INIVAG|zze

SCIENTIFIC| system

UNIVAC SCIENTIFIC
GENERAL-PURPOSE COMPUTER
SYSTEM

PROGRAMMING

PX 18

SEPTEMBER 1956

Nomington Fand Univac

DIVISION OF SPERRY RAND CORPORATION

TABLE OF CONTENTS

PX 33 INTRODUCTION
PX 34 DESCRIPTION OF THE COMPUTER

1. General e e e e e e e e
2. Principal. Reglsters s s s e s e s »
a. X Register. « « ¢« « . .
b. Q Register.
¢c. Accumulator
3. Storage Devices+ . .
a. Addressed Storage Locations . . .
b. Magnetic Drum Storage System. . .
c. Magnetic Core Storage System. . .
d. A and Q as Storage Media.
4, Control Components . . . o e e
a. Program Address Counter o« e e
b. Program Control Registers . . .
c. Master Clock.
d. Main Pulse Distributor.
e. Main Control Translator
f. Command Timing Circuits . .
g. Program Interrupt Control . . .
5. Representation of Numerical Values.
6. Arithmetic Operations . . .

a. General e e 4 e e
b. Addition and Subtractlon. e e e e
c. Multiply Sequence
d. Divide Sequence..

PX 35 REPERTOIRE OF INSTRUCTIONS

1. General e

2. Presentation of Instructlons. o . .
a. Transmissive Instructions . .
b. Replace Instructions
¢c. Split Instructions
d. Q-Controlled Instructions . .
e. Sequenced Instructions. . . .

.

f. One-Way Conditional Jump Instructlons .
g. Two-Way Conditional Jump Instructions
. One-Way Unconditional Jump Instructions

h
i. External Equipment Instructions .
Jj Stop Instructions

PX 36 SEQUENTIAL PRESENTATION OF INSTRUCTIONS

PX 37 INSTRUCTION EXECUTION TIMES

PX 18

.

.

Page

O OO U U Db B

et b et e e b e ot e fod
QOB NN OOOCO

VTN~ &N =

TABLE OF CONTLNTS (cont.)

PX 38 INPUT AND OUTPUT SYSTEMS

PX 39

1.

General

a.
b.

Co

Standard Equlpment.
Optional Equipment. .
Information Transfer. .

Photoelectric Paper Tape Reader .

Ga
b.

Co

General . .
Programming for Input .
Operation

High-Speed Paper Tape Punch .

Electric Typewriter . . .
Punched Card Input/Output

a.
b.

r
e

General .

System. .

Programming for Input and Output.

Operation

Univac Line Printer

a.
b.
C.
d.

General . . .
Programming for Output
Format Switchboard,
Operation . . . e . e

Magnetic Tape System .« .

a.
b.
C.
d.
e.

General Description . .
Operation Theory. . . .
Tape Operation Timirg .
Operation

Improper Programm1nc or

OPERATING THE COMPUTER

1.
2.

General . . . « . « + + . .
Operation

a.
b.
c.
d.
e.

a.
b.
c.
d.

General .

.

Operation .

Normal Mode of Opermtlon. o e e

Test Mode of Operation.

¢ e . . .

Jump and Stop Selections. . .
Manual Interrupt Selection.

Programmed Stops. . . .
Force Stop.
Emergency Stops .
Fault Conditions.

Manual Reading and Writing.

Restoration of Operation After Stops.

.

o .

a. Manual Writing from the Q Reglster. .

b. Manual Reading from the Q Register. .
¢. Program Correction.
d. Manual Block Transfer

PX 18

ii

Page

TABLE OF CONTENTS (cont.)

Page

PX 40 CODING FOR THE COMPUTER
1. Summary of Machine Characteristics 1
2. Writing a Program. . . . « ¢« « ¢ o o o o o o ¢ o o o« & 7
a. Introduction . . . + & v v ¢« v ¢ 4 o 4 4 e e .. 7
Instruction Notation o e e e . 7
LOOPS. v v v v v e e e e e e s e e e e e e e e e e e e 8

b
c
d. Subroutines. . . . e X0
e. Relative Addre551ng. e |
f. Mechanics of Coding. + + « ¢ v v v v v o« o o o . 23
g. Debugging a Program. . . . « « « & ¢ ¢« « ¢« ¢« s ¢« o « . . 26
h. Operating Procedure. + v ¢« ¢« ¢« « o« « . . . 33
3. Number Notation. . . . « & ¢ ¢« ¢« v ¢ ¢ ¢« 4 o o o o o o « + . 36
a Introduction . . . « +« v 4 ¢ v ¢ v 4 4 e 4 e 4 e e . .. 36
b. Radix Conversion + ¢« 4 ¢ ¢« ¢« v & o o o o o . 37
C. Scaling. . v v v v v i v et e e e e e e e e e e e e e 4]
d. Multiple Precision ¢« ¢« ¢ ¢« ¢ ¢ ¢ o .« . 45
e. Choice of Number Notation. . . . e e e e e s e e o 4 . 45
N

4. otes on the Instructions in the Unlvac
Scientific Repertoire. . . . e 15
Operations Involving the Accumulator 1Y)
Shift Instructions . . . e e s e e s 4 e e e« . . . 48

Round Off and-Scale Down Operatlons. . 1
Accumulative Overflow. . « « « « ¢ &4 « ¢ & o o o « « « » 0l
Divide Overflow. . . + v v ¢ ¢ v & ¢ & o o o o« o o &« o o 02
Repeat Instruction . . « « ¢« ¢ « o o o o « o o « o« « « « 93

O Lo T o

PX 41 APPENDIX A - NUMBER SYSTEMS

1. General. . . e e e a4 e e s 4 s e e e e 4 e ses e e s
2. Change of Base e e e e e e e e e e e e e e e e e
a. Conversion of Integers e e e e e e e e e
b. Conversion of Fractions. . e e e e e e e e e e e e
3. Representation of Signed Numbers ., ¢« 1

O N W=

PX 42 APPENDIX B - TABLE OF POWERS OF TWO

PX 43 APPENDIX C - DECIMAL TO OCTAL CONVERSION TABLE

PX 18

iii

Figure

PX 34

PX 38

O Ul WODND

oo eN

it

PX 39

BN =
- . .

.

PX 40

LIST OF ILLUSTRATIONS

DESCRIPTION OF THE COMPUTER

Simplified Block Diagram of the Univac Scientific
General-Purpose Computer System

INPUT AND OUTPUT SYSTEMS

Photoelectric Paper Tape Reader
High-Speed Paper Tape Punch
Electric Typewriter

Card Unit, Punch Card Input/Output System .
Tabulating Card Fields, Columns, and Rows . .

An Example of Punched Card Alphabetical and

Digital Representation.
Univac Line Printer . . . o e e e e
Optional Format for Line Prlnter Output s e e s e
Write Sequence. . . . o e e e

Read Forward Backward Sequence. e e e e e
Move Forward or Backward Sequence . . .

OPERATING THE COMPUTER

Supervisory Control Panel, Overall View
Supervisory Control Panel, Center Section .
supervisory Control Panel, Right Section. . . .
Supervisory Control Panel, Left Section
CODING FOR THE COMPUTER

Programmer's Simplified Block Diagram . . .

PX 18

. 33

Page

11
13
17
18

19

. 40
. o4
. 55

56

N

INTRODUCTION

A computer is a device which is capable of (1) accepting data and instruc-
tions to perform operations on this data, (2) executing the specified opera-
tions, and (3) producing the results of the operations. More specifically, a
general-purpose digital computer is capable of executing the basic arithmetic
operations, performing internal data handling operations and logical operations,
receiving data from a source external to the computer, and transmitting data to
external media of representation. Any problem which can be solved by numerical
techniques- can be handled and solved by computer operations. The given problem
must be analyzed and resolved into a collection of smaller problems, each of
which can be solved by the application of the basic computer operations.

A general-purpose digital computer comprises electrical circuits, electronic
and maghetic devices, and an associated power supply. Data which is to be
manipulated internally is given a numerical representation, Such numbers are
represented internally by a state or a condition of a component of the computer.
Operations are performed upon the data by applying signals, effecting a change
in its condition, to the device which holds the numerically coded data. The
function assigned to such a signal is determined according to the change
effected in the condition of the component. Data manipulations are performed
by an ordered sequence of such impulses upon the components of the computer.

The instigation of these impulses, and the regulation of the order in which
they are initiated, are the functions of the control portions of a computer.

An operation (permissible to a particular computer) occurs when a portion
of control detects a directive to begin the pre-determined sequence of steps
necessary to effect the operation. Major directives (computer instructions)
are given the computer in a prescribed coded numerical form by the operator of
the computer. These directives, and the data which is to be manipulated in a
computer operation, may be set aside within the computer, temporarily or for
later use, in the storage section. When the information is needed, it is re-
called from storage and placed in the appropriate section of the computer. If
an arithmetic or logical operation is indicated, data is placed in the arith-
metic section of the computer. Here the desired manipulations of the numbers
are effected, and temporary storage for results is provided.

The input output portion of the computer consists of the components neces-
sary to provide insertion of coded data and directives into the computer

and (2) present externally the results of computations carried out by the
computer.

The power system of the computer provides regulated voltages to the four
major sections of the computer discussed above.

Discussions of computer systems have led to the establishment of a computer
"language". Certain basic terms in this language are discussed subsequently.

PX 33

STAGE -

REGISTER -

ADDRESS -

BIT -

WORD -

OPERAND -

INSTRUCT ION-

OPERATION -~
CODE

INSTRUCTION-
FUNCTION

PROGRAM -

INTRODUCTION

Electronic device which may be in unique states (conditions).
The number of the states possible to the device determines the
radix of the number system allowable to representation by the
computer., It is possible for a stage in the Univac Scientific
to have two unique stable states: a state which is assigned
to represent "0", end a state which is assigned to represent
"1". Thus, the racix of the number system used in the Univac
Scientific is two; the number system is the binary system.

A stage may receive as input electrical signals (pulses) which
set it to its "1" state, set it to its "O" state, or reverse
its present state. Signals derived from the stage indicate
the state of the stage and are interpreted as a "1" output

or a "0" output. This simple system of input and output to
and from a bi-stable stage provides a means of adding, sub-
tracting, and directly complementing binary numbers.

A quantity of stages. The regulation number of stages deter-
mines the modulus c¢f the number system allowable to representa-
tion by the computer system., The nature of a register allows
its use as a storage device for information. Frequently, other
storage devices for information are also referred to as
"registers".

A coded number which designates specifically some particular
computer register or other internal storage location or device.
Information is referenced by its address. Portions of computer
control are responsible for directing information to or from

an addressed location,

A binary digit, "0" or "1", represented in the computer by a
state of a bi-stable medium of representation,

Information coded for computer representation as a series of
bits. The normal word length is considered to be 36 bits.

A word representing coded data which is involved in computer
operations or results from computer operations.

A 36 bit word which is a coded directive to the control section
to initiate and oversee a prescribed sequence of steps neces-
sary to effect a particular arithmetic, logical, or input
output operation., Portions of a computer instruction desig-
nate the operands which are involved in, and necessary for,

the execution of the particular operation,

The coded portion of the instruction which "describes" to
computer control which particular operation is to be executed.

An explanation of what the execution of each instruction
accomplishes, with the locations specified of (1) any operands
used during this ex2cution and (2) any pertinent results de-
rived from this execution.

A sequence of coded computer instructions and necessary
operands for the solutior of a problem.

PX 33
2

INPUT OUTPUT

STORAGE

ARITHMETIC

CONTROL

i

INTRODUCTION

systems providing the means of communication between the
computer and the operator. Input and output operations
involve units of external equipment control, certain of the
computer registers, and portions of the computer control
section.

consists of devices in which information is set aside for
immediate or future use. Each storage location in the
Univac Scientific has a unique,address. FEach location in
the storage section of the computer is an arrangement of 36
bistable elements; hence, each location is capable of
storing 36 binary digits.

a section where arithmetical and logical operations are
performed and operands and results temporarily stored.

consists of components which direct the operations of the
computer.

PX 33

DESCRIPTION OF THE COMPUTER

1. GENERAL

The basic concept of the solution of a problem on a computer is presented
in the following paragraphs. First, the computer instructions and their func-
tions must be studied in order to gain a thorough understanding of the capabi-
lities and restrictions of each instruction. When this has been achieved, the
problem to be solved is reduced to a sequence of simplified steps, the arith-
metic and logical operations of which can be solved by application of the
instructions. The Univac Scientific has in its repertoire 41 instructions,
each of which is represented by 36 bits, ig5...ip. The left-most six bits of
an instruction, igs...igp, represent its operation code. The remaining 30 bits
are grouped as isg...ij5 and ijgq...ig. These bits are designated as the u
address portion and v address portion of the instruction, respectively. These
are the portions of the instruction which represent the operands (by referencing
their location in storage, for the most part) with which the operation is con-
cerned. A program is prepared by arranging the instructions in the order in
which their operations are desired. The instructions are not written in binary.
but are coded in octal, each octal digit representing three binary digits. Thus,
twelve octal digits represent an instruction; two digits represent the operation
code; five digits, the u address; and five digits, the v address. For example,
the instruction termed "Transmit Positive", whose function is in general
"Replace the information at a certain specified location v with the information
from another specified location u," is coded abstractly as 11 uv. With specific .
locations assigned to u and v, for instance, those with the numerical assign-
ments of 01000 and 00100, the instruction is written in octal as

11 01000 00100.
This represents the binary notation of
001001000001000000000000000001000000.

This instruction, as coded, directs the computer to "replace the content of
location 00100 with the content of location 01000".

When the program has been prepared, the coded list of instructions, operands,
and any other data comprising it, are prepared for "loading", i.e., entrance
into the computer. An input procedure results in the program being stored in
the computer at a series of consecutive locations, the first of which must be
specified during the input procedure. Each instruction and operand which was
coded as a 12 octal digit number is stored at an individual location as a 36
binary digit number. Operands referenced by instructions must be stored at the
address specified by the instruction. For instance, the information to be
transferred from one location to another by the Transmit Positive instruction,
coded as 11 01000 00100, must actually be in storage at the location addressed
as 01000. During its execution, a program is usually in storage in a "rapid

PX 34

DESCRIPTION OF THE COMPUTER

access" (high speed) type of storage, but it may or may not be placed there
initially during the loading process. FRapid access storage allows the fastest
possible execution of a program since it provides the quickest acquisition of
a word from storage when it is needed.

The order in which the instructions are taken from storage and executed is
regulated by the computer control section. Instructions are chosen for execu-
tion according to the content of a 15-bit register in the control section.

This register holds the storage address of the instruction to be executed. To
start the execution of a program, the address of the instruction to be first
executed is placed in this register. A controlled series of electrical impulses
then (1) "review" the state of the components of the register, determining its
content, (2) direct the process of referencing this location, (3) detect the
information stored at this address, and (4) transfer it to a 36-bit register in
control reserved for holding an ingtruction during its execution. An instruc-
tion remains in this register until it is replaced by the instruction to be
executed next. The address of this instruction is again taken from the 15-bit
address register. This 15-bit control register has a "counting" facility.
Normally, the number represented ir the register is advanced by one after each
reference to storage is made. This procedure results in the automatic acquisi-
tion of instructions for execution from consecutive storage locations.

The presence of the 36 bits of an instruction in the control register re-
served for it, authorizes and enables control to direct the execution of the
instruction, The particular state of the six left-most stages of the register
(those holding the operation code of the instruction) allows a certain sequence
of pulses to be released to a portion of the control circuitry. Each pulse in
this sequence initiates a series of pre-determined operations. The particular
series inaugurated depends upon the combination of bits comprising the opera-
tion code. When, during the series of operations, the information at the
u or v addressed portion of the instruction is needed, a review occurs of the
states of the stages 29 through 15, or 14 through O, of the register holding
the instruction. The process then is to determine this address, reference it,
and transfer the data from this location to the register where the data is
needed.

All computer operations depend primarily on sequences of pulses originating
in the control section. The pulses are issued regularly from a "clock source"
at the rate of one every two microseconds. Their release, and the time of their
release, to various portions of the control section and to other sections of
the computer depends upon the current status of computer operation. This
conditional initiation of any sort of a computer operation effects an orderly
progression of the steps involved in the execution of an instruction and a
series of instructions,

The basic functional make-up of the Univac Scientific General-Purpose Com-
puter System is illustrated in Figure 1 in which the major sections, input
output, arithmetic, storage, and coatrol are delineated. A brief discussion of
some of the components of the storage, arithmetic, and control sections follows
in the subsequent paragraphs. A discussion of the input output systems is found
later in the text.

PX 34

DESCRIPTION OF THE COMPUTER

A

X REGISTER

ELECTRIC HIGH SPEED PHOTOELECTRIC 'NgSI“§3¥§UT
TYPEWRITER PUNCH TAPE READER EQUIPMENT
TYPEWRITER HIGH SPEED INPUT OUTPUT INPUT OUTPUT

REGISTER PUNCH REGISTER REGISTER A REGISTER B

ACCUMULATOR Q REGISTER

MAGNETIC CORE

MAGNETIC DRUM

7T

A

CONTROL

OUTPUT

} INPUT
SYSTEMS

ARITH-
METIC

STORAGE

CONTROL

Solid lines connecting blocks indicate the routing of binary information,
Dashed lines carry binary information used for storage reference purposes,

Information may be routed in both directions unless arrows on a line indicate
a one-way transfer,

Lines which carry control signals between the above blocks are not shown

on this diagram,

Figure 1,

Simplified Block Diagram of the Univac Scientific
General-Purpose Computer System
PX 34
3

DESCRIPTION OF THE COMPUTER

2. PRINCIPAL REGISTERS

A large quantity of registers, providing static storage of information, is
necessary in the computer to facilitate the enumerable computer operations.
The number of stages comprising a register depends upon the function that is
served by the register. For instance, a register intended to hold a computer
instruction consists of 36 stages; a register intended to hold a 15 binary
digit address consists of 15 stages. Operations which use in some fashion the
content of a register affect all the stages of the register simultaneously.
This is described as the "parallel mode" of operation, as opposed to the "serial
mode". In the serial mode of operation any sampling, setting, or reversing the
states of the stages of a register, proceeds cyclicly one stage at a time.

In addition to the various control registers which are involved in the
execution of an instruction, there are three other principal registers which
are involved quite frequently. These registers are listed below.

a. X REGISTER. - The X Register is used during the execution of any
instruction whose u or v address references an addressable location,
The information addressed by u or v is transmitted from its location
to the X Register, and from “he X Register to the desired position in
the computer. Thus the X Register serves as a transmission register
for most internal routing of information. 1In addition the X Register
functions as a component of the arithmetic section of the computer.
For the corresponding arithmetic register, the X Register holds the
addend, subtrahend, multiplicand, and divisor.

In general, the X Register, abbreviated as X, is a 36-stage register
capable of temporary storage of 36 bits of information.

b. Q REGISTER. - The Q Register functions as a component of the arithmetic
section and also serves as an addressable storage device. The
Register, designated as Q, comprises 36 stages, affording temporary
storage to 36 bits of information.

For the corresponding arithmetic operations, the Q Register holds the
multiplier, quotient, and logical multiplier. The Q Register derives
its nomenclature from the use of this register for the assembly of the
quotient during a divide operation.

The Q Register has "shift lert" with "end-around shift" facilities.
When a "shift left once" operation is completed, each stage of the
register is in the state which was reflected by the stage immediately
to the right of it before the operation began., The right-most stage
of the register is set to the state of the left-most stage. In other
words, the binary digits held in a register are displaced to the left,
as many places as is specified by the shift operation, with the left-
most bit being shifted in a circular fashion to the right end of the
register.

c. ACCUMULATOR. - The Accumulator functions as a component of the arith-

metic section and also serves as an addressable storage device. The
Accumulator, referred to by the letter A, comprises 72 stages,

PX 3

4

DESCRIPTION OF THE COMPUTER

affording temporary storage to 72 bits of information. Because the
Accumulator is capable of holding twice the number of bits of an
ordinary storage register, it is often referred to as a "double-length"
register. The left-most 36 stages of the Accumulator are referred to
collectively as Ap,; the right-most 36, as Ag.

For the corresponding arithmetic operations, the Accumulator holds the
sum, difference, product, dividend, and (at the end of a divide opera-
tion) remainder. The Accumulator derives its nomenclature from the use
of this register for the accumulation of sums. The double length
feature of this register allows the formation of sums of more than 36
bits. It also allows the formation of the full product of any two

36 bit numbers, regardless of their numerical value; and conversely,

it allows the formation of a quotient whose numerical value is the
greatest possible (in absolute value) to represent in a 36-bit register.

The Accumulator also has the "circular shift left" property described

for the Q Register. The 72 bits held in the register are displaced to
the left, as many places as is specified by the shift operation, with

the left-most bit being shifted in a circular fashion to the right end
of the register,

The contents of a register, i.e., the bits represented by the states of its
stages, is designated by enclosing the symbol for the register in parenthesis.
For example, the 36-bit content of the X Register is denoted as (X); the con-
tent of the 36 right-hand stages of the Accumulator is denoted as (AR).

3. STORAGE DEVICES

The information which is held in storage consists of instructions which are
to be executed and the operands needed by these instructions for their execution.
The location of each instruction or operand is referred to as its "address".

a. ADDRESSED STORAGE LOCATIONS. - There are four classes of storage loca-
tions which are individually addressed: Magnetic Drum Storage, MD; Magnetic
Core Storage System, MCS; the Accumulator, A; and the Q Register, Q. These
classes have the following addresses assigned to them:

Storage Class Octal Equivalents Storage Space:

of Addresses Number of Words
MCS-0 00000-07777 4096
MCS-1 10000-17777 4096 optional
MCS-2 20000-27777 4096 optional
Illegal Addresses 30000-30777
Q 31000-31777 1
A 32000-37777 1 double length

MD (Group 4)
MD (Group 5)
MD (Group 6)
MD (Group 7)

40000-47777
50000-57777
60000-67777
70000-77777

PX 34

4096
4096
4096
4096

DESCRIPTICN OF THE COMPUTER

The banks of Magnetic Core Storagye, MCS-1 and MCS-2, are optional to the
computer system. If this storage is not provided, the addresses assigned to
MCS-1 and/or MCS-2 are illegal addresses,

Additional storage, in which the information is not individually addressed,
is provided by up to ten Uniservo magnetic tape units.

Information is acquired from storage in MCS, MD, A, or Q by first deter-
mining the storage class of the address of the instruction or operand desired.
Following this, the address is transmitted to the locating control of the proper
storage class where the specific storage location is found (if the storage class
is MC or MD). Then the information at this location is transmitted to the
X Register. Operations of this kind are referred to as "reading" operations.
"Writing" operations, or the transfer of information to a storage location, are
accomplished in a similar manner with the information in the X Register being
placed at a storage address as located by the control circuitry,

b. MAGNETIC DRUM STORAGE SYSTEM (MD). - The Magnetic Drum Storage System
provides medium-access binary storage. Digital information is stored in the
form of magnetized areas on the surface of a continuously rotating cylinder
called a magnetic drum. The medium of storage is a magnetized bipole having
either of two polarity orientations in the lateral (or peripheral) direction.
For all practical purposes, information recorded on the drum is stored per-
manently. It may, however, be removed by special erase techniques, or it may
be replaced by simply writing new information over it. Reading from the drum
does not in any way alter the contents of the location read.

Each individual storage location is identified by specifying its angular
and axial coordinates on the drum surface. The 36 bits of a word are stored at
36 individual axial positions on the drum. A drum group has angular storage
space available in normal drum operation for 4096 36-bit words. A total of
four drum groups results in an MD storage capacity of 16,384 words. When a
word or a portion of a word is to be transmitted to or from the magnetic drum,
all the bits to be transmitted are handled simultaneously, i.e., in parallel.
Information may be recorded or read in .any given area only once during each
drum revolution, resulting in a maximum access time of 34 milliseconds.

The first octal digit of an MD address (4, 5, 6, or 7) specifies the drum
group or axial location of a word. The remaining four octal digits specify the
angular address (O through 7777 octal) of the word in the designated group.

The angular locations during a revolution of the drum are counted and recorded
by the Angular Index Counter. An MD reference made during a computer operation
is translated according to a chosen "interlace", and held in an address inter-
lace chassis. When coincidence is detected between these two MD addresses, the
reading or writing operation occurs. According to the pre-selected interlace,
the reading or writing occurs at a regulated interval from the actual drum
location originally referenced. Interlaces of 4, 8, 16, 32, or 64 are available.
The address held in the address interlace chassis is the modular product (in
binary) of the angular portion of the MD address referenced, and the power of
two specified by the interlace. If an interlace of four is chosen, coincidence
occurs between consecutive MD references and the address of every fourth MD
location, etc. For example, if an interlace of eight is chosen, an MD reference
listed below in the left-hand column results in the selection of the MD location

PX 34
6

DESCRIPTION OF THE COMPUTER

listed below in the right-hand column.

Original Reference As held in the
Address_Interlace Chassis

40000 40000

40001 40010
40002 40020
40777 47770
41000 40001
41001 40011
41777 47771
47000 40007
47001 40017
47777 47777

The variable interlace system allows the selection of the minimum computer
time for consecutive MD read and write operations. The time required for one
drum revolution is 34 milliseconds. Thus, the time which elapses between the
positioning of physically adjacent drum locations for read or write operations
is approximately eight microseconds. An interlace of "1" would mean that
references to two consecutive MD addresses would have to be made in less than
eight microseconds for the drum to be properly positioned for the second read
or write operation before a complete drum revolution has ensued. If the
references are made in less than 32 microseconds, a four interlace effects the
minimum time possible for the MD read or write operations. The interlace which
is in effect is indicated by an illuminated light on the upper right section of
the Supervisory Control Panel of the computer.

The preceding paragraphs were written with the normally addressable MD
storage locations in mind. Each drum group has, in addition to the previously
mentioned 4096 locations for storage,a "reserve space" of 160 locations which
are not normally addressable. Communication is established with these locations,
and broken with the rest of the drum locations, by setting the NORMAL/ABNORMAL
DRUM switch on the lower right section of the Supervisory Control Panel to
ABNORMAL. This will allow the detection of coincidence with reserve space loca-
tions zero through 0237 (octal). When the normally addressed portion of the
drum is in position for reading or writing, the Angular Index Counter counts
from zero to 7777 (octal) but no coincidence tests are made. When the reserve

PX 34

7

DESCRIPTION OF THE COMPUTER

space on the drum is in position for reading or writing, the Angular Index
Counter counts from zero to 0237 (octal) and checks for coincidence with
addresses in the address interlace chassis. The MD references made for
Abnormal drum reading or writing musti be properly coded so that their form in
the interlace chassis will be octal --0000 through -0237., (The first octal digit
may be 4, 5, 6, or 7 depending upon the drum group to be addressed.)

c. MAGNETIC CORE STORAGE SYSTEM (MCS). - kach bank of the Magnetic Core
Storage System provides rapid-access storage for 4096 36-bit words. Each core
is a bistable element capable of storing a "1" or a "O", dependent upon the
direction of magnetization of the core. The cores are arranged in a 64 x 64
matrix with 36 such matrices. The 36 digits of a given word are represented
by the state of 36 corresponding cores, one in each of the 36 matrices. Reading
and writing operations of a word, or portion of a word, are performed in a
parallel mode with a simultaneous transmission of bits. Certain sequences of
pulses on wires through the cores, producing magnetizing forces of a certain
polarity, are used to perform the reading and writing operations. Reading
from MC does not in any way alter the contents of the location read.

Magnetic Core Storage is non-volatile; comparable to non-volatile storage
in the Magnetic Drum Storage System.

d. A AND Q AS STORAGE MEDIA. - The Accumulator and Q Register are available
as temporary storage registers since they may be addressed. The Q Register is
normally addressed as octal 31000 al:hough any of the addresses 31000-31777 are
permissible. Similarly, the Accumulator is normally addressed as 32000 with the
addresses 32000-37777 being permissible.

4. CONIROL COMPONENTS.

Each of the function groupings of the computer, input and output, storage,
and arithmetic, has individual control systems which direct the operations of
the section under their influence., These control systems are in turn directed
in their operations by the main computer control. This overall influence
exerted by computer control is necessary for time-wise reasons: an established
sequence of internal actions is essential for the processing of any coded in-
formation, The computer control initiates and superintends these patterns of
actions during their performance.

The main control section receives the instructions which the computer is
to carry out; it interprets them, and directs their execution with the operands
specified. The computer must be manually started, but can be either automati-
cally or manually stopped. (In addition to being automatically controlled by a
program of instructions, the computer can be manually controlled from the
Supervisory Control Panel which contains all the necessary controls and indica-
tors for manually operating the equipment.)

The principal components of the control section are as follows.

a. PROGRAM ADDRESS COUNTER. - The Program Address Counter, PAK, is a 15-
stage additive register. During computation PAK generates the consecutive
addresses of the programmed instructions to be executed. The address in PAK is
normally referred to each time an instruction word is to be obtained from the

PX 34
6

DESCRIPTION OF THE COMPUTER

computer memory. The starting address for a computation may be manually in-
serted into PAK before the START (operation) button is pushed. If this is done,
computation will begin by picking up the instruction stored at that address.
If PAK is not manually pre-set, it will automatically be set to MD address
40000, During the normal termination of an instruction, the next instruction
to be executed (the address of which is held at that time in PAK) is extracted
from storage; and the content of PAK is advanced by one. Thus, during the
termination of the instruction at address y, the instruction at y + 1 (the
address held in PAK) is extracted from storage, and PAK is advanced to y + 2.
If the instruction at address y indicated that the sequential acquisition of
instructions be disrupted by a jump to an instruction not stored at a consecu-
tive address, this instruction's address is inserted into PAK previous to the
termination operations.

The program interrupt feature of the Univac Scientific, discussed in a
later paragraph, interrupts the normal process of acquiring the address of the
next instruction from PAK.

The generation of consecutive binary numbers in PAK is restricted by the
following conditions in its physical structure. There is no communication
between the stages PAK12 and PAKj) unless the stage PAK;4 contains a value of
one. Thus, PAKjo will not be affected by the advance of PAK after the contents
of PAKj; ... PAKy reach the value of 212_1 (7777 octal). The next advance of
PAK, after such a value is reached, results in the contents of the stages
PAK11 ... PAKp being changed to zeroes. If PAKj4 does contain a one, the con-
tents of PAK may be increased until the contents of PAKj3 ... PAKy reach the
value of 214-1. Then, since there is no communication between the stages
PAK13 ... PAKg being changed to zeros with the value of one being left un-
“disturbed in PAKj4. This "closed loop" system effects the generation of succes-
sive MCS addresses in PAK as follows: the addresses of each bank of MC can be
advanced to (octal) -7777, with the next advance of PAK resulting in its con-
tents becoming (octal) -0000. If any of the Magnetic Drum addresses, regardless
of the group, are represented in PAK, the addresses can be generated consecu-
tively to 77777 with the next advance of PAK resulting in its contents becoming
40000,

b. PROGRAM CONTROL REGISTERS. - The Program Control Registers, PCR, receive
each instruction and temporarily store it during its execution. The registers
consist of the Main Control Register, MCR, the U Address Counter, UAK, and the
V Address Counter, VAK. Each instruction sent to PCR consists of a 6-bit opera-
tion code which is stored in MCR, a 15-bit u address portion which is stored in
UAK, and a 15-bit v address portion which is stored in VAK. Each instruction is
obtained from some 36-bit storage location as specified by the Program Address
Counter, PAK. The physical structures of UAK and VAK are similar to that of
PAK. An additional restriction on the generation of consecutive binary numbers
in UAK and VAK is as follows. If an A or Q address is in UAK or VAK, it is
not possible to advance the content of the stages zero through eight of UAK or
VAK beyond 29-1 (octal 777), Thus, A or Q addresses are generated from octal
32000 to 32777 to 32000 and from octal 31000 to 31777 to 31000, respectively.
The generation of consecutive MC and MD addresses is the same as in PAK.

¢. MASTER CLOCK. - All the activities which take place within the computer,
except for certain ones in the output sections, are synchronized by a central
PX 34
9

DESCRIPTION OF THE COMPUTER

timing system, called the Master Clock. During NORMAL computer operation, the
clock generates 500 kc clock pulses based on timing pulses from the Magnetic
Drum Storage System, and after exerting certain controlling influences over

them, supplies them to circuits throughout the computer. During TEST operations,
a 500 kc oscillator may be used instead of the drum as the basic source of
timing pulses.

d. MAIN PULSE DISTRIBUTOR. - The Main Pulse Distributor, MPD, receives
clock pulses and distributes them in sequences of from four to eight pulses to
the Command Timing Circuits. The distributor supplies each of the pulses
sequentially on its eight output lines. 1In an eight pulse cycle, all of the
output lines are used, and the pulses are designated, in the order of their
generation, MPO through MP7. The selection of a particular cycle is made on
the basis of the operation code held in the Main Control Register, MCR. Each
code selects the sequence which will permit the performance of the generation
in the least possible time.

e. MAIN CONTROL TRANSLATOR. - The principal translator of the Main Control
Translator, MCT, receives a 6-bit operation code from the Main Control Register
and produces accordingly a single operation code "enable". In the Command
Timing Circuits, the enable from MC is used in the selection of the sequence
of commands which are needed to execute the instruction currently in the Main
Control Register. 1In the Main Pulse Distributor, the MCT enable is used in the
selection of the sequence of main pulses required for the operation.

f. COMMAND TIMING CIRCUITS. - The Command Timing Circuits, CTC, produce a
discrete sequence of commands which execute the specified operation. The com-
mands initiated are chosen by combining the operation code enable from the Main
Control Translator and the pulse cycle received from the Main Pulse Distributor.
A pulse cycle consists of two or more of the pulses MPO through MP5, and MP6
and MP7. It initiates the commands which execute the operation on pulses MPO
through MP5; reads the instruction to be executed next from storage into the
X Register on MP6; then transfers the instruction from X to PCR on MP7.

g. PROGRAM INTERRUPT CONTROL. - An interrupt selection interferes with the
execution of the normal termination commands occurring on MP6., The normal
termination commands take the address of the next instruction to be executed
from PAK and then advance PAK. With the interrupt in effect, the address 00002
in Rapid Access Storage, F3, is chosen as the address of the next instruction
to be executed. This instruction is read from storage to the X Register. On
MPT the normal transfer of the content of X to PCR is made. This puts the
instruction at Fg in position for execution and leaves the address in PAK un-
disturbed. Thus, for example, if the interrupt becomes effective during the
execution of an instruction at address y, the address y + 1 in PAK (or u or v
if the instruction being executed calls for a jump) is undisturbed during MP6,
and (Fg) is taken as the next instruction. By appropriate programming, the
content of PAK may be inserted in a temporary storage location and later re-
ferred to in such a way as to return operation to the instruction stored at the
address in PAK,

The selection of an interrupt is effective only on an MP6 generated during
the normal termination commands. This means that the selection of an interrupt
during the repeated execution of an instruction is not effective until the

PX 34

10

DESCRIPTION OF THE COMPUTER

repeating is brought to a conclusion, either by the execution of the instruction
n times or by the occurrence of a jump. (This is discussed in more detail under
the Repeat instruction, Sequential Presentation of Instructions section.) The
interrupt selection may be made manually from the Supervisory Control Panel or
as a function of input output operations. Selecting an interrupt option during
input output operations is discussed later in the Input Output section.

Briefly, an interrupt selection may be made for input output operations by
appropriate programming or a manual setting on the piece of external equipment
involved.

5. REPRESENTATION OF NUMERICAL VALUES

The bi-stable characteristic of the elements of the computer dictates the
use of binary number notation in the representation of information. However,
the computer cannot determine whether an array of bits is an instruction,
data with numerical value, or data coded in some arbitrary fashion. If an
array of digits is confronted in a register normally reserved for holding an
instruction, the computer will try to treat it as an instruction; if an array
of bits is confronted in an arithmetic operation, the computer will deal with
it as having numerical value.

The computer treatment of an array of bits in arithmetic operations assumes
the assignment of a numerical value to the bits as follows: the left-most bit
of an array determines the sign of the number; a "1" designates a negative
value; a "O" designates a positive value. The remaining bits of the array
determine the absolute value of the number.

One's complement notation is used for expressing the negative of a quantity.
The one's complement of a binary digit is the digit subtracted from the value
of one, The one's complement of a digit represented by the state of a bi-stable
element is formed by merely reversing the state of the element. In a number
system which includes all the possible combinations of "0's" and "1's" from
000 ... 000 to 111 ... 111, positive quantities are represented by the combina-
tions in which the left-most bit is zero, 000 ... 000 to Oll ... 111. The
negatives of these quantities are represented by their one's complement, the
combinations in which the left-most bit is one, 111 ... 111 to 100 ... 000.
This left-most bit is termed the sign-bit of the number.

The bits representing a number are held in an arrangement of bi-stable
elements, such as the stages of a register. The designation of the left-most
element of k elements is given the subscript k-1; the designation of the
adjacent element is given the subscript k-2; and continuing to the right, the
designation of the right-most element is given the subscript 0. For example,
the 36 stages of the Q Register are designated as Q35, Q34, ..., QI, Qg In
general, the stage Sig_j of a k stage register holds the sign bit of a number,
and the absolute value of the number is determined by the contents of
stages Sg-2,++++9g. . If the sign bit is "0", the bits in stages Sk-2,...,5p
are the coefficients a; of a binary number ak-22K-2 + ap_s2k-3 +...a121 + a(20;
If the sign bit is "1", the one's complement of the bits in stages Sk-2,...,5g
are the coefficients of the absolute value of the number. (The term "most
significant bit" is given to the first digit from the left which differs from
the digits to its left.) The values possible to represent in k bi-stable
elements are in the range with the limits of + (2k-1-1), inclusive. In a

PX 34

11

DESCRIPTION OF THE COMPUTER

36 stage register, the limits are #(235-1); in the 72-stage Accumulator, the
limits are +(271-1). The modulus of a number system represented by k stages is
2k, However, if "plus zero" and "minus zero" are treated as a unique quantity,
as is the case in the Univac Scientific, the modulus is ok_j,

The assumption of the binary point to the right of the right-most bit means
that all numbers are considered as integers. This does not mean, however, that
numerical operations are restricted to integers only or_to integers in these
ranges. A binary number s may be expressed as s = s12s2. If sy and s2 may be
expressed as integers with values in the range appropriate for their placement
in the computer, sj and so may represent in the computer the number s. Numeri-
cal operations involving s and t (t = t,2t2) are performed machine-wise by the
proper arithmetical procedures involving sj and tj,- and s2 and t2. Fractions
may be represented machine-wise by integra] values of s; and sg; so being
negative. If s is scaled to its maximum Iepresentatlon by 36 bits such that
239 >|s1]2 234, the number s is said to be "normalized".

To summarize the preceding discussion, numerical quantities, represented
in the computer by k bi-stable elements, are integers of a binary number system.
A negative number N of this system is represented in one's complement notation
as 2k-1 - |N| . The range of integers I possible to represent in a 36 stage
register is
1-2355 15235 -4

in the 72-stage Accumulator,
. 1-271= =271 _p,

6. ARITHMETIC OPERATIONS.

a. GENERAL. - The modulus of the one's complement blnary system as
involved in arithmetic operations in :he computer, is 2K-1 where k is the
number of stages in the registers involved in the operations. If the registers
involved in the operations consist of 36 stages, the modulus of the number system
is 296_1, If the Accumulator is 1nvolved in the operations, the modulus of the
system is 272_1. This modulus of 2K-1 (instead of 2K) results from the genera-
tion during arithmetic operations of & unique representation of zero, i.e.,
each bi-stable element in the "O" state. The generation of a negative zero
representation, i.e., each bi-stable element in the "1" state, is not possible.

When an instruction necessitates the transmittal to the Accumulator of a
36-bit integer, the conditions are es1ab11§hed during the operation that change
the modulus of the integer from 236-1 to 2/2-1. This is effected by assuming
the existence of 36 bits to the left of the sign-bit. This "72-bit" integer
is then transmitted to the Accumulatoxr. The final modular contents of A re-
flects the value of the "72-bit" integer according to the nature of the trans-
mitting operation. If it is desired that the one's complement signed value of
the 36-bit integer be retained, the operation assumes that each of the simulated
36 left-hand bits has the value of the sign bit. Such an extension of a 36-bit
number is designated as a double length extension, D(L), where L is the location
address of the 36-bit number and (L) is the content of that address. If it is
desired that the value of the machine expression of the 36-bit integer be left
undisturbed by the transmitting operation, the value of the sign-bit of (L) is
disregarded, and the assumption is macle that 36 zeroes exist to the left of the
sign-bit of the number. This "72-bit" number is designated as S(L), a split
double-length extension.

X 34

12

DESCRIPTION OF THE COMPUTER

When one of the above transmissions to the Accumulator is required, the 36-
bit integer is first placed in the X register (by the operations of whichever
instruction is being executed). (The only means of information transfer to or
from A is via X.) Then, according to the instruction being executed, a machine
sequence is performed which adds or subtracts one of the double length exten-
sions to or from the content of the Accumulator.

Most of the arithmetic operations in the computer are accomplished by com-
binations of such computer commands as listed below. The commands themselves,
which are internal computer directives, are instigated as the result of computer
control interpreting a particular instruction operation code. Some of the more
commonly used commands are as follows:

Clear X
Complement X

Clear Q
Shift Q

Clear A
Clear AR
Clear Ap,
Shift A

Commands which direct transmissions between X, Q, and A

A series of subcommands which in different combinations accomplish the
following:

Add D(X) to A

Subtract D(X) from A

Split Add X to A, i.e., Add S(X) to A

Split Subtract X from A, i.e., Subtract S(X) from A

(1) CLEAR X, Q, OR A. - Commands which direct the clearance of any
register result in each stage of the register being set to its
zero state.

(2) COMPLEMENT X. - The command which directs the complementation of
the content of the X Register reverses the state of each stage of
the register. The complement of the content of X is denoted as (X'}

(3) SHIFT Q OR A. - These commands effect the left shift of the bits
in the register the number of places prescribed by the instruction
and established internally in a shift counter. A shift left of k
places is equivalent to a right shift of 36-k or 72-k places. A
left shift effects a modular multiplication by a power of two.
A "right shift" is equivalent to a modular division by a power of
two. The word modular is emphasized because of the circular
shifting feature which effects the shift of the bit represented in
the left-most stage to the right-most stage.

The operations of addition and subtraction are treated subsequently.

PX 34

13

DESCRIPTION OF THE COMPUTER

b. ADDITION AND SUBTRACTION. - The fundamental arithmetic operation of
the computer is subtraction. The Accumulator is termed a subtractive Accumulator
because all additions and subtractioas are performed by a subtractive process.
The initial content of A, (A)j, is the minuend, and the final content of A,
(A)f, is the remainder. This subtractive process is used as the basis of all
arithmetic operations involving addition and subtraction. This prevents, as
the result of an arithmetic operation, the representation of zero by a one in
each stage of the Accumulator,

The process of subtraction necessitates an ability to borrow from a left-
hand digit or digits. Machine-wise this is made possible by the parallel con-
struction of the stages of the Accumulator. The end-around borrow as discussed
in Appendix A of this volume, is a feature of subtraction in the Accumulator:

a borrow propagated past the stage A7) is applied to the stage Ag.

The number to be added to, or subtracted from, the content of the Accumula-
tor is placed in the X Register. Then, according to the operation desired, a
sequence of actions occurs which leaves in the Accumulator the desired answer.
If a subtraction sequence is executed, the remainder is reflected in the final
content of the Accumulator as the initial content of the Accumulator minus one
of the double-length extensions of tlie content of X, i.e.,

()¢ = (A); - D(X)

or

(Mg = (A); - S(X).

If an addition sequence is executed, the sum is reflected in the final con-
tent of the Accumulator as the initial content of the accumulator minus the
complement of one of the double-length extensions of the content of X, i.e.,

(A)p = (A); - DX
or

(M) = (A);

;- S,

Any references in this text to the addition of a number to the Accumulator
should thus be interpreted as the process of subtracting the complement of the
number from the Accumulator.

Actually, the machine subtraction sequences use procedures of an addition
sequence after an appropriate complementation of (X).

The general procedures of the four addition and subtraction sequences are
listed below with examples of the operations given to the left. The examples
use an X Register of four stages and an Accumulator of eight stages. These
sequences use the same internal subcommands in different combinations according
to the operation desired and the content of the X Register.

PX 34

14

DESCRIPTION OF THE COMPUTER

ADD X TO A

Assume the existence of D(X)
Subtract complement of D(X) from A

SPLIT ADD X TO A

Assume the existence of S(X)
Subtract complement of S(X) from A

SUBTRACT X FROM A
Complement (X)

Assume the existence of D(X)
Subtract complement of D(X) from A

SPLIT SUBTRACT X FROM A

Assume the existence of S(X)
Complement S(X)
Subtract complement of S(X) from A

PX 34

15

(A);
(X)i
D(X)i
D(X)i'

minus
(A)f

(A)i

(X)i
S(X)4
S(X)i'

minus

borrow
(A)f

(A);
X
(X')i
D(X');
DX)i

minus

borrow
(A)f

(A);
(X)4
S(X)4
S(X)i'
[sx)i']!

minus

borrow
(A)g

] it

n i un

0000

1111
0000

0000
0000
0000

0000

0000
1111

0000
1111
0001

0001

0000

0000
1111

0000
1111
0000

0000

0000

0000
1111
0000

0000
0000
1111

1111

0110
1100
1100
0011

0110
0011
0011

0110
1100
1100
0011

0110
0011
0011

0010

0110
1100
0011
0011
1100

0110
1100
1010

1001

0110
1100
1100
0011
1100

0110
1100
1010

1001

(=+6)
(=-3)

(=+3)

(=t+6)
(=+12)

(=+18)

(=16)
(=-3)

(=49)

(=+6)

(=+12)

(=-6)

DESCRIPTION OF THE COMPUTER

¢. MULTIPLY SEQUENCE. - Multiplication performed machine-wise uses the
shifting facilities of the Accumulator and the Q Register, and the Add X to A
sequence. The execution of an instruction which orders a machine multiplica-
tion places the multiplier in the Q Register, Q, places the multiplicand in the
X Register, X, and forms the product in the Accumulator, A, The product is
formed by adding the multiplicand, or D(X) machine-wise, the appropriate number
of times, as determined by the bits of the multiplier, (Q), into the Accumulator.
The procedure is as follows.

Repeat 36 times:
1. Shift (A) left one place.
2. If the current (Q35) is 1, add D(X) to-(A).
3. Shift (Q) left one place.

The result would be the formation of the sum

{{(Q35 - D(X)) 2 + Q34 - D(X)} 24 ... 407" D(X)} 2 +Q, * DIX).

Thus, the multiplication of a number in X by a number in Q results in a sum in
the Accumulator of

(0,5) (XD 29% + (Qa) (X)) 234 4 ... () x) 20,
An example of the multiplication process follows, using four bit Q and X

registers and an eight bit Accumulator. The machine-wise formation of a sum by
complementation and subtractien is not shown.

(X) = 0011, multiplicand of decimal 3
(Q) = 0101, multiplier of decimal 5

A7 Ag A A4 A3z Ao Ay Ag Stages of A

0 0 ¢ O 0 06 0 O initial content of A

0O 0 0 O 0O 0 0 O shift (A) left

0 0 0 O 0 0 0 O shift (A) left

0 0 0 O 0 0 1 1 add D(X) to (A)

0 0 0 O 0 0 1 1

0O 0 0 O 01 10 shift (A) left

0O 0 0 O 1 1 0 O shift (A) left

0O 0 0o o 00 1 1 add D(X) to (A)

0O 0 0 O 1 1 1 1 final content of A

(product = decimal 15)
The procedures above form the product of the actual binary numbers in Q and
X. If the multiplier and multiplicand are positive, the product formed by the

process, (Q)(X), will be the desired product. If the multiplier, Mg, is nega-
tive, the content of Q is 236 - 1 - IMqI , ahd the product formed by the

PX 34

16

DESCRIPTION OF THE COMPUTER

computer i~ 236(X) - (X) - IM I(X). Since the product desired is - |Mq' x),

a correctivi. of “he product fgrmed by the computer is necessary. The correction,
-236(X) + (X), is made during the Multiply Sequence by (1), subtracting D(X)
from A before the first performance of "Shift A left one place" (providing the
correction -236(X) since a shift left of 36 places follows the subtraction);

and (2), adding D(X) to (A) after the last performance of "Shift Q left one
place"”, providing the correction +(X).

An example of multiplication with a negative multiplier is given below.

(X) = 0011, multiplicand of decimal 3

(Q) = 1010, multiplicand of decimal -5
A7AgAsA4 AgBoAqAg Stages of A
0000 0000 initial content of A
0000 0011 subtract D(X) from (A)
1111 1100
1111 1001 shift (A) left
0000 0011 add D(X) to (A)
1111 1100
1111 1001 shift (A) left
1111 0011 shift (A) left
0000 0011 add D(X) to (A)
1111 0110
1110 1101 shift (A) left
0000 0011 add D(X) to (A)
1111 0000 final content of A

(product = -15)

A multiplication with a negative multiplicand requires no correction. A
multiplication with both multiplier and multiplicand negative requires the same
correction cited above.

If the instruction being executed is such that the product of (Q) and (X)
is to be added to a number already in the Accumulator, the content of A is
shifted 36 places to the left preceding any of the multiply operations., This
positions the most significant digits of (A) in AR in readiness for the addi-
tions of the multiplicand to A and the shifting operations. Prior to the actual
multiplication operations of the Multigly Sequence, the initial content of A is
tested for the condition 271 >|(A)iE:2 0, If this is evidenced by (A)gg # (A)gy,
an A Fault is indicated on the Supervisory Control Panel, and machine operations
are stopped. This condition indicates the possibility of an "overflow" during
the Multiply Sequence, i.e., the modular sums resulting from the additions of
D(X) to (A) may reach the positive or negative value capacity of A,271 - 1 or

1 -241;__and, as tpe result of continuing additions, become a number,
sx1-27l or s=2fl _ 1, thus destroying the cumulative effect desired.
PX 34

17

DESCRIPTION OF THE COMPUTER

d, DIVIDE SEQUENCE. - The machiue process of division, as ordered by the
Divide instruction, employs the Accumulator, the X Register, and the Q Register
in such a manner that

(A)i = (X) + (Q) + (M), 0S) <[],

The 72-bit dividend is initially contained in the Accumulator; the divisor is
placed in the X Register, and the quotient. is formed in the Q Register with the
remainder of the division left in A. The division process utilizes the shifting
facilities of Q and A and the operations which add and subtract D(X) into A.

In general, the steps of the Divide Sequence are as follows.

1. Shift (A) left 36 places.

Repeat the following steps 36 times:
2. Shift (A) left once

3. Set (Qp) to zero or one

4. Add or subtract D(X) into A

5. Shift Q left one.

The operation performed in steps 3 and 4 is determined by a relationship between
appropriate digits of the dividend and divisor.

The basic principle of the Divide Sequence is as follows: decrease a pos-
tive dividend Ry the product of the divisor and descending powers of two, be-
ginning with 299, until a negative number results; increase this remainder by
the product of the divisor and successive descending powers of two until a
positive number results; decrease this number, etc. Continue this procedure
until the product of the divisor and 20 has been added or subtracted, yielding
the final remainder. Note that the product mentioned above may in itself be
positive or negative depending on the sign of the divisor. Each time a product
is subtracted, a one is inserted in the right-most stage of the Q Register and
subsequently shifted left once; and each time a product is added, the contents
of Q, as it stands, are shifted left once. After the final shifting of those
bits inserted in Q, the register will contain a correct value of the quotient
although a negative final remainder as derived above may necessitate an increase
or decrease in the value of the quotient. If the final remainder of the above
procedure is negative, the remainder is increased by the absolute value of the
divisor and the quotient adjusted accordingly by increasing or decreasing its
value by one.

The examples below illustrate the basic principle of the Divide Sequence.
The examples use four bit Q and X registers and an eight bit Accumulator. The
machine processes of shifting the bits in the Accumulator and the Q Register,
which facilitate the division machinewise, are not shown. Also, the machine-
wise formation of sums and differences by complementation and subtraction is
not shown,

PX 34

18

DESCRIPTION OF THE COMPUTER

Example 1
Dividend is 0000 1110, (A):

Divisor is 0100, (X) B

0000 1110 Dividend
010 0000 minus D(X)*2

I

3

1110 1101
0001 0000 plus D(X) -22
1111 1101
0000 1000 plus D(X) -21
0000 0110
0000 0100 minus D(x)-20
0000 0010 Remainder

In this example the quotient is derived as follows:

(=14)
(= 4)

+14
-(+32)
-18
+(+16)
-2
+(+ 8)
+ 6
-(+ 4)
+ 2

the divisor is such that

it may be subtracted from the dividend 23-22-21420 times, or in binary

1000
-0100
-0010
+0001

0011 (=3)

which is the content of the Q Register after the final shifting of the bits
inserted into it. Thus, the final results of this division are

Quotient is 0011, (Q) (=3)
Remainder is 0000 0010, (A)f (=2)

Example 2
Dividend is 0000 1110, (A)i

Divisor is 1100, (X)

0000 1110 Dividend =

1110 0111 plus D(X)-23
1111 0101 5
1111 0011 minus D(X)*2
0000 0010

1111 1001 plus D(X) -21
1111 1011

1111 1100 minus D(x)-20
1111 1110 Remainder =

In this example the quotient is derived as fgllows:

it may be subtracted from the dividend -2342

-1000
+0100
-0010
+0001
1010 (=-5)

PX 34

19

(=14)
(=-3)

+14

+(-24)

-10

-(-12)

+ 2

+(-6)

-4

-(-3)

-1

the divisor is such that

-21420 times, or in binary

DESCRIPTION OF THE COMPUTER

which is the content of the Q Register after the final shifting of the bits
inserted into it. Thus, the results of the division process thus far are

Quotient is 1010, (@) =-5)
Remainder is 1111 1110, (A) (=-1)

but, since the remainder resulting from this division is negative, the value of
the divisor is subtracted from it, and the quotient is subsequently increased
by a value of one. Thus, the final results of the division process are a

Quotient of 1011, (Q) (=-4)
Remainder of 0000 0010, (A)g (=+2)

If the dividend is negative, the procedure for dividing is essentially the
same, with the dividend being first increased to a positive number, then de-
creased, etc.

During the division sequence (but before the quotient is adjusted for a
negative remainder, if such is the case) machine divide checks are made which
determine if the value of the guotient should be an integer which would exceed
the capacity, 235 -15151-225, of the Q Register. If such is the case, an A
Fault is indicated on the Supervisory Control Panel, and the machine operations
are stopped.

Since these divide checks are made before any final adjustments to a
(negative) remainder and quotient, the division process as illustrated previously,
but with a negative dividend, could result in an inaccurate value for the
quotient if a negative remainder was left during a division in which the
quotient was 23521 or 1-299, To take care of such cases in such a way that the
division will be stopped by a divide check, an initial correction and an end
correction are made during all divisions with negative dividends. These are
illustrated by the following example in which the division without the initial
correction (which decreases the dividend by the value of the divisor) would
result in an inaccurate quotient. The division in the example below would not
be carried to completion but would be stopped, as is shown, by the occurrence
of the divide check A-Fault.

lixample 3
Dividend is 1110 1001, (A)i (=-22)
Divisor is 1100, (X) (=-3)
1110 1001 Cividend -22
1111 1100 rlus D(X),initial correction +(- 3)
1110 0110 -25
1110 0111 minus D(Xx)"23 (-24)
1111 1110 -1
1111 0011 minus D(X)-22 -(-12)
0000 1011 +11
PX 34

20

DESCRIPTION OF THE COMPUTER

In this division the process would be stopped, after the subtraction of
D(X) *22 from the previous remainder, since the quotient derived thus far
would indicate that the divisor can be subtracted from the dividend 23 + 22 +
(+21 +20) times, the value of which in all cases exceeds the value possible to
the quotient.

If this division were performed by the Divide Sequence without making the
initial correction above, it would proceed as follows:

1110 1001 Dividend -22
1110 0111 minus D(X) .23 -(-24)
0000 0010 . + 2
1111 0011 plus D(X) + 2 +(-12)
1111 0101 -10
1111 1001 minus D(X). 21 -(- 6)
1111 1011 -4
1111 1100 minus D(Xx)* 20 ~(- 3)
1111 1110 -1 .

Thus, the division indicates that the divisor can be subtracted +23--22+21+2O
(=7) times from the dividend leaving a remainder of -1. The correction to the
quotient for this negative remainder would be

0111 CQuotient, (Q) (=7)

plus 1
1000 Incorrect value of quotient (=-7) .

Thus, the final contents of the Q Register would be the number above with no
indication of the overflow of the modular value allowable to the quotient.

