AN =

B P IVISION

REPORT PROGRAM
GENERATOR EXTRACT
UP-4072.2

Programming Information Exchange
RELEASE

This UNIVAC 1005 System Programming Information Exchange Bulletin 2, UP-4072. 2,
announces the release and availability of "UNIVAC 1005 REPORT PROGRAM GENERATOR
EXTRACT, "™ covers and 76 pages.

The UNIVAC 1005 Report Program Generator is a problem oriented programming
system designed to reduce substantially the time and effort necessary to
translate general data processing and reporting requirements into detailed
computer instructions. The 1005 Report Program Generator, on the basis of
a series of statements provided by the user, produces a computer program
which will prepare the desired reports. The UNIVAC 1005 Report Program
Generator provides a printed listing of both the user's input statements
and the generated assembly language code. After the assembly phase, this
generated code is an efficient ready-to-run object program. "UNIVAC 1005
REPORT PROGRAM GENERATOR EXTRACT" is a provisional document and will be
replaced by a more permanent one.

This P.I.E. bulletin is the second of a series to be issued concerning the
UNIVAC 1005 System. All P.I.E. bulletins have form numbers and may be
ordered with accompanying attachment by their "UP" number, as this one,
UP-4072.2.

Automatic distribution of UP-4072.2 has been made in quantity to Area and
Territory locations and to internal lists as indicated below. Additional
copies of "UNIVAC 1005 REPORT PROGRAM GENERATOR EXTRACT" may be requisi-
tioned from Holyoke, Massachusetts, via a Sales Help Requisition through
your local UNIVAC Manager.

MANAGER,
Systems Programming Library Services

TO LISTS ATTACHMENTS ﬁ

211 (less 217), 692 and | "UNIVAC 1005 REPORT PROGRAM GENERATOR %1005 System P.I.E.
153, P.I.E. bulletin EXTRACT," UP-4072.2, plus P.I.E. Bulletin 2, UP-4072.2
only. bulletin to 10 U, 217, 630 and 650. E“A =

February 11, 1966

U N l V A ﬁ DIVISION OF SPERAY RAND CORPORATION UP.-4050

&

UNIVAC 1005
REPORT PROGRAM GENERATOR
EXTRACT

UP-4072.2

This document is provisional in nature and is intended as a vehicle for
meeting immediate needs with regard to system familiarization and orienta-
tion. UNIVAC Division of Sperry Rand Corporation reserves the right to
change and/or modify such information contained herein as may be required
by subsequent system developments,

® REGISTERED TRADEMARK OF THE SPERRY RAND CORPORATION PRINTED IN U.S.A.

O

AN
"/

C —IT®d
.

» L L]

Introduction + & v & v o &+ o « &

TABLE OF

CONTENTS

General Description . . . ¢ v o v v s o & o &
Specification of Fields and Data &
1. Internal:;.-«-.-o.-ooo.o-
a. Constants (DCy 7y *y DI) v v o o o o .

b. Work Areas (Temp. Storage) « « o o «

ce Accumulators « o o ¢ o ¢ o 4 0 0 0 . .

de EditMasks o o o v v v 0 o v o o o o

2. Input (Cards)e v v v v v v s o v o s o o s
3. Output v o o o 6 6 o o 0 6 o o o o o o o
as Printing . o o v v o ¢ v 0 v 0o o o 4
b.Punching......-........
Processing Data. « v v ¢ v v ¢ v v v o o o o
1. Arithmetic Operations. « 4 o ¢ ¢ ¢ ¢« o & @
ae Addition ¢ & ¢ v 4 v vt 0 v et ...

b. Subtractions « « o o ¢ 4 ¢ & o o o . .

ce Multiplication (Normal and Long) + . .

de Division e o o o v o o o o o ¢ o ¢ o @

2. Internal Data Transfers and Editing. . « .
a. Data Transfers (Alphanumeric and Numer

b. Data Transfer with Edit Feature. . . .

ce Filling - Work Areas « « « o ¢ &« & & &

de Clearing — Work Arease « o o« ¢ o o o «

es Moving a Single Characters « ¢ « o o &

fo Rounding Arithmetic Results. « « & o &

g. Shifting Arithmetic Results. o« o & « &

h. Transfer of Sign e o o o o o o ¢ o o &
General Logical Commande « o« o « o o &
Input/Ouiput e s e 4 o s s e s s e e e e e
1. Reading Cardse « o o o o« ¢ o o o o o o o o
20 Printing s o« ¢ ¢ o o o ¢ ¢ o o o s o o o
3 OPACEs o s o o o o o o s o 2 4 o 0 0 e o .
4e SKiP o o o o o o 6 o o o o o o s s o o o o
5. Punching Cards « ¢ ¢« ¢ ¢ ¢ o ¢« ¢ o o o & &
6. Genel’alCommand..,...........
Program Controle « o o o ¢ ¢ o ¢ o o o o« ¢ ¢ «
1.Progl’amstal’f...............
2. Program Halt « & ¢ o v ¢ v v v s v o o o @
3. Setting Conditions « o ¢« ¢ & o ¢ o o o o
4, Sequence Control o o v o o 6 4 o o o o o &
a. Tlesting for Conditions « « &+ &« &« o & &

be Comparing for Conditions « « « « & » .

ce Explicit Sequence Change « « « o & .+ .

d. Implicit Sequence Change (Level breaks

5. Loop Control o v o o v v o o o 6 ¢ o « o »
6. Subroutines « ¢ v ¢ 4 e 4 4 e 4 s e e e e
CommEnts o« o o o o o o o o s o o s o o s » o o
Copy Source Deck o ¢« ¢ o o o o ¢ ¢ ¢ ¢ o o o &
Program Organization « o« o ¢ « o ¢ ¢ o o o o &
Operating Procedures « « & ¢ ¢« o ¢ ¢ ¢ o o o &

— -

O.....O.....'0"""..0”".'.0.”..O0.0..OO.'D..O

~—

»

L] . . . » . . . * * » . L] L] . . . L] .

S 8 & e 5 & 5 2 B % B 2 B B 8 & B S T B 3 5 2 » 32 B 5 s s >

» - . . » » * . L] » - » L d » » » » . . L d] » . L] » » [] » L] . » L . L] L] » » » L] . » L4] L] . » [] L] . .

- » L] . » .- L] . . . » » [] . . L] » L] . L] » . L] » L - * . L[] . L] L Ld L] *» » L] » . L[] L] . » » L] » » . L] »

Page

—_
=000 VTw WwWw — —

UP-4072.2

UP-4072.2

TABLE OF CONTENTS

(Continued)

Appendices
I System Labels
Il System Switches
Il Level Breaks (sample)
IV Use and Definition of Edit Masks

»

Page

66
67
68
73

A “%

A

UNIVAC 1005

REPORT PROGRAM GENERATOR EXTRACT

INTRODUCT ION

The UNIVAC 1005 Report Program Generator is a problem oriented program-
ming system designed to reduce substantially the time and effort necss-
sary to translate general data processing and reporting requirements
into detailed computer instructions. No knowledge of computer program-
ming is required other than the basic rules for writing programs in the
UNIVAC 1005 Assembly Language. The 1005 Report Program Generator, on
the basis of a series of statements provided by the user, produces a
computer program which will prepare the desired reports. The user's
statements, punched into cards, provide:

(1) The formats of the input (card) files——these files contain
the information from which the report is to be prepared.

(2) The formats of the desired output-reports~-printed documents,
punched summary cards, or both.

(3) The sequence of operations to be performed on the input files—-
arithmetic operations, input/output, data movement, controls.

The UNIVAC 1005 Report Program Generator provides a printed listing of
both the user's input statements and the generated assembly language
code. After the assembly phase, this generated code is an efficient
ready-to-run object program.

GENERAL DESCRIPTION

The UNIVAC 1005 Report Program Generator translates a user's source
input statements into 1005 assembly language. Each input statement
consists of one operation mnemonic, one or more operands, optionally
one label , and optional comments. One or more assembly language
statements are generated for each source input line, and the printed
output of the Report Program Generator alternates between the source
code and its generated code. In addition, assembly language instruc-
tions may be included with Report Program Generator statements.

These instructions will be copies into the assembly deck gensrated;

a '"no macro'' message will be printed.

Source input code for the Report Program Generator is prepared using
1005 Assembly Language coding forms. The information on the forms is
then punched into cards.

The operation mnemonic (referred to as "the macro" below) is coded in
columns 6 thru 10 of the source input; the first character of the macro
is coded in column 6, and the remaining characters must follow with no
intervening blanks. As an example, of the aight configurations shown
below, only the first and fifth are correct.

UP-4072.2

UP-4072.2

LABEL

12345

OP ER-
AT ION

6789}

READ
READ
REA D
R EAD
SET
SET
SET
S ET

OPERAND ONE

correct
incorrect
incorrect
incorrect

correct
incorrect
incorrect
incorrect

When a source input statement is found to contain an invalid operation
mnemonic, the statement is punchad without alteration into the output
deck and is printed with the message "NO MACRO" appended at the right

of the printed line (in columns 82 through 89).

Labels A, B (when required), and C (when required) are coded in columns
11 thru 20, 21 thru 30, and 31 thru 40, respectively, of the source in-

put code.

Columns 11, 21, and 31 are reserved for indirect addressing
designations (excepting comments and constants) and are otherwise unused.
Indirect addressing is permitted in only those operands where specifically

so stated in the macro descriptions of sections D and F. Except in cer-

tain obvious cases, it is expected that labels will be coded in each
operand field of the source input code.

If a label is present on a source input statement, it will be present
in the label field of the first assembly language statement generated
by that macroj its value is then determined in the normal fashion by

the Assembler.

This ensures that when transferring program control
within a report program, a user need only specify %

as the operand

his "jump') the label of the desired transfer point.

of

The label field is five characters, of which only the first three are

used--the fourth and fifth are ignored.

interpreted as AGE; COL 7 and COL 8 are both interpreted as COL.
for construction of labels are the same as those for the 1005 Assembly
System.

Thus AGE and AGENT are both

Rules

Comments are normally specified by using a comment source input card,
but alternatively may be coded in columns 62 thru 80 of any source
card. Comment source cards are retained throughout the assembly
process; comments ''beyond" column 61 are lost during Pass | of the

input

Assembly.

will be the address of the next available location of memory, as
determined by the 1005 Assembly lLanguage processor. This feature
allows the definition of more than one label at any processing step.

If a label is present on a comment source card, its value

The increment fields (columns 17-20, 27-30, and 37-40) should be coded

with

great care. Incrementation is always counted with respect to the

"left-hand" value(MSL) of a label, and is not normally required in an
operand, except for the TEST CHARACTER and MOVE CHARACTER macros.
the macro descriptions of sections D, E, and F, whether or not an
operand may be incremented is indicated for each operand.

2

In

System references, as used in this manual, are source input operands in
any of the following six forms:

(1) Xnnn decimal address

(2) faabb octal representation of any pair of characters
(3) $RRCCBK row/column/bank (decimal)

(4) RC row/column/bank (internal machine format)

(5) #yy system switch

(6) +LABEL "right-hand" value of LABEL (the LSL)

Each of these is fully described in the UNIVAC 1005 Assembly Language
manual. Listings of System Labels and Switches appear in Appendices |
and Il to this manual. System References are permitted as operands only
where specifically so stated in the macro descriptions of sections D, E,
and F. When System References are not permitted, an operand must be
either a Programmer-defined label or a System Label.

With each macro description in sections Dy Ey and F, is a summary table
of operand characteristics for each required operand. The three columns
in the table refer respectively to:

(1) 1A: indirect addressing to define the operand

(2) SR: system references in addition to labels coded as the
operand

(3) INC: VYES meens the increment feature is permitted and NO means
it is nots

The normal application of a macro requires neither the use nor the know-
ledge of the table's contentsj the information is useful for advanced
applications.

SPECIFICATION OF FIELDS AND DATA
1. Internal
a. Constants

Constants are specified by furnishing the name, the length, and
the content of each, on a source statement with operation
mnemonic '"DC."

The name of the constant must satisfy the rules for constructing
labelsy and is coded in the line label field. The length of the
constant does not include the character, if any, used to furnish
a sign for the constant. |If the sign character is not furnished,
it is assumed to be a plus. The length of a negative constant
must not exceed 25 characters.

If a constant of more than 44 characters is desired, the excess
of 44 is coded on the next sequential source statement with an
operation mnemonic of '"comma" (,). Additional characters beyond
83 are coded on additional "comma-cards' to a maximum of 961
characters (22 cards including the DC). The '"comma-cards" may
have a name of their own coded in their label fields, whether or

3 UP-4072.2

not the entire constant has a name; the name on a "comma-card"
refers to the characters on that card only, but the name on a
"DC-card" refers to the entire constant.
Constants may be defined anywhere within a program without
interfering with program sequence control; they are not loaded
into the instruction area. Each constant may consist of any
characters in the character set including blanks and algebraic
signs (the algebraic sign of the constant is not considered as
one of its characters).
DEF INE CONSTANT (DC)
Function:
Enter a constant into U1005 storage.
Where:
Operation = a two character mnemonic operation code (DC)

Operand 1

Label A = the number of characters in the constant,
excluding sign.

A = the sign of the constant

INC = the characters of the constant
Operand 2 - additional constant characters extending to

column 61. Negative constants extend only

to column 42.

