=l
SPERRY RAND

PROGRAMMER
REFERENCE

OPERATING
SYSTEM

UP-4144 Rev. 2

This document contains the latest information available at the time of publi-
cation. However, the Univac Division reserves the right to modify or revise its
contents. To ensure that you have the most recent information, contact your
local Univac Representative.

UNIVAC is a registered trademark of the Sperry Rand Corporation.
Other trademarks of the Sperry Rand Corporation in this publication are:
FASTRAND

UNISCOPE
UNISERVO

©1971 - SPERRY RAND CORPORATION PRINTED IN U.S.A.

N

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS Contents 1
UP-NUMBER PAGE REVISION PAGE
CONTENTS
CONTENTS 11023
1. INTRODUCTION 1-1 to1-8
1.1. SCOPE OF MANUAL 1-1
1.2. THE OPERATING SYSTEM 1-1
1.3. THE EXECUTIVE SYSTEM 1-2
1.3.1. MULTIPLE MODES OF OPERATION 1-2
1.3.1.1. BATCH PROCESSING 1-2
1.3.1.2. DEMAND PROCESSING (TIME-SHARING) 1-2
1.3.1.3. REAL TIME PROCESSING 1-3
1.3.1.4. MULTIPROGRAMMING AND MULTIPROCESSING 1-3
1.3.2. UTILIZATION OF MASS STORAGE 1-3
1.3.3. FUNCTIONAL AREAS OF THE EXECUTIVE SYSTEM 1-3
1.3.3.1. EXECUTIVE CONTROL LANGUAGE 1-3
1.3.3.2. THE SUPERVISOR 1-3
1.3.3.3. FACILITIES ASSIGNMENT 1-4
1.3.3.4. FILE CONTROL 1-4
1.3.3.5. OPERATOR COMMUNICATIONS 1-4
1.3.3.6. INPUT/OUTPUT DEVICE HANDLERS AND SYMBIONTS 1-6
1.4. SYSTEM PROCESSORS 1-6
1.4.1. COLLECTOR 1-6
1.4.2. FILE UTILITY PROCESSOR (FURPUR) 1-6
1.4.3. POSTMORTEM DUMP PROCESSOR (PMD) 1-6
1.4.4. DATA AND ELT PROCESSORS 1-6
1.4.5. FILE ADMINISTRATION PROCESSOR (SECURE) 1-6
1.4.6. TEXT EDITOR (ED) 1-6
1.4.7. PROCEDURE DEFINITION PROCESSOR (PDP) 1-6
1.5. SYSTEM UTILITY PROCESSORS 1-6
1.5.1. CUR-TO-FUR CONVERSION (CON78) 1-6
1.5.2. FLUSH 1-7
1.6.3. SSG PROCESSOR 1-7
1.6.4. CULL PROCESSOR 1-7
1.56.,56. DOCUMENT PROCESSOR (DOC) 1-7
1.5.6. LIST PROCESSOR 1-7
1.6. LANGUAGE PROCESSORS 1-7
1.7. RELOCATABLE SUBROUTINE LIBRARY 1-7

1.8. APPLICATIONS PROGRAMS

1-8

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS l | Contents 2
UP-NUMBER) PAGE REVISION PAGE
2. GENERAL CONCEPTS AND DEFINITIONS 21 t02-22
2.1. INTRODUCTION 2-1
2.2. DEFINITIONS AND ABBREVIATIONS 21
2.2.1. INTRODUCTORY DEFINITIONS 2-1
2.2.2. HARDWARE DEFINITIONS 2-1
2.2.3. PROGRAM ORGANIZATION DEFINITIONS 2-3
2.2.4. DEFINITIONS CONCERNING FILES 2-4
2.2.5. RUN PROCESSING DEFINITIONS 24
2.2.6. MULTIPROGRAMMING DEFINITIONS 2-5
2.2.7. MISCELLANEOUS DEFINITIONS 2-6
2.2.8. ABBREVIATIONS USED IN THIS MANUAL 2-8
2.3. CONVENTIONS 2-12
2.3.1. NOTATIONAL CONVENTIONS 2-12
2.3.2. CONTROL STATEMENT NOTATION 2-13
2.4. BASIC CONCEPTS OF RUN CONTROL 2-13
2.4.1. RUN INITIATION , 2-13
2.4.2. RUN EXECUTION 213
2.4.3. SYMBIONT OUTPUT 2-14
2.4.3.1. SYMBIONT FILE CONCEPTS 2-14
2.4.4. RUN TERMINATION 2-15
2.5. BASIC CONCEPTS OF TASK CONTROL 2-15
2.5.1. REAL TIME 2-15
2.6.2. TASK INITIATION 2-15
2.56.3. TASK EXECUTION AND SWITCHING 2-15
2.6.4. EXECUTIVE REQUESTS 2-16
2.6.6. MULTIPROGRAMMING CONSIDERATIONS 2-16
2.5.6. TASK TERMINATION 217
2.5.7. PROGRAM PROTECTION 2-17
2.6. FILE NAMES AND ELEMENT NAMES 2-18
2.6.1. FILE NAMES 2-18
2.6.2. EXTERNAL AND INTERNAL FILE NAMES 218
2.6.3. FILE CYCLES (F-CYCLES) : 2-19
2.6.4. ELEMENT NAMES 2-20
2.6.5. SYMBOLIC ELEMENT CYCLE ' 2-21
2.6.6. REFERENCING FILES AND ELEMENTS 2-21
2,6.7. EXAMPLES OF FILE AND ELEMENT REFERENCE 2-22
3. EXECUTIVE CONTROL STATEMENTS 3-1 t03-50
3.1. INTRODUCTION 3-1
3.2. CONTROL STATEMENT FORMAT 3-1
3.2.1. LABEL FIELD 3-1
3.2.2. OPERATION FIELDS 32
3.2.3. OPERAND FIELDS 3-2
3.2.4. CONTROL STATEMENT ANNOTATION 32
3.2.56. CONTROL STATEMENT CONTINUATION 3-2
3.2.6. LEADING BLANKS IN FIELDS 32

3.2.7. GENERAL DROPOUT RULES 33

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS Contents 3
UP-NUMBER PAGE REVISION | PaGE

3.3. SUMMARY OF CONTROL STATEMENTS 3-3

3.4. SCHEDULING CONTROL STATEMENTS 35

3.4.1. RUN INITIATION (@RUN) 35

3.4.2. RUN TERMINATION (@FIN CONTROL STATEMENT) 39

3.4.3. DYNAMIC INITIATION OF AN INDEPENDENT RUN (@START) 39

3.5. MESSAGE CONTROL STATEMENTS 3-11
3.5.1. DISPLAYING A MESSAGE (@MSG) 3-1
3.5.2. INSERTING INFORMATION IN THE MASTER LOG (@LOG) 3-12
3.6. SYMBIONT DIRECTIVE STATEMENT 3-13
3.6.1. PRINT OUTPUT HEADING CONTROL (@HDG) 3-13
3.6.2. SYMBIONT FILE BREAKPOINTING (@BRKPT) 3-14
3.6.2.1. PRIMARY QUTPUT FILE BREAKPOINT 3-14
3.6.2.2. ALTERNATE SYMBIONT FILE BREAKPOINT 3-15
3.6.3. SYMBIONT QUTPUT FILE QUEUING (@SYM) 3-16
3.6.4. @BRKPT/@SYM CONTROL STATEMENT USAGE 317
3.6.5. CARD READER MODE CONTROL (@COL) 3-18
3.7. FACILITY CONTROL STATEMENTS 3-19
3.7.1. ASSIGNING FILES AND PERIPHERAL DEVICES (@ASG) 3-19
3.7.1.1. FASTRAND-FORMATTED FILE ASSIGNMENT 321
3.7.1.2. MAGNETIC TAPE ASSIGNMENT 3-26
3.7.1.3. WORD ADDRESSABLE DRUM ASSIGNMENT 3-31
3.7.1.3.1. NORMAL ASSIGNMENT 3-31
3.7.1.3.2. WHOLE UNIT ASSIGNMENT 3-32
3.7.1.4. ARBITRARY DEVICE ASSIGNMENT 3-33
3.7.2. TAPE UNIT MODE CONTROL (@MODE) 3-34
3.7.3. INDEPENDENT CATALOGUING OF FILES (@CAT) 3-35
3.7.4. RELEASING FILES AND PERIPHERAL DEVICES (@FREE) 3-37
3.7.5. ATTACHING INTERNAL FILENAMES (@USE) 3-40
3.7.6. SPECIFYING FILENAME QUALIFIER (@QUAL) 341
3.8. DATA PREPARATION CONTROL STATEMENTS 342
3.8.1. DIRECT CREATION OF CARD IMAGE FILES (@FILE) 3-42
3.8.2. TERMINATING THE FILE MODE (@ENDF) 343
3.9. DYNAMIC RUN STREAM MODIFICATION 3-44
3.9.1. DYNAMIC RUN STREAM EXPANSION (@ADD) 344
3.9.2. CONDITIONAL STATEMENTS 3-45
3.9.3. STATEMENT LABELING 3-45
3.9.4. CONDITION WORD v 3-46
3.9.4.1. CONDITION WORD CONTROL (@SETC CONTROL STATEMENT) 347
3.9.4.2. CONDITION WORD TESTING (@TEST) 3-48
3.9.4.3. BRANCHING FROM WITHIN RUN STREAM (@JUMP) 3-49
3.9.4.4. CONDITIONAL RUN STREAM EXAMPLE 3-50

4. EXECUTIVE SERVICE REQUESTS 4-1 to4-30

4.1. INTRODUCTION 4-1

4.1.1. CODING RESTRICTIONS 4-1

4.1.2. CALLING SEQUENCE CONVENTIONS 4-1

4.1.3. ER SYNCHRONY 4-2

4.1.4. ERROR HANDLING 4-2

4.2. SUMMARY OF EXECUTIVE REQUESTS 4-2

UP-NUMBER PAGE REVISION PAGE

4144 Rev. 2 J UNIVAC 1100 SERIES SYSTEMS Contents 4

4.3. ACTIVITY AND PROGRAM CONTROL 4-6

4.3.1. ACTIVITY REGISTRATION 4-6

4.3.1.1. CREATE A NEW ACTIVITY (FORK$) 4-6

4.3.1.2. CREATE A NEW ACTIVITY WITH TIMED WAIT (TFORK$) 4-6

4.3.2. ACTIVITY TERMINATION 47

4.3.2.1. ACTIVITY NORMAL TERMINATION (EXIT$) 4-7

4.3.2.2. ACTIVITY ERROR TERMINATION (ERR$) 4-7

4.3.2.3. ABORT RUN (ABORT$) 4-7

4.3.2.4, PROGRAM ERROR TERMINATION (EABTS) 4-8

4.3.3. ACTIVITY SYNCHRONIZATION 4-8

4.3.3.1. JOINING OF ACTIVITIES (AWAITS$) ‘ 4-8

4.3.3.2. ACTIVITY NAMING (NAMES) ‘ 49

4.3.3.3. ACTIVITY DEACTIVATION (DACTS) 49

4.3.3.4. ACTIVITY ACTIVATION (ER ACT$) 4-10
4.3.4. REAL TIME PROGRAM/ACTIVITY CONTROL 4-10
4.3.4.1. CHANGING PROGRAM/ACTIVITY TO REAL TIME STATUS (RT$) 410
4.3.4.2. REMOVAL OF PROGRAM/ACTIVITY REAL TIME STATUS (NRT$) 4-11
4.3.5. TIMED ACTIVITY WAIT (TWAITS) 4-11
4.4. CONDITION WORD CONTROL 4-1
4.4.1. SETTING THE CONDITION WORD (SETC$) 4-11
4.4.2. CONDITION WORD RETRIEVAL (CONDS$) 4-12
4.5. RETRIEVAL OF THE TIME AND DATE 4-12
4.5.1. TIME AND DATE IN FIELDATA (DATE$) 4-12
4,52, TIME AND DATE IN BINARY (TDATES$) 4-13
4.5.3. TIME IN MILLISECONDS (TIME$) 4-13
4.6. CONSOLE COMMUNICATIONS) 4-13
4.6.1. CONSOLE OUTPUT AND SOLICITED INPUT (COM$) 4-13
4.6.2. UNSOLICITED CONSOLE INPUT (11$) 4-15
4.7. PROGRAM STORAGE EXPANSION AND CONTRACTION . 4-15
4.7.1. MAIN STORAGE EXPANSION (MCORE$) 4-15
4.7.2. MAIN STORAGE CONTRACTION (LCORE$) 4-16
4.8. MISCELLANEOUS EXECUTIVE REQUESTS 4-17
4.8.1. DYNAMIC REQUEST OF CONTROL STATEMENTS (CSF$) 4-17
4.8.2. RETRIEVING @XQT CONTROL STATEMENT OPTIONS (OPT$) 4-18
4.8.3. PROGRAM CONTROL TABLE RETRIEVAL (PCT$) 4-19
4.8.4. ALTERING PROCESSOR STATE REGISTER (PSR$) 4-20
4.8.5. SNAPSHOT DUMP (SNAPS) 4-21
4.8.6. MASTER CONFIGURATION TABLE RETRIEVAL (MCT$) 4-22
4.9. CONTINGENCIES 4-23
4.9.1. INTRODUCTION 4-23
4.9.2. CONTINGENCY TYPES AND STANDARD ACTION 4-23
49.2.1. ERROR TERMINATION CONSIDERATIONS 4-25
4.9.3. CONTINGENCY REGISTRATION (IALL$) 4-25
4.9.4. CONTINGENCY PROCESSING (NON-ESI) 4-27
4.9.4.1. THE CONTINGENCY ROUTINE 4-27
4.9.4.2. CONTINGENCY MODE TERMINATION (CEND$) 4-28
4.9.4.3. ADDITIONAL CONTINGENCY CONSIDERATIONS 4-28

4.9.6. ESI CONTINGENCIES 4-29

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

Contents 5
PAGE REVISION | PAGE

(0

5. SYMBIONT INTERFACE REQUESTS 51 to5-17
5.1. INTRODUCTION 5-1
5.1.1. SYMBIONTS 5-1
5.1.2. SYMBIONT/USER INTERFACE ROUTINES 5-2
5.2. OBTAINING INPUT IMAGES 5-3
5.2.1. READING FIELDATA IMAGES (READS$) 5-3
5.2.2. READING ASCII IMAGES (AREADS) 5-4
5.2.3. FIELDATA IMAGES — ALTERNATE FILE (READAS$) 5-4
5.2.4. ASCIlI IMAGE — FROM AN ALTERNATE FILE (AREADAS) 5-6
5.2.5. FIELDATA IMAGES — CONVERSATIONAL MODE (TREADS$) 5-6
5.3. TRANSFERRING OUTPUT IMAGES 5-7
5.3.1. PRINTING FIELDATA IMAGES (PRINTS) 5-7
5.3.2. PRINTING ASCII IMAGES (APRINT$) 57
5.3.3. FIELDATA IMAGES — ALTERNATE PRINT FILE (PRNTA$) 5-8
6.3.4. ASCIH IMAGES — ALTERNATE PRINT FILE (APRNTA$) 5-9
5.3.5. PUNCHING FIELDATA IMAGES (PUNCHS) 59
5.3.6. PUNCHING ASCII IMAGES (APUNCHS$) 5-10
5.3.7. FIELDATA IMAGES — ALTERNATE PUNCH FILE (PNCHAS) 5-10
5.3.8. ASCII IMAGES — ALTERNATE PUNCH FILE (APNCHAS) 5-11
5.4. OUTPUT CONTROL FUNCTIONS 5-11
5.4.1. FIELDATA CONTROL FUNCTIONS — PRINT FILE (PRTCN$) 5-11
5.4.2. ASCII CONTROL FUNCTIONS — PRINT FILE (APRTCNS) 5-12
5.4.3. FIELDATA CONTROL FUNCTION — ALTERNATE PRINT FILE (PRTCAS) 5-13
5.4.4. ASCII CONTROL FUNCTIONS — ALTERNATE PRINT FILE (APRTCA$) 5-13
5.4.5. FIELDATA CONTROL FUNCTIONS — PUNCH FILE (PCHCNS$) 5-14
5.4.6. ASCII CONTROL FUNCTION — PUNCH FILE (APCHCN$) 5-14
5.4.7. FIELDATA CONTROL FUNCTIONS — ALTERNATE PUNCH FILE (PCHCAS) 5-15
5.4.8. ASC!l CONTROL FUNCTION — ALTERNATE PUNCH FILE (APCHCAS$) 5-16
5.5. LISTING USER-DEFINED CONTROL STATEMENTS (CLIST$) 5-16
5.6. FIELDATA AND ASCIl TRANSLATION 5-17

6. INPUT/OUTPUT DEVICE HANDLERS 6-1 to 6-34
6.1. INTRODUCTION 6-1
6.1.1. BASIC I/O EXECUTIVE REQUEST 6-1
6.1.2. INTERRUPT ACTIVITY 6-4
6.1.3. QUEUEING AND UNIT CONTROL 6-4
6.2. 1/O0 PACKET GENERATION 6-4
6.2.1. MAGNETIC TAPE I/O PACKET GENERATION (I$OT) 6-4
6.2.2. MASS STORAGE 1/0 PACKET GENERATION (I$0D) 6-6
6.3. PROGRAM — I/0 SYNCHRONIZATION 6-7
6.3.1. WAIT FOR COMPLETION OF SPECIFIC 1/O (WAIT$) 6-7
6.3.2. WAIT FOR COMPLETION OF ANY 1/0 (WANY$) 6-8
6.3.3. INITIATE I/O AND RETURN CONTROL IMMEDIATELY (10$) 6-8
6.3.4. INITIATE 1/0 AND RETURN CONTROL IMMEDIATELY, WITH INTERRUPT (iOI1$) 6-8
6.3.5. INITIATE I/0 AND WAIT FOR COMPLETION (IOW$) 6-9
6.3.6. INITIATE 1/0 AND WAIT FOR COMPLETION, WITH INTERRUPT (IOWI$) 6-9
6.3.7. INITIATE I/0 AND EXIT, WITH INTERRUPT (10XI$) 6-9
6.3.8. REDUCING INTERRUPT ACTIVITY PRIORITY (UNLCKS) 6-10

4144 Rev. 2 UNIYAC 1100 SERIES SYSTEMS

UP-NUMBER

Contents 6
PAGE REVISION | PAGE

6.4. MIAGNETIC TAPE HANDLER

6.4.1. TAPE HANDLER FUNCTIONS

6.4.1.1. SET MODE FUNCTION

6.4.2. GENERAL CONSIDERATIONS

6.4.2.1. READ BACKWARD LIMITATIONS

6.4.2.2. WRITE CONSIDERATIONS

6.4.2.3. MOVE CONSIDERATIONS

6.4.2.4. ABNORMAL FRAME COUNT CONSIDERATIONS
6.4.3. MULTIPLE-CHANNEL OPERATION

6.5. MAGNETIC DRUM AND UNITIZED CHANNEL STORAGE HANDLER
6.5.1. HANDLER FUNCTIONS

6.5.2. GENERAL CONSIDERATIONS

6.56.3. MULTIPLE-CHANNEL OPERATION

6.6. FASTRAND MASS STORAGE HANDLER
6.6.1. FASTRAND HANDLER FUNCTIONS

6.7. DISC HANDLER
6.7.1. DISC HANDLER FUNCTIONS
6.7.2. PREPPING THE DISC

6.8. ABSOLUTE READ/WRITE CAPABILITY

6.9. ARBITRARY DEVICE HANDLER

6.9.1. ADH 1/O PACKET

6.9.2. INITIATE ADH AND RETURN CONTROL IMMEDIATELY (IOARB$)
6.9.3. INITIATE ADH, EXIT AT INTERRUPT (I0AXI$)

6.9.4. FREE FORMAT DISC HANDLER

6.10. STATUS CODES

7. FILE CONTROL
7.1. INTRODUCTION

7.2. FILE ORGANIZATION

7.2.1. MASTER FILE DIRECTORY

7.2.2. MASS STORAGE ALLOCATION

7.2.3. FILE ADDRESSING

7.2.4. EXCLUSIVE USE OF FILES

7.2.56. ROLLOUT AND ROLLBACK OF FILES

7.2.6. RETRIEVING FACILITY ASSIGNMENT (FITEMS$)
7.2.6.1. UNIT RECORD AND NONSTANDARD PERIPHERAL
7.2.6.2. FASTRAND MASS STORAGE PERIPHERALS
7.2.6.3. MAGNETIC TAPE PERIPHERALS

7.2.6.4. MAGNETIC DRUM PERIPHERALS

7.2.6.5. COMMUNICATIONS PERIPHERALS

7.2.6.6. DISC PERIPHERALS

7.2.7. ALTERNATE METHODS OF RETRIEVING FACILITY ASSIGNMENT SYNOPSIS

(FACILS$ AND FACIT$)
7.2.8. TAPE FILE INITIALIZATION (TINTLS)
7.2.9. TAPE SWAPPING (TSWAPS)

6-10
6-10
6-12
6-14
6-14
6-14
6-18
6-18
6-18

6-21
6-21
6-23
6-23

6-23
6-23

6-25
6-25
6-26

6-27

6-27
6-27
6-30
6-31
6-31

6-32

7-1 to7-19

7-1

7-1
7-1
7-2
7-2
7-3
7-3
7-3
7-5
7-6
7-7
7-10
7-11
7-13
7-14

7-14
7-15

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

Contents 7
PAGE REVISION | PAGE

7.3. TAPE LABELING
7.3.1. READING AND WRITING TAPE LABEL BLOCKS (LABEL$)

7.4. DISC LABELING

8. FILEUTILITY ROUTINES (FURPUR)

8.1. INTRODUCTION

8.1.1. COMMON INFORMATION
8.1.2. SIMULTANEOUS USE OF FILES
8.1.3. MULTIREEL FILES

8.1.4. BASIC FILE FORMATS

8.2. FURPUR CONTROL STATEMENTS

8.2.1. FILE COPYING (@COPY)

8.2.2. COPYING FROM TAPE TO PROGRAM FILES (@COPIN)

8.2.3. COPYING PROGRAM FILES TO TAPE (@COPOUT)

8.2.4. POSITIONING TAPE FILES (@MOVE)

8.2.5. LISTING FILES AND MASTER FILE DIRECTORY (@PRT)

8.2.6. EMPTYING A PROGRAM FILE (@ERS)

8.2.7. DELETING FILES AND ELEMENTS (@DELETE)

8.2.8. REWINDING TAPE FILES (@REWIND)

8.2.9. MARKING AN EOF ON TAPE (@MARK)

8.2.10. CLOSING TAPE FILES (@CLOSE)

8.2.11. ENTRY POINT TABLE CREATION (@PREP)

8.2.12. PUNCHING PROGRAM FILE ELEMENTS (@PCH)

8.2.13. POSITIONING WITHIN ELEMENT FILES (@FIND)

8.2.14. REMOVAL OF DELETED ELEMENTS (@PACK)

8.2.15. CHANGING FILE ELEMENT, AND VERSION NAMES, AND FILE KEYS AND
MODES (@CHG)

8.2.15.1. CHANGING CATALOGUED FILE NAMES, KEYS, AND MODES

8.2.156.2. CHANGING PROGRAM FILE ELEMENT AND VERSION NAMES

8.2.15.3. EXAMPLES

8.2.16. ALTERING CYCLE RETENTION LIMIT {(@CYCLE)

8.2.17. ENABLING FILES DISABLED DUE TO MALFUNCTIONS (@ENABLE)

9. LANGUAGE PROCESSORS AND LIBRARIES
9.1. INTRODUCTION
9.2. OPERATING SYSTEM LIBRARY FILES (LIB$, RLIB$)
9.3. TEMPORARY PROGRAM FILE (TPF$)

9.4. PROCESSOR CONTROL STATEMENTS

9.4.1. LANGUAGE PROCESSOR CONTROL STATEMENTS
9.4.2. SOURCE INPUT ROUTINE CONTROL OPTIONS
9.4.3. COMPRESSED SYMBOLIC ELEMENTS

9.5. MODIFYING SYMBOLIC ELEMENTS

9.5.1. LINE CORRECTION STATEMENT

9.5.1.1. REDEFINITION OF THE CORRECTION INDICATOR
9.5.2. PARTIAL LINE CORRECTIONS

9.6.2.1. RANGE CORRECTION STATEMENT

9.56.2.2. CHANGE CORRECTION STATEMENTS

9.5.2.3. PARTIAL LINE CORRECTION DIAGNOSTICS

7-15
7-18

7-19

81 to8-26

8-1
8-2
8-3
8-3
8-3

85

8-5

89

8-11
8-13
8-14
8-17
8-17
8-18
8-19
8-19
8-19
8-20
8-21
8-22
8-22

8-22
8-23
8-24
8-24
8-26

9-1 t09-13
9-1
9-1
9-1

941
9-2
9-6
9-6

9-7
9-7
9-8
9-8
9-8
9-9
9-10

4144 Rev. 2

UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS

Contents 8
PAGE REVISION PAGE

10.

9.6. PROCESSOR INTERFACE ROUTINES

9.7. PROCEDURE DEFINITION PROCESSOR (PDP)

PROGRAM CONSTRUCTION AND EXECUTION
10.1. INTRODUCTION

10.2. THE COLLECTOR

10.2.1. COLLECTOR INITIATION (@MAP)

10.2.2. COLLECTOR DIRECTIVES

10.2.2.1. ELEMENT INCLUSION (IN)

10.2.2.2. ELEMENT EXCLUSION (NOT)

10.2.2.3. FILE SEARCH SEQUENCING (LIB)

10.2.2.4. EXTERNAL DEFINITION RETENTION (DEF)
10.2.2.5. EXTERNAL REFERENCE RETENTION (REF)
10.2.2.6. STARTING ADDRESS REDEFINITION (ENT)
10.2.2.7. EXTERNAL REFERENCE DEFINITION (EQU)
10.2.2.8. ELEMENT SELECTION DETERMINATION (CLASS)

10.2.2.9. CORRECTIONS FOR A RELOCATABLE ELEMENT (COR)

10.2.2.10. ADDING SNAPSHOT DUMPS (SNAP)
10.2.2.11. END OF INPUT (END)

10.2.2.12. ABSOLUTE ELEMENT OPTIMIZATION (MINGAP, MINSIZ)

10.2.2.13. PROGRAM SEGMENTATION (SEG)
10.2.2.14. RELOCATABLE SEGMENTS (RSEG)
10.2.2.15. DYNAMIC SEGMENT DEFINITION (DSEG)
10.2.3. FUNCTIONAL ASPECTS OF THE COLLECTOR
10.2.3.1. COLLECTOR-PRODUCED RELOCATABLE ELEMENTS
10.2.3.2, ELEMENT INCLUSION

10.2.3.3. SEGMENTED VERSUS NONSEGMENTED PROGRAMS
10.2.3.4. COLLECTING REENTRANT PROCESSORS
10.2.3.5. PROCESSING ELEMENT PREAMBLES
10.2.4. PROGRAM SEGMENTATION

10.2.4.1. SEGMENTATION DIRECTIVES

10.2.4.2. INSTRUCTION AND DATA AREAS

10.2.4.3. SEG DIRECTIVE CONSIDERATIONS
10.2.4.4. RSEG DIRECTIVE CONSIDERATIONS
10.2.4.5. LOADING PROGRAM SEGMENTS

10.2.4.5.1. DIRECT METHOD (L$OAD AND LOADS$)
10.2.4.5.2. INDIRECT METHOD

10.2.4.5.3. RELOADING THE MAIN SEGMENT
10.2.4.6. USE OF COMMON BLOCKS

10.2.4.7. SEGMENTATION EXAMPLE

10.2.4.8. COLLECTOR GENERATED TABLES

10.3. PROGRAM EXECUTION

10.3.1. INITIATING EXECUTION (@XQT)
10.3.1.1. INITIAL EXECUTION STATUS

10.3.2. PROGRAM DATA SEPARATION (@EOF)

9-10

9-12

10-1 to 10-43
10-1

10-1

10-2

10-4

10-6

10-6

10-7

10-7

10-8

10-9

10-9

10-10
10-12
10-13
10-15
10-16
10-16
10-17
10-17
10-18
10-18
10-18
10-19
10-20
10-20
10-20
10-21
10-21
10-21
10-23
10-24
10-24
10-26
10-26
10-27
10-27
10-30

10-31
10-31
10-32
10-32

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP.-NUMBER

Contents 9
PAGE

| PAGE REVISION

N

11.

10.4. REENTRANT PROCESSOR EXECUTION 10-33
10.4.1. GENERAL 10-33
10.4.2. SEARCHING THE REENTRANT PROCESSOR LISTS 10-33
10.4.3. ENTERING A LIST OF USER-CREATED REENTRANT PROCESSORS (RLIST$) 10-34
10.4.4. REFERENCING A REENTRANT PROCESSOR (LINK$ AND RLINKS$) 10-35
10.4.4.1. LINK$ EXECUTIVE REQUEST 10-35
10.4.4.2. RLINKS$ EXECUTIVE REQUEST 10-35
10.4.5. REENTRANT PROCESSOR TERMINATION (EXLNK, UNLNKS$, AND EXIT$) 10-37
10.4.5.1. EXLNK$ EXECUTIVE REQUEST 10-37
10.4.5.2. UNLNKS$ EXECUTIVE REQUEST 10-37
10.4.5.3. EXIT$ EXECUTIVE REQUEST 10-37
10.4.6. REENTRANT PROCESSOR FORKING 10-37
10.4.7. REENTRANT PROCESSOR CONTROL AND RESTRICTIONS 10-38
10.5. REENTRANT PROCESSOR PREPARATION 10-39
10.5.1. USAGE OF A REENTRANT PROCESSOR 10-39
10.5.1.1. COMMON | BANKS 10-39
10.5.1.2. ADDITIONAL INSTRUCTION SPACE 10-39
10.5.2. STORAGE ALLOCATION AND REENTRANCY 10-39
10.56.3. WRITE PROTECT MODE 10-40
10.5.4. D BANK ADDRESSING 10-40
10.5.4.1. COLLECTION 10-40
10.5.4.2, REGISTER BASING 10-41
10.5.4.3. COLLECTOR PRODUCED TABLES 10-41
10.5.5. REPSIZE 10-41
10.5.6. EXECUTIVE REQUESTS WITHIN REENTRANT PROCESSORS 10-41
10.5.6.1. MCORE$ AND LCORE$ USAGE 10-41
10.5.6.2. IALLS$ USAGE 10-41
10.5.6.3. CMS$ AND CPOOL$ USAGE 10-41
10.5.6.4. LOAD$ USAGE 10-41
10.5.6.5. RLINKS$ USAGE 10-42
10.5.7. DUMPING REENTRANT PROCESSORS 10-42
POSTMORTEM AND DYNAMIC DUMPING 11-1 t011-29
11.1. INTRODUCTION 111
11.2. POSTMORTEM DUMP PROCESSOR (PMD) 111
11.2.1. @PMD CONTROL STATEMENT 1-t
11.3. DYNAMIC DUMPS 11-4

11.3.1. CUMP CALLING PROCEDURES

11.3.1.1. MAIN STORAGE DUMP (X$CORE)

11.3.1.2. CONTROL REGISTER AND MAIN STORAGE DUMP (X$DUMP)
11.3.1.3. CHANGED WORD DUMP (X$CW)

11.3.1.4. TAPE BLOCK DUMP (X$TAPE)

11.3.1.6. MASS STORAGE DUMP (X$DRUM)

11.3.1.6. FILE DUMP (X$FILE)

11.3.1.7. CONTROL REGISTER (USER SET) DUMP (X$CREG)
11.3.1.8. EDITING FORMATS FOR DYNAMIC DUMPS
11.3.1.8.1. STANDARD EDITING FORMATS FOR DUMPS
11.3.1.8.2. USER-DEFINED EDITING FORMATS (X$FRMT)
11.3.2. CONDITIONAL CONTROL PROCEDURES

11.3.2.1. INITIATING A STRING OF CALLS (X$IF)

11-5
11-5
11-6
11-8
11-9
11-10
11-11
11-12
11-13
11-13
11-14
11-15
11-16

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

Contents 10
PAGE

I PAGE REVISION

12.

11.3.2.2. LOGICAL OR CONTROL OF DUMPS (X$OR)
11.3.2.3. LOGICAL AND CONTROL OF DUMPS (X$AND)

-11.3.2.4. CONTROLLING THE CONDITIONAL DUMP SWITCH (X$TALY)

11.3.3. SPECIFICATION PROCEDURES
11.3.3.1. INITIALIZING A BUFFER (X$BUFR)

11-17
11-17
11-18
11-19
11-19

11.3.3.2. ALLOWING AND IGNORING DUMP PROCEDURE CALLS (X$ON and X$OFF) 11-20

11.3.3.3. SAVING AND DELETING DYNAMIC DUMPS (X$SMARK AND X$BACK)

11.3.3.4. PLACING A MESSAGE IN THE DUMP (X$MESG)
11.3.4. EXAMPLES OF DYNAMIC DUMPING

11.4. PROGRAM TRACE ROUTINE (SNOOPY)

DEMAND PROCESSING

12.1. INTRODUCTION

12.1.1. GENERAL DEMAND TERMINAL OPERATIONAL PROCEDURES
12.1.1.1. INITIALIZATION

12.1.1.2. DEMAND RUN STREAM SUBMISSION

12.1.1.3. TERMINATION

12.1.1.4. DEMAND TERMINAL/SYSTEM INTERFACE MESSAGES
12.1.2. DEMAND SYMBIONT/USER INTERFACE

12.1.3. EXECUTIVE LANGUAGE INTERFACE

12.2. GENERAL OPERATION OF THE DEMAND SYMBIONTS
12.2.1. TELETYPEWRITER DEMAND SYMBIONT

12.2.1.1. OPERATIONAL CONSIDERATIONS

12.2.1.2. PAPER TAPE INPUT

12.2.1.2.1. FORM | PAPER TAPE INPUT

12.2.1.2.2. FORM |1 PAPER TAPE INPUT

12.2.1.3. SPECIAL CONTROL SEQUENCES

12.2.1.4. BREAK KEY

12.2.1.5. TAB CONTROL STATEMENT (@TABSET)

12.2.1.6. CENTRAL SITE TO REMOTE SITE OPERATOR COMMUNICATION
12.2.1.7. FRIDEN 7100

12.2.1.8. DCT 500 IN TELETYPEWRITER MODE

12.2.2. DCT 500 DEMAND SYMBIONT (SEMI-AUTOMATIC)
12.2.2.1. OPERATIONAL CONSIDERATIONS

12.2.2.2. SPECIAL CONTROL SEQUENCES

12.2.2.3. USER/PROGRAM INTERFACE

12.2.3. UNISCOPE 100/DCT 1000 DEMAND SYMBIONT

12.2.3.1. OPERATIONAL CONSIDERATIONS FOR THE UNISCOPE 100
12.2.3.2. OPERATIONAL CONSIDERATIONS FOR THE DCT 1000
12.2.3.3. SPECIAL CONTROL SEQUENCES

12.2.3.4. USER PROGRAM INTERFACE

12.2.4. UNISCOPE 300 DEMAND SYMBIONT

12.2.4.1. OPERATIONAL CONSIDERATIONS

12.2.4.2. SPECIAL CONTROL SEQUENCES

12.2.4.3. USER PROGRAM INTERFACE

12.3. TERMINAL USER TECHNIQUES

12.4. EXAMPLE OF A DEMAND RUN

11-21
11-22
11-22

11-24

12-1 to 12-24

12-1
121
12-2
12-2
12-3
12-3
12-4
12-4

125
12-5
12-5
125
12-6
127
127
12-8
129
129
12-10
12-10
12-11
12-11
12-13
12-14
12-14
1214
12-16
12-16
12-19
12-20
12-20
1221
12-22

12-22

12-22

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

PAGE REVISION

Contents 11
PAGE

13.

ITEM HANDLER AND BLOCK BUFFERING
13.1. INTRODUCTION
13.2. GENERAL INFORMATION

13.3. HANDLING DATA FILES AT THE BLOCK BUFFERING LEVEL

13.3.1. SUBROUTINES OF THE BLOCK BUFFERING PACKAGE

13.3.2. DATA FILE MANIPULATION AT BLOCK LEVEL

13.3.2.1. INITIALIZING AN FCT FOR SUBSEQUENT BLOCK BUFFERING OPERATIONS
(BOPENS$)

13.3.2.2. SEQUENTIAL READING OF DATA BLOCKS (BREADS$)

13.3.2.3. RANDOM READING DATA BLOCKS (BRREDS$)

13.3.2.4. SEQUENTIAL WRITING OF DATA BLOCKS (BWRIT$ AND BSMOVE)

13.3.2.5. RANDOM WRITING DATA BLOCKS (BRWRT$ AND BSMOVE)

13.3.2.6. WRITING HARDWARE EOF MARKS (BMARKS)

13.3.2.7. CLOSING CURRENT TAPE REEL (BCLORS$)

13.3.2.8. CLOSING FILE CONTROL TABLES (BCLOF$ AND BREL)

13.3.2.9. CHANGING BLOCK BUFFERING EOF SECTOR ADDRESS (BBEOF$)

13.3.3. LAYOUT FOR DATA BLOCKS

13.3.4. TRANSFER OF CONTROL FROM BBP TO USER’S PROGRAM

13.4. HANDLING DATA FILES AT THE ITEM LEVEL

13.4.1. SUBROUTINES OF THE ITEM HANDLER

13.4.1.1. INPUT SUBROUTINES

13.4.1.2. OUTPUT SUBROUTINES

13.4.2. DATA FILE MANIPULATION AT ITEM LEVEL

13.4.2.1. INITIALIZING AN FCT FOR SUBSEQUENT ITEM HANDLING
13.4.2.2. SEQUENTIAL READING OF DATA ITEMS

13.4.2.3. RANDOM READING OF DATA ITEMS

13.4.2.4. REQUESTING EXCLUSIVE RANDOM READING OF DATA ITEMS
13.4.2.5. SEQUENTIAL WRITING OF DATA ITEMS (IHWRT)

13.4.2.6. RANDOM WRITING OF DATA ITEMS

13.4.2.7. SEQUENTIAL AND RANDOM READ/WRITE REQUESTS

13.4.2.8. READING AND WRITING THE CURRENT BUFFER CONTENT
13.4.2.9. CLOSING A TAPE REEL

13.4.2.10. CLOSING A DATA FILE

13.4.2.11. RELINQUISHING USER PROGRAM ASSOCIATION WITH DATA FILE
13.4.3. LAYOUT FOR SINGLE AND BLOCKED ITEMS

13.4.4. TRANSFER OF CONTROL FROM ITEM HANDLER TO USER’S PROGRAM
13.4.4.1. CONTROL TRANSFER DURING OUTPUT MODE PROCESSING
13.4.4.2. CONTROL TRANSFER DURING INPUT MODE PROCESSING
13.4.4.3. CONTROL TRANSFER DURING IN/OUT MODE PROCESSING

13.5. INTERFACING THE DATA HANDLING ROUTINES WITH THE USER’S PROGRAM
13.5.1. FILE CONTROL TABLES

13.5.1.1. FILE CONTROL TABLE FORMAT

13.5.1.2. GENERATING THE FCT

13.5.2. ESTABLISHING BUFFER POOLS (BPOOLS$ AND BJOINS)
13.6.3. DEFINING PHYSICAL ORGANIZATION OF DATA FILES
13.6.3.1. FORMAT DEFINITION PROCEDURES

13.6.3.1.1. FORMAT PROCEDURE

13.5.3.1.2. RECORD-TYPE PROCEDURE

13.56.3.1.3. SECTION-NAME PROCEDURE

13.56.3.1.4. SUBROUTINE-NAME PROCEDURE

13.56.3.1.56. END-FORMAT PROCEDURE

13-1

13-1

13-1

13-1
13-2
13-2
13-2

13-4
13-4
13-5
13-6
13-7
13-8
13-8
139
13-9
13-10

13-11
13-11
13-12
13-12
13-12
13-12
13-13
13-15
13-16
13-16
13-17
13-19
13-19
13-20
13-21
13-22
13-22
13-24
13-24
13-24
13-25

13-25
13-25
13-26
13-29
13-32
13-34
13-35
13-35
13-35
13-36
13-36
13-38

to 13-49

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

Contents 12
PAGE REVISION | PacE

14.

15.

13.6.3.2. EXAMPLE OF A COMPLETED FORMAT DEFINITION
13.56.3.3. RULES FOR CODING FORMAT SUBROUTINES
13.56.3.3.1. LABEL RECORD SUBROUTINES

13.6.3.3.2. BLOCK RECORD SUBROUTINES

13.56.3.3.3. ITEM RECORD SUBROUTINES

13.6.3.3.4. END-OF-REEL SUBROUTINES

13.6.3.3.5. END-OF-FILE SUBROUTINES

13.6. HANDLING OF LABELS AND SENTINELS
13.6.1. LABEL AND SENTINEL HANDLING FOR OUTPUT FILES
13.6.2. LABEL AND SENTINEL HANDLING FOR INPUT FILES

13.7. DATA FILE ORGANIZATION

13.8. ERROR PROCESSING

13.8.1. DEVICE ERROR HANDLING
13.8.2. FILE ERROR HANDLING

13.8.3. ABNORMAL ERROR HANDLING

OUTPUT EDITING PACKAGES
14.1. INTRODUCTION

14.2. EDIT$ (IMAGE COMPOSITION EDITING PACKAGE)

14.2.1, GENERATING THE EDIT$ PACKET (E$PKT AND E$PKTF)
14.2.2. INITIALIZATION AND TERMINATION OF EDITING MODE
14.2.3. GENERAL PURPOSE EDITING ROUTINES

14.2.4. FLOATING-POINT EDITING ROUTINES

14.3. EOUT$ (GENERALIZED OUTPUT EDITING ROUTINES)
14.3.1. EDITING FUNCTIONS

14.3.2. OUTPUT FUNCTIONS

14.3.3. MODAL FUNCTIONS

14.3.4. CONTROL FUNCTIONS

14.3.5. EXAMPLES

COMMUNICATIONS HANDLER

15.1. INTRODUCTION

15.1.1. EQUIPMENT

15.1.1.1. THE CTS AND WTS

15.1.1.2. THE CTMC

15.1.2. MODES OF OPERATION

15.2. ASSIGNING LINE TERMINAL (LT) DEVICES

15.3. THE LINE TERMINAL TABLE

13-38
13-38
13-41
13-41
13-41
13-42
13-42

13-42
13-42
13-43

13-43

13-46
13-46
13-46
13-49

14-1 to 14-14

14-1

14-1
14-3
14-4
14-4
14-9

14-10
14-11
14-12
14-12
14-13
14-13

15-1 to 15-24
15-1
15-1
156-1
15-1
15-2
16-2

156-2

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

PAGE REVISION

Contents 13
PAGE

16.

15.4. COMMUNICATIONS HANDLER OPERATIONS

15.4.1. SUPPORT OPERATIONS

15.4.1.1. INITIALIZATION (CMS$)

15.4.1.2. DIALING (CMD$)

15.4.1.3. INPUT (CM{$)

16.4.1.4. OUTPUT (CMO$)

15.4.1.5. SEND AND ACKNOWLEDGE (CMSA$)

15.4.1.6. SINGLE BUFFER MODE FOR INPUT/OUTPUT OPERATIONS
15.4.1.7. POOL MODE FOR 1/0 OPERATIONS

15.4.1.8. DUAL POOL MODE FOR INPUT OPERATIONS

15.4.1.9. HANGUP (CMHS$)

15.4.1.10. TERMINATION (CMT$)

15.4.2. COMMUNICATION POOLS

15.4.2.1. ESTABLISHING A COMMUNICATIONS POOL (CPOOLS$)
15.4.2.2. REMOVING BUFFERS FROM A POOL (CGET$)
15.4.2.3. RETURNING BUFFERS TO A POOL (CADD$)

15.4.2.4. EXPANDING A POOL (CJOINS)

15.4.2.5. RELEASING COMMUNICATIONS POOL (CREL$)
15.4.3. ALTERING COMMUNICATIONS PATHS (ROUTES$)
15.4.3.1. ROUTING PROCEDURES

15.5. COMPLETION ACTIVITIES
15.5.1. EXITING FROM AN ESI ACTIVITY (ADACTS$)

15.6. IDLE LINE MONITOR

15.7. TIMING CONSIDERATIONS
15.7.1. INTERRUPT RESPONSE
15.7.2. BUFFER PROCESSING

15.8. INFORMATION ANALYSIS

15.9. ERROR CODES FOR LT CONTINGENCIES

REAL TIME PROCESSING
16.1. INTRODUCTION
16.2. PROGRAM LOCATION

16.3. BUFFER OPERATIONS

16.3.1. TRANSMISSION TYPES

16.3.2. MAIN STORAGE AVAILABILITY
16.3.3. POOL SIZE

16.3.4. BUFFER SIZE

16.3.5. DUAL POOL METHOD

16.4. PROGRAM EXECUTION CONSIDERATIONS
16.4.1. PRIORITY CATEGORIES

16.4.1.1. 1/O PRIORITY

16.4.1.2. DISPATCHING PRIORITY

15-8

15-8

15-9

15-9

15-10
16-10
15-11
15-11
15-12
15-13
15-13
15-13
15-14
15-15
15-17
15-17
15-18
15-18
15-19
15-20

15-20
15-20

15-21

15-21
15-22
15-22

15-24

15-24

16-1

16-1

16-1

16-1
16-2
16-2
16-2
16-2
16-3

16-3
16-3
16-4
16-4

to 16-9

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

Contents 14
PAGE REVISION PAGE

17.

18.

16.4.2. PRIORITY CONTROL

16.4.2.1. CHANGING ACTIVITY PRIORITIES (RT$ AND NRT$)
16.4.2.2. APPLICATION OF MULTIPROGRAMMING TO REAL TIME
16.4.2.3. INTERRUPT ACTIVITY PRIORITY REDUCTION (UNLCKS$)
16.4.2.4. ACTIVITY TERMINATION (EXIT$)

16.4.2.5. TIMED WAIT CONSIDERATIONS

16.4.2.6. CONSOLE INTERRUPT HANDLING

16.4.3. EXCEEDING MAXIMUM TIME LIMITATION

16.4.4. TEST AND SET USAGE

16.5. PROGRAMMER’S GENERAL RESPONSIBILITIES

16.6. ESI CONSIDERATIONS
16.6.1. ESI ACTIVITY CONCEPT
16.6.2. ESI TIMING

16.6.2.1. ESI INTERRUPTS
16.6.2.2. REAL TIME ACTIVITIES

CHECKPOINT/RESTART
17.1. INTRODUCTION

17.2. COMPLETE CHECKPOINT/RESTART
17.2.1. COMPLETE CHECKPOINT — RUN SAVE
17.2.1.1. CONTROL STATEMENT (@CKPT)
17.2.1.2. EXECUTIVE REQUEST

17.2.1.3. UNSOLICITED CONSOLE REQUEST
17.2.1.4. EXAMPLES OF CHECKPOINT

17.2.2. CHECKPOINT FILE FORMAT

17.2.3. CHECKPOINT FILE IDENTIFICATION MESSAGE
17.2.4. COMPLETE RESTART — RUN RESTORE
17.2.4.1. CONTROL STATEMENT {@RSTRT)
17.2.4.2, EXECUTIVE REQUEST

17.2.4.3. UNSOLICITED CONSOLE REQUEST
17.2.4.4. EXAMPLES OF RESTART

17.2.56. RESTART CONTINGENCY ROUTINE

17.3. PARTIAL CHECKPOINT/RESTART
17.3.1. PARTIAL CHECKPOINT — PROGRAM SAVE (@CKPAR)
17.3.2. PARTIAL RESTART — PROGRAM RESTORE (@RSPAR)

17.4. CHECKPOINT/RESTART ERROR CODES

SYSTEM SYMBOLIC PROCESSORS
18.1. INTRODUCTION

18.2. ELT PROCESSOR
18.2.1. INPUT TERMINATION SENTINEL (@END)

18.3. DATA PROCESSOR

16-6
16-5
16-6
16-6
16-6
16-7
16-7
16-7
16-7

16-8

16-8
16-8
16-9
16-9
16-9

17-1 to 17-10

17-1

17-1
17-1
17-2
17-2
17-2
17-3
17-3
17-6
17-5
17-6
17-6
17-6
17-7
17-7

17-8
17-8
179

17-10

18-1 to 18-20

18-1

18-1
18-4

18-4

4144 Rev. 2

UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS

Contents 15
PAGE REVISION | PAGE

19.

20.

18.4. ED PROCESSOR

18.4.1. EDIT MODE COMMANDS
18.4.2. USAGE CONSIDERATIONS
18.5. CULL PROCESSOR

18.6. LIST PROCESSOR

18.7. CON78 PROCESSOR

FILE ADMINISTRATION PROCESSOR (SECURE)
19.1. INTRODUCTION

19.2. MAJOR FUNCTION DEFINITIONS

19.3. @SECURE CONTROL STATEMENT

19.4. INPUT AND OUTPUT BACKUP TAPE ASSIGNMENTS
19.5. CATALOGUED FILE ASSIGNMENTS

19.6. USE OF SYS$«DLOC$

19.7. SECURE SOURCE LANGUAGE

19.7.1. STANDARD COMMANDS

19.7.2. NAMELISTS AND LIMITERS

19.7.3. EXCLUSIONS

19.7.4. DIRECTION

19.7.5. EXAMPLES OF SOURCE LANGUAGE

19.8. SELECTION OF FILES FOR UNLOAD

19.9. OWN-PROJECT APPLICATIONS

19.10. CATALOGUED FILE RECOVERY APPLICATIONS

19.11. SUMMARY OF SECURE PROCESSOR COMMANDS

19.12. EXAMPLES OF THE USE OF THE SECURE PROCESSOR

SYMBOLIC STREAM GENERATOR (SSG)
20.1. INTRODUCTION

20.2. INPUT STREAMS

20.3. OUTPUT STREAMS

20.4. @SSG CONTROL STATEMENT

20.5. FILE IDENTIFICATION STATEMENTS

18-6
18-7
18-15
18-15
18-18

18-19

19-1 to 19-13
19-1
19-2
19-2
19-3
19-4
19-4
19-6
19-6
19-6
19-7
19-7
19-7
19-7
19-8
19-8
19-9

19-10

20-1 to 20-28

20-1

20-1

20-2

20-3

20-4

4144 Rev. 2

UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS

Contents 16

PAGE REVISION PAGE

21.

20.6. SUPPLEMENTARY INFORMATION

20.7. FUNDAMENTALS OF SYMSTREAM
20.7.1. ELEMENTS OF SYMSTREAM
20.7.1.1. VARIABLES

20.7.1.2. PROCESS PARAMETERS
20.7.1.3. INTEGER EXPRESSIONS

20.7.1.4. STREAM GENERATION STATEMENTS

20.7.1.5. NUMERIC EXPRESSIONS
20.7.1.6. SUPPLEMENTARY BASICS
20.7.2. SYNTAX OF SYMSTREAM

20.7.2.1. GENERATING OUTPUT STREAMS (*BRKPT)

20.7.2.2. ZEROING EXISTING AND CREATED VARIABLES (*CLEAR)

20.7.2.3. MERGING INPUT AND SKELETON STREAMS (*CORRECT AND *END)
20.7.2.4. DYNAMIC EXPANSION OF SSG’s OR PERM AND TEMP CHAINS (*CREATE)
20.7.2.5. DEFINING SKELETON IMAGE SEQUENCES (*DEFINE AND *END)

20.7.2.6. VARIABLE DIVISION (*DIVIDE)

20.7.2.7. OUTPUTTING NONDIRECTIVE SKELETON IMAGES AS ONE IMAGE (*EDIT)
20.7.2.8. SKIPPING SKELETON IMAGES (*IF, *ELSE, AND *END)

20.7.2.9. SKELETON IMAGE LOOPS (*INCREMENT AND *LOOP)

20.7.2.10. VARIABLE MULTIPLICATION (*MULTIPLY)

20.7.2.11. CALLING A PREDEFINED SEQUENCE OF SKELETON IMAGES (*PROCESS)

204

20-5
20-5
20-5
20-5
20-5
20-5
20-6
20-6
20-6
20-7
20-7
20-8
20-9
20-9
20-10
20-10
20-11
20-13
20-14
20-14

20.7.2.12. DELETING SGS's, AND PERM AND TEMP ELEMENT/VERSION NAMES (*REMOVE) 20-15

20.7.2.13. CHANGING EXISTING OR CREATED VARIABLES (*SET)

20.8. EXAMPLES OF SSG STREAM GENERATION

20.9. MERGE OF INPUT STREAMS

20.10. BACKUS NORMAL FORM OF SYMSTREAM ELEMENTS

20.11. DIRECTIVES STRUCTURE

DOCUMENTATION PROCESSORS
21.1. INTRODUCTION

21.2. FLOWCHART GENERATOR (FLUSH)
21.2.1. GENERAL OUTPUT

21.2.2. OPERATION MODES

21.2.3. FLUSH DIRECTIVE OPTIONS
21.2.3.1. TYPE I OPTIONS (I, J,P, T, W)
21.2.3.2. TYPE Il OPTION (A)

21.2.3.3. TYPE I OPTIONS (E, H)
21.2.3.4. TYPE IV OPTIONS (B,C, D, N, R)
21.2.3.5. TYPE V OPTIONS (L, S)

21.2.4. CONTINUATION REQUIREMENTS
21.2.6. SUMMARY OF BOX TYPES

21.3. DOCUMENT PROCESSOR (DOC)
21.3.1. OUTPUT LISTINGS

21.3.2. INTERNAL CONTROL DIRECTIVES
21.3.2.1. TITLE CONTROL

21.3.2.2. LISTING CONTROL

21.3.2.3. TEXT CONTROL

21.3.2.4. EDITING CONTROL

20-16

20-17

20-22

20-25

20-26

21-1 to 21-19

21-1

21-2
21-2
21-3
214
21-5
21-6
21-9
21-1
21-12
21-12
21-13

21-13
21-14
21-14
21-15
21-15
21-16
21-17

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP.-NUMBER

Contents 17
PAGE REVISION | PAGE

22.

23.

