
A

UNIVAC
IID6/IIOB
MULTI-PROCESSOR SYSTEMS

EXEC B SORT/MERGE
PROGRAMMER REFERENCE

5PE~y.JL UNIVAC -,r COMPUTER SYSTEMS UP -7621 R ev.1

This document contains the latest information available at the time of publication. However, the Univac
Division reserves the right to modify or revise its contents. To ensure that. you have the most recent
information, contact your local Univac Representative.

UNIVAC is a registered trademark of the Sperry Rand Corporation.

Other trademarks of the Sperry Rand Corporation in this publication are:

FASTRAND
UNISERVO
PAGEWRITER

© 1968,1970,1973 - SPERRY RAND CORPORATION PRINTED IN U.S.A.

(-

(-

(..

UNIVAC 1106/1108 Multi-Processor System
EXEC 8 Sort/Merge Programmer Reference
UP-7621 Rev. 1

File

SECTION

Front Cover and Disclaimer

Page Status Summary

Contents

Section 2

Section 3

Section 6

Appendix A

Index

UPDATING PACKAGE A -----_._--_._--
pages as specified

DESTROY FOIDJ1ER
PAGES nUMBERED

t

N. A.

1 and 2
3 and 4

3 and 4
7 thru 10
13 and 14
15 and 16
17 and 18
N. A.

3 and 4

1 and 2
3 and 4
5 and 6

3 thru 6
7 and 8
9 and 10

N. A.

tDestroy old cover and file new cover
**These are new pages

below

May 1973

FILE NEW
PAGES NUMBERED

t

PSS-IA**

lA and 2A
3A and 4

3 and 4A
7A thru lOA
13 and 14A
15 and 16A
17 and 18A
19A**

3 and 4A

1 and 2A
3A and 4A
5A and 6

3A thru 6A
7A and 8
9A and 10

lA** thru 4A**

All the technical changes in an update are denoted by an arrow (..) in the margin. A downward pointing arrow (•) next to a
line indicates that technical changes begin at this line and continue until an upward pointing arrow (•) is found. A horizontal
arrow (..) pointing to a line indicates a technical change in only that line. A horizontal arrow located between two consecutive
lines indicates technical changes in both lines or deletions.

UNIVAC 1106/1108 EXEC 8 SORT/MERGE A PSS
SECTION:

1
PAGE:

PAGE STATUS SUMMARY

ISSUE: UP-7621 Rev. 1 Update A

Section Page Update Section Page Update Section Page Update
Number Level Number Level Number Level

Cover! Disclaimer A

PSS 1 A

Contents 1 thru 3 A
4 Orig.

1 1 and 2 Orig.

2 1 thru 3 Orig.
4 A
5 and 6 Orig.
7thru10 A
11 thru 13 Orig.
14 A
15 Orig.
16 A
17 Orig.
18 and 19 A

(
3 1 thru 3 Orig.

4 A
5thru 12 Orig.

4 1 and 2 Orig.

5 1 thru 4 Orig.

6 1 Orig.
2 thru 5 A
6 thru 13 Orig.

Appendix A 1 and 2 Orig.
3 thru 7 A
8 Orig.
9 A
10 Orig.

Index 1 thru 4 A

UCS

" .

(

(

UP-7621
Rev. 1

{~

UNIVAC 1106/1108 EXEC 8 SORT IMERGE

CONTENTS

1. INT RODUCT ION

1.1. GENERAL

1.2. SORT SUBROUTINE - FUNCTIONAL OPERATION

1.3. MERGE SUBROUTINE

2. PARAMETER SPECIFICATION

2.1. THE PARAMETER TABLE

2.2. PARAMETER TABLE ENTRIES
2.2.1. R$FILE
2.2.1.1. 'RSZ'
2.2.1.2. 'RSZW'

2.2.1.3. 'VRSZ'
2.2.1.4. 'VRSZW'

2.2.1.5. 'KEY'
2.2.1.6. 'KEYW'

2.2.1.7. 'SEQ'
2.2.1.8. 'FILES'
2.2.1.9. 'CHECK'
2.2.1.10. 'CORE'
2.2.1.11. 'DROC'
2.2.1.12. 'COMP'
2.2.1.13. 'FPOC'
2.2.1.14. 'LPOC'

2.2.1.15. 'FINAL'
2.2.1.16. 'SMRG'
2.2.1.17. 'PARTA'

2.2.1.18. 'PARTB'

2.2.1.19. 'PARTC'

2.2.1.20. 'REDOA'

2.2.1.21. 'REDOB'

2.2.1.22. 'CONTA'

2.2.1.23. 'CONTB'
2.2.1.24. 'CONTC'

2.2.1.25. 'COPY'
2.2.1.26. 'PAD'
2.2.2. Format of Parameter Table Entries
2.2.3. Key Fields and Their Translation

2.3. DATA REDUCTION- OWN CODE

2.4. OWN CODE COMPARISON

A Contents 1
SECTION: PAGE:

CONTENTS

1 to 4

1-1 to 1-2

1-1

1-1

1-2

2-1 to 2-19

2-1

2-2
2-3
2-3
2-4
2-4
2-4
2-7
2-8
2-8
2-8
2-9
2-10
2-10
2-10
2-10
2-10
2-10
2-11
2-11
2-11
2-12
2-12
2-12
2-12
2-12
2-13
2-13
2-13
2-13
2-17

2-18

2-19

UP-7621
Rev. 1 UNIVAC 1106/1108 EXEC 8 SORT/MERGE

3. PROGRAM LINKAGE

3.1. SMALL VOLUME SORTS AND THEIR PROGRAM LINKAGES
3.1.1. ROPN$

3.1.2. RREL$

3.1.3. RSORT$

3.1.4. RRET$

3.1.5. Preparing a Small Volume Sort Program

3.2. LARGE VOLUME SORTS
3.2.1. Automatic Large Volume Sorts
3.2.1.1. Parameters
3.2.1.2. Sort Subroutine Linkages
3.2.1.3. Preparing a Large Volume Automatic Sort Program
3.2.2. Nonautomatic Sorting of Large Volumes of Data
3.2.2.1. Part A
3.2.2.2. Part B
3.2.2.3. Part C
3.2.2.4. Preparing a Large Volume Nonautomatic Sort Program
3.2.3. Tape L~be ling

4. CONTINUATION OF INTERRUPTED SORT PROGRAMS

4.1. INTRODUCTION
4.1.1. Continuing From Part A
4.1.2. Continuing From Part B
4.1.3. Continuing from Part C
4.1.4. Recreating a Part A Tape
4.1.5. Recreating a Part B Tape

5. MERGE SUBROUTINE

5.1. INTRODUCTION

5.2. PARAMETER SPECIFICATION
5.2.1. Requ ired Parameters
5.2.2. 0 ptiona I Parameters

5.3. MERGE SUBROUTINE LINKAGES

5.4. PREPARING A MERGE PROGRAM

6. OPERATING

6.1. PARAMETER CARD PROCESSING
6.1.1. Parameters Accepted
6.1.1.1. 'BIAS'

6.1.1.2. 'DELeON'

6.1.1.3. 'LlMDRM'

6.1. 1.4. 'LIMFST'

6.1.1.5. 'PSORT'

6.1.1.6. 'VOL'
6.1.2. Parameter Card Routine

A Contents 2
SECTION: PAGE:

,r"\
3-1 to 3-12~ ! _/

3-1
3-1
3-1
3-2
3-2
3-2

3-5
3-5
3-5
3-6
3-7
3-7
3-7
3-8
3-8
3-8
3-10

4-1to4-2

4-1
4-1
4-1
4-1

r"'"

4-2
4-2

5-1 to 5-4

5-1

5-1
5-1
5-1

5-1

5-3

6-1 to 6-13

6-1
6-1
6-1
6 -2
6-2
6-3
6-3
6-3
6-3

C'

(--

(

UP·7621
Rev. 1

{J_-

UNIVAC 1106/1108 EXEC 8 SORT/MERGE
A

6.2. OPERATING INSTRUCTIONS
6.2.1. Basic Operating Instructions
6.2.2. Large Volume Sorts - Operating Instructions
6.2.2.1. Part A of Large Volume Sort
6.2.2.2. Part B of Large Volume Sort
6.2.2.3. Part C of Large Volume Sort
6.2.2.4. Rerun Capab i I it ies

6.3. DIAGNOSTIC MESSAG ES
6.3.1. Recoverable Errors - Sort Subroutine
6.3.2. Unrecoverable Errors - Sort Subroutine

APPENDIX A. ASSEMBLER, COBOL, AND DRUM SORT/MERGES

A.I. SORT/MERGE ELEMENTS AND SPACE REQUIREMENTS

A.2. DRUM ONLY SORTS
A.2.1. Utilization
A.2.2. Sort Operation Using Mass Storage Files

A.3. FACILITY ASSIGNMENT FOR EFFICIENT DRUM SORTING
A.3.1. Facility A!>signment - Formulae
A.3.1.1. Fast Drum Sorting Only
A.3.1.2. Fast Drum and FASTRAND Mass Storage Sorting
A.3.1.3. Block Sizes
A.3.1.4. Example
A.3.2. Facility Assignment - Tables
A.3.2.1. Spec ial Considerations
A.3.2.2. Systems Performance Improvement

INDEX

USER COMMENT SHEET

FIGURES

2-1. Linking Parameter Tables

3-1. Sample Input Routine for a Sort Program

3-2. Sample Output Routine for a Sort Program

3-3. Coding for Small Volume Sort

3-4. Control Cards for a Small Volume Sort

3-5. Coding for a Large Volume Automatic Sort

3-6. Control Cards for a Large Volume Automatic Sort

3-7. Part A of a Large Volume Nonautomatic Sort

3-8. Part B of a Large Volume Nonautomatic Sort

3-9. Part C of a Large Volume Nonautomatic Sort

5-1. Parameter Table, File Control Tables, and Storage Area for a Merge Program

5-2. Coding for a Merge Program

5-3. Control Cards for Execut ion of a Merge Program

Contents 3
SECTION: PAGE:

6-4
6-4
6-5
6-5
6-6
6-8
6-8

6-10
6-10
6-11

A-I to A-lO

A-I

A-3
A-3
A-4

A-4
A-5
A-5
A-5
A-6
A-6
A-7
A-9
A-lO

2-2

3-3

3-3

3-4

3-4

3-4

3-7

3-9

3-9

3-10

5-3

5-4

5-4

UP-7621
Rev. 1 UNIVAC 1106/1108 EXEC 8 SORT/MERGE

TABLES

2.-1. Sort Parameter Lists

2-2. Summary of Parameter Table Entries

2-3. Parameter Entry Table Formats

Contents
SECTION: PAGE:

2-5

2-14

2-15

3-1. Label Listing for Merging 21 Files Using Five Tape Units 3-12

A-I. Required Sort/Merge Elements A-I

A-2. Sort Fac i lity Allocation Chart for F ASTRAN D II or III Mass Storage and FH-880 or FH-1732 Drum A-8

A-3. Sort Facil ity Allocation Chart for F ASTRAN D II or III Mass Storage and FH-432 Drum A-9

.4

(

(:

UP-7621
Rev. 1

1
UNIVAC 1106/1108 EXEC 8 SORT IMERGE

PAGE: SECTION:

1. INTRODUCTION

1.1. GENERAL

This manual describes the architecture and implementation of the UNIVAC
1106/1108 Sort/Merge package and the manner in which it operates with and is
linked to the UNIVAC EXEC 8 Operating System. The reader is expected to be
familiar with the UNIVAC EXEC 8 Operating System and the UNIVAC 1106/1108
assembler and compiler languages; none of this information is repeated in this
manual. The UNIVAC 1106/1108 Sort/Merge package basically consists of a
sort subroutine and a merge subroutine, which are independent. The information
concerning these subroutines is presented in the sections of this manual as
listed below:

Section 1. INTRODUCTION. Gives a brief functional description of subroutine
operation.

Section 2. PARAMETER SPECIFICATION. Describes the sort parameter table
and the method of entering information into the table.

Section 3. PROGRAM LINKAGES. Describes the required program linkages
needed to create a sort program using the sort subroutine.

Section 4. CONTINUATION OF INTERRUPTED SORT PROGRAMS. Describes
the method of restarting interrupted sort programs and how worker
tapes can be recreated.

Section 5. MERGE SUBROUTINE. Describes the method of creating a merge
program using the merge subroutine. Includes information on
parameter specification and program linkages.

Section 6. OPERATING. Contains operating information and the format and
meaning of diagnostic messages.

1.2. SORT SUBROUTINE - FUNCTIONAL OPERATION

The sort subroutine must be activated by a user program. It makes no
assumptions as to the source or format of the original input file. The use of
the subroutine approach provides the user with complete flexibility in tape
file formats and the choice of original data file storage media. Since the sort
subroutine is reusable at object time, the sort run can be executed many times
without reloading the program. This provides obvious advantages in small
volume sorts which are part of much larger programs. More conventional sort
runs, in which sorting is the primary function, are easily constructed by
combining input and output programs with the sort subroutine. The sort sub­
routine accepts data from own code, one record at a time, and returns the
sorted data to own code in the same manner. Own code controls the dis­
position- of the final output file.

1

UP·7621
Rev. 1 UNIVAC 1106/1108 EXEC 8 SORT IMERGE 1

SECTION. PAGE:

When own code initiates the sort subroutine, it supplies the subroutine with
the address of a parameter table. This table contains information concerning
record size, key definitions, hardware facilities, and other information
required by the sort. The user must specify the requirements for main storage
and mass storage, and the number of tape units available for use by the
subroutine. The subro,\l,tine reacts to these parameters at initiation, selecting
the optimum configuraJion for performing the sort run. When initialization is
completed, the subroutine is ready to accept and sort the data.

Own code enters the sort subroutine each time a record is available in main
storage. The address of that record is supplied to the subroutine. When all
the data has been entered" the subroutine sorts the records in accordance with
the key definitions in the parameter table. It then returns the sorted records to
own code (in main storage) by supplying the address of a record each time own
code requests the next record in the output file. Own code and the sort s ub­
routine communicate by means of standard UNIV AC 1106/1108 assembler-type
program linkages.

The sort subroutine can accept any volume of data in a particular sort run. An
automatic sort/merge feature enables the user to sort extremely large volumes
of data under complete control of the sort subroutine. Instructions for demount­
ing, labelling, and remounting tape reels are provided by the subroutine. Alter­
natively, the user may break up a large volume sort run into two or more parts
to be executed separately. The sort subroutine is not re-ent rant.

1.3. MERGE SUBROUTINE

2

An independent merge subroutine is provided as part of the UNIVAC 1106/1108 '''.,,'
Sort/Merge package. It is capable of performing a single internal merge of
2 to 26 pre-sorted input files in accoJ:dance with specified key definitions.
Like the sort subroutine, the merge subroutine makes no assumptions as to
the format and source of the original input files, thereby allowing complete
flexibility in user formats and choice of original data file storage media.

Input and output control for the merge must be provided by a user program.
The merge subroutine accepts data from own code, one record at a time, and
returns the merged records in the same manner.

Communication between the user program and the merge subroutine is made
by way of three program linkages. Own code initializes the merge subroutine
by supplying the address of a parameter table which contains the key defini­
tions for the desired merge. Own co~e initiates merge selection by releasing
the first record from each input file to the merge subroutine. After all input
files have been initiated, own code requests records from the merge, releases
records to the merge to replace the records returned, and informs the merge
when an input file is exhausted.

Although the merge subroutine performs a single level merge, the subroutine
may be executed several times in one run. This is useful, for example, if a
sufficient number of tape' units is not available to merge all the tape input
files in a single merge. The merge subroutine is not re-entrant.

(

UP-7621
Rev. 1

2 UNIVAC 1106/1108 EXEC 8 SORT/MERGE
PAGE. SECTION.

2. PARAMETER SPECIFICATION

2.1. THE PARAMETER TABLE

The sort subroutine is activated at object time by a linkage which initializes the
subroutine. At this time, the user program supplies the sort subroutine with the
address of a parameter table containing all the information required for the particular
sort run. The assembler, constants, and COBOL can be used to construct a parameter
table. A user who desires to acquire a sort program using COBOL will have the table
compiled as necessary. For the user of the UNIVAC 1106/1108 Assembler, the
parameter table could be constructed as a series of constants. However, to facili­
tate construction of the table by means of the assembly language, a procedure
directive called R$FILE is available. This directive accepts the desired param-
eter table entries on the PROC line in mnemonic form and constructs the internal
format of the parameter table.

Whatever method is used at assembly time to construct the parameter table, the user
can alter the contents of the table prior to transferring con trol to the sort subroutine
for initialization. This feature is especially useful in creating package and utility
sorts that can react at run time to simple parameter changes.

The parameter table is of free-form construction and consists of a variable number of
words. The first character of every word is a fixed code, defined by the sort sub­
routine, which classifies the contents of the remainder of the word. The first word
of the table co.ntains a header code in the first character. Similarly, the last word
of the table is indicated by a sentinel character code in the word. When the sort
subroutine desires information from the parameter table, it searches the table from
top to bottom for the code which indicates the information desired.

Although the parameter table is often contained in contiguous memory locations, a
composite parameter table consisting of several different tables can be used. Within
each table there is a code which links the tables and directs the search operation.
Any number of parameter tables may be connected in this manner. Figure 2-1
illustrates how four tables are joined and searched.

1

Rev. 1 UNIVAC 1106(1108 EXEC 8 SORT (MERGE
2

SECTION:

Parameter Table A Parameter Table C

1

m Link to B m Link to 0

n n

Parameter Table B Parameter Table 0

1 1

m Link to C m

n ~ __________ ~ n ~ _______ --'

These four tables, in diffe rent areas of storage, are searched in the following
sequence to produce a single parameter table.

Al to Am
Bl to Bm
Cl to Cm
01 to On

C(m+l) to Cn
B(m+1) to Bn
A(m+l) to An

Figure 2-1. Linking Parameter Tables

2.2. PARAMETER TABLE ENTRIES

The types of information !hat ID'*':1· !J= ~=c::(:::~ i:;. ~!lc £iar~me:ter tab!c p:csc!!tcd to the
sort subroutine at initialization time are as follows:

• Oata

PAGE:

Describes the types and sizes of records, key description, and collating sequence
description.

• Hardware facilities
Specifies the main storage available for use by the sort subroutine, and the
external-file-names assigned to the flying-head drum, FA STRANO drum, and/or
tape files which may be available for use by the sort subroutine.

• Return points and exits
In order for the user program to regain control during periods when the subroutine
is operating, the addresses of some lines within the user program appear in the
parameter table. At the appropriate times, control is transferred from the sort
subroutine to these addresses within the user program.