Operand Characteristics:

1A SR INC
Operand 1 - Label A NO NO NO
Operand 2 - Label B NO NO NO
Label C NO NO NO
Examples:
(1) Enter the constant + 7
(2) Enter the constant - 10
(3) Enter an alphabetic constant.
s \ OPERAND 1 OPERAND 2
LABEL | OP 1 A LABEL A |4 TN ABEL B |4 LABEL C |+
1 3 6 7, 412 14 --[18 20]%i[22 24 ~i28 30 32 34 —133 40
i]) ! i I
SlElVgELN DICg] 1] J*'lr 1 + 7_LJ [} !] ! L] 1 ! (]] ' B [—
H B T
MLTIE!*Nl chi 1 21 1 i 1 - 1|O| [i 1 | [} ; 1 - | R WO N |
I | | | |
My, E4S1A,G|D,Cy 1 209, 1 M,OIVIE lT]H}IlS T.01 ﬁjﬁ PR, ;ALN D JP'R | NT ||_[1
4

UP-4072.2

CONT INUE CONSTANT (comma -)

Function:

Continue a constant that overflows from a previous
Define Constant or Continue Constant instruction.

Where:

Operation = a one character operation code (,)

Operands 1 and 2 = consecutive character positions,
beginning at column 18, and ending at
column 67.

Operand Characteristics:

1A B INC
Operand 1 - Label A NO NO NO
Operand 2 - Label B NO NO NO
Label C NO NO NO
Examples:
(1) Enter the first 44 characters of a 132 character
constant.
(2) Enter the next 44 characters of the constant.
(3) Enter the last 44 characters of the constant.
\ OPERAND 1 OPERAND 2
LABEL | OP |] L aBEL A |4 T ABEL B |4 LABEL C |+
1 3 6 7 12 14 —|18 20}*[22 24 —128 30] B2 34 —13g 40
| ! I ' '
L,O,N;G, D, ; L 1,32 , T,HEISE ,C ONSITEAN T | I,N,C'L,UIDJE,S] |T,H,E
1 1 ; 1 ,l ;jj_ 1 ; i CIOILUMN[S; IAT 1T|HE I‘R!illGlHT |U'P ITIO
i]) T ¥
THIRD, b b Aol oncte ol e oo tbumn a1l
b. Work Areas
Work areas are specified by furnishing the name and length of
each, on a source statement with operation mnemanic "DA,"
The name of the area is coded in the label field and must
satisfy the rules for constructing labels. Maximum area size
is 961 characters.
Work areas may be defined anywhere within a program without
interfering with program sequence controlj they are not re-
served in the instruction area.
Work areas are not automatically cleared when the object pro-
gram is loaded.
5 UP-4072.2

DEF INE WORK AREA (DA)
Function: Q:;;
Define a work areas
Where:
Operation = a two character mnemonic operation code (DA).
Operand 1

Label A = the number of character positions required in
the work area.

Operand 2 = not used.
Operand Characteristics:
1A SB INC
Operand 1 - Label A NO NO NO

Operand 2 - Label B NO NO NO
Label C NO NO NO

Examples:
(1) Define an eight character work area named TEMP. P
(2) Define a 12-character work area named T2. "/
(3) Define an 80 character work area named CARD.,
\ OPERAND 1 OPERAND 2.
LABEL |OP! ff’LABEL Als ™ LABEL B 1 LABEL C |+
1 3 6 7, “12_ 14 --[18 20|%[22 24 —128 30| B2 34 =38 4d
i {]] |
TI El Mg P! Dl Ag 11 8! 1 !t 1 1 l 1 1 : 1 L ' 1t ‘!7] 1
]]]]]
Tl 21 ' 1 DI A' (] 1 1 I2| ' 1 1 ' 1 1 I 1 (] ' 1 1 ' 1 1 L
' — ; : ;
C ALR:DL D, AJI L 8,0, 1 . L (R) | PRI B |

ce Accumulators,

Accumulators are specified by furnishing the name and length of
each, on a source statement with operation mnemonic "DA,"

The name of the accumulator is coded in the label field and

must satisfy the rules for constructing labels. The accumu-
lator may not exceed 31 characters in length. Accumulators

may be defined anywhere within a program without interfering
with program sequence control; they are not reserved in the

instruction area.

™
Accumulators are not automatically set to zero when the object (;y
program is loaded. ’

UP-4072.2 6

DEF INE ACCUMULATOR (DA)
Function:
Define an accumulator.
Where:
Operation = a two character mnemonic operation code (DA)
Operand 1

Label A = the number of positions required in the
accumulator.

Operand 2 = not used.

Operand Characteristics:

>
|5
=
o

Operand 1 - Label A NO NO
Operand 2 - Label B NO NO
Label C NO NO

=2=2=
OO O

Examples:

(1) Define a 19 digit accumulator named A19.
(2) Define a 6 digit accumulator named A2.

| OPERAND 1 OPERAND 2.
LABEL | OP ALABEL A |4 TALABEL B |4 LABEL ¢ |+
1 3 6 7, Y214 —18 20|22 24 —l28 30| B2 34 =38 40
i | 1] 1
&1l93 1 DIA; | I . 1|9l ': 1 1 l 1 1 : 1 ! ' 1 1 ! 1] l
]]] 1]
A2, | |DAL &, |, | N | - .
LY []) 1 1]
| 1 i 1 i
o b ' | [T I y | TR | R N B | 1

7 UP-4072.2

de Edit Masks

Edit masks are specified by furnishing the name, the length,
and the content of each, on a source statement with opera-
tion mnemonic "DC'",

The name of the mask is coded in the label field and must
satisfy the rules for constructing labels. A mask must not
exceed 31 characters in length. [f a field to be edited is
larger than 31 characters; it must be edited in segments not
exceeding 31 characters.

Edit masks may be defined anywhere within a program without
interfering with program sequence controlj they are not
loaded into the instruction area.

For rules governing the use and definition of edit masks,
see Appendix V.

DEFINE EDIT MASK (DC)
Function:

Define an Edit Maks.

Where:
Operation = ?Dégo character mnemonic operation code
Operation 1
Label A = number of positions in the mask.
Operand 2
Label B = The characters of the mask beginning in
column 18.
Label C = Consecutive positions containing the overflow
characters from Label B.
Examples:

(1) Edit a 7-digit field into a 16-character dollars
and cents field suppressing leading zeros and
commas.

(2) Same as above but insert asterisks for suppressed

characters.
| OPERAND 1 OPERAND 2.
| LABEL JOPY ™ LaseL A 4 ™| ABEL B |+ LABEL C |+
I 3 6 7) 2 1a |=hs 2022 24 —{28 30} B2 34 —i38 40
i i T i i
UTRSTTON Gt S I KU SO N T 1Y (W AN = 20)= R PO O P
L] 1) L] ; '
7,0, §ncy o, b ue 1 | dmormlafe, sis TP P, ¢, | |,

UP-4072.2 8

24

Input (Card)

An input card file is described by a set of source statements
which must be supplied to the Report Program Generator in a
group. Each distinct card file requires its own group, and any
number of card files is permitted.

The first card of each group is a "DA" whose first @nd only)
operand is "$R1." (See next example.) A line label is not
permitteds references to the entire card input area are made
through use of the label "§R1" which is the system label of the
card input area.

The remaining cards of the group are field definitions. A
field definition is a source statement with @) operation
mnemonic "dash™ (=), {b) the name of the field coded in the
label fieldy and (cs decimal numbers coded in Labels A and B.
Operand two is the length (number of characters) of the field
being definedj Operand one is the column number of the "right-
most' character of the field as it appears in the card. Every
field of the input card must have a name. A field name may
appear in the descriptions of more than one input file if the
respective fields agree in position and length.

Every column of the input card file need not appear in a de-
fined field.

DEFINE INPUT FIELD (-)
Function:
Define a field in the input file.
Where:
Operation = aone character operation code (-).
Operand 1

Label A = The number of the last card column in the
fields The number entered must not exceed 80.

Operand 2
Label B = The number of card columns in the field.
This number must not be higher than the
number entered in lLabel A.
Label C = Not used.

9 UP-4072.2

Operand Characteristics:

Operand 1 - Label A NO NO NO
Operand 2 - Label B NO NO NO
Label C NO NO NO

Examples:

(1) TYPE in column 1 (length 1)
(2) DATE in columns 2 to 6 (length 5)
(3) AGENT in columns 7 to 10 (length 4)
(4) AMT in columns 11 to 18 (length 8)
(5) INFO in columns 1 to 18 (length 18)
(6) ITEM in columns 51 to 80 (length 30)
(7) XYZ in columns 1 to 80 (length 80)

NOTE: '"XYZ" may be used as the "name' of the card
image arsa, as an alternative to using "$R1".

L ABEL opi IAO:EERAND] ol OPERAND 2.
13 s 7! B 1L2, BuL " s 20 éile'erzaL ® ize 30 glz'AaaE‘tL c ta_s 40
N I NI B - O AN I O I AT O O S O T
(PRI 1 COU S N T I PRI I IS R T I TN I O TN I T N
LI R S B PO S N N I - T A N O I O O I
A,G,EiNlT - i RN i . 4 i . L1 L g , o
VRSN ENE A A - N N N N i
IR N P G T AN N B A P I
= [SO TP I - O A L P I Y A I BN I AP P I
A STA T G I B NN I I N : WO I T S A B
|
O
10 |

UP-4072.2

3. Output

(i‘ a. Printing
(1) Detail Lines

Each card of the input file(s) may be printed as a
"detail line'" by transferring the contents of the
card input area, "$R1," to the leftmost 80 positions
of the print output area, "$80," and specifying a
print operation. The WALF and PRINT macros, which
accomplish this actiony are described in sections

Dy 2y aand E, 2. To print a detail line requires
the following codings:

) OPERAND 1 OPERAND 2.
LABEL OP: -:[fl LABEL A |4 I;ALABEL B |4 LABEL C |4
1 3 A 112 14 --18 20522 24 =128 30| B2 34 —138 40
| | 1 i 1
opt,iogial) MlVgAlLlF $1R11g 1 L $8AO;) | L1 ; 3 |
]) 1 1 1
optioha)IPRILNTI] 4 0 1 | T] v

In general, programmed clearing of the print output
area prior to using is not necessary, the PRINT
operation automatically clears all 132 positions to
spaces.

(ff\ (2) Nondetail Lines

A nondetail line is described by a set of source
statements which must be supplied to the Report Pro-
gram Generator in a group. Each distinct nondetail
line requires its own group, and any number of non-
detail lines is permitted.

The first card of each group is a "DA" whose first
(and only) operand is "IPR." (See next example.)

A line label is not permitted; references to the
entire print area are made through use of the label
"$PR,"" which is the system label of the print output
area.

The remaining cards of the group are field definitions.
A field definition is a source statement with:
(a) operation mnemonic "dash" (-_, (b) the name of
the field coded in the label field, and (c) decimal
numbers coded in operands one and two. Operand two
is the length (number of characters) of the field
being defined; operand one is the print position
number (from 1 to 132) of the "rightmost" character
of the field. Every field must have a name. A field
name may appear in the descriptions of more than one
- nondetail line if the respective fields agree in
(i; position and length.

When a line has been printed, the entire contents of

. 1dh n ; 1
the print outprﬁ area, "$PR," will automatically be UP.4072.2

UP-4072.2

cleared to blanks; information required following the @:D
printing must be specifically ''saved” by moving it to ‘
other areas.

Constants that are to appear in the printed line must

be transferred to the appropriate field each instance of
printing, and must be defined as constants through use
of the "DC" macro.

The sum of the lengths of the fields specified in the
field definitions of any one group (excluding field
overlapping) must not exceed 132, but may be any smaller
number. In general, only the first line printed during
execution need specify the contents of all 132 positionsj
automatic clearing of the print output area forces all
otherwise unspecified print positions to be blank there-
after.

DEFINE PRINT FIELD (=)
Function:

Define a field in the print area.

Where:
Operation = a onecharacter operation code (-). Ci:)
Operand 1
Label A = The "rightmost" position of the
fielde The number entered must not
exceed 132.
Operand 2
Label B = The number of characters in the

fielde This number must not be
higher than the number entered in
Label A.

Label C = Not used.

