-implied list (ARRAY(K), K=3,5) refers to

the array elements ARRAY(3), ARRAY(4), and ARRAY(5), in that order. This illustrates
one of the advantages of a DO-implied list. It enables selected array elements to be
referenced without the use of a DO statement. The DO-implied list (MATRIX(]),
ARRAY(]), J=1,3) refers to the array elements MATRIX(1), ARRAY(1), MATRIX(2),
ARRAY(2), MATRIX(3), and ARRAY(3), in that order.

Examples of DO-implied lists:

(D

3

(4)

(5)

(6)

((ARRAY(J,K), J=1,5,2), K=3,4)

refers to ARRAY(1,3), ARRAY(3,3), ARRAY(5,3), ARRAY(1,4), ARRAY(3,4), and
ARRAY(5,4), in that order.

(ARRAY(],K), J=1,3)

refers to ARRAY(1,K), ARRAY(2,K), and ARRAY(3,K), in that order, where K
was defined previous to execution of the READ or WRITE statement containing
the DO-implied list.

((ARRAY(J.K,M), J=1,]2), K=1,K2), M=1,M2)

refers to the array elements of ARRAY in their natural order if J2, K2, and M2
were the declared dimensions.

An example of an I/0O list containing a DO-implied list is:
A,B, (C,LARRAY(K), K=3,5)
refers to A,B,C,ARRAY(3),C,ARRAY(4),C, and ARRAY(5), in that order.

The elements of an array can be referenced in any order. For example,

((ARRAY(J ,K), K=1,L), J=1,M)
interchanges the order of subscripts of ARRAY.

An example of a DO-implied list within a DO-implied list is:
(«ad,n, 1=1,10,2), B(J,3), J=1,K)
The order of reference is clearer if shown as follows:
DO J=1,K
[‘DO 1=1,10,2

A(LJ)
B(J,3)

Thus, the order of reference is:

A(1LD,AG,1),A(5,1),A(7,1),A(9,1),B(1,3),
A(1,2),A(3,2),A(5,2),A(7,2),A(9,2),B(2,3),

A(l,K),A(3,K),.A(5,K),A(7'K),A(Q,K),B(K,3)

UP-7536 | 6 4
Rev. 1 FUNDAMENTALS OF FORTRAN | secrion: res,
6.3. FORMAT STATEMENT
Function: ' .

To provide conversion and/or editing information between the internal representation
and the external character strings in conjunction with a formatted READ and/or WRITE
statement.

Format?
(q1t121629 - - -+ th_120-1192)

where: each q is a series of one or more slashes (/) to act as a record demarcator and
may be omitted.
each t is a field descriptor or a group of field descriptors,
each z is a field separator. .
The part (q1t121 . e q2) is called the format specification.

Rules:

(1) A FORMAT statement must have a label. It can be referenced by one or more
formatted READ and/or WRITE statements.

(2) If a formatted READ or WRITE statement references a format specification by

» array name, only the format specification (including the enclosing parentheses)
must be the first item in the array. Any information in the array after the rightmost
parenthesis is ignored. For example,

S IR R VO Jl!lJLlLlullllllllllllLllll;lll ‘

Lt RRE,AD| ,(,1,,,1,0),K,2 ,1X3,,,K4,,,K5,, Kié6,;,,Ki7, |
L 10 FORMIAT, (13,1,5;,:3, 48D v 4 v v v v v b w0403y

indicates that K2, K3, and K4 are to be interpreted as integers occupying five
character positions, and that K5, K6, and K7 are to be interpreted as integers
occupying eight character positions. The READ statement could also have been
written as:

DL‘ lMlEilell lOLNi |llN1TL(lzl)1

| 1 i ! I} 1 l 1 | | 1 i i I H

Lol il DA1T1A1 l|lNLTl(I]L)JllslHl(lellsl’L/L’1|LNITI(lzl)L/ll4lH]3I1!8I)|/!

R S YO AU TN UG SO TN SN ST R SN WY TN W T SN SN T S SOV TAE WA SN TN S S VNN S SN N U SN S T N

il I A 11 I'LALll S I S N S | l | N Y N | I S I 1 | - | i1 lJ 1

N N B R|E1ALDI !(1111111N1T1) LKIZ!IxK'3|l!Kl41'LK15|'IK161'J§17| i S } I

where the DATA statement initializes the contents of array INT to the required
format specification, using Hollerith constants.

UP-7536
Rev. 1

6

SECTION:

FUNDAMENTALS OF FORTRAN |

PAGE:

(3

(4

(5)

(6)

The only restriction on the use of a format specification in an array is that the
format specification cannot contain a Hollerith field descriptor of the form nH.

Blank characters may be used freely in the FORMAT statement or a format
specification, except with a Hollerith field descriptor.

If there is an I/0 list in the formatted READ or WRITE statement, the format
specification must contain at least one field descriptor other than nH or nX.

Format control (control by a FORMAT statement or specification) is initiated when
execution of a formatted READ or WRITE is started. (Further details on format
control are furnished in 6.6.) -

The first character of a record to be printed is not printed; it is used as a form
control character as shown in Table 6-1.

CHARACTER VERTICAL SPACING BEFORE PRINTING -
BLANK ONE LINE
0 TWO LINES
1 TO FIRST LINE OF NEXT FORM
+ NO ADVANCE

Table 6~1. Form Control Characters

There are many ways of assuring that the required form control character is the
first character. The safest way is to use 1HB or 1X for the blank character and
1HO, 1H1, 1H+, respectively, for the form control characters in Table 6—1. However
the sequence)

- e by e by e by
- Ko b b v v v v e b e e by
L WRI TIE(.3,,:2,00), K, teyoyoyey vy 0 | I.L L
2,0] IF,ORMIAT (0.2, ¢0oy-)] v v v v 4 v s 1 a0 by v g 1,

will have the same effect as if the FORMAT statement had been written

1 LLlllLll!llll!llllLllIlIlll!ll

1210 FlolRlMlAlTl(l‘{x!Jl'L1LII'L‘l'l’l)l) IS WS T S | l | S T T U N

In both cases, the printer will advance to the start of the next line and print the
digit 1 in the first print position of the line.

UP-7536
Rev.l

-6

SECTION: PAGK:

FUNDAMENTALS OF FORTRAN

|

However, if the FORMAT sta-tement had been written :

I L jllllllllllllllllllillllllllll

|2|° E«olRleAlTl(lliluL'ul'1'”: R T N (N S N T | 1 | SO N S I |

6.3.1.

the printer would have advanced to the first line of the next form before printing the
remaining items of the I/O list,

(7) A format specification without any field descriptors is valid. For example, the
format specification (/////) is valid. It causes the printer to advance five lines.

Record Demarcator

The term record demarcator refers to the one or more consecutive slashes (/) that
appear anywhere in a format specification. If there are n slashes at the beginning
or at the end of the specification, n records will be skipped; if there are n slashes
anywhere else, processing of the current record is terminated, and n—1 records are
skipped.

For example, in reading punched cards, the sequence

L do RlElAlDl l(l]ll l]vlol)ALlKlzillKl3l b 1] 1 A L L i Ll -

lo FloleM'AlTl L(LIJS |/|' 151)! J A 1 I 1 i] J i I 1 1 A 1 1 1

will obtain the value of K2 from the current card and the value of K3 from the next
card. The sequence

J ‘lll[lnglllllLlllllL!(Ll'[lLllL'

1 i RIEIAID' |(III’(]IOL)L lKlz‘llKi3l I 1 1 L i L LLL 1} 1 1]

I] lo FlolRlMlALTAL l(l/ l/lt LSL/L/IIISL/I/J)l 1

LLllll‘llJLl

6.3.2.

causes skipping of two punched cards before obtaining the value of K2 from the third
card; skipping the fourth card; obtaining the value of K3 from the fifth card; then skipping
two cards for processing of the next READ statement (if any) for the same file.

Field Separators

A field separator is either a comma or a series of one or more consecutive slashes.
It is used to separate field descriptors in the list of format specifications. The
slash(es) also acts as a record demarcator and ends processing of the current record.

For example, in printing information, the sequence

L1 w1R1'1T|E1 1(131:11101)1 !K12|11K13|:1Kl4l i1 1 | S T D W §

1,0 FloleMlAlTl 1(|]|xl'||151'11151/|1|X|'||15|)

i I I i

will cause printing of the values K2 and K3 on one line, and the value of K4 on the
next line.

UP-7536
Rev.l

6

SECTION:

FUNDAMENTALS OF FORTRAN - l

PAGE:

6.3.3.

Field Descriptors
Function:

To indicate how items from/to an input/output device shall be represented internally/
externally and provide editing information in the form of spacing, form control (printer
only), and Hollerith data.

xPrfFw.d -
xPrEw.d
xPrGw.d
xPrDw.d

rlw

rlew

rAw

thlhz PRI hn

aX

where: the letters F, E, G, D, I, L, A, and H indicate the conversion and editing
and are called conversion codes.

w and n are unsigned integers greater than zero indicating the number of
character positions in a field of the external medium,

d is an unsigned integer constant indicating the number of.digits in the
fractional part of the external character string (except for the G conversion
code). '

r is an optional nonzero unsigned integer, the repeat count, indicating how
many times to repeat a basic field descriptor that follows it.

xP (optional) indicates scaling, x being an unsigned integer representing
the scale factor,

h represents a character from the processor character set.

Rules:

(1) The field width must be specified for all descriptors.

(2) For descriptors of the form w.d, d must be specified even if it is 0, and w must
be greater than or equal to d.

(3) All output is right-justified in the output field width specified by w, preceded by
leading blank characters (w permitting).

(4) The number of characters produced on output cannot exceed the field width, w.

6

UP-7536
Rev. 1 FUNDAMENTALS OF FORTRAN

SECTION: PAGE:

6.3.3.1. Blank Field Descriptor

The field descriptor for blank characters is nX. On input, n characters of the input
record are skipped; on output n blank characters are inserted in the output record,
except for the carriage control character.

6.3.3.2. Numeric Data
There are five conversion codes for handling numeric data:
8 the rlw code for handling integer type data
8 the xPrFw.d code
8 the xPrEw.d code for real type and complex type data
8 the xPrGw.d code

8 the xPrDw.d code for handling double precision type data

-On all numeric conversions, a blank character in the specified field is treated as
a 0, A blank field is treated as the integer zero. Depending upon the processor and
the field width specified, positive values may be preceded by a + or no character
position; a negative value requires a character position in the field width for the
minus sign. Leading blank or zero characters are not significant.

6.3.3.2.1. Integer Type Conversion

The basic field descriptor Iw indicates that the external field occupies w positions
as an optionally signed integer and is represented internally as an integer type
item.

On input, the extermal field may contain only a sign followed by digits, with
blank characters anywhere in the string. No other characters are permissible. If
the sign is plus, it may be omitted; if the sign is minus, it is required. On
output, the extemnal field consists of blank characters (if necessary) and a minus
sign or an cptional plus sign followed by the magnitude of the intemal integer
type value.)

Examples:
(1) An input card contains

Position 1 8

BE661562

UP-7536
Rev. 1.

FUNDAMENTALS OF FORTRAN

6

SEC TION?

PAGE:

and the following statements are used:

RJ_ElAlDl(Llill]xol) lNlAlMlElzlLJN|AlMIEL4J_ L1 !

L

L

I

I 1

i L Illo FIOIRIMIA}TI(1|LSL'I'I3l)l l 1 A] 1 i 1 1 i L l 1 J 1 L 1 i i -
The first five columns will be read to obtain the value for NAME2, which is
1. Then the next three columns will be read to obtain the value for NAME4,
which is 2.
If the following statements are used instead:
1 1 1 1 " I} 1 1 | 1 i 1 1 Il 1 | 1 | } 1 1 1 1 i 4 1 I [l I} I { {1 1 S
1 1 1 H RlElAlolLL]lellol)INIAIMIE]ZI:IN|AIMIE14lnlNlAlMLEl6I 1] 1 i | 1
Lol L‘Lo FloLRlMLAJI l(‘lll4lllllzlllll3l)l Ll 1 1 1 1 | 1 b 1. I N o il 1 1
the first four columns will define the value of NAME?2 as 0; the next two
columns will define the value of NAME4, as 10; the next three columns will
define the value of NAMEG6 as 20. Note that trailing blank characters are
significant and treated as zeros.
If the following statements are used instead:
} 1 | 1] 1 b l S S 1 J L 1 1] l i i 1 1 1 H 1 1 1 1 { ' ! 1 1 e L I N
1 L 1 RlEJAIDl(111111101)1N1A|M1£|71 | S | 1 11 1] ‘ L3 1 L 11 i 1 1
bl 1119 FLOJ&LMIAITL(LIL91)I PR | l | I W R I OO SO SO T | I | S N I (VR WO MR S S|
the first nine columns will define the value of NAME7 as 10020.
(2) A punched card contains
1 2 3 4 8
Position 1 0 0 0 0 0
(55551234560 ~12345-56 1234556 -123565+5152534F65 ... B
and the following statements are used:

e | 1)3 1 1 IR L I 1 1 1 1 1 { 1 1 L i N ! 1 1 i 1 1 1 l L L 1 1l " L L {
L1 L ! DlllM!EiNlSlllolNL LILALRLALYJLIZL)L 1 i N l { N | 1 . 1 L1 1
N | LLtll':llLlilll[lllllLlllLJ!illlll
L1 1 11111‘11111111111x||11111111L¢LL11
1 1 1 1 RIEIALDI 1(11111110!)1 lKlltllllAlRLAlYlllKlzlglKl3l-lKl4l 1 | R
N 1 1110 F‘lo’R!MlAlTl 1(13'll111l151113!xJ:l|!611L|L8LLLlL5I‘l'l]]ol.l'lsl)'

UP-7536
Rev. 1

6

FUNDAMENTALS OF FORTRAN ’ SECTION? PAGE:

10

(3)

The first three columns are skipped;

the next five columns read in the value for K1, which is 1234;

the next three columns are skipped;

the next six columns define the value of IARAY(1), which is -12340;

the next eight columns define the value of JARAY(2), which is -12340;
the next five columns define the value of K2, which is -123;

the next 10 columas define the value of K3, which is 102034;

the next five columns define the value of K4, which is.0.

The list is now satisfied and any remaining items on the card are ignored.

After the following sequence is executed,

o P INAME2 = P VO
iy { IWAMEIL = V0, by
el 1WRI TIE (3, 1,0) NAME2 , NAMES | . .,
i 1,0 IFPORMIAT (30 X 3 0o s g by

the printed line is:

106566~ 10 starting in print position 1.

If the output list items in the WRITE statement had been

PR PRSI S T S T S YT S ST S U 0 W YT G VU S S S SOV UG A T S WY SAE N

) WRITIE(I, VO JMAMIES MNAMED , | 0 , ,

an error condition would result. The first print character is a minus character,
which is not a legitimate form control character. If this minus sign is interpreted
as a form control character (in some processor implementations}, there is not
enough field width provided for printing —10. In this case the FORMAT state-
ment requires a change such as:

i 2 YUV ST SE S SN N WU SN A ST S SN T ST SN ST U I S S WA

oy V0] [FORMIAT (N 4 ,,3 X, 8120, o 0 b p 0w by 00y

to ensure that NAME4 will be printed correctly.

UP-7536
Rev. 1

SECTION:

FUNDAMENTALS OF FORTRAN l P | X | PAGE: H

6.3.3.2.2. Iaput of Real Type Data

ekl)

For input numerical data to be represented interally as real type data, three
conversion codes are available: the F, E, and G codes. Operation of these three
basic field descriptors is identical for input data (their operation differs on output
data).

The basic form of the extemal input field consists of an optional sign (optionally
preceded by blank characters) followed by a string of digits and blank characters
with one optional decimal point anywhere in the string. This basic form may be
followed by an exponent, having any of the following forms:

® a signed integer constant
® the letter E followed by an optionally signed integer constant
B8 the letter D followed by an optionally signed integer constant

A decimal point in the basic form overrides the decimal point specified by the
d designator.

Example:

A punched card contains

1 2 3 4 5 6
Position 1 0 0 0 0 0 0
3456789 345.6789 3456789+3 -67.89E-3 -6789D10 -67.89D-2

and the following statements are used:

SRS TR SNV S W VU U VANV WY G S SUDN S YR SO0 S W N ST S0 WO SN SOV W W A N S NS T AU VO VA MO W S VS WU N S T

RLEAAlD'(lllrl‘loﬁ)l 1AL‘1¢A|2!I|AIsllnAlﬁlrlMslllAléx U O T I § l I NS S G N W H S N [il

RTINS Y]

FORMIAT (,F 10,.,0,,,610.,0,,F10.,3},,6,1,0,.,3,,8%,0{.,2,,2,%,,6,8.,1} ,, -

Al is defined as 3456789.0;

A2 as 345.6789;

A3 as 3456789.0;

A4 as -0.06789;

A5 as -678900000000.0; ‘

A6 as 0.6789 (note that the minus sign is lost).

UP-7536 \ T 6 12
Rev. 1 FUNDAMENTALS OF FORTRAN

SECTION: PAGE:
— —

6.3.3.2.3. Output of Real Type Data

On output of numerical data that is internally represented as real type data, three
conversion codes are available: the F, E, and G codes. The output form is different
for the F and E codes; the G code results in form similar to either the F or E code.

On output, the Fw.d results in an output field consisting of blanks (if necessary),
a minus sign or optional plus sign (depending upon the processor), followed by a
string of digits containing a decimal point and a fractional part rounded to d
fractional digits.

On output, the Ew.d results in an output field of the form:

t0.xy . .. x4Ezy 1y,
or
0.xy . . . xq2y179¥3
where: the choice of form depends upon the processor.

Xy . . . xq are the d most significant rounded digits of the value to be
transmitted,

y represents a digit of the decimal exponent,

the plus sign following the letter E may be represented by a blank
character (depending upon the processor);

t is eithier no character position or a minus sign; the 0 may be replaced
by no character position (depending upon the processor).

On output with the Gw.d basic field descriptor, the form of the external field
depends upon the absolute value of the internal real type value. If N is the
absolute magnitude, the effect conversion is as follows:

MAGNITUDE OF N EFFECTIVE CONVERSION
0.1<N<1 F(w-4) .4,4X
1< N<10 F(w-4) .(d-1) , 4X
109-2 < N < 10d-1 F(w-4) .1, 4X
109-1 < N < 104 : F(w-4) .0, 4X
otherwise Ew.d

For effective F conversion, the absolute value of the real type item in storage
must be equal to or greater than 0.1 and equal to or less than 104,

UP-7536
Rev. 1

FUNDAMENTALS OF FORTRAN

|

6

SECTION:

PAGE:

13

In general, on output with the Ew.d, and possibly the Gw.d, basic field descriptors,
w should provide: '

8 four positions for the decimal exponent;
8 one position for the decimal point;
8 one position for the 0;

m one position for the sign.

Therefore, this general rule pertains to these basic field descriptors: w must be at
least 7 greater than d on output.