• Special
Two special codes may appear in the table indicating:
(1) A branch to another table
(2) This word contains no information (reserves area for user information)

2

c

(

UP-7621
Rev. 1 2 UNIVAC 1106/1108 EXEC 8 SORT/MERGE

SECTION:

The remaining information types apply only to large volume sorts:

• Type run
Four different codes concern large volume sorts. One code instructs the sort
subroutine to perform an automatic sort on a large volume of data, that is,
proceeding through Parts A, B, and C. The other three codes allow for the
nonautomatic op-eration of a large volume sort, in which case the user may
instruct the subroutine to perform Part A, Part B, or Part C.

• Large volume control
Certain types of information are required to control such things as time between
checkpoints and output labels for the intermediate tapes of part B. Other items of
information such as block size, input labels, and input units are required in the
nonautomatic control of parts A, B, and C .

• Rerun control
There are two operational types of rerun:

PAGE:

(1) A sort run may be interrupted and then continued from the point of iriterruption
to its _normal completion; or

(2) A previously produced tape may be recreated.

These two examples require different control information, which must be entered in
the parameter table when necessary.

2.2.1. R$FILE

The R$FILE procedure call format is as follows:

label R$FILE list-l list-2 list-3 •.. list-n

The call line label connects this set of parameters to the sort subroutine by way
of program linkages.

The operand field consists of a variable number of lists separated by spaces.
Each list contains at least two fields separated by commas. The first field of
each list is a literal which defines that list; the remaining fields specify per­
tinent parameters. The lists may be written in any order; however, fields within
a list must be written in a particular order.

The 26 alphanumeric constants, which are used to define lists of parameter
information, are described in detail in the following paragraphs. Table 2-1
summarizes them, with their parameters, for ready reference.

In a parameter table, one and only one of the following alphanumeric lists
is required: 'RSZ', 'RSZW', and 'VRSZ' or 'VRSZW'. In addition, at least
one of the following is also required: 'KEY', 'KEYW', or 'COMP'.

Lists 15 through 24 are used only when sorting very large volumes of data.

2.2.1.1. 'RSZ'

Format: 'RSZ', no.-of-chat-in-tecotd

• no.-of-char-in-record - decimal number specifying record size in characters
for fixed-length records.

3

UP-7621
Rev. 1

t

UNIVAC 1106/1108 EXEC 8 SORT/MERGE A 2
SECTION:

2.2.1. 2. 'RSZW'

Format: 'RSZW', no.-of-words-in-record

• no.-of-words-in-record - decimal number specifying record size in words for
fixed-length records.

2.2.1.3. 'VRSZ'

Format: 'VRSZ', max-no.-char-in-record, min-no.-char-in-link,
no. -char-in-record-size-i, no. -of-records-of-record-size-i,
... , no.-char-in-record-size-n, no. -of-records-of-record-si ze-n

• max-no.-char-in-record..;.. decimal number specifying largest record size, in
characters, that will be encountered in set of variable-length records being
sorted.

• min-no~-char-in-link - decimal number specifying minimum link size in
characters. This must be equal to or greater than the highest 'KEY' in
character position because the first link must contain all key fields.

• no.-char-in-record-size-i - decimal number specifying record size in
characters for record size i.

• no.-of-records-of-record-size-i - decimal number specifying number of
records of record size i.

To conserve main storage and provide optimum speed during the first data
pass, variable-length records are divided into fixed-length links in main
storage. For record sizes greater than 60 characters (o.r 10 words) in
length, link size should not be specified as less than 30 characters (or
5 words). For record sizes less than or equal to 60 characters, link
size should be specified as record size regardless of actual minimum
link size. This prevents an inefficient utilization of the main storage
allocation and decreases the probability of a Sort BS error. In this list,
no.-char-in-record-size-i and no.-of-records-of-record-size-i specify the
distribution of record sizes for the input. The user may specify all
record sizes or none. These parameters are optional.

2.2.1.4. 'VRSZW'

Format: 'VRSZW', max-no.-words-in-record, min-no.-words-in-link,
no.-words-in-record-size-i, no.-of-records-of-record-size-i,
... , no.-words-in-record-size-n, no.-of-records-of-record-size-n

• max-no.-words-in-record - decimal number specifying largest record size,
in words, that will be encountered in set of variable-length records being
sorted.

• no.-words-in-link - decimal number specifying minimum link size in words.

• no.-words-in-record.size-i - decimal number specifying record size in words
for record size i.

PAGE:

• no.-of-records-of-record-size-i - decimal number specifying number of records
of record size i.

4

In this lis t, no. -words-in-record-size-i and no. -of-records-of-record-size-i serve C
the same function as no.-char-in-record-size-i and no.-of-records-of-record-size-i ' .. /"
in the 'VRSZ' list (see 2.2.1.3). Also this list may be used instead of the
'VRSZ' list for variable-size records.

(

UP .. 7621
Rev. 1

NO

1

2

3

4

5

6

7

8

UNIVAC 1106/1108 EXEC 8 SORT/MERGE

LISTS

. LITERAL pl p2

'RSZ' No. of
char. in
record

'RSZW' No. of
words in
record

'VRSZ' Max. no. Min. no.
of char. of char.
in record in link

'VRSZW' Max. no. Min. no.
of words of words
in in link
record

'KEY' Char. No. of
position char.

'KEYW' Word Bit no.
position position

'SEQ' Cl C2

'FILES' External External
file file
name 1 name 2

p3

No. of
char. in
variable
record
size 1

No. of
words in
variable
record
Size 1

Type

No. of
bits

C3

PARAMETERS

p4 p5 p6

No. of
records
of
variable
record
size 1

No. of
records
of
variable
record
size 1

Order Field
no.

Type Order Field
no.

C4 C5 C6

Exter-
nal
file
name n

Table 2-1. Sort Parameter Lists
(Part 1 of 3)

2 5
SECTION: PAGE:

p7 p8 p(n-l) pn

,.

No. of No. of
char. in records
variable of
record variable
size n record

size n

No. of No. of
words in records
variable of
record variable
size n record .'

size n
.-

C7 C8 C(n·l) Cn

UP-7621
Rev. 1

No.

9

10

11

12

13

14

15

16

17

18

19

LISTS

LITERAL

'CHECK'

"
~.

'CORE'

'OROC'

'COMP'

'FPOC'

'LPOC'

'FINAL'

'SMRG'

'PARTA'

'PARTS'

'PARTC'

UNIVAC 1106/1108 EXEC 8 SORT IMERGE

pl p2
, ,.

'0' indi- 'T' indi-
cates cates
omit drum om it tall!!' .
checksum checksum

No_ of
words

Address

Address

Address

Address

Address

Output Records
label per
prefix cycle

Output Records
label per
prefix cycle

Output External
label file
prefix name for

output

External External
file file
name for name for
input input
file 1 file 2

p3

'F' indi-
cates
omit
FASTRANO
checksum

Reels
per
cycle

Reels
per
cycle

External
file
name for
input
tape 1

PARAMETERS

p4 pS p6

"

Max.
output
block
size

External
file
name for
input
tape 2

External
file
name for
input
file n

Table 2-1. Sort Parameter Lists

(Part 2 of 3)

2 6
SECTION: PAGE.

I,.)

p7 'p8 p(n-l) pn

,/-- ",

"-< ~'

External
file
name for
input
file n

(

UP-7621
Rev. 1

No.

20

21

22

23

24

25

26

(

LISTS

LITERALS

'REDOA'

'REDOB'

'CONTA'

'CONTB'

'CONTC'

'COPY'

'PAD'

UNIVAC 1106/1108 EXEC 8 SORT/MERGE

pl p2

Cycle no. From
record
no.

Tape Reel no.
label

Cycle no. From
record
no.

Tape Reel no.
label

Address

Address

No. of
words

PARAMETERS

p3 p4 pS p6

To record
no.

Table 2-1. Sort Parameter Lists

(Part 3 of 3)

A 2
SECTION:

p7 p8 p{n·l)

2.2.1.5. 'KEY'

Format: 'KEY', char-pos, no.-of-char, type, order, field-no.

• char-pos - decimal number specifying character position within record which
contains leftmost character of key field. The character positions of a record
are numbered from left to right beginning with 1.

• no.-of-char - decimal number specifying key field length in characters.

• type - alphabetic character specifying the key field format:

'A' for alphanumeric format

'B' for binary 1106/1108 format

'D' for signed decimal format

'M' for binary IBM 7090 format

'p' for overpunched Fieldata decimal format

'Q' for overpunched ASCII decimal format

'R' for signed ASCII decimal format

's' for table translated ASCII format

'u' for unsigned binary format

7
PAGE:

pn

t

UP·7621
Rev. 1

t

SECTION:

A 2
UNIVAC 1106/1108 EXEC 8 SORT IMERGE

• order - alphabetic character specifying desired sorting sequence of the key
field:

'A' (or blank) for ascending field

'D' for descending field

• field-no. - decimal number indicating significance of key fields from major
to minor. The major key field is number 1, the next most significant field is
number 2, etc. If the field-no. field is omitted from the 'KEY' lists, the
first 'KEY' list encountered is assumed to despribe the major field, the
next list encountered is assumed to describe the next most significant
field, etc. If the field-no. field is omitted from any list, it must be omitted
from all lists.

2.2.1.6. 'KEYW'

Format: 'KEYW', word-pas, bit-pas, no.-of-bits, type, order, field-no.

• word-pas - decimal number specifying the word number within the record
containing the most significant bit of the key field. Words within a record
are numbered from left to right beginning with 1.

• bit-pas - a decimal num ber from 0 to 35 indicating the bit position within
the word which is the most significant bit of the key field. Bit positions
within a word are numbered from right to left beginning with O.

• no .-of-bits - decim al number specifying key fie ld length in bits. The
remaining fields are the same as for the 'KEY' list (see 2.2.1.5). The
'KEYW' list merely provides an alternative to the 'KEY' list for specifying
key fields. In any call on the R$FILE procedure, 'KEY' and 'KEYW' lists
may be intermixed.

As many as forty key fields may be specified. Each field requires a 'KEY'
or a 'KEYW' list. These lists may be in any order in the operand field of
the R$FILE procedure call line.

2.2.1.7. 'SEQ'

Format:

• Ci - octal number specifying change in collating sequence. If
the desired collating sequence is not 000-077 (or 000-177 for
ASCII), then the entire new collating sequence must be specified
with a 'SEQ' list. The character which is to have the ith position
in ascending order is specified by ci' The presence of a 'SEQ'
list .temporarily transforms all alphanumeric key fields ('A' type)
or table translated ASCII ('S' type) keys to their 'SEQ' list equi­
valents for internal sorting processes. The fields are re-translatp.n
to their original numeric representation before return to the user.

2.2.1.8. '~ILES'

Format: 'FILES', 'external-file-name-l', 'external-file-name-2', ... ,
'ex ternal-file-name-n' .

• 'external-file-name-l' through 'external-file-name-n' - series of external­
file-names which may be assigned to the drum, FASTRAND, or tape files
used by the sort subroutine as scratch .files.

The user must assign, either dynamically or by means of @ASG cards, the
external-file-names which are available to the sort subroutine. A maximum of

8
PAGE:

,r'
~/

(

(

UP-7621
Rev. 1

A 2
UNIVAC 1106/1108 EXEC 8 SORT/MERGE

SECTION:

two mass storage files and 24 tape files may be assigned. All external files
assigned for use by the subroutine must be temporary files. Tape files must not
be assigned with data conversion or even parity options. An external-file-name
may not exceed 12 characters and, since all sort files are tem porary, a qualifier
should not be specified. The project field f~om the @RUN statement is used as
the qualifier.

PAGE:

The F ACIL$ linkage determines if an external-file-name specified in the 'FILES'
list has been assigned and, if assigned, to determine whether it is a mass stor­
age or tape file. The sort subroutine equates the external-file-names assigned
to sort internal-file-names by way of the USE statement.

The term "mass storage" includes all types of magnetic drums (FH-432, FH-880,
or F ASTRAND drum). A maximum of two mass storage files may be assigned. The
internal-file-name $A is used only when one mass storage file is assigned. If two
mass storage files are assigned, internal-file-name $A is assigned to the file
containing the smaller number of words and internal-file-name $B is assigned to
the file containing the larger number of words.

Magnetic tape files may be assigned to UNISERVO VIII-C, VI-C, IV-C, III-A, or
II-A tape units. If tapes are assigned in a single-cycle sort run, a minimum of
two tape units must be assigned. Tape units assigned in a single-cycle sort
run may be a mixture of tape unit types. If the 'PART A' parameter list (see
2.2.1.17) is specified, at least one tape file must be assigned. If more than one
tape file is assigned for 'PART A', at least two additional tape files must be
assigned.

These tape files may be a mi xture of any type of tape unit; the intermediate
output file(s) are written on the first assigned tape file in the 'FILES' list.
Whenever the 'SMRG' parameter list (see 2.2.1.16) is used, at least three tape
files must be assigned. The tape units for an automatic, large-volume sort/merge
('SMRG') must all be of the same type. A maximum of 24 tape files may be
assigned for use by the sort subroutine in any sort run. The internal-file-names
$C, $D, ... , $Z are used for sort tape files.

An element of standard external-file-names (XA, XB, ... , XZ) is in a parameter
table which is available to the user. This element may be used in place of the
'FILES' list. One of these external-file-names must be assigned for each file
used by the sort subroutine. An 1106/1108 assembler user may incorporate this
table with 'COPY', RSTD$ as a parameter to the R$FILE procedure. This table
is automatically included in all COBOL sorts.

2.2.1.9. 'CHECK'

Format: 'CHECK', Pl' P2' P3

• Pb P2, P3 - specifies the type of hardware for which the checksum option
is to be omitted. The omit checksum codes are:

- 'D' omit drum checksum

- 'F' omit FASTRAND drum checksum

- 'T' omit tape checksum

Anyone or any combination of checksum omissions may be specified. A
checksum word is calculated and written for each output block written and

9

UP-7621
Rev. 1 1"",0"' 2

A UNIVAC 1106/1108 EXEC 8 SORT IMERGE
PAGE:

verified for each input block read. While this check can be advantageous in
detecting otherwise undetectable hardware errors, it may be too time consuming
in some multiprogramming environments.

2.2.l.10. 'CORE'

Format: 'CORE', no.-of-words

• no,-of-words - decimal number specifying the amount of main storage
available for sortirig.

The sort subroutine reserves an area of mairi storage equal to the number of
words specified. If the 'CORE' list is omitted from the parametel table, the
user may specify a working storage area by way of an @ASG statement. The
@ASG statement is

@ASG,T R$CORE, F///n

where n is the number of words, in thousands, of storage to be used by the sort.
This is a "dummy" F ASTRAND assign to notify Sort of working core allocation.

The sort subroutirie obtains n by FACIL$ of file R$CORE and requests
n x 1000 words of storage by way of the MCORE$ linkage.

2.2.l.1l. 'DROC'

Format: 'DROC', address

• address - starting address of own code that is executed every time the
sort subroutine determines that two records being compared have equal
keys.

2.2.l.12. 'COMP'

Format: 'COMP', address

• address - startirig address of own code that is executed each time the
sort subroutirie needs to know which of two records is to precede the
other.

2.2.l.13. 'FPOC'

Format: 'FPOC', address

• address - starting address of own code that is executed after the sort
subroutine has been initialized by way of program linkage. After return
to 'FPOC', the user own code supplies records to the sort subroutine.

2.2.l.14. 'LPOC'

Format: 'LPOC', address

• address - starting address of own code that is executed when the sort
subroutine is ready to return records to the user in final sorted sequence.

2.2.1.15. 'FINAL'

Format: 'FINAL', address

• address - starting address of own code that is executed after part A or part B
of a large volume sort.

Most sort programs do not need this list. If this list is not specified, the sort
subroutine terminates the activity by way of an ER EXIT$.

10

UP·7621
Rev. 1

(--

(

PAGE:

2
UNIVAC 1106/1108 EXEC 8 SORT/MERGE

SECTION:

2.2.1.16. 'SMRG'

Format: 'SMRG', 'output-label-prefix', records/cycle, reels/cycle

• 'output-label-prefix' - two-character label prefix placed on every output tape
of a sort run. Thus, unique output labels can be produced for different sort
runs. In addition, the output tape label blocks contain fields showing merge
level, file number within the level, and reel number within the file.

All intermediate output files produced by 'SMRG' or 'PARTA' are written on
the first tape-assigned file in the 'FILES' list.

• records/cycle - decimal number specifying the maximum number of input
records to be sorted in any cycle. The sort subroutine uses this decimal
value only when it is less than the physical limit of the number of records
which can be handled with the hardware assigned.

• reels/cycle - decimal number specifying the maximum number of output
reels produced in any cycle.

The 'SMRG' list is used in automatic sorting of large volumes of data or when
it cannot be determined in advance if a sort run will require operator inter­
vention. In this list, records/ cycle and reels/cycle are optional parameters.

2.2.1.17. 'PARTA'

Format: 'PARTA" 'output-label-prefix', records/cycle, reels/cycle,
block-size

• block-size - decimal number which places an upper limit on the block size
in which the sorted output tapes will be written. Generally, the maximum
tape block size is 1000 words; however, this parameter, if less than 1000,
overrides this limit. This is particularly advantageous when main storage
is limited and a large number of tape units will be available during the
merging operation of part B. In such a case, the smaller block size
enables the limited main storage to accommodate all of the required
merge input buffer areas.

The other fields in this list are the same as for the 'SMRG' list (see 2.2.1.16).
This list is used to run part A of a large-volume, nonautomatic sort. A
'PARTA' sort run can operate with only one tape file assigned. A t least two
additional tape files must be assigned if tape is used for intermediate storage
during the run.

2.2.1.18. 'PARTB'

Format: 'PARTB', 'output-label-prefix', 'external-file-name·output-unit',
'ex ternal-fi le-name-input-fiIe-l " ... , 'externa l-fi le-name-input­
file-n'

• 'output-label-prefix' - same as for 'SMRG' list (see 2.2.1.16).

• 'external-file-name- output-unit' - external-file-name specified on @ASG
card which assigns output unit. This must be assigned as a temporary
file. The external-file-name may be a maximum of 12 characters and may
not have a qualifier.

11

UP-7621
Rev.l

2 UNIVAC 1106/1108 EXEC 8 SORT/MERGE
SECTION:

• 'external-file-name-input-file-i' - external-file-name specified on @ASG
card which assigns the input unit for input-i. The external-file-name must
be the six-character label which the sort subroutine produced for this file.

The 'PARTB' list is used to run part B of a large-volume, nonautomatic sort.

