1037-R801-18-103 -

REGISTERED DOWMENT

DO NO? COPY

Dot #___.Z___Ser #
 Jssued to_2

Company _Gonfidentia o

Systems Programming
March 1966

UNIVAC

DIVIBION oi --tunv -ANn coanomvnon)
UNIVAC PARK, $T. MUL 6, umuisou

TABLE OF CONTENTS

Purpose and Scope

1 3 0 OMH}A Con'tI’Ol . . . L] . L] L] e @ . .]
1.0 Design Philosophy. « « ¢« o ¢ « o « &
141 Control Thread. « v « o « o « &

1.17.1 Task Addendum Definition

1.1.2 Activity Addendum Definition

1.1.3 Storage Module Definition. .

2.0 Ba(sic OmGA. L] . L] L[] L L] L] .] L] L] L]
2.1 Interrupt Processors.
2.1.1 Interrupt Processors . .

2.1.1.1 Service Request

2.1.1.2 Task Contingency.

2,1.2 Normal Hardware and Peripheral

R.1.2.1

Interrupts.

Infernally Specified Index.

2.1.2.,2 Externally Specified Index.

2.1+:2.3 Clock Interrupts.'.'

2.1.2.4 Synchronization Interrupts.

2.1.3 Main Frame Contingency Interrupts.

2.1.3.1 Parity Errors « « « o o+ .

2.1.3.2 Power Loss. . .

2.2 Interrupt Support Routine . . .

2.2,17 C. P, Queue Contrecl. . .-

2.2.2 Storage Module Control .
2.2.3 .Channel Cont:olg'. o

3.0 Input/Output Control « + oo v & o o

L

4.0

500'

3.1 Genersl Description: « + « « &+ o & &
3.1.17 Random Access Storage List. .
3.1.2 Unit Control Block.

3.2 I/0 Director v o o o o o o o o o o
3.2.1 Preprocessing Function. . . .

3.2.2 Console Handler « « « o « o o

3.2.3 Logical Lock of Mass Storage.

3.3 Device Handlers. « « « « 4 o 4 o o
3.3.0 General Description . . + . .
3.3.1 Magnetic Tape Handler
3.3.2 High Speed Printer Handler: .
3.3.3 Card Reader Handler . . . « .

3.3.4 Card Punch Handler. . + v « .

3.3.5 Mass Storage Handler.

3.3.6 1004 Subsystem Handler. e o
3.4 Auxiliary Routines . + « « ¢« ¢ & o &
3.4.1 Error Recovery Routinés e o e
3.4.2 Interlock Routine . o ¢« « o &
3.4.3 Search Routines +« ¢« « « & ; .

3.4.4 Initialization. o « o o o « &

3.5 User Interface « « o o o ¢ o o o ..

3.5.1 File Codes. « « o o o o o o o
7/ . .

3'5’2 I/O Reqﬁests. LR O L

3-5-3v Sta"bus Codes L O

Core Allocation . « « I R N A

Task Control Functions. . . e e e e _

3.1-1
3.1-2
3.1-3
3.2-1
3.2-1
3.2+
3.2-10
3.3.0-
3.3.0-"
3.3.1-
3.3.2~"
3.3.3-"
334"
3.3.5-"

. 3.3.6-

341
341
3.4-2
3.4=3
3ed=d

3.5-1

305"'1
3.5, 21

305-3-1

4=1

- 5=

6.0 Secondary Exec Functions. . . .

6.1 Contente v v o ¢ v o + &
6'1.1
6.2 Service Functions 1. . .

6.3 Service Functions 2. . .

L

Method of Operation

6.4 I/0 Error Recovery . . «

K4

L

6.5 Console Controle « « o o o o o &

6.6 Facility and Storage Assignment.

6.6.7

6.6.2 Peripheral Unit Assignment.

Method of Operation

6.6.3 Random Access Storage Assignment.

6.6.4 Master File Directory . +.. « »

6.6.5

7

h r R

6.8 Cooperative Service Routine.

6.9 Pre-Selection. +» « o o o o o

" 6.10 Selection. + o « .+ « 4 .

6011 TeI'II'.ination. * s s e+ s o

6.12 Remote Facility Assignment

'6.13 Library Service Routine.
.6.14 Checkpoint and Rest;rt'.
6.15 Compactore « « o o o o
6.16 Dump Routine
6.30 Secondary Exec Tables .

6-30-1

Selection Job Stack.

6.30.2 Job Description. . .

6.30.3 Selection Summary. . .

6.30.4 Selection Facility Map

Facility Assignment Initialization.

&.7 SerViGe Functions Bi ¢ o o 0 o 6 o 8. 0 o »

6.0-1

6.0-1"

6.0-4
6.2-1
6.3-1
6.4~1

’ 60 5-1

6.6-1
6.6-5
6.6-10
6.5-15
6.6-22

' 6.6-26

6.7-1
6.8-1
6.9-1
6.10-1
6.11-1
6.12-1
6.13-1
6.14-1
6.15-1
6.16-1

~ 6.30-1

6.30-1
6.30-5

6- 30—1 1

.6.30.18

7.0 I1/0 Cooperative Mechanism. . . .

8.0

7.1

7.2

7-3

A

7.5
7.6
7.7

.Real

8.1

Cooperativé Features. . . .
I/0 Cooperative Elements. .
Input Unit Record Routines.

7.3.1

Cooperative Control . . « « .+

’?".Z‘-"1 Calls L - . L L L] L]

7.4.2 . Cooperative Library.

7.4.3 Functional Routines.

7.4.4 Block Charts
Cooperative Maps and Tables

Output Unit Record Routines

Edit Routines . L] . . . L] L] L] -

L

Sample Input Unit Record

Time and Communications Control.

General Description . . .«

4 8.1.17 Level 1 Control. . .

8.2

8.3

Py | ~
8.1.2 Level 2 Comtrol. . .

TableS. s & o 8 o o o e o 0

£.2.1 CIM Control Block. .

8.2.2 Unit Control Block .

8.2.3 Communications Facility Map.

Buffers L] L . . .

8.3.1 Communication Buffers. . . .

8.3.2' Communieation Buffer Chain Control

8.3.3 Packing Bufférs. e & ¢ o e & o ka .

8.3-3
* 8.3-4

9.0

804 ESI Con‘brolo . . . * . . L] . L] Ll . .I L] . L VC .‘ .. L]

8.4.1 ESI Interrupt Processor . . .« « « + o« o &

4

8.4-2 ESI Function Executor s e 6 o o 4 s s s e e

8.4.3 Channel Initialization and Termination. . .

8.5 Communication Handler. .« . ¢« . « « + &

8.5.1 Interrupt Processor Interface .

§.5.2 Data Handling « « o o o o o o o

8.5.3 User Interface (Level 1). . . .

8.5.4 Communications Director Interface

8.6 The Communications Director.......

8.7 User Program Interface Level 2 . .

8.8 Communications Facility Assignment

8.9 Level 2 Control Example. . « « « »

Auxiliary System Routines « &
9.1 Loader « ¢« ¢« ¢ ¢ ¢ ¢ o ¢« s o o o
9.1.1 .General Description
9.1.2 Primary Control Statement .
9.1.3 Secondary Control Statement
9.1.4 Relative Binary Code. . . .
9.1.5 Loader Operation. « « « o+ &
9.1.6 Input Element Format. . . .
9.1.7- Function of Loader Phase 1.
9.1.8 Function.of Loéder‘Phaée 2.
9.1.9 Function of Loader Phaée 3.
9.1.10 Table Transitions e e e e
9.2 Library Mainténancé; Cee e e

903 TBSt Pﬂck&ge L e @ . .' ¢ e [I :- L)

L] L] L] L] L]

(Level 2)

8.4-1
8.4-1
8.4-2
8.4-4

.8.5"1

8.5-3
8.5-4
8.5-4,
8.6-1
8.7-1
8.8-1
8.9-1
9.0-1
9.1-1

9.0 1 -1

AN

‘}.'I-

R 9-1‘3 ’

9.1-8

9.1-14
9.1-16
9.1-23
9.1-30
9.1-37

9.2-1

903'1 .

9.4 Element Library Maintenance .

9.5 Utility Package . « ¢ « o &

9.6 REXecutor .

9.6.1

9.6.2

9.6.3
9.6.4
9.6.5
9.6.6
19.6.7
9.6.8

Method of Operation .

The REX Control Statement

Secondary Control Sfatements

REXecutor Elements o« o s

REXecutor Phase 1 . .
Diagnostic Messages .
REXecutor Phese 2 .

Execution Area .« 0.

Blockcharts v 9 e e o

9.4=1

9.5-1
9.6-1

9.6-1
9.6.21

. 9-603"'1

9-604—1

: 9.60 5"1
19.6.6-1
'9~6¢7‘1

9.6.8-1

' 9.6.8-9

Purpose and Scope

This document is an attempt to illustrate and explain the general composition of
OMEGA from a technical aspect by showing the major routines encompassed and inter-
action between them, - Tables, maps and flow charts are included where gppropriate
and availgble. In general, this document will serve as a guide for implementation
and upon completion of the system serve as technical documentation for the exec.
Therefore it will be, by nature, subject to constant change and/or refinements
until date of release, hence, caution must be used in placing reliance on the
contents of this document.

It is assumed the reader is familiar with the UNiVAC'49A hardware and has
reviewed the functional description manual for the UNIVAC 494 operating system.

OMEGA

1.0 Design Philosophy

1.1

CMEGA is a set of integrated routines providing the basic control for coor-
dinating and executing UNIVAC and user provided programs. It provides a

flaxible and reliable foundation for the installation environment to build

upon. OMEGA has been designed explicitly modular to facilitate future extensions,
expansion of particular functions or selection of available variants of a basiec

" function. In the following discussions of the executive functions, a dis-

tinction is made between "basic exec activities" those required for switching,
queuing and hardware operation of the machine; and "secondary exec activities"
those used for selection, task control, input/output and termination. All
secondary exec activities, although required in some form, lave been estab-
lished by software convention and are replacable. To facilitate thelr re-
placement or change, all secondary exec activities operate as worker programs

" activated through formal service request with minimal communication between

them. This document supplies necessary tables, calling sequences and logic
of OMEGA to accomodate user modifications to the UNIVAC provided system.

Control Thread

OMEGA is dependent on random access storage as an operating base and upon
primary input streams as a source of the control language definition of work
to be performed. Each unit of work to be performed is called a task and
represents the unit upon which the system performs its selection, allocation
and activation functions.

For each task entered into the system, a Task Addendum is formed, which contains
all pertinent information pertaining to the task (see figure 1-1). To control
the running of the task and requested fragments, Activity Addendums are formed

"to order and control fragmentation.

In addition to Activity Addendums, free storage is needed to perform
service requests or switching upon interrupts. This additional storage is

-assigned to the particular program when it i1s required. The core area assigngd

is called a storage module and is twenty octal words. This storage module
is linked to the Activity Addendum through a push-pop chain. The storage
module contains all the information necessary for any service request or loss
of control through an interrupt. The format of an allocated storage module
is shown in figure 1-3 and the entries are described in Storage Module Def-
inition.

1-1

W

<2 o v o~

10
11
- 12

13
14

15

16
17

20
21
22

23

25

26

27
30
31
32
33

34
35

TASK ADDENDUM FIG. 1-1

25 22121 SRVICE1817 0
| PRIORITY TASK ADDENDUM LINK
29 1817 0
ACTIVITY ADDENDUM LINK
2 : 0
? MAXIMUM # OF CP UNITS ALLOWED TASK (200 us)
29 ‘ . 0
OF CP UNITS USED (200 us)
29 0
TIME TASK LAST ACTIVATED
29 22121120119(18[17116 [15|14 0 ,
iU oOlA|lBlT!D E JOB NUMBER SWITCHES
29 T 1514 0 RELATIVE TO
F.P. OVERFLOW ADDR. : F.P. UNDERFLOW ADDR. ~TASK BASE
) . 514 0 ,
ERROR ADDR. " ILLEGAL OP ADDR. .
29 ‘ . _ 0
DRUM INCREMENT TO PARAMETERS
29 18] 17 . 0
OF 100 WORD GROUPS TASK ADDRESS BASE
25 18! 17 \ _ 0
CORE CHAIN LINK
29 15|14 : 0
OF WORD REQUESTED RECEIVE ADDRESS
0
UNASSIGNED
129 15114 0
PRIMARY QUTPUT ESTIMATE SECONDARY OUTPUT EST.
2 0
? DRUM INCREMENT BEGINNING OF MODULE CHAIN
29 - o
DRUM INCREMENT END OF MODULE CHAIN | PRIMARY
29 » 18(17 0 INPUT
CURRENT BUFFER ADDR.
29 0
TOTAL # OF MODULES # IN SYSTEM
29 A 0
DRUM INCREMENT BEGINNING OF MODULE CHAIN |
29 0
DRUM INCREMENT END OF MODULE CHAIN _| | PRIMARY
29 18 17 R 0 OUTFUT
CURRENT BUFFER ADDR. = = | | -
29 15114 0
TOTAL # OF MODULES - # IN SYSTEM ‘
2 S 0
9 DRUM INCREMENT BEGINNING OF MODULE CHAIN SECONDARY
9 o [TOUTFUT
DRUM INCREMENT END OF MODULE CHATN o
29 1817 0
CURRENT BUFFER ADDR.
29 15|14 - 0
TOTAL # OF MODULES # IN SYSTEM
29 28i27l 18 {17 ol :
' ADDRESS FILE CODE A
L/WW'-
la2

FILE CODE 'B-Z

67
70
71
72
73
74

75 -

76
(i

* .
P e — T N —Y

PRIMARY INPUT UNIT RECORD

PRIMARY QUTPUT UNIT RECORD

SECOMDARY OUTPUT UNIT RECORD

COOPERATIVE LIBRARY <

SYSTEMS LIBRARY

JOB LIBRARY

SYSTEMS LOG

SCRATCH

SCRATCH

 FILE CODES ZA—>ZI
__ RESERVED FOR
SYSTEM USAGE

1.1.1 Task Addendum Definition

The task addendum is formed by cooperative service routine when a Job
stream enters the system. Each task (program) described by the Job

stream will utilize this addendum to contain I/0 assignments and other
control information at the task level. Upon completion of a task the
addendum is purged of task dependent information and re-used for next - - .
task in the stream. This will allow select control information and

I/0 assignments to be carried from one task to the next within a Job
stream. ‘ , ' - '

" The following describes content of task addendum:

‘Word 0 = Service priority is a four bit number assigned as the
. highest priority available to the task. ' Linked to next
' task addendum contained in the system. :
Word 1 Linked to activity addendum is a 18 bit address of first
' activity established for current task.
VWord 2 Contains the estimated # of -time units required of the
control processor to complete the current task. . 7--7
: .~ indicates continuous processing. ‘ ‘
Word :3 The # of time 200 us units currently used by task at this
point in time.
Word 4 . Time of day (in 200 increments) this task was activated.
Word 5 Logical switches - bits 219-219 are used for logical. switches
A through E respectively. If corresponding bit is set (1)
switch ig on; if bit is O, switch is off. Overflow switches-
if bit 2<Y is set (1) a floating point overflow has occurred.
If bit 22! is set (1) a floating point underflow has occurred
Lower contains a 15 bit Job Number assigned by the OMEGA to
identify the Job.

Word 6 . Contains relative addresses of alternate floating point over-
flow or underflow routines established by task.
Word 7 Contains relative addresses of alternate error recovery

routine in the event the task addresses outside its assigned
code. Illegal operation address is relative address of
alternate illegal instruction recovery routine.

Word 10 Contains drum increment to parameters stored by a task un-
solicited operator enter for conveyence to next task. Drum
increment is to logical File Code.ZD.

Word 11 Contains absolute code address assigned to current task and
length of task in groups of a1008.

Word 12 Contains a link to chain descriptors committed by RT/Comm
programs only. -

Word 13 Contains address and # of words for an outstanding RECEIVE
operator., ‘

Word 14-17 Unassigned

Word 20-34 Are used to control primary and secondary input/cutput and
are explained under cooperative control.

Word 35-66.Contains the basic set of logical file codes A-Z which the
user may assign peripheral devices or random storage files.
Eaeh entry is composed of one word ordered A through Z and
contains address of unit, control block describing peripheral
device, list of mass storage descriptors or an expanded list
of 26 file codes.

1-3

File code entry

1111]2 B|17 L
1o ol o lADDRESS
(1) indicates assignment to be held between tasks
(1) 4indicates addréss is of random stbrage list
(1) indicates base address of an additional set

.of 26 file codes

Word 67-77 contains file codes ZA-Z1 reservédﬁfor s?stemsﬂusage.:

1.7.2.

ACTIVITY ADDENDUM DEFINITION

An act1v1ty is established by definition of an operatlng task and/or
activity. The function allows a dynamic declaration of parallel or
asyncronous paths through the task level code. Activity addendums
are used to control and register elibible control paths.

One Activity Addendum is formed upon initiation of the task. This

is used to start the task. One additional activity addendum will be
formed for each activity registration or fork performed by the task
These activity addendums will be used (in conjunction with assigned
storage modules) by the dispatcher as switching poings control running
of the task and task fragments within the system. Activity addendum
require 10g words.

The following describes the contents of the activity addendum:

Word O Queue cell for central prooessof control will be used to
link all activity addendums to the C. P. Control Queue.
Also used to queue activities to hold or delay queues.

Word 1 Storage module link used to link together all storage
modules assigned to the activity. This points to the
last module in the chain which will be used for first
retyrn of control.

Word 2 Priority number of this activity (0-36). Used to control
selection of highest priority activity eligible for control
from C. P. queue. Binary identify is number assigned by
used for queued activities.

Word 3 = Address .of the task addendum

Word 4 Fork control. Bit 29 indicates if a JOIN has been given
next 12 bits contain the number of forks this activity has
made. Lower 18 bits used to link all forked addendum. If
queue processing activity the lower 15 bit contains the
relative starting address. If other activity the word is
zeroes.

Word 5 Linking cell for all activity addendums associated with the
task. :

Word 6 Contains the upper 12 bits of IFR and the relative index
register of the activity..

Word 7 Program lock register.

[
[
[é]]

ACTIVITY ADDENDUM FIG. 1-2°

29 T e
. QUEUE CELL FOR C.P. CONTROL
ZERO FILL OR HOLD QUEUES
0 : : ‘ .
59 T8 17 , _ 0
ZERO FILL STORAGE MODULE LINKING CELL
1
29 | ' _ 1514 |)
| 7RO FILL IF OTHER 4CT, | T
29~ T T T T T T T T T T T T T T T T 5|4 pRioRiTy. - O
, [BINARY IDINT IF QUEUE PROCESS ZERD NUMBER
29 18 h7' ' 0
UNUSED TASK ADDENDUM ADDR.
3
2912 18 17 0
p FORK COUNTER | FORK JOIN CONTROL CELL
29 T 7 Bl T ~ 0
_____ UNUSED _ _ _ _ _ _ _|_REL. START ADDR. FOR QUE PROC_
L P ZERO FILL IF OTHER ACTIVITY o
29 18 17
ZERO FILL ACTIVITY ADDENDUM LINKING CELL
5
29 1817 0
UPPER 12 BITS OF IFR RIR
6
29 o]
FLR
29 2 15014 1110 T T T T T
» | %ERO FILL |UPPER BOUND ZERO FIIL| LOWER BOUND
29 0
_ UNUSED
10
29]
UNUSED
11

1-54A

The following illustrates the chaining employed for task.addendum.
Activity Addendums and storage modules used by the OMEGA to control

a program.

JACTIVITY ACTIVITY CTIVITY-/)
ADDENDUM ADDENDUM ADDENDUM
TASK 1 (2) ()
ADDENDUM
STCRAGE - ' STORAGE
“|MODULE MODULE
1 (14) Ly (24)
|

STORAGE
MODULE
(1)

- The task addendum describes the task.code and contains all pointers to
peripheral assignment descriptions used by the task code. The presence

of three activity addendums implies three control threads through the
program or parts of the program have been declared by the code at

object time. Each activity addendum is normal registered to the dispatcher
queue as an elegible point for preogram control providing for parallel

or asynchronous processing within a program. This is in addition fto the
normal multiprogramming and/or multiprocessing of tasks within the

system.

The presence of two storage modules under activity addendums 1 implies
the registered control thread has performed a service request to the
"OMEGA which has: 1) caused an additional service request by the activated
OMEGA element which has called on a third element which is currently

in control of the control processor, 2) the called for element was
interrupted and requeued to the dispatcher, 3) the called for element
has taken the activity out of the system unitl some disposing action has
been completed for the request, e.g., I/0 completion, freeing of.

1.1+4 STORAGE MODULE DEFINITION

Tne allocated storage module is a 20 octal word core area assigned

to control interrupts or service requests of activities. The storage -
module is always placed on an even core address so service routines
(switcher, interrupt processor, handler) can take advantage of the
memory overlap feature of the 494.

Entry Wofd

0

3

4
5 Upper

5 Lower

6-13

1%
15
16-17

Use
18 bit link to previous storage modules if any or back
to addendum. Use of control last in first out sequence
of requests. :
18 bit address of the addendum this request is associated
with, Stored in when module is assigned and used by
servicing routines to find addendum.
Internal function register store in at time of interrupt. .
Relative index register of the activity interrupted.

Program lock register of the activity interrupted.

Upper 15 bits in the captured relative P a interrupt.
Stored in after Store worker B is done.

Worker Bl registers store in at interrupt by store.

Lower 15 bits of word 7 and 10 and lower 18 bits of words
11-14 contain worker registers. Additional bits may be
used by service routines for additional storage.

Contents of A register at interrupt.

Contents of Q register at interrupt.

Additional storage for service routines.

10
11
12

13

14

15

17

ALLOCATED STORAGE MODULE

Locatgd bn Even Core Addréssr

18 {17

.

29 _
ZERO FILL . 'PUSH POP LINK
39 T8 17 — 0
ZERO FILL ACTIVITY ADDENDUM ADDR. A
29 X i 0
IFR
29 18717 0
ZERO FILL RIR
_ PLR '
9 26|25 " 15|14 11|10 N
ZERO _FILL UPPER BOUND ZERO FILL| LOWER BOUND
29 15|14 0
RELATIVE P ' Bl
29 1514 0
B2
29 15|14 0
" ADDITIONAL WORKER B3
29 ; 1817 0
STORAGE FOR B REGISTERS B4
29 18 17 0
SERVICING ROUTINES B5
29 1817 0
29 18|17 0
A REGISTER
29 0
© REGISTER :
29 0
ADDITIONAL STORAGE
29 4 0

ADDITIONAL STORAGE

Figure 1-3

1.8

2,0 Basic OMEGA System

2.1

The basic OMEGA system is divided into two sections, the interrupt
processors which answer all hardware and software interrupts and the
related interrupt support routines which assist the 1nterrupt
processors in disposing of the interrupt. The second group, the
interrupt support. routlnes, include routines such as queue ¢ontrol
and the dispatoher.

OMEGA INTERRUPT PROCESSORS

The OMEGA interrupt processors for the 494 operating system

shall operate on three distinct types of interrupts. These three
types are a) task or task fragment generated interrupts, b) normal
hardware and peripheral generated interrupts c) main frame
contingency interrupts.

2.1.1 Task or task fragment generated interrupts.

These generated interrupts are either requesting service

from a part of the operating system or are contingencies

relating only to the specific task. The service request

interrupts and the relative servicing routines will operate as
" an extension of the requestor. Task related contingencies

interrupts usually result in the queueing oi the contingency

1nterrupt processor for subsequent control.

Service Request Interrupts

Service requests are normally made by the use of the Exec
return instruction and an associated packet or registers
containing the parameters required to process the request. The
only exception to this is the segment load that runs off of a

" guard mode interrupt. The organization of the routines which
respond to the service request function is shown in
figurs 2-1.

Each routine handling of a service request may itself make
service requests for other functions to be preformed. Much
of the communication between elements of OMEGA is preformed in
this manner; some service requests therefore, are internal

to the system and will not be available to the general user.
This organization contributes to the modularity and open ended
design and allows the system to dynamically expand when core
is available and contract as core is required by the user.

2.1.1.1 Service Request Routine

This element of Omega is the interface by which an operating
.program communicates with and requests services of Omega. The -
requestor is reactivated only when some disposing action is com—-
plete. Result parameters are feturned to indicate non4
performance, normal completion or abnormal completion.

An operating program requests service by a sequence of _
instructions which submit a parameter packet appropriate to
the request and interrupts to Omega. Since hardware guard
mode is enforced against operating tasks, the special
executive entry instruction is used to submit a request.

" This instruction causes an interrupt and includes a 15
bit field identifying the function requested.

Exec return instruction

29 S 151412 11 | 0

EXEC Parameter to Servicing

7 7 5 4 0O {CALL Routine

where EXEC CALL represents the number of the resident EXEC
function required to process or schedule the request and
are as follows:

0 Task Control and Miscellaneous Service Functions.

1 Input/Output service request at the packet level.

-2 Contents supervisor, schedule request for a drum based service
routine. ‘

3 I/0 cooﬁerative control, process primary and secondary
Input/Output requests.

4. Core allocator, responsible for allocation and deallocation
of core storags.

5 Common subroutine linkage, responsible for establishing
linkage between a common subroutine and its caller.

6 Reserved for system use
7 Reserved for installation usage

The lower 12 bits of the Exeé féturn instruction contain
additional parameters to direct the servicing routine.

Upon detection of the Exec return interrupt the' service request
routine preforms the follow1ng functions for all Exec returns with a
non=s010 oporand,

. 411 transitory registers (A, Q and worker B registers), IFR
and the captured relative P will be stored in a storage module.
that contains the activities PLR and RIR. This storage module
is then linked to the activity addendum through the storage
module linking cell.

« 4 new storags moduls will be acquired from the unallocated
storage module chain and interrupt lockout will be released.

« IFR, RIR and PLR will be set to the values for the Basic Exec
routine responsible for handling the request and these values
will be stored in the new storage module. '

. Program control is switched to the called basic Exec routine
Wluh the "A" register containing the IFR value (with the Exec
call) and the "Q" register holding the Activity Addendum address.
(The assigned gstorage module can be found from storage module
link cell .

The servicing of the standard requests by the primary service
functions are explained in the related individual section. Only
the special service functions preformed by the Basic Omega system

are explained in this section.

2~4

Special OMEGA Service Functions

Because many OMEGA routines need special functions for.
queueing and switching and do not have direct access

to the queus tables and storage area, 'a special OMEGA: return
- will be used by secondary OMEGA routines to request service
from the basic OMEGA system. This return may only be

used by OMEGA routines and is not allowed to worker programs.

77540 OOOOO‘.

' with the parameters and service request number in the A‘and‘
~ Q registers. Service request number is in A lower.

The servicing routines will operate either interrupts
*ocxed out or loglcal¢y locked out. .

~ IDLE Service request number is zero

This entry makes a direct entry to0 the -dispatcher to select
the next eligible task or task fragment for central

processor control.
Queue Control

Queueing of tasks or activities to be performed is a

major function of OMEGA. Besides the requirement for
queueing at the o ccurrence of an interrupt, many of the
servicing routines will require queueing functions to return
control to worker programs, queue other functions to be A
performed, and queue themselves if requests must be delayed.
A common queue control routine will be employed to

perform the functions.

Queue Control can be referenced by servicing routines by

an EXEC return instruction. The call is for an immediate
function to be performed and will be performed with interrupts
locked out or a logical lock imposed to protect over

queueing or double referencing of the queue tables.

Central Processor Queue

The €P queue is the queue that directs the use of central
processor control. Any routine that is eligible for

control (and not currently in control) is listed on the

ready queue. Servicing routines are required to have placed
on the C. P. queue requests that have heen completed. Other

. functions also are required to place entries on the C.P. queue
(i.e., Program load to start program, etc.).

~C. P. queue with idle

This group places activities on the C.P. queue and does not -
require return of control. An entry to the dispatcher
‘will be made after queue control has performed its task.

Current Activity at its priority Service request number is 1.

Queue the-actlvity currently running at its registered
priority and exit to switcher. May be used to return
control to worker upon completion of a service request.

Current Activify at priority X Service request mumber is 2.

Seme as number 1 except the prlorlty is defined by the
upper 5 bits of the Q register. Useful to displece routines
for a turn through the dispatcher.

Addressed activity at its priority. Service request number is 3.

Queue the activity addendum addressed by the lower 17 bits
in Q register at its registered priority. The Q register -
contains a 17 bit absolute addendum address to go on the
ready queue. Priority will be taken from the addendum.
 Addressed aeulvlty at a specified’ prlorlty.‘ Service
request number 1s Lo

Same as number 3 except the priority is supplied‘as an .
additional parameter in.the upper 5 bits in the Q register.
Useful to displace routines or have them gain control at
a priority other than that a331gned to them. :

C. P. Queue‘w1th return of control .

This group places activities on the C.P. queue but wishes
return of control for subsequent processing. Control will

be returned immediately following the EXEC Return after

the queueing function has been performed. Subsequently

an idle entry must be made to allow the queued routine to

get control. Current activities cannot be queued with return
of control because no gueue cell link would exlst for
interrupt queueing. :

Addressed act1v1ty at its prlorlty. Service request number
5.

Same as number‘B except return control after queueing,

Addressed activity at a Spéleled prlorlty. Service
request number 6.

Same as number 3 except prlorlty is supplied as a parameter
in the upper 5 bits of the Q register and control
is returned after queueing.

Switch Functions

"Switch functlons are used by I/0 control, contents super-
visor, common subroutine linkage and RE/Comm control to

‘sw1tch control from itself to a routine belng activated and
to gain subsequent return of c¢ontrol.

Direct Sw1tch 1 Service request number 7

Reset RIR and give control to the address specified
by RIR. Qlregister contalns a 17 blt address of the .

RIR to reset, to..
| Direct Switch 2 Service requést number 10

Reset IFR, RIR and PLR and give control to the address
specified by RIR. Q register contains a 17 bit address :
-of the list. Where IFR RIR and PLR are stored.

~ Direct Return A Service request number 11,

Reset and return control to the primary exec routine
whose identity is contained in Q lcwer. Q contains
one of the follow1ng numbers.‘ L B

" to return to I/0 Director

" to return to Contents Supervisor.

3% Not Applicable

"4" Not Applicable ‘ '
5" to return to Common Subroutine linkage
"6" Not Applicable .

"7 to return to Real Time Control -

Direct Return B = Service request number 12

‘Deallocate last SMOD on current activity addendum and
return control to it. Used to return control to worker, etc.
without going through switch routine.

2-7

"PCP ' Service request number 13

Compliment of Push. Remove from chain and queue

for return of ecnirol ixe indicsted acitiviiy addendim.
Control will be returmed to requestor upon completion.
The Q register contains the address of the chain cell
for FIFO sequence or it is the address of the entry
in the chain immediately before the one the requestor

wants popped.
Initiate ISI I/0 Service request mumber is 14

This request comes from the formator with the Q
register containing the address of the SMOD with.&ll
parameters in it. These parameters include channel

- number, queue placement ete.

Initiate ESI I/0 “Service Request number is 15

Link Task Addendum. - Service Request Number 16

This request asks for the formed task addendum whose 17 bit
absolute address is contained in the Q register to be added
to the chain of task addendums. The new addendum will be
linked to the task addendum currently in control and all
. other links will be updated. :

‘De-link Task Addendum. Service Request Number 17

This request asks that the task addendum whose Job nnﬁber
is contained is in the Q register be removed from- the chain
~of all task addendums.
Switch Control Thread.Service Request Number 20

This request asks that tie 17 bit Activity Addendun address
in Q be switched to the task addendum address by the Job

number contained in-A upper, that the indicated addendum be
queued for control and an idle entry made to the dispatcher.

2-9

Task Contingency Interrupts.

Task contingency 1nterrupts are hardware interrupts that impact
only on the related task and do not prevent the rest of the

. system from continuing. These interrupts include:

I1legal Instruction

This interrupt is caused by t+°mpt_“ to execute a 00 or 7700
instruction code or attempting to execute a privileged instru-
ction. Standard systems action is to abort the offending

task. Tasks may, however, pre~establish an illegal instruction

~ recovery routine. If established, the routine will be eligible

for control under the offending activity addendum. Additional

parameters besides transitory registers will be available to
the routine.

Program Protection

This interrupt is caused by a program trying to read, store or
Jjump outside its assigned area. With the exception of the

‘1_informal segment call (which is explained in segmentation)

the task will be aborted with information about the violation
logged by the abort routine.

2-10

Timeout

Floating Poinv interrupt

Test and. Set Interrupt

2.7.2

Normal Hardware and Peripheral Interrupts

These interrupts usually result in.the execution of waiting
functions and generate a request for service. The servicing
of the interrupts will operate at varying priorities. They
may have been established from the requesting task, priorities.
of waiting functions, optimum peripheral usage or other system
considerations. Disposal of -the interrupt will usually result
in the removal of an activity from a delay queue and placed on
the central processor queue for subsequent control. -

2-12

Internally Specified Index Interrupts

Control of ISI interrupts is handled by two routines. ' The
ISI processor and the channel control block processor.

ISI Priocessor

The ISI processor is activated by the ISI interrupt and
runs with interrupts Lock out. If the interrupt was an
external interrupt, the interrupt word and both input

and output BCRs are save (these are not saved on a

monitor interrupt). The next function queuved on the
interrupted channel control block is then executed.

Upon completion of the execution of the I/0 commands,

the ISI processor checks to see if the Channel Control
Block processor can be run. .If it cannot, because of a
higher priority routine in control, the chennel control block
is marked as needing processing and a return to the point
of interrupt is made. The CCB must then be processed ‘
in it priority to the rest of the interrupt processing
before control can be returned to any worker program. If
no higher priority routine is in centrol, such as EST.
processors ete.,, the Channel Control Block processor will
be entered directly from the ISI processor after saving the
interrupt point.

Channel Control Block Processor

The Chamnel:Control Block processor is & routine that
operates logically non-interruptable and prepares the
CCB for the next execution and processes the previous
function and queues interrupt snalysis if necessary.

' Channel control blocks are used to control input/output
operation for all standard peripheral channels. One CCB
is set up for each channel containing standard peripheral
hardware, A table of addresses called, CCB table is
kept to be able to access the CCB by channel number. The
CCB is shown in figure 2.1-1. -

CHANNEL CONTROL BLOCK

Label Ref-Upper or Whole

XCCEXTINT
- KCCINBER
KCCOUTBCR
KCCWAIT
KCCITI?R
KCCPROC
KCCSWIND

KCCIOGCTL

KCCCEMCTL

'XCOINTADDR

KCCUCBG
KGCFUNG

KCCLLOCK

_{ o~ W W

10
11
12
13
14

15

Label Ref-Lower

R9 -0
{ IXTERNAL INTERRUPT STORAGE
29 A 0
{ IXPUT BCR AT EXT INTERRUPT
29 0
g QUTPUT BCR AT EXT INTERRUPT
29 WAIT FOR 15 {14 TEST EXT INT 0
TNTERRUPT INDICATOR INDICATOR
29 TYPE OF INTERRUPT 15 {14 QUEUED INTERRUPT 0
INDICATOR INDICATOR
29 15 114 o "0
CCB PROCESS IND. CHANNEL, LOCKOUT IND
20 SWITCHING 15 114 5 GHANNEL O
INDICATOR NUM
29 |28 18117 ADDR. OF LAST 1/0 0
. GROUP EXECUTED
29 28 18{17 ADDR. OF NEXT 1/0 0
! GROUP TO EXECUTE
29 18117 0
_ CEM CHATN
29 18117 0
INTZRRUPT STORE ADDR.
29 18447 0
_ UCB CEAIN
29 18117 ADDR. OF FUNCTIONAL 0
- CHAR. OF CHANNEL
29 ~ 18117 ADDR, OF LOGICAL 0
| LOCK TABLE
TFigure 2.1-1

KCCTEST
KCCIQUE
KCCLOCK
KCCCHAN

Explanation of Entries in the channel control block.

Word #

0

~

10

11

12

13

14

15

Used to temporarily store the external interrupt before
it is moved to the CEM. Not used on monitor interrupts.

Contents of the Input BCR at external interrupt time.
Contents of the Output BCR at external interrupt time.

Upper half is wait for interrupt indicator and is set or .
cleared depending on the exit used from the CEM. Lower

" half contains an indication of a by-passed I/0 sequence on

an external interrupt.

‘Upper half is interrupt type indicator

00000 = External 77777 = Monitor 40000 = Error (Time OUT,
- Parity errors)

Lower is used to indicate an interrupt has occurred when

the channel was logically locked out.

Lower half is channel lock out indicator and if set it
means the CCB has not been updated to accept the interrupt.
Upper half is used to indicate the channel has to be processed

~ before OMEGA goes logically interruptable.

- Switch indicator - if clear switch to analysis on high

priority, if set return to interrupted activity unconditionally.
Lower half contains the channel number.

Address of last I/O group executed used to control return
jy

to analysis. Bit 29, if set, indicates there was no previous
function, ' o
Address of next I/0 group.to execute. Used to execute

next I/0 sequence. Bit 29, if set, indicates there is no

new function to execute.

Channel exscutor module chain control word.
Address to move interrupts for device handler analysis.

Address of first unlt control block 1n the UCB 1list for this
channel,

Address of the functional description of this channel. Used
oy device handlers for function and interrupt codes, etc.

Address of Logical Lock List for this subsystem,

The CCB processor upon completion of updating the CCB
enters an interrupt support routine that check for cther
interrupts in order of priority and switches control to the

appropriate processor.

2-16

]

N

N

~-

I Interrupt Processing Routines

i

The function of the ESI Interrupt'Processor is to answer ESI
interrupts, identify the interrupting ESI, re-establish activity
on the I/0 channel, provide an additional communication buffer
if required, and perform any other functions as pre-directed -
by the Communication Handlers. The ESI Interrupt Processor is
distinet from, and has priority over, the ISI Interrupt Processor.
The ESI'processor-consists of three routines:

«The ESI Interrupt Answering Routines

+The ESI Interrupt Processing Routine

«The ESI Buffer Chain Control Routine

-7

Interrupt Answering Routine

Function

ENTRY

EXIT

Operation

The ESI Interrupt ..nswering Routine identifies
terminating ESI, i3-establishes activity on the
interrupting chanr:l and insures an orderly

path through the ESI Interrupt Processing Routine.

Entry to the inferrupt answering routine is from
the three ESI interrupt entrance locations.

The Toutine exits either to the ESI Interrupt

Processing Routine or to the point of interrupt.
(Exit to the point of interrupt occurs only
when the ESI or ISI Interrupt Processor has
been interrupted).

The ESI Interrupt Answering Routine operates

in the Executive Mode and with interrupts locked
out (the result of being entered from an interrupt).
Three distinct entrances are required because of -
the different manner in which the input monitor,
output monitor, and external ESI interrupts must

be handled initially.

The input and output monltor entrances must

capture the terminating ESI and then re-establish
channel input or output activity. If the address
contained in the terminating ESI points to a
previously defined buffer, the buffer is established
(see Section 8.3). The external interrupt entrance
need not re-establish the channel.

- The I'outj ne now increments the EST inter rupt

count in the CTM Control Block Table (Figure 2,1-3)
and ‘accesses the location in the table corres- :
ponding to the terminating ESI. This location
contains the address of the CIM Control Block

This Control Block, explained in Section 8.2.1,
contains control information for:the lins. The
section of the Control Block shown below is

used by the answering routine to store 1nformation
for the ESI Interrupt Processor.

INPUT MON. CNT. | OUTPUT MON. CNT.
EST INPUT BCW B .

ESI_OUTPUT BCW
ESI _EX, INTERRUPT WORD -

2-18

The Answering routine increments either the input
or output monitor count depending on the type of
interrupt. If the count was zero the contents of
the terminating ESI location is stored in either

of the next two words depending on type. If an
‘external interrupt occurred, the word on the line
is stored in the last word shown. The contents of
the terminating ESI enables the Interrupt Processor
to examine the chain links of the communication
buffer to determine whether .or not a new buffer
must be obtained. The input and output counts are
used to determine the number of interrupts on this
ESI wheh a buffer chain has been previously set up
by the handler. They are of value only when
extremely small buffers have been specified or when
an overload condition exists.

After storing the proper controls as described above -
-the Answering routine switches from the Executive
mode to the Worker mode, enables interrupts, and
passes control to this ESI Interrupt Processing
Routine. If the Interrupt Processor was already in
control when the ESI interrupt occurred, control is
returned at the point of interrupt.

ESI Interrupt Processing Routine

Function =~ The ESI Processing Routine functions to obtain or
release communication buffers from the core chain,
and informs the appropriate communication handler
- (via the QREF function) of the interrupt if prev1ously
instructed to do so hv the handler.

ENTRY - Entry is from the ESI Interrupt Answering Routine.

EXIT - Ixit is a return to the ESI Interrupt Answering
Routine for the release of the logical lockout
and for switching if necessary.

Operation =~ The ESI Interrupt Processing Routine operates as an
‘extension of the Interrupt Answering Routine. The
difference between the two routines is that the
Answering Routine operates with interrupts lockout
while the Processing Routine operates with interrupts
enabled, but in a logically non-interruptable mode.

Upon gaining control from the answering routine the
processor interrogates the indicated CIM Control Block
to determine the type of interrupt. If an input

monitor interrupt occurred the routine checks the

JInput Buffer Link of the last communication buffer

to determine whether or not a new input buffer is nesded.

2-19

If the 1link is not zero the Ansering routine has
already established the link as the new buffer.

If the link is zero the processor obtains from the
buffer chain an input buffer of the size stated in
the CIM Control Block and places the BCW in the appro-
priate ESI address and also in the Ipput Buffer Link
position of the Terminating buffer. The processor
then examines the input monitor section of the
tInterrupt Control! word in the CTM Control Block to
determine the next course of action. The possible
alternative are:

. QREF the handler indicated in the CTM Control Block
conveying the addresses of the.CIM Control Block and
the terminating buffer.

. Do not QREF the handler. This means that the
handler is scanning the buffer on a certain time
interval and is not interested in the monitor
interrupt.

. Send a "Look for Sync!" external function to the
CTM (applicable only into synchronous CTM!'s.
This option may be used in combination with
either of the above.

Upon receiving indication of an output monitor
_ interrupt the processor examines the Output Buffer
Link of the terminating ESI and the output monitor
section of the "Interrupt Control" word. The options
are: :

. Return the terminsatin utput buffer to the

-did i L L3N Vs [O1P W SR> §

buffer chain (would not e used if the same
message was being sent to more than one CTM).

« QREF the handler on every output monitor interrupt
conveying CIM Control Block and buffer.

. QREF the handler only when the Output Buffer Link
of the terminating output buffer is zero. Thus,
if the message 1s broken up into a chain of buffers,
the handler will be notified only when the last
buffer of the chain has iterminated.

Upon receiving indication of an external ESI interrupt
the processor will QREF the handler indicating the CIM
Control Block the interrupt status, and the contents

if the input ESI address at interrupt time. Buffer
chaining may be performed. As an option the "Interrupt
Control" word may specify that a WLook for Sync# function
be sent to the CT¥ at this time.

220

" After processing an interrupt or series of interrupts

(as determined by the count in the CTIM Control Block'

the processing routine clears the indicators in the

CTM Control Block and checks the interrupt counter in

the CIM Control Block Table for other ESI interrupts .
which may have occurred while the Porcessor was operating.
If no other interrupis have occurred the Processor returns
control to the Answering Routine for switching.

ESI Buffer Chain Control

The ESI Buffer Chain Control Broutine may properly be considered a part

of the ESI Interrupt Processing Routines since it must be accessed directly
by the Interrupt Processor for fast acquisition of input buffers. The
rewvine must also be available to the communication handlers for acquiring
and releasing ESI input and outputv bufiers. The handlers cannot enter the
routine directly and, therefore, must use an EXECUTIVE RETURN instruction.
"In view. of this dual usage of the routine, the description of this routine
along with the ESI buffering scheme will be given in Section 8.0, Communi-
cation and Real Time Control"

R=21

CIM CONTROL BLOCK .TABLE

MPLX CLT PRIOR

__INTERRUPT COUNT
29 18 17 0
00 00-01 PRIORITY CTM_CONTROL BLOCK
00 02-03
S | - g
.00 76-77 CTM_CONTROL BLOCK |
01 00-01
NN 76-77 . CTM_CONTROL BLOCK

FIG. 2.1-3

The CIM Control Block Table points to the core location of the
CTM Contrecl Block associated with the corresponding ESI. There is
one entry in the table for every ESI in the system. If there

is no CTM at that location or if the CTM has not been acquired,
the lower 18 bits of that location are zero. The first word of
the table is a count of the number of ESI interrupts to be
processed. The remainder of the table is arranged according to
ESI address. The correct location in the table is referenced

by subtracing the base address, dividing by 2 (right shift

one bit), and adding the table base plus one. The upper twelve
bits of eachtable entry is an increment to another location in
the table, The sequential arrangement of these increments defines
the processing priority of the ESI interrupt. s

2-22

2.1.2.3

Clock Interrupts‘and Clock Contro1

Time and clocks are controlled. by the tablé shown in
figure 21-2. The entries in this table are

Word Number

0 4 30 bit 24 hour clock maintained from the real
time clock interrupts. This clock contains a count
of the number of 200 microseconds intervals that
have elasped since the previous midnight or other:
arbitrary startying time to the time of the last

_ Real Time clock interrupt. :

1 Contains the last value set into the real -time
clock (current time of day to 200 s can be
caleniated vy whe difference of the RIC and the

. last RTC setting plus the value in word zero).
This value is set from the different between current’
time and the time to activate the next entry on tne :
list.

2 Contains a chain cell far all activities linked
to the time delay table. Last word of the addendwm

is used to hold the 24 hour time to reactlvate
the activity.

3 Contains a chain cell to link all activities to
be activated on gross time of the day clock.. Clock -
time is in the last word of the addendum. :

Note; Chains linked to words 2 and 3 are ordered
.according to relative'activation time.

4 Current date is maintained in word 4'in the form
YY DDD ' ,

=23 “

TIME CONTROL TABLE

B9 30 Bit 24 Hour clock 200 us granules
{Time at Last Timer Interrupt) :

29 18117 ‘

Zero Fill . Last RIC Setting
29 17 R

| | " Piming Chain Cell
29 7 -

. . . Day Clock Time Cdll
29 ' '
' DATE

Figure 2.1-2

2~21,

2.1.2.4 Syncronization Interrupts

2-25

2.1.3

Main Frame Contingency Interrupts

These interrupt routines such as parity error and power
loss will operate at highest priority until recovery
procedures are effected and it is determined that
the system can continue to run or a system abort is

necessary with its own recovery procedures.

_2-26

2.7.3.1 Parity Error Interrupts

2-27

2.1.3.2 Power Loss

2-28

2.2

2.2.1 C

Intérrupt Support Routines .

Interrupt support routines are thosé not directly related to
interrupt processing but are necessary for sw1tching and basic
control of the system. '

C.P. Queua Table Deflnltibn

Two tables are requlred to control the C .P. queue (see flgure L)
Each of these tables 1s 40, words. There is one entry for each
possible priority (0-36) and one for Exec functions to be run during
idle time (core compaction, Drum compaction, etc.). Each entry in
Teble A contains the 17 bit addendum address of the first task or
task fragment eligible-for control in the associated priority
group. - (These may be completed service requests, interrupted
aCu*v¢u1es, or programs just loaded and ready to run.) If the
contents of any entry in Table A is zero it indicates that there are
no actvivities eligible for control in the associated priority

group. Table B entries contain the 17 bit addendum address of the
last task or task fragment eligible for control in the priority group
indicated by the position within the table. Within the activity .
adcendum of the task or task fragment addressed by the entry in
Teble A is an eddress linking the first addendum in any priority group
Vo vhe next addendum in the chain, This linking continues until

the end of the chain of addendums 1s reached and this last addendum
address appears in the corresponding priority entry in Table B.

As task or task fragmenis become eligible for control, the entries
in Table B are used to get to the last addendum, the link is made
and tne entry in Table B is updated to point to the new addendum

eddress added to the C.P. queue chain., The Switcher is used to prov1de,
the transfer of control to the first eligible task or task fragment,

Ve GQLlR A TL Ciavd FELS R G 4

The Switcher inspects entries in Table A, selects the next candidate,
updates the entry in Teble A to the next addendum in the chain,

and transiers control to the selected activity. The exec functions
entered in the last table location are only selected if no task or
task fragment is eligible for control. :

2.2_1

Prioritymes : >
0 1st Eatry | 0
Priority @ .
1 ' 1st Entry 1
Zriority 1
2 If=g No Entries 2
this Priority
3 : 3
b /\/\/\/\/\ | d
. /\/\/g/\/\/\‘ "
33 | 5 33
34 | 35
1st Entry
36 3 Priority 36 36
1 1st EXEC FUNC
237 | 70 BE RUN FBLE 37

.READY QUEUE CONTROL TABLES

iou\\ INE L D LE

Figure 4

2.2-2

Priority §

Last;Entry

Priority 1

Last Entry

Last Entry
Priority 36

TAST EXEC FUNC
TO BE RUN DURING
IDLE

2,2,2

STORAGE MODULE CONTROL

Storage modules are used to contain register settings for a control
thread (activity) upon execution of Exec return or lost control and re-
enter point (LCR) due to interrupt.

‘Because of the need for storage modules to run tasks and tasks fragmeﬂts,

some of the available core storage will be dedicated to OMEGA for
storage modules., This core will be acquired from core allocation who
is respounsible for assigning and keeping track of all available core.
The number of modules needed is dependent on the systems configuration
end activities registered with OMEGA for running.

The core that OMEGA acqulres will be placed in an unallocated storage
mocule chain. EBach module will have a link associated with it (see
figure 1-4) that will point to the next available module in the chain.
The control table for this chain is shown in figure 1-5. The first
address held in this four word table is the address of the first avail-
able storage module. Each storage module then has the address of the
next available module. The last module has zeros in the link 1nd1cat1ng
the end o* the storage module chain.

In addition to the storage module chain, OMEGA will have one extra module.
Zach time that OMEGA leaves the Exec mode and allows interrupts and
service T'eques;,s the address of this available module will be held in

one of the seventeen bit Exec B registers. If a service request or an
interrupt requires the use of the module, it will be linked to the
addendun and a new module will be obtained from the storage module chain.
As service requests and interrupts are disposed of, the modules that

were assigned will either be put back in the storage module chain or will
be used as the available module OMEGA holds when glving control to the
activity of non-Exec mode service routine.

R.2=3

KSCNASG

.KSCNOUT

UNALLOCATED STORAGE MODULE

29

1817

UNALLOCATED LINK

RESIDUE

INFORMATION

If Unallocated link is
zerc, this 1s the last
available module. Non-
zero is the address of
next module in chain.

KSMODCHAIN
 KSCNLEFT

-~ KSGMOUT

KSCEFCHAIN .

: ﬂ L
" Figure 1-4
STORAGE MODULE CHAIN CONTROL
29 18(17 .
SMOD CHAIN CELL
O 3
29 , 15114
NOM of SMOD'S NUM of SMOD'S
1 1___Assigned CHAIN .
29 15114
NUM of SMOD'S ‘Max Num ever
2 in use in use
29 15114 .
Num of entries
3 in Free Core
Figure 1-5
Note: Last two words are used to gather statistical information

about SMOD uses.

2.2

Channel Control

Due to a number of enhancements in 49/ hardware operating under
control of OMEGA the peripheral device handlers will not be
allowed direct control of the input/output logic. The list
below includes some of the reasons necessitating this change.

1) Common interrupt locations for all channels
2) 3 ol ® Aahannel 7 + atam
2) Required use of channel select register

3) Peripheral may be attached to CPUﬁthrough I0C, normal
channel or both.

L) Non-standard device nandlers
5) Modularity within OMEGA

6) Increased speed of response at occurence of interrupt to
stbmit next function of channel,

Without direct control of I/0 the device handler will be required to
communicate with the routine that will control all input/output
operation, The communication will be performed through a list

of Input/Output Command Words. The format and description of the
command word is shown in figure X. The device handler will create
the command words, function words for the specific peripheral,

and buffer control words. This information will be passed to the OMEGA

subroutine responsible for all I/0 operation through register
4, Q, and B7.

Wnen control is assumed, B4 has the 17-bit address of the storage -

module wherein the registers 4, Q, and B7, containing pertinent
information, are stored. ' ‘

STORED in SMOD for use of CEM FORMATTER:

A Contains 17-bit address of the CHANNEL EXECUTOR MODULE
previously formed, after which present CEM is inserted in
chain. If Apg is set, negative control will be returned
immediately after queueing with no return of control upon
execution. '

Q@ Number of command words in upper and channel number of.
1/0 in lower.

B7 17-bit address of the word used by Device Handler; used for
priority number, request ordering number, etc. '

B7+1 INTERRUPT STORE ADDRESS
B7+2 First command word in list.