Operand Characteristicss:

Operand 1 - Label A NO NO NO
Operand 2 - Label B NO NO NO
Label C NO NO NO

12

Examples:
(1) 15 positions
(2 5 positions
(3) 20 positions
(4) 25 positions
(5) 20 positions
(6) 6 positions
(7) 41 positions

for
for
for

for
for

for
for

HEADR constant in 1 to 15
DATE field in 16 to 20
blanks (automatic if printing
occurred previously)
PROD field in 41 to 65
blanks (automatic if printing
occurred previously)
CODER field in 86 to 91
blanks (automatic if printing
occurred previously)

; OPERAND 1 OPERAND 2.
LABEL OP: If‘ LABEL A + IALABEL B |4 LABEL C |4
1 3 7, 12 14 —[18 20[%]22 24 =l 30 B2 34 =l 40
1 | I] i
] 1 g] DlAg S‘TI‘IPIF% 1 1 ! 1] :] ! I 1 [: ! 1 l
! 1 1 i i
HIEIA!DlR 1 ! 1151 ! 1 1 ' 1159 ! 1] | 1 !) 1 '
- i i i
DlAlrgEl ~1 E 2,0, ! 1 1 5| ! 1’ L] L1 ! 1 1
1
P,R,Oidl 1 i 6,5, i i L 2, 5, i L ' L { ! |
C,ODIER] | | 91, 1, R | Ll -

13

UP-4072.2

(3) Printing Summary Cards

Each summary card may be printed by transferring the N
contents of the punch output area, "#P1,! to the left- @Z:;
most 80 positions of the print output area, "$80," and

specifying a print operation. Printing must occur

before punching for this case, due to the automatic

clearing of the punch output prea following the actual

punching. To print a summary card requires the fol-

lowing code:

, OPERAND 1 OPERAND 2.
LABEL |OP! A LaseL AL M LABEL B |+ LABEL C |+
1 3 6 7, M2 14 |--f18 20[%22 24 —f28 30| B2 34 —l38 _ 4Q
.| | I i I
(gptional}MViALF f$P 1t [] 1 I8 f), 0),],
]]] 1 1
(aptichal X P, RELNTE] L . | L |

b. Punching
(1) Detail Reproducing

Each card of the input file(s) may be punched as part

of the output file by transferring the contents of the
card input area, "$§R1," to the card output area, "$P1,"
and specifying a punch operation. The WALF and PUNCH

macros, which accomplish this action, are described in P
sections (D2a) and (E5). To punch a detail line re- "/
quires the following coding:
L ABE | (OFERAND 7 OPERAND 2.
I
S 1OPT uaseL Al LABEL B |4 LABEL ¢ |+
13 16 7 Spl2 14 —18 20[%)22 24 —[28 30| B2 34 -lag__ 40
1 i] | i |
@Dtloéal) M,VgA,L.F $|R11; 1 | $P11: 1 . Ly) ll
eptionap|Puive | § P b b

In general, programmed clearing of the punch output
area prior to using is not necessary, as the PUNCH

operation automatically clears all 80 positions to

spaces.s

(2) Nondetail (Summary) Punching

A nondetail (summary) card is described by a set of
source statements which must be supplied to the Report
Program Generator in a group. Each distinct nondetail
card requires its own group, and any number of non-
detail cards is permitted.

The first card of each group is a "DA" whose first @nd
only) operand is "$P1." (See next example.) A label 4;;
is not permitted; references to the entire card output -
area are made through use of the label "$P1," which is
the system label of the card output area.

UP-4072.2 14

The remaining cards of the group are field definitions.
A field definition is a source statement with (a) operation
mnemonic "dash'" (=), (b) the name of the field coded in
the label field, and (c) decimal numbers coded in Labels
A and B. Label B is the length (number of characters) of
the field being defined; Label A is the column number of
the "rightmost'" character of the field as it will appear
in the punched card. Every field must have a name, but
not every column of the output card need appear in a
defined fields A field name may appear in the descrip-
tions of more than one output file if the respective
fields agree in position and length.

DEF INE PUNCH FIELD (-
Function:
Define a field in an output card.
Where:

Operation = A one character operation code (-).

Operand 1
Label A = The "rightmost" column of the field.
The number entered must not exceed 80.
Operand 2
Label B = The number of characters in the field.
This number must not be higher than
the number entered in Label A.
Label C = Not used.

Operand Characteristics:

1A oR INC

Operand 1 - Label A NO NO NO
Operand 2 - Label B NO NO NO
Label C NO NO NO

Examples:

(1) 18 positions for SLSWN field in positions
1 to 18

(2) 3 positions for BRNCH field in positions
20 to 22

(3) 11 positions for YRVLM field in positions
30 to 40

(4) 10 positions for NET field in positions
50 to 59

(5) 7 positions for COMW field in positions
64 to 70

(6) 2 positions for CON constant in posikions

79 to 80 UP-4072.2

15

UP-4072.2

\ OPERAND 1 OPERAND 2. @
LABEL JOP! 1) ppey A4 A LABEL B [+ LABEL C
1 3 6 71 “12_ 14 1—NN8 20%[22 24 —l28 30| B2 34 8 4
I i i i i
] 1 ;] DIA; %l P11g 1 [] 1 1 g i 1 | L L ; 1 '
[}]]] 1
SILIS!MlN T ! 1181 ! 1 | 1,8, ! L v P !
i
BLRNICHI-, | 2720 I I I I TR A N A B L
T
YIRIViLlM -l i 4lgl !]] ’ 1111 i 1] I 1 i i 1 '
NlEIT; 1 i ; 5L9! ; 1 1] ' 1Igl ; ! (] ‘ 1] ; 1 '
]]] } 1
ClolM!Ml ~1 ! 7jgl ! 1 ! l 71 1 ! 1 | [!] |
] | t I {
CONy 1-11 Sngl | . 2, 41, | R | 1
™
O
16

C

D.

PROCESS ING DATA
1. ARITHMETIC Operations
Five Macro Instructions are provided for arithmetic operations.
ADD (ADD)
Function:

Algebraically add a field or accumulator to a second field
or accumulator. Both fields are assumed to be signad.

Notes: (1) The maximum length of each operand is 31 lo-
cations. They need not be of the same length.

(2) The contents of Operand 1 are not affected by

this instruction. The result is stored in
Operand 2.

(3) One of three sign indicators (#AP, #AZ, #AM)

will be set to reflect the resulting condition.

The indicator set will remain set until the
next arithmetic or round instruction is given.

(4) Arithmetic overflow will cause indicator #AF
to be set.

Where:

Operation = a mnemonic operation code (ADD).

Operand 1
Llabel A = The label address of the first field or ac-
cumulator.
Operand 2
Label B = The label address of the second field or

accumulator.
Label C = Not used.
Operand Characteristics:
1A SR ING

Operand 1 - Label A NO NO YES
Operand 2 - Label B YES NO YES
lLabel C NO NO NO

Examples:

(1) Add field A to accumulator 1
(2) Add field TAX to field DEDCT
(3) Add accumulator 3 to accumulator 5

17

UP-4072.2

i OPERAND 1 OPERAND 2. @
LABEL fOP1 HA ABEL A |4 TALABEL B [+ LABEL C |4
1 3 s 74 M2 14 |—]8 20[%22 24 =28 30f B2 34 |—|s 4d

i I | i I
11 ; 1 AiDng [AL 1 : 1 1 ' A|1l ;). /] ' t i J:] (] '
1 1 ; 1 AID;DI 1 TLAJX; 1 1 l Dl E]D;CIT [] | 1 1 i] " I

1} 1)) 1) L]

|

w ot dapip, , 1Az}, e lAs 1 - 1 |

SUBTRACT (SUB)
Function:

Algebraically subtract one field or accumulator from a second
field or accumulator. Both fields are assumed to be signed.

Notes: (1) The maximum length of each operand is 31 locations.
They need not be of the same length.

(2) The contents of Operand 1 are not affected by
this instruction. The result is stored in
Operand. 2.

(3) One of three sign indicators (#AP, #A2, #AM) will
be set to reflect the resulting condition. The .
indicator set will remain set until the next (i;)
arithmetic or round instruction is given.

Where:

Operation = a mnemonic operation code (SUB).

Operand 1
Label A = The label address of the first field or accumu-
lator.
Operand 2
label B = The label address of the second field or accumu-

lator.
Label C = Not used.
Operand Characteristics:

) SR INC

Operand 1 - Label A NO NO YES
Operand 2 - Label B YES NO YES
Label C NO NO NO ﬂ:?

UP-4072.2 = 18

Examples:

(1) Subtract NET from GROSS.
(2) Subtract accumulator 2 from PAY.
(3) Subtract ABC from accumulator 6.

\ OPERAND 1 OPERAND 2.
LABEL | OP! Jxﬁ LABEL A |4 IALABEL B 4 LABEL C |+
3 6 71 W02 14 =P8 2022 24 |—|2s 30] b2 34 |-l 4
1 1 I '
1 1 ! 1 S!U!Bl] NIEJT: 1 1 l GIR IOIIé IS 1 l 1 1 ; L] 1 I
H \]]
NP EUTT: P B NP N P.ALY] L A |
1]] L) l i
1 = 1 S|U=Bn) A!B!C: ! - A6, | v MR y 1

MULTIPLY (MPY)

Function:

Multiply a field or accumulator by a second field or accumula-
tor by a second field or accumulator, storing the result in a

third area.

Notes: (1)

(2)

Where:

The signs of both operands are ignored and assumed
to be positive.

The contents of Operands 1 and 2 (label B) will
will not be disturbed, unless overlapped by the
third Operand (Label C).

Operation = a mnemonic operation code (MPY).

Operand 1

Label A =

Operand 2
Label B
Label C

Il

The label address of a four (4) digit multipli-
cand.

The label address of a six (6) digit multiplier.

The label address of a ten (10) digit product

area.

Operand Characteristics:

1A SR INC

Operand 1 - Label A NO NO NO
Operand 2 - Label B NO YES YES

Label C NO NO NO

19 UP-4072.2

Examples: (1) Multiply A
M) Multiply A by B and store ths result in C.
(2) Multiply PAY by RATE and store the result in accumulator 4.
; OPERAND 1 OPERAND 2.
LABEL [OPY WAy ABEL A |4 A ABEL B |4 LABEL C
3 6 7, “12 14 —|18 20[%]22 24 —l28 30| B2 34 38 40
| | | |]
IALA;] MngY| [l A| 1 ; L 1 l Bl 1 ; 1 1 l C| 1 I: [} 1
co bt qmey, A Lot raTie Ll dtaa L

UP-4072.2

Function:

MULTIPLY LONG (MPYL)

Multiply a field or accumulator by a second field or
accumulator, storing the result in a third area.

Notes:

Where:

Operation = a mnemonic operation code (MPYL).

(1)

(2)

Operand 1

Label A

1

Operand 2

Label B

Label C

1l

1

The signs of both operands are ignored and

assumed to be positive.

The contents of Operands 1 and 2 (label B)
will not be disturbed, unless overlapped by

the third Operand (Label C).

The label address

pl iCand.

The label address

multiplier.

The label address

product area.

Operand Characteristics:

Operand 1 - Label A
Operand 2 - Label B

Label C

20

1A SR
NO NO
N0 YES
‘N0 NO

=
(@]

YES
NO

of a nine (9) digit multi-

of an eleven (11) digit

of a twenty (20) digit

@:ji

Examples:

(1) Multiply (long) CENTS by RATIO and store the result in LIRA,
(2) Multiply (long) accumulator 2 by AMT and store the result

in COST.
| OPERAND 1 OPERAND 2.
LABEL | OP} HLABEL A |+ TLABEL B |+ LABEL C |+
3 6 74 2 1 -8 20|%22 24 ~|28 30| B2 34 ~138 40
l | !
S I UG Y B N I T B s e I LLRIAC LT
1 1 ' i i
N LR YO B A L IAMT 14 160,517, L
DIVIDE (DIV)
Function:
Divide a field or accumulator by a second field or accumulator,
storing the result in a third area.
Notes: (1) The signs of both operands are ignored and
assumed to be positive.
(2) The contents of Operands 1 and 2 (label B)
will not be disturbed, unless overlapped by
the third Operand (Label C).
Where:

Operation = a mnemonic operation code (DIV).

Operand 1
Label A = The label address of a six (6) digit divisor.
Operand 2
Label B = The label address of an eight (8) digit dividend.
Label C = The label address of an eight digit area,

to contain the eight (8) digit quotient.

Operand Characteristics:

1A SR INC

Operand 1 - Label A NO NO NO
Operand 2 - Label B NO YES YES
Label C NO NO NO

21 UP-4072.2

Examples:

(1) Divide TOTAL by WEEKS and store the result in TEWP.

L OPERAND 1 OPERAND 2.
LABEL [OP! A LasEL A o ™ | ABEL B |4 LABEL C |+
1 3 6 7, ~[12 14 18 20|22 24 —l28 30 B2 34 —i38 40
1 1 i]
1 1 !‘ 1 Dllgvl 1 WlElE! Kls 1 j T‘O lTnAlL 1 ' L-l-lEIM !Pl] |
1] H i !
1 g' 1 L' 1 1 1 ' (] L] (] (] J [l (] ' (] 1 ’ (] 1 ‘

2. Internal Data Transfers and Editing

Ten Macro instructions are provided to transfer, edit, and modify
data.

a. Data Transfers (alphanumeric and numeric)

MOVE ALPHANUMERIC (MVALF)
Function:

Move an alphanumeric field or accumulator into a second
field or accumulator.

Where:
Operation = a mnemonic operation code (MWALF). O
N
Operand 1
Label A = The label-address of the field or accumulator
to be moved. The data stored in Operand 1
will not be altered by the instruction.
Operand 2
Label B = The label address of the field or accumulator

to receive the data moved. Operand 2 must
not include more than 961 storage locations,
or more locations than are specified by
Operand 1.

Label C = Not used.

Operand Characteristics:

1A SR INC

Operand 1 - Label A NO NO NO
Operand 2 - Label B YES NO YES
Label C NO NO NO

UP-4072.2 20

Examples:

(1) Move accumulator 1 to GROSS.
(2) Move SALES to INCOM,

(3) Move DAY to Accumulator 3.