2.2.1.19. 'PARTC'

Format: 'PARTC', 'external-file-name-input-file-i', ... , 'external­
file-name-input-fi le-n'

• 'external-file-name-input-file-i' - same as for the 'PARTB' list
(see 2.2.1.18).

The 'PARTC' list is used to run part C of a large-volume, nonautomatic sort.

2.2.1.20. 'REDDA'

Format: 'REDOA', cycle-no., from-record-no., to-record-no.

• cycle-no. - decimal number assigned to the first cycle output after restart.

• from-record-no. - decimal number specifying the record number of the first
record of the set to be resorted when recreating the output of a particular
cycle.

• to-record-no. - decimal number specifying the record number of the last
record of the set to be resorted when recreating the output of a particular
cycle.

This list is used to rerun a portion ofa sort.

2.2.1.21. 'REDOB'

Format: 'REDOB', 'tape-label', reel-no.

• 'tape-label' - label of reel containing rerun information for reproducing a
reel originally created during part B of a sort run.

• reel-no. - the decimal number of the above reel.

This list is used to rerun a portion of a sort.

2.2.1.22. 'CONTA'

Format: 'CONTA', cycle-no., from-record-no.

• cycle-no. - decimlil number assigned to the first cycle output after restart.

• from-record-no. - decimal number specifying the record number of the first
record released to sort after restart.

This list is used to continue an interrupted sort program at some later time.

2.2.1.23. 'CONTB'

Format: 'CONTB', 'tape-label', reel-no.

• 'tape-label' - label assigned to the first output reel written after restart.

• reel-no. - decimal number of above reel.

This list is used to continue a sort run interrupted during part B ..

12
PAGE:

UP-7621
Rev. 1

(/

('

UNIVAC 1106/1108 EXEC 8 SORT IMERGE SECTION:

2.2.1.24. 'CONTC'

Format: 'CONTC', address

• address - address of the first word of a table containing information
needed to continue a sort run from a point in part C.

2.2.1.25. 'COPY'

Format: 'COPY', name

• name - label of another paramete r table.

2

This list affects the structure of the assembled parameter table. In response
to the 'COPY' list, R$FILE produces a reference to name. If name is an
externally defined label in a Program File (TPF$), this reference causes the
collector to include that element in this program. In any case, while the sort
is scanning the assembled parameter table at object time, it treats the
reference to name as a branch in the table. R$FILE produces the sentinel
word ...

71 0000 address of table

PAGE:

at the end of the assembly table. While the sort subroutine is scanning a branch
in the assembled parameter table at object time, this sentinel word restarts the
scan at the word following the reference to name.

It is expected that for short, one-time sorting jobs, an installation will
standardize on certain sort parameters such as facility assignments. The
programmer need then be concerned only with basic logical parameters such
as key location and obtaining the standard set of parameters by way of the
'COPY' list.

2.2.1.26. 'PAD'

Format: 'PAD', no.-ol-words

• no.-of-words - decimal number which reserves a specified number of
words in the parameter table. These locations can then be filled with
meaningful information at the time of sort execution but before the
ROPN$ linkage is executed.

2.2.2. Format of Parameter Table Entries

The parameter table may be prepared by means of the R$FILE procedure
(see 2.2.1), or by the assembler, constant, or COBOL sort method. Table 2-2
summarizes the formats of all parameter table entries. The most significant
character (two octal digits) of each entry is a code specifying the type of
information contained in the remaining portion of the word. For example,
code 00 is a table header and code 71 is the end-of-table sentinel; each of
these two entries includes the table address. Code 77 specifies that the
current entry is a continuation of the previous one. It is used when more than
one word is required to store the detailed information related to a given entry.
For this rea:;;Qn, the interpretation of the field for code 77 entries varies
according to the preceding entry.

Table 2-3 provides detailed descriptions of the various parameter table entry
formats. Formats are listed in the same order as they appear in Table 2-2.

13

UP-7621
Rev. 1

'.-::"

3S

UNIVAC 1106/1108 EXEC 8 SORT/MERGE
A 2

SECTION: PAGE:

-_.< I L. ' .. ".,<,:, .' ,.'.h_ '1'" I I
Charact.er Positions

6 r s 1 4 1 3 I 2 ,I 1

Bit Positions 0

00 Address of the first word of this tab"le
01 Words per record (octal)
02 Words per link (octal)
05 No. words in var. size record No. of records this size
03 Type of Key I~rdering Pos ition of Significance of key field

Field ** Sequence ** MS. bit
77 Word Number Number of bits in key field (octal)
04 Address of start of translate table
20 Number of words of working storage (octal)
77 Starting address of working storage
23 Address of External File Name
40 Address of DROC
41 Address of own code compare subroutine
42 Address of FPOC
43 Address of LPOC
44 Address of final return
30 * Indicates automatic large volume sort
31 * Indicates part A only
32 * Indicates part B only
33 * Indicates part Conly
34 * Recreates tape within part A
35 * Recreates tape within part B J
36 * Continues sort from within part A ,

.~ ,

37 * Continues sort from within part B ", ,.1
47 * Continues sort from within part C
10 Maximum number of records per cycle
11 Maximum reels per cycle (octal)
12 Label prefix for merge output'
13 Maximum words per block on output

tape (octal)
1

14 Address of External File Name for 'Part B' or 'Part C'
Input

15 Address of External File Name for 'Part B' Output
50 Number of first record on an output tape (octal)
51 Number of last record on an output tape (octal)
52 Cycle number for output tape (octal)
53 Address of 2-word packet containing label and reel

number
54 Address of tape repos itioning tab Ie
60 Delete drum I Delete tape Delete FASTRAND

checksum checksum checksum
06 Bias factor
61 Minimum drum block size
62 Minimum FASTRAND block size --".
63 *Indicates deletion of console di'splay of end-of-sort messages
64 v olume to De sonea 10 thousands of records
70 Address of table linked to this one
72 Null
71 Address of first word 6f tab Ie

* Defines meaning of first 2 digits. The remainder of the word is void.

** Fieldata

Table 2-2. Summary of Parameter Table Entries

14

~ ..

'-•. J

('~

UP-7621
Rev. 1 UNIVAC 1106/1108 EXEC 8 SORT/MERGE

SECTION:

2
PAGE:

ENTRY FORMAT
(IN OCTAL)

00 00 00 xx xx xx

01 00 00
02 00 Oft
05 yy yy

xx
lr«O'

xX

xx
x~,
xX',

xx
xx
xx

03 tt 00 bb' If fl
77 ww ww nn nri. nn

04 00 00 xx xx xx

20 00 00 xx xx xx
77 00 00 yy yy yy

23 00 00 xx xx .<x

40 00 00 xx xx xx

41 00 00 xx xx xx

42 00 00 xx xx xx

43 00 00 xx xx xx

44 00 00 xx xx xx

30 00 00 00 00 00

31 00 00 00 00 00

FUNCTION OR

USE OF ENTRY

Table header word

Required when sorting fixed size reco.rd,s
Required when sorting variable size records
Required when sorting variable size records

'OS-ccodespecifies that entry is a key field
'd<,scription. 77 code indicates continuation
of information for key field description.

Points to translation table

Defines working storage

N/A

N/A

N/A

N/A

N/A

N/A

Indicates an automatic large volume sort
is to be executed

Indicates that part A of nonautomatic large
volume sort is to be executed

INTERPRETATION OF SPECIAL FIELDS'

xxxxxx field - specifies starting address of parameter table

xxxxxx field - specifies record size in words
xxxxxx field - specifies mm - links size in words
yyyy field· specifies variable-record size in words

xxxxxx field - specifies number of variable records of size yyyy

tt field - Fieldata character indicating type of key field. Field must contain one of the
following codes:

06 key field type A (al,phanumeric)
07 key field type B (UNIVAC signed binary field)
11 key field type 0 (Fieldala Signed, decimal field)
22 key field type M (lBMt signed binary field)
32 key field type U (unsigned binary field)

00 field - Fieldata character specifYing sorting sequence. Field must contain one of
the following codes:

00 or 06 specifies ascending sequence
11 specifies descending sequence

bb field - specifies bit position, within a word, of most significant bit of this key
field. The most significant bit position within a word is number 1; the least signi­
ficant bit position is number 36.

fllf field - specifies significance of key field. If flEf is zero for any key field, it must
be zero for all key fields. In this instance, key field significance depends on sequence
of entries in parameter table. Thus, the first 03 entry encountered is th~ most
significant and all succeeding 03 entries represent succeedingly less significant
key fields. If some other sequence is desired, fffl is set to one and the remaining
trelds are numbered consecutively according to their relative importance. Higher
numbers designate less significant fields. In this case, the set of values for lfllmust
include all values from 1 through n where n is the total number of key fields speci!ied,.,

, ,
wwww field - speCifies word number, within the record, of the word containing most"
significant bit of key field. First word of record is number zero. . .

nnnnnn field - specifies number of bits in key field

xxxxxx field - starting address of 64-word translation table. Each entry in the
translation table takes the form:

00 00 00 00 00 yy
Each yy is the octal representation of a character, and its position in the table represents
the desired relationship of this character to entire character set. For example, th,e
letters A and B in octal nolation are represented by 06 and 07 respectively. In the
normal collating process, the letter B tests greater than A, and all B's appear after A's
in the final sorted output. If it were desired to have B's appear before A's, the
translation table would be as follows:

00 00 00 00 00 00
00 00 00 00 00 01
00 00 00 00 00 02
00 00 00 00 00 03
00 00 00 00 00 04
00 00 00 00 00 05
00 00 00 00 00 07
00 00 00 00 00 06
00 00 00 00 00 10

00 00 00 00 00 77

xxxxxx field - specifies number of words of working storage

yyyyyy field - starting address of working storage area

xxxxxx field - address of external-file-name

xxx xxx field - address of DROC (Data Reduction Own Code)

xxx xxx field - address of own code compare subroutine

xxxxxx field - address to which sort subroutine transfers control 'upon completion of
ROPN $ lin kage

xxx xxx field - address to which sort subroutine returns control at completion of RSORT$
linkage

xxxxxx field - address to Which sort subroutine returns control at completion of part A
or part i3 of large-volume sort

N/A

N/A

TobIe 2-3. Parameter Entry Table Formats
(Part 7 of 2)

15

UP~7621

Rev. 1 UNIVAC 1106/1108 EXEC 8 SORT IMERGE A 2
SECTION: PAGE.

ENTRY FORMAT FUNCTION OR
INTERP~ETATION OF SPECIAL FIELDS·

(IN OCTAL) USE OF ENTRY

32 00 00 00 00 00 Indicates that part B of nonautomatic large N/A
volume sort is to be executed

33 00 00 00 00 00 Indicates that part C of nonautomatic large N/A
va lume sort is to be executed

34 00 00 00 00 00 Indicates that a part A tape of a large N/A
volume sort is to be recreated

35 00 00 00 00 00 indicates that a part B tape of a large volume N/A
sort is to be recreated

36 00 00 00 00 00 Indicates that sort is being ·continued from N/A
with·in part A· of a large volume sort

37 00 06 00 00 00 Indicates·that sort is being continued from N/A
within part B of a large volume sort

47 00 00 00 00 00 Indicates that sort is being continued from N/A
within part C of a large volume sort

10 xx xx xx xx xx N/A Specifies maximum number of records· to be sorted in anyone cycle

11 xx xx xx xx xx N/A Specifies maximum number of output reels per cycle

12 00 00 00 II 11 N/A 1111 field - user-supplied, two-character label for intermediate merging

13 00 00 00 xx xx N/A "XXX field - specifies maximum output block size in words

14 00 00 ·xx xx xx N/A xxxxxx field ~ address of external-file-name for an input file

15 00 00 xx xx xx N/A xxx xxx field - address of external-fi Ie-name for an output fi Ie

50 xx xx xx xx xx N/A xxxxxxxxxx field - specifies first record which is to appear on a recreated output tape

51 xx xx xX xx. xx N/A xxxxxxxxxx field - specifies last record which is to appear on a recreated output tape

52 00 00 00 Ox xx N/A xxx field - specifies cycle number for recreated output tape

53 00 00 xx xx xx Spec ifies tape containing rerun information xxxxxx field - .address of two-word packet containing label and reel number of tape
containing rerun information for reproducing a iape which was originally created
during part B of a large volume sort Packet format is as follows:

Word 1 yyyyyyyyyyyy
Word 2 000000002222

where: yyyyyyyyyyyy is the label
zzzz is the ree I number

54 00 00 xx xx xx N/A xxxxxx field - address of tape repositioning table

60 dd 11 f(00 00 Specifies omission of checksums dd field ~ if nonzero, drum checksum is omitted

11 field· - if nonzero, tape checksum is omitted

f(field - if nonzero, FASTRAND checksum is omitted

06 00 00 00 xx xx Specifies bias of input xxx x field- specifies bias factor times 10

61 00 00 00 xx xx Indicates that a check is to be made on xxxx field - specifies minimum drum block size in words
drum block size

62 00 00 00 xx xx Indicates that a check is to be made on xxxx field - specifies minimum FASTRAND block size in words
FASTRAND block size

63 00 00 00 00 00 Specifies omission of end-of-sort messages N/A
from console

64 00 00 xx xx xx Specifies volume to be sorted xxxxxx field - spec ifies number of records in thousands

70 00 00 xx xx xx N/A xxxxxx field - address of another parameter table that is linked to this one

72 00 00 00 00 00 Used to reserve a word in the table for the N/A
user

71 00 00 xx xx xx End-of-tab Ie sentine I xxxxxx field - starting address of this parameter table

• Numerical representation in special fields is in octal notation unless specified otherwise.

t Registered Trademark of International BUSiness Machines Corporation

Table 2-3. Parameter Entry Table Formats

(Part 2 of 2)

16

(

(

UP·7621
Rev. 1 UNIVAC 1106/1108 EXEC 8 SORT/MERGE

SECTION:

2

2.2.3. Key Fields and Their Translatien

The UNIVAC 1106/1108 cempare instructiens (test greater than, equal to., and
less than) eperate en the erdered set ef 36-bit signed binary numbers ef the werd
fermat described in the fellewing paragraphs. To. ebtain maximum efficiency frem
the key cemparisen reutine, all key fields are translated as they enter the sert
file so. that the cerrect erdering may be ebtained by the key cemparisen reutines
in the minimum ameunt ef time. The translatien varies fer each type ef key field.
Just befere the item is returned frem the sert file, the key fields are translated
to. their eriginal ferm. The key field fermats and their translatiens are given in
the fellewing paragraphs. In additien to. the indicated translatiens, all bits ef
key fields which fall into. bit pesitien 35 ef a werd are cemplemented.

• Unsigned binary, 'u' - key field centains the magnitude ef a number in binary
netatien and no. trans latien is made.

• Signed binary, UNIVAC 1106/1108 fermat 'B' - key field centains a number
in UNIVAC 1106/1108 fixed-point (er single-precisien fleating peint) netatien.
A pesitive number is represented by a 0 in the sign bit (leftmest bit) pesitien
and the magnitude in binary netatien in the remaining bit pesitiens. A negative
number is represented by a 1 in the sign bit pesitien and the enes cemplement
ef the binary representatien ef a pesitive number ef the same magnitude. On
translatien, the sign (leftmest) bit is cemplemented.

• Signed binary, IBM fermat 'M' - key field centains a number in IBM 7090
fixed-peint binary representatien. The leftmest bit is the sign bit; 0 indicates
pesitive, 1 indicates negative. The remaining bit pesitiens centain the magni­
tude in binary netatien. If the key field centains a pesitive number, enly the
sign bit is cemplemented, if the key field centains a negative number, the
entire field is cemplemented.

• Alphanumeric' A' - key field centains alphanumeric characters represented
by six-bit bytes which are erdered as if they were unsigned binary numbers.
If ether than the nermal erdering is desired, the different erdering must be
specified using 'SEQ' parameter list. This field must start within a werd at
bit pesitiens 5,11, 17, 23, 29, er 35. No. translatien is made unless a 'SEQ'
list has been specified. In this case, the key field is translated in six-bit
bytes. Each byte is translated to. n, where the value ef the byte equals the
nth field fellewing 'SEQ' in the 'SEQ' list.

• Signed decimal, Fieldata fermat 'D' - key field centains a signed number
represented in Fieldata characters. The first character is the sign and must
be a space er plus fer pesitive numbers and a minus fer negative numbers.
The remaining characters can be any ef the Fieldata integers 0 threugh 9.
The field must l?egin within a werd at bit pesitiens 5, 11, 17, 23, 29, er 35.
If the first key field character is a minus sign, the entire key field, with the
exceptien ef the' sign character, is cemplemented. Any ether character in the
first character 'positien ef the field is changed to. a plus sign and is translated
to. a space just,befere being returned frem the sert subreutine. Thus, a key.
field is returneg" to its eriginal ferm only if a pesitive number is represented
by a space as its first chC'racter.

17
PAGE:

UP·7621
Rev. 1

t

UNIVAC 1106/1108 EXEC 8 SORT IMERGE
A 2

SECTION:

• Overpunched Fieldata decimal 'P' - key field contains a decimal number
represented in Fieldata characters with the sign represented in the low
order character of the field by an overpunch character if the field is
signed (negative or positive). Start bits possible for the field are
the same as for alphanumeric 'A'. The "overpunch" characters are explained
fully in UP-7923 (American National Standard COBOL),Page 3-45.

• Overpunched ASCII decimal 'Q' - key field contains a decimal represented
in ASCII characters with the sign (if present) represented by an overpunch
in the low order ASCII character field. The field must start in bits 8, 17, 26,
or 35 of the word. See UP-7923, Page 3-45, for discussion of "overpunch"
characters.

• Signed ASCII decimal 'R' - key field contains a signed number represented
in ASCII characters. The first character of the field is the sign and must
be an ASCII minus(-) for negative numbers. Any other character is assumed
to indicate a positive number and is changed to an ASCII plus sign (+) for
sorting. If the key field has an ASCII minus sign in the first character,
the entire key field is complemented. plus sign fields are translated to an
ASCII blank in the leading character before return to the user. Field start
bits are on quarter word boundaries (bits 8, 17, 26, or 35).

• Table translated ASCII'S' - key field is ASCII characters with character
translation requested via a 'SEQ' parameter entry in the parameter table.
If 'SEQ' is specified, the quarter word fields of the key field are altered
to the quarter word specified in the 'SEQ' list for ASCII characters. Field
start bits are the same as for the 'R' field type.