Format of EXEC RETURN instruction is 77540 0000

2.2-6

INPUT OUTPUT COMMAND WORD FORMAT

i 2_3 4 5 6

7

29

27126(25]24]23122 18117

DEF {(C|W I% T | COUNT

ADDR. OF FUNCTION OR,

BCW LIST

0

' Explanation of Fields

1) DEF.Bits 29-27--Definition Field 3 bits.~

2}

3)

L)

- 5)

000

001 Xot used.

010
o
100
101

110

11
C

1

0

1

‘Bit 26 Chain indicator 1 bit

Send terminate for channel logic.,

- Activate buffer with monitor.
Activate buffer without monitor.
Send external function word to peripherel.

* Read time and send external function put time in Input
BCR of 1nterrupt store,

Chain this command word with next command word
Do not chain this commend word

Bit 25 Wait indicator 1 bit
(Used only if chain bit is not set)

Wait for interrupt
Do not wait for interrupt - none expected.

Bit 2/ Input/Output indicator 1 bit

Output from CPU to'perlpheral
Input from peripheral to CPU .

'Bit 23 Test for external interrupt indicator 1 bit

Test for external interrupt before executing I/O
No test.for interrupt.

- If the test bit is set a test for external interrupt will be
preformed before executing the I/0 defined by this command
word group. If the previous interrupt was an external interrupt
bypass the execution of this I/0 command word group.

202"7

.6)

7)

COUNT

Bits 22-18 Count field 5 bits. Five bit count of the number
of entries in the list specified by the list address.

ADIR

Bits 17-0 Address of the list 18 bits. Absolute address of the
list associated with the command word. The lists may be functions
words for peripheral devices or‘buffer'control words. Not used

with terminate. '

2.2-8

2.2,3.1 CIANNEL EXECUTOR MODULE

The Channel Executor Module (CEM) is/a variable length core storage
area used to queue and execute requedt through the hardware function
-executor. The core storage is dynanically acquired from the core’
allocator. The CEM is constructed by the FORMATTER routine from
the commend word list and other information specified in A, A, and
B7. This module is then queued to the appropriate CCB for sub-
seguent execution of the input-output commands.

Explanation of entries in figure 5
. Word number

o - Contains a 17 bit linking address to
cnein all requests to the CCB.

1 Available for device handler use, e.g.
Priority number, request ordering number.,

2 INTERRUPT STORE ADDRESS - where external .
‘ . interrupt and the contents of the BCR registers
are stored at interrupt time.

3 bit 29 Must be set zero to test positive to
‘ ' distinguish end of module.

3 bits 0-14 Number of words in the following I/0
: Group. Used to control execution,
Includes I/0 instructions, EXIT Jump,
and associated data words.

4y5 ' Variable number of input-output instructions-
to be executed. All I/0 instructions must
be modified by index register B7. Address
portion is an increment from the number of words
entry to the associated I/0 Data word, i.e. If
word 1§ is associated with I/0 instruction at
word 4, the increment would be 00005. B7
would contain the address of the # words
entry.

6 : ~Exit instruction. This is a jump instruction to

leave the CCB. The exit jump is set up depending
on the type of processing required. ,

2.2-9

Word Number

9,10

11-14

x+2

x+3

Deta words associated with previous input-
output instruction, i.e., Function word, -
BCW, etec.

- Another group of I/0 instruction data words

and associated control information as
explained above. ‘

Second word in CEM-variable placement. 229,

is set ta 1 to test negative for end. Bits 0-16
contain a 17 bit addendum address to activate
upon completion of the I/0 functions.

last word in CEM éontains the count of the

number of words to release back to free core
" and the address of the CEM. TUse to release the
‘core upon completion of the I/0 sequence.

R.2-10

vt~ W N

o~

11
12
13
14

X+
X+2

X+3

CHANNEL EXECUTOR MODULE (494)

1
{29 18 117 0B LINK 0
29 DEVIGE EANDLER USE 0
29 INTERRUPT STORE ADDRESS 0
29 15114 0
2 No. of words in group
29 17 15114 0
I/0 INSTRUCTION _ 7 2880 x
29 17 15014 0
1/0 INSTRUCTION 7 22843 x
129 0
‘- EXIT JUX
29 f _ 0
DATA WORD ASSOCIATED WITH I/0
29 4 0
DATA WORD ASSOCIATED WITH I/O
29 : 15114 ' 0
.0 No. of words in group
29 . B 17 15114 0
I/0_INSTRUCTION 7 29878 x3
i 29 -0
i ‘ EXIT JUMP
29 0
DATA WORD ASSOCIATED WITH I/0
29 - , 0
' DATA WORD ASSOCIATED WITH I/O
29128 - "~ 18§17 ' _ 0
1 » ACTIVITY ADDENDUM ADDR. |
29 18117 . 0
CEM ADDRESS .

WORD_GOUNT

Group A
(example)

X =
Group B

(example)
X3 =3

The command words are formatted in a list - and necessary data and
information concerning the necessary operations are stored in the
registers. On occurence of the exec return instruction the registers
are stored in a storage module and the address of the module is
furnished in B4.

The first step is to get core allocated for the formation of the module.
A scan is performed on the command word list checking the number of
data words associated with each command word and the occurence of a
chain indicator to determine the total number of words necessary. The
routine then puts the number of locations necessary into Q and the
number of the variable length chain into A and makes an exec return

to get the needed core allocated.

Upon return of control, A will have the address of the first location of
the allocation. The routine then stores data into the module and begins
the formation of the module. The indicator bits in the command words
are tested to determine whether a terminate, an activate buffer, or a
send external function instruction is specified. The instruction is set
up ané the address and count of the data words is stored in the lower 23
bits of the word until it can be processed later. Command words are
examined and I/0 commands set up until the end of the first subgroup of
1/0 commands and the necessity of a wait or no wait test. A jump is set
up to either the wait or no wait location for use during execution. The
routine maintains a count of the number of I/0 instructions to determine
the increment to be stored in the lower of each I/0 instruction.

After the jump has been established, the routine retrieves the address
and count of data words from each I/0 instruction, masks in the necessary
B7 indicator, inserts the increment, and links the data to its associated
I/0 instruction. It continues to format the subgroups until the supply
of commend wrods becomes exhausted.

It then sets a one bit in 229 in the first location after the last data
word to signal the end of instructions and stores the word count and

CEM address in the last word. The routine then makes a check to see

if the command word routine wants return of control. If it does the’
activity addendum address is set to zero. If not, the activity addendum
address is retrieved from the SMOD and stored in the next to last

- address. An exec return gives control to the CEM initiator where the
module is queued or 1nmt1ated dependlng on the condition of the CEM
chain. : ‘ C -

2.2-12

General Description

The general sequence of events required to perform an

input/output *equest are described and illustrated as
follows:

« An operating activity performs an EXEC return instruction
‘specifying a function code and with B7 set to the address,
relative to lower lock limit of requestor, of the packet
describing the request.

. Upon receiving the EXEC return interrupt a storage module
is allocated and control passed to the I/O Director.
The I/0 Director retrieves the file code from the packet
end locates the cell in task addendum for the code.

« If the request is for random access storage, the assignment
cell contains the address of the storage list from which -
the logical drum address is mapped to the channel address.

" Once channel address is formed it is checked for end-of-file,
lock list options are performed, and the address of the unit
control block retrieved. If the request was for a unit
assignment, the file code cell contains the address of the
Unit Control Block (UCB) directly.

. Upon determining UCB the I/0 Director retrieves free core to
use as work area and switches control to indicated device
hand}er. Device handler forms the requests into work
storage, determines where on the channel queue the request
should be placed to optimize channel usage and passes control
to channel queue control which enters the request on the
chain. The request will subsequently be processed by the
Hardware Function Executor (See Section 2.2.3).

. The Hardware Function Executor gains control from an I/0
* interrupt which activates the following sequence of events.
1) capture interrupted location and store contents of .
channel; 2) execute next function of the channel; 3) queue
storage module for completed request which will eventually
reactivate device handler; 4) ready next queue request for
execution; 5) return control or queue interrupted program
as dictated by channel option. '

. Upon completion of the function by the Hardware Function
Executor, the device handler's analysis phase is automatically
schedule and activated.. The status word is -analyzed and
reformated, and control returned to I/0 Director. The I/O
Director releases free.core obtained for request, clears. any
indicated lock list, and requests the return of control to the
requesting act¢v1ty.

3,11

3.1.1

Pointer from
task add. for

file code ADDITIONAL 3 WORD"

Rendom Access Storage

When ‘random access storage had been assigned to a file

code the list is required to contain descrlptors of the
file.

DRUM ADDRESS

Word 1 Access storége from
2 'L CH] # OF WORDS last assignmént
3 _.DRUM_ADDRESS
4 | CH} # OF WORDS ~ Describe one
5 : | LINK TO UCB

. continuous area

DESCRIPTORS OF
CONTINUOUS AREAS
N [| LINK TO UCB

Drum address is relative to beginning of'channel, # of

words are the number of continuous cells from drum address.
"Ch" is the channel number of subsystem, and "Link to

UCB" is the address of the Unit Control Block describing
the device handler.

Words 1 - 2 Describe random access storage assigned but
rot required by the request. This area will
. be used to satisfy any expansions of the file.

Words 3 -~ 5 Describe a continuous area of mass storage

‘assigned to the file. " Additional entries
may be present to describe areas of mass
storage which are logical but not physically -
adjacent to one another. Last descriptor
- indicated by 22%%h set to (1).

301“2‘

3.1.2 Unit Control Block (UCB)

The UCB contains hardware and control information used
by the I/0 Director and the device handler.

HANDLER RIR

UGB LINK

P-TYPE [CH/CH/UNIT
| CCB ADDRESS

Word O
p
2
3
4 LENGTH OF UCB # OF REQUESTS
5
6
7

CORE MOD. SIZE _|TSET LOCATION
| PUSH/POP_QUEUE

. Word 0 - contains RIR setting of device handler and
is the implied starting address. ‘

-

/0 channel. .

1 - contains link to other UCB's on the /

2 - contains peripheral type and channel and unit
nunber. : :

3 - address of the Channel Control Block (CCB).

4 - number of words contained in the UCB and number
of I/0 requests currently queued to the CCB for

this unit.

5 - minimum core module obtained by the I/0 Director
for the handler and "Test and Set" location used
by the I/0 Director to lock out the unit.

-6 - PUSH/POP Link for queing requests to the unit.

7-8- veriadle comirol izformation used Oy the hardliers
(see Section 3.3 for individual handler usage).

3.1-3

Seqyue nee

of aw Lo vepuesT
Opevulivng Aty
veguests /0
. .
SEr Wil

Sevvice - i < Gucued
Repurat == “>‘! wmodusie r- Couwtvol / .,
L |
i Z/6 Dwee tovy

e

B R L

——eamr oy

g~

Stovagd

Volu daite Functivs

| Code Locoee fite
l i

i Code cell

Fask Addew

i

H
=ﬁdvﬂbac§u¢tf

‘ T

P

H

Tas K

N

.“ LT R=

Locose 2 Vabidoto
> Pexve addvess &
Peufovw Locik

| to houdlew

Optipus §
i | . ‘
% Y
| O0&uivm WOV S e 8 % i6w l |
. (%Sto\laﬁ;m’-’—cca':,ré“ "5(‘ i""l vogu ‘ §
, ~ 4 ! c .
TUHCE & Swisdy : P kse i
4 § } i ! i
£
i
5

. L__/\‘ ¢
Lo— l 4.
Device | Nondiun i ‘
/o [.
F?CQ&\] \'ozw-:.‘: ’ ‘ f/o . i 3 .q, p i F:} 3. !
. B St Gueay -~ fuwcbion = =5 Fpeliov Uuckive |
For excaiov *\ Coutvol : fov r Sov Cue %
: . chonned BRSNS t‘jy's\;
1‘ s l
Device Wovdier |
| Tntove g0t }
¥ .:' Y’}: HMoveihuora c/e Chavael |
% /’ o i < frecbiow - Lyterwinl = ™| Coucvui
o DYy) \&ECufoy. N - d e Bloede s e}
—_—

Figure 3-1 -
3.1

3.2 I/0 Director

The I/0 Director consists of.three distinct routines: a pre-
‘processing routine for the device handlers, a console handling
routine, and a logical lock routine for mass storage.

3.2.1. Preprocessing Function

Purpose: To perform functions which are common to all
handlers and coordinate and control the flow
of I/0 requests to the handlers. ‘

.Entry: One entry is from a worker program through an’
Exec call to the Service Request Routine. Another
entry is from the Device Handler at the completion
of an I/0 request. Entry parameters are:

*"A" containsthe Activity Addendum address

+1Q" contains the lower of IFR at interrupt
time (function code). If Q is equal to
zero the entry is from a handler; if Q
is not equal to zero the entry is from
a worker program.

*When entry is from a worker program the address
(relative to PLR lower of the worker) of the
associated parameler packet if required, is
contained in the B7 position of the last Storage
Module linked to the Activity Addendum.

*When entry is from a handler the address of
the associated Unit Control Block is contained
in B5.

Exit: One exit is to the Device Handlers for execution
of an I/0 request. Parameters are:

*B contains the address of the Storage Module
associated with the request.

*B5 contains the address of the appropriate UCB.

*Within the Storage Module indicated by B4
other parameters are stored; the lower of the
IFR position contains the function code; the
B7 position contains the absolute address of
the parameter packet; the word following
the Q register position contains the address
of the core area obtained for handler use.

Another exit is to the worker program at completion

of the I/0 request. Parameters indicating the
status of the request have been placed in the

3.2"'1

"AY and "Q" positions of the Storage Module.
These values will be contained in the A and §
registers when the worker regains control.

Operation:Request Initiation Phase

Upon gaining control form a worker program, the
I/0 Director loads B4 with the address of the
Storage Module contained in the Activity Addendum.
This parameter is used both by the director and
handlers. The function code identifying the-
.operation to be performed is then interrogated °

~ to determine the location of the file code (may
be in B7 or in the parameter packet, see Section

3.5.2). ' :

After obtaining the file code the Task Addendux
location corresponding to the file code is accesaed

~ to determine the validity of the file code. If
the file code is invalid a "No Assignment" B
(LPP0E-00810) status code is placed in the A-register
position of the S-mod and control is returned to the
worker progranm.

A valid file code will yield the address of either
a Unit Control Block or a Random Access Storage
List. This value is then entered into B5 to be
used by both the director and the handlers.

If the file code pointed to a Random Access List
and ‘the function code indicates rewind, rewind
with interlock, write end-of-file, or erase
operation, control is returned to the worker with
a normal completion status code in the A-register.

If a buffer(s) is required for the operation, the
buffer limits are compared to the PLR value that

was in effect when the I/0 request was made (PLR
value in the S-mod). When the buffer is found

to lie, in whole or in part, outside the PLR setting,
the request is aborted and control is returned to

the worker program with an "Incorrect Parameter"
(LPP00 -PPPP2) status code in the A-register.

At this point & branch is made if all buffers
specified pass the above test; when the file to

be referenced is found to be a random access fils,
the director checks the logical lock lists

(Section 3.2.3) if applicable, and exits directly
to the Mass Storage Handler. When the file code
points to & unit oriented device further processing
is required by the director. ‘

3-2"2 .

The I/0 Director tneu, for unit o*lented devices,
calculates the size of the core module required

by the handler to set up the I/0 commands. The
size 1s based on the number of buffeis contained

in the request packet (list). If a list type
vacket (see Section 3.5.2) is not involved a
"fixed" size is used (this "fixed" size is variable
by handler; the value is held in the UCB). The
size of the area to be obtained is then stored in
the S-mod (upper of the B3 position).

Next a check is made to determine whether or not

the unit is currently busy. This check is made
using the Test and Set instruction on a location
within the UCB. If the unit is busy the requesting
activity is taken out of control and queued through
a location in the UCB. Requests (activities) queued
in this manner will be executed in a FIFO seqa°nce
when the unit becomes available. :

If the "Test and Sei" passes,a core module of the size
determined above is obtained from the free core '
chain. The address of this area is then stored in
the S-mod (both the beginning address and size must
be retained in order to release the area subsequent
to completion of the request). A direct switch to
the handler indicated in the UCB is then executed.

Request Return Phase

After completion of the I/0 requests, the handlers
return control to the I/0 Director. Again a distinction
is made between random access and unit type devices.
Upon return from a random access handler, the director
checks the logical lock lists, if applicable, and
returns to the worker program. However, upon return
from a unit type handler the director must perform
certain functions before returning control to the

worker.

The director checks the unit queue to determine if

any requests have been queued while the unit was

busy. If not, the director releases the core obtalned
for the handler and reuurns to the worker program.

If any recuests have been gqueued to the unit the
director examines the core requirement of the next
request to be executed to determine whether or not
the core area of the completed request will satisfy
the area required by the next request. If so, the
area is itransferred to the next request; if not, the
area is released. The next request is then removed .
from the unit queue and placed on the ready queue and
control returned to the worker program.

3-2"3

3’2.2

Console Handier

The Console Handler consists of two routines. One routine

is a part of the I/O Director and functions to queue output
messages to the console. The other routine functions to
unpack and initlate output, and to accept and assemble inpu*
from the console. The two routines both access certain control
locations.

3.2.2.17 Console Queue Routine
Purpose:

The Console Queue Routine accepts message blocks,
assigns Delay Numbers, if required, and queues the
message block to the console handling routine. Tuae
queue routine is independent of type of console.

Entry:

The Console Queue Routine is entered from the Console
Control Routine (see Section 6.0). Entry parameters
include the address of the message block and the
function code. The absolute address of the message
block is contained in the B7 position of the allocated

. S-mod., The function code, contained in IFR lower,
determines the type of operation.

Exits:

The routine exits to the Console Control Routine
when the message has been queued or when the Delay
has been answered. ’

Operation:

The routine first tests the function code for validity;
if invalid, control is returned with an "incorrect
parameter" (4PPOF-@Ppg2) status in the A-register.
The parameter packet is shown below:

ENT*B7 Vo
EXRN Vi

where: V. 1s the absolute address of the message
V1 is the function code:
19181 - queue message and return control
1#1¢2 - assign delay number and queue
message. Control is returned when
the delay is answered.

3.2-4

DELAY

tEan
LA

{QUZUE LOCKED?

CONSOLE QUEUE ROUTINE

Z6NCTION CODR QUEUZ RELZASE
CALL FOR A MESSAGE QUEUE
DE#JAY BLOCK LOCK
P —— RELEASE | |SET ILLEGAL .
AVATLABLE DELAY LocK STATUS
NUMBIR .

5 DIRECT
; RETURN
| (TO CALLING

w's - ROUTINE)
L oray 1O RELEASE g PLACE ACTIVITY\
FOUXD? QUEUE ON INACTIVE -~ A\\
? LOCK QUEVE N/
¥

{ STORE ACTIVITY

| ADDENDUM IN

| DELAY TABLE

£

! STORE DELAY

§ NO. IN MESSAGE

| BLOCK

;

|

— — PUSE
Sz RELEASE ZQUEUE iCTIVI\
| MESSaGE ;| QUELE UNTTL DELAY Ne— — — =
1 I | _{_
VEXIT7

3~2"5

\ // DIRECT RETURN
Y, (TO CALLING ROUTINZ)

The message block indicated in B7 must have the
following format:

| Console Queue Link

0

1 No. of Words|No. of characters
. 2 : .

. MESSAGE

The above message is formed by the Console Control
Routine in response to a literal in the requesting
program. Word @ is a chain cell used for linking
the message to the console queue. The lower of’
word 1 contains the number of characters in the
message. The upper of word 1 contains the number
of words in this message area (this value need not
have any connection with the number of characters,
it is used to release the message area to free core
. when the complete message has been unpacked). Words
2-N contain the output message.

If the function code indicates "queue and return"

. the message is queued to the console output queue

and control is returned to the Console Control Routine
at the location following the packet.

If the function code indicates that & delsy number
should be assigned, the routine chooses an unused
number from the Delay Table showg on the following page
~and places this number in bits 2 bo_ 229 of word 1

.of the message block. The activity addendum address

is placed in the Delay Table, and the message block is
then queued to the console output queue. The activity
is then placed on an inactive queue until this delay
is answered. :

The Delay Table is used to associate a delay numbér

with & particular activity and to indicate those
numbers currently in use.

302‘6'

Delay No. 01

T%GTIVITY ADDENDUM

FACTIVITY_ADDENDUM

1

The Delay No. is implied by .position in the table. When
the number is in use the associated activity addendum
address appears in the corresponding table position. When
the number is unassigned its table location is zero.

3.2.2.2

Console Handling Routine

Purpose

The Console Handling Routine is the interface between-
the Console Control Routine and the hardware. The
routine unpacks and initiates output to the console,
and accepts and packs input from the console.

Entry and Exit

Entry to the routine is from various points within '
OMEGA when output is inactive on the console channel,
Fxit is made to the point of entry.

Output Operation

Upon receiving control the routine examines the
console output queue. If the queue is empty the

- routine exits. If the queue is not empty the

following operations are performed:
*The first request (FIFO) is removed from the queue.

*The message is unpacked and placed in the routine's -
output buffer.

*If a delay number is indicated the number is added
to the output buffer in the form npxxn,

3.2

*The output buffer control word is set up and

output initiated on the console channel.

*A "control thread" is established so that the
message area may be released to the free core
chain.

*Control is returned to the Console Control Routine,
or, if a delay number is assigned, the activity
is queued through the PUSH$ operator.

Input Operation

When output is not active the handler will accept
input from the console. Answers to messages with
delay numbers are restricted to ten characters
exclusive of the delay number., The first ten characters
entered will be returned in the AQ-register'(the
delay answer is intended primarily for positive/

" negative type response). All other entries will be
assembled in free core and passed to the Console

~ Control Routine for interpretation. The routine
ultimately receiving the message is responsible for
releasing the message area to the free core chain. -
The input message will have the following format
when given to the Console Control Routine:

No. of Words [No. of Data Char.

INPUT DATA

The "No. of Words" is the length of the message area
to be released to the core chain.

Cetain conventions and control characters have been
established for console input. These are delineated
below: .

*An input message must be initiated by a "carriage
return" (Fieldata code 04). Any character entered
before the carriage return will be ignored. The
carriage return will cause two line feeds and a
carriage return to be sent to the console.

*Each character will be sent to the console printer
as it is entered. If an input character does not
appear on the console printer, it has not been
recognized by the handler.

3.2‘8

*The maximum number of characters per input
message is 32 decimal.

*The Fieldata code 77 (A) is used as an erase
code. Entering this code will cause the last
¢haracter entered to be deleted from the message.
Two erase codes in succession will cause the

last two characters to be deleted., Three ersse
codes in succession will cause the entire message

tc be deleted.

'The Fieldata code 57 ((9) is used as a stop code;
it signifies the end of an input message.

*The carriage return (04), line feed (03), erase
code (77), and master space (00) if entered, will
not be placed in the message buffer and will not
count against the maximum message size. All
other characters entered will become part of the
input message.

*Characters placed in the input message will be
left justified as they are entered. Unused
character positions of the last word (following
?he\"stop code") will be.cleared to master spaces
\00)j .

*The "initiate input" character (carriage return)
may be entered during a console output operation.
It will be recognized as soon as the output
operation has been completed.

3.2-9

3.2.3 Logical Lock of Mass Storage

Logical Lock is an element which may be collected as part

of the I/0 Director. Logical Lock pertains only to mass
storage files. If a lock function is received for a unit
device, the operation will be performed as if given without
lock. When Logical Lock is included in the director, mass
storage may be accessed both with and without loek functions.

Read, write, and search requests may be given both with and
without lock. Functions without lock are provided so that
time is not epent searching the lists when the lock condition
is unimportant. The following interpretations are placed on
the functions:

*Read - The lock list is not checked. The read is performed
regardless of whether or not the area is locked. The
area read is not placed on the lock list.

*‘Read Lock - The lock list is checked. If any part of the
area to be read is locked the request is delayed until the
area has been released. When the area is not locked- the
read is executed and the area is placed on the lock list,

~ *Write - The list is not checked. The write is executed

and no release is made., If the area is locked it remains
b nrﬂtnd.

2 AT

*Write Release - The lock list is checked. If any part of

the area being written is within a locked area, that complete
entry (or linked entries) is removed from the list. When

an area is to be released without actually writing into it,

a Write Release may be given with the address within the
locked area and the number of words equal to zero.

;Search - The list is not checked. If a find is made the
area is read regardless of lock condition.

*Search Lock - The list is checked when and if a find is

made. If the area is locked the request is delayed until

the area has been reieased. When unlocked, a read is performed
at the find address and the area read is placed on the lock
list. If a find is not made the area is not entered on the
list.

Operation

When the I/0 Director detects a request for a mass storage file,
the function code is tested to determine if it is a lock
function. A "read lock" function will cause the I/0 Director
to search the lock list. If any part of the area to be read
falls within an area comtained on the list, the activity is
queued until the area has been released. When the area to be

3.2—10

read is not found on the lock list the area is then placed on
the 1list and control given to the mass storage handler for
execution. The area will be locked regardless of the results
of the read operation.

A "write release" function is given by the I/0 Director directly
to the mass storage handler. When the director receives

control from the handler at completion of the write, the Jock
list is interrogated. If any part of the area written lies
within a locked area, that area is removed from the list. At
this time the queue of activities inactive because of a "read
lock" request is checked to determine if any of these requests
may now be executed. If so, the activity is removed from the
inactive queue and placed on the ready queue.

Lock Lists

A lock list is maintained for each mass storage subsystem. The -
lists consist of four word entries chained together. Normally
there will be one entry per locked area. If, however, the area
to be read covers two or more ncncontinguous areas of the file,
multiple entries must be made. The four word entry is shown
below.

| 17
Word 0 QUEUE LINK
1 | BEG. ADDRESS OF LOCKED AREA
15
2 | LINK NO. OF WORDS
: 15
3 [JOB NO. " | ACTIVITY I.D. (B6)

Word # - Chain cell linking all entries on the lock list.

Word 1 - Beginning address of ldcked area. The address is
a subsystem logical address (physical address of
drum subsystems). The lists are maintained in
order of ascending address.

Word 2 - "No, of words" is the size of the locked area for
this entry. : :

"Link" is a number assigned to identify all multiple
entries which are the result of locking non-contiguous
file areas. If the link is zero this is not a
multiple entry. :

3.2-11

Word 3 - "JOB No." of activity locking this area. Used
to delete entries which may be present when the
task terminates or is aborted.

Activity I.D. is the identity of the activity

locking this area. Activity I.D. is contained
in B6 when the request is made. This identity
is used to delete any entries which may be on

the list when the activity terminates.

.3.3 Device Handlers
3.3.0 General Description

Device Handlers are divided into two broad catagories -- Unit
Device Handlers and Mass Storage Device Handlers. The main
distinction between the two types is the hardware address
calculation required in the Mass Storage Handlers. Magnetic
tape, card, printer, and 1004 handlers comprise the Unit
Device Handlers. Fh-432, FH-880 Drums, and FASTRAND I are
classified as the Mass Storage Handlers. All Device Handlers
are interruptable and re-entrant. Each handler has an
Initiation Phase. and an Interrupt Phase.

Initiation Phase

" The Device Handlers are entered in-the Initiation Phase from
the I/0 Director. The addresses of the Storage Module and
The Unit Control Block are contained in B4 and B5 respectively.
When a parameter error is detected, the Initiation Phase
exits to the I/0 Director with the appropriate status code in °
the A-register. If any I/0 instructions are to be executed
in response to the packet, this phase exits to the Hardware
Function Executor. ‘

Interrupt Phase

After the Hardware Function Executor has initiated the functions
or series of functions and all interrupts have occured for a
particular I/0 Module, control is returned, at the activity
priority, to the interrupt phase of the Device Handler. The
hardware status code and the buffer control registers

are stored, for external interrupts, by the Hardware Function
Executor. Exit is made to the I/0 Director to list the activity
on the ready queue or to the Executive to call a recovery routine
from the system mass storage.

Unit Device Handlers

In the Initiation Phase, the Unit Device Handlers will check
the function code and buffer control word to determine if they
are appropriate to the particular device. If the parameters

" are found to be correct, the Device Handler then proceeds to
set up the I/0 Module w1th the information required by the
Hardware Function Executor (the format of the I/0 Module is
described in Section R.2.3). After setting up the I/0 Module,
the handler scans the channel initiation queue to determine the

most advantageous position for the request. Exit is made to
the Hardware Function Executor with an indication of where the
module should be queued.

‘3-3.1,0"1

Upon regaining control in the Interrupt Phase, the Unit
Device Handlers examine the hardware status word(s) placed
in the I/0 Module. If the operation has been successfully
completed, the status code is placed in the A-register, any
supplementary information is placed in the Q-register, and
exit is made to the I/0 Director.

Functions that could not be performed (Servo rewinding, etc.)
are reinitiated by setting up the I/0 Module and again placing
‘the module with the Hardware Function Executor. If error
recovery is necessary, the appropriate recovery routine is
called from mass storage by the Device Handler and operated

as described in section 3.4.1.

Mass Storage Handlers

In addition to the above procedures the mass storage handlers
must calculate the physical address of the request from the
logical file address contained in the packet. The logical
file area referenced may cover non-continguous areas of mass
storage unit(s); in this case the handler must generate a
separate function and buffer for each physical area.

3-300-2 B

3.3.7 Magnetic Tape Handler

- Purpose:

Entrance:

.Exit:

To Formaﬁtef:
To I/0 Director:

'BY7 -

To transform a magnetic tape I/0 request into the
d651gnated taps operation, analyze the external
interrupt(s) wiich occur from this operation and
notify the I/0 Director of the results.

Entrance to the Magnetic Tape Handler is made
through the I/0 Director. Parameters are conveyed
through B registers and the Storage Module set up

at I/0 request time. Parameters upon entry are:

BA - Address of the Storage Module set up at
- 1/0 request time.

B5 - Address of the Unit Control Block of the
magnetlc tape unit marked for an I/0 operatlon.

Word 168 of the Storage Module - Address of free
'~ core to be used by the Magnetic Tape Handler
when setting up command words for executing

the designated I/O

Exits are made by the Magnetlc Tape Handler to the

Formatter for execution of the designated I/0, and

AL delna
the I/0 Director to report thé results of ths

executed I/O

Parameters are conveyed in the- A, Q and BY reglsters
as spec1f1ed by the Formatter.

o Parameters are placed in the Storage Module

positions as follows:

Contains the octal number of the last data block
correctly passed over, backward or forward, by the .
Magnetic Tape Handler if numbered data blocks have
been requested by the user.

The code designating the status of the I/0 operation
performed. See chart and notes-on pageS'é.and 7.

The number of words correctly.read or wrltten in

‘the I/O operation. See charts and notes on pages

6 and 7,

3.3.941

3.3.1.0.

3.3.1.2,

All magnetic tape I/0 requests will be serviced by one Magnetic
Tape Handler. Functions applicable to magnetic tape will be
serviced identically on all subsystems with the exception of
READR on Uqlse*vo 3C/4LC, which is serv1ced &8s a backspace block.

If designated through the ASSIGN statement, an octal number will

be placed on each data block written numbering sequentially with

load point designated as zero. The number of the last data block
successfully passed over during the I/0 operation is- returned to

the user in the B7 register. An out of sequence status appears

"in the A register as @@P11*@@@XX (XX = I/0 status). The current .

block count for each unit is maintained by the Magnetlc Tape
Handler in the appropriate Unit Control Block.

After executlng an I/0 packet, the Magnetlc Tape Handler notifies
the I/0 Director of the success or failure of .the operatlon. No
repositioning or error recovery is attempted by the Magnetic Tape
Handler, but is accompllsned by a separate Error Recovery Routine
(see Section 3.4.1).

Operational Mode

A1l information influencing the way magnetic tapes are to be
written or read is stored or maintained in the Unit Control Block'
for that particular unit. This information is put there through.
the use of the ASSIGN statement and maintained by the Magnetic
Tape Handler when necessary. Two words, KUCB1 and KUCB2, words
7g and 1fg respectively are used to hold this information.

KUCB1

A bit is set in this word to designate numbered data blocks
to be written, the "Noise Constant" to be used on this
particular unit when applicable is stored here and the
initialization constant specifying density, parity, etec.,
to use when writing and reading on this particular unit, is
contained in this word.

- Numbered Data Blocks

Bit 2/9=1 of KUCB1 designates each data block to be
written with an octal number making up the first word of
the block. These data blocks will be numbered sequen-
tially with load point designated as zero.

This number is written with a GWRITE operation and read
with an SREAD operation from the Magnetic Tape Handler,
hence, the number will not be reflected in the data
used. The number of the last block correctly passed
over, reading or writing, backward or forward, is
returned to the user in the B7 register. 4n ocut-of-

‘3.3;01-2

sequence status is indicated with an 17 in A register
upper. REWIND or REWINDI result in the B7 register

being returned as zero.

Noise Constant

Bits 20 - 21 are used to hold the "Noise Constant!
for a specific unit when applicable (Uniservo 3C, 4C,

. 6C, 8C). All blocks read or moved over ceusing an
error status, the length of which is less than or egual
to the "Noise Constant" will be considered as forelgn

" material on tape and disregarded.

Initialization Constant

This constant specifies the density, parity, etc.,
which should be used when reading or wrltlng tapes on
this particular unit. This constant is only applicable
to Uniservo 3C, 4C, 6C, 8C subsystems. Values of this
constant are listed.below.

If numbered data blocks and a "Noise Constant® are
specified, they will be included within the constant.

Birary 200 ppi | L e
Binary Coded Decimal 200 ppi o ¢32¢¢*5¢¢¢¢
Binary Coded Decimal Translate 200 ppi".‘ | @#3210%54L000

| Binary 556 ppi , : " i Ppge2000p

' Binary Coded Décimalv556 ppi |) L Jubdlil J S0 ufu]
Binary Coded Decimal Translate 556 ppi L ge1g+6Lpeg
Binary 800 ppi - - gag2px 300008
Binary Coded Decimal 800 ppi | | gr220% 10009
Binary Coded Decimal Translate 800 ppi #2230% 74800

| ﬁinary 800 ppi.9 Channel (Uniservo 6C, BC‘on;y) | PEPos* 32008 E

KUCB2

The upper half of this word is used to maintain the octal.
number of the block of tape just passed over on this
‘particular unit when numbered data blocks are designated.
This number is maintained by the Magnetic Tape Handler.

3'3-1“_‘3

3.3.7.3. Function Execution

Applicable Functions

The fesulting operation of I/0 packets marked for execution
by the Magnetic Tape Handler is described below.

One block of data, not to exceed the word count,
will be read in the forward direction into the
area designated by the buffer base. 'A word count
of zero will result in a move forward, without
data transfer, of one block.

One block of data, designated by the word count
and buffer base will be written on tape. A word
count of zero will result in the return, of an
1llega1 parameter status.

One block of data, not to exceed the word count,
will be read in the backward direction into the -

‘area designated by the buffer base. A .word count

of zero will result in a move backward, without
data transfer, of one bleck.

The appropriate hardware end-of-file mark will be

recorded on itape.
Tape will be positioned at load point.

Tape will be positioned at load point with the
designated unit in an interlock condition.

A fixed area of tape will be erased.

One block of data will be scatter-read into the
areas dictated by the word counts and buffer

. bases. desighated in the LIST packet. Word counts

of zero will be ignored.

One block of data will be gather-written into the

‘ areas dictated by the word counts and buffer bases

READ -
WRITE -
READB -
WRTEOF -
REWIND =
REWINDI -
ERASE = -
SREAD -
GWRITE -
MREAD -

designated in the LIST packet. Word counts of

~zero will be ignored.

Sequentiéi‘blocks of data, dictated by the word
counts and buffer bases of the LIST packet, will

" be. read or passed over. Word counts of zero will

result in blocks of data being moved over without
data transfer.

3314

' Method of Execution

Upon entry, the Magnetic Tape Handler retrieves the function
code and I/0 packet address placed in the Storage Module.
Through examination of the I/0 packet the function code, it

can be determined how many command words, buffer control

words, and buffers are needed to execute'the designated I/0.
‘These parameters are then formed in the free core assigned, the
address of which is contained in word 168‘of the Storage Moduls.

After setting up the free core with parameters for I/0 execution,

an examination is then made of the Unit Control Block to determine
which function is needed for the I/0 operation. This function is
dictated by the type of subsystem the unit is on. After this function
is formed, it is placed in the free core and an Exec Return is made
transferring control to the Formatter for I/0 executlon.

Upon re-entry, the I/0 has been executed and external interrupt(s),
have been stored. After examination of these interrupt(s), the
Magnetic Tape Handler determines whether the I/0 has been successfully
completed. If so, the appropriate status is placed in the A register
position, the number of words transferred, if any, in the Q register
position and the number of the last data block passed over in the B7

' position, if applicable, of the Storage Module. If errors have
occurred during I/0 execution, the Magnetic Tape. Error Recovery
routine is called for completion of the I/0. Control is then

returned to the I/0 Dlrector through an Exec Return. .

'30301"5

\\\\\Eife notes for AX, | e y-
' QY explanation). e ‘
| - -
STATUS g =
. . m
: Py m €3]
o = | = |8 | 8 | &
. O Q &) = Fry -
- o . o i 1
S NN NN
B g5l 2 = g | g
. = Fey H % M =
READ T |AF,QT | A1,Q7 | A2,Q2 | A3,Q0 | A4,QF
WRITE E AZ,Q1 | A2,Q2 | A3,Q¢ A5,Q1
READB T Q1 | A1,Q1 | 42,02 | 43,08 | AL,QF | £5,q1
WATEOF - 27, [22,2 | 83,8 o
REWLID Ti,& 52,2 | 3,8 "
o) .
REWLNDI AB,QF - T A2,Q2 1 A3,08 ,
ERASE - Ag,08 | 42,Q2 | A3,Q8 145,08
SREAD AF,Q1 | A1,Q1 | A2,2 | 43,8 | AL,Q8 |
GWRITE ~ AZ,Q1 A2,Q2 | A3,Qd 45,Q1
533 ~TET FRER, -
MREAD - AF,Q1 | A1,Q1 | A2,Q2 | A3,Q1 | A4,Q1

A Register value of thé Stofage Module

s - BB

A1 - geppo-gppx

X = Magnitude of Frame Count
A2 - LPgggPogs:
A3 - LPpdddppe3
AL - gdopapdL
A5 - Popgp+poes
Q Register value of the Storage Module
el QR)
Q1 - gggpp X

X0 = number of words transferred

3:301"6

QR - YYYYY#YYYYY
Y... = meaningless information

* Tape is positioned beyond the block in error

k% The last block of the serles read having an abnoraml Frame Count
will be 1nd1cated.

¥#%* Tape will be positioned beyond the last block indicated to be
read.
The number of words successfully read of the blocks indicated will
be contained in the Q Register.

¥¥#¥ Tape will be p051t10nea beyond the End-of-File marker. The muaber

of words read before the End-of-File marker was encountered wili
be indicated in the Q Register.

3.3.1-7

- B4 = SMOD Address"
B5 = UCB Address

| - SET UP BUFFER
GET FUNCTION CONTROL WORD
CODE FROM

SMOD

UNCTION
CODE LEGAL

GET PACKET _
ADDRESS FROM C =
SMOD ‘ . FORM :
: APPROPRIATE
] ~ FUNCTION
ACKET |
PARAMETERS GET- PROGRAM
LEGAL PRIORITY
: NUMBER -
I YES '
COMPUTE # OF | ’ 1
COMMAND WORDS, , . QUEUE
BCW'S, BUFFERS | .| PLACEMENT. ACCORD-
NEEDED } ING.TO PRIORITY
| — NUMBER ‘

<:;:> | o (Emxr) TO FORMATTER

SET UP FUNCTION | ' ' .

~CS%§%ND e : - , FROM FUNCTION
N EXECUTOR

©

EXAMINE
SET UP BUFFER INTERRUPT
COMMAND

WORD

|

@ | 3.3.1-8

SET INTERLOCK
FLAG IN
SMOD

APPROPRIATE
STATUS TO
SMOD

DATA
TRANSFER
FUNGTION

YES

NUMBER OF -
WORDS

TRANSFERRED TO
SMOD

SET ERROR
RECOVERY FLAG
. IN SMOD

INTERRUPTS

UPDATE BLOCK
COUNTER IN

UGB | ;

APPROPRIATE ' TLLEGAL

NOMBER o , STATUS
%Dgﬁon = o 7O SMOD

l

©

3-3-1—9

TO I/0 DIREGTOR

3.3.2 High Speed Printer Handler

URPCSE: To verify the packet information and use it to form
High Speed Printer Command words. After the Commands
have been executed the Handler will analyze the
interrupts and notify the I/0 Director and/or the
User of these results..

ENTRANCE: B4 = Address of Storage Module .
B5 = Address of Unit Control Block
B7 of SMOD = Address of Packet
SMOD+17 = Address of Core Module

EXIT TO FORMATTER: As specified by the FORMATTER
EXIT TO I/0 DIRECTOR:

0000000000 - Successful Completion

4000000001 - Inappropriate Function

= 4000000002 - Unrecognizable Interrupt Status..

The Unrecognized Interrupt Status
will;be in the Q register of SMOD.

A register of SMOD

] i1 woon
n n Hoon

Thié handler will control printing and spacing commands on both
the 0751 printer and the new 1100—1600 line per minute printer.

Form control is achieved by specifying the top and bottom
margins and the number of printable.lines per page (the sum
of these three quantities must be equal to the physical page
length). This specification is made in the ASSIGN statement
and the values are placed in the Unit Control Block of the
printer, Printing will not occur within the margins -- whenever
the handler senses that, with the spacing given in the packet,
the print line will fall within either the top or bottom
margin, the paper is spaced to the next printable line and the
print executed there. Spacing within the printable area,
however, is the responsibility of the activity. The physical
line position of the printer is maintained by the handler in
-the Unit Control Block. This line counter is cleared whenever
a new printer ASSIGN statement is processed. At this time, it
is assumed that the paper is positioned at the first physical
line (at the fold).v At the completion of each print job &
"Home Paper" command should be given in order to position the
paper at the first physical line in anticipation of a new
ASSIGN statement.

The WRITE function is the only function recognized by the
printer handler; all others will be returned as inappropriate.
The "Number of Words" in the printer packet is used as the
number of lines to be spaced -- the handler wil. output a
twenty-seven word buffer (one print line) begin:ing with the

. buffer base specified in the packet. One 132 ciaracter line

3.3,2-1

- will be printed for each request (the line may be less than
132 characters if the "77" stop code is detected within the
buffer). The number of lines to space before printing is
contained in the packet. If the number of lines to space is

.equal to zero, printing will occur on the same line as that
of the previous request. When the "num?zr of words" in the
printer packet is found to be 40000y (2'“ set) a skip to the
first physical line of the next page will be performed,

"Home Paper" - no printing will occur. A print request
received when the paper is positioned at the first physical
line will be performed at the first logical line (the physical
line minus the top margin) and packet spacing will be ignored.

The handler will place each request received at the end of
the channel queue.

No form control may be specified by listing the numbér of
printable lines with the value of zero in the ASSIGN statement.
If this is done, all subsequent spacing and printing will be
performed as directed by the WRITE orders. The top and

bottom margins will then be the responsibility of the user.

When the "Out of Paper" indication is detected, the handler

if under form control will allow printing to the bottom of

the page, then an interlock condition indication will be
returned. The new forms should be physically positioned at

the "Home Paper" position (first physical line). Thus when
control is returned after the interlock (out of paper) has ‘
been satisfied, the paper will be spaced to the first printable
line and the line will be printed.

If "Out of Paper" occurs and form control had not been specified,
the printing will continue until it is possible that a line

had been printed below the paper. An interlock condition will
then be indicated. The new forms should be mounted with the
fold in the same physical position as the previous. Answering
the interlock will -cause the same line to be reprinted on the
new form without spacing since the spacing was performed
earlier,

3'302*2‘

UNIT CONTROL BLOCK

HANDLER RIR

UCB LINK

P-TYPE

CH/CH/UNIT

LINK TO CCB

LENGTH OF UCB

OF REG.

MIN C.M. SIZE

TEST & SET LOG

UNIT INACTIVE CELL

UPPER MAR. LOWER MAR.
PRINTAELE
LINE POS, LINES/PAGE

QUT OF PAPER

kA

KUCBNO

‘KUCBCM

'KUCBQ-

KUCB1
KUCB2

KUCB3

The processing of the ASSIGN statement will place the upper
margin, lower margin and the number of printable lines per

page in the proper positions of the Unit Control Block.
Line Poaition and Out of Paper locations will be cleared to

‘BOTO88: -

3.3.2-3

The

\ ENT / .

I
'/APPROPRIATE
FUNCTION

XX

N

-3

STATUS
10 A OF

S-MOD

CALCULATE
ACTUAL
LINES TO
SPACE

1
SET UP
COMMAND
WORDS 1IN

CORE MOD.

AR

SET UP
REST OF .
CORE MOD.

INTERLOCK

o
'UNRECOGNIZED |
INTERRUPT

-

FORMATTER

SUCCESSFUL
STATUS

I A COF

S-MOD

STATUS " TO
A OF
S-MOD

~ INTERLOCK

STATUS TO
Q OF S-MOD

STATUS
0 A OF
S-MOD

3.3.2-4

=

X1

-3

0
DIRECTOR

CORE MODULE

For Handler Use

Interrupt Status Store Address

Terminate Command

" XF Commeand’

Buffer Command = .

XF Command

Buffer Command

Fastfeed Buffer Controi>Word

XF Control Word

Buffer Control Word

Store for Interrupt Status

Store for Input Buffer

Store for Output Buffer

Store for Interrupt Status

' Store for Input Buffer

~ Store for Output Buffer

303-2“5

HSP. CHARACTER CODES
. {é3-character set)

Octal Sequence

00 @ 4o)
o1 [L. -
02 3 L2+
03 # L3 <
04 & bd . =
05 . Space 45 >
06 A L6 &
07 B A/
10 C 50 %
11 D 51, (
12 B 52 %
13 F 53 :
14 .G 54 7
15 H 55 |
16 I 56,
17 3 57 N\
.20 K 60 O
21 L 611
22 M 62 2
23 N 63 3
24 0O 6L 4
25 P 65 5
6 Q- 66 -6
27 R . 67 T
30 S 70 8
31 T 71 9
32 U 72 !
3 v 73 5
3, W %/
35 X 75 .
36 X 76 =
37 2 T #

When selebtion is made for the 62-character set, code 77 becomes
a stop code; as such it is non-printable.

.Note: In order to accomplish the proper spacing capabilities
provided By the printer subroutine, the 62-character
set must be selected. Selection is controlled by a
manually operated switch located on the printer control
unit.

303.2“6

3,3.3 Card Reader Handler

'PURPOSE:

ENTRANCE:

To verify the packet information and use it to form Card Read
command words, After the Commands have been executed the Handler
will analyze the interrupts and notify the 1/0 Director and/br
the User of these results.

B/ = Address of Storage Module

B5 = Address of Unit Control Block
B7 of S-MOD = Address of Packet
S-MOD+17 = Address of Core Module

EXIT TO FORMATTER: .As specified by the FORMATTER

EXIT 70 I/0 DIRECTOR:

A register of S-MOD

"
i
W

0000000000 = Successful Completion
4000000001~ Inappropriate Function
. 4000000002~ Buffer too small
4000000003~ Unrecognizable Interrupt Status. The
Unrecognized Interrupt Status will be in
the Q reglster of S—MDD.

n 1n
" n
" "

nuon

The card reader handler will recognize the READ and MREAD (function
codes 01 and 26) functions; all others are inappropriate.

The READ function will transfer the data from one card to thé computer.

The MEEAD function will transfer multiple card images into the core

buffers as specified by the LIST operator. ZEach buffer must be large
enough to contain the data from one card. ! '

The mode of a card file is specified by the ASSIGN statement. There are
two possible modes: = TRANSLATE and BINARY., When the assign statement
is processed, the appropriate mode will be set and the card memory will
be cleared. Thus if the card read mode is chenged in the middle of a
deck, three blank cards should be inserted at this point to prevent the
loss of card data.

The TRANSLATE mode will cause each subsequent card that is fed to be
translated from Hollerith code to a six-bit "internal" code. This
"internal” code is defined by a conversion matrix within the card reader.
Normally, Fieldata code is used. In this mode, one card occupies 16
computer words. The buffer specified by the read packet must be greater
than or equal to 16 words, less than 16 words is an illegal parameter.

30303"1

The BINARY mode will cause each subsequent card that is fed o be read
in the column binary mode. Two and one-half card columns represent
one 30-bit compu'ber word. A minimum buffer of 32 words are required

less than ‘bhlS is an illegal parameter. .

UNIT CONTROL BLOCK

0 [HANDLER ‘RIR

1| uce LI
2 P-TYPE | CH/CH/UNIT

.3' |LINE O cCB }

4 - [LENGTH OF UCB #0F REQ | KUCBNO
5 ‘MIN C.M. SIZE |TEST & SET LOC.| 'KUGECM
6 | Duaorrve g cm | KUCR
" OGABD MODE KUCB1

The processing of the ASSIGN statement will place the mode indicator :
(020 or 040) in Word 7 of the UCB. ‘The card memory will also be cleared
at this 'bime. . - o

3.3.3-2,

—f

‘STATUS
0 A
" OF S~MOD
STATUS-
T0 A
OF S-MOD
0
EXIT FQE@'LA'ITER
FROM
FORYATTER E |
R SUCCESSFUL STATUS
co LETION [EEEE ¢ DY W SN —
INTER /1 OF S-MOD I i
ILLEGAL STATUS °
CODE TO A
INTERRUPT OF S-MOD
. STATUS
INTERLOCK ™ A I
OF S-MOD
UNILCOGNIZED
| INTERROPT STATUS
STATUS TO |=f 0 A
Q OF S-MOD OF S-MOD

3

3.3.3-3

o
EXIT>.1/0

~": ~DIRECTOR

' CORE MODULE

READ

M READ

X Number Locations Required

NV WN O

WN 20 -

7

10

M

12

13

4

‘\Z:

' 16

17

20

221

22

23 |

2/,

25

“for Core Module
Y - Number Was in Packet

FOR HANDLER USE
Interrupt Status Sotre Adr,

BUF CMD WD

XF CMD WD
iF

- BUFFER CONTROL WD

Interrupt Status Store
Buffer Status Store

. FOR HANDLER USE -

Interrupt Status Store Adr.

st BUF UMD WD~

15t XF CMD WD

‘2nd BUF MCD WD

2nd XF CMD WD
3rd BUF CMD WD

" 3rd XF CMD WD

XF

-1st BUF CW

2nd BUF CW

* 3rd BUF CW

1st Int. Status Store

1st BUFIN Status Store:
1st BUFOUT Status Store

-+ 2nd INT Status Store

2nd BUFIN Status Store
2nd BUFOUT Status Store -

~ 3rd INT STATUS STORE .
- 3rd BUFLN . STATUS'STORE

3rd HUFOUT S&n&us SICRE

b4 =_3¥ + 4

3.3.4 Card Punch Handler

‘ PURPOSE°

ENTRANCE:

“To verify the packet information and use it to form Card Punch

Command words. After the Commands ahve been executed the Handler

will analyze the interrupts and notify the I/b Director and/br the
User of these results. ‘

B4 = Address of Storage Module

. B5 = Address of Unit Control Block
B7 of S-MOD = Address of Packet '
S—MOD + 17 = Address of Core Module

EXIT 10 FORMATTER As specified by the FORMATTER

| EXIT 0 1/0 DIRECTOR:

. A register of S-MOD
B I
on
'

"
o
"

0000000000 ~ Successful Completion
4000000001 - Inappropriate Function
4000000002 = Buffer too small
4000000003 - Unrecognizable Interrupt Status.The
. Unrecognizable Interrupt Status.will
be in the Q register of S-MOD.

" "o
I |
]]

The card punch handler will recognize the WRITE function (01): all others
are inappropriate. The WRITE function will transfer data from the '
computer to the card punch unit and cause it to be-punched into a card..

' The mode of a card file is specified by the ASSIGN statement. There

are two possible modes: TRANSLATE and BINARY. The desired mode will

- be set as the ASSIGN statement is processed.

The TRANSLATE mode will cause each subsequent card that is punched
to be in the Hollerith code. In this mode, one card occupies 16

- computer words. The buffer specified by the write packet must be

greater than or equal to 16 words: less than 16 words is an illegal
parameter.

‘The BINARY mode will cause each subsequent card that is punched to be:
~ punched in the column binary mode. Two and one-half card columns

represent one 30-bit computer word. A minimum buffer of 32 words are

required; less than this is an illegal parameter.

30304"1)

UNIT CONTROL BLOCK

o | HAVDLER RIR
1 . UCB LINK
2 | P-TIPE CH CH/UNIT
3 LINK T0 CCB
4 |iENeTH OF UCB |# OF REQ | xvemvo
"5 | MIN C.M. SIZE |TEST & SET LOoC | - 'KUCBGM'?'
6 INAC‘I‘IV%N »IS cmL | KUCBQ |
7 c20 onoi0 | KB

The processing of the ASSIGN sr,at.ement will place the mode
indicator (020 or 040) in word 7 of the UCB. .