PX 34

21

REPERTOIRE OF INSTRUCTIONS

1. GENERAL

The logic of the Univac Scientific computer is specified as a two-address
logic. This means that two references are provided for the execution of an
operation, and an instruction to perform this operation is coded accordingly.
The references may be the addresses of operands or other instructions in
storage, the address at which a result is to be stored, or they may have a
special designation as noted subsequently,

An instruction word in the computer consists of 36 bits, ig5 ... i, with
the following composition:

Operation code, 0.C. 135...130, six bits
First execution address, u i29...1i15, 15 bits
Second execution address, v ij4...ig, 15 bits .

A programmed instruction is coded using octal notation. It is represented
by octal digits as follows:

-0.C. (ig5...i30) two octal digits
u (129...i15) five octal digits representing the bits ujg...up
v (ijg4...ig) five octal digits representing the bits vy4...vg

According to the function of the instruction, the portions u and v of the word,
represented in octal notation, may be designated as follows:

J one-digit octal number as represented by the left-most binary digits
of u, uyg, u3z, U2

n four-digit octal number as represented by the binary digits uyp,
ulO' .o uo

k number of shifts as represented by the right-most binary digits of
V, Vg, V5, ... Vi oOr in one case, as represented by the right-most

binary digits of u, Ugy U5¢ «oey Uge

The functions of the instructions in which j. n, and k occur in place of a
storage address will explain their purpose.

Following are other symbols used in the explanation of the functions of the
instructions.

PX 35

REPERTOIRI: OF INSTRUCTIONS

a. Parentheses are used to denote content(s) of, thus:

(u) = 36-bit word at address u
(Q) = 36-bit word in Q
(A) = T72-bit word in A

(Ag) = 36-bit word in Ag
(Ap) = 36-bit word in Ap

b. Lower case letters:
qnp is the bit representecd by the stage Qn,, 352n20
ap is the bit represented by the stage A,, 712n20

c. A prime denotes a complemeni; such as (Q)' is the complement of the
36-bit word in Q.

d. Double length extensions:

D(u) is a 72-bit word whose right-hand 36 bits are (u) and whose
left-hand 36 bits are all alike and equal to the left-most bit of (u).

S(u) is a 72-bit word whose right-hand 36 bits are (u) and whose
left-hand 36 bits are all zeros.

D(Q), D(X), S(Q), and S(X) are similarly defined.

: L(Q)(u) is a 72-bit word whose left-hand 36 bits are zeros and each
of whose right-hand 36 bits is determined by the bit-by-bit product of the
corresponding bits of (u) and (Q).

L(Q)'(v) is a 72-bit worc. whose left-hand 36 bits are zeros and each
of whose right-hand 36 bits is determined by the bit-by-bit product of the
corresponding bits of (v) and the complement of (Q).

2. PRESENTATION OF INSTRUCTIONS.

The listing of the Univac Scientific repertoire of instructions which
follows has the instructions groupec according to a basic similarity in their
functions or operations. The similerity may be due to the use which is made of
the u and v address portions of the instruction, or it may be because a group
of instructions uses complex interncl sequences. The instructions are presented
with their functions, octal codes, end the alphabetic notations which represent
them,

a. TRANSMISSIVE INSTRUCTIONS. - This group of instructions uses the u
address portion of the instruction ss an "acquisition" address (with one
exception), which designates the location from which information is to be
obtained. This information may then be involved in some sort of operation,
depending upon the function of the particular instruction. The v address
portion of the instruction specifies the location to which the information
from u, or the information resulting from any operation executed, is transmitted.

PX 35

2

REPERTOIRE OF INSTRUCTIONS

The original content of the location specified by u is not disturbed in any
way by the acquisition of information from the location. The original content
of the location specified by v is replaced by the information transmitted to it. .

The instructions are as follows.
1luv: TRANSMIT POSITIVE (TPuv): Replace (v) with (u).

12uv: TRANSMIT MAGNITUDE (TMuv): Replace (v) with the absolute magnitude
of (u).

13uv: TRANSMIT NEGATIVE (TNuv): Replace (v) with the complement of (u).

J5uv: TRANSMIT U ADDRESS (TUuv)‘ Replace the 15 bits of (v) designated by
(v99...v]15) with the corresponding bits of (u), leaving the remaining
21 bits of (v) undisturbed.

l6uv: TRANSMIT V ADDRESS (TVuv): Replace the right-hand 15 bits of (v)
designated by (V14...V0) with the corresponding bits of (u), leaving
the remaining 21 bits of (v) undisturbed.

22jkv: LEFT TRANSMIT (LTjkv): Left circular shift (A) by k places, k being
Uge..ug. Then replace (v) with (A;) if j = 0, or replace (v) with
(Ag) if j = 1.

35uv: ADD AND TRANSMIT (ATuv): Add D(u) to (A). Then replace (v) with
(AR)-

36uv: SUBTRACT AND TRANSMIT (STuv): Subtract D(u) from (A). Then replace
(v) with (Ap).

The first five instructions listed, TPuv, TMuv, TNuv, TUuv, and TVuv, do
not involve any of the arithmetic registers except the X Register in their
execution (unless u or v is A or Q). The information is acquired from u and
placed in X where it may or may not be manipulated according to the function of
the instruction, The desired content of X is then transmitted to the v-
addressed location, The instructions TUuv and TVuv are intended for the modi-
fication of the u and v address portions of other instructions in storage.

The remaining three instructions in the list, LTjkv, ATuv, STuv, involve
the Accumulator in their execution whether it is addressed or not. The Left
Transmit instruction provides the only means of coding a transmission directly
from A;,. Any other transmissions made from A to a 36-bit storage location take
the content of the 36-right-most stages of A, (AgR).

The sum or difference formed in the Accumulator by ATuv or STuv is not dis-
turbed by the transmission of (AR) to v. The 36-bit number stored in v may be
interpreted as a different quantity than the sum or difference left in A if
"overflow" occurred during the addition or subtraction into the sign-bit stage
Ag5. The quantity in A must be € 235-1 in absolute value if it is to reflect
the sum or difference correctly in a 36-bit storage location. If the sum or
difference is used directly from A in further operations, an overflow past
the stage Ag4q need not be disturbing. In this case, a check should be made for
an overflow past the stage A7p, i.e., the sum should be £ 2 1.1 in absolute value.

PX 35
3

REPERTOIRE OF INSTRUCTIONS

b. REPLACE INSTRUCTIONS. - This group of instructions uses the u-address
portion of the instruction as an acquisition address and later places informa-
tion back at the u-addressed location, destroying its original content. The
v-addressed portions of the instruction are used to reference operands or hold
a shift count.

The instructions are as follows.

2luv: REPLACE ADD (RAuv): Form in A the sum of D(u) and D(v). Then
replace (u) with (Ap).

23uv: REPLACE SUBTRACT (RSuv): Form in A the difference D(u) minus D(v).
Then replace (u) with (Ag).

27uv: CONTROLLED COMPLEMENT (CCuv): Replace (AR) with (u) leaving (Ap)
undisturbed. Then complement those bits of (AR) that correspond to
ones in (v). 7Then replace (u) with (Ap).

54uk: LEFT SHIFT IN A (LAuk): Replace (A) with D(u). Then left circular
shift (A) by k places and replace (u) with (AR). If u is the address
of the Accumulator, the first step is omitted, so that the initial
content of A is shifted.

55uk: LEFT SHIFT IN Q (LQuk): Replace (Q) with (u). Then left circular
shift (Q) by k places and replace (u) with (Q).

The content of A is left undisturbed by the transmission of (AR) to u as
effected by the first four instructions above. The content of Q is undisturbed
by the transmission to u during the Left Shift in Q instruction.

The sum or difference formed by RAuv or RSuv must be < 235-1 in absolute
value if the quantity stored at a 30-bit location u is to reflect the proper
value.

Note that the function of instruction CCuv may be thought of as "Replace
the content of u with the bit-by-bit. sum of (u) and (v), disregarding any
carries propagated".

¢. SPLIT INSTRUCTIONS. - The following group of instructions uses the
u address of the instruction as an @cquisition address and assumes in the X
Register the split extension of the content of the specified location. S(X)
is then added or subtracted into the accumulator after which the content of A
may be shifted. These instructions make it possible to effect a change in
(AR) without disturbing (Ap).

The instructions are as follows.

3luk: SPLIT POSITIVE ENTRY (SPuk): Form S(U) in A. Then left circular
shift (A) by k places, k being vg...vp and vy4...vy being zero.

32uk: SPLIT ADD (SAuk): Add S(u) to (A). Then left circular shift (A)
by k places, k being VbeooVg and Vige-.V7 being zero.

PX 35

REPERTOIRE OF INSTRUCTIONS

33uk: SPLIT NEGATIVE ENTRY (SNuk): Form in A the complement of S(u).
Then left circular shift (A) by k places, k being vg...vg and
Vi4e-.V7 being zero.

34uk: SPLIT SUBTRACT (SSuk): Subtract S(u) from (A). Then left circular
shift (A) by k places, k being VgeeeVy and vig...vy being zero.

d. Q-CONTROLLED INSTRUCTIONS. - These instructions use the u address as an
acquisition address and transmit to the v-addressed location the final content
of AgR. The final content of AR is effected by the content of the Q Register
which is used as a "mask™. The "1's" in the information acquired from the
u-addressed location are retained only when there are "1's" in the corresponding
stages of Q.

The instructions are:

5luv: Q-CONTROLLED TRANSMIT (QTuv): Form in A the number L(Q)(u). Then
replace (v) with (AR).

52uv; Q-CONTROLLED ADD (QAuv): Add to (A) the number L{Q)(u). Then
replace (v) with (AR).

53uv: Q-CONTROLLED SUBSTITUTE (QSuv): Form in Q the quantity L(Q)(u)
plus L(Q)'(v). Then replace (v) with (AR). This effects the re-
placement of selected bits of (v) with the corresponding bits of (u)
in those places corresponding to one's in Q,

e. SEQUENCED INSTRUCTIONS. - The following instructions use complex
sequences of computer operations.

Tluv: MULTIPLY (MPuv): Form in A the 72-bit product of (u) and (v),
leaving in Q the multiplier (u).

72uv: MULTIPLY ADD (MAuv): Add to (A) the 72-bit product of (u) and (v),
leaving in Q the multiplier (u).

73uv: DIVIDE (DVuv): Divide the 72-bit number in A by (u), putting the
quotient in Q, and leaving in A a non-negative remainder R. Then
replace (v) by (Q). The quotient and remainder are defined by:
(A)i = (u) * (Q) + R, where 0SR< |(u)l. (A); denotes the initial
content of A,

T4uv: SCALE FACTOR (SFuv); Replace (A) with D(u) (unless u is A). Then
left circular shift (A) by 36 places and continue shifting until
agq # an=. Replace the right-hand 15 bits of (v) with the number of
left circular shifts, k, which would be necessary to return (A) to
its original position.

75jnw: REPEAT (RPjnw): This instruction calls for the next instruction,
which will be called NIuv, to be executed n times, its "u" and "v"
addresses being modified or not according to the value of j. Nor-
mally n executions are made and the program is continued by the
execution of the instruction stored at a fixed address Fj, 00000 or

40001. The procedure is:
PX 35

5

REPERTOIRE OF INSTRUCTIONS

(1) Replace the right-hand 15 bits of (Fj) with the address w

(2) Execute NIuv, the next instruction in the program n times

(3) If j =0, do not change u and v
If j =1, add one to v after each execution
If j =2, add one to u after each execution
If j =3, add one to u and v after each execution,

(4) On completing n executions, take (Fj) as the next instructioen,

(5) If the repeated instruction is a jump or stop instruction, the
occurrence of a jump or stop terminates the repetition. In addi-
tion, if NIuv is a Threshold Jump or an Equality Jump, and the
jump to address v occurs, (Q) is replaced by the quantity, j,
n-r where r is the number of executions that has taken place.

The instructions MPuv and MAuv use the Multiply Sequence explained in the
section General Description, Arithmetic Operations. Note the overflow indica-
tion feature of the Multiply Add instruction, If an overflow (into the sign-
bit stage, A71) of the sum of the product of u and v and the current content
of A 1is possible, a computer fault is incurred. The computer fault is indi-
cated by the illumination of a light on the Supervisory Control Panel.

The Divide instruction uses the Divide Sequence, also explained in the
section General Description, Arithmetic Operations.

The Scale Factor instruction is useful in "normalizing" a number, i.e.,
scaling a number to its maximum representation in 36 stages so that the most
significant bit is held in the stage adjacent to the stage holding the sign bit,

The Repeat instruction is an extremely useful feature of the computer.
Consider, for example, its effectiveness in performing a "block" transfer, i.e.,
the transfer of a group of words from their storage at one set of consecutive
locations to another set of consecutive locations. The instruction Transmit
Positive (TPuv) causes the word at address u to be transmitted to address v.
The simple two-instruction routine

RP 3,n w Transfer n words (uj)—= vy,
TP uy "1} (w2) =+>va, ooy (Uy) —= vy

effects a block transfer of n words from register uj through u, to registers
vy through v,. If the transmission are from registers u; in Magnetic Drum
Storage to registers vi in Rapid /fccess Storage, the transfer rate is about
31,000 words per second.

Another example of the effectiveness of the Repeat instruction is provided
by its use preceding a Multiply Acdd instruction to form the product accumulation
of a by + a9 by + ag bg + a, by.

f. ONE-WAY CONDITIONAL JUMP INSTRUCTIONS. - These instructions acquire a
word from the location specified by the u address and, if a condition involving
this word is satisfied, effect a jump to the instruction at the location speci-
fied by the v address.

Px 35

6

REPERTOIRE OF INSTRUCTIONS

The instructions are as follows.

4luv: INDEX JUMP (IJuv): Form in A the difference D(u) minus one. Then
if a7; is one, continue the present sequence of instructions; if a7
is zero, replace (u) with (AR) and take (v) as NI.

42uv: THRESHOLD JUMP (TJuv): If D(u) is greater than (A), take (v) as NI;
if not, continue the present sequence. In either case, leave (A) in
its initial state.

43uv: EQUALITY JUMP (EJuv): If D(u) equals (A), take (v) as NI; if not,
continue the present sequence, In either case leave (A) in its
initial state.

Note- that a positive quantity acquired from u by the Index Jump instruction,
and decreased by the value of one, is returned to storage in u until the quan-
tity becomes negative. This provides a means of "counting", and (u) is some-
times referred to as a "counter". This feature is extremely useful in perfor-
ming an iterative cycle which is to be repeated a prescribed number of times.

The instructions TJuv and EJuv are made more useful by the feature which
leaves the content of A in its initial state after the comparison tests are made.

g. TWO-WAY CONDITIONAL JUMP INSTRUCTIONS. - These instructions use both the
- u- and v-addressed portions of the instruction to specify an instruction to he
executed next, The direction of the jump depends on the condition of a quantity
which is tested in the Accumulator or the Q Register. Since either the u and
v address is available to be used as an acquisition address, the quantity must
be placed in A or Q previous to the execution of one of these jump instructions.

These instructions are ts follows,

44uv: Q JUMP (QJuv): If qg5 is one, take (u) as NI; if qgs is zero, take
(v) as NI, Then, in either case, left circular shift (Q) by one
place.

46uv: SIGN JUMP (SJuv): If a7, is one, take (u) as NI; if azy is zero,
take (v) gas NI.

4Tuv: ZERO JUMP (ZJuv): If (A) is not zero, take (u) as NI; if (A) is
zero, take (v) as NI,

Note that a zero condition (of d35: a7y, OF the content of A) always causes
a jump to the v-addressed instruction.

h. ONE-WAY UNCONDITIONAL JUMP INSTRUCTIONS. - This group of instructions
does not depend upon some condition being satisfied by a machine word to cause
a jump.

The instructions are as follows.

14--: INTERPRET (IP--): Let Y represent the address from which CI was
obtained. Replace the right-hand 15 bits of (Fy) with the quantity
Y + 1. Then take (F2) as NI.

PX 35

7

REPERTOIRE OF INSTRUCTIONS

37uv: RETURN JUMP (RJuv): Let y represent the address from which CI was
obtained. Replace the right-hand 15 bits of (u) with the quantity
y + 1. Then take (v) as NI.

45jv: MANUALLY SELECTIVE JUMP (MJjv): If the number j is O, take (v) as
NI. If j is 1, 2, or 3, and the correspondingly numbered MJ
selecting switch on the control panel is set to "jump", take (v) as
NI; if this switch is not set to "jump", continue the present
sequence.

Note that the jump instituted by the Manual Jump instruction with a j of
1, 2, or 3 is conditional with regard to a manual selection.

The Return Jump instruction provides a means of (1) interrupting the
sequence of instructions being executed currently and (2) returning to this
sequence after jumping out of it. This is effected if the instruction at u is
a Manual Jump instruction, and it is executed at some time following the execu-
tion of the instruction at v,

The execution of the Interpret instruction is equivalent to executing a
Return Jump with u = Fy and v = Fo.

i. EXTERNAL EQUIPMENT INSTRUCT.(ONS., - The following instructions provide
for input to and output from the coriputer. Input information is transmitted to
the location specified by the v address of an input instruction; during output
operations, the information to be transmitted to external equipment is acquired
from the v-addressed location. The use of these instructions is explained in
detail in the section of this volume, Input and Output Systems.

The instructions are as follows.

61-v: PRINT (PR-v): Replace (TWR) with the right-hand six bits of (v).
Cause the typewriter to perform the operation specified by the 6-bit
code.

63jv: PUNCH (PUjv): Replace (HPR) with the right-hand six bits of (v).
Cause the punch to respond to (HPR). If j = O, omit seventh level
hole, if j = 1, include seventh level hole.

17-v: EXTERNAL FUNCTION (EF-v): As indicated by (v) select a unit of
external equipment and instruct it to perform the designated function.

76jv: EXTERNAL READ (ERjv): If j = 0, replace (v) with (IOA) in v7...v
and zeros in vgs...vg; if j = 1, replace (v) with (IOB).

T7jv: EXTERNAL WRITE (EWjv): If j = O, replace (IOA) with the right-hand
eight bits of (v), if j = 1, replace (IOB) with (v).

PX 35

8

REPERTOIRE OF INSTRUCTIONS

j+« STOP INSTRUCTIONS. - The following instructions cause a stop of
computer operation and are self-explanatory:

56jv:

57--:

MANUALLY SELECTIVE STOP (MSjv): 1If j is O, stop computer operation,
indicating the stop by the illumination of a light on the Super-
visory Control Panel. If j is 1, 2, or 3 and the correspondingly
numbered MS selecting switch is set to "stop", stop computer opera-
tion, indicating the stop by the illumination of 'a light on the
Supervisory Control Panel. Whether or not a step occurs, (v) is NI.

PROGRAM STOP (PS--): Stop computer operation, indicating the stop
by the illumination of a light on the Supervisory Control Panel.

PX 35

SEQUENTIAL PRESENTATION OF INSTRUCTIONS

In the following pages the instructions are presented with their repre-
sentative octal operation codes in numerical order. The purpose of this
presentation is to give the programmer a simplified representation of the
detailed operations which the computer performs during, and necessary to, the
execution of each instruction. The events listed under each instruction occur
as a result of the control section receiving and sensing the operation code of
the instruction. These events do not necessarily designate a machine.operation
but represent the actions taken by the machine in executing an instruction.

The order in which these events are listed is in accordance, for the most part,
with the time-wise sequence of machine operations which they represent. In
some instructions the desire for a simplified presentation overruled the desire
for a sequential presentation if such was not necessary for accuracy in deter-
mining the contents of the various registers at any time during the execution
of the instruction. The deviations from machine operation sequences in any of
the presentations do not cause a misrepresentation of the actual operations of
the machine.

The columns in which the events are listed differentiate the events in accor-
dance with their primary function in the execution of the instruction. An
event listed in the Procurement of Operands column brings an operand out of
storage (MC, MD, Q. or A) into the X Register in preparation for some operation
upon it or placement in another register. An event listed in the Operations
column may describe arithmetic and/or logical machine operations or may be the
clearance of a register in preparation for such operations. An event listed
in the third column, Storage of Results, indicates the final placement of a
result of actions described in the first and/or second columns.

The symbols and abbreviations used in the presentation of the instructions
have been listed previously except for those listed below. The definitions
of the following notations do not explain machine operations but the effect of
machine operations.

Clear A Replace the contents of each stage of the Accumulator with azero.
Clear X Replace the contents of each stage of the X Register with a zero.
Complement PAK Replace the contents of each stage of PAK with its complement.
Complement X Replace the contents of each stage of X with its complement.

u Replace the contents of the 15 stages of the Program Address
v} > PAK Counter with the MC or MD storage address as designated by
u or v.
Fl——a»PAK A special case of the above with the MC address specified as
being octal 00000, (or MD address 40001).
jn— PAK Replace the contents of the 15 stages of PAK with the bits

designated as jn.
(X14...XO)*PAK Replace the contents of the 15 stages of PAK with the contents
of the right-most stages of the X Register.

PAK—X Replace the contents of the 15 right-most stages of the X
Register (Xlﬂ"' XO), with the address held in PAK,
PX 36

1

w—> X
k—sX
(10A)>X
(I0B) =X
(PAK)—>X

(u)=>X

(v)=>X

(X)—=>I0A
(X)=10B

(X)—PCR

(X)—u

(X)—v

(Xn2...an)—+>{

(Xl4' . .XO)>F1

u

\'s

SEQUENTIAL PRESENTATION OF INSTRUCTIONS

Replace the contents of the 15 right-most stages of the X
Register, (X14...X), with the address designated as w.
Replace the contens of the right-most stages of the X
Register with the shift count k.

Replace the contents of the eight right-most stages of X
with (IO0A).

Replace the contents of the 36 stages of X with (IOB)
Replace the contents of the 36 stages of X with the contents
of the address held in PAK.

If u is an MC or MD address, replace the contents of the X
Register with the contents of the MC or MD location specified
by u.

If u is an address of the Q Register, replace the contents of
the X Register with the contents of the Q Register. If u is
an address of the Accumulator, replace the contents of the

X Register with the contents of AR lnless otherwise noted.

If v is the address of an MC or MD location or Q or A, re-
placement operations occur as above with v being the trans-
mitting register.

Replace the contents of the eight stages of IOA with the
contents of the right-most eight stages of the X Register.
Replace the contents of the 36 stages of IOB with the contents
of the X Register,

Replace the contents of the 36 stages of PCR with the contents
of the X Register.

If u is an MC or MD address, reﬁlace the contents of the MC
or MD location specified by u with the contents of the X
Register.

If u is an address of the Q Register, replace the contents of
Q with the contents of the X Register.

If v or v is an address of the Accumulator, replacement
operations do not occur except in instructions 11, 12, 13,
22, 55, 73, and 76. 1In these instructions, the replacement
is performed by Clear A and Add D(X) to A. A replacement
operation (X)—=A occurring in the instructions not listed
above would effect undesirable alterations in the contents of
A.

If v is the address of an MC or MD location or Q or A, re-
placement operations occur as above with v being the receiving
register.

If the receiving rzgister has an MC or MD address, replace
with the contents of the stages Xn ...an only the contents
of the corresponding stages of the receiving register, leaving
the remaining stages undisturbed. A partial replacement of
or A is not permissible.

A special case of the above with the stages of X being speci-
fiel as being the right-most 15 and the MC address specified
as being 00000 (or MD address 40001).

Px 36

SEQUENTIAL PRESENTATION OF INSTRUCTIONS

The contents of the transmitting register are not disturbed in any of the above
replacement operations.

It should be remembered that the Add D(X) to (A) and Add S(X) to (A)
operations cited are performed machine-wise by complementation and subtraction.

PX 36

SEQUENTIAL PRESENTATION OF INSTRUCTIONS

Instruction Eeference Events

The events listed below normally conclude the execution of all computer
instructions, except the Repeat instruction, when they are not immediately
preceded by the Repeat instruction. Also, a number of instructions which are
preceded by the Repeat instruction are terminated by these events. (Refer
to the Repeat instruction and the Termination of a Repeat Sequence.) It is
understood that these events follow in sequential order the events listed
for each appropriate instruction, As a result, the execution of the current
instruction is terminated, and the computer is prepared for the execution of
the next instruction whose address is acquired from PAK, the Program Address
Counter. This address is determined according to the function of the current
instruction if this function indicatess that the normal sequence of instruc-
tions be interrupted. The contents of the location whose address is held in
PAK is placed in PCR, the Program Control Register, where it is interpreted
as the next instruction to be executzd.

PROCUREMENT OPERAT IONS STORAGE
OF OPERANDS OF RESULTS
e —— e o —
— (PAK }—s- X

Advance PAK by one

(X)—=PCR

Interrupt Termination Sequence

The Program Interrupt feature of the Univac Scientific provides a means of
interrupting the usual acquisition of instructions as depicted above. When the
"interrupt"™ becomes effective, the first two events listed above do not occur;
instead the first instruction which is normally terminated by the instruction
reference events above is terminated by the following events:

(00002} —-—X
(X) —> PCR.

These steps set the instruction at F (00002) into PCR as the next instruction
to be executed and leave the address“of the instruction normally executed next
in PAK. If the instruction at Fq is a Return Jump instruction, the address at
PAK is stored at some appropriate computer location u before the jump to the

v address of RJuv is made.

If the Repeat instruction, or an instruction preceded by the Repeat instruc-
tion, is being executed when the "interrupt™ is selected, the events above ter-
minate the instruction stored at F; unless a jump (or stop) is called for dur-
ing the Repeat Sequence., If this 1s the case, the events above terminate the
jump instruction, and the address to which the jump wes to be made remains in
PAK.

PX 36

4

SEQUENTIAL PRESENTATION OF INSTRUCTIONS

OPERATION CODE: 11

INSTRUCTION: Transmit Positive, TPuv

FUNCTION: Replace (v) with (u)

PROCUREMENT STORAGE
P T
OF OPERANDS OPERATTONS OF RESULTS
(u)—X
(X)—>v

If v is A,

Clear A

Add D(X) to (A)

PX 36

SEQUENTIAL PRESENTATION OF INSTRUCTIONS

OPERATION CODE: 12

INSTRUCTION: Transmit Absolute Magnitude, TMuv

FUNCTION: Replace (v) with the absolute magnitude of (u)

PROCUREMENT OPERATIONS STORAGE
OF OPERANDS OF RESULTS
(u)—>X

Complement (X) if negative

(X)—2>vy
If v is A,
Clear A
Add D(X) to (A)

pPX 36

SEQUENTIAL PRESENTATION OF INSTRUCTIONS

OPERATION CODE: 13

INSTRUCTION: Transmit Negative, TNuv

FUNCTION: Replace (v) with the complement of (u)

PROCUREMENT STORAGE
OF OPERANDS OPERATIONS OF RESULTS
(u)—X

Complement (X)

(x)—v
If v is A,
Clear A
Add D(X) to (A)

PX 36

SEQUENTIAL PRESENTATION OF INSTRUCTIONS

OPERATION CODE: 14

INSTRUCTION: Interpret, IP

FUNCTION: Let Y represent the adcress from which CI was obtained. Replace

the right-hand 15 bits of (F}) with the quantity Y + 1. Then
take (Fo) as the next instruction.

F{ is storage address C0000, Fo is storage address 0000l.

PROCUREMENT ‘ p———
OF OPERANDS OPERATIONS

OF RESULTS

Clear X

PAK (i.e., Y + 1)—>X

(X14...X0)—F
Set PAK to Fy

PX 36

'SEQUENTIAL PRESENTATION OF INSTRUCTIONS

INSTRUCTION: Transmit U Address, TUuv

FUNCTION: Replace the 15 bits of (v) designated by (vog... vy5) with the
corresponding bits of (u), leaving the remaining 21 bits of (v)

undisturbed.
PROCUREMENT STORAGE.
OF OPERANDS OPERATIONS OF RESULTS

(u)—X

(X99...X15)—>vV
v=QorA
not permissible

PX 36

SEQUENTIAL PRESENTATICON OF INSTRUCTIONS

OPERATION CODE: 16

INSTRUCTION: Transmit V Address, TVuv

FUNCTION: Replace the right-hand 15 bits of (v) designated by (vyi4... vq)
with the corresponding bits of (u), leaving the remaining 21 bits
of (v) undisturbed.

PROCUREMENT OPEFATIONS STORAGE
OF OPERANDS OF RESULTS
(u)—X

(X14...Xg)—>vV
v=0orA
not permissible

PX 36

10

SEQUENTIAL PRESENTATION OF INSTRUCTIONS

OPERATION CODE: 17

INSTRUCTION: External Function, EF-v

FUNCTION: As indicated by (v) select a unit of external equipment and ins-
truct it to perform the designated function.

PROCURENMENT STORAGE
OPERATION

OF OPERANDS S OF RESULTS

(v)—X

If previous operations involving
(I0B) are completed -

(X)—10B
According to (IOR),.
select external equipment
and instruct it to perform
a function,

PX 36
11

SEQUENTIAL PRESENTATION OF INSTRUCTIONS

OPERATION CODE: 21

INSTRUCTION: Replace Add, RAuv

FUNCTION: Form in A the sum of D(u) and D(v). Then replace (u) with (AR).

PROCUREMENT OPERATIONS STORAGE
OF OPERANDS OF RESULTS
(u)—=X

Clear A

Add D(X) to (A)
(v)—X
Add D(X) to (A)
(AR) —X

(X)—u
Omit if u is A

PX 36

SEQUENTIAL PRESENTATION OF INSTRUCTIONS

OPERATION CODE: 22

INSTRUCTION: Left Transmit, LTjkv

FUNCTION: Left circular shift (A) by k places, k being ug...up. Thenreplace
(v) with (Ap) if j=0, or replace (v) with (Ag) if j=l.

PROCURENENT OPERATION STORAGE
OF OPERANDS > OF RESULTS

Shift (A) left k places
If j is 0, (Ap) —> X

If j is 1, (Ag) —X

X—>v

If v is A
Clear A
Add D(X) to A

PX 36

13

SEQUENTIAL PRESENTATION OF INSTRUCTIONS

OPERATION CODE: 23

INSTRUCTION: Replace Subtract, RSuv

FUNCTION: Form in A the difference D(u) minus D(v). Then replace (u)

with (AR).
PROCUREMENT OPERATIONS STORAGE
OF OPERANDS OF RESULTS
(u)—X
Clear A
Add D(X) to (A)
(v)—X

Subtract D{(X) from (A)

(X)—u
Omit if u is A

PX 36

INSTRUCTION:

SEQUENTIAL PRESENTATION OF INSTRUCTIONS

Controlled Complement, CCuv

OPERATION CODE: 27

FUNCTION: Replace (AR) with (u) leaving (Ap) undisturbed. Then complement
those bits of (Ap) that correspond to ones in (v). Then replace
(u) with (AR). '

PROCUREMENT OPERATIONS STORAGE
OF OPERANDS OF RESULTS
(u)—X
Clear Ap
Complement (X)
Complement (As5 ... Ag) if corre-
sponding (X35 ... Xg) is zero
(v) —>X
Complement (X)
Complement (Ass ... Ag) if corre-
sponding (X35 ... Xg) is zero
(ARp)—>X
(X)—>u
Omit if u is A
PX 36

15

SEQUENTIAL PRESENTATION OF INSTRUCTIONS

OPERATION CODE: 31

INSTRUCTION: Split Positive Entry, SPuk

FUNCTION: Form S(u) in A. Then left circular shift (A) by k places, k
being vg ... vg and viq ... v7 being zero.

PROCUREMENT OPERAT TONS STORAGE
OF OPERANDS OF RESULTS
(u)—X

Clear A

Add S(X) to (A)

Shift (A) left k places

If the bits vyq ... v7 of instruction 31 are not "0's", the next instruction
to be executed will be taken from address r with the bits of this address,
Ty +-0 T being determined as follows.

(If instruction 31 is at address y, PAK will currently contain address y + 1.)

ro = PAKg

rg = PAKg

r7 = PAK7 + vy

. . bit-by-bit sum with the exception

that a PAKj of "1" and a vij of "1"
. . will result in an rj of "1",
1'14: PAK14 + V14

After the execution of the instruction at address r, the next instruction
to be executed will be taken from address v + 2 (unless the instruction at r
called for a jump).

Px 36

16

SEQUENTIAL PRESENTATION OF INSTRUCTIONS

OPERATION CODE: 32

INSTRUCTION: Split Add, SAuk

FUNCTION: Add S(u) to (A). Then left circular shift (A) by k places, k
being vg ... vg and vi4 ... v7 being zero.

PROCUREMENT STORAGE
OF OPERANDS OPERATIONS OF RESULTS
(u) —>X

Add S(X) to (A)

Shift (A) left k places

If the bits vyg ... vy of instruction 32 are not "O's"™, the next instruction
to be executed 'will be taken from address r with the bits of this address,
Tyy --- Tg, being determined as follows.

(If instruction 32 is at address y, PAK will currently contain address y + 1.)

ro = PAKO
re = PAKg
r7 = PAK7 + vy
. bit-by-bit sum with the exception that

a PAK; of "1" and a vj of "1" will
result in an rj of "1".

.

ri4 = PAK14 + Vg
After the execution of the instruction at address r, the next instruction

to be executed will be taken from address y + 2 (unless the instruction at r
called for a jump).

PX 36

17

SEQUENTIAL PRESENTATION OF INSTRUCTIONS

OPERATION CODE: 33

INSTRUCTION: Split Negative Entry. SNuk

FUNCTION: Form in A the complement of S(u). Then left circular shift
(A) by k places, k being vg ... vg and vigq ... V7 being zero.

PROCUREMENT - STORAGE
OF OPERANDS OPERA™IONS OF RESULTS
(u)—X

Clear A

Subtract S(X) from (A)

Shift (A) left by k places

If the bits vyg ... v7 of instruction 33 are not "O's", the next instruction
to be executed will be taken from address r with the bits of this address,
ri4 ... rQ, being determined as follows.

(If instruction 33 is at address y, PAK will currently contain address y + 1.)

rg = PAKp
ro = PAKg
= PAK7 + vy

ry
. . bit-by-bit sum with the exception that
@ PAKi of "1" and a vi of "I" will

. . result in an rj of "1".

rig = PAKj4 + vy

After the execution of the instruction at address r, the next instruction
to be executed will be taken from adcdress y + 2 (unless the instruction at r
called for a jump).

PX 36

18

SEQUENTIAL PRESENTATION OF INSTRUCTIONS

OPERATION CODE: 34

INSTRUCTION: Split Subtract, SSuk

FUNCTION: Subtract S(u) from (A). Then left circular shift (A) by k
places, k being vg ... vg and vygq ... V7 being zero.

PROCUREMENT STORAGE
OF OPERANDS OPERATTONS OF RESULTS
(u)—=X

Subtract S(X) from (A)

Shift (A) by left by k places

If the bits viq ... vy of instruction 34 are not "O's", the next instruction
to be executed will be taken from address r with the bits of this address,
ri4 ... rg, being determined as follows,

(If instruction 34 is at address y, PAK will currently contain address.y + 1.)

ro = PAKp

rg = PAK()

re = PAK7 + vy

. . bit-by-bit sum with the exception that

~a PAK;j of "1" and a vj of "1" will
. . result in an rj of "1".

After the execution of the instruction at address r, the next instruction
to be executed will be taken from address y + 2 (unless the instruction at r
called for a jump).

PX 36

19

SEQUENTIAL PRESENTATION OF INSTRUCTIONS

OPERATION CODE: 35

INSTRUCTION: Add and Transmit, ATuv

FUNCTION: Add D(u) to (A). Then replace (v) with (AR).

PROCUREMENT OPERATIONS STORAGE
OF OPERANDS OF RESULTS
(u)—/X

Add D(X) to (A)
(AR) —X

(X)—>v
Omit if v is A

PX 3¢

20

SEQUENTIAL PRESENTATION OF INSTRUCTIONS
OPERATION CODE: 36

INSTRUCTION: Subtract and Transmit, STuv

FUNCTION: Subtract D(u) from (A), Then replace (v) with (Ap).
PROCUREMENT STORAGE
OF OPERANDS OPERATIONS OF RESULTS

(u)—>X

Subtract D(X) from (A)
(AR) —>»X

(X)—»v
Omit if v is A

PX 36

21

SEQUENTIAL PRESENTATION OF INSTRUCTIONS

OPERATION CODE: 37

INSTRUCTION: Return Jump, RJuv

FUNCTION: Let y represent the address from which CI was obtained. Replace
the right-hand 15 bits of (u) with the quantity y plus one. Then

take (v) as the next instruction. (See notes on the page following
the Zero Jump instruction, operation code 47.)

PROCUREMENT STORAGE
OF OPERANDS OPERATIONS OF RESULTS
Clear X
PAK (i.e., y + 1)—X
v —>PAK
(X14 e Xo)—>u
u =Q or A not
permissible

PX 36

22

SEQUENTIAL PRESENTATION OF INSTRUCTIONS

OPERATION CODE: 41

INSTRUCTION: 1Index Jump, IJuv

FUNCTION: Form in A the difference D(u) minus one. Then if a7y is one,
continue the present sequence of instructions; if a7; is zero,
replace (u) with (AR) and take (v) as NI. (See notes on the
page following the Zero Jump instruction, operation code 47,)

PROCUREMENT OPERATTIONS STORAGE

OF OPERANDS OF RESULTS
Clear X

(u)y—>X

Omit if u is A

Clear A
Omit if u is A

Add D(X) to (A)
Subtract one from (A)
(AR)—X

v —>PAK

if a7y is zero (X)—>u
Omit if u is A

PX 36
23

SEQUENTIAL PRESENTATION OF INSTRUCTIONS

OPERATION CODE: 42

INSTRUCTION: Threshold Jump, TJuv, not repeated

FUNCTION: Subtract (u) from (A). If ay; is then one, take (v) as the NI;
if a-, is zero, continue the present sequence of instructions.
Then in either case, restore (A) to its initial state. (See

notes on the page fcllowing the Zero Jump instruction,
operation code 47 .)

PROCUREMENT

OF RESULTS

(u)—>X

Subtract D(X) from (A)
v—>PAK if a7] is one

Add D(X) to (A)

PX 36

SEQUENTIAL PRESENTATION OF INSTRUCTIONS

OPERATION CODE: 42

INSTRUCTION: Threshold Jump, TJuv, repeated

FUNCTION: Subtract (u) from (A), If ay; is then one, replace (Q) with
j, n-r and take (v) as the next instruction; if a 1 is zero,
repeat the execution. 1In either case, restore (A) to its
initial state.

PROCUREMENT STORAGE
OF OPERANDS OPERATIONS OF RESULTS
(u)—»X

Subtract D(X) from (A)

If a7 is zero,
Add D(X) to (A)
Advance (PAK)
Test (PAK) for condition indi-
cating n repeats and proceed
accordingly (See Note 2).

If a7y is one,
Complement (PAK)
Add D(X) to (A)
Perform jump termination
(See Note 2).

Note: 1. This instruction 1s preceded by instruction 75jnw which leaves the
complement of "jn" in PAK.

2. See Jump Termination in the discussion of the Repeat instruction,
operation code 75.

PX 36

25

SEQUENTIAL PRESENTATION OF INSTRUCTIONS

OPERATION CODE: 43

INSTRUCTION: Equality Jump, EJuv, not repeated

FUNCTION: Subtract (u) from (A). If (A) is then zero, take (v) as the
next instruction; if (A) is not zero, continue the present
sequence. In either case, restore (A) to its initial state.

(See notes on the page following the Zero Jump instruction,
operation code 47

OF OPERANDS OF RESULTS

(u)—X
Subtract D(X) from (A)
Subtract one from (A)

v—>PAK if enc-borrow was
propagatec from A71

Add D(X) to (A)
Set (X) to 1

Add D(X) to (A)

X 36
26

SEQUENTIAL PRESENTATION OF INSTRUCTIONS

OPERATION CODE: 43

INSTRUCTION: Equality Jump, EJuv, repeated

FUNCTION: | Subtract (u) from (A). If (A) is then zero, replace (Q) with
j., n-r and take (v) as next instruction; if (A) is not zero,
repeat the execution. 1In either case, restore (A) to its
initial state.

PROCUREMENT OPERATIONS STORAGE
OF OPERARDS OF RESULTS
(u) = X

Subtract D(X) from (A)
Subtract one from (A)

If no end-borrow was propagated

from A7y

Add D(X) to (A)

Set (X) to one

Add D(X) to (A)

Advance PAK

Test (PAK) for condition indi-
cating n repeats and proceed
accordingly. (See Note 2.)

If end-borrow was propagated
from A7)
Complement (PAK)
Add D(X) to (A)
Set (X) to one
Add D(X) to (4)
Perform jump termination
(See Note 2,)

Note 1. This instruction is preceded by instruction 75jnw which leaves the
complement of "jn" in PAK,

Note 2, See Jump Termination in the discussion of the Repeat instruction,
operation code T75.

PX 36

27

INSTRUCTION:

FUNCTION:

SEQUENTIAL PRESENTATION OF INSTRUCTIONS

OPERATION CODE: 44

Q-Jump, QJuv

If q35 is one, take (u) as NI; if qg5 is zero, take (v) as
NI. Then, in ecither case, left circular shift (Q) by one

place. (See notes on the page following the Zero Jump
instruction, operation code 47

PROCUREMENT
OF OPERANDS

STORAGE
PERAT IONS
OPER OF RESULTS

If q35 is one, u-—> PAK
If qg35 is zero, v—> PAK

Shift (Q) left one place

PX 36

SEQUENTIAL PRESENTATION OF INSTRUCTIONS

OPERATION CODE: 45

INSTRUCTION: Manually Selective Jump, MJjv

FUNCTION: If the number j is O, take (v) as NI, If j is 1, 2, or 3,
and the correspondingly numbered MJ Selecting Switch is set
to "jump"™, take (v) as the NI; if this switch is not set to
"jump", continue the present sequence. (See notes on the
page following the Zero Jump instruction, operation code 47.)

PROCUREMENT OPERAT LONS STORAGE
OF OPERANDS OF RESULTS

For jump, v —> PAK

PX 36
29

SEQUENTIAL PRESENTATION OF INSTRUCTIONS

OPERATION CODE: 46

INSTRUCTION: Sign Jump, SJuv
FUNCT ION: If a7; is one, take (u) as NI; if a7) is zero, take (v) as
NI. (See notes on the page following the Zero Jump instruct-
ion, operation code 47.)
PROCUREMENT OPERAT IONS STORAGE
OF OPERANDS OF RESULTS

If a7y is zero, v —= PAK

If a7y is one, u—> PAK

PX 3¢

30

SEQUENTIAL PRESENTATION OF INSTRUCTIONS

OPERATION CODE: 47

INSTRUCTION: Zero Jump, ZJuv

FUNCTION: If (A) is not zero, take (u) as NI; if (A) is zero, take (v)
as NI. (See notes on the following page.)

PROCUREMENT OPERAT IONS STORAGE
OF OPERANDS OF RESULTS

Subtract one from (A)

v—> PAK if end-borrow was
propagated from Ay

u-—> PAK if no end-borrow was
propagated from A7

Set (X) to one

Add D(X) to (A)

PX 36

31

SEQUENTIAL PRESENTATION OF INSTRUCT IONS

Notes Concerniig the Jump Instructions

When the conditions are such that the contents of the v (or u) address
are referred to as the next instruction to be executed, the following notes
are applicable.

1.

2.

Machinewise, v = A is not permissible.

If v = Q, the next instruction to be executed after the
termination of the jump instruction will be (Q). If (Q)
is a legal instruction it will be executed in the normal
manner, Its execution will be repeated, unless it is a
jump or stop instruction or a Force stop is made, since
the address of each succeeding instruction is taken from
PAK, and PAK will advance from 31000 to 31777. If PAK is
advanced past 31777 to 32000, an A address, operation is
halted since an A address is not permissible,

The above remarks also apply to u for the two-way jump
instructions.

PX 36

SEQUENTIAL PRESENTATION OF INSTRUCTIONS

OPERATION CODE: 51

INSTRUCTION: Q-Controlled Transmit, QTuv

FUNCT ION: Form in A the number L(Q)(u). Then replace (v) with (AgR).
PROCUREMENT OPERATIONS STORAGE'
OF OPERANDS OF RESULTS
(u) —X

Clear A

Form in X bit-by-bit product of
(Q) and (X)

Add S(X) to (A)

X)— v
Omit if v is A

PX 36

33

SEQUENTIAL PRESENTATION OF INSTRUCTIONS

OPERATION CODE: 52

INSTRUCTION: Q-Controlled Add, QAwv

FUNCTION: Add to (A) the number L(Q)(u). Then replace (v) with (Ag).
PROCUREMENT OPERATIONS STORAGE
OF OPERANDS OF RESULTS
(u) —X

Form in X bit-ty-bit product of
(Q) and X)

Add S(X) to (A)
(AR)""> X

X)—v
Omit if v is A

PX 36
34

SEQUENTIAL PRESENTATION OF INSTRUCTIONS

OPERATION CODE: 53

INSTRUCTION: Q-Controlled Substitute, QSuv

FUNCTION: Form in A the quantity L(Q)(u) plus L(Q)*(v). Then replace
(v) with (Ag).

PROCUREMENT OPERAT IONS STORAGE
OF . OPERANDS OF RESULTS
(u) = X

Clear A

Form in X bit-by-bit product of
(Q) and (X)

Add S(X) to (A)
Complement (Q)
(v) = X

Form in X bit-by-bit product of
(Q) and (X)

Add S(X) to (A)
Complement (Q)
(AR) — X

X) = v
Omit if v is A

PX 36

35

SEQUENTIAL PRESENTATION OF INSTRUCTIONS

OPERATION CODE: 54

INSTRUCTION: Left Shift in A, LAuk

FUNCTION: Replace (A) with D(u). Then left circular shift (A) by k
places, k being vg..... Vo, and replace (u) with (Ap),
PROCUREMENT OPERAT I0ONS STORAGE
OF OPERANDS OF RESULTS
Clear X
(w)—X

Omit if u is A

Clear A
Omit if u is A

Add D(X) to (A)
Shift (A) left k places

(X)—su*
Omit if u is A

*The 54 (and 55) instruction does not always store the shifted number
at the address from which the number, before shifting, was obtained, The
address to which the (AR)f will be transmitted is determined in this manner:
If the 15 bits of the receiving address of the shifted number are designated
as ryq ... rg, these bits are determined as follows.

o =y

e = ug
= u
7 7+ VT ~1 bit-by-bit sum with the exception that a uj

of "1" and a vj of "1" will result in an
ry of "1"

4= U4 + V14J

Therefore, by choosing viq4 ... vy with care, (u) may be left un-
disturbed. A particular advantage of this peculiarity is that the shifted
number may be placed in Q or left in A without designating Q or A as the
u address,

X 36

36

SEQUENTTAL PRESENTATION OF INSTRUCTIONS

OPERATION CODE: 55

INSTRUCTION: Left Shift in Q, LQuk

FUNCTION: Replace (Q) with (u)., Then left circular shift (Q) by k
places, k being vg ... v, and replace (u) with (Q).

PROCUREMENT OPERATIONS STORAGE
OF OPERANDS OF RESULTS
(u)— X

X)— Q

Shift (Q) left k places
Q—X

(X) — u*
If u is A,
Clear A
Add D(X) to (A)

*The 55 (and 54) instruction does not always store the shifted number
at the address from which the number, before shifting, was obtained. The
address to which the (AR)f will be transmitted is determined in this manner:
If the 15 bits of the receiving address of the shifted number are designated
as rj4 ... rg, these bits are determined as follows.

rozuo
re = U6
r7=u7+V7
. . bit-by-bit sum with the exception that a uj
. . . of "1" and a vi of "1" will result in an r;

. . . of "l"
T14% U4 +V14

Therefore, by choosing vi4 ... vy with care, (u) may be left un-
disturbed. A particular advantage of this peculiarity is that the shifted

number may be placed in Q or left in A without designating Q or A as the
u address.

PX 36

37

SEQUENTIAL PRESENTATION OF INSTRUCTIONS

OPERATION CODE: 56

INSTRUCTION: Manually Selective Stop, MSjv

FUNCTION: If j is O, stop the computer operation, indicating the stop
by the illumination ¢f a light on the Supervisory Control
Panel. If j is 1, 2, or 3 and the correspondingly numbered
MS selecting switch is set to "stop", stop computer operation,
indicating the stop by the illumination of a light on the
Supervisory Control Panel. Whether or not a stop occurs, (v)
is NI,

PROCUREMENT OFERAT IONS STORAGE
OF OPERANDS OF RESULTS

v —> PAK

Stop computer operation if stop
indicated.

Note: v = A not permissible; for v = Q, see Note 2 on the page
following the Zero Jump instruction, operation code 47,

PX 36

38

SEQUENTIAL PRESENTATION OF INSTRUCTIONS

OPERATION CODE: 57

INSTRUCTION: Program Stop, PS--

FUNCTION: Stop computer operation, indicating the stop by the
illumination of a light on the Supervisory Control

Panel .

OF OPERANDS OF RESULTS

Stop computer operation.

PX 36

39

SEQUENTIAL PRESENTATION OF INSTRUCTIONS

OPERATION CODE: 61

INSTRUCTION: Print, PR-v

FUNCT ION: Replace (TWR) with the right-hand six bits of (v), Cause the
typewriter to perform the operation specified by the 6-bit
code.

PROCUREMENT OPERAT IONS STORAGE
OF OPERANDS OF RESULTS

(v)—X

If TWR is clear, place one's in
(TWR5...TWR(. where they are
present in corresponding
(X5...X0)

Perform typewriter operation as
specified by (TWR).

PX 36

40

SEQUENTIAL PRESENTATION OF INSTRUCTIONS

OPERATION CODE: 63

INSTRUCTION: Punch, PUjv

FUNCT ION: Replace (HPR) with the right-hand six bits of (v). Cause
the punch to respond to (HPR), If j = 0, omit seventh
level hole; if j =1 include seventh level hole,

PROCUREMENT OPERAT IONS STORAGE
OF OPERANDS OF RESULTS

(v) —X

If HPR is clear, place a one in
HPRg if j =1 and place ones in
(HPR5...HPRy) where they are
present in corresponding (X5...Xg)

Punch (HPR)

PX 36

41

SEQUENTIAL PRESENTATION OF INSTRUCTIONS

OPERATION CODE: 171

INSTRUCTION: Multiply, MPuv

FUNCTION: Form in A the 72-bit product of (u) and (v), leaving in Q
the multiplier (u).

OF OPERANDS OPERAT TORS OF RESULTS
(u)—X

Clear A

(X)—=>Q
(v) —=X

ﬁﬁgm in A the product of (Q) and

PX 36

42

SEQUENTIAL PRESENTATION OF INSTRUCTIONS

OPERATION CODE: 72

INSTRUCTION: Multiply Add, MAuv

FUNCTION: Add to (A) the 72-bit product of (u) and (v), leaving in Q
the multiplier (u).

OF OPERANDS OPERATIONS OF RESULTS
(u) —X
(X)—Q
Shift (A) left 36 places
(v) —X
Add to (A) shifted the product
of (Q) and (X)

PX 36

43

SEQUENTIAL PRESENTATION OF INSTRUCTIONS

OPERATION CODE: 73

INSTRUCTION: Divide, DVuv
FUNCTION: Divide the 72-bit number in A by (u), putting the quotient in
Q, and leaving in A a non-negative remainder, R, Then replace
(v) by (Q). The quctient and remainder are defined by
(A); = (u). (Q)+R where O<R <ﬁ(u)| . (A); denotes the
initial contents of A.
PROCUREMENT STORAGE
OF OPERANDS OFERATIONS OF RESULTS

(u) —X

Clear Q

Divide (A) by (X), placing the
quotient in Q and leaving R in A

Q) —X

X)—v
If v is A,
Clear A
Add D(X) to (A)

PX 36

44

INSTRUCTION:

FUNCTION:

SEQUENTIAL PRESENTATION OF INSTRUCTIONS

OPERATION CODE: 74

Scale Factor, SFuv

Replace (A) with D(u) unless u is A, Then left circular shift
(A) 36 places and continue shifting until a3s # a34. Replace
the righthand 15 bits of (v) with the number of left shifts,
k, necessary to return the final contents of A, or (A)f, to
the original position. The range of k if u is A is 0<k=<Tl.
if uw is MC, MD, or Q, k may be O or 37T< k<71, Effectively,
the initial contents of A, or (A)j, which may be D(u) or D(Q)
after the above replacement, are positioned in AR (with the
sign bit represented by A35 and the most significant bit by
A34) so that (A)g = (A);.25, If 0<k<36, the Scale Factor

s = -k; if 37<k<Tl, s = 72 -k. Note that for 0<k <36,
this positioning scales (A); "down"; for 37< k<71, (A)j

are scaled "up". If k =0, (A)j were properly positioned
before any shifting operations; if k = 37, (A); are all

ones or zero.

PROCUREMENT
OF OPERANDS

STORAGE

OPERAT IONS OF RESULTS

(nw)—>X

Omit if u is A

Clear X

Clear A
Omit if u is A

- Add D(X) to A

Shift (A) left 36 places and
continue shifting until ags # a3q

Clear X
k—X
(X14...Xpg)—v

v = Q or A not
permissible

PX 36

45

INSTRUCTION:

FUNCTION:

SEQUENTIAL PRESENTATION OF INSTRUCTIONS

OPERATION CODE: 75
Repeat, RPjnw

This instruction calls for_the next instruction, NIuv, to be
executed n times, osn<2l -1, its u and v addresses
being modified or not according to the value of j. Normally
n executions are made, and the program is continued by the
execution of the instruction stored at a fixed address Fj.
The instruction usually stored at F} is MJjv, calling for a
jump to its v address, which according to the workings of the
Repeat instruction means that (w) of RPjnw will be taken as
the next instruction tuv be executed.

The u and v addresses of the repeated instruction are advanced
according to the value of j as follows.
If j = 0, neither the u nor the v execution address of
the repeated instruction is advanced.
j =1, the v execution address of the repeated in-
struction is advanced after each execution.
j =2, the u execution address of the repeated in-
struction is advanced after each execution.

3, both the wu and v execution addresses of the
repeated instruction are advanced after each
execution.

During a repeat sequence, PAK is used as a counter to record

the number of times the instruction is executed.

I

J

PROCUREMENT
OF OPERANDS

OPERAT IONS ong%égETs
Clear X
W—=)
(X14...X0)>Fy
(PAK) — X
jn — PAK

Complement PAK
(X) — PCR

Begin Repeat Sequence:

Advance (PAK) and investigate

its contents.

If n = 0, proceed to Normal
Repeat Termination

If n # 0, execute NI n times,*
advancing u and v ad-
drresses according to j

*See Exceptions, discussed later.

PX 36
46

SEQUENTIAL PRESENTATION ‘OF INSTRUCTIONS

Intermediate Steps following each execution of an instruction whose repeat is
possible,

FUNCTION: Test for n executions of repeated instruction. Proceed to Normal
Repeat Termination if n executions have occurred. If not, repeat

instruction.
PROCUREMENT OPERAT IONS STORAGE
OF OPERANDS OF RESULTS

Advance PAK by one

Test PAK for condition indicating
n executions of repeated in-
struction and proceed accord-

ingly.

Normal Repeat Termination

FUNCTION: Terminate the repeat sequence when an instruction has been executed
n times by taking (F;) as the next instruction. (See Exceptions)

(F1)—X
(X)—=PCR

Abnormalities:

1. If the fixed address F; is not a Jump instruction, the address of the
instruction to be executed fol{owing the instruction stored in F, is determined
by the modified complement of j from the Repeat instruction., This is the
number that remains stored in PAK at the end of a repeat sequence that has a
Normal Termination. If, in 75jnw, j wes O, the address will be 40000; if j

was 1, the address will be 70000; if j was 2, the address will be 60000; if

j was 3, the address will be 50000,

2. In addition to values j =0, 1, 2, and 3, the value j in 75jnw may also
be 4, 5, 6, or 7. An instruction following a Repeat instruction where j = 4., 5,
6, or 7 will be repeated indefinitely unless its execution produces a jump or
stop operation or a jump termination, If these latter conditions do not occur
the u and v execution addresses of the repeated instruction will be advanced
depending on j; if j = 4, neither address is advanced; if j = 5, the v address
is advanced; if j = 6, the u address is advanced; if j = 7, both addresses are
advanced. If u or v are MD addresses, they may be advanced from 40000 through
77777, and the next advance signal after 77777 will start the address sequence
over from 40000, If u or v are MC, Q, or A addresses, they may be advanced 4093,
511 and 511 addresses from their respective first addresses, and the next ad-
vance signal will start their address sequence over from their respective first
address.