2.3. DATA REDUCTION - OWN CODE

PAGE:

If a 'DROC' parameter list (see 2.2.1.11) appears in the set of parameters of a sort
program, the sort subroutine trans fers control to the address parameter in this list
when two records with equal keys are found. The addresses of the two records are
in registers AO and A1. Own code may combine the two records to form a single
record in the main storage area, addressed by AO, in which case the sort sub­
routine must be re-entered by J I,Xll. Upon further inspection of the contents of
the records, if own code elects not to combine the two records, the sort subroutine
must be re-entered, by a J O,Xll. The procedures R$DLT and R$-NDLT (for Delete
and No Delete) generate the instructions J I,X11 and J O,Xl1, respectively. Own
code must not alter the contents of AO or A1. Furthermore, own code must not alter
the key fields of the two records if not combined, nor the key field of the,record
addressed by AO if they are combined. In some cases, the sort subroutine
,translates the key fields. If these fields are to be inspected by own code, the:
author of own code must follow the translation rules given in 2.2.3.

Data reduction own code may use registers A2, A3, A4, AS, Rl, R2, and R3 without
saving and restoring them. Data reduction own code may not be used with variable
size items.

18

UP-7621
Rev. 1

2 A UNIVAC 1106/1108 EXEC 8 SORT/MERGE
SECTION:

2.4. OWN CODE COMPARISON

If a 'CaMP' parameter list (see 2.2.1.12) appears in the set of parameters for a
sort program and it is necessary to decide which of two records is to appear first
in the final sorted sequence, the sort subroutine transfers control to the aqdress
parameter specified in this list.

The addresses of the two records are in registers AO and A 1. If the record whose
address is in AO is to precede, own code should re-enter the sort subroutine by a
J O,Xl1. If the record whose address is in A 1 is to precede, own code should
re-enter the sort su brou tine by a J 1 ,X 11. If the final order is immaterial, as in
the case of equal keys, own code should re-enter the sort subroutine by a J 2,Xl1.
Jump instructions with these addresses are generated by the RAO, RA1, R$AE
procedures, respectively. Data reduction own code, if present, is executed (when
appropriate) only if re-entry from own code comparison is by a J 2,Xl1. Own code
must not alter the contents of AO or A1.

If 'CaMP' is not present, a comparison subroutine is generated by way of the
'KEY' list. If the 'KEY' or 'KEYW' list and 'CaMP' are both present, the sort
subroutine observes the 'KEY' or 'KEYW' lists by translating key fields; however,
the own code comparison sub routine is used by the sort subroutine. If key trans­
lation is utilized, the author of own code should follow the translation rules given
in 2.2.3.

Own code comparison may not destroy the contents of AO, A1, A2, A3, or X11.

19
PAGE:

(-

UP·7621
Rev. 1 3 UNIVAC 1106/1108 EXEC 8 SORT/MERGE

SECTION: PAGE,

3. PROGRAM LINKAGE

3.1. SMALL VOLUME SORTS AND THEIR PROGRAM LINKAGES

A small volume of data is defined as the amount of data that can be sorted without
operator intervention. Minimally, this is the amount of data that can be contained
on a single reel of tape. However, if adequate drum storage is available, it could
include several reels of tape; therefore, a small volume of data can range from 3
to 15 million words.

3.1.1. ROPN$

• The linkage

label J ROPN$

initializes the sort subroutine. When this line is executed, control register
15 (A3) must contain the address of the first word of the parameter table.

This linkage can be generated by the procedure call:

R$OPN parameter-table-name (this call prepares register A3)

If the R$FILE procedure was used to construct the parameter table, parameter­
table-name will be the label assigned to the R$FILE procedure call line.

• Exit Conditions

The sort subroutine returns control to the address specified in the 'FPOC'
parameter list (2.2.1.13) and saves and restores the contents of all A
registers, X registers, and registers Rl, R2, R3.

3.1.2. RREL$

• The linkage

label LMJ 11, RREL$

releases a record to the sort subroutine. When this line is executed, control
register 12 (AO) must contain the address of the first word of the record to be
sorted. If variable length records are being sorted, then the most significant
half of register 12 (AO) must contain the length of the record.

This linkage can be generated by the procedure call:

R$REL

This call does not prepare register 12 (AO).

• Exit Conditions

The sort subroutine returns control to the line immediately following the call
on R$REL and saves and restores the contents of all A registers, X registers,
and registers R1, R2, and R3.

1

UP-7621
Rev. 1 UNIVAC 1106/1108 EXEC 8 SORT/MERGE 3

SECTION,

3.1.3. RSORT$

• The linkage

J RSORT$

informs the sort subroutine that no more records are to be released.

This linkage can be generated by the procedure call:

R$SORT

• Exit Conditions

The sort subroutine returns control to the address specified in the 'LPOC'
parameter list (see 2.2.1.14) and saves and restores the contents of all
registers which it uses.

3.1.4. RRET$

• The linkage

label LMJ 11, RRET$

label + 1 at-end-address

requests the sorted output records from the sort subroutine. This linkage can
be generated by the procedure call:

R$RET at-end-address

• Exit Conditions

Normal return is made to line label + 2. Control register 12 (AO) contains the
address of the first word of the record being returned. If variable length
records are being sorted, then the most significant half ofregister 12 (AO)
specifies the length of the record in words (binary number). No other
registers are changed. If no record remains when this linkage is executed,
return is made to the address specified by at-end-address.

3.1.5. Preparing a Small Volume Sort Program

As an example, assume a sort program is needed to sort one reel of data. The
data consists of ten-word records with a two-word alphanumeric key field in the
first two words. The hardware available for sorting consists of 150,000 words
of FH-880 Magnetic Drum storage, 25 F ASTRAND storage positions, and 16,000
words of main storage.

Figures 3-1 through 3-4 illustrate the coding for a set of cards which will
assemble and execute the program.

2
PAGE'

("

("'

/

UP·7621
Rev. 1 UNIVAC 1106/1108 EXEC 8 SORT/MERGE

QA~M'I IOHUFS/A,IOUUFK/A
KESERVE INPUT/OUTPUT HUFFER POOL.

IOUUF* U$GPUL 2,1006. BUFFER PuOL CONTROL PAK.
E.ND

QASM,I INPUTS/A,INPUTR/A
I NPU T SUtJl<OU fl Nt'..
INPUT FILE CONTROL TARLE.

FILEA FILE 'SaRTIN'
'SIZE' ,*10UrlO
'POOL',IOBUF,1
, E OH ' , I E Ok •

FPOC* OPEN 'INPU1' FILEA. OPEN IN UT FlU:..

3
SECTION:

ILA8L1 READ FILEA ILAUL2.
LMJ 11,kRlL$.

GET HtCORU FROM INPUT FILE.
RELEASE KECORD TO SORT SUBROUTINE.

J ILA~L1.

ILAl~L2 CLOSE FILEA.
J kSORT$.

ILABL3* CLOSE 'R~EL' FILEA.
J ILABLI.
END.

CLOSE INPUT FILE.
EXE(UIE SORT SUBROUTINE.
CLOSE iNPUT Rf:.EL.

Figure 3-1. Sample Input Routine for a Sort Program

lolA::,:'1, I

FILEtJ

LPOC*
OLAHU

OUTPUTS/A,0UTPUTH/A
OUTPUT SUl-'IHOUTINE.
uUTPUl FILE CONTHOL TABLE.
FILE 'XC' ;

'SIZE' ,*100,10 ;
'POOL' , IOBUE ;
'EOK' ,Of_Ok.

OPEN 'OUTPUT' FlLEH.
S 12,OAODH.

OPEN UUTPUT FILE.
OUTPUl ADDRESS TO T.S.

PAGE:

LI\IiJ 11, kRET$. GET SORTED RECORD FROM SORT SUBROUTINE.
+
L
LXI,1i+
LX I r14
L,14
BT
wRITE
J

OLAHL2 CLOSE
1:.1<

OLABL3* CLOSE
J

OAOUK +
EM).

OLAHL2.
13,OAUOR.
12,1.
13,1.
65,10.
13'0,*12.
FILER.
OLABLI.
FILEH.
EXITS.
'REEL' FILEB
OLABLI.
o.

MOVE SORTED RECORD TO OUTPUT.
G~T N~XT OUTPUT ADDRESS.

CLOSE oUTPUT FILE.
SORl t-<L}i'l rs CO~PLF fED.
CLOSE OUTPUT REEL.

Figure 3-2. Sample Output Routine for a Sort Program

3

UP-7621
Rev. 1 UNIVAC 1106/1108 EXEC 8 SORT IMERGE PAGE:

3 A
SECTION:

QASM,I PARAM1S/A,PAHAMIH/A
• STANDARO PARAMETERS FOR SAMPLE SORTS.
PARAM1* H$FILE 'kSlW',lO RECORDSIZE.

'KEYW',1,35,72,'A','A'. KEY FORMAT.

lolASM, I

•
PARAM2*

IOlASM,I
IEOR*
OEOH*
SIAHT

lolPRt.P
lolIIiIAP,I
II\!
lolASG,T
I.lASS, T
f.JASG, T
fniASG, T
folASG, T
fOiX~1

END.
\

PAkAM2S/A,PAkAM2R/A
STANDARD PARAMETERS FOR SMALL VOLUME AND AUTOMATIC LARGE VO(UME
SAMPLE SORTS
R$FIL£ 'FPOC',FPOC; • FIRST PASS OWN CODE ADDRESS.

'LPOC' , LPOC ;
'COPY',RSTD$;
'COPY',PARAMI.

• LAST PASS OWN CODE ADDRESS
• STANDARD SORT FILE NAMES.

END.

SOkTSVS/A,SOkTSVR/A
£QU ILABL3. END INPUT REEL ADDRESS.
EQU OLABL3.
L,14 15'PAkAM2~

END OUTPUl REEL ADDRESS.
PARAMETER TABLE ADDRESS TOA3.
OPEN SORT SUBROUTINE ..J ROPN$.

END STAIH.

":igure 3-3. Coding for Small Volume Sort

D,SRI

SPECIFY CORE AREA SIZE.
ASSIGN INPUT~ILE.
ASSIGN OUTPUT FILE.

, .. - ~.

SOR1SVR
R$CORE,FIII16.
SORTIN,8C,lNPUT.
XC,C,SCRTCH.
XA,D/15000U.
Xe,FIIPOS/25.
Ski

ASSIGN DRUM AkEA TO BE OSED BY SORT.
ASSIGN FASTRANOAREA10 BE USED BYSORT.f

Figure 3-4. Control Cards fora SmallYo/umeSort

IOlASM,l PAHAM3S/A,PAkAM3R/A
PARAMETER TABLE FOR AUTOMATIC LARGE VOlUME SORT.

PARAM3* H$FILE 'SMRG','AA'

liilASf"l, I
IEOk*

STAIn

'COPY',PAkAM2.
END.

SRTLVS/A,SHTLVR/A
LMJ 11,RENCY$ • AT END OF INPUT REEL, END PART A CYCLE.
..J ILABL3.
LMJ 11,IPURI$. AT

INFORMATION.
OLAAL3 •

END OF OUTPUT REEL, PUNCH RESTART

..J
Lr14
..J
END

15,PARAM3. PARAMETER TABLE ADDRESS TO A3.
ROPN$. OPEN SORT SUBROUTINE •
START.

Figure 3-5. Coding for a Large Volume Automatic Sort

4

,1'<--"
"" .. -,,-

{

UP-7621
Rev. 1 SECTION. PAGE.

3 UNIVAC 1106/1108 EXEC 8 SORT/MERGE

3.2. LARGE VOLUME SORTS

A large volume sort is one for which sufficient hardware is not available to complete
the sort without operator intervention. The small volume sort does not require
operator intervention and, therefore, uses only a subset of the subroutine elements
required for the large volume sort.

A large volume sort requires three separate phases:

• Part A - sort groups of records into many output files;

• Part B - merge small output files into larger output files; and

• Part C - merge output to a single file.

These three operations can be done either automatically with the sort subroutine
controlling the entire operation or nonautomatically (one part at a time).

Typically, the sequence of operations for a large volume sort starts with the
assignment of a number of tape units for temporary storage as well as areas of
main and mass storage. In part A, the sort subroutine accepts input data from
the user program one record at a time and periodically produces a sorted output
file for part of the data. This process continues until all the input data have
been sorted onto output tapes and the tapes have been systematically labeled
by the operator. The portion of the sort subroutine which produces one output
file is called a cycle.

During part B, the output tapes must be mounted on available tape units and
merged into larger files. The number of such merge operations during part B
depends on the number of files produced by part A and the number of tape
units available. Part B ends when the number of sorted files is less than
the number of tape units available. In part C, the sorted files are merged into
a single output file.

3.2.1. Automatic Large Volume Sorts

This is the most common method of sorting large volumes of data. The sort
subroutine controls demounting, labeling, and remounting of tapes through
console messages to the operator.

3.2.1.1. Parameters

The 'SMRG' parameter list (see 2.2.1.16) is required. The output-label
field in this list is used to keep track of intermediate output tapes from
different sort programs. The records/cycle and reels/cycle fields are
optional. They may be used to control the length of the sort cycle.

5

-- -- ,---------- -~----~--~-.- ----,--_. ~ - -.~-.,.-- -_._-------

UP-7621
Rev. 1 UNIVAC 1106/1108 EXEC 8 SORT IMERGE 3

SECTION:

3.2.1.2. Sort Subroutine Linkages

:The required sort s1,lbroutine linkages are: ROPN$, RREL$, RSORT$, and
RRET$ (see 3.1.1 through 3.1.4). The following three linkages are optional:

• RENCY$

- The linkage

label LMJ 11, RENCY$,
may be used during 'FPOC' to cause the sort subroutine to t~rminate
cycles at specific points in the routine. It is generated by the
procedure call:

R$ENCY

- Exit Condition

The sort subroutine returns control to line label + 1 preserving the
contents of all A registers, X registers, and registers R1, R2, R3.

• RINFO$

- The linkage

label LMJ 11, RINFO$
may be used during 'LPOC' to request the address of a table containing
rerun information. This table is required in order to continue an inter­
rupted sort from some point in part C of a large volume sort.

- Exit Conditions

The sort subroutine returns control to location label + 1. Control
register AO contains the table address and control register A1 contains
the length of the table in words (binary number)., The contents of Rl,
A2, A3, A4, and AS are destroyed.

• IPURI$

- The linkage

la'bel LMJ 11, IPURI$
may be used during 'LPOC' instead of the RINFO$ linkage. This linkage
punches the rerun information on cards. These cards also contain an
identifier for user convenience. The output on the printer provides the
user with the cycle number and number of cards punched each time
IPURI$ is entered. The cards produced by IPURI$ can be processed
by the parameter card routine should restart become necessary during
part C.

- Exit Conditions

The sort subroutine returns control to location label + 1. The contents of
R1, A2, A3, A4, and AS are destroyed.

6
PAGEl

(--

(

UP-7621
Rev. 1 UNIVAC 1106/1108 EXEC 8 SORT/MERGE 3

SECTION. PAGE:

3.2.1.3. Preparing a Large Volume Automatic Sort Program

lall-KI r>
IJ;\IAt-', 1
li'.
inlAS("l
1.1AS\-;,1
1.1/\,::>(,,1

loIAS\-"l
101/1'::>\.', T
(,lAse,l
I.0ASl>, T
u/\ ~\.;' T
IJASu,r
r"IA~t', 1
I..JXd I

As an example, assume a sort program is needed to sort an unknown volume of
data. The data consists of ten-word records with a two-word alphanumeric key
field in the first two words. The hardware available for sorting consists of
150,000 words of FH-880 Magnetic Drum storage, 25 F ASTRAND storage
positions, and 16,000 words of main storage.

Since, with exception of the amount of data, this example is the same as for the
small volume sort, we will assume that all elements assembled in 3.1.5 are
available in the program file. The input and output routines may then be used.
Linkages for the user program to control rerun points in part A and part C
can be made at the end-of-reel addresses-IEOR for end-of-input-reel and
OEOR for end-of-output-reel. The only additional parameter list required is
'SMRG'j therefore, the 'COPY' list may be used to avoid recording the
parameter lists already included in the element PARAM2R.

Figure 3-5 illustrates the assembly of the parameter table and the linkage
necessary to open the sort. Figure 3-6 illustrates the control cards needed
to assign the hardware facilities and execute the program.

lh'Sk2
'::>RTLVK

SUI<l IN, HC , L'JPU 1 •
k~C()HL,Fllllb.
XA'Ll/l~-)UO\.lU.

xu, f-I IRUSI ~~).
Xl,(,OUIPUI.
Xli, C, SCI~TCH.
XL,C,SCt-ITCH.
xt-,C,SCHTCH.
Xb,C,SClnCH.
Xh,C,SCKlCH.
Sh~

ASSIGN INPUI t-lLE.
SPLCIFY COK[AREA SIZE.
iXSSIGN 1)t{U 1\1 At\EA lOBE USED BY SORT.
ASSIGN fASTHANO AREA TO BE USED BY SOHT.
ASSIGN OUlr>UT FILE. SORT MAY USE EXCEPT IN LPOC.
ASSIGIJ ADLJlllo,'~AL TAPE. FILES TO BE USED BY SORT.

Figure 3-6. Control Cards for a Large Volume Automatic Sort

3.2.2. Nonautomatic Sorting of Large Volumes of Data

The user may choose to execute a large volume sort in a number of separate runs.
These runs are designated as part A, part B, and part C. Part A and part C are each
executed once for every large volume sort. The number of times part B must
be executed is dependent upon the number of intermediate output files produced
in part A. Part B may not be executed at all.

3.2.2.1. Part A

• Parameters

- The 'PARTA' parameter list (see 2.2.1.17) is required. The 'FINAL'
parameter list (see 2.2.1.15) is optional, and if not specified, control
passes to EXIT$ at the conclusion of part A.

7

UP-7621
Rev. 1 UNIVAC 1106/1108 EXEC 8 SORT IMERGE

SECTION:

3

• Sort Subroutine Linkages

- ROPN$ - (see 3.1.1)

- RREL$ - (see 3.1.2)

- RSORT$ '- This linkage is similar to that described in 3.1.3 except that
the sort subroutine returns control to the address specified in the
'FINAL' parameter list (see 2.2.1.15) or, if not specified, to EXIT$.

- RENCY$ - (see 3.2.1.2.)

3.2.2.2. Part B

• Parameters

- The 'PARTB' parameter list (see 2.2.1.18) is required. The 'FINAL'
parameter !iRt (see 2.2.1.15) is optional and, if not specified, control
is passed to EXIT$ at the conclusion of part B.

• Sort Subroutine Linkages

- ROPN$ - This linkage is similar to that described in 3.1.1 except that
the sort subroutine returns control to the address specified in the
'FINAL' parameter list or, if not specified, to EXITS$.

3.2.2.3. Part C

• Parameters

- The 'PARTC' parameter list (2.2.1.19) is required.

