

--..--------· - ---- - -- -. ---- - ---------_ _.._ .. _ . Systems
Network
Architecture

Format and Protocol
Reference Manual:
Architecture Logic
for LU Type 6.2

SC30-3269-2

Third Edition (December 1984)

This publication obsoletes document SC30-3269-l.

Changes are continually made to the information in IBM systems publications. Before using this publica­
tion in connection with the operation of IBM systems, consult your IBM representative to find out which
editions are applicable and current.

It is possible that this material may contain references to, or information about, IBM products (machines
and programs) or services that are not announced in your country. Such references or information must
not be construed to mean that IBM intends to announee such IBM products or services in your country.

Publications are not stocked at the address given below; requests for IBM publications should be made to
your IBM representative or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this publication. If the form has been removed,
comments may be addressed to IBM Corporation, Networking Architecture, Department E96, P.O. Box 12195,
Research Triangle Park, North Carolina 27709, U.S.A. IBM may use or distribute any of the information
you supply in any way it believes appropriate without incurring any obligation whatever. You may, of
course, continue to use the information you supply.

©> Copyright International Business Machines Corporation 1984

ii SNA Format and Protocol Reference Manual for LU Type 6.2

PREFACE

This book is intended for product developers, system programmers, and others who need detailed
information about Systems Network Architecture !SNAl logical unit !LU) type 6.2 in order to
develop or adapt a product or program to function within an SNA network. The book describes the
formats and protocols for LU type 6.2 from a design viewpoint.

This book does not describe any specific machines or programs that may implement SNA, nor does
it describe any implementation-specific subsets or deviations from the architectural description
that may appear within any IBM SNA product. These matters, as well as information on SNA prod­
uct installation and system definition, are described in the appropriate publications for the
particular IBM SNA machines or programs to be used.

The following books should be read in conjunction with this one.

PREREQUISITE PUBLICATIONS

• SNA Concepts and Products, GC30-3072-basic informaHon on SNA for those readers wanting
either an overview or a foundation for further study.

• SNA Technical Overview, GC30-3073--additional details on SNA, especially on functions and
control sequences; bridges the gap between the most elementary overview of SNA and the
detailed descriptions of the formats and protocols.

• SNA Transaction Programmer's FefP.r~~ce Manual for LU~£..,.£, GC30-3084-reference informa­
tion un LU ~ype 6.2 verb;, for programmers writing transaction programs to run on SNA.

RELATED PUBLICATIONS

• SNA Format and Protocol Reference Manual: Architectural Logic, SC30-3112-comprehensi ve
information on the formats and protocols of SNA nodes.

• SNA Reference Summary, GA27-3136-summary information on SNA formats and sequences.

• SNA-Sessions Between Logical Units, GC20-1868--reference information on SNA formats and
protocols for LU types other than type 6.2.

• IBM SDLC General Information, GA27-3093--supplementary details of Synchronous Data Link Con­
trol-. -

Preface iii

iv SNA ·Format and Protocol Referenee Manual for LU Type 6.2

CONTENTS

CHAPTER 1. INTRODUCTION

Use and Organ;zat;on of Th;s Book
General Concepts

Def;n;t;on of an SNA Network
Nodes • • • • • • • •
NAUs and Node Types
The Path Control Network

Other Def;n;t;ons and Notat;onal Convent;ons

CHAPTER 2. OVERVIEW OF THE LU

Introduction •••••••••
Concepts and Terms • • • • • • • • •

Distributed Transaction Processing
Transaction Programs
Control Operator
Resources
Protocol Boundar;es
Names

Roles
Transact;on Program References
LU References
Mode Names
Internal Ident;f;ers

Conversation Characteristics
Send/Receive Protocol
Sender/Receiver Concurrency
Mapping ••••

Session Allocation
Session Multiplicity
Session Pool
Session Selection
Session Contention Polar;ty
Session Li mi ts

Starting and Ending Sessions
Phases

Session Usage Characteristics
Session Activation Polarity
Session-Level Pacing
Profiles

Security
Error HandHng

Kinds of Errors
Application Errors
Local Resource Failure
Recoverable System Errors
Program Failures
Session Failure
Conversation Failures
LU Failure

Program Error Recovery Support Functions
Confirmation ••••••••••••
Program Error Ind;cat;on
Sync Point
Abnormal Conversation Deallocation

LU Error Recovery Functions--Abnormal Sess;on Deact;vation ••••
Base and Opt;onal Funct;on Sets • • • • • ••••••••

Applicat;on Program Interface Implementations
Principal Base Functions

Basic Conversations
Mapped Conversations

Principal Optional Functions
Mapping
Sync Point
Program Initial;zation Parameters (PIP>
Performance Options

Contents

1-1

1-1
1-3
1-3
1-3
1-5
1-5
1-5

2-1

2-1
2-1
2-1
2-1
2-3
2-3
2-4
2-5
2-5
2-5
2-6
2-6
2-6
2-6
2-6
2-6
2-7
2-7
2-7
2-7
2-8
2-8
2-8
2-8
2-8
2-8
2-8
2-9
2-9
2-9
2-9
2-9
2-9
2-9
2-9
2-9
2-9
2-9

2-10
2-10
2-10
2-10
2-10
2:-10
2-10
2-10
2-11
2-11
2-11
2-11
2-11
2-11
2-11
2-11
2-11

v

Message Units and their Transformations
Mapped-Conversation Message Units
Basic-Conversation Message Units •••••

GOS Varhibles • • • • • • • •
Logical Record • • • • • • ••••
Buffer Record

Conversation Message-Unit Sequences
Cohversation Message ••••
Conversation Exchange ••••••

Session Message Units
Function Management Headers
Basic Information Unit

Session Message-Unit Sequences
Mapped-Conversation Message-Unit Transformation
Basic-Conversation Message-Unit Transformation
Data Exchange with other NAUs •••••

LU-CP Message Units ••••
LU-PU Records • • • . • •

External Flow Sequences for the Base Function Set
Notation • • • • • • • •••

Verbs and Parameters • • • •
Data Transfer Description

Error-Free Flows
Allowable Combinations of Sequences
Exception Flow
Error Flows

LU Structure
SNA layers

Component Overview
Functional Summary by Function

Example Transaction Program
Message-Unit Transfer

Sending Data
Receiving Data
Internal Buffering ••••

Transaction Program Initiation and Termination
Invoking a Remote Transaction Program
Initiating the Initial Local Transaction Program
Terminating a Transaction Program

Conversation Allocation and Deallocation
Selecting a Session
Bidding •••••
Newly Active Session
Deallocation

Session Activation and Deactivation
Starting a Session

Initializing Session Limits
Session Initiation
Session Activation

Session Outage
Ending a Session

Operator Request
Session Shutdown
Session Deactivation

Functional Summary by Component
Presentation Services
Half-Session
Resources Manager
LU Network Services ••••

Functions of Service Transaction Programs
Control-Operator Functions
SNA Distribution Services
Document Interchange Services

Optional Functions
Mapping Function
Sync Point Function

Sync Point Control
Logging
Resources Manager
Protection Managers
Sync Point Protocol
Commitment and Back-out
Resynchronization •••••••••••••

Data Structures • • • • •

vi SNA Format and Protocol Reference Manual for LU Type 6.2

. '.

'.

. . . '. .

. . . .

. . . .

2-11
2-11
2-12
2-12
2-12
2-12
2-12
2-12
2-13
2-13
2..,13
2-13
2-13
2-15
2-15
2-17
2-17
2-17
2-17
2-17
2-18
2-18
2-18
2-21
2-23
2-23
2-26
2-26
2-26
2-28
2-29
2-29
2-29
2-30
2-30
2-32
2-32
2-32
2-32
2-33
2-33
2-33
2-33
2-33
2-33
2-33
2-33
2-33
2-34
2-34
2-34
2-34
2-34
2-34
2-34
2-35
2-35
2-35
2-35
2-35
2-36
2-36
2-36
2-36
2-36
2-37
2-39
2-39
2-39
2-39
2-39
2-39
2-39
2""40

LU-Accessed Network Resources • • • • • • • • • •
Processes and Dynamic Resources •••••••••
Resource Relationships in a Distributed Transaction

LU Startup and Shutdown • • • • • •
LU Process Creation and Termination
CP-LU Session Activation
Control-Operator Transaction Program Initiation
Control-Operator Actions
Running State
Example . • • • • • •

Protocol Boundary Summary
External Protocol Boundary Verbs and Message Units

PS-TP Protocol Boundary: Transaction Program Verbs
LNS-PU Protocol Boundary
HS-PC Protocol Boundary

Inter-Component Structures
PS-HS Protocol Boundary
PS-RN Protocol Boundary
RM-HS Protocol Boundary
RM-LNS Protocol Boundary
LNS-HS Protocol Boundary

Component Interactions and Flow Sequences
Notation • • • • • •

CHAPTER 3. LU RESOURCES MANAGER

General Description
Resources Manager Functions
Component Interactions
Resources Manager Data-Base

Control Blocks Maintained by the Resources Manager
Control Blocks Accessed by the Resources Manager

Establishing a Conversation
Allocating a New Conversation
Obtaining a Session
Immediate Session Processing

Attaching a Transaction Program
Races for the Use of a Session
Terminating a Conversation
Activating a New Session
Changing the Maximum Session Limit
Session Outage
Creation and Termination of Presentation Services
High-Level Procedures

RN • • • • • • • • •
PROCESS_HS_TO_RM_RECORD
PROCESS_LNS_TO_RM_RECORD
PROCESS PS TO RN RECORD

Low-Level-Pr~cedur;s
ACTIVATE_NEEDED_SESSIONS
ACTIVATE_SESSION_RSP_PROC
ALLOCATE_RCB_PROC
ATTACH_ CHECK
ATTACH_LENGTH_CHECK
ATTACH_PROC
BID_PROC
BID_RSP_PROC
BIDDER_PROC
BIS_RACE_LOSER
BIS_REPLY_PROC
BIS_RQ_PROC
COMPLETE_HS_ATTACH
CONNECT_RCB_AND_SCB
CHANGE_SESSIONS_PROC
CHECK_FOR_BIS_REPLY
CREATE_RCB • • • • •
CREATE_SCB • • • •
CTERM_DEACTIVATE_SESSION_PROC
DEACTIVATE_FREE_SESSI-ONS
DEACTIVATE_PENDING_SESSIONS
DEQUEUE_WAITING_REQUEST
FIRST_SPEAKER_PROC
FREE_SESSION_PROC
GET_SESSION_PROC

2-40
2-40
2-43
2-43
2-43
2-43
2-43
2-43
2-44
2-45
2-46
2-46
2-46
2-46
2-46
2-46
2-46
2-46
2-47
2-47
2-47
2-47
2-47

3-1

3-1
3-2
3-2
3-2
3-3
3-3
3-3
3-4
3-4
3-8
3-9

3-10
3-12
3-13
3-14
3-16
3-16
3-17
3-17
3-18
3-19
3-20
3-21
3-21
3-22
3-23
3-24
3-25
3-26
3-27
3-29
3-31
3-32
3-32
3-33
3-33
3-34
3-35
3-36
3-36
3-37
3-37
3-38
3-38
3-39
3-40
3-41
3-42

Contents vii

PS_CREATION_PROC • • • • • • • • •
RM_ACTIVATE_SESSION_PROC •••••
RM_DEACTIVATE_SESSION_PROC
RM_PROTOCOL_ERROR
RTR_RQ_PROC
RTR_RSP_PROC •••••
SEND_ACTIVATE_SESSION
SEND_BIS • • • • • • •
SEND_BIS_REPLY
SEND_BIS_RQ
SEND_DEACTIVATE_SESSION
SESSION_ACTIVATED_ALLOCATION
SESSION_ACTIVATED_PROC
SESSION_ACTIVATION_POLARITY
SESSION_DEACTIVATED_PROC
SESSION_DEACTIVATION_POLARITY
SET_RCB_AND_SCB_FIELDS
SHOULD_SEND_BIS • • • • • •
SUCCESSFUL_SESSION_ACTIVATION
TEST_FOR_FREE_FSP_SESSION
UNBIND_PROTOCOL_ERROR_PROC
UNSUCCESSFUL_SESSION_ACTIVATION

Finite-State Machines
#FSM_SCB_STATUS
FSM_SCB_STATUS_BIDDER
FSM_SCB_STATUS_FSP
#FSM_BIS
FSM_BIS_BIDDER
FSM_BIS_FSP
#FSM_RCB_STATUS
FSM_RCB_STATUS_BIDDER
FSM_RCB_STATUS_FSP

Local Data Structures
LU_NAME
MODE_ NAME
HS_ID
RCB_ID
TCB_ID
SENSE_ CODE

CHAPTER 4. LU NETWORK SERVICES

General Description •••••
Overview of CP-LU Session Activation
Overview of CP-LU Session Deactivation
Overview of LU-LU Session Initiation
Overview of LU-LU Session Termination
Session Outage and Session Reinitiation •

Network Context for Session Initiation and Termination
ILU and TLU
OLU and DLU
PLU and SLU

RU Paroimeters
Network Noime • •
Fully Quoilified Network Noime
Uninterpreted Noime
User Request Correlation
Mode Noime • • • • • • • •
Session Key and Session Key Content
Specification of RU Paroimeters
Implementoition-Dependent Parameters
Installation-Specified Parameters

Session-Services RU's
INITIATE-SELF (!NIT-SELF>
CONTROL INITIATE (CINIT)
RSPCCINIT) ••••.••
SESSION STARTED <SESSSTl
BIND FAILURE <BINDFl
TERMINATE-SELF CTERM-SELFl
CONTROL TERMINATE CCTERNl
CLEAN UP SESSION !CLEANUP)
SESSION ENDED (SESSENDl
UNBIND FAILURE (UNBINDFl
NOTIFY • • • • • •

viii SNA Format and Protocol Reference Moinual for LU Type 6.2

3-44
3-45
3-46
3-46
3-47
3-48
3-48
3-49
3-49
3-50
3-51
3-52
3-53
3-53
3-54
3-56
3-57
3-58
3-59
3-60
3-61
3-62
3-63
3-63
3-63
3-64
3-65
3-65
3-66
3-67
3-67
3-68
3-69
3-69
3-69
3-69
3-69
3-69
3-70

4-1

4-1
4-2
4-2
4-3
4-3
4-4
4-4
4-4
4-4
4-4
4-5
4-5
4-5
4-5
4-5
4-5
4-5
4-5
4-5
4-6
4-7
4-9
4-9

4-10
4-11
4-11
4-11
4-12
4-12
4-13
4-13
4-14

Session-Control RU's ••••••
ACTIVATE LOGICAL UNIT IACTLU>
RSPCACTLUJ •••.••••••
DEACTIVATE LOGICAL UNIT CDACTLUJ
BIND SESSION IBINDJ
RSPCBINDJ .•••••
UNBIND SESSION CUNBINDJ

Maintenance-Services RU's
ECHO TEST CECHOTESTJ
REQUEST ECHO TEST CREQECHOJ

LNS Protocol Boundaries ••••
LNS Flows ••••••••••
Flows for a Peripheral LU
Flows for a Subarea LU ••
Introduction to Formal Description
High-Level Procedures

LNS •••••••••
PROCESS_RECORD_FROM_RM • • • •
PROCESS_RECORD_FROM_HS
PROCESS_RECORD_FROM_NNM . • • • • • • • •

Low-Level Procedures (in alphabetical order)
ACTIVATE_SESSION_ERROR
BIND_RQ_STATE_ERROR •••••
BIND_RSP_STATE_ERROR •••••••
BIND_SESSION_LIMIT_EXCEEDED
BUILD_ANO_SEND_ACT_SESS_RSP_NEG
BUILD_ANO_SEND_ACT_SESS_RSP_POS
BUILD_ANO_SENO_ACTLU_RSP_NEG
BUILD_AND_SEND_ACTLU_RSP_POS
BUILD_ANO_SENO_BIND_RQ
BUI LD_AND_SEND_BINO_RSP _NEG
BUILD_AND_SEND_BIND_RSP_POS
BUILD_ANO_SEND_BINDF_RQ
BUILD_ANO_SEND_CINIT_RSP
BUILO_AND_SENO_OACTLU_RSP
BUILD_AND_SENO_DEACTIVATE_SESS
BUILO_AND_SENO_HIER_RESET_RSP
BUILD_AND_SEND_INIT_HS
BUILD_AND_SEND_INIT_RQ
BUILD_ANO_SEND_RSP_OR_LOG
BUILD_AND_SEND_PC_CONNECT
BUILD_ANO_SEND_PC_HS_CONNECT
BUILD_ANO_SEND_PC_HS_DISCONNECT
BUILO_AND_SEND_SESS_ACTIVATEO
BUILD_AND_SEND_SESS_DEACTIVATED
BUILD_AND_SEND_SESSEND_RQ
BUILD_ANO_SENO_SESSST_RQ
BUILD_AtlO_SEND_ TERM_RQ
BUILD_AND_SEND_UNBIND_RQ
BUILD_AND_SENO_UHBIND_RSP
BUILD_AND_SENO_UNBINDF_RQ
CINIT_RQ_STATE_ERROR
CLEANUP _LU_LU_SESSION
INITIALIZE_LULU_CB_ACT_SESS
INITIALIZE_LULU_CB_BIND
INITIALIZE_LULU_CB_CINIT
LU_MODE_SESSION_LIMIT_EXCEEDED
PROCESS_ABORT_HS
PROCESS_ACTIVATE_SESSION
PROCESS_ACTLU_RQ
PROCESS_BIND_RQ
PROCESS_BIND_RSP
PROCESS_CINIT_RQ
PROCESS_CLEANUP_RQ
PROCESS_CTERM_RQ
PROCESS_OACTLU_RQ
PROCESS_DEACTIVATE_SESSION
PROCESS_ECHOTEST_RQ
PROCESS_HIERARCHICAL_RESET
PROCESS_ItUT_HS_RSP
PROCESS_INIT_SELF_RSP
PROCESS_NOTIFY_RQ
PROCESS_NOTIFY_RSP
PROCESS_PC_CONNECT_RSP

4-15
4-17
4-17
4-19
4-19
4-25
4-28
4-29
4-31
4-31
4-32
4-34
4-35
4-41
4-46
4-47
4-47
4-48
4-48
4-50
4-51
4-51
4-52
4-53
4-56
4-57
4-57
4-58
4-59
4-60
4-60
4-61
4-61
4-62
4-63
4-63
4-64
4-64
4-65
4-66
4-67
4-67
4-68
4-68
4-69
4-69
4-70
4-70
4-71
4-71
4-72
4-72
4-74
4-74
4-75
4-76
4-77
4-78
4-78
4-79
4-80
4-81
4-81
4-83
4-84
4-85
4-86
4-86
4-86
4-87
4-87
4-88
4-88
4-89

Contents ix

PROCESS_REQECHO_RSP
PROCESS_SESSION_ROUTE_INOP
PROCESS_TERM_SELF_RSP
PROCESS_UNBIND_RQ
PROCESS UNBIND RSP

Finite-stite Mac~ines
FSM STATUS • • • • •

Local-Data Structures
LOCAL
ERROR_ TYPE
SESSION_ TYPE

CHAPTER 5.0. OVERVIEW OF PRESENTATION SERVICES

General Description
PS Component Functions

TP: • • • • •
PS.INITIALIZE:
PS.VERB_ROUTER:
PS.MC, PS.SPS, ..• , PS.COPR:
PS.CONV: ••.••••••

Data Base Structure • • • • • • • . • • • •
Initialization and Termination CPS.INITIALIZE)
Verb Processing CPS.VERB_ROUTER)

WAIT Verb Processing
GET_TYPE Verb Processing

High-level Procedures
PS • • • • . • . . • • •
PS_INITIALIZE • • • • • •
RECEIVE_PIP_FIELD_FROM_HS
PS_ATTACH_CHECK
ATTACH_ERROR_PROC
PS_VERB_ROUTER
DEALLOCATION_CLEANUP_PROC
WAIT_PROC

Low-level Procedures
PS_PROTOCOL_ERROR
INITIALIZE_ATTACHEO_RCB
TEST_FOR_RESOURCE_POSTED

Undefined Protocol Machines
UPM_EXECUTE
UPM_ATTACH_LOG
UPH_RETURN_PROCESSING

Local Data Structures
PS_PROCESS_OATA
PIP _FIELD
RETURN_ CODE
PIP_LIST
LU_ID
TCB_LIST_PTR
RCB_LIST_PTR
LUCB_LIST_PTR
SENSE_DATA

CHAPTER 5.1. PRESENTATION SERVICES--CONVERSATION VERBS

General Description
PS.CONV Functions
Component Interactions
PS.CONV Data-Base Structure • • • •

LU Control Block CLUCBl and Associated Lists
Transaction Control Block CTCB)
PS_PROCESS_DATA
Resource Control Block CRCB)

Verb Parameters
PS-RM Records
PS-HS Records •
Tracking Logical Record Length •
Maintaining and Checking the Basic Conversation State
Verb Processing

Verb Checking
ALLOCATE
POST_ON_RECEIPT
REQUEST_TO_SEND

x SNA Format and Protocol Reference Manual for LU Type 6.2

4-89
4-89
4-90
4-90
4-91
4-92
4-92
4-99
4-99
4-99
4-99

5.0-1

5.0-1
5.0-1
5. 0-1
5.0-1
5.0-1
5.0-1
5.0-1
5.0-1
5.0-3
5.0-4
5.0-4
5.0-4
5.0-5
5.0-5
5.0-6
5.0-7
5.0-8

5.0-10
5.0-12
5.0-14
5.0-15
5.0-16
5.0-16
5.0-17
5.0-18
5.0-18
5.0-18
5.0-19
5.0-19
5.0-20
5.0-20
5.0-20
5.0-20
5.0-21
5.0-21
5.0-21
5.0-21
5.0-21
5.0-22

5.1-1

5.1-1
5.1-1
5.1-1
5.1-1
5.1-1
5.1-3
5.1-3
5.1-3
5.1-4
5.1-4
5.1-5
5.1-5
5.1-6
5.1-6
5.1-6
5.1-6
5.1-7
5.1-7

SEND_ERROR
Protocol Errors
Conversation Failures

High-Level Procedures
PS_CONV
ALLOCATE_PROC
CONFIRN_PROC
CONFIRNED_PROC
DEALLOCATE_PROC
FLUSH_PROC
GET_ATTRIBUTES_PROC
POST_ON_RECEIPT_PROC
PREPARE_TO_RECEIVE_PROC
R ECEIVE_Mm _WAIT _PROC
REQUEST_TO_SEND_PROC
SEND_DATA_PROC
SEND_ERROR_PROC
TEST PROC

Low-Le~el Procedures
CONPLETE_CONFIRN_PROC
COMPLETE_DEALLOCATE_ABENO_PROC
CONVERSATION_FAILURE_PROC
DEALLOCATE_ABEND_PROC
DEALLOCATE_CONFIRM_PROC
DEALLOCATE_FLUSH_PROC
DEQUEUE_Ft1H7 _PROC
GET_END_CHAIH_FROl1_HS
OBTAIN_SESSION_PROC
PERFORM_RECEIVE_PROCESSING
POST_AND_WAIT_PROC
PREPARE_TO_RECEIVE_CONFIRM_PROC
PREPARE_TO_RECEIVE_FLUSH_PROC
PROCESS_DATA_PROC • • . • •
PROCESS_FMH7_PROC ••..•
PROCESS_RN_OR_HS_TO_PS_RECORDS
RCB_ALLOCATED_PROC . • . • •
RECEIVE_DATA_PROCESSING
RECEIVf. __ RN_OR_HS_ TO_PS_RECORD
SEND_DATA_BUFFER_HANAGEMENT
SEND_DATA_TO_HS_PROC
SEND_ERROR_DONE_PROC
SEND_ERROR_IN_RECEIVE_STATE
SEND_ERROR_IN_SEND_STATE
SEND_ERROR_TO_HS_PROC
SET_FNH7_RC •••.•
TEST_FOR_POST_SATISFIED
WAIT_FOR_CONFIRNED_PROC
WAIT_FOR_RM_REPLY
WAIT_FOR_RSP_TO_RQ_TO_SEND_PROC
WAIT FOR SEND ERROR DONE PROC

Finite:State Na~hines- -
FSM_CONVERSATION
FSM_ERROR_OR_FAILURE
FSN POST . • . • •

Local-Data Structures
TEST • • • . • •

CHAPTER 5.2. PRESENTATION SERVICES--HAPPED CONVERSATION VERBS

General Description
PS.MC Functions ••••
Component Interactions
PS.MC Data Base Structure •

Transaction Control Block CTCBl
LU Control Block CLUCBl

Transaction Program Control Block CTPCBI
Resource Control Block CRCBl ••••••

Conversation Data Stream Formatting
Construction of GOS Variables •••••

GOS Variables with Multiple Logical Records
FM Header Data • • • • • • • • • • • • • • •

Examples of Mapped Conversation Verb Processing
Establishing a Mapped Conversation
Terminating a Happed Conversation

Contents

5.1-7
5.1-8
5.1-9

5.1-10
5.1-10
5.1-11
5.1-12
5.1-14
5.1-14
5.1-16
5.1-17
5.1-17
5.1-18
5.1-19
5.1-21
5.1-22
5.1-24
5.1-26
5.1-27
5.1-27
5.1-28
5.1-29
5.1-30
5.1-31
5.1-32
5.1-33
5.1-34
5.1-35
5.1-36
5.1-37
5.1-38
5.1-39
5.1-40
5.1-42
5.1-43
5.1-44
5.1-46
5.1-47
5.1-47
5.1-48
5.1-49
5.1-50
5.1-51
5.1-52
5.1-53
5.1-54
5.1-55
5.1-56
5.1-57
5.1-58
5.1-59
5.1-59
5.1-61
5.1-62
5.1-63
5.1-63

5.2-1

5.2-1
5.2-1
5.2-2
5.2-4
5.2-4
5.2-4
5.2-4
5.2-4
5.2-5
5.2-5
5.2-5
5.2-7
5.2-7
5.2-7
5.2-7

Data Mapping and the Mapper
Block Mapping
Mapping Example
Map Names • • • • •

Map Name GOS Variables
Mapper Invocation
Mapper Parameters

Supplied Information
Returned Information

Send Mapping
Receive Mapping

HC_TEST_PROC
Mapped Conversation Errors

Mapper Errors
Error Data GOS Variables
Protocol Violations
Service Errors • • . • • • ••••
Service Errors Detected in Received Data •••••
Processing of a Service Error Detected by Partner LU

Formal Descriptions
PS_MC .••••
MC_ALLOCATE_PROC
MC_CONFIRM_PROC
HC_CONFIRNED_PROC
NC_DEALLOCATE_PROC
NC_FLUSH_PROC
NC_GET_ATTRIBUTES_PROC
NC_POST_ON_RECEIPT_PROC
NC_PREPARE_TO_RECEIVE_PROC
NC_RECEIVE_AND_WAIT_PROC
MC_TEST_PROC .•••••
RECEIVE_INFO_PROC
PROCESS_ERROR_OR_FAILURE_RC
PROCESS_DATA_CONPLETE
PROCESS_MAPPER_RETURN_CODE
PROCESS_DATA_INCONPLETE
NC_REQUEST_TO_SEND_PROC
NC_SEND_DATA_PROC
NC_SEND_ERROR_PROC
RCVD_svc_ERROR_TRUNC_NO_TRUNC
RCVD_SVC_ERROR_PURGING
PROCESS_ERROR_DATA
GET_SEND_INDICATOR
SEND_SVC_ERROR_PURGING
UPM_NAPPER
PROTOCOL ERROR PROC

Local Data-Structures
ERROR_DATA_STRUCTURE
SEND_BUFFER

CHAPTER 5.3. PRESENTATION SERVICES--SYNC POINT SERVICES VERBS

Errors, Failures, and Recovery
Processing by PS.SPS

LUW States • • • •
Flow Optimization
Sync Point and Other LU Components
Sync Point Logic
Classification Phase
Prepare Phase
Request Commit Phase
Committed Phase
Forget Phase

Illustrative Sync Point Flows
Forcing the Log
Errors During Sync Point

PROG_ERROR_*
BACKED_OUT
DEALLOCATE_ABEND_ * • • • • • • • • • • • • • •
RESOURCE_FAILURE_*• Recovery, and Heuristic Decisions

BACK OUT processing • • • • • • • • • • •
Heuristic Decisions and Reliable Resources
Resynchronization Logic

Validation of Log IDs

xii SNA Format •ind Protocol Reference Nanud for LU Type 6. 2

. ~

5.2-8
5.2-8
5.2-8
5.2-8
5.2-9
5.2-9

5.2-10
5.2-10
5.2-10
5.2-10
5.2-11
5.2-11
5.2-12
5.2-12
5.2-14
5.2-14
5.2-14
5.2-14
5.2-17
5.2-19
5.2-20
5.2-21
5.2-22
5.2-23
5.2-23
5.2-24
5.2-24
5.2-25
5.2-26
5.2-27
5.2-28
5.2-30
5.2-31
5.2-33
5.2-35
5.2-36
5.2-37
5.2-38
5.2-40
5.2-41
5.2-42
5.2-43
5.2-44
5.2-45
5.2-46
5.2-47
5.2-48
5.2-48
5.2-48

5.3-1

5.3-1
5.3-2
5.3-3
5.3-5
5.3-5
5.3-8
5.3-8
5.3-8
5.3-8
5.3-8
5.3-8
5.3-9

5.3-13
5.3-13
5.3-13
5.3-13
5.3-13
5.3-13
5.3-14
5.3-15
5.3-15
5.3-16

Log Name Process;ng
Procedures Used by SYNCPT

PS_SPS

CHAPTER 5.4. PRESENTATION SERVICES--CONTROL-OPERATOR VERBS

Introduct;on
Funct;on Summary
Structure Summary

Concepts and Terms
Operator
Scope of Control-Operator Funct;ons
LU-Accessed Network Resources
Sess;on Character;st;cs

Sess;on Ident;f;cation
Single- vs. Parallel-Sess;ons
Contention Polarity

Session Limits and Counts
Session Bringup and Takedown

Phases
Control-Operator Functions

CLU,model entry
Distributed Operator Control

Local Funct;ons and Services
LU-Parameter Verbs
Local Session-Control Verbs

Distributed Functions and Serv;ces
Change Number of Sessions Verbs ••••
Functional Relationships for Distr;buted Verb Process;ng
Operation Phases •••••
CNOS Transaction ••••••
CNOS External Message-Unit Flows •••••••••
The CNOS Process Relationships

Processes
Shared Data • • • • • • • •
Transaction-Handling Process Relationships

Single Verb Issuance
Simultaneous Verb Issuances at Partner LUs
Simultaneous Verb Issuances at the Same LU

CNOS Race Resolution
Command Race
Locking the CLU,model Entry
Race Flows

No Race
Single-Failure Races
Double-Failure Race

Recovery from Conversation Failure
Basic and Optional Support

Base-Function-Set Support
CNOS Minimum Support Set
Parallel-Session Optional Functions

Component Interrelationships ••••
Transaction Programs

Control-Operator Transaction Program
CNOS Service Transaction Program

PS.COPR Components
CNOS Verb Router

Local Control-Operator Verb Processing
LU-Parameter Verb Processing
Local Session-Control Verb Processing

INITIALIZE_ SESSION_ LIMIT
RESET_SESSION_LIMIT
ACTIVATE_ SESSION
DEACTIVATE_ SESSION

Session-Limit Services at the Source LU
Privilege Checking
CNOS Conversation Allocation
GOS Variable
CNOS Record Flows
Errors
Update (LU,model Entry
Request Changes in Session Count
Return to the Transaction Program

Session-Limit Services at the Target LU

Contents

5.3-17
5.3-20
5.3-20

5.4-1

5.4-1
5.4-1
5.4-1
S.4-1
S.4-1
S.4-3
S.4-3
S.4-3
S.4-3
S.4-3
S.4-3
5.4-4
S.4-4
S.4-4
S.4-4
S.4-S
S.4-5
S.4-5
S.4-S
5.4-6
5.4-6
5.4-6
5.4-6
S.4-7
5.4-9

5.4-10
S.4-11
S.4-11
S.4-12
S.4-12
5.4-12
S.4-13
5.4-13
5.4-14
5.4-14
5.4-14
5.4-15
5.4-16
5.4-16
5.4-19
5.4-20
5.4-20
5.4-20
5.4-21
5.4-21
5.4-22
5.4-22
5.4-22
5.4-22
5.4-23
5.4-24
5.4-24
5.4-24
5.4-24
5.4-24
5.4-25
5.4-25
5.4-25
5.4-25
5.4-25
5.4-27
5.4-27
5.4-27
5.4-27
5.4-27
5.4-28
5.4-28
5.4-28

xiii

CNOS Reply • • • • • • • • • • • •
Session-Limit Parameter Negotiation
Errors • • • • • . • • • • •
Other Interactions •••••

Session-Limit Data Lock Manager
Locking the CLU,mode) Entry

Verb-Routing Procedure ••••
PS_COPR • • . • • . . • • •

Session-Control Verb H.indlers
INITIALIZE_SESSION_LIMIT_PROC
RESET_SESSION_LIHIT_PROC
CHANGE_SESSION_LIHIT_PROC
ACTIVATE_SESSION_PROC
DEACTIVATE_SESSION_PROC
DEFINE_PROC • • • . •
DISPLAY_PROC •••••
LOCAL_SESSION_LIHIT_PROC
LOCAL_VERB_PARAHETER_CHECK
SNASVCHG_VERB_PARAHETER_CHECK
CHANGE_ACTION • • • • • •

Source-LU CNOS Procedures
SOURCE_SESSION_LIHIT_PROC
VERB_PARAHETER_CHECK
SOURCE_CONVERSATION_CONTROL
SOURCE_CONVERSATION
RESULT_CHECK_ALLOCATE
RESULT_CHECK_SEND_COt!NAND
RESULT_CHECK_RECEIVE_REPLY
RESULT_CHECK_RECEIVE_DEALLOCATE
CHECK CNOS REPLY

T.irget-LU CNOS Procedures
X06Fl ••••••••
PROCESS_SESSION_LINIT_PROC
TARGET_COMMAND_CONVERSATION
RESULT_CHECK_RECEIVE_COMHAND
RESULT_CHECK_RECEIVE_SEND
CHECK_CNOS_COHMAND
NEGOTIATE_REPLY
CLOSE_ONE_REPLY
TARGET_REPLY_CONVERSATION
RESULT_CHECK_SEND_REPLY
SESSION_LIMIT_DATA_LOCK_NANAGER

CHAPTER 6.0. HALF-SESSION

General Description
Protocol Boundaries between HS and Other Components
Formal Description

HS • • • . • • • • •
PROCESS_ LU_ LU_ SESSION
PROCESS_CP_LU_SESSION

Data Structures
LOCAL
SNF

CHAPTER 6.1. DATA FLOW CONTROL

Introduction • • • • • • •
DFC for LU-LU Half-Sessions

Overview of DFC Functions
DFC Structure

Initialization
Send ••••
Receive
Termination

Protocol Boundaries
Function Management Profile 19
Usage Associated with FM Profile 19

Conditional End Bracket CCEBl
FM Header Usage • • • • • • • • • • •
Usage of DRl • • • • • • • • • • • • • •
Sending RQE with BB from Contention Loser
Usage of LUSTATC0006l CRQEl,CEBl ••••
Usage of SIGNAL(0001000 l) • • • • • • • •

xiv SNA Format and Protocol Reference Manual for LU Type 6.2

. . ,

5.4-28
5.4-28
5.4-30
5.4-30
5.4-30
5.4-30
5.4-32
5.4-32
5.4-33
5.4-33
5.4-34
5.4-35
5.4-36
5.4-37
5.4-38
5.4-39
5.4-40
5.4-41
5.4-42
5.4-43
5.4-45
5.4-45
5.4-47
5.4-48
5.4-49
5.4-51
5.4-52
5.4-53
5.4-54
5.4-55
5.4-56
5.4-56
5.4-57
5.4-59
5.4-60
5.4-61
5.4-62
5.4-63
5.4-64
5.4-64
5.4-65
5.4-66

6.0-1

6.0-1
6.0-2
6.0-3
6.0-3
6.0-4
6.0-5
6.0-6
6.0-6
6.0-6

6.1-1

6.1-1
6.1-1
6 .1-1
6.1-1
6.1-1
6.1-1
6.1-1
6.1-2
6.1-2
6.1-2
6.1-4
6.1-4
6.1-4
6.1-4
6.1-4
6.1-4
6.1-4

Sequence Numbering of Requests and Responses
Stray SIGNALS and Responses

Sending SIGNAL and Responses
RQO required on CEB
Receiving SIGNAL Requests
Receiving Responses

SEND_ERROR Processing
Detailed Description of DFC Functions
Request/Response Formatting
Chaining Protocol •.••••
Request/Response Correlation
Request/Response Mode Protocols
Bracket Protocols • • • •
Send/Receive Mode Protocols
Queued Response Protocol
PS Send and Receive Records
DFC Request and Response Formats
DFC Request and Response Descriptions
BIS !BRACKET INITIATION STOPPED)
LUSTAT !LOGICAL UNIT STATUS)
RTR !READY TO RECEIVE>
SIG (SIGNAL> ••••••

DFC for CP-LU Half-Sessions
Overview of DFC Functions

Request/Response Formatting
Immediate Request and Immediate Response Mode Enforcement

Error Processing
High-Level Procedures

DFC_INITIALIZE
DFC_SEND_FRot1_PS
DFC_SEND_FROM_RM
DFC_SEND_FROM_L~lS

TRY_TO_RCV_SIGNAL
DFC_RCV
DFC_RCV_FSMS
DFC_SEND_FSMS

Low-Level Procedures Cin Alphabetical Order)
FORMAT_ERROR
FORMAT_ERROR_EXP_RSP
FORMAT_ERROR_NORM_RSP
FORMAT_ERROR_RQ_DFC
FORMAT_ERROR_RQ_FMD
FORMAT_ERROR_SSCP_LU
GENERATE_RM_PS_INPUTS
INVALID_SENSE_CODE
OK_TO_REPLY
PROCESS_RU_DATA
PROCESS_SEND_PARM
RCV_STATE_ERROR
SEND_BIU
SEND_NEG_RSP_OR_LOG
SEND_RSP_BIU
SEND_RSP_TO_RM_OR_PS
STATE_ERROR_SSCP_LU
STRAY_RSP
UPDATE_FSMS

Finite-State Machines
FSM_BSM_FMP19
FSM_CHAIN_RCV_FMP19
FSM_CHAIN_SEND_FMP19
FSM_IMMEDIATE_RQ....MODE_SEND
FSM_IMMEDIATE_RQ....MODE_RCV
FSM_QRI_CHAIN_RCV_FMP19
FSM_RCV_PURGE_FMP19

CHAPTER 6.2. TRANSMISSION CONTROL

Introduction ••••••••••
Initialization Phase ••••••

CRYPTOGRAPHY VERIFICATION CCRVJ
Normal Operation • • • • • • • • • ••••

TC Procedures Invoked from Other Components of the Half-Session
Sequence Numbering of Requests and Responses
Sessions With Cryptography •••••••••

6.1-4
6.1-5
6.1-6
6.1-6
6.1-7
6.1-7
6.1-7
6.1-7
6.1-7
6.1-8
6.1-8
6.1-8
6.1-8

6.1-10
6.1-10
6.1-10
6.1-11
6.1-14
6.1-14
6.1-14
6.1-15
6.1-15
6.1-16
6.1-16
6.1-16
6.1-16
6.1-16
6.1-18
6.1-18
6.1-19
6.1-20
6.1-22
6.1-22
6.1-23
6.1-24
6.1-25
6.1-26
6.1-26
6.1-27
6.1-27
6.1-28
6.1-29
6.1-30
6.1-31
6.1-32
6.1-33
6. l-34
6.1-35
6.1-36
6.1-37
6.1-37
6.1-38
6.1-39
6.1-40
6.1-41
6.1-42
6.1-43
6.1-43
6.1-44
6.1-46
6.1-48
6.1-48
6.1-49
6.1-50

6.2-1

6.2-1
6.2-2
6.2-2
6.2-4
6.2-4
6.2-5
6.2-5

Contents xv

Session-Level Pacing ••••••
ISOLATED PACING RESPONSE CIPR> •
Request and Response Control Modes

Transmission Control Calling Trees
Formal Description • • • • • • •
Session Initialization Procedures

TC.INITIALIZE
TC.EXCHANGE_CRV ••••
TC.BUILD_CRV ••••
TC.FORMAT_CHECK ••••

TC Send and Receive Procedures
TC. SEND • • • •
TC.TRY_TO_ENCIPHER
TC.Rev
TC.RCV_CHECKS
TC. RCV _NORl1_RQ
TC.DEQUEUE_PAC
TC.TRY_TO_SEND_IPR •

TC Finite-State Machines
FSM_PAC_RQ_SEND
FSM_PAC_RQ_RCV

APPENDIX A. NODE DATA STRUCTURES

Control Blocks
CPLU_CB
LUCB

CP_ID
PARTNER_ LU

MODE
TRANSACTION_PROGRAM

LULU_ CB
RCB • • • • •

BUFFER_ ELEMENT
RECEIVED_INFO

SCB • • • • •
TCB • . •••

Interprocess Records
HS_TO_LNS_RECORD

ABORT_HS
HS_RCV_RECORD
INIT_HS_RSP

HS_TO_PC_RECORD
HS_TO_PS_RECORD

CONFIRMED
RECEIVE_DATA
RECEIVE_ERROR
REQUEST_TO_SEND
RSP_TO_REQUEST_TO_SEND

HS_TO_RM_RECORD
ATTACH_HEADER
BID
BID_RSP
BIS_RQ
BIS_REPLY
FREE_ SESSION
RTR_RQ
RTR_RSP

LNS_TO_HS_RECORD
HS_SEND_RECORD
INIT_HS

LNS_TO_NNM_RECORD
ACTLU_RSP_SEND_RECORD
BIND_RQ_SEND_RECORD
BIND_RSP_SEND_RECORD
DACTLU_RSP_SEND_RECORD
HIERARCHICAL_RESET_RSP
PC_CONNECT • • • • •
PC_HS_CONNECT
PC_HS_DISCONNECT
UNBIHD_RQ_SEND_RECORD
UNBIND_RSP_SEND_RECORD

LNS_TO_RM_RECORD
ACTIVATE_SESSION_RSP

xvi SNA Format and Protocol Reference Manual for LU Type 6. 2

6.2-5
6.2-6
6.2-6
6.2-7
6.2-8
6.2-8
6.2-8

6.2-10
6.2-11
6.2-11
6.2-13
6.2-13
6.2-14
6.2-15
6.2-16
6.2-17
6.2-18
6.2-19
6.2-20
6.2-20
6.2-21

A-1

A-1
A-1
A-1
A-2
A-2
A-3
A-4
A-5
A-7
A-8
A-8
A-9

A-10
A-10
A-10
A-11
A-11
A-11
A-11
A-12
A-12
A-12
A-12
A-13
A-13
A-13
A-13
A-14
A-14
A-14
A-14
A-15
A-15
A-15
A-15
A-16
A-16
A-16
A-17
A-17
A-17
A-17
A-18
A-18
A-18
A-18
A-19
A-19
A-19
A-20

CTERM_DEACTIVATE_SESSION
SESSION_ACTIVATED
SESSION_DEACTIVATED

NNM_TO_LNS_RECORD
ACTLU_RQ_RCV_RECORD
BIND_RQ_RCV_RECORD
BIND_RSP_RCV_RECORD
DACTLU_RQ_RCV_RECORD
HIERARCHICAL_RESET
PC_CONNECT_RSP
SESSION_ROUTE_INOP
UNBIND_RQ_RCV_RECORD
UNBIND_RSP_RCV_RECORD

PC_TO_HS_RECORD
PS_TO_HS_RECORD

CONFIRMED
REQUEST_TO_SEND
SEND_DATA_RECORD
SEND_ERROR

PS_TO_Rt1_RECORD
ALLOCATE_RCB
CHANGE_ SESSIONS
DEALLOCATE_RCB
GET_SESSION
RM_ACTIVATE_SESSION
RM_DEACTIVATE_SESSION
TERMINATE_PS
UNBIND_PROTOCOL_ERROR

RM_TO_HS_RECORD
BID_RSP
BID_WITH_ATTACH
BID_WITHOUT_ATTACH
BIS_REPLY
BIS_RQ
HS_PS_CONNECTED
RTR_RQ
RTR_RSP
YIELD_SESSION

RM_TO_LNS_RECORD
ACTIVATE_ SESSION
DEACTIVATE_ SESSION

RM_TO_PS_RECORD
ATTACH_RECEIVED
CONVERSATION_FAILURE
RCB_ALLOCATED
RCB_DEALLOCATED
RM_SESSION_ACTIVATED
SESSION_ALLOCATED

Request RUs
CRV_RQ_RU

.

Miscellaneous Structure Types
ADDRESS
BIU
PC_ CHARACTERISTICS
PIU
SEND_PARM
SESSION_INFORMATION

Miscellaneous Enumeration Types

APPENDIX D. RH FORMATS

APPENDIX E. REQUEST-RESPONSE UNIT lRU> FORMATS

Summary of Request RU's by Category
Index of RU's by NS Headers and Request Codes
Request RU Formats • • • • •

ACTLU; SSCPIPNCP-->LU, Exp; SC (ACTIVATE LOGICAL UNIT)
BIND; PLU-->SLU, Exp; SC lBIND SESSION)
BINDF; PLU-->SSCP, Norm; FMD NSCs) !BIND FAILURE)
BIS; LU-->LU, Norm; DFC (BRACKET INITIATION STOPPED)
CINIT; SSCP-->PLU, Norm; FMD NSCs) lCONTROL INITIATE>
CLEANUP; SSCP-->SLU, Norm; F11D NSls) lCLEAN UP SESSION)
CTERM; SSCP~->PLU, Norm; FMD NSls) (CONTROL TERMINATE>
CRV; PLU-->SLU, Exp; SC (CRYPTOGRAPHY VERIFICATION>

• • It •

•, .

Content!I

A-20
A-20
A-21
A-21
A-21
A-21
A-22
A-22
A-22
A-22
A-23
A-23
A-23
A-23
A-24
A-24
A-24
A-24
A-24
A-25
A-25
A-26
A-26
A-26
A-27
A-27
A-27
A-28
A-28
A-28
A-28
A-29
A-29
A-29
A-29
A-30
A-30
A-30
A-30
A-31
A-31
A-31
A-32
A-32
A-32
A-32
A-33
A-33
A-33
A-33
A-33
A-33
A-34
A-34
A-35
A-35
A-35
A-35

D-1

E-1

E-3
E-4
E-5
E-5
E-5
E-9
E-9
E-9

E-10
E-10
E-10

xvii

xviii

DACTLU; SSCP-->LU, Exp; SC CDEACTIVATE LOGICAL UNITl
ECHOTEST; SSCP-->LU, Norm; FMD NStma) CECHO TEST>
!NIT-SELF; ILU-->SSCP, Norm; FMD NS<s) !INITIATE-SELF>
LUSTAT; LU-->LU(SSCP, Norm; DFC !LOGICAL UNIT STATUS)
NOTIFY; SSCP<-->LU, Norm; FMD NSCsl !NOTIFY>

ILU/TLU Notification •••••••••••••
LU-LU Session Services Capabilities •••••

REQECHO; LU-->SSCP, Norm; FMD NS(ma) (REQUEST ECHO TEST)
RTR; LU-->LU, Norm; DFC !READY TO RECEIVE>
SESSEND; LU-->SSCP, Norm; FMD NS(s) !SESSION ENDEDJ
SESSST; LU-->SSCP, Norm; FMD NSCs) !SESSION STARTED>
SIG; LU-->LU, Exp; DFC C SIGNALJ • • • • • • • • •
TERM-SELF; TLU-->SSCP, Norm; FHD NSCsJ !TERMINATE-SELF)
UNBIND; LU-->LU, Exp; SC CUNBIND SESSION) •••••
UNBINDF; PLU-->SSCP, Norm; FMD NS!sl !UNBIND FAILURE>

User Data Structured Subfield Formats
Unformatted Data • • • • • • •
Mode Name ••••••••
Session Instance Identifier
Fully Qualified PLU Network Name
Fully Qualified SLU Network Name

Summary of Response RU's .••••
Positive Response RU's with Extended Formats

RSPCACTLU>; LU-->SSCP, Exp; SC
RSPCBINDI; SLU-->PLU, Exp; SC
RSPCCINITl; PLU-->SSCP, Norm; FMD NSCsJ

Common Structured Subfields •••••
Control Vectors . • • • • • • • • • •

SSCP-LU Session Capabilities
LU-LU Session Services Capabilities
Mode/ Class-of-Service/ Virtual-Route-Identifier-List
Network-Qualified Address Pair
VR-ER Mapping Data •.•••••
Local Form Session Identifier •
Control Vector Keys Hot Recognized

Session Keys
Network Name Pair
Network Addr·"'.>S Pair
URC ••••• • • • • • · •
Network-Qualified Address Pair

Common Subvectors
Product Set ID CX'lO')
Product ID CX'll' J

Product Instance
Emulated Product Identifier IX'Ol') • •
Software Product Version and Release Level Identifier !X'03')
PTF-Level Data CX'OS' J

APPENDIX F. PROFILES

Function Management CFHl Profiles
FM Profile 0 ••••
FM Profile 6 •••••••••
FM Profile 19 •••••
FM Profile vs. Type of Session

Transmission Services CTSl Profiles
TS Profile 1 ••••
TS Profile 7 ..••
TS Profile vs. Type of Session

APPENDIX G. SENSE DATA

Request Reject (Category Code= X'08')
Request Error (Category Code= X'lO')
State Error (Category Code= X'20')
RH Usage Error !Category Code= X'40')
Path Error (Category Code= X'80')

APPENDIX H. FM HEADER AND LU SERVICES COMMANDS

Symbol-String Length • • • • • • • •
FM Headers • • • • • • • • • • • • •

Function Management Header 5: Attach ••••
Access Security Information Subfields

SNA Format and Protocol Reference Manual for LU_Jype 6.2

E-11
E-11
E-11
E-12
E-12
E-12
E-12
E-13
E-13
E-13
E-13
E-14
E-14
E-14
E-15
E-16
E-16
E-16
E-16
E-16
E-16
E-18
E-18
E-18
E-19
E-19
E-20
E-20
E-20
E-21
E-21
E-21
E-22
E-22
E-22
E-23
E-23
E-23
E-23
E-23
E-24
E-24
E-24
E-24
E-26
E-26
E-26

F-1

F-1
F-1
F-2
F-3
F-4
F-5
F-5
F-5
F-6

G-1

G-1
G-5
G-6
G-7
G-8

H-1

H-2
H-4
H-6
H-7

PIP Variable ••••••••••••••••
Function Management Header 7: Error Description

Presentation Services !PSI Headers ••••••
Presentation Services Header 10: Sync Point Control

Formats of Records used by LU 6.2 Service Transaction Programs
Change Number of Sessions ICNOSl
Exchange Log Name • • • • • • • •
Compare States • • • • • • • . • •

SHA-Defined Transaction Program Names
GOS Variables .•••••••

Format of Application Data GOS Variable
Format of Null Structured Data Variable
Format of User Control Data GOS Variable
Format of Map Name GOS Variable ••••••••
Format of an Error Data GOS variable
Format of Error Log GOS Variable

APPENDIX I. GENERAL DATA STREAM

Structured Fields •••••
Length ILL! Description
Identifier !IOI Description

APPENDIX N. FSM NOTATION

APPENDIX T. TERMINOLOGY: ACRONYMS AND ABBREVIATIONS

INDEX

H-7
H-8
H-9
H-9

H-10
H-11
H-12
H-13
H-14
H-15
H-16
H-16
H-16
H-16
H-16
H-16

I-1

I-1
I-1
I-1

N-1

T-1

X-1

Contents xix

><>< SNA Format and Protocol Reference l'lanual for LU Type 6.2

LIST OF ILLUSTRATIONS

CHAPTER 1. INTRODUCTION

Figure
Figure

1-1. Overview of the SHA Network
1-2. Examples of Nested Nodes

CHAPTER 2. OVERVIEW OF THE LU

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

2-1.
2-2.
2-3.
2-4.
2-5.
2-6.
2-7.
2-8.
2-9.

2-10.
2-11.
2-12.
2-13.
2-14 •.
2-15.
2-16.
2-17.
2-18.
2-19.
2-20.
2-21.
2-22.
2-23.
2-24.
2-25.
2-26.
2-27.
2-28.
2-29.
2-30.
2-31.

2-32.
2-33.
2-34.
2-35.
2-36.
2-37.
2-38.
2-39.
2-40.
2-41.
2-42.
2-43.
2-44.
2-45.
2-46.
2-47.
2-48.
2-49.
2-50.
2-51.
2-52.
2-53.
2-54.
2-55.
2-56.
2-57.
2-58.

Placement of LUs within the SHA Network !Example)
Peer and Layer Exchanges • • • • • • • • • •
Relationships of Sequences of Message Units !Example)
Relationship of Data Records to Logical Records <Example)
Relationship of Conversation Message to BIU Chain <Example)
Start Conversation without Confirmation ••••
Conversation Turnaround without Confirmation
Finish Conversation without Confirmation
Start Conversation with Confirmation
Continue Conversation: Confirmation without Turnaround
Conversation Turnaround with Confirmation, using LOCKS!SHORT)
Conversation Turnaround with Confirmation, using LOCKSILONG)
Finish Conversation with Confirmation •••••
Possible Next Sequence in Error-Free Cases ••••
One-Way Conversation without Confirmation
Two-Way Conversation with Confirmation
Conversation Turnaround following REQUEST_TO_SEND (without Confirmation>
SEND_ERROR Issued by Sender • • • • • • • •
SEND_ERROR Issued by Receiver ••••••
SEND_ERROR Issued by both Sender and Receiver CSEND_ERROR Race)
DEALLOCATE ABEND Issued by Sender
DEALLOCATE ABEND Issued by Receiver
Overview of LU 6.2 Components ••••
Structure of a Presentation Services Process
Example of Communicating Transaction Programs
Internal Buffering in LU Send/Receive Data Operations (Example)
Map Name Usage by Mapped Conversations •••••
Relationship of LU Components for Sync Point Functions
LU Static Data Structures (Example) • • • • • ••••••••
LU Dynamic Data Structures and Processes !Example)
Data Structure Relationships among LUs for a Distributed Transaction

(Example) • • • • • • • • • • • • •
LU Process Creation and Termination Hierarchy
Complete Conversation Example--local LU
Complete Conversation Example--Remote LU
Session Deactivation--Local LU
Session Deactivation--Remote LU
ALLOCATE (when allocated), CONFIRM !by First Speaker) --Local LU
ALLOCATE lwhen allocated), CONFIRM !by First Speaker) --Remote LU
ALLOCATE (delayed>, CONFIRM !by First Speaker) --Local LU
ALLOCATE (delayed), CONFIRM (by First Speaker) --Remote LU
ALLOCATE (delayed), RECEIVE_AND_WAIT <by First Speaker) --Local LU
ALLOCATE (delayed!, RECEIVE_AND_WAIT lby First Speaker) --Remote LU
ALLOCATE <when allocated!, RECEIVE_AND_WAIT !by Bidder) --Local LU
ALLOCATE (when allocated), RECEIVE_AND_WAIT Cby Bidder) --Remote LU
ALLOCATE !delayed), CONFIRM !by Bidder) --Local LU
ALLOCATE I delayed), CONFIRM I by Bidder l --Remote LU • • • •
ALLOCATE !delayed), RECEIVE_AND_WAIT !by Bidder) --Local LU
ALLOCATE !delayed), RECEIVE_AND_WAIT (by Bidder) --Remote LU
ALLOCATE !delayed>, CONFIRM <by Bidder), Attach Error --Local LU
ALLOCATE (delayed), CONFIRM lby Bidder), Attach Error --Remote LU
ALLOCATE !immediate), Successful --Local LU
ALLOCATE !immediate), Successful --Remote LU
ALLOCATE (immediate), Unsuccessful --Local LU
ALLOCATE (immediate), Unsuccessful --Remote LU
ALLOCATE (delayed) Race, Bracket Rejected --Bidder LU
ALLOCATE !delayed) Race, Bracket Rejected --First Speaker LU
ALLOCATE (delayed) Race, Bracket Accepted --Bidder LU
ALLOCATE ldelayedl Race, Bracket Accepted --First Speaker LU

1-2
1-4

2-2
2-5

2-14
2-15
2-16
2-18
2-18
2-19
2-19
2-19
2-20
2-20
2-20
2-21
2-22
2-22
2-23
2-24
2-24
2-25
2-25
2-26
2-27
2-28
2-29
2-31
2-37
2-38
2-41
2-42

2-44
2-45
2-48
2-49
2-50
2-51
2-52
2-53
2-54
2-55
2-56
2-57
2-58
2-59
2-60
2-61
2-62
2-63
2-64
2-65
2-66
2-67
2-68
2-69
2-70
2-71
2-72
2-73

List of Illustrations xxi

Figure 2-59.
Figure 2-60.
Figure 2-61.
Figure 2-62.
Figure 2-63.
Figure 2-64.
Figure 2-65.
Figure 2-66.
Figure 2-67.
Figure 2-68.
Figure 2-69.
Figure 2-70.
Figure 2-71.
Figure 2-72.
Figure 2-73.
Figure 2-74.
Figure 2-75.
Figure 2-76.
Figure 2-77.
Figure 2-78.
Figure 2-79.
Figure 2-80.
Figure 2-81.
Figure 2-82.
Figure 2-83.
Figure 2-84.
Figure 2-85.