L ABE \ OPERAND 1 OPERAND 2.
]
ol Y LaseL Ay “LABEL B |+ LABEL C
1 3 6 7 112 14 —18 20|%22 24 —J]28 30| B2 34 33 40
i | | ‘] /
. ; 1 MIV '!AILIF Al 1J ; 1 1 J GlRlo;SIS ! ' ! l
ot myva L FL s age s g | [INCOM] | |
1]) 1 ¥
] |
| L] MIV'AILIF DLALY=] |J At3| : []] I : '
MOVE NUMERIC (MVNUM
Function:
Move a field or accumulator into a second field or
accumulator, deleting all zone and sign bits.
Where:
Operation = a mnemonic operation code (MWNUM) .
Operand 1
Label A = The label address of the field or
accumulator to be moved. The data
stored in Operand 1 will not be altered
by the instruction.
Operand 2
Label B = The label address of the field or ac-
cumulator to receive the data moved.
Operand 2 must not include more than 961
storage locations or more locations than
are specified by Operand 1.
Label C = Not used
Operand Characteristics:
1A SR INC
Operand 1 - Label A NO NO NO
Operand 2 - Label B YES NO YES
Label C NO NO NO
UP-4072.2

Examples: @:j

(1) Move the decimal field VALUE to accumulator 1.
(2) Replace NET by the absolute value of NET.
(3) Move the field INPUT to accumulator 2, removing

overpunches.
LaseL 1o . OPERAND 1 OPERAND 2.
|
U Muasen aly T LABEL B |+ LABEL C |+
1 3 6 7; ‘2 14 (=08 20[%p2 24 —|28 30| B2 34 —[38 40
] i I i I
1 1 g‘! MIV gNlU(M VlAl I—;UIE i] A!jl ! 1 l_.'] /] ! | 1 '
| 1] ; 1
co gy IneTy b b P vETy P b]
|yl - | i
N T Muv IN|U|M lJ N: P: U!T 4 Arza : ! | 1 |J’ 1 1

b. Data Transfer with Edit Feature
MOVE WITH EDIT (WEDT)
Function:
Move an alphanumeric field or accumulator to a second

field or accumulator, modifying the data transferred
by a specified mask.

Where:
(,/(™
Operation = a mnemonic operation code (WEDT). N
Operand 1
Label A = The label address of the field or accumulator
to be moved. The data stored in Operand 1
will not be altered by the instruction.
Operand 2
Label B = The label address of the field or accumulator
to receive the data moved.
Label C = The label address of the edit mask.
Operand Characteristics:
1A SR INC
Operand 1 - Label A YES YES YES
Operand 2 - Label B YES NO YES
Label C YES YES YES
NOTE: A description of edit masks and editing features is
presented in Appendix IV, ‘:;

UP-4072.2 24

(i\: Examples:

(1) Move TAX to OUTPT, editing with DOLLR.

(2) Move accumulator 5 to SAVE, editing with £ERO.

(3) Move IN to TEMP, editing with accumulator 4.
OPERAND 1 OPERAND 2.

LABEL A |4 “LABEL B |+ LABEL C [+
12 14 =18 20|% 22 24 —}28 30} B2 34 —138_ 40

LABEL | OP
65 7

-
w

| 1 | !
epThmax b joume |, oo LitRl |,

MVt
: . !
MYV ED T IAS SANE L f{AERO L,

myED TN, b Il freme J Ly U aa b]
c. Filling - Work Areas

-
-

—t— -

1L 1 l

danbe el Lt

-
b
L

FILL AREA (FILL)
Function:

Fill a field or accumulator with a specified character.
Where:

Operation = a mnemonic operation code (FILL)

Operand 1

(:/, Label A = The label address of the area to be filled.
Operand 1 must not exceed 961 characters in
length. Fill begins in the "leftmost"
position specified.

Operand 2

]

Label B = The character with which the area specified
by Operand 1 is to be filled. This character

is always entered in both columns 22 and 23.

Label C

1

Not used.
Operand Characteristics:

1A SR |

=
(@]

Operand 1 - Label A YES NO
Operand 2 - Label B NO NO
Label C NO NO

=
oo W

Examples:

(1) Fill TOTAL with zeroes
(2) Fill accumulator 6 with asterisks
C\ (3) Fill all but the two leftmost characters of HEADR
with dashes.

25 UP-4072.2

| OPERAND 1 OPERAND 2.
LABEL |OP! {ﬁLABEL A TALABEL B |4 LABEL C |+
1 3 6 7 M2 14 =08 20[%[22 24 —28 30 B2 34 =138 40
PR I (T B O T I P I/ A B A 6 P I B
NP SN LT TS B NN O O AT I N (T I AP e I
S A L S I 0 S AT B R | o L

d. Clearing-Work Areas
CLEAR AREA (CLEAR)
Function:

Clear one, two, or three fields or accumulators to
spaces.
iihere:

Operation = a mnemonic operation code (CLEAR)

Operand 1
Label A = The label address of a field or accumulator
to be cleareds The maximum number of
characters in this Operand is 961. Clearing
begins at the '"leftmost" position specified.
Operand 2
Label B = The label address of a second field or

accumulator to be cleared. The maximum
number of characters in this Operand is 961.
Clearing begins at the '"leftmost'" position
specified.

Llabel C = The label address of a third field or ac-
cumulator to be cleared. The maximum number
of characters in this Operand is 961.
Clearing begins at the "leftmost" position
specified.

Operand Characteristics:

Operand 1 - Label A YES NO YES
Operand 2 - Label B YES NO YES
Label C YES NO YES

UP-4072.2

N
L

Examples:

Clear accumulators 3 and 7 and field MM2
Clear fields SALES, NET, and MONTH

(3) Clear field OUT and all but the four leftmost
characters of MASK
; OPERAND 1 OPERAND 2.
1 3 6 7 112 14 -8 20|22 24 —]28 30| B2 34 - 40)
i | | i !
v !, JCLIEARI JAZ T L AT L I NP I
o Jonearfsayged | o veT L | we T H !
1]) 1 T
L 1 =] CIL=E1A|R Q|U!T= 1 1 l MIA!S=K| + 41 1 1 1 : Il '

e« Moving a Singie Character

MOVE CHARACTER (MW CHR)

Function:

Move a character, contained in the instruction to a
single storage location.

Where:

Operation = A mnemonic operation code (MCHR)

Operand 1

Label A

Operand 2

Label B

Label C

1l

I

The character to be moved.
into columns 12 and 13.

[t is coded

The label address of the location to

receive the specified character.

The

location specified may be part of a

larger field or accumulator.

Not used.

Operand Characteristics:

Operand 1 - Label A
Operand 2 - Label B
Label C

27

1A
NO

YES

NO

|

=
O

YES

UP-4072.2

Examples:

(1) Move a 7 to the fourth character of COST
(2) Move a blank to the first character of field B32
(3) Move a - to the last character of accumulator 1.

| OPERAND 1 OPERAND 2.
LABEL |OP! Ij!LABEL At A ABEL B |4 LABEL C |4
1 3 6 7; __ 112 14 —18 20}%%[22 24 ~i28 301 B2 34 =138 40
\ | | i]
[1 g [] M 'V gC LH lR 7! 7! : 1 [l l CIOISj!TI + 31 l] i ; i [I
]]]]]
1 1 !] M IV4C LHJR 1 1 ! 1] I 813121L A1] l 1 1 ! 1 1 '
1 1 i i
I N B MIV |C|H|R 1= | | +1A11= ' L PR N |

f. Rounding Arithmetic Results
ROUND (ROUND)
Function:

Round a decimal value by half adjusting in the '"right-
most'" position of the area specified. This instruction
will cause the value five (5§ to be added in the right-
most position of the field. The result is then shifted one
position to the right, dropping the rounded position

and filling the "leftmost' position with a space code.

NOTES: (1) The rounding of negative values should be
preceded by the addition of the value - 10.

(2) The ROUND instruction affects the sign
indicators.
Where:

Operation = a mnemonic operation code (ROUND)

Operand 1
Label A = The label address of the field or accumula-
tor to be rounded.
Operand 2
Label B = Not used.

label C = Not used.

Operand Characteristics:

Operand 1 - Label A NO NO
Operand 2 - Label B NO NO
Label C NO NO

=== lEE
&S 1B

UP-4072.2 23

P

"

Examples:

(1) Round accumulator 2 one place
(2) Round LEVEL (known to be negative) one place
(MTEN contains -10)

N OPERAND 1 OPERAND 2.

oP | TALABEL A |4 T | ABEL B |+ LABEL C |+

6 71 12 14 —P8 20]%22 24 ~l28 30| B2 34 —lw 4
| | i |

R,OMUN,DY JA, 2, !, | Ll | Lt |
1]] i

AID!DI 1 MLTJEJ'NI] I LIEIV!EIL] | A] ! 1 1 l

|
. |R.0fuN, D} JLLEVIEL | el | Lt L 1]
g. Shifting Arithmetic Results

SHIFT FIELD (SHIFT)
Function:

Shift the contents of a field or accumulator to the
right a specified number of positions, filling the
opened positions to the left with spaces.

Where:

Operation = a mnemonic operation code (SHIFT)

Opesrand 1
Label A = The number of positions the field or
accumulator is to be shifted. The
maximum shift is 961 locations.
Operand 2
Label B = The label address of the field or ac-

cumulator to be shifted.
Label C = Not used.

Operand Characteristics:

=
I
=
)

Operand 1 - Label A NO NO
Operand 2 - Label B NO NO
Label C NO NO

===
O OO

29

UP-4072.2

Examples:

(1) Shift accumulator 5 right 3 places.
(2) Round QOTNT 7 places.

| OPERAND 1 OPERAND 2.

LABEL |OP! If- LABEL A |4t I’ALABEL B 4 LABEL C [+
L 6 7; “12_ 14 —['8 20[%22 24 —l28 30| B2 34 138
] | I i ¥
[1 ! 1 SlH fl |F|I 3! 1 Ll 1 ' Al 5! !] 1 ‘ 1 i ;]
i ! 1 ' i
] 1 ; 1 SlH;I lF lT 6! 1 ! 1] l QIOIT!NIT [] l] 1 ! (]

i [} .
1 i
1 i : 1 RIO }U lN ID Q‘IOYT{NLT 1 l [] 1]] 3 ' I o 1

he Transfer of Sign
TRANSFER SIGN (SIGN)
Function:

Transfer the algebraic sign of a field or accumulator
to a second field or accumulator.

NOTES: (1) The sign is located in the zone bits of
the rightmost character of a field.

(2) Only the sign bits of the receiving
field are altered.

Where:
Operation = a mnemonic operation code (SIGN)
Operand 1
Label A = The label address of the field containing
the sign to transferred.
Label B = The label address of the field to receive

the sign.
Label C = Not used.

Operand Characteristics:

|A SR INC

Operand 1 - Label A NO NO NO
Operand 2 - Label B NO NO NO
Label C NO NO NO

UP-4072.2 30

Examples:

(1) Move the sign of YRNET to WKNET
(2) Move the sign of accumulator 2 to SIGN and make
accumulator 2 positive.

ABE \ OPERAND 1 OPERAND 2.
|

LABEL 1 OP 1 A LABEL A4) ABEL B |+ LABEL C |+

1 3 6 7 12 14 —I8 20 222 24 —{28 30| B2 34 et B
i |] 1 i

NI P ST I S = I I O VN1 I T O P B 1 P
H H ' H i

1] ! 1 SLI!GINl Al_2,l ! 1 1 l SI_‘lIG!Nl L l 1 Li 1 1 |

N I AN B YR A I T IR N A B T B P O B

i. General Logical Command
EDIT LOGICAL (EL)
Function:

(1) Erase bits of the character specified by Operand
2, Label B, if the corresponding bits of the
first (XS3) character in Operand 1, Label A, are
zeros. This is an and operation, similar to
logical multiplication without carry.

Rules:

SRR SR oY
X X X X
_a—eXN
I
B S S

(2) Superimpose the bit pattern of the second (X53)
character in Operand 1, Label A, onto the
character specified by Operand 2, Label C.

This is an or operation, similar to logical
addition without carry.

Rules:
g+ad=4g
g+1=1
1+ g=1
1T 4+ + =1

Where:

Operation = a two character mnemonic operation code (EL).

31

UP-4072.2

UP-4072.2

Operand 1

Label A

Operand 2
Label B

Label C

Operand 1 -
Operand 2 -

Examples:

1

1l

The two characters to be used in the edit
operation.

NOTE: Label A doesnot specify a location
in this instruction. The two
characters represent the bit patterns
to be used.

The label address of the character on which
the erasure is to be carried out.

The label address of the character on which
the superimpose is to be carried out.

NOTE: Labels B & C may specify the same
storage location.

Operand Characteristics:

Label A NO YES
Label B NO YES YES
Label C NO YES YES

=
(@]

(1) AND a 4-bit into CODE and OR a Y-bit into PLUS
(2) AND a 4-bit into CODE
(3) OR a Y-bit into PLUS

, OPERAND 1 OPERAND 2.
LABEL 1 OP | ALAaBEL A |4 N ABEL B |4 LABEL ¢ |+
3 6 7i “h2 14 =8 20]%122 24 —j28 30| B2 34 ~138 40
Lo fEL woatogl |y | Jeopte | et s, L
L i . ElLi #Lgl4iﬁ,ﬂ Ll C,O,DEE, C L i ' 1
N A el o Pt Uls, L

32

E. INPUT/OUTPUT
1. Reading Cards
READ A CARD (READ)
Function:
Read the next card from the input file.

NOTE: Card images are always read into the following
storage locations:

80 column - positions 1 - 80
90 column - positions 1 - 45 and 63 - 107

Where:

Operation = a mnemonic operation code (READ).

1

Operand 1 = Not used.
Operand 2 = Not used.

