
10J7-R801-18-~OJ

PRELIMINARY OMEGA

DESIGN MANUAL

Revision 1

REGISTERED .~ ;DOC~UMENT
. DO NOT.COPY···
Doc.:II=0Z Ser.:#_.·, ' __

.. Jssued to,~ t? I ~Aab J
. Company . Conridentia~ '.'

Systems Programming
March 1966

DIVI.IDN o~ v "Na C~" .. a ... ATlaN

UNIVAC 'AI',;. ,st.-;AUL 16, Mi N N iSOlA

1.0

1.0

2.0

TABLE OF CONTENTS

Purpose and Scope

OMEGA Control ••• " " . . · " . " "
Design Philosophy. ·
oj oj
I , I Control Thread. " " " . . .

1 • 1 .1 Task Addendum Definition · "

1 .1 .2 Activity Addendum Definition

· . " " . . .
· " "

" "

. .
Storage Mpdule Definition. . " . • • • • • • • • . . . ,,'

Basic OMEGA. • • ,.'
2.1 Interrupt Processors. · " . " " " . ~ . " . . .

2.1 .1 Interrupt Processors · . · • • • " · . .
2.1 .1.1 Service Request • • • • • • • • • • • • • • • •

2.1.1.2 Task Conting~ncy. " . " " .
2.1.2 . Normal Hardware and Peripheral Interrupts ••••••••

2.1.2.1 Internally Specified Index. · . . . · " . " .
2.1.2.2 Externally.Specified Index •• • • • · . . " " .
2,. 1 .2.3 Clock Interrupts. • • • .'"
2.1.2.4 Synchronization Interrupts ••• " •••••••

2.1 .3 Main Frame Contingency Interrupts. ,; • .. .• • • • • " • ..

2.1.3.1 Parity Error ••••• " •••••• " • " " • II

2.1.3.2 Power Loss. o • • • • • • . . . · . .• . " · " "

2.2 Interrupt Support Routine • " . . . " • •'.'. .-' . · . .
2.2.1 c. P. Queue Control. ... " .. . "... ·
2.2.2 Storage Module Control · . .. ·
2.2.3 .Channel Oontrol.· '. • • .. " • • • • · , . ·

3.0 . Input/Output Control . . .'. . . • • • • • • • • · .. . ~

1-1

".1-;;.1

1-1

1-3

1-5

1-7

2;"1

~', 2-1 ::~

2-1

2-3

2-10

2-12

2-13

2-17

2-23

2-25

2-26

2-27

2-28

·2.2-1

2.2-1

,.2.2-3

2.2-5'

3.1 General Desqription. • •••••••••••••••••• eo

3.2

3.1 .1

3.1 .2

Random Access .Storage List. . . • • • • ·
Unit Control Block. ·

I/O Director •• • . . . ·
.3.2.1

.3.2.2

Preprocessing Function • ·

Console Handler · . . , , • • • • • • • • • •

.3.2.3 Logic~l Lock of Mass Storage.. • • • • • • • • • •

3.3 Device Handlers •• · . . . ~ . . . ~
3.3.0 General Description ·
3.3.1 Magnetic Tape Handler ~ 0 t

.3 • .3 .2 High Speed Printer Handler. • .' • • • • • • • e 0 0 0 0

.3.3.3 Card Reader Handler • • •• • • • '.' • • • • • • • • •

Card Punch Handler. • • • • • • • • • • • • • • • • • •

Mass Storage Handler. ~ .. • •
.3 • .3.6 1004 Subsystem Handler. • • • • II • • • • • .. • • • • •

~.4 Auxiliary Routines • ·,.
3.4.1 Error Recovery Routines • • •

Interlock Routine • • • • . . •. . • • '. 10
.

Search Routines • • • • • • • • • • • • .'
3.4.4 Initialization. • .. • • • • Q • • • • • • • • • • •

3.5 User Interface 0 II

.3.5.1

3.5.2

File Codes • · .
I/O ReqU:ests .. '.

3.5.3 status Codes •

· . . . ~
· ·
· '. . . .

4.0 Core Allocation • • • ·
5.0 Task Control Functions.' · • • • • • •

3.1-1

3.1-2

3.1-3

3.2-1

3 .. 2 ... 1

3.2-4

3.2-10

3.3.0-"

3.3.0-"

3.3.1-"

3.3.2-"

3 ,3 • .3-~

3°.3.4-'1

3.3, 5-~

3.3.6-1

3.4-1

3.4-1

3.4-2

3.4-3

3.4-4

.3.5-1

3.5-1

3.5,2-1

3.5.3-1

4-1

5-1

6.0 Secondary Exec Functions. • • • I • • • • .'. • • • • • • • • • • • •

6.1 Content. • • • • • • • • • •
6.1 .1 Method of Oper~tion . . '. ,.

6.2 Service Functions 1. ~ . ., . . .
6.3 Service Functions 2. •
6.4 I/O Error Recovery '. . • *'. .'. • • • • • • • •

6.5 Console Control. . . . • • • • • • • • • • • • • • • •

6.6 ,Facility and Storage Assignment. ~ .

t.. ,.,
v. (

6.6.1 Method of Operation • • •
6.6.2 Peripheral Unit Assignment. ·
6.6.3 ,Random Access Storage Assignment •• · :.
6.6.4 Master File Directory • " . · '.
6.6.5 Facility Assignment Initialization. • • ·
Service Functions 3. • • • • • • • • • ·

6.8 Cooperative Service Routine. • • • • • • • • • . '.
6.9 Pre-Selection. · . • • • • • • • • .'. • • • • • • • • • • • 10

6.10 Selection •• it • • • • • • • • • • ·
6.11 TerIcination. • • • · . . · ~ . .
6 .. 12 Remote Facility Assignment · . . . '. , . .
'6.13 Library Service Routine.

6.14 Checkpoipt and Restart'.

.
• 0 • • • '. ·

6.15 Compactor. · . ·
6.16 Dump Routine · .'.' .
6.30 Secondary Exec +ables '.

6.30.1 Selection Job Stack. ·
6.30.2 Job Description. • • • • • • • • • • • • • • •

6.30.3 Selection S~ar,y. • t' • • • • • • • • '. • • • . . .
~ rot...... •

o.jU·4 Selection Facility Map • • • • • • • • • • • • 10 • •

6.0-1

, 6.0-1

6.-0-4

6.2-1

6.3-1

6.4-1

'6.5-1

6.6-1

6.6-5

6.6-10

6.5-15

6.6-22

6.6-26

6.7-1

6.8-1

6.9-1

6.10-1

,6.11-1

6.12-1

6.13-1

6.14-1

6.15-1

6.16-1

6.30-1

6.30-5

6 . .30-11

.,6.30.18

7.0 I/O Cooperative Mechanism. .. . 7-1

7.1
"'a O

'

Cooperative Features. • • 7-1

7.2 I/O Cooperative Elements. · · · 7-2

7.3 Input Unit Record Routines. 7-5

7 . .3.1 Sa.-r.ple Input Unit Record • , . 7-7

7.4 Cooperative Control • 7-11

7,.4.1 Calls., .' 7-11

7.4.2 . Cooperative Library. • • . 7-21

7.4.3 Functional Routines. .' • -. 7-24

7 •. 4.4 Block Charts . 7-26

7.5 Cooperative Maps and Tables ~ 7-30

7.6 Output Unit Record Routines • .' . . 7.-35

7.7 Edit Routines. . " ... • • • • 7-36

8.0 Real Time and Communications Control •• ... 8.1-1

8.1 General Description • · · . . ,. 8.1-1

8.1 .1 Level 1 Control. · • • · · 8.1-1

o ., ') Level r) Control. 8.1-2 u. 1.0&:;. tG . • · • . •

8.2 Tables. 8.2-1

8.2.1 CTM Control Block. . • 8.2-1

,8.2.2 Unit Control Block 8.2"':3

8.2.3 Communications Facility Map. · · . 8.2-5

8.3 Buffers . •. 8.3-1

8.3.1 Communication Buffers. 8.3-1

8.3.2 Communication Buffe~ Chain Control · • · 8.3-3

8.3.3 Packing Buffers. · • • · . ' . ., . 8 .. l-4

8.5

8.6

8.7

8.8

8.9

ESI Contro 1. .' • • • ·
8.4.1 ESI Interrupt Processor ••••••••••••• • ••

ESI Function Executor • • · . . ·
Channel Initialization and Termination •• • • • • • • •

Communication Handler. • .' · • • • • • • • •

8.5.1 Interrupt Processor Interface • • • • • • • • • • • ,. •
. ,

8.5.2 . . · Data Handling • • • •

User Interface (Leve11). ·
Communications Direotor Interrace (Level 2) • • • • • •

The Communications Director ••••• a. · " "," " " .
User Program Interface Level 2 " • " . e Ii =0 =0

Communications Facility Assignment · . . · . ,.
Level 2 Control 'Example. • • • • • • • • • • • • • • •

9.0 Auxiliary System Routines • • • • • • • .'. • • • • • • • • • • • •

Loader • • " • · . " . . " • a • • • • • • • • '.

9.1.1 . General Description · . . · . • • • II • • • • • • . . .
9.1.2 Prima~'i Control Statement ••••• " •• " • " ••••

9.1 .3 Seoondary Control Statement · . . ·
9.1 .4 Relative Binary Code. • • • • .'.. • " • • • • • • • •

9.1.5 Loader Operation ••• ·
9.1.6 Input Element Format •••• • • • • • • • • e _ • ~

9.1.7- Function of Loader Phase 1. ·
9.1 .8 Function of Loader Pha'se 2. • • • • • • • .• ,'.

Function of Loader Phase 3. " " "

9.1.10 Table Transitions • • • • • • • ,
9. 2 Library Maintenance.. •

Test Package • • • • • • • • " · . . . " " . " .

8.4-1

8.4-1

8.4-2

8.4-4

.8.5-1

8.5-1

8.5-3

8.5-4

8.5-4

8.6-1

8,,7-1

8.8-1

9.0-1

9.1-1

9'.1-1

9.1-2

9.1-3

9.1-8

9.1-14

9.1-16

9.1 ... 23

9.2-1

9.3-1

9.4

9.5

9.6

Element Library Maintenance • • • • • • • • • •

Utili ty Package •••••••••••••••

.
• • • • • • • •

REXecutor
9.6.1

9.6.2

9.6.3

9.6.4

9.6.5

9.6.6

9.6,7

9.6.8

Method of Operation • • • • • .'. • • • • • • • • • • •

The REX Control Statement • • • • • • • • • • • • • • •

Secondary Control Sta. tements • • • • • • • .;. • • • • •

REXecutor Elements

REXecutor Phase 1

Diagnostic Messages

REXecutor Phase 2

• • • • • • • • • • • • • • • • • •

. • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • •

. ~ .
Execution Area •

Blockcharts •• • • • • • • • • • .'. • • • • • • • • •

9.4-1

9.5-1

9.6-1

9.6-1

9.6.2-1

9.6.3-1

9.6.4-1

9.6.5-1

9.6.'6-1

9.6.7-1

9.6.8-1

9.6.8-9

Purpose and Scope

This document is an attempt to illustrate and explain the general composition of
OMEGA from a technical aspect by showing the major routines encompassed and inter­
action between them. ·Tables, maps and flow charts are included where appropriate
and available. In general, this document will serve a~ a guide for implementation
~~dupon completion of the system serve as technical documentation for the exec.
Therefore it will be, by natura, subject to constant change and/or refinements
until date of release, hence, caution must be used in placing reliance on the
contents of this document.

It is assumed the reader is familiar with the UNIVAC· 494 hardware and has
reviewed the functional description manual for th~UNIVAC 494 operating system.

OMEGA

1.0 Desig~ Philosophy

O}':EGA is a set of integrated routines providing the basic control for coor­
dinating and executing UNIVAC and user provided programs., It provides a
flexible and reliable foundation for the installation environment to build
upon. OMEGA has been designed explicitly modular to facilitate future extensions,
expansion of particular functions or selection of available variants of a basic

'function. In the following discussions of the executive functions, a dis­
tinction is made between Irbas:lc exec activities" those required for switching,
queuing and hardware operation of the machine; and "secondary exec activities"
those used for selection, task control, input/output and termination. All
secondary exec activities, although required in some form, have been estab­
lished by software convention and are replacaple. To facilitate their re­
placement or change, all secondary exec activities operate as worker programs
activated through formal service 'request with minimal communication between
them. This document supplies necessary tables, calling sequences and logic
of OMEGA to accomodate user modifications to the UNIVAC provided system.

1.1 Control Thread

OMEGA is dependent on random access storage as an operating base and upon
primary input streams as a source of the control language definition of work
to be performed. Each unit of work to be performed is called a task and
represents the unit upon which the sy~tem performs its selection, allocation
and activation functions.

For each task entered into the system, a Task Addendum is formed, which contains
all pertinent information pertaining to the task (see figure 1-1). To control
the running of the task and requested fragments, Activity Addendums are formed

-to order and control fragmentation,.

In addition to Activity Addendums, free storage is needed to perform
service requests or switching upon interrupts. This additional storage is
assigned to the particular program when it is required. The core area aSSigned
is called a storage module and is twenty octal words.' This storage module '
is'linked to the Activity Addendum through a push-pop chain.' The storage
'module contains all the information necessary for any 'service requestor loss
of control through an interrupt. The 'format of· an allocated storage module
is shown in figure 1-3 and the entries, are described in Storage ModuJe Def­
inition.

1-1

o

1

2

.3

4

5

6

7

10

11

12

13
14
15
16
17

20

21

22

23

25

26

27

30

31

'32

33

34

35

TASK ADDENDUM FIG. 1-1

22 ! 21 EERJICE18'17
I PRIORITY \ TASK ADDENDUM LINK
, I

01

01 18117 I ACTIVI TY ADDENDUM LINK

!29
! ¥lAXDfUM # OF CP UNI TS ALLOWED TASK (200' us)

29
OF CP UNITS USED (200 us)

29
I 1'f'TI.f.H' m· C,K ... AST 1\ CTIVATED .J...u..J.~ 1 .. !.A. L- a J. - I

29 22\21120\19\18117\16115 14 0
IU 0 A B 1: D E JOB NUMBER

29 15 14 0
F.P. OVERFLOW ADDR. F. P. UNDERFLOW ADDR.

;29 15 14 0
ERROR ADDR. ILLEGAL OP ADDR.

29
DRUM INCREMENT TO PARAMETERS

0

29 1St 17 0
1# OF 100 WORD GROUPS i TASK ADDRESS BASE
29 18/ 17 0

I CORE CHAIN LINK
29 15 14 a

OF WORD REQUESTED RECEIVE ADDRESS
a

I UNASSIGNED
I
29 15 14 a

PRIMARY OUTPUT ESTIMATE SECONDARY OUTPUT EST.
29 0

DRUM INCREMENT BEGINNING OF MODULE CHAIN

29
,....
v

DRUM INCREMENT END OF MODULE CHAIN

29 18
1
17 a

CURRENT BUFFER ADDR.
29 15 14 0

TOTAL # OF MODULES # IN SYST:EM
29 a

DRUM INCREMENT BEGINNING OF MODULE CHAIN
29 0

DRUM INCREMENT END OF MODULE CHAIN

1

29 18
1

17 0
CURRENT BUFFER. ADDR.

29 15 14 a
TOTAL # OF MODULES # IN SYSTEM

29
DRUM INCREMENT BEGINNING OF MODULE CHAIN

a

;29 0
DRUM INCIDMENT END OF MODULE CHAIN

29 18
1
17 a

CURRENT BUFFER ADDR.
129

TOTAL # OF MODTrr,F.~
15 14 0

IN ~YKT~

29 1281271 18
1
17 0

ADDRESS

- ~ --'-'
.- - -- - --- - -1-2

SWITCHES
RELATIVE TO
TASK BASE f-

.

PRIMARY
INPUT, ~.

-PRIMARY
OUTPUT

l-
SECONDARY
OUTPUT

I
I
I

FILE 'CODE A'

rILl CODE' B-Z

67

70

71

72

73

74

75 .

76

77

i:IM-l-AR-Y-I-N"P-U-T-"'U-NI-T -RE-C-O-R~-----~~-~r
,

PRIMARY OUTPUT UNIT RECORD

SECONDARY OUTPUT UNIT RECORD

COOPERATIVE LIBRARY "
SYSTEMS LIBRARY

I

JOB LIBRARY

SYSTEMS LOG

i SCRATCH

SCRATCH

1-2A

F-

FILE CODES ZA~ZI
RESERVED FOR
SYSTEM USAGE

1 • 1 • 1 ,Task Addendum Definition

The task addendum is formed by'cooperative service routine' when a Job
stream enters the system. Each task (program) 'described by the Job
stream will ,utilize this addendum to contain I/O assignments and other
control information at the task level.. Upon completion of a task the .
addendum is purged of task' dependent information and re-used for next'
task in the stream. This will allow ',select control information and
I/O assignments to b~ car,ried from one task to the' next. wi thin a J.ob
stream. .,

" The following describes content of task addendum';

'Word 0

'Word 1

,Word '2

Word:-3

Word 4
Word 5 '

Word 6 '

Word 7

Word 10

\-lord 11

Word 12

Word 13

Service 'priority is a four' bit number assigned as the'
highest priority available to the task. ' Linked to next
task addendum. contained in the system.
Linked to activity addendum is a 18 bit address of first
activity established for current'task.
Contains the estimated # of ,time units required of the
control processor to complete the current task. ' 7';"-7

, indicates continuous processing. ., ,
The # of time 200 us units currently used by task at this
point in time. ' .
Time of day (in 200 increments) this task was activated.
Logical switches - bits 215_219 are used for logical. switches
A through E respectively. If corresponding bit is set (1)
switch is on; ,if bit is 0, switch is off. Overflow switches­
if bit 220 is set (1) a floating point overflow has occurred.
If bit 221 is set (1) a floating point underflow has occurred
Lower contains a 15 bit Job Number assigned by the OMEGA to
identify the Job.
Contains relative addresses of alternate floating point over­
flow or underflow routines established by task.
Contains relative addresses of alternate error recovery
routine in the event the task addresses outside its assi~!!ed
code. Illegal operation address is relative address of
alternate illegal instruction recovery routine.
Contains drum increment to parameters stored by a task un­
solicited operator enter for conveyence to next task. Drum
increment is to logical File Code,ZD.
Contains absolute code address assigned to current task and
length of task in groups of a100S'
Contains a link to chain descriptors committed by RT/Comm
pro grams only.
Contains address and # of words for an outstanding RECEIVE
operator.

Word 14-17 Unassigned
Word 20-34 Are used to control primary and secondarJ input/output and

are explained under cooperative control.
Word 35-66.Contains the basic set of logical file codes A-Z which the

user may assign peripheral devices or random storage files.
Eaeh entry is composed of one word ordered A through Z and
contains address of unit, control blook desoribing peripheral
de~~_e, list of mass storage descriptors or an expanded list
of 26 file codes.

1-3

'File code entry

ADDRESS'

. (1) indicate's assignment to be held between tasks

(1) indicates address is of random storage list . ,

(1) indicates'base address of an additional set,
.of26 file codes

Word 67-77 contains file codes ZA-Z1 reserved for systems" usage

1-4

1.1.2. ACTIVITY ADDENDUM DEFINITION

An activity is established by definition of' an operating task 'and/or
activity. The function allows a dynamic declaration of parallel or
asyncronous paths through the task level code. Activity addendums
are used t~ control and register elibible control,patbs.

One Activity Addendum is formed upon initiation of the task. This.
is used to start the task. 'One additional activity addendum will be
formed for each activity registration or fork performed by the task.
These activity addendums'will be used (in conjunotion ~th assigned
storage modules) by the dispatcher as switching poings control running
of the task and task fragments within the system •. Activity addendum
require 108 words.

The following describes the contents of the activity addendum:

Word 0 Queue cell for central processor control will be used to
link all activity addendums to the C. P. Control Queue.
Also used to queue activities to hold or delay queues.

Word 1 Storage module link used to link together all storage
modules assigned to the activity. This points to the
last module in the chain which will be used for first
ret~rn of control.

Word 2 Priority number of this activity (0-36). Used to control
selection of highest priority activity eligible for control
from C. P. queue. Binary identify is number assigned by
used for queued activities.

Word 3 Address ·of the task addendum

Word 4 Fork control. Bit 29 indicates if a JOIN has been given
next 12 bits contain the number of forks this acti vi ty has
made. Lower 18 bits used to link all forked addendum. If
queue processing activity the lower 15 bit contains the
relative starting address. If other, activity the word is
zeroes.

Word 5 Linking cell for all activity addendums associated with the
task.

Word 6 Contains the upper 12 bits of IFR and the relative index
regis ter of the acti vi ty •.

Word 7 Program lock register.

1-5

0

i

2

ACTIVITY ADDENDUM FIG. 1-2'

[29 ,
18t'17

QUEUE CF.f.T. FOR C.P. cONTROL

ZERO FILL OR HOLD QUEUES

j9
18 17

I ZERO FILL I STORAGE MODULE LINKING CELL

I J

,0 f

I

o

r9
ZE.110 FILL IF OTHER ACT. 15 14 __ ,_,_. _ ' 0

- , 1
__ . .- - - - - - - - - - - - - --. - - -. - - -. - - - .. -- - - - - - -I

;29 _" 15 5 4 PRIORITY·' -~ 0
I

'BINARY IDENT IF QUEUE PROCESS ZERO NUMBER

29 18 117 ' o

I ID;1JSED • I TASK ADDENDUM ADDR.

3 I 1

ZERO FILL ACTIVITY ADDENDUM LINKING CELL

5
29 18 17' o
UPPER 12 BITS OF IFR RIR

6

29 o
PLR

7

tj29- - ,- - -26 - - - - - - - - -15114- - - -11 '10- - - - - ~ - - -
. ZERO FILL UPPER BOUND i ZERO FILL, LOv-TER BOUND

29 0

UNUSED

o

1-5A

The following illustrates the chaining employed for task.addendum.
Activity Addendums and storage modules used by the OMEGA to control
a program.

TASK I ADDENDUM

STORAGE i"
MODULE I

(1A) I
...... _--,

The task addendum describes the task,code and contains all pointers to
peripheral assignment descriptions used by the task code. The presence
of three activity addendums implies three control threads through the
program or parts of the program have been declared by the code at
object time. Each activity addendum is normal registered to the dispatcher
queue as an eleg±ble point for program control providing for parallel
or asynchronous processing within a program. This is in addition to the
normal multiprogramming and/or multiprocessing of tasks within the
system.

The presence of two storage modules under activity addendums 1 implies
the registered control thread has performed a service request to the

. OMEGA which has: 1) caused an additional service request by the activated
OMEGA element which has called on a third element which is currently
in contro1 of the control processor, 2) the called for element was
interrupted and requeued to the dispatcher, 3) the called for element
has taken the activity out of the system unitl some disposing action has
been completed for the request, e.g., I/O completion, freeing of •.

1-6

1.1·.4 . STORAGE MODULE DEFINITION

The allocated storage module is a 20 octal word core area assigned
to control interrupts or service requests of activities. The storage
module is always placed on an even core address so service routines
(switcher, interrupt processor, handler) can take advantage of the
memory overlap feature of the 494.

Entry Word

o

1

2

.3

4

5 Upper

5 L,ower

6-13

14

15

16-17

Use

18 bit link to previous storage modules if any or back
to addendum. Use of control last in first out sequence
of requests.

18 bit address of the addendum this request is associated
with. Stored in when module is assigned and used by
servicing routines to find addendum.

Internal function register store in at time of interrupt.

Relative index register of the activity interrupted •

Program lock register of the activity interrupted.

Upper 15 bits in the captured relative P a interrupt.
Stored in after Store worker B is 'done.

Worker B1 registers store in at interrupt by store.

Lower 15 bits of word 7 and 10 and lower 18 bits of words
11-14 contain worker registers. Additional bits may be
used by service routine~ for a~ditional storage.

Contents of A register at interrupt.

Contents of Q register at interrupt.

Additional storage for service routines.

1-7

ALLOCATED STORAGE MODULE

Located on Even Core Addr~ss

o f::
18 17, 01 ---- .. --

ZERO FILL PUSH 'POP LINK
18 17 0

1 ZERO FILL ACTIVITY ADDENDUM ADDR.
29 0

2 IFR
I

17 I ~9 .

18·
61

5 0

__ ~Z:R: :I~L RIR I
PLR I __ J - - -- - - -to - - - - - - -. -- - --29 26 25 . 15 14 11 10 0 I ZERO FILL UPPER B.OUND ZERO FILL LOWER BOUND

3

4
29 15 14 0

RELATIVE P Bl 5 1-2-9----~-----------------1-5~1~1-4------------------------~ 0

129
6 B2

0 15 14
I

7 ADDITIONAL WORKER B3
0

B REGISTERS B4
18 1,,17 STORAGE FOR ,

10
0

B5
0

11

j29

I SERVICING ROUTINES

18,17

!

12
0

'13

14 I A REGISTER

29 0

15 Q REGISTER
.

'29 I 0

l!6 ADDITIONAL STORAGE
29 0

17 ADDITIONAL STORAGE

Figure 1-3

1",,8.' ..

2'.0 Basic OMEGA System

The basic Oy~ system is divided into two sections, the interrupt
processors which answer all hardwareand'software interrupts and the
related interrupt support routines which assist the interrupt
processors in disposing of the interrupt. The second group, the
interrupt ~pportroutines, include routines such as queue control
and the dispatoher.,

2. 1 OMEGA INTERRUPT PROCESSORS

The OMEGA interrupt processors for the 494 operating system
shall operate on three distinct types of interrupts. These three
types are a) task or task fragment generated interrupts, b) normal
hardware and peripheral generated interrupts c) main frame
contingency interrupts.

2.1.1 Task or task fragment generated interrupts.

These generated inter~upts are either requesting service
from a part of the operating system or are contingencies
relating only to the specific task. The service request
interrupts and the relative servicing routines will operate as

, an extension of the requestor. Task related contingencies
interrupts usually res}ll t in the queueing o:~ the contingency
interrupt processor for subsequent ~ontrol=

-Service Request Interrupts

Service requests are normally made by the use of the Exec
return instruction and an associated packet or registers
containing the parameters required to process the request. The
only exception to this is the segment load that runs off of a

. guard mode interrupt. The organization of the routines which
respond to the service request function is shown in
figure 2-1. '

Each routine handl±ng of a service request may itself make
service requests for other functions to be preformed. Much
of the communication between elements of OMEGA is preformed in
this manner; some service requests therefore, are internal
to the system and will not be available to the general user.
This organization contributes to the modularity and open ended
design and allows the system to dynamically expand when core
is available and contract a~ core is required b.1 the user.

2-1

2. 1 .1 ,1 Service Request Routine
, '

This element of Omega is the interface by yhich an operating
,program communicates yi th and requests serVices of Omega. The:
requestor is reactivated only when some'disposing action'~s co~-'
plete. Result parameters are r~turned to indicate non~
performance, normal compl~tion or abnor.mal completion. '

An ,operating program req~ests service by. a sequence of
instructions yhichsubmit a parameter packet appropriate to
the request and interrupts to Omega. Since hardYare guard·
mode is enforced against operating tasks, the special
executive entr,y L~struction is used to submit a ,request.
This instruction 'causes an int'errupt and includes a 15 I

bit field identifying the function requested.

Exec return instruction

29 15 14 12 11 o

7 540
I~? I Par~e~~r to ServiCing
f li.B.LlJ r .tC.out.~ne

,
yhere EXEC CALL represents the number of the resident EXEC
function required to process or schedule the request and
are as follows:

o Task Control and Miscellaneous Se+vice Functions.

1 Input/Output service request at the packet level.

2 Contents supervisor, schedule request for a drum based service
routine.

3 I/O cooperative control, process primar,y and secondary
Input/Output requests.

4· Core allocator, responsible' for allocation and deallocation
of core storage.

5 Common subroutine linkage, responsible for establishing
linkage betyeen a common subroutine and its caller.

6 Reserved for system use

7 Reserved for installation usage
. .

The lower 12 bits of the Exec return instruction contain
additional parameters to direct.the servicing routine.

2-3

Upon detection of the Exec return interrupt the' serVice request
routine preforms the following functions for all Exec returns wi,th a .
non-1toro opornnrJ.

• All transitor,y registers (A, Q and worker·B registers), +FR
and the captured relative P will be stored in a storage module~
that contains the activities PLR and ~IR. This storage module
is then linked to the activity addendum through the storage
module lL~ing cell. .

• A new storage module will be acquired from the unallocated
storage module chain and interrupt lockout will be released.

• IFR, RIR and PLR will be set to the values for the Basic Exec
routine responsible for handling the request and these values .
will be stored in the new storage module.

• Program control is switched to the called basic Exec routine
with the ."An register containing the IFR value (with the Exec
call) and the IIQII register holding the. Activity Addendum. address.
(The assi~ed storage module can be found from storage module
link cell) .-

The servicing of the standard requests by the prima~ service
functions are explained in the related individual section. Only
the special service functions preformed b.1 the Basic Omega S,1stam
are explained in this section.

2-4

Special OMEGA Service Functions

B,ecause many OMEGA routines need special functions for.
queueing and switching and do not have direct access
to the queue tables and storage area, 'a special OMEGA· return
will be used ',by secondary OMEGA routines to request'service
from the basic 9MEGA system. This return may only be
used by OMEGA routines an~ is not allowed to worker programs.

77540 00000

with the paramet~rs and service request number in the A'and
Q registers. Service request number is in A lower.

The servicing routines will operate either interrupts
locked out or logically locked out.

IDLE Service request number is zero

This entry makes a direct entr,y to the ,dispatcher to select
the next eligible task or task fragment for central
processor control.

Qu.eue Control

~ueueing of tasks or activities to be performed is a
major function of OMEGA. Besides the requirement for
queueing at the 0 ccurrence of an interrupt, many of the
servicing routines will require queueing functions to return
control to worker programs, queue other functions to be
performed, and qUeue themselves if requests must be delayed.
A common queue control routine will be employed to
perfor.m the functions.

Queue ,Control can be referenced by servicing routines by
an EXEC return instruction. The call is for an immediate
function to be performed and will be performed with interrupts
locked out or a logical lock imposed to protect over
queueing or double referencing of the queue tables.

Central Processor Queue

The CP queue is the queue that directs the use of central
processor control. Any routine that is eligible for
control (and not currently in contro~) is listed on the'
ready queue. Servicing routines are required to have placed
on the C. P. queue requests that have been completed. Other
functions also are required to place entries on the C.P. queue
(i. e., Program load to start program, etc.). "'

2-5

c. P. queue with idle

This group places activities on the C.P.queue and does not
require return of control. An entr.y to the dispatcher
will be made after queue control has performed its task.

Current Activity at its priority Service request number is t.,

Queue the activity currently running at its registered
priority and exit to switcher. l~y be used to return
contr~l to worker upon completion of a service request.

'Current Activity at priority ,X Service 'request number is 2.

Same as number 1 except the priority is defined by the
upper 5, bit3 of the Q register. Useful ~o d~splace routines
for a turn t~rough t~e dispatcher.

Addressed activity'at its priority. Serv~ce request number is 3.

Queue the activity addendum addressed by the lower 17 bits
in Q register at its registered priority. The Q register
contains a 17 bit absolute addendum address to go on the
reaqy queue. Priority will be taken from the addendum.

, Addressed activity at a specified, 'priority., Service
request number is 4.

Same as number 3 except the priority is supplied' as an '
additional parameter in,the upper 5 bits in ,the Q register.
Useful to displac~ routines o~ have t,hem ga~ cont:z;-ol at
a priori~y other than that ,assigned to them.

C. P. Queue with return of, control"

This group places act~vities on the C.P. ,queue but wishes
return of control for subsequent processing. Control will
be returned immediately following the EXEC Return after
the queueing function has been performed. Subsequently
an idle entr.y must be made to allow the, queued routine to
get control. Current a~tivities cannot be queued with return'
of control because no queue cell link would exist for
inte~rupt,queueing.

Addressed activity at its priority. Service request number
5. '

Same as number '3 except return control after queueing.

2-6

Addressed activity at a specified p~iority. Service
request number 6.

Same as number 3 except priority is supplied as a parameter
in the upper 5 bits of the Q register and control
is returned after queueing.

Switch Functions

. Switch functions are used by Ilo control, contents super­
visor, common subroutine linkage and RT/Comm control to
switch control from itself to a routine being activated and
to gain .subsequent return of co:q.trol. ' .

Direct Switch 1 Service request number 7

Heset RIR and give c,ontrol to the address specified
by RIR. Q :\registE'-r. contains l; 17 bit address. of th~ ,
RIR to reset, to·.

Direct Switch 2 Service request number'10'

Reset IFR, RIR and PLR and give control to the address
specified by RIR. Q register contains a 17 bit addre~s

,of the list. Where IFR RIR and P~R are stored.

Direct Return A ~ervice request num'};)er 1,.. ,

Reset and return control to the primary exec routine
whose identity is contained in Q lower. Q 'contains
one of the following numbers.: "

1f1" to return to I/O Director
t12t1 to return to Contents Superviso'r
"3" Not Applicable .
t14" Not ,Applicable
"5" to return to Common Subroutine linkage
116 11 Not Applicable
If?" to return to' Real Time Control '

Direct Return B . Service request number 12

.Dea1locate last, SMOD on current activity addendum arid
return control to ·it. Used to return control·to worker" etc.'
without going through switch routine.

2-7

'POP " Service request number 13

Compliment of Push. ,Remove from chain and queue
~o= ~e-:::=n c~ cc=:t:-ol t:.e i.=,iic.s.~ea act!ri.ty aade:1c1.::l.
Cont~ol will be ret~-ned to requestor upon completion.
Tne Q register contains the address of the chain cell '
for FIFO sequence or it is the address of the entr,y
in the chain immediately before the one the requestor
'Wants popped.

Initiate lSI I/O Service request number is 14

This request comes from the formatorvith the Q
register containing the address of the SMOD with.all
parameters in it. These parameters include channel
number, queue pJ.acement, ,etc.

Initiate ESI I/O Service Request number is 15

2-8

Lir~ Task Addendum.' . Service Request Number· 16

7:1is request ask,s for the formed task addendum whose 17 bit
absolute address is contaiI;led in the·' Q register to be added,
to the chain of task addendums. The new addendum wi~,be
linked to the task addendum·currently in control 'and all
other links will be updated.

De-link Task Addendum. Service Request Number 17

This request asks that the task addendum whose·Job number
is contained is, in the Q register be rem9ved,from'th~ chain
of all· task addendums.

Switch Control Thread. Service Request Number 20

This request as::':s -Ct.&.. -~ t: .. e 17 bit Acti vi ty AddendULl address
in Q be switched to the task addendum address by the Job
number contained in' A upper" that the in·dica ted addendum be
queued for control and an idle entry made to the dispatoher.

2-9

2,1,1,2 Task Contingency Interrupts.

Task co~tingency interrupts are hardware interrupts that impact
only on the related task and do not prevent the rest of the
system from continuing. These interrupts include:

Illegal Instruction

This interr~pt is caused by attempting "to execute a 00 or 7700
instruction code or attempting to execute a privileged instru­
ction. Standard systems action is to abort the offending
task. Tasks may, however, pre-establish an illegal instruction
recovery routine~ If established, the routine will be eligible
for control under the offending activity 'addendum. Additional
parameters besides transitory registers will be available to
the ro~tine.

Program Protection

This interrupt is caused by a program trying to read, store or
jump outside its assigned area. With the exception of the
informal segment call (which is e~lained in segmentation)
the task will be aborted with information about the violation
logged b.1 the abort routine.

2-10

Timeout

Floating Point Interrupt

Test and. S~t Interrupt·

2-11

2.1.2 Normal Hardware and Peripheral Interrupts

These interrupts usually result in. the execution of waiting
functions and generate a request for service. The s·ervicing
of the interrupts will operate at varying priorities. They
-may have been established from the requesting task, priori ties ..
of waiting f~~ctions, optimum peripheral usage or other system
considerations. Disposal of ·the interrupt will usually result
in the removal of an activ~ty from a delay queue and placed on
the central processor queue for subsequent control.

2-12

2.1.2.1 Internally Specified Index Interrupts

Control of lSI interrupts is handled by two routines. 'The
lSI processor and the channel control block processor.

lSI Pr'ocessor

The lSI processor is activated by the lSI interrupt and
rl.h"lS with interrupts Lock out. If the interrupt was an
external inter~upt, the interrupt word and both input
and output BCRs are save (these are not saved on a
monitor interrupt). The next function queued on the
interrupted ch~!nel control block is then executed.
Upon completion of the execution of the I/O commands,
the lSI processor checks to see if the Channel Control.
Block processor can be run. .If it cannot, because of a .
higher priority routine in control, the channel control block
is marked as needing processing and a return to the point
of interrupt is made. The CCB must then be processed
in it priority to the rest of the interrupt processing
before control can be returned·to any worker program. If
no higher priority routine is in control, such as ESI:.
processors etc., the Channel Control Block processor will
be entered directly from the lSI processor after saving the
interru.pt point.

Channel Control Block Processor

The Channel· Control Block processor is a routine that
operates logically non-interruptable and prepares the
CCB for the next execution and processes the previous
function and queues inte~~pt ~~alysis if necessar,r.

, Channel control blocks are used to control input/output
operation for all standard peripheral.channels. One CCB
is set up for each channel containing standard peripheral
hardware. A table of addresses called·, CCB table is
kept to be able to. access the CCB by channel number. ~e
CCB is ~hown in figure 2.1-1.

CHANNEL CONTROL BLOCK

Label Ref-Upper or Whole Label Ref-Lower

,29 0
KCCEXTINT a I EXTERNp~ INTERRUPT STOP~GE

:29 a
. KCCIl1BER 1 t

i INPUT BCR AT RXT INTERRUPT
i29 a

KCCOUTBCR 2 j OUTPUT BCR AT ~XT INTERRUPT
~9 ~TAIT FOR . 15 114 TEST EXT INT 0

KCCWAIT 3 NTE~~UPT INDICATOR i INDICATOR KCCTEST
~9 TYPE OF INTERRUPT 15\14 QUEUED INTERRUPT 0

KCCIT'LPE 4 ! INDICATOR IND'ICATOR KCC~QUE

F9 15 ;14 01 KCCPROC 5 , C CB PROCESS IND. ~ cHANNEL LOCKOUT IND KCCLOCK
!29 S1~ITCHING 15 1'4 5 CHANNEL 01

KCCSWIND 6 t INDICATOR ., NUM KCCCHAN
129 28 18;,7 ADDR. OF LAST I/O 0 1

KCCIOGCTL 7 U , GROUP EXECUTED I

!29 ~28 18 t 17 ADDR. OF NEXT I/O . 01
10 t I ! GROUP TO EXECUTE I

! 18
1
,7 Oi ;29

KCCCEM:GTL 11 j CEM CF .. AIN I
t29 18

1
17 01 KCCINTADDR 12 ! INTER-BIJPT STORE AnDR.

f29 18! 17 0 1

KCCUCBC 13 I I DCB CF.AIN f
!29 18

1
,7 ADDR. OF FUNCTIONAL 0

KCCFUNC 14 69
CHAR. OF CHANNEL

18117 ADDR. OF LOGICAL 0
I

I KCCLLOCK 15 I , LOCK TABLE

Figure 2.1-1

2-14

Explanation of Entries in the channel control block.

Word #

a Used to temporarily store the external 'interrupt before
it is moved to the OEM. Not used on monitor interrupts.

1 Contents of the Input BCR at external interrupt time.

2 Contents of the Output BCR at external interrupt time.

3 Upper half is walt for interrupt indicator and is set or '
cleared depending on the exit used from the OEM. Lower
half contains an indication of a by-passed I/O sequence on
~'1 external interrupt.

4 'Upper half is interrupt type indicator
00000 = External 77777 = Monitor ' 40000 = Error (Time OUT,

, Parity errors)
Lower is used to indicate an interrupt'has occurred when
the channel was logically locked out.

5 Lower half is chww'1el lock out indicator and if set it
means the COB has not been updated to accept the interrupt.

) Upper half is used to indicate the channel 'has to be processed
before OMEGA goes logically interruptable. '

6 Switch indicator - if clear switch to analysis 'on high
priority, if set return to interrupted activity unconditionally.
Lower half contains the channel number.

7 Address of last I/O group executed used to control return ,
to analysis. Bit 29, if set, indicates 'there was no previous
function.

10 Address of next I/O group to execute. Used to execute
next I/O sequence. Bit 29, if set, indicates there is no
new function to ,exec~te.

11 Channel executor module chain control word.

12 Address to~ove interrupts for device handler analysis.

13 ' Address of first unit control block in the UOB 'list .. for this
channel.

14 Address, of the functional description of this '~hannel.' Used
by device handlers for ~ction and interrupt codes, etc.

15 Address of Logical Lock List for this 'subsystem,.

2-15

The CCB processor upon completion of updating the CCB
enters an interrupt support routL~e that check for other
in~er~pts in order of priority and switches control to the
appropriate processor.

2-16 -

0,i.2.2. ESI Inte~rupt Processing Routines

The function of the ESI Interrupt Processor is to answer ESI
interrupts, identify the interrupting ESI, re-establish activity
on the I/O channel, provide an additional communication buffer
if required, and perform ~ny other functions as pre-directed
by the Communication Handlers. The ESI Interrupt Processor is
distinct from, and has priority over, the lSI Interrupt Processor.

The ESI processor consists of three rou~ines:

.The ESI Interrupt Answering Routines

-The ESI Interrupt Processing Routine

.The ESI Buffer Chain Control Routine

2-17

Interrupt Answering Routine

Function - The ESI InterrUpt .inswering Routine identifies
terminating ESI, J'~-establishes activity on the
interrupting chanT.' 31 and insures an orderly
path ~hrough the ESI Interrupt Processing Routine.

E1~RY - Entry to the interrupt answering routine is from
the three ESI interrupt entrance locations.

EXIT - The routine exits either to the ESI Interrupt
Processing Routine or to the point of interrupt,
(Exit to the point of interrupt occurs only
when the ESI or lSI Interrupt.Processor has
been interrupted).

Operation - The ESlInterrupt Answering Routine operates
in the Executive Mode and with interrupts locked
out (the'result of being entered from an interrupt).
Three distinct entrances are required because of
the different manner in which the input monitor,
output monitor, and external ESr interrupts must
be handled initially.

The input and output monitor entrances must
capture the terminating' ESI and then re-establish
channel input or output activity. If the address
contained in the terminating ESI points to a
previously defined buffer, the buffer is established
(see Section 8,.3). The external interrupt entrance
need not re-establish the channel.

,The routine now increments the ESI .inter~~pt
cou~t in· the CTM Control Block Table (Figure ·2.1~3)
and 'accesses the location in the table corres­
,ponding to the terminating ESr. This location
contains the address of the CTM Control Block.
This Control Block, explained ,in Section 8 • 2.1 , .
contains control information' for~the·l~ne. The
section of the Control Block shown below is
used by the answering routine to store information
for the ESI Interrupt Process·or.

INPUT MON. CNT. CNT.
ESI INPUT BC1tJ
ESI OUTPUT BCW
ESI EX. INTERRUPT WORD

2-18

The Answering routine increments either the input
or output monitor count depending on the type of
interrupt. If the count was zero the contents of
the terminating ESI location is stored in either
of the next two words depending on type. If an
'external interrupt occurred, the word on the line
is stored in the last word shown. The contents of
the terminating ESI enables the Interrupt Processor
to examine the chain links of the communication
buffer to determine whether ,or not a new buffer
must be obtained. The input and output counts are
used to determine the number of interrupts on this
ESI when a buffer chain has been previously set up
by the handler. They are of value only when
extremely small buffers have been specified or when
an overload condition exists.

After storing the proper controls as described above
. the Answering routine switches from the Executive
mode to the' Worker mode, enables interrupts, and
passes control to this ESI Interrupt Processing
Routine. If the Interrupt Processor was already in
control when the ESI interrupt occurred, control is
returned at the point of interrupt.

ESI Interrupt Processing Routine

Function - The ESI Processing Routine functions to obtain or
release communication buffers from the core chain,
and informs the appropriate communication handler
(via the QREF function) of the interrupt if previously
inst~lcted to do so by the handler.

ENTRY -'Entry is from the ESI Interrupt 'Answering Routine.

EXIT - Exit is a return to the ESI Interrupt Answering
Routine for the release of the logical lockout
and for switching if necessary.

Operation - The ESI Interrupt Processing Routine operates as an
,extension of the Interrupt Answering Routine. The
difference between the two routines is that the
Answering Routine operates with'interrupts lockout
while the Processing Routine operates with interrupts
enabled, but in a logically non-interruptable mode.

Upon gaining control from the answering routine the
processor interrogates the indicated CTM Control Block
to determine the type of interrupt. If an input
monitor interrupt occurred the routine checks the

.Input Buffer Link of the last communication bu~fer .
to determine whether or not a new input buffer is needed.

2-19

If the li~~ is not zero the Ansering rOU~1ne has
. already established the. link as the new buffer.
If the link is zero the processor obtains from the
buffer chain an input buffer of the size stated in
the CTM Control Block and places the BCW in the appro­
priate ESI address and also in the InPut Buffer Link
position of the terminating buffer. The processor
then examines the input monitor section of the
"Interrupt ControlU word in the CTM Control Block to
determine the next course of action. The possible
alternative are:

.
QREF the handler indicated in the CTM Control Block
conveying the addresses of the·CTM Control Block and
the ter.minating buffer.

• Do not QREF the handler. This means that the
handler is scanning the buffer on a certain time
interval and is not interested in the monitor
interrupt.

• Send a "Look for Sync" external function to the
CTM (applicable only into synchronous CTM's.
This option may be used in combination with
either of the above.

Upon receiving indication of an output monitor
. interrupt the processor examines the Output Buffer

Link of the terminating ESI and the output monitor
section of the "Interrupt Control I! word. The options
are:

Return the terminating output buffer to the
buffer chain (would not be used if the same
message was being sent to·more than one CTM).

• QREF the handler on ever,y output monitor interrupt
conveying CTM Control Block and buffer.

• QREF the handler only when the Output Buffer Link
of the terminating output buffer is zero. Thus,
if the message is broken up into a chain of buffers,
the handler will be notified only when the last
buffer of the chain has terminated.

Upon receiving indication of an external ESI interrupt
the processor will QREF the handler indicating the CTM
Control Block the interrupt status, and the contents
if the input ESI address at interrupt time. Buffer
chaining may be performed. As an option the uInterrupt
Control ll word may specify that a IILook for SynclJ function
be .sent to the C'TI.f at this time.

2-20

After processing an interrupt or series of interrupts
(as determined by the count in the CTM Control Block'
the processing routine clears the indicators in the
CTM Control Bloc,k and checks the interrupt counter in
the C'IM Control Block Table for other ESI interrupts .;'
which may have occurred while the'Porcessor was operating.
If no other interrupts have occurred the Processor returns
control to the Answering Routine for switching.

ESI Buffer Chain Control

The ESI Buffer Chain Control Broutine may properly be considered a part
of the ESI Interrupt Processing Routines since it must be accessed directly
~y the Interrupt Processor for fast acquisition of input buffers. The
~o~~i~e must also be available to the communication handlers for acquiring
and releasing ESI input and output buffers. The handlers cannot enter the
routine directly and, therefore, must use an EXECUTIVE RETURN instruction •

. In view,of this dual usage of the routine, the description of this routine
along ~th the ESI bUffering schame will be given in Section S.O, Communi-
ca tion and Real Time Control". . ·

2-21

CTM CONTROL BLOCK.TABLE

}llPLX CLT' PRIOR
~------------------------------~

,J' I NTERRUPT COUNT
l 29 18 !17 0

00 00-01 a PRIORITY CTM CONTROL BLOCK
I

00 02-03

0

00 76-77 CTM CONTROL BLOCK

01 00-01 -.-

..

NN 76-77 CTM CONTROL BLOCK

FIG. 2.1-3

The CTM'Control,Block Table points to the core location of the
CTM Control Block associated with the corresponding ESI. There is
one entry in the table for every ESI in the system. If there
is no CTM at that location or if the CTM has not been acquired,
the lower 18 bits of that location are zero. The' first word of
the table is a count of the number of ESI interrupts to be
processed. The remainder of the table is arranged according to
ESI address. The correct location in the table is referenced
by subtraci~g the base address, dividing by 2 (right shift
one bit), and adding the table base plus one. The upper twelve
bits of each table entry is an increment to another location in
the table. The sequential arrangement of these increments defines
the processing, priority of the ESI interrupt.

2-22

2.1.2.3 Clock Interrupts ~d Clock Control,

Time and clocks are controlled, by the table show in
figll:re 21-:-2. The entries in this. table are

Word.Number~

o A 30 bit 24 hour clock maintained from the real
time clock iriterl""llpts. This, clock con.tains a count
.of the.number of 200 microseconds intervals that'
have elasped since the previous midnight 'or other i

arbitrar.y st~ing time to the time of the last
Real Time clock ,interrupt.

1 Contains the last value set into the real: time
clock (current ,time of day to 200 brs can be
calenlated by the difference, of the RTe and the,
last RTC setting plus ~he value in 'word z~ro).
This value is set 'from" the different between current~
time ~'"'ld t~e time' to activate the next entry on the'
list. . '

2 Contains a chain cell for all activities linked.
to the time delay table. La~t,'Word ~f the add~ndum,
is used to hold the '24 hoUr time to reactivate
the activity.

3 Contains a chain cell to link all activities to
be activated on gross time of the day' clock. , CloCk
time is in the last word of the addendum. .

. Note; Chains linked to words 2 and 3 are ordered
. accordirig to relative' activation t:ilne~

4 Current date is maintained in 'Word 4' in the form
YIDDD' .

2-23

TIME CONTROL TABLE

F9 30 Bit 24 Hour clock 200, us granules 0

j (Time at Last Timer Interrupt) o

1
'21"'1 18 117 0 ;';1

r Zero Fill Last RTC Setting
'19 17 " 0'

2 , , Timing Chain Cell'

29 17 0

129
Day Clock Time Cell

0

.3

DATE 4 '~j ________ ~ ______ ~

Figure 2.1-2

2-24

Syncro~ization'Interrupts

2-25

.2.1.3 Main Frame Contingency In~errupts

These interrupt routines such as pari.ty error and power
loss will operate at highest priority until recover,y
procedures are effected and it i~ determined that
the system 9an continue to run or a system abort is
necessary with its own recovery proc~e·s.

2-26

Parity Error Interrupts

2-27

Power Loss

2-28

2.2 Interrupt Support Routines.

Int~rrupt support routines' are those not directly. related to
interrupt processing but are n~cessary for switching and basic
control of the system.

I ,

2.2.1 C.P~ Queue Table Definition,

T\·l0 tables are required to control the C.P. queue (see figure 4). .
Each of these tables is 408 words.' There is' one entrY for each.
possible priority (0-36) and one for Exec functions to be run during
idle time (core compaction, Drum compaction, etc.) '. Each entry in
Table A contains the 17 bit addendum address of the first task or
task fragwent eligible·fo~ control in the associated priority
group. (These may be completed service requests, interrupted
acti vi ties, or programs just loaded and ready to run.e) If the
contents of any entry in Table A is zero it indicates that there 'are
no activities eligible for control in the associated priority
group. Table B entries contain the 17 bit addendum address of the
last task or task fragment eligible for control in·the priority group
indicated by the position within the table. Within the activity
add.e:ldum of the task or task fragment addressed by the entry in
Table A is an address linking the first addendum in any priority group
to the next addendum in the chain. This liriking continues -until
the end of the chain of addendums is reached and this last addendum
address appears in the corresponding priority entry in Table B.
As task or task fragments become eligiole for control, the entries
i~ Table B.are used to get to the last addendum, the link is made
and the. entry in Table B is updated to point to the new addendum
address added to the C.P. queue chain. The Switcher is used to provide
the tr~~sfer of control to the first eligible task or task fragment.
The Switcher inspects entries in Table A, selects the next candidate,
updates the entry in Table A to the next addendum in the chain,
and trans~ers control to the selected activity. The exec functions
entered in the last table location are only selected if no task or
task fragment is eligible for control.

2.2-1

. READY QUEUE CONTROL .TABLES

Prio"ri tYi ~
0 I \1 st Entry '0 Last· Entry I

I

I IPriori t Priority ¢ I
\1st Entry

i
1 1 Last Entry I

l?riori tI: 1 I (riorit~ I 2 IIf=¢ No Entrie1 2 I this Prioritv
3 II 3

.
4 I 4 I

32 32. I
I

33 33 I
j !

34
1

35
I I

36
\1 st Entry

36
!Last Entry !

~riori tI ,26 lPriori t-y ~6 !

\1 st RYRC FUNG i~~~i~~N~ ~o.37 ~O BE RUN ±DI::,-E 37
IDv~ ,~\C. 1- C L..~ lIDLE ,

Figure 4

2.2-2

2,2.2 STORAGE MODu~E CONTROL

Storage modules are used to contain register settings for a control
thread (activity) upon execution of Exec return or lost control and re-
enter point (LCR) due to interrupt. .

·Because of the need for storage modules to run tasks and tasks fragments,
some of the available core storage will be dedicated to OMEGA for
storage modules. This core will be aoquired from oore allooation who
is responsible for assigning and keeping track of all available core.
The number of modules needed is dependent on the systems configuration
and activities registered with OMEGA for running.

The core that OMEGA acquires will be placed in an unallocated storage
~o~ule chain. Each module ~ll have a link associated with it (see
figure 1-4) that will poin~ to the next available module in ~he chain.
?ne control table for this chain is shown in figure 1-5. The first
address held in tp~s four word table is the address of the first avail­
able storage module. Each storage module then has the address of the
next available module •. The last module has zeros in the link indicating
the end of the storage module chain.

In addition to the storage module chain, OMEGA will have one extra module.
Each time that OMEGA 1eaves the Exec mode and allows interrupts and
service requests the address of this available module will be held in
one of ~~s seventeen bit Exec B registers. If a service request or an
interrupt requires the use of the module, it ~ll be linked to the
addendum and a new module will be obtained from the storage module chain.
As service requests and interrupts are disposed of, the modules that
were assigned will either be put back in the storage module chain or will
be used as the available module OMEGA holds when giving control to th~
activity or· non-Exec' mode service routine.

2.2-3.

UNALLOCATED STORAGE MODL~E

.0 1
29 IT? a j If Unallocated link is . UNALLOCATED LINK
I zero, this is the last

1
I

available module. Non-
RESIDUE zero is the address of

2
I next module in chain.
I INFORMATION I

3
I

~ I
4 'L L <....--""" L

z- z-
13 ,----- l !

i

14 I
• I I I·

15 !

I
I

16
I

17 I
!

Figure 1-4

STORAGE MODULE CHAIN CONTROL

18117 0\ 129
I SMOD CHAIN CELL K~ODCHAIN I 0 I

129 15 '14 0
KSCNASG \ 1UM of SMOD'S NUM of SMOD IS KSCNLEFT

1 ! Assig~ed CHAIN I

129 15\14 01
KSCNOUT ! .~ of SMOD'S I . ~ax Num ever I KSCMOUT

2 i ~n use ; ~n use .

0\
1

29
15 r4

KSCEFCHAIN
3

Num of entries
in Free Core

Figure 1-5

Note: Last two words are used to gather statistical infor.mation
about SMOD uses.

2.2-4

2.2.3 Ch~~el Control

Due to a number of enhancements in 494 hardware operating under
control of OMEGA the peripheral device handlers will not be
allowed direct control of the input/output logic. The list
below includes some of the reasons necessitating this change.

1) Co~on interrupt locations for all channels

2) Required use of ch~~el select register

3) Peripheral may be attached to CPU·through IOC, normal
channel or both •.

4) Non-standard device ne.ndlers

5) Modulari ty wi thin OMEGA

6) Increased speed of response at occurence of interrupt to
submit next function of channel.

Without direct control of I/O the device handler will be required to
communicate with the routine that will control all input/output
operation. The communication will be performed through a list
of Input/Output Command Words. The format and description of the
command word is shown in figure X. The device handler will create
the command words, function words for the specific peripheral,
~~d buffer control words. This information will be passed to the OMEGA
subroutine responsible for all I/O operatio~ through register
A, Q, and B7.

Wnen control is assumed, B4 has the 17-bit address of the storage
module wherein the registers A, Q, and B7, containing pertinent
information, are stored.

STORED in S1f1)D for use. of CEM FORMATTER.:

A Contains 17-bit address of the CHANNEL EXEcuTOR lI£)DULE
previously for.me~, after which present ·CEMis inserted in
chain. If A29 is set, negative control will be returned
immediately after queueing with no return of control upon
execution.

Q Number of command words in upper and channel number of·
I/O in lower.

B7 17-bit address of the word used by Device Handler; used for
priori ty number., request ordering number I etc.

2:: .. 2.-5-

B7+1 INTERRUPT STORE ADDRESS

B7+2 First command word in list.

Format of EXEC RETURN instruction is 77540 0000

2.2-6

INPUT OUTPUT ,COMM.tillD WORD FORM.liT

1 2 3 4 5 6 7 f9 27 26 25 24123 22 18 17 ' 0 I
DEF C W II T . COUNT ADDR. OF FUNCTION OR, I

I I BCW LIST

Explanation of Fields ,

1) DEF Bits 29-27--Definition Field 3 bits.

000
001
010
011
100
101

110
111

Send terminate for channel logic.
Not used.
Activate buffer with monitor.
Activate buffer without monitor.
Send external function word to peripheral. ,
Read time and send external function put time in Input
BCR of interrupt store. ' "

2) C 'Bit 26 Chain indicator 1 bit

3)

1 Chaiil this command word with next c~d word
0, Do not chain this command word

W Bit 25 Wait indicator 1 bit
(Used only 'if chain bit is no~ set)

1 Wait for interrupt
o Do not wait for interrupt - none expeoted.

4) I Bit 24 Input/Output indicator 1 bit

1 Output from CPU to peripheral
o Input from peripheral to CPU

5) T'Bit 23' 'Test for external interrupt indicator '1 bit

1 Test for external interrupt before executing I/O
o No test ,for interrupt. ,

, If the 'test ,bit is' set a test for external interrupt will be
preformed before executing'the I/O defined by ,this oommand

, word group., If the previous interrupt" was an, e~ernal' interrupt.
bypas$ the, exeoution, of this .I/O oommand word group., '

I '

2.2-7

6) COUNT

Bits 22-18 Count field 5 bits. .Five bit count of the. number
of entries in the list specified by the list address.

. 7) ADDR

Bits 17-0 Address of the list 18 bits. Absolute address of the
list associated with the command wo~d. The lists may be functions·
words for peripheral devices or buffer· control words. Not used
with terminate. .

2.2-8

2.2.3.1 CHA1~EL EXECUTOR Y~DULE

The Channel Executor Module (CEM) is!',a. variable length core storage
area used to queue and execute reque:eit through the hardware function
executor. The core storage is dyn8~~cally acquired from the core'
allocator. The CE..1-.1 is con.structed /Oy the FORMATTER. routine from
the command word list and other infor.mation specified in A, A, and
B7. This module is then queued to the appropriate CCB for sub­
sequent exeoution of the input-output commands.

Explanation of entries in figure 5

Word number

a

1

.2

3 bit 29

3 bits 0-14

4,5

6

Contains a 17 bit linking address to
ch~in all requests to the CCB.

Available for device handler use, e.g.
Priority number, request ordering number.

INTERRUPT STORE ADDRESS - where external
, interr~pt and the contents of the BCR registers

are stored at interrupt time.

Must be set zero to test positive to
distinguish end of module.

Number of words in the following I/O
Group. Used to control execution.
Includes I/O instructions, EXIT Jump,
and associated data words.

Variable number of input-output instructions·
to be executed. All I/O instructions must
be modified by index register B7. Address
portion is an increment from the number of words
.entry to the associated I/O Data word, i.e. If
word 1¢ is associated With I/O instruction at
word 4, the increment would be 00005. B7
would contain the address of the # words
entry.

.' Exit instruction. This is a jump instruct"ion to
leave the CCB. The exit jump· is set up depending
.on the type of processing r~quired.

,2.2-9

Word Number

9,10

x+2

x+3

Data words associated with previous input­
output instruction, i.e. Function 'Word, "
BG"Vl, etc. '

"Another group of I/O instruotion data words
and associated control information as
explained above.

Second word in GEM-variable placem.ent. 229 ,
is set tQ 1 to test negative for end. Bits 0-16
oontain a 17 bit addendum address to activate
u?on completion of the r/o functions.

~ast word in GEM contains the count of the
,number of words to release back to free core
'and the address of the CEM. Use to release the
'cor,e upon com.pletion of. the I/O sequence.

2~2-10

o
..,
I

2

3

4

5

6

7

10

11

12

13

14

CHANNEL EXECUTOR MODULE (494)

J 29 . 1 8 117 0 f' , _. CCB LINK
'~~2~9--------------~--------------------~

DEVICE liAt~DLE?. uSE 0 I

129
J

\ 29
: 0
! 29

o
EXIT JtJ-:vIP

o
DATA WORD ASSOCIATED WITH I/O

o
DATA itTORD ASSOCIATED \OIITH I 0

15 14 0
No. of words in group

11715i14 0
! 1/0 INSTRUCTION I 7 - I . ¢ ¢ ¢ ¢ X3
i 29 o
" EXIT JUMP :~2-9----------~~~~-------------------O~

DATA WORD ASSOCIATED WITH I 0
I·
i

! •

t

X i
j~2~9-·---------------------------------0~

X+1 I DATA WOHD ASSOCIATED ~'ITTH I 0
1~2~9~!-28~--~~~'~1~8.~~1~7~~~~~~------O~

X+2 i 1 t i ACTIVITY ADDENDUM ADDR.
1~2~9~------------18~t-17~~~~~~~~~O~.

X+3 I~ __ ~W~OR~D~CO~~~T ____ ~I __ ~C=EM~A~DD~R~~~S~ ________ ~

2.2-11

Group A
(eAcS:.lple)
X1 = 4

X2 :;: 5

Group B
(example)

X3 = 3

THE CHA~DmL EXECUTOR MODL~E FO~~TTR~

The cO~iland words are formatted in a list - and necessary data and
information concerning the necessary operations are ,stored in the
registers. On occurence of the exec return instruction the registers
are stored ina storage module and the address of the module is
furnished in B4.

The first step ,is to get core allocated for the formation of the module.
A scan is performed on the command word list checking the number of
data W9rds associated with each command word and the occurence of a
chain indicator to determine 'the total number of words necessary. The
routine then puts the number of locations necessary into Q and the
nu..llber of the variable lengt,h chain into A and makes an exec return
to get the needed core allocated.

Upon return of control, A will have the address of the first location of
the allocation. The routine then r:;tores data into the mO,dule and begins
the formation of the module. The indicator bits in the command words
are tested to determine whether a terminate, an activate 'buffer, or a
send external function instruction 1's' specified. T·he instruction is set
up and the address and count of the data words is stored in the lower 23
bits of the word until it can be processed later. Command words are
eXfuilined and I/O commands set up until the end of the first subgroup of
"iIO commands and the necessity of a wait or no wait test. ,A jump is set
up to either the wait or no wait location for use during execution. The
routine maintains a count of the number of I/O instructions ,to determine
the increment to be stored in the lower of each I/O instruction.

After the jump has been'established, the routine retrieves the address
and count of data words from each r/o instruction, masks in the necessary
B7 indicator, inserts the increment, and links the data to' its associated
1/0 instruction. It continues to format the subgroups until the supp~y
of command wrods becomes exhausted. .

It then sets a one bit in 229 in the first location after the last data
word to Signal the end of instructions and stores the word count and
GEM address in the last word~ The routine then makes a check to see
if the command word routine wants return of control. If it does the'
activity addendum address 'is s~t to zero. tf not, the activity addendum
address is retrieved from the SMOD and stored in the next to last
address. An exec return gives control to the CEM, initiator where the
module is queued or ~n1tiated depending On the condition of the CEM
chain. ?

2.2-12

3 .. 0' Input/Output Control

3.1 General Description

The general sequence of events required to perform an
input/output request are described and 'illustrated as
follows:

~~ operating activity performs an EXEC return instruction
specifying a function code and with B7 set to the address,

'relative to lower lock limit of'requestor, of the packet
describing the request.

Upon receiving the EXEC return interrupt a storage module
is allocated and control 'passed to the I/O Director.
The I/O Director retrieves the file code from the packet
and locates the cell in task addendum for the code.

If the request is for random access storage, the assignment
cell contains the address'of the storage list from which
the logical drum address is mapped to ,the channel address.
Once channel address is formed it'is checked for end-of-file,
lock list options are performed, arid the address of the unit
control block retrieved. If the request was for a unit
assignment, the file code cell contains the address of the
Unit Control Block (UCB) directly. '

Upon determining beB the I/O Director retrieves free core to
use as work area and switches control to indicated device
handler. Device handler forms the requests into work
storage, determines where on the channel queue the request
should be placed to optimize channel usage and passes control
to channel queue control which enters the request on the
chain. The request will subsequently be processed by the
Hardware Function'Executor (See Section 2.2.3).

The Hardware Function Executor gains control from an I/O
interrupt which activates the following sequence of events:'
1) capture interrupted location and'store contents of '
channel; 2) execute next func;:tion-of the channel; 3) queue
storage module for completed request which will eventually
reactivate device handler;, 4), ready, next queue request for
execution; 5) return control or queue interrupted program
as dictated by ch~nnel option. '

Upon completion of'the function by the Hardware Function
Executor,the device handler1s analysis phase is automatically
schedule and activated.' The status word is 'analyzed and
reformated" and control returned to I/O 'Director. The I/O
Director releases free, core obtained for request, ,clears, any
indicated lock list, and requests' the r'eturn of control to the
requesting activity.

3.1-1

3.1.1 Random Access Storage

When 'random access storage had been assigned to a file
code the list is required to cont.ain descriptors of the
file.

Word

Pointer from
task add. for
file co~e

1
·2
3
4,
5

N

·1 CH I
DRlJM ADDRESS

i lJ .. 1.U1Vl AlJlJ.ttl:!.II:);:)

OF \vORDS

I CH ~ # OF WORDS
! I LINK TO UCB
I

I
ADDITIONAL 3 WORD'
DESCRIPTORS OF
CONTINUOUS AREAS

I 11 I LIN:{ to UCB

I·

Access storage £rom
last assignment

Describe one
continuous area

Drum address is re,lative to beginning of channel, # of
words are the nwilber of continuous cells from dru..'1l address.
"ChH is the channel number· of subsystem, and lILink to
UCB" is the address of the Unit Control Block describing
the device handler.

Words 1 - 2 Describe ·,random access storage aSSigned but
not required by the request. This area will
be us·ed to satisfy any' expansions of the file.

Words 3 - 5 Describe a continuous area of mass storage
assigned to the 'file." ~dditional entries
'may be present to des,cribe areas of mass
storage which are logical but not physically'
adjacent to one another" Last descriptor
indicated by 229th set to (1).

3.1.2 Unit Control Block (UCB)

The UCB contains hardware and control information used
by the I/O Director and the device handier.

Word 0
1
2
3
4
5
6

, ·7

N

I

I
!
!
i

I HANDLER RIR
~ J v .J.J ...,...L..L. lo.

P-TY?E I CH7CH/UNIT
I COB ADDRESS

LENGTH OF UCB' 1# OF REQUESTS
CORE MOD. SIZE ! TSET LOCATION I

' T PUSH/POP QUEUE !

Word a - contains RIR setting of device handler' and
is ,the implied starting address.

1 - con~ains link to other TJCB~s on the I/O channel.

2 - contains peripheral type and channel and unit
number.

3 - address'of the Channel Control Block (CCB).

4 - number of words contained in the UCB and number
of I/O re'quests currently queued to the CCB for

, this, unit.

5 - minimum core module obtained by the I/O Director
for the ,handler and TlTest and Set" location used
by the I/O Director to lock out the unit.

6 -PUSH/POP Link for queing requests to the unit.

7-1~- va=iable cO:l~:,ol iri"oT"""..£.tion ":Q..sed ·07 'the ·ba. dlers
, '(see Section 3.3 for individ~al handler usage).

3.1-3

of

r

r
1

I
L

o ";<:c bJ\I'J --- -

_....: Tas 1\. 1

! .Ad~(,o~{,~~~\ :
~

--!

Devic.{I i ho~\y.."
i Reu6.v \"Ct~l.t~.~
t fo .. eK.£'.I.f;: ~ ... i!"'t ---
« l

Figure 3-1 '.

~/o I
f'lJ ... d.l() v . j'

.(.Oi4' .
, I ~

~
\~

cho ~'r. (.-1.
C()r1 C \liJl..

Bw)(J("·

3.2 I/O Director

The I/O Director consists of. three distinct routines: a pre­
'processing routine for the device handl.ers, a console handling
'routine, and a logical lock routin~ for mass ~torage .•

3.2.1. Preprocessing Function

~urpose:' To, perform functions which are common to all
handlers and coordinate and control the flow
of I/O requests to the handlers.-

. Entry:'

Exit:

One entry is from a' worker program' through an,~
Exec call to the Service Request Routine. Another
entry is from the Device Handler at the completion
of an I/O requ,est. Entry parameters are: ,

·"A" contains the Activity Addendum address

eUQfI contains the lower of IFR at interrupt
time (function code). If Q is equal to
zero the entry is' from a handler; if Q
is not equal to zero the entry is from
a worker program.

·Wnen entry is from a worker program the auaress
(relative to PLR lower of the worker) of the
associated par~~eter,packet if required, is
contained in the B7 position of the last Storage
Module linked to the Activity Addendum_

-When entry is from a handler the address of
the associated Unit Control Block is contained
in B5.

One exit is to the Device Handlers for execution
of an I/O request_ ·Parameters are:

-B4 contains the address of the Storage Module
associated with the request.

·B5 contains the address of the appropriate UCB.

-Within the Storage Module indicated by B4
other par~ueters are stored; the lower of the
IFR position contains the function code; the
B7 position contains the absolute address of
the parameter packet; the word following
,the Q register position contains the address
of the core area obtained for handler use.

Another exit is to the worker program at completion
of the I/O request. Parameters indicating the
status of tne request have been placed in the

3.2-1

llAY and, llQU positions of the' Storage' Module.
These values will be contained in the A and Q
registers when the worker. regains oontrol.

Operation:Request Initiation Phase

Upon gaining control form a worker program, the
I/O Director loads B4 with the address of the
Storage Module contained in the ,Activity Addendum.
This parameter is used both by the director and
handlers. The function code identifying the'

,operation to be performed is then interrogated'
to determine the location of the file code (may
be in B7 or in the parameter packet, see Section
3.5.2) •.

After obtaining the file code the Task Add&:1.dU!~
:Location corresponding to the file code is acces~ed
to determine the validity of the file code. If
the file code is invalid a tlNo Assignment"
(4¢¢¢¢·¢¢¢1¢)status code is placed in the A-register
position of the S-mod and control is returned to the
worker program.

A valid file code will yield the address of either
a Unit Control Block or a P~ndom Access Storage
List. This value is then entered into B5 to be
used by both the director and the handlers.

If the file code pointed to a Random Access List
and ~he function code indicates rewind, rewind
with interlock, write end-of-file, or erase
operation, control is returned to the worker with
a normal completion status code in the A-register.

If a buffer(s) is required for the operation, the
buffer limits are compared to the PLR value that
was in effect when the I/O request was made (PLR
value in the S-mod). When the buffer is found
to lie, in whole or in part, outside the PLR setting,
the request is aborted and control is returned to
the worker program with an fllnc~orrect Parameter"
(4¢¢¢¢-¢¢¢¢2) status code in the A-r~gister.

At this point a branch is made if all buffers
specified pass the above test; when the file to
be referenced is found to be a random access file,
the director checks the logical lock lists
(Section 3.2.3) if applicable, and exits directly
~o the Mass Storage Handler. When the file code
points to a unit oriented· device further processing
is required by the director.

3.2-2

The I/O Director then, for unit oriented devices,
calculates the size of the core module required
by the handler to set up the I/O co~~ands. The
size is based on the number of bufferncontained
in the request packet (list). If a list type
packet (see Section 3.5.2) is not involved a
llfixed ll size·is used (this ttfixed l1 size is variable
by handler; the value is held in the UCB). The
size of the area to be obtained is then stored in
the S-mod (upper of the B3 position).

Next a check is made to determine whether or not
the unit is currently busy. This check is made
using the Test and Set instruction on a location
within the UCB. If the unit is busy the requesting
activity is taken out of control and queued through
a location in the UCB. Requests (activities) queued
in this manner -will be executed in a FIFO sequ8nce
when the unit becomes available.

If the "Test and SetH passes,a core module of the sj~e
determined above is obtained from the free core
chain. The address of this area is then stored in
the S-mod (both the beginning address and size must
be retained in order to release the area subsequent
to completion of the request). A direct switch to
the handler indicated in the UCB is then exe~~ted.

Re.quest . 'Return Phase

After completion of the I/O requests, the handlers
return control to the I/O Director.· Again a distinction
is IT~de between random access and unit tJ~e devices.
Upon return from a random access handler, the director
checks the logical lock lists, if applicable, and
returns to the worker program. However, upon return
from a unit type handler the director must perform
certain functions before returning control to the
worker.

The director checks the unit queue to determine if
any requests have been queued while the unit was
busy. If not, the' director releases the core obtained
for the hanuler and returns to the worker program.

If any requests have been queued to. the unit the
director examines the core requirement of the next
request to be executed to determine whether or not
the core area of the completed request will satisfy
the area required by the next request. If so, the
area is transferred to the next request; if not, the
area is released. The next request is then removed .
from the unit queue and placed on the ready queue and
control returned to the worker program.

3.2-3

3.2.2 Console Handler

The Console Handler consists of two routines. One routine
is a part of the I/O Director and functions to queue output
messages'to the console. The other routine functions to
unpack and initiate output, and to accept and assemble inpu~
from the console. The two routines both access certain cont~ol
locations.

3.2.2.1 Console Queue Routine

Purpose:

The Console Queue Routine accepts message bJ .. l")cks,
assigns Delay Numbers, if required, and queue~ ,the
message block to the console handling routine. l~e
queue routine is independent of type of console.

Entry:

The Console Queue Routine is entered from the Console
Control Routine (see Section, 6 ~O). Entry parameters
include the address of the message block and the
function code. Th~ absolute address of the message
block is contained in the B7 position of the allocated
S-mod. The function code, contained in IFR lower,
determines the type of operation.

Exit:

The routine exits to the Console Control Routine
when the message has been queued or when the Delay
has been answered.

Operation:

The routine first tests the function code for validity;
if invalid, control is returned with an lIincorrect
parameter lJ (4¢¢¢¢,o,¢¢¢¢2) status in the A-register.
The parameter packet is shown below:

ENTt~B7

EXRN

where: Vo is the absolute address of the message
V1 is the funct~on code:

1¢1¢1 - queue message and return control
1¢1¢2 - assign delay number and queue

message. Control is returned when
the delay is answered.

3.2-4

y

(0
I

r: "
i ~~.I..l:!JCK TABLE FOR
, AVAILABLE DELAY
!NGYlBER.
i

CONSOLE QUEUE ROUTINE

DELAY 1-"'"
-- A \

\)

i

.... ~

QUEUE
MESSAGE

BLOCK

I I SET ILLEGAL
HFUKCTION
I 1 STATUS 1....-_____ _

PUSH
I RELEASE,
I

'----J' QUEUE
PLACE ACTIVITY
ON INACTIVE

ADDENDlJH :N
DELAY TABLE

f STORE DELAY
j NO. IN HESS AGE
; BLOCK

I
I

QUEUE
MESSAGE

BLOCK

j

I
; I
---:
1
I

~- - . j

LOCK

RELEASE
QUEUE

LOCK

QUEUE

3.2-5

RELEASE
QUEIJE

LOCK

~o
I~ DIRECT

-- - --,
-'-\EXIT7

RETURX
(17''''' f' ~T - T',-("I
\.LV V.tU.J.I.J..l..J.'U'

ROUTINE)

\ / DIRECT RETJRN
'VI (TO CALLI~G ROuT::K2)

· The message block indicated in B7 m~st have the
following format:

o
1
2

N

No.
ueue Link
of characters

MESSAGE

The above message is formed by the Console Control
Routine in'response to a literal in the requesting
program. Word ¢ is a chain cell used for linking
the message to the console queue. The lower of
word 1 contains the number of characters in the
message. The upper of word ,,1 contains the number
of words in this message area (this value need not
have any connectiop with the number of characters,
it is used to release the message area to free core
when the complete message has been unpacked). Words
2-N contain the output message.