DEALLOCATE FLUSH (RQEl) --local LU
DEALLOCATE FLUSH CRQEl) --Remote LU
DEALLOCATE FLUSH CRQDl) --Local LU
DEALLOCATE HUSH CRQDl) --Remote LU • •
DEALLOCATE FLUSH CRQEll, SEND_ERROR, -RSP Sent --Local LU
DEALLOCATE FLUSH CRQEll, SEND_ERROR, -RSP Sent --Remote LU
DEALLOCATE FLUSH CRQEIJ, SEND_ERROR, -RSP not Sent --Local LU
DEALLOCATE FLUSH fRQElJ, SEND ERROR, -RSP not Sent --Remote LU
DEALLOCATE CONFIRM (RQD213> -=local LU •••••••••••
DEALLOCATE CONFIRM CRQD213> --Remote LU •••••••••••
DEALLOCATE ABEND Issued in SEND, Between-Chain State --local LU
DEALLOCATE ABEND Issued in SEND, Between-Chain State --Remote LU
DEALLOCATE ABEND Issued in SEND, In-Chain State --local LU
DEALLOCATE ABEND Issued in SEND, In-Chain State --Remote LU
DEALLOCATE ABEND Issued in SEND, -RSP Received State --local LU
DEALLOCATE ABEND Issued in SEND, -RSP Received State --Remote LU
DEALLOCATE ABEND Issued in SEND State --local LU • • • • • •
DEALLOCATE ABEND Issued in SEND State --Remote LU • • • • •
DEALLOCATE ABEND Issued in RCV, Between-Chain State --Local LU
DEALLOCATE ABEND Issued in RCV, Between-Chain State --Remote LU
DEALLOCATE ABEND Issued in RCV, In-Chain State --Local LU
DEALLOCATE ABEND Issued in RCV, In-Chain State --Remote LU
ALLOCATE !delayed), DEALLOCATE FLUSH Cby First Speaker) --Local LU
ALLOCATE Cdelayed>, DEALLOCATE FLUSH Cby First Speaker) --Remote LU
ALLOCATE (delayed), DEALLOCATE CONFIRM !BY First Speaker) --Local LU
ALLOCATE CdelayedJ, DEALLOCATE CONFIRM CBY First Speaker) --Remote LU
ALLOCATE !delayed), DEALLOCATE FLUSH (by Bidder> to RECEIVE_AND_WAIT
--local LU • • • • • ~·® • • • • • • • • • • • • • • • • • • •

Figure 2-86. ALLOCATE (delayed), DEALLOCATE 'f:LUSH (by Bidder) to RECEIVE_AND_WAIT
--Remote LU •

Figure 2-87. ALLOCATE !delayed), DEALLOCATE FLUSH Cby Bidder) to SEND_ERROR --Local LU
Figure 2-88. ALLOCATE !delayed), DEALLOCATE FLUSH !by Bidder) to SEND_ERROR --Remote

LU •
Figure 2-89. ALLOCATE !delayed), DEALLOCATE CONFIRM !by Bidder) --Local LU
Figure 2-90. ALLOCATE (delayed), DEALLOCATE CONFIRM (by Bidder) --Remote LU
Figure 2-91. CONFIRM !RQD2l3l --Local LU
Figure 2-92. CONFIRM CRQD2l3l --Remote LU
Figure 2-93. CONFIRM !RQE2l3l --Local LU
Figure 2-94. CONFIRM IRQE2l3l --Remote LU
Figure 2-95. CONFIRM CRQE213J, SEND ERROR --Local LU
Figure 2-96. CONFIRM !RQE213l, SEND=ERROR --Remote LU
Figure 2-97. CONFIRM CRQD213J, SEND ERROR --Local LU
Figure 2-98. CONFIRM IRQD213J, SEND-ERROR --Remote LU
Figure 2-99. RECEIVE_AND_WAIT Causing RQE,CD --Local LU
Figure 2-100. RECEIVE_AND_WAIT Causing RQE,CD --Remote LU
Figure 2-101. SEND ERROR before SEND DATA --Remote LU
Figure 2-102. SEND=ERROR before SEND=DATA --local LU
Figure 2-103. SEND_ERROR before CONFIRM --Remote LU
Figure 2-104. SEND ERROR before CONFIRM --Local LU
Figure 2-105. SEND-ERROR at End-of-Chain --Remote LU
Figure 2-106. SEND-ERROR at End-of-Chain --Local LU
Figure 2-107. REQUEST_TO_SEND, Received in Send State --Remote LU
Figure 2-108. REQUEST TO SEND, Received in Send State --Local LU
Figure 2-109. REQUEST-TO-SEND, Received in Receive State --Remote LU
Figure 2-110. REQUEST:ro:sEND, Received in Receive State --Local LU

CHAPTER 3. LU RESOURCES MANAGER

Figure 3-1. Overview of Component Interactions Involving the Resources Manager
Figure 3-2. Allocation of a Resource Control Block CRCB>
Figure 3-3. Allocation of Session Using BID_WITHOUT_ATTACH
Figure 3-4. Allocation of Session Using BIO_WITH_ATTACH
Figure 3-5. Responding to a Bid for a Session
Figure 3-6. Immediate Allocation of a Session . . .
Figure 3-7. Attach Flows
Figure 3-8. Bid Races
Figure 3-9. READY TO RECEIVE IRTR) Flows
Figure 3-10. End of a Conversation
Figure 3-11. Activation of a New Session
Figure 3-12. Decreasing the Number of Sessions
Figure 3-13. Session-Outage Actions

xxii SNA Format and Protocol Reference Manual for LU Type 6.2

. . . .

. . .

2-74
2-75
2-76
2-77
2-78
2-79
2-80
2-81
2-82
2-83
2-84
2-85
2-86
2-87
2-88
2-89
2-90
2-91
2-92
2-93
2-94
2-95
2-96
2-97
2-98
2-99

2-100

2-101
2-102

2-103
2-104
2-105
2-106
2-107
2-108
2-109
2-110
2-111
2-112
2-113
2-114
2-115
2-116
2-117
2-118
2-119
2-120
2-121
2-122
2-123
2-124
2-125

3-1
3-3
3-5
3-6
3-7
3-8
3-9

3-10
3-11
3-12
3-13
3-14
3-16

CHAPTER 4. LU NETWORK SERVICES

Figure 4-1. Protocol Boundaries Between LU Network Services and Other Components 4-1
Figure 4-2. Session-Services RH Formats 4-8
Figure 4-3. Session-Control RH Formats 4-16
Figure 4-4. Format of User Data 4-23
Figure 4-5. Reinitiation Responsibility 4-27
Figure 4-6. Maintenance Services RU Formats 4-30
Figure 4-7. Records Exchanged Between LNS and Other Components 4-33
Figure 4-8. PNCP-LU Session Activation • • • • • • 4-35
Figure 4-9. PNCP-LU Session Deactivation • • • • • • 4-35
Figure 4-10. SSCP-LU Session Activation to an LU in a Peripheral Node 4-36
Figure 4-11. SSCP-LU Session Deactivation to an LU in a Peripheral Node 4-36
Figure 4-12. LU-LU Session Initiation by Local PLU in a Peripheral Node 4-37
Figure 4-13. LU-LU Session Initiation by Local SLU in a Peripheral Node 4-38
Figure 4-14. LU-LU Session Initiation by Remote LU to Local LU in a Peripheral Node 4-39
Figure 4-15. LU-LU Session Termination by Local LU in a Peripheral Node 4-40
Figure 4-16. LU-LU Session Termination by Remote LU to Local LU in a Peripheral Node 4-40
Figure 4-17. SSCP-LU Session Activation to an LU in a Subarea Node 4-41
Figure 4-18. SSCP-LU Session Deactivation to an LU in a Subarea Node 4-41
Figure 4-19. LU-LU Session Initiation by Local PLU in a Subarea Node 4-42
Figure 4-20. LU-LU Session Initiation by Local SLU in a Subarea Node 4-43
Figure 4-21. LU-LU Session Initiation by Remote PLU to Local SLU in a Subarea Node 4-43
Figure 4-22. LU-LU Session Initiation by Remote PLU to Local SLU in a Subarea Node 4-44
Figure 4-23. LU-LU Session Termination by Local LU 4-45
Figure 4-24. LU-LU Session Termination by Remote LU 4-45

CHAPTER 5.0. OVERVIEW OF PRESENTATION SERVICES

Figure 5. 0-1. Overview of Presentation Services, Emphasizing PS. INITIALIZE and
PS.VERB ROUTER

Figure 5.0-2. Initialization and Termination of Presentation Services and Transaction
Program .

CHAPTER 5.1. PRESENTATION SERVICES--CONVERSATION VERBS

Figure

Figure
Figure
Figure
Figure
Figure
Figure

5.1-1.

5.1-2.
5.1-3.
5.1-4.
5.1-5.
5.1-6.
5.1-7.

Overview of Presentation Services, Emphasizing
Basic Conversations • • . • • • • • •
LU Control Block List and Associated Lists
Transaction Control Block CTCBl •••••
Resource Control Block CRCB> ••••••
PS.CONV Requests and Associated RM Responses
SEND ERROR Race . • • . • • • •
SEND=ERROR Race with Deallocation

Presentation Services for

CHAPTER 5.2. PRESENTATION SERVICES--MAPPED CONVERSATION VERBS

Figure 5.2-1.

Figure 5.2-2.
Figure 5.2-3.
Figure 5.2-4.
Figure 5.2-5.
Figure 5.2-6.
Figure 5.2-7.
Figure 5.2-8.
Figure 5.2-9.
Figure 5.2-10.

Overview of Presentation Services, Emphasizing Presentation Services for
Mapped Conversations • • • • • • • • • • • • • •
PS.MC's Use of the Basic Conversation Protocol Boundary
GOS Variables and Logical Records ••••••••••
Transformation of Data from MC_SEND_DATA to a GOS Variable
An Example of Mapping • • • • • • • • • • • • • •
MC_TEST_PROC • • • • • • • ••••••
Detecting a Service Error as a Result of MC_RECEIVE_AND_WAIT Processing
Detecting a Service Error as a Result of a Call to MC_TEST_PROC
Receipt by PS.MC of a SVC_ERROR_PURGING Return Code ••••••
Receipt by PS.MC of a SVC_ERROR_TRUNC or SVC_ERROR_NO_TRUNC Return Code

CHAPTER 5.3. PRESENTATION SERVICES--SYNC POINT SERVICES VERBS

Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure

5.3-1.
5.3-2.
5.3-3.
5.3-4.
5.3-5.
5.3-6.

5.3-7.
5.3-8.

Relationships among Failures and Recovery
A Typical Sync Point Tree •••••
Basic Sync Point Flows ••••••
Optimized Flow: No Resource Changed
Optimized Flow: last Resource
Sync Point Services for Local CNonconversational)
Files • • • • • • • • • • • • • • • • • •
Sync Point Services for Conversation Resources
Sync Point Services for Function Sh;pp1ng

Resources, Such as

list of Illustrations

5.0-2

5.0-3

5.1-2
5.1-3
5.1-4
5.1-5
5.1-5
5.1-8
5.1-8

5.2-2
5.2-3
5.2-5
5.2-6
5.2-9

5.2-13
5.2-15
5.2-16
5.2-18
5.2-19

5.3-2
5.3-3
5.3-4
5.3-4
S.3-4

5.3-5
5.3-6
5.3-7

xxi ii

Figure 5.3-9. Illustrative Sync Point Flow: General Case
Figura 5.3-10. Illustrative Sync Point Flow: last Resource Optimization
Figure 5. 3-11. Illustrative Sync Point Flow: No Resources Changed
Figure 5.3-12. Back Out Example 1
Figure 5.3-13. Back Out Example 2
Figure 5.3-14. Resync After Conversation Failure
Figure 5.3-15. Resync after LU Failure
Figure 5.3-16. Cold Start of an LU
Figure 5.3-17. log Name Mismatch during Resync

CHAPTER 5.4. PRESENTATION SERVICES--CONTROL-OPERATOR VERBS

Figure 5.4-1.
Figure 5.4-2.
Figure 5.4-3.
Figure 5.4-4.
Figure 5.4-5.
Figure 5.4-6.
Figure 5.4-7.
Figure 5.4-8.
Figure 5.4-9.
Figure 5.4-10.
Figure 5.4-11.
Figure 5.4-12.
Figure 5.4-13.
Figure 5.4-14.

Control-Operator Components in Relation to Other Components of the LU
LU Component Relationships for Distributed Session-Control Verbs
Sequence of Verbs and Information Exchange in CNOS Transaction Programs
CNOS External Message-Unit Flows • • • • • • • • • • • ••••

Figure 5.4-15.
Figure 5.4-16.

CNOS Process Interactions at a Single LU ••••••
Transaction Handling Component Relationships--Case l
Transaction Handling Component Relationships--Case 2
Transaction Handling Component Relationships--Case 3
No Race • • • • • • • • • • • • •
Single-Failure Race Condition--Case 1 •••••••
Single-Failure Race Condition--Case 2 ••••••••
Double-Failure Race Condition ••••••••
Structure of Presentation Services for the Control Operator
Single-Session Contention Polarity Determined by

Minimum-Contention-Winner-Limit Parameters
Source-LU Component Interactions for CNOS
Target-LU Component Interactions for CNOS

CHAPTER 6.0. HALF-SESSION

Figure 6.0-1. Overview of Half-Session

CHAPTER 6.1. DATA FLOW CONTROL

Figure 6.1-1. Overview of DFC for LU-LU Half-Sessions ••
Figure 6.1-2. Detailed Structure and Protocol Boundaries of DFC for LU-LU

Half-Sessions •••••••••
Figure 6.1-3. Use of Sequence Numbers •••••
Figure 6.1-4. Case 1: "Late" SIGNAL or Response
Figure 6.1-5. Case 2: "Early" SIGNAL
Figure 6.1-6. Case 3: "Early" SIGNAL
Figure 6.1-7. SEND_DATA_RECORD to Request RH Mapping
Figure 6.1-8. Request RH to RECEIVE_DATA Record Mapping
Figure 6.1-9. DFC Request Formats ••••••••••
Figure 6.1-10. DFC Response Formats • • • • • • • • • • •••
Figure 6.1-11. Overview, Structure, and Protocol Boundaries of DFC for CP-lU

Half-Sessions •

CHAPTER 6.2. TRANSMISSION CONTROL

Figure
Figure
Figure
Figure
Figure
Figure

6.2-1.
6.2-2.
6.2-3.
6.2-4.
6.2-5.
6.2-6.

Structure of TC and Flow of Data within the Half-Session
Distributing the Session Cryptography Key and Session Seed
Interrelation of TC.SEND and TC.RCV
TC Initialization Calling Tree
SEND Calling Tree
RCV Calling Tree

APPENDIX A. NODE DATA STRUCTURES

APPENDIX D. RH FORMATS

to the LU

Figure D-1. RH Formats • • • • • • • • • • • •••••••••••••••
Figure D-2. FMD Request/Response Combinations for Sessions between Two LU 6.2s

xxiv SNA Format and Protocol Reference Manual for LU Type 6.2

5.3-9
5.3-11
5.3-12
5.3-14
5.3-15
5.3-16
5.3-17
5.3-18
5.3-19

5.4-2
5.4-7
5.4-9

5.4-10
5.4-11
5.4-12
5.4-13
5.4-14
5.4-16
5.4-17
5.4-18
5.4-19
5.4-23

5.4-24
5.4-26
5.4-29

6.0-1

6.1-2

6.1-3
6.1-5
6.1-5
6.1-6
6.1-6

6.1-11
6.1-11
6.1-12
6.1-13

6.1-17

6.2-1
6.2-3
6.2-4
6.2-7
6.2-7
6.2-7

D-2
D-4

APPENDIX E. REQUEST-RESPONSE UNIT (RU> FORMATS

Figure E-1. RU Sizes Corresponding to Values X'ab' in BIND

APPENDIX F. PROFILES

APPENDIX G. SENSE DATA

Figure G-1. Sense Data Format

APPENDIX H. FM HEADER AND LU SERVICES COMMANDS

Figure H-1. Symbol-String Types •••••
Figure H-2. Symbol String Lengths •••••
Figure H-3. Examples of FM Header Placement

APPENDIX I. GENERAL DATA STREAM

Figura I-1. GOS Structured Field

APPENDIX N. FSM NOTATION

Figure N-1. Syntax of an FSM State-Transition Matrix

APPENDIX T. TERMINOLOGY: ACRONYMS AND ABBREVIATIONS

E-8

G-1

H-1
H-3
H-4

I-1

2

List of Illustrations xxv

xxv; SHA Format and Protocol Reference ttanual for LU Type 6.2

CHAPTER J._., INTRODUCTION

USE AND ORGANIZATION OF THIS BOOK

This book, in conjunction with the companion
books listed in the Preface, provides a
formal definition of Systems Network Archi­
tecture CSNA>. It is intended to complement
individual SHA product publications, but not
to describe individual product implementa­
tions of the architecture.

SNA logical unit type 6.2 <hereafter general­
ly referred to as LU 6.2, or simply LU> is
defined here in the form of a functionally
layered system, represented by a formal
description, that is decomposable into compo­
nents called protocol machines. Protocol
machines generate output sequences in
response to input sequences, in accordance
with fixed rules, or protocols, governing
distinct information transfers into, out of,
and within the system.

The protocol machine definition of SNA uses
the following basic notions:

•

•

•

Finite-state machines: A finite-state
machine CFSM) is an abstract device hav­
ing a finite number of states (memory)
and a set of rules whereby the machine's
responses (state transitions and output
sequences) to all input sequences are
well defined.

Routina and checking logic: Routing and
checking"""""Togic performs a mapping of
inputs (message units and FSM states)
into outputs. It is used to verify
validity of message uni ts and to route
them to FSMs.

Block diagrams: A block diagram repres­
ents the decomposition of a protocol
machine into its component submachines
(which themselves are protocol machines)
and the signaling paths between them.
Each block in the diagram can be further
decomposed into its constituent subma­
chines.

• Protocol boundaries: A protocol boundary
is a specification of the format and con-

tent requirements imposed on the signals
exchanged between protocol machines.

The remainder of the book presents details of
the SHA formats and protocols for LU 6. 2,
arranged as follows:

•

•

•

•

•

•

•

•

Chapter 2 provides an overview of the
functions and structure of the LU, as
well as the sequences and message uni ts
exchanged between two communicating LUs.
Chapters 3 and 4 describe LU services
manager components; these components
attach transaction programs as requested,
allocate sessions to transaction pro­
grams, and coordinate the activation and
deactivation of sessions involving LUs.

Chapters 5.0 through 5.4 describe the
general structure and detailed functions
of presentation services-in particular
the execution logic for LU 6.2 verbs.

Chapter 6.0 provides an overview of the
half-session, while Chapters 6.1 and 6.2
describe the data flow control and trans­
mission control protocols, respectively,
within half-sessions.

Appendix A describes the data structures
used in the formal description and the
relationships among the control blocks.

Appendixes D through I provide details of
the general data stream and various head­
ers, request-response units, profiles,
and sense data used in SHA.

Appendix
of, and
machines.

N describes the basic concept
notation for, finite-state

Appendix T (included as foldout pages at
the back of the book> provides a compre­
hensive list of abbreviations and acro­
nyms used in the book.

Chapter 1. Introduction 1-1

••••••••••••••••••••••••••••••Other NAUs (PlJs and SSCPsJ ~•...
. ~

Upper
End Layers
User < t-t-> of the

LU

End
User

Upper
Layers

< t-t-> of the
LU

..

Upper
Layers

< t-._> of the
LU

<-> Half-Sess.;on < >

•
• •

<-> Half-Sess;on < >

LUnal

<-> Half-Session < >

•
•
•

<-> Half-Sess;on < >

LUna2

• •.•....••..•..••
<-> Half-Session < >

•
• •

<-> Half-session < >

LUnai

Figure 1-1. Overview of the SNA Network

A •••• A
I • • • I
v •••• v

r- - - - -> < > Half-Session <->
I

•
• •

•
•
•

Upper
Layers
of the

LU

End
<-t- >User

LUnaj

.

I
I

--' < > Half-Session <->
HS6=Cnaj,nai,
other parameters, •
and data) • •

•

< > Half-session <->

Path Control
· Network

SNA Network

Upper
Layers
of the

LU

<-~ >r:l
tJ

LUnak •

1-2 SNA For.;.t andProt0col Reference Manual for LU Type 6.2

GENERAL CQNCEP!S

DEFINITION OF AN SNA NETWORK

An SNA network:

• Enables the reHable transfer of data
between end users ltyp;cally, term;nal
operators and appl;cat;on programs>.

• Prov; des protocols for cont roll; ng the
resources of any spec;f;c network conf;g­
uration.

An SNA network cons;sts log;cally of a set of
network addressable un;ts INAUs> ;ntercon­
nected by an ;nner path control network con­
s;st;ng of the path control, data l;nk
control, and phys;cal layers; F;gure 1-1 on
page 1-2 shows the general relationships.
SNA networks funct;onally have a layered
organ;zation, the outermost layers of which
form the NAUs, each of wh;ch in a general SNA
network ;s associated with a network address
Ina > • A NAU consists of the upper layers,
transaction services ITS) and presentation
servfoes I PS>, and one or more hal f-sess; on
protocol machines lcons;sting of the data
flow control and transmiss;on control layers)
depending on the number of other NAUs with
wh;ch ;t can be pa;red to form sessions.

Those NAUs serving end users are called log­
; cal uni ts I LUs > • An LU allows an end user
to ga;n access to network resources lsuch as
links, programs, and d;rector;es> and to com­
mun; cate w; th other end users. An LU may
also prov;de a serv;ce lsuch as for a control
operator> wholly conta;ned w;th;n the LU that
;s accessed from another LU v;a a sess;on.
Thus, ;n some cases, an LU-LU sess;on has an
end user only at one end. The presence of
var;ous serv;ces within an LU ;s a function
of LU type, product design, and ;nstallat;on
options.

In general, there need not be a one-to-one
relat;onship between end users and LUs. The
assoc;ation between end users and the set of
LUs ;s an ;mplementat;on des;gn option.

The LUs provide protocols allowing end users
to communicate with each other and with other
NAUs in the network. An LU can be associated
with more than one network address I or with
multiple, distinct local-form session identi­
fiers); this allows two LUs I and therefore
their end users) to form multiple, concur­
rently active sessions with each other.

Besides LUs, two ·other network addressable
units are defined: physical units I PUs > and
system services control po;nts (SSCPs>.
These NAUs, ;n conjunction with one another
and with LUs, prov;de a variety of sess;on,
configuration, management, and
network-operator serv;ces.

Message un;ts are transported between NAUs by
the path control network. These message
units are of the general form:

HSG = lnaj,nai,other parameters, and data),

where naj is an address of the destination
NAU, and na; that of the orig;n NAU. (The
pa;,., naj and na;, together identify a par­
t;cular sess;on; their form varies depending
on the types of nodes involved. > The path
control network routes and delivers message
units to naj ;n the same order as sent from
nai.

The message units transferred within an SNA
network generally have two components:
end-user information and control informat;on.
The end-user ;nformation is passed by the SNA
network and does not affect its state. Con­
trol ;nformation may somet;mes be passed to
the end users I as in the case of the Change
Direction ind;cation, which allows one end
user to transfer the right to transm; t data
to the other > ; however, its main purpose ; s
to change the state of the SNA network, thus
effect;ng a normal control change lsuch as a
change to a path control rout;ng table> or a
recovery from an except;on cond;t;on.

NODES

The SNA network physfoally cons;sts of nodes
;nterconnected v;a Hnks. An ~ node ;s a
group; ng of SNA-def i ned protocol machines.
An ~ product node may consist of add;­
tional, product-spec;fic protocol mach;nes
that use one or more SNA nodes. A
user-appH ca ti on node may cons; st of add; -
tional, installation-def;ned protocol
machines that use one or more SNA product
nodes. These relat;onships are shown in Fig­
ure 1-2 on page 1-4. The abstraction of
nested' nodes is a useful rem;nder that each
product ex; sts ; n an environment that con­
ta; ns many design features that are not
defined by SNA.

For spec;fic details of nesting of SNA nodes
and SNA product nodes w;thin user-applicat;on
nodes , see SNA Concepts .imJ Products and SNA
Technical Overview.

In th;s book, "node" ;s synonymous 11111ith "SNA
node," and the qualifier will generally be
omitted. Thus, end users and protocol
machines not defined in SNA are external to
the node, as that term is used hereafter.

Various node types are defined in SNA: types
1, 2.0, 2.1, 4, and S. They are d;stin­
guished by varying capabil;ties, such as for
interconnection, and by the presence or
absence of different NAU types.

For example, type 2 .1 nodes can connect to
the general subarea routing network or to
other type 2.1 nodes directly. In the former
case, subarea nodes ld;scussed below) prov;de
general intermediate routing within the path
control layer, allowing complex network con­
figurations to be fashioned; ;n the latter

Chapter 1. Introduct;on 1-3

SNA Product Node

User-Application Node

(a) Typical Case

:::1 SNA Node r:::::::::1 SNA Node 1:::__ ____ __,

SNA Product Node

User-Application Node

(b) Two SNA Nodes within an SNA Product Node

:::1 SNA Node 1::: :::1 SNA Node i:::__ ____ __, ...
••• SNA Product Node ••• SNA Product Node

User-Application Node

(c) Two SNA Product Nodes within a User-Application Node

Figure 1-2. Examples of Nested Nodes

case, two type 2 • 1 nodes can interconnect
independently of other nodes, in a
peer-to-peer relationship.

Type 1 and type 2 (; .e., 2.0 or 2.1> nodes
are also referred to as perieheral DS!9u•
because they have limited addressing and
path-control routing capabilities. They do
not participate in the general network rout­
ing based on a global network address space.
Instead, they depend on "boundary function"
support in types 4 or 5 nodes to transform
between the address forms, local to the
peripheral nodes, and the network addresses
used in the general routing portion of the
path control network. Peripheral nodes are

thereby insulated from changes in the global
network address space resulting from reconf­
igurations.

Types 4 and 5 nodes are ref erred to as !Y!1::
!.!:!!! nodes. (A subarea represents a part i -
tioning of the network address space. It
contains a subarea node and all the peripher­
al nodes attached to the subarea node.) Sub­
area nodes, besides also being sources and
sinks of data, have more general path control
capabilities. They can perform intermediate
routing--passing message units received from
one node on to another--and provide adaptive
control of traffic flow within the subarea
routing portion of the network.

1-4 SNA Format and Protocol Reference Hanual for LU Type 6.2

NAUS AND NODE TYPES

A node always includes a physical unit (PUJ,
which controls the attached links and various
other resources of the node. A PU has a type
designation corresponding to the type I 1,
2.0, 2.1, 4, or SJ of node in which it
resides.

A node typically also includes logical units
CLUsJ, through which end users attach to the
node, and thus to the SNA network. From the
vantage of this book, node types 2. l and 5
are of primary interest, as these are the
only nodes thoit include LU 6. 2 i mplementa­
ti ons.

A subarea PU or subarea LU resides in a sub­
area node.~A peripheral PU or peripheral LU
resides in a peripheral node.

Type 5 nodes each contain a system services
control point CSSCPJ. !Type 4 nodes do
not~the primary architectural distinction
between subarea node types. l An SSCP sup­
ports protocols for management and control of
a domain. A domain consists of one SSCP and
the PUs , LUs , links , and li nk s ta ti ons that
the SSCP can activate. Each PU, LU, link,
and link station in ;;i network belongs to one
of the domains comprising the network, and
some can belong to more than one doma i n--a
feature referred to as "snared control."
Each SSCP provides network services within
its domain (basically for converting local
names to global addresses) through protocols
supported in conjunction with the PUs or LUs
in the domoiin. The multiple SSCPs in a net­
work jointly support network services across
domains.

Type 2.1 nodes each contain a peripheral node
control point CPNCPJ, which provides services
on a more local scale than an SSCP provides.
In particular, a PNCP can mediate LU-LU

OTHER DEFINITIONS AND NOTATIONAL CONVENTIONS

This section describes some notational con­
ventions widely used in both the figures and
the text. !Additional conventions are
defined within figure legends throughout the
book. l

A naming convention, using qualifiers sepa­
rated by periods to denote more specific com­
ponents of a composite protocol machine, is
used throughout the book. Component subma­
chi nes are shown as blocks within a larger
block that represents the composite machine.

In many cases, it is desirable to identify a
qualifier by a phrase of multiple terms, in
order to better convey the meaning of the
qualifier. The multiple terms in the phrase
are connected by underscores to indicate that
they are part of a phrase rather than sepa­
rate qualifiers representing further decom-

session-initiation requests (by doing local
address look-up l in the type 2. 1 node
peer-to-peer context just as an SSCP does in
the more general network configuration con­
text.

THE PATH CONTROL NETWORK

The system consisting of all interconnected
path control CPCJ and data link control CDLCJ
components forms the pa th control network.
The input/output streams of the path control
network consist of streams of control infor­
mation, such as addresses, and associated
user data.

Each node has a PC element and NAUs. The
node and link connections of the network, and
the PC routing algorithms, combine to provide
the following behavior for the path .control
network:

• An input to a PC element in node-i from a
NAU is transmitted and routed by the path
control network and emitted as output by
the PC element in node-j to the destina­
tion NAU. <Since node-i and node-j can
be the same node (i = j l, NAUs within the
same node can be connected by a session.)

• Message units with the same session iden­
tifiers are emitted by +.he path control
network in the order submitted by the
origin NAU.

Just as primary-secondary DLC asymmetries and
other DLC details are hidden from PC, so the
routing and other concerns of the path con­
trol network are not visible at the protocol
boundary with the NAUs; in particular, the
path control network conceals the node inter­
connections and the NAUs need only consider
their logical connections (i.e., sessions>
with other NAUs.

positions. The underscore convention is also
used in names of states and data structures.

Each protocol machine in the book has a
unique name consisting of a sequence of qual­
ifiers. For example, IMACHINE.PRI.X_SEND,
MACHINE.SEC.X_RCVJ and fMACHINE.SEC.X_SEND,
MACHINE.PRI.X_RCVl are examples of two basic
protocol machine pairs. This naming conven­
tion produces protocol machine names that
carry precise information on the role of the
protocol machine and its relative position 1n
the network structure.

Two other symbols, "I" and "&," are used in
names and expressions. The "I" symbol i ndi -
cates one of several (or "either ••• or"l. For
example, MACHINE. C PRI I SEC l means "either
MACHINE. PIU or MACHINE. SEC." The "&" symbol
is used to indicate composition. For exam­
ple, MACHINE.CRCV&SENDl is the composite pro-

Chapter l. Introduction 1-5

tocol macMna consisHng of MACHINE.RCV and
MACHINE.SEND.

Some of the protocol Machines defined in the
book interact directly with undefined compo­
nents. These undefined components, called
undefined protocol machines CUPHs>, represent
implementation and/or installation options
that are not architecturally prescribed (be­
ing product or user oriented>.

Within block diagrams,
ventions indicate the
between components:

the follONi ng con­
type of interaction

• Solid arrows indicate data flow; between
processes, this implies send/receive
(asynchronous> logic.

• Dotted arrONS indicate calling relation­
ships.

• Dotted lines indicate data structure
access.

I .
Hessage un1 ts exchanged betNeen SNA compo-
nents are also denoted by special notation,
particularly in sequence flow diagrams. A
message unit is either a request or a
response, depending on the RH coding (see
"Appendix D. RH Formats">; these are denoted
respectively by a request-unit name (here

designated generically by the tar• "RQ" J and
by RSP.

RQCQUALJ denotes a request having the proper­
ty described by QUAL; for example, RQCBegin
Chain>, or simply RQCBC>, denotes a request
whose RH is coded "Begin Chain." A similar
convention applies to responses. For exam­
ple, RSPCBIND> denotes a response to the BIND
request-a response that echoes the request
code "BIND."

The asterisk (*) character is used in
sequence flONS, as Nell as elsewhere, to inean
"any value" (or "don't care"). For example,
"•BC" means "BC or .. ec0 ..:....,,,ere is the
standard symbol for "NDT."

The procedural logic in the formal
description uses simple English, some
control-structure elements (e.g.,
if/then/else) common to most high-level lan­
guages, and a few straightforward conventions
that are generally clear in context. For
example, a call is frequently shown in the
form: "Call PROCEDURECXt Yt Z>"s this
results in calling PROCEDURE and passing it
the arguments x, y, and z.
Abbreviations commonly used in the text are
listed at the back of the book on foldout
pages (Appendix T> for easy reference.

1-6 SNA Format and Protocol Reference Manual for LU Type 6.2

CHAPJER !..., OVERVIEW OF !Hi .1.Y

INTRODUCTION

This chapter is an overview of loqi cal Y!li!
~ 6.2 <hereafter referred to simply as
LU). The LU provides application programs

CONCEPTS M:!!2 TERMS

DISTRIBUTED TRANSACTION PROCESSING

Distributed transaction processing involves
two or more programs, usually at different
systems, cooperating to carry out some proc­
essing function. This involves program
intercommunication to share each other's
local resources such as processor cycles,
data bases, work queues, or human interfaces
such as keyboards and displays.

The LU supports distributed transaction proc­
essing by serving as the port between the
programs and the Path Control network. It
allows a transaction program CTP) to invoke
remote programs and to exchange data with
them.

All communication provided by the LU is
program-to-program. Any end user that is not
a program is represented to the LU by a pro­
gram. For example, fixed-function terminals
and their devices (e.g., keyboards and dis­
plays) present themselves as f i xed programs
(e.g., microcode) that use the same LU func­
tions as user-written application programs.
Human users at workstations do not interact
directly with the LU but rather with local
workstation programming support which in turn
interacts with the LU.

This program-to-program communication accom­
modates a variety of distributed processing
connections, including peripheral node to
subarea node, subarea node to subarea node,
and peripheral node to peripheral node. For
example, an application program at an
outlying site (a terminal or a distributed
processor> might communicate with a data-base
management system at a central processor to
maintain consistency between regional and
central records. For another example, sys­
tems programs in workstations might exchange
files and documents with each other.

Figure 2-1 on page 2-2 illustrates the role
of the LU in relation to an SNA network. The
LU connects transaction programs to the path
control network. The LUs activate sessions

with support functions for distributed trans­
action processing.

bet-en themselves. The component of a ses­
sion in each LU is called a half-session.
Two or more sessions between the same pair of
LUs are called parallel sessions. Multiple
sessions can concurrently use the same phys­
ical resources connecting the LUs.

The logical connection between a pair of
transaction programs is called a
conversation. A transaction program initi­
ates a conversation with its partner with the
assistance of the LUs. While a conversation
is active, it has exclusive use of a session,
but successive conversations may use the same
session.

An LU may run many transaction programs suc­
cessively, concurrently, or both. Each
transaction program may be connected to one
or more other transaction programs by conver­
sations. Multiple conversations between dif­
ferent pairs of transaction programs can be
active concurrently, with each conversation
using a distinct session.

Conversations connect TPs in pairs, but any
TPs directly or indirectly connected to each
other by conversations are participating in
the same distributed transaction. For exam­
ple, if TP A and TP B are connected by a con­
versation, and, concurrently, TP B and TP C
are connected by a conversation, then TPs A,
B, and C all are participating in the same
distributed transaction.

TRANSACTION PROGRAMS

The direct user of the LU is an application
transaction program (application TP>. Appli~
cation TPs are provided by the end user to
carry out functions of distributed applica­
tions.

A transaction program is distinguished from
programs in general by two characteristics:
the way it is invoked, and the communication
functions it initiates.

Chapter 2. Overview of the LU 2-1

: -:
:::

: : Appli ca ti on : G:: G :
: : Transaction : TP.a : : TPb :
: : Programs :
:: :::::::::::::::::::::: . :: . ::
: : : : : :·::::::::::::::::::::::::::::::::::: . : : : : : : : : : . :
::::::::::::
::::::::::::
• II e •••••••••

NA Us

: ..
: : . .
: :

: :
Path
Control
Network

•

LU.,,

• . . • : : ... : :
: : • :
: : • . . : : . ..
: : • . . : : . ..

• ::::::::::::::
::::::::::::::
::::::::::::::

•
• : ... : : :
• : : : : . . : . . : : : . . : ::::::::::::::
• : : : : : : : : : : : ::::::::::::::
• : : : : : : :

..
: : ..
: : TPc
..

::r:_:_:_:_:_:_=,::: :~.:••••••::::::::::::: .. ~ ::::::: ~ .. ::::::::::::::: .. '. ... !.'.~.! .. ll!''''''''i!!
I : : I r • • • • • • • -r : : TPe : :

r::······: ::: I :: :: : : : :
: :
: : ----
:::::::::::: ··a··
: : TPd : : .
:::::::::::: .
:::::::::::: .
:::::::::::: .

• •••
•
•
•
•
• •

...
:::

•
•

..............

~1: ~~:G ~ ~
------------.---------- : : TPf : : •

•••••••••••••••••••••••••••
•

::::::::::::: •.......
::::::::::::: .

•
•
•
•
•

•

. ----------- :: ::

. ::: .
: : : : : = : : : : : : : : : : : : : : =::: : : : : : : : : : : : : : G. : : G : =:: : : : : : = : : =:: : : : =
::::::::::::::::::::::::::::::::::::: :: ::
• TPg • • TPh • · • • • • • • • · • • • • •
::::::::::::::::::::::::::::::::::::: :: ::
::::::::::::::::::::::::::::::::::::: :: ::
: : : : : : : : : : : : : :- : ...
LEGEND:

•••••••••••••

Single Session
C connecting two LUs)

ConversationCconnecting t...o TPs)

Parallel Sessions
(connecting two LUs)

Figure 2-1. Placement of LUs .,,ithin the SNA Net.,,ork CExamplel

A transaction program is invoked by another
transaction program by a mechanism called
Attach. The invoking transaction program
initiates a conversation .,,ith another named

program. The invoked program is started run­
ning and is connected to the conversation
.,,;th its invoker. C In the case of the i ni -
tial program, the LU generates an internal

2-2 SNA Format and Protocol Reference Manual for LU Type 6.2

Attach to simulate invocation by another
transaction program. It does this in
response to some external stimulus, e.g.,
operator action.)

A transaction program uses the LU to communi­
cate with other transaction programs by issu­
ing transaction program verbs (which are
described in the publication SHA Transaction
Programmer's Reference Manual for LU Dm!
Lll. (In some cases, internal LU components
also issue transaction program verbs on
behalf of transaction programs.)

Besides application transaction programs,
distributed transactions can include trans­
action programs provided by the LU itself,
called service transaction programs (service
TPs). These are SHA-defined transaction pro­
grams within the LU that provide utility
services to application transaction programs
or that manage the LUs. They are attached by
other transaction programs and they issue
transaction program verbs to communicate with
other transaction programs. For example, the
LU includes service transaction programs for
distributed operator control of the LU, by
which control operators can determine the
number of parallel sessions they will share,
and for sync point resynchronization, which
assists distributed transaction recovery fol­
lowing transaction failure in certain circum­
stances. Other service TPs provide document
interchange services (using Document Inter­
change Ar·chitec'!:ure r D!A Ji, which allow
processors and workstations to synchronously
exchange files and documents. Furthermore,
SHA Distribution Services CSNADSJ service TPs
provide asynchronous distribution of files
and documents.

Different execution instances of the same
transaction program could perform parts of
the same distributed transaction at different
LUs or parts of several different trans­
actions at the same LU.

CONTROL OPERATOR

The LU control operator describes and con­
trols the avai hbi lity of certain resources
I see "Resources" J ; for example, i t describes
network resources accessed by the local LU
and it controls the number of sessions
between the LU and its partners.

The LU control operator is represented to the
LU by a control-operator transaction program
that interacts with the LU on behalf of, or
in lieu of, a human operator. The relation­
ship between the control-operator transaction
program and the LU control operator is
implementation-defined.

The control-operator transaction ~rog:am
invokes operator functions by 1ssu1ng
control-ooerator verbs. These verbs are
issued by the control-operator transaction
program to convey operator requests to the
internal components of the LU.
Control-operator verbs are described in SNA

Transaction Programmer's Reference Manual .f.2!::
LU Dm! Ll·

RESOURCES

The LU provides several kinds of resources to
support distributed transactions.

Conversations connect transaction programs
and are used by the transaction programs to
transfer messages. A conversation is acti­
vated when one transaction program attaches
another.

Associated with each end of a conversation
are protocol states that each LU maintains in
order to coordinate interaction between the
two TPs. These indicate (for example) which
TP is sender and which is receiver at a given
time.

The LU provides two types of conversations.

Happed conversations allow the TPs to
exchange arbitrary data records in any format
set by the programmers.

Basic conversations allow TPs to exchange
r;;;;;=ds containing a two-byte Length prefix.

Application transaction programs typically
use mapped conversations, and service trans­
action programs typically use only basic con­
versations; however, either conversation type
might be used by either program type.

Sessions provide relatively long-lived con­
nections between LUs; a session can be used
by a succession of conversations. Sessions
are activated by LU pairs as a result of
operator commands and transaction-program
requests for conversations. They are not
explicitly visible to transaction programs;
for example, a transaction program cannot
explicitly request use of a particular ses­
sion.

A mode is a set of characteristics that may
be associated with a session. These charac­
teristics typically correspond to different
requirements for cost, performance, security,
and so forth. Hodes are defined by the con­
trol operator as a selection of
path-control-network facilities and LU
session-processing parameters.

One characteristic of mode is class of serv­
ice. The path control network can offer dif­
ferent classes of service that correspond to
particular physical links and routes and par­
ticular transport characteristics such as
path security, transmission priority, and
bandwidth.

Other characteristics of mode include
operator-selected processing parameters such
as message-unit sizes and the number of mes­
sage units sent between acknowledgments (pac­
ing window sizes).

Each mode characterizes a group of sessions
with a particular partner LU; multiple modes

Chapter 2. Overview of the LU 2-3

may exh1t for the same partner LU. Hodes
associated with different partner LUs are
considered distinct, even if they represent
similar sets of characteristics.

A combination of partner LU and mode is
called an (LU.mode> pair.

LU-accessed network resources constitute the
relatively static environment that the LU or
its containing node establishes as a result
of installation definition. The principal
components of this environment are the LU
itself, the control points that serve the LU,
the transactfon programs that the LU can run,
the potential partner LUs (remote LUs) with
which the LU can communicate, and the modes
of service available between the LUs.

Local resources are resources whose principal
functions and operations are not defined by
SNA, but which LU components use or interact
with for some functions. These include local
files , data bases , recovery and account i ng
logs, queues, and terminal components. For
example, LU components interact with local
data-base managers to coordinate distributed
error recovery of data-base updates. Also,
SNA distribution services uses queues to
exchange messages between application trans­
action programs that provide document routing
and distribution.

Protected resources are local resources, such
as data bases, whose state changes are logged
so that all resources changed by a trans­
action can be restored to a consistent state
in the event of a transaction failure. The
LU interacts with protected resources to pro­
vide the sync point function (see "Sync Point
Function" on page 2-37) for distributed error
recovery.

PROTOCOL BOUNDARIES

In order to accommodate LU implementations on
different processors and transaction programs
written in different programming languages,
SNA defines the LU's interface to application
transaction programs in generic terms only.
This specification is called the transaction
program protoco! boundarv. It consists of
the set of LU functions that a TP may
request, and the possible parameter values
that may be supplied or returned for these
functions.

SNA does not define a particular syntax or
format for representing these functions and
parameter values. Nevertheless, for purposes
of discussion in SNA publications, the func­
tions and parameters are represented gener­
ically by transaction program verbs; these
are described in SNA Transaction Programmer's
Reference Hanual for LU .!:ilJ?.g Ll.

Each LU implementation, however, does provide
one or more concrete representations of these
functions and parameters. Such a represen­
tation of the transaction program protocol

boundary is called the an aPPlicatjon program
interface CAPI>. For example, an API might
be statements in a programming language that
an implementation supports.

The LU actually presents a partitioned proto­
col boundary to the transaction program; for
example, there are separate subsets of the
verbs for 111apped conversations, for basic
conversations, and for SNADS. When a hierar­
chical relationship exists between these sub­
sets, e.g., when verbs fro111 one set cause
internal issuances of verbs from another set,
this partition introduces sublayers within
the LU.

A protocol boundary can be interpreted from
two points of view.

Fro111 one point of view, a protocol boundary
is a boundary between two layers or sublayers
of the node. For example, TPs exchange data
with LUs across the TP-LU protocol boundary,
and LUs exchange data with the path control
network across the LU-path-control protocol
boundary. From this viewpoint, the rules of
exchange are called layer protocols.

But from another point of view, a protocol
boundary is a boundary between two peer com­
ponents of the same layer. In other words,
the transaction program protocol boundary may
be thought of as a direct boundary between
one TP and another, and similarly, the path
control protocol boundary may be regarded as
a direct boundary between LUs. From this
viewpoint, the rules of exchange are called
peer protocols.

From either viewpoint, the operations and
flows across the boundary are the same, e.g.,
a transaction program uses the same verbs and
data formats whether the interaction is
thought of as TP-TP or as TP-LU. Specif­
ically, the formats and protocols for peer
exchange are the same as those for layer
exchange with the next lower layer.

Figure 2-2 on page 2-5 shows the principal
protocol boundaries between the LU and
external components. The figure illustrates
how the protocol boundaries divide the LU
into layers and sublayers, and how the con­
ceptual flows between peer components are
accomplished by interlayer exchanges. In
this example, the application TP has a mapped
conversation with another application TP and
a basic conversation with a service TP. The
figure illustrates that the conceptual infor­
mation flow between peer components at each
layer is reduced to conceptual information
flow at the next lower layer by actual infor­
mation flow between layers and information
transformation within layers. For example,
the conceptual mapped conversation connection
is reduced to a basic conversation; each bas­
ic conversation is reduced to a session; and
finally, the sessions are reduced to con­
nections in the path control network (which
itself performs further layer transformations
that are not shown>.

2-4 SNA Format and Protocol Reference Hanual for LU Type 6.2

Application
TP Mapped Conversation

Application
TP

•< - -
A

- >•

Mapped-Conversation I~
Protocol Boundary •••••••••••• ••••

LU Vl

I A

··!······
I LU v

•<
A

Basic Conversations Service
TP

>•
A l.J

Aj
··!··

v I

LA
····!··········

Basic-Conversation
Protocol Boundary •••••• ••••• ••• •••• •

v
•< - >•
A Sessions A v

- - - - >•
A

Path-Control
Protocol Boundary •••••••••••• •••••• ••• •••••••••• ••••••

CPath Control Network>

LEGEND:
<- - -> conceptual flows between peer components Cpeer exchange)
<~~->actual flows across interlayer protocol boundaries !layer exchange)
••••••• protocol boundary between layers or sublayers

Figure 2-2. Peer and Layer Exchanges

NAMES

The LU allows transaction programs to refer
to its resources, such as other TPs and LUs
and shared communication facilities, by
installation-selected names. Thus, the pro­
grams need not be concerned with implementa­
tion and configuration details such as the
actual network addresses or transport charac­
teristics. For example, when one transaction
program invokes another, the invoking TP
identifies the partner TP by a transaction
program name, it identifies the partner LU by
an LU name, and it identifies the desired set
of session characteristics by a mode name.

Names are character strings that the instal­
lation associates with particular resources.
They are specified by the control operator
Con behalf of the installation management)
subject to the SHA-imposed constraints, e.g.,
character set and length restrictions,
described in "Appendix H. FM Header and LU
Services Commands". !Within an LU implemen­
tation, the local resource names may differ
from those that conform to SNA; for example,
a program directory might use names of a dif­
ferent length or character set. In this
case, the implementation always translates
between its internal names and the
SHA-conforming names that are used by trans­
action programs or that are transmitted out­
side the LU. l

The name of a particular resource is known
within a particular environment. Within this

environment, the name of each entity of a
particular class is unique, but the same
entity might have different names in differ­
ent environments. For example, each LU
allows local aliases for remote resource
names, so that local transaction programs can
be made insensitive to name changes elsewhere
in the network. Of course, the control oper­
ator must change the LU's relevant
name-translation tables whenever the remote
names are changed.

Hereafter, the following terms are used to
distinguish the roles of individual TPs and
LUs of a pair. With respect to location, the
term local means residing at the LU from
whose perspective an activity is described;
the term remote means residing at that LU's
actual or potential session partner. With
respect to a conversation, the ~ TP (or
its LU) is the initiator of a conversation
with the target TP Cor its LUI.

Transaction Program References

A source TP selects a target transaction pro­
gram by its transaction program !lfil!!! (TPNl as
defined at the source LU. In the simplest
case, this is also the name of the TP as
defined at the target LU. Optionally, howev­
er, the source LU can allow the two names to

Chapter 2. Overview of the LU 2-5

be different, in whlch case it converts the
TP-supplied name into the TPN recognized at
the target LU.

A TPN done does not uniquely identify a
transaction program instance. The target LU
always creates a new transaction program
instance for each Attach it receives.

LU References

Each LU provides a set of LU names by which
its TPs may refer to remote LUs: these names
are called local .!.Y !.li1.!!!fili (a local LU name
is a local illiils of a remote LU's name, not
the local LU's own name). local LU names are
unique within each local LU, but not neces­
sarily outside an LU.

The path control network routes information
to an LU by a network address rather than by
a name. The correspondence between names ilnd
addresses is maintained at the control point,
which is another NAU that assists the LU dur­
ing session initiiltion.

The control point identifies each LU by its
fully guali fi ed LU !li!!!!!! (also called
network-qualified LU n!J!!.!). It consists of a
network ID followed by a network LU lli!J!!!!•
The network ID is unique throughout a set of
interconnected SNA networks; the network LU
name is unique within a particuhr SNA net­
work, which may contain multiple domains (for
more information on domains, see "Chapter 1 •
Introduction" I.

The control point uses the fully qualified LU
name of the intended partner LU to determine
the corresponding network addresses used for
routing within the path control network. The
lUs themselves use their fully qua! i fi ed LU
names for certain purposes; for example, LUs
resolve some race conditions by exckanging
and comparing their fully qualified LU names.

An LU may provide another set of names by
which it refers to remote LUs when issuing
session-initiation requests to its control
point: these names are called uninterpreted
LU .!lfil!l.!!. Each uninterpreted LU name is
unique within a particular initiating LU, and
is known to that lU's control point but is
not known elsewhere in the network.

The LU name is converted into the network
address in stages. If the LU uses an unin­
terpreted LU name to identify its partner,
the control-point translates this into a ful­
ly qualified LU name; otherwise, the LU sup­
plies the fully qualified LU name to the
control point directly. Then, the the con­
trol point provides the network address for
that fully qualified LU name.

A source TP cannot select a parti cuhr ses­
sion for a conversation, but it can specify

that the session selected have a particular
set of characteristics, or mode. It does
this by specifying a corresponding mode name.

Mode names are unique relative to a partic­
ular partner LU. Mode names for different
partner LUs are independent: the same mode
name can correspond to different sets of ses­
sion characteristics for different partner
LUs.

Internal Identifiers

The LU assigns internal identifiers to con­
versations and sessions once they are acti­
vated. These are called resource IDs and
half-session IDs, respectively. TPs ~ the
control operator use these identifiers for
subsequent references to these entities.
These identifiers are generated by the LU and
passed back to the transaction program or to
the control operator in the form required for
subsequent verbs; the transaction program or
operator need not interpret these identifi­
ers.

CONVERSATION CHARACTERISTICS

Send/Receive Protocol

The LU normally allows TPs to exchange data
in only one direction at a time, i.e., one TP
sends and the other receives until the send­
ing TP surrenders the right to send. This is
called half-duplex flip-flop protocol. The
LUs coordinate and enforce the send/receive
state at each end of the conversation. LUs
do allow some exceptions to strict alter­
na ti on of send and receive: the receiving
TP, at any time, can send an error indi­
cation, putting itself in send state; it can
send the partner an attention indication,
e.g., to request the right to send; and it
can abnormally terminate the conversation.

Sender/Receiver Concurrency

Different applications
degrees of concurrency
receiver. For example:

require different
between sender and

•

•

On-line inquiry applications
require real-time interaction.

Status-reporting
require immediate
response.

applications
transmission

might

might
but no

Document distribution applications might
allow sending and receiving at the send­
er's and receiver's convenience, respec­
tively, which might be separated by
arbitrary periods of time.

For the first two cases, the LUs use direct
conversations between the TPs.

2-6 SNA Format and Protocol Reference Manual for LU Type 6.2

For the real-time interactive case, the LU
keeps the TP-TP connection active until the
transaction is completed; both the source and
target TPs are concurrently active. This is
called synchronous transfer.

The LU treats the immediate-transmission,
no-response case as a special case of syn­
chronous communication, using a one-way £QQ::
versa ti on. The source LU allocates
!initiates) a conversation as in the first
case, sends the data, and deallocates (re­
leases) the conversation. When the message
reaches the target LU, it initiates the tar­
get TP, which receives the data and likewise
deallocates the conversation. But since the
source TP is expecting no reply, it might
have terminated while the data is still in
transit through the path control network,
before the target TP is initiated. Thus, the
source and target TPs are not necessarily
active at the same time.

For the third case, the LU provides SNA Dis­
tribution Services (SNADSl. In this case,
the sender, called the origin TP, and the
ultimate receiver, called the destination TP,
are typically not active at the same time.
Therefore, the data is stored at one or more
locations en route between periods of active
transmission. This mode of communication is
called asynchronous transfer.

In SNADS, the origin application TP sends a
message unit, ultimately intended for the
destination TP, to a local service TP. The
service TP at the origin stores the data in
local permanent storage. When the appropri­
ate time for sending the data arrives, e.g.,
when lower-cost transmission facilities
become avai !able or after compensating for
time-zone differences, a service TP at the
origin allocates a conversation to a service
TP at the destination and sends the data.
The receiving service TP at the destination
LU stores the data in local permanent storage
for later retrieval. Finally, an application
TP at the destination retrieves the stored
message.

SNADS also allows multiple intermediate serv­
ice TPs between origin and destination. The
origin service TP can allocate a conversation
to an intermediate service TP, which would
receive the data, store it, and later forward
it to another intermediate service TP or to
the ultimate destination service TP.

Each SNADS service TP can also duplicate the
data and send it to multiple destinations or
application programs.

Mapping

Two communicating TPs might process the same
information using different internal data
formats !presentation spaces) e.g., differ­
ently organized data structures or different
sets of individual structures and variables.
To assist the TPs in interpreting data in
formats suited to their internal processing

algorithms while providing a mutually under­
stood format for the data transmitted over
the conversation, some LUs provide an
optional function of mapped conversations,
called mapping. (Mapping concepts are dis­
cussed in "Mapping Function" on page 2-36).

SESSION ALLOCATION

A principal function of the LU is to provide
sessions between LUs for use by conversations
between TPs.

Session Multiplicity

Only one transaction-program pair at a time
can use a particular session. In order to
allow multiple concurrent transactions, e.g.,
for a multiprogrammed processor or a
multiple-user workstation, some LUs, called
parallel-session LUs, allow two or more ses­
sions at the same time, even with the same
partner LU. Any session between a pair of
LUs that both provide parallel sessions is
called a parallel session, even if only one
such session is currently active. ·

Some LUs, called single-session LUs, can have
only one active LU-LU session at a time (but
can have successive sessions with different
partner LUsl. Any session involving a
single-session LU is called a single session,
whether the other partner is a single-session
LU or a parallel-session LU.

Thus, all sessions between a pair of LUs are
of the same type: single or parallel. Some
LU protocols used on single sessions are d1f­
ferent from those used on parallel sessions,
but these differences are indistinguishable
to transaction programs.

An LU that does not support parallel sessions
can have only one active LU-LU session at a
time. A parallel-session LU can have, con­
currently, one or more parallel-sessions with
each of one or more parallel-session LUs, and
one single session with each of one or more
single-session LUs. mo middle capability
[multiple-session LU] exists, i.e., any LU
that supports multiple concurrent single ses­
sions also supports parallel sessions.)

To avoid repeating session-activation proc­
essing for each conversation between the same
pair of LUs, the LU allows successive conver­
sations to use the same session.

When the LU activates a session or when a
session previously in use by a conversation
becomes free, the LU places the session in a
session pool. When a transaction program
initiates a new conversation, the LU allo­
cates a session from this pool, if one is
available.