Operand Characteristics:

1A SR INC

Operand 1 - Label A NO NO NO
Operand 2 - lLabel B NO NO NO
Label C NO NO NO

Examples:

(1) Read the next card from the input file.
(2) Move the 80-col card image to field CARD.
(3) Move columns 41 thru 80 of an 80-col card image to HALF,

H OPERAND 1 OPERAND 2.
LABEL |OP ! T 14 LABEL C |+
LABEL A LABEL B 4
1 3 6 7! jlz 14 i“_g 20]%22 24 —l28 30| B2 34 |-|ss 40
i T i i
1 1 !] RIE!ALDI 3 1 ! 1 |] 1 1 :] 1 l L J_; ! 1 l
H H ' ']
N I (AR BN TS A I O I (W0 I T I AN I I O
) L L) H |
1 1 : | M|V=AIL!F $|R!1=] + 4!%' H!AII—'FI 1 l i 1 ' 1 i l

33 UP-4072.2

2. Printing
PRINT (PRINT)

Function:

Print a line, space the form one line and clear Print

Storage. Print Storage is located at positions 161-292.
Where:

Operation = A mnemonic operation code (PRINT).

Operand 1 = Not used.

Operand 2 = Not used.

Operand Characteristics:

1A SR ING

Operand 1 - Label A NO NO NO
Operand 2 - Label B NO NO NO
Label C NO NO NO

Examples:

(1) Print the contents of the print area.

(2) Print the contents of the 132-char field HEADR.

O

oE , OPERAND 1 OPERAND 2.

LABEL | OP ALABEL A |4 | ABEL B |+ LABEL C

1 3 6 74 112 14 —{18 20]% 22 24 =28 30 B2 34 40
ol |] !

] 1 g] PiR;I |NJT 1 1 : 1 1 J | 1 ;] 1 l | N ; !
]]]]]

1 1 ! 1 MIV !ALLIF HI_EJ A!DIR 1 l fHSIPIR! 1 i l 1 1 ! 1

1] [} = IR PlellN!T 1 1] :] 1 '] J : i] ' [} 1 {]

UP-4072.2 34

(3. Spacing Forms
/ SPACE (SPACE)
Function:
Advance the form in the printer one space without printing.
Where:
Operation = A mnemonic operation code (SPACE).
Operand 1 = Not used.
Operand 2 = Not used.

Operand Characteristics:

LA sB NG
Operand 1 - Label A NO NO NO
Operand 2 - Label B NO NO NO
Label C NO NO NO
Examples:
(i/: (1) Advance the carriage three (blank) lines.
, OPERAND 1 OPERAND 2.
1 3 6 7, 214 =18 20]%22 24 —l28 30 B2 34 =38 40
I | I I i
1 1 ;] SlP ;A lC]E 1 1 ; 1 1 ‘ 1 1 ; 1 ! ‘ 1 1 !rJ] l
! !]] i
Lo L SPIACERTL L) L] I O P |
1 | | | |
ll']SlPIAICIE Lo} | I B] T T A |l
UP-4072.2

4, Skipping Forms
SKIP (SKIP)

Function:

Skip the form in the printer to a specified line.

The

seven (7) code on the Form Control Tape is reserved as

the "Home Paper'' code.

Where:

Operation = A mnemonic operation code (SKIP).

Operand 1

Label A = The decimal equivalents of the bit con-

figurations on the Form Control Tape. The
number is entered into column 12.
Operand Characteristics:
1A SR INC
Operand 1 - Label A NO NO NO
Operand 2 - Label B NO NO NO
Label C NO NO NO
‘Example:
(1) Skip to control tape configuration 5
\ OPERAND 1 OPERAND 2.
LABEL | OP | L aseL A |y " LABEL B |+ LABEL C
1 3 6 7; “02 14 1=N8 201%)22 24 —j28 30| B2 34 38 44
| | | | !
N A A LIS N N | Ly il L L
J]]] 1
IJ;!;l l!!l ll!L ll ll!l JL ll!l ll
1 1 |
S T B ' I B | 1g=v | Lt =1 o
UP-4072.2 36

5. Punching Cards
PUNCH (PUNCH)

Function:

Punch the contents of the punch storage area, clearing

Punch Storage to spaces.

NOTE: The Punch Storage area is always located in the

following locations:

80 column - positions 293-372
90 column - positions 293-337 and 383-427

Where:

1

Operation

Not used.

I

Operand 1
Operand 2 = Not used.

Operand Characteristics:

Operand 1 - Label A NO NO
Operand 2 - Label B NO NO
Label C NO NO

Example:

(1) Punch a card(Line 1).

=
o

==2=2
OO O

A mnemonic operation code (PUNCH).

(2) Then punch the contents of field SUMRY. (Lines 2 and 3)

| OPERAND 1 OPERAND 2.
LABEL | OP | ALABEL A |4 A\ ABEL B M LABEL C |+
3 6 74 “[12 14 —18 20[%22 24 {28 30| B2 34 —{38 40
i | | i I
11 ; 1 PIU:NLCIH 1] 1 Jf 1 1 l 1 1 :] Il l 1 ; [1 |
]]] 1 i
v | MVALLFYAS UMBRYL L 1L TGP Ll b | L
1] | | I
S P|U|N1C1H I | | [I y | 'R T |

37

UP-4072.2

6. General Input/Output Command
GENERAL COMMAND (GC)
Function:

To initiate operation and/or control all input/output
devices under the direct control of the UNIVAC 1005.

Where:
Operation = A mnemonic operation code (GC)
Operand 1

Label A = Two of the six (XS3) characters that are
used to produce the necessary bit patterns
to select and operate the various Input/
Output devices.

Operand 2

Label B = Two of the six (XS3) characters that are
used to produce the necessary bit patterns
to select and operate the various Input/

Output devices.

I

Label C = Two of the six (XS3) characters that are
used to produce the necessary bit patterns
to select and operate the various Input/
Output devices.

Operand Characteristics:

=
v
3]
=
$)

Operand 1 - Label A NO YES
Operand 2 - Label B NO YES
Label C NO YES

==Z2=2
O OO

Examples:

(1) Print with double spacing (one blank line following a

printed line)
(2) Read and Punch
(3) Read and Print only 90 columns.

\ OPERAND 1 OPERAND 2.

LABEL [OPY 14y aneL a4 ™ | ABEL B |4 LABEL C |+

1 3 6 7, M2 1a |=N8 2022 24 =28 30} B2 34 —{38__ 40
| | | i !

11 g 1 Gng [| \l 1 g 1 1 l 1 !ﬁn 1 ' ‘o !‘ 1 1 |
[}] [}] 1

PR B LGN B I S 1 . 1 Sl |
I I i i i

[Gucl Lt E T L l:lv | | ' T

UP-4072.2 38

PROGRAM CONTROL

Twenty two macro instructions are available for controlling the flow of
processing. They are necessary for starting and halting a program,

for setting and testing conditions, for operations with subroutines, and
for altering the execution sequence of program.

The program is normally executed in the order in which the processing
statements are presented to the Report Program Generator. However,
numerous macro instructions are provided to allow the programmer to
alter the sequence under a variety of conditions.

A control statement is not required to indicate the end of source in-
put code statements. The Report Program Generator halts when the last
input card is read.
1. Program Start

END PROGRAM LOAD (END)

Function:

Terminate loading of the program and begin execution. This
instruction is identical to the END directive of the 1005
Assembler and is not part of a loaded program. It has no
function during compiling or assembling and does not
terminate the reading of source input cards.

Where:
Operation = A mnemonic operation code (END).
Operand 1

Label A = The label address of the first processing
instruction to be executed.

Operand 2 = Not used.

Operand Characteristics:

[A SR INC

Operand 1 - Label A NO YES YES
Operand 2 - Label B NO NO NO
Label C NO NO NO

39 UP-4072.2

Examples:

(1) Terminate loading and start the program at STEP,

2. Program Halt
HALT PROCESSING (HALT)

Function:

Stop program execution and light a Halt Indicator.
This instruction becomes part of the object program.
When the RUN key on the U1005 Console is depressed
following a halt, processing will continue at the
source statement immediately following the source

HALT statement.

Where:

Operation = A mnemonic operation code (HALT).

Operand 1

Label A = The code for the desired System Switch.
A listing of System Switches is provided

in Appendix Il.

Operand 2 = Not used.

Operand Characteristics:

Operand 1 - Label A NO
Operand 2 - Label B NO
Label C NO

Examples:

=
(@)

===
O OO

(1) Halt execution and turn on halt indicator 2.
Continue to RESTT if RUN button is pressed.

\ OPERAND 1 OPERAND 2.
LABEL 1OP L M4y aBeL A |4 TALABEL B |4 LABEL C
1 3 6 71 “12 14 —~[18 20[¥22 24 —l28 30| B2 34 B 40
i i 1] !
Lo oy JENID, Sy T EfPy | H Pl \ I |
{ ; ;] 1
1 1 l] 1 ' 1] 1 1 ' 1 1 l ' (] | 1 1 ' I. 1 ' L

X OPERAND 1 OPERAND 2.
LABEL | OP | ALABEL A & ™A ABEL B |+ LABEL ¢
1 3 e 7 N2 14 |=p8 200mp2 24 |=las 30l b2 34 38 40
] | | i 1
oA, b A L ! U I A I
]]
L1 lsomo, JIRESTT |, i N O A I I

UP-4072.2

40

O

O

- 3. Setting Conditions
C SET CONDITION (SET)
Function:
Set or reset one, two or three System Switches.
Where:

Operation = A mnemonic operation code (SET).

Operand 1
Label A = The code for the System Switch to be set
or reset. A listing of System Switches is
provided in Appendix Il.
Operand 2
Label B = The code for a second System Switch to be
set or reset.
Label C = The code for a third System Switch to be
set or reset.
(i\ Operand Characteristics:

=
|
=
)

Operand 1 - Label A NO YES
Operand 2 - Label B NO YES
Label C NO YES

===
O OO

Examples:

(1) Set even parity for tape operation.
(2) Set sense switches one and two and servo No. 1.
(3) Reset sense switch one and set servo No. 2.

X OPERAND 1 OPERAND 2.

LABEL |oOP! Iﬁ LABEL A |4 ™ ABEL B |+ LABEL C |+

1 3 6 7 12 14 —[18 20|%22 24 ~{28 30| B2 34 ~{38 40
I I | i !

A L:L 1 SLE:T! 1 ?%EIP! 1 | J 1 1 _1: 1 Il L4 ; \ 1 I
' ' ' 1 , ?

A N Y LI I i O N PR e PO R PRI I S O N P
I I : I I i

T SlElTa 1 #l—: 1' ! y | #1,81_2[Il o PRI B |

41 UP-4072.2

4. Sequence Control
a. Testing for Conditions
TEST CONDITION (TEST)
Function:

Test a System Switch for a specified setting.
Transfer program sequence control if the condition
is present.

Wnere:

Operation = A mnemonic operation code (TEST).
Operand 1

Label A = The letters "COND."
Operand 2

Label B = The code for the desired System Switch.
A listing of System Switches is provided
in Appendix Il.

Label C = The label address of the next instruction

to be executed if the condition is present.

If the condition tested is not met, control

is transferred to the next instruction in

sequence.

I

Operand Characteristics:

1A SB INC
Operand 1 - Label A NO NO NO
Operand 2- - Label B NO YES NO

Label C NO YES YES
Examples:
(1) Test for arithmetic overflow; if set go to OVER routine.

(2) Test for and reset parity error and if set go to PARER.
(3) Test for alteration switch No. 2 set and if set go to ON2.

| OPERAND 1 OPERAND 2.

LABEL | OP | I LABEL A |4 ™ | ABEL B |+ LABEL ¢ |+

1 3 A 1214 —[18 20{%[22 24 —i28 30| B2 34 138 40
| | | | |

1 1 g] T!E=6|T| ClOIN:Dl 1 ' #|A|Fg]] ‘ OlVlE;RI [] |
] 1 t 1]

c o P JTEPT, B ICOND, L APE L IPARIER] | |

14 lLl TLE lTI 0101N=D| | #l—|2= v . O,N,Z{ 2 o

UP-4072.2 42

TEST NEGATIVE (TEST)
Function:

Test the contents of a single storage location for a
negative sign. A field is identified as negative by
the presence of an X bit in the rightmost character
position.

Where:
Operation = a mnemonic operation code (TEST)
Operand 1
Label A = The letters "NEG".

Operand 2
Label B = The label address of the character loca-—
tion to be tested.
Label C = The label address of the next instruction

to be executed if the location tested is
negative. |f the location is not negative,
control is transferred to the next instruc-
tion in sequence.

Operand Characteristics:
1A SR INC
Operand 1 - Label A NO NO NO
Operand 2 - Label B NO YES YES
Label C NO YES YES
Examples:

(1) If field PRFT is negative, transfer control to BOMB.
(2) If the third character of INPUT is positive, go to

MAN ,
| OPERAND 1 OPERAND 2.
LABEL | OP 1 ALABEL A 4 A | ABEL B |4 LABEL C |+
1 3 6 7; {12 14 —[18 20|%% 22 24 —i28 30| B2 34 ~138 40
| i | 1]
Lo AT ES T O INEG L PRETEL L BOMB L
' H T B
o drEs T e L N euTlele L INEXT L]
1 L)
1 ! I
1 !) GIO!TIOJ M! A!N! ! | [E 1 L n L: ! v
H ' 1 |
NIEIX'TI [| ISR |) i \ y | v oy N

43 UP-4072.2

TEST CHARACTER (TEST)

Function:

Test a storage location for the presence of a specific

character.
Where:

Operation = a mnemonic operation code (TEST)

Operand 1
Label A

I

character.

column 13.