MASTER FILE DIRECTORY
22.1. INTRODUCTION
22.2. MASTER FILE DIRECTORY STRUCTURE

22.3. MASTER FILE DIRECTORY MANIPULATION (MSCON$)

22.3.1. ITEM RETRIEVAL FOR ALL FILES (DGET$)

22.3.2. ITEM RETRIEVAL FOR DISC PACKS (DGETP$)

22.3.3. ITEM RETRIEVAL FOR AN INDIVIDUAL FiLE (DREADS)
22.3.4. ALTERING MAIN ITEM (DBIT$)

22,3.5. ALTERING BACKUP FILE ENTRIES (DBACKS$)

22.3.6. ALTERING LAPSE ENTRIES (DLAPSS$)

22.3.7. CHANGING UNLOAD TIME (DUNLDS$)

22.3.8. CHANGING MAXIMUM CYCLE RANGE (DCYC$)

22.3.9. CHANGING READ/WRITE KEYS (DKEY$)

22.3.10. CHANGING BLOCK BUFFERING EOF SECTOR ADDRESS (DBB$)
22.3.11. MODIFYING FILE IDENTITY (DREG$)

22.3.12. LINK INSERTION FOR REMOVABLE DISC PACKS (DLINKS)
22.3.13. ADDING GRANULE ITEMS (DADDS$)

22.3.14. MONITORING MASS STORAGE AVAILABILITY (MSALLS$)

22.4. MSCON$ STATUS CONDITIONS

22.5. DIRECTORY ITEM FORMATS

LOGGING AND ACCOUNTING

23.1. INTRODUCTION

23.2. LOG ENTRY INITIATION AND CONTROL

23.3. PRINT FILE OUTPUT

23.4. SUMMARY ACCOUNT FILE CREATION AND UPDATING
23.5. MASTER LOG FILE CREATION AND CONTROL

23.6. FILE FORMATS

23.6.1. BASIC NOTATION

23.6.2. SUMMARY ACCOUNT FILE STRUCTURE

23.6.3. SUMMARY ACCOUNTING FILE ENTRY FORMAT
23.6.4. MASTER LOG ENTRY FORMATS

23.6.4.1. CONTROL STATEMENT LOG ENTRIES
23.6.4.2. FACILITY USAGE LOG ENTRIES

23.6.4.3. CATALOGUED MASS STORAGE FILE USAGE ENTRY
23.6.4.4. PROGRAM TERMINATION LOG ENTRY
23.6.4.5. RUN TERMINATION LOG ENTRY

23.6.4.6. 1/0 ERROR LOG ENTRY

23.6.4.7. CONSOLE LOG ENTRIES

23.6.4.8. CHECKPOINT LOG ENTRY

23.6.4.9. RUN INITIATION LOG ENTRY

23.6.4.10. CONSOLE REPLIES LOG ENTRY

23.6.4.11. LOG KEYIN ENTRY

23.6.4.12. UNSOLICITED KEYIN LOG ENTRY

23.6.4.13. TAPE LABELING LOG ENTRY

22-1 to0 22-36

22-1

22-1

22-2

22-4

22-8

229

22-10
22-10
22-11
22-13
2213
22-14
22-14
22-15
22-16
22-16
2217

22-21

22-22

23-1 to 23-27

231

23-1

23-2

23-3

23-3

23-3
23-3
234
235
23-7
23-8
239
23-10
23-12
2313
23-14
23-16
23-17
23-18
23-19
23-19
23-20
23-30

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP.NUMBER

Contents 18
PAGE REVISION | PAGE

24,

25.

23.7. BILLING ROUTINE (BILLER)

23.7.1. GENERAL DESCRIPTION

23.7.2. CONSTRAINTS FOR USER-IMPLEMENTED BILLING ROUTINES
23.7.3. INITIALIZING AND CHAINING OF ACCOUNT ENTRIES
23.7.3.1. INSERT COMMAND

23.7.3.2. REMOVE, PURGE, AND READ COMMANDS

23.7.3.3. NO INPUT SPECIFIED TO BILLER

23.7.4. PRINTER OUTPUT

23.8. LOG FILE EDITOR (LOGFED)

FILE STRUCTURE AND MAINTENANCE
24.1. INTRODUCTION

24.2. FILE FORMATS

24.2.1. PROGRAM FILE FORMAT

24.2.2. ELEMENT FILE FORMAT

24.2.3. SYSTEM DATA FILE (SDF) FORMAT

24.3. FILE MAINTENANCE

24.3.1. PROGRAM FILE MAINTENANCE EXECUTIVE REQUESTS
24.3.1.1. UPDATING THE ELEMENT TABLE (PFI$)

24.3.1.2. TABLE OF CONTENTS SEARCH (PFS$)

24.3.1.3. MARK ELEMENT FOR DELETION (PFD$)

24.3.1.4. UPDATING NEXT WRITE LOCATION JPRUWLS)

24.3.1.56. RETRIEVING NEXT WRITE LOCATION ADDRESS (PFWL$)
24.3.1.6. PROGRAM FILE PACKAGE STATUS CONDITIONS

24.3.2. PROGRAM FILE BASIC SERVICE PACKAGE

INTERNAL EXECUTIVE DESIGN
25.1. INTRODUCTION
25.2. BASIC DESIGN PHILOSOPHY

25.3. EXECUTIVE MAIN STORAGE USAGE

25.3.1. GENERAL LAYOUT AND DISCUSSION

25.3.2. PCT USAGE

25.3.3. DEFINITION AND RESIDENCY OF COMPONENTS

25.4. MULTIPROCESSING

25.5. SCHEDULING

25.5.1. GENERAL

25.5.2. FACILITIES INVENTORY AND SELECTION
25.5.3. CONTROL STATEMENT INTERPRETER (CSI)
25.5.4. COARSE SCHEDULER

25.5.5. DYNAMIC ALLOCATOR

25,5.6.1. GENERAL OVERVIEW

25.5.5.2. DYNAMIC MAIN STORAGE ALLOCATION
25.5.5.3. DEMAND/BATCH SHARING

25.5.5.4. TIMESHARING

25.6.6. DISPATCHER

25.5.6.1. INTERLOCK PROCESSING

25.5.6.2. SWITCHING

23-21
23-21
23-21
23-22
23-22
23-23
23-24
23-24

23-25

24-1 to 24-14

24-1

24-1
241
24-3
24-4

24-7
24-7
24-7
24-10
24-1
24-12
24-12
2413
24-13

25-1 to 25-17

2541

25-1

25-2
25-2
25-3
25-3

255

25-5
25-5
255
25-7
25-7
259
25-9
259
25-11
25-11
25-12
25-12
25-13

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS Contents 19

UP-NUMBER PAGE REVISION PAGE
25.6. CLOCKING 25-14
25.6.1. REAL TIME CLOCK 25-14
25.6.2. DAY CLOCK 25-14
25.7. INTERRUPT HANDLING 25-14
25.7.1. INPUT/OUTPUT INTERRUPTS AND QUEUEING 25-15
25.7.2. INTERPROCESSOR INTERRUPTS 25-15
25.7.3. HARDWARE FAULT INTERRUPTS 25-16
25.7.3.1. STORAGE AND ICR PARITY ERROR INTERRUPTS 25-16
25.7.3.2. POWER LOSS INTERRUPTS 25-16
25.7.4. PROGRAM-GENERATED INTERRUPTS 25-17
25.8. CATALOGUED FILE RECOVERY 25-17
26. RUN SETUP EXAMPLES 26-1 to 26-12
APPENDIXES
A. SUMMARY OF CONTROL STATEMENTS A-1 to A-6
B. SUMMARY OF EXECUTIVE REQUESTS B-1 toB-6
C. SYSTEM DIAGNOSTIC MESSAGES AND STATUS CODES C-1 toC-29

C.1. RUN STREAM DIAGNOSTIC MESSAGES C-1

C.2. FACILITY REQUEST STATUS CODES C-10

C.3. ERR MODE (EMODE) AND 1/0 STATUS CODES C-12

C.4. CSF$ EXECUTIVE REQUEST STATUS CODES C-22

C.4.1. FACILITY REQUEST STATUS CODES (@CAT, @ASG, @FREE, @LOG, @VODE, @USE) C-22

C.4.2. @SYM AND @BRKPT STATUS CODES C-22

C.4.3. @ADD STATUS CODES C-22

C.4.4. @START DIAGNOSTICS AND STATUS CODES C-23

C.4.5. CHECKPOINT/RESTART STATUS CODES (@CKPT, @CKPAR, @RSTRT, @RSPAR) C-23

C.5. MSCON$ AND PFP STATUS CODES C-23

C.5.1. MSCON$ REQUEST STATUS CODES C-23

C.5.2. PROGRAM FILE PACKAGE STATUS CODES C-26

C.6. CHECKPOINT/RESTART ERROR CODES C-25

C.7. BLOCK BUFFERING AND ITEM HANDLER ERROR CODES c-27

C.7.1. DEVICE AND FILE EXIT CODES c-27

C.7.2. ABNORMAL EXIT CODES C-29

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS Contents 20

UP-.NUMBER] PAGE REVISION PAGE
D. CONVERSION TABLES D-1 to D-15
D.1. INTRODUCTION D-1
D.2. ASCH AND FIELDATA CONVERSION TABLES D-1
D.2.1. THE SPECIAL CHARACTERS IN ASCIl D-4
D.3. UNISCOPE 100 DISPLAY TERMINAL D-6
D.4. CHARACTER CODES, XS-3, BCD CONVERSION TABLE D-9
D.5. BINARY/HEXADECIMAL CONVERSION TABLE D-11
D.6. OCTAL/DECIMAL CONVERSION TABLE D-11
E. EQUIPMENT CODES E-1 toE-3
FIGURES
6—1. 1/0 Packet, Mass Storage and Magnetic Tape Peripherals 6-2
6—2. Arbitrary Device Handler Packet 6-28
8—1. FURPUR Control Statements Used to Alter File Formats 84
10—1. Instruction Area (I Bank) Main Storage Map for the Segmented FILEA 10-29
10—2. Data Area (D Bank) Main Storage Map for the Segmented FILEA 10-30
11-1. Standard Editing Format for Integer and Octal Dumps, Sample Printout 11-13
13—1. Data Block Layout 13-10
13—2. Single Item Layout 13-23
13—3. Blocked Item Layout 13-23
13-4. File Control Table Format 13-27
13—5. Example of Complete Format Definition 13-38
13—6. Item Level Tape File Organization, Single-File Reels 13-44
13—7. Item Level Tape File Organization, Muotifile Reels 13-44
13—8. item Level Tape File Organization, Multifile Reels with Void File 13-45
13—9. Item Level Tape File Organization, Multireel Files 13-45
13—10. Item Level FASTRAND-Formatted Mass Storage File Organization 13-46
22—1. Example of an MFD Entry 22-2
22—-2. Search ltem 22-23
22--3. Lead Item — Sector O 22-24
22—4. Lead Item — Sector 1 22-25
22—5. Mass Storage File Main Item — Sector O 22-26
22—6. Mass Storage File Main Item — Sector 1 22-29
22—7. Main Item — Sectors 2-n 22-31
22--8. Tape File Main Item — Sector 0 22-32
22—9. Mass Storage File Granule ltem 22-35

22—-10. Tape File Granule Item 22-36

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS Contents 21
UP-NUMBER "PAGE REVISION PAGE
23—1. Logging and Accounting Process, Block Diagram 23-2
23—2. Summary Account File Format 23-4
24—1. Program File Format 24-2
24--2. Element File Format 24-4
24—-3. Element in Element File Format 24-5
TABLES
3—1. Summary of Executive Control Statements 3-4
3—2. @RUN Control Statement, Options 3-6
3—-3. @MSG Control Statement, Options 3-12
3—4. FASTRAND @ASG Control Statement, Options 3-22
3—5. Magnetic Tape —ASG Control Statement, Options 3-26
3—6. @CAT Control Statement, Options 3-36
3—7. @FREE Control Statement, Options 3-38
4—1. Available ERs 4-3
4—2. Contingency Types 4-24
4-3. Error Types 4-25
5—1. Bit Settings in Control Register AO for A READ$ Request 5-4
5—2. Print Control Functions 5-12
6—1. Octal and Mnemonic 1/O Codes Defined in SYS$*RLIBS$ 6-3
6—2. Magnetic Tape I/0O Functions and Codes 6-10
6—3. Type 5017 Fieldata/BCD Translations 6-15
6—4. MSA Data Word Formats 6-17
6—5. Magnetic Tape Function vs. Unit Type 6-19
6—6. Standard Tape/Processor Code Translation {Octal) 6-20
6—7. Magnetic Drum and Unitized Channel Storage 1/0 Functions and Codes 6-21
6—8. FASTRAND Mass Storage 1/0 Functions and Codes 6-24
7—1. Volume Header Label Field Description for Table Labeling 7-16
7—2. First File Header Label Field Description for Table Labeling 7-17
8—1. Summary of FURPUR Control Statements 8-1
8—-2. @COPY Control Statement, Options Applicable When Filenames are Specified 8-5
8—3. @COPY Control Statement, Options Applicable When Element Names are Specified 8-7
8—4. @COPIN Control Statements, Options Applicable When Filenames are Specified 8-9
8—5. @COPIN Control Statement, Options Applicable When Element Names are Specified 8-10
8-6. @COPOQUT Control Statements, Options Applicable When Filenames are Specified 8-11
"8—7. @COPOUT Control Statement, Options Applicable When Element Names are Specified 8-12
8—8. @PRT Control Statement, Options Applicable When Filenames, Account Numbers, 8-14
or Project-id are Specified
8—9. @PRT Control Statement, Options Applicable When Elements are Specified 8-15
9—1. Processors Which Use the SI, SO, and RO Parameters 9-4
9—-2. Processors Which Require the Sl and SO Parameters 9-5
9—-3. Source Input Routine Options 9-6
9—4. Partial Coding Line Correction Diagnostics 9-10
9-5. @PDP Control Statement, Options 9-12

4144 Rev.

2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

PAGE REVISION

Contents 22
PAGE

10-1.

11-1.
11-2.
11-3.
11-4.

12—-1.
12-2.
12-3.
12—4.
12-5.

13—1.

14-1.
14--2,
14-3.

15-1.

18-1.
18-2.
18-3.
18—4.
18-5.

1
N~ LDd=

OOOOCI)OOO

@MAP Control Statement, Options

@PMP Control Statement, General Options
@PMD Control Statement, Special Options
Standard Editing Formats for Dump Printouts
Demand Mode Commands

Demand Terminal Interface Messages

Teletypewriter Control Characters

DCT 500 Control Characters

UNISCOPE 100 and DCT 1000 Control Messages and Sequences
UNISCOPE 300 Symbiont, Control Sequences

Device Error Status Codes

Editing Routines for Initiation and Termination of Editing Mode
General Purpose Editing Routines
Floating-Point Editing Routines

LTT Input-Status Codes

@ELT Control! Statement, Options
@DATA Control Statement, Options
@ED Control Statement, Options
ED Processor Commands

@CULL Control Statement, Options

. @SECURE Control Statement, Options
. Summary of SECURE Processor Commands

. @SSG Control Statement, Options

. Summary of FLUSH Directive Options

. @DOC Control Statement, Options

. DOC Processor, Title Control Directives

. DOC Processor, Listing Control Directives

. Executive Components That Reside Permanently in Main Storage
. Nonresident (Transient) Components of the Executive System

Facility Status Bits

ERR Mode (EMODE) and 1/0O Status Codes
@SYM and @BRKPT Status Codes

Status Codes for Successful Completion (S=0)
Status Codes for Error Termination (S=1)
Checkpoint Error Codes

Restart Error Codes

Device and File Exit Codes

10-3

11-2
11-3
11-14
11-27

12-3
12-8
12-13
12-17
12-21

13-47

144
14-5
149

15-6

18-2
18-5
18-7
18-8
18-16

19-3
19-9

20-4

21-4

21-14
21-15
21-16

25-3
25-4

c-10
c-12
C-22
C-24
C-24
C-26
C-26
c-27

UNIVAC 1100 SERIES SYSTEMS Contents 23

4144 Rev. 2
UP.NUMBER PAGE REVISION PAGE
D—1. Fieldata=to-ASCII Conversion D-2
D—2. ASCII-to-Fieldata Conversion D-3
D—3. UNISCOPE 100 Display Terminal Control Functions D-6
D—4. Itlegal Text Characters D-7
D—5. Cursor/SOE Coordinates D-8
D—6. XS-3 Fieldata-EBCDIC-BCD Conversion Table D-9
D—7. Binary/Hexadecimal Conversion D-11
D—8. Octal/Decimal Conversion D-12

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 1-1

UP-NUMBER PAGE REVISION PAGE

. INTRODUCTION

1.1. SCOPE OF MANUAL

The UNIVAC 1100 Series Operating System comprises the Univac-supplied software for the UNIVAC 1100 Series Computer
Systems. This manual discusses the base portion of the operating system, that is, the executive system (EXEC 8) and the
associated software needed to construct, execute, and maintain user programs. Information on language processors such
as COBOL, FORTRAN, and the assembler, and on applications software such as SORT/MERGE, APT, and PERT can be

found in their respective manuals.

Information that is primarily of interest only to an operator, installation manager, or systems analyst is covered only briefly if
at all (for example, operating procedures, system generation procedures, internal system logic, and so forth). Such material is
covered in other Univac publications.

The purpose of this manual is to provide information for the user programmer so that he can make full use of the wide range

of capabilities provided by the UNIVAC 1100 Series Hardware/Software Systems. Any differences between the operating
system described in this manual and the latest released software are described in the Univac 1700 Series System

Memaorandum.

A knowledge of the 1100 series hardware architecture and machine (assembler) language programming is assumed. This
knowledge is helpful, but not mandatory for the user of a higher level language or applications package.

1.2. THE OPERATING SYSTEM

The UNIVAC 1100 Series Operating System was designed to meet the total computing requirements of today’s users, and to
allow for the change and growth required for the future. The operating system is the outgrowth of Univac’s many years of
experience in multiprogramming, multiprocessing, time sharing, communications, and real time oriented systems, and

provides a system that contains the facilities required in complex environments, yet it is easy to operate and use.

A complete set of software, ranging from high level language compilers to basic service functions, is included in the operating
system. The six major categories are:

a Executive System

| System Processors

B Utility System Processors
B Language Processors
Subroutine Library

Applications Programs

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 1-2

UP-NUMBER PAGE REVISION PAGE

The first three categories are discussed in detail in this manual. The execution environment is specified for the software falling
into the last three categories. In addition to the standard operating system, this manual describes certain utility routines
provided only for the convenience of the user and they are not supported as operational software. These unsupported utility
routines are:

Document Processor (DOC) — see Section 21

Flow Charting Processor (FLUSH) — see Section 21

Log File Editor (LOGFED) — see Section 23

Billing Routine (BILLER) — see Section 23

Element Listing Routine (LIST) — see Section 18

Cross-reference Processor (CULL) — see Section 18

CUR-to-FUR Conversion (CON78) — see Section 18

Program Trace Routine — see Section 11

1.3. THE EXECUTIVE SYSTEM

To take full advantage of the speed and hardware capabilities of the 1100 series and to make effective use of a given hardware
configuration, a comprehensive internal operating environment has been created.

This environment permits the concurrent operation of many programs; it allows the system to react immediately to the
inquiries, requests, and demands of many different users at local and remote stations; it accords with the stringent demands
of real time applications; it can store, file, retrieve, and protect large blocks of data; and it makes the best use of all available
hardware facilities, while minimizing job turnaround time.

Only through central control of all activities of the system can this environment of the combined hardware and software
systems be fully established and maintained to satisfy the requirements of all applications. The responsibility for efficient,
flexible, centralized control is borne by the executive system, which controls and coordinates the functions of the complex
internal environment. By presenting a relatively simple interface to the programmer it allows him to use the system easily,
while relieving him of concern for the internal interaction between his program and other coexistent programs.

1.3.1. MULTIPLE MODES OF OPERATION

The technical capabilities of the executive system cover a great variety of data processing activities. Its design is such that no
penalties are imposed upon any one of these activities by the support provided for the others, and an installation not
interested in making use of the full range of capabilities may specify component features to be eliminated at system
generation time.

1.3.1.1. BATCH PROCESSING
Foremost among the capabilities of the executive system is the support provided for batch processing. The system is designed

to ease run preparation and submission, to shorten job turn-around time, and to reduce the need for operator intervention and
decisions. Batch jobs may be processed from a variety of remote terminals, as well as from central site equipment.

1.3.1.2. DEMAND PROCESSING (TIME-SHARING)

Complementing the batch processing capabilities of the executive system are its time-sharing capabilities, the simultaneous
accommodation by the executive system of requests and demands from users at numerous remote inquiry terminals,

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 1-3

UP-NUMBER : PAGE REVISION PAGE

operating in a demand (or conversational) mode. All facilities available to the batch processing user are also available in the
demand mode, the primary difference being that the executive system permits the user additional flexibility in the statement
and control of individual runs; when an error is made, the user simply corrects it online and proceeds rather than suffering the
turn-around cycle inherent in batch processing. The demand user may communicate directly with either the executive or a
user program or he may communicate with a conversational processor, such as Conversational FORTRAN.

1.3.1.3. REAL TIME PROCESSING

The executive system is also designed to be applicable to programs which have real time requirements. The UNIVAC
Communications Subsystem, together with efficient scheduling and interrupt processing features of the executive system,
provide an environment satisfactory for any real time program.

1.3.1.4. MULTIPROGRAMMING AND MULTIPROCESSING

Runs may come from many sources, remote and central. These various runs, through the executive system’s use and control
of efficient multiprogramming and multiprocessing techniques may, at any given moment, be in different stages of activity;
input, processing, and output may all be occurring simultaneously, thus ensuring efficient operation.

1.3.2. UTILIZATION OF MASS STORAGE

The executive system is designed to ensure effective and efficient utilization of the mass storage devices. The consequence is
an unprecedented ability to relieve operators and programmers of the responsibility of maintaining and handling cards and
magnetic tapes, thus eliminating many of the errors which heretofore have accompanied the use of large scale software
systems. At the same time, the overall operating efficiency is considerably improved.

Permanent data files and program files are maintained on the mass storage devices, with full facilities for modification and
manipulation of these files. Security measures are established by the executive system to ensure that files are not subject to
unauthorized use. Provisions are also made within the executive system for automatic relocation of infrequently used files to
magnetic tape, as unused mass storage space approaches exhaustion. When the use of files relocated in such a manner is
requested, they are retrieved and restored under control of the executive system with no inconvenience to the user.

1.3.3. FUNCTIONAL AREAS OF THE EXECUTIVE SYSTEM

The executive system is composed of many different routines which perform many different functions. These functions and
routines are summarized in the following paragraphs.

1.3.3.1. EXECUTIVE CONTROL LANGUAGE

In the executive system, the user has a simple means of directing the execution of the individual tasks of a run and of relaying
operational information concerning the run to the executive. This is accomplished through a set of control statements capable
of performing all of the functions desirable or necessary in a modern executive system. The control language is open ended
and easily expanded, so that features and functions may be added as the need arises.

The basic format of a control statement is quite simple, and is adaptable to a large number of input devices. Statements are
not restricted to punched cards and may be of variable lengths. Each control statement consists of a heading character (@),
for recognition purposes, followed by a command and a variable number of parameters. The end of a control statement is
indicated by the end of a card, a carriage return, or an equivalent signal, depending on the type of input device.

1.3.3.2. THE SUPERVISOR

The supervisor is the executive system component that controls the sequencing, setup, and execution of all runs. It is
designed to control the execution of a large number of independent and interdependent programs.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 1-4

UP-NUMBER PAGE REVISION PAGE

The supervisor contains three levels of scheduling: coarse scheduling, dynamic allocation of storage space, and central
processor unit (CPU) dispatching. Runs entering the system are sorted into information files and these files are used by the
supervisor for run scheduling and processing. Control statements for each run are retrieved and scanned by a control
statement interpreter in the supervisor to facilitate the selection of runs for setup by the coarse scheduler. The coarse
scheduling of each run primarily depends on two factors: the priority of the run, and its facility requirements.

The dynamic allocator takes runs set up by the coarse scheduler and allots storage space according to the needs of the
individual tasks (programs) of a run. Normally, tasks from many different runs are located in storage at the same time. Each
run may be thought of as being made up of tasks, where a task is a single operation of a system processor or the execution of
a user program. All tasks. for a given run are processed serially but not necessarily consecutively; if there are several runs, the
tasks of separate runs are interleaved.

When time-sharing of storage is appropriate, the dynamic allocator initiates storage swaps. This involves writing one program
on mass storage and replacing it temporarily in main storage with another program. Such action is taken only to provide
reasonable response time to remote demand-processing terminals, or to satisfy batch priority requirements.

The CPU dispatching routine is a third level of scheduling; it selects among the various tasks currently occupying main storage
whenever it is appropriate to switch the commitment of the CPU from one task to another. Under normal circumstances, a
batch program is allowed to use a CPU either until it becomes interlocked against some event or until some higher priority
program is freed of all of its interlocks. On multiprocessor systems, two or more tasks will be in actual execution at the same
time.

1.3.3.3. FACILITIES ASSIGNMENT

Available facilities and their disposition are indicated to the system at system generation time; thereafter, the executive
system assigns these facilities, as needed and as available, to fulfill the facilities requirements of all runs entering the system.
The executive system maintains current inventory tables that indicate what facilities are available for assignment, and which
runs are using the currently unavailable facilities.

1.3.3.4. FILE CONTROL

The executive file control routines afford the highest degree of operational flexibility in storing and retrieving data, without
concern for the physical characteristics of the recording devices. Thus, most files are made insensitive to input/output (1/0)
media characteristics, as the system adjusts the interface between the file and the device. Security measures ensure that files
are not subject to unauthorized use or destruction. File control routines are provided to roll out files from mass storage
devices to magnetic tape, as well as reconstruct such files on the mass storage devices when the'user calls for them.

Comprehensive utility routines are available for manipulation of files and for informing the user of current status and
structure of his files, Provisions are made for random storage and retrieval of data, under the direction of the user. User
program files and data files are maintained and processed in the same environment.

1.3.3.56. OPERATOR COMMUNICATIONS

Operator functions are required for a large variety of activities. The executive system groups them into four classes, thus
equally dividing operator duties in a multioperator installation. These functions may be associated with as many as three
system consoles or as few as one, depending on the complexity and layout of the installation.

The executive system displays information such as current system load and operator requests associated with 1/0 setup and
1/0 interlocks. The operator can request other information, such as backlog status. If the display area becomes filled up, the
executive defers lower priority displays.

Since this manual is for the user programmer as opposed to the computer operator, it does not contain detailed information
concerning the operator communication functions.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

1-56
PAGE REVISION | PAGE

1.3.3.6. INPUT/OUTPUT DEVICE HANDLERS AND SYMBIONTS

The input/output device handlers and symbionts control the activities of all 1/0 channels and peripheral equipment attached
to the system.

The following is a list of the onsite and remote peripheral hardware that is supported by the executive:

Mass Storage Devices

FH-432, FH-880, and FH-1782 Magnetic Drum Subsystems

— Unitized Channel Storage

8414 Disc Subsystem

- FASTRAND Il and Il Magnetic Drum Subsystems
Magnetic Tape Devices

- UNISERVO 12 and 16 Magnetic Tape Subsystems

— UNISERVO IV—C, VI-C, and VIII-C Magnetic Tape Subsystems
- UNISERVO [1—A and Il11—A Magnetic Tape Subsystems
Printer Subsystems

— Type 0751, 0755, 0758, and 0768 High Speed Printers
— UNIVAC 1004 Printer

Card Subsystems

- Type 0706 and 0711 Card Readers

- Type 0600 and 0603 Card Punches

- UNIVAC 1004 Card Reader/Punch

Remote Devices

- Onsite Interface Hardware

(1) Communications Terminal Module Controller Subsystem (CTMC)

(2) Communications Terminal Synchronous Subsystem (CTS)
(3) Word Terminal Synchronous Subsystem (WTS)

— Remote Terminal Hlardware

(1) UNISCOPE 100 Display Terminal

(2) UNISCOPE 300 Visual Communications Terminal

(3) DCT 2000, 1000, and 500 Data Communications Terminals
(4) UNIVAC 9300/9300—11 Remote System

(5) UNIVAC 9200/9200—11 Remote System

(6) Teletypewriter Models 33 and 35

(7) UNIVAC 1004 Card Processor

(8) Friden 7100 Typewriter

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 1-6

UP-NUMBER PAGE REVISION PAGE

1.4. SYSTEM PROCESSORS

The system processors of the operating system are programs which provide for the utilitarian functions required to construct
and modify programs, maintain and modify files, and provide diagnostic information upon program termination.

1.4.1. COLLECTOR

The collector is designed to provide the user with the means of collecting and linking relocatable subprograms to produce an
absolute program in the form ready for execution under control of the executive system.

1.4.2, FILE UTILITY PROCESSOR (FURPUR)

FURPUR consists of a set of file maintenance routines which provide the flexibility in management and manipulation of
catalogued or temporary files containing data or programs.

1.4.3. POSTMORTEM DUMP PROCESSOR (PMD)}
The postmortem dump processor (PMD) produces edited dumps of the contents of main storage at program termination;

dumps produced dynamically during execution are automatically printed. Individual program parts are identified with the
assistance of diagnostic tables produced with the absolute program by the collector.

1.4.4. DATA AND ELT PROCESSORS

The DATA and ELT processors are used to create and manipulate data streams and program elements.

1.4.5. FILE ADMINISTRATION PROCESSOR (SECURE)
The SECURE processor uses a source language structure which allows the user to define specific tasks with simple

COBOL-like statements. The processor’s primary functions are to produce backup tapes for catalogued files, and to provide a
recovery mechanism for these files in case of system failure.

1.4.6. TEXT EDITOR (ED)

The ED processor is a text editor which enables a user to modify or move character strings in either program files or data
files.

1.4.7. PROCEDURE DEF!NITION PROCESSOR (PDP)
The procedure definition processor (PDP) accepts source language statements defining assembler, COBOL, or FORTRAN

procedures and builds an element in the user-defined program file. These procedures may subsequently be referenced in an
assembly or compilation without definition.

1.5. SYSTEM UTILITY PROCESSORS

The system utility processors provide features which are commonly required and used. Unlike the system processors, the
features provided are not necessary for the effective utilization of the operating system.

1.56.1. CUR—TO—FUR CONVERSION (CON78)

This processor converts magnetic tapes created by the UNIVAC EXEC |l complex utility routine (CUR) to magnetic tapes
acceptable as input to UNIVAC 1100 series program files. The processor will accept UNIVAC EXEC tl symbolic elements,
COBOL library elements, and procedure elements, and converts them to the proper formats.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 1-7

UP-NUMBER PAGE REVISION PAGE

1.6.2. FLUSH

FLUSH (Flowcharting Language for User’s Simplified Handling) is a processor which accepts assembler format input to
produce a flowchart, FLUSH can:

[] be instructed through the use of parameters, called options, which are contained in the comments field of the
instructions to be flowcharted, or

] perform an analysis based on the assembler instruction statements.

1.56.3. SSG PROCESSOR

The SSG processor is a general-purpose symbolic stream generator. Any variety of symbolic streams, varying from a file of
data to a run stream which configures an executive system, may be generated. Directions and models for building of the
desired stream images are conveyed to SSG through a skeleton which is written in SYMSTREAM, an extensive manipulative
language.

1.5.4. CULL PROCESSOR

CULL is a processor which produces an alphabetically-sorted, cross-referenced listing of all symbols in a specified set of
symbolic elements. Provisions are included, via options, to selectively include or exclude defined symbols or symbol groups
from the output.

1.5.5. DOCUMENT PROCESSOR (DOC)

DOC accepts the contents of a document and composes that document according to the user’s specifications. Control

statements provide listing and text control, including pagination, justification, indentation, and hyphenation. Document
maintenance is provided on a line-image basis and by content addressing of text character strings.

1.6.6. LIST PROCESSOR

This special-purpose processor provides edited element listings which include associated element control information not
normally of interest to the user. It is intended for debugging of software which deals with program files.

1.6. LANGUAGE PROCESSORS

The operating system provides several language processors, such as FORTRAN, COBOL, ALGOL, and the assembler. Certain
of these processors are specifically designed for demand mode operation. Consult the appropriate manual for information on
using a particular language.

1.7. RELOCATABLE SUBROUTINE LIBRARY

An extensive library of relocatable subroutines is provided. Subroutines referenced by user programs are automatically

included when the absolute program is constructed by the collector. The library elements included in the operating system
fall into the following general categories:

[] Subroutines that support higher level languages (COBOL Library, FORTRAN Library, and so forth)
[] Processor Interface Routines
] SORT/MERGE

n Diagnostic Subroutines

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 1-8

UP.NUMBER PAGE REVISION PAGE

n Item Handler and Block Buffering Package, which provide intermediate-leve! record and block 1/0 control
[] Service Routines, for editing, conversion, segment loading, and so forth
[| MATH—-PACK/STAT—PACK — Mathematical and Statistical Functions

| Assembler Procedure Library — Provides macro capability for generation of common machine-level coding and
parameter sequences.

This manual describes only those subroutines that fall into the base portion of the operating system, such as the diagnostic

subroutines, the item handler and block buffering package, the editing routines, and certain assembler procedures. Please
consult the appropriate manual for information on a subject not covered in this document.

1.8. APPLICATIONS PROGRAMS

The operating system provides many applications programs such as APT, GPSS, PERT, and so forth. Please consult the
appropriate manual for information on a particular applications program.

4144 Rev. 2

UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS 2-1

PAGE REVISION PAGE

2.1. INTRODUCTION

2. GENERAL CONCEPRPTS AND
DEFINITIONS

This section presents certain basic information that is essential for comprehension of the remaining sections of the manual
which deal with specific areas of the operating system.

2.2, DEFINITIONS AND ABBREVIATIONS

The following paragraphs (2.2.1 through 2.2.8) define terms that aid in comprehending the remainder of the manual. The
reader is encouraged to become familar with them before proceeding.

2.2.1. INTRODUCTORY DEFINITIONS

Sytem

Operating System

Executive

User

The total UNIVAC 1100 series hardware/software complex comprising an integrated
information processing installation.

The UNIVAC 1100 Series Operating System. The entire set of system software available
for the UNIVAC 1100 series which is either a part of or operates under the executive
system. This includes the executive system proper, compilers, utility programs,
subroutine libraries, and so forth,

1100 Series Executive System, (EXEC 8). An executive is a routine that controls the
execution of other routines. The executive is the principal interface between the user and
the system as a whole. It is responsible for such functions as time and space allocation of
system resources; first-level 1/0 control and interrupt answering; logging of system
accounting data; first-level debugging assistance; and protection against undesired
interaction of users with other users or the system.

An individual or organization that consumes services provided by the system.

2.2.2. HARDWARE DEFINITIONS

Application

Facilities

CPU

The total hardware configuration, or a subset, resulting from partitioning that
configuration by using either the availability control unit (ACU) or software downing of
components.

The peripheral units associated with an application; for example, tape units, mass storage,
printers, and so forth.

Central Processing Unit. A unit of the system containing circuitry and operating registers
which control the interpretation and execution of instructions. A CPU does not contain
any main or auxiliary storage. Under the executive, multiple CPUs may access common
main and auxiliary storage.

4144 Rev. 2

UP-NUMBER

2-2

PAGE REVISION l PAGE

UNIVAC 1100 SERIES SYSTEMS

Multiprocessor
Unit Processor

Control Registers

P Register

PSR

SLR

Main Storage

Mass Storage

Core Storage
' Unitized Channel Storage

Word
Granule

Word Addressable Drum Mass
Storage

FASTRAND-formatted Mass
Storage
Track

Position

Communication Device

Central Site

An application having two or more CPUs. Commonly abbreviated as MP.
An application having a single CPU. Commonly abbreviated as UP.

Those operating registers of a CPU which can be utilized directly by a program; that is,
the X, A, and R registers {except X0 and RO).

CPU operating register whose contents reflect the instruction currently being executed.

Processor State Register. A privileged register which controls the absolute main storage
location of a program’s | and D banks and specifies modes of operation of the CPU for the
program. The PSR contains two basing fields which in conjunction with a program
relative address determine an absolute main storage location within a 262K range.

Storage Limits Register. A priveleged register which provides program isolation in a
multiprogramming environment. The executive loads the SLR with the programs | and D
bank limits such that if a program attempts to access an address outside the program area,
a guard mode fault interrupt is generated.

The general puspose, high speed core storage of the system, directly accessible by CPU
operating registers, and serving principally to contain executing programs. As opposed to
auxiliary storage.

Supplemental storage which has random access capability; as opposed to magnetic tape,
for example. Any type of flying-head magnetic drum, FASTRAND drum, disc, or
unitized channel storage.

Synonymous with main storage.
Core storage which is treated as and accessed by peripheral 1/O hardware.

A sequence of bits or characters treated as a unit and capable of being stored in a single
main storage location (A word is represented by 36 bits for the 1100 series).

The incremental unit of size in which a storage medium can be allocated.

Mass storage which is capable of being accessed in units of single words.. This is generally
restricted to hardware having this capability (that is, flying head magnetic drum or
unitized channel storage) but in some cases may be simulated by the executive. As
opposed to FASTRAND mass storage.

Mass storage which is accessible in units of 28 words (one sector). This may be on actual
FASTRAND hardware, or may be simulated (by the executive) on any other mass storage
device. The term FASTRAND in this manual refers to the format, not the hardware
device, unless otherwise stated. This is the most common mass storage format. As
opposed to word addressable drum mass storage.

In the context of FASTRAND-formatted mass storage, a granule consisting of 64 sectors,
each sector consisting of 28 words giving a total of 1792 words per track.

A granule of 64 contiguous tracks, in the context of FASTRANT-formatted mass storage.

An input or output device which operates in a real time mode. CPUs must be prepared to
receive input at any time or information may be lost.

The CPU(s), main storage, and attached on-site peripheral equipment in a particular
application.

4144 nev, £

UP-NUMBER

2-3

UNIVAC 1100 SERIES SYSTEMS

| PAGE REVISION

PAGE

7

Remote Site

CRT

Data terminal equipment that is time, space, or electrically distant from a central site, and
capable of information exchange with the central site through some common carrier or
transmission scheme, typically as a communication device.

Cathode ray tube (CRT). Used to denote any of several supported remote terminals
which incorporate a CRT as the output display device as opposed to a typewriter.

2.2.3. PROGRAM ORGANIZATION DEFINITIONS

Program

User Program

Element

Symbolic Element

Relocatable Element

Absolute Element

Processor

Language Processor

System Processor

Collection

Collector

Generally, a series of instructions, in a form acceptable to a computer, prepared in order
to achieve a certain result. In the context of run processing (see below), a program is an
absolute element to be executed as a task, and may be a processor or a user program.

Any program other than a processor. Usually developed by a user; however, certain
UNIVAC system software packages operate as free-standing user programs (for example,
PERT).

A named grouping of information, typically manipulated as a unit, and typically defining
a logical program part such as a subroutine. There are three basic types of elements:
symbolic, relocatable, and absolute.

An element containing information generally in human-intelligible format (typically card
images). The most common usage of symbolic elements is as source language to be input
to a language processor.

An element containing a program part in relocatable binary format, suitable for
combination with other relocatable elements to produce an executable program (absolute
element). Such elements occur must commonly as the output of a language processor to
be input to a collection.

An element containing a complete program in binary form suitable for execution by the
executive. Such elements normally occur as output from a collection of relocatable
elements, with all necessary linkages and relocation performed.

A program incorporated as an integral component of the operating system. Such
programs typically reside in the system library (LIB$) as absolute elements, and are
invoked in a special standardized manner, but are otherwise treated as ordinary user
programs. Processors fall in two broad classes: language processors and system processors.

A processor whose principal functions include compiling, assembling, translating, or
related operations for a specific programming language {(for example, COBOL,
FORTRAN, ASSEMBLER, and so forth). As opposed to system processor.

A processor whose principal functions are of a specialized systemic service or utility
nature (for example, the collector, postmortem dump, and so forth). As opposed to
language processor.

The process by which individual (relocatable) elements are combined to form a complete
program {absolute element). This process begins with expicit specification of elements to
be included, and typically involves inclusion of additional unspecified elements required
to satisfy undefined references (these are most commonly obtained from the system
relocatable subroutine library RLIB$).

A system processor that provides the collection function.

4144 Rev. 2

UP-NUMBER

2-4

I PAGE REVISION PAGE

UNIVAC 1100 SERIES SYSTEMS

2.2.4. DEFINITIONS CONCERNING FILES

File

Catalogued File

Temporary File

Master File Directory

Public File

Private File

External File name

Internal File name

Qualifier

Program File

Element File

Temporary Program File (TPF$)

SDF Format

DATA File

An organized collection of data, treated as a unit, and stored in such a manner as to
facilitate the retrieval of each individual datum.

A file known to and retained by the executive, for an indefinite period not necessarily
related to the life of a particular run, and generally retrievable by runs other than the run
which originally created the file. In some cases, a catalogued file may be accessed
simultaneously by two or more runs. As opposed to temporary file.

A transient file created by, accessible to, and existing within the life of, a single run only.
As opposed to catalogued file.

A directory maintained by the executive to control the retrieval and retention of
catalogued files.

A catalogued file that can be assigned and accessed by a run of any project. As opposed
to private file. ‘

A catalogued file that can be assigned and accessed only by runs of a particular project.
As opposed to public file.

The full name by which a file is identified to the system. In addition to the basic name,
full identification may require qualifier, cycle, and key information. As opposed to
internal file name.

An abbreviated file name used on individual I/O and related operations concerning a
particular file. The internal file name may have an implicit association with an external
filename, or may be associated to a particular external filename by explicit programmer
directive. As opposed to external file name.

An extension to the basic name of a file, employed to resolve a variety of ambiguous
situations. Every file has a qualifier, but is normally implied according to system
conventions, rather than being explicitly stated in references to the file.

A specially structured file containing a group of elements, residing on
FASTRAND-formatted mass storage. As opposed to element file.

A specially structured file containing a group of elements, residing on magnetic tape. As
opposed to program file. The arbitrary distinction between the two file types is made to
avoid confusion between operations that may be done on one medium but not the other.

A mass storage file assigned automatically by the executive to each run. As a convenience
to the user, in a wide variety of program file and element manipulation operations TPF$
is assumed as the program file in the absence of an explicit filename reference.

System Data File Format. The standard data format employed by the operating system.
Briefly, SDF format is a sequential, fixed-block, variable-record format in which records
may span blocks.

A file in SDF format created or updated by one of several operating system mechanisms,
usually a system processor called DATA. Not to be confused with the generic term ‘“data
file",

2.2.5. RUN PROCESSING DEFINITIONS

Control Statement

A data image, used to direct the executive in processing a run. A control statement is
identified by a master space (@) in column 1.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 2-5

UP-NUMBER PAGE REVISION PAGE
Executive Control Language The language in which control statements are written.
Task A discrete processing step in a run, involving the execution of an absolute element (that

is, a processor or user program). Synonymous with program in run processing contexts.

Run Job. A specified group of tasks prescribed as a unit of work for the system. The run is the
largest work grouping treated and manipulated as a unit by the executive. The tasks of a
particular run are executed serially in the order specified by the run stream.

Run Stream A sequence of data images which, taken as a whole, constitute the specification of a run.
A run stream consists of a @RUN control statement, followed by other control
statements and data, which direct the performance of individual tasks.

Processor Control Statement A control statement used to direct the execution of a processor. Such statements have a
standardized format which facilitates specification of parameters typically required by

processors, such as element names.

Batch Processing A mode in which runs are processed without any basic requirement for interactive manual

data or control input (such as from a keyboard) during processing. As opposed to demand
processing.
Demand Processing A mode in which run processing is basically dependent on manual interaction with the

system during processing, typically from a remote site. Also commonly known as
‘time-sharing’. As opposed to Batch Processing.

Real Time Processing A mode of operation in which the system’s response to external stimuli is sufficiently fast
to influence the process or operation being monitored or controlled so as to obtain a
desired result. Generally, real time processing is under the influence of asynchronous
inputs from one or more communications devices. Real time processing may occur in
batch or demand mode (typically batch).

Deadline Run A deadline run is a batch run which is afforded certain scheduling priorities to assure run
completion by a prespecified time. Except for these scheduling exceptions, deadline runs
are treated as batch runs by the executive.

PCT Program Control Table. A special table maintained by the executive containing the bulk
of the control information for a particular run and the program (if any) currently in
execution for that run.

2.2.6. MULTIPROGRAMMING DEFINITIONS

Activity Formally, a logical CPU. That is, a software mechanism wherein the executive maintains a
CPU environment (current P register value, control register contents, and so forth) for an
execution sequence or thread, called an activity, such that the activity appears to have
continuous use of a single CPU as long as it desires, even though the executive may in
fact, interleave CPU usage among many activities and execute them on different CPUs.
All program execution is by activity. A program is initially assigned and typically needs
just one activity; complex programs may register additional activities to be executed
asynchronously. '

Activity Registration Forking. The act of creating and registering a new activity with the executive.

Activity Name A general-purpose identifier acquired by an existing activity to allow other activities of
the same program to communicate or synchronize with it.

Activity-id A special-purpose numeric identifier which may be acquired upon registeration of a new
activity. An activity having such an identifier may wait for the termination of one or
more other activities having an id. Activity-id is not to be confused with activity name;
their functions are separate and independent.

4144 Rev. 2
UP-NUMBER

2—-6
PAGE

UNIVAC 1100 SERIES SYSTEMS

PAGE REVISION

Activity Termination

Switching

Multiprocessing

Multiprogramming

Reentrant Routine

REP

The permanent cessation of execution by an activity. This is normally done voluntarily
by the activity itself, but may also result from an externally initiated action such as an
abort sequence. A program terminates when all of its activities have terminated.

The process by which the executive controls CPU usage. This principally involves
determination of which activity(s) of which program(s) are to be executed on which
CPU(s) for how long, and the control functions needed to fulfill that determination. Also
called dispatching.

The simultaneous execution of multiple activities of one or more programs, by employing
two or more CPUs which access a common main storage.

The concurrent (interleaved) execution of two or more programs or activities which
reside in main storage. This is accomplished by sharing CPU usage through switching.

A routine coded such that more than one activity at a time may execute the routine and
still obtain desired results. Most commonly this is achieved by executing the same
instructions on different data sets, frequently with some sort of locking procedure
invoked at critical moments to prevent simultaneous operation on the same data set. The
use of multiple activities by a program generally implies that part of the program is
reentrant.

Reentrant Processor. A common reentrant routine that may be referenced by more than
one program simultaneously. Typically, one or more REPs contain the bulk of the
instructions necessary to a particular task, with the data area provided by the referencing
program(s). In this manner, a substantial saving in main storage space can be achieved
when several runs require performance of the same or very similar tasks. (For example,
Conversational FORTRAN).

2.2.7. MISCELLANEOUS DEFINITIONS

ER

PMD

Swapping

Symbionts

Breakpoint

Project

Cycle

Contingency

Executive Request. An instruction which causes a special interrupt used to request
executive service (for example, 1/0, time of day, and so forth). Also, the service resulting
from the request. This is the standard interface between programs and the executive.

Postmortem Dump. A printout of a program’s main storage contents following execution.
Also, the system processor which produces the printout.

The process of storing low priority or suspended programs on mass storage to allow main
storage space to load other higher priority programs.

A complex of executive routines providing the user interface with unit record peripherals
and nonreal time remote devices.

Division of symbiont - defined files into parts such that the output of completed parts
may be initiated prior to run completion. This procedure allows more efficient utilization
of printers and punches when large symbiont output files are involved.

An identifier used to classify a run for accounting purposes. May also be used to provide
implied filename qualification to avoid confusion of similarly named files of different
projects.

A number used to differentiate successive updates of files or symbolic elements.
An abnormal or unanticipated event requiring special action, and usually causing

diversion of an activity’s execution path to a specially prepared routine or to a standard
action sequence,

4144 Rev. 2
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS 2-7

PAGE REVISION PAGE

Standard Action

ACW

Scatter/Gather

Packet

Interlock

Noise Constant

Privileged Instruction

Fieldata

Data Image or Image

1Sl

ESI

ESI Completion Activity

AXR$

ERUS

Action performed by the operating system in a particular circumstance, in the absence of
explicit user directive.

Access Control Word. A word defining the length and location of a data area in main
storage, most commonly an /O buffer.

Scatter Read/Gather Write. An /O technique wherein multiple discontiguous buffers in
main storage (described by a string of access control words) are read into (scatter read) or
written out (gather write) in a single continuous operation involving a contiguous area or
block on the peripheral device being accessed.

A contiguous set of words that contains information to enable the execution of an
operation or function to be performed, typically an ER.

A condition by which a peripheral unit is unable to perform an executable command
until the condition is removed by the operator.

The size of a record, in characters, to be skipped as a noise record on parity error. Applies
only to magnetic tape files.

One of a set of machine instructions reserved for use by the executive. If the execution of
a privileged instruction is attempted by a user program, a guard mode fault interrupt
occurs.

A six-bit character code which is the native character set of the operating system. The
character set and associated codes are listed in Appendix D.

A data record in human intelligible (character) format; most commonly refers to punched
card or printer data.

Internally Specified Index. A mode of 1/0 operation for an 1100 Series computer /O
channel, wherein the 1/O access to main storage is determined solely by the CPU. This is
the normal mode for noncommunications 1/0. As opposed to ESI.

Externally Specified Index. A mode of 1/O operation for an 1100 series computer 1/O
channel through which many communication peripheral devices are multiplexed into one
1/0 channel. Each communication line has its own area in main storage for access control
words and specifies this area by an identification word. An 1/O operation wherein this
identification word is given to the computer by the peripheral device is known as
externally specified index (ESI).

An ESI completion activity is created when a real time program initializes a line terminal.
The ESI completion activity is activated upon the detection of an ESI interrupt for the
line associated with its line terminal group and operates as the highest level activity in the
system while processing that interrupt.

A system procedure that contains the numeric definitions of the standard mnemonic
designators for control registers, particl word designators, and so forth, which are used in
assembly language coding.

A system procedure that defines the numeric index associated with the mnemonic
designation of each executive service request (ER).

UP-NUMBER

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

I PAGE REVISION I PAGE

2-8

2.2.8. ABBREVIATIONS USED IN THIS MANUAL

abs absolute

acct account

ack acknowledge

act activity

ACU availability control unit

ACW access control word

addr address

ADH arbitrary device handler

AFC abnormal frame count

ANSI American National Standard Institute
ASCII American Standard Code for Information Interchange
BBP block buffering package

BCD binary coded decimal

BPI bits per inch

BPS bits per second

BSP basic service package

CA character availability

CB column binary

cCc core contents control

char character

ckpt checkpoint

CLT communications line terminal
col column

cpm cards per minute

cps characters per second

CPU central processor unit

CR carriage return

CRT cathode ray tube

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS . 29

UP-NUMBER PAGE REVISION PAGE
Csli control statement interpreter
CTMC communications terminal module controller
ctr counter
CTS communications terminal synchronous
DA dynamic allocator
DAPA dynamic allocator periodic adjustment
DAS directory allocation section
D bank data bank
EF external function
El external interrupt
eltname element name
EOB end of buffer
EOF end of file
EOFMRK end of file mark
EOI end of input
ECM end of message
EOT end of transmission
ER executive request
ES! externally specified index
ETX end of transmission
FAC REJ facility reject

FAC WARN facility warning

FCT file control table
FGC final granule count
FH flying head

FPI frames per inch

FURPUR file utility routine/program utility routine

4144 Hev. £

UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS

PAGE REVISION

PAGE

2=10

IACW

I bank
int
INFOR
1/0
10C

ISI
j-desig

LAF
LF
LIB$
loc
LT
LTG
LTR

LTT

MFD
MP
MSA

msg

nbr
NOL:

NRTF
OACW

PCT
PDP
PET

PFP

input access control word
instruction bank

interrupt

internal control statement format
input/output

input/output controller

internally specified index

partial word designator

look ahead factor
line feed

system library
location

line terminal

line terminal group
line terminal routine

line terminal table

master file directory
multiprocessor
multi subsystem adapter

message

number
number of open lines

nonreal time flag

output access control word

program control table

. procedure definition processor

program error table

program file package

4144 Rev, 2

UP.-NUMBER

UNIVAC 1100 SERIES SYSTEMS

PAGE REVISION

PAGE

2-11

pkt
pktaddr
PMD
pos
prev
proc

PSR

refs

rel

req
REP
ret
RLIB$
RSEG
RTS
SDF format
secs
SGS

SLR

TPF$
trans
TRK

TS-flag

up

wd
wds

WSA

packet

packet address
postmortem dump
position

previous
procedure

program state register

references

relation

requirement

reentrant processor
return

system relocatable library
relocatable segment

real time subroutine
system data file format
seconds

stream generation statement

storage limits register

temporary program file
translator
track

test and set flag

unit processor

word
words
working storage area

word terminal synchronous

4144 Rev. 2 Z— 12
UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER PAGE REVISION PAGE

2.3. CONVENTIONS

2.3.1. NOTATIONAL CONVENTIONS

The 36 bits in the 1100 series computer word are numbered from right to left. For example:

35 0

(The mnemonic W is used in ambiguous situations to indicate whole word references.)

To reference partial words, the following mnemonics are used:

Sixth-word S1 S2 S3 sS4 S5 s6
ph-wor 35 30|29 24|23 18[17 12|11 6|5 0

Quarter-word Q1 Q2 Q3 Q4

35 27|26 1817 9|8 0
Third-word T T2 T3

35 24[23 1211 0
Half-word H1 H2

35 18/17 0

The 1100 series assembler mnemonics are used whenever machine instructions are discussed (see UN/VAC 1100 Series EXEC
Il & 8 Assembler Programmers Reference Manual, UP-4040, current version). The assembler mnemonics for partial word
transfers and registers are defined in system procedure AXR$ for use in assembly language routines.

The mnemonic U is used to indicate immediate data references (operand taken directly from address portion of instruction
rather than from the main storage location referenced by that address).

Control registers are referenced by the following mnemonics:

n ACQ, A1,..., A16 Accumulators (AO — A3 also usable as index registers).

| A15+1, A15+2 Additional accumulators involved in double or triple precision instructions.

[| X1, X2,....X11 Index registers.

[] R1, R2,..., R15 R registers,

Activities may use one of two sets of control registers:

| Major Set All control registers as given above.

| Minor Set Registers X11, AO through A5, R1, R2, R3.

The dollar sign {$) is generally used in system-defined external symbols, procedure names, and file names; to avoid

duplication, the user should not use this character. The $ generally occurs as the last character of a symbol excepting
procedure names in which it is the second character.

TN

UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS o

PAGE REVISION PAGE

In packet and table formats, parameters in regular type indicate information that must be supplied by the programmer;
parameters in italics indicate information that the system returns. Brackets ([]) are used to indicate optional parameters.

The symbol tr used to indicate a blank character.
When specifying the formats of procedure calls and tables, brackets are used to indicate optional parameters.

In control statement, executive request, and procedure call formats, capital letters represent themselves and must be coded as
shown; lower case letters represent variables which must be coded as directed in the text.

Numbers are represented in examples as in assembler syntax, that is, a leading zero specifies octal.

2.3.2. CONTROL STATEMENT NOTATION
Control statements have the general format:
@label:command,options parameters - comment

Parameters are given in one or more fields separated by commas. A field may specify a single parameter, or may contain
several related parameters given in subfields, which are delimited by slahses. An ellipsis (...) indicates that any number of
additional parameters, of the same format as the last shown, may be given (for example, reel numbers of a tape file, elements
to be listed, and so forth).

See 3.2, for a complete discussion of control statement syntax.

2.4. BASIC CONCEPTS OF RUN CONTROL

2.4.1. RUN INITIATION

The executive symbiont complex provides the primary input interface between the user and the system. The symbionts
control run input from onsite card readers and remote sites, as follows:

(a) In batch mode, the entire run stream is normally buffered to mass storage by the symbionts before run processing is
initiated. At this point, an executive component called the coarse scheduler takes over. It examines that portion of the
run stream prior to the first task for initial facilities requirements. Based on those requirements, and certain other
operating parameters such as run priority and deadline time (if any), the coarse scheduler determines the proper time to
open the run.

(b) In demand mode, the run is normally initiated immediately upon acceptance of the @RUN control statement.
Additional run stream input generally occurs dynamically on an interactive or conversational basis. See Section 12 for a
complete discussion of demand processing.

When a run is opened, two temporary files are automatically assigned to it: the temporary program file (TPF$), and the run
diagnostic file (DIAGS) which is not normally referenced directly by the user.