3. If a Repeat instruction is immediately followed by a second Repeat in-
struction, the second will supersede the first, and the address of the repeated
instruction is determined by the number stored in PAK. This address is the
complement of "jn-1" which remains stored in PAK from the first Repeat instruc-
tion,

PX 36

47

SEQUENTIAL PRESENTATION OF INSTRUCTIONS

TERMINATION OF A REPEAT SEQUENCE

The first step of the Repeat Sequence is to determine whether the value of
n in the Repeat instruction is zero or not, If n is zero (indicating that no
execution of the instruction following the Repeat instruction is to be made).
the attempted Repeat Sequence is immediately terminated according to the Normal
Repeat Termination. If n # O, the instruction, regardless of what it is, is
executed. The Repeat Sequence is concluded by a Normal BRepeat Termination,
after n executions, except when the instruction following RPjnw is one of the
following.

Exceptions:

(1) If the Interpret (14--), Return Jump (37uv), Q Jump (44uv), Sign Jump
(46uv), Zero Jump (47uv), Manually Selected Stop (56jv), or Program Stop (57--)
instruction is to be executed after a Repeat instruction, the attempted Repeat
Sequence is automatically terminated. These instructions are thus executed as
if no Repeat instruction preceded them and terminated by the normal Instruction
Reference Events,

(2) If either the Index Jump (4luv) or Manually Selected Jump (45jv) is
to be executed following a Repeat instruction, they may be repeated n times
as specified if no jump operation is called for in the course of their execu-
tion. If a jump operation is called for, *he instruction is terminated accord-
ing to the normal Instruction Reference Events, and the content of the jump
address is taken for the NI. (No count of the number of times the instruction
was executed is retained, however.) If no jump operation is called for in n
executions of these instructions, a Normal Repeat Termination is executed and
(Fy) 1is taken for the NI.

(3) 1If either the Threshold Jump (42uv) or the Equality Jump (43uv) is to
be executed following a Repeat instruction, they can be repeated or not depend-
ing on whether or not in their execution the threshold or equality conditions
are reached and a jump operation is called for. If a jump operation is called
for before or exactly after n executions, the Repeat Sequence of these instruc-
tions is terminated by a special Jump Termination (see the following page.

Note that the Jump Termination is followed by the normal Instruction Reference
Events.) The Jump Termination stores the quantity j, n-r in Q and takes the
contents of the jump address for the NI. The (Q) can then be used to determine
~how many times the instruction was executed. If n executions of these instruc-
tions are performed and the threshold or equality conditions requiring a jump
do not occur, the repeat sequence of these instructions is terminated by the
Normal Repeat Termination and (F;) is taken for the NI.

(4) If the "interrupt" is selected during the execution of a Repeat instru-
ction or an instruction being repeated, the Interrupt Termination sequence
concludes the execution of thase instructions in paragraphs (1), (2) and (3)
above which are stated to be concluded by the normal Instruction Reference
Events. When the content of Fl is taken as the next instruction, the Interrupt
Termination sequence concludes the execution of the instruction at Fi.

The Interrupt Termination sequence referred to is found on the page listing
the normal Instruction Reference Events,

X 3¢

48

SEQUENTIAL PRESENTATION OF INSTRUCTIONS

Jump Termination for repeated instructions 42uv and 43uv.

FUNCTION: When a jump condition, as‘specified by one of the instructions
above, is reached before or immediately after n executions, the
steps listed below, followed by the normal Instruction Reference
Events, terminate the execution of the instruction,

PROCUREMENT P 0 STORAGE
OF OPERANDS OPERATIONS OF RESULTS
(PAK)—X
(X)—»Q
v — PAK

PX 36

49

SEQUENTIAL PRESENTATION OF INSTRUCTIONS

OPERATION CODE: 76

INSTRUCTION: External Read, ERjv

FUNCTION: If j = 0, replace (vo ... vy) with (IOA) and (vgg ... v8) with zeros;
if j =1, replace (vg wita ?IOB). (This instruction must be pre-
ceded by an Externsal Function instructing the equipment to transmit
information to IOB.)

PROCUREMENT OPERATIONS STORAGE
OF OPERANDS ‘ OF RESULTS

Clear X

If 1I0A or ICB has received in-
formation from external equip-
ment

(104) or (IOB)—=X

Clear I0A or IOB (X)——v

If v is A,
Clear A

Add D(X) to A

If I0OA is involved, note that when v is a 36-bit register, the eight right-most
bits of v are (IOA) and the left-most 28 bits are zeros; when v is A, the
eight right-most bits of A are (IOA) and the remaining 64 bits are zeros.

PX 36

50

SEQUENTIAL PRESENTATION OF INSTRUCTIONS

OPERATION CODE: 77

INSTRUCTION: External Write, EWjv

FUNCTION: 1If j = O, replace (IOA) with the right-hand eight bits of (v); if
j = 1, replace (IOB) with (v). Notify external equipment of this

transmission to IOA or IOB. (This instruction must be preceded by
an External Function. instructing the equipment to sense the infor-

mation from IOA or IOB.)

PROCUREMENT OPERAT IONS STORAGE
OF RESULTS

OF OPERANDS

(v)—=X

If previous operations involving
(IOA) or (IOB) are completed -

(X)—=1I0A or IOB
Transmit (IOA) or (IOB) to

external equipment

PX 36

51

INSTRUCTION EXECUTION TIMES

» OPERATION CODE: 44
46

INSTRUCTION: Q-Jump, QJuv
Sign Jump, SJuv

NON-REPEATED REPEATED®*
uorv u or v
MC] 9 MC.| 3
A SCC A SCC
Q -) -

OPERATION CODE: 45

INSTRUCTION: Manual Jump, MJjv

NON-REPEATED REPEATED*
v l MC A Q v MC A Q
9 SCC - 3 SCC -
JUMP JUMP*
v | irrelevant v | irrelevant
Ig -
NO JUMP NO JUMP

*See preliminary discussion

PX 37

13

INSTRUCTION EXECUTION TIMES

On the following pages the instructions are presented with accompanying
tables which give the time required for the execution of each instruction, the
execution being repeated or not repeated. The time required for the execution
of an instruction is dependent upon the storage references, where such are
made, by the u and/or v addresses. The tables for the instructions, with such
references applicable and practical,list individually the execution times of
each instruction with its u and/or v addresses referencing an MC register, the
Accumulator, or the Q Register. (All execution times assume that the instruc-
tions are stored in MC.) The specified times are measured, unless otherwise
stated, from MPO to MPC. Each number in a table is the number of clock pulse
periods (two microseconds each) required for the execution of a particular coded
instruction,

Included in the determination of the computer time for an instruction re-
peated n times are the times required by the Repeat instruction and, in most
cases, the instruction stored at Fj;. This total time is given by the sum,
27+Rn+p, where R, is the execution time of the instruction repeated n times and
p is the execution time of the instruction stored at F,. If n is zero, Rn is
zero and, in all cases, the total computer time is 27 + p and the next instruc-
tion is taken from Fl'

When certain of the instructions are repeated, the total computer time does
not include the time p. These instructions are Interpret 14--; Return Jump,
37uv; Q-Jump, 44uv; Sign Jump, 46uv; Zero Jump, 47uv: Manually Selective Stop,
56uv; and Program Stop, 57--. These instructions are executed only once at the
most regardless of an n 1. The next instructions to be executed will not be
taken from Fl’

Other exceptions to including the time p in the total computer time are
made under certain conditions when the following instructions are repeated:
Index Jump, 4luv; Manually Selective Jump, 45jv; Threshold Jump, 42uv; and
Equality Jump, 43uv. The time p is not added when, during the repeated n
executions of these instructions, the jump requirement is met before or during
the nth execution of the instruction. The occurrence of the jump eliminates the
procedure of taking the next instruction to be executed from Fy.

Execution times for repeating certain of the instructions are not given if
a repeat of such instructions has no practical use,

The following notations are used in the tables of execution times.

SCC Storage Class Control indicates the coded u and/or v
addresses being used are not permissible.

- Execution time not given for a possible instruction
at a Q address.

pPX 37

(uj)

(uj)j

ms

INSTRUCTION EXECUTION TIMES

Number of executions of the repeated instruction.

Denotes bit in stage i, (35 >i 2 0), of register
addressed as u.

Contents of uj during repeat j, j =1 ... N,

Milliseconds.

2X 37

INSTRUCTION:

N

INSTRUCTION EXECUTION TIMES

Transmit Positive, TPuv

NON-REPEATED

MC A Q

MC

INSTRUCTION:

19 17 15

15 14 12

16 15 13

Transmit Magnitude, TMuv

NON-REPEATED

MC A Q

MC

19 18 16

16 15 13

17 16 14

pPX 37

OPERATION CODEL:

REPEATED
u MC
MC | 12N+1
A | 8N +1
Q0 | 9N +1

OPERATION CODE:

REPEATED

MC

12N+1

ON+1

10N +1

11

12

INSTRUCTION EXECUTION TIMES

OPERATION CODE:

INSTRUCTION: Transmit Negative, TNuv

NON-REPEATED REPEATED
v v

u\J MC A 0 u \J MC

MC | 19 17 15 MC 12N+1

A 15 14 12 A | 8N+l

) 16 15 13 Q | 9N+1

OPERATION CODE-

INSTRUCTION: Interpret, IP--

NON-REPEATED

u and v irrelevant

rx 37

13

14

INSTRUCTION EXECUTION TIMES

INSTRUCTION: Transmit U Address, TUuv
Transmit V Address, TVuv
NON-REPEATED
v
u MC A Q
MC | 19 SCC ScCC
A |15 SCC sCC
Q |16 SCC sCC
INSTRUCTION:

External Function, EF-v

NON-REPEATED

MC A Q

14 11 12

computer operating time,
not including a lockout

time if IOB is currently
in use for output opera-
tions.

pPX 37

OPERATION CODE:

REPEATED
v
u MC A Q
MC 12N+1 SCC SCC
A | BN+1
Q | 9N+1

OPERATION CODE:

15
16

17

INSTRUCTION EXECUTION TIMES

MC

OPERATION CODE:

REPEATED

INSTRUCTION: Replace Add, RAuv
NON-REPEATED
v
u MC A Q u
MC | 30 27 28 MC
A |23 20 21 A
Q |25 22 23 Q
INSTRUCTION: Left Transmit, LTjkv
NON-REPEATED
v] M A Q
l6+k 15+k 13+k
INSTRUCTION: Replace Subtract, RSuv

NON-REPEATED

23N+1 20N+1 21N+1

18N

19N

\'

21

OPERATION CODE: 22

REPEATED

|

MC

‘(9+k)N+1

OPERATION CODE:

REPEATED

a\JMC A Q u
MC |31 28 29 MC
Af2a 21 22 A
Q|26 23 24 0

Px 37

24N+1 21IN+1 22N+1

19N

20N

23

INSTRUCTION EXECUTION TIMES

OPERATION CODE: 27

INSTRUCTION: Controlled Complement, CCuv

NON-REPEATED REPEATED
\'2 \'
u\ | MC A Q u MC A Q
MC |26 23 24 MC 19N+1 16N+1 17N+1
A 19 16 17 A 14N
Q |21 18 19 0 15N

OPERATION CODE: 31
32

INSTRUCTION: Split Positive Entry, SPuk
Split Add, SAuk

NON-REPEATED REPEATED
u u
MC 16 + k MC (10 + k) N
A 13 + k where k is not altered by
the Repeat Sequence. For
k=0 and 1 use value of
Q 14 + k k=2,
PX 37

INSTRUCTION:

N

INSTRUCT ION EXECUTION TIMES

Split Negative Entry, SNuk
Split Subtract, SSuk

MC

INSTRUCTION:

u\v

MC

OPERATION CODE:

NON-REPEATED REPEATED
u
17 + k MC | (11 + k) N
14 + k where k is not altered by
the Repeat Sequence. For
k=0 and 1, use value of
15 + k k=2,
OPERATION CODE:
Add and Transmit, ATuv
NON-REPEATED REPEATED
v
MC A Q u MC A 0
MC | 15N+1 13N 13N
22 18 19
A 12N+1
19 15 16
) 13N+1

PX 37

33
34

35

INSTRUCTION EXECUTION TIMES

INSTRUCTION: Subtract and Transmit, STuv

NON-REPEAT

u MC A Q

MC |23 19 20

A 20 16 17

INSTRUCTION: Return Jump, RJuv

NON-REPEATED

a\ M A Q

MC 18 SCC ==

A SCC SCC SCC

Q SCC sCC ScC

*See preliminary discussion

pPX 37

OPERATION CODE:

REPEATED
v
u MC A Q
MC 16N+1 14N 14N
A 13N+1
Q 14N+1
OPERATION CODE:
REPEATED*
v
u MC A Q
MC 12 scC --
A SCC SCC sCC
Q SCC SCC SCC

36

37

INSTRUCTION EXECUTION TIMES

INSTRUCTION: Index Jump, IJuv

NON-REPEATED

u \ | MC A 0

MC |27 scC -

A 20 scc -

Q 22 SCcC -

NON-REPEATED
\'
u irrelevant
MC 22
A 19
Q 20

#*See preliminary discussion

JUMP*

NJ JUMP

PX 37
10

OPERATION CODE:

REPEATED*
v
u MC A Q
MC [18r+3 SCC -
A |14 scC -
Q |16 scC -

where r = number of executions

41

up to the occurrence of the jump.

REPEATED
v
u irrelevant
MC 18N
A 15N
Q 16N

INSTRUCTION EXECUTION TIMES

INSTRUCTION: Threshold Jump, TJuv

NON-REPEATED

u MC A Q

MC 21 scC -

A 18 scC -

0 19 scc -

NON-REPEATED

u N irrelevant
MC 21
A 18
Q 19

*See preliminary discussion

JUMP*

NO JUMP

pPX 37

11

OPERATION CODE: 42

REPEATED*
v
u MC A]
MC |15r+5 SCC -
A 17 scC -
Q 18 scC -

where r = number of executions
up to the occurrence of the jump.
The jump will occur during the
first executionif u is A or Q.

REPEATED
\J
u irrelevant
MC 15N
A 12N
Q 13N

INSTRUCTION:

INSTRUCTION EXECUTION TIMES

Equality Jump, EJuv

NON-REPEATED

v
u MC A 0
MC 27 SCC -
A 24 SCC -
Q 25 SCC -
NON-REPEATED
v
u irrelevant
MC 27
A 24
Q 25

#*See preliminary discussion

OPERATION CODE:

REPEATED*

MC A Q

MC

21r+5 SCC -
23 scc -
24 SCC -

where r = number of executions
up to the occurrence of the jump.
The jump will occur during the
first execution if u is A or Q.

JUMP*
REPEATED
u irrelevant
MC 21N
A 18N
Q 19N
NO JUMP
rx 37

12

43

INSTRUCTICN EXECUTION TIMES

INSTRUCTION: Zero Jump, ZJuv

NON-REPEATED

u or v

MC |15
A SCC
Q -

OPERATION CODE:

REPEATED*
u or v
MC |9
A SCC
Q -

OPERATION CODE:

INSTRUCTION: Q-Controlled Trarsmit, QTuv

NON-REPEATED

u MC A Q

MC 22 18 19

A 19 15 16

0 20 16 17

#*See preliminary discussion

REPEATED

u MC A Q

MC 15N+1 13N 13N

A 12N+

Q 13Nt

X 37

14

47

51

INSTRUCTION EXECUTION TIMES

INSTRUCTION: Q-Controlled Add, QAuv

OPERATION CODE:

NON-REPEATED REPEATED
v v
u mMC A Q u Mc A Q
MC 23 19 20 MC 16N+l 14N 14N
A 20 16 17 A 13N+
Q 21 17 18 0 14N+1
OPERATION CODE:
INSTRUCTION: (-Controlled Substitute, QSuv
NON-REPEATED REPEATED
\J v
u MC A Q u MC A Q
MC 37 30 32 MC 30N+1 25N 26N
A 34 27 29 A 27N +1
Q 35 28 30 ‘) 28N +1
px 37

15

52

53

INSTRUCTION EXECUTION TIMES

OPERATION CODE: 54

INSTRUCTION: Left Shift in A, LAuk

NON-REPEATED

v ES
u MC A Q
MC 22 + k 18 + k 19 + k
A 16 + k 16 + k SCC
Q 18 + k SCC 18 + k

REPEATED

v

u MC

MC (15 + k) N+l

where k is not altered by the Repea: Sequence.

*v is coded with bits vy...Vy representing k and bits vyq...vy completing an MC,
A, or Q address. If v 1s an A address, (u) shifted remain in A; if v is a Q
address, the final (AR) are transmi:ted to Q.

PX 37

16

INSTRUCTION EXECUTION TIMES

OPERATION CODE: 55

INSTRUCTION: Left Shift in Q, LQuk

NON-REPEATED

VAS
u MC A Q
MC 21 + k 20 + k 18 + k
A 18 + k 18 + k SCC
Q 17 + k SCC 17 + k

REPEATED

\'s b

u MC

MC (14 + k)N+

where k is not altered by the Repeat Sequence,
*where v is coded with bits vg...Vv, representing k and bits vy4...vy completing

an MC, A, or Q address. If v is an A address, (u) shifted are transmitted to A;
if v is a Q address, (u) shifted remain in (.

pX 37

17

INSTRUCTION EXECUTION

INSTRUCTION: Manually Selective Stop, MSjv

NON-REPEATED

v MC A Q
| 9 scc -
NO STOF
v irrelevant
’ >
STOP
INSTRUCTION: Program Stop, FS--

NON-REPEATED
u and v irrelevant

1

*See preliminary discussion

PX 3

16

TIMES
OPERATION CODE:
REPEATED*
' MC A 0
l 3 scC -
v irrelevant
|-5
OPERATION CODE:
REPEATED#*

u and v irrelevant

-6

56

57

INSTRUCTION:

INSTRUCTION EXECUTION TIMES

Print, PR-v
Punch, PUjv

NON-REPEATED

MC A)

17 15 16

computer operating time,
not including a possible
lockout time due to ex-
ternal equipment cycle
times of -
Approximately 105 ms for
typewriter

16.7 ms for Punch

(cycle times listed are

not maximum lockout times)

PX 37

19

v

OPERATION CODE: 61
63

REPEATED

MC A Q

|
|

13N 10N 1IN

computer operating time,
not including lockout
times duwe to external
equipment cycle times.

Approximate overall
times in ms:
Maximum -
Punch 16.7 (N-1)+12.5
Typewriter 105N
Minimum -
Punch 16.7(N-1)
Typewriter 105 (N-1)

INSTRUCTION EXECUTION TIMES

INSTRUCTION: Multiply, MPuv

NON-REPEATED

u MC A Q

MC 58 55 56

A 55 52 53

0 56 53 54

35
each plus 2(u) + 4y (u;) + 7 (ugq)
i=1

REPEATED

Subtract 36 from corresponding execution times

of Multiply Add instruction.

pPx 37

20

OPERATION CODE:

71

INSTRUCTION EXECUTION TIMES

OPERATION CODE:

INSTRUCTION: Multiply Add, MAuv
NON-REPEATED

Add 36 to corresponding execution times of Multiply instruction.

REPEATED

v
u MC A Q
-
Minimum times where.(u3)
MC 88N 85N 86N and (ug); are zeroes ang %he
additional time required for
[(uggq...u3); of ones is given
A 85N 82N 83N by the summation below the
table.
Q 86N 83N 84N J
N 34
each plus 4) U
=1\ i=1
J
v
u MC A Q
W Maximum times where
MC 237N 234N 233N [(u35 ... ug)j are all ones.
A 234N 231N 232N
Q : 235N 232N 233N
-
If the contents of (ugg ... “O)j are known:
u=MC v = MC
N 35
88 N + ng 2(110)j + 7(1135)j + 4 'zl (Ui)j
1:

u=Q, v=a a5
BAN + N{2(qp) + T(agg) +4 2 (q;)
i=1

PX 37
21

T2

INSTRUCTION:

INSTRUCTION EXECUTION TIMES

Divide, DVuv

NON-REPEATED

MC

238
239

add to each 4(a71)

240 238
237 235

238 236

NON-REPEATED

MC

MC

A

Q

238

23

236

add to each 4(371)

237

234

235

235

232

233

Minimum time

OPERATION CODE:

REPEATED

MC

MC

N
BAN+4 § (ag)); +l

j=1

Maximum time (in case of a preliminary negative remainder)

REPEATED

MC

MC

PX 37

N
231N + 4 Y (6171)j +1

Jj=1

73

INSTRUCTION EXECUTION TIMES

OPERATION CODE: 74

INSTRUCTION: Scale Factor, SFuv

NON-REPEATED REPEATED

if v=A or Q, SCC fault

v v
u MC u MC

MC | 61 +y MC (54 +y)Ntl
A 58 + vy
Q 59 + vy

where ¥ = (36-k) mod 72 and k is the scale factor 0< k < 71. For
k = 37, use value of k = 38,

OPERATION CODE: 75

INSTRUCTION

NON-REPEATED* REPEATED

27 + R, t p If the RP instruction is
repeated, the second one
takes precedence over the

where p is the execution time first.
of the terminal jump at Fj and

Ry is the execution time of the

repeated instruction.

(If n =0, R, =0)

#*See preliminary discussion

pX 37
23

INSTRUCTION:

v

INSTRUCTION EXECUTION TIMES

External Read, ERjv

NON-REPEATED

MC A Q

INSTRUCTION:

15 14 12

computer operating time,
not including a lockout
time if IOB, or IOA, has

not yet received the infor-

mation being "read".

External Write EWjv

NON-REPEATED

MC A Q

14 11 12

computer operating time,
not including a lockout
time if I0B, or IOA, is
currently in use for out-
put operations.

pPX 37

24

OPERATION CODE:

REPEATED

MC

ON+1

computer operating time,
not including lockout
times.

OPERATION CODE:

REPEATED

\
MC A Q

10N 7N 8N

computer operating time,
not including lockout
times.,

76

7

INPUT AND OUTPUT SYSTEMS
1. GENERAL.

The Input and Output Systems of the Univac Scientific computer provide the
means of communication between the computer and the operator. To achieve this
communication three things are essential to each input or output system: a
medium for external representation of information; external equipment which is
capable of (for output) receiving information internally represented and pre-
senting it -in its particular external medium of representation, or (for input)
sensing external information as it is represented by its particular medium of
representation and presenting it to the computer; a means of transmitting and
controlling this transfer of information between the external equipment and the
computer,

a. STANDARD EQUIPMENT. - The Univac Scientific Computer System includes
equipment which utilizes punched paper tape as a means of presenting and re-
ceiving information. The Photoelectric Paper Tape Reader senses information
punched on paper tape and presents it to the computer; the High Speed Paper
Tape Punch receives information from the computer and presents it externally
on punched paper tape. The Electric Typewriter is used to create punched paper
tape coded to represent typewriter functions and characters, This code is pre-
sented to the computer using the tape reader. Typewriter coded information
within the computer is presented externally through the typewriter which senses
the code and performs accordingly the typewriter function. Typed copy is pre-
pared on standard 8 1/2 by 11 inch typewriter paper and may consist of letters,
numbers, signs or symbols, and punctuation marks, spaced in any chosen type-
writer format.

~ Paper tape is described in rows and columns: a single column of positions
across the width of a tape is called a frame; frames are divided parallel to
the length of the tape into seven levels. Six of these levels are used pri-
marily to represent information to be placed in computer storage; the seventh
is used to present loading directions to the computer. A hole punched in any
of the six lower levels represents a one; the absence of a hole represents a
zZero. The tape is thus coded according to binary number notation although the
digit grouping may represent decimal numbers, bioctal numbers, or typewriter
codes. If the tape is punched to represent a 36-bit operand, 135 «es ig, the
bits representing the word are positioned on the tape as follows:

LEVELS
LOADING CODE 7
Las Lag oz Lz Ly s 6
|
2
DIRECTION OF
o © o © o 6 o ©© o o o (FEED HOLES)
TAPE MOVEMENT
3
4
ivso i-24 ivla le Ls i-o 5
/&7
/Qéﬁ’
/7 </

PX 38

INFUT AND OUTPUT SYSTEMS

As shown, six frames are needed to represent a 36-bit word. If the word
is a bioctal-coded computer instruction, the digits punched on tape represent
the operation code and u and v addresses of the instruction as follows.

0. C. - - v -
.\,,_;b . \:*0 & .\\b N .:3’ B
7/ e /oo A 4
P .\’4;0 -\,'l‘«’“ NS AWy v

b. OPTIONAL EQUIPMENT. - Other input and/or output equipment which is
optional with the computer system represents information externally on punched
tabulating cards, magnetic tape, or as printed copy.

c. INFORMATION TRANSFLR.

(1) INPUT OUTPUT REGISTERS. - Information transmission in and out of
the computer is performed as a function of coded computer instructions, It is
routed via a buffer (temporary storage) register and the X Register in its
transmission between external equipment and an addressed computer location.
The buffer registers used are determined by the selection of external
equipment for receiving or loading information.

The buffer registers are: the High Speed Punch Register, HPR; the Type-
writer Register, TWR: the Input-Output Register A, IOA; the Input-Output
Register B, I0B. Since HPR and TWR each provide communication with a specific
piece of external equipment, a discussion of these registers is included in the
discussion of the proper external equipment. The Input-Output Registers A and
B are, respectively, eight stage and 36 stage registers. They are used to pro-
vide communication between the computer and the input and/or output equipment
for which no specific buffer register has been provided.

(2) EXTERNAL INSTRUCTIONS. - Information transfer to external equipment,
via the buffer registers, is initiated by computer instructions which direct
the flow of information from an addressed computer location, via the X Register,
to the buffer register. The presence of the information in the buffer register
allows, under the proper conditions, the external equipment to sense the content
of the buffer register and to translate this information and present it exter-
nally. Information transfer via the buffer registers from external equipment
to the computer is similarly directed by a computer instruction. The informa-
tion is routed under the proper conditions from the external equipment, via a
buffer register and the X Register, to an addressed computer location. The
information as represented externally is translated appropriately to its machine
representation.

The computer instructions which direct the flow of information are:

rx 38

INPUT AND OUTPUT SYSTEMS

PUNCH, PUjv, operation code 63

Addressed computer location -> X Register - HPR— Punch
PRINT, PR-v, operation code 61

Addressed computer location—= X Register = TWR —Typewriter
EXTERNAL WRITE, EWjv, operation code 77

Addressed computer location — X Register — IOA or IOB —external
equipment

EXTERNAL READ, ERjv, operation code 76

External equipment — I0A or IOB-—X Register = addressed computer
location.

Since no reference to a specific piece of external equipment is made by
the External Read and Write instructions which use the IOA and IOB buffer
registers for information transfer, a means of selecting the appropriate piece
of equipment must also be provided. The External Function instruction, EF-v,
uses the IOB register for this purpose, This instruction places ones, as
located at address v, in selected stages of IOB and directs IOB Control to
then interpret the content of IOB and to accordingly select and initiate a
function of external equipment,

EXTERNAL FUNCTION, EF-v, operation code 17

Addressed computer location->X Register—>I0B
Initiate external equipment function according to (IOB)

(3) LOCKOUT CONDITIONS. - During the execution of each of these
external equipment instructions, a "lockout" test is made to see if a previous
use, if such is the case, of the particular register involved is completed.
This is necessary before the current instruction can be completed and before
the next instruction can be placed in computer control in readiness for its
execution. If the necessary requirements are not met, a lockout condition
exists which effectively stops computer operating time.

For output operations a lockout condition exists if the control circuitry
of the particular buffer register being referenced by the output instruction
has not yet received an indication that the register has been cleared of
previous information being routed to external equipment. The condition con-
tinues to exist, temporarily stopping computer operations, until the register
is cleared, after which the current information may be received by it (machine
operations being resumed), and the execution of the instruction completed. The
steps involved in an output operation are sequential within the groups as
listed below.

PX 38

INPUT AND OUTPUT SYSTEMS

Under computer control (for output)

Content of computer register —X register
TEST FOR LOCKOUT
(X)-> buffer register, INITIATE LOCKOUT

Under external equipment control (for output)

Sense content of buffer register
Resume signal-Clear buffer register, NULLIFY LOCKOUT INITIATION or
CLEAR LOCKOUT IF ESTABLISHED

Computer operations continue after the initiate lockout step unless a
second computer output operation involving the same register is begun before
the resume signals from external equipment control are received by the computer.
If this is the case, the LOCKOUT condition is ESTABLISHED and computer operation
is halted at the test lockout step. Computer operation is resumed at its stop-
ping point when the resume signals are received from external equipment.

For input operations a lockout condition exists if the control circuitry
of the particular buffer register being referenced by the input instruction
has not yet received an indication that the register has received the input
information from external equipment. This condition continues to exist, tem-
porarily stopping computer operations, until the information is received, after
which computer operations are resumed and the instruction completed. The steps
involved in an input operation are sequential within the groups as listed below.

Under external equipment control (for input)

Input information - buffer register
NULLIFY LOCKOUT INITIATION or CLEAR LOCKOUT IF ESTABLISHED

Under computer control (for input)

TEST FOR LOCKOUT

Content of buffer register —»X

Clear buffer register, INITIATE LOCKOUT
Content of X — computer storage .

During input operations, a LOCKOUT condition is ESTABLISHED if the computer
instruction for input is sensed by computer control before the input information
is received by the buffer register referenced by the instruction. If the input
information is received by the buffer register before the execution of the input
instruction is begun, the lockout iritiation condition (left by any previous
execution of an input instruction referencing the same register) is nullified,
and the input instruction may be executed without lockout delay; but if an
input instruction (referencing a register whose previous clearance set up a
lockout initiation condition) is attempted before input information is received
by the buffer register, a lockout is established. 1In this case, computer opera-
tions are halted at the test lockout step and resumed when the input information
is received.

PX 38

4

INPUT AND OUTPUT SYSTEMS

(4) INPUT OUTPUT COMPUTER FAULTS. - Certain conditions may arise
during input and output operations which could cause erroneous transmissions
to and from external equipment. These conditions do not result in lockouts but
cause computer .faults which halt computer operation. These faults result from
operations involving the Input Output Registers A and B and are indicated on
the Supervisory Control Panel, lower left portion of the center section. Since
they are classified as Type B computer faults (explained in the section,
Operating the Computer), they are also indicated on the control panel in the
center section, lower righthand corner, as an IOB fault.

These faults, listed subsequently, are generated because of timing require-
ments which have not been taken into consideration or because of faulty external
equipment.

An IOB (or IOA) Read Fault, Class I, occurs if information is received by
I0B (IOA) from external equipment before the control circuitry of the register
has received a signal to dispose of information placed there during previous
input operations. 1In other words, if the steps

Under external equipment control (for input)

Input information— buffer register
NULLIFY LOCKOUT INITIATION or CLEAR LOCKOUT IF ESTABLISHED

occur a second time before the steps
Under computer control (for input)
TEST FOR LOCKOUT
Content of buffer register—> X
Clear buffer register, INITIATE LOCKOUT
Content of X—-> Computer storage,
an IOB (IOA) Read Fault, Class I, is generated.

An IOB (or IOA) Read Fault, Class II, occurs if IOB (or IOA) receives in-
formation from external equipment hefore the control circuitry of the buffer
register has received an indication that previous output operations involving
it have been completed. In other words, if the steps

Under computer control (for output)
Content of computer register—s= X register
TEST FOR LOCKOUT
(X)—>buffer register, INITIATE LOCKOUT
are followed by the steps

Under external equipment control (for input)

Input information —= buffer register
NULLIFY LOCKOUT INITIATION or CLEAR LOCKOUT IF ESTABLISHED,

an I0B (IOA) Read Fault, Class II, is generated.
PX 38

5

INPUT AND OUTPUT SYSTEMS

d. PROGRAM INTERRUPT FEATURE. - The program interrupt feature, discussed
previously in the General Description and Sequential Presentation of Instruc-
tions sections, permits signals from external equipment to activate the inter-
rupt control and provides automatic interruption of a computer program when the
external equipment is ready to communicate with the computer. The instruction
at F3, which is acquired for execution by the interrupt feature, could provide
a jump (Return Jump) to a subroytine which is coded for input or output opera-
tions involving the piece of external equipment which instigated the interrupt.
Upon completion of the subroutine, a jump would be programmed, returning opera-
tion to the program which was interrupted.

This use of the interrupt allows to a certain extent a disregard of the
timing restrictions intrinsic to input and output operations from and to that
external equipment which may send an interrupt signal to the computer. Those
pieces of external equipment which mey thus generate the interrupt signal do
so (with the proper conditions) each time the equipment is ready to receive or
transmit information, The interruption of the current program must be accom-
plished, and the input or output subroutine must be executed, within the time
allowed by the external equipment for the computer processing of information.
Factors could be present in the program being currently executed by the computer
which could cause a delay of the interrupt being carried out and consequently
delay the necessary input or output cperations from being executed within the
time limit. Such factors could be an extensive repeat sequence in process at
the time the interrupt is activated, or a reference to a drum address which
could require up to the maximum access time of 34 milliseconds.

In order for the interrupt signal to be sent to computer (interrupt) centrol,
an interrupt line (where it is provided) must be activated in the piece of
external equipment itself. This is done by a switch-setting on the equipment,
or by programming an External Function instruction with an IOB Select Interrupt
bit.

2. PHOTOELECTRIC PAPER TAPE RIADER.

a. GENERAL. - The Photoelectric Paper Tape Reader (shown in Figure 1), in
conjunction with the IOA and IOB registers and associated control circuitry,
provides a means of input of information to the computer. The media of informa-
tion representation is seven-level punched paper tape. The tape reader has a
single reading station composed of a column of seven photocells associated with
the seven levels of a tape frame as the tape moves through the reader. (Also
punched in the tape are feed holes, parallel to the length of the tape, between
levels two and three.)

The six (or seven) bits represented by each frame are sensed simultaneously
and transmitted to the six (or seven) lower order stages of IOA. The representa-
tion of ones in the tape frame is actually transmitted by a signal received by
the corresponding stage of IOA. The representations of zeros are "transmitted"
by the absence of such a signal. Thus IOA must initially be clear for an accurate
representation of the contents of a firame before such transmissions occur. The
transfer of information from IOA to an addressed computer location, via the X
Register, is accomplished by programming an External Read instruction, ERjv with
j =0, to be executed each time IOA receives the contents of a frame from the
tape reader,

0B 8924

INPUT AND OUTPUT SYSTEMS

Figure 1,

Photoelectric Paper Tape Reader

PX 38
7

INPUT AND OUTPUT SYSTEMS

The six lower levels of the punched tape (6, 1, ..., 5) contain information
to be placed at an addressed computer location and may contain loading instruc-
tions directing the insertion of infermation into storage; or the seventh level
of the tape may be punched to effect the proper disposal in the computer of the
information in the lower six levels., In either case the loading directions in
the sixth or seventh levels of consecutive frames must be interpreted within the
computer to achieve the designated storage of information.

Typical coding, as punched in the seventh level of a tape, for loading
directions is shown on the following diagram. Sprocket or feed holes are not
shown on this diagram.

IN'SERT ENTER ENTER CHECK
ADDRESS DATA DATA ADDRESS
~ -~ - T
i I S S N i A
® [] ° ° ° ° °
»m “?L&i baq ﬁnﬂs
\
DIRECTION. OF : | FIRST SECOND -
| 1!
TAPE MOVEMENT U WORD WOTP b
Lig | N \ Lig
] N N 411
R \ \
LI '\ AN . J J
Yo's Yo) ‘o Y12 Y6 Yo

These distributions of holes, as represented by "one's"

interpreted as follows.

in the computer, are

(1) 1INSERT ADDRESS.- The adclress designated by i 4...10 to be placed
at an addressed location which will serve as a
"dummy'' PAK.

(2) ENTER DATA. - The first word, i "‘iO' is to be placed at the
address held in the above "dummy" PAK. Successive
words are to be placed at consecutive addresses.

(3) CHECK ADDRESS. - The adcress designated by i14-..1p should be iden-
tical to the address currently held in the "dummy"
PAK.,

b. PROGRAMMING FOR INPUT. - Information loading from the tape reader is
controlled by using the External Function instruction to place bits in selected
stages of I0B. The three stages in which a combination of ones must be placed
are, with their corresponding interpretations, as follows.

I0B33 Select Tape Reader
10B+¢ Start Tape Reader
10B5 Stop Tape Reader

X 358

6]

INPUT AND OUTPUT SYSTEMS

The "Select Tape Reader" stage must contain a one for all operations affecting
the tape reader. The combinations of one's in IOB which effect control of the
tape reader are as follows.

Start (Free Run) - 1I0B33 and IOB16 coded as EF-v,(v) being 10 00002 00000
(octal). This combination causes the reader to start and continue running with
the six (or seven) bits of each consecutive tape frame being transmitted to IOA.

Stop - 10B33 and I0B15, coded as EF-v, (v) being 10 00001 00000 (Gctal).
This combination causes the reader to stop upon the transmission to IOA of the
six (or seven) bits of the tape frame sensed by the reader immediately followim
the interpretation, by the control circuitry of the reader, of (IOB) as a stop.

Step Tape Reader - 10B33, IOBjg, and I0Bj5, coded as EF-v, (v) being 10
00003 00000 (octal). This combination causes the reader to start, transmit to
I0A the six (or seven) bits of the first frame of tape it senses, and stop.

The normal rate of tape speed through the reader is approximately 200 frames
per second, but, as a function of line voltage, it may be 'as high as 230 frames
per second. Thus the time interval between the sensing of successive frames of
tape may vary from 4.3 to 5 milliseconds. Timing factors to be taken into
consideration for the three controlled operations of the tape reader are as
follows.,

(1) Start (Free Run)., - Information is being transmitted from the tape
to IOA at the rate of one frame every 4.3 milliseconds (assuming
for synchronization the shortest time). The contents of IOA should
be transmitted to the X Register, using the External Read instruc-
tion, at corresponding time intervals for the most efficient use of
computer time. The execution of the External Read instruction
clears I0A after its contents have been transmitted to X. If
another External Read is programmed before the contents of the next
frame have been received from the reader, machine operations are
temporarily halted by a lockout condition until IOA receives infor-
mation, If information is transmitted to IOA from the tape reader
before IOA has been cleared of the contents of the preceding tape
frame, a B Fault occurs and is indicated by the IO Fault light on
the Supervisory Control Panel,.

(2) Stop. - To insure that the reader is stopped so that the next tape
frame whose contents are transmitted to IOA is the last frame de-
sired to be sensed by the reader, the External Function instruction
coded for a reader stop should be programmed to be executed at
least one millisecond before the sensing of the last desired frame.
This can be done by programming it timewise to follow within three
milliseconds of the previous External Read. After the reader is
stopped, an External Read instruction must be programmed to trans-
mit the contents of IOA to the X Register. If the stop is made
during tape loading operations and IOA will not be used before the
reader is again started, the External Read may be programmed. to
precede the start instruction. If the stop instruction is not
executed before the transmission to IOA of the contents of the last
desired frame, and a read instruction is not programmed to transmit
this content of IOA to X, a B Fault will be indicated. The computer
will be stopped when IOA is to receive the contents of the next
frame which must be sensed before a stop will actually occur.

PX 3B
9

INPUT AND OUTPUT SYSTEMS

When a stop occurs, a three millisecond time delay, allowing the
reader to stop physically, is generated in the reader control cir-
cuitry. This time delay prevents the reader.from being started for
three milliseconds. Thus, a start instruction, if programmed to be
executed during this period, is not effective until the three milli-
second period has elapsed.

(3) Step. - During step operctions the first frame sensed by the reader
is the frame which allows the reader stop to be performed. The
contents of the first tape frame are transmitted to the IOA regis-
ter. Thus, consecutively programmed step instructions must each be
followed by an External Fead instruction with the first preceded by
an External Read if IOA is not initially clear. There is a five-
millisecond time lapse between successive frames at the operating
speed of the reader, A three-millisecond delay is generated by the
stop reader operation, ard approximately a one-millisecond delay is
generated by the reader start operation. Therefore, approximately
nine milliseconds are corsumed in a step instruction.

c. OPERATION. - Manual operations necessary to the functioning of the
Photoelectric Tape Reader consist of inserting the tape to be read in the tape
passage of the reader and depressing momentarily the Start button on the reader
itself or the Tape Reader Start button on the lower left section of the Super-
visory Control Panel of the computer. Depressing either of these buttons turns
on the reader power; similarly, depressing either the Stop button on the reader
or the control panel turns off the reader power, After the reader power is on,
an input routine for the reader may be initiated which includes instructions to
start the reader, read the (IOA) to acdressed computer locations, and process
the information being loaded according to the coded loading directions.

3. HIGH-SPEED PAPER TAPLE PUNCH.

The High-Speed (Paper Tape) Punch output system consists of the High-Speed
Punch Register, HPR, the High-Speed Punch Control, and the punch (as shown in
Figure 2) which presents information on seven-level punched paper tape at the
rate of 60 frames per second. The High-Speed Punch Register is a seven-stage
buffer register which temporarily stores digits in their transmission between
the computer and the punch. The high-speed punch control circuitry senses the
contents of HPR and energizes the punch to perforate the tape frame in the levels
whose corresponding stages in HPR contain representations of ones. After infor-
mation is received from HPR, the tape is advanced through the punch by one
frame, placing the next tape frame in position to receive information.

The transmission of information to the punch is initiated by the coded com-
puter Punch instruction, PUjv, operation code 63. This instruction directs the
transmission, via the X Register, of the contents of the right-hand six stages
of v to the first six stages of HPR., Actually, only the representations of ones
in stages Xs5...X are transmitted to the corresponding stages of HPR. A j of
one is transmittgd directly to the seventh stage of HPR. According to the con-
tents of HPRg...HPRp, holes may be punched in the corresponding tape levels,

7, 6, 1, ..., 5. To transmit from address v a word of 36 bits so that each
group of six bits is punched in its correct relative tape position, the Punch
instruction must be executed six times, each execution being preceded by a

PX 33

10

0A 8787

INPUT AND OUTPUT SYSTEMS

Figure 2.

High Speed Paper Tape Punch

PX 38
11

INPUT AND OUTPUT SYSTEMS

Shift instruction. The word must be shifted at the v address of PUjv six times,
the first shift operation positioning the six most significant bits of the word
in the six right-most stages of v, and each succeeding shift operation posi-
tioning the next most significant six bits in the right-most stages of v.

The High-Speed Paper Tape Punch is ready for operation when the tape is
properly positioned in the punch with a "leader" of blank tape preceding the
first punching position. This leader may be fed through the punch by depressing
either the tape feed button on the computer control panel or on the punch. The
punch is started in continuous cycles of operation by setting both the toggle
switch on the punch and the tape punch toggle switch on the lower left section
of the Supervisory Control Panel of the computer to their ON positions. Either
switch in its OFF position prohibits punch operation. The time duration of a
punch cycle is 16.7 milliseconds. The first punch instruction initiated during
a punch cycle n does not make an efi’ective punch reference, (HPR)~—= Punch,
until the beginning of the next cycle and requires the first 12.5 ms of this
succeeding cycle, n + 1, for the conpletion of its punch reference. Thus HPR
is not ready to receive additional output information until the last 4.2 ms of
the cycle n + 1. If a second punch instruction is initiated before such an
indication of readiness is given to HPR, a computer lockout will occur stopping
the computer until 4.2 ms before the beginning of cycle n + 2. If the second
punch instruction immediately followed, during cycle n, the first punch instruc-
tion, the lockout time is 12.5 ms plus the unexpired time of cycle n after the
lockout period -effected by the second punch begins. Thus, if the first punch
instruction was initiated immediately after the beginning of cycle n, a lockout
time of approximately 29 ms would occur (12.5 plus almost 16.7). This is the
maximum lockout time possible. The punch reference made by the second Punch
instruction will not be completed until the first 12.5 ms of cycle n + 2 have
elapsed. If Punch instructions are programmed to be executed at 16.7 ms
intervals, a computer lockout may be effected by the second instruction, but
the execution of successive Punch instructions will be in synchrenization with
the punch cycles because of the actual stopping of computer operating time.

4. LELECTRIC TYPLWRITLR.

The Electric Typewriter output system consists of the Typewriter Register,
TWR, the Typewriter Control, and the Electric Typewriter, as shown in Figure 3.
The Typewriter produces typewritten manuscript with letters in upper and/or
lower case, numbers of the decimal system typed on the same level as letters
or elevated above this level as exponents, and a variety of characters such as
a plus sign (+), a minus sign (-) , and a comma (,), etc. These letters,
numbers, and characters are typed in a format determined by the response of
the typewriter control circuitry to six-bit codes which are interpreted as,
and actuate the typewriter to, such physical operations as space, carriage
return and tabulator. Incidental to a carriage return is a line spacing opera-
tion, the number of spaces between consecutive lines being determined by the
manually set line spacer on the typewriter. The tabulator operation also
requires a manual setting; the interpretation of the tab code as such releases
the carriage to move to a predetermined manual tab setting. A shift-up opera-
tion positions the type bars for upper case typing. To resume typing in lower
case a shift-down operation must be executed.

PX 38

12

INPUT AND OUTFUT SYSTEMS

Letters and numbers are also typed, as directed by the Typewriter Control,
in response to six-bit codes with ezch code representing a single letter or
number. To type a letter in upper case or a number as an exponent, the type
bars must be shifted to their upper case position before the typewriter responds
to the letter or number code. Two characters are represented by a single code.
The character which is typed is determined by the location of the type bars in
their upper or lower case position.

A list of the typewriter codes, given as two-digit octal numbers, is pre-
sented with their associated typewriter functions in Table 1. If an illegal
code is sent to the typewriter, an A Fault will occur, which is indicated by
the Print fault light on the Supervisory Control Panel, The computer is
stopped in its operations at the point when its control receives a signal from
the typewriter control that an illegal code has been detected. The computer may
be restarted from where it ceased operations by first pushing the CLEAR A FAULT
button and then by pushing the START button on the computer. This insures that
the illegal code is cleared from TWR.

Typewriter operations for output are initiated by the computer instruction
Print, PR-v, operation code 61. This instruction directs the transmission, via
the X Register, of the contents of the right-hand six stages of v to the six
stages of the Typewriter Register. TWR serves as a buffer register for infor-
mation being transmitted from the computer to the typewriter. Actually, only
the representations of ones in stages X5 ... X are transmitted to the corre-
sponding stages of TWR. The typewriter control circuitry senses the representa-
tion of a six-bit code in TWR and in so doing causes the typewriter to type a
single letter, number, or character or perform a single typewriter operation.
For example, to type the single upper case letter M, the following two instruc-
tions would be programmed.

61-v, (v5 see V) is 100 111
61-v, (v5 ... vy) is 000 111

A movement left of the carriage by one space to reposition it for the next
typing operation occurs automatically after each typing of a letter, number, or
character.

The speed of the typewriter allows it to type approximately nine characters
per second. Thus, a timing period of approximately 105 ms will elapse between
consecutive prints by the typewriter. (Coded typewriter functions require a
longer timing period for their completion.) If successive Print instructions
are programmed to be executed in less time, a lockout condition will exist until
the control circuitry of TWR receives an indication that the typewriter is ready
to receive another six-bit code. The maximum lockout time for the typewriter
is dependent upon which phase of the typewriter cycle is being executed currently
when a test lockout reference of a successive Print instruction is made.

Manual preparation of the typewr:iter for operation consists of inserting
paper, setting the OFF-ON switch to the right of the typewriter keyboard to
the ON position, and selecting the ON LINE switch position.

PX 3&

14

TABLE 1.

INPUT AND OUTPUT SYSTEMS

TYPEWRITER CODES

The upper case, UC{ or lower case, LC, character is typed according
to the position of the type bars,

Type Letter Type Number Perform Type-

ucC LC Octal uc LC Octal || writer Operation Octal

A a 30 1 1 52 Space 04

B b 23 2 2 74 Shift up 47

c c 16 3 3 70 Shift down 57

D a 22 4 " 64 Back space 61

E e 20 5 5 62 Car. return 45

F f 26 8 6 66 “Tabulator 51

G g 13 7 7 72 Color Shift 02

H h 05 8 8 60 Code delete 77

I i 14 ® 9 33 Stop 43

J 3 32 o 0 37

K k 36

L 1 11

M m o7

N n 06

0 o 03 Type Symbol

P P 15

Q q 35 uc LC Octal

R r 12

S s 24 = (Superscript = (Hyphen or 56

T t 01 Minus) Minus)

U u 34

\'f v 17 . (Multiply) = (Equals) 44

W w 31

X X 27 / (Virgule) + (Plus) 54

Y y 25

Z z 21 ((Open Parens) , (Comma) 46
) (Close Parens) . (Period) 42
_ (Underline) | (Absolute) 50

PX 38

15

INPUT AND OUTPUT SYSTEMS

5. PUNCHED CARD INPUT/OUTPUT SYSTEM.

a. GENERAL. - The Punched Card Input/Output equipment, in conjunction with
the I0A and IOB registers and associated control circuitry,provides a means of
input to and output from the Univac Scientific computer. The input/output
card equipment comprises the Card Unit, shown in Figure 4, and the Card Unit
Control. The media of information represeatation is 80-column tabulating cards,
in which holes are punched in specified patterns. These cards may be punched
or read at a rate of 120 cards per minute.

The Card Unit, as used with the Univac Scientific, utilizes a left-hand
channel for punching cards and a right-hand channel for reading cards, Punched
cards whose information content is to be transmitted to the computer are routed
through the "read" channel of the Card Unit; blank cards which are to receive
information and to be punched accordingly are routed through the "write" channel.
Cards to be routed through the read channel are placed in the card read feed
hopper and received, after their advancement through the channel, by the read
receiving stacker. Cards to be routed through the write channel are placed in
the card punch feed hopper and received, after their advancement through the
channel, by the punch receiving stacker.

The tabulating card used by the Card Unit is divided into 12 horizontal
rows and 80 vertical columns with groups of these columns being designated as
Fields I, II, and III as shown in the diagram of an unpunched card in Figure 5.
A rectangular hole, or index, may be punched at the intersection of any row and
column., If the input or output infcrmation is coded to represent binary words,
each row may be punched to represent two 36-bit words plus six additional bits
of information. (A hole represents a one; the absence of a hole denotes a
zero.) Tabulating cards may also be punched in a pattern to represent alphabeti-
cal and digital characters. An opticnal punched pattern of letters and decimal
digits is shown in Figure 6.

b. PROGRAMMING FOR INPUT AND OUTPUT. - Information is transmitted to or
from the cards in response to programnmed External Function and LExternal Write
or External Read instructions. A series of three of these EW or ER instruc-
tions, programmed consecutively, direct the transmission of each row of infor-
mation, via X, between addressed computer locations and the Input-Output Regis-
ters, I0A and I0B. The sequence of information flow is as follows.

To transmit information from the computer to a tabulating card, the group
of following External Write instructions, preceded by appropriately coded
External Function instructions, is executed twelve times, once for each card row.

EWjv, j =0 (X)—> I0A—> Field III
EWjv, j = 1 (X)—>I0B— Field I Row 9, 8, ... 0, 11, 12
EWjv, j = 1 (X, —=I0B—> Field II

To transmit information from a punched tabulating card to the computer, the
group of following External Read instructions, preceded by appropriately coded
IExternal Function instructions, is executed twelve times, once for each card
row,

X 38

16

81
8¢ Xd

smoy pue ‘suumio) ‘sprard p.ae) Buriernqep,

*c aanbry

ROW

ROW

ROW

a
<
Pt

o
o
=

ROW
ROW
ROW
ROW
ROW

ROW

FIELD

x—

L)

m
H O

edooQo0o00000000000000000000000000000

I I INHNUUUBITRINARNMNBRTANDINLT NS N

S:
I RREE R R R R R R R R R R AR R R R
3333333333332333333333333333333333133
Q44484344444 444444444448444488844444414
§5595555595555555555555555595558555558
EA66G6656566E866566666666668666666665
TF7777737723112311 1111137111 3111111111
BBBS52335838¢87688886588688¢2:308858888868¢R

93
L]

-y

9993
R

o

§3599999993%9599999946949939%3
: EHL NN ONS R RNBNRBRE

" i3

B 2

oogoooooo0c0000CO00000000000000000000000
T AN RIQOUER N INI VT URRIBANNROHO SO MBI T
TRRETL IRttt eneneenetnentny
L1222222322222222222222222222222212222
33333333323333333332333233333333333333
§44444444484440484448444444444444844444
5555553555555555555555555555555553555
666666566606 665606686666606585566856666
1111771171717 129311117911 11107191711

338888668R33456588388885883483888583888

00008000
nMBRANRRE
IRERRER R
22222222
333333133
§4444444
558993989
66666566
1771711111
88888888
99999998

NENRN

nLnn»

SWALSAS 10dLO0 ANV LdNT

*9 aanb1yg

61
8¢ Xd

uorjequasaxdoy Te11B1Qg pue Teorzeqeydiy pae) poyound Jo ojduexy uy

EXAMPLE ONLY — SPECIFIC CHOICE OF CODE LEFT TO DISCRETION OF PROGRAMMER

SWALSAS IL04LO0 ANV I0OdNI

ABCDEFGH | JKLMNOPQRST etc. 0123456789
.
T
hunu, 1
il 2
) *}u 155‘% Q0C0000000000968NPpEpPpT0000000000C0000000000009000000000000
B U KD 2 NS R A NN N I R RN P RN QO U ES IO INI VIR LE S BUBIROHSBEORSNNI NN BRI AR
| | }I IRRERARRRRRERERY IRERY R R RN R R R RN AR AR RN R RN RRERE
} ' 2!’ i{ zzzzzzzzzzzn‘v‘)pRPPP2222222222222222222222222222222222222
1;‘] | * 2333333233333333)3533)33333333333333333333335333333333133333
4 1444 444||.?Iw‘uuuuuuul PR Baa 44444400 44402444840088444408440444
5 1939054995955555555555¢ 53 55955555555555555555555556555555555555
LEXE) ERLREE sle:;eesessssessssli[i J 6§ 5 6666666666666665666566665666666656568
' 1 {71 (RN ERRRRRESRRERSEED 17771007100 000000077200071111777111110
4554 RN EEEEEERELY [ERERRAREREXIRE b b 3885 583883339 3¢68828588585888888888868
iﬂiiaﬂmasas,:alﬁ;zz%zazzizzzzz;;,,L.,,pzzzzzzas33321333332232233252 SHEH
THTTTTITITTT AT

INPUT AND OUTPUT SYSTEMS

ERjv, j = O Field III—>(I0A)—> X
ERjv, j = 1 Row 9, 8, ... 0, 11, 12 Field I —>(I0B) —> X
ERjv, j = 1 Field II—> (I0B) —> X

Information transmission between IOA and FField III is optional and may be
omitted by not executing EW or ER with j = O and by manually setting a switeh
on the Card Unit Control cabinet to its "Out" position. For reading and writing
of all three fields the position of this switch, called the Enable Field III
switch, is in its "Normal" setting.

Preceding any reading and writing operations by the punched card system, at
least one External Function instruction must be executed to start the Card
Unit, position the cards for reading and/or punching (these two conditions may
be established also by manual operation), and establish the condition necessary
for a read and/or write. The External Function EF-v transmits representations
of ones to certain stages of IOB, then, according to the selected stages, the
following signals are sensed by the card system,

IOBO Read

10B; Punch

10B, Pick Reader Card

10B4 Pick Punch Card

10B4 Stop (and Drop Selections)
10B5 Run Free

10B7 Interrupt

I0Bg5; Start Cycle

Start Cycle - This selection must be present in each EF-v to make any of
the other selections effective. A signal from I0OB35 engages the drive mechanism
of the Card Unit and causes one "cycle" of operation. The time consumption of
each cycle is 500 milliseconds with each cycle consisting of a sequence of 18
cycle points of approximately 27.8 milliseconds each. The cycle points are
numbered in the order 14, 15, 16, 17, 18, 9, 8, ... 1, 0, 11, 12, 13, (14).

Interrupt - With the Interrupt switch on the Card Unit Control cabinet set
to "By Command", a selection of IOB; energizes an interrupt line in the card
equipment so that an interrupt signal is sent to the computer (interrupt) control
when the conditions are established for reading and/or writing a card row. This
occurs each time a card row is in position for reading and/or writing (i.e.,
at the beginning of cycle points 9, 8, ..., 1, 0, 11, 12) if the Start (or Run
Free) and Read and/or Punch selections are effective. The first External Read
instruction must be executed within 10 milliseconds after the interrupt signal
is sent to the computer. The first External Write instruction must be executed
within 1.5 milliseconds after the interrupt signal is sent to the computer.

The interrupt selection may be made by setting the INTERRUPT switch on the
punched card equipment to its "Locked In" position. With this setting the

interrupt line in the equipment is energized (without the IOB; selection) under
the conditions mentioned above.

X 38

20

INPUT AND OUTPUT SYSTEMS

Run Free - A selection of IOB5 causes continuous cycle operation by re-
taining in effect the Start selection, along with other selections made simul-
taneously with the Run Free, until a Stop signal is received by the execution
of another programmed EF-v,

Stop - A selection of I0B4 permits only one more cycle of operation with
the selections effective that were made by the previous EF-v; i.e., the stop
is sensed after point zero which allows another complete cycle before the Stop
is effected.