• Sort Subroutine Linkages

- ROPN$ - This linkage is similar to that described in 3.1.1 except that
the sort subroutine returns control to the address specified in the
'LPOC' parameter list.

- RRET$ - (see 3.1.4)

- RINFO$ - (see 3.2.1.2)

or

- IPURI$ - (see 3.2.1.2)

3.2.2.4. Preparing a Large Volume Nonautomatic Sort Program

As an example, the sort program described in 3.2.1.3 could be divided into
three separate runs as illustrated in Figures 3-7 through 3-9. Assume that
the volume of data to be sorted was such that part A produced seven output
files. The labels on these files would be 'AAAOOl' through' AAA007'.

Part B would be performed once producing a single file labeled 'AABOOl'.

The input to part C would then consist of tapes labeled' AAA004' through
'AAA007' and 'AABOOl'.

8
PAGE:

UP-7621
Rev. 1

(

UNIVAC 1106/1108 EXEC 8 SORT IMERGE

ItJASM, I PAl·u\'·,I.~S/A,hWI'iVl41,.IA

i-'t\!~i\ VIr: Tt .. I-{ TAtlU .. FUR PAl,", A O!\jL Y.
K-bFIU: 'PAHTA','AA' ;

'FPOC',FHJC ;
'CO~'Y',RSH"j, ;
'COPY' ,PAI(MH.

~ASM'I PAKTAS/A,PA~fAk/A

3
SECTION: PAGE:

Ituk* L~J 11,RF~CY~. A1 lN0 OF iNPUT Rf~L, ENO PART A CYCLE.
J ILAPLj.

S'I Ar< r

1r,lh,tP
I~II~'IW, 1 [1,9< 3
11\J PAhTAH

I!), PAt~AI\i!lj..
kOPN$.
S 1 Ali 1 •

~ASG,T ~uR1IN,C,1~PUT.

WAS0,T k~COR~'FIII16.
i.lASv, I XA, [JI l!'>UOuU.
i.JASC',l XU, f- I IP051 ~5.

PAkAM~TER TABLE ADDRESS TO A3.
OPEN SORT SUBROUTINE.

ASSIGN INf-0T FILE.
SPECIFY CUHE AH~A SIlF.
ASSIGN DH~M AREA TO HE USED AY SORT.
ASSIGN FASTRAN[) Akl:.A TO BE USED BY SORT.

9

~ASG,T XC,C,OUIPUI. ASSIGN OU1PUT FILE FOR SORT INTERMEDIATE OUTPUT
I.IX", I Sk3

Figure 3-7. Part A of a Large Volume Nonautomatic Sort

WASM,I PAHA~5S/A'PARAM5R/A

• PARAMETlR 1AMLE FOR PARI P ONLY.
PAHAMb* HSFILE 'PAHTU','AA','XC','AAA001','AAA002','AAA003'

'COPY',PAkA!vil.
END.

QAS~'I PAHTBS/A,PAHTUR/A
SlAHT L,14 15,PAHAM5.

lolPt{Ep
lollVlM', I
IN
I~AS(;, 1
I,;)AS0, T
rJAS6,1
InlASG, T
iulASG, T
folX\.ll1

.J HOP[-J$.
t.NU STAHl.

D,SH4
PAHIBI<
k$COFU:.,F I IIH.
Xl,C,uUIPUT.
AAAO 0 1, C, VH.JUl •
AA/'002,Crj i-JPUT.
AAAU03,C,II\lPUT.
SH4

PARAMETER TAULE ADDRESS TO A3 •
UPt.N SORT SUHROUTIN~.

SPECIFY CUHE AREA SIlf.
ASSIG~ UU1PUT FILE FOR SORT INTERMEDIATE OUTPUT
ASSIGN TAPE FILES FOR PART R INPUT.

Figure 3-8. Part B of a Large Volume Nonautomatic Sort

UP-7621
Rev. 1 UNIVAC 1106/1108 EXEC 8 SORT/MERGE

WASM,I PAkAM65/A,PAEAMbR/A
PA~AMET~K TAGLE FOR PART CONLY.

3
SECTION:

PAKAM6* K~FILt 'PARTC"'AAAOU4"'AAAuU~"'AAAOOb"'AAA007"'AAR001'
'LfJOC' , LfJOC ;
'COfJY' ,PAkArv,l.

~ASM'I PAkTCS/A,PAKTCk/A

10
PAGE:

OtUk* lM~ 11,IPUHI~. AT END OF OUTPUT kEEL, PUNCH RESTAkT INFORMATIO~

S lAI< T

IJi-'HtP

Inli"IAfJ, I
H.
InlASl"T
fJASG, T
LJA~G'l
IntA~G, T
IJASb, r
lolA~G, T
f;JAS(~, T
l"lX\lll

~ OLAUL3.
ld4
~

E.ND

15,PAkAMb.
HOPi,,'!; •
STAHT.

PAkAMETER TABLE ADDRESS TO A3.
OPEN SORT SUBROUTINE.

l),Sh5
PAtHCk
Wf,COREr F I I 11 (I.
XC,C,QUTPUI.
J\j\A004,C,INPU1.
AAAOO~,C'I!IIPU1.
AAI\006,C, F'iPU1.
AA/\007, C, INPUT.
AAUOOl,C,INPUT.
Sh~

SPECIFY CORE AREA SIZE.
ASSIGN OUTPUT FIL~ FOR FINAL OUTPUT.
ASSIGN lAPE FILES FOR PART C INPUT.

Figure 3-9. Part C of a Large Volume Nonoutomatic Sort

3.2.3. Tape Labeling

During part A of an automatic large volume sort, a number of intermediate
output files are produced, each file consisting of one or more reels. As each
reel is completed, information is printed out which instructs the operator to
demount and label the reel. When all input records have been delivered to the
sort and all intermediate output files have been produced in part A, one or more
merge runs is required depending upon the number of intermediate files and the
number of tape units available for merging. If the number of tape units exceeds
the number of files, only one merge run is necessary and the routine proceeds
directly from part A to part C. During part C, sorted data is returned to the
user program one record at a time.

If the number of files to be merged equals or exceeds the number of tape units
available, one or more merge runs is required prior to the final merge. These
intermediate merges constitute part B of the automatic large volume sort.
The intermediate merge runs continue until the number of files is one less
than the number of tape units available. As in part A, the program types out
instructions for labeling and mounting tape files.

UP-7621
Rev. 1

(-

35

UNIVAC 1106/1108 EXEC 8 SORT/MERGE
3

SECTION:

The labels used for output files during both part A and part B consist of one
word in the following format:

USER'S SORT RUN MERGE OUTPUT LEVEL NUMBER

IDENTIFICATION LEVEL
24 23 18 17

BITS

0-17

18-23

24-35

USE

Output level number - output file number of specified merge
starting at 001 for each merge level.

Merge level - during part A; this is always A. For part B,
it advances from B to C to D, and so on, for successive
merge levels.

User's sort run identification - two-character, user-supplied
identification. Characters may be anyone of the allowable
character set.

All merging in part B is to the maximum way of merge using all available
tape units with the possible exception of the first merge. If necess ary, the
first merge reduces the total number of files to a point where the tape units
assigned can be used to the fullest extent.

During an automatic sort, the level of the first merge is automatically calculated.
In nonautomatic sorting, the user must calculate the first merge level himself
using the following two expressions:

Kn 2T <Kn+1 and
T - Kn

First merge level = 1
K-

where:
T = the number of files to be merged
K = the number of tape units assigned for input

Example:

Let T = 21 files and K = 4 tape units.

4n 221<4n+1

n=2
T - Kn 21 - 16 5

Merge level = -- = -
K-1 4- 1 3

If the remainder is 0, the first merge level equals the number of tape units;
if the remainder is not 0, the first merge level equals the remainder plus 1 and,
in this case, 3.

Based on this information, at the completion of part A, the sort subroutine lists
all labels for part B specifying the internal file name for the tape unit that is to
be used for each. This listing designates exactly how the merging is to proceed
in part B.

11
PAGE:

0

UP-7621
Rev. 1 UNIVAC 1106/1108 EXEC 8 SORT IMERGE

3 12
SECTION: PAGE:

Table 3-1 is a sample listing for the preceding example. The user label is UL. (--~
The first merge used three input files as calculated on the preceding page, ./
and the remaining merges use four input files. The sixth merge.!3tarts merging
B-Ievel output files (ULB001, etc.) to produce C-Ievel files (ULC001) which
are finally merged to final output. During the run, the program types out instruc­
tions to the operator which specify when to mount and demount tapes and how
to label the reels.

INPUT FILES OUTPUT FILE INPUT FILES OUTPUT FILE

UNIT LABEL UNIT hABEt· UNIT LABEL UNIT LABEL

$D ULAOO1
--'

$D ULA016

MRG NO.1 $E ULAOO2 MRG NO.5 $E ULA017
$F ULAOO3 $C ULBOO1 $F ULA018

$G ULA019 $C ULBOOS

INPUT FILES OUTPUT FILE INPUT FILES OUTPUT FILE

UNIT LABEL UNIT LABEL UNIT LABEL UNIT LABEL

MRG NO.2 $D ULAOO4 MRG NO.6 $D ULA020
$E ULAOOS $E ULA021
$F ULAOO6 $F ULBOO1
$G ULAOO7 $C ULBOO2 $G ULBOO2 $C ULCOO1

INPUT FILES OUTPUT FILE INPUT FILES OUTPUT FILE

UNIT LABEL UNIT LABEL UNIT LABEL UNIT LABEL

MRG NO.3 $D ULAQ08 MRG NO.7 $D ULBOO3
$E ULAOO9 $E ULBOO4
$F ULAOIO $F ULBOOS
$G ULAO!1 $C ULBOO3 $G ULCOO1 FINAL OUTPUT

INPUT FILES OUTPUT FILE

UNIT LABEL UNIT LABEL

MRG NO.4 $D ULA012
$E ULA013

. } ~ $F ULA014 .
$G ULA01S $C ULBOO4

Table 3-1. Label Listing for Merging 21 Files Using Five Tape Units
•.. . .

.. r·

(

UP-7621
Rev. 1

c

4 UNIVAC 1106/1108 EXEC 8 SORT/MERGE
PAGE: SECTION:

4. CONTINUATION OF INTERRUPTED
SORT PROGRAMS

4.1. INTRODUCTION

As a large volume sort is being executed, messages supply the operator with labels,
cycle numbers, and reel numbers of tapes as they are produced. This information
allows the user to continue an interrupted sort run wi thout restarting at the begin­
ning. If a tape produced during part A or part B is unreadable, the sort may be
interrupted and the tape be recreated. The following paragraphs describe how to
continue a sort run from an interrupted point and how to recreate tapes produced
during part A or part B.

4.1.1. Continuing From Part A

If the sort program is interrupted during part A, it may be continued by first adding
the 'CONTA' parameter list (see 2.2.1.22) to the set of parameters originally pre­
pared for this sort program and then executing the original program. In the 'CONTA'
list, cycle-number is the number assigned to the output of the first cycle after
restart. From-record-number is the number of the first record in the input file entered
into the sort after restart.

4.1.2. Continuing From Part B

If a sort program is interrupted during part B, it may be continued by first adding
the 'CONTB' parameter list (see 2.2.1.23) to the set of parameters originally pre­
pared for this sort program and then executing the original program. In the 'CONTB'
list, tape-label is the label of the first output tape written after restart and reel-no.
is the number of the tape.

4.1.3. Continuing From Part C

If a sort program is interrupted during part C, it may be continued provided that the
RINFO$ linkage or the IPURI$ linkage (see 3.2.1.2) was executed in the original
program. If the RINFO$ linkage was used, the program may be restarted by adding
the 'CONTC' parameter list (see 2.2.1.24) to the parameter table originally pre­
pared for the sort and re-executing the original program. If the IPURI$ linkage was
used, the program may be restarted by submitting the restart deck and re-executing
the original program.

1

UP-7621
Rev. 1 4 UNIVAC 1106/1108 EXEC 8 SORT IMERGE

SECTION,

4.1.4. Recreating a Part A Tape

A tape produced during part A of a sort, can be recreated, if necessary. This can
be done only with multicyc1e sorts. At the end of each cycle, as each n items

PAGE.

are sorted, the operator is informed that the current output reel(s) contains items x
through y of the input data. To reproduce the output of a given cycle, the cycle
number and the record numbers x and y which comprise the output of that cycle
must be supplied to the sort subroutine. The sort subroutine then starts from the
beginning, bypassing all records until the first record requested is reached. When
the last record requested is reached, the entire group is sorted. There is no need
for own coding to keep any special counts of items deleted or added during own
coding.

To initiate this rerun of a cycle, the IREDOA' parameter list (see 2.2.1.20) must
be added to the set of parameters originally prepared for this sort program and the
program must be re-executed. This run terminates when the set of records has been
re-sorted.

4.1.5. Recreating a Part B Tape

A tape produced during part B ofa sort may .IiIIN be reFeated. At the end of each
output reel, the program types out a label fo?tbe :6tfipiif. Rerun inform ation for
this output reel is written in the first block of the next output reel of this inter­
mediate merge.

To reproduce a given output reel, the output reel containing the rerun information
for the reel to be reproduced must be mounted on the output unit and its label must
be given to the sort subroutine. After the input reels are mounted, the sort sub­
routine positions all inputs and merges them until all items which were on the
reel to be reproduced have been merged. The reproduced reel does not contain
the rerun information for the previous output reel.

To initiate this rerun of a portion of part B,'the IREDOB' list (see 2.2.1.21) must
be added to the set of parameters originally prepared for this sort program and the
program must be re-executed. This run terminates when the output reel has been
recreated.

2

:r-\
~.--""

UP-7621
Rev. 1 UNIVAC 1106/1108 EXEC 8 SORT/MERGE 5

SECTION:

5. MERGE SUBROUTINE

5.1. INTRODUCTION

This section provides the programmer with all the information he needs to create
a merge program using the merge subroutine portion of the UNIVAC 1106/1108
Sort/Merge package.

5.2. PARAMETER SPECIFICATION

The merge subroutine is initialized by use of a program linkage which supplies the
subroutine with the address of a parameter table. This parameter table contains
all the information necessary for a particular merge run. The format of the
parameter table is the same as for the sort subroutine. It may be constructed by
use of the R$FILE procedure (see 2.2.1) or as a series of constants. The merge
subroutine parameter lists are a subset of the sort subroutine parameter lists.

5.2.1. Required Parameters

At least one of the following parameter lists is required:

'KEY' (see 2.2.1.5)
'KEYW' (see 2.2.1.6)
'COMP' (see 2.2.1.12)

These parameters specify the comparisons necessary for merge selection. When
records are found to have equal keys, the records are returned to the user program
in the order in which the first record from each input file was released to the
merge subroutine.

5.2.2 Optional Parameters

'SEQ' (see 2.2.1.7)
'COPY' (see 2.2.1.25)
'PAD' (see 2.2.1.26)
'RSZ', 'RSZW', 'VRSZ', or 'VRSZW' (see 2.2.1.1 through 2.2.1.4)

If 'RSZ', 'RSZW', 'VRSZ', or 'VRSZW' is specified, a sequence check is per­
formed to ensure that the input files are in sequence.

Entries in the parameter table other than these required and optional parameters
are ignored by the merge subroutine.

5.3. MERGE SUBROUTINE LINKAGES

The three program linkages required to create a merge program using the merge sub­
routine are as follows:

• RMGOPN

- The linkage

label SLJ RMGOPN

1
PAGE:

UP-7621
Rev. 1 UNIVAC 1106/1108 EXEC 8 SORT/MERGE

S'ECTION.

initializes the merge subroutine. When this line is executed, control
register 12 (AO) must contain the parameter table address.

- Exit Conditions

The merge subroutine returns control to line label + I and restores the
contents of all registers which it uses.

• RMGREL

- The linkage

label SL] RMGREL

5

must be executed once for each iriput file. It is used to release the first
record from each input file tp the merge subroutine in order that merge
selection can be initiated. When this line is executed, control register
12 (AO) must contain the address of the first record from an input file.
The record area addressed by control register 12 is released to the merge
subroutine, and the data contairied in this area may not be altered by the
worker program until the record is returned by the merge. Control register
13 (A1) must contain an 18-bit identifier for the input file. Each input
file should have a unique identifier. This identifier is returned by the
merge subroutine with a selected record to inform the user program from
which input file the record originated.

- Exit Conditions

The merge subroutine returns control to line label + 1 and restores the
contents of all registers which it uses .

• RMGREQ

- The linkage

label SL] RMGREQ

requests a record from the merge subroutine. Except for the first execution
of this linkage, control register 12 (AO) must contain the address of the
next input record from the file which contained the last record returned by
the merge subroutine. The data in the area addressed by control register
12 may not be altered by own code until the record is returned. When all
records from an input file have been released, control register 12 should
contain negative 0 instead of a record address. This informs the merge that
the input file, which contained the last record returned, is exhausted.

- Exit Conditions

The merge subroutine returns control to line label + 1. Control register
12 (AO) contains the address of the.first word of the record being returned.
Control register 13 (A1) contains the 18-bit file identifier for the record
addressed by AO. If all records have been returned, register 12 contains
negative O. All other registers used by the merge subroutine are saved and,
restored.

When the address of a record is released to the merge subroutine, the left
half of register 12 (AO) may contain other information. The whole word is
returned unchanged when the record is returned to the user program. These
positions may be useful for storing information such as record length when
merging variable length records.

2
PAGE'

(

- - r-

UNIVAC 1106/1108 EXEC 8 SORT IMERGE
5 3

UP.7621:
Rev. 1 SECTION: PAGE:

5.4. PREPARING A MERGE PROGRAM

filASM,I
•
MPARAM
•
BUFCPA
FILEA
RECA
BUFCPB
FILES
RECB
BUFCPC
FILEC
RECC
BUFCPX
FILEX
OAODR

For our example, a merge program is needed to merge three tape files. The data
consists of 25-word records wi th a three-character alphanumeric key field in the
least significant half of word five. The input files are written in standard
conventions, ten records per block, and no label block. The output file is to
be written on tape in the same format.

Figures 5-1 through 5-3 show the coding for a set of cards which will assemble
and execute the program. FILE, OPEN, READ, WRITE, and CLOSE are procedures
defined in the UNIVAC 1108 Multi-Processor System Operating System EXEC 8
Programmers Reference, UP-4144 (current version). Figure 5-1 shows the parameter
table that is required. It also includes the file control tables and storage that are
required by own code. Figure 5-2 illustrates the usage of the merge linkages in
the worker program. Figure 5-3 illustrates the control cards that are necessary to
execute the program.