2.4.2. RUN EXECUTION

Once a run is opened, the coarse scheduler, in cooperation with the symbiont interface routines, processes the run stream
sequentially. When a control statement is encountered, the appropriate executive routines are invoked to accomplish the
specified action. When a control statement that causes execution of a task is encountered, the coarse scheduler sets up the
task and passes control to the dynamic allocator (see 2.5} for execution. Run stream images are then passed by the symbiont
interface routines directly to the task as data, one at a time as requested by the task, until the next control statement is
encountered or the task terminates (certain control statements are transparent and do not signify the end of run stream input
to the task). Run stream data images (that is, images that are not control statements) are ignored with a warning diagnostic if
encountered when a task is not being executed.

4144 Rev. 2
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS 2-14

l PAGE REVISION PAGE

24.3.

SYMBIONT OUTPUT

Every run has associated with it an output print file. In general, all control statements, executive diagnostic messages, and
summary accountinb‘ information are printed in this file, as well as primary output print generated by the tasks of the run. An
output punch file also is created if any user tasks generate card output,

Normally, the executive controls the disposition of these files without the need for user directives, as follows:

(a)

(b)

In batch mode, the files are buffered on mass storage. At run termination, they are printed {or punched) at the site
from which the run was initiated.

In demand mode, print output occurs at the terminal as it is generated. Punch output is unusual, and occurs at the

central site in the normal case.

2.4.3.

1. SYMBIONT FILE CONCEPTS

From the standpoint of run processing, there are two basic classes of symbiont files: primary files and alternate files. They
differ in usage rather than structure.

Primary symbiont files comprise the standard files through which the user communicates with unit-record equipment. There
are three types of primary symbiont file:

(1)

(2)

(3)

Primary Input File (READS$). This file is automatically established for each run and contains the run stream (see 2.3.1
and 2.3.2). This file cannot be manipulated, as a unit, by user directive.

Primary Print File (PRINTS$). Each run has associated with it a standard output print file. In general, all control
statements, executive diagnostic messages, and summary accounting information are printed in this file, as well as
primary print output generated by the tasks of the run,

In the normal case, the executive establishes and controls the disposition of the primary print file without the need for
user directives, as follows:

(a) In batch mode, the file is buffered on mass storage. At run termination, it is printed at the site from which the
run was initiated.

{b) In demand mode, print output occurs at the terminal as it is generated.

Primary print file may be thought of as an output stream. By a procedure called breakpointing, the user may direct this
stream to his own files and/or partition it into several files called parts. The use of breakpointing allows printing of large
volume of output to begin prior to run termination. To simplify file referencing, the current primary print file is always

referenced by the generic name PRINTS, regardless of whether the file is an executive or user file.

Primary Punch File (PUNCHS). Primary punch output is handled in the same fashion asprimary print output, with two
exceptions:

(a) No file is established unless user tasks generate primary punch output.
(b) Punch output generated at demand terminals is punched at the central site in the absence of user directives.

The current punch output file is always referenced by the generic name PUNCHS$.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

2—-15

PAGE REVISION PAGE

The user may define alternate symbiont files in addition to the primary files. The principal purpose of this feature is to allow
the user multiple concurrent symbiont operations of a particular type (read, print, or punch).

Symbiont concepts and interfaces are discussed in detail in 3.6 and Section 5.

2.4.4. RUN TERMINATION

A run terminates upon reaching the end of the run stream (@FIN control statement) or as the result of an abnormal task
termination. A number of actions are triggered at run termination, normally including:

» Summary accounting information is entered in the print file, including such items as run start and termination time,
CPU time used, pages printed, pertinent console message, and so forth.

B Symbiont output files are closed, and queued for printing/punching in batch mode (see 2.4.3).
"] Any main storage space allocated to the run is released.

™) All facilities allocated to the run are released back to the system facilities pool, with the exception of mass storage
space being retained in a catalogued file.

-] Temporary files are freed and cease to exist.

n Catalogued files are freed, and, in the absence of assignment options to the contrary, retained. Any exclusive use
interlocks are released.

2.5. BASIC CONCEPTS OF TASK CONTROL

The primary responsibility for the execution of individual tasks (programs) belongs to two executive components: the
dynamic allocator, which manages main storage, and the dispatcher, which allocates CPU usage. Of these, the dynamic
allocator is dominant in the sense that a task cannot use CPU time unless it is loaded in main storage.

Normally, the executive executes a number of tasks concurrently (unit processor) and/or simultaneously (multiprocessor) by
time-sharing the usage of main storage and CPU time. However, in most cases the user is unaware of, and need not be
concerned with, the presence of other tasks in the system.

2.5.1. REAL TIME
Runs and tasks are always initiated in demand or batch mode. Real time mode is entered only when a task requests it.

Most operational details of executive task control are of interest primarily in real time applications. These are covered in
Section 16. The following sections apply only to demand and batch tasks and activities.

2.5.2. TASK INITIATION

The dynamic allocator initiates a task by allocating sufficient main storage space to accommodate the program, loading the
program into main storage, assigning it a single activity with the major set of control registers and setting that activity’s
current instruction address (P register) to the program starting address specified at collection.

2.5.3. TASK EXECUTION AND SWITCHING

Once the task is ready for execution, its initial activity is passed to the dispatcher. Eventually, that activity is given control
and allowed to execute instructions for a period of time until it either voluntarily relinquishes control (for example, to do
1/0), has used up the time allotted it by the dispatcher, or is preempted by a higher priority activity, at which time the
dispatcher switches to another activity (if there is one requiring CPU service). When the original activity’s turn comes again,
its CPU environmemt is restored and it resumes execution at point of interrupt. This switching process continues until the
activity terminates; the same process also applies to any additional activities registered by the program.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS e

UP-NUMBER

PAGE REVISION I PAGE

A task remains loaded in main storage until it terminates, or until it must be removed (swapped) in favor of a higher priority
task or because its space requirements have increased. In the case of swapping, the dynamic allocator first suspends the
program by deactivating all of its activities such that the dispatcher will not attempt to given them control. The program'’s
main storage contents are then written to mass storage. When the dynamic allocator determines that the program should be
reloaded, it is then read back into main storage and its activities are reactivated (made candidates for switching).

Although batch programs may be swapped, swapping occurs must commonly for demand programs, which need not be in
main storage while awaiting input from the demand terminal user.

Note that a program is not necessarily always executed in the same place in main storage, and is generally ‘unaware’ of where
it is loaded. This is accomplished by means of hardware relocation using basing registers. Whenever a program is loaded (or
reloaded) into main storage, the dynamic allocator sets the basing register values associated with each activity to reflect the
program’s absolute position in main storage. The program itself uses program-relative addresses which the hardware adds to
the appropriate basing register to determine the true absolute main storage addresses of the program’s operands and
instructions.

2.5.4. EXECUTIVE REQUESTS

A program activity accomplishes its functions in two basic ways. The most common, of course, is by executing instructions;
the other is by having the executive do the actual execution. This is done via the Executive Request (ER) instruction.

The ER is the principal interface between an executing program and the executive; it has the same fundamental relationship
to task control that control statements have to run control. ERs are provided for a wide variety of functions, including
activity control, input/output, facilities control, clocking, storage control, and so forth.

ERs related to specific areas of the executive (for example, 1/0, symbionts, and so forth) are covered in associated sections,
Section 4 contains a more detailed discussion of the ER mechanism, certain ERs not covered elsewhere, and a master
cross-reference for all ERs.

2.56.5. MULTIPROGRAMMING CONSIDERATIONS

Programs which do not register multiple activities in general need not be concerned with the impact of switching. In essence,
such programs can be written as if they have a single CPU to themselves,

Multiactivity programs, however, must take care that their activities do not interact in an undesirable fashion. For example,
two activities calling a common subroutine via the Store Location And Jump (SLJ) instruction could return to the wrong
address if the second activity made its call before the first had exited (this can be solved by using the Load Modifier And
Jump (LMJ) instruction). Or two activities trying to update a counter in main storage concurrently could produce incorrect
results. The possibilities for confusion are infinite. '

For demand and batch programs, the dispatcher treats all activities equally, insofar as no activity can be certain of executing
ahead of any other activity unless the programmer employs some method of synchronization; interrupt activities are given
priority but only for a short period that is not programmer controllable.

Two basic approaches to activity synchronization are provided:

(1) A set of ERs which allow activities to wait for events triggered by other activities (see Section 4).

(2) By use of the Test And Set (TS) hardware instruction, which is designed expressly for synchronization of asynchronous
processes. This instruction functions, in conjunction with the dispatcher, as follows:

(a) If bit 30 of the operand is zero, the next instruction is executed.

(b) If bit 30 is a 1, an interrupt occurs and the activity’s switching priority is reduced. The activity receives control
back at the TS instruction on its next turn to execute; if bit 30 is still set, the process is repeated. In this fashion,
the activity spirals downward in priority until bit 30 is reset to 0 and execution then proceeds to the next
instruction.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP.NUMBER PAGE REVISION PAGE

{c) Regardless of the setting of bit 30, bit 30 is set to 1 and bits 35—31 are cleared to zero; bits 29—0 are unaltered.

(d) The testing and setting of bit 30 occurs in a single main storage reference, thus assuring that two CPUs cannot
both find bit 30 set to zero.

When the protected sequence has been completed a simple store zero (SZ) instruction will clear the test and set condition.
The instruction sequence for protecting against concurrent execution of a critical instruction sequence is:

TS IND
CRITICAL SEQUENCE
SZ,S1 IND

where:

IND is any main storage location; it may be associated with a particular data set to be protected or may be a global
lock for the sequence.

The executive performs software simulation of the Test And Set (TS) instruction for UNIVAC 1108 unit processors which do
not have test and set hardware. The a field of the TS instruction must be zero for it to be recognized as a TS. Also, the h bit
{automatic incrementation) must be zero. The simulation code does not check for this, and errors result if the h bit is set and
the increment portion of the index register in use is nonzero. The test and set should not be executed by way of the Execute
Remote instruction.

2.5.6. TASK TERMINATION

A task terminates when all of its activities have terminated. On termination, main storage space for the progr:'am is released.

On a normal termination, the coarse scheduler continues processing the run stream.

An error termination occurs when one or more activities terminate in error. In this case, further run stream processing is
usually limited to at most the processing of a postmortem dump (PMD).

All ERs are subject to extensive validation to ensure against interference with other runs. In most cases, when an error is
found, the activity is placed in error mode. This does not necessarily mearf that the activity acutually terminates, but rather
that a contingency occurs; standard action is error termination in the absence of a user specified contingency routine.

See 4.3.2 and 4.9 for details on activity termination and contingencies.

2.56.7. PROGRAM PROTECTION

The multiprogramming capabilities of the executive system imply that many unrelated programs may be residing in main
storage at the same time. Such jobs may be real time, production, classified, or simple debugging. Infringement of privacy in
such a mixture is highly probable especially in cases where debugging tasks are executing. The knowledge or ignorance of an
invasion may range from little or no concern for some runs to great concern for classified or real time applications.

To combat this invasion, intentional or unintentional, the executive system has unique features that automatically guarantee
absolute protection for each program. The protection guards against two forms of invasion, direct and indirect.

Direct protection safeguards all programs in main storage from an active program that may attempt to read, write, or jump
into another program area. This safeguard is effected by locking out any area of main storage that is not assigned to the
presently active program or, in effect, locking in the active program. Any attempt to perform any of the above functions is
immediately reported to the executive system in the form of a guard mode fault interrupt. The same applies to the attempted
use of privileged instructions.

Indirect protection is realized by reserving certain control functions for the exclusive use of the executive system. These
functions are of the type that could cause a system malfunction and, in turn, a program malfunction if erroneously used. The
executive system will prohibit the direct use of these functions; ERs are used to achieve the desired result.

In both forms of protection, the executive system is, in reality, guaranteeing its own safety from abuses that may prove
catastrophic to the system.

UNIVAC 1100 SERIES SYSTEMS 2-18

UP-NUMBER PAGE REVISION | PAGE

2.6. FILE NAMES AND ELEMENT NAMES

2.6.1. FILE NAMES

Each file in the operation system is assigned a unigue name to distinguish it from all other files. The file name is required in
the many control statements and directives that are used to reference files.

The following notation is used to specify file names:
[[qualifier] #] file-namel[(F-cycle)] [/[read-key] [/write-key]]

File-name is used as the basic name of the file and qualifier is used to establish uniqueness between files that have the same
basic name. F-cycle is used to identify a particular file from a set of related files that have the same qualifier, file-name,
read-key, and write-key (see 2.6.3). Read-key and write-key are used to obtain read and write access, respectively, to the file;
these keys are not a part of the file name for purposes of assigning a file (see 3.7).

Qualifier and file-name each consist of from one to twelve characters selected from the set: A—Z, 0—9, —, and $ (see 2.3.2 for
caution on the use of $). F-cycle is an integer number {see 2.6.3 for range of values). Read-key and write-key each consist of
one to six characters; any Fieldata character may be used except blank, comma, slash, period, and semicolon.

All parameters, except file-name, are optional when naming a file. For those parameters that are omitted, the executive
provides standard values. Whenever qualifier is omitted but the * is specified, the qualifier specified on the last @QUAL '
control statement (see 3.7.6) is used; however, when no @QUAL control statement is given or if both qualifier and the * are
omitted, the project-id from the @RUN control statement (see 3.4.1) is used as the qualifier. If the read-key or write-key is
omitted, blanks are supplied as the key. If F-cycle is omitted when naming a set of files, the relative cycle number of ~0 is
supplied (see 2.6.3).

2.6.2. EXTERNAL AND INTERNAL FILE NAMES
The term ‘external file name’ refers to the name of a catalogued file or to a temporary file assigned to a particular run. As
previously stated (see 2.6.1), it may be necessary to specify the qualifier, file-name, and F-cycle to ensure that the file is
uniquely identified. In the case where the file is uniquely identified, but file-name is not unique (either qualification or
cycling has caused unique identification), it is necessary to attach a unique file-name (intérnal filename) to accomplish 1/O or
related operations. It may also be convenient to have a short name by which to refer to a file that has a long external file
name; or a standard name which is attached to the particular file assigned or to be assigned to the run. By means of the @USE
control statement (see 3.7.5), the executive provides the capability of attaching such an alternate or ‘internal filename’ to a
file for referencing within a run. For example, the file name EZ can be made the internal filename for file
ABCDEFGHIJLM*MLJIHGFEDCBA(—23) by the control statement:

@USE EZABCDEFGHIJLM*MLJIHGFEDCBA(-23)
For the remainder of the run, whenever a reference to the file is to be made, EZ can be used as the filename. Thus the file can
be referenced by either the external or internal filename. Several internal filenames can be attached to a particular external
file name by multiple @USE control statements. For example:

@USE EZABCDEFGHIJLM*MLJIHGFEDCBA(-—23)

@USE BACKUP,EZ

@USE Q,BACKUP
The file can now be referenced by the filenames:

ABCDEFGHIJLM*MLJIHGEFDCBA(—23)

EZ

BACKUP

Q

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS ey

UP-NUMBER PAGE REVISION PAGE

The internal filename established is valid only for the particular F-cycle of the external filename. Thus, the internal filenames
established in the foregoing example are valid only for cycle —23 of the set of files.

The 1/0 device handlers (see Section 6), the symbiont interface routines (see Section 5) and others use a 12-character name to
reference files; therefore, each file so referenced in a run must have a unique 12-character name by which it may be
referenced. The following is an example of the use of internal file names for referencing files with nonunique file-name
parameters:

@USE NEWCYC, ID*FILESET(-0)
@USAE OLDCYC, ID*FILESET(-1)
@USE OTHER, QUAL=*FILESET
@USE SAME, UNIQUE=*PF

The internal filenames NEWCYC and OLDCYC may be used to accomplish 1/O on different cycles in a set of files. The name
OTHER is used distinguish the file to which it is attached from all other files with file-name FILESET. Assuming that no
other file with file-name PF is used in the run, file-name PF or SAME may be used in /O and related references to uniquely
identify the file to be accessed.

Internal filenames may contain one to twelve characters from the set: A-Z, 0—-9, —, and $.

2.6.3. FILE CYCLES (F-cycles)

In order to produce and maintain a set of catalogued files with the same qualifier, filename, read-key, and write-key, an
integer parameter called F-cycle is associated with each file. The use of F-cycles enables the user to manipulate any of the set
or the entire set of files without modifying his run stream.

A system-standard maximum of 32 consecutively numbered F-cycles may be retained in the set of files. This value may be set
to any value needed (from 1 to 32) for a particular set of files by the use of standard may be changed at system generation.
Files within the set of files maybe referenced by using either an absolute or relative F-cycle number. Relative F-cycle numbers
are integers in the range -0 to -31. As a new cycle of a file is being constructed, its F-cycle must be specified as +1 if the
relative F-cycle scheme is being used. When the new cycle of the file is catalogued by freeing the file or by run termination,
its relative F-cycle number is set to -0 and existing files of the set have their relative F-cycle number decreased by 1. In
addition, the name of the file is treated by the executive as a new filename (even though it has the same name as a previously
existing file) until the file is actually catalogued. At this point, the executive recognizes the fact that the updated file is
actually a new cycle of an already existing set of files, and is catalogued and handled accordingly. When the maximum
number of F-cycles that may be retained is exceeded, record of the file with the most negative relative F-cycle number is
deleted and, if the file is stored on mass storage, the file itself is deleted.

When a file is deleted from a set, it may be necessary to change the relative F-cycle number of other files in order to maintain
consecutive numbering from -0 to -n. If the file at the beginning of a set is deleted, the relative F-cycle of all other files must
be increased by one; whereas, if a file is deleted from the middle of a set, only those files with more negative relative F-cycle
numbers need be adjusted. The deletion of the last remaining file of a set causes al! recognition of the set to be removed from
the system.

As a file of a given set is being created, a number is assigned to it. This number is called the absolute F-cycle. Absolute
F-cycle numbers are unsigned integers that begin with 1 and continue through 999, at which point, the numbering recycles to
1. The circular assigment of cycle numbers does not cause conflicts since a maximum of 32 consecutively numbered F-cycles
may be retained.

Absolute F-cycles and their usage differ from relative F-cycles in two respects:

u An absolute F-cycle number is permanently assigned to a file — a file's relative F-cycle may change as files are added to
and deleted from the set.

B The absolute F-cycle numbers of files in a set need not be consecutive — consecutive numbering of relative F-cyclesin a
set is always maintained.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER PAGE REVISION

2-20
PAGE

As an example of the correlation between the absolute and relative F-cycle numbering schemes, assume that the most
recently catalogued cycle of a file had an absolute F-cycle number of 28. When referring to this file, the F-cycle could be
given as 28 or -0. Now assume a new cycle of the file is to be catalogued. Since the file has not yet been catalogued, its
relative F-cycle is +1 and its absolute F-cycle is 29. When the new file is catalogued, the absolute F-cycle remains at 29 but
the relative F-cycle becomes -0. The file whose absolute F-cycle is 28 is now given a relative F-cycle of -1; the file whose
absolute F-cycle is 27 is now given a relative F-cycle of -2; and so on down the line. The use of relative F-cycle numbers
enables the user to refer to a particular relative backup file.

For example, assume that the nature of the program requires that a particular file always be created from a file four cycles
earlier than the file being created and later catalogued. The relative F-cycle of -3 could be used when referencing the earlier
file and this reference would be valid each time the program is run. If an absolute F-cycle notation had been used, the F-cycle
designation must be changed each time the program is run.

2.6.4. ELEMENT NAMES

Three different types of elements are recognized by the operating system:
(1) symbolic elements,

(2) relocatable elements, and

(3) absolute elements.

Typically, symbolic elements contain source language images for language processors or executive control statements and data
to be processed by other control statements. Relocatable elements are the binary output of certain processors such as COBOL
and FORTRAN. Absolute elements are the output of the collector.

Elements of any or all of the three types are contained in program files (see 24.2.1) on mass storage or in element files (see
24.2.2) on tape. Each element is uniquely identified within a file by its element type and element name. Of course, each file
in the operating system has a unique name and the filename is used as part of the element name to uniquely identify each
element. The following notation is used to specify element names:

[[filename] .] element-name] /version] [{cycle)]

Filename is the name of the file in which the element is contained; filename conforms to all the rules specified for file names
in 2.6.1. Element-name is used as the basic name of the element and version is used to establish uniqueness between elements
in the same file that have the same type and element-name. Cycle is used to specify a particular update of a symbolic element;
cycles are not used for relocatable and absolute elements.

Element-name and version may consist of one to twelve characters selected from the set:A—Z, 0—9, —, and $ (see 2.3.2 for
caution on use of $). Cycle is an integer number (see 2.6.2 for range of values). All parameters, except element-name, are
optional when naming an element. For those parameters omitted, the executive supplies values according to standard rules. If
cycle is omitted for a symbolic element, relative cycle —0 is supplied in order to select the most recent cycle. If version is
omitted, blanks are supplied. Omission of filename and the period implies reference to the run’s temporary program file
(TPF$). Filename must refer to a program file, unless otherwise stated. In a series of element names such as on a processor
call statement (see 9.4), the period may be given without filename to specify the same file as for the preceding element in the
series.

UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER PAGE REVISION PAGE

2.6.5. SYMBOLIC ELEMENT CYCLE

To save altered or. deleted images (updates) within symbolic elements, an integer parameter called cycle is associated with
each symbolic element. New cycles are created by specifying the U option on the processor call statement (see 9.4).

Each item (image) in a symbolic element has a cycle number that indicates to which element cycle it belongs, and, if deleted,
a delete cycle number to indicate in which cycle the item was deleted. When an element is updated, the updated items are
inserted in their proper position and they are given a cycle number one greater than the last cycle of the element. Any items
deleted by the update are so marked.

When specifying a symbolic element for compilation or assembly, the user may select a specifc update from a sequence of
retained updates by referencing the proper cycle number as part of the element name. In compilation, the update entry is
combined with the element in its complete state thereby creating a complete element as of that cycle.

A system-standard maximum of five, consecutively numbered cycles may be retained in a symbolic element. This maximum
may be set to any value needed (up to 63) for a particular element by the use of the @CYCLE control statement (see 8.2.16).
In addition the system standard may be changed at system’s generation time. As soon as the number of retained updates for
an element exceeds the specified maximum, the update with the lowest numbered cycle is combined with the update having
the next higher cycle number to create a new element which in effect becomes the oldest cycle of the element.

A particular cycle may be referenced by either an absolute or a relative cycle number. Absolute cycle numbers are unsigned
integers in the range O to 62; however, since only a limited number of cycles are retained, the absolute cycle numbers used
when referencing an element must be in the range of those absolute cycles retained. Relative cycle numbers are signed
integers. |f the relative cycle is given as —n, then absolute cycle r—n is referenced, where r is the most recent absolute cycle
retained. If +n is used, then absolute cycle x+n is referenced, where x is the oldest absolute cycle retained. The use of relative
cycle numbers makes it unnecessary to know the absolute cycle number of either the oldest or most recent cycle retained.

Since absolute cycle numbers may not be greater than 62, when absolute cycie 62 of an element is updated all retained cycles
are renumbered. The renumbering assigns cycle 0 to the oldest cycle retained, 1 to the next oldest, and so forth. For example,
assume that a maximum of three cycles may be retained, cycles 60, 61, and 62 are currently retained, and cycle 62 is to be
updated; as a result of the update, the element would contain cycles 0, 1, and 2. Cycle O is the equivalent of the previous
cycle 61, 1 is the equivalent of 62, and 2 is the update of cycle 62; cycle 60 was dropped since a maximum of three cycles
may be retained.

The technique of using cycled symbolic elements offers two distinct advantages over other methods:

(1) The equivalent of many different copies of the same element can be kept while requiring very little additional storage
space over that needed for a single copy.

(2) Earlier copies of the element can be referenced without having to prepare correction cards to delete later corrections.
If, however, any cycle other than the latest cycle is corrected and the corrected cycle is to be retained, all cycles
following the cycle to be updated are deleted. The new cycle number is the updated cycle number plus one.

2.6.6. REFERENCING FILES AND ELEMENTS

Many of the control statements and directives discussed in this manual require that the particular file or element desired be
specified. If the control statement or directive specifies filename, the following form is used:

qualifier*file-name(F-cycle)/read-key/write-key
If e/tname is specified, the following form is used.
filename.element-name/version(cycle)
If name is specified, either a filename or element name may be used.
On certain control statements {such as those of the FURPUR processor, see Section 8), if a filename is expected but the field

is left empty, reference to the run’s TPF$ is assumed. On other control statements (such as the processor call statement, see
Section 9) if an element name is expected but the field is left empty, the name TPF$.NAMES is supplied.

4144 Rev. 2
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS 2-22

PAGE RFEVISION PAGE

Note that if all optional parameters are dropped from a filename or eltname, it would seem that the executive could not
distinguish between a file and element name where either may be used. In such cases, the absence of a period in the
specification implies that it is an element name. Thus:

name references an element (in TPF$);

name references an element (in some implied file);

name-1.name-2 references an element (name-2) in a specific file (name-1);

name. references a file.

The use of the period to distinguish a file from an element name is required only when either of them could be specified. in
some control statements and directives, only a file name is required and the executive assumes that any name specified is a
filename. Confusion may be avoided by always giving a period following a filename.

2.6.7. EXAMPLES OF FILE AND ELEMENT REFERENCE

Name

PAYROLL*BACKUP(—2).
COST*PROG.EDIT

*BACKUP.TLU/TWO

PCF6.INTL(14)

SORT
SORT
SORT.

SORT(—4).

SORT(7)/YES/NO.

MERGE//IN.
MERGE/IN.

AxB(—1)/CQ/QT.C/D{-3)

Interpretation

References relative F-cycle —2 of file BACKUP with a qualifier of PAYROLL
References element EDIT in file COST *PROG

References version TWO of element TLU in file BACKUP. Qualifier will be taken from
the last @QUAL control statement encountered or the project-id parameter if no

@QUAL control statement was used.

References absolute cycle 14 of element INTL in file PCF6. Qualifier will be taken
from project-id parameter in @RUN control statement.

References element SORT in TPF$ file.

References element SORT in TPF$ file.

References file SORT.

Reference the fifth most recent F-cycle of file SORT.

References F-cycle 7 of file SORT.” The read and write keys are YES and NO,
respectively.

References file MERGE. Write key is IN and read key is blanks.
Reference file MERGE. IN is the read key.

References the fourth most recent cycle of version D of element C in the second most
recent F-cycle of file A*B. Read and write keys are CQ and QT, respectively.

Note that when an F-cycle or element cycle is not specified, it is assumed that the most recent (that is, newest) cycle is

desired.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 3-1

UP-NUMBER PAGE REVISION PAGE

3. EXECUTIVE CAONTROL
STATEMENTS

3.1. INTRODUCTION

Control of the operating environment for the 1100 series computers is accomplished through a set of executive control
statements. These control statements direct the executive system in the processing of a run. Control statements may envoke
executive functions such as scheduling, assignment of facilities, and so forth; or may cause the execution of a user program or
a processor (that is, a task). The executive control statements are designed in a compact and descriptive manner to facilitate
use and yet provide full access to all of the features and functions of the executive system.

3.2. CONTROL STATEMENT FORMAT

Control statements consist of a recognition character and three major sections:

a th_e label field

a the operation fields

n the operand fields

Each of these sections may contain one or more parameter fields and each of the parameter fields may be further subdivided
into parameter subfields. The recognition character is the master space (@) which is a 7-8 multipunch for punched cards or its
equivalent for other devices. The recognition character must always appear in column 1. The format of the control
statements, with the exception of the @END, @ENDCL, @EOF, and @FIN control statements, is free-form; that is, the order
of the parameter fields within the control statement is fixed, but the parameter fields are not restricted to a particular

column. The aforementioned control statements must be coded exactly as shown in their respective descriptions.

The basic format of a control statement is:

Label . .)
Field Operation Fields Operand Fields
@ label: command,options parameter-field-1,parameter-field-2,...,parameter-field-n . comment

3.2.1. LABEL FIELD

The label field need not appear but may be used to name a control statement. The label is limited to six characters from the
set: A—Z, 0—9. The first character of a label must be alphabetic. If a label is specified, it must be followed immediately by
the colon (:). A label is used only when dynamic adjustment of the run stream is required. The discussion of its use is given in
3.9.3.

4144 Rev. 2 UNIYAC 1100 SERIES SYSTEMS

UP-NUMBER

3-2
PAGE REVISION

PAGE

3.2.2. OPERATION FIELDS

Unless the control statement is to be used only as a label statement (see 3.9.3), the command field must always be specified
as it determines the control statement’s basic operation. The command on all control statements except the processor control
statements (see 9.4) is limited to six characters from the set A—Z and 0—9, the first of which must be an alphabetic. The
command field is terminated by a blank, or if options are specified, by a comma,

The options field provides the user with ability to specify certain options in the form of unsequenced alphabetic characters
related to the particular command. Cn some control statements, the options can be broken into subfields, each of which is
separated by a slash (/). A blank character or a series of blank characters separates the command or options field from the
operand fields.

3.2.3. OPERAND FIELDS

The operand fields specify parameters associated with the command fields. These are separated by commas and are specified
by the user as dictated by his requirements. The content of each operand field, the number of operand fields, and whether
each is required or optional varies with command selected. Operand fields, in turn, may contain parameter subfields that are
separated by a slash (/). For the most part, these subfields are optional within a field. Thus, it is possible to specify parts of a
field without specifying the entire field.

3.2.4. CONTROL STATEMENT ANNOTATION

Control statements may be annotated with comments following the operand field. At least one blank character must precede
the comment. The comment itself may contain any character except the semicolon (;), which is the continuation character.
The comment is terminated by the end of the card or its equivalent for other input devices. The comment is never required. If
the operand parameter fields are omitted, the comment must begin with a period (.) followed by a blank. This is also true
when the content of an operand parameter field is unrestricted and variable in length (as with the @LOG and @MSG control
statements). The @XQT control statement is an example of a statement where operand parameter fields are possible but may
be omitted.

3.2.5. CONTROL STATEMENT CONTINUATION

In certain situations, a control statement may require more than one line or card. In such cases, coding a semicolon (;)
indicates continuation on the next card or line. A control statement may be split at any point, after the options field, where a
leading blank is allowable or within the comment field. It is treated logically as a space. Continuation on the next line can

begin in any column, with one exception: a master space character (@) must not be placed in column one of the continuation
line.

3.2.6. LEADING BLANKS IN FIELDS

Leading blanks within a statement are permissible in the following cases:
- Following the master space (@) character

L] Following a colon (:) when a label is specified

a Following a parameter field separator (,)

L Following a parameter subfield separator {/)

A blank, placed at any position in the coding other than those listed, is interpreted as the termination of the parameter field.

3-3
PAGE

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER PAGE REVISION

3.2.7. GENERAL DROPOUT RULES

When parameter fields and subfields are optional, the following rules apply, where an empty field is defined as one that
contains no nonblank characters:

(1) Parameter field separators must be specified, left to right, through the last parameter given; fields preceding the last
parameter may be empty; trailing field separators need not be specified.

(2) The same holds true of parameter subfield specifications within a field.

For example, in the magnetic tape @ASG control statement, the only required parameters are ASG and filename (see 2.6.1).
The format of this control statement is:

@label: ASG,options filename,type/units/log/noise/MSA-trans/unit-trans/format,reel 1/.../reeln,expiration-period

The following symbolically illustrates the possicle coding combinations that result from applying the general dropout rules:

LABEL o b OPERATION ,, OFERAND A COMMENTS
@ASJ\G',A ;‘P,; ‘ endme 3 ,,r'ee l l LSS VO VO SUO O TR O SO TS SN TSN WA WU SO0 S NN WO U NN SO O WY O
@QASG . Filename,type// /noise TN S
@AS@G,-B : . filename/,. fype;/.U;O}, ree‘lllm S

b i b i:xr e’Z—/ree‘s ; | IR TS T O S UAOY WO NS N SO0 SR WO T T
@ASG, A,5.‘,g;F;‘.\temzd,mez,g/‘//:n‘ouse_;1H{f__igl,t,},,.i;,“[::!
@T,Ael. ASG' 'F' ‘hl ;e”d;mfei/ : ,_;he.@l,;L TSN S WY O D HUNY S VAN YO SN VO OOT O UNE SN SN SN S0 O SO U TSNS S SO SO JOO SO
R TN NN SRS TOOY ST S DU ST YRR ST SO WONSJOOY E SO O SR N SUOF SOF WSSO S0 JON S VNOE U TR0 ST SO UOY SOOF WOOS T WO NS U TN OO SORF SO SO ST WY SO0 1OOY WY SO0 WU SO SOOY U O

Although control statements are free-form, most programmers align the label, operation, and operand fields when coding to
make the run listing easier to read.

3.3. SUMMARY OF CONTROL STATEMENTS

The executive control statements can be divided into eight groups. These groups are:
(1) Scheduling statements

(2) Message statements

(3) Symbiont directive statements

(4) Facility statements

(5) Data preparation statements

(6) Program execution statements

(7) ~ Dynamic run stream modification statements

(8) Checkpoint and Restart statements

Table 3—1 lists all the executive control statements in their respective groups and presents a brief description of each
statement’s function.

Certain control statements, because of their complexity or their close association with concepts discussed elsewhere in this
manual, are not discussed in this section. Table 3—1 contains references to the sections in which these stateménts are
discussed.

4144 Rev. 2
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS 3-4

PAGE

l PAGE REVISION

Statement Control Descripti
Group Statement escription
Scheduling |@RUN Appears at the beginning of each run. Provides accounting, scheduling, and run identification
Statements information (see 3.4.1).
@FIN Appears at the end of each run (see 3.4.2).
@START |Used to initiate the execution of an independent run (see 3.4.3).
Message @LOG Places user specified information in the system log (see 3.5.2).
Statements
@MSG Places a message on the operator’s (cental site) console (see 3.5.1).
Symbiont @HDG Used to place a héading line on-print output (see 3.6.1).
Directive
Statements |@SYM Used to direct nonstandard symbiont output action (see 3.6.3).
@BRKPT |Used to segment primary symbiont output files and to close alternate symbiont files(see 3.6.2)
@COL Used to specify various forms of image input (see 3.6.5).
Facility @ASG Used to assign files (peripheral devices) and catalogued files to a run. There are five types of
Statements @ASG control statements:
FASTRAND format (see 3.7.1.1),
tape (see 3.7.1.2),
word addressable drum (see 3.7.1.3.1),
word addressable unit (see 3.7.1.3.2), and
arbitary device (see 3.7.1.4).
@MODE |Used to change the mode settings {density, parity, etc) of tape files (see 3.7.2).
@CAT Catalogues mass storage or existing tape files {see 3.7.3).
@FREE |Used to deassign a file and its input/output device or mass storage area (see 3.7.4).
@USE Used to set up a correspondence between internal and external filenames (see 3.7.5).
@QUAL |Used to define a filename qualifier (see 3.7.6).
Dynamic @ADD Used to dynamically expand the run stream (see 3.9.1).
Run Stream
Modification | @SETC Places a value in the condition word (see 3.9.4.1).
Statements
@JUMP Used to bypass a portion of a run stream (see 3.9.4.3).
@TEST Used to test the condition word when determining portions of the run stream to be
processed or bypassed (see 3.9.4.2).
Checkpoint | @CKPT Used to establish a checkpoint dump that may be used for restart at some future time
and Restart (see 17.2:1.1).
Statements
@CKPAR | Used to establish a program checkpoint dump that may be used for restart at some future
time {(see 17.3.1).
@RSTRT |Used to restart a run at some previously-taken checkpoint (see 17.2.4).
@RSPAR |Used to restart a program at some previously-taken checkpoint (see 17.3.2).

Table 3—1. Summary of Executive Control Statements
(Part 1 of 2)

4144 Rev. 2
UP.NUMBER

UNIYAC 1100 SERIES SYSTEMS

PAGE REVISION PAGE

3-5

()

Statement Control Descrioti
Group Statement’ escription
Program @processor|{ Used to execute a processor (that is, @COB for COBOL compiler, and so forth), see 9.4.
Execution
Statements
@MAP Used to call the collector and prepare an absolute element (see 10.2.1).
@xaT Used to initiate the execution of a program (see 10.3.1).
@EOQOF Used to separate data within the run stream (see 10.3.2).
@PMD Used to take edited postmortem and dynamic dumps of the program just executed (see
11.2.1).
Data @ELT Inserts or updates a program file element from the run stream (see 18.2).
Preparation
Statements |@DATA |Used to introduce or update a data file from the run stream (see 18.3).
@END Used to terminate a data file (see 18.2.1).
@FILE Used to cause the direct creation of a file containing data taken from the run stream
(see 3.8.1).
@ENDF |Used to terminate the data that follows the @FILE statement (see 3.8.2).
NOTE:

The total system control statement capability is not given in the above table in that the control statements for the
system processors are not shown.

Table 3—1. Summary of Executive Control Statements
(Part 2 of 2)

3.4. SCHEDULING CONTROL STATEMENTS

3.4.1. RUN INITIATION (@RUN}

Purpose:

Identifies the run to the executive and provides the information needed for accounting and scheduling purposes. The @RUN
control statement must be the first statement of each run,

All parameters in the @RUN control statement are optional.

Format:

@RUN, priority/options

Parameters:

priority

run-id,acct-id, project-id,run-time/deadline,pages/cards,start-time

Indicates the preference this run should be given in relation to all other runs which are
available for execution. This parameter consists of a single alphabetic character selected
from the set A—Z. The nearer the selected letter is to be beginning of the alphabet, the
higher the priority assigned to the run. If a priority is assigned higher than that permitted
for the specified account number, the executive alters the priority to the highest permis-
sible level for that account. The executive system also supplies a standard run priority

whenever the priority parameter is omitted.

4144 Rev. 2
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS 3-6

PAGE REVISION | PAGE

options The options are alphabetical characters that may be given in any order. The options and
their meanings are given in Table 3—2.
Option .
Character Description
C Terminate the run if punched card estimate is exceeded.
E thru L Designates the initial size of the PCT and is necessary only for real time programs. The letters have the
following meaning:
E = two main storage blocks, F = three main storage blocks,..., L = nine main storage blocks.
N Inhibit all postmortem and dynamic diagnostic dumping.
P Terminate the run if the page estimate is exceeded.
R Restart the run in the event of a recoverable system failure.
S Process this run in sequence with the previous run submitted from this terminal. This run is not
considered for execution until the previous run has terminated.
T Terminate the run if the run time estimate is exceeded.
Y Allow postmortem and dynamic diagnostic dumping of processors and programs in the systems absolute
library file SYS$+LIBS.
Table 3—2. @RUN Control Statement, Options
run-id Identifies the run to the executive. Run-id may consist of one to six characters selected
from the set A—Z, 0—9. If the specified run-id duplicates a run-id already in the system,
the executive modifies the newly submitted run-id to make it unique. When the run-id is
omitted, the executive assigns a run-id of RUNOQO0O. The numbers 000 may vary in order
to establish a unique run-id. When the run-id is modified, both the original and the
modified run-ids are output on the operator’s console, in the master log, and in the printer
listing.
acct-id Specifies an account number. Consists of 1 to 12 characters selected from the set A—Z,
0-—9, period, and dash. When omitted, the executive assigns an acct-id of 000000. If the
submitted acct-id is not registered with the executive, the operator is notified and he can
either:
(1) abort the run,
(2) accept the submitted acct-id which is then registered as a valid account.
(3) accept the submitted acct-id without adding to the list of allowable acct-ids.
project-id Classifies the run for accounting purposes, and provides for the insertion of an implied
qualifier for filenames. This parameter may consist of 1 to 12 characters from the set
A-2Z,0-9, —, and $. If omitted, the executive provides QQQ$ as the project-id.
run-time Estimate of run time in minutes. When preceded by the letter S, the entry is interpreted

as time in seconds. If omitted, the executive assumes standard system value. When
the estimated run time is exceeded, the executive:

(1)} notifies the operétor allowing him to manually terminate the run, or

(2) terminates the run, providing that the T option is specified in @RUN control
statement or if automatic run termination was specified at systems generation.

4144 Rev. 2
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS 3-7

PAGE REVISION PAGE

deadline

pages

cards

start-time

Description:

Specifies a time (based on a 24-hour clock) by which a run must be completed. The
parameter format is:

[D]lhhmm

where:
hh specifies hours
mm specifies minutes

Leading zeros may be omitted from hhmm. The deadline time can be specified as either
time of day or elapsed time from run submission. The optional D prefix indicates a
time-of-day deadline; when the D is omitted, elapsed time deadline is indicated.
Examples:

D910 — Run must be done by 9:10 A.M.

D2110 — Run must be done by 9:10 P.M,
100 — Run must be done one hour after submission
230 — Run must be done 2.5 hours after submission

The deadline parameter is ignored if the run-time parameter is not specified.

If a deadline becomes critical or if a deadline cannot be met by normal scheduling, the
executive reschedules the run (raises run priority) so that it is completed, if possible, at
the specified completion time. This action, however, degrades system operation since it

most likely involves suspending other runs.

Estimate of the number of printed pages expected as output from the run. When omitted,
the executive assumes a standard system value. If the estimate is exceeded, the executive:

(1) notifies the operator and gives him the option of terminating the run, or

(2) terminates the run if the P optioniis specified or if automatic run termination was
specified at system generation.

Estimate of the number of punched cards expected as output from the run. When
omitted, the executive provides a standard system value. |f estimate is exceeded, the
executive:

(1) notifies the operator and gives him the option of terminating the run, or

(2) terminates the run if the C option is specified or if automatic run termination was
specified at system generation.

The earliest time at which a run is considered for processing. Before that time is reached,
the run is placed in a hold state. The format of the parameter is the same as for deadline

[Dlhhmm

Once the start time has been reached, the run is released from the hold state and
considered for scheduling under normal priority rules.

Other @RUN control statement parameters such as deadline and priority are not
interpreted until the start time has been reached; for example, the start-time parameter is
considered to be the time of run submission when considering the deadline.

Postmortem and dynamic dumping is governed by three modes of operation which are established at the beginning of a run.

To establish each of these modes, the user must specify the proper options parameter (N or Y) or omit the options parameter
entirely. The effects of each condition are described in the following paragraphs.

4144 Rev. 2 J UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

3-8
PAGE

PAGE REVISION

Normal Mode.— No Option Specified

When the options parameter is omitted, all programs, except processors loaded from the system library (LIB$), are
dumped to the diagnostic file (DIAG$) and normal PMD action occurs. (See 11.1 and 11.2 for information concerning
normal PMD action.) @PMD control statements encountered after a processor control statement are not honored and
are only printed out along with the message: PMD DUMPS AND DIAGNOSTIC PRINT-OUT NOT ALLOWED. The
rules governing postmortem dumping also apply to the printout for diagnostic dumping. The no-option mode should be
used whenever one or more programs, other than those in the library LIB$, are being debugged. This is the normal
mode for user debugging of runs, but still providgs reduced overhead as opposed to the complete capability (Y option).

N Option Mode »

When the N option is specified on the @RUN control statement, no program or processor is dumped to the diagnostic
file upon run completion. @PMD control statements are not honored, but are printed along with the message described
in the preceding paragraph. Diagnostic dumps are not printed. Specify the N option whenever the run is being executed
for production purposes because the need for the overhead of saving the program for a possible @PMD control
statement does not exist. The use of the N option provides minimum overhead in the run.

Y Option Mode
The specification of the Y option in a @RUN control statement establishes a mode in which all programs and processors

in the run are dumped to the diagnostic file. All @PMD control statements are honored, and diagnostic dumps are
printed. This option should be used only when a program in the LIB$ library is being debugged.

The R option on the @RUN control statement ensures that the run stream of an open run is recovered in the event of a
system failure. If the R option is specified and the associated run is open at the time of a system failure, the run is reinstated
in the schedule queue during a recovery bootstrap. The following actions and restrictions govern the use of the R option:

(1)

All queued print and punch files generated by the open run being rescheduled are released during the recovery
bootstrap unless these files are user defined files.

(2) The R option is ignored on all demand runs and these runs are never rescheduled.
(3) A run executed with an R option is rescheduled only once. This prevents a nonrecoverable situation where a particular
program causes system failure each time it is executed,
(4) The programmer is responsible for handling facility assignments in his run such that conflicts during the restart of the
run, resulting in the abort of this run, do not occur.
Examples:
LABEL A OPERATION A OPERAND A COMMENTS
i 10 20 30 40 50
. @RUN. ., . . 1., R23J,,034!2,CAPER,1.0/100 - LASTRUN , ., | ., ..,
2@RUN,C/P ., R:23.! 15 034,12, CAPER, 4300 1« 1) . TR ST S
3@RUN;1A (S fond O’Lajqo‘hB lO I 011EXODIUS‘ ugs-oui/fa. 0913£01 1 1 F S TON NS WEORS S SR S T |
*@RUNLQ!E/TCS LI N ‘i;iA) f'lg9!61}15’,UP'ER$;!2‘.0/Z.3°}/80 cod b d b l I S s A I
1'E|11s\l1;ii"l‘fiéffr‘liéj;‘-f|s|:(»z§xxlzirili!1ssx%éx
1. Run R231 of project CAPER is assigned standard system priority by the executive. Expenses incurred by the run are

charged to account 03412. Run-time is estimated at 10 minutes with results required within one hour of run
submission. Automatic run termination does not occur if run-time, page, or card estimates are exceeded unless provided
for at system generation time. The executive uses standard system card and page output estimates since these
parameters are omitted. The run is scheduled by the executive for execution accordlng to its priority (start-time
parameter omitted).

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 3-9

UP-NUMBER PAGE REVISION PAGE

2. Run R231 of project CAPER has a C priority. Automatic run termination occurs if the page output estimate of 300
pages is exceeded (P option). Expenses incurred by the run are charged to account 03412, The executive provides
system standard entry for estimated run time (run-time parameter omitted) and assumes that there is no deadline since
this parameter is also omitted. The run is considered immediately (start-time parameter omitted) and scheduled for
execution according to its priority.

3. Run 201 of project EXODUS1 has a priority of A. Run expenses are charged to account 90431010. Running time is
estimated at 50 seconds with an expected punched card output of approximately 50 cards. The start-time specifies that
the run not be considered for execution before 8:30 AM. Unless provided for at system generation, automatic run
termination does not occur if running time or output card estimates are exceeded, since these options were not
specified.

4, Run Z of project SUPER has a priority of E and is to be considered for execution only after termination of the
previous run inputted from the same device (S option). The T and C options ensure that automatic run termination will
occur if the specified running time or card output estimates are exceeded. Charges incurred by the run are charged to
account A—1396. Running time is estimated at 20 minutes with the results expected within 2,5 hours of run
submission. Card output is estimated at 80 cards.

3.4.2. RUN TERMINATION (@FIN CONTROL STATEMENT)

Purpose:

Identifies the end of a run. The @FIN control statement must appear as the last statement in all runs.

Format:

@FIN

Description:

@FIN control statements cannot be continued and must be coded exactly as shown (punched into first four columns of the
card).

When the @FIN control statement is encountered, the accounting routines are called and all facilities, temporary files, and
main storage areas assigned to the run are released.

The @FIIN control statement is never treated as data by the ELT or DATA processors.

When the @FIN control statement is encountered, the operating system prepares a printout summary that includes initiation
time, termination time, page count of printed output, and all @LOG and operators console messages.

At a demand terminal, the @FIN control statement is normally followed either by another @RUN control statement or an
end-of-transmission (EOT) keyin.

3.4.3. DYNAMIC INITIATION OF AN INDEPENDENT RUN (@START)

Purpose:

Permits the user to schedule independent batch runs where the run streams for these runs have been previously created and
entered into the system. This feature allows the user to automatically schedule run execution at a time of his choosing (for
example, on a daily basis). Runs scheduled by -this control statement must be SDF format and must be catalogued as either
data files or data elements. The run stream may be created by:

u the DATA processor

. the ELT processor

. an @ELT,D control statement

L] a user program

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP.NUMBER l PAGE REVISION |PAGE

3-10

Two formats are provided for the @START control statement. Format 1 is used when all parameters from a prestored @RUN
control statement are to be used. Format 2 is used when changing all or part of a @RUN control statement.

All parameters in the @START control statement are optional except name.
Format 1:

@label:START name,set
Format 2:

@label:START priority/options name,set,run-id,acct-id,project-id,run-time/deadline,pages/cards,start-time

Format 1

Parameters:

name Specifies the file or element. The file or element named must contain all the control
statements required for the run, The @RUN control statement must be the first statement
and the end of the file or element denotes an implied @F IN control statement.

set Specifies an octal number to be placed in T2 of the condition word (3.9.2) of the run
being scheduled.

Format 2

Parameters:

Format 2 of the @START contro! statement results from the integration of the basic @START and @RUN control
statements. When this format is used, all parameters in the operand fields and subfields replace the corresponding pa-
rameters in the prestored @RUN control statement. Parameters existing in @RUN control statement therefore can be
modified or replaced, but not deleted, by using this format of the @START control statement.

The acct-id specified in the @START control statement replaces the acct-id on the prestored @RUN control statement. If the
@START control statement does not contain an acct-id parameter, the acct-id of the run containing the @START control
statement is used.

Description:

The prestored set of images must have a @RUN control statement as the first image. The @RUN control statement for the
prestored run must comply with the rules detailed in 3.4.1.

The @START control statement can be used when one run is used to generate data for input by another run. In fact, the
generating run could build a catalogued file containing an entire run control stream and then call for it to be scheduled. As a
result of this facility, the @START control statement can be used to initiate parallel processing since tasks from different runs
can be executed concurrently,

Demand terminals, through the @START control statement, can initiate a batch run whose control stream has been
previously entered into a data file, thus eliminating the necessity of retyping the required control statements. Any run
initiated from a demand terminal using the @START control statement is scheduled as a batch run with its output going to
the onsite peripherals.

The @START control statement is of particular benefit at the central site for initiating prestored utility routines and standard
production runs.

The @START control statement can be issued by a user program by means of the CSF$ request (see 4.8.1).

1

4144 Rev. 2

urP

-NUMBER

UNIVAC 1100 SERIES SYSTEMS

PAGE REVISION

PAGE

Examples:

LABEL

A OPERATION A OPERAND A
0 20 30 40

COMMENTS
50

RSTART.

lFiIlL"EAX'IlI'J]lllllxllllillillljjll

Lodod

(I

RSTART,

SSTART..

4IFII!LIE{AX.J’lolllzlllllIl‘lxlll]llillllil

Lok d

foaa1

FILEC. |EIL:T;BJ,ig R}Z3., 19 101314'11 |4'|313 Ty xol150) T

R TR W

i

b d o b d

PN T NN W YOO U0 T VAN O TS OO SN S O SO0 O VO AU T N UONE U SO WS WY MU T O

| S —

.

|

1

1. The run found in file FILEA is scheduled for execution by this statement. FILEA must

statements needed to initiate the run.

2. FILEA is scheduled for execution; however, the normal execution sequence of the run for this file is altered by

changing T2 of the condition word for the runto 12 4.

3. The run-id (R231), acct-id (03414), and the page/card (0/50) parameters are used instead of the values found in the

@RUN control statement prestored in element ELTB of the file FILEC.

3.56. MESSAGE CONTROL STATEMENTS

3.5.1. DISPLAYING A MESSAGE (@MSG)

Purpose:

Used to display messages.

All parameters in the @MSG control statement are required except label and options.

Format:

@label:MSG,options message

Parameters:

options

message

See Table 3—3. If the C, H, I, or S options are omitted, messages are displayed on the

operator’s console.

Contains the message to be displayed. The length of this parameter is variable with a limit
of 60 characters (including embedded blanks). Start-of-message is marked by first
nonblank character encountered. End-of-message is signified by the last character prior to

contain all the control

an end of line, a comment, or 50-character limit, whichever occurs first.

When the message is displayed, it is prefixed with the run-id.

The continuation character (;) and the: blank-period-blank sequence which introduces a
comment are not permitted as part of the message. The carriage return character,
however, may be used in formatting the message. This character causes both a carriage

return and a line feed.

4144 Rev. 2
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS

3-12
PAGE REVISION | PAGE

C?)g:ia‘::t':r Description

C Displays message on communications console.

H Displays message on hardware confidence console.

| Displays message on 1/0 console.

N Suppresses message display. Message appears only in the users print file. N option overrides W option.

S Displays message on operator’s (system) console.

w Holds run until operator responds to message display. The message specified by the user is displayed and
requires a response by the operator. A batch run may be aborted by answering X. Any other response
allows the run to continue.

Description:

Table 3—3. @MSG Control Statement, Options

The message can be directed to one console only. The order of precedence is I, C, H, and S. If none of these options is
present, the message is displayed on the operator’s console.

The W option can be used to direct the operator in loading and general management of an arbitrary device for which the
loading, and so forth, is not taken care of automatically by the executive.

Examples:

LABEL

0 A OPERATION 5 A OPERAND A COMMENTS
0

30

40 50

@lMSGI,I L. 1E1X;PIELCL-E 2, RsEIEtLS. dn’:, @,UIP.UT1 FOR xF}I}LJE(MYZE vl

R SN TSNS S SO S U S

@JMISGJQM_!_L“.‘--;.I“SL.LRJELMdnEJHie:ngURZ REA:DN 1"? jo1= ANSWER» RlEQ_ CXN S W0 W A G S T O B

PSR T U TS T TN WO VAN WO WU OO S O OO AN T G TN WX U 0 O W O

e v v e v b i 1

1. Hlustrates a 37-character message to be displayed at the 1/0 console (I option). The message is strictly an informational
one and no operator response is expected.

2. This 23-character message requires a reply from the operator (W option). Since no particular console has been specified,
the message is displayed on the operator’s console; the program halts; and it will not continue until the operator replies
to the message. The comment is: ANSWER REQ.

3.5.2. INSERTING INFORMATION IN THE MASTER LOG (@LOG)

Purpose:

Places user-specified information in the master log.

All parameters are required except label.

Format:

@label:LOG message

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 3-13

UP.NUMBER PAGE REVISION PAGE
Parameters:
message Contains a user-specified message to be placed in the master log. The length of this

parameter is variable with a maximum limit of 132 characters including embedded blanks.
The first nonblank character encountered marks the start of the message. The end of the
message is signified by the last character prior to an end of line, a comment, or
132-character limit, whichever occurs first.

When encountered, the executive extracts the message, prefixes it with the program
identification, date, and time, and enters it in the master log.

The continuation character (;) and the blank-period-blank sequence which introduces a
comment are not permitted as part of a message.

Description:

See CSF$ (4.8.1) for the executive linkage which permits this function to be called from within the user program.

Example:
LABEL A OPERATION A OPERAND A COMMENTS
10 20 30 40 50
mLa& TRiAleiPJOI)Rm PR‘G‘B[LfE{M Nd' | i' 21& 121 :REJV)IASIE-D {51_5 ‘ booddedodd ’ TN SRS SN SO SO WO {
Lok l | NSNS SRS OO SOV WU WUE D N ‘ beedoodo b b bed ! § SO WUUENE WS SRS SO SOS SO R 1 I § VOSSN ST G SN SN ST S 4 i fooddondon b bk

In the example, the message consists of 26 characters (the blank preceding the period is considered part of the message) and is
terminated by the comment:

REVISED 5-1

3.6. SYMBIONT DIRECTIVE STATEMENTS

The following paragraphs describe the control statements related to symbiont operations. See 2.3.3. and Section 5 for
additional discussion of symbionts.

3.6.1. PRINT OUTPUT HEADING CONTROL (@HDG)

Purpose:

Provides a means of printing a heading on successive pages of primary printer output along with the print file’s cumulative
page number and the current date.