If the function code indicates "queue and return"
the message is queued to the console output queue
and control is returned to the Console Control Routine
at the location following the packet.

If the function code indicates that a delay number
. should be assigned, the routine chooses an unused
number from the Delay Table shown on the following page
and places this number in bits 224 - 229 of word 1
of the message block. The activity addendum address
is placed in the Delay Table, and the message block is
then queued to the console output" queue. The activity
is then placed on an inactive queue until this delay
is answered.

The Delay Table is used to associate a delay number
with a particular activity and to indicate those
numbers currently in use.

3.2-6'

Delay No. 01
02
03

N

DEL .. 1'l .. Y T .. 1'l .. BLE

1 ~CTIVITY ADDENDUM

t ACTIVITY ADDENDUM

The Delay No. is implied by.position in the table. When
the number is in use the associated activity addendum
address appears in the corresponding table position. Wnen
the number is unassigned its table location is zero.

3.2.2.,2 Console Handling Routine

Purpose

The Console Handling Routine is the interface between'
the Console Control Routine and the hardware. The
routine unpacks and initiates output to the console,
and accepts and packs input from the console.

Entry and Exit

Entry to the routine is from various points within
OMEGA when output is inactive on the console channel.
Exit is made to the point of entry.

Output Operation

Upon receiving control the routine examines the
console output queue. If the queue is empty the
routine exits. If the queue is not empty the
following operations are performed:

"The first request (FIFO) is removed from the queue.

"The message is unpacked and placed in the routine's '
output buffer.

"If a delay number is indicated the number is added
to the output buffer in the form "DXX""

.3 .2.J7

eThe output buffer control word is set up
output initiated on the console channel.

·A "control thread" is established so that the
message area may be released to the free core
chain.

·Control is returned to the Console Control Routine,
or, if a delay number is assigned, the activity
is queued through the PUSH$ operator.

Input Operation

When output is not aC~lve the handler will accept
input from the console. Answers to messages with
delay numbers are restricted to ten characters
exclusive of the delay number.. The first ten characters
entered will be returned in the AQ-register (the
delay answer is intended primarily for positive/
negative type response). All other entries will be
assembled in free core and passed to the Console
Control 'Routine for interpretation.· The routine
ultimately receiving the message is responsible for
releasing the message area to the free core chain.
The input message will have the following format
when given to the Console Control Routine:

No. of Words No. of Data Char.

INPUT DATA

The nNo. of Words n is the length of the message area
to be released to the core chain.

Cetain conventions and control characters have been
established for console input. These are delineated
below:

·An input message must be initiated by a "carriage
return" (Fieldata code 04). Any character entered
before the carriage return will be ignored. The
carriage return will cause two line feeds and a
carriage return to be sent to the console.

-Each character will be sent to the console printer
as it is entered. If an input character does not
appear on the console printer, it has not been
recognized by the handler.

3.2-8

-The maximum number of characters per input
message is 32 decimal.

-The Fieldata code 77 (~) is used as an erase
code. Entering this code will cause the last
~haracter entered to be deleted from the message.
Two erase codes in succession will cause the
last two characters to be deleted. Three erase
codes in succession will cause the entire message
to be deleted.

-The Fieldata code 57 (~) is used as a stop code;
it signifies the end of an input message.

-The carriage return (04), line feed (03), erase
code (77), and master space (00) if entered, will
not be placed in the message buffer and will not
count against the maximum message size. All
other characters entered will become part of the
input message.

·Characters placed in the input message will be
left justified as they are entered. Unused
character positions of the last word (following
the "stop codell) will be.cleared to master spaces
(f"of"o\
\UU/.

eThe "initiate input" character (carriage return)
may be entered during a console output operation.
It will be recognized as soon as the output'
operation has been completed.

3.2.3 Logical Lock of Mass Storage

Logical Lock is an element which may be collected as part
of the I/O Director. Logical Lock pertains only to mass
storage files. If a lock function is received for a unit
device, the operation will be performed as if given without
lock. When Logical Lock is included in the director, mass
storage may be accessed both with and without lo,ck functions.

Read, write, and search requests may be given both with and
without lock. Functions without lock are 'provided so that
time is not spent searohing the lists when the look condition
is unimportant. The following interpretations are placed on
the functions:

·Read - The lock list is not checked. The read is performed
regardless of whether or not the area ~is locked. The
area read is not placed on the lock list.

·Read Lock - The lock list is checked. If any part of the
area to be read is locked the request is delayed until ~he
area has been released. When the area 'is not locked· the
read is executed and the area is placed on the lock list,

·Write - The list is not checked. The write is executed
and no release is made. If the area is locked it remains
locked.

·Write Release - The lock list is checked. If any part of
the area being written is within a locked area, that complete'
entry (or linked entries) is removed from the list. When
an area is to be released without actually writing into it,
a Write Release may be given with the address within the
locked area and the number of words. equal to zerOe

·Search - The list is not checked. If a find is made the
area is read regardless of lock condition.

-Search Lock - The list is checked when and if a find is
made. If the area is locked the request is delayed until
the area has been released. When unlocked, a read is performed
at the find address and the area read is placed on the lock
list. If a find is not made the area is not entered on the
list ..

Operation

When the I/O Director detects a request for a mass storage file,
the function code is tested to determine if it is a lock .
function. A "read lock" function will cause the I/O Director
to search the lock list~ 'If any part of the area to be read
falls within an' area contained on the list, the activity is
queued ULtil the area has been released. When the area to be

3.2-10

read is not found on the lock list the area is then placed on
the list and control given to the mass storage handler for
execution. The area will be locked regardless of the results
of the read operation.

A "write release" function is given by the I/O Director directly
to the mass storage handler. When the director receives
control from the handler at completion of the write, the lock
list is interrogated. If any part of the area written lies
within a locked area, that area is removed from the list. At'
this time the queue of activities inactive because of a "read
lock" request is checked to determine if a"4Y of these requests
may now be executed. If so, the activity is removed from the
inactive queue and placed on the ready queue.

Lock Lists

A lock list is maintained for each mass storage subsystem. The·
lists consist of four word entries chained together. Normally
there will be one entry per locked area. If, however, the area
to be' read covers two or more nonconting-..lous areas of the file.,
multiple entries must be made. The four word entry is shown
below.

--

117
QUEUE LINK Word 0

1 BEG. ADDRESS OF LOCKED AREA
15

2 LINK NO. OF WORDS
15

3 JOB NO. ACTIVITY I.D. (B6)

Word ¢ - Chain cell linking all entries on the lock list.

Word 1 - Beginning address of le'cked area. The address is
a subsystem logical address (physical address of
d~ subsystems). The lists are maintained in
order of ascending address.

Word 2 - "No. of words" is the size of the locked area for
this entry.

"Link" is a number assigned to identify all multiple
entries which are the result of locking non-contiguous
file areas. If the link is zero this is not a
multiple entry.

3.2-11

Word .l - nJOB No." of activity locking this area. Used
to delete entries which may be present when the
task terminates or is aborted.

Activity I.D. is the identity of t~e activity
locking this area. Activity I.D. is contained
in B6 when the request is made. This identity
is used to delete any entries which may be on
the list when the activity'terminates.

" 3.2-12'

.3.3 Device Handlers

3.3.0 General Description

Device Handlers are divided into two broad catagories -- Unit
Device Handlers and Mass Storage Device Handlers. The main
distinction between the two types is the hardware address
calculation required in the Mass Storage Handlers. Magnetic
tape, card, printer, and 1004 handlers comprise the Unit
Device Handlers. Fh-432, F:Q-880 D~Jms, and FASTRA~~ I are
classified as the,Mass Storage Handlers~ All Device Handlers
are interruptable and re-entrant. Each handler has an
Initiation Phase, and an Interrupt Phase.

Initiation Phase

, The Device Handlers are entered in,the Initiation Phase from
the I/O Director. The addresses of the Storage Module and
The Unit Control Block are contained in B4 and B5 respectively_
When a parameter error is detected, the Initiation Phase
exits to the I/O Director with the appropriate status code in
the A-registet. If any I/O instructions are to be executed
in response to the packet, this phase exits to'the'Hardware
Function Executor. '

Interrupt Phase

After the Hardware Function Executor has initiated the functions
or series of functions and all interrupts have occured fora
particular I/O Module, control is returned, at the activity
priority, to the interrupt phase of the Device Handler. The
hardware status code and the buffer control registers
0,....0 c:.+1"'\""00~ 1='1"'\"" .0'\1"+ 00"",..,0 1 ~ ""+00.,...,..,,,.....+ c:. 'h~r +1-100 U' o.,..~,,'o,...oo H'",..,,..+~ 1"\,..,
~ v '-IV""' ""'''''' .,L.v v.n..UV..L.&..&.Q...L. J...L.LV\J"'~"""l"UU, ..,~ uJ,. ... v .I. ... ~ \A"" u u.~ ... wu~\J.I..a.

Executor. Exit is 'made to the I/O Director to list the activity
on the ready queue or to the Executive to call a recovery routine
from the system mass storage.

Unit Device Handlers

In the Initiation ~hase, the Unit Device Handlers will check
the function code and buffer control word to determine if they
are appropriate to the particular device. If the parameters
are found to be, correct, the Device Handler then proc eeds to
set up the I/O Module with the information required by the
Hardware Function Executor (the format of the I/O Module is'
described in Section 2.2.3). After setting up the I/O Module,
the handler scans the channel initiation queue to determine the

'most advantageous position for the request. Exit is made to
the Hardware Function Executor'with an indication of where the
'module should be 'q~~ued.

Upon regalnlng control in the Interrupt Phase, the Unit
Device Handlers examine the hardware status word(s) placed
in the I/O Module. If the operation has been successfully
completed, the status code is placed in the A-register, any
supplementary infprmation is placed in the Q-register, and
exit is made to the I/O Director.

Functions that could not be performed (Servo rewinding, etc.)
are reinitiated by setting up the I/O Module and again placing
the module with the Hardware Function Executor. If error
recover! is necessary, the appropriate -recovery routine is
called from mass storage qy the Device Handler and operated
as described in section 3.4.1. '

Mass Storage Handlers

In addition to the above procedures the mass storage handlers
must calculate the physical address of the request from the
logical file address contained in the packet. The logical
file area referenced may cover non-continguous'areas of mass·
storage unit(s); in this case the handler must g,enerate a
separate function and buffer for each physical area •

.3 • .3.0-2

3.3.1 Magnetic Tapa Handler

Purpose:

Entrance:

Exit:

'To Formatter:

To I/O Director:

To' transform a magnetic tape I/O request into the
designated, tap~l operation, analyze the external
interrupt(s) ~:ich occur from this operation and
notify the I/O Director of the results.

Entrance to the Magnetic Tape Handler is made
through the I/O Director. Parameters are conveyed
through B registers ,and the Storage Module set up
at I/O request time. Parameters upon entry are:

B4 ~, Address of the~torage MOdule set up at
, ,I/O request time. ,

B5 - Address of the Unit Control Block of the
magnetic tape unit marked for an I/O operation.

Word 168 of the Storage Module, - Address of free
, core to be used by the Magnetic Tape Handler

when setting up command words for executing
the designated I/O.

Exits are made by the Magnetic Tape Handler to the
Formatter for execution of the designated I/O, and
+'1-..0 T/(\'n~..,. ,.+""" +" "" ,,_+ +l...,;" ~~~,+_ -..&"+l..._
v v /v ~~J.Q"'vvJ. V,V .&.Qt-'~.LU u.u'O J.,'OOu....LUO V.1. uJ..l.Q

executed I/O.

Parameters are 'conveyed in the·A, Q and B7 regist~rs
as specified' ·by the Formatter.

Parameter's are placed in the Storage Module
positions as foliows:

B7 .- Contains the octal number of the last data block·
correctly passed over , .. backw~rd or forward,. by the.

, Magnetic Tape Handler if numbered data blocks have.
been requested by the user.

A - The code designating the status of the I/O operation
performed. See chart and notes--on 'pages6 ,and 7.

Q - The number of words correctly. read or wri~ten in
·the I/O operation. See charts and .n9tes on p~ges
6 and 7.

3.3.1.1 •. Description

All magnetic tape I/O requests will be serviced by one Magnetic
Tape Handler •. Functions applicable to magnetic tape will be
serviced identically on all subsystems with the exception of
READB on Uniservo 3C/4C, which is serviced as a backspace block •

. , '

If designated through the ASSIGN statement, an octal number will
be placed on each data bloek written numbering sequentially with
load point designated 'as zero. The number of the last data block
successfully passed over during 'the I/O'operation is'returned to
the user in the B7'register. An out of sequence'status appears

. in the A register as ¢¢¢11*¢¢¢XX (XX = I/O stat~s). .The current.
block count for each unit is maintained by the Magnetic'Tape
Handler in the appropriate ~ni ~ Control· Block. .'

After executing an I/O packet, the Ma.g'~etic Tape Handler notifies
the I/O Director of the success or failure of.the operation. No
repositioning or error recovery ,is attempted by the Magnetic Tape
Handler, but is accomplished by a separate Error Recovery Routine, .
(see Section 3.4.1). '

3.3.1.2~ Operational Mode

All information influencing the way magnetic tapes ,are to be
written or read is stored or maintained in the Unit Control Block'
for that particular unit', This information is' put there through,
the use,of the ASSIGN statement and maintained by the Magnetic
Tape Handler when necessary. Two words, KUCB1 and KUCB2, word.s
78 and,1¢8 respectively, are used to hold this informa:tion~

KUCB1

A bit is set in this word to designate numbered data blocks
to be written, the "Noise Constant" to be used on this
partic~lar unit when applicable is stored here and the
initialization constant specifying density, parity, etc.,
to use when writing and reading on this particular unit, is
contained in this word.

~ Numbered Data Blocks

Bit 215=1 of KUCB1 designates each data block to be
written with an octal number making up the first word of
the block. These data blocks will be numbered sequen­
tially with load point designated as zero.

This number is written with a GWRITE operation and read
with an SREAD operation from the Magnetic Tape Handler,
hence, the number will not be reflected in the data
used. The number of the last block 'correctly passed
over, ,reading or writing, backward or forward, is
returned to the user in the B7 register. L'tl out-o£-

3.~.1-2

sequence"status is indicated with an 11 in A register
upper. REWIND or REWINDI result in the B7 register
being returned as zero.

Noise Constant

Bits 20 - 21 are used to hold the IINoise Constantl1
for a specific unit when applicable (Uniservo 3C, 4C,
6C, Se). All bloaks read or moved over causing an
error status, the length of which is less than or equal
to the nNois~ Constant ll will be considered as foreign
material on tape and disregarded.

Initialization Constant

This constant specifies the density, parity, etc.,
which should be used,when reading or writing tapes on
this particular unit. This constant is only applicable
to Uniservo 3C, 4C, 6C, 8C sUbsystems. Values of this
constant are listed,below.

If numbered, data blocks and a uNoise Constant" are
specified, they will be included within the constant.

Binary Coded Decimal 200 ppi

Binary Coded Decimal Tra,nslate, 200 ppi

13inary 556 ppi

Binary Coded Decimal 556 ppi

Binary Coded Decimal Translate 556 ppi

Binary 800 ppi

¢32¢¢*5¢¢¢¢

¢321¢*54¢¢¢

, '¢2¢¢¢*2¢¢¢¢

¢22¢¢*6¢¢¢¢

¢221¢*64¢¢¢

Binary Coded Decimal 800 ppi

,¢2¢2¢*3¢¢¢¢

¢222¢*7¢¢¢¢

¢223¢*74¢¢¢

¢¢¢¢¢*32¢¢¢

Binary Coded Decimal Translate 800 ppi

Binary 800 ppi 9 Chann~l (Uniservo 6C, 8C 'only)

KUCB2

The upper half of this word 'is used to maintain the octal,
number of the block of tape just passed over on th:Ls
'particul,ar unit when' numbered data blocks are designated.
This number is maintained by the Magnetic Tape Handler.'

3.3.1.3. Function Execution

Applicable Functions

The resulting operation of I/O packets marked for execution
by the Magnetic Tape Handler is described below.

READ - One block of data, not to exceed the word count,

WRITE

READB

WRTEOF

will be read in the forward direction into the
area designated by the tr~ffer base. 'A word count
of zero will result ina move forward, without
data transfer, of one block.

- One block of data, designated by the word count
and buffer base Will be written on tape. 'A word
count of zero will result in the return, of an
illegal parameter status.

- One block of data, not to exceed the word count, '
will be read in the backward direction into the

'area designated by the buffer base. A ,word count
of zero will resutt in a move backward, without
data transfer, of one ·block.

- The appropriate hardware end-of-file ~ark wi+l be
,..Ol"t'\,..ti oti t'\Y'I + ono
.~ww.~~~ W~ u~~v.

REWIND - Tape will be positioned at load point.

REWINDI - Tape will be positioned at load point with the
designated'unit in an interlock condition.

ERASE -·A fixed area of tape will be erased.

SREAD - One block of data will be scatter-read into the
areas d~ctated by the word counts and buffer
bases. designated in the LIST packet. Word counts
of zero will be ignored.

GWRITE - One block of data 'will be gather-written into the
, 'areas dictated by the word counts and ,buffer bases

designated in the, LIST packet. Word counts of
,zero will be ignored •

. ,
MREAD - Sequential blocks of data, dictated by the word

counts and' buffer bases of 'the LIST' packet, will
be. read or passed over. Word counts otzero will
result in blocks of data being moved over without'
data transfer. '

'3.3.1-4
"

, Method of Execution

Upon entry, the Magnetic Tape Handler retrieves the function
code and I/O packet address placed in ,the Storage Module.
Through examination of the I/O packet the function code, it
can be determined how many command words, buffer control
words, and buffers are needed to execute" the designated I/O.
'These parameters are then formed in the free core assigned, the
address of whioh is oontained in word 168 '0£ the Storage Module.

After setting up the free core with parameters for I/O execution,
an examination is then made of the Unit Control Block to determine
which function is needed for the I/O operation. This function is
dictated by the type of subsystem the unit is on. After this function
is fonned, it is placed in the free core and an Exec Return is made
transferring control to the Formatter for I/O,execution.

Upon re-entry" the I/O has been executed and external interrupt(s),
have been stored. After examination of these interrupt(s), the
Magnetic Tape Handler determi'nes whether the l/O has been successfully
completed. If so, the appropriate status is placed 'in the A register
position, the, number of words transferred" if any, in the Q register
position and the number of the last data block passed over in the B7

, position, if applicable, of the Storage Module. If errors have
occurred during I/O execution, the , Magnetic Tape,Error Recovery

"routine is' called for completion of the I/O e Control is then
returned to the I/O ~irector through ~n Exec Return.

~
Z P
0 0
H 0
E-I
0 J z
:::>
~ . , J%.t

READ A1,Q1
I I

WRITE A¢,Q1

READB A¢,Q1 A1,Q1

WRTEOF A¢,Q¢

\ REWIND A¢,Q¢
i (;

1 REWINDI
! I A¢,Q,¢', I /
I ERASE A¢,Q¢ I '
I ' J
1 SREAD A¢ , Q 1 ' I A 1 ,Q 1
I i i I

GWRITE A¢,Q1 I
I MREAD

A Register 'value of the Storage Module

A1 - ¢¢¢¢¢*¢¢¢¢X
X = Magnitude or FrameCoun~

A2 - 4¢¢¢¢*¢¢¢¢2'

A3 - 4¢¢¢¢* ¢¢¢¢3

A4 - ¢¢¢¢¢*¢¢¢¢4

A5 - ¢¢¢¢¢*¢¢¢¢5

Q Register value of the Storage Module

Q¢ - ¢¢¢¢¢*¢¢¢¢¢

Q1 - ¢¢¢¢¢*XXXXX

0::
r:LI
,~

~
P-t

E-I
0

~
0
0 z
H

A2,Q2

A2,Q2

A2,Q2'

A2,Q2

A2,Q2

A2,Q2

. A2,Q2

. A2,Q2,

! 'A2,Q2

XXXXX = number of words transferred

0::
'0
'~

r:LI

fj
o:l

~
r:LI

5
.0

~
:::>
*

A3~Q¢

A3,Q;1 A5,Q1

A3"Q0 A4,Qj5 I A5,Q1

A3,Q.0' ~~
A3,Q¢ , --

I

A3,Q¢ I

A5;Q¢ I A3 ,Q¢

A3,Q¢ ·A4,Q¢

I A3,~ l I A5,Q1

I

Q2 - yyyyy*yyyyy
y ••• = meaningless information

'* Tape is positioned beyond the block in error

**' The last block of the series read having an abnoraml Frame Count
will be indicated.

*** Tape will be positioned beyond the last block indicated to be
read.
The number of words successfully read of the blocks indicated will
be contained in ~he QRegister.

**** Tape will be positioned beyond the End-or-File marker. The n~mber
of words read before the End-of-File marker was encountered will
be indicated in the Q Register.

\7 B4 = SMOD Address· i(B5 = UCB Address

GET FUNCTION

CODE FROM
SMOD

GET PACKET
ADDRESS FROM

SMOD

COY1PUTE # OF
COM1l~ND WORDS,
BGW 1 S, BUFFERS

. NEEDED

I
C)

'SET UP FUNCTION·
. COMMAND

WORD

SET UP BUFFER
COMMAND
WORD

{

o

SET UP BUFFER
.CONTROL WORD

FORM
APPROPRIATE

FUNCTION

GET· PROGRAM
PRIORITY
NQMBER .

QUEUE
PLAcEMENT. ACGORD
ING. TO PRIORITY
NUMBER

EXAMINE
INTERRUPT

TO FORMATTER

FROM FUNCTION
EXECUTOR

APPROPRIATE
STATUS TO

SMOD

NUMBER OF ..

I WORDS
TRANSFERRED TO

SMOD

t YES

UPDATE BLOCK
COUNTER IN

UCB

APPROPRIATE
BLOCK NUMBER
TO SMOD

NO

NO

NO

TO I/O DIRF;:)'t'OR

SET I'NTERLOCK
FLAG IN .

SMOD

3.l~ 1-9

NO

I
' SET ER.1tOR
RECOVERY FLAG
. IN SMOD .

ILLEGAL
STATUS

TO SMOD

3.3.2 High Speed Printer Handler

PL~OSE: To verify the packet information and use it to form
High Speed Printer Command words. After the Commands
have been executed the Handler will analyze the
interrupts and notify the I/O Director and/or the
User of these results •.

ENTRANCE: B4 = Address of Storage Module
B5 ::: Address of Unit Control Block
B7 of SMOD = Address of Packet
SMOD+17 = Address of Core Module

EXIT TO FORMATTER: As specified by the FORMATI'~

EXIT TO I/O DIRECTOR:

A register of SMOD ~ 0000000000 - Successful Completion
II II "" = 4000000001 - Inappropriate Function
II II If" == 4000000003 - Unrecognizable Interrupt Status •.

The Unrecognized Interrupt Status
will_. be in the Q register of SMOD.

This handler will control printing and spacing commands on both
the 0751 printer and the new 1100-1600 line per minute printer.

Form control is achieved by specifying the top and bottom
margins and the number of printable ',.lines per page (the sum'
of these three quantities must be equal to the physical page
length). This specification is made in the ASSIGN statement
and the values are placed in the Unit Control Block of the
printer. Printing will not occur within the margins -- whenever
the handler senses that, with the spacing given in the packet,
the print line will fall within either the top or bottom
margin, the paper is spaced to the next printable line and the
print executed 'there. Spacing within the printable area,
however, is the responsibility of the activity. The physical
line position of the printer is maintained by the handler in

. the Unit Control Block. This line cou'nter is cleared whenever
a new printer ASSIGN statement is processed. At this time, it
is assumed that the paper is positioned at the first physical
line (at the fold). At the completion of each print job a
"Home Paper" command should be given in order to position the
paper at the first physical line in anticipation of a new
ASSIGN statement.

The WRITE function 'is the only function recognized by the
printer handler; all others will be returned a~ inappropriate.
The "Number 'of Words" in the printer packet is used as the
number of lines to be spaced -- the handler wil~. output a
twenty-seven word buffer (one print line) begin;.ing with the
buffer base speclfied in the packet. One 132 c·:.aracter line

will be printed for each request (the line may be less than
132 characters if the "77" stop code is detected within the
buffer). The number of lines to space before printing is
contained in the packet. If the number of lines to space is

. equal to zero, printing will occur on the same line as that
of the previous request. When the IInum?2.r of words" in the
printer packet is found to be 400008 (2 set) a skip to the
first physical line of the next page will be performed, ..
"Home Paper" - no printing will occur. A print request
received when the paper is positioned at the first physical
line will be performed at the first logical line (the physical
line minus the top margin) and packet spacing will be ignored.

The handler will place each request receiv.ed at the end of
the channel queue.

No form control may be specified by listing the number of
printable lines with the value of zero in the ASSIGN statement.
If this is done, all subsequent spacing and printing will be
performed as directed by the WRITE· orders. The top and
bottom margins will then be the responsibility of the user.

When the "Out of Paperlf indication is detected, the handler
if under form control will allow printing to the bottom of
the page, then an interlock condition indication will be
returned. The new forms should be physically positioned at
the "Home Paper" position (first physical line). Thus when
control is returned after the interlock (out of paper) has
been satisfied, the paper will be spaced to the first printable
line and the line will be printed.

If "Out of Paperlf occurs and form control had not been specified,
the printing will continue until it is possible that a line
had been printed below the paper. An interlock condition will
then be indicated. The new forms should be mounted with the
fold in the same physical position as the previous. Answering
the interlock 'viII 'cause the same line to be reprinted on the
new form without spacing s~nce the spacing was performed
earlier. .

JJN!T CONTROL BLOCK

O·I __ ---HAN-DL-E_R_RI_R ____ -f

., -
, .

:' 3

4.

, 5

6'

,7

10

~1 , I,

nCR T.TNK

P-TYPE CH/CH,/UNIT

I LINK TO CCB

LENGTH OF UCB # OF REG.

MIN O.M. ,SIZE TEST & SET LOG

lUNIT INACTIVE CELL

UPPER MAR. LOWER MAR.

LINE POSe PRINTABLE
LINES7PAGE

nTt'T' nH' 'P 'P'm~ I
1 v "']a. ... ,

-~----------~----------~

KUCBNO

'KUCBCM

KUCBQ:';

KUCB1

KOCB2

The processing of the ASSIGN statement will place the upper
margin,: lower margin and the number of printable lines per
page in the proper positions of the Unit Control Block. The
Line ~o81t1onand Out of Paper locations will 'be cleared to
,zeroe8'(~";;;'; /'

.3.3.2-3

\ ENT 7

V

CALCULATE
ACTUAL

/I LINES TO
SPACE

SET UP
COMMAND

WORDS IN
CORE MOD.

SET UP
REST OF

CORE MOD.

. ~RECOGNIZED,
INTERRUPT 1--'":JIoI

STATUS TO
I Q OF S-MOD

STATUS
TO A OF

S-MOD

m
FORMATTER

ACTUAL
OUT OF

PAYER
(OOP+ 17 LINE

INTERLOCK'
STATUS 'TO

A OF
S-MOD

STATUS
TO A OF

S-MOD

SUCCESSFUL
STATUS

TO A' OF .
S-MOD

~ • .3.2-4

I
I,

I

I
I

TO
I/O
DIRECTOR

CORE MODULE

o For. Handler Use I'
I------------------------------~--~· I

: 1 . Interrupt Status Store Address

2 Terminate Command

'3

4

5

6

7

10

11

12

13

14

15

16

17

, XF Command

Buffer ,Command .
XF Command

Buffer Command'

I Fastfeed Buffer Control Word

XF Control Word I
t--------l

J Store for Interrupt Status !

r---------------~--------~I

Buffer Control Word

Store for Input Buffer

Store for. Output Buffer

Store for,Interrupt Status

Store for Input Buffer

1 Store for Output Buffer

3.3.2-5

HSP, CHARACTER CODES
(63-cllar'acter set)

Octal,Sequence

00 @ 40)
01 r: 41, , -
02 J' 42 '+
03 # 43 <
,04, 6, 44,' ,-
05 ",SPaoe 45 >
06 A 46 '&
07 ' B . 47 $'
10 C 50 '*:
11 'D 51 ' (
12 E 52 %
13 F 53
14 ',G 54 ?
15 H 55 1
16 I 56 , ,

17 J 57 '\
20 K '60 0

, 21 ,L 61 1
22 M 62 2
23 N 63 3
24 0 64 4
25 p 65 k

.I

26 Q 66 6
27 R .67 7
30 s 70 8
31 T 71 9
32 IT 72
33 V 73 }.
34 Vi 74
35 X 75
36 y 76 t:I
')7 Z 77 ~

When selection is made for the 62-character set, code 77 becomes
a stop code; as such i~ is non-printable •

. Note: In order to accomplish the proper spacing capabilities
provided by the printer subroutine, the 62-character
set must be selected. Selection is controlled by a
manually operat~d switch located on the printer control
unit.

3.3.2-6

· PUBPOSE: To verify. the packet information and use it to form Card Read
command words. After the Commands have been executed the Handler
will analyze the interrupts and notify the I/O Director anWor
the User of these results. . '

ENTRANCE: B4 = Address of Storage Module
B5 = Address of Unit Control Block
B7 of S-MOD =·Address of Packet
S-MODt 17 = Address of Core ~odule

, .
EXIT TO FORMATTER: .As specified b~ the FORMATTER

EXIT TO I/O DlBECIDR:'

A register of S-MOD· = 0000.000000- Successful Completion
". It II If = 4000000001- Inappropriate Function
II II n n ,_ 4000000002- Buffer too small
It if If If = 400000000.3- Unrecognizable ·Interrupt Status;. The

Unrecognized Interrup~ Status vill'.be in
the Q register of S-MOD.' .

The card reader handler·will recognize the READ and MBEAD (function
codas 01 and 26) functions; all others are inappropriate.

The READ function will transfer the data from one card to the computer.

The yu~ ~~ction wr~l tr-ru~sfer- multiple card irr~ges into the core
buffers as specified by the LIST operator. Each buffer must be large
enough to contain the data from one card.

The mode of a card file is specified by the ASSIGN statement. There are
two possible modes: TRANSLATE and BINARY. 'When the assign statement
is processed, the appropriate mode will be set and the card memory will
be cleared. Thus if the card read mode is chang.ed in the middle of a
deck, three blank cards should be inserted at this point to prevent the
loss of card data..

Tne TRANSLATE mode' will cause each subsequent card that is fed to be
translated from Hollerith code to a six-bit ninternal ll code. This
"internal" code is defined by a conversion matrix 'Wi thin the card reader.
Normally, Fieldata. code is used. In this mode, one card occupies 16
computer vords. The buffer specified b.r the read packet must be greater
than or equal 1;0 16 'Words, less than 16 vords is an illegal parameter •

.3 • .3.3-1

The BINP..F..Y mode wj11 cause each subsequent card that'is fed to be read
in the column' binary mode. Two and one~halt card columns'reuresent
one ,3D-bit computer 'Word. A minimum buffer of 32 :words are required,
less than this 1S an illegal parame~er. . '

UNIT CONTROL BLOCK

0 'HANDLER 'RIR

, UCB LINK

2 P-TYPE CH/CH/UNIT .

.3 LINK TO CCB

4 1# OF REQ 'KITCBNO

5 'KUCBCM

6 KITOBQ,

7 mOB1

The processing of the ASSIGN statement will place the mode indiCator .
(020 or 040) in Word 7 of the UOB. ·The card memory will also be cleared
at this time. ' . .

3.3.3-2.

V
'STATUS
TO A
OF, S-MOD

I BUFFERS STATUS·
LARGE, TO A

\ ... ENOUGH OF S-MOD I' JY
SET UP ,
COMMAND
WDS IN
CORE MOD

li!::'
SET UP 1
REST OF I CORE MOD

I

ro
FORMATTER

FROM ~'Q~ ,

FOR!I.A •• _~

. . , . SUCCESSFUL

COMPLETION ~ATUf 'h' · ~.~
OF S~MOD

""",-------"fll L.------J1 '

UNRECOGNIZED
INTERRUPT
STATUS ro
Q' OF S-MOD

STATUS:
TO A
OF S-MOD

STATUS
TO A

OF S-MOD l
STATUS f ,
TO A
OF S-MOD

TO

,I/O

'.DIRECTOR

R.EAD

M READ

CORE MODULE

O·I ______________________ 2~1

.-- .1,' jll-----------I:
FOR H..tLl\IDLER USE
Interrupt Status Sotre Adr •.
. BUF CMD WD
XF CMD WD
XF

4 I * 11----------.
o
1
2
3

7
10
11

. 12
'13
14
1l!
IJ

16
17
20
21
22
23

I

!

!
!

, ~~~I--------------------~

BUFFER CONTROL WD
In terrupt sta. tUB ,Store
Buffer Status Store .

FOR HANDLER USE ' ..
Interrupt Status Store Adr •

. ·1st' BUF WJ) WD .
1st XF CMD WD

.. 2nd BUF MCD WD
2nd XF CMD WD
3rd BUF CMD WD'

. 3rd IF CMD WD
XF

.~ 1st BUF CW
2nd BUF OW

, : 3rd BUF OW
.1 st Int. Status Store
1st BUFIN Status Store'
1 st BUFOUT Sta. tu.s Store

'.r 2nd .INT Status. Store
2nd BUFIN Status" Store'
2nd BUFOUT Status Store .
3rd INT STATUS STORE
3~d ~UFIN· STATUS' STORE'
3rd BUFOUT STATO'S SmRE '

x =.31 + 4
x - Number, Loea tiona Requir$d

.. for Core ModW.e .

Y - Number Wds in Packet

:3.3.4 . Card Punch Handler

PURPOSE: 'To verify the. packet information and use it to for.m Card Punch
'Command words. Atter the Commands ahve been executed the Handler
will analyze the interrupts and' notify the I/O Director 8:tld/or the
User of these ' results. .,'

ENTRANCE: B4 = Address of Storage Module
, B5 = Address of Unit Control Block

B7 of S-MOD = Address of Packet
S-MOD + 17 = Address of Core Module

EXIT 'ID FORMATTER:' As specified by: the FORMATTER

EXIT TOllo DI~CTOJt: .

A register of S-MOD =
II II . II II =

0000000000 - Successful' Completion
4000000001 - Inappropriate Function
4000000002 - Buffer too' Small II

'"
II

II

n

"
II

" = 4000000003 - Unrecognizable Interrupt Status:The
Unrecognizabl~ Interrupt sta. tus. will
be in the Q register of S-MOD .•

The card punch handler will recognize the WRITE'function (01):, all others
are inappropriate. The ,WRITE function will transfer 'data from the
computer to the card punch unit and cause it to be· punched into a card •.

The mode of a card file is specified by the ASSIGN statement. , There
are two possible modes: TRANSLATE and BINARY. The desired mode will
be set as the ASSIGN statement is processed.

The TRANSLATE mode will cause each subsequent card that ,is punched
to be in the Hollerith code. In this mode, one card occupies 16

, computer words. The buffer specified by thewri te packet must be
greater than or equal to' 16 words: less than 16 words is an illegal
parameter.

The BINARY mode will cause each subsequent card that is punched to be·
punched in the column binary mode. Two and one-half card columns
represent one 30-bit computer word. A minimum buffer of 32 words are
requiredjless than this is an illegal parameter.

o·

1

7

UNIT· CONTROL BLOCK

HANDLER RIR
- -

UCB LINK

P-TYPE ICH CH/UNIT

ILINK TO CCB

LENGTH OF UCB # OF,REQ

MIN ·C .. M. SIZE TEST & SET LOC . , I . UNIT
INACTIVE - Q CELL

CARD MODE
020 OR OltO

mCBNO

KUCBCM'~

KUCB~

mOB1

The processing of the ASSIGN statement will place the mode
indicator (020 or 040) in word 7 or the UCB..' .

o

1

2

'3

~. 4

5

6

7

10
&

CORE MODULE

HANDLER USE

INTERRUPT STATUS STORE ADDRESS

XF COMMAND WD

BUFFER COMMAND WD

BUFFER C.W. WORD

XF CONTROL WD

INTERRUPT STATUS STR

BUF. IN STAT STR

BUF. OUT STAT STR
I

V
I
I

CORRECT STATUS
F~C ro A
CODE OF S-MOD I

-----,-i _ a.-_--1, I
t f~~~ ~ " O~FTAs~_ilMSODII-I' --_), I

\ N;OU~H~N! "
~ I

r SE'T:' tIP I I ,I
I CONl'iAND" ,II
~ __ ~ __ ~J I I

'II SET UP
REST OF

I i
II,

GORE MOD I t

1
I
I ~ TO.,

I : I
I I
\1 L~ FORMATTER

FO~~rnR~1
SU-C-CE"':"S-SF-UL- I STATUS "I

I

CONPLETION TO.ll I
~ ___ OF __ S-_M_O __ D~

ILLEGAL STA TUS 1
CODE TO A .I

INTERRUPT OF S-MOD " \

, !

INTERLOCK

, i
' STATUS f I"

TO A

'---O_F_S_-M_OD----.:n ill

II 19~EXIT ~/O I . .' DIRECTOR
. ,

's/

UNRECOGNIZED STATUS
INTE&.WPT

l- TD ·A
STATUS TO OF S-MOD I ,
Q OF S-MOD 'I

. ·.3 • .3.4-.3·

Omega Mass Storage Handler

PURPOSE: To interface the mass storag~ subsystem(s) with the Omega
executive and programs running in its environment.

ENTRANCE: EXEC Return 77540 100FC
B4 = Address of Storage Mod~e
B5 = Address of Random Access Storage List
B~ = Address of Packet

Fc,eh READ

Transfer to core the data found on mass storage as. defined
by the manipulation of the Logical Address given in the
Random Access Storage List (BASL), the Logical Increment (LI)
as given in the packet, and the logical to hardware address
conversion parameters given in the Unit Control Block (UCB).
The number of words to be read is given in the lo~er 15 bits
of the packet, and is limited by the length of file (RASL)
and the LI. The buffer base is defined by the sum of lower
PLR register and the second packet word.

Upon return of control report the status of the function in
the A register (A) and the number of words read in the
Q register (Q).

. FC /J2 WRITE

transfer data from core to mass storage. (Se~ FC ~1)

Fe fJ3 BLOCKR

(See FC /J1) If an End-of-Block (EOB) external interrupt
(EI = ~4) is received report the contents of the lower 24 bits
of the Overflow Word** in the upper 24 bits of the A register at
return of control. The number of words read is reported in Q.

*This paper is specifically generated for the ERS80 drum handler. When
the details of the Fastrand - FH880 handler are defined, this paper will
be corrected to show changes of philosophy as related to both subsystems.

**An Overflow word is the contents of a drum storage location following an
End-of2~lock sentinel (a location containing the octal word 7777777777).
Bi ts 2 through 224 of the' Overflow Word must be zeros. The contents' of
the Overflow Word is . logically added'·:t<>:.~04000 00000 and reported as an
exte~nal interrupt. .':.

Fe ¢4 BLOCKS

Search for the FR880 address containing-the data word
given in the fourth word of the packet. Transfer no data.
Report the address of this mass storage locztion in terms
of a logical increment to the first address of the file
(Q). If an EOB sentinel is detected before a find is made,
report an Unsuccessful Search status (06), and the contents'
of the Overflow word in A •

. Fe 24 BREAD

(See Fe ¢1) Transfer consecutive data locations from a
single mass storage file to one or more core areas.

Fe 25 GWRITE

(See FC'¢2) Transfer data from one or more core areas to
one continuous area of mass storage file.

Fe 26 MREAD

Exit

(See FC ¢1) Transfer one or more data areas of a single
mass storage file to one or more core areas.

The status codes reported upon exit a:e:

0000000000 - Normal completion

XXXXXXXXXO - This is the normal completion response to the
BLOCKR function. ~he upper 24 bits of A
contain the lower 24 bits of the Overflow Word.

4000000001 w Inappropriate function - the function code is
not-applicable to the subsystem. (SEARCHT
issued to an FR880 subsystem, etc.)

.4000000002 - Incorrect parameter - This status indicates
that thedata transfer is outside of the program
lock limits. Under this condition this status '
code is generated by the I/O Director.

This status code is generated by the handler if:

·The Logical Increment spe?ified in the packet
is negative.

-An MREAD packet does not contain a Log~ca1
Increment ~Bit 229 of the first word of the
LIST = 1)

-The peripheral type code as given in the
UBa 4.

·A negative hardware address is generated.
This condition will occur. if the LA as given
in the RASL is less then the first LA of the
unit.

·The packet and file or so constructed as to
cause the generation of 33 or more consecutive
buffer control words.

4000000003 - Unrecoverable Error.- This code indicates that
the function could not be completed without
error interrupt. The handler will issue the
function a total of four times before returning ,
this status.

4000000004 - End-of-File - This code indicates that the
function requested a transfer of data from
(or to) an area of mass storage outside of the
file. Reading or writing .in the last address
of a file will not cause the generation of an
¢4 status. An ¢4 response to a write function
indicates that no data was transfered.

4XXXiIxx06- Unsuccessful Search - At the handler level, this.
response can only be received in response toa
BLOCKS function. It indicates that an EOB
interrupt was received before a find was made.
The lower 24 bits·of the Overflow Word are
contained in A.

The following table illustrates aJ.J. .legaJ. Iunc"'(,~ons at the handler
level, and the possible responses to' these functions. The presence
of a number at the intersection of a function code and status code
indicate that the particular status may be received for the prescribed
function. The number at the intersection is applicable to the notes
which follow.' The conditions which caused :the generation ot a particular
status have been defined.

Status
~

0

(A/Q)
-n
+' H H
t> Q) 0

(See s:: +' H
::::i Q) H ..d

Notes) ~ ~ ,rx:l t>
H H

~
Q) H Q) ct1
+' ct1 H Q)

H cd Po. .0 Q) en
0 ·n cd H
Z H +' H ·n M

p.. t> Q)
~ '-De

I-
0 Q) > H H H 0 ~ II ct1 p.. H 0 0

,S p.. 0 Q) I
H

I
oj () a "0

0 s:: ~ s:: :z. H H l=> r£l ~
~ ~ N ('f"\

~ ~
"&. 's.. "\'Sl. t:t

¢1 READ 1 2 2 2 1

I ¢2 \-ffiITE 1 I 2 2 2 ~'
I

I
..,

¢3 BLOCKR 4 1 2 2 2 4 I
07 BLOCKS 5 2 2 2 2 2,

24 SREAD 1 2 2 2 1

25 GWRITE 1 2 2 2
·1

:3

26 MREAD 1 2 2 2

f
« Key to Q register values

1. Q = the number of data words written or read.

2. Q = unknown

'3. See #1 above. No data will be transferred, and Q = ¢.

4. See #1 above. An end of block sentinel was not read.

5 .. Q = the logical increment as related to the 'base address of
the file. .

The handler will allow a program to reference from 1 to 32768 words
of mass storage whether the subsystem be an FRaaO, or Fastrand.
Packets which contain more than one set of parameters (SREAD, GWRITE,
$MREAD) may specify 32K data transfers in each parameter set. ' Wheri '
communicating with a Fastrand subsystem' it is very desirable to limit
I/O buffers and logical increments to multiples of 33 wordsi This ,
rule is particularly'important on WRITE functions, for the handler
must insure the integrity of the entire sector,.

The handler will allow a program to read an entire file with one
packet submission, providing the above restriction is not violated,
regardless of the number of times that the file is split. A split
file is a storage area which is contained in more than one continuous·
mass storage area.

The handler will maintain a table indicating the angular position
of each drum unit under its control. Via this table it will attempt
to queue each Command Word List in such a manner as to minimize
latency. From this table, and the hardware function generated, the
handler w~ll compute the Start-Stop* time of each Command Word List
and cause it to be queued for execution at the earliest possible time
providing its execution does not usurp a time interval allocated to
a previously queued function. The RASL will aid the algorithm b,y
unique entry for ea.ch subsystem unit containing parts of a file. The
handler will aocount·ror files contained on two cylinders of a Fastrand
unit.

*Start time is that time at which a function must be issued. Stop
time is the time.when the subsystem completes the funotion and becomes
available for another function.

Tables used bi the handler and, labels used ;;t,o reference the tables.

KSrFR

KSPLR

KSBREG

KSEC

MSA & KSAREG

L1 & KSQREG

KS(}I1

Storag'e . Module

" 'Wolrd ' #.

'0

1

2

3

'4

5 '.

6

7

10

.,., , ,

12

~ 13

14'

15 '

16

17

\ ,

,Exec/Return 'Irlst •. . ..-,'.,' ~

, .
, '

Prog;; . ;'.ock . Reg.
. '~ 'I ~' ,

: ;'J B1
: i!:' \,';

Error Countei.· ... :: ' '. r BZ /I of' (J.1, Words ",,\;'
" B3

'. , '\ B4

"\'

;: ~ '35
:: \. "

f' i '
,I I.

,~\ 'l6
'\ ~ ~ :

:\
IJ;~':
t _ ',.:

Status Code

Additional 1nformat:.,'n
~ ~ ~(

CM Alloca ti ~ ri_.

. '~, \ :

Bit 228 0£ word 13 = 1 indicates an inter:ock status.
~

~ j

Core Module (Prel~ar,y)

Twenty-two words of "freen core are requested upon entry the
handler. The area is used in the preliminary of the packet to determine
the number of address needed to generate the Co~d Word List(s).
It the number of vords needed does not exoeed 22 the same area is,
used tor OWL construction. "

B1T,

B3T

MSA1

LIBCW

BSI

WORDS

BST

, SPLIT

0,

1

2

:3

4

5

6
,.,
8

0' 7

Temp B1 storage

Te~p B:3 stora~e

Sum ot mass storage add. in ~ile .

LI + BOW 'j
f ' ,
IInitial B5. viI.l.ue I

'Misc.

10
11 ·\B.5 at MSA- LI

12 . /I or MIS I /I~r BCWIs·

13
j'4'

'CWL

B51

STATUS

o

1

2

3

4

5.

6,

WORDS 7

POSTCM' " 8

EF' ' 9

Bew

B61

QTI

AT!

: '

10

11 '

12·

13

14

15

'16

17·:

18,'

19

20

21

Core Module (Containing Command Words).
(B6 = add. of wo~d ¢)

Add. ,of "present":-,BCW

EI store add. '

First Command word

2nd

.3rd

-' Initial Value ot 'BS "

I EOF indicator (4 or'~)\ .
(Q) at Formatter, return

J P·TIPE (P,33D) .. fPOSTCM' address

1st BOW

2ndBG'w

',Temp storage of. Q.

. 'r~mp storage of '!

EF

Core Module (at BCW generation)

During the generation of a Command . Word. List B6 equals one of two values:

(.1). it equals the add of the first word of the· Core Modul.e, (2) it

equals the add ot·the BCW being generated. Under condition #1 the above
. .

labels are. used. ~nder ooOOi tions #2 th~ following labels are used •.

B6 .-

B6T

QT

AT:

¢

1

2

.3

4

5

6

7

8

9

10

"' .. 1.1

• ..
9+n

10+n

11+n

12+n

1.3+n

14+n
• . .

. . .

nth BCW

n+1 BCW

. . \Add. of word ¢

I Date, to be xfered. by subseguent BOW.'

Date to be xfered b,y current BOW

Unit Control Block

,..
v

1

KUCCH Be KUCPTYPE 2 PTYPE . pHD pHIl
KUCCCB 3' IceB ~ocation '

4

KUCLA 5 First Logical Address of unit .. I
"

:mCRA .. ' 6, First Hardware'Address or unit

7'

8 I 9

Mass Storage Handler

(FH880 Drum) ,

Notes: LI-Logic'al Increment as given in a packet.

RASL - RandoniAccess Storage List.

IOD- I/O Director

Bcrw -' Number of data words to be t~ansferred.

CWL - Command Word List(s).

SMOD ~ Storage Module

eM - Core Module (contains OWL)

FS -, File Size as stated in the number ot.30 bit, word's.

Yes

W
1

REQUEST CORE
FOR TEMP.
STORAGE (CM)

DETERMINE THE #
OF ADDRESSES
NEEDED TO CONSTRUO
THE CWL

RELEASE PRESEN
eM &REQUEST

• DESIREP AMt.

STATUS = ¢4

GENERATE
HARDWARE
ADDRESS

GENERATE
COMMAND
WORDS

OL- U(KSEO)

TRANSFER NEEDED
INFORMATION FROM
PRESENT CM AREA
TO POST CM AREA

DETERMINE
QUEUE PLACE­
MENT (A)

No

STATUS = 1

SET U(KSEC) =
40000

Set 229 ~f A

FORMATTER

RESUBMIT THOSE
eM's THAT

. RECEIVED ERRORS

FORMATTER'

FORMATTER

~
V

Yes

STATUS = 3

3.3.6 1004 Subsystem Handler'

3.3.6.1. Introduction

This document outlines the specifications for the U-494 OMEGA On-Line
1004 Handler and includes utilization of U-1004 Option 86.

3.3.6.2. U-1004 Option 86

The following three (3) features are incl~ded in Option 86:

A. External Interrupt - This feature enables timely and accurate
status reporting by the U-1OO4 to the U,-494 Central Processor(s)
in the multi-programmed and/or multi-processor environment. The
feature permits absolute control during "error"conditions that
can occur in the U-1004 and enables the necessar,y synchronization
for operations in this type system.

B. Stop-Disable - This feature enables the U-1004 to maintain program
control during a card reader, card punch, or printer error/faUlt
conditions, while disabling the 11 stopli these 'pondi tions normally .
cause. The operator can recover the error condition and process­
ing can continue.

c. Punch Select - This feature enables automatic recovery from
IIpunch-check" errors. The card following a mispunched card is
selected along with the card in error. Recovery is programmed
from the resultant error signal. No operator intervention is
required and the correct card sequence is maintained in the
output stacker.

3.3.6.3. Operations

The operations of the U-1004 handlers will be compatible with the
HSP and the Card Reader/Card Punch handlers insofar as the user is
conc.erned.

A. Printer Operations \ .

This operation duplicates that of the HSP operation. Form control
is specified by the user through the OMEGA ASG$ operator, wherein
the user specifies the number of lines in the top and bottom
margins and the number of printable lines per page, i. e., .­
TM+EM+PL=Total number physical lines per page. The absence or .
these parameters in the ASG$ operator will indicate "No Form
Contro~' and the hahdler will consequently relinquish form control
to the user.

3.3~6-1

When form control is specified in the marginal and printable line
information will be maintained in. the Unit Control Block (UCB).
A "current" line counter is also maintained in the UCB. The '
introduction of a new ASG$ operator will cause the UCB to be
reset for form control.

The OMEGA WRITE$ operator is the only function acceptable for
printer operations on the on-line 1004. Any other operator .
usage will result in an Inappropriate Functi?n Status.

A maximum of 13210 characters will be printed per line. The
"Stop!' code (77) will be honored.

Spacing with printing will be specified by the user within the
OMEGA WRITE$ operator (# of Words). Spacing on the U-1004 printer
will occur before printing of the line. A space count of zero (¢)
will be honored, thus enabling over-pririting. The maximum number
of lines that may be spaced within one command is 6310=77S. ~nere
the space count exceeds the number of printable lines remaining
on a page will be interpreted by the handler as advancement of
the form to the first logical print line on,the next page.

Where form control has been specified by the user, the following
operation will be honored by the handler. The user may "HOMEn
form (page eject) by setting the OMEGA WRITE$ operator (# of words)
to 40000S. The handler will initiate spacing to the first physical
line (fold) of the next page. '

The handler will also honor a "SPACE ONLY" form, request from the
user (with or without form control). The user may "SPACE" form
by setting the OMEGA WRITE$ operator (# of words) to 200SSS' where
SS is spacing i6310=77S. No p~inting will occur during execution
of this request on the U=1004. NOTE: where form control has been
specified a "SFACEII instruction which carries into or beyond either
margin of the current page will be interpreted by the handler as
advancement of the form to the first logical print line on the
next page and an appropriate spacing instruction will be issued
in this case. If the user is desirous of spacing to the middle
of the next page, for'example, he must request a "HOME" form and
then request spacing to the middle of the page along with the print
line to be printed at that point, or must break the "SPACING" into
two, II SPACE ONLY" requests, the first of which carries into a margin.

The handler will convert all space counts from octal to decimal
to XS-3, or 90 column code for ,presentat'ion to the U-1004. .

The handler will convert all print data from Fieldata to XS-3,
o~90 column code,for presentation to the U-1004.

B. Card Operations

1) Card Reader Operations

Cards will be read in either,BO or 90 column format and in

either XS-3 or binary code. Ine user will specify which
code he desires to be read through the OMEGA ASG$ operator.
The UCB will contain the format of the U-1004, i.e., whether.
it is a 80 or 90 column model. A mode indicator will be
set in the UCB to key the handler to tl:;le "Translate" or
"No translate" mode for XS-3 or bina.ry code respectively •

. In the "Translate" mode the card image will be converted
from XS-3 or 90 column code to Fie1data Code before present~­
tion to the user. In the "No translate" mode the card image .
is presented exactly as received.

Single image card reads are possible through the OMEGA
READ$ operator. Multiple image card reads are possible
through the OMEGA MREAD$LIST operator. Any other operator
usage'wi11 result in an Inappropriate Function Status.

2) Card Punch Operations

Card images to be, punched will encompass the same features
as explained in the Card Reader operations above, except
that "Multiplen punch operations are not available in
OMEGA. 80 or 90 column format and XS-3' or binar,y code will
be processed by the handler. Data to be outputted to the
U-1004 Card Punch ,will be translated from Fieldata Code
to XS-3 or 90 column code, or translation will be bypassed
in case of binary code.

Single image card punch operations are possible only by
use of the OMEGA WRITE$ operator. Any other operator usage
will result in an Inappropriate Function Status.

3.3.6.4. Buffer Operations

A., Printer Operations

The Print Handler will be assigned a 2810 word buffer as an
integral part of its core module by the I/O Director. A
maximwTt of 13210 data characters will be moved from the user's
buffer to the print handler buffer for output to the on-line .
1004 printer. Detection of the "Stop" code (7.7) will abort
the data move at that point. Thus a user need not necessarily
provide a 13210 character buffer. '

B. Card Reader Operations

The user will furnish the input buffer(s) either as an integral
part of his program or which he has acquired from an OMEGA core ,
chain.' The following MINIMUM size buffers are required;

1) Single Image Card Reads

:a.
b.
c.
d.

80 Col, Translate Mode must be ~ 1610
80 Col, No-translate mode must be z 3210
90 Col, Translate Mode must be 2 1810
90 Col, No-translate Mode must be ~ 1810

2) Multiple Image Card Reads

a.
b.
c.
d.

80 Col, Translate Mode must be 2 n(1610)
80 Col, No-translate Mode must be ~ n~3210)
90 Col, Translate Mode must be 2 n~ 1810)
90 Col, No-translate ,Mode must be ~ n~ 1810)

3. 3.6-4

where n = the number of card images when using the MREAD$LIST
operator. In this multiple read packet n buffers are specified
each ,of which must be Z 16(or 18).

One big buffer which must accomodate all card images is not
required!

C, Card Punch Operations

m' on "I ·1" • d """'" d - +>£ 'lne r'uncn nana ar W~ ... De ass~gne. a jj10 yor ou..... ar as an '
integral part of its core module qy the I/O Director. A maximum
of 8010 or 9010 characters will be moved from the user's buffer
to the punch handler buffer for output to .the on-line 1004 card
punch. The size of the user buffer is entirely optional b.1
specifying number of words in the OMEGA WRITE$.operator. The
handler will move only 'the number of words specified and will
space-fill any remaining area in the output burffer.

NOTE:" Inconsistencies in buffer sizes by the user will in all
instances result in an Inappropriate Buffer Status.

3.3,6.5', U-494 Status Codes

The following status codes will be provided by the Handlers to the
OMEGA I/O pirector as a result of interrupt/error analysis~

RA of SMOD - ¢ =.Sucessful Completion
RA of SMOD = 4000000001 = Inappropriate Function
RA of SMOD = 4000000002 = Inappropriate Buffer Size

3.3.6.6. U-494 Instructions to On-line U-1004

Instruction formats are based on the following scheme in the low
order five bits of the instruction word:

20 = 1 = Read
21 = 1 = Punch
22 ::: 1 ::: Print
23 = 1 = No-translate; ~ = Translate
24 = 1 = 90 Column; ¢ = 80 Column
25 = 1 = Space

The following constitute valid instructions acceptable to the on-line
U-1004.

A. 80 Column

~

40000 00001
40000 00011

DESCRIPTION

Transfer card read image (XS3) to U-494
Transfer card read image (CI) to U-494

OCTAL

40000 00002
40000 00012
4XXXX 00004---

4XXXX 00044

B. 90 Column

OCTAL

40000 00021
'40000 00022
4XXXX 00024

4XXXX 00044

DESCRIPTIQN

Transfer card punch image (XS3) to U-1104
Transfer card punch image (CI) to U-1004
Transfer Print Line to U-1104; spacing
XXXX (XS3) decimal equivalent) before printing,
Transfer space countXXXX (XS3 decimal .
equivalent) to U-1OO4 and.space printer
XXXX lines .•

DESCRIPTION

Transfer card read image to U-494
Transfer card punch image to U-1004
Transfer print line image to U-1OO4; space
XXXI (90 Col decimal equivalent) lines
before printing.
Transfer space count XXIX (90 Col decimal
equivalent) to U-1OO4; and space printer"
XXXX lines.

3.3~~. External Interrupts From U-1004 to U-494

OCTAL

6XXXX OOOFO

J vvvv rvv'\ J J
~~ vvv~

3.3.6.8. U-1004 Operations

DESCRIPTION

U-1004 cannot perform the requested function.
228 of the instruction word received is set.
and the instruction word is returned to the
U-494 by the U-1004. This is termed a
"reject interrupt".

Space only instruction accepted and executed
by U-1004.

The U-494 will control the sequence of data flow and information
as to what must be done to this data. The U-1004 will control its
own peripheral devices, i.e., card reader, line printer, card punch,
and the sequence of physical input/output events. The interface
between the two systems, therefore, is one strictly to control the
transfer of data and instructions from one to the other.

The U-1004 will effect data transfers immediately in most all cases.
If it is unable to perform a requested function, an External Interrupt
will be sent to the U-494, ~ndicating that the function cannot be
performed (reject interrupt). The U-1oo4 will then come to an
orderly halt to allow operator correction ot the problem, e.g., out
of paper, card hopper(s) empty, etc.

The U-494 handler, upon analysis, of the external interrupt, will
notify the I/O Director of the "Interlock" condition. This will
cause a console typeout and suspension of the U-1004 channel operations.
When the problem has been corrected, the U-494 'operator will respond,
via the console typewriter, that the problem is corrected. The U-1004 .
channel will then be reactivated and the I/O Director will resubmit .
the same request to the handler and U-1004 operations will resume from' .
where they were discontinued. An illegal function code will cause
the 1004 to send a rejeot .interrupt.

The following operations will be performed by the U-1004:

A. Space" and Print - the OMEGA on-line 1004 handler will acti~ate
, a 2810 word output buffer. The U-1oo4 will accept the first
word of this buffer, decode it and, if no previous print line
is waiting, execute the form spacing specified. The following'
2710 words will then be accepted into working storage. If a
print line is waiting in print stora~e, the new print line will
be transferred into working storage \a card will be read if
desired) before the waiting line is printed. 90 column code
will be printed when operating in the 90 column mode.

B. Space - The U-1004 will receive a one word instruction from the
U-494. If no previous print line is waiting to be printed, the
spacing of the form will be executed. An external interrupt
will then be sent to the U-494, acknowledging the execution of
the specified form control. If a print line is waiting to be
printed, the line will be printed (a card will be read if desired)
and the form control (space) instruction executed. As above,
an external interrupt wil.l now be sent to the U-494.

C. Read - the U-1004 will receive a one word instruction, decode it
and transfer the card image to the U-494. The U-1004 will then
determine whether or not an I/O function must occur to have
a~other card image available for the U-494. If so, another
card will be read and the U-1004 will await receipt of the next .

. instruction. The instruction will define the' code to be read,
i.e., XS-3, Code image, 90 column code.

D. Punch - the OMEGA on-line 1004 handler will activate an output
buffer of adequate size to accomodate XS-3, code image or 90
column code. The U-1004 will accept the first· word of the
buffer (instruction wor~ decode it and wait for the punch to
complete a prior task, if any, and then accept the remaining
punch data words. The U-1004 wi~l then start to punch the data
and will await receipt of the next instruction. The instruction
word will define type of code for the U-1004.

:;;:;.6-7 ..

WORD

0

1

i") I
"-

3

4

5

6
I

7 I

10

11

1004 PRINTER UNIT CONTROL BLOCK

RIR SETTING
OF HANDLER
UCB LINK

PERIPHERAL CHANNEL /
TYPE UNIT

LINKING ADDRESS
TO CCB

LENGTH OF NO. REQUESTS
UCB (11 8) TO CCB
MIN. SIZE OF INTERRUPT
CORE MODULE TSET

REQUEST QUEUE
(HEAD OF CHAl Nl

MODE INDICATOR
UPPER LO~JER

MARGIN MARGIN"
CURRENT PRINT # OF PRINTABLE

POSITION LINES/l>AGE

NOTES: WORD 7 - 229 = 1 = 90 COLUMN
L(WORD 11) = ¢ ::, NO FORM CONTROL

).3.6-8

I

WORD

1

2

·3

4

5

6

7

I

1004 CARD READER UNIT CONTROL BLOCK

RIR SETTING
OF HANDLER

UCB LINK

PERIPHERAL 'CHANNELl·
TYPE TT?.TTITI

! U.l.'4.1.J.

LINKING ADDRESS
, TO CCB

LENGTH. OF NO. OF REQUESTS
UCB (108) QUEUED TO CCB

MIN. SIZE OF INTERRUPT
CORE MODULE TSET

REQUEST QUEUE
(HEAD OF CHAIN}

MODE IMULTIPLE READ
INDICATOR COUNTER

NOTES: WORD 7 _229 = 1 = 90 COLUMN
228 = 1 = NO TRANSLATE

WORD

¢

1

2

4

5

6

7

I

1004 CARD PUNCH UNIT CONTROL. BLOCK'

RIR SETTING
OF HANDLER

UCB LINK

PERIPHERAL CHANNEL I
TIrE UNIT

LINKING ADDRESS'
TO CCB

LENGTH OF NO. OF REQUESTS
UCB (108) QUEUED TO CCB

. MIN. SIZE OF INTERRUPT
CORE MODULE TSET -. .--~-..

- REQUEST QUEUE . ,

(HEAD OF' CHAI N)

MODE INDI CATOR

NOTES: WORD 7- 229 ~ 1 = C)(} COLUMN .
228 = 1 = NO TRANSLATE

WORD

o
1

2

3

4

5
,6

7

34

I
I ,.

,1004 PPiNTER CORE MOD~

'FOR HANDLER USE

INTERRUPT STORE ADDRESS
PRINT COMMAND ,

STORAGE FOR INTERRUPT· STATUS
STORAGE FOR INPUT BOR

STORAGE FOR' OUTPUT BCR : .
, . PRINT BCW

PRINT INSTRUCTION
"

2710 WORD PRINT LINE
BUFFER '

I
I

3.3.6-11

WORD
o
1

.2
3'
4
5

1004 CARD READER' CORE MODUI$

FOR HANDLER USE
INTE~~UPT STORE,ADDRESS

READ COMMAND
INPUT BUFFER COMMAND

STORAGE FOR INTERRUPT STATUS
STORAGE FOR INPUT BCR

6 ~lOF~r.~ ~uR UUIPUI tiC~ ""m • 'M ,.., ,....,. ... m m -
\...l •~

7
10 '
11
12

READ 'BCW
READ INSTRUCTION

'INPUT· BOW
MULTIPLE READ LIST POINTER

WORD

¢
1

2

3

4
5·

6

7

47

I
I

I
I

. i .

1004 CARD PUNCH CORE MODULE

FOR HANDLER USE

INTERRUPT STORE ADDRESS

PUNCH COMMAND

. STORAGE FOR INTERRUPT STATUS

STORAGE FOR INPUT BCR

STORAGE FOR OUTPUT BCR
,

" PUNCH BOW

33 WORD .l'UNCH BUFFER \

.10 . I

I
I

. I _____ . J.

NOTE: BUFFER ACCOMODATES EITHER
80 OR 90 COLUMN U-1004,
OR BOTH. 1st WORD OF
BUFFER CONTAINS PUNCH·
INSTRUCTION. .

3.3.6.9. I/O STATUS .CONDITIONS
E-4 €-f

I~
ex: ex:

REGISTER A Et! Et!
P-tZ P-t

AN.u/OR Ii @i=i @o:: ~ REGIST~-q, B6 P-t8 ~.~ P-tO ~

STATUS ~~ ~S
8

0 :z;
Z H~ H

OP CODE ~ T"'"

~ "Gl..

80 Column

READ XS 3 - /11
1 2 3 4

I I I

READ BINARY - 11 1 2 3 4

PUNCH XS3 - /12 1 2 4

PUNCH BINARY - 12 1· 2 4

PRINT - /14 1 2 4

SPACE - 44 1 2 4

90 Column I ' f

READ 21 l' 2 3 4

PUNCH 22 '1 2 3' 4
n,...,.,.'T", "'" ~ ,....
r.nJ..i .. ·.1. ~4

SPACE 44

Key' to Register Values Submitted to 1/6 Direotor

·1. ,Normal Response. RA,= fJ
2. Requestor has submitted invalid Function Code. RA ~ 4000000001

3. . Requestor has specified Input Buffer size less than minimum
.'. ",'

required size for type image to be read.' RA =' 4000000002
, ,

4. 'The requ~st~d function cannot, be executed by' U-1004 at:this time

. due to "out ot ,paper", "empty c~ .. hopper", etc.

BOLTOO

READ/PRINT HANDLER

SET
"NORMAl}'

STATUS

3.3.6-15

. SET
"lNAPPROPRIATE"

STATUS

SET
II INAPPROPRIATE
BUFFER" STATUS

SET
"INTERLOCK"

STATUS

o
I

ADD TOP
ViliRGIN TO
SPACING

SET FOR.~
aNTRaL TO LOG
CAL PRINT LI

TIMED OUT?

0°
E '

page 1

page 1

rUNCH HANDLER

(VALID: Fe? ~
I Yes

Yes

SET
"INAPPROPRIATE
FUNCTION" STATUS

SET
II INTERLO dK II

STATUS

3.4 Auxiliary Routines

In order to conserve the amount of core memory required·by OMEGA,
certain auxiliary I/O routines are drum stored. These routines
are loaded into core when they are needed and remain as long as
they are active.· Included in this group are the following: Error
Recovery Routines, 'Interlock Routine, Search Routines, and Peripheral
Initialization Routines. "

3.4.1 Error Recovery Routines

Error Recovery Routines, .such as magnetic tape reoovery
involving a cha~ge of tape direotion, are re-entrant ro.utines
listed with the Content Supervisor.

Entry

The appropriate Error Recovery Routine is entered from the
Devioe Handler b,y a call to the Content Stipetvisor identifying
the routine to be loaded. The call is shown below:

EXRN

where Vn is the mnemonic name of the appropriate Error
~ Recovery Routine (this name will be equated to

the oorrect Secondary Exec Library No. and
function code).

When this call is made a S~orage Module is allocated and
linked to the Activity Addendum. Error Recovery receives
control with the absolute address of the allocated S-mod
in tl4. The handler may set up parameters in the registers
which may then be accessed Qy Error Recovery" through the
S-mod. The Storage Module assigned when the activity issued
the I/O request is the next S-mod on the chain and its address

.' may be found in the PUSH/POP Link lo.cation of the S-mod
indioated qy B4. .

Exit

After performing its functions the Error Recovery Routine
returns control to the Device Handler. Control is returned
"through the Content Supervisor by the paoket shown below:

ENT*B1
DRET1$

Control is returned to the handler at the location following
the call. Registers are restored to their value at the time
Error Recovery was called unless they are changed in the S-mod
by Error Recovery (the success or failure of the recovery
attempt may be indicated in the A and/or Q register positibn
of the S-mod).

Operation

Error Recovery examines the hardware status code(s) to
determine th~ proper recovery procedure~ Error Recovery
may then obtain an area of free core to set up the recover,y

. functions, or it may resubmit the original module which
was set up by the Device Handler, or·itmay do both. For
example, the magnetic tape recovery routine may obtain
free core to set up the repositioning functions and then
submit the original function. Error' Recover/ Routines submit'
functions directly to the Fo.rn:ia.:tter aes do. :theDevice Handlers.

3.4.2 Interlock Routine

The Interlock Routine, as the Error Recovery Routines, is.
a re-entrant.Secondary Executive Routine' listed ~th the
Content Supervisor. Its purpose is·to provide· a common
routine which will handle interlock type Out messages for

. the Device Handlers.

Entry

The Interlock Routine is entered' by the Device Handlers
through ·the call to the Content Supervisor shown below:

I' EXRN* INLK I

'where "INLK" is the mnemonic name of th~ Interlock Routine.
This name will be equated to .the Secondary Exec Library.
number and function code of the Interlock Routi~e.

Before calling the Interlock Routine; the Device Handler
must set B5 equal to the absolute address of tbe Unit Control

· Block of the interlocked 'device. This parameter-is used to 0 •

identify the channel and unit of the device.

Exit

The Interlock Routine returns to the Device Handler at the
location following the call when the operator'has answered .
the type out.. Return is made through the following packet: I

DRET1$

All registers will be restored to their value at the time of
the call with the exception of the A-register which. viII
contain a status code:

3.4-2

¢ ¢ ¢ ¢ ¢*¢ ¢ ¢ ¢ ¢ - the interlockcond~tion has been
corrected.

7 7 7 7 7*4 ¢ ¢ 1 1 - the interlock condition cannot be
. corrected.

Operation

The Interlock Routine obtains an area of free core and builds
the interlock message in this area. The channel and unit
contained in the Unit Control Block,identified ~I B5,ara
placed in the message area. The message is then given to the

· I/O Director for assigning a response number and placing on'
the console output queue (see Section 3.2.2). The output
message will take the following form:' .

"INTERLOCK exx UYI DZZ"

where XX is the octal channel number
yy. is the octal unit. number
ZZ is the response (delay) number

When the operator has responded control ·is returned to the
Interlock Routine with the input message in t~e A-register.
The routine then stores the appropriate status. code in the

· A-register position of the S-mod (address in B4) an~ transfer.s
· control, through the Content Suparv.isor,. ·to the l)evica Handler.

The operator response to the interlock message is·' of the
. ,follo\i{ing form:

DZZ~{Y @
N .

whereZZ is the response number of the interlock type out.

I is entered if the interlock'has been corrected.
The handler will resubmit the function to the
Formatter.

N is entered if the interlock' cannot be ·-corrected. ,
The handler will return' an error status to the·,
requesting activitl.

3.4-3

3.4.3 Search Routine

The Search Rout'ine is a re-entrant Secondary Executive
Routine listed with the Content Supervisor. Its purpose
is to provide ,a software simulation of those hardware
search functions which may unduly monopolize'a peripheral
subsystem for extended periods of time.

Entry

The Search Routine is entered by a call to the Content
Supervisor generated in response to'certain search mnemonics. .
These mnemonics generate standard I/O packets (See Section 3.5.2)
with the call direc~ed to the Content Supervisor instead of
the I/O Director. The following ,mnemonics will cause entr,y
to the Search Routine:

• SEARCH$ -"generalized search, tape or mass storage.

• SEARCHL$ ~ same as above with logical lock of mass
storage.

• BLOCKSL$ - block search with logical lock (drum
, s:u bsystems only)

SEARCHTL$ - search track with logical lock (FASTRAND
subsystems only)

• SEARCHPL$ - search pos~tion with logical lock (FASTRAND:
subsystems only.

The BLOCKS$, SEARCHT$"and SEARCHP$ operators (as above only
without logical lock),' are hardware search functions'. Their
counterparts with logical lock must be software s,earches since
the find address is not indicated ,by the hardware on search .

, read operations. The area is locked only if a, find is made.

Exit

At the'completion of its'operations the Search Routine places
status information in the A and Q' registers of the Storage
Module a'ssociated with the operation (addres's in B4,at entry)
and exits to the calling routine through the .Cont~nt Supervisor
with the f611owi.ng packet: ' , " .

ENT*B1
DRET1$

Status information returned b.1 the Search Routine ~s given in
Section '?;.3.

Operation

The Se~rch Routine issues Read functions to the I/O Director
in the normal manner. The parameter packet, including
buffer, is the search packet. For tape searches the first
word of the buffer is compared to the search identif.ie~;ror
mass storage searches each word of the buffer is compared
to the search identifier. " Repetitive reads are given by the
Search Routine ~til either'a find is made or an error
condition occurs.

When a find is'made on a mass storage search, another Read
(with or without lock, as appropriate) is initiated beginning ,
with the find address. The actual functions performed for
the various search operators, are given below.

SEARCH$ - READ$ functions are ,given. When a find is
made control is returned (magnetic'tape), or
another READ$ is given beginning at the find
address (mass storage).

• SEARCHL$ - READ$ functions are given. When a find is
maoo a READL$ is given beginning at the find
address •

.. BLOCKSL$ - BLOCKR$ functions are given. When a find
is made a BLOCKRL$ is given beginning at
the find address.

• SEARCHTL$ - READ$ functions are issued. When a find is
, " made a READL$ is ~iven beginning at the find

address. .

• SEARCHPL$. - READ$ functions are issued. When a find is
made a READL$ is given beginning at the find
address. ,

3.4.4 Peripheral Initialization

Peripheral Initialization Routines are drum stored routines
called by Facility Assignment to assist in setting up the
Unit Control Block and to perform any functions required for
the initialization of the peripheral device. The Initialization
Routine to be used with each Device Handler is indicated in
the Handler Description (See Section 6.6).

Entry and Exit

The Initialization Routines are entered from and exit to
Facility Assignment via the Return Jump instruction (Facility
Assignment is a.non re-entrant routine). .

Operation

As an ASSIGN statement is processed by Facility Assignment a
Unit Control Block will be partially formed. 'The remainder
of the liCB is to be set up by the initialization oode for
this peripheral type. '

Facility Assignment will:

1. Secure core for the UCB, the number of words will be
specified in the Unit Descriptor.

2. Set up the first 7 words of the UCB which are similar
for all types .of devices.

3. Will load the initialization code which was specified
with the handler of this peripheral.

4. Form a buffer containing Assign and Unit Descripto~
informa tioD "

5. Enter the initialization coding b.1 a Re~urn Jump
instruction.

Initialization Entrance Parameters:

B1 :: 15 bit address of ,a buffer which contains Assign
information and the Unit Descr~ptor.

B4 = Storage Module address, This value must be retained,

B5 :'17 bit address of the Unit Control Block which is '
being formed,

Initialization will interpret the option and estimate· information
from the Assign statement in conjunction with the Unit Descriptor
to form the UCB word 7 and on ~p. , Any required ini tiali za tion
functions such as ~lear card memor,y should be performed at this
time. . .