Chapter 2. Overview of the LU 2-7

Session Selection

Transaction programs do not select particular
sessions, but specify only that the conversa­
tion be allocated a session with a particular
partner LU and with a particular mode name.
The LU partitions the session pool by partner
LU and mode name; the LU allocates a session
from only those sessions for the requested
(LU,mode) pair.

Session Contention Polaritv

Another session-selection criterion concerns
the relative priority of the LU for use of
the session. The LUs at each end of a ses­
sion could both try to start a conversation
at the same time. To resolve this con­
tention, the LU operator specifies, for each
session, which LU's TP will be allowed to use
the session in such a case; this is called
the session contention polarity of the ses­
sion. From the viewpoint of the local LU, a
session for which that LU is designated to
win an allocation race is called a
conten·tion-winner session (or first-speaker
session>. A session that the local LU will
surrender to the partner is called a
contention-loser session !or the bidder ses­
sion--so called because a contention-loser LU
will bid, i.e., request permission of the
contention-winner LU to use the session).

Session Limits

The number of sessions in the session pool is
constrained by operator-specifled criteria,
including several limits on the number of
active sessions.

The total LU-LU session limit is the maximum
number of sessions that can be active at one
time at the LU.

The nu.mode J session llmi t is the maxi mum
number of LU-LU sessions that can be active
at one time for that particular (LU,mode)
pair.

The automatic activation limit for a partic­
ular (LU,mode) pair specifies the maxi mum
number of LU-LU sessions that the LU will
activate independently of requests for con­
versations. Automatically activated sessions
constitute the initial session pool !addi­
tional sessions, within the other limits, are
added to the pool on demand from conversation
requests).

The local-LU m1n1mum contention-winner limit
for a particular (LU,model pair determines
the minimum share of the total number of ses-

sions for that (LU,mode) for which the local
LU can be contention winner. Similarly, the
partner-LU m1n1mum contention-winner limit
determines the minimum share of those ses­
sions for which the partner LU can be con­
tention winner.

Session 1 i mits are discussed in more detail
in "Chapter .5.4. Presentation Serv­
ices--Control-Operator Verbs".

STARTING AND ENDING SESSIONS

Starting and ending sessions involves four
phases of activity, although some phases are
omitted in some circumstances.

Session-limit initialization and reset con­
sists of issuing control-operator verbs
!e.g., INITIALIZE_SESSION_LIMIT,
RESET_SESSION_LIMIT) to specify the number of
sessions the LU can have with a given part­
ner, and to specHy conditions for their
activation and deactivation.

Session initiation !!!9 termination consists
of control-point activity, such as supplying
the network addresses corresponding to LU
names, that mediates requests for session
activation and deactivation. 1

Session shutdown consists of the LU activity
to terminate conversation activity on a ses­
sion prior to deactivating the session. 2

Session activation and deactivation consists
of creating or destroying the end-to-end log­
ical connection between the LUs. 3

SESSION USAGE CHARACTERISTICS

Session Activation Polarity

An LU activates a session with its partner by
sending a message unit called BIND. The LU
that activates a session <sends BIND) is
called the primary !.!:! ; the LU that receives
BIND is called the secondary LU. These terms
are relative to a particular session: the
same LU can be primary LU for one session and
secondary LU for another.

The primary LU always has first use of the
session, i.e., it can initiate the first con­
versation on the session, regardless of the
session contention polarity. (When the first
conversation completes, the principal right
to initiate conversations reverts to the
contention-winner LU.>

l Session initiation and termination protocols use session services RUs, a.g., INIT_SELF,
CINIT.
Session shutdown protocols use data flow control RlJs, e.g., BIS.
Session activation and deactivation protocols use session control RUs, e.g., BIND, UNBIND.

2-8 SNA Format and Protocol Reference Manual for LU Type 6.2

Session-Level Pacing

To prevent an LU from sending data faster
than the receiving LU can process it (e.g. ,
empty its receive buffers), the two LUs
observe a session-level pacing protocol. At
the time a session is activated, the LUs
exchange the number lthe pacing window size)
and size (the maximum RU size) of the message
units they can accept at one time. The send­
ing LU wi 11 send no more message uni ts than
the receiver wi 11 accept (a .Pfiltlng window)
until the receiver sends an acknowledgment
(pacing response) indicating that it can
receive another pacing window.

Profiles

Session traffic is characterized by a partic­
ular set of SHA-defined formats and proto­
cols, identified by a function management
IFMl profile and a transmission services lTSl
profile (see "Appendix F. Profiles">. The
profile used depends on the kind of session
and the kind of node:

• On an LU-LU session, all LUs use FM pro­
file 19 and TS profile 7.

• On a CP-LU session, an LU in a subarea
node uses FM profile 6 and TS profile 1.

• On a CP-LU session, an LU in a peripheral
node uses FM profile 0 and TS profile 1.

SECURITY

The LU provides two functions to assist the
installation in providing security.

To help prevent unauthorized remote programs
from accessing local transai;tion programs,
the LU optionally verifies the identity of
the remote user by means of a !:la!!: ID and
password supplied in the Attach FM header.
C User IDs and passwords are veri fled and
enforced in an implementation-defined way.>

To help prevent data from being interpreted
during transit, the LU provides session
cryptography, whereby all user data is enci­
phered at the source LU and deciphered at the
target LU. The encryption a lgor i thm uses a
cryptographic ~, supplied by the control
point, and a session seed, generated by one
of the LUs when the session is activated.
(See "Chapter 6. 2. Transmission Control" for
a full discussion of session cryptography.)

ERROR HAND LING

Errors affecting transaction processing are
classified as follows:

Application Errors: These are errors related
to the application data and processing, e.g.,
user input error or data-base record missing.
Detection and recovery are the responsibility
of the transaction programs.

Local Resource Fa i lure: These are failures
in non-SHA resources, e.g., a disk read
error. If the resources are not protected
resources, recovery is the responsibility of
the transaction program or of the non-SHA
support for the fail i ng resource, e.g. , a
disk subsystem. If the resource is a pro­
tected resource, the TPs can use the LU sync
point function (see "Sync Point Function" on
page 2-371 to assist in recovery in conjunc­
tion with non-SHA support.

Recoverable System Errors: These are errors
or exceptional conditions, e.g., races
resulting from contention for use of a ses­
sion, for which an SHA-defined recovery algo­
rithm exists. The LU performs the recovery
algorithm; the transaction programs are
normally not aware of these errors, except as
they affect timing.

Program Failures: These are errors that
cause abnormal termination of a transaction
program. The LU recovers from such errors by
deallocating any active conversations for the
TP that were not deallocated by the failed
transaction program, thus freeing the ses­
sions for use by other transaction programs.
Any further recovery depends on transaction
program logic and implementation-def; ned
capabilities such as error exits.

Session Failure: These are failures caused
by unrecoverable failure of the
half-sessions, e.g., invalid session proto­
cols received, or by failure of the underly­
ing network components, e.g., the links.
This case is reported to the LUs through ses­
sion outage notification (SON).

If a conversation is active on the session at
the time of failure, the failure is mani­
fested to the transaction program as a con­
versation failure (see below>; otherwise,
these errors do not affect transaction pro­
grams. LUs report the conversation failure
to the affected transaction programs.

Conversation Failures: These are failures
caused by unrecoverable failure of the under­
lying session. The resulting conversation
failure is reported to each transaction pro­
gram by a return code on the next verb
issued. The same session and conversation
cannot be recovered, but the LU can activate
another session.

The operator or the transaction programs have
the responsibility to recover the trans­
action. To recover from an interruption in
transaction processing, for example, the
source transaction program can allocate a new
conversation, using another session, to a new
instance of the target transaction program or
to another transaction program.

Chapter 2. Overview of the LU 2-9

LU Failure: This is a failure of an LU from
such causes as malfunction of the implement­
ing hardware or software. In many cases,
such a failure appears to remote
(non-failing) LUs as a session failure, and
they recover as they would from any other
session failure. In some cases, recovery is
performed by the sync point function.

Program ~ Recovery Support Functions

The LU assists TP recovery from application
errors and local resource failures by sup­
porting the protocols discussed below to
exchange error information and to immediately
end messages or conversations.

Confirmation: TMs function Ce.g., CONFIRM
verb> allows a TP to solicit positive or neg­
ative acknowledgment of a message unit from
the partner TP. The interpretation of this
positive or negative acknowledgment CCON­
FIRMED or SEHD_ERROR verbs, respectively> is
program dependent: for one application, con­
firmation might mean only that the data was
received; for another, it might mean data was
safely stored on disk; for a third, it might
mean that the data represents a valid account
record update; and so forth.

Program ~ Indication: This function
C SEHD_ERROR verb) allows a TP to inform the
partner TP of a program-detected error; this
includes sending negative acknowledgment to a
confirmation request.

This function also causes program-to-program
transfer of the current message unit to
cease. If a TP detects an error while
receiving, issuing the SEHD_ERROR verb
directs the receiving LU to ignore any addi­
tional data in transit Ci.e., to the end of
the conversation message--see "Conversation
Message" on page 2-12); this is called purg­
J.ng. Similarly, if a sending TP detects an
error, issuing the SEND_ERROR verb informs
the partner that the source TP has stopped
sending. If the TP stops sending before
reaching a predetermined application-program
data boundary Ci.e., the end of a logical
record--see "logical Record" on page 2-12),
this is called truncation.

Sync Point: Many transactions require con­
sistent, regular updates of distributed
resources such as distributed data bases.
While a transaction is in progress, however,
the resources at different LUs can enter
mutually inconsistent interim states. If one
of the transaction programs encounters an
error, some recovery action may be necessary
to restore the resources to mutually consist­
ent states. In order to verify or restore
consistency among distributed resources, some
LUs provide a distributed error-recovery
function, called sync point. CSync point
concepts are discussed in "Sync Point Func­
tion" on page 2-37.)

Abnormal Conversation Deallocation: This
function allows a TP to abnormally terminate
a conversation. A TP might do this, for

example, when an error is detected for which
it has no recovery procedure and continuing
the transaction would. be meaningless. When
this is received, the LU informs the TP that
the conversation has been abnormally termi­
nated.

LU Error Recovery Functions--Abnormal Session
Deactivation

For some errors, the LU or operator initiates
recovery.

If an unrecoverable session-protocol error
occurs, the LU abnormally deactivates the
session.

If the control operator detects an error,
e.g., an apparent deadlock or loop, it can
force immediate abnormal deactivation of a
session.

Either of these cases are normally manifested
to affected transaction programs as conversa­
tion failure.

BASE AHO OPTIONAL FUNCTION SETS

The LU functions and protocols are organized
into subsets. The function sets consist of a
base function set, which provides basic com­
munication services common to all LU imple­
mentations, and a small number of optional
function sets, which which may be used by
implementations with more sophisticated addi­
tional requirements. These SHA-defined func­
tion sets are described in SNA Transaction
Programmer's Reference Manual for LU lvP.!
Ll·
All LU 6.2 implementations of a given func­
tion set provide that function in a way that
conforms to the protocol boundary. Further­
more, an LU 6.2 implementation that provides
one function in an option set provides all
other functions in that option set as well.
Thus. all LU 6.2 implementations can communi­
cate using the base set, and any two imple­
mentations supporting functions in the same
option set can communicate using that full
option set.

Two kinds of optional functions exist. Send
options determine what formats and protocols
will be sent but do not affect what can be
received; all formats and protocols sent
using these options can be received by all
LUs. Receive options determine what can be
received as well as what can be sent. For
receive options, the source LU and TP
requirements are described in the BIND and
the Attach; the receiving LU rejects the ses­
sion or conversation if it, or the specified
TP, does not support the required options.

The principal base and optional functions are
listed below. The complete sets are defined
in SNA Transaction Programmer's Reference
Manual for .!JI lvP.! 6.2.

2•10 SNA Format and Protocol Reference Manual for LU Type 6.2

Application Program Interface Implementations

Ooen-API implementations support arbitrary
user-written transaction programs, e.g. , a
data-base management system running on a host
processor. For these implementations, the
API provides verbs and parameters for all of
the base function set, and perhaps some
optional function sets.

Closed-API implementations do not support
user-written programs but provide only a
fixed, implementation-determined set of serv­
ice transaction programs, e.g., a DIA service
transaction program for an office work­
station. For these implementations, the API
provides only the particular verbs and param­
eters that the transaction program set
requires.

Principal Base Functions

Basic Conversations: All implementations
provide receive support for all
basic-conversation formats and protocols.

Open-AP! implementations provide basic con­
versation verbs, but not necessarily in all
supported programming languages. For exam­
ple, an implementation might support both
basic- and mapped-conversation verbs in a
systems-programming language such as Assem-

MESSAGE ~ AHO .TI!t!R TRANSFORMATIONS

A message unit .!.!:!Y..! is any bit-string that
has an SNA-defined format and is transferred
between SNA components or sublayers.

Distributed transaction programs exchange MUs
with each other by means of LUs. Transaction
programs exchange application-oriented units
of data, e.g., a customer record or a docu­
ment, over a conversation. The LUs, in turn,
exchange session-oriented MUs via the
path-control network. But the content and
format of an MU most appropriate for exchange
between transaction programs is in general
different from that most appropriate for
transmission on a session. Whereas an appli­
cation program typically uses a record size
corresponding to logical groupings of the
data, the LU typically uses MU sizes related
to internal buffer sizes and efficient flow
control. Furthermore, the LU may need to add
encoded protocol information, such as confir­
mation requests or MU sequence numbers, to
the program-supplied data.

The LU transforms program-oriented MUs used
by the TP into network-oriented MUs used by
the path control network, and vice versa.
(Throughout this section, message-unit tran­
sformations are described from the sender's
side, i.e., transaction program to LU to net­
work; the process is inverted at the receiv­
er.)

bler, but provide only mapped-conversation
verbs in high-level languages.

Mapped Conversations: All open-API implemen­
tations provide mapped conversations Cprima­
ri ly in high-level languages).

Principal Optional Functions

Mapping: This is an optional function for
mapped conversations Csee "Mapping Function"
on page 2-36).

Sync Point: This is an optional function for
basic and mapped conversations (see "Sync
Point Function" on page 2-37).

Program Initialization Parameters CPIPl:
This is the means of passing initial parame­
ters or environment setup information to a
target TP.

Performance Options: Several optional func­
tions exist to maximize performance for spe­
cific transaction requirements. For example,
an LU can optionally allow transaction pro­
grams to eliminate or accelerate certain
acknowledgments, or to perform processing
concurrently with certain conversation func­
tions. These are send options, so TPs writ­
ten for implementations that support these
options will operate correctly with partner
TPs and LUs that do not support them.

The message-unit transformation takes place
in stages. Each stage transforms some of the
information from the higher stage into a
SHA-defined bit ·string. Typically, a stage
reblocks (regroups) the MUs from the previous
stage into differently sized units and con­
verts the protocol information into formatted
headers (prefixes) to the reblocked data,
thus creating new MUs.

MAPPED-CONVERSATION MESSAGE UNITS

A data record, at the mapped-conversation
protocol boundary, is a collection of data
values that correspond to the DATA parameter
of a single mapped-conversation MC_SEHD_DATA
verb issuance. The format of a data record
is completely arbitrary within the con­
straints of the implementation and the trans­
action program. For example, it need not
even be a contiguous byte string, but might
be a collection of variables and structures.

A maooed-conversation record CMCR) is the
elementary unit of information transferred
between two TPs on a mapped conversation. A
MCR contains the values of a data record
represented as a string of contiguous bytes.
It may be of arbitrary length. It contains
no information for use by the LU; its

Chapter 2. Overview of the LU 2-11

;nternal format is significant only to the
TP. The TP supplies needed protocol informa­
tion, such as the mapped-conversation record
length, in separate parameters of the verb,
using representations appropriate to the pro­
gramming language and processor being used.

!A MCR consists of data from a single verb
issuance by the sender, but it may be
received in one or more parts, each with a
single verb issuance, depending on the
receiving TP's receive buffer size),

BASIC-CONVERSATION MESSAGE UNITS

Full connectivity among programs requires
that all transaction programs interpret the
records they transfer in the same way. To
facilitate uniform interpretation of records
among programs written for different process­
ors, service transaction programs and some
internal LU components, including
mapped-conversation support, use the formats
defined by general data stream architecture
to represent records (see Appendix Il.

A general data stream IGOSJ variable consists
of a GOS header 1.!J.IQl followed by the data.
The GOS header is a descriptive prefix con­
taining a 2-byte length prefix .!.!J..l that
indicates the length of the variable. includ­
ing prefix, and a format identifier called
the §rui IO that indicates the GOS-defined
format of the data. The LLs identify the
boundaries of variable-length fields within a
message unit of contiguous fields, and the
GOS IDs identify the representation of the
data. A GOS variable may be of arbitrary
length. If the variable length exceeds the
value that can be represented in the length
prefix (2 15-1 = 32.767 bytes, including the
prefix>, the record consists of multiple seg­
ments, each with its own length prefix. Only
the first segment contains an ID field. The
length prefix also contains a continuation
h.i.:t that indicates whether the corresponding
segment is the last (or only) segment in the
GOS variable.

All data transferred at the
basic-conversation protocol boundary by serv­
ice TPs and other internal LU components (but
not necessarily data transferred by applica­
tion transaction programs) is represented as
GOS variables with SNA-defined formats (see
"Appendix H. FM Header and LU Services Com­
mands">.

Logical Record

A logical record is the elementary unit of
information transferred between users of the
basic-conversation protocol boundary. A log­
ical record consists of a 2-byte length pre­
fu <LU followed by data. Its maximum
length is 32,767 bytes, including the prefix.

The LL prefix of a logical record has the
same format as the LL field in a GOS variable
segment; thus, a GOS variable segment is also
a logical record. The basic-conversation
protocol boundary requires only the LL pre­
fix, not a full GOS LLID. Thus, logical
records generated by application TPs need not
use ID fields; if they do, the application
assigns and interprets the IO fields; the
basic-conversation support of the LU treats
everything following the LL prefix of the
logical record as user data •

•
The logical record is the elementary unit for
which the LU detects or reports truncation.

It might be inconvenient for a transaction
program to issue a single send or receive
verb for each logical record. For example,
the sender or the receiver might have limited
buffer space or might not know ahead of time
the maximum length of the records being sent.
Or, the transaction program might prefer to
send a group of small, related records with a
single verb issuance. So, the unit of data
that a program sends or receives with a sin­
gle basic-conversation verb is of
program-determined length. This unit is
called a buffer record.

No SHA-defined limit exists on the length of
a buffer record; for example, it could exceed
32, 76 7 bytes. The buffer-record length can
be different for each verb issuance.

No correspondence is necessary between the
lengths or boundaries of logical records and
those of buffer records, or between send
buffer records and receive buffer records.
Nevertheless, a rece1v1ng program may
optionally specify that the LU begin a new
receive buffer record for each new logical
record received. The relationship between
logical records and buffer records is illus­
trated in Figure 2-5 on page 2-16.

CONVERSATION MESSAGE-UNIT SEQUENCES

Certain sequences of message units are rele­
vant to conversation protocols.

Conversation Message

A basic-conversation message consists of the
sequence of logical records transferred in
one direction from one TP to another without
an intervening change of direction or confir­
mation. !The Attach FM header generated from
the ALLOCATE verb is also considered part of
the initial basic-conversation message.)

The end o.f a conversation message is deter­
mined, when sending, by a conversation state
change caused by the verbs issued. For exam­
ple, PREPARE_TO_RECEIVE, RECEIVE_AND_WAIT,
CONFIRM, SYNCPT, and DEALLOCATE end a conver-

2-12 SNA Format and Protocol Reference Manual for LU Type 6.2

sation Message. .,..en rece;v;ng, the end of a
conversation 11essage and conversation state
change ;s determ;ned from corresponding pro­
tocol ;nformat;on received from the sender.
The information identifying the end of a con­
versat;on message and spec;fy;ng the way it
was ended ;s generically called the
end-of-conversatioo-message ;nd;cat;90.

A basic-conversat;on message is the elementa­
ry unit for wh;ch the LU supports confirma­
tion or program-error reporting (e.g.,
SENO_ERROR> between sender and receiver, and
for which it performs purging.

A 11apped-conversation message is analogous to
a basic-conversat;on message; that is, it
consists of the sequence of
mapped-conversation records (or data records)
transferred in one direction from one TP to
another without an ;ntervening change of
d;rection or confirmation, as understood at
the mapped-conversation protocol boundary.

The unqualified term conversation message is
used when the intended protocol boundary is
clear from the context, or when both the
mapped-conversation message and its corre­
sponding basic-conversation message are
designated.

Conversation Exchange

A conversat;on exchange cons;sts of the com­
plete set of mapped- or basic-conversation
messages transferred between a pair of TPs
us;ng a particular conversation.

SESSION MESSAGE UNITS

Session message units are formatted for LU-LU
protocols and for effective use of the path
control network.

Function Management Headers

A function management (FM) header is a mes­
sage unit generated by the LU to carry cer­
tain LU control ;nformation. The LU uses two
FM headers:

• An Attach f!:! header CFHH-5) specifies the
name and required characteristics, e.g.,
option sets required, of the target TP.

• An error-descript;on f!:! header (fMH-7)
describes a transaction program error or
attach failure.

Basic Information Unit

A basic information unit (BIU> is the message
unit transferred between two LUs. It con­
sists of a reauest header CRH) and a
request/response un;t CRU).

The RH is a formatted prefix to the RU. It
carries protocol information encoded from the
TP verbs or generated internally by the LU.
"Appendix D. RH Formats" gives further
details.

RUs carry FM headers, TP-supplied data (for­
matted by the TP or the LU into logical
records), and other protocol information.
The LU uses the following RUs on an LU-LU
session:

• Category FHD RUs, for transaction-program
data

• Category DEC RUs, such as BIS, LUSTAT,
RTR, SIG

• EXR,
errors

for some path-control-detected

(for details, see "Appendix E.
Request-Response Unit (RU) Formats" and "Ap­
pendix H. FM Header and LU Services
Commands".)

The LUs also transfer other information
describing the BIU, such as the length and
sequence number, which is formatted by path
control. Path control uses this information
to bu;ld a transm;ss;on header CTH).

SESSION MESSAGE-UNIT SEQUENCES

The follow;ng sequences of BIUs are relevant
to session protocols:

A !J!!Y.! chain is a sequence of BIUs that con­
stitute a single unidirectional transfer.
The cha;n is the 11ost elementary unit that
can be independently confirmed or for which
errors can be reported using SHA-defined LU
protocols. It corresponds to a TP-TP conver­
sation message.

A bracket consists of the set of all chains
transferred on a particular conversat;on. It
corresponds to a TP-TP conversation exchange.
The first data RU in a bracket begins with an
Attach FM header that i dent i fies the target
TP.

The total session trafHc comprises a
sequence of one or more brackets. Pr;or to
bracket traffic, the session is activated
CBINO protocols>. Prior to normal session
deactivation, bracket traffic is shut down
IBIS protocols>. All session traffic stops
when the session is deactivated !UNBIND pro­
tocols) , whether or not any brackets are in
transit.

page 2-14 illustrates the cor-
between the conversation

sequences and session

Figure 2-3 on
respondence
message-unit
message-unit sequences. In the figure:

• The column labelled TP-TP shows the con­
versation message-unit sequences.

Chapter 2. Overvie111 of the LU 2-13

TP A

c
0
N
v
E
R
s
A
T
I
0
N

c 11
0 s
N G
v
:

c 11
0 s
NG
v

TP-TP
via
lU

(TP A sending!
Attach

===================>
===================>

• • •
logical records

• • •
===================>

<TP A receiving)
<===================

•••
logical records

• • •
<===================

LU X

\\\\\
\\\\\\
\\\\\\\\\\\\>
\\\\\\\\\\\\>
\\\\\\\\\\\\>
\\\\\\\\\\\\>

\\\\\\>
\\\\\>
\\\\>
\\\>

///Ill
///////

<I/Ill/I/II/I
<I/II/Ill/Ill
<lllll////lll
<//////
<I/Ill

LU-LU
via

Path Control

session
activation

==================>
• • • BIUs • • •

<==================

(LU X sending)
BIU with FMH-5

==================>
==================>

• ••
BIUs

• • •
==================>
==================>

C LU X receiving)
<==================

• • •
BIUs

• • •
<==================

E
x
c
H
A
N
G
E

I I I I
<=== TP A, LU X alternating send/receive ===>

I I I I

• • • • • •
Cother TPsl Cother conversations!

• • • • • •

TP B Attach
...---------..... <===================

LEGEND:
<====>

c
0
N
\I

E
x
c

c 11
0 s
N G
v

H •••••
G. • • • • • • • •

(TP B receiving)
<===================

• • •
logical records

• • •
<===================

message-unit flows

/Ill
<//I/I/Ill/II
</I/Ill/II/I/
<//II/Ill/Ill
<//II/Ill/Ill
<II/II/II/Ill
<II/Ill/I/Ill
<///////
<//////
<I/Ill
<Ill/

\\\\\>
<Ill/

conversion of logical records to BIUs
conversion of BIUs to logical records
message unit sequence boundaries

• • •
Cother brackets)

C'; ••

(LU X receiving)
BIU with FHH-5

<==================
<==================

• • •
BIUs

• • •
<==================
<==================

session
shutdown

==================>
• • • BIUs • • •

<==================
session

deactivation
==================>
• • • BIUs • • •

<==================

Figure 2-3. Relationships of Sequences of Message Units (Example)

2-14 SNA Format and Protocol Reference Manual for LU Type 6.2

c
H
A
I
N

c
H
A
I
N

LU y

B
R
A
c
K
E
T

B
C R
H A
A C
I K
N E

T

s
E
s
s
I
0
N

T
R
A
F
F
I
c

Data Record
A
I

(opt;onal mapper transformation)
I
v

!<-------------- Mapped-Conversation Record ---------------->!

length

I <-----Logical Record ------->I

I<---

I
I • • •

I

Logical Records

LEGEND:

I
• • • I

I

--->I

I<- Logical Record ->I

data record: data supplied by the transaction program MC_SEND_OATA verb (arbitrary format)
length: !ength of the mapped-conversation record I after mapper transformation, if anyl
LL: logical-record Length field; the first bit is the continuation field
ID: GOS ID field

Figure 2-4. Relationship of Data Records to Logical Records !Example)

•

•

(The corresponding conversation
message-unit sequences for the partner
TPs at LU Y are not shown; they are the
reverse of those shown for TP A and TP
B. I

The column labelled LU-LU shows the ses­
sion message-unit sequences.

The column
relationship
sequences.

labelled LU
between the

X shows the
two sets of

MAPPED-CONVERSATION MESSAGE-UNIT TRANSFORMA­
TION

The mapped-conversation support in the LU
converts a data record ;nto a GOS variable.

First, the LU optionally performs a
TP-specified mapping transformation on the
data record, producing a mapped-conversation
record. If mapping transformations are not
supported or if one is not specified, the TP

supplies the data in MCR format !i.e., a con­
tiguous byte string of TP-determined length).

The mapped-conversation support in the LU
then segments the MCR into uni ts of allowed
logical-record length and adds LLID prefixes,
thus producing a GOS variable consisting of a
sequence of logical records. This is illus­
trated in Figure 2-4.

BASIC-CONVERSATION MESSAGE-UNIT TRANSFORMA­
TION

Above the basic-conversation protocol bounda­
ry, a TP, or an internal LU component such as
the mapped-conversation support, generates a
sequence of log i ca 1 records constituting a
conversat;on message. It passes th;s conver­
sat;on message to the LU as a sequence of
buffer records, by issuing basic-conversation
verbs. Along with the buffer records, it
passes unformatted protocol information such
as the ALLOCATE verb parameters, from which
the LU builds FM headers.

Chapter 2. Overview of the LU 2-15

TH
val­
ues

Attach
values

A
I
v

.
i<---- GDS variable ------./ /->I<--- GDS variable ---->I

I<--- LR -->I<•--- LR--/ 1->I<----- LR ------>i

.... I L_L_.l._I_o_.j ___ d_a_ta __ l ... L_L_.l'--__ d_a_t_a _ _,, / • • • ,,_1_'__.l L_L_.l_I_o l ____ d_a~t_a _____ __,

!<Buffer Record>l<Buffer Record>! • • • !<Buffer Record>l<Buffer Record>!

i<------------------------- Conversation Message -------------------->I

R U

I<--- BIU --->I

I<--- BIU--->I

TH values ... IR_H_._l _ __.i/ • • •
I<---

BIUs
-->I

···CJ
TH values IR HI R U

I<--- BIU --->I

TH values IR HI R U

I<- BIU ->I

'---------------------- BIU Chain ----------------------'

LEGEND:
LR: logical record LL: Length field ID: GOS ID field
RH: request header RU: request unit BIU: basic information unit
FMH-5: Attach FM header (occurs only on first conversation-message of conversation)
Attach values: information for the Attach FM header, from the ALLOCATE verb.
TH values: protocol information generated by the LU; the TH is built by path control.

Figure 2-5. Relationship of Conversation Message to BIU Chain CExampleJ

Conceptually, the LU assembles the sequence
of FM headers and logical records into a com­
plete conversation message. It then converts
this conversation message into a chain of
BIUs. Of course, the LU does not necessarily
store a complete conversation message at one
time; when it accumulates enough buffer
records to build one or more BIUs, it builds
those BIUs and sends them out, saving any
residual data for the next BIU.

To build BIUs, the LU reblocks the FM headers
and logical records into RU.,.sized units and
generates the necessary RHs. The LU sets the
RH indicators to correspond to functions or
states specified by verb parameters; for

example, it sets the chaining indicators
CBCI, ECIJ to indicate the first and last
BIUs in the chain, and it sets the bracket
indicators CBB, CEBl to indicate the first
and last BIUs in a bracket. When necessary,
the LU also generates Attach or
error-description FM headers CFMH-5 and
FHH-7) from verb parameters and includes
these in the BIUs. The final result is a BIU
chain. Along with the BIU, the LU generates
parameter values for use by path control (to
build the transmission header). The LU
transfers the BIUs and the unformatted BIU
parameters to path control for transmission
to the partner LU. Figure 2-5 illustrates
the conversion process.

2-16 SNA Format and Protocol Reference· Manual for LU Type 6.2

DATA EXCHANGE WITH OTHER HAUS

The LU also exchanges message units with oth­
er NAUs, specifically with the CP, via the
CP-LU session, and with the PU, directly.
These message units are listed in "Chapter 4.
LU Network Services" and are descr;bed bdef­
ly below.

The LU sends sess;on services RUs on the
CP-LU sess;on. These RUs are used ;n the
sessfon-;nit;ation protocols for LU-LU ses­
s;ons, e.g., for translat;ng the partner LU
name into the network address. In some
cases, the choice of RUs depends on the type
of node (subarea or per;pherall containing
the sending LU.

EXTERNAL ~ SEQUENCES FOR THE BASE FUNCTION SET

This section illustrates the correspondence
between some typical basic-function-set
transaction program verb sequences and the
resulting flows of BIUs through the path con­
trol network. <The verbs are described in
detail in SNA Transaction Programmer's Refer­
~ Manual for LU ~ Ll l.

The correspondence is illustrated ;n Fig­
ure 2-6 on page 2-18 through Figure 2-22 on
page 2-26. In the figures, the left column
shows verbs issued by the i nvok; ng or
;nitially-sending TP, and the r;ght column
shows verbs issued in response by the ;nvoked
or in;tially-receiving TP. The center column
shows the contents of the resulting chain <RH
indicator settings, RU data and FM headers).
The arrows indicate direction of BIU flow. A
group of arrows in the same direction repres­
ents a chain, but no necessary correspondence
exists between arrows in the figures and BIUs
in the chain.

Each figure shows one of the following:

•

•

•

The beginning of a chain, for chains that
begin a br<icket

The end of one cha;n and the beginning of
the next

The end of a chain, for chains that end a
bracket

"Allowable Combinations of Sequences" on page
2-21 shows how these flows can be combined,
or sequenced, to form complete conversations.

Finally, "Error Flows" on page 2-23 shows
asynchronous response c<ises.

The LU also uses the CP-LU session to send
and receive mainten<ince services RUs.

.!.Y=fY Records

The LU has a direct protocol boundary Ni th
the PU in its node.

The LU generates and uses session control RUs
for session activation and de;;ictivation. It
sends these to the PU for routing to the
remote LU.

Another group of LU-PU ; nternal records ; s
used to connect the LU to other node compo­
nents or to reset the LU.

NOTATION

The following notation ;s used in the fig­
ures.

--> Request RU

<----- Response RU

RH indfoators:

The flow is labeled with the ;ndicator values
that are carried in the RH.

BB Beg;n bracket

CEB Cond;t;onal end of bracket

BC Begin chain

EC End cha;n

RQEl Request except;on response 1

RQE2 Request except;on response 2 (in this
case, DRlI = DRll~DRll i.e., RQE3 is
equivalent to RQE2).

RQDl Request def;nite response

RQD2 Request definite response 2 <in this
case, DRlI = DRll~DRl; i.e., RQD3 is
equivalent to RQD2l.

CD Ch;;inge d;rection

+DR2 Positive response to RQD2

-RSP(0846l Negative response to chain

RU contents:

FMH-5 Attach FM header

Chapter 2. OvervieN of the LU 2-17

Fl1H-7 Error-description FH header

The sense-data categories shown are:

0864 Abnormal deallocation

0889 Program-detected error

data User data in FMD RU

Verbs !!Id Parameters

The returned RETURN_CODE parameter of the
RECEIVE_AND_WAIT verb is not shown when it is
set to OKI in that case, the returned
WHAT_RECEIVED parameter is shown instead.

DATA_* represents either setting (DA­
TA_COMPLETE or DATA_INCOMPLETE) of this
parameter.

Data Transfer Description

Whenever a TP has the right to send, it
issues SEND_DATA zero or more times. Simi­
larly, a TP in receive state repeatedly
issues RECEIVE_AND_WAIT, until it receives
all of the data and the
end-of-conversation-message indication. The
receiver issues at least one receive verb; in
the absence of errors, zero or more initial
issuances of SEND_DATA by the source TP
result in zero or more receive verb issuances
!with WHAT_RECEIVED = DATA_INCOMPLETE> at the
target. The final issuance receives the

SEQUENCE 1

ALLOCATE
SYNC_LEVEUNONE)

SEND_DATA

BC,BB,Fl1H-S
----------> CTP started)

data ---------->
Figure 2-6. Start Conversation without Confirmation

SEQUENCE 2

end-of-conversation-message i ndi cat or as
WHAT_RECEIVED = DATA_COMPLETE. Since the
buffer record sizes used at the sending TP
and at the receiving TP may differ, the num­
ber of receive verb issuances does not neces­
sarily match the number of send verb
issuances.

All of the following figures begin or end
with the data-transmission sequence just
described. That sequence is reprsented in
the figures as follows.

When the figure begins with (the end of) the
data-transmission sequence, it shows (at the
sending TP> a single SEND_DATA verb, and a
corresponding data arrow, followed by verti­
cal ellipsis marks (:). No RECEIVE_AND_WAIT
verb is shown at the receiving TP.

When the figure ends with (the beginning of)
the data-transmission sequence, it shows (at
the receiving TP) vertical ellipsis marks
(:), followed by a single RECEIVE_AND_WAIT
verb with WHAT_RECEIVED = DATA_COMPLETE.
"Data" is shown on the corresponding arrow,
along with the end-of-conversation-message RH
indicators. No SEND_DATA verb is shown at
the beginning of the receiving-TP verb
sequence.

ERROR-FREE FLOWS

The error-free flows for the base function
set flows are described in terms of the verb
sequences shown in Figure 2-6 through Fig­
ure 2-13 on page 2-20.

PREPARE_TO_RECEIVE
TYPECFLUSH>

EC,RQEl,CD,data RECEIVE_AND_WAIT
----------> WHAT_RECEIVED=DATA_COMPLETE

RECEIVE_AND_WAIT

BC,data <----------
WHAT_RECEIVED=SEND

SEND_DATA

Figure 2-7. Conversation Turnaround without Confirmation: PREPARE_TO_RECEIVE is optional; when it
is omitted, and a receive verb is issued from SEND state, the function of
PREPARE_TO_RECEIVE is performed before any data is actually received.

2-18 SHA Format and Protocol Reference Manual for LU Type 6.2

SEQUENCE 3

DEALLOCATE EC,RQEl,CEB,data RECEIVE_AND_WAIT
TYPE! FLUSH) ----------> WHAT_RECEIVED=DATA_COMPLETE

!local deallocation) RECEIVE_AND_WAIT
RETURN_CODE=DEALLOCATE_NORMAL

DEALLOCATE
TYPE(LOCAL>

!local deallocation)

Figure 2-8. Finish Conversation without Confirmation

SEQUENCE 4

ALLOCATE BC,BB,FMH-5
SYNC_LEVEUCONFIRM)----------> !TP started)

SEND_DATA data

Figure 2-9. Start Conversation with Confirmation

SEQUENCE 5

CONFIRM

RETURN_CODE=OK
SEND_DATA

.
EC,RQD2,~CD,data RECEIVE_AND_WAIT
---------> WHAT_RECEIVED=DATA_COMPLETE

RECEIVE_AND_WAIT

+DR2
<----------

BC, data

WHAT_RECEIVED=CONFIRM
CONFIRMED

Figure 2-10. Continue Conversation: Confirmation without Turnaround

Chapter 2. Overview of the LU 2-19

SEQUENCE 6A .
PREPARE_TO_RECEIVE RECEIVE_AND_WAIT

TYPE(SYNC_LEVEL> EC,RQ02,CD,data
LOCKSCSHORT> ~~------~-------> WHAT_RECEIVED=DATA_COHPLETE

+DR2

RECEIVE_AND_WAIT
WHAT_RECEIVED=CONFIRM_SEND

CONFIRMED
RETURN_CODE=OK <----------~----~--

BC,data SEND_DATA
<.--------------------

Figure 2-11. Conversation Turnaround with Confirmation, using LOCKS(SHORT):

SEQUENCE 6B

When the receiving TP issues CONFIRMED after the LU has received RQ02--indicating
CONFIRM LOCKS! SHORT>--the LU immediately sends a CONFIRMED response C +DR2). This
allows the CONFIRM sender to resume processing immediately, so that, for example, it
can release locks on its local resources.

<The receiving LU processes the RQD2 internally; it does not inform the receiving TP of
the LOCKS parameter value.I

PREPARE_TO_RECEIVE RECEIVE_AND_WAIT
TYPECSYNC_LEVELl EC,RQE2,CD,data
LOCKS! LONGl ---------> WHAT_RECEIVED=DATA_COMPLETE

RECEIVE_AND_WAIT
WHAT_RECEIVED=CONFIRM_SEND

CONFIRMED

BC,data
ILU omits sending +DR2)

SEND_DATA
RETURN_CODE=OK <:-------------------

Figure 2-12. Conversation Turnaround with Confirmation, using LOCKSCLONGl:

SEQUENCE 7

DEALLOCATE

When the receiving TP issues CONFIRMED after the LU has received RQE2--indicating
CONFIRM LOCKSCLONGl--the LU does not send an immediate confirmation response. Instead,
it continues processing until it has a complete BIU to send. The CONFIRM sender
interprets receipt of BC without an intervening response as posftive confirmation.

LOCKSCLONGl does not require the +DR2 response BIU that LOCKSCSHORTl requires, but it
can cause the CONFIRM sender to wait longer before resuming processing.

EC,RQD2,CEB,data
TYPE C SYNC_LEVEL J

RECEIVE_ANO_WAIT
-------------------> WHAT_RECEIVED=DATA_COMPLETE

RECEIVE_AND_WAIT

+DR2
RETURN CODE=OK <----------------------

WHAT_RECEIVED=CONFIRM_DEALLOCATE
CONFIRMED

local Deallocation DEALLOCATE
TYPEC LOCAL>

Figure 2-13. Fini~h Conversation with Confirmation

2-20 SNA Format and Protocol Reference Manual for LU Type 6.2

0

0

1

2

3 N

4

s

6A

6B

7 c

ALLOWABLE COMBINATIONS OF SEQUENCES

When a program ; ssues one of the verb
sequences shoNn above, that program ;s HmH­
ed ;n ;ts cho;ce of the next verb sequence ;t
can ;ssue. The matr;x ;n Figure 2-14 sho­
wti;ch verb sequences can follow a given verb
sequence ;n the base function set. The
matr;x has the follow;ng mean;ng:

• The row numbers Cleft column) and column
numbers (top row) ;n the matr;x corre­
spond to the sequence numbers ; n F; g­
ure 2-6 on page 2-18 through F;gure 2-13
on page 2-20.

A row corresponds to the verb sequence
just ;ssued; a column corresponds to the
verb sequence ;ssued next.

In the matr;x, row 0 or column O repres­
ents the state in wMch no conversaUon
exists, i.e., the state prior to ALLOCATE
or subsequent to DEALLOCATE.

• A letter N or C in a cell indicates that
the sequence corresponding to the column
number can follow the sequence corre­
sponding to the row number.

1 2 3 4 s 6A 68 7 Next-Sender

N c

N N SAME

N N c c c c SAME

c c c c c c SAME

c c c c c c SAME

c c c c c c OTHER

c c c c c c OTHER

F;gure 2-14. Possible Next Sequence ;n Error-Free Cases

N--;ndicates a next sequence allowed
for conversations allocated Nith
either SYNC_LEVELCNONE) or
SYNC_LEVELC CONFIRM), i.e., conversa­
tions started with sequences 1 or 4

c--;ndicates a next sequence allowed
only for conversations allocated w;th
SYNC_LEVELCCONFIRM), ; .e., conversa­
t;ons started Nith sequence 4

empty--indicates that the correspond­
ing sequence order is invalid

• The Next-Sender column ;ndicates Nh;ch TP
;s ;n;t;a1 sender c;.e., ;ssues the verbs
in the left column of the f;gure) for the
next sequence:

SAME--the ;n;t;al sender of the next
sequence ;s the same as the ;nu;a1
sender of the prev;ous sequence.

OTHER--the ;n;t;al sender of the next
sequence ; s the partner of the ; n; -
tial sender of the prev;ous sequence.

Figure 2-15 on page 2-22 and Figure 2-16 on
page 2-22 ;11ustrate the application of these
rules to generate allowable conversat;on
sequences.

Chapter 2. Overv;..,. of the LU ·2-21

ALLOCATE
SYNC_LEVEUNONE > BC,BB,FMH-5

----------> CTP started)
SENO_DATA data RECEIVE_ANO_WAIT [NOTE 1--see text]

~-------~-> WHAT_RECEIVED=DATA_*
SEND_DATA RECEIVE_AND_WAIT
DEALLOCATE EC,RQEl,CEB,data WHAT_RECEIVED=DATA_COMPLETE

TYPE(FLUSH> ----------> RECEIVE_ANO_WAIT
(local deallocation) RETURN_CODE=DEALLOCATE_NORMAL

DEALLOCATE
TYPE(LOCAL)

(local deallocation>

Figure 2-15. One-Way Conversation without Confirmation: Combines Sequences l and 3

The sequence shown in Figure 2-15 is gener­
ated as follows:

SENO_DATA and one additional issuance of
RECEIVE_AND_WAIT.

1. Begin in state O. 4. Select a column containing an N in row 1.

2. Select a column containing a lettered In this example, column 3 was chosen.

3.

cell in row 0.

In this example, column l was chosen.
This corresponds to sequence 1.

Supply an arbitrary number of SENO_DATA
and RECEIVE_AND_WAIT verbs following
sequence 1, as allowed by the the
data-transfer convention.

In this
replaced

example, the ellipsis was
by one additional issuance of

ALLOCATE BC,BB,FMH-5
SYNC_ LEVEL(CONFIRM) --------->(TP started)

5. Orient sequence 3 according to the "next
sender" column for the previous sequence.

6.

In this example, the next
so the left column of
issued by the same TP as
of sequence 1.

sender is SAME,
sequence 3 is

the left column

Select a column containing an N in row 3.
The only choice is column o, indicating
the end of the sequence.

PREPARE_TO_RECEIVE EC,RQE2,CD RECEIVE_ANO_WAIT
TYPECSYNC_LEVEL) > WHAT_RECEIVED=CONFIRM_SEND
LOCKSCLONG) CONFIRMED

BC,data
RETURN_CODE=OK <.-------------­

RECEIVE_AND_WAIT
WHAT_RECEIVED= EC,RQD2,CEB,data

SEND_DATA

DEALLOCATE
DATA_COHPLETE <-------------­

RECEIVE_AND_WAIT
TYPEC SYNC_LEVEU

WHAT_RECEIVED=
CONFIRH_DEALLOCATE

CONFIRMED +DR2
--------------------> RETURN_CODE=OK

DEALLOCATE
TYPEC LOCAL>

Figure 2-16. Two-Way Conversation with Confirmation: Combines Sequences 4, 68, and 7.

The sequence shown in Figure 2-15 is gener­
ated as folloNS:

1. Beginning in state o, select sequences 4,
68, and 7, returning to state O.

2. Supply some number of SEND_DATA and
RECEIVE_AND_WAIT verbs following sequence
4.

In this example, 0 instances of SEND_DATA
were chosen. Thus, following the data
transfer convention, the SENO_DATA verb
and data arrow in sequence 4 are eli mi -
nated, as is the RECEIVE_AND_WAIT
WHAT_RECEIVED = DATA_COMPLETE and the
data on the EC arrow in sequence 68.

3. The next sender following sequence 4 is
SAME; therefore, sequence 68 has the same
orientation as the preceding sequence.

2-22 SNA Format and Protocol Reference Manual for LU Type 6.2

4. Supply some number of SEND_DATA and
RECEIVE_AND_WAIT verbs follow;ng sequence
6B.

In tMs example. only one ;nstance of
each was chosen, corresponding exactly to
the number in the sequence figures.

<This figure illustrates that the arrows
do not necessarily correspond to BIUs.
For example, the CONFIRM. SEND_DATA, and
DEALLOCATE might generate only one BIU,
even though two arrows are shown in the
Hgure.)

S. The next sender following sequence 68 is
OTHER; therefore, sequence 7 is reversed
to have the opposite orientation from
that of the preceding sequence (i.e.,
since the left column of sequence 6B cor­
responds to the left column of the com­
bined sequence, the left column of
sequence 7 corresponds to the right col­
umn of the combined sequence).

6. The next row number is O; therefore this
completes the sequence.

SEND_DATA

SEND_DATA

data
------------------------~>

BC,EC,SIGNAL !expedited flow)

RECEIVE_AND_WAIT
WHAT_RECEIVED=DATA_*

REQUEST_TO_SEND
<------------------------~

REQUEST_TO_SEND_RECEIVED=YES
PREPARE_TO_RECEIVE EC,RQEl,CD,data

TYPE I FLUSH)

RECEIVE_AND_WAIT BC,data

RECEIVE_AND_WAIT

WHAT_RECEIVED=DATA_CONPLETE
RECEIVE_AND_WAIT

WHAT_RECEIVED=SEND
SEND_DATA

WHAT_RECEIVED=DATA_*

Figure 2-17. Conversat;on Turnaround following REQUEST_TO_SEND !without Conf;rmation):

REQUEST_TO_SEND ;ssued by the receiving TP results in an expedited-flow one-RU chain.
The TP sending data is notified via the REQUEST_TO_SEND_RECEIVED parameter of a
subsequent verb. The interpretation of REQUEST_TO_SEND_RECEIVED is determined by the
TP. In this example, the sending TP stops sending and issues RECEIVE_AND_WAIT.

EXCEPTION FLOW

Figure 2-17 illustrates the only non-error
case for which a TP can send while in receive
state. This flow represents issuing the
REQUEST_ TO_SEND verb and sending the SIGNAL
RU.

This flow can be substituted for sequence 2.
A similar sequence corresponding to sequence
6A or 6B exists, but is not illustrated here.

ERROR FLOWS

Figure 2-18 on page 2-24 through Figure 2-22
on page 2-26 illustrate flows resulting from
transaction-program error recovery for the
base function set. When the TP detects a
TP-defined error (e.g., the received data

fails an application val;dity check, or the
partner sends more logical records than
expected) it issues SEND_ERROR or DEALLOCATE
TYPE C ABEND). When the LU detects a trans­
action program error, such as an Attach fail­
ure. it generates similar flows.

Three cases exist:

• Verb issued by sender

• Verb issued by receiver

• Verb issued by both !e.g.• a SEND_ERROR
race has occurred)

!This case is not illustrated for DEALLO­
CATE.>

For cases not shown here, see "Component
Interactions and Flow Sequences" on page
2-47.

Chapter 2. Overview of the LU 2-23

SEND_DATA
(TP detects
an error)

SEND_ERROR
right 4

SEND_DATA

RECEIVE_AND_WAIT

data -----------> NHAT_RECEIVED=DATA_INCOHPLETE
Ftft-7(08891,data RECEIVE_AND_WAIT ----------> WHAT_RECEIVED=PROGRA11_ERROR_TRUNC

Figure 2-18. SEND_ERROR Issued by Sender:

SEND_DATA

The SEND_ERROR verb forces sending of accumulated data and begins a neN RU with an
Fl1H-7. The issuing TP remains in send states it can, for example, send additional
TP-determined data to further describe the error.

data
-------------->

-RSP(0846)
r---------

RECEIVE_AND_WAIT
WHAT_RECEIVED=DATA_*

(TP detects an error>
SEND_ERROR

SEND_DATA data I Purge incoming BIUs
to end of chain ---------1-------> I

:
I

(LU ends'chainl <-----...!
EC,RQEl,CD,no data

----------------->
BC,Fl1H-7(08891,data

<-----------------
RETURN_ CODE=

PROG_ERROR_PURGING
RECEIVE_AND_WAIT

II

II

II

II

11 (LU detects end of chain)
RETURN_CODE=OK

SEND_DATA

Figure 2-19. SEND_ERROR Issued by Receiver:

The SEND_ERROR verb causes a negative response to the incoming chain; the sending TP
sends End-of-chain and Change-direction when it receives the response. Heanwhile, the
receiver purges incoming RUs until the End-of-chain indication is received, then it
sends Fl1H-7 and leaves the issuing TP in send state so it can, for example, send
additional TP-determined data describing the error.

2-24 SNA Format and Protocol Reference 11anual for LU Type 6.2

SEND_DATA

<TP detects
an error)

SEND_ERRDR

SEND_DATA

data RECEIVE_AND_WAIT
--------------------> WHAT_RECEIVED=DATA_*

(TP detects an error)
-RSPI0846) SEND_ERRDR
r-------------da ta I _________ , >

FMH-7(0889),data
---------1 >

I .
I

Purge ;ncom;ng BIUs
to end of cha;n

(LU ends cha;n) <----J
EC,RQEl,CD,no data

lLU detects end of cha;n)
RETURN_CODE=OK

BC,FMH-7(0889),data SEND_DATA
<------------------RETURN_ CODE=

PROG_ERROR_PURGING
RECEIVE_AND_WAIT

F;gure 2-20. SEND_ERRDR Issued by both Sender and Rece;ver ISEND_ERRDR Race):

Each LU beg;ns SEND_ERROR process;ng as in the no-race case, but since the rece;ver is
purgfog to end of cha;n, the SEND_ERRDR from the sender ;s also purged, so the
receiver's SEND_ERROR takes precedence.

SEND_DATA
DEALLOCATE data

TYPEIABEND_PROG) >
EC,RQDl,CEB,FMH-7(0864)

--------------------> +DRl
!response used <----------------------

; nterna lly)

F;gure 2-21. DEALLOCATE ABEND Issued by Sender:

RECEIVE_AND_WAIT

WHAT_RECEIVED=DATA_*
RECEIVE_AND_WAIT

RETURN_CODE=
DEALLOCATE_ABEND_PROG

The flow ;s simHar to SEND_ERROR ;n send state. The +DRl response ;s requ; red for
internal processing.