All parameters in the @HDG control statement are optional.
Format:
@label:HDG,options heading
Parameters:
options The options are:
N - Suppresses printing of heading, date, and page number
P — Starts page numbering with PAGE 1

X — Suppresses printing of date and page number

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 3-14
UP-NUMBER PAGE REVISION PAGE
heading Contains the heading which is to appear within the top margin of each page (two print

Description:

lines prior to the first logical print line of the page). This parameter is of variable length
and is limited to a maximum of 96 characters including embedded blanks.

The heading starts with the second character after the operations field. Leading blanks are permitted in the heading. The end
of the heading is signified by the end of the statement, a period, or the 96-character limit, whichever occurs first.

If the margin at the top of a page is nonexistent or consists of only one print line, the header is suppressed and not printed.
Unless suppressed (N or X options), the date and page number are printed to the right of the header. Page numbering begins
with the page count current to the print file unless the P option is specified, in which case page numbering begins with PAGE

1.

Any number of @HDG control statements may appear in the run stream.

The continuation character (;) and the blank-period-blank sequence which introduces a comment are not permitted as part of
the heading format.

Examples:
LABEL A OPERATION A OPERAND A COMMENTS
0 20 30 40 50
'- @HDGH‘R L :PJYxRxEP: ,CﬁMPAINsY i JANN'U AL, ?RETPBKRT; TS N VOO AU J0N WY S0 TN U0 WO WA N TN A N T R T
Z’QHm 'MXi fod PjAlYRSlLILl ‘IRE“PﬁRﬁT{ i ‘R“Nril foodod bbbt dond ; Db b b ; fodddid b d
3- @.HJDGH’NN(PR OO T U TN NS YO SO0 VRO YOO YOO T UUNS T TN N O TN Y U TN SO OO U WY G VOO YU NS T 200 N AW OO T SO0 U TN WY U MO 0 W0 MO AU
T WO U W TS TN OO TONE Y SN SN SO U S WY OO Y W A AN TN SN U YO NN J OO SO AN WY G S Y UUU OO0 TN YO NG UK L NG SN WY SO O W MO M A AR N

1. The heading PYREP COMPANY — ANNUAL REPORT is printed at the top of each printed page along with the date
and the page number. Page numbering begins with page number 1 (P option).

The specified heading appears at the top of each printed page but page numbers and date are suppressed (X option).

The N option suppresses further printing of the heading, date, and page numbers,

3.6.2. SYMBIONT FILE BREAKPOINTING (@BRKPT)

3.6.2.1. PRIMARY OUTPUT FILE BREAKPOINT

Purpose:

Used to partition and redirect the primary output files, PRINT$ and PUNCHS$.

All parameters in the @BRKPT control statement are optional except @ and BRKPT.

Format:

@label:BRKPT,options generic-name/part-name

Parameters:

options

L — Used to provide labeling of parts when stacking multipart output on magnetic tape.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 3-15

UP.NUMBER PAGE REVISION PAGE
generic-name Identifies the primary symbiont output file being breakpointed; must be PRINTS$ or
PUNCHS.
part-name An internal filename (see 2.6.2) identifying a new user-assigned file to which subsequent

primary output is to be written, or in the case of the L option, this parameter is required
and specifies a label to be written identifying a new part to be written on a previously
breakpointed magnetic tape file. Omission of part-name directs subsequent primary
output to an executive-controlled file.

Description:
The @BRKPT control statement closes the previous file part. If the part is executive controlled, it is queued for printing or
punching. If the part is a user-defined file, the file is closed by writing an EOF mark; no other action occurs for the file (that

is, it is not freed, rewound, and so forth), and in the case of a magnetic tape file, the tape is positioned such that a new file
may be started.

A user-defined mass storage file should only be breakpointed once; attempts to write multiple parts into such files causes
overwriting of previous parts.

User-defined breakpoint files are not automatically printed; the user must use the @SYM control statement (see 3.6.3) to
queue such files for printing.

See 3.6.3 for examples of the use of the @BRKPT and @SYM cantrol statements.

See 4.8.1 for the linkage used to invoke a @BRKPT control statement from within a user program by means of the CSF$
service request.

The @BRKPT control statement may be used from a demand terminal. However, when breakpointing PRINTS$ to a

user-defined file, conversational mode is lost until the PRINTS$ file is redirected to executive control (that is, the terminal) by
a subsequent breakpoint.

3.6.2.2. ALTERNATE SYMBIONT FILE BREAKPOINT

Purpose:

Used to close or partition alternate print, punch, and read files defined by the user (see 5.1.2).
All parameters in the @BRKPT control statement are optional except @ and BRKPT.

Format:

@label:BRKPT,option internal-filename

Parameters:
option E — Inhibits EOF positioning for alternate read files on magnetic tape.
internal-filename Identifies the alternate read, print, or punch file being breakpointed.

Description:

The discussion on primary file breakpointing (3.6.2.1) is generally applicable to alternate file breakpoints. The differences
are:

5] The alternate file is closed in that it is no longer known to the symbionts.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 3-16

UP-NUMBER PAGE REVISION PAGE

= In the case of input tape files, breakpoint is normally used to prematurely terminate reading of the file; in the absence
of the E option, the input tape is positioned forward to the next EOF mark so that a subsequent file on the tape may
be initiated as a new alternate read file. Using the E option avoids needless tape movement when the user is finished
with the tape.

n Stacking of output on tape is possible, but the user must provide his own part labelling by varying the internal-name
(see 3.7.5) for each alternate file written to a tape.

- Error and status codes applicable to the @BRKPT control statement can be found in Appendix C.

3.6.3. SYMBIONT OUTPUT FILE QUEUING (@SYM)

Purpose: |

Directs the queuing of previously-created symbiont files to a specified device, or group of devices, for printing or punching.
All parameters in the @SYM control statement are optional except @ and SYM.

Format:

@label:SYM,options filename.,device,part-name-1/part-name-2,.../part-name-n

Parameters:
options The options are:
C — Directs the file to the card punch at the remote site specified in the device
field. If omitted implies printing when @SYMing to a remote site.
U — Inhibits decataloguing of the file when processing is completed; applicable
only to user-defined files.
filename Specifies the file to be processed. If filename is a user-defined file, it must be a catalogued
" public file. Otherwise, filename must be a generic name (PRINT$ or PUNCHS$).
device Specifies the device on which the file is to be printed or punched. This may identify a
specific onsite device, a specific remote site, or a group of onsite devices (that is, the
group might be all onsite punches, or all onsite 1004 printers). Device group and remote
site identifiers are defined at system generation. If omitted, the devices associated with
the run initiation device are assumed.
part-names Specifies the labels (see 3.6.2.1) of the symbiont file parts of a multifile tape to be
printed or punched. If omitted, only the first part on the tape is processed. This
parameter is not applicable to mass-storage files.
Description:

At system generation, an association of output devices to input devices is established to allow the system to direct output
files created by run stream execution to the proper output device. The @SYM control statement is used to direct a standard
PRINTS$ or PUNCHS$ file to a device or group of devices other than that specified by system generation, or to direct a user file
to a device for processing. The @SYM control statement may be used to queue any SDF-formatted file.

All user-defined files processed by the @SYM control statement are decatalogued after processing unless the U option is
specified. If multiple @SYM control statements are submitted for a given file, each @SYM control statement must contain the
U option to ensure that the file is not decatalogued between the processing of the individual @SYM statements.

When filename is PRINT$ or PUNCHS$, the directive applies only to the current primary output (print or punch) part being
created. In this case, the primary output cannot have been breakpointed to a user-defined file.

The order in which the part names are specified on the @SYM control statement must correspond to the order in which the
parts are located on tape. However, not all parts on the tape need be processed; any parts located on tape between those
named on the @SYM control statement are bypassed.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 3-17

UP-NUMBER PAGE REVISION PAGE

Error and status codes applicable to the @SYM control statement can be found in Appendix C.

3.6.4. @BRKPT/@SYM CONTROL STATEMENT USAGE

The following example illustrates the usage of the @BRKPT and @SYM control statements.

LABEL A OPERATION A OPERAND A COMMENTS
16 20 30 40 50

@PUNJ ST TR SO 0 OO SO SO VNG SO N0 O S Lociodon Vb S TN S SPOY S [OUUE SN O O O RO S !
@AS G C P; A MTA P E- T; l 2- 3 l‘" SO0 VAU SO VOO PO AN Y O TOOT ORISR WSO V00 NUON O SO SN SOUP SO SOF SOOE SO0 ST W SN W S T
@ASGHCP[. IXYMF ,L E NF LU O W TN Y WSO O W : - TN N SN N S ST S i .
@BRKPT . PRI zN,J-$/,MTA PE &bt b it dentn bbent i et et bt

.—P&NN-‘

T N T D T T A T I T T A T T N T e ST N T T T T OV T T O U A S W
VDO 10 WO S VS WO VU SO0 UL SO SONRUOOY SO TN S JON TS T WO SO TS WO OO0 SUC MU TN USRS SO JOO0 YUY SUOE SN SO0 DU WY WOE SO OO ORISR WS OO SIS W T NN S SR S
5 QB RK: p*Tl.)lL 1PRIxNT$f/LLA:BELI U WO SOUL T SO0 SO ST SO SN SUNE NONE SO N SR S TOY SN RN SO SN TROY SRS SO SN ST S WONE SO S
S Tl N W SO OO0 b L e d it b W 000 SN T SR WY WS NVRE SO0 O O WO Lok i FONN O W S TR T SO S e
Lodond N S N NS RSO DO YOO T T OO0 TS SO SO S S0 GO S W VAU V0% WS SN SN W NS W O WO W0V WY O S SOY SS SO0 UONE S SO WO AR W0 S

@BERlKip!T‘l)P]Ri‘N1T1$/SYMFILEJili!illl*él»ti€§z‘=‘¥*i'<“§-§=1‘|

o

J@FREE . MTAPE | 0 0l ittt bt i b it Lotod :
8.)MT!A‘PE)L) PRI /LA B: EL- | XS T SE T SO SO A SO0 SO0 OO A e e :
Bod E Sedn b d i Lk ! § SR SO SRR SUUUR NS S S SR 2 (SO SO NS SIS WU ST SN SOOI | l H B b d bk oo dond bbb
AT T YN S VT YUY W Y U000 T UHOE TR U WO WO S YO0 VOOt T U Y S0 VT WU WOR W O OO VT VAU YOO VOOt AT SUOE HOOC TS SN OO SOOY SHOE U WO SRS SO S NG SO NS WO SO0S SN

q‘@BﬁRfoP:Ts 1 PRINT, $1 TN ST 00 U T TR NN W TV T N0 PO NN VAT S WO U0 SO WN SO M i ; i "
IO.@;F‘RrE:Eg [S YMFI LE: i i ;il FUSE SN VRS SUUE WO SO O S o Lovhndo b d ; Lovdedidd bbb bt boodibed
1. @(g!\(;"h; Y SIYMFT LLb IE U W O VO N YOO T VU YN W W0 O U VU T S W W T N DU TN N VO U SN NN VNN VNN NS A NN NS O

e3Y m }sU; L SYMFILE .1}1&._,. MSITE o v b e bos o g g b s
B'@.;&Rpr'E o aPUN, C.H($(PO SRR YOO TR SN T WO VO Y WONN WUOE R YO SO SO TUNY % SO ST O AL U Y WY GHOY OO Y WY S S O TR
4, @;S\Ylm Py Cy :P%UgN;C1H5$E: zyRaMSiIeT»E T VRN TE TOOE WO NN TS YO0 SO OSSN N NS S NN L 0% VA0S WL O S W U A0 ko
/5:@».61151; TSR0 S NN VU T NN TON0 UUNE T VU SN W N T UL O YOO TUNE TOU0Y SO YUY WS T SO WO S T W T RE ST S N T SN WO O SO TR B ¢ Lo i
O ST OO VOO TO0K TO00 OO O 0 YOO T O SO U T D00 O U OO THO SO SO UOUY S 00 OO WO WU SO SO Y O YO A N GO0 SHUR U SO G SN WO S WO SO N O G SR W OO

This run partitions its primary print output into five parts and its primary punch output into two parts.

The first and last print parts, and the first punch part, are handled automatically by the executive, and are processed on the
devices associated with the run initiation device.

The second and third print parts are stacked on the magnetic tape file MTAPE, with the labels MTAPE and LABEL1
respectively. Line 8 prints these parts on onsite printer PR1. Tape file MTAPE is then decatalogued.

The fourth print part is written on mass storage file SYMFILE. Line 11 prints this part on one of the devices associated with
run initiation. Line 12 prints the same part at remote site RMSITE. SYMFILE is not decatalogued (note requirement for U
option to allow multiple @SYM control statements).

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

3-18
PAGE

PAGE REVISION

Line.7 and 10 are required, since cataloguing does not occur until a file is freed.

Line 14 punches the second punch part at remote site RMSITE. Note that the C option is required; otherwise, printing would
occur. Also note that no other user directives (such as assignment of a file) are required to direct this part to the remote site,
since it is executive-defined.

3.6.5. CARD READER MODE CONTROL (@COL)
Purpose:

Permits the user to switch read mode from the defined system standard to the read mode specified by the first parameter on
the @COL control statement. The @COL control statement is only valid when read from an onsite card reader.

All parameters on the @COL control statement are optional except xx.
Format:

@COL xx,sentinel
Parameters:

XX Specifies the mode in which the input data following the @COL control statement is to
be read from the control stream. The user must specify the characters CB to switch to
column binary mode when input is from 900-cpm reader or 1004 subsystem. The
specified input mode remains in effect until a termination sentinel is encountered or the
end of the input stream is detected, at which time the standard system mode is restored.

sentinel Specifies user-defined sentinel for terminating the nonstandard read mode data input
stream. The sentinel may consist of from one to five characters.

The nonstandard read mode is terminated by encountering a termination control
statement in the input run stream. The termination control statement consists of the
one-to-five-character sentinel in the sentinel field of the @COL contro! statement
preceded by the master space (@) character. If omitted, the standard system sentinel
(ENDCL) is assumed. Use of the characters FIN results in termination of the input run
stream in addition to the nonstandard read mode.

Description:

To properly condition the input media for handling the change of input mode, the control stream must be arranged so that
the @COL control statement, @ENDCL control statement, or sentingl statements are followed by three blank cards which, in
turn, are immediately followed by the data cards to be read in the new input mode. The termination control statement
containing the end sentinel image for the input mode must follow the data cards. The @COL control statement and its
accompanying END sentinel statement are always processed at input time and in no case is action delayed until execution
time. In addition, the three blank cards which trail these two statements are eliminated from the run stream.

Examples:

LABEL A OPERATION A OPERAND A COMMENTS
10 20 30 40 50

ER(BCXLJ Lk K:Igi‘ PSR SRS VO YO OO0 O SN RS O TN NS SO S U AN Y UUR W NN TO00 WOV TN N0 NS AU W WU W0 T N Y W W S TR S Y M S

S SRS SR NS SO S |
%dleL_l__JCB,}LN“lENSNI B U S W I § JNE U VS NS SO SO SO S | l § IR SO VS GUNE SN GO S S | l § JOUY SN S U I DU N S § J § SRS W SO SO ORI B |
1.1

bododebod ot v vy b b e e e b v e voe v b i v e 1

UP-NUMBER

3-19
PAGE

4144 Rev. 2 J UNIVAC 1100 SERIES SYSTEMS

PAGE REVISION

1. The input mode is switched to accept column binary input. The standard system end sentinel (ENDCL) is assumed
(sentinel omitted). The run stream associated with this statement should appear as follows:

@CcoL CB

Three Blank Cards

Binary Data Cards
@ENDCL

Three Blank Cards
Continuation of Run Stream

2. The user-specified terminating (ending) sentinel NEWSN is used to terminate the column binary input mode. The run
stream for this example should appear as follows:

@COL CB,NEWSN
Three Blank Cards
Binary Data Cards
@NEWSN

Three Blank Cards

Continuation of Run Stream

3.7. FACILITY CONTROL STATEMENTS

3.7.1. ASSIGNING FILES AND PERIPHERAL DEVICES (@ASG)

The @ASG control statement is used to name a file, state its 1/O facility requirements, and assign it to the requesting run,
under the given external filename. If the file is catalogued, the facility requirements are known and need not be specified
when assigning the file. The information pertaining to files and file naming presented in 2.6 is a prerequisite to assigning and
cataloguing files.

The variety of 1/0 devices available makes several formats necessary for this statement. The five basic formats are:

(1) FASTRAND @ASG control statement (see 3.7.1.1)

(2) Magnetic tape @ASG control statement (see 3.7.1.2)

(3} Word addressable drum @ASG control statement (see 3.7.1.3.1)

(4) Unit assignment of mass storage @ASG control statement (see 3.7.1.3.2)

(5) Arbitrary device @ASG control statement (see 3.7.1.4)

All user files must be assigned prior to being referenced for 1/O operations. The assignments may occur in one of three ways:
(1) by an @ASG control statement

(2) by an executive request from within a user program

{3) by an executive request from within a part of the system itself, such as a system processor.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 3-20

UP.NUMBER PAGE REVISION PAGE

The only instances where a file can be referenced without using an @ASG control statement are when catalogued files are
being named on control statements or being named in the source language input to a system processor, such as the collector.
The actual assignment is then made by that part of the system handling the given control statement, and information
concerning the assignment is taken from the master file directory. If any information is needed for the file assignment other
than its external name, an @ASG control statement must be used to assign the file. The @ASG control statement must also be
used when the file is not a catalogued file. The user is always free to assign a file prior to referencing it on a control
statement. In this case, the part of the system handling control statement will detect that the assignment has already been
made. The @ASG and @FREE control statements can be placed anywhere in the run stream. Dynamic @ASG and @FREE
control statements may appear anywhere in the user program. These features allow the user to assign and free files as
required, without tying up the files and facilities from the beginning of the run until its completion. However, the user might
be forced to wait until the facility or file is made available when the request is for one of the following:

(1) amagnetic tape unit that is being used by another run

(2) an arbitrary device that is being used by another run

(3) a catalogued magnetic tape file that is being used by another run.
(4) exclusive use of a catalogued file which is being used by another run
(6) acatalogued file which is being used exclusively by another run

To prevent the possible prolonged wait of a run when requesting an exclusive-use facility, and yet not force a run to specify
all requirements before the first program (task) of the run stream, the executive does:

(1) not open a run for execution until all the @ASG control statements located before the first task in the run stream have
been satisfied

(2) not start the execution of a program until all the @ASG control statements located before the program call statement in
the run stream have been satisfied. :)

On magnetic tape @FREE control statements (see 3.7.4), there is an option which releases just the file and not the physical
unit. The saved physical unit is placed in the facility pool of the run and is available for reassignment at any point in this run.
The unit is not returned to the executive facility pool (made available to all runs) until it is reassigned and completely
released or until run termination. The user reassigns facilities through normal means, confident that the request can be
immediately honored, since the run facility pool is always referenced before the executive facility pool. By using this option
and, before the first program of the run, specifying the maximum amount of each type of magnetic tape the run will require
at any one given time, the user has the ability to place @ASG control statements or dynamic control statements anywhere in
the run stream or programs and be assured that the run or programs will always immediately receive the facility requested.

The files referenced by most of the @ASG control statements may be catalogued with read and write keys. At a later time,
when the catalogued file is assigned to a run, the keys must be given in the @ASG control statement in order to read from,
write into, or delete the file. The following table shows system action according to the keys specified at cataloguing time and
the keys given in the @ASG control statement. The entries FAC WARN and FAC REJ in the table indicate that FAC
WARNING dddddddddddd and FAC REJECTED dddddddddddd messages are displayed and inserted into the PRINTS file
(see Appendix C for the meaning of these messages).

4144 Rev. 2
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS 3-21

PAGE REVISION PAGE

READ

WRITE

BOTH

> TUM=—TM-0OMTV wW<mMmA
mE — - OHOZ—-COHoOorr—-Hrao

NEITHER

KEYS SPECIFIED AT ASSIGN TIME

READ WRITE BOTH NEITHER
Read Abort Run Abort Run

Write FAC REJ FAC REJ Write
Allowed

Abort Run Read Abort Run

Read

FAC REJ Write FAC REJ

Read Write Read

FAC WARN

FAC WARN FAC WARN Write

Abort Run Abort Run Abort Run Read
FAC REJ FAC REJ FAC REJ Write

The basic formats for the @ASG control statement are discussed in the following paragraphs. See the CSF$ request (4.8.1) for
linkages used to call this control statement from within a user program.

3.7.1.1. FASTRAND-FORMATTED FILE ASSIGNMENT

Purpose:

Assigns FASTRAND-formatted mass storage files to a particular run.

All parameters on the @ASG control statement are optional except @ and ASG.

Format:

@label:ASG,option filename, type/reserve/granule/maximum,packid-1/packid-2. . ./packid-n

Parameters:

options

See Table 3—4. The cataloguing options (C,G,P,R,U,V, and W) are only valid during
catalogued file creation. The C and U options are used to initiate cataloguing action. The
G, P, R, V, and W options place restrictions on the file when it becomes catalogued.

The optionset A, D, K, Q, X, and Y is only valid when used with files which are currently
catalogued. Use of the A option with any of the rest of the set guarantees their validity.
Omitting the A option results in an attempt to find the file in the master file directory. A
find assigns the file from the master file directory and honors the remainder of the set. A
no-find results in a temporary file assign. Any attempt to delete a catalogued file (use of
D or K option) requires the specification of the read and write keys, if there are any
assigned to the file.

The B, E, H, and M options control the saving and restoration of catalogued
FASTRAND-formatted files in connection with checkpoint/restart. The B option
controls file saving whereas the E, H, and M options control file restoration. The file is
always restored at restart if the E and H options are omitted.

4144 Rev. 2
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS

PAGE REVISION I PAGE

3-22

Options
Character Description
Options For Cataloguing

C Catalogues file if the run terminates normally. If the file is freed prior to termination, the file is
catalogues at that time. If a file by this filename already exists in the master file directory, the run
is placed in error mode.

G Indicates that when this file is catalogued, it is to be guarded against having its read key, write key,
and similar protection overridden by privileged runs. (A privileged run may be initiated by the site
manager for such purposes as producing a backup copy of the file on tape to use in catalogued file
recovery.)

P Catalogues file as a public file. If omitted, file is catalogued as a private file and can be accessed
only by those runs having the same project-id as the run which created the file.

R Catalogues file as a read-only file. A file catalogued with the R option cannot be overwritten. The
file can only be read or decatalogued. Any activity requesting to write in the file is placed in error
mode (see 4.1.4).

U Same as C option except that the file is catalogued at run termination (regardless of the manner of
termination beyond this statement). The @FREE control statement causes cataloguing prior to the
termination,

w Catalogues file as a write-only file. The file can only be written into, and in the process, be
extended.

\ Indicates that when this file is catalogued, its text is not to be unloaded to tape at any time.

Options for Catalogued Files

A Specifies that the file is currently catalogued and ensures that the file is not treated as a temporary
file if the name cannot be found. The run is terminated if the name cannot be found in the master
file directory.

D Deletes catalogued file from the master file directory (decatalogue) if the run terminates normally
or when a @FREE control statement is encountered prior to run termination. This option is only
meaningful if used with the A option.

K Same as D option except that the file is decatalogued at run termination regardless of the manner
of termination. A @F REE control statement decatalogues the file prior to termination. The option
is only meaningful if used with the A option.

Q Requests that this file assignment be honored even if the system has disabled the file.

X Specifies that this run is to have exclusive use of the file until the run has terminated or the file is
released by a @FREE control statement. (If the file is not currently catalogued, the X option is
not needed because the run has exclusive use of temporary files.

Y Requests that this file be assigned only for the purpose of examining the master file directory.
Exclusive use is overridden by this option but the file cannot be read or written when this option
is used.

Table 3—4. FASTRAND @ASG Control Statement, Options
(Part 1 of 2)

4144 Rev. 2
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS

PAGE REVISION

PAGE

3-23

EN

Option o
Character Description
Options for Temporary Files
T Specifies that the file is temporary and allows it to have a name the same as that of a catalogued
file. The user need not be concerned if a currently catalogued file has the same name. If this
option is omitted for temporary files, the executive attempts to find the file in the master file
directory. If a find is made, the assignment is made from the master file directory.
Checkpoint/Restart Options for Control of Catalogued FASTRAND Files
B Dumps the file as a part of any checkpoint
E Reloads the file if any other run has referenced the file since the checkpoint
H Relaods the file only if no other run has referenced the file since checkpoint
M If a catalogued file by this name exists when reloading, make the reloaded file available to this run
as a temporary file.
Table 3—4. FASTRAND @ASG Control Statement, Options
(Part 2 of 2)
filename Specifies the external name of the file to be assigned (see 2.6.1).
type Specifies that the @ASG control statement is for a FASTRAND-formatted file and

identifies the specific device required. If the device type specified is for a catalogued file,
it is checked for compatability. If not compatible, the control statement is rejected.

Permissable entries for this parameter are:

FCS — FASTRAND mass storage simulated in unitized channel storage
F4 — FASTRAND mass storage simulated on FH-432 drum

F17 — FASTRAND mass storage simulated on FH-1782 drum

F8 — FASTRAND mass storage simulated on FH-880 drum

F2 — FASTRAND mass storage, Model 1| and Model I11

F — FASTRAND formatted mass storage, type independent

F14 — FASTRAND mass storage simulated on 8414 disc

FASTRAND mass storage simulated on drum or disc has all the characteristics of a

FASTRAND file except for sector padding on write functions.

When space is not available for specified device type, another type is substituted which
satisfies the request. The following chart illustrates the order in which requests are

satisfied.

4144 Rev. 2
UP-.NUMBER

UNIVAC 1100 SERIES SYSTEMS 3-24

PAGE REVISION PAGE

reserve

granule

maximum

Device Order of Satisfying
Requested Request

F F4,F17,F8,F2 F14

F2 F2, F14

F4 F4,F17,F8,F2 F14

F8 F8, F2 F14

F17 F17, F8,F2 F14

F14 -~ Fl14

FCS FCS, F4, F17, F8, F2, F14

An integer specifying the number of granules required by the file (not to exceed
262,143). This parameter should give a reasonable estimate of the space needed to create
or update the file. The value used for a file update must include those granules already in
use. Files contained within the limits of the reserve are guaranteed creation without the
delays involved when the executive must find and allocate the space dynamically.
Specification of a reserve aids the executive allocation routines as the space is allocated in
contiguous granules, if possible. Omission causes the executive to dynamically allocate
the granules as they are required by the file. If the file does not extend to the highest
granule reserved, the empty granules after the highest granule referenced are returned to
the available status when the file is freed. For catalogued files, the reserve value is placed
in the master file directory for future file updates. This parameter is ignored for
catalogued read-only files, however, for write-enabled files, the recorded value is
overridden and replaced by the value given in this parameter. '

Specifies granule size. It may be
TRK — One track (64 sectors)
POS — One position (64 tracks)

If omitted, TRK is assumed. f the file is currently catalogued, this parameter is ignored.
The granularity is recorded in the master file directory. For most efficient use of mass
storage, all program files should be allocated as TRK granularity because POS granularity
creates unused space in files (64 contiguous tracks assigned for POS).

Specifies the maximum allowable length (in granules) of the file. Permissable values are as
for the reserve parameter. When specified, this parameter overrides the system standard
maximum specified at systems generation. If omitted, the reserve parameter value or
system standard is used, whichever is larger.

If a maximum was supplied when the file was catalogued, its value and the number of
granules currently in use are recorded in the master file directory and used whenever the
file is referenced. If a maximum is supplied on the referencing of an @ASG control
statement, it is used and recorded in the master file directory and it replaces the previous
maximum,

This parameter is used to indicate that the run is to be terminated if the length of the file
exceeds the number of granules specified. It is used primarily to ensure that a
run-away-file situation does not occur during debugging. However, it may also be used to
override the system standard for all files.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 3-25

UP-NUMBER PAGE REVISION PAGE

packids Specifies the removable disc packs required for the file. Packids consist of from one to six

characters. The packids for catalogued files are recorded in the master file directory.
Packid is applicable only to removable discs. If omitted, fixed disc is assumed.

Note that many jobs may specify the same set of removable disc packs for unique files.

Description:

The device type of a FASTRAND-formatted file can be changed to a new type when extending a file. To make the change,
the file must be reassigned as it was previously assigned, but with a different equipment code (device type). For example:

@ASG,C FILEA,F
(user program writes 100 tracks)

@ASG,C FILEA,F2
{user program writes 200 tracks)

@FREE FILEA

In the given example, the device type was changed from F to F2 after 100 tracks were written. The end result was 100 tracks
on type F (drum if available) and 200 tracks on type F2 (FASTRAND mass storage).

The following rules apply:

LN~

(n

The file must be ‘currently assigned to the run when the @ASG control statement with the new device type is
submitted.

(2) If space is not available on the new device type, allocation occurs on a slower device providing space is available.
(3) The new device type is used on the first occurrence of additional space acquisition. The switch is allowed for both track
(TRK) and position (POS) granularity.
{4) There is no restriction on the number of times a file can be switched to a different device.
Examples:
LABEL A OPERATION A OPERAND A COMMENTS
10 20 30 40 50
@AlSJG]q CR] i d }FIILLLEA ;:F:/JSI FUOOR SO WONN SESTON TN S TS TS (OO OO SN WY T TN WO NS TN U Y SO SO0 TUNN NS N0 TN WO YO0 N O TR NG T WY W8 WY
QASGJ.)DIAL__JM.J_.L_JEIII“ALﬁa/IAZ’ZHJLEB § SRR IR N S N i § S T Eoodede bk } bevddd Lot I § SNUNND VRN VSV SO WO SO
QASGlgi S| FIL‘EC-;lFx/A"/;PI‘yéi/SI USSR SN NN O NS O S O TN N T Y OO WO S A N A S W O U T ST

myKWLxEQSI/bIZ&LmL'JJL_L._L__L_,L_,L,.L_JJLM.L_!__L.J.J_‘L_L [SR RN RS R B

ll]lll!ll[llll]!lll!llj’lllil'lllll!lll!lll\ll]ll]l!!I!|l

If the run terminates normally or a @FREE control statement for FILEA is processed, FILEA is catalogued as a
read-only file. Five tracks are assigned initially and the system-maximum size is assumed, as no maximum was specified.

FILEB is currently catalogued and is to be decatalogued if the run terminates normally. The key A2294B is required to
read the file.

FILEC is a temporary file requiring four FASTRAND positions to be reserved initially. Termination is to occur if more
than five positions are required.

FILED is currently catalogued and this run is to have exclusive use of the file for updating. A reserve of six tracks is
specified, and the run is to be terminated if more than eight tracks are used.

4144 Rev. 2
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS 3-26

PAGE

I PAGE REVISION

3.7.1.2. MAGNETIC TAPE ASSIGNMENT

Purpose:

Assigns a magnetic tape file to a run.

All parameters on the @ASG control statement are optional except @, ASG, and filename.

Format:

@label: ASG,options

filename, type/units/log/noise/MSA-trans/unit-trans/format,;
reel-1/reel-2 . . . /reel-n,expiration-period

Parameters:
options See Table 3-5.
The A,CD,GKP,QRTUW, and Y options have the same meaning as on the
FASTRAND @ASG control statement (see 3.7.1.1). The remaining options control the
mode in which the file is recorded and read, and tape labeling.
In the absence of overriding mode options on seven-track tape assignments, the H and O
options are assumed. For these assignments, mode option V is invalid.
For nine-track tape assignments, excluding UNISERVO 12/16 nine-track assignments, the
H and O options are assumed with B,E,1,L M, and V mode options being invalid.
For UNISERVO 12/16 nine-track assignments, the V and O options are assumed. Mode
options B,E,I,L, and M are considered invalid.
filename The function and use of this parameter is the same as that specified for the FASTRAND
@ASG control statement (see 3.7.1.2).
Option
Character Description
Option for Pooling Facilities
S Retains physical assignment for the file. That is, a @FREE control statement
releases the file, but the tape unit is saved for future use by the program.
Mode Options
B Binary (translation not required)
E Even parity (assumed when the | option is specified and translation is
performed by software). Not recommended if file manipulation is via
UNIVAC-supplied software.
H High density tape (not available for UNISERVO 12/16 nine-track if the
hardware dual density feature does not exist on the unit).
| Decimal (translation required). The translation of BCD to Fieldata on input
and Fieldata to BCD on output is performed by hardware, if available.
Otherwise, standard system conversion routines are used for translation. The
E option is assumed when software performs translation.

Table 3—5. Magnetic Tape @ASG Control Statement, Options

Part 1 of 2)

4144 Rev. 2
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS

3-27
PAGE REVISION | PAGE

Option L.
Character Description
L Low density tape (not available for nine-track subsystems)
M Medium desnity tape (not available for nine-track subsystems)
0 Odd parity (assumed when type parameter specifies nine-track requirement)
\Y Density mode of 1600 FPI (UNISERVO 12/16 nine-track subsystems only)
Options For Tape Labeling
F Allows the user to assign any previously unassigned tape. Any reel is accepted
even though the volume and file header do not exist. If the volume and file
headers exist on a tape assigned with the F option, normal label checking is
performed.
J Specifies that the reel loaded must not be a labeled tape. If a label exists on

the assigned tape, an error message appears.

type

Table 3—5. Magnetic Tape @ASG Control Statement, Options

(Part 2 of 2)

Specifies that the @ASG control statement is for a magnetic tape device and identifies the
specific type of unit required. Permissible entries for this parameter are:

T

Cc

U

2A

3A

4C

6C

8C

12

16

12N

16N

12D

16D

tape unit, type independent

UNISERVO 1V-C, VI-C, and VIII-C tape units
UNISERVO VI-C and ViI1-C tape units
UNISERVO II-A tape unit

UNISERVO II-A tape unit

UNISERVO IV-C tape unit

UNISERVO VI-C tape unit

UNISERVO VIII-C tape unit

UNISERVO 12 tape unit

UNISERVO 16 tape unit

UNISERVO 12 nine-track tape unit
UNISERVO 16 nine-track tape unit
UNISERVO 12 dual density nine-track tape unit

UNISERVO 16 dual density nine-track tape unit

4144 Rev. 2
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS 3-28

PAGE

PAGE REVISION

units

log

Magnetic tapes are always assigned with the following rules of allocation:

Order of Satisfying

Type Request

T 8C, 8CB, 6C, 6CB, 12, 16, 8C9, 6C9 12N, 16N, 4C, 4CB, 3A, 2A
c 8C, 8CB, 6C, 6CB, 4C, 4CB
U 8C, 8CB, 6C, 6CB

8C 8C, 8CB

6C 6C, 6CB

4C 4C, 4CB

CB 8CB, 6CB, 4CB

uB 8CB, 6CB

U9 8C9, 6C9

12N 12N, 12D

16N 16N, 16D

The following magnetic tape assignments do not have a second choice (12, 16, 12D, 16D,
8CB, 6CB, 4CB, 8C9, 6C9, 3A, 2A).

The use of type T or C is encouraged as it gives the system more freedom in assigning
units. When using type T, only those functions and options compatible with all types of
units may be specified.

Some installations may not have nine-channel/frame capabilities on all units. In addition,
there may not be translation hardware on all tape channels. In order to select this
equipment, the character 9 or the character B may be added to the type symbols to
indicate nine-channel/frame unit or translate channel, respectively (with the exception of
the UNISERVO 12/16 tape units). As an example, if a UNISERVO VIII-C unit with
nine-channel capabilities is needed (but not available on all units), the type subfield
would contain 8C9. The symbol 6C9 would call for a UNISERVO VI-C nine-channel. The
symbol 6C would call for a UNISERVO VI-C channel with the hardware translation
feature. The combination of TB and T9 is not allowed.

Software translation is not assumed’ if a unit with the hardware capability is selected
unless the | option is specified or translation is called for by either an @MODE control
statement or the set mode function of the magnetic tape handler. See Description for
absolute assignment.

Specifies the number of tape units required, and may be integers 1 or 2. If omitted or a
number other than 1 or 2 is specified, the executive assumes that one unit is required.
The number of units assigned is not retained in the master file directory upon
cataloguing. See Description for absolute assignment.

Assigns a single letter indicating a logical channel. The executive attempts to assign all
files with the same letter to the same physical channel and those with different letters to
different channels. The letter specified is not placed in the master file directory upon
cataloguing. This parameter permits more efficient 1/0 operation because of the separate
channels.

4144 Rev. 2
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS 3-29

PAGE REVISION PAGE

N

noise

MSA-trans

unit-trans

format

reels

Specifies an integer from 1 to 99 which overrides the standard system noise constant. |f
omitted, the standard system noise constant is assumed if parameter is omitted.

(UNISERVO 12/16 only) Specifies the type of translator needed in the MSA. The MSA
translator mnemonics are:

EBCDIC — Fieldata to or from EBCDIC

ASCII — Fieldata to or from ASCII

XSEBCD — XS-3to or from EBCDIC

XSASCI — XS-3to or from ASCH

OFF — turns off translator if assign is from the master file

directory and file was catalogued with a translator specification.

(UNISERVO 12/16 only) Specifies the type of translator needed in the control unit (not
available for UNISERVO 12/16 nine-track tape units). The control unit translator
mnemonics are:

BCD — EBCDIC to or from BCD

DC — Three-to eight-bit bytes converted to or from
four- to six-bit tape characters.

OFF — turns off translator if assign is made from the master file
directory and the file was catalogued with a translator specification.

(UNISERVO 12/16 only) Specifies the data transfer format for the word-to-byte
conversion in the MSA. The data transfer mnemonics are:

Q — quarter word
6 - six-bit packed
8 — eight-bit packed

Specifies the identifier for each tape reel required. Each reel identifier is limited to six
characters. Reels are used and catalogued in the order specified. If the file is to be
catalogued, all reel identifiers are recorded in the master file directory. If omitted and
cataloguing is indicated, the executive directs the operator to mount blank reels on the
appropriate tape units to provide reel identifiers for each reel. If additional tape reels are
requested by a TSWAP$ request (see 7.2.8), operator is requested to load the required
blank reels and provide identifiers for each reel.

For currently catalogued files, the reel parameter is normally void, indicating that the
reels listed in the master file director are to be used in the order in which they were
created. If reel numbers are supplied, they must be of the set listed in the master file
directory, but may be a subset and listed in any order, allowing the user to omit or access
them in any order. If an invalid reel number is supplied, the @ASG control statement is
not honored. In either case, when the known reels are exhausted and additional reels are
requested,.blank reels are used and their numbers added to the master file directory. (This
is not allowed if the file is catalogued in the read-only state.)

For temporary files, the reel parameter is not specified and the operator is requested to
mount blank reels (reel numbers are not required). If reel numbers are given on the @ASG
control statement, they are used in the given order. When additional reels are requested,
blanks are used, but reel numbers are not requested.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 3-30

UP.NUMBER PAGE REVISION PAGE

expiration-period Specifies the number of days that this file is to be retained. The maximum number
allowed is 4,095 days.

Description:

The executive normally controls the selection of units for the assignment of tape files. However, the user may direct the tape
assignment to a particular subsystem or unit by specifying the absolute subsystem and unit. Absolute subsystem and unit
specification is not the recommended procedure for assigning tapes, however, maintenance routines, real time programs, or
special hardware requirements may dictate the need for such specifications.

A unit that has been placed in the reserved state by a RV unsolicited console keyin can only be assigned by specifying the
absolute subsystem and unit on the assign statement. However, it is not necessary to have a unit in a reserve state in order to
assign it absolutely.

For absolute tape assignment, all parameters except type, units, and log retain their meaning as described earlier. The
contents of these three parameters are:

type Contains subsystem in the format Sxxx where xxx is the subsystem number (1 to 127)

units If a particular unit is required, specifies the unit in the format Uyy where yy is the unit
number (0 to 15). If the executive is to choose the units, this parameter has the same
meaning as described earlier.

log If a second unit is required, specifies the unit in the format Uzz where zz is the unit
number (O to 15). In all other cases of absolute assignment, the contents of this

parameter are ignored.

Examples:

LABEL A OPERATION A OPERAND A COMMENTS
10 20 30 40 50

alAlSGl -;‘A: bk IEIiLLE!XI PR W O SO OO TGOS TN SN S SN SN SO SO OO OO U SO TOUN SUNY NS NN JNNO T AT OO WO U TN NN WO W S SO YOO WY 00 WY
@ASGI 3 N lFlIlL 1EA;3 x/{ /1 /|316; U SN SN W TN WO Y JOON WADN UU VAN NS UOOY SO NS N SO0 Y TOU0 WU S0 U Y S NS SN N SO WO T
@ASG-;‘:E;L‘ - FILEB)61C /&2:11“54’1321 TS UREN YO 00 YO NN S SO TN N U WO N U OO A Y ST NS U000 W O U W0 YOO ST T
@ASGw xC;R. Lo leLaECl 58(: 9 .. et b vt Lo v v e by
@A:Sﬁi Ql-DlAl I FILLE-Dl/"l'“Bq 61118C //An NZ{‘ 2 I R R R RN !
@ASG,U_. . .1 FILEE/43267.1./RAI234:, AClz.707/70877031710)
[@A.SG.’I rar] iF]xLlE)FIQ| 1SC’RT;C;H AR ST T N AN TN Y0 O WO YO WO N YO T S Y WO N WA S A W WO S OO
@ASGL’I teioa |t xFILEqus l2!/2 vt b e v v e b e v e b oy
@ASG(\I e FIlLEYtQS ‘Zf/ub mzqt"‘ 61 S S YOV WO U WO YENE N NS O WU WG WU TN T Y SO O DNNS VOO T TG OO0 Y O
ol FI,LlEYmSlZl/Ub/U“‘, PR SN O YUK S N O T Y TN U N U YT U UOUY U YO O T SN S A T T SO S

TR TN T SN WO S0 U YOO SO U T TN VAN Y TN YA WY O TN YO WA JNNE YOO YOO W WY WUON T OO TN YOO WONY WO U WU OO SN YA U WL WO OO U Y U U W OO WO Y WE O W O

D

EWN

(3

O

N o

.

0 oo

§
—

1. FILEX is catalogued and all necessary options, facility requirements, and reel numbers are taken from the master file
directory. The project-id of the current run is used as a qualifier.

2. FILEA is a temporary file requiring one unit selected by the executive; one or more blank reels are used. The noise
constant is to be set to 36 characters.

3. FILEB is a temporary file requiring two UNISERVO VI1I-C tape units. It is recorded in even parity and low density.
Reel number N432 is specified.

4, FILEC is to be catalogued in the read-only mode if the run terminates normally. One UNISERVO VIII-C tape unit with
nine-channel capabilities is required.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 3-31

UP-NUMBER PAGE REVISION PAGE

5. FILED is currently catalogued but is to be released if the run terminates normally. A key of 4896 is required to read
this file. The UNISERVO VI1I-C tape unit is to be on logical channel A and reel N212 is to be used.

6. FILEE is to be catalogued. It requires two UNISERVO VI1I-C tape units on any channel. Reels 707 through 710 are to
be used. The file is locked by the specified read (492671) and write (RA 1234) keys.

7. FILEF is a temporary file and the symbol SCRTCH is used as a reel number.
8. FILEY is assigned two units of the systems choosing from subsystem 12,
9. FILEY is assigned unit 6 on subsystem 12; reel 29416 is to be used.

10. Units 6 and 4 from subsystem 12 are assigned to the file.
3.7.1.3. WORD ADDRESSABLE DRUM ASSIGNMENT

3.7.1.3.1. NORMAL ASSIGNMENT
Purpose:
Assigns word addressable mass storage and simulated word addressable mass storage to a particular run.
All parameters are optional on the @ASG control statement except filename.
Format:

@label: ASG,options filename,type/reserve/granule/maximum,packid-1/packid-2/. . ./packid-n
Parameters:

With the exception of the following differences, the parameters of this statement are basically the same as those for the
FASTRAND ®ASG control statement (see 3.7.1.1).

options Same as 3.7.1.1. except no distinction is made between file types except in the
conversion of logical to physical addresses. Word-addressable files cannot be used as

program files.

filename Specifies the external name of the file to be assigned.

type Specifies that the @ASG control statement applies to word addressable drum format and
names the specific type of recording equipment to be used. Permissible parameters are:

D — Word-addressable storage, type independent

D4 — Word-addressable storage, FH-432 drum

D8 — Word-addressable storage, FH-880 drum

D17 — Word-addressable storage, FH-1782 drum

DCS — Word-addressable storage, unitized channel storage
D14 — Word-addressable storage, simulated on 8414 disc

Use of the D entry is recommended since it allows the executive freedom in allocating file
space.

The use of the D14 entry forces the executive to simulate word addressability which
introduces additional overhead each time the file is accessed.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

PAGE REVISION

3-32

PAGE

WN T

reserve Same as 3.7.1.1

granule Same as 3.7.1.1.

maximum Same as 3.7.1.1. except the entry is the number of words needed for the file.
packids Same as 3.7.1.1.

Description:

The mass storage allocation routine attempts to satisfy word addressable drum requests in the same manner as it satisfies
FASTRAND-formatted requests. Allocations are made on contiguous granules if possible, thereby permitting dynamic
expansion of a word-addressable file. Although dynamic expansion is available, the user is not allowed to dynamically

contract a word-addressable file (read and release, and release /0 functions are not allowed) (see 6.1.1).

Examples:

LABEL A OPERATION A OPERAND A
10 20 30 40

COMMENTS
50

SGL,CRI ; 11FI;L‘EA31’D4‘1/52175/T‘RsK AR T TS U TN VO VO MY O VOO U SHNN VU Y VOO IO S N0 Y U

§ N SN JUN W S

i

@ASG)Q[UPI 11 iFI.LIEC,IDlﬂ./'Iﬂﬁ'éD/TKKi TR O O W TN N SN T U0 0 TN W W WS S T W

N

ASQIQEWL,J__JJF_JLL‘dELB’;Dl/izzi'_ijmh”11,1’L_L._L..L.‘,-,L_laJ_llx__L.‘L__i._zjlJ”l.J.J‘__*‘L

3

TR TUE NS U Y W YT SO N MUY W YUK YO T Y TR SO HOOE U Y G SV SO Y UON SO0 OV JOU U JOUOY WONY HG UN YOS YT VOO0 WO T SO O TN OO WS WK Y O WY

1. FILEA is to be catalogued in the read-only mode on the FH-432 drum upon normal termination of the run or when a
@FREE control statement (see 3.7.4) is encountered. Initial length of FILEA is one track. The standard system

maximum is assumed for maximum subfield.

2. FILEB is a temporary file requiring an initial reserve of two tracks and residing on a drum selected by the executive.

3. FILEC is to be catalogued on the FH-1782 drum as a public file at run termination (regardless of the manner of
termination), or when the @FREE control statement is encountered. Initial length of the file is ten tracks. Standard

system maximum is assumed.

3.7.1.3.2. WHOLE UNIT ASSIGNMENT

A mass storage unit in the reserve state (see 7.2.3) may be assigned as a facility to the run. Only the operator can place units

in the reserved state.
The following format is used to assign a word-addressable, unit-granular file:

@Ilabel:ASG,options filename, type, unit-1/unit-2/ . . . /unit-n

All parameters are interpreted identically to the normal @ASG control statement except type. The valid entries for the type

parameter are:
D4U — FH-432drum
D8U — FH-880drum

D7U — FH-1782 drum

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 3-33

UP-NUMBER PAGE REVISION PAGE

The equipment on the requested subsystem/unit need not be the same as the mnemonic. For example, a type of D7U may
have FH-432 and FH-880 units requested.

Any number or type of allowable units may be requested. The unit parameters (unit-1, unit-2,) have the format nnnUnn
where nnn is the decimal: subsystem number; the U is the separation character; and nn is the decimal unit number. All six
characters need not be supplied, but the separation character must have decimal numbers on both sides.

For example, the request @ASG,T FN,D8U,3U1/12U5/3U3 assigns the file FN as a word-addressable, unit-granular file with
the three requested units.

3.7.1.4. ARBITRARY DEVICE ASSIGNMENT

Purpose:

Assigns all devices except FASTRAND-formatted mass storage, drum, and magnetic tape units. Used primarily for the
assignment of special 1/0 devices and communications equipment.

All parameters on the @ASG control statement are required.
Format:

@label:ASG filename,type

Parameters:
filename Specifies the external name of the file.
type Specifies:

{1) The mnemonic definition of a class of devices; the executive selects the specific unit
if more than one unit exists

(2) absolute subsystem; the executive selects specific unit

(3) absolute subsystem/unit

Mnemonic definitions of standard devices other than magnetic tape units or mass storage

devices are:
CRD — Card reader system
PTP — Paper tape subsystem
PRT — Printing device
HSP — High speed printer
1004 — 1004 reader/printer/punch

Mnemonic defintiions used to assign communications devices must agree with those
defined at systems generation. For example, communications devices are defined, at
system generation, as units under a group class identity called the LT group.

This group identity, when specified in the type parameter, causes the executive to select
that LT group to satisfy the request.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

uUpP

-NUMBER

3-34

PAGE REVISION PAGE

For absolute subsystem assignment, the type parameter contains the subsystem number

(1 to 127) in the format:

Sxxx

For absolute unit assignment, the type parameter contains both the subsystem number

and the unit number in the format:

Sxxx/Uyy

If absolute subsystem and unit are used for communications devices, the unit specified is
assumed to be the input rather than output or dial (see Section 12).

A disc can be assigned for use with the arbitrary device handler by using the absolute
subsystem and unit form of the arbitrary device @ASG control statement. The format is:

@ASG,options filename,Sxxx/Uyy,packid

The requested unit must be in the reserved state to satisfy this type request {units can
only be put in the reserved state by the operator. The packid parameter is used in a load
messsage to instruct the operator to mount a specific pack on a specific unit.

Examples:

LABEL A OPERATION A OPERAND A
10 20 30 40

COMMENTS
50

@lAlsﬁlLJIIIEMJAIME,CR‘DJII!iiJLlL!Lilillll]J]l(

TN YN S TR U WO WO SO0 T T S Y S

alASG: Lo dd ‘FIIILE’*QA/UZI I T I S B e 124 PxRI;H:rLEQR Lot

\)jllilllijll]

FURE TR SN0 WO WO 000 N OO NN OO TN WO U YO WU YOO 1O TN N U0 T UK UM 5 U JEU S T VYOO WY YOO T TS WU Y SO OO0 O T WU UYWAY MO WO TOU W Y N O OO0 S N

1. The card subsystem is assigned, and the specific device is selected by the executive.

2. The printing device identified as unit 2 of subsystem 6 is assigned to the run.

3.7.2. TAPE UNIT MODE CONTROL (@MODE)

Purpose:

run.
All parameters on the @VIODE control statement are optional except filename.
Format:

@label:MODE,options filename,noise/MSA-trans/unit-trans/format

Changes the mode settings initially set by a previous tape @ASG control statement. The file must be currently assigned to the

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

3-35
PAGE

PAGE REVISION

Parameters:

options Same as mode options in Table 3—5.

filename Specifies external name of tape file to which mode change applies.
noise Same as 3.7.1.2.

MSA-trans Same as 3.7.1.2.

unit-trans Same as 3.7.1.2.

format Sames as 3.7.1.2.

Description:

With the @MODE control statement, options {modes) are never assumed in the absence of others. The specified options are
not placed in the catalogue, since they apply only to the current assignment.

See the CSF$ request (4.8.1) for the linkage used to call this control statement from within a user program.

Example:
LABEL A OPERATION A GPERAND A COMMENTS
10 20 30 40 50
gabkfﬂ)EE,I3EiLn Lo ‘F:[lﬂEi\cgisﬁJ TR USSR T NS A SNU N SN O SO WO T TN VA T TN U S Y O UK Y WA YOO W O N T W S T W0 W
L U T . | - Jod l | S VNN (SO SO SO SO SO | H I i 1 ! S W S |) § I . T | i LS N) l F I fo.d IS O S ¢ L l 1.1 TSNS SRR WO S |

The initial mode settings assigned to FILEY are overridden by the B, E, and L options specified in the @MODE control
statement. A noise level of 30 is also specified for FILEY.

3.7.3. INDEPENDENT CATALOGUING OF FILES {(@CAT)

Purpose:

The @CAT control statement is used to catalogue one or more files without having them assigned to the run. This may be the
case when building the initial master file directory or when a previously prepared tape file is to be catalogued. The file is
catalogued but is not assigned to the run and no facilities are assigned.

Formats:

The @CAT control statement has two formats: one for cataloguing tape files and one for cataloguing FASTRAND files. Both
formats are presented.

All parameters on the @CAT control statement are optional except filename.
Format for cataloguing tape files:

@label:CAT,options filename,type/noise/MSA-trans/unit-trans/format',reel-1/reel-2/ . . . /reel-n

Parameters:

options See Table 3—6.

filename Specifies the external name of the file to be catalogued.

type Same as 3.7.1.2. If omitted, the executive assumes that the request is for a

FASTRAND-formatted file.

4144 Rev. 2
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS

PAGE REVISION

3-36
PAGE

Options ..
Character - Description
B Binary code (no translation required)
E Even parity (if not specified, standard system value is used)
G Indicates that when this file is catalogued, it is to be guarded against having its
read key, write key, and similar protection overridden by privileged runs. (A
privileged run may be initiated by the site manager for such purposes as
producing a backup copy of the file on tape to use in catalogued file recovery.)
H High density!(if no tape density is specified, standard system value is used)
| Decimal code (translation required). Conversion is performed by hardware, if
available. Otherwise, standard software conversion routines are used to translate
BCD to Fieldata (input) and Fieldata to BCD (output). When software
conversion routines are used, the E option is assumed.
L Low density (if no tape density is specified, standard system value is used)
M Medium density (if no tape density is specified, standard system value is used)
o] Odd parity (if not specified, standard system value is used)
P Catalogue file as public file
R Place in read-only state
\") Indicates that when this file is catalogued, its text is not to be unloaded to tape
at any time.
W Place in write-only state
Table 3—6. @CAT Control Statement, Options
noise Same as 3.7.1.2.
MSA-trans Same as 3.7.1.2.
unit-trans Same as 3.7.1.2.,
format Same as 3.7.1.2.
reels Same as 3.7.1.2.

Format for cataloguing FASTRAND-formatted or word-addressable files:

@label:CAT,options

filename, type/reserve/granule/maximum,packid-1/packid-2/ . . . /packid-n

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 3_37

UP.NUMBER PAGE REVISION PAGE
Parameters:
options The G,P,R, and W options are the only valid options (see Table 3—6).
filename Same as 3.7.1.1 and 3.7.1.3.
type Same as 3.7.1.1 or 3.7.1.3, depending on file format. If omitted, the standard system

entry (F) is assumed.

reserve Same as 3.7.1.1 and 3.7.1.3
granule Same as 3.7.1.1 and 3.7.1.3
maximum Same as 3.7.1.1 and 3.7.1.3
packids Same as 3.7.1.1 and 3.7.1.3

See the CSF$ request (4.8.1) for the linkage used to call this control statement from within a user program.

Examples:
LABEL A OPERATION A OPERAKND A COMMENTS
10 20 30 40 50
L CA-Eq? FILE{YI/AWL@AOK T N247/MZI+8| PSR SR W T S N TN T A S ST WU T T NN VOO VO WO O WO T

2.2CAT,, wj__ FLLEX.A/WLECK o FAT/TRKAVO oo i it da
@QA’E,R . WADDRUM,DCS /1 TOO/TRIC/2000 « v i bttt iabistis
|

bodtodto vt b v e e o o e e e o b e

.05

1. FILEY is to be catalogued as a public file with the write-key WLOCK. The device type is specified as tape with the
specific tape device selection made by the executive. The standard system noise level is used as this parameter has been
omitted from the statement. The file is recorded on the two reels identified as N247 and N248.