CORE MODULE
0 HANDLER USE
1 | INTERRUPT STATUS STORE ADDRESS
2 XF COMMAND WD
3 BUFFER COMMAND WD
A, BUFFER C.W. WORD
-5 XF CONTROL WD
6 INTERRUPT STATUS STR
7 BUF. IN STAT STR
0 | BUF. OUT STAT STR

30304"2

STATUS
0 A
OF S-MOD
STATUS |
T A e
OF S-MOD
CORE MOD
| T
| SET UP
! REST OF
| CORE MOD
0
--— FORMATTER
FROM |
FORMATTER |ENT "‘] .
/ SUCCESSFUL STATUS
COMPLETION l omoa
@TERRUPT' /; OF S-MOD
N
ILLEGAL | sraTtus ‘
CODE J T 4 —
\ INTERRUPT [OF s-MOD
Ve N
‘STATUS |
INTERLOCK Y T0 &
OF S-MOD
<
UNRECOGNIZED STATUS
INTERRUPT || T0 4
STATUS T0 OF S-MOD
1Q OF S-MOD _

, '3‘304-'3'

EXIT

I/0
DIRECTOR

© 3435 Omega Mass Storage Handler

PURPOSE: To interface the mass storage subsystem(s) with the Omega
‘ executive and programs running in its environment.

ENTRANCE: EXEC Return 77540 100FC
B4 = Address of Storage Module
B5 = Address of Random Access Storage List
BY?. = Address of Packet .

FC g1 READ

Transfer to core the data found on mass storage ad defined
by the manipulation of the Logical Address given in the
Random Access Storage List (RASL), the Logical Increment (LI)
as given in the packet, and the logical to hardware address
conversion parameters given in the Unit Control Block (UCB).
The number of words to be read is given in the lower 15 bits
of the packet, and is limited by the length of file (RASL)
and the LI, The buffer base is defined by the sum of lower
PLR register and the second packet word.

Upon return of control report the status of the function in
the A register (A) and the number of words read in the
Q register Q).

' FC 2 WRITE

Transfer data from core to mass storage. (See FC f1)

FC f§3 BLOCKR

(See FC f1) If an End-of-Block (EOB) external interrupt

(EI = B4) is received report the contents of the lower 24 bits
of the Overflow Word*¥ in the upper 24 bits of the A register at
return of control., The number of words read is reported in Q.

*#This paper is specifically generated for the FH880 drum handler. When
the details of the Fastrand - FH880 handler are defined, this paper will
be corrected to show changes of philosophy as related to both subsystems.

¥¥An Overflow word is the contents of a drum storage location following an
End—of- lock sentinel (a location containing the octal word 7777777777)
Bits 2° through 224 of the Overflow Word must be zeros. The contents of

the Overflow Word is’ loglcally added 10704000 00000 and reported as an
external interrupt.

3.3.5-1

~ FC @/ BLOCKS

Search for the FH880 address containing the data word

given in the fourth word of the packet. Transfer no data.
Report the address of this mass storage locztion in terms
of a logical increment to the first address of the file

(Q). If an EOB sentinel is detected before a find is made,
report an Unsuccessful Search status (06), and the contents
of the Overflow word in A.

- FC 2/ SREAD

(See FC @#1) = Transfer consecutive data locations from a
single mass storage file to one or more core areas.

FC 25 GWRITE

(See FC'@2) Transfer data from one or more core areas to
one continuous area of mass storage file.

" FC 26 MREAD

Exit

(See FC 1) Transfer one or more dafa areas of a single
mass storage file to one or more core areas.

The Status codes reported upon exit are:

0000000000

- Normal completion
XEAXXXXO - This is the normal completion response to the
BLOCKR function. The upper 24 bits of A
contain the lower 24 bits of the Overflow Word.
4000000001 =~ Inappropriate function -~ the function code is
. not applicable to the subsystem. (SEARCHT
issued to an FH880 subsystem, etc.)
4000000002 - Incorrect parameter - This status indicates

that thedata transfer is outside of the program
lock limits. Under this condition this status
code is generated by the I/0 Director.

This status code is generated by the handler if:

*The Logical Increment specified in the packet
is negative,

*An MREAD packet does not contain a Logical

Increment (Bit 227 of the first word of the
LIST = 1) S :

3.3.52

- *The peripheral type code as given in the

UBC 4.

*A negative hardware address is generated.
This condition will occur. if the LA as given
in the RASL is less then the flrst LA of the
unit.

*The packet and file or so constructed as to
cause the generation of 33 or more consecutive
buffer control words. ‘

4000000003 - Unrecoverable Error.- This code indicates that

4000000004 -

the function could not be completed without
error interrupt. The handler will issue the
function a total of four times before returnlng'
this status.

End-of-File -~ This code indicates that the
function requested a transfer of data from

(or to) an area of mass storage outside of the
file. Reading or writing in the last address
of a file will not cause the generation of an
@4 status. An @4 response to a write function
indicates that no data was transfered.

XXXXXXXXOé - Unsuccessful Search - At the handler level, this

response can only be received in response to a

" BLOCKS function. It indicates that an EOB

interrupt was received before a find was made.
The lower 24 bits of the Overflow Word are
contained in A,

l 3.3-5"3

The following table illustrates all legal functions at the handler

level, and the possible responses to these functions. The presence

of a number at the intersection of a function code and status code
indicate that the particular status may be received for the prescribed
function. The number at the intersection is applicable to the notes
which follow. The conditions which caused ‘the generation of a particular
status have been defined. .

Status o
2
(A{Q) B o 5
Ses o +2 [
=] & K
Notes) . P % B2 o
o) $4 (o) o
g 2 o —]
I [} ny £2] ¢p]
o ot @ ~
- 5 . |& 5
= 5) © > 1 O G
38 | &E18 |8 |9 |38
=] o o (] i []
Function 8 : g <1 H b 2
) Code = (=] — P [e3] g
= & |8 |2 (& S
@1 READ 1 2 2 2 1
#2 WRITE 1 2 2 2 3
#3 BLOCKR A 1 2 2 2 4
07 BLOCKS 5 2 2 2 2 2
24 SREAD 1 2 "2 2 1
25 GWRITE 1 2 2 2 3
26 MREAD ' 1 2 2 2 |1

”Key to Q register values

1. Q = the number of data words written or réad.

2. Q = unknown

" -3. See #1 above. No data will be transferred, and Q = #.
4. See #1 above. An end of block sentinel was not read.

5. Q = the logical increment as related to the base address of
the file. B

353.5'4

The handler will allow a program to reference from 1 to 32768 words
of mass storage whether the subsystem be an FH880 or Fastrand.

Packets which contain more than one set of parameters (SREAD, GWRITE
$MREAD) may specify 32K data transfers in each parameter set.. When -
communicating with a Fastrand subsystem it is very desirable to limit
I/0 buffers and logical increments to multiples of 33 words. This .
rule is particularly important on WRITE functions, for the handler
must insure the integrity of the entire sector.

The handler will allow a program to read an entire file with one

~ packet submission, providing the above restriction is not violated, ' .
regardless of the number of times that the file is split. A split '
file is a storage area which is contained in more than one continuous -
- mass storage area. . : :

~ The handler will maintain a table indicating the angular position

. of each drum unit under its control. Via this table it will attempt
to queue each Command Word List in such a manner as to minimize
latency. From this table, and the hardware function generated, the
handler will compute the Start-Stop* time of each Command Word List
and cause it to be queued for execution at the earliest possible time
providing its execution does not usurp e time interval allocated to

a previously queued function. The RASL will aid the algorithm by
unique entry for each subsystem unit containing parts of a file. The
handler will account-for files contained on two cylindera of a Fastrand
unit. ‘

¥Start time is that time at which a function must be issued. Stop
* time is the time when the subsystem completes the function and becomes
available for another function. -

3‘03-5"5

Tables used by the handler and labels used o reference ths tables.

~ Storage Module

Label " Word # .
g
1
KSIFR 2 “Exec Return Irst.’
3 |
P i
KSPLR 5 Prog: ock Reg.
KSBREG 6 B
KSEC 7 ‘Error Counter '{ B2 ,
| - | # of o Words:!,
CMNUMBER 10 — ' B3
1 By
12)
13 A6
T it
%W i
MSA & KSAREG 5 Status Code . .
LI & KSQREG 16 - | Additional Informati n
KSQM o | | Q¢ Allocatdsa |

ST

Bit 228 of wo_rd‘ 13 = 1 indicates an intei:;réo'c_k status,

30305“6 ‘

Core Module (Prelimihany)

Twenty-two words of “free“ core are requested upon entry ths

handler. The area is used in the preliminary of the packet to detemine
the number of address needed to generate the Command Word List(s).

If the number of words needed doea not exceed 22 the same area is.

used for CWL construction. :

BIT. O Temp B1 stora@l
'B3T 1 Temp B3 storag
, 2
MSA1 3| Sum of mass storage add. in file :
LIBCW 4| LI+ BGW
BSI 5 iInitial B5 value
co 6 e
WORDS 7 Misc.,
8
9
| 10 |
BsT 11| B5 at MSA - LI
" SPLIT 12 | # of CWL's # of BCW's.
4

3.3.547 -

- CWL.

BsI
STATUS
'WORDS

POSTCM -

BCW

B6I

QTI
ATI

(WM)

.T7;
18
19

20

21

Core Module (Contalnlng Command Words)
{B6 = add. of word ﬁ)

(@ at Formatter return

Add. .of "present“%BCW
EI store add.j
. First Gommand word
2nd
3rd C
Initial Value of '33'5_ .

EOF indicator (4 or g)

P-TYPE (ﬂ.aan) S POST_ G address

 |add. of wora g
fTemp storage of Q,.

';Témp storage of A

3.3.5-8

Core Module (at BCW generatlon)
Durlng the generation of a Gommand Word List B6 equals one of two values:
(1), it equals the add of the first word of the Core Module, (2) it
equals the add of the BCW being generated. Under condition #1 the ebove

'lebels are used. Under conditions #2 the following labels are used.“

g 19
1
3
4
5
0
7
8
o
10 " 18t BOW
11 ~ 2nd BOW
B6 = 9 nth BCW
104n 1 BOW |
BeT 1. | Add. of word
QT ;f’ 12+n Date’to be xfered by subééguent BCW
AT 13m |Date to be xfered by current BOW
© 14

KUCCH & KUCPTYPE

KUCGGB

KUCLA

Unit Control Block

PTYPE . [CH# los#
o | |coB A110cation

First Logical Address of unit
First Hardware Address of unit

3.3.5440

Mass Storage Handler
(FH880 Drum) .
Notes: LI - :Logic'al _Increment as given in a packet.
RASL - Random‘: Access Storage List. |
~ I0D - I/0 Director ’

 BCW ~ Number of data words to be transferred.

 OWL - Command Word List(s). .
‘SMOD - Storage Module '
M - Core Module (contains CWL)

FS - File Size as stated in the mumber of 30 bit words.

|

l

REQUEST CORE
FOR TEMP.
STORAGE (CM)

Yes
H .

‘[DETERMINE THE #

OF ADDRESSES

NEEDED TO CONSTRUGT
THE CWL

Yes QUIREMENTS
Z PRESENT

M

No

RELEASE PRESENT
M & REQUEST
DESIRED AMT.

STATUS = @i

.Q’='.

I0D

3-3f$-1é-.

f
GENERATE
HARDWARE
ADDRESS

' <

GENERATE |
COMMAND
WORDS

]

GENERATE BCW(s)
FOR DATA TO BE

TRANSFERRED FROM

ONE CONTINUOUS
. IMASS _STORAGE AREA

STATUS = 1

I0D

CL+U(KSEC)

No

SET U(KSEC) =
40000

TRANSFER NEEDED
INFORMATION FROM
PRESENT CM AREA
TO POST CM AREA

|

CALCULATE
START-STOP
TIME

| DETERMINE
QUEUE PLACE-
MENT (A)

©

3.3.5-&3

U (KSEC)=g"

ot 227 of A

[7]

FORMATTER

GENERATE STATUS
BY ABOVE TABLE

I0D

N/

CM's

RESUBMIT THOSE »
CM's THAT STATUS = 3
'RECEIVED ERRORS

I ' ‘Qii" ‘
FORMATTER - . ,

3.3.5-14

303.§

3-3-6-1)

3.3.6.2,

303.6-3.

1004 Subsystem Handler-

Introduction

This document outlines the specifications for the U-494 OMEGA On-Line
1004 Handler and includes utilization of U-1004 Option 86.

U-1004 Option 86

The following three (3) features are included in Option 86:

A.

B.

External Interrupt - This feature enables timely and accurate
status reporting by the U-1004 to the U-494 Central Processor(s)
in the multi-programmed and/or multi-processor enviromment. The
féature permits absolute control during "error"conditions that

can occur in the U-1004 and enables the necessary synchronization
for operations in this type system. :

Stop-Disable -~ This feature enables the U-1004 to maintain program
control during a card reader, card punch, or printer error/fault
conditions, while disabling the "stop" these gonditions normally
cause. The operator can recover the error condltlon and process-
ing can continue.

Punch Select - This festure engbles sutomstic recovery from

Saai VoL &a

"punch-check" errors. The card following a mispunched card is
selected along with the card in error. Recovery is programmed
from the resultant error signal. No operator intervention is
required and the correct card sequence is maintained in the
output stacker.

Operations

The operations of the U-1004 handlers will be compatible with the
HSP and the Card Reader/Card Punch handlers insofar as the user is.
concerned.

A.

Printer Operations N

This operation duplicates that of the HSP operation. Form control
is specified by the user through the OMEGA ASG$ operator, wherein
the user specifies the number of lines in the top and bottom
margins and the number of printable lines per page, i.e., -
TM+BM+PL=Total number physical lines per page. The absence of -
these parameters in the ASG$ operator will indicate "No Form
Control" and the hahdler will consequently relinquish form control
to the user. .

3-3-6-1

When form control is specified in the marginal and printable line
information will be maintained in.the Unit Control Block (UCB).
A "current" line counter is also maintained in the UCB. The
introduction of a new ASG$ operator will cause the UCB to be
reset for form control.

The OMEGA WRITE$ operator is the only function acceptable for
printer operations on the on-line 1004. Any other operator -
usage will result in an Inappropriate Function Status.

A maximum of 13244 characters will be printed per line. The
"Stop!" code (77) will be honored.

Spacing with printing will be specified by the user within the
OMEGA WRITE$ operator (# of Words). Spacing on the U-1004 printer
will occur before printing of the line. A space count of zero ()
will be honored, thus enabling over-printing. The maximum number
of lines that may be spaced within one command is 631O=778° Where
the space count exceeds the number of printable lines remaining
on a page will be interpreted by the handler as advancement of

the form to the first logical print line on the next page.

Where form control has been specified by the user, the following
operation will be honored by the handler., The user may "HOME"

form (page eject) by setting the OMEGA WRITE$ operator (# of words)
to 40000g. The handler will initiate spacing to the first physical
line (fold) of the next page. '

The handler will also honor a "SPACE ONLY" form request from the

user (with or without form control). The user may "SPACE" form

by setting the OMEGA WRITE$ operator (# of words) to 2003Sg, where
88 is spacing £6310=77g. No printing will occur during execution
of this request on the U-1004. NOTE: where form control has been

specified a "SRACE" instruction which carries into or beyond either
margin of the current page will be interpreted by the handler as
advancement of the form to the first logical print line on the

- next page and an appropriate spacing instruction will be issued

in this case. If the user is desirous of spacing to the middle

of the next page, for example, he must request a "HOME" form and
then request spacing to the middle of the page along with the print
line to be printed at that point, or must break the "SPACING" into
two. "SPACE ONLY" requests, the first of which carries into a margin.

The handler will convert all space counts from octal to decimal
to XS-3, or 90 column code for presentation to the U-1004.

The handler will convert all print data from Fieldata to XS-3,
orr 90 column code for presentation to the U-1004. '

Card Operations
1) Card Reader Operations

Cards will be read in either 80 or 90 column format and in

13.3.6‘f 2

either XS-3 or binary code. The user will specify which

code he desires to be read through the OMEGA ASG$ operator.
The UCB will contain the format of the U-1004, i.e., whether .
it is a 80 or 90 column model. A mode indicator will be

set in the UCB to key the handler to the "Translate" or

"No translate" mode for X5-3 or binary code respectively.

"In the "Translate" mode the card image will be converted
from XS-3 or 90 column code to Fieldata Code before presenta-
tion to the user. In the "No translate" mode the card image -
is presented exactly as rsceived. ‘

3.396‘-3A ‘

Single image card reads are possible through the OMEGA
READ$ operator. Multiple image card reads are possible
through the OMEGA MREAD$LIST operator. Any other operator
usage will result in an Inappropriate Function Status.

2) Card Punch Operations

Card images to be punched will encompass the same features
as explained in the Card Reader operations above, except
that "™Multiple" punch operations are not available in

- OMEGA. 80 or 90 column format and XS-3 or binary code will
be processed by the handler. Data to be outputted to the

U-1004 Card Punch will be translated from Fieldata Code

to XS-3 or 90 column code, or translation w111 be bypassed
in case of binary code. ,

Single image card punch operations are possiblé only by
use of the OMEGA WRITE$ operator. Any other operator usage
will result in an Inappropriate Function Status.

3.3.6.4. Buffer Operations

A,

Printer Operations

The Print Handler will be assigned a 281 word buffer as an
integral part of its core module by the 9/0 Director. A
maximum of 13245 data characters will bs moved from the user's
buffer to the print handler buffer for output to the on-line
1004 printer. Detection of the "Stop" code (77) will abort
the data move at that point. Thus a user need not necessarily

provide a 1324 character buffer.
Card Reader Operations
The user will furnish the input buffer(s) either as an integral

part of his program or which he has acquired from an OMEGA core ,
chain. The following MINIMUM size buffers are required:

1) Single Image Card Reads

‘a. 80 Col, Translate Mode must be z 164

b, 80 Col, No-translate mode must be z 9210
c. 90 Col, Translate Mode must be 2z 184g

d. 90 Col, No-translate Mode must be > 1810

2) Multiple Image Card Reads

a. 80 Col, Translate Mode must be 2 n(164q)
b. 80 Col, No-translate Mode must be 23210)
c. 90 Col, Translate Mode must be 2 n(18q)
d. 90.001, No-tranaslate Mode must be > nz1810)

3. 3.6-4

3-30605‘-

3.3.6.6.

where n = the number of card images when using the MREAD$LIST

operator. In this multipls read packet n buffers are specified

each of which must be » 16(or 18).

One big buffer which must accomodate all card images is not
requiredl

C. Card Punch Operations

The Punch Handler will be assigned a 3344 word buffer as an
integral part of its core module by the 9/0 Director. A maximum
of 8049 or 9010 characters will be moved from the user's buffer
to the punch handler buffer for output to the on-line 1004 card
punch. The size of the user buffer is entirely optional by
specifying number of words in the OMEGA WRITE$ operator. The
handler will move only the number of words specified and will
space-fill any remaining area in the output bufffer,

NOTE:" Inconsistencies in buffer sizes by the user will in all
instances result in an Inappropriate Buffer Status.

U-49/ Status Codes

‘The following status codes will be provided by the Handlers to the

OMEGA I/0 Director as a result of interrupt/error analysis:

RA of SMOD - @ = Sucessful Completion
RA of SMOD = 4000000001 = Inappropriate Function
RA of SMOD = AOOOOQOOOZ Inapproprlate Buffer Size

U-494 Instructions to On-line U-1004

Instructlon formats are based on the following scheme in the low
order five bits of the instruction word.

20 = 1 = Read

21 = 1 = Punch

22 = 1 = Print .

23 = 1 = No-translate; § = Translate

24 = 1 = 90 Column; @ = 80 Column

2% = 1 = Space

The following constitute valid instructions acceptable to the on-line

U-1004.

A. 80 Column
OCTAL . DESCRIPTION
40000 00001 . Transfer card read image (XS3) to U-494
40000 00011 Transfer card read image (CI) to U-494

3.3.6%5

OCTAL DESCRIPTION

40000 00002 Transfer card punch image (XS3) to U~1104

40000 00012 Transfer card punch image (CI) to U-1004
- 4XXXX 00004 Transfer Print Line to U-1104; spacing
. XXXX (XS3) decimal equivalent) before printing,
LXXXX 00044 Transfer space count XXXX (XS3 decimal
' equivalent) to U-1004 and space printer
XXXX lines.

B. 90 Column

OCTAL , DESCRIPTION

40000 00021 Transfer card read image to U-494

40000 00022 - Transfer card punch image to U-1004

LXXXX 00024 - Transfer print line image to U-1004; space

XXXX (90 Col decimal equivalent) lines
before printing.

LXXXX 00044 Transfer space count XXXX (90 Col decimal
: equivalent) to U-1004; and space printer
XXX lines.

3.3.67. External Interrupts From U-1004 to U-494
OCTAL DESCRIPTION

6XXXX O00FC U-1004 cannot perform the requested function.
228 of the instruction word received is set.
and the instruction word is returned to the
U-494 by the U-1004. This is termed a
"reject interrupt". :

4XXAX O

0044 Space only instruction accepted and executed

by U"'.’ 0014;.
3.3.6.8. U-1004 Operations

The U-494 will control the sequence of data flow and information

as to what must be done to this data. The U-1004 will control its
own peripheral devices, i.e., card reader, line printer, card punch,
and the sequence of physical input/output events. The interface
between the two systems, therefore, is one strictly to control the
transfer of data and instructions from one to the other, '

The U-1004 will effect data transfers lmmediately in most all cases.
If it is unable to perform a requested function, an External Interrupt
will be sent to the U-494, indicating that the function cannot be
performed (reject interrupt). The U-~1004 will then come to an
orderly halt to allow operator correction of the problem, e.g., out
of paper, card hopper(s) empty, etc.

3.3.6-6

The U-494 handler, upon analysis, of the external interrupt, will
notify the I/0 Director of the "Interlock" condition. This will

cause a console typeout and suspension of the U-1004 channel operations.
When the problem has been corrected, the U-494 operator will respond,
via the console typewriter, that the problem is corrected. The U-1004
channel will then be reactivated and the I/0 Director will resubmit '
the same request to the handler and U-1004 operations will resume from
where they were discontinued. An illegal function code will cause

the 1004 to send a reject interrupt, o

The following operations will be performed by the U-1004:

A, Space and Print - the OMEGA on-line 1004 handler will activate

"a 2849 word output buffer, The U-1004 will accept the first
word of this buffer, decode it and, if no previous print line
is waiting, execute the form spacing specified. The following -
2740 words will then be accepted into working storage. If a
print line is waiting in print storage, the new print line will
be transferred into working storage (a card will be read if
desired) before the waiting line is printed. 90 column code
will bs printed when operating in the 90 column mode.

B. OSpace - The U-1004 will receive a one word instruction from the
U-494. If no previous print line is waiting to be printed, the
spacing of the form will be executed. An external interrupt
will then be sent to the U-494, acknowledging the execution of
the specified form control. If a print line is waiting to be
printed, the line will be printed (a card will be read if desired)
and the form control (space) instruction executed. As above, -
an external interrupt will now be sent to the U-494.

C. Read - the U-1004 will receive a one word instruction, decode it
and transfer the card image to the U-494. The U-1004 will then
determine whether or not an I/0 function must occur to have
another card image available for the U-494. If so, another
card will be read and the U-1004 will await receipt of the next
~instruction., The instruction will define the code to be read,
i.e., X5-3, Code image, 90 column code.

D, Punch -~ the OMEGA on-line 1004 handler will activate an output
buffer of adequate size to accomodate XS-3, code image or 90
column code. The U-1004 will accept the first word of the
buffer (instruction word decode it and wait for the punch to
complete a prior task, if any, and then accept the remsining
punch data words., The U-1004 will then start to punch the data
and will await receipt of the next instruction., The instruction
word will define type of code for the U-1004. :

3;3.6‘7} .

1004 PRINTER UNIT CONTROL BLOCK

WORD
RIR SETTING
0 , OF _HANDLFR
] - UCB LINK
PERIPHERAL CHANNEL /
2 TYPE UNIT
' ~ [LINKING ADDRESS
3 TO_CCB
: LENGTH OF - - | NO. REQUESTS
‘4 UCB (118) ' TO CCB
MIN. SIZE OF INTERRUPT
5 CORE MODULE TSET
. REQUEST QUEUE
6 (HEAD OF CHAIN)
7 MODE INDICATOR
UPPER - ' LOWER
10 MARGIN MARGIN'
CURRENT PRINT # OF PRINTABLE
11 {___ POSITION | LINES/PAGE

O

NOTES: WORD 7 - 229 = 1 = 90 COLUMN
~ L(WORD 11) = ¢ = NO FORM CONTROL

3,3,6-8

WORD

AT T

4004 CARD RE

ADER UNIT CONTROL BLOCK

~3 o W\ ~

RIR SETTING
OF HANDLER
UCB LINK
PERIPHERAL CHANNEL/ -
TYPE UNIT
LINKING ADDRESS
: TO CCB ,
LENGTH OF ~ |NO. OF REQUESTS
UCB (108) QUEUED TO CCB
MIN. SIZE OF INTERRUPT
CORE MODULE TSET
REQUEST QUEUE
(HEAD OF CHAIN)
MODE MULTIPLE READ
INDICATOR COUNTER
NOTES: WORD 7 - 227 = 1 = 90 COLUMN
228 = 9 = NO TRANSLATE

3.3.6-9

1004 CARD PUNCH UNIT CONTROL . BLOCK-

WORD)

: o RIR SETTING

g OF HANDLER

] : UCB LINK -
PERIPHERAL | . |CHANNEL /

‘2 TYPE . 4 UNIT

o ~ |LINKING ADDRESS

3 : TO CCB -

LENGTH OF NO. OF REQUESTS

L ‘UGB (10g) , QUEUED TO CCB
'MIN. SIZE OF INTERRUPT

5 CORE MODULE TSET
" - REQUEST QUEUE

6 (HEAD OF CHAIN)

" MODE INDIGATOR

NOTES: WORD 7 -

3.3-6"‘10

WORD

N = O

/1004 PRINTER CORE MODULE

FOR _HANDLER USE

INTERRUPT STORE ADDRESS

PRINT COMMAND

STORAGE FOR INTERRUPT STATUS

STORAGE FOR INPUT BCR

STORAGE FOR OUTPUT BCR °

_PRINT BCW

PRINT INSTRUCTION

A ~——————— 31 O W\t I W

27, WORD PRINT LINE
 BUFFER -

303.6-11

1004 CARD READER' CORE MODULE -

WORD

0 FOR HANDLER USE

"1 INTERRUPT STORE. ADDRESS

2 READ COMMAND
3 INPUT BUFFER COMMAND
L STORAGE FOR INTERRUPT STATUS
5 STORAGE FOR INPUT BCR
6 _ STORAGE FOR OUTPUT BCR
7 READ BCW

10 - READ INSTRUCTION

11 "INPUT- BCW

12 MULTIPLE READ LIST POINTER 1

3.3:6"'1'2

WORD

fE\;"*”—_\"Q o SRR T SN SN VORI L B =,

1004 CARD PUNCH CORE MODULE

FOR HANDLER USE

INTERRUPT STORE ADDRESS
' PUNCH_GCOMMAND ‘

__ STORAGE FOR INTERRUPT STATUS

STORAGE FOR INPUT BCR

__STORAGE FOR OUTPUT BCR

" PUNCH BCW_

| 33, WORD PUNGH BUFFER RN

\"

" NOTE: BUFFER ACCOMODATES EITHER

80 OR 90 COLUMN U-1004,
OR BOTH. 1st WORD OF
BUFFER CONTAINS PUNCH .
INSTRUCTION. -

30306-13

3.3.6.9. 1/0 STATUS CONDITIONS

e3] e3])
| g <1

REGISTER A S5 8

AND/OR g E 2 o 3

REGISTER B6 é & o g ElE

smws - | g ERER|E
OP CODE S LR
80 Column ‘

" READ XS3 - f1 T2 |3 | 4
READ BINARY - 11 11213 | 4
PUNCH XS3 - g2 112 4
PUNCH BINARY - 12 1.]2 4
PRINT - f4 1 (2 4
SPACE - 44 112 4
90 Column
READ 21 . | 171213 | 4
PUNCH 22 B EETR N T)
PRINT 24 P12 4
SPACE 44 11]2 4

Key to Register Values Submitted to I/O Director

.l'
2.
3.

be

Normal Response. RA = g
* Requestor has submitted invalid Function Code. RA = 4000000001
' Requestor has speéified Input Buffer size less than minimum

required size for type image to be read.” RA = 4000600002

" The requgsted functi'on cannot be executed by U-1004 at gfhis time
‘due to "out oflpape:"" » "empty c\ard;hbbper" y etc.

3,3.6-14

READ/PRINT HANDLER

BOLTOO

- ©
. SET | REJECT YO
"INAPPROPRIATE" NTERRUPT? J \Z

‘ , STATUS
. : : . Yes
T 1o ~page 2 No ,
L (TRANSLATE? No . | SET
MULT.LE‘_I_(&_@ : . .‘ . "INTERLOCK"
READ? Yos = - STATUS

No .
o ANSLATE\ @
(AxeuT @2@ o INPUT :
\L4RGE_ENOUG | ™ace /.
Yes e . . \J0 DIRECTOR
X /INPUT BUFFE
=7y @me

DEVELOP
BCR Yes
' - EVELOP
MULTIPLE "\. 3 INPUT
READ? ’ . BCR
No . 1
“GORE_MODULE "\ No,
INITTALIZE , BCR LIST.)
SET
"NORMAL"
STATUS

T QUEUE
REQUEST TO

NE BY SET .

- "INAPPROPRIATE

BUFFER" STATUS

n
v

30_3 .6-1 5

7\

&)
"HOME!" FORM
FUNGCTION? A&
. No

No

es

ADD TOP
MARGIN TO
SPACING

|
SET FORM -
CONTROL TO LOGH
TCAL PRINT LINH

ORMAT
PRINT/SPACE
NSTRUGTION

MOVE

PRINT LINE
To ?ORE

TRANSLATE

SUBMIT
PRINT REQUEST

‘"SPACE" FOR]
INSTRUCTION o
S FORM AT 1st o
HYSICAL LI '
Y -

(PHYSICAL LINB

DEVELOP
PARTIAL
A\l PAGE SPACE
STRUCTION

EXTERNAL)y,
INTERRUPT?
No
1/0
TIMED OUT? A&

S FORM AT st

I vy AT

FULL PAGE
SPACE
STRUC

3!3'6—16 .

page 1

@
S SPACING \No
NTO MARGIN?

Yes

DEVELOP |
SPACING TO
4 LOGICAL
LINE

DEVELOP

SPECIFIED
SPACING

NSTRUCTION

—~
&/
|

ES SPACING

ARRY INTO MARGID&®

~ Yes

PUNCH HANDLER
BOLTOO

(vaLip Fer o "NOMALY
STATUS
. | ,

r

es

™\ , _
INITIALIZE .
CORE | TURN

ODULE / 4 CONTROL TOQ
. QUESTO

TRANSLATE? NO
Yes - C
~ /TRANSLATE | SET
DATA "INAPPROPRIATE
FUNCTION' STATUS
. NTROL TO
- QUESTO

SUBMIT \

/PUNCH REQUEST
TO I/0
FORMATTER @

f

EXTERNAL V.4 : ‘
INTERRUPT e (REJECT Yo,
o NTERRUPT? o
Yes :
1/0
MED OUT : E

No
SET
(B) ' "INTERLOCK"
’ STATUS
/RETURN \

NTROL TO
/0
DIRéCTO

3.3.6-17

3.4 Auxiliary Routines

In order to conserve the amount of core memory required by OMEGA,
certain auxiliary I/0 routines are drum stored. These routines

are loaded into core when they are needed and remain as long as

they are active. Included in this group are the following: Error
Recovery Routines, Interlock Routine, Search Routines, and Peripheral
Initialization Routines. '

3.4.1 Error Recovery Routines
Error Recovery Routines, such as magnetic tape recovery
involving a change of tape direction, are re-entrant routines
listed with the Content Supervisor.,
Entry
The appropriate Error Recovery Routine is entered from the

Device Handler by a call to the Content Supervisor identifying
the routine to be loaded. The call is shown below:

EXRN Vo

where V, is the mnemonic name of the appropriate Error
~ Recovery Routine (this name will be equated to
the correct Secondary Exec Library No. and
function code). .

When this call is made a Storage Module is allocated and
linked to the Activity Addendum. Error Recovery receives
control with the absolute address of the allocated S-mod
in B4. The handler may set up parameters in the registers
which may then be accessed by Error Recovery' through the
S-mod. The Storage Module assigned when the activity issued
the I/0 request is the next S-mod on the chain and its address
- may be found in the PUSH/POP Link location of the S-mod
indicated by Bi. ' '

Exit

After performing its functions the Error Recovery Routine
returns control to the Device Handler. Control is returned
‘through the Content Supervisor by the packet shown below:

.

ENTxB1 gg3d @
DRET1 goggda?

Control is returned to the handler at the location following:
the call., Registers are restored to their value at the time
Error Recovery was called unless they are changed in the S-mod
by Error Recovery (the success or failure of the recovery
attempt may be indicated in the A and/or Q register position
of the S-mod).

3:1»‘1

3442

Operation

Error Recovery examines the hardware status code(s) to

determine the proper recovery procedure. Error Recovery

may then obtain an area of free core to set up the recovery

‘functions, or it may resubmit the original module which

was set up by the Device Handler, or it may do both. For
example, the magnetic tape recovery routine may obtain

free core to set up the repositioning functions and then
submit the original function. Error Recovery Routines submit
functions directly to the Formatter as do.:the Device Handlers.

Interlock Routine

The Interlock Routine, as the Error Recovery Routiﬁes,'is,
a re-entrant Secondary Executive Routine listed with the
Content Supervisor., Its purpose is:to provide a common

~routine which will handle interlock type out messages for

-the Device Handlers.

Entry

The Interlock Routine is entered by the Device Handlers

through ‘the call to the Content Supervisor shown below:

| EXRN#INLK

"where "INLK" is the mnemonic name of the Interlock Routine.

This name will be equated to the Secondary Exec Library. -
number and function code of the Interlock Routine.

Before calling the Interlock Routine, the Device Handler
must set B5 equal to the absolute address of the Unit Control
Block of the interlocked device. This parameter is used to'

identify the channel and unit of the device.

Exit

The Interlock Routine returns to the Device Handler at the
location following the call when the operator has answered
the type out. Return is made through the following.packet:'

ENT#B1 89080
DRET1$ [d @92

All registers will be restored to their value at the time of
the call with the exception of the A-register which will
contain a status code:

3 04"2

" gPdPdddd PP - the interlock condition has been
_ corrected. ' :
7777 74 @11 - the interlock condition cannot be
' _corrected.

Operation

The Interlock Routine obtains an area of free core and builds
the interlock message in this area. The channel and unit
contained in the Unit Control Block, identified by B5, are
placed in the message area. The message is then given to the
- I/0 Director for assigning a response number and placing on-
the console output queus %see Section 342.2), The output
message will take the following form::

“INTERLOCK CXX UYY DZZ"

where XX is the octal channel number
"YY is the octal unit number
ZZ is the response (delay) number

When the operator has responded control is returned to the
Interlock Routine with the input message in the A-register.
The routine then stores the appropriate status.code in the
. A~register position of the S-mod (address in B4) and transfers
" control, through the Content Supervisor, teo t e Devics Handler.

The operator response to the interlock message is of the
'Afollowing form°

: Y
fDZZL'-‘I B
v N
- where 2Z is the response number of the ihterlock type out.

Y is entered if the interlock has been corrected.
The handler will resubmit the functlon to the
Formatter.

N is entered if the interlock éanndt ‘be-corrected..

The handler will return an error status to the
‘requesting activity.

3.4-3

3.4.3 Search Routine

The Search Routine is a re-entrant Secondary Executive
Routine listed with the Content Supervisor. Its purpose
is to provide a scftware simulation ¢f those hardware
search functions which may unduly monopolize a peripheral
subsystem for extended periods of time.

Entry

The Search Routine is entered by a call to the Content
Supervisor generated in response to-certain search mnemonics.
These mnemonics generate standard I/0 packets (See Section 3.5.2)
with the call directed to the Content Supervisor instead of

the I/0 Director. The following mnemonics will cause entry

‘to the Search Routine: S

+ SEARCH$ -"generalized search, tape or mass storage.

* SEARCHL$ - same as above with 1oglcal lock of mass
storage.

. BLOGKSL$ - block search with logioal lock (drum
. subsystems only)

« SEARCHTL$ - search track with logical lock (FASTRAND
subsystems only)

SEARCHPL$ - search position with logical Tock (FASTRAND
subsystems only.

" The BLOCKS$, SEARCHT$, and SEARCHP$ operators (as above only
without logical lock) are hardware search functions. Their

' counterparts with logical lock must be software searches since
the find address is not indicated by the hardware on search
“read operations. The area is locked only if a find is made.

Exit

~ At the completion of its operations the Search Routine places
status information in the A and Q registers of the Storage
Module associated with the operation (address in B4 at entry)
and exits to the calling routine through the Content Supervisor
with the following packet' :

ENT#*B1 ggegg
| DRET1$ g @gpgg2]

Status information returned by the Search Routine is given in
Section 3.5.3. : ’

3 s

Operation

' The Search Routine issues Read functions to the I/O Director
in the normal menner. The parameter packet, including

buffer, is the search packet. For tape searches the first
word of the buffer is compared to the search identifier; for
mass storage searches each word of the buffer is compared

to the search identifier.’ Repetitive reads are given by the
Search Routine until either a find is made or an error o
condition occurs.,

When a find is made on a mass storage search. another Read
(with or without lock, as appropriate) is initiated beginning
with the find address. The actual functions performed for
the various search operators are given below,

+ SEARCH$ - READ$ functions are -given. When a find is
made control is returned (magnetic' tape), or
another READ$ is given beginning at the find
address (mass storage).

- -

SEARCHL$ - READ$ functions are giﬁen. When a find is
madea READL$ is given beginning at the find
- address.

BLOCKSL$ - BLOCKR$ functions are given. When a find
 is made a BLOCKRLY is given beginning at
the find address. A

SEARCHTL$ READ$ functions are issued. When a find is
made a READL$ is glven beginning at the find
address. A

SEARCHPL$ READ$ functions are issued. When a flnd is
made a READL$ is given beginning at the find
address.,

“3-495'

3.4.4 Peripheral Initialization

Peripheral Initialization Routines are drum stored routines
called by Facility Assignment to assist in setting up the

Unit Control Block and to perform any functions required for

the initialization of the peripheral device., The Initialization
Routine to be used with each Device Handler is indicated in

the Handler Description (See Section 6.6).

Entry and Exit

The Initialization Routines are entered from and exit to
Facility Assignment via the Return Jump instruction (Facility
A331gnment is a non re—entrant routine).

Operation

As an ASSIGN statement is processed by Facility Assignment a
Unit Control Block will be partially formed. The remainder
of the UCB is to be set up by the initialization code for
this peripheral type. .

Facility Assignment will:

1. Secure core for the UCB, the number of words will be
specified in the Unit Descriptor.

2. Set up the first 7 words of the UCB which are similar
for all types of devices. .

3. Will load the initialization code which was. spec1fled
with the handler of this peripheral.

4. TForm a buifer contalning Assign and Unit Descriptor
' 1nformat10n.

5. ’Enter the initlallzation coding by a Return Jump
instruction.

'Initialization Entrance Paraméters*

B1 = 15 blt address of a buffer which contalns Assign
"information and the Unit Descrlptor.
B4 = StprageAModule address. This value must be retained.

B5 = 17 bit address of the Unit Control Block which is
being formed. ‘

Initialization will interpret the option and estimate information
from the Assign statement in conjunction with the Unit Descriptor
to form the UCB word 7 and on up. . Any required initialization

functions such as clear card memory should be performed at this -
time. '

3.4-6

The operator may be notified of any abnormal conditions by
forming a LOG statement in a buffer obtained from free core.

The buffer with the LOG statement will be passed to Facility
Assignment as the Initialization exits. Exit is by a JP

to the L(RJP entrance location) with appropriate exit parameters,

Upon receiving an error status from the initialization routine
facility assignment will submit the message generated by the
initialization routine to the LOG routine for processing. '
Control will be returned to the requestor of the assignment
from the LOG routine w1th the appropriate status of the
assignment.. o

Initialization Exit Parameters

~ REG A = 00000 00000 Successfully completed

'REG A = 7777& 40000 Unsuccessful - Reject. ASSIGN request -
REG A = 77777 40001 Unsuccessful - Perform a LOG operation

(Console typeout to operator) and release
LOG buffer back to FREE CORE.

B7 = Absolute memory address of the LOG
: statement which is to be typed out.
Q = LOG message length - number of words.

347

ASSIGN AND UNIT DESCRIPTOR BUFFER

B1 POINTS 0 __CPTIONS
TO HERE D :
1 ESTIMATE (1st WORD)
2 ESTIMATE (2nd WORD) _
3 ESTIMATE (3rd WORD)
A P-TYPE 'LENGTH OF U.D.
5 CH/UNIT CH/UNIT
-6 LENGTH OE'U.C.‘E.
7 DEVICE DEPENDENT
10 | INFORMATION _
11 |
u———"‘——""’”f—’—"——f——'7 |

FROM THE
ASSIGN STATEMENT -

UNIT DESCRIPTOR

. AS LISTED IN THE

FACILITY MAP

Options - Master bits set to 1 to represent the alphabetic
character ogtlons contained in thz ASSIGN statement.

229—A2 Bym = = = = = = =

Estimate = Binary representation of the estimate parameter of

the Assign.statement.

The estimate field from the Assign statement may
consist of up to three parts. (,_1 /2 / 3 ,)

Each part will occupy one word in the estimate storage

set up for the initialization routine.

Any part which

is not present will cause all 7—7's to be placed in
the appropriate word in the estimate storage.

3.4-8

An additional "Initialization Routine" is operated as a
segment of the Facility Release Routine. The purpose of
this initialization is to "clean up" the device in antici--
pation of the next assigmment.

The segment is called when Facility Release detects 229
set in the UCB word containing the peripheral type code.
This bit is set when the UCB if formed depending on a
control bit in the Handler Description.

The action taken by this "Initialization Routine" is
dependent upon peripheral type as follows:

« Standard Card Punch - Punch three blank cards so that
the last card punched by the user is error checked
and an automatic run-out is achieved.

* 1004 Card Punch - Punch two blank cards so that the
last card punched by the user is error checked and an
automatic run-out is achieved.

+ High Speed Printer - Space paper to the first physical .
line of the next page. This is done only if a page
length has been specified and the paper is not already
at the Home Paper position,

-+ 1004 Printer - Same as High Speed Printer. The Home

Paper function will force out the last print line which
is held in 1004 memory.

3449

3.5 User Interface
3.5.1 File Codes

‘File codes represent the basic mechanism by which an operating acti-
vity communicates I/0 requests to the system. At time of activation
by control card or through internal request, the user expresses the
type of unit-or random access file to be assigned to the file code.
Once established the user presents the file code with each I/0 packet
submitted to the system and thereby making the object code relatively:
independent of device. A

Each task addendum is provided with a basic set of 25 file codes, A
through ¥, to which the user may assign peripheral devices or random
storage files. In casges where these are insufficient, the user may
specify that a designated file code 1is to be fragmented into an
additional 26 codes which would contain the same characteristics as
the original set. ,

Example: If the file code B is fragmented, the new set would be
’ ' referred to as BA, BB . . . BZ

File code Z of the basic set is reserved for systems referenceas and
is fragmented as such?

File Gode Reser Us
ZA Unit record primary imput
ZB Unit record primary output
Zc Unit record secondary outiput
ZD Cooperative Library
ZE ‘ Systems Library
ZF Job Library -

The only routines eligible for refarencing these file codes are
. those contained in the systems library.

3¢5-1

3.5.2

I/0 Requests

OMEGA I/0 requests are generatec in response to mnemonics consisting
of an operator and a specification list. The operator defines a
specific executive call and function code. A parameter packet is -
formed from the specification’list of the request. The general
format is given below. A

Operator$aSpecification, Specification . . .

where the specification list could contain any following dependent
upon operation or device

Vo - File Code - is an alphabetic code identifying the logical unit
referenced.

vy = # of words - specifies the length of the data buffer. Length
for any one buffer is limited to 4K.

Vé - Buffer base - contains address of buffer relative to.lower lock
setting of activity.

V3 - Logical address - incremeht from basé of file normally used
with random access storage references; but may be present
with sequential files to effect device independence.

V4 - Search word - 10 octal character number giving search identifier
to be used in a search operation.

The following is a summary of the basic set of I/0 operator recog-
nized by the system, their function codes, specifications and appli«
cable devices. This is followed by a more detailed description of

the specific operator and parameter packet.

L W =]

3-502-1

AN

Function Random Access V-Operands UNISERVO V-Operands

Code Operators Used Notes Operators Used Notes
01 READ$ 0,1,2,3 READ$ 0,1,2

02 WRITE$ 0,1,2,3 : WRITE$ 0,1,2
03 BLOCKR$ 0,1,2,3 1
0/ SEARCHT$ 0,1,2,3,4 2
05 SEARCHP$ 0,1,2,3,4 2
06 SEARCH$ 0,1,2,3,4 3 SEARCH$ 0,1,2,4 3
07 BLOCKS$ 0,1,2,3,4 1 ,

10 READB$ 0,1,2 4 READB$ 0,1,2 6
11 READL$ 0,1,2,3
12 WRITER$ 0,1,2,3
13 BLOCKRL$ 0,1,2,3 1
14 SEARCHTL$ 0,1,2,3,4 2&3
15 SEARCHPL$ 0,1,2,3,4 2&3

16 SEARCHL$ 0,1,2,3,4 3
17 BLOCKSL$ 0,1,2,3,4 1&3
20 WRTEOF$ 0 4 WRTEOF$ 0
21 'REWIND$ 0 4 REWIND$ 0
22 REWINDI$ 0 4 REWINDI$ 0
23 ERASE$ 0 4 ERASE$ - 0
24, SREAD$ LIST 5 SREAD$ LIST 5
25 GWRITE$ LIST 5 " GWRITE$ LIST 5
26 MREAD$ LIST 5 MREAD$ LIST 5

Note FH-880 Drum only Note 5 V-Operand is a tag defining a list packet

1

2 FASTRAND only

3 Directed to the Content Supervisor

4 Function returned as "Successful
completion”

6 Backspace Block on IIIC/IVC

Summary of Unit Record Equipment

Function . V-Operands
Equlnment Type Code Operator Used
Card and Paper Tape o READ$ 0,1,2
02 WRITE$ 0,1,2
‘ 26 . |MREAD$ Tag
High Speed Printer 02 | WRITE$ 0,1,2,3*

¥ Specifies number of lines to space.before,print

General I/0 Operators:

. READ - directs the system to transfer data from specified perlpheral
device to indicated core buffer. If peripheral device is random
access storage number of wards transferred will be that specified
as buffer length. - If UNISERVO or unit record device is assigned
number words transferred will be that specified as buffer length

~ or when end of block or record is reached. The READ operator is
as follows:

READ§ Afile code, # of words, buffer base, logical address

Packet -

EBJP*B7 N
FILE CODE ‘ _# OF WORDS
[BUFFER BASE
LOGICAL Al ADDRESS ‘
N | EXRY — {1 0 0 0 1] Executive Entry

instruction

« WRITE - data from specified buffer is transcribed to storage. The

. user must maintain a logical address, i.e., is the sum of words
written., This address will be used in the event the file is allo~
cated to random access storage.

An end-of—file error status indicates that the ‘end of allocated . -
" area has been reached. An additional area, which is logically
continuously addressable, may be added on request.

.The function méy be specified byi

WRITE$4File code, # of words, Buffer base, Logical address

Packet '
' ALBJ P¥B7 N
FILE CODE . # OF WORDS
' | BUFFER BASE
LOGICAT, ADDRESS T
N L EXRN ’ i1 g 0 Q 2

- 3.5.2-3

READL - Read lock performs the same function as READ with the
addition that an entry for the accessed area is made on a lock-
list. This lock will prevent any other READL function within
this area until released. Conflicting requests are requeued
until they can be performed.

‘The function may be requested by:

READL$ Afile code, # of words, buffer base, logical address

The specification list and packet generated are identical to READ
except that the executive entry is generated as EXRN*10011.

WRITER -~ the write release function is the counterpart of READL

in that an area on the lock-list is released by the function within
the area. If no write function is to be performed a& release is
effected by specifying an address within the lock area with number
of words specified as zero. Otherwise, WRITE release performs the
same function as WRITE. ,

The specification list and packet generated are identical to WRITE -
except that the executive entry instruction is generated as
EXEN*10012. The function may be specified by:

WRITER$A file code, # of words, buffer base, logical address
SEARCH ~ this function compares the first word of each block

against the specified identifier. Reading is initiated when a
match is made to include the search identifier within the buffer.

_ If end of the file is detected a no find status word is returned.

If mass storage the find address is returned in the A-register.

OMEGA simulates the search function through use of repetitive reads-
to prevent undue tie-up of the synchronizer. Since the buffer for
this function becomes the blocking factor for random storage; in
the contingency of allocation to tape the buffer must be equal to

.or greater than the buffer used in writing the file. TFor the

contingency of allocation to FASTRAND, the buffer might also be
a multiple of 33 words to improve efficiency. A locate function

on tape can be effected by specifying # of words as zero. The
SEARCH operator is as follows: '

SEARCH$ Afile code, # of words, buffer base, 1ogicai address,

searchword
Packet
ERP*B7 N
FILE CODE # OF WORDS
[BUFFER BASE '
LOGICAL ADDRESS '
SEARCH IDENTIFIER

N [_EXRN [2 0 _1__0_ 6] Executive Entry

3:5:2=4

SEARCHL - search lock performs the same function as SEARCH with
the addition that an entry for the accessed area is made on the
lock-list when a successful search occurs.

The specification list and packet generated are identical to
SEARCH except that the executive entry instruction is generated
as EXRN*20116. The function may be specified by:

SEARCHL$ Afile code, # of words, buffer base, logical address,
search word

REWIND - position file to load point. This function is ignored
if rendom access was allocated. The programmer must, therefore,
reset the logical address to zero to provide for the even of
random storage allocation. Operator is as follows:

REWIND$ A file code

Packet

ENT ¥ BY FILE CODE
EXRN i_0 0 2 1

REWINDI - rewind with interlock performs the same function as

REWIND except that the tape is interlocked for operator inter-
vention. This function is ignored if random access was allo-

cated. Operator is as follows:

REWINDI$ A file code

Packet

ENT _#B7 FILE CODE
EXRN 10 0 2 2

- WRTEOF - write end-of-file transcribes a point recognized as EOF
when encountered by a read. When this operator is used to mark
the end of recorded tape there should be as many EOF marks as
there are standby buffers or block reads in a MREAD operator.
This function is ignored if random access storage is allocated.
The operator is as follows:

WRTEOF$ A file code

Packet
ENT #* BY FILE CODE
| EXRN » 1 0 0 2 0

ERASE - the erase function results in erasure of a fixed area
of tape. This function is ignored if random access storage is
allocated. The operator is as follows:

ERASE$ A file code

Packet

ENT * B F
EXEN 10

« READB - read backward function moves tape in the backward
‘direction and the data enters the buffer in the order encountered
in movement of the taps.

The specification list and packet generated are identical to READ
except that the executive entry is generated as EXRN*10011. This
function is ignored is random access storage is allocated. The
function may be specified by the operator:

READB§ Afile code, # of words, buffer base

+ FH Drum - specific allocation requests for FH432, FH880, etc., may
be made. The functions applicable to a random file are augmented
by the following operators.

; BLOCKR -~ the block read function is a READ function that is terml-
nated by the end-of-block sentinel (all one's).

The specification list and packet generated are identical to READ
except that the executive entry instruction is generated as
EXEN#*#10003. The function may be specified by:

BLOCKR$ A file code, # of words, buffer base, logical address

.. BLOCKRL - block read lock performs the same function as BLOCKR
with the addition that the lock-list mechanism is employed.

The specification list and packet generated are identical to READ
except that the executive entry ins truction is generated as
EXREN*10013. The function may be specified by:

BLOCKRL$ A file code, # of words, buffer base, logical address

+ BLOCKS = the block search function is a hardwarc function which

compares consecutive words on drum against the specified identifier.
Reading is initiated when a match is made to include the search
identifier within the buffer. The function is terminated by the

. end-of-block sentinel (all one's).

The specification list and packet generated are identical to SEARCH
except that the executive entry instruction is generated as
EXEN*#10007. The function may be specified by:

BLOCKS$ & file code, # of words, buffer base, logical address,
search word

+ BLOCKSL - block search lock perférms the same function as blocks with
the addition that the lock list as described with READL is employed.