Pick Punch Card - A selection of IOB3 causes the bottom-most card in the
punch card feed hopper to be withdrawn from the hopper and placed in the punch
channel. This selection is also necessary for the first advancement of the
card through the channel,

Pick Reader Card - A selection of IOBo causes the bottom-most card in the
read card feed hopper to be withdrawn from the hopper and placed in the read
channel, This selection is also necessary for the first advancement of the
card through the channel.

Punch - A selection of IOB; enables the punch mechanism to receive informa-
tion from IOB (and IOA) and prepares it to punch this information on a card
during the next cycle.

Read - A selection of IOBp enables the brushes used for reading to sense
the information in each row of a card as it passes beneath them.

After these IOB select signals are received by the punch card equipment
they are held in effect for one cycle of operation (or a number of cycles if a
Run Free Select was chosen) by the control circuitry so that IOB may be cleared
for information transmission.

After a card is picked and withdrawn from either the punch card feed hopper
or the read card feed hopper, it may advance through a series of five positions
or "stations" in the read channel or punch channel. A Pick Reader Card selec-
tion or a Pick Punch Card selection places a card in either Read Station 1 or
Punch Station 1. A Pick Punch Card Selection or Pick Read Card selection is
necessary also to advance a card in the channel from Station 1 to Station 2.
These operations may be initiated by programming External Function instructions
with bits in the appropriate stages of IOB or by manually operating switches
on the Card Unit itself. After a card is in Station 2, in either the punch
or read channels, four more cycles of operation are necessary to advance the
card through the channel and into its final position in the receiving stacker,
Each cycle of operation advances cards in both channels if they are in or past
Station 2 to the next station,

Punch Station 3 in the punch channel contains the punch mechanism. After a
card is in Punch Station 2, one cycle of operation is needed to advance the
card to the punching position. During the cycle which advances the card from
Punch Station 2 to Punch Station 3, the information to be punched must be re-
ceived from IOB (and IOA)., More explicitly, during each cycle point 9, 8, ...
1, 0, 11, 12, of 27.8 milliseconds, the series of three (or two) External Write
instructions should be executed consecutively, and the Punch select signal must

PX 38

21

INPUT AND OUTFUT SYSTEMS

be in effect. With these conditions information to be punched (in the corre-
spondingly numbered card rows 9, 8, ..., 0, 11, 12) can be transmitted to the
punch mechanism. At the beginning of the next cycle, automatic punching of a
complete card occurs before the card is advanced to Station 4. Outlines of
programming for punching of consecutive cards are given in Tables 2 and 3.

Read Station 2 in the read channel contains the brushes used for sensing
the cards. During the cycle of operation in which the card is advanced through
the read station, the information may be read, a row at a time, as the card
is advanced past the read brushes. This information must be transmitted to
computer storage from IOB (and IOA) as it is received. More explicitly, during
each point 9, 8, ... 1, 0, 11, 12 of 27.8 milliseconds, the series of three (or
two) External Read instructions should be executed consecutively, and the Read
select signal must be in effect. This enables the transmission to addressed
storage locations of the information of the correspondingly numbered rows
9, 8, ... 1, 0, 11, 12, Outlines of programming for reading of consecutive
cards are given in Tables 4 and 3.

An outline of programming for simultaneous reading and writing of consecu-
tive cards is given in Table 6 and on the page preceding it. The transmission
of Field III in any of the programs may be eliminated by not executing the
kxternal Read or Write instructions with j = O and by setting the Enable
Field III switch properly.

c. OPERATION.

(1) COMPUTER CONTROLLED. - The equipment is prepared for controlled
operation, after power is applied at the Card Unit Control Cabinet, by following
the steps below.

Step 1 - If only 72-card columns are to be read or punched, set the FIELD
III switch (SO1) to the "Out" position. If 80 columns are to be
read or punched, set this switch to the "Normal™ position.

Step 2 - 1If card reading is to be performed, place the deck of cards to be
read into the right-hand feed hopper of the Card Unit. If card
punching is to be performed, place a deck of cards in the left-
hand feed hopper. Place the metal weights on top of the decks.
In either hopper, cards are placed face (printed side) down, so
that the "9" edge enters the channel first.

Step 3 -~ Set the toggle switches on the Card unit in the following manner.

DUPL. away from operator

PUNCH away from operator

MOTOR left

bC left

READ away from operator

PICK READ towards operator

PICK PUNCH towards operator

STANDBY towards operator

After these steps have been performed, the punched card program may be
started in the computer.

PX 38
22

INPUT AND OUTPUT SYSTEMS

TABLE 2. WRITE - SINGLE OR CONSECUTIVE CARDS

The computer instructions below withdraw two cards from the punch card
feed hopper, position the first card for punching and punch information in it,

and continue advancing it through the punch channel until it reaches its
final position in the receiving stacker.
hopper is left in the first station,)

(The second card withdrawn from the
Other instructions may be programmed

and executed during and between each cycle of operation of the card equipment
providing that the timing requirements noted are met,

EF-v (v) = Start
Pick Punch Card cycle
EF-v (v) = Start cycle
Pick Punch Card
EF-v (v) = Start
Punch
Within 140.5 ms of the start of this cycle the
execution of the following three instructions
should be initiated: cycle
EW,0,v Repeat for each card row, each repetition being
EW,1,v initiated not later than 1.5 ms after the begin-
EW,1,v ning of the corresponding point.
EF-v (v) = Start (punching occurs) cycle
EF-v (v) = Start cycle
EF-v (v) = Start cycle

(channel cleared of last punched card)

To transmit information to
Free bit, include a Pick Punch

n consecutive cards, without selecting the Run
Card bit in (v) of the third External Function

instruction above. Repeat the third EF-v instruction and the group of External
Writes occurring in that cycle n times. Then,at the conclusion of the program

above, the nth or last punched

cards remaining in the first and fifth punch stations.

pPX 38
23

card will be found in the punch stacker with

INPUT AND OUTPUT SYSTEMS

TABLE 3. WRITE - FREE RUN

The computer instructions below withdraw singly a sufficient number of
cards from the punch card feed hopper to hold the information to be punched,
position them for punching and .punch information in them, and continue ad-
vancing them through the punch channz1 until the last card punched reaches

its final position in the receiving stacker.
the first and fifth stations,)

(Unpunched cards are left in
Other instructions may be programmed and ex-

ecuted during and between each cycle of operation of the card equipment pro-
viding the timing requirements are met.

Number n js the number of

cards required to hold the information to be written,

EF-v (v) = Start 1 cycle
Pick Punch Card
EF-v (v) = Start 1 cycle
Pick Punch Card
EF-v (v) = Start
Free Run
Pick Punch Card
Punch
Within 140.5 ms of the start of this cycle the execution
of the following three instructions should be initiated:
repeated
EW,0,v Repeat for each card row, each repetition being initi- n-1 cycles
EW,1,v ated not later than 1.5 ms after the beginning of the
EW,1,v corresponding point.
The repetitive group of External Write instructions must
be programmed n-1 times, =2ach ¢group being executed time-
wise within the cycle which enables the punching.
EF-v (v) = Start
Stop
(punching of n-1 card occurs)
Within 140.5 ms of the start of this cycle the execution
of the following three instructions should be initiated.| 1 cycle
EW,0,v Repeat for each card row, each repetition being initi-
EW,1,v ated not later than 1.5 ms after the beginning of the
EW,1,v corresponding point,
EF-v (v) = Start 1 cycle
(nth card punched)
EF-v (v) = Start 1 cycle
EF-v (v) = Start 1 cycle

(nth card placed in receiving stacker)

2X 38

24

INPUT AND OUTPUT SYSTEMS

TABLE 4, READ - SINGLE OR CONSECUTIVE CARDS

The computer instructions below withdraw two cards from the read card

feed hopper, position the first card for reading, transmit its contents

to the computer, and continue advancing it through the read channel until it
reaches its final position in the receiving stacker, (The second card with-
drawn from the hopper is left in the first station,) Other instructions may
be programmed and executed durina and between each cycle of operation of the

card equipment providing the timing requirements are met.

EF-v (v) = Start cycle
Pick Read Card
EF-v (v) = Start
Pick Read Card
Read
Within 149,0 ms of the start of this cycle the
execution of the following three instructions
should be initiated. cycle
ER,O,v Repeat for each card row, each repetition being
ER,1,v initiated not later than 10 ms after the begin-
ER,1,v ning of the corresponding point,
EF-v (v) = Start cycle
EF-v “(v) = Start cycle
EF-v (v) = Start cycle
EF-v (v) = Start cycle

(channel cleared of last read card)

To transmit information from n consecutive cards, without selecting the
Run Free bit, repeat the second External Function instruction above and the
group of External Reads occurring in that cycle n times. Then at the con-
clusion of the program above, the nth or last read card will be found in the

read stacker with an n + 1 card remaining in the first read station.

PX 38

25

INPUT ANC OUTPUT SYSTEMS

TABLE 5. READ - FREE RUN

The computer instructions below withdraw singly from the read card feed
hopper the cards to be read, position them for reading and transmit their
information content to the computer, and continue advancing them through the
read channel until the last card read reaches its final position in the re-
(A card is left in the first station,) Other instructions
may be programmed and executed between and during each cycle of operation of
the card equipment providing the timing requirements are met.

ceiving stacker,

Number n is the number of cards to be read from.

EF-v (v) = Start 1 cycle
Pick Read Card
EF-v (v) = Start
Free Run
Pick Read Card
s Rgad .
Within 149.0 ms of -he start of this cycle the
execution of the following three instructions
should be initiated. repeated
ER,O,v Repeat for each card row, each repetition being n-1 cycles
ER,1,v initiated not later than 10 ms after the begin-
ER,1,v ning of the corresponding point.
The repetitive group of External Read instruc-
tions must be programmed n-1 times, each group
being executed timewise within the cycle which
enables the reading,
EF-v (v) = Start
Stop
(reading of nth card)
Within 149.0 ms of the start of this cycle the
execution of the following three instructions
should be initiated, 1 cycle
ER,O,v Repeat for each card row, each repetition being
ER,1,v initiated not later than 10 ms after the begin-
ER,1,v ning of the correspcnding point.
EF-v (v) = Start 1 cycle
EF-v (v) = Start 1 cycle
EF-v (v) = Start 1 cycle
EF-v (v) = Start 1 cycle

(nth card placed in receiving stacker)

PX 38

20

INPUT AND OUTPUT SYSTEMS

SIMULTANEOUS READ AND WRITE - SINGLE OR CONSECUTIVE CARDS

The outlined programs for reading and writing single or consecutive cards
simultaneously may be deduced by interposing the two outlined programs for
read and write, single or consecutive cards. A composite of the selections
made in both programs in each individual cycle would be selected for one cycle
of the simultaneous operations. If it is desired that the reading occur
during the same cycle that the information to be punched is being received by
the card equipment, the second cycle of operation of the program for writing
should be interposed with the first cycle of operation of the reading program.
External Read instructions immediately follow External Write instructions
when both occur during the same cycle.

The same timing considerations must be given the simultaneous performance
of reading and writing as when they occur individually. Other instructions

may be programmed and executed between and during each cycle of operation
providing the timing requirements are met.

PX 38

27

INPUT AND QOUTPUT SYSTEMS

TABLE 6. SIMULTANEQUS READ AND PUNCH - FREE RUN

The computer instructions below withdraw cards from the read card feed
hopper and punch card feed hopper, position them for reading and writing,
perform the information transmittal, and continue advancing them through their
individual channels until the last cards read and punched reach their final

positions in the receiving stackers.

Other instructions may be programmed and

executed between and during each cycle of operation of the card equipment pro-
viding the timing requirements are met.

Number n is the number of cards to be read from and the number of cards re-
quired to hold the information to be written.

EF-v (v) = Start 1 cycle
Pick Punch Card
EF-v (v) = Start 1 cycle
Pick Punch Card
Pick Read Card
EF-v (v) = Start
Free Run
Pick Read Card
Read
Pick Punch Card
Punch
Within 140.5 ms of the start of this cycle the
execution of the follcwing six instructions
should be initiated.
EW
repeated
Repeat for each card row, each repetition being n-1 eycles

initiated not later than 1.5 ms after the begin-
ning of the corresponding point.

The repetitive group of External Read and Ex-
ternal Write instructions must be programmed
n-1 times, each group being executed timewise
within the cycle which enables the reading and
writing,

PX 38

28

INPUT AND OUTPUT SYSTEMS

TABLE 6. SIMULTANEOUS READ AND PUNCH - FREE RUN

EF-v (v) = Start
Stop
Within 140.5 ms of the start of this cycle the
execution of the following six instructions
should be initiated.
£W,0,v cycle
EW,1,v
EW,1,v Repeat for each card row, each repetition being
ER ,0,v initiated not later than 1.5 ms after the begin-
ER ,1,v ning of the corresponding point.
ER ,1,v '
EF-v (v) = Start cycle
EF-v (v) = Start cycle
EF-v (v) = Start cycle
(nth card placed in write receiving
stacker)
EF-v (v) = Start
(nth card placed in read receiving cycle
stacker)

pPX 38

29

INPUT AND OUTPUT SYSTEMS

(2) MANUAL OPERATION. - The punched card system may be operated manually
by switches and pushbuttons on the panel located below the feed hoppers. The
procedures are as follows,

(a) TO START. - If cards are in the feed hoppess and it is desired
to drive the card equipment through one or more card cycles, press the START
pushbutton.

If the START button is pressed and released immediately, the card equipment
will drive through one complete card cycle. If the button is held down, the
equipment will run continuously.

(b) TO PICK PUNCH CARDS. - If it is desired to feed cards into the
punching channel, set toggle switch PICK PUNCH CARDS to the ON position (away
from the operator), then hold down tae START pushbutton until the desired number
of cards have been inserted.

(c) TO PICK READ CARDS. - If it is desired to feed cards into the
reading channel, set toggle switch PICK READ CARDS to the ON position (away
from the operator), then hold down the START pushbutton until the desired number
of cards have been inserted.

(d) TO STOP. - To stop the card equipment during a controlled run
so that cards may be added to the fesd hoppers, etc., either set toggle switch
STANDBY to the ON position (away from the operator) or press and hold down the
red STOP pushbutton. This causes the card equipment to stop at the end of the
current card cycle so that the computer program is temporarily halted. If the
toggle switch is reset or the red STOP pushbutton is released the system re-
sumes normal operation.

To clear cards from either channel, remove the cards from the hopper, set
the PICK READ CARD or PICK PUNCH CARD switch to its ON position if a card is in
Station 1, and depress the CLEAR and START buttons until the channel is clear,

(3) FAULTS. - When certain faults occur in the system, the card equip-
ment stops. Certain of these faults result in B Fault computer stops which
allow the equipment to complete its current cycle before it stops. A few of
these faults are described below.

(a) OVERHEAT. - If the temperature in any portion of the Card Unit
Control cabinet rises above 100°F, a computer A Fault stop occurs, and the
amber OVERHEAT indicator on the end of the control cabinet glows. The Overheat
fault in itself will not cause a card equipment stop, but it may lead to a No
Information A Fault which causes a B Fault computer stop and a card equipment
stop.

(b) NO INFORMATION. - If the computer program specifies that
punching and/or reading is to be executed but insufficient or tardy External
instructions are being executed, a B Fault computer stop occurs and the amber
NO INFORMATION indicator on the end of the Card Unit Control cabinet glows.
The computer program must be restarted from the beginning if this occurs.

INPUT AND OUTPUT SYSTEMS

(c) VOLTAGE FAULT. - If power to the card equipment drive motor
fails, the VOLTAGE FAULT indicator on the end of the Card Unit Control cabinet
glows. The fault may be produced by faulty wiring or by blown fuses.

(d) NO CARD IN READER, - If card reading is supposed to occur and
no card is present in the reading station, a B Fault computer stop is produced
and the NO CARD IN READER indicator on the Card Unit Control cabinet glows.
This fault may be caused by failure to feed cards or by errors in the computer
program. When the source of error is removed, the computer program must be re-
started from the beginning.

(e) NO CARD IN PUNCH. - If card punching is supposed to occur in
the next cycle and no card will be present beneath the punch die, a B Fault
computer stop is produced and the NO CARD IN PUNCH indicator on the Card Unit
Control cabinet glows. This fault may be caused by a feed failure or by errors
in the computer program. When the source of error is removed, the computer
program must be restarted from the beginning.,

(f) PUNCH JAM. - If a card jams under the edge of the punching die,
the card equipment stops, all voltages to it are dropped, and the small red JAM
indicator on the Card Unit cabinet glows. If this occurs, shut off the equip-
ment power.

(g) STOP. - A stop light on the Card Unit Control cabinet glows
and the card equipment stops if any of the following occur.

1 Read stacker full.

2 Write stacker full.

3 Read feed hopper empty.

4 Punch feed hopper empty.

S The Stop button is pressed.

6 STANDBY switch is thrown to forward position (away from
operator)

7 A Punch Jam occurs.

Note that all of these stops except 7 permit resumption of operation without
loss of data. For stops caused by 3 or 4, move the STANDBY switch to the for-
ward position during refill of input hoppers. (During the manual operation
which clears the channels, the depression of the CLEAR button causes a bypass of
the circuitry which normally causes an equipment stop when the feed hoppers are
empty.) Note that during card reading or card punching operations, the hopper
not being used for such operations must contain at least one card to prevent

the occurrence of the stop caused by 3 or 4 above.

PX 38

31

INPUT AND JUTPUT SYSTEMS

6. UNIVAC LINE PRINTER.

a. GENERAL. - The Univac Line Printer equipment, in conjunction with the
I0B register and associated IOB control circuitry, provides a means of output
from the Univac Scientific Computer. The Univac Line Printer equipment,
enclosed in a single cabinet (shown in Figure 7), comprises a Format Switchboard,
an External Control Panel, a carriage and platen assembly, print wheels, and
associated control mechanisms. The medium of information representation is
printed paper on which the printed characters may be decimal numbers, letters,
a period, and a minus sign. The paper is positioned in the printer on a
carriage similar to a typewriter carriage. The characters chosen to be printed
on one line across the width of the paper are printed almost simultaneously,
with the design of the Line Printer allowing the printing of 150 such lines per
minute. The spacing between lines is automatic, if so desired, during con-
tinuous printing of lines and may be manually set for one, two, or three spaces.
In addition, paper shifts (without printing) of multiples of three, six, and
nine spaces may be initiated by a sinjyle computer instruction. Each line may
have any of the allowable characters printed in any of 92 columnar positions,
Each column has an associated print wieel on which 35 characters are available
for printing. Each of the 34 numbers and letters below are present on each
print wheel. The period is present oa the even-numbered print wheels 2, 4, 6,
etc., and the minus sign is present oa the odd-numbered print wheels 1, 3, 5,
etc., thus allowing a period and a miius sign to be printed in every other
columnar position on a line., The characters to be printed in given columnar
positions on a given line are chosen according to an associated 11 -row, 92-
column coded image as assumed in the computer.

An image has the following coding for available characters.

ROW CHARACTER
0|23456789ABCDEFGHJKLMNPQRSTUVWXYZ°"

rx 38

32

INPUT AND OUTPUT SYSTEMS

Note: Blank spaces denote zeros in the image as stored
in the computer.

The absence of "1's" in a column of the image results

in a space in the corrasponding position on the paper;
or, if a mechanical setting is made on the printer, a
zZzero is printed in this position, provided that a print
selection was made for the position immediately to the
left. A maximum of approximately nine consecutive zeros
in a group may be printed in this fashion.

b. PROGRAMMING FOR OUTPUT. - Information is transmitted to the printer in
response to programmed External Function and External Write instructions. Each
row of the image is formed in the computer by positioning at three addressed
computer locations the bits for that row which are part of the code of the
characters to be printed. Thus, 33 addressed locations are required to re-
present an image. The image is divided into three fields: Field I consists
of the first or left-most 36 columns; Field II, the second 36 columns; and
Field III, the third or right-most 20 columns. Three External Write instruc-
tions, which must be programmed consecutively, transmit the coded information
of each row of the image to the IOB Register, or, as follows.

EWjv (v) ——X, (X) —I0B; (vg; ... vg) being Field I of Row r
EWjv (v) —=X, (X) —=1I0B; (v3g5 ... v) being Field II of Row r
EWjv - (v) —=X, (X) —-1I0B; (v35 Vy,) being Field III of Row r

The three instructions are repeated for each of the 11 rows, the rows being
transmitted in the order r = 9, 8, ... 1, 0, 11. All three instructions must be
executed even though there may not be information in all three fields to be
printed.

Between successive External Write instructions, the current content of I0B
must be transmitted to the Line Printer, allowing IOB to be cleared. Programming
a properly coded External Function instruction to precede the External Write
instructions initiates the operation of the Line Printer, allowing it to receive
information from IOB. Thus, for controlled operations of the Line Printer, the
External Function instruction places "ones" in selected stages of IOB. The
stages selected, with the operations of the Line Printer which are initiated by
the EF instruction and the presence of ones in these stages, are listed below.

I0B34 - Start (master bit)
Causes one cycle of operation of the Line Printer and the auto-
matic advance of the paper 1, 2, or 3 spaces unless the Stop
Paper or the Jump selection was also made.

10813 - Jump
Causes the paper to advance nine spaces during a cycle of opera-
tion. (No printing permissible during this cyclel)

PX 38

34

INPUT AND OUTPUT SYSTEMS

I0B12 - Skip
Causes the paper to advance according to the Format Switchboard
settings. (A Print selection is not permissible in an LEF instruc-
tion which includes the Skip bit.)

T0B11

Interrupt

10Bjp - Print
Permits one line of characters (an 11 row image) to be sensed and
printed during a cycle of operation,

I0Bg - Stop Paper
Stops the automatic advance of the paper during a cycle of operation.

kach cycle of operation of the Line Printer is divided into 15 points
9, 8 ..., 1, 0, 11 ... 14, 15), each point being 26.67 milliseconds in dura-
tion. During each of the 11 points (9, 8, ..., 1, O, 11) of the cycle, a row
of the image is sensed by the printer provided three External Write instructions
are executed during this time and the IOB Print (and IOB Start) selections were
made by a previous External Function instruction., If these selections are in
effect, the series of transmissions to the Line Printer effected by the 33
External Write instructions positions the chosen print wheels. The characters
in position for printing are printed on paper sometime during or after the cycle
point six. The automatic paper advance occurs before cycle point six. The
number of spaces the paper is automatically advanced is determined by a switch
setting on the Format Switchboard which is discussed later.

Time factors that must be taken into consideration in programming for Line
Printer output are pointed out in the following program outline. A time lag
due to inertia when the printer is initially started may occur which will delay
the execution of the first point of the cycle of operation. Note that an
External Write of Field I for Row 9 should immediately follow the External
Function instruction which starts the printer and, for Rows 8,... O, 11, should
occur before or during the early part of the corresponding ten points. Other
computer instructions may be programmed and executed between cycles and during
cycle points in the remaining available computer time,

To advance the paper and print one line

EF-v (v) = Start Line Printer
Print

Within 1.5 ms of the beginning of the point the first EW]
must be executed

EWjv Write Field I .
EWjv Write Field II point 9,
EWjv Write Field III 26.67 ms

Other instructions

PX 38
35

INPUT AND OUTPUT SYSTEMS

Within 1.5 ms of the beginning of each point, the first)
EW must be executed
EWjv Write Field I
EWjv Write Field II Repeat for
EWjv Write Field III ~ points 8, 7
Other instructions ... 0; each
! ! 26,67 ms
] A}
L} t
/
Within 1.5 ms of the beginning of the point, the first)
EW must be executed
EWjv Write Field I
EWjv Write Field II ~ point 11,
EWjv Write Field III 26,67 ms
Other instructions J
Other instructions points 12, 13
14, 15, each
26.67 ms

Continuous printing of lines may be programmed by repeating the preceding
program the desired number of times with the instruction initiating each re-
peating cycle being programmed during point 12 of the preceding cycle. Thus,
for continuous operation of the Line Printer, the External Function instruction
to initiate a new cycle must be executed within 50 milliseconds of the Write
Field III instruction for row 11.

The selection of the Interrupt bit, IOBj;, facilitates programming for
output to the Line Printer. A selection of IOBjj, in the External Function
instruction in which I0Bg4, Start, and I0Bjp, Print, are also selected
energizes an interrupt line in the printer so that an interrupt signal is sent
to the computer (interrupt) control each time a row of the card image is to be
sensed, i.e., at the beginning of cycle points 9, 8, ...,1, 0, 11. The first
External Write instruction must be executed within 1.5 milliseconds after the
interrupt signal is sent to the computer.

The interrupt selection may also be made by setting the interrupt switch
on the Line Printer to its ON position. With this setting the interrupt line
in the printer is energized as above when a Start and Print selection is made.

c. FORMAT SWITCHBOARD. - By making the appropriate switch settings on the
Format Switchboard, the printing of lines in accordance with a chosen format
may be accomplished without executing External Function instructions to initiate
individual spacing operations of one, two, three, or nine lines. Skips of one,
two, three, six or nine spaces during one printer cycle, or consecutive skips
of these spacings during successive printer cycles, may be initiated by a
single computer instruction, after which the computer is free to execute any
other instructions.

PX 38

36

INPUT AND OUTPUT SYSTEMS

The ten columns of switches on the Format Switchboard provide a format
"count™ control of available spacing operations. A spacing operation depends
upon the switch settings in the column corresponding to the format count.

The functions of the three portions of the switchboard: Control, Space,
and Multiply, and their switches, are explained below.

(1) CONTROL. - A switch in the Hold setting holds computer control of
spacing in effect until an External Function instruction containing Start
and Skip IOB Select bits is executed and the next format count position has an
Advance switch setting. A printer cycle of operation initiated by such an EF
instruction is necessary to make the transition from computer control to
format control, A switch in the Advance setting, in conjunction with Skip and
Start bits in the preceding EF, releases computer control of spacing, advances
the paper- in the printer according to switch settings on the Space and Multiply
portions of the switchboard, and advances the format control count to the next
position., Adjacent switch settings of Advance in the Control portion will
automatically continue the format control count across the switchboard (to the
next count position with a Hold switch setting) with spacing occurring according
to the corresponding switch settings in Space and Multiply. (Spacing occurring
for a count position which has an Advance switch setting is defined as being
under "format spacing control™) A switch in the Clear setting advances the
format control count to the next count position disregarding any switch
settings in the Space and Multiply positions.

Switch settings of Advance or Clear in the first format control count
position, i.,e., "home" count position, are not effective as described above.
This position has effectively an "automatic" Hold switch setting.

(2) SPACE. - Spacing between lines is affected by settings on the
Format Switchboard during both computer controlled and format controlled
spacings. Under computer control the paper is advanced the number of spaces
according to the switch settings in the Space portion only of the Switchboard.
Under format spacing control the paper is advanced (with the exception noted
below) the number of spaces according to the switch settings in both the Space
and Multiply portions of the switchboard.

(3) MULTIPLY. - Under format spacing control the paper is advanced one,
two, or three spaces (according to the Space setting) if a Multiply switch is
in the OFF position (unless a Stop Paper bit is in effect); or three, six, or
nine spaces (each space setting multiplied by three) if a Multiply switch is
in the ON position,

Note that the change from computer control to format spacing control re-
quires one printer cycle, i.e., advancing from a Hold switchboard setting to
the first Advance switchboard setting requires a cycle of operation instigated
by an EF instruction with the Start and Skip bits. During this cycle of opera-
tion, the paper is advanced automatically one, two, or three spaces. This
spacing action must be considered in making switchboard settings in the Advance
switchboard position in order to effect the desired overall skip of spaces. The
Stop Paper bit could be programmed in the EF instruction which causes the change
to format control. However, if this is done, the Stop Paper bit effects paper
shift action under format spacing control (until the next Hold setting) as

PX 38

37

INFUT ARD OUTPUT SYSTEMS

follows: if the Multiply switch is OFF, no paper spacing results for that
particular format count position; if the Multiply switch is ON, a paper skip
of three, six, or nine spaces results for that particular count position.

The following listings show optioaal spacings available under computer con-
trol and format control of spacing. If no spacing is to occur under format
spacing control, the format control count should be in the home count position.
(This is insured by depressing the Cl2ar Control button for at least two
seconds.) The format switchboard settings under computer control below are for
this home position or any count position which has a Hold switch setting.

Under Computer Control

FORMAT SWITCHBOARD SETT INGS

FUNCTION 10b SELECT BITS CONTROL SPACE MULTIPLY
1. Start, advance paper, Start Hold 1,2,0r 3 OFF#*
and print (if desired) Print (if desired)
2. Start, stop advance of Start,Stop Paper Hold 1,2,or 3% OFF *

paper,and print (if desired) Print (if desired)

3. Start and jump 9 spaces Start, Jump Hold 1,2,0or 3% OFF*
without printing
Note that before printing the first line, the paper must be adjusted one,
two, or three spaces ahead of the position in which the first printing is de-
sired unless the EF instruction contains a Stop Paper bit.

Under Format Spacing Control

FORMAT SWITCHBOARD SETTINGS
FUNCTION I0B SELLCT BITS** CONTROL SPACL MULTIPLY

4. Single,Double, or Triple Start, Skip Advance 1,2,0r 3 OFF
Space, advance format control
count to next position.

5. Space six or nine,advance Start, Skip Advance 2 or 3 ON
format control count to
next position.

6. No spacing, advance format Start, Skip Clear 1,2,3% OFF*
control count to next
position.

These switch settings are not effective in setting up the function.

*#% Included in a previous EF used for the transition from computer controlled
operation to format spacing control. The effect of a Stop Paper bit in-
cluded in this instruction is not shown here.

Functions 1, 2, 3, 4, and 5 require timewise one print cycle.

Function 6 settings continuously across the board require a maximum of one
second to clear to the "home" position.

X 38
38

INPUT AND OUTPUT SYSTEMS

An optional format for Line Printer output is illustrated in Figure 8.
The form length used is 66 spaces, generally the number of spaces on the folded
pack paper commonly used. The following listing shows the selections necessary
to achieve the printing of a page in this format. (kach External Function
instruction must be followed by the appropriately coded [xternal Write instruc-_
tions.) In this case a Stop Paper bit was included in the FF instructions
which effect the change from computer control to format control. Since the
paper skips desired under format control are multiples of three, the Multiply
switch in the Advance count positions is ON; hence the stop paper bit in effect
will not hinder the desired paper spacing action from occurring.

FORMAT FORMAT SWITCHBOARD SETTINGS SPACLS IOB SELECT BITS
CONTROL ADVANCED (In a total of 27 coded
"COUNT" CONTROL SPACE MULTIPLY EF-v instructions)

1 HOLD 1 OFF ' 18 Start, Print (repeat this

coded EF 18 times)

Start, Stop Paper, Skip

2 ADVANCE 3 ON 9

3 ADVANCE 3 ON 9

4 HOLD 3 OFF 21 Start, Print (repeat this
coded EF 7 times)
Start, Stop Paper, Skip

5 ADVANCE 3 ON 9

6 CLEAR 1 OFF 0

7 CLEAR 1 OFF 0

8 CLEAR 1 ~ OFF 0

9 CLEAR 1 OFF 0

10 CLEAR 1 OFF 0

Total of 66 spaces
d. OPERATION. - The procedures listed below should be followed to initiate
use of the Univac Line Printer.
(1) Set the Main Power switch on the External Control Panel to ON.
(2) Check that the Stop switch on the External Control Panel is OFF.

(3) Depress the Clear button on the External Control Panel.

PX 38
39

FORMAT
CONTROL
COUNT

| ———>

4 ——>

5§ —m>

(6,7,..10,1)

INPUT AND OUTPUT SYSTEMS

UNW\MNW\/\/

|

9 SPACES

I T

18 LINES PRINTEED SINGLE SPACE

R Lw SPACE
T IPLEJ

7 LINES PRINTiED TRIPLE SPACE

A

FORM LENGTH 66 SPACES

9 3PACES

Figure 8. Optional Format for Line Printer Output

rX 38
40

(4)

(5)

INPUT AND OUTPUT SYSTEMS

Depress the Clear Control button on the Format Switchboard for at
least two seconds.

Insert paper in the platen assembly.

The following conditions require that the Clear Control on the Format Switch-
board be depressed for at least two seconds to insure that the format control
count is back in the home position. These conditions are as follows:

(1)
(2)
(3)
(4)

Paper is being changed
A fault occurs
The format is changed

An improper program is scheduled.

During the operation of the Line Printer four types of faults may occur
which are indicated visually by a light on the printer or a FAULT indication on
the Supervisory Control Panel of the computer. These faults are as follows:

(1)

(2)

(3)

(4)

NO PAPER FAULT. - If the paper in the Line Printer is almost
depleted, a fault circuit stops the computer and gives a No Paper
fault indication on the printer control panel., Pressing the Clear
button on the printer clears the fault. Starting computations anew
will initiate a second fault condition. Since a No Paper fault
occurs slightly before the end of the paper has passed the printing
position, several more lines, depending on the spacing, may be
printed. This fault becomes effective after the current cycle is
completed, thus no information will be lost.

MECHANICAL JAM FAULT. - If the printer stops before completing a
cycle, a B Fault stops the computer and printer and is indicated by
the I0 light on the Supervisory Control Panel. There is a possibi-
lity that this fault may be cleared by pressing the Master Clear
button on the computer,

NO INFORMATION FAULT. - If IOB does not contain the Field I portion
of a row (i.e., the first EW instruction has not been executed)
within 1.5 milliseconds after the start of a cycle point, a B Fault
occurs. The Line Printer completes the cycle before stopping but
will print erroneously since no further EW instructions occur with-
in the cycle.

OVERHEAT FAULT. - This fault will cause an A Fault computer stop.
Operations may be resumed temporarily without loss of information
by setting the BYPASS INTERLOCK switch on the Supervisory Control
Panel, pressing the CLEAR A FAULT button, and pressing the START
button on the computer,

PX 38

41

INPUT AND OUTPUT SYSTEMS

7. MAGNETIC TAPE SYSTEM

a. GENERAL DESCRIPTION. - The Magnetic Tape System of the Univac Scientific
Computer System comprises a number of Uniservo tape handling mechanisms, which
" are located externally to the computer, and an electronic control section which
is located in the computer structure. The number of Uniservos used is optional
up to a maximum of ten functional units. By means of manual selections the
unit designations may be assigned in any manner to the functional units. TUse
of the Uniservo units makes possible off-line processing of information by a
variety of Univac peripheral equipments.

For input to the Univac Scientific, information may be recorded on tape in
three forms:
Fixed Block Length Recording
Variable Block Length Recording
Continuous Data Input Recording

Output information from the Univac Scientific may be recorded on tape in the
Fixed Block Length Recording form and the Variable Block Length Recording form.

The Fixed Block Length mode is standard with the Magnetic Tape System.
Optional Control circuitry may be added to provide both the Variable Block
Length mode and the Continuous Data Input mode.

The Variable Block Length mode reads and records information on tape in
blocks of variable length. A block of information is recognized by a one-
inch space preceding it and following it in which no information is recorded.
The length of the block is limited only in that the data input from it must not
exceed the capacity of high speed storage.

The Continuous Data Input mode reads information recorded continuously on
the tape with the only limitation on the length of a "block" of information
being the length of the tape. This form of recording is useful for real time
observations which will not permit interruptions to format the information in
fixed or variable block lengths. Data input from tape recorded in this manner
would need be interrupted when the capacity of high speed storage is reached.

The Fixed Block Length mode reads and records information on the tape in
blocks of fixed length. The remainder of the remarks in this description apply
in particular to this mode of operating.

(1) TAPE CHARACTERISTICS. - Unitape is the metallic tape used by the
tape handling equipment in recording and reading information. Information is
recorded as magnetized areas in eight channels across the width of the tape.
Data bits are recorded in six of these channels; one channel contains parity
check bits on the six data channels; and one channel contains sprocket, or
timing, signals,

A Uniservo is a unit of tape handling equipment. A Uniservo comprises a
read/write head, an erase head, a bad spot (in the tape) detector, and tape
handling mechanism such as the tape reel mount, reel drives, etc. In a reading

X 38

42

INPUT AND OUTPUT SYSTEMS

operation the read/write head detects "1's" recorded on the forward or backward
moving tape; in a writing operation the read/write head records both "0's" and
"1's" on the forward moving tape. During a writing operation the erase head is
also activated such that the tape in its passage through the erase head has
"0's" written on it. The bad spot detector enables the Uniservo to interrupt
reading, moving, or writing operations until the undesirable tape area passes
the read/write head.

A tape speed of 100 inches per second is standard. The approximate length
of a reel of tape is 1500 feet.

A column of eight binary digits across the width of a tape is termed a line;
the six data binary digits, a hexabit character. Lines are recorded on the tape
at a density of 128 lines per inch (standard) or 50 lines per inch.

A block consists of 720 consecutive lines; a blockette consists of 120
consecutive lines. A "dead space™ (in which no information is recorded) of 1.0
inch (standard) or 2.4 inches exists between blocks; a dead space of zero, 0.1,
or 1.0 inches exists between the six blockettes of a block. The optional re-
cording formats are selected by program control in accordance with the intended
future use of the recorded tape, possibly with Univac auxiliary equipment.

When a stop of tape movement occurs, the tape is halted in the dead space
between blocks. Blockettes and blocks are recognized by the tape control sec-
tion by counting the timing signals recorded on the tape. A timing device,
actuated in the last blockette, signifies the end of a block if the interval
between timing signals exceeds a certain length of time. The detection of the
end of a bleck in combination with a stop signal causes a halt of tape movement.

In terms of a 36-bit computer word, six lines are necessary for recording
one word. A block comprises 120 computer words; a blockette comprises 20 com-
puter words. Thus, approximately 326,000 computer words may be stored on a
1500-foot reel of tape. The maximum transfer rate of information between the
computer and the tapes is approximately 1810 words per second. This is assuming
a free-runping tape, one-inch block spacing, and zero blockette spacing.
Average magnetic tape times for other block and blockette spacings are shown
in Table 7.

(2) PROGRAMMING TAPE OPERATIONS. - A programmed External Function
instruction (17-V) initiates the various reading, writing, and positioning
operations of the Uniservos. Coded information provided by the External Func-
tion instruction includes the following:

(a) specification of optional recording mode if available

(b) designation of the selected Uniservo

(¢c) type of tape operation to be performed

(d) type of recording format for writing, i.e., block and
blockette spacing and recording pulse density.

(e) number of blocks to be moved without reading or writing.

The External Function instruction transfers the content of its v-address to
the Input/Output Register, IOB. The 36-bit word thus introduced into IOB de-
signates the magnetic tape operation to be performed. The "Select Magnetic Tape"

PX 38
43

Xd

4%
8¢

TABLE 7

AVERAGE MAGNETIC TAPE TIMES

To estimate running times of programs using magnetic tapes

Block Length . Rate

Recording Density Biock Space Blockette Space (including block space, Block Period* (36-bit words
(lines per inch) (inches) (inches) in_inches) (milliseconds) per second)

128 1 none 6. 625 66.25 1811

128 1 0.1 7.125 71.25 1684

128 1 1.0 11. 625 116.25 1032

128 2.4 none 8.025 80.25 1495

128 2.4 0.1 8.525 85.25 1408

128 2.4 1.0 13.025 130.25 921

50 1 none 15.4 154.0 779

50 1 0.1 15.¢ 1592.¢C 755

50 1 1.0 20.4 204.0 588

50 2.4 none 16.8 168.0 714

50 2.4 0.1 17.3 173.0 694

50 2.4 1.0 21.8 218.0 550

Tape speed: 100 inches per second
Time to reverse direction of tape: 600 milliseconds

* These block periods are for either free run or for a single block. The block period does not include
the starting or stopping times.

SWALSAS LO4LO ANV L{dINI

INPUT AND OUTPUT SYSTEMS

bit in IOB causes a transmission of the content of IOB to registers in the tape
control system. The tape control system then interprets this word and initiates
tape operation accordingly. A list of IOB Select bits which govern the tape
operations is given in Table 8.

If a reading or writing operation is initiated, the External Function in-
struction which initiates the operation must be followed by an appropriate
number of External Read (76jv) or kxternal Write (77jv) instructions to transfer
the information between the IOB register and the computer memory. One hundred
twenty of these External Read instructions or External Write instructions are
needed for each block of tape. The reading or writing operation is terminated
by an External Function instruction specifying a "Stop" code. This is executed
after the last word in the final block has been read or written. When a single
block is to be read or written, the "Stop" code may be included in the External
Function instruction which initiates the read or write.

A list follows of tape operations initiated by an External Function
instruction.

READ FORWARD. - Read data from tape on the specified Uniservo, assemble into
36-bit computer words, and transfer the words to the computer Input/Output
Register, IOB.

The initiation of this operation causes the designated Uniservo to read a
number of blocks from the tape. The reading operation must be terminated
by an External Function Stop instruction which is programmed immediately
following the External Read instruction used to read the last word in the
final block. If it is desired to read one block only, the "Step" code may
be included in the External Function Read Forward instruction which precedes
the 120 External Read instructions.

WRITE FORWARD. - Transfer words from the computer Input/Output register,
I0B, and record on tape on the specified Uniservo. Each word is recorded
in six segments of six bits each in accordance with the specified density
and ‘spacing.

The initiation of this operation causes the Uniservo to write a number of
blocks on the tape. The writing must be terminated by an External Function
Stop instructien used to write the last word in the final block. If it 1s
desired to write one block only, the "Stop" code may be included in the
kxternal Function Write Forward instruction which precedes the 120 External
Write instructions.

READ BACKWARD. - Identical to Read Forward except that the tape is moved in
the reverse direction. The bits of each computer word are assembled in the
same order as in a Read Forward operation.

MOVE _FORWARD (n BLOCKS). - Move tape forward n blocks on the specified
Uniservo, without a read or write operation (0< n<212-1),

MOVE BACKWARD (n BLOCKS). - Move tape backward n blocks on the specified
Uniservo, without a read or write operation (0<ns212-7),

pPX 38

45

INPUT AND OUTPUT SYSTEMS

TABLE 8. EXTERNAL FUNCTION BIT ASSIGNMENT FOR UNISERVO CONTROL

The bits in I0OBoq ... IOB;, are placed in the Tape Control Register
(TCRyy ... TCRp); the bits in TOBll ... I0By are placed in the Block Counter
(BKy; ... BKp) where they are used to govern the number of blocks moved in a
Move Forward or Move Backward operation,

10B3; = 1 ~ Select Magnetic Tape
10Bog-10Bgo Select Rewind or Stop Tape
= 01 - Rewind
= 10 - Rewind Interlock
= 11 - Stop
10Boy Select Block Spacing

= 0 - 1 inch interblock spacing
= 1 - 2.4 inch interblock spacing

I0Bo(-10Bj9 Select Blockette Spacing
00 - zero spacing

01 - 0.1 inch spacing
10 - 1.0 inch spacing

o

10B9(~10By g 11 - Select operation in Variable Block
Length mode or Continuous Data Input

mode*

10B1g-~10Bj¢ 100 - Select option of operating in Con-
' tinuous Data Input mode or change
to option of operating in Variable

Block Length mode, **

* If the Variable Block Length and Continuous Data Input modes are available,
these bits included in an EF for an allowable tape operation cause the mode
of operation to be either (1) Variable Block Length instead of Fixed Block
Length, or (2) Continuous Data Input instead of Fixed Block Length, A
computer Master Clear automatically establishes the conditions necessary for
the choice described in (1),

*#% An EF with these bits and the Selzct Magnetic Tape bit establishes the

conditions necessary for the choice described in (2) above if the conditions
for (1) were established previously; and vice versa.

PX 38

46

INPUT AND OUTPUT SYSTEMS

TABLE 8. EXTERNAL FUNCTION BIT ASSIGNMENT FOR UNISERVO CONTROL

10B1g-1I0Bj¢ Select Tape Operation

001-Read Forward

010-Move Forward

Oll-Write Forward (128 lines/inch)
101-Read Backward

110-Move Backward

111-Write Forward (50 lines/inch)

[T T T VR T 1

I0B15-1I0By9 Select Uniservo unit or Read Bias Level
= 0001-Uniservo 1
0010-Uniservo 2

i

.

1010-Uniservo 10
1101-Normal read bias
1110-Low read bias
1111-High read bias

innh

I10B;1-10Bg Select the number of blocks to be moved
in a Move Forward or Move Backward
operation,

PX 38

47

INPUT AND OUTPUT SYSTEMS

STOP. - Stop tape movement and tape reading or writing after the desired
number of blocks have been read or written.

An External Function Stop instruction must be programmed immediately fol-
lowing the terminal kxternal Read or kxternal Write instruction used to
read or write the last word in the final block of a group of blocks. This
kExternal Function instruction need not, and in fact should not, specify a
particular Uniservo.

REWIND. - Rewind tape on the specified Uniservo to the leader position.

REWIND INTERLOCK. - Rewind tape on the specified Uniservo to the leader
position; and provide an interlock which prevents further effective re-
ferences to that tape unit until appropriate steps are taken to remove the
interlock.

No more than one Uniservo can be in operation at any one time unless the
operations are Rewind and Rewind Interlock. After either of the rewind
operations is initiated, the Uniservo proceeds under its own control until
the operation is completed; therefore, an operation on another unit may be
performed before rewinding is completed. Any number of functional units
may be rewinding concurrently.

CHANGE BIAS. - Change the read bias level to higher or lower than normal;
or return bias level to normal if high or low bias level was chosen by a
previous External Function. No uniservo specification is necessary or

possible in the same instruction.

b. OPERATION THEORY.

(1) MAGNETIC TAPL CONTROL. - The transfer of information between the
computer and the magnetic tapes is controlled by the Magnetic Tape Control system
situated within the computer. The presence of an IOBgj Select "1" bit, as placed
in IOB by an kxternal Function instruction, informs the tape control system that
a tape operation is desired and the contents of IOB are to be transferred to the
Tape Control Register (TCR). The przsence of the proper tape operation codes
in TCR provides the control system with the information needed to carry out the
particular tape operation designated. These tape operations are Write Forward,
Read Forward, Read Backward, Stop Taose, Move Forward, Move Backward, Rewind,
Rewind with Interlock, and Change Bias.

A properly recorded block consists of 720 lines (each line containing six
data bits) or 120 computer words. Thus, 120 External Writes or External Reads
need to be executed to record a blocik or read a block. The link between IOB
and the tape is a 36-bit Tape Register (TR) in the tape control section. A
writing operation involves the transmission of a word from IOB to TR, the break-
down in TR of the 36-bit word into six hexabit characters, the generation of a
parity check bit for each character, and the transfer of each character, its
parity check bit, and a timing signal (or sprocket pulse) to a line of tape.
After six lines of tape are written, the next word to be written is transmitted
to TR. Since the tape operations proceed under their own timing control, a word
must be ready in IOB for transfer to TR ezch time tape control signifies it is

PX 38

48

INPUT AND OUTPUT SYSTEMS

ready to write a word. If an External Write instruction has not been executed
to fill IOB, a No Information fault is generated which causes a B Fault computer
stop and a tape stop at the end of the current block. Thus, a No Information
fault indicates that insufficient EW's are programmed, or an kxternal Write is
programmed to be executed too late.

The parity check bit generated during a writing operation is a "0" if the
number of "1's" in the character is odd, and the parity check bit is a "1" if
the number of "1's" in the character is even. This will always result in an
odd sum if the character and parity bits are added together.

The timing signals are recorded on the tape at the same time as the lines
of information. During a writing operation, previously recorded signals are
removed from the tape by the erase head which "erases" the entire width of the
tape during the tape passage under it. The position of the erase head is
several inches in advance of the read/write head. This insures the removal of
signals from inter-block spaces during continuous writing from the beginning of
the tape. However, it is not possible to guarantee a safe rewrite of a pre-
viously recorded block when the writing operation is initiated with the read/
write head positioned in the inter-block space immediately preceding that block.
Also, a block in the middle of a tape cannot be rewritten without erasing at
least part of the following block. The last block that has been recorded may
be rewritten, but the entire block will not be subjected to the erase head when
the read/write head is positioned before that block. At any point writing can
be stopped, the tape moved backward for reading purposes, and writing later
resumed safely at the point at which it was stopped. In particular, a block
can be written and then read backward to check for accuracy in writing. If no
errors are detected, writing can be continued by repositioning the tape after
the block.

Thus, any writing operation should be started either at the beginning of
the tape or at the point at which previous writing was stopped.

A reading operation involves the assembly of data from the tape in the Tape
Register, a parity check on each line of tape as it is received in TR, and the
transmission of a 36-bit word from TR to IOB. The flow of information in a
reading operation is from tape to the Align Input Register (AIR) to the Tape
Register to IOB. The transmission from AIR to TR is caused by the sprocket
pulse (delayed) which was recorded with the bits now in AIR. Information is
assembled in TR six data bits at a time. When six lines have been read, R con-
tains a complete word and tape control performs the transmission TR to IOB.
Again, the assembly of words in TR proceeds timewise under tape operation control.
The nature of the IOB lockout system provides the wait for IOB to be filled if
an kxternal Read instruction is begun before IOB receives information from ex-
ternal equipment; after this occurs the External Read is completed and the
content of IOB is sent to computer storage. If tape control performs a second
transmission TR to IOB before IOB has been cleared by an ER, an 10 computer
fault is incurred, a B Fault computer stop occurs, and tape movement is stopped
at the end of the current block. This again could mean a lack of sufficient
ER's programmed or the tardy execution of an External Read.

When a block of information is read from magnetic tape, a check is also made
to determine if the proper number of lines are recorded in the block. A properly

PX 38

49

INPUT AND OUTPUT SYSTEMS

recorded block consists of 720 lines. A count is kept of the number of lines
in a block by a series of counters which are advanced by the reception of the
sprocket pulses (timing signals) recorded on the tape. If a 720 count has been
tallied and another sprocket pulse is detected within a certain period of time,
an inter-block space is not passing beneath the read/write head and a 720 check
failure is indicated. Also, if less than a 720 but more than a 600 count has
been tallied and no sprocket pulse is detected within a certain period of time,
an inter-block space may be passing under the read head and a 720 check failure
is indicated. A 720 check failure incurred in a reading operation stops the
tape unit and causes a Sprocket Errcr fault indication which causes a B Fault
computer stop.

When the parity check is made during the reading operation, a parity error
is indicated by a "0" sum. The occurrence of a parity check error is detected
at the end of the block in which it occurred. At this time a tape stop is
initiated and a parity error is indicated by setting a "1" in stage IOAy of
the I0A register. Thus, the content of IOA must be examined by the program
immediately following the execution of the LExternal Read instruction used to
read the last word in each block. If no error indication is detected, the
program proceeds normally. If an error is detected, a standard subroutine
stored in the computer can be used under control of the main program to initiate
and perform re-reading operations ir an attempt to read the block correctly.
The automatic stop of a tape unit on a parity error indication is effectively
completed before the initiation of s re-read operation is allowed by the tape
control system.

The features which provide a read backward operation and a change in the
bias level may permit proper reading of marginal signals which have caused a
parity check failure. Since both cf these operations are available under
program control, a correct reading of the block in question may be accomplished
without a computer stop. A change in the read bias level to either higher or
lower than normal may permit the correct reading of the block by virtue of
ignoring any "noise" factor on the tape or picking up any marginally recorded
bits.

The halt of a correctly executed read or write operation occurs when a stop
code in the Tape Control Register (ICR) and an "end of block" count both exist.
Hence, if only one block is to be read or written, the stop code may be placed
in TCR by the External Function instruction which initiated the read or write
operation; if more than one block is to be read or written, the stop code is
placed in TCR by an EF instruction following the last EW or ER instruction. 1In
this case, the EF instruction needs only to contain the stop code in its v-
address. A programmed stop tape operation is necessary only to conclude
reading and writing operations.

A programmed Lkxternal Function instruction for a move operation must include
the Move Forward or Move Backward code and a specification of the number of
blocks to be moved. The number of blocks n to be moved are coded in IOBj;
...10Bp. During a moving operation no information transfer occurs past the
Align Input Register. The delayed sprocket pulse from each line of tape does
not cause the transmission AIR to TR but is used only to form a count of the
lines moved. Each time a block count is reached, the Block Counter is reduced
by one. When BK has been reduced to zero, a tape stop is initiated.

Px 36
50

INPUT AND OUTPUT SYSTEMS

A 720 check failure incurred in a moving operation stops the tape unit and
causes a sprocket error indication and a B Fault computer stop if a > 720
count is detected; if a > 720 count is detected, the 720 check failure is
ignored in that no tape stopping action or error indication is effected.

A change in the bias level needs to be programmed only when an incorrect
reading operation has occurred. Reading forward and backward at the high and
low bias levels may accomplish a correct reading of the block. It is not
permissible to program any other tape operation in the instruction which speci-
fies a change in bias. The return to the normal reading bias level must also
be programmed unless a computer Master Clear occurs. which also accomplishes this,

Both the Rewind and Rewind with Interlock operations cause the tape on the
Uniservo specified to be positioned to its leader position. A Uniservo whose
tape has been rewound with interlock cannot be referenced effectively until the
Uniservo door interlock switch has been opened and closed. This occurs when
the Uniservo is provided with another tape.

After the Rewind and Rewind with Interlock operations are through their
initiation phase, another tape operation on a different Uniservo may be started.
Thus, any number of Uniservos may be rewinding concurrently. If a tape opera-
tion is desired on a Uniservo which is rewinding when this tape operation is
initiated, the tape operation is held up until the rewinding is completed.

Then, if the tape has not been rewound with interlock the tape operation is
resumed and completed.

It is not possible to execute correctly a second tape operation on any
Uniservo while a previous one is still in progress unless the tape operation in
progress is a rewind operation.

(2) GLOSSARY. - The following glossary lists terms pertaining to the
magnetic tape system. A brief description is given of the primary function of
the principal registers and counters involved in tape control.

Figures 9, 10, and 11, following the glossary, illustrate the use of the
registers and counters and the sequence of events, in write, read, and move
operations,

Read/Write head - Binary digits are represented in channels across the width of
the tape as areas magnetized in opposite directions. In a writing opera-
tion areas in the channels on the forward moving tape are magnetized in
the "O" direction except when pulses are received by the read/write head
from tape control in which case areas are magnetized in the "1" direction.

In a reading operation the read/write head, as it detects in the
channels the areas magnetized in the "1" direction, directs pulses to be
sent to tape control. Accurate detection occurs when the backward or for-
ward moving tape has reached its free-running rate (100 inches per second).

krase head - during a writing operation, the erase head magnetizes in the "O"
direction the entire width of the tape in its passage under the erase head.
The position of the erase head several inches from the read/write head is
such that the traversal of the tape in a forward direction is first under
the erase head and then under the read/write head. This guarantees a
"clean" portion of the tape on which to write.

PX 38
51

INPUT AND OUTPUT SYSTEMS

Tape Leader - the plastic length of the tape which precedes the metallic length
of the tape on which information can be recorded.

Ringed tape - A tape reel fitted with a ring which prevents writing on this tape
and in so doing provides indication of this condition. This feature is to
be made available in the near future.

Writing Oscillator - emits pulses at the rate of one approximately every 80 us
(for writing 128 lines/inch) or one every 200 us (for writing 50 lines/inch).
The rate depends upon the selection made for density of lines in a writing
operation. An oscillator pulse (in conjunction with other conditions)
initiates the writing of a line.

Sprocket Pulse - formed by sensing the sprocket channel as a line of tape moves
past the read/write head in a reading or moving operation. After a short
delay the sprocket pulse is instrumental in a reading operation in routing
the information read from that line of tape to the computer. In a moving
operation each sprocket pulse is used to form a count of lines moved.

Parity bit - recorded on each line of tape during a writing operation and used
as a check on the accuracy of reading each line of tape. The parity bit
generated during writing a character (six data bits) is a "1" if the number
of "1's" in the character is even and a "0" if the number of "1's" is odd.
The sum of the data bits and the parity bit should be odd.

Bad Spot Control

Bad Spot on tape - Areas on the tape on which no recording should be attempted
are marked as "bad spots". Holes punched in the tape preceding, following,
and in the bad spot area are sensed by photoelectric tape readers during
tape movement. During a reading operation, Bad Spot Control interprets the
position of these holes and temporarily stops any transmissions from tape
until the bad spot is passed; during a moving operation Bad Spot Control
stops temporarily the counting proceduxre of the lines moved; during a
writing operation, Bad Spot Control temporarily stops oscillator pulses from
initiating the writing of a line.

Reading Bias - the voltage applied to the read/write head when reading from the
tape. By changing the bias level to higher or lower than normal, the read/
write head responds to weaker than normal signals on the tape or ignores ob-
jectionable "noise" factors on the tape.

Tape Control Register (TCR) - a 12-bit register in the tape control system which
receives the bits in I0Bog...I0B1z when the bit in IOBz; is "1" (Select
Magnetic Tape bit). The actual transmission IOB to TCR is held up (i.e.,
TCR is "locked out") until the tape control system signals that it is ready
to receive another operation code. The presence of operation bits in TCR
enables the various tape operations.