2. File FILEX is to be catalogued in the write-only mode. The key WLOCK is required to write in the file. The recording
device is specified as FASTRAND with the specific device selected by the executive. At assign time, seven FASTRAND
tracks are initially reserved for the file. The run is terminated if more than 10 tracks are used.

3. File WADDRUM is to be catalogued in the read-only state. The recording device is specified as word-addressable

format, unitized channel storage. 1700 words are reserved for the file and the run is terminated if the file exceeds 2000
words.

3.7.4. RELEASING FILES AND PERIPHERAL DEVICES (@FREE)

Purpose:

Deassigns files and releases their facilities, reels, and exclusive use areas assigned to the run. Files and facilities should be
released the moment they are not needed. If they are not released by means of a @F REE control statement, they are retained
until run termination.

All parameters on the @FREE control statement are optional.

Format:

@label:FREE,options filename

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 3-38
UP-NUMBER PAGE REVISION PAGE
Parameters:
options See Table 3-7.
filename Specifies the internal or external name of the file to be deassigned. This entry must agree
with the filename specified by the @ASG control statement (see 3.7.1) or equated to the
file by the @USE control statement (see 3.7.5).
Option Describti
Character escription
A Releases only the specified internal name relationship to the file.
B Releases only the specified internal name associated with the file unless it is only
the internal name attachment, in which case the entire file is freed.
D Deassigns a catalogued file. The file must have been assigned with the correct
keys.
E Sets the first file header in the tape label back to skeleton format to logically
set it to a blank tape.
| Inhibits final cataloguing action if the file was assigned by an @ASG control
’ statement with a C or U option.
R Releases the file assigned but retains the internal name relationships to the
filename and the F-cycle.
S Frees the file but retains the physical tape unit.
X Releases exclusive use of the file. The file, however, is not deassigned from the
run,

Table 3—7. @FREE Control Statement, Options

Description:

A file that is deassigned by a @FREE control statement can no longer be referenced by the run. It can, of course, be
reestablished by an @ASG control statement provided its facility requirements can be met.

The actions taken by the system when a file is deassigned by a @FREE statement (and the S option was not specified) are
discussed below.

For a temporary file (not catalogued or to be catalogued):
FASTRAND — The FASTRAND area is made available as file space for other runs.
Drum — Same as FASTRAND mass storage.

Disc

Same as FASTRAND mass storage.
Tape ~— Units are released for use by 6ther runs.

Other equipment (communications and so forth) — The device is released for use by other runs. Always temporary.

4144 Rev. 2
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS

PAGE REVISION

PAGE

3-39

For a file being catalogued (C or U option on @ASG control statement):

FASTRAND

Disc

Tape

— Catalogue entry is made in the master file directory and FASTRAND area containing the file is held.
The file can now be referenced by other runs.

— Same as FASTRAND mass storage.

— Catalogue entry containing reel numbers is made; units are released for other runs,

For a file being de-catalogued (D or K option on @ASG control statement):

FASTRAND

Disc

Tape

— Same as for a temporary file except that the file area is not released until all runs currently using the

file have also finished. It is no longer available for assignment.
— Same as FASTRAND mass storage.

— Units are released for use by other runs. The file is no longer available for assignment.

See the CSF$ request (4.8.1) for the linkage used to call this control statement from within a user program.

Examples:
LABEL W0 A OPERATION 20 A 30 OPERAND 46\ CS%MMENTS

@ASG,C. . FILEALFSS 1 i ! R T
©ASG. T .. FILEB, F/H/POS/5 i ! R
@Asﬁnjx: fld IFI|L1E1C51/;6//581 T S IR A l s g b L1y
@ASG,,CR. . IFILEXs8C/A/ARIZN (10l il
@ASG,,I, Ll lFJIlLIE\(ISBQ/I/rBQIRZ:’ 2, i N SRR | IR RN BN AR R R
@ASG,D, ., FILEZ,8C//CRUILY, . 0, l A R
TS NN TV U WO VY O YO A JOUS VAN A NN WY N AT O MO MO T I B N | T TS U W N I R S NS0 S W
YRR N T NN YO HOOT SO N S WA T TN G 0% TV T G ST WY S MO N R R S | I I B S N T RS N
i @ERIEIE!QII - lFileq’ErA PSR S TN O OO T T O e | I ST NS R TN N
2"QE|B§EA[’CJ il lFL_I_LL—L_EtB bt Lo a b] SRR RN A Lt !
3- @.J_:BEE ;aXn L) lFl-LlEC| TR S N T S S N T PN O T ! EE O U W Lt
a4, @FREF,S. 1.1 lFlItLIEXI T TOOE T N O TN W T O I R | SR S S AN A T T S T W
5FREE.R . FILEY 0 o dv i ol | AP R
6-@53@5 [IFIIILIE%| T N R R ' B N RN 4 RS N N Lt 1
TS S T RO S A WO W U T T N Y OO B SO0 U DO B M S A R | TN IO N TN I T WO S WO O
1. FILEA is to be catalogued upon normal run termination or by execution of the @FREE control statement as specified

by the C option on the @ASG control

FILEA because of the | option.

2, FILEB is deassigned and all filenames are released (with no special considerations).

statement. The @FREE control statement, however, inhibits cataloguing of

3. Exclusive use of FILEC (currently catalogued FASTRAND file designated as exclusive use for current run) is released.
The exclusive use obtained by the @ASG control statement is released by the X option on the @FREE control

statement.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

3—-40
UP.NUMBER PAGE REVISION

PAGE

4, FILEX (designated to be catalogued at normal termination of the run or by execution of the @FREE control
statement) is deassigned. The UNISERVO VIII—C tape unit is retained for run use (S option). The reel number (R121)
is recorded in the master file directory.

5. Temporary tape file FILEY is deassigned. The internal filename relationship to the file is retained (R option specified).
The F—cycle is also retained.

6. FILEZ is decatalogued from the master file directory. The UNISERVO VI11—C tape unit is not retained for run use (S
option).

3.7.5. ATTACHING INTERNAL FILENAMES (@USE)

Purpose:

Equates filenames so that any particular file can be referenced by more than one filename. This need arises when:

(1) run construction can be simplified by using a shorter internal filename in place of a long external filename

(2) identical filenames must be differentiated

(3) internally programmed filenames must be connected to external filenames

The information presented in 2.6.2 on file naming is a prerequisite for understanding internal and external filename
relationships.

The @USE control statement has two formats: equating internal filenames to external filenames (Format 1), and equating
internal filenames to internal filenames (Format 2).

All parameters are required except label.
Format 1:

@label: USE internal-filename, external-filename
Format 2:

@label: USE 'internal-filename,internal-filename

Parameters:

internal-filename Specifies the name by which the file can be referenced within the run after the @USE
control statement is encountered in the control stream.

external-filename Specifies the full external name of the file. The external name always takes the form
qualifier«filename.

Description:

All internal filenames equated to an external filename are listed and maintained for the run. Once equated, the user can
reference the file by its internal or external filename from within a program or the run stream. If a conflict of filenames
exists, it is the user’s responsibility to attach an internal name to the file (with the conflicting external name before any
references to that file are attempted). The internal filename list is always searched first on an 1/O reference.

If a no-find condition occurs on the internal names, the external filename list is searched.

Multiple internal filenames can be attached to an external filename.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 3-41
UP.NUMBER PAGE REVISION | PAGE
See the CSF$ request (4.8.1) for the linkage used to call this control statement from within a user program.
LABEL A OPERATION A OPERAND A COMMENTS
0 20 40 50
L @USE : JFI,LIEB \lC&MPANIYI*IPA]YRBLLI PN VTSN WO T TO0N SO SO NN O OO O TS N VAN N AN S WY W Y TN SO0 YOO N WO W
2' @ulel ..t Cgsm\lFILLIEB i H I 1)| 1 1 14 1 I 1 | L.k .1 iad i L1 l 1 i 1.1 1 1 Y 1 I 1 Lood ot bt
PSRN W K W WNOR U TS T NONC N N T UNN WY W VN TN 0 VOO TN UUN U OO U T W U T N Y U UG T G IS Y A O WO S N S0 WO O N W0 O S S O

1. The internal filename FILEB is equated to external filename COMPANY *PAYROLL. The file can now be referenced
for 1/0 by either the internal name FILEB or the external name PAYROLL.

2. The internal name COST is now a third association to the file for /0.

3.7.6. SPECIFYING FILENAME QUALIFIER (@QUAL)

Purpose:

Specifies a standard filename qualifier for implied usage on succeeding contrcl statements involving filenames.

All parameters in the @QUAL control statement are required except label.

Format:

@label:QUAL qualifier

Parameters:

qualifier

Description:

Specifies name extension used to qualify subsequent filenames which are immediately
preceded by an asterisk (*).

Any number of @QUAL control statements can appear throughout the control stream. Each time a @QUAL control
statement is encountered, the new qualifier overrides the qualifier specified in the previous @QUAL control statement.

See the CSF$ request (4.8.1) for the linkage used to call this control statement from within a user program.

Examples:
LABEL A OPERATION A OPERAND A COMMENTS

1 10 20 30 40 50
L @uALl i l AS‘TQIU(AL; RN P AN W YOI NN NS Y000 W TS DY VU SO0 NN T TOU% SO OO0 T S W T N0 M UNC SO WY O O
@F\&R Lok i ‘*HILM‘D& /ABC\ i 1 i i 1 1 § I |] 1.1 i ob. 1 1 I i 1 1 1 i i 1
Q-QQUA;L; Lot 12«N1D=QUA1Lx [T o IR EE A SR AT R A SR N N A ST N U O SR N
gERﬁE .1 %FJIJ'—IEAI § SO S | ‘! ! i1 1 l | A S SO S WSS W O | 1 § 2N S N NN SN SN W S ‘ § ISR WU WS NS S W |
T NN SR NN W U000 0 W U NN TR W SO L SE Y N O T N | PR R V0T O T O TR S WA WY U O O S T VO 00 W MO N U0 N O DU T NN W N
1. The @QUAL contro! statement provided in this example specifies that all subsequent filename references, which have a

shown in the example is interpreted as:

@FOR

1STQUAL=FILEA.DO/ABC

preceding asterisk, be interpreted as having the qualifier 1ISTQUAL. For example, the @FOR control statement element

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

3—-42

PAGE REVISION I PAGE

2. This @QUAL control statement overrides the @QUAL control statement in example 1. Therefore, subsequent filename
references which have preceding asterisk will have the implied qualifier 2NDQUAL. For example, the @FREE control
statement is interpreted as:

@FREE 2NDQUAL=*FILEA

3.8. DATA PREPARATION CONTROL STATEMENTS

3.8.1. DIRECT CREATION OF CARD IMAGE FILES (@FILE)
Purpose:

The @FILE control statement creates SDF-formatted mass storage or magnetic tape files while the input symbiont is reading
the run stream. Creating a file in this manner rather than by means of the ELT or DATA processors reduces overhead since it
is accomplished at input time rather than at execution time. The data is handled only once in creating the file rather than
being read again from auxiliary storage with the run stream and then transferred to the file by the DATA or ELT processors
at execution time. The file into which the images are placed must be FASTRAND formatted or magnetic tape.

Format:

For each storage device, the format of the @FILE control statement is identical to the @ASG control statement for that
device (except that the label field is not used).

If the device type specifies FASTRAND format mass storage the format is:

@FILE,options filename, type/reserve/granule/maximum, packid-1/packid-2/...packid-n

NOTE:
The packid’s are only used if the type field specifies removable disc.

If the device type is magnetic tape, the format is:

@FILE,options filename(F-cycle),type/units/log/noise/MSA-trans/;
unit-trans/format,reel-1/reel-2 . . . /reel-n expiration period

Parameters:
options When device type is mass storage, the options are:
A — Already catalogued
G — Guard modes
P — Catalogue as public
R — Catalogue as read only
W — Catalogue as write only

CorU - Catalogue (assumed if not present)

T — Temporary (used on tape files only)

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 3-43

UP-NUMBER PAGE REVISION PAGE

When device type is magnetic tape, the options are:

B — Set no translate mode

E — Set even parity

F — Check label only if present
H — 800 FPI density

| — Set translate mode

J — Label not present
L — 200 FPI density
M — 556 FPI density
o — Odd parity

Vv — 1600 FPI density

Description:

For a more complete explanation of these options and the remainder of the control statement, see the @ASG statement for
FASTRAND mass storage or magnetic tape (see 3.7.1.1 and 3.7.1.2).

@FILE control statement processing is terminated upon encountering an @ENDF control statement, a @FIN control
statement, or another @FILE control statement. Data images and all control statements except @COL and its accompanying
end sentinel are placed into the created file (the @COL contro! statement and sentinel are processed immediately, and the file
is marked when the mode switch is mode).
If the device type is magnetic tape and a @F [LE control statement is encountered while processing a previous @F ILE control
statement for the same filename, then the current file is closed, and an EOF mark is written and the second file follows
immediately on the same reel.
Since the file created by the @FILE control statement is not available until it is closed (by an @ENDF, @FIN or second
@FILE control statement), the user should physically structure his input run streams so as to not access the file until it is
available, that is, calls on this file by any language processor or user requests should physically follow the @FILE, @ENDF
sequence which created it.
3.8.2. TERMINATING THE FILE MODE (@ENDF)
Purpose:
Marks the end of the images for a file created by the @F1LE control statement.
Format:

@ENDF

Description:

@ENDF control statements cannot have labels and cannot be continued.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 3-44

UP-NUMBER I PAGE REVISION I PAGE

3.9. DYNAMIC RUN STREAM MODIFICATION

3.9.1. DYNAMIC RUN STREAM EXPANSION (@ADD)

Purpose:

Provides a means of inserting images into the run streams from any file currently assigned to the user or any catalogued file,
provided that it is a FASTRAND-formatted file in SDF format, or from any source element of a program file created by such
means as the:

L] DATA processor

= ED processor

= ELT processor

L] user program

Images being added may be data or any control statement normally allowed in a run stream with the exception of those
control statements which are acted upon at input time, such as:

@RUN

@COL

@FIN

@FILE

@ENDF
All parameters on the @ADD control statement are required.
Format: |

@label: ADD,options name

Parameters:
options The options are:
D — Allows the insertion of files or elements when operating under the
DATA or ELT,D processors.
E - Return control at the EOF address of the READ$ request as if an
@EOF control statement had been encountered when the end of the
added file or element is ‘reached (see 5.2.1).
P — The @ADD control statement is to be printed in the program listing.
name Names the file or element to be added (see 2.6). If a filename is intended, the filename

must be followed by a period, otherwise it is interpreted as an element name.

4144 Rev. 2

UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS

PAGE REVISION PAGE

3-45

L=

Description:

When the @ADD control statement is encountered, the first image of the file or element being added replaces the @ADD
control statement image. All subsequent run stream images are taken from the file or element being added until either
end-of-file or end-of-element is encountered. Subsequent images are obtained from the file in which the @ADD control

statement was encountered.

@ADD control statements may be nested to the leve! specified at systems generation. However, a given file or element may
not be referenced twice in the same nest. When this occurs, or when a nonexistent file or element is referenced, the run is

placed in the error mode and processing continues.

This control statement is a valuable tool for remote users (batch or demand) because control statements or data need be
submitted only once but may be used in many subsequent runs. The prestored, partial control streams can be corrected prior

to their addition by placing correction lines after an @ELT,D or an @DATA control statement.

Examples:
LABEL A OPERATION OPERAND A COMMENTS
10 20 30 40 50
@ADDL Loddd l-rgl.]’jAlLsﬁ R R | TR RO TR Y000 W W N T A B [R Y T SO T S T |
olA:D!-DI bl A} P{RQELTSH Lbndd Ll [TR A PR T S WS W AU T G W 1
gADDi;I (| ’IPI‘RB?FlITYSl‘I Lo bl Lol AT T TNT T SN S B : Lo bt 1
fododo bt e b e Lo 1l N S R S W A U ot o)

1. The images in file TPF$, element TOTALS replace the @ADD control statement.

2. The images in file PROFITS replace the @ADD control statement.

3. The images in file PROFITS replace the @ADD control statement. The @ADD control statement is to appear in the

program listing (P option).

3.9.2. CONDITIONAL STATEMENTS

Conditional statements are those executive control statements which are used for the dynamic adjustment of the control
stream while it is being executed. The conditional control statements provided are:

@SETC control statement (see 3.9.4.1)
@TEST control statement (see 3.9.4.2)

@JUMP control statement (see 3.9.4.3)

Through the use of these control statements, the user can set values in a condition word that is maintained for each run, test
that value, and depending upon the results of that test, skip a portion of the control stream, or direct an individual task of the
run to vary its execution. The condition word can also be accessed or altered by either the executive or by any of the user
programs within the run. The outstanding feature of this conditional network is that it allows a given run stream to produce

many different results with only minor modifications to the stream.

3.9.3. STATEMENT LABELING

Every control statement, including those registered by a CLIST$ executive request {see 5.5) may have a label specified. The
label provides the means by which portions of the run stream can be skipped with control passed to the statement having a
particular label. Note that labels contained on the @COL, @END, @ENDF, and @FILE control statements cannot be used for
passing control since these control statements are not entered in the run stream. Control statements have only one label;

however, additional labels can be attached to a statement by means of the use of label statements.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

3—-46
UP.NUMBER PAGE REVISION | PAGE

A label statement is any control statement containing a label but no other parameters; that is, just the recognition character
(@), the label, and the colon(:).

As an example, the @XQT control statement, which follows, can be referenced by any of the labels TAG, MARK, or LAST,

which are attached to it by label statements. As each label statement is encountered, no operation is performed and run
stream processing continues until a control statement with a command is found.

@TAG:
@®MARK:
@LAST:XQT PROGX

If the same label appears more than once within a run, the first forward occurrence is taken as the proper label.

3.9.4. CONDITION WORD

The condition word format is:

T1 T2 T3
O-or- 0-or-
error-condition-bits value-set-by-@SETC value-set-by-ER-SETC$

The condition word is divided functionally into thirds, as follows:

L] T1 is set by the excutive to indicate various error conditions and states with the following bit settings:
Bit 30 -— Inhibit run termination when a program error terminates (set by @SETC,| and cleared by
@SETC,A-see 3.9.4.1.
26 — Most recent activity termination was an ABORT$ (not EABT$).
25 - Most recent activity termination was an error termination.
24— One or more previous activity termination of the current task (previous task if between

executions) was an error termination (see 4.3.2).

For example, a value of 4 in $2, between tasks, means that the last activity of the previous task did an ABORT$ request and
that all other activities of that task (if any) terminated normally. Note that bits 26 and 25 cannot both be set.

. T2 is set by the @SETC contro} statement (see 3.9.4.1). It may also be set by means of the set parameter on the
@START control statement (see 3.4.3).

L] T3 is set by means of the SETC$ request (see 4.4.1).
While the entire condition word may be examined, either in the run stream (@TEST-see 3.9.4.2) or by an executing task
(COND$-see 4.4.2), alteration is limited to individual thirds, where T1 can be modified only by the executive; T2 only by a

control statement, and T3 only by an executive request.

The condition word is set to all zeros at the start of a run, unless the run was started by a @START control statement with a
set parameter, in which case T2 initially contains the value of that parameter.

The run stream path may be varied using the condition word in combination with the @SETC, @TEST, and @ UMP control
statements (see 3.9.4.1, 3.9.4.2, and 3.9.4.3, respectively).

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 3-47
UP-NUMBER PAGE REVISION PAGE

3.9.4.1. CONDITION WORD CONTROL (@SETC CONTROL STATEMENT)

Purpose:

Stores (set) a value in the T2 portion of the condition word.

All parameters are optional on the @SETC control statement except value.

Format:

@label:SETC,options value/j

Parameters:

options The options are:

A — Clears bit 30 of the condition word which allows a normal ERR$
termination of this run. For example, if an error termination occurs,
the run is terminated after processing @PMD and conditional control
statements. This option is in effect when the run is initiated (opened).

| - Sets bit 30 of the condition word which inhibits run termination after a
program error terminates. Normal processing continues after any error
terminations that occur while this option is in effect.

The | option should not be specified unless the user is willing to assume CPU costs beyond
time of error detection. This option permits runs with independent tasks or tasks with
nonfatal errors to continue. It also permits tests in which error conditions are expected to
be encountered, to continue.
value Specifies a positive octal value not exceeding four digits in length to be entered into the
designated portion of the condition word. Value is right-justified, zero filled prior to a
partial word store into the designated portion. If the magnitude of value exceeds the
capacity of the designated portion, truncation occurs.
] Designates portion of condition word into which value parameter is to be stored.
Permissible entries are: T2, S3, or S4. If omitted, T2 is assumed.
Examples:
LABEL A OPERATION A OPERAND A COMMENTS
10 20 30 40 50
"@ngTC':nl|1611;111;1||=111l'11111111111121|=11|4;|5||1|11:
2°@leEl-rlClki‘lil]Q/l$31Illl!llll[*Lll‘llllill!L!lllllllllli!!llil
3-&S|E1.T1C4;1IJ11“"'1/1314'11111!?ll!litlxll11111|1111i111|x111111;11i1
TR NN WS YN W W WX SO T U U YOE VAN YO SN OO Y NS YA N SO OON UNE O AU WA TR U0 U UUN TN Y YOO A SO0 VUG O TN O ONE O WO O WY O YO0 YO0 O MY WO WA SR O WE W

1. Loads 6g into T2 of condition word. (T2 is assumed since j parameter is omitted.)
2. Loads 105 into S3 of condition word. The value is treated as octal even when the leading zero is omitted.

3. Loads 43 into S4 of condition word.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER I PAGE REVISION I PAGE

3-48

2

4.

3.9.4.2. CONDITION WORD TESTING (@TEST)

Purpose:

Tests the value of the condition word to select the particular control statements to be executed or skipped.
All parameters on the @ TEST control statement are optional except the first occurrence of f and value,
Format:

@label: TEST f/value/j,f/value/j . . .

Parameters:
f Specifies the type of comparison to be made. If the test is met, the next control
statement is skipped. If test is not met, the next control statement is executed.
Permissible entries are:
TE - Test for equal
TNE — Test for not equal
TG - Test for greater than
TLE — Test for less than or equal
value Specifies a positive, octal value not exceeding 12 digits to be compared with that portion
of the condition word specified by the j parameter.
i Specifies the portion of condition word to be tested. Permissible entries are: U, H1, H2,

T1 through T3, and S1 through S6. If omitted, T2 is assumed.
Description:

When more than one test is to be made, the control statement is scanned until a test is met or all parameters are exhausted.
When a test is met, the control statement immediately following the @TEST control statement is skipped.

Examples:

LABEL A OPERATION A OPERAND A COMMENTS
10 20 30 40 50

I@TESTLJ Tﬁi/allixt,Jlleit:sznlllxullxixlilxxljlisllllxtnt

TESTJ_I_L‘__TE,I__LQ_,_{/LAJIIX‘!llllLlllillllIilelllll)lIlll(llllll
TE!SI’E[ITGI/'D]/HZII!llll‘_ll]l]Illll}ll]lllllllLlllllill|l

@T}E‘S-"]IITLIEI/L‘_/TQ Lvov v v v v vy v b v e e b v

SRR U RN W AR T U S A SN SN N RN S A I S B AR N AN v N AR A NN A A SR AR A SN NN AN N A AN AT A

1. S3 of the condition word is tested to see if it is equal to a value of 68, if equal, the next control statement in stream is
skipped. If unequal, the next control statement is executed.

2. T2 of the condition word is tested for two conditions: greater than 65 or equal to 4. If either condition is met, the

next control statement in the stream is skipped. If neither condition is met, the next control statement in the stream is
executed.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 3-49

UP-NUMBER PAGE REVISION PAGE

3. H2 of the condition word is tested for a greater than 10g condition. If the condition is met, the next control statement
in stream is skipped; otherwise, the next control statement is executed. The value is treated as even when the leading
zero is omitted.

4, T2 portion of the condition word is tested to see if it is less than or equal to 45. If so, the next control statement in the
stream is skipped; otherwise, it is executed.

3.9.4.3. BRANCHING FROM WITHIN RUN STREAM (@JUMP)

Purpose:

Advances control to the specified labeled statement within the control stream.

All parameters in the @JUMP control statement are required except label.

Format:
@label:JUMP label

Parameters:

label Specifies the label or name attached to a subsequent control statement to which control
is passed. This parameter may instead be a decimal value indicating the number of labeled
control statements to be advanced. Those control statements which cannot have labels
must not be included in the count. A numeric value of 0 as a parameter is not permitted.

Description:

The @JUMP control statement must refer in the forward direction to a statement not yet processed.

Examples:

LABEL A OPERATION A OPERAND A COMMENTS
0 20 30 40 50

I-@J—LLMPlLA:IAGI1x11Le1[\e|31=11:]i11|1x(111lt!x1£111|111|111
Zl@la—ulMPl 1 H 4{ _‘J_! i i 1 i i L i i ! 1 i 1 1 1 i Lond 1 ! | J i 1 i i i ‘ § 31 1.4 i 1 i i i i i 1 1 1 F S S

1. Control is advanced to the control statement containing the label TAG.

2. Control is advanced to the fourth control statement following the execution of the @ UMP control statement.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS I 3-50
UP-NUMBER PAGE REViSiON | PaGE
3.9.4.4. CONDITIONAL RUN STREAM EXAMPLE

, LaBEL ot OFERATION A 4, OPERAND & COMMENTS
LERUN.. . . RUNID,ACCT.PROT o
2‘@1SE4T1C\ Lodond 16 N A T T P A ; i Lt oot L [N S fododod
3'@1-EEI$TI Lok mElté TSR Y0 VNN V0 VO YOS FOOR N NS U S M0 [O R SRR SR A ARSI W TR S JO T W O
“'.a,XQTI fdd 1 |A b dedeeded Lty | ettt dendendd Ledodond] b
S-QIES(_E S mE/bl’IE/lsl T SR S B | [W R [N T T VN AN SO I N SO MO
A-QJI—[MP. bl x2! TR VAN SO TN WY NN WU WO N T Y SO S L i [T S DRI S N T 0 W Ld bl
T @JJUMPI Lt I)Q T YO U0 WO NN TN NG N OO OO WO W WX O T LN TR W T OO U0 YO YUY W O TR TR T SO A S U T WO WO
So@TESx-rt Lodod l-rlE/l'pxji—rJE/;"“T S I R [AR B R I | TSN ST NN NN WY N0 S S N
q-@mMpl 141 ;33 U O W NS WA O OO0 O O DR TN W | IR 0 WO W S S S TR SN S T S VOO W WO SO ST IO
lO-QleT] FEEEE N Bl SN T S A ST S N BT S A | S N S B WIS TR N S T S
“-@IUM‘P(L1 IY‘ b bedecte vy ok IR B N | S U T W NS N Y N M T
IS AT = AN T D e I IS
'3‘ d R it ﬁ' PO R O T T CONE YU S S SOOF TO00 WK SO UOOE TN WO l PRI WOR W WO O TR SN VO S U KON Y O ST N
{4» XQT, Ll 1C"; gt by b g ! Lttt d bt
(5. QX;:XQI.) N A Lo g vl IS T T O N S N
'6-@Y1:1XQI_E L1 ;El AN O ST O N VO U O Y SN YT T I A A RS B R AN PRRTN S S L 00 U0 WO S SO B
lq-PQZ:;XQI oo e by | N R G O | RN B SN A S I
18- @!EIIM PSRN TR N N YO TS VAN YOO Y T TG OO 0 Y S A U0 WU U000 DO TOOY O I L d PR U O OO T N W T ST R IO

PARSTUREE NN TN TN N0 WS N YO U Y YOO UONE T TN T OO SN Y S WO WO T OO0 W i fdodddttp TR T T NS N T S S N0 W T

As shown in this example, lines 1,2,3,5,7,15,16,17, and 18 are processed in this sample run stream, and programs D, E, and F
are executed in that order.

Line 2 might be changed to set other values to produce different run stream processing, as follows:

Line 2

@SETC 3

@SETC 4(or 10)

@SETC 11

@SETC 1

Lines processed

1,2,3,4,5,7,15,16,17,18

1,2,3,4,5,6,8,10,11,16,17,18

1,2,3,45,6,8,9,12,14,15,16,17,18

1,2,3,45,6,8,9,12,13,17,18

Programs executed

AD,EF
AB,EF
ACD,EF

AF

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

4—1

PAGE REVISION PAGE

4. EXECUTIVE SERVICE REQUESTS

4.1. INTRODUCTION

This section discusses the fundamental interfaces between an executing program and the executive. These interfaces are the
executive request (ER) mechanism, and the contingency mechanism. The material in this section is primarily of interest to
the machine (assembler) language programmer.

The Executive Request instruction has the general form:

ER function-id

The function-id is coded in the instruction u field, as a symbolic, system-defined name. At collection, this name is converted
into an absolute ER index. The numeric index associated with each name is specified in the system relocatable element ERUS.

The function-id identifies to the executive a particular service to be performed for the requesting activity. This service may be
as simple as a clock reading, or a complex file handling operation. See 4.2 for a summary of all ERs provided by the
executive.

4.1.1. CODING RESTRICTIONS

Only the u field may be used when executing an ER instruction. No indexing, index modification, or indirect addressing is
permitted. Also, an ER instruction must not be executed remotely with an Execute (EX) instruction.

4.1.2. CALLING SEQUENCE CONVENTIONS

The calling sequences for ERs may, in general, be used reentrantly. This means that parameters are passed in control registers,
either directly or indirectly, by a packet whose address is passed in a control register. The use of Test and Set (TS)
instructions across an ER to achieve reentrancy is poor practice, and in the case of real time activities may cause a system stall
which can only be relieved by operator intervention.

ER parameters that specify numeric values such as packet lengths are binary unless otherwise stated.

Normally, when a control register is required in ER calling sequences to hold parameters or results, register AQ is used.
Additional registers, if needed, are usually allocated in the sequence A1, A2, ...

Control register contents (including parameters) are not altered by the execution of an ER, unless specific resultant values are
defined in a control register.

The coding sequences shown for particular ERs are optimal in most instances, but any coding sequence that achieves the same
register loading is permitted. Note that many ERs require just a packet address in register AO, which means only H2 of
register AO is significant; however, if the coding sequence given clears H1 of register AO to zero, then it must be zero. This
principle applies to all calling sequences.

When a parameter must be the address of another parameter, the second parameter must not be in a controf register.

4144 Rev. 2 UNIVYAC 1100 SERIES SYSTEMS 4-2

UP-NUMBER PAGE REVISION PAGE

4.1.3. ER SYNCHRONY

For most ERs, processing is completed prior to returning control to the requesting activity. Such requests are divided into
two types: synchronous and immediate. Immediate ERs are of a short, simple nature and do not normally cause switching,
whereas synchronous ERs are of sufficient duration or complexity to require suspension of the requesting activity while
various executive components perform the requested service. With the exception of timing considerations pertinent to real
time applications, the differences between synchronous and immediate ERs does not influence programming logic.

A few ERs return control to the requesting activity prior to completing the required processing. These ERs are asynchronous
ERs. In general, control is returned immediately after processing has been initiated. The activity may then do other
processing in parallel. At some future point, the program (usually the same activity) must synchronize itself with the
completion of the requested service; this is most commonly done by checking a status value in a packet associated with the
request. Asynchronous ERs are generally ones which perform 1/0.

Table 4—1 specifies the type of each ER.

4.1.4. ERROR HANDLING

Programming errors in an executing program are detected in two basic ways. The first method is hardware detection of errors
such as divide fault, illegal operation, guard mode violation, and so on. The second method is software detection, within the
executive, of errors in ER usage.

Such errors cover a wide range, from simple mistakes like forgetting to assign a file to such subtle errors as allowing all
activities to deactivate waiting for each other to do something.

In a few error cases, it is not feasible for the executive to do anything but abort the run. However, the vast majority of errors
are at least potentially recoverable.

In the case of recoverable errors, the offending activity is placed in error mode, at which point a contingency occurs and the
activity is either error terminated or, if a contingency routine has been registered to handle error mode contingencies, the
activity is given control at that routine. See 4.9 for details of contingency handling and error termination.

In most cases, errors are detected immediately. However, certain kinds of errors for asynchronous ERs may be detected after
control has been returned from the ER, in which case the contingency may occur at (and capture) an instruction address far
removed from the offending instructions.

Error mode errors are not to be confused with errors not normally attributable to programming errors such as a parity error
on an |/O operation; these do not cause error mode contingencies.

Documentation of the individual ERs in this manual gives all restrictions and warnings pertinent to their use, but generally
does not include all possible associated error cases and error codes. In many cases, errors are common to many unrelated ERs;
for example, all packet addresses are checked against program storage limits. See Appendix C for a complete list of error
codes and diagnostic messages.

4.2. SUMMARY OF EXECUTIVE REQUESTS
Table 4—1 lists the name, octal function code, description, ER type, and a cross-reference for each ER. ERs that are
fundamental to activity and program control, and the miscellaneous ERs are covered in this section. The remaining ERs are

described in the sections covering the specific area with which the ER is associated.

The ER type designations are as follows:

A = Asynchronous
| = Immediate
S = Synchronous

— = Not applicable

UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS

PAGE REVISION

PAGE

4-3

Octal

I\llza?ne Function Description Type Refi:::ie
Code

ABORT$ 12 Abort run - 4323
ACTS 47 Activity activation S 4334
ADACTS$ 154 CADDS$ and ACT$ (ESI only) | 15.5.1
APCHCAS$ 77 ASCII punch control alternate) 5.4.8
APCHCN$ 75 ASCII punch control S 5.4.6
APNCHAS$ 73 ASCII punch alternate S 5.3.8
APRINT$ 70 ASCI! print S 5.3.2
APRNTA$ 71 ASCII print alternate S 5.3.4
APRTCAS$ 76 ASCII print control alternate S 54.4
APRTCNS$ 74 ASCI! print control S 54.2
APUNCHS$ 72 ASCII punch S 5.3.6
AREADS$ 166 ASCII read S 5.2.2.
AREADAS$ 167 ASCII read alternate S 5.2.4
AWAITS 134 Wait for other activities to terminate S 4.3.3.1
BBEOF$ 36 Set block buffering end-of-file S 13.3.2.8
CADD$ 57 Add communications buffer | 15.4.2.3
CENDS$ 100 Terminate contingency status | 494.2
CGETS$ 56 Get communications buffer S 15.4.2.2
CJOINS 151 Expan‘d communications buffer pool S 15.4.2.4
CLISTS$ 163 User access to control statements S 5.5
CMD$ 51 Dial communciations line A 15.4.1.2
CMH$ 52 Hang-up communications line A 15.4.1.9
CMI$ 47 Initiate communications input A 15.4.1.3
CcMO$ 50 Initiate communications output A 15.4.1.4
CMS$ 45 Line terminal initiation S 15.4.1.1
CMSAS$ 53 " Initiate communications input and output A 15.4.1.5
CMT$ 46 Terminate communications line S 15.4.1.10
comM$ 10 Console output and solicited input S 4.6.1
COND$ 66 Retrieve condition word | 4.4.2
CPOOLS 55 Create communiations buffer pool S 15.4.2.1
CREL$ 152 Release communications buffer pool S 15.4.2.5
CSF$ 17 Control statement function S 4.8.1
DACT$ 150 Activity deactivation S 4.3.3.3

Table 4—1. Available ERs
{Part 1 of 3)

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 4-4

UP-NUMBER I PAGE REVISION | PAGE

Nir':e F(:::::::on Description Type Rc;;:::nce
Code
DATES$ 22 Retrieve time and date ! 4.5.1
EABTS$ 26 Error terminate run - 4.3.2.4
ERR$ 40 Error terminate activity - 4.3.2.2
EXITS 11 Normal activity termination - 4.3.2.1
10.45.3

EXLNKS$ 173 Return to calling reentrant processor or main program /S 10.4.5.1
FACILS 114 Retrieve file assignment information S 727
FACITS 143 Retrieve file assignment information S 7.2.7
FITEMS$ 32 Retrieve file assignment information S 7.2.6
FORKS$ 13 Create new activity S 4.3.1.1
1IALLS 101 Register contingency routine 1 49.3.1
1$ 27 Unsolicited console input S 4.6.2
10$ 1 Initiate /O A 6.3.3
IOARB$ 21 Initiate arbitrary device 1/0 A 6.9.2
10AXI1$ 20 Exit and initiate arbitrary device 1/0 with

interrupt activity S 6.9.3
101$ 2 Initiate 1/0 with interrupt activity A 6.3.4
1owWs$ 3 Initiate 1/0 and wait S 6.3.5
IoWI$ 24 Initiate 1/O with interrupt activity and wait S 6.3.6
10X1$ 25 Exit and initiate 1/O with interrupt activity S 6.3.7
LABELS$ 31 Manipulate tape labels S 7.3.1
LCORES$ a4 Release program storage S 4.7.2
LINKS 171 Attach to reentrant processor /S 10441
LOADS 111 Load program segment S 10.2.4.5.1
MCORE$ 43 Acquire program storage S 471
MCT$ M Retrieve master configuration table S 48.3
MSCONS$ 125 Master file directory manipulation S 22.3
NAMES$ 146 Name an activity S 4.3.3.2
NRT$ 62 Terminate real time status ! 4.3.4.2
OPT$ 63 Betrieve options I 48.2
PCHCAS 165 Punch control alternate S 54.7
PCHCN$ 164 Punch controi S 545
PCT$ 64 Program control table retrieval | 48.3
PFD$ 106 Delete an element from a program file S 24.3.1.3

Table 4—1. Available ERs
(Part 2 of 3)

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 4-5
UP-NUMBER PAGE REVISION | PAGE

ER Octal Cross

Name Function Description Type Reference
Code
PFI$ 104 Insert an element into a program file S 24.3.1.1
PFS$ 105 Find an element in a program file S 24.3.1.2
PFUWLS 107 Update next program file write location S 24.3.1.4
PFWL$ 110 Obtain next program file write location S 24.3.1.4
PNCHAS$ 145 Punch alternate S 5.3.7
PRINTS 16 Print S 5.3.1
PRNTA$ 144 Print alternate S 5.33
PRTCAS$ 155 Print control alternate S 5.4.3
PRTCN$ 137 Print control S 5.4.1
PSR$ 157 Processor state register control | 48.4
PUNCHS$ 130 Punch S 5.35
READS$ 15 READ S 5.2.1
READAS$ 42 Read alternate S 5.2.3
RLINKS$ 172 Attach to a reentrant processor 1/s 10.4.4.2
RLISTS$ 175 Reentrant processor registration S 10.4.3
ROUTES 133 Line terminal transfer) 15.4.3
RT$ 61 Establish real time status 1/s 4.34.1
SETC$ 65 Set condition word | 4.4.1
SNAP$ 120 Snapshot dump S 485
TDATES$ 54 Retrieve time and date 1 45.2
TFORK$ 14 Create new activity with timed wait S 4.31.2
TIME$ 23 Retrieve time of day 1 4.5.3
TINTLS 136 Initialize tape file to beginning of
first reel S 7.29

TREAD$ 102 Print and read S 5.2.5
TSWAPS$ 135 Swap reels of tape file S 7.2.8
TWAITS 60 Timed wait S 4.3.5
UNLCK$ 67 Terminate interrupt activity status S 6.3.8
UNLNK$ 174 Return to main program from reentrant processor | 10.4.5.2
WAITS 6 Wait for completion of 1/0 request S 6.3.1
WANY$ 7 Wait for any 1/O completion s 6.3.2

Table 4—1. Available ERs
(Part 3 of 3)

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

a6
UP-NUMBER PAGE REVISION PAGE

4.3. ACTIVITY AND PROGRAM CONTROL

4.3.1. ACTIVITY REGISTRATION

4.3.1.1. CREATE A NEW ACTIVITY (FORKS$)
Purpose:

Register and initiate an asynchronous program activity.
Format:

L AQ,(parameter-word)
ER FORKS$

Description:
Each activity of a program executes independently of all other activities. A FORKS$ request creates a new activity and
schedules it for execution. Parameter-word describes characteristics to be associated with the new activity and specifies the

program address at which it is to be given control. The format of parameter-word is:

S1 S2 S3 H2

[RT-priority] [activity-id] registers entry-address

"

Entry-address is the program address at which the new activity is to begin execution.

The registers field specifies the set of control registers which must be saved for the activity and which initially have the same
contents as the corresponding registers of the initial activity. A value of zero indicates that only the minor set of registers
(X11, AO—A5, R1—R3) are required. A nonzero value indicates that all X, A, and R registers (except X0 and RO) are
required. Once selected, the control register set remains with the activity until it is terminated. Note that if an activity with
only the minor set of registers creates an activity with the complete register set, the initial register contents are only defined
for the minor set. The space and time required, within the executive to maintain a minor register set activity is significantly
less than for an activity with the entire register set.

The activity-id field is used to associate a numeric identity with the new activity. If used, the activity-id must be unique
within the program and have a value from 1 through 35 and must not currently be in use. A zero specifies that the activity is
not to have an activity-id (note that the initial activity of a program has no activity-id). See the discussion of AWAIT$
(4.3.3.1) for the use of activity-id's.

The RT-priority field allows a real time priority to be assigned to the new activity. If used, the value must be in the range 2
through 35 and within the range allowed to the account number. Note that at least one other activity must previously have
elevated itself to real time by an RT$ request before this method can be used.

See 4.3.4 and Section 17 for additional information on real time activity/program control and real time processing.

4.3.1.2. CREATE A NEW ACTIVITY WITH TIMED WAIT (TFORKS$)
Purpose:

Creates a timed activity. A TFORKS request is similar to a FORKS$ request (see 4.3.1.1) except that the new activity does not
begin execution for a specified amount of time.

4-7
PAGE

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER PAGE REVISION

Format:

L AOQ,{parameter-word)
L A1,(wait-time-in-milliseconds)
ER TFORKS$

Description:
The format and meaning of the paramter-word is identical to the parameter-word used in a FORKS request (see 4.3.1.1). The
wait time may be any value from 2 to 30,000 (2 milleseconds to 30 seconds). If the value exceeds 30,000, 30,000 milliseconds
is used. If the new activity is real time, the wait time may exceed the 30,000 millisecond limit. Note that the wait time is
simply a minimum elapsed time “‘by the clock”, and is not influenced by the amount of processing (if any) devoted to other
activities of the program (for example, program might be time swapped); for this reason, the TFORK$ request is primarily
intended for real time applications.
4.3.2. ACTIVITY TERMINATION
The following ERs provide various forms of activity termination. When an activity terminates, it ceases to exist for the
program and the system. The activity-id and name are released for reuse by any other activities. When the last activity of a
program terminates, the program is terminated.
4.3.2.1. ACTIVITY NORMAL TERMINATION (EXIT$)
Purpose:
Terminate the current activity.
Format:

ER EXITS$

Description:

The current activity is terminated, and the program is also terminated if this is the last activity.

4.3.2.2. ACTIVITY ERROR TERMINATION (ERR$)
Purpose:
Place the requesting activity in error mode (normally causes error termination).
Format:
ER ERRS$
Description:

See 4.1.4 and 4.9 for a complete discussion of error termination and error mode.

4.3.2.3. ABORT RUN (ABORTS$)
Purpose:

Unconditionally terminate the program and the run.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

4-8

PAGE REVISION | PAGE

Format:

ER ABORTS$
Description:
All activities of the program, including the requesting activity, are unconditionally terminated. No register dumps are
provided for the activities. In addition, the run is terminated and PMD requests are not honored. For demand runs, only the
program is terminated and not the run.
If an abort contingency routine has been registered, a single new activity is created after all the program’s activities are
terminated. The new activity is given control with a complete set of control registers (contents not saved) at the program'’s
contingency routine address. If any of the terminated activities were real time, the new activity is given the highest real time

priority allowed to the RUN's account number.

See 4.9 for a discussion of contingencies.

4.3.2.4. PROGRAM ERROR TERMINATION (EABTS$)
Purpose:
Unconditionally error terminates all activities but allows error diagnostics.
Format:
ER EABTS
Description:
The EABTS$ request is similar to the ABORTS request (4.3.2.3) except that register dumps are provided for all terminating

activities and PMD requests are honored. The program is error terminated instead of being aborted (see SETC control

statement and SETC$ executive request, 3.9.4.1 and 4.4.1, respectively). Abort contingency also applies to the EABT$
request.

4.3.3. ACTIVITY SYNCHRONIZATION
In programs which use asynchronous activities to achieve parallel processing, it is often necessary for an activity to wait upon
the completion of processing which is being performed by other activities. Several ERs are provided to achieve the desired

program synchronization.

Activity synchronization is accomplished by removing the requesting activity from consideration for CPU time {(deactiviating
it) until some other activities indicate that the desired processing is complete.

The programmer must be careful that all activities do not simultaneously go into synchronization waits (see AWAITS -
4.3.3.1 and DACT$ - 4.3.3.3); if this occurs, the program and run are unconditionally aborted with an AWAIT/DEACT
AMBIGUITY error diagnostic message.

There are two 1/0 requests, 10XI$ and I0AXI$ (see 6.3.7 and 6.7.3, respectively), which convert existing activities into
interrupt activities. In these cases, the interrupt activity retains the activity-id and name associated with the original activity.
Conversely, no activity-id or name retention occurs for when a new interrupt activity is created (by 101$ - 6.3.4, IOWI$ -
6.3.6, or IOARB$ - 6.7.2).

4.3.3.1. JOINING OF ACTIVITIES (AWAITS$)

Purpose:

Deactivate requestor until all specified activities are terminated.

4-9
PAGE

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

PAGE REVISION

Format:

L A0, (activity-id-mask)
ER AWAITS

Description:

The AWAITS request is used when further execution of the requesting activity is not desired until all specified activities have
terminated.

The requesting activity must have an id number (note this rules out initial program activity) as must all activities for which it
desires to wait (see 4.3.1.1). The activities to be waited upon are specified by setting the bits in the activity-id mask

corresponding to the activity-id number. {(An activity with an id of 4 corresponds to bit 4 in the mask.) Bit 0 must not be used.
The requesting activity is deactivated until all specified activities have terminated by means of EXIT$ or ERRS.

4.3.3.2. ACTIVITY NAMING (NAMES$)

Purpose:

Attaches a name to an activity for identification purposes and for future referencing by ACT$ or DACTS requests (see
4.3.3.4 and 4.3.3.3, respectively). The attached name is not the same as that used in conjunction with an AWAIT$ request
(see 4.3.3.1).

Format:

L,U AO0,18-bit-activity-name
ER NAME$

Description:
The 18-bit name loaded into H2 of register AO is expanded to 36 bits (full word) by the executive and includes the three
user-supplied characters in H2 of register AQ. The user-supplied portion of the activity name must be unique for each named
activity as the executive does not otherwise guarantee uniqueness. The full 36-bit name, which is returned in A0, must be
used with subsequent ACT$ requests.
4.3.3.3. ACTIVITY DEACTIVATION (DACTS$)
Purpose:
Deactivates the calling activity which must have been previously named by the NAMES$ request (see 4.3.3.2).
Format:
ER DACTS$
Descriptions:

Reactivation of this activity requires that an ACT$ request (see 4.3.3.4) be made from some other activity. Control is
immediately returned to the next instruction following the DACT$ reference of the deactivated activity.

If some other activity has performed an ACT$ request specifying the requestor’s name before the requestor performed the
DACTS$ request, the requestor is not deactivated but is returned control immediately. This is necessary as there is no way for
the activity performing the ACT$ request to determine if the requestor has performed the DACTS$ request.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

4-10
PAGE

PAGE REVISION

4.3.3.4. ACTIVITY ACTIVATION (ER ACT$)

Purpose:

Activates an activity which must have been previously named by the NAMES$ request (see 4.3.3.2).
Format:

L AQ,activity-name
ER ACTS$

Description:

The 36-bit name returned as a result of the NAMES$ request is used to activate the activity. The requesting activity need not
be a named activity.

Prior to issuing the ACT$ request, the user must load register AQ with the contents of a main storage location in which the
name attached to the requested activity has been stored.

If the activity being activated is already active it is flagged such that when it next executes a DACT$ request, it is
automatically reactivated.

4.3.4. REAL TIME PROGRAM/ACTIVITY CONTROL

4.3.4.1. CHANGING PROGRAM/ACTIVITY TO REAL TIME STATUS (RT$)
Purpose:

Raises the status of a program to real time if the run’s account number permits such action. The RT$ request also allows a
real time activity to change its switching priority level within the real time class.

Format:

L,U AO0,switching-priority-level
ER RT$

Description:

Real time status is provided for programs servicing communications lines. To allow for the time critical nature of these
programs, a program/activity which is real time is afforded privileges which non real time programs/activities do not enjoy.
Namely they:

- have top priority for CPU switching and 1/0;

L are not swapped out of main storage;

L have access to certain ER's, primarily the communications requests.

The allowable switching priority (2 through 35) for each program’s activities is controlled by account number. If a switching
priority higher than that permitted is requested, the activity is placed in error mode. When the requesting activity currently
has real time status, the ER is used only to control that activity switching priority.

A program is considered real time when any of its activities acquire real time status. Because the program may not be

swapped, an RT$ request from within a program causes it to be positioned in main storage in such a way so as to cause min-
imum impact on the total system. Additional RT$ requests from within the program do not cause such relocation.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

4-11

PAGE REVISION PAGE

4.3.4.2. REMOVAL OF PROGRAM/ACTIVITY REAL TIME STATUS (NRT$)
Purpose:
Reduces an activity/program from real time status.
Format:
ER NRTS$
Description:
The activity is returned to the original program type (batch or demand). A program retains real time status until all real time

activities are reduced in status or terminated, at which time the program also returns to its initial type.

4.3.5. TIMED ACTIVITY WAIT (TWAITS$)
Purpose:)
Places the activity in a wait state (delays execution) for a specified period of time.

Format:

L A1,{wait-time-in-milliseconds)
ER TWAITS

Description:

The activity must load register Al with the desired wait time period to making the TWAITS request. This value has the same
meaning as the wait time for the TFORKS$ request (see 4.3.1.2).

4.4. CONDITION WORD CONTROL

The program condition word which contains program status information supplied by the executive and information inserted
by user-supplied control statements can also be modified dynamically from within an executing program. A complete
description of the format and content of the condition word can be found in 3.9.4.

4.41. SETTING THE CONDITION WORD (SETC$)

Purpose:

Dynamically sets T3 of the program condition word.

Format:

LU AOyvalue
ER SETC$

Description:

This ER transfers T3 of register A0 to T3 of the condition word. The intital contents of T3 of the condition word are 0. This
ER performs a function similar to the @SETC control statement which sets T2 of the condition word (see 3.9.4).

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS l I 4-12
UP-NUMBER PAGE REVISION PAGE
44.2. CONDITION WORD RETRIEVAL (COND$)
Purpose:
Transfers the program condition word to register AO.
Format:
ER COND$
Description: i
The program condition word is placed in register AQ. This does not modify the condition word itself.
The condition word format returned by the CONDS$ request is:
T1 T2 T3
error-condition-bits O-or-value-set-by-@SETC 0-or-value-set-by-ER-SETC$
Error-condition-bits:
Bit 30 - Inhibit run termination on program error terminations (set by @SETC,1 control statement
and cleared by @SETC,A (see 3.9.4.1).
26 - Last activity termination was an ABORTS$ (not EABTS).
25 - Last activity termination was an error termination.
24 - Some previous activity of the current task terminated in error.
4.5. RETRIEVAL OF THE TIME AND DATE
4.5.1. TIME AND DATE IN FIELDATA (DATES$)
Purpose:
Places the fieldata date and time into registers AO and A1, respectively.
Format:
ER DATES
Description:
Register AO contains:
T1 T2 T3
month day-of-month last-two-digits-
(01-12) (01-31) of-the-year
Register A1 contains:
T1 T2 T3
hour minutes seconds
(00 through 23) (00-59) (00-59)

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

4-13

PAGE REVISION | PAGE

4.5.2. TIME AND DATE IN BINARY (TDATE$)
Purpose:
Places the binary date and time into register AO.
Format:

ER TDATES$
Description:

Register AO contains:

s1 2 s3 H2
month day year time-in-seconds-past-midnight
(1-12) (1-31) |(MODULO 1964) P g

S3 is the last two digits of the year, Modulo 1964, the current year can be computed by adding 1964 to the value returned in
S3 of AO.
4.5.3. TIME IN MILLISECONDS (TIMES$)
Purpose:
Places the current time past midnight in milliseconds into control register AO in binary.
Format:
ER TIMES
Description:

Register AO contains:

35 0

time-in-milliseconds-past-midnight

4.6. CONSOLE COMMUNICATIONS

4.6.1. CONSOLE OUTPUT AND SOLICITED INPUT (COMS$)

Purpose:

To request use of the onsite operator’s console to display output messages and solicit operator input.
Format:

L,U AO,pkeaddr
ER COM$

4144 Rev. 2
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS 4-14

PAGE REVISION PAGE

Description:

Pktaddr is the address of a packet whose format is:

Word 0

Word 0

error-code

console-class

actual-input-
char-count

Word 1

output-char-
count

output-buffer-
addr

Word 2

expected-input-
char-count

S1 S2 S3 H2
error-code console-class 0 actual-input-char-count
0 output-char-count

{max. 50) output-buffer-addr

expected-input-char-count

(max. 50) input-buffer-addr

Contains a COM$ request error code {see Appendix C) if an error is detected in the
packet {the activity is also placed in error mode).

The user may direct the message to any console by specifying the appropriate console
class code. The codes are:

0z — System console

13 — 1/0 activity console

23 — Communications console

3g — Hardware confidence console

Contains the number of input characters received. Always less than or equal to
expected-input-char-count.

The number of characters in the message to be displayed. The message is restricted to 50
characters maximum. Each character is edited and master spaces (@) are deleted from the
message (they must be included in the character count). If this field is zero, the COM$
request is ignored. If a character count greater than 50 is specified, the output message is
truncated at 50 characters.

The address of the program buffer containing the output message. The characters of the
message are obtained from successive sixths of a word, beginning with S1 of the first
word of the buffer.

When this field contains a nonzero value, a console operator response is solicited. The
activity executing the COMS$ request is placed in a wait state until the input message is
complete. If the input message exceeds the expected character count, the input message is
discarded and the console operator is requested to retype the message. When no input
message is desidered, set this field to zero. The maximum number of characters permitted
in the input message is 50.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 4-15

UP-NUMBER l PAGE REVISION IPAGE

input-buffer-addr The address of the program buffer that will hold the input message. Input characters are
stored in successive sixths of a word starting with S1 of the first word of the buffer. If the
last word of the input message does not contain six characters, the remainder of the word
is filled with Fieldata blanks (05g). The end-of-message (EOM) symbol is not transferred
to the buffer.

4.6.2. UNSOLICITED CONSOLE INPUT (119)

Purpose:

Provides a means to define the activity which is to accept any unsolicited input directed to the program.

Format:

ER 1I$

Description:

The activity executing the 11$ request is deactivated as for a DACT$ request (see 4.3.3.3), however, the activity need not be

named. If named, it may be reactivated using an ACT$ request (see 4.3.3.4). An 11$ request when an |l activity has already

been defined is not allowed.