The specification list and packet generated are identical to SEARCH
except that the executive entry instruction is generated as EXRN*20117
The function may be specified by:

BLOCKSL$ A file code, # of words, buffer base, logical address,
search word

3.5.2-6

FASTRAND - SpGClIlG allocation requests for types of FASTRAND
storage may be made. The functions applicable to a random file
are augmented by the following operators:

SEARCHT -~ the search track function is a hardware function which
compares the first word of consecutive FASTRAND sectors against the
specified identifier. Reading is initiated when a match is made
to include the search identifier within the buffer. The function
is terminated by the end-of-track interrupt. A locate function
can be effected by specifying # word as zero.

The specification list and packet generated are identical to SEARCH
except that the executive entry is generated as EXRN*10004. The
function may be specified by:

SEARCHT$ Afile code, # of werds, buffer base, logical address,
search word

SEARCHTL - search track lock performs the same function as SEARCHT
with the addition that the lock-list mechanism is employed. .

The specification list and packet generated are identical to SEARCH
except that the executive entry is generated as EXRN#20114. The
function may be specified by:

SEARCHTL$ Afile code, $ of words, buffer base, logical address,
search word

SEARCHP - the search position function is a hardware function which
compares the first word of consecutive FASTRAND sectors against the
specified identifier. Reading is initiated when a match is made to
include the search identifier within the buffer. The function is
terminated by the end-of-position interrupt. A locate function can
be effected by specifying “# of words as zero.

The specification list and packet generated are identical to SEARCH
except that the executive entry is generated as EXRN*#10005. The
function may be specified by:

'SEARCHP$ A file code, # of words, buffer base, loglcal address,
search word

SEARCHPL -~ search position lock performs the same function-as
SEARCHP with the addition that the lock-list mechanism is employed.

The specification list and packet generated are identical to
SEARCH except that the executive entry is generated as EXRN*20115
The function may be specified by:

SEARCHPL$A file code, # of words, buffer base, logical address,
search word

3-5-2-7

Multiple Read/Write Service Requests - the following operators

describe special purpose functions where data is to be transcribed
from or to non-continuous areas of core, random access storage, or

tape. Each function is composed of two operators; one to specify the

operation to be performed and the second supplies the parameters
required to perform the operation.

+ SREAD - scatter read requests the system to transcribe data
from continuous area of random access storage or a single tape
block into one or more non-continuous core buffers as specified
by buffer words in LIST operator.

SREAD$ alabel of LIST operator
Packet

ENT * B7 LABEL
EXRN 1.0 0 2 4

e

« GWRITE - Gather write requests the system to transcribe data
from one or more non-continuous core buffers on to one con-

tinuous area of random access storage or a tape block as specified

by the LIST operator.

GWRITE$ A label of LIST operator

ENT * B7 LABEL _
EXRN 1. 0 0 2 5

.+ MREAD - multiple read requests the system to transfer data from
one or more non-continuous areas of random access storage or

multiple tape blocks into one or more core buffers as descrlbed
by the LIST operator.

MREAD$ A 1label of LIST operator

Packet

EXT * B7 LABEL
EXRN 1. 0 0 2 6

List Operators

I/0 requests may be generated with remote parameter packets in lieu
of the in-line packet. In this case the specification list is
generated by the LIST operator. When this operator is used the I/0
request specifies the label of the LIST operator. Three LIST oper-
ators are provided.- '

3.5.2-8

LISTS

The LIST% operator may be used in the conjunction with the following
1/0 operators: READ$, WRITE$, READL$, WRITER$, BLOCKR$, BLOCKRLS,
SEARCH$, SEARCHL$, BLOCKS$, BLOCKS$, BLOCKSL$, SEARCHT$, SEARCHTLS,
SEARCHP$, and SEARCHPL$. The LIST$ operator is as follows:

LABEL — LIST$Afile code, # of words, buffer base, logical
address, search I.D. ‘

The packet generated is as follows:

LABEL . | FILE CODE { # OF WORD

o t BUFFER BASE
LOGICAL ADDRESS
SEARCH IDENTIFIER

Note: If Search I.D. is present, logical
address must be present.

Associated with the above LIST$ operator, a Read request would
appear as follows: ' o

READ$A LABEL

The generated call would then be:

ENT * BY LABEL
EXRN 1 0 _0_0 1

LISTA$

The LISTA$operator is used in conjﬁnction with the following

I/0 operators: SREAD$, GWRITE$, and MREAD$ on unit devices (i.e.
magnetic tape and card reader). The LISTA$ operator is shown
below. '

LABEL — LISTA$A file code, # of buffers, logical address,
words/base, # words/base, etc.

of buffers - the number of buffers described as # words/base in
this operator.

Logical address ~ must be present (zero for magnetic tape and card
operation

of words/base - describe each core buffer relative to programs
lower lock setting. The number of buffers is not limited.

3.5.2-9

The packet generated is:

OF BUFFERS

LABEL -5 FILE CODE

LOGICAL ADDRESS

OF WORDS

BUFFER BASE

WORDS

BUFFER BASE

LISTBS

The LISTB$ operator is used only when executing the MREAD$ operator
on random access storage. The LISTB§ operator is shown below.

LABEL — LISTB$A file code, # of buffers, # words/base/logical
address, # words/base/locigal address, etc.

The parameter packet generated is as follows:

FILE CODE

WORDS

BUFFER BASE

LOGICAL ADDRESS

WORDS

BUFFER BASE

LOGICAL ADDRESS

3.5.2"10

OF BUFFERS

345.3

‘Status Codes

The status of each input/output operation is indicated, upon
completion, in the A-register when control is returned to the

" worker program. Supplementary information may also be contained
in the "A" and Q" register. Upon successful completion, the

UAM register is set positive on normal operations and may contain
the logical address of a find when a search of random access
storage was specified. The Q register contains # of words
Vi (== & .

All abnormal status conditions are signaied by 229th of HAm,

register set to (1) with a six bit in the lower of indicating type
of condition. Frame count errors on magnegic tape will be in-
dicated by 229 of the A register = O and 20-2° equal to the
magnitude of the frame count error. -

. Ihappropriate function (01) - The function code is not
applicable to the file (e.g. READ on a printer file or-
SEARCHP on a tape file).

. Incorrect Parameter (02) -.Buffef outside program lock limits,
or illegal function code. '

.. Unrecoverable Error (03) - The requested function cannot be
" completed. Recovery procedures have been attempted and have
- proved unsuccessful. Parity errors, sequence errors, etc., fall
in this category. o

. End-of-file (04) -~ An end-of-file mark has been detécted on
- magnetic tape or the end of allocated area has been reached on
a random file read. .

+ End-of-tape (05) - A write operation has been successfully
- completed beyond the tape limit mark, or load point has been
encountered during a READB operation.

‘. Unsuccessful Search (06) - The search identifier could not
be located within the specified area of the file.

« Illegal character (07) - An illegal combination of punches

.~ (any combination of holes in rows 1, 2, 3, 4, 5,.6. 7.or 9)
'.hasyéeen detected in a card column'(tréns até mdde onlyf.

The illegal character will appear as a 00 cpde in the buffgr.

. No assignment (10) - No assignment mode for the referenced
file code.

. Interlock (11) - Operator has indicated that an interlock
condition cannot be corrected.

. 30503"‘1

*4~Q Core Allocation

Descriptions of available core storage are held in chains utilizing free
storage described to maintin its links. Normally the only requestors ellglble
to reference core chains are Omega and RT/comm control.

Three classes of chains are maintained by the system. Chain 1 holds free-
storage, all non-committed core, and is used for program allocation, forming

of other chains and to accomodate dedicated chain overflow. The second class
are chain numbers two through five and are reserved for exec usage. Chain

two contains unused storage modules, chain three activity addendums and chains
3-5 are unassigned. '

The third group of chains are declared by and dedicated to the RT/ comm control
program; used to allocate core storage for worker programs, buffers or data.
pass areas. Normally chain declaration is made during the initislization of

the RT/comm control program committing an optimum area to the function. The
system, upon dedication, will allocate a continuous area of core to the request.
Expansion of a particular chain will be performed dynamicly from free storage
by the system upon senseing or unsatisfied request. All expansions will be
returned to the general poolupon their release by the user. During peak periods
of processing the RT/comm program may establish an additional chain at the
expense of lower priorifyprograms to accomodate overflow.

Chain declaration - each chain declared by the user must be assigned a number
greater than 5 usedto perform all references. The user has the option of
declaring the committed area into twotypes of chain regulated mainly by
intended usage. The first is a fixed module chain where each link is a given
size; providing faster request/release mechanism as well as one less parameter
at usage time. The second type provides for variable requests a parameter
supplied at request time; giving the use more flexibility and promotﬁng

less wastage.

All allocations, requestés or releases must be madé in multibles of 2 words"
FCHAINg VO, V1, V2

" where VO - chain # assigned 5 - N
: * V1 - contains # of words declared if variable chain or # of
words in each . module if fixed chain.
V2 - # of modules if fixed chain (J if variable chain.

Packet | ENT * B7 VO
-ENT * Q V1
ENT * A - V2
17 7 3 4L 012 0 2 1 4

Upon return of control A regiéter will contain status of request 22%h

indicates core not available.

set

Chain release - used by RT/comm control to dealiocaté a previously declared
' chain. Caution must be used not to release chain before all expansions have
been returned to the general storage Dool.

4-1

RCHAINS VO

where VO - # assigned to the chain by FCHAIN}operator

Packet ENT ¥ BY ‘YO
7 7 3 4L 012 0 2 1

Memory request - from a previously established chain,a given number of words
or a module in the fixed chain case. '

MEMADD$ VO, Vi

where VO - # assigned to chain by FCHAIN operator
V1 - number of words requested when a variable chain is being

referenced.
packet ENT %* B7 VO
ENT ¥ Q Vi
7 7 3 4 014 0 0 0 1

Control is returned following packet with address of requested core in the

A" register relative to lower lock settin% of requestor. If core not available
in the specified chain or free storage,29thof the "A" register will be set.

"Q" register contains # of words or modusles remeining in the chain,

Memory release - requestes the release of described core storage to the indicated
chain.

MEMREL$ VO, V1, V2

where VO - # assigned to chain
V1 - base address of core relative to lower lock of submitter
V2 - number of words being released applicable only to variable chains

Packet ENT * B7 VO
' ENT * A V1
ENT * Q V2
7 7 3 4L 0l4 0 0 0 2

Core Chains - are linked from the task addendum of the user to accomodate -~
multible RT/comm programs. For each declared chain the following description
is formed to control usage. ' ‘ '

Chain # {Type of chain |« Pointer from addendum
[Link to next deseriptor
Current #oflinks !Size of link

Word O
1
2
3 Base of core assignment
4
5

End of core assignment
Chain address

Word 0 -

Word 1 -

Word 2 =

contains chain number assigned by FCHAIN operator and type of
chain O - indicates variable, 1 - indicates fixed.

link to next chain descriptor o-o indicates end.

containg number of modules free when chain is fixed. This value
is returned to the user (in Q register) upon each request,
thereby, providing a mechanism tosense depletion for time
critical usage. Size of link is used for fixed chains when
retriving a module from free storage to accomodate overflow.

If chain is variable, word 2 contains number of words currently
available and is returned in Q register for each requeat. '

Word 3-4 describes the core area cOmmitted to the chain.

Word 5

address of first link in chain.

sach link in a chain describes its area and points the next link.

- {Address of next link |
of words '

is a 17 bit address relatiVG to base of machine of next link in
chain.

applicable to variable chainsAonly and contains # of words in link.

4-3

5.0 Task Control Functions

Entry: Miscellaneous functions are entered from a table at label
MAMISC. A jump is performed using the lower four bits of
the EXEC call to determine the requested function. Illegal
parameters are referred to a common error routine.
Miscellansous functions currently available for use as
follows: '

"« - PUSH

A storage module has been formed and linked to current
activity by EXRN routine. The PUSH mnemonic requests
current activity to be linked to chain specified by V¢
by priority in ascending order. No control is returned
until a complementary POP is given. This function is
normally used by I/0 control, content supervisor, etc. to
queue and inactivate activity until requested service can
be performed.

PUSH AVY

Packet ENT#B7 Vg
EXRN gdgdn

Where V@ is the bass core address in absolute of linking

cell of chain on which current activity is to be linked.

. QREF

Queue activity reference - mechanism for linking requests
" to activities previously defined by REGQ. A storage module
is formed by this request and the parameters in registers
A, Q, B1-B6 at the time of reference are stored in the SMOD
for activation at execution. If this is the first QREF
associated with the registered activity the activity is’
placed on the queus., If not the first it is linked to
activity addendum for later execution of the registered
activity. In any case, control is returned to the requestor.

QREF$ AVY

Packet ENT%B7 V@
EXRN gggg2

Where V@ is the binary identity of the activity referenced

by the QREF$. Used to perform a search on available activities
within the task and identify the necessary activity addendum.
Binary identity that is specified must not be g (V@ # @).

RETURN

This entry is used to relinquish control to the executive

at the conclusion of an asynchronous activity or task. The
routine checks if referenced activity is task-permanent
(i.e. it has binary identity). If it is task permanent, the
SMOD just completed is deallocated and removed from chain
associated with this activity. If there are any other
SMODs linked to this activity they are given control. This
activity addendum is not deallocated until conclusion of
the task.

If this is not a task-permanent activity, it is checked

to see if it is a fork from some other activity. If so,

the activity just completed is deallocated and control given
to forking activity providing a join has been given and that
activity has no other outstanding forks.

If this is not fork from another activity, it is possible
that the requestor may have no outstanding business which
would cause reactivation (with the exception of queued
activity registration), then the associated task is checked.
If there exist no ocutstanding processable activities, forks,
incomplete hardware level I/0 requests or latent time of
day restart requests, the task is terminated. Subsequent to
task termination, facilities are deallocated and the next
job task is sequenced or the job is terminated if no tasks
remain., Otherwise, control is switched to some other task/
activity active in the multi-program environment. No parameters
are required for RETURN operator.

RETURN$

Packet | EXRN [43 78d5]

FORMATOR

This is entered by a jump to ASCAN{. This routine receives
command words through the storage module from the requestor
and formats a channel executor module which is then queued
to the appropriate CCB for subsequent execution of the
input-output commands. o ‘

[EXRN l¢¢¢¢6J}

5.2

*DELAY

The Delay function is a way that task and task fragments
can have themselves reactivated after a specified milli-
second delay. The millisecond delay counter may be from
1 millisecond to & maximum dealy of 24 hours. If the
millisecond delay counter is over 5 minutes the time
delay will be established as a time to activate and will
be placed on the day clock timer routine and activation
will be done on the gross timer of the day clock with

a plus or minus variation of 6 séconds. If the delay is
" under 5 minutes it will be established on the real time
clock queue with a plus or minus variation of 200 micro-
seconds. The millisecond delay counter will be held in -
the Q register at the time of the Exec return.

DELAY$

ENT-Q.VF
EXRN.00007

where V@ is the millisecond delay counter and may
be in the form of W(X).

It should be noted that the delaying routine will only
be placed on the C.P, upon completion of the delay time.
Subsequent control could be further delayed to process
higher priority activities.

Control will be returned to the instruction immediately

following the EXEC RETURN with all registers restored with
the exception of Q. Q will contain the difference between

- the actual time the routine wanted control and the time
the switch to the routine was performed.

5.1

Fragmehtation Requests

Definition:

A fragmentatlon request (activity registration, fork
or join) establishes an independently executable

‘program. The request implicitly requires allocation

of additional core to serve as the adderdum necessary
to execute the requested fragment. Once established,
an activity or fork may make the same service requests
as a task and will share with the task operational
identity, primary cooperative streams, fa0111ty
allocation, logging and accounting.

Standard Activity Registration defines a re-entrant
activity to be registered with C.P. control for
execution. The values of A, Q, B1-B7 are set to that

of the requestor with B7 containing the address of

the packet. Parameters specify the location, relative
priority, data area, and relative index to be associated
with the activity. After queueing control is returned
to registering activity. The activity is initiated
with'all operational registers set to that of requestor
in 15-bit mode.

REG$AVO, V1, V2, V3, Vi, V5, V6

Packet EBJP*B7 $+3
T 29 15114)
V1 Vg
29 128 127 |- 15114 0
V4l V3| Véf V5 V2
EXRN ggpg

V@ - Address of activity in memory; this is implicit
starting p01nt of activity. If independently
compiled program (V4=F) this address must be a
multiple of 1gg.

V1 - 15-bit address of data area in core.
V2 - 15-bit length of data area.

V3 = Data area mode
@-indicates read/write lockin will be set to the
data area defined by V1 and V2 and read will be
permitted from any area.
1-indicates use of read/write lock of requestor.
The only means of reaching the data area is through
use of registers B4-B7.

V4 - Activity mode indicator; zero specifies the activity
is an entity and contains all referenced data exclusive
of the declared data area and was independently -
compiled so that the first instruction is relative
to address zero. Non-zerc mode indicates that the

activity is integral to the requesto and RIR is
not adjusted address of activity.

V5 - relative response priority (@#-17) may be declared to
attain a differentiation with respect to other
activities currently operated within the task. When
priority is not specified, the prlorlty of the
requestor is assumed.

V6 - # - use priority of previous, none specified

1 -~ priority has been specified

Queue Processing Activity - a means of utilizing a task
permanent activity to respond to a series of events.
Transactions are accepted and queued by the system and the
activity is executed whenever a queue entry exists. The
activity signals completion for a given transaction by
- return of control via return operator. Omega re-executes
the activity if ‘any other SMODs remain linked to queued
activity for execution.

After registration via a REGQ operator the activity becomes
task permanent and can be referenced by a QREF any time
before termination of the task. Use of this function allows '
the scheduling of events at occurrence. It is appropriate
where no advantage can be gained from registration of
concurrent executions by re-entrant code. Two operators
are associated with use of this function, REGQ and QREF.
The first defines the activity and the second supplies the
data to the registers to be queued. .

REGQ$ AVE, V1, V2, V3, Vi

Packet EBJP%B3 $+3
29 ‘ 15 |14 0
‘ V1 vg
29| 28127 | 26 15 114 0
Xl X V V3 1 V2
EXRN - | 00012

Vg - 15-bit addre'ss and starting point of activity.

V1 =~ 15-bit length of activity, zero implies read/write

' lock will remain set to that of requesting activity
and the activity is considered an integral part of the
compiler requesting activity. Non-zer¢ length defines
the area to be protected by memory lock-in and RIR
is set to vg.

V2 - Binary Identlty of routine for further reference via'
the QREF operator. V@ = @

V3 ' - Same as V5 for standard act1v1ty. (priority)

V4 Same as V6 for standard act1v1ty.

5-5

Fork - represents a method of activity registration in

which the executive will correlate all forks from a given level
so that completion of the synchronous activities from any

level can be tested through the use of the JOIN function.

All FORK activities are considered integral to the requestor -
and atain the same RIR and lock-in'values of the requestor.

At time of activation, forked activity will contaln operational
registers of requestor.

FORK$ A VY

Packet™ . |29 15{14 0
- ENT3B7 Vg
EXRN . 00013

V@ - 15-bit starting address of activity.

The FORK operator is more applicable to general batch

processing programs than real time transaction processing

since it provides a higher level interface and synchronization

is on a gross basis. The only parameter required is a start

address. An activity established by a fork may, in turn,

" establish other forks which provide additional levels of
controlling parallel paths.

A JOIN entry requests a wait until all asynchronous
activities previously established by FORK have been
completed as indicated by relinquish operator RETURN.

The JOIN mnemonic sets a join bit in the activity addendum
that remains set until the last forked activity from

that activity has given the RETURN. Then the fork count
goes to zero and control is returned to the original
activity. A JOIN given in the task itself will wait on
all forks outstanding within the task since the task is
the base of all forking. A join from an activity will
wait not only on those forks directly established by the
activity, but also those forks set up by forks that are
themselves direct forks from the requestor. No parameters
are required for this operator. : :

JOING

Packet [EXRN _ 10001 4]

5.2 Restricted Task Control Functions

The restricted task control functions are those used by the
OMEGA system and are not available to the general user.

+ Register Control Thread

This function allows any part of the OMEGA system to establish
e path starting at any of the primary OMEGA functions that
acts in the same manner as a normal OMEGA call to the primary
routine. Parameters needed are a 15 bit value to be stored

in IFR lower to act as the OMEGA call and a JOB number of ‘the
task addendum to which the formed activity addendum must be
linked. IFR value will be in register Bl and JOB number B2,

EXEC RETURN format is
EXRN.00020

The task control routine upon receipt of this function will
form an activity addendum and a storage module with the value
in B1 stored in IFR lower. This storage module will be the
one the primary routine will process. One additional storage
module will be formed to activate control at the primary OMEGA
level. Next the task addendum whose JOB number matches with
the value of B2 will be found and the activity addendum will be

linked to it. Then the activity will be queued on the C.P.
and control returned to the rquestor. 4 n queus

* Abort Control Thread

This function allows any part of the OMEGA system to have
removed from control the activity addendum it is presently
running under. The activity addendum and all storage modules -
are placed back in the free core chain. No return control is
allowed and no parasmeters are needed.

EXEC' RETURN format is
‘EXRN+00021
* Special QREF
The special QREF is the same mechanism as the normal QREF
with the exception that JOB number is also supplied. The
correct task addendum will be found before the normal QREF
is performed. Register B7 contains an address of a one word

packet of information.

Packet format is

29 15114 ' 0

JOB # BINARY IDENT,

ENT.B7-Packet Address
‘ _ EXRN-00023
; 5.7

Secondary Exec Functions

Secondary Exec Elements are those required to load, activate,
and terminate tasks introduced into the system via the I/0.
cooperative mechanism. Due to low usage of these functions in
relation to the total system, the majority of routines are
based on random access storage and loaded into core when the
need arises.

N + + 3
Content Supervisor

The content supervisor is a resident exec routine responsible

for loading and/or activation of drum based secondary EXEC
functions used in performing service requests. Lib # of

EXEC return instruction specifies service routine to activate

and indicates if the service routine is re-entrant, allowing ,
multiple simultaneous usage of routine, -or non re-entrant requiring
the content supervisor to control usage of the routine.

Each secondary Exec service routine is limited to 2,000g words

in length including segmentation and buffering. Dependent upon
core storage available and usage of routine, a copy of the

service routine will be allowed to remain in core after completing
a request and will be utilized to perform subsequent requests.

The following is & list of servisce routines which omerate under

T A < 12N iidUii VPMVLAQR WY Wik

control of the content supervisor and the service requests which
activate them.

. Content Supervisor, library number 000. The following functions
are processed directly by content supervisor,; upon activation by
‘e Direct Return (DRET1$) from a secondary exec routine or on
exec return in the case of the Purge request.

Function Code Operator Description

00 B1=0 Internal Release routine in IFR and return
' control to next storage module in
string.
00 B1=1 Internal Release routine in IFR and call

routine listed in B2, B4 is set to
original value of storage module
causing activation.

00 Bi=2 Internal Release routine IFR. Deallocate
' the control thread of the current
activity and release control to
the exec,

01 Internal Purge the highest order secondary
exec routine in core, but not currently active.

(@]
N

Internal Purge all inactive secondary exec routines
- currently in core.

6.0-1

03 . Internal Load and modify to running form the indicated
element into the assigned core. B7 equals the
- ~absolute value of the following packet.

FC T TExGTH
SEG [[CORE BASE
|FILE INCREMENT

FC - The file H;n wh;Ch Uh“'ﬁ’emenu may be ;ounu.

LENGTH - The length of the elements control portlon
or the maximum core used

CORE BASE - The absolute address at whlch the element
is to be loaded.

" # SEG - The number of se ments contained within
' the element. (2<9 - 2R4) -

FILE INC.'- The 1ncrement relative to the base of
the file containing the element at which
the instruction of the control part start.

Functions 01, 02, 03 are reguested by an EXRN¥2000X. Control is returned
immediately following the EXRN instruction.

6-0_18.

Library
Number

001 -

002 |
003
004
005

006

010

011

012

013
014

015

Name

Service Functions 17

Service Functions 2 -

' I1/0 Error Recovery

Console Control

Facility and storage
assignment ‘

- Service Functions 3

[o P T n,“,,.- .
- vooperalvlive oervice

Routine

‘Pre—Selection

Selection

Termination

Remote facility

Library Service
Routine

Checkpoint and
Restart

Description .

Re-entrant routine responsible for.
high priority service requests.

Re-entrant routine responsible for
processing high priority service
requests,

Re-entrant routine respohsible for

“input/output error recover for tape

hardware handlers.:

Non re-entrant routine used to
analyze and switch.console operator
messages.

Non re-entrant rbﬁtiné‘to process
Assign and Release requests for
mass storage and peripheral devices.

Non re-entrant routine to process
search or form type requests.

Non re-entrant routine to process
service requests in the control .-
of Unit record routines and 1/0
Cooperative Control.

Non re-entrant routine used to

. summarize scheduling data for
task/activity.

Non re-entrant routine used to

‘select and initiate task/activity.

Non re-entrant routine to deallocate
and close task/activity routines
and/or control threads.

Non re-entrant routine responsible
for the assignment of remote

communication devices and the load
and activation of required remniotes.

Non re-entrant routine responsible
for transferring elements produced
by generators, compilers, assemblers,
and loaders to the job library.

Un-defined

6.0-2

Library

Name Name } ' Description
016 - Compaction , Responsible for compaction

and purge of core and/or
drum storags.

. o017 Dump
020 1/0 Error Recovery 2. Mass storage
021 ' I/0 Error Recovery 3 Unit record peripherals
022 Phase 1 Rexecutor - 'Lbad>REX oriented batch
' : : programs.
023 Phase 2 Rexecutor & Execute REX oriented batch
‘ ‘ L g programs.- ‘ ‘

(.03

(0)))

-

T

N deTe 0 2 8 N memm b 2 e
reunod o1 vperavion

Content supervisor is activated upon an exec or worker
task/activity executing an EXEC return instruction with two (2)
exec call in bits positions 12-14. Upon activation B4 contains
the address of storage module cuasing activation and performs

‘the following functions.

Unstring Librery number, bit position 5-11, and function cods,
bit positions O-4, contained in IFR of storage module,
Library number and function code are entered into B registers

-1 and 2 respectlvely.A

Valldates library number and determines if service request
is to be processed by core supervisor or drum based service
routine.,

‘Content supervisor has two type of requests which are directed

to it for processing: one to purge all routines not currently
active, the other is the mechanism for returning control to
the content supervisor by a secondary, exec function and is

. performed by the followlng packet.

ENT= Q¥ 2 Switch function code
ENTx*A¥ 12 # of routine to switch to
7734000000 ' :

When this packet is utilized, no storage module is allocated
and control is returned to content supervisor. Upon receiving
control C.S. will release secondary exec routine llsted in IFR
of previous storage module and then analyze B1 for subsequent
action.

Bl = O)Cohtrol will be returned to previous storage module

Bl = 1)Use B2 as the function code and Lib # of another

' secondary exec activity to schedule and run under
previous storage module. B2 will be plugged into IFR.

B1 = 2)Release the routine in IFR of current storage

module, deallocate the control thread of the current
activity and release control to the exec.

kCalls for drum based secondary exec functions to satisfy serviee

requests are handled as follows: (See accompanying block
chart and table). s

The called routine is located in the table and disposed by
either queueing request for later activation or activating

the called for routine. The content supervisor, upon activation
of secondary exec functions, sets RIR to address of instructions,
IFR to 17 bit B registers PLR to all of core and operatlonal
registers as foliows.

6.0-4

n4
&

Library number of called service routine
B2 TFunction Code
B3 e

B4 Address of storage module causing activation
biased by lower lock limit

B5 The sddress of the core facility and storage summary
biased by lower lock limit '

B6 = e
B7T e
KSSRIR - Increment within the storage module addressed

by B4, contains the RIR of the secondary exec
routine given control

. The content supervisor allocates core for service routines
in modules of 100g words up to a maximum size of 2,000g. Core
storage is obtained from the general pool unless exhausted
in which case one of the inactive service routines will be
purged to obtain the core. Normally once a service routine
is loaded it will remain in core until the storage is required.
Inactive routines of a higher library number purged first.

. Se

s .
condary exec service routines are general non re-entr

code having full capabilities of segmentation and making

nt+

id W

edditional service requests, I/0 access as a normal activity.
Their only constraints are as follows: sige is limited to
2,000g; starting address is implicitly defined as their

first location; they are self-initializing and have a special
termination to the core supervisor. Each service request will
be processed under task/activity performing request.

Content éupervisor maintains the following list called "ETAB1" of
routines operating under its control. Each entry in the list
is ordered by Lib # and contains the following values.

Current # of users |Lib # of routine
ZE Length of routine
|RIR of routine
Drum Increment to routine
' | Queue Cell

Word O contains library number of routine; and current number of -

users, zero indicates routine is eligible for purge if
core required.,

Word 1 ZE is the file code of systems library used in drum call;

length is the maximum size of routine.

Word 2 contains address of routine relative to base of machine and

will be used as RIR setting during switch cycle and indicator

6.0-5

that routine is in core; zero indicates routine not
in core. .

Word 3 .Contains drum iqcrement of routine in systems library.

Word 4 Contains Queus cell to chain calls for routines currently

active. . ‘

6.0-6

a
i

L
O

1.

2.

Direct Return (DRET1S)

Where used

When udsed

Function

Additional

. Parameters

Register Control Thread

.2 Control Transfer Functions "Scd In Secondary EXEC

ENT*Q*2

ENT#*A%12

EXRN *g

- All secondary EXEC routines

- When all responsibilities of routine have
been completed.

- Will cause IFR and registers in LCR module to
change and a transfer’'of control to the content
supervisor via LCR. No storage module deallo-
cation occurs.

l
A%

Release routine in IFR of current
storage module and return control
to next storage module in string.

1A:B1 =

1B: 31‘ =

= 1 Release routine in IFR call routine‘
whose library number and function
code appear in B2.
10:By = 2 Release routine in IFR of current

storage module, deallocate the
control thread of the current
activity and release control to
EXEGC,

ENT*B1*EXEC CALL

ENT#B2xJOB #

EXRN#REGCT

Where used - (Console handler, request for contsole control

When used

Function'-

routine), (I/0 cooperative, request for CSR).
(RETURN, request for termlnatlon).

- When it is necessary to establish a control thread

undGer another task addendum.

- Set up an activity addendum, LOR, and a storage
module under the specified task addendum. B1 is

Pplaced in IFR or LCR and storage module. Transfer
control to routlne in LCR, IFR locatlon.

600-7 .

3. Switch Control Thread

by

5.

Where used =

When used -

Function =

Abort Contro

Where used -

When used -

Fanction =

ENT%A#JOB # & SWCT

ENT*Q¥* ACT. ADDM. ADDR.

EXRN*g

(CSR, from EXEC worker addendum before switch to
pre-selection), (Pre-selection, worker to EXEC
before switch to selection), (Selection, EXEC to
worker before switch to initiation), (Termination,
worker to EXEC before switch to selection).

When it is necessary to switch from one addendum
to another addendum.

Remove the control thread for the curreﬁt activity
from its task addendum and link it to the indieated
addendum.

1 Thread -

EXRN*@ gg21

In Content Supervisor upon request of a secondary
EXEC routine entry via DRET$ with By = 2,
(Selective when no task can be selected.)

- When no further processing is possible and no-
point for return of control exists.

Remove and discard the control thread from the
current activity the release control to the dis-

- pather.

Direct Switch 1 (DSW1$)

Where used -

When used =

Function -

ENT*Q¥ADDR RIR

ENT*A*00010

EXRN*00000

Content Supervisor

'Whenaasecondary EXEC routine 'is given control after
its availability is deterndned,

Reset RIR and drum increment and transfer to

addrgss satisfied.

6 0.0-8

. 6. Direct Return 2 (DRET2§)

ENT*A%*13
. EXRN*00000
Where used - Content Supervisor A
‘When used - Upon a DRET1$‘from a secondary EXEC routine
implying a return of control to the requestor.
Function -. Deallocate last storage module on cﬁrrent

activity and return control to it.

6.0-9

o
-

Secondary Exec Chain List

Within the Secondary Exec it is often necessary to utilize the
services of other Secondary Exec routines. If this is done via

a EXRN#20XXX, the requesting routine will be locked out if it is
not reentrant. ZEven if it is reentrant it will be required to
remain in core at the same location until the requested service
hes been completed. When it is considered that the second lewel
request may in turn cause requests to other routines it may result
in a pyramid of routines necessary in core al one time to process'
a single request.

Talleviate this problem a chaining procedure is herein defined
which allows a secondary exec routine to obtain the services of
other secondary exec routines during which time it is released
and may be used for another request or purged if the core is
required.

It is necessary that any routine initiating a chain request be
coded such that it may be purged and unloaded at a different
location between the time that it makes a chained request and when
it gets control returned from that request.

It is the responsibility of the routine initlating a chained
"equest to obtain free core for the list and to set the list

The content supervisor will update the list upon the entrance
to and exit from the routines involved in the request.

When the initiating routine gets control back from the request
the chain list will contain a list of all routines involved in
the processing of the request and the status returned by each,
along with a combined status which consists of the logical
sum of all the returned status's.

600-10

The requirements

or the initiation of a chained request within

the Secondary Exec are listed below.

1) Obtain free core sufficient to contain the list and all
entries possible.

2) " Set up the first 6 words of the list as shown in figure 1.

3) Set the sign bit in the IFR location of the current storage
module and save the address of the list in KSCL of the
storage module, '

*The requirement of the initiator upon the completion of the request

are as follows.

1) Release free core used by the list.

*The Content Supervisor will check for a chained request upon entrance
from a Secondary Exec routine. If it is a chained request one of the
following procedures determined by the type of exit from the Secondary
Exec routine will be taken.

1) B1=0 a)

b)

c)

2) B1=1 a)
b)
.c)
3) B1=2 a)
b)

Set the logical status and the individual status
in the chain list, for the process just completed.

& v 2 S s TR 1 + 2 -~ Ll o
Clear the sign bit in the IFR location of the

SMOD

Give control to the initiator using the return
library number and function code (IFR) in the
chain list.

Perform status set as when B1=0.

Store call for routine in B2 in the chain 1ist.

.Process request for routine defined by B2.

Set abort status in logical status word of the
chain list.

Process as if B1=0

6.0-11

*The following is a coded routine which will form a chain 1ist and

do the initialization.

be required for the initiation of a chained request.

FCLST

FCLST

FCLST4

Form Chain List
Input - B4 = address of current SMOD
B1 = size of list required '
B3 = return IFR setting desired.

Output- B7 = absolute base address of list
KSCL = address contained in B7
IFR = sign.bit will be set in the lower.

- Entrance EBJP+B6.FCLIST

Exit : JP.B6

Registers Used Qther Than Input/Output = 4, Q

LxB7 - -+ Free core chain
ENT*QxB1 — # words to request
EXRN:=MEMADDS - Request core
JP#FCLST4*ANEG - Didn't cut core
ENT#B7%A -+ Address of list
STR*B1*U (B7) - List length
PUT*6%#U (B7) - # words used

ENT*A*LX(KSIFR+B4) ANEG — Currently in chained request

"SEL¥SET* 40000 -+ No set sign bit
STR*A*I,(KSIFR+B)APOS - Restore, nested request
ENTsQ#W(KSCL+BJ) - Pick up nested chain addr
CL*Q —+ Clear nest link
STR*Q*W(B7+4) - Set nest link
STR*B7*W(XKSCL+B4) = Set chain addr.

STR*B3%#U (B7+5) - Return IFR

CLxL(B7+5) - Clear logical sum status
JP#B6 : . ' - Exit

EXRN*PURGEA$, = Purge unused routines
JP#FCLST =* Try again :

6.0-12

The functions performed by this routine would’

SECONDARY EXEC CHAIN LIST

Word ¢

LIST LENGTH | # WORDS USED
ORIGINATOR
STORAGE
AREA
| ADDR PREVIOUS LIST

RETURN IFR COMBINED STATUS
REQUEST IFR STATUS '
REQUEST IFR STATUS

e o o QOO

U - The length of the list as determined by the
originator.

L - The number of words used in the list at the
present time. This servies as in increment
to the first free word in the list.

Storage area for use by the original requestor.

The address of a previous list in case the current
list is a chain list originating within a chained
request. Word 4 of the initial list will be #.

U - The IFR setting necessary to return control to
the originator.

L - The combined status of all requests within
the chain.

U - The IFR for the initial request made by the
originator.
L - The status of the request.

U - the IFR of a request made by the routine

requested by the originator or some other level
. routine.

6.0-13

STORAGE MODULE FOR CHAINED SECONDARY EXEC REQUEST

0 “TPUSH POP LINK

1 |ACT. ADDM. ADDR. :

2 (1{ IFR KSIFR
3 RIR

4 LOCK LIMITS

5 P B

6 B2

7 B3

10 Bl

11 B5
12 B6

13 B7
14 A :

15 Q

16 SECONDARY EXEC ROUTINE RIR

17 | ADDR CHAIN CELL "KSCL

Figure 2

The routine which initiates a chained request would set the sign
bit in the lower of the IFR (Word 2) in the storage module. This
would signal the content supervisor to update the chain list upon

exit from a servicing routine.
If the sign bit in the lower of Word 2 is set, word 17 (KSCL) is

assigned to be the chain link. Therefore, if the request is
chained the KSCL location should not be destroyed in processing.

6.0-14

6.2 Service Functions (1) Library number 001 is a re-entrant service
routine responsible for the following service requests.

Function
Code _ . Operator » Description ‘
01 LOAD$ | ‘ Load indicated segment
02 LOADAS i&ad and activate indicated segment
03 UST$ Unstring specified statement |
04 CVTS Convert spedified numeric

0537 Unassigned

6.2-1

Service Functions (1) Library number 001 is a re-entrant service routine
responsible for the following service requests.

*L.OAD A SEGMENT (Function code 01)

This request will load a segment into core from random access storage.

This is an unconditional load directive, i.e., the segment will be loaded
regardless of whether it is still resident in core from a preV1ous load
operation or not. The LOAD§ operator is the direct method for hav1ng a
progrzm loaded into core. The indirect method is to jump or return Jump

to some exvernally defined label within the segment. If the segment is
still resident in core, it will nol be reloaded; thus a segment should be
self-initializing if the indirect method of loadlng is used. If the segment’
is not in core, it will be loaded from random access storage and the jump or
‘return jump performed.

This reguest will load the segment that contains the externally dsiined label
reference found in the lower 5 bits of B7.

Operator: LOADSALABEL

Packet: ENT*B7 LABEL

77540 - 20041

°LOAD A SEGMENT AND ACTIVATE (Function. code 62)

Tris request is similar to the LOAD$ operator. The segment containing the
externally defined label found in the lower 15 bits of B7 will be loaded into
core from random access storage. This is a unconditional load: the segment
will be loaded regardless of whether the segment is resident in core from a
previous load or not., After loading, control will be passed to the referenced
label, i.e., a JP*LABEL instruction will be performed.

Operator: LOADAGALABEL

Packet: ENT*B7 LABEL

77540 20042

*FIELDATA TO BINARY CONVERSION (Function code 04)

This request will convert a number from fieldata to binary. The fieldata
number can either be octal or decimal. It must be positive. The largest
octal number that can Be handled is 7777777777; the largest possible decimal
number is 536870911 (27 - 1). The fieldata number must be an integer. The
resultany binary number will be pOSlu;VB and single precision (contained in
one word). The fieldata number can be contained in one or more words of
core. There can be leading and trailing fieldata spaces (05) or binary
zeroes (00). Wanile only leading spaces or zeroes will be allowed between

6.2-2

Vid!

conversion routine will ignore anything following the first trailing
fieldata space or binary zero. The core address of the left-hand end

end of the fieldata number field will be in lower 15 bits of B7. The

A register will contain the number of words in the field. The following
convention will be used to determine whether the fieldata number is octal
or decimal. The first digit of an octal field will be a fieldata O (60);
the first digit of a decimal field will be non-zero (61-71). If the
conversion is successful, the binary number will be placed in the Q
register and the A register set to O. If an error is detected,; the

Q register will be set to O and a flag bit set in the A register.

the left-hand end of the field and the most significant digiﬁ, th

A BEGTSTIR FLAG MEANTNG

1 (% bit) Non-octal character (character other than 60-67)

found 1z ccual field.

Octal number greater than 7777777777

4 (22 pit) Non-decimal character (chsracter other than
60-71) found in decimal field.
8 (23 bit) Decimal number greater than 536870911
16 (2% pit) No number found in field (field consists
entirely of fieldata spaces or binary zeroes).
32 (2% pit) . Number of words in field = O.
Operator: CVIGAVO,V1
where VO = the address of left-hand end of fieldata field; and
V1 = size of fieldata field
Packet: ENTHBT LABH, .
ENT*A SIZE
T7540 20044

6&2"3

Function Code 03 - Unstring the control information specified and form
' an unstrung list of the fields and the controls
separating the fields.

Caller: Internsl call from operating program via UST operator.

Parameters: B = Address of storage module causing activation
biased by lower lock limit.

UST Operator: USIS A Vg, Vo, Vo, V

. V =

3

Base address of the control information relative

0 to lower lock of the requestor.

V4 = Base address of the deposit area tc vz used for
the wnstiuny information relative to lower lock
of the requestor.

Vé = Length of the deposit area. If control information
specified is a continuation of previous information,
the sign bit should be set.

V3 = Length of the pick up area to signal the end of the
information when no terminating control is present.
If V, = @ data is unstrung until a terminating
control is found. If V3 is negative (the sign bit
set), interim spaces are to: be left in.

" Packet: TNT*B6 VO
ENT*B7 V1
ENTHA V2
EN T*Q 3
EXRN 00003
Addendum: Worker task/éciivity addendum

Function: . Unstring the control information in the following format:

FIELD 1 DESC

FIELD 2 DESC

FIELD 3 DESC

" FIELD / DESC
ETC.

OPTIONS IN MASTER BIT FORM

29TC24

23# WORDS -

1514 0

*IND TO FIELD

FIELD 1

FIFLD 2

FIELD 3

FIELD 4

6.2-4

| ETC.

IC = terminating
character for
field.

wrds = number of
words in fisld.

Ind to field =
index to field
from base of

. unstrung area.

Exits: . Return to requestor:

00000 00000 normal completion

"AM Register =

nAn Register = 40000 00000 overflow of deposit area

nAt Register = 40000 00001 deposit area not within lock
: limits.

AN Register = 40000 00002 invalid option

"Q# Register = number of fields if normal completlon

. Return. control to content supervisor -

6.2-5

6.3 Service Functions (2) Library number 002 is a re-entrant service

routine responsible for the following service requests.

Function Code Operator

-0

02

03
04

05

06

07.

10
11
12
13
14
15
16
17
20
21

XTESTS
TESTFOFS
TESTFUFS
TESTFLS
ERRADDS
FOFADDS
FUFADDS
OPADD
7 CS
TCORES

SET15$

SET17%

" Description
Supply edited time éfiéay-
‘ Supplyﬁelapsed time for fask‘
Supply curfent déte and tiﬁa
Set logical,switchés off
Set logical switches on
Supply current logical.switch settings
Floating point overflow test
Floating point underflow test
Test floating point over/under flow
Establish erfor address
Establish floating point overflow address
Establish floaﬁing point underflow address
Establish illegal operation address
Test file code for type of device
Supply core limits of task
Seb "B¥ registers to 15 bit mode

Set "B register to 17 bit mode

603"'1

rvice Functions (2) Library number 002 is a re-sentrant roﬁtine
e following: requests.

.TIME OF DAY (Function code 01)

This request will return the time of day at the time of the
request. Hour, minute and second will be supplied. Hour and minute -
will be returned in the A register in the following format: HH : MM,
The seconds will be returned in.the Q register in the following
format: @@P@SS. Hour, minute, second and the colon (:).will all be
binary zeros. All time will be decimal. :

Operator: ‘TIMED$

Packet: ~ [77540[20107]

" “ELAPSED TIME (Function code 02)

This request will return the elapsed time for the task in the
Q register.. The time'will be in binary and in units of 200 milli-
seconds. '

Operator: TIMEL$

Packet {775 40l20102]

*CURRENT DATE AND TIME (Function code 03)

This request will return the year and the day in the A register,
'in fieldata, in the following format: YYDDD, where YY is the year
. and DDD is the day (from 001 to 365). The Q register will contain
the time of day in units of 200 milliseconds. The Q register will .
be in binary.

Operator: DATIN$

Packet: 77524012010 3]

+SET LOGICAL SWITCHES OFF (Function code 04)

This request will set the logical switches indicated in the Q
register to O (off). The Q register will contain the names of the
logical switches (A—E) in any order, in fieldata, that are to be
turned off (set to O)./

Operator: XOFF$ switches

Packet: . ENTs 0 W(3+1) % SKIP
fieldata switches
77540120104

603"2

*SET LOGICAL SWITCHES ON (Function cods 05)

This request will set the logical switches indicated in the
Q register to 1 (on). The Q register will contain the names of
the logical switches (from A-E), in any order, in fieldata, that
are to be turned on (set to 1)

Operator: XON$ switches

' Packet: - [ENT#Q#W(5+]) %SKIP
' fieldata switches .
7754020105

*SUPPLY CURRENT LOGICAL SWITCHES'(Function code 06)

. This request will supply the current loqlcal,sw1tch settings
in bits 25-29 of the A register as follows:

A Register Logical Switch .
29 A
28 B
27 C
26 D
25 E

If the bit for a particular switch is 1, the switch was on;
if it is 0, the switch was off. As an example, if switches B, D
and E are on and switches A and C are off, bits 25-29 of the A
‘register will be as follows: 01011, where bit 29 is the left
hand bit. Bits 0-24 will be cleared to O.

Operator: XTESTS

Packet: [775240]l20106]

*FLOATING POINT OVERFLOW TEST (Fﬁnction code 07)

This request tests the floating point overflow switch. If
it is off, the A register is set to O, If it is on, the switch
is turned off and the A register is set to 1.

Operator: TESTFOF$

Packet: 1775401201 10]}§

«FLOATING POINT UNDERFLOW (Function code 10)
This request tests the floating point underflow switch. If it is

off, the A register is set to 0. If it is on, the switch is turned
off and the A register is set to 1.

6.3-3

Operator: - TESTFUFS

Packet: ' 1775 40]l20110]

«TEST FOR FLOATING POINT ERROR (Function code 11)

. This request essentially combines the tests for floating point
overflow and floating point underflow. The switches will be tested
in the following order: floating point overflow; floating poi '
underflow. If neither the floating point overflow nor underflow
switch is set, the A register is set to O. If the floating point
overflow switch is set, the floating point overflow and underflow
switches are turned off (floating point underflow switch is turned
0.7 automatically in the event that one of the two switches was
set from a previous floating point error condition that was not
tested; if the floating point underflow switch was not on, nothing
is, in effect, done) and the A regisver is set to 1. If the
overflow switch is off and the underflow switch on, the underflow
_ switch is turned off and the A register is set to -1 (7777777776).

Operators: TESTFL$

Packet: (77520120441]

.ESTABLISH ERROR ADDRESS (Function code 12)

This request takes the error address in B7 and places it in
the task addendum. Address is relative lower lock of requestor.
Control can be transferred to this address in the event of a program
.error, e.g. memory references outside memory bounds, attempting to °
use privileged instructions. When operating with the TEST PACKAGE
this function is reserved for -its use.

Operator: ERRADD$ATag

Packet: ENT%B7 LABEL
77540120112

.ESTABLISH FLOATING POINT OVERFLOW ERROR ADDRESS (Function code 13)

This request takes the floating point overflow error address
in B7 and places it in the task addendum. Address is relative to
lower lock of requestor. Upon floating point overflow program control
is transferred to specified address with interrupt values in A and
Q registers. '

Operator: : FOFADD$ATag

Packet: ENTxB7 LABEL
7754012011

' 603—4

*ESTABLISH FLOATING POINT UNDERFLOW ERROR ADDRESS (Function code 14)

This request takes the floating point underflow error address
in B7 and places it in the task addendum. Address is relative to
lower lock of requestor. Upon floating point underflow program
control is transferred to specified address with interrupt values
"in A and Q registers.

Operator: . ‘FUFADD$ATag

Packet: ENTB7 LABEL
77540({2011.3

*ESTABLISH ILLEGAL OPERATOR ADDRESS (Function code 15)

This request takes the illegal operator error address in B7
and places it in the task addendum. Address is relative to lower
lock of requestor. Program control will be transferred to specified
address when ever program executes an illegal instruction code.
When operating under control of TEST PACKAGE function is reserved
for its use.,

Operator: * OPADD$ATag

Packet: - | ENT%B7 LABEL
77540120115

*TEST FILE CODE FOR PERIPHERAL TYPE (Function code 16)
This requests the numeric peripheral type code of the unit
or mass storage ass:..gned to the file code contained in ths Q A."gl ster.

File code is in its field data form.

Operator: TFCSAfile code

Packet: . | ENT*Q File Code
77540020116

Numeric peripheral type is returned in the "A" register right
justified. If device is random access, the number of words allocated
to file code will be returned in the .Q register.

+REQUEST CORE SIZE (Function code 17)

This request will supply three pleces of information: the
lower lock address (in A); the RIR (in Q) and the number of words,
in binary, allocated to the program (in B7)

Operato:: - TCORE$

Packet: L7 75 4 12011 71

- 6.3-5

«SET IFR 15 BIT B REGISTERS (Function code 20)

This request will set the B register mode bit in the IFR for
15 bit B registers. All normal worker programs are original
established in this mode.

Operator: SET15%

Packet: l775401201201

-SET IFR FOR 17 BIT B REGISTERS (Function code 21)

This request will set the B register mode bit in the IFR
for 17 bit B registers which is the abnormal mode of operation
 reserved for EXEC, RT/COMM, etc.

Operator: SET17$

Pecket: . | 775400201 271]

6.3-6

6.4~1

6.5 Console Control

01
02

03

04 -

05
06
o7
10
11
12
13

4
i

15

Unassigned
Unassigned
Unassigned
Unassigned

Unassigned

Unassigned

Unassigned

CHANGE$
MOUNT$

UNMOUNT$

LOG$

MOUNIN'

CHANGEN

Operator directives with regard to files
Operator directives with regard to files
Operator directives with regard po files
Submit systems information to log or console
MOUNT without a delay

CHANGE without a delay

. 605-1‘

*CHANGE FILE DEVICE' (Function code:10)

Tis is a standard method of notifying the computer operator that a particular

file device (e.g., a reel of tape) is to be labelled and umnmounted and an
ternate file mounted in its place. This operator is necessary for such

communication since worker programs will not be allowed to use physical

6. 5-2

channel/unit designations. Magnetic tape: will be positioned at the
beginning of the tape. The requesting acuivity will be delayed until
the computer operator signals that the file has been changed.

Operator: CHANGEQAFile code, file identifiers

Packqt: ERIP*B7 N
FILE CODE
FILE IDENTIFIERS) variablé length and format
77540 20050 N

*¥OUNT A FILE (Function code 11)

Tais request directs the computer operator to mount an input-output file
on & particular file device. This operator is necessary for such communi-
cation since worker programs wiil not be allowed to use channel/unit
designations. NMagnetic tapes will be positioned at the beginning of the -
tape. The requesting activity will be delayed until the computer operator
signals that the file has been mounted.

Operator; XNOUNT:i4File code, file identifier

Packets EBIP*B7 N
| FILE CODE |
FILE IDENTIFIER . | variable format and length
77540 20051 N |

*DISMOUNT A FILE (Function code 12)
The computer operator will be requested to dismount an input-output file
from a particular file device and properly label it. The task will be
delayed until the computer operator’ signals that the file has been dismounted.

Operator: DISMOUNTS4File Code, file identifier

EBJP*B7 N
| 'FILE CODE
‘*r FILZ IDENTIFIER variable length and format
77540 2002 | N

605-3

*LOG (Function code 13)
This is the standard method of sending a message to the computer operator
and/or entering data into the systems log. If data is being entered into-
the systems log, it may also be typed on the computer operatorts console.
An optional delay after a message is typed out on the console can be
requested to allow the computer operator to perform some action.
Operator: LCGH50ptionsa literal
whers "literal® is the message to the computer operator
and/or data to the systems log.
The options are:
T = Type message“on conso.e, no delay

R = Type message on consols, wait for operator response

L = Enter literal into systems log

A blank field is equivalent to the T option.

. Facket: | gprpupy N
OPTIONS
& .
LITERAL variable length and format
77540 20053 N

When control is returned after a log request with R option the Q register
may contain 1 to 5 characters as a rosponce to the delay and are useable
by the requestor.

MOUNT A FILE - NO DELAY. (Function code 14) |
This request is almost identical to the MOUNTS dperator. It directs the
computer operator to mount an input-output file on a particular file device,
However, no delay will be initiated. The task will be contined after the
console typeout. ‘ '

Operator: none

Packet: EBJP*B7 N
FILE CODE:
FILE IDENTIFIER. variabtle length and format
77540 20054 N

*DISMOUNT & FILE - NO DELAY (Function code 15)
This request is similar to the DISMOUNT$ operator. It directs the computer

operator to dismount an input-output file and moperly label it. No delay
will be initiated. The task will be continued after the console.typeout.