Block Counter (BK) - a 12-bit register in the tape control system which receives
the bits in I0Byj...I0By on an IOB to TCR transmission as described above.

The content of BK is used to regulate the number of blocks (n) moved in a
Mo e Forward or Mo e Backward operation.

PX 38

952

INPUT AND OUTPUT SYSTEMS

Tape Register (TR) - a 36 bit register in the tape control system through which
words are routed in their transmission between tape and IOB. In a writing
operation six-bit segments of a word in TR (placed there by an External
Write instruction) are positioned in TR5 .0 and consequently written on
tape. In a reading operation, a word is assembled in TR until six lines
have been received; the transmission TR to IOB then occurs.

Align Input Register (AIR) - a seven bit register which receives six data bits
and the parity bit from a line of tape passing under the read/write-head
in a read or move operation. In a reading operation the delayed sprocket
pulse formed by sensing the sprocket channel in the same line of tape causes
the transmission AIR5 o to TR3s, ,6 30 . AIR is then cleared.

Tape Shift Counter (TSK) - a counter which regulates the shifting in TR of the
six data bits of a line. On the completion of the shift of six bits (one
line), a TSK "end carry" is propagated which is interpreted as an "advance
LK" signal by the Line Counter; TSK is then cleared.

Line Counter (LK) - a counter which controls during reading and writing the
shifting in TR of the six‘lines of a word. In a reading operation, when
six lines have been assembled in TR, LK propagates a signal to effect
TR to IOB; an "advance WK" signal is sent to the Word Counter, and TR and
IK are "cleared", In a writing operation when six lines have been written
on tape from TR5 .0» LK propagates a signal which clears TR and enables
the transmission IOB to TR (if IOB has been filled by an EW 1nstruct10n).
an "advance WK" signal is sent to the Word Counter, and LK is "cleared".

In a moving operation LK is advanced by the receipt of a delayed
sprocket pulse. When six lines have been "moved", an "advance WK" signal
is sent to the Word Counter and LK is cleared.

Word Counter (WK) - counts the number of words read, written, or moved until a
blockette count is reached; i.e., when a 20 word count is reached, an
"advance BTK" is sent to the Blockette Counter and WK is "cleared".

Blockette Counter (BTK) - counts the number of blockettes read, written, or
moved until a block count is reached; 1i.e., when a six blockette count is
reached, a "BTK end carry" is sent to various portions of tape control, and
BTK is "cleared". A BTK end carry is used during a moving operation to
subtract "1" from the Block Counter.

PX 38

53

INPUT AND OUTPUT SYSTEMS

Start Write — -— —— _—

delay for block spacing
during tape acceleration

delay for spacing .
between blocks

delay for spacing,
—if any, between——m e
blockettes

ready to write

'
on next effective
OSCILLATOR PULSE®*
Check for No I[nformation—— — — —— — — OR]
Determine parity bit
Shift TR left 6 times |
Write parity, sprocket, qr-———-—-‘—--——

and TR5 o if EW executed: if no EW:
A Advance LK I0B to TR 3et Stop enable
Clear IOB in TCR
line shifts # 6 I0B Resume Initiate fault

LK end carry |
(one word written)

Clear TR
N Advance UK

$

WK end carry
(20 words written)

20 words

v
A Advance BTK

720 words
BTEK end carry
A (1 block written)

—e

no stop
Stop enable

A
Initiate Stop

* Oscillator pulses do not effect any writing initiation during any of the delays
quoted and during the time the tape is moving through a bad spot. During a stop
initiation, oscillator pulses are made temporarily ineffectual by virtue of the
delay (for the inter-block space) caused by a BIK end carry. During this
delay, a Master Clear from Stop Control renders them ineffectual until the
next Write Sequence.

Figure 9. Write Sequence

PX 38
54

INPUT AND OUTPUT SYSTEMS

Start Read/Move

No Stop Read/Move from Bad Spot Control

Delayed Sprocket Pulse AND

Start Read/Move (initial or

from Bad Spot Control)
(AIR to TR3s 3q)

Shift TR left six times
OR
Shift TR right six times

if error,

Check parity bit
Advance LK

4

OR

line shifts left # 6

line shifts right #5

v LK end carry
TR to IOB

I0B Read Acknowledge

Clear TR

Advance Word Counter

20 words read

Block spacing detected
Inﬂicate fault

6 blockettes

1 word (6 lines) in TR

ready error indication

no stop, read next block

Figure 10.

$
20 words read I
VWK end carry |
Advance Blockette Counter
720 words read
BTK end carry 1; f{éﬂD
receive W
7215t I0A Read I
sprocket Acknowledge Set
pu%se I0A
' In&icate l
Vv fault I
Check for |
Stop enable | J
—t ¥
any stop
v

Initiate Stop

Read Forward Backward Sequence

(Delayed sprocket pulse approximately 40 us after tape line to AIR)

PX 38
55

INPUT AND OUTFUT SYSTEMS

Start Read/Move

No Stop Read/Move from Bad Spot Control

from Bad Spot Control)
N Advance Line Counter

line shifts left # 6 VﬁI
LK end carry

N Advance Word Counter

20 words T
WK end carry

Advance Blockette Counter

Delayed Sprocket Pulse AND
Start Reac/Move (initial or

:5l
| BTK # 6 blockettes *
\ BTK end carry
Block spacing detected (1 block moved)
Simulate BTK end carry
: :

Back Block Counter

BK # 0

BK =0

(n blocks moved)

]
receive 7215t
sprocket pulse

Indicate fault

|
|
%

.

Initiate Stop

Figure 11. Move Forward or Backward Sequence

(Delayed sprocket pulse approximately 40U4s after tape line to AIR)

PX 38
56

[

INPUT AND OUTPUT SYSTEMS

3 A BTK end carry and a Stop enable initiates a tape stop

during which TCR is cleared.

4 A stop initiation prevents another IOB to TCR transmission

for approximately 10 ms.

Note that an IOB to TCR transmission can occur immediately
after the last BTK end carry (unless a Read or Write One
Block and Stop operation was programmed). Since TCR is not
yet cleared, no operation except a Stop should be programmed
immediately after reading or writing n (> 1) blocks}

Move Uniservo j n blocks, n>0

1

2

3

When and if j is available, the TCR lockout is set and
the IOB Resume is given.

BTK end carry clears the TCR lockout (TSK end carry resets
it) but IOB to TCR transmission is not allowed until TCR
is cleared, removing the Move enable.

A BTK end carry from the nth block and a Move enable from
TCR initiates a tape stop during which TCR is cleared.

Stop Reading or Writing of n (> 1) blocks

(Uniservo designation and read or write enable remain in TCR
from the read or write operation to be terminated.)

1

2

Since j is available, the TCR lockout is set and the IOB
Resume given.

The Stop enable now in TCR with the previous BTK end

carry initiates a tape stop during which TCR is cleared
and TCR lockout cleared. However, the stop initiation
prevents another I0B to TCR transmission for approximately
10 ms.

Rewind j or Rewind j with interlock

1

2

When and if j is available,TCR lockout is set and IOB
Resume is given,

When Rewind initiation is completed, TCR lockout is cleared
and TCR is cleared.

Bias Change

1

2

TCR lockout is not set

Bias Change completion after approximately 20 ms effects
I0B Resume and Clear TCR.

PX 38

57

INPUT AND OUTPUT SYSTEMS

c¢. TAPl: OPERATION TIMING.

(1) GENERAL. - Before a study is undertaken of the available computa-
tion times during tape operations, it is helpful to review the conditions which
are necessary during tape operations before

(a) An LExternal Function, External Write, or External Read instruc-
tion can be executed following an EF tape instruction and

(b) the transmission IOB to TCR can occur after an EF tape instruc-
tion is executed. (IOB is automatically cleared immediately after this trans-
mission.)

The transmission X to IOB during the execution of an EF or EW instruction is
not possible after the execution of a previous EF instruction until an IOB
Resume is received by IOB Control. (A lockout condition is established by IOB
when a second X to IOB transmission is attempted before an IOB Resume is received
from external equipment. This prevents the use of IOB for a second output
operation before the first is completed.) No wait for an IOB Resume is neces-
sary when an ER instruction follows an EF instruction since the attempted
execution of an ER instruction sets up an IOB lockout until information is re-
ceived from external equipment (and this transmission is not received until a
tape operation is underway). An ICB Resume generated by tape control after an
EF instruction indicates that tape control has accepted the current content of
TCR as a tape operation, Since this I0B Resume allows the loading of IOB by
a second EF instruction or an EW instruction, TCR must be protected against
receiving another IOB to TCR transmission until the first tape operation is
completed. This protection is provided by setting the "TCR Lockout" before
giving the IOB Resume. Then, since these transmissions are blocked, IOB may be
loaded safely by another LEF or an EW (or an ER). Since a Bias Change operation
does not effect a TCR lockout, it does not generate an I0B Resume until the
change of bias is completed.

After an EF tape instruction has been executed, the TCR lockout set up by
the previous tape operation must be removed before the operation code currently
in IOB can be transmitted to TCR. (In some cases, the removal of the TCR
lockout is not sufficient to zllow the IOB to TCR transmission.)

It should be noted that if TCR has not been cleared previous to an I0OB to
TCR transmission, the logical sum of IOB and the current content of TCR are
formed in TCR. This is not allowable except when an EF stop instruction is
programmed to terminate a Read or Write operation.

The occurrence of these signals, IOB Resume, set TCR lockout, clear TCR
lockout, and clear TCR, during each of the legitimate tape operations is pointed
out below.

Read or Write Uniservo j (and stop)

.
(Lases

When and if j is available, the TCR lockout is
set and the IOB Resume is given.

2 A BIK end carry clears the TCR lockout. (TSK end
carry, if reading or writing is continued, resets
it.)

INPUT AND OUTPUT SYSTEMS

(2) AVAILABLE COMPUTATION TIMES.

(a) A tape operation becomes effective when the operation specifi-
cation, as placed in IOB by an External Function instruction, is transmitted
to TCR. This transmission may not occur immediately after the execution of an
EF instruction. The initiation of a tape stop on any Uniservo causes a Stop
Initiation delay which prevents for 10 ms the following: IOB to TCR trans-
mission, I0B to BK transmission, and Clear IOB signal. Consequently, the emis-
sion of the IOB Resume signal is also detailed until this time, and longer it
a Change Bias operation is being initiated. During this 10 ms, an External
Function instruction may be executed but the tape operation is not initiated.
The attempt to execute an External Read or External Write instruction, if a
read or write operation is to be initiated, or a second EF instruction,
establishes an IOB lockout condition until the IOB Resume is emitted.

(b) Between an External Function instruction for a read or write
operation on Uniservo j -and the first External Read or Lxternal Write, It is
assumed that Uniservo j is immediately available.

Writing operation Reading Operation
Possible Stop Initiation delay® 10 ms (maximum) 10 ms (maximum)

The following delays are incurred after a read or write operation is initiated,
but before a word is transmitted to IOB (in reading) or (in writing) before
tape control assumes a word has been received from IOB.

Tape Direction delays
normal 2.5 ms 2.5 ms
if movement is to be in
opposite direction from
previous movement 600 ms 600 ms

Leader delays

if tape is on leader 1500 ms 1000 ms
Block Spacing Delays

for one inch block spacing 7.5 ms 5.0 ms **

for 2.4 inch block spacing 14.5 s 5.0 ms %

The delays listed are "progressive™, i.e., they are not initiated simultaneously..
The delays listed detain signals internal to the tape control system with the
exception of the block spacing delays listed for a reading operation.

* If the EI' Read or Write instruction immediately follows an EF Stop instruction
or the last ER or EW of a previous Read or Write One Block and Stop operation.
See paragraph (a).

% Actual reading of the tape does not begin until the tape is moving through
the read/write head at its free-running speed. The times quoted above are
acceleration times for the tape to reach this rate. These delays assume no
variation from a tape speed of 100 inches per second and are minimum times
for this speed. The times of 7.5 or 14.5 are allowable assuming that block
spacing is exactly 1.0 or 2.4 inches and that tape movement is stopped exactly
in the middle of the block spacing. Only when the block spacing is known to
be consistently 2.4 inches can the 14.5 ms time be used.

PX 38
59

INPUT AND OUTPUT SYSTEMS

(c) Between successive External Read instructions or successive
External Write instructions:

at a recording density of 128 lines per inch 436 microseconds
at a recording density of 50 lines per inch 1168 microseconds

Tape moves at a rate of 100 inches per second. Therefore, for a recording
density of 128 lines per inch, 36-b:it words are transferred to IOB (or sensed
from I0B) at the rate of one word every 468 microseconds (104 - 6/128 micro-
seconds). When the execution time for the External Read (or External Write)
instruction is subtracted from this time, 436 microseconds remain for computa-
tion. The available computation times for other recording densities are
similarly computed.

(d) During the time a block or blockette spacing is moving past
the read/write head:
Writing operation* Reading Operation®*

One inch inter-block or

inter-blockette space 9.968 ms 7.468 ms
2.4 inch inter-block space 23.968 ms 17.968 ms
0.1 inch inter-blockette space .968 ms .718 ms

(e) A maximum computation time of 250 microseconds can be used for
other than tape operations between the External Read or Write instruction which
reads the last word in the last block and the External Function instruction
which initiates a tape stop.

(f) Computation time available after a Move Forward or Move Backward
operation becomes effective (on IOB to TCR, IOB to BK). Another EF tape in-
struction may be executed immediate.y but it will not become effective until
after times listed below.

Tape Direction delays minimum 2.5 ms or
maximum 600 ms if tape movement is to
be in opposite direction from last
movement.

* During a writing operation the writing pulses are cut off for 10,24, or 1 ms.
These times minus the .032 ms execution time of the [xternal Write instruc-
tion yield the times quoted above.

*% Again the reading rate is dependent on the tape speed and the length of the
inter-block and inter-blockette spaces. It is ample to allow for a 25%
deviation in the length of spaces between blockettes and between blocks.
Thus, the minimum available computation time, assuming tape motion at the
rate of 100 inches per second and a space of 0.75 inches in length, is com-
puted to be (7500 - 32) microseconds while a "one inch" block space is moving
by the read/write head.

PxX 3t
60

INPUT AND OUTPUT SYSTEMS

Leader delay 1000 ms if tape positioned on leader
or
Acceleration time* 5 ms if tape not positioned on leader

Free-running time* for n blocks:

Block rate
recording density 128 lines/inch n x 56.25 ms
recording density 50 lines/inch n x 144.00 ms
Inter-block space rate
one inch inter-block space (n-1) x 7.468 ms
2.4 inch inter-block space (n-1) x 17,968 ms
Stop Initiation delay 10 ms

(g) Computation time available after a Rewind or Rewind with
Interlock operation becomes effective (on IOB to TCR). Another EF tape instruc-
tion may be executed immediately but the IOB to TCR transmission for this. opera-
tion is not allowed until after the times listed below:

Minimum 10 ms or

Maximum 600 ms if tape movement is to be in opposite direction from last
movement

In addition to the times quoted above, if the tape instruction following a
Rewind instruction references the same Uniservo, this next instruction will not
become effective until the rewinding is completed. Maximum rewinding time is
approximately threc minutes. In this case, this time also could be used advan-
tageously for other computations not referencing IOB.

(h) Computation time available after a Change Bias operation becomes
effective. The attempt to execute immediately another External Function instruc-
tion establishes an ICB lockout condition. There is a 20 ms delay after the
initiation of a bias change before another EF instruction can be executed to
its completion.,

d. OPERATION.

(1) OPERATION INDICATORS. - Tape operation is reflected by the condition
of indicators on the Uniservos, the tape control cabinet, and the left section of
the computer control panel. These indicators and their reactions to tape opera-
tion and tape operation faults are discussed in the following paragraphs.

(a) UNISERVO. - The "Ready" indicator (green) is between the tape
reel panel doors, upper center section of the Uniservo. This indicator is
illuminated when the Uniservo interlock circuit is energized; i.e., when power
has been applied to the Uniservo, when the tape reel panel door switch is set to
its ON position, and when the Forwsrd Limit, Mylar Detector, Left Tape Loop, and
Right Tape Loop switches are in their normally closed position. If this indicator
is not illuminated, the Uniservo is not ready for operation.

* Assuming no variation from a tape speed of 100 inches per second.

PX 38

61

INPUT AND OUTPUT SYSTEMS

A failure to have the interlock c¢ircuit not energized because power has not
been applied to the Uniservos would not usually occur. Power is normally applied
to the Uniservos (and the tape control system) at the same time power is turned
on for the computer. Normally, if it is noted that the "Ready" indicator is not
illuminated, the interlock circuit is not energized because one of the switches
in the circuit is open. The condition which caused the switch to be opened must
be corrected before any operation on the unit can be undertaken. If operation
is attempted on a unit in which the interlock circuit is not energized, a com-
puter B-Fault condition is incurred. The interlock switches and the conditions
which cause them to open are discussed in the following paragraphs.

The tape reel panel door switch is located immediately below the "Ready"
indicator. This interlock switch must be set to OFF to open the left tape reel
panel door and cannot be returned to its ON position until the door is closed.
liffectively, then,opening the Uniservo door causes the "Ready" indicator to be
dropped. The door must be closed and the door switch reset to ON before the
interlock circuit is energized.

A Mylar shim, or buffer tape, is inserted between the read-write head and
the metallic recording tape. This plastic tape serves to reduce both tape
wear and friction. When this tape is broken or the supply is exhausted, the
Mylar detector interlock switch is opened, dropping the "Ready" indicator. The
replacement of the Mylar tape by maintenance procedures closes this interlock
switch.

The Forward Limit interlock switch is opened when the magnetic tape moves
into its "leader" area on its far end, i.e., the left-hand tape reel is depleted
and the right-hand tape reel contains all of the tape. (The Forward Limit switch
is opened when the "rubber bumpers" on the "leader" on the far end of the tape
are detected). To close this switch and energize the Uniservo interlock circuit,
the tape must be rewound past its "lzader" position. This is accomplished by
opening the panel door and manually turning the reel in the counter-clockwise
direction several times (until the switch no longer makes contact with the rubber
bumpers). The complete rewinding of the tape onto the left-hand reel can then
be accomplished by the normal rewind operation which can be instigated manually
from the computer control panel or under program control.

The Right and Left Tape Loop switches are opened when the tape loops are
out of normal position. This could be caused by tape breskage or possibly could
result from faulty operation of control circuits in the Uniservo. Maintenance
procedures are necessary to correct these conditions.

De-energizing the Uniservo interlock circuit could also be caused by blowing
& fuse. A blown fuse in the Uniservo cabinet is shown by the illumination of
the Fuse indicator.

Inside the right-hand tape reel door, above the tape reel mounting, are
indicators labeled Rewind Interlock and Fault, Fuse and Temp.

The Fuse indicator is illuminatel by a blown fuse. This indicates that
some part of the Uniservo is inoperative and the Uniservo interlock circuit may
be de-energized. Detection and replacement of the blown fuse are maintenance
procedures.

rx 38
62

INPUT AND OUTPUT SYSTEMS

The Temp. indicator is illuminated when a temperature rise above 120°F is
detected in the Uniservo. This condition causes a computer A Fault and illumi-
nates the Temp indicator in the A Fault Group on the computer control panel.
Computer operation is halted by an A Fault condition. Operation is resumed
after corrective maintenance by depressing the Clear A Fault button (unless a
B-Fault has resulted from tape reading or writing occurring at the time of the
computer stop. If this is the case, either (1), the MT fault indicator in the
B-Fault group on the computer control panel and the No Information fault indi-
cator in tape control cabinet are illuminated, or (2), the IO fault indicator
in the B-Fault group on the computer control panel is illuminated).

The Rewind Interlock indicator is illuminated when the magnetic tape has
been rewound with interlock on the left-hand tapée reel. This condition indi-
cates that the tape on this Uniservo should be replaced before this unit is used
again. Opening the door to replace this tape drops the "Ready" condition of
this unit (because the door switch must be set to OFF) and drops the rewound with
interlock condition.

Inside the right-hand tape reel door, above the tape reel mounting, are
indicators labeled Clutch, Stop (red) and Go (green). The Go indicator is
illuminated by the signal which is sent to the tape drive mechanism to pull in
the clutch and start tape movement. This indicator remains illuminated until
a stop tape signal is received by the tape drive mechanism to operate the brake,
thus releasing the clutch, At this time the Stop indicator is illuminated and
remains illuminated until the tape is re-started or until power is dropped from
the unit.

(b) TAPE CONTROL CABINET. - This cabinet is located immediately to
the left of the Power Supply Cabinet. Located inside the right-hand door are
tape fault indicators and the Logical Number Selection switches. Each Uniservo
is physically defined by one of the numbers 1, 2, ... 10, depending upon the
number of Uniservos installed. For instance, if an installation has eight
Uniservos, it would be expected that the numbers 1 ... 8 would define the eight
units. The Logical Number selection switches are labeled Uniservo 1, Uniservo 2,
etc. kncircling the switches are the numbers 1 through 10. A Uniservo is
assigned a logical designation by turning the appropriate selection switch so
that the white line on the switch is in line with the number desired. The
numbers available for logical assignment depends upon the number of Uniservos
installed, i.e., if eight Uniservos are installed, any of these units may be
logically assigned any of the numbers one through eight. Thus, if the eight
Uniservos at an installation are physically defined as Uniservos 1 ... 8, the
switches labeled Uniservo 9 and Uniservo 10 should be set to the logical de-
signations of 9 and 10, It is not allowable for two switches to be set to the
same logical designation even though some of the switches define a non-existent
Uniservo.

The tape fault indicators (red) above the Logical Number Selection switches
are labeled. No Information, Sprocket Error, Selection Error, and Uniservo
Interlock. These indicators are illuminated by the detection of one of these
tape faults., These faults also cause the illumination of the MT indicator in
the B-Fault group on the computer control panel and cause a computer B-Fault stop.

PX 38

63

INPUT AND OUTPUT SYSTEMS

The logical number Selection Error is caused at any time the computer is in
operation by setting two Logical Number Selection switches to the same number,
i.e., giving two "Uniservos” the same logical designation. The fault occurs re-
gardless of whether or not the "Uniservo'" is non-existent or out of service for
maintenance reasons. This fault must be corrected before computer operation
can be resumed. Correcting the selsction causes the Selection Error fault light
to be extinguished. Operation is rzsumed by depressing the Master Clear Button
(which drops the B-Fault light), making the desired selections on the computer
control panel, and depressing the computer Start button,

In order to prevent a Selection Error fault from occurring at the time of
making a logical number designation change, the computer operation must be
stopped. Depressing the Force Stop button on the computer control panel will
allow a setting to be made safely. Computation is re-started by depressing
the Start Button.

The Uniservo Interlock Fault is caused by referencing for a tape operation
a unit in which the interlock circuit is de-energized. This condition is
shown on the unit referenced by the extinguishment of the "Ready" indicator.
The causes of this condition have already been discussed in the paragraphs dis-
cussing the "Ready" indicator and Uniservo interlock circuit. Computer opera-
tion can be resumed by depressing the Master Clear button, which extinguishes
both the MT and Uniservo Interlock indicators, making the desired selections
on the control panel, and depressing the Start button; but, if the cause of
the Uniservo Interlock fault is not corrected and the same unit is again re-
ferenced, the B-Fault will re-occur. Correcting the Uniservo Interlock fault
during a B-Fault Stop extinguishes both the Uniservo Interlock indicator and
the MT fault indicator. Operation is resumed by depressing the Master Clear
button (which drops the B-Fault indicator), making the desired selections on
the control panel, and depressing the Start button,

The No Information and Sprocket Error faults are discussed later in the
fault section. These faults can be cleared, and their indicators, the MT Fault
indicator, and the B-Fault indicator are extinguished, by depressing the Master
Clear button on the computer.

When the occurrence of an MT B-Fault is noted, observing the condition of
the tape fault indicators in the tape control cabinet is an aid to diagnosing
the cause of the fault. Before the cabinet door is opened, the Bypass Cabinet
Interlock key in the Test Switch group, right section of the computer control
panel, must be turned to its Abnormal position. The failure to do this before
opening a cabinet door causes an emergency power drop to the computer system,
and maintenance procedures are necessary to resume operation.

(¢) SUPERVISORY CONTROL PANEL. - Represented on the left section
of the Supervisory Control Panel are components of the tape control system.
The banks of lights which assist the operator in manual operation of the Uni.-
servos and aid in diagnosing certain of the fault conditions and computer opera-
tion "delays" are those labeled TCR, Tape Control Register, TR, Tape Register,
and BK, Block Counter. The button labeled MT Test Start Step in the MT Test
Writing Rate group is depressed to manually initiate a tape operation. The
illumination of one of the indicators labeled MT Read Bias, high or low, shows
the selection of a read bias other than normal.

PX 38

64

INPUT AND OUTPUT SYSTEMS

The bank of lights labeled Center Drive Control, Start and Stop, indicate
tape movement on the Uniservos. An indicator in the top row is illuminated by
an "operate clutch" signal to a particular unit; this indicator is extinguished
by an "operate brake" signal which illuminates the indicator in the bottom row.
The numbers below the ten pairs of indicators, between the "set" buttons (black)
and "clear" buttons (white) are the physical definitions of the Uniservos. If
the need for an immediate stop, of tape movement should arise, this can be
effected, if the computer is not in operation at the time or if operation is in
the Test mode, by depressing the "clear" button for the appropriate Uniservo.
(Depressing the computer Force Stop button stops operation.)

(2) PREPARATION FOR OPERATION. - The procedure for preparing for tape
operation under program control or manual control is as follows (assuming that
the Uniservos have been properly fitted with tape reels):

(a) Determine whether those Logical Number Selection switches in
the tape control cabinet which physically define installed
Uniservos have been set to the logical number designations used
in the program.

NOTE

(The numbers which can be used for logical designations
cannot exceed the number of installed Uniservos.) If
any logical designations are to be changed and the com-
puter is in operation, the Force Stop button must be:
depressed before making the switch changes to prevent
the occurrence of a Selection Error.

(b) Check for the illumination of the green "Ready" indicators on
the Uniservos to be used. If this indicator is not illuminated,
the "not ready" condition must be corrected before this unit
can be used., Assuming that power has been applied to the
Uniservos, the attempt to use any unit not ready causes a
Uniservo Interlock B-Fault.

(¢c) Check for the illumination of the Rewound Interlock indicators
on the Uniservos to be used. This condition should be elimi-
nated before attempting any operation on the Unisefvo. A tape
reference to a Uniservo which has a Rewound Interlock condition
causes a computer stall, and until this tape reference is re-
moved from tape control the attempt to eliminate the Rewound
Interlock condition causes a Uniservo Interlock B-Fault.

The procedure to replace any rewound tape is as follows:

(a) Turn the door switch to its OFF position and open the left
tape reel panel door.

(b) The small spring clip connecting the magnetic tape and the
leader should be positioned immediately below the tape reel.
This connection is broken by spreading the sides of the spring
clip, thereby releasing its prongs from the small cylindrical
ending of the leader.

PX 38

65

INPUT AND OUTPUT SYSTEMS

(c) Pull forward the hol.ding latch on the tape reel mounting. This
releases a locking pin directly under the knob from its position
in one of the slots in the inner circumference of the tape reel.
Remove the tape reel from the tape reel mounting.

(d) Place another rewound tape on the tape reel mounting so that
the tape winding is in the clockwise direction. Return the
holding latch to its closed position, first positioning the
tape reel so that the locking pin is inserted into any of the
slots in the inner circumference of the tape reel.

(e) Connect the magnetic tape to its leader by inserting the prongs
of the spring clip in the cylindrical ending of the leader.

(f) Turn the tape reel counterclockwise until any tape slack is
taken up.

(g) Close the panel door and set the door switch to its ON position.

(3) MANUAL OPERATION. - To initiate tape operations from the computer
control panel, the computer must be set to operate in the Test mode. The opera-
tions which can be successfully completed after & manual initiation are Rewind,
Rewind Interlock, Move Forward and Backward, and Change Bias. To initiate one
of these operations, set the desirec operation code and Uniservo selection
(except for a Change Bias operation) in TCR by depressing the appropriate "set"
(black) buttons., (The white button is depressed to clear the register.)
Manual settings may be made any time the computer is not in operation and when
operation is in the Test mode. If & Move operation is desired, the number n
of blocks to be moved in inserted in BK. Depressing the MT Test Start Step
button then csuses the specified tape operation.

At the completion of the Move Forward, Move Backward, and Change Bias
operations, the Tape Coitrol Register and the Block Counter are automatically
cleared. If the bias is changed to high or low, one of the bias indicators
(red) in the MT Test Writing Rate group is illuminated. If a manual rewind
operation is performed, TCR is cleared when the rewind operation is initiated.

The failure of the registers to be cleared as expected after attempting a
manual operation could be due to one of the following reasons: (1) The Test
mode of operation was not selected; (2) for a rewind or move operation, no
Uniservo selection was made in TCR or the Uniservo specified is not available;
(3) for a move operation, the block count set in TCR was greater than the
nmmber of blocks available for moving on the tape. This is evidenced by a re-
duced block count # O in BK and a Uniservo Interlock B-Fault if the move was
in a forward direction.

If a manual Move Forward or Move Backward operation is attempted without
inserting a block count in BK, TCR is cleared and no tape movement is initiated.

rx 38

66

INBUT AND OUTPUT SYSTEMS

e¢. IMPROPER PROGRAMMING OR OPERATION.

(1) GENERAL. - Consideration must be given to the effects of improper
programming and operation errors on both tape operation and computer operation.
In general, a program should run correctly if the equipment has been prepared
properly, the Uniservo designated is available, a legitimate tape operation has
been specified, the correct number of External Reads and External Writes have
been coded, a Stop has been coded to terminate a Read or Write operation, and
the timing restrictions have been noted in coding, in particular, the External
Read instructions, External Write instructions, and an EF Stop instruction. A
disregard for these requirements may result in an operation "delay" (a temporary
halt of operation) which (1) may not be immediately noticed orX2) may:cause
indirectly a computer fault; or a disregard for these requirements may cause
directly a computer fault. Any time computer operation is stopped, tape opera-
tion should be stopped to prevent the possibility of a "runaway" tape, i.e., a
tape which moves free of control to its "leader" position on the far end.

If erroneous operation is detected by the tape control system after tape
movement has been initiated, the tape control system effects the tape stop and
initiates a B-Fault computer stop. The tape stop occurs at the end of the block
(i.e., midway of the next interblock space) which was being read, written, or
moved at the time of the fault detection. At the time the "stop tape" signal
is sent to the Uniservo, the Tape Register, Tape Control Register and tape
counters are cleared. In some cases, the execution of computer instructions
may continue until the time of the actual computer stop, approximately 80 ms
after the detection of the tape fault. If this is the case, and an External
Function instruction for a tape operation is executed during this time, the
possiblity exists of starting another tape movement. If this next EF instruc-
tion executed is an EF Stop (Read or Write) instruction, the lack of a Uniservo
designation in TCR prevents the initiation of tape movement and effects an IOB
lockout condition, For this reason, it is important that an EF stop instruc-
tion does not specify any particular Uniservo. If tape movement is started
erroneously, depressing the computer Master Clear button stops the tape movement.
(To stop tape movement without clearing any of the registers on the computer
control panel, a button in the Center Drive Control can be depressed as described
in subparagraph entitled Supervisory Control Panel, Operation.)

When computer operation is stopped by a computer A-Fault, a B-Fault, a
Force Stop, or a Manually Selective programmed stop, any tape movement in pro-
gress at the time of the actual operation stop is halted (1) during a rewind
operation, at the completion of the rewind; (2) during a move operation, at
the completion of the move; (3) during a read or write operation at the end of
the current block being read or written. This block is not read completely or
written correctly to completion since the appropriate number of External Reads
and External Writes are not executed.

In diagnosing the cause of an operation delay or computer fault, noting the
condition of the following indicators is helpful.

(a) On the Supervisory Control Panel:

The registers in Magnetic Tape Control, in particular, TR, TCR, BK.
The IOB Register, located above TR.

PX 38

67

INPUT AND OUTPUT SYSTELMS

The Program Control Register (PCR) and Program Address Counter (PAK)
both located in the center section of the control panel. At any
time,PCR holds the instruction being executed and PAK holds the
address of the next instruction to be executed.

The I0 and MT fault indicators in the B Fault group, lower center
section of the control panel. The illumination of the IO fault
indicator indicates the occurrence of one of the IOB (or IOA)
external faults shown in the External Fault group, lower left section
of the control panel. The illumination of the MT fault indicator
shows the occurrence of some other fault originating in the tape
system.

The Temp fault indicator in the A-Fault group.

An I0B lockout condition is shown by (1) the illumination of the
top-most light in the column labeled Wait External in the Pulse
Distribution Control group, center section of the control panel, and
(2) the presence of an ER,EW, or EF instruction in PCR.

(b) The indicators on the Uniservos: Ready, Rewind Interlock Fuse, and
Temp.
(¢) The Fault indicators in the tape control cabinet: No Information,

Sprocket Error, Selection Error, and Uniservo Interlock.

Note: The door of the Tape Control Cabinet
must not be opened without first
turning the Bypass Cabinet Door Inter-
lock key (in the Test Disconnect switches,
right section of the computer control panel)
to its Abnormal position.

(2) TAPE OPERATION FAULTS. - The operation errors which may occur during
tape operation are listed below and cdiscussed in detail subsequently.

Parity Check Error: effects a stop of tape movement; caused by a reading
or recording error,

Temperature Fault: effects a computer A-Fault; equipment fault.

Uniservo Interlock: effects a computer B-Fault; operations error or
equipment fault,

No Information: effects a computer B-Fault; programming error.
10 Read Fault: computer B-Fault; programming error.
Selection Error; effects computer B-Fault; operator's error
Sprocket Error: effects computer B-Fault; recording error

rx 38

68

INPUT AND OUTPUT SYSTEMS

The detection of a parity check error does not effect a computer fault but
does effect a stop of tape movement. At the completion of reading every block,
a check is made to determine if a parity error occurred in reading any of the
720 lines in the block. If one or more errors occurred, a "1" is set into stage
O of IOA and a tape stop is initiated. If no error was detected, only the IOA
Read Acknowledge signal is sent to IOA. Thus, IOA must be "read" and its con-
tent tested after reading every block. Computation continues depending upon the
result of the test. If a parity check error is indicated, the block can be re-
read in the opposite direction, and read and re-read at the different bias levels.
If none of these passes effect a correct reading, a computer stop can be pro-
grammed to indicate the unsuccessful attempt to read the block correctly.

(a) UNISERVO TEMPERATURE FAULT,

Indications: Illumination of the Temp A Fault indicator on
the computer control panel. Illumination of the Temp Fault indicator on a
Uniservo.

Diagnosis: The temperature.fault results from a temperature
rise above 120°F in any Uniservo. The occurrence of a Temp Fault during tape
operation does not interfere with the tape operation unless reading or writing
is occurring at the time of the computer stop. If this is the case, a computer
B Fault is also incurred. This is evidenced by the illumination of the MT
Fault indicator on the computer control panel and the No Information fault
-indicator in the Tape Control Cabinet, or the illumination of the IOB Fault
indicator on the computer control panel,

Resumption of Operation: If a B Fault has not occurred,
turning the Bypass Temperature Interlock key to its Abnormal position after the
computer stop has occurred allows resumption of the program in the Test mode
after the Clear A Fault button is depressed. However, this procedure should
be undertaken with caution. To resume computation in the Normal mode, the Temp
fault must be corrected. The correction of the fault extinguishes the Temp
Fault indicator on the Uniservo. Operation is then resumed by depressing the
Clear A Fault button which extinguishes the Temp Fault indicator on the com-
puter control panel.

If a B Fault condition exists, the A Fault is cleared by one of the pro-
cedures above; clearing the B Fault condition requires the depression of the
Master Clear button. Operation is resumed according to the type of read or
write fault incurred. These faults are discussed subsequently.

(b) UNISERVO INTERLOCK FAULT

Indications: Illumination of MT fault indicator and B Fault
indicator in B Fault group, computer control panel. Illumination of Uniservo
Interlock fault indicator in tape control cabinet. The "Ready" light on the
Uniservo in use at the time is extinguished.

Diagnosis: This fault is caused when a Uniservo interlock
circuit is de-energized and this particular Uniservo is referenced for tape

operation. The conditions which cause the Uniservo interleck circuit to be
de-energized and the correction of these conditions are discussed in the

PX 38

69

INPUT AND OUTPUT SYSTEMS

Operation section in the paragraphs describing the "Ready" indicator on Uniservo
and the Uniservo interlock circui:. If the not ready condition is detected by
the attempt to initiate a tape operation, tape movement is not started. The
execution of computer instructions may continue until the time of the computer
fault stop. During this time, if External Write instructions are executed,
"writing" is performed on the stationary tape; if External Read instructions
are programmed to be executed, an IOB lockout condition is established.

If the Uniservo interlock circuit is de-energized after a tape operation
and tape movement have been initiated, the execution of instructions continues
until the time of the computer fault stop. Tape movement is stopped by virtue
of the drop of power on the circuit.

Resumption of Operation: Depressing the computer Master Clear button
extinguishes the fault indicators and allows the resumption of operation. Cor-
rection of the fault condition is not necessary to resume operation, but if the
same Uniservo is referenced again, the fault will re-occur.

(c) NO INFORMATION FAULT: The failure to have a word transferred
from the computer to TR results in a NC INFORMATION FAULT,

Indications: On the computer control panel MT B fault indicator
is illuminated. In the tape conirol cabinet, No Information fault indicator is
illuminated. TCR is cleared by the fault stop but may be filled by the execu-
tion of another EF tape instruction before the computer is stopped. Tape move-
ment is stopped at the end of the block being written when the error occurs.The
Computer is stopped approximately 80 ms after the completion of writing the
block in which the fault was detected.

Diagnosis: This fault is caused by the failure to provide
120 External Writes to write a block or by the failure to execute in time an
lkxternal Write. When this fault is detected by tape control, the stop code
bits are set in TCR and a B fault is initiated.

If the fault is caused by programming too few External Write instructions,
the bits of the missing words are written as zeros.

If the No Information fault is caused by the failure to execute an External
Write in time, the data bits of the lines written on tape at that particular
time will be zeros until the EW is executed; then, the transmission IOB to TR
occurs and the remainder of the lines written is taken from the current content
of TR.

If the block being written when the fault is incurred is not the last block
programmed to be written, the attempt to execute the next group of External
Writes will cause an IOB lockout condition. If this block was the last block
to be written in this particular writing operation, the execution of computer
instructions, including any Exterral Function instruction, may continue until
the time of the computer fault stop.

Resumption of Operation: All fault indicators are extinguished
by depressing the Master Clear button. After remaking selections, operation can
be resumed by depressing the Start button.

X 38

70

INPUT AND OUTPUT SYSTEMS

(d) I0 READ (IOB I) FAULT, i.e., Failure to execute a sufficient
number of LExternal Reads: where 120 n~j (j=l...), ER's programmed and an EF
stop programmed to terminate presumably the reading of the nth block: Failure
to execute an External Read in time.

Indications: 1Illumination of the IOB fault indicator and the
IOB I fault indicator. Tape movement is stopped at the end of the block being
read when the error occurs. TCR is cleared by the fault stop but may be
filled by the execution of another EF tape instruction before the computer is
stopped. The computer is stopped approximately 80 ms after the fault is
detected.

Diagnosis: Each word received by IOB from the Tape Register
should be removed from IOB by an External Read instruction before the next
transmission from TR occurs., If a second transmission occurs before IOB is
cleared by an ER, an IOB I computer B Fault is incurred. 1In a tape reading
operation this fault is caused by the failure to execute the sufficient number
of ER's, or it could occur when an ER is programmed to be executed too late.

If two or more External Reads are not programmed for reading a single block
or reading the last of a series of blocks, the tape is stopped at the end of
this block but computer instructions continue to be executed. The execution of
an External Function instruction during this time will transmit tape operation
codes to IOB which has not been cleared. Thus, IOB will contain the logical
sum of its previous contents and the tape operation code, and these bits are
transmitted to TCR. No prediction can be made as to whether or not a tape
operation will be initiated since both the operation code and the Uniservo
selection may have been changed.

If two or more External Reads are not programmed for reading any but the
last of a series of blocks, tape movement is stopped at the end of the block
and the execution of the second ER for the next block sets up an IOB lockout
condition which stops the execution of further instructions until the time of
the computer stop. (The execution of the first ER for the next block transmits
to storage from IOB the logical sum of the last two words of the last block.)

The lack (in the program) of one External Read in reading a single block
or the last of a series of blocks does not cause directly a computer fault;
but since IOB is not cleared before another EF instruction is executed at any
future time, the bits transferred from IOB to TCR at that time may not specify
the desired tape operation. Again, a tape operation may or may not be
initiated. If an EF Stop Read instruction is executed, the logical sum of IOB
and the specification of the read operation (currently in TCR) is formed in TCR.
If the Uniservo selection is changed, tape movement on this Uniservo is not
stopped and tape movement on another Uniservo may be started.

The lack (in the program) of an External Read in reading any particular
block but the last could cause an IOB I fault at the beginning of the next block
or could be interpreted as a missing ER for the last block of the series.

If an External Read is not executed in time during the reading of any
block, tape movement is stopped at the end of this block and an IOB lockout
condition is caused by the execution of the "extra" ER at the end of this block.
This stops the execution of any further computer instructions until the computer
fault stop.
PX 38

71

INPUT AND OUTPUT SYSTEMS

Resumption of Operation: All fault indicators are extinguished
by depressing the Master Clear button. Operation is resumed after remaking
basic selections by depressing the Start button.

(e) SELECTION ERROR FAULT.

Indications: Illumination of the MT and B fault indicators on
the computer control panel and the Selection Error indicator in the tape control
cabinet.

Diagnosis: This fault is caused by setting two of the Logical
Number Selection switches to the sare number at any time the computer is in
actual operation. Any changes in logical designations should be made during &
computer stop.

Resumption of Operation: Operation cannot be resumed until the
logical designations are corrected. When this is done, the Selection Error
indicator is extinguished. Depressing the Master Clear button extinguishes the
B fault indicator and allows resumption of operation.

(f£f) SPROCKET ERROR FAULT: 1In reading, > 720 or < 720 line count;
.in moving, > 720 line count.

Indications: MI' B Fault indicator illuminated. Sprocket Error
indicator in tape control cabinet illuminated.

Tape movement is stopped at the end of the block recorded with the improper
number of lines, A computer fault stop occurs approximately 80 ms after the
detection of the fault.

Diagnosis: A sprocket error results from (1) the detection of
a block spacing before a count of 720 lines has been accumulated in reading or
moving, and (2) the reception of a sprocket signal from the tape after a 720
line count has been accumulated in reading or moving and before the block spacing
is detected. The detection of a < 720 line count during moving is ignored:
this condition propagates a "false" 720 line count to the tape control system.

During a reading operation, a < 720 line count means that an "extra"
External Read is executed at the enc of the block. The execution of this ER
establishes an IOB lockout condition which prevents the execution of further
instructions until the computer is stopped. This lockout condition is indi-
cated by an ER instruction in PCR.

During a reading operation, if a > 720 line count occurs in & block which
is not the last of a group of blocks being read, the execution of an External
Read after tape movement is stopped establishes an IOB lockout condition and
prevents the execution of further instructions until the computer stop. If a

> 720 line count occurs in the last block being read, another External
Function instruction may be executecd before the computer stop occurs, and
another tape movement could be initiated. An additional word is sent to IOB
for each extra six lines recorded on tape, if such should be the case. Then,
since I0B is not cleared before the computer fault stop, if an EF instruction
is executed, the logical sum of IOB and the tape operation specification is sent
to TCR.

I'X 38

72

INPUT AND OUTPUT SYSTEMS
When a > 720 line count is detected during moving, computer instructions
may continue to be executed until the time of the computer stop.
Resumption of Operation: Depression of the Master Clear button

extinguishes all fault indicators. Operation may be resumed after remaking
basic selections by depressing the Start button.

PX 38

73

OPERATING THE COMPUTER

1. GENERAL.

The Univac Scientific computer is set into operation by certain combinations
of selections made on the Supervisory Control Panel. An overall view of the
Supervisory Control Panel is presented in Figure 1. The computer may be set
into high speed operation, or, if it is desired to manually superintend the
internal actions of the computer and/or have a visual presentation of these
internal actions, step operation may be chosen. Those internal operations which
are represented on the Supervisory Control Panel, or which occur in components
of the computer represented on the Supervisory Control Panel, have as their
visual counterpart the occurrence of lights in the corresponding designated
positions. Thus, the contents of any of the registers represented may be noted
by interpreting the double rows of lights into a bioctal code as follows:

a light in the upper row represents a binary one in the stage as numbered; and
a light in the lower row represents a binary zero in that stage. Thus, each
group of three columns of lights represents an octal number.

In addition to the ability to oversee the operations of the computer as it
executes a program already internally stored, operations may be performed upon
information placed in the computer by manually setting it in the counterparts
of the proper registers on the Supervisory Control Panel. The small button at
the lower right end of each register is depressed to clear the register
(lighting the lower row indicators); the small button below each column of
two lights is depressed to place a "1" in the chosen stage of the register
(lighting the upper row indicator). By following the proper procedure, the
contents of these registers may then be used as desired in computer operations.

Also, by following the proper procedure, instructions may be manually placed
in the computer by inserting them in the Supervisory Control Panel counterpart
of the PROGRAM CONTROL .REGISTER (MCR, UAK, and VAK), and setting the MAIN PULSE
DISTRIBUTOR to zero. If MPD is set at six, the first instruction to be executed
is taken from the address shown in PAK (as automatically or manually set).

In discussing the operating selections which are made on the Supervisory
Control Panel, the "group" designations listed below will be used. Each group
is represented on the control panel by a set of pushbuttons, switches, and/or
indicator lights enclosed in white lines. As they are located on the lower
center section of the Supervisory Control Panel, Figure 2, from left to right,
the groups are:

Operating Rate Group

Selective Jumps Group

Selective Stops Group

Program Interrupt Control Group
Operating Group

B Fault Group (upper)

A Fault Group (lower)

PX 39

1

OPERATING THE COMPUTER

..

RN TV N e

. He

iy

sEtGEREE
crecerce
"
.
Younos st W

LBEPMEEBG S

e

rs

S66
Fer

L

et

91v01 0

1ewW

Overall V

Control Panel

'visory

Supe1

‘igure 1,

PX 39

0 10415

Figure 2.

OPERATING THE COMPUTER

3
2
g
2
z

I

‘&' ¢ u‘&" e
CRCY O ICRERC IPTrR L)
5CC TRANSLATOR

§

CLe
GG

REPEAT SEQUENCE CONTROL

1'

(GRS
@

(R !
[EXRE [ERC]
& f o8

[

> (4 O

5K TRAMSLATOR

Supervisory Control Panel, Center Section

PX 39
3

OPERATING THE COMPUTER

As located on the right section of the Supervisory Control Panel, Figure 3,
Test Switch Group.

As located on the left section of the Supervisory Control Panel, Figure 4,
MT Disconnect Switch Group.

2. OPERATION.

a. GENERAL. - Computer operation is in one of two modes: NORMAL or TEST.
For each mode, selections are made nanually by depressing buttons and setting
switches. The NORMAL mode is automstically selected unless the TEST/NORMAL
switch (Test Switch Group) is set tc TEST, or the MD NORMAL/ABNORMAL Switch
(Test Switch Group) is set to ABNORMAL. Depression of any of the buttons in
the Operating Rate Group also places the computer in the TEST mode. Operation
at high speed is automatic in either the NORMAL or TEST modes. If high speed
operation is not desired, a manual selection of step operation is necessary,
i.e., one of the three buttons labeled MANUAL STEP, or either of the buttons
labeled AUTOMATIC STEP (Operating Rate Group). (The depression of one of these
buttons automatically selects the TEST mode of operation regardless of the
TEST/NORMAL switch being set to NORMAL.) The AUTOMATIC STEP RATE switch con-
trols the time rate at which Automatic Step Operation or Automatic Step Clock
operations are performed. This timing control is applied to the rate at which
instructions are executed if AUTOMATIC STEP OPERATION is selected. If
AUTOMATIC STEP CLOCK is selected, the clock pulse rate is regulated accordingly.
Timing during Manual Step operations is controlled by the selection of CLOCK,
DISTRIBUTOR, or OPERATION, and the manual depression of the STEP button in the
Operating Group. Each depression of the STEP button releases, respectively,
one clock pulse, one distributor pulse, or the sequence of pulses necessary to
the execution of one instruction. Dlepression of the RELEASE button in the
Operating Rate Group releases any se¢lection made and returns the computer to
HIGH SPEED and to the NORMAL mode unless the TEST/NORMAL switch was actually
set to TEST.

Operation in the NORMAL mode is not possible if any of the disconnect
switches in the Test Switch Group, or MT Disconnect Switch Group, are positioned
to their abnormal condition setting. This condition is indicated by the illu-
mination of both the NORMAL indicator light and ABNORMAL condition light
(Operating Group).

b. NORMAL MODE OF OPERATION.

(1) HIGH SPEED and NORMAL indicator lights are illuminated (Operating
and Operating Rate Groups).

(2) Depress the MASTER CLEAR button (Operating Group).

(3) Depress any SELECT JUM? or STOP buttons called for by the program,
The associated indicators will illuminate,

(4) Depress the START button (Operating Group). The OPERATING indica-

tor light is illuminated and the lights in Step (a) remain
illuminated,

PX 39

4

0 10417

OPERATING THE COMPUTER

® 9 & * Q 9 ® 226 25 a Q Q L ‘a‘
R I T S P e S e T oM ouom
MC INPUY REGISTER

s 4 3
MC ADDRESS REGISTER

MD GROUP

MC PULSE DISTRIBUTOR ® HS PUNCH

MAGNETIC CORE STORAGE CONTROL
8
L

A / ABNGRMAL
R — Conpimion
AYPASS TEMP. BY-FASS CAGINEY
INTER-LOCK IHYER-AOCK

@(,}} QQ@@Q

AR . N em, NORM. DRUM

X
N ‘_._._,V......_m,._. - S ———"
DISCONNECT CLEAR DISCONNECT INITIATE WRITE

Q@ 0 f

Mcx WA
N,

DISCONNECT MD WRITE VOLTAGSES

S ———

Qﬂ@

Amm

BISCONKECT -

S -
AMPLIMER MARGINAL CHECK REQUCE HEATER VOITAGE

Figure 3. Supervisory Control Panel, Right Section

PX 39
3

E

.
TAPE CONTROL REGISTER

@@ wlie
3 i [

AW
L2 AN AU
OAL 1081 'Y N X

OAZ 1082 @ Y & &
& & & §F
EXT FAULT

WALT

*

ORERATING TIME

Figure 4.

AR P AN
&

Supervisory Control

OPERATING THE COMPUTER

1o elew
Tooe T W B R

18 -» (OB

MT READ
BIAS

B

TAPE REAOER

PX 39
6

99

E_ I, X T E_
SPROCKET STOP LEADER aTIAL
DELAY CONTROL DELAY DEAY CONTROL

L] - RVE] VRVRP

. S I DECECA R R
YO Y

R, LONTROL SYHC 4
WT WHTE ERAp CONT. BHFT N Tearov sHRocker xs;/

ALIGN INPUT REGISTER

.J‘:N) #lnz)
B] DIVI] CEITY] VR

Woos o m e s s s 1
® 000 009 %9 9

CENTER DRIVE CONTROL E-)

108 > TCR 0w e

ERROR
SIGNAL

DISCONNECTS

16 SPEED SINGLE STEP

MY TEST
START 5TEF

i

£ asE
MT TEST WRITING RATE

Panel, Left Section

0 10418

OPERATING THE COMPUTER

If the OPERATING indicator does not illuminate in step (4), check the
ABNORMAL CONDITION indicator in the Operating Group. If this is illuminated,
one of the disconnect switches is set to its ABNORMAL position. Setting this
switch to its NORMAL position will extinguish the ABNORMAL CONDITION indicator
and allow a NORMAL mode start.

The depression of the MASTER CLEAR button in step (2) sets PAK to 40000 and
MPD to 6. Unless other selections are made by manually depressing buttons on
the control panel, the first instruction to be executed will be taken from drum
address 40000, Any other manual selections may be made also where buttons are
provided after depressing the MASTER CLEAR button and before depressing the
START button. After the START button has been depressed, no selections can be
made until a computer stop,

If the NORMAL indicator is not illuminated in step (1), the TEST indicator
will be illuminated indicating one of the following conditions:

(1) If the HIGH SPEED indicator is not illuminated, one of the
MANUAL or AUTOMATIC STEP indicators is illuminated. Depressing
the RELEASE button in the Operating Rate Group illuminates the
NORMAL indicator.

(2) The TEST/NORMAL switch or the MD NORMAL/ABNORMAL switch (Test Switch
Group) is in its "up" position. Setting these switches to their
"down" positions illuminates the NORMAL indicator.

All these conditions allow a computer start, but in the TEST mode.

Operation in the NORMAL mode is halted by an A Fault, B Fault, Force Stop,
or a programmed stop. Indication of the operation halt is given by the drop of
the OPERATING indicator light. If the fault is caused by the selection of an
abnormal condition during operation, the ABNORMAL CONDITION indicator will be
illuminated.

c¢. TEST MODE OF OPERATION.
(1) Depress the MASTER CLEAR button (Operating Group).

(2) Select the TEST mode by setting the TEST/NORMAL switch to TEST or
the MD NORMAL/ABNORMAL switch to ABNORMAL (Test Switch Group). The
TEST indicator (Operating Group) is illuminated, the NORMAL indicator
is extinguished, and the HIGH SPEED indicator (Operating Group)
remains illuminated.

(3) If other than high speed operation is desired, depress one of the
MANUAL or AUTOMATIC STEP buttons (Operating Rate Group). The appro-
priate indicator is illuminated. (Depression of any of these buttons
yields an automatic selection of the TEST mode regardless of whether
the TEST/NORMAL switch is set to TEST.)

(4) Depress any SELECT JUMP or STOP buttons called for by the program.
(5) Depress the START button (Operating Group). The OPERATING indicator
is illuminated.

(6) Depress the STEP button (Operating Group) if necessary.

PX 39
7

OPERATING THE COMPUTER

If any of the disconnect switches in the Test Switch Group or the MT Dis-
connect Switch Group are set to their ABNORMAL position, the ABNORMAL indicators
(Operating Group and Test Switch Group) are illuminated.

The depression of the MASTER CLEAR button sets PAK to 40000 and MPD to 6.
Unless other selections are made by manually depressing buttons on the control
panel, the first instruction to be executed will be taken from drum address
40000, or, if the MD NORMAL/ABNORMAL switch is set to ABNORMAL, from the
reserve space on the drum. Any other manual selections can be made where
buttons are provided after depressing the MASTER CLEAR button. Manual selec-
tions can be made from the control panel while in the TEST mode when the com-
puter is in actual operation. One exception to this is that PAK cannot be
changed manually when the OPERATING indicator is illuminated.

To change a selection in the Operating Rate Group, computer operation must
be at a halt (the OPERATING indicator is extinguished); then, depressing the
RELEASE button cancels the previous selection made and allows a new choice of
an operating rate,.

Operation is halted by an A Fault, B Fault, Force Stop, or a programmed
stop and is indicated by the drop of the OPERATING indicator light.

d. JUMP AND STOP SELECTIONS. - The manual selections necessary to effect
a programmed Manually Selective Jump, instruction 45 jv, with j = 1,2, or 3,
are made by depressing SELECT JUMP buttons in the Selective Jumps Group. To
be effective the selections must be made while the computer is not in actual
operation (when the OPERATING indicator is extinguished), either NORMAL or
TEST mode. An effective manual selection is indicated by the illumination
of the SELECTIVE JUMP, 1, 2, and/or 3 indicator. To nullify a selection, the
appropriate RELEASE JUMP button is depressed. This also must be done when the
computer is not in actual operation.

The manual selections necessary to effect a programmed Manually Selective
Stop, instruction 36 jv, with j = 1, 2, or 3, are made by depressing SELECT
STOP buttons in the Selective Stops Group. A stop selection may be made during
actual computer operation, NORMAL or TEST mode, and is indicated by the illu-
mination of the light immediately @bove the button depressed. When a stop
occurs, it is indicated by the illumination of a SELECTIVE STOP light. (A
Manually Selective Stop instruction with j = O requires no manual selection.)
To cancel a stop selection, the appropriate RELEASE STOP button is depressed.
The release of a stop selection may also be made during actual computer opera-
tion, NORMAL or TEST mode.