Unsolicited console input of up to six characters is stored (left-justified, space filled) in the activity’s AO register, and the
activity is activated.

After activation (by either ER ACT$ or console input), the activity is no longer defined as the unsolicited console input
activity. The same activity or some other activity must execute another 11$ request to redefine the unsolicited console input
activity.

Unless the program is guaranteed that unsolicitated input will occur to cause the activation of the 11$ activity, the activity
must be named and activated by an ACT$ request prior to program termination. Failure to do this aborts the program and
the message AWAIT/DACT AMBIGUITY is placed in the program’s PRINTS file.

The console input activity is also activated by the remote terminal BREAK keyin. Since no input is actually received, register
A0 is space filled.

4.7. PROGRAM STORAGE EXPANSION AND CONTRACTION
4.7.1. MAIN STORAGE EXPANSION (MCORE$)

Purpose:

Permits user program to request additonal main storage for the | bank or D bank.

Format:

L,U AO,highest-addr-required
ER MCORES$

Description:

The address requested by the activity is assumed to be in the | bank if the address is less than the first D bank address
produced at collection time. Otherwise, the address is assumed to be a D bank address.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

4-16

PAGE REVISION PAGE

If the main storage requested is already assigned to the program, the activity’s storage limits are adjusted and control returns
to the requesting activity. If the storage is not already assigned, the requesting activity is deactivated unti! storage can be
made available by swapping this or some other program.

Additional storage cannot be obtained if any activity of the program is in real time status, unless the storage can be obtained
without moving the program. Nonreal time programs are swapped, if necessary, to make the requested storage space available.
Requests for less space than is currently available to a program are ignored, and control returns to the user activity.

Each activity of a multiple activity prdgram must perform a MCORES$ request before additional storage is made available to
that activity. This provides for automatic synchronization and assures each activity of storage space when needed.

The storage limits for ESI completion activities are not automatically expanded by a MCORES$ request. The user can cause
this expansion by setting bit 35 in register AO at time of the request.

The MCORES$ request permits the user to request an | bank or D bank where there previously was none. The | bank may be
expanded to the first D bank address generated when the program is collected. The D bank may be expanded to beyond 65K.
If expanded beyond 65K (1777773), an index register must be used to address those locations in excess of 65K.

The expanded storage space allocated is maintained for the life of the program.

The additional main storage space obtained through the MCORES request is cleared to zero unless the program collection
specified the B option on the @MAP control statement (see 10.2.1).

4.7.2. MAIN STORAGE CONTRACTION (LCORES)
Purpose:

Releases unneeded main storage in the | bank or D bank.
Format:

L,U AOQ,highest-address-required
ER LCORES$

Description:

The address specified is assumed to exist in the | bank if the address is less than the first D bank address produced at
collection time. Otherwise, the address is assumed to be a D bank address.

The entire | bank or D bank can be released by specifying the first address of the respective bank. Before programming a
release of the D bank, however, the @MAP listing for the program should be checked to ensure that necessary
collector-produced tables are not contained in the D bank.

Main storage is released to that spanned by the largest | and D bank of any current activity’s storage limits. In making the
storage limits check, one complete storage limits value is used for all ESI completion activities. When main storage is
actually released, the segment load table is updated to show all segments that lay totally outside the program’s area as not
being in main storage. If the segment is in main storage at the time of the release and any part of the segments | and D bank is
still within the program'’s area, the segment is left marked in main storage. If 1/0 is outstanding for this activity at the time of
the LCORES request, request satisfaction is delayed until the 1/O is completed.

In a multiactivity program, all activities whose storage limits span the area to be released must perform an LCORE$ request
before the program size can actually be reduced.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 4-17

UP-NUMBER PAGE REVISION

PAGE

4.8. MISCELLANEOUS EXECUTIVE REQUESTS

4.8.1. DYNAMIC REQUEST OF CONTROL STATEMENTS (CSF$)
Purpose:

Permits the user program to submit certain control statements for interpretation and processing during program execution
rather than from the run stream.

Format:

L AQ,(image-length,image-addr)

ER CSF$
Parameters:
image-length Length in words of the control statement image
image-addr Address of the buffer that contains the image

Description:

The submitted image must be in the identical Fieldata format, including the character @ in S1 of the word 0, as it would have
been if it had been submitted as a regular control statement in the input run stream.

Termination of scan results from whichever occurs first: a comment of blank-period-blank is encountered, a blank following
the last allowable parameter field is encountered, or the image-length in the H1 of register AO has been exceeded.

Maximum allowed value for image-length is 40 words; 14 is assumed if O is given.

The control statements which may be processed by the CSF$ request are:

@ADD @CKPT @RSPAR
@ASG @FREE @RSTRT
@BRKPT @LOG @START
@CAT @MODE @SYM
@CKPAR @QUAL @USE

Control statement syntax and other errors generally result in error mode termination with contingency type 12 (see 4.9.4),
error type 4, and error code as follows:

Error Code Description

404 Syntax error

414 Image length greater than 40

42, Control statement is not one that can be processed by the CSF$ request
434 Invalid address given for the image buffer

44, Too many @LOG control statement entries given for the program

When certain control statements are submitted by the CSF$ request, register AQ is returned containing status or error
information. For the facility request statements (@ASG, @CAT, @F REE, @MODE, @QUAL, and @USE), bits set in register
A0 upon return from the CSF$ request indicate that either the request was rejected or that it was accepted with
precautionary warnings (see 4.8.1 for interpretation of bit settings in A0). The meaning of the bits set in register A0 upon
return from processing the @BRKPT and @SYM symbiont control statements are described in section 3.6.4. The status codes
returned in register AO for a @CKPT and @CKPAR CSF$ request are described in 17.4; on return from a @CKPT request, H1
of register AO contains the checkpoint number.

4144 Rev. 2
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS

PAGE REVISION | PAGE

4-18

On return from a CSF$ @START request, register AQ contains codes as follows:

0s

1s

2

3s

45

Request processed normally

Request rejected due to file unobtainable
Request rejected due to element obtainable

Request rejected due to filename not specified

Request rejected due to improper run stream in file

If errors are encountered while processing an @ADD control statement submitted by the CSF $request, control is not returned
following the CSF$ request. Rather, error mode termination is entered with contingency type 125 {see 4.9.4), error type 23,

and error codes as specified in 3.9.1.

For CSF$ requests for processing @LOG, @RSPAR, and @RSTRT control statements, no status information is returned in

register AQO.

Example:

The following example illustrates how an @ASG control statement (see 2.3.2.1.1) is submitted by an executive request to the

CSF$ function.

Assume the user wants to assign a temporary FASTRAND-formatted scratch file named FILEA and to reserve two granules.
This can be coded as follows:

30

OPERARD

COMMENTS
50

leo71LADDIIC|Ell(!'!

! j

LLABEL A OPERATION A

0 29

S S-S B 1 H l:.'qxul bk d
7
} i b E*R febodd H 1F5$1 foedidiedo

b b b TR Ut R TR S0 OO0 0 S W O T
PR WO SR TN WS WY SR WOOT IO .2 T TR TN YUY 00 NAY SN WO T VO O S N
PR TN VR K ST SO S 0 . WO SR S A S T W T

\
IXAD 10* b d @ASﬁL,T; L
T TR VU S A0 YT SO0 JONS N O bbbt S

1

The blank-period-blank construction terminates the image scan.

4.8.2. RETRIEVING @XQT CONTROL STATEMENT OPTIONS (OPT$)

Purpose:

Makes available options specified on the @XQT statement (see 2.3.3.2).

Format:
ER OPT$

Description:

When control is returned, the specnfled option letters are set in register AO in master bit notation, that is, letter A sets bit 25
. letter Z sets bit 0. Bits 35—26 are always returned as zero.

letter B sets bit 24; letter C sets bit 23; .

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 419

UP-NUMBER PAGE REVISION PAGE

4.8.3. PROGRAM CONTROL TABLE RETRIEVAL (PCT$)
Purpose:

Makes all or specified portions of the information stored in the program control table (PCT) available to the requesting
program.,

Format:
Two formats are available:
To transfer a maximum of 10005 words starting at word zero of the main block:

L AO,(word-count,buffer-addr)
ER PCT$

To transfer all or part of the PCT starting at any PCT-relative address:

L AO,(0,buffer-addr)
L A1,(n,relative-addr)

ER PCT$
Parameters:
buffer-addr Address within the program where the PCT is to be transferred.
n Number of words to be transferred.
relative-addr Address relative to the start of the PCT main block from which the transfer should occur.
Description:

For information concerning the contents and internal format of the PCT, refer to the latest version of the UN/VAC 71100
Series Systems Memorandum. This ER must be used with caution in that UNIVAC reserves the right to change the content or
format of the PCT without notice.

A PCT’s size is determined by program requirements with a normal maximum of nine main storage blocks (512 words each).
The structure and addressing of the PCT is illustrated by the following examples.

Assume an eight-block PCT:
Rel-addr/7700005 —

block-8
T | I I
: | | |
| | |
' | | |
Rel-addr 7750005~ — l ! |
’ block-4
Rel-addr 7760005 —
block-3
Rel-addr 7770004 —
block-2
Rel-addr Og -
main-PCT-block (1)
Rel-addr 777y —

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

4-20
PAGE

PAGE REVISION

L AO,(0,buffer)
L A1,(02000,0777000)
ER PCT$
This call transfers block-2 and the main-PCT-block, in that order, to the address BUFFER.
L AO0,(0,buffer)
L A1,(0500,0100)
ER PCT$
Transfers 5003 words to BUFFER starting at relative address 100z in the main-PCT-block.
L AO0,(0,buffer)
L A1,(0100,0777400)
ER PCT$

Transfers 1005 words to BUFFER from relative address 4005 through 4775 of PCT-block-2.

4.8.4. ALTERING PROCESSOR STATE REGISTER (PSR$)
Purpose:

Permits an activity to dynamically set and clear those bits within the processor state register (PSR) which establishes the
following standard control modes:

n quarter-word mode (bit 17}

L] double-precision underflow mode (bit 32)
L] floating-point compatibility mode (bit 35)
Format:

L A0, (parameter-word)
ER PSR$

Description:
Bit 0, 2, and 3 in the parameter word control the modification of PSR bits 17, 32, and 35, respectively. When a control bit is

0, 2, and 3, the associated bit in the PSR is set to the value of the corresponding bit in the parameter word. For example, if
bit 0 in the parameter-word is set, the content of bit 17 of the parameter-word is placed in bit 17 of the PSR.

Upon returning from the PSR$ request, register A1 contains the program’s former PSR contents.
Examples:

The following examples illustrate typical parameter words loaded into control register AQ and their interpretations for a
PSR$ request.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 4-21

UP-NUMBER PAGE REVISION PAGE
Parameter Word ..
(Octal) Description
000000000000 No modification of existing PSR; enables readout of PSR in control register A1.
440000400015 Set bits 17, 32, and 35 of PSR (initiates quarter-word mode, double-precision underflow
mode, and floating-point compatibility mode)
000000000015 Clears bits 17, 32, and 35 of PSR
440000400010 Sets bit 35 of PSR {(initiates floating-point compatibility mode); all other modes remain

the same (bits 17 and 32 are not interpreted when control bits 0 and 2 are not set)
040000400011 Clears bit 35 of PSR (floating-point compatibility mode); sets bit 17 of the PSR
(quarter-word mode); other modes remain the same.
4.8.5. SNAPSHOT DUMP (SNAPS$)
Purpose:
Provides a snapshot dump printout of the contents of selected control registers and program storage as an aid for debugging.
Format:

S AO,pktaddr+2
L,U AO,pktaddr
ER SNAP$

Description:

Pktaddr is the address of a packet whose format is:

35343332 17 0
Word 0 snapshot-id
1 XIAlR word-count start-addr
2 former-AQ
where:
snapshot-id Six character Fieldata name used to identify the dump.
X,A,R Used to designate registers to be dumped as follows:

L If bit 35=1, dump all X registers.
n If bit 34=1, dump all A registers.
L If bit 33=1, dump all R registers.

If all three bits are equal to 0, no registers are dumped.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

4-22
UP.NUMBER PAGE REVISION | PAGE

word-count Number of words of main storage to be dumped.

start-addr Starting program address of the main storage area to be dumped.

former contents Save area for register AQ. This is needed to capture the entire environment. Register
of-A0 AO is restored using this value before returning control to the program.

Be careful when using the SNAPS request in a multi-activity program because packet usage is not reentrant.

4.8.6. MASTER CONFIGURATION TABLE RETRIEVAL (MCT$)

Purpose:

To retrieve information from the master configuration table (MCT) or to read/update the program entry area in the MCT.
This is a special application ER which is useful only to certain specialized programs. As a result, only those programs with a
privileged account number are permitted to execute MCT$ requests. The contents of the MCT are subject to change as new
executive requirements are defined. The current contents and format of the MCT are described in the 7700 Series Systems
Memorandum.

Format:

L AQ,packet
ER MCTS

Description:

The contents (packet) of register AO when executing a MCT$ request are:

S1 S2 S3 H2

status type buffer-addr

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 4-23

VS

UP-NUMBER PAGE REVISION PAGE
where:
status Indicates the status of the request. The status codes are:
0 — Normal
1 — Invalid buffer address
25 - Inva|id'i(ype specified
type Specifies the type of operation to be performed. The type codes are:
0, - Read contents of the MCT (excluding program entry) into the

specified buffer.

1 - Read contents of the program entry into the specified buffer. The
format and content of the entry is program dependent.

23 - Write contents of the specified buffer into the program entry.

buffer-addr Specifies starting address of a buffer. Buffer usage is determined by the entry in the type
field.

The number of words transferred on a MCT$ request is determined by either the length of the MCT or the length of the
program entry maintained in the MCT. On a read request, the size of the specified buffer must be equal to or larger than that
specified in the MCT. For a write request, only the number of words specified in the program entry length field are trans-
ferred to the program entry. Bothhthe program entry and the MCT length are defined at system generation.

The program entry is an optional entry in the MCT used for recording information related to a programs application. The
information recorded in this entry and its format is the responsibility of the user since only user-supplied information is
recorded in the entry.

4.9. CONTINGENCIES

4.9.1. INTRODUCTION

A contingency is an abnormal condition, often associated with an interrupt, which may occur during execution of a program.
Typical examples are illegal operation, unsolicited console input, and error mode.

The executive allows a program to preregister routines to process contingencies, and transfers control to the appropriate
routine should any occur. In the absence of such registration, the executive provides a system standard action for each
contingency type.

It should be clearly understood that in almost every case, a contingency action involves diversion of the execution path of an
existing activity, rather than creation of a new activity to handle the contingency. Also, the diverted activity is normally the
one to which the contingency specifically pertains.

4.9.2. CONTINGENCY TYPES AND STANDARD ACTION
Contingencies are classified into ten different contingency types. These, with their associated standard action, are listed in
Table 4—2. Contingency types 10 and 12 may be further broken down into error types, (see Table 4—3). Finally, in the case

of error mode (see 4.1.4), error types are broken down into many error codes; these are given in Appendix C.

The mnemonics listed in Tables 4—2 and 4—3 are standard abbreviations that appear in various system diagnostic messages;
they may not be program referenced.

4144 Rev. 2
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS 4-24

PAGE REVISION | PAGE

Contingency

Type (Octal) | Mnemonic Description Standard Action
1 10PR Illegal operation (machine instruction Error termination of offending activity.
undefined)
2 IGDM Guard mode fault Error termination of offending activity.
3 IFOF Floating-point overflow Clear A,A+1 registers to zero except for
the following instructions:
4 IFUF Floating-point underflow ' FCL: Clear A only
‘ DFP: Clear A+1, A+2
5 IDOF Divide fault (divide overflow) LCF,DSF: Ciear A+1 only
6 IRST Restart See checkpoint/restart (Section 17)
7 IABT ABORTS (also EABT$) Program and run termination (see
4.3.2.3 and 4.3.2.4)
10 IINT Console interrupt (see also Table 4-3) Onsite keyin: Il NOT ACTIVE operator
message
Remote BREAK key: unconditional program
termination (see 4.6.2)
1 ITS Test And Set (TS) instruction interrupt Control returned to TS instruction (see
(real time only) Section 16)
12 IERR$ Error mode (see also Table 4—3) Error termination of offending activity
Notes:

(1) Contingency types 1 through 5 are hardware detected. They are discussed in UNIVAC 1108 Multi-Processor
System Processor and Storage Programmers Reference, UP-4053 (current version). Test and Set {TS)
instruction operation is also hardware oriented (see 16.4).

(2) Error termination is discussed in 4.9.2.1.

(3} Arithmetic fault (types 3,4,5) A-register clearing on standard action is done by examining the a field of the

offending instruction. No clearing occurs if an Execute Remote (EX) instruction was used to execute the
offending arithmetic instruction.

Table 4—2. Contingency Types

4-25
PAGE

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER PAGE REVISION

Error Type :
Error Name (Octa?;p Mnemonic
Contingency Type 10.
11 Onsite Keyin 1 1
Remote BREAK Key 2 RBK
Contingency Type 12.
/0 Call Error 1 1/0
Symbiont Call Error 2 SYMB
ERRS$ Call (ER ERR$) 3 ERR$
Invalid or Bad ER 4 ER
Console Call Error 5 CONS
Communications Error 6 COM2
Communications Error 7 COMM
Reentrant Processor Error 10 REP

Table 4—-3. Error Types

4.9.2.1. ERROR TERMINATION CONSIDERATIONS

When an activity error terminates, it does not necessarily mean immediate termination of all activities of a multi-activity
program, although in practice a program is usually unable to proceed much further when it loses an activity in an error
situation. Of course, any activity termination in a single activity program does mean immediate program termination.

Activity error terminations produce a diagnostic message in the run’s print file defining the error, the point at which it
occurred, and identification of the activity (name or id). In batch mode, a complete control register dump is provided.

When one or more activities of a program error terminate, bits are set in the run condition word (see 3.9.4) indicating this
fact, and the run is marked in error. When the program ultimately terminates, further run stream processing is normally
limited to processing a post-mortem dump, provided a @PMD control statement (see 11.2.1} is the next (nontransparent)
control statement. A @PMD,E contro! statement (dump only if an error occurs) is honored in this case (but not after a
normal program termination). The run is terminated after PMD processing is completed, unless a @SETC,| control statement
(continue in spite of errors — see 3.9.4.1) is in effect.

4.9.3. CONTINGENCY REGISTRATION (IALLS)

Purpose:

To register a routine to handle one or more contingency types, either for the entire program or for just the requesting
activity.

Format:

L AQ,(contingency-parameter)
ER IALLS

Description:

The format of contingency-parameter is:

T1 S3 H2

contingengy-

application contingency-routine-addr

selection-mask

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 4-26

UP-NUMBER PAGE REVISION I PAGE

selection-mask A bit mask that indicates which contingencies are to be processed. The bit settings are:
Contingency Bit
Type (Octal) g Contingency
1 24 Illegal Operation
2 25 Guard Mode
3 26 Floating-Point Overflow
4 27 Floating-Point Underflow
5 28 Divide Fault
6 29 Restart
7 30 Abort
10 31 Console Keyin
11 32 Test and Set (Real Time Only)
12 33 Error Mode

The selection-mask field must be set to 0 for ESI contingencies or when contingencies are
being cancelled. A zero mask should not be used in any other instance.

contingency- Specifies the scope of the operation and may take one of the following values:
application
0g — Program. The contingency routine being registered is to apply to all
activities of the program (except ESI contingencies).

1 — Activity. The contingency routine is to apply only to contingencies
pertaining to the requesting activity. In a particular contingency situa-
tion, if an applicable routine (including selection mask setting) is
registered for both the offending activity and the program, then the
activity routine is selected. Otherwise, the program contingency routine
is selected, or if it is also not applicable, standard action occurs.

2 - ESI. The contingency routine is to apply to all contingencies during
ESI completion processing for the program. ES| contingencies are
handled somewhat differently from nonESI contingencies (see 4.9.5).

contingency- Specifies the address of the first word of the contingency routine. A zero address specifies
routine-addr no registration for the application specified in the contingency-application field.

A program may have as many different contingency routines registered at one time as there are activities, plus a program
contingency routine, and plus an ESI contingency routine.

The same address may be registered as the contingency routine address for different applications or activities (the difference
being the selection-mask settings). This does not include ESI contingencies.

A contingency registration completely cancels any previous registration for the same application (just for the same activity
for activity applications).

Restart and console interrupt contingencies (types 6 and 10) are by nature not associated with any particular activity and
must be registered as program contingencies (application 0). The executive may divert any activity to process these
contingencies, if registered. To avoid an arbitrary activity diversion to process the 11/BREAK keyins (type 10), it may be
preferable to use the 11$ request {see 4.6.2).

4144 Rev. 2
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS

PAGE REVISION

PAGE

4-27

The operator keyins X and E cause actions similar to the ABORT$ and EABTS$ requests (see 4.3.2.3 and 4.3.2.4,

respectively). No contingency registration, however, is applicable to these keyins.

4.9.4. CONTINGENCY PROCESSING (NON-ESI)

4.9.4.1. THE CONTINGENCY ROUTINE

The first two words of the contingency routine are used as a contingency packet, in which the executive stores status
information concerning the contingency prior to giving the offending acticity control to process the contingency routine that
starts at the third word of the packet. The packet format is:

S1 S2 S3 H2
Word 0 error-type error-code |contingency-type error-addr
1 not used ER-packet-addr
2 (first instruction of the contingency routine)
|
| |
| |
| !
n (last instruction of the contingency routine)
where:
error-type See Table 4—3.
error-code See Appendix C

contingency-type

error-addr

ER-packet-
addr

See Table 4—2.

The address of the offending instruction, or in the case of asynchronous contingencies
(see 4.9.4.3), the address of the last instruction prior to diverting to the contingency
routine. Thus, if it is desired to return to the original execution path after the
contingency is processed, the error-addr must be increased by one for use as a reentry
address. The error address may not be meaningful for guard mode errors because the

hardware does not guarantee a valid interrupt address.

The address of the ER packet associated with the offending instruction. Applicable only

for 1/0 and console error types {see Table 4—3).

A contingency routine is entered with all control registers for the offending activity loaded as they were when the
contingency occurred. Preservation of these registers, if they are needed, is the responsibility of the contingency routine.

Contingencies are processed serially for the entire program. While an activity is executing a contingency routine, it is
considered to be in the contingency mode, and no other contingency processing is allowed to occur. For this reason,
contingency processing should be kept as short as possible.

When the activity has completed contingency processing, it must notify the executive so that other contingencies may be
processed. This is accomplished by executing any ER (CEND$ request — see 4.9.4.2 — is provided especially for this
purpose). Once contingency mode is terminated, the contingency packet may be overwritten as the result of another

contingency.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 4-98

UP-NUMBER PAGE REVISION | PAGE

4.9.4.2. CONTINGENCY MODE TERMINATION (CEND$)
Purpose:
To notify the executive that the requesting activity has completed contingency processing.
Format:
ER CEND$
Description:

Although any ER can terminate contingency mode, the CEND$ request is designed for that specific purpose, and is the most
efficient method unless the service provided by another ER is needed.

4.9.4.3. ADDITIONAL CONTINGENCY CONSIDERATIONS
L Nested Contingencies

A nested contingency occurs when an activity encounters a synchronous contingency from within a contingnecy
handler. (A synchronous contingency is one that occurs at the same point as its cause.) All nested contingencies are
given standard action for the particular contingency type, regardless of registration. If the standard action is
termination, the activity is removed from contingency mode, terminated, and some other contingency (if any) is
processed. Otherwise, the activity is left in contingency mode. ERR$ is considered a nested contingency, and standard
error action occurs. ABORT$ and EABT$ cause standard action but if an ABORT contingency routine is registered, it
will get control in the standard manner.

L Multiple (Non-nested) Contingencies

As stated previously (see 4.9.4.1) contingencies are processed serially within a program. If multiple contingencies occur,
one is processed and the rest are queued. The queue is ordered by the switching priority of the offending activity, thus
assuring real time activities proper treatment. When an activity terminates contingency mode, the next contingency on
the queue is processed.

It is possible for multiple (non-nested) contingencies to occur for a single activity, due to asynchronous contingencies.
(An asynchronous contingency is one which occurs at a point unrelated to its cause, such as a console interrupt or
restart, or an error relating to an asynchronous ER-see 4.1.3 and 4.1.4.) In such cases, each contingency is queued
individually and the activity is subject to multiple successive diversions to process each contingency in serial.

Determination of the applicable routine (if any) is made when a contingency is actually processed, and not at time of
occurrence (that is, while a contingency is queued, an IALLS$ request (see 4.9.3.1) may have been executed and
changed the registration).

When an activity terminates for any reason, any contingencies queued for it are discarded.

= Test-And-Set (TS) contingency processing is available only to real time activities. This type of contingency is
particularly prone to interlock situations, and the programmer should use caution to ensure against such problems.
Note that a TS conflict within a contingency routine is given standard action, while a TS conflict outside of a
contingency routine, when the program is in contingency mode, results in stalling the conflicting activity. See 16.4 for
more details on real time TS processing.

" A checkpoint is not allowed while a program is in contingency mode if a restart contingency is registered.

n For ABORTS$ or EABTS$ requests (see 4.3.2.3 and 4.3.2.4, respectively), the contingency is not honored until all
activities of the program have terminated. The user then regains control at the contingency routine with a new activity.

4-29

PAGE

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER PAGE REVISION

4.9.5. ES| CONTINGENCIES

The communications handler provides the user with the capability of processing various contingency conditions that might
occur while executing an ES| activity. To establish an ESI contingency, the user real time program must register the
contingency via the IALLS request (see 4.9.3). All contingency types that can occur within an ESI activity are processed by
the specified ESI contingency routine.

The format of the ESI contingency packet is:

S1 S2 S3 H2
Word 0 errc:;g pe error-code |contingency-type error-addr
1 TS-indicator not used ER-packet-addr
2 (first instruction of the contingency routine)
I I
I I
| !
n (last instruction of the contingency routine)
Word 0:
error-type Error-type is 73 for communications
error-code The error-codes are:
60y — Indicates contingency type 1 through 5
61z — ESIACTSor ADACf$ request error
623 — ESI CADDS or ADACTS$ request error
63 — Invalid ER request
64y — ESI time-out
contingency-type The contingency-type codes are:
1 — Invalid operation
23 — Guard mode
35 - Floating-point overflow
4; - Floating-point underflow
by — Divide fault

123 - Error mode (see error-code). Applicable only to 613 —63g

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 4-30
UP-NUMBER PAGE REVISION PAGE
error-addr Same as for nonESI (see 4.9.4.1) except that for error mode contingencies (type 12)
operation is truly reentrant {no incrementation is needed).
Word 1:
TS-indicator Set equal to 1 by the executive prior to giving control to the contingency routine.
ER-packet-addr The address of the ER packet associated with the offending instruction. Applicable only

to contingency type 12 (see Tables 4—2 and 4-—3).

As for nonESI contingencies, ESI contingencies are initiated serially. Prior to terminating contingency mode, however, the
routine may enable contingency processing on another CPU by clearing the TS indicator (S1, word 1) in the contingency
packet. This indicator serves to protect the packet contents from being overwritten until the contingency routine has had a
chance to retrieve the information pertinent to the contingency. Termination of the ES! contingency mode also enables other
contingency processing.

Should another contingency occur while in contingency mode, the ESI activity is terminated and the communication line
associated with that activity is deactivated for 1/O operations. The following message is issued to the console and the master
RUN-LOG as an error message to indicate the terminating condition:

RUN ID Sxxx/Uxxx ESI TERMINATION (error)

The S and U fields of the message indicated the subsystem and unit numbers respectively and the error field gives the error
code. The first reference to the deactivated terminal by the real time program causes a nonESI| contingency for the
referencing activity (error type 74, code 10g).

Terminate ESI contingency mode normally, only those executive requests specified for normal ESI| activities may be used:
EXITS, ACT$, CADD$, and ADACTS. Any reference other than those indicated above result in a contingency within a
contingency, causing terminal deactivation as described in the preceding paragraphs.

ESI contingencies are independent of non ES! contingencies. A program may process ESI and non ESI contingenies
concurrently.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 5—1

UP-NUMBER PAGE REVISION PAGE

. SYMBIONT INTERFACE REQUESTS

5.1. INTRODUCTION

The executive system contains a set of routines which provide an interface between the user and any supported unit record
device. This set of routines is called the symbiont complex. These routines can be divided into two logical groups:

o Symbionts (also called device routines)

o] Symbiont interface routines

5.1.1. SYMBIONTS

Symbionts (device routines) are available for all standard equipment. Supported equipment includes such onsite devices as
high speed card readers, punches, printers, UNIVAC 9000 Series Systems; such batch remote site terminals as UNIVAC 9000
Series Systems and DCT-2000; and such demand remote terminals as teletypewriter models 33 and 35, Friden, UNISCOPE
100 and 300, DCT-500, and DCT-1000. For all batch devices, data is buffered in SDF format using mass storage to provide an
effective linkage between the high speed of the CPU and the low speed unit record devices. Due to the conversational nature
of demand processing, input data from demand terminals is not buffered to mass storage except for paper tape input.

During systems generation, one or more output devices are associated with each of the input devices. This logical linking of
output to input devices is called device association throughout this section. The result of this association is that output files
created as the result of an execution are normally outputted on only one of the devices associated with the input device
which initiated the run stream. In cases where an output device is unavailable, or busy, or where a specific output device is
desired, the association can be overriden for a specific file by means of the @SYM control statement.

Input to the system is separated by the @RUN control statement. As each @RUN control statement is encountered, a run file
is created and information is extracted by the coarse scheduler for run scheduling. The input symbionts also interpret the
@ELT,D, @DATA, @END, @FILE, and @ENDF control statements to determine if a @RUN control statement is the
beginning of another input run stream or part of a file or element in the current run stream. The @COL and @ENDCL control
statements are interpreted to determine if the mode of the card reader should be changed.

All files created or processed by the symbiont complex are in SDF format (see 24.2.3) and can be directly processed by either
the input interface routines or by the output symbionts.

Functions which control the format of the output are inserted into the symbiont output file by means of an executive
request. These functions vary according to the output device to which the file is being directed. As the control parameters are
submitted, they are placed into the appropriate output file, and interpreted when the file is being processed by a symbiont
(see 5.4).

The data in input files created from ASCII devices is in ASCII and the data in input files created from Fieldata devices is in
Fieldata. The user may request data from these files in either ASCI| or Fieldata {see 5.2) and the necessary conversion is
done. Output files may be created in either ASCII or Fieldata (see 5.3). Data which is in ASCII is converted to Fieldata for
Fieldata devices and requires no translation for ASCII devices. The converse holds true for data which is in Fieldata. This
manipulation of data requires no special action by the user other than to make the proper executive request as described in
this section. See Appendix D for translation tables.

5-2
PAGE

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

PAGE REVISION

5.1.2. SYMBIONT/USER INTERFACE ROUTINES

The symbiont user interface routines provide for data transfers in either Fieldata or ASCIl. A complete set of executive
requests is provided for each mode. The data transfered is always Fieldata when the Fieldata requests are used and is always
ASCIHI when the ASCII requests are used. The user interface routines are avilable through the following executive requests.

Fieldata ASCII
Executive Requests Executive Requests
READS$ AREADS$
PRINTS$ APRINTS
PUNCHS$ APUNCH$
READAS AREADAS
PRNTAS APRNTA$
PNCHA$ APNCHAS$
PRTCNS$ APRTCNS$
PCHCNS$ APCHCN$
PRTCA$ APRTCA$
PCHCAS$ APCHCAS
TREADS$

CLISTS

When the letter A appears as the last alphabetic character, the request pertains to an alternate file (defined in succeeding
paragraphs). The letter A appearing as the first character indicates an ASCII operation. ASCII and Fieldata executive requests
may be interspersed in any order. For each executive request, the user specifies the storage area in his program for the data
transfer. In addition, when using executive requests for alternate files, the user must specifiy the filename in Fieldata.

The system automatically initiates three symbiont files, allowing three normal operations as follows:

Run files (READ$ file) — contains input images accessed by means of READ$ or AREAD$
Print file (PRINTS file) — contains output images produced by PRINTS or APRINTS
Punch file (PUNCHS$ file) — contains output images produced by PUNCH$ or APUNCH$

Each of the three basic interface functions (read, print, and punch) is capable of multiple file operation. The user may define
files other than the three automatically initialized by the system. The user may assign a file and direct the normal print or
punch output to this file by means of the @BRKPT control statement (see 3.6.2). The user may assign a file and direct only
specific print or punch output to this file by means of the alternate executive output requests {such as, the PRNTAS request).
The user may also assign a previously created file of input images and read these images in the normal mode by prior use of
the @ADD control statement (see 3.9.1) or directly input from the file by means of this alternate input executive requests
{such as the READAS request). These user-defined and assigned files are called alternate files.

The @ADD control statement is used to direct the READ$ or AREADS requests to obtain images from the file indicated by
the @ADD control statement instead of images from the system initiated run file. Subsequent READ$ or AREADS$ requests
obtain images from the @ADD file until it is exhausted, at which time images again are obtained from the system initiated run
file. Nesting of @ADD control statements is permitted.

The @BRKPT control statement is used to direct PRINT$/APRINTS or PUNCH$/APUNCHS$ requests to place images in a file
defined by the @BRKPT control statement instead of the system initiated print or punch files. Images continue to be placed
in the user specified files until another @BRKPT control statement is encountered. During run termination, the normal print
image stream is always returned to the system-initiated print file. The @BRKPT control statement also may be used to close
user-defined alternate files.

The output control requests, such as PRTCNS, provide specific control information describing output formatting to the
device routines. The output control requests also provide a means of advising the device operator of any special action
required.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

PAGE REVISION | PAGE

5-3

A more detailed discussion of the total capabilities of the symbiont interface routines is given in the paragraphs that follow.

5.2. OBTAINING INPUT IMAGES

5.2.1. READING FIELDATA IMAGES (READS$)
Purpose:

Obtains an image in Fieldata from the run stream located in the run file.

Format:
L AO,(EOF-return-addr buffer-addr)
ER READS$

These instructions can be generated by the procedure call:

.R$EAD (EOF-return-addr,buffer-addr)

Parameters:

EOF-return-addr Address to which control is transferred when a control statement is encountered.
buffer-addr Address of the input buffer into which the Fieldata image is placed.

Description:

If the input image is in quarter-word ASCII, READS$ converts it to Fieldata.

Normal input image length may be up to 14 words but images from an @ADD or @START file may be any length.

Input images must be noncontrol statement images except for the CLIST$ control statements (see 5.5) or processor control

statements (in INFOR format — see 9.6).

After the image is transferred to the input buffer, control is returned to the address following the READS request.

Upon return from an @EOF control statement (see 10.3.2), bits 5—0 of register A0 contain the sentinel character that

appears in column 6 of the @EQF control statement and bit 35 is not set.

If the EOF return is caused by an @ADD,E control statement (see 3.9.1), H2 of register AO is set to zero.

Upon normal return from a READS$ request, H2 of register AO contains the number of words transferred. The meaning of any

bits set in H1 of register AO is as described in Table 5—1.

If the run is being made in the demand mode, the program is normally placed in a wait state until the READS$ request is

satisfied from the demand terminal (see Section 12).

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

5-4

PAGE REVISION PAGE

Bit Set Decription

35 Abnormal return taken because a control statement cannot be passed. Any further attempt to do
READS$ request or a TREADS request within this program causes an error termination (unless the
request is preceded by a CSF$ request with a @ADD statement).

34 Currently reading from a file or an element introduced by an @ADD control statement.

33 Set on an EOF return when at the end of an @ADD file or element and an E option was used on
the @ADD control statement.

31 Image is in INFOR format (see 9.6).

30 Used if bit 31 is set; indicates that more INFOR — formatted words are to be read (see 9.6).

23-18 Used if a statement listed by a CLISTS$ request (see 5.5) was encountered; contains the CLIST$
index value,

Table 5—1. Bit Settings In Control Register AO For A READ$ Request

5.2.2. READING ASCII IMAGES (AREADS)

Purpose:

Obtains an image in quarter-word ASCII from the run stream located in the run file.
Format:

L AO,{EOF-return-addr,buffer-addr)
ER AREAD$

These instructions can be generated by the procedure call:

A$READ (EOF-return-addr,buffer-addr)

Parameters:

The interpretation of the parameters is identical to that for the READS request (see 5.2.1).

Description:

AREAD$ operation is identical to READ$ (see 5.2.1) except that input image length may be up to 20 words (@ADD and
@START file images may be any length).

5.2.3. FIELDATA IMAGES — ALTERNATE FILE (READAS$)

Purpose:

Obtains an image in Fieldata from a user-specified file.

Format:

LU AO0,pktaddr
ER READAS$

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 5-5

UP.-NUMBER

PAGE REVISION PAGE

These two instructions may be generated by the procedure call:
RSEADA pktaddr
Description:

Pktaddr is the address of a three-word packet whose format is:

H1 H2

Word 0 EOF-return-addr buffer-addr

1
12-character-Fieldata-filename
2
Word 0
EOF-return-addr The address to which control is returned when no more images exist in the file.
buffer-addr The address of the input buffer into which the Fieldata image is placed.

If the input image is in quarter-word ASCli, the READAS$ request converts it to Fieldata.

Upon normal return from a READAS request, register AO contains the number of words transferred. Images may be any
length and the caller must be careful if the image length is longer than anticipated. Normal image length is 14 words.

After the image is transferred to the input buffer, control is returned to the address following the READAS request.
The file named in the packet must have been assigned prior to the first READAS request and must be in SDF format.
When the file is exhausted, no image is available to transfer, and the caller regains control at the EOF return address.

See 3.6.2 for the use of the @BRKPT control statement with read alternate files.

5.2.4, ASCIl IMAGE — FROM AN ALTERNATE FILE (AREADAS)
Purpose:

Obtains an image in quarter-word ASCII from a user-specified file.

Format:

AU AO0,pktaddr
ER AREADAS$

These two instructions may be generated by the procedure call:

ASREADA pktaddr

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP.NUMBER

5-6
PAGE REVISION | PAGE

Description:

The interpretation of the parameters is identical to that for the READAS request (see 5.2.3).

The AREADAS operation is identical to READAS request (see 5.2.3) except that the normal image length may be up to 20
words.

5.2.6. FIELDATA IMAGES — CONVERSATIONAL MODE (TREADS)

Purpose:

Displays the Fieldata message supplied and obtains in Fieldata the response. This request requires less overhead than an
individual PRINTS request followed by a READS request and should be used for demand processing.

Format:

LU AO,pktaddr
ER TREADS$

Description:

Pktaddr is the address of a two-word packet whose format is:

T s3 H2

Word 0 line-spacing image-length output-buffer-addr

1 EOF-return-addr input-buffer-addr
Word 0
line-spacing The number of lines to space before displaying the message. No spacing is performed after

displaying the message.

image-length The length in words of the message.
output-buffer-addr The address of the output buffer from which the Fieldata message is obtained.
Word 1
EOF-return-addr See READS request (5.2.1).
input-buffer-addr The address of the input buffer into which the Fieldata image is placed.

The program is normally placed in a wait state until both the output and the input operations are accomplished at the
demand terminal. During the wait period, the program is a prime candidate to be swapped to auxiliary storage.

When images that are obtained from a file introduced by an @ADD control statement, neither the output message nor the
images obtained are displayed.

Normal return is identical to that for the READ$ request (see 5.2.1).

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

5-7
PAGE

PAGE REVISION

5.3. TRANSFERRING OUTPUT IMAGES

5.3.1. PRINTING FIELDATA IMAGES (PRINTS$)
Purpose:

Places a Fieldata image into the system defined print file.

Format:
L AO,(PF line-spacing,nbr-of-words,image-addr)
ER PRINTS$

These two instructions may be generated by the procedure call:

PSRINT (PF line-spacing,nbr-of-words,image-addr)

Parameters:

PF An assembler FORM directive defined as PF FORM 12, 6, 18.
line-spacing Number of lines to space before printing this image.
nbr-of-words Number of data words in this image.

image-addr Address where the Fieldata image is obtained.

Description:

The allowable values for line spacing are 08 to 3777,. If the value of line spacing is greater than the number of lines
remaining on the present page, the image is printed on the first printable line on the next page. If the value in line spacing is
-0 (77778) the image is always printed on the first printable line of the next page. The first printable line on a page is
defined by means of the print control margin function (see 5.4.1).

The number of words in the image is limited only by the number of characters that can be printed on the device that prints
the file. For example, if the file is to be printed on a 132 character/line high speed printer, the maximum value for the
nbr-of-words parameter is 221 o

The control statement @SYM PRINTS can be used to direct the current system-defined print file to a device other than the
device indicated by device association. The queueing of the print file is held until it is closed by @BRKPT control statement
or the run-is closed.

The @BRKPT control statement is used to close and queue for printing all system defined print files and the @SYM control
statement is not necessary if the user wants the file to go to the devices specified by device association.

In demand mode, the program is normally placed in a wait state until the output is accomplished.

5.3.2. PRINTING ASCII IMAGES (APRINTS$)

Purpose:

Places a quarter-word ASCII image into the system-defined print file.
Format:

L A0, (PF line-spacing,nbr-of-words,image-address)
ER APRINT$

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

5-8

PAGE REVISION PAGE

These two instructions may be generated by the procedure call:
A$PRINT (PF line-spacing,nbr-of-words,image-address)
Parameters:
The parameters for the APRINTS request are identical to those for the PRINT$ request (see 5.3.1).
Description:
All formats and limitations are the same as for the PRINTS$ request (see 5.3.1) except a standard 132-character/line printer
prints an image of 33, | words.
5.3.3. FIELDATA IMAGES — ALTERNATE PRINT FILE (PRNTAS$)
Purpose:
Places a Fieldata print image into a user-defined print file.
Format:

LU AOQ,pktaddr
ER PRNTAS$

These two instructions may be generated by the procedure call:
PSRNTA pktaddr
Description:

Pktaddr is the address of a three-word packet whose format is:

T1 S3 H2

Word 0 line-spacing word-count buffer-addr

12-character-Fieldata-filename

where:

The meaning of the line-spacing, word-count,, and buffer-addr parameters are identical to those for the PRINTS$ request (see
5.3.1) and the restrictions that apply to PRINTS also apply to PRNTAS.

Description:

If an alternate file has been assigned prior to the first executive request for the file, the executive does not queue the file for
output. If the file has not been assigned to the run, the executive assigns the file, and when the file is closed (@BRKPT or
@FIN control statement) the file is automatically queued to the output device determined by device association. if the
alternate output file was assigned by the user, the file must be closed with a @BRKPT control statement (see 3.6.2) and
queued for output with a @SY M control statement (see 3.6.3) before the run terminates for the file to be properly outputted.
All files must be catalogued before they can be referenced by the @SYM control statement.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 5-9

UP.NUMBER PAGE REVISION | PAGE

5.3.4. ASCII IMAGES — ALTERNATE PRINT FILE (APRNTAS)
Purpose:

Places a quarter-word ASCII image into a user-defined print file.
Format:

LU AO,pktaddr
ER APRNTAS

These two instructions may be generated by the procedure call:
ASPRNTA pktaddr
Description:
The interpretation of the parameters is identical to that for the PRNTA$ request (see 5.3.3).

The APRNTAS operation is idential to PRNTA$ (see 5.3.3) and the filename must be in Fieldata.

5.3.5. PUNCHING FIELDATA IMAGES (PUNCH$)
Purpose:

Places a Fieldata image into the system defined punch file.

Format:

L AOQ,(nbr-of-words,image-addr)
ER PUNCH$

These two instructions may be generated by the procedure call:

PSUNCH (nbr-of-words,image-addr)

Parameters:

nbr-of-words Number of words of data in this image.
image-addr Address of the buffer where the image is obtained.
Description:

The number of words in the image must not exceed 63, _ and is also limited by the number of characters that can be punched
on the device. If the image is to be punched in 80-column Hollerith code, the maximum image length is 1410 but shorter
images may be specified and are blank-filled before punching. If the image is 1410 words long, the last four characters must
be blanks.

If the images are to be punched in column binary (see 5.4.5), an image length of 2710 must be used, and any column that is
not required for data must be zero filled.

The control statement @SYM PUNCHS$ can be used to direct the current system defined punch file to a device other than the
device indicated by device association. The queueing of the punch file is held until it is closed by the @BRKPT control
statement or the run is closed.

The @BRKPT control statement is used to close and queue for punching all system-defined punch files and the @SYM control
statement is not necessary if the user wants the files to go to the device specified by device association.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

PAGE REVISION I PAGE

5-10

5.3.6. PUNCHING ASCII IMAGES (APUNCHS$)

Purpose:

Place quarter-word ASCII images into the system-defined punch file,
Format:

L A0, (nbr-of-words,image-addr)
ER APUNCH$

These two instructions may be generated by the procedure call:
ASPUNCH (nbr-of-words,image-addr)

Parameters:

The parameters for the APUNCHS$ request have the same meaning as the parameters for the PUNCHS$ request (see 5.3.5).

Description:

The number of words in the image must not exceed 631 o and is also limited by the number of characters that can be punched
on the device. If the image is to be punched in 80-column Hollerith code, the maximum image length is 2010. If the image is
to be punched in column binary (see 5.4.5) an image length of 271 o Must be used, and any column not punched must be zero

filled.

If the user is punching column binary, there is no difference between the PUNCH$ and APUNCHS$ requests.

5.3.7. FIELDATA IMAGES — ALTERNATE PUNCH FILE (PNCHAS)
Purpose:

Place a Fieldata image into a user-defined punch file.

Format:

LUy AQ,pktaddr
ER PNCHAS

These two instructions can be generated with the procedure call:
PSNCHA pktaddr
Description:

Pktaddr is the address of a two word packet in the format:

T1 S3

H2

Word 0 not-used word-count

buffer-addr

12-character-Fieldata-filename

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

5-11
PAGE REVISION | PAGE

Word 0

The meaning of word-count and buffer-addr are the same as for the PUNCHS request (see 5.3.5) and all the restrictions which
apply to PUNCHS$ apply to PNCHAS.

All rules for queueing for output of punch alternate files are the same as the rules for queueing of print alternate files (see
5.3.3).

PNCHAS$ or APNCHAS is a convenient method of building SDF-formatted files to be used later as input files in the same run
or in a subsequent run. These files may be partial run streams introduced by an @ADD control statement (see 3.9.1),
complete run streams referenced by a @START control statement (see 3.4.3), data to be referenced by READAS or
AREADAS requests, or read directly by the user program.

5.3.8. ASCIl IMAGES — ALTERNATE PUNCH FILE (APNCHAS$)

Purpose:

Place a quarter-word ASCI! punch image into a user-defined punch file.

Format:

LU AQ,pktaddr
ER APNCHAS$

These two instructions can be generated by the procedure call:
A$PNCHA pktaddr
Parameters:
The interpretation of parameters is identical to that for the PNCHAS request (see 5.3.7) and the filename must be in Fieldata.
Description:

APNCHAS operation is identical to PNCHAS operation (see 5.3.7).

5.4. OUTPUT CONTROL FUNCTIONS

5.4.1. FIELDATA CONTROL FUNCTIONS — PRINT FILE (PRTCNS$)
Purpose:

Specify a Fieldata control function to a print device routine for a print file.

Format:
L, A0, (image-length,buffer-addr)
ER PRTCNS
Parameters:
image-length The length in words of the Fieldata control image.

buffer-addr Address of the buffer from which the Fieldata control image is obtained.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

5-12

PAGE REVISION PAGE

Description:

The image specified in the packet consists of one or more control functions. Each control function is in Fieldata and begins
with a letter followed by subfields. A comma is the field (or subfield) separator and a period terminates each control function
string.

Table 5—2 lists the print control functions and their formats.

Control Function Description
Format

L,nn Space the printer to logical line number nn-1.
H,options,page, text Initiate printing page headings where:

options The available options are:
N — Do not print heading

X — Suppress printing page number and date

page The page number of the first page with this heading. If blank and there is no X or
N option, the page numbering continues with one greater than previous page.

text The heading text (maximum of 16 words)

When the margin function is used, a page alignment procedure is initiated with the page
length parameter. If a top margin of zero is specified, the heading is never printed.

S,text Special forms request for processing the print file. The text is a maximum of 48
characters. When the function is encountered for onsite printers, the text is displayed on
the operator's console. For batch remote devices, the text is displayed on a remote

printer.
M,length,top,bottom Margin setting information for readjusting page length, and top and bottom margins.
where:
length — number of lines to be printed per page
top — number of blank lines used for top margin
bottom — number of blank lines used for bottom margin

Table 5-2. Print Control Functions
Standard page definition is 66 lines per page with a top margin of six lines and a bottom margin of three lines, leaving 57
printable lines.
5.4.2. ASCIl CONTROL FUNCTIONS — PRINT FILE (APRTCNS$)
Purpose:

Specify an ASCII control function to a print device routine for a print file.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 5-13

UP-NUMBER

PAGE REVISION PAGE

Format:

L AO0,(image-length,buffer-addr)
ER APRTCN$

Parameters:

image-length The length in words of the ASCII control image.

buffer-addr Address of the buffer from which the ASCII control image is obtained.

Description:

The APRTCNS$ request is identical to the PRTCN$ request except that the image is in quarter-word ASCI| instead of Fieldata
(see 5.4.1).

5.4.3. FIELDATA CONTROL FUNCTION — ALTERNATE PRINT FILE (PRTCAS$)

Purpose:

Specify a Fieldata control function to a print device routine for an alternate print file.

Format:

L AOQ,(image-length,buffer-addr)
ER PRTCAS$

Parameters:

image-length The length in words of the Fieldata control image.

buffer-addr The address of the buffer from which the Fieldata control image is obtained.

Description:

The PRTCAS$ request is identical to the PRTCNS$ request (see 5.4.1) except that the first two words in the buffer specified by
the buffer address in the packet must be the 12-character Fieldata filename of the print alternate file to which the control
image is directed. The remainder of the image is the control information in Fieldata (see 5.4.1).

5.4.4. ASCII CONTROL FUNCTIONS — ALTERNATE PRINT FILE (APRTCAS$)

Purpose:

Specify an ASCII control function to a print device routine for an alternate print file.

Format:
L AO,(image-length buffer-addr)
ER APRTCAS$
Parameters:
image-length The length in words of the ASCII control image.

buffer-addr The address of the buffer from which the ASCII control image is obtained.

5—-14
PAGE

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP.NUMBER PAGE REVISION

Description:
The APRTCAS request is identical to the PRTCN$ request (see 5.4.1) except that the first two words in the buffer specified

by the buffer address in the packet must be the 12-character Fieldata filename of the print alternate file to which the control
image is directed. The remainder of this image is the control information in quarter-word ASCI! (see 5.4.1).

5.4.5, FIELDATA CONTROL FUNCTIONS — PUNCH FILE (PCHCNS$)
Purpose:
Specify a Fieldata control function to a punch file routine for a punch file.

Format:

L A0, (image-length,buffer-addr)
ER PCHCNS$

Parameters:

image-length The length in words of the Fieldata control image.

buffer-addr The address of the buffer from which the Fieldata control image is obtained.

Description:

The image specified in the packet consists of one or more control functions. Each control function is in Fieldata and begins

with a letter followed by subfields. A comma is the field (or subfield) separator and a period terminates each control function

string.

The punch control functions and their formats are:

S,text — Special forms request for processing the punch file. The text is a maximum of 54 characters. When the

function is encountered for onsite punches, the text is displayed on the onsite operator’s console. For batch
remote devices, the text is displayed on the remote printer as soon as it is idle.

C,B — Switch the mode of punching to column binary

C,E — Switch the mode of punching to 80-column (Hollerith)

5.4.6. ASCII CONTROL FUNCTION — PUNCH FILE (APCHCNS$)
Purpose:
Specify an ASCil control function to a punch device routine for a punch file.
Format:
L AO0,(image-length,buffer-addr)
ER APCHCN$
Parameters:
image-length The length in words of the ASCII control image.

buffer-addr The address of the buffer from which the ASCII control image is obtained.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

5-15
PAGE REVISION | PAGE

Description:

The APCHCNS$ request is identical to the PCHCN$ request except that the image is in quarter-word ASCIl rather than
Fieldata (see 5.4.5).

5.4.7. FIELDATA CONTROL FUNCTIONS — ALTERNATE PUNCH FILE (PCHCAS$)

Purpose:

Specify a Fieldata punch control image to a punch device routine for an alternate punch file.

Format:

L AQO, (image-length,buffer-addr)
ER PCHCAS$

Parameters:

image-length The length in words of the Fieldata control image.

buffer-addr The address of the buffer from which the Fieldata control image is obtained.

Description:

The PNCHAS request is identical to the PCHCNS request (see 5.4.5) except that the first two words in the buffer specified by
the buffer address in the packet must be the 12-character Fieldata filename of the alternate punch file to which the control
image is directed. The remainder of the image is the control information in Fieldata (see 5.4.5).

5.4.8. ASCII CONTROL FUNCTION—ALTERNATE PUNCH FILE (APCHCAS)

Purpose:

Specify an ASCII punch control image to a punch device routine for an alternate punch file.

Format:

L AO, (image-length,buffer-addr)
ER APCHCAS

Parameters:

image-length The length in words of the ASCII control image.

buffer-addr The address of the buffer from whicﬁ the ASCIH control image is obtained.

Description:

The APNCHAS$ request is identical to the PCHCNS request (see 5.4.5) except that the first two words of the buffer specified

by the buffer address in this packet must contain the 12-character Fieldata filename of the file to which the control image is
directed. The remainder of the image is the control information in quarter-word ASCI| (see 5.4.5).

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

5-16

l PAGE REVISION PAGE

5.5. LISTING USER-DEFINED CONTROL STATEMENTS (CLIST$)

Purpose:

Allows the user to define his own set of control statements and register them with the executive, On subsequent READ$
requests, the calling program is given special notification when such statements are encountered. A control statement is
defined as any input image which has a master-space (7—8 multipunch — the @ character) in the first character position
(column one on a punched card).

Format:
L AQ list-designator
ER CLISTS
Parameters:
list-designator Directs the executive to the particular list of control statemens the user wishes to receive.
This designator may be either the address of a list in which case AO takes the format
H1 H2
zeroes list-addr
or it may be the six-character Fieldata, alphanumeric name of one of the executive-
defined lists (that is, CFOR).
Description:

The list may contain a maximum of 62 one-word alphanumeric Fieldata control statement names. The master space is
assumed and does not appear as part of the name. These names appear left-justified and space filled and are followed by a list
terminator of 0. If a £0 is not supplied as a last item in the list, a minus zero (—0) is automatically supplied in place of the
sixty-third name.

Each name in the list has an associated index value which corresponds to its position in the list. This index value is returned
‘on a READS or AREADS request (see 5.2.1) in bits 23—18 of register AQ. The image is placed in the buffer specified in the
READ$ or READS packet and is in either Fieldata of ASC!I depending upon the call (see 5.2.1 and 5.2.2).

When operating in the CLIST$ mode, only those control statements in the list are passed to the user. The executive always
handles all transparent control statements, including the @ADD, @JUMP, @SETC, and @TEST control statements, and does
not terminate the CLIST$ mode if they are encountered. The @FIN and @EOF control statements cause an end-of-file return,
and the @FIN control statement terminates CLIST$ mode.

If the list terminator is a plus zero (+0), CLIST$ mode halts as soon as a READ$ request encounters a nontransparent control
statement that is not in the list and thp user is given an abnormal return (see 5.2.1).