Operator: none

Packet: | EBJP*B7 N
FILE CODE
FILE IDENTIFIER | variable length and format
77540 20055 | N

*CHANGE FILE DEVICE - NO DELAY (Function code 16)

This recuest is similar to the CHANGES operator. It directs the computer
operator to dismount a file, label it, and mount an alternate file in its
place. No delay will be initiated. The task will be continued after the

console typeout.

Operator: mnone

ESIPBY N
. FILE GoDE

FILE IDENTIFIER | vardable Length and fornat
77540 20056 | N

6 . 5—5

6‘6

Facility and Storage Assignment - lera*y number 005 is a non

re-entrant routine responsible for process1ng the follow1ng
service requests.

Function
Code

o1
02
03 .
04
05
06
07

Qperator .

ASG$
FREES
SWITCH$
Internal

Internal

Internall

Internal

Description

. Assign designated facility to task

| Release designated facility from task
Switch units assigned to file codes
Release all non-hold assignments
Release ali assignments
Assignmests submitted by selection

Switch submitted by selection

6.6~1

Functional Desecription of Function‘Codeé
Function Code 01 - Assignment Request

Caller: A task/activity requesting the assigmment of a
peripheral through the control statement interpreter
or an internal reéquest made at executlon time,

Parameier: B7 = the address of the ASG statement relative to‘
" . the lower lock of the requestor..

’
Addendum: Worker task/activity addendum
Function:) Unstring the control statement
) Read in the facility map
c) Locate the peripheral name requested
d) Make an assignment from the peripherals listed
under that name and build associated tables.,
) Load the associated handler if not in core
) Initialize the unit as prescribed by options
) Set up log function for assignment printout
) Switch to log routine for printout and delay

Exits: : DRET$ to control supervisor, Bl = @ B2 = console
. control.

urned

atus: © A = logical address if mass storage assignment or
P-TYPE, CHAN/UNIT if unit assignment.

A = 77777400XX implies unsuccessful assignment

[

U)c'f'
d

Function code 02 - Free request

- Caller: A task/activity requesting the release of a
peripheral through a control statement or an
internal request.

Parameters: B7 = the address of the free statement relative
to the lower lock of the requestor.

. *Addendum: Worker task/activity addendum

Function: a) Unstring the control statement

b) Locate the mass storage list or UCB associated
with the file code specified. '

c) Release the storage or units from core summary

d) Release core used for random access storage

© list and UCB.

e) Go to master file directory routine if the
file is to be registered

£) Prepare a log message for the console

g) Switch to log routine for printout

606"2

Exits:

'Returned

Statusi

Ffunction Code

Caller:

Paremeter:

Addendum:

Function:

Exits:

Returned
Status:

Caller:

Parameter:

Addendum: =

Function:

Exits:

Dn&iT% to content supervisor B1 =1

Azﬁiimplies successful completibn of release
A = 77777400XX implies abnormal condltlon such as. -
- 'the file code not being a351gned

03 - Switch re@uest

A task/activity requesting the switch of two
file codes through a control statement or an
internal request made at execution time.

‘B7 = the address of the FREE statement relatlve
to the lower lock of the requestor.

Worker task/activity addendun

Unstring control statement

Locate file codes

Switch the links to the unit control blocks
under the individual file codes.

Q

o
— N s

DRET1$ B1 = 0 Return to requestor

A0 implies successful completion
A = 7777740001 implies necessary parameters were
not present

implies an invalid file code was

A = 7777740002
: specified.

Function code 04 - Release all non-hold assignments

Termination upon the termination of a task.

All parameters are available within the addendum
which is currently activ.

 Worker task/activity addendum

a) Make a pass on the file code 1ist erasing

UCB links of all units not in a hold condition.

b) If unit is currently active delay until all
requests are complete and thendeallocate
any random access storage list and UCB.

¢) Update accounting information in job description.

d) Release units or storage to system.
e) Release locks on released areas.

DRET1$ B1 = 0 return to requestor

6.6-3

B2 = console control

Function code 05 - Release all assignments
Caller: ‘ Terminatien routine upon job terminafion

Parameters: All parameters are avallable within' the addendums
C which is currently active.

Aadendﬁm: Worker tasx/act1v1ty addendum"

Function: Same as function code. 04 except that all files
' . assigned to the job are released.

Function code 06 - A351gnment of a perlpheral requested by
1n1t1at10n.

Caller: Initiation upon the proce351ng of pre—load tlme>
facility requests. '

Addendum: Worker task/activity addendum

Function: a) Same as function code 01 except a special
" entrance is used for entry into the log
routine which will disregard any delay
request and return to initiation with the
status in the A register as before and the
peripheral name under which the assignment

was made.
Exits: DRET1$ B1 =1 B2 - console control FC XX
Returned _
Status: Same as Function code 1

Function code 07 - Switch of two file codes requested by initiation

Caller: Initiation upon the processing of pre-load time
switeh requests.

" Addendum: Worker task/activity addendum

Function: Same as function code 03 except for a special exit
Exit: DRET1$ B1 =1 B2 = initiation (selection FC 05)
Returned .

Status: Same as function codefOB.

6.6-4

6. 6 1 Method of Operatlon

The ASG service request prepares a file for use by setting up

e unit control block according to the specifications implied by
the assign statement parameters and the particular device
assigned.

The sequence of functions employed to process an assign control
statement are as follows.

a)
b)

A'_c)

Unstrlng ASG control statement

~Locate glven peripheral code which will identify peripheral

type desired and required device handler. Check availabilty

‘of device or storage in "facility and storage summary" if

available continue, otherwise exit.

Reserve indicated device or storage in summary. ‘Read in
device descriptor and form unit conirol block setiing options

' for peripheral and load, if not currently active, device

Q)

'e)

handler. Set file code increment to unit control block and

" set RIR and Drum. increment of device handler in unit control

block.

Perform operator type-outs directing tape mounting or’
retrieve file descriptors for random access storage. Exit
upon completion of above..

Maintain by Job # o_list'of all facilities assigned.

6.6-5

ASSIGN Statement Format ani Inferpretation

Format

1 2 3

4
ASG- A\ Options A\ Peripheral Name, File Code, Estimate, File Identification

Interpretation of Parameter Fields

Perigheral.;'ijMeaningful Options _Reguifea Parameters Optional Parameters

TAPE E,0,H,M,L,J,R, 1,2 3, 4
‘ S,T,V,W,0,8 - -
MASS STORAGE J,S,V,H,M,L - 1,2 3, 4
PRINTER J,V,W : 1, 2 3, 4
CARD LIV | 1,2 3, 4
PAPER TAPE J,V,W 1, 2. 3,4
CORE 3,8,V | 1,3 4
CoMM |

Option Letter
E

0
H (TAPE)
(MASS STORAGE)

| M (TAPE)

(MASS STORAGE

L (TAPE)

(MASS STORAGE)

cq

Meaning

- Even parity (compatible mode) applicable on compatlble
units only.

- 0dd parity (Binary) assumed if no O or E option present.

- Highest density applicable to the subsystem (800 ppi)

- High grade mass storage requested.

- Medium density applicable to the subsytem (556 ppi)

- Medium grade mass storage requested.

- Lowest density applicable to the subsystem (200 ppi)

- Low grade mass storage requested. .

= Hold assignment for duration of job unless explicitly
released. Absence of the J option implies assignment

will be released upon termination of the task.

- Réwihd the assigned unit without interlock.

6.6-6

- Declares the file is in the Master File Directory

“ = Translate from FD, to BCD coming in and from FD to

'BOD going out. (Applicable on compatible units with "j_
translate hardware. ? Lo

f'- Assignment not required for the execution of the task.‘z

= Wait for operator response after file identifier is

printed on the console printer. -

" = Indicates automatic block numbering is to be applied 1

to any tape files written,

W

-~ Implies the noise record constant defined at systam
generation will be applied.

Peripheral Name Interpretation

The peripheral neme is a mnemonic name of up to five characters in length
which dictates a set of units acceptable for assignment on this request.

A set of standard peripheral names are used by the system and any user.
Additional peripheral nemes may be defined at system generation time. A
list of the standard peripheral names and their names appears below. .

TAPE
TUN3C
TUNEC
UNSC

' CRIN
CROUT
PTIN -
~ PTOUT
PRINT
RAN
FHAN
FHA32
FHBS0 -
SEQ .
CORE

Any UNISERVO
UNISERVO ITIC

- UNISERVO VIC

UNISERVO VIIIC

Card Reader other than primary input

Card Punch other than secondary output

Paper Tape Reader

Paper Tape Punch

High Speed Printer other than primary output
Any random access device

FASTRAND

FH/32 Drum

FH880 Drunm

Any sequential file device (random access on tape)
Additional core adjaoent to end of routine. S

6,67

e

File Code Interpretation -

The file code is an alphabetic character by which the unit assigned will
be referenced in input, output operations. The characters A through Y are = .
available for general use. The character Z is reserved for the system files.

Each letter A-Y may be broken into subsets of 26 double flle codes, for
example A could be broken down into AA, AB,---AZ.

lThe system file code is broken down into a subsettcontaining double file

codes. The system file and their assigned file codes appear below.

ZA ‘ Primary input unit record
ZB ’ Primary output unit record
ZG Secondary output unit record
ZD .. Cooperative library

ZE " Systems library

ZF Job library

G - Systems log

ZH Scratch

ZI _ Scratch

‘Estimate Interpretation

The estimate parameter has different meaning depending on the type of
peripheral. A list of the interpretations for different per;pherals
appears below.

TAPE ~ blank (unless a sequential file is requested, in which
' case the estimate would be of the same form as that of
mass storage.

MASS STORAGE ~ [minimum/maximum] (defines the minimum and the maximum
' amount of storage requested. If available the maximum
area or any amount down to the minimum is assigned. If
the minimum amount is not available a non-assignment
. status is returned.

[area] (defines an amount of storage requested. If no
V option is present the area is taken as the minimum
smount of area that is acceptable. If a V option is
‘present any part of the area requested that is available
is assigned.

PRINTER : [uM/LM/PL] (UM defines the upper margin, LM defines the
lower margin, PL defines the number of printable lines
on & page. If this parameter is absent the standard
system format will be assumed.

CARD . Blank
PAPER TAPE ~ Blank
CORE _ Seme interpretation as mass storage.

6.6-8

F&(rZ;b\/
- ARG -
. I Eny

oo | desd aig
' Seqwent Uestulng

| Covtvol Cove |-

‘locd &
Requste v -

update coun G | -
‘ > of usevs x

Cowplete /. .
dinhoyer bo wcB | i

'

i

e
. |
- —~
: i

— p——
HUT Sub wling
;

leod .
FoerLiby Wov
1 wot 1w

locote umt

_ dlb(iwb[%k ¥ v
declocutw

desolloco te
3 velegse

houwllev 1§ .
Y o

| Sesve device

; !
[N S

Hevdlev
 Infovowtion

Wil L

St w'uw,'y '
Frue

Seovch Wit |

WarS covkonied
on dvyw

4 ‘..Irqrpw':; &
X Furction

C'WUho'.bLﬂ»

Yvéuvy -

uriy

, 8
'\ R - -
~
'
A
R
"‘\ H
g
[e
Lo deauocbr/.,,_, L
Filv codr '

Yesewwe uwE

- | fovm ufﬁ K-
£ Linkoge

St

S Stufn's

Add nrtw
tdiiscviy Eovs

cowvrule Beg.
RANe355 #wowl

* Facility map is a drum stored table describing peripheral units

" summary (Table

and their device handlers. This table is used by facility
assignment to assign facilities and initialize request units
and locate their appropriate device handler. The file increment
1o the facility map and its length are maintained in the core

). The address of which is provided by the

~ content supervisors in B5. Words 1 through N and X through XN

- define grouping of peripherals under specific peripheral names.

0 - | A T0 UNIT LIST A T0 HANDLER LIST

1 ' PERIPHERAL NAME 1
.

)
1A B|Cjx7 HANDLER DESdt \V/ UNIT DESC.

2
-3 WB|¢/ nuwusm pESc. |y UNIT DESC.
P 4 P ,

\

X PERIPHERAL NAME 2

%1 |4|B|C|c BANDLER DESC. |, UNIT DESC.
%2 lBlc < HANDLER DESC. \V; UNIT DESC.

S X+3 (
Word @ U - The increment from the base of the map to the

first unit description.

L - The increment from the base of the map to the
first handler description.

Word 1 - A peripheral name by which assigmnment will be requested.

6.6-10

- Word 2-3 5'229'(A) If set 2°7 indicates the end of the T
. ‘list under this peripheral name. o

~ 2%% (B) Undefined.
227 (G) Undefined.

'4226-215 The Index to the handler description to be
used on this assignment. This index is relative to
the base of the handler descriptions list.

214-20 The index to the unit description to be used
. for assignment. - This index is relative to the base
'of the unit desceription list.

~ Word X ‘Another peripheral name under which assignment is
© made. ,

Word X&1-X}3' Describe the units and handler to be assigned under
this peripheral name as do words 2-3.

 Device Handler Description

To provide flexibility required to allow several distinct device
handlers to be eligible for control of a particular device, .the
peripheral mnemonic specifies both unit and handler as determined
at systems generation time. At time of assignment OMEGA will

check to see if requested handler is in cors. If it is, assigmment

will be linked to it; it not, handler will be loaded and registered.

The handler name and version is overlaid with the handler load

- information (0A-2A) at initialization time.

Handler Description

0 © HANDLER
1 NAME
2 VERSION
, 29 ‘ 1716 0
0A HANDLER LENGTH OR HANDLER ADDR,
14 FILE INCREMENT TO HANDLER
I .
2n |70 # ASSIGNMENTS

Word 0-2 contains name/version of device handler

QA»' contains absolute address and length of routine, the
absolute address is g if the handler is not in core.

el '

Word . 14

[

contains drum addreSs of routine

Number of agsignments currently made to routingﬁ

if @ handler will be purged from core when 229

is equal to f#. 2 th' get to one indicates once
handler is loaded it is to be retained as a
permanent resident. Initializstion number refers

‘1o the proper routine to 1n1tiallze the unit for

the partlcular handler.

- Unit Deseription:

Goﬁtains information pertinent to the particﬁlar;unit.

Word
1
.2 ‘i

Word 0

P~ TYPE ~ |LENGTH OF DESCRPT
CH/UNIT . CH/UNIT
| LENGTH OF UCB

—

Informaﬁion‘Pertinent :
to Unit

contains peripheral type number récbgnized by the

gystem nnd # of words conteined in unit deseription

~aawe Wk du} Vde\Sad O

- contains ch and unit of device if dual channel both .

upper and lower will contain an entry.

contains the length of the unit control block that
will be formed upon assignment.

N contains information used by facility initialization
and/or to be contained in UCB.

Peripheral Types:

Bach type of external peripheral device is described to the system
at genoration Tlma through use of a aumber,

Mass Storage Devices

00

FH432 Drum subsystam
. FH880 Drum subsystem
- Modular FASTRAND

FASTRAN

FASTRAND II

Unassigned

o 6.6-12

e
Mass Storage Devices (conf;nued)

1, UNISERVO IIIA g -

*.Unit Récord Devices

20 . High Speed Card Reader .
21 High Speed Card Punch
: 2 . oo e
——- 23— -High Speed Printer -
24 1004 Reader o
25 1004 Punch o
26 1004 Printer -
27 TR
30 Paper Tape Reader
31 Paper Tape Punch
32 . A
33 '
34
35
36
37
Facility and Storage Summary
As part of the resident EXEC element, a summary of peripherals

available is maintained along with the random access storage

Word | _ N
o g ADDRESS OF FREE CORE CORE
S . “FILE INCREMENT T0 FACILITY MAP
2 ,‘ g LENGTH OF FACILITY MAP
3 FILE INCREMENT T0 SELECTION MAP
4 LENGTH OF SELECTION MAP
5 FILE INCREMENT TO JOB STACK
6 ADDRESS OF CHANNEL CONTROL BLOCKS
7 LOCK SETTING
10 Channel § |A|B|C | P-TYPE |SUMMARY LENGTH | A TO CHANNEL SUMMARY
11 Channel 1 |A|B|C | P-TYPE |SUMMARY LENGTH | A TO CHANNEL SUMMARY
]
33 Channel 2; ATB|C [PrTIPE |STNMARY LENGTH L TO CHANNEL SUMMARY

Y AL B

As part of the résident EXEG element, & summary of available

peripherals is maintained along with a series of values required

,pg ?ﬁ; secondary EXEC routines. Any reference to this summary-
ould use the mnemonlc increment indicated on the description.

‘Word § The address of the free core chain. (FSFCC)

1 The flle increment to. the facility map on the system
.llbrary file (ZE). (FSIFM)

N

The ¢engtn of the fa0111ty map on the system ;ibrary
file, (FSFML)

3 The flle increment to the selection map on the system
library file (ZE). (FSISM)

4 The length of the selectlon map on the system library
- file. (FSSML). .

5 The flle increment to the job stack module on the
‘ cooperative library flle‘(ZD) {FS1Js)

6 The address of the channel control block list.(FSACCB)

.7 A lock location used to lock out references to the
facility and storage summary. (FSLS)

10 . 229 (A) set to 1 when peripheral on the channel are
. depleted. (FSCS) .

| 228 (B) When set an 'I0C occupies’ the channel.

22'7 (c) Undefined
226 _ 21 rumber defining the specific type of
peripheral.

220 _ 215 The length of the channel'Summary.

214 _ The index to the channel summary relative to
the base (WORD 2).

Peripheral Entry:

Channel Summary § | MASTER BITS LEFT JUSTIFIED

:Channel Summary 1 |. MASTER BITS LEFT JUSTIFIED

" One bit is reserved for each unit on the channel. The bits are
Justified left. If a bit is not set, the corresponding unit is
available. If the bit is et the unit is not available.

6.6-14

6.6.3 Random Access Drum Allocation

- Assignment of random access storage is in fixed modules the
size of which is dependent upon the type of device and number
of units on a channel. Each channel contains a summary composed
of a bit map used to reflect the availability of modules and
develop their starting addres; .and, a summary used to reduce
search time required for assignment. The Drum summary is main<
tained by facility assignment inthe first one or two modules
of the described storage. '

The following table contains module size utilized by UNIVAC to
allocate random access storage. Values and mapping may be
.changed to reflect installation needs.

FH432 Drum - capacity per drum 262,126 words

C#of # VWords # of 4 Length of = # of

Drums . per mod. Modules * | - Summary Modules
1 - 128 - 2,048 . 97 1
2 256 2,048 164 1
3 256 . 3,072 . 231 -1
4 256 4,096 . 298 2
5 256 5,120 - 365 2
6 256 - 6,144 432 2
7 512 3,584 499 1
8 512 - 4,096 566 . . 2
9 512 - 4,608 633 2

FH880 Drum - capacity per drum 786,432 words

n

of . # Words . # of - ~ Length of . # of ‘
Drumg = per mod. Modules Summary - = Modules
1 256 . 3,072 C 143 1
3 512 .,,608 184 1.
s 512 6,144 , 235 1
5 512 ° 7,680 - - 286 1
6 512 9,216 . 338 1
7 512 10,752, 389 . B
8 512 12,288 440 . P 1

6.6-15

FASTRAND I - Capacity per unit 12,876,128 words (See Note 1)

OF # VORDS # OF - LENGTH OF
UNITS PER MOD MODULES SUMMARY
1 2,112 6,144 . 235
2 . 2,112 12,288 440
3 - 2,112 18,432 N IX
A 2,112 24,576 © 850
5 2,112 30,720 1,055
6 2,112 . 36,86/ 1,260
7 2,112 43,008 1,465
8 2,112 49,152 1,670

FASTRAND II - Capacity per unit 25,952,256 words (See Note 1)

#0F # WORDS #OF LENGTH OF

UNITS PER MOD MODULES SUMMARY
1 2,112 12,288 44,0
2 2,112 24,576 850
3 2,112 36,864 1,260
4 2,112 49,152 1,670
"5 4y224, 30,720 1,055
6 byR24 36,86/, 1,260
7 4y 224, 43,008 1,465
8 by 224, 49,152 1,670

Note 1. Allocatioﬁ module size is be sector to allow "SEARCH" track functions.

6.6-16

Random Access Summary

0 n Chammel # Peripheral type
1 Capacity of Channel
2 Available Capacity of Channel

3 # of words in module . # of words in sector
4 # modules currently available
5 | Word count of last search | Length of bit map
6 # of times bit map referenced
7 7 # of times reference futile

10 Physical address of Group @

1 Physical address of Group 1

12 Physicai address of group 2 -,

13 Physical address of group 3

14 Physical address of group 4

15 Physical éddress of group 5

16 _ Physicai address of group 6

17 - Physical address of group‘7

20 | # of Modules available in group @

21 # ol modules avalilable in group 1

22 #.of modules available in group 2

23 - # of modules available in group 3

24 # of modules available in group 4

25 # of modules available in group 5

26 # of modules available in group 6

27 # of modules available in}grbup 7

An effort is made through allocation to maintain 4 groups which represent 1/2, 1/4, 1/8
and 1/16 of available storage, allowing the other 4 groups represent continuous areas
of random length., Co

«

6.6-17

Bit Map
Bit maps are of variable lepgth dependent upon module size and # of word positions

assignable on channel. Each bit position within a bit map declares if the corresponding

module is free (f) or is reserved (1) and is used to map into a physical address,
relative to zero, of the module.p

Physical address X (30 X word position 4,}1t position) X (Module size) o

6.6-18

I) . IR R S |
: ; ; S LI SR T ..
‘ : b :
. R e s
| Stovt Addwss = 5 | ‘ -
s .- /'(J'Iﬂrv -o¢ wouls = /l ! ‘ .
Lood Suwwouy oL ; : :
Lov chowul N/Mod size = 2R oo T) S
LT ey F;;‘,,m SRS SRR TS N o Ll - LT -
. T [Reee et oz i A
; Test . [P L
dee |6 fOY. coch. Guawpi. L | yes™ €0 S & ger moduls - | = e L
Sr1v o e T averlobs to #, Avuhbw-i- o ; L ’Y :
: ‘ Ry . U R ; Ay . |. l : 1 : . i B 3
de 1 Physiéel, oddwess | | P A#K ST , - : %.,. .
ey e I - : | »
'-— - ‘Mo - s A -‘— e e e S :-~--~ ———
g . i | I Sove chowged. | .G Lt
o) fesl . fov coch .Gvau;}a_ Yo | Add "fFR ‘ - G'W'V e A 8 -'_-____. i
1 ‘ | sovetoite fou G Suwmwovy N
. Phsical oddvees - Mt sige] ol svolobly Jow Guatpv | | N P I F
R (avoil) +1 5 b e e e - e e et R
.. _‘ - ‘ SRR - - e e — 4: R - —
L : o 5 - phsmd- hddw&s 1
e Em,b\/ - y B - - .
. s

Guouyp oonleble

#R ._)' ‘#Aww!nl-o “ .

i) S . - i
!) i
et b ST R e
! {
i E .
oA A
]
LI}

* o I [T, T u R *- e
: D ‘ I T A
e e e S -i- o . - .; _..,,é_._.- ,3.-.. A
o T 1 ' A
! Sove . b e) LSO
g Sawwovy N L. SO AN S SR S
. Gvoups A A S R S
: _:, -] T (- :_ ! ’ ’ i ! ’ : _'
L : i R
LA S ‘ ; N
S A L i i b
....,%..., .._:.._...k,,__ e =4 4 - g [-
;) : \ : | i
PN O P - ‘

[' N . - . .
N #R > Vg L HBR ANy 2 ¥ Jio 7>
L ~o 1 SRR B R
I N ‘ : : ! b .’ :
LR > % G - . #R SO B

S R Ao A : R _
Lo 2R > kG : —>#R |
{ ; N : . o) -
b ho BRSO (NN DR I B
et MR > Ut e S #R

: , : o :
| ar > w6 |

Avva GO
Tl Be volgosid] T T

s

1 Rolease
ARvea

2 Poveiou 0@
. 8it_Map
In

E3
| Bt Map

£his open @pN
Levae qvoq' 0\’7

. C , { :) i ; ! . - i ! !
S O ! S
R H ! N . ~. i , H) “ ot H B
H U ,M PR S| e b ' R SR S SR H I -
i . m Co
[. [. < - . ;
N T :
Ty i Lo . '
’ ' , - - .
f i ; :
- ‘?m..: »uw..‘ _ e M 10\}.»' - A.J.\r..»-
W,., : : v : .
ZUPU U S R
P AT
I B Ly
- ; : L.
4 b S S R Ty S . S A
: I ’ ; : N i : ;
EEE . { SO B S A Gt
R ! : : : : i
i . o : ;
} 5 o —— i g $oee e L — ST -
code . -SR-S, IO (S U O IO D
: ° IW Enl “ : .
] s D
ST : i T - y & s | rR
; : : ! . ! ! i 0 & : : O :
R i Vo i e 3 I O S SO SR S
STy [AP P B Q :m‘ T N : : b :
. : Lo R < N W : A i :
Lo Lo (SRS O R NS RS S g e A A AR LR I R -
s ‘ SN P oo ”
R [N R TR I .:_,,.iu«\.& R : ' | . : St b
P : o) : ! ! \ i
——_— S A O T S S S S B : 3 D . D
. Co i Lo 1:c¢ | R : R :
LR - . IS 0¥ b . - X M S . et
"o N r 23 g 3 : o oo
.W..w. 8 233 ,.muw.m ; L : b
2 By g 2 . F o R R
R s 35 §83 ey
Pt Etby o M o) - ™~ . Lol P e
DR . s ' & | | - !
Lok wc - RN I I 3 e g e e L
NN v u ! : “ i i . '
i N - - [T . (oo [S ! - S S Dot
: # e : , ..M w 1 v - . b i . :
L O I -1 NN e S0 TS N S NN U SO N ID U N N
3 5 s o
3y : - IR D R
N . Y ¥ -~ TR H i
. Py - 133 5 I T T U U TSR
2 OR w..m.m R S| I , _ .
w ® 25 i : i . { ‘ ' ;
B . x GAm [PSR U S S oo . i
_) : R 8.5 [Co ;o
S I U O R 9 9w R 9 S RS b
. R : \ ; . m : - : .
: *ow R T ; N R A S S
ot - - 1, Ly l Pom g i S USRS SR B S B SRS S SRR
; Co ; - R ; “
' ; i H . : . i [! 3 ! ¢ H : : H
B i R Iahs it R e Attt Sl S R R B o s
,) i : ! ! : ’ ; Y : i ! ; : . !

‘ H _ i ;
: i) i [
1 B . i
i i
L [
+ : H : .
. ' ! i
. . IO S
: i : i
) I i i |
Lo PR
Lo S
N : . , : | 1
- poe e i A 4
.
: _ . . ; ! .
e B LT B B !
N N
.] [4
- B ._ - -* e .
.
1. H P €
b 2 i H
- P B B
' . 1 0
: ! T
- e e [E ._ !
' i - 4 :
! . ; i
- SO RPN S S - X
f l : ! : i
1 i ll i 1 . i
o bt b S U
- 1 : T ﬂ ; 1 1 3
! H i ‘ H H
i : . i r i i i
- H R S “: A e z.«.u

Lrikal

!
.
)

Tnewr -
}, .

I
el

t
i
|
!
+
t

. FURSPIS BU
:
o X
P B
A : i :
HEE :
.
! B l
e e b L
. i
;

Fl'-\gﬂ: t‘!“f

'

mAp

i
.
S LI
s i
; ; L
H I H
i R
: H {
s
! I3 H
ooy
- R R e
; : , :
i i . i
. I :
PN [—
H : i
: i
i i
o mann PRI . —

: .
[e
[!

i 1

DI N S S

1

PO S

spHEral

i
' -i

Cod ;
. Do N
e i I
: { o o
% i o
"L.. e 1 .;_ - -
R - SR S BT A S -
£ “ ..
o e -
H AN
B 1 H :
R B R _ i

Ipee

A0’

SYorALL

STTemesT |

: . R . H T . .
P !) .
SR “- ,“. ,,,,,, rxAlJ!.N -
. v. 1. e et
_ , S
i P .
b
: . H 1
R T = i - -3
! ! -1
R . -
e -
2 . .
9 a e w.. \
Aw.“h [E
g e N

,. . .“ ”
- .ll.b:... = Y e
A S
T.. N O SRS
) \m °
i 2 o - e il e pom

. P

' 4 i

T ! i

i ¥ -

o ‘ i ‘

S SRS SN A WA

» J SN . .h. [T 4
toTrm ey c T ; - 1
. S Sobad -
i : !

[R oo
< a 13
B3 ") M
i - o

. = o < . - : .

| v 9.0 B R

'
: i
N .
-

'

6.6.4
" Master File Directory
Description

The Master File Directory catalogs all mass storage files and/or tape files held
permanently or semi-permanently by the system., The directory may be constrained
to a maximum size at systems generation time and/or extended during operation.

The purpose of the Master File Directory is to retain files between jobs or between.
the repetition of a given job. The user is releived of the responsibility of deter-
mining at object time physical location of the file and may extend, contract or
delete the file during execution. '

Interface

Entries in the directory are cataloged by a formal request. Each request for a file
must use a numeric key 3-7 digits as set gy Systems generation denoting his user
number and a numeric key 3-7 digits defining his file number. User obtains assign-
ment of a file through use of the ASG control statement and may register an updated
version through use of the FREE control statement.

Directory Index

Number of entries in the directory index is determined at systems generation time by
specifying the number of user indexes desired. For each index assigned an .additional
index is required to supply number of files qualifiers contained, and 7 digit. account
number to which charges for storage space are to be made., Directory index #000 is
general and reserved for semi-permanent files.

| Directory Index

Channel : All binary 1's
Physical address of File Index | if unassigned

Directory index is composed of one word entries ordered by user number and
covers the span of user numbers defined at systems generation time.

File Index

Channel ‘ ‘ .
Physical address of File Qualifier

Each file index is composed of one word entries ordered by file number and
covers the range of file numbers defined at Jystems generation time.

6.6-22

File Qualifier

0 5 Character password for file referehce”
1 '_ Date of last change to file
: # of references since y
2 last purge # of days.to retain
3 | # constituting a unit ‘ currentr# of units
4 Total # of units to date
5 File type ' # of words in'descriptor,.
, -
- File Descriptor
N
Password

The five character password may be employed to control the use of confidential data
and prevent unauthorized access. For each request for assignment of a protected
file, the user must present with the user and file number, the designated password.
Any attempt to request assignment of a protected file without the password will
cause the Job to be aborted with appropriate messages.

Words 1-2

Each time a file is explicitly released to the system, date is changed to current date.
Number of references since last purge is a count of file assignments made to operating
tasks of current file. Number of days to retain is a number supplied by the user
specifying the number of days file is to be retained in the directory after last
change. ’ ’

Periodically mass storage files which have expired number of days to retain will be
- recorded on magnetic tape and their assigned mass storage will be released to the
general pool. At time of purge, a summary of deleted files will be submitted to
primary output cooperatives listing file characteristics and accounting data.

Words 3-4
Are used to maintain accounting information. "Number constituting e unit" is a user
specified value normal number of words of mass storage to be used for accounting pur-

poses per unit of time. Unit time is assumed as a day. "Current number of units is
the largest size of the file for any one day. - : '

6.6-23

-"Total number of units to date" is a cumulative total of units for the flle'
updated each time flle is rerequested in the system.

Word 4 = (current date - word 1) "(current # of units) + word, 4
File Descriptors .
~ File descriptors are used to describe the physical characteristics-of*the file.

are maintained by the system and are of two types, mass storage and tape.

- Mass Storage

Channel # Physical address of block 1

0 . # of words

Channel # Phvsical address of block 2

0 # of words

1 # of words

External Tape Files

Physical tape # (operator directive)

Symbolic name of unit

Recording options

6.6=24

These

File Access

Access to a file contained in the Master Flle Dlrectory cannot be performed until an
ASG control statement is given specifying the file code to be used, user number, file
number and password if required. Example: A request for file number 932 under user
index 035 to be assigned to file code B would appear as follows'.

ASGAARANR, B, 035/932

Once assignment has been made, the user activity may perform all ﬁacket level or

file control I/0 commands available in the system including extension or contraction
of file. However, if user has changed the limits of the file, he must reregister file
through use of FREE control statement in order to maintain update. Example: the
above file being reregistered in the .directory would appear as follows: ‘

. FREFAPAB,. 035/932

L

6.6=25

6.6,5 Facility Assignment Initialization

Parameters requ,*ed for system generat*on used to form systems
records and/or initialize facility assignment according to
conf:.gurat:.on and/or des:t.red ' er options.

“v)

d)'.

- For each channel of subchannel -the following information

is required:

e Channel number
. - Peripheral type

 Mnemonic name of peripheral type

" Number of units
Cost per unit of time for user to retain word or device.
Name of handler respon31ble for channel or subchannel

.Option for account.lng 1nfomat10n |

. Nomally account:.ng method is a suxmnary of units ass:.gnea :
to Job.

f((Length of time held x number used) cost per unit time)

. Option method is to sutmit to systems log each assignment
listing type of device , number of Uni'bs and length of 't.ime
retained.

‘Establishment of User Index

. 0-7 digit number of user indexes
. Channel number on which user index should be maintained.

Establlshment. of qualifier index

User index number

Account number

Number of files

Optional Password

Channel number pn which index should be maintained

6.6-26

6.7 Service Function 3 - Library number 006 is a non—reentrant routlne :

used to create and release core chains, process Send and Receive
requests, simulate hardware search, and retrieve an element.

Function

'Code.
01

| 02
03
04
05 '
06

o7
10
‘11
12
13
14
15
16
17
20
21

22
23

24
25
R6

_7

Operator
FCHAINS

RCHAINS

‘ .Unassigned

. SEND$

RECEIVE

SEARCH$

Unassigged

Unassigned

SENDP

- RECEIVEP

Unassigned.

SEARCHTL$

SEARCHPL$

SEARCHLY

BLOCKSL$

FETCH$

' FETCHR$

FETCHLS
FETCHRQS

Unassigned
Unaséigned

Unassigned

Unassigned

.- Description
Form a core chain

Releass a core chain -

Transmit parameters to Exec stofage]
Complement of"SEND

Simulated hardware search thrcugh
repetitive read.

Send parameters

Receive parameters

Search track and lock
" Search position and lock
dSame as SEARCH$ with lock
Block search on drum with lock
Load absolute element in assigned core
Same as FETCH$ with activity registration

Locate named elément and read the table
of contents for that element.

Sare as FETCHR$ with queued activity
registration

6 07-1

Service FLnntﬂoﬂs - lern"j number 006 is a non-re-entrant service
routine used to process the followinglserv1ce_requests.

<REQUEST CHAIN (Function code 01)

This request will allocate core chain. These chains are available
to RT/comm only and can be used to load worker programs, buffers or
‘data pass areas. Each link will be a continuous memory area} links
within a chain will occupy contiguous areas of memory. Links will be
obtained from free storage. During peak periods of processing, RT/comm’
may -establish additional chains, at the expense of lower’ prlority
programs, to accomodate overflow. .

Fach chain must be assigned a unique number. Since numbers 0-5
are reserved for the executive, this number must be 6 or more. Links
‘within a chain may be declared either fixed module or variable length. .
The fixed module chain is composedof links of a specified size. .
These modules are requested one at a time as needed. The fixed module |
chain has the advantage of having a faster request/relsase mechanism
-as well as requiring one less parameter at usage time. The second
type of chain, variable, allows ‘the user to variable sized pieces of
core. This type of chain is more flexible- than the flxed module chain
and wastes less memory. ‘ . ,

The number of words in the chain (variable chain) or per module
(fixed module chain) must be an even number, i.e., divisible by 2.
If the parameter V1 is not an even number, 1 will be added to it to
make it even. '

Operator: FCHAIN$AVO,V1,V2
‘For fixed module chains:
VO =~ chain number (from 6-N);
V1 - number of words per module; and
V2 -~ number of modules

For variable chains:

VO - chain number (from 6-N)
V1 - total number of words in chain; and

V2 -0
Packet: ENT*B7 VO
ENT*Q V1
ENT#A V2
77540120141

The A register will be set zero if request completed, negative
if core not available. The Q register will contain the number of
words or modules allocated.

6. 7-2

-RELEASE CHAIN (Function code 02)

This request is used by a RT/comm program to deallocate a
previously declared chain. Care must be used so as not to release-
- the chain before all expansions have been returned to the general -
‘storage pool. ‘

'Operator: RCHAIN$AVO

where VO - chain number

Packet: . ENT%B7 YO
77540120142

* TRANSMIT DATA (Function code 04)

This request will transmit limited data sets from an activity
or task to executive storage. This will allow an independently
executed activity or task within the 30b to retrieve the transmitted -
data by means of a RECEIVE$ operator. All transmitted data will have
a five character octal identlflcatlon attached to it. This identi-
fication will allow the receiving element to specify a specific data
set, This identification will not be transferred to the receiving
element. It should be noted that once a data set is recéeived by an . -
independent element, it is purged from executive storage and cannot

* 'be received again. ‘ ,

Operatofﬁ SEND$AVO, V1 V2

where VO - base address of data field relatlve to lower lock;
V1 - number of words in the data field;- and L
V2 - a 5 character octal 1aenn111canlon {zero . implies
" no identification.)

Packet: ENT#B7 Base Address

ENT#*A . { No. of Parameter Words
ENT#Q Identification .
77540120144

*RECEIVE DATA (Function code 05)

This operator will transfer data from executive storage to the .
requestor. This data will have previously been sent to executive
storage by a SEND$ operator initiated by an independent or
asynchronously executed activity or previous task. Data may have
a unique identification attached to it by the SEND$ operator that
transmitted it to executive storage. This identification will make
it possible to select sets of data. In general, data sets with the
same identification as the identification field of this operator
(next page) will be received by the requestor in the order that they

6 . 7"'3

.were sent to executive storage, i.e., on a first in, first out, (FIFO)
basis. The requestor will receive only that data that was transmitted
by one SEND$ operation. Thus there may be more data in executive ,

. storage with the same identification. As a data set is transferred to
the requestor, it is purged from executive storage. .This function

may also be used to transfer COMMON from one chained element to the

‘next. This operator will not transfer control card data (see RECEIVEP$
operator). .

When control is returned to the activity, the A and Q- registers
will contain the following status information:.

REGISTER o CONTENTS

Q ~ Number of data words transferred to receiving field.
Q set negative if no date for particular identifi- ~
cation left to be transferred.

A Set to 0 if data set fits within receiving field.
Set non-zero if data set overflowed the receiving
field. Receiving field will be filled with as much
data as it will hold. A register will then contain
number ‘of words left in data set. Data transferred
will be purged. Next RECEIVE$ with this identifi-
cation will transfer remaining words of data set.

Operator: RECEIVE$AVO,V1,V2

where VO ~ base address of receiving field, relative to lower lock;
' V1 - maximum number of words in receiving field; and
V2 - 5 character octal identification (o 1mp11es no identifi-
catlon _

Packet:,‘, - ENTxB7 Base Address
o L ENT%A [Field Sigze
|LENT*Q | Identification

77540120145

-SEARCH A FILE (Function code 06)

This function will search a file in the forward direction for a
block (called the find block) whose first word is equal to some specified
- searchword. If such a block is found, it is read into the buffer area.
This read will be performed regardless of the lock setting of the
buffer area (the buffer area will not be disturbed unless the proper
block is found). The search will contirue until either the block is
found or an end of file is detected. Control will not be returned to
the requesting activity until the search process has been completed.

To avoid typing up the synchronizer, the search will be performed by,
- software; hardware search features will not be utilized. Only one
file or tape reel will be searched. :

6+7-4

A search of a random access storage device is a fixed block -
search. The number of words parameter (V1) is the block size. The
 logical address of any block (excluding the first) will be the logical
address of the previous block plus the number of words (V1).

If the search is successful, the find block will. be read into
the buffer area and normal I/0 status with the exception of B7 and A.
The A register will contain the logical address of the find block.
B7 will contain the number of blocks searched (count includes the
find block). Tape files will be positioned after the find block.

If the search is.unsuccessful due to end of file, E.O. F. status
word will be returned in the A register (if the search is unsuccessful
for-any other reason, the proper status word will be in the A register.
B7 will contain number of blocks read.

" Operator: ~ SEARCH$AVO,V1,V2,V3,V.
where VO - file code; |
V1 « number of words in buffer area;
+ V2 - buffer base relative to lower lock;

V3 - logical address from base of file (normally used for.
random access storage devices); and

V4 - 10 character octal searchword
Packet: EBJP¥B7 N

File Code Buffer Base
Buffer Base ‘
Logical Address
Searchword.

77540 20146 |N

Note: A buffer size of zero will turn this request
- into a locate function. Nothing will beread
into memory if the block is found. Everything
else remains the same, :
‘ ' 4
*TRANSMIT CONTROL CARD PARAMETERS (Function coe 11)

This request will transmit a limited set of parameters from a
control card or an unsolicited operator type-in to executive storage.
A worker program will then be able to retrieve these parameters by -
‘means of the RECEIVEP$ or RECEIVE} operator. This function requires
' that the base address, relative to lower lock, of the control card

parameter field be placed in B7 and the 1ength of the parameter field
'in the A register.

Operator: ‘SENDP$AVO, V1

vwhere VO - is base address relative to lower: lock of parameter field
V1 - contains number of words in parameter field

607"‘5

Packet:- ' ENT%R7 B n
ENT*A No. of
775401201

eter Words

[as}
_.\m
g‘é}

*RECEIVE CONTROL CARD PARAMETERS (Function code 12)

This request will transfer control card parameters from executive .
storage to the requesting activity. These control card parameters will
have been transmitted to executive storage by a SENDP$ operator. After
the control card information is transferred to the requestor it will
be purged from executive storage. Unlike the RECEIVE$ operator, all
control card parameters, regardless of the number of different cardsv
that are stored, will be received by the requestor.

When control is returned to the activity, the A and Q registers
'will contain the following status information:

REGISTER | CONTENTS
Q , ‘Number of words of control card parameters

transferred to rsceiving field. Q set negative
if no control card parameters left to be
transferred.

A Set to O if parameters fit within receiving
field. Set non-zero if parameters overflow
* with as many parameters as it will hold. A
register will then contain number of words of
parameters left. Transferred parameters will
be purged. Next RECEIVEP$ will transfer
remaining words of parameters.

Operator: RECEIVEP$AVO, V1
where VO - base address of receiving field, relative to lower

lock; and
V1 = maximum number of wprds in receiving field.

Packet: ’ ENTxB7 Base Address
K ENT*Q Field Size .
775240[20152

- SEARCH FASTRAND TRACK WITH LOCK (Function code 14)

This function is essentially a search track and READL$. It is
applicable to FASTRAND equipment only. The SEARCHT$ function will
be a part of this routine. The user should be aware that the SEARCHT$
is a hardware function and installation standards regarding use of -the
'SEARCHET$ operator should be checked before using the SEARCHTL$ operator,
This operator will compare the first word of consecutive FASTRAND sectors
against a specified searchword. If the end of track is encountered
before a match is made, the search is terminated and an unsuccessful

6.7"6

search status code returned in the A register. If a sector is found
whose first word matches the searchword, a READL$ will be issued for
parameterized data transfer. If the area is locked out the read

(and, therefore, the activity) will be delayed until the area is free.
When the area is free, the block will be read into the buffer ares:

and entered into the lock list. The first word of the buffer area

will be the searchword, i.e., the read begins from the searchword.

" For successfil find the A register will be set positive and contain

the logical address of the word on FASTRAND that equalled the searché .
word. All other status returns hold as stated for normal I/0. |

Operator: SEARCHTL$Ayo,v1,vz,V3;V4

where VO - file code;
V1 - number of words in buffer,
. V2 - base address of buffer, relative to lower lock;
V3 - logical address relative to base of file; and
V4 - 10 character octal searchword

Packet: ' EBJP*B7 N

File Code Buffer Tength
Buffer Base
Logical Address
Search Word

77540 | 20154 N

Note: If the buffer length is set to zero this request
will become equivalent to a locate function.
Nothing is read into core. The logical lock
list is not consulted. Everything else remains
the same, :

* SEARCH FASTRAND POSITION WITH LOCK (Function code 15)

This function is essentially a search position (SEARCHP$) and

READL$ operator. It is applicable to FASTRAND equipment only.

The SEARCHP$ function will be a part of this routine. The user should
be aware that the SEARCHP$ is a hardware function and installation
_.standards regarding use of the SEARCHP$ operator should be checked
before using the SEARCHLP$ operator. This operator will compare the
. first word of consecutive FASTRAND sectors against a specified search-
‘word. If the end of position is encountered before a match is made,
the search is terminated and an unsuccessful search status code
returned in the A register. If a sector is found whose first word
matches the searchword, a READLY will be issued for paraméterized
data transfer. If the area is locked out; the read (and, therefore,
the activity) will be delayed until the area is free. When the area
is free, the block will be read into the buffer area and entered into
the lock list. The first word of the buffer area will be the search-
word, i.e., the read begins at the searchword: For successful find
- the A register will be set positive and will contain the logical
address of the find on FASTRAND that equalled the searchuord. All
other status returns hold as for normal I/b - :

6 07‘7

Operator: SEARCHLP$AVO,V1,V2,V3,V4

where VO - file code;
V1 - number of words in buffer;
V2 - buffer base relative to lower lock
V3 - logical address relative to base of file; and
V4 ~ 10 character octal searchword
Packet: ' EBJP*B7 N
T File Code Buffer Sigze |

Buffer Base

Logical Address

Search Word
77540 | 20155 N

Note: If the buffer size is set zero this request
will become equivalent to a locate function.
Nothing is read into core. The logical lock
list is not consulted. Everything else remains
the same, .

*SEARCH LOCK (Function code 16)

This request is virtually the same as the SEARCH$ operator.
The user is directed to the SEARCH$ description for specifications
regarding normal and error conditions. There is one important
difference between this operator and the SEARCH$ operator. When
& successful search occurs, the SEARCH$ operator performs the READ$
regardless of the logical lock status of the file. This operator
does not. This operator performs a READL$ (this is only pertinent
if the file is on a random access storage device). If the area is
locked out, the read (and, therefore, the activity) is delayed until
the area is released. When the area is free, the read is performed.
The accessed area will then be placed on the lock list. The request
will go on to normal completion. '

Operator: - - SEARCHL$AVO,V1,V2,V3,V4

. - where VO - file code;
V1 - number of words in buffer area;

V2 - buffer base relative to lower lock;

V3 - logical address from base of file (normally used for
g random access storage dev1ces) and
V4 - 10 character octal searchword
‘Packet: EBJP¥B7 N

File Code Buffer Size
' Buffer Address .
Logical Address _
Search Word
77540 - | 20156 N

6.7-8

Note: A buffer size of zero will turn this request
into a locate function. Nothing will read
into memory if the block is not found. Since
the find block is not accessed, logical lock
will be ignored.

+BLOCK SEARCH FH DRUM WITH LOCK (Function code 17)

‘ This function is essentially a block search that performs a
READL on the find area. It.is applicable to Flying Head drum
equipment (FH880, FH432, etc.) only. The function BLOCK$ will be a
part of this routine. The user should be aware that BLOCKS$ is a
hardware function and installation standards regarding use of the
BLOCKS$ operator should be checked before using this BLOCKSL$ operator.
This operator will compare consecutive words on drum against a
specified searchword. If an end of block sentinel (a word of all
binary ones 7777777777) is encountered before a match is made, the
- search will terminate and an unsuccessful search status code returned
in the A register. If the find area is locked out the read (and,
therefore, the activity) will be delayed until the area is free.
When the area is free, the block will be read into the buffer area.
The first word in the buffer area will be the searchword, i.e., the
read begins from the searchword. The area that was read will be.
entered into the lock list. The A register will be Set.positive
and will contain the logical address of the word on drum that squalled-
the searchword. All other status conditions hold as in normal I/b

Operator: BLOCKSL$AVO ,V1,V2,V3,V4

where VO - file code,
V1 = number of words in buffer area;
V2 = buffer base relative to lower lock;
V3 - logical address relative to base of file; and
.V4 = 10 character octal searchword

Packet: - EBJP#B7 N
: . File Code Buffer Base
Buffer Base
Logical Address
Searchword
77540 | 20157 N

Note: If the buffer size is set to zero this request
" will be equivalent to a locate function. '
Nothing will be read into core. The lock list
.will not be consulted. ' Everyting else remains
the same., ' ‘

. 6 . 7—9

«SUBROUTINE LOAD (Function code 20)

This operator will load a named absolute library program into a
specified locabion. This is not a segment but rather a subroutine
load. The operating task can control operation of absolute programs.
The program that is loaded will not be activated until a fragmentation
request is made. The operating base and memory lockout protection
associated with the fetched subroutine is a subset defined by the
requestor through activity registration. If the request is guccessfully
completed, the A register will be set positive. If the subroutine
could not be loaded, the A register will be set to the appropriate
systems status code.

Operator: FETCH$AVO,V1,V2

where VO -'base address, relative to lower lock, of core area
’ where subroutine is to be loaded;
V1 - name/version of called element; and
V2 - library in which call absolute element is contained.
This may be

SYSTEM - systems library

JOB - job library

GROUP/library number - named group library previously
linked to jobh. If field is
blank, the job library is

assumed.
Packet: EBJP#B7 ! $+7
o Base Address
Newewoec-eo-=--=---=N
N o = m e e = e = = N
Ve e e e e e e e e = V
- Library Type
Library Number If Group Lib (0 IF NA)
77540 20160

Note: The base address must be a multiple of 100 (octal),
i.e., the two right hand digits must be 00.

-LOAD SUBROUTINE AND REGISTER AS ACTIVITY (Function code 21)

This function is a combination of the rETCH$ and REG$ operators.
The requested subroutine will be loaded into the specified core area
and registered as an activity. The user is directed to the documenta-
tion for each of these requests for details. For this request, the
base address of the FETCH$ function will be the same as the address
of activity in memory of the REG$ function. The activity mode -
indicator of the REG$ function is always 0 for this combined function.
This is because the FETCH$ operation sets the RIR to the base address -
of the subroutine. If the request is successfully completed, the A

‘ 6.7-10

where VO

V1
V2

V3
V4
V5

V6

bs set to appropriate systems file cods.

Operator:

FETCHR$AVO, V1, V3,V4,V5,V6

base address, relative to lower lock of core ares

where subroutine is to be loaded \also implicit

starting point of activity);

name/version of called element;

library in which called absolute activity is
this may be:

SYSTEM - system library
JOB- job library

contained;

' GROUP/1ibrary number - named group library prev1ously

linked to job;

length of data area;
data area mode:

address of data area in core, relative to lower lock;

zero indicates read/wrlte lockin

- will be set to the data area defined by V3 and V4
and read will be permitted from any area (B registers

B4 through B7 are set to 17 bit mode);

non-zero indicates use read/write lock of requestors;

and

specified, priority of requestor is assumed.

relative response priority (0-17); if priority not

Packet: EBJP#B7 l $+11
Base Address
N o o e e oo == = N
N e e e e e e = - N
V o e e e e o= = v
lerarv Tape
" Library Number (O IF NA)
Address of Data Area
229 0}228 V5{Priority Length of Data Area |
77540 | 20161,
Note: Base address. (V1) VB and V/ must be a multiple

of 100 (octal)

+LOCATE ROUTINE AND READ THE TABLE OF CONTENTS (Function code 22)

The function is a subset of the FETCH operation. . The requested
routine will be located on the specified library.' The table of
contents for the élement will be retrieved into a 9 word ares
specified by the requestor.

Operator FETCHL$ VO, V1, V2

where VO - base address, relative to lower lock of a 9 word area
where the table of contents is to be placed.

V1 - name/version of specified element

V2 - Library in which the named routine is contained, this
mey be: : .

SYSTEM - system library
JOB -~ job library
GROUP/library number - a group library linked te job

Packet
EBJP%B7 ‘ $+6
BASE ADDRESS
T N
Ne = = = = = o] = = = = = N
Ve = = = = e v

[LIBRARY TYPE

6.7-12\

.LOAD SUBROUTINE AND REGISTER AS QUEUE PROCESSED ACTIVITY (Function code 23)

This function is a combination of the FETCH$ and REGQ$ operators.

. The requested subroutine will be loaded into the specified core ares
and then registered as queue processed activity. The user is directed .
to the specifications for the FETCH$ and REGQ$ operators for detail.
For this request, the base address of the FETCH$ function will be the
same as the starting point of the activity of the REGQ} function. If
the request is successfully completed, the A register will be set ;

positive. The A register will be set negative if the subroutine could
" not be loaded. -

Operator: FETCHREGQ$AVO, V1, V2,V3,V4,V5

where VO - *base address, relative to lower lock of core area
where subroutine is to be loaded (also implicitly
starting point of activity);
name/version of called element;
library in which called absolute activity is contained;
this may be: :

V1
V2

SYSTEM - system library

JOB - job library

GROUP/lmbrarv number - nemed group library previously
linked to job;

V3 - length of activity; zero implies read/wrlte lock will
remain set to that of requesting-activity and the activity
considered an integral part of the compiler requesting
activity; non-zero length defines the area to be protected
by memory lock-in and sets the RIR to the value in VO;

V4 - five character (octsl) identifier used for reference by

QREF$ operator; and

relative response priority (0-17); if priority not

specified, priority of requestor is assumed.