3.4-6

The operator may be notified of any abnormal conditions by
forming a LOG statement in a buffer obtained from free core.
The bu~fer with the LOG statement will be passed to Facility
Assignment as the Initialization exits. Exit is by a JP
to the L(RJP entrance location) with appropriate exit parameters.

Upon receiving an error status from the initialization routine
facility assignment will submit the message generated by the
initialization routine to the LOG routine for processing.
Control w~ll be returned to the requestor,ot the assignment
from the LOG routine with the appropriate status o~ the
assignment. :

Initialization Exit Parameters

REG A = 00000 00000 Successfully completed

,REG A = 77777 40000 Unsuccessful - Reject, ASSIGN request

REG A = 77777 40001 Unsuccess'ful - Perform a LOG operation
(Console typeout to operator) and release
LOG buffer back to FREE CORE.

B7 = Absolute memory address of the LOG
statement which is to be typed out •

.' Q = LOG message length - number of words.

3.4-7

ASSIGN AND UNIT DESCRIPTOR Bu~FER

B1 POINTS 0 OPTIONS

I TO HERE
1 ESTIMATE FROM THE

ASSIGN STATEMENT
2 ESTIMATE

3 ESTIMATE J

4 P-TYPE LENGTH OF U.D.

5 CH UNIT CH UNIT

'6 LENGTH OF U.C.B. UNIT DESCRIPTOR
AS LISTED IN T~

7 DEVICE DEPENDENT FACILITY MAP'

'10 INFORMATION

11

Options - Master bits set to1 to represent the alphabetic
character o~tions contained in th2 ASSIGN statement.
229 = A, 22 = B,- - - - - - ~ -2 = Z

Estimate- Binary representation of the estimate parameter of
the Assign. statement.

The 'estimate field from the Assign statement may
consist of up to three parts. (,--L.!2.J~,
Each part. will, occupy one word iIi the estimate storage
set up for the initialization routine. Any part which
is, no:t present will cause all 7-7.' s to be placed ·.in
the appropria~~ ,word in' the estimate storage..', .

3.4~

An aoditional "Initialization Routine" is operated as a
segment of the Facility Release Routine. The pUrpose of
this initialization is 'to "clean up" the device in antici-'
pation of the next assignment.

The segment is called when Facility Release detects 229
s'et in the UCB word containing the peripheral type code.
This bit is set when the UCB if formed depending on a
control bit in the Handler Description.

The action taken by this IIInitialization'Routine" is
dependent upon peripheral type as follows:

• Standard Card Punch - Punch three blank cards so that,
the last card punched by the 'user is error checked
and an automatic run-out is achieved.

• 1004 Card Punch - Punch two blank cards so' that the
last card punched by the user is error checked and an
automatic ~un-out is achieved.

• High Speed Printer - Space paper to the first physical
line of the next page. This is done only if a page
length has been specified and the paper is not already
at the Home Paper position.

• 1004 Printer - Same as High Speed Printer. The Home
P~per function will force out the last print line which
is ,held in 1004 memory.

3.5 User Interface

3.5.1 File Codes

·File codes represent the basic mechanism by which an operating acti­
vity communicates ~O requests to the system. At time of activation
by control card or through internal request, the user expresses the
type of unit·:or random access file to be assigned to the file oode.
Once established the user presents the file code Yith each ~O paoket
submitted to the system and thereby making the object code relatively
independent of device.

Each task addendum is provided with a basic set of 25 fi~e codes, A
throughY, to which the user may 8saignperipheral devices or random
storage files. In cases where these are insufficient, the user may
specify that 8 designated file code' is to be fragmented into an
additional 26 codes which would contain the same characteristics as
the original set.

Example: If the file code B is fragmented, the ne~ set ~ould be
referred to as BA, BB • • • BZ

File code Z of the Pasio set is reserved for systems referenoes and
is fragmented 8S suoh:

File Code

ZA
ZB
ZC
,..,...,...
!.AU

ZE
ZF

Reseryed Use

Unit record primary imput
Unit record primary output
Unit record seoondary output
Cooperative Librar;
Systems Library
Job Library .

The only routines eligible for referencing these tile oodes are
those conta ined in the systems library ~,' '

3.5.2 I/O Requests

OMEGA I/O requests are generatec in response to mnemonics consisting·
of an operator and a specification list. The operator defines a
specific executive call and function code. A parameter packet is
formed from the specification'list of the request. The general
format is given belove

Operator$oSpecification, Specification •• •

where the specification list could contain any following dependent
upon operation or device

Vo - File Code - is an alphabetic code identifying the logical unit
referenced.

V1 - # of words - specifies the length of the data buffer. Length
for anyone buffer is lind ted to 4K.

V2 - Buffer base - contains address of buffer relative to lower lock
setting of activity_

.
V; - Logical address - increment from base of file normally used

with random access storage references; but may be present
with sequential files to effect device independence.

V4 - Search word - 10 octal character number giving search identifier
to be used in a search operation.

The following is a summary of the basic set of I/O operator recog­
nized by the system, their function codes, specifications and appli.
cable devices. This is followed by a more detailed description of
+'_o_he ~_Dea_;_~_;a nnA~A+~~ Ann nA~AmQ~Q~ nQ~~Q~_ - .. - - -,.,. r.-- - .,,~- -. I:'--~" v........ t',..,. ~ v.

3.5.2-1

w .
'It .
I\)
I
I\)

Function Random Access V-Operands
Code Operators Used ""'---

01 READ $ 0,1,~~,3

02 WRITE$ 0,1,2,3
03 BLOCKR$ 0,1,~~,3

04 SEARCHT$ 0, 1 ,~~,3,4
05 SEARCHP$ 0,1,~~,3,4

06 SEARCH $ 0,1,~!,3,4

07 BLOCKS$ 0,1,~~,3,4

10 READB$ 0, 1 ,~!
11 READL$ 0,1,~!,3

12 WRITER$ 0,1,~!,3

13 BLOCKRL$ 0,1,~!,3

14 SEARCHTL$ 0,1,~!,3,4

15 SEARCHPL$ 0,1,2,3,4
16 SEARCHL$ 0,1,~!,3,4 .
17 BLOCKSL$ 0,1,~!,3,4
20 WRTEOF$ 0
21 REWIND $ 0
22 REWINDI$ 0
23 ERASE$ 0
24 SREAD$ LIST
25 GWRITE$ LIST
26 MREAD$ LIST

Note 1 FH-880 Drum only
2 FASTRAND only
3 Directed to the Content Supervisor
4 Function returned as rr Suc:cessful

complet~onJl -

UNISERVO V-Operands
Notes o erators Used Notes

- --",-"- ~""-.... "'.,....

REAQ$ 0,1,2
WRITE$ 0,1,2

'1
:2
:2
:3 SEARCH $ 0,1,2,4 3
'I
I~ READB$ 0,1,2 6

'I
2 & 3
:2 & 3
:3
'I & 3
1+ WRTEDF$ 0
I~ REWIND $ 0
1+ REWINDI$ 0
I~ ERASE$. 0
~5 SREAD$ LIST 5
5 GWRITE$ LIST 5
~5 MREAD$ LIST 5

l~ote 5 V-Operand is a tag defining a list packet
6 Backspace Block on IIIC/IVC

Summary of Unit Record Equipment

Function V-Operands
e .Code o erator Used

Card and Paper Tape ' 01 READ$ 0,.1,2
02 WRITE$ 0,1,2
26 MREAD$ Tag

I

High Speed Printer 02 ·1 WRtTE$ 0,1,2,3*

* Specifies number of lines to space before ,print

General I/O Operators:

READ - directs the system to transfer data from specified peripheral
device to indicated core buffer. If peripheral device is random
access storage number of wards transferred will be that specified
as buffer length. ,If UNISERVO or unit record device is assigned
number words transferred will be that specified as buffer length
or when end of block or record is reached. The READ operator is
as follows:

READ$ t1l file code, # of words, buffer base, logi~al address

Packet· EBJP*B7
FILE CODE

, ,

RY'R~T N ' ~1

\ N
. I # OF WORDS

I BUFFER BASE
LOGICAL ADDRESS

" " I 1
I I V V

1'\ u .. I, Execu. ti ve Entry
instruction

WRITE - data from specified buffer is transcribed to~orage. The
user must maintain a logical address, i.e., is the sum of , words
written. This address will be used in the event the file is allo­
cated to random access storage.

An end-of-fi1e error status indicates that the'end of allocated
area has been reached. An additional area; which, is logically
continuously addressable, may be ad~ed on r~questf! ...

The function may be specified by:

WRITE$4Fi1e code, # of ~ords, Buffer base, Logical address'

Packet
EBJP*B7
FILE CODE

N 1 EXRN o o 2i

3.5.2-3

READL - Read lock performs the same function as READ with the
addition that an entry for the accessed area is made on a lock­
list. This lock will prevent any other READL function within
this area until released. Conflicting requests are requeued
until they can be performed.

'The function may be requested by:

READL$ Af ile code, # of words', buffer base, logical address

The specification list and packet generated are identical to READ
except that the executive entr,y is generated'as EXRN*10011.

WRITER - the write release function is the counterpart of READL
in that an area on the lock-list is released by the function within
the area. If no write function is,to be performed a release is
effected by specifying an address within the lock area with number
of words specified as zero. Otherwise, WRITE release performs the
same function as WRITE.

The specification list and packet generated are. identical to WF~TE
except that the executive entry instruction is generated as
EXRN*10012. The function may be specified by:

WRITER$Afile code, # of words, buffer base, logical address

SEARCH - this function compares the first word of each block
against the specified identifier. Reading is initiated when a
match is made to include the search identifier within the buffer.
If end of the file is detected a no find status word is returned.
If mass storage the find address ,is 'returned in the A-register.

U~A sim~ates the search function through use of repetitive reads
to prevent undue tie-up of the synchronizer. Since the buffer for
this function becomes the blocking factor for random storage; in
the contingency of allocation to tape the buffer must be equal to

-or greater than the buffer used in writing the file. For the
contingency of allocation to FASTRAND, the buffer might,also be
a multiple of 33 words to improve efficiency. A locate function
on tape can be effected qy specifying #.of words as zero. The
SEARCH operator is as follows: .

SEARCH$Afile code, # of words, buffer base, logical address,
searchword

Packet
EBP*B7 1 N
FILE CODE I # OF WORDS

I BUFFER BASE
LOGICAL ADDRESS
SEARCH IDENTIFIER

N EXRN 12 0 1 0 6 Executive Entry

SEARCHL - search lock performs the same function as SEARCH with
the addition that an entry for the accessed area is made on the
lock-list when ~ successful search occurs.

The specification list and packet generated are identical to
SEARCH except that the executive entry instruction is generated
as EXRN*20116. The function may be specified by:

SEARCHL$ Ll file code, # of words, buffer base, logical address,
search word

REWIND - position file to load point. This function is ignored
if random access was allocated. The programmer must, therefore,
reset the logical address to zero to provide for the even or
random storage allocation. Operator is as follows:

REWIND$ ~ file code

Packet
ENT * B7
EXRN I, FILE CODE , I o 0 2

REWINDI - rewind with interlock performs the same function as
REWIND except that the tape is interlqcked for operator inter­
vention. This function is ignored if random access was allo­
cated. Operator is as follows:

REWINDI$1l file code

Packet
ENT *B7 I, FILE CODE
EXRN 002

•. WRTEOF - write end-of-file transcribes a point recognized as EOF
when encountered by a read. When this operator is used to mark
the end of recorded tape there should be as many EOF marks as
there are standby buffers or block reads in a MBEAD operator.
This function is ignored if random access storage is allocated.
The operator is as follow~:

•

WRTEOF$ A file code

Packet
ENT * B7 I, FILE CODE

EXRN 002

ERASE - the erase function results in erasure of a fixed area
of tape. This function is ignored if random access storage is
allocated. The operator is as follows:

ERASE$ i). file code

Packet
ENT * B7 I , EXRN

READB - r~ad backward function moves tape in the backward
direction and the data enters the buffer' in the order encountered
in movement of the tape.

The specification list and packet generated are identical to READ
except that the executive entr,y is generated as EXRN*10011. This
function is ignored is random access storage is allocated. The
function may be specified by the operator:

READB$ A file code, # of words, buffer base

FH Drum - specific allocation requests for FH432, FR880, etc., may
be made. The functions applicable to a random file are augmented
by the following operators. '

BLOCKR - the block read function is a READ function that is termi­
nated by the end-of-block sentine~ (all onels).

The specification list and packet generated are identical to READ
except that the executive entr,y instruction is generated as
EXRN*10003. The function may be specified by:

BLOCKR$J1 file code, # of words', buffer base, logical address

ELOCKRL - block read lock 'performs the same function as BLOCKR
with the addition that the lock-list mechanism is employed.

The specification list and packet generated. are identical to READ
except tha~ the executive entry instruction is generated as
EXRN*1001]. The function may be specified by:

BLOCKRL$ A file code, # of words, buffer base, logical address

BLOCKS ~ the block search function is a r~dware function which
compares consecutive words on drum against the specified identifier.
Reading is initiated when a match is made to include the search
identifier within the buffer. The function is terminated by the

" end-of-block sentinel (all one's).

The speCification list and packet generated are identical to SEARCH
except that the executive entr,y instruction is generated as
EXRN*10007. The function may be specified by:

BLOCKS$~ file code, # of words, buffer base, logical address,
search word

BLOCKSL - block search lock performs the same function as blocks with
the addition that the lock list as described with READL is employed.

The specification 'list and packet generated are identical to SEkRCH
except that the executive entr,y instruction is generated as EXRN*20117.
The function may be specified by:

BLOCKSL$ A file code J # of words J buffer base, logical address,
search 'Word

FASTruu~D _. specific allocation requests.for ty~es of FASTRAND
storage may be made. The f~~ctions applicable to a random file
are augmented by the following operators:

SEARCHT - the search track function is a hardware function which
compares the first word of consecutive FASTRAND sectors against the
specified identifier. Reading is initiated when a match is made
to include the search identifier within the buffer. The function
is terminated by the end-of-track interrupt. A locate function
can be effected by specifying # word as zero.

The specification list and packet generated are identical to SEARCH
except that the executive entry is generated as EXRN*10004. The
function may be specified by:

SEARCHT$ 6 file code, # of 'Words, buffer base, logical address,
search word

SEARCHTL - search track lock performs the same function as SEARCHT
with the addition that the lock-list mechanism is employed •.

The specification list and packet generated are identical to SEARCH
except that the executive entry is generated as EXRN*20114. The
function may be specified, by:

SEARCHTL$.6file code, $ of 'Words, buffer- base, logical address,
search word

SEARCHP - the search position function is a hardware function which
compares the first word of consecutive FASTRAND sectors against the
specified identifier. Reading is ~nitiated when a match is made to
include the search identifier within the buffer. The function is
terminated by the end-of-position inter~2pt~ , A locate ~lnction can
be effected by specifying # of words as zero.

The specification list and packet generated are identical to SEARCH
except that the executive entry is generated as EXBN*10005. The

. function may be specified by:

SEARCHP$Afile code, # of words, buffer base, logical address,
search word

SEARCHPL - search position lock performs the same function·'as
SEARCHP with the addition that the lock-list mechanism is employed.

The specification list and packet generated are identical to
SEARCH except that the executive entry is generated as EXRN*20115.
The function may be specified by:

SEA.RCHPL$6 file code, # of words, buffer base, logical address,
search word

Multinle Read/Write Servicp. Requests - the. following operators
describe special purpose functions where data is to be transcribed
from or to non-continuous areas of core, random access storage, or
tape. Each function is composed of two operators; one to specify the
operation to be performed and the second supplies the parameters
required to perform the operation.

SREAD - scatter read requests the system to transcribe data
from continuous area of random access storage or a single tape
block into one or more non-continuous core buffers as snecified
by buffer words in LIST operator. ..

SREAD$ A label of LIST opera tor

Packet
ENT * B7 LABEL
EXRN 1 0 ·0 2

GWRITE - Gather write requests the system to transcribe data
from one or more non-continuous core buffers on to one con­
tinuous area of random access storage or a tape block as specified
by the LIST operator.

GWRITE$A label of LIST operator

Packet

1~*B7 LABEL
21 002

MREAD - multiple read requests the system to transfer data from
one or more non-continuous areas of random access storage or
multiple tape blocks into one or more core buffers as described
by the LIST opera tor!!

MREAD$h label of LIST operator

Packet

1~*B7 LABEL
1 0 0 2

List Operators

I/O requests may be generated with remote parameter packets in lieu
of the in-line packet. In this case the specification list is
generated by the LIST operator. When this operator is used the I/O
request specifies the label of the LIST operator. Three LIST oper­
ators are provided.·

LIST$

The·LIST$ oper~tor may be used in the conjunction with the following
Ilo operators: READ $, WRITE$, READL$, WRITER$, BLOCKR$, BLOCKRL$,
SEARCH $, SEAJ:{;HL$, BLOCKS$, BLOCKS$, BLOCKS1$, SEARCHT$, SEARCHTI,$,
SEARCHP$, and SEARCHPL$. The LIST$ operator is as follows:

LABEL -? LIS T$ A file code, # 0 f words, buff er base, logical .
address, search I.D.

The packet generated is as follows:

LABiL ; FILE CODE I # OF WORDS
I BUFFER BASE

LOGICAL ADDRESS
SEARCH IDENTIFIER

Note: If Search I.D. is present, logical
address must be present.

Associa ted with the above LIST$ o~ra t<?r, a Read request would
appear as follows:

READ$.A LABEL

The generated call would then be:

1~*B7 o
LABEL I

LISTA$

The LISTA$operator is used in conjunction with the following
Ilo operators: SREAD$, GWRITE$, and ~1tEAD$ on unit device;:; (i.e.
magnetic tape and card reader). The LISTA$ operator is shown
below.

LABEL ~ LISTA$.1 file code, # of buffers, logical address,
words/base, # words/base, etc.

of buffers - the number of buffers described as /I words/base in
this operator.

Logical address - must be present {zero for magnetic tape and card
operation.

of words/base - describe each core buffer relative to programs
lower lock setting. The number of' buffers is not limited.

The packet generated is:

LISTB$

FILE CODE # OF BUFFERS
LOGICAL ADDRESS

OF WORDS

The LISTB$ operator is used only when executing the MREAD$ operator
on random access storage. The LISTB$ operator is shown belov.

LABEL -4 LISTB$tt. file code, # of buffers, # .words/base/logical
address, # 'Words/base/1ocigal address, etc.

fIle parameter packet generated is as follows:

FILE CODE # OF BUFFERS

WORDS

BUFFER BASE

LOGICAL ADDRESS

WORDS

I BUFFER BASE

LOGICAL ADDRESS

3,.5.3 . Status Codes

The status of each input/output operation is indicated, upon
completion, in the. A-register when control is returned to the
worker program. Supplementary information may also be contained
in the "All and UQII register. Upon successful completion, the
HAil register is set positive on normal operations and may contain
the logical address of a find when. a search o~ random access'
storage .was s~ecified. The Q register contains # of words .
transferred.

All abnormal status conditions are signaled by 229th of "A".
register set to (1) with a six bi~ in the lower.of·indicating type
of condition. Frame count errors on magnetic tape will be in­
dicated by 229 of the A register = 0 and 2°_25 equal to the
magni tude of the frame count error. .

I~appropriate function (01) - The function code is not
applicable to the file (e.g •. READ on a printer file 'or
SEARCHP on a tape file).

Incorrect Parameter (02) -, Buffer outside program lock limits,
or illegal function code'.

•. Unrecoverable Error (03) - The requested 'function cannot be
completed. Recovery procedures have been attempted and have
proved unsuccessful. Parity errors,sequence errors, etc. fall
in this category.

End-of-file (04) - An end-or-file mark b:as b~en detected on
magnetic tape or the end of allocated area has been reached on
a random file read.

End-of-tape (05) - A ~te operation has been successfully
completed beyond the tape limit mark, or load point has been
encountered during a READB operation.

Unsuccessful Search (06) - The search identifier could not
be located within the specified area of the file.

Illegal character (07) - An illegal combination of punches
(any combination of holes in rows 1, 2, 3~ 4, 5, 6. 7 Of 9)

.. has been detected in a card column' \transLate mode only •
The illegal character will appear as, ~ 00 code in the buffe.r.

No assignment (10) - No assignment mode for the referenced
file code.

Inter~ock (11) - Operator has indicated that an interlock
condition cannot be corrected.

·4.0 Core Allocation

Descriptions of available core storage are held in chains utilizing free
storage described to maintin its links. Normally the only requestors eligible
to reference core chains are Omega andRT/comm control. .

Three classes of chains are maintained by the system. Chain I holds free­
storage, all non-committed core, add is used for program allocation, forming
of other chains and to accomodate dedicated chain overflow. The second class
are chain numbers two through five and are reserved for exec usagee Chain
two contains unused storage modules, chain three activity addendums and chains
3-5 are unassigned.

The third group of chains are'declar~d by and dedicated to the RT/ comm control
program; used to allocate core storage for worker programs, buffers or data·
pass areas. Normally chain declaration is made during the initialization of
the RT/corom control program committing an opt~mum area to the function. The
system, upon dedication, will allocate a continuous area of core to the request.
Expansion of a particular chain will be performed dynamicly from free storage
by the system upon senseing or thisatisfied request. All expansions will be
returned to the general poolupon their release by the user. During peak periods
of processing th~ RT/comm program may establish an additional chain at the
expense of lower priori ij"-programs to accomod~ te overflow.'

Chain declaration - each chain declared by the user must'be assigned a number
greater than 5 usedto perform all references. The user has the option of
declaring the committed area into twotypes of chain regulated mainly by
intended usage. The first is a fixed' module chain where each link is a given
size; providing faster request/release mechanism as well as one less parameter
at usage time. The second type provides for variable requests a parameter
supplied at request time; giving the us~more flexibility and promot~ng
less wastag~. .

All allocations, request~s or releases must be made in multibles of 2 words'

FCHAIN$ va, V1, V2

where VO - chain # assigned 5 - N
V1 - contains # of words declared if variable 'chain or # of

words in each·module if fixed chain.
V2 - # of modules if fixed chain 0 if variable chain.

Packet ENT * B7 VO
··ENT * 0 V1
ENT * A V2
77'3 l. a 2 a 2 I 2.

. . 29th
Upon return of control A register will contain status of request 2 set
indicates core not available.

Chain release - used by RT/comm control to deallocate a previously declared
chain. Caution must be used not to release chain before all expansions have
been returned to the' general storage pool.

4-1

RCHAIW va

where va - # assigned to the chain by FCHAIN~operator

Packet I ENT * B7 I; YO ~
.7 7 3 4 0 .2 a 2 1 _

Memorv reauest - from a previously established chain,a given number of words
or a module in the fixed chain case.

MEMADD$ va, va.

where va - # assigned to chain by FCHAIN operator
VI - number of words requested when a variable chain is being

referenced.

packet ENT * B7 va
El'-J"'T * Q V1
7 7 3 L a IL 0 a 0 1

Control is returned following packet with address of requested core in the
uAn register relative to lower lock settin~ of requestor. If core not available
in the specified chain or free storage,229 hof the "A" register will be set.
n'QIl register contains # of "Words or ~oduales remaining in the chain.

Kemory release - requestes the release of described core storage to the indicated
chain.

MEMREL$ va, VI, V2

where va - # assigned to chain
V1 - base address of core relative to lower lock of submitter
V2 - 'number of words being released applicable only to variable chains

Packet ENT * B7 va
ENT * A V1
ENT * Q V2

. 7 7 3 4 0\ 4 0 0 a 2

Core Chains - are linked from the task addendum of the, user to accomodate
multible RT/comm programs. For each declared chain the following de~cription
is formed to control usage.

Word 0
1
2
3
4
5

f Chain # (Type of chain ~ Pointer from addendum
Link to next descriptor

Current #oflinks ISize of link
Base of core assi~nment
End of core assignment
Chain address

4-2

Word 0 - contains chain number assigned qy FCHAIN operator and type ot
chain 0 - indicates variable, 1 - indicates fixed.

Word 1 - link to next chain descriptor 0-0 indicates end.

Word 2 - contains number of modules free ~hen chain is fixed. This value
is returned to the user (in Q register) upon each request,
thereby, providing a mechanism tosense depletion for time
critical usage. Size ot link is used for fixed chains when
retriving a module from free storage to accomodate overflow.
If chain is variable, 'Word 2 contains number of words currently
available and is returned inQ register tor each request.

Word 3-4 describes the core area committed to the chain.

Word 5 - address or first link in chain.'

Chain links - each link in a chain describes its area and points the next link.

Word 10 ~ ___ --+I_A~dd;;::;;r=-e~s~s:.....;;;:;o.;:;,f_n:.:.e:c;.;x __ t;;;;....Glr.=ilo:ln~'.r; ----II :~
_ _ # of words .

Word 0 - is a 17 bit address relative to base of machine of next link in
chain.

Word 1 - applicable to variable chains only and contains H of words in link.

4-~

5.0 Task Control Functions

Entr,r: Miscellaneous functions are entered from a table at label
AMISC. A jump is performed using the lower four bits of
the EXEC call to determine the requested function. Illegal
parameters are referred to a common error routine.
Miscellaneous functions currently available for use as
follows:

PUSH

A storage module has been formed and linked to current
activity by EXRN routine~ The PUSH mnemonic requests
current activity to be linked to chain specified byV¢
by priority in ascending order. No control is returned
until a complementary POP is given. This function is
normally used by I/O control, content supervisor, etc. to
queue and inactivate activity until requested service can
be performed.

PUSH$AV¢

Packet I V¢

~fuere V¢ is the base cora address ~n absolute of linking
cell of chain on which current activity is to be linked.

QREF

Queue activity reference - mechanism for linking requests
to activities previously defined by REGQ. A storage module
is formed by this request and the parameters in registers
A, Q, B1-B6 at the time of reference are stored in the SMOn
for activation at execution. If this is the first QREF
associated with the registered activity the activity is'
placed on the queue. If not the first it is linked to
activity addendum for later execution of the registered
activity. In any case, control is returned to the requestor.

QREF$av¢

Packet

. Where V¢ is the binary identity of'the activity referenced
by the QREF$. Used to perform a search on available activities
within the task and identify the necessary activity addendum.
Binary identity that is specified must not be ¢ (V¢ # ¢).

5-1

RETURN

This entry is used to relinquish control to the executive
at the conclusion of an asynchronous activity or task. The
routine checks if referenced activity is task-permanent
(i.e. it has binary identity). If it is task permanent, the
SMOD just completed is deallocated ~~d removed from chain
associated wi~h' this activity., If there are any other
SMODs linked to this activity they are given control. This
activity addendum is not deallocated until conclusion of
the task.

If this is not a task-permanent activity, it is checked
to see if it is a fork from some other activity. If so,
the activity just completed is deallocated and control given
to forking activity providing a join has been given and that
activity has no other outstanding forks.

If this is not fork from another activity, it is possible
that the requestor may have no outstanding business which
would cause reactivation \with the exception of queued
activity registration), then the associated task is checked.
If there exist no outstanding processable activities, forks,
incomplete hardware level I/O requests or latent time of
day restart requests, the task is terminated. Subsequent to
task termination, facilities are deallocated and the next
job task is sequenced or the job is terminated if no tasks
remain. Otherwise, control is switched to some other task/
activity active in the multi-program environment. No parameters
are required for RETURN operator.

RETURN$

Packet " EXRN I ¢ ¢ ¢¢ 5 I

FORMATOR

This is entered by a jump to ASCAN1. This routine receives
command words through the storage module from the requestor
and formats a channel executor module which is then queued
to the appropriate CCB for subsequen~ execution of the
input-output commands.

[EXRN ¢¢¢¢61

5-2

-DELAY

The Delay function is a way that task and task fragments·
can have themselves reactivated after a specified milli­
second delay. The millisecond delay counter may be from
1 millisecond to a maximu.'n dealy of 24 hours. If the
millisecond delay counter is over 5 minutes the time
delay will be established as a time to activate and will
be placed on the d~y clock timer routine and activation
will be done on the gross timer of the day clock with
a plus or minus variation of 6 seconds_ If the delay is
under 5 minutes it will be established on the real time
clock queue with a plus or minus variation of 200 micro­
seconds. The millisecond delay counter will be held in
the Q register at the time of the Exec return.

DELAY$

ENT-Q.V¢
EXRN-00007

where V¢ is the millisecond delay counter and may
be in the form of W(X).

It should be noted that the delaying routine .will only
be placed on the C.P. upon completion of the delay time.
Subsequent control could be further delayed to process
higher priority ·activities.

Control will be returned to the instruction immediately
following the EXEC RETURN with all registers restored with
the exception of Q. Q will contain the difference between
the actual time the routine wanted control and the time
the switch to the routine was performed.

5-3

5.1 Fragmentation Requests

Definition: A fragmentation request (activity registration, fork
or join) establishes an independently executable
program. The request implicitly requires allocation
of additional core to serve as the addendum necessary
to execute the requested fragmento Once established~
an activity or fork may make the same service requests
as a task and 'will share with the task operational
identity, primary cooperative streams, facility
allocation, logging and accounting.

Standard Activity Registration defines are-entrant
activity to be registered with C.P. control for
execution. The values of A, Q, B1-B7 are set to that
of the requestor with B7 containing the address of
the packet. Parameters specify the location, relative
priority, data area, and relative index to be associated
with the activity. After queueing control is returned
to registering activity. The activity is initiated
with'all operational registers set to that of requestor
in 15-bit mode.

REG$AVO, Vi, V2, V3, V4, V5, V6

.J Packet EBJP*B1 I i+;2 J 29 ... t: ... J
I:; 1Lj. v

V
29 15 14 0
V V2

EXRN ¢¢¢ 1 ¢

v¢ Address of activity in memory; this is implicit
starting point of activity. If independently
compiled program (V4=¢) this address must be a
multiple of 1¢¢.

V1 - 15-bit address of data area in core.

V2 - 15-bit length of data area.

V3 - Data area mode
¢-indicates read/write lockin will be set to the
data area defined by V1 and V2 and re~d will be
permitted from any area.
1-indicates use of read/write lack of requestor.
The only means of reaching the data area is through
use of registers B4-B7.

V4 - Activity mode indicator; zero specifies the activity
is an entity and contains all referenced data exclusive
of the declared data area and was independently
compiled so that the first instruction is relative
to address' zero. Non-zero mode indicates that the

activity is integral to the requesto and RIR is
not adjusted address of activity.

V5 - relative response priority (¢-17) may be declared to
attain a differentiation with respect to other
activities currently operated within the task~ When
priority is not specified, the priority of the
requestor is a$sumed.

'V6 = ¢ = use priority of previous, none specified
1 - priority has been specified

Queue Processing Activity - a means of utilizing a task
permanent activity to respond to a series of events.
Transactions are accepted and queued by the system and the
acti vi ty is 'executed whenever a queue entry exists. The
activity signals completion for a given transaction by
return of control via return operator~ Omega re-executes
the activity if 'any other SMODs remain linked, to queued
activity for execution.

After registration via a REGQ operator the activity becomes
task permanent and can be referenced by a QREF any time
before termination of the task. Use of this function allows
the scheduling of events at occurrence. It ~s appropriate
where no advantage can be gained from registration of
concurrent executions by re-entrant code. Two operators
are associated with use of this function, REGQ and QREF.
The first defines the activity and the second supplies the
data to the registers to be queued.

REGQ$ 6 V¢, V1, V2, V3, V 4

Packet EBJP*B3 $+3 29 15 14 0
V1 V0

2iI2~12~ j 26 15 14 0
V3 V2

EXRN 000 1 2
v¢ ..;. 15-bit addre'ss and starting'point of activity.

V1 - 15-bit length of activity, zero,implies read/write
lock will remain set to that of requesting activity
and the activity is considered an integral part of the
compiler requesting activity~ Non-zero length defines
the ,area to be protected by memory lock-in and RIR
is set to V¢.

V2 - Binary Identity of routine for further, reference via'
the QREF operator. V¢ = ¢'

V3 ' - Same as V5 for standard activity_ . (priority)

V4 ~ Same as V6 for standard activity_

5-5

Fork - represents a method 'of activity registration in
which the executive will correlate all forks from a given level
so that completion of the synchronous activities from any
level can be tested through the use of the JOIN function.
All FORK activities are considered integral to the requestor'
and atain the same RIR and lock-in'values of the requestor.
At time of activation, forked activity will contain operational
registers of requestor.

FORK$AV¢

Packet' 29 15 14 0
ENT*B7 V0
EXRN 000 1 3

V¢ - 15-bit starting address of activity.

The FORK operator is more applicable to general batch
processing programs than real time transaction processing
since it provides a higher level interface and synchronization
is on a gross basis. The only parameter required is a start
address. An activity established by'a fork may, in turn,
establish other forks which provide additional levels of
controlling parallel paths.

A JOIN entry requests a wait until all asynchronous
activities previously established by FORK have been
completed as indicated by relinquish operator RETURN.
The JOIN mnemonic sets a join bit in the activity addendum
that remains set until the last forked activity from
tha t acti vi ty has given the RETURN. Then the fork Gount.
goes to zero and control is returned to the original
activity. A JOIN given in the task itself will wait on
all forks outstanding within the task since the task is
the base of all forking. A join from an activity will
wait not only on those forks directly established by the.
activi ty, but also those forks s'et up by forks that are
themselves direct forks from the requestor.. No parameters
are required for' this operator. '

JOIN$

Packet I EXRN o 0 0 1 41

5-6

5.2 Restricted Task Control Functions

The restricted task control functions are those used by the
OMEGA system and are not available to the general user.

Register Control Thread

This function allows any part of the OMEGA system to establish
a path starting at any of the primary OY~GA functions that
acts in the same manner as a normal OMEGA call to the primary
routine. Parameters needed are a 15 bit value to be stored
in IFR lower to act as the OMEGA call and a JOB nUmber of 'the
task addendum to which the formed activity addendum· must be
linked. IFR value will be in register B1 and JOB numberB2.

EXEC RETURN format is

EXRN·00020

The task control routine upon receipt of this function will
form an activity addendum and a storage ~odule with the value
in B1 stored in IFR lower. This storage module will be the
one the primary routine will pr9cess. One additional storage
module will.be formed to activate control at the primary O~~GA
level. Next the task addendum whose JOB number matches with
the value of B2 will be found and the activity addendum will be
linked to it. Then the activity will be queued on the C.P. queue
and control returned to the requestor.
Abort Control Thread

This function allows any part of the OMEGA system to have
removed from control the activity addendum it is pr'esently
running under. The activity addendum and all storage modules'
are placed back in the free core chain. No return control is
allowed and no parameters are needed.

EXEC'RETURN format is

'EXRN· 00021

Special QREF

The special QREF is the same mechanism as the normal QREF
with the exception that JOB number is also supplied. The
correct task addendum will be found before the normal QREF
is performed. Register B7 contains an address of a one word
packet of information.

Packet format is

29
JOB # 15 \ 14 ~"'.LI',\TARY "'~~~Trn 0 t

I~' .L Ul!.l\H • I

ENT.B7·Packet Address
EXRN·,OO02~

6.0 Secondary Exec Functions

Secondary ~xec Elements are those required to load, activate,
and terminate tasks introd'll:ced into the system via the I/O,
cooperative mechanism. Due to low usage of these functions in
relation to the total system, the majority of routines are
based on random access storage and loaded into core when the
need arises.

6.1 Content Supervisor

The content supervisor is a resident exec routine responsible
for loading and/or activation of drum based secondary EXEC
functions used in performing service requests. Lib # of
EXEC return instruction specifies service routine to activate
and indicates if the service routine is re-entrant, allowing
multiple simultaneous usage of routine, ,or non re-entrant requiring
the content supervisor to control usage of the routine.

Each secondary Exec service routine is limited'to 2,0008 words
in length including segmentation and buffering.' Dependent upon
core storage available and usage of routine,. a copy of the
service routine will be allowed to remain in core after completing
a request and will be utilized to perform subsequent requests.

The following
control of the content supervisor and the service requests which
activate them •

• Content Supervisor, library number 000. The following functions
are processed directl~ by content supervisor, upon activation by
'a Direct Return (DRET1$) from a secondary exec routine or on
exec return in the case of the Purge request.

• Function Cod e Operator

00'B1=O Internal

00 B1=1 Internal

00 B1=2 Internal

01 Internal

02 Internal

Description

Release routine in IFR and return
control to next storage module in
string.

Release routine in IFR and call
routine listed in B2, B4 is set to
original value of storage module
causing activation.

Release routine IFR •. Deallocate
the control thread of the current
activity and release control to
the exec.

Purge the highest order secondary
exec routine in core, but not currently active.

Purge all inactive secondary exec routines
currently in core'.

6.0-1

03 Internal -Load and mOdJ.I-Y to rlmningf,orm the indicated
element into the assigned_core. B7 equals-the

-absolute value of the following packet.

FC j LENGTH
Jl SEG I I CORE BASE

lF1LE- INCREMENT

Fe ,- The file within which the element :may be fQUI!d~

LENGTH - The length of the elements control portion,
or the maximum core us~d.

CORE BASE - The absolute address at which the element
is tq be loaded.

SEQ - The number of' -se~ments contained ' within
the eleme.nt. '(2~?,... 224), , '

FILE INC. The increment relative to the base of
the file containing the elemen~ at which
the im truc'tion of the control part start.

Functions 01, 02; 03 are requested by an EXF~*2000X. Control is returned
immediately following the EXRN instruction •

•

6.0-1a

Library
Number

001 '

002

003'

,004

005

006

007

010

011

012

013

014

015

Service Functions 1

Service Functions 2

I/O Error Recovery

Console Control

Facility and storage
assignmez:tt

, Service Functions 3

Cooperative Service
Routine

Pre-Selection

Selection

Termination

Remote facility

Library Service
Routine

Checkpoint and
Restart

Description

~e~entrant routine ,responsible for
high priority service requests.

Re-entrant routine responsible ,for,
processing high priority service
requests~

Re-entrant' routine responsible for
'input/output error recover' for tape
hardware handlers.'

Non re-entrant routine used to
analyze and switch console operator
messages.

Non re-entrant routine to proc'ess
Assign and Release requests for
mass storage and peripheral devices.

Non re-entrant routine to process
search or form type requests.

Non re-entrant rou~~ne to process
service requests in the control
of Unit record routines and I/O
Cooperative Control.

Non re-entrant routine used to
summarize scheduling data for
task/activity.

Non re-entrant routine used to
select and initiate task/activity.

Non re-entrant routine to deallocate
and close task/activity routines
and/or control threads.

Non re-entrant routine responsible
for the assignment of remote
communication devices and the load
and activation of required remotes.

Non re-entrant routine responsible
for transferring elements produced
by generator~, qompilers, assemblers,
and loaders to the job library.

Un-defined

6.0-2

Libr~ry
Name

016

: ' ,017

·020

021"

022

023

, Compaction

PumP

T lu" R""ro-" 'Reco""Te-"""1' ") ,. -.... Y.IoJ'" .

I/O Error Recovery 3

Phase 1 Rexecutor

Phase 2 Rexeou~or

Description

Responsi ble for compaction·
and purge of core and/or
drum storage.

Mass storage

Uni t record peripher,aIs

,Load REX oriented batch
, '

pr,ograms~

Ex~cute REX oriented batoh
programs., .

6.1.1 Method of Operation

Content supervisor is activated upon an exec or worker
task/activity executing an EXEQ return instruction with two (2)
exec call in bits positions 12-14. U~on activation B4 contains
the address of storage module cuasing activation and performs
the following functions.

Unstring Library number, bit position 5-11, and function code,
bit positions O~4, contained in IFR ~f storage module.
Library number and, function code are entered into B registers

,1 and 2 respectively. ,

Validates library number and determi~es' if service request '
is to be processed by core supervisor or drum based service
routine,.

Content supervisor has two, type of requests which are directed
to,it for processing: one to purge all 'routines not currently
active, the other is' the mechanism for returning 'control to
the content supervisor by a secondary exec function and is
performed, by the following packet:

, ENT*Q*
1

2 I Switch function code

i ~h~*~* ~ 1? JI: of routine'tQ switch to , ,-
d II"

010 a a a

When this packet is ~tilized"no storage module ,is allocated
and control is returned to ,content supervisor. Upon receiving
control C.S. will release secondary exec routine listed in IFR
of previous storage, module' and then analyze B1 for' subsequent'
action. '

B1 = 0) Control will be returned to previous storage module

B1 = 1)Use B2 as the function'code and Lib # of ariother
secondary exec activity to schedule ahd run under
previous storage module. B2 w~ll be plugged into, IFR.

B1 = 2)Release the routine in IFR of current storage
module, deallocate the control thread of the current
activity and release control to the ~xec.

Calls for drum based secondary exec functions to satisfy service
requests are handled as follows: (See accompanying block
chart and table).

The called routine is located in the table and disposed by
either queueing request for later activation or activating
the called for routine. The content supervisor, upon activation
of secondary exec functions,' sets RIR to address of instructions,
IFRI to 17 bit B registers PLR to all of core and operational
registers as follows.

6.0-4

B1 Libra~i rrwmber of called.service routine

B2 Function Code

B3 ------

B4 Address of storage module causing activation
biased by lower lock limit

B5 The address of the core facility and storage summary
biased by lower lock limit

B6 ------
'B7 ------
KSSRIR-Increment within the storage module addressed

by B4, contains the RIR of the secondary exec .
routine given control,

The content supervisor allocates core for service routines
in modules of 1008 words up to a maximum size of 2,0008- Core
storage is obtained from the general pool unless exhausUrl
in which case one of the inactive service routines will be
purged to obtain the core. Normally 'once a service routine
is loaded it will remain in core until the storage is r,equired.
Inactive routines of a higher library number purged first.

Secondary exec service ro~tines are general non re=entrant
code having full capabilities of segmentation and making
additional service requests, I/O access as a normal activity_
Their only constraints are as follows: size is limited to
2,0008; starting address is implicitly defined as their
first location; they are self-initializing and have a special
termination to the core supervisor. Each service request will'
be processed under task/activity performing request.

Content supervisor maintains the following list called "ETAB1" of
routines operating under its control. Each entry in the list
is ~rdered by Lib # and contains the following values.

Word 0
1
2
3
4

I Current # of users ILib # of routine
ZE lLen~th of routine

IRIR of routine
'Drum Increment to routine

lQueue Cell

Word 0 contains library number of routine; and current number of
users, zero indicates routine is, eligible for purge if
core required.

Word 1ZE is the file code of systems library used in drum call;
length is the maximum si ze of routine,.

Word 2 contains address of routine, relative to base of machine and
_ will be used as RIR setting during switch cycle and indicator

, 6.0-5

that routine is in core; zero indicates routine not
in core.

Word 3·Gontains drum increment of routine in systems library.

Word 4 Contains Queue cell to chain calls for routines currently
active.

6.0-6 .

6.1.2 Control Transfer Functions Used In Seconda~-y EXEC

1. Direct Return (DRET1$)

,~ _______ ~_~ __ Q*_2 __________ ~
ENT*A*12

EXRN *>6
Where used - All secondary EXEC routines

When used - When all responsibilities of routine have
been completed.

FUnction - Will 'cause IFR and registers in LCR module to
change and a transfer~of control to the content
supervisor via LCR. No storage module deallo­
cation 'occurs.

Additional
Parameters 1A:B1 = ¢ Release routine in IFR of current

storage module and return control
to next storage module in string.

l.B:B1 = 1 Release routine in IFR call rout;ine
I

Whose library number and function
code appear in B2.

1C:B1 = 2 Release routine in IFR of current
storage module, deallocate the
control thread of the current
activity and release control to
EXEC.

2. Register Control Thread

ENT*B1 *EXEC CALL

EXRN*REG CT

~nere used - (Console handler, request for contsole control
routine), (I/O cooperative, request for CSR).
(RE~lm{, request for termination).

When used - vfuen it is necessary to establish a control thread
unoer another task addendum.

Function . - Set up an activity addendum, LCR, and a storage
module under the specified task,addendum. B1 is
,placed in: I.FR orLCR and storage module. Transfer
coptrol ~ routine in 'LOR, IFR,location.

6.0-7 '

3~ Switch Control Th~ead

ENT*Q* ACT. ADDM. ADDR.

EXRN*,0 I
Where used - (CSR, from EXEC worker addendum before switch to

pre-selection), (Pre~selection, worker to EXEC
before switch to sele'ction), (Selection, EXEC to
worker before switch to initiation), (Termination,
worker to EXEC before switch to selection).

When used - When it is necessar,y to switch from one addendum
to another addendum.

Function - Remove the control thread for the current activity
from its task addendum and link it to the indiea ted
addendum.

4. Abort Control Thread

EXRN*,0 ¢¢21

Where used - In Content Supervisor upon request of a secondar,y
EXEC'routine entry via DRET$ with B1 = 2.
'(Select:j. ve when no task can be selected.)

When used - When no further processing is possible and no
. point for return of control exists.

Function - Remove and discard the control thread from the
current activity the release control to the dis­
pather.

,5. Direct Switch 1 (DSW1$)
ENT*Q* ADDR RIR

ENT*A*00010

EXBN*OOOOO

vfnere used - Content Supervisor

When used - 1·f.r..en,·a secondary EXEC routine' is given control' after
its availability is determined.

Function '- Reset RIR and, drum increment and transfer to
addr~ss satisfied.

6.0-8

9~ Direct Return 2 (DRET2$)

ENT*A*13

EXRN*OOOOO

Where used - Content Supervisor

When used - Upon a DRET1$- from a secondary EXEC routine'
implying a return or control to the requestor.

Function -, Deallocate last storage module on current
activity and return control to it.

6.0-9

6.1.3 Secondary Exec Chain List

Within the Secondary Exec it is often necessary to utilize the
services of other Secondary Exec routines. If this is done via
a EXRN*20XXX, the requesting routine will be locked out if it is
not reentrant. Even if it is reentrant it will be required to
re~ain in core at the same location until the requested service
has been completed. When it is considered that the second level
request may 'in turn cause requests to other routines it may result
in a pyr~~id of routines necessary in core a~ one time to process'
a single request.

~alleviate this problem a chaining procedure is herein defined
which allows a secondary exec routine to obtain the services of
other secondary exec routines during which time it is released
and may be used for another req~est or purged if the core is
required.

It is necessary that any routine initiating a chain request be
coded such that it may be purged and unloaded at a different
location between the time that it makes a chained request and when
it gets control returned from that request.

It is the responsibility of the routine initiating a chained
request to obtain free core for the list and to set the list
initially.

The content supervisor will update the list upon the entrance
to and exit from the routines involved in the request.

When the initiating routine gets control back from the request
the chain list will contain a list of all routines involved in
the processing of the request a~d the status returned by each,
along with a combined status which consists of the logical
sum of all the returned status's.

6.0-10

eThe requirements for the initiation of a chained request within
the Secondary Exec are listed below.

1) Obtain free core sufficient to contain the list and all
entries possible.

2) . Set up the first 6 words of the list as shown in figure 1.

3) Set the sign bit in the IFR location of the current storage
module and save the address of the list in KS~L of the .
storage module.

·The requirement of the initiator upon the completion of the request
are as follows.

1) Release free core used by the list.

·The Content Supervisor will check for a chained request upon entrance
from a Secondary Exec routine. If it is a chained request one of the
following procedures determined by the type of exit from the Secondary
Exec routine will be taken.

1) B1=0 a) Set the logical status and the individual status
in the chain list, for the process just completed.

2) B1=1

3) B1=2

b) Clear the sign bit in the IFR location of the
SMOD

c) Give control to the initiator ·using the return
library number and function code (IFR) in the
chain li.st.

a)
.

Perform status set as when B1=O ..

b) Store call for routine 'in B2 in the chain list.

c) • Process request for routine defined by B2 •

a) Set abort status in logical status word of. the
chain list.

b) Process as if B1=O

6.0-11

-The following is a coded routine wh~ch will form a chain list and
do the initialization. The functions performed by this routine would'
be requireq for the initiation of a chained request.

FCLST

FCLST

FCLST4

Form Chain List
Input - B4 = address of current SMOD

B1 = size of list required
B3 = return IFR setting desired.

Output- B7 = absolute base address of list
KSCL = address contained in B7
IFR = sign.bit will be set in the lower.

. Entrance

Exit

EBJP· B6·FCLIST

JP-B6

Registers Used .Other Than Input/Output = A, Q

CL*B7·
ENT*Q*B1
EXRN*MEMADD$
JP*FCLST4*ANEG
ENT*B7*A
STR*B1*U(B7)
PUT*6*u (B7)
ENT*A*LX(KSIFR+B4)ANEG
SEL*SET*40000
STR*A*L(KSIFR+B4)APOS
ENT*Q*W(KSCL+B4)
CL~~Q

STR*Q*W (B7+4)
C"''D~_'DN~''T.T(VC'("'IT I n I \
U..L..J..1.~ J.J (~ Vi I.l\.uV.L..ITJJ4J

STR*B3*U(B7+5)
CL*L(B7+5)
JP*B6
EXRN* PURGEA.$
JP*FCLST

6.0-12

~ Free core chain
~ # words to request
~ Request core
~ Didn't cut core
~ Address of list
~ List length
~ # words used
~ Currently in chained request
~ No set sign bit
~ Restore, nested request
~Pick up nested chain addr
~ Clear nest link
-+ Set nest link
~ Set chain addr.
-+ Return IFR
-+ Clear logical sum status
-+ Exit
-+ Purge unused routines
-+ Try again

SECONDARY EXEC CHAIN LIST

a
1
2
3
4

!
I

LIST LENGTH 1# WORDS USED
ORIGINATOR

STORAGE
A..~EA

I ADDR PREVIOUS LIST
5 f F.ETIJRr~ IFR I Cm.'mINED STATUS I

Word ¢

6
7

N

1-3

4

6

7

RE UEST IFR STATUS
RE liEST IFR STATUS

U - The length of the list as determined by the
originator.

L - The number of words used ~n the list at the
present time. This servies as in increment
to the first free word in the list.

Storage area for use by the original requestor.

The address of a previous list in c~se the current
list is a chain list originating within a chained
request. Word 4 of the initial list will be ¢.
u - The IFR setting necessary to return control to

the originator. "
L = The combined "status of all requests within

the chain.

u- The IFR for the initial request made by the
originator.

L - The status of the request.

U -the IFR of a request made by the routine
requested by the originato~ or some other level

. routine.

6.0-13

STORAGE .MODULE FOR CHAINED SECONDARY EXEC REQTJEST

o
1
2
3
4
5.
6
7

10
11
12
13
14
15
16
17

i
j

I

! PU SH POP LINK
!ACT. ADDM. ADDR.

t"1 ! IFR KSIFR
RIR

LOCK LIMITS
P B1

B2
B3
B4
B5
B6
B7

A
Q

SECONDARY EXEC ROUTINE RIR
ADDR CHAl N CELL KSCL

Figure 2

The routine which initiates a chained request would set the sign
bit in the lower of the IFR (Word 2) in the storage module. This
would signal the content supervisor to update the chain list upon
exit from a servicing routine.

If the sign bit in the lo~er of Word 2 is set, word 17 (KSCL) is
assigned to be the chain link. Therefore, if the request is
chained the KSCL location should not be destroyed in processing.

6.0-14

. .
6.2 Service Functions' (1) . Library number 001 is a re-entrant service

routine responsible for·the following service requests.

Function
Code

01

02

04

. 05~~I

Operator

LOAD$

LOADA$

UST$

CVT$

Description

Load indicated segment

Load and activate indicated segment

Unstring specified statement

Convert specified numeric

6.2-1

Service Functions (1) Library number 001 is a re~entrant service routine
responsible for the following service requests.

·LOAD A SEGMENT (Function code 01)

This request will load a segment into core from random access storage.
This is an unconditional load directive, i.e., the segment will be loaded
regardless of whether it is still resident in core' from a previous load
operation or not. The LOAD~? operator is the direct method for having a'
program loaded into core. The indirect method is to jump or return jump
to some externally defL~ed label within the segment ... If the segment is
still resident in core, ~t will not be reloaded; thus a segment should be
self-initializing if the indirect method of loading is used. If the segment·
is not in core, it will be loaded from ~domaccess storage and the jump or
ret~~ jump performed.

This request will load the segment that contains the externally d~fined label
reference found in the lOvlBr '15 ·0::' ts of B7.·

Operator:. L,OAD$ALABEL

Packet: ENT*B7

77540

\ LABEL
j

\
' . 20041

°LOAD A SEGMENT AND ACTIVATE (Function. code 02)

Tr..is request is similar to the LOADS operator. Tne segment containing the
externally defined label found in the lower 15 bits of B7 will be loaded into
core from random access storage. This is a unconditional load: the segment
will be loaded regardless of whether the segment is resident in cor& from a
previous load or not. After'loading, control will be passed to the referenced
label, i.e., a JP'~L1lBEf., instruction will be . performed.

Operator: LOADAOALABEL

Packet: ENT*B7

77540 20042

·FIELDATA TO BINARY CONVEPSION (Function code 04)

This request will convert a number from fieldata to binary. The fieldata
number can either be octal or decimal. It must be positive. The largest
octal number that can ~e handled is 7777777777; the largest possible decimal
n.umber is 536370911 (2 9 - 1). The fieldata number must be an integer. The
resultant binary ~umber will be positive and single precision (contained in
one word). T.ne. fielda ta number CcS.n be contained in one or more 'Words of
core. There can be leading and trailing i'ielda ta spaces (05) or binary
zeroes (00). Wnile only.leading spaces or zeroes 'Will be allowed between

,_ 6.2-2

the left-hand end of the field and the most· sig~~ficant digit, the
conversion routine will ignore anything following the first trailing
fieldata space or binary zero. The core address of the left-hand end
end of the fielda ta number field will be in lower 1.5 bits of B7. The
A register will contain the number of words in the field. The follOwing
convention will be used to determine whether the fieldata number is octal
or. decimal. The first digit of.an oc~ field will be a fieldata 0 (60);
the first digit of a decimal field will be non-zero (61-71). If the
conversion is successful, the binary number·will be placed in the Q
.register and the A register set to O. If an error is detected, the
Q re'gister' will be set to 0 and a flag bit set in the A register.

A REG ISTE.:.'q, FLAG

8 (23 bit)'

16 (24 bit)

Operator: CVT$A.VO, V1

MEANING

Non-octal character (character other than 60-67)
foU:1d. :.:-... oc·~o.l field.

Octal number greater than 7777777777

Non-decimal character (character other than
60-71) found in decimal. field •.

Decimal number greater than 536870911

No number found in field (field consists
entirely of iieldata spaces or binar,y zeroes).

Number of words in field = O.

where VO =: the a.ddress of left-hand and of··fieldata field; and

V1 = size of fieldata field

Packet:
,

EN~~B7 I LABEL

ENT*A SIZE

77540 20044

6.2-3

Function Code 03 - Unstring the control information specified and for.m
an unstrung list of the fields and the controls
separating the fields.

Caller: Internal call from operating program via UST operator.

Parameters: B4 = Address of storage module causing activation
oiased by lower lock limit.

Addendum:

Function:

Vo = Base address of the c~ntrol information relative
to lower lock of the requestor.

V 1 = Base address of the deposit area to "u.;: used for
the U:~St7~:~ i~~or.mation relative to lower lock
of the requestor.

V2 = Length of the deposit area. If control information
specified is a continuation of previous information,
the sign bit should- be set.

V3 = Length of the pick up area to signal the end of the
information when no terminating control is present.
If V'J. = ¢ data is unstrung until a terminatin~

~ - - -
control is found. If V3 is negative (the sign bit
set), interim spaces are to;~, be left in.

Packet: va
j=.:.;=--::;":""'_' V 1

j-V2

I V3
00003

Worker task/activity addendum

• Unstring the control information in the following format:

.FI:ELD 1 DESe
FIELD ;2 DESe
FIELD 3 DESe·
FIELD 4 DEse

~rTIONS IN lv1ASTER BIT FORM
; 9TC2if-3# WORDS~514IND TO FI:ELDO

I
I
T I ,

Te = ter.minating
character for
field.

/I v.ords = number oj
words in field.

ETC. FIELD 1

I
FTELD 2

FIELD 3

FIELD .4

ETC ..

6.2-4

f

I'
I

Ind to field =
index to field
from base of
unstrung area.

Exits: - Return to requestor:

nAn Register = 00000 OOOOO-normal completion
nArt Register = 40000 00000 overflow_' of deposit area
trAil Register = 40000 00001 deposit area. not within lock

lilni ts'.
nAn Register = 40000 00002 invalid option,
IIQU Register = number of ,fields if normal completion

Return. oontrol to content supervisor '.'

6.2-5

6.3 Service Functions (2) Library number 002 is a re~entrant service
routine responsible for the following service requests.,

Function Code 0:2erator'

01 TIMED$

02 TIMEL$'

OJ DATD-1$

04 XOFF$

05 XON$

06 XTEST$,

07 TESTFOF$

10 TESTFUF$

11 TESTFL$

12 ERru.DD$

13 FOFADD$

14 FUFADD~

15 OPADD$

16 TFC$

17 TCORE$

20 SET15$

21 SET17$

Description

Supply edi ted time of day,'

Supply elapsed time 'for task

I Supply ourrent date and t1me

Set logical ,switches orf

Set logical switches on

Supply current logical switch settings

Floating,point overflow test

Floating point underflow test

Test floating point over/under flow

Establish error address

Establish floating point overflow address

Establish floating point underflow address

Establish illegal operation address

Test file code for type of device .

Supply ,core limits of task

Set "B" ;-egisters to 15 bit mode

Set "B" register t? 17 bit mode

6.3-1

Service Functions (2) Library n~~ber 002 ~s a re-entrant routine
responsible for the following' requests'.

• TIME OF DAY (F~ction 'code 01)

This request will return the time of day at the time of the
request. Hour,. minute and second will be supplied. Hour arid minute
will be returned in the A register in the following format,: HH: MM.
The seconds will be returned ,in"the Q'register in the following
format: ¢¢¢SSe Hour, minute, second and the colon (:), will all be
binary zeros. All time will be decimal.

Operator: 'TIMED$

Packet: 177540120101

·ELAPSED TIME (Function code 02)

This request will return the elapsed time for the task in the
Q register., The time'willbe in binary and in units of 200 milli-'
seconds.

Operator: TIMEL$

Packet

·CURRENT DATE AND TIME (Function code 03)

This request will retur~ the year and the day in the A register,
in fielda ta, in the following form~ t: YIDDD, where YY. is,. the year
and DDD is the day (from 001 to 365). The Q register will contain
the time of day in units of 200 milliseconds. The Q register will.
be in binary.

Operator: DATIM$

Packet: 7 7 540 12 0 10 31

-SET LOGICAL SWITCHES OFF (Function code 04)

This request will set the logical switches indicated in'the Q
register to 0 (off). The Q register will contain the names of the
logical switches (A-E), in any order, in fieldata, that are to be
turned off (set to 0). r'

Operator: XOFF$ switches

Packet:

6.3-2

·SET LOGICAL SWITCHES ON (Function cod£) 05)

This request will set the logical switches indicated in the'
Q register to 1 (on),. 'The Q register will contain the names of
the logical switches (from A-E), in any order, in, fieldata, that
are to be turned on '(set to 1) , '

Operator: XON$ switches

Packet:

• S"lJ?PLY C-qR,LffiNT LOGICAL SWIT~ES (Function code 06)

This request will'supply the current logica~swi.tch settings,
in bits 25-29 of, the A, register as follows,: , ' '. ' '

A'Register

29
28
27
26
25

L'ogical Switch ' .

A
B
C
D
E

If the bit for a particular switch is 1, the switch was on;
if it is 0, the switch was off. As an example, if switches B, D
and E are on and switches A and C are off, bits 25-29 of the A
register' will be as follows:, 01011, where bit 29 is the left
hand bit. Bits 0-24 will be clear~d to o.

Operator: XTEST$

Packet:

·FLOATING POINT OVERFLOW TEST (Function code 07)

7his request tests the floating point overflow switch. If
it is off, the A register is set to O. If it is on, the switch
is turned off and t~e A register is set to 1.

Operator: TESTFOF$

Packet: 17 7 540 12 0 1 101

-FLOATING POINT UNDERFLOW (Function code 10)

This request tests the floating point underflow switch. If it is
off, the A register is set to O. If it is on, the switch is turned
off and the A register is set to 1.

6.3-3

Operator: TESTFlJF$

Packet: 1775401201101

·TEST FOR FLOATING POINT ERROR (Function code 11)

. This request essentially combines the tests for floating point
overflow and floating point,underflow. The switches will be tested
in the follOwing order: flbating point overflow; floating point
underflow. If neither the floating point overflow nor underflow
switch is set, thE3 A register 'is set to O. If the floating point
overflow switch is set, the floating point overflow and underflow
'switches are turned off (floating point underflow switch is turned
0:: ,automatically. in the event that one of the two switches was
set from a previous floating point error condition that was not
tested; if the floating point under~low switch was not on, nothing
,is, in effect, done) and the A register is set to 1. If the .
overflow switch is· off and the underflow switch on, the underflow
switch'is turned off and the' A register is set to -1 (7777777776).

Operator; , TESTFL$

Packet: 17 7 540 12 0 1,1 1 I'

.ESTABLISH ERROR ADDRESS (Function code 12)

This request takes the ,error address in B7 and places it in
the task addendum. Address is relative lower lock of requestor~
Control, can be transferred to thl,s' address in the event of, 'a program,
,error, e.g. memory references outside memc;>ry:bounds,' attempting to I

use privileged instructions. When operating with the TEST PACKAGE'
~his function is reserved for ,its use.

Operator: ERRADD$t>.Tag

Packet: LABEL
2 0 1 1 '2

.ESTABLISH FLOATING POINT OVERFLOW ERROR ADDRESS (Function code 13)

This request takes the floating point overflow error address
in B7'and places it in the task addendum. Address is relative to .
lower lock of requestor. Upon floating point overflow program control
is transferred to specified address with interrupt values in" A and
Q registers.

Operator:

Packet:

FOFADD$ATag

I ENT*B7 I LABEL I
. -7 7 5 4 0 . 2 0 1 1 3

6.3-4

• ESTABLISH FLOATING POINT UNDERFLOW ERROR ADDRESS (Function code 14)

This request takes the floating point underflow error address
in B7 and places it in the task addendum. Address is relative to
lower lock of requestor. Upon floating point underflow program
control is transferred to specified address with interrupt values

-in A and Q registers.

Operato;r: FDFADD$llTag

Packet: I ENT* B7 ILABEL I·
. 7 7 5 40. 2 0 1 13

• ES~ABLISH ILLEGAL OPERATOR ADDRESS (Function code 15)

This request takes the illegal operator -error address in B7
and places it in the task addendum. Address is relative to lower
lock of requestor. Program control will be transferred to specified
address when ever program executes an illegal instruction code.
When operating under control .of TEST PACKAGE function is ~eserved
for its use.

Operator:

Packet:

, OP ADD$ATag

I ENT*B7 ILABEL I
.77540.20115

• TEST FILE CODE FOR PERIPHERAL TYPE (Function code 16)

This requests the numeric peripheral type' code of the unit
or mass storage assigned to the file code con,tained in the Q register.
File code is in its field data form.

Operator: TFC$Afile code

Packet: I ENT*Q I File Code I
Numeric peripheral tyPe is returned in the "An register right

justified. If device .is random access, the number of words allocated
to file code will be returned in the ,Q register.

-REQUEST CORE SIZE (Function code 17)

This request,will supply three pieces of information: the
lower lock address (in A); the RIR (in Q) and the number of 'WOrds,
in binary, allocated to the' program (in B7)

Operator: TCORE$

~acket: i 7 7 5· 4' 0 i 2 O· 1 1 7 I

6.3-5

·SET IFR 15 BIT B REGISTERS (Function code 20)

This request will set the B register mode bit in the IFR for
15 bit B registers. All normal worker programs are original
established in this mode.

Operator: SET15$

Packet- 1775401201201

,. SET IFR FOR 17 BIT B REGISTERS (Function code 21)

This request will set the B register mode bit in the IFR
~o~ ;7 bit B registers which is the abnormal mode of operation
reserved for EXEC, RT/COMM, etc.

Operator: SET17$

Packet: 17 7 5 4012 0 12 1

6.3-6

6.4 I/O Error P~coverl

6.4-1

6.5 Console Control

01 Unassigned

02 Unassigned

03 Unassigned

04 Unassigned

05 Unassigned

06 Unassigned

07 Unassigned

10 CHANGE$ Operator directives with regard to files

11 MOU NT $ Operator directives with regard to files

12 UNMOUNT$ Operator directives with regard to files

13 LOG$ Submit systems information to log or console

14 MOUNTN MOU1~ without a delay

15 CHANGEN CHANGE without a delay

6.5-1·

• CHANGE FILE DEVICE' (Function code' 1 0)

7~~s is a standard method of notifying the computer operator that a particular
file device (e.g., a reel of tape) is to be labelled and unmounted and an
alternate file mounted in its place. This operator is necessary for such
communication since worker programs will not be allowed to use physical

6.5-2

channel/unit designations. Y~gnetic tap€:~ will be positioned at the
beginning of the tape. The requesting ac'~ivity will be delayed until
the computer operator signals that the file has been changed.

Operator: CIDU1GE$AFile code, file identifiers

Packet: I EBJP*B7 I N

\
FILE CODE

I FILE IDENTIFIERS

I 77540 I, . 20050

·ZOUNT A FILE (Function code 11)

variable length and format

N

~1is req~est directs tne computer operator to mount an input-output file.
on a particular file device. ~hisoperator is necessar.y for such communi­
catio~ since wor~er progr~s Yill not be allowed to use channel/unit.
designations. ~~gnetic tapes will be positioned at the beginning of the
tape. The requesting activity will be delayed until the .computer operator
signals that the file has been mounted.

Operator;. l~Ou"NTDbFile code, file identifier

Packet: EBJP*B7 I N

FILE CODE

FILE IDENTIFIER variable format and length

77540 .I 20051 N

-DISMOUNT A FILE (Function code 12)

The computer operator will be requested to dismount an input-output file
from a particular file device and properly label it; The task will be
delayed until the computer operator'signals that the file bas been dismounted.

Operator: DISMOUNT$~File Code, file identifier

EBJP*B7 N

FILE CODE

F:i:1E . IDENTIFIE...~ variable length and' format

77540 I 20052 N

6.5-3

~OG (Function code 13)

~~s is the standard method of sending a message to the computer operator
an~or entering data into the systems log. If data is being entered into'
the systems log, it may also b~ typed on the computeroperatorts console.
An optional delay after a message is typed out'on the console can·be
requested to allow the computer operator to perfor.m some action.

~perator: LCG$AOptions A li terai

where Uliteralu is the message to the computer operator
and/or data to the systems log.

The options are:

T·= Type message on C04. • .sc~ ... c) :-~o d~l~y.

R = Type message on consol·s, wit for operator' response

L = Enter literal into systems log

A blank field is equivalent to the T option.

:Packet: EBJP*B7

77540

OPTIONS
&

LITERAL

N

variable length,and format

20053 I N.

~fuen control is retttrned after a log request with R option the Q register
may contain 1 to 5 characters as a responce to the delay and· are useable
by the requestor •

• J.V.oWT A FILE - NO DEUY: (Function code· 14)

T~..is request is almost identical to the MOUNT$ operator. It directs the
computer operator to mOUk~t an input-~utput file on a particular file device.
However, no delay will be ini ti~ ted.. The task' will be contined after ,the
console typeout. .

Opera tor: none

Packet: , EBJ?*B7 I , N

FILE CODE·

FILE IDENTIFIER variable length and format

.77540 20054 ' N

6.5-4

<!DISKOuiiT A F.LLE - NO DELAY (Function code 15)

?nis request is similar to the DISlf.DUNT$ operator. It directs the computer
operator to dismount an input-output file and properly label it. No delay
will be initiated. The task will be continued after the console.ty'peout~

Opera to~: none

Packet: '1 EBJP*B7 N t·

'~I ______ F~ __ E_OO __ D_E ____ ~

I

FILE IDENTIFIE...,{ variable length and format

77540 28055 N

·CEi~\GE FILE DEVICE - NO DELAY (Function code 16)

This req~est is similar to the CHANGE$ operator. It directs the computer
operator to dismount a file, label it, and mount an alternate file in its
place. No delay 'Will be initiated. The task will be continued after the
console typeout .•

Opera tor: none

I EBJP~B7 N I
;

I FILE· CODE I
I FILE IDENTIFIER

I
v~riable length and. forma. t.

I 77540 20056 /. N

6.6 t'acility-and Storage Assignment - Library number 00'5 is a non
re-entrant routine responsible for processing the rol~owing
service requests.

Function
Code

01

02

03 _

04

05

06

07

Operator

ASG$

S\-lITCH$

Internal

Internal

Internal

Internal

Description

Assign designated facility to task

Release designated facility from task

Switch units assigned to file codes

Release all non-hold assignments

Release all assignments

Assignments submitted by selection

Switch submitted by selection

6.6-1

Functional Description of Function Cod eSt

Function Code 01 - Assigr~ent Request

Caller: A task/activity reque.sting the assignment of a
peripheral through ·the control statement interpreter
or an internal request' made' at execution time.

Parameter: B7 = the adqress of the ASG statement relative to
the lower lock of the requestor.

Addendum: Worker task/activity addendum

Fl,lnction: a) Unstring the control statement
b) Read in the facility map
c) Locate the peripheral name requested
d) Make an assignment from the periphera~s listed

under tha~ name and· build associated tables.'
e) Load the associated handler if not in core

. f) Initialize the unit as prescribed by options
g) Set up log function for assignment printout
h) Switch to log routine for printout and delay

Exits: DRET$ to control supervisor, B1 = ¢ B2 = console
control.

Returned
Status: A = logical address if mass storage assignment or

P-TYPE, CHAN/UNIT if unit assignment.
A = 77777400XX implies unsuccessful assignment

Function code 02 - Free request

Caller: A task/activity requesting· the release of a
peripheral through a control statement or an
internal request.

Parameters: B7 =·the address of the free statement relative
to the lower lock of the requestor.

Addendum: Worker task/activity addendum

Function: a) Unstring the control statemen~
b) Locate the mass storage list or UCB associated

with the file code specified.
c) Release the storage or units from core summary
d) Release core used for random access storage

list and UCB.
e) Go to master file directory routine if the

file is to be registered
r) Prepare a log message for the console
g) Switch to log routine for printout

6.6-2

Exits:

, Returned
Status:

DRET1$ ~o content supervisor B1 = 1 B2' = console 'control

A2¢ implies successful completion of release
A = 77777400XX implies abnormal condition such as,

'the file code' not being' assigned"

Function Code 03 - Switch request

Caller: A task/activity requesting the switch of two
file codes through a control statem~nt or an'
internal request made at execution time. ,

Parameter:B7'= the address of the FREE statement relative
to the lower lock of the requestor.

Addendum: , Worker task/activity addendum

Function:

Exits: ,

Returned
Status:

a) Unstring control statement
b) Locate file codes
c) Switch the links to the ·unit control blocks

under the individual file codes.

DRET1$ B1 = a Return to requestor

A~O implies successful completion
A = 7777740001 implies necessary parameters were

not present
A = 7777740002 implies an invalid file code was

specified.

Function code 04 - Release all non-hold assignments

Caller: Termination upon the termination of a task.

Parameter: All parameters are available within the addendum
which is currently activ.

Addendum::.: Worker task/activity addendum

Function:

Exits:

a) Make a pass on the file code list erasing
UCB links of all units not in a hold condition.

b) If unit is currently active delay until, all
requests are complete and thendeallocate
any random access storage list and UCB.

c) Update accounting information in job description.
d) Release units or storage to system.
e) Release locks on released areas.

DRET1$ B1 = 0 return to requestor

6.6-3

Function code 05 - Releas~ all assignments

Caller: Termination routine upon job terminatio~

Parameters: All parameters' are available wi.thin' ,t~e addendums
which is currently active.

Addendum: Worker task/activity addendum'

Function': S&u6 as ~~nction code. 04 ~xcept that ,all files
assigned to the ~ob are released.,

Function code 06 - Assignment of a peripheral requested by
initiation.

Caller:

Addendum:

Function:

Exits:

Returned
Status:

Initiation upon the ·processing of pre-load time.
facility requests.

Worker task/activit'y addendum

a) Same as function code 01' except·a special
entrance is used for entry into the log
routine which will disregard any delay
request and return to initiatiori with the -
status in the A register as before and the
peripheral name under which the assignment
was made.

DRET1$ B1 = 1 B2 - console control FC XX

Same as Function'code l'

Function code 07 - Switch of two file codes requested by initiation

Caller:

, Addendum:

Function:

Exit:

Returned
Status:

Initiation upon the 'processing of pre-load time
switch requests.

Worker task/actiVity addendum

S~e as function code 03 except for a special'exit

DRET1$ B1 = 1 B2 = initiation (selection FC 05)

Same as function code 03.

6.6-4

·6.6.1 Method of Operation

The ASG service request prepares a file for use by setting up
a unit control block according to the specifications implied by
the assign statement parameters and the particular device
assigned. ' ,

I

The sequence of functions employed to process an assign control
statement areas follows:

a) Unstring A~G control statement

b) Locate given peripheral code' 'which will identify peripheral
type desired and required devi'ce handler. Check avallabil ty

'of device or storage 'in IIfacilii;ry and storage summaryll if
'a.vailable continue, otherwise exit.

c) Reserve indicated device or storage in summary. 'Read,in
deVice descr~ptOr and' form. ur..i t control, block setting options

, for peripheral, and load, if not currently active, device 4

handier. Set file code inorame~t to UL~it control block and
se't RIR and D'rum., 'increment of deVice han<ner in unit control
block. '

d) Perform opera tor type-ou ts direoting tape mounting or'
retrieve file descriptors for random access, storage. ~t
upon completio~ 0,£ above. . ' I

e) Maintain by Job Ii a ,li.st" of all facUlties assigned •
• '. ,I I' ., ." I '. \

6.6-5

ASSIGN Statement Format and. Interpretation

Format

.

1 .2 3 4
ASG· ~ Options ~Peripheral Name, File Code, Estimate, File Identification

Interpretation of Parameter Fields

Peripheral._ .. ",.

Meanirigful Options Required Parameters Optional Parameters

TAPE E,O,H,M,L,J,R, 1, 2 3, 4
S,T,V,W,U,N

MASS STORAGE J,S,V,H,M,L 1, 2 3, 4

PRINTER J,V,W 1, 2 3, 4

CARD J ,.T, V,W 1, 2 3, 4

PAPER TAPE J,V,W 1, 2, . 3, 4

CORE .r,S,V,W 3 4 I'.

COMM

Option Meaning

Option Letter Meaning

E - Even parity (compatible mode) applicable on compatible
units only.

0 - Odd parity (Binary) assumed if no 0 or E option present.

H (TAPE) - Highest density applicable to the subsystem (SOO ppi)

(MASS ~TORA.GE) - High grade mass storage requested~

M (TAP'E)

(MASS STORAGE

L (TAPE)

(MASS STORAGE)

T

"

R

~ Medium density applicable to the subsytem (556 ppi)

- Medium grade mass storage. requested.

- Lowest density applicable to the subsystem (200 ppi)

- Low grade mass storage requested.

- Hold assignment for duration of job unless explicitly
released. Absence of the J option implies assignment
will be released upon termination of the task.

- ~wind the assigned unit without interlock.

6.6-6

v

Option Letter

S

T

v

'U

N

Meaning

.. Declares the file is in the Mas·ter File DirectorY

,:. - Transla te from FD, to BCD coming in and from 'FD to
BCD going out. (Ap:plicable on compatible units with
transla te hardware.) ".

- Assignment not required for the execution or the task.'

'- Wait for operator response after file identifier.is
printed on the console printer. "

, - Indicates automatic block numbering is to be applied, '
to any tape files written,. ' ,

- Implies the noise record constant defined atsystam .
generation will be appl;ed.