Operand 2

1

Label B

tasted.

1

Label C

The specific character for which the test
is being made, not the address of the test
This character is entered into

The label address of the storage location being

The label address of the next instruction

to be executed if the location tested

tains the character specified in Operand 1.
If the character is not present, control is
transferred to the next instruction in

sequence.

Operand Characteristics:

Operand 1 - Label A
Operand 2 - Label B
Label C

Example:

(1) If the last character of INIT is not a 7,
(2) If the second character of WIT is *, go to SPECL.

1A

NO
YES
NO

YES
YES
YES

INC

NO
YES
YES

go to NO7.

UP-4072.2

L ABE \ OPERAND 1 OPERAND 2.
ol ALaseL Ay | ABEL B |+ LABEL C
1 3 6 7) 112 14 —18 20|%22 24 ~[28 30 B2 34
] I I
L P YT EST T, ot g | vExT,
] 1 i ' S
L1 16910 FINOT) T I A I P
N|E|X}T| TIE:SLT! *1*1 : 1 | U|N1|=T| +11 | S|P|E=C|L
44

P

AN

N

N/

b. Comparing for Conditions

COMPARE ALPHANUMERIG (COMPA)

Function:

Perform an alphanumeric comparison on two fields or
accumulators. This comparison is made on a match/
non-match basis. Either the '"equal or 'mot-equal
indicator is set as a result of this instruction.
These indicators remain set until the next compare
instruction. They may be tested by the IFEQ and
IFNE instructions.

Where:

Operation = A mnemonic operation code (COVPA).

Operand
Label A = The label address of a field or
accumulator.
Operand 2
Label B = The label address of a field or
accumulator to be compared with Operand 1.
Label C = Not used.

Operand Characteristics:
A SR INC

Operand 1 - Label A NO NO NO
Operand 2 - Label B YES NO YES
Label C NO NO NO

Examples:

(1) Compare INPUT with NAME
(2) Compare accumulator 1 with INPUT
(3) Compare the ”ri%htmost” 6 characters of accumulator

2 (9 characters) with SCALE
| OPERAND 1 OPERAND 2.
LABEL |OP! 1;*1 LABEL A |4 N LABEL B [LABEL C |+
3 6 7; 12 14 —18 20[%[22 24 ~l28 30| B2 34 =l38 40
| i ! a
cob o Joompa) biwerot by | N amE, | Lt |
(] (] ; 1 CiojMJPJA Al 1! i 1 1 I ILNJPi UIT [] [1 1 ; 1 ['
1}) 1 i 1
I
1 [} }] CIO=M|PIA SJ C! Al LIE i ' A!2l =] +J 31 ' 1] ; 1] L

45 UP-4072.2

TRANSFER |F EQUAL (IFEQ)

Function:

If a previous comparison set the EQUAL indicator,

transfer program control.

NOTES: (1) The IFEQ instruction can be used in
conjunction with any of the compare

instructions.

(2) Indicator settings are not affected

by the IFEQ instructions.

Where:

Operation = A mnemonic operation code (IFEQ).

The label address of the next instruction

to be executed, if the EQUAL indicator is

set. |f the EQUAL indicator is not set,
the next instruction in sequence is exe-

Operand 1
Label A =
cuted.
Operand 2
Label B = Not used.
Label C = Not used.

Operand Characteristics:

Operand 1 - Label A NO
Operand 2 - Label B NO
Label C NO

Examples:

(1) If the previous compare set the EQUAL indicator,

SR INC
YES YES
NO NO
NO NO

transfer program control to step EQU.

L ABEL ' OPERAND 1 OPERAND 2.
|
P 1 A LABEL A |4 T ABEL B |4 LABEL C
1 3 6 71 1214 =8 2022 24 —l28 30 B2 34 3
| | I | z
y o b JLPIEQ N JEQ UL | L | L]
i] | 1 B!
1 1 ' 1 1 ' 1 14 l 1 1 l | — j 1 [l 1 .'

UP-4072.2 46

AN

"

TRANSFER |F NOT EQUAL (IFNE)

Function:

If a previous comparison set the NOT-EQUAL indicator,
transfer program control.

NOTE: Indicator settings are not affected by the IFNE
instruction.

Where:

Operation = A mnemonic operation code (IFNE).

Operand 1
Label A = The label address of the next instruction
to be executed, if the NOT-EQUAL indicator
is set. If the indicator is not set, the
next instruction in sequence is executed.
Operand 2

Label B = Not used.
Label C = Not used.

Operand Characteristics:

Operand 1 - Label A NO YES YES
Operand 2 - label B NO NO NO
Label C NO NO NO

Examples:

(1) If the previous compare set the NOT-EQUAL indicator,
transfer program control to PHASE.

\ OPERAND 1 OPERAND 2.
LABEL | OP 1 HLABEL A |4 ™ LABEL B |4+ LABEL C |+
3 6 7i)12 14 —18 20]%22 24 —=[28 30] B2 34 —|38 40
i N []]
| | ! 1 IIF!NlEI Pl HI A!SIE 1 j 1 1 : 1 1 l 1 1 j! L] 1 '
i | i 4 i
1 [' 1 L' 1 2 1 1 1 [l 1 ' _1] J 1 g ' 11 l] 1 [

47 UP-4072.2

COMPARE NUMERIC (COMPN)
Function:

Perform an algebraic comparison on two numeric fields

or accumulators. This instruction always results in

the setting of one of three indicators. These indicators
are; (1) EQUAL, (2) LESS-THAN, and (3) GREATER-THAN.

If either the LESS-THAN or GREATER-THAN indicator is set,
the NOT-EQUAL indicator will also be set. All of these
indicators will remain set until the next compare in-
struction is given. They may be tested by any "IF"
instruction.

Where:
Operation = A mnemonic operation code (COMPN).
Operand 1

Label A = The label address of a numeric field or
accumulatore.

Operand 2

Label B = The label address of the field or ac-
cumulator to be compared with Operand 1. A
N
NOTES: (1) Operands 1 and 2 must be of
equal length.

(2) Resulting indicator settings
will be made with respect to
Operand 15 e.g., if Operand 1
is greater, the GREATER-THAN
indicator will be set.

Label C = Not used.

Operand Characteristics:

=
[ep]

1A SR

|

Operand 1 - Label A NO NO
Operand 2 - Label B YES NO YES
Label C NO NO NO

=
(@]

UP-4072.2 48

Examples:

(1) Compare SUM with TOTAL.
(2) Compare accumulator 3 with SUM.
(3) Compare HYTE with all but the first digit of TOP.

\ OPERAND 1 OPERAND 2.
LABEL 1 OP} A LasEL A4 N LABEL B |+ LABEL C |+
3 6 7i 214 —18 20|%22 24 =28 30| B2 34 -3 40
i I I i !
y o P, oM P NE S, UM LT O TANLL)] L |
]]] ,] 1
b o], JCOMPNIIAS |, N I UL O P L |
ot qoome N tnyme ULl ropt cbeln o b, b T

TRANSFER |F LESS THAN (IFLT)
Function:

If the previous comparison set the LESS-THAN indicator,
transfer program control.

NOTES: (1) Indicator settings are not affected by the
IFLT instruction.

(2) IFLT instruction may be used only in con-
Junction with the COMPN and COMPM instruc-
tions.

Where:

Operation = A mnemonic operation code (IFLT).

Operand 1
Label A = The label address of the next instruction to
be executed, if the LESS THAN indicator is
set. |If the indicator is not set, the next
instruction in sequence is executed.
Operand 2
Label B = Not used.
Label C = Not used.

Operand Characteristics:

Operand 1 - Label A NO YES YES
Operand 2 - Label B NO NO NO
Label C NO NO NO

UP-4072.2

49

Example:

i (1) If the previous compare set the LESS-THAN indicator, Q::
} transfer program control to step ENUF.
| ; OPERAND 1 OPERAND 2.
LABEL |OP! Ifi LABEL A |4+ T LABEL B |H LABEL C |+ '
1T 3 6 7, 11214 —~18 20]%[22 .24 —[28 30| B2 34 —l38 40
i | I | |
1 1 ! 1 | !F !L lTJ El Nl U! Fl 1 J 11 g] i ‘ | -] : } ['
]] i ' i
1 1 I 1 1 ' 1 [] 1 1 l 1 1 j 1 1 ' A [} ' 1 1 l [] 1 '

TRANSFER |F GREATER THAN (IFGT)

Function:

If the previous comparison set the LESS-THAN indicator,
transfer program control.

NOTES: (1) Indicator settings are not affected by the
IFGT instruction.

(2) The IFGT instruction may be used only in
con junction with the COMPN and COMPM in-
structions.

Where: (:)

Operation = A mnemonic operation code (IFGT).

Operand 1
Label A = The label address of the next instruction to
be executed, if the GREATER-THAN indicator is
set. If the indicator is not set, the next
instruction in sequence is executed.
Operand 2
Label B = Not used.

Label C = Not used.
Operand Characteristics:
1A SR ING
Operand 1 = Label A NO YES YES

Operand 2 = Label B NO NO NO
Label C NO NO NO

UP-4072.2

50

Example:

(1) If the previous compare set the GREATER THAN

indicator, transfer control to step PRICE.

OPERAND 1 OPERAND 2.
LABEL | OP ALaneL Al A LABEL B [+ LABEL C
3 7 “12 14 |=f8 202 24 |=los 30| B2 34

-

PIRVII;CIE 1 l

11 1 I ' 1 1 I

b > ode ne

I

COMPARE MAGNITUDE (COMPM)

Function:

Perform an absolute magnitude compare on two numeric
This instruction will always

result in the setting of one of three indicators.

These indicaters arej (1) EQUAL, (2) LESS-THAN and

[f either the LESS-THAN or the
GREATER-THAN indicator is set, the NOT-EQUAL indicator
These indicator settings will not be
altered until the next compare instruction is given.
A1l of these indicators may be tested by any "IF"

fields or accumulators.,

(3) GREATER-THAN.

will also be set.

instruction.

Where:

Operation = A mnemonic operation code (COMPM).

Operand 1

Label A

Operand 2

Label B = The label address of a field or accumulator

to be compared to Operand 1.

NOTE:

Indicator settings are made with
respect to Operand 15 e. g.y if
Operand 1 is greater than Operand 2,
the GREATER-THAN indicator will be

set.

Label C = Not used.

51

The label address of a field or accumulator.

UP-4072.2

Operand Characteristics:

1A SR INC

Operand 1 - Label A NO NO NO
Operand 2 - Label B YES NO YES
Label C NO NO NO

Examples:

(1) Compare the magnitudes of accumulator 2 and AMT.

(2) Compare the magnitudes of TIME and accumulator 3.

(3) Compare the magnitudes of the field FIFTY and all
but the left three characters of AMT.

X OPERAND 1 OPERAND 2.
LABEL | OP ALABEL A |4 ™ LABEL 8 |4 LABEL ¢ |+
1T 3 6 7, 12 14 —[18 20]|%[22 24 =128 30| B2 34 138

i i) i] !

v} o JC,0Mmp, M A2 | AL TY | N
1]] i

e |, JCOIMPMETT, 1M E P I Y o | i]
] 1

[U I | Cno]MlptM' Fl IngT! | A1M|T=) +3| | T : 1

UP-4072.2 ‘ 52

®

ce Explicit Sequence Change
TRANSFER CONTROL (GOTO)

Function:

Unconditionally transfer program control to the

instruction specified by Operand 1.

Where:

Operation = A mnemonic operation code (GOTO).

Operand 1

Label A = The label address of the next instruc-—

tion to be executed.

Operand 2
label A = Not used.
Label B = Not used.

Operand Characteristics:

Operand 1 - Label A
Operand 2 - label B
Label C

Example:

(1) Transfer program control to program step TAX.

53

\ OPERAND 1 OPERAND 2.
|
LABEL | OP 1 ALABEL A 4+ T LABEL B |4 LABEL C
3 7 “12 4 =8 201122 24 ~l28 30| B2 34 40
I | | I i
1 1 : 1 Logioj TIAIX: | 1 l 11 ! 1 1 l 1 ! Ll
H H 1 i i
1 1 ' 1 1 ' | | 11 ' (] 1 | (! ' 1 s | Ll l 1 |
UP-4072.2

UP-4072.2

de

Implicit Sequence Change (Level Breaks)

Level break operations (LEVLA, LEVLN, LEVLM) are used

to conditionally transfer program control to a specified
subroutine when consecutive values of a field in an in-
put file differ. The "condition" is that the ALLOW
switch is ON.

The ALLOW switch is an internal switch set to either

ON or OFF, and is set to ON automatically when an ob ject
program is loaded. Whenever a level break occurs (that
is, consecutive values of a field differ), the ALLOW
switch is set to OFF before program control is transferred
to the appropriate subroutine. The only means of return-
ing the switch to the ON position is the use of the

ALLOW BREAK macro instruction.

The first time '"thru'" the level break operation, no break
can occurj processing is limited to "saving'" the first
value of the designated field. The second time and there-
after, testing for differing consecutive values occurs and
a break is possible. In all cases, the current value of
the tested field is "saved" for the next comparison.

When a level break occurs and program control transfers to
the specified subroutine, the EXIT operation of that sub-
routine is automatically set to return program control

to the operation sequentially following the level break
operation (LEVLA, LEVLN, or LEVLM).