Packet: EBJP%B& _ $+11

Base Address
e e e N
N - — - — — — — — - — - - - - N
V o - - - = — - - - = - — - - - v

Library Type
Library No. If Group Lib (0 IF NA)

Length of Activity . Identifier
: _ Priority
w7540 20163

Note: - Base Address must be a multiple of 100 (octal)

6.8 Coopefative Service Routine C.S.R.

Library number 007 is a non re-entrant routine used to perform
service requests for I/0 cooperative control and for controlling
the loading activation and processing of Unit Record Routines.
The following is a summary of function codes to C.S.R. followed
by a description of each function containing parameters required,

Function Code Operator) Déscrigtion
01 Internal Load and activate primary-input
: ' unit record routine

02 - CALLS Same gs 01

i 03 | Internal = JOB card sensed, set up necessary

i/’ linkage
04 ‘ ' Internal Close primary input stream and
- return
05 - Internal Close primary input stream and
terminate

06 Internal Activate primary output U.R. routine
07) Internal : Terminate primary output U.R. routine
10 Internal }Activate secondary output U.R.. routine
11 , Inuefnal " Terminate secondary output U.R. r;utine
12 Internal Load and acfivate neamed edit routine
13 Intérnal Terminate edit routiﬁe
14 , - Unassigned
15 A ' Unassigned

16 - Internal I1/0 cooperative library overflow

possible to occur

17 ;ntefnal } * Deallocate overflow mass storage

extension to I/0 cooperative library

20 *Internal - Primary or secondary output module
a overflow . A
21 Internal ~ Primary or secondary output module

error overflow :

6‘- 8-1,

function Code Operator Description

22 | Internal .'I/b cooperative module drum error
23 Unassigned .
24 - Unassigned
25 Uﬁassigned
26 - Unessigned
27 Unassigned
30 : | Unassigned
31. Unassigned
32 Unassigned
33 Unassigned

Functional description of function codes

Function code 01 - Load and activate primary input unit rscord .
routine indicating scheduling information and limited!ata is
available to be entered into the system and processed.

Caller: Console Control routine upon receiving an unsolicited
request from computer operator to begin a scheduling
pass from a particular device.

URE& Name/Version @

Type of device is determined by facility statement
collected with named unit record routine.

Parameters: B7=Address of unsolicited call for primary input
unit record routine.

of Char. [# of Words | .-# of words - allocated by

Name " console handler from free
Name I core chain to contain
Version operator's message.

L____________f__.;~.~;~_\\4 # of characters contained
2 in message.

Addenaum: Exec task‘activity addendum

Function: - «Locate and validate existence of called for unit
record routine, qusue request if insufficient -

6 . 8"2 '. !

-

Exits:

cooperative mass storage.

*From task addendum and link to task addendum chain.
Switch activity addendqm and 'perform call to pre-selection.

*Deallocate core used to contain call

«Form job summary contalning call. to unit record e
routines

*If error conditions submit diagnostic message to
console operator and exit to content supervisor
via XX function code.

+If request queued, exit content supervisor via
XX function code. :

*Successful, register activity to worker addendum and
switch to pre-selection F.C. XX via content:
supervisor.

Punction code 02 - Same as function code

Caller:

Internal call form operating program via CALL packet

Parameters: B7 = address of CALL packet containing name/version

of primary unit record routine.

Call Operator: CALL$ Name/Version

Packet:

Addendum:

Function:

EBJP%B7 | $+4

Name
Version
77540120342

Operating worker task/activity addendum

«Locate and validate existance of calléd for unit
record routine, queue request if 1nsufflclent
cooperative mass storage.

«Form task addendum and link to task addendum chain.
Register activity and perform call to pre-selection.
Set completion status code 00 in A register of caller..

«Form job summary containing call for unit record routine.

608"3

Exits: «Return to requestor

0000000000 Call completed
7777740006 Routine could not be located
7777740001 Invalid unit record routine

HAW register
"A" register
A" register

*Register call to pre-selection FC 01 under new
task/activity. '

Function code 03 - signaling the start of a primary input control
stream : '

Caller: - primary input unit record‘routine upon sensing
~a job card '

Parameters: B7 set to the address of a completed module
description block. (See figure) describing
a completed primary input module in which the
JOB card is the first item.

Addendum: Operating worker task/activity addendum

Function: +Allocate drum modules and store submitted primary
 input module in I/0 cooperative library,

*Set up primary input chain

‘Register call for pre-selection to activate
schedule sequence.

Exit: .Return to requestor upon successful completion
"A" registers 00

Function code 04 and 05

Caller: Primary input unit record routine requesting the
close of current control stream and return of
control under new task addendum (04) or the termina-
tion of routine (05).

Addendum: Operating under control of worker task/activity
addendum.

Parameters: Last storage module and description packet. If
incomplete,module item count must reflect # of
items contained in B7 set to0o- address of
description packet. :

Function: +Close primary input stream and store last module
if stream was stored.

+POP any outstanding requests for primary input on
this stream.

6.8-,

*If function code 04 form new task addendum, link
UCB and activity addendum.

*If function code 05 deallocate faclllty assignment
. 2ZA, core storage of U.R.

Exits’ Function code 04 Return control ts requestor
’ Function code 05 RETURN exit through content supervisor

Function Code 06 - Load and activate primary output U.R. routine

Caller: *Termination due to one of the following: al
tasks within the job stream have been completed.
Task has terminated and cooperative library contalns
" excessive primary output for task.

+Cooperative service roatlne due to excessive primary
output accumulated for task as signaled by 1/0
cooperative control calling C.S.R. via Function code 20.

Addendum: Operating worker task/activity addendum

Function: +Retrieve job summary and locate called for unit -
) record routins. :

*Form I/0 cooperative module containing CALL
card as first item and job identification as
second item and link to head of primary output
stream. ,

Exit: Pre-selection to form selection summary for unit
record routine.

Function Code 07 - terminate primary output unit record routine.

Caller: Primary output unit record routine upon sensing
: on E.O.F. from I/0 cooperative control.

Addendum: Operating worker task/activity addendum

Function: ‘Request ecooperative control to close primary output
stream.

+If non-standard output routine release -core and
facility assignment.

+If standard output routinej; search for call of

a standard U.R. output routine. If find made,
switch control to new task addendum, repeat step 2
Function code 06 and register U.R. for reactivation.

Bxit: Ca;l termination
- 6.8.5

Function code 10 - Load and activate secondary output U.R. routine

Caller: *"Termination” due to one of the following: All tasks
- within the job stream have been completed. Task has
terminated and cooperative library contains excessive
secondary output for task.

*""Cooperative service routine" due to excessive secondary
output accumulated for task as signaled by cooperative
control calling C.S.R. via Function code 20. :

Addendum: Operating worker-task/activity addehdum

Function: -Retrieve job summary and located called for unit
record routine. Set call bit in "Job Stuck" for
secondary output.

*Form cooperative drum module containing call card as
first item and identification as second item and link
to head of secondary output chain.

Exite Pre-gelection to form sélection summary for unit
record routine.
Function code 11 - Terminate secondary output unit record routine.

‘Callerzl' Secondary output unit record routine upon sensing an
end-of-stream status from cooperative control.

Addendum: Operating worker task/activity addendum.
Function: +Request cooperative control to close output stream.

*If non-standard unit record routine release core and
facility assignment and exit by normal return mechanism.

- *If standard output routine; search for call of a
standard secondary output unit record routine. If find
made switch control to new task addendum, repeat step 2
of C.S5.R., Function code 10, reset storage module to
restart unit record. If no find made, deallocate core
and facility.

Exit: Call termination via normal RETURN through content
supervisor.
Function code 16 - Allocate additional mass storage for I/0

cooperative library and form bit map for acquired mass storage.

Galler: *Systems initialization to effect allocation of base
map overflow, , .

6._8-6

<From O.

S.R. as the result of processing Function code 20
of C.S.R.

Parameters: None

Addendum:

Function:

Exit:

Worker task/activity addendum

*If maximum number of additional extensions to
‘cooperative library has not been obtained submit
the following facility request statement.through
the normal facility assignment routine.

ASG$ 4AI/0 LIB, ZD, 95040D/190080D

where - IOLIB is type of random access storage
- required to satisfy request as determined
~at time of "facility map" formation;
Preferably IOLIB should be equaled to
medium grademass storage FH880.

ZD indicates cooperative library file code

95040D/190080D are the minimum/maximum
number of words used on extension requests.
190080D words will provide 960 modules and

use up a 378 position bit map.

*Allocate core and form a 374 position bit map setting
end bit position to reflect lock of maximum allocation -
from facility assignment. 190,080 words of mass

~ storage provides 960 modules at 198 words.

Adjust module counters and link to "Bit map descriptors"
Bee 7.4.2)

Return to requestor "A" set 0 0 if allocation
successful. "A" set 7777740006 indicating mass

storage unavailable.

Function Code 17 - Deallocate an unused mass storage extension
to cooperative library. '

Caller:

Parameters:

Addendum:

"Cooperative Control” when it has detected all
storage modules within a particular bit map have
been released. .

None

Task/activity addendum of program causing release
of last module.

6i 8"7

Function:

Exit:

+Check for any activities which were pushed on "C.S.R."
chain cell due to overflow of & stream or a primary
input U.R. routine which was not activated due to lack
of mass storage. If either is found ready its lost
control and re-enter point, "pop” request and exit to
original caller.

*Check last bit map in chain of bit maps (extensions) is
empty. If so, deallocate mass storage extension, release
bit map, core and repeat this step. If last bit map
is not empty exit to caller. '

Control is always returned to call or with successful’
completion status code "A" register = 0——0.

Function code 20 - a call to indicate one of the primary or secondary
output sireams has reached the meximum number of modules which can
"be contained on the cooperative library at any one point in time.
This number is set by systems convention.

Caller:

Parameters:

Addendum:

Function:

Exit:

Cooperative control upon sensing overflow.

B2 register set "0" or ™" indicating which stream
primary or secondary respectively has overflowed.

Task/activity addendum of program causing overflow.
Perform the following sequence of checks.

a) Read "Job Stack" and check to see if unit record
routine has been called for. If so, skip to step C.

b) "REGCT" call for C.S.R. function code 06 or 10 to
call primary or secondary output routine.

e) Execute C.S.R. subroutine used process Function cqode 16
to obtain additional mass storage. If additional
mass storage is obtained return control to requestor.

If additional mass storage is not obtained "PUSH" request
of content supervisor chain for lock of mass ‘storage
return to requestor as next function to perform:on
subsequent "POP",

Return program control to cooperative control if

additional mass storage can be obtained, otherwise
PUSH activity until unit record is activated.

6.8‘8

6.9 Pre-Select

The function of pre-selection is to obtain explicit and implied
scheduling parameters which have been presented to the system
by the control lnaguage, from a pass through the lader or are
registered in the systems library. The scheduling parameters
are summarized for use by selection. All control statements
required task/activity are readied for GCI phase.

Pre-selection is activated by the following function ccdes

Function Code Operator Description
01 Internal Pre-select primary input unit

record routine

02 . " Internal Pre-select next task contained
‘ in control stream :

Gé . Internal Pre-select primary output unit
record routine)

04 ' Internal Pre-select secondary output4unit
< record routine ’ ’
05 Internal Pre-select edit routine for '
primary input
06 : _ Internal Control card interpretor
07-33 Unassigned

6-9-‘1

Functional Description of Function Codes

Function code 1, 3, 4, 5: Ready call for unit record routine for
selection and initiation.

Requestor: . Cooperative Service Routine upon validating a =~
- call for the load and activation of a U.R. routine.
Exits: Release Pre-selection and queue a call for
: Selection under exec addendum.
Addendum: Operating worker task/activity addendum
Processing: a. Find the Job Description through the
Procedurs ‘appropriate entry in the JOB Stack.

b. Locate the appropriate control statement
within the Job Description.

c.. Locate the specified routine on the library.
d. Preprocess and form summaries for any '
control statement attached to absolute

element.

8. . Update the Job Descriptiocn and the Job Stack.

Parameters: FC 1 [EXRN*20401]

FC 3 [EXRw20403 |

FC 4 [EXRN¥20.40% |

FC 5 [EXRN¥20405 |

Function code 2: Ready a task for selection and initiation

Requestor: Cooperative Service Routine upon sense of a
job statement or by Termination for selection
of next task in job already started.

Exits: - Release Pre-selection and queue a call for
Selection under the exec addendum.

Processing o ,
Procedure * a. Request an image from cooperative control.

b. If JOB cards set up Job Stack, Job
Description

6.9-2

¢. Pre-process all control statements through
the task execution statement building the
summaries,

d. Locate the specified element on the library
and pre-process any control statements
associated with the absolute element.

e. Set up load function in summary

f. Update job stack bit settings

Function Code 6 - interpret the control statement and transfer

control to routine responsible for processing the control statement.

Requestor:

Exits:

Addendum:

Processing

Procedure:

Parameters:

Any worker program requesting the.processing of a
control statement within his primary input stiream.

*‘Release control card interpretor and transfer
control to processing routine. (DRET1$ B1 = 1
B2 = processing routine).

*Release control card interpretor and return control
to requestor (DRET1$ B1 = 0)

Requestor task/activity addendum.

a) Examine control statement operator.
b) “Search list of acceptable functions.

¢) Set up switch to processing routine if not
processed by CCI.

d) Switch to processing routine.

e) If processing is responsibility of CCI process
and return control to requestor.

B7 = address of control statement (SMOD)

]

length of control statement (SMOD) .

o
]

6 v9"3

6.10 Selection

The function of selection is to determine which task or activity
from the current pre-selected candidates shall be introduced into
the mix of active programs based on selection priority and available
facilities. Once an element has been selected it will be allocated
and activated by serial executing control statements as formed by
pre-selection. ' ' ‘

Selection is composed of two phases: Select phase and control:
card interpretation phase (C.C.I.). Activation of selection is
by the following function codes: .

Function
Code Operator , Description
01 Internal Select task or activity from
current stack.
02-04 S Unassigned
05 Internal Initiate selected activity/task
06-33 . Unassigned

6.10-1

Function Description of Function Codes

Function Code 1: Select a task or an activity from the Job
.. Stack for activation. -

" Requestors: Pre-selection

Exitss *If a task is selected establish an activity
addendum and storage module or worker addendum
requesting the Initiation phase of Selection,
and return to the Content Supervisor requesting
a return to the exec switches releasing selection.

*If no task selected return to Content Supervisor
‘requesting a release of selection and return to
exec switches.

Addendum: Exec task/activity addendum.
Processing

Procedure ¢ a. Deallocate addendums of inactive tasks
: placing addendums and held U.C.B. in
selection cooperative bit map storage.

b. Summarize peripherals available on system.

c¢. Go through priority chain in the Job Stack
selecting a job or appropriate task.

d. Establish worker addeﬁdums in core and

switch to worker sddendum issuing a request
for the Initiation phase.

Parameter: FC 1 EXRN%*20441

Function Code 5: Initiate the task selected.

L1

Requestor: Selection

Exits: Queue request for Selection under exec addendum.
Processing :
Procedure: a. Process the control statements contained in

Pre-selection control statement summary using
the Control Card Interpreter.

b. ‘Load absolute element and modify to running
form.

¢. Queue a request to start the routine.

6.10-2

\h

o<
S
]

6.10-3

ENTs Q%W (V0)
EXRN#* 20445

the address at which the map number
and start position of the control -
statement summary.

Termination

Termination (library number 10) is a non re-entrant Toutine responsible
for the removal of a task or activity from the system along with -
its core and peripherals which are not to be held from one task

to another. It is activated upon the issue of a RETURN operation

by a routine with no outstanding activities or upon the ABORT or
ERROR exit of some routine.

Functions: Function
Code

01

02

04

05

Operator Description
Internal A task/activity issues a

RETURN with no outstanding .
activities. Deallocate the .
appropriate task/activity.

~ ABORT$ - A task/activity signals the
abortion of the job from the
system.
ERROR$ A task has indicated that

termination is desired because
. of error conditions.

Internal Deallocate the specified unit
. record routine.

Internal A task/activity has encountered
a fault condition. Abort the
job from the system.)

Functional Description of Function Codes

Function Code 01 - A task has completed all functions implying)

Caller:

" Parameters:

the deallocation of all core and non-held
peripherals. The activation of termination
was initiated by the basic exec when a RETURN
was issued by the routine with no outstanding
activities to which control can be given. This
is the normal task termination procedurse.

Basic Exec, Return Mechanism

Entrance Is made by a REGCT ~ function. .No
additional parameter is yeyuired.

Addendum:

Function:

Exits:

Function Code

Caller:
Addendum:

Function:

£)
h)
1)
i)
k)

1)

02 -

Worker Task/Activity Addendum

Release core assigned to task.

Release all non-held peripheral of task.

Throw away non-control statements for task

down to first control statement.

Log all pertinent information for core, peripheral
in the Job Description module.

If the end of the control stream has been

reached, deallocate all facilities, deallocate
primary input U.R. routine if not already done,
clear job library of entries for this job,

clear all mass storage locks, console queues, ete.

.Get accounting information from Job Descrlptlon

and submit to primary output.

Close out primary and secondary output streams.
If primary output not pre-selected, make return
to GSR requesting activation of primary output
unit record routine.

If secondary output not pre-selected and active,
make return to CSR requesting activation of
secondary unit record routine.

If output routines active, abort control thread
and wait for reactivation through a request for
unit routine deallocation.

If all activities are complete, switch control
thread to exec addendum with re-entry to
deallocate task and activity addendum of job.
Make a switch to selection for the selection of
another task. :

ABCT, to wait for unit record routine completlon.
DP£T$1 uhruu.sh C.S. to C.S.R. \-alla..ué or
activat;pn of unit record routine.

SWITCT -and DRET$1 requesting the deallocation

of the task and activity addendums.

A task/activity requests the removal of the
entire job from the system.

Worker Routine Via Exec

_ Worker Task/Activity Addendum

g)

Release core.

Throw away all primary input

Release all facilities.

Delete Job library using L.S.R. function code 2
Clear mass storage locks, etc.

Put out -task accouting information and abort
exit condition.

Put out job accounting information on P.O.:

6.11-2

Exits:

FMunction Code

Caller:
Addendum:
Function:

Exits:
Fﬁnction Code

Caller:
Addendum:

Function:

Exits:

h)
=7
i

)
)
)
)

- b e

Close cut P.0O. and S.0., set termination
indication.

Put out P.0. and S.0.

Release output unit record routine facilities.
Log all job accounting information.

Switch central thread and go to selection for

. deallocation of addendums.

03 -

04 -

DRET1$ B1=1 B2=CSR to CSR for pre-selection’
of output unit record rcutines.

ABCT: for deallocation of control thread when
unit record routines still activs.

SWCT and DRET$ for deallocation of addendums.
A task/activity has indicated on termination
of the current task is necessary because of
an error condition.

Worker Routine Via Exec

Worker Task/Activity Addendum

Essentially the same as Function Cocde 1

Same as Function Code 1

Deallocate and release facilities of unit
record routine. '
Cooperative Service Routine

Worker Task/Activity Addendum -

Release core and facilities of unit record
routine,

If task is in process of termination check

completions of all functions.

SWCT " to Exec

.DRET1$ B1=1 B2=Selection

o
-l
—'.-\
w

6.13

Library Maintenance Service Request

lera“y number 006 is a non-reentrant routine used to enter an element
in the Job Library and to delete elements or portions of elements
already in the Job Library. The following is a summary of function
codes to Library Maintenance Service Request followed by a description
of each function containing parameters required, caller, addendunm,
exits, and test conditlonms.

Function,‘

Code
01
02

03

Operator Description
Internal Enter element in Job Library.
Delete Delete specified elements from

the Job Library.

Internal Delete all elements associated
with the current jJob from the
Job Library.

Functional Description of Function Codes

Function Code 01 = Enter an element in the Job Library.

Caller:

Parameters:

Processor (SPURT, COBOL, etc.)

B/ = Address of storage module causing activation
biased by lower lock limit.

B7 (in storage module) = Address of processor
output TOC.

~ A Register = Job number of element

A Register (in storage module) = File code of

Addendum:
Function:

‘Exit:

element.

Worker task/activity addendum

. Create Internal TOC for element and enter it
in T0C module chain.

« Perform all necessary updatlng of Job Directory,
Bit Map, and TOC Module.

.« Transfer element from mass storage to the Job

Library.

‘_.Return control to content supervisor upon
completion.

Functﬂon Code 09 - Delete specified lcmenus from-the Job

Caller:

Parameterss

Addendum:

Function:

Exit:

" Library.

~ # Delete statement through the prlmary
’1nput stream,

B4 = Address of storage module initiating

activity biased by.lower lock limits.

‘B7 = Address to the control statement causing

activation.

Worker task/activity addendum

- The purpose is to release prime mass storage

back to library maintenance or to the system.-
The effected elements are specified on the
delete statement in the following format:

DELETE option NAME/VERSION, ETC.

_If the (v) option is used, the name/version

are interpreted as group library names. The
group library is an extension of the job
library. To release this area of storage

the function issues a "FREE" statement to the
system. Then, the associated library links

are removed from the job directory. If no
option is present, the elements are interpreted
as resident on the job library. The element's

~area of storage is released to library

maintenance and the element's associated TOC
is deleted.

"Direct return_to requesﬁof.

Function Code 03'9 Delete all eléments associated with the current job.

Caller: o

Parameters:

. Addendum: .

(A) register = Job Number

© Worker task/activity

‘The purpose is to return all storage associated to a

Job back to maintenance or to the system. The job
directory is searched for job and group library links.
The links, TOCS, and elemént area are delete from
master storage directory. If a group library is assoc-:
iated to a job, storage is returned to system through.

- a WFREE" statement. ~Next, the links and job number -

is removed from directory.

Direct return to requestor,

6.13"3

6.13:1 Processor Interface

A1l processors operating under the control of OMEGA
‘utilize OMEGA services and functions in the performance
of their duties. An explaﬁatlon of some of the services
provided and the method of employing these services
follows.,

«Control Statement Access

In the process of loading and initiating a processor the
control statement resulting in the call of ‘the processor
is removed from the input control stream.. Since all
processorsread the statement to interpret -data contained
therein, this card is placed on mass storage via the
SENDP$ operation. The individual processor must issue -
a corresponding RECIEVEP$ operation in order to obtain this
statement. (See Secondary Exec documentation)

*Register Settlngs

When the individual processor is given control the A
register will contain the job number for which the
processor is performing its task. RIR is set to the
processors base. The lock limits are set to include
the core area assigned to the processor. IFR is sst to
15 bit B registers.

*Available Services

A1l OMEGA service available to a worker routine are
available to the processor.

+Option Interpretation

The following is a list of options applicable to individual
processors, their meaning and action to be taken because
of the option's presence:

Options - Y = Accept the results of the processing
as correct even though errors were
detected. The processor would put
out an element marked as error free,
even though some non-critical error(s)
were present. I1f a critical error
occurs which will inhibit the validity
of the output, the Y optlon is ignored
and the element marked as being in error.

613wl .

X = Abort the remainder of the job if any errors
are detected by the processor, If -neither
a X or Y option is present and errors are
detected, the job will continue, but any
attempt to collect and execute the routine
‘will be inhibited unless options are provided-
on the LOAD and GO statements verifying the
validity of the element. '

Even though an abort conditon occurs the
processing will continue in the respect that

any listing output will be obtained if possible.
No output other than the listing will be
produced on the abort condition. The processor -
will issue an ABORT$ function which will

cause OMEGA to abort the entire job with all
incompleted tasks being aborted also.

Z = Error out the task if an error occurs during
processing. Any listing requested will be
completed, although no element will be produced
by the processor. This causes the termination

. of the current task, but will result in the
processing of tasks within the job stream.

The processor will issue an ERROR$ to 1n1tiate
this action. :

L = Produce a complete listing of the routine
being processed. The listing will consist of
all pertinent data. Any summarization and
error listing will also be given.

+.N = Supress the source and object code 1is£ing
implied by an L option. No information will
be printed except for certain error disgnosties.

S = Produce a list of symbol definitions which
can be used by the diagnostic routine. These
symbols will consist of mnemonic source labels
within the routine being processed along the
relative position of the label.

6-13"'5 s

*Error Indication

The error indicator in the lower half of the first word of

the toc is set to indicate the status of the element processed.
Subsequent processors of this element will be influenced by
this error indicator along with the processor options as to
the action to be taken when an element marked as contalnlng

an error is encountered.

The error indicator is broken down into a series of lists,
each of which implies a categary of error(s) which occured
* during the production of the element.

A breakdown of the categories of errors possible and the.
fields assigned to individual processors concerned with the
manipulation of elements. If an error condition is encountered
the processing will set the bit in its assigned field which
defines the category in which the error falls and the
corresponding bit in the general field.

214 213 212 211 210 29 28 27 26 25 24 23 22 21 20| ERROR
INDICATOR

General - General error setting used by all processors

214 - If set indicates a critical type of error
occurred which makes the validity of the
element improbable. (e.g. overflow of
available storage, loss of data, etc.)

213 - If set indicates a generatlve type error w hlch
will yrobab.Ly interfers with the collec ti n
-or execution of the element.

2"2 - If set indicates a generative or declarative

type error which may or may not interferewith
the further processing of the element.

Compiler ~ Error settirgs reserved for error conditions encountered
during the compilation of the element by the
‘processor (COBOL, FORTRAN,etc.)

211 _ o9

Assembler - Error setting reserved for error conditions
: encountered during the assembly of the element.

28 _ 26

Loader - Error settings reserved for error conditions
encountered during the collection of elements.

25 . 23

6.13-6

Library Maintenance - Error setting reserved for errors
encountered upon the manipulation of
the element by the library maintenance
routines.

2? _ 20

_*Service Request

The Library Service Routine serves as the means by which an element
produced by some processor may be entered into the job library

complex, from which it may be operated on or used by other systems
© Or user programs.

The Library Service Routine (LSR) is used to transfer three different
types of elements (RB, ABSOLUTE, SOURCE). The description of

the TOC header necessary for LSR to process the element may be

found in Figure 1 of this section.

The linkage provided by the processor to the LSR is defined below.

ENT#B7#TOC ADDR
ENT#A%FILE CODE LRS1 EQUALS*20601

- A NP A dbd b g\ Kddd

EXRN#LSR1

where TOC ADDR.- the base address of the toc which defines
the element to be entered into the job library.

FILE CODE - the file code under which the element to be-
entered into the job library may be found.

After the transfer of the element from the specified file to the
job library has been completed the requesting processor will be
given control at the address following the request for LSR.

*Termination

The normal method or the termination of any task/activity is
the issuance of a RETURN$ function with no outstanding activ1ties
to be completed.

If the options imply an error exit upon sénsipg an error this is
accomplished by the issuing of the following function. No control
is returned to the requestor.

ERROR$

If the options imply an abort condition is calleg for, this can be
accomplished by the issuing of the following function. No control
returned to the requestor. ' :
ABORT$
6.13"7

ABS

SOURCE

EXTERNAL TOC FORMATS

1 Error Ind
N N N N N
N N N N N
v v v v v
Incrementito EDEF
of EDEF
Increment{to XREF
of XREF
Increment|to CC
of CC
Increment|{to INFO
INFO
Increment|to SDEF
SDEF
Incrementito TEXT
Length of iTEXT
2 Error Ind
N N N N N
N N N N N

v v v v v

Increment
Max Core Us
Increment
Length
Increment

to ASG Images
ed # Images
to ELT Base
of ELT

to SDEF

SDEFS

II

Segments

Length of
Control

Error Ind

Increment
Sub Type
Element

(PROCESSOR OUTPUT)

This toc is produced by the assemblies
and compilers. It contains a description

- of where the individual parts of the element

are on the scratch file of the processor.

. Before termination a processor will make a

service request calling for library

amaintenance which will in turn place the

element in the job library.

The absolute toc is produced by the
collector-loader. The proceedure for
handling is similar to that for an RB
toc in that an internal service request
is made for library maintenance.

The source toc could be produced by
any processor, Usually it would be concerned
with central card images. A sub type is
provided whereby the source code could be
indicated as compressed. The element length
is required in case the sub type indicated
compressed, ptherwise 20 word images are
assumed.

6.13-10

6.30.1 Selection Job Stack '

0 LARGEST JOB # ~ |# JOBS IN MODULE

1 INCREMENT TO NEXT JOB STACK

2 [INCREMENT TO BIT MAP MODULE

3 BASE PRIORITY LINK

Lo

5 .

6 BIT SETTINGS
i SELECT PRIORITY {PRIORITY LINK

10 TNCREMENT TO JOB DESC. MODULE JOB ENTRY 1
11 MINIMUM CORE MAXIMUM CORE -
12 LENGTH TASK SUMMARY [MAP # | START POSITION
13

JOB ENTRY 2

6.30-1

Selection Job Stack Description
+General Description

'The selection job stack is maintained in the I/0 cooperatives mass
storage file., A link to the base job stack module is maintained
in the 5th word of the core summary map.
A job number and a cell within the job stack will be assigned by
the cooperative service routine when a job card is sensed in the
input stream. Although each job cell in the job stack contains
the job number, the job number can be calculated by the position
of the cell within the module or subsequent modules. Each module
is capable of hold 40g job cells. '

After the cooperative service routlne has set up the job cell in
the job stack, along with the establishment of a task addendum, an
entry is made to the preselection phase of selectlon.

- Preselection will examine all control statements in the input stream,
.through the first control statement resulting in an execution
"request. In examining these control statements preselection will
set up a facility summary consisting of all facilities requested
in the control stream and by the routine to be executed. This
summary is preserved in a storage module on the cooperative mass
storags fils. ‘It will be ussd oy sslsction in determ.n.niug .L.l. the

Job can be loaded and executed within the mix of jobs in the system;

6.30-2

+Detailed Description

Word 6

]

Word. @ -TU=
L
"'Word 1
"Word 2
Word 3

The largest job number that hgs been assigned.

The current ﬁumbér of .job entries in this particular

job stack. The maximum is 60 octal for any one

stack module, ,.

A link to the next module of the job stack if one
is present. Subsequent modules will have the same
format of the inltlal one except for the sign bit
of word .

" A link to a module used for storage of bit'maps
describing areas taken up by selection summaries. .

Base link to job of hlghest prlorlty .

The start of a job entry. The -bit settings indicate
the status of’ the job at any one time,

'Bit Settings Meaning
229 -JOB terminated, ¢lear from system
228 End of control stream reached
227 Primary input called
226 - C " - preselected
225 S ' " " selected
224 o " " initiated and active
223 Prlmary output called
222 . " préselected
2?1 4 - n " selected i
220 o . " " initiated and active
219 - Secondary output called ,
218 . . preselected
217 n " selected
216 oo " initiated and active
215 - Edit Routine called
214 U n preselected
213 .o, " selected -
21? (" " initiated and active
210 |
29 ’
o8
7
% :
25
24 Task rolled out
23 active
22 " initiated
21 " selected -
20 " preselected:

6.30-3

Word 7 -1U

Word 10

1
[

Word 11

Word 12 -

1
=]

I

2lhogb

25 20 =

= The select priority whlch is assigned accordlng to
‘the following conditions.

a. Priority specified by user.

b, The number of tasks within the job that have
been completed. :

c¢. The amount of primary input :

d. The number of peripherals required by the task..

e. ' The number of times a task has been passed upt

The job number assigned by the dooperative service
routine. '

The increment to the job description module on the

- cooperative library file (ZD).

]

The minimum amount of core the task can use if it
is available.

The meximum amount of core the task can use if it
is avallable. :

The length of the initial task summary.
Link to Job of next highest ﬂrior*+y

- - ke

The. map number which defines the base storage module
used for summary storage. .

= The bit position defining the base sub cell used
- within the storage ‘moduls.

6.30-4

HEADER

(X3 PR W SV e

"~ 6.30.2 Job Description Module

INCREMENT TO NEXT JOB. DESC. MODULE OR TO ITSELF

MODULE LENGTH |INDEX TO NEXT AVAIL. LOG.
FILE INCREMENT TQ CURRENT MODULE -

LENGTH TASK ADDM & UCB . MAP # AND START

LENGTH CONSTANT ACCT. INFO INDEX TO CONSTANT ACCT INFO
FILE INCREMENT TO MODULE WITH CONST. ACCT. INFO

LENGTH JOB IDENTIFICATION [INDEX TO JOB I.D.

FILE INCREMENT TO MCDULE WITH JOB I.D,

LENGTH PRIMARY INPUT U.R. INFO |INDEX TO P.I.U.R. INFO

FILE INCREMENT TO MODULE WITH P.I.U.R. INFO

LENGTH PRIMARY OUTPUT U.P. INFO |INDEX TO P.0.U.R, INFO

FILE INCREMENT TO MODULE WITH P.O.U.R. INFO

LENGTH SECONDARY OUTPUT U.R. INFO|INDEX TO S.0.U.R.

FILE INCREMENT TO MODULE WITH S.0.U.R. INFO

LENGTE EDIT ROUTINE INFO |INDEX TO EDIT ROUTINE INFO
FILE INCREMENT TO MODULE WITH EDIT INFO

LENGTH OTHER ROUTINE INFO [INDEX TO OTHER ROUTINE INFQ
FILE INCREMENT TO MODULE WITH OTHER INFQ ‘

LENGTH ACCOUTING INFO |INDEX TO ACCOUTING INFO
FILE INCREMENT TO MODULE WITH ACCOUNT INFO

LENGTH DUMP INFO |INDEX TO DUMP INFO
FILE INCREMENT TO MODULE WITH DUMP_INFO »

LENGTH CHANNEL ¢ SUMMARY {INDEX TO CHANNEL @ SUMMARY

FILE INCREMENT TO MODULE WITH CHANNEL @ SUMMARY

.

LENGTH CHANNEL 23 SUMMARY |INDEX TO CHANNEL 23 SUMMARY |

FTILE INCREMENT. TO MODULE Y','IT‘T'U CHANNET '.2'2 STTWAD‘Y_' B

A . bl .\.uu&bEI‘iu LV ViIVI/UV A e dli \JLLLAWANAVAdD X

. 6.30=5

JOB I.D. A JOB IDENTIFICATION

: (JOB STATEMENT FROM INPUT STREAM)
P.I.U.R B LENGTH INPUT U.R. SUMMARY MAP -# & START OF INPUT U.R.
- : PRIMARY INPUT UNIT RECORD ROUTINE -

‘ CALL CONTROL INFORMATION
P.0.U.R C LENGTH PRIMARY OUTPUT U.R., SUMMARY MAP # & START OF P. OUTPUT U.R.
' : PRIMARY OUTPUT UNIT RECORD e .o

| | ROUTINE CALL CONTROL INFORMATION “
S.0.U.R D | LENGTH SEC. OUTPUT U.R. SUMMARY ___ MAP # & START OF S. OUTPUT U.L.
| SECONDARY OUTPUT UNIT RECORD

_ A ROUTINE CALL CONTROL INFORMATION
EDIT R. E LENGTH EDIT SUMMARY MAP & START OF EDIT
EDIT ROUTINE CONTROL ‘

,'\ STATEMENT INFORMATION '

OTHER R. ‘ F | LENGTH OTHER SUMMARY MAP # & START OTHER

OTHER ROUTINE CALL

CONTROL INFORMATION

CONSTANT AGCT.. GO | DATE OF JOB ENTRANCE
| 1 : ~ TIME OF JOB ENTRANCE
2 | HR: MN: SEC
3 TOTAL CP UNITS USED BY JOB
4 | AMOUNT PRL INPUT . AMOUNT PRI OUTPUT
5 | AMOUNT SEC. OUTPUT
6 . DATE OF TASK SELECTION
7 TIME OF TASK SELECTION
10 - ER: MN: SEC
CHANNEL SUMMARY HO - P-TEPE
1 ~ TOTAL STORAGE OR # UNITS ASSIGNED
2 TOTAL TIME PERIPHERAL HELD
31 - TIME OF LAST ASSIGNMENT
L © HR: MN: SEC
sl AMOUNT OR ‘# UNITS LAST ASSIGNMENT

v

6.30-7

«General Description

The job description module is linked off the job stack entry for a
particular job. FEach job has a separate job description module or
chain of modules. The storage for the modules is obtained form the
cooperative library file (ZD). The job description module contains
‘unit record routine descriptions; job identification, and accounting
information associated with the job. The module is originally
produced by the cooperative service routine upon processing a JOB °
control statement. Entries and modifications to the module are
made during preselection, selection, facility assignment, facility -
release, and termination.

6‘.30-8 |

+Detailed Description

Word ¢)

464,

t-{

Increment to the next job description module in the .
chain. If only one module exists the link is to
itself. Each module in the chain has a link as the
first word of the module.

The length of the I/0 cooperative module being used.
Normally this is 306g.

The index relative to the base oftthe module currently
being used for deposit of information.

The file increment to the module currently being used :
for deposit. -

The length of the task addendum and unit control
block stored.

The map number and start position of the storage used
for the task addendum. See () for function of

" bit map storage facility.

Each two word entry in the rest of the header defines

the location of some information. The upper defines

the length of the data; the lower defines to index
relative to the base of the module containing the
information. The second word gives the file inecrement

to the module containing the information. This increment
may be to the same module containing the header
information.

The job identification normally consists of the job
control statement from the primary input stream.

The primary unit record routine information consists

of a link through the selection list map to a
summarization of the unit record routine requirements

for facilities, core, etc. The control statement calling
for an input unit record follows the summary link

The summary link is provided by preselection. The
control statement is added by the cooperative service
routine for processing by preselection.

Same as B except for primary output unit record routine.,
Same a8 B-except for secondary output unit record routine.

Same as B except for the edlt routine.

6.30-9

F Same as B except for other routines;
Go The date upon which the job was enetered into the system.
1-2 The time in hours, minutes, and seconds which the |
Job was entered into the system;
3 - . The total central processor time units (200us)}used
~ by the job. This is a cumulative total fsr the whole
job. | | |
L-Y The'number of cooperative modules ued for the primary
‘linpﬁt. |
-L The number of cooperative modules used for primary
butput.
5-U: The number of cooperétive modules used for secondary
y'output.
-L Spare
) The date upon which the current task was selected.
7-10 The time in hours, minutes, seconds at which the task

was selected.

Ho ~U The peripheral type of the units on this channel.

-L Unassigned
1 ‘The total storage or number of units assigned during
the job. |
2 ' The cumulative time that the peripheral was held.,
© 3=4 The time at which the last assignment was made.”
5 The amount 6£ storage or the number of unita‘assigned.

' 6.30-10

0 LINK NEXT MODULE

1 | # WORDS
2 PERIPHERAL NAME

3 %ﬁ% MASS STORAGE REQUIRED

4| # ENTRIES LENGTH SEL SUMMARY

5 [P-TYPE |CHAN | CHAN | LENGTH UNIT SUMMARY
3 MASTER BIT UNIT

7] MASK

10 P-TYPE | CHAN | CHAN | LENGTH uNIT sm &

6.30~11

Presum Module Description

The Presum Module is the initial module linked off the job stack, or the
job description in the case of a unit record or edit routine summarization.
It contains the information necessary for the selection routine to determine
if a routine can be loaded.

The Presum Module is produced by pre-selection from the Assign statements
encountered in the job control stream. It is maintained on the cooperative
library file (2ZD), through the bit map module. The storage used by the
sumaries is released back into the bit map once the task has been relisted
and initiated. '

Word ﬂ = Link to another module if one is present. The link is broken down
into a 6 bit start position and a 9 bit map number referring to the
bit map module. The sign bit is set if the link is to another
presum module and not set if the link is to the facility summary.

Word 1 = Number of words within the next summary module.

Word 2 = The start of a summary cell. The name.is a 5 character name of the
peripheral specified on the Assign statement.

Word 3 = Bits 229-224 _ the number of individual units requested under the
peripheral name.
Bits 22320 - the amount of mass storage requested.

Word 4 = U = the number of channel entries in the channel summary.
L = length of channel summary for this name.

Word 5. = 229225 = Peripheral type

224-220 = Channel number
219 -215 = Channel number
420 Length of unit summary for this channel.

Word 6-7= Master bit setting for those units on the channel which would be
acceptable for assignment.

Word 10 = Indicator for mass channel.

Words 2-10 represent a samplé entry. The entries will vary with the different
peripheral names. All words except for word 2 are obtained from the selection
facility summary map which is a congestion of the regular facility map.

6.30-12

BIT MAP MODULE FOR LINKING SELECTION SUMMARIES

0 MODULE LENGTH ‘
1 . LINK TO NEXT BIT MAP MODULE
2 # USED CELLS
3
4
5
6 INC TO STORAGE MODULE |
7 # FREE SUB CELLS | T STORAGE CELL 1 (m #)
10 'SUB CELL BIT SETTINGS
11 INC TO STORAGE MODULE .' 1
12 # FREE SUB CELLS STORAGE CELL2 (MAP #2)
13 SUB CELL BIT SETTINGS J |
 —
304
305

6.30-13

Bit Map Module Description

General Description

"~ Each bit map module has a 6 word header portion which defines the link to

the next bit map module if there is any additional modules, and the number
of free and used storage cells within that module. There is a maximum of
100, storage cells within one module. Each storage cell has a map number
dic%ated by its position within the module, for example words 6-10 of the
initial bit map module would be referred to as storags cell one with a
map number of 1.

Each storage cell defines a 306 word module on the cooperative mass storage
file, which is used for the storage of selection summary data, etc. Each
of the storage modules have a 2 word header and 204, words of storage which
group (sub cell) is represented by a bit setting in the third word of a bit
map storage cell. As a sub cell is filled with data the appropriate bit in
the bit map storage cell is set to & binary one.

As the summary information is processed by selection the cells are freed
for use again. If a complete module is empty it is released back into the
cooperative pool. .

The bit map module is maintained on the cooperative library file (ZD).

Word @ = U - The length of the module containing the bit map.

1 = A link to another bit map module or # if no other module exists.

2 = U - The number storage cells used within this bit map module.

3-5 = Free

6 = Is the start of the first storage cell. It contains an increment
to a storage nodule to be used for storage. The storage module
to be used for storage. The storage modules are obtained from
the cooperative library file (ZD).

7 = The number of free sub cells within the indicated module. Each
subcell consists of 7 words.

10 = A series of bit set%ing representing subcells within a storage
module. Each bit 2¢9-22 represents a 7 word subcell in a storage
module. The bits are set as the storage is used. '

11-13 =. Another storage'éell defining another 3068 word of storage.

6.30-14

Selection FACILITY SUMMARY MODULE

0 MAP & START OF NEXT
1 # WORDS
2 | # WORDS | EXFN ENTRY
3 CONTROL
INFORMATION
X | # WORDS | EXRN ENTRY
CONTROL
INFORMATION
Y | # WORDS | EXRN ENTRY
Y+1 | FILE CODE LENGTH OF CONTROL
W2
Y43 FILE INCREMENT T0 ELEMENT
4 | ' # SEGMENTS

6.30-15

Selection Facility Summary Module Description.

General Description

The selection facility summary is linked off the pre-selection module
and contains all control statement summarizations which will be processed

- upon selection of the associated task., All parameters necessary are

contained in the selection facility summary including 1nformab10n
for the load of the rcutine.

The selection facility summary is produced by pre-selection and used by
the initiation phase of selection. The storage used for the summary is
released upon the selection of the routine summarized. The modules reside
in the cooperative library file (2D).

Detailed Description

The 1link to the next module of control summaries or § if there
isn't any more modules.

Word @

1 = The number of data words contained in this module of contirol
information.

2 = U

The number of words occupied by this control statement
summarization.

The lower half of the exec return inmstruction necessary
for the entry to the routine responsible for processing
the control statement.

-
"

3 to N= The control statement information whose address is conveyed
to the processing routine. The control statement may be an
ASG, LOG, etc. .

X to Y= Another control statement. There may be any number of
separate control statements.

Y = The last entry in the selection facility summary which contains
the information necessary to load the selected routine.

= The number of words in the load entry.
= The exec return necessary to process the load.

T+1

= The file code which is to be used in the loading of the.
element. A

L = The length of the control part of thé element.to be loaded.

This is equivalent the number of words to read in loading
the element.

6.30-16

+2
Y+3

4

Reserved for the base ndd*ess of the routine %o be loaded.

The increment relative to the base of the file inéicated in
word Y+1, at which the initial instruction of the routine is
located.

U=

L

Unused

The number of sub-segments contained in the routine being
loaded.

After the read of the routine from mass storage the segment
descriptors (see Loader documentation) will be updated to
put the loaded element in operating order.

The parts of the segment descriptor modified are, the
file code which is replaced by the file code used for the
routine load from mass storage. The core bases of all

- segments will be modified by the base of the routine, the

file increment to the subsegments will be modified by the

. base of the routine on mass storage.

'6.30517

6.30.4 Sélection Facility Map

PERIPHERAL NAME 0O -

7 ENTRIES

|LENGTH SEL SUMMARY

29 25
P-TYPE

R4

CHAN

20119

15
CHAN

14 0
LENGTH UNIT SUMMARY

MASTER BI
UNLIT MASK

T

e
~J

P-TYPE

R4

CHAN

20 |19

15114
CHAN

: 0
LENGTH UNIT SUMMARY

MASTER BIT UNIT SUMMARY

PERIPHERAL NAME 1

ENTRIES __|LENGTH SEL_SUMMARY
29 25124 20119 1514 ' 0
P-TYPE | CHAN CHAN LENGTH UNIT SUMMARY

MASTER BIT UNIT MASK

*Detailed Description

Word ¢

W

The five character name used for the assignment of
the peripheral.

U - The number of variable length entries that appear
under this peripheral name. There is one entry for
each channel that contains the peripherals that

could possibly satisfy the routines request. In the .
drawing words 2 to X, X to Y are separate entries under
this peripheral name.

229225 _ 4 five bit P-TIPE that defines bhe
particular type of equipment on that channel.

224_220 _ Tnis field will be blank except when dual
channel is utilized in which case it is a five bit
channel number upon which the units are located.

219215 _ A five bit channel number upon which the
units are located. ,

21420 _ the length of the unit summary mask cohtained
in words 3 to X.

A variable length summary mask with one bits in the
locations representing units which could satisfy the
request. This mask will be applied against the master
bitted units for this channel in the core facility

and storage summary during selection to determine

if sufficient unit are available for the selection

of the task. If the channel has mass storage

- = - aL .
equlpmeut on .Lt,‘thﬁ master bit unit mask is omitted.

Defines another channel which contains units capable
of satisfying the request of the routine being '
summarized. Description is the same as word 2.

Master bitted units for alternate channel. Déscrihtion_
is the same as for word 3,4. '
A summarization of the units acceptable under another
peripherdl name,

e

*Selection Facility Map Description

*General Description

The selection facility map is a congested version of the facility
map. It contains all the peripheral names and unit specifications
that are used for the assignment of units. The portion of this .
map under a particular peripheral name used on an assign statement
is included in the preselection summary to enable the selection
routine to determine if sufficient unlts are available to satisfy
a routine requirements.

The selection facility map is produced during initialization and
used by preselection. It resides on the system library file (ZE).
The file increment to the selection facility map and its length
‘are contained in the core facility and storage summary (see
vwhose address 1s passed in B5 by the content supervisor,

.6.30-20

The Input/Output cooperative mechanisms are the system elements
by which: OMEGA retrieves all scheduling information, in the
form of control streams; and submits accounting and actions
taken by OMEGA as the result of processing schedule parameters.

The cooperat;ve mechanism has been designed and implemented to
control the two way transmission of three streams defined as
follows:

*Primary input - device card, tape, drum remote - used to
contain OMEGA schedule parameters, limited data, source
'code to assembers and/or compilers, program parameters, etc.

*Primary output - Hard copy of program schedullng results,
listing from assemblers and/or compilers, limited data, etc.
Device normally hlgh speed printer, Univac 1004, remote
devices.

+Secondary output - device card, tape, drum remote used to
contain assembler and/or compller, object code and limited
data.

7.1 Cooperative Features

The Input/Output cooperative mechanism provides the user and
system with the following advantages and features:

*The staging of low speed Input/Output daté to mass
storage to balance intermittent system utilization with
the slow rate peripheral devices.

OPERATI NG
TASK OR

~ SYSTEMS
INPUT DATA ELEMENT
OUTPUT
DEVICE

{ Illustrates two way transmission of
stream.

Staging allows the device to operate at full capacity within

the controlled constraints of the staging area. The bufferi

to mass storage permits the parallel utilization of' low-speed
devices by operating tasks in a multi-program environment.

*Provides OMEGA, compilers and/or assemblers, other system
elements and the user programs a consistent mechanism,
independent of device to obtain and/or submit data. This
feature purges system elements of redundant code required
to assign, recognize and handle varied devices.

Get OPERATING
CARD TAGING Item TASK OR
EQUIPMENT AREA Present SYSTEM
: Item \\ ELEMENT
APER
OR MAG
TAPE ‘ REMOTE PRINTER
DEVICES SUB-
. |SYSTEM

Illustrates device independent worker
_interface

*A pooled staging area is maintained by I/0 cooperative

control allowing multiple streams of primary and secondary
data streams to utilize a shared library. Data for any

one stream is threaded by chains to the task. Cooperative
control expands and contracts the "cooperative library" as
required to maintain the system. In addition to expansion

of mass storage, I/0 cooperative control will envoke temporary
suspension and/or Roll-out, Roll-in procedures to control
overflow conditions. :

‘7.2 I/0 Cooperative Elements

The elements required to effect the Input/Output‘cooperative
mechanism are described as follows and there interaction is
depicted in Figure 7-1.

Input Unit Record Routipe - individual routines responéible'

for reading data images from assigned device and forming
these into a buffer the size of which is determined by
assigned size of storage modules used for buffering. Upon
completion of a buffer (module), unit record routine submits
module for staging by cooperative control.

)

1/0 Cooperative Control - is a basic systems element, normal
resident, responsible for: staging and chaining, Input/Output
to mass storage, recognizing overflow conditions and calling
the "Cooperative Service Routine" for action, processing
requests from operating program and/or system elements for
primary and secondary Input/Output.

Primary/secondary Output Unit Record Routine.- individual

routines responsible for recording, punching or transmitting
items contained in ocutput streams.

Cooperative Service Routine - is a secondary exec element,
normal drum stored and responsible for the following with -
- regard to cooperative mechanism.

sActivate selection and load process of unit record
. and edit routines.

+Initialize and terminate drum chains.
*Allocate additional mass storage and/or otherwise
control cooperative library.

‘Perform error recovery for cooperative control.

Bdit Routine - iudl'v'.a.uua.n. routines called j NSOQURCE!
statement to merge and delete supplementary data into
primary control stream. Normally used to apply correction
cards against an existing source data file for assemblers
and/or compilers. May be modified to merge and/or update
normal data files being entered through the primary input
stream.

7-3

VPN

doea
[Soureg Crait), 2 NPU*e

Mevqae Supplewey
Pvwovy '1uput

Coperat, ve
2ibvevyy

4
A S
Coorevubive

C Ohf:w.’_)L [N

Buffey 6o | Presewt R L

Dvuwm Pviwdo\/ znugu an ‘ >
Input dotu| dewowd of ()

o pevatn’«g clbwert

Subwit Buffwel | Buffev &o‘c’vuw\ —_
cutput Co | Piwovy & Stouds 4_0

Sutput R |8vy euepul

Bewore
Devis e

‘Oyevusing CosR

Clewen &

" avd/jov: smm>—»

}

[c.s.R \

Jwum Stoved
Ccovgvors fov
Coopevative .

&

Cavef
Cuipwenl

J

.

W

it Record Routine

Input unit record routines are normal worker program elements
responsible for reading and forming into storage modules data
to be used as primary input. Each primary input U.R. is pro- -
grammed to handle a particular device or type of devices and

is loaded and activated by "Cooperative Service Routine" by
one of the following:

*Console operator type-in to OMEGA

UR Name/Version

where: Name/Version is that of the unit record. routine

~ being requested. Absence of name/version implies .
the normal systems primary 1nput unit record
routine.

" «Internal or external "START" control card. The "START"
statement identifies a pre-stored job stream contained on
mass storage which is to be scheduled as an independent

JOB,

(ses

*An unsolicited communications interrupt on a device

assigned to the system in which the first message contained
"FBDM" control statement. (see

The sequence of functions performed is as follows and illustrated
in Figure 7-2. .

a)

b)

Read items using file code ZA from assigned device
until a JOB control card is encountered. Pack Job

card and subsequent images into drum module

(Figure 7.5-1) as items deleting full words of

trailing space codes from each image. Upon completion -
of a drum module perform following call to the coop-
erative service routine to set up proper chain descrip-
tions and store module.