A FORCE STOP selection made by depressing the button so entitled in the
Operating Group halts computer operation in either the TEST or NORMAL mode.
A force stop is indicated by the illumination of the FORCE STOP indicator light.

e. MANUAL INTERRUPT SELECTION. - An interrupt may be initiated manually by
depressing buttons in the Program Interrupt Control Group. Two selections are
necessary to activate a line to the interrupt control of the computer. De-
pressing the ENABLE button allows the line to be energized and illuminates the
INDICATE ENABLE LIGHT. Depressing the INITIATE button when the enable is
indicated by the light momentarily enérgizes the line. When the line is

PX 39

8

OPERATING THE COMPUTER

energized a signal is sent to the Program Interrupt Control to effect the
interrupt during the execution of the next instruction which ordinarily would

be concluded by the normal termination commands. Each time an interrupt is
desired, the INITIATE button must be depressed and the INDICATE ENABLE indicator
must be illuminated. Each time the line to the Program Interrupt Control is
energized, the INDICATE ENABLE. light is extinguished. Also, depressing the
RELEASE button extinguishes the INDICATE ENABLE light and renders it impossible
to energize the interrupt line by depressing the INITIATE button.

3. RESTORATION OF OPERATION AFTER STOPS.

The computer ceases operation at the occurrence of a programmed STOP, a
FORCE STOP, an EMERGENCY OFF, or a fault condition. The stops by classes are
discussed subsequently, and the steps necessary to resume operation noted.

a. PROGRAMMED STOPS

(1) MANUALLY SELECTIVE STOP. - .The Manually Selective Stop instruction
(56jv) stops the computer operation if the programmed j (0,1,2, or 3) agrees
with the selection made on the Supervisory Control Panel (no button selection
is provided for j = 0; the computer will always stop in this case). Whether
or not a stop occurs at the execution of this instruction, the next instruction
will be taken from the v address. When a stop occurs, the OPERATING indicator
is extinguished and the appropriate SELECTIVE STOP indicator (red) is illuminated.
To resume operation, depress the START button.

(2) FINAL STOP. - The Program Stop instruction (57--) indicates the end
of the program. The SELECT STOP indicators and SELECTIVE JUMP indicators, if
illuminated, will remain illuminated, and the FINAL STOP indicator (Selective
Stops Group) is illuminated. To resume operation, it is necessary to depress
the MASTER CLEAR button and follow the procedure for initiating computation in
one of the two computer modes.

b. FORCE STOP. - An unscheduled stop of the computer can be effected by
depressing the FORCE STOP button (Operating Group). The OPERATING indicator
is extinguished and the FORCE STOP indicator (Operating Group) is illuminated.
After the condition which prompted the stop has been corrected, operation is
resumed by pressing the START button. During operation if it is desired to
change any selection in the Operating Rate Group or Selective Jumps Groups,
depressing the FORCE STOP button allows the RELEASE buttons in either of these
groups to be depressed and a new selection to be made.

c. EMERGENCY STOPS.

(1) MANUAL EMERGENCY STOP. - In cases of extreme emergency, such as a
fire, pressing the EMERGENCY OFF button on the Supervisory Control Panel removes
all voltages from the equipment. Since all power is removed, a program in pro-
cess is halted and cannot be immediately resumed. Since such a stop could
destroy information, it may be well to reload the program and data into the
system after proper operation is restored by maintenance procedures.

(2) AUTOMATIC EMERGENCY STOPS. - This stop also calls for maintenance
procedures to restore proper operation.

PX 39

9

OPERATING THE COMPUTER

d. FAULT CONDITIONS.

(1) A FAULT. - An A Fault results in a computer stop which extinguishes
the OPERATING indicator and illuminates an A Fault indicator. The specific
fault is indicated by the illumination of one of the following indicators, the
first six of which are in the A Fault Group on the panel:

DIVIDE

SCC (Storage Class Control)
PRINT

TEMP. (Low Temperature - 100°F)
WATER

OVERFLOW (only possible on Multiply Add instruction,
72 uv)

ABNORMAL CONDITION - Indicated by lights in Operating
Group and Test Switch Group

The A Fault does not alter the program in process so that after appropriate
corrective action, the operation can be resumed.

Generally, a DIVIDE,SCC, PRINT, or OVERFLOW fault indication is derived

from a program error. First, check the appropriate instructions or operands.
1f these are correct, an actual machine malfunction is the cause and should be
isolated and corrected. Operation may be resumed after the Divide, Print, and

Overflow faults by depressing the CLEAR A FAULT button and then the START
button. If the program requires that the cause of these faults be corrected
before continuing the program, operation can be resumed (after the fault cor-
rection) with the instruction which caused the fault by inserting the address
of this instruction in PAK, setting MPD to 6, and depressing the START button.

An SCC fault results from a reference to some address not permissible under
the particular circumstances. The A Fault condition is cleared by depressing
the CLEAR A FAULT button, but operation cannot be resumed without correcting
the condition that caused the fault. In most cases the faulty instruction in
storage should be corrected. After this has been accomplished, the address of
the faulty instruction can be inserted in PAK, MPD set to 6, and operation re-
sumed by depressing the START button.

The TEMP. indication is the result of a high air temperature at some point.
The high air temperature is indicated by the illumination of one of the amber
indicators mounted above the cabinet doors. Corrective measures should be
applied immediately unless the urgency for problem results dictates that the
BYPASS TEMPERATURE INTERLOCK key switch should be turned. This allows the
problem to be continued despite the over-temperature condition. The WATER
indication necessitates correcting a water pressure fault (over-pressure or
under-pressure condition) before the program can be resumed.

PX 39

10

OPERATING THE COMPUTER

If any of the disconnect switches is accidently or intentionally set to the
"up" position after operation has been initiated (in Normal mode only), the
ABNORMAL CONDITION indicators in the Test Switch Group and the Operating Group
are illuminated, and an A Fault condition occurs and stops computation. Move-
ment of the switch to the normal position will correct the condition.

Operation is resumed after the correction of the Temperature, Water, and
Abnormal Condition faults by depressing the START button.

(2) B FAULT. - The B Fault results in a stop which manifests iself
much like a Program Stop in that it is necessary to MASTER CLEAR and restart
the program. The B FAULT indicator, and one of the indicators listed below,
are illuminated in the B Fault Group.

MCT (Main Control Translator)
VOLTAGE

10 (Input-Output)

MT (Magnetic Tape)

MATRIX DRIVE (An MC Fault)

The I0 fault indicates incorrect input/output procedure or faulty operation
of external equipment. The illumination of the IO Fault indicator and one of
the EXTERNAL FAULT indicators located on the left section of the control panel
indicates the improper use of IOA or IOB. The EXTERNAL FAULT indicators are
as follows:

I0A 1 Read
I0B 1 Read
I0A 2 Read
IOB 2 Read

These faults occur when there has been no indication that the particular regis-
ter involved is ready for the information being received by it. If the fault
is due to an error in program timing considerations, an IOB 1 Read fault indi-
cates that an External Read to transmit input information in IOB to X has not
been executed before additional input information is received by IOB from
external equipment; and an IOB 2 Read fault indicates that the external equip-
ment has not received the information placed in IOB by an External Write or
External Function instruction before IOB receives input information from
external equipment. The IOA 1 Read and IOA 2 Read faults indicate similar
conditions involving the IOA register.

The I0 fault, in conjunction with one of the External Faults above, gener-
ally indicates a program timing error. An IO fault resulting from one of the
External Faults is cleared by depressing the MASTER CLEAR button. This extin-
guishes all the associated fault indicators and enables a restart of the program.
An I0 fault without one of the IOA/IOB faults could also result from a program
error. A check of the fault indicator lights on the external equipment being
used should reveal the nature of the fault. Faults originating in external

pPX 39

11

OPERATING THE COMPUTER

equipment because of an incorrect program are cleared by depressing the MASTER
CLEAR button. This extinguishes both the I0 indicator and the B FAULT indicator
and allows a program restart, Faults arising from the improper operation of
external equipment are cleared by correcting the condition instigating the fault
and then depressing the MASTER CLEAR button. The Master Clear extinguishes the
B FAULT indicator. If the I0 fault indicator is still illuminated, the source
of the fault has not been removed and restarting the program will yield the

same fault stop.

Generally an MCT fault is due to a program error (an illegal operation
code). In this case the program in storage or the input tape should be
checked for accuracy. If no errors are thus discovered, a machine malfunction
is indicated and must be corrected. If the fault is due to a program error,
the MCT as well as the B FAULT indicators are cleared by a MASTER CLEAR.

The VOLTAGE, or MATRIX DRIVE indication necessitates corrective maintenance,
and an MT indication may require corrective maintenance, depending upon the
type of MT fault. The MT faults are discussed in the Input and Output section
of this volume and are explained in full in the volume supplied with the
Magnetic Tape System. The VOLTAGE, MATRIX DRIVE, and some of the MT faults
require correction at the source. After these are cleared the specific fault
indicator will be extinguished, and the B FAULT indicator will be extinguished
by a MASTER CLEAR, allowing a program restart.

To summarize, in general, when a fault is caused by an improper program,
its fault indicator as well as the 13 FAULT indicator is extinguished by de-
pressing the MASTER CLEAR button. If a fault is caused by a machine malfunction,
its fault indicator is extinguished by the correction of the fault, and the
MASTER CLEAR extinguishes the B FAULT indicator.

Since there may have been errors introduced to the program in process at
the time of the fault, it is necessary that a MASTER CLEAR be selected and com~
putation be started anew, If the content of any addresses have been altered
by the instructions during execution of that part of a program which was com-
pleted before the fault, it would be well to reload the computer before
attempting computation.

4. MANUAL READING AND WRITING.

The following procedures in TEST mode are frequently used to manually
check portions of a stored program or enter a program into storage, Also
included is a procedure for manually transferring a program from Magnetic Drum
Storage to Magnetic Core storage.

a. MANUAL WRITING FROM THE Q REGISTER. - The procedure below can be used
to alter an existing program in storage or to insert a new program into storage
without using a tape reader. The new words are entered into storage via the
Q Register by the following steps.

Step 1. Depress MASTER CLEAR (Operating Group)
Step 2. Select MANUAL STEP OPERATION (Operating Rate
Group.

PX 39
12

OPERATING THE COMPUTER

Step 3. Set MPD to O

Step 4. Set MCR to 75 (Repeat instruction)
Step 5. Set UAK to 50000 (set j to 5)

Step 6. Set VAK to 00000

Step 7. Depress START button (Operating Group)
Step 8. Depress STEP button (Operating Group)

Steps 4 through 8 set up an unterminated Repeat Sequence. Since j is 5,
only the v address will be advanced at the end of each storage reference.

Step 9. Clear PCR (Clear MCR, UAK, and VAK)

Step 10. Set MCR to 11 (Transmit Positive instruction)
Step 11. Set UAK to Q address

Step 12. Set VAK to first address to be written into
Step 13. Set up in Q Register word to be written

Step 14. Press STEP button

Step 15. Clear Q Register

Steps 10 through 14 manually enter the word set up in Q at the selected
v address. To continue writing in consecutive addresses, repeat steps 13, 14,
and 15 for each word to be written. If only a single word is to be written,
steps 4 through 9 and step 15 can be omitted since a Repeat operation is not
needed.

b. MANUAL READING TO THE Q REGISTER. - The procedure below transmits the
contents of chosen storage registers to the Q Register with the words at con-
secutive addresses being displayed on the Supervisory Control Panel.

Step 1. Depress MASTER CLEAR (Operating Group)

Step 2. Select MANUAL STEP OPERATION (Operating Rate Group)
Step 3. Set MPD to O

Step 4. Set MCR to 75 (Repeat instruction)

Step 5. Set UAK to 60000 (set j to 6)

Step 6. Set VAK to 00000

Step 7. Depress START button (Operating Group)

Step 8. Depress STEP button (Operating Group)

Steps 4 through 8 set up an unterminated Repeat Sequence. Since j is 6,
only the u address will be advanced at the end of each storage reference.

Step 9. Clear PCR (Clear MCR, UAK, and VAK)

Step 10. Set MCR to 11 (Transmit Positive instruction)
Step 11. Set UAK to address of first word to be read
Step 12. Set VAK to Q address

Step 13. Depress STEP button

Steps 10 through 13 manually read the word at the selected u address to
the Q register where it is displayed for observation. Each time the STEP button
is pressed, a word from a consecutive u address will be displayed in Q. If
only a single word is to be read, steps 4 through 9 can be omitted since a
Repeat operation is not needed.

PX 39
13

OPERATING THE COMPUTER

c. PROGRAM CORRECTION. - If, in reading to the Q Register, an incorrect
word is noted, the following procedure is used to insert the correct word at
the proper address. (This procedure can be used whether or not a Repeat
sequence is being used in the manual reading.)

Step
Step
Step
Step
Step

Depress FORCE STOP button (Operating Group)
Clear Q

Clear UAK and VAK

Set UAK to Q address

Set VAK to address to be written into

Set up in Q Register word to be written

Depress START button (Operating Group)
Depress STEP buttor (Operating Group)

Steps 1 through 8 enter the correct word into storage. To return to the
reading process:

Step
Step
Step
Step

19')

10.
11.
12.

Clear UAK and VAK
Set UAK to next adcress to be read from
Set VAK to Q address

Depress STEP buttor

Steps 9 through 12 return control to the manual reading procedure.

d. MANUAL BLOCK TRANSFER. - To effect a manual block transfer from
Magnetic Drum Storage to Magnetic Core Storage, the following steps should be

performed.

Step
Step
Step
Step
Step

Step
Step
Step

Ul Wi~
« s e

‘6.
7.
8.

Depress MASTER CLEAR (Operating Group)

Select MANUAL STEP OPERATION (Operating Rate Group)

Set MPD to O

Set MCR to 75 (Repeat instruction)

Set UAK to 3n (set j to 3 and n to the number of words to be
transferred)

Set VAK to a w address containing a 56jv instruction

Depress START button (Operating Group)

Depress STEP buttorn (Operating Group)

Steps 4 through 8 set up a terminated Repeat Sequence. Since j is 3,
both the u address and the v address will be advanced at the end of each

storage reference.

Step
Step
Step
Step
Step
Step
Step

49.

10.
11.
12.
13.
14.
15.

Depress FORCE STOP button

Release MANUAL STEF OQPERATION

Clear PCR (Clear MCR, UAK, and VAK)

Set MCR to 11 (Transmit Positive instruction)
Set UAK to initial MD address

Set VAK to initial MC address

Depress START button

PX 39

14

CODING FOR THE COMPUTER

1. SUMMARY OF MACHINE CHARACTERISTICS.

GENERAL

WORD LENGTH
NUMBER NOTATION

PARALLEL ACCESS
REGISTERS
(ARITHMETIC
SECTION)

‘PARALLEL ACCESS
STORAGE
~(INDIVIDUALLY
ADDRESSED)

ARRANGEMENT OF
MAGNET IC DRUM
STORAGE,, MD

ALLOCATION OF
ADDRESSES

FIXED ADDRESS
ALLOCATION

Parallel mode of operation
Internal binary number system
Two address logic

36 bits (binary digits)
"1's complement™ binary system

A 72-bit Accumulator (A7y, A70,....AQ)

AR rightmost 36 bits of A (least significant)
A; leftmost 36 bits of A (most significant)

Q 36-bit shifting register (Qgs5, Q34,....,Qp)
X 36-bit exchange register (X35, X34,...,XQ)

RAS 4,096 words of Rapid Access Storage
12,288 words optionally available
MD 16,384 words of Magnetic Drum Storage

4,096 bits on each track

4,096 words on a group of 36 tracks

4 groups of tracks, giving 16,384 words

Variable interlace between the Storage Address
Register and angular location counter permits choice
of the angular interval between memory locations
having consecutive addresses,

RAS 00000-07777 (octal)
10000-17777 (octal)

4,096 words

4,096 words optional
20000-27777 (octal) 4,096 words optional
30000-30777 (octal) illegal addresses

Q 31000-31777 (octal) 1 word

A 32000~-37777 (octal) 1 double length word

MD 40000-77777 (octal) 16,384 words

F1 00000 (octal) in RAS, Rapid Access Storage or
40001 (octal) in MD Storage

F2 00001 (octal) in RAS

F3 00002 (octal) in RAS

PX 40

COMPOSITION
OF AN
INSTRUCTION
WORD

SECTIONS OF
ADDRESSES

NOTATION FOR
CONTENTS OF
REGISTERS

DOUBLE -LENGTH
EXTENSIONS

CONTROL REGISTERS

PROGRAM SEQUENCE

CONTROL

CODING FOR THE COMPUTER

Instruction word 36 bits (ig5, igq, ..., ig)
Operation code 6 bits (igs, iag, ..., i30)
First execution address, u 15 bits (i29, iag, , i15)
Second execution address, v 15 bits (iy4q, i3, ..., ig)

j one-digit octal number represented by ujg, w13z, uj2.
n four-digit octal number represented by uyj, ujg, ..., Ug.
k number of shifts, represented by vg, vs, <y VO OT ug,

U5, c00y UQe

Brackets are used to denote "contents of"™. Thus:
(u)=36-bit word at address u.
(Q)=36~-bit word in Q.
(A)=T72-bit word in A.
(AR)=36-bit word in Ag.
(Ap)=36-bit word in Aj.

D(u)=72-bit word whose right-hand 36 bits are (u) and
whose left-hand 36 bits are all alike and equal to
the left-most bit of (u).

S(u)=72-bit word whose right-hand 36 bits are (u) and
whose left-hand 36 bits are all zero.

D(Q), D(X), S(Q), and S(X) are similarly defined
L(Q)(u)=72-bit word whose left-hand 36 bits are zeros and
each of whose right-hand 36 bits is given by the bit-

by-bit product of the corresponding bits of (u) and (Q).

L(Q")(v)=T2-bit word whose left-hand 36 bits are zeros
and each of whose right-hand 36 bits is given by the
bit-by-bit product of the corresponding bits of (v)
and the complement of (Q).

PAK Program Address Counter
SAR Storage Address Register
PCR Program Control Register
MCR Main Control Register
UAK U Address Counter

VAK V Address Counter

The complete operation for the execution of a computer
instruction consists of two parts.
Part one - the execution of the current instruction, CI.
Part twoe - the acquisition of the next instruction, NI.

At the start of part one, the Program Control Registers
already contain CI as the result of the second part of
the previous operation, and (PAK) is y plus 1, where y
is the address from which CI was acquired.

During part two, NI is acquired from the address held in
PAK at the end of part one, and (PAK) is then increased
by one.

PX 40
2

CODING FOR THE COMPUTER

Thus, provided that CI does not call for a change in (PAK),
NI will be acquired from address y plus 1. In a normal
program sequence, successive instructions are obtained
from consecutive addresses.

A departure from the normal sequence is called a "jump",
and is achieved by altering (PAK) during part one of an
operation. Instructions that call for a change in (PAK)
are called "jump" instructions.

INPUT-OUTPUT I0OA An in-out register of 8 stages.
REGISTERS IOB An in-out register of 36 stages.

TWR A typewriter register of 6 stages.

HPR A high-speed punch register of 7 stages.

INPUT DEVICES Photoelectric Paper Tape Reader
Punched Card Input-Output System
Other optional peripheral equipment

OUTPUT DEVICES Electric Typewriter
High-Speed Paper Tape Punch
Punched Card Input/Output System
Univac Line Printer
Other optional peripheral equipment

PX 40

CODING IF'OR THE COMPUTER

/—//7/7//7/7//7 L1117 ///7//7 LY

AAAAAAAAAAAA
444444444

//////m%w:z:@z) ///////4

7/ 7/7]/77/7

)
'%2'}1 L/_///‘I

//////// /:

2/ /////////‘

EEEEEEE

// /f///

Y,

LI’

EEEEEEEEEEEEEEEEE
PPPPPPPPPPPPPPPPPPPPP

PPPPP

EEEEE
TTTTT
RRRRRR

Figure 1. Programmer’s Simplified Block Diagram

PX 40
4

TPuv
TMuv
TNuv
IPxx
TOuv
TVuv
EF-v
RAuv
LTjkv
RSuv
CCuv
SPuk
SAuk
SNuk
SSuk
ATuv
STuv
RJuv
IJuv
TJuv
EJuv
QJuv
MJjv
SJduv

ZJuv

11
12
13

14

31
32
33
34
35
36
37
41
42
43
44
45
46
47

CODING FOR THE COMPUTER

TABLE 1. REPERTOIRE OF INSTRUCTIONS

TRANSMIT POSITIVE . . .
TRANSMIT MAGNITUDE
TRANSMIT NEGATIVE . . .

INTERPRET

TRANSMIT U ADDRESS . . .

TRANSMIT V ADDRESS . .
EXTERNAL FUNCTION . . .
REPLACE ADD
LEFT TRANSMIT . .
REPLACE SUBTRACT . . .
CONTROLLED COMPLEMENT .
SPLIT POSITIVE ENTRY

SPLIT ADD

SPLIT NEGATIVE ENTRY . . .

SPLIT SUBTRACT
ADD AND TRANSMIT
SUBTRACT AND TRANSMIT .

RETURN JUMP . . .

INDEX JuMp

THRESHOLD JUMP
EQUALITY JUMP

QJuMpP

MANUALLY SELECTIVE JUMP . .

SIGN JUMP .

ZERO JUMP

(W)—>v

|(W)}— v

(W)'—v

Y + 1->Fj, take (Fg) as NI
(u39-15)>V29-15

(u14-0)—v14-0

Select Ext. Equipment and perform (v)
[(u) + (vﬂ———a'u

Shift (A) by k;j=0,(Ap) f—>vij=1,(AR) s>V
Bu) - (V%———%ll

[(u) ® (vi—> u

S(u)—>A, Shift (A) by k

(A) + S(u), Shift (A) by k

[S(uﬂ '~ A, Shift (A) by k

(A) - S(u), Shift (A) by k

[+ pw] v

[A) - D) —sv

y + 1—u, take (v) as NI

[D(w-1— A; W) +, (A g—>u, take (v)
(u) > (A), take (v) as NI

(u) =(A), take (v) as NI

(Q)+, take (v)f (Q)-,take (u); (Q) left 1
j=0, or j=1,2,3, & MJS=, take (v)

(A)-, take (uw); (A)+, take (v)

(A) # 0, take (u); (A)=0, take (v)

PX 40

QTuv

QSuy
LAuk
LQuk
MSjv
FS—-
PR-v
PUjv
MPuv
MAuv
DVuv
SFuv
RPjnw
ERjv

EWjv

51
52
53
54
55
56
57
61
63
71
72
73

TABLE 1.

CODING IFOR THE COMPUTER

REPERTOIRE OF

Q-CONTROLLED TRANSMIT . .

Q-CONTROLLED ADD

Q-CONTROLLED SUBSTITUTE .

LEFT SHIFT IN A .

LEFT SHIFT INQ

MANUALLY SELECTIVE STOP . .

FINAL STOP . .

PRINT .
PUNCH . . .
MOLTIPLY
MULTIPLY ADD
DIVIDE

SCALE FACTOR

REPEAT

EXTERNAL READ .

EXTERNAL WRITE

INSTRUCTIONS (CONCL'D)

L(Q)(u)—v

(@) + LW —v

(L@@ + L@ W)]-»v

D(u)— A, Shift (A) by k, (A)y—su
(u)—»Q, Shift (Q) by k, (Q)f—>u
j=0, stop; j=1,2,3, & MSS=, stop
Stop and indicate

Typewriter performs code in vs_g
Punch (v5.¢g); j=1, Tth level also
(w(v) = (A)

(A); + (Wv) = (A)¢

A); = (W) (@Q+A)¢, (Q)—v; (A)f=+R
Shift D(u) in A until Agu#Ass, (SK)—>v
Execute N1 "n" times, jump to F;
j=0, (I0A)—v; j=1, (I0B)—>v

j=0, (v)—»I0A; j=1, (v)—>IOB

pPX 40

CODING FOR THE COMPUTER

2. WRITING A PROGRAM.

a., INTRODUCTION. - The word "coding™ is usually used to indicate the
preparation of the explicit list of instructions that a computer must execute
in order to solve a particular problem. The person who does the coding may be
referred to as a "coder". The resultant list of instructions is referred to as
either a "routine" or, if the coded product is part of a larger one, a "sub-
routine", Sometimes the term "programming" is used to refer to the process
described above as coding., Ordinarily, however, "programming™ refers to a more
inclusive process, which includes not only the coding but the final stages of
formulation of the problem for the computer; i.e., the numerical analysis, the
"selection of computational procedures, the specification of input-output
formats, etc.

b. INSTRUCTION NOTATION. - In the following text the mnemonic notation
is used to indicate the operation code of an instruction. For example, "TP"
is used instead of "11" to indicate the Transmit Positive instruction; "MP"
is used instead of "71", ete. The address portions of the instruction are
indicated by octal numbers. For example, the composite symbol

TP 01012 01013

denotes the Transmit Positive instruction calling for the transmission of the
contents of address 01012 to address 01013. 1If this were written in octal, it
would appear as

11 01012 01013.
In binary, it would appear as
001 001 000 001 000 001 010 000 001 00O 001 011,

As illustrated above, it would be impractical to code using the binary sys-
tem. For this reason, and because the conversion of numbers from base 2 to
base 8, and vice versa, is immediate, the octal number system is used in coding.

When preparing a routine, not only the instructions which are to be exe-
cuted must be specified, but also the placement of these instructions in the
computer must be indicated. The storage location of an instruction in the
computer is referred to as the storage address of the instruction. It is
customary to indicate this address to the left of the notation for the in-
struction, as follows:

01010 TP 01012 01013.

It is common practice when displaying routines for exposition to give some
explanatory comment to the right of the instruection. In the following routine
the left column contains the location in storage. The central column contains
the contents of that location; for instance, an instruction or datum. The
right column indicates the author's reason for including this word in the rou-
tine.

PX 40

CODING FOR THE COMPUTER

Routine for replacing the data at 00101, 00102, - - -, 00110
by the first backward difference of this data.

00010 RS 00110 00107 form backward difference
00011 RS 00010 00015 decrease (00010)
00012 EJ 00014 00000 has (00010) reached (00014)?
00013 MJ 00000 00010
00014 RS 00100 00077 terminal dummy instruction
00015 00 00001 00001 constant (address decrement)

c. LOOPS. - The above is an example of a routine which has a "loop".
The loop in this case consists of the three instructions at 00010, 0001l and
00012, The first of these forms onz of the backward differences and stores it
where the minuend of the subtraction was. The second instruction, the Replace
Subtract at address 00011, then modifies the instruction which forms the back-
ward difference by decreasing both of its addresses by 1. Thus, the next time
the loop is traversed and a backward difference is formed,it will be the
difference of the contents of the dz=creased addresses, The next instruction,
the Equality Jump, tests to see whether or not the loop has been traversed a
sufficient number of times. If equality exists between the most recently
modified content of address 00010 aad the dummy instruction at address 00014,
the task has been completed and an exit occurs to address 00000. If equality
does not exist, the next instruction at address 00013 is executed. This in-
struction provides a jump back to the beginning of the loop at 00010, and the
whole process is repeated once more,

The above example illustrates oane very important facet of coding; a num-
ber of the instructions in any routine are always involved only indirectly
with the desired results. In this example, only one instruction, the first,
produces directly the first backward difference. The others are concerned
with keeping the process going, advancing addresses, and testing to see if
the process has been completed. Such instructions are frequently referred
to as "housekeeping" instructions., The functions of address modification,
terminal testing, and jump provisions are referred to as "housekeeping”
functions.

Tt is common practice to imndicate the fact that certain instructions are
altered during the course of the computation by putting brackets around the
instruction or that part of it which is altered. Thus, the first line of the
above example could have properly been written as

00010 [rs 00110 00107]

or as

00010 ®s [oo110] [00107]

pPX 40

CODING FOR THE COMPUTER

‘The latter is less preferable then the former because it suggests that the ad-
dresses are independently modified, which is not true in this case. Bracket-
ing the so-called modified instructions, or modified addresses, serves to call
attention to the fact that at some later time during the computation, the ad-
dresses may not be as they appear on the page. In particular, in the example
above, at the end of the subroutine the addresses at 00010 will have been modi-
fied to agree with those appearing at storage address 00014.

Addresses which are modified within a loop should generally be set to their
desired initial values by instructions prefacing each loop, i.e., the process
of "prestoration"; or by instructions following each loop, i.e, the process
of "restoration". (Restoration is less preferable than prestoration because
the restoration instructions may not be executed if a computer fault is incurred
during the loop.) If this is done the routine can be used any number of times
while it i1s in the memory without reloading it from a permanent storage device.
Note that the above example does not meet these specifications. Below is the
same example coded with such "self-restoring™ properties. In this routine the
loop consists of the instructions at 00010, 00011, and 00012. Note that a dif-
ferent means is provided to terminate the loop. Note also the use of boxing
to indicate a loop, and the use of a straight line, following an unconditional
jump, to indicate a break in the sequential acquisition of the next instruction
to be executed.

Routine for replacing the data at 00101, 00102, . . ., 00110

by the first backward difference of this data.
00006 TP 00017 00016 Prestore counter, (00016)
00007 TP 00014 00010 Prestore (00010)
00010 _Hbo 00000 OOOOQ] Form backward difference
00011 RS 00010 00015 Decrease (00010)
00012 1J 00016 00010] All differences formed?
00013 MJ 00000 00000 Exit
00014 RS 00110 00107 Initial contents of 00010
00015 00 00001 00001 Constant (address decrement)
00016 00 00000 00000 Counter, initially n-1.
00017 00 00000 00006 Constant, n-1, initial value

of counter.

In this case the termination test is performed by an Index Jump instruction
which is executed after each traversal of the loop. Execution of the Index
Jump ‘at address 00012 causes a "1" to be subtracted from the contents of 00016
and a test to be made to see if the result is negative. If the result is not
negative, a jump to address 00010 is made for another traversal of the loop.
Memory location 00016 is called a "counter" since it contains at each stop a
count-down tally of the number of traversals of the loop. If the Index Jump
instruction is at the end of a loop (which is to be traversed n times), this
counter should have an initial value of n-1. The quantity is a constant

PX 40
9

CODING FOR THE COMPUTER

stored at location 00017, Entry of the routine at address 00006 causes this
quantity n-1 to be transferred to the counter at location 00016, The termina-
tion test could also have been coded at the beginning of the loop. In this
case, however, the initial value of the counter should be "n" to effect n
traversals of the loop.

When the termination test indicates that the loop has been traversed n
times, the execution of the Index Jump instruction at address 00012 does not
cause a jump but allows the next instruction to be taken from 00013. The exit
instruction, a Manual Jump, is stored here.

Any of the conditional jumps, Index Jump, Threshold Jump, Equality Jump,
Q Jump, Sign Jump, or Zero Jump, c¢an be used as the decision instruction to
determine the number of times a loop has been traversed.

In summary, a loop consists of four elements.

(1) A series of self-restoring operations which set up the loop for
the first traversal. These initial "housekeeping" instructions
place in a "counter" a number which determines the number of
times, n, that the computer will traverse the loop. The in-
structions also set in the routine the initial addresses of any
data referenced by the instructions within the loop.

(2) The computational instructions which lead to the solution of the
particular problem.

(3) The "housekeeping” instructions which advance/decrease the ad-
dresses which reference the data so that successive loop computa-
tions are performed on successive data.

(4) The "housekeeping" instructions which advance/decrease the
counter, and the decision instruction(s) which test the counter
to determine if the loop has been traversed n times.

d. SUBROUTINES.

(1) INTRODUCTION, - A portion of a routine which is complete in it-
self and can be isolated from the context of the larger routine is known as a
"subroutine"™. A subroutine is a self-contained list of instructions for exe-
cuting some particular operation., If it contains the calculations necessary
to compute a function such as./x, sine x, tan x, etc., it should be coded in
such a way that it may be used in a number of routines wherever such a function
is desired.

(2) SUBROUTINES WITH PARAMETERS. - In the case of subroutines which
are to be used in many different programs, absolute addresses may not be as-
signed to certain quantities. These addresses are regarded as parameters of
the subroutine and chosen in accordance with the main program. 1In such a case
it is conventional to write, in lieu of an absolute address, some designation
for the quantity itself enclosed in braces., Thus,"@é" means "the address
at which the quantity x is stored". For example, the instruction for

PX 40

10

CODING FOR THE COMPUTER

transmitting x to address 01033 would be written
e {x} o1033.

The following subroutine for adding two vectors together exemplifies the
use of parameters. The two vectors are denoted by x and y with coordinates
Xi and yj, respectively., The sum vector is denoted by z with coordinate zj.
Thus, it is necessary to form the sums

Z; = x5 tyj i=1,2,3, -~--, n.
00100 TP 00114 00117 set counter to n-1
00101 TU 00112 00104 set in {xl}
00102 TU 00113 00105 set in {yl}
00103 v 00112 00105 set in {z1}
00104 | e [{x3}] A form
00105 AT [yi}] [{zl}] zi = xj + ¥yi
00106 RA 00104 00116

Advance i by 1

00107 RA 00105 00115
00110 1J 00117 00104] termination test
00111 MJ 00000 [ooooo] exit
00112 00 {x1} {z1} constant
00113 00 ' {1} 00000 constant
00114 00 00000 n-1 constant
00115 00 00001 00001 constant
00116 00 00001 00000 constant
00117 00 (00000 00000) counter

This subroutine assumes that tabular values of xj and y; are stored in
consecutive order somewhere in the memory and that a table of values of zj
is to be stored in consecutive order in the memory. The constants located
at 00112 and 00113 are, in effect, parameters of this subroutine because
these constants give the addresses of x; and y;, and the address where 2z
is to be stored.

Another parameter of this subroutine is the terminal value of i (i=1, 2, 3,
- - -, n). The subroutine has a loop from 00104 to 00110 which needs to be
traversed n times.

PX 40

11

CODING FOR THE COMPUTER

(3) SUBROUTINE ENTRANCE AND EXIT. - To make use of a subroutine, the
main routine must provide a jump tc the correct entry point of the subroutine,
and the subroutine must provide an exit back to the main routine. In the sub-
routine for adding two vectors the entry address is 00100, The v address
portion of the Manual Jump instruction at OOlll must be set to a jump-out ad-
dress in the main routine.

The simplest method of entering a subroutine is to use the Return Jump in-
struction. To enter the above subroutine the instruction RJ 00111 00100 would
be written at address y in the main routine, Execution of this instruction
causes the quantity y + 1 to be placed in the v-address portion of 0011l and
the contents of 00100 to be taken as the next instruction. Thus, a return to
the main routine at address y + 1 is provided upon completion of the subroutine,
In this way the subroutine may be entered from many different points in the
main routine,

If a subroutine has parameters, these must be set up before it is executed.
The parameters may be inserted by instructions in the main routine, Thus, in
the subroutine for adding two vectors, the contents of addresses 00112 and
00113 could have been entered by instructions in the main routine. If the
parameters occur in many different instructions throughout a subroutine, the
subroutine itself will contain the instructions for inserting the parameters
in all necessary locations. Again in the subroutine for adding two vectors,
instructions 00100 through 00103 distribute the parameters throughout the
routine. Since each parameter is used only once, it would be as easy for the
main routine to set the parameters directly in addresses 00104 and 00105 as
to place them in addresses 00112 and 00113. However, when a parameter occurs
more than once in a subroutine, it is better that the main program insert the
parameter in a single location and the subroutine distribute it from there.
This avoids the possibility of a programmer omitting some of the parameter
settings.

A convenient means of repeatedly executing a subroutine with a different
parameter each time is illustrated next. The subroutine is referenced by a
Return Jump instruction followed immediately by the list of parameters. Fol-
lowing the last parameter is the next instruction to be executed after the
repeated use of the subroutine,

y 37 00010 00011
y+1 00 ap n
y+2 00 as)
y+k 00 ay ng
y+k+1 NI

Here the parameters aj and nj, i =1, ..,, k, are for the following subroutine
for punching n + 1 consecutive words at addresses aj j=i, i+l, ..., i+n;.

pPX 40

12

CODING FOR THE COMPUTER

Subroutine for Punching n 4+ 1 Consecutive Words

00010 MJ 00000 [00000]
00011 SP 00010 00017
00012 TU A 00013
00013 TP [bi] Q
00014 QT 00036 A
00015 ZJ 00016 00021
00016 SP 00013 00071
00017 TV A 00010
00020 MJ 00000 00010
00021 TU 0 00023
00022 TV Q 00037
00023 ITp Pﬁ] Q
00024 TP 00040 00041
00025 'LQ 0 00006
00026 PU 00000 0
00027 1J 00041 00025 |
00030 LQ 0 00006
00031 PU Q Q
00032 RA 00023 00042
00033 1J 00037 00023|
00034 RA 00013 00042
00035 MJ 00000 00013
00036 77 00000 00000
00037 [oo 00000 ni]
00040 00 00000 00004
00041 [oo 00000 00000]
00042 00 00001 00000

;

Exit

Extrance

y+t1—> address of 00013, (y+1) = Pj
Pi—sQ

If (A)=0, this is a parameter; go to 00021

If (A)#0, this is NI; go to 00016
j+k+1—>v address of 00010

to exit instruction

aj—>u address of 00023

nj—>00037

(aj)—Q; j =1, i+l, - - -, itny

set counter to punch 5 frahes

shift to punch next two octal digits
punch

have 5 frames been punched?

shift to punch last two octal digits
punch with 7th level to show end of word
increase (00023) to pick up next word
have nj+l1 words been punched?

increase (00013) to pick up next parameter
return to pick up next parameter

mask to detect parameter

counter for number of words to be punched
initial value of counter, 00041

counter for number of frames per word

constant to augment u address

PX 40
13

CODING FOR THE COMPUTER

The Return Jump instruction at address y places y + 1 in the v-address
portion of 00010, Therefore the subroutine can recover from 00010 the address
of the first parameter, Pj. Instructions 00014 and 00015 test the content of
y + 1 to see if it is a parameter o if it is the next instruction., This test
is based on the fact that there is no operation code "00". When "NI" is de-
tected, the exit in 00010 is to y+k+1.

Note that this device permits listing any number k of parameters. The
mechanics may easily be varied to accomodate sets of parameters of any form,
e.g., sets of parameters which occupy more than one word. Different methods
of detecting the end of the parameter list are possible.

The Univac Scientific instruction repertoire includes the Interpret
instruction for referencing subroutines with parameters., An Interpret in-
struction at address y places y + 1 in the v address of Fy and takes (Fp) as
the next instruction. 1In other words, the operation code of the Interpret
instruction in itself indicates the same operation as the instruction
RJ 00000 00001, The advantage of the Interpret instruction lies in the availa-
bility of 10 octal digits in which Information may be stored. Address Io
contains a jump to a subroutine which uses the information in the Interpret
instruction as parameters for its operation. The subroutine can set up its
own exit from the v address of Fj.

Frequently, complex systems of pseudo-coding are built around the Interpret
instruction, These "interpretive systems" simplify the job of programming for
a computer because of the use of pseudo-instructions whose functions define
operations which are actually carried out by a series of ordinary machine in-
structions. Such series of stored instructions are in the form of stored
subroutines, the operations of which are initiated by the interpretation of
the pseudo-instructions.

Chief among the Interpretivec systems are those providing for arithmetic
operations on floating binary point numbers. (See subparagraph c¢.) In a
typical system, the Interpret instruction is composed as follows, each charac-
ter denoting an octal digit:

IpP RA US 112 ul llO V3 V2 Vl Vo.

Here the pseudo-code "RA" refers to the Replace Add subroutine, corresponding
to the machine operation of Replace Add, for floating binary point numbers.
Each of the operand addresses u and v has four octal digits rather than five.
Since only four octal digits are needed to span the range of addresses in RAS,
this is not a severe restriction. The interpretation routine deciphers the
third and fourth octal digits, in tkis case RA, to determine which of the sub-
routines in the system is to be executed.

(4) LIBRARY OF SUBROUTINES, - In any computational laboratory having
a Univac Scientific, there is a library of subroutines which can be used to
calculate the frequently encounterec mathematical or logical operations required
by the particular laboratory. These are then available for any programmer to use
in coding his own programs. In addition to saving coding time, library routines
have the advantage of being "debugged" and thoroughly tested. Presumably, more
effort has gone into their design than could be afforded by individual

PX 40

14

CODING FOR THE COMPUTER

programmers. On the other hand, library routines may be more general then
necessary for a particular program, and hence wasteful of time and storage.

Subroutines may be grouped into three basic categories. The following list-
ing is intended to give the beginning coder an idea of the type of subroutines
that would be contained in a typical library of subroutines. This list is by
no means intended to be complete.

(a) COMPUTATIONAL SUBROUTINES.
Basic arithmetic:

Floating point add, multiply, divide, etc.
Complex number operations
Multiple precision routines

Function evaluation:

Trigonometric, sin x, cos x, tan x, etc.
Exponential, f(x) = x3, aX, etc.

Square root

Hyperbolic functions

Numerical Analysis:

Solution of n simultaneous equations
Matrix operations

Numerical integration

Numerical differentiation

Logical:

Sorting
Collating
Boolean algebra

(b) SERVICE SUBROUTINES AND/OR ROUTINES.

Compilers

Assembly

Programming aids (debugging subroutines)
Machine testing routines

(¢) INPUT-OUTPUT SUBROUTINES.

Punch card (read and punch)
Paper type (read and type)
Editing (typewriter, paper tape, or card output)

The need to become thoroughly familiar with the available library of sub-

routines cannot be over-emphasized. An understanding of what each subroutine
will accomplish and the requirements for its use is important.

PX 40
15

CODING FOR THE COMPUTER

(5) ASSEMBLY OF SUBROUTINES. - If each of the library subroutines
were coded for a specific location in the computer memory, a programmer wishing
to use subroutines would be faced with two unpleasant alternatives: (1) code
his main routine around the fixed locations of the subroutines, or (2) manually
recode the subroutines to operate from locations which he chooses.

Instead, the practice is to adopt some standard form for subroutines and
to use an "assembly program" to convert the standard form of the subroutine
to coding suitable for execution at a specified location,

The simplest of these assembly routines assumes that the standard form of
the subroutine is already at the desired location, It remains for the assembly
routine to modify addresses (within the instructions of the subroutine) rela-
tive to that location.

A more sophisticated assembly routine provides not only for address modifi-
cation but for transfer of the subroutine to a designated location from a
library file on magnetic tape or magnetic drum.

Furthermore, there are in use "compiling" routines which relieve the pro-
grammer of assigning storage locations to subroutines. The programmer need
only refer to a subroutine by means of an identifying index. The compiler
routine then arranges the subroutines in storage and modifies all subroutine
references to provide for a jump to the assigned location,

One standard form for subroutines in use at several computer installations
is as follows,

(a) The initial address of each subroutine is address 01000
in rapid access storage. The service routines (assembly,
compiling, etec.) treat address 01000 as a "relative" address.

(b) The first instruction of the subroutine provides for the
"alarm" exit. Most subroutines are coded to detect the
unexpected or undesirable, such as entry with an out-of-
range argument or incorrect parameters. When such is
detected, a jump to 01000 occurs. At 01000 is the
instruction

37 76000 76002

which provides entrsnce to an "Alarm Print Routine". This
routine prints (A), (Q), and the address of the instruction
at which the alarm condition occurred.

(c) The second instruction provides for the normal exit from the
subroutine. The address of this instruction, 01001, is the
u address of the RJuv instruction used to enter the sub-
routine. This instruction is a Manually Selective jump,
coded:

01001 MJ O(=j) [30000].

X 40

16

CODING FOR THE COMPUTER

Actually the v address of this instruction of 30000 is an un-
allowable address which will cause an SCC computer fault if the
jump to 30000 occurs. Normally the RJ instruction used to enter
the subroutine would replace the v address of the MJ instruc-
tion with y+1. However, if the RJ instruction had been incor-
rectly coded, or the subroutine had been entered without an RJ
instruction or without first changing the v address of (01001),
the computer would be stopped after executing the subroutine
when (01001) is taken as the next instruction. Thus would an
incorrect entrance into the subroutine be indicated.

(d) The third instruction of the subroutine (01002), is the entry
line into the subroutine. This address, 01002, is the v address
of the RJ instruction used to enter the subroutine. If more
than one entry into a subroutine is necessary, instructions re-
ferencing the various desired entry points in the subroutine
are usually stored at consecutive memory positions beginning
with the third line of the subroutine.

(e) A jump instruction must be placed at the end of the subroutine
computations to cause a jump to 01001, the normal exit line of
the subroutine.

(f) All instructions and "modifiable™ operands should be placed in
consecutive memory positions. "Modifiable" operands are any
words referencing storage locations of the subroutine which
would be changed upon translation of the subroutine. The
"unmodifiable" operands should be stored directly following
the above, at consecutive locations.

(¢g) The subroutine must contain all the housekeeping instructions
that make it self-restoring.

The Square Root Routine given below is a routine coded in the standard
form just described. This routine is to be entered with the argument in the
Accumulator. The square root of that argument is in the Accumulator upon
exiting from the routine. Note the jump at 01002 to the alarm exit should
the argument be negative, and the jump at 01007 to the alarm exit should the
argument be out-of-range.

Routine for Evaluating the Square Root of N

Entrance conditions: (Ap) =0 _
(Ag) = N = N-234
Exit conditions: (Ag) =N =v/N“217

The method used here is the Newton-Raphson iteration

Xpp1 = X + 1/2 [Q—n - Xn] = Xn + A Xn)
= 1/2 [y +-§]
n

The first approximation is Xg = 235‘1 and convergence is assumed when A X2 0.

PX 40
17

01000
- 01001
01002
01003
01004
01005
01006
01007
01010
01011
01012
01013

01014

01015
01016

45
46
11
11
43
36
47
31
73
54
23

21

44
37

76000
OOOdO
01000
01016
A
01016
00003
01000
00003
00005

00005

00005

01010
T

CODING FOR THE COMPUTER

76002
[30000]
01003
00005
00003
01001
A
01010
00041
00004
00107
00005

00004

01001
T

Alarm Exit

Normal Exit

Entrance; N - 234 negative?—sAlarm
23015 (15)

N - 234-—9(t3)

. 934 = 930 _ 15 pxit

=21

N - 239 - (Ap)—s(A)

(A) # O—>Alarm

1/2 N - 208—(a)

1/2 W/xi *© 2%45(Q), (tg)

1/2 xi © 2% 5), (t5)

(1/2 N/x; - 1/2 xi) - 234—s(Q)=Ax

1/2 xi - 234 + 1/2 N/xj - 234=
(xj+1) 2%9—5(ts5)
A x negative, Repeat loop

239-1

Note the use of addresses 00003, 00004, 00005 (t3, tg, t5) as temporary
storage for partial results obtained during computation.

Most routines require working storages such as these during their opera-.
tion. Upon completion of the routine the contents of these locations are no
longer of use.
tine for temporary storage of different quantit§ s. For instance, in this rou-

tine 00005 contains successively xj, 1/2 xj °

A single location may be used several times in the same rou-

277 and xj41 - 234, since it is

possible for many different subroutines to use the same locations for tempor-
ary storage, it is conventional to reserve an area of the memory for temporary

storage.
this use.

Several installations have reserved RAS locations 00000-00037 for

In this routine the words in which addresses are to be modified when the

subroutine is assembled are in 01000 to 01015.

stant and is not to be modified.

The word in 01016 is a con-

An example follows of an assembly routine which is suitable for modifying
subroutines in the previously given standard form. Recall that each sub-
routine to be assembled must be coded in absolute form as if its initial in-

struction were at address 01000.

PX 40

18

In actual fact the subroutine is placed in

CODING FOR THE COMPUTER

RAS at any location selected by the coder. It is the function of the assembly
routine to modify all addresses that are dependent on the location of the sub-
routine. The assembly routine must be informed of the actual RAS addresses of
the initial instruction of each subroutine and of the number n of successive
instructions to be modified in each case. It will then scan (s+j-1) instruc-
tions, j=1, 2, ... n, altering the u and v addresses of the instructions by
adding s-01000 to them when necessary.

A particular address will be modified if, and only if, the 10th bit from the
right in its 15 bit array is a one; i.e., if it is of the form XXX XXIXXX XXX
XXX. For RAS addresses this means that all addresses of the form Olxxx (x an
arbitrary octal digit) and only such addresses will be modified. Thus, addres-
ses of temporary storage such as those described previously (addresses 00000
through 00037) will not be altered. Since n successive instructions are mod-
ified starting with the initial one, constants should be stored at addresses
01000 + n and following.

The routine below will assembly k subroutines in succession. It is assumed
that the parameters for each, nj and sj, are of the form

00 ng ng no nj ng S4 83 $2 s1 sQ

and are stored consecutively at addresses 0012f + i, i =1, 2, ... k. Address
00121+k+1 must contain O to indicate the end of the parameter list.

Address Modification Routine

00100 11 [00122] A (M) = (00121 + i)
00101 47 00102 00000 Exit -- All modified
00102 73 00073 00005 (00005) = nj
00103 16 A 00112 (00112)y = s
00104 36 00121 00006 (00006) = sj -01000
00103 r;;- 00005 00110 Exit for next subroutine
00106 21 00100 ‘ 00073 Advance i by one
00107 45 00000 00100 Jump to 00100
00110 16 00112 00116 (00116)y = (00112)v
00111 11 00040 00007 (00007) = zero
00112 21 00007 [00000] (00007) =(sj)
00113 55 A 00033 Shift right nine binary digits
00114 51 00075 Q (Q) = 00 00001 00001

PX 40

19

CODING FOR THE COMPUTER

00115 71 0 00006 . (A) = increment to (sj)j
00116 35 00007 [OOOOO] (Sj)i = modified initial (Sj)i
00117 21 00112 00074 S j advanced by one

00120 45 00000 OOlOSJ Jump to 00105

00121 00 00000 01000 Constant 1000 octal

Note the references to addresses 00040, 00073, 00074, 00075. The contents of
these addresses are commonly used constants.

00040 o0 00000 00000
00073 ocC 00001 00000
00074 o0 00000 00001
00075 o0 00001 00001

A computer installation will sometimes reserve an area of RAS for a "constant
pool", i.e., a collection of frequertly used constants. All subroutines can
then refer to the constant pool rather than having each contain its own con-
stants., This results in a considercble saving of storage space when many sub-
routines are used. In the particuler case of this assembly routine, it is
assumed that there is a constant pocl at addresses 00040 through 00077.

In the case of routines, such as the assembly routine, which are to be
used by many different persons, it is important that the routine be accompanied
by complete and easily understood operating instructions. The operating in-
structions for the previous assembly routine are given below.

Operating Instructions for the Assembly Modification Routine.

1l Only suitably coded subrcutines may be assembled. A subroutine
is suitably coded if it satisfies the following conditions.

a8 It is written in absolute form as if the initial instruction
were located at address 01000,

b All addresses indepencient of the location of the routine are
of the form XXX XX0 XXX XXX XXX.

¢ All addresses to be mcdified are of the form
XXX XX1 XXX XXX XXX.
d All subroutine constarts follow immediately the last instruc-

tion.

0o

To use this routine:

foo

Load all subroutines to be modified in their proper locations
in RAS
PX 40

20

CODING FOR THE COMPUTER

b Load this assembly program in 00100-00121
¢ Load the constant pool in 00040-00077
d Load the parameters
00 nj S; i=1,2, ... k
for all k subroutines into addresses 00121+i, i =1, ..., k
e Load zero into address 00121 + k + 1

f Provide for the proper exit in the u address of 00101 and
enter at address 00102.

The assembly routine which has been described is an example of a service
routine designed to relieve a coder of part of the work in preparing a program
for execution by the computer. The text following describes a coding tech-
nique (simplifying the job of coding) which is possible because of another
type of service routine,

e. RELATIVE ADDRESSING. - In coding routines it is often preferable
not to assign absolute memory locations to quantities referred to in the program.
For instance, it may be convenient to postpone the assignment of absolute ad-
dresses to data, constants, temporary storage and the like, until the coding
of the entire problem has been completed. Similarly, it may not be desirable
to assign locations to subroutines until coding is completed and it is known
what the storage requirements are for each of the sections of the program.

It is possible to postpone the assignment of absolute addresses by coding
with "relative" addresses. For instance the instruction

01010 11 01012 01013

which is coded with absolute addresses 01010, 01012, and 01013 might be written
with relative addresses as

C10 11 Ccl2 C13.

In this case, the addresses are relative to the address C. The alphabetic
character C could denote any address allowable in the Univac Scientific. For
example, it could be assigned the address 01000, The numerals following an
alphabetic character in a relative addressing scheme usually are interpreted

as being additive i,e., if C denotes 01000, then Cl2 denotes 01012, etc, Almost
any of the alphabetic characters are usually allowable in most relative address-
ing schemes. A few exceptions are the reservations of the letter A, denoting
the Accumulator, and the letter Q, denoting the Q register. Other exceptions

to the use of alphabetic characters need not concern the beginning coder. The
allowable characters depend upon the conventions in use at a particular computer
establishment.

PX 40

21

CODING FOR THE COMPUTER

7

Each new alphabetic character used in a program may indicate a new "region
in the storage of the computer. In fact, a greater number of regions may be
accomodated by using combinations of alphabetic, or alphabetic and numeric
characters. By using relative addresses it becomes comparatively simple to
assign segments of a problem to various regions with the routines assigned
to each region performing a separate calculation or function.

As an example of a routine coded with relative addresses, consider the
following.

Compute the function f(y), where f(y) = oy-2

y+7
Assume that y+7 # O and |y+7i<235.
Region Instruction Function
(Program of Operation u address v address
instructions) code
Cl TP fl A Place y in A
Cc2 AT El 12 Place y + 7 in f2
Cc3 TN E3 A Place -2 in A
Cc4 MA E2 fl Form 5y-2 in A
C5 DV 2 3 Place the result of
5y-2/y+7 in £3
C6 BS 0 0 Stop
(Constant Storage)
El 0 0 7
E2 0 0 5 Constants
E3 0 0 2
(Temporary Storage)
fl - - - Variable y
2 0 0 0 Temporary storage
holding y+7
3 0 0 0 Temporary storage

holding f(y)

PX 40

22

“CODING FOR THE COMPUTER

After a program is coded with relative addresses, it must be converted to
absolute addresses before execution by the computer. The computer may be used
to perform this conversion., 'Translation" routines have been written which not
only convert relative addresses to absolute addresses but which also convert
decimal information to computer binary representations, Frequeatly these trans-
lation routines include an assembly subroutine,

f. MECHANICS OF CODING.

(1) FLOW DIAGRAMS. - After it has been established that a particular
problem can be solved by the computer, it is necessary to formulate the problem
in terms of the language of the Univac Scientific computer. A program of in-
structions, and the necessary data needed for the solution of the problem must
be devised.

A "flow diagram" is helpful in facilitating the coding or programming of
the problem. A flow diagram or flow chart indicates the "flow" or steps in
the computation which lead to /the solutions of the particular problem.

A basic flow diagram usually lists the series of simple arithmetic steps
which are to be performed by the computer, It is imperative that the coder
be thoroughly familiar with the overall operations and peculiarities of each
computer instruction so that he can construct the outline with regard to the
capabilities of the computer. A description of each instruction is presented
in the section of this volume entitled Sequential Presentation of Instructions.
Tabular information on the instructions and the contents of the arithmetic
registers before and after the execution of each instruction is presented in
the volume entitled "Content of Registers".

Usually more than one flow diagram'is formed for the more complicated
problems. The first flow outline may be nothing more than equations in mathe-
matical language, written in the sequence in which they will be computed, to-
gether with brief explanations of the steps involved. The second flow chart
usually formulates the flow of computation as the problem will be computed on
the computer. This chart will usually contain the instructions necessary for
the data input, the instructions that operate on the input data to obtain the
solutions, and the necessary instructions for the output of the results,

Many times the problems are of such a nature that the second type of flow
diagram will consist of many charts and/or diagrams, each a more detailed pre-
sentation of the preceding charts,

To facilitate the task of forming flow diagrams and to allow other pro-
grammers to understand a particular flow diagram, certain symbols have been
more or less standardized. The following list of symbols is by no means com-
plete, but is intended to give the coder an example of the basic symbols used
in drawing the second type.of flow chart,

PX 40

23

CODING IFFOR THE COMPUTER

(a) LINES OF FLOW.

A solid line with an arrow touching the next element of the flow diagram
is usually used to indicate the path to be followed by the computer; or more
precisely, the path to be followed by the coder who is formulating the computer
instructions from the flow diagram.

(b) OPERATION SYMEOL.

A+8B
OR -
ADDATO B ‘

The rectangular box usually contains a statement about a computer or math-
ematical operation. The contents of the box may be a simple statement or a
mathematical expression.

(¢), DECISION SYMBOL.

»
A:B _
OR —>>

DOES A EQUAL B

5
The symbol above is used to indicate a two-way decision. This symbol is
sometimes written as

where the letters EJ designate the use of the Equality Jump instruction to
make the decision in the computer.

pPX 40

24

CODING FOR THE COMPUTER

(d) CONNECTORS AND*REMOTE CONNECTORS.

®]

To ‘eliminate as much as possible the crossing of lines of flow on a dia-
gram, the above symbols are used to indicate a destination not easily reached
in the diagram. Thus, the flow can be broken at a convenient point by termi-
nating it in an arbitrary symbol which can be used to initiate the flow in
another region of the paper.