Peripheral Name Interpreta ti,on

The peripheral name is a mnemonic name of up' to £1 ve oharacters inleng;;n
which dictates a set of units aooeptable for assignment on this request.
A set ot standard peripheral names are used by the system and aay user.
Add! tional peripheral names may be defined at 81stem generation time. A
list of the standard peripheral names and their names appears below~

TAPE
UN.3C
UN6C
UN8C

, CRIN

PTIN .'
PTOUT
PRINT
RAN
mAN
FH4.32
FHSSO
SEQ ,
CORE

Any UNISERVO
UNISERVO IIIe
UNISERVO VIC
UNISERVO VIlle
Card Reader other than primary input
Card Punch other thL~ seoonda~ output
Paper Tape Reader
Paper Tape Punoh ,
High Speed Printer other thanprim&r,1 output
Any random aooess device
FASTRAND
FH432 Drum
FHSSO Drum '
Any sequential tile device (random access on ,tape)
Additional oore· adjao~t to. end ot routine. ", ',' " .

File Code In terpreta tion .

The file code is an alphabetic character by which the unit assigned will
be referenced in input, output operations. The characters A through Yare
available for general use.. The character Z is reserved for the system files.

Each letter A-Ymay be broken into subsets of 26 double file codes, for
'example A could be broken down into, AA, AB,---AZ.

The system tile code is broken down into' a subset containing double file
codes. The system file and the~r assigned file codes appear below.

ZA
ZB
ZC
ZD
ZE
ZF
ZG
ZH
ZI

Primary impu t uni t record
Primary output unit record
Secondary output uni t record
Cooperative librar,r

- Systems librar,y
Job library
Systems log
Scratch
Scratch

Estimate Interpretation

The estimate parameter has different meaning depending on the type of
peripheral. A list of the interpretations for different peripherals
appears below.

TAPE

MASS STORAGE

PRINTER

CARD .

PAPER TAPE

CORE

blank (unless a sequential file is requested, in which
case the estimate 'Would be of the same form as that of
mass storage.

[minimum/maximum] (defines the minimum and the maximum
amount of storage requested. If available the maximum
area or any amount down to the minimum is assigned. It
the minimum amount is not available a non-assignment
status is returned.

[area] (defines an amount of storage requested. If no
V option is present the area is taken as the minimum
amount of area that is acceptable. If a V option is
present 'any part of the area requested that is available
is assigned.

[UM/LM/PL] (UM defines the upper margin, 1M defines the
lower margin, PL defines the number of printable lines
on a page.. If this parameter is absent the standard
system format will be assumed:

Blank

Blank

SaIne interpretation as mass storage.

6.6-8

,"-

•• ; • '. _.~~..l. ... ~ " .

f '. , .

.: .-

®
I

CQ.Fl(JCc-· i,

l,Io"Oqv t.O Uc.S

I .

-.~~~
•. !

, • H ~ - ~ : .. .,
!

'I

,
j

. -.1.----

1

, .: . ,. ~ , , .. "

• I.

l()Cutfl l.UI,.e.,

cI~i:;~~~" ~.
de ()ioc(JW

do 'f'~ikdS(9
.. ~ _.: ..

'h(, II(/u-v ,i f .. i
Y",-

, ,.

I I .
-..:.. ~-" -. . ~ -- - -~ .. ,. ... ,

- --.. . -, - - , .. - . ~ ~-,
. i I

... -t. -"-- . _'1

1 ••• ;--6; &':'9-""'" .
: ... :. J. ~.

. i

'\ . ~ .. :

\

.:

Facility map is a drum stored table describing peripheral units
and their device handlers. This table is used by facility
assignment to assign facilities and ·initialize request . units
~~d locate their appropriate device handler. The file increment
to the facility map and its length are maintained in the core

, summary (Table __). The address of which is provided by the
content supervisors in B5. Words 1 through N and X through X+N
''define grouping of peripherals tl..1'lder specific peripheral names •.

\ .

o

1

2

N

x

X+1

1+2

, X+3

Word ~

Word 1

~ -- .

~ TO UNIT LIST ~ TO HANDLER LIST

PERIPHERAL NAME 1

'~ c~ F •. ANDLER DESO 1] 14 0
B '\7 UNIT DESO.

.~ B 0V" HANDLER DESO. 'U UNITDESO~

(

I f I I

l I
i ,
I

I~I ----------------------~I,
PERIPHERAL NAME 2 I 'j I

rA B 0 ~ HANDLER DESO •. "V UNIT DESO.

~ B C I~ HANDLER DESe. " UNIT DESO.

(.
) ,

(-'
-

U - The increment from the base of the map to the
first unit description.

L - The inorement from the base of the map to the
first handler description.

A peripheral name b.Y whioh assigmnent will be requested.

, ~.

6.6-10

Word 2-3

Word X

'229 (A) If' sat 229 indic~tas the 'end of 'the'
'list under this peripheral name.

228 (B) Undefined.

227 (C) Undefined.

, 226_2 15 The Index to the handler description to be
used on this assignment. This index is relative to
the base of' the handler descriptions list. .

214_20 The index to the unit description to be used
. for assignment. ' This index is relative to the base
'of the unit description list.

Another peripheral name under which assignment is
made.

Word X+1-X+3 Describe the units and handler to be assigned under
this peripheral name as do words 2-3.

Device Handler Description

To provide flexibility required to allow several distinct device
handlers to be eligible for control of a particular device" .the
peripheral mnemonic specifies both unit and handler as determined
at systems generation time. A t time of assignment OMmA will
check to see if requested handler is in cora. If it is, assignment
'W'ill be linked to it; it not, handler will be loaded and registered.
The handler name and vers'ion is overlaid wi th the handler load . .
~nf'o~tion (OA-2A) at initialization time.

"",v.-;lv",.1..tJ"''''''V'U'

" 1

2

'OA

1A

2A

Word 0-2
OA. I

-
r HANDLER

NAME

VERSION

29
HANDLER LENGTH

17116 0
¢ OR HANDLER ADDR.

FILE INCREMENT TO HANDLER

701 1 #·~SSIGNMENTS

-
oontains name/version 'of device handler
oontains absolute address and length of routine, the
absolute address .1s tJ it the handler is not in oore.

6.6.;.11

, J.

Word ' 1A: I contains drum addre'ss of routine

2A. Number or assignments, currently made to routine)
if ~ handler will be purged trom core when ,229tn
is ,~qual to~. 229th set to one ~ndicates once
handler is loaded it is to 'be retained as a
pemS.nent resident. ' 'Initializat1,on number refers

. ,to the proper rou:t,ine to initialize the unit 'for
the particular handler.

, ,Unit Description:

Contains information pertinent to' the particular unit.

Word

O. p TYPE LENGTH OF· DESCRPT

1

\ 2

·1

2

.3

, .

, 9H/UNI'i" CH/UNIT

LENGTH O~ UOB

Information.Pertinent
to Unit

'--
---.--

" ,

contains peripheral ~ype number recognized by the
j::Ivj::l+.~m Ann Ii "of' 'tJ'",...na ~"n+..Q",,""Qn """" "",,",,+. nI:loCl""''''''''+.-4",Y'\ -ti - w......- ---- " - 'V ~ __ ,..,... v,...,V' /:'" ... "'

con tains ch and un1 t of device if dual channel both .
upper and lower will contain an entry'~'

contains the length of the unit control block that
will be tor.med upon assignment.

"

N contains information used bf tacilitT initialization
and/or to be contained in UCB.

Peripheral Types: ,~'

Each type of external peripheral device i8 desoribed to the 81stam
.~ .~n~~"Qn ~m~ tnfaulh ~$I ot • Au.ba~,

Mass Storage Devices
• 00 FH432 Drum subsystem

01 FHSSO Drum subsys~em
02 'Modular FASTRAND
03 ' FASTRA1TD I
04 FASTRAND II

OS-07' Unassigned
, 6.6-12

Mass Storag~ Device~ (cOn(:Ued)

14 . UNISERVO IlIA· Y· .
, 15

16
17 .

,Unit Record Devices

·20
21 '
22 "
23·---
24
25
26
27
30
31
32

, 33
.34
35
36
37

High Speed Card Reader ~ .
High Speed Card' Punch

·High Speed Pr...ntar .
1004 Reader
1004 Punch
1004 Printer

Paper Tape ·~iiea~er.
Paper Tape Punoh .'

'.

FacUi ty and Storage Summary

As part of the resident EXEC element, a summar,y of peripherals
. available. is maintained along 'With the random aocess storage

.~_ .. _' ,~#es. . . .

Word

o

1 ,

2

4

5

6

7

10 Channel S?>

11 Channel 1

} ~
33 Channel 23

A B C

A B C

ADDRESS OF FREE CORE CORE"

, . FILE INCREMENT TO FACILITY MAP

LENGTH OF FACILITY MAP

FILE INCREMENT TO SELECTION MAP

LENGTH OF SELECTION MAP

FILE INCREMENT 'ID JOB STACK

ADDRESS OF CHANNEL CONTroL BLOCKS

LOCK SETTING

P~TYPE S'GMMARY LENGTH A TO CHANNEL SUMMARY

P-TYPE S1OOv1ARY LENGTH A TO CHANNEL SUMVJARY

I

As part of the resident ~C element, a summar,yof available
peripherals is maintained along with ~series of values required
by th~ secondary EXEC routines. Any reference. to this summary·
's~ould us~the mnemonic increment indicated on the ~escription.

·Word ~ The address of the 'free'core chain. (FSFCC)

.. 1 The file increment to· the faoi11 ty. map on the system
. library file (ZE). (FSIFM) . , . .

2 The length of the facility- map on the system library
file. (FSFML) , . '

3 The ~ile increment to the selection map' on the sys~ ,
library file (ZE). (FSISM)

4 The length of the selection map on the system librar,y
. ' file. (FSSML), , .

.. 5· .. The file'increment to the job stack module on the
coopera ti ve librar,y file (ZD) •. (FSIJS) ,

6 The address of' the cha~el control block list. (FSACCB)'

7 'A lock location used to lock out references to the
facility and storage summary. (FSLS)

'10' , 229 (A), set to 1 when periphe~ Qn the channel are
depleted. (FSCS) ,

22~ __ ~~) When set an:IOC occupies':the c~el.

~27 (~} Undefined
26/ 21 '

2 - 2. .A number'defining the specific type of
peripheral. .

220 ~ 215 The length of the channel' summary •
, 0 .

214 - 2 The index to the channel summary relative. ~
the bElse, (WORD fl5).

Peripheral Entry:

Channel Summary fl5 MASTER BITS LEF.T JUSTIFIED

Channel Summary 1 MA.ST~ BITS LEFT JUSTIFIED

One bit is'reserved for each'unit on the chBlIDel. The bits are
justified left. If a bit is not set, the. corresponding unit is
available. It the bit is et the unit .is ·not available.

6.6-14

6.6.3 Random Access Drum AlloCation

, Assignment of random access storage is in fixed modules the
size of which is dependent upon the type of device and number
of units on a.channel. Each channel contains a summary 'composed
of a bitmap uS,ed to reflect the availabili ~y of modules and
develop their starting addres; .. and, a ,summary used to reduce
search time required for assignment. The Drum summary is main­
tained b.1 facility assignment inthe first one or two modules
of the described storage.

The following table contains module size utilized by UNIVAC to
allocate random access storage. Values and mapping·may be
changed to ~eflect installation needs.

FH432 Drum- capacity per d~ ~62,126 words

#of
Drums

1
'2'
3
·4
5
6
7
8
9

'.# Words
. per mod'.

128
256
256
256
256
256 '
51),2
512
512

of
Modules

2,048
2,048

, 3,072
4,096
'5,120
6,144
3,584
4,096
4,608

Length or
. Summary

97
164
231
298
365
432
499 '
566
633

FR8S0 Drum - capacity per ,drum 7S6,43~ words

of
Drums

1
2
3
4
5
6
7
8

II.. ~

if woras "
per mod.

256
256
512
512-
512 .
512
512
512

II _

if ,01- ,

Modules

3,-072
6 144 -, ,

4,608
6,144
7,680
9,216

10,752,
12,288

6.6-15

Length of,'
SumInary .

143
255
184
235

" 286
338
389
440 .

of
, Modules'

1
1
1
2
2
2
1
2
2

/I of
Modules

1 ,.
1,
l'
1
1

',1 :
1

FASTRAND ~ - Capaoityper unit 12,876,128 words (See Note 1)

OF # ~lORDS # OF ' LENGTrl OF
UNITS PER MOD MODULES SUMMARY

1 2,112 6,144 235
2 2,112 12,288 440
3 2,112 18,432 645
4 2,112 24,576 850
5 2,112 30,720 1,055
6 2,112 " 36,864 i ,260
7 2,112 43,008 1,465
8 2,112 49,152 1,670

FASTRAND II - Capaoity per unit 25,952,256 words (See Note 1)'

/I OF /I WORDS /I OF LENGTH OF
UNITS PER MOD ,MODLl1ES SUMMARY

1 2,112 12,288 440
2 2,112 24,576 850
'3 2,112 36,864 1,260
4 2,112 49,152 1,670

"5 4,224 30,720 1,055
6 4,224 36,864 1,260
7 4,224 43,008 1,465
8 4,224 49,152 1,670

Note 1. Allooation module si~e is be sector to allow IlSEARCH" track functions.

6.6-16

Random Access Summary

o rI1-------~~~-a-~-~-Q~,-#~·--------r------~~·e---~-~-~-e---~'--+-~-~-e----~ . v ~,

I
.. '" .L.:-,.u. cu. UJ:-' . I

1 Capacity of Channel

2 Available Capacity of Channel

of words in module . I # of words in sector

modules currently available
i

3

4

5

6

Word count or last search I Length of bit map

7

10

11

12

13

14

15

16

I

I
of times bit map referenced

of times reference futile

Physical address of Group ¢
Physical address of Group 1

Physical address of group 2

Physical address of group 3

Physical address of group 4

Physical address of group 5

Physical address of group 6

17 Physical address of group 7

20 # of Modules available in group ¢
21 # of modules available ~n group 1

22 H of mOdules available in group 2

23 # of modules available in group 3

24 in group 4

25 of modules available in group 5

26 of modules available in group

27 of modules available in group 7

•

l

An effort is made through allocation to maintain 4 groups Which represent 1/2, 1/4, 1/8
and 1/16 of available storage, allowing the other 4 groups represent continuous areas
of random length.

Bit maps are of variable leijgth dependent upon module size and # of word positions
assignable on channel. Each bit position within a bit map declares if the corresponding
module is free (¢) or is reserved (1) and is used to map into a physical address, .
relative to zero, of t~e module.p

Phrsioal address X (3Q X word position +b1t position) X (Module size)

6.6-18

? r,l to //)V.

.\. Ph j'::.IC~:",

tSto~ AUflf;lSS,:, S

/J.JY'.,,,," -o~. w..) •••. h :> JI .

!' i' 'I
• f" - •.

I ,.1
I I

t··

~~.~t;, ;:,\oSICeI": Oeft"'btlS

'yt;~ .-,.. eo'S - ~S66"! ~()tttJt}lb"
t--.. _-.. -_--~·cl \J CI!l.c~t 1;0 'Ii A,,~t.\"IJ;+

"1-- r-' , !

. #R... l,
I i

. ,~. ri" ;

I

I. ..
I
f

.L.. ... ··i--.... ;_.
I

'1" .. ,.-------=----.......;.--.
. '. re.~I.;;" {ov .. <:(I(tz .C.vov'P.

plJ6,iClt. oecvt:.CS· +. (M«t $;~.

(It.ClV(I/V +-1. == . S
~;""---'-:"";;;"';"..---':;;~-"':"-..I : .. "' •. ~- ..

~ &

, .. -r .. -- ...• - -

S -'> PhG~L ~d&~6:.S

. ;

...... : "je:s' :--,........., .
~--~----I;-:. # R --;JI:'~ # A.'-':1~~tu:
. ,. c',; .. , ,...-_.. . ,"' i ; _. t ..

. ~ ---

• '" -.! •.

I

1 ; _.
I

•• __ •• ____ __ t • ,.----------..,.;-_.-:- ... - .•....

SOyl:; t:.Juz:,~~d'.

G"csup' :' i"1
. SCI V'lu~<,Yy

. ..;.... .. ·1 • -:-~-.-- ~ __ L-_

. ___ .1.-.

i

11-._ .~~ .. __ .; .•.. j._ L ..

I

1 _ •. __ •. j

t· i
. -.. _. __ . ../

...:-~ ... - -.. -- ...

__ .. 1_ .. _ , ___ .F.

i .
.. t---- ~.-, .. -- -- _,i __ _ ... ___ --__ - __ ---;........;-..Li: -~.; .. - i· ~.-;- ._L .. _-t-- -- -.~ _.;-- - - t···

.... w ••• _.,_._ .. _

I

I
I

-_.j_. __ .-t .. _._ !" -- • ,-

I

Sovb

6ci.w.w".vy

GvOCl p~

1'Z. G I
jq-Z-r

••. - , _.,-___ J-. __

i

.... - _,.... ,

>

h't)
#1< >' VJ,G I

.J

1110

• 00.- ••• __ •• _a. _._! _", ____ .. _ ... _ ••. . .

i-"
I

:~.~ #R ~j;~ . 2-

.,
I

y" -? 19-

t I' I -I~
:

I

'
I' I ... !

_. - .~

• - ! --" ~.

.j

... 1. _ ... L __ : .. __ f~

!
_.- .. "--'- ~ !-

I
'. I

.... _.-... -.J
,
, .. _.l

r-~~----- _ .. -.
..,.. tiG. ~ Ii,. ~ r

Ia\

'1' •

'1

I .. ---r'-

l_.

·-1··· -.~-." .~--.- ~ ~1t.-l""'· --;".
... __ . __ !_. I· .. t .• _

-f~:
l~';·

,
I
I - r-' ... - . ~r-'
I .!

......... -:-.1.1- ._

., .
1

- ,_.. . -1- ;.. ~ .. _- , - .
: I 1" . ~ ! ·.T··

: ! : i' i···· . I :. , '.

r-______ ~ __; ______ --_t.c~T-~~~L~~:~~~·t~~~~::~~-~-~c~~~--;J>:;<:T-J-·- .. ~ ___
. \ .1 it. 1

.. ;

~i ____ ... __ .

. ---........ ----~ .. -.....

I

. AS.fI~'" $ClMv-!()vY

6' i:t1v CI'~~ (..U'I 6, L. :

jY)rl'l ... S"t·l6-tr(,o __ .
0'" ·s" WV.lO"/

eUI!.60-c:(

..... , _ ... --.~.-~.-- ~

I

Jk;~''4 u,,«~t;

>-_'/_~--i G~p .
Avo:t.cbl.d . .

L ..

'1"-'-'"

~ - - .. j.

\

L.. ~ L
,

-i· -..... !:
1

.- ... --.. ri ., _ ... - _- _.-_ .. , .. _ .. - ··Ii-···· --,.- !i:: .. ----··I:-~:--~I· ,.,"--:,-""-... -::'-,, ----l!-·
.• t. ~.:. __ .I._· __ •. _:.:,. _ ... ··.'1.:... _____ ',. ___ !", •.••.• _.~ .. __ ' . . ________ . _______ .. ___ .' .!-- ___ -'_ >. ___ ~_-_-.+ -~ .. -.--.... J ... -

: ;

---j----.,.. ..

j
i
\

- .'-" .. - - --~_._--, . -~----
,

I

.'

-j' .. -'

! I

·1

. ~ --~ _! --

I
I . r' -
I

I'

to co 611 t:9 ,:,~a';'

/;0 .. r-e t::'L."~ CS J,.

6U<WI_W.CN'I~
I
I

:._-_.;. _ •••• <

I
I
,_. 1-

.i < •• 1 .. ! ..

, .

! .

.. : 6.6-20
I !

l.
!

, .
. ·-t: -'"

'r

--r" --

: I I'" : !

i

I
- t

. , ,- .. ~-... ----" -_

... !-_ ...
,
I .,..-.... r--'

,
I _I ._

.!...

: I
I
.~--. -... '--.,. _.-_
i

... !. --.-.. ~. -" .. -f' -,
J._ .. -._-' ...

.1'---:'--'

.. I

I

i
... _\ --

I

- t .. '-'-r -

I -f ..

--- i-' -I-.

,;

i

I
I"

.,

r'
i

i

-.- _- .. - -
1 '

1 ' ._ ... _ ••• _ a. _._-~ __ ._...... _.

... l ... ---f" 'oJ- ~ - :

I . --f-' --.. -...... -.- . i -
i :

• --(•• ---~-:--",-,.-- 1

I 1 .1
_.;- "-~-;----!--- -j-'"

1

~ --~-.~ :--.

l " '-r
-.-- .---:. - .~---. ~ ---. L----i --.-~. -

; - ,

I

I ! I
-t --- -}-.... +. --I '" I 1. __ : __ .1 __ I r-------_

I ,1 !
,

. -: J-­
!

i- -:. --;- - -- /- .~ - -1- -- - '1

I I· . II ' I I
I, l' AS k... I_~ __ . ____ •• ~ __ • _:. I

J ' 1· I i

AnOf'tJb~~ . '
-··--~-··-.. ~::'--t-· .. .,

I

FAc.~l ,:toY
.,.

;M~ ~ P i

(~.~)

~J:~'

j\1i~PS

-~ -T­
:

-\ - --

· ... ·f

..... ~

••• ~ __ •• __ .t ___ J. __ . _ .. _

i _.- .. '

-·;----'-1----··-;-----'- -- ,-- --.-t- .---T--' ~'~'! ---1---- -.-.

.. t- ~ ~ __ . i -

,---.:.-----.. -- - -i-.-- .. L .. _.-
- ~.

" , ,
_ J. _. _ ~ .. ____ ..:. ~.

1

_'''', ~ _. _;. _ .:.i ". ! --... -

i
~ I I ,

._,_.1....

___ -+-_.d

_ .. --]----_.

",

1

~ .-.- •. __ ,i

·i
.- - ,
i I

-, .. _--- -! - ..
I I

j.

,:'\',

u~rr

~O)J'~"L:
'~LO C~.

I ..

,

. '-1.-

, ,
.,

, I

"

-, -'-
,;

• 1 t ...

.

l.

i" .. - ,- ..
, -,
1 , . :' . -r -'I

L···:-l---·

'i
I

'I

i

.j

:.1 •.. -

I

" I _,. t

'l'~ .--~-'.~ --.- ----.-.. ---.-
i

: i

" I ~~\) .}hto t, l I . - -

i~ BLO.~k; I

U:·:· ; , '. . f ,.\ ; . " - ~

.!

-j'--

I

6~6-21

,~ .. I ..
I

t .. -

.
j

, .

'.

6.6.4

Master File Director,y·

Description

The Master Fi~e Directory catalogs all mass storage files and/or tape files held
permanently or s~mi-permanently by the system. The directory may be constrained
to a maximum size at systems generation·time an~or extended during operation.

The purpose of the Master File Dire.ctory is to retain files between jobs or between·
the repetition of a given job. The user is releived of· the responsibility of deter­
mining at object time physical location of the file and m~ extend, contract or .
delete the file during execution. .

Interface

Entries in the director,y are cataloged by a formal request. Each request for a file
must use a numeric key 3-7 digits as set gy Systems generation denoting his user
number and a numeric key 3-7 digits defining his file number. User obtains assign­
ment of a file through use of the ASG control statement and m~ register ·an updated
version through use of the FREE control statement. .

Directory Index

Number of entries in the directory index is determined at systems generation time by
specifying the number of user indexes desired. For each index assigned an .additional
index is required to supply number of files qualifiers contained, and 7 digit. account
number to which charges for storage space are to be made. Directory index #000 is
general and reserved for semi-permanent files.

Directory Index

Channel ·1
Physical address of File Index J

All binary 1 I s
if unassigned

Directory index is composed of one w?rd entries ordered b,y user number and
covers the span of user numbers defined at systems generation timee

File Index

Channel
Physical' address of File Qualifier

Each file index 'is composed of one word entries ordered by file number and
covers the range of file numbers defined at·~1stems ~eneration time.

6.6-22

File ~~~l~i~f~i~e~r __ ~

o 5 Character assword for file reference

1

2

.3

4

5

7

N

Password

since

constituting a unit current # of units

Total # of units to date

File type 1/ of words ~n ·descriptor,

File Descriptor .

......

The five character password may be employed to control the use of confidential data
and prevent unauthorized access. For each request for assignment of a protected
file~ the user must present with the user and file number, the designated password.
Any attempt to request assignment of a protected file without the password will
cause the Job to be aborted with appropriate messages.

Words 1-2

Each time a file is explicitly released to the system, date is changed to current date.
Number of references since last purge is a count of file assignments made to operating
tasks of current file. Number of days to retain is a number supplied by the user
specifying the number of days file is to be retained in the directory after last
change.

Periodically mass storage files which have expired number of days to retain will be
recorded on magnetic tape and their assigned mass storage will be released to the
general pool. At time of purge, a summary of deleted files will be submitted to·
,primary output cooperatives listing file characteristics and accounting data.

Words 3-4

Are used to maintain accounting information. "Number constituting a unit lt is a user
specified value normal number of words of mass storage to be used for accoun~ing pur­
poses per unit of time. Unit time is assumed as a day. "Current number or units is
the largest size of the file tor any one day.'·

6.6-23

·iiTotal number of units to daten isa cUmUlative total of ~ts for the file;
updated each time file is rerequested in the system. .

Word 4 = (current date - word 1) • (current # of units) + word 4 . . ,

File Descriptors

File descriptors are used to describe· the physical characteristics· or' the file. These
are maintained by the system and are of two types, mass stor~e and tape.

Mass Storage

Channel # I Physical address of block 1

o I # of words

i I

l--:-: ----J1

I 1 I # of yords _

External Tape Files

Physical tape # (operator directive)

Symbolic name of unit

Recording options

6.6=24

File Access

Access to a file contained in ,the Master File Directory cannot 'be performed'until an
ASG control st'atement is given specifying the file code to be used, user number, file
,number and password'if required. Example: A request for file number 932 under user.
index 035 to be assigned to file code B would appear as' follows: , '

ASGMRAlffl,B, 035/932

Once assignment has been made, the user activity may perform all packet level or
file control I/O commanqs available in the system including extension or cont~action
of file. However, if user has· changed the limits of the file, he must reregister file
through use of FREE cont~ol statement in order to maintain update. Example: the
above file being reregistered in the.di~ectory wo~d appear as' follows:

FRE~6B,. 035/932

6.~25

6.6~5 Facility Assignment Initi~lizat~on

Parameters required for system generation used to form systems
records and/or initialize facility assignment according to
conriguration and/or desired 1.B er options. '

"S,) ,For each channel of ,subchannel, the following information
is required~ ,

Channel number
;; ,Peripheral type
• Ymemonic name of peripheral type',

, Number of units .
Cost per unit of time ,for use~ to' r~tain word' or device.
Name of handler ,responsible' for ,chann,e~ or sub channel

, b) "Option for accounting information

Normally accountilig method is a SlllIllll8.ry of units assigned
to Job.

~(Le~gth of time hel~ x n~ber used) cost per unit time)

Option method is to' submit to systems log eac~ ~ssignment
listing type of device, nUmber or Units and length of time
retained. '

c) Establishment o'f User Index

0-7 digit number of user indexes ,
Channel number on which user index shQuld be maintained.

, ' ,

d} Establis~ent of qualifier index

User index number
Account number
Number of files
Optional, Password
Channel numbe~ pn which index should be maintained

6.6-26

6.7 Service Function 3 ~ Lib~~ry number 006 is a non-reentrant routine
used to crea.te and release core chains; process Send and Receive
requests, simu~ate hardwa~e search, and retrieve an element.

Function
-Code

01

02

03

04·
,.

05

06

07

10

11

12

13

14

15

16

17

20

21

22

23

24

25

26

27

Operator

FCHAIN$

RCHAIN$

. Unassigned

SEND$

RECEIVE·

SEARCH$

Unassigied

Unassigned

SENDP

RECEIVEP

Unassigned.

SEARCHTL$

SEARCHPL$

SEARCHL$

BLOCKSL$

FETCH$

FETCHR$

~TCHL$

FETCHRQ$'

Unassigned

Unassigned

Unassigned

Unassigne.d

.' Description

Form a'core 'chain

Rel.ease a core chain .

Transmi t parameters to' Exec storage~,.

Complement of ' SEND

Simulated hardware search throUgh
repetitive read~

Send parameters

Receive parameters

Search track and lock

Search position and lock

Same as SEARCH$ with lock

Block search on drum with lock

Load absolute element ,in assigned core

Same as FETCH$ with activity registration

Locate named element and read the table
of contents for that element.

Sarre as FETCHR$ with queued activity
registration

6.7-1

Service FQ~ctions - Library number 006'i8 a nbn~re-entrant'service
rou~ine used to process the following ,service. requests.

• REQUEST CHAIN (FUnction code' 01)
, '

This request wi'll allocate core chain. These chains are availabl~
to RT/cOIDm only and can be used to ~ worker programs, buffers or .
data pass areas. Each link will be a continuous memory area; links
. wi thin a. chain will occupy contiguous areas of memory = Li:rJts will be .'
obtained from free storage. During' peak periods of processing, RT/comm'
may·establish additional chains, at the expense of lower' priority
programs, to accomodate overflow.

Zach chain must be assigned a unique number. Since numbers 0-5
are reserved for the executive; this nlli~ber must be 6 or more. Links

,within a chain may be declared· either fixed module or variable length.
The fixed module chain is composed of links of a. specified si·ze.
These modules are requested one at a time as needed. The fixed module
chain has the advantage of having a faster request/release mechanism '

'as well as requiring one less' parameter at usage time. The second .
type of chain, variable,'allows 'the user to variable· sized pieces of
core. This type of chain is more flexible' than the fixed module chain
and wastes less. memory.

The number of words in the chain (variable chain), or per module
(fixed module chain) must be an even number, i.e.,. divisibl~ by 2.
If the parameter V1 is not an even number, 1 will' be add.ad to it to .
make it even.

Operator: FCHAIN$aVo,V1,V2

. For fixed module chains:

.J

va ~ chain number (from 6-N);
V1 - number of words per module; and
V2 - number of modules

For variable chains:

va - chain number (from 6-N)
V1 - total number of words in chain; and
V2 - 0

Packet: ENT*B7 va
ENT*Q V1
ENT*A V2
7 7 540 2 0 1 4 1

The A register will be set zero if request completed, negative
if core not available. The Q register will contain' the n~per of
words or modules allocated.

6.7-2

• RELEASE CHAIN (Function cod e 02)

This request is used by a RT/comm program to deallocate .a
previously declared chain. Care must·be used so as not to release
the chain before all expansions have been returned to the general
si;.orage pool. .'

. Operator: RCHAIN$6. VO

where VO - chain number

Packet: I ENT*B7 I VO I·
.77540.20142

-TRANSMIT DATA (Function code 04)

This request will transmit limited data sets from an activity
or task to executive storage. This ',;ill allow an independently
executed activity or task within the job to retrieve the transmitted
data by means of a RECEIVE$ operator. ~~l tran~mitted data will have
a five character. octal identification attached to it. This identi­
fication will allow' the 'receiving element to specify a specific data
set. This identification will not be transferred to the receiving
element. It should' be noted that once a data set'is received .by an,
independent element, it is pu~ged from executive storage and cannot
'be received again.

Operator': SEND$~VO, V1,V2

where VO - base address of data field relative to lower ~ock;
V1 '- number of words in the data;f'ield;, and' ,
V2 - a 5 character octal identification (zero.implies

no identification.)

Packet: ENT*B7 Base Address
ENT*A No. of Parameter Words
ENT*O Identification

_7 7 5 4. 0 201 La. La.

·RECEIVE DATA (Function 'code 05)

This operator will transfer data from executive storage to the,
requestor. This data will have previously been sent to executive
storage by a SEND$ operator initiated by an independent or
asynchronously executed activity or previous task. Data may have
a unique identif~cation attached to it by the SEND$ operato~ that
transmitted it to executive storage. This identificatlon will make
it possible to seleot sets of data. In general, data sets with the,
same identification as the identification field of this operator
(next page) will be reoeivedby the requestor in the order t~~ they

6.7-3

,were sent to executive storage, i.e., on a first in, first out, (FIFO)
basis. The requestor will receive only that data that was transmitted
by one SEND$ operation. Thus there may be more data in executive
storage with the same identification. As a data set is transferred to
the requestor, it is purged from executive storage. This function
may also be used to transfer COMMON from one chained element to the

'next. This operator will nqt transfer control card data (see RECEIVEP$
operator). .

When control is returned to the activity, the A and Q'registers
~~ll contain the follo~~ng status ir£orma~ion:,

REGISTER

Q

A

CONTENTS

Number of data words transferred to receiving field~
, Q set negative if no data for particular identifi- "
cation left to be transferred.

Set to 0, if data set fits, within receiving field.
Set non-zero if data set overflowed the receiving
field. Receiving field w.ill be filled with as much
data as it will hold. A register will then contain
number:of words left in data set. Data transferred
'will be purged. Next RECEIVE$ with t his identifi­
cation will transfer remaining, vords of data set.

Operator: RECEIVE$~VO,V1,V2

where VO - base address of receiving field, relative to lower lock;
V1 - maXimum number of words in receiving field; and

, V2 - 5 character octal identification (O.implies no" identifi-
cation ' I '

Packet:

·SEARCH A FILE (Function code,06)

This function will search a file in the forward direction for a
block (called the find block) whose first word is equal to' some specified,
searchword. If such a biock'is found, it fs read into the buffer area.
This read will be performed regardless of the lock setting of the
buffer area (the buffer area will not be disturbed unless the, proper
block is found). The search will continue until either the block is
found or an end of file is detected. 'Control will not 'be'returned. to
the requesting activity until the search process has been completed.
To avoid typing up the synchroni~er, the search will be performed by,
software; hardware search features will not be ut,ilized. Only one
file or tape reel will be searched.

6 .. 7-4

A search of a random access storage device is a fixed block
search. The nlli~ber of words parameter (V1) is the block size." The
logical address of any Qlock (excluding the first) will be the logical
address of the previous block plus the number of words (V1).

If the search is succe~sful, the find block will, be read into ,
the buffer area and normal I/O status. with the exception 'of B7 and A.
The A register will contain the logical address of the find block. '
B7 will contain the number of blocks .searched (count includes the
find block) II' .Tape files will be position~d after the find block.

If the search iS,unsuccessful due to end of file, E.O. F. status
word will be returned in the A register (if· the search is unsuccessful
for' any other reason, the proper status word will be in theA register.
B7 will contain number of blocks read. '

Operator: SEARCH$6 va, V1, V2 , V3 , V 4

where va - file code;
V1 - number of words 'in buffer area;
V2 - buffer base relative to lower lock;
V3' - logical address from base of file (normally used for

, random access storage devices); and
V4 - 10 character octal searchword

Packet: EBJP*B7 I N
File Code I Buffer Base

Buffer" Base
Logical Address
Searchword,

7 '7 5 4 0 t 2 0 l' L'6 N

Nqte: A buffer size of zero will turn thi~ request
into a locate function. Nothing will beread .
into memory if the'block is, found. Everything
else remains the same.

d
• TRAN3v1IT CONTROL CARD P AMMETERS, (Function cole 11) ,

This request will transmit a limited set of parameters from a
control card or an unsolicited operator type-in to executive storage.
A worker progr~ll will then be able'to retrieve these parameters by , ,

,means of the RECElVEP$ or RECEIVE$ operator. This function requires"
that the base address, relative to lower lock, of the control card
parameter field be placed in B7'and the length of the parame~~r field
'in the A register.' ,

Operator: SE~P$AVO,V1

where VO - is base address relative to lower 'lock of parameter field
V1 - contains number of 'Words in parameter' field_

6.7-5

Packet: ' I ENT~}B7 I Base Address
l ENT*A No. of Parameter Words

2 ° 1 l) 1

• RECEIVE CONTROL CARD PARAMETERS (Function cod e 12)

This request will transfer control card parameters from exeoutive .
storage to the requesti,ng acti vi ty.' These control card parameters will
have been transmitted to executive storage by a SENDP$ operator. After
the control card information is transferred to the requestor it will
be purged from executive storage. Unlike the RECEIVE$ operator, all,
control card parameters, regard~ess of the number of different cards
that are stored, will be received by the requestor.

When control is returned to the a'cti vi ty, the A and .Q registers
will contain the following status irdormation:

REGISTER

Q

A

CONTENTS

'Number of words of control card parameters
transferred to receiving field. Q set negative
if no control card parameters left to be
transferred.

Set to 0 if parameters fit within receiving
field. Set non-zero if parameters overflow
with as many parameters as it will hold. A
register will then contain number of words of
pa~ameters left. Transferred parameters will
be purged. Next RECEIVEP$ will transfer
remaining wordS of parameters.

Operator: RECEIVEP$AVO,V1

where'VO - base address of receiving field, relative to lower
lock; and

V1 - maximum number of wprds in receiving field.

Packet:

• SEARCH FASTRAND TRACK WITH LOCK (Function code 14)

This function is essentially a search track and READL$. It is
applicable to FASTRAND equipment only.' The SEARCHT$, function will
be a part of this routine. The user should be aware that the SEARCHT$
is a hardware function and installation standards regarding' use of·t~e

'SEARCHT$ operator should' be 'checked before'using the SEARCHTL$ operator.'
This op~rator will compare the first word of consecutive FASTRAND sectors
against a specified searchword~ If the end of track is encountered
,before a match is made, 'the search is terminated and an un~~ccess~~

6.7-6

search status code returned in the A register. If a sector is found
whose first word matches thesearchword, a READL$ will be issued for
parameterized data transfer. If the area is locked out the read
(and, therefor~, the activity) will be delayed until the area is free.
When the area is free, the block will be read into the buffer area'
and entered into the lock list. The first word of the buffer area
will be the searchword, i.e., t~e read begins from the searchvord.
For successful find the A register will be set positive and contain
the logical address of the word on.FASTRAND that equalled the search­
word. All other status, returns hold as stated for normal I/O.

Operator: SEARCHTL$AVO , vi , V2, V3', v 4

where VO - file code;
V1 - number of words in buffer;
V2 ';'" base address of buffer, relative to lower lock;
V3 - logical address relative to base of file; and
V4 - 10 character octal searchword

Packet:

Note: If the buffer length is set to :lItlL"U this request
will become equivalent to a locate function.
Nothing is read into core. The logical lock
list is not consulted~ Everything else remains
the same.

·SEARCH FASTRAND POSITION WITH LOCK (Function code 15)

This functi6nis essentially a search position (SEARCHP$) and
READL$ operator. It is applicable to FASTRAND equipment only.
The SEARCHP$ function will be a part of this routine. The user should
be aware that the SEARCHP$ is, a hardware function and installation

.. standards regarding use of theSEARCHP$ operator should be ~hecked
before using the SEARCHLP$ operator. This ope'ra tor will compare the
first word of consecutive FASTRAND sectors against a specified search~
word. If the end of position is encountered before a match is made, .
the search is terminated and an unsuccessful search status code
returned in the A register. If a'sector is found Whose first word
matches the searchword, a READL$ will be issued for' parameterized
data transfer. If the area is locked out, the read (and, therefore,
the activity) will be delayed until the area is free. When the area
is free, the block will be read into the buffer area,and entered into
the lock list. The first word of tne buffer area will be the search­
word, i.e., the read begins at the ·searchword. For successful find
the A register will be set positive and will contain the logical
address of the find on FASTRAND that equalled the searchword. All
other status returns ho~d as ror normal I(O.

Operator:

where va - file code;
V1 - number of words in buffer;
V2 - buffer base relative to lower lock;
V3 - logical address relative to base of file; and
V4 - 10 character octal searchword

Packet:

Note: If the buffer size is set zero this request
will become equivalent to a locate' function.
Nothing is read into core. Th~ logical lock
list is not consulted. Everything else remains
the same •.

·SEARCH LOCK (Function code 16)

This request is virtually the s~~e as the SEARCH$ operator.
'1"' '" "<"'O,..,..,...~.,, A~.,...",,..+,,,A +" + '" QH'fI'Qrru~ rI"'."I'>.,...~ +~"V'\ -f'".,... ."'I"\"',..~-f'~"..n+~"""'.,,
... .L.Lv l.A.ov", ... '"' u. v Uvu. UV U.L.Lvu.n...~v 'II' v'"'!:-'u ... V.L.L .LV ... '"'.!:-'v O'u ... V.L.LO

regarding normal and error conditions. There is one important
difference between this operator and the SEARCH$ operator. When
a successful search occurs, the SEARCH$ operator performs the READ$
regardless of the logical lock status of the file. This operator
does not. This operator performs a READL$ (this is only pertinent
if. the file is on a random access storage device)'. If the area is
~ocked out, the read (and, therefore, the activity) is delayed until
the area is released. When 'the area is free, the read is performed.
The accessed area will then be placed on the lock l~st. The request
will go on to normal' completion. .

Operator: .

,; where VO - file code;
V1 - number of words in buffer area;
V2 -'buffer base relative to lower lock;
V3 - logical address from base of file (normally used for

random access storage devices); and
V4 - 10 character octal searchword .

, Packet.: EBJP*B7 I N
File Code I Buffer Size

Buffer Address
LOQ'ical Address "

Search Word
77540', I 2'0 l' 56

6.7-8

N

Note: A buffer size of zero will turn this request
into a locate function. Nothing w~ll read
into memory if the blook is not found. Since
the find block is not acce~sed, logical lock
'Will be ignored.

-BLOCK SEARCH FH DRUM WITH LOCK (Function code 17)

This function is essentially a block search that performs a
READL on the find area. It.is applicable to Flying Head drum
equipment (FH880, ~432, etc.) only. The function BLOCK$ will be a
part of this routine. The user should be aware that BLOCKS$ is a
hardware function and installation standards regarding use of the
BLOCKS$ operator should be checked before using this BLOCKSL$ operator.
This operator will compare consecutive words on drum against a
specified searchword. If an end of block sentinel (a word of all
binary ones 7777777777) is encountered before .a match is made, the

, search will terminate and an unsuccessful search status code returned
in the A register. If the find area is locked out the read (and,
therefore, the activity) will be delayed until the area is free. ,
When the area is free, the block will be read into the buffer area.
The first word in the buffer area will be the searchword, 'i.e., the
read begins from the search-word. The area that was read will be.
entered into the lock list., The A register will be set,positive
and '-"ill contain the 199ica1 address 'of the 'Word on drum ttl8.t ecru.all~d'
the searchword. All other status conditions hold as in no~l I/O.

Operator:, BLOCKSL$AVO,V1,V2,V3,V4

where va - file code;
, V1 '- number of words in buffer area;

V2 ~ buffer base relative to lower lock;'
V3 - logical address relative to base of file; and

,V4 - 10 character,octal searchword

Packet:' EBJP*B7 I N
File Code I Buffer Base

Buffer Base
Logical Address
Searchword

77540 I 20157 N

Note:' If the buffer size is set to zero' this request
will be equivalent to a locate function.
Nothing wi1lbe read' into core. The lock list

. will not be'consulted. 'Everyting, else remains
the same.

,6.7-9

·SUBROUTINE LOAD (Function code 20)

This operator will load a named absolute library program into a
specified location. This is not a segment but rather a subroutine
load. The operating task can control operation of absolute programs.
The program that is loaded will not be activated until a fragmentation
request is made. The operating base and memory lockout protection
associated with the fetched subrout~ne is a subset defined by the
requestor through activity registration~ If the request is s.uccess~illy
~ompleted, the A register will be set positive. If the subroutine
could not be loaded, the A register will be set to the appropriate
systems status code. '

Operator: , FETCH$avO , V1 , V2

where VO -'base address, relative to lower lock, of core area
where subroutine is to be loaded;

V1 - name/version of called element; arid
V2 - library in which call absolute element is contained.

This may be

SYSTEM - systems library
JOB - job library
GROUP/library number - named group library previously

linked to' joq., If field is
blank, the job library is
assumed.

Packet: I~E_B_JP_*_B_7 _____ ==.;:;....:~~~_$_+_7 ___ ---t1
N - - - - - - - - - - -N
V - ------ - - - -v

Librarv Type
Librarv Number If Group Lib (0 IF NA)
7 7 5 ~ 0 t 201 6 0

Note: The base address must be a multiple of 100 (octal);
i.e.; the two right hand digits must be 00 •

• LOAD SUBROUTINE AND REGISTER AS ACTIVITY (Function code 21)

This function is a combination of the FETCH$ and REG$ operators.
The requested subroutine will be loaded into the specified core area
and registered as an activity. The u~er is directed to the documenta­
tion for each of these requests for 'details. For this request, the
base address of theFETCH$function will be the same as the address
of activity in memory of the'REG$ function. The activity mode
indicator of the REG$'function is always 0 for·this combined function.
This is because the FE;~CH$ operation sets the RIR to the ~se address .

, of the subroutine. If the request 'is successfully completed, the A

6.7-10

register- will be set to appropriate systems file code.

Operator: FETCHR$AVO,V1, V3,V4,V5,V6

where VQ - base address, relative to lower lock, of core area
where subrou.tine is to be loaded (also implicit
starting point of activity);

V1 - name/version of called element;
V2 - library in which called absolute activity is contained;

this may be:

. SYSTEM - system library
JOB- job library

. GROUP/library number - named group library·previously
linked to job;

V3 - address of data area in core, relative to lower lock;
V4 - length of data area; .
V5 - data area mode: zero indicates read/write lockin

. will be set to the data area defined by V3 and V4
and read will be p~rmitted from any area (B registers
B4 through B7 are set to 17 bit mode);
non~zero indicates use read/write lock of requestors;
and

v6 - relative response priority (0-17); if priority not
specified, priority of requestor is assumed.

Packet: EBJP*B7 ~ $+11
I Base Address

N - - - - - - - - - - N
N - ------.- - - N
V - - - - .- - - - - - V

Librarv Tane
Library Number To IF NA)

Address of Data Area

229 Of228 V5lPrioritv· Len~th of Data Area
7 7 540 J 201 6 1

Note: Base address (V1) V3 and V4 must be a multiple
of 100 (octal).' '

l. ,., .,1
v. ,-I ,

·LOCATE ROUTINE AND READ THE TABLE OF CONTENTS (Function code 22)

The function is a subset of the FETCH operation. The requested
routine will be located on the specified library.~ The table of
contents for the element will be retrieved into a -9 word area
specified by the requestor.

Operator FETCHL$ VO, V1, V2 '

whe~e va - base address, relative to lower lock of a 9 word area
where the table of, contents is to be placed.

V1 - name/version of specified element

V2 - Library in which the named routine is contained, this
may be:

SYSTEM - system library
JOB - job library
GROUP/library number - a group library linked to job

Packet
I I

$+6 EBJP*B7
BASE ADDRESS

N- - - - - - - - - - - -N
N- - - - - - - - - - - -N
V- - - - - '-.- - - - - -V

-LIBRARY TYPE

6.7-12

.LOAD SUBROUTINE AND REGISTER AS QUEUE PROCESSED ACTIVITY (Function code 23)

This function is a combination of the FETCH$ and REGQ$ operators.
, The requested subroutine will be loaded into the specified core area
and then registered as queue processed activity_ The user is directed,
to the specifications for the FETCH$ and REGQ$ operators for detail.
For this request, the base address of the FETCH$ function will be the
same as the starting point of the activity of the REGQ$ function, If,
the request is successfully completed, the A register,will be set '
positive. The A register will be set negative if the subroutine could
not be loaded •.

Operator: FETCHREGQ$~VO, V1, V2,V3,V4,V5

where'VO -

V1
V2 -

V3 -

V4 -

V5 -

~'base address , relative to lower lock of core area
where subroutine is to be loaded' (also implicitly
starting point of activity); ,
name/version of called element;
library in'which called absolute activity is contained;
this may be;

SYSTEM - system library
JOB - job library
GROUP/library number - named group library previously

linked to job;
length of activity; zero implies read/write lock will
remain set to that of requesting-activity and the activity
considered an integral part of the compiler requesting
activity; non-zero length defines the area to be protected
by memory lock-in arid sets the RIR to'the value in YO;
five character (octal) identifier used for reference by
QREF$ operator; apd
relative response priority (0-17); if priority not
specified, priority of requestor is assumed.

Packet: EBJP~~B& J~+11
Base Address

N - - - - - - - - - - - - - - - N
N - - - - ------- - - -,- N
V - - - - - ------ - - - - V

Library Type
Li brarx No. 'If Group Lib (0 IF NA)
Length of Activitv Identifier

Priority
7 7 540 2 0 1 6 3

Note: "Base ,Address must be a multiple of 100 (octal)

6.7-13.

6.8 Cooperative Service Routine C.S.R.

Library number 007 is a non re-entrant routine used to perform
service requests for I/O cooperative control and for controlling
the loading activation and processing of Unit Record Routines.
The following is a summary of funotion codes to C.S.R. followed
by a description of each function containing parameters required,

Function Code Operator

01 Internal

02 CALL$

; 03 Internal > .. -
?

04 Internal

05 Internal

06 Internal

07 Internal

10 Internal

.,., T +o ""'" 1
I I • .L.L u ~ .L.LQ,..L.

12 Internal

13 Internal

14 Unassigned

15 Unassigned

16 Internal

17 Internal

20 ' . Internal

21 Internal

Description

Load and activate primary"input
unit record routine

Same as 01 -

JOB card sensed, set up necessary
linkage

Close primary input stream and
return "

Close primary input stream and
terminate

Activate primary output U.R. routine

Terminate primary output U.R., routine

Activate secondary output U.R •. routine

Load and activate named edit routine

Terminate edit routine

I/O cooperative library overflow
possible to. occur

Deallocate overflow mass storage
extension to I/O cooper~tive library

Primary orsec9ndary'output module
overflow

Prima~ or'secondary output module
error overflow

6.8-1:

Function Code Operator Description

22 Internal Ilo cooperative module drum error

23 Unassigned

24 Unassigned

25 Unassigned

26 Unassigned

27 Unassigned

30 Unassigned

31 Unassigned

32 Unassigned

33 Unassigned

Functional description of function codes

Function code 01. - Load and, activate primary input unit record
routine indicating scheduling information and limited lata is
available to be entered into the system and processed.

Caller: Console Control routine upon receiving an unsolicited
request from computer operator to begin a scheduling
pas·s from a . particular device Q

UR £:l Name/Version @

Type of device is determined .by facility statement
collected with named unit record routine.

Parameters: B7=Address of. unsolicited call for primary input
unit record routine.

of Char. I # of Words
Name
Name

Version

'-..
~

Addendum: Exec task'activity addendum

.~# of words - allocated by
. console handler from free
core chain to contain
operator's message.

.# of characters contained
in message.

Function: .Locate and validate existence of called for unit
record routine, queue request it insufficient

6.8-2·

Exits:

cooperative mass storage.

·From task addendum and. link to task addendum chain.
Switch activity addendum and ~erform call to pre~selection.

·Deallocate core used ~o contain call

·Form job summary containing call, to unit record,
routines

·If error conditions submit diagnostic message to,
console operator and exit to content supervisor
via XX function code •

• If request queued, exit content supervisor via
'xx function code.

·Successful, register activity to worker addendum and
switch to pre-selection F.C. XX via content'
supervisor.

Function code 02 - Sarna as function code

Caller: Internal call form operating ~rogram via CALL packet

Parameters: B7 ~ address of'CALL packet containing n~e/version
of primary unit record routine.

Call Operator: CALL$ Name/Version

Packet: i EBJP*B7
Name

2

Addendum: Operating worker 'taSk/activity addendum

Function: ·Locate and validate existance of called for unit
record routine, queue request if insufficient
cooperative mass ~torage.

~Form task addendum and link to task addendum chain.
Register activity and perform call to pre-selection.
Set completion status code 00 in A r.egister .of caller ."

.Form job sUmmary containing call for unit record routine.

6.8-.3

Exits: .Return to requestor

nAil register = 0000000000 Call completed
IIA". register = 7777740006 ~utine could not be located
nAil register = 7777740001 Invalid unit record routine

-Register'call to pre-selection Fe 01 under new
task/activity.

Function code 03 - signaling the start of a primary input control
stream

Caller: primary input unit record routine upon sensing
a job card

-
Parameters: B7 set to the address of a completed module

description block. (See figure) describing
a completed primary input module in which the
JOB card is the first item.

Addendum:' Operating worker task/activi~y addendum

Function: ·Allocate drum modules and store submitted primar,y
inpu t module in I/O coopera ti ve library,.

Exit:

·Set up primary input chain

-Register call for pre-selection to activate
schedule sequence. .

.Return to requestor upon successful completion
nA" registers 00

Function code 04 and 05

Caller: Primary input unit record routine requesting the
close of current control stream and return of
control under new task addendum (04) or the termina­
tion of routine (05).

Addendum: Operating under control of worker task/activity
addendum.

Parameters: Last storage mo'dule and description packet. It
incomplete,module item count must reflect # of
items contained in B7 set to address of
description packet.

Function: .Close·primary input stream and store last module
if stream was stored •

• POP any outstanding r~quests for primary input on
this stream.

6.8-4

Exit: '

-If function code 04 form new task addendum, link
UCB and activity addendum.

·If function code 05 deallocate facility assignment
ZA, core storage of U.R.

Function code 04 Return control to requestor
~~nction code 05 RETURN exit through content supervisor

Function Code 06 - Load and activate primary output U.R. routine

Caller:

Addendum:

·Termination due to one of the following: al
tasks within the job stream have been completed.
Task has terminated and cooperative library contains
excessive primary output for task. .

.Cooperative service routine due to excessive primary
output accumulated for task as signaled b.1 I/O
cooperative control calling C.S.R. via Function code 20.

Operating worker task/ acti vi ty add"endum

Function: -Retrieve job summary and locate called for unit
record routine.

EXit:

-Form I/O cooperative module containing CALL
card as first item and job identification as
second item and link to head of primary output
stream.

Pre-selection to form selection summary for unit
record routine:

Function Code 07 - terminate primary output unit record routine.

Caller: Primary output unit record routine upon sensing
on E.O.F. from I/O cooperative control.

Addendum: Operating worker task/activity addendum

Function: -Request cooperative control to close primary output
stream •

Exit:

• If non-standard output routine release "core and
facility assignment.

-If standard output routine;' search for call of
a standard U.R. output routine. If find made,
switch control to new task addendum, repeat step 2
Function code 06 and register U.R. for reactivation.

Call termination

Function code 10 - Load and activate secondarj output U.R. routine

Caller: ·"Termination" due to one of the following: All tasks
within the job stream have been completed. Task has
terminated and cooperative library contains excessive
secondary output for task.

• "Cooperative service routine II due to excessive seco'ndary
output accumulated for task as signaled by cooperative
control calling C.S~R. via Function code 20~

Addendum: Operating worker-task/activity addendum

Function:- -Retrieve job summary and located called for unit
record routine. Set call bit in II.Job Stuck" for
secondary output.'

Exit: '

-Form cooperative drum module containing call card as
first item and identification as second item and link
to head of secondary output chain.

Pre-selection to form selection summary fer uni't
record routine.

Function code 11 - Terminate secondary output unit record routine.

'Caller: Secondary output unit record routine upon sensing an
end-of-stream status from cooperative control. '

Addendum: Operating worker task/activity addendum.

Function: 'Request cooperative control to close output stream.

Exit:

'If non-standard unit record routine release core and
facility assignment and exit by normal return mechanism.

-If standard output routine; search for call of a
standard secondary output unit record routine. If find
made switch control to new task addendum, repeat step 2
of C.S.R. Function code 10, reset storage module to
restart unit record. If no find made, deallocate core
and facility.

Call termination via normal RETURN through content
supervisor.

Function code 16 - Allocate additional mass storage for I/O
cooperative library ,and form bit map for acquired mass storage.

Galler: 'Systems initialization to effect allocation of base
map overflow.

6.8-6

=From C.S.R. as the result of processing Function code 20
of C.S.R.

Parameters: None

Addendum: Worker task/activity addendum

Function: ·If maximum number of additional extensions to
·cooperative library has not been obtained submit
the following facility request statement<thrcugh
the normal facility assignment routine.

Exit:

ASG$ ~ ~ I/O LIB, ZD, 95040D/190080D

where - IOLIB is type of random access storage
required to satisfy request as determined
at time of "facility map" forrr.ation;
Preferably IOLIB should be equaled to
medium grademass storage FH880.

ZD indicates cooperati~e. library file code

95040D/190080D are the minimum/maXimum
number of words used on extension requests.
190080D words will provide 960 modules and
~ ... ~o.',\"V'\~ '2."1. ¥\"""~""~""""IllI"\....-=+ __ ~
..... o;Iv ,to' Q, .J (8 !-,V;:).L IJ.LVU U.L v WQ.p.

·Allocate core and form a 378 position bit map setting
end bit position to reflect lock of maximum allocation
from facility assignment. 190,080 words of mass
storage provides 960 modules at 198 words.

Adjust module counters and link to "Bit map descriptors"
<See 7.4.2)

Return to requestor "A" set 0--0 if allocation
successful. "A" set 7777740006 indica~ing mass
storage unavailable.

Function Code 17 - Deallocate an unused mass storage extension
to .cooperative library.

Caller: "Cooperative Control" when it has detected all
storage modules within· a particular bit map have
been released •.

Parameters: None

Addendum: Task/activity addendum of program causing release
of last module.

6.8-7

Funotion: • Check for any activities which we're pushed on "C. S. R. II

chain cell due to overflow of a stream or a primary
input U.R. routine which was not activated due to laok
of mass storage. If either is found ready its lost
control and re-enter point, "pop" request and exit to
original caller.

Exit:

·Check last bit map in chain of bit maps (extensions) is
empty. If so, deallocate mass storage extension, release
bit rr~p, core and repeat this step. If last bitmap
is not empty exit to caller.

Control is always returned to call or with successful'
completion status code "A" register = 0 o.

Function code 20 - a call to indicate one of the priffiary or secondary
output streams has reached the maximum number of modules which can

'be contained on the cooperative library at anyone point in time.
This number is ,set by systems convention.

Caller: Cooperative control upon sensing overflow.

Parameters: B2 register set no" or "111 indicating which stream
primary or secondary respectively has overtlo~ed.

Addendu,m:

Funotion:

Exit:

Task/activity addendum of program causing ovarflow.

Perform the following sequence of checks.

a) Read "Job Stack" and check to see if unit record
routine has been called for. If so, skip to step C.

b) nREGCT" call for C'.S.R. function code 06 or 10 to
call primary or secondarY'output routine.

c) Execute C.S.R. subroutine used process Function cQde 16
to obtain additional mass storage. If additional
mass storage is obtained return control to requestor.

If additional mass storage is not'obtained "PUSH" request
of content supervisor chain for lock of mass 'storage
return to requestor as next function to perform·on
subsequent npOpn;

Return program control to cooperative oontrol 'if
additional mass storage can be obtained, otherwise'
PUSH activity until unit record is activated.

6.8-8

6.9 Pre-Select

The function of pre-selection is to obtain explicit and implied
scheduling parameters which have been presented to the system
by the control lnaguage, from a pass through the l~der or are
registered in the systems library. The scheduling parameters
are summarized for use by selection. All control statem~nts
required task/activity are readied for CCI phase.

Pre-selection is aotivated by the following function codes

Func~ion Code

01

02

03

04

05

06

07-33

Operator

Internal

Internal

, Internal

Internal,

Internal

Internal

Unassigned

Description

Pre-select primar,y input unit
record routine

Pre-select next task'contained
in control stream

Pre-select primary output unit
record routine .

.
Pre-select secondary output unit
record routine

Pre~select edit routine for
primary input

Control card interpretor

Functlonal Description of Function Codes

Function code 1, 3, 4, 5: Ready call for unit record routine for
selection and initiation.

Requestor:

. Exits:

Addendum:

Processing:
Procedure

Parameters:

Cooperative Service Routine upon validating a
call for the load and activation of a U.R. routine.

Release Pre-selection and queue a call for
Selection under exec addendum.

Operating worker task/activity addendum

a. Find the Job Description through the
appropriate entry in the JOB Stack.

b. Locate the appropriate control statement
within the Job Description.

c.o Locate the specified routine on the l~brary.

d. Preprocess and form ~ummaries for any
control statement attached to absolute
element.

s. Update the Job Description and the Job Stack.

Fe 1 I EXR.N*20401 I

,-

I EXRN*20403 I Fe :3

Fe 4 I EXRN*20404 I

Fe 5 I EXRN*20£tP2

Function code 2: Ready a task for selection and initiation

Requestor: Cooperative Service Routine upon sense of a
job .statement or by Termination for selection
of next task in job already started. .

Exits: . Release Pre-selection and queue a call for

Processing
Procedure :

Selection under the exec addendum.

a. , Request an image from cooperative control.

b. If JOB cards set up Job Stack, Job
Description

6.9-2

c. Pre-process all control statements through
the task execution statement building the
summaries.

d. Locate the specified element on the library
and pre-process any control statements
associated with the absolute element.

e. Set up load function in summary

f. Update job stack bit settings

Function·Code 6 - interpret the control statement and transfer
control to routine responsible for processing the control statement.

Requestor: Any worker program requesting the. processing of a
control statement within his primary input stream.

Exits: ·Release control card interpretor and transfer

Addendum:

Processing

control to processing routine. (DRET1$ B1 = 1
B2 = processing routine). "

·Release control card interpretor and return control
to requestor (DRET1$ B1 = 0)

Requestor ta~k/activity addendum.

Procedure: a) Examine control statement operator ..

b). "Search" list· of acceptable functions.

c) Set up switch to processing routine if not
processed by CCI.

d) Swi~ch to processing routine.

e) If processing is responsibility of CCl process
and return control to requestor.

Parameters: B7 = address of control statement (SMOD)

Q = length or· control statement (SMOD)

6.9-3

6.10 Selection

The function of selection is to determine which task or activity
from the current pre-selected candidates shall· be introduced into
the mix of active programs based on selection priority and available
facilities. Once an element has been selected it viII be allocated
~nd activated by serial executing control statements as formed by
pre-selection. . .

Selection is composed of two phases:
card interpretation phase (C.C.I.).
by the following function codes:

Select phase and control:
Activation of selection is

F1:lnction
Code

01

02-04

05

06-.33

Operator

Internal

Unassigned

Internal

Unassigned

Description

Select task or activity from
current s·tack.

Initiate selected activity/task

. 6.10-1

Function Description of Function Codes

Function Code 1: Select a task or an activity from the Job
, Stack for activation.

Requestor: Pre-~election

Exits:, -If a task is, selected establish an activity

Addendum:

Processing
Procedure

Parameter: "

,addendum and 'storage module or worker addendum
requesting the Initiation phase of Selection,
and return to the Content Supervisor requesting
a return to the exec switches releasing selection.

'If no task selected return to Content Supervisor
'requesting a release of selection and return to
exec switches. '

Exec task/activity addendum.

a. Deallocate addendums of inactive tasks
placing addendums and held U.C.B. in
selection cooperative bit map storage.

b. Summarize peripherals available on system.

c. Go through priority chain in the Job Stack
selecting a job or appropriate task. ' .

d. Establish workeraddendums in core and
switch to worker addendum issuing a request
for the Initiation phase.

FC 1 I EXRN*204411

Function Code 5: Initiate the task selected.

Requestor: Selection

Exits: Queue request for Selection under exec addendum.

Processing
Procedure: a. Process the control statements contained in

Pre-selection control statement summary using
the Control Card Interpreter.

b. 'Load absolute element and modify to running
torm.· .

c. Queue a request to start the routine.

6.10-2

Parameter: Fe 5

v) = the address at which the map number
and start position of the control .
statement summary.

6.10-3

6.11 Termination

Termination (library number 10) is a non re-entrant routine responsible
for the removal of a task or activity from'the system along with
its core and peripheral> which are not to be held from one task
to another. It is activated upori the issue ofa RETURN operation
by a routine with no outstanding activities or upon the ABORT or
ERROR exit,of some routine.

Functions: Function
Code

01

02

03

04

05

Operator

Internal

ABORT$

ERROR$

Internal

Description

A task/activity issues a
RETURN with'no outstanding
activities. Deallocate the
appropriate task/activity •.

A task/activity signals the
abortion of the job from the
system.

A task has indicated that
termination is desired because
of error conditions.

Deallocate the specified· unit
record routine. .

A task/activity has encountered
a fault condition. Abort the
job from the system.

Functional Description of Function Codes

Function Code 01 - A task has completed all functions implying
the deallocation of all core and non-held
peripherals. The activation of termination
was initiated by the basic exec when a RETURN
was issued by the routine with no outstanding
activities to which control can be given. This
is the normal task termination procedure.

Caller: Basic Exec, Return Mechanism

Parameters: Entrance is made by a REGC~ . - function. .No
additional parameter is required.

6.11-1 '

Addendum:

Function:

Exits:

Worker Task/Activity Addendum

a) Release core assigned to task.
b) 'Release all non-held peripheral of task.
c) Throwaway non-control statements for task

down to first control statement.
d) Log all pertinent information for core, peripheral

in the Job Description module.,
e) If the end of the control stream has been

reached, deallocate all facilities, deallocate
primary inputU.R. routine if not already done,
clear job library of entries for this job, '
clear all mass storage locks, console queues, etc.

f) ,Get accounting information from Job Description
and submit to primary output. . .

g) Close out primary and secondary output streams.
h) If primary output not pre-selected, make return

to CSR requesting activation of primary output
unit record routine.

i) If secondary output not pre-selected and active,
make return to CSR requesting activation of
secondary unit record'routine.

j) If output routines active, abort control thread

k)

1)

1 •
')
,;..

3.

and wait for reactivation through a request for
unit routine deallocation.
If all activities are complete, switch control
thread to exec addendum with re-entry to
deallocate task and activity addendum of jop.
Make a switch to selection for the selection of
another task.

ABCT, to wait for unit record routine completion.
T'\01J'I'f'I~"'I '1.. ... "' •• ""'1..,., C! (" C! R 11.:_,..
J.J.l.I.J,,;J.l.W I, \.IL.I..l. vU,t:;,I..I, V....... \.IV vI.. \,;Q,.I...I....L.I..LQ V.l.

activation of unit record routine.
SWITCT ',and DRET$1 requesting the deallocation
of the task and activity addendums.

Function Code 02 - A taSk/activity requests the removal of the
entire job from the system.

Caller:

Addendum:

Function:

Worker Routine Via Exec

Worker Task/Activity Addendum

a) Release core.
b) Throwaway all primary input
c) Release all facilities.
d) Delete Job library using L.S.~. function code 2
e) Clear mass storage locks, etc.
r) Put out ,task accouting information and abort

exit coridition.
'g) Put out job accounting information on P.O.'

6.11-2

Exits:

h) Close out P.O. and S.O., set termination
indication.

i) Put out P.O. and S.~.
j) Release output unit record routine facilities.
k) Log all job accounting information.
1) Switch central thread and go to selection for

, deallocation of addendums.

DRET1$ B1=1 B2=CSR to CSR for pre-selection'
of out~~t unit record routines.'

ABC~ for deallocation of control thread when
unit record routines still active.

SWOT and DRET$ for deallocation of addendums.

Function Code 03 ~ A task/activity has indicated on termination
of the current task is necessary because of
an error condition.

Caller: Worker Routine Via Exec

Addendum: Worker Task/Activity Addendum

Function: Essentially the same as ~~ction Cede 1

Exits: Same as Function Code 1

Function Code 04 - Deallocate and release facilities of unit
record routine.

Caller:

Addendum:

Function:

Exits:

Cooperative Service Routine

Worker Task/Activity Addendum

a) Release core and facitities of unit record
routine. ·

b) If task is in process of termination check
completions of all func~ions.

SWCT to Exec
. DRET1$ B1=1 B2=Selection

6.11-3

6.13 Library Maintenance Service Request

Library number 006 is a non-reentrant routine used to enter an element
in the Job Library and to delete elements or portions of elements
already in the Job Library. The following is a summary of function
codes to Library Maintenance Service Request followed by a description
of eacp function containing parameters required, caller, addendum,
exits, and test condit~ons.

Function
Code

01

02

03

Operator

Internal

Delete

Internal

Description

Enter element in Job Library.

Delete specified elements from
'the Job Library.

Delete all elements associated
wi th the current job from the
Job Library.

Functional Description of Function Codes

Function Code 01 - Enter an element in the Job Librar,y.

Caller:

Parameters:

Addendum:

Function:

'Exit:

Processor (SPURT, COBOL, etc.'

B4 = Address of storage module causing activation
biased by lower lock limit.,

B7 (in storage module) = Address or processor
ou~put TOC.

A Register = Job nl1mber of element

A Register (in storage module) = File code of
e1:ement.

'~orker task/activity addendum

, .

Crea te Internal TOC for element and enter it
in TOC module chain.

Perfo~ all necessary updating of Job Directory,
Bi t Hap, and TOC Module. .

Transfer element from mass storage to the'Job
Library.

Return control to content supervisor upon
completion.

Function Code 02 - Delete specified elements from-the Job
Library.

Caller:

Parameters:

Addendum:

Function:

Exit:

Delete statement through the primary
input stream.

B4 = Address of storage module initiating
activity biased b,y.lower lock limits.

'·B7 = Address to the control statement causing
activation.

Worker task/activity addendum

. The purpose is to release prime mass storage
back to library maintenance or to the system.'
The effected elements are specified on the
delete statement in the following format:

DELETE option NAME/vERSION, ETC.

, If the (V) option is used, the name/version
are interpreted as 'group library names. The
group library is an extension of the job
library. To release· this area of storage
the function issues a "FREE" statement to t.he
system. Then, the associated library links
are removed from the job direct9ry. If no
option is present, the elements are interpreted
as resident on the job library. The element's "
area of storage is released to library
maintenance and the element's associated TOe
is deleted.

Direct return to reques~or.

·6.13-2

Function Code 03 ~ Delete all elements associated with the current job.

Caller:

, Para.meters:

, Addendum:

Exit:

(A)r.egister == Job Number

~orker task/activity ,

'The purpose is to 'return all storage associated to a .
Job back to maintenance or to the system. The job
directory'is searched for job and ,group library links.
The links, TOOS, and element area are delete from
master. storage ·directory. If . a group library is a,sso~- '
iated to a job, storage is returned to system through,

. a "FREE" statement. 'Next,' the links and job number'
is removed ·from ·directory. ' .

Dire9t return to requestor.

6.13-3

6.13.1 Processor Interface

All processors operating under' the control of OMEGA
,utilize OMEGA services and functions in the performance
of their duties. 'An explanation of some ~r the services
provided and the method 'of employing' these services
follows.

-Control Statement A~cess

In the process of loading and initiating a processor the
control statement resulting in the call of 'the processor'
is removed from the input control stream. Since all
processors read the statement to interpret ,data contained, '
therein, this card is placed on mass-storage via the
SENDP$ operation. The individual processor 'must issue, .
a corresponding RECIEVEP$ operation in order to obtain this
statement. (See Secondary Exec documentati~n) ,

.Register Settings

When the individual processor is given control the A
register will contain the job number for which the' "
processor is performing 'its task. RIR is set to the
processors base. The lock limits are set to include
the core area assigned tQ the processor. IFR is set to
15 bit B registers.

·Available Services

All OMEGA service available to a worker routine are
available to the processor.

-Option Interpretation

The following is a list of options applicable to individual
processor~, their meaning and" action to be taken because
of the option's presence.

Options - Y = Accept the results of the processing
as correct even though errors were
detected. The processor 'Would put
out an element m~rked as error free,
even though some non-critical error(s)
were present. If a critical error
occurs which will inhibit the validity
of the output, the Y option is ignored
and the element marked as being in error.

x = Abort the remainder of the job if any errors
are detected by the processor. If-neither
a X or Y option is present and errors are
detected, the job will continue, but any
attempt to collect and execute the routine

'will be inhibited unless options are provided.
on the LOAD and GO statements verifying the
validity of the element. .

Even though an abort conditon occurs the
processing will continue in the respect that
any listing output will be obtained if possible.
No output other than the listing will be
produced on the abort condition. The processor
will issue an ABORT$ function which will
cause OMEGA to abort the entire job with all
incompleted tasks being aborted also.

Z = Error out the task if an-error occurs during
processing. Any listing requested will be
completed, although. no element will be produced
by the processor. This causes the termination

. of the current task, but will result in the
processing of tasks within ,the job stream.

The processor will issue an ERROR$ to initiate
this action.

L = Produce a complete listing of the routine
being processed. The listing will consist of
all pertinent data. Apy sUmmarization and
error listing will also be given •

. N = Supress the source and object code listing
implied by an L option. No information·will
be printed except for certain error diagnostics.

S = Produce -a list of. symbol definitions which
can be used by the diagnostic routine. These
symbols -will consist of mnemoIuc souroe labels
within the routine being processed along the
relative position of the labele

6.13-5

·Error Indication

The error indicator in the lower half of the first word of
the toc is set to indicate the status of the element processed.
Subsequent processors of this element will be influenced by'
this error indicator along with the processor options as to

. the action to be taken when an element marked as contain~ng
an error is encountered.

The error indicator is broken down into a series of lists,
each of which implies a categary of error(s) which occured
during the production of the element.

A breakdown of the categories of errors possible and the·
fields assigned to individual processors concerned with the
manipulation of elements. If an error condition is encountered
the processing will set the bit ih its assigned field which
defines the category in which the error· falls and the
corresponding bit in the general field.

214 213 212 211 210 29 28 27 26 25 24 23 22 21 20 ERROR
INDICATOR

General - General error setting used by all processors

214 - If set indicates a critical type of error
occurred which makes the validity of the
element improbable. (e-. g. overflow of
available storage, loss of data,etc.)

213 - If set indicates a generative type error which
will probably interfere with the collection

. or execution of the element.

212 _ If set indicates a generative or declarative
type error which mayor may not interferewith
the further processing of the element.

Compiler - Error settirgsreserved for error ~onditions encountered
during the compilation of the element by the

:processor (COBOL, FORTRAN,etc.)

211 _ 29

Assembler - Error setting reserved for error conditions
encountered during the assembly of the element.

28 - 2~
Loader - Error settings reserved for error conditions

encountered during the collection of elements.

25 - 23

Librar/ Maintenance - Error setting reserVed for errors
encountered upon the manipulation of
the element by the library maintenance
routines.

·Service Request

The Library Service Routine serves as the means by which an element .
produced by some processor may be entere,d into the job library
complex, from which it may be operated on or used by other systems
or user programs.

The Library Service Routine (LSR) is used to transfer three different
types of elements (RB, ABSOLUTE, SOURCE). The description of
the TOG header necessary for LSR to process, the element may be
found in Figure 1 of this section.

The linkage provided by the processor to the LSR is defined belovo

where TOG ADDR·:- the base, address of the toc which defines
the element to be entered into the job librar,y.

FILE GODE - the file code under ,which the element to be'
entered into the job library may be found.

After the transfer of the element from the specified file to the
job library has been completed the requesting processor will be
given control at the address following the request for LSR.

• Termination

The normal method or the termination of any task/activity is
the issuance of a RETURN$'function with no outstanding activities
to be completed.

If the options imply an error exit upon sensing an error this is
accomplished by the issuing of the folloving function. No control
is 'returned to the requestor.

ERROR$

If the options imply an abort condition is called for, this can' be
accomplished by the issuing of the following function. No control
returned to the requestor.