Chapter 2. Overview of the LU 2-25

SEND_DATA data
~~~~~~~~~~> 

-RSPC 0846) 
r--------.-

RECEIVE_AND WAIT 
WHAT_RECEIVED=DATA_* 

DEALLOCATE 
TYPEIABEND_PROGl 

SEND_DATA data I 
~~~~-I > 

(LU ends chain>

I .
I

<----J
EC,RQE!,CD,no data

Purging
"
"
II

II

~~~~~~~~~~> "(LU detects end of chain> 
BC,EC,RQDl,CEB,FMH-7(0864) 
<.~~~~~~~~~~ 

RETURN_CODE= 
DEALLOCATE_ABEND PROG 

+DRl 
--------------------> (response used internally> 

Figure 2-22. DEALLOCATE ABEND Issued by Receiver: 

The flow is similar to SEND_ERROR in receive state. The +ORI response is required for 
internal processing. 

LU STRUCTURE 

Figure 2-23 on page 2-27 illustrates the 
structure of the LU. 

The upper protocol boundary of the LU is the 
transaction program protocol boundary (de­
scribed in SNA Transaction Programmer's Ref­
.!!:fill£! Manual for !Y Die.! Ll ) . A 
transaction program processes end user data, 
and requests LU services to communicate with 
other transaction programs. 

The lower protocol boundary of the LU is the 
path control protocol boundary, below which 
is the SNA path control network, which the LU 
uses to communicate with other LUs and with 
its control point ICP>. 

The LU also has a protocol boundary with the 
PU (see "Chapter 4. LU Network Services"). 

SNA LAYERS 

The LU contains instances of the following 
four SNA layers: 

Transaction services 

Presentation services 

Data flow control 

Transmission control 

Component Overview 

The LU has two layers of components, one for 
its upper protocol boundary with transaction 
programs, and one for i ts lower protocol 
boundary with the path control network. Each 
layer consists of a group of processes con­
taining a pair of SNA layer-instances, and a 
manager component that creates, destroys, and 
otherwise manages these instances. 

The upper layer contains transaction proc­
esses, which contain instances of the follow­
ing SNA layers: 

Transaction services 

Presentation services 

More concretely, each transaction process 
contains an execution instance of a trans­
action program and some Presentation Services 
components for processing the verbs issued by 
it. CSee Figure 2-24 on page 2-28.) 

This layer is managed by the resources manag­
.!!: component CRM>, which creates transaction 
processes (in response to Attaches received 
from remote LUs), destroys them after they 
have finished executing, and connects them 
with sessions Cthus enabling them to partic­
ipate in distributed transactions>. 

2-26 SNA Format and Protocol Reference Manual for LU Type 6.2 



PU < 

" 

< 

Resources 
Manager 

< 

A 
I 
v 

< 
> < 

LU < 
Network 
Services 

Services Manager 

I 
• 

l' Application 
Transaction 

Program 

A 

Control­
Operator 
Transaction 
Program 

A 

v 

<--> Control Operator 

I 
• 

DIA !j 
r--S-N-AD_S_....,J 

I 1 • 1~;n:!~~ 
Programs 

A 

I~ v • 

I~ •J 
>L ___ ______.IJ ~ Presentation Services . 

v 

PNCP-LU 
Half­

Session 

v 

SSCP-LU 
Half­

Session 

A 

l,.---1-.:.-a-Fl-~---.• 
Control 

Transmission 
Control 

LU-LU Half-Session 

A A A 

• 
• 

'--------1---1----1---LU-

LEGEND: 
<--> SEND/RECEIVE relationship 
< •••• >CALL/RETURN relationship 
CNOS: Change Number of Sessions 
SNADS: SNA Distribution Services 

V V V 
PATH-CONTROL NETWORK 

RESYNC: Sync Point Resynchronization 
DIA: Document Interchange Architecture Services 

Figure 2-23. Overview of LU 6.2 Components 

Chapter 2. Overvietii of the LU 2-27 



Transaction Program 
•••••••••••••••••••••• > 

PS Verb.Router 
: A : A 

t---:-: :-: 
v : v : 

PS for PS for 

any verb 
: 
: 
v 

: A 
:-: 
v : 

PS for 

issued 

/ 

other 
PS 

v 

PS for 
Happed Sync Po;nt Control verb 

handlers 
Basic 

·Conversations 
PS.CONY 

Conversations Servfoes Operator 
PS.MC PS.SPS PS.COPR • • • 

v 
Resources Manager 

LEGENJ: 
••••• > CALL/RETURN relat fonsM p hcHhi n a process) 
<--> SEND/RECEIVE relationship Cbetween processes) 

/ /---.A----
1 
v 

Half-Session or 
Resources Manager 

NOTE: PS verb router is called recursively by PS verb handlers. 

Figure 2-24. Structure of a Presentation Services Process 

The lower layer contains balf-sessions CHSs>, 
which contain instances of the following SNA 
layers: 

Data flow control 

Transmission control 

Half-sessions enforce protocol rules for con­
versation data exchange, and transform mes­
sage units between the format useful to 
conversing programs and the format appropri­
ate for the Path Control network C this 
includes implementing session services such 

FUNCTIONAL SU1111ARY .!rt FUNCTION 

This is the first of two sections describing 
the functions and interactions of LU compo­
nents. This section is organized by func­
tion; it concentrates on functions that 
involve multiple components. For each func­
tion, H explains in approximate time 
sequence the roles of the various LU compo­
nents. The next section is organized by com­
ponent, and covers functions perf~rmed 
principally by one component. A full 
description of each component is given in its 
corresponding chapter of this book. 

For illustrations of the component inter­
actions discussed in this section, including 
a variety of cases not discussed elsewhere in 
this chapter, see "Component Interactions and 
Flow Sequences" on page 2-47. In particular, 
Figure 2-33 on page 2-48 and Figure 2-34 on 
page 2-49 illustrate the interactions, at the 
source and target LUs, respectively, for a 

as pacing and cryptography). 
these are LU-LU half-sessions 
ing conversation data, one of 
CP-LU half-session connecting 
Control Point. 

While 1110st of 
for transport­
the11 must be a 
the LU to its 

!his layer is managed by the LU.network sery-
1 ces component ( lNS), which creates and 
destroys half-sessions and interacts with SNA 
components outside the LU C the control point 
and the nodal NAU manager in the PU>. 

The resources manager and LU network services 
components are created by the PU when it 
activates the LU; they run continuously 
thereafter. 

typical conversation; Figure 2-35 on page 
2-50 and Figure 2-36 on page 2-51 illustrate 
typical interactions for session deacti­
vation. 

The LU manages the state and configuration of 
its local resources, including transaction 
programs , conversation resources , and 
half-sessions. It cooperates with other LUs, 
using shared sessions and conversations, to 
configure these resources to support distrib­
uted transactions. !An LU implementation 
might also manage other, non-SNA, resources 
such as processor execution cycles, storage, 
and data bases.) 

The principal functions leading to LU trans­
action processing are the following, not nec­
essarily performed in this order: 

• Activating sessions between two LUs 

2-28 SNA Format and Protocol Reference.Manual for LU Type 6.2 



• Invoking transaction progra11S 

• Initiating conversations between the 
transaction programs 

• Transferring message uii ts between the 
transaction programs 

EXAMPLE TRANSACTION PROGRAM 

Figure 2-25 outlines some typical verb issu­
ances for an example pair of transaction pro­
grams. 

~.D! 

MC_ALLOCATE 
MC_SEND_DATA 

II 

II 

II 

MC_RECEIVE_AND_WAIT 

" 
II 

II 

MC_DEALLOCATE 

MC_RECEIVE_AND_WAIT 
II 

II 

II 

" 
MC_SEND_DATA 

" 
" 

MC_DEALLOCATE 

Figure 2-25. Example of Communicating 
Transaction Programs 

The programs, running at different LUs, issue 
comple111entary sequences of verbs. The LUs 
convert these executed verbs into 
message-unit flows. 

MESSAGE-UNIT TRANSFER 

First, consider transfer of message units. 
Assume that two transaction programs are run­
ning at their respective LUs and are con­
nected by a mapped conversation. For the 
programs to transfer data, one program must 
issue MC_SEND_DATA verbs while the other 
issues complementary MC_RECEIVE_AND_WAIT 
verbs. 

The TP invokes PS for each 
transaction-program verb it issues. PS per­
forms the function appropriate to the specif­
ic verb. For each verb, PS verifies that the 
verb is valid in the current conversation 
state, converts the verb parameters to an 
intermediate representation, and performs 
verb-specific processing that includes issu­
ing appropriate requests to other LU compo­
nents. 

When sending, PS transforms the 
111apped-conversation record CMCR> into logical 
records, determines message-unit sequence 
boundaries such as the end of a conversation 
message, and passes the data and control 
information to HS. HS converts the logical 
records into one or more RUs , encodes the 
protocol information into the RH, and passes 

the resulting BIU and TH information to path 
control. 

When receiving, HS checks incoming BIUs for 
format and protocol validity and passes the 
data to PS. When the TP issues a 
RECEIVE_AND_WAIT verb, PS checks the verb for 
validity, waits until HS supplies the 
requested amount of data, and passes the data 
and protocol information back to the TP. 

The following sections discuss these func­
tions in more detail. (Figure 2-3 on page 
2-14, Figure 2-4 on page 2-15, and Figure 2-5 
on page 2-16 illustrate the message-uiit 
relationships discussed.) 

Sendina Data 

For MC_SEND_DATA, PS verifies that the con­
versation is in send state. If mapping is 
being performed, PS maps the 
transaction-program data record into a 
mapped-conversation record (see "Mapping 
Function" on page 2-36). It transforms the 
MCR into a sequence of logical records of 
implementation-defined length by segmenting 
the supplied data and prefixing the appropri­
ate GDS LLID fields. It issues SEND_DATA 
verbs as often as necessary (determined by 
the buffer-record size used by the PS.MC 
implementation) to send all the logical 
records. 

PS (in particular, the PS verb router> is 
recursively callable: it is called by a TP 
when the TP issues a verb, and it is also 
called by verb handlers within PS that them­
selves issue verbs. For example, the 
111apped-conversation verb handlers in PS typi­
cally issue one or more basic-conversation 
verbs to perform the function requested by a 
mapped-conversation verb. 

When PS has first entered send state, it 
expects an LL at the beginning of the first 
buffer record. From then on, PS compares the 
accumulated length of the data passed on suc­
cessive issuances of SEND_DATA to the 
logical-record lengths specified in the LLs, 
thus verifying that the conversation message 
sent ends at a logical record boundary. 

PS accumulates the data from successive buff­
er records in an internal buffer of 
implementation-defined length. When the 
buffer is full, PS transfers the data to HS 
with an indication of whether it is the last 
of the data for a conversation message. When 
PS detects the end of a conversation message, 
e.g., a PREPARE_TO_RECEIVE, RECEIVE_AND_WAIT, 
CONFIRM, SYNCPT, or DEALLOCATE verb was 
issued, PS transfers its remaining accumu­
lated data with an indication of how the con­
versation message was ended, e.g., 
confirmation request, conversation turn­
around, or deallocation. It also places the 
conversation in the appropriate state. 

Meanwhile, the HS process, also in send 
state, waits for data from PS. When PS 
passes the data, HS reblocks it into RU-sized 

Chapter 2. OvervieN of the LU 2-29 



uni ts (the RU size for a session is deter­
mined by BIND negotiation when the session is 
activated). When HS has received more data 
than necessary to fi 11 an RU, it generates an 
RH, builds the BIU, and generates a sequence 
number and other TH information. If session 
cryptography is being used, HS enciphers the 
data. 

HS encodes each RH to indicate the beginning 
or end of a bracket (corresponding to a com­
plete conversation exchange) and the begin­
ning or end of a chain (corresponding to a 
conversation message). For all but the last 
BIU in a chain, HS encodes· the RH with RQEl. 

For the last BIU for the conversation mes­
sage, HS encodes the RH with EC (the 
end-of-conversation-message indicator) and 
other indicators selected by PS, such as CD 
(e.g., PREPARE_TO_RECEIVE verb issued>, RQD2 
(e.g., CONFIRM issued>. RQDl <DE.ALLOCATE 
TYPE[ABENDll issued>, and CEB (DEALLOCATE 
issuedl. HS changes the local session state 
accordingly. 

HS passes each completed BIU and the corre­
sponding TH information to path control for 
transmission to the receiving HS in the 
remote LU. 

HS enforces session-level pacing. The send­
ing HS sends at most one pacing window of 
BIUs before receiving a pacing response. It 
then requires a pacing response from the 
receiver before sending another window. The 
receiving HS sends a pacing response when it 
can receive another pacing window, e.g., when 
it has enough free buffers. Depending on its 
ability to receive additional data, the 
receiver may send a pacing response at any 
time after receiving the first BIU of a win­
dow. 

Receivina J2!t1! 

The HS process at the receiving LU receives 
BIUs and TH information from path control. 
It sends pacing responses when it is able to 
receive additional BIUs. If session 
cryptography is specified, it deciphers the 
data. It checks for correct session proto­
col. It checks BIU sequence numbers to 
detect lost or duplicate BIUs and to corre­
late responses with the correct bracket. If 
it detects any protocol error, it abnormally 
deactivates the session, i.e., it requests 
LNS to issue UNBIND indicating a format or 
protocol error. 

If the BIU is satisfactory, HS sends the 
Attach FM header, i f present , to RM, and 
sends all other RU data to PS. HS also sends 
PS an indication of significant state changes 
that were encoded in the received RH such as 
end of a conversation message (End-of-chain), 
enter send sta'lle <Change-direction>, confir­
mation request· <Definite~response 213> and 
end of conversation 
!Conditional-end-of-bracket). HS changes its 
own session state accordingly. 

Meanwhile, the receiVing TP issues 
MC_RECEIVE_AND WAIT verbs to receive the con­
versation message. Each verb issuance calls 
PS. 

For each MC_RECEIVE_AND_WAIT issuance, PS 
repeatedly land recursively) issues 
RECEIVE_AND_WAIT verbs until it recei.ves a 
complete MCR from HS. 

For each RECEIVE_AND_WAIT verb issuance (in­
cluding the case in whi~h RECEIVE_AND_WAIT is 
issued directly by a transaction program, 
i.e., for a basic conversation), PS waits for 
the data from HS. As PS receives the data, 
which includes LL fields, PS accumulates the 
data in an internal buffer, until it reaches 
the end of a logical record (or buffer 
record>. While accumulating the data, PS 
keeps track of the LL fields, to verify that 
the conversation message ends on a logical 
record boundary. 

When the PS verb handler for RECEIVE_AND_WAIT 
returns (recursively) to the PS verb handler 
for MC_RECEIVE_AND_WAIT, PS checks the length 
and continuation fields in the LLs to verify 
that a complete MCR has been received, strips 
the GOS LL and ID fields, and reblocks the 
data into an MCR. !If the TP receive buffer 
cannot contain the complete MCR, PS passes it 
to the TP in receive-buffer-sized segments, 
i.e., mapped-conversation buffer records.) 

If PS receives an end-of-conversation-message 
indication, it does not forward this indi­
cation to the TP until after all logical 
records and MCRs have been received. It then 
returns the end-of-conversation-message indi­
cation alone on the next MC_RECEIVE_AND_WAIT 
verb issued, and places the mapped conversa­
tion into the appropriate state. 

Internal Buffering 

Figure 2-26 on page 2-31 illustrates internal 
buffering that the LU may perform during send 
and receive operations. The figure has the 
following meaning. 

Column IA> 

If send buffer record is the DATA parameter 
(LL and data) of the SEND_DATA verb. 

Column CBl 

f.§ send buffer is a buffer in the sending PS 
of implementation-defined length <in this 
example, 6 I for accumulating TP data to 
be sent to HS. 

PS-to-HS record is the data transferred to 
HS from a full PS send buffer. 

Column <Cl 

.!:!! internal byffer is a buffer in the send­
ing HS of RU size (in this example, 4) 
that accumulates data from PS until a 
complete RU can be sent. 

2-30 SNA Format and Protocol Reference Manual for LU Type 6.2 



Source LU }Path Control Target LU 

<A> I (B) I (C) ID) I (E) 

TP Send : PS PS-to-HS : HS HS-to-HS : HS-to-PS ~ PS TP Receive 
Buffer : Send Record : Internal via : Record : Receive Buffer 
Record : Buffer : Buffer PC : : Buffe.r Record 

: (length 6) (length 6):(RU size 4) (RU size 4): <RU size 4l:<infinite> (length 8) 
: : : : 

Data LLi l l l Data <len) 

~ : : : 
(1) gfedcbA 7 : g fedcbA : fe deb A : deb A : deb A 

: : : : 
(2) ponmlkjiH 9 : ponm lkjiHg : lkji Hgf e : Hgf e : H gf edbcA 7 

: : : : 
(3) : :<HS defers sending RU> : : 

: : : : 
(4) srQ 3 : s rQponm : rQponm lkji : lkji : lkjiH 

: : : : 
(5) : : rQ ponm : ponm : p onmlkjiH 9 

: : : : 
(6) vuT 3 : vu Ts : rQ : : p 

: : : : 
( 7) zyxW 4 : zy xWvuTs : xWvu TsrQ : TsrQ : T srQ 3 

: : : : 
(8) # 0 : #zy : #zy xWvu : xWvu : xW vuT 3 

: : : : : 
(9) : : : #zy : #zy : # zyxW 4 

: : : : : 
(101 l : l l l # 

Direction of Flow 

NOTATION: 

Read data strings right to left to correspond with the order of flow on the session. 

A capital letter represents the start of a logical record 
(i.e., the first byte of the LL field.) 

# represents the end-of-conversation-message indication. 
<This is actually coded in the RH, which is not shown in this example.) 

Parenthesized numbers and letters identify rows and columns for explanations in the text. 

Figure 2-26. Internal Buffering in LU Send/Receive Data Operations <Example> 

HS-to-HS via PC is an RU transmitted over 
the path control network. 

Column ID) 

HS-to-PS record is a received RU sent from 
HS to PS. 

Column <E> 

PS Receive Buffer is an unbounded buffer for 
accumulating received data from HS. 

If Record is the DATA parameter buffer of 
the RECEIVE verb (of length 8 in this 
example). 

This example assumes that the FILL parameter 
of the receive verb has the value LL. The 
buffer and record sizes were selected to sim­
plify the illustration; typical actual sizes 
would be ~ch larger, e.g., 256 bytes for the 

RU size, and up to 32,767 bytes for a TP 
record. 

Notes on the figure: 

Row (1 > 

(A) The sending TP sends a 7-byte logical 
record <Abcdefg) to PS. 

(Bl PS sends the first 6 bytes (its buffer 
length> to HS rAbcdef) and retains the 
7th lg), awaiting more data. 

(C) HS at the sender receives the 6 bytes 
from PS and sends 1 RU (4 bytes: Abed> 
to path control and retains the remain­
ing 2 bytes (ef ). 

( D > HS at the receiver receives the RU ( 4 
bytes) and sends the data to PS 

Chapter 2. Overview of the LU 2-31 



(E) Meanwhile, the rece1v1ng TP issues 
RECEIVE_AND_WAIT. 

PS accumulates the data in its buffer 
until it has enough to satisfy a TP 
request, i.e., enough to fi 11 the TP 
receive buffer or complete a logical 
record. 

Row (2) 

(A) The sending TP sends a 9-byte logical 
record (ff ••• p). 

(B) This forces another 6-byte buffer from 
PS (g ••• l>; PS retains the remaining 4 
bytes ( m ••• p). 

(C) HS now has 8 bytes; it sends 1 RU (4 
bytes: efgH> and retains 4 (ijkll. 

(0,E) At the receiving LU, this RU completes 
the logical record <A ••• g) at the 
receiver. PS passes the record to the 
TP and retains the first byte of the 
next record ( H ) • 

Row (3) 

( C > HS at the sender st i 11 has exactly 
enough data accumulated for one more RU 
( i jkl ) , but HS does not send this RU 
until forced by arrival of another byte 
or an end-of-conversation-message indi­
cation. HS always waits with an exact­
ly full RU so it can incorporate any 
subsequent protocol .signals into the 
RH. 

The interpretation of the rema1n1ng lines is 
similar. Highlights are given below. 

Row (5) 

CEJ At the receiver, the second RU received 
completes the second logical record 
CH ••• p) at the receiving PS. But since 
the receiving TP buffer is only 8 
bytes, PS can pass only 8 bytes (H ••• o) 
on the current receive verb. 

Row (6) 

fE) PS at the receiver passes the last byte 
Cpl of the second logical record to the 
TP on the next receive verb. 

Rows !8-9) 

CA-C) The end-of-conversation-message indi­
cation (#) from the sending TP forces 
the sending PS and HS to send all resi­
dual data in their buffers. This makes 
one more record avai !able to the 
receiving TP. 

Row !9) 

(0,E) When the receiving HS and PS get the 
end-of-conversation-message indication, 
they forward all residual data as soon 
as possible. The TP gets the last log­
ical record. 

Row UO> 

( E) The receiving TP gets the 
end-of-conversation-message indication 
alone on the next receive verb. 

TRANSACTION PROGRAM INITIATION AND TERMI­
NATION 

Before the TPs can exchange message mi ts, 
the TPs must be brought into execution. 

Invoking ~ Remote Transaction Program 

Assume that a source TP is already in exe­
cution. It requests invocation of a remote 
TP by issuing the ALLOCATE verb (or 
MC_ALLOCATE, which PS.MC converts into an 
ALLOCATE>. It identifies the program to be 
invoked by specifying the remote transaction 
program name and remote LU name., and selects 
the desired transport characteristics by 
specifying a mode name. 

Using the parameters from ALLOCATE, the 
source PS builds an Attach FM header and 
sends it to HS C in some cases, vi a RM) for 
transmission to the partner LU. When the 
target HS receives the Attach FM header, it 
passes it to its RM. This RM then creates a 
PS process and passes it the Attach FM head­
er. The new PS analyzes the Attach FM head­
er, selects and loads the specified 
transaction program code, and calls it, plac­
ing it initially in receive state for the 
conversation. 

Once a target TP is invoked, it can act in 
turn as a source TP to invoke other TPs. 

Initiating the Initial local Transaction Pro­
gram 

The first TP activated for a distributed 
transaction is initiated in a way that 
appears to the TP as though it were invoked 
as a target TP by another source TP. To do 
this , the source RM behaves as i f i t had 
received an Attach: it creates the PS proc­
ess and generates an Attach FH header to pass 
to PS. These RM actions are triggered by 
implementation-defined means such as issuing 
a local control-operator verb. 

PS then loads and calls the TP, which can 
then issue verbs by calling PS. 

Terminating ~ Transaction Program 

A TP ends by returning to PS.INITIALIZE. PS 
then performs any necessary final processing 
(such as deallocating the TP's remaining con­
versations>. and notifies RM. RM then 
destroys the PS process. 

2-32 SNA Format and Protocol Reference Manual for LU Type 6.2 



CONVERSATION.ALLOCATION AND DEALLOCATION 

A source TP initiates a conversation with a 
target TP by issuing the ALLOCATE (or 
MC_ALLOCATE) verb. 

The source PS satisfies the TP request in two 
steps. 

First, PS sands RM a request to allocate a 
conversation. RM creates a conversation 
resource and notifies PS. 

Second, PS sends RM a request to assign a 
session to the conversation. When RM has a 
session available for the conversation, RM 
connects the PS process of the issuing TP to 
the HS process of the session and notifies PS 
and HS. PS places the source end of the con­
versation (where the allocation was 
requested> initially in send state. 

If a session is not immediately available, RM 
suspends the issuing process. 

After a session is assigned to the conversa­
tion at the source LU, PS sends the Attach FM 
header to HS for transmission to the target 
LU. (In some cases, PS sends the Attach FM 
header to RM rather than directly to HS; RM 
then sends it to HS when bidding for the ses­
sion.> 

When HS at the target LU receives the first 
BIU of · the bracket, it notifies RM. RM 
receives the Attach from HS, creates the con­
versation resource, and makes it accessible 
to HS and PS. It places the target end of 
the conversation initially in receive state. 

The following sections give further details 
of these functions. 

Selecting ~ Session 

RM maintains a list of allocation requests 
and a list of free sessions and their con­
tention polarities. If RM has an allocation 
request and a first-speaker 
(contention-winner) session is free Ci.e., in 
between-brackets state>, RM allocates that 
session to the converswtion. If a 
first-speaker session is not free but a bid­
der (contention-loser) session is free, RM 
bids for the session. If no .sessions are 
free, but the session limits have not been 
reached, RM requests that LNS activate a new 
session. 

Bidding 

RM requests HS to attempt to begin a bracket 
by sending an RU with BBi this is called 
bidding for the session. 

RM always accepts a bid received on a bidder 
session. 

If RM receives a bid on a first-speaker ses­
sion, RM accepts or rejects the bid depending 
on whether any of its own transactions need 
to allocate the session for use by their own 
conversation ( if they do, then it sends a 
negative response to the bid; otherwise, it 
sends a positive response to the bid). 

Optionally, a negatively-responding RM will 
inform the partner when it is again willing 
to accept a bid. 

~ Active Session 

When a session becomes newly active, it is 
initially in in-brackets state. The LU that 
activated it Cthe primarv .l.Y• or BIND sender> 
has first rtght to send, regardless of the 
session contention polarity. If RM at the 
primary LU has no unsatisfied conversation 
request when a session becomes act i ve, i t 
requests HS to yield the session, i.e., to 
end the bracket. 

Deallocation 

When PS requests deallocation of the conver­
sation, HS ands the current bracket, and RM 
deletes the conversation resource and places 
the session in the free-session list. 

SESSION ACTIVATION AND DEACTIVATION 

If RM has a conversation request for a ses­
sion but no session is free and the session 
limits have not been exceeded, RM requests 
LNS to activate a new session. RM also 
requests session activation as a result of 
operator commands (such as INITIAL­
IZE_SESSION_LIMIT>. 

Starting ~ Session 

Starting a session involves the following 
three activity phases: session limits 
initialization, 9ession initiation, and ses­
sion activation. 

Initializing Session Limits: Prior to any 
transaction activity, the control operator 
sets limits on the maximum and minimum n\.im­
ber, and contention polarity, of active ses­
sions with particular partner LUs using 
particular mode names (see "Control-Operator 
Functions" on page 2-36 for details>. 

Session Initiation: When LNS receives a ses­
sion activation request from RM, LNS sends an 
INITIATE session-services RU, containing the 
partner LU name, to its control point, using 
the CP-LU session. 

When the control point receives the INITIATE, 
it translates the LU name into a network 
address. 

Chapter 2. Overvi•w of the LU 2-33 



The CP then sends a CINIT RU, which contains 
the network address, the cryptographic key if 
session cryptography is used, and a 
description of other characteristics for the 
session, to the LU that is to activate the 
session. !The LU that activates a session is 
called the primary W [PLUJ. The PLU is not 
necessarily the LU that requested session 
initiation.) 

Session Activation: LNS for the PLU receives 
the CINIT and retains the address. Using 
information from the CINIT and from the LU's 
mode table for the requested mode, LNS then 
generates a BIND session-control RU contain­
ing the desired session parameters and sends 
it to its local PU for routing to the partner 
LU. 

LNS for the LU rece1v1ng BIND !the secondary 
W or SLUJ negotiates the proposed session 
parameters to acceptable values and sends a 
positive response to BIND via its local PU. 

!If the LUs cannot agree on session parame­
ters, the session activation fails.) 

When the positive response to BIND is sent or 
received, the LNS at each end connects a new 
HS process to the path control network. If 
the session uses cryptography, the HSs 
exchange cryptography-verification RUs. 
Then, each LNS notifies its RM that a new 
session is available. 

Session Outage 

If session outage occurs, LNS not i fies RM. 
If a conversation was active on the session, 
RM notifies PS, which notifies the trans­
action program of conversation failure. RM 
requests LNS to activate another session if 
it has unsatisfied conversation requests or 
an unsatisfied auto-activation limit. 

Ending ~ Session 

Ending a session involves the following three 
activity phases: operator request, session 
shutdown, and session deactivation. 

Qperator Reauest: Sessions are not deacti­
vated in the normal course of transaction 
program processing; they are deactivated only 
upon specific request from the 
control-operator transaction program. 

When the LU operator at either end of a ses­
sion determines that a session is to be deac-

FUNCTIONAL SUMMARY BY COMPONENT 

This section is organized by componentJ it 
reviews the specific functions of each prin-

tivated, the control-operator transaction 
program issues a control-operator verb. The 
control operator can cause sessions to end in 
two ways. 

The operator can issue a RESET_SESSION_LIMIT 
verb to reset the session limits to 0 for 
specified partner LUs and mode names. The LU 
proceeds wi th subsequent phases unt i l there 
are no active sessions for the specified 
ILU,model pairs. 
The operator can also issue a DEACTI­
VATE_SESSION verb to deactivate a specific 
session (this might be done, for example, to 
recover from certain error situations). This 
does not change the session limits, however, 
so the LU might activate another session to 
replace it. 

When PS.COPR receives the verb, it 
session-limit-change notification 
session-deactivation request to RM. 

issues a 
or a 

Session Shutdown When RM receives a 
session-limit-change notification, RM first 
performs drain processing. If the operator 
has requested RESET_SESSION_LIMIT with drain 
indicated, then RM performs no deactivations 
until all requests for allocation of sessions 
with the specified mode name have been satis­
fied. 

When drain is complete, or when RM receives a 
session-deactivation request, and an affected 
session next enters between-brackets state, 
RM initiates a bracket-termination protocol. 
This consists of an exchange of 
bracket-initiation-stopped CBISI RUs assuring 
that all brackets have completed at both ends 
of the session, i.e., that no other BIUs are 
in transit between the LUs. 

After receiving BIS, the partner LU drains 
its allocation requests and sends BIS in 
return. 

When the BIS protocol is complete, the RM 
that initiated the BIS protocol instructs its 
LNS to deactivate the session. 

Session Deactivation: When LNS receives a 
session-deactivation request from RM, it 
sends UNBIND, via the local PU, and awaits a 
response. When the partner LNS receives an 
UNBIND, it unconditionally sends a positive 
response. When the response to UNBIND is 
sent or received, the corresponding LNS dis­
connects the half-session process from the 
path control network, notifies the CP that 
the session is ended, and destroys the 
half-session process. 

cipal component, and describes functions per­
formed primarily in one component. 

2-34 SHA Format and Protocol Reference Manual for LU Type 6.2 



PS manages transaction programs and controls 
conversation-level communication between TPs: 

• Loads and calls the transaction program 

• Maintains the conversation protocol 
state, e.g., send/receive state of the TP 

• Enforces correct verb parameter usage and 
sequencing constraints 

• Coordinates specific processing for each 
verb 

• Performs mapping of transaction program 
data into mapped-conversation records 

• Converts mapped-conversation records to 
GOS variables, and the reverse: it par­
titions the data into logical records and 
generates LLID prefixes 

• Buffers conversation-message data fr011 
the transaction program into contiguous 
blocks for efficient subdivision by HS 

• Reblocks RU data from HS into logical 
records or buffer records as required by 
the TP 

• Verifies logical-record length and bound­
aries 

• 

• 

Truncates or purges data when errors are 
reported or detected by the TP 

Generates and issues FM headers for 
Attaches and Error-descriptions 

Half-Session 

HS controls session-level communication 
between LUs: 

• Reblocks data from PS into RU-sized units 

• Builds RHs and enforces correct RH param­
eter settings 

• Creates chains and enforces chaining as 
the unit of LU-to-LU error recovery 

• Correlates responses with the correct 
bracket 

• Enforces bracket protocol and purges 
rejected brackets 

• Enforces protocols for the relevant FM 
and TS profiles for the session 

• Generates and enforces sequence numbering 
to detect lost or duplicate BIUs 

• Exchanges cryptography-verification RUs 
when session cryptography is being used 

• Enciphers and deciphers data when session 
cryptography is being used 

Resources Manager 

RM manages presentation services and conver­
sations. 

• Creates and destroys instances of presen-
tation services · 

• Creates and des~roys conversation 
resources and connects them to 
half-sessions and to presentation serv­
ices 

• Maintains the data structures represent­
ing the dynamic relationships among con­
versation resources, half-sessions, 
transaction program instances, and trans­
action program code 

• Chooses the session to be used by a con­
versation and controls contention for the 
session 

• Performs drain action: allows session 
traffic to cease before requesting ses­
sion deactivation 

• Requests LNS to activate and deactivate 
sessions 

LNS manages sessions: 

• Coordinates session initiation in concert 
with the control point 

• Sends and receives BIND 

• Supplies and negotiates session parame­
ters during BIND exchange 

• Exchanges cryptographic key and session 
seed 

• Notifies the control point of LU charac­
teristics and conditions during LU 
initialization (ACTLU exchange) 

• Creates and destroys half-session 
instances and connects them to path con­
trol instances 

FUNCTIONS OF SERVICE TRANSACTION PROGRAMS 

Service transaction programs provide func­
tions to the end user that require communi­
cation with another LU using a special 
SNA-defined pattern of verbs. 

Service TPs form part of a distributed trans­
action similarly to other TPs. They have a 
transaction program name and are invoked by 

Chapter 2. Overview of the LU 2-35 



the Attach inechan; .. , and they exchange 
information Nith these other TPs by ;ssuhtg 
transaction-program verbs. 

Serv;ce transact;on programs d;ffer from 
user-application transaction programs in that 
they. are SNA-defined and are considered part 
of the LU •. The names of service transaction 
programs are SNA-deffoed. The records that 
service TPs send and receive are SNA-defined 
GOS var;ables. 

Cootrol-Operator Functions 

All LU. have an hipletnantati on- or 
;nstallation-def;ned control operator 1!::.!mi:: 
action progra111 (COPR TP> that represents the 
LU control operator's interface to the LU. 
Us;ng a program-selected means such as opera­
tor console input, th;s TP ;ssues 
control-operator verbs to perform 
control-operator funct;ons. 

Control-operator verb funct;ons include cre­
at;on and modif;cation of the data structures 
that describe the LU and the LU-accessed net­
work resources: control points, transact;on 
programs, partner LUs, and 1110des. Other 
control-operator verb funct;ons l;mit the 
numbers and contention polarities of sess;ons 
with particular lUs for part;cular mode 
names, and also determine when sessions Nill 
be activated and deactivated. 

For an LU that supports parallel sessions, 
there are additional transact;on serv;ces 
components for the control operator. These 
LUs contain a chanqe-number-of-sess;o05 
(CNOS> service transaction program. When 
process;ng CNOS verbs, the COPR TP at one LU 
exchanges GOS var;ables with the CNOS service 
TP at. ;ts partner to reach mutual agreement 
about l i m; ts on ·the number of parallel ses­
sions between them. 

(Control-operator funct;ons are d;scussed in 
further detaH ;n "Chapter 5.4. Presentation 
Serv;ces--Control-Operator Verbs".) 

~ D;stribytion 5eryices 

SNA Distribution Services (SNADS> pr.ovides a 
set of ve.rbs that an application TP may issue 
to request asynchronous distribution of data. 

The service is provided by a network of dis­
tribution seryice units CDSUs> interconnected 
l:IY conversatl ons and sessions. Each DSU con­
sists of PS verb handlers and a collection of 
service TPs within the LU. The service TPs 
provide data storage, routing, and distrib­
ution asynchronously Nith the origin or des­
tination aP,,lic~tion programs. 

SNADS ;s described in the publication §!:!A 
Format mJS1 Protocol Reference Manual: Djs­
tribution Ser.vices. 

Docunent Interchange 5ervicn 

Document Interchange Architecture (DIA) 
describes formats and protocols for synchro­
nous exchange of documents by using 
basic-conversation verbs in a prescribed way. 
Document interchange services include service 
TPs for synchronous document transfer. 

Document interchange architecture is 
described in the publication Docurnent lnD!:.:: 
~ Archit19ture--Coocepts !!!sf Structures. 

OPTIONAL FUNCTIONS 

This section describes the principal optional 
function sets. 

MaPPina Function 

The 11appjnq function is an optional function 
of mapped conversations CPS.MC) that allows a 
TP to select transformations, called maps, to 
be applied to TP data at the sending and 
receiving TP protocol boundaries. tt!m! are 
non-SNA-defined transformation tables or pro­
cedures that can be defined by the installa­
tion a.t both the source and target LUs. Haps 
can spec i fy, for example, how fields of a 
mapped~conversation record are related to the 
TP variables (data record) referred to in 
protocol-boundary verbs. 

Each LU can support multiple maps. Each map 
is identified by a !!!!P name. The maps to be 
applied are selected by the transaction pro­
gram (via verb parameters> and by other maps 
C in an implementation-defined Nay) , as shown 
in Figure 2-27 on page 2-37. 

Three separate map-name name . spaces exist 
C terms in parentheses correspond to those in 
the figure>: 

1. Sender locally-known !!!!P name: This map 
name Cmap-name-1) is known to the TPs at 
the sending LU. It identifies a map 
(map-I) at the sending LU that defines 
the transformation performed by the send­
er from the form•t of the ser:icfing-program 
data (data-1) to the format of the MCR 
( data-2) that is sent on the conversa­
tion. This map .also defines a corre­
spondence between the sender 
locally-known map name Cmap-name-1) and 
the globally-known 111ap name ( map-name~2) 
described below. 

2. Globally-known !!!!P name: This map name 
(map-name-2) is known at both the sending 
and receiv;ng LUs, and is transferred on 
the conversation between sender ·and 
receiver. It identif;es a map (map-2) at 
the rece;ving LU. This map defines the 
transformation performed by the receiver 
from the format of the MCR received on 
the conversation (data-2> to the format 
of the data presented to the receiving 
transaction program (data-3). This map 

2-36 SNA Format and Protocol Reference Manual for LU Type 6.2 



source TP sends: I 
I 

map-name-I, data-I I 

* * 
* * 
'* *' I - I Sender map (map-I) 

* * -,-
1 
v 

transferred on conversation: 

map-name-2, data-2 

I 
I 
I 

--
* * 

* * 
'* *' I - I Receiver map lmap-2) 

* * -,-
1 
v 

target TP receives: 

map-name-3, data-3 
--------->I ---------------~>! 

I 
I Send 
I Mapping 

Figure 2-27. Map Name Usage by Mapped Conversations 

also defines a correspondence between the 
globally-known map name (map-name-2) and 
the receiver locally-known map name 
lmap-name-3) described below. 

3. Receiver locally-known !!!fil? nID!!.!!: This 
map name (map-name-3) is known to TPs at 
the receiving LU. This identifies the 
format of the data presented to the pro­
gram ldata-3J, e.g., it allows the pro­
gram to select the correct structure 
definition or format description for the 
data produced by the execution of the 
receiver map lmap-21. 

Mapping is performed by a PS.MC component 
called the mapper. 

The mapper at the sender selects the send map 
specified by the sender locally-known map 
name, which is supplied as a parameter of the 
MC_SENO_OATA verb. It performs the send map­
ping on the TP-supplied data, producing a 
mapped-conversation record. Using the sender 
map, the mapper also selects the 
globally-known map name. 

The LU sends the globally-known map name over 
the conversation in an SNA-defined map-name 
GOS variable (see "Appendix H. FM Header and 
LU Services Commands"), and sends the 
mapped-conversation record in a separate GOS 
variable. 

The mapper at the receiver selects the 
receive map specified by the globally-known 
map name received. It performs the receive 
mapping on the mapped-conversation record it 
receives, resulting in data formatted for 
presentation to the TP. Using the receiver 
map, the mapper also selects the receiver 
locally-known map name. PS.MC passes the 
receiver locally-known map name and the 
reformatted data to the TP as returned param­
eter values for the next receive verb issued, 
e.g., MC_RECEIVE_AND_WAIT. 

The receiving TP uses the receiver 
locally-known map name in a TP-determined way 
to interpret the received data. 

I 
I Receive 
I Mapping 

The TPs supply or receive a map name parame­
ter value for each send or receive verb 
issued, respectively. The LU, however, does 
not send another map-name GOS variable if the 
globally-known map name has not changed from 
that of the previous record sent. To accom­
plish this, the mapper at each LU retains the 
most recently sent and most recently received 
values of map-name-2 for the conversation 
(the send and receive map names can be di f­
ferent J. The retained values for each direc­
tion persist until changed or until the end 
of the conversation, regardless of interven­
ing turnarounds. 

Sync Point Function 

The sync point function allows all TPs proc­
essing a distributed transaction to coordi­
nate error recovery and maintain consistency 
among distributed resources such as data 
bases. 

The sync point functions affect protected 
resources. These include conversation 
resources and implementation- or 
installation-designated resources such as 
data bases. Any changes to a protected 
resource are logged so that they can be 
either backed out (reversed J if the trans­
action detects~ error, or commHted (made 
permanent) if the transaction is successful. 

The transaction programs divide the distrib­
uted transaction into discrete, synchronized 
logical !!!J.i!.l! of work ( LUWs), delimited by 
svnchronization points Csync points). !Cor­
responding sync points occur at each TP par­
ticipating in the distributed transaction.) 
LUWs are sequences of operations that are 
indivisible units for the application, i.e., 
any failure in an LUW invalidates the entire 
LUW (all LUW processing by all TPs for the 
transaction), so the transaction is backed 
out to the previous sync point. 

The LU components for the sync point function 
are shown in Figure 2-28 on page 2-38. 

Chapter 2. Overview of the LU 2-37 



application RESYNC 
transaction service 

program transaction 
---A.---- program I i·____. 

.----------v·-------------------v--------..... CNote 1 > 

PS 
sync point 
services 

( PS.SPS> 

PS 
local 

resource 

PS 
function-­
shipping 
resource 

• • • 
function- PS.CONY 
shipping 
resource 
control 

( non-SNA ) ( non-SNA > ( non-SNA > 

[ 

(Note 2> 

A jiF ' Al ·-;, 11 : ;~::3J 
v---v v---v v---v v v 

protection protection protection protection 
manager manager manager manager 

- - - - for 
local function--

resource shipping 
control resource 

(non-SNA> (non-SNA> 
A---A 

conversa­
tion 

resource 

----.A 

conversa­
ti on 

resource 

----A 
....----------~> 

. . ....... L, __ 
log <:---' 

manager <--------------' 
<----. 

• 

t loca~:1 rV;;L~Vl 1~;;1 
~ =~ C:J l::J 

NOTES: 

v 
log file 

I I I 
v v v 

local resource path control 

1. Function-shipping resource control recursively calls PS to C011111RA1icate with the partner. 
The conversation used for communication Ni th the partner has its own protection manager. 

2. PS components not relevant to sync point have been omitted from this figure. 

3. A distinct protection manager exists for each conversation resource created by PS. 

4. The non-SNA components are undefined protocol machines (UPMs >. 

Figure 2-28. Relationship of LU Components for Sync Point Functions 

2-38 SNA Format and Protocol Reference Manual for LU Type 6.2 

PS 



H;ghlights of the sync po;nt function are 
d;scussed below. CSee "Chapter 5.3. Presen­
tation Services--Sync Po;nt Services Verbs" 
for detaHs.) 

~ Point Control: The sync point funct;on 
at each LU is coordinated by PS.SPS. 

For each TP process part;c;pating in the d;s­
tdbuted logical un; t of work, the corre­
spond;ng PS.SPS tracks the state of that 
log;cal un;t of work. To do th;s, PS.SPS has 
protocol boundaries with the TP and w;th the 
protection managers for each conversation and 
for each protected local resource allocated 
to that TP. 

Logging: When process;ng a _g;ven logical 
unit of work, whenever a TP 1 ssues a verb 
that makes any changes to a protected 
resource, the corresponding resource pro­
tection manager logs the change so that, if 
necessary, the change can be backed out lat­
er. 

The log manager ma;nta;ns the log entries for 
each active LUW (i.e., for each act;ve trans­
action> on non-volatile storage, using 
implementat;on-defined data-management func­
tions. The same log is used to record all 
log entries for all the LU resources for the 
LUW. 

Resources Manager: When it creates the PS 
process, RM provides PS.SPS with access to 
the log. RM also logs conversation allo­
cations, thereby supplementing the work of 
the conversation protect;on manager. 

In some cases, a transaction program can ter­
minate normally before its sync point log 
entries are erased. In these cases, RM 
assumes the function of the terminated sync 
point control to complete the protocol and to 
release (forget) the log entries. 

Protection Managers: Each protected 
resource, e.g., a conversation or a local 
data base, has a protection manager that logs 
significant state changes during a logical 
unit of work, detects errors affecting the 
integrity of the changes, and commits or 
backs out the changes as determined by the 
sync point protocol. 

The protection manager for a conversat;on is 
defined by SHA; protection managers for other 
Cnon-SNA) resources are defined by the imple­
mentation, but have a similar protocol bound­
ary to PS.SPS. The protection managers form 
a sublayer between PS verb handlers and the 
resource-control components. 

~ f2ini Protocol: At the end of a logical 
unit of work, an applicat;on-des;gnated TP 
initiates sync point. The LUs then carry out 
a protocol involving all local protected 
resources and conversations being used by the 
TP, and all partner LUs and TPs directly con­
nected by those conversati04IS• to determ;ne 

whether any TP or protected resource detected 
an error in the LUW, and to propagate this 
result to the other LUs and TPs. 

When a TP issues a verb that invokes the sync 
point function Ce.g., SYNCPT, BACKOUT> its 
PS.SPS coordinates the sync point protocol. 
PS.SPS exchanges sync point commands, in the 
form of present a ti on services CPS) headers 
and FM headers, over the TP's conversations 
with other TPs. Each PS.SPS component for 
the transaction performs similar exchanges, 
in turn, with its TP's conversation partners. 
The PS.SPS components also determine the sta­
tus of local non-SHA resources by exchanging 
appropriate commands across their internal 
protocol boundaries. These exchanges direct 
the protection managers to complete any pend­
ing log entr;es for the LUW. 

The sync point protocol culminates Ni th a 
mutual dec;s;on among all TPs processing the 
LUW either to commit or to back out the LUW. 

Commitment and Back-Out: When the sync point 
protocol is complete at a particular TP, the 
resource control components use the LUW log 
entries to supply the information needed 
! e.g., data base change records) to perform 
the required comm; tment or back out. They 
then notify PS. SPS to erase the log entries 
for that LUW. 

Resvnchronization: An LU failure might occur 
during the sync point protocol, so that some 
LU never receives an expected LUW status 
report. To recover from this case, the other 
LUs can wait until the failing LU is reini­
tialized, and then the LUs perform a resyn­
chronization C resync) protocol to complete 
the sync point processing at each LU. Resync 
uses service transaction programs to exchange 
sync point status among the LUs. 

When the fail;ng LU ;s reactivated, the LU 
completes the resync transaction before run­
ning any other transaction programs that 
require sync point. The resync service TP ;s 
initiated by RM at some LU, typically at the 