Examples:
(1) The successive elements of array table are

.001234

001234
-12,345
-12.345

and the following statements are used for printing:

) ST IE U YOS N N T WO N SN S T N S U NN WO TN ST UG DY U N MU WY N M NN B O B

1 wlRIllTlEl(lslllllol)lTlAlB.L]gl AR N OO N S N | l | S N S T N N T N | ‘

1‘10 FIOIRLMIALTLilllxll lFl hsl -'7111§JJ|5|-|7|, 1F1”51-1214_A El‘15L°l7!)l

The printed line will be (subject to processor options):

1 3 4 6
Position 1 5 0 5 -0

BbBbbHH.0012340b50.1234000E-02bbbbbbbBbE-12.356-0. 1 234500E +02 -

(2) Examples for the basic field descriptor Gw.d on output for different values
of the transmitted item are:

ITEM CODE EFFECTIVE PRINTED
VALUE DESCRIPTOR DESCRIPTOR ITEM
—.0123456 G10.3 E10.3 -0.123E- 01
-23.456789 G11.2 F7.0,4X bbb~ 23. 5556
- 23.456789 G11.3 F7.1,4X B5- 23.55660
-23456789 G11.5 F7.3,4X - 23.4575666
—123.456780 G11.2 El1.2 B5- 0.12E +03

UP-7536 6 - 14
Rev.1 FUNDAMENTALS OF FORTRAN sECTIONS PAGE:
6.3.3.2.4. Double Precision Type Conversion .
On input, the basic field descriptor Dw.d is used for items to be represented
internally as double precision type data; on output, it is used for items that are
represented internally as double precision type data,
The form of the external input field is the same as that for real type conversion
(see 6.3.3.2.2). The form of the external output field is the same as that for the |
Ew.d field descriptor (see 6.3.3.2.3) except that the letter D may replace the '
letter E. As with real type numbers on input, a decimal point in the input value
overrides the d specification.
The advantage of the D descriptor is that it can store and output more significant
digits than the E descriptor can.
Rule:
The internal field must be explicitly declared as double precision type.
Example:
The following short program illustrates use of the D conversion code:
[1 i DJQJUlBlLLEI LPIRIEICI'ISII iOLNL lxl'lx! 21 i I 1 1 1 1 i [l
L1 il RLEIAID‘(IIIII1IOI)I lxl 1 l e e VN S | L} i L l 1 [1 1 i [
[1 l‘Lo FlglRlMlAJl(lolllsl’lsL)l I 1 L L 1 i 1 i i l 1 i 1 1]
1 L1 xlll l=l LZI'IOLI*I IXLI l L A 1 1 1 i 1 1 i l i L. ! i 1
[S | wlRll1TIEI(13III210[)LJIZLJ_‘L | I N S T N | ‘ | i [
1 |210 FlolRlMlAlTl(lDl‘I7I'I51)l l H 1 L | 1 1 L 1 L l [1 L i L i
YU T SJIJOIP[LLLllllilL’LllllllL‘ll-lIll
WS S S| EJ_NJDIllIlLlJ_LLlll;‘LllLlllllllJl(l

UP-7536 6 15
Rev.l FUNDAMENTALS OF FORTRAN SECTION: PAGE: '
; 6.3.3.2.5. Complex Type Conversion
' A complex data type item is represented internally as two consecutive real type
items. Therefore, for each of the pair (the first is the real part and the second is
the imaginary part), a real type conversion code is required..
Requirements for the external input field are the same as for real type conversion.
Each successive pair of items is interpreted as a complex type item.
The external output field requires a separate real type conversion code for each
part of the complex value.
Rule:
The internal field requires explicit type declaration.
Examples:
(1) Input
A punched card contains
. 1 2 3 4]
. Dosition 1 0 0 0 0 0
/A -123.56% -123-3 45.6-02 123.-02 0.0123%%
and the following statements are used:
‘ , | |COMPILEX CPXV, CIPX2 0y) vy v vyl
il llllllllLlllllllIlJl[ll[llllllIllllll
L oo by oy o by ey oy e b ey by gy
- PR NN WD Y TN I N S TS Y U SN T AN TN TN T N TN Y SN T YA N T T N Y TN S Y O N
NI RlElebl A(Illll1101)J_JCLPLXLIIILAIILCIPIxlzl l Lol 1 Il i 1.1 ol l 1 1 I
1,0/ /FORMAT(F'O.0,H”VO.,}, FYO. 1, ELO.,0,/G10.,0)

~123.56-0.0123/ is read into CPX1;
0.456 into A;

1.23+0.0123} into CPX2.

Since the input list is satisfied, the last G10.0 of the FORMAT statement is
disregarded.

UP-7536 6 16
Rev. 1 . FUNDAMENTALS OF FORTRAN

SECTION: PAGE:
(2) Output
After execution of the following program
Aol L CIOLMLPILIEIXI 1C|Prx12u AC[P:XL4| et VPO I S TN VA SN SN OO T T U A S S S WO ST ST N S
TR S 1 clplezl s 4(L':lxzjax'15]6|11‘13n4151EL‘131)i| P S SN WO S VOO VPR DUV ST VY T S ST N
b Cnple‘l Ml 1(17|3491't516|11‘18|9|ol‘ll,|l| L Ll) S S B . | I] l U S NN WY WY U N R 1
——l L) Ac =) |-1-|>41516\ F U S T 5 LJ_L.I T PO T S LALl § T G N I S SO T | ‘ N W S T N S SO N N U
P YR.LIE (.3 (5}, CP. X2 lél WP X4y e
PR F.ORM|AT (E V3.,5 21X ,.8B1,2.,5,5X,F5,.,3,/,F8.,2t,,2X,,F6 ..1))
el 4, S|T1°4P|J;| PP S SR S TS N CUY S S VO A SO WY IO S N AN S VN S WA O SO W VO S AN VOO VU ST VO ST ST U T 1
B TS S S | ElNIDLIIIIIIIILJ‘lLlllLllLlll-llllll_l;lllLl;lLLlJ_l

The first print line will be:
—-0.12356E +03bb-0.34500E +03bbbtrh—. 456

The second print line will be:
©789.5655-890.1

Note that the first character of each print line (a blank character) is interpreted
as the form control character and is not printed.

6.3.3.3. Logical Type Conversion

On input, the basic field descriptor Lw is used for items to be represented internally

as logical type data; on output, for items that are represented internally as logical
type data.

(1) The internal field must be explicitly declared as logical type.

(2) On input, the external field consists of optional blank characters, followed by
either a T for true, or F for false, followed by optional characters which are
ignored. ’

(3) On output, the external field consists of w- 1 blank characters followed by
aToran F.

Example:

An input card contains

1 1
Position 1 0 9
/ TON FOFF

and the program contains the sequence:

UP-7536
Rev. 1

6
SEC TION: PAGE:

FUNDAMENTALS OF FORTRAN - ‘

17

llllllllllllllll]llIllllllllllllillllllllll

LlOLGl'lclAlLl 1s|w1T1c1H|2|'|slw|TLC1HL41 11 f j WD W N S D S S | I S N SO0 VO S A I |

RlElAIDI(l]IIlsl)I lslw|TlclHL2Ll 151w1TLC|H|4| I 11 I | 11 11 ! | ol I} il 1 1 [l 1

il ls FIOIR|MIAITI([L"lolllLl9l)t 1 1 S IS S N | 1 1 l L]] 1 1 1 it l U | I 1 1 1 1 1
e wLRI'nT‘El(asl.ISt)A .S|W1T|C.H|2.._LSLW171C.H14| S L dnemed I S 1 USSR OISR ENUUN WOSIN0F W N |]
The printed line will be:
BE5556556TH00b6b0B0F
6.3.3.4. Hollerith Field Descriptors

Hollerith information may be transmitted by the field descriptors nH and Aw,
as follows:

(1) On input, the nH reads Hollerith data into the n characters following the nH
field descriptor in the format specification. On output, it writes the last
previously defined n characters of the format specification following the nH
field deseriptor.

(2) -The Aw field descriptor reads or writes w Hollerith characters into or from
an element of the [/0 list.

Rules:

(1) The nH field descriptor must not be used in a format specification if a
READ or WRITE statement references the format specification by array name.

(2) For the Aw field descriptor, let § be the maximum number of characters that
can be represented in a single storage unit (see 2.5.1). If w is greater than
or equal to ¢ on input, the rightmost g characters will be accepted and any
remaining leftmost characters will be lost. If w is less than ¢ on input, the
w characters will be accepted left-justified internally with remaining storage
positions filled with blank characters. If w is greater than § on output, the
external field will contain the g characters right-justified with the remainder
of the field filled with blank characters. If w is less than or equal-to g, the
external field will contain only the leftmost w characters from the internal
representation.

[Ixamples:

For explanatory purposes, it has been assumed that no more than five characters

can be stored internally in an integer, real, or logical data type item. The number of
characters that can be stored in a single storage unit varies with processor implementa-
tion; there is not standard capacity.

UP.7536
Rev. 1

FUNDAMENTALS OF FORTRAN

6 18
SECTION: PAGE!

(1) In this program, the aH field descriptor causes

printing of specified characters,

MR K= Wt oos oo e b o o by
T FTCAY T T B S S T | L
NP MS UM=3,+K , ;o oo by g by
TR WRITIE(3,,1,0), MSIUM b b
1ol (FPORMIAT (8 H TOTAIL, 4=, 0,2, . . .
M s TOPy oo e b e e by
END [o ey e

The printed line will be:
TOTAL =3

{2) Consider the following short program which reads in one data card containing:

1 2 3 4 5
Position 1 Q 0 0 0 0
/ CURRENT 1.2 56.78 2.3 34.56
i
e T I TR U AR S A
L LD MmN S ON, RS TR0, V0L TS0, AMPS, (11,00, o] ‘
o | READIGH, 10, CGRSITRGK) G YOLTISCK Y K= b2 0 00y 0 1y Ly
L .1.0] |F.ORMIATET0HS VOLITIAGES S Fi1,Cl..0,, F1,0 .0 Fl1,0..0, F10,.,00),
L DO 210, (Ky= 30,520 5 o b0y vy s p b v b s o]
20) [AMP. S (K),=VOL TS (1K), /RSTROGKI o0 o ol
Lo P wR TIEN(3,,, 100, CAMPS G i 02000 0 0 e b e g L
e s;Tloip'llllllxlxLLlllilllllLllillllllll_Lll-llllLL
e o L IEND o g e b e s L

The printed output is:
CURRENT566b66647.325656615.03

The READ and WRITE statements are processed as:

{(a) After the card was read in, the FORMAT statement became, in effect,
10 FORMAT(10HBCURRENT®6,F10.0,F10.0,F10.0,F10.0).
On printing, the first 5 was interpreted as a carriage control character
and was not printed.

(b) It was not necessary to define all elements of the arrays since these
were not used.

(c) Although the WRITE statement required only two [/O list items, its

FORMAT statement contained four field descriptors. As soon as an [/O
list is satisfied (all items are accounted for), format control is terminated.

UP-+7536
Rev. 1

FUNDAMENTALS OF FORTRAN I

6 19

SECTION:

PAGE:

W W NN A W N e

- e e ek e
oW - o

3)

The next example shows how the coding of repeated field descriptors can be

simplified.

The program of the previous example is simplified and made more 1/0 oriented by:

(a) reading in the format specificaiion;

(b) reading in the number of array elements to be processed in the DO-implied.
lists;

(c) simplifying coding of repeated field descriptors;

(d) reading in the numbers for input/output devices.

The first input record from the card reader is organized as follows:

(a) In columns 1 through 8, (8F10.0) is used as the format specification for
input data for arrays RSTR and VOLTS. This specification is named
INFORM.

(b) In columns 11 through 31 (A1,15X,A5,A2/(1X,F10.0)) is used as the
output format specification, OUTFRM.

(c) In columns 39,40, a two-digit unsigned integer denotes NIN, the input
device for data for arrays RSTR and VOLTS.

(d) In columns 44,45, a two-digit unsigned integer denotes NOUT, the output
device for the computed data in array AMPS.

(e) In columns 49,50 a two-digit unsigned integer (not greater than 10} indicates
NMBR, the number of array elements required in each of the arrays.

(f) In columns 51 through 57, CURRENT denotes output heading.

(Statements are continued for illustrative purposes only.)

D,IME|NS,1,ON_,RSTRI(,1,0),,v0LTS|(,1,0)),,;AMPS(|V0,),,,

JNFORM(,2), , OUTIFRM(,5),, TI TILEC2,), 1 0y
DIAJTLAl ICINITIRILI/IIIHLOl/I 1 ‘

PN W WU S TS NN TR ST ST YO WY SN WS WA WA NN SN S N

RJLALDl(lllnl‘|°|)n 1||N|F|°1R1M|.|°|U1TJEJLLLL1N1I1NI.1N|°|ULTlll F I B S |

mlalanlllTlluEvnllLilllIIALllllnxnllllllllx

F.ORMAT(2A5,, ,5A5.,3,63X,,8:2) ,1AS5,, Av2), ¢ 4 | 4

RAEAD|(NN, L NFORM), GRS, TR (KE), VO LTS, Ke) 1oy o 5

—

JK1=I"11N)MIBIR])IlllILllllLllllllllLll!llllll

DO ,2{0, M= 1, NMBR} ., 0 o v by v vy by

ALMIPISI (IMI) I=LvL°lLlTl sI (IML)L/I RISITIR| (lyl)l |

U S S S BET TN R TS T

wRITIE(NOUT, OUTIFRM), CNTRL, TLTLE,, | oy o

—

JAMIPS (30, e T INMIBIRY e s

slT10!P|lljlljlllllkllllllilllllllllllllll

EINIDl 1 § N N (S SN W W W | I Il | EN WY S B IS SN § I At 1 ¢ 1 i 4 J 1 l 11 1 1

UP-7536 6 20
Rev. 1 FUNDAMENTALS OF FORTRAN secTion: PAGE:
Up to three of the remaining input records can contain, as before, the input
values for voltages and resistors (RSTR and VOLTS) in fields of 10 positions .

per value. The input device for these records is designated by the programmer.

The output contains a header and the calculated output values (AMPS), one
value to a record. The output device for these records is also designated by
the programmer.

The repeat specifications and the use of seemingly redundant parentheses within
a format specification are described in 6.3.3.5 and 6.6, but their particular applications
in this program are described in the following paragraphs.

In lines 4 and 5, the I/0 list requires12 items: 2 for INFORM, 5 for OUTFRM, 1
each for NIN, NOUT, and NMBR, and 2 for TITLE.

In line 6, the two items required for INFORM are covered by 2AS5, which could
also be written as A5,AS; and the five items required for OUTFRM are covered
by S5AS. However, a group repeat designator is used in this line. This indicates
successive repetition of the group within the parentheses. The group repeat
designator 3(3X,12) could also be written as 3X,12,3X,12,3X,I2.

Line 7 refers to the format specification in INFORM, which is (8F10.0). The 8 means
that there can be 8 fields to a record with the basic descriptor F10.0, However, as
many as 20 values may be required: 10 for RSTR and 10 for VOLTS. If the DO-list
indicates that more than 8 fields are required, the first 8 fields will be read in, a
new record automatically started, and the same specification (8F10.0) used, and so
on, until all values required for the 1/0 list are read in.

The WRITE statement refers to the format specification in OUTFRM, which is (Al, .
15X,A5,A2/(1X,F10.0)). The Al refers to the carriage control character called
CNTRL, that was initialized to 1HO. It is not permitted to use an nH field descriptor
directly in a format specification that is stored in an array; therefore, this indirect
method must be used. (An alternative method would be to read it in.) The slash in
this format specification indicates the end of a record. The field descriptors that
follow apply to the next record which permits only one F10.0 field descriptor to a
record, applying to the output results in AMPS. If AMPS contains more than one
value (indicated by NMBR), it will automatically start a new record and use the
1X,F10.0 for each new value and record. If the 1X,F10.0 was not'enclosed within

its own parentheses, format control wculd have been started at Al, instead of

after the slash each time a new record was required.

UP-7536
Rev. 1

6

SECTION:

FUNDAMENTALS OF FORTRAN ' |

PAGE:

21

6.3.3.5.

Repeat Specifications

Repetition of a field descriptor (except nH and nX) in a format specification is
accomplished by using the repeat count r (see 6.3.3) immediately before the basic
field descriptor. For example:

SL3 is the same as L3,L3,L3,L3,L3.

Repetition of a group of one or more field descriptors and/or field separators is
indicated by enclosing the group in parentheses and optionally preceding the
group with an integer constant. If no group repeat count is indicated, its value
is implicitly 1. This form, with or without a group repeat count, is called a
basic group. For example:

2(2X,215,F10.0) is the same as 2X,I5,15,F10.0,2X,15,I5,F10.0.
2(//) is the same as ////. '
2(4HHALT) is the same as 4HHALT,4HHALT.

A further grouping may be formed by enclosing field descriptors, field separators,
and/or basic groups within parentheses. Again, a group repeat count may be
either specified or implicitly 1. The parentheses around this further grouping are
called second level parentheses. Parentheses are permitted in a FORMAT state-
ment only to a second level; therefore, this further grouping may not be contained
in another grouping by parentheses.

The first left parenthesis and the last right parenthesis required of a format
specification are not considered group delimiters.

Example:

READ (I N,S5) (M(,K) , K=1

PR P SR ST L |

2) N2, (A (3, Bl Jd) ,C(1), Jj=1,2)

il S A Sl T Rl R L Y PSS R A Tl Tl LA 1 PSSl LA

FORMAT(3M 2. 203X, 2(2F6 342X, Fé 4D 4% 02D v

PR P TS VU A VU U VU S SN ST ST VO ST S S S S N0 YO0 Y SN VU S ST Y SO Y N T SO U A SO A RS A W S S NP R

The elements of the [/0 list are read in as:

M(1) with specification 12
M(2) with specification 12
N2 with specification I2
skip three character positions

A(D) with specification F6.3
B(1) with specification F6.3
skip two character positions

c() with specification F6.4
A(2) with specification F6.3
B(2) with specification F6.3
skip two character positions

C(2) with specification F6.4
skip four character positions

N with specification I2

UP-7536 6 22
Rev.1 FUNDAMENTALS OF FORTRAN secrion: orog:
6.3.3.6. Scale Factor
Input and output using the F, E, G, and D conversion codes can be scaled up or .

down by a power of 10 if the conversion code has the form xP immediately pre-
ceding a repeat specification (if any), where x is an integer constant that may be
preceded by a minus sign. The effect of x, the scale factor, is to multiply the
corresponding I/0 list item by a power of 10.

Rules:

(1) When format control is initiated (see 6.6), a scale factor of zero is established.
Once a scale factor has been established, it applies to all subsequently inter-
preted F, E, G, and D field descriptors until another scale factor is encountered
and then established.

(2) The effect of the scale factor is temporarily suspended for input with F, E, G,
and D conversions that contain an exponent in the external field.

(3) For input with F, E, G, and D conversion and no exponent in the external field,
the internally represented value is the external value divided by 10X,

(4) For output with F conversion, the external value is the intermal value multiplied
by 10%.

(5) For output with E or D conversion, the basic constant part of the output is
multiplied by 10* and the exponent is decreased by x.

(6) If the effective use of E conversion is required for output with G conversion
(see 6.3.3.2.3), the scale factor has the same effect as for E conversion. If .
effective use of the F conversion code is required, the scale factor has no
effect.

Example:

Two identical punched cards have all values right-justified in their fields of
10 positions each, as follows:

columns 1 through 10: 100.21
columns 11 through 20: 100.21
columns 21 through 30: 100.21D-3
columns 31 through 40: 100.21
columns 41 through 50: 567890
columns 51 through 60: 12345E-2
columns 61 through 70: 1234.5
columns 71 through 80: 654321.321

with the following statements:

PRRTU (VU SO0 S S S S VAT VAR SV00 TUT ST ST TN WA ST S VAN WSO SNY TS VT ST AN SO ST SN S S S WA SO S ST S ST S T

........ PYRNETNE VAU YO NP ST SE S R S S S S

DOUIILE PR ECIISIIOlN AB[,BB

USRS A S SRR S S AP T T T ST SR ST S S UUT S W S S RN

P eSS S VT USRI RS I S SV SN ST S S NS S Y S ST N T

L
i 1
IR I T SV ST A i S S U WAT W T B SIS Sy
] I
I |
{

R.EAD|(|,‘10) A,A18,B,BS

PR — RTINS S S PR VAT WUV NI T i

FORMAT(F10 .0,2,P2E10.0, 260

et Tl Bl ST ML

on' lolpnlell lo i

UP-7536
Rey.l

1

6 23

SECTION:

PAGE:

A
FUNDAMENTALS OF FORTRAN |

A(1) is read in as 100.21 because the scale factor is established as 0 (unless

stated otherwise) at the start.

A(2) is read in as 1.0021 because the scale factor of 2 is effective.

A(3) is read in as 0.10021 because the scale factor of 2 is temporarily suspended

by the exponent in the extemal field.

A(4) is read in as 1.0021 because the scale factor of 2 is still established and

effective.

A(5) is read in as 5678.9 because the scale factor of 2 is still established and

effective.

A(6) is read in as 0.0012345 with the scale factor now established as 0.

A(7) is read in as 1234.5 because the scale factor is still established as 0.

A8 is read in as 6543.21321 because a scale factor of 2 is now estallished and -
effective.

Because a new record start is required by the list, the next card is read, but there

has been no termination of format control.

B(1) is read in as 1.0021 because the scale factor of 2 is still established and

effective. _
B(2), . . . ,B(7), and B8 are read in with the same values as the corresponding A’s. -—

6.4. FORMATTED READ STATEMENT
Function:

To initiate input of data from a specified input device and to scan and interpret this
data in accordance with a format specification.

READ (u,f) I/0 list

or .

READ (u,f)

where: u is either an integer constant or an integer variable that identifies an input
unit.
f is either the statement label of a FORMAT statement or the name of an array
that contains the format specification.)
1/0 list is described in 6.2.2.