ABORT $
6.13-7

RB

ABS

SOURCE

EXTERNAL Toe FORMATS (PROCESSOR OU~UT)

I

1 Error Ind

N N 1N N N
N N N N N
V V V V V
Increment to EDEF

I # of EDEF ~ncrementlto XF~ 'n _

of XREF
Increment to CC

of CC
Increment to INFO

INFO
Increment to SDEF

SDEF
Incrementlto TEXT
Length of TEXT

2' Error Ind

N N N N N
N N N N N
V V V V V

Increment to ASG Images
Max Core Uf ed # Images

Increment to ELT Base
Length of ELT

Increment to SDEF
SDEFS

11 ,..., ¥ .. I ff ~egment.s ... Lengt.n 01
Contro]

3 Error Ind

N ·N N N N
N N N N -N
V V ~ V V

Increment to ELT
Sub Type # Images
Element Leruzth

This toc is produced by the assemblies
and compilers. It contains a description

- of where the individual parts of the element
are on the scratch file of the processor.
Before termination a processor will make a
service request oalling for library
maintenance which will in turn place the
'element in the job llJ;>rary.,

The absolute toc is produced by the
collector-loader. The proceedure for
handling is similar to that for an RB
ioc in that an internal service request
is made for library maintenanoe.

The source toc could be produced by
any processor. Usual~ it would be concerned
with central card images. A sub type is
provided whereby the source c9de could be ,
indicated as ,compressed. The element length
is required in case the sub type indicated
compressed, ptberwise 20 word images are
assumed.

6.13-10

6.30.1 Selection Job Stack

o
1
2
3
4
5
6

'7

LARGEST JOB # 1# JOBS IN MODULE
INCREMENT TO NEXT JOB STACK
INCREMENT TO BIT MAP MODULE
BASE PRIORITY LINK

I BIT SETTINGS
SELECT PRIORITY PRIORITY LINK } INCREMENT TO JOB DESC. MODULE 10 JOB ENTRY 1

11,
12
13

MI NIMUM CORE
LENGTH TASK SUMM]RY

MAXIMUM CORE ..
MAP # T START POSITION

6.30-1

JOB ENTRY 2
~

I

I

Selection Job Stack Desoription
• I.'

-General Description

'The selection job stack is maintained in the I/O cooperatives mass
storage file. A link ·.to the base job stack module is maintained
in the 5th word of the core summary map.

A job number and a cell within the job staok will be assigned by
the cooperative. service routine' when a job card is sa'nsed in the
input stream. Although each j.ob cell in the job stack cOhtains
the job number, the job number can be calculated .by the posit.io:h
of the cell within the module or s~bsequent mo~ules. ~ch module
is capable of hold 408 jop cells. . ~'

After the cooperative service routine has set up the. job cell in
the job stack,along with the establishment of a task addendum,an
entry is made to the preselection phase of select·ion •

. Preselection will examine all·control statements in the input stream,
. through the first .control statement resulting in an ex'ecution
. request. In examining these control statements 'pre~ele~tion will
set up a facility summary consisting of ~ll facilities requested
in the control stream and by the routine to be executed. This'
summary is preserved in a storage modul~ on the cooperative mass
... + __ 4:":, T+ .~,; \... ~_3 \... ___ , __ .&...1 __ ..1_3_.&._-..!_..I __ ..I~ '&''--
;:) I.IV.&. ClESO .L.£:...LO. . .I. 1.1 W..L..L..L uo u.oou Ul OO..LOU "'J..vu J..ll UO "'O,I,:.uu..UJ..L.lf5 . -':J. . ",uo ,

job can be loaded and exe,cuted wit~in the mix of jobs in the system ..

6.30-2

-Detailed Description

Word,¢ - U = The largest job number that has been assigned.

Word 1

Word 2

Word 3

Word 6

,: L = The current number of. job entries in this particular
job stack. The maximum is 60 octal for any one
stack module., I '

= A link to the next module of tne job stack if one .
is present~ Subsequent modules will have the same,
format of the initial one except fo~ the sign bit
of word ¢. '

, ."

= ' A link to a module used for s'torage of pit '~ps
descri bing area~ ~ken up by selectio,n sUlllinaries.

, , = Base link to job of highest priority .

= The start of a job entry. The ,bit settings, indicate'
the 'status of' the job at any one time.

Meaning , Bit Setting's'

229
228'
227
226

,JOB terminated, clear from system
End of control stream reached
Primarj invut called

225
224
223
,222
221
220,
219
218
217
216
215
214,
213
212
211
210

29
28
27
26
25
24
23
22
21
20

If If, preselected
If "selected
" II initiated and active

Primary output called
" If pr~sel~cted
If If selected
II II initia.ted a.nd active

Secondary output, called

" "
" "
" "

Edit Routine
II II

" "
II II

r

Task rolled out

" II

II

"
6.,30-3

active
initiated
selected
preselected'

presele'cted
selected
initiated and
called
preselected
selected
initiated and

active

active

Word 7 - U = The select priority which is assigned according to
the following conditions •.

Word 10

a. Priority specified by user.
b. The number of tasks within the job that have

been completed.
c. The amount of primary input
d. The number of peripherals requir ed by the task •.
e. . The number of tim~s a ·task has been passedu~

- L = The job number.assigned by the dooperative service
routine.

= The increment to the job description module on the
cooperative library file (ZD).. . .

Word 11 ~ U = The.minimum ·amo~nt of core the task can use if it
is available.

- L = The maximum amount of core the task can use if it
i~available.

Word 12 - U = The length of the initial task summary •

. - L :: Lip..k to job of· next highest priority .

214_26 = The. map n~ber·which defines the base storage module
used for sUmmary storage.

25 -2°= The bit position defining the base sub cell used
'.' wi thin the storage' module.

6.30.2 Job Description Module

HEADER 0
1
2
3
4
5
6

INCREMENT TO NEXT JOB DESC. MODULE OR TO ITSELF
MODULE LENGTH IINDEX TO NEXT AVAIL. LOC.

FILE INCREMENT TO CURRENT MODULE
LENGTH TASK ADDM & UCB IMAP It AND START
LENGTH CONSTANT ACCT. I~70 I INDEX TO CONSTANT ACCT INFO

FILE INCREMENT TO MODULE WITH CONST. ACCT. INFO
LENGTH JOB ID.e;N'1'll"lCATION I T1I.IDH'V IjlO TaD T D

.Ll.~ ,WA.L tJ .u .L ••

FILE INCREMENT TO MODULE WITH JOB I.D.
LENGTH PRIMARY INPUT U.R. INFO IINDEX TO P.I.U.R. INFO

FILE INCREMENT TO MODULE WITH P.I.D.R. INFO
LENGTH PRIMARY OUTPUT U.P. INFO lINDEX TO.P.O.U.R. INFO

FILE INCREMENT TO· MODULE WITH P.O.U.R. INFO
LENGTH SECONDARY OUTPUT U.R. INFolINDEX TO S.O.U.R.

FILE INCREMENT TO MODULE WITH S. 0·. U. R. INFO
. LENGTH EDIT ROUTINE I~1fO IINDEX TO EDIT ROUTINE INFO
I FILE INCREMENT TO MODULE WITH EDIT INFO
I LENGTH OTHER ROUTINE INFO .l I NDEX TO OTHER ROUTI NE INFO
I FILE INCREMENT TO MODULE WITH OTHER INFO l
I LENGTH ACCOUTING INFO IINDEX TO ACCOUTING INFO

FILE INCREMENT TO MODULE WITH ACCOUNT INFO
! LENGTH DUMP INFO !INDEX TO DUMP INFO
I FILE INCREMENT TO MODULE WITH DUMP INFO
! LENGTH CHANN~L -1 SUMMARY t I NDEX TO CHANN.t!;L -1 SuMMARY·

FILE INCREMENT TO MODULE WITH CHANNEL SUMMARY

f·
LENGTH CHANNEL 23 SUMMARY IINDEX TO CHANNEL' 23 SUMMARY

64 FILE' INCP..IDfi~NT TO MODULE WITH CHANNEL'21 SlJW~~Y ..

JOB I.D.

P.I.U.R

P.O.U.R

S.O.U.R

EDIT R.

A l JOB IDENTIFICATION 1
--I" (JOB STATEMENT FROM INPUT STREAM)

B LENGTH INPUT U.R. SUMMARY MAP ' & START OF INPUT U.R.
PRIMARY INPUT UNIT RECORD ROUTINE '

I
CALL CONTROL INFORMATION

c LENGTH 'PRIMARY OUTPUT U.R. SUMMARY
PRIMARY OUTPUT UNIT RECORD

ROUTINE CALL CONTROL INFORMATION
D LENGTH SEC. OUTPUT U.R. SUMMARY

SECOND~~Y OUTPUT UNIT RECORD

r-

ROUTINE CALL CONTROL 'INFORMATION
E LENGTH EDIT SUMMARY

EDIT ROUTINE CONTROL
': '"

"[STATEMENT nWORMATION

6 • .30-6

MAP # & START OF P. OU1'PUT U. R.

"

MAP # & START OF S. OUTPUT U.R.

MAP & START OF EDIT

O~rlER R. F ! LENGTH OTHER, SUMMARY. MAP # & START OTHER

_ OTHER ROUTINE CALL

CONSTANT ACCT; , . GO

CHANNEt, SUMMARY

1

2

.3

4

5

6

7

10

HO

1

2

.3

4

, , 5

--CONTROL INFORt{ATION

DATE OF JOB ENTRANCE

TIME OF JOB ENTRANCE

HR: MN: SEC

TOTAL CP UNITS USED BY JOB

AMOUNT PRJ. INPUT AMOUNT PRI OU'n'UT

AMOUNT SEC. OUTPUT

DATE OF TASK SELECTION

TIME OF TASK SELECTION

HRs MN: 'SEC

r
P-TYPE

roTAL STORAGE OR # UNITS ASSIGNED

TOTAL TIME. PERIPHERAL HELD

TIME OF LAST ASSIGNMENT

HR: MN: SEC

AMOUNT OR '#UNITS LAST ASSIGNMENT

j
~

,.

I

"

Job Description Module

.General Description

The job description module is linked off the job stack entry for a
par~~cular job. Each job has a separate job description module or
chain of modules. The storage for the modules is obtained form the.
cooperative library file (ZD). The job description module contains

'unit record routine descriptions, job identification, ~~d accounting
information associated with the job. The module is originally ·
produced by the cooperative'~ervice routine upon processing a JOB
control statement. Entries and modifications to the module are
made during preselection, selection, facility assignment,:'iacility
release, and termination.

6~30-S

·Detailed Description

Word ¢

1

2

3

4-64

A

B

c

D

E

u

Increment to the next job description module in the,
chain. If only one module exists the link is to
itself. Each module in the chain has a link as the
first word of the module.

The'length of the I/O cooperative module being used.
Normally this is 3068- .

L The index relative to the base of 'the module currently
being used, for deposit of information.

u

L

The file increment to the module currently being used
for deposit.

The length of the task addendum and unit' control
block stored.

The map number and start position of the storage used
for the task addendum. See () for function of
bit map storage facility_

Each two word entry ~n the rest of the header defines
the location of some information. The upper defines
the length of the data; the lower defines to index
relative to the base of the module containing the
information. The second word gives the file increment
to the module containing the information. This increment'
may be to the same module containing the peader
information.

The job identification normally consists of the job
control statement'from the primary input stream.

The primary unit record routine information consists
of a link through the selection list map to a
summarization of the unit record routine requirements
for facilities, core, etc. The control statement calling
for an input unit record follows the summary link
~he summary link is provided by preselection. The
control statement is added by the cooperative service
routine for processing' by preselection. .

Same as B except for primary output unit record routine.

Same as Bexcept for secondary output unit ,record routine~

Same as·Bexcept for the edit routine.,

6.)0-9

F Same as B e~cept for ?ther routines.

Go The date upon which' the job was enetered into the system.

1-2 The time in, hours, minutes, and ~econds ~hich the

4-Y

-L

5-U'

-L

6

7-10

Ho" -u

job was entered i~to the system.

The total central processor time units (200us), used

by the job. This is a cumulative total for the whole'

job.

The number of cooperative modules ued for the primary

input.

The number of cooperative modules used for primary

output.

The number of cooperative module~ used tor secondary

output.

Spare

The date upon which the current task was selected.

The time in hours, minutes, seconds at which the task

was selected.

The peripheral type of the units o~'this channel.

- L Unassigned

1 The total storage or number of units assigned during . '

the job.

2 The cumulative time that the peripheral was held.

3-4 The, time at' which the last assignment was made.'"

5 The amount of storage or the number of units. assigned.

6.30-10

6 ~ 3.0 • .3 PBESUM MODULE

o
1

2

3

4

5

6

7

10

LINK NEXT MODULE

WORDS

I PERIPHERAL NAME

W UNITS I
IHt-I;UIII h't-I:IJ MASS STORAGE REQUIRED

ENTRIES LENGTH SEL SUMMARY

~-TYPE I CHAN I CHAN LENGTH UNIT SUMMARY

MASTER BIT UNIT

i
MASK

~-TYPE·I CHAN I CHAN LENGTH UNIT SUM O=MS

I •

) I
i

[I
!
I

I
I

6.30-11 . .

"

Presum Module Description

The Presum. Module is the initial module linked'ofr the job stack, or the
job description in the case of a unit record or edit routine summarization.
It contains the information necessar,i ror the selection routine to determine
if a routine can be loaded.

The Presum Module is produced b,y pre-selection from the Assign statements
encountered in the job control stream. It is maintained on the cooperative
library file (ZD), through the bit map module. The storage used b,y the
summaries is released back into the bit map once the task has been relisted
and initiated. '

Word ~. ~ Link to another module if one is present. The liDkis broken down
into a6 bit start position and a 9 bit map number referring to the
bi t map module. The sign bit is set if the link is to another
presum module and not set if the link is to the faci11 ty summary.

Word 1 = Number of words within the next summary module.

Word 2 = The start of a summary cell. The name. is a 5 character name of the
peripheral specified on the Assign statement.

Word 3 = Bits 229_224 - the number of individual units requested under the
peripheral name.
Bits 223_2° - the amount of mass . storage requested.

Word 4 = u = the number of channel entries in the channel summal'1'

L = length of channel summary for this name.

Word 5 = 229_2~g = Peripheral type
224-2 = Channel number
219_215 = Channel number
214_20 = Length of unit ~ for this channel.

Word 6-7= Master bit setting for those units on the channel which would be
acceptable for assignment.

Word 10 = Indicator for mass channel.

Words 2-10 represent a sample entry; The entries will vary with the different
peripheral names" All words except for word 2 are obtained from the selection
fac111 ty summary map which is a congestion ot the regular 1'aci1i ty map.

BIT MAP MODULE FOR LINKING SELECTION SOMMARIES

o

1

2

3

4

5

6

7

10

I

MODULE LENGTH I
LINK TO NEXT BIT MAP MODULE

I /I USED CELLS
i

INC TO STORAGE MODULE

I # FREE 5U13 CELLS STORAGE CELL 1 (MAP #1)

, SUB CELL BIT SETTINGS . ,

j INC TO STORAGE MODULE

I t :/I FREE SUB C S ~:! ~ _________ 1"--'_' ------ELL--~II~J STORAGE CEr.L2 (MAP /12)

13 J SUB CELL BIT SETTINGS

L

304

305

-'

6.30-13

,Bit Map Module Description

General Description

-Each bit map module has a 6 word header portion which defines the link to
the next bitmap module if there i's any additional modules, and the num.ber
of free and used storage cells wi thin that module. There is a maximum of
1008 storage cells wi thin one module. Each storage cell has a map number
dictated by its position ~thin the module, for example words 6-10 of the
initial bit map module would be referred to as storage cell one with a
map number of 1.

Each storage cell defines a 306 word module' on the cooperative mass storage
file, which is used for the storage of selection summary data, etc. Each
of the storage modules have a 2 word header and 2048 words of storage which
group (sub cell) is represented by a bit setting in the third word of a bit
map storage cell. As a sub cell is filled with data the appropriate bit In
the bit map storage cell is set to a binary one.

As the summar,y information is processed b.1 selection the cells are freed
for use again. If a complete module is empty it is released back into the
coopera ti ve pool. . .

The bit map module is maintained on the cooperative library file (ZD).

Detailed Description

Word 11

1

2

= U - The length of the module containing the bit map.

= A link to another bit map module or ¢ if no other module exists.

= U - The number storage cells used wi thin this bitmap module.

3-5 = Free

6 = Is the start of the first storage cell. It contai ns an increment
to a storage nodule to be used for storage. The storage module
to be used for storage. The storage modules are obtained from
the cooperative library file (ZD) • .

7 = The number of free sub cells wi thin the indicated module. Each
subcell consists of 7 words.

10 = A series of bit setting
2

representing subcells within a storag8
module. Each bit 229_2 represents a 7 word subcell in a storage
module. The bits are set as the storage is used. .

11-13 - Another storage 'cell defining another 306g word of storage.

6.30-14

Selection FACILITY SUMMARY MODULE

0 MAP & START OF NEX'X

1 /I WORDS

21/1 WORDS I EXRN]N~'y

31. CONTROL

INFORM! TION

X /I WORDS I EXRN EN"TRY

I
CONTROL

I

I
I INFORMATION

I I
I- J

y I ~:~~S __ I EXRN ENTRY

Y+ 1 ,ii'ILE CODE J LENGTH OF CON~ROL

Y+2

Y+3 FILE INCREMENT TO ELEMENT
-

Y+4 l /I smMENTS

6.,30-1;

Selection Facility Summary Module Description.

General Description

The selection facility summary is linked off the pre-selection module
and contains all control statement summarizations which will be processed
upon selection of the associated task. All parameters necessary are
contained in the selection facility summary including informa~ion
for the load 'of the routine.

The selection facility summary is producedb,y pre-selection and used by
the initiation phase of selection. The storage used for the summar,y is
released upon the selection of the routine summarized. The modules reside
in the cooperative library file (ZD).

Detailed Description

Word ~

1

= The link to the next module of control summaries or ~ if t~ere
isn't any more modules.

= The number of data words contained in this module of control
information.

2 = U = The number of words occupied b.Y this control statement
summariza tion.

L = The lower half of the exec return instruction necessary
for the entry to the routine responsible for processing
the control statement.

3 to N= The control statement information whose address is conveyed
to the processing rQutine. The control statement may be an
ASG, LOG, etc.

X to Y= Another control statement. There may be any number of
separate control statements.

Y = The last entry in the selection facility summary which contains
the information necessary to load the selected routine.

U = The number of words in. the load entr,y.

L = The exec return·necessary to· process the load.

Y+1 = U = The file code wh:!ch is to be used in the loading of the
element.

L = The length of the control part of the element.to be loaded.
This is equivalent the' number ot ·vords to read in loading
the element. . .

Y+2' = Reserved for the base address of the routL.'"lS to be loaded.

Y+3 = The increment relative to the base of the file indicated in
word Y+1, at which the initial instruction of the routine is
located.

1+4 =. U = Unused

L = The number of' sub-segments contained in the routine being
loaded.

After the read of the routine from mass storage the segment
descriptor.s (see Loader documentation) will be updated to
put the loaded element in operating order.

The parts of the segment descriptor modified are, the
file code which is replac.ed by the file code used for. the
routine load trom mass storage. The core bases of all

• segments will be modified by the base of the routine, the
file increment to the subsegments will be modified by the
base of the routine on mass storage •

. 6.30-17

6.30.4 Selection Facility Map

o
1

2
3
4

X
X+1
Y
Y+1

Y+2

z

PERIPHERAL NAME 0
ENTRIES ILENGTH SEL SUMMARY
29 25\24 20 \19 15114 0

P-TYFE CHAN CHAN LENGTH UNIT SUMMARY
MASTER BIT

... _ UNI! MASK

2;_TYPE25\2~HAN20 1
19

CHAN
15I 14LENGTH UNIT' SUMMAR~

MASTER BIT UNIT SUMMARY
PERIPHERAL NAME 1

ENTRIES ILENGTH SEL SUMMARY
29 25\24 20 \19 1 5\14 0
P-TYFE CHAN CHAN LENGTH UNIT SUMMARY

MASTER BIT UNIT MASK

L

J

·Detailed Description

Word ¢

1

2

3

x

X+1

Y-z

The five character name used for the assignment of
the peripheral.

U - The number of variable length entries that appear
under this peripheral name. There is one entry for
each channel that contains the peripherals that
could possib~ satisfy the routines request. In the
drawing words 2 to X, X to Yare separate entries under
this peripheral name.

229_225 - A five bit P~TYPE that defines the
particular type of equipment on that channel.

224_220' - This field will 'be 'blank except' when dual
channel is utilized in which case it is a five bit
channel number upon which the units are located.

219_215 - A five bit channel number upon which the
units are located.

214_20 - the length of the unit summary mask contained
in words 3 to X.

A variable length summary mask with one bits in the
locations representing units which could satisfy the
request. This mask will be applied against the master
bitted units for this channel in the core facility
and storage summary during selection to determine
if sufficient unit are available for the selection
of the task. If the channel has mass storage
equipment on it, ' the mas~er bit unit mask is omitted.

Defines another channel which contains units capable
of satisfying the request of the routine being
summarized. Description is the same as word 2.

Master bitted units for alternate channel. Description,
is the same as for ,word ;,4.

A summarization of the units acceptable under another "
peripheral name.

6.30-19

-Selection Facility Map Description

-General Description

The selection facility map is a congested version of the facility
map. It contains all the peripheral names and unit specifications
that are used for the assignment of units. The portion of this
map under a particular peripheral name used on an assign statement
is included in the preselection summary to enable the selection
routine to determine if sufficient units are available to satisfy
a routine requirements.

The selection facility map is produced during initialization and
used by preselection. It resides on the system library file' (ZE).
The file increment to the selection facility map and its length
jare contained in the core facility and storage summary (see·)
whose address is passed in B5. by the content supervisor.

,6.30-20

7.0 I/O Cooperative Mechanism

The Input/Output cooperative mechanisms are the system elements.
by which: OMEGA retrieves all scheduling information, in the
form of control streams; and submits accounting and actions
taken by OMEGA as the result of processing schedule parameters.

The cooperative mechanism has been designed and implemented to
control the two way transmission of three streams defined as .
follows:

'Primary input - device card, tape, drum remote - used to
contain OMEGA schedule parameters, limited data, source

'code to assembers and/or compilers, program parameters, etc.

'Primary output - Hard copy of program scheduling result~,
listing from assemblers and/or compilers, limited data, etc.
Device normally high speed printer, Univac 1004, remote
devices. .

.Secondary output - device card, tape, drum remote used to
contain assamblsrand/or compiler, object code and limited
data. '-

7.1 Cooperative Features

The Input/Output cooperative mechanism provides the user and
system with the following advantages and features:

-The staging of low speed Input/Output data to mass
storage to balance intermittent system utilization with
the slow rate peripheral devices.

INPUT DATA

OUTPUT
DEVICE

OPERATING
TASK OR

SYSTI!MS
ELEMENT

Illustrates two way tr~nsmission of
stream.

·7-1

Staging allows the device to operate at f~ll capacity within
the controlled constraints of the staging area. The bufterin
to mass storage permits the parallel utilization of low-spee4

g

devices by operating tasks in a multi~program environment. '

·Provides OMEGA,compilers and/or assemblers, other system
elements and the user programs a consistent mechanism,
independent of device to obtain and/or submit data. This
feature purges system elements of redundant code required
to assign, recognize and handle varied devices.

CARD
EQUIPMENT

PRINTER
SUB-

• SYSTEM

Get
Item
Present
Item

Illustrates device independent worker
interface

OPERATING
TASK OR
SYSTEM
ELEMENT

·A pooled staging area is maintained by I/O cooperative
control allowing multiple streams of primary and secondary
data streams to utilize a shared library. Data for any
one stream is threaded by chains to the task. Cooperative
control expands and contracts the "cooperative library" as
required to maintain the system. In addition to expansion
of mass storage, I/O cooperative control will envoke temporary
suspension and/or Roll~out, Roll-in procedures'to control
overflow conditions.

7.2 I/O Cooperative Elements

The elements required to effect the Input/Output 'cooperative
mechanism are described as follows and there interaction is
depicted in Figure 7-1.

Input' Unit Record Routine - individual routines responsible,
for reading data images from.assigned device and forming
these into a buffer the size of which is determined b.1
assigned ·size of storage modules used for buff~ring. Upon
completion of a buffer (module), unit record routine submits
module for staging by cooperative control.

7-2

..,... /,....,,., .. I. " • ., • • -. -

~/u voopera~lve ~on~ro~ - lS a oaSlC systems e~ement, normal
resident, responsible for: staging and chaining, Input/~~tput
to mass storage, recognizing overflow conditions and calling
the "Cooperative Service Routine" for action, processing
requests from operating program and/or system elements for
primary and secondary Input/Output.

Primary/secondary Output Unit Record Routine - individual
routines responsible for recording, punching or transmitting
items contained in output streams.

Cooperative Service Routine - is a secondar,y exec element,
normal drum stored and responsible for the following with, .
regard to cooperative mechanism. .

·Activate selection and load process of unit record
and edit routines.

-Initialize and terminate drum chains.

-Allocate additional mass storage and/or otherwise
control cooperative library.

·Perform error recovery for cooperative control.

Edi t Routine - individual routines called by "SOlJRCE"
statement to merge and delete supplementary data into
primary control stream. Normally used to apply correction
cards against an existing source data file for assemblers
and/or compilers. May be modified to merge and/or update
normal data files being entered through the primary input
stream.

7-3

~L,,\t.4& .. t;
p..t G~ r9 y eo p.,.e..s~Iot"t

I DVlJW<):Iv;w""'1 z.:Y'rJli1(-"s 0 ~

.l" 1<1 t do i:a. d "d .. f I I ' itJ p~vutlwg ~.tt-"'f'lIlt

K)1 S".",it. Ml'oc\ 13.U .. to clvo", rY. , .
(Sut~cJti to Y;",w/JoJ'j ~ Sro\ltl.

6ut:,ut U. R. t:f'rA1 OytptJ t' '

I
)

(Myel

. ~8" '.p ~"" t

~-1

'7 'l , .'; Input Unit Record Routine

Input unit record routines are normal worker program elements
responsible for reading and forming into s'torage modules data
to be used as primary input. Each primary input U.R. is pro­
grammed to handle a particular device or type of devices and
is loaded and activated by "Cooperative Service Routine" by
one of the following:

-Console operator type-in to OMEGA

UR Name/Version

where: Name/Version is that ·of the unit record· routine
being requested. Absence of name/version implies
the normal systems primary input unit record
routine.

eInternal or external "START" control card. The "START"
statement identifies a pre-stored job stream contained on
mass storage which is to be scheduled as an independent .
JOB. (see

·An unsolicited communications interrupt on a device
assigned to the system in which the first message contained
"FROM" control sta.tement;, (see

The sequence of functions performed is as follows and illustrated
in Figure 7-2.

a) Read items using file code ZA from assigned device
until a JOB control card is encountered. Pack Job
card and subsequent images into drum module
(Figure 7.5-1) as items deleting full words of
trailing space codes from each image. Upon completion
of a drum module perform following call to the coop- '
erative service routine to set up proper chain descrip­
tions and store module.

ENT*B7*Module buffer descriptor
EXRN*2 0 3 4 3

b) Read and pack items into drum module as in step (a)
and submit completed modules to I/O cooperative control
with the following call. All error status codes for .
image read may be stored in the upper of item length
descriptor and will be passed onto requesting program.

ENT*B7*Module buffer descriptor
EXRN*3 .0·0 0 4

Repeat above until a JOB or FIN control card is
encountered. JOB card ,0 to step (0). FIN card or
and-of-fila go to step \d) •..

c) Submit current drum module with an adjusted item count
excluded JOB card to a "Cooperative Service Routine"
with the following call which will cause primary input
stream closure.

ENT*B7*Module buffer descrip~or
EXRN*2 0 3 4 4

Upon return of control move JOB card as first item in
a drum module and go to step (a) with JOB card.

d) Submit current drum module with adjusted item count
to exclude FIN card to "Cooperative Service Routine"
with the following call.

ENT*B7*Module buffer descriptqr~·
EXRN*2 0 3 4 5

Upon submission of this call control will not be returned,
primary input stream will be closed and routine 'Will be:.
deallocated and terminated.

Input unit record routines are designed and programmed under the
following constraints.

·Assignment of input device used to read images is by normal
llASG!! control card collected 'With the unit record routine
object code element via the LOADER.

-All U.R. routines are activated and terminated via rrCooperative
Service Routine (CSR) It and may not FORK or be fragmented.

-Each routine contains its drum module and description used to
present items to I/O cooperative control. It is assumed
each routine will delete full words of-trailing space codes
from each image to compact items in drum module •

• Eaoh routine is initially activated at its first location.

7.3.1 Sample Input Unit Record

7.4 Cooperative Control is responsible for the following functions:

-Maintain a poll of drum modules used to retain primary input,
output, and secondary output. In performing this function
cooperative control maintains chaining of modules to the task
addendum for each stream, recognizes overflow conditions and
drum read/write errors. .

.Provides the interface with the exec for unit record routines·
used in reading primary inp~t or writing primary and secondary
output.

·Process service requests for primary input images and/or
submissions of primary and secondary output by operating wor~er
programs or system elemente To perform this function coop­
erative control maintains core buffers used ~o read staging
module into core for the transfer of images and verification
of worker parameters.

7.4.1 Calls

Cooperative control is a passive exec element activated .
via EXRN*300FC. When activated cooperative control
attains the identity of the requesting task/activity
addendum. The following is a summary and functional
description of each function code recognized coop­
erative control.

Function
Code Description

00 Internal Call for next primary input image

01 CARD$

PRINT$

PUNCH$

Call for next non control primary input image

02

03

04

05

06

07

10

11

12

Internal

Internal

Internal·

Internal

Internal

Internal

Internal

Submit primary output image

Submit secondary output image

Submit primary input module

Request next primary or secondary output module

Request drum module from cooperative library

Release II II II II II

Request release of all cooperative core buffers

Store last drum module for Job's primary input

Store' l;.ast drum and close primarr or secondary.
stream

7-11

Function codf!3' 00 - ,Transfer next image, control or data, contained
, in Job's primary input stream to. the requestor.

Restricted,to use by OMEGA system elements in order
to process control statements used in the scheduling
and execution of tasks. '

Parameters: B7 = to base address of,the buffer to which image

Function:

is '·to be transferred. '

-Determine existence of an image.' If nbne available
PUSH request until unit record routine supplies
another module. If stream is closed arid empty return .
end-of-real status,' '. ,

Exit:

-If required, locate core buffer and read drum module
from head of primary input chain. If drum error oc~urs
call cooperative service routine vith F.C. 22.

-Transfer image to requestor and update item counts.

·Deallocate drum module and adjust chain links if
module vas emptied due to request. Return control
to requestor.

The folloving status conditions are possible upon
return of control to requestor:

."An register = 0000000000 indicate normal completion.
1IQII register viIi be set to number of vords contained
in transferred image.

• "A" register = 7777740002 - implies ,deposit address
specified'by B7 plus image length are outside the
program lock bounds of the requestor.

enA" register = 7777740003 - unrecoverable drum error
was encountered for the'image that was transferred.
Image mayor may not be valid or complete. In the
event drum chaining was in question pr~mary input
strewu will be deallocated and supsequent requests
will result in an 05 status •

• nAn register == 7777740005 - end-of-primary input,
stream has been reached and deallocated. Upon
subsequent requests of primary input the 05 status
will be r'eturned to the requestor for 'a total of
three times~ If a fourth request is made the
following diagnostic message viII be submitted to
the primary output stream and the "ERROR" return
exit'will, be executed for the activity. Diagnostic:

END OF PRIMARY INPUT STR~ LOOP

Function Code 01 - transfer next non control image contained in
Job's primary input stream to the requestor.

Cl;1ller: Operating t~sk or system elements for ,the retrieval
of source language sta.tements to compiler,S and/or'
assemblers, parameters and 'limited data. ' ,

Parameters: B7 = to base address of the buffer to' which image
will be transferred.

Function:. -Determine existence of an image. If. norte available
npUSH" request ,until ,unit record r~utine,supplies
another module. If stream is closed a~ empty,
return end of primary input status ~ 05 '

7-13

Exit:

-If required locate core buffer and read drum module
from head of primary input chain. Call "cooperative
service routine" with Fe 22 if drum error,

'If item is not a control' statement (#) in position
one, transfer item to requestor and update item
counts.

'Deal19cate drum module and adjust ohain links if
module was emptied due to reque~t. Return control

, to requestor.

The folloWing status codes are possible upon return
of control to requestor.

'A register = 000000000 - indicates successful
completion of request: ' "Q" register contains number
of words in the image transferred.

'A register - 7777740002 implies address specified
by B7 plus, image length, are qutside the program
lock bounds of the requestor.

'A register = 7777740003 unrecoverable drum error was
encountered 'for the image that was transferred. Image
mayor may not be valid or complete. In the event
drum chaining was in question primary input stream
will be deallocated and subsequent requests will
result in an 05 status.

, 'A register - '7777740004 - indicates next image in the
primary input stream is a control card (#) sign in , .
first position. This feature can be used to indicate

. end of data cards for this task. Upon subsequent
,requests via Function code '01 the 04 status will be

returned to requestor for a total of three times.
If a fourth request is made an ,"END OR PRIMARY 'INPUT
FILE LOOp". ,diagnostic will be submitted to the
primary output stream and the "ERR'OR" retllrn exit
~ill be given for the acti vi'ty • '

'A regist~r - 7777740005 '- end of jobs primary input
stream. The primary input descriptor is deallocateq,
Upon subsequent'requests of primary input the 05.'
status will be returned to' the requestor ~or a total
of three times.' If a fourth requ~st is made an
~IEND OF PRIMARY INPUT srREAM LOOpll diagnostic
message will be submitted to the primary Output stream'
and the ERROR return ~xit wili be given tor the
activity', .

7-14

Function Code 02 - requests the rlescribed print image be
submitted to the primary output stream. This function is
applicable to worker programs and system elements for the
submission of accouting, diagnostic, scheduling messages
and limited user hard copy.

Caller: Operating task andlor systems .:elements.

Parameters: B7 = to base address of image relative to PLR.
Q = number of words contained within the image.
A =. number of lines to space paper before print •

. Systems primary output unit record routines
recognize 778 or greater as a skip to next
page.

Function: ·Validate requestors~parameter limits

·If required locate core buffer and load an
existing imcomplete module from tail of primarl
output stream descriptor.

·Transfer image to buffer module deleting full
words of trailing space codes in order to
conserve drum storage. If imageca~not be
contained in the drum module allocate next
link in the chain and store full module,
transferring image into new drum module.

-Upon storing a drum module perform the following
tests:

Test for task/activity exceeding estimated
number of pages specified on the Job control
card. If exceeded, call. 11 cooperative service
routine"(CSR), function code (21) GSR will:
submit "PRIMARY: OUTPUT STREAM OVERFLOW"
diagnostic message to primary output, reset
overflow indicator and perform an "ERROR"
exit under the current activity addendum.

Check for an outstanding PUSH request from a
primary output U.R. routine selected to process
the chain.

Check number of modules contained in this chain
against the maximum set for the installation,
if equal, call C.S.R. with function code 20 for
some disposing aotion. Maximum set for distri­
buted version of OMEGA allows for a) to 5
minute backup of print tmages at 600 lines per
minl,lte.

7-15

The following s~a~us codes are possible upon
return of control to requestor. '

'A register = 0000000000 indicates successful
completion of the request.

'A register = 7777740002 implies that the base
address plus image length are not within the
program lock limits of the requestor.

Function code 03 - requests the described image to be submitted
to the secondary output stream. The secondary output stream is
normally though of as card punch, paper tape or some slow
speed mechanical punch device.

Caller: An operati'ng task/activity-. Applicable to worker
programs and for the submission of compiler and/or

I assembler source or object code.

Parameters: B7 = to base address of image relative to PLR
Q = number of words contained' in the image

- Function: -Validate requestors parameters

'If required, locate d~~ module ~~fer, descriptor
and load an existing incomplete module from tail
of secondary output streame

'Transfer image to module buffer deleting full
words of trailing space codes to conserve drum
storage. If image cannot be contained in drum
module, allocate next drum link and store completed'
module transferring requested item into new buffer.

-Upon storing of a completed module perform the
following tests. .

Test for task/activity exceeding estimated
number of images specified on the Job control
statement. If exceeded call C.S.R. via F.C. 21
which will perform the following: Submit
IISECONDARY OUTPUT STREAM OVERFLown diagnostic
message to the primary output stream. Reset
overflow indicator. Perform "ERROR" exit under
the current activity addendum.

Check for an outstanding PUSH request from a
secondary output U.R. routine selected to

'process,the chain.

?-16 .

Exit:

Test number of modules'contained in this chain
against maximum set for installatio'n. If equal
call C.S.R., with function code 20 for some
disposing action. Maximum set for distributed,
version allows for, a 3 to 5 minute-backup of 1'6,
word images at 200 images per minute.

The following status codes are possible upon return
of control to requestor.

·A register = 0000000000 indicates successful,
completion of the request.

'A register = 7777740002 implies that the base
address plus image length are not within the program
lock limits of the requestor.

Function code 04 - requests the chaining and storing of indicated
drum module to the tail of the primary input chain descriptor,
contained in the requestors task addendum.

Caller: Primary input unit record routine.

Parameters: B7 = address of drum module descriptor (see 7.5.2)

Function: ·Validate that the drum module and descriptor are
within the requestors program lock limits and buffer
does not exceed 19810 words.

Exit:

·Allocate drum link, adjust chain addresses and
module counts.

·Store module in cooperative library and return control.

The following status conditions are. possible upon
return control to the requestor •

• A register = 0000000000 indicating successful
completion of the request.

·A register = 7777740002 implies request did not
pass PLR/validation tests.

·A register = 7777740003 implies invalid parameter
or buffer exceeded 19810 words.

Function code 05 - requests the delinking, allocating and transfer
of the next module from the head of primary or secondary output
stream.

Caller: Primary andior secondary output unit record routines.

7-17

Parameters: B7 = address of buffer moau~e descriptor
B6 = contains indicator as to which chain (0) primary

(1) secondary.

,Funotion: -Validate buffer module descriptor.

Exit:

, -PUSH request if no modules available.

-READ drum module into described bUffer.

'Deallocate chain link, update module counts and
adjust addresses. Return control to requestor.

The following status conditions are possible upon
return of control to requestor.

-A register = 0000000000 indicating successful
completion of request.

·A register = 7777740002 implies buffer descriptor
violates program lock limits.

'A register = 7777740005 end of primary or secondary
output stream.

Function code 06 - requests 198 words from cooperative library.

Caller: Restricted to use by OMEGA systems routines.

Parameters: None

Function:

Exit:

Retrieve drum module from cooperative allocation
routine. If modules unavailable request will be,
PUSHed to "cooperative control" until module
becomes available.

Upon return of control "A" register contains
logical increment of drum module relative to ZD
file code.

Function code 07 - complement of Function code 06; requests the
release of a 19810 words of mass storage procured from the/
cooperative library.

Caller: Restricted to use by OMEGA system elements.

Parameters: A register = to logical increment of mass storage
being released.

Function: Release drum module to cooperative and,"Popn any
outstanding requests for cooperative mass storage.

7-18

Exit: A regi~ter,= 0000000000 ~plies ,request complete"

Function code 10 - d.eallocate all outstanding core buffers linked
to task addendums.

Caller:, OMEGA systems element performing a compaction of­
core function.,

Parameters: None

Function: Follow task addendum chain to perform. the following:
Locate allocated core' buffer containing an incomplete
buffer module and descriptor'. Restore to drum each'
one lo'cated and 'release the core storage.

Exit: A register se't to~OOOOOOOOOO indicating comp'tetion.
of the function.

Function code 11 - requests the storing of indicated drum module
to the tail of primary input chain descriptor contained in the
requestors task addendum.

Caller: Cooperative service routine when activated via 04
or 05 function code.

Parameters: B7 == address of drum module descriptor (see 7.5.2).

Function: ·Store module described by B7 pointer and update
module counts.

Exit:

·"POP" any outstanding ,image requests for this
chain. '

Normal return to requestor A register set 0 0000000000.

Function code 12 - request storing of last drum module, deallocation
and closure of input phase of primary or secondary output stream.

Caller: OMEGA systems element during termination process of
a Job or'task.

Parameters: B2 register set .to (0) indicating primary output'
stream is to be closed or B2 set to (1) indicating
secondary output stream is to be closed.

Function: ·If required located core module buffer, descriptor
and load existing tail of pr~ or secondary stream.

·Store 7 7 as logical drum increment to next
drum module. Record drum module to mass storage
and update' module counts. Check for any outstanding

7-19 .

Exit:

request for the moaULe from output unit record
routine. If found, POP request.

-Release core buffer to core allocator used to retain
drum buffer and descriptor •.

Return control to requestor with successful complet~on
status A = 0000000000.

7-20.

7 • 4,. 2 Coopera ti ve Li brar.y

Cooperative library is a random access file s~bdivided
into modules and used as a pool for the cooperative mechani'sm
and other systems elements requiring small pieces of mass
storage to load programs and otherwise control the OMEGA
environment.

An element within cooperative control maintains, the librar,y
allocating and releasing modules upon request ,or need. Address
and ayailability of each module is maintained via a bit map ,
maintained in core. Format o.f bit map is as follows:

Word ~ __________ ~ __________ ~ ______________________ ~
LINK TO NEXT BIT MAP

BASE LOGICAL I'NCREMENT FOR MAP
MODULES CONTAINED OF MODULES ASSIGNED
TO LAST, FIND TO END OF MAP

. BIT MAP

Word 0 - Used to link bit maps reflecting additional
allocations of mass storage to cooperative
library. Zero indicates end of chain.

Word 1 - Contains base ~ogical drum address to which
constructed increment from bit map is added
to form complete address.

Word 2 - Upper contains number of modules original
mass storage allocation provides in map.
Lower is used to maintain a count of modules
currently being used. If upper and lower
are equal upon release of a module a call
is made to C.S.R. Function code 17 for possible
release of a map. '

Word 3 ~ Upper contains an increment, ,relative to word
¢, of where 'last find for a module request •.
Lower contains an increment, relative to word
¢ to las t word of map.

Word 4-N - Each bit map word contains 30 drum modules
showing their availability, and address.
Each module is represented by a binary bit
if set to (1) module is available, (0) module
is unavailable. The address for each module
is formed by following formula:

7-21

Module address'= E30:W)+~ M + D

.'where: W = is word count within bit map of·
available module rela:t,i ve' ,to word 4

B = 'bit position of available module
within (W) 0 through 29 I

M = module .size 5Eit at 198 ,

D = th~ cOhtent of'word 1

To 'determine the bit position within a map of·,
released module the following procedure is used:
.' "

~Determine which bit'map·module belongs
.D1_released module· , D2 '

• nrele~sed mo'dule - D1) It1l /30' quotient = W"
remainder ~ B

Cooperative Library Allocation

Allocation of random access storage and forming the corresponding
bit maps is performed by the cooperative service routine (C.S.R)
upon demand of I/O cooperative control or systems initialization.
This is perfomred by executing a call to C.S.R. with function code

,16 (see). Upon return of control status,word will indicate
successful allocation or not. I/O cooperative control will request
additional allocations of mass storage each time total modules
available drop below constant specified in bit map chain descript~r.

Bit Map Chain Descriptor

Co~tains chain call to bit maps and other .descriptive information
with regard to module allocation. And is contained with the
"System T.able Links" (see) •

Word
·0
1
2
3
4
5
6

MINIMUM DRUM MODS CURRENT # DRUM MODS
1 LIBRARY BIT MAP CELL
I PUSHjpOP CELL (C. CJ

MAXIMUM # OF CORE BUF. CURRENT # OF CORE BUF.
OF BUFFER STEALS # OF BIT MAPS FORMED
PRIMARY OUTPUT MAX. SECONDARY OUTPUT MAX.

IC.S.R PUSH/POP CELL

Word 0 - Upper contains minimum number of modules system
should degenerate to before additional allocations
of mass storage is made. If additional storage is
not received upon request cooperative control viII

7-22

allow library to drain and "PUSH" all unsatisfied
requests until module is released. Lower contains
a count of total available modules summarized from
all bit maps.

Word 1 - Conta~ns chain cell to cooperative library bit maps.

Word 2 ~ Contains PUSH/POP cell for request which could not
be performed by cooperative control.

I "

iWord 3"- Upper contains count of maximum number of core
buffers which should be assigned within system at
anyone time to contain primary or secondary data.
Lower contains a count of core buffers currently
allocated and used for primary or secondary data.

Word 4 - Is used for statistical data. Upper - number of
times a core buffer area was stolen from one stream
to satisfy another request. Lower contains a count
of additional mass storage extensions which were
effected for the cooperative lib!ary.

Word 5 - Contains maximum number of drum modules which should
be contained on drum for anyone stream before some
disposing action is called for. When anyone stream
reaches the maximum "cooperative control" viII call
C.S.R. by function code 20 to cause one of the following
to occur: activate output unit record routine, allocate
additional mass storage, temporarily suspend requesting
program.

Word 6 - Is used PUSH/POP cell for cooperative service routine.

Additional Uses of Cooperative Library

Currently OMEGA utilizes the cooperative ~ibrary to maintain
lists and tables used in selection, allocation and control of
tasks. The following lists are currently contained and assure
198 word modules.

'Selection Job Stack (see 6.30.1)

·Job descriptor module (see 6.30.2)

'Pre-summary module (see 6.30.3)

'Selection facility map (see 6.30.4)

7-23

.
7.4.3 Functional Routines

DPOP - routine to 'POP' certain request that have been
'PUSHed' on a general JPUSH' chain.

Caller: Cooperative Control
'.

Parameters: B6 = address of current task addendum
B2 = type code by which requests are to

be iPOPed i as follows:

Function:

Exit:

¢1 = POP a request f9r an input image
if the task is the correct one.

¢2 = POP a request for an output image
if the task is the correct one.

¢3 = POP a request for entry to DGET.

¢4 = POP a request for entry to DRGET.

¢5 = POP a request for a core buffer.

¢6,= POP a request for a drum module.

·Search the general iiPUSHii chain by type
code for a request which has been 'PUSHed'
with that code in the A register.

'In the case of types ¢1 and ¢2 a match must
also be made on ',the task that the request
was made during.

-If a match was made, 'POP' the request that
the match was made during. Exit in either
case.

Return 'on completion.

DGET - services requests for 202D word~ core buffers,

Caller: Cooperative Control

Parameters: B6 = address of current task addendum

Function: 'If the maximum number of buffers has not
been allocated, make a call to core allocation

. for a buffer.

'-If the maximum has been allocated, or if
the above request is not filled, follow the

. task addendum chains to locate one of the
allocated buffers which is not in use.

7-24

-If none'such are found, 'PUSH' the
request until a buffer becomes available"

-When a buffer is found, -empty l·t onto'
the drum (if necessary) , ". . .

A regist~r contains address .of .~bta1ned
buf~er on completion • .'

. ..

fJ"lf If
T V'Il" (i...,.

'rll. C:~r -

ReA-i· h~f
Mod. v 1-<
(t"~"(n,rc...)

. ...

Yes Clost OV

~ty-t'"-t~

Mov(r ~1"
.'--_-1 -10 lJ u f-f .,.,..

C lot;(M6.all/~

WI-t.;I.")'"'_""1.,
(w ... ~-IY' ~Y,..)

4-. Ur J. C. Qllrt flo

I

/Vo I-"of!" .z: ; Y'

>----1 iD () { ~... 9-

G:ve q) L(

fl. Cht(..~
fo,.. ~ OOf

,

~t-f Irv, ... 6o
·of [''''t6 t

h rr' (~ -

()pJ.,j,'(~..."J,

1"'0
"..5.R.

y~(

-~;t " /--
"'---.... c 0 ~ ~ -=

httA-,t'i"""",.,,,,

Yff COJ'l1thf~-.WrJ"t
'>--.---1 M 0 U. 4,1(-'! t------~ Mj~ J II f'l

Up" I.. ,ok t t (1\) ... ;1., e""",,,,)

11.1.1).J,,4.,/~
(rtoJ'/"II'p.)

U~lti.lt l.i~k{

lJR&ET

c'" 1/
c. s. RII

R f;"'(l.,tot!,
(rt.~ I ' ... ~

urI, J,.: .. .kr

C/oJ ~
out­

S't"".f!.~

w~;,,,
M oct,,; I't. t------\

cw ... ;!., I""~)

0/#.4-0 vI'
-- PR.6-E-r----..

riiP6fD 'Joo--_ C" d ~ -:.
¢ S ..

6,~
. re; -,1 .

V·

DPO'P'

---'----. ,No

DG-ET

[-----<" ~
~ ______ -,~:~~~e;" To "11-:_

0

_--<

~-Itst{()J'1t!.- _

7.5 Cooperative Maps and Tables

7.5.1 Drum Module

.Drum modules are used by cooperative control and unit record
routines to contain items transferred to or from random access
storage.

Word
o
1

.. 2
.3

J

197

DRUM INCREMENT TO NEXT MODULE IN CHAIN
OF ITEMS IN MODULE fc1TO NEXT ITEM DESCRIPTOR

* I '- OF WORDS IN ITEM
..

ITEM 1

* l· # OF WORDS IN ITEM

ITEM 2

I
~------------------------r

~AS'E ITEM

Fig. 7.5-1

Word O. - contains drum increment of next module in ·the chain:
and is controlled by cooperative control.

Ward·1 - upper contains II of . items currently wi thin the chain.
. Lower is an increment· 'from word. ~ ot next i tam or .

. tree area wi thin . the module. .

. 7-.30

Word 2, J & K - are item descriptors required for each item
contained wi thin the module. Lower is number

, of words contained in the item excluding the
descripto~. Upper contains number of lines to
space befo,re print if item is primary output or
contains error status code from unit record
routine or drum retrieval is primary input.

Word 3 through J-1, etc. ,contains primary input, primary output,
or secondar,y output images dependent upon whiCh
chain drum. module is linked. '

Module Size ~rum module size has, been fixed at 19810' words as determined
~y the follo~ng constrants. '

The module must be a multiple' of a FASTRAND sector to improve input/
output efficiency if cooperative 'library is allocated to FASTRAND.

Drum modules are of a fixed size due to pooling mechanism and assoc­
iated program space but contain images from varying device and image
lengths. To determine some criteria 16 word card images and 27 word,
print lines were chosen as normal. The'module size should therefore
be a multiple of both to reduce wastage of mass storage.

A third consideration is the cooperative mechanism's routines delete
from each item full words of trailing space codes to reduce mass
storage requirements. To make this effort meaningfully the drum
module size should as be as large as possible without requiring allo- '
cation of large.core buffers which may be dormant.

The following table illustrates alternate, choices of module size. ,Each
module requires two words for module descriptor and is assumed to 'contain
17 word card images excluding item descriptor or 28 word print lines
including descriptor. The table does not ,take into consideration exclusion

, of spa,ce codes 'from end of images.

•

/I OF WORDS t II OF CARDS
IN MODULE CONTAIN

33 1

66 3

99 5

132 7

165 9

*198 11

231 13

264

297

330

363

.396

429

.462

493

I

I ,
i
I'

15

17

19

21

23

25,

27

,29

J
I

CARD
WASTAGE

16·

, 13

12

11

10

9

S

7

6

5

4

.3

2

1

f\ v

, I
I

/I OF PRINT
LINES

2

3

4

5

7

S

9

10

11

12

14

15

16

.. ,.,
t I

PRINT
WASTAGE, '

3

8

13

18

23

o

5

10

15

, 20

25"

2

7

12

.. ,.,
, , r

i!' 198 chosen for system. It heavy utilization ot cooperative mechanism
1s made 396 or larger would appear to be a g~od alternate choice ~

7.5.2 Drum Module Descriptor

The Drum module descriptor is used as the I/O pa.cket in trans-
ferring Drum modules to or'from the mass storage. The des- .
criptor is utilized by bot~ uni.t record routines and I/O cooper­
ative control, however all modification of drum increments is "
restricted to cooperative control. Descriptors format is as
follows:

Word
o

1

2

FILE CODE 1# OF WOIWS TRANSFER
(ZD) 19SD

I BASE ADDRESS OF DRUM
MODULE .

DRUM. INCREMENT OF CURRENT DRUM MODULE

Word 0 - Upper contains File Code ZD indicating the I/O transfer
is to coopera ti ve library. Lower con mins number of
continuous words containedor,used in the drum module;
limited by convention to 19810 maximum. '

Word 1, -', Base, core address into which drum module is to be trans":'
ferred. Address i,s r~lative to PLR of requestor-

Word 2 - Contains logical mass storage address, rela'tive to 'rile
Qode. ZD,' of drum module being processed.

7-33

· 7.5.3 Chain Descriptor

Each stream of data (primary input, primary and secondary output)
requires a unique descrip.tor to maintain its links and other
controls. These controls are maintained in the task addendum of
the Job and are of the following format:

Word
o
1
2
3
4
5
6
7

10
11
12
13 .
14

PRIMARY OUTPUT MAXIMUM I SECONDARY OUTPUT MAXIMUM
DRUM LINK 'ill CURRENT HEAD OF MODULE CHAIN
DRlJ'M LINK TO CURRENT TAIL OF HODDLE CHAIN

Ilol \ADDRESS OF CURRENT CORE BUGGER
'IOTAL # OF MODULES I # OF MODULES IN SYSTEM
DRUM LINK TO CURRENT HEAD OF MODULE CHAIN
DRUM LINK 'ill CURRENT TAIL OF MODULE CHAIN

k[ipi I ADDRESS OF CURRENT CORE BUFFER
'IDTAL #_ OF MODULES lil OF MODULES IN SYSTEM
DRUM LINK TO CURRENT HEAD .OF MODULE CHAIN
DRUM LINK TO CURRENT TAIL OF MODULE CHAIN

lid I ADDRESS OF CURRENT CORE BUFFER
'roTAL # OF MODULES 1# OF MODULES IN SYSTEM

')
'DRIMARY

YFn.E

1 PRIMARY J Fn.E .

l
II

SECONDARY
OUTPUT

Note - Drum Link set to 7--7 implies end of chain. 229th set
to 1 implies, partial module stored on drum.

Word 0 - Upper contains maximum number of pages converted to
modules of primary output expected for JOB. Lower
contains maximum number of cards converted to modules
expected for the JOB.

Words 1, 5 & 11 contains logical drum address of head link in
chain.

Words 2, 6&12 contain logical drum address of tail link in
chain which is currently stored on the drum.

Word 3, 7 & 13 are used to contain core addrossof a buffer
containing Drum Module and descriptor when: an
image is being transferred to an operating program:
(Word 3) er a primary or secondary output images is
being accepted by cooperative control from an oper-
ating program. When interrogating these core cells
they have the following meanings:

20_218 non-zero implies address of buffer sescriptor
with drum module immediately following. 2 _?28 set
to zero implies no buffer or descriptor currently
allocated to streaIri.

229 set to (1) indicates buffer currently in use and not
available for re-assignment, release or use until current
process complete.

'Words 4, 10 & 14 - U'Oper is used to maintain a count of all modules
allocated for described stream used for accounting and
error overflow 10 Lower contains a count of Drum modules
currently contained on mass storage for the stream.

7-34

7.6 Output Unit Record Routines

Primary and secondary output unit record are normal worker
program elements responsible for punch, print, transmit or
otherwise process primB.ry or secondary output streams. Each
routine is programmed to handle a particular device or type
ot devices and is called for and activiated by the Itcooperative
service routine" due to one of the following:

Par""': c~~, a +~ •• + s+-eam has "'ea,.'hed .; +s 'ft'ID"V"4 m""" , e'l"llg+'h ___ v ... _~ __ ... VLl.U,t'Ll.U _ U.L .L v...... .&.u..w;;..u.u.,

as determined by comparing the number of modules in the
system contained in tasks chain descriptor against
maxim~ allowed value contained in "Bi t Map Chain
Descriptortl •

Job stream is terminating at which time "TERMINATION'" will
request activation of output unit record routines.

The sequence of functions performed by each routine is as
follows:

a} Request first module of assigned chain from cooperative
control function code 05. First item of module contains
an accounting or identification item to be outputted as
first image.

b) Request next module of assigned chain from cooperative
control function code 05. Submit each item contained in
drum module ~o aSSigned device. Buffer area for Drum
module and descriptor are contained in the unit record
routine. Repeat 'this step until end-or-stream status code

, status code is returned for a module request "A" register =
7777740005 ..

c) Exi t to n coopera ti ve service routine" Function Code (J7
primary output or Function Code 11 secondary output.
Program control may be re,turned at the starting location
to process a new stream.

Output unit record routines are designed programmed and run
under the following constraints:

Assignment of output device used to output images is by
normal nASG" control card collected with the unit record
routine object code element via the LOADER.
All U.R. routines are activated and terminated via "cooper­
ative service routine" and may no·t FORK or be £:ragmented.

Each routine contains an area for drum module and descriptor
used to accept drum modules from I/O cooperative control.
All i tams contained in drum. module' have had full words of
trailing space codes deleted.

Each routine is activated at its first location.-

7-Y).

7.7 EDIT Routines

7-36

,

8.0 Real Time and Communication CO~l.trol

S.1 General Description

The Omega communications softwe.r:'e is very flexible allowing
the user to optimize it to best serve his needs, yet it is
highly efficient and capable of handling an unlimited number
of devices of all the various tJ·?es. One 'il;ser might desire
a high level interface between 1.1e software and user programs
similar to File Control softwar€~ Thus allowing .him to use
simple commands such as "SEND" fold "RECEIVE" on a certain
file, the software would then ha:dle the details of buffering,
translating, packing, unpacking, polling, establishing remote
connections, etc., as needed. \olLile another user might prefer
to maintain closer supervision aV3r the communication functions.
This user as an example can bandJl~ his own polling or buffering,
etc. These user programs would t':en of neoessity have to be J

more detailed and precise.

8.1.1 Level ~ Control

The level 1 OMEGA Communications Software provides the User
with a low level, basic routine (ESI 'CONTROL) which controls
the hardware. The User Program essentially has complete
control of the hardware by commands which are given to ESI
CONTROL. ESI CONTROL will perform. the actual input-output
hardware instructions as directed by the User Program.

Communications Facility assignment routines are provided in the
Level 1 software. These routines allow units which are not
in use, to be acquired and assigned to the requesting User
Program. A Communications Facility Map will be maintained

. on Hamdon Access Storage which lists the units, mnemonio
names for- them,and the units which are in use.

The User Program will perform all editing, translating, packing,
unpacking and staging of messages. It will also have to form
the poll output messages and monitor the input poll replies.
Any special control requirements of the various devices will
have to be recognized and provided for in the ~ser Program.

"CTM Control Blocksn and "Unit Control Blocks" are tables in
memory which will contain control type information used by both
ESI CONTROL and the User Program. These tables are for.med as .
the units are s:cquired by the Comm. Facility Assignment routines.

This Software should fill the need of Users with specialized
communication systems, which do not require the £1exibilitT of
OMEGA Communications Interface Level 2. And some Real Time
Programs present~ in existenoe may be able to efticientlY
utilize the Intertaoe Level '·Sottware.

,8.1-1

494
REAL TIME
COMPUTER

WITH ~
COMMUNI-

CATIONS

I

/. '" HAND-
ESI "'

,
LER

PONTRDL
'.JI' ~

HAND-
..... , ILER

Level 1 Control
Fig. 8-1

8.1.2 Level 2 Control

,

I USER
PROG.

A

USER
PROG.

B

The lowest level of Software is the IIESI CONTROL" routine.
ESI CONTROL executes the hardware' functions, interprets the
interrupts and provides other basic communication with the
hardware •. There is only one Communications Function Executor,
but it may communicate with any number of "Communications
Handlers n. . The "Communication Handler" is the next ~gher
level routine. A Handler might be specialized for a type of
remote device, a particular buffer scanning technique or
unique to a particular appliea tiona program. The handler
might connect directly into some user progr.rums or the
"Communications Director". The Communications Director
provides a buffering or staging mechanism for the input and
output messages, depending upon activity these may be queued on
mass storage to preserve space in core memor,y. It is
the Communications Director which interfaces into the high
level user program providing him with input messages and
acceptL~g r~s output massages tor subsequent transmission to
remote communication devices. The Communications Director
has other miscellaneous functions, -one of which is identifying- .
unsolicited messages. .

494
L TIME

COMPUTER
WITH

COMMUNIC
TIONS

ESI
ONTRDL

COMM.
HANDLER

HIGH SPEED

COMM.
HANDLER
LOW SPEED

COMM.
HANDLER
SPECIAL

USER
PROG

D ,.

LJ
Level 2 Control

.Fig. 8-2 ..

USER
FROG.

A

USER
P~OG.

B

USER
PROG.

a

8.2 TABLES

In order to control the various commuication devices certain information
is required concerning the characteristics of the remote units and
transmission lines. Current status and control information must also
be available. For this reason the following tables have been established:

CTM Control Block
• Unit Control Block

Communicatipn Faoility Map

8.2.1 CTM Control Block

The CTM Control Block is ~ 30g word (Level 2) packet containing
'information relative to a 'particular CTM. There is one such Control
Block in core for each currently active CTM pair. These Control '

. Blocks are formed and placed in c,ore as a CrM pair becomes active
(see Section 8.2.3). The Control Blocks are accessed from a table
based on ESI address (see Section2 .• 1.2.2) The .table is referenced
by. the ESI Interrupt Processor, the Communication Handler, and the

, Communication Director (Level 2). The C'lM Control B~ock' is, shown
below with a description following.

o
1
2'
3'
4
5
6
7

10
11
12
13
14
15
16
17
20
21
22
23
24
25
26
27

cn~ Control Block

STATUS # WORDS
JOB # . ACT #

I ADDRESS
I UCB LINK

e'IM TYPE INPUT BUFFER SIZE
ESI 10UTPUT) MPLX &C'IM I.D.
CODE TYPE CHANNEL NO.

I ACTIVE UCB
INPUT CHAIN moo OUTPUT CHAIN CornT
COMMAND WORD EXTERNAL FUNCTION

INPUT BCW (HEAD OF CHAIN)
OUTPUT BGW (HEAD OF CHAIN)

INTERRUPT CONTROL
INPUT MONITOR CN'l! OUTPUT MONIWR ONT

INPUT ESI BCW
OUTPUT ESI BCW

ESI EXTERNAL INTERRUPT WORD
SPARE

ESI (DIAL) MPLX & CThf I.D.
POLL PERIOD TIME OF NEXT PCLL

HEAD OF DRUM CHAIN
TAIL OF DRUM CHAIN

CORE BUFFER
PUSH/pOP LINK

Word O-upper .. Status of .C'lM

1 • DOWN-BIT 29 set
2. INPUT ACTIVE-BIT 28 set
3. OUTPUT ACTIVE-BIT 27 set

Word O-lower ... Number of words in this list. The number o~
words may var,y depending on whether Level 1 or
Level 2 control is being used.

. Word 1 - The Job and Activity number of· the Communica ti9n
Handler controlling this CTM. TheESI Interrupt
Processor references ·this location when executing
a QREF to the handler. ~

Word· 2 .• Address of th~ handler controlling this CTM~
. Control is transferred to this address when

the QREF above is made.

Word 3 - Ohain cellto first Unit Control Block (see
Section 8.2.2). All UCBr s associated wi.th this
CTM are chained through this cell.

Word 4~upper - CTM and transmission line characteristics are
listed here. Possibilities include:

•. synchronous/asynchronous .
simplex/half d)1p1ex/full duplex
dial/automatic· dial/poll
line speed

Word 4-lower '- Input buffer size. The ESI Interrupt Processor will
. obtain this size. input buffer from the buffer chai~
when required (see Section,8.3). .

Word 5-upper - ESI for the output CTH. The input ESI will be one
greater.

Word 5-1ower - The actual multiplex and CTM I.D. code (used to
send external functions to the CTM). .

Word 6-upper -·Data Code type (ASCII, X3-3, etc.), code levei, etc.

Word 6-1ower - I/O channel number

Word 7

Word 10

- Address of UCB which currently has an input or
output message in proce$s.

- Inpu t and output buffer chain counts in upper and
lQwer respectively. Each time the ESI Interrupt
Processor chains a butfer the appropriate half- ..
vord .is incremented. May be used by the handler
to locate currentl)" active input and output buffers.

Word 11-13 - ESI Function Executor control words. Described
in SectioD 8.4.2.

Word 14 - Interrupt Control ,Word. Specifies ESI Interrupt
Processor action at interrupt time. See Section
8.4.1.

Words. 15-20 ~ Contr~l words used by the ESI Interrupt Answering and
, Interrupt Processing Routines. See Section 2.1.2.2.

Word 21 - Space location, may be used by handler for control.

Word 22-upper - ESI address for t~e DIAL C'lM. Will be' ~ if there
, is no DIAL O'lM associated.

Word 22-10wer - .The actual Multiplex and DIAL C'Th1 I.D •. code used
to send external functions. Zero if there is no
DIAL C'lM.

. Word 23 - Poll period and time of next poll of the remote
uni ts on this C'Th1. Will be zero if not a poll line.

Words 24-27 -'Control information for drum queue of output
messages for this CTM (Level 2 only). See section 8.6

8.2.2 Unit Control Block

The Unit Control Block is a 148 ,word packet containing information
relative to a particular remote device. There is one Unit Control
Block in core for each remote unit currently assigned. These Control
Blocks are created and placed in core as each unit is assignea.
They are accessed through a chain cell originating in the cn~
Control BloCk. They are referenced b,y the Communication Handlers
and the Commuica tion Director (Level 2). The Unit Control Block
1s shown below with a description following. '

o
1
2
3
4
5
6
7

10
11
12 '

.13

Unit Control Block
(UCB)

STATUS J # OF WORDS·
C '!MiUGB LINK
CTM CONTROL BLOCK

OUTPUT BCW LINK
UNIT I.D ..
UNIT I. D.

TAiltCB LINK
MSGrS 1# WORDS. (MSG)

HEAD OF DRUM CHAIN
TAIL OF DRUM r.HATN

CORE BUFFER
PUSH. CELL

8.2-~

Word O-upper - Status used by the Handler to indicate such things

lower

Word 1

Word 2

Word 3

Words 4,5

Word 6 .

Words 7-13

as:
DOWN REMOTE UNIT
REMOTE UNIT RESERVED
INPUT ACTIVE .
OUTPUT ACTIVE

- . Number of words in this UNIT CONTROL BLOCK'

-. CTM/UCB Link. A chain cell linking all units on
'. a C'IM to each other and to the C'lM. The chain

originates in the CTM.

- Address of the CTM Control Block to which
this UCB is linked.

~ Output BOW Link. A BCW specifying a chain of
output communica·tion buffers to be· sent to this
uni tll An output message may be linked through
this location by the handler when the C'IM is
active with another message. This buffer would then

"'be established by 'the handler when tlie current
message has been completed.

- .Unit I.D. Information necessary to identify the
remote unit. May contain phone number for a dial
unit,poll code, transmitter start code, etc.

- TA,luCB Link. A chain cell- linking the UCB to the
Task Addendum of the program to which it is assigned.
All units assigned to a.task are linked together
'through this cell~ .

- Control information fO,r input drum. queue of messages
trom this unit (Level 2 only). See Secti~n 8.6.

8,,2-4

8.2.3 Communications Facility Map.

The Communications Facility Map is a table, located on
Random Access Storage, which has a listing of the units, the
mnemonic names they may be called by, the handlers which
should be used, Unit Control Block information, Communications
terminal Module (CTM) information and a summar,y of the units
which are in use. This map will be set up at Systems
Generation and later referenced b.f the Communicationa
Facility Assignment Software routines as units are acquired and .
released.

o A TO UNIT DESC LIST "/j TO HANDLER DESC LIST

1 SIZE OF USAGE LIST TO USAGE LIST

2

3
4-

X

X+1

X+2

o

ABC VUNIT· DFSC ~
I--~~--~~~~~~-

A B C

A B C

-
Word 0

Word 1

'(
~

COMM UNIT NAME 2
V _ HANPLER DESC V UNIT DESC.

HANDLER DESe VUNIT DESe.

~

.~

U - The increment from the base of the map to the
first unit description. "

. L . - The increment from the base of the map to the
first handler description.

U - The number of words reserved for the usage list."
~ch uS8jge ent17 requires' two wo~s.

8.2:"'5

Word 2

~ - The increment from the base of the map
to the first word of the first entry in the usage
list.

. A Communication Unit name by which asssignment
will be requested ~ The It ACQUIRE" statements
will refer to these names.

Word 3-4 229 (A) = 0 One or more alternate handler -
.unit desoriptor vords following for this unit
name •

Word X

. 229 (A) = 1 Final handler- unit descriptor
word for' this unit name.

228 (B) Undefined

227 (0) Undefined

226_215 The index to the handler description·
to be used on this assignment. This index is
relative to the base of the handler description'
list.

214_20 The index to the unit description to be
,used for this assignment.

Another unit name which may·be used for assignment.

Word X+1- Referenoes to handler and unit dascriptors.
1+2 for this unii; name. Similar to \lords :3 and 4

above.

8.2-6

Communications Handler Descriptors
(Initialize and Locate)

The mnemonic nrumes previously defined points to a IIHandler
Initializell descriptor, which describes a routine which will be
loaded, exe.cuted and discarded. This routine will perform initial
setup functions as required by' the n Handlerll • The Handler Initialize
Descriptor points to a "Handler Locate Descriptor" which describes
a handler to be used for the normal handling of communication messages.
The handler locate descriptor will indicate if the handler is
presently in core, and if so where it is located.

o
1

2

3

4
5

HANDLER INITIALIZE DESCRIPTOR

f

HANDLER INITIALIZE
NAME \

VERSION
FILE INCREMENT TO HANDLER INITIALIZE
T·~GTH (FJU~ .. IN IT ..) I V H~~LER L-OCATE f

UNDEFINED

-.'

-
Word 0-2 Con~ains name/version of communications "Handler

ini tiali~e:.: routine.

Word 3

Word 4

Contains the drum address of the routine. If
O---Qs indicates no initialize necessary, proceed
iminediately to uHandler Locate ll descriptor.

U - Number of words of core required for this
Handler Initialize Routine

L -·The index to the IIHandler Locate" description
to be used on this assignment. This index is
relative to the base of the handler ~escr~ption
list.· . ,. .

Word 5' . Undefined.

8.2-7 .'

o
1

2

:3

HANDLER LOCATE DESCRIPTOR

HANDLER
NAME

VERSION

4 HANDLER LENGTH
5 .

Word 0-2 Contains name/version of communications IIhandler"
routine.

\,Word :3' Contains the drum addre'ss of the handler.

Word 4 U - Number of words of core required for this
handler.

L - Address of Handler if in memory or ~-~s if
not in memory.

Word 5 Number of Communication Units currently using'
. this nHandler~t. 'When this count becomes ¢ ·the Handler'

U"'" 'ho """" ... ",oA 9...""", ... " .. 6 "_ .,~ .t'~:.~"'w. ... VM& v.., .. ge,

. 8.2-8

Communication Unit Descriptors (UNIT and CTM)

The word or words immediately following the mnemonic name point to
a "Unit Description" which is a small table containing unit status
and other information unique to a unit. A pointer vithin the unit
descriptor points to a "CTM Descriptorn which describes the OTM
for this unit. The Unit and CTM Descriptors are interrogated to
determine if the requested communication unit ~ be auccess~~
ACQUIRED it It eo, a Un1 t Control Block \d.ll be £ormed in ~,
also a arM Control BloCk, unless a previo~acquired unit required
the same CTM Control Block in which case it would alrea.d7 be in "

, memory.

a
1

2

,';

UNIT DESCRIPTOR

.,

h/O CTM DESC # WORDS ON DRUM

STATUS

L
Word 0,

Word 1

WORDS IN CORE

UNIT I.D.
OR POLL CODE

--'

229 If n 1" indicates unit is not available f9r
use at this time, it is either down or already
in use. If n¢rr unit is available.

28 15 ' .2 -2 The index to the CTM descriptor. This
index is relative to the base of the unit
description list.
14 a ' ,

2 -2 The number of wor~s this descriptor
occupies on drum.

U - Status information pert~ent to this unit.

L - The number ofvords required in core to form
a.Unit Control Block trom this unit description.

Word 2&3 ,A unit identification or poll code 'Which'may be used
by the handler.

',8.2-9 .

o

'1

2

.3

4

5

6

7

CTM DESCRIPTOR

WORDS ON DRUM

o OR ADDRESS IN CORE

STATUS '# WORDS IN CORE I

.
eTM TYPE ITNPUT BUFFER SIZE

ESI (OUTPUT) MPLX +,CTM I.D.

CODE TYPE CHANNEL·NUMBER

ESI (DIAL) WLX + CTM I.D.

I PERIOD BETwEEN POLL S

-
Word 0

Word 1

Word 2-5

Word 6+7

......,I

Number of words, this descriptor occupies
':.:on drum.

Memory address if a Control Block has been
set up for this CTM, otherwise O----Os.

Specific CTM information. required to form the
CTM Control Block in core memory.

Additional CTM Control Block informs. tion, not,
always required. Dial or pollable CTMs requir.e
this information.

8.2-10 "

Communications Unit Usage List

A drum stored list is maintained which contains unit identifying
information for the units 'Which are current11 being used. The
Unit Control Block core memory address is paired up with the indexes
of the Handler Initializeand Unit Descriptor which were used when
this unit was acquired. Thus by searching the usage list and following
the indexes, a unit and its associated software components mar be '
thorougr.1y analyzed. . .

o

1

2

3

4

5

6

7

rLo I " ,

ADDR OF UCB

'J HANDLER DESC. fJ UNIT DESC.

Word 0

Word 1

Word 2,3
& on

')

(
I
I
) .
)

)

229 = 1. Indicates this word and the following
, 'Word contains unit identifying information for a ,
unit 'Which is presently being used. If~, this ,two
word slot is not being used at the present time.

217 _'20 The core addressor the Unit Control Block •

. U - The index to the "Handler Initialize'
Descriptor".

L - The index to the "unit Descriptor ll
•

Same as' wor~s 0 and.1 but tor adifterent unit.,
Each unit in ,use will,bave a 2 word entr,y in this
list.

8.3 . Buffers

Two types of buffers are used in Omega communications: cOImll}lIlication
buffers and packing buffers. Communication buffers are used to
receive and send data at the: hardware level while packing buffers are
used to exchange data between the Communication Handlers and the
Director or the application program •

. 8.3.1 Communication Buffers

Communication buffers are used to transmit and receive data ,.
, from the Communications Subsystem. The same buffer may be

used for both input and output; input entering the upper
half word and output exiting from the lower half word. ,

, These input and output buffers although occupying the same
memory locations are'distinot ,in that they have no connection
with each other. The input and output' buffers may also be
of differing size. The common point of these distinct
buffers is the end of the buffer as shown in Figure 8-3.

Each communications buffer contains'three control words
located at the end of the buffer. These control words
allow input and output buffer chains to be developed
separately. The "Input BCW Linklf'is the acutal buffer control
word of the next buffer of the input chain. The "Output
BCW Link" is 'the buffer control 'Word of the next buffer of
the output cha'in •. If either of these two words is zero it
indicates that this buffer is the current end of the corres­
ponding chain. The number of words in the third control
word is the si ze of this core area. This value is used by ,
the core chain contr.ol routine tor. allocati'ng' or releasing .:
buffers. '

8.3-1

T "TOTTfl' 'Ol"l.T T T "TV
.L.l.U U..L .DUn J..I.L.l.1.1\.

WORDS

FIG~ 8-3

COMMUNICATION BUFFER

These input and output links if present are used at interrupt
time by the ESI Interrupt Answering Routine as the new input
and output buffers for the terminating ESI as described in
Section 2. 1 .2·.2. When the Input BCW Link is zero, the ESI
Interrupt Processor obtains a new input buffer 'and links it
to the terminated buffer. An OutpUt BOW Link of zero implies
the end of an output message.

8.3-2

8.3.2 Communication Buffer Chain Control

An area of core is reserved for communication buffers by
the Communication Initialization Routine. This reservation, ,
is made through a variable core chain declaration (Section 4.0).
The size of th~ buffer area is established at system
generation time.