(e) EXAMPLE. - To illustrate the use of the above symbols, con-
sider the following problem.

Compute the function f(xj) where

bxi-c
xi +d

M=

i=1,2,3, ..., n

f(xi) = 2

[

For this problem, it is assumed that b, ¢, d, and xi are integers and are con-
tained in the computer in the Rapid Access Storage. Also, it is assumed that

xi + d#0

xi + d|< 235

The function f(xj) is stored at the location whose address is ei. . The symbol
(i) indicates the storage of the "i" term.

FLOW DIAGRAM

Start Set (i) = 1-———><::::>—e>-(xi+d)-;>e0

@—% —c—>A [(A) +b - xi]—>A > EA)/(e0]—>‘Q

? #
@—>(Q)—>ei >+ 16(1)—>@ ifn+ 1)———)@

Stop

®

:

PX 40

25

CODING FOR THE COMPUTELR

(2) CODING STEPS. - In summary, there are usually four phases in
the preparation of a coded computer program:

(a) The construction of a "flow diagram" or outline which shows
the general computational steps to be accomplished;

(b) The creation of a program, written in terms of computer
instructions, using numeric or alphabetic symbols to indi-
cate operation codes and the u and v address portions of
the instructions:

(¢) If the program created in Step 2 is coded in octal, the
program is ready for execution after being put onto some
input medium and loaded into the computer. If the program
is coded in symbolic notation, it must be translated into
a binary representation before it can be automatically
executed by the computer. Service programs for this trans-
lation may be used to facilitate this process by allowing
the computer to perform the conversion;

(d) The "debugging” (computer check-out) of the final program
by means of trial runs on the computer.

The last phase - debugging - is described in the following paragraphs.
g. DEBUGGING A PROGRAM,

(1) INTRODUCTION. - After the coded program has been written out
completely and the manuscript carefully reviewed, the program must be put on
some input medium for loading into the computer. The input mediums and the
devices which transfer information from these mediums to the computer memory
are described in the section Input and Output of this volume.

Once the program has been stored in the computer in binary form, either
directly from the input medium or ky means of some translation routine, it is
ready for execution by the computer, However, if the program is lengthy, it
is likely that the coded program as stored has errors. Three common types of
errors are:

(a) Tape or card preparation errors made in the preparation of
the program for input;

(b) Coding errors, suvch as listing incorrect or incomplete
addresses, transposition of digits in the addresses or
operation codes, transcription errors, etc;

(¢) Logical errors; incomplete or erroneous methods used to ob-
tain the solution(s).

"Debugging" is the term appliecd to the process of locating errors in a
program and correcting them. Debugging a program usually involves a series of
trail runs of the program on the computer. Each time the program fails to run
properly, the failure must be analyzed and the error corrected. Frequently one
can immediately discover the error, correct it manually from the control console,

PX 40

26

CODING FOR THE COMPUTER

and proceed with the next trial run. At other times the detection of errors
is more difficult and requires a thoughtful reconsideration of the program,
keeping in mind any clues as to the origin of the error which may have been
provided during the run. Error detection may be facilitated by the use of
service routines coded expressly for this purpose.

The methods that can be employed to debug a program will vary widely from
installation to installation depending on the nature of the programs, the ser-
vice routines available, the availability of computer time, and the personal
preference of the individual for one procedure over another. The following
remarks suggest possible patterns to follow in debugging.

(2) TAPE OR CARD PREPARATION ERRORS. - This type of error can be
minimized by systematic checking of all input tapes and cards before their in-
formation is read into the computer. The usual method that is used to prepare
input paper tapes is listed below., (A similar routine is used in punched card
preparation.)

1 A paper tape is punched from the coder's manuscript using
the Flexowriter, '

2 The resulting typed manuscript from the typewriter is
discarded.

3 A new typed manuscript is prepared from the punched paper
tape.

4 This typed manuscript is compared with the coder's manu-
script to detect errors in punching,

5 All detected punching errors are corrected and a new
corrected tape is prepared.

6 From the corrected punched tape a new manuscript is obtained

which should be retained by the coder to use while debugging.

71 If seven-level codings are used they should be sight-checked
before an attempt is made to read the tape into the computer.

(3) MANUAL DEBUGGING. - Manual debugging is the process which is
used to locate errors in a program by controlling the operations of the program
from the Supervisory Control Panel and visually checking these operations as they
occur and are indicated on the control panel. Although manual debugging does
not make efficient use of computer time, it can, if done correctly, reduce the
overall time required to debug a program because of the versatility afforded
by a "thinking" programmer at the control panel.

After loading the program in the computer, a run at high speed is usually
tried. (For a discussion of the various speeds at which the computer may run,
see the section Operating the Computer, Many of the suggestions for program
debugging require a knowledge of operating the computer from the control console.
This is also described in Operating the Computer.) This run may show the pro-
gram to be free of errors, in which case there is no debugging to be done; or
this run at high speed may end immediately with a computer fault. Frequently
an MCT (Main Control Translator) fault or SCC (Storage Class Control) fault will

PX 40
27

CODING FOR THE COMPUTER

arise. The former indicates an ill=gal operation code; the latter an illegal
address, (Computer faults are described in Operating the Computer.)

When a fault occurs, the contents of PAK (Program Address Counter) should
first be noted. This will almost always indicate the exact location of the
erroneous instruction,

The SCC fault usually arises from either a transcription error, a punching
error, or incorrect modification of an instruction by the program. These
faults are ordinarily easy to correct. An MCT fault may be caused by a punch-
ing or transcription error. Frequently it will result from an erroneous pro-
gram jump., In this case the address in PAK may indicate that the jump was to
an area which is not occupied by ths program., This fault must be traced to
the instruction which caused the jump.

The computer may also stop on a DIVIDE fault or an OVERFLOW fault. Erron-
eous coding may cause these faults, or they may be the result of an error in
judgement concerning the range of the numbers involved in the computation.

Obviously, the first phase of d=bugging is to correct the program so that
it will run without computer faults,

Although the program is running without incurring computer faults, errors
in its execution may still be detected. For instance, the program may be
coded to produce output but no printing or punching occurs. Correction of
this type of error may be facilitatad by observation of the monitoring oscil-
loscope located on the upper center section of the Supervisory Control Panel.
This oscilloscope displays a point for each of the 4096 registers in RAS every
time one of the registers is referenced. If, while debugging a program, the
scope displays a distinct non-terminating repeated pattern (one dot or many)
for a questionable period of time, it can be assumed that the computer is
executing an erroneous "loop". This usually means that one or more of the
"decision”" instructions has an incorrect jump reference causing a return to
itself or to a series of instructions which lead back to the incorrectly-
addressed jump instruction,

It may be possible to detect from the oscilloscope the area in which such
a loop is operating; or it may be desirable to FORCE STOP the computer, select
MANUAL STEP OPERATION, and, by executing one instruction at a time, trace the
operation through the loop. By noting each jump to a new address and travers-
ing the loop at least once, the incorrect jump will probably be located.

Thus, the second phase of debugging is to eliminate any non-terminating
loops.

After these two phases of debugging a program have been completed, output
from the corrected program will revesal if the program is being executed pro-
perly. If the output format is in error, an investigation of that portion of
the program devoted to output is necessary. This may be accomplished by en-
tering the output routine with a typical result and, if the output routine is
short, executing the routine one instruction at a time, observing the results
at each step. If the output routine is complicated, it will probably be nec-
essary to inspect the manuscript of the coded output routine, using the

pPX 40

28

CODING FOR THE COMPUTER

erroneous results as a guide in looking for the trouble. (Output routines from
the subroutine library would not be expected to cause any difficulty.)

In summary, the third phase of debugging is to correct any output routines
used in the program.

Since frequent output during the running of a program is a positive indica-
tion of proper or improper running, it is often convenient to provide for out-
put of partial results of computation. Since these results are of no interest
when the program is known to be running properly, and since any output from the
computer is time consuming, routines providing such output should be entered
via an optional jump. During the debugging process the optional jump switches
may be "on" to provide the output for monitoring purposes. After the program
is completely checked, the optional jump switches may be "off", thus elimina-
ting the intermediate output. An intermediate printout may even be of value
when the program is in actual use. If normal output is very infrequent, or onto
a medium which is not easily read, an operator may wish to occasionally sample
the intermediate output as a check on the program's operation.

Since the problem in debugging a program is to isolate each of the errors,
it is desirable to have the coding arranged in small segments. The coder
should be sufficiently familiar with his program to anticipate the results of
each of the segments of the computation. 1In particular, he should be able to
recognize an incorrect result.

A convenient way to examine the results of these program segments is to
terminate each with an OPTIONAL STOP. Like the optional jumps described above,
these stops may be "on" while the program is being debugged and then "off" when
the program has been checked out. If optional stops have been coded in the
program, the program may be executed from one stop to another until trouble is
encountered. Then, because it is known in which segment the error lies, that
section may be re-run on MANUAL STEP OPERATION.

The points in a program at which these optional stops and jumps are placed
are called "breakpoints".

Thus, the fourth phase of debugging makes use of programmed breakpoints to
isolate errors.

The instructions for optional stop and optional jump each provide three
selections which incur the jump possibility. Although the number of options
may be increased by combinations of the selections, an option at all desirable
breakpoints can not be provided in a lengthy program. Regardless of how
judiciously the breakpoints have been selected, in an actual debugging process,
a breakpoint is often desired where an option for one has not been coded in
the program. In this case it is possible to superimpose a breakpoint on the
program. If a stop, for instance, is desired at address a and addresses b
and b+l are unused, the instruction at a may be replaced with the instruction

56 00000 b,

pPX 40

29

CODING FOR THE COMPUTER

The program instruction which was in a is then stored in b, and the instruction
45 00000 a+l

is stored in b+1.

Thus, the fifth phase of debugging is to insert breakpoints if programmed
breakpoints are inadequate.

Thus far the process of debugging has been described in terms of the pro-
grammer himself manually debugging 2is routine.

It cannot be overemphasized that in order to do manual debugging, the coder
must be thoroughly familiar with th2 problem, its coding, and in addition,
with the peculiarities of the computer.

(4) DEBUGGING WITH SERVICE ROUTINES. - A number of service routines
exist which facilitate the process of program debugging. Consider phase 1 of
the process of debugging, the elimination of computer faults. Two types of
errors may be hard to find: (1) an SCC fault arising from improper modifica-
tion of an instruction and (2) an MCT fault arising from an incorrect jump.
The search for either of these errors may be facilitated by an "address sort"
routine. Such a routine scans all instructions of the program for a given
address. Any instruction containing that address is printed with its location,
In case one the trouble may be located by a search for references to the
modified instruction; the faulty jump in case two may be located by a search
for references to (PAK)-1 at the time of the MCT fault.

A service routine of use in eliminating faulty loops is a "jump trace"
routine. A "trace" or "automonitor" is a routine which executes interpre-
tively all the instructions of a program which is being debugged. As each
instruction is executed, the instruction itself and its address are printed
out together with (A), (Q), (uw), and (v), 1In the case of a jump trace routine,
print-out occurs only if the instruction is a jump. With this print-out, the
sequence of jumps in a program can be followed, and those which are incorrect
can be noted,

When a program has been run, a "memory dump" will often reveal the opera-
tions which occurred during the run. A memory dump routine lists octal print-
outs of the contents of those memory locations containing the program. The
examination of indices, temporary storage, modified instructions, etc., usu-
ally reveals the portions of the program which were improperly executed. This
aids in locating the improper modifications of the program and recovering par-
tial results. A "changed word post-mortem" routine is a selective memory dump
in which only those words which have been changed in the course of running a
program are printed. A changed word post-mortem routine requires that the
original program as loaded be stored in the memory. After the program is run,
a word-by-word comparison is made of the original program and the executed
program, The advantages of a changed word post-mortem routine over a memory
dump routine are that it operates faster, and there is less print-out to be
examined., The memory dump, by virtue of printing all the program, gives
evidence of misloading or punching errors which may not be detected by a

PX 40

390

CODING FOR THE COMPUTER

changed word post-mortem.

The use of breakpoints in debugging a program can be facilitated by any
one of several "breakpoint routines". The simplest of these merely replaces
selected instructions with manual stops and stores separately the instructions
and the jumps back into the program. Upon reaching one of these stops in the
program, the programmer may examine the contents of certain locations which
contain partial results, or manually step through the next part of the program.
A more elaborate breakpoint routine may provide for automatic print-out of the
contents of certain registers at a breakpoint., Usually these print-outs are
either in octal or decimal notation., It is also possible to invoke at a
breakpoint a trace routine which prints the results of each of the next few
instructions., A great saving in time is effected by using these sampling and
tracing routines at a breakpoint rather than manually examining the results
at that point,

The debugging service routines which have been described are of two types,
"static" and "dynamic". The static type is employed after a program has been
run and has stopped, The memory jump and address sort routines are examples
of static routines. The dynamic routines operate in conjunction with the pro-
gram as it is run. These may be "executive" routines which execute interpre-
tively the program instructions and provide printouts of the results, i.e.,
trace routines; or they may be routines to which control is transferred at
specific breakpoints, i.e., sampling routines. The static debugging routines
usually require less computer time for their operation than the dynamic type.
Therefore, in practice they are used more often although more information can
be obtained from the dynamic type.

(5) ERROR CORRECTION., - It may be possible during the debugging pro-
cess to correct a routine manually by making simple alterations in the contents
of certain memory locations., After these corrections have been made a new in-
put paper tape or punched card is usually needed for reloading the corrected
version of the routine. To obtain the corrected version, which is in the
memory of the computer, a "punch storage for reload" or "bioctal dump" service
routine may be used. This produces a paper tape or deck of punched cards con-
taining the program coded in octal with appropriate insert and check addresses.

In order to conserve c&mputer time while making a number of manual correc-
tions from the Supervisory Control Panel, the following method is suggested:
Depress MASTER CLEAR button
Select MANUAL STEP OPERATION
Set MPD to 3

Set MCT to 75 (Repeat instruction)

pPX 40

31

CODING FOR THE COMPUTER

Set UAK to 70000 (set j to 7)
Set VAK to 00000

Set X to 11 10000 v, where v is the first address to be
written into.

Depress START button

Depress STEP button

Set in @ Register the word to be written.

Depress STEP button Repeat Manually
Clear Q Register

It should be noted that a j of 7 is being used which sets up an unterminated
repeat sequence with both the u and v addresses of the repeated instruction
being advanced upon each execution. Since this is the case it becomes compara-
tively simple to read back into Q for checking purposes the words just written.
This procedure is

Clear UAK

Set UAK to u where u is the first address which was written into.
Clear VAK

Set VAK to 10000

Depress START button '
Repeat Manually
Depress STEP button

If the data that is to be written or to be read is not in consecutive mem-
ory locations, the following steps must be added at the end of both of the
above repeated steps.

Clear VAK (UAK if reading)

Set VAK (UAK if reading) to the address to be written into or
read from.

The process of program debugging has been described in terms of the pro-~
grammer himself operating the computer, Manual debugging clearly requires a
thorough knowledge of the program. However, the service routines may be ap-
plied by an operator with perhaps instructions from the programmer. The ex-
tent to which programmers will operate the computer for program debugging
will vary from one installation to the next.

PX 46
32

CODING FOR THE COMPUTER

h, OPERATING PROCEDURE. - The service routines which have been described
as aids in debugging should be available for use whenever trouble arises.
Since the need for these routines cannot always be anticipated, it is desirable
that they be at all times in the computer memory. Many installations have re-
served areas on the magnetic drum and/or magnetic tape for permanent storage
of the service library. Except when necessary, programs are not stored in
these areas. This practice eliminates the need for frequent reloading of the
service routines.

In addition to the service routines for debugging there are service rou-
tines which facilitate operating the computer, Chief among these, in the case
of a computer with a Photoelectric Paper Tape Reader, is the program for reading
information from paper tape. Such a program may be coded to accept information
punched in any form whatsoever. In particular, the program might be designed
to load bioctal tapes with the 7th level control configurations described in
the section Input and Output Systems.

Routine for Loading Bioctal Tapes with a Paper Tape Reader

00000 45 00000 00006 Jump to start
00001 45 30000 00003 Optional jump to bypass stop
00002 17 00005 00002 Stop reader
00003 11 00035 40000 Enter data
00004 21 00003 00037 Advance address
00005 45 30000 | 00007 Optional jump to bypass start
00006 17 00006 00006 Start reader
00007 76 00000 Q Read to Q
00010 31 00035 00006 Isolate data levels
00011 52 00027 00035 |
00012 31 00036 00001 Isolate seventh level
00013 52 00030 Q
00014 51 00030 00036
00015 43 00032 - 00001 Test for enter data
00016 43 00031 00021 Test for insert address
00017 43 00033 00023 Test for check address
00020 45 00000 00007
PX 40

33

CODING FOR THE COMPUTER

00021 16 00035 00003 Insert address

00022 45 00000 00007

00023 11 00003 A Check address

00024 36 00034 A

00025 43 00035 00007

00026 57 17777 777

00027 00 00000 00077 Data levels mask

00030 00 00000 17700 Seventh level mask

00031 00 00000 11100 Insert address code

00032 00 00000 10100 Enter data code

00033 00 00000 10500 Check address code

00034 11 00035 00000 Constant for check address
00035 —-— mmemee eeeee Word assembly

00036 e Instruction code assembly
00037 00 00000 00001 Constant for advance address

If the program to be loaded is short enough to allow the storage of a
copy, it is helpful to have an "image"™ of the program stored on the magnetic
drum (MD). Usually the image on MD contains the two extra instructions

RP jn w
TP MD RAS

which cause the program to be transferred to RAS at the start of the computa-
tions. Thus, whenever it is necessary to restart the program, the unaltered

version of the program may be transferred from MD without reloading the com-

puter from paper tape or cards. This drum image is also available for use by
service routines such as a "changed word post-mortem" routine.

A paper tape loading routine may be used which automatically provides such
a drum image of the program. Of greater importance, such a loading routine per-
mits loading anywhere in RAS; the previously listed loading routine does not
allow RAS addresses 00000 through 00037 to be loaded. Provided that the load-
ing routine contains an "end of tape" detection, the loading routine may be
supplemented to operate under the following conditions:

PX 40

34

CODING FOR THE COMPUTER

(a) The loading routine is stored on the magnetic drum,

(b) The loading routine proper is prefixed with instructions
which,

(1) store the current contents of RAS as a drum image, and

(2) "bootstrap" the loading routine proper into RAS for
operation.

(c) All data being loaded into RAS under control of the loading
routine is in fact loaded in the drum image.

(d) Upon detecting "end of tape", control is transferred to suf-
fixed instructions (on the drum) which transfer the drum
image to RAS and stop the computer.

The coding for such a bootstrap operation follows.

Lo 11 00000 70000 | store Fj
Ly 75 37777 Ls y store (RAS) in drum image
70000 - 77777
Lo 11 00001 70001]
L3 75 3 n 00000 | transfer loading routine proper
Ly 11 Ls 00000 J to RAS for operation
Lg 45 00000 Ly entrance to loading routine in RAS
Lo 1
- t loading routine proper
Ln+a

Lp+s 75 37177 Ln+7 transfer of drum

image to RAS

Lyt6 11 70001 00001
Ly+7 11 70000 00000
Lnt10 56 00000 Lo stop; re-entry to loading routine.

It is desirable that a bootstrap procedure similar to this be used with
most service routines so that operation of the service routine does not des-
troy the status quo of RAS.

Another practice which many consider helpful is to "erase" the computer
memory before loading a program for debugging. This means that erroneous
jumps to an address not used by the program result immediately in an MCT fault.
Also program sections separated by erased portions of RAS are easily recognized
in a memory dump. This erasing, or writing of zeros in every location, may be

PX 40
35

CODING FOR THE COMPUTER

effected by a repeated Transmit Positive instruction from Q with (Q) = 0. This
may be set up manually, as previously explained, or included in the service
library.

Frequently service librarys include routines to simplify manually reading
information out of storage or writing information into storage. If these
routines print out the word read or entered, a written record is provided of
all corrections made in the course of running a program,

When a iibrary of subroutines is kept on magnetic tape, the service library
usually includes a routine to extract the subroutines from file. Input trans-
lation routines may also be in the service library.

It is important that a programmer be thoroughly familiar with any service
routines in use at his installation. There are restrictions to the use of
many of these routines of which he must be aware. For instance, the "Routine
for Loading Bioctal Tapes with a Paper Tape Reader" cited previously does not
permit loading in addresses 00000-00037,

Before coding any routine, a programmer should acquaint himself with the
operating conventions of his installation., He should know such particulars
as the following:

(a) The service routines available and the facilities and re-
strictions of each;

(b) The input translation routines in existence,

(¢) The procedures necessary in order to use library subroutines:
their assembly, their reference to a constant pool, a tempo-
rary storage pocl, an alarm print, etc., and

(d) The areas, if any, of the computer memory which are reserved
for special purposes.

3. NUMBER NOTATION.

a. INTRODUCTION. - Because the theory of operation of the computer is
based on binary logic, the coder should become thoroughly familiar with one's
complement binary arithmetic. The following list of publications is
recommended as references to supplement the discussion of binary arithmetic
presented in the section General Description and Appendix A of this volume.

(1) Stifler, W. W. Jr., (ed), High Speed Computing Devices by the
staff of Engineering Research Associates, pp. 74-99,
(McGraw-Hill, New York, 1950).

(2) Richards, R, K., Arithmetic Operations in Digital Computers,
pp. 1-22, (D. Van Nostrand Co., Inc., New York, 1955).

(3) Uspensky, J. V., Elementary Number Theory, (McGraw-Hill, 1939).

PX 40

36

CODING FOR THE COMPUTER

As stated previously, for convenience octal, instead of binary notation, is
used to describe computer words and addresses. It should be remembered, how-
ever, that the logic of computer operation is based on the binary system.

b. RADIX CONVERSION. - In most problems the data for a program is present-
ed in some form other than binary. In particular, data is frequently decimal.
In Appendix A procedures for converting numbers from one radix (base) to another
are described. It is usually desired that the computer perform the necessary
radix conversions of input and output data.

If, for example, the computer were used for a problem involving large
amounts of decimal data, an efficient method for converting from decimal to
binary would be necessary. A "scalar product routine", such as that which
follows, could be used for this conversion provided it is known that all
decimal data are integers.

Let N be the desired binary number; then
N = ag + 10a] + 102 ag + ... + 10"a,,

To form this scalar product, the individual products of the binary-coded
decimal digits of the decimal number and their corresponding powers of ten,
binary-coded, are -accumulated.

Routine to Convert Decimal Integers to Binary Integers.

el RS A A * Clear A to zero
e2 RP 3,n+l ed
p Form N

ed VA uy vy
ed - - - J Next instruction
w 1] 1
u2 12 10*
. . [. Powers of ten coded
. . . in binary.
un+l - ' '10n
vl : ' ad :
v2 . ay
. . n Binary - coded decimal digits
vﬁ+1 , a,)

PX 40

37

CODING FOR THE COMPUTER

The result N (in binary) appears in the Accumulator.

The reverse operation, conversion from binary to decimal, can be accom-
plished with a repeated division, Assuming that the positive integral number N
to be converted to decimal is contained in the Accumulator, the steps are:

fl RP 3,n+l £3 Form binary - coded decimal digits
2 DV ul vl
3 - - - Next instruction
ul o™

. . Powers of

. . ten coded in binary

. > -
un 12 10°
untl 1] 10¢
vl a,]
v2 an-l

>
Binary - coded decimal digits

vn+l a

l J

The Divide instruction {DVuy) causes tie number in the 72-bit Accumulator to

be divided by the number at address u, The quotient is deposited at address v,
and a positive remainder is left in tae Accumulator. In the above example,
descending powers of ten are brought in as successive divisors of the diminish-
ing remainder, then the series of quotients are the binary-coded digits of the
decimal representation of the number initially contained in the Accumulator,
These quotients are depositied at a series of consecutive addresses v), Vo, ...

Vnt+l-

To illustrate binary to decimal integer conversion, consider the following.

Convert n binary words from any n consecutive memory locations to decimal,
and print these decimal integers on the typewriter with appropriate sign.
This subroutine assumes that the Q register, upon entry into the subroutine,
contains a code word which specifies the number n and the address of the first
binary number; i.e.,

(Q) = 00 XXXXX ====m

where ----~ specifies the number n and xxxxx specifies the address of the first
datum,

?X 40

38

YO
Y1
Y2
Y3
Y4
YS
Y6
Y7
Y10
Y11
Y12
Y13
Y14
Y15
Y16
Y17
Y20
Y21
Y22
Y23
Y24
Y25
Y26
Y27
Y30

Y31

Y32
Y33
- Y34

MJ
PR
TU
TV
1J
MJ
PR
'i‘P
SJ
PR
™
MJ
PR
PR

RP

=

L= - o]

b2

Y11

o o o » O

3,13
b7
2,13

Y22

CODING FOR THE COMPUTER

30000
b 6
Y7
b 2
Y 6
YO
b1
A
Y14

b 3

Y15
b 4
b 5
Y20
Y22
Y22

b O

o OO O o © o ©

Exit line of subroutine

Shift typewriter to lower case

Set in initial location of data

Set in counter n

Test n: if n=0, no numbers are printed
Exit - completion of routine

Perform carriage return

Place ith

number to be printed in A
Test sign of number
Print negative sign

Put absolute value of number in A

Skip next instruction

Print plus sign

Print space

Form binary-coded
decimal digits

Form print instructions

Print 11 decimal digits for each number.
(Initially the binary-coded decimal digits
are stored here until they are replaced
by the appropriate print instructions.)

PX 40

39

Y35
b0
b1
b2
b3
b4
b5
b6
b7
b10
b1l
b12
bl3
bl4
b15
b16
b17
b20
do
dl
d2
d3
d4
ds
dé
47

d10

dll

MJ

PR

CODING FOR THE COMPUTER

Y4
do
45

0
56
54
04

57

12

37
52
74
70
64
62
66
72
60

33

>

Dummy print command

Flexowriter code for carriage

Counter n, zero initially

Flexowriter
Flexowriter
Flexowriter

Flexowriter

-
1010

(¢}

10°

108

-

10!

106

.
104
102

10!

10

code

code

code

code

for negative
for positive
for space

for shift to

return

sign

sign

lower case

10+ L' Binary~-coded powers of ten

Typewriter codes for the decimal
digits, O through 9.

PX 40
40

CODING FOR THE COMPUTER

Attention is called to the four instructions (Y17), (Y20), (Y21) and (Y22).
The first two of these instructions form by repeated divisions the binary-
coded decimal digits of each number to be printed. The second pair of instruc-
tions add to each of these binary-coded decimal digits a dummy print instruc-
tion which addresses in its v address portion the starting address of a table
of typewriter codes for the digits O through 9. For example, suppose that
the first binary-coded decimal digit is a five. This is stored at Y22 as the
result of the first division. -Then, as a result of the Replace Add instruc-
tion at Y21, the content of Y22 could be replaced by PR O d5. Thus, when this
instruction is executed by the computer, the digit "5" would be printed by the
typewriter,

¢. SCALING. - It should be emphasized that the above routines are for
binary/decimal conversion of integers., Words in the Univac Scientific are
considered to be integers in the sense that the computer has been designed so
that for all arithmetic operations the binary point is thought to be to the
right of the right-most bit., This does not mean, however, that only computa-
tions with integral numbers can be performed in the computer.

Whenever a problem involves a quantity s which either (a) exggeds thg,
range of integers which may be represented in a 36 bit wor? (1-2vY=<s=<2 5'-1),
or (b) has a fractional part, that quantity s may be represented as s = sy-252,
where sy is an integer within the range of a computer word. The quantity 252
is calléd a "scale factor", sy is called the "mantissa" of the number s, and
So is called the "characteristic™ of s. A _positive characteristic is used to
répresent integers outside the range (1-235, 235-1); a ncgative characteristic
is used to express numbers with fractional parts.

Thus, in a computer operating upon integers, the machine representation
of a number is the actual value of the number multiplied ("scaled") by some
constant 21, . It must be remembered that when the machine executes an arith-
metic operation involving scaled numbers, the scaling mag change. Suppose
Spm and ty are the machine representations, each scaled 2 0, of Se and tg. The
result ry of a Multiply instruction MP {Sm} {tm} is then the machine represen-
tation of rg = s * tg, scaled 240,

- . 920 - . 920
Sm = Se 2 th = e 2

se’220 * te‘220 = Syt =ty = re~240
It may then be necessary to "scale down" rp so that its machine representation
does not exceed the capacity of a 36 bit word. Thus the choice of scaling for
a number depends not only on the number of fractional bits to be represented
but also on the machine restriction of 36 bits per word. In general the coder
must consider three things in scaling.

(a) All numbers must be scaled so that the "machine representa-
tions" of these numbers are integers.

(b) The routine should be coded so that the scaling is always
known,

(¢) Frequent rescaling may be necessary in the routine if the
values of the numbers are not to exceed the capacity of a
computer word.

PX 40

41

CODING FOR THE COMPUTER

In many computations involving scaled numbers, the desire to retain the max-
imum amount of "precision”, i.e., maximum number of significant bits, create a
-problem. To solve this problem, the numbers that enter into the calculations,
as well as the numbers resulting from these calculations, are "normalized". A
normalized number is a number which has been scaled up in a 36-bit register so
that the left-most stage of the register contains the sign bit of the number with
the most signiflcggt bit of the number contained in the next adjacent stage, i.e.,
the number n is 29 >n >2

The following are examples of normalized numbers:

30 00000 00000 is 00 00000 00003, (+3) normalized,
47 TTITT 17777 is 77 17777 77774, (-3) normalized.

Numbers are normalized easily in the Univac Scientific by using the Scale
Factor (SFuv) instruction. This instruction normalizes the number (u); in Ag
and stores the number indicating the left shifts necessary to restore the number
(u)f to its original state. This shift count k is stored in the y_portion of
the register whose address is given by the v of the Scale Factor instruction.

In case the u address of the Scale Factor instruction is the Accumulator
the relationship between the initial and final contents of the Accumulator is
as follows:

(A)f = (A); ° 2° where s is the scale factor.

The relationship between s and k is

s = -k if 0£k< 36

s = 72=k if 37<k<T1
If k = 0, (A); was properly positioned before shifting.
If k = 37, (A)j is all ones or zeroes.

To illustrate the use of the Scale Factor instruction, consider the prob-
lem of normalizing the product of two numbers xp and yy where these numbers
are themselves scaled machine copies as follows:

Xm:}('2r

m=y * 2%

The routine would be as follows:

Cl MP vl v2 form product

c2 SF A tl normalize (A)

c3 TP A t2 place normalized product in t2
PX 40

42

CODING FOR THE COMPUTER

c4 TP tl A place k in A

C5 TJ t3 c7 is k <372

C6 RA v3 t4 add 7219 to (v3)

c7 RS v3 tl subtract k from (v3)
C10 - - - next instruction

tl 0 k, (zero initially)
t2 0 normalized product
t3 45 constant, 37j0

t4 110 constant,'7210

vl - - - Xm

v2 - - -— Ym

v3 -- - - r + s initially,

The product formed by the first instruction is
(vi) * (v9) =%xp " ym =X * ¥ * orts,
The remaining instructions form the product
(to) =x "y 2(v3)f
where (v3)f is
r+s -k if k<37
r+ s + 72-k if k2 37.
An overall relationship would be expressed as follows:
~x-y = (v1)-(v9) 2-(v3)j = (to) - 2-(V3)f.
It should be noted that the 21 leftmost stages of tl must initially contain

zero since the Scale Factor instruction writes only into the lower order 15
stages of tl.

If a routine is coded such that only the mantissas of scaled numbers are
stored in the computer and operated upon by the program, the routine is said
to be coded in fixed point. In this case the programmer must himself keep an
account of the characteristics associated with each mantissa at every step of
the computation. The programmer must also be aware of the size of the man-~
tissas and scale them down when there is danger of exceeding the capacity of

PX 40

43

CODING FOR THE COMPUTER

a computer word. On the other hand, if the mantissas are carried in normalized
form, the result of every arithmetic operation must be normalized.

The programmer must be exceedingly careful in the record which he keeps of
the characteristics. A mistake may result in his having to rescale the prob-
lem from that point on, This accounting is generally listed on the coding
sheets. The characteristic is recorded beside each instruction which changes
the scaling of a mantissa. Great care must also be exercised in judging the
magnitude of the mantissas, If unanticipated overflow occurs, the problem may
have to be rescaled.

It is evident that the fixed point coding of a problem can be complex;
consequently it is sometimes preferable to store in the computer the charac-
teristies as well as the mantissas and use subroutines which, before each arith-
metic operation, effect the scaling of the mantissas on the basis of their asso-
ciated characteristics. The result of each arithmetic operation is then stored
as a mantissa with associated characteristic. This manner of coding is known
as floating point coding. Various schemes may be used for the storage of the
mantissa and characteristic of a floating point number. If the mantissa and
characteristic are stored at separate locations, the floating point number is
said to be "unpacked"; if the mantissa and characteristic are stored together
at one location, the number is said to be in "packed" form. A common floating
point packed form for the Univac Scientific allows 28 bits for the mantissa and
eight bits for the characteristic. ©Generally the mantissa is normalized although
this is not necessary., Should one wish to retain an indication of the number of
significant bits in the results, the mantissas may be carried unnormalized.

As an example of one floating point packed form which has been used on the
Univac Scientific, consider the following representation of the number s by the
components s; and so of 28 bits and eight bits, respectively.

If s #0 1>|s;p 1/2, 256> so + 1282 0
If s=0 s} =s9 +128=0

The number $ is represented in the computer by s, - 235 and'sz + 128, the
machine forms of its mantissa and characteristic, Note that the mantissa is

normalized. When the characteristic is represented in this way, as s2 + 128,
it is said to be a "biased" characteristic. (The characteristic might also

be represented by eight bits as a "signed" characteristic, 128 2 sp 2 -128.)
The packed representation of the number s is positioned at a location as
follows:

28 bits 8 bits
normalized biased
mantissa characteristic

The choice of a representation for floating point numbers is influenced by
many considerations which may vary from installation to installation,

Elaborate systems of subroutines have been developed to perform arithmetic
operations with floating point numbers. The price which the programmer pays

PX 40

44

CODING FOR THE COMPUTER

for relief from the complexities of fixed point scaling is increased execution
time for the arithmetic operations. For instance, with a floating point system
which uses a packed representation, the execution times for the operations of
addition, multiplication, and division may be on the order of 60 times that of
the corresponding machine operations. Floating point operations with unpacked
operands are considerably faster. - Here the multiples of the increase in time
over the computer operations are approximately 20, 3, and 3 for addition, multi-
plication, and division, respectively. In general, floating point coding is
used to reduce the elapsed time between receipt of a problem and the production
of answers. Floating point notation is particularly useful in problems in
which the numbers involved vary widely and where only crude predictions can be
made of the amount of variation.

d. MULTIPLE PRECISION, - In addition to scaling in order to modify the
range of numbers which may be represented in the computer, it is possible to
extend the range by representing numbers in a double precision, triple pre-
cision or, in general, n-precision form. In this case two, three, or n com-
puter words are used for the storage of a single number. For example, two
locations are reserved in storage to represent a double precision number. The
representation may be (Ar) and(Ap) when the number is in the Accumulator. The
addition of two numbers so represented is easy and fast using the Split in-
structions, In the case of multiplication or division, an end correction must
be provided for each word whose sign bit is "1". Another method is to select
a positive constant k and represent a double precision number N as

N=q--k+r

with a side condition on r to require unicity. Both g and r are single pre-
cision numbers. For. example, let k = 234 yith 0< r<234, With this repre-
sentation addition is slower but multiplication and division are markedly
easier.

Similar schemes may be used for n-precision computing. Again, a number of
considerations enter in the choice of a representation of multiple precision
numbers.

e. CHOICE OF NUMBER NOTATION. - In choosing the number representation
to be used in solving a given problem on the computer, the accuracy which is
required is first considered. If a large number of significant bits is de-
manded, a multiple precision representation may be required. Secondly, the
choice between a fixed point and a floating point notation is made on the basis
of running time on the computer versus programming time., Floating point rou-
tines are frequently used to simplify the coding of "one shot" programs (the
program is to be used once) where the emphasis is on elapsed time from problem
formulation to solution. Generally if a program is to be run repeatedly, it
is coded in fixed point in order to minimize the running time.

4, NOTES ON THE INSTRUCTIONS IN THE UNIVAC SCIENTIFIC REPERTOIRE,
In the following paragraphs, pecularities, tricks, and pitfalls which con-
front a programmer are discussed. In almost all cases the unusual circumstances

which must be noted are due to particular features of the computer logic.
Certain of these features create problems which are not immediately obvious.

PX 40

45

CODING FOR THE COMPUTER

a. OPERATIONS INVOLVING THE ACCUMULATOR.

(1) NEGATIVE ZERO. - Since the basic arithmetic operation of the
Univac Scientific is subtraction anc the "1's" complement number system is used,
negative zero (72 "ones"™ in the Accumulator) cannot be generated by any series
of arithmetic operations. Consider the operations performed by the .instructions
below:

Cl RA el e2 form sum

c2 RS A e3 form differencq
él 7 77777 77776 -1 in decimal
e2 00 00000 00001 +1 in decimal
e3d 77 77777 77777 -0 in decimal,

Using, for exemplary purposes, single length registers of four bits and an
Accumulator of eight bits, the operations can be shown as follows:

Contents of
Accumulator Operations

0000 0000 clear A
0000 0001 "add D(el)" by subtracting D(el)’

1111 1111 Operations of
1 end around borrow RA at Cl
1111 1110

1111 1110 "add D(e2)" by subtracting D(e2)'
0000 0000 result of executing (Cl)

0000 0000 transmit (AR) to X, then clear (A)
1111 1111 "add D(X)" by subtracting D(X)'

0000 0001 3 Operations of
. 1 end around borrow RS at C2.
0000 0000

1111 1111 subtract D (e3)

0000 0001

1 end around borrow
0000 0000 result after executing (C2) =~

Continuing the above example, negative zero may be formed in the Accumulator
using one of the "logical" instructions:

c3 ss e3 0 form - (230 -1) in A
c4 cC A el form negative zero in A

i.e.,
0000 0000 result after executing (C2)
0000 1111 form (A) - S(e3) Operations of
1111 0001 - SS at C3

1 end around borrow
1111 0000 result of executing (C3)

PX 40

46

CODING FOR THE COMPUTER

1111 0000 transmit (AR) to X, then clear (AR)

1111 0000 form logical sum of (X) and (AR) Operations of
1111 1111 form logical sum of (AR) and (e3) CC at C4 .
1111 1111 result after executing (C4)

Negative zero can be generated in the Accumulator by other series of instruc-
tions concluded by the Controlled Complement instruction (CCuv). Note that
in the above example the content of e3 (n9§ma11y considered a negative zero,
mod 236-1) was considered as 236-1 (mod 24-1). Such is the case when any of
the "split" or "logical™ instructions are used.

If the above routine is continued with the execution of the following in-
struction, note that the content of the Accumulator (all "ones") must be con-
sidered as zero.

C5 LA A k shift (A) left k places
i.e.,
1111 1111 result after executing (C4)
1111 1111 do not clear (A), but clear (X)
1111 1111 "and D(X)" to A by subtracting D(X)' from A | Operations of
0000 0000 (A) is now all zeros LA at C5
0000 0000 shift (A) left k places
0000 0000 result after executing (C5)

Thus, if the content of the Accumulator is all "one's™, its content must
be considered to be all zeros except in the following cases.

If either an Equality Jump or Threshold Jump instruction is executed with
the content of the Accumulator all one's, the result of testing (A) is as
follows.

If (u) is 296-1 (negative zero),

EJuv shows an equality, takes (v) as NI
TJuv results in a positive (A), continues present sequence

If (u) is all zeros (positive zero),

EJuv does not show an equality, continues sequence
TJuv results in a negative (A), takes (v) as NI

In none of these cases will the content of A be restored to negative zero.
The Accumulator will be set to all zeros after the execution of any of these
instructions.

If a Zero Jump (ZJuv) is executed when the content of the Accumulator is all

one's, (A) tests as not being equal to zero, but as the result of executing the
ZJ the Accumulator is set to all zeros.

PX 40

47

CODING FOR THE COMPUTER

(2) SINGLE OR DOUBLE LENGTH EXTENSIONS. - A common error involving
transmissions to the Accumulator and a subsequent testing of its contents is
illustrated by the following example:

Cl SP el 0 enter variable in A

c2 EJ e2 - compare (A) and (e2)

C3 - - -

el 40 00000 00000 variable (here shown as a constant)
el 40 00000 00000 a constant,

After (Cl) is executed, (A) is 00 00000 00000 40 00000 00000, The
EJ at C2 tests to determine if (A) and D (e2) are equal which is not true in
this case since D(e2) = 77 77777 77777 40 00000 00000. A correct method of

testing for the equality of these two values, (el) and (e2), ‘could be coded
as follows:

cl TP el
c2 EJ e2 -
c3 - -- -

By using the Transmit Positive instruction, the double length extension of (el)
is formed in the Accumulator.

(3) COMMON PITFALLS. - Many instructions make use of the Accumulator
without explicitly referencing it as one of the execution addresses.

It should be remembered that the initial contents of the Accumulator may
be destroyed when executing certain of these instructions which use the
Accumulator., In certain cases this may lead to erroneous results when the
Accumulator is used as the u or v address of the instruction, A study of the
section Sequential Listing of Instructions will indicate the peculiarities
arising from such situations, The volume entitled Content of Registers
presents in tabular form the results of such peculiarities.

Similar peculiarities result from addressing the Q Register as u or v of
an instruction.

b. SHIFT INSTRUCTIONS. - All shifts performed are left end-around shifts,
When a shift is performed the left-most portion of the number shifted in the
Accumulator (or Q register) becomes the right-most portion of the number. It
should be remembered that a left shift of "k" places is equivalent to a
modular multiplication by 2%, Depending upon the significance attached to the
sign-bit, the modular value of the shifted number will be in the range of the
signed numbers possible to represent in the register or in the range of the
system of binary numbers directly represented in the register. If a signifi-
cant "1" (or "O" if the number has a negative representation) is shifted into

PX 40

48

CODING FOR THE COMPUTER

the sign-bit position of the register, the "sign" of the shifted number must
be regarded as opposite in sign to the initial number unless the shifted
number is referenced for later use by one of the Split instructions.
The mathematical statement expfessing a left shift of (u) by k is
(u)-2k - [(u)'2k‘“q 2m + (u)-2k-m

where the brackets mean the greatest integer contained in the register and

m
m

72 for the Accumulator where k< 72
36 for the Q Register where k< 36.

An equivalent right shift can be obtained from a left shift by observing
that a right shift of k places = m-k left shifts,

When the v address portions of the Left Shift in A, LAuk, and Left Shift in
Q, LQuk, instructions contain ones in other than positions vg...vp, transmission
back to the u address of the shifted quantity contained in A or Q can be stopped,
The peculiarities resulting from such a condition are discussed in the section
Sequential Listing of Instructions.

This property of these shift instructions is useful whenever it is desired
to leave the original content of u undisturbed. For example, consider the
instruction LA 01000 32002,

The operations resulting from this instruction are:

Clear A

D (01000)— A

(A) is shifted two places to the left

The shifted result is not transmitted to 01000 but left in A.

An operation possible for some u addressed RAS locations is:

Transmit (positive) to A and Q the content of u after (u)
has been shifted k places to the left; e.qg.,

LQ 01100 32005 or also LA 00100 31005

PX 40
49

CODING FOR THE COMPUTER

The following operations result from these instructions:

(00100)—> @
Q) or (A)

D (Q)—> A or

(001.00) —> A

is shifted 5 places to the left

A short summary showing the results of coding the 54uk and S5uk instruc-
tions for transmissions to A or Q of u (= RAS) shifted is given below.

u address

00000-00777
01000-01777
02000-07777

00000-01777
02000-07777

00000-07777

If the u address is an MD address

address; e.qg.,

resulting in

v address

30---
30---
30---

31---
)

32---

LA

Clear

Shifted (RAS) transmitted
(Fault, illegal address)
to Q

to A

to Q
to A

to A

when using this property of the Shift
instructions (A) or (Q) is returned to the drum but not to the original

41234

A

32011

D(41234)—> A

(A) is shifted 9 places to the left

(Ag) —> 73234,

c. "ROUND OFF" AND "SCALE DOWN" OPERATIONS. - During the course of many
arithmetic operations it becomes necessary to change the scaling of a number,
A simple method of scaling a number cown would be to perform a left shift of
k places equivalent to the desired right shift, For example, the instructions
below multiply two numbers, (u) and (v), and scale the resulting product down

five places.

MP

LA

TP

A

v

00103

A

PX 40

50

form product (u) « (v)
right shift 5 or (72-k) places

eliminate unwanted bits.

CODING FOR THE COMPUTER

The left shift instruction LA A 00103 (where k = 103g = 67y = 72-3) per-
forms an end-around left shift of the product 67 places. This is equivalent
to an end-around right shift of five places. This shifting operation is equiv-
alent to a division by 29 if the Transmit Positive instruction is included and
if it is assumed that the multiplication of (u) and (v) did not generate more
than 40 significant bits. The instruction TP A A performs the operation of
clearing the least significant bits which appear in (A;) after the shift
operation, If these least significant bits were left in (A;) and further
arithmetic operations were performed on the shifted product, they would no
longer be considered as least significant bits but as the most significant
bits of the contents of the Accumulator. In fact, the bits that were shifted
into (Ap) could also effect the sign of the Accumulator in any further arith-
metic operations.

In the above example the product was shifted down without any considera-
tion to the arithmetic error (truncation or round-off error) that the process
may generate. Usually, before a "shift down" operation is performed in arith-
metic problems, a "round-off" step is first programmed. In the above example
the maximum error generated would be plus or minus one in the least signifi-
cant place. The following method will minimize the round-off error to be in
the range of plus or minus one-half in the least significant place. For sim-
plicity let us assume that (u) and (v) are positive; then, to round-off and
scale down, the instructions could be coded as

Cl1 MP u v form product (u) ° (v)
Cc2 SA dl 00103 round-off and scale down
C3 TP A A eliminate unwanted bits
dl 20 binary 10000.

In this example the product was scaled down five places after it was
"rounded off"™ at the sixth place. The constant added would increase the num-
ber to be shifted down by one if the fifth bit of the number has "1". The
general rule_ for rounding-off and scaling down by k places is to add 2k-1 (or
subtract 2K-1 if the number to be rounded is negative) before the scaling
operation occurs,

In "scale up" operations (multiplication by 2k), round-off operations are
not necessary, but care must be taken not to scale a number up beyond 71 bits
if the number is in the Accumulator, and 35 bits if the number is in the Q
register.

d. ACCUMULATIVE OVERFLOW. - The possibility of an overflow beyond the
stage A7y of the Accumulator during repeated executions of a Multiply Add
instruction is automatically checked by the computer, but often it is desir-
able to know if an overflow occurs into Ass and beyond during repeated execu-
tions of Multiply Add or Add and Transmit operations. An overflow into Ags
can be determined by executing the Equality Jump instruction with its u ad-
dress referencing the Accumulator; e.g., EJ A v. The equality of D(Agp) and
(A) is tested by this instruction; if there has been an overflow into A3s,
D(Ap) # (A). For example, if (A); = 0000 1011, D(Ag) = 1111 1011, indicating
an overflow to or beyond Ags.

PX 40
o1

CODING FOR THE COMPUTER

e, DIVIDE OVERFLOW., - The Divide instruction (DVuv) divides the 72-bit
integer in the Addumulator by the 36-bit integer at address u, placing the
quotient in the Q register and at address v, and leaving in A a positive re-
mainder, Therefore, care must be exercised to insure that the quotient does
not exceed 36 bits in length (35 bits plus a sign bit)., If the quotient should
exceed 36 bits, the computer will stop, giving a divide overflow indication on
the control panel. The divide operation, as performed in the Univac Scientific,
is defined as

(A); = (Q) - (u) + R where 0< R<|u.l

It should be remembered that in the above definition, (Q), R, (u), and (A) are
all integers.

Also to be noted is the following condition taken into account by the
Divide instruction. Consider the definition for all divide cases when (A) is
negative and when R, the remainder, is not zero. In order that R be positive,
the magnitude of the quotient, (Q), must be equal to the magnitude of the "true
quotient" plus one., The true quotient is the quotient as derived from the ex-
pression

|| = @« w+r

To obtain the true rounded quotient after a division, for all cases of the
Divide instruction, the following expression may be used:

(A) + 1/2 |(u)| = () + (uw) + R,

and, assuming dl contains the dividend

Cl ™ u A form |(u)l in A

c2 LA A 107 form 1/2 ku)l in A

c3 RA A dl form (d1) + 1/2 | (w)| inA
Cc4 DV u q form rounded division,

It should be noted that the instruction at C2 puts an unwanted bit into A7y,
but by using the Replace Add instruction, which, as addressed, only uses 3%—
bits of (A) to perform the addition, the bit in the A7y position is cleared
out.

Since the Divide instruction produces as its result an integer quotient
and remainder, the loss of significant bits may be troublesome in "fixed" or
"floating point" operations if a scaling operation is not performed before a
division. To illustrate how to perform this scaling operation, assume that
the division b/c is desired where
1< |b] 172
1< |e|] 1/2

and

and assume that b and ¢ are scaled up in the registers el and e2 as

(el) = b + 239
and (e2) = ¢ » 235
PX 40

52

CODING FOR THE COMPUTER

or b = by - 2739
c = cm ‘o 2-35

where by and ¢y are the machine copies (integers) of the external true frac-
tional numbers. The instructions would be coded as follows:

fl LA el 20043 Scale b up 35 places and
leave the result in A.
£2 DV e2 Q Divide by ¢ and put the

result in Q.
The Q register now contains the quotient scaled up 35 places; i.e.,
235 |qm|2 234 where qp = (Q)
or 1> |qfz 1/2.

In the above example it was tacitly assumed that the magnitude of b was greater
than the magnitude of c¢. If this were not the case, the result of executing
(f2) would cause a divide overflow since
236, lmﬂz 239,

f. REPEAT INSTRUCTION. - Because of the complexity of the Repeat in-
struction, the details of the repeat operation are restated below.

(1) FORMAT OF REPEAT INSTRUCTION. - The Repeat instruction has the
form RPjnw, The normal values of j are O through 3 and determine the advance
of the execution addresses of the repeated instruction as follows.

if j=0, neither the u nor v address portion of the repeated
instruction is advanced.

if j=1, the v address of the repeated instruction is ad-
vanced by one after each execution.

if j=2, the u address of the repeated instruction is ad-
vanced by one after each execution,

if j=3, both the u and v addresses of the repeated instruc-
tion are advanced by one after each execution,

The advance of the addresses occurs only in the Program Control Register
(PCR) where the repeated instruction is held during the repeat operations.
Therefore, the original form of the repeated instruction in storage is
unaltered.

The value n determines the number of times the repeated instruction is to
be executed. This value can vary through the range O through 4095 (decimal).

If n is zero, the repeat operations are terminated without execution of the
"repeated" instruction.

PX 40

53

CODING IFOR THE COMPUTER

The "repeat termination address", w, replaces the v address portion of
fixed address Fy; (00000 or 40001) during the execution of the RP instruction,
(Normally, F; contains an MJjv instruction with a j of 0.) This feature pro-
vides the means of "jumping out" of the repeated operations after n executions
of the repeated instruction,

(2) REPEATED NON-JUMP INSTRUCTION. - The repeated instruction is
held in the Program Control Registers (PCR) and is executed n times. After
the nth execution, a jump to F; occurs. Because this instruction is usually
an MJjv with a j of zero and a v of w, it produces a jump to the address orig-
inally specified by w of the RP instruction.

(3) REPEATED JUMP INSTRUCTION. ~ If the repeated instruction is a
Threshold Jump (TJ) or Equality Jump (EJ), the jump to w may not occur. The
repeated instruction is held in PCR and is executed not more than n times. If
n executions occur with no jump condition being fulfilled, the normal termina-
tion, consisting of a jump to Fj, followed by a jump to w, occurs. However,
if any execution of the repeated instruction fulfills a jump condition, the
value j, n-r is stored in the v_portion of Q wWhere j = j of RP instruction;
and n-r = n of RP instruction minus r, the number of executions performed),
and a jump is made to the address specified by v of the TJ or EJ instruction,

Similar circumstances are created by the Index Jump and Manually Selective
Jump instructions with the exception that no indication of the number of exe-
cutions is given by a storage in Q.

Other instructions (Interpret, Return Jump, Q Jump, Sign Jump, Zero Jump,
Manually Selective Stop, and Program Stop) produce a jump or stop on the first
execution, and thus behave as if no RP instruction preceded them.

(4) EXAMPLES USING THE REPEAT INSTRUCTION. - In many problems which
are programmed for computer execution, it is important that the most efficient
use of operating time and storage capacity be made. The Repeat instruction,
an unusual logical feature of the Univac Scientific makes it possible to
realize a sizeable reduction in the time spent referring to storage for in-
structions and in the storage space devoted to holding instructions. By
using the RP instruction, long sequences of operations can be governed by only
two or three instructional references to storage. This is evidenced by the
following examples.

PX 40

CODING FOR THE COMPUTER

Consider the accumulation of products, such as,

S = ajby + agho + ... + apbhy = igi ajb;

The Multiply Add instruction (MAuv) causes the product of the numbers located
in storage with the addresses u and v to be added to the number already in the
Accumulator, leaving the total result in the 72-bit Accumulator. If the MA
instruction is repeated as shown below, the scalar product of two n-vectors

is generated.

dl RS A A Clear Accumulator to zero

d2 RP 3,n d4 Form sum of products

d3 NA up v S = (ul) (v1) + (u2) (v2) + ... + (un)(vn)
d4 - -_— - Next instruction

ul ay)

> Vector a

un a

n
P
1
vl b]_
. . ~ Vector b
vn b
. n)

Note the instruction at dl which clears the Accumulator to insure that its
initial content is zero.

Care should be taken that the contents of F1 are not inadvertently altered
during a block transfer of n words to Rapid Access Storage. This pitfall is
illustrated by the following example:

RP 30400 w
TP 50000 07600

The sequence of events which occurs during the execution of these instructions
is as follows:

(a) Replace the lower order 15 bits of (Fj) with the address w

(b) Proceed to transmit the contents of

pPX 40

95

CODING FOR THE COMPUTER

50000 to 076C0
50001 to 076C1

. ®

.

50177 to 07777
50200 to 00000

.
» .

50377 to 00177

(¢) Extract the next instruction to be executed from address Fj.
Note that the contents of the address 00000, (Fl), have been replaced by the

contents of address 50200 during the repeated transmissive operations. Be-
cause of this, the desired jump to wo no longer exists at this address.

The following example illustrates further the care that must be exercised
when using the Repeat instruction.

00100 RP 30200 00303
00101 TP 45000 00200

The operations performed by this pair of instructions are:

(a) Replace the lower order 15 bits of (F;) with the address
00303

(b) Proceed to transmit the contents of

45000 to 00200
45001 to 00201

45102 to 00302
45103 to 00303

45177 to 00377

(¢) Extract the next instruction to be executed from address Fy.
Note that in this example the original contents of 00303 have
been replaced by the contents of address 45103. Therefore,
the next instruction tc be executed after the jump to 00303
is the instruction which was originally stored at 45103.

(5) The initial operations of the RP instruction replace the lowest
order 15 bits of (Fy), the contents of the address 00000 (or 40001), with the

address w of the RPjnw instruction, The terminating operations of the repeat
sequence extract the next instruction to be executed from the address F;

PX 40

56

CODING FOR THE COMPUTER

(unless the repeated instruction called for a jump to v). The instruction con-
tained in Fy is normally a jump instruction (usually an MJjv) referencing its

v address; the address w written in by the RP. However, if the instruction
contained in F; is not a jump instruction, or if it is a conditional jump

(1J, MJ, TJ or EJ) where the jump condition is not fulfilled, the next in-
struction to be executed after the execution of the instruction at Fj is

taken from one of the following addresses:

If j was O, NI from address 40000
If j was 1, NI from address 70000
If j was 2, NI from address 60000
If j was 3, NI from address 50000 .

These are the addresses that are left in the Program Address Counter (PAK)
after the RP instruction, because of the use of PAK as the counter for the num-
ber of executions to be performed on the repeated instruction.

(7) PRINT AND PUNCH INSTRUCTION, PR-v AND PUjv. - Because of the oper-
ands of the Print and Punch instructions requiring only a six bit storage space,
these instructions can be coded so that a savings of storage space is effected.
The v address of PUjv or PR-v may reference any instruction whose v address
references the Accumulator or Q Register, or whose v address portion is not
used in the instruction, e.g., AMjn-, BMjn-, or PS--, For example, note the
following instructions: '

01001 PR 00000 01050 Print the number "1"

01050 MNP 00010 31052

Note that only one character is printed or punched with each output refer-
ence. In order to print or punch out in octal a 36 bit word, twelve Print or
Punch instructions would be needed.