Rules:

(1) The number of records to be read depends upon the I/O list and the format speci-
fication.

(2) Format control is started and terminated in accordance with the rules of 6.6.

(3) There are no standard conventions for assignment of integers to input devices; the
integer for a particular input device depends upon the computer being used.

UP-7536 B 6 24
Rev. 1 FUNDAMENTALS OF FORTRAN S rces

Examples: p
w o
iy 1 Y A s l i A 1 A Sy e re i I i 'y L. L L s 1 L 1 ' 1 '] 1 L L. L L A 1 l

W BT Y RIElAlD‘ l(l‘lllllox)L IAIII(jALglgIA|YI(IK|) et Koz (V0 ?dc o 1
i 1,8 FEORMIAT (8,FE:1,0,, 4000 5 5 0000 oo 0 o 0y oo o

Eight values are read in: one value for A, and seven values for the elements of ARRAY.

(2) T S Y SRS N Y T S U ST ST SO ST S NV Y SN ST ST S SO S WAL S DAY T SO S U ST U WA HNT N |
s o | JREA DI NPUT 10); A, (ARRAY (K}, K=1,.7)..;
j Y A 1] LBJ_lI(lBlRlRJAXYI(IKl)LI lKl=l]lll7l)l L i | ‘ b S T i 4] b W S 1 L
) S lllo FIOIRLM‘AITL(LSIFI‘IOI.‘ol)J | W T Y b I S | I Lt L 11 bl 1 L

Regardless of the input device represented by INPUT, one value is read in for A,
then seven values for ARRAY. A new record is automatically started, one value
is read in for B, followed by seven values for BRRAY.

3

O S I | llllllJllIlLlIllllllllllllL]L#
i1 BLELlnl l(L|LN1PIUQT,L4|l|°l)I S I Y N SN TU0S W W | [| I T T S |
Ao d, 4_110 FIOlR'M‘AIII ;(1!.Q.]hﬂgglﬁlgﬂ1&Q|5|§|§|h i ’ | IO T]

The first 10 characters of the record from INPUT replace HEADINGBED in the ~
format specification; the same FORMAT statement can then possibly be used in

a WRITE statement to supply the header. ‘
4)
1 H 4 A DJ' lnlslntsI'LolNl lAIRlRIAIYI(I‘JlI i L N da Ll 13 i) —1 L L -
L DAT Al ARRAY(V) /I4M(//) /0 o V0) 0y
PR VY llL'.AlAALllllllIlllliklllllllll
| N N ST i 1. L '.l i 4. 1 1 1 1 3 1 I 4. A 1L 1 1 1 A L l L L bl 1 1 b~
el edvena RLejfnol(XIJ!L' xA:RLRAAJjA)i P SO U ST S WO VO (T S W ST S W S

The format specification for the READ statement is obtained from the array named
ARRAY. The effect of the READ statement is to advance the input device by two
records.

UP-7536
Rev. 1

6
FUNDAMENTALS OF FORTRAN

SECTION: PAGE:

25

6.5. FORMATTED WRITE STATEMENT

Function:

To indicate the output of data to a specified output device in accordance with a format
specification.

WRITE (u,f) /0 list

or

WRITE (u,{)

where: u is either an integer constant or an integer variable that identifies an input
unit. ‘
f is either the statement label of a FORMAT statement or the name of an
array that contains the format specification.
I/0 list is described in 6.2.2.

Rules:

(1) The number of records to be transmitted depends upon the I/0 list and the format
specification.

(2) Format control is started and terminated in accordance with the rules of 6.6.

(3) The first character of a print record is not printed; it is interpreted as a form
control character (see Table 6~1). In standard FORTRAN the printed line may
start in position 1; however, many printers indicate the presence of the control
character by printing a blank character, so that printing may start only with posi-
tion 2 of a print line. This characteristic should be checked for a particular
processor,

(4) There are no standard conventions for assignment of integers to particular output
devices; this depends upon the processor being used. (In examples, 3 is used to

indicate a printer.)

Examples:

(1

—t TR RS ST S U BT S S SIS ST S I S N B SN S NPT I N

WR ILTE(3, 10)

.:'n‘gnjnlun1111.A¢L4\1||1:11'xltLL4|.|lJ

F I I S N I S U) ’ 1

10|l FORMAT(TH1, 15X, 1 5HNAME OF PROBLEM)
lL!lIlIllllll[lllAlllllllllllllLll

The printer starts at the first line of the next form, spaces 15 positions, and prints
NAME OF PROBLEM.

Lol 1JLL||||l||11L|lllAJll|[ll||1|||1I1|1111l111‘|

ot NOUTi=6, , \ vy v boyowy v g by vy o g Vo s o by

WRITIE(NOUT 10D, A .58.C

s L’Lx i 4 o 111 i’ > 1 k3 kl & e l e il & 1 1 it & Llhl

10| [FORMIAT (VT HT, 15X, 15HNAME OF PROBLEM/Y X, 3 FT0.4)),

K F Sabed B B Bl T Rt

UP-7536
Rev. 1

D 6
SECTION: PAGE:

FUNDAMENTALS OF FORTRAN

26

The output device, if magnetic tape (as an example), will contain the character

1, followed by 15 blank characters, followed by the characters NAME OF PROBLEM,
all in the first record. The second record will contain 16 blank characters followed
by the values of A, B, and C, each in accordance with the F10.4 conversion code.
These records may be sent to a printer later on.

6.6. FORMAT CONTROL

The following rules describe the relation between format control and the I/0 list
(if any) of the formatted READ and WRITE statements. '

(1) Format control is initiated with the start of each execution of a formatted READ
or WRITE statement.

(2) When the format control encounters an I, F, E, G, D, A, or L basic descriptor in
a format specification, it determines if there is a corresponding element in the
1/0 list, If there is no such element, format control is terminated; if there is a
corresponding element, it is converted and transmitted, and format control proceeds.

(3) If format control proceeds to the outermost right parenthesis of the format speci-
fication, it determines whether another I/0 list item is to be transmitted. If not,
format control is terminated. If another list item is to be transmitted, format control
starts a new record and control is transferred to that group repeat specification
(which may be an implicit 1) terminated by the last preceding right parenthesis
or, if none exists, to the first left parenthesis of the format specification. This
action does not affect the scale factor that has been established.

For example, if there are list elements to be transmitted, a new record is started
and format control continues at

(...x(...)...x/(...x(...)...).)

where: x is a group repeat specification (which may be an implicit 1).
If the format specification does not contain any inner group parentheses,
format control continues at .

..

(4) There is no corresponding [/0 list element for an X or H basic descriptor. An
I/0 list requires at least one field descriptor other than nX or nH.

)

Examples:

1)

R1EIAIDl(lllePLUITIl|1|0])!(.IALRiA!lel(LK;)LlL Lgljl]lllsl)l

]0 FloleMlAlTl 1(L8LELlnox‘lsl)l_l S NN SR S WO N | l U NS TN N S S

The eight values of ARAY2 are obtained from one record.

UP-7536
Rev. 1

6 27
SECTION: PAGE:

FUNDAMENTALS OF FORTRAN I

‘ @ | :

1 i 1 [l L 1 1 I 1 1] Il 1 1) L 1 l 1 1 L |] 1 1 1 1 I L ol L 1] L 1

e READGUNPUT 1,0 CGARAY2, (KD}, (Ki=T1,,8),
|- 1]L0 FIOIRIMLAJ_TI(lFllloL'lsl)i 1 | S S N Y S I N] Y DO D N R WU S |

The eight values of ARAY?2 are obtained from eight successive records.
3)
| WO I W | llLlilLJLl_lll!ll|l|llll|lLllllLl

S D T RIEIADI‘(LIlNIPAUITllLllol)l(lALR_LAdlzLLlKI)l.l:Kl:llla18L)| I
P 1]‘0 FJOLRIMlALTILZIFl11°IllsL/Ilel‘loLl5[)_L | Ll | S T S NN S N

The first two values for ARAY2 are obtained from the first record; the next three
values from the second record; the next two values from the third record; and the
last value from the fourth record.

4)
I I lLlLJlAIlljJ;‘L‘|llllJ_lllllllllll;L
o o | [READCINPUT 10)] (ARAY2(K)]., K=1,8) .
[t 1110 FIOIRIMIA‘TI(Llelllol'lsl/L(_leFL]lol'lsl)l)l ‘ F I VS I N DR SN S S N

The first two values for ARAY?2 are obtained from the first record; the next three
values from the second record; and the last three values from the third record.

UP-7536 | 6 28
Rev. 1 FUNDAMENTALS OF FORTRAN

S_!I_CTIONt PAis:

6.7. UNFORMATTED WRITE AND READ STATEMENTS

Function:

To transmit the exact binary configuration of I/0O list elements to and from an external
device.

"WRITE (u) I/0 list *
and

READ (u) I/0 list
o ,

READ (u)

where: u is an unsigned integer constant or an integer variable designating an input
or output device.

[/0 list is described in 6.2.2.

Rules:

(1) An unformatted WRITE statement transmits the exact binary internal representation
to an external device. An /0 list is required with an unformatted WRITE.

(2) An unformatted READ (of either form) can only be performed for records created by
an unformatted WRITE.

(3) The unformatted READ with I/0 list transmits items until the list is satisfied,
provided that the record contains at least as many items as required by the I/0
list.

(4) An unformatted READ without [/O list can be used for positioning the file to the
next logical record.) A .

(5) A formatted READ should not be used for a record created by an unformatted WRITE.

Example:

Execution time of unformatted READ or WRITE statements is much faster than the
corresponding formatted statements. They are generally used to write out large lists
on temporary files and read them back when required by the program so that main
memory is free for other processing. For example,

Car 238 l FUNDAMENTALS OF FORTRAN : l mm: o rces »
.' N DI MEINS, I ON ARRA|IY(1 0,00,), , | ., |
. P PPN SO T S S S SR S SO VA S N W SNV SRR RN SO T
TR PSS (S U VA SN SN S SO AN YA BN S TN VN WS S S SN S Y T SO S S
L PR WA VU T S WO YUY WY YOO SO WA S AN ST ST WO SUN SN WA RO WA S SN SO S S G
Ly W,R,l,TI.E,(,M,T,A,P,EL)J AIRRRAY, o 0 0 Ly
TN RNV R S T WA T A T SUT SN SUNN AN SR SO SN TUN S S NS WG W AN SR N N
Lt PRI oA YT S YT S VNN S WA Y AT ST SV S S T W S S AR S '
L1 PSRN N YR WO SN W ST S SO T S N0 W0 N TN TN SR SN SR WY S R SN S SO
Ly READI(MTAPE) ARIRAY . . L 40 4 4
i PR (YT VU WA Y VAT S ST AN Y A ST SN YO ST S WO S S S B S S S
L e b ey e b e e b
| S I W | i1 1 I I WU W SN N N S S l Ll S Lt 1 ¢ ‘ i1 { 1
where: MTAPE represents a temporary file on magnetic tape, drum, or disc. The binary
contents (1’s and 0’s) are written and then read back just as they appeared in the
1000 storage units (see Table 2—-4) reserved for ARRAY.
B 6.8. AUXILIARY INPUT/OUTPUT STATEMENTS
. The auxiliary input/output statements are:
8 REWIND statement |
s BACKSPACE statement
s ENDFILE statement
6.8.1. REWIND Statement

Function:

To cause an input/output device to be positioned at its initial point.

REWIND u

where: u is either an integer constant or an integer variable identifying an input/
output device.

Rule:

The REWIND statement is applicable to such I/0 devices as magnetic tape, disc,
and drum units. Its implementation on devices such as card readers and printers
depends upon the computer being used.

UP-7536
Rev.1

FUNDAMENTALS OF FORTRAN I

SECTION:

6 30

PAGE:

Example:

FIOIRIM[ALTI(I' l'l'l)l F l Sl

PR I0N TN A S N T TN O SN S WA O O

R.EADIUMTAPE, 1,00)].,.,.

b i 1 l 'S 1 H 1 L 1 1 i 1 I] L

LlllLlﬂLlllllL'IJ

R,E.ADI(MTAPE, V0)].,. . .

lLll'lllLlLllllll
]

lllL‘illlellllll

R.ELWJIN,D. IMITLALP|EI 1 l Jomand

- ‘
Lt
L
| I S
[
I
L1
L1
|)
) S }
11
L.l

6.8.2.

RLEIAIDI(1MJ;TLALPLELI l‘lol)l’ o Ll

BACKSPACE Statement

Function:

The first READ references the first record on MTAPE, the second READ references .
the second record, and the third READ references the first record.

To backspace one record on a specified input/output device.

BACKSPACE ¢

output device.

where: u is either an integer constant or an integer variable identifying an input/

UP-7536
Rev.1

] FUNDAMENTALS OF FORTRAN

|

6

SECTION:

PAGH:

31

Rules:

(1) The BACKSPACE statement is applicable to such I/0 devices as magnetic tape,

disc, and drem units. Its implementation on devices such as card readers and
printers depends upon the computer being used.

(2) If the unit identified by u is already at its initial point, the BACKSPACE state-
ment has no effect.

Example:

i i 1

lllllllllllilll

F'lolRIMlA|1-l(l-l'l-J)l L l 1

FE | l.l 1 i 1 i 1 I 1] ll

o1 1 l 1 1 I i 1 L H i i l |

B,ACKI|S,PACE MTAPIE

A BT
P T
P
P
'
P T
N
el
M
M
M
i
P
i
'
T

§ S T T |
TS S W |
J I |
| I
S S
| I N |

PR WOT IR A0 W00 0 NS W0 M O S W A

RIE A Dl(AMJT|A P Eq. IILOL) l- le

1.

The first READ references the first record, the second READ references the second
record, and the third READ references the second record on MTAPE.

6 32

SECTIONS

UP-7536 '
Rev. 1 FUNDAMENTALS OF FORTRAN

PAGE:

6.8.3. ENDFILE Statement

Function:

To record an endfile record on a specified input/output device.

ENDFILE u

where: u is either an integer constant or an integer variable identifying an input/
output device.

(1) Execution of this statement causes creation of a unique endfile record. The form
of this record depends upon the processor being used.

(2) When such an endfile record is encountered during execution of a READ statement,
the action taken depends upon the processor being used.

Example:
L1} llllLllLlLllLlllll]llllLll]L
e 11L0 FIOJ_RLMlAlT)(l'I'l‘I)) Ll I L sl l— 14L| bednd
) I S Ill‘lllLJlLJLAL'LLllgllLlLllllL
ST B B ljJ.lgpll_Ll;lllllliJ_lIlllLllJl
. | wlRll 1T1E1(1M|TLAIP|§J.IIJQl)L Lot .+ 1 1 1 1 l i l.l L
P B N N 114:11_11111111!1L1LJ1L1|L111|
S S | EIN!DIF“ 1L|EI IM!TIAlPlEl l I O SRS TR N S T I |] bt 1

UP-7536
Rev. 1

PAGE:

. i 7
FUNDAMENTALS OF FORTRAN [: lm,m.

7. SPECIFICATION STATEMENTS

7.1. GENERAL

Specification statements are nonexecutable and must precede all other statements in
a program unit except the FUNCTION, SUBROUTINE, BLOCK DATA (all in subprogram
units), and FORMAT statements (see Table 2-2).

The specification statements are:
B type-statements

m DIMENSION statement

m EQUIVALENCE statement

m COMMON statement

s EXTERNAL statement

This section describes all but the COMMON and EXTERNAL statements. Because of
their association with procedure subprograms, these statements are described in
Section 8.

7.2. TYPE-STATEMENTS

. Function
To explicitly declare the data type of a symbolic name and/or declare an array.

INTEGER V1 Vs e
" and
REAL VisVy, -
and
DOQUBLE PRECISION vi,vy, -
and
COMPLEX Vl,Vz, cas
and

LOGICAL V1V, oo

where: each v is a variable, an array name, a function name, or an array declarator,
separated from the next v by a comma.

UP-7536 ,
Rev.1 | FUNDAMENTALS OF FORTRAN _ sxcrion:

PAGE:

Rules:
(1) Explicit type declaration of a symbolic name applies to all appearances of that .
symbolic name in the same program unit.

(2) Any symbolic name of data type double precision, complex, or logical must be
typed explicitly, since these are not governed by the rules for implied typing.

(3) Explicit type declaration of an array refers to each of its array elements. In a
main program unit, the array declarator may contain only integer constaats in the
subscript. In a subprogram unit, the array declarator may contain integer constants
and/or integer variables.

(4) Type-statements of the forms shown may not be used for explicit type declaration
of a function name in a function subprogram if that name appears in the FUNCTION

statement. The FUNCTION statement provides for explicit type declaration of
the function name of the function subprogram.

Examples:
1

I | IS S B 3 I '.' lNlTlElGlEJRA IMLA!TIRLI lxl(l2 L'isl'l4l)l’1leLRlTl 1 1 I It

This statement types the array MATRIX and the variable XQRT as integer type.
(This is redundant, since MATRIX is implied integer type.) It also declares the
dimensions of array MATRIX. Such a statement can appear in any program unit.

I I T lllllllllll[ilLLlllll[-Llllllll

Lo INTEIGER;, MATRIXI(2,, M, 14) 1 XQRT) 4 1 4 3

This statement can only appear in a procedure subprogram because it.contains an
adjustable dimension. The function reference or subroutine call that must precede
such a statement defines the vaiue for N at execution time.

UP-7'536 ‘ | 7 ‘ 3
Rev. 1 FUNDAMENTALS OF FORTRAN szcTion: PaGE:
.' 7.3. DIMENSION STATEMENT
Function:
To declare one or more array(s).
DIMENSION vy, vy, ...
‘ where: each v is an atra& declarator separated from the next by a comma.
| Rules:
(1) If any of the arrays is adjustable, it can be declared only in a procedure subprogram.
(2). An array may be declared in a DIMENSION statement and explicitly typed in a
type-statement, although a type-statement can accomplish both these functions.
Examples:
(i) The statements
1 o b e v b e ey e by g g
L D, M\EINS,!| ON, ARRAIY Y (3, ,4,,5), IARRAY2,(5,,6),
L4 I NTEIGER, ARRAY T | v 0 & v v by s v s a1y
‘ can also be written as:
T PRI ST S S A VNS TSNS AN S S ST G S S S WA NSNS A ST ST N SR
Lol DIMEINS 1TON. ARRAIY2(,5,,6,), , | ¢ ¢ ¢ ¢t ¢ ¢ ¢ ¢ 1y
‘ y 0 W NMTEIGER ARRAYIIC3 450 by L
} (2) The statement
L1y ST UT U SR T NN TR S A S S S S S S S S N S N S A A A A AT SO AN

TE I N | DIIIMIEINLSLI LOJNJ IALRIRLALYLlL(LJLI|K|I|L|)|'lA|R|R|A|Y|21(111'121' 13L)l

can only appear in a procedure subprogram because of the adjustable array.

UP-7536
Rev. 1

7

SECTION:

FUNDAMENTALS OF FORTRAN l D

PAGE:

\

7.4, EQUIVALENCE STATEMENT

Function:

To permit sharing of the same storage space by two or more entities of the same
program unit.

EQUIVALENCE (ky), (ko) ...

where: each k, enclosed in parentheses and separated from the next k by a comma,
is a list having the form:

81, 32, ese ,am

where: each a is either a variable or an array element (not a dummy argument) with
only constants as subscript expressions;
m is equal to or greater than 2.

Operation:

The following series of statements causes sharing of storage units:

DIMENSION V2(12) KU3. 2)

Ay PLJ_ALLIIIAIll‘_lJ_l;Lj;lJ_lJ_LLngllA

s compmt EXx vi1(1,.2,3).€ 4,

SISO E U P E Y W S T S U BT S TR

pousLe PRECISION 0(2.2)

PO TSR Y N P IO T ST S T TR B

Grrncds i
L0G! CAL L

el T oot ST SN WG W RS VO T SO SRS SO0 WA TOANY VOO WY SOV ST Y SN S SN TN ST S AU UNNS SEN ST VU T U VUNY VU U A U U

e L [EQUIGVALENCE, (V1 (1) V20100, (020, K4V, 20, LC4) €D,

SHARED SHARED ,
/ A KD) \
w2 an] P2 ST
wazn| AR oy [G R
vi(1,1,2)| ‘\gg oy | [EGD tgg
naaal [on]
V1(1,1,3) ngé) L(10)
V1(1,2,3) zigg

Figure 7=1, Effect of EQUIVALENCE Statement
From Figure 7-1, it can be seen that:

B Sharing is accomplished on the basis of storage units. For example, V2(4) shares
the same storage space as the second storage unit of V1(1,2,1). (See Table 2-4
for storage unit attribute of the different data types.)