sync point initiator; this TP attaches the 
resync TP at its partners, which continue 
propagating the resync TP throughout the LUs 
that had been processing the distributed 
transaction. 

The first step of the resync transaction is 
to validate the integrity of the LU logs, 
i.e., to determine that all LUs' logs conta;n 
consistent entries for the same LUW. To do 
tMs, the resync service TPs exchange 
EXCHANGE_LOG_NAME 6DS variables on the con­
versation. Next, the service TPs exchange 
COMPARE_STATES GOS variables to determine the 
status of the sync point protocol at the time 
of failure. PS.SPS then uses this informa­
tion to complete the sync point protocol. 
(See "Appendix H. FM Header and LU Services 
Commands" for the SHA-defined format of the 
EXCHANGE_LOG_NAME and COMPARE_STATES GOS var­
tables.) 

Chliapter 2. OvervieN of the W 2•39 



JW:A STRU¢tJRES 

Thti LU 11aintains data structures representing 
the state. and configuration of its resources. 

Some system-definition data structure ele­
ments represent the LU-accessed network 
resources. These structures describe the 
characteristics of the LU itself., the trans­
action programs that the LU can run, the 
control-points that serve this LU, the part­
ner LUs with which this LU can communicate, 
and the modes characterizing possible ses­
sions with particular partner LUs. 

Other data structure elements represent the 
dynamic environment created by the. LU. The 
principal components of this environment are 
the transaction program instances in exe­
cution (represented by transaction-program 
processes> the active sessions with other LUs 
( represented by half-session processes J, and 
the active conversations (represented by con­
versation resources). This environment also 
includes . the relationships of the dynamic 
components to the LU-accessed network 
resources and to each other. 

LU-ACCESSED NETWORK RESOURCES 

Figure 2-29 on page 2-41 illustrates the data 
structures that represent the LU-accessed 
network resources. 

The LUCB structure (and some associated lists 
not shown) describe the local LU. This 
information includes the LU's fully qualified 
name and the set of optional functions (e.g., 
parallel sessions and mapping> that the LU 
supports. The LUCB is also the anchor for 
lists of data structures describing the other 
LU resources. 

A TRANSACTION_PROGRAM structure (and associ­
ated lists not shownl describe the trans­
action programs at the local LU. This 
information includes the transaction program 
name, its current availability status, and 
the set of optional functions (e.g., sync 
point and mapping> that it supports. 

An CPLU_CAPABILITY structure describes a c9n~ 
trol point. This information includes the 
allowed formats of address.eis and the set of 
session-services RUs used on the LU;..cp ses­
sion. 

A PARTNER_LU structure describes a remote LU 
(potential partner LU>. This information 
includes the remote LU' s names: local LU 
name, fully:..qualified LU name, and uninter­
preted LU name. It also includes the set of 
the LU's optional capabilities such as paral­
lel sessions. The PARTNER_LU structure also 
contains a list of mode descriptions. 

A MOOE structure describes a mode. This 
information includes the mode name and the 
set of optional functions that are supported 

by the remote LU on a mode basis, e.g., sync 
point. It also includes the session para11a­
ters that characterize this mode, such as 
maximum allowed RU size, session-pacing win­
dow size, and session cryptography parame­
ters. The mode structure also indirectly 
describes link characteristics: the mode name 
is used by the control-point as the key to 
tables identifying the links and routes to be 
used for sessions for that mode. 

PROCESSES AND DYNAMIC RESOURCES 

Figure 2-30 on page 2-42 illustrates the 
principal data structures and processes, and 
their relationships, that represent the 
dynamic environment. The formal description 
represents these relationships in various 
ways such as pointers between control blocks, 
keys of elements in lists, and intermediate 
dynamic control blocks. 

The processes also contain state information 
used by LU functional components; this is 
described in more detail in chapters con­
cerned with the relevant functional compo­
nents. 

The TP process represents a transaction pro­
gram instance. It identifies the transaction 
program code that it is using. There 111ay be 
multiple transaction program processes exe­
cuting the same transaction program code. 

The HS process represents a half-session. It 
identifies the remote LU and mode with which 
it is associated. A mode may be associated 
with many half-session processes, but each HS 
process is associated with only one mode. 

The RCB structure represents a conversation 
resource. The RCBs are the central elements 
in the dynamic configuration of the LU: they 
represent the connection of a transaction 
program to a half-session; this connection is 
dynamically created and destroyed, and allows 
an asynchronous (SEND/RECEIVE> relationship 
between .TP and HS. The RCB identifies the 
local · TP u5ing the conversation and the 
half-session being used, if any. Because a 
session might not be immediately available 
,when a TP. allocates a conversation, the RCB 
also identifies the remote LU (PARTNER_ LU I 
and mode name (HODEi for the desired session. 
Many conversation resources, hence RCBs, may 
be associated with the same local TP, but 
each .RCB may be associated with only one 
local TP, one partner LU, one mode, and one 
half-session. 

Figure 2-30. on page 2-42 illustrates several 
of the possible relationships among these 
structures. In the figure: 

• An active session is associated with the 
contr1>l-point <CPCJ. 

2•40 SNA Format and Protocol Reference Manual for LU Type 6.2 



.. 
• 
• 

TP6H 

TP6H 

TP6H 

LUCB 

HOOE 

HOOE 

HOOE 

HOOE 

HOOE 

HOOE 

HOOE 

HOOE 

HOOE 

CPC 

PTNR 

PTNR 

PTNR 

PTNR 

• 
• 
• 

• 
• 
• 

• • 
• 

LEGEND: 
Vertical lines represent lists of subordinate resources 

Abbr. 
LUCB: 
TP6H: 
CPC: 
PTNR: 
HOOE: 

Local LU information 
Transaction Program Code information 
Control Point information 
Partner LU information 
Hode information 

Data Structure ~ 
( LUCB> 
lTRANSACTION_PROGRAH) 
(CPLU_CAPABILITY) 
( PARTNER_ LU J 
lHODE) 

Figure 2-29. LU Static Data Structures (Example> 

(This session is used directly by LU 
internal components. so no relationship 
to a transaction program is shown.) 

• RCB E associates active TP A for trans­
action program code 1 with mode name u, 
awaiting a free session with mode name U. 

I 

I 

• Active TP B for transaction program code 
2 has two activl!! conversations: 

RCB F connects it to remote LU W vi a 
session K with mode name U• 

Chapter t. Overview of the LU 2-41 



• 
• 
• 

LUCB 

,___"_s_ ... I : : : : :: : :: : : .__ ___ c_P_c ___ _, 

TPGM 1 : : : : : : I TP A 

:111111 RCB E !***************************************: PTNR W 

:1111111111 _I _H_s_K_I : : : : :: : : : : : -"°-D_E _u_.---

.. T_P_GM_2_ : : : : : : .. 1 _T_P_B__. : MODE 

TPGM 3 

... · I .... . . 

TPGM 4 

: : . · I . ... 

I I r:::::-:-1 I 
: 1111~111111 

:1111111 RCB 6 111111: 

I 
I 
I 
I 
I 
I 

!::::::::::: ___ _._ .. ___ ... HS M MODE LI----' 

!::::::::~ ___ _._ HS N PTNR X 

MODE 

PTNR Y 

TP c :1111111111 ... l _H_s_P__,I : : : :: : : : : :: ,__r10_DE_v_;----1 

I I .-----. 
: 1111 I RCB H I 1111111111111111 j HS Q I : : : : : : : : : : : ,__MO_D_E ----

:111111 I RCB I 111111: PTNR 

TP D :11111111111 ... ! _H_s_R__,I :: : : : : ~ : :: : ,__MOD __ E _z_:---

: :111111 RCB J 11111111111111111~::::::~ 
• • 

• 
• 

• • 
• 

LEGEND: 
Vertical lines represent lists of subordinate resources 
::::association of process to static data elements 
1111 association of processes via RCB dynamic data element 
**** association of RCB with MODE in lieu of unavailable HS 

Abbr. 
LUCB: 
TPGM: 
CPC: 
PTNR: 
MODE: 
TP: 
RCB: 
HS: 

Local LU information 
Transaction Program Coda information 
Control Point .information 
Partner LU information 
Mode information 
Transaction program process 
Conversation resource infor11ation 
Half-session process 

12!.!! Structure !:l!!!!!I 
( LUCB> 
(TRANSACTION_PROGRAM> 
<CPLU_CAPABILITY> 
(PARTNER_ LU) 
(MODE > 

<RCB> 

Figura 2-:,0. LU Dynamic Data Structures and Processes <Example> 

• 
• 
• 

• 
• • 

RCB G connects it to remote LU Y vi a 
session P with mode name V. 

• LU N has two free sessions, tt and N, each 
with mode name L. 

2-42 SNA Format and Protocol Reference Manual for LU Type 6.2 



• Remote LU X has a single mode name with 
no active sessions. 

• No active TP instances exists for trans­
action program 3. 

• Two active TP instances exist for trans­
action program 4: TPs C and D. 

• Two conversations G and H exist with 
remote LU y, each using a different mode 
name. 

• Two conversations I and J use separate 
sessions R and T, both with mode name Z • 

.Yl STARTUP AND SHUTDOWN 

LU startup consists of four phases: creating 
the LU processes, activating the CP-LU ses­
sion, initiating the control operator trans­
action program, and setting the LU parameters 
and session limits. The LU then initiates 
programs and activates sessions in response 
to further operator, transaction program, or 
partner-LU actions. 

To shut down the LU, the steps are reversed, 
but some can be omitted. The minimum steps 
to terminate communications include resetting 
the session limits and deactivating the CP-LU 
session. 

LU PROCESS CREATION AND TERMINATION 

Figure 2-32 on page 2-45 shows the process 
creation and termination hierarchy for the 
LU. 

First, the PU in the node creates two dynamic 
processes, RM and LNS. These processes con­
tinue running thereafter. 

The PU creates the CP-LU half-session Nhen it 
receives ACTLU session-control RU from the CP 
(see "CP-LU Session Activation"). 

The TP and HS processes are discussed in 
"Running State" on page 2-44. 

CP-LU SESSION ACTIVATION 

The CP in the network cthe PNCP or the SSCP) 
activates the CP-LU session for the LU by 
sending ACTLU, to which LNS responds, if 
ready, with +RSPCACTLU). This session acti­
vation is required prior to any LU-LU session 
initiation or termination. 

When the CP determines that no further ses­
sion initiation or termination activity is 
required, it deactivates the CP-LU session by 
sending DACTLU to the LU. 

RESOURCE RELATIONSHIPS IN A DISTRIBUTED 
TRANSACTION 

In contrast to Figure 2-30, which illustrates 
the data structures for several transactions 
from the perspective of a single LU, Fig­
ure 2-31 on page 2-44 illustrates the 
relationships among data structures at 
several LUs from the perspective of a single 
distributed transaction. In this case, the 
paired half-sessions connect LUs, and the 
paired conversation resources, represented by 
RCBs, connect transaction program instances. 

If the CP-LU session is interrupted because 
of session outage, the CP attempts to reacti­
vate it. This need not interrupt normal 
LU-LU session traffic. 

CONTROL-OPERATOR TRANSACTION PROGRAM INITI­
ATION 

RM creates a PS process and initiates the 
control-operator TP. 

CONTROL-OPERATOR ACTIONS 

The control operator specifies the LU parame­
ters describing the LU-accessed network 
resources: the control points, transaction 
programs, partner LUs, and modes. !An imple­
mentation might provide this function without 
requiring explicit operator interaction, 
e.g., the LU parameters might be defined at 
system-definition time.) 

The operator initialize~ session limits with 
the partner LUs by 1ssuing the INITIAL­
IZE_SESSION_LIMIT verb for the relevant mode 
names. For parallel-session mode names, this 
verb activates an LU-LU session using the 
SNA-defined mode name SNASVCMG C if not 
already active) and establishes mutually 
agreeable session limits for other mode names 
by exchanging CNOS GDS variables on that ses­
sion. This verb optionally causes activation 
of a predetermined number of sessions for the 
specified mode name. 

When sessions are to be deactivated, the con­
trol operator issues RESET_SESSION_LIMIT for 
the mode name. For a parallel-session con­
nection, this causes another CNOS GDS vari­
able exchange to elicit the partner LU's 
cooperation in the session shutdown. In any 
case, this verb causes the LU to eventually 
cease initiating new transaction programs and 
activating new sessions !drain>. As sessions 
become unused, RM and LNS deactivate them. 

Chapter 2. Overview of the LU 2-43 



TPGH TPGH TPGH 

TP TP 

====================== =========-==~=============== 

I we I LU C 

TPGH 

========================================================== 

LU A LU D 

LEGEND: 
------- A.ssociat;on of a process with ;ts data structures 
•••••• Conversat;on (connection between transaction progra11 ;nstances [TPsJ) 
====== Session (connection between LUs> 
TPGH: Transaction program data structure (represents transaction progra11 code) 
RCB: Resource control block (represents a conversat;on> 
TP: Transaction program process instance 
HS: Half-session process instance 

Figure 2-31. Data Structure Relationships among LUs for a Distributed Transaction (Example> 

The LU ;n;t;ates no further act;ons to shut 
down the LU. Any further act;ons are at the 
in;t;at;ve of the CP or the PU. 

RUNNING STATE 

Once the CP-LU session has been activated and 
the LU-LU session limits have been set, the 
LU is ready to process transactions. 

RH creates a transacHon-progra11 process Nhen 
it receives an Attach or an. initial TP invo-

cat;on requestJ ;t destroy!i that process when 
PS indicates that the TP has completed and 
all its conversations have been deallocated. 

Either RH or the partner LU can request ses­
sion activationJ in either case, LNS performs 
the relevant processing. LNS creates an HS 
process for an LU-LU session and connects it 
to a path control ;nstance whenever it sends 
or receives BIND. LNS destroys that process 
when it has sent or received a positive 
response to UNBIND, has disconnected the 
half-session from path control lby sending 
PS_HS_DISCONNECT), and has notified the CP 

2-44 SNA Format and Protocol Reference Manual for LU Type 6.2 



PU -----> 

PU ------> 

Resources 
Manager 
Process 

!RM) 

LU 
Network 
Services 
Process 

( LNS) 

·------> 

I 

• 
Transact;on 
Program I 
Presentat;on'----------. 
Services 
Process 

·-------------------------------------.... • 
• 

• 
r 

LU-CP 
Half-Session !­

Process 
.._ ______ A,------~ 

• 
• 

• 

v~ 
LU-LU 

Half-Session 
Process 

• 
• 

PU •----------------------------------' 

LEGEND: 
•---->process creation !The arrow points from creator to created.) 

Figure 2-32. LU Process Creation and Termination Hierarchy 

that the session is ended <by sending 
SESSEND). 

EXAMPLE 

Figure 2-35 on page 2-50 and Figure 2-36 on 
page 2-51 illustrate typical interactions at 

the local and remote LUs, respectively, for 
an LU shutdown sequence. LU startup and 
shutdown are described in more detail in 
"Chapter 5.4. Presentation Serv­
ices--Control-Operator Verbs" • 

Chapter 2. Overview of the LU 2-45 



PROTOCOL BouNDARY SUl1t1ARY : 

This secti0n lists the exterrnal message units 
and internal records exchanged by LU compo­
nents. For full descriptions of these struc­
tures, see "Appendix A. Hode Data Structures" 
in Appendix A 

EXTERNAL PROTOCOL BOUNDARY VERBS AND MESSAGE 
UNITS . 

f.l?=If Protocol Boundarv: Transaction Program 
Verbs 

TRANSACTION_PGM_VERB 

Basic-Conversation Verb Variants 

ALLOCATE 
CONFIRM 
CONFIRMED 
DEALLOCATE 
FLUSH 
GET_ATTRIBUTES 
GET_TYPE 
POST_ON_RECEIPT 
PREPARE_TO_RECEIVE 
RECEIVE_AND_WAIT 
REQUEST_TO_SENO 
SENO_DATA 
SEND_ERROR 
TEST 
WAIT 

Mapped-Conversation Verb Variants 

MC_ALLOCATE 
MC_ CONFIRM 
MC_ CONFIRMED 
MC_DEALLOCATE 
MC_FLUSH 
MC_GET_ATTRIBUTES 
MC_POST_ON_RECEIPT 
MC_PREPARE_TO_RECEIVE 
MC_RECEIVE_AND_WAIT 
MC_REQUEST_TO_SEND 
MC_SENO_DATA 
MC_SEND_ERROR 
MC_ TEST 

Control-Operator Verb Variants 

ACTIVATE_ SESSION 
CH ANGE_ SESSION_ LIMIT 
DEACTIVATE_SESSION 
INITIALIZE_SESSION_LIMIT 
PROCESS_SESSION_LIMIT 
RESET_SESSIOH_LIMIT 

LHS-PU Protocol Bo!.ft)dary 

LNS_TO_NNM_RECORD 
ACTLU_RSP_SEND_RECORD 
BIND_RQ_SEND_RECORD 
BINO_RSP_SEND_RECORD 
DACTLU_RSP_SEND_RECORD 

HIERARCHICAL_RESET_RSP 
PC_CONNECT 
PC_HS_CONNECT 
PC_HS.DISCONNECT 
SESSION.ROUTE_INOP_RSP 
UNBIND_RQ_SEND_RECORD 
UNBIND_RSP~SENO_RECORD 

NNM_TO_LHS_RECORD 
ACTLU_RQ_RCV_RECORD 
BINO_RQ_RCV_RECORD 
BINO_RSP_RCV_RECORD 
DACTLU_RQ_RCV_RECORD 
HIERARCHICAL_RESET 
PC_CONNECT_RSP . 
SESSION_ROUTE_INOP 
UNBIND_RQ_RCV_RECORD 
UNBIND_RSP_RCV_RECORD 

HS-PC Protocol Boundary 

PC_TO_HS_RECORD 
HS_TO_PC_RECORD 

INTER-COMPONENT STRUCTURES 

PS-HS Protocol Boundary 

PS_TO_HS_RECORD 

Variants 
CONFIRMED 
REQUEST_TO_SEND 
SENO_DATA_RECORD 
SEND_ERROR 

HS_TO_PS_RECORD 
CONFIRMED 
RECEIVE_DATA 
RECEIVE_ERROR 
REQUEST_TO_SEND 
RSP_TO_REQUEST_TO_SEND 

P5-RM Protocol Boundarv 

PS_TO_RM_RECORD 
ALLOCATE_RCB 
CHANGE_ SESSIONS 
DEALLOCATE_RCB 
GET_SESSION 
RM_ACTIVATE_SESSION 
RM_DEACTIVATE_SESSION 
TERMINATE_PS 
UNBINO_PROTOCOL_ERROR 

RM_TO_PS_RECORD 
ATTACH_RECEIVED 
CONVERSATION_FAILURE 
RCB_ALLOCATED 
RCB_DEALLOCATED 
RM_SESSIOH_ACTIVATED 
SESSION_ALLOCATED 

2-46 SNA Format and Protocol Reference Manual ·for LU Type 6.2 



~ Protocol Boundary 

RM_TO_HS_RECORD 
BID_RSP 
BID_WITH_ATTACH 
BID_WITHOUT_ATTACH 
BIS_REPLY 
BIS_RQ 
HS_PS_CONNECTED 
RTR_RQ 
RTR_RSP 
YIELD_SESSION 

HS_TO_RM_RECORD 
ATTACH_HEADER 
BID 
BID_RSP 
BIS_RQ 
BIS_REPLY 
FREE_ SESSION 
RTR_RQ 
RTR_RSP 

COMPONENT INTERACTIONS AND FLOW SEQUENCES 

The following figures illustrate both the 
internal-protocol-boundary flow sequences 
among LU components and the external flows 
between two LUs that result from 
basic-conversation verb issuances. 

Each sequence is illustrated by a pair of 
figures on facing pages. Each separate fig­
ure represents the complete flow as seen by a 
single LU. The figure labeled local 1Y 
represents the LU that initiates the sequence 
being illustrated; the figur!! labeled remote 
LU represents the partner LU. For cases 
illustrating a race between two LUs, the LUs 
are distlnguished as first speaker and 
bidder. The flows through the path control 
network are shown in the column nearest the 
center margin, and are replicated in each 
figure! numerals in parentheses correlate 
corresponding flows in the facing figures. 
When flows cross in the path-control network, 
the crossing is illustrated on the sending 
side of the delayed flow. 

NOTATION 

For the interpretation of labels on the 
arrows, see the following. (In some cases, 
these names have been abb.reviated.) 

RM-LNS Protocol Boundary 

RM_TO_LNS_RECORD 
ACTIVATE_ SESSION 
DEACTIVATE_ SESSION 

LNS_TO_RM_RECORD 
ACTIVATE_SESSION_RSP 
CTERM_DEACTIVATE_SESSION 
SESSION_ACTIVATED 
SESSION_DEACTIVATED 

LNS-HS Protocol Boundary 

LNS_TO_HS_RECORD 
HS_SEND_RECORD 
INIT_HS 

HS_TO_LNS_RECORD 
ABORT_HS 
HS_RCV_RECORD 
INIT_HS_RSP 

• For verb and verb-parameter names 
ITP-PSJ, see SHA Transaction Programmer's 
Reference Manual for 1Y Ive! Ll 

• For protocol-boundary records and message 
units ITP-PS, PS-RM, RM-LNS), see "Proto­
col Boundary Summary" on page 2-46 

• For RU names ( LNS-LNS, HS-HS), see "Ap­
pendix E. Request-Response Unit (RU> For­
mat.s" 

• For RH indicators ( LNS-LNS, HS-HS), see 
"Appendix D. RH Formats" 

• 

The following abbreviations for chaining 
indicators are also used: 

FIC (first in chain> = (BC, ~Ee> 

MIC (middle in chain> = l~Bc,~EC> 
LIC Clast in chain> = 1~Bc, EC> 

OIC (only in chain> = (BC, EC> 

For data elements of RUs ( LNS-LNS, 
HS-HS), see "Appendix H. FM Header and LU 
Services Commands" 

Chapter 2. Overview of the LU 2-47 



TP PS RM lHS HSlFSP> (to P.rtner LU> 

ALLOC(when allocated> ALLOCATE_RCB 
o--------------> >o 

RCB_ALlOCATEDIOK) I 
o<---------------'-

6E T SESSION(NO_ATTACH> ACTIVATE_SESSION 1 BIND2 
'--------------->'ft---------------:>o---------------------.....-> (a) 

+RSP(BIND> 2 

l o<-----------'-------------- (b) 

1 INIT _HS 
.... --->o 

ACTIVATE_ INIT_ I CRV3 

SESSION_ HS_ ... --------------------> ( c) 
SESSION_ALLOCATED(OK) RSP(+) RSP(+) +RSP(CRV> 3 RC=OK 

o<--------------o<c~-------------o<--------------~< o<.----------------------~ (d) 

SEND_DATA SEND_DATA(ALLOC,FtfH,DATA,NOT_END_OF_DATA) 
I · ... I _H_s __ e_s __ c_DNN __ Ec_T_E_o ____ >o 

._ _____________ > _______________________________________ >·0-------------------> (1) 

RC=OK I 
o<--------------'-

RQEl,DATA 
> (2) 

SEND_DATA SEND_DATA(DATA,NOT_END_OF_DATA> RQEl,DATA 
> > (3) 

RC=OK I o< 

I SEND_DATA(DATA, 
RECEIVE_AND_WAIT PREPARE_TO_RCV_FLUSH> EC,RQEl,CD,DATA 

> > > 14) 

RC=OK,DATA_COMPLETE RCVD_DATA(DATA,DEALLOCATE_FLUSH> 
o< o<----------------------------------o·<---------------------- (5) 
1 RECEIVE_ AND_ WA IT FREE_SESSION I 
---------------->o o<------------------------'-

RC=DEALLOCATE_NORMAL 
o<----------------' 
!DEALLOCATE LOCAL > DEALLOCATE_RCB >o 

RC=OK RCB_DEALLOCATED I 
o<---------------o<c-------------'-

NOTES: 
1 Session-activation flows to PU, CP, and path control have been omittedJ 

see "Chapter 4. LU Network Services" for details. 
2 BIND/RSPCBIND> flows through the PU (not shown>. 
3 CRV/RSPCCRV> flows only when session-level cryptography is being used. 

Figure 2-33 •. Complete Conversation Example--Local LU 

2•48 SNA Format and Protocol Reference Manual for LU Type 6.2 



Ito P!rtner LU) lBidderlHS LNS RM PS TP 

BIND2 1 

(a) >o 
I 1 

+RSP(BINDl2 

INIT_HS I O< 
CRV3 

(c) ------------>io· 
+RSPlCRVl 3 . ,. INIT_ 

ldl <--------_...._.....,___,_ HS_ 
.'-1 _R_s_P_< +_•_>ci __ s_es_s_1_0N ___ A_c_r_1_vA_r_e_o >o 

(1) 

(2) 

13) 

14) 

BC,RQEl,•BB,FMH-5,DATA BID 
--------------------~ro------------------>o 

BID_RSP(POS) I 
o<-----------------~ I ATTACH_HEADER 
---------------------->o--------------> >o 

ATTACH 

HS_PS_CONNECTED I RECEIVE_AND_WAIT I 
o<----------------------~ o< ' 

RQEl,DATA RCVD_DATAlDATA,NOT_END_OF_DATAl 
----------------------->o·--------------------------------->o 

RC=OK, 
RQEl,DATA RCVD_DATA(DATA,NOT_END_OF_DATA) WHAT_RCVD=DATA_*COMPLETE ------------------->.,_ ___________________________________ > >o 

RCVD_DATAIDATA, 
PREPARE_TO_RCV_FLUSHl 

o< RECEIVE_AND_WAIT I 
RC=OK, 
WHAT_RCVD=DATA_COMPLETE 

-----------------------.... ;~------------------------------> >o 
oicRECEIVE_AND_WAIT I 
I RC=OK, 
...... AT_RCVD=SEND 

~-....... ---------->o 
- SEND_DATAlDATA,NOT_END_OF _DATA) SE.ND_DATA I 
'o<------------------------------R'c----------~-

RC=OK 
------------>o 

BC,EC,RQEl,CEB,DATA SEND_DATAlDATA,DEALLOCATE_FLUSHl DEALLOCATE FLUSH I 
(5) <-----------------------eK------------------------------------0<--------------~-

I

• DEALLOCATE_RCB I 
o<------------~ I RCB_DEALLOCATED >·.,__R_c_=_OK _________ >o 

FREE_ SESSION 
----------------->o 

NOTES: 
1 Session-activation flONS to PU, CP, and path control have been 011itted. 
2 BIND/RSP( BIND) flows through •thf! PU I not shown). 
3 CRV/RSPICRV> flows only whe!I' session-level cryptography i.s being used. 

Figure 2-34. Complete Conversati~ Example--Remote LU 

Chapter 2. Ov.ervieN of the LU .2,.49 



(to partner LU> 

RESET_SESSIOH_LIHIT 1 

(if parallel session, CNOS exchange occurs here) o<---------------------------------> (*) 

CHANGE_SESSIONS2 o-------->o 
r 

(drain actionl>3 BIS_RQ BIS,RQ,BC,EC,RQEl,~BB,~CEB 
Repeat for 0------------> > ( U 

NOTES: 

each session 
for the 
specified 
mode name. 

< BIS_REPLY 
o< 

DEACTIVATE_SESSION 4 

> 

4 o< 

BIS,RQ,BC,EC,RQE3,~BB,~CEB 

o< (2) 

UNBIND 5 

> Ca> 
+RSPCUNBIND> 5 

(b) 

1 For specific-session deactivation, substitute DEACTIVATE_SESSIOH and eliminate the CNOS exchange. 
2 For specific-session deactivation, substitute RH_DEACTIVATE_SESSION and eliminate the drain action 

3 Drain action: wait until no allocation requests allowed by drain state are pending, 
then wait until session is in between-brackets state, i.e., +RSPCCEB> is sent or received. 

4 Session-deactivation flows to PU and CP have been omitted. 
!I UNBIND/RSPCUNBIND) flows through the PU (not shown> 

Figure 2-35. Session Deactivation--Local LU 

2-50 SNA Format and Protocol Reference Manual for LU Type 6.2 



(to partner LUI CB;dderlHS LHS RM PS 

c;f parallel session, CHOS exchange occurs herel 

BIS_RQ 1 > >o 
(drain actionl 3 

(l) 

BIS_REPLY I o< 0 repeat for ( 21 <-----------------' 
> each session 

UHBIHD 5 SESSIOH_DEACTIVATED 

j 
in mode 

> >o 

I 4 

(a) 

+RSPCUHBIHD1 5 

Cb> <------------------' 
NOTES: 

3 Dra;n action: wa;t unt;l no allocation requests allowed by dra;n state are pending, 
then wait until sess;on ;s ;n between-brackets state, ;.e •• +RSPCCEBI is sent or received. 

4 Session-activation flows to PU and CP have been omitted. 
5 UNBIHD/RSPCUNBIHDI flows through the PU (not shown). 

CHOS TP 

Chapter 2. Overview of the LU 2-51 



IP PS Rtt HS<FSP> <to partner w > 

ALLOC(when allocated) ALLOCATE_RCB o----------> >o 
RCB_ALLOCATEDCOK) I 

o<-----------'· 
GET SESSION<NO_ATTACH) HS_PS_CONNECTED 

"---------> >o 
SESSION_ALLOCATEDCOK>j 

o<.------------~,o<------------...... 
RC=OK 

I SEND_DATA ... -------->o 
RC=OK I 

o<.----------' I CONFIRM SEND_DATACALLOC.FttH,DATA,CONFIRH> OIC,BB.RQD2l3.ATTACH,data 
... -----------> > (l) 

RC=OK CONFIRMED +RSP 
(2) 

Figure 2-37. ALLOCATE Cwhen allocatt!dh C.ONFIRH <by First Speaker) -".'Local LU 

2".'52 SNA Format.and Protocol Reference Manual for LU Type 6.2 



(to partner LU> HSI Bidder> RM PS IP 

(1) ------------------->o--------->o 
BID_RSPC PDS) I o<---------' I ATTACH_HEADER >·o---"-TT_A_c_H ___ >a-------->o 

HS_PS_CONNECTED I RECEIVE_AND_WAIT I o< · o<---------..... I RC=OK, 
RCVD_DATA!DAJA,CONFIRM> WHAT_RCVD=DATA_*COMPLETE 

~-------------------------->o--------->o 

RECEIVE_AND_WAIT I o<•-----------'· 
RC=OK, 
WHAT_RCVD=CONFIRM 
~------->o 

CONFIRMED I 
(2) <-----------------,0<------------------~·<-----------' 

+RSP CONFIRMED 

I RC=NONE 
~---------->o 

Figure 2-38. ALLOCATE !when allocated>, CONFIRM (by First Speaker> --Remote LU 

Chapter 2. Overview of the LU 2-53 



TP PS RM 

ALLOCATE_RCB ALLOCCdelayed) 

RC=OK 
> >o 

RCB_ALLOCATEO(OK) I 
o<:-------o<--------'-
1 SEND_DATA 
~-----~-~>o 

RC=OK I 
o<.---------

HSCFSP) (to partner LU l 

OIC,BB,RQD2f3,ATTACH,data 1 CONFIRM GET_SESSIONCATTACH > BID_WITH_ATTACH 
~-------~> >o------->o------------> Cl) 

SESSION_ALLOCATEDCOK>l 
o<-------...... I HS_PS_CONNECTED 

~-------->o 

RC=OK CONFIRMED +RSP 
(2) 

Figure 2-39. ALLOCATE Cdelayed), CONFIRM (by First Speaker) --Local LU 

2-54 SHA Format and Protocol Reference Manual for LU Type 6.2 



( l) 

<to 12•dper W > HSCBidder) RM PS TP 

OIC1BB1RQD2f 31ATTACH,data BID 
----------------------->ci....------------>o 

+RSP 

BID_RSP( POS) I 
o<.------------....... 

ATTACH I ATTACH_HEADER 
~--------------~1>-------------->c~------------->o 

Hs_es_coNNECTED o<RECEIVE_AND_WAIT I 
ol< RC=~, 
~CVD_DATACDATA,CONFIRM> WHAT_RCVD=DATA_*COMPLETE 

~------------------------------> >o 

CONFIRMED 

RECEIVE_AND_WAIT I 
o<--------------'-

o< 

I 

RC =~ • 
WHAT_RCVD=CONFIRM >o 

CONFIRMED I 
RC=NONE >o 

Figure 2-40. ALLOCATE Cdelayedl, CONFIRM Cby First SJHHtker) --Remote LU 

Chapter 2. OVervieN of the LU 2-55 



IP PS RM HSfFSP> Uo partner W> 

ALLOCfdelayed> ALLOCATE_RCB 
r>--------------~------------~>o 

RC=OK RCB_ALLOCATED(OK) I 
o<------------~,o<---------------

1 SEND_DATA 
~-------------->o 

RC=OK I 
o<------------~-

1 RCV_AND_WAIT 6ET_SESSfATTACH> BID_WITH_ATTACH OIC,BB,RQEl,CD,ATTACH,deta 
- > > > (1) 

SESSION_ALLOCATEDfOK>l 
o<---------------

1 HS_PS_CONNE~TE~ 

RCVD_ERROR -RSPf0846) 

RC=PROG_ERROR_ RCVD_DATAfFMH,DATA, 
PURGING PREPARE_IO_RCV_FLUSH> OIC,RQE1,CD,FMH7 

o< o<-----------------------------0-c---------------------- (3) 

Figure 2-41. ALLOCATE (delayed), RECEIVE_AND_WAIT fby First Speaker) ~-Local LU 

2-56 SNA Format and Protocol Reference Manual for LU Type 6.2 



(1) 

(2) 

(3) 

Cto partner b!L! HSCBidder) RH PS JP 

OIC,BB,RQEl,CD,AJJACH,data BID 
-------------------->o-------->o 

-RSPC0846) 
< 

OIC,RQE1,CD,FHH7 
< 

BID_RSP( POS) I 
o<-----------
1 ATTACH_HEADER . >n---A_TT_A_c_H ____ n_------->o 

HS_PS_CONNECTED I RECEIVE_AND_WAIJ I 
o< - o<---------'-

RCVD _DAT A! DAT A, RC=OK, 
PREPARE_TO_RCV_FLUSH) WHAT_RCVD=DATA_*COHPLETE ..._ __________________________ > >o 

SEND_ERROR 
o< 

SEND_DAIACFHH,DAJA, 
PREPARE_TO_RCV_FLUSH) 

< 

o< 
SEND_ERROR I 
RC:OK I '--------------->o 

< 
RECEIVE_AND_WAIT I 

Fig\.lre 2-42. ALLOCATE !delayed>, RECEIVE_AND_WAIT Cby First Speaker) --Remote LU 

Chapter 2. Overview of the LU 2-57 



TP PS RM HS< Bidder) <to partner LU) 

ALLOC<when allocated> ALLOCATE_RCB 
o-----------> >o 

o< 

I 
o< 

I 

RCB_ALLOCATED(QK) I 
o<---------------'-

6 ET_ SE SS (NO_ ATTACH l BID_WITHDUT_ATTACH LUSTAT,BB,RQDl '----------> >..,._ ____________ > ( 1) 

RC=OK SESSION_ALLOCATED<OK> BID_RSP<POSl +RSP 
--------o<--------o<--------o<.-------------- ( 2l 

SEND_DATA 

RC=OK 

RCV_AND_WAIT 

I HS_PS_CONNECTED 
~------------>o 

SEND_DATA<FMH,DATA, 
PREPARE_TO_RCV_FLUSH) OIC,RQEl,CD,ATTACH,data 

Figura 2-43. ALLOCATE <when allocated), RECEIVE_AND_WAIT <by Bidder> --Local LU 

2-58 SNA Format and Protocol Reference Manual for LU Type 6.2 



cto partner LU) HSCFSP> Rt1 PS TP 

LUSTAT,BB,RQDl BID 
(1) ------------>o------~>o 

+RSP 
( 2) <------------0< 

BID_RSPCPOS) I 

(3) 
OIC,RQEl,CD,ATTACH,data ATTACH_HEADER ATTACH 
------------~>------~>o--------> >o 

HS_PS_CONNECTED I RECEIVE_AND_WAIT I 
o< - o<--------'-

RCVD _DAT AC DAT A, RC=OK, 
PREPARE_TO_RCV_FLUSH) WHAT_RCVD=DATA_*COt1PLETE '-----------------> >o 

o<RECEIVE_AND_WAIT I 
I RC=OK, 

WHAT_RCVD=SEND 
--------~>o 

Figure 2-44. ALLOCATE Cwhen allocated), RECEIVE_AND_WAIT lby Bidder) --Remote LU 

Chapter 2. OYerviett of the LU 2·59 



IP PS RM HSl8idderl (to p1rtner W l 

ALLOC(delayed> ALLOCAIE,;_RCB 
n--------------~------------~>o RC=OK RCB_ALLOCAIED(OK) I 
o<·---------------o<·--------------'· I SEND_DAIA 
~-------------->o 

RC=OK I o<--------------' I CONFIRM 6ET_SESSIONCAITACH) BID_WIIH_AIIACH . OIC,88,RW2'f3,AITAcH,data 
~---------------1~-------------,'t>-------------·>o--------'-'.__----------> (1) 

SESSION_ALLOCAIEDlOK) BID_RSPCPOS> +RSP o<--------------0·<--------------ai<-------....,.....,.·· .... ---------- ( 2 l I HS_Ps_cONNECIED 
.... ------------->o 

CONFIRMED I 
o<--------------~·<----------------------------"""" 

RC=OK 

Figure 2-45. ALLOCATE (delayed), CONFIRM (by Bidder) --local LU 

2~60 SNA Fot"lllat and Protocol Reference Manual for LU Type 6.2 



( to partner W) HS(FSP) RM PS IP 

OIC,B8,RQD2l3,AIJACH,data BID 
( 1) ----------------------->a------------->o BID_RSP( POS) I 

o<--------------' I ATTACH_HEADER 
~--------------~:.-------------->ti1o-------------->o 

ATTACH 

HS_PS_CONNECTEDI RECEIVE_AND_WAIT I 
o<--------------'· o<--------------'· I RC=OK, 

RCVD_DATA(DATA,CONFIRM) WHAT_RCVD=DATA_*Cot1PLETE 
~-----------------------------> >o 

RECEIVE_AND_WAIT I 
o<--------------'· RC=OK, 

WHAT_RCVD=CONFIRM 
'-------------->o 

CONFIRMED I 
(2) <-----------------------o<-----------------------------10<--------------' 

+RSP CONFIRMED 

I RC=NONE 
~------------->o 

Figure 2-46. ALLOCATE (delayed), CONFIRM tby Bidder> --ReMOte W 

.. Chapter 2. Overviet1 of the LU 2-61 



TP PS Rl1 HSCBidder) Cto partner LU) 

ALLOCATE_RCB ALLOCCdelayed) 

RC=OK 
> >o 

RCB_ALLOCATEDCOK) I 
o<-------o<---------· I SEND_DATA 
~---------->o 

RC=OK I 
o<--------'· 

GET_SESSIONCATTACH) BID_WITH_ATTACH OIC,BB,RQEl,CD,ATTACH,data I RCV_AND_WAIT 
>·o--------->o------------>0-------------------> (1) 

SESSION_ALLOCATED(OK) BID_RSPCPOS> FIC,data 
o<------------,o<-----------o<---------------------- ( 2) 

1 HS_PS_CONNECTED 
RC=OK,WHAT_RCVD= -------------->o 
DATA_*COl1PLETE RCVD_DATACDATA.NOT_END_OF_DATA) I 

o<--------------.... <------------------------'· 

Figure 2-47. ALLOCATE (delayed), RECEIVE_AND_WAIT Cby Bidder) --Local LU 

2-62 SNA Format and Protocol Reference Manual for LU Type 6.2 



(1) 

Ito partner W) HS(fSP> Rt1 PS IP 

OIC,BB,RQEl,CD,ATTACH,data BID 
-----------~> >o 

o< BID_RSP(POS) I 
I ATTACH_HEADER >·o---A_TT_A_c_H ___ >o--------->o 

HS_PS_CONNECTED I RECEIVE_AND_WAITI 
o< · o<:---------'· 

RCVD DATA(DATA, RC=OK, 
PREPARE_TO_RCV_FLUSH WHAT_RCVD=DATA_*COt1PLETE 

>o 
o<RECEIVE_AND_WAIT I 

I RC=OK, 
WHAT_RCVD=SEND 

. >o 
FIC ,data <-S-END ___ o_Ar_A_(_D_A_TA_, N_o_r ___ END ___ o_F __ o_A_r_A_> __ < SEND_DATA I 

(2) <----------------0 . 
RC=OK 

._l ______ >o 

f;gure 2-48. ALLOCATE (delayed>, RECEIVE_AND_WAIT (by e;dder) --Remote LU 

Chapter 2. Overvi ... of the LU 2-63 



IP PS RH HSIBjcfdtrl ltg urt.,.r w1 

ALLOC( dtlayecU ALLOCAIE_RCB 
n--------------~11------------~>o 

RC=OK RCB_ALLOCATED(OK) I 
o<:---------------a<---------------'-1 SEtlJ_DATA >o 

RC=OK I 
o<•--------------~-1 CONFIRM GET_SESSION(AJTACHl BID_NITH_ATTACH OICt8BtRllJ2l3tATTACH,dtta 
~---------------·>o-------------~:~------------·>cii------.....0------------~> Ill 

SESSION_ALLOCATEDIOK) BID_RSP(POS) -RSP(0846) 
o<:---------------n<·-------------n<---------------------- (2) HS_PS_CotflECTED 

--------------.>o 
RCVD_ERROR I 

o<:----------------------------..... -
RCVD_DAJA(FHH,DAJA, 

RC=ALLOCATION_ERROR DEALLOCATE_FLUSH) 
o< .. 
IDEALLOCATE_LOCAL > DEALLOCATE_RCB FREE_SESSION 
" >o<--------------

(3) 

RC =OK RCB_DEALLOCATED I 
o<~.-------------ci~-------------..... 
Figure 2-49. ALLOCATE (delayed), CONFIRM (by Bidder), Attach Error --Local W 

'2.;64 SHA P'ornt and Protocol Reference Hanu.l for LU Type 6.2 



(to partner W J HS(fSPJ RM PS 

OIC,BB,Rq[>2l3,ATTACH,data BID 
(1) -------------"fl------->o BID_RSP( POS) I 

o<--------'· I ATTACH( ALLOCATION 
ATTACH_HEADER ERROR> 

.... _ ------> >o 

-RSP(08%) SEND_ERROR 

o<HS_PS_CONNECTED I ~ 
RCVD_DAJA(DAJA,CONFIRM) 

(2) <------------a<---------

,__---->o 

SEND_DAJA(ftti,DATA, 
DEALLOCATE_FLUSH) 

(3) <----------------a<---------------' I FREE_SESSION DEALLOCAIE_RCB 
>o<--------' I' RCB_DEALLOCATED >o 

f;gure 2-50. ALLOCATE (delayed), CONFIRM (by a;dder), Attach Error --Remote LU 

IP 

Ch.apter 2.. Overv;eN of the LU 2-65 



IP ·PS RH HS(FSP.I 

ALLOCATE( ;•ac:H•teJ ALLOCAIE_RCB( ; ... c:f;ateJ 

o--------------~------------~>o 
FSP sess;an •Y•il•ble 

RC=OK RCB_ALLOCATED(OKJ I 
o<:---------------a<·--------------'· I HS_PS_CON'<fECTED>o 

• • • 
(The flGM cont;nues •• ;n the ALLOCATEh1hen •llocetedJ C•H. I 

f;gure 2-51. ALLOCATE u .. d;•teJ, SUcc•sful •-Loc•l W ·· 

2-66 SHA Forat and Protocol·R•ferenc• ltanulll for WI~ 6.2 

Up adrwr LUl 



Uo partner W) HS RM PS 

fr911 here on jwt like ALLOCAIEh1hen allocated) 

Figure 2-52. ALLOCATE (i_.ediate), Successful --Ruote LU 

IP 

Chapter 2. OYerv; ... of the W 2-67 



TP PS RM 

ALLOCATECi111111ediate) ALLOCATE_RCBCimmediate) 
o-------------~> >o 

lno first-speaker 
session available) 

RCB_ALLOCATED 
RC=UNSUCCESSFUL (unsuccessful> 

o< <----------------' 

HS 

Figure 2-53. ALLOCATE Ci111111ediate), Unsuccessful --Local LU 

2-68 SNA.For111at and Protocol Reference Manual for LU Type 6.2 

(to partner LU) 



lto partner LU J HS RM PS JP 

(no activity at remote LUJ 

Figure 2-54. ALLOCATE n-ediateJ, Unsuccessful --Remote LU 

Cmapter 2. Overvie111 of the LU 2-69 



TPN(A) PS<A> RM HSCBidder) 

ALLOCATE_RCB ALLOC<delayedl 

RC=OK 
> >o 

RCB_ALLOCATED(OK) I 
o<------~o<--------'-

1 SEND_DATA 
~-------~>o 

RC=OK I 
o<.--------'-
1 CONFIRM GET_SESSIOHCATTACH) 
--------~>o--------

BID_WITH_ATTACH 
> 

BID 

OIC,BB,RQD2l3,ATTACH,data 
> 

OIC,BB,RqE1,co,ATTACH,data 
o< o< 

I BID_RSPCPOSI 
>o 

TPN( B l ______ PSC B) 

ATTACH ATTACH_HEADER I o< o<-------a<--------

I HS_PS_CONNECTED 

RECEIVE_AND_WAIT 
~------>o 

RC=OK,WHAT_RCVD= 
DATA_*COMPLETE 

RCVD_DATACDATA, 
PREPARE_TO_RCV_FLUSH) 

>o 

o< o<-----------------
j RECEIVE_ AND_ WA IT 
~-------->o 

RC=OK,WHAT_RCVD= I 
SEND 
o<--------' 

SEND_DATACDATA,NOT_END_OF_DATAI I SEND_DATA 
~-------->r>---------------->o 

(to partner LU> 

(1) 

RC=OK I enqueued '----> (21 
o<--------' BID_RSP<NEG I -RSP(0813) o< o<------------ ( 3) 

etc. try another session I 
or enqueue dequeue 

I FIC,data 
~-------------> (~) 

Figure 2-55. ALLOCATE Cdelayedl Race, Bracket Rejected --Bidder LU 

2-70 SNA Format and Protocol Reference Manual for LU Type 6.2 



(to partner LU) HSlFSP) Rl1 PS TP 

ALLOCATE_RCB ALLOC(delayed) 
o< o< o 

RCB_ALLOCATEDCOK) RC=OK 
'--------------->·<>-------------->o 

SEND_DATA I 
o<--------------_. I RC=OK 
~--------------->o 

OIC,BB,RQEl,CD,ATTACH,data BID_WITH_ATTACH GET_SESSCATTACH) RECEIVE_AND_WAIT 
U) < o< o< o<--------' 

(2) 

(4) 

SESSION_ALLOCATEDCOK) 

HS_ PS_ CONNECTED I 
o<.--------------'-

OIC,BB,RQD2l3,ATTACH,data BID 
--------------><>------------->o 

-RSP(0813) 

FIC,data 

BID_RSP( NEG) I 

RC=OK, 
RCVD_DATAlDATA,NOT_END_OF_DATA> WHAT_RCVD=DATA_*COl1PLETE 

----------------> > >o 

f;gure 2-56. ALLOCATE (delayed) Race, Bracket Rejected --First Speaker LU 

Chapter 2. OvervieN of the LU 2-71 



JPN(A) PS(A) RM (to ptrtmr Wl. 

ALLOC(debyed) ALLOCATE_RCB 
..... >o 

o<-R_c_=_o_K_·_··· ___ ,;ce_ALi.ocAIED( 010 J 
I SEND_DATA 
~-------------->o 

RC=OK I o<--------------" I CONFIRM GET_SESSION(ATTACH) BID_NIIH_AIIACH OIC.BB.RQD2l3.ATTACH.dat• 

BID OIC,88,CEB,RQEl ,ATTACH,~a.ta 
o< U) 

JPN(B ! _____ _..PS( B) I BID,,..RSP( POS) >o 

ATTACH_HEADER ' I 
o<---------·o<---------oc-----------'-

ATTACH 

HS_PS_CONNECTED .__ ______ >o 

RECEIVE_AND_WAIT 
~--------->o ---->ti) 
RC=OK,WlfAI_RCVD= RCVD_DAJA(DAJA, 
DATA_*COMPLETE DEALLOCAIE_FLUSH) o< <-------------------1 RECEIVE_ AND_ WAIT FREE_SESSION 
~---------->o o<-----,----' 
RC=DEALLOCAIE_ I 

NORMAL o< . I DEALLOCATE 
~--------~1>----------~.>o 

DEALLOCATE_RCB 

RC=OK RCB_DEALLOCATED I o<----------n·< . 

JPN( A > _______ PS( A) 
SESSION_ALLOCATED(OK) BID_RSP(POS) +RSP o< <.----------- q> 

HS_PS_CONNECTED 
~------------>o 

CONFIRMED I 
o<-------~<----------------' 

RC=OK 

Figure 2-57. ALLOCATE (.delayed> Race, Bracket Accepted --Bidder .LU 
' .·' ·. ~ 

2-72 . SNA Forlll8t tm Protocol Ref.erence Manual for LU Type 6.2 



(1) 

(2) 

(to artner W) HS(FSP) RM PS JP 

ALLOCATE_RCB ALLOC(delayedl 
a< <~------------0 

RCB_ALLOCATED(OIO RC=OK 
'--------------->(,__ _____________ >a 

SEND_DATA I 
o<--------------------'-
1 RC=OK 
--------------------->o 

OIC,88,CEB,R~El,ATTACH,data BID_WITH_ATTACH 6ET_SESS(AJTACHl DEALLOCATE_FLUSH 
<:--------------------------oc:---------------0< a<------------------' 

I SESSION_ALLOCATED(OKJ 

a< HS_PS_CONNECTEDI >al 
I FREE_SESSION DEALLOCATE_RCB 
------------------->o<-------------------'-

RC=OK 

1 RCB_DEALLOCATED >·..,_ __ R_c_=OK _________ >o 

------------------------n,__ ___________ >o 

+RSP 

BID_RSP(POSJ I 
p<.----------------- ATTACH 1 ATTACH_HEADER 

>o---------------> >a 
o<HS_PS_CONNECTED I o< RECEIVE_AND_WAIT I 
I RC=OK, 

~CVD_DATA(DAJA,CONFIRMJ WHAT_Rcvo=DATA_•COMPLETE 
~------------------------------>·..,_ ____________ >a 

CONFIRMED 

RECEIVE_DATA 
o<---------------

o< 

I 

RC =OK, WHAT_ RCVD = 
CONFIRM 

>a 

CONFIRMED I 
RC=NONE 

>o 

f;gur• 2-58. ALLOCATE (delayed) Race, Bracket Accepted --F;rst Speaker LU 

Chapter 2. Overv;eM of the LU 2~73 



IP PS HS C to partner l.Ul · 

DEALLOCATE_ FLUSH SEND_DATACDEALLOCATE_FLUSHJ LIC,CEB,RQEI 
n-------~~rt---~-----------~:>ftoo----------~.> (1) FREE_ SESSION o<:-------DEALLOCATE_RCB 

'-------~>o 

RCB_DEALLOCATED I o<---------o<-·-------'-RC=OK 

Figure 2-59. DEALLOCATE FLUSH CRQEI) --Local LU 

2 .. 7'+ SRA ForMt •nd Protocol Reference Hanual for LU Type 6.2 



Ito ptrtntr LUI HS RM PS IP 

RECEIVE_AND_WAII 
o< 0 

LIC,CEB,RQEl RCVD_DATA(DEALLOCAIE_FLUSHI RC=DEALLOCATE_NORMAL 
(l) > > >o 

I FREE_SESSION . DEALLOCATE_RCB DEALLOCATE_ LOCAL I >o< o< 

RCB_DEALLOCAIED . RC=OK 
...._~~~~~~> >o 

f;gure 2-60. DEALLOCATE FLUSH (RQEll --Re1110te LU 

Chlipter 2. Overv;• of th9 LU 2-75. 



IP PS RM 

DEALLOCATE~FLUSfl SENO_DAI~,( DEALLOCATE_FLUSH) 

HS 

(sequence number NrapJ 
uc.cEB.RQD1 1 

(to partner· LY> 

0------------..... :>o-----------------..-----------~:>o---------------------~> (1) 
FRE( .. SESSIOH . +RSP 

DEALLOCATE_RCB 
.......................................... ,.....>o 

o<:-R_c_=_OK _______ -o<RcB_DEALLoc1-no . I 
NOTES: 

1 RQDl is required under certain sequence nullber Nrap conditions. 

Figure 2-61. DEALLOCATE FLUSH (RQDlJ --Local LU 

.• 
2-76 SNAF~r11at and Protocol Reference Manual for LU Type 6.2 

'.:' 



Uo partner LU> HS RM PS TP 

RECEIVE_AND_WAIT 
o<.~-------------n 

RCVD_DATA(DEALLOCATE_FLUSH) RC=DEALLOCATE_NORMAL 
(1) ~~--------~~------·>a...------------------------> >o 

DEALLOCATE_RCB DEALLOCATE_LOCAL I 
o<--------------0<.~---------~-

+RSP 

FREE_ SESSION 
----------~>o 

I RCB_DEALLOCATED >o---R_c_=OK------->o 

f;gure 2-62. DEALLOCATE FLUSH (RQDl) --Remote LU 

Chapter 2. Overvht111 of the LU 2-77 



TP PS RM HS <to partner LU> 

SEND_DATA SEND_DATA(DATA,NOT_END_OF_DATA) FIC,data 
o-------------->0------------------------------>o-----_,.----------------> (1) 

RC=OK I 
o<---------------'· I DEALLOCATE_FLUSH>o--s_E_ND ____ oA_T_A_<_o_A_TA __ ,o_E_A_L_Loc __ A_r_.~_-_F_Lu_s_H_,_. > LIC,CEB,RQEl 

o<FREE_SESSION I 
DEALLOCATE_RCB -RSP<0846) 

"-------------->o o<--------------•------- (2) 

RC=OK RCB_DEALLOCATED 
o< o<---------------' 

<This stray response 
is discarded> 

Figure 2-63. DEALLOCATE FLUSH (RQEl), SEND_ERROR, -RSP Sent --Local LU 

2-78 SHA For•at and Protocol Reference Manual for LU Type 6.2 

...._ ___ > (3) 



(to partner LU) HS RM PS TP 

RECEIVE_AND_WAIT 
o< o 

FIC,data RCVD_DATA<DATA,NOT_END_OF_DATAl RC=OK, 
11) ------------> >o WHAT RCVD: I DATA=*COHPLETE 

~--------->o 

-RSP(0846) SEND_ERROR SEND_ERROR 
( 2) <------------,o< o<---------' 

LIC,CEB,RQEl RCVD_DATACDATA,DEALLOCATE_FLUSH) RC=DEALLOCATE_NORHAL 
(3) ------------>0---------------->o-------->o I FREE_SESSION DEALLOCATE_RCB DEALLOCATE_LOCAL I 

- >o< o<-------~-

1 RCB_DEALLOCATED >n--R_c_=o_K ____ >o 

Figure 2-64. DEALLOCATE FLUSH IRQEl), SEND_ERROR, -RSP Sent --Remote LU 

Chapter 2. Overview of the LU 2-79 



TP PS RM HS ( to partner LU> 

SEND_DATA SEND_DATA(DATA,NOT_END_OF_DATA) 
o-------------->0----------------------------->'0-------------------> (1) 

RC=OK I 
o<--------------'· I DEALLOCATE_FLUSH> SEND_DATACDATA,DEALLOCATE_FLUSH> LIC,CEB,RQEl 

>'0------------------> (2) 
FREE_SESSION 

o<---------------' 
DEALLOCATE_RCB 

RC=OK RCB_DEALLOCATED 
o< <--------------
Figure 2-65. DEALLOCATE FLUSH CRQEl), SEND_ERROR, -RSP not Sent --Local LU 

2-80 SNA Format and Protocol Reference Manual for LU Type 6.2 



Cto partner LU> HS RM PS TP 

RECEIVE_AND_WAIT 
o<-------,o 

FIC,data RCVD_DATACDATA,NOT_END_OF_DATAl RC=OK, 
( 1) ~----------------->0----------------------->o WHAT_RCVD= I DATA_*COMPLETE 

~--------->o 

RCVD_DATACDATA,DEALLOCATE_FLUSH) I 
~-------------------->.,,_------------------------>o I FREE_SESSION SEND_ERROR 

- >o o<~-------------' 

LIC,CEB,RQEl 
(2) 

jRC=DEALLOC_NORMAL 
--------->o 
DEALLOCATE_LOCAL I 

o<--------------o<~-------~-

DEALLOCATE_RCB 

1 RCB_DEALLOCATED >o--R_c_=o_K _____ >o 

F;gure 2-66. DEALLOCATE FLUSH CRQEl>, SEND_ERROR, -RSP not Sent --Remote LU 

Chapter 2. OvervieM of the LU 2-81 



IP PS RM HS ( to P'ttmr LU) 

DEALLOCATE_CONFIRM SEND_DATAIDEALLOCATE_CONFIRMJ 
n------------------->n---------------------------------------->tll'-------------------------------> (1) CONFIRMED +RSP 

o<.----------------------------------------·o<-------------------------------- (2) I DEALLOCATE_RCB FREE_SESSION I 
- >o<:------------------

RC=OK RCB_DEALLOCATED 
o<-------------------o<--------------------' 
Figur• 2-67. DEALLOCATE CONFIRM (RQD213> --Local LU 

2-82 SHA ForHt and Protocol R•f•tw'ICtt ltanual for W TYJMI 6.2 



Cto partner LU> HS RM PS TP 

RECEIVE_AND_WAIT 
o< o 

RCVD_DATACDEALLOCATE_CONFIRM> RC=OK,WHAT_RCVD=CONFIRM 
( 1) ~----------~>0----------------> >o 

+RSP CONFIRMED CONFIRMED I 
12) <.~----------~o<---------------0<-------~ 

I FREE_SESSION >o l._ __ R_c=_o_K ____ >o 

DEALLOCATE_RCB 

RECEIVE_AND_WAIT I 
o<-------~-

R C = 
DEALLOCATE_NORMAL 

'--------->o 
DEALLOCATE_LOCAL I 

o< o<-------~ 

I RCB_DEALLOCATED >o--R_c_=o_K ____ >o 

Figure 2-68. DEALLOCATE CONFIRM IRQD213> --Remote LU 

Chapter 2. Overview of the LU 2-83 



IP PS 

DEALLOCATE_ABEND 

RH 

SEND_DATA!FHH,DATA, 
DEALLOCAIE_FLUSH) 

HS (to partner WJ. 

OIC,CEB,RQD1,FHH7!0864) n------------>n------------------------>n----------------> (1) I DEALLOCATE_RCB · >o<-------o<------------ ( 2) 
FREE_ SESSION +RSP 

RCB_DEALLOCATED ·· J 
o<-----------,o<---------------

RC=OK 

Figure 2-69. DEALLOCATE ABEND Issued in SEND, Between-Chain State --1.ocal LU 

2~84 SNA Format and Protocol Reference Manual for LU Type 6.2 



(1) 

ltp p1rtn1r LU) HS 

OIC,CEB,R_,1,FHH710864) 

RH 

RCVD_DATAIFHH,DATA, 
DEALLOCATE_FLUSH) 

PS TP 

RECEIVE_AND_WAIT 
o<--------------~ RC=DEALLOC_ABEND 

~---------------------n-----------------------------~--------------->o 
+RSP DEALLOCATE_RCB DEALLOCATE_LOCAL I 

(2) <----------------------- o<---------------n<·----------------
1 RCB_DEALLOCATED >,o-__ R_c_=OK--------->o 

FREE_SESSIOH 

f;gure 2-70. DEALLOCATE ABEtl> Issued fo SEND, Between-Chafo State --Remote LU 

~pter 2. Overv;e111 of the LU 2-85 



TP PS RH HS (to partner LU> 

SEND_DATA SEND_DATA<DATA,NOT_END_OF_DATA) FIC,data 
> > (1) 

RC=OK I o< 

SEND_DATA(FHH,DATA, 
DEALLOCATE_ABEND DEALLOCATE_FLUSH> LIC,CEB.RQD1,FHH7(0864) 

> ( 2) 
DEALLOCATE_RCB FREE_ SESSION +RSP 

>o< o< (3) 
RC=OK RCB_DEALLOCATED I o< o< 

Figure 2-71. DEALLOCATE ABEND Issued in SEND, In-Chain State --Local LU 

2-86 SHA Format and Protocol Reference Manual for LU Type 6.2 



Uo partner W > HS Rl1 PS TP 

RECEIVE_ANO_WAIT 
o< o 

FIC,data RCVD_DATACDATA,NOT_END_OF_DATA> RC=OK,WHAT_RCVD= 
(1) ~~~~~~~~~~~~> >o DATA_*COMPLETE 

'--~~~~~~~>o 

RECEIVE_ANO_WAIT I 
o<~~~~~~~~-

RCVD_DATACFMH,DATA, 
LIC,CEB,RQD1,FMH710864) DEALLOCATE_FLUSH> RC=DEALLOCATE_ABEND 

12) > > >o 
+RSP I DEALLOCATE_RCB DEALLOCATE_ LOCAL I 13) < o< o< 

I 
I RCB_DEALLOCATED RC=OK 

> >o 
FREE_ SESSION 

>o 

f;gure 2-72. DEALLOCATE ABEND Issued ;n SEND, In-cha;n State --Remote LU 

Chapter 2. Overv;e111 of the LU 2-87 



TP ~ Btt HS I tg m1r:tnec IJ,!) 

SEND_DATA 
>o 

RC-OK I o< 
FLUSH SEND_DATACDATA,NOT_END_OF_DATA) FIC,data 

> > ( 1) 

o< 
RCW_ERROR -RSP(0846) 

o< (2) 

DEALLOCATE_ABEND SEND_DATACFttH,DATA,DEALLOC_FLUSH) LIC,CEB,RQDl,FttH7C0864) 
> > > ( 3) 

I DEALLOCATE_RCB FREE_ SESSION I >o< 
RC=OK RCB_DEALLOCATED I o< < 

Figure 2-73. DEALLOCATE ABEND Issued in SEND, -RSP Received State --Local LU 

2•88 SNA Format and Protocol Reference ttanual for LU Type 6.2 



(1) 

Uo partner W) HS Rtt 

FIC,dat. RCVD_DATACDATA,NOT_END_OF_DATA) 

PS TP 

RECEIVE_AND_WAIT o< o 
RC=OK,WHAT_RCVD= 

DATA_*COMPLETE 
--------------~>0------------------->·o-------->o 

-RSPC0846) SEND_ERROR SEND_ERROR I 
(2) <------------c~-------------------------~·<----------' 

RCVD_DATAIFMH,DATA, 
LIC,CEB,RQD1,FMH710864) DEALLOCATE_FLUSH> RC=DEALLOCATE_NORMAL 

(3) ---------------~>0------------------->·n--------->o I FREE_SESSION DEALLOCATE_RCB DEALLOCATE I 
- >o~ o<---------'· 

I RCB_DEALLOCATED >o--R_c_=o_K ____ >o 

NOTE: This TP gets no indication that the DEALLOCATE is of type ABEND 
because everything !including FM headers> is discarded when purging. 

Figure 2-74. DEALLOCATE ABEND Issued in SEND, -RSP Received State --Remote LU 

Ch~pter 2. Overview of the LU 2-.89 



TP PS RH HS <to partner LU) 

SEND_DATA SEND_DATA!DATA,NOT_END_OF_DATA) FIC,data 
o-------------->o-----------------~----------->0----------------------> (1) 

RC=OK I 
o<--------------~-

DEALLOCATE_ABEND 
SEND_DATA!FHH,DATA, 

DEALLOCATE_FLUSH) LIC,CEB,RQD1,Ft1H7(0864) 
,__------------->0------------------------------>o----------------------> (2) I DEALLOCATE_RCB FREE_SESSION -RSP!0846) 

· >o<--------------,o<----------------------- (3) 
RCB_DEALLOCATED I 

o<-------------0<------------~-
RC=OK 

Figure 2-75. DEALLOCATE ABEND Issued in SEND State --Local LU 

2-90 SNA Format and Protocol Reference Hanual for LU Type 6.2 



(l) 

(2) 

(to partner LUJ HS RM PS IP 

RECEIVE_AND_WAII 
o< o 

RC=OK,WHAI_RCVD= 
----------------------~>0------------------------------>o DAIA_*COMPLEIE 
FIC,data RCVD_DAIASDATA,NOI_END_OF_DAIAJ 

-RSPS0846J SEND_ERROR SEND_ERROR >ol 
.-----------------o<-----------------------------,0<---------------' 

LIC,CEB, RQD1,FMH7(0864J 
RCVD_DAIACfMH,DAIA, 

DEALLOCAIE_FLUSHJ RC=DEALLOCATE_NORMAL 
-------+---------------~>0------------------------------>o-------------->o 

(3) <--- I FREE_SESSION DEALLOCAIE_RCB DEALLOCATE_LOCAL I 
. >o<---------------n-c;~--------------'· 

I RCB_DEALLOCATED >·o---R_c_=o_K ________ >o 

NOTE: IPN on right gets no indication that DEALLOCATE_ABEND occurred 
because everything (including FMHsl are discarded when in purge state. 

Figure 2-76. DEALLOCATE ABEND Issued in SEND State --Remote LU 

Chapter 2. OvervillN of the LU 2-91 



IP PS RM HS Cto partner LU> 

in RCV state 

DEALLOCATE_ABEND SEND_ERROR 
> >o 

RCVD_DATA!DATA,NOT_END_OF_DATA) FIC,d;;ita 
( 1) o< < 

purge 

I -RSPC0846) 
> (2) 