MERGES/A,MERGER/A
MERGE PAHAMETEH TABLE •
R$FILE 'KEY' ,23,3, 'A'. KEY DEF INITION.
INPUT/OUTPUT BUFFER AREAS AND CONTROL TABLES •
B$GPUL 2,256. BUFFER CONTROL PAK FOR FILE A.
FILE 'MRGIN1' 'SIZE',*10,25 'POOL',BUFCPA,I. FILE A CONTROL
RES 25. REC~RO AREA FOR FILE A MERGE INPUT RECORD.
fj$GPUL 2,256. BUFFER CONTROL PAK FOR FILE B.
FILE 'MRGIN2' 'SIZE',*10t25 'POOL',BUFCPB,I. FILE B CONTROL
RES 25. RECORD AREA FOR FILE B MERGE INPUT RECORD.
B$GPUL 2,256. BUFFER CONTROL PAK FOR FILE C.
FILE 'MRGIN.3' 'SIZE' ,*10,25 'POOL',BUFCPC,l. FILE C CONTROL
RES 25. RECORD AREA FOR FILE C MERGE INPUT RECORD.
8$GPUL 2,256. BUFFER CONTROL PAK FOR FILE X.
FILE 'MRGOUT' 'SIZE',*10,2b 'POOL',BUFCPX. FILE X CONTROL
+ o.

Figure 5-1. Parameter Table, File Control Tables, and Storage Area for a Merge Program

TABLE

TABLE.

TABLE

TABLE

UP-7621
Rev. 1

START

RETREC

READA

READS

kEADe

CLOSE A

CLOSEB

CLOSEC
ENOSEL

CLOSE X

UNIVAC 1106/1108 EXEC 8 SORT/MERGE 5 4
PAGE: SECTION:

Lr14
SLJ
OPEN
LMJ
L,14
SLJ
OPEN
LMJ
L,,14
SLJ
OPEN
LMJ
Lr14
SLJ
OPEN
S
SLJ
IN
L
LXIrl4
LXI,14
Lri4
BT
WRITE
S
LMJ
J
READ
L,14
J
READ
Lr14
J
READ
Lr14
J
CLOSE
J
CLOSE
J
CLOSE
LN,14
J
CLOSE
ER
END

12,MPARAM. MERGE PARAMETER TABLE ADDRESS TO AO.
RMGOPN. OPEN MERGE SUBROUTINE.
'INPUT' FILEA. OPEN INPUT FILE A. ~-~
11,READA. GET FIRST RECORD FROM INPUT FILE A.
13,READA. FILE A IV (FILE A ITEM ADVANCE ADDRESS) TO AI.
RMGREL. RELEASE FIRST RECORD FROM FILE A TO MERGE.
'INPUT' FILEB. OPEN INPUT FILE B.
11,READB. GET FIRST RECORD FROM INPUT FILE B.
13,READB. FILE B 10 (FILE B ITEM ADVANCE ADDRESS) TO AI.
RMGREL. RELEASE FIRST RECORD FROM FILE B TO MERGE.
'INPUT' FILEC. OPEN INPUT FILE C.
11,READC. GET FIRST RECORD FROM INPUT FILE C.
13,READC. FILE C 10 (FILE C ITEM ADVANCE ADDRESS) TO AI.
RMGREL. RELEASE FIRST RECORD FROM FILE C TO MERGE.
'OUTPUT' FILEX. OPEN OUTPUT FILE.
12,OADDR. OUTPUT BUF~ER ADDRESS TO T.S.
RMGREQ. GET MERGED RECORD FROM MERGE SUBROUTINE.
12,CLOSEX. HAVE ALL RECORDS BEEN RETURNED?
14,OADDR.
12,1.
14,1.
65.25.
14,0,*12. MOVE SELE.CTED RECORD TO OUTPUT.
FILEX GET NEXT OUTPUT ADDRESS.
12,OADDR. OUTPUT BUFFER ADDRESS TO T.S.
11,0,13. GET RECOHD FROM MERGE WINNER INPUT FILE.
RETREC. RELEASE RECORD (AO) FROM WINNER FILE TO MERGE.
FILEA O,RECA CLOSEA. GET RECORD FROM INPUT FILE A.
12,RECA. RECORD ADDRESS TO AO.
0,11.
FILES O,RECB CLOSEB. GET RECORD FROM INPUT FILE B.
12,RECB. RECORD ADDRESS TO AO.
0,11.
FILEC O,RECC CLOSEC. GET RECORD FROM INPUT FILE C.
12,RECC. RECORD ADDRESS TO AO.
0,11.
FILEA.
ENDSEL.
FILEB.
I::NOSEL.
FILEC.
12,0.
o ril.
F ILEX. '
EX!T$.
START.

CLOSE INPUT FILE A.
END MERGE SELECTION FOR FILE A.
CLOSE INPUT FILE B.
END MERG(SELECTION FOR FILE B.
CLOSE INPUT FILE C.
SE.NTINEL RECORD TO AO
END MERGE SELECTION FOR EXHAUSTED INPUT FILE.
CLOSE OUTPUT FILE.
MERGE RUN IS COMPLETED ••

• •• _4".

Figure 5-2. Coding for a Merge Program

ToJPREp
fOlMAP, I
IN
fOlASG, C
fOlASG,C
fOlASG,C
f,j)X~l

D,MR.
MERGER.

MRGINl,C,NN.
MR6IN2,C,NN.
MRG IN;3PC, NN.
MR.

ASSIGN INPUT FILE A.
ASSIGN INPUT FILE B.
ASSIGN INPUT FILE C.

Figure 5-3. Control Cards for Execution of a Merge Program

(

UP-7621
Rev. 1

("

(-

UNIVAC 1106/1108 EXEC 8 SORT/MERGE
6

SECTION: PAGE:

B. OPERATING

6.1. PARAMETER CARD PROCESSING

It is possible to enter certain. parameter table entries and rerun information from
cards. The parameters accepted and the entry routine are described in the
following paragraphs.

6.1.1. Parameters Accepted

The ability to process certain sort parameter lists from parameter cards submitted
at execution time is provided to facilitate the incorporation of optional information
into the parameter table.

The following parameter lists are accepted from parameter cards:

'SMRG' 'CONTA'

'PARTA' 'CONTB'

'PARTB' 'CHECK'

'PARTC' 'VRSZ' I These lists delete all 01, 02,
and 05 entries that are already

'REDOA' 'VRSZW' in the parameter table.

'REDOB'

In addition to the above parameters, the parameter card routine accepts the follow­
ing parameters which are not recognized by the R$FILE procedure:

6.1.1.1. 'BIAS'

'BIAS'

'DELCON'

'LIMDRM'

'LIMFST'

'PSORT'

'VOL'

Format: 'BIAS', bias factor

• bias factor - .a decimal number of up to four digits which indicates the expected
bias or degree of ordering which exists in the input data. A decimal point is
implied one digit from the right of the number.

The bias of the input data can be defined as the ratio of the number of records
en) in the input file to the number of natural sequences ef) existing in the data.
That is:

bias = ~
f

1

UP-7621
Rev. 1

t

PAGE:
6 A UNIVAC 1106/1108 EXEC 8 SORT/MERGE SECTION:

For example, in the following three lists of numbers, the bias of each is:

List A 10/4 = 2.5

List B 10/10 = 1

List C 10/1 = 10

List A: 4} 1 List B: 9 List C: 1

;} 2

8 2

7 3

6 4

5 5

2} 3 4 6

:} 4

3 7

2 8

1 9

10 0 10

If the bias of the input data was known, sorting speed could, in most cases, be
improved. Therefore, at the conclusion of each sort, the subroutine displays a
message indicating the actual bias of the input data (see 6.2.1). This bias
factor may then be utilized as a parameter in subsequent sorts of similar input
data to improve sorting efficiency. Note that although a decimal point is printed
in the bias message, it should not appear on the 'BIAS' parameter card. For
example, a bias of 2.0 must be specified as 20.

This parameter should be entered whenever it is known. Sort assumes a
value of 1.5 in the absence of this information. If the actual value is
closer to 1.0 or greater than 2.0 (random data), the result is very poor
utilization of equipment resources, often resulting in a drastic reduction
of effective Sort scratch storage available. This can cause a Sort B9
error.,

6.1.1.2. 'DELCON'

Format: 'DELCON'

This parameter card is used to suppress the printing of the end-of-sort messages
(see 6.2.1) of the console The messages will still be printed in the log and

present on the listing of the run.

6.1.1.3. 'LIMDRM'

Format: 'LIMDRM', no-ol-words

• no-of-words - a decimal number that specifies the minimum drum block size
to be used.

If the ratio of main storage and drum assigned does not permit a block of at
least the specified size, the run is aborted. The user must then resubmit the
run assigning either a larger amount of main storage or a smaller amount of
drum.

2

UP-7621
Rev. 1

('

A 6 UNiVAC 1106/1108 EXEC 8 SORT/MERGE
SECTION.

6.1.1.4. 'LIMFST'

Format: 'LIMFST', no-oE-words

• no-of-words - a decimal number that specifies the minimum F ASTRAND
block size to be used.

If the ratio of main storage to F ASTRAND mass storage, or if drum is
assigned - the drum to F ASTRAND mass storage ratio, is such that a
F ASTRAND block of at least the specified size cannot be obtained, the
run is aborted. The user must resubmit the run assigning either a larger
amount of main storage or drum, or a smaller amount of FASTRAND mass
storage.

6.1.1.5. 'PSORT'

6.1.1.6.

Format: 'PSORT'

This parameter card is used to delete all parameter table entries generated
by the 'SMRG' list - 30, 10, 11, 12, and 13 - from the parameter table. This
provision applies only to COBOL users, since COBOL sorts automatically
specify the 'SMRG' list.

'VOL'

Format: 'VOL', no-oE-records-in-thousands

• no-of-records-in-thousands - a decimal number that specifies the volume to
be sorted in thousands of records. Specifying the volume to be sorted will,
in some cases, permit the sort routine to utilize facilities more efficiently.

6.1.2. Parameter Card Routine

In addition to the parameters specified above, the parameter card routine also
processes the rerun information deck punched by the IPURI$ linkage (see 3.2.1.2)
should restart become necessary during part C (see 4.1.3). The following general
rules are applicable whenever any parameter is entered by way of parameter cards:

• Only one list may appear on anyone card, but each list may use as many cards
as are needed for the required information. A semicolon must be punched on
cards to indicate list continuation on the succeeding card.

• The @XQT card must contain a P option to inform the sort that parameter cards
are to be read.

• An ~'EOF015A card should follow the last parameter card. This terminates the
reading of parameter cards.

• If card input files are read during a sort program, which requires parameter
cards, the user must exercise caution as to the relative placement of the data
cards and the, sort parameter cards with the execution of the statement opening
the user card file and the statement opening the sort.

3
PAGE.

UP-7621
Rev. 1

t

SECTION:

6 A UNIVAC 1106/1108 EXEC 8 SORT/MERGE

6.2. OPERATING INSTRUCTIONS

Merge and small volume sort programs require a minimum of operator intervention
and only the basic operating instructions are pertinent to these programs. For
automatic and nonautomatic large volume sort programs, the information given in
6.2.2 is applicable in addition to the basic operating instructions.

6.2.1. Basic Operating Instructions

The user must assign either dynamically or by way of @ASG cards the external­
file-names which are available to the sort· subroutine. If tape files are
assigned, a blank tape must be mounted on each tape unit assigned for use
by the sort subroutine. Before the sort subroutine returns control to at-end­
address (see 3.1.4), the following messages are printed:

SORT: TIME PER RECORD = ttt.t msec

where: ttt.t is the processing time per record for this run; therefore, it does
not indicate the total sort time per record when executing 'CONT A',
'CONTB', 'CONTC', or 'PARTC'.

I.C = iiiiiiii

PAGE:

where: iiiiiiii is the input record count for this run; therefore, it does not specify
total input record count when executing 'CONT A', 'CONTB', 'CONTC',
or 'PARTC'.

OC = 00000000

where: 00000000 is the output record count for this run; therefore, it does not
specify total output record count when executing 'CONTC'.

BIAS IS bbb.b
or

BIAS IS SEQ

where: bbb.b = is the bias factor (degree of ordering in the input data file).
For a file in random order, the bias factor is approximately 2. Bias
increases the more the data is in sequence, but approaches 1 as the
data approaches inverse sequence. If the input data is completely or
almost completely in order, the bias is: SEQ. The bias factor may
be utilized in subsequent sorts as described in 6.1.1.1.

M 1 BLOCK SIZE: xxxx
M2 BLOCK SIZE: xxxx

MERGE POWER: yyy
MERGE POWER: yyy

where: M1 and M2 = specify the two sort modules which utilize mass storage
devices. If only one mass storage file is assigned, module
M1 is used but M2 is not. If two mass storage files are
assigned, M 1 is used for the smaller file (preferably fast
drum) and M2 for the larger file (preferably F ASTRAND
mass storage).

xxxx = the block size used in reading and writing the assigned
mass storage file.

4

c

(

(

UP-7621
Rev. 1 UNIVAC 1106/1108 EXEC 8 SORT/MERGE A 6

SECTION:

yyy the maximum number of strings it is possible to merge from
the mass storage file using that block size.

The block size and merge power are displayed to help the user determine if the
facility assignments he made were satisfactory. The sort subroutine calculates
merge power and block size based on the amount of main storage, fast drum, and
FASTRAND mass storage assigned. In general, assigning too small an amount of
main storage or fast drum in proportion to F ASTRAND mass storage causes the
sort subroutine to use small blocks. This usage of short blocks results in a slow
sort. To improve efficiency, assign more main storage or fast drum. Appendix A
provides additional information on assigning facilities for efficient drum sorting.

6.2.2. Large Volume Sorts - Operating Instructions

A large volume sort program produces a number of intermediate output reels which
must be labeled, demounted, and mounted by the operator. A number of messages
instructing the operator must, therefore, be written on the console typewriter or
the PAGEWRITER printer. A large volume sort is composed of three distinct
phases: part A, part B, and part C. The operation of a large volume sort may be
automatic or nonautomatic. An automatic sort proceeds from one phase to another
under the control of the sort subroutine. A nonautomatic sort executes each phase
as separate runs.

6.2.2.1. Part A of Large Volume Sort

This phase accepts input data from the user program and periodically produces
a sorted output file for a part of the input data.

(1) After the label block for an output reel has been written, the following
message is printed out:

ce/uu LABEL: REEL n OF uuAccc

where: ee/uu is the channel/unit.
n is the reel number.
uuAeee is the label.

with: uu is the user label prefix.
A denotes part A output.
cee is the cycle number.

The operator should label the designated reel. No response is required for
this message.

(2) After an end-of-reel or end-of-file sentinel block has been written on an
output reel, the output reel rewinds with interlock and a tape unit swap is
performed. The following message is printed out:

ee/uu DISMOUNT REEL n OF uuAecc AND MOUNT BLANK

where: ce/uu is the channel/unit.
n is the reel number.
uuAeee is the label.

The operator should demount the output reel and mount a blank tape on the
designated unit. A response of Y is required for this message.

5
PAGE:

UP-7621
Rev. 1

6 UNIVAC 1106/1108 EXEC 8 SORT/MERGE
SECTION.

(3) After all reels of an output file are written, the following message is printed
out:

CYC NO. ccc RECORD NOS. yyyyyy - zzzzzz

where: ccc is the cycle number.
yyyyyy is the lowest input record number in this output file.
zzzzzz is the highest input record number in this output file.

This message requires no response and the message should be retained
in case rerun becomes necessary.

(4) After all the input data has been released to the sort and sorted into
intermediate output files, the following message is printed out:

END PART A

No response is necessary. If this is an automatic sort, the sort produces
a listing of the merges needed to complete this run. If this is a non­
automatic sort, the sort terminates unless the user program has requested
that control be returned to it.

6.2.2.2. Part B of Large Volume Sort

This phase reads intermediate output files produced by the sort and merges
them into larger intermediate output files. An automatic sort performs the
number of merges needed to reduce the number of input files to one less than
the number of tape files assigned. The output unit is then available to the
user program after part B has been completed. A nonautomatic sort requires
a separate run for each intermediate merge performed.

(1) If an automatic sort is being executed, the following message is printed
out at the beginning of each merge:

START MRG NO. ppp

where: ppp is the merge number as shown on the printer listing.

No response is required for this message.

(2) The following message is printed out after the label block for each
output reel has been written:

cc/uu LABEL: REEL n OF uuxmmm

where: cc/uu is the channel/unit.

with:

n is the reel number.
uuxmmm is the label.

uu is the user label prefix.
x is the merge level (B-Z).
mmm is the merge number within the level.

PAGE.

The operator labels the designated reel and this label block is now available
for use should rerun become necessary. No response is re quired for this
message.

6

~-"\ "'j

UP-7621
Rev. 1

(

UNIVAC 1106/1108 EXEC 8 SORT/MERGE
SECTION.

(3) An input reel is requested by the following message printed out:

cc/uu MOUNT REEL n OF uuxxxx

where: cc/uu is the channel/unit.
n is the reel number.
uuxxxx is the label.

6

After the input reel is mounted, this message must be answered with a Y.

(4) A label check is performed on the input reel just mounted. If the label
and/or reel number read does not agree with the label and reel number
requested, the error reel is rewound with interlock and the following mes­
sage is printed out:

cc/uu LABEL ERROR: REEL n OF xxxxxx

where: cc/uu is the channel/unit.
n is the reel number read.
xxxxxx is the label read.

PAGE.

This message requires no response and the message to mount the requested
reel is repeated. The error reel should be demounted and the correct reel
mounted.

(5) When an end-of-reel or end-of-file sentinel block is detected on an input
reel, the input reel is rewound with interlock and a tape unIt swap is per­
formed. The following message is printed out:

cc/uu DISMOUNT REEL n OF uuxxxx

where: cc/uu is the channel/unit.
n is the reel number.
uuxxxx is the label.

The operator should demount the designated reel. No response is required
for this message.

(6) After an end-of-reel or end-of-file sentinel block is written on an output :eel,
the output reel rewinds with interlock, a tape unit swap is performed, and
the following message is printed out:

cc/uu DISMOUNT REEL n OF uuxmmm & MOUNT BLANK

where: cc/uu is the channel/unit.
n is the reel number.
uuxmmm is the label.

The operator should DEMOUNT the output reel and mount a blank tape on
the designated output unit. This message requires a response of Y.

(7) After all intermediate merges have been performed for an automa tic sort or
a single merge has been performed for a nonaut omatic sort, the following
message is printed out:

END PART B

No response is required for this message.

7

UP-7621
Rev. 1

SECTION:

6 UNIVAC 1106/1108 EXEC 8 SORT/MERGE

6.2.2.3. Part C of Large Volume Sort

This phase merges intermediate output files, which contain all of the data, into
a single file that is returned to the user program one record at a time.