8 An array can be referred tc as a one-dimensional array in the EQUIVALENCE
statement regardless of the number of dimensions in the array declarator.

UP-7536

Rev.1

FUNDAMENTALS OF FORTRAN

7

SECTION: PAGE:

¢))

)

(3

C))

(5

(6)

M

Each entity in a given list, k, is assigned the same storage or part of the same
storage. The sequence of items in a list is unimportant.

The number of subscript expressions for an array element must be either the
same number as in the array declarator or it must be 1. However, the number of
storage units reserved by the array declarator must not be exceeded by the array
element reference,

If a two-storage entity is equivalenced to a one-storage entity, the one-storage
entity will share storage with the first storage unit of the two-storage entity.

If one array element is equivalenced to an element of another array, both arrays
are equivalenced. (See 2.7.4 for the order of the array elements.)

A dummy argument of a subprogram must not appear in an EQUIVALENCE state-
ment. -

When one entity of a list, &, has its value defined, all its associated entities of
the same list are defined. For example, when D(2,1) in Figure 7—1 is assigned a
value, the contents of K(1,2), K(2,2), L(4), L(5), and C are defined.

The programmer must avoid contradictions when referring to the same array more
than once in an EQUIVALENCE statement. For example, the following statement

PRRFAIES RS U U VA SV GO ST W YOO T S VAN WO T A S U VAV S S ST SUTNT S S S S VST SR WU TS B W Wi

PR T S |

EQU.I VALENCE (A(3),.C(,2)) ., (A(.2),.D(2)),(€(2),D(1))

Y Tonall Tl Vol Shod S PR B B Rl AN LA | A el LA LA S PR LA RS

bl)

TSNS A U W S U SN SO S S S U U AU N N ST W N U SOV W ST N A N S VAT VA S N W T T T S ST

(8)

causes equivalence of A(3) and D(1), which is a logical contradiction,

Special considerations apply when a COMMON statement is involved:

8 When two entities are equivalenced, both entities must not appear in COMMON
statemerts of the same program unit.

® Although it is always possible to equivalence an array past its end in an
EQUIVALENCE statement (as was done in Figure 7-1), it is not always
possible to extend an array ahead of its beginning (as was done to array DP
in Figure 7—1) if one of the arrays is listed in a COMMON statement.

UP-7536
Rev.l

7

FUNDAMENTALS OF FORTRAN

SECTIOM:

Examples:

(1) The primary intent of the EQUIVALENCE statement is conservation of storage.

For example:

T DI MENSI ON I NTGR(,500) RL({500), . . | . ., .1
o o . | DOUBILE PRECI SIION DP(S5S00 . o o o0y b
=l e EQUIVALENCE, (DIP (1), I NTGRI(,1,)), (DP(2]51V), R L(1),)I
e R RO BT R A S S R S S
e e U
ST D.O 1j0 . K.=1,,,8500t , o oo by ey
L1 0 P NTGR KD, = oot 0 e e b
N T R T R T A S |
ST AU SO S R S H S S UU O S S SN U N SV WSS S ST S S VN ST S VAU S SO WA S S U I
el lDO. 210 K=V, 850000 1L L
o 200 IRVCKIY, = oo o b e b
N B N S T A S A A BT
NPT BTSRRI S B SO ST SN B
i L IwRITIE(MPRINT,,310,) L WTGR R
oy 30l IFORMIAT (. . .), 4 el i a1
N P N BT ST A AT B SO
i N B SR BT S AT i NV TSR ST S T B N SRR |
L., .| DO, 40, K= 1, 500, 1 0 oy b g]
LI IR A Y €) U W R R A W (T S S U U S U0 W W S U N YAAG WY S WY S WY S N SO0 SV S N G N M W
— T R T U R ST D S S S S R T
et NPT (S0 TP U W S ST VAT T U SO T W SR YOO SN ST ST VO T N SN S YU SV SUTT ST ST A S W N
The EQUIVALENCE statement cuts down storage requirements by 1000 storage
units.
(2) The EQUIVALENCE statement can force the storage of non-COMMON variables
or arrays. In this example, the variables R, T, B, and A are stored consecutively
- in memory:
—— N T N S R S S RS RS
— EQUI|VALENCE (R, VY(1),),,, (T v ¢20,0,.,(8, W(.3)) . (A, V(i14)),
s R U Y S VAT E S E U S S ST I VAT ST S S VA T ST EE T S VAT ST AU S W A ST S RSN B Y
When the statement
s RN N S SR BTSSR SV A S
PR READI(MCARD, F) IVVOKDY G oy o b s P BN S W ST S S S

is encountered, a value for R, T, B, or A is read in depending on whether the
value of K is 1, 2, 3, or 4, respectively.

PAGE:

UP-7536 7
" Rev.1 FUNDAMENTALS OF FORTRAN sECTION: PAGE:
o - (3) An EQUIVALENCE statement can make allowances for errors in spelling that
: ‘ occur in a program unit. For instance, if an array was declared as CHIEF(3,4,5)
i and the name CHEIF was occasionally used to refer to the array, it is only

necessary to write

b b PR S W U S S S T S SN I S ST W R N S VUV SN S S YT A O NN WG Y

Lt i 1 Elolull llelLlEINlc El l(Iclnll IEIFI(l‘ I) 15 ICIHLEI| IFL(ll l) l) '

I

DllIMLEﬁ‘JS| oN cH E'IF'x(lsl'l‘l'lsl)l A BT R A

g Wt Toll T s ol S |

bW I |

|
|
|
rather than correct every statement containing CHEIF.

UP-7536

Rev. 1 . FUNDAMENTALS OF FORTRAN 8

SECTION: PAGE:

8. PROCEDURES AND PROCEDURE
SUBPROGRAMS

8.1. GENERAL

Up to now, programs that contained only one program unit, the main program, have

been considered, with little discussion of procedures. This section describes procedures
that can be defined in a program unit and expands the concept of procedure subprograms,
showing how the programmer can use these and, where they are not supplied with the
compiler, create his own external procedure subprograms.

The four categories of procedures and procedure subprograms are:

8 statement functions

s intrinsic functions

extemal functions

u external subroutines -

A procedure may be a single executable statement or it may be a fixed series of
statements. The operation(s) to be performed by a given procedure is always the same.
Each time a procedure is invoked, the values to be used in it can be defined by the
programmer if required and the procedure can return values. The advantage of using
procedures is that the series of operations for a given procedure need Le defined only
once, eliminating the necessity of redefining the procedure each time it is invoked.
There are two methods for passing values to and from procedures: (1) by use of argu-
ments, (2) by use of the COMMON statement. Either, or both, may be used, except
that a function reference requires at least one argument.

A function procedure is invoked by a function reference of the form:

function name (ay,4a9,...,ap)

where function name is the symbolic name that identifies the function procedure, and
each a is an actual argument.

UP-7536 : 8 2
Rev. 1 FUNDAMENTALS OF FORTRAN SECTION: PAGE:
A function reference appears as a primary either in an arithmetic or in a logical expres-
sion, For each actual argument in the function reference there must be a dummy argument in ‘

the definition of the function procedure that will be replaced by the value of its actual
argument during execution. Some function procedures, namely intrinsic and basic ex-
ternal functions, are furnished with the processor and need not be defined by the
programmer. Statement functions and function subprograms are written by the programmer.
An example of a basic function reference is:

L2 I - | f 1 i i1 1 1 | S T} Lrl] L1 1 1 1 | | ! | W S T | il 1 i
Ll .T|H|E1T1Al il l.| L lsl Lol l i | Ll 1 1 1 bd] L Ly Lk Lol
i 1 CL |=l lAl l:l IBL l*l lclolsl(ITIHIEITIAI) 11 l | - | V- | S W

The function reference is COS(THETA), and THETA is the actual argument that must
be defined before the function reference is encountered. During execution of the
arithmetic assignment statement, THETA is evaluated and a value for COS(THETA)
is then returned to the arithmetic expression so that it can be computed and a value
can be assigned to C. A function reference must have at least one actual argument,
but may have many. For example, a function subprogram is called AREA and computes
the area of a triangle, given the three sides, and is referenced in an arithmetic
expression as Y = AREA(X,Y,Z). This subprogram can be expanded to also return a
value for the perimeter and reference it by Y = AREA(X,Y,Z,PER), where the value
of PER is used in any statement that follows the function reference. A function
reference cannot redefine any other values in the same expression containing the
function reference.

A subroutine call invokes a procedure external to the calling program unit, but it

does not necessarily return any values to the calling program unit and it need not have
any actual arguments. After the task of the subroutine (defined by the programmer) is
completed, control is returned to the next executable statement of the calling program
unit. For example, if the same list of records is read in many times in a program, the
procedure can be defined once in an external subroutine subprogram and be called
upon many times in the program by CALL READIN(ARRAY), where ARRAY is the
actual argument. .

8.1.1. Statement Functions and Intrinsic Functions

Statement functions and intrinsic functions are function procedures requiring few
computer (machine coded) instructions for execution. Therefore, when the program
is submitted in machine code form for execution, it is feasible to insert these
computer instructions inline for each reference. For example, if the intrinsic
function ABS is referenced many times in a program, the instructions for this
procedure will be repeated inline in the machine coded executable program as
shown in Figure 8-1.

UP-7536 ' 8
Rev. 1 FUNDAMENTALS OF FORTRAN

SECTION: PAGE:

normal

instruction
sequence

$instructions for ABS

% instructions for ABS

é instructions for ABS

Figure 8~]. Inline Coding of Statement Functions and Intrinsic Functions

8.1.2. External Procedure Subprograms

External procedure subprograms (function and subroutine subprograms) are function

procedures that generally require more than one FORTRAN statement for definition

and many computer instructions for execution. Therefore, the set of instructions is

recorded only once in the machine coded program and placed out-of-line so that it

can be entered only by a machine coded control instruction. After execution; control

is returned to the referencing program by another machine coded control instruction.
‘ . For instance, if the cosine function COS is referenced many times in a program, the

. machine coded program will appear as in Figure 8-2. '

1A
18

2A

last instruction to be executed

’ data

I

cosine procedure

Figure 8-2. Qut-of-Line Coding of External Procedure Subprograms

UP-7536
Rev. 1

FUNDAMENTALS OF FORTRAN

8

SETION:

PAGE:
- m—

8.1.3. Communication Between Program Units

8.1.4.

Values may be transmitted to a procedure or a procedure subprogram through the

—

actual arguments of the reference or call and returned through a function name and
actual arguments. The COMMON statement is another method of transmitting
information between different program units. The EXTERNAL statement identifies
a symbolic name used in the list of actual arguments as the name of an external

subprogram.

‘Valid Forms of Arguments

Table 81 lists, for reference purposes, the valid forms of procedure arguments.
These are explained, in more detail, in the applicable paragraphs.

PROCEDURE

FORM OF ARGUMENT(S)

ACTUAL

DUMMY

statement function

basic external
function

function subptogram@

subroutine subprogram@

intriasic function

arithmetic expression, logical
expression

arithmetic expression of required
type

arithmetic expression, logical
expression, array name

arithmetic expression, logical
expression, array name, name
of extemal procedure, Hollerith
constant

atithmetic expression of
required type

variable

variable, array
name, name of
external procedure

variable, array
name, name of
external procedure

@ If an actual argument corresponds to a dummy argument that is defined or rede-

fined in the subprogram, the actual argument must be a variable, array element,

or array name.

Table 8~1. Forms of Argument

| UP-7536 ' : 8
Rev. 1 I FUNDAMENTALS OF FORTRAN l SECTION: P AGE:
8.2. STATEMENT FUNCTION
. There are two types of statement functions: arithmetic statement function and logical

statement function.
8.2.1. Arithmetic Statement Function
Function:
\

To define an arithmetic procedure with one FORTRAN statement. This procedure
may be used in its program unit as many times as required.

function name(al,a , ...,a) = limited arithmetic expression
n
where: function name is a symbolic name identifying the procedure.

the a’s comprise the list of one or more dummy arguments, a list of variables
enclosed in parentheses and separated by commas,

limited arithmetic expression is similar to an arithmetic expression except that it
may not coantain an array element as a primary, and it may not reference, in any
way, the statement function of which it is a part.

the maximum value of n is defined for each processor; there is no standard
value.

Rules:
(1) An arithmetic statement function reference is a primary in an arithmetic expression.
The actual arguments are arithmetic expressions and must correspond in number; order,

and type with the dummy arguments.

For example, the statement function

) S I | llllllllllllllllIlllllllllllllll

1 1] L ALVJBIGlE l(IAI’ IBI' Icl) L L=1 1(lAl L+ L LBl !+l lcl) !]/l !3 L lol

can be used with the following statement:

The value for the actual argument R is substituted for its dummy argument A, S for B,
and T for C. A value is returned to the statement function reference so that the arith-
metic expression Y — AVRGE(R,S,T) can be evaluated and assigned to Z. The state-
ment function reference

UP-7536
Rev.1

8 6

SECTION: PAGE:

FUNDAMENTALS OF FORTRAN

Al lll[lllllllljllLlllllLLlllllll
11 21231=l lYlZI ol IA‘]lIRlG‘EI(IRl:Isl-INl)lllllliJL .

is incorrect because the data type of N is inconsistent with the data type of C. The
statement function reference

L, 1 1z3, 0=t Y3 = JAVRGIE (3,820 0 oo by vy

3)

(4)

(5

6)

N

is incorrect because there are oaly two actual arguments, and three are required by
the statement function definition.

All arithmetic statement functions must appear between the specification statements
(if any) and the first executable statement of the program unit (see Table 2-2). The
limi ted arithmetic expression may use references to previously defined statement
functions as primaries.

The function name may not be used as a variable within the same program unit; it is
used as part of a statement function reference.

Each dummy argument in the list must appear at least once in the limited arithmetic
expression.

The arithmetic statement function definition is a nonexecutable statement and cannot
have a statement label.

The function name is governed by the rules for implied and explicit typing of symbolic
names; it need not have the same data type as its arguments. Evaluation of the limited
arithmetic expression is subject to the rules for mixed type evaluation of arithmetic
expressions, and assignment of a value to the function reference is subject to the
rules of Table 4-1. -

Variable names used as dummy arguments are purely local to the arithmetic statement

, definition. They may be used elsewhere in the same program unit for any purpose.

UP-7536
Rev.1

FUNDAMENTALS OF FORTRAN

8

SECTION: PAGE:

Examples:

et PSRN (TN TR NS R S VT SIS T ST S WY S U A WO TS HNT AN Y SN WS WO THU S W T AR ST R I
1 D MEINS I ON) ARRAIYAID oy 3 0o oo] 10 v g oo gy
Ly S UMSIQ (A, B ,:C), =] (A% %2, +, B**2, b, (G2 |y
Lt TLITUNE [T U N S S0 W N ST UD N SN0 S N WA ST T WO S A YOO A S S N S SO B S N SO
i PRI EN ST S TN T TN TN WA W N SN U SO S N WA S S SN N S S S S VO S S S AR
NP TIPS S WP SUVT SO S S S ST G T N ST T S U S S S SR
NP I [0 TR NU TR P O P B B S
b o VO IARRAIY(ND, (= Ny g) 0y 0o oo g b e g g o
Ly Z =, {SUMSQ(ARRMANY (1), ARRAY(2), lAlRlRlAlY‘l (13),),

A value of 14.0 is assigned to Z. Note that the mixed data types in the limited
arithmetic expression conform to the rules listed in Tables 3-1 and 3-2.

(2) The same statement function can be defined with only variables in its limited arithme-
tic expression, but these variables must be defined prior to the reference. For example:

DI MEIN,S, 1, ON, _ARRAIY (,3)

llllLllllllLLJlllll

P
oy s .U MSIQ. (A, B . C), =] A**KI1 +, 6 B|* *“K2 .+ ,C**K3
N ...JL:IJL,I..IL......U.l,l.......ll,l
P PRI IO TLI T N ST NS SUY T ST S SN VU SN S SOF WA S N WO W AU Y S S MO S NS NN SO S RPN
e LI = 2 e
e X020 =) 20 b
L Ky3, = 2 v e b e e e
g Do, 110, M=1,030 v by s by e
iy 1,0 ARRAIYCND = N b T)
L Z, = |SUMSQCARRAY (1), ARRAY(2), ARRAY (13)))

(3) A statement function definition may contain references to previously defined statement
functions. For example:

lllllLLLlll

|

it s 1oy NN ST
TR SUMUIXe YD) = X b Yy b g gy by
S UMSIQ(A,B)=A*™2 + B**2 .+ S UM(A,.,B) *1*2,
} I S S | lllllLl"llllllIlllLLlllL'Illllllllllll
PSS U S S TN A S SN S S S S A WS DTV S N S SRR N N
R 2.z, 331,00 oo by oy o e b ey s by
Ly C=SUMSQ(Z+2.0,4,.0) + Z | 0yl

The variable C will be evaluated as the real

+ 3.0 or 125.0.

type approximation of 5.0

2

+4.0% + 9.0?

UP-7536 : : 8
Rev. 1 FUNDAMENTALS OF FORTRAN

SECTION: PAGE:

8.2.2. Logical Statement Function

Function:

To define a logical procedure with one FORTRAN statement that may be referenced
in its program unit as many times as required.

function name(al,az, ...,an) = limited logical expression

where: function name is a symbolic name, explicitly typed as logical, that
identifies the procedure,

the a’'s comprise the list of one ot more dummy arguments, a list of
variables enclosed in parentheses and separated by commas.

limited logical expression is similat to a logical expression except

that it may not contain an array element as a primary, and it may not
contain a reference, directly or indirectly, to the statement function

of which it is a part.

the maximum value of n is defined for each processor; there is no
standard value.

Rules:

(1) A logical statement function reference is a primary in a logical expression.
The actual arguments may be arithmetic or logical expressions and must
correspond in number, order, and type with their corresponding dummy arguments.

(2) All logical statement functions must appear between the specification state-
ments and the first executable statement of a program unit.

(3) The function name may not be used as a variable within the same proéram
unit; it may only appear as part of a statement function reference.

(4) Each dummy argument in the list must appear at least once in the limited
logical expression.

(5) The logical statement function definition is a nonexecutable statement and
cannot have a statement label.

(6) Evaluation of the limited logical expression is subject to the rules for evalu-
ation of a logical expression (see 3.4), and it assigns a value of either true
or false to the statement function reference.

"(7) Variable names used as dummy arguments are purely local to the statement
function and may be used elsewhere in the same program unit for any purpose.

UP-7536

Rev. 1

FUNDAMENTALS OF FORTRAN 8
SEC TIONS PAGE:
»Exnmplos-:
1)
b . ed 4 I A | N U S} I 3 1 A ‘ 1o 1 L 1 1 1 J S S U TS S W W i ') 1
1 . . LlolG||lc|A|LL4LNl°1°lDl N T T W T S ! N R B
2 L NODDI KDY = GOK /210,702 - KD . 1~lEle FLUFR O S T W O A -
) S T W LllLJll_LlllllLllL Llll 111111111
1 111L||11|1L11L11LL||1 1 RN W R

I . |1F| .(ULO.D;D[(ll;);)l ls_lgl lT!ol T SN I | 1 U S . |

In the logical IF, if I is an odd integer,

example 2).

the GO TO will be

executed (see 3.2.4,

@
s i Aoy e i TR UN ST SRR
IS AU S S ST S T S N S P O SN SRS
1 1 i . l L 1 J L i gk l 3 L Il] N VS N Lo il Ll l 1 A L i 1
o L,OGIIC AL, NPO,S, NODD, | . , o\ ; , i ORI NS WU T T
i NPO SIC KDY = K\, G T 001 5 v oy oo | b
i NOD DI KDY= (K /2.0, %120 5oy oK b (MIELL L 00, 0 ANGDG) NIPIOS (KLY,
T PO T N Y YO S YOO S S VAN SAUN TN RN SUN ST ST Y WA VA U N S T SO T SN0 S T ST SO SIS H N GO SR
s T RN SV S R NS VNP EN S S S NS A TN VOO0 SO M N S - AT B SR ST R
e LU ECNIODD CMY Y GOl T 0 e e e b s e by

8.3.