RCVD_DATACPREPARE_IO_RCV_FLUSH> LIC,RQEl,CD,no data 
o< < (3) 

SEND_DATACFMH,DATA, 
DEALLOCATE_FLUSH) OIC,CEB,RQD1,FMH7(0864) 

> > (4) 
DEALLOCATE_RCB FREE_SESSION +RSP 

>o< o< (5) 
RC=OK RCB_DEALLOCATED I o< o<-------

Figure 2-77. DEALLOCATE ABEND Issued in RCV, Between-Ch;dn State --Loc~l LU 

2-92 SNA Format and Protocol Reference Manual for LU Type 6.2 



(to Pittner WI HS RM PS IP 

SEND_DAIACDAIA,NOI_END_OF_DATAJ SEND_DATA 
(J) <•-----------------------o<•~---------------------------0<---------------RC=OK 

(2) 
~~) ~~ >ol 

----------------------->.11...---------------------------->o LIC,RQEl,CD,no chit• SEND_DAIACPREPARE_IO_RCV_FLUSHJ SEND_DAIA 
(]) <-----------------------o<•~---------------------------1o<--------------' 

RCVD_DAIACFMH,DAIA, 
OIC,CEB,RQD1,FMH7C0864J DEALLOCAIE_FLUSHJ RC=DEALLOCAIE_ABEHD 

(It) ~--------------------->c1..----------------------------~o-------------->o +RSP o<DEALLOCAIE_RCB DEALLOCAIE_LOCAL I 
I RCB_DEALLOCAIED >&---R_c_=OK--------->o 

FREE_ SESSION 

Figure 2-78. DEALLOCATE ABEND Issued in RCV, BetNeen-Ch•in State --Remote LU 

Chapter 2. OvervieN of the LU 2-93 



TP 

RECEIVE_AND_WAIT 

RC=OK,WHAT_RCVD= 
DATA_*COMPLETE 

PS 

>o 

RM HS ( to partner W > 

RCVD_DATA(DATA,NOT_END_OF_DATA> FIC,data 
o<---.-........................ -.--oc--.-............................... ~~~~~~~~-o<--.-~ .............................. ~~ ...... ~ (1) 

DEALLOCATE_ABEND SEND_ERROR -RSP(0846) 

RCVD_DATACPREPARE_TO_RCV_FLUSH) LIC,RQEl,CD,no data 
o<:--~ .............................. ~~~ ............ -.-............ -o<---.--.-............ ~~~~~~-- (3) 

SEND_DATA(fMH,DATA, 
DEALLOCATE_FLUSH> OIC,CEB,RQDltftlf7(0864) 

'--~~ ............ ~-.-~~~~~-.--.--.--~.-. ...... ~--~-.-~-.--.--.--.--.-> (4) 
DEALLOCATE_RCB 

RCB_DEALLOCATED 

FREE_SESSION +RSP 

Figure 2-79. DEALLOCATE ABEND Issued in RCV, In-Chain State --Local LU 

2-94 SNA For11111t and Protocol Reference Hanual for LU Type 6.2 



Uo partner LU) HS RM PS TP 

FIC,data SEND_DATA(DATA,HOT_END_DF_DATAI SEND_DATA 
(1) < o< 

I RC=OK 
>o 

-RSP(0846) RCVD_ERROR 

I (2) > >o 
LIC,RQEl,CD,no data SEND_DATA(PREPARE_TD_RCY_FLUSH) SEND_DATA 

(3) < < o< 

RCVD_DATA(FttH,DATA, 
OIC,CEB,RQDl,FttH7(0864) DEALLOCATE_FLUSH) RC=DEALLOCATE_ABEND 

(4) > > >o 
+RSP I DEALLOCATE_RCB DEALLOCATE_ LOCAL I (5) < o< < I RCB_DEALLOCATED RC=OK 

> >o 
FREE_ SESSION 

>o 

Figura 2-80. DEALLOCATE ABEND Issued in RCY, In-Chain State --Remote LU 

Chapter 2. OvarvieN of the LU 2-95 



IP PS Rl1 HS!FSP) Ito partner LU) 

ALLOC!delayed) ALLOCATE_RCB 
n--------------~.;.n-------------~.>o 
o<--R_c_=_OK _____ ,;ce_ALLOCATED! OK> I 

I SEND_DATA 
~--------------->o 

RC=OK I 
o<---------------'· 
IDEALLOCATE_FLUSH 6ET_SESS!ATTACH) BID_WIIH_AITACH OIC,BB,CEB,RQEl,ATTACH,data 
. > >o-------~----->e>---------------------~> (1) 

SESSION_ALLOCATED!OK>I 
o<---------------'-

1 .HS_PS_CONNECTED 
~-------->o 

DEALLOCATE_RCB FREE_SESSION I 

RC=OK RCB_DEALLOCATED 
o< <---------------' 

F;gure 2-81. ALLOCATE !delayed), DEALLOCATE FLUSH (by F;rst Speaker) --Local LU 

2-96 SNA Format and Protocol Reference 11anual for LU Type 6.2 



Ito partner LU) RH PS IP 

OIC1BB1CEB1RQEl1ATTACH1data BID 
(1) ------------>o------~>o 

o< 
BID_RSPI POS) I 

I ATTACH_HEADER >o---ATT_A_c_H ___ > >o 

HS_PS_CONNECTED I RECEIVE_AND_WAIT I 
o< · o<--------'· 

RCVD_DATAIDATA, RC=OK, 
DEALLOCATE_FLUSH> WHAT_RCVD=DATA_•COHPLETE ""-----------------> >o 

RECEIVE_AND_WAIT I 
o<--------~-

FREE_ SESSION 

1 RC= DE AL LOC _ NORHA L 
~--------->o 

0~EALLOCAIE_RCB D~ALLOCATE_LOCAL I 
I RCB_DEALLOCATED >o--R_c_=o_K ____ >o 

Figure 2-82. ALLOCATE ldelayed>, DEALLOCATE FLUSH lby First Speaker> --Remote LU 

Chapter 2. Overview of the LU 2•9.7 



TP PS Rl1 

ALLOCATE_RCB ALLOC(delayedl 

RC=OK 
> >o 

RCB_ALLOCATEO(OK) I 
o<------------~·o<--------------'-

1 SEND_DATA 
~-------->o 

RC=OK I 
o<---------'-

HS( Bi cider I Uo partner WI 

l DEALLOCATE_ CONF I Rl1 GET_SESSIATTACHI BID_WITH_ATTACH OIC,BB,CEB,RQD2l3,ATTACH,data 
... -------> > > > (1) 

SESSION_ALLOCATEDJOKll 
o<---------'-

1 HS_PS_CONNECTED 
~-------------->o 

CONFIRMED +RSP 
o<------------------------------ft<·---------------------- (2) I DEALLOCATE_RCB FREE_ SESSION 

>o<-------' 

RC=OK RCB_DEALLOCATED 

Figure 2-83. ALLOCATE (delayed), DEALLOCATE CONFIRM JBY First Speaker) --Local LU 

2-98 .SHA For11at and Protocol Reference Manual for LU Type 6.2 



( 1) 

Ito partner LU) HS!FSP) RM PS TP 

OIC,BB,CEB,RQD2l3,ATTACH,data BID 
~----------~>o------->o 

+RSP 

BID_RSP! POS) I 
o<------~-
1 ATTACH_HEADER >·o---A_TT_A_c_H ___ > >o 

HS_PS_CONNECTED I RECEIVE_AND_WAIT I o< - o<--------'-
R CVD _DAT A 1 DAT A, RC=OK, 

DEALLOCATE_CONFIRM> WHAT_RCVD=DATA_*COMPLETE 
'---------------~> >o 

CONFIRMED 

RECEIVE_AND_WAIT I 
o<.~------~-

R C=OK, 
WHAT_RCVD=CONFIRM 

'--------->o 
CONFIRMED I 

12) <~-----------o<--------------~o<.~------~ 
I FREE_SESSION >o _l __ R_c_=N_o_N_E __ ~>o 

RECEIVE_AND_WAIT I 
o<---------'-
1 RC= DE ALL OC _NORM AL 
~-------~>o 

DEALLOCATE_LOCAL I 
o<------~,o<--------'· 

DEALLOCATE_RCB 

I RCB_DEALLOCATED >o--R_c_=o_K ____ >o 

Figure 2-84. ALLOCATE !delayed>, DEALLOCATE CONFIRM !BY First Speaker) --Remote LU 

Chapter 2. Overview of the LU 2-99 



TP RM HS<BidderJ (to Pittner WJ 

ALLOC(delayed) ALLOCATE_RCB 
&---------.---~o----------.~>o 

RC:OK RCB_ALLOCATED(OK) I 
o<--------------.-o<·--------------'· I SENO_DATA 
--------------->o 

RC=OK I 
o<---------------1 DE ALLOCATE_ FLUSH GET_SESSCATTACH> BID_NITH_ATTACH OIC,BB,CEB,RQDl,ATTACH,data 
~---------------:>o-------------...,.,>o-------------·>o----------------------> (1) 

SESSION_ALLOCATED(OK) BID_RSP(POSJ +RSP 

I HS_PS_CONNECTED 
------------>o 

DEALLOCATE_RCB FREE_SESSION I 
>o<-------------

RCB_DEALLOCATED I 
o<--------------0<--------------.1 

RC=OK 

Figure 2-85. ALLOCATE (delayed), DEALLOCATE FLUSH (by Bidder) to P.ECEIVE_AND_WAIT --Local LU 

2-100 SNA Format and Protocol Refe~ence Manual for LU Type 6.2 



( 1) 

(to partner LU) HSIFSPP RM PS TP 

OIC,BB,CEB,RQDl,ATTACH,data BID 
-~---------->o-----~->o 

+RSP 

BID_RSP( POS) I 
o<•-~~~~---'-

ATTACH 1 ATTACH_HEADER 
~--------;>n--------> >o 

HS_PS_CONNECTED o<RECEIVE_AND_WAIT I 
o<.--------' . 

RCVD_DATACDATA, 
DEALLOCATE_FLUSH> 

RC=OK, 
WHAT_RCVD=DATA_•COMPLETE 

~----------~----> >o 

( 2) <:-------------' 
RECEIVE_AND_WAIT I 

o<•-------~-
1 RC=DEAL LOC_NORMAL 
L--------->O 

FREE_:SESSION 
~------>o 

DEALLOCATE_LOCAL I 
o<.-------o<•-------~-

DEALLOCATE_RCB 

1 RCB_DEALLOCATED >·o--R_c_=_oK ____ >o 

Figure 2-86. ALLOCATE (delayed>, DEALLOCATE FLUSH (by Bidder) to RECEIVE_AND_WAIT --Remote LU 

Chapter 2. Overview of the LU 2 .... 101 



TP PS RM HS(Bidc!er> (to P'rtD!lr W> 

ALLOC(delayed) ALLOCATE_RCB 
> >o 

o<-R_c_=_o_K-----a~ce_ALLfATED( OK> I 
I SEND_DATA 
~----~---->o 

RC=OK I o<----------....... I DEALLOC_FLUSH G~T_SESS(ATTACH) BID_WITH_ATTACH OIC,88,CEB,RQDl,ATTACH,data 
>o--------> > n > 

SESSION_ALLOCATED(OK) BID_RSP(POS) +RSP 
o<-------o<-------------o<·---------------- ( 2) I HS_PS_CONNECTED 

~--------->o 

DEALLOCATE_RCB FREE_SESSION I 
>o< . 

RCB_DEALLOCATED I 
o<--------------,o<----------· 

RC=OK 

Figure 2-87. ALLOCATE (delayed), DEALLOCATE FLUSH !by Bidder) to SEND_ERROR --Local LU 

2-102 SNA Format and Protocol Reference Manual for LU Type.6.2 



Ito P'rtmr Wl HSIFSP> PS IP 

OICtBBtCEB,Rqf>l,ATTACHtcf.t• BID 
( 1) ----------------~>o-------~>o 

BID_RSP( POS, I 
o<-----------'-
1 ATTACH_HEADER >o---ATT_A_c_H ___ >o-------->o 

o< HS_PS_CONNECTED I o< RECEIVE_AND_WAIT I 
I RCVD_DATAIDATAt RC=OK, 

DEALLOCATE_FLUSHl WHAT_RCVD=DATA_*COHPLETE 
,__---------------------~>·o-------------->o 

:-------....------'' FREE_SESSION >o I +RSP SEND_ERROR 
12) < o<--------------~ I RC=DEALLOCATE_NORt1 

~-------------->o 

o<DEALLOCATE_RCB < DEALLOCATE I 
I RCB_DEALLOCATED >·o--R_c_=OK--------->o 

Figure 2-88. ALLOCATE (cfel•yedl, DEALLOCATE FLUSH lby Bhfderl to SEND_ERROR --Re•ote LU 

Chltpter 2. Overvi•of the W 2-103 



TP PS· RM HS( Bidder) (to partner W) 

ALLOCATE_RCB ALLOC(delayed) 

RC=OK 
> >o 

RCB_ALLOCATED(OK) I 
o<--------o-c---------'-
1 SEND_DATA 
~--------->o 

RC=OK I 
o<--------'-
1 DE ALLOCATE_ CONFIRM> 6ET_SESS(ATTACH> > BID_WITH_ATTACH > OIC,BB,CEB,RQD2f 3,ATTACH,data 
~--------- . ..,,_ _______ .., _______ ... ----------------> 'n 

SESSION_ALLOCATED(OK) BID_RSP(POS) +RSP 
o< o< o< (2) 

I HS_PS_CONNECTED 
>o 

CONFIRMED I o< I DEALLOCATE_RCB FREE_ SESSION I >o< 

RC=OK RCB_DEALLOCATED 
o< 

Figure 2-89. ALLOCATE Cdelayed), DEALLOCATE CONFIRM Cby Bidder) -:..Local LU 

2-104 SNA Format and Protocol Reference Manual for LU Type 6.2 



(1) 

Ito partner LU) HS(FSPI Rtt PS TP 

OIC,BB,CEB,RQD2l3,ATTACH,data BID 
----------~>·n------------>o 

+RSP 

BID_RSP( POS, I 
o<·-----------· 
I ATTACH_HEADER >o----An __ A_c_H _____ > >o 

o< HS_Ps_CONNECTED I o< RECEIVE_AND_WAIT I 

RCVD_DATA<DATA, RC=OK, 
DEALLOCATE_CONFIRHI WHAT_RCVD=DATA_*COHPLETE 

-----------------------~> >o 

CONFIRMED 

RECEIVE_AND_WAIT I 
o<-------------'· 

RC=OK, 
WHAT_RCVD=CONFIRH .__ ____________ >o 

CONFIRHED I 
(2) <-------------..... ·<-------------------·<--------------' 

I FREE_SESSION >o I RC=NONE >o 

~ECEIVE_AND_WAIT I 

IRC=DEALLOC_NORHAL>o 

o<-DE_A_L_L_oc_A_T_E ___ Rc_e _ _,,,~.EALLOCATE_LOCAL I 
I RCB_DEALLOCATED RC=OK 
-----------~;>o------------~>o 

Figure 2-90. ALLOCATE (delayad), DEALLOCATE CONFIRH (by Bidder> --Remote LU 

Chapter 2. Overview of the LU 2•105 



TP e! Rt! HS (;lg l!!CiD!C 1.Ul 

SEND_DATA 
>o 

RC=OK I o< 
CONFIRM SEND_DATA(DATA,CONFIRM) OIC,RQD2f 3,DATA 

> > > (1) 

RC=OK CONFIRMED +RSP 

Figura 2-91. CONFIRM (RQD213> --Local LU 

2-106 SNA For .. t and Protocol Reference Manual for LU Type 6.2 



(to partner LU) HS RM 

OIC,R®2l3,DATA RCVD_DATAIDATA,CONFIRM) 

PS TP 

RECEIVE_AND_WAIT o< o 
RC=OK, 

WHAT_RCVD=DATA_*COMPLETE 
(1) ----------------------~;>t>-----------------------------~> >o 

RECEIVE_AND_WAIT I 
o<---------------'· 

RC=OK, 
WHAT_RCVD=CONFIRM 

,__------------->o 
CONFIRMED I 

(2) <----------------------~·<.----------------------------~o<.--------------~ 
+RSP CONFIRMED 

I RC=NONE 
~-------------~>o 

Figure 2-92. CONFIRM (RQD213J --Remote LU 

Chapter 2. OverYi8N of the LU 2-107 



TP PS RM HS fto partner LU) 

SEND_DATA 
o---'------->o 

RC=OK I 
o<-----------~-

1 PREPARE_TO_RECEIVE .... _______ ,.._>o 

NO RC I 
o< - SEND_DATAfDATA, 
I coNFIRHCLOCK=LONG>-> ___ PR_E_P_A_R_e __ r_o ___ R_c_v __ CON __ F_I_R_M ___ LONG __ >_~n-o-I_c_,_R_Q_E2_1_3_,_c_o_,o_A_r_A ______ __ 
. ~ > (1) 

RC=OK CONFIRMED FIC,data 
o< o<---------------------------0,<--------------~ (2) 

I RECEIVE_AND_WAIT>o 

RC=OK,WHAT_RCVD= 
DATA_*COHPLETE RCVD_DATACDATA,NOT_END_OF_DATA) 

Figure 2-93. CONFIRM fRQE213> --Local LU 

2•108 SNA tormat and Protocol Reference Manual for LU Type 6.2 



(1) 

(to partner LU) HS 

OIC,RQE2l3,CD,DATA 

RM 

RCVD_DATA(DATA, 
PREPARE_TO_RCV_CONFIRl1) 

PS TP 

RECEIVE_AND_WAIT 
o<.--------------... 

RC=OK, 
WHAT_RCVD=DATA_•COMPLETE 

----------------------->n------------------------------>n-------------~>o 
RECEIVE_AND_WAIT I 

o<.--------------~-
RC=OK, WHAT _RCVD = 
CONFIRM 

'-------------->o 
CONFIRMED I 

o<.~----------------------------0<--------------~ 
CONFIRMED 

l RC=NONE 
---------------->o 

RECEIVE_AND_WAIT I 
o<--------------~-

RC=OK, WHAT _RCVD = 
SEND 

'--------------->o 
FIC,data SEND_DATA(DATA,NOT_END_OF_DATA> SEND_DATA I 

(2) <-----------------------0<.~----------------------------... <--------------~ I RC=OK 
~--------------->o 

Figure 2-94~ CONFIRM (RQE2l3l --Remote LU 

Chapter 2. Overview of the LU 2-109 



TP PS R.M HS (to partner LU) 

SEND_DATA 
o---------->o 

RC=OK I 
o<-------------~-! PREPARE_TO_RECEIVE 
~------------~>o 

NO RC I 
o<---------~ SEND_DATA(DATA, I coNFIRMC LocK=toNG>_, __ F>_R_E_PA_R_E ___ r_o __ R_c_v ___ c_DN_F_I_R_M ___ L_ONG_> __ >n.o-I_c_._R_Q_E2_l 3_._c_o_.o_A_r_A ___ _ 
- ~ > (1) 

RCVD_ERROR -RSP(0846) 

RC='derived 
froM FMH7' RCVD_DATA!FMH,DATA,NOT_END_OF_DATA> FIC,Ft1H7,DATA 

o< o< o<--------------~ (3) 

Figure 2-95. CONFIRM !RQE2f3), SEND_ERROR --Local LY 

2-110 SHA ForMat and Protocol Reference Manual for LU Type 6.2 



cto partner LU) HS RM 

RCVD_DATAIDATA, 
PREPARE_TO_RCV_CONFIRMI 

PS TP 

RECEIVE_AND_WAIT 
o<~~~~~~~--o 

RC=OK, 
WHAT_RCVD=DATA_*COMPLETE 

(1) ~~~~~~~~~~~~>·o-~~~~~~~~~~~~~~~> >o 

-RSP( 08461 
(2) < 

FIC, FMH7,DATA 
(3) < 

Figure 2-96. CONFIRM IRQE2l31, 

SEND_ERROR 
< 

SEND_DATAIFMH,DATA,NOT_END_OF_DATA) 
o< 

SEND_ERROR --Remote LU 

RECEIVE_AND_WAIT I 
o<~~~~~~~~-

o< 

I 
o< 

I 

RC=OK, WHAT _RCVD = 
CONFIRM 

SEND_ERROR 

RC=OK 

SEND_DATA 

RC=OK 

>o 

I 
>o 

I 
>o 

Chapter 2. Overvi- of the LU 2-111 



TP PS RM HS !to eartner bU> 

SEND_DATA 
>o 

RC=OK I o< I SEND_DATA 
>o 

RC=OK I o< I CONFIRM SEND_DATACDATA,CONFIRM> OIC,RQD2l3.~co,oATA 
> > > (1) 

RCVD_ERROR -RSPC0846l 
(2) 

RC='derived 
from FMH7' RCVD_DATA<FMH,DATA,NOT_END_OF_DATAl FIC,FMH7,DATA 

o< o< o<----------------------~ (3) 

Figure 2-97. CONFIRM IRQD213l, SEND_ERROR --Local LU 

2-112 SNA Format and Protocol Reference Manual for LU Type 6.2 



(to partner LU) HS RM 

CVD_DATACDATA,CONFIRMJ 

PS TP 

RECEIVE_AND_WAIT 
o<~~~~~~~--n 

RC=OK, 
WHAT_RCVD=DATA_*COMPLETE 

(1) ~~~~~~~~~~~~><>-~~~~~~~~~~~~~~~> >o 

-RSPC0846l 
(2) < 

FIC, FMH7, DATA 
(3) < 

Figure 2-98. CONFIRM CRQD213J, 

SEND_ERROR 
o< 

SEND_DATACFMH,DATA,NOT_END_OF_DATAI 
o< 

SEND_ERROR --Remote LU 

RECEIVE_AND_WAIT I 
o<~~~~~~~--'-

o< 

I 
o< 

I 

RC =OK, WHAT _RCVD = 
CONFIRM 

SEND_ERROR 

RC=OK 

SEND_DATA 

RC=OK 

>o 

I 
>o 

I 
>o 

Chapter 2. Overview of the LU 2-113 



TP PS RH HS (to eartner LU~ 

SEND_DATA 
>o 

RC=OK I o< 

I SEND_DATA SEND_DATA(DATA,NOT_END_OF_DATA) FIC,data 
> > > (1) 

RC=OK I o< SEND_DATA<DATA, I RECEIVE_AND_WAIT PREPARE_TO_RCV_FLUSH) LIC,CD,RQEl 
> > > ( 2) 

Figure 2-99. RECEIVE_AND_WAIT Causing RQE,CD --Local LU 

2-114 SNA Format and Protocol Reference Manual for LU Type 6.2 



(l) 

(2) 

Ito partner LU) 

FIC,data 

HS RM PS TP 

RECEIVE_AND_WAIT 
o< o 

RC=OK, 
RCVD_DATA(DATA,NOT_END_OF_DATA> WHAT_RCVD=DATA_INCOMPLETE 

-----------~> > >o 
LIC,CD,RQEl 

RCVD_OATA(DATA, 
PREPARE_TO_RCV_FLUSH) 

RECEIVE_AND_WAIT 
o<.--------

R C =OK, WHAT_ R CVD = 
DATA_*COMPLETE ,__------->o 
RECEIVE_AND_WAIT I 

o<--------'· 
RC=OK, 
WHAT_RCVD=SEND 

'--------->o 
Figura 2-100. RECEIVE_AND_WAIT Causing RQE,CD --Remote LU 

Chapter 2. Overvieto1 of the LU 2-115 



TP PS RH HS (to partner W! 

SEND_DATA 

RC=OK 
o< 

SEND_DATA SEND_DATA<DATA,NOT_END_OF_DATA> FIC,data 
o--------------->o-------~--------------------->0-----------------------> (1) 

RC=OK 
o< I 

SEND_DATA SEND_DATA<DATA,NOT_END_OF_DATA) HIC,data I 
RC=OK 
o<- >·o~---_-_-_-_-R_-cv_-~D-~E~R~R-~OR-_-_-_-_-_~---_-_-_-_-_-_-_-_-_-_>l'C:t-<~~~~~~~~~~~~----1~~·-) f2) 

.... -----> (3) 

SEND_DATA SEND_DATA<PREPARE_TO_RCV_FLUSH> LIC,CD,RQEl,no data '"'-------------->0------------------------------>o-----------------------> (4) 
(discard data) 

o<---------------' 

RCVD_DATACFMH,DATA, 
NOT_END_OF_DATA> 

Figure 2-101. SEND_ERROR before SENO_DATA --Remote LU 

FIC,FMH7,DATA 

2-116 SNA Format and Protocol Reference Manual for LU Type 6.2 



( to partner LU> HS Rt1 PS TP 

RECEIVE_AND_WAIT o<.--------o 
RC=OK, 

FIC,data RCVD_DATA(DATA,NOT_END_OF_DATA> WHAT_RCVD=DATA_*COt1PLETE 
(1) ------------> > >o 

-RSPI0846) SEND_ERROR SEND_ERROR 
( 2 > < o<----------------a<:--------' 

t1IC,data RCVD_DATAIDATA,NOT_END_OF_DATA> 
I 3 ) > >o purged 

LIC,CD,RQEl,no data RCVD_DATAIPREPARE_TO_RCV_FLUSH) RC=OK 
(4) ------------,>a----------------~>a-------->o 

FIC,FMH7,DATA SEND_DATA1Ft1H,DATA,NOT_END_OF_DATA) SEND_DATA I 
(5) <------------0<.---------------o<·--------' 

RC=OK 

Figure 2-102. SEND_ERROR before SEND_DATA --Local LU 

Chapter 2. OvervieN of the LU 2-117 



TP PS RH HS (to partner·LU) 

SEND_DATA SEND_DATA(DATA,NOT_END_OF_DATA) FIC,data 
o-------->0---------------->o-------------> (1) 

RC=OK I 
o<-------__.· 

RCVD_ERROR -RSPC0846) 
o<---------------~l)<·------------ (2) 

CONFIRM SEND_DATA(PREPARE_TO_RCV_FLUSH) LIC,CD,RQEl,NO_DATA .._ _____ .....,.._>0---------------->o-------------> (3) 
purge data 

RC='der;ved RCVD_DATA<FMH,DATA, 
from FMH7' PREPARE_TO_RCV_FLUSH) OIC,CD,RQE1,FHH7 

o< o< o<------------ Cit) I RECEIVE_ANO_WAIT 
~--------->o 
RC=OK, I 
WHAT_RCVD=SEND 

o<---------'· 

f;gure 2-103. SENO_ERROR before CONFIRM --Remote LU 

2-118 SNA Format and Protocol Reference Manual for LU Type 6.2 



lto P!rtner LU> 

FIC,data 
(l) 

-RSPl08lt6) 
(2) < 

LIC,CD,RQEl,NO_DATA 
(3) > 

OIC1CD,RQE1,Ft1H7 
( lt) < 

HS Rt1 

RCVD_DATAlDATA,NOT_END_OF_DATA> 

SEND_ERROR 
< 

PS TP 

RECEIVE_AND_WAIT 
o<~~~~~~~~ 

RC=OK,WHAT_RCVD= >i DATA_*COHPLETE 

SEND_ERROR 
< i 

RCVD_DATAlPREPARE_TO_RCV_FLUSH> RC=OK 
> >o 

SEND_DATACFt1H,DATA1 
PREPARE_TO_RCV_FLUSH> RECEIVE_AND_WAIT 

o< < 

f;gure 2-104. SEND_ERROR before CONFIRM --Local LU 

Chapter 2. OYerv;eNof the LU 2-119 



IP PS RM HS Ito partner W> 
SEND_DATA 

>o 
RC=OK I o< SEHD_DAIAIDATA, I RECEIVE_AHD_WAIT PREPARE_ro_RCV_FLUSH) .OIC,RQEl ,co ,DATA 

> > > (1) 

RCVD_ERROR -RSP(0846) 
o< < (2) 

RC='der;ved RCVD_DATA<FMH,DATA, 
from Ftlt7' NOI_END_OF_DATAl FIC,FMH7,DATA 

o< (3) 

f;gure 2-105. SEND_ERROR at End-of-Cha;n --ReMOte LU 

2-1.20 SNA .. Format and Protocol Reference Manual for LU Type 6. 2 



( to partner LU) HS RM PS TP 

RECEIVE_ANO_WAIT 
o< o 

OIC,RQEl,CD,DATA 
RCW_DATA!DATA, 

PREPARE_TO_RCV_FLUSH) 
RC=OK, 

WHAT_RCVD=DATA_*COMPLETE 
> >o 

-RSPC 0846) SEND_ERROR SEND_ERROR I o< ( 2) < o<---------------

I RC=OK 
>o 

SEND_DATA I o< 
FIC,FMH7,DATA SEND_DATACFMH,DATA,NOT_END_OF_DATA) 

(3) <-~----------o<---------------

I RC=OK 
>o 

F;gure 2-106. SEND_ERROR at End-of-Cha;n --Local LU 

Chapter 2. Overview of the LU 2-121 



IP PS Rt! HS U2 121rtmc !Jff 

SEND_DATA SEND_DATAlDATA,HOT_END_DF_DATA) FIC,data 
> > > ( 1) 

RC=OK I o< 

REQUEST_TO_SEND SIGNAL 
o< (2) 

+RSP 
> (3) 

SEND_DATA SEND_DATA(DATA,HOT_END_OF_DATA) MIC,data 
> > > (It) 

RC=OK, ;· 

RQ_TO_SEND_RCVD=YES 
o< 

I SEND_DATA SEND_DATAlDATA,HOT_END_OF_DATA> MIC,data 
> > (5) 

RC=OK I o< 

SEND_DATACDATA, 
RECEIVE_AND_WAIT PREPARE_TO_RCV_FLUSH) LIC,RQEl ,co 

> > (6) 

Figure 2-107. REQUEST_TO_SEND, Received in Send State --Remote LU 

2-1-22 SHA For11at and Protocol Reference Manual for LU Type 6.2 



(to [!art[!!!r LU) HS Rtf PS TP 

FIC,data RCVD_DATAIDATA,NOT_END_OF_DATA> RECEIVE_AND_WAIT 
(1) > >o< 0 

RC=OK,WHAT_RCVD= 
DATA_*COMPLETE 

>o 

SIGNAL REQUEST_TO_SEND REQUEST_TO_SEND I 
(2) < < o< 

+RSP RSP_TO_REQUEST_TO_SEND RC=NONE 
(3) > > >o 

tfIC,data RCVD_DATAIDATA,NOT_END_OF_DATA> 
(4) > >o 

RECEIVE_AND_WAIT 
o< 

RC=OK,WHAT_RCVD= 
MIC,data RCVD_DATACDATA,NOT_END_OF_DATA> DATA_*COMPLETE 

(5) > > >o 

RECEIVE_AND_WAIT 
o< 

RCVD_DATACDATA, RC=OK,WHAT_RCVD= 
LIC,RQEl ,CD PREPARE_TO_RCV_FLUSH) DATA_*COMPLETE 

(6) > > >o 

o< 
RECEIVE_AND_WAIT I 
RC=OK,WHAT_RCVD= 
SEND 

>o 

Figure 2-108. REQUEST_TO_SEND, Received in Send State --Local LU 

CMpter 2. Overview of the LU 2-123 



TP PS RM HS Cto partner LU) 

SENO_DATA SENO_DATACDATA,NOT_ENO_OF_DATA> FIC,data 
o-------------~>0-----------------------------~>o-------------------~~-> (1) 

RC=OK I 
o<----------------'-

SENO_DATACDATA, 
RECEIVE_ANO_WAIT PREPARE_ TO_RCV _FLUSH) LIC, RQEl, CD ...._ ______________ > > > (2) 

REQUEST_TO_SENO SIGCsoft> 
o<------------------------------~o<------------------------ (3) 

RC=OK, 
WHAT_RCVD=DATA_*COMPLETE, 
RQ_TO_SEND_RCVD=YES RCVD_DATACDATA,NOT_ENO_OF_DATA> 

I +RSP 
~-------------------------> (4) 

FIC,data 

figure 2-109. REQUEST_TO_SENO, Received in Receive State --Remote LU 

2-124 SNA F.ormat and Protocol Reference Manual for LU Type 6. 2 



Ito partner LU) HS Rtl PS TP 

RECEIVE_AND_WAIT o<:--------n 
FIC,data RCVD_DATA(DATA,NOT_END_OF_DATA> 

(1) ------------•>o---------------->o RC=OK,WHAT RCVD= I DATA_*COMPLETE 
~-------->o 

REQUEST_TO_SEND I ..--------o<----------------o<:---------'· SIG( soft> REQUEST_TO_SEND 

LIC,RQElt CD RCVD_DATA(DATA,PREPARE_TO_RCV_FLUSH) 
(2) ---- -------> >o 

(3) <---... 
+RSP RSP_TO_REQUEST_TO_SEND RC=NONE 

(4) ------------•>o----------------> >o 
RECEIVE_AND_WAIT I 

o<----------
R C =OK, WHAT_RCVD= 
DATA_*COMPLETE 
~-------->o 

RECEIVE_AND_WAIT I o<--------'· I RC=OK, WHAT_RCVD= 
SEND 
~------->o 

SEND_DATA I 
(5) <------------a<----------------0·<--------' FIC,data SEND_DATAlDATA,NOT_END_OF_DATA> 

I RC=OK "------>o 
Figure 2-110. REQUEST_TO_SEND, Received in Receive State --Local LU 

Chapter 2. Overview of the LU 2-125 



126 SHA For•at and Protocol Reference Hanual for LU TYP9 6.2 



CHAPTER 1.., LU RESOURCES MANAGER 

Transaction 
Program 

Presentation 
Services 

CPS> 

A 

~'~~~~~-> Resources 
Manager <~-> 

..------> (LU. SVC_MGR. RM) 

Data Flow 
Control 

CDFC> 

v 

Transmission 
Control 

CTC> 

J 
> Half-session 

'J 

LU Network 
Services 

( LU.svc_MGR.NS) 

Figure 3-1. Overview of Component Interactions Involving the Resources Manager 

GENERAL DESCRIPTION 

Any time one transaction program wishes to 
communfoate with another, the LU needs to. 
establish, manage, and later deactivate a 
conversation. This chapter describes the 
management of conversation re3ources (or sim­
ply "conversations"). 

An LU contains a services manager, which in 
turn contains a resources manager, RM. The 
function of the resources manager is to 
attach new instances of transaction programs 
when requested to do so by an existing trans­
action program or the LU operator, to estab­
lish a conversation between two transaction 
programs over an LU-LU session, to later 
deactivate the conversation and free the ses­
sion for use by another conversation, and to 

destroy trans·action program instances that 
have completed processing. 
The resources manager stores information 
about active transaction programs, conversa­
tions, and LU-LU sessions in control blocks, 
some of which are the TCB, RCB and the SCB 
(see "Resources Manager Data-Base" on page 
3-2 for additional information). 

The resources manager interacts with other 
components within the LU. These components 
are shown in Figure 3-1. They are PS ( "Chap­
ter 5.0. Overview of Presentation Services" 
and "Chapter 5 .1. Presentation Serv­
i ces--Conversat ion Verbs"), LNS ("Chapter. 4. 
LU Network Services"), and HS ("Chapter 6. 0. 
Half-Session"). 

Chapter 3. LU Resources Manager 3-1 



RESOURCES MANAGER FUNCTIONS 

The · resources nnager (RM> coordinates the 
fol.lDNing functions: 

• 

• 

Creating new instances, and destroying 
existing instances. of presentation serv­
ices 

Choosing sessions to be used by a conver­
sation and, if necessary, requesting 
(bidding for) use of the session 

• Requesting network services (LNS> to 
activate a new session or to deactivate 
an existing session 

COMPONENT INTERACTIONS 

Other components wi th Nhi ch the resources 
manager interacts are the presentation serv­
ices (PS> component associated Nith each 
transaction program instance attached to the 
LU, each half-session IHS) that is available 
for use by the resources manager, and network 
services I LNS). Examples of the type of 
interactions that take place are given below. 

When presentation services is requested by 
its transaction program ITP> to initiate a 
conversation with another TP, it requests the 
resources manager to assist in the request. 
The resources manager is responsible for such 
tasks as choosing a session on which to ini­
tiate the conversation and performing other 
functions necessary for acquiring the session 
for use by the requested conversation, such 
as creating the appropriate control blocks 
I see "Resources Manager Data-Base" for more 
on control blocks>. After the resources man­
ager has completed processing of the request 
that it received from presentation services, 
it sends a reply to PS informing it of the 
outcome of the request. 

One type of unsolicited information that the 
resources manager sends to presentation serv­
ices is an Attach FM header. ( FMH-5) • When 
the resources manager receives an Attach from 
another LU over one of its half-sessions, it 
creates a new instance of presentation serv­
ices and sends the Attach, along Nith other 
information, to the new PS ("Attaching a 

RESOURCES MANAGER DATA-BASE 

The resources manager needs information about 
such things as the transaction programs cur­
rently attached to the LU, the conversations 
associated with each transaction program, and 
the sessions available for use by a conversa­
tion between transaction programs. This 
information is stored in a group of control 

• 

• 

Replying to requests !bids> for use of a 
session that are received frOll remote 
resources managers 

Providing services for support of the 
sync point log. "Chapter 5.3. Presenta­
tion Services--Sync Point Services Verbs" 
describes the content and use of the sync 
point log. 

Transaction Program" on page 3-9 and "Cre­
ation and Termination of Presentation Serv­
ices" on page 3-16 provide additional 
details>. 

Data that the resources manager Nishes to 
send to another resources manager in the net­
Nork is first sent to the local HS component 
in one of the sessions connecting the two 
LUs. Likewise, the resources manager 
receives from HS all data destined for the 
resources manager that comes in over a ses­
sion. Examples of the kind of data that 
flows between the resources manager and HS 
are bids for the use of a session, replies to 
bid requests, and Attach FM headers. 

When the resources manager receives a request 
from presentation services for a session and 
it finds that there are no free sessions with 
the required characteristics, the resources 
manager sends a request to LNS asking it to 
activate a new session. Similarly, the 
resources manager sends to LU network serv­
ices a request that a session be deactivated 
upon notification by PC. COPR ( "Chapter 5. 4. 
Presentation Services--Control-Operator 
Verbs") that too many sessions are active. 
LNS replies to the resources manager after it 
has carried out ,the requested function. See 
"Activating a New Session" on page 3-13 and 
"Changing the Maximum Session Limit" on page 
3-14 for more details on session activation 
and deactivation. 

blocks found in the lU (see "Appendix A. Node 
Data Structures" for the control block defi­
nitions>. The resources manager initializes 
entries in some control blocks, while it only 
accesses or updates information in entries 
already existing in other control blocks. 

3-2 SNA Format and Protocol Reference Manual for LU Type 6.2 



CONTROL BLOCKS MAINTAINED BY THE RESOURCES 
MANAGER 

Informat;on about transact;on programs ;s 
conta;ned ;n the transaction control block 
ITCB>. One TCB exists for each active TP-PS 
process assoc;ated with the LU. Each TCB 
contains a TCB ;dentH;er ITCB ID>, wh;ch 
oni quely identifies the transact Ton program 
being represented by the TCB. The TCB_ID is 
also used in all communication between the 
resources manager and presentation services 
servicing the transaction program. For exam­
ple, when presentation services sends a 
record to the resources manager, it prov;des 
its TCB_ID so that the resources manager will 
know, of all the TP-PS processes ;t manages, 
which presentation services to send a reply 
to. Presentation services is informed of its 
TCB_ID when the TP-PS process is created by 
the resources manager. When the resources 
manager receives an Attach header ( FMH-5) 
from a remote resources manager, it creates a 
new TCB, creates a new instance of presenta­
tion services to be associated with the 
transaction program being attached, and sends 
the TCB_ID of the new TCB to presentation 
services. Thus, attaching a transaction pro­
gram results in creation of a new TP-PS proc­
ess for that transaction program, with wh;ch 
a presentation services component is always 
associated. 

Associated with each TCB ;s a group of 
resource control blocks <RCBs). One RCB 
exists in the group for each conversation 

Transaction 
Program 

ALLOCATE 

Presentation 
Services 

e3societed with the transact;on program. 
Bes;des the RCB_ID, an RCB conta;ns several 
other p;eces of informat;on, such as the 
TCB_ID of the TP-PS process that ;s us;ng the 
conversation; the LU name, mode name, and 
half-session ;dentHier (HS_ID) of the ses­
s;on on which a conversation is runn;ng; and 
a buffer ;n which presentation serv;ces 
stores data that it receives from the trans­
action program. 

The final control block ma;nta;ned by the 
resources manager ;s the session control 
block ( SCB) • There ; s one SCB for each 
active session between th;s LU and a partner 
LU. Information contained in an SCB includes 
a half-session identifier CHS_ID> and the 
partner LU_NAME and MODE_NAME for the ses­
sion. 

CONTROL BLOCKS ACCESSED BY THE RESOURCES MAN­
AGER 

In addition to those control blocks managed 
by the resources manager other control blocks 
exist that are managed by another component 
but are accessed and updated by the resources 
manager. 

One of these control blocks is MODE. There 
is one MODE control block for each mode name 
that ;s defined fer the particular LU. The 
MODE entry contains information that is fixed 
on a mode name basis such as session counts 
and limits. 

Resources 
Manager 

ALLOCATE_RCB 

RCB_ALLOCATEDIRCB_IDJ 

Figure 3-2. Allocation of a Resource Control Block (RCB) 

ESTABLISHING A CONVERSATION 

When the resources manager rece; ves an 
ATTACH_HEADER record (from HS ; f the Attach 
was received on an LU-LU sess;on, or from 
UPM_IPL if the Attach was generated locally, 
perhaps as the result of an operator com­
mand), ;t creates a new TCB (representing the 
new instance of a TP-PS process) and RCB (re­
presenting the transaction program's initial 

conversation>. It passes the IDs of the con­
trol blocks to the newly-created presentation 
services process (see "Attaching a Trans­
action Program" on page 3-9). Once the 
transaction program is attached, it can ini­
tiate conversations with other transaction 
programs. 

Chapter 3. LU Resources Manager 3-3 



ALLOCATING A NEW CONVERSATION 

When the transaction program is ready to 
start a new conversation, it issues an ALLO­
CATE verb to presentation services. In gen­
eral, presentation services separates the 
ALLOCATE request into two distinct functions, 
i.e., allocating an RCB and obtaining a ses­
sion. Presentation services requests the 
resources manager to create a new RCB via an 
ALLOCATE_RCB record. The ALLOCATE_RCB con­
tains information about the type of session 
that will be needed for the conversation. It 
stores the session-related information in the 
new RCB and sends presentation services an 
RCB_ALLOCATED record, which contains the ID 
of the RCB. See Figure 3-2 for the flows 
that take place. 

OBTAINING A SESSION 

Once presentation services (PS> is informed 
of the ID of the new RCB, it creates an 
Attach FM header CFMH-51 and places it in the 
RCB. At some point, it requests that an 
LU-LU session be allocated to the conversa­
tion. PS can choose to return control to the 
transaction program and later obtain the nec­
essary session, or it can obtain the session 
before returning to the transaction program. 
PS makes the decision of when to ask for the 
session based on information the transaction 
program supplied in the ALLOCATE verb !see 
"Chapter 5.1. Presentation Serv­
ices--Conversation Verbs" for specific 
details). 

Presentation services asks for a session to 
be allocated by sending a GET_SESSION record 

to the resources manager. The GET_SESSION 
contains the RCB ID of the conversation that 
is to use the session. It also contains an 
indicator that tells the resources manager 
whether PS wants RM to send out, the Attach FM 
header as part of the session allocation 
processing, or whether PS is to be responsi­
ble for sending the Attach after the session 
has been allocated by RM. 

The resources manager at either end of a ses­
sion connecting two LUs may attempt to allo­
cate that session to a conversation. If both 
resources managers attempt to allocate the 
same session at the same time, there must be 
some way to resolve the contention for the 
session. For this reason, one of the LUs is 
designated the "first speaker" (or "con­
tention winner"> and the other LU is des i g­
nated the "bidder" (or "contention loser"> 
for the session. The assignment of first 
speaker and bidder LUs is established during 
session activation and remains in effect for 
the duration of the session. If more than 
one session exists between a pair of LUs, one 
LU may be the first speaker for some sessions 
and the bidder for the others. If an LU is 
the first speaker for a p~r,ticular session, 
that session is said to be a first speaker 
session for the LU. 

The resources manager in a bidder LU must 
request the resources manager in the first 
speaker LU for permission to use a session. 
This is called "bidding" for a session. The 
first speaker LU may either grant or deny the 
request for the session from the bidder LU. 
On the other hand, if the resources manager 
in a first speaker LU wishes to allocate a 
free session to a conversation, it may do so 
immediately, without requesting permission 
from the resources manager in the other LU. 

3-4 SNA Format and Protocol Reference Manual for LU Type 6.2 



Presentation Resources 
Services Manager HS 

GET_SESSIONCRCB_ID, NO_ATTACHl 
(1) > 

HS_PS_CONNECTED 
(4) First > 

Speaker 
Flows SESSION_ALLOCATED 

(5) < 

-OR-

BID_WITHOUT_ATTACH 
(2) > 

• 
• 
• 

Bidder 
Flows +BID_RSP 

(3) < 

HS_PS_CONNECTED 
(4) > 

SE~S!Oli_ALLOCATED 
(5) < 

Figure 3-3. Allocation of Session Using BID_WITHOUT_ATTACH 

The resources manager will always allocate a 
first speaker session in preference to a bid­
der session, to avoid the bidding procedure. 
Figure 3-3 illustrates the flows that take 
place when the resources manager attempts to 
allocate a session and presentation services 
has spec i f i ed that the Attach is not to be 
sent by RM as part the the session allo­
cation. The records used in the figure are 
defined in "Appendix A. Node Data Structures" 
in more detail. The following description 
refers to the numbers to the left of each 
flow in the figure. 

(ll Presentation services sends a 
GET SESSION record to the resources man­
ager. The RCB_ID identifies an RCB that 
was previously allocated by the 
resources manager. The NO_ATTACH param­
eter informs the resources manager that 
it should not send the Attach FM header 
as part of the session allocation proc­
essing 

( 2) If no first speaker session is avail­
able, the resources manager must bid for 
use of a session. It sends 
BID_WITHOUT_ATTACH to the half-session. 
The bid will flow on the session to the 
resources manager at the partner LU. 
Between the time that the bid is sent 

and the bid response is received, the 
resources manager must retain enough 
information to be able to proceed with 
session allocation when the bid response 
arrives. This information includes sav­
ing the HS_ID of the session and the 
GET_SESSION record in the RCB. 

(3) The BID_RSP arrives from the remote 
resources manager on the half-session. 
The positive response indicates that the 
bid for use of the session has been 
accepted and the resources manager can 
complete the session allocation. Not 
shown in this figure is the processing 
of a -BID RSP. In this case, the 
resources .;-anager would attempt allo­
cation of a different session, if possi­
ble. 

(4) An HS_PS_CONNECTED record is sent to the 
half-session to inform the half session 
that it has been connected to -a TP-PS 
process. 

C5l A SESSION_ALLOCATED record is sent to 
presentation services to inform it that 
a session has been allocated to the con­
versation, satisfying the GET_SESSION 
request. 

Chapter 3. LU Resources Manager 3-5 



Presentation Resources 
Services M!nager 

GET_SESSION<RCB_ID, ATTACH> 
(1) > 

BID_WITH_ATTACH 
(2a> > 

First HS_PS_CONNECTED 
(ft) Speaker > 

Flows 
SESSION_ALLOCATED 

(5) < 

-OR-

BID_WITH_ATTACH 
(2b) > 

• • 
• 

Bidder 
Flows +BID_RSP 

(3) < 

HS_PS_CONNECTED 
(ft) > 

SESSION_ALLOCATED 
(5) < 

Figure 3-ft. Allocation of Session Using BID_WITH_ATTACH 

Figure 3-ft illustrates the flo111s that take 
place when the resources manager attempts to 
allocate a session and presentation services 
has specified that the Attach i.! to be sent 
by RM as part the the session allocation. 
The records used in the figure are fully 
defined in "Appendix A. Node Data Struc­
tures". The following description refers to 
the numbers to the left of each flow in the 
figure. 

(1) Presentation services sends a 
GET_SESSION record to the resources man­
ager. The RCB_ID identifies an RCB that 
was previously allocated by the 
resources manager. The ATTACH parameter 
informs the resources manager that it 
should send the Attach FM header as part 
of the session allocation processing 

(2a> If a first speaker session is available, 
a BID_WITH_ATTACH to the half-session. 
The BID_WITH_ATTACH contains the Attach 

FM header as a field. Since this is a 
first speaker session, the 
BID_WITH_ATTACH is not really a bid for 
the session, and RM may immediately pro­
ceed with session allocation without 
waiting for a BID_RSP Cnone will be 
forthcoming I . 

C2b> If no first speaker session is avail­
able, the resources manager must bid for 
use of a session. It sends 
BID_WITH_ATTACH to the half-session. 
BID_WITH_ATTACH includes the Attach FM 
header as a field. The Attach is sent 
on the half-session along with the bid. 
Otherwise, the processing is the same as 
in Figure 3-3. 

(3) Same as in Figure 3-3 

(ft) Same as in Figure 3-3 

(5) Same as in Figure 3-3 

3-6 SHA Format and Protocol Reference Manual for LU Type 6.2 



Resources Presentation 
ID? Manager Services 

BID 
( 1) > 

BID_RSP 
C2a) < 

ATTACH_HEADER 
(3) > 

ATTACH_RECEIVED 
(4) 

-OR-

( 2b) [ < 
-BID_RSP 

Figure 3-5. Responding to a Bid for a Session 

Figure 3-5 illustrates the flows that take 
place when a bid request is received by the 
resources manager. The records used in the 
figure are defined in "Appendix A. Node Data 
Structures" in more detail. The following 
description refers to the numbers to the left 
of each flow in the figure. 

( 1) A BID record is received from the 
half-session. The half-session sends a 
BID record to RM whenever the partner LU 
sends BB, regardless of whether the 
partner LU is bidder or first speaker. 

( 2a > If RM responds with a +BID_RSP, the 
request by the remote resources manager 
to use the session is accepted and proc-

> 

] 

essing continues with receipt of the 
Attach FM header from the half-session 
( flows 3 and 4). 

C 2b) If RM responds Ni th a -BID_RSP t the 
request by the remote resources manager 
to use the session is rejected. 

(3) An ATTACH_HEADER record, which includes 
the FMH-5, is sent from the half-session 
to RM. 

( 4) RM creates a new TP-PS and sends 
ATTACH RECEIVED to PS. See "Attaching a 
Transa~t ion Program" on page 3-9 for 
further details. 

Chapter.3. LU Resources Manager 3-7 



Presentation 
Services 

Resources 
Manager 

ALLOCATE_RCB!IMMEDIATE_SESSION = YES> 

First Speaker 
Session 

Available 

------------------------------~> 

RCB_ALLOCATEDCRCB_IDJ 

-OR-

RCB_ALLOCATED 
CRETURN_CODE = UNSUCCESSFUL) 

First Speaker [ 
Session 

Not Available <--------------------------------

Figure 3-6. Immediate Allocation of a Session 

IMMEDIATE SESSION PROCESSING 

Presentation services can request the 
resources manager to allocate both an RCB and 
a session 1o1ith one record. ALLO­
CATE_RCBUMMEDIATE_SESSION=YES l embodies the 
function of both ALLOCATE RCB and GET SESSION 
in that 1o1hen the proces;ing completes sue-

HS_PS_CONNECTED 

l 
cessfully, both an RCB and an SCB are allo­
cated. ALLOCATE_RCBCIMMEDIATE_SESSION=YESJ 
instructs the resources manager to allocate 
an RCB only if a first-speaker half-session 
is currently available. If such a 
half-session is not available, no allocation 
is to be performed. See Figure 3-6 for the 
specific flows involved. 

3-8 SNA Format and Protocol Reference Manual for LU Type 6.2 



ATTACH_HEADER 

Resources 
Manager 

-------------------------------> 
HS_ PS_ CONNECTED 

<-------------------------------

Presentation 
Services 

ATTACH_RECEIVED CTCB_ID, RCB_ID, 
SENSE_CODE> 

-----------------------------> 

Figure 3-7. Attach Flows 

ATTACHING A TRANSACTION PROGRAM 

One transaction program requests 
Attach FM header CFMH-5>. that 

via an 
another 

transaction program be attached to a conver­
sation. The resources manager handles the 
receipt of the Attach. Only one Attach is 
allowed per conversation. RM processes the 
Attach and later sends it to PS INITIALIZE in 
the newly created TP-PS process for further 
processing. 

RM is responsible for checking certain fields 
of the Attach, such as the transaction pro­
gram name field. CPS_INITIALIZE later checks 
the remaining fields>. It notifies presenta­
tion services of the result of the checking 
through a field in the ATTACH record that RM 
sends to PS. Regardless of whether all the 
fields checked by RM are valid, the resources 
manager creates a new instance of presenta­
tion services and sends to PS the valid or 

invalid Attach. If the Attach is invalid, 
presentation services is responsible for cre­
ating an FMH-7, or for causing an UNBIND to 
be generated, to notify the transaction pro­
gram that initiated the Attach of the error. 

After checking the Attach, the resources man­
ager creates a new instance of the TP-PS 
process; it creates a new TCB and RCB; and it 
connects the TP-PS process to the 
half-session. It then sends an ATTACH record 
to the new instance of the TP-PS process. 
The ATTACH record contains the Attach FM 
header, the FMH-7 sense data field and the 
IDs of the new TCB and RCB. Finally, it 
not i f i es the ha lf-sess i on that i t has been 
connected to a TP-PS process via a 
HS_PS_CONNECTED record. Figure 3-7 depicts 
the flows involved in Attach processing. 

Chapter 3. LU Resources Manager 3-9 



Resources 
Manager 

First-Speaker 

BID_WITH_ATTACH 

-------------------------· 
Create RCB 
RCB.HS_ID = HS_ID 
SCB.RCB_ID = RCB_ID 
STATE!FSM_RCB_STATUS) = IN_USE 
STATE!FSM_SCB_STATUS) = IN_USE 

BID 
<------------------------· 

STATE!FSM_SCB_STATUS) = IN_USE, so: 

••• !:§ 

\ I 
\ I 

\ I 
\ I 

x 
I \ 

I \ 
I \ 

I \ 

Bidder 

Resources 
Manager 

BID_WITH_ATTACH or 
BID_WITHOUT_ATTACH 

·------------------------
Create RCBl 
RCBl.HS_ID = HS_ID 
SCB.RCB_ID = NULL 
STATE!FSM_RCBl_STATUS) = PENDING_ATTACH 
STATECFSM_SCB_STATUS) = FREE 

BID 
·-----------------------> 

Create RCB2 
RCB2.HS_ID = HS_ID 
SCB.RCB_ID = RCB_ID 
STATE!FSM_RCB2_STATUS) = IN_USE 
STATECFSM SCB STATUS) = IN_USE 
ATTACH is-sent to PS 

-BID_RSPCSENSE_CODE = 0813 or 0814) 
-------------------------------------------------------------------> 

Figure 3-8. Bid Races 

~ .E.QBTHE USE QE A SESSION 

It is possible for the resources manager on 
each end of a session to simultaneously 
choose that session to service separate 
GET_SESSION records, causing a bid race. The 
resources manager on the first-speaker side 
of the session always wins such a bid race. 
When it receives the bid from the bidder RM, 
it recognizes that the session is already in 
use and generates a negative BID_RSP. When 
the bidder RM receives the negatl ve BID_RSP 
record, it checks the free session pool to 
see if there is another session available and 
retries the GET_SESSION processing on that 
session. Figure 3-8 illustrates an example 
of a bid race and shows the RCB and SCB set­
tings that allow a race condition to be 
detected. 

RCBl.HS_ID = NULL 
STATECFSM_RCBl_STATUS) = FREE 
Retry on another session 

The negative BID_RSP that is generated for a 
bid rejection can have a sense code of either 
0813 !Bracket Bid Reject--No RTR Forthcoming) 
or 0814 !Bracket Bid Reject--RTR Forthcom­
ing l. Either -BID_RSP!0813l or 
-BID_RSP!0814l may be sent, the decision 
being an implementation-dependent choice. 
An implementation may permit a transaction 
program to reserve a session before a conver­
sation is started on that session. A bid for 
a reserved session is always rejected with a 
-BID_RSP!0814l since the transaction program 
might never begin a conversation on the 
reserved session Cif, for example, the trans­
action program terminated abnormally). The 
resources manager informs the partner LU that 
it can bid on the session again by sending an 
RTR_RQ. 

3-10 SNA Format and Protocol Reference Manual for LU Type 6.2 



Resources 
Manager 

Fh·st-Speaker Bidder 

!!! H• HS 
Resources 

Manager 

BID_WITH_ATTACH 
BID_WITH_ATTACH or 
BID_WITHOUT_ATTACH _____________________________ ,. ., ____________________________ __ 

BID 

' / x 
/ ' BID 

<.-----------------------------'• ·'-----------------------------> 

-BID_RSPCSENSE_CODE = 0814) 

-------------------------------------------------------------------> 
• 
• 
• 

RTR_RQ 

-------------------------------------------------------------------> 

+RTR_RSP 

<.-------------------------------------------------------------- l BID 

<--------------------------------------------------------------

-OR-

-RTR_RSPCSENSE_CODE = 0819) [<------ ] 
Figure 3-9. READY TO RECEIVE CRTRJ Flows 

Figure 3-9 depicts possible RTR flows. In 
the situation where there is a bid race and 
-BID_RSPC0814) is sent, the resources manager 
at the bidder side of the session cannot bid 
again for that session until it has received 
an RTR_RQ from the first-speaker RM. Upon 
receipt of a -BID_RSPC0814J, the bidder 
resources manager updates a field in the SCB 
to remember that -RSPC0814J was received and 
retries the bid on another session. From 
this point until the RTR_RQ is received, 
whenever a conversation ends and the session 
becomes free, the session is not returned to 
the free session pool C as is the normal 
case), thereby preventing the session from 
being chosen for bidding. 

When the current conversation ends, the 
first-speaker RM returns the session to the 
free session pool and checks to see i f any 
waiting requests can be satisfied by that 
session. The resources manager may use the 
session to service multiple GET_SESSION 
requests before sending the promised RTR_RQ. 

At some point, the resources manager at the 
f i rs t-speaker side sends an RTR_RQ to the 

resources manager at the bidder side. This 
is a notUication to the bidder RM that it 
can now use the session. When the 
first-speaker RM sends the RTR_RQ, it removes 
the session from the free session pool to 
prevent that session from being chosen to 
service a request before the bidder RM has 
had a chance to respond to the RTR~RQ. 

When the bidder RM receives the RTR RQ, it 
places the session in the free sess i ~n pool 
(for the first time since receiving the 
-BID_RSPC 0814 J J. It then checks to see if a 
GET_SESSION record is waiting to be serviced, 
if so RM then sends a positive RTR_RSP (indi­
cating that it intends to use the session) 
and a BID_WITHOUT_ATTACH or BID_WITH_ATTACH 
to the first-speaker resources manager. If 
no GET_SESSION records are waiting, the bid­
der sends a negative RTR_RSP with a sense 
code of 0819~ This indicates to the 
first-speaker RM that the bidder does not 
need the session. At this time, the 
first-speaker places the session back into 
the free session pool and checks for any 
waiting requests. 

Chapter 3. LU Resources Manager 3-11 



Presentation 
Services 

DEALLOCATE_RCBIRCB_IDJ 

Resources 
Manager 

------------------------------~> 

RCB_DEALLOCATED 
<.~----------------------------~ 

• 
• 
• 

FREE_ SESSION 
<.~------------------------~ 

-OR-

FREE_ SESSION 
<~------------------------~ 

DEALLOCATE_RCBIRCB_IDJ 

• 
• 
• 

------------------------------~> 

RCB_DEALLOCATED 
<------------------------------~ 

.!:!2ll DEALLOCATE_RCB and FREE_SESSION are independent records and can be sent to the resources 
manager in any order. 

Figure 3-10. End of a Conversation 

TERMINATING A CQNVERSATION 

After the resources manager has established a 
conversation between two transaction pro­
grams, it is not called upon to do any other 
processing for that conversation until the 
transaction programs are ready to end the 
conversation (see Figure 3-lOJ. The 
resources manager is i rlformed of the end of 
the conversation via two independent records. 
One record is DEALLOCATE_RCB, sent from pres-

entation services. The other is 
FREE_SESSION, sent from HS to infor11 the 
resources manager that the session is now 
available for use by another conversation. 
The arrival of the two records is 
order-independent. Whichever record is 
received first triggers the resources manager 
to disconnect PS and HS. 

3-12 SNA Format and Protocol Reference Manual for LU Type 6.2 



Presentation 
Services 

--PRIMARY--

Resources 
Manager 

Network 
Services 

GET_SESSION 

ACTIVATE_SESSIQN 
-------> 

HS ••• HS 

• 

--SECONDARY--

Network 
Services 

Resources 
Manager 

Presentation 