To illustrate the use of these instructions, consider the following routine
which prints out on the typewriter one word in octal.

Cl PR 0 el0 Print carriage return
c2 LQ dl 3 Shift word to be printed 3 places
to the left

c3 QT d2 A Mask out 3 bits §r one octal digit.
C4 AT d3 Cc5 Compute print instruction which is NI.
(05) PR 0 ei Print one octal digit.
(03] 1J d4 c2 Test for end, if not finished go to C2
c7 PS - - End.

PX 40

57

dl

d2
d3

d4

e0
el
e2
el
e4d
ed
eb
e7

el0

XX

00

PR

00

00
00
00
00
00
00
00
00

00

CODING

XXXXX

00000

00000

00000
00000
00000
00000
00000
00000
00000
00000

00000

FOR THE

X3XXX
00007
el

00013

00037
00052
00074
00070
00064
00062
00066
00072

00045

PX 40
58

COMPUTER
Number to be printed
Mask
Dummy command
Counter, n-1 = 1lyp

0)
(D
(2
Flexowriter codes for
(3) the digits O through 7.
(4)
(3)
(6)

(7

Flexowriter code for
carriage return.

APPENDIX A

NUMBER SYSTEMS

PX 41

NUMBER SYSTEMS

1. GENERAL

Any positive integer N can be expressed in the form

N = Apr® + Ay e+ ooo + aprl + apr0

where O0<Aj<r and r is any integer greater than 1. The integer r is called
the base or radix of the number system, The only radix values that need to
be considered for programming for the UNIVAC SCIENTIFIC are 10, 8 and 2. The
number systems with these radices are called decimal, octal, and binary sys-
tems, respectively.

An integer N expressed as a number in the usual decimal notation implies
that the number is a refinement of a polynomial in powers of 10 with co-
efficients which satisfy the relation 0<A;<10, For example, N = 308 implies
the polynomial N = 3.102 + 0-10! + 8-100, Accordingly, an integer N = 1011
in the binary system with 0£Aj<2 may be expressed as the polynomial

N =1-23 +0-22 + 1-21 + 1-20 (= 11 decimal); and an integer N = 126 in the
octal system with 0SAj< 8 may be expressed as the polynomial
N =182 + 2.8 +6-80 (= 86 decimal).

Because electronic and magnetic circuits consist primarily of bi-stable
elements, the computer uses the binary representation in all internal manipu-
lations of numbers. As will be seen later, there is a very simple relation-
ship between the binary and octal representations of a number. Since conver-
sion between these two systems is almost immediate and since the octal notation
is shorter, programs are encoded with octal notation representing binary num-

bers. It is desirable for people who prepare programs for the computer to be

PX 41
1

NUMBER SYSTEMS

familiar with methods of converting numbers from decimal to binary to octal
form and vice versa. When the base of a number is not apparent from the con-

text, it will be specified by a subscript as shown in the following example:

34, = 42g = 100010y

PX 41

NUMBER SYSTEMS

2., CHANGE OF BASE

Since the manual conversion of numbers from one system to another involves
the arithmetic operations of addition and multiplication, it is necessary to
know the sums and products of certain pairs of integers expressed in the octal
and binary systems. In doing arithmetic operations by hand, the ability to
remember the sums and products of pairs of decimal digits is utilized, although
these sums and products are tabulated in decimal addition and multiplication
tables. Similar tables presented below are necessary for arithmetic operations

with octal and binary digits.

OCTAL ADDITION TABLE OCTAL MULTIPLICATION TABLE

o 1 2 3 4 5 6 7 o 1 2 3 4 5 6 7
ojo 1 2 3 4 5 6 7 oo o o0 o0 O o o0 o
1f{1r 2 3 4 5 6 7 10 ifo 1 2 3 4 5 6 7
212 3 4 S5 6 7 10 11 210 2 4 6 10 12 14 16
313 4 5 6 7 10 11 12 310 3 6 11 14 17 22 25

4 5 6 7 10 11 12 13 410 4 10 14 20 24 30 34
5(5 6 7 10 11 12 13 14 5(0 5 12 17 24 31 36 43
6|16 7 10 11 12 13 14 15 60 6 14 22 30 36 44 52
717 10 11 12 13 14 15 16 7T{0 7 16 25 34 43 32 61

The addition table and the multiplication table for binary numbers are

shown below

BINARY ADDITION TABLE BINARY MULTIPLICATION TABLE
0 1
010 1 0
1 1 10 1
PX 41

NUMBER SYSTEMS

a. CONVERSION OF INTEGERS. - The simplest way of changing a binary or
octal integer to its decimal equivalent is to expand it to, and evaluate the
sum of the terms of, the polynomial expression given on a previous page. The
conversion from decimal to octal or binary presents more of a problem. Two
methods are given which can be used for these conversions. The first of these
is as follows:

(1) Given two integers N and D, the latter being positive, it can be
shown that there exist unique integers Q and R such that N = QD + R where
O0<R<D. This is, of course, true regardless of the choice of base used in
expressing N. Hence, if Njp and Ng are the decimal and octal expressions for
the same integer and if Djp and Dg are the decimal and octal expressions for
another (positive) integer, we can compare the two equations

N10 = Q10'Dyp * B0, 0SRj<Djo
Ng = Qg-Dg * Rg. 0=<Rg<Dg

and conclude that Qo = Qg and Ryjg = Rg. This fact is used in the process of
converting an integer from base 10 to base 8 in the following way: The decimal

expressions for an integer N expressed as Njp and Ng are

N1o = dylon + dp_q107-1 + «-+ + 4710 + dg, 0<dj <10

Ng e8™ + em_‘18m'1 t o +ey8 +ep, 0%€;<8

Il

Dividing the polynomials by decimal 8 gives the same remainder in either case,

but from the second expression, it is obvious that this remainder is egp while

the quotient is em8m'1 + em~18m'2 eee + e28 + el' Dividing this quotient by 8

gives the new quotient emBm"2 + - e38 + eg and the new remainder e;. Con-
tinuing division results in the successive remainders ep, €], €y, """, e, which

are the digits of Ng in reverse order. In a numerical case, the successive

PX 41

NUMBER SYSTEMS

divisions of Njp by decimal 8 yield remainders which are actually the decimal
equivalents of the digits ep, ey, ..., ep.
To illustrate this method, the number expressed as 1492 in decimal notation

is changed to its octal equivalent as follows:

Decimal Expression Octal Equivalent
8)1492, Remainder 4 4
8)186, Remainder 2 2
8)23, Remainder 7 7
8) 2, Remainder 2 2
0

Thus 1492, = 2724g

Conversion of an integer N from base 8 to base 10 can be carried out in a
similar fashion by dividing Ng by 12g (= 10j0) to yield the octal equivalents
of the digits of Njg.

The conversion of an integer N from base 10 to base 2 or from base 2 to
base 10 can be discussed according to the method outlined above with Njg and

No represented as follows:

Njo = d 10" + ... +d10 + dg, 0<d; <10

No = b2k + ... + 32 + by, 0<py<2

Njo would be divided by 2 to yield the decimal equivalents of the digits of
N2, and No would be divided by 1010 (= 1010) to yield the binary equivalents
of the digits of Njq.

(2) The method that follows has the advantage that it yields the de-
sired digits in normal order, but it has the disadvantage that it requires a

knowledge of the values of powers of one base in terms of another. This method

PX 41
5

NUMBER SYSTEMS

requires the procedure below:
Given a number Ny to express as Ny = agb® + ap_1b% 1 + ... + ajpl + apb0, the
coefficients ay ... ag, ©<aj<b, may be found as follows:
1. Determine the highest poWer n such that b“+1;>Nr. Then, let Ny = Nj.
Divide N, by b™, yielding the quotient a, and the remainder
Np.1 = ag_1p™ 1 + ... + agbO0.

2. ‘Repeat the divisions of Nj (i = n, n-1, ..., 0) by bl until the last

division yields the quotient ag.
3. A quotient (or coefficient) aj may be zero and must be represented in
its proper order in the final result,
As an example of this method the number expressed decimally as 137 is changed
to its octal equivalent as follows:

_ n
Nyp =apb” +a

L h e+ a0 = Ny

r=10, b =8, N, =N, = 137, n = 2 (83>137)

n
137 = 2.64 + 9 ag =2, Ny =9
9=1-8+1 a; =1, Ng =1
1=1.1+0 ag = 1

The coefficients derived above are the digits of Ng; thus Ny = 137 = Ng = 211.
(3) Although it would be possible to use the above methods in convert-
ing an integer from base 8 to base 2 and vice versa, it is easier to convert by
inspection, This can be done because of simple relationship, discussed sub-
sequently, between Ng and N9, dependent upon the fact that 23 = g,
The equivalent polynomials for an integer N expressed as Ng and No are
Ng = e 8™ + ep18™ 1 + .., + 282 + 18l + ep80, 0gej<8

Ny = b2k + b j2K-1 + .+ bp22 + b2l + py2% o0spj<2

PX 41

6

NUMBER SYSTEMS

The expression for No may be factored as follows:
No = ... + (bgp922 + bgps12h + b3p)23M + . + (by22 + by2l + b()20
with the integral rangem =0, 1, 2, ..., p/3, k2p2k-2
The value of p which is a multiple of three is chosen. It is seen by comparing
termwise the expressions for Np factored and N8 that a common component exists,
(23)m = 81. Hence, the coefficients of each term are equal since the polynomial
expressions themselves are equal. Thus the digits of Ng, given its binary

equivalent, are as follows:

ey = (bg-22 + b -2l + pg)
— 2 1

e) = (b5.22 + by.2! + by)

ey = (b8°22 + b7-21 + bg)

ep = (bpyp22 + b

1
m 12 bp)

p+

Note that the condition 0<ej<8 is satisfied by the above relationship.

The simple procedure of the conversion from Ny to Ng, according to the pre-
ceding method, is shown by the following example:

Given No = 1101001111, the digits of its equivalent in octal notation, Ng,
are derived by evaluating each group of three binary digits, beginning at the
right. Thus, No above yields Ng = 1517. (The binary number may be expanded
by assuming zeros‘at the left.)

To convert a number from octal to binary notation, each octal digit is
replaced by its binary equivalent.

b. CONVERSION OF FRACTIONS. - Fractions in the binary and octal number

systems are represented in a fashion similar to fractions in the decimal system.

PX 41
K

NUMBER SYSTEMS

For example, the number N, represented by the mixed decimal number 5.78125, is

equal to the fraction-ézgééﬁ. The number N in binary notation, represented by
1
the mixed number 101.11001, is equal to the binary fraction TeillO0L To re-

present a fraction, base r, whose denominator is equal to arP with O0<a<r, as
a number with a radical point, place the radical point p places to the left of
the right-most digit of the numerator.

Numbers represented by the fractions of one system may be translated to
their representations in other systems by applying the methods described pre-
viously to both the integral numerator and denominator. For example, the
fraction in the binary notation above may be converted to decimal notation as
follows:

97 + 95+ 04 + 23 4+ 20 185 _ 578125
29 32

A fraction in the binary system may be changed to its octal notation by the
grouping method described previously. Applying this method to the same frac-

tion, base 2, yields the fractions,base 8.~2%% = Zlﬁl = 5.62. This octal

number may be expressed as the fraction-%%%—which is equal to the decimal

2
58" £6:8+2 - 5 78125,
8

fraction

Fractions, expressed with a radical point, of one number system may be
translated to numbers of another system by the method described subsequently.
If the fraction is a mixed number, the integral portion is converted by one of
the methods for integral conversion previously explained. The fractional con-
version may be explained by establishing the polynomial expressions for a
number F expressed as a fraction in two systems. The expansions of Fjg and

Fg will be used for exemplary purposes. The expressions for a fraction F are

as follows:

PX 41

NUMBER SYSTEMS

Flo = d_j1071 + d_51072 + ... + d;_p101-n + d_ 107", 0<d;<10

Fg e_18'1 +e 982+ .., +ep_ B8l +e 8 0<e;<8

Multiplication by 8 of the polynomials above, yields the expressions
Fg x 8 =e_180 + e o081 + ... +e gl-m

and Fjg x 8 = d_j10°1.8 + d_91072.8 + ... +d_,107".8

The multiplication of Fg x 8 results in a mixed number with e_180 as the
integral portion; therefore, the number to the left of the decimal point of
Fjp x 8 must be the decimal equivalent of e_j. This number may be a zero or
an integer depending on the value of the first decimal digits d_j of Fjq,

To find the decimal digit equivalent to the second octal digit e_o, multiply
by 8 the fractional portion of Fjg x 8. This multiplication will result in a
number whose portion to the left of the decimal point is equivalent to the
integral portion, e_280, of 8 times the fractional portion of F8 x 8. Thus,
successive multiplications by 8 of the fractional portions of Fjp yield the
decimal equivalents of the octal digits e_;, e_o, ..., e_n As an example, to
convert the fraction 5.78125, base 10, to its octal equivalent the procedure

would be as follows:

Decimal expression Octal equivalent
5.78125 5
.78125 x 8 = 6.25 6
.25 x 8 2.00 2

Thus 5.78125(= 5.628.

Similar conversions are made with other number systems by using the appro-
priate number as the multiplier, Note that a terminating fraction of one base

need not lead to a terminating fraction of another base. For example,

0-10;, = . 0631463146314 ...g.

PX 41
9

NUMBER SYSTEMS

3. REPRESENTATION OF SIGNED NUMBERS

The modulus of a number system is the discrete number of quantities which
can be represented by the system, The modulus of a number system to be repre-
sented by the elements of a computer is fixed by the design of the machine.
This discussion will consider only the representation of a binary system by
k parallel stages of bi-stable elements. Each stage represents a digit of N2.
The state of each stage (indicating a O or 1) represents a coefficient of a
term of the polynomial

_ . okl 1 0 ,
Ny = by 1270 + ... +bj2" + b2Y, 0<bj<2,

For exemplary purposes the value k == 4 stages will be used. Thus, if a
computer had four bi-stable elements the modulus of the binary system which
could be represented by the machine would be 24 = 16, with the range of binary
numbers from 0000 to 1111, It is desirable that this range of binary numbers
from O to 2K-1 represents both positive and negative values since it is not pos-
sible machine-wise to indicate negative numbers by a minus sign designation.
Therefore, the binary digit represented by the stage 2k—1 is reserved to indi-
cate the sign of a number, and negative numbers are represented machine-wise by
a complement form. The simplest way to represent a negative number in such a
manner in a computer with bi-stable elements is to use the one's complement of
its absolute value. This entails subtracting each binary digit of the number
from the quantity one or subtracting the binary representation of the absolute
value of a negative number of a system of signed numbers, modulus 2k, from the
binary representation of 2k”1. Thus, the process of forming the one's comple-
ment representation of the negativs number -3, with k = 4, would be as follows:

1111
minus 0011 binary represeatation of |—3‘

1100 machine representation of -3 .

PX 41

10

NUMBER SYSTEMS

Note that forming the one's complement representation of a negative number
can be accomplished machine-wise, if the absolute value is represented by k
stages, by merely reversing the state of a bi-stable element: each representa-
tion of one is replaced by a zero representation and vice versa.

In a one's complement binary system the range of values of signed numbers

k-1 to 2% 1.1 with the left-most

that can be represented by k stages is 1-2
stage indicating the sign of the number represented. The table below shows
the correspondence of signed numbers to their representation in one's comple-

ment system with k = 4,

Signed Decimal Signed Binary One's Complement
Number Number Binary Number
7 +111 0111
6 +110 0110
5 +101 0101
4 +100 0100
3 +011 0011
2 +010 0010
1 +001 0001
0 +000 0000
-0 -000 1111
-1 -001 1110
-2 -010 1101
-3 -011 1100
-4 -100 1011
-5 -101 : 1010
-6 -110 1001
-7 -111 1000
PX 41

11

NUM3ER SYSTEMS

Note that the moduli of the preceding systems of signed numbers, as shown
represented by a one's complement binary system, is reduced from 24 to 24—1 if
the two zeros represented are considered a unique value, It is desirable in
computer operations to have only one representation of zero, 00...00 or 11...1L.
In actual arithmetic operations by the Univac Scientific the occurrence of only
one of these representations of zero is possible, This reduces the modulus of
a one's complement system represented by k stages of 2k-1. The fundamental
arithmetic operation of the computer determines which of these two states will
represent zero, The basic arithmetic operation of subtraction as performed in
the UNIVAC SCIENTIFIC results in a zero representation, derived from any inter-
nal arithmetic operation, to be the simultaneous zero state of each stage.
(Addition is performed by a subtractive process by subtracting the one's com-
plement of the addend from the augend to form the difference, which will, in
this case, be the sum.)

Thus the representation of a zero occurring when a number is subtracted
from itself or when the absolute value of a negative number is added (by a
subtractive process) to its negative value will be a series of zeros if these
operations are performed by a subtractive process. The following examples

illustrate this process with a four-stage one's complement binary number re-

presentation.
0001 1 1110 -1
minus 0001 minus 1 minus 1110 plus | -1
0000 0 0000 0

Remember that the computer does not interpret numbers represented binarily

as having signed values. Arithmetic operations deal with a system of numbers

PX 41

12

NUMBER SYSTEMS

assuming an arrangement of:

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

A subtraction in binary, such as 0010 minus 0100, is interpreted as subtract-
ing four times the quantity of one from 0010. By referring to the above system
and counting backward modularly, the value of 1110 is derived. However, this
is not the one's complement representation of the desired value of minus two.

An additional quantity of one must be subtracted to yield the desired value
1101.

. This additional quantity of one must be subtracted whenever the subtraction
operation "counts through" the negative representation of zero, 1111. With a
binary system representing a number system modulus 2k-1, this correction for
the transition point is embodied as a borrow propagated from the left-most
stage, 2k-1 The correction is made by applying the borrow to the right-most
stage. Machinewise, the borrow propagated from the left-most stage is actually
applied to the right-mest stage and is known as an end-around or circular bor-

row. Using the notation of the one's complement system, modulus 24-1, the sub-

traction of a value of four from a value of two proceeds as follows:

0010 2
minus 0100 minus +4
1110
borrow 1
1101 -2 .
PX 41

13

NUMBER SYSTEMS

The subtraction was enabled by applying the borrow, propagated from the 23

stage, to the 2O stage.

Another example is provided by the simple process of forming the sum of

zero and one by a subtractive process. Thus, using the same notation

0000 0
minus 1110 minus -1
0010
borrow 1
0001 +1
In this case the end-around borrow is continued past the right-most stage until

it can be made. It may continue only as far as the stage where the conditions

first necessitated the borrow.

PX 41

14

APPENDIX B

TABLE OF POWERS OF TWO

pPX 42

137
274
549

QO DN

33
67
134

268
536
073
147

294
589
179
359

719
438
877
755

131
262
524

048
097
194
388

T
554
108
217

435
870
741
483

967
934
869
738

476
953
906
813

=

—
= O 0 - O~ Ut

e
[&) ISV &)

[S —
NoNa 2N Ne)

20
21
22
23

24
25
26
27

28

29
30
31

32
33
34
35

36
37
38
39

N

OO OO OO OO OO OO OO OO0 OO O

OO0 S OO

(e NeNeNe)

OO OO

OO OO

TABLE OF POWERS OF TWO

25
625
812

906
953
976
488

244
122
061
030

015
007
003
001

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

25

125
562
281

140
070
035
517

258
629
814
907

953
476
238
119

059
029
014
007

003
001
000
000

000
000
000
000

000
000
000
000

25

625

312
156
578

789
394
697
348

674
837
418
209

604
802
901
450

725
862
931
465

232
116
058
029

014
007
003
001

PX

25
125

062
531
265
632

316
158
579
289

644
322
161
580

290
645
322
661

830
415
207
103

551
275
637
818

42

25
625
812

406
203
101
550

775
387
193
596

298
149
574
287

643
321
660
830

915
957
978
989

25

125
562
781

390
695
847
923

461
230
615
307

653
826
913
456

228
614
807
403

25

625
312

656

828

914
957
478
739

869
934
467
733

366
183
091
545

25
125

062
031
515
257

628
814
407
703

851
425
712
856

25
625
812

906
453
226
613

806
903
951
475

5

25

125
562 5
281 25

640 625

320 312 5
660 156 25
830 078 125

APPENDIX C

DECIMAL TO OCTAL CONVERSION TABLE

PX 43

00

TENS

01

TENS

W N

>N

O O N4 oo

O @

~ o U W

12
24
36
50
62
74
106
120
132

144
156
170
202
214
226

240

252
264
276

13
25
37
51
63
75
107
121

133

145
157
171
203
215

227

241
253
265
277

DECIMAL TO OCTAL‘CONVERSION TABLE

14
26
40
52
64
76
110
122
134

146
160
172
204
216
230

242

254
266
300

(0-4096)
UNITS
3 4
3 4
15 16
27 30
41 42
53 54
65 66
7T 100
111 112
123 124
135 136
147 150
161 162
173 114
205 206
21T 220
231 232
243 244
255 236
267 270
301 302

PX 43

17

31

43
95
67
101
113
125
137

151
163
175
207
221
233
245
257
271
303

20
32
44
56
70
102
114
126
140

152
164
176
210
222
234
246
260

272

304

21
33
45
57
71
103
115
127

141

153
165
177
211
223
235
247
261
273

305

0 Through 199

10
22
34
46
60
72
104
116
130
142

154
166
200
212
224
236
250
262
274
306

11
23
35
47
61
73
105
117
131

143

155
167
201
213
225
237
251
263
275

307

DECIMAL TO OCTAL CONVERSION TABLE (cont.)
(0-4096)
200 Through 399

UNITS
0 1 2 3 4 5 6 7 8 9

02 0 310 311 312 313 314 315 316 317 320 321

1 322 323 324 325 32 327 330 331 332 333

2 334 335 336 337 340 341 342 343 344 345

3 346 347 350 351 352 353 354 355 356 357

4 360 361 362 363 364 365 366 367 370 371
TENS

5 372 373 374 375 376 377 400 401 402 403

6 404 405 406 407 410 411 412 413 414 415

7 416 417 420 421 422 423 424 425 426 427
8 430 431 432 433 434 435 436 437 440 441
9

442 443 444 445 446 447 450 451 452 453

03 0 454 455 456 457 460 461 462 463 464 465
1 466 46T 470 471 472 4T3 474 475 4T6 477
2 500 501 502 503 504 505 506 507 510 511
3 512 513 514 515 516 517 520 521 522 523
4 524 525 52 527 530 531 532 533 534 535
T o 5% 537 50 541 542 S43 544 545 56 547 -
6 550 551 552 553 554 555 556 557 560 561
7 562 563 564 565 566 567 570 571 572 573
8 574 575 576 51T 600 601 602 603 604 605

9 606 607 610 611 612 613 614 615 616 617

PX 43

04

TENS

05

TENS

<~ o U s

No RN «eo)

v e N o o

620

632 -

644
656
670
702
714
726
740
752

764

776

1010
1022
1034
1046
1060
1072
1104

1116

DECIMAL TO OCTAL CONVERSION TABLE (cont.)
(0-4096)

400 Through 599

UNITS

621 622 623 624 625 626 627 630 631
633 634 635 636 637 640 641 642 643

645 646 64T 650 651 652 653 654 655

65T 660 661 662 663 664 665 666 66T

671 672 673 674 675 676 677 700 701

703 704 705 706 707 710 711 712 713

715 716 71T 720 721 722 723 724 125

27 730 731 732 733 734 735 736 737
741 742 743 744 745 746 747 750 751
753 754 755 756 757 760 761 762 763

765 766 767 770 771 772 773 774 175

7 1000 1001 1002 1003 1004 1005 1006 1007
1011 1012 1013 1014 1015 1016 1017 1020 1021
1023 1024 1025 1026 1027 1030 1031 1032 1033
1035 1036 1037 1040 1041 1042 1043 1044 1045
1047 1000 1051 1052 1053 1054 1055 1056 1057
1061 1062 1063 1064 1065 1066 1067 1070 1071
1073 1074 1075 1076 1077 1100 1101 1102 1103
1105 1106 1107 1110 1111 1112 1113 1114 1115
1117 1120 1121 1122 1123 1124 1125 1126 1127

PX 43

06

TENS

o7

TENS

o o N o

1130
1142
1154
1166
1200
1212
1224
1236
1250

1262

1274
1306
1320
1332
1344
1356
1370
1402
1414

1426

DECIMAL TO OCTAL CONVERSION TABLE (cont.)

1131
1143
1155
1167
1201
1213
1225
1237
1251

1263

1275
1307
1321
1333
1345
1357
1371
1403
1415

1427

1132
1144
1156
1170
1202
1214
1226
1240
1252
1264

1276
1310
1322
1334
1346
1360
1372
1404
1416

1430

(0-4096)
UNITS

3 4

1153 1134
1145 1146
1157 1160
1171 1172
1203 1204
1215 1216
1227 1230
1241 1242
1253 1254
1265 1266
1277 1300
1311 1312
1323 1324
133 1336
1347 1350
1361 1362
1373 1374
1405 1406
1417 1420
1431 1432

PX 43

1135
1147
1161
1173
1205
1217
1231
1243
1255
1267

1301
1313
1325
1337
1351
1363
1375
1407
1421
1433

1136
1150
1162
1174
1206
1220
1232
1244
1256
1270

1302
1314
1326
1340
1352
1364
1376
1410
1422

1434

600 Through 799

1137
1151
1163
1175
1207
1221
1233
1245
1257

1271

1303
1315
1327
1341
1353
1365
1377
1411
1423

1435

1140
1152
1164
1176
1210
1222
1234
1246

1260
1272

1304
1316
1330
1342
1354
1366
1400
1412
1424
1436

1141
1153
1165
1177
1211
1223
1235
1247
1261

1273

1305
1317
1331
1343
1355
1367
1401
1413
1425

1437

08

TENS

09

TENS

~N O~ N

@e)

x® N o O,

1440
1452
1464
1476
1510
1522
1534
1546
1560
1572

1604
1616
1630
1642
1654
1666
1700
1712
1724

1736

DECIMAL TO OCTAL CONVERSION TABLE (cont,)

(0-4096)
800 Through 999
UNITS
1 2 3 4) 6 7 8 9

1441 1442 1443 1444 1445 1446 1447 1450 1451
1453 1454 1455 1456 1457 1460 1461 1462 1463
1465 1466 1467 1470 1471 1472 1473 1474 1475
1477 1300 1501 1502 1503 1504 1505 1506 1507
1511 1512 1513 1514 1515 1516 1517 1520 1521
1523 1524 1525 1526 1527 1530 1531 1532 1533
1535 1536 1537 1540 1541 1542 1543 1544 1545
1547 1550 1551 1552 1553 1554 1555 1556 1557
1561 1562 1563 1564 1565 1566 1567 1570 1571

1573 1574 1575 1576 1577 1600 1601 1602 1603

1605 1606 1607 ‘1610 1611 1612 1613 1614 1615
1617 1620 1621 1622 1623 1624 1625 1626 1627
1631 1632 1633 1634 1635 1636 1637 1640 1641
1643 1644 ‘1645 1646 1647 1650 1651 1652 1653
1655 1656 1657 1660 1661 1662 1663 1664 1665
1667 1670 1671 1672 1673 1674 1675 1676 1677
1701 1702 1703 1704 1705 1706 1707 1710 1711
1713 1714 1715 1716 1717 1720 1721 1722 1723
1725 1726 1727 1730 1731 1732 1733 1734 1735

1737 1740 1741 1742 1743 1744 1745 1746 1447

PX 43

10

TENS

11

TENS

~N o U;

e}

1750
1762
1774
2006
2020
2032
2044
2056
2070

2102

2114
2126
2140
2152
2164
2176
2210
2222
2234

2246

DECIMAL TO OCTAL CONVERSION TABLE (cont.)
(0-4096)

1000 Through 1199

1751 1752 1753 1754 1755 1756 1757 1760 1761
1763 1764 1765 1766 1767 1770 1771 1772 1733
1775 1776 1777 2000 2001 2002 2003 2004 2005
2007 2010 2011 2012 2013 2014 2015 2016 2017
2021 2022 2023 2024 2025 2026 2027 2030 2031
2033 2034 2035 2036 2037 2040 2041 2042 2043
2045 2046 2047 2050 2051 2052 2053 2054 2055
2057 2060 2061 2062 2063 2064 2065 2066 2067
2071 2072 2073 2074 2075 2076 2077 2100 2101

2103 2104 2105 2106 2107 2110 2111 2112 2113

2115 2116 2117 2120 2121 2122 2123 2124 2125
2127 2130 2131 2132 2133 2134 2135 2136 2137
2141 2142 2143 2144 2145 2146 2147 2150 2151
2153 2154 2155 2156 2157 2160 2161 2162 2163
2165 2166 2167 2170 2171 2172 2173 2174 2175
2177 2200 2201 2202 2203 2204 2205 2206 2207
2211 2212 2213 2214 2215 2216 2217 2220 2221
2223 2224 2225 2226 2227 2230 2231 2232 2233
2235 2236 2237 2240 2241 2242 2243 2244 2245

2247 2250 2251 2252 2253 2254 2255 2256 2257

PX 43

DECIMAL TO OCTAL CONVERSION TABLE (cont.)

(0-4096)
UNITS 1200 Through 1399
0 1 2 3 4 5 6 7 8 9

12 0 2260 2261 2262 2263 2264 2265 2266 2267 2270 2271
1 2272 2273 2274 2275 2276 2277 2300 2301 2302 2303
2 2304 2305 2306 2307 2310 2311 2312 2313 2314 2315
3 2316 2317 2320 2321 2322 2323 2324 2325 2326 2327
4 2330 2331 2332 2333 2334 2335 2336 2337 2340 2341
e) 2342 2343 2344 2345 2346 2347 2350 2351 2352 2353
6 2354 2355 2356 2357 2360 2361 2362 2363 2364 2365
7 2366 2367 2370 2371 2372 2373 2374 2375 2376 2377
8 2400 2401 2402 2403 2404 2405 2406 2407 2410 2411

9 2412 2413 2414 2415 2416 2417 2420 - 2421 2422 2423

13 0 2424 2425 2426 2427 2430 2431 2432 2433 2434 2435
1 2436 2437 2440 2441 2442 2443 2444 2445 2446 2447
2 2450 2451 2452 2453 2454 2455 2456 2457 2460 2461
3 2462 2463 2464 2465 2466 2467 2470 2471 2472 2473
- 4 2474 2475 2476 2477 2500 2501 2502 2503 2504 2505
= 5 2506 2507 2510 2511 2512 2513 2514 2515 2416 2517
6 2520 2521 2522 2523 2524 2525 2526 2527 2530 2531
1 2532 2533 2534 2535 2536 2637 2540 2541 2542 2543
8 2544 2545 2546 2547 2550 2551 2552 2553 2554 2555

9 2556 2557 2560 2561 2562 2563 2564 2565 2566 2567

PX 43

14

TENS

15

TENS

2570
2602
2614
2626
2640
2652
2664
2676
2710

2722

2734
2746
2760
2772
3004
3016
3030
3042
3054

3066

DECIMAL TO OCTAL CONVERSION TABLE (cont.)

2571
2603
2615
2627
2641
2653
2665
2677
2711

2723

2735
2747
2761
2773
3005
3017
3031
3043
3055
3067

no

2572
2604
2616
2630
2642
2654
2666
2700
2712

2724

2736
2750
2762
2774
3006
3020
3032
3044
3056

3070

(0-4096)
UNITS
3 4
2573 2574
2605 2606
2617 2620
2631 2632
2643 2644
2655 2656
2667 2670
2701 2702
2713 2714
2725 2726
2737 2740
2751 2752
2763 2764
2775 2776
2007 3010
3021 3022
3033 3034
3045 3046
3057 3060
3071 3072
PX 43

5

2575
2607
2621
2633
2645
2657
2671
2703
2715
2727

2741
2753
2765
2777
3011
3023
3035
3047
3061
3073

6

2576
2610
2622
2634
2646
2660
2672
2704
2716

2730

2742
2754
2766
3000
3012
3024
3036
3050
3062

3074

7

2577
2611
2623
2635
2647
2661
2673
2705
2717

2731

2743
2755
2767
3001
3013
3025
3037
3051
3063

3075

8

2600
2612
2624
2636

2650

2662
2674
2706

2720

2732

2744
2756
2770
3002
3014
3026
3040
3052
3064

3076

1400 Through 1599

9

2601
2613
2525
2637
2651
2663
2675
2707
2721

2733

2745
2757
2771
3003
3015
3027

3041

3053
3065
3077

16

TENS

17

TENS

~N o O»

@

9

3100
3112
3124
3136
3150
3162
3174
3206
3220
3232

3244
3256
3270
3302
3314
3326
3340
3352
3364

3376

DECIMAL TO OCTAL CONVERSION TABLE (cont.

(0-40906)

3101 3102 3103 3104 3105 3106
3113 3114 3115 3116 3117 3120
3125 3126 3127 3130 3131 3132
3137 3140 3141 3142 3143 3144
3151 3152 3153 3154 3155 3156
3163 3164 3165 3166 3167 3170
3175 3176 3177 3200 3201 3202
3207 3210 3211 3212 3213 3214
3221 3222 3223 3224 3225 3226
3233 3234 3235 3236 3237 3240

3245 3246 3247 3250 3251 3252
3257 3260 3261 3262 3263 3264
3271 3272 3273 3274 3275 3276
3303 3304 3305 3306 3307 3310
3315 3316 3317 3320 3321 3322
3327 3330 3331 3332 3333 3334
3341 3342 3343 3344 3345 3346
3353 3354 3355 3356 3357 3360
3365 3366 3367 3370 3371 3372

3377 3400 3401 3402 3403 3404

PX 43

1600 Through 1799

3107
3121
3133
3145
3157
3171
3203
3215
3227
3241

3253
3265
3277
3111
3323
3335
3347
3361
3373

3405

3110
3122
3134
3146
3160
3172
3204
3216
3230

3242

3254
3266
3300
3312
3324
3336
3350
3362
3374

3406

3111
3123
3135
3147
3161
3173
3205
3217
3231

3243

3255
3267
3301
3313
3325
3337
3351
3363
3375

3407

18

TENS

19

TENS

3410
3422
3434
3446
3460
3472
3504
3516
3530

3542

3554
3566
3600
3612
3624
3636
3650
3662
3674

3706

DECIMAL TO OCTAL CONVERSION TABLE (cont.)

(0-4096)
1800 Through 1999
UNITS
1 2 3 4 5 6 7 8 9

3411 3412 3413 3414 3415 3416 3417 3420 342

3423 3424 3425 3426 3427 3430 3431 3432 3433
3435 3436 3437 3440 3441 3442 3443 3444 3445
3447 3450 3451 3452 3453 3454 3455 3456 3457
3461 3462 3463 3464 3465 3466 3467 3470 3471
3473 3474 3475 3476 3477 3500 3501 3502 3503
3505 3506 3507 34510 3511 3512 3513 3514 3515
3517 3520 3521 3522 3523 3524 3525 3526 3527
3531 3532 3533 3534 3535 3536 3537 3540 3541

3543 3544 3545 3546 3547 3550 3551 3552 3553

3555 3556 3557 3560 3561 3662 3563 3564 3565
3567 3570 3571 3572 3573 3574 3585 3576 3577
3601 3602 3603 3604 3605 3606 3607 3610 3611
3613 3614 3615 3616 3617 3620 3621 3622 3623
3625 3626 3627 3630 3631 3632 3633 3634 3635
3637 3640 3641 3642 3643 3644 3645 3646 3647
3651 3652 3653 3654 3655 3656 3657 3660 3661
3663 3664 3065 3666 3667 3670 3671 3672 3673
3675 3676 3677 3700 3701 3702 3703 3704 3705

3707 3710 3711 3712 3713 3714 3715 3716 3717

PX 43

10

DECIMAL TO OCTAL CONVERSION TABLE (cont.)

(0-4096)
2000 Through 2199
UNITS
0 1 2 3 4 S 6 7 8 9

20 0 3720 3721 3722 3723 3724 3725 7326 3727 3730 3731
1 3732 3733 3734 3735 3736 3737 3740 3741 3742 3743
2 3744 3745 3746 3747 3750 3751 3752 3753 3754 3755
3 3756 3757 3760 3761 3762 3763 3764 3765 3766 3767
4 3770 3771 3772 3773 | 3774 3775 3776 3777 4000 4001
e 5 4002 4003 4004 4005 4006 4007 4010 4011 4012 4013
6 4014 4015 4016 4017 4020 4021 4022 4023 4024 4025
7 4026 4027 4030 4031 4032 4033 4034 4035 4036 4037
8 4040 4041 4042 4043 4044 4045 4046 4047 4050 4051

9 4052 4053 4054 4035 4056 4057 4060 4061 4062 4063

21 0 4064 4065 4066 4067 4070 4071 4072 4073 4074 4075
1 4076 4077 4100 4101 4102 4103 4104 4105 4106 4107
2 4110 4111 4112 4113 4114 4115 4116 4117 4120 4121
3 4122 4123 4124 4125 4126 4127 4130 4131 4132 4133
4 4134 4135 4136 4137 4140 4141 4142 4143 4144 4145
RS 5 4146 4147 4150 4131 4152 4133 4154 4155 4156 4157
6 4160 4161 4162 4163 4164 4165 4166 4167 4170 4171
7 4172 4173 4174 4175 4176 4177 4200 4201 4202 4203
8 4204 4205 4206 4207 4210 4211 4212 4213 4214 4215

9 4216 4217 4220 422] 4222 4223 4224 4225 4226 4227

PX 43

11

22

TENS

23

TENS

(<X)]

-

4230
4242
4254
4266
4300
4312
4324
4336
4350
4362

4374
4406
4420
4432
4444
4456
4470
4502
4514

4526

DECIMAL TO OCTAL. CONVERSION TABLE (cont,)
(0-4096)

4231
4243
4255
4267
4301
4313
4325
4337
4351
4363

4375
4407
4421
4433
4445
4457
4471
4503
4515
4527

4232
4244
4256
4270
4302
4314
4326
4340
4352
4364

4376
4410
4422
4434
4446
4460
4472
4504
4516

4530

UNITS

3

4233
4245
4257
427
4303
4315
4327
4341
4353
4365

4377
4411
4423
4435
4441
4461
4473

4505

4

4234
4246
4260
4272
4304
4316
4330
4342
4354
4366

4400
4412
4424
4436
4450
4462
4474
4506
4520
4532

PX 43

12

4235
4247
4261
4273
4305
4317
4331
4343
4355
4367

4401
4413
4425
4437
4451
4463
4475
4507
4521
4533

4236
4250
4262
4274
4306
4320
4332
4344
4356
4370

4402
4414
4426
4440
4452
4464
4476
4510
4522

4534

2200 Through 2399

4237
4251
4263
4275
4307
4321
4333
4345
4357
4371

4403
4415
4427
4441
4433
4465
4477
4511
4523
4535

8

4240
4252
4264
4276
4310
4322
4334
4346
4360
4372

4404
4416
4430
4442
4454
4466
4500
4512
4524
4536

9

4241
4253
4265
4277
4311
4323
4335
4347
4361
4373

4405
4417
4431
4443
44355
4467
4501
4513
4525

4537

24

TENS

25

TENS

~N O

o @

4540
4552
4564
4576
4610
4622
4634
4646
4660
4672

4704
4716
4730
4742
4754
4766
5000
5012
5024

5036

DECIMAL TO OCTAL CONVERSION TABLE (cont.)

4541
4553
4565
4577
4611
4623
4635
4647
4661
4673

4705
4717
4731
4743
4755
4767
5001
5013
5025

5037

4542
4554
4566
4600
4612
4624
4636
4650
4662
4674

4706
4720
4732
4744
4756
4770
5002
5014
5026

5040

4543
4555
4567
4601
4613
4625
4637
4651
4663
4675

4707
4721
4733
4745
4757
4771
5003
5015
5027

2041

(0-4096)

UNITS

4544
4556
4570
4602
4614
4626
4646
4652
4664
4676

4710
4722
4734
4746
4760
4772
5004
5016
5030

5042

PX 43

13

4545
4557
4571
4603
4615
4627
4641
4653
4665
4677

4711

4723

4735

4747
4761
4773
5005
5017
5031

5043

4546
4560
4572
4604
4616
4630
4642
4654
4666

4700

4712
4724
4736
4750
4762
4774
5006
5020
5032

5044

2400 Through 2599

4547
4561
4573
4605
4617
4631
4643
4655
4667

4701

4713
4725
4737
4751
4763
4775
5007
5021
5033

5045

4550
4562
4574
4606
4620
4632
4644
4656
4670

4702

4714
4726
4740
4752
4764
4776
5610
5022
5034

5046

4551
4563
4575
4607
4621
4633
4645
4657
4671

4703

4715
4727
4741
4753
4765
4777
5011
5023
5035

5047

DECIMAL TO OCTAL CONVERSION TABLE (cont.)

(0-4096)
2600 Through 2799
UNITS
0 1 2 3 4 5 6 7 8 9

26 0 5050 5051 5052 5053 5054 5055 5056 5057 5060 5061
1 9062 5063 5064 5065 5066 5067 5070 5071 5072 5073
2 5074 5075 5076 5077 5100 5101 5102 5103 5104 5105
3 5106 5107 5110 5111 5112 5113 5114 5115 5116 5117
4 5120 5121 3122 5123 5124 5125 5126 5127 5130 5131
S 5 5132 5133 5134 5135 5136 5137 5140 5141 5142 5143
6 5144 5145 5146 5147 5150 5151 5152 5153 5154 5155
7 5156 5157 5160 5161 5162 5163 5164 5165 5166 5167
8 5170 5171 5172 5173 5174 5175 5176 5177 5200 5201

9 5202 5203 5204 5205 5206 5207 5210 5211 5212 5213

27 0 95214 5215 5216 5217 5220 5221 5222 5223 5224 5225
1 5226 5227 5230 5231 3232 5233 5234 5235 5236 5237
2 5240 5241 5242 5243 5244 5245 5246 5247 5250 5251
3 5252 5253 5254 52535 5256 5257 5260 5261 5262 5263
4 5264 5265 5266 5267 5270 5271 5272 5273 5274 5275

e 5 5276 5277 5300 5301 5302 5303 5304 5305 5306 5307
6 2310 5311 5312 5313 5314 5315 5316 5317 5320 5321
7 5322 5323 5324 5325 5326 5327 5330 5331 5332 5333
8 5334 5335 5336 5337 5340 5341 5342 5343 5344 5345
9 5346 5347 5350 5351 5352 5353 5354 5355 5356 5357

PX 43

14

28

TENS

29

TENS

O O N o O

5360
5372
5404
5416
5430
5442
5454
5466
5500

5512

5524
5536
5550
5562
5574
5606
5620
5632
5644
5656

DECIMAL TO OCTAL CONVERSION TABLE (cont.)

5361
5373
5405
5417
5431
5443
5455
5467

5501

5513

5525
5537
5551
5563
5575
5607
5621
5633
5645
5657

2

5362
5374
5406
5420
5432
5444
5456
5470
5502

5514

5526
5540
5552
5564
5576
5610
5622

- 5634

5646
5660

(0-4096)
UNITS

3 4

5363 5364
5375 5376
5407 5410
5421 5422
5433 5434
5445 5446
5457 5460
5471 5472
5503 5504
3515 5516
5527 5530
5541 5542
5553 5554
5565 5566
5577 5600
5611 5612
5623 5624
5635 5636
5647 5650
5661 5662

PX 43

15

5
5365

5377

5411
5423
5435
5447
5461
5473
5505
5517

5531
5543
5555
5567
5601
5613
5625
5637
5651
5663

6

5366
5400
5412
5424
5436
5450
5462
5474

- 5506

5520

5532
5544
5556
5570
5602
5614
5626
5640
5652
5664

2800 Through 2999

7

5367
5401
5413
95425
5437
5451
5463
5475
5507

5521

5533
5545
5557
5571
5603
5615
5627
5641
5653
5665

8

5370
5402
5414
5426
5440
5452
5464
5476
5510

5522

5534

5546
5560
5572
5604
5616
5630
5642
5654
5666

9

5371
5403
5415
5427
5441
5453
5465
5477
5511

5523

5335
5547
5561
5573
5605
5617
5631
5643
5655
5667

30

TENS

31

TENS

5670
5702
5714
5726
5740
5752
5764
5776
6010

6022

6034
6046
6060
6072
6104
6116
6130
6142
6154
6166

DECIMAL TO OCTAL CONVERSION TABLE (cont,)

5671
5703
9715
ST27
5741
5753
5765
5777
6011

6023

6035
6047
6061
6073
6105
6117
6131
6143
6155
6167

5672
5704
5716
5730
5742
5754
5766
6000
6012

6024

6036
6050
6062
6074
6106
6120
6132
6144
6156

6170

(0-4096)

UNITS
3 4
5673 5674
5705 5706
5717 5720
5731 5732
5743 5744
5755 5756
5767 5770
6001. 6002
6013 6014
6025 6026
6037 6040
605 6052
6063 6064
6075 6076
6107 6110
6121 6122
6133 6134
6145 6146
6157 6160
6171 6172

pPX 43

16

5675
5707
5721
5733
5745
5757
5771
6003
6015

6027

6041
6053
6065
6077
6111
6123
6135
6147
6161
6173

5676
5710
5722
5734
5746
5760
S772
6004
6016
6030

6042
6054
6066
6100
6112
6124
6136
6150
6162

6174

3000 Through 3199

5677
5711
5723
5735
5747
5761
5773
6005
6017
6031

6043
6055
6067
6101
6113
6125
6137
6151
6163
6175

8

5700
5712
5724
5736
5750
5762
5774
6006
6020
6032

6044

6056
6070
6102
6114
6126
6140
6152
6164
6176

9

5701
5713
5725
5737
5751
5763
5775
6007
6021

6033

6045
6057
6071
6103
6115
6127
6141
6153
6165
6177

32

TENS

33

TENS

6200
6212
6224
6236
6250
6262
6274
6306
6320

6332

6344
6356
6370
6402
6414
6426
6440
6452
6464
6476

DECIMAL TO OCTAL CONVERSION TABLE (cont.)

(0-4096)
3200 Through 3399
UNITS
1 2 3 4 5 6 7 8 9

6201 6202 6203 6204 6205 6206 6207 6210 6211
6213 6214 6215 6216 6217 6220 6221 6222 6223
6225 6226 6227 6230 6231 6232 6233 6234 6235
6237 6240 6241 6242 6243 6244 6245 6246 6247
6251 6252 6253 6254 6255 6256 6257 6260 6261
6263 6264 6265 6266 6267 6270 6271 6272 6273
6275 6276 6277 6300 6301 6302 6303 6304 6305
6307 6310 6311 6312 6313 6314 6315 6316 6317
6321 6322 6323 6324 6325 6326 6327 6330 6331

6333 6334 6335 6336 6337 6340 6341 6342 6343

6345 6346 6347 6350 6351 6352 6353 6354 6355
6357 6360 6361 6362 6363 6364 6365 6366 6367
6371 6372 6373 6374 6375 6376 6377 6400 6401
6403 6404 6405 6406 6407 6410 6411 6412 6413
6415 6416 6417 6420 6421 6422 6423 6424 6425
6427 6430 6431 6432 6433 6434 6435 6436 6437
6441 6442 6443 6444 6445 6446 6447 6450 6451
6453 6454 6455 6456 6457 6460 6461 6462 6463
6465 6466 6467 6470 6471 6472 6473 6474 6475

6477 6500 6501 6502 6503 6504 6505 6506 6507

PX 43

17

34

TENS

35

TENS

@ N o

6510
6522
6534
6546
6560
6572
6604
6616
6630
6642

6654
6666
6700
6712
6724
6736
6750
6762
6774

7006

DECIMAL TO OCTAL CONVERSION TABLE (cont.)

(0--4096)

3400 Through 3599

UNITS
1 2 3 4 5 6 7 8 9
6511 6512 6513 6514 6515 6516 6517 6520 6521
6523 6524 6525 6526 6527 6530 6531 6532 6533
6535 6536 6537 6540 6541 6542 6543 6544 6545
6547 6350 6551 6552 6533 6554 6555 6556 6557
6561 6562 6563 6564 6565 6566 6567 6570 6571
6573 6574 6575 6576 6377 6600 6601 6602 6603
6605 6606 6607 6610 6611 6612 6613 6614 6615
6617 6620 662 6622 6623 6624 6625 6626 6627
6631 6632 6633 6634 6635 6636 6637 6640 6641
6643 6644 6645 6646 6647 6650 6651 6652 6633

6655 6656 66507 6660 6661 6662 6663 6664 6665
6667 6670 667. 6672 6673 6674 6675 6676 6677
6701 6702 6703 6704 6705 6706 6707 6710 6711
6713 6714 6715 6716 6717 6720 6721 6722 6723
6725 6726 6727 6730 6731 6732 6733 6734 6735
6737 6740 674]. 6742 6743 6744 6745 6746 6747
6751 6752 6753 6754 6755 6756 6757 6760 6761
6763 6764 6765 6766 6767 6770 6771 6772 6773
6775 6776 6777 7000 7001 7002 7003 7004 7005

7007 7010 7011 7012 7013 7014 7015 7016 T7O17

PX 43

18

36

TENS

37

TENS

(o234 |

-J

7020
7032
7044
7056
7070
7102
7114
7126
7140

7152

7164
7176
7210
7222
7234
7246
7260
7272
7304
7316

7021
7033
7045
7057
7071
7103
7115
7127
7141

7153

7165
7177
7211
7223
7235
7247
7261
7273
7305
7317

DECIMAL TO OCTAL CONVERSION TABLE (cont.)

7022
7034
7046
7060
7072
7104
7116
7130
7142
7154

7166
7200
7212
7224
7236
7250
7262
7274
7306
7320

7023
7035
7047
7061
7073
7105
7117
7131
7143
7155

7167
7201
7213
7225
7237
7251
7263
7275
7307

7321

(0-4096)

UNITS

7024
7036
7050
7062
7074
7106
7120
7132
7144

7156

7170
7202
1214
7226
7240
7252
7264
7276
7310
7322

- PX 43

19

7025
7037
7051
7063
7075
7107
7121
7133
7145

7157

7171
7203
7215
7227
7241
7253
7265
7277
7311
7323

7026
7040
7052
7064
7076
7110
7122
7134
7146

7160

7172
7204
7216
7230
7242
7254
7266
7300
7312
7324

3600

7027
7041
7053
7065
7077
7111
7123
7135
7147

7161

7173
7205
7217
7231
7243
7255
7267
7301
7313
7325

Through 3799

7030
7042
7054
7066
7100

7112

7124

7136
7150

7162

7174
7206
7220
7232
7244
7256
7270
7302
7314
7326

7031
7043
7055
7067
7101
7113
7125
7137
7151

7163

7175
7207
7221
7233
7245
7257
7271
7303
7315
7327

38

TENS

39

TENS

7330
7342
7354
7366
7400
7412
7424
7436
7450

7462

7474
7506
7520
7532
7544
7556
7570
7602
7614

7626

7331
7343
7355
7367
7401
7413
7425
7437
7451

7463

7475
7507
7521
7533
7545
7557
7571
7603
7615
7627

DECIMAL TO OCTAL CONVERSION TABLE (cont.)

7332
7344
7356
7370
7402
7414
7426
7440
7452

7464

7476
7510
7522
7534
7546
7560
7572
7604
7616
7630

7333
7345
7357
7371
7403
7415
7427
744
7453

7465

7477
7511
7523
7535
7547
756..
7573
7605
7617
763:.

(0-4096)

UNITS

7334
7346
7360
7372
7404
7416
7430
7442
7454

7466

7500
7512
7524
7536
7550
7562
7574
7606
7620
7632

PX 43

20

5

7335
7347
7361
7373
7405
7417
7431
7443
7455

7467

7501
7513
7525
7537
7551
7563
7575
7607
7621
7633

7336
7350
7362
7374
7406
7420
7432
7444
7456

7470

7502
7514
7526
7540
7552
7564
7576
7610
7622
7634

3800 Through 3999

7
7337
7351
7363
7375
7407
7421
7433
7445
7457

7471

7503
7515
7527
7541
7553
7565
7577
7611
7623
7635

8

7340
7352
7364
7376
7410
7422
7434
7446
7460

7472

7504
7516
7530
7542
7554
7566
7600
7612
7624
7636

9

7341
7353
7365
7377
7411
7423
7435
7447
7461

7473

7505
7517
7531
7543
7555
7567
7601
7613
7625
7637

DECIMAL TO OCTAL CONVERSION TABLE (concl.)

(0-4096)
4000 Through 4096
UNITS |
0 1 2 3 4 5 6 7 8 9

40 0 7640 7641 7642 7643 T644 7645 T646 T64T T650 1651
1 7652 7653 7654 7655 T656 T65T T660 T66l T662 - T663

2 7664 T665 T666 T66T T6TO T6Tl T6T2 T6T3 7674 7675

3 7676 7677 7700 7701 7702 7703 7704 7705 7706 1707

4 7710 7711 7712 7713 7714 7715 7716 7717 7720 7721

e S 7722 7723 7724 TT25 7726 72T 7730 7731 V132 7733
6 7734 7735 T736 7737 7740 7741 7742 7743 7744 7745

T 7746 7747 7750 7751 7752 TUS3 1754 TU55 T156 TIS7

8 7760 7761 7762 TT63 T764 TT65 T766° TT6T V770 7771

9 T2 TTT3 174 TITS 0 7776 7777 10000

PX 43

21

	0001
	0002
	001
	002
	003
	004
	005
	006
	1_01
	1_02
	1_03
	1_04
	2_01
	2_02
	2_03
	2_04
	2_05
	2_06
	2_07
	2_08
	2_09
	2_10
	2_11
	2_12
	2_13
	2_14
	2_15
	2_16
	2_17
	2_18
	2_19
	2_20
	2_21
	2_22
	3_01
	3_02
	3_03
	3_04
	3_05
	3_06
	3_07
	3_08
	3_09
	3_10
	4_01
	4_02
	4_03
	4_04
	4_05
	4_06
	4_07
	4_08
	4_09
	4_10
	4_11
	4_12
	4_13
	4_14
	4_15
	4_16
	4_17
	4_18
	4_19
	4_20
	4_21
	4_22
	4_23
	4_24
	4_25
	4_26
	4_27
	4_28
	4_29
	4_30
	4_31
	4_32
	4_33
	4_34
	4_35
	4_36
	4_37
	4_38
	4_39
	4_40
	4_41
	4_42
	4_43
	4_44
	4_45
	4_46
	4_47
	4_48
	4_49
	4_50
	4_51
	4_52
	5-13
	5_01
	5_02
	5_03
	5_04
	5_05
	5_06
	5_07
	5_08
	5_09
	5_10
	5_11
	5_12
	5_14
	5_15
	5_16
	5_17
	5_18
	5_19
	5_20
	5_21
	5_22
	5_23
	5_24
	6_01
	6_02
	6_03
	6_04
	6_05
	6_06
	6_07
	6_08
	6_09
	6_10
	6_11
	6_12
	6_13
	6_14
	6_15
	6_16
	6_17
	6_18
	6_19
	6_20
	6_21
	6_22
	6_23
	6_24
	6_25
	6_26
	6_27
	6_28
	6_29
	6_30
	6_31
	6_32
	6_33
	6_34
	6_35
	6_36
	6_37
	6_38
	6_39
	6_40
	6_41
	6_42
	6_43
	6_44
	6_45
	6_46
	6_47
	6_48
	6_49
	6_50
	6_51
	6_52
	6_53
	6_54
	6_55
	6_56
	6_57
	6_58
	6_59
	6_60
	6_61
	6_62
	6_63
	6_64
	6_65
	6_66
	6_67
	6_68
	6_69
	6_70
	6_71
	6_72
	6_73
	6_74
	7_01
	7_02
	7_03
	7_04
	7_05
	7_06
	7_07
	7_08
	7_09
	7_10
	7_11
	7_12
	7_13
	7_14
	8_01
	8_02
	8_03
	8_04
	8_05
	8_06
	8_07
	8_08
	8_09
	8_10
	8_11
	8_12
	8_13
	8_14
	8_15
	8_16
	8_17
	8_18
	8_19
	8_20
	8_21
	8_22
	8_23
	8_24
	8_25
	8_26
	8_27
	8_28
	8_29
	8_30
	8_31
	8_32
	8_33
	8_34
	8_35
	8_36
	8_37
	8_38
	8_39
	8_40
	8_41
	8_42
	8_43
	8_44
	8_45
	8_46
	8_47
	8_48
	8_49
	8_50
	8_51
	8_52
	8_53
	8_54
	8_55
	8_56
	8_57
	8_58
	A-001
	A-002
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	B-001
	B-002
	B-01
	B-02
	C-001
	C-002
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	C-21
	C-22