In the logical IF, if M is a positive odd integer, the GO TO will be executed.

INTRINSIC FUNCTIONS

Intrinsic functions (built-in functions) are provided with the processor and are not
written or modified by the programmer. A list of standard FORTRAN intrinsic functions

is presented in Table 8-2.

UP-7536 ‘ g

10
Rev. 1 FUNDAMENTALS OF FORTRAN sECTION: racE:
NUMBER TYPE OF
INTRINSIC FUNCTION DEFINITION oF SYMBOLIC
ARGUMENTS NAME ARGUMENT FUNCTION
absolute value |a] 1 ABS real real
I1ABS integer integer
DABS double double
truncation sign of o times largest 1 AINT real real
integer<| | INT real integer
IDINT double integer
remaindering* 9 (mod qz) 2 AMOD real real
MOD integer integer
choosing largest value | max (o, a,, ...) 22 AMAXO integer real
AMAX1 real real
MAX0 integer integer
MAX1 real integer
DMAX1 double double
choosing smallest value| min (°l' ay) 22 AMINO integer real
AMIN1 real real
MINO integer integer
MIN1 real integer
DMIN1 double double
float conversion from integer 1 FLOAT integer real
to real
fix conversion from real to 1 IFIX real integer
integer
transfer of sign sign of a, times 501\ 2 SIGN real real
ISIGN integer integer
DSIGN double double
positive difference a - min(«::1 ,az) 2 Dim real real
IDIM integer integer
oGtain most significant 1 SNGL double real
part of double precision
argument
obtain real part of 1 REAL complex real
complex argument
obtain imaginary part 1 AIMAG complex real
of complex argument
express single precision 1 DBLE real double
argument in double
precision form
express two real argu- | o, +a,V/-1 2 CMPLX real complex
ments in complex form
obtain conjugate of a 1 CONJG complex complex
compiex argument

*The function MOD or AMOD (a, :a,) is defined as cl.—-[x}a

20

not exceed the magnitude of 01/02 and whose sign is the same as al/az (see example 3).

Table 8=2. Intrinsic Functions

where[x] is the greatest integer whose magnitude does

UP.7536
Rev. 1

8 11

SECTION: PAGE:

FUNDAMENTALS OF FORTRAN

(1) An intrinsic function is referenced as a primary in an arithmetic or relational expression,
by name and list of actual arguments. The actual arguments must agree in type, number,
and order with the specifications of Table 8—2 and may be any expression of the speci-
fied type. Note, however, that the number of arguments for the MAX and MIN intrinsic
functions is variable.

(2) The intrinsic functions AMOD, MOD, SIGN, ISIGN, and DSIGN are not defmed when the
value of the second argument is zero.

(3) It is not necessary to declare the type of an intrinsic function in the program unit that
contains a reference to an intrinsic function. The data type is already known to the
processor.

(4) For a valid intrinsic function reference in a program unit, the symbolic name:

(a) must appear as specified in Table 8—-2, followed by the list of actual arguments,
in parentheses, also specified in Table 8-2;

(b) must not appear in an EXTERNAL statement or be used as a vanable or array
name in a program unit where it appears as a reference;

(c) must not appear in any type declaration different from the implied type declara-
tion of Table 8-2.

(5) If a particular intrinsic function is not referenced in a program unit, its symbolic
name may be used for any valid purpose in that program unit.

Examples:

(1) This series of statements reads in the six complex type elements of array VCTR,
then prints the conjugate of each array element, using intrinsic functions CMPLX,
REAL, and AIMAG.

R N T R R e R
Lo | lcoMPILEX VYCTROSE . o vy b
b L IREADICEL 300, JVCTIR v 0 s v s b s e by ey
b VOl FORMAT (e e e Vo o b 0p o b ey e b ey
I S S Dlo zloLll1‘J16LL11L4LI114ILlL]llLllLllllllll]IllL
2.0l VCTRICK), = CMPLXOREALGYCTRUKN) = ALMAGUVGTROKIDD,
L1 WRLUTE (G 30 ARy oo by sy oy e s g
Lo 30 FORMATY, (Coovepe by v by v g e e b

UP-7536 l 8 12
Rev. 1 FUNDAMENTALS OF FORTRAN sEcTioNs PAGE:
(2) This example uses the MAXO intrinsic function.
—— PRSI NN YO WA S Y YRR ST GO S SN HS WA SN0 WO SHT SN SO SN WO TN A S S WA Y S T
Lo 1p=:2,00 v 0o oo b v oy o by oy
T dae=3000 0oy oo by oo v v v by gy
L1 Ke=e4,00 o v v vy v g o v b gy vy b oy
| N I N { Lt | l § S W S NS SO N N N | l Lt 4 1 i & 1 1 l) VNN U S N U |
—— PSRN N ST T AU S S N U R T T ST E SR A B L
L |l F(MmAXO0(!t,,J4,,K)-,40) ,100,,2y00,,3,00

In this case, the maximum value is 40, causing the arithmetic IF to jump to the
statement labeled 200.

(3) The remaindering function (also called the modulo or residue function) is useful in
modulo-arithmetic. This intrinsic function divides one argument by the other and
retains only the remainder prefixed by the sign of the quotient. For example, the
reference MOD (9,8) returns a value of 1, and the reference AMOD (1.22, 1.1)
returns a value of 0.12. In the statement

1¥lllL‘LLJllllllllllll

l‘lolllzjollL]Lol L3 l VO NS S NN IS S |

il 1 L 1 | l i1 1

1P, ((MOD (,J,, K i)i)

a jump is made to the statement labeled 20 only if J is zero or an exact multiple of
K (K can be multiplied by an optionally signed integer to obtain J).

(4) The IFIX and FLOAT can be used to calculate the values of arithmetic expressions
where certain combinations of data types are not defined in standard FORTRAN (see
Table 3-3). For example:

J R XX~ ELOAT KDY v v 0 0y

K, 1=, My -

The FLOAT function uses the rea! type form of K for the multiplication. The IFIX
converts the real type result of the multiplication to integer type form so the sub-
traction can be performed. :

UP-7536
T FUNDAMENTALS OF FORTRAN |

8

SECTION:

PAGE:

13

8.4. RETURN STATEMENT
Function:

To return program control from a function or subroutine subprogram to the program
unit that referenced or called the subprogram.

RETURN

Rules:

(1) There must be at least one RETURN statement in every function and subroutine
subprogram.

(2) When executed, the RETURN statement terminates further execution of the
subprogram that contains it.

Examples:
See 8.5.2.2 and 8.6.3.

8.5. EXTERNAL FUNCTIONS
External functions are of two types: external subprograms written by the programmer
in FORTRAN, and basic functions. Basic functions are external function procedures
supplied with the processor and stored in auxiliary storage in non-FORTRAN repre-
sentation. These basic functions do not require compilation and can usually also be
utilized by non-FORTRAN users of the processor.

8.5.1. Basic External Functions

_Table 8-3 lists standard basic external functions.

UP-7536 8 14
ev.
Rev.1 FUNDAMENTALS OF FORTRAN secTIoN: pace:
NUMBER TYPE OF
BASIC EXTERNAL of SYMBOLIC
FUNCTION DEFINITION ARGUMENTS**] NAME ARGUMENT FUNCTION
exponential el 1 EXP real real
1 DEXP doubie doubie
1 CEXP compiex complex
natural logarithm log_(a 1 ALOG real real
€ 1 DLOG double double
. 1 CLOG complex compiex
common logarithm Iogm(a) 1 ALOG10 real real
S 1 DLOGI10 doubie double
trigonometric sine sin(a) 1 SIN real real
1 DSIN doubie double
1 CSIN complex complex
trigonometric cosine cos (@) 1 cos real real
1 DCOS double doublie
1 CCOs compiex complex
hyperbolic tangent tanh (a) 1 TANH real real
square root @?/? 1 SQRT real “real
1 DSQRT double double
1 CSQRT complex complex
arctangent arctan (a) 1 ATAN real real
1 DATAN double doubie
arctan (a, ,'az; 2 ATAN2 real real
2 DATAN2 double double
remaindering* 8 (mod a,) 2 DMOD double double
moduius \/(real part)2+ (imaginary patt)Z 1 CABS complex real

*The function DMOD (a,,a,) is defined as a, --[x]'.:-z2 where [x] is the targest integer whose magnitude does not
exceed the magnitude of a /82 and whose sign is the.same as the sign of al/az.

**All angles are expressed in radians.

Table 8=3. Bosic External Functions

Rules:
(1) A basic external function is referenced as a primary in an arithmetic expression.
(2) The form of the reference is:

function name (argl)

or

function name (arg1 ,args)

UP-7536
Rev.1

’ . 8 15
FUNDAMENTALS OF FORTRAN 4 -

SECTION: PAGK:

where: function name corresponds to one of the function names listed in
Table 8-3.

each a is a dummy argument, the list is enclosed in parentheses, and the
a’s are separated by commas.

(3) It is not necessary to explicitly type a basic function name in the referencing
program unit.

Examples:

(1) The following sequence finds the sine of 30 degrees (which is 0.5):

PN B S ST VA VIS VN W S 0 YT S SN U VO WA VAN ST U SO0 VP PSS U U0 VAN S VU S SN ST ST S S ST S S S0 VNl DN VU S VU S0 WO SO Sy S S S

DOUBLE PRECISION PI ., Y

il NEFLSUSYINL S SV ST A WL S S S ST A ST 0 SN UT ST SR I NS S SN VO S WU S SN T

DATA Pt,/3.,1,4,1,5|1926.535.897.910.0/,

-

FOSUNTINS SN TP S S S S STV N U YU S0 VA SIS YOI VA S V0! AAPST ST S VAT SAE WU VT S0 VU5 WO S0 SO0 VA ST S ST TS S UV S S S S P S ST S

{ PRSI I S S S S S T S (T SO VA WU WOAF VAU SEUPVUOY SRS (N SO0 Y ST ST ST VU SR NV WO ST YO SHT S S SR '

Y, = OSSN PY/8 000, ol e L

—a
NI WRLETIE, (MPRINT N0, .Y, o oo b oo o oo o by o0y b s g
g a0 O RMATGEX B L, I8 oo o oo b b s g b e g g

PR SITERE LS VO S W T T TN S DU U VSN T WO U S EN S T S S G Y VST ST A TS ST S S VT S WOT WOTE S S0 S W T S S W SAP U O 8

PRIV U SN SRR VN YO0 VO U N ST ST ST U U VOO U O S ST S A T S A S ST SN S U0 S VA ST S W N W A S U S A S N S A

FUNPUNTEN S SPUT S SN VTS N VU 0 VA VU S T S VAT S W00 S SN SHN TP SU WUV UIPN S0 VIO VTSN U0 VA SHPUNE VU VEF APURE WS S G S CAP T ST S

(2) This example shows a basic external function reference containing another
fuaction reference in the list of actual arguments:

PRSI T S0 W ST VA S S S WA SO0 N SN S ST ST SN WA ST S A S0 ST ST SN0 S0 AT SN ST S NN TN G S S N SO ST ST S [NOU SN T000 S50 WO S SY S ST S T

A
Ad 1 Z, = ISIQR T CAMMAMKIICA B Cid e e LA Al X 1000 By LEJ) 1) et | 1 ! .
L PORR SO0 NN NN SO N ST WS TP VU SENE S T N TN WA ST S ST ST GG TOOT YO SNF YO0 WA S WY S0 TN WY SR [S SN OAU WA S5 S S0 WS AT ST S Y ST SN N W O O R
(3) This example shows a basic external function reference in a logical expression:
2 i P B U SEPUES U S S W ST SU ST S U0 YN S T S ST SO R S S S S SRS SR ST RIS)
s JIOF A N YA, B CY gy i Tt @ S0 LoAMD, ;I SQURITICD W G T 0050) GO 10 3ol
L i L |AlllllllllLLlLLlllAll{lIlllllll‘!I!ll!llll[tllilllll'l
8.5.2. Function Subprograms

Function subprograms permit the programmer to create external arithmetic and logical
procedures and refer to these many times in-the body of the program using function
references. The first statement of the external function subprogram definition must
be a FUNCTION statement, and the last line must be an END line; between these
there must be at least one RETURN statement and a definition of the function name.
Each reference to a subprogram in an arithmetic or logical expression will have a
value returned to it at the point of reference. Additional values may be returned for
use in statements that follow the reference.

8

SECTION:

16
Rev. 1 FUNDAMENTALS OF FORTRAN

PAGE:

UP-7536 : l

8.5.2.1. FUNCTION Statement

Function:

To identify an external function subprogram.

t FUNCTION function name (aj.ay, ... ,a,)

where: ¢ is explicit type declaration of the value to be returned in the function
teference and may be omitted, in which case the implied type of
function name determines the data type of the value.
function name is a symbolic name identifying the function subprogram;
each a is a dummy argument; the list is enclosed in parentheses, and the
a’s are separated by cormas.)
n must be at least 1, and its maximum value depends upoa the processor
being used.

Rules:

(1) If ¢, the explicit type declaration, is present, it must be INTEGER, REAL,
DOUBLE PRECISION, COMPLEX, or LOGICAL.

(2) Each dummy argumeat must be an external procedure name (see EXTERNAL
statement), a variable, or an array name.

(3) The function name used in the FUNCTION statement must not appear in any
other nonexecutable statement of the function subprogram.

(4) The symbolic names of the dummy arguments must not appear in an
EQUIVALENCE, COMMON, or DATA statement of the function subprogram.

For examples, see 8.5.2.2.
8.5.2.2. Function Subprogram Definition
Function:

To define the procedure that computes a result(s) returned to the referencing
program unit.

FUNCTION statement

RETURN

END

' UP-7536

Rev. 1

FUNDAMENTALS OF FORTRAN |

8

SECTION:

Rules:

1)

@)

3

4)

(5)
(6)

)

All rules applicable to the FUNCTION statement are applicable to the external
function definition.

The function name of the subprogram must appear as a variable at least once

in the subprogram. During every execution of the subprogram, this variable must
be defined before it may be referenced or redefined. The value of the variable
at the time of execution of any RETURN statement in this subprogram is the
value of the function and is the value returned to the function reference.

The subprogram may define and redefine one or more of its arguments so as to
effectively return results in addition to the value of the function.

The function subprogram may contain any statements except BLOCK DATA,
SUBROUTINE, another FUNCTION statement, or any statement that directly
or indirectly references the subprogram being defined.

The function subprogram must contain at least one RETURN statement.

If a function reference causes a dummy argument in the referenced function to
become associated with another dummy argument in the same function or with
an entity in common (see COMMON statement), a definition of either within the
function is prohibited. An example of such a function reference is:

Y = ADD(AA)

The following rules apply to arguments involving arrays or array elements:

(a) If an actual argument is an array element, its dummy argument must be
either a variable or an array name.

(b) If an actual argument is an array name, its dummy argument must be an
array name and that array must be declared in the subprogram with a
size (in elements) that does not exceed the actual argument array.

(c) If the actual argument is the xth element of an array containing z elements
and the dummy argument is an array name, that array must be declared in
the subprogram with a size that does not exceed z — x +1 elements.

(d) A dummy array declarator may use one, two, or three subscript expressions,
regardless of how the actual array was declared. Each subscript expression
of the dummy array declarator may be either an integer constant or an integer
variable. If any subscript expression of the dummy array declarator is an
integer variable, that array is called an adjustable array.

An adjustable array declarator must have each of its integer variable sub-
script expressions listed as dummy arguments and each must be defined by

its actual argument. These variables must not be redefined in the subprogram. '

PAGE:

UP-7536
Rev. 1

FUNDAMENTALS OF FORTRAN

8

SECTION:

PAGE:

18

Examples:

(1) This subprogram calculates the sum of the squares of all positive odd integers

i 1 i l 1 1 1 i 1 1 1 i . l 1.

from 1 through the given positive integer K:

ILLJI

i PR W N A
il LNTEGER (FUNGCGTHION S MO KDY o 1 o0 0 a4 s 3
— S M=t 00 g g b e b
- KSWTICH, =, =V, 0 0 v vy vy by gy
L Do, ,1!0, Ny=1. K, . | o+ v oo b
bl K,Sw.TiICHy =, =K, SWTICH, 5 4 b ¢ 000
, 1.0 L F (KIS WTCH, . EQ.| i), SM ,= ,SIM +, N**2,
' RETURN , | PSS N S N U S RN NS N P ET ST ST SN W S
L E.ND s T S SR R TU TN ST ST SR N RN
Thus, if this external function subprogram is referenced by

Ly PRI W S R S R NI RS TR S S SRS N S S N L
- I NTE|IGER ,S.MQDS,Q} , , o o v v v L0 0 g L
P IS PSR S S S M R PSRN T SN TR SN S SO S NN U W Y S S N N
i ORI SN S TR N N W H YT U S T S WU S W NV ST N W N L
L N3 St ,38 vy PR M W S0 OSSN T Y N S S N L1

| M, =, 1|5, +, SMCN3) v v b e

the actual argument N3, which has a value of 5, will be substituted for its

dummy argument K in the subprogram. The value of SM is 12432+ 52 = 35.
When the RETURN statement is reached, this value is substituted for the
function reference, so that the value assigned to M is 40.

(2) This function subprogram, which has more than one RETURN statement,
calculates the absolute sum of all array element values in a 100-element

array:

UP-7536 . l 8 19
Rev. 1 FUNDAMENTALS OF FORTRAN secTion: pacEs
- NI B TR NS ST N T S SN O SIS T T S S S R
‘ L FUNCITION SMARAY (ZRAY), I, 41 41 41
L Dl M EINISI1 O N SZ RIAIYIC100i08)y vy o v |00 b4
b o LIS MARAY=00.,00 4y |y b
L D,0 210, Ky=1,,,%,0,0, |, 4 o0y gy
20| IS MARIAY=SMARAY+|ZRAY (K), , |
e ,F, (IS,MARAY. GE.J0,.,0,) RETURN , |
L SIMARAY=, ~ SMARAIY, | v+ v v 3 v by vy gy
Pl RlElTlulRlNllllLlllIlL.Llllllllllllllll
L END | v v vy b e e e by
The referencing program unit contains:
- T B S S RS S SN U I TS N S S A
o | 1D MEINSILONG ARRAIY(L1.0,0) 0 1B RALY. (11,0000 o 4, |
L TSN LU S S S S SIS NS S S S S S ST S H U S S S S S T
- T ERN YO S S Y U VA S U Y SO SN Y SO T VAN WO T S SO Y S S S WA N
. o, L ISUM, =, SMARAY (LAIRRA,Y), ,+, ,SMIARAY(BRAY)]

(3) This function subprogram also returns a value through one of its dummy argu-
ments. Given the three sides of a triangle, it calculates the area and returns a
value for the perimeter.

i lll‘llllllll!’lLLlLllllIl‘llllllLL[

1 FJULNLCLTl'IOLNl \AlRlElAl(lAl' 1B 7 lc\: IPlELRl)l F IS NPORE SV I N SN SR B { l

i PIELRI l=1 1A1 l+l :Bn‘ :+| 'cn T W S S SRR S SN | Ll

USSR W RS SR | I lI

1, Sl = LPAI_EIRI/ I2 L lol [1 I] L H 5 1 L Lol] l Lend el L | Il L] L l

1 A1R151A| = LSXQIRITI(ISL*L(ISI—IAI)I*I(lsl—IBI)l*l(lsl-lcl)l)l i [
1 RLEATnulRINI1141111‘1111111ll‘1|llllIlll

i EINIDI l } IS IS [VN IR I T) 1 l'Ll Il A i 1 Ll | I S T |) 1 1 ! l

UP-7536
Rev. 1

FUNDAMENTALS OF FORTRAN -

8 : 20

SECTION? pPaGeE:

4

The referencing program contains:

g ST R YO SN TN SN SN U0 TN T SUN TN YA SN VOO Y A TG TEY SN0 A K W C AN NS B A O I
NP TRNGL = AREA(X), Y . Z PER!M),
.
Y S ¥ lll].llilllllllllll]LlllJl|ILAL
.
TV T D | lllll|'llllLilLllllLlllLJllLll
L4 4 = * IR S B I S N
.
| I I S LlllJllllllllllllllLALllLJllLll ']

Note that, in the referencing program, one value for AREA will be returned in
the function reference. Another value will be returned as the value of PERIM.
This value must not be used in the same statement as the function reference,
but can be used in statements that are executed after the function reference.

If a value is to be returned to an actual argument in the function reference, that
actual argument must not be a constant; this would be an attempt to redefine a
constant.)