Part C requests input reels to be mounted, performs label checks and tells the
operator to demount exhausted input reels by way of the same messages as part
B (see 6.2.2.2). The diSposition of the final output is under the control of the
user program. During part C, the user program has the option of requesting the
sort subroutine to periodically punch cards containing information for input
repositioning in case restart becomes necessary. The following message is
printed out each time this information is punched.

CONTC RERUN INFORMATION ccc CYCLE nnn CARDS

where: ccc is the deck number.
nnn is the number of cards.

No response is required for this message. The operator should remove the cards
from the punch output hopper and mark them with their cycle number.

6.2.2.4. Rerun Capabilities

Two types of rerun are provided in large volume sorts:

(1) continuing an interrupted sort using the 'CONTA', 'CONTB', and
'CONTC' parameter lists; and (2) recreating an intermediate output file
or reel using the 'REDOA' and 'REDOB' parameter lists. The parameter
cards needed for rerun are read using the parameter card routine (see
6.1.2).

(1) 'CONTA'

If a sort is interrupted in part A, it can be continued at some later time by
adding the 'CONTA' parameter list (see 2.2.1.22) to the parameter table
and re-executing the original run.

This list gives the sort subroutine the input record number with which it
should resume sorting. The input file is read from the beginning;
however, the sort subroutine does not process the input until it receives
the first record for the cycle with which it is to start. The sort then
continues until normal completion of the run.

(2) 'CONTB'

If a sort is interrupted in part B, it can be continued at some later time by
adding the 'CONTB' parameter list (see 2.2.1.23) to the parameter table
and re-executing the original run.

The label block for each reel produced during part B contains the position
of all input files at the beginning and end of the previous part B output
reel. The label block can then be used to reproduce the previous part
B output reel or to continue the sort from the point where the label
block was written.

The label and reel number of the first output reel to be written after restart
is the 'CONTB' parameter list. This is generally the reel which contains
the last label block written before the sort was interrupted. This must
be a part B output reel.

8
PAGE:

c

(

UP-7621
Rev. 1 UNIVAC 1106/1108 EXEC 8 SORT/MERGE 6

SECTION:

(a) The reel which contains the restart information is requested by the
program by way of the message:

cc/uu MOUNT REEL n OF uuxmmm

where: cc/uu is the channel/unit.
n is the reel number.
uuxmmm is the label.

This message requires a response of Y after the requested reel is
mounted.

(b) A label check is performed on the reel mounted. If the reel mounted

PAGE:

is not the one requested, the error reel is rewound with interlock and the
following message is printed out:

cc/uu LABEL ERROR: REEL n OF xxxxxx

where: cc/uu is the channel/unit.
n is the reel number read.
xxxxxx is the label read.

No response is required. The message requesting the reel specified in
the parameter list to be mounted is repeated. The error reel is then
demounted and the requested reel mounted.

(c) After the restart information has been read from the label block,
the reel is rewound with interlock and the following message is
printed out:

cc/uu DISMOUNT REEL n OF uuxmmm
cc/uu MOUNT BLANK

where: cc/uu is the channel/unit.
n is the reel number.
uuxmmm is the label of the reel which contained the restart
information.

If this is 'CONTB', the same reel may be used for the output reel.
If this is 'REDOB', the reel should be demounted and a blank tape
should be mounted. After the output reel is mounted, this message
should be answered with a Y. A label block is written and the sort
is continued from the point requested. The sort then continues
until normal completion of the run for 'CONTB'.

(3) 'CONTC'

Since the user program controls the disposition of the final output, it is
not possible for the sort subroutine to provide for a complete restart
procedure during part C. The sort provides the user with information
concerning the positioning of the input files. If requested, this infor­
mation is punched on cards which can be read by the parameter card
routine (see 6.1.2.). However, the user must provide the operator with
a procedure for positioning the output, if required.

9

UP-7621
Rev. 1 UNIVAC 1106/1108 EXEC 8 SORT IMERGE

SECTION:

(4) 'REDOA 'j

If an output reel produced during part A cannot be read, the output
file which contained the reel can be recreated by adding a 'REDOA'
parameter list (see 2.2.1.20) to the parameter table and re-executing
the original run. The entire file must be recreated because part A
output files are created from random input data. The 'REDOA'
parameter list provides the sort subroutine with the cycle which is to
be redone. The input file is read from the beginning; however, the
sort does not process the input until it receives the first record for
the cycle being recreated. The sort will not accept any more input
after it has received the highest record number in the cycle to be
redone. After il.le output file is recreated, the following message is
printed out:

END REDO A

6

and the sort subroutine terminates the run, unless the user program has
requested that control be returned to it. No response is required for
this message.

(5) 'REDOB'

If an output reel produced during part B cannot be read, it can be recreated
by adding a 'REDOB' parameter list (see 2.2.1.21) to the parameter table
and re-executing the original run.

The information for reproducing a part B output reel is contained in the
label block written subsequent to it. The label and reel number of the
tape containing the redo information is supplied to the sort subroutine
in the 'REDOB' parameter list. This must be ~ part B output reel
and cannot be a reel produced by 'REDOB'.

'REDOB' requests that the reel, containing the redo information, be
mounted by way of the same messages as for 'CONTB' (see step 2 of
6.2.2.4).

After the requested reel is r~created, this message is printed out:

END REDO B

and the sort terminates the run, unless the user program has requested
that control be returned to it. No response is needed for this message.

6.3. DIAGNOSTIC MESSAGES

The following paragraphs provide information describing the diagnostic messages
that ca.n result from various errors occurring during the execution of sort and
merge subroutines.

6.3.1. Recoverable Errors - Sort Subroutine

The sort subroutine can recover from certain errors that may occur during
execution. These errors are as follows:

10
PAGE:

UP-762l
Rev. 1 UNIVAC 1106/1108 EXEC 8 SORT/MERGE

SECTION:

• Tape read errors

The sort will attempt recovery on all tape read errors. The tape read error
diagnostic message is as follows:

cc/uu ss SORT ERROR CODE xx (NO OR GO)

where: cc/uu is the channel/unit.
ss is the status returned by 1108 EXEC.
xx is the error indicator. This indicator can be any of the
following:

A2 - word count error
A3 - checksum error
AS - read error detected by 1108 EXEC
A7 - block count error

6

The above error message requires a response. Recovery is attempted if the
operator responds GO. The sort is terminated by way of an ER ERR$ if the
operator responds NO.

• Parameter card routine errors

If no EOF card is detected in the parameter card deck submitted to the sort,
the following diagnostic message is printed out:

MISSING EOF CARD

The sort will continue.

6.3.2. Unrecoverable Errors - Sort Subroutine

The errors indicated below are unrecoverable and the sort subroutine win
terminate by way of an ER ERR$ linkage.

• General sort errors

Unrecoverable errors are denoted by the following diagnostic messages:

SORT ERROR CODE xx

where: xx is the error indicator. This indicator can be any of the following:

(1) Bl - no record size specified iii the parameter table
(2) B2 - sort parameter table format error
(3) B3 - no main storage allocation specified in parameter table and

no R$CORE assignment
(4) B5 - capacity of sort exceeded, single cycle
(5) B6 - inconsistency in control parameters specified in parameter

table. May specify only one of a set:
(a) 'SMRG', 'PARTA', 'PARTB', 'PARTC',
(b) 'REDOA', 'REDOB', 'CONTA', 'CONTB', 'CONTC'
Set (a) must be consistent with set (b).

(6) B7 - record size too large or 0 for variable length record
(7) B8 - facility code error for scratch file assigned to sort
(8) PO - sequence error in core module. Usually caused by bad 'KEY'

parameter
(9) D4 - sequence error on drum module

(10) F4 - sequence error in F ASTRAND module
(11) Al - sequence error on tape

11
PAGE:

UP·7621
Rev. 1 UNIVAC 1106/1108 EXEC 8 SORT/MERGE

(12) D5 - read or write error on drum
(13) F5 - read or write error on F ASTRAND
(14) D6 - checksum error on drum
(15) F6 - checksum error on FASTRAND
(16) D7 - block count error on drum
(17) F7 - block count error on F ASTRAND
(1S) DO - logical error in drum module
(19) FO - logical error in F ASTRAND module

SECTION:

(20) MO - illegal 'KEY' type (not 'A', 'B', 'D', 'M', or 'U')

6

(21) Ml - no 'COMP' list and/or no 'KEY' or'KEYW' list specified
(22) M2 - starting bit or number of bits in key is invalid
(23) M3 - number of keys specified exceeds limit of 40
(24) M4 - invalid translation table (64 unique codes are required)
(25) M5 - key falls outside record
(26) M6 - key number is duplicated or missing
(27) EO - insufficient main storage assigned to merge or specified block

size is too small
(2S) E 1 - insufficient main storage allocated to read merge input tapes
(29) E2 - physical output tape for 'REDOB' cannot contain all data

which was on reel being recreated

PAGE:

(30) E3 - 'REDOB' is impossible. Rerun reel specified is a part A output
reel or was created by a 'REDOB' and does not contain rerun
information for preceding reel

(31) E4 - insufficient number of tape files assigned for merge
(32) E5 - incorrect address in parameter table for 'CONTC' information

table
(33) K9 - incC5rrect cycle number or sequence error in 'CONTC' input card

deck.
(34) SO - sequence error in input file to merge subroutine

• Tape errors

Unrecoverable errors are indicated by the following diagnostic message printed
out:

cc/uu ss SORT ERROR CODE xx

where: cc/uu is the channel/unit.
ss is the status returned by the 110S EXEC.
xx is the error indicator. This indicator may be any of the following:

AO - physical end of tape; scratch tape too short
A4 - uncorrectable read error; operator responded NO
A6 - uncorrectable write error
AS - error occurred while attempting to position a tape after a

correctable read error

• Parameter card routine errors

Either of the two following diagnostic messages may be printed out on the
console typewriter. The error indicated by the second diagnostic message
occurs when the parameters submitted exceed the parameter table area
reserved by the sort subroutine.

12

UP-7621
Rev. 1 UNIVAC 1106/1108 EXEC 8 SORT/MERGE

PARAMETER CARD INCORRECT

PARAMETER TABLE OVERFLOW

• Linkage use errors

6
SECTION.

The following diagnostic message indicates that the sort subroutine linkage
is executed at an inproper point in the program:

xxxxxx SORT LINKAGE USED AT WRONG TIME

where: xxx xxx is the linkage

PAGE:

if ROPN$ - may not be used after sort has been initially opened, until
sort has returned control to either the at-end-adriress or
RRET$, or the 'FINAL' address specified in the
parameter table.

if RREL$ - may not be used before ROPN$ has been executed
or or after RSORT$ has been executed.
RENCY$

if RSORT$ - may be executed only once for each time the sort is
opened.

if RRE T$ - may be used repeatedly after the sort has returned control
to 'LPOC' address, but not after control has been returned
to at-end-address.

13

(",
',,-- ->',)

(

UP-7621
Rev. 1 UNIVAC 1106/1108 EXEC 8 SORT/MERGE

Appendix A
SECTION:

APPENDIX A. ASSEMBLER. COBOL,
AND DRUM

SORT /MERGES

A.I. SORT/MERGE ELEMENTS AND SPACE REQUIREMENTS

The following paragraphs discuss those elements which are needed for the
execution of a sort/merge and the space requirements of each element. It
shows those elements which are required for a normal Assembler-coded sort,
the additional elements needed when performing a COBOL sort, and the
elements necessary for a merge-only program. These elements are shown in
Table A-I.

MAIN STORAGE

ELEMENT NAME/V DESCRIPTION I BANK D BANK

BPARPC/Vl* PROC Process sort parameter 233
table entries; R$FILE

BSRTPC/Vl* PROC Register definitions and 136
procedure ca lis

ARINFO/A* PROC Procedure call 3

BCONSG/N Control segment 1053 171

PCORE/V3 Tournament processing 498

PRATTS· Se lection and preselection 79

RDFM$/N Drum/F ASTRAN 0 modu Ie 389 70

ATMRG/B Tape module 1614 523

BKEYS/N Key translation 1166

RSTD$ Hardware file assignments 49

AINFO/A Prepare 'CONTC' rerun 14
information

REBD$ Binary-to-decimal conversion 13

KRFIND/V1 Search sort parameter table 28 2

KPARCD/V2 Parameter card routine 432 170

KPHRUN/V1 Punch 'CONTC' return 58 34
information

TOTAL 4551 1036
'.

*Procedures which must be present at assembly time.

Table A-1. Required Sort/Merge Elements

UP-7621
Rev. 1 UNIVAC 1106/1108 EXEC 8 SORT IMERGE Appendix A

SECTION.

(1) When COBOL sorts are run, the following two elements must be inc;luded with
those elements shown in Table A-I:

KSTINT/XI
KTCORE/VI

COBOL-SORT INTERF ACE
Assign Core Area for COBOL
Sort

166 191
15000

(2) 15,000 words of main storage are currently reserved for the COBOL sort. A
user may change this to suit his own needs by reassembling the element and
reserving the main storage area required:

7/8 ASM,S
-1, 1
TCORE$*

KTCORE/Vl, KTCORE,KTCORE/VI

R$FILE 'CORE', ttWORDS OF CORE

(3) The following element must be used ill conjunction with BPARPC/Vl,
BSRTPC/Vl, PRATTS, -KRFIND, BKEYS, and REBD$ for the execution
of a merge-only program.

KMERGE/XI Merge Control 54 1060

(4) Element STERCD/VI is present but not required in any sort run. This element
contains all error codes which may occur during the running of a sort program.

(5) Depending upon the hardware features which may be required in the running of a
sort program, certain sort elements may be deleted which correspond to those
hardware features that will not be used.

In the situation where a user desires only a main and mass storage sort, the
following elements may be deleted to provide more main storage area:

ARINFO/A ATMRG/B AINFOI A KPHRUN/VI

However, when these elements are deleted, the user must externally define
certain labels in his own code to satisfy labels referenced by the required sort
elements. No instructions are necessary; it is used only to satisfy references
to these labels contained in required elements. These labels are as follows:

RTMIN$
RTMAX$

RTPT$
RTST$

RTMT$
RLBLK$

Similar element deletion and label redefinition may be done if only main storage
and tapes are necessary for a sort program. The element RDFM$/N (mass
storage) element can be deleted with the following labels externally
defined in the user code:

RDRMT$ RFSTR$

If only a main storage is desired, both .the tape and mass storage modules may
be deleted with the above mentioned labels from, both modules externally
defined in the user program.

The amount of main storage required by a sort/merge may be reduced further
by deleting the element KP ARCD/V2 provided that no parameter card
processing is required.

2
PAGE.

(

(

UP-7621
Rev. 1

A Appendix A
UNIVAC 1106/1108 EXEC 8 SORT/MERGE SECTION: PAGE:

If no parameter card processing is necessary, KPARCD/V2 may be deleted
and replaced by the following lines of coding:

$(1)
ROPN$*

S
LMJ
'ROPN$~'

J

01, RNEW$
01, RSTRG$

RBPN$

A.2. DRUM ONLY SORTS

A.2.1.

The sort s ubroutirie is designed to operate effiCiently with different levels of
storage (excluding tapes, which will not be discussed here) namely:

• Main storage

• Relatively fast drums: FH-432, FH-1782, FH-880

• Relatively slow drums: FASTRAND II

In addition, the fast drums may be used as word addressable or simulated
F ASTRAND drum, depending upon options exercised at systems generation
time and at sort run time.

Utilization

For optimal utilization, both fast drum and F ASTRAND drum should be assigned.
To achieve this, there are two modules within the sort subroutine which are
prepared to use drums. These modules are referred to as Ml and M2. Because
of the options exercised at system generation time, by way of @ASG cards or
by allocation of UNIV AC EXEC 8 (dependent on run time conditions), a UNIVAC
1106/1108 Sort can logically engage Ml and M2 as follows:

• If only one type of drum, assigned by way of an @ASG card, is used, Ml is
used but M2 is not. The drum type may be:

word addressable fast drum,

simulated FASTRAND drum,

F ASTRAND drum, or

8414 disc (Not recommended for one-level sorts)

The amount of drum assigned must be at least three times as great as the
working main storage available; otherwise, the drum assigned is not used .

• If two types of drum, assigned by way of @ASG cards, are used, Ml is used
for the smaller file and M2 for the larger file. Ml and M2 (individually) may
use:

word addressable fast drum,

simulated FASTRAND drum,

FASTRAND drum, or

8414 disc (Not recommended for Ml storage)

However, Ml must be ~ three times main storage and M2 must be > two
times Ml.

3

t

UP.7621
Rev. 1

t

Appendix A
SECTION:

A
UNIVAC 1106/1108 EXEC 8 SORT IMERGE

The 8414 disc storage should not be used for the M1 (lower~volume)
storage. The large sector size (128 words) ofthe 8414 disc can cause
problems and inefficiencies.

A.2.2. Sort Operation Using Mass Storage Files

Paragraph A.3 contains procedures that help the user allocate his facilities when
using mass storage files. To make use of these facilities, it is helpful to know
how the sort operates when modules M1 and M2 are employed.

As the records are released to the sort, they are ordered into strings in main
storage* and then they are written onto the next larger storage device assigned,
usually fast drum. When either the drum is filled or the predicted merge limit is
reached, these strings are merged simultaneously employing main storage and
the resultant long string is written onto FASTRAND mass storage.** This
process continues until (a) all of F ASTRAND mass storage is filled, or (by
when the predicted merge limit is reached, or (c) input is exhausted. The strings
on the FASTRAND mass storage are then merged simultaneously in main storage
and they are then either written on tape or transferred to Last Pass Own Code
as final output.

When merging n strings, n+1 input buffers are needed so that at least one block
from each string can be in main storage at the same time. Three output buffers
are also needed to write the merged output onto the next storage device. If the
output is being sent to tape, only two buffers are needed; if the output is going
to Last Pass Own Code, no buffers are needed.

The efficiency of the sort is greatly dependent upon the size of the blocks used
to tran sfer the strings during the sorting process. Block size depends on the
predicted number of strings that will be merged simultaneously and the amount
of main storage available for the merging process.

The number of strings that must be merged simultaneously depends somewhat on
the bias of the input data, but more so on the ratio between the amounts of main
storage, fast drum, and F ASTRAND mass storage assigned. Paragraph A.3 pro­
vides the formulae and tables needed by the programmer to determine the correct
mix of main storage, fast drum, and F ASTRAND mass storage so as to obtain an
efficient assignment for a given sort.

A.3. FACILITY ASSIGNMENT FOR EFFICIENT DRUM SORTING

The most efficient sort is one in which:

• the fastest storage devices available are assigned;

• the number of passes over the data are reduced to a minimum; and

• the input and output channel time in each pass are completely overlapped.