Level break operations should be coded in order of de-
creasing priority of fields tested. Appendix 3 is an
example of the normal scheme. An ALLOW BREAK operation
precedes the first level break operation, but there may
be intervening operations between any two level break
operations or between any LEVL operation and ALLOW BREAK.
More than one ALLOW BREAK may appear in a program.

LEVEL BREAK ALPHANUMERIC (LEVLA)
Function:
Transfer program control if a control break (level
break) occurs on an alphanumeric field. Comparison
is based on all six bits of each character.
Where:
Operation = A mnemonic operation code (LEVLA).

Operand 1

Label A = The label address of a field to be
tested for a level break.

54

AN

Operand 2

Label B = The label address of a BEGIN state-
ment of a subroutine.

Label C = The number of characters in the field
specified by Operand 1.

Operand Characteristics:

Operand 1 - Label A NO NO YES
Operand 2 - Label B NO NO NO
Label C NO NO NO

Examples:

(1) Alphanumeric level breaks in FIELD (8 charac-
ters) are to be processed by COST.

(2) Alphanumeric level breaks in the seven
"rightmost'" characters of FIELD are to be
processed by TIME.

| OPERAND 1 OPERAND 2.
oF i ALABEL A |4 A ABEL B [LABEL C |+
6 7, 12 14 =18 20]%22 24 —{28 30| B2 34 —138 40
| | :] }
LlEgVLLlA FlllEngD IJ CLOlEi;TI 1 l 8| i ! \ ! L
1] i
0SS VAL B T = TS 5 KRR I A I SR I O R I O
LEVEL BREAK NUMERIC (LEVLN)
Function:
Transfer Program Control if a control break (level
break) occurs on a numeric field. The comparison
of fields is algebraic. All zone bits are ignored,
except the sign bit in the "rightmost" position.
Where:
Operation = A mnemonic operation code (LEVLN),
Operand 1
Label A = The label address of a field to be
tested for a level break.
Operand 2
label B = The label address of a BEGIN state-
ment of a subroutine.
label C = The number of characters in the field
specified by Operand 1. UP.4072.2

55

Operand Characteristics: >
O
1A SR INC
Operand 1 - Label A NO NO YES
Operand 2 - Label B NO NO NO
Label C NO NO NO
Examples:
(1) Numeric level breaks in VALUE (11 characters)
are to be processed by WHLSL.
(2) Numeric level breaks in the four "rightmost"
characters of VALUE are to be processed by
XYZ.
) OPERAND 1 OPERAND 2.
LABEL [OP | A LasEL A |4 ™) ABEL B [+ LABEL C |+
1 3 6 7, M2 14 |—P8 20[%22 24 —l28 30| B2 34 i3 40
' | I ' | {
I I B CNEVR: I I I ATENE N A B EE R e B
1 1 ;] LIEiVlLIN VlA\ L;U|E+7l l ><|lei 1 1 | 4| 1 ; 1 1 l
LEVEL BREAK MAGNITUDE (LEVLM)
AN
Function: "

Transfer program control if a control break (level
break) occurs on a numeric field. The comparison
of fields is numeric. All signs and zone bits are
ignored.

Where:

Operation = A mnemonic operation code (LEVLM).

Operand 1

Label A = The label address of a field to be
tested for a level break.

Operand 2
Label B = The label address of a BEGIN state-
ment of a subroutine.
Label C = The number of characters in the

field specified by Operand 1.

UP-4072.2 56

Operand Characteristics:

Operand 1 - Label A NO
Operand 2 - Label B NO
Label C NO

Examples:

(1) Magnitude level breaks in A3 (12 characters)

are to be processed by TOTAL.

(2) Magnitude level breaks in the two '"rightmost"

characters of A3 are to be processed by MAJOR.

' OPERAND 1 OPERAND 2.
LABEL | OP! Iﬂ LABEL A |4 ™ LABEL B |4 LABEL C
3 6 7, 1214 —[18 _20[%[22 24 —[28 30| B2 34 38 40
PR AN (0= T I VN PO I TN I8 0 7 I8 O N T O I
SR I (=1] B T SN R NN I T I A e B
ALLOW BREAK (ALLOW)
Function:
Turn on the internal switch that permits the
occurrence of level breaks.
Where:
Operation = A mnemonic operation code (ALLOW).
Operand 1
Label A = The letters "BREAK",
Opeirand 2
Label B = Not used.
Label C = Not used.
Operand Characteristics:
1A B INC
Operand 1 - Label A NO NO NO
Operand 2 - Label B NO NO NO
Label C NO NO NO
57 UP-4072.2

Example: @::D

(1) Turn on the internal switch which permits
the occurrence of level breaks.

, OPERAND 1 OPERAND 2.
LABEL [OP! " LaBEL A |4 | ABEL B8 [+ LABEL C |+
1 3 6 7! 2 14 |=h8 20fwl22 24 —ls 30 B2 34 —l3g 40
- i i i i
11 ! 1 AILSLJOJW BlRl E!AIK 1 J 1 1 ! 1 1 ' | I] ! i 1 '
t 1 T ; "
: 1 : 11 L. : | 1 ' L.l l Il .. ' T ' 1 1 _l
5. Loop Control
LOOP (LOOP)
Function:
Repeat the execution of a group of instructions
a specified number of times.
NOTES: (1) LOOP is normally the final operation
in the repeated group. If LOOP is
the first operation of the group the
value specifying the number of times AN
the group is to be executed, must be _~

one more than the number of execu-
tions desired.

(2) When the execution has been repeated
the desired number of times, control
is transferred to the next instruc-
tion in sequence, and the loop opera-
tion is automatically reset.

Where:
Operation = A mnemonic operation code (LOOP).
Operand 1
Label A = A two digit number (#1 to 99) repre-
senting the number of times the loop
is to be executed.

Operand 2

Label B = The label address of the first instruc-
tion of the group.

Not used. (:D

UP-4072.2 58

1

Label C

Operand Characteristics:

Operand 1 - lLabel A
Operand 2 - Label B
Label C

==Z2=
O OO
<
3
<
o3

Examples:

(1) Repeat the group of operations starting with
MANY 5 times from below.

(2) Repeat the group of operations starting with
FEW 11 times (from above).

OPERAND 1 OPERAND 2.

1
LABEL OP{ Iﬁ LABEL A + IALABEL B 4 LABEL C |4
1 3 6 7i 112 14 —018 20|%22 24 —{28 30f B2 34 —i33 40
% i | o | I
AN;YI 1 ; 1t 11 ! 1 IJ 1 1 ; 1]] I) : A] '
1 1 ! 1 1
1 [] ! 1 1 ! 11 1 i ‘!7|] J 1 i ! 1 1 |] 1 ! 1 1 l
1 ! | | |
11 !) LlOpPl 315, ! ! y M!AlNgyl L 1 i 1 4
) - .
L|U|P! 1 LtOlpFl 112| ! 1 3 FIE]Wi 1 y | 1 }) |
'!i! G!Q;Tpl EIX'[;TI v' Liiv " L!:l l'
]) | [} |
FIEIW! 1 T L | | T - R 1
[1 ; 1 GIO:TIOJ L1U|P:] - | ! 1 1 ; 1 1 ' 1 (] ; 1 (] [

6.

Subroutines

A subroutine, as here defined, is a group of operations
coded sequentially, whose first operation is BEGIN (a
labellsd operation) and whose last operation is EXIT (also
labelled). A subroutine is characterized by the fllowing
property: When Operand 2 of any "LEVL'" macro is the label
of a BEGIN, the return exit addesss is automatically in-
serted into the corresponding EXIT whenever a level break
occurs to that BEGIN.

In all other cases of transferring control to a BEGIN
(by GOTO, TEST, "IF", SBRTy and LOOP), the address in
EXIT can and must be set by the programmer. This is most
easily accomplished through use of the SBRT operation,
described below. '"Nesting" of subroutines is not allowed
betwsen any pair of BEGIN's at least one EXIT must appear.

BEGIN A SUBROUTINE (BEGIN)
Function:

Define the beginning of a subroutine. Begin must
be labelled. When executed as a result of a LEVL
instruction it sets up the return address in the
corresponding exit.

59

UP-4072.2

Where:

Operation

Operand 1

Label A

Operand 2

Label B

il

Not used.

Not used.

Label C = Not used.

Operand Characteristics:

Operand 1 -
Operand 2 -

Example:

(1) Begin a

Label A
Label B
Label C

subroutine.

A mnemonic operation code (BEGIN).

INC

NO
NO
NO

TALABEL A

e]2 14

+

OPFPERAND 1

—~{18

14
20{%22 24

ILABEL B

OPERAN

4
—128 30

D 2.

LABEL C
32 34

I | PEGR
%

Gy LNp Y,

1

| L

11 1 i 1

1

| L

EXIT FROM A SUBROUT INE (EXIT)

Function:

Provide a variable GOTO of which the operand is

set by the program during execution.

NOTE:

UP-4072.2

The exit address can be specified by the
programmer in either of two ways, each of
which requires that the EXIT operation be

labelled. ares (1) SBRT (described

Theg

below) and, (2
move from the operand of a Dl to the
modified label (see Example 2).

60

the use of an alphanumeric

Where:

Operation =

Operand 1
Label A

Operand 2
Label B

Label C

A mnemonic

Not used.

Not used.

= Not used.

Operand Characteristics:

Operand 1 - Label A
Operand 2 - Label B

Examples:

Label C

operation code (EXIT).

NO
NO
NO

SR INC
NO NO
NO NO
NO NO

(1) Set up a variable exit.
(2) Move the address of RTRN to the EXIT of
Example (1).

i OPERAND 1 OPERAND 2.
LABEL |OP! A LaseL A |3 ™\ ABEL B |+ LABEL ¢
1 3 6 7, 12 14 =18 20|%22 24 —[28 30| B2 34 38 40
I { I ! !
LABIELIEXIIT, y ot L L | Lt |
]]] 1 1
1 L] ! [] l\/[l\/ !AILIF NI Al M! El 1 I LIAIB!EIL + 3! '] 1 !] I
1] |
N|A|M|Ec Dnllll RlTanNt y | ll=| | 41;1 !
EXECUTE A SUBROUT INE (SBRT)
Function:
Transfer program control to a subroutine and
set an exit address.
Where:
Operation = A mnemonic operation code (SBRT).
Operand 1
Label A = The label address of the first step
of the subroutine.
61 UP-4072.2

Label B = The label address of an EXIT or GOTO £
operationy, which is to contain the A
return address. The address of this
operand is not incremented.
Label C = The address to which the subroutine
will return when it executes the EXIT
or GOTO named in Label B. If no entry
is made in Label C, return from the
subroutine is made automatically to
the next sequential step following
the SBRT operation.
Operand Characteristics:
1A SR INC
Operand 1 - Label A NO YES YES
Operand 2 - Label B NO NO NO
Label C NO YES YES
Examples:
(1) Transfer control to TAX and set the exit to
normal return.
(2) Transfer control to TAX and set the exit to Py
CMPUT (the EXIT corresponding to BEGIN labelled "
TAX is labelled EX1). ‘
\ OPERAND 1} OPERAND 2.
LABEL | OP A ABEL A |4 LABEL B |+ LABEL C |+
1 3 6 7,. ~12 14 =18 20]%22 24 =128 30| B2 34 —138 4
] | | I i
11;1 S_lBgR!Tl TLAngl o E1X11;| A !l:[|
]]] !
NI EPETGIO B R B IR I T O ST B8 RN (U
G. COMMENTS
. (PERIOD)
Function:
Comment cards have no function. They will be printed and
punched, however.
Comments should not extend beyond column 61.
UP-4072.2

62

Example:

L OPERAND 1 OPERAND 2.
LABEL | OP | JLABEL A |4 TALABEL B 4 LABEL C |+
3 6 7 12 14 —18 20|%[22 24 —l28 30| B2 34 —|38__40
| | !
bbb b freEs el Joarripls, atR.e] fuERlElL,y, JRLEIPIR OID|U.CLE D
1 1 K \ i ,
1 1 ! 1 1 _! 1 [ALNlD! IP R lINIT E D: 1 ! 1 1 I 1 1 ! 1 1 l 1
| I i
1 : 1 L = L [T B v | TR | P N R 4 !
H. COPY SOURCE DECK

COPY (COPY)
Function:
Begin reproducing the source deck as comments in the
output deck to be assembled, or terminate reproducing.
Where:

Operation = a mnemonic operation code (COPY)

Operand 1
Label A = The word ON or the word OFF to furn the
feature on or off.
Operand 2
Label B = Not used.
Label C = Not used.

Operand Characteristics:

1A SR INC
Operand 1 - Label A NO NO NO
Operand 2 - Label B NO NO NO
Label C NO NO NO
Examples:
(1) Turn COPY on.
(2) Turn COPY off.
| OPERAND 1 OPERAND 2.
LABEL | OP | ALABEL A |1 T ABEL B [+ LABEL ¢ |+
3 6 74 {12 14 =18 20|%22 24 —{28 30 B2 34 =72 40
| i ! } 1
1 ! 1 C!O!PIY] OiNl ! 1 1 ' 1 1 || 1] | 1] ! i 1 '
]]] 1 ;
1 ! 1 CIO!P IYI OLFI F! i] l 1] ! 1 1 l 1] l‘] 1 l
1 1 |
' [(IR I | Lo ll : | L { 1 y 1

63 UP-4072.2

UP-4072.2

PROGRAM ORGAN | ZAT ION

Before writing a program, it is advisable to prepare a complete
description of the problem with particular attention to input and
output layout. With this done, it is a simple task to assign
names to the various fields and to write field definitions of the
input and output areas.