Three chain numbers have been assigned for communication
buffer control - Chain No e' I S 3, 4, and 5 e Chain No. 3 is
the area described in the paragraph above. This chain is
taken from free core and set aside for input and output
communication buffers. Chain No.'s 4 and 5 are the input

'buffer and output buffer chains respectively. No chain,'
declarations are made for these two chains - the areas
placed in these chains are obtained by the chain con~rol
from Chain No.3. Requests for buffers are .made only fro~
chains 4 or 5, as appropriate.

ENTRY' -,Entry to chains No.4 and 5 ·may be made either
AND from the ESI Interrupt Processor or from the ~,;

EXIT Communication Handlers. Entry from the handler
'is via an Executive Return instruction with
parameters speoified in the registers:

MemoI7 Request , ,.-___ -.--___ -..
ENT*B
ENT*
'EXRN

where: Vn is the chiin number referenced.
Chain 4 is the input buffer chain and
Chain 5 is the output buffer chain.' .

V1 is the number of words requested.

Control is returned following the EXEC Return.
with the address of the last word of the buffer

, in the A register.

Memory Release
ENT*B7
ENT*A
EXRN 2

-where: Va is the Chain Number being referenced:
Input Chain No.4; Output Chain No.5.

V 1 is the address of the 18.st word of
the buffer· {not including the three control,

'\-' . wc;:;rds". "

. \~

The chain control routine must be readily available
to the ESI Interrupt Processor in order to establish
input buffers. For this reason the processor enter~ ,
the chain control with an Enter 'B and Jump instruc­
tion. The same parameters given above apply. Control
is returned following the "EBJP" instruction • . ' ,

, ,

pperation -A buffer request is made to chain No. 4
or ; either by the Interr~pt Processor or

, by the handler. If the request cannot be
satisfied from the .chain referenced, the
chain control requests an area of core from "

, chain No. 3 (if chain No. 3 cannot satisfy ,
the request, chain 3 control requests the

. area from the Free Core Chain). The area
obtained is placed in the chain which was

, not referenced. The length of the a~ea is
, ' placed in the third control ,word.

An example will clarify the situation.
Initially Chains 4 and 5 are empty, and
Chain 3 contains all the core allocated to
communication buffers. Suppose the Interrupt'
Processor requests 60 words from the Chain 4 •.
Chain 4 is empty so chain control requests
64 words (3 words are need for chain and
link control and one more is added to make
a multiple of 2) from Chain 3. The lower
half of this 64 word area is still available
to be used as an output buffer; so chain
control places this area in Chain 5. When
the btu'fer is' released to Chain 4 a check
is made to see if the corresponding buffer .
,exists in Chain 5" If so, the area is
removed from Chain 5 and the complete area
released to Chain 3; if not, the input
buffer being releas~d is placed in Chain 4.

8.3.3 Packing Buffers

Packing buffers are used to exchange data between the
Communication Handler and either the application program

. (Level 1) or the Communication Director (Level 2).

At Level 1 where the handler passes information directly
to the program,any convention maybe established concerning'
the packing buffers (they may be a part of the program).
The program could be informed of a full packing buffer
either b.1 a QREF, activity registration, jump instruction,
or any other means available. At Level 2, however, the
staging mechanism of the Communication Director must operate-.

with a pre-de~ine~ format as shownbelowe

DATA

The first word' of the packing buffer contains the numbe~,
of words of data in. the buffer and a control indicats>r:,-:,'
such as SOM, EOM, etc. The remainder of the buffer
contains data converted and packed,to arry degree desired
by the handler.

On. input the handler obtains data from the Communication
buff'er and places the de. te. in t;he program's packing buffer '
(data format· in the packing buffer is determined by the
handler) '. On output the handler obtains data from the
packing buffer and un,strings the data (if necessary) into

, a communication buffer for transmission. The acquisition
and release of Packing buffers" is explained in SectionS. 5.:4.

Any 'or all' of the previous output ,options may be
selected. If both Option 1 ap.d 2 are set, Option·1
will take priority'., When the ·1I00tput BCW Link" of
the,termi?B-ting output buffer is ,not zero, ·the new'
buffer will always be established. ' '

, External Interrupt (26-28) , '

Option'1 (26 set), - Execute a 'QREF to the handler
, ,'When an external interrupt occurs","

, Option ,2 (27 set) ,- Establish a new' in~t buffer.
" (ei ther from the "Input BC,W Link"

or from ~e input buffer. chain) .

Option :3 (28 set) ,'- Send a' "Look for 'SYnc" function
when an e.xterna.l interrupt, ocours.

Any or all of the a ~,ve options, may be ~elect:~d •

. 8.4.2 ESI Function Executor,

In addition to the functions performed at int~rrupt time
by the ESI Interrupt Processor, the handler at t'imes may'
choose to send certain external function commands to
various CTM IS, and establish buffer control wo,rdsin the
ESI locations. These functions are handled by the ESI
Function Executor. This routine'is classified-as- an,
"immediate function" routine -' it is entered throUgh' an
Executive Return instruction, the functions are executed
.in the' Executive 'Mode, , and control is returned immediately'
upon completion. Entry ~s gained tr~ough the rollo~~ng
packet: "

ENT*
ENT*A
EXRN

where Vo is the address of the CTM Control Block
defining the functions to be performed.

The functions to be executed have been pre-stored
in 'the CTM Control Block b~fore the above packet
is issued. Bit settings in the upper of word 11 of
the CTM Control Block define the functions:

, 229 =1

~2S ='1 '

Send "Look for Sync" external function

Set input BOW. ' Word 12 of the CTM '
Control Block 'Will be moved to the'_'
inpu.t ESI BOW position defined by'
word 5 of the Control Block.

'8.4' , ESI, Control

The Communication Handlers d~fine the method pf control to be '
used for a particular' CTM. Two routines are available to the'
handlers for this purpose: The ESI Interrupt Proce'~sor and'

. the ,ESI Function Executor. '
"

8.4.1 ESI"I,nterrupt Processor

Through the ESI Inter~pt Processor (See Sectiori 2.1.2,,'2) , th'e.
handle:-, controls i:,he sequence of events' on the occurrence '
of all 'ESI interrupt. Thi.s control is'accomplished by
rGeans of the "Interrupt'Control" 'Word (lower of-word
fourteen) of the CTM Control Block. Through this
word a course of action is' described for input monitor
interrupts, output monitor interrupts, arid external
interrupts separately as follows:'

Input Monitor (2°-22)

Option 1 '(20 set) ..;. Execute' a QREF to the handler when '
and input monitor occurs_(if 20 'is .
. not set, no QREF will be made).

Option 2 (21 , s~t) = Send a "Look' for Sync!t ,function to'
the CTM.

Option 3 (22 set) - Do not chain a new input buffer when.
the "Input BCW Link" is zero ~ ,

Any or all of the above options may be selected.
When an "Input BGW Link" exists in the terminating
buffer the· new BCW wili be established regardless of
any of the above bit settings. If the link is
zero the Interrupt Processor will obtain and establish
a new buffer unless Option 3 has been selected.

Option 1 (23 set)

Option 2 (24 set)

Option 3 '(2~ set)

- Execute a QREF to the handler when
an output monitor occurs. If 23 is
not set a QREF will be made only when
the "Output BCW ~inklt of the termina-'
ting buffer is zero.

- Do not QREF the handler when the
"Output BCW Link" is zero. .

- Release the terminating buffer to the
output buffer chain (Chain No.5)
and update the "head of output chain"
(word 13) of the CTM Control' Block •

.... , ... ,

Set output BCW. Word 13 of the
CTM Co~trol Block will be moved
to the output ESI BCW position ,
defined by word 5 of the Control
Block.

Set outptitBGW for DIAL CTM.
Word 13' ,6f 'the CTM Control Biock
will be moved to the output ESI
BCW position defined by word 22
ot the Cont.rol Block.

Send external' function. The funct'ion'
;' 'code contained in bits' 2°-22 of this

word (word'13) will be sent to. the
CTM defined by word 5.,

S.end external function to DIAL CTM.·
The function code oontained in , ·
bits 2°_22 .of .word 13 will be sent
to .the. CTM defin~d' by w.drd 22. .

Any combination of the bits given.above will,result
in the execution of ' the oorresponding functions. A

.oonflict may ocour ooncering. the out~t and DIAL "
'CTM's; therefore, when 227 is set, 226 will be ignored,
and when '225 ,is set, 224 will be ignored. The bits
are examined and the functi'ons exeouted in the'· order,
'given aboye. Any deviation ~rom this established·
order will necessitate the issuing of two ,or more

, suooessi ve connnands •

. The bit settings desoribing the funotion,to be performed.
are stored in the upper of word 11 ot the"--CTM Control'
Block, the function code in the lower of word 11., .if"
applic.able" the input buffer in, word 12, 'and 'the output

. buffer in 'Word 13 •.. The above ·paoket is then issued.
Words ,12 and '13 then beoome the new heads. of the inpUt
and output buffer .ohains respeotively_

8.4.3 Channel Initialization and Termination

The Intialization and Termination of communication channels
is accomplished by means of an "immediate function"
command. Initialization is perfomred when the first .
communication facility is assigned, and termination is
performed as the last communication facility. ;is released.
The' following packet is used:

where: Vo 'is a code indicating either initialization
or t'ermina tion.

lrThen 'irii tiali'zation is indicated the routine will clear
all ESI locations and set input.and· output active on all
ESI channels. Clearing the ESI locations will preverit
data ,from entering core and cause,a.word of all bits
(CTM stop code) to be sent to a CTM if it requests output
da. ta • ·Synohronous OTM' s oome on in the "Look for Syn~"
mode when power is applied. so that the exterrial function'
need, not be issued '~uring initialization. '.,

When a ,termination operation is indica ted, input a'nd
output 'Will be terminated on.8.~l ESI cbanne+s.· . '

8.; Communication Handlers

The Communication Handlers interface between the Interrupt Processor
and the application program. Data manipulation between the~communi­
cation and packing buffers is accomplished by the handlers. The
handlers may be vritten to handle a remote unit in any manner desired
by the user. The handlers ~lso 'may initiate output, initiate polling,
specify input and output communication buffers, acknowledge the
remote devioe, resatESI ~~fer oontrol words, searoh input bufters, ,
etc. '

Communication handlers are written for a particular type of remote "
unit; however, 'they are not restricted to ,o~ one OTM - one handler' ,
may communicate vi th many OTM r s. In thi,s case, ,the handler must be' '
coded such that it is non-re-entrant with respect to an individual
CTM and re-e~trant with respect to different CTM's.

'6.5.1 Interrupt Processor Interface'

Input -

Many options e~it in the manner in which the handler communicates
with the Interrupt Processor (IP). In fact, ,the methods which
may be employed seems to be limited only' by the imagination of
the programmer. With respect to the communication ,buffers, .
the handlers may obtain'butters in the same manner as does the
IP or the handler may let the IP obtain' additional input buffers.
Using the former method the handler may obtain two (or more) ,
input buffers and link them ~ogether with the link of' the last.
buffer,pointing to the first ~fer. Thus, when the last
buffer is filled the Interrupt Answering Routine 're-instates
the first buffer effecting a re-circulation' of ~'~fers. 'With .
the above method the handler also has the option of being refer-

'enced when an input m.onitor interrupt occ~s so that the buffer
may be processed, or the handler may periodically scan the
buffer chain for end of transmission codes. Another method,
the handler could use is to periodically scan and remove data
from the communication buffer and reset the buffer control word.
This procedure vould minimize, if' not prevent, input monitor
interrupts. If a monitor did occur data would not be lost since
the IF would obtain a new input buff'~r and chain it ,to the,
expired buffer. Input communication buffers which have been
obtained by the IF should be released to the buffer chain .b.1
the haridleras soon as the data has been removed. These
input buffers may-then be obtained and used again by the IP.

The handler instructs the IP on what procedure to fo~O'W when
a monitor interrupt occurs b.1 setting certain bits within the
CTM Control Block of the interrupting ESI. These bits m87 be
'varied dynamica.ll7 by the handler. The options currentq-
available are desoribed in,Seotion'8.4.1. '.

When these bits indicate that the handler desires control
, after an interrupt has occurred, the IP executes a QREF to the
handler with the address of the CThr Control Block in the A­
register, and the terminating buffer in the Q-register. The
handler to ~ referenced by the IP is identifiedb,y~ords 1
and 2 of the CTM ,Control Block. These words contain the JOB
Number, Activity Number and address ,of the handler. The JOB
Number will be that of the program which is to rece~ve the
,data. The 'handler operates under the identity of the receiving
program, but at a higher priority than the program proper.

The handler may instruct the Function Executor to set up
ce,rtain input and output buffer control words, -(ESI' s) and issue
certamn External-Function commands to the appropriate CTM. ~'
These functions ar'e performed immediately by the Executor and
control is then returned to the handler. Multiple functions
concerning the same OLT may be performed wi th o~e command. A
predetermined 'order', of execution has been set up which should
cover most contingenc~es. Deviation from the execution order

'will require two or more references to ,the Executor. See Section
8.4.2 for execution order and lO'cation' of function and buffer
'Words. '

Time dependent control is available to the handlers as well as
,'Worker' programs. These funct,ions may be used for buffer scanning,
acknowledgement remote units, etc. Thetae dependent £'unctions
are described in Section 5.0. '

", Output ..;,

'When the complete message has been plac'ed in a' communication
, 1)'1] rfer (or chai.'l of' buffers) the handler may check the C'IM
status in ,the CTM Control Block to 'see if output is currently
active on the OTM. If not, the handler: may initiate output to
the unit by' instructing ,the Exe~tor to set u.p the initial butfer "
in the ESI address and to send an external function ,to the CTM.
If output is currently "active the 'handler may indic~te in the
UCB,that~, complete message is ready, o~' the handler may "
possib~ qhain the message to the currently active output

, ~fe;r chain. ' '

When an output buffer chain eX,iststhemonitor interrupts are,
handled completely by the Interrupt Answering Routine. If the
"Output Buffer L~" in the termina~ed buffer is 'not zero' it'
is the Buffer Control Word of the' next buffer in the chain and
:i8 immediately established. The 1P at t~stime IDayalsoreturn

'. the terminated, buffer to the Output Butfer Cha.inif', instructed
to do so by the handler. The 'butfe~ would not be returned to
the' cbain it the message was being sent ,to tWo or more' eDi's '
as ,in a message Switching application. , ~n ail output monitor

occurs and the buffer link is zero, a new buffer is not
eStablished; the handler has either placed an "end of
transmission tt code in the buffer, or the handler will allow .
the I/O hardware to send the EOT when the CTM requests again·
(the I/O hardware will send a word of all bits and an .
acknowledge when it finds an ESI word count of zero).

Upon finding an "output buffer linkJt of zero the· IP may QREF.
the handler toinfor.m the handler that the complete message
has been transmitted. At this time the handler may search· ,
the Unit Control Bl'ocks associated with the CTM to detect "
and'initiate any additional messages queued for output to
that C~. A reference to the handler when an output monitor
occurs is optional; the'option is exercised by setting the '
appropriate bits in the Interrupt Control Word o~ theC1M
Control Block (see Sect·ion, 8.4.1).

8.,.2 Data Handling

Communication Handlers move input data from the communicSt:: ~
buffers to the packing buffers. During this operation'tmi",
data mariipulation required may be performed by the handler.,
For example, the handler may check character and message .
parity, the handler may convert the incoming message code to
any internal code required by the program, tmd/or the handler
may pack the data, to any degree in the packing buffer.

To facilitate any or all of the above operations certain
locations within the CTM Control Block may be used for control
purposes. The upper half of word 4 will contain information
identifying the level of the CTM pairand'vord 10 contains
the input .eode type (~II, XS-3, etc.). .

. .

Hnadlers to be used for,.input to the Sistem (such as the OMEGA '
Scheduler) will convert the data from the input code, to
Fieldata code and pack ,the characteTs five to a 'Word in
the packing buDfers.

Upon receiving a packing buffer of output data, the handler
requests a communication buffer from· the Output Buffer Cham.'
The handler then unstrings and converts the data as required
placing the data in the communication buffer. If the message
in the packing buffer was incomplete, the handler requests
additional data in the same or another packing buffer. The
buffer control 'Word of the first buffer may b~ placed in word
3 of the appropriate UCB. When the additional data is
received the handler obtains another communication butter as·'
above and chains the second butfer· to the first by' means ot the
"Output Butter Link" as described in:, Se~tion 8.3.1.

. , • .' .:~. ",' ", . :. ..r!''';· • ,

S.5~3 User Interface (Levell)

Levell control implies a 'close association between the handler
and the user program. Any method of program organization may
be employed. The handler may be contained within the user

. program code· or the handler may be,'contained in one of the

. libraries (job, group, system). An !REF may then be used
to collect the handler with the user program. The handler
may be established as a separate activity with higher
·priority than t~e user. Time dependent activities for buffer
scanning may also be registered·. '

Packing buffers may C?yareas within the. user pr~gram or they
may· be obtained from a core chain by. the handler or the user.
Packing buffers and their status may be exchanged between the

. handler and the user by any me~s available (i •. e. QREF, activit;y
registration, jump. instruction, et~.)., . .' .', .

The user program may·consist or difrerent levels of.core. The
handler exit, for example, may be to an edit and/or drum queuing
routine for retrievalat·a later, time by a user message
processing routine.

·S.5.4' Communication Director Interface (Level 2)

When operating with level 2 control, 'the handlers interface
with the Communication Director for queuing of messages on '
the drum .(specified CTM's may still· operate with level 1 .

. ' Control· while others are cC?ntrolled at level 2) •

. In level· 2 the handl.ers originate the commands gi veri to the .
Communications Dire'ctor. After performing the command the.
Director re·turns to the handler with' a status 'indication.
The pireotor operates as an· extension of the hal;ldler although
possibl;y, at a different'priorit;y. '

The following commB.nds are available to ~he handler·:

• Queue Input Message -- The handler has a' packing buffer of ..
date to be queued against a specific remote Unit. Control
is returned uponcampletion. '
Parameters required -, '
, • Unit Control Block address

• Packing buffer address

• Queue Input Message and release Packing Butfer ~ The .
··D1r9ctor vill·queue the mes~eas,abOve and release the .
packing buffer. .. .

. Parameters· required -
• Unit Control Block a4dress .
• Packing buffer.address
• ·Nilmber of \lordS· 1;0 release .
•. Core, chain Bo •.

8.5-~·

Request Output Message -~ The handler requests an
output message for a specific CTM. A status will"
be returned indicating whether or not a message
is available. If available toe appropriate UCB
will be indicated. "
Parameters required -

.CTM Control Block address

.Packing buffer addre~s and number of words

• Obtain Output Message -- The handler requests an,
'output message for a specific CTM. Control will
"be returned only when an output message is available.'
Parmeters required - "

.CTM Control Block address

.Packing buffer address and number of words

"$ Request Output Message and Packing Buffers -- Same
as Request Output Message except that the Director
obtains a packing buffer from a core chain. Director"
returns buffer address and. number of words •

• CTM Control Block Address
.Core Chain Number

• Obtain Output Message and Packing Buffer -"Same a
Obtain Output Message except that the Director obtains
the packing buffer. Director returns buffer address
and number of words.
Parameters required -

.CTM Control Block address

.Core Chain Number

The handler executes the commands by lo~ding the registers
with the appropriate parameters and giving an EXECUTIVE
RETURN instruction. Control is returned following the:"
EXEC RETURN with the status and other i'ntormation

" contained in the registers. "

. 8.5-5

e.6 Cowmunication Director

Gene.ral Description

. The Communications Director is a group of routines which
make it possible for the user to write his programs to a
higher level interface, freeing him from the communicaion
device dependent details. The user will simply "ACQUIRE"
u..ni ts by.a mnemonic name, then issue "SEND" and !!RECEIVEt:
commands. A high degree of flexibility is still provided
the user such a's IIACQUlRE"ing a group of units, being able
to "SEND" to any.one or all units. of a group and issuing
"RECEIVE" commands for a message from a specific unit or
from any'unit in a group. , There are other'. commands: "'DIAL'\'.,
liHANG UP", "POLL"" "RELEASEII and "TRANSFER II which allow .•• 1 '

optimization and sophistioation whi;Le still at the high .
level. ' . .

The Communications Director is composed of numerous elements,
divided so as to perform specific functions. Only the high
usage elements will be in core all of the time, others such
as "DIAL" will be in core only while it is being used. '

Another maj or function of the Communica tiona Director is
t~a staging oi' In~~t and ~~tput messages on P~ndom Access
Storage. Thus al+owing the timing of the. communication
devices ,and the User Programs to be completel1 independent.

"Detailed Descripti0f;l

ACQUIRE may be performed by either a control card or by
a statement within the User Program. The ACQUIRE causes
Communication Facility assignment to secure, if available,

. the unit or units implied by the NAME or GROUP and assign
them to specified . File Code. A ~IDIAL"\' operation mayor
may not be implied' at this time, thus perhaps insuring the
prog~am ~ot only of on site hardware facilities, but also
that'a connection has been made with the remote device.
If "DIALlled when "ACQUIRE~d or if: this unit was connected·

'by a direct wire, "SElCD" and ."RECEIVE" COJDJDands could be
issued immediately.'

8.6.-1

... ~ .

i
~a: . ___ ••.. _. r .: _ _; __ . _ .' ~.L._

I ~ .

"\.-

~ -"-...:..--. - __ a • _____ ._. __ •• .., _., •• __

;

~ a

h

~ _. _ -':"-

. .
, ~ -

-- ~ . '. _.:. -".-- . t_c _~

i·
, ~ .. I

• i" ;:f ~:-.
; f

-: -- f'-~"' :: ~.o
~ ': i

- .~ . ~. __ ;_' - ,,_wr .. _

I.:

--. -! -:-~i ~.~
; .

;'-" .
I
I
! ... -

t·
.-l .. ____ l_ ~

, !

• I , : . I ~ .,
:-~ .. - ~ . .J~- .. -!--._c

. i . t ! .
-....:-~- .. -:-'"'~ :_·_-·t -.

~ .. !- . i

. ---~-.-.~.-.. -. -- .~ --~..:.-".,~- .. ____ ~ _. ___ ":J ____ '- ..

.1 -.j--

! •
. .

- , .1. ; --: ,--T . - I

-~~ ... j. .. .,: -: - !" "
• ,r I

.... j.

;

; 'r-;

.. J ~
i

._ .. '_' ~. _.:..t. . If'--'""''---------.-.. ~.-----.-.. ...;,-----._I_I_-I_-.-;--- .-----.-.--lo--
..... __ -.:.. _____ .~._ .. __ . __ _~ ______ ~_ .. __ • ___ +_+_-+_~-~---.---------1------------:

_. - . - - - ;.. -. -- ~ -
-i

I

. ;'
L
I

I POl-I-·

.. _. ~ ---+----rf C~~~t~~_ ~~" ___ .. __ . _-I-:----.',_. _- _: 6'~~b~ I, ~
I

. ! " ----.---- .--
; I ·~~~T

! .•.. 1
. I

-~-:--.-.---~-.;. _.

. ~ ,. '. ;

..: 1- . r-
. -~:J~;} :~::!:';';;-,f;S-~,: .

-;-.... ! ~

: o· •.• r

-, , .. : ;--.- -....... ;'.' --1 ~ ~--'!
: (

, .
-.- ... --:. --~."-- .. L

..... ,. _. \'

'1
". -•.. _ ...•. '-~. ·f' . _____ ... L._.-":':'

.... ~.. '._._ ... - ---~-~ .

'-1-- . ~ .. ~ -: .. ' ;
i
! -

t10 !

!
i

FAC.IlITr

1..
j

'/
I

i­
i­
t

. i ,
L .. _. _.,_. __ .

r'
...... -. -I--

I I _.
1-- . - ,­
!
! .

t··--!··
I
t ,
i-,
I !

.1--­
I

I

~-------~--------'1 - ,

.: .. -- ,-: . . --~: ..
. - ".~ .. ".

~.' ". _ -_~. ~ t-11i'tV _.(;.JfEClI(--2rA-ros
:s .,..'} ,us· .

.~ Gr1.la'ff,Rl
!.

~- - -- - - -- ----. ,

RECEIVE is a User Program command which indicates it is ready
for an input communications message. The Receive command will
be associated with one of the users File Codes. Previously
at ACQUIRE time a unit or units were linked to this File Code,
so now the "EXECUTE RECEIVE" routine of the Communication Director
is able to locate the unit from which input data is requested.
The first message or portion of a message received from this unit,
which has not been given to the User Progr~will be located'and
transferred to the User Program I s buffer, 'Which vas furr.J.shed
with the RECEIVE command.

A GENERAL "RECEIVEIf command from the 'User Program means an input
message will be aceepted from any one'of the units linked to the
specified file code. The flExecute Re,cei ve If will scan down through
the list of units looking for a message. When a message is found,
it is transferred to the users buffer. A minor File Code will '
be given to the user, thus allowing him tQ reference the same
unit again.

IlQueue Input Message n is the Communication Director routine which
receives the input messages from the Communication Handl~r. It
will form strings of input messages, one string for each communications
input unit. These strings will be formed on Random Access Storage. '
An input message may go directly from the "Queue Input Message"
to' the "Execute Receive" and to the user if, there is an unsatisfied
"RECEIVE" command.

SEND is a User Program command which implies output data is to
be sent to a remote unit or units associated with a specific
File Code of this program. The U.eer Program assembles a com­
plete or partial output message in its buffer, then it executes
a "SEND" connnand, specifying the number of,words, buffer base,
a File Code and whether this is. the end of a message or not.
The "Execute Send" portion of the Communication Director will
store the message on Random Access Storage forming an output
string for each Communication Output CTM. Unit identification

_, and end of message indication will also be .stored with the
message. The same message and end of message indication with .
different unit identification will be Random Access stored for
each unit that is to receive this output "SEND" message, to
satisfy a IISENDIf to multiple units. If a 6ommunication Handler
had previously requested an output message for a CTM, which
was not satisfied, the ~ext IISEND" message 'for this CTM will
be given immediagely to the "REQUEST OUTPUT MESSAGE" routine
or 'the Communication Director, thus the drum ,store need no'l!
always take pace.

.8.6-.3

The user with numerous input ,units on one File code (major)
might like to know how many input messages are waiting to be
processed. A "CKISTAT" command executed by the User Program
will cause a Communication Director routine, "Status Checker"
to be loaded into core and executed. This routine will count the
number of units ,assigned' to this user File Code and store the
count in a buffer like area furnished by the User Program. The'
nUmber of messages and the number of words of the next message
for each unit t~£t has not been processed 'will also be stored
in this butter area. ' Thus, the User Program' can determine
the unit, with the largest 'backlog pi input and might like to
alter hisproces~ing accord~ngly~

, A uDial and Hang Up Routine'u allows a User Program to "ACQUIRE"
a unit which is essentially an Input/Output'with Dial' CLT
combination. Then ,with "DIAL" and "Hang Up" commands a number
of remote connections may be made, one at'a time. Pethaps
a Poll by' "DIAL" arrangement. ' This also allows 'the user program
to "HAND UP" after all of the input data has been received, then.
when the output is ready to be sent, "DIAL" the'number again.

A "Poll Controln routine allow's a Us'er ~rogram to' give "POLL"
STOP or START oommands tor a unit or all units on a File Code,
These commands given to non-pollable units will not affect them.
The polling is controlled by the, 'Communications Handler, ,it will,
poll or not poll' a particular unit as per'the last npOLL"
command received. The unit description.in the Communications

,Facility Map has provisions for declaring the ~nit as pollable or
,non-pollable and whether polling should be intiated when the'unit
is "ACQUlRE,f.d. ' . .

"

"

When a User Program determines-there is no more activity for a ' '
unit, a "RELEASE" command may be executed. This will cause a
"HANG UP" operation if it was a dialable unit and the unit will
become available for other nACQU~REns. The Unit Control Block
will be cleared fram memOr,y. If no other units 'are using the
CTM CB, it too will be released. If this happened to be the last
communication unit operating the Communication Director will also be
released.

A User Program may 8J.so flTRANSFER" a unit . to ' the Communications"
Director. This indicates the User Program no longer has any
need, for this unit', but there is the possibility of unsolicited input

,on this unit~ Thus the Communication Director has complete control
'of the unit as if it had ItACQUIRE"d it •. , '

Unsolici ted arid unidentified input messages, may O.ccur only for
those units which are assigned to the Communications Director.
The Transfer Unit Control section of the Communication Director
will be a. small unit control section which will be in core as

, long as some units remain' assigned to the Communication Director.
When input is received from one of these units, it w.ill·not be
known at this time which User Program it is for or it might be
an input job stream. ' The Communication Checker wUI be loaded

. and will determine if the input message is the' start of a, job stream.'
If so the appropriate Unit P~cord Pwutine will be loaded ~id will I

ACQUIRE the unit from the Communications, Dire~tor and ,proceed in a
normal manner. If the message was not a job stream. '
further .attemp~s will be made' to identif.y it and then inform the

. proper U:ser Program. If ~ User Program cannot be found for the ..
message, it will be discarded ~d p~rbaps loggea·as an error
. situation. ' "

8.6-5

8.7 User Progr~ Interface Level 2

This describes the commands and interface which the User Program .
will use when communicating with the Communications Director.
The following are the commands vhichmay be used •.

Commands Explanation

#ACQ. 'External flACQUmEn request for a communications unit
. or group of units rec~~ved via a control card.

ACQ$ Internal "ACQUmE" request for a communications unit
or group of units.

DIAL$, Direct that a '''DIAt'' operation be performed.

HANGUP$ A line. disconnect operation will be'performed.

RELEAsE$, A ,previously acquired unit. or units ~ill be'rel~ased.

SEND$ A "SEND" operation passes an output message from the
UseroProgram to the Communications Director.

RECEIVE A User Program request to the CommUn~cations Director
for an input message.

CKISTAT$, Provides the User Program with the status of the
input messages received by the Comm.' Director which
have not· been passed onto the User Program. ' I

POLL Allovs a, User Program to set a unit or units" so they.
villbe or will no~ be polled.

TRANSFBR This transfers' contr:ol, of a unit or units' £rom 'the
User Program to ,the Communications Director or from
the ColIDllUILications Director to~the User Program.

Deatiled Description of the Commands

ACQUIRE

. An ACQUIRE command "l'Jl8:3' be executed e1 ther by a· control card or by
an internal program statement. The ACQUIRE will be performed in the
same manner regardless of how it is initiated.. . '.'

#ACQ~Optionsll NAME, File Code, XX---n

ACQ$i:1 Options ~ NAME, File Code, XX---n

NAME If II G" is not specified ,as an option, this is a 5 character
, mnemonic NAME of the desiredcommunicatio,n unit. The

Communications Facility Map will be searched for a match
to this mnemonic name.

If IIG" is specified as an option, this is then the "NAME"
of an element which contains one or more NAME's of comm.
uni ts which are listed in the Comm. Facility' Map. The
search for, this GROUP NAME element will be first to the
JOB library then the GROUP library then to the SYSTEMS
'library. '

, ,

FUe Code Is 1 or 2 alpha .characters which 'represent the File Code
this unit, 'is to be connecte.d with. If Comm. units have,
previously been assigned to this File Code, the newly' .
acquired unit will be added at the end of the chain. The

, minor file code number will be· given to the user., The
minor file code is a binar,y number indicating the relative
chain position of a particular unit.

XX..-.....n This is an external number to be used· by' the x (DIAL
EXTERNAL number) option.

OPTIONS, MEANING

G "GROU(.Indicates the NAME parameter ,is the name or an 'element.
The named eiement then cont~ins one or .more comm.. unit mnemonic
names.

. A ABSOLUTE. Ignored unless· G option is 'also present. In whioh
case, the "A" indicates all uni:ts nameq. in the Group,element
must be acquired for'this ACQUIRE to be successful. .

D . DIAL. The number contained in the Unit Descriptor will
be dialed. This ACQUIRE ,wi·ll be successful only if the
number can be success~y' d:ialed.. ,The ,di~ing will' ,be '
executed automatically if the automatic d~al CTM is

'available otherwise the 'operator will be 'instructed to '
perform the dialing. . . '. '.

I EXTERNAL. Dial number specified. Dial opera.tion to' be
executed similar to the 11])11 option~ except the'~~ernal
number,.will be used.

HANGUP

RELEASE,

'RECEIVE,

DIAL$~Field Code, # 'of words, buffer base.

A DIAL operation will be executed using the number that is
contained in the buffer. The dialing ,will be executed
automatically if the automatic dial CTM is available, '
otherwise the operator will be 'instructed to perform the

'dialing. An unauooessfulstatus will be returned it
the dial connection cannot,be ~ccess~ completed.

HANGUP$~File Code

A hang up or ~isconneot operation will be performed.
If the connection was performed q, an operator, he will
nov be instructed to bang up., '

RELEASE$A File Code/File, Code (minor) ,

, 'A previously acquired ·uni t or units will be released, wi.U
become available for use by other programs. All units
acquired for'this File Code will be released unless a minor
Fiie ,Code is also' specified. '

The,minor file code isa number indicating the relative
,acquired posit,ion of a particular unit. The first unit
acquired would have a minor file code. of 1, the second
unit r, s minor file code would be 2" etc.,

SEND$6 Fil'e' Code/File Code (minor), #of words, buffer base.

The "SEND", command directs the sending ot the output I

,message contained in the buffer, to ,be sent to 'the unit or
units specified by the File Codes. 'Theprese~ce of a minor
file code indicates the message is to ,go to ~ specific unit.
The message will be sent to all units associated with .
t~s file code if a minor file was not.speci~ied • . , '

;RCV$,6File· Cod'e/File Code(min~r), II of words, buffer base, ' .

The RECEIVE command secures a complete message ,from the unit
or one of 'the units as specified b,y the file code and places
it in the ,specified User Progr~ buffer.' The absence' of a'

8.7-3

'CKISTAT

minor file code indicates the·first full message located,'
which had been received from one of the units associated '
with the major file code will be acceptable.

An unsuccessful status will be returned if a full message
isnft available from the .designed unit or units •.

FRaV$~File Code/File'Code(m1nor), # of words, buffer base,

The PARCIAL RECEIVE command is the same as the RCV command'
except it does not require a complete message to be .available
prior to passing some of it to the User Program~ .

An unsuccessfUl status will be returned only when there
is'no input data from. the app~icable ,unit or unit~.

RCVW$l1 File Code/File Code(minor), # of words, buffer ',,,se,

The RECEIVE WAIT command is the same as the RCV$ command · ... ~.th
one exception~ That is, if' a full message is not availabl~.
control will not be returned to the User Program with
an unsuccessful status. But instead control will be held
-4 +\., I"''''T!'!1'!''l' T\-4-e ",+,..- ~+~_,.. ~.:.. __ , __ , + ~~ + ~,..,.. ... ,.I'!J.
~~ \lUg vv.au.uu U •• vuv. wa..u.uo .Lv. a. vVAAl,P.l.g\lg "'U,PIoL\I AAlg~~o.6g,

when a message becomes complete, it will be placed in the
buffer and control will then.be·returned to the User Program.

PRCVW$~File Code/File Code(minor),# of words, buffer base,

The PARTIAL RECEIVE WAIT 'command is similar to the PRCV$
command except it does·not return an unsuccassfulstatus
when there is' no input data. Instead' control will be
held by the Comm. Director until, some input data is available •.

CKISTAT$6 File Code, # of words, buffer 1;>ase

A command which allows a Us.er Program to obtain the status
of the input messages which have been' received by the Comm.'
Director but not yet requested by the User Program.
Thus the User Program might alter. its 'processing technique
depending upon the backlog of input messages.

This command will store the major and minor file .codes of .
the last unit acquired for this file,code (major), in the
first word of the specified buffer. The number of messages'
and the number of words of the'last partial message by'
unit, which have been received will be st9red in the buffer,

" second word on up. A word will be stoJ;ed. For each unit,
they will be in numerical sequ:ence .matching :the minor' tile
code. .

TRANF:ERT··

TRANFERF

POLLY$~FileCode/File Code(minor),

This command will set the unit or units 'specified so
they may be polled during the normal Connnunication Handler·
poll sequence. If·.a minor file code is specified, it ...
indicat~ that only that unit should be set to the ",
"poll yes" condition. If a minor rUe code is not listed,
all units associated with the major file code will be
set to 'the poll condition •.

POLLN$A File Code/File Code (minor)

This command will set the specified unit or units so the,y
will not be polled by the' Connnunication Handler. If' a
minor fUe "code is specified, it indicates that only that
unit should be set to the llpoll no" condition. If' a minor
file code is not listed, all units associated with the,

,major file code will be set to-the non-poll condition.·

TRANFERT$ 4Fi1e Code/File Code (minor) ,

This allows a User ·Program· to I1Transfer Ton the Communications
Director a unit or units as indicated b,y the file codes.
The Connnunications Director will retain control and monitor
them for unsoli,ci ted input messages.~

~FmF$.6 File Code

·Tbis command enables a User Program to obtain a Unit
from the Communication.s Director w~ch had been previously
ItTRANFERT" ed. I • The unit will be obtained' arid· associated .
With the designated rUe' ~code. . .

8.7-5

8.8 Communications Facility Assignment

A number of Communications Facility 'Assignment software routines
provide, orderly control of the system's communication hardware and
some software as well_ These Facility 'Assignment routines provide'
the following: '

·A drum record of the hardware qurrently available.

• A list of hardware currently in use'.

-Satisfying a user program's request for communica~~on unit hardware.

·A means of allowing some hardware' to be used by more than one program.
\

·On other hardware, insuring that only one program uses it at a time~

-The user to mnemonicly,request communication units.

'The assignment of alternate units if the reques~ed is unavailabl~. '

~The correlation of certain software or user routines with the
hardware communication units.

·Automatic loading into cor's of ths above mentioned routines.

·"DIAL" functions if specified on the "ACQ$~ statement.

• "GROUP n assignment of communication units,;' if requested and if
, possible.

·Insuring that hardware and software' usage 'c,onflicts do not
develop.

The Communications Facility Assignment routines have to perform
, ,the, above for both Interf~ce Level 1 and Level 2, since both may

be in operation at, the same time.

The control of 'the, Facility Map, method of handling the, "ACQUIRE"
and "RELEASE", and the core meniory. tables (Unit, Control Block and .

'CTM Control Block)" are essentially the same for both levels. The
major dirf,erence is that Interface Level 2 has ,to tie' in 'additionai
Software routines such as the Communication Handlers ~d- the various
'portions of the Communicat~on .. Director. '

Communications User Interface' Level ~ Facility Assignment

The Level 2 Facility Assignment will be explained in a general way,
to present an overall picture of the communications control. The
Facility Assignment is composed of numerous routines, these will
not be distinctly broken down at this time. The tables (Facility.
Map, UCB and CTM CB) explained in an earlier section are quite
closely involved in the Facility Assignment.

Initially a~ System Generation time a Communioation Faoility Map
,is generated. This map is drum stored. It'is at this time when 5
character mnemonic names will be linked to a specific communication
unit, with possibly somealternate units.

, ACQUIRE

Acquire is obtaining the assigp~ent of a desired unit or units to
'satisfy a user program reque'st. The user program wiliexecute an
u#lCQn control card or an nACQ$R internal program statement, both of '
these accomplish the same thing. The ACQUIRE specifies either a 5
character mnemonic which refers to a pre-established unit naree listed
in the facility map or an element name which is composed of one or
more 5 character mnemonic names. An option G character in'the Acquire
statement indicates that an element is named. The G group option is
necessary if multiple units are desired for one Acquire statement.
When the G option is present, ,Facility Assignment will perform/a
search for the named element. First it will search the "JOB" library,
then the If GROUP" library and finally the "SYSTEM" library. Note there
'may be more than one element with this same name,. but the first which,
is located will be the one that is utilized. The 5 character NAME or,

, NANEs found in this element will ,now be used, the same as if they had .
been listed in the ACQUIRE statement.

Now that the actual NAME or NAMEs are known, communication facility
assignment will proceed, to use them for its first reference to the

'Facility Map. The map will be searched for a match to the .specified
name, when it is found, the next word will be'u~ed to locate the
unit descriptor and the handler initialize descriptor. These descriptors
are also located in the Facility Map. The unit descriptor contains
available or unavailable ,indications (unavailable is already in use or
down) for the unit. If available, the CTM descriptor (also in Facility
Map), specified by the unit descriptor will be referenced. The CTM
descriptor contains,informatiop. which indicates: available,or

. unavailable, is or is not presently being used by another unit ,and

. whether it can or cannot be used by more than one unit at'the same time.
Xf the CTM is available and not in use, it will now be mar~ed as in use'
and aCTM Control Block will be formed in core memory. A Unit Control'
Block will also be formed in memory at this time and the 'unit descriptor
will be marked as' unavailable. As ,the CTM CBand UCB are formed in . ·
memory they wiil be linked together, each containing 'the address of

. the other; also, an entry is nov ~de i~ the unit usage section of the' '­
. facility map.' This is a two word 'entry' wi:th the first wo~d : containing

the coreaddress'o£ the UCB and .the ~econd word' conta~ns the pointer

word which was found and used following the 5 character name, it
pointed to the unit descriptor which was just used and to a handler
initialize descriptor. ~ote, if the CTM was in use and could have

'more than one unit using it at same time, the CTM CB would 'not be
formed at this time, since it is already in memory. The linking
,(CTM CB- UCB -UCB and UCB - CTM CB) would still take place, also the
usage entry would be listed.',

How theCTH .CB and UCS ha.-va been set up, with eve~ything successfuiy
up to this point, the facility assignment will now proceed with the
necessary handler control processing. As mentioned previously, a
pointer to a handler initialize descriptor has been found following
the 5 character mnemonic name. This Handler ,Initialize Descriptor
(it is in the Facility Map) will be located. If some set up or
initializing is necessary this descriptor will contain the, drum address' "
of the Handler Initialize routine, it will be loaded and control given'
to it. When the Handler Initialize is finished, control will be
returned to facility assignment. Facility assignment will now looa-l-,e
the "Handler Locate Descriptor'i as listed in the Handler Initialize

. Descriptor. The Handler Loo'ate Descriptor contains information which
indicates if the handler is presently in core and how many users it
has, also where it may be found on drum. If it is not in core, it Yill
be loaded, its core address and a user count of one will be stored into
the Handler Locate, Descriptor, if alrea~ in core the user counter
would simple be increased 'by one. Now that the handler is ·in core its
address will be stored in the CTMCB.

The above indicated the desired unit was available,. it did not conflict
with the unit ca,pacity of the .. CTM, thus the unit 'Was able to be successfully
aSSigned. But, if all of these conditions could not be met, the
assignment process would be halted and the previous environment, 'Would,
have to be re-created. Such aS'if theCTM was previously being used

: by another unit :with a different' handler and since a CTM ~an ,only be
associated :with one,handl~r at a time; this assignment of this new
unit :would have to be halted, the UCB destroyed, the usage ,entry .
deleted, and the CTM CB - UCB - UCB chain recoupled.. Facility assignment
would now go back to the NAME pointer section of the facility and if an,
alternate pointer:was available, it then :would try to assign the unit
it pointed to (such as same type of unit but a. different,eTM),. If
there are no alternates or if none, of the alternates can be .acquired,

, an unsuccessfill status :will be returned to· the user program.'

If the ACQUIRE requested a group assignment after the facility assignment
processing for one unit is successfully complete~, the 'next ,mnemonic' I,

name for the next unit :will be obtained and an assignment for it :will
'be proce'ssed. In a group assignment :with option itA n, all units named
in the element :will have 'to be acquired successfully'or else none of
them :will be acquired for this ACQUIRE statement. ' During the facility.
assignment for this Absolute Group, if 'some units' are successfully'
,assigned and th,en a unit is found which ,cannClt be assigned; the previous·
assigned units of this group viII be immediately released.

If the ACQUIRE requested a group, but did not specify "A" absolute, ..
any or· all units vhichmay be successfull1 assigned will be acceptab~e.

'Thus facility assignment will alter its processing' for group acquires
-accordingly.

, liD" for DIAL is another option of the acquire statement •. This means
after the unit has been successfully acquired as explained above,
,facility assignment should initiate and completely process a dial
operation using the dial number cont~ined in the Unit Control Block.
Note, if this unit is not connected with automatic dialing equipment,"
the console operator will be instruct~d to·manually dial the number
and indicate'when it·is completed. If the dial connection cannot be
successfully completed, it is as if this uriit cannot be acquired, thus
the original environment will be restored and an attempt for an
alternate unit will be made (it perhaps will·have a different number).

The. "X" option is the same as, the "D" option except an external number
has been specified. The external number is contained in the ACQUIRE
statement.

After facility assignment has successfully assigned the unit or units
, (with successful dialing, if specified) 'the UCB or UCBs will be linked

out of the designated file code positon of the task addendum. If a
unit or units were previously,' assigned to this file code, the newly
acquired units will be linked following those previously acquired.
It is at thist ime when'a successful status will· be returned to the
requesting .program.' '

RELEASE' ,

RELEASE is the releasing or making available of'a previously acquired
uni t or units. The present user has nC? further need for a communication
unit, SO, it is released, another user executing an acquire may now have
.this unit assigned to his program.

,Facility assignment routines perform the necessary software functions
to execute the RELEASE. Returning control back to the u~er after the
release is complete.

Facility assignment uses the file code to obtain the address,of the
Unit Control Block which is to be .released.· The communications unit
usage list (in Facility Map) will be searohed for a UCB address
equal to the one ~eing released. When it is found the other word in
this entry of the usage list provides the pointers to the Hahdler
Initialize Descriptor and Unit Descriptor.

'The unit usage entry will be cle~red. The Handler Descriptor may be
located by folloving the 'pointer through t~e Handler'Initialize
Descriptor. The Handler Descriptor number of users count is decreased"
by one. If it is now ¢ the handler core address 'will be cleared in '

,the Handler Locate' Descriptor and the core occupied by the handler will:·
. be released. Note, this handler will nave to be reloaded if some .

latter "ACQ" requires it. Now the other pointer 'will ,point ,to the
Unit Descriptor, the unit Will be marked as availAble and.the CTM
Descriptor lIill be located. If this is the 189 t unit using the CTM',

both the UCB and CTM GB will be released, the CTM will be marked as
available with no users. If other units are using the CTM, the
CTM CB-UCB-UCB chain linking will be reformed to eliminate the UCB
which is being released, then the UCB core may be released. Previous
to the release of UCB core the file code to'UCB chain will be
reformed, eliminating the UCB which will be released. This will
'complete the RELEASE for one· unit •.. If the RELEASE. command specified
the release of all units on this fi';Le code, the next UCB address 'Would
be iocated and this. unit, would be release~.When the requested unit

, or units have. been released' control 'Will be returned ~o t~e user
program.

8.9 Illustrative Example Interface Level 2

This section consists of a User Interface Level 2 example-.
Actual user commands are shown along with a brief description
of the software functions performed as a result of these
commands. The main purpose here,- is to illustrate the message
and control paths and at the same time present the'overall

,Level 2 picture.

! .

i
I I' 1

."'" "j , .•• , ": ·--··r
.1

J'

'-'

. L

•. _, _L .. ____ .L. ____ .,.;_., ___ 1. __ _

..... -." ."'--,
!

". + ,-_ ...

;r

I·

'I,&.s·,k
I~(J iii ilfPi.

; .1 ~OJ11/W
:. l'fAiliol-~ I

••

..••..•. j-

..•• i,:.. _,"-,

I'

. ~.

I

- -" ' ".:.:.:-·1 ' i

u~~l
,I
'----II.

I !
!

'J

,.

i
I'

'I'
I

I"

iii
' .. j' . "j ._.-.-{!

J----i --!----~.~---:-

\
~ .. _.i._. ___ ._;

.1
, ,

'--. -.

.',
. I

--,...----"'-"! ~., .. ~.-, , ;,

':-"1'-- .J--":"

.. _ .. "t' .
, ()'\

U).

• .1

-1 -

.. ,_...l

j I . , -::- ... _- --:-- 1-----....,
I : • .', ~ •

..• -< _L_._.j __ ,_.:...l_~-:..:..-:-~_; ____ ;. .. _ .. _~~_.~ ___ ~_:. __ . __ ~._.~ __
----... , " I, . I

~--.~-"-.~
·1

. ; f :."_:c.~ .. ~!. ___ ._:--·_. __ ;·".,, -;--_. _I _ _~~ •• _ •.• _~ 0-' • __

I .. '1- I ! 'r"---; '-_":'.-.. -. -.. '"'!'.,-.. -. "" ... ",.,---; --'"''';- .' --~ -
I' :

. ~ ... /. ''--'7 -~.+- ... +- . -~- .. 1-___ : :

. ;.....---.~

,
_ .. _. 1 ____ ~ ;

Figure 2 Explanation

The hardwar~, software and User Programs shown in Figure 2 will
be used as an example to explain how the Software System functions.

LEGEND AND LISTING OF COMPONENTS

HARDWARE

.n[:>n Send-Receive Communication Units connected by direct
vire capable o~ being polled.

• "CTM" - Input/Output Communication ~erminal Module

SOFTWARE

'''CTM CB" - A ·table, one·per CTM, containing information
pertaining to the CTM.

• "UDB" - Unit .Control Block. A table, ·one per Communication
Unit, which contains information pertaining to the
unit.

,'tiES! Control tt - A routine which the hardware
directly. It does this as per instructions
received from the Communication Handler;

."Communication Handler Initialization" ..: A routine which
will perform intializing and setup operations
for the Handler which are required only during
initialization.

'~'Communication Handler" - A routine which drives or controls
the eTMs and their communication units. PQlling,
accepting input, sending output, editing,
translating, packing and unpacking the messages, I

and transferring the messages to and from the
Communications Director are its functions •

• nCommunications Director" - A collection of routines which
together perform the following:

1. Queuing or staging of the input and output
messages on the Random Access Storage.

2. Interpretation and eventual execution of
the advanced commands' employed by the
User Progr8JP..s.

3. 'Monitoring for unsolicited input mess~ges.
Then identifying them and correlating them­
with their ultimate user.

'''Communication Facility Assignment lt
- A routine or routines

which locates Communication Facilities for· a
User Program, sets up UCBs and CTM CB and
loads some of the software routines.

• "Communication Facility Map" - A table, located on mass
. • storage, which has a listi~g of the units,

USER PROGRAMS

the names they may be called bY, the handlers
which should be used~ nCB i~1ormationj CTM CB.
information and a s~r,y ot the units which
are in use.

e"Program A" and "Program B" are shown in this example.

MESSAGES

'0.- is a message. The A or B is the User ProgramCthat it
is for or from. The second letter I or 0

\ ,

LINES

indicates Input or Out~t message. The third
letter identifies the communication unit that
it is for or from. Note these.messages are
stored on drum. queues.

·Solid ···lines indicate chaining or linking of the various
components.

'Dotted lines indicate the transferring of Program Control
. from component to component.

TABLE REFERENCE

·The User Programs may not reference ~nything outsid~ of
their own program •

• The Communication Facility map will be referenced by the
Communication Facility Assignment routine.

-The Schedule Lists and Unit Control Blocks may be referenced
. by any of the software routines, but not by .the User Programs.

'Now let us make some assumptions ,prior to a step ~ step explanation,
of the events.

1. The Communication Units and CTMs are available and ready to operate.'
, ...

2. Core memory' is comp1et'ely clear of "all Communication routines and .: ..
,tables. User Progr~s A and' ~ have not b~en loaded as yet. '

3. The Communication Faoi1ity Map bas 'been set up on Mass Sto,r,age
and has been ini tia1i zed. 'All units are available, 'P9llable, but ,:..
their,descr1pt~ons aresetfto,the poll stQp position.

• User Program 'is loaded and initiated,' it executes an internal: command, 'With
ACQ$-GA, : GROUP, A - This is an ACQUIRE

, - G = group acquire
- A = all units" are needed.
- GROUP = the name of ~ element which. consists ot the

uni t Wand.' Y mnemonic' . '
- A = User Program A F~le Code· this group' should be

assigned to. '

UFACILITY CONTROLii of the Comm Dir is loaded.
• IS'ESI Control in memory. '

NO-Load ESI Control and initialize
• IICOMM FACILITY ASSIGNMENT" is loaded .. '

• The "Group" is located~
• The "Wfl mnemonic is located'in the COMM. FACILITY MAP

r: It points to the UCB Descriptor and Handler Descriptor
• Is unit available? - YES, . . .
'.. Form "W" Unit Control Block in core '

I • List "WJJ Unit 'as unavailable in 'COMM.FAC.SOM.
• Fr'om the Unit' Descriptor loea te the C'lH Descriptor'
• Is it in core? '
• NO - Form the CTM CB N in core
• List this CTM CB as in core

I · Place address of CTM CB,N in UCB-W

l
' " Place address of UCB-W in CIM CB N

Place address of UCB-W in Fil~ Code nAn position of,User,Prog. A'

Is the Handler in core?
, NO - Load the Handler

Put address of Handler in CTM CB N
Load COMMHANDLER INIT and execute

, Handler executes a "REQUEST OUTPUT w/o RETURN" tor C'lM CB ,N
.·Output Section or'Com. Dir is loaded.
• More units to ACQUIRE?
II YES - "I" ,
• The nyn mnemonic is located in the COMM.FACILITI MAP.

It points to the UCB Descriptor and Handler Descriptor
.,Is the unit available? - YES

For nyli Unit Control Block in core
List "Y" as unavailable in COMH. FAC. SUM~'

• ,From the Unit Descriptor locate the C'lM Descripto,r
• Is it in core?
• NO - Form CTM CB 0 in core.
• List this CTM CB as in core.
• Put address of C'lM CB 0 in UCB-I.
• Put addre,ss of UCB-Y in C'lM CB O.
• Put address of U.CB-Y in UCB-W

* Note:' Two units have now been assigned to F11e Code A ot User
Prog A. "

Is the Handler in core? YES
• Mark Handler, as having another user.
• Put address of Handler in C'lM CB O.
• Load COMM HANDLER INIT and execute·

Handler executes a flREQUES~,:,oUTPtJ'i' W/O ~" tor, CD! CB o.

;"2-

.'Move units 'to ACQUIRE - NO.
• Return to User Prog A with Successful Code ,

, f '

~ ,I~SEND$AA,II of words, ,buffer base il - A good morning message ~s sent by prog. A '
. ' to all uni'ts on File' Code A. '
f ' .

• The good morning messageforUNIT-W ~ll be passed immediately to, the'
, HANDLER. .

The handler will translate and unpack the me,s sage •.
The handler will direct ESI Control to' initiate the 'transmission ot
the ou tpu t message to UN~T",:,W.

l .. ' The handler will test for uni taw . ,Poll? -NO
The handler will idle.' , . . .
The good morning message forUNIT~Y will be passed to' the HANDLER.
The handler will translate and unpack ,the message. '., ' .: .
The handler will direct ESI Control .to initiate the transmission, ot
output message to uni~Y. .

• The handler will Test·for units to Poll? 'NO
The handler will idle.

+ "POLLY$AA,II - Start polling for USER PROG. A

• POLL section Com Director' in core? NO -Load it.
Set UCB-W to poll on position
Wil~ handler get control again? -:
YES
NO-Q REF Handler for CIJ.M CB N
Is' there output for this ... OlM OB?
YES

• NO - Is there input for this C~ CB?
YES
NO - Are there units to poll?
NO '- the handler will IDLE
YES - POIJ:, uni t
'O ,..~ +~ _ _,... ~___ 'OI'\T T .,

.... '}.~RJ.. VJ.. V 'C '" 'OpJ..J ... ""V11L AV.u.u 4
,IJ!,v .

~S- other units to POLL?

• NO - Handler will time delay itself
• After time delay

--I

YES - Input message is coming.
ESI Control will pass message to the Handl~r
Handler will translate and pack the m.essage
Handler passes input message to Com. Dir.. '
Is the Receive section of Com. Dir. in memory?
YES
NO - Load Racel va section ""

-Queue this input message on drum with itliIiked out or UCB-W.
Return to normal handler cycling.
Send routine w.ill transfer output messagetrcim C~output drum queue
to the handler. -' . '
The handler will translate and unpack '~ 'message •

. : , .. ,.

-3-

'L The handler will direct ESI Control to initiate the 'transmission
of the output message, to the unit.
Return to normal handler cycling. '

* NOTE The above handler cycling will continue as long as

L' ' input, output or polling operations are needed.

, : .• Set UCB-Y to poll on position.
'. Will handler, get control again for-CTM CB 01

--' YES '
• NO - QREF Handler tor CTM OB 0

* The handler cycling ,explained above will also be initiated for
C'IM CB O. The same re-entrant handler coding ldll be used but "
different 0'lM CB~ and UCBs wili be referenced. Thus mul tiple~
handler cycles may be in process concurrently. , Even runirl.ng
concurrently with User Programs and sOIlle portions ot the CamIll. _
Director.' ' ' "

~. '''RCY$aA,# of 'Words, buf'ferbase," For User Prog. A.

Receive routine in memor.y?
• NO -Load it. ' ,
• YES - Get aUCB address from'the File Code A position of the Task

'Addendum. '
" Was the RECEIVE Commardo'f the GENERAL type?

f---YES ' , I : • '

·NO - Is the 'minor ,File Code number equal to this UCB, position in' the
, UCB chain from the Task Addendum (01 = 1st UCB)? '

YES
NO - Is there another UCB in the TA-UCB chain?

\ r NO
YES - GET the address or the llext UCB
Re:turn '
I s there an input message queued against this UCB? '

.,.-j--+--4-. YES' , .

• NO -t Is there another UCB in the' TA-UCB chain'l
NO
,YES - Get the address'of the next UCB.
Return
Return to User Program with Unsuccessful Status
Is there an input, message queued aga~nst ,this UCB?,
NO

• IES
MOVE the queued message from the UCB queue. to the Us'er Prog butfer.

L. 4 Re~ to the, User Prog with Successful status __ ' _~_, '

* Prog. A may now continue on its meIT'1 W&7 Sending and Racei ving
fro~ either or both of its communication ~te.. The ~ll1ng ot
these units 1d.llal~o continue.' '" '

.:'

-4-

• Omega Selection recognizes User Prog. B. Job.

Omega Selection may cause some of the previous communjcation routines
which are not now being used to be dropped from core memory.

• Use~ Prog. B is loaded into memory.

ACQ$- ,NAMEX,B - ACQUIRE Command executed by Prog. B

This Acquires UNIT X similar to the previous with some exceptions. Such
as only one unit vas requested and it was specified by a UNIT NAME rather.
than by a GROUP NAME. This eliminated the locating of the GROUP defiDing .
element •. Also note some of the routines will not have to be loaded
since they are already in memory. .J,

• !I !t..CQ$- , NAMEZ, B" - ACQUIRE Command execu ted. by Prog B II

Same as the ACQUIRE for UNIT~X except .the ,UCB-Z address is Witten.
into UCB-X rather than into the Prog. B task Addendum. This has formed
a 2 unit chain. File Code B01 refers to UNIT-X and File Code B02
refers to UNIT-Z •

. IIPOLLY~B/01, n USER PROG B.

This will set UCB-X to the poll on condition. ·The handler will not
bB.ve to be started since it is already cycling for Prog. A. On the
n ext poll cycle it will poll both units •

. .
uTRANFERT$aB/01 ,fI - Transfers UNIT-X from Prog B to .the Comm. Director.

The UCB-X address is written into a Task Addendum type location 1ri ,
the Comm. Director.

The TA-UCB chain position of UCB-X is cleared to indicate it is now
an end of chain unit.

The UCB-Z address is written into the Prog. B. Task Addendum File
Code B position.

• Note UNIT-Z file code identification has just changed from B02 to B01,
its position on the TA-UCB chain has changed.

IlPOLLY$t.B/111 User Prog. B.

IISEND$~B/1, 1/ of words, buffer base"

Certain timing conditioD:s would have permited the operations which were'
explained .above. To place the hardware, software and User Programs in

.. the state as shown ,in Figure 2. .
. .

'8.9-9

9.1 LOADER

9.1.1 General Description

The Loader is a processor which provides a flexible "and efficient means of
collecting independent relative binary (RB) elements to produce an absolute
object program ~or execution as a task under control of Omega. An RB element'
is an intermediate output code generated by all system compilers as a result
of translating a group of source language statements. An RB element is not
executable but may contain references (external references) to other RB
elements and may itself contain a definition (external definition) which is
referenced 'by another RB element. The Loader may serve to join RB elements
generated from source statements exp~essed in,FORTRAN, COBOL, Assembly\
language, etc. The process of joining RB elements is called collection. ,

, ,~

The Loader does not actually load a program into memory for execution but "
constructs the entity which may be read and executed. This organization

, facilitates' compilation and debugging of small ,parts of 'a total program
, and combination of these individual parts for execution with recompiling

the entire set of individual parts. An absolute program is an entity \lith
'no unresolved references vhich can be read in and execut~d. ~t may be read
into anY memory area for execution vithout modification of instructions.
Its relocatability is inherent tram th~ relative index register and'its,
device independence with regard to system references. The relationship ot
'the Loader with the source code and a~solute code is shown. '

~--------~'Corrections

LIBRARY

LOADER

Figure 3-1

>,:9-1-1 .,. .

LIBRARY

, Task Control
Initiated by GO
cc:.t=o~ sta.tce::t
or otber

Separate elements existing in the job, group, or sist~m libraries
are collected in constructing an object program., Elements are
collected on the basis of,an external r.eference in one element which
can be satisfied by an external definition within a second element.
The Loader may be directed to, include or exclude specific elements '
by secondary control statements. '

The basic output of the Loader is an absolute object program. The
program is entered, into the job library,under the name specified by ,
the user. Optional output includes a list of labels and tags con­
tained in the program for'utilization in testing procedures. Error'
messages and/or a storage layout listing may ,be obtained as a

, hard-copy record of the oollectionprocess. The Loader can also
transfer the secondary control language as'~ job library element

, 'for subsequent reference. ' '

, The order of user specified elements wi thin a segment Will be main- '
.. tained'as specifically named by INCLUDE statements~ All elements

include.d by a library search are"located in the highest level '
'segment from which it can,P6 referenc~d by all el~ments.

I

A starting point is determined duringtext'modificationorby an
ENTRY control statement'. Any element may sp·ec.1fy a starting address';
the Loader will accept the first address 'encount,ered'. '

9.1.2 Primary Control Statement

The Loader is scheduled and activated in respon~e, to a LOAD control,
statement' in' a job input stream. Information on the ~OAD card, is
comprehensive ~nough to direct the collection and .loading of most

, programs.

, .LOAD ~ This statement calls for the collection of an RB
element for processing to'generate an absolute object
program. The format is: '

" ~AD,A.optionsAname/versionp, name/version 'object, name/verSion s'econdal7.1ang-·
,. .. 'uage"

Name/version RB'of element to be collected •. The absolute p~ogram'
is identified as name/version object.

'Options are: '

U, ~ Sav,e' the, 'secondary language element in the 'job library.' The
third field of ,the specifications·list is given as the,
element nama.

. .

L - Produce a complete, listing. This listing is a summar.r ot
tbe memory space used b.1 each element included in the
prog~am. . The' rel~ti ve location ot each external detiDi tiOD
will also be ,.listed. "

N '- Produce no listing. The N option will be overridden if .
diagnostic messages are to be produced. It ~either 8Jl }1

9.1-2 .

or L option is indicated, summary information only will be
printed.

Y - Accept the program f?r 'execution even though errors were
detected during collection or elements marked as in error were
included. If the errors prevent the production of an
absolute program, the Y option will not be effective.

x ~ Abort. ,Do not execute, the remainder of the job (i.e., skip
to next JOB card) if errors are detected. If, neither a ,
Y or X is given, the event of an error Yill inhibit $xeoution "

, , or' the program but will perfo~ the remainder of the jo~,: .

Z - Inhibit the formation of tabular information to be given,"
to the test system for test procedures. ' ,

,9.1.3,' Secondary Control Statements

Construction of segmented programs or particular collections are
described by a secondary control language which. normally follow
the LOAD statement. The Loader, or utility package 'can be directed,
however, to place a set of statements into a job library a's an . ,
element. Subsequent execution pf the Loader may utilize this

, element as directed ,by the LOAD control statement.

The secondary control, language recognized Qy the Loader allows
description for even the most complex programs. The user can'
enter these control statements ~th the input. stream for each
collection or he can specify a libr~ry element of control st~tements
to control the collection.

The control statements recognized b,y the Loader are INCLUDE, EXCLUDE,
SEGMENT, ENTRY, and EQUALS. All secondary control ,language cards are
blank in column one to distinguish them from primary control cards"

1.·SEGMENT - The Loader provides a straightforward means of
constructing'overlay segments. For each segment, the user

'" prepares INC~UDE and/C?r EXCLUDE control statements to specify
the reloca.table· elements to be included wi thin that particular"
segment. These statements are preceded' by a SEGMENT statement
specifying the name of the segment and its logical origin.

W'nen a segmented program is called for execution only the main
segment is initially loaded~ There are two ways by which other
segments may be loaded. The, direct method is whenever the user
ma'kes a direct call ,to the overlay supervis,or specifying
the segment ,to be loaded and the loc~tion to which, control is
to be transferr~d., The second method is indirect and provides
for automatic loading of a segment referenced ,by'a jump type,
command, whe,never the segment is 'not in cora.· ,The mechanics
for' suoh loading' ar,e set up' by the Loader and carrie,d out by,

: the overlay supervisor. 'The Loader,replaces the ,address portion
of the jump, command 'With the address ot an entry vecto;,. The·,.
entry :veotor in turn jumps to ,the looation or the,.'externally
de/inad' aymbolo 'If ~he ovt:ir~y ,'superv1s~ is entered; ',~.:t loads,

9.1-3

the necessar.y segment and transfers control the same as the,
, original jump intended. All registers are preserved b.y the
process, and all necessar.y entry vectors are reset at the
loading of. any segment.

The SEGMENT statement is used to declare the beginning of a
new s~gment. The format of the SEGMENT statement is: '

SEGMENT segname1, segname2

or

SEGMENT segname1,(segname2)

The field segname1 is the name of the segment and must be
specified. The field segname2 (not enclosed in parentheses)
specifies 'that the segment identified by segname1 is to
originate at the same location as does segname2. (Segname2}

. (enclosed in parentheses) specifies that the segment identified
by segname1 starts immediately after segname2. If the second
field contains a series of segment names enclosed in parentheses
and separated by commas, the Loader starts the segment
identified by segname1 immediately following the highest

, location occupied by any of these. If the field segname2 is
void, the segment identified by segname1 i~ origined,immediate~

, followil".g the preceding segment.

,Example of Segmentation

The following example of segmentation illustrates the control
statements and, resultant memory layout,.

, #LOAD P~ P1

INCLUDE A1, A2, 13 '"

SEGMENT B, (A)

INCLUDE B1, B2
SEGMENT C,B

INCLUDE C1, C2, 03
SEGMENT D, (B,C) ,

INCLUDE D1, D2, D3
'. SEGMENT g, D.

INCLUDE E1,E2,E3,E4
//GO P1 '.' .

Comments

The segment A is origined immediatelY
, 'following the preceding segment.

Comments

Identifies, specific elements to be
collected.

The segment B is origined immediately
following Segment A.

The segment C is origined at the same
position as segment B.

The segment D is origined following the
longest of segments Band C.

The segment E. is origined at the same
position as segment d.

9.1~4

This ~articular set 'of control· statements would' result in·
the following memory structure.' .;. .

T ... · .. <:,'. ,: Vector TaQlesaDd
. ','.;

", {
"," .
.....

:. ,','

Common Blocks .. ' .

" . Element Acqlrl:.red from
'::-,'.': Library Searches to.
.:'. J.,., ': .to Satisfy XREF I S.

Elements Specif~ed as· Included'

. . Segment A ,'\'.. •• '. ::::t:
e
:

ent
Control Sta~nt

.~~nt'·'B,:,JSElemen~s···.~i'.
, : • ~ .' .;. .~., L • ,

. I
Elem.entsCi' Segment C:

, ...

:SegmentD .. " .1ElemantS:Di '.
. , Segment E ".'

• • • t •

: ;Elements, Ei.

. , 9.1-5'
.: .

. 2. __ INCLUDE. ,- This statement allows the user to specify which
· elements will be ,qollected' to create a. segment.,

INCLUDE ',' , . 'element/version, eiement/version . '. .
; Each element/version field specifies an' element to be incl'\?-ded
in the collection.

· In order to utilize the .FORTRAN "block data" feature the
INC~UDE statement can 'be used.,to identif'tj "b19ck data ll elements'
(those without external.references or ext~rnal definitions) .
which'have initial content for allocated 11 common ". blocks.

Ira "block datan, program specifies initial content fort~o
common blocks, o'ne of which is referenced in the program being
allocated while the 'other is not, the latter is simply ignored "
by the Loader. If more than, one "'block data"program specifies'
initial content for a given IICOmmOn block" the value'esta.blished
. by the second will be accep~ed. '

) •• EXCLUDE - This statement is essentiallY the inverse of the'
,INCLUDE. It allows the 'user to state' explici.t1y:.~" which.

elements are not to be, included in a collection. All RB
elements implied by the collection other than those· excluded
are accepted. ' ,. . .

EXCLUDE 'element/version, element/version .•••

· Each element/version field specifies an element 'to 'be excluded
" . from the collection.

, ·4'.« ENTRY ,- This statement provides the user the capability of
, 'overriding the starting address specified via the assembler, ,:

'or the entrance to a main program generated by' FORTRAN or "
COBOL. .

ENTRY name

where ~ame is an externally de~ined symbol

5. EQUALS - This statement alloys the user to define an external
, reference at the time of collection.

EQUALS' name/value, name/value • , •

. Each name/value field specifies a symbol to be defined and
, the value to be used. Value 'IIJaY be an octal or decimal
integer, or a symbol. integer. Such sfDlbols must be
external.l1 det~ed b7 one ot the collected elements.

6 •. Misceilaneous - Primary control statements such as ASG can
~be submitted as part of the Loader's secondary language •

. ;These. primary control stat:ements 'Will conform· to the. normal
format except for a blank in.column one. The Loader will

, accept such cards and form them into a block' of statements
'associated with the absolute program. These statements
, will thereafter be utilized b,y Omega vhenever the absolute
. program is name4 for execution. , By' this means ~ for example,
theASG statements necessarr for-efficient selection and

. execution of the program can'be permanent~, declared and,
'assoc~ated Vi th the program.'·· ~': ._ ',," -, -, , ' . ' -'

'9 •. 1.':""

9. "~ .. 4 Rels. ti va Binary(RB) Code'

, ,

The following code must be generated by system compilers as an RB
element. The basic order and structure is retained in the libraries
and on external media. An RB element is composed' of' a preamble and
text sections. ' ,

Preamble

Preamble is a table of arbitrary length consistiDg of six distinct
lists: Header, Entry Definition List, Externally,Refe~enced Name
List, Control Counter List,' INFO List/and optional Symbol Definitions.
The Header is always present and indicates 'the presence and placement
of th~ r~in1ng lists. ' .

9. 1'.4. '1 Hea.der

1 I Error Indicator

N N N ,N N

I N 'N N N N !

V V V V V
I
I ------- -

I Increment to·EDEF

>" .# of EDEF

Increment to XREF

I
I # of'XREF· •

·~----------I-n-cr-'e-me-n-t-ro~:-cc------------------~

, I I

I I # of CO

Increment to INFO

INFO

Increment to SDEF

I
i # SDEF

Increment to TEXT

Length of TEXT

o

1

2

7·

" 8 ..

9

10

11

12

13

14

15

where - Word ~ is an RB indica tor and an error indica tor of
compilation. .
N - N is a 1-10 character alphanumeric name left justified.
V - 'V is a 1-5 character alphanumeric version. left justified.
~WroMh~1Ci'i"'s~.14 are increments from the file base to the

t', .. 'I~';'''~ - '.

(L "l't._ .

Words5,7,9,11,13, are the number of entries in eaoh list
for Entry Definitions (EDEF), External References (XREF),
Control Counter (ce), INFO statements, and Symbol
Definitions (SDEF).

'Word 15 is the length ot the text.
• I I '.

Entry Definition. Used to mark points within an element which'ma7 be
referenced b,y other elements.

N N N N N o

N .N N N N 1

t CC I Value 2

where N - N i8.a 1-10 character alphanumeric name left justified~
t in bit 229th of Word 2 indicates whether value is .

relative to a control counter. 229th = ~ if value
is relative. 229th = '1. if value does not require
relocation •

. CC for t = ~ is the number of a control counter, the
beginning value or which is to be added ·to the entq·
definition valuec

Value is the 15 bit value defined for the named enter.
, .

Externally Referenced Name Entry. 'Contains a list of .labels or tags
referenced, the definition of which is not contained in the current element

:··.·n:;;..p~~~4-.:;.._··-.-..f~~;:,.,,""'·~ A __ ;.. ... i:·ft "a" ... -t Y\· +'';'1'1\.0 In,. "'1'\~'"a-tl"'l1'\ nT' nQr-Q~C!Jl'\"9U"
, .. ""..:;J..l.Llo U.J.Vl" . w.J...I..I.. ..,Q lUIQ,UQ Q" V"'~ V V"VA-A " >J ",,,- .. "" --... tI

. elements to satisfy reieren~es. The number is implied' py: position' of
. ' ',entli' in, list.

. I

t---;-' ---;-----;----. -;-------;---11: o

1

where N - N is a 1-10 character alphanumeric name 'left justified.
Control Counter Entry. ·Specifies the number of consecutive 'Words, of.
core required by code operating under control of, this counter. During
load proQesa control counters are fixed to the starting address of' .
assigned area. Control counter 'number is implicit l?Y order within list
starting vi th zero.

I

. :9.1-9
. \

Information Entry (INFO). INFO statements describe areas of common'
oore storage between individual' compiled elements;

N N· N

N N N

GN

N N

N

co

. ;

o

1

2

'Where N - N is a 1-10 character alphanumeric name ot common area
left justified.

CC.is the number of control counter giving its si~e.
GN Group number = 0 Named Common

Group number = 1 Blank Common

..... Symbol ·Defini tion Entry.. Contains an optional list of l8.bels and
and tags 'Wi thin element used' for diagnostic purposes.

; .

, ,

:1 ' I: N N N

N N N

1

o

·1 . CC Va.lue 2,

.
. where N - N i's a 1-1 0 . character· alphanumeric name of s::;:nbol 1e!t

CC is control counter number,to which this symbol is'
... .. ~elat:l. v~ t - - - . - - \ . -1 t f 001 . v~ue 1S re~av1ve aattress 'Within contro coun er 0 sym •

. 9.1 .• 4.2 . Text

Eaoh group of element text is 14 'Yords in length and composed
of two sections of variable length: data words, unmodified. .
instructions and/or constants appear from right-to-left ·from :
end of image. Modification information . extends from left to

. right in an uninterrupted stream of bits which specify the
modification required to load assocated indicated data words •

. The modification information determines 'the number of data .
words contained in image.

, ----------_.-

~odification
Information

14 words of text ------

Data Data.
Word :f' . Word 2'

'. --- 14

Data.
Word 1

'-

. Modification Information. Dete~nes any modification of data
vords; the loading address at which one or more data yords are'
to ?e stored and ~he 'starting address of 'an element.

, There are four cases of· major control in the bit stream from.
an 1ni tial state.