The following subprogram illustrates the use of an adjustable array. The
subprogram calculates the sum of the elements in an array, but each time
the subprogram is referenced, the dummy array may have different dimensions.

o PUNE TR S U G S S N SO RUNS N A S S S R S SV SN N0 S S S N A
—— B clrig oN, S GMAl (ARRAY: NI 0 o o
Lo | D UMEINSY ON, ARRAIVIONG o 0 0 L
el SU G MA, =, 0,,,0, + ¢t v ooy by
—— 0.0 Yo, K. =1, N {0 0

, 110! [S1 GMIA, =, S, 1 GMA i+, ARRAY(K)II , ,

i RETUIRNG 0 0o o 0 Lo 0o 0y s 0 Lo e
et END, | 0o oo by e o b

UP-7536 ' 8
Rev. 1 FUNDAMENTALS OF FORTRAN sECTION: P AGE:
The referencing program unit may contain:
‘ Ll 1 1 L A l ' L N Il 1 e 'l l 4 L 1 1 1 e 1 I A l 1 1 il 1 1 1 1.1 l 1 il A [N | i 1

Y e D 'M Ns |° N s ElTl‘l(j‘jl lsllléj)ll LJlellel(I1 ll I) L |SIE’TI31(LSIII‘IOI)I

R . N llll.lLllIlllllllllIlllL'I]IlllllL!'lllllll
.

N B B N S B B
oo L AvRE, = 51,6 MAUSET L, 4% 5 %60, 1/ (4. 0,%,50.,0,%6,.,00),
P FEESETEED ST EE A ST S VAT JUN SO N SO ST S S S T W N ST T W SN M SN W VU VO DO WY A D WY U S T
. N T IS I I

L AVIRIGI2: =1 S G MA(ISIE T2, 000 00 o/ 03005 00y i by | Lot

-
. B T lllllllllllllllll||lllllllllllLllIlllllLlL
.

L [T SIS W LN WO SN T AR SR N TN WA YOO SN YU URNN OO JOOW TN W WA NN N AU T NN S5 VOO WY WO WS A N N WY A N M O NN O

., ., | AVRG3, =, S 1 GMA(SET3, 8,*10) /, ,(,8.0*1.0) .,
L U G S VAN WA NETHNE ST SN W G VU NN S YN VO T UOON ST N A WA YOO WA SN N NN S NN T N AT YOO MY NN MO AN
L llll‘lllLJlll!llllllllllllll|Il!llllllLllll
pa P lauvieclEr = 1 SILGMAUS BT L3 L S0 6D 2000 370200000 1 0w) sy

N TS T T T lellIlll-lllllllllllllllllllllLLLllll|llll

Note that this last reference uses an array element as the actual argument.
This array element is the 119th element (see Table 2—-6) in an array that can
contain a maximum of 120 elements. Hence, the function reference is obtaining
the sum of the last two array elements of array SET1.

. (5) This example uses the Newton-Raphson method to find the cube root of a
number, y, as follows:

(a) Make an initial guess at the cube root of y. (In this program, y is divided
by 3 if its absolute value is greater than or equal to 1; otherwise, it is

multiplied by 3.) This value is called x;.

(b) Substitute x5 in the expression

1
3 (2xq + y/x 12)

to arrive at a new value, X9,

(c) Compare x7 with xq. If the comparison satisfies a criterion set up by the
programmer, x, is the cube root of y; if not, X0 becomes Xy and this new
Xy is substituted in the above expression to arrive at a new value for x,.

UP-7536

Rev.1 " FUNDAMENTALS OF FORTRAN s 22

SECTION: PAGE:

Steps (b) and (c) are repeated until the comparison of Xy with X is satisfied.

L1 FLUNCITI ON CBROOIT(AN + o o v o L0y 0y 4y
bt 2 1 'FllAMJMMML/lgh o, o o vy
TR L ECAIBS I CAY b T o110y (Xi= A 3 b0 o 0 0 o
e 1.0 (C, B = * *

TS I, F(CIBROOT . EQ . XI), RETURN, , | , , . .
L1y X=CBROO.T, . , o L o o 40 o v by ey
L Go .70, o0, ooy by by
L EXND, [, 0 ooy by oy by
Ly MEEETE S S S RN S WS N SN S S ST S T ST S N RS S N

A reference to this subprogram could be:

bl RIS N S T S YN W SN SN S NN TS WS SN YOS VAN S S S DO AW SN N
I Y, =, ICBROOT(A+BI+,CHY+ D , ;1 vy
L P R N T S SO VT W WO N NS N TS TR S SN WO SN TONY VAT A U SR WO W WO S

Using this subprogram, the following is a list of successive CBROOT’s calculated

in finding the cube root of 1.0, 0.9, 0.1, and -0.027. The solution is repeated

several times because, for this particular processor, the arithmetic operations .
are performed internally with greater precision than was required for the output.

cube root of 1.000 cube root of .100
3.2222223 .5703704
2.1802527 .4827094
1.5236256 .4648626
1.1593397 .4641599
1.0208964 .4641589
1.0004248 ' 4641589
1.0060002
1.0000000 cube root of -.027
~1.4257421
cube root of .900 -.9549222
1.8411523 -.6464846
1.3159345 -.4525238
1.0505315 T -.3456326
.9721879 -.3057596
19655354 -.3001078
.9654894 ~-.3000000
.9654894 -.3000000

.9654894 .3000000

UP-7536
Rev.l

FUNDAMENTALS OF FORTRAN

A 8

SECTION: PAGE:

23

Such procedures can be refined by more accurate first estimates, the use of
double precision, and different exits from the loop. For example, the precision
of the result could be limited to a satisfactory value with the statement:

illlllll[lllllllllllllllL.llllll

I¢Fl(lAlalst (LC4B'R1°LO|T|-IXI) L 'LLJ_II > IDIEILITLAI) i |Rl ElTlulRlNl l

L 1

8.5.2.3.

where: DELTA is an additional argument.

References to Function Subprograms

Function:

To obtain a single value for use in an expression, by reference to a function
subprogram.

name(al,az, ...,an)

where: name is the programmer-written symbolic name of the function.

each a is an actual argument; the list is enclosed in parentheses, and
the a’s are separated by commas.
n has a minimum value of 1.

Rules:

@

2

3

4)

)

6)

Each actual argument may be a logical or arithmetic expression, an array
name, or the name of an external procedure (see EXTERNAL statement).

If a value is to be returned through an actual argument, that actual argument
need not have its value defined prior to the reference, and it must not be a
constant. :

The actual arguments must agree in order, number, and type with the dummy
arguments of the subprogram.

If the actual argument is an array element, its dummy argument may be either
an array name or a variable; if the actual argument is an array name, its
dummy argument must be an array name.

If an actual argument is the name of an external procedure, its dummy argument
must be used in the subprogram as the name of a function or subroutine external
to the procedure.

The operation of a RETURN statement in the function subprogram must
intervene between each reference to the same function subprogram.

Examples:

See FUNCTION, EXTERNAL, and COMMON statements.

e

UP-7536
Rev. 1

FUNDAMENTALS OF FORTRAN

SECTION: PAGE:

8 24

8.6. SUBROUTINE SUBPROGRAMS

A subroutine subprogram is an external subprogram defined by FORTRAN statements,
starting with the SUBROUTINE statement, and is invoked by a CALL statement.

8.6.1. CALL Statement

Function:

To

invoke a subroutine subprogram.

CALL name

CALL name (al,az, ...,an)

where: name is the symbolic name of the subroutine subprogram.

or

each a is an actual argument; the list is enclosed in parentheses, and the
a's are separated by commas.

Rules:

1)

)

3)-

4)

(5)

(6)

N

Each actual argument may be an expression (logical or arithmetic), an array
name, a Hollerith constant, or the name of an external procedure (see EXTERNAL
statement).

The actual arguments must agree in order, number, and (except for a Hollerith
constant) type with the corresponding dummy arguments of the subroutine.

If an actual argument corresponds to a dummy argument that is defined or rede-
fined in the subroutine, the actual argument must be a variable, array element,
or array name.

If an actual argument is an external function name or subroutine name, the
corresponding dummy argument must be used as an external function name or
subroutine name, respectively.

If an actual argument is an array element, its corresponding dummy argument
must be either a variable or array name; if an actual argument is an array name,
its corresponding dummy argument must be an array name.

If a subroutine reference causes a dummy argument in the referenced subroutine

to become associated with another dummy argument in the same subroutine or

with an entity in common (see COMMON statement), a definition of either entity

is prohibited in the subroutine. An example of such a reference is: CALL ADD(A, A).

Between any two successive calls on the same subroutine there must be the
operation of a RETURN statement in the subroutine.

UP-7536
Rev. 1

8

FUNDAMENTALS OF FORTRAN

SEC TIONS PAGE:

25

8.6.2. SUBROUTINE Statement

Function:

To identify a subroutine subprogram.

SUBROUTINE name

SUBROUTINE name (a

where: name is a symbolic name that identifies the subprogram.

or
1+ ...,an)

each a is a dummy argument; the list is enclosed in parentheses, and the
a’s are separated by commas.

8.6.3.

Each dummy argument is a variable, an array name, or an external procedure name
(see EXTERNAL statement).

Subroutine Definition

Function:

To completely define the step-by-step procedure for a subroutine.

SUBROUTINE statement

RETURN

END

.
.

Rules:

1

@

3)

The first statement in the subroutine must be the SUBROUTINE statement, and
the last line must be the END line. The subroutine definition must contain at
least one RETURN statement.

The symbolic name of the subroutine must not appear in any statement of the
subroutine except the first.

The symbolic names of the dummy arguments may not appear in an EQUIVALENCE,
COMMON, or DATA statement of the subroutine.

UP-7536 8 26
Rev. 1 " FUNDAMENTALS OF FORTRAN] SECTIONS paGE:

(4) The subroutine may contain any statements except BLOCK DATA, FUNCTION,
another SUBROUTINE statement, ot any statement that directly or indirectly calls
this subroutine.

(5) The subroutine may define or redefine one or more of its arguments so as to return
results through its arguments. If the subroutine returns a result through a dummy
argument, its actual argument must not be a constant.

(6) Adjustable arrays may be used in the subroutine, in which case any adjustable
dimensions may be passed as actual and dummy arguments for use in the array

declarator of the subroutine.

(7) The RETURN statement returns program control to the next executable statement
following the CALL statement in the calling program unit.

Examples:

(1) This subprogram clears the elements of any array to 0.0.

R ST VN ST A TN U W W ST U0 U S VOOV G VO YN SO VA0 TN O U0 TN VAL SO VOO0 UOUN S S VT S VU WO T S
et S UBROUTIMNGE CLEARCARRAY, ND ¢ v 4 (g 1 by o1
N DIMENSION ARRMY (NI o L
L L D,0, 110, K=, ., Ny o v L v v v o aa b b
Lol ARRAIYOGKIY =y 303000 5 0o by v b e e ey gy b s
Ly RAETUMIRIN ¢ v oo oo by vy s e b v o o b o
Ll 120 TN » YO N VO VOO S U S VU SV TN VA S0 T S Y S T T S VA VU S TS A S S S 8

A calling program unit contains:

PR W | D.t ’ o A
T R TS S S VT S SSU S E S SO ST S YT S S T H S S S S VA SO0 WO W S S S
T T B PSS WL KU TN VU T DU SN ST S ST SN DAY SN SN UUN TN SN SN SO S0P YOS A TSNS ST ST SRS VUN S WU SN S S S W S N
. . .
. I T Y CALL| xcanE.A«Ra(|A|R|A1Y1.141’15|'161)L PSS O SRV Y ST U WA WO R S A SN S SH S S
.
e) RPN FOOT U TN T VA VY ST S0 Y T N A S WA T WA W UHT S0 S S S S S S S S S S W N S S SR SR
R S T |) l" B S S TONNS S W I SR S I NN WOV N S S A | J | S VO N [TR W S T 1 ! F S Y S S S
MR CoAL Ll ClluE AR(CBRIRALY L TLIV A NN | SO Y VT N S VU T VO Y ST S S S N
I N S PRSI EN N VAN SUS VOR ST ST R S S S U SN SR S VAT TN T SN0 NN TS RN T S SN YN YA S U ST NS SN W SO SN SO S
1 L 1. i i i K’I 1 A i i i A i i L ' ', A i 1 A i 1 1 L [1 1 L A bl L e L 1 l ' i L H A
§ I ' CIA*LLLI LC[LJEI AIRI‘ lc lR IAIYL ll l] l)l d S L l 1 4, Il L bl 1 3 1 1 I 1 Loeads " & H
.
L dt L oo b e b b boey 0y
TR U | RSN S S S S W CU S NN S SO W S S SR ST WA WS SN S SAA SN W TR SO0 MUK TN WS SN ST ST WO A W
[R CIALLLLI LC1L1E'A1R1(1A!RIA!YL(111'1]l'!,l)1llllolol)l I Y S U T | L SIS U DU S N |
{ ! l I
U Ll § SN S TN TN TR U U S N AUUUS SN TUN (N TR U NS S N S | TS N WU W S N W S S I N

UP-7536 o D é
Rev. 1 FUNDAMENTALS OF FORTRAN

SECTION: PAGE:

‘; The first three subroutine calls will clear all of the referenced arréys; the last
. subroutine call will clear only the first 100 elements of the array ARAY.

(2) The following subroutine subprogram, UPDATE, computes the current value of
a savings bank account given a starting value, V, the number of interest periods,
M, and the interest rate per interest period, R.

11 1 1 1 I Il J_L_ I L 1 1 H 1 L] l L " £ i 1 e J — L l 1 1 i 1 1 .
T U S J_IIILlilLlj gtLlLlJ [V N W} LlLl) I T
by S:UB.RIOU, LLLNCES LB DIALT B M Y RO 1
Ll paEs (ML BG, 104y, (REETHLRING ¢ 0 o5osogo 0 oy
IR = [T W TG YA R VN WO TG U S NN MY T M O M L O B G
| I S . N DJl L‘ Iol lKlgl‘lthJ J Y [1 1 I L1 1 1 LJ_I L 1 1 L
L LlLLo v|=|v:[RL21 [P Y WO T WO T VU H YUY W VK WA NN ST SO NS W A S N Y A
FENE O S RneITLUIRLul TR S W A W A U T S S Y S SO N T Y N B R A
L1l N> T VT ST T R SR N ST S I VT N WV N N S SN A AT ST O W I I
TS U FONTENY DR T R SN ST S B T T A N N S MR A B B R S
| WO SRS S N { i l Ll ———— i [I N S S N S S Ll [S I U T |

This subroutine subprogram is invoked ‘in the following program. The program
| computes the current value of an account based on the assumption that the
. interest is computed and accrued at the end of each three-month period from

' the month of deposit.

UP-7536
Rev. 1

FUNDAMENTALS OF FORTRAN I

The first card of the data deck is organized as follows:

columns 1 and 2
column 3

columns 4 through 7

the- current month (1-12), right-justified
blank character

current year

Each succeeding data card is organized as follows:

column 1

columns 2 through 7
column 8

columns 9 throuéh 48

column 49

columns 50, 51

column 52

columns 53 through 56

column 57

columns 58 through 66

columns 67, 68, 69

column 70

|

blank character

account number, right-justified
blank character

name of depositor, left-justified

blank character

month of last update or (if no previous update)
month of deposit, right-justified

hyphen (-) or minus character

year of last update or (if never updated) year
of deposit

$ (dollar sign)

dddddd..dd, the last updated value or original
deposit, where each d is a decimal digit

blank characters
months (0, 1, 2, or 3) from last update or driginal

deposit to end of next interest period. (If original
deposit and no update, it must be 3.)

The last card of the data deck contains all blank characters, except for column
70, which contains a digit greater than 3.

The subroutine is invoked by the following program which prints the updated
record and punches an updated card record concurrenily (assuming output device

S is a card punch).

8 ' 29

SECTION: PAGE:

7 . -
ull;ev?sl6 FUNDAMENTALS OF FORTRAN

LMTEIGER CMONTH CYEARYEAR RMTHMS, o oy Loy
— READRCT ,1,0) CMAONTH CYEAR IRATE o o 0 Vo000 v 00 o by oy)
a0l (BAORMAT 1.2, Y X 114 BBy oo 4o oo s b s e g
5.0l IR EADCT 12,00 NAKINT, N AME MOINTH Y EAR. VIALUWE GRMNTHIS.
sr 12,0 IFE O RMAT(H7, V. X, BIAS, 03, 0 8, dIX, F 9., .2, 30 0 oo o0 aos v bgn gy
o B RIMNT S G Tl 2 ST e b o e b e
L Ii.T,l,MlE.:l.2.',(LCJ.!,AIR.-,Y.E.A.R.),h((LCMONTH - MONTIH)F (3, - RMNTIHS,), , ,
b M, = MTIME L/ 34 o b b e ey
o LIRMNTINGS, s 3 e OO LM E 3 L b
— CShbbl MPDATEGM IV ALWE RATEY, o 0o Vg e o b0 s

Al MW =, 3 o b e e b s

l,. e LD BN O NAMBGSY b e b e

U ' | I S S .)
ey 40l W RITIECGNOUT, 3 0NN AKNT. . NAME CMONTH . CYEAR. YV ALUE IRMNTHS
co 300 P O RMATCL X BIAS 3 o W S O F 2
—rdn LEGNMOU T B . 5), 60 1.0 .80, .t o

NS VT SR I

FER Y o TV TR « STV TOU S WA R A YN U SN AV ST S WA ST SO0 S A0 SN S S WY VAT ST WA ST N EEOT Y VO YT O S WO W ST U A ST A S S W

AL} GIO']“QI‘]OIRIIIILJLILAIIIlllLlliILLLLLILIIllllIllIIlI

I R B -9 1Y > TON T VT S VOO0 S YU S N T S T T S YN ST O O WA N W ST W W VO R VAT N S SR W VAT WY A W WO A W ST A W T

(3) The following simple example shows how a Hollerith constant might be used in
a CALL statement. The printed line will print LOW, AVRGE, or HIGH, depending
upon the income read from an input card. '

PR |DlMENSION NAME(S), . 0 by e g by
. gl Ol IF O RMATY(8. A5, 1,0, X4, 8, 1,00, . . . 1 ., oo g Lo g v g o bl e
Al 1 JE (A INCOME, 1= ;1.00100,0), 20,..2,00 3,0, v o v 3 o by o a b a gy

CALLL PRI MNTLMNAMIE SHLOW o 3 o b
s T 0P

TS NSV RO VRN IV ST ST T VT WA WU TR WU TN AN SA00 WO S T S W PRSI0 VN NV TS ST S VT S M VAN SN ST TS SN Y

|
s
o

30{ 1 F(I NCOME - 20000), 40,.,40,50

ia 4,00 CALLL PRINT(NAME SHAVRGE)) , , o oy oo by ov o by o

M S TOPY o e b e e b e b g e e e s b s
caasol le Al PRINTDCONAME, (SHRBILGMH M oo 3 e L
adaa (35 N N . IR U N TS S AU S SNSRI E S G T SRS S S AT SN O WU WAL TN AV S SEPUNS S SR T ST T T

. ::.:ulb_Lln-ln‘;._Ln].lxnxnnlllAajiLl|||||1||1|A|||):111L
PN SUBROUTINE PRINT(NAME, CLIASS), ot o v by o u
DIMENSION NAME(S8), , , ;1 3 1

PN R S VR A SO WY TS U S0 A0 WU Y A NS WA S R WO

WRITE(3,10) NAME CLASS |

VT AT I N S SN W T S U U Y SO S S

L V0| [FORMAT(I X, 8AS,i5X, LIKELASS, OF I NCOME 1S AS), | 1 i

—t i RETUIRN o v vy by v g b oy by vy ey e b e g

T W T El"lnlilllLlll!lilllllllllLllllIlllilllLllllLlllLllll

UP-7536

8
Rev.1 FUNDAMENTALS OF FORTRAN

SECTION) ' PAGE!:

30

8.7. EXTERNAL STATEMENT

Function: . .

To indicate that a symbolic name (with no arguments) in a list of actual-arguments is
the name of a subroutine or external function.

EXTERNAL v, ,v,, ...,v
1 n

where: each v is the symbolic name of an external procedure.

(1) If an extemal procedure name is used as an actual argument in 2 function reference
or subroutine call, the name must appear in an EXTERNAL statement of the program
unit that contains the function reference or subroutine call.