Services 

Normal BIND protocols 
• 

ACTIVATE_SESSION_RSP 
<--------

[ SESSION_ALLOCATED 
<--------

-OR-

[ YIELD_SESSION 

Figure 3-11. Activation of a New Session 

ACTIVATING A NEW SESSION 

The resources manager is responsible for 
allocating sessions to be used by conversa­
tions. Presentation services requests the 
session be allocated with a GET_SESSION 
record. RM chooses sessions from the free 
session pool to satisfy the GET_SESSION 
request. If the pool is empty and the ses­
sion limits allow the activation of a new 
session, the resources manager sends an ACTI­
VATE_SESSION record, containing the LU name 
and mode name of the desired session, to LU 
network services CLNS, "Chapter 4. LU Network 
Services"). Figure 3-11 illustrates the 
flows involved in activating a new session. 

Although RM will not request session acti -
vation if it would cause the session limits 
to be exceeded, LNS is ultimately responsible 
for checking to see that the number of active 
sessions is not greater than the maximum num­
ber of sessions allowed for that (LU name, 
mode name J pair. Some conditions C e.g., a 
BIND race) will cause RM to request a session 
activation that would exceed the session lim­
its. In this case, the activation request 
from RM is rejected with a negative ACTI­
VATE_SESSION_RSP record. 

If the session can be activated, normal BIND 
protocols take place. When the session has 

SESSION_ACTIVATED 
--------> 

] 

FREE_ SESSION ] 

been successfully activated, the LNS compo­
nent sends the resources manager a pos i ti ve 
ACTIVATE_SESSION_RSP record informing RM of 
the SCB ID of the new session. The resources 
manager-at the partner LU is notified of the 
session activation by a SESSION_ACTIVATED 
record from its LNS component. 

When a new session is activated, it comes up 
in-brackets with the resources manager on the 
primary side of the session having control of 
the session. This is true even if the 
resources manager on the secondary side of 
the session was the one that issued the ACTI­
VATE SESSION record that caused the session 
to b-; activated. Upon receipt of a positive 
ACTIVATE_SESSION_RSP !or SESSION_ACTIVATED in 
the case of activation by the partner LU), RH 
creates and initializes an SCB based on the 
information carried in the ACTI­
VATE_SESSION_RSP !or SESSION_ACTIVATEDJ. If 
the newly activated session is a primary 
half-session, RM then determines if any 
requests are waiting to be serviced. If so, 
it uses the new session to service the 
request and sends a SESSION_ALLOCATED record 
to presentation services. If no requests are 
waiting, RM sends a YIELD_SESSION record to 
HS, thus yielding its right to use the ses­
sion and ending the bracket. 

Chapter 3. LU Resources Manager 3-13 



CNOS 
Transaction 

Program 
Resources 

Manager 
Network 
Serv;ces ••• HS 

Resources 
Manager 

CNOS 
Transaction 

Program 

CHANGE_NUMBER_OF_SESSIONS 

CHANGE_NUMBER_OF_SESSIONS 
<------------------~---------------------~--------~--~ 

CHANGE_ SESSIONS 
!Decrease) 

----------> 
BIS_RQ ---------------> ••• 

BIS_REPLY 

DEACTIVATE_ SESSION 
-------> 

• 
• 
• 

••• 

Normal 
UNBIND 

Protocols 

Figure 3-12. Decreasing the Nunber of Sessions 

CHANGING !!!£ MAXIMUM SESSION LIMIT 

The MODE control block (see page A-3) con­
tains several session limit fields. These 
fields limit the number and polarity !first 
speaker or bidder) of sessions that this LU 
can have with the partner LU and mode name 
represented by the MODE control block. The 
limit fields include: 

• SESSION_LIMIT--limit on the total number 
of sessions 

• MIN_CONWINNERS_LIMIT--limit on the number 
of bidder sessions. The SESSION_LIMIT 
less the number of bidder sessions must 
be greater than or equal to 
MIN_CONWINNERS_LIMIT. 

• 

• 

MIN CONLOSERS LIMIT--limit on the number 
of -first sp-;aker sessions. The SES­
SION_LIMIT less the number of first 
speaker sessions must be greater than or 
equal to MIN_CONlOSERS_lIMIT. 

AUTO_ACTIVATIONS_LIMIT--the number of 
session that are activated independent of 
demand. All such sessions will be first 
speaker sessions. 

BIS_RQ 
-----> 

BIS_REPLY 
<-----

The change number of sessions ( CNOS) trans­
action program ("Chapter 5. 4. Presentation 
Services--Control-Operator Verbs" l can cause 
the session limits to change. The CNOS 
transaction programs at the two LUs come to 
an agreement on what the new session limits 
are to be via an exchange of Change Number of 
Sessions GDS variables <see "Appendix H. FM 
Header and LU Services Commands" l. After an 
agreement on the new session limits is 
reached, the CNOS transaction program sends a 
CHANGE_SESSIONS record to its resources man­
ager. The CHANGE SESSIONS notifies the 
resources manager that a change in the ses­
sion limits has occured. 

If the new session limits imply that new ses­
sions may be activated, RM determines if 
there are any waiting requests. If so, it 
creates multiple ACTIVATE_SESSION records, 
one for each waiting request, and sends them 
to LU network services (see "Activating a New 
Session" on page 3-13 for more on session 
activation). The resources manager does not, 
however, request that more sessions be acti­
vated than can be accommodated by the new 

3-14 SNA Format and Protocol Reference Manual for LU Type 6.2 



session limits. The excess requests are 
retained for later processing. 

The resources manager makes certain that at 
least a number of sessions equal to the 
AUTO_ACTIVATIOHS_LIMIT are active. After 
this number of sessions is active, RM will 
request session activation only to satisfy 
waiting requests. For example, if 
AUTO_ACTIVATIOHS_LIMIT = 2 and five requests 
are waiting, but the new session limits imply 
that seven sessions could be concurrently 
active, the resources manager sends to LU 
network services only five ACTIVATE_SESSIOH 
records. 

When the session limits are decreased, one of 
the LUs is designated as being "responsible" 
for deactivating sessions, as necessary to 
satisfy the new session limits. 
CHAHGE SESSIOH. RESPOHSIBLE is set to YES if 
the re~ources manager is responsible to deac­
tivate sessions. 

The resources manager computes a TERMI­
HATIOH_COUHT, which is the number of sessions 
that this LU is responsible to deactivate. 
RM chooses sessions to deactivate from the 
pool of free sessions with that LU and mode 
name, sending a BIS_RQ record on each of the 
sessions that it has chosen and removing the 
entry for that session from the free session 
pool. The BIS_RQ is sent to inform the 
receiving resources manager that the sending 
RM will not initiate any subsequent brackets, 
and is sent only while the sending 
half-session is between brackets. When RM 
receives a BIS_REPLY record in response to 
its BIS RQ, it decrements the TERMI­
NATIOH_COUNT and sends to LU network services 
a DEACTIVATE SESSION record for that session. 
LU network s-ervices then performs the normal 

UHBIND protocols. A BIS_RQ-BIS_REPLY 
exchange always precedes a normal UNBIND 
Ci.e., types X'Ol', X'02', or X'03'). See 
Figure 3-12 on page 3-14 for the flows 
involved. 

If not enough free sessions can be deacti­
vated to bring the TERMIHATION_COUNT to O, RM 
waits for sessions that are currently in use 
to become free before i t sends any more 
BIS_RQs. 

The value of the DRAIH SELF field in the MODE 
control block determin;s whether RM will send 
BIS_RQ immediately when a session become s 
free. If DRAIN_SELF =NO (i.e., waiting ses­
sion allocation requests are not to be satis­
fied before session deactivation), RM wi 11 
send BIS RQ as soon as a session becomes 
free. If DRAIH_SELF = YES (i.e., waiting 
session allocation requests are to be satis­
fied before session activation), RM will send 
BIS_RQ only if there are no waiting requests 
when the session becomes free. In the same 
way, DRAIN_SELF determines when BIS_REPLY is 
sent in reply to a BIS_RQ from the partner 
LU; i.e., if DRAIN SELF= NO, BIS REPLY is 
sent immediately; -otherwise, BIS_REPL Y is 
sent only when there are no waiting requests. 

The LU control operator may also explicitly 
request that a session be activated or deac­
tivated. RM is notified of these 
control-operator requests with an 
RM ACTIVATE SESSION or RM DEACTIVATE SESSION 
re~ord. Th; resources man;ger is responsible 
for sending ACTIVATE_SESSION or DEACTI­
VATE_SESSION records (preceded by the usual 
BIS_RQ-BIS_REPLY exchange for normal deacti­
vation! to LU network services to satisfy 
these control-operator requests. 

Chapter 3. lU Resources Manager 3-15 



Presentation 
Services 

Resources 
Manager 

Network 
Services 

SESSION_DEACTIVATEDCSON) 
<-----------.,.--------------~ 

CONVERSATION_FAILURECRCB_ID) 
< 

• 
• 
• 

DEALLOCATE_RCBCRCB_ID) 
> 

RCB_DEALLOCATED 
< 

Figure 3-13. Session-Outage Actions 

SESSION OUTAGE 

An active session between two LUs sometimes 
fails. The session outage could be caused by 
a failure of one or both of the LUs, or by a 
failure in the path between the LUs. In the 
event of a session outage, the resources man­
ager receives a SESSION_DEACTIVATEDC REASON = 
SON) from LU network services. If the ses­
sion is being used by a conversation, RM 

CREATION AND TERMINATION .Qf PRESENTATION SERVICES 

The resources manager is responsible for cre­
ating and terminating instances of presenta­
tion services. (Presentation services, in 
turn, is responsible for starting up and tak­
ing down the transaction program with which 
it is to be associated.) The resources man­
ager creates a new instance of presentation 
services on receipt of an ATTACH_HEADER 
record. Along with creating a new PS proc­
ess, RM at this time also creates a new TCB 
and RCB, and informs PS of the HS_ID of the 

sends a CONVERSATION_FAILURE record to pres­
entation services to inform it of the outage, 
and receives from PS a DEALLOCATE_RCB at some 
point. Regardless of whether the session is 
in use, RM destroys the associated SCB. Fig­
ure 3-13 illustrates the session-outage 
floW5. 

half-session over which the initial conversa­
tion is flowing. Finally, it sends to pres­
entation services the FMH-5 contained in the 
ATTACH_HEADER record, and the IDs of the new 
TCB and RCB. 

When a transaction progra• finishes its proc­
essing, presentation services notifies the 
resources manager via a TERMINATE_PS record. 
RM destroys the PS process and the associated 
TCB. 

3-16 SHA Format and Protocol Reference Ham.ml for LU Type 6.2 



HIGH-LEVEL PROCEDURES 

RM 

FUNCTION: This process initializes RM_PROCESS_DATA and receives all input to the 
resources manager and routes the input to the appropriate procedure for proc­
essing. 

INPUT: 

OUTPUT: 

NOTE: 

RM_RECORD is received asynchronously from network services CLNSJ, half-session 
CHSI, presentation services CPSJ, and the undefined protocol machine, UPM_IPL. 

Refer to the procedures that are called from this process for the outputs 
resulting from records received from other processes. 

UPM_IPL is an implementation-defined process. It sends an Attach to RM when a 
transaction program is to be started locally. 

Referenced procedures, FSMs, and data structures: 
PROCESS_LNS_TO_RM_RECORD 
PROCESS_HS_TO_RM_RECORD 
ATTACH_PROC 
PROCESS_PS_TO_RM_RECORD 

page 3-19 
page 3-18 
page 3-26 
page 3-20 

Do forever: 
Receive a record. 
Select based on the sender of the record: 

When LNS 
Call PROCESS_LNS_TO_RM_RECORD!record received) (page 3-191. 

When HS 
Call PROCESS_HS_TO_RM_RECORDCrecord received) Cpage 3-181. 

When UPM_IPL 
Call ATTACH_PROCCrecord received, UPMJ !page 3-261. 

When PS 
Call PROCESS_PS_TO_RM_RECORDCrecord received) Cpage 3-201. 

Chapter 3. LU Resources Manager 3-17 



PROCESS_HS_TO_RM_RECORD 

PROCESS_HS_TO_RM_RECORD 

FUNCTION: This procedure routes records received from HS to the appropriate procedure 
for processing. 

INPUT: The current record from a half-session 

OUTPUT: Refer to the procedures that are called frOM this process for the specific 
outputs. 

NOTES: 1. If an SCB is not found with an HS_ID matching HS_TO_PS_RECORD.HS_ID, the 
record is discarded. This could occur, for example, if session outage 
occurred before RM had processed all the records from that half-session. 

2. If IFSM_BIS indicates that the session is 
This could occur, if the resources manager 
after having sent BIS_REPLY. 

closed, the record is discarded. 
in the partner LU sends a -RTR_RSP 

Referenced procedures, FSMs, and data structures: 
BID_PROC 
BID_RSP_PROC 
ATTACH_PROC 
FREE_SESSIOH_PROC 
RTR_RQ_PROC 
RTR_RSP_PROC 
BIS_RQ_PROC 
BIS_REPLY_PROC 
FSM_BIS_BIDDER 
FSM_BIS_FSP 
HS_TO_RM_RECORD 
SCB 

If there is not an SCB where SCB.HS_ID = HS_TO_PS_RECORD.HS_ID then 
Discard the HS_TO_RM_RECORD (see Note l>. 

Else 
If the state of IFSM_BIS ~ CLOSED Cpage 3-65) then, 

Select based on HS_TO_RM_RECORD type: 
When BID 

Call BID_PROCCHS_TO_RM_RECORD> (page 3-27). 
When BID_RSP 

Call BID_RSP_PROCCHS_TO_RM_RECORD> Cpage 3-29>. 
When ATTACH_HEADER 

Call ATTACH_PROCCHS_TO_RM_RECORD, HS) (page 3-26). 
When FREE_SESSIOH 

Call FREE_SESSION_PROCCHS_TO_RM_RECORD> (page 3-41). 
When RTR RQ 

Call RTR_RQ_PROCCHS_TO_RM_RECORD) (page 3-471. 
When RTR RSP 

Call RTR_RSP_PROCCHS_TO_RM_RECORD> Cpage 3-48). 
When BIS RQ 

Call BIS_RQ_PROCCHS_TO_RM_RECORD) Cpage 3-33>. 
When BIS REPLY 

Call BIS_REPLY_PROCCHS_TO_RM_RECORD> Cpage 3-32>. 
Else 

Do nothing (see Note 2). 

3-18 SHA Format and Protocol Reference Manual for LU Type 6.2 

page 3-27 
page 3-29 
page 3-26 
page 3-41 
page 3-47 
page 3-48 
page 3-33 
page 3-32 
page 3-65 
page 3-66 
page A-13 
page A-9 



PROCESS_LNS_TO_RM_RECORD 

PROCESS_LNS_TO_RM_RECORD 

FUNCTION: This procedure routes records received from NS to the appropriate procedure 
for processing. 

INPUT: LNS_TO_RM_RECORD, the current record from LNS 

OUTPUT: Refer to the procedures that are called from this procedure for the specific 
outputs. 

Referenced procedures, FSHs, and data structures: 
ACTIVATE_SESSION_RSP_PROC 
SESSION_ACTIVATED_PROC 
SESSION_OEACTIVATED_PROC 
CTERH_DEACTIVATE_SESSION_PROC 
LNS_TO_RH_RECORD 

Select based on LNS_TO_RM_RECORD type: 
When ACTIVATE_SESSION_RSP 

Call ACTIVATE_SESSION_RSP_PROC(LNS_TO_RM_RECORD> (page 3-22). 
When SESSION ACTIVATED 

Call SESSION_ACTIVATED_PROC(LNS_TO_RM_RECORD> (page 3-531. 
When SESSION DEACTIVATED 

Call SESSION_DEACTIVATED_PROCILNS_TO_RM_RECORD> (page 3-54). 
When CTERM DEACTIVATE SESSION 

Call CTERM_DEACTIVATE_SESSION_PROCCLNS_TO_RM_RECORD> (page 3-37). 

page 3-22 
page 3-53 
page 3-54 
page 3-37 
page A-19 

Chapter 3. LU Resources Manager 3~19 



PROCESS_PS_TO_RM_RECORD 

PROCESS_PS_TO_RM_RECORD 

FUNCTION: This procedure routes records received from presentation services to the 
appropriate procedure for processing. 

INPUT: The current record from presentation services 

OUTPUT: Refer to the procedures that are called from this procedure for the specific 
outputs. 

Referenced procedures, FSMs, and data structures: 
ALLOCATE_RCB_PROC 
GET_SESSION_PROC 
CHANGE_SESSIONS_PROC 
RM_ACTIVATE_SESSION_PROC 
RM_DEACTIVATE_SESSION_PROC 
UNBIND_PROTOCOL_ERROR_PROC 
PS 
PS_TO_RM_RECORD 
DEALLOCATE_RCB 
RCB_DEALLOCATED 

Select based on PS_TO_RM_RECORD type: 
When ALLOCATE RCB 

Call ALLOCATE_RCB_PROCCPS_TO_RM_RECORDJ (page 3-23). 
When GET_SESSION 

Call GET_SESSION_PROCCPS_TO_RM_RECORDJ (page 3-42). 
When DEALLOCATE_RCB 

Discard the RCB with RCB.ID equal to DEALLOCATE_RCB.RCB_ID. 
Build and send an RCB_DEALLOCATED record to PS (Chapter 5.0J. 

When TERMINATE PS 
Discard the-TCB and PS corresponding to TERMINATE_PS.TCB_ID. 

When CHANGE_SESSIONS 
Call CHANGE_SESSIONS_PROCCPS_TO_RM_RECORDJ (page 3-35). 

When RM ACTIVATE SESSION 
Call-RM_ACTIVATE_SESSION_PROCCPS_TO_RM_RECORDJ (page 3-45). 

When RM DEACTIVATE SESSION 
Call-RM_DEACTIVATE_SESSION_PROCCPS_TO_RM_RECORDJ Cpage 3-46J. 

When UNBIND_PROTOCOL_ERROR 
Call UNBIND_PROTOCOL_ERROR_PROCCPS_TO_RM_RECORDJ (page 3-61). 

3-20 SNA Format and Protocol Reference Manual for LU Type 6.2 

page 3-23 
page 3-42 
page 3-35 
page 3-45 
page 3-46 
page 3-61 
page 5.0-5 
page A-25 
page A-26 
page A-32 



LOW-LEVEL PROCEDURES 

ACTIVATE_NEEDED_SESSIOHS 

FUNCTION: This procedure activates sessions as required by change-number-of-sessions 
CCNOSJ processing. 

INPUT: 

OUTPUT: 

Sessions are activated so as to satisfy the waiting requests, but not to 
exceed the CLU, model session limit. If all waiting requests are satisfied, 
additional sessions are activated to bring the number of sessions up to the 
minimum of the MODE.AUTO_ACTIVATIONS_LIMIT and MODE.MIN_CONWINNERS_LIMIT. 

LU_NAME and MODE_NAME, the LU name and mode name, respectively, of the partner 
LU 

Zero or more ACTIVATE_SESSION records to LNS 

Referenced procedures, FSMs, and data structures: 
SESSION_ACTIVATION_POLARITY 
SEND_ACTIVATE_SESSION 
LU_NAME 
MODE_ NAME 
ACTIVATE_ SESSION 
MODE 

Get addressability to the MODE control block associated with LU_NAME and 
MODE NAME. 

page 3-53 
page 3-48 
page 3-69 
page 3-69 
page A-31 
page A-3 

Do while the number of waiting requests for sessions to CLU_NAME, MODE_NAMEJ 
is less than MODE.PENDING_SESSION_COUNT, and the polarity returned by 
SESSION_ACTIVATION_POLARITYCLU_NAME, MODE_NAMEJ (page 3-53) ~NONE. 

If polarity = FIRST_SPEAKER then 
Call SEND ACTIVATE SESSIONCLU NAME, MODE NAME, FIRST_SPEAKERJ (page 3-48) 

to send ;n ACTIVATE SESSION ;ecord to LNS. 
Else CBIDDERJ -

Call SEND_ACTIVATE_SESSIONCLU_NAME, MODE_NAME, BIDDER) (page 3-48). 
Do while the minimum of !MODE.AUTO ACTIVATIONS LIMIT, MODE.MIN CONWINNERS LIMIT> < 

CMODE.ACTIVE_CONWINNERS_COUNT + MODE.PENDING_CONWINNERS_COUNTJ, and the polarity 
returned by SESSION_ACTIVATION_POLARITYCLU_NAME, MODE_NAMEJ !page 3-531 = FIRST_SPEAKER. 

Call SEND_ACTIVATE_SESSIONCLU_NAME, MODE_NAME, FIRST_SPEAKERJ (page 3-48). 

Chapter 3. LU Resources Manager 3-21 



ACTIVATE_SESSION_RSP_PROC 

ACTIVATE_SESSION_RSP_PROC 

FUNCTION: This procedure handles the processing of the response to a previously issued 
~CTIVATE_SESSION request. 

The session counts in the appropriate MODE entry are updated and further proc­
essing is invoked depending on the response type. 

INPUT: ACTIVATE_SESSION_RSP from LNS 

OUTPUT: SESSION_ALLOCATED to PS, or no output 

NOTE: The pending activation will not be found if RM had previously requested deac­
tivation of the pending session as a result of change-number-of-sessions proc­
essing. In this case, no processing of the ACTIVATE_SESSION_RSP is performed, 
since the session is being deactivated. 

Referenced procedures, FSMs, and data structures: 
SUCCESSFUL_SESSION_ACTIVATION 
UNSUCCESSFUL_SESSION_ACTIVATION 
ACTIVATE_SESSION_RSP 
MODE 
MODE_NAME 

If there exists a pending activation with a correlator equal to 
ACTIVATE_SESSION_RSP.CORRELATOR then 

Get addressability to the MODE control block associated with the LU and 
mode name of the pending-active session. 

page 3-59 
page 3-62 
page A-20 
page A-3 
page 3-69 

Decrement MOOE.PENDING CONWINNERS COUNT or MODE.PENDING_CONLOSERS_COUNT by lt 
as appropriate to the-session polarity. 

Decrement MODE.PENDING_SESSION_COUNT by 1. 
If ACTIVATE_SESSION_RSP.TYPE = POS Then 

Increment MODE.ACTIVE_CONWINNERS_COUNT or HODE.ACTIVE_CONLOSERS_COUNT by 1, 
as appropriate to the session polarity. 

Increment MOOE.ACTIVE_SESSION_COUNT by l. 
Call SUCCESSFUL_SESSION_ACTIVATION!LU name of pending activation, 

MOOE_NAME of pending activation, 
ACTIVATE_SESSIOH_RSP.SESSION_INFORMATION) (page 3-591. 

Else (negative response) 

Else 

Call UNSUCCESSFUL_SESSION_ACTIVATION!LU name of pending activation, 
MODE_NAHE of pending activation, 
ACTIVATE_SESSION_RSP.ERRoR_TYPEl (page 3-621. 

Do nothing (see Hotel. 

3-22 SHA format and Protocol Reference Manual for LU Type 6. 2 



ALLOCATE_RCB_PROC 

ALLOCATE_RCB_PROC 

FUNCTION: This procedure handles the allocation of resource control blocks (RCBs). 

INPUT: 

OUTPUT: 

NOTE: 

This procedure first creates the RCB_ALLOCATED record, which is sent to 
PS.CONV to inform it of the outcome of the ALLOCATE_RCB request, and initial­
izes the fields of the record. It then calls the appropriate procedure, 
depending upon the ALLOCATE_RCB parameter settings. The procedure that this 
procedure calls changes the setting of some of the RCB_ALLOCATED fields before 
the RCB_ALLOCATED is finally sent to PS.CONV <Chapter 5.ll 

ALLOCATE_RCB 

RCB_ALLOCATED to PS 

When ALLOCATE RCB.IMMEDIATE SESSION is set to YES, RM is to check to see if a 
first-speaker-half-session ls currently available for use. If such a session 
is available, the RCB_ID is passed to PS.CONV and the request completes suc­
cessfully. (If IMNEDIATE_SESSION is set to NO, PS.CONV sends a separate 
GET_SESSION request to RM to request that a half-session be allocated to a 
particular conversation resource.) 

Referenced procedures, FSMs, and data structures: 
TEST_FOR_FREE_FSP_SESSION 
CREATE_RCB 
PS 
ALLOCATE_RCB 
RCB_ALLOCATED 

Initialize an RCB_ALLOCATED record with RETURN_CODE set to OK and 
RCB ID set to a null value. 

If ALLOCATE RCS.IMMEDIATE SESSION is set to YES then 
Call TEST FOR FREE FSP-SESSION!ALLOCATE RCB, RCB ALLOCATED> !page 3-601. 

Else - - - - - -
Call CREATE_RCB!ALLOCATE_RCB, RCB_ALLOCATEDJ <page 3-36). 

Send the RCB_ALLOCATED reco~d to PS.CONV !Chapter 5.1). 

page 3-60 
page 3-36 
page 5.0-5 
page A-25 
page A-32 

Chapter 3. LU Resources Manager 3-23 



ATTACH_ CHECK 

ATTACH_ CHECK 

FUNCTION: This procedure checks particular fields of the passed ATTACH_HEADER for valid­
ity. CPS is responsible for checking the remaining fields.> 

INPUT: ATTACH_HEADER 

OUTPUT: X'OOOOOOOO'; if no error; or sense data returned by ATTACH_LENGTH_CHECK; or 
one of the follONing sense data: 

X'084B6031' 
X'084COOOO' 
X' 10086008' 
x· 10086021 • 
X'10086040' 
XI 10086041 1 

TP Not Available--Retry Allowed 
TP Not Available--No Retry 
Unrecognized FMH Command 
TP Name Not Recognized 
Invalid Attach Parameter 
Sync Level Not Supported 

Referenced procedures, FSMs, and data structures: 
ATTACH_ LENGTH_ CHECK 
ATTACH_HEADER 

page 3-25 
page A-13 

Call ATTACH_LENGTH_CHECKCATTACH_HEADER.HEADER> (page 3-25) to determine Nhether any 
FMH-5 fields have an invalid length. 

If ATTACH_LENGTH_CHECK indicates that a field length is invalid then 
Return with the sense data provided by ATTACH_LENGTH_CHECK. 

Select based on the Command field of the FMH-5: 
When Attach 

If the transaction program specified in the Attach exists at this LU then 
Select based on the sync level specified in the Attach: 

(Optional receive check--the sync level support specified 
in the FMH-5 must be compatible with the sync level 
supported by the partner LU>. 

When None or Confirm 
Do nothing. IAll LUs support sync level Confirm.) 

When Confirm, Sync Point, and Backout 
If the sessions to the remote LU do not support Confirm, Sync Point, 
and Backout then 

Return with sense data X'l0086040' (Invalid Attach Parameter>. 
If the sync level specified in the Attach is not supported by 
the transaction program then 

Return with sense data X'l0086041' (Sync Level Not Supported). 
If the transaction program is temporarily disabled then 

Return with sense data X'084B6031' CTP Not Available--Retry Allowed>. 
If the transaction program is permanently disabled then 

Return with sense data X'084COOOO' CTP Not Available--No Retry>. 
Else 

Return with sense data X'l0086021' CTP Name Not Recognized>. 
Otherwise 

Return with sense data X'l008600B' (Unrecognized FMH Command>. 
Return with sense data X'OOOOOOOO' indicating no error. 

3-24 SNA Format,and Protocol Reference Mlinual for LU Type 6.2 



ATTACH_LENGTH_CHECK 

ATTACH_ LENGTH_ CHECK 

FUNCTION: 

INPUT: 

OUTPUT: 

This procedure checks the length fields in the passed Attach for validity. 

An FMH-5 Attach header Csee "Appendix H. FM Header and LU Services Commands" 

Sense data reflecting the result of the length checks. One of the following 
sense data is returned: 

No error 
FMH Length Not Correct 

X'OOOOOOOO' 
X'l0086000' 
X'l0086005' 
X'l0086009' 
X' 10086011' 

Access Security Information Length Invalid 
Invalid Parameter Length 
Invalid Logical Unit of Work 

NOTE: The total length of the Attach can be greater than the sum of the lengths of 
the currently defined fields, to allow for the addition of new Attach.fields. 

Set OFFSET to 5 (offset of Fixed Length Parameters field in Attach>. 
If the Attach length S OFFSET then 

Return with X'l0086000' CFMH Length Not Correct). 
If the value of the Fixed Length Parameters field < 3 then 

Return with X'l0086009' <Invalid Parameter Length). 
Set OFFSET to OFFSET + the value of the Fixed Length Parameters field + 1 
(offset of TP name Length field>. 

If the Attach length S OFFSET then 
Return with X'10086000' CFMH Length Not Correct). 

Set OFFSET to OFFSET + the value of the TP name Length field + 1 
(offset of Access Security Information Length field). 

Select based on the following comparisons: 
When the Attach length < OFFSET 

Return with X'l0086000' CFMH Length Not Correct). 
When the Attach length = OFFSET 

Return with X'OOOOOOOO' (Access Security Information and following fields not present). 
When the Attach length > OFFSET (Access Security Information present) 

Do nothing. 
If the value of the Access Security Information Length field > 0 then 

(Access Security information is present) 
If the sum of the lengths of the Access Security subfields does not equal 
the total length of the Access Security Information field then 

Return with X'l0086005' !Access Security Information Length Invalid). 
Set OFFSET to OFFSET + the value of the Access Security Information Length field + 1 
(offset of LUW Identifier Length field>. 

Select based on the following comparisons: 
When the Attach length < OFFSET 

Return with X'l0086000' CFMH Length Not Correct). 
When the Attach length = OFFSET 

Return with X'OOOOOOOO' CLUW Identifier and following fields not present>. 
When the Attach length> OFFSET CLUW Identifier present) 

Do nothing. 
If the value of the LUW Identifier Length field> 0 then CLUW Identifier present) 

If the value of the LUW Identifier Length field < 10 or > 26 then 
Return with X'l0086011' (Invalid Logical Unit of Work>. 

If the value of the LUW Identifier Length field ~ the value of the LUW Identifier 
LU name Length field + 9 then 

Return with X'l0086011' (Invalid Logical Unit of Work>. 
Set OFFSET to OFFSET + the value of the LUW Identifier Length field + 1 

(offset of byte following ATTACH>. 
If the Attach length < OFFSET then 

Return with X'l0086000' CFMH Length Not Correct). 
Else 

Return with X'OOOOOOOO' CAll length fields in Attach are valid>. 

Chapter 3. LU Resources Hanager 3-25 



ATTACH_PROC 

ATTACH_PROC 

FUNCTION: This procedure performs Attach processing. 

INPUT: 

If the Attach FM header was sent by HS, this procedure checks to see if the 
session is already in use. If the session is not in use, the appropriate sub­
routines are called to check certain fields in the Attach FM header for valid­
ity, and to start a new conversation with a new PS process. 

ATTACH_HEADER and an indicator stating whether the Attach was sent by HS or 
UPM_IPL 

OUTPUT: None 

NOTES: 1. RM does 
however, 
Attach. 

not generate a +RSPCAttach>. HS does generates a 
so the RM that sent the Attach gets a positive 

positive BID_RSP, 
response to the 

2. If the state of IFSM_SCB_STATUS is PENDING_ATTACH, the half-session is 
first-speaker and a prior BID was received, or the half-session is a secondary 
first-speaker or bidder and has just been activated. Although RM can bid with 
an Attach, HS on the receive side of the half-session converts the 
BID_WITH_ATTACH record into separate BID and ATTACH_HEADER records. When RM 
receives the BID, if the half-session is not in use, it changes the status of 
the half-session to PENDING_ATTACH. 

3. This protocol error occurs, for example, when the first-speaker half-session 
sends an Attach FM header after having positively responded to a Bid from the 
bidder half-session, or when an Attach FM header is received for which there 
was no prior Bid. 

Referenced procedures, FSMs, and data structures: 
RM_PROTOCOL_ERROR 
ATTACH_ CHECK 
PS_CREATION_PROC 
COMPLETE_HS_ATTACH 
PS 
FSM_SCB_STATUS_BIDDER 
FSM_SCB_STATUS_FSP 
ATTACH_HEADER 
ATTACH_RECEIVED 
TCB_ID 
RCB_ID 
SCB 

Set TCB ID and RCB ID to null. 
Select based on th; process that sent the Attach: 

When HS 
Find the SCB corresponding to the HS process that sent the Attach. 
If the state of IFSM_SCB_STATUS ~ PENDING_ATTACH Cpage 3-63) then 

page 3-46 
page 3-24 
page 3-44 
page 3-33 
page 5.0-5 
page 3-63 
page 3-64 
page A-13 
page A-32 
page 3-69 
page 3-69 
page A-9 

Call RN_PROTOCOL_ERRORCSCB.HS_ID, X'20030000') !page 3-46 and see Note 3). 
Else 

Call ATTACH_CHECKCATTACH_HEADER) !page 3-24) to determine if the 
Attach contains any errors. 

Select based on the Command field of the Attach: 
When Attach (start a new conversation) 

Call PS_CREATION_PROCCATTACH_HEADER, ATTACH_SENDER, TCB_ID, RCB_IDJ 
C page 3-44 J • 

Call COMPLETE_HS_ATTACHCATTACH_HEADER.HS_ID, RCB_ID, TCB_IDJ (page 3-331. 
Create an ATTACHED RECEIVED record with ATTACH RECEIVED.TCB ID and 

ATTACH_RECEIVED.RCB_ID initialized to TCB_ID ;nd RCB_ID1 r;spectively; 
the SENSE_CODE field initialized to the sense data Cif anyl set 
by ATTACH_CHECK; and the FNH_5 field initialized to the 
Attach FM header. 

Send the ATTACH_RECEIVED record to PS !Chapter 5.01. 

3-26 SNA Format and Protocol Reference Manual for LU Type 6.2 



ATIACH_PROC 

When UPM 

BID_PROC 

Call PS_CREATION_PROCCATTACH_HEADER, ATTACH_SENDER, TCB_ID, RCB_IDJ (page 3-44). 
Create an ATTACHED_RECEIVED record w;th ATTACH_RECEIVED.TCB_ID and 

ATTTACH_RECEIVED.RCB_ID initialized to TCB_ID and RCB_ID, respectivelyJ 
the SENSE CODE field in;t;a1;zed to X'OOOOOOOO'; 
and the FMH_5 field ;n;t;alized to the Attach FM header. 

Send the ATTACH_RECEIVED record to PS !Chapter 5.0). 

FUNCTION: This procedure handles b;ds for the use of sessions. 

This procedure first checks whether the bid should be rejected because the 
local operator has reset the sess;on i;m;t to 0 with no dra;ning of the part­
ner LU's requests, and this LU does not support parallel sess;ons to the part­
ner LU. In this case, a -BID RSP(088Bl is sent to HS. The -BID RSPC088Bl can 
be sent even if the partner LU is the first speaker. -

If -BID RSP(088B) ;s not sent, the procedure checks to see if the requested 
session-is free. If so, it removes the session from the free-session pool. 
and sends a positive BID_RSP to HS. If the session ;s not free, it sends a 
negative BID_RSP to HS. 

An implementation may allow a transaction program to reserve a session for its 
own use before the conversation begins. If a session has been reserved, a 
negative BID_RSP is sent to HS even though a conversation has not been started 
on the session. Since the transaction program might never use the reserved 
session (e.g., the transaction program ter~inates abnormally before the con­
versation is started!, the negative response carries an 0814 sense code 
!Bracket Bid Reject--RTR Forthcoming) to allow the session to be freed, in 
case the reserved session is not needed by a conversation. Reserving a ses­
sion is implementation dependent and is not shown here. 

INPUT: BID 

OUTPUT: BID_RSP to HS. The RTI f;eld of the BID_RSP is set to either POS or NEG. 

NOTES: 1. RM can bid with an Attach. However, when HS on the receive side of the con­
versation gets the BID_WITH_ATTACH record, it splits ;t into two records: a 
BID and a separate ATTACH_HEADER. Therefore, when RM receives a bid for a 
session, it will always be via a BID record. When RM receives the 
ATTACH_HEADER, the state of #FSM_SCB_STATUS is always PENDTNG_ATTACH. 

2. If RM has issued an RTR to the partner LU and has rece;ved a positive response 
to the RTR, the HS ID of the session over which the RTR flowed will not be 
free when the BID is received. When RM issued the RTR, it removed that ses­
sion from the free-session pool. 

Referenced procedures, FSMs, and data structures: 
RM_PROTOCOL_ERROR 
HS 
FSM_SCB_STATUS_BIDDER 
FSM_SCB_STATUS_FSP 
FSM_BIS_BIDDER 
FSM_BIS_FSP 
BID 
MODE 
BID_RSP 

page 3-46 
page 6.0-3 
page 3-63 
page 3-64 
pcige 3-65 
page 3-66 
page A-14 
page A-3 
page A-28 

Chapter 3.. LU Resources Manager 3-27 



BID_PROC 

If the state of #FSM_BIS is BIS_RCVD (page 3-65) then 
Call RM_PROTOCOL_ERRORCBID.HS_IP, X'20080000'J (page 3-46) 

!optional receive check, No Begin Bracket). 
Else 

Get addressability to the MODE control block associated with the LU and 
mode name for this session. 

If parallel sessions are not supported to the partner LU and 
MODE.SESSION_LIMIT = 0 and MODE.DRAIN_PARTNER = NO and the state of 
#FSM_BIS (page 3-65) is BIS_SENT then 

Create a BID_RSP record with RTI set to NEG and SENSE_CODE set to 
X'088BOOOO' and send it to HS !Chapter 6.0J. 

Else 
If the state of #FSM_SCB_STATUS is FREE (page 3-63) then 

Call #FSM_SCB_STATUSCR, BIO, UNDEFINED) (page 3-63) 
!State of #FSM SCB STATUS is PENDING ATTACHJ. 

Remove the session from the free-session pool. 
Create a BID_RSP record with RTI set to POS and SENSE_CODE set to 

X'OOOOOOOO' and send it to HS !Chapter 6.0). 
Else 

If this is a first-speaker session then 
Create a BID RSP record with RTI set to NEG and SENSE CODE set to 

X'08130000'-or X'08140000' (implementation-dependent-choice) 
and send it to HS <Chapter 6.0J. 

If SENSE CODE was X'08140000' then 

Else 

Remember that this LU owes RTR to its partner CRTR must be sent to the 
partner LU before it can bid again for this session). 

Call RM PROTOCOL ERRORCBID.HS ID, X'20030000'J !page 3-46) 
(optio~al receive check, Bra~ket Error). 

3-28 SNA Format and Protocol Reference Manual for LU Type 6.2 



BID_RSP_PROC 

BID_RSP_PROC 

FUNCTION: This procedure handles the processing of responses to bids for the use of 
half-sessions. 

INPUT: 

OUTPUT: 

A bid response is usually sent to the resources manager in response to a pre­
vious bid for a bidder half-session. In this case, when the input is a posi­
tive BID_RSP, this procedure calls the appropriate subroutines to cause the 
RCB and SCB to point to each other and to establish the PS and HS connection. 
It then informs PS.CONV that a session has been successfully allocated via a 
SESSION_ALLOCATED record. 

When the input is a negative 
it no longer points to the 
GET_SESSION request, which was 
on another half-session. 

BIO_RSP, this procedure changes the RCB so that 
SCB that sent the BID RSP, and retries the 
stored in the RCB when the BID_RQ was issued, 

A negative bid response with sense data of X'088BOOOO' is handled specially. 
This bid response is sent by an LU to indicate that the session limit has been 
reset to 0 for a single-session connection and draining of the partner is not 
allowed. Sending of -BID_RSPC088BJ is permitted only in the single-session 
case. 

A -BIO_RSPC088BJ record may arrive from either a bidder or first-speaker ses­
sion. If from a bidder session, it is in response to a previous bid. If from 
a first-speaker session, no previous bid was sent. A -BIO_RSP(088BJ record is 
the only bid response that can arrive from a first-speaker session. 

A positive or negative BIO_RSP record 

SESSION_ALLOCATEO to PS, or GET_SESSION to GET_SESSION_PROC (page 3-42) 

NOTES: 1. When a BID_RQ record is sent to HS, the RCB is set to point to the SCB for 
which the bid is being sent; the sea, however, does not point to the RCB until 
a positive BID_RSP record is received. 

2. A -BIO_RSPC088BJ record indicates that the partner LU has reset the session 
limit to 0 and is not permitting draining of the local LU's requests. The 
session is deactivated with UNBINO!CleanupJ. 

3. PS.CONV stores in the RCB information that helps HS to set the fields in the 
request/response header <RHJ. Part of the information states whether the data 
being sent to HS is the beginning of a conversation <in which case HS will set 
BBIJ or is part of an existing conversation Cin which case the BBI is set to 
~BBJ. When RM chooses a bidder half-session to allocate to PS.CONY, the 
BID_WITH_ATTACH or BIO_WITHOUT_ATTACH record that RM sends to HS also triggers 
HS to set BBI to BB. Since PS.CONV is unaware of whether RM allocated a bid­
der or first-speaker half-session (and thus does not know whether the Begin 
Bracket, which is sent only once during a conversation, has already been 
sentJ, RM changes the information in the RCB to indicate to HS that the next 
record it receives from PS.CONV is not the start of a conversation. 

Referenced procedures, FSMs, and data structures: 
SEND_DEACTIVATE_SESSION 
SET_RCB_ANO_SCB_FIELOS 
CONNECT_RCB_AND_SCB 
GET_SESSION_PROC 
PS 
FSM_RCB_STATUS_FSP 
FSM_RCB_STATUS_BIDDER 
BIO_RSP 
GET_SESSION 
RCB 
SESSION_ALLOCATED 

page 3-51 
page 3-57 
page 3-34 
page 3-42 
page 5.0-5 
page 3-68 
page 3-67 
page A-14 
page A-26 
page A-7 
page A-33 

Chapter 3. LU Resources Manager 3-29 



BID_RSP;.,PROC 

If BID_RSP.RTI = NEG and BID_RSP.SENSE_CODE = X'088BOOOO' then (see Note 2J 
CALL SEND_DEACTIVATE_SESSIONCACTIVE, BID_RSP.HS_ID, CLEANUP, X'OOOOOOOO'J 

Cpage 3-51). 
Else 

Find the RCB associated with the conversation where 
state of IFSM_RCB_STATUS = PEND.ING_SCB Cpage 3-67) and 
RCB.HS_ID = BID_RSP.HS_ID. 

If BID_RSP.RTI = POS then 
Call SET_RCB_AND_SCB_FIELDSCRCB.RCB_ID, BID_RSP.HS_IDJ (page 3-57J. 
Call CONNECT_RCB_AND_SCBCRCB.RCB_ID, BID_RSP.HS_ID, REPLYJ Cpage 3·34), 
Set RCB.PS_TO_HS_RECORD.ALLOCATE to NO (see Note 3J, 
Create a SESSION_ALLOCATED record with RETURN_COOE set to OK. 
Send the SESSION_ALLOCATEO to PS (Chapter 5.1). 

Else C-RSPCBidJ--retry request on another session) 
Set RCB.HS_ID to a null value. 
Call IFSM_RCB_STATUSCR, NEG_BIO_RSP, UNDEFINED> (page 3-67), 

CState of IFSM_RCB_STATUS = FREE). 
If BID_RSP.SENSE_COOE = X'08140000' then 

Remember that the partner LU owes an RTR on this session. 
<Bidder cannot bid again for this session until RTR received>. 

Create a GET_SESSION record initialized with the information from the original 
GET_SESSION record, saved in the RCB when the BID record was sent. 

Call GET_SESSION_PROCCGET_SESSIONJ Cpage 3-421. 

3-30 SNA Format and Protocol Reference Manual for LU Type 6.2 



BIDDER_PROC 

BIDDER_PROC 

FUNCTION: This procedure handles the allocation processing for a bidder half-session. 

INPUT: 

OUTPUT: 

NOTE: 

The HS_ID of the bidder half-session is placed in the RCB of the conversation 
for which the session was requested. The state of IFSM_RCB_STATUS is set to 
indicate that the conversation is pending confirmation that it can use the 
SCB. This procedure then creates a BID_WITHOUT_ATTACH or a BID_WITH_ATTACH 
record, depending on an indicator in the 6ET_SESSION record, and sends it to 
HS. If PS.CONV instructed RM to bid with an Attach, the Attach and any accom­
panying data has already been stored in the RCB by PS.CONV before it issued 
the 6ET_SESSION request. 

6ET_SESSION and HS_ID, the ID of the bidder half-session that was chosen by 
6ET_SESSION_PROC (page 3-421 

BID_WITHOUT_ATTACH or BID_WITH_ATTACH to HS. No SESSION_ALLOCATED record is 
sent to PS.CONV until confirmation that the bidder may use the session is 
received from the first-speaker (i.e., until a positive BID_RSP is received). 

A copy of the 6ET_SESSION record is created so that, if the bid for the ses­
sion fails, the request can be retried on a different session. 

Referenced procedures, FSMs, and data structures: 
HS 
FSM_RCB_STATUS_FSP 
FSM_RCB_STATUS_BIDDER 
6ET_SESSION 
HS_ID 
BID_IUTH_ATTACH 
BID_WITHOUT_ATTACH 
RCB 

page 6.0-3 
page 3-68 
page 3-67 
page A-26 
page 3-69 
page A-28 
page A-29 
page A-7 

Find the RCB associated with the conversation identified by 6ET_SESSION.RCB_ID. 
Set RCB.HS_ID to HS_ID. 
Initialize IFSM_RCB_STATUS to FSM_RCB_STATUS_BIDDER (page 3-671. 
Call IFSM_RCB_STATUSCS, 6ET_SESSION, UNDEFINED! (page 3-671. 
Save the contents of the 6ET_SESSION record in the RCB (see Notel. 
If 6ET_SESSION.BID_INDICATOR = ATTACH then 

Build a BID_WITH_ATTACH record where the BID_WITH_ATTACH.SENO_PARM fields 
are initialized with the corresponding RCB.PS_TO_HS_RECORD fields. 

Send the BID_WITH_ATTACH record to HS <Chapter 6.01. 
Else C6ET_SESSION.BID_INDICATOR ~ ATTACH) 

Build and send a BID_WITHOUT_ATTACH record to HS <Chapter 6.01. 

Chapter 3. LU Resources Manager 3-31 



BIS_RACE_LOSER 

BIS_RACE_LOSER 

FUNCTION: This procedure performs the processing necessary Nhen a BIS race occurs and 
this side of the session is the race loser. · 

This procedure first decrements the PENDING_TERMINATION_COUNT and issues a 
BIS_REPLY. It then attempts to find another session from the free-session 
pool on which to send a BIS_RQ. 

INPUT: 

OUTPUT: 

HS_ID, the ID of the session over Nhich the BIS race occurred 

BIS_REPLY and, if there is a free session, BIS_RQ to HS 

NOTE: When the SESSION_DEACTIVATION_POLARITY is EITHER, free first-speaker sessions 
are deactivated in preference to free bidder sessions. 

Referenced procedures, FSMs, and data structures: 
SEND_BIS_RQ 
SESSION_DEACTIVATION_POLARITY 
HS 
HS_ID 
LU_NAME 
MODE_NAME 
BIS_REPLY 
MODE 

page 3-50 
page 3-56 
page 6.0-3 
page 3-69 
page 3-69 
page 3-69 
page A-29 
page A-3 

let LU_NAME and MODE_NAME be the LU and mode names of the session identified 
by HS_ID. 

Get addressability to the MODE control block associated with (LU_NAME, MODE_NAME>. 
Decrement MODE.PENDING_TERMINATION_CONWINNERS or MODE.PENDING_TERMINATION_CONLOSERS by 11 
as appropriate to the session polarity. 

Create a BIS_REPLY record and send it to HS (Chapter 6.0). 
Call SESSION_DEACTIVATION_POLARITY(LU_NAME, MODE_NAME) (page 3-56). 
to determine the polarity of an additional session to deactivate (if any). 

If there is a free session of the appropriate type then (see Note) 
Call SEND_BIS_RQ(HS_IO) (page 3-50). 
Remove the session from the free-session pool. 

BIS_REPLY_PROC 

_:· 

FUNCTION: This procedure processes BIS replies. 

The procedure invokes IFSM_BIS associated with the half-session over which the 
BIS_REPLY was received. 

INPUT.: BIS_REPLY 

OUTPUT: IFSM_BIS is invoked 

Referenced procedures, FSMs, and data structures: 
FSM_BIS_BIDDER 
FSM_BIS_FSP 
BIS_REPLY 

Call IFSM_BISCR, BIS_REPLY, HS_ID> (page 3-65) 
for the half-session over which the BIS_REPLY was received. 

3-32 SNA Format and Protocol Reference Manual for LU Type 6.2 

page 3-65 
page 3-66 
page A-14 



BIS_RQ_PROC 

BIS_RQ_PROC 

FUNCTION: This procedure processes BIS requests. 

This procedure invokes #FSM BIS associated with the half-session over which 
the BIS_RQ was received. -

INPUT: BIS_RQ 

OUTPUT: #FSM_BIS is invoked 

Referenced procedures, FSMs, and data structures: 
FSM_BIS_BIDDER 
FSM_BIS_FSP 
BIS_RQ 

Call #FSM_BISCR, BIS_RQ, HS_IDJ (page 3-65) 
associated with the half-session over which the BIS_RQ was received. 

COMPLETE_HS_ATTACH 

page 3-65 
page 3-66 
page A-14 

FUNCTION: This procedure performs processing that is required only if the Attach came to 
RM from HS (as opposed to UPM_IPLJ. 

INPUT: 

OUTPUT: 

The SCB corresponding to the session over which the Attach was received is 
changed to point to the appropriate RCB, and the status of the SCB is set to 
IN_USE. 

HS_ID, the ID of the session from which the Attach was received, RCB ID, the 
ID of the conversation resource that is to use the session, and TCB ID~ the ID 
of the PS that was created as a result of the Attach -

Hone 

Referenced procedures, FSMs, and data structures: 
CONNECT_RCB_AHD_SCB 
FSM_SCB_STATUS_BIDDER 
FSH_SCB_STATUS_FSP 
HS_ID 
RCB_ID 
TCB_ID 
SCB 

Call IFSM_SCB_STATUSCR, ATTACH, UNDEFINED) (page 3-631 
associated with the half-session identified by HS_ID. 
CState of #FSM_SCB_STATUS = IN_USEJ. 

Set SCB.RCB ID to RCB ID. 

page 3-34 
page 3-63 
page 3-64 
page 3-69 
page 3-69 
page 3-69 
page A-9 

Call CONHECT_RCB_AHD_SCBCRCB_ID, HS_ID, REPLY> Cpage 3-34). 

Chapter 3. LU Resources Manager 3-33 



CONNECT_RCB_AND_SCB 

CONNECT_RCB_AND_SCB 

FUNCTION: This procedure connects a PS and HS process, and informs HS Mhen the con-
nection is complete. 

INPUT: RCB_ID and HS_ID, the IDs of the RCB representing the conversation resource 
and the see representing the half-session 

OUTPUT: HS_PS_CONNECTED record is sent to HS. 

Referenced procedures, FSMs, and data structures: 
HS 
RCB_ID 
HS_ID 
HS_PS_CONNECTED 

page 6.0-3 
page 3-69 
page 3-69 
page A-29 

Connect the PS process that is using the conversation identified by RCB_ID to 
the half-session identified by HS_ID. 

Create an HS_PS_CONNECTED record and send it to HS (Chapter 6.0>. 

3-34 SNA Format and Protocol Reference Manual for LU Type 6.2 



CHANGE_SESSIONS_PROC 

CHANGE_SESSIONS_PROC 

FUNCTION: This procedure performs the processing that is required when two LU service 
transaction programs exchange CHANGE_NUMBER_OF_SESSIONS requests and a new 
session limit is agreed upon. PS.COPR (Chapter 5.4) sends CHANGE_SESSIONS to 
RM after CHANGE_NUMBER_OF_SESSIONS requests have been successfully exchanged. 

INPUT: 

OUTPUT: 

NOTE: 

A new TERMINATION COUNT is computed based on the information in the 
CHANGE_SESSIONS record. If the new TERMINATION_COUNT is greater than O, ses­
sions have to be deactivated. Pending active sessions are deactivated first 
followed by free sessions. If the TERMINATION_COUNT is still greater than o, 
sessions will be deactivated later when they become free. 

After pending and free sessions have been deactivated as required, additional 
sessions may be activated if the current session co1.mt <by polarity, i.e., 
CONWINNER or CONLOSERl is less than the minimum limits. This procedure may 
have to request both deactivation and activation of sessions if, for example, 
the total session limit remains constant, but the mix of first speakers and 
bidders changes. 

CHANGE_ SESSIONS 

ACTIVATE_SESSION to LNS, BIS_RQ to HS, or none 

An implementation may choose not to deactivate pending active sessions. If, 
however, the TERMINATION COUNT is nonzero when the session becomes active, the 
session has to then be d;activated. 

Referenced procedures, FSMs, and data structures: 
CHANGE_ SESSIONS 
MODE 
SESSION_ALLOCATED 
DEACTIVATE_PENDING_SESSIONS 
DEACTIVATE_FREE_SESSIONS 
ACTIVATE_NEEDED_SESSIONS 

If CHANGE_SESSIONS.RESPONSIBLE is YES then 

page A-26 
page A-3 
page A-33 
p"1ge 3-38 
page 3-38 
page 3-21 

Get addressability to the MODE control block associated with CHANGE_SESSIONS.LU_NAME 
and CHANGE_SESSIONS.MODE_NAME. 

Set CONWINNER_COUNT to MODE.ACTIVE_CONWINNERS_COUNT + MODE.PENDING_CONWINNERS_COUNT. 
Set CONLOSER_COUNT to MODE.ACTIVE_CONLOSERS_COUNT + MODE.PENDING_CONLOSERS_COUNT. 
Set OLD_SESSION_LIMIT to MODE.SESSION_LIMIT - CHANGE_SESSIONS.DELTA. 
Set PLATEAU to 

min(MODE.ACTIVE_SESSION_COUNT + MODE.PENDING_SESSION_COUNT, OLD_SESSION_LIMITl. 
Set CONWINNER_INCREMENT to max(O, MODE.MIN_CONWINNERS_LIMIT - CONWINNER_COUNTl. 
Set SESSION_DECREMENT to max(O, PLATEAU - MODE.SESSION_LIMITl. 
Set CONLOSER_INCREMENT to maxCO, MODE.MIN_CONLOSERS_LIMIT - CONLOSER_COUNTJ. 
Set NEED_TO_ACTIVATE to CONWINNER_INCREMENT + CONLOSER_INCREMENT. 
Set ROOM_FOR_ACTIVATION to max(O, MODE.SESSION_LIMIT - PLATEAU!. 
Set DECREMENT_FOR_POLARITY to max(O, NEED_TO_ACTIVATE - ROOM_FOR_ACTIVATION). 
Set MODE.TERMINATION_COUNT to MODE.TERMINATION_COUNT + SESSION_DECREMENT + 

DECREMENT_FOR_POLARITY. 
If MODE.TERMINATION COUNT-> 0 then 

Call DEACTIVATE=PENDING_SESSIONSCCHANGE_SESSIONS.LU_NAME, CHANGE_SESSIONS.MODE_NAMEJ 
(page 3-38, see Note). 

If MODE.TERMINATION COUNT> 0 then 
Call DEACTIVATE=FREE_SESSIONSC CHANGE_ SESSIONS. LU_NAME, CHANGE_SESSIONS.MODE_1~AME l 

( page 3-38 ). 
If MODE.SESSION LIMIT = O, and 
MODE.DRAIN_SELF = NO or MODE.ACTIVE_SESSION_COUNT = 0 then 

Do for each waiting request for a session with CCHANGE_SESSIONS.LU_NAME, 
CHANGE_SESSIONS.MODE_NAMEl: 

Create a SESSION_ALLOCATED record with RETURN_CODE set to UNSUCCESSFUL_NO_RETRY 
and send it to the PS that made the request. 

Discard the waiting request. 
Call ACTIVATE_NEEDED_SESSIONSCCHANGE_SESSIONS.LU_NAME, CHANGE_SESSIONS.MODE_NAME) to 
activate new sessions if possible and if needed (page 3-211. 

Chapter 3. LU Resources Manager 3-35 



CHECK_FOR_BIS_REPLY 

CHECK_FOR_BIS_REPLY 

FUNCTION: This procedure checks to see if a BIS_REPLY should be sent at the present time 
to respond to a received BIS_RQ. 

INPUT: HS_ID, the ID of the half-session that sent the BIS_RQ 

OUTPUT: BIS_REPLY to HS, or no output 

Referenced procedures, FSMs, and data structures: 
SEND_BIS_REPLY 
HS_ID 
MODE 

page 3-49 
page 3-69 
page A-3 

Get addressability to the MODE control block associated with the LU and mode 
name of the session identified by HS_ID. 

If MODE.DRAIN SELF = NO or 
CMODE.DRAIN_SELF = YES and there are no waiting requests for the LU and mode name) then 

If the session identified by HS_ID is free then 
Call SEND_BIS_REPLYCHS_IDl (page 3-49). 
Remove the session from the free-session pool. 

CREATE_RCB 

FUNCTION: This procedure handles the creation of new RCBs. It places the RCB_ID of the 
newly created entry. into the passed RCB_ALLOCATED record. 