If the list terminator is minus zero (—0), all nontransparent control statements not in the list are bypassed. When an @END X
or @FIN control statement is encountered, the CLIST$ mode is terminated.

When operating in both the @ADD and CLIST$ modes, the @ADD mode is terminated if an unacceptable control statement
is encountered.

When in the CLIST$ mode, the @ENDX control statement is automatically assumed to be part of the list with an index value
of 77
8

If the user attempts to read an image by means of the TREADS$ request and a control statement is rejected, the output image
is reprinted.

CLIST$ mode may be terminated by a subsequent CLISTS$ request with word 0 of the list specified equal to minus zero.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 5—17

UP-NUMBER PAGE REVISION PAGE

If the user program terminates prior to the CLIST$ mode termination, the executive continues to read the control statement
until the normal manner of ending the CLIST$ mode occurs. This allows PMD’s even when the program has not read all the
control statements,

5.6. FIELDATA AND ASCIlI TRANSLATION

Tables D—1 and D—2 (see Appendix D) define the software translation between ASCII and Fieldata codes as used by the
language processors and the symbiont interface routine.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

6—1

PAGE REVISION PAGE

6. INPUT/OUTPUT DEVICE HANDLERS

6.1. INTRODUCTION

This section describes 1/O device handlers which interface with mass storage, magnetic tape, low speed onsite devices, and
special handling of peripheral devices. The communications device handlers are discussed in Section 15.

The 1/0 packet structure, executive requests (ER’s) and procedures which are applicable to both magnetic tape and mass
storage devices are presented. These are followed by details relating to specific magnetic tape and mass storage applications.
Finally, special device handlers are described.

6.1.1. BASIC 1/0 EXECUTIVE REQUEST

Magnetic tape and mass storage files are accessed through the packet mode using an executive request, and register A0 loaded
with the packet address as follows:

LU AQ,pktaddr -

ER entrance-tag
Parameters:
pktaddr Address of the 1/0 packet {see Figure 6—1). The length of the request packet can vary
from four to eight words, depending upon the operation desired.
entrance-tag The available entrance-tags are as follows:

10$ (see 6.3.3.)
101$ (see 6.3.4.)
{OWS (see 6.3.5.)
1I0WI$ (see 6.3.6.)

IOXI$ (see 6.3.7.)

4144 Rev. 2
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS l I 6-2
PAGE REVISION

PAGE

S1 S2 S3 H2
Word 0
filename
1
2 int-act-id interrupt-activity-addr
3 status function AFC final-word-count-returned-by-1/0
(tape-only)
4 G word-count buffer-addr
5 drum-addr
6 search-sentinel
7 search-find-drum-addr

Words 0 and 1

Figure 6—1. 1/0 Packet, Mass Storage and Magnetic Tape Peripherals

The internal filename used in all references to the file. This name is either the same as some external filename of the @ASG
control statement or is attached to an external filename by a @USE control statement (see 2.5.2).

Word 2

int-act-id

interrupt-activity-
addr

Word 3

status

function

AFC

final-word-count-
returned-by-1/0

The numeric identity (1—35) used to identify the interrupt activity if synchronization is
intended with some other activity. Must be zero if no activity-id is desired (10I$ and
IOWIS$ only).

The address at which the user program receives control upon occurrence of an interrupt
signifying completion of the /O operation (101$ and 10Wi$ only).

The status of the last function performed. Must be positive when it refers to an executive
request (see 6.10).

Denotes the function to be performed (see Table 6—1).
The abnormal frame count value for magnetic tape files only (see 6.4.2.4).
For any function involving data transfer, this field contains the exact number of words

read or written. For magnetic tape or the end of a drum file, this number may differ from
the access word.

4144 Rev. 2

UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS

6-3
PAGE

PAGE REVISION

Word 4

An 1/0 access word; or for GW$, SCR$, and SCRB$ functions, this word contains the number of access words in H1 and the
address at which the string of access words begins in H2,

G

word-count

buffer-addr

Word 5

012 and112

— increment
— decrement
— no increment or decrement.

number of words to transfer.

main storage address at which transfer is to begin.

designator (bits 34 and 35) to increment or decrement buffer-addr by 1 for each word transferred.

For magnetic drum files, this word contains the logical mass storage address at which the described /O operation is to start.
This address is relative to the start of the mass storage file; the handler determines the absolute position. For
FASTRAND-formatted mass storage files, the address is the start of a sector, and consecutive addresses are 28 words apart.

Word 6

The identifier word for search operations. This is applicable only to mass storage files.

Word 7

The find address for a mass storage search is returned in this word. The address is relative to the start of the file. This is
applicable only to mass storage files.

Function Octal Symbol
Write 10 w$
Write end of file 1 WEF$
Contingency write 12 Cws$
Skip write 13 Sw$
Gather write 15 GWS$
Acquire FASTRAND 16 ACQ$
Absolute write 17 ABSWS
Read 20 R$
Read backward 21 RB$
Read and release 22 RR$
Release 23 RELS
Block read drum 24 BRDS
Read and lock 25 RDLS
Unlock 26 UNLS
Track search all words 30 TSAS$
Track search first word 31 TSF$
Position search all words 32 PSAS
Position search first word 33 PSF$
Search drum 34 SD$
Block search drum 35 BSD$
Search read drum 36 SRD$
Block search read drum 37 BSRD$
Rewind 40 REWS$
Rewind with interlock 1 REWIS$
Set mode 42 SM$
Scatter read 43 SCR$
Scatter read backward 44 SCRB$
Absolute read 47 ABSR$
Move forward 50 MF$
Move backward 51 MB$
Forward space file 52 FSF$
Backspace file 53 BSF$

Table 6—1. Octal and Mnemonic 1/0 Codes Defined In SYS$ *RLIB3

4144 Rev, 2 UNIVAC 1100 SERIES SYSTEMS s

UP-NUMBER l PAGE REVISION I PAGE

6.1.2. INTERRUPT ACTIVITY

The interrupt activity is the same as other registered activities using the FORKS$ function (see 4.3.1.1) except for the
following: .

n The priority of the activity is raised to the highest possible level within the program class of the user program; that is,
for a batch user program, these |/O completion activities receive control before any other batch program activity.

] The interrupt routine is not interrupted in favor of any other similar activity of the same program. All are queued in a
first-in/first-out list of all programs without regard to priority within the class.

a Any executive request removes the interrupt activity from the high priority list and returns it to the user program’s
priority.

] The control register subset in the interrupt routine is limited to registers X11, AQ through A5, and R1 through R3.
Register AO contains the /O packet address. If the suppress recovery mode is set, register A1 is loaded with the status
word from the subsystem external interrupt. No other register contents are defined.

] In the absence of any other executive request, the normal program status can be restored by using the UNLCKS$ request
(see 6.3.8).

When multiprogramming, every attempt is made to provide proper switching by allowing immediate access to the amount of
computation required to initiate a new /O option following any other 1/0 operation. The difficulty lies in preventing abuse
of the high priority assigned to interrupt activities. The available facility is limited to initiate a new 1/O operation after having
checked the status of the previous 1/0 operation.

6.1.3. QUEUEING AND UNIT CONTROL

When an 1/0 operation is referenced, the handler controlling the desired device is entered. The handler considers the request
and queues it for the particular subsystem. When the requested device becomes free, and entry is removed from the
subsystem queue and the handler is entered at the appropriate point. If the subsystem is not initially busy, queueing is
bypassed.

The channel request queue and interrupt queue contain information to direct the attention of the device handlers to the unit
or file with which the request or interrupt is associated.

When an 1/0 request is made by the user, the executive sets the status word (word 3 of the packet) negative to indicate an in
progress state. Before setting the word negative, a check is made to see if it is already negative which indicates a possible loop.
If a loop occurs, a status code of 278 is placed in the I/O packet and control is transferred to the user-specified ERR mode
routine. When the request is completed, a positive value is placed in the status word; no housekeeping is necessary by the user
and encountering an initial negative value in the packet can be interpreted as a software logic error.

Efficient utilization of all drum types including FASTRAND-formatted mass storage dictates that servicing requests for a
given file are not restricted to the order of submission. The nonsequential processing of |/O requests to mass storage resuits in
faster servicing and more efficient utilization of the system’s 1/O facilities. Testing each packet is necessary to ensure
completion but do not assume completion by testing a subsequent packet.

6.2. 1/0 PACKET GENERATION

There are two basic procedures for generating 1/O packets; ISOT (see 6.2.1) is used to generate 1/O packets for magnetic tape
files, while 130D (see 6.2.2) is used for mass storage file 1/0 packets. An 1/O operation with interrupt involves inclusion of
additional parameters for word 2 of the 1/O packet (see Figure 6—1). The tag on the procedure line is allocated to the first
word of the 1/O packet. ‘

6.2.1. MAGNETIC TAPE 1/0 PACKET GENERATION (I1$0T)

-] Magnetic Tape 1/O Function Without Interrupt

4144 Rev. 2
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS 6-—5

PAGE REVISION PAGE

S

Format:
1I$OT ‘filename’,function word-count,buffer-addr[,G]
Parameters:
filename Specifies the tape file being referenced.
function Symbolic or octal code identifying function to be performed (see 6.4 and Table 6—1).

woud-count

Number of words to be transferred.

buffer-addr The main storage address at which the transfer begins.
G Increment-decrement function designator as follows:

‘D' — Decrement

‘N’ — Inhibit incrementation or decrementation

Omit this parameter for incrementation.
Example:
} LABEL " A OFERATION " A w0 OPERAND 48 cé%:msms
bbb b d fI$xeiri1_ b ‘ T‘ ol ;’ fg Wﬁ b zog, B.F;g Lk b i b

SO S H ol i | S S S fdd i b dind e ded LR foodd FSU SO U OO ! fod SN SO S { !.[e i b i

Filename T101 is entered in words 0 and 1 of 1/O packet (see Figure 6-1). Symbolic function code W$ (write) is placed in
the S2 portion of word 3. A total of 200 words are to be written (placed in word-count portion of word 4) starting at main
storage location BFR. The omission of the G parameter indicates that incrementation is employed.

Magnetic Tape 1/0 Function With Interrupt

Format:
I$OT ‘fitename’,function, [interrupt-activity-addr] [,int-act-id] word-count,buffer-addr[,G]
Parameters:
filename Specifies the tape file being referenced.
function Symbolic or octal code identifying the function to be performed (see 6.4 and Table 6—1).

interrupt-activity-addr Address of activity to which control is passed after completion of 1/0 function.

int-act-id Any integer (110 to 3510) that identifies the interrupt activity if synchronization with
another activity is desired.

word-count Number of words to be transferred.

buffer-addr Main storage address at which the transfer begins.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 6—6

UP-NUMBER PAGE REVISION J PAGE

G Increment-decrement function designator as follows:
‘D' — Decrement
‘N’ — Inhibit incrementation and decrementation
Omit this parameter for incrementation.

Example:

LABEL A OQPERATION) GPERANHD A COMMENTS
0 0 30 44 50

Té?, SO S S I$6I ! xf AABBCD231>)'E$J, GéTeA:Q; 53 5,15; L@CR)‘ .:Da ’; bbbk d

U SO0 OO T WU DAY SO O GO SR S VY GO SN SO S SO JE SO SO S T SO SR NN YOO T SO TR YOO WOOE WA T NS SO SUOE SO0S W SO WO TN SRS SO N

. -

Filename AABBCD23 is entered in words 0 and 1 of 1/O packet (see Figure 6—1). Symbolic function code R$ (read) is placed
in S2 of word 3. Symbolic interrupt address GOTOAD is placed in H2 of word 2, while the interrupt-activity-id (3) is placed
in S3 of word 2. The number of words (15) to be read into main storage starting at location LOCR is placed in the
word-count portion of word 4; LOCR is placed in the buffer-addr portion of word 4, and the ‘D’ indicates a decrementing
function to control the direction of the words transferred.

6.2.2. MASS STORAGE I/0 PACKET GENERATION (1$0OD)
Purpose:
Creates 1/0 packet for mass storage files.

Mass Storage 1/0 Function Without Interrupt

Format:

ISOD ‘filename’,function word-count,buffer-addr,[G] drum-addr[,search-sentinel]

Parameters:
filename Specifies the file being referenced.
function Symbolic or octal code identifying the function to be performed (see 6.4 and Table 6—1).
word-count Number of words to be transferred.
buffer-addr The main storage address at which the transfer begins.
G Increment-decrement function designator as follows:

‘D’ — Decrementation

‘N’ — Inhibit incrementation and decrementation

Omit this parameter for incrementation.

drum-addr Identifies the logical mass storage address at which the operation starts.
search-sentinel The sentinel to be recognized when a search function is performed on the mass storage

file.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

6-7
PAGE

PAGE REVISION

Example:

LA kY QEERATION N GPERah

(®R T$8D . ‘D222’ BRD$ 56,BUFS, D 04333222 . . .

i

i

: v ; o
SOt U WO TS SO SN VRSN FOUY WO TN SN DAY ST OO S A TONY N FOOR SOOE SR S WO TORE O SUOE SUNT SN JOUE TN SOUEIU SO SO S O SRS T TS S
i

Filename D222 is entered in words 1 and 2 of the 1/0O packet. A block read drum function (BRDS$) is inserted in S2 of word
3. A total of 56 words are read into BUFS (placed in H2 of word 4) with decrementation chosen (2 placed in G of word 4).
The word transfer starts at drum address 43332228 (placed in T2 and T3 of word 5).

Mass Storage 1/0 Function With Interrupt

Format:

t$OD filename,function[,interrupt-activity-addr] [,int-act-id] word-count,buffer-addr [,G] drum-addr[,search-sentinel]

Parameters:

Same as for I1$OD (see 6.2.2) without interrupt, except that the interrupt addr and id number are included in the parameters.

6.3. PROGRAM — I/0 SYNCHRONIZATION

An activity is synchronized with the completion of an I/O operation previously submitted by the same activity to the
executive through an 10$ request by entering the executive through a WAITS request (see 6.3.1) or a WANYS request (see
6.3.2). The WAIT$ request may also be used to wait for the completion of an 1/O operation performed: by other program
activities. When interrupt activities are used, they perform the 1/0, not the originating activity.

A WAITS request waits for completion of a particular 1/O operation and must be preceded by a Test Positive (TP) instruction
on word 3 of the I/O packet (see Figure 6—1). A test is made within the executive on a WANYS$ request to determine if any
1/0 request has been completed for the requesting activity since the last time the activity was placed in an 1/0 wait condition
by a previous WAITS, WANYS$, IOWS, or IOWI$ request.

6.3.1. WAIT FOR COMPLETION OF SPECIFIC I/0 (WAITS$)

Purpose:

Delays execution of an activity until the I/O operation controlled by a specific 1/O packet (see Figure 6—1) has been
completed.

Format:

TP pktaddr+3
ER WAITS

Description:

When an 1/0 executive request is submitted, the executive sets word 3 of the 1/O packet (see Figure 6—1) negative; word 3
remains negative until the completion of the I/O operation. The Test Positive (TP) check is made on this word.

Because the executive performs a second test to determine the completion of the I/O request, the h and i designators of the
Test Positive instruction must be set to zero.

The packet address is the specific request waited for at WAITS.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 6-8

UP-NUMBER PAGE REVISION PAGE

6.3.2. WAIT FOR COMPLETION OF ANY 1/0 (WANYS$)
Purpose:
Delays execution of an activity until an |/O operation, controlled by a specific I/0 packet (see Figure 6—1) for that activity
has completed. No delay occurs if the |/O operation has already occurred since the last WANY$, WAITS, IOWS, or IOWI$
request.
Format:

ER WANY$

Description:

At least one 10$ request (see 6.3.3) must have been submitted since the last WAIT$, WANYS$, IOW$, IOWI$ request, or else
it must be known that the 1/O operation is outstanding for that activity, that is, the status must be found negative.

An error results if no 1/O operations are still in process for that activity and none has been submitted since the last WAITS,
WANYS, IOWS$, or IOWIS request.

The following ER's cause a wait for the completion of all outstanding I/0O operations for the program and affect the use of
the WANYS$ request in the same manner as a previous WANY$, WAITS, IOW$, or IOWI$ request:

EXLNKS$ (see 10.4.5.1)
LCORES (see 4.7.2)
LINKS (see 10.4.4.1)
RLINKS (see 10.4.4.2)

UNLNKS (see 6.3.8)

6.3.3. INITIATE I/O AND RETURN CONTROL IMMEDIATELY (10$)
Purpose:

To request an operation on the 1/O file indicated and to return control to the executing program without waiting for
completion of the 1/0 operation.

Format:

LU AOQ,pktaddr
ER 10$

This linkage may be generated by the procedure call:
1I$SO pktaddr
Description:

Pktaddr is the address of the /O packet (see Figure 6—1), which controls all 1/0 device handler operations.

6.3.4. INITIATE 1/0 AND RETURN CONTROL IMMEDIATELY, WITH INTERRUPT (I01$)
Purpose:

Same as for 10$ (see 6.3.3), except that an interrupt activity is initiated at completion of the 1/0 request.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS ' 6—9

UP-NUMBER PAGE REVISION PAGE

Format:

LU AO,pktaddr
ER 101$

This linkage may be generated by the procedure call:
1$01 pktaddr
Description:

Pktaddr is the address of the 1/O packet (see Figure 6—1) which controls all 1/O device handler operations.

6.3.5. INITIATE 1/0 AND WAIT FOR COMPLETION (I0W$)
Purpose:

Same as for 10$ (see 6.3.3), except that control is not returned to the executing program until completion of the /O
operation.

Format:

LU AOQ,pktaddr
ER I0wW$

This linkage may be generated by the procedure call:
ISOW pktaddr
Description:

Pktaddr is the address of the 1/0 packet (see Figure 6—1) which controls all 1/0 device handler operations.

6.3.6. INITIATE I/O AND WAIT FOR COMPLETION, WITH INTERRUPT (IOWI$)

Purpose:

Same as for IOW$ (see 6.3.5), except that an interrupt activity initiated upon completion of the 1/0 operation.
Format:

LU AO,pktaddr
ER 10WI$

This linkage may be generated by the procedure call:
I$OWI pktaddr
Description:

Pktaddr is the address of the /O packet (see Figure 6—1) which controls all 1/0 device handler operations.

6.3.7. INITIATE 1/O AND EXIT, WITH INTERRUPT (I0XI$)
Purpose:

To request an operation on the /O file indicated and terminate the requesting activity. Upon completion, initiate an
interrupt activity. This increases the completion priority and saves the time required to store and restore the register set.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

6—10
PAGE

PAGE REVISION

Format:

LU AO,pktaddr
ER 1I0XI$

This linkage may be generated by the procedure call:
1$0X! pktaddr
Description:

Pktaddr is the address of the |/O packet (see Figure 6—1) which controls all 1/0 device handler operations.

6.3.8. REDUCING INTERRUPT ACTIVITY PRIORITY (UNLCK$)
Purpose:
Allows an interrupt activity to reduce its priority.
Format:
ER UNLCKS$
Description:
The UNLCKS request enables an 1/0 interrupt activity to reduce its switching priority to the priority of the activity which

initiated the 1/0 request. Any other executive request executed by the interrupt activity has the same result. However, in a
time critical, multiactivity program, the UNLCKS$ request provides a low overhead means of level reduction,

6.4. MAGNETIC TAPE HANDLER

6.4.1. TAPE HANDLER FUNCTIONS
The various magnetic tape functions (see Table 6—2) are controlled by a routine that is always located in main storage. The
current position of each tape is kept in terms of a block count and is made available for error logging, checkpoint, and ending

label routines. No provision is made for automatic treatment of mixed parity and mixed density tape files.

Utilization of the contingency write and skip write functions are automatically provided by the handler, and unless the user
provides his own error recovery, these functions should not concern the user.

In order to use the handler, an 1/O control packet must be generated (see 6.2).

. Octal .
Function Symbol ngz) Description
Write w$ 10 .| Starting at the address in H2 of word 4 of the 1/0 packet, transfer

the number of words specified in H1 of word 4 to form a single block
on magnetic tape. Transfer is accomplished according to the standard
modes or the requested modes, that is, parity, density, and so forth.
Normal completion results when all words have been transferred, except
for UNISERVO VI-C/VIII-C tape units, seven-track format, even parity,
where a character of zero, after translation is requested, will conclude
the request for more data by the subsystem.

Table 6—2. Magnetic Tape 1/0 Functions and Codes (Part 1 of 2)

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 611

UP-NUMBER PAGE REVISION PAGE
Octal .
Function Symbol Description
Code
Write end of file WEF$ 11 Write a sentinel on magnetic tape which, when read, results in an EOF

status being returned to the program.

Contengency write Cw$ 12 Write zeros, in even channels only, for 2.5 inches of tape to allow
writing after reading forward (UNISERVO 1I-A tape units only). This
function is automatically provided by the system and should be of no
concern to the user unless the suppress recovery mode is employed.

Skip write SwW$ 13 Erase three inches of tape, then the same as a write function. This
function is automatically provided in the system for write parity
recovery. Required for the suppress recovery mode or if an extended
interblock gap is needed on compatible tape types.

Gather write GwW$ 15 Write a single block on magnetic tape specified by a string of access
words. The number of access words is specified in H1 of word 4 and
the starting address of the string is specified in H2 of word 4.

Read forward R$ 20 Initiate tape motion in the forward direction and transfer the words
read into the area defined by word 4 of the packet. Transfer is
normally concluded by either encountering the end of block or
transferring the number of words requested.

Read backward RB$ 21 Same as read forward except opposite direction.

Move forward MF$ 50 Move tape forward one block.

Move backward VMBS 51 Backspace the tape one block.

Forward Space File FSF$ 52 Move tape forward past the next EOF mark. This function is available

only on the UNISERVO 12/16 tape units. It returns an EOF status if
the end of the tape is not encountered.

Backspace File BSF$ 53 Move tape backward past the previous EOF mark. It returns an EOF status
if the beginning of the tape is not encountered first.

Rewind REWS 40 Reposition the tape at the load point. This is the point at which
a read forward reads the first block on tape and a read backwards
reports an end-of-tape status.

Rewind with interlock REWI$ | 41 Reposition the tape to unload point and lock the unit against further
functions

Set mode SM$ 42 Set operating mode function (see 6.4.1.1).

Scatter read forward SCR$ 43 Same as read forward except the words read are transferred into

areas specified by a string of access words defined by word 4.

Scatter read backward SCRBS | 44 Same as scatter read forward except opposite motion direction.

Table 6—2. Magnetic Tape 1/0 Functions and Codes (Part 2 of 2)

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 6-12

UP-.NUMBER PAGE REVISION PAGE

Standard modes, in lieu of those set by the worker program, are established by the executive at initialization and
reestablished when a tape is released as follows:

high density

odd parity

no character translation
18-character noise constant

standard recovery

In addition to the service entrance, the parity and density modes can be set by options on the @ASG control statement (see
3.7.1). :

6.4.1.1. SET MODE FUNCTION

For the set mode function (SM$), the 1/0 access control word {word 4 of Figure 6—1) is set to a one-word buffer which
defines the modes to be set as follows:

3534333231302928272625 222120191817 0
field | field|field |field |field field |field | field field
1 213 4 5 6 7 8 9

Field 1 — Density(s)

0, — No change

18 — Low (for UNISERVO 12/16 nine-track tape units - 800 FPI)
28 — Medium

38 — High (for UNISERVO 12/16 nine-track tape units - 1600 FPI)

Field 2 — Parity

08 — No change

18 — 0Odd (binary)

28 — Even (BCD)

Field 3 — Translate

0, — No change

18 — Set character transiate mode {for UNISERVO 12/16 seven-track tape units-translate Fieldata to or from BCD
compatible with UNISERVO VI-C/VI11-C operation)

28 — Discontinue translation

Field 4 — Allow noise

08 — No change

18 — Set the noise constant to the number of characters in Field 9

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

6—13
PAGE REVISION | PAGE

Field 5 — Suppress recovery

~ 0, — Nochange

8
18 — Return external interrupt status code to the worker program in case of malfunction without attempting recovery
28 — Discontinue suppress recovery mode

Field 6 — MSA Translator
0, — No change

Fieldata to EBCDIC

-
|

8

2, — Fieldata to ASCII-6
3 - XS—3 to EBCDIC
4, — XS—41to ASCII-6

5, — EBCDIC to Fieldata
6, t0 16, — Reserved for additional translate options
17, - Discontinue translation

Field 7 — Control unit data converter (UNISERVO 12/16 only)

0, — No change

7 8
N g — Set data converter mode
28 — Discontinue data conversion

Field 8 — MSA transfer mode (see Table 6—4)

0., — No change

—
I

Quarter word (MSA A format)

2_ — Six-bit packed (MSA B format)

3. — Eight-bit packed (MSA C format)
Field 9 — Noise constant character count
When suppress recovery mode is set, entry to |/O control is only possible by means of the 101$, IOWIS$, or 10X1$ requests.
When the suppress recovery mode is set the user is returned the following information at the time of the interrupt:

Packet status code — 11,

Register A1 — Status word

Register A2 and A3 — If an MSA error occurred, the MSA auxiliary status word is returned in register A2. If the unit
check or unit exception bits are set in the status word, sense bytes 0—3 are returned in register

P A2 and sense byte 4 in register A3. The sense bytes are in Quarter-word format and sense byte
4 is in Q1 of register A3.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 6-14

UP-NUMBER l PAGE REVISION I PAGE

6.4.2. GENERAL CONSIDERATIONS

The following must be considered when using the magnetic tape handler for compatible magnetic tape units:

6.4.2.1. READ BACKWARD LIMITATIONS

The read backward function on the UNISERVO VI-C/VIII-C tape unit should not be used if the tape to be read has been
recorded on some other type of unit. It is necessary that the recording produce a statically deskewed longitudinal check
frame to prevent the read backward function from interpreting the check frame as data frames.

If a block is recorded in seven-track format with a block length greater than five frames and not a multiple of six, a read
backward produces a different format than a read forward of the same block. For example, if the block length is seven
frames, a read forward results in assembling frames 1 through 6 as the first word and frame 7 as the second and a read
backward results in assembling frames 2 through 7 as the first word and frame 1 as the second.

The same type of buffer variation exists for a read backward function on a nine-track unit if the write buffer length is not a
multiple of two words (nine frames). A one-word write on a nine-track unit results in five frames being recorded with the
fifth frame containing four bits of zero padding. A read backward results in the four bits of padding appearing as the least
significant four bits of the first word assembled. Furthermore, regardless of the direction of reading, if a block is written on a
nine-track format unit with an odd word count in the access word, one more word is made available as input than was sent
out to be written.

6.4.2.2. WRITE CONSIDERATIONS

If the user attempts to write EOF sentinels on seven-track UNISERVO 1V-C, VI-C, and VI11-C tape units by doing an even
parity write with truncation caused by a zero character and the translate mode is set, it is essential that the first two
characters of the buffer translate to 17008 to cause an EOF status when read.

Since hardware translation may be available and the user has the ability to vary the translation, care must be exercised to
prevent unwanted translation of a character to zero which causes truncating a write transfer when writing in the even parity
mode. If software conversion is used for write operations, the words are converted in the buffer before the write operation is
performed. If a block is written with less characters than the noise constant, the risk exists of bypassing the data block as
noise when reading. Also, a zero as the first character results in an erroneous block count. On a zero character count, up to
three words leave the computer and are considered to have been written as reflected in the count in the substatus field of the
request packet (UNISERVO VI-C/VII-C tape units).

When using the UNISERVO 12/16 tape units, there are a number of incompatibilities with the UNISERVO IV-C/VI-C/VIII-C
tape operations of which the programmer should be aware. They are:

B Fieldata-to-BCD translations do not convert all the codes the same (see Table 6—3)

The Fieldata 008 code in even parity does not stop the write operation as on the C-type units. Instead it is converted to
a14 BCD

Variable length block by character can be accomplished by using the MSA A format and setting the ninth bit of the
character field. This records that character and then stops the write operation.

When using the MSA C format read and a block ends on the fifth or sixth frame, the even word is not transferred to the
computer (see Table 6—4).

The recovery procedure for a parity error or certain tape hash errors on a write operation may utilize two feet of tape or
twice the length of the block, whichever is larger. hence, if blocks are to be recorded which are longer than two feet {or less,
depending upon whether an ending interrupt activity submits the next request or if requests are queued ahead by 1/0
control), it is recommended that tapes be used which have the end-of-tape warning marker placed farther from the end of
tape. The normal placement is 14 feet from the end of tape, and it is recommended that at least 10 feet of tape remain on the
supply side of the write head to ensure that the tape is not pulled off the supply reel.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 6-15
UP-NUMBER PAGE REVISION PAGE
MSA UNISERVO 12/16
TRANSLATIONS TRANSLATIONS
N
Fieldata EBCDIC BCD
Octal Code S;Inft':ol Octal Code Hexadecimal Symbol Octal Code Hexadecimal Symbol

00 @ 174 7C @ 14 oc @'
01 [112 aA ¢ ‘
02] 132 5A !
03 # 173 78 # 13 0B #=
04 A 137 5F 7 57 2F A
05 (space) 100 40 {space) 00 00 (blank)
06 A 301 01 A 61 31 A
07 B 302 02 B 62 32 B
10 c 303 c3 o] 63 33 c
1 D 304 04 D 64 34 D
12 E 305 C5 E 65 35 E
13 F 306 C6 F 66 36 F
14 G 307 c7 G 67 37 G
15 H 310 c8 H 70 38 H
16 | 311 co I 71 39]
17 J 321 D1 J 41 21 J
20 K 322 D2 K 42 22 K
21 L 232 D3 L 43 23 L

o 22 M 324 D4 M 44 24 M

L 23 N 325 D5 N 45 25 N
24 o] 326 D6 o 46 26 0
25 P 327 D7 P 47 27 P
26 Q 330 D8 Q 50 28 Q
27 R 331 D9 R 51 29 R
30 S 342 E2 S 22 12 S
31 T 343 E3 T 23 13 T
32 v 344 E4 V] 24 14 U
33 v 345 E5 Y 25 15 \Y
34 w 346 E6 w 26 16 W
35 X 347 E7 X 27 17 X
36 Y 350 E8 Y 30 18 Y
37 z 351 E9 z 31 19 z
40) 235 5D) 55 2D]
41 - 140 60 - 40 20 -
42 + 116 4E + 76 3E <
43 < 114 ac < 74 3C)
44 = 176 7E = 16 OE >
45 > 156 6E > 36 1E \
46 & 120 50 & 60 30 &+
47 $ 133 58 $ 53 2B $
50 * 134 5C * 54 2C *
51 { 115 4D (75 3D [

- 52 % 154 6C % 34 1c % (

{\/ 53 ; 172 7A 20 10 Sub b blank

Table 6—3. Type 5017 Fieldata/BCD Translations (Part 1 of 2)

4144 Rev. 2
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS

PAGE REVISION

6—16
PAGE

MSA UNISERVO 12/16
TRANSLATIONS TRANSLATIONS
Fieldata EBCDIC BCD
Octal Code S;In?sol Octal Code Hexadecimal Symbol Octal Code Hexadecimal Symbol
54 ? 157 6F ? 37 1F -
55 | 17 aF | 77 3F ¥
56 , (com) 153 68 \ 33 1B ,
57 \ 340 EO \
60] 360 FO 0 12 0A 0
61 1 361 F1 1 01 01 1
62 2 362 F2 2 02 02 2
63 3 363 F3 3 03 03 3
64 4 364 Fa 4 04 04 4
65 5 365 F5 5 05 05 5
66 6 366 F6 6 06 06 6
67 7 367 F7 7 07 07 7
70 8 370 F8 8 10 08 8
71 9 371 F9 9 1 09 9
72 ' (APO) 175 7D ’ 15 oD
73 ; 136 5E 56 2E ;
74 / 141 61 / 21 1 /
75 . (PER) 13 48 . 73 3B .
76 " 177 7F "(quot) 17 OF J
77 [= (or stop) 155 6D {und) 35 1D ki

Table 6—3. Type 5017 Fieldata/BCD Translations (Part 2 of 2)

FORMAT A (QUARTER WORD)

1 Word

4 Bytes

1 Word

6 Bytes

Words

Bytes

35 34 27 |26(25 18 {17(16 91817 0
X X X X
S ?; TL
- 1 v - 3 1L 4
0 7 0 71 |0 7 0 7
NOTE: Bits 35, 26, 17, and 8 are used for stop control on output operations and forced to binary 0
on input operations.
FORMAT B (6-BIT PACKED)
35 30 |29 241 23 18117 1211 6|5 0
XT« X 2 X 3 \,4 X 5 6
XX XX XX XX XX XX
01 {2 71101]2 7 01]2 7 012 701 01 {2 7 01 7
NOTE: Bit 0 and 1 become binary 0 on output and are ignored on input, for each 8-bit byte. When
translation is specified, bits 0 and 1 are not forced to binary 0.
FORMAT C (8-BIT PACKED)
Word 1 I[Word 2
T
35 28 |27 20 |19 122111 4|3 0 |35 32 |31 24 23 16 | 15
I
N PN F P a I -~ 4 h S
I
v 1 v 2 Jv ~ 4 y 5 Jr 6 v 7 w h 4 9
0 7 0 7 o] 1] 7 0 7 7 7 0
msB LSB
*Numbers on arrows indicate the order of byte transfer.
Table 6—4. MSA Data Word Formats

c &
PR
z
c B
g 2
3 S
m N
b
c
z
<
>
(@]
——
—
o
o
wn
m
A
m
7
(%)
-<
wn
-
m
<
wn
T
>
[9]
m
b
m
<
o
0
z
L
>
1]
m

LL—9

6—18
PAGE REVISION | PAGE

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP.NUMBER

6.4.2.3. MOVE CONSIDERATIONS

The move forward and move backward functions are concerned with position. Parity errors are not reported and are only
examined to determine noise blocks. For the UNISERVO 1V-C tape units, the parity status is not returned for the backspace
block function; therefore, the move backward is not recommended on the UNISERVO 1V-C tape units if noise is a problem,
as a lost position may result.

A cross-reference of magnetic tape functions, unit types, and packet lengths are provided in Table 6-5; Table 6-6 lists the
standard tape translation.

6.4.2.4. ABNORMAL FRAME COUNT CONSIDERATIONS

The AFC field in the 1/0 packet (see Figure 6-1) is supplied by the executive when a status code of 48 is returned. The value
of this field is calculated based on the following algorithm. If the character count is not a multiple of 6 (for seven channels
per frame) or a multiple of 9 (for nine channels per frame), AFC contains the number of characters in the {ast word read (first
word of the buffer for a read backward). This field is used in conjunction with a status code of 04. If the access word does
not have a word count large enough to allow transfer of the entire block and a status code of 04 is returned, this field is set to
zero. (For UNISERVO IV-C magnetic tape units, if the access word goes to zero, it is indeterminate whether all words were
read. If all words of the block are read, as determined by the user, then the count of frames of data in the last word read is
stored in the lower sixth of the last data word.) For nine-channel tapes, the count is the number of eight-bit bytes assembled
and transferred to the CPU in the last two-word sequence; that is, a value of 1 indicates an odd number of words with one
eight-bit byte assembled in the final word and the remainder of the word padded with zeros. A value of 5 indicates an even
number of words with four data bits in the last word which are the least significant half of the eight-bit byte with the most
significant four bits in the preceding word.

6.4.3. MULTIPLE-CHANNEL OPERATION

The magnetic tape handler is capable of a simultaneous operation on any number of channels involving any mixture of tape
device types.

Full dual-channel operation on UNISERVO VI-C/VII-C and UNISERVO 12/16 tape units are supported without user
cognizance.

TN
\

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 6—19
UP.NUMBER PAGE REVISION | PAGE
Octal Pkt
Function Code Length | VI-C/VIII-C IV-C | 1ll-A | II-A | 12/16 | 12N/16N
Read Forward 20 5 * * * " * *
Read Backward 25 5 ¥ | * * * *
Scatter Read 43 5 * * I I * *
Scatter Read Backward 44 5 * | i I * *
Move Forward 50 4 * * * * * *
Move Backward 51 4 * * * * * *
Write 10 5 ¥ * * * * *
Write end-of-file 1 4 * * * | * *
Contingency Write 12 4 1 I * | |]
Skip Write 13 5 * * | | * *
Gather Write 15 5 * * | l * *
Rewind 40 4 * * * * * *
Rewind with Interlock 11 4 * * * * * *
Forward Space File] [| i * *
Backspace File | | | 1 * *
Set Mode: 42 5 * * * * * *
Very high density(1600 FPI) | | | | | *
High density * * * * * *
Medium density * * | * * |
Low density * * * * * 1
0Odd parity * * I * * *
Even parity * * | * * I
Translate * * ¥ * * *
Allow noise * * ¥ * * *
Suppress recovery * * * * * *

CODE:
* — Available
| — Invalid function, causes termination

Table 6—5. Magnetic Tape Function vs Unit Type

4144 Rev. 2
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS

PAGE REVISION |

6—-20
PAGE

TAPE CPU TAPE cPU
CODE CODE CODE CODE
00 46 40 41
01 61 4 17
02 62 42 20
03 63 43 21
04 64 44 22
05 65 45 23
06 66 46 24
07 67 47 25
10 70 50 26
11 71 51 27
12 60 52 55
13 44 53 47
14 72 54 50
15 53 55 02
16 45 56 73
17 00 57 04
20 05 60 42
21 74 61 06
22 30 62 07
23 31 63 10
24 32 64 11
25 33 65 12
26 34 66 13
27 35 67 14
30 36 70 15
31 37 71 16
32 77 72 54
33 56 73 75
34 51 74 40
35 52 75 01
36 57 76 43
37 76 77 03

Table 6—-6. Standard Tape/Processor Code Translation (Octal)

4144 Rev. 2
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS 621

PAGE REVISION PAGE

~—

6.5. MAGNETIC DRUM AND UNITIZED CHANNEL STORAGE HANDLER

While the following discussions are oriented toward magnetic drum operation, all operations and considerations described are
equally applicable to unitized channel storage.

6.5.1. HANDLER FUNCTIONS

Two general modes of drum operation are provided within the handler. The first is drum simulation of FASTRAND mass
storage which allows execution of a program with files designed for FASTRAND mass storage to be allocated to flying head
(FH) drum storage but handled as simulated FASTRAND mass storage. The second mode is drum as a random storage device
and is word addressable. The interpretation of function codes for simulated FASTRAND mass storage is discussed in 6.7. For

drum format, the functions are listed in Table 6—7.

In order to use the handler, an 1/O control packet must be generated (see 6.2).

Function

Symbol

Octal
Code

Description

Write

Gather write

Read

Scatter read

Block read

w$

GW$

R$

SCR$

BRD$

10

15

20

43

24

Starting at the main storage address specified in H2 of word 4,
transfer the number of words specified in H1 of word 4 to the drum
area starting at the relative address in word 5 of the 1/0 packet.

The write operation also removes any locks on the area written in
the same manner as the unlock operation.

Transfer the number of words specified by a string of access words
specified by word 4 from the areas specified by these access words
to the drum area starting at the relative address in word 5. The
number of access words is specified in H1 of word 4 and the address
of the access words is specified in H2 of word 4. The write operation
also removes any locks on the area written in the same manner as
unlock operation.

Starting at the relative drum address in word 5 of the request packet,
transfer the number of words in H1 of word 4 into the area starting

at the address in H2 of word 4. Normal completion (status 08) indicates
the specified number of words have been transferred to main storage
from drum.

Starting at the relative drum address in word 5 of the 1/0 packet,
transfer the number of words specified by a string of access words
defined by word 4 to the areas specified by these access words. The
number of access words is specified in H1 of word 4 and the address
of the access words is specified in H2 of word 4.

Starting at the relative drum address in word 5 of the /O packet,
transfer words from drum to main storage at the address in H2 of
word 4 until either the number of words specified in H1 of word 4

Table 6—7. Magnetic Drum and Unitized Channel Storage 1/0 Functions and Codes (Part 1 of 2)

4144 Rev. 2 UNIYAC 1100 SERIES SYSTEMS 6-22

UP-NUMBER PAGE REVISION PAGE

. Octal .
Function Symbol Code Description

has been read or until the end-of-block sentinel (a word of all 1°s)

is read. Encountering a sentinel is noted by 1_ status code

and the sentinel word is transferred as the final word in the buffer.
The substatus field indicates the number of words read. If completion
is due to end of block and the buffer length is such that another word
can be accepted, the overflow word (the word on drum following the
sentinel) is stored in the buffer following (preceding if de-
crementation, or on if inhibit incrementation/decrementation)

the sentinel word with the upper six bits set to 48.

Read and lock RDLS 25 Perform the read operation and impose a logical lock to be placed on
the area read, which prevents access to the part of the file defined

by the access word and relative starting address by other activities

(of either the same run or other runs) until such time as the locking
activity unlocks the area. Removal of this exclusive use of a block is
accomplished by writing into any part of the block, issuing an unlock
request as defined in unlock, or by terminating the activity (see 6.6.1).

Unlock UNLS 26 Remove any logical locks imposed on other activities by read and lock
requests submitted by this activity for the area of the file specified

by the address and length of the access for this request. Locks are
maintained by block, and unlocking any part of a block unlocks the
entire block. Also, one unlock request can unlock several blocks

(see 6.6.1).

Block search read BSRD$ 37 - Starting at the relative drum address in word 5 of the 1/0 packet,
compare equal between the drum words and word 6 of the packet. No
fund is recognized by encountering an end-of-block sentinel or the
end of the granule (track or position). Upon a find, store the

relative address of the find word in word 7 of the packet and transfer
words as with a block read, with truncating for end-of-block sentinel
or end of granule. Storing the overflow word follows the same criteria
as with the block read function.

Search SD$ 34 Starting at the relative drum address in word 5 of the 1/0 packet,
compare all words on drum until either a compare equal is made with
word 6 of the packet or until the remainder of granule (track

or position) has been tested. If a find is made (status 08),

the relative address of the find is stored in word 7 of the packet.

Search read SRD$ 36 Starting at the relative drum address in word 5 of the 1/0 packet,
compare all words on drum until either a compare equal is made with
word 6 of the packet or until all remaining words of the granule
(track or position) are tested. If a find is made, store the relative
address of the find in word 7 of the packet and transfer the number
of words specified in H1 of word 7 into the main storage area starting
at the address in H2 of word 4. Truncate the read cycle if the end of
assignment precedes the count in H1 of word 4.

Block search BSD$ 35 Same as a search, with the added condition that reading an end-of-block
sentinel word terminates the search with a no find status code (33)'

Table 6—7. Magnetic Drum and Unitized Channel Storage 1/0 Functions and Codes (Part 2 of 2)

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 6-23

UP-NUMBER PAGE REVISION PAGE

6.5.2. GENERAL CONSIDERATIONS

The functions listed in Table 6—7 are performed on areas reserved through the use of the @ASG control statement (see
3.7.1). These assignments are fixed in length, hence, an attempt to read, write, or initiate a search past the end of the assigned
area results in an error condition. A write request must be totally within the assigned area.

Search functions are terminated by the software after a time interval has elapsed; passing over the area of concern without
receiving an interrupt indicates a find. The area of concern would be the end of the track or position equivalent. Thus, the
length of time the subsystem is tied up for a search is nearly the same as a read or write of the same length area. The handler
ensures that a search find is within the assigned area before reading thus guaranteeing file privacy. If a read after search must
be truncated, a status code of 18 is returned to the program. A search function issued from a user’s program searches a
maximum of one granule of the file. If a find is made, it must be within the same granule in which the search was started. A
search read drum or block search read drum is terminated if the access control word is zero. When the read phase of the
SRD$ or BSRD$ functions involves going over granule boundaries, the read is completed for the user. If any part of a read
after search find is outside of the assigned area, the request is truncated.

The 1/0 status code 58 for drum format results from attempting 1/O in an area of a file not currently allocated. Status code
228 does not occur unless referencing beyond the file-maximum granule; this includes references to words beyond the last
word specified at assignment by lying outside the last granule.

6.56.3. MULTIPLE-CHANNEL OPERATION

The full dual-channel operation is supported for the simultaneous FH—432/1782 subsystems without user inconvenience. The
magnetic drum handler is capable of simultaneous operation on any number of channels involving a combination of magnetic
drum types.

6.6. FASTRAND MASS STORAGE HANDLER

6.6.1. FASTRAND HANDLER FUNCTIONS

The various FASTRAND mass storage I/0 functions are listed in Table 6—8. Although the system functions without a
physical FASTRAND mass storage unit, at least some portion of magnetic drum must be set aside to simulate the
FASTRAND mode in its absence. The minimum FASTRAND format area has space for symbiont input and output files,
system processor data area, program file storage, and other system functions.

Space on FASTRAND mass storage is assigned in granules of one track (64 sectors) or one position (64 tracks). A file
consisting of more than one granule may be considered contiguous by the programmer because the handler takes care of the
processing that must occur whenever a granule boundary is passed. The handler works in conjunction with the file supervisor
to convert the relative sector addresses supplied by the user program into physical channel, unit, position, and sector
addresses.

An attempt to read from an area of a file which is not entirely assigned results in a status code of 5g being returned to the 1/O
packet. If the area starts within the assignment and runs beyond it, the substatus count reflects the part assigned. If granules
have been released causing voids within the file, a request could generate a legal start and ending address but a void within the
file and this would result in the 5, status being returned with only the first part of the file read. Writing into an unassigned
area of a FASTRAND-formatted file causes space to be assigned to the portion of the file. The automatic expansion on a
write function can be overridden by the maximum granule parameter on the @ASG control statement (see 3.7.1). In this case,
a status code of 228 is returned in the 1/O packet.

FASTRAND-formatted files can be exclusively assigned to a run. Thus an activity can read an area of the file and update it
without having another activity of any program, to which the file is assigned, access tue volatile data. The exclusive-use
feature applies only to the area being accessed. All other areas of the file can be accessed during this period of exclusive use.
The only activity permitted to access the locked out area is the activity that initially set the exclusive-use option. All other
references either partially or totally within the locked out data area are suspended until the exclusive-use lock is removed.

4144 Rev. 2
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS 6—24

PAGE REVISION PAGE

Function

Symbol

Octal
Code

Description

Write

Gather write

Acquire FASTRAND

Read

Scatter read

Read and release

Release

Read and lock

Unlock

w$

GW$

ACQ$

R$

SCR$

RR$

RELS

RDLS$

UNL$

10

15

16

20

43

22

23

25

26

Starting at the relative sector address specified in word 5 of the /0O packet,
transfer the number of words specified in H1 of word 4 from the main storage
area starting at the address in H2 of word 4 to FASTRAND mass storage. If

the count is not a multiple of 28, write zeros into the remainder of the

last sector. (Zero padding is not simulated on drum; hence, the partial

sector is not changed.) If the area being written into is not currently

assigned, expansion of the file is automatic up to the maximum from the @ASG
control statement (see 3.7.1). The write operation also removes any locks

on the area written in the same manner as the unlock operation.

Same as write except word 4 specifies a string of access words each specifying
a word count and a main storage area.

Starting at the relative sector address specified in word 5 of the 1/O packet,
the file is expanded by the number of granules required to hold the number
of words specified in H1 of word 4. This allows expansion of a file without
writing into it. Expansion of the file is automatic up to the maximum from
the @ASG control statement (see 3.7.1).

Starting at the relative sector address specified in word 5 of the 1/0 packet,
transfer the number of words specified in H1 of word 4 into the main storage
area starting at the address in H2 of word 4. Reading always starts at a

sector boundary but may end anywhere.

Starting at the relative sector address specified in word 5 of the 1/0 packet,
transfer the number of words specified by a string of access words specified

by word 4 into the main storage areas specified by the access words. The number
of access words is specified in H1 of word 4, and the address of the access

words is specified in H2 of word 4.

Same as read with the additional condition that after the read has been
performed, all granules with any part within the set of addresses described
by the packet are released to the available mass storage pool.

Same as read and release, except no reading is performed.

Perform the read operation and impose a logical lock to be placed on the area
read, which prevents access to the part of the file defined by the access

word and relative starting address by other activities (of either the same

run or other runs) until such time as the locking activity unlocks the

area. Removal of this exclusive use of a block is accomplished by writing into
any part of the block, issuing an unlock request as defined in unlock, or

by terminating the activity.

Remove any logical locks imposed on other activities by read and lock requests
sumbitted by this activity for the area of the file specified by the address

and length of the packet for this request. Locks are maintained by block,

and unlocking any part of a block unlocks the entire block. Also, one unlock
request can unlock several blocks.

Table 6—8. FASTRAND Mass Storage 1/0 Functions and Codes (Part 1 of 2)

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 6—25
UP-NUMBER PAGE REVISION PAGE
. Octal _

Function Symbol Code Description

Track search all TSAS$ 30 Starting at the relative sector address in word 5 of the |/O packet, compare

words each word on FASTRAND mass storage with the identifier in word 6 of the
packet until either a compare equal is made or the end of the track is en-
countered (sector address is the next multiple of 1008). If a compare equal
is found, store the relative sector address of the sector in which the find
is made in word 7 of the packet and read as many words as are specified in
H1 of word 4 {(or to the end of the assignment, whichever is smaller) starting
withtthe beginning of the sector in which the find was made. If no compare
equal is made before end of track, return a no find status code (38).

Track search TSF$ 31 Same as track search all words, except a comparison is made only on the

first word first word of each sector.

Position search PSAS$ 32 Same as track search all words, except comparisons are made until a sector

all words address which is a multiple of 100008 is reached.

Position search PSF$ 33 Same as position search all words, except comparisons are made only on

first word the first word of each sector.

Table 6—8. FASTRAND Mass Storage 1/0 Functions and Codes (Part 2 of 2)

Since the exclusive use of files by block (as defined by the address and access word) involves an interaction between activities,
the user should ensure that proper order is maintained in submitting requests to prevent two activities from locking against
each other. To aid in detecting this interlock condition, 1/0 control checks the length of time that an activity leaves a lock on
an item. If an item is locked by any one activity for over 12 minutes, at the time of the unlock sequence (either a write or
unlock function) a status code (10_) is returned to the 1/O packet, indicating that exclusive use had timed out and has been
removed. Removing exclusive use by this means allows the locked activities to progress in the normal manner and the locking
activity no longer interferes. If the unlock operation is the result of a write request, the write function is not performed if the
10B status code (see 6.10) is returned. The 108 status code is also observed for areas which must be unlocked if a packet
format error is detected on a subsequent request when taken off of the channel list. This results from a change in the packet
by the worker program while the request is listed and after any lock has been imposed for the request in error.

During normal operation, the handler prepositions the various units to keep access time to a minimum. For this reason, the
position function is not needed in the user’s repertoire.

The position searches are legal only if the granularity is position. The track searches are available for both granularities.

6.7. DISC HANDLER

The disc handler provides control of the 8414 disc for both FASTRAND-formatted and word-addressable files.

6.7.1. DISC HANDLER FUNCTIONS

The handler provides support for all functions that are supported by the drum (see Table 6—7) and the FASTRAND (see
Table 6—8) handlers. That is, the disc handler fully supports both FASTRAND-formatted and word-addressable files. The
disc hardware provides for direct support of standard read and write operations but does not provide for block type
operations {for example, BSRD$) and search operations. Thus, the following functions are simulated by the disc handler
software:

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

6—26
UP-NUMBER PAGE REVISION

PAGE

(1) Block Read (BRD$)

(2) Block Search (BSD$)

(3) Block Search Read (BSRD$)

(4) Search (SD$)

{5) Track Search First Word (TSF$)

(6) Track Search All Words (TSAS$)

(7) Position Search First Word (PSF$)

(8) Position Search All Words (PSAS$)

Space is allocated in granules of one track (64 sectors) or one position (64 tracks) as denoted on the @ASG statement (see
3.7.1). The file space may be considered contiguous by the programmer in that the handler will handle any discontiguities
that exist.

The handler also provides for the mounting and dismounting of disc packs (that is, other than those specified as part of the
fixed mass pools). This feature benefits the installation in that it can have an infinite amount of mass storage space. It
benefits the user program in that files can be assigned to specific disc packs. The executive provides protection in this area so
as to secure packs from unauthorized access.

Because of the ability to specify file placement, the programmer should be aware of the addressing mechanism provided on
the packs. Disc packs are prepped, normally, so as to allow four sectors/record and 12 records/track (disc). The system
provides the ability to, if desired by the individual user, prep the program’s packs in either of two other methods (that is, one
sector/record or two sectors/record). The alternate prep factors are provided if the programmer finds that the standard prep

factor is not optimal for his application. Note, however, that these alternate prep factors cause a considerable loss in usable
data space, and this should be taken into account when considering an alternate prep factor.

Once a pack is prepped, there should never be a need to reprep the pack. However, the executive does provide an override so
as to enable reprepping, if necessary. The prepping of a pack is specified only at the system console and not internal to the
program. Thus, the program need not concern itself with prepping in that it has already been done.

The user program need not concern itself with accessing part of a multisector record because the handler controls this.

In order to use the handler, an 1/O control packet must be generated (see 6.2).

6.7.2. PREPPING THE DISC

Disc operation has been defined as a drum or FASTRAND mass storage simulation mode of operation; the data is referenced
by word or sector address (28 computer words). It is assigned by FASTRAND granule (1792 or 114,688 computer words)
and must be prepped to achieve random access capability.

In prepping the following points should be considered:

(1) Prepping can take 5 to 10 minutes per pack per channel and is accumulative for every pack on a subsystem (up to 64
drives). Dual access preps two packs concurrently.

(2) One, two, or four sector records (28, 56, or 112 computer words) can be selected for a pack. Four sector records (112
computer words) are supported as an optimum length when considering capacity, which decreases with smaller records.

(3) Bad tracks are mapped as unassignable at prep time.
(4) Bit map granules currently are FASTRAND mass storage oriented and represent a track of 1792 words. A downed disc

track is 1344 words when using the four-sector prep and in many cases is represented by two granule bits or 3584
words.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

6-27
PAGE

I PAGE REVISION

(5) The suggested 112-word record may not be optimum and application studies will determine this. Simple system
generation parameterization and operator key-in will allow the variance of the record length on a pack.

(6) Once prepped, a pack is not usually reprepped. Override parameters, however, are provided to change the prep factors
and remap bad tracks.
6.8. ABSOLUTE READ/WRITE CAPABILITY

The executive provides the ability for a user program to assign and absolutely access a mass storage device under one common
file name (see @ASG control statement — 3.7.1).

The devices that may be accessed in this manner are the FH—432, FH—880, and FH—1782 drums.
The devices are referenced by means of the software function codes absolute read (ABSR$ — 47_) and absolute write

(ABSWS$ — 178). The 1/0 packet has the same format as for other mass storage files except for the file address specified in
word 5 of the packet. In this case, the format of this field is:

35 24 23 0

subsystem-nbr device-addr

The device-addr field contains the physical unit number and unit address appropriate to the device being accessed. /0 control
ensures that the unit being referenced is truly assigned to the associated file. If the unit or file is not assigned to the
requesting program, the activity is taken to the error mode routine (see 4.9).

At time of completion, word 6 of the /O packet will contain the first external interrupt (El) status returned by the
subsystem. The normal handler recovery mechanisms are exercised in case of abnormal operation. The number of handler
recovery attempts is returned in S3 of word 3 of the I/O packet. If the recovery attempts fail, a status code of 11 _ is
returned in the status field of the packet and an unanswerable message is displayed on the operator’s console. In the event of
timeout condition, a status of 78 is returned in the 1/0 packet.