(2) If a symbolic name appears in an EXTERNAL statement of a program unit, it can
appear in a type-statement of the same program unit only if that name is also being
used as the function name in a function reference within the same program unit.

(3) If an actual argument is the name of an external procedure, its corresponding dummy
argument must be used as the name of an external procedure.

(4) If a symbolic name is being used as the name of an intrinsic function or a statement
function within a program unit, it must not appear in an EXTERNAL statement of
the same program unit.

(5) The EXTERNAL statement is a specification statement; its position in a program
unit is shown in Table 2-2.
Examples:

(1) The following subroutine can be used to print a table of either sine values or
cosine values for tenths of a degree, from 0.0 degrees to 90.0 degrees.

SUBRIOUTIME, PREMNTCAN oo b oo e, oo b oo b
N D, 0, d A T A

PR Q, =

—_—t N WS I TONY YIS TURT IV I'S (N AP ST S SAT ST OIS 0 ST N S ST SO S0 S0 S0 RSND MU S SO S S S ST T S S WO S SO SO S
Ao XK =t K b e g b
P TABLIE2 ((K), =, XK /0 (L0000 o b0 00y b NI VU S S VT SV S

VO ITABLE4(KR), = AGTABLE2(K) | OMNEDGR), |\, v v vy by

e WRVTEL.. 200, , b,y b ey e b e e b
a2 0L (FORMIAT.CL T, 2.0.X],. 6,8 TAB L ES$ M o0 v o b b a0
—— WR!TIE(3,.30) (TIABLE2 (K) TIABLESKY, o K=Y, 80 Lb o L, 0o
b1 3,00 (BORMAT(YI VX, F 4.0V, V00X OV 4,470, oo 0o e by
Lo R.ET. P W U US S U ST SO S T TN WY W S Y Y ST SO TAD ST ST SN W U AN W SO S S WU S0 ST WO S N THTERY S NS S SN

P *E.Lml PURTURERTES E S S VS VP WU G VT S VS S SN SR T | P S RS S G

UP-7536

Rev.1 FUNDAMENTALS OF FORTRAN 8

SECTION: PAGE:

. " The calling program contains:

P ORI VAN NS SRS VT G W WU S SR S S S YN W SO WU S S VAT WU Y

b o L IEXTEIRNAL DS INGIDCOS o 0 oL

P FET RTINS AT ERT SNSRI S SUPSNT SNV S0 NAPENY SO SN S S ST S SN S S SN S A B

A2 1 [T B SRS VS W I AN S U A S ST W VN GO TOT TN Y AT IS SN S
T CALLL PRLNTCD SN e b
Ll i i T N S l i s A l.L A d, 1 't ’ A 1 ' i i i ' 1 L . 1 1 1 I 1]
—dd PERWITTES SN AUV U A S ST YOU T NOV T T WIS N WIS WA S I S A S T S

e cAb,L]l PRINT(0,COS), 4, o o g b oo 0 4 4

PN PUR NSV S S U VT UPUNS NPT SN Y SV S T S ST S VT U

[N N WS I A IS

bk N S S T UUT N T T AT NAT R S YO YU W W Y R N R NI

The first call causes printing of double precision sine values; the second, double
precision cosine values.

2) In the following program unit:

dommbendad PRI T VS S S ST SR RS VAF WA U VT A SO0 VIR VU0 Tl AUV SUT T DAY TS

bedind EXTERMNAL ABC |, 50330 by

.
Lol L i |lll'lllllllll||lIlllllllllllll

N Z, 51X = (SIQRT GANBC (DY ¢ sy L

\

\

\

\ .

. CI T W T AT T U ST S ST S N A S A SN DT EAT OIS S S Y i S A

The use of the EXTERNAL statement is not warranted. It is not the function name

ABC that is being passed as an argument, but the value of the function reference
“ABC(D).

UP-7536
Rev. 1

8 32

SECTION:

FUNDAMENTALS OF FORTRAN

PAGE:

3.8.

COMMON STATEMENT

Function:

To permit communication between program units without the use of arguments.

COMMON /xl/al/x2/82/ .../:ln/aﬂ

where: each x is either a symbolic name, called a block name, or empty (no
character or one or more blank characters),
each a is a nonempty list of variables, array names, and/or array declarators,
with each item in the list separated from the next by a comma.
1f x is empty, the first pair of slashes before a, is optional.

PR

Operation:

The COMMON statements of a program unit cause the processor to set aside locations

for the listed variables and arrays in an area of main storage called the common area.

These locations can be shared by the different program units that make up a program.

This common area is composed of hlank common and labeled common blocks. If an x

in the COMMON statement is empty, its associated variables and arrays are stored in

the blank common block. If an x is a block name, its associated variables and arrays

are stored in that block of the common area identified by the block name. The total

size (in storage units) of blank common and each labeled common block is determined

by COMMON and EQUIVALENCE statements. The order of the locations in blank

common and in each labeled common block is determined by the order of their appearance .
in COMMON statements. :

In the following sequence:

PSR RN (UAS YN YOO TN YA SRS NN TN 0 WA SN S S0 Y TN WA S S VN O WO Y WY T T WA G S G A5 N G YO 0 U0 SN T SR W (Y SOV WY Y Y WA S WP SO Y

. R{ 2
.................. EARRAALRIN SN

W o/ Let2,/0R(.2,,,2,2),,,0V,/,LBLY/EBR(3), | 4 b .-1 P B

COMMION / /W1, ¥R(3)/LBL2/XR, X2

ek S WAL G Tl Rl W FS YOuk ot VIR T SN0 SN S N0 SUNY S Y SO0 U SO ST ST ST 00 SV URY S SO0 AT SNS SOV ST U NS T

Dt MEMNS T ON XREID, e e e e) e e e b e ey

UP-7536 A 8 33
Rev. 1 FUNDAMENTALS OF FORTRAN secTion: pAGE:
‘ : the common area will consist of:
BLANK COMMON
Al A2 A3 AR c3 CR w1 WR
1,1 ! 2,1 1,2 2, 2 2 1 2 ' 3
L 1
BLOCK LBL1 o
BR B1 ER
T 7 2 T 3 17 4 1 5 T 2 71 3
! Lo i H i
BLOCK LBL2 e
DR D1 R X2
1,1,1;2,1,1l1,2,'l{2,2,1!1,1,2I2,l,2|1,2,2r2,2,2 11 213
Y | 1 1 1 1 ! |
| i t H \ i H 1 i
An EQUIVALENCE statement can lengthen a block (blank or labeled); the only
lengthening permitted is that which extends a block past the last assignment for
that block made directly by a COMMON statement. For example, if the following
- sequence is added to the previous sequence,
i . I W Ill'lLlllllIl]lllvllLLlllllllllLllllilllL
| Lt E.QUI!|VALENCE (DIR (1, 2,,,1,),;, OR(,2),),;,0:X2, ITRG2)),
| .
| e i 1 L DI‘IMIELNI sl‘lolN LQ\ Rl(ls‘)ll |TIE (l ‘l)| ' L 1 L 2 y A 1 H] 1 [-, e,) I
the labeled common block LBL2 is lengthened by two units.
equivaLence /. QR / [TR /
o= L S 2 [3 ;7 4; 5 [67 1 [8 L 1 2 S 3 [/
1 ' : i] i .] i '
COMMOH : . DR ' . D1 XR X2
—ll 1, 102,1,101,2,192,2,111,1,212,1,212,2,212,2,2 P2 13
However, in the same program unit, the statements
P P | VRIS TS RN ST S BT SR W | l IS G VT SN B SR G N L YRS R N W T N U N | l i
P £.QU LIV AL f4 {))
-} 1 1 DI'L&ENISI’ JOINI lz4RI(l‘ [) L) I T 1 i 1 i 1 LL 1 1 1 1 1 1 H] 1 l 1 1 i i

UP-7536
Rev. 1

. . 8 34
FUNDAMENTALS OF FORTRAN sEcTION: PAGE:

are illegal, since this is an attempt to extend a common block ahead of its first
assignment for that block, DR. '

In each program unit, the size (in storage units) of a labeled block with the same
block name must be the same, if it is present in a COMMON statement. The size
of blank common need not be the same in all storage units. The total size of blank
common is equal to the largest number of storage units assigned to blank common
by a program unit of the program. However, association of a common variable or
array is by storage unit in a labeled block of the same name or in blank common.
The nth storage of blank common in one storage unit is shared with the ath storage
unit of blank common in any other program unit. The nth storage unit of a labeled
common block with a given name in one program unit is shared with the nth storage
unit of a labeled common block bearing the same block name in any other program
unit.

For example, if one program unit contains

the correspondence would be:

BLANK COMMON TABLE 1
K1 -=ITEMS(1) A VALUES(1Y
K2 ITEMS(2) B = VALUES(2)
K3 C e i{VALUES(3)
D >IVALUES(4)

This means that the variable A of the first program unit is the same value as the
array element VALUES(1) in the second program unit. Note that the second program
unit cannot access K3 of the first program unit because of the difference in blank
common size. However, KE of the first program unit could correspond to a blank
common item in still another program unit of the same program.

Since correspondence is by storage unit:

UP-7536 . 8 35
Rev. 1 FUNDAMENTALS OF FORTRAN secTion: rosr

If program unit 1 contains

[PR N N WO N N Y M A S SO U O WY TN WY NN MY U NN N UL S U G G N0 1

Lo COMMON AT, A2 | |

1 Il 1 clolMl P]L, Elxl 1A1]J'LALzL I 1 N N 1 | | | 1 1 [P 1 1 1]

and program unit 2 contains

[T B A A T S S NS A A SN R R A i B AT A A A

[O MMIOING (ARAY (AN + v o v vy e b

ST S) 1 | l 4t 9 4 | 1 4 {1 l [N N N ! FE | Pt [L 1 1 ¢ | ¢

the following correspondence occurs:

PROGRAM UNIT 1 PROGRAM UNIT 2

real part of Al ARAY()
imaginary part of Al ARAY(2)
real part of A2 ARAY(3)
imaginary part of A2 ARAY(4)
Rules:
(1) A COMMON statement is a specification statement; its order within a program

2
3

4)

()

6

unit is shown in Table 2-2.
An array declarator in a COMMON statement must not contain dummy arguments.

A block name is not related to any variable or array in the same or any other
program unit; it has no data type or value associated with it. Once a symbolic
name is used as a block name, no other name can be used to identify the same
block throughout the entire program. However, the same symbolic name can be
used as an array name, variable, or statement function name in the same program
unit or any other program unit of the program.

The same block name can occur more than once in a COMMON statement or in
more than one COMMON statement of a program unit. All entities of the same
block (blank or labeled) are stored consecutively, in the order of their appearance.

An EQUIVALENCE statement may extend a block only past its end, not ahead
of its beginning. '

The size, in storage units (see Table 2—4), of a common block for a program unit

is the sum of the storage required for the elements introduced through COMMON

and EQUIVALENCE statements. The sizes of labeled common blocks with the same
block name must be the same in all program units of a program; the sizes of

blank common in all the program units need not be the same.

——

8 36

SECTION: PAGE:
— —

FUNDAMENTALS OF FORTRAN

(7) 1t is incorrect to equivalence two entities of a COMMON statement to each other,
either directly or indirectly.

(8) Any program unit requiring access to a common block must have a COMMON
statement.

(9) In a subprogram, a symbolic name appearing in a COMMON statement may not
identify an adjustable array.

(10) Correspondence between different entities of the same common block in different
program units is determined by order and by storage unit(s).

(11) In any procedure subprogram, symbolic names of dummy arguments must not appear
in a COMMON statement.

(12) An item in blank common must not appear in a DATA statement; an item in
labeled common may appear in a DATA statement.

Examples:

(1) A subroutine subprogram contains:

— SULARIGBT LNE CL ALY, o s oo g oo g i gy
M COMMON / ARRAYSY . SET. (.00, 1, o b oo ooy o b by g
N RQ, 110, Kesloo V@@ bow 0 wu v Lo e b oo e b g
PEOIS Y WL I 70 AR UK. TP TVINT: ST FRTT T VO W00 WU S S U U SO0 ST S W S TSR WO U0 N NS WO 0 T A S SO ST U RS TN S S WA T U UV

—— L&mﬁg.‘...‘.u.luz,..‘n..v..#..Lig,.lj\..u.L;”L_.
END (o e e b e b e

1

Program unit 2 contains:

PR PO U YAV VO ST S ST WIS N0V S U VA AT SO SHN ST ST N U0 YO0 VAN G S S U S T T S S SR ST I WAV U VAT Y S S S S
e FUNPILIYNS PSSP S UL R S, WSS SR VPN ST R S VT SO S T SN VU S TS NN SRV SRS SA U N S SPUE-T SRR ST
b LI T S AU W S G TG N S S S R TN S N U SO AT S
dou C,0.M. M| O ARRA T.A8L.E1 S T ABLE2 4,..,5 T ABIL E3 (3,0,),
L dhrmde b I.l l Lned, PR L i A AAI_L SN R G S 1 i 1 Lol l L i " A | N | i l il | i S | Lol I] i1 L il i Il 1
T L ;:- | O S S TSIV (ST S VAP SN IO ST S TN S T S S S U KV S SUD S VA S SR S U N ST T ST S
o CALLL CLARAY | oo b e b o b ey
i PRI S OT U S S U S W R VY S ST S S S WOT WO Sl A S U W S S SR T TS RPN ST ET S SN SUr SN N G S R S N W R
PR B U PRI IS S0 SN0 S0 VU TN WA T S0 S U SN TR SN S VY SN S S SN A SIS VA G WS VAT ST SHU0 VUN UL AT ST SN S SN0 S ST ST VIS0 WO A 2SS T Y ST S S0 B
TR T PO, o XV, V0 4 s e Ve ey oy e e U
v a0l T ABLIEY (iKY = 0 O s e b e e o e e
T YRV T S S0 S0 S S S TN TN SN S N T SN S HAC W T Y OO OO VOO WS SN N GUAT .5 Y ST 00 T (N AT S YOO S T S S S U S A N SN S S0 T A

The CALL CLARAY statement in program unit 2 causes all the arrays in the
labeled common block ARRAYS to have their elements cleared to 0.0. The DO
range in program unit 2 causes clearing of all elements in the array TABLEL.

UP-7536 ' u 8 . 37
Rev. 1 l FUNDAMENTALS OF FORTRAN | sEcTIon: PAGE:
I (2) If program unit 1 contains
e don lAI‘ALLJAAI_LIIIAlllllllijllL.l‘L
i | 1COMMION AL B S0, G MT R 3okl Sade s
PR R I LOGHIC AL A o o oo by
1L 3 ' nl gul.‘h‘:l I:IB'EIQI':II“'H' ‘.‘ 1 L I 2 g l 4 1 re N
PR comPiL EX, G o oo Loy b

.and program unit 2 will only access MTRX(3,4,5), it must provide space in its
COMMON statement for those items in blank common that precede MTRX, even
though they will not be used in program unit 2. For example:

PO STV | FEEPEITEE U S S ST A T | T S B S ST O T W
N COMMION D 1M M Y1130, I“l.l.lh!l‘l!lll‘lllil‘l
bk, 1 2 i | ST T O N R T oha i "

UP-7536
Rev. 1

9

SECTIONS

'FUNDAMENTALS OF FORTRAN |

PAGE:

9.1.

9.2.

9. INITIALIZATIAON

GENERAL

This section describes the DATA statement (data initialization statement) and the
block data subprogram (specification subprogram).

DATA STATEMENT
Function:

To initialize the values of specified variables and/or array elements at compilation
time.

DATA ki /dy/ ky/dy/, ik /d/

where: each k is a list of variables and/or array elements separated by commas.
each d is a list of constants and optionally signed constants separated
by commas, any of which may be preceded by j*, where j is an integer
constant indicating repetition of a coanstant j times.

Rules:
(1) Dummy arguments may not appear in a DATA statement.

(2) Each subscript expression in an array element reference must be an integer
constant. ' .

(3) A Hollerith constant may be used in a list d.

(4) There must be a one-to-one correspondence between the list-specified items and
the constants.

(5) An initially defined variable or array element must not be in blank common. An
item in a labeled common block can only be.initialized if the DATA statement
is in a block data subprogram.

(6) No item can be initialized more than once in the entire program.

(7) Array names may not appear in DATA statements. To initialize an entire array,
each array element must be listed separately.

(8) A program unit may contain as many DATA statements as required.

9

SECTION:t

UP-7536
VRCV-I FUNDAMENTALS OF FORTRAN

PAGE:

Example: ‘

DI MEMNSITON, IM(,30), 1 v 00 b v b o e e b v v e by
D,ATA (A B /21*0,.,0 /], M(,2)], M (3!, M)/ 2,0, \VH /) 0)
pa vy boeyoe g b by v b by oy o v b e by oo b

The values will be initialized as follows:
A to 0.0
B to 0.0
MATRIX(1) to all blank characters
MATRIX(2) to 0
MATRIX(3) to O _ . -
9.3. BLOCK DATA SUBPROGRAM

Function:

To initialize values of labeled common blocks, at compilation time.

BLOCK DATA

data initialization and specification
statements (except EXTERNAL)

END

Rules:

(1) The first statement of a block data subprogram must be the BLOCK DATA
statement.

(2) The body of the block data subprogram consists of one or more DATA statements,
one or more COMMON statements, and all other required specification statements
except the EXTERNAL statement. These specification statements are type-
statements, DIMENSION, and EQUIVALENCE statements.

(3) All specification statements must precede the DATA statement(s).

(4) The last line of the subprogram must be an end line.

(5) The block data subprogram, although independently compiled, is a specification
subprogram and should not be confused with an external procedure.

(6) There may be as many block data subprograms as required.

UP-7536
Rev.l

FUNDAMENTALS OF FORTRAN

9

SECTION: PAGE:

(7) If any entity of a common block is initialized in a block data subprogram, all
items of that block must have their required specification statements, even
though some of these items do not appear in a DATA statement.

(8) Initial values may be entered into more than one common block in a single block

data subprogram.

(9) A block data subprogram cannot be referenced in a pro‘gratp.

(10) No executable instructions are generated by the processor for a block data sub-
program. Therefore, execution time of a program is decreased and less storage

space is required for execution.

Example:
b oo o by ey s b by T BN R I b b b
BlioacKl DAMTIAL s Lo g ey] b v b v v by b v by
yNTEGER B2, BR4 | | 1 AR IR I TS BN RN N BTSN SR A I A A

DIOIUIMI (PREIC LS LQING (B 3 |

1

I

LOGHLGAAL LRy ¢ ¢ o 1 vy gy

1

L

i

1

L

R B RN A B R

COMMAN /B LIKL/ALRIC2,)/ BIL K2 /1BI2, (BiRI4

DiATA LRGIDIGLRG2D) /A2 TRV E. /1,82 /1=1,,E /]2,

20, Bl

L

Llll!llllllll

7,1,8/2,8,1,8,2/8,0,0,/,

ElNIDl!IllltlLlllLllvllllllllIlllllllltllllllllllllll

e by e by g by vy b b by

i

1

llil‘lJLllill

9.3.1. BLOCK DATA Statement

Function:

To identify a block data (specification) subprogram.

BLOCK DATA

Rule:

The BLOCK DATA statement must (and can only) appear as the first line of a

specification subprogram.

UP-7536
Rev. 1

Appendix A

SECTION? PAGE:

FUNDAMENTALS OF FORTRAN |

‘ APPENDIX A. DIFFERENCES BETWEEN

ANSI FORTRAN AND
ANSI BASIC FORTRAN

ANSI (American National Standards Institute, Inc.) Basic FORTRAN lacks some of the
features found in ANSI FORTRAN. The following is a list of the features which Basic
FORTRAN lacks, and the sections of this manual affected by the differences:

1)
@

€))
4
)]
)

7N

. ®

&)

10
an

12)
(13)

(14)

(15)

(16)

an

(18)

There is no DATA statement or specification (block data) subprogram (2.2.1, 2.2.2,
Section 9).

There is no explicit type declaration of any kind; there are no type-statements (2.2.2,
2.7.2.1, 7.2).

There is no EXTERNAL statement (2.2.2, 7.1, 8.7).
There are no ASSIGN or assigned GO TO statements (2.2.2, 4.1, 5.2.3, 5.2.3.1).
There is no logical assignment statement (2.2.2, 4.1, 4.3).

All DIMENSION statements must precede all COMMON statements; all COMMON state-
ments must precede all EQUIVALENCE statements (2.2.2).