ENT#B7#Module buffer descriptor
EXRNx2 0 3 4 3

Read and pack items into drum module as in step (a)

and submit completed modules to I/0 cooperative control
with the following call. All error status codes for
image read may be stored in the upper of item length
descriptor and will be passed onto requesting program.

ENT*B7*Module buffer descriptor
EXRN*3 0 0 0 4

Repeat above until a JOB or FIN control card is

encountered. JOB card %o to step (c). FIN card or
end-of-fils go to step | '

7=5

¢) Submit current drum module with an adjusted item count
excluded JOB card to a "Cooperative Service Routine”
with the following call which will cause prlmary input
stream closure.

ENT#B7#Module buffer descriptor
EXRN#2 0 3 4 4

Upon return of control move JOB card as first item in
a drum module and goc to step (a) with JOB card.

d) Submit current drum module with adjusted item count
- to exclude FIN card to "Cooperative Service Routine"
with the following call.

ENT«#B7#Module buffer descrlptor

EXRN%2 0 3 4 5
Upon 'submission of this call control will not be returned,
primary input stream will be closed and routine will be: .
deallocated and terminated.

Input unit record routines are designed and programmed under the
following constraints.

QAssignment of input device used to read images is by normal
"ASG" control card collected with the unit record routine
object code element via the LOADER.

+A11 U.R, routines are activated and terminated via "Cooperative
Service Routine (CSR)" and may not FORK or be fragmented.

+Each routine contains its drum module and description~used to
present items to I/0 cooperative control. It is assumed

each routine will delete full words of -trailing space codes

. from each image to compact items in drum module.

+Each routine is initially activated at its first location.

0

-6

70301

Sample Input Unit Record

7.4 GCooperative Control is responsible for the following functions:

‘Maintain a poll of drum modules used to retain primary input,
output, and secondary output. In performing this funection.
cooperative control meintains chaining of modules to the task
addendum for each siream, recognizes overflow conditions and
drum read/write errors. '

+Provides the interface with the exec for unit record routines
used in reading primary input or writing primary and secondary
output. ,

+Process service requests for primary input images and/or
submissions of primary and secondary output by operating worker
programs or system element. To perform this function coop- ,
erative control maintains core buffers used to read staging -
module into core for the transfer of images and verification '
of worker parasmeters.

7. ll-u 1 Calls

Cooperative control is a passive exec element activated
via EXRN#300FC. When activated cooperative control
attains the identity of the requesting task/activity
addendum. The following is a summary and functional
description of each function code recognized coop-
erative control.

Function

Code Call Description

00 Internal .~ Call for next primary input image

01 CARD$ Call for next non control primary input image
02 PRINT$ Submit primary outpﬁt image |
03 PUNCH$ Submit secondary output image

04 Internal ‘Submit primary inﬁut module

05‘ Internal . Request next primary or secondary output module
06 Internal Request drum module from cooperative library
07 Internal " Release " " " " "

10 Internal Request release of all cooperative core buffers
11 Inﬁernai Store last drum module f§r Job's primary input
12 Internal Sto}a last drum and close primary or seco@dary

stream

7-11

Functlon code 00 - Transfer next image, control or data, contained
in Job's primary input stream to. the requestor.

E Caller: Restricted, to use by OMEGA system elements in order

to process control statements used 1n the scheduling
“and executlon of tasks.

Parameters. B7 = to base address of the buffer to which image
is to be transferred.

Function: +Determine existence of an imagé. If none available
PUSH request until unit record routine supplies

another module. If stream is closed and empty return ‘
~ end-of-real statusy

719

*If required, locate core buffer and read drum module
from head of primary input chain., If drum error occurs
call cooperative service routine with F.C, 22,

*Transfer image to requestor and update item counts.

*Deallocate drum module and adjust chain links if

module was emptied due to request. Return control
to requestor.

Exits The following status conditions are possible upon
return of control to requestor:

+VMAM register = 0000000000 1nd1cate normal completion.
"Q" register will be set to number of words contained
in transferred image.

*"A"register = 7777740002 - implies deposit address
specified by B7 plus image length are outside the
program lock bounds of the requestor.

*MAM register = 7777740003 - unrecoverable drum error
was encountered for the image that was transferred.
Image may or may not be valid or complete. In the
event drum chaining was in question primary input
Stream will be deallocated and subsequent requests

will result in an 05 status.

*"A" register = 7777740005 - end-of-primary input
stream has been reached and deallocated. Upon
subsequent requests of primary input the 05 status
will be returned to the requestor for a total of
three times. If a fourth request is made the
following diagnostic message will be submitted to
the primary output stream and the "ERROR" return
exit will be executed for the activity. Diagnostic:

END OF PRIMARY INPUT STREAM LOOP

Function Codé 01 - transfer next non control image contalned in
Job's primary input stream to the requestor.

Caller: Operating task or system elements for the retrleval
of source language statements to compllers and/or"
assemblers, parameters and limited data.

Parameters: B7 = to base address of the buffer to whlch image
: will be transferred.

Function:. *Determine existence of an image. If nore available
"PUSH" request until unit record routine ‘supplies
another module. If stream is closed and empty,
return end of prlmary input status, 05

7-13

Exit:

*If required locatelcore buffer and read drum module
from head of primary input chain. Call "cooperative
service routine" with FC 22 if drum error.

*If item is not a control statement (#) in position
one, transfer item to requestor and update item
counts.

*Deallocate drum module and adjust chain links if
module was emptied due to request. Return control

_to requestor,

The following status codes are p0381ble upon return :
of control to requestor.

*A register = 000000000 - indicates successful
completion of request. "Q" register contains number
of words in the image transferred.

“A register - 7777740002 implies address specified

by B7 plus. image length, are outside the program
lock bounds of the requestor.

*A register = 7777740003 unrecoverable drum error was
encountered for the image that was transferred. Image
may or may not be valid or complete. In the event
drum chaining was in question primary input stream
will be deallocated and subsequent requests will
result in an 05 status.

*A register - 7777740004 - indicates next image in the

primary input stream is a control card (#) sign in =
first position. This feature can be used to indicate

~end of data cards for this task. Upon subsequent
. requests via Function code 01 the 04 status will be

returned to requestor for a total of three times.

- If a fourth request is made an "END OR PRIMARY INPUT

FILE LOOP" diagnostic will be submitted to the
primary output stream and the "ERROR" return exit
will be given for the activity.

°A register - 7777740005 - end of jobs primary input
stream. The primary input descriptor is deallocated.
Upon subsequent requests of primary input the 05 -
status will be returned to the requestor for a total
of three times. If a fourth request is made an

"END OF PRIMARY INPUT STREAM LOOP" diagnostic

 message will be submitted to the primary output stream

and the ERROR return exit will be given for the

- activity.

7-14

Function Code 02 - requests the described print image be
submitted to the primary output stream. This function is
applicable to worker programs and system elements for the
submission of accouting, diagnostic, scheduling messages
and limited user hard copy.

Caller:

Operating task and/or systems :elements.

Parameters: B7 = to base address of image relative to PLR,

-Function:

Q = number of words contained within the image.
= number of lines to space paper before print.
, Systems primary output unit record routines
recognigze 778 or greater as a skip to next
page.

Validate requestors-parameter limits

*If required locate core buffer and load an
existing imcomplete module from tail of primary
output stream descriptor.

*Transfer image to buffer module deleting full
words of trailing space codes in order to
conserve drum storage. If image cannot be
contained in the drum module allocate néext
link in the chain and store full module,
transferring imesge into new drum module.

*Upon storing a drum module perform the following
tests:

Test for task/activity exceeding estimated
number of pages specified on the Job control
card. If exceeded, call "cooperative service
routine"(CSR), function code (21) GSR will:
submit "PRIMARY OUTPUT STREAM OVERFLOW"
diagnostic message to primary output, reset

 overflow indicator and perform an "ERROR"

"~ exit under the current activity addendum.

Check for an outstanding PUSH request from a
primary output U.R. routine selected to process
the chain.,

Check number of modules contained in this chain
against the maximum set for the installation,

if equal, call C.S.R. with function code 20 for
some disposing action. Maximum set for distri-

buted version of OMEGA allows for a 3 to 5
minute backup of print images at 600 lines per
minute . v ..

7-15

Exits The following status codes are possible upon
return of control to requestor.

*A register = 0000000000 1ndlcates successful
completion of the request.

*A register = 7777740002 implies that the base
address plus image length are not within the
program lock limits of the requestor.

Function code 03 - requests the described image to be submitted
to the secondary output stream. The secondary output stream is
normally though of as card punch, paper tape or some slow

speed mechanical punch device.

Caller: An operatlng task/activity. Applicable to worker
’ programs and for the submission of compiler and/or
assembler source or object code.

Parameters: B7 = to base address of image relative to PLR
Q@ = number of words contained in the image

" Function: +Validate requestors parameters

*If required, locate drum module buffer, descriptor
and load an existing incomplete module from tail
of secondary output stream.

*Transfer image to module buffer deleting full
words of trailing space codes to conserve drum
storage. If image cannot be contained in drum
module, allocate next drum link and store completed

module transferring requested item into new buffer.~l

*Upon storing of a completed module perform the
following tests.

Test for task/activity exceeding estimated
number of images specified on the Job control
statement. If exceeded call C.S.R. via F.C. 21
which will perform the following: Submit
“"SECONDARY OUTPUT STREAM OVERFLOW" diagnostic
message to the primary output stream. Reset
overflow indicator. Perform "ERROR" exit under
the current activity addendum.

Check for an outstanding PUSH request from a
secondary output U.R. routine selected to
‘process the chain.

Test number of modules contained in this chain
against maximum set for installation. If equal
call C.S.R. with function code 20 for some
disposing action. Maximum set for distributed
version allows for a 3 to 5 minute backup of 16
word images at 200 images per minute.

Exit: - The following status codes are possible upon return
‘ of control to requestor.

+A register = 0000000000 indicates successful.
completion of the request. :

*A register = 7777740002 implies that the base
address plus image length are not within the program
lock limits of the requestor.

Function code 04 - requests the chaining and storing of indicated
drum module to the tail of the primary input chain descriptor .
" gontained in the requestors task addendum.

Caller: Primary input unit record routine.

Parameters: B7 = address sf drum module descriptor (see 7.5.2)

Function: .Validate that the drum module and descriptor are
within the requestors progrem lock limits and buffer
does not exceed 1984 words.

*Allocate drum link, adjust chain addresses and
module counts.

«Store module in cooperative library and return control.

Exit: The following status conditions are.possible upon
return control to the requestor.

«A register = 0000000000 indicating successful
completion of the request.

<A register = 7777740002 implies request d1d not
pass PLR validation tests.

*A register = 7777740003 implies invalid parameter
or buffer exceeded 1984g words.

Function code 05 - requests the delinking, allocating and transfer
of the next module from the head of primary or secondary output
stream.

Caller: Primary and/br secondary output unit record routines.

7-17

Parameters: B7 = address of buffer module descriptor
B6 = contains indicator as to which chain (0) primsry’
(1) secondary.

Function: -Validate buffer module descriptor.
" »PUSH request if no modules available.
*READ drum module into described buffer.

*Deallocate chain link, update module counts and
adjust addresses. Return control to requestor.

Exit: The following status conditions are possible upon
return of control to requestor.

*A register = 0000000000 indicating successful
completion of request.

*A register = 7777740002 implies buffer descriptor
violates program lock limits.

*A register = 7777740005 end of primary or secondary
output stream.

Function code 06 - requests 198 words from cooperative library.,
Caller: Restricted to use by OMEGA systems routines.
Parameters: None
Function: Retrieve drum module from cooperative allocation

' routine. If modules unavailable request will be
PUSHed to "cooperative control" until module
becomes available.,

Exit: Upon return of control "A" register contains

logical increment of drum module relative to ZD
file code.

Function code 07 - complement of Fuﬁctlon code 06; reqﬁests the
release of a 198,5 words of mass storage procured from the-’
cooperative library.

Caller: Restricted to use by OMEGA system elements.

Parameters: A register = to logical increment of mass storage
being released.

Function: Release drum module to cooperative and "POP" any
' outstanding requests for cooperative mass storage.

718

Exit: A register = 0000000000 implies regiest complete. - -

Function code 10 - deallocate all outstandlng core buffers linked
to task addendums.

Caller: - OMEGA systems element performing a compaction of-
‘ core function.,

Parameters: None

Function: Follow task addendum chain to perform,the follOW1ng.

: . .~ Locate allocated core buffer containing an incomplete
buffer module and descriptor. Restore to drum each
one located and release the core storage.

Exits A register set to 0000000000 indicating completion
of the function.

Function code 11 - requests the storing of indicated drum module
to the tail of primary input chain deseriptor contained in the
requestors task addendum.

Caller: Cooperative service routine when activated via 04
- or U5 function code.

Parameters: B7 = address of drum module descriptor (see 7.5.2).

| Function: +Store module described by B7 pointer and update
module counts.,

*"POP" gny outstanding image requests for this
chain, -

Exit: Normal return to requestor A register set o 0000000000.
Function code 12 - request storing of last drum module, deallocation
and closure of input phase of primary or secondary output stream.

Caller: OMEGA systems element during termination process of
a Job or task.

Parameters: B2 register set to (0) indicating primary output’
stream is to be closed or B2 set to (1) indicating
secondary output stream is to be closed.

Function: +If required located core module buffer, descriptor
and load existing tail of primary or secondary stream.

*Store 7———7 as logical drum increment to next

drum module. Record drum module to mass storage
and update module counts. Check for any outstanding

'7:-1 9

request for the module from output unit record
routine. If found, POP request.

*Release core buffer to core éllocatcr used to retain
drum buffer and descriptor.. - :

Exit: Return control to requestor with successful completion
status A = 0000000000,

7-20.

“Tede2 Cooperative Library

Cooperative library is a random adcéss file éubdivided ')
into modules and used as a pool for the cooperative mechanism
and other systems elements requiring small pieces of mass

storage to load programs and otherwise control the OMEGA
environment. :

An element within cooperative control maintains. the library
allocating and releasing modules upon request.or need. Address
and availability of each module is maintained via a bit map '
maintained in core. Format of bit map is sas follows'

Word
0 i LINK TO NEXT BIT MAP
1 "BASE TOGLCAL TNCEEMENT FOR MAP - i
2 # MODULES CONTAINED ‘ # OF MODULES ASSIGNED
3 TO LAST FIND ‘ -] TO END OF MAP |
L : \

Word O

Used to link bit maps reflecting additional
allocations of mass storage to cooperative
library. Zero indicates end of chain.

Word 1 Contains base logical drum address to which
constructed increment from bit map is added
to form complete address.

Word 2 Upper contains number of modules original

mass storage allocation provides in map.

Lower is used to maintain a count of modules
currently being used. If upper and lower

are equal upon release of a module a call ,
is made to C.S.R. Function code 17 for possible
release of a map. ‘

Word 3 - Upper contains an increment, relative to word
@, of where last find for a module request. '
Lower contains an increment, relative to word
@ to last word of map.

Word 4-N - Each bit map word contains 30 drum modules
' - showing their availability, and address.
Bach module is represented by a binary bit
if set to (1) module is available, (0) module
'is unavailable. The address for each module
is formed by following formula:

7-21

Module address = |(30-W)+B] M + D
where: 'w = is word count within bit'map of -

available module relative to word 4

- B = bit position of available médule
within (W) O through 29 '

i3

module size sgt at.198.
D= ﬁhe eontent of'word 1

To ‘determine the bit p031t10n w1th1n a map of-.
released module the follow1ng procedure is used:

-Determlne which bit map module belongs
.Dy_released module . Dy -

Kreleased module - D1Lhﬂ /BO quotient = W,.
© remainder = B

Cooperetive Library Allocation

Allocation of random access storage and forming the corresponding
bit maps is performed by the cooperative service routine (C.S.R)
upon demand of I/0 cooperative control or systems initialization.
This is perfomred by executing a call to C.S.R. with function code
16 (see). TUpon return of control status,word will indicate
successful allocation or not. I/0 cooperative control will request
additional allocations of mass storage each time total modules

available drop below constant specified iu bit map chain dsscriptor.

Bit Map Chain Descriptor

Contains chain call to bit maps and other descriptive information
with regard to module allocation. And is contained with the
"System Table Links" (see)

Word
.0 { MINIMUM DRUM MODS [CURRENT # DRUM MODS
1 ‘ LIBRARY BIT MAP CELL
2 PUSH/POP GCELL (C.C)
3 { MAXIMUM # OF CORE BUF. | CURRENT # OF CORE BUF.
4 | # OF BUFFER STEALS # OF BIT MAPS FORMED
5 | PRIMARY OUTPUT MAX. | SECONDARY OUTPUT MAX.
6 |Cc.S.R PUSH/POP CELL

Word O ~ Upper contains minimum number of modules system
should degenerate to before additional allocations
of mass storage is made. If additional storage is
not received upon request cooperative control will

7-22

allow library to drain and "PUSH" all unsatisfied

requests until module is released. Lower contains
a count of total available modules summarized from
all bit maps.

Word 1 - Contains chain cell to cooperative library bit maps.

Word 2 = Contains PUSH/POP cell for request which could not
. be performed by cooperative control.

‘Word 3 - Upper contains count of maximum number of core
buffers which should be assigned within system at
any one time to contain primary or secondary data.
Lower contains a count of core buffers currently
allocated and used for primary or secondary data.

Word 4 - Is used for statistical data. Upper - number of
times a core buffer area was stolen from one stream
to satisfy another request. Lower contains a count
of additional mass storage extensions which were
effected for the cooperative library.

Word 5 - Contains maximum number of drum modules which should
be contained on drum for any one stream before some
disposing action is called for. When any one stream
reaches the maximum "cooperative control" will call
C.S.R. by function code 20 to cause one of the following
to occur: activate output unit record routine, allocate
additional mass storage, temporarily suspend requesting
program, .

Word 6 - Is used PUSH/POP cell for cooperative service routine.

Additional Uses of Cooperstive Library
Currently OMEGA utilizes the cooperative library to maintain
lists and tables used in selection, allocation and control of
tasks. The following lists are currently contained and assure
198 word modules.

*Selection Job Stack (see 6.30.1)

«Job deseriptor module (see 6.30.2)

'Pré-summary module (see 6.30.3)

*Selection facility map (see 6.30.4)

7-23

Tehe3 Functional.Routines

DPOP - routine to 'POP' certain request that have been
'PUSHed' on a general ‘PUSH' chain.

Caller: Cooperative Control
Parameters: B6 = address of current task addendum
‘ B2 = type code by which requests are to
be 'POPed' as follows:

P1 = POP a request for an input image
: if the task is the correct one.

@2 = POP a request for an output image
if the task is the correct one.

1]

‘¢3

@/ = POP a request for entry to DRGET.

POP a request for entry to DGET.

@5 = POP a request for a core buffer.

g6 .

Function: *Search the general "PUSH" chain by type
code for a request which has been 'PUSHed'
with that code in the A register.

]

POP a request for a drum module.

*In the case of types @1 and @2 a match must
also be made on ‘the task that the request
was made during.

*If a match was made, 'POP' the request that
the match was made during. Exit in either
case,

Exit: Return on completion.

DGET - services requests for 202D word: core buffers.
Caller: * Cooperative Control
Parameters: B6 = address of current task addendum’
Function: *If the maximum number of buffers has not
been allocated, make a call to core allocation
. for a buffer.
"+If the maximum has been allocated, or if -
the above request is not filled, follow the

.task addendum chains to locate one of the
allocated buffers which is nqt in use.

T-24

‘Exitih

If none such are found, 'PUSH' the
request until a buffer becomes available, -

‘When a buffer is found, empty it onto -
the drum (if necessary).

]

A register contains address of obtained
buffer on completion..

7.0

ALY J

7

FV":L{;M Coc[_fi; ;Z‘Qf comd (B

-~
PR
- ~

L~ Use e Yes¢

I 7 D T e
{ [N IY
\'/M’

V (re»(Errqr)

Read nexl
Module

Gine &2

' KR!*UWS;

U/)a(«,'(t

Drom Mod, Links

Delete

Tra'l/;n.?
S‘/u ces -
Mo
Gine ET
e ﬁz Ceta Core
Pulf e
Ny Ao dilosJes |Rendnext |
| & Dres (venl. govis)
3

: Ms
- : ORCET\ W
d— . 6’(an‘ D*‘uw

Madu/‘

\ Module -

T

\

('lose ov1L

gfkf.a,vvy

Foudiom Code $2 anl g3

s

HMou- ,7.".\..?(
% Usern %

UP J(./I . (D\.m 1/5

e v

Yes

% Poflen
ﬁUI-c{. (gu» be

Movut¢ Im:.)‘p

S—&f {}UosZéo ’
L of Lines

% S;altl! .

C/nct Modole
Cnite Medols
(weitt eres)

0
o
1
o~
Give
pF—
‘)lfyr
Re e

’

Mo dule

COM/)I(*G Wr:{ﬂ .

Upl Linke

Reed Madole

(VCtlc{" evrer)

UpJ‘d/t lfnéf

. .. FUWC«{(,})«\ Cét/\f’- jﬂ

o [7u7 T
<‘\ Riilzsﬁ_

N

-
C on¢

Sel X i'm

o [rnymm

ELERS

@

Core:

Mo t{u {lt
{pr:h ervv.-)

/Tum¢7[/qsz ‘COC/Q 77

Gl ’
g—o ‘—*

727

Fid

Cm’wtf
F-'i'mg.ﬂ

Campu te
Fositiom

Upd, Countd

" Release

S'gu,r;‘t #Pr
L Cr)mlo v".l

FJAH,S s

Vp d. Counis .

7-28

Close tWwrite
oul Maodyle
Sl eam (wrift tree)

Real Mod,
(rid evravd

U/’a(o L;néf

o

 DPoOP

1S L
| Check nexF

ﬂaf l‘V:'lL’

Selected) :
' \ ﬁc;?‘;y';)l}

‘S'-!dr‘dq
Tasks

To

Steal one

7-29

7.5 Cooperative Maps and Tables

7.5.1 Drum Module

Drum modules are used by cooperative control and unit record
routines to contain items transferred to or from random access

storage.
'Word :
0 DRUM INCREMENT TO NEXT MODULE IN CHAIN
1 |_# OF ITRMS IN MODULE _JATO NEXT ITEM DESCRIPTOR
2 * # OF WORDS IN ITEM
3 - o ,
ITEM 1
7 ¥ T # OF WORDS IN ITEM
' ITEM 2

K % [Z WorDS 1N TTmM
LAST ITEM
197 .
Fig. 7.5-1

WbruO - contains drum increment of next module in the chain
- and is controlled by cooperative control.

Werd 1 - upper contains # of {tems currently within the chain.

Lower is an increment from word ﬂ of next item or
free area within . the module.

7-30

Word 2, J & K - are item descriptors required for each item
: '~ contained within the module. Lower is number
* of words contained in the item excluding the
descriptor. Upper contains number of lines to
space before print if item is primary output or
contains error status code from unit record
routine or drum retrieval is primary input.

Word 3 through J-1, eté. contains primary input, primary output
or secondary output images dependent upon which
chain drum module is linked. -

Module Size Drum module size has been fixed at 19810‘words as determined
by the following constrants. ' '

« The module must be a multiplé‘of>a FASTRAND sector to improve input/'
output efficiency if cooperative library is allocated to FASTRAND.

~+ Drum modules are of a fixed size due to pooling mechanism and assoc-
iated program space but contain images from varying device and image
lengths. To determine some criteria 16 word card images and 27 word .
print lines were chosen as normal. The module size should therefore
be a multiple of both to reduce wastage of mass storage.

+ A third consideration is the cooperative mechanism's routines delete -
from each item full words of trailing space codes to reduce mass
storage requirements. To make this effort meaningfully the drum
module size should as be as large as possible without requiring allo-
cation of large.core buffers which may be dormant.

The following table illustrates alternate choices of module size. Each
module requires two words for module descriptor and is assumed to -contain
17 word card images excluding item descriptor or 28 word print lines »
including descriptor. The table does not take into consideration exclusion
~ of space codes from end of images. ' ‘

7=31

OF WORDS | # OF CARDS | CARD # OF PRINT PRINT
IN MODULE CONTAIN WASTAGE | LINES WASTAGE
33 B 16 1 3
6 | 3 13 2 e
% 5 12 3 13
132 7 1 4 18
165 9 10 5 23
%198 Y 9 7 0
231 13 8 8 5
- 264 15 7 9 10
297 : 17 6 10 15
330 19 5 11 | 20
363 et 4 12 25.
1396 23 3 A 2
429 2 2 15 7
462 | 1 16 12
493 29 o' 17 17

% 198 chosen for system. If heavy utilization of cooperative mechanism
1s made 396' or larger would appear to be a good alternate choice.

7=32

7.5.2 Drum Module Descriptor

The Drum module descriptor is used as the I/0 packet in trans-
ferring Drum modules to or from the mass storage. The des-
criptor is utilized by both unit record routines and I/0 cooper=
ative control, however all modification of drum increments is ~
restricted to cooperative control. Descriptors format is as

follows.
Word ‘ ' :
o FILE CODE |# OF WORDS TRANSFER
(zD) 198D
] ‘ ‘ BASE ADDRESS OF DRUM
‘ MODULE
2 DRUM INCREMENT OF CURRENT DRUM MODULE

Word O - Upper contains File Code ZD indicating the I/0 transfer -
' is to cooperative library. Lower contains number of
‘continuous words contained or used in the drum module;
limited by convention to 19810 mAaximum.

Word 1.- Base core address into which drum module is to be trans-
: - ferred. Address is relative to FLR of requestor.

Word 2 - Contains logical mass storage address, relative to file

cods. &D,‘'of drum module being processed.

7-33

'7.5.3 Chain Descriptor

Each stream of data (primary input, primary and secondary output)
requires a unique descriptor to maintain its links and other
controls. These controls are maintained in the task addendum of
the Job and are of the following format: '

Word

11

12

13-
14

- : ’
o~ownmb~WwWN-=0O

PRIMARY OUTPUT MAXIMUM | SECONDARY OUTPUT MAXIMUM

DRUM LINK TO CURRENT HEAD OF MODULE CHAIN)

DRUM LINK TO CURRENT TAIL OF MODULE CHAIN PRIMARY
T /0| |ADDRESS OF CURRENT CORE BUGGER FILE

TOTAL # OF MODULES | # OF MODULES IN SYSTEM

DRUM LINK TO CURRENT HEAD OF MODULE CHAIN

DRUM LINK TO CURRENT TAIL OF MODULE CHAIN PRIMARY
/0] |ADDRESS OF CURRENT CORE BUFFER FILE

TOTAL # OF MODULES [# OF MODULES IN SYSTEM

DRUM LINK TO CURRENT HEAD OF MODULE CHAIN

DRUM LINK TO CURRENT TAIL OF MODULE CHAIN) SECONDARY
1/ [ADDRESS OF CURRENT CORE BUFFER 1 OUTPUT

TOTAL # OF MODULES |# OF MODULES IN SYSTEM

Note - Drum Link set to 7—7 implies end of chain. 22%th get
to 1 implies partial module stored on drum.

Word O - Upper contains maximum number of pages converted to

modules of primary output expected for JOB. Lower
contains maximum number of cards converted to modules
expected for the JOB.

Words 1, 5 & 11 contains_logicalydrum address of head link in

chain.

Words 2, 6&12 contain logical drum address of tail link in

chain which is currently stored on the drum.

Word 3, 7 & 13 are used to contain core address of a buffer

Words 4,

containing Drum Module and descriptor when: an
image is being transferred to an operating program
(Word 3) or a primary or secondary output images is
being accepted by cooperative control from an oper-
ating program. When interrogating these core cells
they have the following meanings:

20-218 non-zero implies address of buffer Sescgiptor
with drum module immediately following. 2 —_2 set
to zero implies no buffer or descriptor currently
allocated to stream.

2%? set to (1) indicates buffer currently in use and not
available for re-assignment, release or use until current
process complete.

10 & 14 - Upper is used to maintain a count of all modules
allocated for described stream used for accounting and
error overflow. Lower contains a count of Drum modules
currently contained on mass storage for the stream. .

1=3.

7.6 Output Unit Record Routines

Primary and secondary output unit record are normal worker
program elements responsible for punch, print, transmit or
otherwise process primary or secondary output streams. Each
routine is programmed to handle a particular device or type

of devices and is called for and activiated by the "cooperative
pervice routine" due to one of the following:

Particular outpubt stream has reached its maximum length

as determined by comparing the number of modules in the
system contained in tasks chain descriptor against
maximum allowed value contained in "Bit Map Chain
Descriptor®.

3

Job stream is terminating at which time "TERMINATION" will

- request activation of output unit record routines.

The sequence of functions performed by éach routine is as
follows:

a).

c)‘

. Request first module of assigned chain from cobperative

control function code 05. First item of module contains
an accounting or identification item to be outputted as
first image. ‘

Request next module of assigned chain from cooperative
control function code 05. Submit each item contained in
drum module to assigned device. Buffer area for Drum

- module and descriptor are contained in the unit record

- routine. Repeat this step until end-of-stream status code
~ status code is returned for a module request "A!' register =

7777740005,

Exit to "cooperative service routine" Function Code 07
primary output or Function Code 11 secondary output.
Program control may be returned at the starting location
to process a new stream.

Output unit record routines are designed programmed and run
under the following constraints:

Assignment of output device used to output images is by
normal "ASG" control card collected with the unit record
routine object code element via the LOADER. ‘

A1l U.R. routines are activated and terminated via "cooper-
ative service routine" and may not FORK or be fragmented.

Each routine contains an area for drum module and descriptor
used to accept drum modules from I/0 cooperative control.
All items contained in drum module have had full words of
trailing space codes deleted.

Each routine is activated at its first location.:

%

7.7 EDIT Routines

7-36

8.0 Real Time and Communication Control

8.1

8.1.1

General Description

The Omega communications softwere is very flexible allowing

the user to optimize it to best serve his needs, yet it is
highly efficient and capable of handling an unlimited number

of devices of all the various tjes. One user might desire

a high level interface between 11e software and user programs
similar to File Control software. Thus allowing him to use
simple commands such as "SEND" ead "RECEIVE" on a certain

file, the software would then ha:dle the details of buffering,
translating, packing, unpacking, polling, establishing remote
connections, etc., as needed., Wliile another user might prefer
to maintain closer supervision ovsr the communication functions.
This user as an example can handle his own polling or buffering,
etc. These user programs would t:en of necessity have to be ’
more detailed and precise.

Level T Control

'The level 1 OMEGA Communications Software provides the User

with a low level, basic routine (ESI CONTROL) which controls
the hardware., The User Program essentially has complete
control of the hardware by commands which are given to ESI
CONTROL. ESI CONTROL will perform. the actual input-output
hardware instructions as directed by the User Program.

Communications Facility assignment routines are provided in the
Level 1 software., These routines allow units which are not

in use, to be acquired and assigned to the requesting User -
Progrem., A Communications Facility Map will be maintained

* on Ramdon Access Storage which lists the units, mnemonic

namss for them, and the units which are in use.

The User Program will perform all editing, translating, packing,
unpacking and staging of messages. It will also have to form
the poll output messages and monitor the input poll replies.
Any special control requirements of the various devices will
have to be recognized and provided for in the ‘USer Program.

"CTM Control Blocks" and "Unit Control Blocks" are tables in
memory which will contain control type information used by both

ESI CONTROL and the User Program. These tables are formed as
the units are acquired by the Comm. Facility Assignment routines.

This Software should fill the need of Users with specialized
communication systems, which do not require the flexibility of
OMEGA Communications Interface Level 2, And some Real Time
Programs presently in existence may be able to efficlently
utilize the Interface Level 1 Software.

-‘ ‘801-1

8.1.2

494] HAND- | PROG.,
REAL TIME ESI | LER A
COMPUTER ~

WITH |€>CONTROL USER
COMMUNI- HAND-~ | PROG.

CATIONS . < —JLER B

USER

ﬁevel 1 Control
Fig [8-1

Level 2 Control

The lowest level of Software is the "ESI CONTROL" routine.

ESI CONTROL executes the hardware-functions, interprets the
interrupts and provides other basic communication with the
hardware., There is only one Communications Function Executor,
but it may communicate with any number of "Communications
Handlers". -The "Communication Handler" is the next higher
level routine, A Handler might be specialized for a type of
remote device, a particular buffer scanning technique or
unique to a particular applications program. The handler
might connect directly into some user programs or the
"Communications Director". The Communications Director
provides a buffering or staging mechanism for the input and
output messaged, depending upon activity these may be queued on
mass storage to preserve space in core memory. It is

the Communications Director which interfaces into the high
level user program providing him with input messages and
accepting his ocutput messages for subsequent transmission to
remote communication devices. The Communications Dirsctor .
has other miscellaneous functions, one of which is identiinng--
unsollicited messages.

» 8 4.9

494

REAL TIME

COMPUTER
WITH

ESI

TIONS

COMMUNICA+

'JONTRDL

Com L]
HANDLER

HIGH SPEED

2 comm,

HANDLER
LOW SPEED

COMM.,
HANDLER
SPECIAL
USER
PROG
D

811*3

ECTOR

USER
PROG.
A

USER

PROG.

USER

PROG,

8.2 TABLES

In order to control the various commuication devices certain information

is required concerning the characteristics of the remote units and
transmission lines. OCurrent status and control information must also

be available. For this reason the following tables have been established: -

. CTM Control Block
. Unit Control Block
« Communication Facility Map

8.2.1 O™ Control Block

The CTM Control Block is & 304 word (Level 2) packet containing
"information relative to a particular CIM. There is one such Control
‘Block in core for each currently active CIM pair. These Control '
Blocks are formed and placed in core as a C'M pair becomes active
(see Section 8.2.3). The Control Blocks are accessed from a table '
based on ESI address (see Section2.1.22) The table is referenced

by the ESI Interrupt Processor, the Communication Handler, and the
‘Communication Director (Level 2). The CIM Control Block is shown
below with a description following. S o

CTM Control Block

0 STATUS ~ # WORDS

1 - JOB # ACT #

2 ADDRESS

3. UCB LINK

4 CTM TYPE INPUT BUFFER SIZE
5 ESI (OUTPUT) MPLX &CTM I.D.

6 "CODE TYPE CHANNEL NO.

7 [ACTIVE UCB

10 [[NPUT CHAIN (OUNT |OUTPUT CHAIN CCHT
11 -~ [COMMAND WORD EXTERNAL FUNCTIN
12 INPUT BCW (HEAD OF CHAIN)

13 OUTPUT BCW (HEAD OF CHAIN)

14 INTERRUPT CONTROL
15 [INPUT MONITORQNT | QUTPUT MONITOR GNT
16 INPUT ESI BCW

17 OUTPUT ESI BCW

20 |EST EXTERNAL INTERRUPT WORD

21 SPARE .
22 |EST (DIAL) [MPLX & CT™M I.D.
23 POLL PERIOD TIME OF NEXT PAL
24 HEAD OF DRUM CHAIN

25 TAIL, OF DRUM CHAIN

26 - CORE BUFFER

27 PUSH/POP_LINK

Word O-upper

_Wbrd O-lower

- Word 1

Word 2
Word 3

Word 4-upper

Word 4~-lower

Word 5-upper

Word 5-lower

Word 6-upper
Word 6-lower
Word 7

Word 10

Status of CTM

1. DOWN-BIT 29 set
2. INPUT ACTIVE-BIT 28 set
3. OUTPUT ACTIVE-BIT 27 set

Number of words in this list. The number of
words may vary depending on whether Level 1 or
Level 2 control is being used.

The Job and Activity number of the Communication
Handler controlling this CMM. The ESI Interrupt
Processor references this location when executing
a QREF to the handler.

v

- Address of the handler controlling this CTM.

Control is transferred to this address when
the QREF above is made.

Chein cellto first Unit Control Block (see
Section 8.2.2). All UCB's associated with ‘this
CTM are chained through this cell.

CIM and transmission line characteristics are
listed here. Possibilities include:

~ synchronous/asynchronous
simplex/half duplex/full duplex
dial/automatic: dial/poll
line speed

e e e o

Input buffer size. The ESI Interrupt Processor will

. obtain this size input buffer from the buffer chain

when required (see Section 8.3).

ESI for the output CTM. The input ESI will be one
greater.

The actual multiplex and CIM I.D. code (used to
send external functions to the CTM).

Data Code type (ASCII, X3-3, etc.), code level, etc.

I/0 channel number

Address of UCB which currently has an input or
output message in process.

Input and output buffer chain counts in upper and
lower respectively. ZEach time the ESI Interrupt
Processor chains a buffer the appropriate half- -
word is incremented. May be used by the handler

- to locate currently active input and output buffers.

Word 11-13 - ESI Function Executor control words. Described
in Section 8.4.2.

Word 14 . = Interrupt Control Word. Specifies ESI Interrupt
. Processor action at interrupt time. See Section
8.4.1.

Words . 15-20 = = Control words used by the ESI Interrupt Answering and
- Interrupt Processing Routines. See Section 2.1.2.2.

Word 21 - Space location, may be used Ey handler for controlab f

- Word 22-upper - ESI address for the DIAL CTM. Will be § if there
: A -is no DIAL CTM associated.

Word 22-lower = The actual Multiplex and DIAL CTM I.D. code used
: to send external functions. Zero if there is no
DIAL CTM. ‘

* Word 23 - Poll period and time of next poll of the remote
: units on this CIM. Will be zero if not a poll line.

Words 24-27 - Control information for drum queue of 6utput
messages for this CIM (Level 2 only). See section 8.6

8.2.2 Unit Control Block

The Unit Control Block is a 144 word packet containing information
relative to a particular remote device. There is one Unit Control
Block in core for each remote unit currently assigned. These Control
Blocks are created and placed in core as each unit is assigned.

They ars accessed through a chain cell originating in the CTM
Control Block. They are referenced by the Communication Handlers
and the Commuication Director (Level 2). The Unit Control Block

is shown below with & description following. ' .

Unit Control Block

(ucB)

0 STATUS | # OF WORDS-

1 CTM/UCB LINK

2 CT™ CONTROL BLOCK |

3 - OUTPUT BCW_LINK

4 UNIT I.D.

5 UNIT I.D.

6 |TA/UCB LINK

7 | # MSGrs " | # WORDS. (MSG)
10 HEAD OF DRUM CHAIN
1 - TAIL OF DRUM CHAIN|
12 - CORE BUFFER
13 PUSH_CELL

8-2-3

Word O-upper

Status used by the Handler to indicate such things
as: 4
DOWN REMOTE UNIT
REMOTE UNIT RESERVED
INPUT ACTIVE'
OUTPUT ACTIVE

.

lower .Number of words in this UNIT CONTROL BLOCK

.CTM/UCB Link. A chain cell linking all units on
a CTM to each other and to the CIM. The chain -
originates in the CTM.

' Word 1.

Word 2

Address of the CTM Control Block to which
this UGB is linked. ,

Word 3 ' = Output BOW Link. A BCW specifying a chain of
v output communication buffers to be sent to this
- unit. An output message may be linked through
this location by the handler when the CIM is
active with another message. This buffer would then -
"\be established by the handler when the current
message has been completed.

Words 4,5 ~ Unit I.D. Information necessary to identify the
o remote unit. May contain phone number for a dial
unit, poll code, transmitter start code, etc.

Word 6 . = TA/UCB Link. A chain cell linking the UCB to the
~ Task Addendum of the program to which it is assigned.
All units assigned to a.task are linked together
‘through this cell. .

Words 7-13 - Control information for input drum queue of messages
from this unit (Level 2 only). See Section _8: 6 .

8.2-4

8.2.3 Communications Facility Map.

The Communications Facility Map is a table, located on

Random Access Storage, which has a listing of the units, the
mnemonic names they may be called by, the handlers which

should be used, Unit Control Block information, Communications
terminal Module (CTM) information and a summary of the units
which are in use. This map will be set up at Systems

Generation and later referenced by the Communications :
Facility Assignment Software routines as units are acquired and

released. -~

0 |ATo UNIT DESC LIST | A TO HANDLER DESC LIST
B SIZE OF USAGE LIST TO_USAGE LIST
2 COMM_UNIT NAME 1

3 Al 3 |c |6y nanoLER DRSS % UNIT DESC. 0

4 {AlBlc| VHANDLER DESC| VUNIT DESC.

. 7 *
I¢

X . COMM_UNIT NAME 2

X+1 | AlBlc] ¥ HANDLER DESC| V UNIT DESC.

X+2 AlB{c{ HANDLER DESC{ ¥ UNIT DESC.

Word O U - The increment from the base of the map to the
. first unit description.’

L - The increment from the base of the map to the
first handler description.

Word 1 U - The number of words reserved for the usage list.
: Each usage entry requires two words.

8.9.5

L - The increment from the base of the map A
to the first word of the first entry in the usage .
1lstu

Word 2 A Communication Unit name by which asssignment
' will be requested. The "AGQUIRE" statements
will refer to these names.

Word 3—4 229 (A) = O One or more alternate handler -
~ unit descriptor words following for this unit
name.

229 (A) = 1 Final handler- unit descriptor
word for this unit name.

2?8 (B) Undefined

227 (C) Undefined

220 515 The index to the handler description

to be used on this assignment. This index is
relative to the base of the handler deseription -
list.

214_20 The index to the unit description to be
.used for this assignment.

Word X Another unit name which may be used for assignment.
Word X+1- References to handler and unit aescriptors

42 for this unit neme. Similar to words 3 and 4 '
above,

8.2.6

Communications Handler Descriptors
(Initialize and Locate)

The mnemonic names previously defined points to a "Handler
Initialize" descriptor, which describes a routine which will be
loaded, executed and discarded. This routine will perform initial
setup funciions as required by the "Handler"., The Handler Initialize
Descriptor points to a "Handler Locate Descriptor" which describes :
a handler to be used for the normal handling of communication messagea.
The handler locate descriptor will indicate if the handler is . '
presently in core, and if so where it is located. ‘

HANDLER INITIALIZE DESCRIPTOR

0 HANDLER INITIALIZE

1 NAME

2 VERSION

3 FILE INCREMENT TO HANDLER INITIALIZE
L LENGTH (HAN, INTT.)! V7 HANDLFR LOCATE
5 UNDEFINED

Word 0-2 Contains name/version of communications "Handler
‘ initialize® routine.

Word 3 ~ Contains the drum address of the routine. If
0—>0s indicates no initialize necessary, proceed
immediately to "Handler Locate" descriptor.

Word 4 U - Number of words of core required for this
Handler Initialize Routine

L - The index to the "Handler Locate" description
to be used on this assigmment. This index is
relative to the base of the handler description
list. .

Word 5 - Undefined.

8.2

WP~ WD = O

HANDLER LOCATE DFSCRIPTOR

'HANDLER
NAME
VERSION

FILE INCREMENT TO HANDLER

HANDLER_LENGTH l é OR_HANDLER CORE_ADIR
USERS

Word 0-2 Contains name/version of communications "handler"

" Word 3

Word 4

Word 5

routine.
Contains the drum address of the handler.

U - Number of words of core required for this A
handler.

L - Address of Handler if in memory or g

gs if
not in memory. o

' Number of Communication Units currently using .
this "Handler"., When this count becomes ﬁ the Handler

e Pram anvra
6 ' deds vm VV-I. A2 o

9411 be sur

8.2-8

Communication Unit Descriptors (UNIT and CTM)

The word or words immediately following the mnemonic name point to
a "Unit Description" which is a smgll table containing unit status
and other information unique to a unit. A pointer within the unit
descriptor points to a "CTM Descriptor" which describes the CTM

_ for this unit. The Unit and CTM Descriptors are interrogated to
determine if the requested communication unit may be successfully
ACQUIRED, If s0, a Unit Control Bloock will be formed in memory,
also a CTM Control Block, unless a previously acquired unit required
the same CTM Control Block in which case it would already be in =

- MEMOTY o
UNIT DESCRIPTOR

0 /0 CTM DESC # WORDS ON DRUM
1 STATUS : # WORDS IN CORE
2 UNIT I.D. -

- OR POLL CODE

Word O v229 If "% indicates unit is‘not available for

use at this time, it is either down or already
in use. If "@" unit is available. ‘

2?8575 The index to the CTM descriptor. This
index is relative to the base of the unit
description list.

21420 The mumber of words this descriptor
occupies on drum. ‘

Word 1 = U - Status information pertinent to this unit.

L - The number of words required in core to form
a.Unit Control Block from this unit description,

Word 2&3 .A unit identification or poll code which may be used
by the handler. '

8.2-9

<X oo o~ W

CTM DESCRIPTOR

WORDS ON DRUM

g

OR ADDRESS IN CORE

9
=
3
v

T/

id WORDS IN CORE .

CTM TYPE

ENPUT BUFFER SIZE

ESI (OUTPUT)

MPLX + CTM I.D.

CODE_TYPE _ CHANNEL . NUMBER
ESI (DIAL) MPLX + CTM I.D.

! PERIOD BETWEEN POLL

L,
ol

Word O

. Word 1

Word 2-5

Word 6+7

Number of words this descriptor occupies

con drum.

Memory address if a Control Block has been

Os.

set up for this CTM, otherwise O

Specific CTM‘information‘required to form the

CIM Control Block in core memory.

© Additional CTM Gontrol Block information, not .

‘always required., Dial or pollable CTMs require -
this information. : Lo

8;2-10 .

Communications Unit Usage List

A drum stored list is maintained which contains unit identifying

information for the

units which are currently being used. The

Unit Control Block core memory address is paired up with the indexes
of the Handler Initializeand Unit Descriptor which were used when
this unit was acquired. Thus by searching the usage list and following

the indexes, a unit
+bo*ough1y analyzed.

and its assoclated software components may be

& on

o |1/0 ADDR OF UCB
1 HANDLER DESC, ¥ UNIT DESC.
2
3)
' <
5 .
: (
7 S{
Word O 229 = 1. Indicates this word and the following
, word contains unit identifying information for a
unit which is presently being used. 1If @, this two
- word slot is not being used at the present time.
21720 The core address of the Unit Control Block.
-Word 1 .U - The index to the "Handler Initialize
: ‘ - Descriptor™”.
L - The index to the "Unit Descriptor™.
Word 2,3

Same as words O and 1 but for a different unit.
Each unit in use will have a 2 word entry in this
ustlo e

- F |

8.3 Buffers

Two types of buffers are used in Omega communications: communication
buffers and packing buffers. Communication buffers are used to "
receive and send data at the hardware level while packing buffers are
used to exchange data between the Communication Handlers and the
Director or the application program.

C 8.3.01

VCommunicatiqn Buffers

. Communication buffers are used to transmit and receive data -
" from the Communications Subsystem. The same buffer may be

used for both input and output; input entering the upper
half word and output exiting from the lower half word.

. These input and output buffers although occupying the same

memory locations are distinct in that they have no connection
with each other. The input and output buffers may also be

of differing size. The common point of these distinct
buffers is the end of the buffer as shown in Figure 8-3.

Each communications buffer contains three control words
Jocated at the end of the buffer. These control words

allow input and output buffer chains to be developed
separately. The "Input BCW Link" is the acutal buffer control
word of the next buffer of the input chain. The "Output

BCW Link" is the buffer control word of the next buffer of

the output chain. If either of these two words is zero it
indicates that this buffer is the current end of the corres-

- ponding chain. The number of words in the third control

word is the size of this core area. This value is used by -
the core chain control routine for allocating or releasing
buffers. :

WaLdng INANI . -

¥gLInd I0dIno

INPUT BCW LINK

——=

OUTPUT BCW LINK _

"4 VORDS

FIG. 8-3

COMMUNICATION BUFFER

These input and output links if present are used at interrupt
time by the ESI Interrupt Answering Routine as the new input
and output buffers for the terminating ESI as described in
Section?2.1.2.2. When the Input BCW Link is zero, the ESI
Interrupt Processor obtains a new input buffer and links it :
to the terminated buffer. An Output BCW Link of zero implies
the end of an output message. ‘ ‘

8.3"2'_‘ bb

'8.3.2 Communication Buffer Chain Control

An area of core is reserved for communication buffers by

the Communication Initialization Routine. This reservation:

is made through a variable core chain declaration (Section be 0)
The size of the buffer area is established at system
generation time,

Three chain numbers have been assigned for communication
buffer control - Chain No.'s 3, 4, and 5. Chain No, 3 is
the area described in the paragraph above. This chain is
taken from free core and set aside for input and output
communication buffers. Chain No.'s 4 and 5 are the input
“buffer and output buffer chains respectively. No chain -~
declarations are made for these two chains - the areas
placed in these chains are obtained by the chain control
from Chain No. 3. Requests for buffers are made only frow
chains 4 or 5, as approprlate. :

ENTRX - Entry to chains No. 4 and 5 may be made either
AND from the ESI Interrupt Processor or from the !
EXIT Communication Handlers. Entry from the handler
'is via an Executive Return instruction with

parameters specified in the registers:

i

Memory Request

. | _ENT%B7 | . VO
JENT*Q V1
EXRN 14 8 8 9 1

where: Vg is the chain number referenced.
Chain 4 is the input buffer chain and
Chain 5 is the output buffer chain.

V1 is the number of words requested.
Control is returned following the EXEC Return,
with the address of the last word of the buffer
~in the A register.

Memory Release

ENT#*B7 Y0
ENT*A V1
EXRN . L g @ @2

where: V, is the Chain Number being referenced:
Input Chain No. 4; Output Chain No. 5.

V, is the address of the last word of .
the buffer (not including the three control.
Wcrds, .

The chain control routine must be readily available

to the ESI Interrupt Processor in order to establish
input buffers. For this reason the processor enters .
the chain control with an Enter B and Jump instruc-
tion. The same parameters given above apply. Control
is returned following the "EBJP" instruction.

 Operation - A buffer request is made to chain No. 4
or 5 either by the Interrupt Processor or
. by the handler, If the request cannot be
satisfied from the chain referenced, the
chain control requests an area of core from
. chain No. 3 (if chain No. 3 cannot satisfy
- the request, chain 3 control requests the
area from the Free Core Chain), The area
obtained is placed in the chain which was
-not referenced. The length of the area is
- placed in the third control word.

" An example will clarify the situation.
Initially Chains 4 and 5 are empty, and

- Chain 3 contains all the core allocated to
conmunication buffers. Suppose the Interrupt
Processor requests 60 words from the Chain 4.
Chain 4 is emply so chain control requests
6/ words (3 words are need for chain and
link control and one more is added to make
a multiple of 2) from Chain 3. The lower
half of this 64 word area is still available
to be used as an output buffer; so chain

control places this area in Chain 5. When
the buffer is relegsed to Chein 4 2 check

is made to see if the corresponding buffer
exists in Chain 5. If so, the area is

removed from Chain 5 and the complete area
released to Chain 3; if not, the input L
buffer being released is placed in Chain 4.

' 8.3.3 Packing Buffers

Packing buffers are used to exchange data between the
Communication Handler and either the application program
. (Level 1) or the Communlcatlon Director (Level 2).

At Level 1 where the handler passes information directly

to the program,any convention may be established concerning'
the packing buffers (they may be a part of the program).

The program could be informed of a full packing buffer

either by a QREF, activity registration, jump instruction,

or any other means available. At Level 2, however, the
staging mechanism of the Communication Director must operate ~

with a pre-defined format as shqwn;bélow.

[C#i0RDS] CONTROL

 DATA

~ The first word of the packing buffer contains the number
of words of data in the buffer and a control indicator -
such as SOM, EOM, etc. The remainder of the buffer
contains data converted and packed to any degree desired
. by the handler.

On.input the handler obtains data from the Communication
buffer and places the data in the program's packing buffer -
(data format in the packing buffer is determined by the
handler). On output the handler obtains data from the
packing buffer and unstrings the data. (if necessary) into
- & communication buffer for transmission. The acquisition
and release of packing buffers is explained in Section 8.5.4.

Any or all of the Pprevious output optlons may be
selected. If both Option 1 and 2 are set, Option-1i
will take priority. When the "Output BCW Link" of
the terminating output buffer is not zero, . -the new’
buffer will always be established.'

External Interrupt (26-28)

"Option 1 (26 eet) - Exeeute a QREF to the handler
, ‘when an externai ;nter*upt oecu4s.

Option 2 (27 eet) - Establish a new: input buffer.
. _ (either from the "Input BCW Link"
or. from the input buffer chain)

Option 3 (28 set) = Send a "Look for Sync" function .
when &an external 1nterrupt ocours.

Any or all of the above options may be selected.

8.4.2 ESI Function Executor.

In addition to the functions performed at 1nterrupt tlme
by the ESI Interrupt Processor, the handler at times may
choose to send certain external function commands to
various CTIM's, and establish buffer control words in the .
ESI locations. These functions are handled by the ESI
Function Executor. This routine is classified-as an.
"immediate function" routine - it is entered through an
Executive Return instruction, the functions are executed
.in the Executive Mode, and control is returned immediately

upon completion. Entry is gained through the following
packet: - o
| _ENT#*Q V0
ENT*A |0 g # 15
EXRN_|dgddd

where Vgy is the address of the CIM Control Block
defining the functions to be performed.