6.9. ARBITRARY DEVICE HANDLER
The arbitrary device handler (ADH) allows the user to directly control the |/O functions to a device on an |/O channel. This
capability provides support for special devices where standard handlers are not provided and for special operations on devices

where standard handlers are provided.

The ADH is entered through either the IOARBS or I0AXI$ requests described in 6.9.2 and 6.9.3, respectively.

6.9.1. ADH /O PACKET

The format for the arbitrary device 1/0 packet as itlustrated in Figure 6—2.

4144 Rev. 2
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS

6—28

PAGE REVISION PAGE

S1 S2 S3 H2
Word 0
filename
1
2 0 int-act-id interrupt-activity-addr
3 monitor-interrupt-activity-addr
4 status time-out time-ind function-string
5 initial-access-word-1
6 final-word-count-1 rel-time-1
7
8
9 initial-access-word-n
10 final-word-count-n rel-time-n
Figure 6—2. Arbitrary Device Handler Packet
Word 0 and 1

The internal filename used in all references to the file. This name is either the same name as the external filename specified in
an @ASG control statement or is equated to an external filename by a @USE control statement.

Word 2

int-act-id

interrupt-activity-addr
Word 3

Monitor-interrupt-starting-addr

Numeric identity (1—35) given to the external interrupt activity (IOARB$ only). This
field can be left as zero as for the magnetic tape or drum handler packet if no
synchronization is required with this activity. For entrance at IQAXIS$, the interrupt

activity has the same id as the original activity.

Address at which control is to be given upon occurrence of an external interrupt.

The address at which the interrupt activity is given control if the function string indicates
a monitor interrupt is to be returned to the user, and the interrupt which indicates
completion of the operation is a monitor interrupt.

-

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 52

UP-NUMBER PAGE REVISION PAGE
Word 4
- status Status code indicating the disposition of the request.
time-out The number of six-second intervals the subsystem should be timed before the lack of a

monitor or external interrupt is to be considered an error. The value 1 corresponds to 6
seconds, 2 to 12 seconds, and so forth.

time-ind Indicates the disposition of a timeout condition. If this field is not zero and an operation
is left outstanding on a channel for a time in excess of the time-out value, a unique status
code is returned to the packet. If the field is zero, a timeout message is displayed on the
operator’s console, and the response is returned.

function-string Consists of a group of three-bit bytes {octal digit string) interpreted from left to right
(bits 17—15 comprise the first byte). The assigned codes are:

0 — End of string

1 — Initiate function mode without monitor (LFC)
2 — Initiate function mode with monitor {LFCM)
3 — Initiate output mode without monitor (LOC)
4 — Initiate output mode with monitor (LOCM)

5 — Initiate input mode without monitor (LIC)

6 — Initiate input mode with monitor (LICM)

Words 5, 7,...,n-1

The initial access words to be used to control the channel.

Words 6, 8,...,n

final-word-count-n Final word count as contained in access control register.

rel-time-n Relative time between execution of the corresponding operation in the string and the
execution of the next operation or the occurrence of an interrupt. The time is given in
200-microsecond increments.

Starting at the left of the function-string, the operations represented by the code are carried out as directed. As the string is
interpreted, succeeding pairs of access words are referenced. The final word count of the preceding operation is updated and
the initial access word for the current operation is loaded. At most, six modes can be specified in the initiation string. As a
practical limit, the combined length of all external function buffers is set at 9; exceeding this count is considered a program
logic error and causes reference to the error mode return point. As an example of string interpretation. If an input operation
is to be performed with termination by an external interrupt, the initiation string could be 5100008 with two sets of access
words. The first operation by the ADH is to load the input channel assigned to the filename specified in the packet using the
access word in word 5. This is followed by a Load Function In Channel instruction (LFC) using the access word in word 7 to
locate the function word. Upon occurrence of an external interrupt, the final access word count and the relative time are

stored in word 6, and the final values for L.LFC are placed in word 8.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 6-30

UP-NUMBER PAGE REVISION PAGE

The user can specify instructions in any desired order to perform a particular 1/0 operation. When a monitor instruction is
encountered, the ADH halts further interpretation of the string until the particular monitor occurs. The user program must
make certain that the proper instructions are monitored to ensure that the respective access words do not get overlaid; that is,
if two successive operations initiate output transfer, the first one should be with monitor unless the time between 1/O
instruction executions allows for transfer of all words of the first output buffer. To determine whether or not an access word
has sufficient time to count down between initiation of operations by the ADH and hence possibly allow operating at times
without a monitor, the minimum time between execution of the 1/O instructions by the ADH is at least 10 microseconds
(this varies upward, depending upon operation, overlapping data transfers, and so forth). For such sequences as a function
transfer of a single-word external function (EF) buffer followed by an output transfer, this is sufficient time for the function
transfer to be completed before output transfer is initiated without the necessity of monitoring the function transfer.

The appearance of monitored modes dces not necessarily indicate the need for a monitor completion activity (specified in
word 3), as the ADH interprets intermediate monitor modes. A monitor activity is required if either:

-] the last mode in a string is with monitor; or

-] the last mode is not monitored, and no external interrrupt is expected to signal conclusion of the mode established as a
result of the final mode.

If any monitored modes precede the final mode, whether a wait for external interrupt should be done after the final 1/0
instruction is executed is determined by a nonzero value in H2 of word 3. For example, an input drum operation is normally
terminated without interrupt; hence, the sequence LFC, LICM, LFC is used, and a monitor interrupt activity is specified and
executed without waiting after sending out the second function following the input monitor interrupt whereas an output
drum operation is normally terminated with interrupt; hence, the sequence LFC, LOCM, LFC may be used without a monitor
interrupt activity, in which case a wait for external interrupt is done after sending out the second function.

Regardless of the manner in which the ADH gives control to the interrupt activity, in all cases, the input and output active
states are cleared on the particular channel by execution of the Disconnect Input In Channel (DIC) and Disconnect Output In
Channel (DOC) instructions before control is given to the interrupt activity.

When a function mode is called, the ADH inserts the proper unit designator and adds the proper base address to the relative
address of the function word. At that time, if the channel contains equipment shared by other assignments, it may be
necessary to perform certain error checks to prevent leaving the channel in an indeterminate state and to prevent intrusion
upon other assignment privacy. Nonstandard special 1/O devices are assigned by channel, and the ADH makes no
modifications to the function words for these devices.

The function buffer for magnetic tape or mass storage channels is limited to a word count of one word, except for search
functions, in which case a second word, the identifier, and for UNISERVO Ill-A tape units, a third word, the mask, are
allowed. For other than these cases, in a multiple-word EF buffer, each word is modified by the unit designation and
subjected to the particular tests based on equipment type.

Word 2 and word 3 of the packet may be used to specify interrupt activities, one of which is executed when the
corresponding interrupt occurs. Word 2 specifies the activity to be executed in case of an El. The lower half of the word gives
the activity starting address, and S3 is set to the activity identity if synchronization is necessary. The register save and priority
are assumed to be X11 through A5, R1 through R3, and top priority, respectively. An El activity must always be specified
regardless of whether a monitor interrupt is to be used. The monitor activity is defined in words in the same format as the El
activity. If both a monitor and an El occur, the El activity is given control, and occurrence of the monitor interrupt can be
determined by examining the access word. When control is given to the interrupt activity, register AO is loaded with the
packet address, and, for the El activity, register A1 contains the El status word.

Upon completion of an 1/0 operation by the ADH, a status code is stored in S1 of word 4 of the request packet denoting the
conditions of the completion.

6.9.2. INITIATE ADH AND RETURN CONTROL IMMEDIATELY (IOARBS$)
Purpose:

Initiates an arbitrary device 1/O operation with control returned, in line, as soon as the request is either listed or the
operations have been initiated. An interrupt activity is initiated when the request is completed.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 6—31

UP-NUMBER PAGE REVISION PAGE

Format:

L AO,pktaddr
ER I0OARBS$

Parameters:

pktaddr Address of device 1/0 packet (see Figure 6—2).

6.9.3. INITIATE ADH, EXIT AT INTERRUPT (I0OAXI$)
Purpose:

Initiates an arbitrary device 1/O operation with the referenced activity simulating an exit function, and controls the return to
the program at the appropriate interrupt activity specified in the request packet.

Format:

L AQ,pktaddr
ER I0AXI$

Parameters:

pktaddr . Address of device 1/0 packet (see Figure 6—2).

Description:

The activity performing the IOAXI$ request does not actually exit, but saving and restoring registers is eliminated (except for

register AO), and the register set is reduced to the minor set only. The continuation of the IOAXI$ activity at the interrupt
point is with the same activity-id; hence, the value in the int-act-id field is ignored for the IOAXIS$ request.

6.9.4. FREE FORMAT DISC HANDLER

This handler is designed to format, read, and write disc packs in other than the standard 1100 series executive formats. It is
an adaptation of the ADH to control multi-interrupting, byte-oriented, command chain disc subsystems with the 1100 series
executive format handler operating on other drives of the same subsystem.

The 1I/O packet format for free format disc is as described in 6.9.1 and illustrated in Figure 6—2 with the following
exceptions.

Word 3

The monitor-interrupt-activity-addr field is unused. No monitor operations to free format disc are permitted. When the
packet is checked for the function string (word 4), any monitor operation that is encountered causes reference to the error
mode return point.

Word 4

The time-out field specifying the number of six-second intervals is unused. All free format disc 1/0 operations are confined to
one six-second time interval by the executive system.

The free format device 1/0 is limited to one external function (EF) access control word per packet request where the
function access word may be up to eleven words in length. The EF access words may contain the command parameters as
well as the command string. For example an operation to do a read may be as follows:

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 6—32

UP-NUMBER PAGE REVISION PAGE

Word 0 Set file mask command

1 — Seek command

2 — Search command

3 ~ Read command

4 — Jump command

5 — Set file mask command

6—7 — Seek parameters

8—9 — Search parameters

When one function operation has been found and a second function operation is indicated, the program is considered in logic
error and causes a reference to the error mode return point.

Once the mode string has been accepted and the 1/O is to be started at initiation of the EF, a delay occurs if the next
operation is to be an output operation. This delay is done to ensure that the EF chain and parameters access word has been
sent before the output access control word is issued. Otherwise, the output access control word would overlay the EF access
control word. If an input operation follows the issuance of the function chain, no delay occurs in opening input (LIC).

Once the 1/0 access control word has been initiated by either a Load Input Channel {LIC) or Load Output Channel (LOC),
another 1/O access control word (ACW) may follow until the limit of six modes is reached. This method is not advised
because no delays are done after the ACW has been initiated, and thus the new ACW would overlay the previous ACW before
it was completed. As a practical limit, it is recommended that a single 1/O operation following the EF be used per packet
request.

The EF command chain is checked to ensure that the M field (multiple function string) of the MSA/disc command is not set.
If in the command chain the M field is found to be set, a program logic error is assumed and causes a reference to the error
mode return point.

The device address field of the MSA/disc command is cleared by the executive and the file associated device address is
inserted.

The external status received by the executive is returned at the normal mode return point in register A1 where the external
status is found in H2 of register A1. If during the operation, an error condition (MSA error, unit check) is detected by the
executive from the external status, the auxilary status or sense byte (byte 0 and byte 1) is requested from the MSA or control
unit and returned with the original status at the normal return point. The external status occupies H2 of register A1 with the
secondary status in H1 of register A1. The sense bytes are returned in the A Format, that is, Q1 = sense byte 0, Q2 = sense
byte 1.

When the external status specifies a busy status, the executive waits for the control unit end external status and upon
receiving it, causes reference to be made to the normal mode return point with the original busy external status in H2 of
register A1.

When an external status specifies a channel end without an accompanying device end, the executive waits for the device end
status and then causes reference to the normal mode return point with the device end external status in H2 of register A1.

6.10. STATUS CODES

Upon completing an /O request, a status code is stored in S1 of word 3 of the I/0O packet indicating the completion status.
All status codes from 208 to 378 are considered error conditions where either the activity is terminated or the activity
reentry point is reset to the error contingency point (previous reference to IALL$). If interrupt activity was specified by the
executive request, the interrupt activity has the reentry point set to the contingency point. For status code 28_ no status is
stored in the packet. An illegal value for the packet address in register AO {detected during the initial checking routine) results
in an error type 4 and code 2. If detection is within executive request control, no interrupt activity is created and the main
activity is reactivated at the contigency point.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 6—33

UP-NUMBER I PAGE REVISION I PAGE

Whenever a request for 1/0 is in error and the request causes an interrupt activity, it is the interrupt activity which is reset to
the contingency entry point. The submitting activity is reset only when an illegal value in the control register is detected
before the interrupt activity is created. When an illegal value is detected in register AO during an 1/0O request, the interrupt
activity exists and a status code of 238 is passed to the contingency routine.

The status codes are:

Octal

Code Description

0 The request has been completed normally. If data transfer is involved, the count is given in H2 of word
4.

1 EOF block detected on magnetic tape.

a Answer of E was given to an 1/O error message.
EOF block was detected on magnetic tape.
a Block read drum function was truncated by encountering an end-of-block word.

Block search read function was truncated by encountering an end-of-block word before the specified
number of words were transfered.

2 End-of-tape mark encountered on magnetic tape on a read backward from load point or on a write. No
transfer takes place for the read backward. The write is done in the normal manner. Subsequent writes
are performed in the same fashion and, barring other problems, results in returning the same status code.

3 No find was made on a mass storage device search. The search was terminated by an end-of-block,
end-of-track, end-of-position, or expiration of sufficient time to pass over the entire area of concern
depending upon the physical device and type of search.

4 A nonintegral block was read from magnetic tape. The number of data characters accepted from the last
word is indicated by S3 of word 3 of the I/O packet and is explained in 6.4.2.4.

5 An attempt was made to initiate a mass storage search or read from an area which is wholly or partially
unassigned. If the starting address is legal, the read is truncated as reflected by the word count in the
supstatus field.

10 The area of the FASTRAND mass storage file being unlocked by this write or unlock request timed out
in the locking list or a subsequent request by the same activity had a packet format error detected
between the time of submitting the request and the time of servicing. Other requests by other activities
for the area may have been honored in the interim. If the function is write, the transfer is not
performed.

11 A nonrecoverable error has occurred, the suppress recovery mode is set for magnetic tape or an answer
of G was given to an error message. If the suppress recovery mode is set, the El status code is stored in
register A1 of the interrupt activity control register set. All suppress recovery operations come back with
this status.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

6-34
PAGE REVISION | PAGE

Octal Description
Code -
12 A read, or write error on magnetic tape has resulted in loss of position on the unit. This code is returned

for all outstanding requests at the time the answer of B was entered in response to the 1/O error message.
Any subsequent request is honored but the lost position is maintained and no further program
check-points are valid. This condition can be cleared by requesting that the tape unit be rewound to load
point.

13 The peripheral unit was declared down either by an unsolicited operator keyin or in response to an error
message typed after the normal recovery failed to resolve a malfunction.

20-37 See Appendix C.

40 The request is either in the process of being executed or is listed on the request queue for the
particular channel.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 7-1

UP-NUMBER

PAGE REVISION I PAGE

/. FILE CONTROL

71. INTRODUCTION

The file control routines exercise centralized control over all files in the system. The primary functions of these routines are:
] Maintain a uirectory (master file directory) of both the catalogued and temporary files

[Cbntrol mass storage allocation as new files are assigned and existing files are expanded

] Provide the interface between the user programs and mass storage 1/0O device handlers (maintains a record of the
absolute addresses of the file granules)

[| Prevent assignment of or access to any exclusively assigned file by any run other than the run to which the file has been
exclusively assigned

] Automatically move files from mass storage to magnetic tape as available mass storage space becomes exhausted
(known as rollout) and automatically retrieve these files when needed (called rollback)

.| Provide the means which enable the user to obtain information on the assignment, contents, and facilities of a file

7.2. FILE ORGANIZATION

7.2.1. MASTER FILE DIRECTORY

For files which are to be retained beyond run termination, entries are constructed containing the identification and character-
istics of each file and are maintained by the system in a master file directory. The process of entering a file in the master file
directory is referred to as cataloging and effected by the @ASG control statements.

The information contained in each file entry includes the following:

-] External name of the file including qualifiers

] Project identity from the @RUN control statement

m Account number from the @RUN control statement

| Date on which the file was catalogued

| Activity of the file including the date of last reference

-] Usage authorization

B Recording mode (magnetic tape only)

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 7-2

UP-NUMBER PAGE REVISION PAGE

- Granularity and number of granules assigned (mass storage only)
= Number of reels of tape and tape reel numbers (tape only)
] Linkage to the granule description (mass storage)

See Section 22 for a description of the master file directory structure and the means of retrieving information from it.

7.2.2. MASS STORAGE ALLOCATION

Mass storage is accessed by the executive in two ways:

(1) FASTRAND format — A FASTRAND—formatted file is accessed by sectors (28 words in length) which are allocated in
granules of track and positions. A track is 64 addressable areas of 28 words each or 1792 words of storage. A position is
64 tracks (4096 addressable areas or 114,688 words).

(2) Word addressable format — A word addressable formatted file is accessed on a word basis and is allocated in the same
manner as FASTRAND format.

When a mass storage file is initially assigned, only the number of granules initially requested in the @ASG control statement
are allocated. After that, only those granules needed to service a given expansion request are automatically assigned. For
example, if the initial request was three tracks and a one track write was requested starting at relative address 256, an
assignment is made for tracks 1, 2, 3, and b. Track 4 is not assigned until a reference is made to a relative address from 192 to
255,

The file supervision routines automatically effect the assignment of additional increments of mass storage space as required to
satisfy the needs of the worker programs. The space availability function also handles the release of granules to the available
status. Release of any part of a granule causes the release of the entire granule area.

Since files can be released a granule at a time, it is possible to end up with an empty file catalogued in the system with a
master file directory item and no allocated space.

7.2.3. FILE ADDRESSING

As an extension to the master file directory, the executive maintains tables specifying the location of the various granules
allocated to a given filename. These tables are stored in sector-sized areas of mass storage and are used by the device handlers
to convert the relative location furnished in the request to absolute hardware locations. For example, a request to read at
address 129 of a file with track granularity would refer to the second sector of the third track assigned to the file. This
reference table allows voids and overlapping various types of mass storage within a file.

Unsolicited console input messages are available to control mass storage availability. This allows mass storage to be taken
from and returned to the configuration without forcing an initial boot which would cause all user files to be deleted from the
system. It allows users to reserve units for their own assignments and allows absolute addressing for 1/0 on those units.

Mass storage is defined to be in one of four states. They are:

UP — Up indicates that a mass storage unit is fully accessible by the operating system. This status allows the executive to read,
write, and allocate on this unit.

SU — Suspend status indicates that a mass storage unit is accessible for 1/0, however, the executive cannot allocate any space
on this unit.

RV — Reserve status indicates that a mass storage unit is accessible only by absolute assignments and absolute 1/0 requests.

DN — Down status indicates that a mass storage unit is not to be used for any purpose by the system.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 7-3

UP-NUMBER PAGE REVISION PAGE

7.2.4, EXCLUSIVE USE OF FILES
The file supervisor routines allow assignment of mass storage files to any number of runs at one time providing the exclusive
use option is not exercised on the @ASG control statement, This option delays the assignment of a file until no other run has

that file assigned to it and ensures that other runs are delayed until a run releases the needed exclusively-assigned files.

All magnetic tape files are exclusively assigned regardless of the presence or absence of the option.

The read-and-lock and unlock functions are available at the handler level where logically contiguous areas (successive relative
addresses) can be exclusively assigned to allow other runs simultaneous access.of all the unlocked portion of the file. The
complete definition of the various functions involved and the timing limits to be considered are given in Section 6.

7.2.5. ROLLOUT AND ROLLBACK OF FILES

Depending upon the amount of available FASTRAND-formatted mass storage, the degree of use given to cataloguing files on
mass storage, and the manner in which FASTRAND-formatted files are assigned, there may occur during normal operation
the necessity to obtain additional space on FASTRAND mass storage by rolling out catalogued files to magnetic tape. This
feature is provided automatically by the executive. The points at which rollout is turned on and off are expressed as system

generation parameters.

Rollout to magnetic tape occurs when the request for allocation reduces the available mass storage below a system generation
threshold.

The rollout routine utilizes the file activity as part of the criterion for file rollout eligibility.

A request to assign a rolled out FASTRAND-formatted file causes the executive to request mounting of the proper magnetic
tape, unless already mounted, and it automatically retrieves the file back to FASTRAND-formatted mass storage. See Section
19 (SECURE processor actually performs the rollout and rollback).

7.2.6. RETRIEVING FACILITY ASSIGNMENT (FITEMS$)

Purpose:

Provides a method to obtain a variable amount of information on file or facility assignments,

Format:

LA A0, (pkt-Ingth,pktaddr)
ER FITEMS$

Description:
A filename must be placed in the first two words of the information packet.
The remaining words of the packet are filled as a result of the FITEM$ request.

The minimum packet length is nine words; the maximum packet length is dependent upon the equipment type:

Equipment Length

Word addressable mass storage, 9
arbitrary devices,

communications devices,

whole unit mass storage

FASTRAND mass storage 10

Magnetic tape removable disc 13

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

7-4
PAGE

PAGE REVISION

If the pkt-length is 0377777 _, the maximum amount of information available for the equipment type is transfered to the
packet. If the pkt-length given is less than 9 or greater than the maximum for the equipment type, only nine words are
transfered to the packet and an error status is returned in register AO (see following).

Rejection of the FITEM$ request occurs only if the relative packet address specified in the request packet is invalid; that is,
the address falls outside the user’s bounds, or the span of the FITEM$ packet violates the user’s bounds.

The status codes applicable to FITEMS$ requests are (returned in S1 .pf register AO):
18 — The requested packet length exceeded the allowable maximum.
2, — The requested packet length was less than the allowable minimum.

Pktaddr is the address of a packet whose general format is:

35 0

Word O

internal-filename

external-filename

qualifier

8 Device dependent

See 7.2.6.1.through 7.2.6.6.

10

11

12

4144 Rev. 2
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS 7-5

PAGE REVISION PAGE

7.2.6.1. UNIT RECORD AND NONSTANDARD PERIPHERALS

The FITEMS request packet format is:

3029 26 25 0

internal-filename

external-filename

qualifier

@ASG-control-statement-options

not-used

£4
s/

35
Word O
1
2
3
4
5
6 equip-code
7 35134133
8
l NS
N
12
Word 6
equip-code
Word 7
bit 35
bit 34
bit 33

@ASG-control-statement-options

See Appendix E

If set, system has label check

If set, file assigned as a temporary file

If set, assigned unit is in a downed state

indicates the options specified on the @ASG control statement (see 3.7.1) that assigned

the equipment. Master bit notation is used; that is, a 1 in bit 25 indicates the A option
was specified, a 1 in bit 24 indicates the B option was specified, and so forth.

4144 Rev. 2
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS

PAGE REVISION

PAGE

7—6

7.2.6.2. FASTRAND MASS STORAGE PERIPHERALS

The FITEMS request packet format is:

Word 0

10

1

12

Word 6
equip-code

file-mode

S1

S2

S3

S4 T3

internal-filename

external-filename
(file-portion)

qualifier

equip-code

file-mode

granularity

relative-F-

cycle-nbr absolute-F-cycle-nbr

35

24

33

@ASG-control-statement-options

initial-granule-count

maximum-granule-count

largest-track-reference

highest-granule-nbr

not-used

See Appendix E

Bit 29 set — Exclusively assigned file
Bit 28 set — Read key is needed
Bit 27 set — Write key is needed
Bit 26 set — Read-only file
Bit 25 set — Write-only file
Bit 24 set — Word addressable drum

4144 Rev. 2
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS

I PAGE REVISION I PAGE

7-7

granularity

relative-F-cycle-nbr

Word 7

Same as word 7 in 7.2.6.1.

All zeros indicate position granularity; nonzero indicates track granularity

Negative number is indicated by a 1 in bit 17.

7.2.6.3. MAGNETIC TAPE PERIPHERALS

The FITEMS request packet format is:

Word

10

11

12

S1 S2 S3 S4 S5 S6
internal-filename
external-filename
qualifier
in-cod file-mod it-count relative-F- absolute-F-cycle-nbr
equip-code ile-mode unit-coun cycle-nbr ycle-
3534133 @ASG-control-statement-options
total-reel-count | logical-channel | noise-constant mode-settings
subsystem-1 unit-1 subsystem-2 unit-2
expiration-period reel-index files-extended blocks-extended
current-reel-nbr
next-reel-nbr

4144 Rev. 2
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS

7-8
PAGE

PAGE REVISION

Word 6
equip-code

file-mode

unit-count
relative-F-cycle-nbr

Word 7

Same as word 7 in 7.2.6.1.

Word 8

mode settings

See Appendix E

Bit 29 set — Exclusively assigned file
Bit 28 set — Read key is needed

Bit 27 set — Write key is needed

Bit 26 set — Read-only file

Bit 25 set — Write-only file

Bit 24 set — Word addressable drum

Number of units assigned

Negative number is indicated by a 1 in bit 17.

The mode settings depend upon the equipment. For all tape units except UNISERVO
12/16 tape units, the modes are:

Bits Set Description

17 —-15 Not used; contents ignored
14 Even parity

13 and 12 High density

13 only Medium density

12 Low density

11 Hardware translate

10 Software translate

9 User 1/0 recovery

8—6 Not used; must be zero

For seven-track UNISERVO 12/16 tape units, the mode settings are:

Bits Set

Description

17
16

15
14

13
12
1"
10
9-8
7-6

Eight-bit packed MSA data transfer format

Six-bit packed MSA data transfer format

NOTE: If bits 17 and 16 are both zero, it
indicates quarter-word MSA transfer.

High density

Medium density

NOTE: If bits 15 and 14 are both zero, it
indicates low density.

Data converter (0-on; 1-off)

Parity (0-even; 1-odd)

control unit translator

Not used; must be zero

Must be set to mode set for hardware

Not used; must be zero

4144 Rev. 2
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS 7-9

PAGE REVISION PAGE

Word 10

reel-index

file-extended

block-extended

For nine-track UNISERVO 12/16 tape units, the mode settings are:

Bits Set Description

17 - 16 Same as seven track

15— 14 Must be set to mode set for hardware
13-12 Not used; must be zero

11 Density (0—1600 FPI; 1-800 FPl)
10 Not used; must be zero

9-8 Must be set to mode set for hardware
7—6 Not used; must be zero

Index to the current reel of a multireel file.

Count of the number of hardware EOF marks encountered (applicable only to
UNISERVO 12/16 tape units).

UNISERVO 12/16: Count of the number of physical tape blocks encountered since
load point or last EOF mark.

All other tape units: Count of the number of physical tape blocks encountered since
load point.

4144 Rev. 2
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS

PAGE REVISION I PAGE

7-10

7.2.6.4. MAGNETIC DRUM PERIPHERALS

The FITEMS request packet format is:

Word O

10

1

12

Word 6

Same as word 6 in 7.2.6.3. For an absolute drum, the format of word 6 is:

S1 S2 S3 S4 T3
internal-name
external-name
qualifier
in-cod file-mod relative-F- bsolute-F-cvele-nb
equip-code ile-mode cycle-nbr absolute-F-cycle-nbr
3534|133

@ASG-control-statement-options

length-of-file-in-words

maximum-file-length

not-used

S1 S2 S3 sS4 T3
, . total-nbr- relative-F-
equip-code file-mode of-units cycle-nbr absolute-F-cycle-nbr
Word 7

Same as word 7 in 7.2.6.1.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 7-11

UP-NUMBER PAGE REVISION PAGE

7.2.6.5. COMMUNICATIONS PERIPHERALS

The FITEMS request packet format is:

S S2 S3 S4 S5 S6
Word 0
internal-filename
1
2
external-filename
3
4
[
qualifier
5
6 equip-code execution-mode carrier-type line-speed-in-bits-per-second
7 bits/char CTM-code EOM/ETX-character CTM-options
8 CTM-speed line-status
9
N .
VN not-used \\::
12
Word 6
equip-code See Appendix E
execution-mode CTMC only:
0; - Half word
13 — Quarter word
carrier-type 0_ — Leased line
18 — Telephone
28 — TELEX*

*Trademark of Western Union Telegraph Co.

4144 Rev. 2
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS

I PAGE REVISION

PAGE

7-12

Word 7
bits

CTM-code

CTM-options

Word 8

CTM-speed

line-status

Number of bits per character (including parity)

Indicates type of CTM:
08 — Standard (monitor)
1g— NASA
28 — GSA3EI (external)

— CTM IV (external interrupt with status word)
6., — CTM VI (external interrupt with status word)
7_ — CTM VI (external interrupt with status word)

® 0o 0

Options are (indicated bit set):
Bit 10 — Block parity absent (0) or present (1)
9 — Continuously emitting modem
8 — Release function indicator (for ring interrupt feature)
7 — ECM/ETX character passed as status word
6 — Even (0 bit) or odd (1 bit) parity indicator
5 — Block parity character transferred to CPU
4 — Space-to-mark transition
3 — Block parity, character parity, or late input acknowledge
2 — Ring indicator
1 — Carrier off
0 — Send data with idle character

Units speed. Codes are:

08 — Low

18 — Medium

2B — High synchronized
38 — TELPAK™

48 — Parallel

Indicates status of line as follows:

Bit 20 = 0 — Line is not initialized for idle line monitor.
=1 — Line is initialized for idle line monitor.

Bit 21 = 0 — Dial CLT is operable.
=1 — Dial CLT is inoperable.

Bit 22 = 0 — Qutput CLT is operable.
=1 — Output CLT is inoperable.

Bit 23 = 0 — Input CLT is operable.
=1 — Input CLT is inoperable.

Bit 24 = 0 — CLT group (input, output, and dial) is not reserved.
=1 — CLT group (input, output, and dial) is reserved.

Bit 25 = 0 — CLT group (input, output, and dial) is not assigned.
=1 — CLT group (input, output, and dial) is assigned.

*Trademark of American Telephone and Telegraph Company.

4144 Rev. 2
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS

PAGE REVISION PAGE

7-13

........

7.2.6.6. DISC PERIPHERALS

The FITEMS request packet format is:

Word 0

10

1

12

Word 6

S1 S2 S3 sS4 S5 S6
internal-name
external-name
qualifier
equip-code file-mode ranularit relative-F- bsolute-F-cycle-nb
quip g ity cycle-nbr absolute-F-cycle-nbr
35134133 @ASG-control-statement-options

initial-granule-reserve

maximum-granule-reserve

largest-track-reference

highest-granule-reference

total-pack-count| nbr-of-units

not-used

Same as word 6 in 7.2.6.3.

Word 7

Same as word 7 in 7.2.6.1.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 7-14
UP-NUMBER PAGE REVISION PAGE

7.2.7. ALTERNATE METHODS OF RETRIEVING FACILITY ASSIGNMENT SYNOPSIS (FACIL$ AND FACITS)
These linkages obtain a subset of the facility assignments previously defined in 7.2.6.
To obtain the first nine words of the FITEM$ packet, the following linkage is used:

L,U AO,pktaddr

ER FACILS
To obtain the first ten words of the FITEM$ packet, the following linkage is used:

L,U AOQ,pktaddr

ER FACITS
7.2.8. TAPE FILE INITIALIZATION (TINTLS$)
Purpose:
Causes a specified tape file to be logically rewound so that a subsequent pass can be made from the load point of the
first reel.
Format:

L AQ, (function,pktaddr)

ER TINTLS
Description:
Pktaddr is the address of a two- (or three) word request packet whose format is:

35 0
Word O
filename
1
2 for-use-on-a-function-1-or-2-request

Inclusion of a function specification (0—2) in H1 of the register AO indicates the following:

Function Description
0 Standard initialization of a tape file
1 Standard initialization of a tape file occurs and the reel number of the file's

initial tape reel is placed in word 2 (the third word) of the request packet.

2 If there is no reel number in the initial reel position, the reel number specified
in word 2 (the third word) of the request packet is placed therein, and normal
tape file initialization occurs. If a function 2 request is made, however, and
the initial reel position already contains a reel number, the run is placed in
error mode,

Access to the.reel currently in use is closed. If the initial tape of the file is mounted on the first unit, the tape is simply
rewound. Otherwise, the tapes on the units involved are rewound, and a LOAD message is issued in order to have the initial
reel mounted. If there are two units involved, they may be switched in order to ensure that the initial reel is mounted on the
first unit.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 7-15

UP.NUMBER PAGE REVISION PAGE

7.2.9. TAPE SWAPPING (TSWAPS)
Purpose:

Closes access to the current reel of a tape file and requests loading of the next reel of the file (unless special action is

requested).
Format:
Word 0
filename
1
2 for-use-on-a-function-1-or-2-request

L AQ, (function,pktaddr)
ER TSWAPS$

Description:
Pktaddr is the address of a two- {or three-) word packet whose format is:

Inclusion of a function in H1 of the register AQ indicates the following:

Function Description
0 Standard tape reel swap
1 Standard tape reel swap occurs and the reel number of the tape swapped to is

placed in word 2 {the third word) of the request packet.

2 A nonstandard request. A request is made to mount the reel specified in word 2
(the third word) of the request packet. If this reel is not currently recorded
as part of the file, it is added as the last reel.

Access to the reel currently in use is closed and the reel is rewound. A request is issued to mount the next reel of the file. If
two units are involved in the assignment, the LOAD request specifies the unit other than that which was just in use.

7.3. TAPE LABELING

The executive provides a mechanism which:

(1) honors labeled tapes

(2) automatically creates a first file header label on a prelabeled blank (allocates the tape to the file being written)
(3) gives the user the ability to write ANSI-standard tape labels on a prelabeled tape.

To prelabel a tape the user writes a volume header and a skeleton format first file header at the begining of a tape reel. The
volume header label and first file header are each 80 characters long and are described in Tables 7—1 and 7—2, respectively.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

7-16
PAGE REVISION | PAGE

The reel number, if entered on the @ASG control statement, must agree with the reel number in the volume header. If they
do not agree, an error message is added to the user’s print file and the run is put in error mode.

After a reel is allocated, the qualifier and filename (or project-id and filename) on the @ASG control statement requesting the
reel must agree with the qualifier and filename on the first file header. If they do not agree, the run is terminated.

If the file expands to a new reel, the retention period expiration-period parameter on @ASG control statement (see 3.7.1) on
the new reel becomes one of the following:

(1) If the expansion occurs on the original assignment, the retention period is the same as for the other reels.

(2) If the expansion occurs on a subsequent assign with no retention field given, the new reel gets the system standard
retention period.

(3) If the expansion occurs on a subsequent assign with a retention period stated, the retention period is the number of
days stated on the @ASG control statement starting from the date the new reel was allocated.

Reels become logical blanks after the expiration date has elapsed.

The label blocks are protected from normal user 1/0. A read or move backward function issued by the user does not allow
him to read any of the header label fields. When the user issues a read or move backward from his first data block, he receives
an 28 status in his 1/0O packet, informing him that he has reached load point.

A rewind function or @REWIND control statement issued by the user causes the tape reel to be rewound to load point. When
the user 1/O request is issued, the tape is moved forward until it is positioned on the user’s first data block or the first block

past the tape mark.

Field Length

Field Contents in Characters Description

VOL 3 Recognition sentinel

1 1 Fixed by standard

reel number 6 Six alphanumeric characters identifying the
physical reel

blank or nonblank 1 Nonblank indicates restricted access, as the
tape reel is privately owned

blanks 26 Unrequired available space

account number 14 Account number of owner if this is a privately
owned tape reel (UNIVAC uses a maximum of 12
characters left-justified, space filled)

blanks 28 Fixed by standard

1 1 v Fixed by standard

Table 7—1. Volume Header Label Field Description for Table Labeling

4144 Rev. 2
UR-NUMBER

UNIVAC 1100 SERIES SYSTEMS

Field Length

Field Contents in Characters Description

HDR 3 Recognition sentinel

1 1 Fixed by standard

filename 17 Left-justified filename. The first 12 characters
are referenced by the executive system

UNIVAC 6 Fixed as set identifier when referenced by
system

0001 4 Reel sequence number within a file

0001 4 File sequence number within a reel which is
fixed at 1

0001 4 Generation and version numbers which are fixed

00 2 at1and O

creation date 6 A blank followed by two characters for the year,
followed by three characters for the day (001
through 366) within the year

expiration date 6 Same format as creation date field. The date
after which this tape reel may be considered
as available for reallocation

accessibility 1 A space indicates unlimited access to this
reel and
158 — This reel is catalogued (on tape)
355 — This reel is catalogued, with read key
558 — This reel is catajogued, with write key
758 — This reel is catalogued, with read and write keys

block count 6 Fixed at zeros

qualifier 13 Used by the executive system (UNIVAC uses a maximum
of 12 characters left-justified, space filled)

blanks 7 Fixed by standard

7-17
PAGE REVISION | PAGE

Table 7—2. First File Header Label Field Description for Table Labeling

The master file directory may indicate that tape reels have been allocated to a catalogued file before the HDR 1 block on the
reel has been updated to show that the reel is allocated or HDR1 blocks may have been written to indicate that a reel has
been allocated to a catalogued file for which no master file directory items exist. The following examples illustrate how these
situations may occur:

(1) Tape reel numbers specified on a @CAT control statement are entered in the master file directory, but the tape labels
are not changed to show that they are allocated. Tapes must be assigned to a run before the labels may be changed,
because tape labels are not filled in to show that the tape is allocated until the first I/O request to a reel is initiated.
Using the @CAT control statement to catalogue tape files is not advised since tapes which are catalogued in the master
file directory but not yet referenced on an 1/0 request are regarded as blank by the system.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

7-18
PAGE REVISION

PAGE

{2) If a run containing an @ASG,C of a tape file terminates abnormally after the tapes have been referenced, the tape file is
not catalogued but the HDR1 block shows the tape as allocated to a catalogued file which does not exist in the master
file directory. These tape reels cannot be referenced by means of a temporary assignment. Master file directory links
can be reestablished with any of the standard cataloguing control statements (@CAT, @ASG,C, @ASG,U).

(3) Using a @DELETE control statement for a tape file eliminates a catalogued file without updating the HDR1 block to
show the reels as unallocated.

7.3.1. READING AND WRITING TAPE LABEL BLOCKS (LABELS$)
Purpose:
Enables the user to read or write any label block in the first label group on the volume except the VOL1 block.

Format:

LU AO,pktaddr
ER LABELS$

Description:

Pktaddr is the address of packet whose format is:

S1 S2 S3 H2
ASClI-Fieldata write-EOF-or
Word 0 translation label block label-buffer-addr
1
filename
2
where:
ASClI-Fieldata-translation If equal to 1, indicates ASCII format label block.
If equal to O, the read packet is to be translated to Fieldata format or the write packet is
to be translated from Fieldata format.
write-EOF-or-label-block If equal to 2, write an EOF mark.
If equal to 1, write a label block.
If equal to 0, read a label block.
label-buffer-addr Label buffer address where a 20-word buffer is required for read and write label requests;

the buffer is not required for write EOF requests.

Control is returned to the user at the location immediately following the LABEL$ request after the request has been
completely processed. Register AQ contains the following:

S1 If set to 03' indicates normal completion; if set to 408, indicates abnormal completion (check S2 and S3).

S2 Contains 1/0 status (if 08, all 1/0 has completed normally; if a nonzero value, see status for abnormal 1/0 in
Appendix C).

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 7-19

UP-NUMBER l PAGE REVISION PAGE

S3 If 1, indicates invalid label buffer address.

If 2., indicates that a request was made to read a label following a request to write a label.
If 48, indicates invalid filename.

f B, indicates an attempt was made to write on a tape file that was not available for writing or an attempt
was made to write a label following a request to read a label.

If 10,, indicates an invalid request (not 18, 28, or 48), or a write EOF request following a read of a label, or a
write EOF request before HDR1 has been written.

H2 The label buffer address originally supplied by the user.

7.4. DISC LABELING

A label record is written on a disc pack when it is prepared by the executive (see 6.7) for use as mass storage. This
record is only accessable to and used exclusively by the executive. |t contains the pack identity and all the information
necessary to establish executive control over the pack. The pack-id field of the label record is used at assign time to

guarantee that the requested pack is received (see 3.7.1).

4144 Rev. 2
UP-.NUMBER

UNIVAC 1100 SERIES SYSTEMS 81

PAGE REVISION PAGE

8. FILE UTILITY ROUTINES (FURPUR)

8.1. INTRODUCTION

In addition to the executive control statements, there is a set of control statements recognized by the executive as calls for
the file utility routines (FURPUR). When the executive encounters a FURPUR control statement, it loads the FURPUR
processor. FURPUR continues to process control statements until signalled by the executive that the next statement is not a

FURPUR control statement.

Table 8—1 summarizes the function of each FURPUR. control statement.

FURPUR Control Description

Statements

@CHG Changes element name, filename, version name, read key, write key, and mode of a file. (See
8.2.15.)

@CLOSE Writes two hardware EOF marks on a magnetic tape file and rewinds the tape. (See 8.2.10.)

@COPIN Copies elements from an element file located on magnetic tape into a program file on
FASTRAND-formatted mass storage. (See 8.2.2.)

@COPOUT Copies a program file, or selected elements from a program file, located on
FASTRAND-formatted mass storage onto a magnetic tape file in element file format. (See
8.2.3.)

@COPY Copies a file or element from one file to another. (See 8.2.1.)

@CYCLE Sets the maximum range of absolute F-cycle numbers to be retained for specified files which
are listed in the master file directory or sets the maximum number of element cycles to be
retained for specified symbolic element. (See 8.2.16.)

@DELETE Drops catalogued files or marks elements in a program file as deleted. (See 8.2.7.)

@ENABLE Clears the disable flags for catalogued files. (See 8.2.17.)

@ERS Resets next write location to the first sector of the text area, clears the table of contents, and
returns to the system all FASTRAND-formatted mass storage allocated to a program file. (See
8.2.6.)

@FIND Locates an element in a magnetic tape file (file must be in element file format) and positions
the file before the element’s label block. (See 8.2.13.)

@MARK Writes two hardware EOF marks on a magnetic tape file and positions the tape between the
EOF marks. (See 8.2.9.)

Table 8—1. Summary of FURPUR Control Statements (Part 1 of 2)

8-2
PAGE REVISION | rAGE

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP.NUMBER

FURPUR Control -

Statements Description

@MOVE Moves a magnetic tape file forwards or backwards over a specified number of EOF marks. (See
8.24))

@PACK Rewrites an entire program file, removing all elements marked as deleted from the program file.
(See 8.2.14.)

@PCH Punches program file elements into 80-column cards. (See 8.2.12.)

@PREP Creates an entry point table from the preambles of the nondeleted elements of a program file.
(See 8.2.11.)

@PRT Provides a listing of the master file directory items for catalogued files, the table of contents of
a program file, or the text of a symbolic element (see 8.2.5). Listings of absolute or relocatable
elements may be obtained using the LIST processor (see 18.2.5).

@REWIND Rewinds magnetic tape files back to the load point of the first reel. (See 8.2.8.)

Table 8—1. Summary of FURPUR Control Statements (Part 2 of 2)

8.1.1. COMMON INFORMATION

The operand fields may contain a filename (see 2.6.1), an element name (see 2.6.4), or a parameter value, depending on
the control statement and its use.

If the filename in any parameter is identical to that specified in the immediately preceding parameter, coding a period in the
parameter indicates to the FURPUR processor that the same filename is intended. Omitting the filename completely,
including the period, indicates to the FURPUR processor that TPF$ is intended (only valid if the parameter normally
specifies a file that resides on FASTRAND-formatted mass storage).

As with most other system processors, the FURPUR processor automatically assigns any catalogued file that was not assigned
when the FURPUR control statement is encountered. In many cases, the FURPUR processor requires exclusive use of a file,
and it places user files in the exclusive-use state as necessary to carry out the specified operation. After use, the FURPUR
processor automatically returns all files to the assigned status the file has except when the function of the FURPUR control
statement wsa to alter the file status. Temporary files, except TPF$, must be assigned by the user.

In most instances, the meanings of options used in FURPUR control statements vary with the statement. The meaning,
however, of the following options is the same for all FURPUR control statements:

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 8-3

UP-NUMBER PAGE REVISION PAGE

Option Description
A Process absolute elements
C Do not exit through ERRS if an error is encountered. The FURPUR processor would go on to process

the next command or parameter field if more than two parameter fields are permitted as in the case of
the @DELETE,C control statement. The C option can always be used, even when the discussion of the
options specify ‘no options’.

R Process relocatable elements

S Process symbolic elements

The FURPUR control statements are device dependent as well as file-type dependent. Program files exist only on
FASTRAND-formatted mass storage, and element files exist only on magnetic tape. Thus, the statement ‘the @PCH control
statement is used to punch program file elements into 80-column cards’ necessarily implies a mass-storage-to-card transfer.
If the program file has been copied onto magnetic tape, the @PCH contro! statement cannot be used to punch elements into
cards. The program file elements must be returned to FASTRAND-formatted mass storage priority to the attempt to execute
the @PCH control statement.

8.1.2. SIMULTANEOUS USE OF FILES

The FURPUR processor, in common with other system processors, such as the collector, can directly access catalogued
program files, even though they have not been assigned to the user’s run. The mechanism which the FURPUR processor and
the other processors use is the same; that is, a dynamic @ASG,AX (see 3.7.1) is done using a CSF$ request (see 4.8.1). These
processors return each previously unassigned, catalogued file to its original status, using a dynamic @FREE control statement
(see 3.7.4) with the appropriate options.

The X option in the @ASG,AX control statement means that the processor is requesting exclusive use of the file by the run
which called the processor. This is done to make certain that no other runs currently in the system will add or delete
elements, or otherwise tamper with the file, while the processor is attempting to determine the locations and contents of its
various tables, pointers, and element texts.

If a dynamic @ASG,AX is attempted, and another run already has requested the program file assigned, the CSF$ request
returns with status bit 18 set, which means: request on wait status for facilities. In this case, FURPUR prints a diagnostic
indicating that the file cannot be assigned and terminates by means of ERRS$.

8.1.3. MULTIREEL FILES

The FURPUR processor can handle multireel files. The @COPOUT control statement (see 8.2.3) automatically swaps reels
when an end-of-reel condition is detected. The @COPOUT control statement writes a 14-word the end-of-reel sentinel
which indicates to the @COPIN control statement (see 8.2.2) that the element being read extends onto a second reel.

The @REWIND control statement (see 8.2.8) returns the first reel of the file to the user when it returns control.

The @COPY control statement (see 8.2.1) also permits the reading and writing of multireel files.

8.1.4. BASIC FILE FORMATS

Figure 8—1 illustrates the relationships of files to each other. The exact formats have been simplified for clarity; for more
detail see Section 24. The control statements illustrated are control statements that change the format of the files.

BASIC FILE FORMATS RECOGNIZED BY FURPUR

PROGRAM FILE (Mass Storage)

[Element | l

ElemenLl L Element] [Element I

[Eement | |

ement } I menj\

-~

-
///

’T Elementj I Element J —-—
7

7
- / 7/
-~ 7
- 7z
@ED,D” @COPY, | @COPIN @COPOUT
(ED processor) Inserts an SDF-formatted Converts element file Converts program file
~Makes an element into file into a program file as to program file format. to element file format.
_ ~ anSDF-formatted file. an element.
-~ 7
~ 4
7
Ve

SDF-FORMATTED FILE (Tape or Mass Storage)
Sequential File — Symbolic only

ELEMENT FILE (Tape Only)

Sequential File (No TOC)

Figure 8—1.

FURPUR Control Statements Used to Alter File Formats

Random File
: Program file elements
& . Table Of. contents (.TAOCI) usually originate from
. Points to location of specific elements the processors (ASM,
etc.) or from the @COPY |

control statement

ELEMENTS

Types: (a) Symbolic (SDF format)
{b) Relocatable
(c) Absolute

TAPE FILE
5001 The maif Purpose of an **BF** |Anelement filemay | File 1 of this
*SDFF+ elemen f'_e 15 10 save a be one of many files tape
- ?J?S::Tse'.le on tape for on a tape file. EOF mark
: /| File2of this
/ tape
F Each group of words is a data image. / EOF mark
/ W’W
- / EOF mark
An SDF-formatted file would ELEMENTS / // File n of this
[~~~ typically be arun stream as Types: / tape
[.~~—————~~ created by the DATA processor. {a) Symbolic /
(SDF format) Two EOF marks —
- (b) Relocatable / Normally indicates
y (c) Absolute / enf:l of writing on
7777 this tape (EOT)

NOISIA3Y 3o Vd

H3IgWNN-dN

asvd

v—8

[ARCH R 4484

SWILSAS S3143S 00LL DVAINN

|

4144 Rev. 2
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS 8—5

PAGE REVISION PAGE

8.2. FURPUR CONTROL STATEMENTS

Paragraphs 8.2.1 through 8.2.17 describe the various FURPUR control statements. The most frequently used control
statements are presented first and the infrequently used control statements are presented last.

8.2.1. FILE COPYING (@COPY)

Purpose:

Copies a file or element to another file.

All parameters of the @COPY contro! statement are optional except name-1 and name-2.

Format:

@Ilabel:COPY ,options

name-1,name-2,no.-of-files

Parameters:
options See Table 8—2 for file options and Table 8—3 for element options. See 8.1.1 for
additional information on the A, C, R, and S options.
name-1 Specifies the input file or element to be copied.
name-2 Specifies the output file into which the input file or element is to be copied.
no.-of-files Used only for tape-to-tape copying of entire files. It specifies the number of input files to
copy onto the output tape. If omitted, one file is copied onto the output tape. When an
attempt is made to copy an empty file (two hardware EOF’s), the copy operation is
immediately terminated regardless of the contents of the no.-of-files parameter. The input
tape remains positioned following the last EOF mark of the last file copied. The number
of blocks in each file copied and the number of files copied are indicated in the output
listing.
Option .
Character Description

No option specified

A R, S

FASTRAND-to-FASTRAND Copying — Overwrite one mass storage file {(name-2) with the
contents of another mass storage file (name-1), without regard to the files format.

Tape-to-Tape Copying — Copies one or more files (depending on no.-of-files parameter) from
the input tape to the output tape without regard to the file’s format. No hardware EOF
marks are written (see M option).

Copy the elements of the type specified from one program file and add them to another.
Both program files must be located on FASTRAND-formatted mass storage.

All elements of the type specified by the selected options are copied into the output file.
Any combination of A, R, and S can be used.

Table 8-2. @COPY Control Statement, Options Applicable when Filenames are Specified (Part 1 of 3)

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 8-6

UP-NUMBER | PAGE REVISION l PAGE

Option

Description
Character

F Copy the contents of one file into another file. Program and element files must not be
copied using this option. The input file must be in SDF format. Reading of the input file is
terminated by the SDF EOF mark. Block sizes for tape files must be 224 words. When the
output file is a magnetic tape file, two hardware EOF marks are written following the file
and the tape is positioned between the two EOF marks.

G When used with the M option, copy a FASTRAND-formatted mass storage file to magnetic
tape. When used without the M option, copy a magnetic tape file produced by the
@COPY,GM control statement back onto mass storage.

FASTRAND-to-Tape Copying — Each track of the file, beginning with relative track O, is
prefixed with its relative track number and written onto the tape. The @COPY operation is
terminated after the highest track referenced in the file has been written to tape. The first
block in the output file is a label block that indicates the file format (@COPY,G). The M
option writes a EOF mark on the tape.

Tape-to-FASTRAND Copying — The first two words of each tape block provides the relative
track number into which the block {minus the first two words) is to be written. The @COPY
operation is terminated when an EOF mark is encountered on the input file.

Since track-size blocks of data are transferred on a @COPY,G operation without regard to
format of the contents, the transfer is done relatively quickly and the files contents are not
changed. The G option provides an efficient method of saving and recreating FASTRAND-
formatted files.

| Used to add an SDF-formatted file to a program file as a symbolic element.
name-1 — Specifies the input file in SDF format.
name-2 — Specifies the output file and element name.

The SDF-formatted file being copied is entered into the program file (located on
FASTRAND-formatted mass storage) as a symbolic element with an element cycle of O.
Reading of the input file (which may be either tape or FASTRAND-formatted mass storage)
is terminated by an SDF EOF mark.

M The option can be specified only when the output file is a magnetic tape file.

FASTRAND-to-Tape Copying — used with the G option to copy a FASTRAND-formatted
mass storage file to magnetic tape. Two hardware EOF marks are written on the tape
following the file copied, and the tape is positioned between the two EOF marks.

Tape-to-Tape Copying — Used without other options or with the N option for tape-to-tape
copying of one or more files (depending on no.-of-files parameter). If more than one file is
being copied, a hardware EOF mark is written on the tape following each file copied except
the last, where two hardware EOF marks are written and the tape is positioned between the
two.

N Copy a magnetic tape file containing an abnormal frame count to another magnetic tape file
or to a FASTRAND-formatted mass storage file. When the output file is tape, the M option
may be used along with the N option to write hardware EOF marks.

Table 8—2. @COPY Control Statement, Options Applicable when Filenames are Specified (Part 2 of 3)

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS 8-7

UP-NUMBER PAGE REVISION PAGE
Option —
Description
Character P
P Used to copy all nondeleted elements from one program file and add them to another. Both

program files must be located on FASTRAND-formatted mass storage files.

\% Copy one file into another file. The input and output files must not both be on magnetic
tape or FASTRAND-formatted mass storage.

FASTRAND-to-Tape Copying — Variable block size is assumed. The first word of the block
(containing the block size) is stripped from the block before it is written into the tape file.

Tape-to-FASTRAND Copying — A word containing the block size is prefixed to the block
before it is written on FASTRAND-formatted mass storage. The input tape file must be
terminated by a hardware EOF mark.

A copy to or from FASTRAND-formatted mass storage always begins in sector 0 and each
block starts in a new sector. If the block size is not divisible by 28, the excess words of the
last sector contain random data.

Table 8—2. @COPY Control Statement, Options When Filenames Are Specified (Part 3 of 3)

Option ..
Description

Character P

A, R,orS Copy the specified element in the input program file and add it to the output program file.
The options represent the types of elements to be copied (one or more is needed). The
element name can be changed by renaming it in name-2. Both input and output files must be
on FASTRAND-formatted mass storage.

Table 8—3. @COPY Control Statement, Options Applicable When Element Names Are Specified
Description:

See 2.6.1 for additional information on specifying file names.

When any of the A, P, R, or S options are used, the procedure name entries are automatically added to the output file’s
procedure name table. If a relocatable element is copied, the output file’s entry point table is destroyed and the @PREP
control statement (see 8.2.11) must be used to recreate it.

Before doing any copy operation from tape, it may be necessary to execute a @MIOVE control statement (see 8.2.4) to
position the tape beyond some EOF mark. No @COPY operation will move backward or forward over an EOF mark prior to
the start of the copy.

4144 Rev. 2 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER l PAGE REVISION | PAGE

8-8

‘@leJ'Pin\II b, FLILPI]‘J#épkf |UPT3/INddl FSRNNS DRSO SN SO TN SO ! Jododd b b

‘7°05:49‘Ch7h.&N.~

Examples:

In the following examples, tape filenames start with a T, and FASTRAND-formatted mass storage filenames start with an F.

LABEL o A OPERATION 20 A 30 OPERAND 46\ CS%MMENTS
l@C@PY FLA'P‘L ™ FLAS,PS fet bbbt e d b b e b d TR SOOI TS T
.@C@PY‘)M.JJTI?A‘D.% TRAPE - 8,
@C; :PYs |G F—ILLUP 1 l_rAMK f