00 End of stream: start a new image
01ar, Address: Urn is a ,reference number of 2-12 bits and.

, '''a ll is a. l' bit unadjusted address. ' If' r> 51', then
a + cc(r-512) is start address of element. ' "

1.0
1.1m

No modification. Load ,data 'Word ,
. - ~ ,

,Modify aCQording to ,the modification stringllmll then'
start. . '. , '$

The modification string tor a specifio vord is a sequence ot
,the form . . .

i1i1' ••• i~

"'Where each i specifies a single modification. All but the last
, modification are rollowed by a '.,1".. The modification str.a.ng is
, ended by "0". Thus 00,10 combinations end the modification
string immediatell"',

·,Eachin~tructionmodification is of the form:

t s t r

where? defines the field to be mo"dified, and is of vari~ble,·
length. If o'~ modify bits 14-0, "1" modify bits 29-15 I,

11 xxxx:x:yyyyy modify' bits x-y Ii .

s ' is sign. of modification, non for addition,· 111" for
subtraction.

t is the type of modifier, lion for control counter,
"1" for external reference.

r is a reference number, specifying the number of the
control counter or externally referenced name to.':be
used. 00 use, 0, 01 use 1, 11x use x 'Which is ten
bits. 'r'" .

.
Mod1fica tion of. E1a tawords is. illustrated by ,'·the accompanying
flowchartu'" " .

. 9~ 1-1,1_

I
a e t: 1 4 wo~ci

. Im" ~ c: .

~", .

. 1

No .Modif,·cQ tlo ~

. ',: "

.. , , .. :. ,

Got: 1:) bit;
C.o n <» Co>\'". r: ..

CC(Rer.#") ... CoYt~4~t
.: LO¢(\ jl<~d "'~$ S

CC(Ref. tr-$l"z) ~
".

. ConrSCo.v.t.:
<., . Sto:rl: Add ... ~ss

CD
.... ~

Get S- bits fo..,.

/...f:;~ b,'t; Limit.

Of wovd

I .,
Ge~ .s b;c.s foV"

R,~lt~ b/l: li."i"t

or Y/ovd

I
I

0

--;

Ge~(tVo L F,,, ~ d
lnod;Pl.to/; 10\9

.. "1 With bi" .L~~;I;$l
I

I- '-. - -l

.tp Set s,~v. of
>----1 /t4(Jf.i,f,'cCJt lo~ ';-

s~c S/~ltJ of
l~ocJifi("t./~~ -

1. t,

·0 . I

~..-. __ -+ r ype of /~lfr

ryp~ o~ e~f,
is . ARE 1=:

; ...

A .. \.1 ,- • 11. (HI cypt-,'Oy ~/<st),

Vol".,. "e \",(\t'tt"Y(9kCo­

.)./4C too 'Fltold

t

Got .1 bit

1$ C Co

'"

Fi,.,;sit~d VI ,'t:.
thi:, . WCJvd

'9.1.5 General Description of Loader Operatio.n

The Loader has access to all elements established in any of
the three basic libraries (Job, Group, System). The Loader
processes the LOAD statement and assumes that the name/version
in the first field is the basic element to be included in the
total collection.

All secondary control statements from the primary input stream
are then processeo, building the ne,cessary lists for the
collection process.

After a;J..I primary control statem,ents are processed a pass is
made on the table of cont~nts (TOe) of all elements in the
library complex until all elements stated as being included
via the LOAD or INCLUDE statement are located. The search for,
the,included elements is made in 'a prescribed manner. The
elements within,the Job library are checked agai~st ttle elements
in~luded.' Next the'elements within any Group library linked'
to this job are checked. 'Finally, if. all elements are'not
located the System library 'is checked.

As the libraries are being checked a list of parameters'"
necessary to retrieve all the external definitions within the
library complex is formed. .

If source elements are among those elements sta~ea as De~ng
included,the source element is retrieved and the control'
statements within the element are processed as if they were·
entered, via the primary input stream.

All external definitions from elements in the Job library are
collected and placed on the Loaders scratch file, (ZH), since
there is nO complete list of Job librarj element external
definitions on the job library.

The external definitions for the element stated as being
included are retrieved and established as a ,list on the Loader "
scratch file. These external definitions will be the first
checked in an attempt to satisfy an external 'reference.

All elements stated as being included are then retrieved and
processed one at a time. Processing external references
involves the satisfaction of any external reference with the
external definitions available. If the element containing the
external definition satisfying an external reference is not
currently marked for inclusion in the collection it is done
at this time. The external definitions are checked in the
following order (Included element EDEFS, Job. Li?rary EDEFS,
Group Library EDEFS, System Librar.y EDEFS). A ·list or the
satisfied external references and there value is maintained
on the Loader scratch. file. ' '

The processing of common'area definitions involves'the
. comparison pf a common area name against those already
processed. If a name matches, the larger of the two areas
defined is included.

A count 'of the length of all segments is maintained by the
accumulation of the value of the control counters contained
in each element processed.

An automatic load entry is created ,by each reference that
crosses from ona segment to another subsegment.

After all elements have been pre-processed, the bases of all
segments are calculated and a base is assigned to each. control
counter.

If a secondary output was requested the control statements
necessary to recreate the collection are put out as a source
element.

If the symbol definitions ·are to be processed, they are read
in from each element and modified Qy the base assigned to the'
element. They are then placed at a calculated position on the
scratch file such that they fall at the end of the absolute
element to be created.

The text for each element included is then read in and modiried~
All automatic load entry addresses are assigned at text
modification time. The modified text is buffered out to a .
pre-calculated area on the scratch file to fo~ the absolute
element.

After the text of all elements has been modified the ~bsolute
element is transferred to the joblibrary·via·the Library Service
routine in Omega's secondary, exec. ,'.','

9.1,-15

9 1 ~ IDDut Element ForITat • I • Y. • J,-

The following diagrams describe.the· formats of the elements
with which the Loader operates to .form an absolute etement.
The element ·may be on any of· the libraries within the library
complex (Job, Group, System)· .. ·.·· '. . ,

. , .

REPRESENTATION ,OF INDIV!DUAL ToeS (INTERNALY WITHIN T~E LIBRARIES

A 0
"

2
3

,4
5
6'

:7
: 10

B. 0
1
2
3
4
5
6
7

10
C 0

1
,2

3
4,
5
6
7

10

, , 3 ERROR'IND. SOURCE
N N N N N
N, N N N N

' .
V V V V V

INCREMENT TO ELT BASE
UNASSIGNED

, ,UNASSIGNED
I SUB TYPE I # IMAGES IN ELT I '

" TOTAL ELT LENGTH
2 ERROR IND ABSOLUTE

N N N 'N N
N N N N N
V. V V V V

INCREMENT ,TO ELT BASE
MAX CORE USED LENGTH OF CONTROL
SEGMENTS # 'ASG IMAGES

SDEFS
INDEX TO SDEFS

1 ERROR IND , RELATIVE BINARY

I
N N' N N N
N N N N ·N

! V V V V V
INCREMENT TO ELT BASE

INDEX TO XREF If.4vEX TO CC
INDEX TO INFO INDEX TO SDEF'

INDEX TO TEXT
LENGTH OF TEXT

1 • RB ELEME:N"T (C)

W{)rd ¢

Word '1-.3

Word 4

Word 5

" Word 6

Word 7

Word 10

D~SCRIPTION OF Toe CONTENTS

A number indicating a 'RB element. The lower of this
word is used for error indication. '

A 10 character name and a 5 character version. All unused
po~tions of these 3 vorda are space (as) filled. '

An increment from the base of'the j6blibrary at which
the element can be f~und. '

"

U - an index ' from the increment in word 4 which'relates
the start of the XREFS and also relates the length of
the EDEFS ' .
L = index to start of the', cc and relates the length "
of the, XREFS

, U = index to star,t of the INFO and the length of the co
L = ind~x to start of the SDEF' and' the length of the INFO .

L = index to start ot ,the t,~xt and the length pf t~e SDEF

Length of the, text

,2. ABSOLUTE ELEMENT (B)

3.

Word ¢

',Word 1~3

,Word 4

Word' ~'

Word 6

Word 7

Word 10

'. I,

U = Absolute type number '(2)'
L,= Error indicator

Same' as in RB element

Same as in RB element

'u·= the maxim~ amount of ,core ~t11ized ~t ~ one. time
'. L;ji length of control I'plnt'

·U = numoer of segments . :,
L = number of ASG images .
L='the number of SDEFS

·Index ,to SDEFS

SOURCE ELEMENT ,,(A)

Word ¢ , /' U = source type numb~r C;)'
L = Error indicator

Word 1;"'':; Same as in RB, e'lement

Word '4 Same as' in RB element

Word 7

Word 10

Unassign'ed

U = a subtype indicating type of source code
, A = normal (20 word card image) B = compressed source

L = the number of images within the element' (compressed or
normal)

Total element length

RB ELEMENT, FORMAT

EDEF N N N N N

N, N N N· N

T CC VALUE

' , ,
"

XREF N N ·N N N '2'"
, ,

N N N N ,.' N
, : ..

.'
. ,

o-

, CC J SIZE

I
INFO N N N N N

N N N 'N N
4'

GN CC

SDEF

I
N N N N N

N N N N N
5

-.
'0 VALUE

TEXT

: .9. '-:-20

RB EL:EMENT FORMAT DESCRIPTION

1. EDEF - A three word external definition which defines an entry point
within the element or some value defined by the element. It
consists of a ten character name and a 15 bit value. If the
value is absolute, the sign bit will be set (T) and no control
counter (CC) will be present. CC defines the control counter
too which thi's value is, relati v~.

2. XREF - A two word ext~rnal reference which will be satisfied by an EDEF.

,3. CO - A control counter which defines the amount of core occupied
by the data ~der that control ~ounter.

4. INFO - A three word item defining a common area. The name of the '
common area occupies the first two words. GN is an indicator
indicating the type of common, 0 = named common, 1 = blank.
common. The control counter under which the ,common is to
appear is defined in the lower.

5. SDEF - A three word item defining a position within the element
"which can be used in debugging procedures. ,It has the
same format as an EDEF.,

6. TEXT - Text is grouped into a number ot ,14 word image:;l whl:ch contain
modification and instructions.

9.1-21

ENTRY POINT TABLE FOR GROUP AND SYSTEM LIBRARY

N N .N

N N N

T

I
I

N

N

VALUE

IND TO Toe

, 9.1-22'·

N,

N.

EL»IENT EDEFS

REI. TO BASE OF Toe. Upon
use in the collector loader
this value is used to find
the toc associated with the
particular EDEF.

9.1.7 Basic Functions of Loader Phase 1

A. Inputs

1. JOB, GROUP, SYSTEM LIBRARIES

2. CONTROL CARD AND/OR MAP ELEMENTS,

B. Output Tables and Lists'

1. INCT (Inolude table' from INCLUDE STATEl1ENTS AND LOAD STATEMENTS)

2. SNT (Segment Name Table from SEGMENT STATEMENTS)

3. SMAP. (Segment map showing relation of segment
bases as defined by Segment statements)

.4. EQUT (Equals Table from EQUALS statements)

5. EXCT (Exolude Table from EXCLUDE statements)

6. ENT (Entry definition name from ENTRY statement)

7. ATOC (The table of oontents of all items in the INCT
table)

8. ED (A list of parameters required to find all EDEFS in
the system)

9. Job and Inoluded EDEFS (A .list of all EDEFS from inoluded
elements and the Job library)

10. Seoondar,y Output (The secofida~~ output consisting of control
statements necessary to reoreate the .
colleotion)

C. Prooedures

The control statements are read from the primary input stream
and any source elements inoluded. The above mentioned tables and
lists are oonstructed from these control' statements and the
elements from the libraries.

The tables and listsbuilt'are described below~

.9.1-2.3

LOADER (PHASE 1 INTERNAL TABLES)

SEG# ORDER COUNT
f

N N N N N

N N N . N N

V V V V V

INC TO ELT BASE
I I

INDEX TO XREF INDEX TO CC

INDEX TO INFO INDEX TO SDEF

I NDEX TO TEXT

LENGTH OF TEXT

I . TOC DRUM INC (IDENTIFIER)

I

N N N N N

I N N N N N

I I LENGTH BASE

:1
N N N N

N N' N N

(ATOC TABLE)

ATOC is a revised TOC table which is
the main output of Phase 1. This table
will include an entry for each element
to be included in the collection process
except those elements included because
of an external reference. The segment
with which ·the element is associated is
indicated in the upper.ofword ¢. The
order count is a number representing
the order in which this element is to_be
inoluded.

(SNT TABLE)

SNT '(Segment Name Table) is a list of
segment names taken from SEGMENT cards
encountered. A 3rd word reserved for
the segment length and base is added.
This table is related to SMA}' in that
the procedure for assigning a base is
dicta~ed by SMAP. This table is preserved
through Phase') and a revised version
is included in output as information
necessary for the load of a given segment.

(ENT)

ENT is a two word name representing a.
. . starting address to be used as the

start address of the absolute
output. This name will-be preserved
through Phase 2 where an aqdress will be
assooiated with the name. This address
will then 'be put out as the starting

. address of 'the absolute element.

·9.1-24

N N N N

N N N N

IV V V V

SEG # . I

N N N N

N N N N

NE NE NE NE

'T~ 'kT'l':! 'kTr.' 'll.T,.,
.l't..c. .I.~.c. J. .. .c. .n£l

INC

N

V

V

N

N

INC!

INCT (INCLUDE TABLE) 'is a list of all '
elements to be retrieved from the library
which were specified on'INCLUDE control
cards. ' Seg # indicates the segment in
which the specified element is to ,be
placed. ' CALL ORDER indicates,the order
in which the elements are to be processed.
INCT is a temporary tab~.~ axistir~ only :"

. through PJ:1ase 1. '

. EXCT,

EXCT (EXCLUDE TABLE) is a table consisting
of all elements specified on EXCLUDE
control cards.: This table exists only
during Phase 1. Seg # indicates the
,segment in which the exclude statement

. applies.

EQUT

EQUT (EQUALS TABLE) is derived from the
content of EQUALS Card. The first two
word name is the name to be equated. The
2nd two word name is the EDEF being used,
to allocate words 0-1. An indicator is
sat as these are satisfied; This table
exists until Phase 2 •.

·~ .
~

I '
N
0'

9.1.10 'COLLECTOR/LOADER TABLE TRANS:;r:TION

BDTOC
4 0 0 0 1 I Error Ind

---,
N N N N N
N N ,N N N
V V V V

:
V

Increment to EVf1 Ba~e
Index to XREF Index to CG._
Index to INFO Index to SDEF

Index to TEXT
Length of TEXT

" BDTOC is created ~n,Phase 1 dUring a pass on,the system tocs~ It~ purpose is the processlng
of block data after the common' ar,ea bases have been determined. It is preserved to Phase .3 where block
~ata is processed.

The' sign bit in word¢'of the toc indicated a block data element. A block data element will
contaln no EDEFs or XREFs.

Block data is 'processed by' ,comparing the common names of the block data eleme'nt with the' common
names of the collected elements. If ,a match is made, the data ,contained under the control counter for

: .that common area will be deposit,sd in 'the common area ,der~ned .by the collected element •
.. - 8 ..

It-the data length exceeds the commop. area, the excess ~ata will be discarded.
"

~ - - .
Block data 9an only be assigned to named common not; bla.nk common.

CODE SEG II

SEG #

CODE. I SEG. IJ

7----~----~ .. -~· .. -- " 7

I

SMAP

SMAP ,(Segment MAP) is a table of
variable ,length items describing
the relation between segments in
regard to base addresses. It is
a semi-permanent table that 1s
built as the SEGMENT control card
is examined. It is retained until
after Phase 2 at which time the
length of individual segments is
known and a complete picture of the
segment allocation can be determined.
Referral to SNT is made to obtai.n
the known length of segments. The'
base is assigned and placed in SNT.
Each segment entry is separated from
the next b.1 a 7--------7. The code
may be any of the following~

Code, 1 Segment base is equal to the
base of the segment specified
in the 'lower plus the length
'of ~hat segment.

Code·2 Segment base is equaL 'to the
'base assigned to the segment
specified in the lower.

Code' 3 Segment base is equal to the
base of the segment specified'
in the· lower plus the length
",...-" +,...~ ., ,... £1+ £I,....""''''~ ~~ 0..:1
""oL uu"" ... "" 6"".., u "'I:'''''v,''''

segment'" ""

.r .1.L..e; .1.1 t. 1 1

B FILE CODE I LENGTH
FILE INCREMENT

.c' FILE CODE I LENGTH
FILE INCREMENT

7 7 7 .7 7 ,7 7 7
...... 7 7

-

ED

ED (External Definition parameter list)
defines the location and length of all
external definitions in the ,system. EaCn
entry is a two word entry giving the file
code under 'which the external definitions
can be found. The length of the data;
and the increment to the file base •
Normally A would define the parameters
riecessary to read the included' elements
external definitions. B would be for
the Job library. C would be for a Group
,library or systems library.

'The list is variable in length and is .',
closed. 'out with a 'word o£ all 7' s. '

·,9.1-28

90tJRCE ELn.1E~'"r

O~ ____________ ~l~#~WO~~~S~I~N~I~¥~~G~E~~
1

IMAGE

N~ ____________ -+I~#~WO=~:S~I~N~~~G~E~~

II WORDS IN IMAGE

Source Element Description

The source element is used by the Lca4er only as an included
element containing more secondary control statements necessar,y·
tor the collection.

Wor,d ~,

Word 1,-N'

Word N

Defines the size in words ot the 'image '
following word ¢. " .

The variable length image.

Same as. word ¢."

9.1.8 . Basio Functions of Loader Ph~se 2

A. Inputs

1. Phase 1 Tables and Lists (ATOG, 8NT, ENT, SMA? , EQUT,
EXGT, ED, colleoted external definitions for included'
eleme~ts and Job librar,y)~

.2 •. ~ntry Point Lists From Gro~p and System libraries.

J. Lists vi thin inoluded elements (XREFS, CC, INFO, SDEF).

B. Output

1. ATOC (Upd~ted from Phase 1, with additions and cha~ges)

2. CC (List of control counters with assi'gned' bases for all'
elements 1n the collection)

3. SXREF, (List of all XREFS from elements along with
assigned addresses)

4. INFOT (List of all cornman a'rea definitions from all
included elementsa~ong with ~ssigned bases)

5. 'ALE (List of all 'cros segment'refere~ees which will go
into the ~ector table.of the absolute element)

6. SDEF (Symbol definitions with address .modified and placed~
on scratch file) .

7. XREFsand CC (A modified list of satisfied 'XREFs and
control counter.s broken down to 1 ''Word each) ·

c. ,Procedure

The items are extracted from ATOG and all 'external references
'satisfied by external definitions.' . ~f' cross segment refer~n'ces
are found an ALE item is produced. If the element referenced '.
is not included it is added to the end of ATOO for later
process,ing.

Common area definitions are summarized .in INFOT. After all"
. elements in ATOO ~.ve been process'ed, a pass is made :'on .all
control counters and·satisfied!REFs assigning bases and
addresses. ' The intermediate and oUtput tables and list&
are described below. ' '

Loader Phase 2 Tables and Descriptions

Internal Tables

ATOC, SNT, ENT, SMAP, EQUT (From Phase 1)

Intermediate and Outp~ts Tables

N N N N N
I I

N N N N N

ccl
~

T VALUE

7 7

.
TOC DRUM INC (IDENT)

9.1-31

EDEF TABLE

The EDEF table is a collec,tion of
all EDEFs from all elements within
a particular library. EDEFs for
use and system libraries are
already grouped in an ENTRY POINT
TABLE. EDEFs for the JOB are
collected during phase 1 while
the ,INCLUDE statements are being
processed.' If insufficient core
storage, the EDEF lists are buffered

, in and out. The EDEF table- is used
to satisfy external references of
the included elements.

ALE and INFOT FOP~..AT

N N N N N I)
N N N N N INFO ITEM

f

1 GN I VALUE
• I'

\
N N N N N

ALE ITEM
N N N N N

SEG ORDER

The ALE and INFOT table items are intermixed with the INFOT item having
t~e sign bit of the third word set to distinguish it from an ALE entry.
The value in the I~~OT item represents the largest oommon area of the same
name. Blank common is represented as having a GN of 1. Any blank common .
area occupies the same area regardless of name.- .

The ALE entry will eventually be used to produc~ the segment jump
table.,. The third word defines the position within the segment jumptable'for
that entry. . '. .' " . " ',' ." , .. :, .

",'

SXREF TABLE

N' N N N N
N N N N N

TU CC VALUE

ALE LINK TOG LINK
, (,

)
co VALUE

. INFO LINK , VALUE

~ .

The SXREF table is created upon the satisfaction of external reference
,by an external definition. T=1 if value is absolute, U equals 1 if
XREF was unsatisfied. The ALE link is a link to an automatic load
entry table item. It is present wnen'the reference is such that a
segment load is necessary before the transfer can be completed 'during

. execution. The TOe link is a link to the ATOe table item of the.
EDEF satisfying that external reference.

The CCs associated with the element are also processed to some extent.,
A control counter not associated with a common area is simply moved
without charge. A cont~ol counter associated with a common area. has
a link to.the INFO item defining this common area.

After eaoh eliment is procls.ad in phase two the above, 1ntormat1on 11
buffered out to masS storage and the TOe (A'rOC) table updatedwi.th the'
necessary information. .' '

EXCT is built during Phase 1 frorn names on exclude cards. It is preserved through
:Phase 2 where the EXCT table is checked before a toe is added to the ATOC table. It
indicates what elements are to be excluded from the collection. . .

A B

EQUT N N N N li N N N N N
N N ._._1L-__ N __ N N N N N N
NE NE NE NE NE 0 I'" 0
NE NE NE NE ·NE :--tINK-J TO:~:::NK ~I SEG /I I INC

EQUT is built during Phase 1 from information on equals cards. During Phase 2 the
reference (NE) is satisfied and the item is modified to appear as in B. This table is
t~en used to satisfy an XREF that carmot be satisfied by an EDEF.

.. ~ .

CCTr 1

EDEF OF INCLUDED ELEMENTS
AND JOB LIBRARY

~ATISFIED
and CCs

XREFS

. j

DRUM LAYOUT

XREFs and
CC with assigned base
Right before Phase 3

Instruction
. Storage During .
. Phase .3 .

. . ,.'.' .

. SDEF STORAGE
, It SDEF Output Requested"

1 ~eoonda17 I uutput
Images
Created

·From
I ATOC
I If' . I Requested

I
.1 :

9.1 .• 9 Basic Functions of Loader Phase 3

A. Inputs

.. 1. Phase 1 and 2 Table, Lists, (ATOC ,~XREF AND CO LIST,
SNT, INFOT, ALE),. " '. . ,

~ ,

2. TEXT f'o~ included .. elements.

B-. Outputs'

Absolute element on scratch file.

0.' 'Procedures

All items are extracted from ATOG in reverse order,
(control to last segment), and the text, modified !REFs
and GG's for each element are read into core. The text
is modified as indicated by the modifica~ion'and buffered
out to the scratch file area reserved for the element.

A B c

ATOC
,....-~

_ [ORDER COUNT SEGMENT #
-_. __ ._.,.

--------=r SEGMENT # COUNT _ •.... __ .. _-,,". --. "-_. __ .-. - --.---.------- o
1
2

SEGMENT #-. --I COUNT

N N N N N N N N N N N N N N N
N N N N N N N N N N N N N N . N

_V V V V V r3-. V V V V :3 :1--- V V ~-- V ---

INCREMENT TO ELT ~ INCREMENT TO ELT BASE ·4
5

INCREMENT TO ELT BAS E
BA

X T
INDEX TO XREF I INDEX TO CC IEQ_ .. TO GC __
INDEX TO INFO I INDEX TO SDEF DEC FROt-'[EQTB

~-
INDEX TO TEXT BASE

J.DENTIFIER
LENGTH OF TEXT ---.------.--

{TOC DRUM INC)
IDENTIFIER

INC TO END
I NDEX TO SDEF

INDEX TO TEXT
LENGTH OF TEXT
(TOC DRUM INC)

'6
7

10
11

#~F
DEC FROM EQTB

BASE -
-

Ii CC -

(A) ATOC is originally produced :from thl9 system toes that correspond to names on include cards.
An identifier is tacked onto the end which is used to identify the element from which an
EDEF was obtained. If mora elements are retrieved to satisfy XREFs the toes for those
elements will be added to ATOC.

. .

Arter Phase 1, as the XREFs are pro(~essed in Phase 2, the ATOC item is modified as in B •
. ··The satis~ied mEFs and CCs are buffered out to. the drum and information necessary to

retrieve them is supplied. The information is relative to a file increment known within
the loader.

Upon entrance to Phase 3 the ATOC item is in the form defined by C where word 5 has
.been modified to relate the number of XREFs (1 word) and :their location. Word 11

. relates the number of CC and their location.

I CORE
INDE

(INDE
LENGTF

X T
I 0

ASE CC B

SE
a SDEF

o TEXT
F TEXT

- -

'0
~
~

A (Phas,e 1) B (Phase -2)

SNT

t~
N N N

=4 E N N
N N N· N

N N ·N ' N N N N N N N N I . L~RY POINT[

~.----.

BASE'

SNT is initially built during Phase: 1 and goes thJrough a series of changes until :tt eventually
Qbtains the final form described in C, Vjrhere' (length) d.efines the length of the particular segment
and (BASE) de.fines the relative core base at which segment should be loaded •.

C (Phase J)

N g N N

LENGTH

ABRIDGED SXREF AND CO LIST

Tlu VALUE
BASE

'INFO 'LINK LENGTH

-

XREF
CO (TEXT)
CO (COMMON)

.. 9.1-4Q

All XREFs for each element are
assigned the actual address and
are broken down to 1 word. The
status bit setting.in the ,upper
and the value in the lower. All
control counters for text have
the assigned base in the lower
half word and the upper half is .
clear. Common area control
counters have a link in the .
upper to the INFOT item where
the common area length may be
found.', . . . •

ABSOLUTE ELEMENT FORMAT

.L .I.

IMAGES .

ENTRY INSTRUCTIONS
I

. '1
I

Fe LENGTH OF SEG
REL CORE BASE

OF SEG

DRUM I NO TO SEG
(
I
)

7 7 7 7 7 7 7 777
7 7 7 7 ,7 {. ENTRY ADDR
ENTRY ADDR OF 7 7 7 7 7

(I
)

27 77 7 7 7 7 7 7

COMMON
AND

CONTROL

SEOO:NT~
,

.:,,: I
I

. I
N 'N N N N I N N N N N

SEG NO. t VALUE

j'"'
I

9 .• 1-41

2

4
5
6

7

g

9

10.

ABSOLUTE ELEMENT FORMAT DESCRIPTION

1. ASSIGN·IMAGES - Images'used at load time for facility assign~entQ

2. ENTRY - The initial word of the element that will be place~ in core
at load time. The start address of any element will be the
base of the element. If the starting point is in a subsegment
the entry instruction will be a jump to that entry point in the
segment j~p table.

J. S~.ENTLOAD PACKET ~ A segment load packet defining the file, '
length, base, and increment to the particular
segment. There is one,three word packet for
each segment in the collected element~

4. 7777777777 - A sentinel to signal the end or the segment load packets.

5. 77777 X - A sentinel signaling the start of the segment jump
table. The lower contains a link to the segment load
packet for that segment containing the 'entry points.

6. ENTRY ADDR.- The upper of this word will always' contain the entry

8.

10.

" point address. If that segment is presently in core
the lower will contain the same address. If that se~ent
is not in core the lower will contain 77777 which will
cause a guard mode interrupt when an attempt to reference
it is made., Upon a 5~ard mode interr~pt control will
be given to the segment loader and the segment referenced
will be brought into core. The jump table will then be
updated by the segment loader in such a way that any
segment destroyed by the new segment will have its
entrance address set to 77777.

7~7 - A sentinel indicating'the end of the jump table.

COMMON AND CONTROL - The part of the element tha t is re'sident in
core for the life of the element. It contains
the control portion plus all common areas defined,

, ' plus any routines collected to satisfY' undefined, '
, XREFs.

SEG~NTS '- Segment sto~age

SDEF -. Symbol definition list ,with, ,assigned,values.

INSTRUCTION MODULE FORMAT for 490 ·COLLECTOR OUTP~r

The instruction modules that the loader produces consist of
five modification words and 113 instructions. The modification
appears, left adjusted, in the first five words of the instruc­
tion module. Each of the 113 instructions require two bits of
modification code, MG. Instructions start in word six of the
module.

Word 1 Me1 MC2 MC

MC20 MG21

MC37

MC56

Word 5 MC MC 1

Word 6
I

INSTRUCTION NUMBER 1

INSTRUCTION NUMBER 2 .

~ ~I

Word 120 I INSTRUCTION NUMBER 11~· I

9.2 'Library Maintenance Functional Description

Library maintenance consists of four basic 'operations; IN, OUT,
PRINT, and LINK.' INs function is placing an element onto the
Job Library. The operations'are initiated b.y a control state­
ment. Upon receiving a job number and a control image, IN scans
and extracts the different fields. The option field is master
bitted and then used as a switch. The Name/Version fields are
extracted according to valid control characters and checked' for
their length. After extraction the job director,y entries (p.)
are accessed from the job librar,y. The previous job numbers in·'
the director,y, are compared with the current number. A success­
ful comparison enables the linking to: 'any prior TOC modules.
The TOG (Table of Contents) contains a residing elementls
name/version, logical drum address, and indexes. The current
name/version from the statement is cross' referenced against the
TOG. With a mismatch, IN starts' buffering in a new element from'
either the primary or secondary source. As the IN f\L~ction con­
tinues, there is a buffering out of the element onto mass storage.
The st0Tage has been assigned to the element through the use of
the master storage directory (p.). The incoming TOG is up­
dated by entering a logical drum address. The TOG and its
element are now linked together. The new TOG is then moved to
a new or prior TOe module. The final operation in placing an
element onto the library is updating the job directory and T-OG
module. With each successive element, the pre-described events
are repeated. Upon exhaustion of either the primary or secondary
input streams, the function returns control back to the system.

The OUT function is initiated in the same manner as IN. OUT scans'
and extracts the different fields from the control image. One
manda tory field is the library name (JOB, GRDuI' /LIB # or SYS. 0) •
Without this field, the function would be unable to determine in '

, which library a specific element resides. Also, the field is
necessary for the interpretation of the specified format of each
library (p.). TOC modules are accessed from one of these .
libraries. Comparison of name/version from the statement with th~
related TOC establishes which element is to be processed.

From analyzing the option field, a switch is set determining whether
a secondary or primary output is req~red. With the type of output
and TOG known, the function choses one of three avenues in the pro­
cessing of a specific element type. The avenues are associated with
the element type: relative binary, absolute or sourc'e (p.)"
If the switch is set for primary output, the function transfers each
element in 208 word card images. With the exception of source, two "

9.2-1 ·

words of any 208 word image will have a sequence name and number
(p.). For tape out~ut OUT sets up a header, data, and end
sentinel block (p.). The header block contains the TOC. The
remainder of the element resides in the data blocks. Each data

. block contains specific number o~ 168 word images. Images will
not have a sequence name and number. Each element established on
a tape contains these basic blocks.

An element's .TOO. and preamble c·on~inEl.vital inf'o~t~.q1ftEA:~RINT' s ..
task is to submit that .infonnation to primary output printer. PPJ:NT

-- has OUT's method of retrieving a specific element from a library. With the
retrieved information PRINT checks for a IT) op~ion •. If present the
function prints the roC. Otherwise, the 'IDC and preamble are both
printed. The next 'logical event to occur is determining a element f'o·rIl¥.lt.
Once established, the TOC and preamble are ·printed in the preceding f'orins •

. RELATIVE BINARY Et.l!MmT

TABLE OF CONTENTS

BINARY :ELEMENT NAME-LMO

EDEF

INDEX 00000
NUMBER 00000

!REF

00003
00027

cc

00056
00005

INFO

00063
00004

VERSION-ONE

SDEF

00077
00000

TEXT

00077
01526

The preamble of this binary element consists of entr,y definitions, external
references, control counter and symbol definitions. The entry definition
(EDEF) ~s a point wi thin an element referenced by other elements. The EDEE'
has 1 to 1~ character left justified alphanumeric name' and has a value
associated to .the name •. In the below representation, . the CO is' the number,
of a control counter which contains a base increment. The base increment ..
plus "VALUE" of the EDEF is the entry or referenced point. It' there are
three or more EDEr the torm. is repeated as indica ted.

NAME CC VALUE

. GJD' 00000 00101
MAD 00004 00765

ENTRY DEFINITIONS

NAME CC VALUE

sao 00002 00010
• 8 •

NAME CC VALUE

SCOP 00000 00031

The preamble contains a list of labels or tags not referenced in the element
(XREF) e' At collection time the external references are satisfied by in­
cluding the necessary referenced element. The name has 1 to 10 alphanumeric'
characters and is left justified. The NR (number) ,is 1m.plied b.r position
of entr;y in the list. .

g.2-2

EXTERNAL REFERENCES

NR NAME NR NAME NR NAME NR NAME

00000 00001 SPICK 00002 IDUS 00003 KROK

The control counter specifies the number 6r consecutive words of core re~
-qulred by code operating under control of this counter. At load time,
the counters have affixed starting address ot assigned relative
area. The NR (number) is implied by a counters position;

NR

00000
00004

VALUE

00100
00240

NR

00001

CONTROL,COUNTERS

VALUE

OOt10

NR .

00002

VALUE

00200

. NR

00003

VALUE

00210

Areas common between different compiled elements are described by infor­
mation entries. The INFO has 1 to 1~ character alphanumeric n8lB.e. The
name is left justified. The CC is' a number ot a counter giving its size.

MOCK
POSH

cc

00000
00004

INFORMATION ENTRIES

NAME

AKKE
LOCA

CO,

00001
00005

NAME

SOSE ...

. .

CC NAME CC

00002 ZIDE 00003

Symbol definition entry (SDEF) is a label or tag used wi thin an element t~r' "
, testing purposes. The base value represented by the CC is modified by a
relative increment (VALUE) at load time. The obtain relative address is
an entry or referenced point used for testing. The name is~; to 1~ ,',
character alphanumeric and is lett justitied.· ' , "

ABSOLUTE ELEMmT

TABLE OF CONTENTS

ABSOL UTE EL:E)l]NT NAME-LM01

MAXIMUM CORE USED- . .
~"UMBER OF ASG IMAGES-
NUMBER OF SDEF-

ASG IMAGES

A ASG 6 H ~ TAPE,A, ,WORK UNIT . . .

VERSION-ONE

,00200 .
00004
00016

ASG images are used at load time tor tac1l1trassignment.
SDEFs are described p ().

TABLE OF CONTENTS

SOURCE ELEMENT NAME-LM01 VERSION-TWO

NUMBER OF IMAGES IN ELnmiT- 00102

SOURCE ~~T

00000 LMO PROGRAM
00001 CD OOMMON*100

IN OPERATION

A. Forma t of Statement

IN OPTIONS FO, NAMEjvERsION, ETC.

B. Valid Options

C - Elements follow in primaI7 input streams

R - Rewind tape before processing

x . - Abort job if errors occur

Y - Continue even if a non-fatal error occurs

c. Element Specifications

If no NAME/VERSION is specified all elements contained in the medium .
specified will be included. The order in which the specified element
will be processed is dependent on the order in which the elements are
inputted and not on the order of specification on the IN 1mB.ge.

FO - File code is present only when no C option

D. Functional Description

1. The initial duty of Library Maintenance upon receipt of an IN
. statement will be to attempt to locate the job within the Job
Directory maintained as part of the job library. If the job is
not already established in the director, w' entL~ is made.

·2. The options are then master bitted and· any element names unstrung •
•

.3. The hea.der or the elements a.re looated and a branch is made on
the type of element encQuntered. The proper format is then
determined, a request for the amount·· of. mass storage needed f.or ..
the storage of the element ~s made, and . the element is then
buffered out. to the. job libra17-

CARD IMAGES

,) Rela ti va Binary Element

Col. 1 to-Col. 1~ - Sequence number and card type

1 2 • • • 10

LMO 0002B

1 2 • • • . 10

LMO 0001 A

. ,
\

10
'OOOOA "

A) Card Type (A) 'consis~ of a 'roC and preamble

. ':5) Card Type (:5) is Test

tJ·
I
J

2) Absolute Element·-In addition to (A) and (B) type the absolute
element has a third type, (C). The (C) type

,,' image contains. symbol def'ini tions. .,'

3) Source Element- ,,' Source has 3no,a.aquence,'numberor c~rd 'type.,

9.2-6

: ~".

OUT' OPERATION

A. Format of Statement

Out options FC~ JOB, NAME/VERSION~ ET9.
/I Out options FC, SIS, NAME/VERSION, E~.

/I Out options ,Fe, GROW /LIBH, NAME/VERSION, ETC.

B. Valid Options

c - E1eme~ts to follow primary input stream,

F - Vir! te hardwre end of file on tape output

x - Abort job if errors occur

I - Continue if non-fatal error occurs

C. Element Spec1'fication

Elements will be outputted in the order in wbichthey are located
in the library not 'in the order in which the,r were specified on
card. If an element NAME,/vERsION- is blank, all elements within
the specified library will be outputted.

FC - (file code), is present when a C option is absent.
,,' - ,

JOB;SYS;GROUP/LIB/I- is a fixed entry which defines the particular
library from which the element(s), are to be taken~,.from .. '" ,-' '

D. Functional Description

1. The ~6b is looated within the job dlreoto17'

2. The TOOS are located for eleme~ts to be put out.

3. The data is formatted in the proper format.

4. The ,data 18 put outtothepresoribedmedi~.

9.2-7

Tape and Dr~ Formats

o 7 '3 ? 3 7

1 ELEMENT NAME

2

3

'4

5

AND

VERSION

DATE

REEL #

. 6\ TIME

71 BLOCK SI ZE

10 I ITEM SIZE

o I TOe .
I
i . I .

1 I
21

i
:3

4

51

61
71

I

37373

I
I
I
1
I , I

I

10 ~-----....... ------f

.308 ! 7 .3 7 ;3 7 ;3 7 3. 7 ;2 I,

The initial block of each element
containS the library number assigned
to the element. The block size and

. item si ze will normally 00: 306 and 14
respectively. Each item vill normally
be a 14 word~card image.

Tape and drum formats are identical.
If all tape and drum processing is ..
. handled as drum processing, the.proc~~sing·
'will, be identical. ., . .

Data Block Layout for Elements

I'

I
I
!
i

I CXSUM

BLOCK SIZE I.

I

I

The lqwer of the first word contains
the actual number of data words present
in·the block. The upper word has .
number of equal sizeditemscontained
in the 'data block. It upper half is
negative, there is no logical item
size. ,The last word ot the data
block 'is theOXSUM.

On tape and drum, any desk ID, sequence number and.t~e ar~ dropped
and only 14 word images are used except in the care of source code. There,
iS,no separation of the individual parts of the elements'as the length
of each part can be, calculated, trom 'the toc. . "

9.2-9

, .

?F.!NT OPE!t~TION

A. Format of Statement

H PRINT· options JOB, NAME/VERSION, ETC.

H PRINT options SIS, NAME,/vERsION, ETC.

PRINT options GROUP /LIBII, NAME,/vERsION" ETC.

B. Valid Options

T - list TOCS only

0- Print card images contained in named tiles normally'used tor
control streams source code. '

x - Same as #IN

I - Same as #IN

C. Element Specification

, D.

Elements will be outputted in the order in which they are located
in the library not in the order in'which they were specified on
card. If an element NAME/VERSION is blank, all elements within'
the specified library will be outputted. . ·

FG - (file code), is present when a C option, is absent.

JOB; SIS; GROUP /LIEU - is a fixed entry which defines the particUlar
library from which the element(~) are,~ be take~~:£rom..·

Functional Desoription

1. The job is located within the job, directory.

2. The TOGS are located for elements to be putout.

3. The data is fo~tted in the proper format. '

4. The data 1s putout to the prescribed media.

~.2-10

LINK OPERATION

. A. Format ot Stat~e~t

1/ LINK options LIBII, Fe I Ptype

B. Valid Options

. Same as 'on' an IIASJ' card

C. Library Specification

LIB# is ,the file name of . the. desired group library

D. Functions Description

Library Maintenance will request a file check wit..'I-). MFDR using the
. name/version of the user library. If already present, an'indication
. is given. and the link increment returneda If not present, Library .

Maintenance will perform a service reques~ for the assignment of media
which the requested library resides. The initial block of the library
is read and a registration request for file extensions is made along

.. \lith the amount of mass storage required'. The elements are then pro­
oessed and place on 'mass stOrage.

9.2-11 .

The General Format of the Job Library

a MASTER STORAGE DIR.

INITIAL JOB DIR. MOD.

EL&v1ENT STORAGE

I '
I
\.

367276 GROUP LIBRARIES AND JOB
. ELEMENT EXPANSION

l I J ""'"-""'-----.. ,~

, ,.9 .. 2-12

MASTER STORAGE DIRECTORY

The st?rage directory or bit
map is used in the assigning of
storage within the job library.
The bit m~p occupies the first
102 octal words 'of the library.
"One bits" are set within the
map to indicate taken areas of
storage (1' bit = 1028 words).
The storage directory has ,the
capacity to show that 36727f:{" "
octal words of area are ava~l"::::,'; " '

. able or assigned. "

JOB DIRECTORY

The directorJ contains dual
purpose entries. One entry
establishes the liriking of job
numbers to 'their associated
elements. The second entry
affixes the linking of group ,
,librar~eswith individual,jobs.

The Job Directory

The initial job directory occupies logical addresses 102-203 of the
job l:i:brary file~ 'It serves ,the dual purpose'of linking job numbers to
their associated elements and of linking group libraries with individual
jobs. The job entry is one word in'length. The last,word of the module
contains the remaining number-,of cells within the module' and a link
,address'to the nextm9dule. The library link entry has the ,sign bit
set -to distinguish it from directory entries.' 'Upon a reference .0· a ,
group librar.f, a search is made of the use~ library links ,and entries "
with correspon.ding job numbers will apply.' The gro:up library number is '
an identifier to distinguish between,group libraries. '

o JOB 1 INC-TO 'LAST TOaM,

JOB 2 INC TO' LAST TOCM

JOB 3 INC TO .GROUP LIB.

GROUP LIBRARY NUMBER

I

101 l # ENTRY' , l'w'oR LINK 'NEXT MOn-J '

9.2-14

LIBRARY MAINTENANCE STORAGE DESCRIPTION

A basic area of prime mass 'storage is used to pool data involved
wi th a number of jobs. Any extension required due to the overflow' of
the basic area ~ll be restricted to the job associated with the
request causing the overnow. Any group library established will
cause the' extension ,of tlle job library file. If possible the extension·
for a' group library will be made pn non-prime mass storage. ,Upon the
termination of a job, the area Within the basic mass storage 'Will be

· released to library main~~nance. 'Any extensions associated·vith the
job' will be released to the system.' A group library extension 'Will
remain accessible as long ,as an active job' is associated wi th it. A
non-active group libtary area will be released to the.system 1£ the
area is needed. '.

The extension of the job library are made through a .Master File. .
Directory Routine (MFDR).· The MFDR will' maintain a directory 'With

· an entry for each file along .with logi·cal and ab~olute :addresses of
· the file'. A count of the number otJ.obs using the gl0)up library
extension is ~intained. .

9.2-14

MASTER STORAGE DIRECTORY OR BIT MAP

The bit map occupies the initial 102 words of'the job library. The
first 100 words are taken as a 100 by 36 grid of lists. Each bit within
this grid symbolizes a 102 word mass storage area. The file increment

, of any 102 word module within the basic job l~brary can ,bedetemned by
the position 'of its representive bit in the map. The file increment is '
equal' to the horizontal position, which for.ms the upper two digits of the'
bi t map increment, plus the vertical position, which represents the last
tvo dig! ts of the bi t map increment ~ times the module 81 ze (1 02) • '

.....

35 ••• 321'0

1
o
1
2
3

I ·
'----____ ...-1177

. ",'

Word. 01, plus bit position
, equals 0201. 11"

, ,0201 1s deiined asa link •

The list in the example above would represent 'a 102 word module at file
incr,ement 0201 x 102 = 20501.

As the storage is used the bits representing the area used are set in
the bit map. To find a hole for storage the bit map· is checked verti­
cally from right to ~eft.

!. gro~p lib~-y is not placed in the basic job library, b"l.lt an exter..s::"on
to the job library is requested to hold the group library. If there is
insufficient storage in the basic job library for the storage of an element
an extension will be created similar to that created for a group library.

The bitmap is read ~ lock to prevent the manipulation of the bitmap
by different routines at the same time.

Upon termination all element storage associated with the job will be re-',
leased.

The routines used to manipulate the bit map in librarr maintenance, are
EM, which is used to request storage and BMD which is used to release
storage to the s"1s tam. ,

, ." ,

9.2-15

GROUP AND SYSTEM LIBRARY 'FORMAT WITHIN LIBRARY COMPLEX

LIBRARY NUMBER

INGR»iENT TO TOG

INC. TO EP TaL

LENGTH TOTAL LIB

LENGTH ABS TOG' LENG'IH RB TOC, -
LENGTH OF SOURCE TOC LENGTH OF Edat.

. "
L '"

I
B

. ,

R
A

(,
\ R \

\

I

I
E
L

I

E , ,

M
~

E
N

T
S'

ENTRY POINTS FOR RB ELEMENTS .
T I ABS TOGS

0 RBS TOGS

G SOURCE TOCS '
~

.
Entry Point Table for Group and System Library

I
!
!

, I

I

Toe NUMBER

N N

N N

VALUE

I,

j

ELEMENT' EDEFS

~or the group or system library
all EDEFS are collected from the
individual relative binary elements.
Each EDEF is logica+ placed in the
table in a direct relationship to its
associa ted TOe. The TOeS are stored ..
in descending order. ~herefor~, the
last entry in the EDEF table has a
TOe NUMBER equal to zero. Upon use,

. the collector'loader is enabled 'to
correlate EDEF and TOO w!th a degree

'of' efficiency_'

.9.2-17 '

·Representation Of' A TOO Module And Individual Internal Toe

.¢
1
2
3
4
5
6
7

10
o
1
2
3
4
5
6
7

10
o
1
2
3
4
5
6
7

10

I
I

I

.. .

ENTRIES 0" OR LINK NEXT MOD.

(SOURCE ELT.)) ERROR IND.
N N N N ·N
N N N N N
V V V ·V V
INCREMENT TO ELT. BASE
UNASSIGNED
UNASSIGNED
(SUB. CODE) B # IMAGES IN ELT.
TOTAL·ELEMENT LENGTH
(ABSOLUTE ELT.)2 ERROR IND.
N N N N N
N N N N N
V V .v v v
INCREMENT TO ELT. BASE
MAX. CORE USED LENGTH OF CONTROL

· # SEGMENTS JJ ASG I!-A.l\GES
SDEF
INDEX TO SDEF

JREL. BINARY) 1 ERROR IND.
N N N N N -N . N N N N ..
v v v v V
INCREMENT TO ELT. BASE
I NDEX TO XREF INDEX TO CC
INDEX TO INFO INDEX TO SDEF

INDEX TO TEXT
LENGTH OF TEXT .

DESCRI.PTION OF TOG CONTE~'TS

1. RB ELEMEI't'T

Word¢

Word 1-3

Word 4

Word 5

Word 6

Word 7

Word 10

A number indicating an RB element. The lower of
this word is used for error indication.

A 10 character name and a 5' character version. All
unused portions of th~se' 3 vords are space (05)'filled.

An increment from the base of the job library at'
which the. element can be found.

U = an index from the increment ih word 4 which relates . ~'.

the start of the,XREFS and also relates the length of
the EDEFS
L = index to start of the-cc and relates the length
of the XREFS

U = index to start of the INFO and the length of the cc
L = index to start of the SDEF and the length of the INFO

L = index to start of the text and the length of the SDEF

Length of the text

, 2. ABSOLUTE ELEMENT

Word ¢

Word 1-3

Word 5

Word 6

Word 7

Word 10

3. SOURCE ~NT

Word ¢

Word 1-3
t

WO'rd 4

U = Absolute type number (2)
L = Erro~ indicator

Same as in RB element

Same as in RB element

U = the maximum amount of, core 'utilized at any one time
L = spare

L = number of ASq images

1 = the number of SDEFS

Index to, SDEFS

U = source type number, (3),
L = Error indicator.

Same as'in'RB element
.

Same as in RB ~lement"

Word 5'

Word 6

Word 7

, ,

Unassigned

Unassigned

U = subtype '(B) indicating an internally compressed
source while subtype (A) indicates·normal source .
from primary input stream.
L = the number of ' images of compressed source type (B)

The total, length of type . (B{~ . compressed sOi.lrce)',or~;
. ·th~ total number of .type (Ar~non-compressed source;~',

in field data code. ..-~

Source Element

I INnEX~O NEXT SOURCE IMAGE

I
I ,

I '
! INDEX TO NEXT SOURCE IMAGE

I·
I

I
! I

I

I
I

....

9~2-21

A 'sourc'e image is received from the.
primary input stre&~ with trailing,
spaces removed. Hence, the· term

· (compressed source) is defined. As
each source image is encountered, an
index to the next image is attached i'
The index and the compresseq image,~: .
is buffered onto the, job library. '

· With each . successive compression'
-#""

· occurring the Jop Libra~ saves
prime storage. •

~ibrary Tape Format

o

1

. 2

l7 2
1

17 2
I
, FILE

7 2

7 2

3

4

5

6

, IDENTIFIER

DATE
I

I
7 'I TIME

!

7 2 7

-"- 2 7

2 7 2

2 7 ' 2

, "

10 I
~----------------------~

11 # ELEMENTS
i

12 1# RB ELEMENTS

13 1 1_# ABS ELT

SOURCE ELT 14

15 DRUM REQUIREMENT FOR STORAGE

7 2 7 2 7 2 7 2· 7 ,2
,:

7 2 7 2 7 2 7 27 2

File Header - This record will be the
initial block on a library output tape.
A rewrite of this block is performed by'
ELM in order to insert the drum require~
menta of the library and the number
of elements within 'the librar,y. The
header size is 308 'Wordse,

9.2-22

TEST SY$TEM '

, I '

SEG I

. COMPILE AND INITIALIZE

I
I . THE 'OMEGA

TEST SY STE11

"

SEG II
t,
I

TEST SYSTEM

BASIC LOGIC TO PROCESS

THE TEST S~ATEMENTS

rSWITCH TABLES; PARM TABLES' } l TEST PACKET STORAGE; JUMP TABLES .

9.3-2

FLOAT. "
, I:NTEXEC

SUB-RT,

SEG III

TRAP &
'EXECUTE

f INTERPRETIVE

'EXECUTOR

(TSEARCH),

(TRAP 8RH)

. (JUMP TABLES)

MEMORY
PROTECT'

TSEARCH

SUB-RT

9.3-3

•. SUB-:-RT

OPERATING TEST SYSTEM IN CORE

SEG II --------------------------------1
1

BASIC LOGIC TO PROCESS RIR = 00000 PLR - LOWER

. I TEST STATEMENTS

SEG III

I
! , !
1

I

r
I

I

SWITCH TABLES: FARM TABLES .

TEST PACKETS STORAGE

PROGRAM.

UNDER TEST

INTERPRETIVE

EXECUTOR

I TSEARCH: DDMP;SET;ATjIFjEXIT;TRACE*

l!' TRAPSRH; ,TRAP*

I .
t RIR = 00000

PLR - UPPER "

*NOTE: Whenever a ,bit is made control,is given to SEG. II for processing.
I •

Phase I Test Package COMPILE

The Compile phase of the test 'Package is called into memory by means
of the .standard job card. The initialization phase consists of the
following:

(a) Set all B Registers to zero
(b} Clear work areas' .
(c) Get necessary core set RIR and PLR
(d) Locate SDEF tables of 'program to be placed under test.
(e) Load SDEF and Vector tables of the program Under test.
(f) Set all control switches to ,off.

Card Read Section

The cards are read and proces~ed by this section and all follow the
same chain of logic:

. (a) The first 5 field data characters are used and a search
is made of a table of all valid secondary control state­
ments. If no hit is found the card is rejected and printed
as an .error card. Control is then returned to the card
read segment and step (a) is repeated. Note error cards
may not stop the test package. The test package'will
continue until it reaches an end condition.

(b) Whenever a hit is found the card image is first submitted
to the \L~stringer and then control is transferred' to the
proper ,subroutine to process that statement •. All
statements are p~ocessed by their oWn sep~ate'Bu1?r~utine.

Search Tabla for all Valid Secondary Control Statements

<II
I .. -AT--

--P-REG

2. -IF--

--P-REG

.3. . -DUMP

--P-REG.

4. -TRAC

E-P-REG

'\ 5,,' ..
. I

-TRAP

6.

rJ , .

8 •

I

I

--P-REG

-SET-

--P-REG
I
I

I ~:~:G I

I -END- I

. ~

9.3-6

COMPI LE-AT-

1. Since the card is already unstrung P is computed by a return
jump to the Compute P subroutine.

2. Save Segment Number and P value

3. Test to see if switch A is given.
off and store location in packet.
for switch #27*.

If yes.· Then set s~~cn
If no. 'Then set location

4. Set counter in packet equal to zero.

5. Convert Vo to Binary and store in paoket. It Vo is equal to
spaces set VO=1 and V1=7777 and skip to (7)

6. Convert V1 to Binary and store in packet if spaces 'set
to all seven"

7. Test for switch B. If given set up logic and store in
packet. If it is not given then set for switch #27*.'

. 8. Increment B1, B2 and exit.

Packet SWITCHB SWITCHA

VO V1

Counter SEG II

*Note. Switch #27 is a dummy sWitch that is always turned on.

9.3-7

Compile IF

Example: -IF--p/A. '() II ()' * or * #~. ext e elxpression
L~ ________ --__ , and ,~

Relation operator cQntinuation symbol

connector

1. The P value is gotten by a Return' Jump to the Compute
P subroutine and along with the segment # is stored
in the Packet.

2. Test for switch one. If it is spaces set it equal to
switch #27. If a switch ~s specified set up the proper

. logic and store the switch in the packet.

3. Compute the relational expression in the following manner:

a. Get the K value and save, if no K was specified then
the value within the open and closed parenthesis
is assumed to be an arithmetic constant and is converted
to binary if necessary and stored at TIFPKT40 f B4 for
future reference. This address is then submitted for
the A operand. Go to (d). '

b. If K was found then the value within the parenthesis
is assumed to be an address and is computed by going
to the compute P subroutine.

c~ The A operand address complete with designator is saved.

d. The Test portion of the expre~sion is saved for later'
reference.

e. Steps (a) through (b) are repeated to get the next
portion of the expression and it is treated as the
B operand.

f. The operator is tested for AND, OR. The routine
brances on the AND or OR.

g. If present then switch Test for B-A condition.
operands (B for A).

h. Branch on the test (EQ, GE, etc.)

i. Get K and Y operand for the ENTER A instruction.
ENT*A*A a.ddress.

Get K and Y operand for subtract A instruotion.

Sub*A*B Address with proper J designator.

9~3-8

example: ENT*A* operand

SUB*A*B operan~ ~J

JP* continue

NQte: The 3umP is set to accept if the operator
was an OR, and to reject if the operator
was an AND. The J is set to skip on a
miss for an OR operator and to skip on a
Hit for the AiID operator. The end results
is that the same 3 instructions are used
for all ~elational expressions.

j. A 'check is made after each operator for a continuation
card. This is the only place where a request for a
continuation card can be made. Any number of continua­
tion cards may be given.

k. Repeat steps (a) through (j} as many times as there
are relational expressions.

1. When the comma is detected after an operator the
IF statement is cl~sed out. The switch is set up
to be turned on or' off depending on the acceptance
or rejection of the IF statement.

Sample IF statement:

-IF--START /A,L (SUMXt5) /EQ/ L(YSUM) *OR*# .

W(XLIST) /LT/ (666) *OR*L (DOG) /GT/ (60) *AND*,B

The total Packed compiled for this would be:

The table is to be IT ABLE
tested
When P=START
of the operating program

SEG# TSWITCH = A 0

TSWITCH = B 01
ENT*A*L (SUMX t 5)
SUB*A*L. (YSUM) *ANOT OR Test 1 .
JP*TABLE t 011
ENT*A*W (:XLIST)
SUB*AitW (TIFPKT40 t B4)*APOS OR Test 2
JP*TABLE f 011 .

I
JP*TREJECT

ENT*A*W(TIFPKT40 t B4)
I SUB*A*L (DOG) *ANEG' AND Test 3

9.3-9

I
JP*TREJECT
JP*TACCEPT

These instructions would be generated and stored in the test bed.
Each time·the P value was reached in·the program under test, and.
the switch A. is on, then control would be given,t~. TABLE t 2."

AND 1 •. EQ' A=B ; J = 4 A ZERO A-B

2. GT· bB. j' J = '7 A~~G B-A

3. LT A<B J = 7 ; 'ANEG A-B

4. NE A~B J = 5 ANOT A-B

5 • GE AZB J = 6 APOS'; A-B

6. LE A~ J = 6 APOS B-A '

OR 1. EQ A=B J = 5 ;. ANOT A-B

2. GT A>B J = 6 APOS B-:A

3. LT A<.B J =, 6 APOS A-B

4. NE A~B J = 4 AZERO A-B

5 •. GE A~B J =·7 ANEG' A-B

6. LE AsJ3 J = 7 ANEG B-A

Restrictions: (a) There cannot be more than 20(8) consecutive
OR operators in anyone IF statement.

1 \
\UJ

m~~ __ _____ + ~~ _~_~ +~~~ ~~,_,
J"u.OJ, 0 ~c:u.u.lV U L,lg .lUV.I. g u.u.C;U.A ,..,~ \8)
in all the IF statements., '

9.3-10

Compile the DUMP statement,

1. P is computed by a retu;rn to the compute P 'subroutine
and along, wi th :the· SegIr.ent Number' is st,ored in' the, DUMP'
Packet. , .""

2.' Set the options,' If none are given set for Qctal.,

:3 • The s'\d tch ' is tested. ',If spaces then the Dummy switch
is set. 'If it is not spaces then the switch iogic ,is:
set up. '

4. 'Convert Vo .and store.

5~ Convert'V1 and store.

6. Convert V2 and stor~, if ~t is present. If V2 is not
present "then it will be treated as Zeros. '

DUMP PACKET
I

Base Vn address' # of V1 words
- ' f I

OPTION

SWITCH

9.3-11

F~le V2 Code

I SEG #

Compile TRACE statement

'Exampl~: -TRACE-OPTIONS-SWITCH,START,END

1. Test for and set switch. ' If the switch is left blank
then set the Dummy s'witch.

2. The start location is gotten by doing 'a return jump'to
the Compute P subroutine. Both th~ P setting and Segment
Number are saved.

3. ,The end location is gotten by a return jump to the Compute
P subroutine. Both the P setting and the Segment' Number
are saved.

4. The Option is checked for a complete trace or'a logical
trace only. If a" compl~te trace is requested then, zeros
are stored ,in the pa~ket. If it is to be a logical trace
only, then 5 sevens are s'tored in the packet.

TRACE Tab Paoket o
!

I SEG #

\' START

'I, , 77777

II

..

I· ' ..
I

SEG #

START

0

I'

I
I

I,
I
I

I'
I

I

l
I

9.3-12

Tests

SWITCH ,.
END I] Packet', 1

SEG#

·11

"
" I

SWITCH

END 'Packet n

SEG'# '1 , .
"

.Compile ~he SET Statement

Example; -SET--P/SWITCH, Store Address, Value1/Value2'--'#

Store Address,--I __ ,--I __ ,--I __ ,

: Set

1 • The P is gotten by·a return '.jump to the Compute P
subroutine. Stor,e the Segment Number and the P setting.'

2. Test and set switch. If spaces, set Dummy switch. If a
switch is given ·then set up the proper logic.

3. The store address is gotten by' doing a return jump to the'
Compute P subroutine. The Segment Number is compared to
see if it is in the same segment as the.P of step·'(1).
If it is a different Segment Number then an error print
occurs and the routine exits.

4. If valid the store address is saved in the P~cket· store area.

5. The first half of the value is gotten by a return jump
to the ComputeP subroutine.

6. Step (5) is repeated for the second half. The two halves
are combined and the 30 bit word is stored in the packet
storage.

7. A check is made for a continuation card and if 'present
the card is read and. control is returned .to step (3).

8 •. A check is made for a end'of data symbo~ if present the
packet is stored and the routi:qe exits. J

If neither (7) or (8) .. is true then Control is returned
to'atep (5),

I ..
Packet i SWITCH. SEG #

\
I P-Se:t,ting # Words.

·1

.} --------- --------

I --------- ------..

. ! P-Set t1ng # Worqs
I
I --------- ';---_ .. -
\
I ----- --~--

! 77777 77777

" •

Compile the TRAP Statement

Example: -TRAP-OPTIONS-P/SWITCH

1. P is gotten by a return jump to the Compute P subroutine.
The P setting and the Segment Number are stored in the
test package •.

2. The switch is tested for and, if spaces then xs set to
the ~llmmy sw~tch, if given then the proper logic is set up.

;. The Option is stored·if given. If no Options are given
the octal conversion is assumed.

·TRAP Packet SEG # ' OPTIONS

SWITCH

9 .• 3-14

Compile the ~ Statement

. Example: -EXIT--P/SWITCH

1. P is gotten by a return jump to the Compute P subroutine.

2; The switch is tested for, and if present then the proper
logio is set, if it is omitted then the Dummy switoh·is set.

;. EnT

Packet SWITCH

9.3-15

Test ,Package SEG II Test and Perform

Test-AT-Statement and Perform

1. Control comes from the TSEARCH ROUTINE and B7 holds the
address of the Test Packet".

2.' Test switch on:

No: Exit
Yes: Continue

3. Test if the Routine is in the correct segment

No: Exit
Yes: Continue

4. Perform AT Statement

a. Test V1 equal to o. If Yes then EXIT

b. Increment c~~n:er and test if equal to VO. If Yes.
Turn the s~~cn on clear the counter and subtract
one from V, then exit.

9.3-16

Test-IF-Statement and Perform

1. Control comes from the TSEARCH Routine and B7 holds the
add*ess of the test packet.

2. Test if the switch conditional to the performance of the
IF Statement is on. If it is off exit.

3. Test if this is the correct segment. If not then EXIT.

Go Perform the IF Statements logical tests. If the decision
is to accept then turn ~he indicated switch on and EXIT.
If the decision is to· 'reject then turn the indicated switch
off and. EXIT •..

Test-DUMP-Statement and Perform
-

1'. Control comes from the TSEARCH Routine andB7 holds the
address of the test packet.

2. Test if the conditior...al switch is on. If' off then m1..

3. T,est if. this is the co~rec't' segment. If, it is not then EXIT.

4. Submi t packet to the DUMP ROUTINE •.

5. EXIT when control is returned.

6. Perform .. DUMP

a. Clear' the initial pr~nt line' '

b. Branch on the OPTION Code

1. A OCTAL
2. B Field Data
3. C Binary to decimal ,
4. D Double precision Floating point to its

decimal representation.

7'. OC':']..T.: Convert binary number to its field data equivalent
and print the base address of the print line and
8 words.

8. Cycle on Step 7 until print packet is exhausted,'"then EXIT.

9 • FIELD DATA

Move the data directly to the print line'and print.

10. BINARY TO DECIMAL

~ Convert the data to its decimal representation •. A maximum
of ten'characters per 30 bit word •.

11. Floating Point Descale Routine

Convert the 60 bit word ,and shift it to the print line.

9.3-1,8

Test-TRACE-and Perform

1. Control comes from the TSEARCH Routine and B7 holds the
address of the Test Packet.

2. Test for the correct segment number range. If it is not
then EXIT.

3. Test if tr~s location is within the proper limits. If it
is then go to step 5.

4. Continue search of TRACE TABLE by incrementing to the next
test packet. If the last packet has been checked then
EXIT. If it has not ,then go to step 2.

5. Test to see if 'this is a logical trace only. If it is
then go to step 7.

6. Go Perform the printing trace and then EXIT.

7. Test if the instruction being interpretively e~ecuted is
either a jump or a return jump. If it is go to step 5.
If it is not then EXIT.

Note;1: If this -is a complete printing trace option and the instruction
being interpretively executed is the Repeat instruction then
the instruction being repeated will be printed without the
registers settings.

Note 2: Those registers remaining the same as in. the previous
print, either trace or trap, will not be printed again
\U~til-their values cr~nge. .

9 • .3-19

Test-TRAP-and Perform

1.- Control comes· from the TRAPSRH Routine and B7 holds the
addte~sof the test packet.

,
2. The logical switch is tested. If it is off the Routine

exits.. . , .
. '

3. The segment number is. tested. If this is the wrong segment
then the routine exits.

4. Perform the. TRAP Qperation

a. Oonvert the address of the trapped location to its
Octal representat.ion.

p. Branch on· the option

1) Octal: Convert the 30 Hit Ttlord to . its octal
representation, and move it to the Trap buffer.
Go to step 5).

2) Field Data: Transfer the field data word to the Trap
buffer and go to 5).

3) Decimal: Convert word to its decimal equivalent and
move to the Trap buffer. Go to step 5).

4) Floating Point: Convert the· 60 Bit value to its
decimal equivalent and move to the Trap buffer. .

5) Print the Trap B~ffer line

6) ReJP.to the printi.ng trace and print the instruction
that is oaking the change, and the registers, the
same as in the printing trace.

7) EXIT

9.3-20

Test-SET-and Perform

1 • Control comes from the TSEARCH Routine and B7 holds the
adqress of th~ test packet.

2. Test logical switch. If,it i~ off EXIT.
-"

3. Test segment #. If it is not the correct one then EXIT.

4. Perform Set:

a. Pick up 'the P setting and nurnberof words, if they
are equal to 'all sevens then EXIT.

b.' Transfer the ,nurr.b,er of words, specified in the lower
of the first word, to the store address specified
by the upper of the first word:

9.3-21

Test-EXIT-and Perform

1. Control comes from the TSEARCH Routine and B7 holds the
loqation of the test packet.

t " .

2. Test the logical switch. If it is off then EXIT.

3. Test the segment number. If it is incorrect then EXIT.

4. Set up the ending log~c)l.nd terminate the activity under
test.

9.3-22

(START)

~--j0
BRING UP
INSTRUCTION TO

BE INTERPRETED

PERFOfu\f READ
CLASS
INSTRUCTIONS

SET UP FOR STORE, Q
REPLACE OR JUMP
TYPE INSTRUCTIONSj

~PE3.FOR\ll STORE,
REPLACE & JUMP !
• TYPE INSTRUCTIO

G
SET t;7 ?OR
REPEATED
INSTRUCTIONS

INTERPRETIVE EXECUTOR SEG III

TSEAJtCH

;SEARCH JUMP TABLE
FOR HITS: GO
PERFOfu\1
OPEHATIONS ,(smIJ)

C EXIT)

TRAPSRH'

SEARCH JUMP
TABLE FOR

9.3-23

PERFOR.~ THE
TRAP OP:2RATION
SEG II)

OK

W
r""'l P-&-R-FO-RM--TH-TE--'
I

INDICATED
OPERATION

IF A FOR.X HAS
REQUESTED THEN
FLOAT SEG II'

TSEAH.CH

Table Look Up Routi~e

1. The fu~ction of ,this routine is to sea.rch through the
~J~TABLE for all Debagging Statements and then give
control to the propersu brou tine. -.

2.

. .

Control comes from the
a return jump.

interpretive executor by means

The total n~~oer of .tests is entered into-B7 and the search
is-begu~ from the bottom of the Ju~PTABLE. B7 is used
to carry the' position in the jurr~ table. B? is also used
to locate the corresponding position of the Parameter
table.

~fuenever a HIT·is found B7 is ator6d in the upper of
TSEARCH and Contro~ is given to the proper Debug Statement
subroutine.

5. ~~.en Control is returned from the Debug Statement, B7 1 is
entered with the upper of TSEP_~CH a~d the Search continues
until the entire table has been searched. Then exit.

9 . .3-24

TRAPSRH

Table L~ok Up Routi~e

1. The function of this routine is to search through the
. JUMPTABLE.' The method is the same as in the TSEA . .:.1.CH
routine. It differs only in that whenever a hit is
detected., a further chec.k is nade to. see, if this is a
request for a Trap Operation. If it is not then B7is
decremented and the ~JMPTA3LE Search is continued •

. ' 2. Control comes to. this routine from the interpretive
executor and only' whenever the program under test tries
to.store; to memory.

3. The routine exits only whenever the conplete JUMP TABLE
has been searched.

9.3-25

9.6 'REXecutor

The 494 "REXecutor is composed 'of a pair of secondary E..xec routines
deve.loped to load and control the executior1: of batch type programs
coded for use i'n a P.EXenviror..ment on the 'UNIVAC 490.' This routine
provides 'the user an ability to run one or more REX oriented programs
concurrently'wi th mOOA oriented programs on the UNIVAC 494.

9.6.1 Method of Operation

Prograns loade'ci i a;d controlled by the RE..Xecutor are activated
and described via· primary and secondary control' statements'
embedded wit~~n a Job deck or'coLtained on the drum in the form
of a source element. As the program is loaded an execution area~"
is allocated as part of the program to capture REX requests and
contain paraoeters required to exec~te the program.

Upon completion of load,an allocation process, the described
progra~ is activated and allowed to r~ in a no~al mar~er
until it executes a return jUmp to the REX entry table (Locations
140-146). At this point the REXecutor will capture the request,
reformat to OY~GA conventions and execute. Upon completion of the
request program control will be returned by REX conventions with
REX status codes. The following fig~re illustrates core layout
wr~ch makes tr~s possible.

J
QRIR ->

Instructions requi:-ec. to capture
~ RIR, Lower Lock

140 -) reauest anc subITI.it to REXecutor
RIR .

146RIR --) I . REX Request R.egisters

Table Area
f- Base of Program

REX Oriented Object I
I

Code

f- Upper Lock

9.6-1

9.6.2 The REX Control State~ent

. The REX Control Statement signals the start of a'task which,
<. s·elected as any other m·lEGA recognized task, will activate the'

load and execution of REX oriented batch program(s). All peri­
~herals and mass storage assignment used by REXecuted program
must have been previously assigned to the task via ASG$ control
statements.

REX Statement

#P~~Optidns /;). MiniIn.UID;Y~xirnum, Name/Version, Library

. Optio!1s are:

x - Abort. Do not execute remainder of Job stream if· errors
encounte!'ed during load or execution of describedprogram(s).

Y - Continue REXecutor Phase 2 even through errors were detected
cu·ring load and interpretation of control ,cards .

Absence of X or Y options implies terminate task and skip to next
task within Job stream if errors are detected during load or
interpretative execution of REX service requests.

Specificatio~s are:

Mir.im~~n~a)~~~~ is the~oujt of core storage,. in up~its of 1008
words, requi!'ed to load conplex and/or simple relative·progr~(s)
·to·be REXecuted. Selection will automatically increase specified
amount of 40°8 words to conpensate for execution area. Maximum
core including execution are~ may not exceed 32K •

. l'~a."'.1e!iJersion (optional) contains na.:r..e and version of a source
element·on rar.do~ storage contain~!g secondary REXecutor language
state~ents required to process the task. .

Lib~arv Fie1 d (optional) identifies the library in which the source
ele2ent is contained on r~do~ access storage when name/verSion
option is used. Anyone of the following specifications are valid:

SYST2·i specifies the na.m.ed source element is contained in
systems lib~ary.

JOB specifies the named source element is contained in the
Users Job lib~ary.

G~::?/::;i8re..ry ~'~'_",---~"0e:- speci::'es the named source element is
contained in the n~ed group library previously linked to
the job.

In a.'bsence of library specification Job Library is assumed by
the ~ecutor.

9.6.2-1

Errata Cards

Errata cards contain corrections to P~ecuted
follow PROG statement for which they pertain.
identical format used by REX.

programs and must
Tne follow the

Card Column

1
2-3
4=5
6-10 '.

r 11-80

Parameter Cards

Content

. :tAu identifies card 'as errata.
Segment number (blank implies control segment).
Unused
Address relative to execution area; 4008 plus

relative address within program, in which first
. errata word is to be stored.

Seven 10' character fields used to contain errata
values. Errata ~ords will be loaded at con­
secutive addresses starting with address given
in columns 6-10'. A blank correction word will
terminate the card.

Parameter cards contain data to be stored within program at address
specified by Executive Information Region (E.I.R.) of the loaded
program. Parameter cards Dust follow PROG statement for which they
pertain. Two types of parameter cards are recognized,numeric and
alphanumeric.

, Numeric Parameters:

Card Col um:n,

1
2-3

4-10
11-80

Content

"BU identifies card as containing numeric parameters.
'N"~ber of 30-bit words to be filled from content of

this card. Blank implies 7, the maximum..
Unused
Data storage - Seven 10 octal character fields to

be stored in octal form. Blank col~~s will be
entered as zeros. Words will be unstrung and

. stored left to right u.~til specified number of
words have been stored.

Alphanumeric Parameters:

Card Colu::m

1

2-3

4-10
11-80

Content

"el1 identifies care. as containing alphanu:n.eric
, parameters.

Octal n~ber specifying the number of computer
words to be filled from this card. Blank implies
16 octal, the Daximum.

Unused
Alpc~~~eric data words -16,5 characte~ fields to be

s~orac i~ tt~ir fieldata form. Words ~rill be
stored left to right until specified number of
words have been stored.

9.6.3-4

9.6.3 Seconda~-j Control Statements

Secondary Control Statements immediately follow REX control card
"or are contained on random storage; and, describe program(s) to

be loaged, REX para:neters or errata., and map peripheral and mass
~torage assignments from CY~GA to REX conventions. Secondary
control statements are terminated by PS (Program Start) control
s ta. te:inen t •

The PHOG Control Sta t6::...ent .

The PRoGra.!Il ;~nt~ol staterr:ent is used to describe a simple or
complex relative (SPURT outputs 321 or 322 respectively) program
which is to be loaded under control of the REXecutor. Any number
of PROG cards can be subclitted for anyone execution to effect·
subroutine load. The only constrants placed upon complex or simple
relative programs is that total amount core required by programs
plus the HE ... Xecutor execution area does not exceed 32K and that only
one of the programs is segmented. The PROG control statement is
as follows:

APRDGAOptions.6File Code, Program ID/Name, Base, Logical Address

Options are:

P Described progr~ is the reain code capable of being segmented
and receiving p~ parameters. Only one object code program
may contain "pu option for anyone REXectuion.

L Rewind load servo before search of the program.

R . Release load medium assignment after program load.

Specifications are:

File Code the alphabetic file code of logical unit on which described
object code resides nor.cal magnetic. If assignment is random access
storage Illogical address ll is required to define starting point of·
code.

Prograo IDCfa~e identifies the simple or complex relative program
to be located and modified to ~~ing form .. Program ID is the ten
character searchword of the coce e.g. 74747 lib #. Program. name
is ten character n~e assigned to the progr~m, this field is optional
if program ID is u..'1iq~e.

Base, optional, used to specify a specific relative address on which
the desc~ibed progr~ is to be loaded. If blank REXecutor will load
progr~ begilli'1ing at the first available cell ·following execution

. area previously loaded. :?~ogra::.s. 1'f..'1en specified, value must be
greater than 40°8- Nor.mal~y used to load additional subroutines.

9.6.3-1

Logical Add~ess required only when random access storage is assigned
as the source medium of the object program. Logical address is
relative to assigned Hfile code II and is the beginning address of

.. the object code.

The ~S Control Statement

All peripheral and random access sto~age assignments used by the
program(s) placed.Under control of'the HEXecutor must have been
previously defined via the ASG control cards (see 5-1 of Programmer1s
Reference }mnual) and described to the REXecutor via the ~~~S state­
ments. This 'feature not only insures proper execution of the program
but allows-a degree of flexibility in altering peripheral type. For
e~ple, a program written for UNISE..."9.VO IIA tape units can be changed
to UK::S3..i.VO VIC tape units without reprogramming or reassemblyc-of
object program. .

The or~y exception to the facility assignment procedure is in the
use of card and bigh speed printer sUbsystems. The REXecutor will
'resub~t REX card and print packets to OMEGA's primary and/or
,secondary elements ur2ess otherwise assigned.