The functions to be executed have been pre-stored
in the CTM Control Block before the above packet

is issued. Bit settings in the upper of word 11 of
the CTM Control Block define the functions:

229 =14 Send "Look for Sync" external function
2?8 - 1 Set input BCW. - Word 12 of the CTM
: Control Block will be moved to the -
input ESI BCW position defined by -
~word 5 of the Control Block.

‘8¢A"'24

8.4

. ESI Control

The CommunicationAHandleré define the method of contfél'to be -
used for a particular CTM. Two routines are available to the
handlers for this purpose: Thé ESI Interrupt Processor and

8.4.1

. the ESI Function Executor.

ESi"Interrupt Processor

Through the ESI Interrupt Processor (See Section 2.1.2, 2) ﬁhe
handler controls the sequence of events on the occurrence
of an ESI interrupt. This control is accomplished by

means of the "Interrupt Control" word (lower of word
fourteen) of the CIM Control Block. Through this

word a course of action is described for input monitor
interrupts, output monitor interrupts, and external _
interrupts separately as follows.

anut Monitor (2“-22)

~Option 1 (20 set) - Execute a QREF to the handler when '
| and input monitor occurs_(if 20 is
not set, no QREF will be made).
Option 2 (21 set) - Send a "Look for Syn‘" function to’
- the CTM.

Option 3 (22 set) - Do not chain a new input buffer when
the "Input BCW Link" is gzero.

Any or all of the above options may be selected. .
When an "Input BCW Link" exists in the terminating
buffer the new BCW will be established regardless of
any of the above bit settings. If the link is

zero the Interrupt Processor will obtain and establish
-a new buffer unless Option 3 has been selected.

Output Monitor (23-25)

Option 1 (23 set) - Execute a QREF to the handler when
” - ~an output monitor occurs. If 23 is
not set a QREF will be made only when
the "Output BCW Link" of the termina-
. ting buffer is zero.

Option 2 (2% set) - Do not QREF the handler when the
: "Cutput BCW Link" is zero.

Option 3 (25 set) - Release the terminating buffer to the
: output buffer chain (Chain No. 5)

-and update the "head of output chain"

{(word 13) of the CTM Control Block, -

227 = 1 . . Set output BCW. Word 13 of the
- - CTM Control Block will be moved
to the output ESI BCW position
defined by word 5 of the Controli
+ Block.

27 =1 +.. Set output BCW for DIAL CTM,
SRR Word 13 of the CTM Control Block '
will be moved to the output ESI
BCW position defined by word 22
of the Control Block.

2”5 =1 ,. . Send external function, The function-

: . code contained in bits 20-22 of this
word (word-13) will be sent to.the
CTM defined by word 5.

2?4 = 4 - Send external functlon to DIAL CTM.
. The function code contained in .
bits 20-22 of word 13 will be sent
to the. CTM defined by word 22. |

Any combination of the bits given above will result

in the execution of -the corresponding functions. A .
-conflict may occur concerlng the outgut and DIAL .
-CTM's; therefore, when 227 ig set, 226 will be ignored,
and when 275 is set, 274 will be ignored. The bits
are examined and the functions executed in the order,
‘given above. Any deviation from this established
~order will necessitate the issuing of two.or more

‘ successive commands. ' '

- .The bit settings describing the function to be performed.
are stored in the upper of word 11 of the CIM Control"
Block, the function code in the lower of word 11, if
applicable, the input buffer in word 12, 'and ‘the output

- buffer in word 13, The above packet is then issued.
Words 12 and 13 then become the new heads. of the input .
and output buffer chains respectively. '

8.4+3 Channel Initialization and rr‘e"'mima.*"cri

- The Intialization and Termination of communication channels
is accomplished by means of an "immediate function"
command. Initialization is perfomred when the first
communication facility is assigned, and termination is
performed as the last communication facility is released.
The' followmng packet is used~ o -

ENT*Q VO

ENT#A 10 4 ¢ 21
EXRN |g 90 g0

where: Vp is a code indicating either initialization
or termination.)

. When injtialization is indicated the routine will clear

~ all ESI locations and set input and output active on all
ESI channels. Clearing the ESI locations will prevent
data from entering core and cause a word of all bits -
(CTM stop code) to be sent to a CTM if it requests output
data. Synchronous CTM's comeé on in the "Look for Sync"
mode when power is applied so that the external functio
need not be issued during initialization. '

When a termination operation is indicated, input and
output will be terminated on all ESI channels. '

‘ 840 4‘4

8.5 Communication Handlers

The Communication Handlers interface between the Interrupt Processor -
and the application program. Data manipulation between the :communi-
cation and packing buffers is accomplished by the handlers., The :
. handlers may be written to handle a remote unit in any manner desired
by the user. The handlers also may initiate output, initiate polling,
specify input and output communication buffers, acknowledge the ~
remote device, reset ESI buffe* contrcl wcrda, ssarch input buf fers,_
ete. : '

Communication handlers are written for a particular type of remote)
unit; however, they are not restricted to only one CIM -~ one handler
may cammunicate with many CIM's, In this case, the handler must be
coded such that it is non-re-entrant with respect to an individual
CIM and re-entrant with respect to different CIM's,

;"8.5‘1 Interrupt Processor Interface’
Ihput -

Many options exit in the manner in which the handler communicates
with the Interrupt Processor (IP). In fact, the methods which
may be employed seems to be limited only by the imagination of
the programmer. With respect to the communication buffers,

the handlers may obtain buffers in the same manner as does the

IP or the handler may let the IP obtain additionel input buffers.
Using the former method the handler may obtain two (or more)
input buffers and link them together with the link of the last
buffer pointing to the first buffer. Thus, when the last

buffer is filled the Interrupt Answering Routine re-instates

the first buffer effecting a re-ciréulation of buffers, With . -
the above method the handler also has the option of being refer=-
enced when an input monitor interrupt occurs so that the buffer -
may be processed, or the handler may periodicelly scen the

buffer chain for end of transmission codes, Another method.

the handler could use is to periodically scan and remove data .
from the communication buffer and reset the buffer control word.)
This procedure would minimize, if not prevent, input monitor .
interrupts. If a monitor did occur data would not be lost since
the IP would obtain a new input buffer and chain it to the. -
expired buffer. Input communication buffers which have been
obtained by the IP should be released to the buffer chain by
_the handler as soon as the data has been removed. These
input buffers may then be obtained and used again by the IP,

The handler instructs the IP on what procedure to follow when
a monitor interrupt occurs by setiing certain bits within the
CIM Control Block of the interrupting ESI. These bits may be
varied dynamically by the handler., The options currently
available are described in. Seotion 8.4.1.

When these bits indicate that the handler desires control
-after an interrupt has occurred, the IP executes a QREF to the
handler with the address of the CIM Control Block in the A-
register, and the terminating buffer in the Q-register. The
handler to be referenced by the IP is identified by words 1
and 2 of the CTM Control Block. These words contain the JOB

~ Number, Activity Number and address of the handler. The JOB
Number will be that of the program vhich is to receive the
.data., The handler operates under the identity of the receiving
program, but at a higher priority than the program proper.

The handler may instruct the Function Executor to set up
cdrtain input and output buffer control words (ESI's) and issue
certain External-Function commands to the appropriate CIM. g
These functions are performed lmmediately by the Executor and
control is then returned to the handler., Multiple functions
concerning the same CLT may be performed with one command. A
predetermined order:of execution has been set up which should
cover most contingencies. Deviation from the execution order
'will require two or more references to the Executor. See Section
8.4.2 for execution order and 1ocation of function and buffer
words.,

. Time dependent control is available to the handlers as well as
worker programs, These functions may be used for buffer scanning,
acknowledgement remote units, etc. The time dependent functions
are described in Section 5.0. : ’ '

* Output =

‘When the complete message has been placed in a commmnication
buffer (or chain of buffers) the handler may check the CTM

" dan ek

status in the CTM Control Block to see if output is currentl

active on the CTM. If not, the handler msy initiate output :

the unit by instructing the Executor to set up the initial buffer.

in the ESI address and to send an external function to the CIM,

 If output is currently’ active the handler may indicate in the

© UCB that a complete message 1s ready, or the handler may
possibly chain the message to the currently active output

-buffer chain, ,

When &n output buffer chain exists the monitor interrupts are
handled completely by the Interrupt Answering Routine. If the
"Output Buffer Link" in the terminated buffér is not zero it .
is the Buffer Control Word of the next buffer in the chain and
‘is irmediately established. The IP at this time may also return
" the terminated buffer to the Output Buffer Chain if instructed
- %o do so by the handler. The buffer would not be returned to
the chain if the message was being sent to two or more CTM's
as in a message switching application., When an output monitor

'g-q.p

8.5.2

occurs and the buffer link is zero, a new buffer is not
established; the handler has either placed an "end of
transm1s31on" code in the buffer, or the handler will allow Z'
the I/0 hardware to send the EOT when the CTM requests again
(the I/0 hardware will send a word of all bits and an
acknowledge when it finds an ESI word count of zero).

‘Upon finding an "output buffer link" of zero the IP may QREF

the handler to inform the handler that the complete message
has been transmitted. At this time the handler may search -
the Unit Control Blocks associated with the CIM to detect
and initiate any additional messages queued for output to
that CTM. A reference to the handler when an output monitor
occurs is optional; the option is exercised by setting the
appropriate bits in the Interrupt Gontrol Word of the CIM
Control Block (see Section 8.4. 1)

Data Handling

Communication Handlers move input data from the communica.:on
buffers to the packing buffers. During this operation any-
data manipulation required may be performed by the handler.

For example, the handler may check character and message
parity, the handler may convert the incoming message code to
any internal code required by the program, and/or the handler -
may pack the data to any degree in the packing buffer. "

To facilitate any or all of the above operations certain
locations within the CTM Control Block may be used for control
purposes. .The upper helf of word 4 will contain information -
identifying the level of the CIM pair and word 10 contains

the input code type (ASCII, XS-B, etc.).

Hnadlers to be used for. input to the System (such as the OMEGA -
Scheduler) will convert the data frem the input code. to
Fieldata code and pack the charactars five to a word in

the packing buffers.

Upon receiving a packing buffer of output data, the handler
requests a communication buffer from the Cutput Buffer Chaiwm,"
The handler then unstrings and converts the data as required
placing the data in the communication buffer. If the message
in the packing buffer was incomplete the handler requests
additional data in the same or anothér packing buffer. The
buffer control word of the first buffer may be placed in word
2 of the appropriate UCB, When the additional data is .
received the handler obtains another communication buffer as .
above and chains the second buffer: to the first by means of tha
“Output Buffer Link" as described in Secticn 8.3.1. ‘ .

184523

8.5.3

8.5.4

User Interface (Level 1)

Level 1 control implies a close association between the handler ‘

and the user program. Any method of program organization may
be employed. The handler may be contained within the user

" program code or the handler may be contained in one of the
- libraries (job, group, system). An XREF may then be used

to collect the handler with the user program. The handler
may be established as & separate sctivity with highe

‘priority than the user. Time dependent activities for buffer

scanning may also be registered.

‘Packing buffers may by areas within the user program or they

may be obtained from a core chain by the handler or the user.
Packing buffers and their status may be exchanged between the

"handler and the user by any means available (1.e, QREF, activity‘

registration, Jump instruction, ete.).

The user program may consist of different levels of core, The
handler exit, for example, may be to an edit and/or drum queuing :
routine for retrieval at a later time by a user message - '
processing routine. :

Conmnmication Director Interi‘ace (Level 2)

When operating with level 2 control, ’che handlers interface
with the Communication Director for queuing of messages on '
the drum (specified CTM's may still operate with level 1

. Control while others are controlled at level 2).

'In level 2 the handlers originate the commands given to the i

Commmications Director. After performing the command the
Director returns to the handler with a status ‘indication.
The Pirector operates as an extension of the handler although

possibly, at a different priority.

The following commands are available to the handler.

s Queue Input Message -- The handler hae a packing buffer of
~ date to be queued against a specific remote unit. Control -
~ is returned upon completion, '
Parameters required -. - '
. Unit Control Block address .
. Packing buffer address o

» Queue Input Message and release Packing Buffer - The
Director will queue the mesaage aa above and releaee the
packing buffer.

Parameters required - ’
. Unit Control Block address
. Packing buffer address

. Number of words to release .

-« GCore. chain No.

a5y

+ Request Output Message -- The handler requests an
output message for a specific CTM. A status will
be returned indicating whether or not a message
is available. If available the approprlate UcCB
will be indicated.

Parameters required -
.CTM Control Block address
.Packing buffer address and number of words

» Obtain Output Message -- The handler requests an
‘output message for a specific CTM. Control will
"be returned only when an output message is available.
Parmeters required -
.CTM Control Block address
.Packing buffer address and number of words

¢ Request Output Message and Packing Buffers -- Same

- as Request Output Message except that the Director
~ obtains a packing buffer from a core chain., Director
" returns buffer address and number of words.

.CTM Control Block Address
+Core Chain Number

+ Obtain Output Message and Packing Buffer - Same a
Obtain Output Message except that the Director obtains
the packing buffer. Director returns buffer address
and number of words. :

Parameters required -

+CIM Control Block address
- oCore Chain Number

, The handler executes the commands by loading the registers
with the appropriate parameters and giving an EXECUTIVE
RETURN instruction. Control is returned following the
EXEC RETURN with the status and other information

- contained in the registers.

' 805"'5

8.6 Communication Director
General Description

. The Communications Director is a group of routines which

" make it possible for the user to write his programs to a
higher level interface, freeing him from the communicaion -
device dependent details. The user will simply "AGQUXRE“ -
units by & mnemonic name, then issue "SEND" and "RECEIVE'
commands. A high degree of flexibility is still provided . .~
the user such as "ACQUIREM™ing a group of units, being able
to "SEND" to any one or all units of & group and issuing
"RECEIVE" commands for a message from a specific unit or
from any unit in a group. There are other commands: “DIAL“
YHANG UP", "POLL", "RELEASE" and "TRANSFER" which allow :
optimization and sophistication whila still at the high -
level, 4

The Communications Director is composed of numerous elementa,‘
divided so as to perform specific functions. Only the high
usage elements will be in core all of the time, others such

as "DIAL" will be in core only while it is being used.

Another major function of the Communications Director is
the staging of Input and Cuilput messages on Random Access
Storage. Thus allowing the timing of the communication v
devices .and the User Programs to be completely independent.

‘Detailed Description

ACQUIRE may be performed by either a control card or by

a statement within the User Program. The ACQUIRE causes
Communication Facility assignment to secure, if available, -
.the unit or units implied by the NAME or GROUP and assign
them to specified File Code. A "DIAL" operation may or
may not be implied at this time, thus perhaps insuring the
program not only of on site hardware facilities, but also
that 'a connection has beer made with the remote device.

If "DIAL"ed when "ACQUIRE"d or if this unit was connected -
‘'by a direct wire, "SEND" and "REGEIVE" commands could be '
issued immediately

8.6.=1

RS S

e [S)
H H B
h 2 i
£ i

&oMMUN/&AT/M/S D NFeeToR

[

¢ e.xm ‘ci;m; '

; : ! i ! IA 3 . ' . "0”&
SX T — wom,—
Py ¢ , - ‘ _‘ N
. . Nt . . . L
IR A i co &L oc
e T_'T"fi_” - :, SRR S S
e P e - ﬁfé ' ‘
: ST i : .] i 1
PN QUEVE wfur_c*sgﬂgu WF ! P

EXRN. 41}&1)5‘

INPLT MS (o RETURN wreh Bk

---»3.

o t
!
4

SR P

,xw ;{m Cow r/’u‘l’ m,mw W/

! B
B T T
i l :

!
i

N

leree

\}‘
-f_gxw RER _ovTPYT, rf'gwm\/ lfwe lobTag - - T

[FRANS 27T
TGV

’”c’mﬂﬁ'

1
|

i

\

l} .

FERE woﬂ S
- ~FILES. .

S —
fr ' '
fomn o l -
- :
o

- - e m

1 '
N 1
H
i
!
. v
b
: . b
D O S T

: !

I ; !
[| - -
S o
v
- SRR S g
N aoMM r’AcrL/Tf'
R . i
R SR SO SO N SO __5 f

" f -~

.ai

;, e - — s (- ; 4 - ' - . o e x- . i AL . - A
? ' ? ; LEXEN Com ;

——— SIEIME TS I B M
I) CoM epRE ,l}(__ SR ' , —— 00R$ -
N I = ——— T P | 4

O .

AR i AN
e .)4 Z X .-
”ﬁ‘g’sﬁw -1 ’?Ec’?“’ég __lesgn Roy wiwo MSg

C |y QuEvE INPYT MS6 REL SuF
. TR AUEDE VAT REh, RETVY i

; ; T : : . ; I S . o -

i

SaREquzsr | | | [Feere ¢

: v R— : :
cobceb o lgxRN RE Q ovTPvT, NETVAN Ljfiwe lopTagy 87 v porpeT 11 . isewp : . :
S O — — e Messae ST s weel]

QVE

!
Pt L e e e P ot oo 7 o N B oo o o
Lo Jexsd REQR. 0 TPUT, RETVAN W/ by74] ‘. 7 5o] : i o " Levew sewp ' !

Y

em e L N — =, _i,. D e e e e e ——— e

EXfN _ CHECk lé?‘A—?’(/é

L >_',,-.:}t-?-;,_.!..f NN/ VT
' , e AT/ cooP .. Vi Cheekgpe |l | - - - - e o
(R e IR e R -l G P . AT | it | BT O
NA.‘_, . B s e .‘.;'_;7,3 . - 3 - - 2| e Ul BT, };.-,54, e T | e e

v e R R | B D e R ST AR L oi : v
- P 4 - - : A Have VP EX PN HANG UP
G UP S S . : SRS S -y Pourwg S :
- P S S, . S o =YW : : 5 N gxed ek

- DT ° . T e : ‘ T
N . P e ¢ Sl : - ZE
COMM- R REE | EAc, poamhacy LEreV AcQuifell .‘

: Uhy !
cHgoé’é(— P : e fY R EfFAsE » ;

I N

Lo ~1
SESTN B il S YAV Vi
: & Ll

-1

s EARY_ DAL

L. . L R ;,_,J::“‘:: F EXEN_HANG VI

; A

i IR SR S LN .

_. A ; T :
LA et -
. : A i

: CoMp FACTLITY ASSIGNMEMT
| ; : — ~ " : e
| ' [P L P '
[P U ' . B ¥
- i Ve T r [i
. : . ‘ .o i
- ,’ P - ‘ - A v ‘_ '

. RECEIVE is a User Program command which indicates it is ready

for an input communications message. The Receive command will

be associated with one of the users File Codes. Previously

at ACQUIRE time & unit or units were linked to this File Code,

sc now the "EXECUTE RECEIVE" routine of the Communication Director
is able to locate the unit from which input data is requested.

The first message or portion of a message received from this unit,
which has not been given to the User Program,will be located and
transferred to the User Program's buffer, which was furnished
with the RECEIVE command.

A GENERAL "RECEIVE" command from the User Program means an input
message will be aceepted from any one of the units linked to the
specified file code. The "Execute Receive" will scan down through
the list of units looking for a message. When a message is found,
it is transferred to the users buffer. A minor File Code will

be given to the user, thus allowing him to reference the same

unit again.

"Queue Input Message" 1s the Communication Director routine which
receives the input messages from the Communication Handler. It

will form strings of input messages, one string for each communications
input unit. These strings will be formed on Random Access Storage. -
An input message may go directxy from the "Queue Input Message"

"RECEIVE" command.

SEND is a User Program command which implies output data is to
~ be sent to a remote unit or units associated with a specific
File Code of this program., The User Progrem assembles a com-
plete or partial output message in its buffer, then it executes
a "SEND" command, specifying the number of words, buffer base,
a File Code and whether this is. the end of a message or not.
The "Execute Send" portion of the Communication Director will
store the message on Random Access Storage forming an output
string for each Communication Output CTM. Unit identification
.. and end of message indication will also be .stored with the
message. The same message and end of message indication with
different unit identification will be Random Access stored for
each unit that is to receive this output "SEND" message, to
satisfy a "SEND" to multiple units. If a Gommunication Handler
had previously requested an output message for a CTM, which
was not satisfied, the next "SEND" message for this CTM will
be given immediagely to the "REQUEST OUTPUT MESSAGE" routine
of ‘the Communication Director, thus the drum. store need not
always take place.

8.6-3

The user with numerous input units on one File code (major)
might like to know how many input messages are waiting to be
processed. A "CKISTAT" command executed by the User Program
will cause a Communication Director routine, "Status Checker"
to be loaded into core and executed. This routine will count the
number of units assigned to this user File Code and store the
~count in a buffer like area furnished by the User Program. The
number of messages and the number of words of the next message
for each unit that has not been processed will also be stored
in this buffer area. Thus, the User Program can determine

the unit with the largest backlog of input and might like to
alter hlS Pprocessing accordingly.

A "Dial and Hang Up Routine" allows a User Program to "ACQUIRE"

a unit which is essentially an Input/Output with Dial CLT :
combination. Then with "DIAL" and "Hang Up" commands a number
of remote connections may be made, one at a time. Perhaps ,
a Poll by "DIAL" arrangement. This also allows the user program
to "HAND UP" after all of the input data has been received, then,
when the output is ready to be sent, "DIAL" the number again.

A "Poll Control" routine allows a User Program to give "POLL"
STOP or START commands for a unit or all units cn a File Code,
These commands given to non-pollable units will not affect them.
The polling is controlled by the Communications Handler, it will
poll or not poll a particular unit as per the last "POLL"™ '
command received. The unit description in the Communications
.Facility Map has provisions for declaring the unit as pollable or
-non-pollable and whether polling should be intiated when the unit
1s "ACQUIRE"d. . . e . G

When a User Program determines there is no more activity for a
unit, a "RELEASE" command may be executed. This will cause a
WHANG UP" operation if it was a dialable unit and the unit will
become svailable for other “ACQUIRE's, The Unit Control Block
will be cleared from memory. If no other units are using the
CIM CB, it too will be released. If this happened to. be the last

communication unit operating the Communication Director will also be
released.

A User Program may also "TRANSFER" a unit to the Communications -
Director. This indicates the User Program no longer has any

need: for this unit but there is the possibility of unsolicited input
_on. this unit. Thus the Communication Director has complete control
of the unit as if it had "ACQUIRE"d it.

Unsolicited and unldentifled 1nput messages may occur only for
those units which are assigned to the Communications Director.
The Transfer Unit Control section of the Communication Director
will be .a small unit control section which will be in core as

"long as some units remain assigned to the Communication Director.
When input is received from one of these units, it will not be
known at this time which User Program it is for or it might be
an input job stream. The Communication Checker will be loaded .

., and will determine if the input message is the start of a job stream.
If so the app;.uyl';auo Unit Rc;GOI‘d Routine will be loaded and will. ‘
ACQUIRE the unit from the Communications. Director and proceed in a

normal manner. If the message was not a job stream, . .
further attempts will be made to identify it and then inform the

" proper User Program., If a User Program carnot be found for the
message, it will be diacarded and perhaps logged as an error

~situation.

8 68

| User Program Interface Level 2

~ This describes the commands and interface which the User Progfamn
will use when communicating with the Communications Director.

The following are the commands which may be used.

Comnands Explenation
. #ACQ 'External "ACQUIRE" request for a communications unit
_ . or group of units received via a control card. .
| ACQ$. Internal "ACQUIRE" request for a communications unit
_ or group of units.
- DIAL$ ‘Direct that a NDIALM operation be performed.
HANGUP$ = A line. disconnect operation will be' performed.
RELEASE$. : A'previously acquired'nnit,or unifs,nill be released.
SEND$ - A "SEND" operation passes an output message from the
. - User.Program to the Communications Director.
RECEIVE A User Program request to the Communications Director -
o . for an input message.
. CKISTAT$. Provides the Usér Program with the status of the
: input messages received by the Comm. Director which
have not- beén passed onto the User Program.
POLL Allows a User Program to set a unit or units, 80 thsy
will be or will not be polled.
TRANSFER This transfers control.of a unit or units'from'the

User Program to the Communications Director or from
the Communications Director to ‘the User Progran.

Deatiled Description of the Commands

ACQUIRE

" An ACQUIRE command may be executed either by a control card or by
an internal program statement. The ACQUIRE will be performsd in the
same manner regardleaa of how it is initiated..

©® 7. 1.

#AGQAOptionsA NAME, File Code, XX—3X
AGQ$AOptionsANAME,' File Code y XXeeeXX

NAME If "G" is not sp901f1ed as an option, this is a 5 character
‘ - mnemonic NAME of the desired communication unit. The
Communications Facility Map will be searched for a match
to this mnemonic name.

If nG" is specified as an option, this is then the "WNAME"
of an element which contains one or more NAME's of comm,
units which are listed in the Comm, Facility Map. The
search for this GROUP NAME element will be first to the
JOB library then the GROUP library then to the SYSTEMS
‘library.

File Code Is 1 or zlalpha characters which‘represent the File Code
-+ this unit is to be connected with, If Comm. units have.
previously been assigned to this File Code, the newly
acquired unit will be added at the end of the chain, The
" minor file code number will be. given to the user. The
‘minor file code is & binary number indicating the relative
chain position of a particular unit. '

' XX—3XX This is an extérnal mmber to be used by the X (DIAL
' - EXTERNAL number) option.

G " GROUP. Indicates the NAME parameter is the name of an element.
o The named element then contains one or more comm. unit mnemonic
names.
A ABSOLUTE. Ignored unless G option is also present. In which

case, the "A" indicates all units nemed in the Group. element
must be acquired for this ACQUIRE to be successful,

D . DIAL, The number contained in the Unit Descriptor will -
be dialed. This ACQUIRE will be successful only if the
number can be successfully dialed. - The dialing will be
executed automaticaelly if the automatic dial CIM is -

-avallable otherwise the operator will be ‘instructed to -
perform the dialing.

X EXTERNAL. Dial number specified. Dial operation to be
o executed similar to the "D' option, except the external
number will be uaed. ‘

DIAL

~ HANGUP

RELEASE -

- SEND

'RECEIVE

DIAL&AField Code, # of words, buffer base.

A DIAL operatioh will be executed using thé number that is

~contained in the buffer. The dialing will be executed

automatically if the automatic dial CTM is available,

‘otherwise the operator will be instructed to perform the
dialing. An unsuccessful status will be returned if

the dial connection cannot be successfully completed.

 HANGUP$AFile Gode

A hang up or disconnect operation will be performed.
If the connection was performed by an operator, he will'
now be instructed to hang up..

- RELEASE$A File Code/File Code{minor), -

A previously écquired'unit or units will be released, will

become available for use by other programs. - All units
acquired for this File Code will be released unless a minor

- File Code is also- specified

The minor file code is a number indicating the relative

acquired position of a particular unit. The first unit
‘acquired would have a minor file code of 1, the second
. unit's minor file code would be 2, .ete.:

SEND$A File Code/File Code (minor), #of words, buffer base.

The "SEND" command directs the sending of the output

.message contained in the buffer, to.be sent to the unit or
units specified by the File Codes. ' The presence of a minor

file code indicates the message is to go to a specific unit.
The message will be sent to all units associated with

this file code if a minor file was not, specified.

RCV$A File Code/File Code(minor), # of words, buffer base, .

The RECEIVE commsnd secures a complete message .from the unit

- or one of the units as specified by the file code and places

it in the specified User Program buffer.’ The absence of a

8.7.3

CKISTAT -

minor file code 1nd1cates the first full message located"
which had been received from one of the units associated :
with the major file code will be acceptable.

' An unsuccessful status will be returned if a full message

isn't available from the designed unit or units, .
PRCV%ZLFils Code/File Code(minor), # of words, buffer base,

The PARCIAL RECEIVE command is the same as the RCV command
except it does not require a complete message to be available

" prior to passing some of it to the User Program,

.
An unsuccessful status will be returned only when there
is no input data from the applicable unit or units.

RCVW$ A File Code/File Code(minor), # of words, buffer -.ase,

The RECEIVE WAIT‘command is the same as the RCV$ command “.3th
one exception, That is, if a full message is not available

“* control will not be returned to the User Program with

an unsuccessful status. But instead control will be held
in the Comm.‘ Director vfa..l.t.uug for a uumy.l.ctv .l.nyuv mSssags,
when a message becomes complete, it will be placed in the
buffer and control will then be returned tc the User Program.

PROVW$AFile Code/File Code(minor),# of words, buffer base,

The PARTIAL RECEIVE WAIT command is similar to the PRCV$
comnand except it does not return an unsuccessful status

when there is o input data. Instead control will be .
held by the Comm Director until some input data is available.

‘ CKISTAT$£>F119 Code, # of words, buffer base

A command which allows a User Program to obtaln the status
of the input messages which have been received by the Comm.,:
Director but not yet requested by the User Program. e
Thus the User Program might alter its processing technique
depending upon the backlog of input messages. :

This command will store the major and minor file codes of
the last unit acquired for this file code (major), in the
first word of the specified buffer. The number of messages’
and the number of words of the last partial message by
unit, which have been received will be stored in the buffer,

- second word on up., A word will be stored. For each unit,

they will be in numerical aequsnce matching the minor file
00&60

POLL

TRANFERT'

'POLIY$AFile Code/File Code(minor),

This command will set the unit or units specified so

they may be polled durlng the normal Communication Handler -
poll sequence. If a minor file code is specified, it .
indicates that only that unit should be set to the

“poll yes" condition. If a minor file code is not listed
all units associated with the major file code will be

set to the poll condition, -
POLIN$AFile Code/File Code(minor)

This command will set the specified unit or units so they -

- will not be polled by the Communication Handler. If a

minor file code is specified, it indicates that only that
unit should be set to the "poll no" condition. If a minor
file code is not listed, all units associated with the

 major file code will be set to the non-poll condition.

TRANF' I$ AFiie Code/File Gode(minor),

This allows a User Program to "Transfer To" the Communications

. Director a unit or units as indicated by the file codes.

The Communications Director will retain control and monitor
them for unsolicited input messages..

TRANFERI$M3File Code

'Thls command enables a User Program to obtain a Unit

from the Communications Director which hdd been previously
"TRANFERT"ed. + The unit will be obtained and associated
with the designated file*code. '

8.7=-5

8o8'

Communications Facility Assignment

- A number of Communications Facility Assignment software routines

provide orderly control of the system's communication hardware and
some software as well. These Facility Assignment routines provide'

the following:

+A drum record of the hardware currently available. o
*A 1list of hardware currently in use.

*Satisfying a user program‘s request for commuhicatibn unit hardware.

*A means of allowing some hardware to be used by more than one program.

'On other hardware, insuring that only one program uses it at a time.f
+The user to mnemonicly request communication units.

*The assignment of alternate units if the‘reqﬁested is unavailable,

A B

*The correlation of certain'software or user routines with the

hardware communication units.

+UDIAL" functions if speeified on the "AGQ$? statement.

+"GROUP" assignment of communication units,” if requested and if

possible.

-Insurinz that hardware and software usage conflicts do not
develop.

The Communications Facillty Assignment routines have to perform

-the above for both Interface Level 1 and Level 2, since both may

be in operation at the same time.

The control of the Facility Map, method of handling the "ACQUIRE" °
and "RELEASE", and the core memory tables {Unit Control Block and
‘CTM Control Block) are essentially the same for both levels. The
major difference is that Interface Level 2 has to tie in additional
Software routines such as the Communication Handlers ahd the various
‘portions of the Communication Director.

Communications User Interface Level 2 Facility Assignment

The Level 2 Facility Assignment will be explained in a general way, -
to present an overall picture of the communications control. The
Facility Assignment is composed of numerous routines, these will

not be distinctly broken down at this time. The tables (Facility. .
Map, UCB and CTM CB) explained in an earlier section are quite
closely involved in the Faclllty A331gnment.

Initially at System Generation time a Communication Facility Map
is generated. This map is drum stored. It is at this time when 5
character mnemonic names will be linked to a specific communication
unit, with possibly somealternate units. .

- ACQUIRE

Acquire is obtaining the assignment of a desired unit or units to
satls;y a user program request. The user program will execute an

#40Q" control card or an "ACQ3" internal program statement, both of -
these accomplish the same thing. The ACQUIRE specifies either as
character mnemonic which refers to a pre-established unit name listed
in the facility map or an element name which is composed of one or
more 5 character mnemonic names. An option G character in' the Acquire
statement indicates that an element is named. The G group option is
necessary if multiple units are desired for one Acquire statement.
When the G option is present, Facility Assignment will perform a
search for the named element. First it will search the "JOB" library,
then the "GROUP" library and finally the "SYSTEM" library. Note there
‘may be more than one element with this same name, but the first which -
is located will be the one that is utilized. The 5 character NAME or
- NAMEs found in this element will now be used, the same as if they had -
been listed in the ACQUIRE statement.

Now that the actual NAME or NAMEs are known, communication facility
assignment will proceed-to use them for its first reference to the
Facility Map. The map will be searched for a match to the specified
name, when it is found, the next word will be used to locate the

unit descriptor and the handler initialize descrlptor. These descriptors
 are also located in the Facility Map. The unit descriptor contains ,
available or unavailable indications (unavailable is already in use or
down) for the unit. If available, the CTM descriptor (also in Facility
Map), specified by the unit descriptor will be referenced. The CTM
descriptor contains information which indicates: available.or

. unavailable, is or is not presently being used by another unit, and

" whether it can or cannot be used by more than one unit at’ the same time,
If the CIM is available and not in use, it will now be marked as in use
and a CIM Control Block will be formed in core memory. A Unit Control’
Block will also be formed in memory at this time and the unit descriptor
will be marked as unavailable. As the CTM CB and UCB are formed in . °
memory they will be linked together, each containing: the address of
_the other; also, an entry is now made in the unit usage section of the
- facility map. This is a two word entry with the first word containing
the core address of the UGB and the second word’ contains ﬁhe pointer

S . : '

DU e

word which was found and used following the 5 character name, it
pointed to the unit descriptor which was just used and to a handler
initialize descriptor. Note, if the CTM was in use and could have
‘more than one unit using it at same time, the CTM CB would not be
formed at this time, since it 1s already in memory. The linking
(CTM CB -UCB-UCB and UCB - CTM CB) would still take place, also the
usage entry would be listed.) :
How thelTl CB and UCE have been set up, with everything successfuly
up to this point, the facility assigmment will now proceed with the
necessary handler control processing. As mentioned previously, a
pointer to a handler initialize descriptor has been found following
the 5 character mnemonic name. This Handler Initialize Descriptor
(it is in the Facility Map) will be located. If some set up or
initializing is necessary this descriptor will contain the drum address :
of the Handler Initialize routine, it will be loaded and control given
to it. When the Handler Initialize is finished, control will be
returned to facility assignment. Facility assignment will now loca%e
the "Handler Locate Descriptor" as listed in the Handler Initialize
" Deseriptor. The Handler Locate Descriptor contains information which
indicates if the handler is presently in core and how many users it
has, also where it may be found on drum. If it is not in core, it will
be loaded, its core address and a user count of one will be stored into
the Handler Locate_Descriptor, if already in core the user counter
would simple be increased by one. Now that the handler is in core its
address will be stored in the CIM CB.

' The above indicated the desired unit was avaliable, it did not conflict
with the unit capacity of the CTM, thus the unit was able to be successfully
assigned. But, if all of these condltlons could not be met, the '

assignment process would be halted and the previous env1ronment would.
have to be re-created. Such as if the CT™ was n-r-av-.ou 1y bei s1ged

aTTUaTS VT Mivia &Ko a4 Viiaw Vaal MO L uoTwu

. by another unit with aedlfferent handler and since a CTM can .only be
associated with one handler at a time; this assignment of this new

unit would have to be halted, the UCB destroyed, the usage entry

deleted, and the CTM CB - UCB - UCB chain recoupled.. Facility a881gnment
would now go back to the NAME pointer section of the facllity and if an,
alternate pointer was available, it then would try to assign the unit

it pointed to (such as same type of unit but a different CIM). If

there are no alternates or if none of the alternates can be acquired,

" an unsuccessful status will be returned to the user program.

If the ACQUIRE requested a group assignment after the facility assignment
processing for one unit is successfully completed, the next mnemonic
name for the next unit will be obtained and an assignment for it will
‘be processed. In a group assignment with option "A", all units named

in the element will have to be acquired successfully or else none of
them will be acquired for this ACQUIRE statement. During the facllity‘
assignment for this Absolute Group, if some units are successfully
assigned and then a unit is found which cannat be assigned; the previous -
'assigned units of this group will ‘be immediately released.

If the ACQUIRE requested a group, but did not specify "A" absolute,

any or all units which may be successfully assigned will be acceptable.

am a

‘Thus facility assignment w111 alter its processing for group acqulres'
-accordingly.

" "D" for DIAL is another option of the acquire statement. . This means
after the unit has been successfully acquired as explained above,
facility assignment should initiate and completely process a dial A
operation using the dial number contained in the Unit Control Block.
Note, if this unit is not connected with automatic dialing equipment,
the console operator will be instructed to manually dial the number
and indicate when it is completed. If the dial connection cannot be
successfully completed, it is as if this unit cannot be acquired, thus
the original enviromment will be restored and an attempt for an
alternate unit will be made (it perhaps will have a different number).

The "X" option is the same as. the "D" option except an external number
has been specified.. The external number is contained in the ACQUIRE
statement. - ‘ . :

After facility assignment has successfully assigned the unit or units
" (with successful dialing, if specified) the UCB or UCBs will be linked
out of the designated file code positon of the task addendum. If a
unit or units were previously assigned to this file code, the newly -
acquired units will be linked following those previously acquired.

It is at thist ime when a succeseful status will be returned to the
requesting program.’ '

" RELEASE- .

RELEASE is the releasing or making available of ‘a previously acquired
unit or units. The present user has no further need for a communication
unit, so. it is released, another user executing an acquire may now have.
. this unit assigned to his program.

Facility assignment'routihes perform the necessary software functions
to execute the RELEASE. Returning control back to the user after the
release is complete.

Facility assignment uses the file code to obtain the address of the
Unit Control Block which is to be released. The communications unit
" usage list (in Facility Map) will be searched for a UCB address

" equal to the one being released. When it is found the other word in
this entry of the usage list provides the pointers to the Handler
Initialize Descriptor and Unlt Desecriptor,

‘The unit usage entry will be cleared. The Handler Descriptor may be
located by following the pointer through the Handler Initialize ,
Descriptor. The Handler Descriptor number of users count is decreased
by one. If it is now @ the handler core address will bé cleared in '
‘the Handler Locate Descriptor and the core occupled by the handler uillﬂ
. be released. Note, this handler will have to be reloaded if some
‘latter MACQ" requires it. Now the other pointer will point to the

Unit Descriptor, the unit will be marked as available and the CIM .
Descriptor will be located. If this is the lest unit using the CIM,

both the UCB and CTM OB will be released, the CTM will be marked as
available with no users. If other units are using the CTM, the

CIM CB-UGB-UCB chain linking will be reformed to eliminate the UCB
which is being released, then the UCB core may be released. Previous
to the release of UCB core the file code to UCB chain will be

. reformed, eliminating the UCB which will be released. This will
‘complete the RELEASE for one unit. If the RELEASE. command specified .
the release of all units on this file code, the next UCB address would
be located and this unit would be released. When the requested unit
“or units have been released control will be returned to the user
program. : v R :

8.9 Illustrative Example Interface Level 2

This section consists of a User Interface Level 2 example.
Actual user commands are shown along with a brief description
of the software functions performed as a result of these
‘commands. The main purpose here, is to illustrate the message

and control paths and at the same time present the overall
.Level 2 picture. A o -

- W Y

I

i
ool o

'
I

-l oyt

o=
hcomm

by

.

-V ERoly
= h5514

S

]
i
i
1
\
1

£p

CommM
HANDL

-
]

. : [
AT NITpK

;

-t

V:

'

M‘”‘rl."

v

0,

1

=

LIZ AT

{ ; i
FE S N R S

i

)

[S

oV RAW, :
aes sTof)

(Eoesrss)

T

b

Figure 2 Explanation

The hardware, software and User Programs shown in Figure 2 will
be used as an example to explain how the Software System funections.

LEGEND AND LISTING OF COMPONENTS
HARDWARE

-'{:>* Send-Receive Communication Units connected by direct
wire capable of being polled.

«"CTM" - Input/Output Communication Terminal Module

SOFTWARE

+"CTM CB" - A table, one per CTM, containing information
pertaining to the CIM. :

+"JCB" - Unit Control Block. A table, one per Communication
’ Unit, which contains information pertaining to the
unit.

JUEST ControlM - A routine which controls the hardwars

directly. It does this as per instructions
received from the Communication Handler.

«"Communication Handler Initialization" - A routine which
will perform intializing and setup operations
for the Handler which are requlred only during
‘initialization.

*#iCommunication Handler" - A routine which drives or controls
the CTMs and their communication units. Polling,
accepting input, sending output, editing,
translating, packing and unpacking the messages,
and transferring the messages to and from the
Communications Director are its functions.

*"Communications Director" - A collection of routines which
together perform the following:

1. Queuing or staging of the input and outpuk
messages on the Random Access Storage.

2. Interpretation and eventual execution of
' the advanced commands employed by the
User Programs.

3; "Monitoring for unsolicited input mess:ges. ‘
Then identifying them and correlating them™
with their u;timate user.,

-“Communication Facility Assignment!" - A routlne or routines
which locates Communication Facilities for a
User Program, sets up UCBs and CTM CB and
loads some of the software routines.

'"Communication Facility Map" - A table, located on mass
storage, which has a listing of the units,
the names they may be called by, the handlers

. which should be used, UCB information, CTM CB.
information and a summary of the units which
are in use. -

USER PROGRAMS

*"Program A" and "Program B" are shown in this example,

MESSAGES
. - is a message. The A or B is the User Program(that it .
. is for or from. The second letter I or O
" indicates Input or Output message. The third
3 letter identifies the communication unit that
it is for or from. Note these messages sare
stored on drum queues.
LINES

-Solid lines indicate chaining or linklng of the various
components.

*Dotted lines indicate the transferring of Program Control
from component to component.

TABLE REFERENCE

*The User Programs may not reference anything outside of
their own program.

*The Communication Fac1lity mep will be referenced by the
Communication Facility Assignment routine.

*The Schedule Lists and Unit Control Blocks may be referenced
. by any of the software routines, but not by the User Programs.

82 Q.

‘Now let us make some assumptions prior to a step. by step explanation
- of the events. _

1. The Communication Units and CTMs are available and ready to operate.

2 vCore memory is completely clear of all Communication routines and
‘tables. User Programs A and B have not been loaded as yet.

3. The Communication Facility Map has been set up on Mass Storage

and has been initialized. All units are available, pollable, but :
their descriptions are. set' to the poll stop position.

« o e &

User Program is loaded and initiated, it executes an internal command with
ACQ$-GA, GROUP, A - This is an ACQDIRE
G = group acquire
- A = all units are needed.
-~ GROUP = the name of an element which consists of the
o unit W and 'Y mnemonic -
- A = User Program A File Gode this group should be
assigned to. - :

HFACILITY uOIwTROM' of the Comm Dir is 1oaded.
Is ESI Control in memory. :
NO -~ Load ESI Control and inltialize

NCOMM FACILITY ASSIGNMENT” is loaded.:

« The "GROUP" is located.

« The "W" mnemonic is located in the COMM. FAGILITY MAP
It points to the UCB Descriptor and Handler Deacriptor
Is unit available? - YES .

Form "W" Unit Control Block in core

List "W" Unit as unavailable in COMM.FAC. am

From the Unit Descriptor 1oca.te ‘the CTM Descriptor-

Is it in core?

NO - Form the CIM CB N in core

List this CIM CB as in core

Place address of CIM CB N in UCB-W

Place address of UCB-W in CIM CB N

Place address of UCB-W in File Code "A" position of User Prog. A -

Is the Handler in core?

NO - Load the Handler :

Put address of Handler in CTM CB N

Load COMM HANDLER INIT and execute

Handler executes a "REQUEST OUTPUT W/0 RETURN" for c™ CB N
-Output Section of Com. Dir is loaded. o

More units to ACQUIRE?

IES - "YH

The "Y" mnemonic is located in the COMM. FACILITY MAP.

It points to the UCB Descriptor and Handler Deacriptor :
-Is the unit avaeilable? - YES . o
For wYt Unit Control Block in core

List "Y¥ as unavailable in COMM. FAC. SUM.

-From the Unit Descriptor locate the G'IM Deacriptor

Is it in core?

NO - Form CIM CB O in core.

List this CTM CB as in core.

Put address of CTM CB O in UCB-Y.

Put address of UCB-Y in CTM CB O.

Put address of UCB-Y in UCB-W

1

® & © & o © ® o @ e

1¢

* Note: Two units have now been assigned 't-o File Code A of Ueer
Prog A.

%, Is the Handler in core? YES _
Mark Hendler as having another user. -
Put address of Handler in CTM CB O.
Load COMM HANDLER INIT and execute -

Handler executes a "REQUEST OUTPUT H/O ‘RETURN" for .CIM CB 0.

o

. Move units to ACQUIRE NO.

« Return to User Prog A with Sucéessful Code

' WSEND$A A,# of words, buffer base" - A good morning message is sent by prog. A

o £

.. :f.TJT‘].M. . \[\F" A

N,

|

to all units on File Code A.

The good mornlng message for UNIT-W vill be passed immedia‘bely to. the"
HANDLER.

The handler will translate and unpack the message. : '

The handler will direct ESI Control to initiate the’ transmission of

the output message to UNIT-W. o

The handler will test for units ‘t.o Poll? - NO ‘

‘The handler will idle. -

The good morning message for UNIT-I will e passed to the HANDLER.
The handler will translate and unpack the message. .

The handler will direct ESI Control to initiate the tranamission of
output message to unit-Y.

The handler will Test for unite to Poll? NO :
The handler will idle. ‘

v ”POLLI$AA," - Start polling for USER PROG. A ;

POLL section Com Director in core? NO - Load 1t. |
Set UCB-W to poll on position : ‘
Will handler get control again?

YES

NO-Q REF Handler for CTM CB N

Is there output for this - CIM CB?

YES

NO - Is there input for ’c.h:Ls CIM CB?:

YES

NO - Are there units to poll?

NO - the handler will IDLE

- YES - POLL unl‘b

DA DATT O

..YH§.LUJ.VG .I.UP.I-J from FOLLG

g other units to POLL?

NO - Handler will time delay itself

After time delay

YES - Input message is coming.

ESI Control will pass message to the Handler

Handler will translate and pack the message

Handler passes input message to Com. Dir.

Is the Receive section of Com. Dir. in memory?

NO - Load Receive section o
Queue this input message on drum with it linked out of TUCB-W.
Return to normal handler cycling.

- Send routine will transfer output message frorm cm output drum queue

to the handler.
The handler will translate a.nd unpack the message.

8,97

-3~

. The handler will direct ESI Control to initiate the ‘bransmission
of the output message to the unit. _
Return to normal handler cycling.

* NOTE The above handler cycllng will continue as long as
input, output or polling operations are needed.

. ¥ Set UCB-Y to poll on position.
-« Will handler get control again for-CTM CB 0?

« NO -~ QREF Handler for G’m CB Q

¥ The handler cycling explained above will a8lso be initiated for
CIM CB 0. The same re-entrant handler coding will be used but .
different CM CBs and UCBs will be referenced. Thus multiple
handler cycles may be in process concurrently. Even running
concurrently w:lth User Programs and some portions of the Gomm- ;
Director.

"RCV'%AA # of words, buffer base," For User Pro'.g.. A,

+ . Receive routine in memory?
+ NO - Load it. . ' '
. YES - Get a UCB address from the File Code A poaition of the Task
Addendum. R
, .. Was the RECEIVE Commardof the GEI\TERAL t.ype?
,_—_—.YES .
—> 'NO - Is the minor File Code number equal to thie UCB posi‘bion in the

UCB chain from the Task Addendum (01 = 13’0 UGB)?

IES

YES
. KO -1s there another UCB in the TA-UCB ehain? o
-~ X0 ; . o
‘l . YES - GET the address of the next UCB o
The Return '
% Is there an input message queued against this UCB?
7 YES
'« NO — Is there another UcB in the TA-UCB chain?
- NO ‘
. YES - Get the addresa of the next UGB.
-~ Return
. - ~ Return to User Program with Unsuccessful Sta.tus
] ﬁ Is there an input message queued against .this UCB?.
NO

— MOVE the queued message from the UCB queue. to the User Prog buffer.
[, L) Return to the User Prog with Successful status L

* Prog. A may now continue on its merry way Sending and Receiving .
from either or both of its commication units. The polling of

these ‘units will also continue.

“,8'_.9-8_ o

-

. Omega Selection recognizes User Prog. B. Job.

. Omega Selection may cause some of the previous communication routines :
vhich are not now being used to be dropped from core memory. .

« User Prog. B is loaded into memory.
. ACQ§- ,NAMEX,B - ACQUIRE Command executed by Prog. B |
+ This Acquires UNIT X similar to the provious with some exceptions. Such
as only one unit was requested and it was specified by a UNIT NAME rather -
than by a GROUP NAME, This eliminated the locating of the GROUP defining

element. - Also note some of the routines will not have 'bo be loaded
since they are already in memory. -

" "AGQ$- NAMEZ,B" - ACQUIRE Gommand executed. by Prog B.
. Same as the ACQUIRE for UNIT-X except .the UCB-2 address is written .
into UCB-X rather than intc the Prog. B task Addendum. This has formed
a 2 unit chain. File Code BO1 refers to UNIT-X and File Code BO2
refers to UNIT-Z. -
. " WPOLLY$AB/01," USER PROG B.
. This will set UCB-X to the poll on condition. -The handler will not
have to be started since it is already cycling for Prog. A. On the -
n ext poll cycle it will poll both units. |
. WTRANFERT$AB/O1," - Transfers UNIT-X from Prog B to the Comm. Director.

'« The UCB-X address is written into a Task Addendum type location in
the Comm. Director. ,

« The TA-UCB chain position of UCB-X 1s cleared to indicate it is now
- an end of chain unit.

. The UCB-Z address is written into the Prog. B. Task Addendum File
Code B position. "

Note UNIT-Z file code identification has just changed from BO2 to B01,
its position on the TA-UCB chain has changed. -

. "POLLY$pB/1" User Prog. B. . y
. "SEND$AB/1 # of words , buffer base'
Certain timing conditions would have permited the operations which were

explained .above. To place the hardware, software and User Programs in
. the state as shoun in Figure 2.

9.7 LOADER
9.1.1 General Description

The Loader is a processor which provides a flexible-and efficient means of
collecting independent relative binary (RB) elements to produce an absolute
object program for execution as a task under control of Omega. An RB element '
is an intermediate output code generated by all system compilers as a result
of translating a group of source language statements. An RB element is not
executable but may contain references (external references) tc other RB -
elements and may itself contain a definition zexternal definition) which is
referenced by another RB element, The Loader may serve to join RB elements
generated from source statements expressed in FORTRAN, COBOL, Assembly: .
language, etc. The process of joining RB elements is called collection. S
The Loader does not actually load a program into memory for execution but -
constructs the entity which may be read and executed. This organization
. facilitates compllation and debugging of small parts of a total program
- and combination of these individual parts for execution with recompiling
. the entire set of individual parts. An absolute program is an entity with

-no unresolved references which can be read in and executed. It may be read
into any memory area for execution without modification of instructions. .
Its relocatability is inherent from the relative index register and its
device independence with regard to system references. The relationship of
‘the Loader with the source code and absolute code is shown..

Symbolic - -
Source Code g
— — . F"Co:rection;\\w

b4

- Tanguage Tremslatdr ' - ——
- | Assembler LIBRARY @ - *{ LIBRARY
‘| FORTRAN elative Binary ' b
COBOL Elements / | “\lpsolute Progr
[+ I T

Definitions,F - |Task Control
11ity mappin {LOADER Initiated by GO
i E cezirol statemezt
: ’ or otaer

Figure 3-1

., ; 9-1-1 i

. Separate elements existing in the job, group, or system libraries
are collected in constructing an object program. Elements are
collected on the basis of an external reference in one element which
can be satisfied by an external definition within a second element,

' The Loader may be directed to include or exclude specific elements :
by secondary control statements. :

The basic output of the Loader is an absolute object program. The
program is entered into the job library under the name specified by .
the user. Optional output includes a list of labels and tags con-
tained in the program for utilization in testing procedures, Error
nmessages and/or a storage layout listing may be obtained as a

" hard-copy record of the collection process. The Loader can also
transfer the secondary control language as a job library element

- for subsequent reference, - o

' The order of user specified elements within a segment will be main-
tained as specifically named by INCLUDE statements. All elements
ncluded by a library search are 'located in the highest level -
'segment from which it can be referenced by all elements.
|

A starting point is determlned dur