Having prepared all of the field descriptions requiredy a list of
constants, edit masks, and accumulators should be prepared. The
input/output layouts should be consulted to be certain each
accumulator has been defined with a sufficient length to handle
the maximum possible size.

The sequence of operations in the object program is determined by
the sequence in which they are written and may be altered as
directed by program control directives.

Below are some conventions which should be followed to assure
correct and efficient object coding.

(1) A page overflow routine should be executed at the very be-
ginning to assure proper initial positioning of paper before
processing begins.

(2) Normally, the reading of an input item will be immediately fol-
lowed by a test for the end of the run.

(3) The LEVL directives normally occur before any further proces-
sing is specified, since a control break indicates that the
last card of a control group has already been processed.
After the LEVL operations have been written in their proper
sequence, they should be followed by the processing which is
to be done when no control break has occurred. This will
conserve storage and result in a more efficient program.

(4) Sequence control directives should be preceded by those opera-
tions which are to be performed regardless of the result of
the transfer. This will conserve storage and result in a
more efficient program.

(5) End of job processing, to which control is transferred as a
result of the test mentioned in (2) above, should include
execution of the highest priority level break subroutine
(assuring execution of all lower ones) and the page overflow
routine.

64

AN
N

OPERAT ING PROCEDURES

The Report Program Generator produces a 1005 Assembly lLanguags
intermediate output deck from the user's source statements; the
intermediate deck is then assembled (as it stands) and a final
ob ject code deck produced.

The program is run by placing the Report Program Generator in the

card read hopper, adding the source statements to the hopper, and
pressing START, CLEAR, FEED, and RUN.

Each source statement will be printed and the assembly language
code generated, if any, will be printed directly following.

The generated code is always punched, and the source code will or
will not be punched according to the most recent setting of the
COPY switch (ON is set if not otherwise specified).

The assembly phase should be executed as described in the 1005
Assembly Language Manual.

65

UP-4072.2

UP-4072.2

$R1
$Rr2
$RC
$PR
$P1

$P2
$PC
$21
$zo
$BM
$IR
$XR
$TR
$AR
$co
$x2
$80

APPEND I X 1

SYSTEM LABELS

80 Col Read Area 1 - 80
80 Character Area 81 - 160
80-Col Read Code Image 1 - 160
Print Area (132 Chars) 161 - 292
80 Col Punch Area 293 - 372

(Also 80 Col Read-Punch Read Area)

80-Col Read-Punch Punch Area 373 - 452
80-Col Punch Code Image 293 - 452
80-Col Read-Punch Code Image Read 293 - 452
80-Col Read-Punch Code Image Punch 453 - 612
First Character beyond 1/0 up to 961 613 - 961 (349)

Instruction register Bank | Row 32 Col 1 -7
Transfer register Bank || Row 32

Translate Table Area - Upper Bank || 1859 - 1922 (64)

Arithmetic register Bank | Row 32 Col 1 - 31

Address Counter - Chars 8 and 9 of Row 32 Bank 1 32/8/1 to 32/9/1
Generator 2/32/1

FIRST (leftmost) 80 Chars of Print Output Area 161 - 240

66

APPEND I X 2
SYSTEM SWITCHES

Two Characters with a single bit (numbered 1 to 12)

SWITCH BIT
#F 1 (X
H#AF 2 (V)

#+2 3 (8)

ad 4 (4)

#-2 5 (2)

#-1 6 (1)

#IN 7 (X

#UA 8 (Y)

#PE 9 (8)

F#AP 10 (4)

#AL 11 (2)

#AM 12 (1)

#50 1 (X)

#SE 2 (Y)

7 (X)
8 (Y)

#52 9 (8)

#51 10 (4)

#2 11 (2)

#H1 12 (1)

#H3

JUMP_ON CONDIT [ON SET CONDITION

Form Overflow

Arithmetic Overflow

Sense #2 Set Sense #2
Sense #1 Set Sense #1
Alternate #2 On Reset Sense #2
Alternate #1 On Reset Sense #1
Interrupt
Unit Alert

Always

Parity Error (Resets)

Arithmetic Plus

Arithmetic Zero

Arithmetic Minus
Odd Parity
Even Parity
Reserved by hardware
Reserved by hardware
Servo #2
Servo #1
Indicator #2 and Halt
Indicator #1 and Halt

both 11 (2) & 12 (1)

67

UP-4072.2

UP-4072.2

APPENDI X 3

LEVEL BREAKS

FLOW of Processing

1.

3'

ALLOW BREAK

This statement is the first instruction of the Level Break
series. |t sets the ALLOW BREAK SWITCH to the ON position.

NO BREAK

The program will pass through the LEVEL statements in the order
given if no change in control fields is encountered.
Detail processing will follow.

MINOR BREAKS

When the program recognizes a change in the minor control
field only, the following events will occur:

a. The ALLOW BREAK SWITCH will be set to the OFF position.

b. The address of the detail statement which sequentially
follows the minor LEVEL statement is transferred to the
EXIT statement of the minor total subroutine. (Flowchart:
Ex 3 is set to D.)

c. The program executes the minor total subroutine transfers
control to detail processing via the EXIT statement of the
minor subroutine.

INTERMED IATE BREAKS

When the program recognizes a change in the intermediate con-
trol field, the following events will occur:

a. The ALLOW BREAK SWITCH will be set to the OFF position.

b. The address of the minor LEVEL statement is transferred
to the EXIT statement of the intermediate subroutine.
(Flowchart: Ex 2 is set to Q)

ce. The program executes the SBRT statement of the intermediate
total subroutine. This statement transfers the address of
the first processing step of the intermediate total sub-
routine (INT + 7 in the example) to the EXIT statement of
the minor total subroutine. (Flowchart: Ex3 is set to
INT + 7.)

d. The program executes the minor total subroutine and transfers
control to the first processing step of the intermediate total
suroutine via the EXIT statement of the minor total subroutine.

68

AN

s

Ce

ge

The program executes the intermediate total subroutine
and transfers control to the minor LEVEL statement via
the EXIT statement of the intermediate total subroutine.

The program will execute the minor LEVEL statement.
No break will occur, because the intermediate break

set the ALLOW BREAK SWITCH to the OFF position.

The program executes the minor LEVEL statement so that the
new minor compare field can be stored.

The program advances to the next sequential processing
step following the minor LEVEL statement.

VAJOR BREAKS

When the program recognizes a change in the major control field,
the following events will occur:

Qe

b.

de

f.

The ALLOW BREAK SWITCH will be set to the OFF position.

The address of the intermediate LEVEL statement is transferred
to the EXIT statement of the major total subroutine. (Flow-
chart: Ex 1 is set %o B.)

The program executes the SBRT statement of the ma jor total
subroutine. This statement transfers the address of the
first processing step of the major total subroutine

(MAJ + 7 in the example) to the EXIT statement of the
intermediate total subroutine. (Flowchart: Ex 2 is set to
MAJ + 7.)

The program executes the SBRT statement of the intermediate
total subroutine. This statement transfers the address

of the first processing step of the intermediate total
subroutine (INT + 7 in the example) to the EXIT statement
of the minor total subroutine. (Flowchart: Ex3 is set to
INT + 7.

The program executes the minor total subroutine and trans-
fers control to the first processing step of the intermediate
total subroutine via the EXIT statement of the minor total
subroutine.

The program executes the intermediate total subroutine and
returns to the first processing step of the major total
subroutine.

The program executes the major totel subroutine and transfers
control to the intermediate LEVEL statement via the EXIT
statement of the major total subroutine.

The program will execute the intermediate and minor LEVEL

statements. No break will occur, because the major break
set the ALLOW BREAK SWITCH to the OFF position.

69

UP-4072.2

UP-4072.2

i.

The program executes these LEVEL statements so that the
new intermediate and minor compare fields can be stored.

The program advances to the next sequential processing
step following the minor LEVEL statement.

70

LL

T'TL0¥-dN

DETAIL PROCESS ING

LEVELING ROUT INE

DETAIL PROCESSING

MAJOR TOTAL SUBROUT INE

INTERMEDIATE TOTAL SUBROUT INE

MINOR TOTAL SUBROUTINE

-

LEVEL BREAKS

{

\ OPERAND 1 OPERAND 2.
P I P PO ol = O I el =
N I EM TN B N I T B NN I S I I
Aot fLENV LA s AT Ly | A S B R N I A
ﬁ,,i[hﬁWhA Qquﬂ Ll INJi 1 3..§, N
C, oy p o L EVLAIIG LY, CL N A N EA L
Nexj ieguanti%l,Dgtnililr\stjr%‘oions, L N Li .) ,i \ L
L1 i 1 1 ; 1Det il.lnst?uc iohs | L1 i L 4 i ! '
IS N SN O AP I I N P IS P I
oy s blen P Exe N I IR T I
Tpi@lil@strgp?ipns - ; r , L i | L i , L
Totalilpskryckipns 4 |\ \ } | W | L L
E,x11; \ E.X;I.T. L ; , L ; L,; Ll L ; , L
I.N.T; : B,EEG,I,N! - ;44 L L ; L L ; . 1
L E 1 SLB;R!T! My ﬁ L L E|X13; | L1 ; i |
TQtalglmstrpc?ipng - ; . | - E | L ; \ L
Totalilrﬂshucgipna I ; \ L | L ; 1 ! lj: . L1
2y o LB X LTy L p L L | T L
y NGy 1B EYG N Yy L L L L L
1 ; 1 Tbt?lnlnstﬂu¢tioésn | L ; | L ; ! L
L ; L, Tpt?1,lpst4uqt;o%sl L L ; o Cdy 1
, !44 , Tpt?l,lps&#uqtgoi§J L Ly ; e - ; N L
st e b b e
L1 % ' E) Lt E 1 e L g L 1 % I |
11 } 1 1 } [11 ! 1 | 11 I 1 (| l 1 | l
! Y Ve b Ll L L L 1

¢TLov-dn

ALLOW
BREAK

EX 2 is set

P to mag 7

L

EX 3 is set
to INT + 7

Minor
total
routine

EX 1 is set

to B

EX 2 is set

to C

)
<)

-
-
-

N

~

O,

Ma jor
total
routine

plago

Intermediate
total
routine

o

EX 3 is set

to D

N

)

Appendix 3
LEVEL BREAKS

Next sequential
detail
operation

APPENDI X 4

Use and Definition of Edit Masks

Edit masks are normally used to insert specified characters into,
and/or delete certain leading characters from, numeric fields.
Insertions may also be made into alphanumeric fields. One field
is "edited" into a second through use of the Move-with-edit macro,
MWEDT. An edit mask may not exceed a length of 31 characters.

Internal counters examine the contents of successive locations of
the "sending" field, the "receiving' field, and the edit mask,
beginning with the "leftmost" character (the MSL) of each. The
editing process is terminated when either the last character of
the edit mask has been reached, or case (2) described below occurs.
The receiving field is not automatically cleared to blanks by the
editing process. During editing, the characters comprisi he
edit mask have the following meaning:

(1) All characters except unequal, lozenge, left-slash, and delta:
Send the current character of the edit mask to the current
character of the receiving field and increment by one position
the edit mask and receiving field counters.

(2) Unequal (#): Terminate the editing process and do not send a
character to the current character of the receiving field.

(3) Lozenge (X) Move the current character of the sending field
to the current character of the receiving field, and advance
all three counters by one position.

(4) Left-slash (N): Turn on the zero-suppress feature (blank fill),
do not increment any counters, and then continue as in case (3).
The zero-suppress feature is turned off by the next "current
character' of either the sending field or edit mask which is
neither a zero nor a comma. While the feature is in effect,
zeros and commas sent from either the sending field or edit
mask are changed to blanks during transmission to the receiving

field.

(5) Delta (A): Turn on the zero-suppress feature (asterisk fill),
do not increment any counters, and then continue as in case (3).
The zero-suppress feature is turned off by the next "current
character" of either the sending field or edit mask which is
neither a zero nor a comma. While the feature is in effect,
zeros and commas sent from either the sending field or edit
mask are changed to asterisks during transmission to the
receiving field.

73

UP-4072.2

UP-4072.2

m
X
3
o)
—
®
(@]

A DC 17 TOTAL ¥ B$ X X, X X X. X X
B IC 17 TOTAL BB $ N\ XM, X X X. X X
C DC 17 TOTAL BB $ & X, X X X. X X
D IC 17 TOTAL 86§ \ X, X & X. X X
E DC 7 1234567

F DC 7 geodea2

G DC 7 2834567

H DC 7 gegs61

A on E produces TOTAL $12,345.67

B on E " TOTAL $12,345.67

ConE " TOTAL $12,345.67

Don E " TOTAL $12,345.67

A on F produces TOTAL $@4d,000.02

BonF " TOTAL $ 02

ConF " TOTAL ek g2

D onF 4 TOTAL § **.@2

A on G produces TOTAL $00,345.67

B on G " TOTAL § 345.67

C on G " TOTAL $++%345,67

D on G n TOTAL § 345.67

A on H produces TOTAL $09,005.67

B on H n TOTAL § 5.67

C on H n TOTAL $rorrixs, 67

D on H n TOTAL § *5.67

74

N

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

UP-4072.2

N
>