The MEAl~S control statement is as follows:

AHEAJ.\ShOutions ~File Code, Channel/ITnit, peripheral type, Drum
-Address/Length

Where options are:

A - Described unit is to be used to satisfy internal REX facility
request when sub~tted by the program TIh~nlng in the REXecutor
mode. Chan:lel/uni t may contain any unique channel/un:L t
number not previously used by object code'.

Specifications are:

File Code is the alphabetic file code to which the assignment has
been previously assigned via the ASG control state~ent.

Channel/Unit is the numeric channel/~~it as defined by the SPURT
~~S and ASSIGN state~ents. In the case of hand coded nackets

-the charillel/unit contained in the packet must be used. Channell
unit will be used at execution time of an 1/0 packet to map
request back to OMEGA file code and not as a physical ch/unit.

9.6.3-2

Peripheral Tvue is the IDrlemonic REX peripheral ty~e for which the
original RLX 1/0 packet or internal facility request was coded
for. The following are the valid entries •

Mnemonic

FR8S0
1 FAST
. UN2A

tJN3C
. UN)!.

CRIN
CP.oUT
PHINT
PTIN
PTOUT
PIN
POUT
SOUT

. Subsystem

YiI880 Drum
FAST?J..ND
UNISERVO IIA
T-n.""""S""''niTO .,...,...,.. .'?'/Ju" jl'TT "j'1:TTT-:-"
U~~..L· ~'1.v~ ..L..L..LV, _vv, \I·.!.V V.!..!..!.V

UN I SERVO IlIA
Card Reader
Card Punch
High'Speed Printer
Paper Tape Reader
Paper Tape Punch
Submit request to primary input
Submit request to primary output
Submit request to secondary output

Drum Address/Length is required only if assignment is for random
access storage and existing program uses absolute drum addresses
to reference file. For each distinct file assigned on the u~IVAC 494
and used by the progr~ under execution the absolute base address and
file length assl~ed by the 490 program must be specified. File
length is conveyed as nunber of words or sectors contained in current
file. Tnese values are used to effect the transition from absolute

- drum reference to logical increment and to determine which of
several 'files reference is intended.

Lack of specification implies program will use zero as the file base
and that only one random access file is assigned.

Relocatable ~ss storage declared by complex relative (322) must be
assigned to File code Y and mapped by HEft..NS statement. REXecutor
will set up E.I.R. of REXecuted program to contain expressed value
in the normal manner.

Segznent Storage

The REXecutor allocates random access storage for segments and
errata for a complex relative program. File code ZG is used for
this p~ose _,'

9.6.3-3

The Program Start Statement

The Program Start Stateillent is used to terminate
! •... ~,and activate execution of program.

process

~ PS tJ. Options /J. P, A, Q, B1/B2/B3/B4/B5/B6/B7

~~ere options are:
., -..,

D - perform octal dump of execution area upon completion of
'. REXecuted program regardless of reason normal or abnormal.

E -- Perform oc.tal du:n.p of execution area upon completion only
if error occurs during execution •

. P Perform octal dump of execution area prior to execution of
program.

Specifications are:

~ contains alternate program start address relative to base of
program area. Lack of specification implies use start location
contained in E.I.R. of program.

A, Q & Bls optional used to specify register setting at time of
execution.

·9.6.4 -REXecutor Elements

The ?~Xecutor itself is composed of three distinct elements:
REXecutor Phase 1, REXecutor Phase 2, and Execution area.

Phase 1 is a non-reentrant secondary Exec routine responsible for
the following fu.."lctions related to load and control of REX oriented
progra::ls.

control cards used to describe -r" O-~ (~)
~... 6"'~ ..,

to be processed.

Load SPURT produced simple relative (321 output) or complex
relative (322 output) programs and establish execution area.

Initialize and activated REXecuted program.

Submit all Error messages to primary output stream

Process STO:Ru~ and ~~~~ui~ service requests.

Process REX Loader service requests other than segment load.

Load segment errata when present.

9.6.4-1

I • ~ ~.

Phase 2 is a reentrant secondary Exec' routine used to process
normal REX Input/Output requests and their associated controls~

•

•

Order standard REX Input/Output service requests

Process REX rnput/Ouitput servi~e requests'

Process CKSTAT"service request.;

Process Til~VER service request •
'~.' ,:,'

~ro.cess Segment Loads

Return program control to REXecuted program.

Call Phase" 1 for Error conditions and all non-processed
Loader functions.'

REX object code being executed.

~aps a:d tables showing peripheral assignments and segments
description.

Pseudo REX entry locations a;;.d a limited set of instructions
used to call Phase 1 or 2 upon each REX service request.

Work area used to submit reformatted I/O requests to OMEGA.

9.6.5 REXecutor Phase 1

REXecutor Phase 1 lib~ary number XXX is a non reentrant secondary
Exec routine used to load, activate and execute REX service request
yhich require exception processing for reasons of core buffers or
elaborate interpretation.

CALLS

Phase 1 is activated via EXR~*2XXFC from Phase 2, or Execution area
to pe~for.m some function y~th regard to load .and control of REXecuted
progra:n. The folloHing is a summary of function codes their caller
and brief description o~ each followed by a functional description
of each.

Fu.."1ction
Code

01

02

Caller

Execution

Phase 2

Descrintion

Load and interpret control cards des­
cribing REXecuted program.

Interpretively execute REX Loader
service request.

9.6.5-1

FU_l1ction
Code Ca.ller

03 Execution

04' Phase 2

05 Execution

06 Phase 2
, ,

," "

07 Execution

10 Execution

11 Execution

12 Phase 2

13-37 Un-assigned

Deseription

Process console TYPEC service requests

Process STOPRUN, TERMRUN or console
functions.

Invalid p~ service request

Submit diagnostic message

Program Fault

Memory Guard violation

Illegal instruction execution

Locate and load segment errata

~~ction Code 01 is a.ctivated as the result of selection encountering
a ~X primary co~trol stateillent in the Job control stream and select-
~Y'I"" ~+ ~c:- +-"".0 Y'lC>~T+ +<:le>1.r +1'"\ hO Co,..,-:-.o-roor1 ;Y\+I'"\ +'hc c!-';T~+cm TTr\('\'n p""+;"(n:d-.;f"I'n
~4J.6 .LV 1;.4.,~ U.L. \;; .LJ.'-'411..V u,-,,-~ \,/V "'"&."'-''''''' '-''''-4 lJV ""' "W' ~J~\rJ'-'........ v):'....,"' 'Vv ;JJ...I--...,.,

selection has: assigned core area specified on REX control statement
plus execution area, stored ~X constrol statement in parameter storage
With a rrSEND$11 operator, loaded initial execution area element and
given prograill control to execution area.

Initial instructions contaL~ed in execution area establish two queue
nrocess activitv addendems: Activitv 1 which is used to execute the
p~ogram object ~ode. Activity 2 whi;h is used to execute input/out­
put concurrently with instruction exectuion. Upon establishOent of
control threads a QREF is executed to Activity 1 and flRETURN$1I is
executed.

Purpose: Load and establish P~X oriented batch programs for execution
wi thin the OlvfEGA enviror.JIlent. This is accomplished by
requiring and processing REXexutors secondary control state­
ments.

Caller: Execution area as the result of QREF$ to Activity addendum 1.

Parameters: Task addencum co~tains core area assigned to the Task and
link to REX control statement which caused activation. REX
control state=ent can be retrieved through use of the
JlRECEIr.c1.?lI operator (See 9.6.2 for IlREXU control statement").

Functions: a) Retrieve REX control statement, unstring and set
up necessary linkages to retrieve REXecutor
seconda~J control statements from random storage or
primary input upon request from Step(ij~

b) Retrieve second~ry control statement, submit to
p~~ary output for s ub~equent printing and jump to
appropriate stepcependent upon stateillent type.
MEANS statement go to Step (c), PROG statement go to
Step(~, parameter or errata go to Step E, PS state=

, . ment go to Step(fj. If not one of the above submit
~he.following diagnostic numb~r 1 and repeat Step(ij.

c) Unstring ~nd process ~~S statement setting on ,
-appropriate entry in Table 1A and/or Table 1.' If
table overflow or invalid parameter submit appro­
priate diagnostic and repeat Step (b).

d) Unstring and process PBDG statement by locating and
modifying to rQ~~ng form complex or simple relative
program described on PROG card. If uP" option given
program is loaded and E.I.R. is set up describing core
bounds and any random access storage assigned to File
Code lIyZ: and mapped by previous HEA.L~S statement. If
execution area overflow or errors detected submit
appropriate diagr.ostic and repeat Step (b).

During Load process no modifications of ch/~~it
positions in REX 1/0 packets, T-tags or D-tags is
performed. Therefore, original ch~nnel/unit numbers
specified by !!~.NSlI, FACIL, and ASSIGN SPURT
directives will be contained in the packets at exec­
ution time and nust conform to channel/unit numbers
used on ~~S secondary control statement.

e) Unstring and store REX parameter or errata cards by
REX conventions. If se~ent errata, store errata on
mass storage follovd~~ program segments and set
appropriate segment _description bit in execution
area indicating errata. Repeat Step ~~

r) Unstring Progr~ Start card, store register settings
and starting address if given in the allocated
storage ~odule for this activity. Close any remain- .
ing initialization of execution area and return pro­
gr8.IIl control.

Exi ts: NO::r-"~l return through JlCo!ltent Supervisor" if REXecuted
program(s) we~e Successf~ly loaded or Y option on REX
c~rd give::.

E? .. HOR 0::- .A30?'2? ratu:TI t21::-ough IIContent Supervisor!! if errors
ce~cctod ~~~i~6 ~C~~ p~o~ass. A30RT if X option on RlX card,
ER.."iOa e::G..t if X or Y option on REX card are absent.

9.6.5-3

F1h~ction Code 02 is activated as the result of a call from Phase 2
to process a service request norwal directed·to the REX Loader.

. .

... "Purpose: Interpretively execute REX Loader service request and
return program control ~ requestor.

Parameters: B4 set to address of SXOD making Phase 1 reque·st.

Function:

Exi t:

B4 of requesting S'-10D' ~et to address of SMOD containing'
REXecuted programs worker nBII registers.

B5 of requesting SMOD set to address of execution area
:. 0:(. program. '
"~6 'of requesting SlwfOD set to address of REXMOn allocated •
. nplI. position of REXl.fOn contains address of requesting REX

packet relative to execution area.

•. Retrieve RE.X Loader packet and process as summarized
by Table 9-1 •.

Set Normal and Abnormal return addres's in REX£.fODto
npu plus packet length. Set B7 of REXMDD to ¢ if
no errors were enco1L~tered during process of request.
Set B7 non-zero if errors.

Return control to Phase 2.

9.6.5-4 .

EX Loader

nction Code

00-10
11
12
13
1J+
15
16
17
20
21
22
23
24
25
26

27-7777

.
'" .
\Jl
I

\Jl

REX Service Request

Un-assigned
Site Utility ?
Un-,assigned
Real 'J.'ime ini tiali za tion '12
start Slave 2
Rerun Dump V
Print DrlUIl 4
Print core 4
Subroutine load or R.T. extension ,4
Internal Load request 3
Allocation request 2,4
Segmen t Load 2
Peripheral unit release 2
Core release 2
Random storage release 3
Un-assigned

Table 9-·1

NO

NO 1
NO 1
NO 1
YES 1
YES 1
NO 1
NO 1
YES 1
YES 2
YES 1
NO 1
YE 1

1

NO
YES
NO
YFS
YES
YES

,YES
YES
NO
NO
NO
NO

REXecutor Action 'raken

REXe,cuted program is terminated.
REXecuted program is terminated.

.' REXecute'd program is terminated.
Skip arid mark, done.
Skip and mark:, done.
Skip and mark done.
Process & submit images to primary outpt'

" rr '. 11 " " "

,Skip and mark done.
Skip and mark done.
Loca te previour;ly reserved 1.lnti.
Load segment e1'. ~ segment 'errata.
Release mapped unit to OMEGA.
Skip a.nd mark ,done.
Release mapped storage to OMEGA.
REXecuted p~ogram is terminateq.

Exit:

ACCEPT - submit following request to OMEGA
console handler.

ENT*~7*Message Address
, EXRN*1¢1¢2

, .
Where message contains zero characters to print.
Upon,r~turn of' control store A and Q registers
in ACCEPT specified buffer and exit to Phase 2.
ACCEPT requests will be limited to 10 characters
exc~uding stop code.
, .

• . STOP and TERMRUN - Submit appropriate termination
message to primary output stream, set l1donen
indicator to execution area and exit to Phase 2.

Return control to Phase 2 with normal and abnormal
return, address of REXMOD set to end of packet .. B7'·
of' REXMOD should be clear to indicate successful

'1 ~. COIIlp.J..e",].on.

Function Code 05 - Activated when an invalid REX service request
is made.

Caller: Execution area under Activity 1 of REXecuted program
when it performs one of the following calls through
REX pseudo interrupt registers. U and L of 136, 137,
143, 145. u of 144, 146; L of 142. '

Parameters: B7 of calling SMOD contains "P" of request relative
to execution area.

Function:

"t:f:. -t:

Submit following diagnostic to primary output stream;
set ABORT indicator in execution area and abort control
thread.

ILLEGAL REX CALL

thread option.

9.6.5-7

Function Code 06
messages.

Used by all routines to submit diagnostic,

Phase 2, Execution area or an internal request from
Phase 1 under either Activity 1 or 2 of REXecuted
program.

Paramet:ers: B3 contains message number.

~unction: Retrieve and submit to primarj diagnostic message

Exit:

" ,'.' .. ,indicated by B3.

Set indicators Done or Abort in execution area
dependent uporl message number (see Table 9-2) .-, ..

Return control to requestor or abort control thread
qependent upon message options.

Function Code 07 - Used to process Program Fault(s) executed by
REXecuted program.

Caller: Execution area under Activity 1.

Parameters: Set to address of fault location.

Function: Return program control to fault recovery address
specified in RRXecuted programs E.I.R. If fault
recovery address not provided submit diagnostic
and terwinate task. .

Exit: Return program control to fault recovery address
if given.

Terminate task if no recovery point given.

~~ction Code 10 - Activated as the result of memory guard violation

Caller: Execution area under Activity 1.

Function: Submit diagnostic message 27.

Exit: Abort control thread through Content Supervisor.

F1L""1ctiO::1 COC.8 11 - Activated as the result of executing a priviledged
~ns:truct;i.on tunction code 776:[..-777X, except 7771 and 7775,' a:r.d I/O
~nst,ruct~ons • -,
Caller: Exec~tion area ULder Activity 1.

1'\ I' ,. ~
7.0.;)-0

Function Code 11 (Cout; n1Jed) .

Function:

Exit:

Return program control to fault recovery address
specifi.ed in REXecuted programs E.I.R •. If fault
recovery address not provided submit diagnostic
message 30.

, Return program control to fault recove~ address
. i.£:. specified.

Abort control thread if no recovery ~ddress given •.

Function Code 12.- Load segment errata.

Caller: Phase 2 as the result of a segment load.

Function: Locate and load segment errata for given segme?t.

Exit: Return control to Phase 2.

9.6.6 DiagnosticMessages

An element of Phase ,1 within the FEXecutor lS responsible forsub='
mission of all diagnostic messages conveyed to primary output

'. stream by the REXecutor. Upon activation of diagnostic routine B3
contains binary number of message to be submitted. B2 may contain
"supplenentary information; normally a,binary,a~dress to be strung
into a five character numeric field and submitted along with the

. message.

Message number is used to retrieve a one word Enter within a table
which describes message and action to be taken upon completion of
submission. Format is as follows (see Table 9-2 for messages):

Bit Position

29

28

27

26

25

Content

Set to 1/1" implies additional data contained in
B2 which is to be masked into last position of
message before submission.

Set to "i" request a check of "pn option from
Program start card if given dump Execution area.

Set to n1 11 request a check of !lEU option from
Prog~am Start card if given dump Execution area.

Set to "111 - Set uabort" indicator in Execution
a:rea U (word X).

Set to 11111 - Set uDonel/ indicator in Execution
area U (woro. X).

9.6.6-1

Bit Position

23

22

. 21

20 ... 19

15-18

0-14

.;."

Content

Set to '11 11 - return control to requestor.

Set to fl111 - set SMOD to ABORT$ eri t if II.XlI

option given on IlREXll card.

Set to "1 U - return control to requestor if nyn
'optio:l given.

Set to li1 jj set SMOn to EH.F..o.F~ axi t .

Unused

Length of diagnostic message.

Address of diagnostic message.

9.6.6-2

TABLE 9-2

J:1§~Lj: __ J?9 ~f_ f271z9.L?.5. 2EJ ?l 2-?J..5.1L~~h 8 1-.2114 0.1- MESSAGE LITERAL

00 1 1 1 1 0 0 1 0 1 6 ERR,0 INVALID REXECU'IOR CALL XXXYJr

01 0 0 0 0 a 0 1 a 1 7 ERR1 JREXECUTOR CONTROL STATEMENT ERROR
02 0 0 a 0 0 a 1 0 1 4 ERR2 J.1EANS TABLE OVER"FLOvJ

03 0 0 0 0 0 0 1 0 1 4' ERR3 PROGRAM NOT FOUND

0/+ 0 0 0 0 0 0 1 0 1 5 ERR4 GODE MODIFICA11ION ERRO~

05 0 0 0 0 0 0 1 0 1 5 ERR 5 GORE STORAGE OVERFLOv!
06 0 0 0 0 a 0 1 a 1 5 ERR6]PROGRAM CODE UNRJ?JillABI,E

07 a 0 0 0 a 0 1 0 1 6 EHR7 :PROGRAM LOAD MEDIA UN-ASSIGNED·
10 0 0 0 0 0 0 1 0 1 5 ERH10 SEGJ:1ENT STORA.GE OVERFLOW ~. ~.

11 a a 0 0 0 0 1 0 1 5 ERR11 INV AJ..JID ERRATA ADDRESS
12 0 0 0 0 0 0 1 a 1 5 ERR12 INVALID PARAlv1:ETER STORAGE

".

13 1 1 1 0 0 a 1 a 1 7 ERR13 INVALID PROGRAM S'rJ\RT GIVEN xxxxx
14 1 1 1 1 0 0 1 0 1 5 EIll14 ILLEGAL REX CALL XXXXX

15 1 1 1 1 0 0 1 0 1 7 ERR15 INVALID REX LOADER REQUEST· xxxxx
16 0 1 1 1 0 0 1 1 1 6 EHR16 NON DESCRIBED CHANNEL AND UNI T
17 0 1 1 1 0 0 1 1 1 6 ·EHR17 NON DESCRIBED DRUM ADDRESS
20 0 1 1 1 0 0 1 1 1 4 ERR20 :FACILITY UN-ASSIGNED
21 0 1 1 1 0 0 1 1 1 6 EHR21 UN-TRANSLATABLE REX PARAMETER
22 0 1 1 1 0 0 1 1 1 ? ERR22 INVALID INPUT/OUTPUT FUNCTION CODE

..

23 0 1 1 1 0 0 1 0 1 3 ERR23 REXMOD OVERFLOW
2/+ 1 1 0 O' 1 1 0 0 3 ERR24 HEX TERMRUN
25 1 1 0 0 1 1 0 0 3 ERR25 REX STOPRUN
26 1 1 1 1 0 1 0 1 4 ERR26 PROGfW.1 FAULT XXXXX
27 0 1 1 1 0 1 0 1 5 ERR27 PROGRAM LOCK 'VIOLATION
30 0 1 1 1 0 1 0 1 7 ERR30 PRIVILEGEJ) INS1'RUCTION VIOLATION
31 0 0 0 0 0 0 1 0 10 ERR31 HEXECUTOR CONTROL CARD UN-RECOGNIZABLE
32 0 1 1 1 0 1 1 1 6 ERR32 I/O ERROR NO ERROR ADDRESS

'-'J .
0"-.

9.6.7 .R~Xecutor Phase 2 - Library Number XXX is are-entrant Secondary
Exec routine responsible for reformatting and execu~ing standard

. REX I/O and associated controls: CKSTAT and TAKEOVER. Phase 2
, 1's activated by the following function codes.

'Function'
'Code

01

02

03

04

05

06

07

10-37

Internal

. Internal
'\'~' .:" ..

U(140)

1-(140)

U(141)

1(144)

U (142)

Unassigned

. Description

Reformat and execute I/O request

Return program control to eligible
. .. lost control point

REX inp~t/output call

REX CKSTAT call

REX TAKEOVER call'

REX LOADER call .

REX console request_termrun or
stoprun

9.6.7-1

Function 'Code 01 - Used to, translate and excute REX input/output
request serial for any REXecuted program.

Caller:

Paramet~rs:

Function:

See Table 9-3 for REX functions available.

REXecutor, Phase 2, as the result' of a QREF to
activity addendum 2 of REXecuted program.

• B4 - S?t to address of'storage modul'e .containing B
register.settings at· t{me of request. nA" register
position of storage module contains address of
assigned REXMOD •

.. '\ -:: - ;,.

B5 ~ Set to address of. execution area 'of REXecuted
progr~.

Clear execution packet and retriev~ REX. call packet.,
Locate equivalent OMEGA assignment from Table 9-1 or
1A, through use of unit and/or channel number contained
in REX packet •

. If peripheral type is FH8800r FASTRAND translate
drum address to logical increment and store in OMSGA
packet.

II If peripheral type is 13, 14 or 15 branch to routine
to set up and execute appropriate request to
Cooperative Control.

• With peripheral type retrieve function code from
REX packet. Retrieve tlschedule number lt from Table 9-4
by referencing word based on REX function code and
location withi~ word based on peripheral type.

• Access correct location of Table 9-5 based on
nschedule number ll obtained from Table 9-4 and perform
the follow"ing:

If 229 set, retrieve buffer control word from
REX packet and store as base address and number of
words in OMEGA nacket (base address is stored as
relative to low~r lock of the Phase 2 routine).

If 228 set retrieve search word from REX packet
and store in O?-,:~GA packet.

Enter OXEGA function code in B1 and give control
to the execution routine indicated by Table 9-5.

• The execution ro~tines nerform or simulate (Table 9-6)
REX I/O requests by iss~ing I/O requests to OMEGA.
Certain TIX rec;.:.:.ests r;;.ay require multiple OHEGA
functions: (e.g. the execution routine responsible
for BAC~lL~ would iss~e READB$ functions until an
end-of-file is enco:.:.ntered). The following par&ueters

9.6.7-2

Exit:

" are required by the eXecu~ion routines:

B1 - OMEGA functio~ code
B4 - Storage module address
B5 - Execution area address
B6 - REX I/O' packet address

,At the' -completion of their oper'ations the execution
routines'pass control to 'the Status routine.

~4e,$tatus routine converts the OMEGA status code
:to REX code and stores the appropriate code and
'indicators in the REXMOD. The parameters required
for operation are,as follows:

B4 - Storage module address
B5 - Execution area address

A - OMEGA status code
Q - Number of words transferred,

The status routine performs the following functions:

Stores the flnurnber'of words transferred" in A
upper of the REXXOD.

Using peripheral type 'and m·1EG,fi status determine
REX status code. OXEGA status codes ¢, 7 and 11 are
converted directly to REX status codes ¢1, 10 and
¢6 respectively. O~3GA status code' 1¢ will cause
an abort condition (message number 16). The REX
status codes corresponding to the remaining OMEGA
codes vary with tne peripheral type, and are
obtained by refere~cing Table 9-7. A REX status
code of ¢¢ obtained from Table ,9-7 will cause an
abort condition.

The REX status is placed in A-lower of the REXMOD.
(Note: Abnormal fra~e counts on magnetic tape units
will be indicated as in REX: A-lower equals ¢1,
A-upper equals nU3ber of words transferred with
229 = 1, and the mag~itude of frame count error
indicated in the lower six bits of the last buffer'
word).

B7 of the REXMOD is set to indicate normal or abnormal
completion. ",011 indicates normal, "1" indicates
abnormal. If abnormal, the address of the REX I/O
request is placed in Q-upper and the normal completion
address in Q-lower of the aE~10D.

If REX function pe:":ormed, control will be given "EXIT"
routine (See Func~ion code 02).

9.6.7-3

• If REX function cannot be' performed program's
'IIABORTtI indicator will be set and a direct switch
to REXecutor Phase 1, Function code 06; with B3
set· to one of the following diagnostic messages.

B.3 = 16 ' KO'N DESCRIBED REX CHANNEL AND UNIT
. , .

B3 ::; 11

. BJ ·='.21

:.'·B3·~= 20

B3 = 22

NON DESCRIBED.REX DRUM ADDRESS - ,

. UNTRANSLATABLE REX PARAMETERS

. FACILITY UNASSIG~~D

I~vALID I~7rrT/OUTPUT FUNCTION CODE

9.6.7-4

Function Code 02 - responsible for returning program control to
REXecuted 'code upon compietio~ of Input/Output,

,

Caller:

Parameters:

, Function:

Exit: -

Loader, etc., service requests. '

Phase 2 internally or Phase 1 by direct call under
either Activity 1 or 2.

Phase 2 se~ B5 to address of exe~ution area.

A)Search for P~XMOD with a 6 status code indicating
some .type of request without E.A.S. was given and
is'~omplete. If find made perform Step. C.

B)If TAKEOVER is not set exit. If TAKEOVER. indicator
is set search for RE~OD with J status code
indicating 'some type of request with E.A.S. was
given and is complete.; ,If find made clear TAKEOVER
indicator and perform Step C.

C)Set up REXMOD for ret~n of control.

·If B? of REXKOD = 0 set B1 to no~al return.
·If B7 of REXMOD~ 0 Set B1 to abnormal return •
• Set REXKOD status to 77777.
·Set B2 to RE:x1v-:GD address relative to execution area.
-Enter A a~d Q from HEXMOD
-QREF Activity 1 and Exit

Set P and BJ of calling SMOD to execute RETURN$ upon
exit from Content Supervisor.

If abnormal return indicated and error address of
REXMOD =1-, Set BJ=J2 and exit to Phase 1, Function
Code 06.

Function Code 03 - Used to queue requests for normal I/O.

Caller:

Parameters:

Function:

Exit:

Activity 1 P~Xecuted program when it performs a call
to the U (140) •

B? set to acdress, relative to EIR, of request.

·Set up REXMOD, P,1--~ status

-QP~F Activity 2 for execution of ~unction code 01
with B1 thro(;.gh B6 set to those of requestor. "A"
set to address of REXXCD •

• Phase 1 of REXecutor if REIMOD overflow.

-Return progr~~ COLtrol to end of REX I/O packet.

9.6.7-5

Fnncti on code OL;. - Used to process a' CKSTAT request

Caller:
I • ~ ". I

. Parameters: '
" .

, Function:

Activity 1 of REXecuted program when it performs
acail to 1(140).

B7 set to the'address, relative to RIR, of the
CKSTAT request •

• Search for,REXMOD which contains, addressed I/O request.
If find is made set fiNormal and Error II addresses .
and store'worker,B~registers in REXMOD. If find is
not made locate 'available REXMOD, set "Normal and
Error" addresses, store B--registers, set B7 and' A. of
REXNOD to 1 and ¢ respectively, and set status to 2. '

, ~ ..

• If EAS = ¢ increment status by 4. If EAS. = 1 (T~~EOV~)
incr'ement status by1 'and set TAKEOVER indicator. IF
EAS ~ ¢ or 1, increment ,status by 1. '

Exi t: .Phase 1 if REXMOD overflo\.J occurred •
• Return contralto R3Xecuted progra..'11 when EAS~¢ or 1.
• Go to !lEXI T !! routine when EAS = ¢ or 1_0

Function code 05 Responsible for processing REX TAKEOVER.

Caller: Execution area upon SILRJP~-U (141) under activity
addendum 1.

Parameters: Phase 2 set B5 to address of execution area.

Function: Set TAKEOVER indicator in execution area.

Exit: Give program control tp exit routine, See Function
code 02.

Function coce 06 - Responsible for initial set up for processing of
REX and/or REX loader service requests. (See table
9-1 for detailed descrintion of each) . ..

Caller:

Parameters:

Function:

Execution area upon SI1RJP*1(144) under activity
addendum 1.'

B4 set to address 0: ~OD containing 31-36, A and
Q at time of request. B7 of Sl-fOD contains packet
addre.ss relative to execution a,rea. Phase 2 sets
B5 to address o~ execution area.

A)Retrieve R3XXOD, set status = 2, store worker
B1-B6, ana. Hr" of packet. If request for segment

9.6.7-6

Exit:

B)For non-segment loads 'call Phase 1 Function code 02
for processing. Upon return of control check E.A.S.
position.' If zeroE •. l'. •• ,S., update status by 4 and go
to exit routine '(See Function code 02, Phase 2). If
E.!. S. =.1, set TA..,{EOVER· i"ndicatot, update status·
position.by 1, and gote e~it routine. If E.A.S.
specifies an address, update status by 1 and return
non+~ol +0 spec;~;ed ~ AS' "" ~ v,.. \JJ-.~. •

C)i~~ad::'indicated seg:nentand if segment· errata' indicated,
·call·Phase 1 Function code 12 for errata placement in
segment. 'Upon completion of load'process update

~.

REXMOD status code by 4, upda.te normal and abnormal
retUrn addresses and give program control to exit;
routine.

. .
·If request contained E.A.S., address update REXMOD
for return of control, set Sl·10D P address t.o E. A. S.
and return control through Content Supervisor.

·If no E.A.S. or an S.A.S. of 1, update REXMOD for.
return o~ program and go to "exitt! routine.

Function code 07 - responsible for initiating console requests or
terminating the REXecuted task.

Caller:'

Parameters:

Function:

Exit:

Execution area upon SILRJP*U(142) under activity
addendum 1.

B4 set to address of $MOD containing B1-B6, A and Q
registers at time of request~ B7 of SMOD contains
packet address relative to execution area. Phase 2
sets B5 to address of execution area.

Retrieve REX service requests function code and
process according to type. CONSOLE HOLD or P3LEASE
update liP" of SMOD and return control to program
(ignored). I f REX STO?RUN, TEillffiUN or TYPET, call
Phase 1 function 04 for processing. If ACCEPT
request, call Phase 1 function 04 and process E.A.S.
as described in Step A and B of Function code 06,
Phase 2.

'CONSOLE HOLD, RELEASE, TYPET or ACCEPT w~th E.A.S.
address specified, return program control to
REXecuted progr&~.

'TER~LN 0= S?OPRG~ abort activity 'through Content
Supervisor •

• ACCEPT witho~t E.A.S. or with E.A.S. = 1, update
P~XMOD for re~~r~ of co~trol and go to exit routine.

9.6.7-7'

'" .
(J'. .
-J
I

00-

UJ.'U~JU.n

FunctIon 'FH880 DrlUu FASTRAND
~----------

m~I\D READ READ
vnnrYR vJRI'llE WRI'llE
RJi:\!~U.'IJ)

REHJNDr
REtlnn

. R1c;fdJ (Note1)
HEtl.l1 (]'!ote2)
SEA1WlI SEltRCH ~JSEARCH
RJ!:AIln (N 0 to])
S}t;AHCn LOCATE
RKIiJl1 J (N 0 to2)
WR11'1~
REA n (Note])
IGNOlrp:D (Note/~)
IGNOn";!:.D (Noto/~) -
IGNOHJ:D (Noto4)
IGNOlni:D (Noto/J.)
vIHIrYp;QF
EW\S:n.:
SEA.HCHP SEARCH
ICno1'8d POSITION
BLOCKH BREAD
BLOCKS BSEARCH
BLOCKS BLOCATE
Ignored
IGnorod
MHEAD

Note 1 Repetitive Read N blocks
Note 2 Repetitive Read back N !'blocks
Note 3 Repetitive:Read back to E.O.F.
Note 4 Effected via ASG control card

varu .i10.t'

UNIS:B!RVO r.Il'~ UNISERVO IOD UN I SERVO lIT/\. Subsystem _Subs~stem - - _. " r--
RgADF HFAD READli' READ *
WHI1'E WRITE vIRI'I'E PUNClI* PRINT*
RJI:HIND m~HIND BEHIND
R\~I RHI RWI
RlrADB ,:.. REi\J)B
MOVEE"' MOVJi:F MOVgF
MOVEB HOVJ£B MOV]~B .,

SEAHCHF SEA.RCH SI!~l\RCHF
Sgl\.RCHD SEAHCIIB
LOCA':eI'~L" LOCA11EtF
LOCATEB LOCA'l'EB
PHHT'l~ PUNGHS* -

BACKIj'ILE '. : ~.
,""1-

LOBIN RMODE*M PIN ..
HIBIN PMODE*M

;'.

LOBCD
HlBC])
ENDFILE F~DFILE

WRITro

STACK1,1
,. -,

READNT'
TRANS
MREAD*

* Will be submitted to cooperative system MEru~S card had PI, PO or BO given for logical unit.

Paper Ta e
READ I"
PUNCH _.

READB

-

TABLE 9-1+ is used t'o translate REX function code to simulated OMEGA routine and
schedule r (Table 3). ,- .

FC 2.29-'224

FE-B80

00 tFBT~
01' RFAD
02 BR'Ril.J)

03 I LOCATE
04 BTJOCATE
.05 SEARCH
06' C BSEP ii H
07-

·10
11
12

-
-
-
-
-

. FC 229_224

FASTRA..1'.JD

TABLE 9-:-4in REX }filleIDonics

FC229 _224 FC, 229_221 FC 229_224 ..

LrNISERVO'IIA,IIIA u~ISERVO IIIG CARD

, T:T?,T rr~ t ' R'FDJTND r LOBTN I STACK1
I" READ r REHINDI HIBIN I STACK2
I SE-GCR I 'SE-liRCHB LOBeD I REA.DNT
i HSRtL."tCH I SEARCHll" HIBCD J RYiODE*FD I
~ __ ~P~O~S~IT=T=-o~N_,~~ ___ ~p~~rrrr~T=E~ ______ -+~S=EA==RC=H~ __ ' ___ ' __ 'l~m=~O~D=E~*_C~B~I=N~~l
I I 101m '"rEO WRI TE , RMODE* REIN ' I
I I ,00 n READ I READ - Tl!.i I - Ii

I - t ENDFILE I ENDFILE TRANS ,

I - I RRI\DF l RE1tIIND t MREAD
! I - I - I R.etlINDI I PUNCH

I - I HE..4.DB I BACKFILE t PUNCHS I - I MOWJ MOVEB l PMODE1(-FD 131
11'~, l~ ________ -+ __________ ~ ____ M_O'_v~_"B __________ +'_M_~_~_&_~ ______ ~_P~~_~~D=EY.~~C=B~I~N ___ ~
~ . { PMODE*RBIN

! ! T •

TABLE 9-4 Actual-Each position contains an
increment to the equivqlent OMEGA routine
described by an entry in Table 9-5.

9.6.7-9

.¢¢ ¢ I ¢ ¢ ¢ ¢ ¢ ¢ .
.01· , .. " Q ¢ 0 ¢ P 0 ~
¢2 1 00 ¢ 0 ¢ 1
913' 1 I ~5 95 1 95 0 2
914 0. ¢ 0 I 0 0 2 1
¢5 Q ,·95_ J6 SZ) ¢ ·2 ·2
¢6 ~ ~ ¢ ~ Jj 2 3
. rjJ7 ¢ ¢ I %. I £ J1 .. 2 0
1¢ 1 11¢ ~ 1 ¢ 6
11 1 0 e 0~ ¢ 3
12 11 e' 0 ~ 95 7

, 13 1 ! ¢ ~ ':0 SZ 1 1
14 *1 ¢ ·0 10 ~ 0 1
15 . *1 0 0' 0 '0 1 1

'16 Q 0 0 10011
17 1 1 I 1 -
2¢ . 1 1 ¢ I ~ ¢ 1 1
21 ¢ lei ~ i 0 0 0
22 1 I e I e I e 0 0 1
23 1 I.~ . e i ~ ¢ ¢ 1
24 1 1 1 10 1 ¢ 6

I
* # of 'blocks

to move

15

I o ERR
101
102
102
I03

.103;
103
103
104
102
102
102
105
105
106

! 111

I
l.

107
108
I09
I10

. I12

~ABLE 9-5 Schedule List

9.6.7-10

o

OMEGA

FUNCTION

Error
NO-OP
READ$
WRITE$

.RE\{[ND$
REWINDI$
ERASE$

I ~}H1TEOF$
SEARCH$
BLOCKR$

, BLOCKS$
READB$
READ $
READB$
READB$
SEP~CHT$,SEARCHP$
READB$

. Special READNT
Special TRANS
'Special MREAD
SEARCH$

00 ERR1
01 101 '
02 102
03 102
04 103
05 103

I

06
1 __

r03
07 103
·1¢ 104
11 102 .
12 102
13 102
14 105
15 105
16 106
17 -r,

I
..L I I

:

20 1107

I 21 . Ir08
22 109

I
23 Ir10 I 24 1112

J I
I I

J

0
a

/ OMEGA
function

used to
simulate

0
0

READ$
. WRITE$
REWI~1)$

TABLE 9-6

I
Description of Simulated Function

Error MSG for invalid function REX function code
No-operation - No s~~ulation required.
Normal .READ operation
Normal WRITE operation
Normal Rewind operation

REWI1TDI$
. 'ERASE$

,Normal Rewind with interlock operation
. Normal overwrite operation

WRITEOF$:
SEARCH$
BLOQKR$
BLOCKS$
READB$
READ$
READB$

IREADB$
SEARCHP$ I SEAR CHP S ,

I
READB

$.
I (READ$) ..
fREAD$
tSEA..~CH$

.' Normal write EOF mark
Normal Search using. allocated buffer and BCW
Normal FH-880 Block Read operation with logical address
Normal FH-880 Block locate operation wtth logical addre~
Normal tape Read back
Simulate MOVE forward N blocks
Simulate MOVE back N blocks
Simulate BACKFILE operation
Simulate short and long first word search

Simulate SE&~CHB operation
. Simulate. READNT operation

Simulate TRANS operation
Simulate V~iEAD operation
Simulate SE~~ .. ?CH

I

J

9.6.7-11

.
0"

OMEGA
.: STA1'US

. ISUCC
P-TYPE ·.Qom!?

Isucc'

essf'ul ~a.pprop.
Jet~pn _ Functio!.L

essful Incorrect
DR~ ___ ._._I Para!!let~r.:.

Succ essful Incorrect
FASTRAND --.-... ----- ---- x.~rt:t!!leter

Succ essful Incorrect
UNISERVO IIA .. Y.?,rameter

UNISERVO IIIG Succ
'iv QLylQLyI I I C

Succ
UNISI':RVO IlIA ____ w_~_. __ ~" _____ _

Succ
CARD --------, ----

Succ
PRINTER -_._------
PAPER
TAPE

Succ

essful Incorrect
P~trameter

essful Incorrect
Parameter ---_.

essful Inapprop.

----'.- Function

essful Illegal
Function ----

essful Incorrect
Parameter

Incorrect
ParElmeter

Incorrect
Parameter

Incorrect
1? .. f}. r ~~I.!lQ. t e r:.

Incorrect
yar~Lmete:t;'_

Incorrect
Parameter

Incorrect
Parameter

Incorrect
ParEl.meter

Illegal
Parameter

Incorrect
Parameter

Un
Er

recoverable End-of- 'IEnd-of-lu'nsuccess"
ror _E.t~ Tape Search _

J~=====
I Illega:l~ .
__ Ch?'-.r. Ass~

Re
Er

Su

ad
ror

Illegal
Addresji
Incor~

bsyst~m Para-
J~K. rOf-___ . ___ ._ --1ILE?t~_ ------

R/ W End-of- End-bf-
~r:_ :rQr ___ ,_.___ Fi l~e Ta:2e

Su bsyst~m End-of- End-of":
Er ror ~. ____ Ej.-J~_ _Tape

Su
Er

II
)i'U

II
Er

bsystem
ror

legal

End-of­
_ Fil~_

ll£.ii0D._._.,." . __ ... __ ._

legal
ror

Su bsystem '1-
ror --1= Er

TABLE 9-7

End-of-
- Tape

-

.-

'.

EOB W/O .Abort
J~ind r-'

Unsuccess" Abort
.Search

Abort

'.

. ~. Abort

"

Abort

Illegal Abort
...Qill!r.

Abort
0'

r--'

Abort

REX STATUS CODES

,Inter-
lock

Interlock
-

Interlock
o-

j

Interlock

Interlock
-

Interlock
- -.'

Interlock

Interlock

Interlock

3 '12

_4 10
..

5 10

6 I 12

I
7 I 12

i

10
I

10 j
I

11 1 10
I

1-:>
,
1~

II'w IV

229

TABLE 9 - 7 ACTUAL

16 1-2, "11 00 o

Lo 07 1'0 100 I I I I , 02

12; 1':10 04 05 I 00

10 1"07 Ol- 05 00

107
I

10 04 105 00

112 111 100

1
00 I 00

I I I
113 I 11 ! 00 100 I 00

10

I

\ 07 100 \ 00 I 00

110 107 00 \ 00 I 00
I I ~r, I I
11~ ~~ I ~~ I ~("\
I IV V(, vv I VV , vv

224 219 214 29 24

9.6.7-13

I

I

NOTE: OMEGA status codes
¢, 7, 1 0 and 11 are
converted directly.

A REX code of 00
from the Table will
cause the program to
be aborted.

9.6.~ Execution Area

The Execution area is allocated ~~th each program to be
placed under control of the R3Xecutor. This area is used
to contain tables, interrupt instructions, and working storage
req~red to control the ~Xecuted program. The following map
shows general layout of execution area. 'In general all addresses
contained are relative to word 0 of execution area.

Word

o

112

160

240

270

320

375

400

Ini:t,ialization and working storage

Unused

Interrupt & return of control instructions

Fixed area used to contain Indicators.
Table pointer and REX pseudo interrupt
registers.

Segment Descriptors of REXecuted program
I limi ted to 241 a

TABLE1 used to map REX peripheral
assignments to OMffiA (308 maximum)

TABLE1A used to map REX Drum addresses
. to logical increments (108 maximum.)

REXMOD used to contain CKSTAT values for
return of control (5 m~ximum)

Area used to contain REX 321 and/or 322
object code

9.6.8-1

vlords 0 -

Initialization and Horking Storage - This area is initially
.... used to activate the REXecutor and contains instructions to

perform the following:

Register queue process Activity 1 used used to process
~nstructions o~.the REXecut~d p:r:'ogram.

Register queue process Activity 2 used to reformat and
execute I~p'Ll:~/Output calls and REX Loader functions.

Establish contingence points for Fault, memory guard
violation and priviledged inst~~ctions.

Once REXecuted program is activated area will be used for
working storage to interpretively execute Input/Output calls.

'Words 111

Contains instructions required to accept calls to REX pseudo
interrupt registers (SILRJ?*U/L (137-157) and calls REXecuter
for processing. In general upon REX call P value is saved and
a call to Phase 1 or Phase 2 of REXecutor is made via EXRN for
processing ..

These instructions may be extended to process additional calls
peculiar to installation; such as calls to User File Control
packages, etc. .

9.6.8-2

r ••.•••

Words 114-157

Fixed portions of Execution area used to control and return
program control during execution of REXecuted program. In
general, this area may not be modified with change to REXecutor.

Format:

112
I 113

1.14
115
116
117
120
121
122

BEGINNING LOGICAL ADDRESS OF SEGMENT ERRATA
~DING LOGICAL ADDRESS' OF SEGMENT ERRATA
~.I.R. ADDRESS PROGRAM BASE

ZG SEGMEJ.'JT LENGTH }
~ _______ ..!--I __ ...:;;;.S_E.;;;;.;;G}f:.=~EN~T-.;B~A...;.;;S..;;;;;E'-__ 1 USED FOR

LOGICAL b.. OF SEGNEl~T SEGlI~T LOAD
EL.'S.:.'I . PHASE 1 FC 07 II ~ FAULT
EXR.'J ' PHASE 1 FC 1 0 ~ PLR VIOLATION

\-::---:;;:E=X=F.:N:.:.-i _______ +-----..;p;;....;;:HA~,_=S~E_1~F...;....C _1~1 __ 1 ~ PRIVILEGED INSTRU ..
. . 12.3

124
125
126
127
130

1# OY DESCRIPTORS I A SEG. DESCRIPTORS~ .
OF i0~TRIES I A TABLE 1 I POINTERS TO- TABLES
1~~~O~~~~EN~:~T~tDa=T~ES~ _______ ~1 ____ A~T~AB~L~E~1A________ .
i~#_O~F~.~RE~~=T=~~OD~i ________ ~----~~RE==XM~l~O~D---------
I EXR'Ji~B3 .0 I
1'--~~~~B-7-0-N-T-TII-_-E~C--CM-'T~L--~--------~ .

131
1.32
133
134
135
1.36
137
140

'141
142
143
144
1.45
146
147
150

157

~

o~rn"'o "S 'r:'IRDM .,..,x r> PlO'" C' RD
~
I

!----E-~~-D-R---------D-A~IT-E----~E-RR-O-R------~~

l:"'lll\i .J:I J. BE <Sc 1\ li p. I
>l'vlRE..4.D COlli~T , TRWS COUNT I

u'}.l1J SSD I TAKEOVER INDICATOR!
ABORT IND1CATOR I DONE INDICATOR I

'I ER.~O R I ERPJ)R !II'~ jSTJu'JDA?J) I/O ! CKSTAT .
ITAKEDVZR I TYPEC -
.CONSOL~ & EXIT I ERHOR

ER.~OR I ERROR
ER..-qC)3, I REX LOjl..DER

,I ERROR I ERROR
EHROR I ADDRESS OF DATE

TIME OF DAY)
h

ON DISTRIBUTED VERSION THEY
(ALL POINT TO ERROR PROCESSING

<) }

I"

PSEUDO REX REGISTE~

PSEUDO INTERRUPT
REGISTERS RESERVED
BY SOl'~ USERS

Description of entries in fixed area.

112-113

Descrintion

Beginning and ending random storage logical increEents
containing segment errata. Each errata Enter on random
storage is co~?osed of two words as formed and stored
by during initialization of Phase 1.

! AJD?3SS OF i.{ORD

9.6.8-3

114

115-117

12~122

. 123~126

127

130

131

132

.133

134

135

136-146

147

150-157

Description

Upper contains address of 321 or 322 program contain­
ing P option wha"l loaded for REXecution (main program).
Lower contains Base Address for P~X program area.

Contains a random access packet used to load program
segments of a 322 program.

Contains calls to Phase 2 upon occurrence of contingency
violations. Fault, Memory Quard and privileged in-:
.~tI.1:lctions •

Contains increments and number of entries in each of
the tables or lists. These can be varied to refleJt
installation requirements.

A general EXR~ used to call for OMEGA function from
Execution area, ABORT, ERROR, RETURN, etc., which cannot
be performed within the secondar,y ~ec.

U sed to .hold B7 when a TYFEC REX service request is made.

Contains options from IlREXll and PS control cards.
Options A through Z are reflected by the correspond­
ing bit 0 through 26 respectively being set.

Used to contain counts for card reader functions during
execution of REX card service requests.

Lower contains indicator tha~ a REX TAKEOVER was given
by REXecuted program.

Upper'contains indicator to REXecutor program. is being
abnormally terminated. Lower contains indicator that
program is being terminated due to STOPRUN or T~L~~.

Contains to days date by REX conventions.

Normally ?~X service registers error positions may be
used to call abnormal user functions.

Contains Time of Day REXecuted program was activated.

Reserved for user service calls ~'peculiar to instal­
lation.

9.6.8-4

Words 160-237,

Contains segment descriptors of a 322 program loaded for F~Xecution
a'nd are order~d by segment number. Each descriptor is composed of
two words as 'follows:

, Word

" 0

1

ILENGTH OF SEGMENT

LOGICAL INCREMENT OF S~~T

Word ¢ - coptains length of segment in words determined at load
time. 229tnset to (1) implies segment errata is present on '
mass storage. &

Word 1 - contains logical increment of segment on random access
storage relative to file code ZG.

Each segment descriptor entered in list is in 'ascending order by
segme~t number. Address of called segment is determined by

L(word 123) + 2(segment #)

Once obtained REXecutor will load Load 'segment and errata.

, 9.6.8-5

Words 240-267 Table 1 ,(MEANS Table)

Pu..rpose:

Format:

. 29 r

Used to contain user supplied parameters to effect .
the interpretation of a REX I/O packet at execution
time. Table 1 is formed from MEANS statements during
initialization of Phase 10f REXecutor and, is' contained
in the execution area 'of the progr~.

Table 1; is of variable length dependent upon the number
of MEANS statement Each entry wi thin Table 1 is of
t~e follo~~ng format:

OMEGA File Code Peripheral
C B A Type #

I REX'
ch/unit

Where -eh/unit number supplied by User via ~S control card.
Unit and/or channel value specified on Mruu~S card must
match that contained in I/O packet at execution time.

Perinheral tvne number for which the original REX I/O
packet was coded for. This number is implied by the
mnemonic used on Y~1S card.

1 = F11880
2'= FAST
3 ;;; UN2A
4 = TJN3C'
5 = UN]A

6 = CRIN
7 = CROUT

10 = PRINT'
11 = PTIN
12 = PTOUT

13 = Primary Input
14 = Primary Output
15 = Secondary Output
16-37 = Unassigned

! set to (1) implies channel has units; search must be
made on both channel and unit. The only peripheral types
recognized requiring unit search are the tapes peripheral
type 3, 4 and 5.

~ set to (1) indicates unit is mass storage device requir­
ing use of Table 1A to map drum address to logical in­
crement and determine file code.

Q set to (1) indicates channel/unit are to be used to
satisfy an internal facility request, REX packet. Once
used to satisfy internal reqmst (C) will be cleared and
entry will function in the normal manner for subsequent
I/O packets.

9.6.8-6

File Code - OMEGA file code to which reformatted .
I/O request is to be submitted.

. . .

Words 270-317

. TABLE 1A

Purpose:

, .
(Drum Area Descriptors)

Used'to contain User supplied parameters to effect
the transition of Drum address presented.via REX
'c~ls to logical increment used by OMEGA Table 1A

.: i~fonned from MEANS statements during initialization,
Phase 1 of REXecutor, and is contained in execution
area. of REXecuted program. "

,Format::· Ta~le 1A is of variable length dependent upon number.
of MEANS statements describing mass storage were
submitted. Each entry in the table is composed of
three words ,in the following format: '

Where-

Word
.0

1-
2

OMEGA FILE CODE t PERIPHERAL
BEGI~rJING DRUH ADDRESS

ENDING DRUM ADDRESS

TYPE

OMEGA File Code is where equivalent mass storage file
is assigned to task.

Peripheral Tvne contains the peripheral type number
of mass storage for whichthe·REXecuted program was

. coded. 2 implies FASTRAND in which after a find is
made conversion is as follows:

3310(Drum Address - Word 1) = Logical Increment

1 implies FH-880 in which the conversion is as follows:

(Drum Address .- Word 1) = Logical Increment

Be innin Drwn Address is the base address (word
or sector which the REXecuted program assumes as
the base of its mass storage file.

Ending DrQ~ Address is the number of words or sectors
contained in the original file plus Beginning Drum
Address.'

, 9.6.8-7

Words 320-374 P~~{ODS

A REXMOD are pseudo REX storage modules used to contain
program registers and status for return of control follow­
ing, the completion of,HEI servipe request., Each REXMOD is
of the following format:

Word
1

¢! STATUS B1 - 1 t---....,-----!--~.,-.,~2 ---I

2
3

,4
5
'6,
7

10

:

.t'

'RET[JRl~ POINT
NORMAL RETUR.\J
ERRO R RETUPl~
P-TYPE

.b

B3
B4

, B5
B6
B7

A
Q

Status - is an indicator reflecting current status of request.

o - REXMOD is currently unused
1.- Request has been queued to Activity 2, CKSTAT has not

been given.
2 - Request is complete, or CKSTAT with E.A.S. given.
3 -'Request complete and CKSTAT with E.A.S. given eligible

for return of con~rol upon execution of TAKEOVER.

5 - Request queued to Activity 2 or. CKSTAT and wait given.
6 - ~equest complete and CKSTAT and wait given. Eligible

for return of control., ,
77777 - REx}fOD has been selected for return of program control

and has been queued to Activity 2.

I contains packet or request address relative to RIR of activity.

Return Point - address relative to RIR to Yhich program control
is to be'returned.

Normal Return - address relative to RIR, to which program control
is eligible if request completed without ?rror.

Error Return - address relative to RIR, to which program control
is eligible if request co~pleted in error. 1 indicates STOPRUN
which will cause termination of program.

B1-B7~ A & 9 are register settings used to return control to
requestor.

9.6.8-8

~
.-

. ~~'d;

- . . -.--

of c(;)u,;;~ 5}~ o!)

•. S(:-e 13S" co od f ~s-5 .
(.\,.0 '_IJ

of _ -Ex~ut to'" . O ... eCA.
tJ .DC?- 6- ~. c.. '

. i
1.. __ .; _._.: ---'--- :_--'-- -~--

, -- '"I ..

- -"- -\""" - .. __ ._ .. -_._~...:....."

.'

;-

. __ ._- - ---------

~-;.~~~\Y..I;~ ~R~---~---·--.---.:--·&r

I'

1=>c~~ -~ o~ <3'
(\>~(..- ~~~~),

-'", ..

pyo(f-s.5 n P F- <..

5~"v t'(VFt-;?7~--t- t------1

~ Sf'"o(;- Rt"cuvl1

Frd~vt:-S.5 '.~ SIl-toD

.,- ._ ..
I

R"~,·vtl 'pu" d,r"tS.5·
c.uU..,.· ll~"" ~
B2..

t­
t

-~- --_. t
t

;
• -j .•.•

. - :.,,,.

1.0<0(:'" c-- Lco&

.sti-.A"~
E\IV;I~a..

Se-t; P of SM oD .

t;.o f?t"tu\l~ Pvl~'t

t-----,... __ --'

i -- ~-. i -
: • j i
:·-"'·r·-'-···

-.-;----' ..

. - -']"-----; ,

9.6.8-9

•. C?
$(.;;v!-' ·V(7(.r,t!:' "{Y':)"'" - :

{? t-,r.. . C()¥;tv" (" C O'vd .

-r------.l-,----_ ...
cL,v ,TYl:.tIlV.!(;/O:,.l.

o "I' e-;:.L do. Re--::."'~

ct',~::\t~~~t1.,~' ~

I
~
-~---.

_ ... --- ------~.- -_ .. - ---- - ------

.-

!?

~

.' ~: .
Loc,-,e~: SC'Q~d"I'I

Coortvb'- 6to6£-~~~S~

- - ~

-.- '~-'

1.
:

'1

---t'·· -- ~.-

i' ;1
_. _ •••• __ •• _ • __ • ~ •• A' _: _.

.j

I
I -.

1
r'

,1·

.. ~
j.

i

I
-- t--

I

- ,--.- -.! .-. --.! ... -~­
!

.. ! .. _-- .,.---:---------r
Co 'S6- e- cfp l.! #j I;.~ '"J c.­
C'O 'Rt"i-~~'V;':;';t)'Jf'-1
. dV(JWr.

RVb"n Vo. abJ~('t­

~~ J-::(fib .. t.:-c!
Id.,;-:,tV;f

.L.. .S"'t:-: \33: t-d
A ppJ..,'P./~UC-(... 1'-::'(0.

;

i
r - . -i -

"y(J'-'~:;':i fcvY..'t
,0 SCov~ Sc-swpo~t5 ~ .
f· '

·1

. _ .j- ~c..~ (;lr,'R., ?
1- R.L"'''~·- u·.,,:e;., -----'-fl -

U)lI6tv/~q Gllld S~\lC'

d,s('v't!:I'-d" llVlJ-t; 1~

iAf3L.Sl a ... d TJtBL];lA

f----~
V

t.{~ $E'.-.q Ct"'(~ :50(.'0 V..,....

·'-=VVCltC)·ov fv"..v;~..s

~'1 Rex. CO'Ap':;r~!i):lS

'U ~Stlfl~~ .Ps co !ret ~

5 CDVb- "'l-~ I'S ~~ tv)
'SMOD -~. ~,.~.-~p"(

9.6.8-10

~vt- B ~ &~
A 'P~ov;(Jf;~ /fiSt,!_

--5") (', 10

~C!"e- 23 e-o A.J;lprl~t-':-1
M~sCl~ eo ~ lJ.o-·1o

J 1~

ov 12.....

j . ' •

.0. s~ ~ !3(~- co. _ E~<~o ~'. ~"C"u.._
<II St'C _ 6~ .. to -c:"C.L oc-,Le-:sS

)3~ o-f S "'-10D

SVJIt.c~ - -

cil,,/;;w -c. S I

~." :' '~'t<I.'r
~, , .

"

i.
.;.._ ..

s~t­

rAKcovs~

X~d'(~o~

,.

"St,-ov:-' ,? 0 ~ V~'J~C:

• Sw-t: 5~6C16- 60 '1
.- Ut'du(;t' . P of: S~~'oD

_ _ '- 0 e "'ci 0 f, }'OC'~f'e • __

• H~ B1 - Ol- t;-O~~DSf­
-of '1t''Ot.t6-s:7
Se-t' A:: R2-~M c:;l D '

',. S fu~ -;'/0"";'.1\.. ~ 'SVw...,
",c,w"", . p0l'-tC '

• Stove-. Wo"l\:tv: l3~ _

• e.A.S, ~ B3
--- -f ;--~--;---~----------r----"""'"-'"

w-
• o5(:;"v.- wovt:::E-'" B'~

• s to-. p o~ S? .. ~:.<-~~

o ~e- st.ue~' 60 '2..

• St-c- e~::. Rf.v~a D

U'I'(I" t-(::I . S't"ClC(..(~
COuiA6i-- V

!'1~t.., Y

Rt~&e-'p,n of ·s,v.Q t:>

to; - t;,)L $ '-- h'('.f!..!:l-

; .

:F'

Updotr Stu

Seb
TA t\£'ovE' Ie

:-,

- _A •• _. ___ ~_ •. _. __ - - _,, ___ •••

"i- : .:"

(i .' ~ I
~ I - -. - ! .'
.: .. !

-... ~.-- .-----.:. .. - -.. --.:...--.;----....!.----~----.;---...

.seQ"'"',", f_uv ~Elt'OOI
Cmoca IVJ~ .P::~? .1
of CcJ!./..).';'~ SM.O::; I

i

I·sv" ,~ {.(}V R;;X/.-10D

c.C!~ t.;J ; ~A ~ ,0 S(v!Uj
(I

• CUD,.., R E.X//lO D.
o 6to"t" ? fvo~", (1.Ili..!.';'t:.:7

•

I
--___ --.0..-. -.---r - .. -.~---- .

I I

r-- .

_ f __ ---·-r---
~ i ;

: I
! __ .. 2._ .". ; __

. --- ---- -~-.- ---r-

! .

,
- --L

I
I.

i' 9.6.8-12

i .

I

I'

I '. .-! -.

~-. _. __ .-
I

• Sta..,e- p' of ,,~~

t# :.s ~ 6- S tUC<--l.!> e.
4fI Fe,::: R r= XNt " D

1?"eVlVV F/A' S

ad ciV(-&5 ~ B3 -

i •

.i:. _ ... __ L ••••

- __ o. _ -~. --t-- --- ----

,
-----.. ! --.....

. -- r'

T -- - -t-

-+ -_. _~ __ ----J._

-! --

-_L

___ J.

I

I'

-£~t~~' '~/t""

f3 L/ . = _ 51'//01:)
~-;. ~r.ojt:ro" h;·::-V
B~:: Rt;..x/V!ot:>

-----~

I ~. .

.. - - ; .• - - .!.. --

ill
- -- . _." -." .~ ---~-~-

i..

I
I

. - ~ . -- -

\)c~~ ~ 0' t, __
\~~~ - Q,~~ ')

.. - ~

I i I , t.~·
:.,. i

-.: -_. -~ -.-

~ !
.. "1- - ----L - II --- L.

1. I \

. ~

.l .. _-­
i

sCo"e-

Fiu,,' Codv'

, , .
- _ •. _'" ______ • ___ o. _.'-__

;"

i-

.;."

Re6~'v(l"
~-~---i u:.c/6. ~

Rv6v~~./e

I Dvu" M.!,"e.:5 , _. I

• \'.I'~!; 'p" 6'U-i:-' "'f;'t.v;~'J(., I~Ex.II-___ -<;';'

FI.l",uio~ cod.~j

~JbU DJsc~~4

t:.~/u~'t!:t; ..

,voN'

DlsCv~,bc,..d

ow.,
A .. l'"'I.

1/-/0 '

I Fr:;&

t .- -.~ I'e-~ ~ R rx (u'(lctio~l Cud ff '

'l(f.:-b,·vt; sd(:,l'f:Jk iJ. ;"",/"./) h'",t·i\''''.1 ·o-.tS
sco.,(:" CCW

;
I

--I---'-j­
L

- 9.6.8-13

!
;"

: -
I

0' ._
·1

oj, '0 o_.} ._.

-I.c""",,-'t. A#~ -t». tUm",,'-

if, ~v.f LorJ'CCLt Acid 1-<-<...5 : G.rv:=

k'4-6,,\W CJ ilq
SW·...v

.s C'" ,,(.l, lW'o'&

l~(~-Clc.. ':Adchc:;:S.5,; (G'~;"

o dc1 ... t"ss· ~8a5t"). <33.10

J"''''-

;~ere..\~~",r

c.~.-~ cOJW1r

/
/

\.

700j~ to 0\ ~
(\->\""c," c-;: ~ e. ')

: .

. __ .. J

--.. -- ~ -. .:-

.. !.

- t

9.6.8-14

r'· .. ·

1'\\,),", b(,;t"' ~ ~ ~ cm:4
-t're""<"\<'T~6 ---'i>'

~-e,.. ~~ 'K~fIo.~\:)

-KS)! M() t) f.

~1 ~-.l.

~ .

. ;

:- .. - .
l

~-\:. ,..... "R~t{C;O:

~"';";::;'-'~---ll A .. 1 Q w~_;rq.- I
_ 67~¢ .

<;",,4:. ~~qtl~ ~ ,,~
>-__ ~'Rt~MOt). ~tot"~

~ .. !10."""A ~ " ... ~- t= ---'r"

I ~~ \~:\ -~:~iw ~~~~%.~J

REX. 11\ ~ ~ :

~-\ow~v-~ ¢~

I
. i

[.-

~ - - ! '.-

-;-

,- ,-
r

_ i __

-- .-- ..

~- - -- .. ---.. -:--._----_. - -- .. --- --:- ._, , .

. ;
.. _-,_._- :....

- i._ .. --- - - -.-- . - -

-- !
I

_.- --- ;

I ~ \: (l\"~ 'K €ox

r _.

""'" \'\-\ow("
o~ RE.XMl::>C

-9.6.8-15

'r"
i.
i

.t._ __l._
r
i

.. ,.: --

--- '--- --!--

) ",
-. ~ .. - : \

/10'

..• - --~- ..,

III? ...

__ .c~~ .. '

.' ·./..b~J~·"''''~4~~;Bl
Q.J. ;:.. r '-(.. S£'e-

.! .'
. .Ev~c?v WWt~ --')!31

.!

!
I'

.... -
I ,
1

. . - ~

!
.. L

'1

-_ _-_._-_."";:. - --:- --. ~.- - '-~-- .. - -:-

I

1---j-" .,
r----- ~-.-.--.:..- --.-1 -- f-- -

S~6- :A ... ·vJi6;,·_·· 6ta~

I).lj"lt)') ~ ·Ke:a;,oo:~c.-.:,i-v.">:

I
I f f f ;

, : ; : i
. ',.-- -~- -- .. L.. ,- .-i

; ,

.:- -

. .,._. ___ i __

.j', ,q .;. 4> .. Sv-C /I'ovll;,uL. vdp'.I!.1 ~ /31

~ j¢ 5(;-6 Evvov ve tv.., "" -> 81

'. ,.,

S Qt::. h "..,iti,h ~tC1 etC>

?-.~ ~ REJtMOD st·o?-l!-?

_____ C_-_l (_~_'_..., __ J)_;4_J _t._"_G_VIf"'I __ l __ p_,i;: __ ,_ ... _, {_l_. ___ ._,_,,_. _. [, __ '

- -" i .--
I

"r----r-- -~-:.--~.--"--

!
.. 1--

I ;
;-- -:--

i' . I

_ L .

. - - --' -1- -- " .. L
i
I i

_ot "'I

I
T'- . . !.., , '

I

. ;..--

----. - ~-

·9 . 6. 8~"1 Q. ' .

.1 _

• I,

----Ai -

-!.... - ..

-;

i - .. --
I

D. List of ~~CROS simulating 494 instructions on the 490.

These are the 77 XX instructions on the 494 and are illegal instructions
,on the 490. All macros are constructed so that coding will be identical
to that on the 494, e.g., a conditional jUInp instruction preceding a
macro will jump around the macro if the skip condition is satisfied
without ,any special coding requirement~ for the programmer.

77 21 1

77 23

77 24 "

77 25

77 4x

77 52

77 54

DPE~1'T "

DPCME
" '\' { ~,~.

DPCp:

DPSTR

",Double precision enter. (Y)-7A, (Y+1) ~ Q.

Compare Y and Y+1 to A and Q respectively.
Skip next instruction if equality found.

Double precision complement.
. (Q)'-7'" Q

(A)'"~ A

Double prectsion store. (A)~ Y, (Q)-7 Y+1

EBJP""Bx The P value is entered in Bx and jump
performed to Y.

TSET

EXRN

Tests bit 14 of Y; if not set it is set
and bits 13-00 are cleared. If set jump
to TSETENTRY subroutine. Packet is saved
within the ~acro.

The macro sets up a return jump to
TEXECENTRY location is simulated ONEGA.

,----'+'1' he lower half of the EXEC return" instruction
must be provided as a parameter, e.g. for
77540 00002 the 00002 mus~ be supplied
as the parameter in the coding.

A-4

The foilowing instructions can only be used by the executive so a test
is performed on L(GARDXODIND) to determine if in executive mode (if=¢,
:it is in exec mode). If it is in exec mode the instruction is legal
and'can be executed; if not, the macro contains a return jump to error
location. All instructions above 77 60 are exec only instructions.

t I' • ,.

77 61 EIFR

77 62 EPLR

77 65 SIFR

77 66 ERIR

77 71' EWE

.77 72' STRC

ECSR

77 75 SWB

'}-.' .

• I.

Test new IFR to see if it indicates
exec or worker B-registers are to
be used. Test'old IFR to see which
set is active. If wrong set is.active
store that set and enter the other set.
Then IFR is entered with Y value and
RIR is entered with (Y+1).

Enter Program Lock registerwith value ~
in Y.

Store value in Internal Function Register'
in address specified by Y. '

Enter Relative Index Register with value
in Y.

Enter worker B registers; (Y)~B1,
(Y+1)~B2, .(Y+2)-7'B.3, etc.

Store Channel number. Test where channel
number is and store it in Y address. The
channel number could be in CSR or IASREG.

Store lower five bits of Y address in
lower of Channel Select Register •

Store worker B registers (B1) -"> Y ,
(B2)--7 Y +1, 'etc.

All assemblies for Omega on 490 simulation should include these macros
in the card deck to facilitate familiarity with the 494 coding repetoire.

A-5

	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-02A
	1-03
	1-04
	1-05
	1-05A
	1-06
	1-07
	1-08
	2.01-01
	2.01-03
	2.01-04
	2.01-05
	2.01-06
	2.01-07
	2.01-08
	2.01-09
	2.01-10
	2.01-11
	2.01-12
	2.01-13
	2.01-14
	2.01-15
	2.01-16
	2.01-17
	2.01-18
	2.01-19
	2.01-20
	2.01-21
	2.01-22
	2.01-23
	2.01-24
	2.01-25
	2.01-26
	2.01-27
	2.01-28
	2.02-01
	2.02-02
	2.02-03
	2.02-04
	2.02-05
	2.02-06
	2.02-07
	2.02-08
	2.02-09
	2.02-10
	2.02-11
	2.02-12
	3.01-1
	3.01-2
	3.01-3
	3.01-4
	3.02-01
	3.02-02
	3.02-03
	3.02-04
	3.02-05
	3.02-06
	3.02-07
	3.02-08
	3.02-09
	3.02-10
	3.02-11
	3.02-12
	3.03.0-1
	3.03.0-2
	3.03.1-1
	3.03.1-2
	3.03.1-3
	3.03.1-4
	3.03.1-5
	3.03.1-6
	3.03.1-7
	3.03.1-8
	3.03.1-9
	3.03.2-1
	3.03.2-2
	3.03.2-3
	3.03.2-4
	3.03.2-5
	3.03.2-6
	3.03.3-1
	3.03.3-2
	3.03.3-3
	3.03.3-4
	3.03.4-1
	3.03.4-2
	3.03.4-3
	3.03.5-01
	3.03.5-02
	3.03.5-03
	3.03.5-04
	3.03.5-05
	3.03.5-06
	3.03.5-07
	3.03.5-08
	3.03.5-09
	3.03.5-10
	3.03.5-11
	3.03.5-12
	3.03.5-13
	3.03.5-14
	3.03.6-01
	3.03.6-02
	3.03.6-03
	3.03.6-04
	3.03.6-05
	3.03.6-06
	3.03.6-07
	3.03.6-08
	3.03.6-09
	3.03.6-10
	3.03.6-11
	3.03.6-12
	3.03.6-13
	3.03.6-14
	3.03.6-15
	3.03.6-16
	3.03.6-17
	3.04-01
	3.04-02
	3.04-03
	3.04-04
	3.04-05
	3.04-06
	3.04-07
	3.04-08
	3.04-09
	3.05-01
	3.05.2-01
	3.05.2-02
	3.05.2-03
	3.05.2-04
	3.05.2-05
	3.05.2-06
	3.05.2-07
	3.05.2-08
	3.05.2-09
	3.05.2-10
	3.05.3-1
	4-01
	4-02
	4-03
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	6.00-01
	6.00-01a
	6.00-02
	6.00-03
	6.00-04
	6.00-05
	6.00-06
	6.00-07
	6.00-08
	6.00-09
	6.00-10
	6.00-11
	6.00-12
	6.00-13
	6.00-14
	6.02-01
	6.02-02
	6.02-03
	6.02-04
	6.02-05
	6.03-01
	6.03-02
	6.03-03
	6.03-04
	6.03-05
	6.03-06
	6.04-01
	6.05-01
	6.05-02
	6.05-03
	6.05-04
	6.05-05
	6.06-01
	6.06-02
	6.06-03
	6.06-04
	6.06-05
	6.06-06
	6.06-07
	6.06-08
	6.06-09
	6.06-10
	6.06-11
	6.06-12
	6.06-13
	6.06-14
	6.06-15
	6.06-16
	6.06-17
	6.06-18
	6.06-19
	6.06-20
	6.06-21
	6.06-22
	6.06-23
	6.06-24
	6.06-25
	6.06-26
	6.07-01
	6.07-02
	6.07-03
	6.07-04
	6.07-05
	6.07-06
	6.07-07
	6.07-08
	6.07-09
	6.07-10
	6.07-11
	6.07-12
	6.07-13
	6.08-01
	6.08-02
	6.08-03
	6.08-04
	6.08-05
	6.08-06
	6.08-07
	6.08-08
	6.09-01
	6.09-02
	6.09-03
	6.10-01
	6.10-02
	6.10-03
	6.11-01
	6.11-02
	6.11-03
	6.13-01
	6.13-02
	6.13-03
	6.13-04
	6.13-05
	6.13-06
	6.13-07
	6.13-10
	6.30-01
	6.30-02
	6.30-03
	6.30-04
	6.30-05
	6.30-06
	6.30-07
	6.30-08
	6.30-09
	6.30-10
	6.30-11
	6.30-12
	6.30-13
	6.30-14
	6.30-15
	6.30-16
	6.30-17
	6.30-18
	6.30-19
	6.30-20
	7.01
	7.02
	7.03
	7.04
	7.05
	7.06
	7.07
	7.11
	7.12
	7.13
	7.14
	7.15
	7.16
	7.17
	7.18
	7.19
	7.20
	7.21
	7.22
	7.23
	7.24
	7.25
	7.26
	7.27
	7.28
	7.29
	7.30
	7.31
	7.32
	7.33
	7.34
	7.35
	7.36
	8.01-01
	8.01-02
	8.01-03
	8.02-01
	8.02-02
	8.02-03
	8.02-04
	8.02-05
	8.02-06
	8.02-07
	8.02-08
	8.02-09
	8.02-10
	8.02-11
	8.03-1
	8.03-2
	8.03-3
	8.03-4
	8.03-5
	8.04-02
	8.04-1
	8.04-3
	8.04-4
	8.05-1
	8.05-2
	8.05-3
	8.05-4
	8.05-5
	8.06-1
	8.06-2a
	8.06-2b
	8.06-3
	8.06-4
	8.06-5
	8.07-1
	8.07-2
	8.07-3
	8.07-4
	8.07-5
	8.08-1
	8.08-2
	8.08-3
	8.08-4
	8.08-5
	8.09-1
	8.09-2
	8.09-3
	8.09-4
	8.09-5
	8.09-6
	8.09-7
	8.09-8
	8.09-9
	9.01-01
	9.01-02
	9.01-03
	9.01-04
	9.01-05
	9.01-06
	9.01-07
	9.01-08
	9.01-09
	9.01-10
	9.01-11
	9.01-12
	9.01-13
	9.01-14
	9.01-15
	9.01-16
	9.01-17
	9.01-18
	9.01-19
	9.01-20
	9.01-21
	9.01-22
	9.01-23
	9.01-24
	9.01-25
	9.01-26
	9.01-27
	9.01-28
	9.01-29
	9.01-30
	9.01-31
	9.01-32
	9.01-33
	9.01-34
	9.01-35
	9.01-36
	9.01-37
	9.01-38
	9.01-39
	9.01-40
	9.01-41
	9.01-42
	9.01-43
	9.02-01
	9.02-02
	9.02-03
	9.02-04
	9.02-05
	9.02-06
	9.02-07
	9.02-08
	9.02-09
	9.02-10
	9.02-11
	9.02-12
	9.02-13
	9.02-14
	9.02-15
	9.02-16
	9.02-17
	9.02-18
	9.02-19
	9.02-20
	9.02-21
	9.02-22
	9.03-01
	9.03-02
	9.03-03
	9.03-04
	9.03-05
	9.03-06
	9.03-07
	9.03-08
	9.03-09
	9.03-10
	9.03-11
	9.03-12
	9.03-13
	9.03-14
	9.03-15
	9.03-16
	9.03-17
	9.03-18
	9.03-19
	9.03-20
	9.03-21
	9.03-22
	9.03-23
	9.03-24
	9.03-25
	9.06-1
	9.06.2-1
	9.06.3-04
	9.06.3-1
	9.06.3-2
	9.06.3-3
	9.06.4-01
	9.06.5-01
	9.06.5-02
	9.06.5-03
	9.06.5-04
	9.06.5-05
	9.06.5-07
	9.06.5-08
	9.06.6-01
	9.06.6-02
	9.06.6-03
	9.06.7-01
	9.06.7-02
	9.06.7-03
	9.06.7-04
	9.06.7-05
	9.06.7-06
	9.06.7-07
	9.06.7-08
	9.06.7-09
	9.06.7-10
	9.06.7-11
	9.06.7-12
	9.06.7-13
	9.06.8-01
	9.06.8-02
	9.06.8-03
	9.06.8-04
	9.06.8-05
	9.06.8-06
	9.06.8-07
	9.06.8-08
	9.06.8-09
	9.06.8-10
	9.06.8-11
	9.06.8-12
	9.06.8-13
	9.06.8-14
	9.06.8-15
	9.06.8-16
	A-4
	A-5