*10 some instances, the strings Qenerated Bre slightly s,mallet than the amount of main stora~e

(C) assi~ned;. however, the input data is ~eneral1y in random order and the strings will be

approximately 2C in length.

""Ideally, the strings on FASTRAND mass storage will approach the amount 01 drum (D) assigned

in length.

4

{

UP-7621
Rev. 1

Appendi.x A
SECTION:

A UNIVAC 1106/1108 EXEC 8 SORT/MERGE

The fastest storage devices available for sorting are mass storage devices. If
possible, the user should assign enough mass storage to contain the entire file,
thus eliminating costly tape passes. If F ASTRAND mass storage is required to
accommodate the file, sufficiently large amounts of fast drum and main storage
should be assigned to ensure that the block sizes which are used are large
enough to ach ieve overlap.

A.3.1. Facility Assignment - Formulae

The following rule of thumb guidelines are provided to help the user choos~ the
most efficient combination of facilities for his sorting requirements. Tables are

also provided in A.3.2 as an alternate method of determining an optimal
facility allocation. For variable length record sorting, the sort process
requires that one word per record be added to carry the record size. This
results in an increase in the volume (V) to be sorted. For example, a
sort of 10,000 10-word records and 10,000 IS-word records does not have
a volume (V) of 250,000 words (10 x 10,000 plus 15 x 10,000) as would be
assumed. The actual volume (V) is (11 x 10,000 plus 16 x 10,000) or 270,000
words. When sorting variable length records, the calculation of V for the
following equations should be made with this in mind.

A.3.1.1. Fast Drum Sorting Only

If the data volume (V) can be contained on fast drum exclusively, assign just
enough fast drum space (D) to hold the data file, plus a safety factor.*

D = 1.1 (V)

PAGE:

Using the table in A.3.1.3, choose the appropriate minimum value for drum buffer
size (d).

Substitute the amount of fast drum (D) and the drum buffer size (d) into the
following equation to obtain the approximate amount of main storage (C) to assign.

A.3.1.2. Fast Drum and F ASTRAND Mass Storage Sorting

If available, assign just enough F ASTRAND space (F) to hold the data, plus a
safety factor. *

F = 1.1 (V)

Note the values for FASTRAND buffer size (f) and fast. drum buffer size (d)
shown in the table in A.3 .1.3.

Substitute values for fast drum (D) and main memory (C) into the following
equations until both f and d are at least as large as shown in the table in
A.3.1.3.

* If variable length records are being sorted, this safety factor should be increased to 15 percent. Do not use more
than the necessary volume plus the recommended safety factor; this would be self-defeating in most cases.

5

t

UP-7621
Rev. 1 UNIVAC 1106/1108 EXEC 8 SORT/MERGE

~+ 1 = F J C
f
-2t I

D

D I C-3f l ~+ 1= -d-

A.3.1.3. Block Sizes

A Appendix A
SECTION:

where: t = ° if tape is not
required; t = 1000 if tape
is required.

The block sizes shown in the following table are such that the effective
transfer rate for the specified device will be equal to that of a UNISERVO
VIII-C tape blocked at 1000 words. Assuming a 1: 1 interlace, the block size
required to achieve this balance is:

DEVICE WORDS/BLOCK

FH-432 drum 125
FH-880 drum 500
FH-1732 drum 500
FASTRAND II mass storage 2000
F ASTRAND III mass storage 1500

PAGE:

Larger block sizes may not improve the efficiency of the sort, but total systems
efficiency may improve because the number of accesses to the device will be
reduced.

The user must also keep in mind that a data block must be large enough to
accomm odate at least one data record. If the size of the record to be sorted
is larger than the block size selected from the above table, use record size
as block size in place of the value selected. If the records are of variable
length, use the size of the largest record as block size.

NOT E: The operation a//b is the covered quotient operation, a//b =
(a + b - 1)/b. The operation I alb I means the integer value of a/b.

A.3.1.4. Example

Assume 1,500,000 words of data are to be sorted and 15,000 words of main
storage are available. Generous amounts of both F ASTRAND II mass storage
and FH-1732 drum are also available. The amount of FASTRAND II mass
storage required to accommodate the file is:

F = 1.1 (1,500,000)

F = 1,650,000

To determine an optimal assignment of FH-1732 drum, let f = 2000, as shown
in A.3.1.3.

1,650,000
1 I 15,000 I + =

D 2000

1,650,000
6 275,000 S D < 330,000 =

D

6

,~ "

",.f

tf"
: ,."

(

(

UP·7621
Rev. 1 UNIVAC 1106/1108 EXEC 8 SORT/MERGE A Appendix A

SECTION:

To verify that an assignment of 275,000 words of drum will allow a drum buffer
of sufficient size:

275,000

15,000
+ 1 = 190

d
OO 1

19 + 1 = I 9~00 I d = 450

Since d is an acceptable size for FH-1732 drum buffers, an efficient sort will

PAGE:

be performed with F = 1,650,000 words, D = 275,000 words and C = 15,000 words.

If, in solving these equations, d should turn out to be far too small, the user
should try to assign a larger amount of main storage (C). Or, if sufficient main
storage is not available, try reducing fast drum. This would cause a reduction
in F ASTRAND buffer size (f), but an increase in drum buffer size (d).

A.3.2. Facility Assignment - Tables

The tables in the following paragraphs provide an alternate means for determining
optimal facility allocation when using both fast drums and F ASTRAND mass
storage. The tables should be used in the following manner:

(1) Choose the appropriate table depending on the availability of FH-432, FH-880,
or FH-1732 drum.

(2) Determine the volume (V) to be sorted by multiplying record size times the
number of records, and add a 10 percent safety factor.

(3) Enter column 4, selecting the first number higher than V.

(4) Using this line entry, the proper assignment of facilities is as follows:

Column 1 = Main Storage

Column 3 = Fast Drum

Column 4 - F ASTRAND Mass Storage

7

UP-7621
Rev. 1 UNIVAC 1106/1108 EXEC 8 SORT/MERGE

FASTRAND MAXIMUM
MAIN DRUM SIZE

STORAGE RATIO FH-880 or
REQUIRED FH-1732

Thousand Words Thousand Words

5 - 32

6 - 50

7 - 72

8 - 97

9 3 38

10 4 60

11 4 86

12 5 116

13 5 150

14 6 188

15 6 240

16 7 276

17 7 327

18 8 380

19 8 438

20 9 500

22 10 636

24 11 788

26 12 956

28 13 1140

30 14 1340

32 15 1556

34 16 1788

36 17 2036

38 18 2300

40 19 2580

42 20 2876

44 21 3188

46 22 3516

48 23 3860

50 24 4220

52 25 4596

Appendix A
SECTION. PAGE:

MAXIMUM
SIZE

FASTRAND II
or III

Thousand Words

0

0

0

0

114

240

344

580

750

1128
1440

1932

2289

3040

3504

4500

6360

8668

11,472

14,820

18,760

23,340

28,608

34,612

41,400

49,020

57,520

66,948

77 ,352

88,780

101,280

114,900

}
Notefficientto

use both 0 and

F

Table A-2. Sort Facility AI/Qeation Chart for FASTRAND 1/ or III

Moss Storage ancJ FH-880 or FH-1732 Drum

8

(

UP-7621
Rev. 1 UNIVAC 1106/1108 EXEC 8 SORT/MERGE

A

FASTRAND MAXIMUM MAXIMUM
MAIN DRUM RATIO SIZE SIZE

STORAGE
REQUIRED FH·432 FASTRAND II or III

Thousand Words Thousand Words Thousand Words

5 - 179 0

6 - 263 0

7 - 363 0

8 - 480 0

9 3 198 594

10 4 298 1192

11 4 413 1652

12 5 545 2725

13 5 693 3465

14 6 857 5142

15 6 1037 6222

16 7 1232 8624

17 7 1444 10,108

18 8 1672 13,376

19 8 1916 15,328

20 9 2176 19,584

22 10 2743 27,430

24 11 3375 37,125

26 12 4070 48,840

28 13 4830 62,790

30 14 5654 79,156

32 15 6541 98,115

34 16 7493 119,888

36 17 8508 144,636

38 18 9588 172,584

40 19 10,732 203,908

42 20 11 ,939 238,780

44 21 13,211 277 ,431

46 22 14,546 320,012

48 23 15,946 366,758

50 24 17,410 417,840

52 25 18,937 473,425

Table A-3. Sort Facility AI/ocation Chart for FASTRAND 1/ or II/
Mass Storage ana FH·432 Drum

A.3.2.1. Special Considerations

Appendix A
SECTION:

}
Not efficient to

use both 0

and F

If the record size is large, the value of main storage obtained from column 1
should be increased by twice the record size. If the records are of variable
length, add twice the size of the largest variable-length record. If the bias
of the data is less than 1.5 (the Sort assumed value), it should be entered
via a 'BIAS' parameter entry. If not known to be less, and not entered, an
increase in core allotment (of up to 33%) will lessen the impact of badly
biased (inverse) data. See 6.1.1.1 for 'BIAS'. Record sizes of fixed length
greater than 150 words or less than 5 words put severe strain on core utili­
zation. Variable length records with small link sizes (less than 5 words) or
small fixed length records being sorted as variable length also cause
adverse effects. For these cases, it is recommended that the core determined
from the tables be increased from 20 to 50% if possible.

9
PAGE:

t

UP·7621
Rev. 1

Appendix A
SECTION: UNIVAC 1106/1108 EXEC 8 SORT/MERGE

A.3.2.2. Systems Performance Improvement
L, "."

It is sometimes desirable to decrease the number of accesses to a given device
to improve overall systems efficiency. This can be accomplished by increasing
the block size used to access the device. (Increasing block size will not,
however, reduce the elapsed time of the sort.)

To decrease the number of drum accesses, allocate more main storage than is
required and decrease the allocation of fast drum according to the
drum/F ASTRAND ratio given in column 2 of the appropriate table.

Example:

According to the table, sorting 5 million words of data requires 6,360,000 words
of FASTRAND mass storage, 636,000 words of FH-1732 drum, and 22,000 words
of main storage. However, if the amount of main storage is increased to 40,000
words, the number of drum accesses can be decreased by almost half. Continue
to use 6,360,000 words of F ASTRAND mass storage but, using the ratio of 1/19
(taken from column 2), assign 335,000 words of drum.

To decrease the number of F ASTRAND accesses, allocate more main storage
than is required and leave the F ASTRAND mass storage and fast drum alloca­
tions unchanged.

Example:

According to the table, sorting 5 million words of data requires 6,360,000
words of F ASTRAND mass storage, 636,000 words of FH-1732 drum and
22,000 words of main storage. If we increase the main storage assignment
to 44,000 and leave the fast drum and F ASTRAND assignments unchanged,
we will have about half as many F ASTRAND accesses and about half as
many' drum accesses.

To determine the number of accesses to a given device, use the formulae
shown in A.3.1. By substituting values for C, D, and F, one obtains the
values for d and f. Knowing these block sizes and the volume (V) to be
sorted, one can calculate the expected number of drum (X) and F ASTRAND
(Y) accesses, as follows:

X 2
V

=
d

V
Y = 2 -

f

10
PAGEl

."' .. ---.
" "'"c/

('

(

('

UP-7621
Rev. 1 UNIVAC 1106/1108 EXEC 8 SORT/MERGE

A

Term Reference Page Term

'CONTB' parameter list

A
'CONTC' parameter list

Automatic large volume sorts 3.2.1 3-5
Continuation of interrupted

sort programs

B
from part A
from part B
from part C

Basic operating instructions 6.2.1 6-4 Control cards
for execution of merge

'BIAS' parameter list 6.1.1.1 6-1 program
for large volume

Block sizes A.3.1.3 A-6 automatic sort
for small volume sort

C
'COPY' parameter list

'CORE' parameter list

'CHECK' parameter list 2.2.1.9 2-9

Coding
large volume automatic

sort Figure 3-5 3-4
small volume sort Figure 3-3 3-4 Data reduction - own code
merge program Figure 5-2 5-4

'DElCON' parameter list
'COMP' parameter list 2.2.1.12 2-10

Diagnostic messages
'CONTA' parameter list 2.2.1.22 2-12

6.2.2.4 6-8 'DROC' parameter list

Index 1
SECTION: PAGE:

INDEX

Reference Page

2.2.1.23 2-12
6.2.2.4 6-8

2.2.1.24 2-13
6.2.2.4 6-9

4.1.1 4-1
4.1.2 4-1
4.1.3 4-1

Figure 5-3 5-4

Figure 3-6 3-7
Figure 3-4 3-4

2.2.1.25 2-13

2.2.1.10 2-10

D

2.3 2-18

6.1.1.2 6-2

6.3 6-10

2.2.1.11 2-10

UP·7621
Rev. 1 UNIVAC 1106/1108 EXEC 8 SORT/MERGE. A

Term Reference Page Term

Drum only sorts A.2 A-3

E
Label 'listing' for

merging 21 files
Errors

recoverable 6.3.1 6-10 Labeling, tape
unrecoverable 6.3.2 6-11

Large volume sorts
operating instructions

F program preparation

subroutine linkage

Facility assignment for 'UMDRM' parameter list
efficient drum sorting A.3 A-4

'UMFST' parameter list
Facility assignment tables A.3.2 A-7

Linkages
'FI LES' parameter list 2.2.1.8 2-8 large volume sorts

merge subroutine
'FINAL' parameter list 2.2.1.15 2-10 small volume sorts

Format of parameter table entries 2.2.2 2-13 Linking parameter tables

'FPOC' parameter list 2.2.1.13 2-10 'LPOC' parameter list

H

Header code 2.1 2-1 Merge program preparation

Merge subroutine

K
introduction to
linkages
parameter specification

'KEY' parameter list 2.2.1.5 2-7 Multicycle sorts

Key fields and their translation 2.2.3 2-17

'KEYW' parameter list 2.2.1.6 2-8

Nonautomatic sorting

Index 2
SECTION: PAGE:

Reference Page ~.,\

.7

L

Table 3-1 3-12

3.2.3 3-10

3.2 3-5
6.2.2 6-5
3.2.1.3 3-7
3.2.2.4 3-8
3.2.1.2 3-6

6.1.1.3 6-2

6.1.1.4 6-3

3.2.1.2 3-6
5.3 5-1
3.1 3-1

.~-

Figure 2-1 2-2

2.2.1.14 2-10

M

5.4 5-3

1.3 1-2
5.3 5-1
5.2 5-1

4.1.4 4-2

N

3.2.2 3-7

,,r'

~, -'

(

(

(:

UP-7621
Rev. 1 UNIVAC 1106/1108 EXEC 8 SORT/MERGE A

Term Reference Page Term

Preparing

0 a large volume
automatic sort

a large volume
nonautomatic sort

Operating instructions 6.2 6-4 a merge program
part A of large a small volume sort

volume sorts 6.2.2.1 6-5
part S of large Program linkage

volume sorts 6.2.2.2 6-6 large volume sorts
part C of large small volume sorts

volume sorts 6.2.2.3 6-8
'PSO RT' parameter list

Optional parameters 5.2.2 5-1

Own code comparison 2.4 2-19

p
Recoverable errors

parameter card routine
tape read

'PAD' parameter list 2.2.1.26 2-13
'REDOA' parameter list

Parameter card processing 6.1 6-1
parameters accepted 6.1.1 6-1

'REDOS' parameter list
Parameter card routine 6.1.2 6-3

Parameter lists Table 2-1 2-5 Required sort/merge elements

Parameter specification, Rerun capabilities
merge subroutine 5.2 5-1
optional parameters 5.2.2 5-1 ROPN$ linkage
required parameters 5.2.1 5-1

RREL$linkage
Parameter table 2.1 2-1

R R ET$ linkage
Parameter table entries 2.2 2-2

format of 2.2.2 2-13 RSORT$linkage
Table 2-3 2-15

summary of Table 2-2 2-14 'RSZ' parameter list

'PARTA' parameter list 2.2.1.17 2-11 'RSZW' parameter list

'PARTS' parameter list 2.2.1.18 2-11 R$FI LE procedure

'PARTC' parameter list 2.2.1.19 2-12

Index 3
SECTION: PAGE:

Reference Page

3.2.1.3 3-7

3.2.2.4 3-8
5.4 5-3
3.1.5 3-2

3.2.1.3 3-7
3.1 3-1

6.1.1.5 6-3

R

6.3.1 6-11
6.3.1 6-11

2.2.1.20 2-12
6.2.2.4 6-10

2.2.1.21 2-12
6.2.2.4 6-10

Table A-l A-l

6.2.2.4 6-8

3.1.1 3-1

3.1.2 3-1

3.1.4 3-2

3.1.3 3-2

2.2.1.2 2-3

2.2.1.2 2-4

2.2.1 2-3

UP-7621
Rev. 1 UNIVAC 1106/11 08 EXEC 8 SORT/MERGE A

Term Reference Page Term

s

Sentinal character code 2.1 2-1 Tape labeling

'SEQ' parameter list 2.2.1.7 2-8

Small volume sorts 3.1 3-1
program preparation 3.1.5 3-2

'SM R G' parameter list 2.2.1.16 2-11 Unrecoverable errors
general sort

Sort facility allocation charts Table A-2 A-8 linkage use
Table A-3 A-9 parameter card routine

tape

Sort/merge elements and
space requirements A.l A-l

Sort parameter lists Table 2-1 2-5

Sort program
sample input routine Figure 3-1 3-3 'VOL' parameter list
sample output routine Figure 3-2 3-3

'VRSZ' parameter list

Sort subroutine
introduction to 1.2 1-1 'VRSZW' parameter list

large volume sorts 3.2 3-5
linkages 3.2.1.2 3-6
parameters 2.2 2-2
small volume sorts I 3.1 3-1

Index 4
SECTION: PAGE:

Reference Page -'1:'

.. ,/

T

3.2.3 3-10

U

6.3.2 6-11
6.3.2 6-13
6.3.2 6-12
6.3.2 6-12

V

6.1.1.6 6-3

2.2.1.3 2-4

2.2.1.4 2-4

Comments concerning this manual may be made in the space provided below. Please fill in the requested information.

Svs~m: __ _

Manual Title: ___ _

UP No: ____________ _ Revision No: _______ _ Update: _________ _

NameofUser: ___ ~ ___ _

AddressofUser: ___ _

Comments:

FOLD

8 U SIN E S S REP L Y M A I L NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY

UNIVAC
P.O. BOX 500

BLUE BELL, PA.19422
ATTN: SYSTEMS PUBLICATIONS DEPT.

FOLD

o
C
-I/o

i

\",~- .

(

0 ~o

.,'- '