There is no § character in the Basic FORTRAN character set (2.3).
Thete is a maximum of five continuation lines instead of 19 (2.4.3).
There is a maximum of four digits in a statement label instead of five (2.4.4).

A real constant may not be written as an integer constant followed by a decimal
exponent (2.6.2).

Hollerith data is permltted only in a FORMAT statement; there are no Hollenth
constants and no A field descriptor (2.5, 6.3.3, 6.3.3.4).

There is a maximum of five characters in a symbolic name instead of six (2.7).
There are no double precision, complex, or logical data types (2.7.2).

There is no provision for type declaration in a FUNCTION statement (2.7.2.1, 7.2,
8.5.2.1).

Arrays are limited to two dimensions instead o‘f three (2.7.4).

There are no adjustable arrays and no array declaration in COMMON statement (2.7.4.1,
8.8).

There are no relational or logical expressions (Section 3).

There are no double precision or complex type arithmetic expressions (3.2.3).

UP-7536
Rev. 1

Appendix A

FUNDAMENTALS OF FORTRAN l

SEC TION? PAGEK:

19)
(20)
(21)
(22)
(23)

(24)

(25)

(26)

27

(28)

(29)

(30)

(€3 9]

There is no logical IF statement (5.3).

There is no provision for extended range in a _DO loop (5.4).

There is a maximum of four instead of five octal digits in a PAUSE statement (5.6.1).
Thete is no form control character_for formatted output records (6.3).

There are no D, G, or L, fiéld descriptors (6.3.3).

There is no provision in FORMAT statement for scale factor (6.3.3), data exponent
on input for F field descriptor (6.3.3.2.2), or second level of parentheses (6.3.3.5, 6.6).

In numeric fields, blanks are permitted only to the left of the first nonblank character
and between the sign of the field and the next nonblank character (6.3.3.2).

In formatted READ and WRITE statements, f must be the statement label of the FORMAT
statement; no array name is permitted (6.4, 6.5).

There are no logical statement functions (8.2).

Basic FORTRAN provides only the following intrinsic functions: ABS, IABS, FLOAT,
IF1X, SIGN, and ISIGN (8.3).

Basic FORTRAN provides only the following basic external functions: EXP, ALOG,
SIN, COS, TANH, SQRT, and ATAN (8.5.1).

Function subprograms may not define or redefine any of their arguments or alter any
entity in common or entity associated with common by an EQUIVALENCE statement

(8.5.2, 8.8).

There is no provision for labeled common blocks (8.8).

UP-7536 I Index 1
Rev. 1 - FUNDAMENTALS OF FORTRAN secTion: oaGES
INDEX
Term Reference Page Term Reference Page
A Asithmetic,
assignment statement see arithmetic
ABS Basic External Function, see external assignment
functions, basic statement
example of 85.1 813 data types 25.1,3.23 2-11, 3-
expression 3.2 3-1
Actual Arguments see arguments expression, limited 8.2.1 85
‘ IF statement see arithmetic
Addition, IF statement
operator 3.2.1 3-5 1/0 data see numeric
order of evaluation in data
arithmetic expression 3.2.1,3.24 3~1, 3-5 operators 3.2.1 3-1
statement function 8.2.1]
Adjustable Array, 2.74.1 2-25
in DIMENSION statement 73 -3 Arithmetic Assignment Statement, 4.2 41
in function subprogram 8.5.2.2 817 in sample program 1.6 1-12
in subroutine subprogram 8.6.3 8-25
Arithmetic IF Statement §.3.1 -9
Advance to Next Form,
form control character for 6.3 6-5 Array, 2.74 223
o . o COMMON statement declaration of 8.8 8-32
AIMAG Intrinsic function, s::n:tlti;:\:m ‘ declaration of 2.74.1 2-24
declaration of adjustable 8.5.2.2 8-17
example of 333 3-9 DIMENSION statement
declaration of 7.3 7-3
.AND. 341 3-10 elements see array
element
Argumefnts, _ 8.1,8.13 814 &1, 8-4,8-4 ° example of adjustable 8.5.2.2 8-20
basic function actual 8.5.1 8-13 .
. function subprogram
function subprogram actual 85.2.2,85.23 816, 8-23 arguments involving 8.5.2.2 a-17
function subprogram dummy 852.1,8522 816,816 location of elements in 2.74.3 2-29
intrinsic function actual 8.3 8-9 using name of 2.74.1 225
statement function actual 8.2.1,8.2.2 &5, 8-8
statement function dummy 8.2.1, 8.2.2 85, 8~8
subroutine subprogram actual 8.6.1 §~24
subroutine subprogram dummy 8.6.2, 8.6.3 825, 25

UP-7536

statement

Index 2
Rev. 1 FUNDAMENTALS OF FORTRAN secrions oace:
Term Reference Page Term Reference Page
Array Element. 2.74.2 2-26 c
EQUIVALENCE statement for 7.4 7-5
function subprogram arguments CALL statement 8.6.1 8-24
involving 85.2.2 8-17 within DO range see DO
tocation of 2.743 2-29 statement
number of subscript expressions
ired 7.4 7-5
;:quufet by o Central Processing Unit, 15.13 1-3
Subscript expression tn representation of fixed-point
reference to 2.742 2-26 numbers 15.13.1 1-8
Assembly Language 1.2.2 1-3 representation of floating-
e 2. -
sembly Languag) J0int numbers 15.1.3.2 1-9
ASSIGN Statement 5.2.3.1 5~8
Characters,
. alphanumeric 23 2-7
Ass:g.:fr‘nentth Statements, 42 -1 form control Table 6-1 65
Z"'J T'“g ¢ 5231 o s FORTRAN set of 23 2-7
e - prccessor set of 23 2-7
logical 43 4-4 specia! 23 2-7
Assigned GO TO Statement 5.23 5-6 Closed Internal Block,
B example of 5.2.2 5-5
Comment Line, 2.4.1 2-7
BACKSPACE Statement 6.8.2 6-30 sample 16 1—g
Basic External Functions 2.2.1 2-3
' COMMON Statement 8.8 8-32
Basic Field Descriptor in Compilation Proces 14 -4
FORMAT Statement 633 67 P ocess .
Compilel .
Bit. Definition of 1.2.1 1-2 mpuer 13 1-4
Completely Nested Nest)
Blank Characters. me y ¢ se: oo
in comment lines 1.6,24.1 1-12, 2-7 statement
imend line 2.4.2 2-8 Complex Type. 25.1,25.14 2-11,2-13
field descriptor 6.3.3.1 -8 constant 2.6.4 2-16
in FORMAT statement- 6.3 63 field descriptor 6.3.3.2.3 6-12
in FORTRAN coded lines 24 =7 memory requirements Table 2-4 2-11
in Hollerith data 243 2-3
in 1 O numeric data 6.3.3.2 &8 Computed GO TO Statement 5.2.2 5-2
in statement [abels 244 2-10
in symbolic names 2.7 2-18 Computer,
decimal 1.2.1 1-2
Blank Common see COMMON hexadec imal 1.2.1 1-2
statement octal 1.2.1 1-2
BLOCK DATA statement 9.3.1 9-3 Constant(s) 26 2-13
basic real 26.2 2-14
Btock Data Subprogram. 2.2.1, 9.3 2-2.%-2 integer 26.1 2-14
order of statements in Table 2-2 2-6 real 262 214
Block name see COMMON Continuation Line(s) of Statement 243 2-9

UP-7536 . Index 3
Rev. 1 FUNDAMENTALS OF FORTRAN SECTION: PAGE:
Term Reference Page Term Reference Page
CONTINUE Statement, 5.5 5--21 DO-implied,
as terminai statement see DO tist 6.2.2 6-2
statement specification 6.2.2 6-2
Control Statements 5.1 5-1 DO Statement 54 5-13
Control Variable, Double Precision Exponent 2.6.3 2-16
in DO statement 5.4 5-13
in DQ-implied list 6.2.2 6-3 Double Precision Type, 25.1,25.13 2-11, 2-
constant 2.8.3 2-16
Conversion Codes in FORMAT fieid descriptor for 1,0 data 63.3.2.4 6-14
Statement 63.3 6-7 memory requirements Table 2-4 2-11
cPy see centrai Dummy Arguments see arguments
processing unit
Cube Root, E
function subprogram for ENDFILE Statement 6.8.3 6-32
calcutation of 8.5.2.2. 8-21
End Line, 2.4.2 2-8
D in function subprogram definition 8.5.2.2 8-16
in sample program 1.6 1-13
DATA Statement, 9.2 91 in subroutine subprogram
in sample program 16 1-12 definition 8.6.3 8-25
Data Types, 25.1 2-11 EQUIVALENCE Statement - 74 7-4
Conversion of 42 4-2
dectaration of Hollerith 2.7.23 2-22 Executable Statemeénts 2.2.2 2-5
explicit declaration of 2.7.2.1 2-20
implied declaration of 2.7.22 2-20 Execution,
in arithmetic expressions 3.23 34 hait, temporary see PAUSE
in relational expressions 3.3.2 3-8 statement
memory requirements for Table 2-4 2-11 process 14 1-4
of function name 8.5.2.1 8-16 sequence 221 2-1
of symbolic names 272 2~20 sequence modified by control
) statements 5.1 5-1
Decimal Computer 1.2.1 1-2 termination see STOP
statement
Decimal Exponent 2.6.2 2-15
Expticit Declaration of
Declaration, data type' 2.7.2.1 2-20
array 2.74.1 2-24
DIMENSION statement array 73 7-3 Exponentiation,
explicit type 2.7.2.1, 7.2 2-20, 7-1 type rules for 3.23 3-4
Hollerith value 2.7.23 2-22
implied type 2.7.2.2 2-20 Expressions, 3.1 3-1
) arithmetic 3.2 3-1
DIMENSION Statement 7.3 7-3 limited arithmetic 8.2.1 8-5
limited logical 8.2.2 8-8
DMOD Basic External Function, see external logical 3.4 3-10
functions, basic relational 3.3 3-7
example using 4.2 4-3 subscript 2.74.2 2-26

statement

UP«7536 Index 4
Rev. 1 EUNDAMENTALS OF FORTRAN sECTION: PAGE:
"Term Reference Page Term Reference Page

Extended range see DO Format Control and 1/0 iist,
statement relation between 6.6 6-26
External Function(s), 8.5 8-13 FORMAT Statement, 6.3 6—4
basic 85.1 8-13 in sample program 1.6 1-11
subprograms 8.5.2 8-15
Function Reference, 8.1 8-1
External Procedure(s), 22.1 2-2 as primary in arithmetic
name as an argument see EXTERNAL expression 3.22 3-2
statement as primary in logical
subprograms, out-of-line expression 342 3-11
machine coding of 8.1.2 8-3
FUNCTION Statement 8.5.2.1 8-16
EXTERNAL Statement 8.7 8-30]
Function Subprogram(s) 2.2.1,85.2 2-2,8-15
- definition of 8.5.2.1 8-16
order of statements in Table 2-2 2-6
Factor, references to 8.5.2.3 8-23
in arithmetic expression 3.2.2 3-2
in logical expression 34.2 3-11 G
.FALSE. 2.6.5 2-17 GO TO Statements, 5.2 5-1
assigned 5.2.3 5-86
field descriptor(s) in FORMAT computed 5.2.2 5-2
Statement, 6.3.3 6~7 unconditional 5.2.1 5-2
blank 6.3.3.1 6-8 H
repetition of 6.3.3.5 6~21
Field Separator(s) 6.3.2 =5 Hexadecimal Computer 1.2.1 1-2
Hollerith
Field Width i1i Field Descriptors 6.3.3 67 !
' P constants 2.6.6 2-18
File 6.1 61 constant in CALL statement,
: example of 8.6.3 8-26
Fixed-Point Representation of constants in DATA statement,
ixed- i
Numbers 15.1.3.1, 25.1.1 1-8, 2-12 example of 6.3 54
data 2.5 2-11
FLOAT Intrinsic Function, see intrinsic ?" _DATA statement 9.2 -1
functions in input,output statement 6.3.3 6-7
example of 3.24 4.2 3-6. 4-3 field descriptors in FORMAT
R ’ statement 6.3.3.4 6-18
Floating-Point Representation of mteger.or logical type 2.1.2 2-20
Numbers 1513.2 25.1.2 1-9 2-12 representation by real 25.1,25.16 2-11, 2-13
Flowchart, sample 1.6 1-10 l
Form Controi Characters Table 6-1 6-5 IF Statement(s) 53 -9
arithmetic see arithmetic iF
Form. Typical FORTRAN statement
programming 24 a3 logical see logical IF

UP-7536

Index

5
Rev. 1 FUNDAMENTALS OF FORTRAN sECTION: PAGE:
Term Reference Page Term Reference Page
Implied Type Deciaration 2,7.2.2 2-20 Logical Assignment Statement 4.3 4-4
incrementation Parameter, see DO statement Logical Expression, 34 3-10
in DO-implied tist 6.2.2 62 limited 8.2.2 8-8
in DO statement 5.4 5-13
Logical |F Statement, 5.3.2 5-11
Initialization Statement see DATA in sample program 1.6 1-11
statement
Logical Operators 34.1 3-10
Initial Line of Statement 243 2-9
Logical Statement Function §.2.2 8-8
Initial Parameter,
in DO-implied list 6.2.2 6~2 Logical Type, 25.1,25.15 2-11, 2-°
in DQ statement 5.4 ' 5-13 constant 2.6.5 2-17
field descriptor 6.3.3.3 6-16
Input Device(s), 1.5.1.1 1-8 memory requirements Table 2-4 2-11
togical unit number of 6.2.1 6-2
Logical Unit Number in |.'O Statement 6.2.1 6-2
input List 6.2.2 6-2
Loop,
input Statement(s), 6.1 6-1 exampie of nested 2.74.2 2-28
auxiliary 6.8 6-29 in sample program 1.6 1-11
Integer Type, 25.1,25.1.1 2-11, 2-12 M
constants 2.6.1 2-14
conversion of 1/0 data 6.3 6—4 Main Program, 2.2.1 2~1
memory requirements Table 2-4 2-11 order of statements in Table 2-2 2-6
intrinsic Functions, 8.3 8-9 N
inline machine coding of 8.1.1 8-3
Name(s),
1,0 List 6.2.2 6~2 symbolic . see symbolic
name
K Newton-Raphson Method,
“Keyword, 1.6 1-13 in computation of cube root 8.5.2.2 &-21
use as symbolic name 2.7 2-18
Nonexecutable Statements 2.2.2 2-5
L
.NOT. 34.1 3-10
Label, Statement see statement
label Numeric Data,
“in 1,0 data 6.3.3.2 68
Labeled Common Block, see COMMON
statement o
initialization of see block data
subprogram Octal Computer 1.2.1 1-2
Language(s), Programming, 1.2 1-2 Operating System 15,15.2 -7, 1-9
assembly 1.2.2 1-3
FORTRAN 1.2.3 1-4
machine 1.2.1 1-2

UP-7536 ‘ Index 6
Rev. 1 FUNDAMENTALS OF FORTRAN sECTION: PAGE:
Term Reference Page Term Reference Page
Operators, Programming Form,
arithmetic 3.2.1 3-1 typicai FORTRAN 24 2-7
OR. 34.1 3-10 Punched Cards
for sampie program 1.6 1-9
Qutput Device(s), 15.15 1-9
logica!l unit number of 6.2.1 6-2 G
Output List 6.2.2 6~2 Quadratic Eguation,
solution of 53.1 5-10
Output Statement(s), 6.1 61
auxiliary 6.8 6-29 n
P READ Statement,
formatted 6.4 623
Parameter(s), sample program 1.6 -9
of DC-implied list 6.2.2 62 unformatted 6.7 6-28
of DO statement 54 5-13
REAL Intrinsic Function, see intrinsic
PAUSE Statement 5.5.1 5-22 functions
example of 333 3-9
Polynomial Evaluation,
by DO statement 54 5--21 Real Type, 25.1,25.1.2 2-11, 2-12
constant 2.6.2 2-14
Primary, data input 6.3.3.2.2 611
in arithmetic expression 3.2.2 3-2 data output 6.3.3.2.3 6—12
in logical expression 34.2 3-1 memory requirements Table 2—4 2-11
Procedure(s), 8.1 81 Record(s), 6.1 6-1
externai 2.21 2-2 demarcator 6.3.1 6-6
Procedure Subprograms, 2.2.1 2-1 Relational ,
order of statements in Table 2-2 2-6 expression 33 -
operators 33.1 -
Processor, Definition of 1.2 1-2
) Repeat Count,
Program, in FORMAT statement 6.3.3, 6.3.3.5 6-7, 6~21
compilation of 14 1-4
execution of see execution RETURN statement. 84 8-13
FORTRAN source 13 1-4 muitiple use of 8.5.2.2 8-16
main 2.2.1 2-1
object 1.3 1-4 REWIND Statement 6.8.1 5-29
sample executabie 1.6 1-9 ’
source 1.2 1-2 s
units of see program units
Scale Factor.
Program Unit(s), with fieid descriptors 6.3.3.6.3.3.6 6—7. 6-22
communication between 8.13 8-4
definition of 2.2.1 2-1 Sequential File 6.1 6-1
execution of 221 2-3
organization of 2.2.2 2-5

UP-7536) : S Index 7
Rev. 1 FUNDAMENTALS OF FORTRAN e Tion: -
Term Reference Page -Term Reference Page
Simple List in 1/0 List 6.2.2 6-2 Subroutine Subprogram(s), 2.2.1, 8.6 2-2, -2
definition of 8.6.3 8-25
Software, Definition of 15.2 1-9 invoking of 8.6.1 8-24
order of statements in Table 2-2 2-6
Sort, Internal
example 5.4 5-20 Subscript; 2.74.1 -4
expression 2.74.2 2-26
Specification Statements 7.1 7-1 i
Symbolic Names, 2.7 2-18
Specification Subprogram see block data uniqueness of 271 2-19
’ subprogram
T
Statement Labeli(s), 244 2-10
in sample program 1.6 1-9 Term,
in arithmetic expression 322 3-2
Statement Functions, 8.2 8-2 in logical expression 342 3-11
arithmetic 8.2.1 8-3
inline machine coding of 8.1.1 8-2 Terminal Parameter see DO statement
logical 8.2.2 8-8 '
Terminal Statement see DO statement
Statements, 243 2-9
continuation line of 243 2-9 Termination,
executable see executable of compilation see end line
statements of execution see STOP statement
initial line of 243 2-9
jabels of see statement TRUE. 2.65 2-17
labeis R
list of FORTRAN Table 2-1 2-5 Types of Data see data types
nonexecutable see nonexecutable
statements Type-Statement(s), 7.2 7-1
order of Table 2-2 -6 examples of 2721 2-20
terminai see DO statement
STOP Statement(s), 5.6.2. 5-23 u
-in sample program 1.6 1-9 Unconditional GO TO Statement 5.2.1 5-2
Storage,
auxiliary 15.14 1-9 v
EQUIVALENCE statement Variable(s), 273 2-23
conservation of main 74 7-4 control see DO statement,
main 15.1.2 1-8 DO-implied list
defining values of 2.7.3 2-23
Subprograms, "type declaration of 2.7.2.2,2.723 2-20, 2-
description of 2.2.1 2—-1
block data see block data
subprograms W
function see function WRITE Statement,
subprograms formatted 6.5 6-25
subroutine see subroutine unformatted 6.7 6-28
subprograms
SUBROUTINE Statement 8.6.2 8-25

Cut aiuug line,

| SPERRY==UNIVAC

I
I
I
I
|
I
I
I

I
l
I
I
l
|
I
|
l
l
I
|
|
|
|
| .
|
I
|
I
|
|
|
|
|
I
I
I
|
|
|
|

USER COMMENT SHEET

Your comments concerning this dccument will be weicomed by Sperry Univac for use in improving
subsequent editions.

Please note: This form is not intended to be used as an order blank.

(Document Title}

{Document No.) {Revision No.} {Updats No.)

Comments:

From:

(Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage stamp is necessary if mailed in the U.S.A.)
Thank you for your cooperation

FOLD

| " " I NO POSTAF(‘SE

]
NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 21 BLUE BELL, PA.

L

POSTAGE WIiLL BE PAID BY ADDRESSEE]

]

SPERRY UNIVAC S————

- T

ATTN.: SYSTEMS PUBLICATIONS ——

R

]

P.0. BOX 500 S —

BLUE BELL, PENNSYLVANIA 19424 -]

FOLD

1N