INPUT: 

OUTPUT: 

NOTE: 

ALLOCATE_RCB and RCB_ALLOCATED. 
CATE_RCB_PROC (page 3-231. 

The RCB_ALLOCATED was created by ALLO-

RCB_ALLOCATED with the RCB_ID field set to the ID of the new RCB 

#FSM_RCB_STATUS is a generic FSM that can be either FSM_RCB_STATUS_FSP or 
FSM_RCB_STATUS_BIDDER, depending on whether the conversation resource is.using 
a first-speaker or a bidder half-session. When a new RCB is created, it is 
not usually known which type of half-session will be available (except for 
ALLOCATE_RCB(IMMEDIATEl, which must use a first-speaker half-session in order 
to be successful). Therefore, when the RCB is created, the FSM is initialized 
to FSM_RCB_STATUS_FSP, and is changed later if the conversation will be run­
ning on a bidder half-session. 

Referenced procedures, FSMs, and data structures: 
ALLOCATE_RCB 
RCB_ALLOCATED 
RCB 

page A-25 
page A-32 
page A-7 

Create RCB, set RCB.RCB_ID to a unique value and RCB.HS_ID to a null value. 
Move TCB_ID, LU_NAMEt and MODE_NAME from the ALLOCATE_RCB record to the RCB. 
Place the RCB_ID in the RCB_ALLOCATED record. 
Set #FSM_RCB_STATUS = FSM_RCB_STATUS_FSP (page 3-68; see Note). 
Call #FSM_RCB_STATUSCS, ALLOCATE_RCB, UNDEFINED> (state of the FSM is set to FREE, 

page 3-67). 
Set RCB.SYNC_LEVEL to ALLOCATE_RCB.SYNC_LEVEL. 
Set RCB.PS_TO_HS_RECORD type to SEND_DATA_RECORD and RCB.PS_TO_HS_RECORD data to a null value. 

3-36 SNA Format and Protocol Reference Manual for LU Type 6.2 



CREATE_SCB 

CREATE_SCB 

FUNCTION: This procedure creates a new SCB based on the LU_NAME, MODE_NAME and SES­
SION_INFORMATION arguments. 

INPUT: LU NAME and MODE NAME of the partner LU; and SESSION_INFORMATION, which 
de~cribes the session attributes 

OUTPUT: A new SCB is created. 

Referenced procedures, FSMs, and data structures: 
LU_NAME 
MODE_NAME 
SESSION_INFORMATION 
SCB 

Create an SCB, set SCB.HS ID to SESSION INFORMATION.HS ID, SCB.LU NAME to 
LU_NAME, SCB.MODE_NAME to MODE_NAME, a~d SCB.RCB_ID to a null value. 

Select based on SESSION INFORMATION.BRACKET TYPE: 
If the half-session is ; first-speaker then-

Assign finite-state machines to be used by setting 
#FSM_BIS to FSM_BIS_FSP Cpage 3-661 
and #FSM SCB STATUS to FSM SCB STATUS FSP Cpage 3-641. 

Else Cbidder-ses~ionl - - -
Assign finite-state machines to be used by setting 

#FSM_BIS to FSM_BIS_BIDDER !page 3-651 
and #FSM_SCB_STATUS to FSM_SCB_STATUS_BIDDER Cpage 3-631. 

CTERM_DEACTIVATE_SESSION_PROC 

FUNCTION: This procedure handles the processing that 
CTERM_DEACTIVATE_SESSION record is received from LNS. 

page 3-69 
page 3-69 
page A-35 
page A-9 

occurs when 

The session identified by CTERM_DEACTIVATE_SESSION.HS_ID is deactivated with a 
BIS_RQ-BIS_REPLY exchange followed by UNBINDCNORMALl. The processing of this 
record is identical to that of an operator verb DEACTIVATE_SESSIONCNORMAL). 

INPUT: CTERM_DEACTIVATE_SESSION 

OUTPUT: Session deactivation processing is initiated. 

Referenced procedures, FSMs, and data structures: 
RM_DEACTIVATE_SESSION_PROC 
CTERM_DEACTIVATE_SESSION 
RM_DEACTIVATE_SESSION 

page 3-46 
page A-20 
page A-27 

Create an RM DEACTIVATE SESSION record with TCB ID set to a null value, SESSION_ID set to 
CTERM DEACTIVATE SESSION.HS ID, and TYPE set to NORMAL. 

Call RM_DEACTIVATE_SESSION_PROC!RM_DEACTIVATE_SESSIONl !page 3-461. 

Chapter 3. LU Resources Manager 3-37 



DEACTIVATE;,..fREE_SESSIONS 

DEACTIVATE_FREE_SESSIONS 

FUNCTION: This procedure requests deactivation of free sessions between this LU and the 
partner LU identified by CLU_NAME, MODE_NAMEJ. Deactivations are requested 
until either al.J. free sessions have had deactivation requested, or this LU is 
not responsible for any more deectivations. 

INPUT: The LU_NAME of the pertner .LU and t.he MODE_NAME of the sessions to be deacti .. 
vated 

OUTPUT: Zero or more DEACTIVATE_SESSION records to LNS 

NOTE: First .. speaker sessions are deactivated before bidder sessions. 

Referenced procedures, FSMs, and data structures: 
. SESSION_DEACTIVATION_POLARITY 

SENO_DEACTIVATE_SESSION 
SENO_BIS 
LU_NAME 
MODE_NAME 

page 3-S6 
page 3-Sl 
page 3-49 

Do while there exists a free session of a polarity matching that returned by 
SESSION_DEACTIVATION_POLARITYCLU_NAME, MODE_NAMEJ Cpage 3-S6J: 
Cif SESSION_DEACTIVATION_POLARITY returns EITHER, a first-speaker session is 
deactivated in preference to a bidder session.) 

Let HS_ID be the identifier of the session to be deactivated. 
Call SEND_BISCHS_IDJ Cpage 3-49). 
Remove the session from the free-session pool. 

DEACTIVATE_PENDING_SESSIONS 

FUNCTION: This procedure requests deactivation of pending-active sessions between this 
LU and the partner LU identified by CLU_NAME, MODE_NAMEJ. Deactivations are 
requested until either all pending-active sessions have had deactivation 
requested, or this LU is not responsible for any more deactivations. 

INPUT: 

OUTPUT: 

LU_NAME of the partner LU and the MODE_NAME of the sessions to be deactivated 

Zero or more DEACTIVATE_SESSION records to LNS 

Referenced procedures, FSMs, and data structures: 
SESSION_DEACTIVATION_POLARITY 
SEND_DEACTIVATE_SESSION 
LU_NAME 
MODE_NAME 
MODE 

page 3-S6 
page 3-Sl 
pege 3-69 
page 3-69 
page A-3 

Get addressability to the MODE control block associated with CLU_NAME, MODE_NAMEJ. 
Do while there are pending-active first-speaker sessions for CLU_NAME, MODE_NAMEJ, and 

SESSION_DEACTIVATION_POLARITYCLU_NAME, MODE_NAMEJ Cpage 3-S6J 
indicates FIRST_SPEAKER or EITHER: 

Call SEND_DEACTIVATE_SESSION!PENDING, PENDING_ACTIVATION.CORRELATOR, NORMAL, X'OOOOOOOO') 
(page 3-51). 

Decrement MODE.TERMINATION_COUNT by 1. 
Do while there are pending-active bidder sessions for CLU_NAME, MODE_NAMEJ, and 

SESSION_DEACTIVATION_POLARITY!LU_NAME, MODE_NAMEJ !page 3-S6J 
indicates BIDDER or EITHER. 

Call SEND_DEACTIVATE_SESSIONCPENDING, PENDING_ACTIVATION.CORRELATOR, NORMAL, X'OOOOOOOO'J 
(page 3-Sl>. 

Decrement MODE.TERMINATION_COUNT by 1 • 

. 3-38 SNA Format and Protocol Reference Manual for LU Type 6.2 



DEQUEUE_WAITING_REQUEST 

DEQUEUE_W~ITING_REQUEST 

FUNCTION: This procedure checks to see if there are any GET_SESSION requests waiting to 
be serviced. If so, this procedure dequeues the first request and invokes 
GET_SESSION_PROC (page 3-42) to process the request. 

INPUT: HS_ID, the ID of a half-session. 

OUTPUT: GET_SESSION_PROC is invoked to process the waiting request 

Referenced procedures, FSMs, and data structures: 
GET_SESSION_PROC 
GET_SESSION 
HS_ID 
LU_NAME 
MOOE_NAME 

page 3-42 
page A-26 
page 3-69 
page 3-69 
page 3-69 

Let LU_NAME and MOOE_NAME be the LU name and mode name of the session identified by HS_ID. 
If there is a waiting request for a session on ILU_NAME, MOOE_NAME) then 

Initialize a GET_SESSION record with the information from the waiting request. 
Call GET_SESSION_PROCIGET_SESSION> !page 3-42> to service the request. 
Remove the waiting request from the queue. 

Chapter 3. LU Resources Manager 3-39 



FIRST_SPEAKER~PROC 

FIRST_SPEAKER_PROC 

FUNCTION: This procedure handles the allocation processing for a first-speaker 
half-session. 

INPUT: 

OUTPUT: 

NOTE: 

This procedure causes the SCB associated with the first-speaker half-session 
and the RCB of the conversation for which the session was requested to be con­
nected to each other. If PS.CONY indicated that RM is to be responsible for 
sending the Attach, it creates a BID_WITH_ATTACH record from information that 
PS.CONY stored in the RCB and sends it to HS. It then creates a SES­
SION_ALLOCATED record, which it sends to PS.CONY to inform PS.CONY that a ses­
sion has been successfully allocated. 

GET_SESSION and HS_ID, the ID of the first-speaker half-session that was cho­
sen by GET_SESSION_PROC (page 3-421 

SESSION_ALLOCATED to PS; and, if PS.CONY has indicated that RM is to send the 
Attach for the conversation, BID_WITH_ATTACH to HS 

Since GET_SESSION_PROC was able to obtain a first-speaker half-session, the 
Attach that RM sends to HS is. not really a bid for the use of the session. 
After RM sends the Attach it does not have to wait for a response from HS but 
can report immediately to PS.CONY. 

Referenced procedures, FSMs, and data structures: 
SET_RCB_AND_SCB_FIELDS 
CONNECT_RCB_AND_SCB 
HS 
PS 
GET_SESSION 
BID_WITH_ATTACH 
RCB 
SESSION_ALLOCATED 
HS_IO 

Call SET_RCB_AND_SCB_FIELDS(GET_SESSION.RCB_ID, HS_IOl (page 3-571. 
If GET_SESSION.BID_INDICATOR is ATTACH then 

page 3-57 
page 3-34 
page 6.0-3 
page 5.0-5 
page A-26 
page A-28 
page A-7 
page A-33 
page 3-69 

Create BID_WITH_ATTACH !see Note) with the SEND_PARM subfields initialized 
to the corresponding RCB.PS_TO_HS_RECORO subfields. 

Send the BID_WITH_ATTACH to HS (Chapter 6.0l. 
Call CONNECT_RCB_AND_SCBCGET_SESSION.RCB_ID, HS_ID, NORMAL) (page 3-34). 
Create a SESSION_ALLOCATED record, set RETURN_COOE to OK, and send record to PS 

!Chapter 5.ll. 

3-40 SNA Format and Protocol Reference Manual for LU Type 6.2 



FREE_SESSION_PROC 

FREE_SESSION_PROC 

FUNCTION: This procedure handles the processing that occurs when a session becomes free. 

This procedure first checks to see if· a bid is outstanding on this session. 
If so, the session is not returned to the free-session pool. If not, the pro­
cedure checks to see if an RTR_RQ or a BIS request or reply is to be sent. If 
either RTR RQ or BIS is sent, the session is not returned to the free-session 
pool. If -neither BIS nor RTR is sent, the free-session is returned to the 
free-session pool, and a waiting session allocation request !if anyl is serv­
iced. 

INPUT: FREE_SESSION 

OUTPUT: BIS_RQ, BIS_REPLY, or RTR_RQ to HS; or GET_SESSION to GET_SESSION_PROC !page 
3-421; or no output 

NOTE: If an RTR is owed on this session (either the partner LU owes RTR to the local 
LU or the local LU owes RTR to the partner!, the bidder has to wait for an RTR 
from the first-speaker before it can again bid for the session. Therefore, 
the deallocated bidder session is not returned to the free-session pool and a 
waiting request is not serviced. 

Referenced procedures, FSMs, and data structures: 
DEQUEUE_WAITING_REQUEST 
SHOULD_SEND_BIS 
SEND_BIS 
HS 
FSM_SCB_STATUS_BIDOER 
FSM_SCB_STATUS_FSP 
FSM_BIS_BIDDER 
FSM_BIS_FSP 
FREE_SESSION 
SCB 
RCB 
RTR_RQ 

Find the SCB associated with the session identified by FREE_SESSION.HS_ID. 
Set SCB.RCB_ID to a null value. 
Call IFSM_SCB_STATUS!R, FREE_SESSION, UNDEFINED) (page 3-631. 
If there is an RCB for which the state of IFSM_RCB_STATUS is PENDING_SCB, 
and RCB.HS ID = SCB.HS ID then 

Take no iction and return to the calling routine la BID is pending!. 
Else if RTR is owed on this session then 

If this is a first-speaker session !i.e., this LU owes RTRJ then 
If there are no waiting requests for sessions, and 

RTR is to be sent now !implementation-defined choice) then 
Send RTR_RQ to HS !Chapter 6.0). 
Reset RTR owed indication for this session. 

Else !bidder session; i.e., other LU owes RTRl then 
Take no action and return to the calling routine !see Hotel. 

Else 
Call SHOULD_SEND_BISISCB.HS_IDI Cpage 3-581 to determine 

whether BIS should be sent now. 
If BIS should be sent now then 

Call SEND_BISCSCB.HS_IOI !page 3-491. 
If the state of IFSM_BIS (page 3-651 is BIS_SENT or CLOSED then 

Take no action and return to the calling routine CBIS has been sent>. 
Else Cthe session is available for reuse) 

Return the session to the free-session pool. 
Call DEQUEUE_WAITING_REQUEST!SCB.HS_IDl Cpage 3-391. 

page 3-39 
page 3-58 
page 3-49 
page 6.0-3 
page 3-63 
page 3-64 
page 3-65 
page 3-66 
page A-15 
page A-9 
page A-7 
page A-30 

Chapter 3. LU Resources Manager 3-41 



GET_SESSION_PROC 

GET_SESSION_PROC 

FUNCTION: This procedure handles the allocation of half-sessions to be used by conversa­
tion resources. 

INPUT: 

OUTPUT: 

The procedure checks for an available half-session and calls the appropriate 
procedure, depending upon whether the ruilf-session found was a first-speaker 
or a bidder half-session. If there are no half-sessions available and the 
current session limit has not been reached, SEND_ACTIVATE_SESSION is called, 
which requests that LNS activate a new session. 

GET_SESSION 

See called procedures for output. 

NOTES: 1. When PS.CONY requests a session from the resources manager, RM does the fol­
lowing: attempts to service the request with a first-speaker half-session; if 
none 1s available, RM attempts to service the request with a bidder 
half-session; failing that, RM requests LU network services to activate a new 
session if the current session limit has not been reached. If a first-speaker 
half-session is available, that session is used to service the session 
request. If no first-speaker half-sessions are available, an implementation 
can choose to service the request with a free bidder half-session, activate a 
new first-speaker half-session, or both of the above. An implementation 
could, for example, choose to implement the following order: choose a free 
first-speaker half-session; request a new first-speaker half-session be acti­
vated; and, finally, choose a free bidder half-session. (Another possibility 
is that an implementation could service the session request with a bidder 
half-session, if no first-speaker half-sessions are available, but at the same 
time ask that a new first-speaker half-session be activated.I However, if 
there are no free first-speaker half-sessions and the session limit for the 
desired !LU name, mode name) pair has been reached, the session request is 
serviced with a bidder half-session, if available. If a bidder half-session 
is available, an implementation does not wait for a first-speaker half-session 
to become free before servicing the session request. 

2. A mode is closed if there are no sessions active for the mode name and a ses­
sion cannot be activated without operator intervention (e.g., the operator 
must increase the session limit above OJ. In this case, the GET_SESSION 
request is rejected with a return code of UNSUCCESSFUL_NO_RETRY. 

Referenced procedures, FSMs, and data structures: 
FIRST_SPEAKER_PROC 
BIDDER_PROC 
SESSION_ACTIVATION_POLARITY 
SEND_ACTIVATE_SESSION 
PS 
GET_SESSION 
RCB 
SESSION_ALLOCATED 

3-42 SNA Format and Protocol Reference Manual for LU Type 6.2 

page 3-40 
page 3-31 
page 3-53 
page 3-48 
page 5.0-5 
page A-26 
page A-7 
page A-33 



GET_SESSIOH_PROC 

If the (GET_SESSIOH.LU_NAME, GET_SESSION.MODE_NAMEl sessfons do not support the 
requested sync level then 

Send SESSION_ALLOCATED record with a return code of SYNC_LEVEL_NOT_SUPPORTED. 
Else 

If a free session exists then 
If first-speaker half-session then 

Call FIRST_SPEAKER_PROC(GET_SESSIOH, HS_IDJ lpage 3-40). 
Else (bidder half-session) 

Call BIDDER_PROCIGET_SESSION, HS_ID> (page 3-31). 
Remove the session from the free-session pool. 

Else (no free session exists) 
If the mode is closed then (see Note 2) 

Send SESSIOH_ALLOCATED record with a return code of UNSUCCESSFUL_NO_RETRY to 
PS (Chapter 5.1). 

Else 
Call SESSION_ACTIVATION_POLARITY(GET_SESSION.LU_NAME, GET_SESSIOH.MODE_NAME) 

(page 3-53) . 
to determine the polarity of the next activated session (if any). 

Select based on session activation polarity: 
When NONE (no new sessions can be activated) 

Do nothing. 
When FIRST_SPEAKER 

Call SEND_ACTIVATE_SESSION(GET_SESSION.LU_NAME, GET_SESSION.MODE_NAME, 
FIRST_SPEAKER> lpage 3-48). 

When BIDDER 
Call SEND_ACTIVATE_SESSION(GET_SESSION.LU_NAME, GET_SESSIOH.MODE_NAME, 

BIDDER! (page 3-48). 
Queue the waiting request for a session. 

Chapter 3. LU Resources Manager 3•43 



PS_CREATION_PROC 

PS_CREATION_PROC 

FUNCTION: This procedure creates a new instance of the PS process. 

This procedure is called upon receipt of an Attach from HS or UPM_IPL. Along 
with creating the PS process, it also creates a new TCB and RCB. It returns 
to the calling procedure the IDs of the newly created TCB and RCB, which the 
calling procedure will send to PS along with the Attach that it received. 

INPUT: ATTACH_HEADER, an indicator stating whether the Attach sender was HS or 
UPM_IPL, and variables in which the TCB_ID and RCB_ID will be returned 

OUTPUT: The IDs of the newly created TCB and RCB 

NOTE: If the Attach sender is UPM_IPL, the status of the FSM associated with the RCB 
is set to INITIAL. This indicates that the ATTACH that caused this RCB to be 
created came from UPM_IPL and that there is no half-session associated with 
this conversation. 

Referenced procedures, FSMs, and data structures: 
PS 
FSM_RCB_STATUS_FSP 
FSM_RCB_STATUS_BIDDER 
ATTACH_HEADER 
TCB 
RCB 

Create a TCB with a unique TCB_ID, initializing TRANSACTION_PROGRAM_NAME 
to null and CONTROLLING_COMPONENT to TP. 

page S.O-S 
page 3-68 
page 3-67 
page A-13 
page A-10 
page A-7 

Create an RCB with a unique RCB_ID, initializing RCB.TCB_ID to TCB_ID, 
RCB.PS_TO_HS_RECORD.VARIANT_NAME to SEND_DATA_RECORD, RCB.PS_TO_HS_RECORD.DATA 
to null, and RCB.HS_TO_PS_BUFFER_LIST to empty. 

Select based on Attach sender: 
When HS 

If the session is a first speaker then 
Set IFSM_RCB_STATUS to FSM_RCB_STATUS_FSP (page 3-68). 

Else 
Set IFSM_RCB_STATUS to FSM_RCB_STATUS_BIDDER Cpage 3-67). 

Call IFSM_RCB_STATUSIR, ATTACH, HS) Cpage 3-67) 
(State of IFSM_RCB_STATUS : IN_USEl. 

Set RCB.HS_ID to ATTACH_HEADER.HS_ID. 
When UPM_IPL 

Set IFSM_RCB_STATUS to FSM_RCB_STATUS_FSP (page 3-68). 
Call IFSM_RCB_STATUSCR, ATTACH, UPMJ Cpage 3-671 

CState of IFSM_RCB_STATUS : INITIAL!. 
RCB.HS_ID = ATTACH_HEADER.HS_IDI 

Create a new PS process (page S.0-Sl. 

3-44 SNA ~ormat and.Protocol Reference Manual for LU Type 6.2 
/ 



RM_ACTIVATE_SESSION_PROC 

RM_ACTIVATE_SESSION_PROC 

FUNCTION: This procedure performs the processing of the RN_ACTIVATE_SESSION record. 

An RM_ACTIVATE_SESSION record is sent to RM by PS.COPR !Chapter 5.4) when the 
control operator issues an ACTIVATE_SESSION command. The command directs RN 
to activate a new session to the partner LU identified by LU_NAME with the 
mode specified by MODE_NAME. 

RM replies to the RM ACTIVATE SESSION record with an RN SESSION ACTIVATED 
record. The RETURN CODE field-of RM_SESSION_ACTIVATED indi~ates the success 
or failure of the s;ssion activation. 

IHPUT: 

OUTPUT: 

RM_ACTIVATE_SESSION 

ACTIVATE_SESSION to LNS, or RM_SESSION_ACTIVATED 
LU_MODE_SESSION_LIMIT_EXCEEDED to PS 

Referenced procedures, FSMs, and data structures: 
SESSION_ACTIVATION_POLARITY 
SEND_ACTIVATE_SESSION 
PS 
RM_ACTIVATE_SESSION 
RM_SESSION_ACTIVATED 

Create an RN SESSION ACTIVATED record. 
Call SESSION=ACTIVATION_POLARITY(RM_ACTIVATE_SESSION.LU_NANE, 

RM_ACTIVATE_SESSION.MODE_NAMEl (page 3-53) 
to determine the polarity of the next activated session lif any). 

Select based on the activation polarity: 
When NONE (session limit exceeded) 

with RETURN_CODE 

page 3-53 
page 3-48 
page 5.0-5 
page A-27 
page A-33 

Set RM SESSION ACTIVATED.RETURN CODE to LU MODE SESSION LIMIT EXCEEDED. 
Send the RM SESSION ACTIVATED r;cord to PS-(Chapter 5.4). -

When FIRST_SPEAKER -
Call SEND_ACTIVATE_SESSIONI RM_ACTIVATE_SESSION. LU_NANE, 

RM_ACTIVATE_SESSION.MODE_NANE, FIRST_SPEAKERl (page 3-48). 
Save the RM_SESSION_ACTIVATED record as a pending CNOS operator activation request. 

When BIDDER 
Call SEND_ACTIVATE_SESSIONIRN_ACTIVATE_SESSION.LU_NANE, 

RN_ACTIVATE_SESSION.NODE_NANE, BIDDER) (page 3-48). 
Save the RM_SESSION_ACTIVATED record as a pending CNOS operator activation request. 

= 

Chapter 3. LU Resources Manager 3-'45 



RM_DEACTIVATE_SESSION_PROC 

RM_DEACTIVATE_SESSION_PROC 

FUNCTION: Th;s procedure performs the process;ng of the RM_DEACTIVATE_SESSION record. 

INPUT: 

OUTPUT: 

An RM_DEACTIVATE_SESSION record is sent to RM by PS.COPR (Chapter 5.4> when 
the control operator issues a DEACTIVATE_SESSION command. The command directs 
RM to deactivate the sess;on ident;f;ed by SESSION_ID. An 
RM_DEACTIVATE_SESSION record is also generated internally ;n RM during the 
processing of a CTERM_DEACTIVATE_SESSION record from LU network services. 

RM_DEACTIVATE_SESSION 

DEACTIVATE_SESSION to LNS, BIS_RQ to HS, or no output 

Referenced procedures, FSMs, and data structures: 
SEND_DEACTIVATE_SESSION 
SEND~BIS_RQ 
FSM_BIS_BIDDER 
FSM_BIS_FSP 
RM_DEACTIVATE_SESSION 

page 3-51 
page 3-50 
page 3-65 
page 3-66 
page A-27 

Select based on RM_DEACTIVATE_SESSION.TYPE: 
When CLEANUP 

Call SEND_DEACTIVATE_SESSIONCACTIVE, RM_DEACTIVATE_SESSION.SESSION~ID, 
CLEANUP, X'OOOOOOOO') (page 3-51). 

When NORMAL 
If session exists then 

If the session ;s in use then 
If state of #FSM_BIS (page 3-65) ~ BIS_SENT then (BIS not already sent) 

Queue the deactivation request. 
Else (sess;on not ;n use) 

Call SEND_BIS_RQCHS_IDJ (page 3-50). 
Remove the session from the free-sess;on pool. 

RM_PROTOCOL_ERROR 

FUNCTION: Th;s procedure processes receive error conditions. 
the other half-session violates the archit~cture. 
following actions: 

These errors occur when 
This procedure takes the 

INPUT: 

OUTPUT: 

• Ends the session by requesting LU network serv;ces to send UNBIND. <The 
other half-sess;on has committed a serious v;olation .of the architecture.) 
The UNBIND is type X'FE', indicating invalid session protocol, and carries 
sense data indicating the nature of the receive check error. 

• Notifies the appropriate operator associated with the NAU (the terminal or 
subsystem operator>. Some implementat;ons may not have an appropriate 
operator to report to. 

• Logs the error. 

HS_ID, the ID of the half-session and SENSE_CODE, the sense data to be placed 
in the UNBIND 

See FUNCTION. 

Referenced procedures, FSMs, and data structures: 
SEND_DEACTIVATE_SESSION 
HS_ID 
SENSE_ CODE 

page 3-51 
page 3-69 
page 3-70 

Call SEND_DEACTIVATE_SESSIONCACTIVE, HS_ID, ABNORMAL, SENSE_CODE> (page 3-51). 
Log the protocol error. 

3-46 SNA Format and .Protocol Reference Manual for LU Type 6.2 



RTR_RQ_PROC 

FUNCTION: 

RTR_RQ_PROC 

This procedure handles the receipt of RTR requests from a first-speaker 
half-session. 

The session is returned to the free-session pool, and if there 
request, the request is processed and a +RSPCRTRl is sent to 
manager of the first-speaker half-session. If not, a -RSPCRTR, 
to the resources manager to indicate that the resources manager 
half-session has nothing to send. 

is a waiting 
the resources 
0819) is sent 
of the bidder 

INPUT: RTR_RQ from HS 

OUTPUT: Positive RTR_RSP, or negative RTR_RSPCSENSE_CODE = X'08190000'l to HS 

Referenced procedures, FSMs, and data structures: 
GET_SESSION_PROC 
RM_PROTOCOL_ERROR 
SHOULD_SEND_BIS 
SEND_BIS 
HS 
RTR_RQ 
GET_SESSION 
RTR_RSP 

If the partner LU owes an RTR then 

page 3-42 
page 3-46 
page 3-58 
page 3-49 
page 6.0-3 
page A-15 
page A-26 
page A-30 

If there are any waiting requests for sessions with the partner LU and mode name then 
Create an RTR_RSP record with RTI set to POS and SENSE_CODE set to x•oooooooo•. 
Send the RTR_RSP record to HS !Chapter 6.0). 
Create a GET_SESSION record from the information saved in the waiting request. 
Call GET_SESSION_PROCCGET_SESSIONl Cpage 3-42) to process the request. 

Else Cno waiting requests) 
Create an RTR_RSP record with RTI set to NEG and SENSE_CODE set to X'08190000'. 
Send the RTR_RSP record to HS !Chapter 6.0). 
Call SHOULD_SEND_BISCRTR_RQ.HS_IDl Cpage 3-58) to determine whether 

BIS should be sent on this session. 
If BIS should be sent then 

Call SEND_BISCRTR_RQ.HS_IDl Cpage 3-49). 
Else 

Return the session to the free-session pool. 
Remember that the partner LU no longer owes an RTR. 

Else CRTR not expected) 
Call RM_PROTOCOL_ERRORCRTR_RQ.HS_ro, X'20030000') (page 3~46). 

Chapter 3. LU Resources Manager 3-47 



RTR_RSP_PROC 

RTR_RSP_PROC 

FUNCTION: This procedure handles the receipt of RTR responses from a bidder 
half-session. 

If the input is a positive RTR_RSP, no processing is performed. If the input 
is a negative RTR_RSP!SENSE_CODE = 0819), the session is returned to the 
free-session pool, and the session is used to service a waiting request (if 
anyJ. 

INPUT: Positive or negative RTR_RSP from HS 

OUTPUT: None 

NOTE: If #FSM_BIS is not in the RESET state when RTR_RSP is received, this procedure 
does not return the session to the free-session pool, since the session is in 
the process of being shut down. This can occur, for example, when the first 
speaker has sent a BIS and the bidder responds negatively to a previous RTR 
before sending its own BIS. 

Referenced procedures, FSMs, and data structures: 
DEQUEUE_WAITING_REQUEST 
SHOULD_SEND_BIS 
SEND_BIS 
FSM_BIS_BIDDER 
FSM_BIS_FSP 
RTR_RSP 

If RTR_RSP.RTI : NEG and the state of #FSM_BIS = RESET !page 3-65) then 
(see Note) 

Call SHOULD_SEND_BISIRTR_RSP.HS_ID) !page 3-58) 
to determine whether BIS should be sent on this session. 

If SHOULD SEND BIS indicates that BIS should be sent then 
Call SEND_BISCRTR_RSP.HS_IDl (page 3-49J. 

Else 
Return the session to the free-session pool. 

page 3-39 
page 3-58 
page 3-49 
page 3-65 
page 3-66 
page A-15 

Call DEQUEUE_WAITING_REQUEST!RTR_RSP.HS_IDl !page 3-391 to process any waiting requests. 

SEND_ACTIVATE_SESSION 

FUNCTION: This procedure sends an 
request activation of a 
counts are incremented. 

ACTIVATE_SESSION record to LU network services to 
new half-session. The appropriate pending session 

INPUT: LU_NAME, the name of the partner LU; MODE_NAME, the name of the mode; and the 
session polarity IFIRST_SPEAKER or BIDDER) 

OUTPUT: ACTIVATE_SESSION to LNS 

Referenced procedures, FSMs, and data structures: 
LNS 
ACTIVATE_ SESSION 
MODE 
LU_NAME 
MODE_ NAME 

Find the MODE control block associated with LU_NAME and MODE_NAME. 
Create an ACTIVATE SESSION record and set the subfields as follows: 

CORRELATOR to a u~ique value, LU_NAME and MODE_NAME to the LU_NAME 
and MODE_NAME inputs, and SESSION_TYPE to the session polarity input. 

Increment MODE.PENDING_SESSION_COUNT by 1. 

page 4-47 
page A-31 
page A-3 
page 3-69 
page 3-69 

Increment MODE.PENDING_CONWINNERS_COUNT or MODE.PENDING_CONLOSERS_COUNT by 1, 
as appropriate to the session polarity. 

Send ACTIVATE_SESSION to LNS !Chapter 4). 

3-48 SNA Format and Protocol Reference Manual for LU Type 6.2 



SEND_BIS 

SEND_BIS 

FUNCTION: This procedure causes either BIS_RQ or BIS_REPLY to be sent on the session 
identified by HS_ID. The choice of BIS_RQ or BIS_REPLY is dependent on the 
state of IFSM_BIS. 

INPUT: HS_ID, the ID of the session 

OUTPUT: BIS_RQ or BIS_REPLY to HS 

Referenced procedures, FSMs, and data structures: 
SEND_BIS_RQ 
SEND_BIS_REPLY 
FSM_BIS_BIDOER 
FSM_BIS_FSP 
HS_ID 

Select based on the state of IFSM_BIS Cpage 3-65): 
When RESET 

Call SEND_BIS_RQ!HS_ID) (page 3-50). 
When BIS RCVD 

Call SEND_BIS_REPLYCHS_ID> (page 3-49). 
Otherwise 

Do nothing. 

SEND_BIS_REPLY 

FUNCTION: This procedure creates a BIS_REPLY and sends it to HS. 

page 3-50 
page 3-49 
page 3-65 
page 3-66 
page 3-69 

INPUT: HS_ID, the ID of the half-session over which the BIS_REPLY will flow 

OUTPUT: BIS_REPLY to HS 

Referenced procedures, FSMs, and data structures: 
HS 
FSM_BIS_BIDDER 
FSM_BIS_FSP 
BIS_REPLY 
MOOE 
HS_ID 

Create a BIS_REPLY record and send it to HS (Chapter 6.0). 
Call IFSM_BISCS, BIS_REPLY, HS_ID> (page 3-65) for the session 

identified by HS_ID. 

page 6.0-3 
page 3-65 
page 3-66 
page A-29 
page A-3 
page 3-69 

Get addressability to the MODE control block associated with the LU and Mode 
name of the session identified by HS_ID. 

Increment MODE.PENDING_TERMINATION_CONWINNERS or MODE.PENDING_TERMINATION_CONLOSERS by 1, 
as appropriate to the session polarity. 

Chapter .3. LU Resources Manager 3-49 



SEND~BIS_RQ 

SEND_BIS_RQ 

FUNCTION: This procedure creates a BIS_RQ and sends it to HS. 

After the BIS_RQ. is sent to the half-session, the appropriate pending ter•i­
nation count is incremented. 

INPUT: HS_ID, the ID of the half-session over which the BIS_RQ will flow 

OUTPUT: BIS_RQ to HS 

NOTE: The TERMINATION_COUNT is not decremented if the BIS_RQ was sent as a result of 
a control operator DEACTIVATE_SESSION request. 

Referenced procedures, FSMs, and data structures: 
HS 
FSM_BIS_BIDDER 
FSM_BIS_FSP 
BIS_RQ 
MODE 
HS_ID 

Create a BIS_RQ record and send it to HS (Chapter 6.0). 

page 6.0-3 
page 3-65 
page 3-66 
page A-29 
page A-3 
page 3-69 

Call IFSM_BISIS, BIS_RQ, HS_IDl (page 3-65) for the session identified by HS_ID. 
Get addressability to the MODE control block associated with the LU and mode 

name of the session identified by HS_ID. 
Increment MODE.PENDING_TERMINATION_CONWINNERS or MODE.PENDING_TERMINATION_CONLOSERS by 1, 
as appropriate to the session polarity. 

If there is a pending CNOS operator session deactivation request for the session 
identified by HS_ID then 

Discard all pending CNOS operator session deactivation request for the session 
identified by HS_ID. 

Else (see Note) 
Decrement MODE.TERMINATION_COUNT by 1. 

3-50 SNA Format and Protocol Reference Manual for LU Type 6.2 



SEND_DEACTIVATE_SESSION 

SEND_DEACTIVATE_SESSION 

FUNCTION: This procedure sends a DEACTIVATE_SESSION record to LNS. 

INPUT: 

OUTPUT: 

If the STATUS is PENDING, the appropdate pending-session counts are decre­
mented. If STATUS is ACTIVE, a SESSION DEACTIVATED record is created and SES­
SION_DEACTIVATED_PROC is called to- continue processing the session 
deactivation. LNS does not send S~SSION_DEACTIVATED in reply to DEACTI­
VATE_SESSION. Thus, the OEACTIVATE_SESSION is created in this procedure and 
SESSION_DEACTIVATED_PROC is called to perform common processing. 

STATUS (ACTIVE or PENDING), CORRELATOR CHS ID if STATUS = ACTIVE, else 
correlator used on ACTIVATE_SESSION request), TYPE (NORMAL, CLEANUP, ABNOR­
MAL), and SENSE_CODE CX'OOOOOOOO' if TYPE t ABNORMAL! 

DEACTIVATE_SESSION to LNS 

Referenced procedures, FSMs, and data structures: 
SESSION_DEACTIVATEO_PROC 
MODE 
DEACTIVATE_ SESSION 
SCB 
SESSION_DEACTIVATED 
SESSION_ALLOCATEO 

Select based on the value of session status: 
When PENDING 

page 3-54 
page A-3 
page A-31 
page A-9 
page A-21 
page A-33 

If there is a pending session activation with a matching CORRELATOR then 
!the pending activation is known to RMJ 

Create a DEACTIVATE .. _SESSION record with DEACTIVATE_SESSION.STATUS set to PENDING, 
DEACTIVATE_SESSION.CORRELATOR set to CORRELATOR, and 
DEACTIVATE_SESSION.TYPE set to TYPE. 

If TYPE = ABNORMAL then 
Set DEACTIVATE_SESSION.SENSE_CODE to SENSE_CODE. 

Else 
Set DEACTIVATE_SESSION.SENSE_CODE to X'OOOOOOOO'. 

Send the DEACTIVATE_SESSION to LNS <Chapter 4). 
Get addressability to the MODE control block associated with the LU 
and mode name of the pending active session. 

Decrement MODE.PENDING_CONWINNERS_COUNT or MODE.PENDING_CONLOSERS_COUNT by 1, 
as appropriate to the session polarity. 

Decrement MODE. PENDING_SESSION_COUNT by 1. 
Discard the pending activation. 
If MODE.ACTIVE_SESSION_COUNT + MODE.PENDING_SESSION_COUNT = 0 then 

Do for each waiting request for a session to this LU name for this 
mode name: 

Create a SESSION ALLOCATED record with RETURN CODE set to 
UNSUCCESSFUL_NO=RETRY and send it to the PS (Chapter 5.ll 
that initiated the session request. 

Discard the waiting request. 
When ACTIVE 

If there exists an SCB where SCB.HS_ID = CORRELATOR then (session is known to RM> 
Create a DEACTIVATE SESSION record with DEACTIVATE SESSION.STATUS set to ACTIVE, 
DEACTIVATE_SESSION~HS_ID set to CORRELATOR, and -
DEACTIVATE_SESSIOIL TYPE set to TYPE. 

If TYPE = ABNORMAL then 
Set DEACTIVATE_SESSION.SENSE_CODE to SENSE_CODE. 

Else 
Set DEACTIVATE SESSION.SENSE CODE to x·oooooooo•. 

Send the DEACTIVATE_SESSION to LNS !Chapter 4). 
Create a SESSION_DEACTIVATED.record with HS_ID set to CORRELATOR. 
If TYPE = NORMAL then 

Set SESSION_DEACTIVATED.REASON to NORMAL. 
Else 

Set SESSION_DEACTIVATED.REASON to ABNORMAL_No_RETRY. 
Call SESSION_DEACTIVATED_PROCCSESSION_DEACTIVATEDI (page 3-54). 

Chapter 3. LU Resources Manager 3-51 



SESSION_ACTIVATED_ALLOCATION 

SESSION_ACTIVATED_ALLOCATION 

FUNCTION: This procedure handles the allocation processing for a newly activated 
first-speaker or bidder half-session. 

INPUT: 

OUTPUT: 

NOTE: 

This procedure causes the SCB associated with the half-sesslon and the RCB of 
a conversation for which a session was requested to point to each other. If 
PS.CONV indicated that RM is to be responsible for sending the Attach, it cre­
ates a BID WITH ATTACH record from information that PS.CONV stored in the RCB 
and sends -it to HS. It then creates a SESSION ALLOCATED record, which it 
sends to PS.CONV to inform it that the session has-been allocated. 

GET_SESSION and HS_ID, the ID of the new half-session 

SESSION ALLOCATED to PS; and, if PS.CONV has indicated that RM is to send the 
Attach for the conversation, BID_WITH_ATTACH to HS 

Since a new session is in the in-brackets state when it is activated, the 
Attach that RM sends to HS is not really a bid for the use of the session. 
After RM sends the Attach, it does not have to wait for a response from HS, 
but can report immediately to PS.CONV. Also, if PS.CONV does not request RM 
to send the Attach, RM does not send a BID_WITHOUT_ATTACH record to HS even if 
the half-session is a bidder, since the new session is already in the 
in-brackets state and no bidding is necessary. 

Referenced procedures, FSMs, and data structures: 
SET_RCB_AND_SCB_FIELDS 
CONNECT_RCB_AND_SCB 
HS 
PS 
FSM_RCB_STATUS_FSP 
FSM_RCB_STATUS_BIDDER 
GET_SESSION 
HS_ID 
BID_WITH_ATTACH 
SESSION_ALLOCATED 
RCB 

If the session identified by HS_ID is a bidder session then 
For the conversation identified by GET_SESSION.RCB_Io, 
Call #FSM_RCB_STATUS!S, GET_SESSION, UNDEFINED! Cpage 3-67). 
!State of #FSM_RCB_STATUS = PENDING_SCB.l 

Call SET_RCB_AND_SCB_FIELDSCGET_SESSION.RCB_Io, HS_IDl (page 3-57). 
If GET_SESSION.BID_INDICATOR = ATTACH then 

page 3-57 
page 3-34 
page 6.0-3 
page 5.0-5 
page 3-68 
page 3-67 
page A-26 
page 3-69 
page A-28 
page A-33 
page A-7 

Find the RCB associated with the conversation identified by GET_SESSION.RCB_ID. 
Create a BID WITH ATTACH record with the SEND PARM fields initialized from 

the corresponding RCB.PS_TO_HS_RECORD fields: 
Send the BID_WITH_ATTACH record to HS (Chapter 6.0; see Notel. 

Call CONNECT_RCB_AND_SCBCGET_SESSION.RCB_ID, HS_ID, NORMAL) !page 3-34). 
Create a SESSION_ALLOCATED record with RETURN_CODE set to OK, and send the 

record to PS !Chapter 5.11. 

3-52 SNA Format and Protocol Reference Manual for LU Type 6.2 



SESSION_ACTIVATED_PROC 

SESSION_ACTIVATED_PROC 

FUNCTION: This procedure performs the processing of a SESSION_ACTIVATED record from LNS. 
SESSION ACTIVATED is received from LNS as a result of session activation ini­
tiated by the partner LU. 

INPUT: SESSION_ACTIVATED from LNS 

Referenced procedures, FSMs, and data structures: 
SUCCESSFUL_SESSION_ACTIVATION 
SESSION_ACTIVATED 
MODE 

Get addressability to the MODE control block associated with the LU and 
mode name of the newly activated session. 

Increment MODE.ACTIVE_CONWINNERS_COUNT or MODE.ACTIVE_CONLOSERS_COUNT by 1, 
as appropriate to the session polarity. 

Increment MODE.ACTIVE_SESSION_COUNT by 1. 

page 3-59 
page A-20 
page A-3 

Call SUCCESSFUL_SESSION_ACTIVATIONCSESSION_ACTIVATED.LU_NAME, 
SESSION_ACTIVATED.MODE_NAME, SESSION_ACTIVATED.SESSION_INFORMATIONl Cpage 3-59). 

SESSION_ACTIVATION_POLARITY 

FUNCTION: This procedure determines the polarity for a session activation request. 

If no session can be activated now (because LUCB.LU_SESSION_LIMIT or 
MODE.SESSION LIMIT would be exceeded), NONE is returned. If either a 
first-speaker or bidder session could be activated, FIRST_SPEAKER is returned. 
Thus, first-speaker sessions will be activated in preference to bidder ses­
sions. 

INPUT: LU_NAME, the name of the LU to which a session is to be activated; and 
MODE_NAME, the name of the mode 

OUTPUT: NONE, if no session can be activated; FIRST_SPEAKER, if a first-speaker ses­
sion can be activated; BIDDER, otherwise 

Referenced procedures, FSMs, and data structures: 
LU_NAME 
MODE_NAME 
MODE 

page 3-69 
page 3-69 
page A-3 

Get addressability to the MODE control block associated with LU_NAME and MODE_NAME. 
If the number of sessions to the partner LU identified by LU_NAME and 
on mode name identified by MODE_NAME is ~ MODE.SESSION_LIMIT then 

Return with an indication that no additional sessions can be activated. 
If the total number of sessions to the partner LU identified by LU_NAME 
is greater than 0 and parallel sessions are not supported to the 
partner LU identified by LU_NAME then 

Return with an indication that no additional sessions can be activated. 
If MODE.SESSION_LIMIT - MODE.MIN_CONLOSERS_LIMIT > 

MODE.ACTIVE_CONWINNERS_COUNT + MODE.PENDING_CONWINNERS_COUNT then 
Return with an indication that a first-speaker session can be activated. 

Else 
Return with an indication that a bidder session can be activated. 

Chapter 3. LU Resources Manager 3-53 



SESSION_DEACTIVATED_PROC 

SESSION_DEACTIVATED_PROC 

FUNCTION: This procedure handles the processing that occurs when a session is deacti­
vated. 

INPUT: 

OUTPUT: 

When SESSION_DEACTIVATED.REASON = NORMAL, no processing (except destruction of 
the SCB> takes place since the decision to close down a session was mutually 
reached by the resources managers of the half-sessions via BIS protocols and 
all necessary processing has already been performed. 

When SESSION_DEACTIVATED.REASON = SON or PROTOCOL_VIOLATION and the session 
was being used by a conversation, this procedure sends a CONVERSATION_FAILURE 
record to PS.CONY. If the session was not in use, the session is removed from 
the free-session pool. Regardless of whether the session was in use, this 
procedure deletes the SCB entry for that half-session. 

SESSION_DEACTIVATED 

CONVERSATION_FAILURE to PS, or no output 

NOTES: 1. When PS.CONY receives a CONVERSATION_FAILURE, it generates a DEALLOCATE_RCB 
and sends it to RM, which performs the usual RCB deallocation processing. 

2. It is possible for two RCBs to be associated with the same SCB when SON 
occurs. This happens when RM has issued a bid for the use of a bidder 
half-session and, prior to receiving the response to the bid, subsequently 
receives an Attach from the first-speaker side of the session. When RM 
receives the session outage notification, it notifies the PS that was created 
as a result of the incoming Attach that a conversation failure has occurred. 
The PS associated with the RCB that is pending a response to the bid, however, 
never learns of the session outage. RM treats the SON as a -BID_RSP and 
attempts to satisfy the session request with another session. 

Referenced procedures, FSMs, and data structures: 
GET_SESSION_PROC 
ACTIVATE_NEEDED_SESSIONS 
PS 
FSM_SCB_STATUS_BIDDER 
FSM_SCB_STATUS_FSP 
FSM_RCB_STATUS_FSP 
FSM_RCB_STATUS_BIDDER 
SESSION_DEACTIVATED 
CONVERSATION_FAILURE 
GET_SESSION 
RM_SESSION_ACTIVATED 
SCB 
RCB 
MODE 

3-54 SNA Format ahd Protocol Reference Manual for LU Type 6.2 

page 3-42 
paga 3-21 
page 5.0-5 
page 3-63 
page 3-64 
page 3-68 
page 3-67 
page A-21 
page A-32 
page A-26 
page A-33 
page A-9 
page A-7 
page A-3 



If an SCB associated with the half-session identified by 
SESSION_DEACTIVATED.HS_ID exists then 

SESSION_DEACTIVATED_PROC 

Get addressability to the MODE control block associated with the LU and 
mode name of the deactivated session. 

If SESSION DEACTIVATED.REASON t NORMAL then (abnormal deactivation) 
If the ;tate of IFSM_SCB_STATUS (page 3-63) : IN_USE then 

If the RCB identified by the SCB.RCB_ID exists then 
Disconnect the PS and HS processes that are using the deactivated session. 
Create a CONVERSATION_FAILURE record with RCB_ID set to SCB.RCB_ID. 
Select based on SESSION DEACTIVATED.REASON: 

When ABNORHAL_RETRY -
Set CONVERSATION FAILURE.REASON to SON. 

When ABNORHAL_NO_RETRY 
Set CONVERSATION_FAILURE.REASON to PROTOCOL_VIOLATION. 

Send the CONVERSATION_FAILURE record to the PS process that was 
using the deactivated session. 

Else (session not in use by a conversation) 
Remove the session from the free-session pool. 

If there is an RCB where RCB.HS_ID = SESSION_DEACTIVATED.HS_ID and 
the state of IFSM_RCB_STATUS = PENDING_SCB (page 3-67) then 
CA bid for the deactivated session is in progress; see Note 2). 

Set RCB.HS ID to a null value. 
Call IFSH_RCB_STATUSCR, NEG_BID_RSP, UNDEFINED> (page 3-67). 
Create a GET SESSION record from information saved in the RCB. 
Call GET_SESSION_PROC!GET_SESSIONl Cpage 3-421 

to retry the bid on another session. 
Decrement MODE.ACTIVE_CONWINNERS_COUNT or MODE.ACTIVE_CONLOSERS_COUNT by 1, 
as appropriate to the session polarity. 

Decrement MODE.ACTIVE_SESSION_COUNT by 1. 
If there is a pending deactivation for the failed session then 

Decrement MODE.PENDING TERMINATION CONWINNERS or MODE.PENDING TERMINATION CONLOSERS 
by I, as appropriate to the sessi~n polarity. - -

Call ACTIVATE_NEEDED_SESSIONS!SCB.LU_NANE, SCB.NODE_NAME) !page 3-21). 
If MODE.ACTIVE_SESSION_COUNT + MODE.PENDING_SESSION_COUNT = 0 then 

Do for each waiting request for a session to CLU_NANE, MODE_NAMEl: 
Create a SESSION_ALLOCATED record with RETURN_CODE set to UNSUCCESSFUL_NO_RETRY 

and send it to the PS !Chapter 5.1) that initiated the session request. 
Discard the waiting request. 

Do for each pending CNOS operator session activation request for a session 
to CLU NAME, NODE NANEl: 

Create RM_SESSION_ACTIVATED with RETURN_CODE set to ACTIVATION_FAILURE_NO_RETRY 
and send it to the PS <Chapter 5.1) that initiated the activation request. 

Discard the activation request. 
Discard the SCB. 

Chapter 3. LU Resources Manager 3-55 



SESSION_DEACTIVATION_POLARITY 

SESSION_DEACTIVATION_POLARITY 

FUNCTION: This procedure determines the polar;ty of a session to partner LU CLU_NAME, 
MODE_NAME> that this LU is responsible for deactivating. 

INPUT: LU_NAME, the name of the partner LU; and MODE_NAME, the name of the mode. 

OUTPUT: NONE, if this LU is not responsible for any deactivations; BIDDER, if this LU 
is responsible to deactivate a bidder session only; FIRST_SPEAKER, if this LU 
is responsible to deactivate a first speaker session only; EITHER, if this LU 
is responsible to deactivate either a first speaker or bidder session. The 
TERMINATION_COUNT is reset to 0 if it was positive and this LU is not respon­
sible for any deactivations. 

Referenced procedures, FSMs, and data structures: 
LU_NAME 
MODE_NAME 
MODE 

page 3-69 
page 3-69 
page A-3 

Get addressability to the MOOE control block associated with LU_NAME and MODE_NAME. 
If MODE.TERMINATION COUNT= 0 then 

Return with an i~dication that no sessions need to be deactivated. 
Let CONWINNER_COUNT be MODE.ACTIVE_CONWINNERS_COUNT + MODE.PENDING_CONWINNERS_COUNT -

MODE.PENOING_TERMINATION_CONWINNERS. 
Let CONLOSER_COUNT be MOOE.ACTIVE_CONLOSERS_COUNT + MOOE.PENDING_CONLOSERS_COUNT -

MODE. PENO ING_ TERMINATION_ CON LOSERS. 
Select based on the following conditions: 

When CONWINNER_COUNT <= MODE.MIN_CONWINNERS_LIMIT, and 
CONLOSER_COUNT <= MOOE.MIN_CONLOSERS_LIMIT 

Set MODE.TERMINATION COUNT to O. 
Return with an indication that no sessions need to be deactivated. 

When CONWINNER_COUNT <= MOOE.MIN_CONWINNERS_LIMIT, and 
CONLOSER COUNT > MOOE.MIN CONLOSERS LIMIT 

Return with an indication that a bidd;r session needs to be deactivated. 
When CONWINNER_COUNT > MODE.MIN_CONWINNERS_LIMIT, and . 

CONLOSER COUNT <= MODE.MIN CONLOSERS LIMIT 
Return with an indication that a first:speaker session needs to be deactivated. 

When CONWINNER_COUNT > MOOE.MIN_CONWINNERS_LIMIT, and 
CONLOSER_COUNT > MODE.MIN_CONLOSERS_LIMIT 

Return with an indication that a session of either polarity needs to be deactivated. 

3-56 SNA Format and Protocol Reference Manual for LU Type 6.2 



SET_RCB_AND_SCB_FIELDS 

SET_RCB_AND_SCB_FIELDS 

FUNCTION: This procedure initializes fields in the RCB and SCB entries having the passed 
RCB and HS IDs. 

The RCB is set to point to the associated SCB !by placing the HS_ID in the 
RCB), and the SCB to point to the RCB lby placing the RCB_ID in the SCBJ. The 
FSMs that maintain the status of the RCB and SCB are set to the IN_USE state. 

INPUT: RCB_ID and HS_ID, the IDs of the RCB and SCB, respectively, for which fields 
are to be set 

OUTPUT: 

NOTE: When this procedure is called from BID_RSP_PROC, RCB.HS_ID has already been 
initialized. IIt was initialized when the BID for the session was generated.) 
Rather than test for this condition, the field is reset to the same value. 

Referenced procedures, FSMs, and data structures: 
FSM_SCB_STATUS_BIDDER 
FSM_SCB_STATUS_FSP 
FSM_RCB_STATUS_FSP 
FSM_RCB_STATUS_BIDDER 
RCB_ID 
HS_ID 
SCB 
RCB 

Find the SCB associated with the half-session identified by HS_ID. 
Set SCB.RCB_ID to RCB_ID. 
Find the RCB associated with the conversation identified by RCB_ID. 
Set RCB.HS_ID to HS_ID (see Note). 
If the session identified by HS_ID is a first-speaker session then 

Call #FSM_SCB_STATUSIS, GET_SESSION, UNDEFINED! lpage 3-63!. 
!State of #FSM_SCB_STATUS = IN_USE.l 

Call #FSM_RCB_STATUS(S, GET_SESSION, UNDEFINED) (page 3-67). 
!State of #FSM_RCB_STATUS = IN_USE.> 

Else !bidder session) 
Call #FSM_SCB_STATUSIR, POS_BID_RSP, UNDEFINED! lpage 3-63). 
!State of #FSM_SCB_STATUS = IN_USE.) 

Call #FSM_RCB_STATUSIR, BOS_BID_RSP, UNDEFINED! lpage 3-67). 
!State of #FSM_RCB_STATUS = IN_USE.l 

page 3-63 
page 3-64 
page 3-68 
page 3-67 
page 3-69 
page 3-69 
page A-9 
page A-7 

Chapter 3. LU Resources Manager 3-57 



SHOULD..;.SEND_BIS 

SHOULD_SEND_BIS 

FUNCTION: This procedure determines whether a BIS (either BIS_RQ or BIS_REPlY> should be 
sent on the session identified by HS_ID~ 

INPUT: HS_ID, containing the ID of the session 

OUTPUT: TRUE, if BIS (BIS_RQ or BIS_REPLY> should be sent now; else FALSE 

Referenced procedures, FSMs, and data structures: 
SESSION_DEACTIVATION_POLARITY 
FSM_BIS_BIDDER 
FSM_BIS_FSP 
HS_ID 
LU_NAME 
MODE_NAME 
MODE 

page 3-56 
page 3-65 
page 3-66 
page 3-69 
page 3-69 
page 3-69 
page A-3 

Get addressability to the MODE control block associated Nith the half-session 
identified by HS_ID. 

SELECT based on the state of IFSM_BIS (page 3-65>: 
When RESET 

Call SESSION_DEACTIVATION_POLARITYCLU_NAME, MODE_NAMEJ Cpage 3-56) 
to determine the type of session Cif any) to deactivate. 

If the deactivation polarity = EITHER, or 
the deactivation polarity matches the session polarity then 

If MODE.DRAIN_SELF = NO, or 
MODE•DRAIN_SELF = YES and there are no waiting requests for 
sessions to this LU and mode name then 

Return with an indication that BIS should be sent on this session. 
If there is a pending CNOS operator session deactivation for this session then 

Return with an indication that BIS should be sent on this session. 
Else 

Return Nith an indication that BIS should not be sent on this session. 
When BIS_RCVD 

If MODE.DRAIN_SELF = NO, or 
MODE.DRAIN_SELF = YES and there are no waiting requests for sessions 
to this LU and mode name then 

Return with an indication that BIS should be sent on this session. 
Else 

Return with an indication that BIS should not be sent on this session. 
When BIS_SENT CBIS already sent) 

Return with an indication that BIS should not be sent on this session. 

3•58 SNA Format and Protocol Reference Manual for LU Type 6.2 



SUCCESSFUL_SESSION_ACTIVATION 

SUCCESSFUL_SESSION_ACTIVATION 

FUNCTION: This procedure handles the processing that occurs when a new session is suc­
cessfully activated. 

INPUT: 

OUTPUT: 

NOTE: 

When a new session is successfully activated, it comes up "in-conversation" 
with the primary side of the session in control of the conversation. This 
procedure checks to see whether the new half-session is primary or secondary. 
If the half-session is a primary and there is a waiting request, the support 
levels !i.e., sync level> specified in the request are checked against the 
support levels of the session. If the support levels are compatible, the 
request is sent to SESSION_ACTIVATED_ALLOCATION !page 3-52) to be processed. 
If the support levels are not compatible, the request is rejected with an 
ALLOCATION_ERROR return code. If there are no waiting requests, the session 
is returned to the free-session pool and a YIELD_SESSION record is created and 
sent to HS to inform the sec'>fldary side of the half-session that the primary 
side is relinquishing control of the conversation. The YIELD_SESSION record 
is translated into a FREE_SESSION record by the secondary half-session and 
sent to its RM. 

If the new half-session is a secondary half-session, the FSM that maintains 
the status of the SCB is set to indicate that the next record it expects to 
receive is either an Attach or a FREE_SESSION. !It will receive an Attach if 
the primary half-session decides to use the session; it will receive a 
FREE_SESSION if the primary has no GET_SESSION requests waiting to be serv­
iced>. 

LU_NAME and MODE_NAME, the LU name and mode name of the newly activated ses­
sion; and SESSION_INFORMATION !page A-35), which describes the attributes of 
the activated session 

GET_SESSION to SESSION_ACTIVATED_ALLOCATION !page 3-52), YIELD_SESSION to HS, 
SESSION_ALLOCATED to PS, or no output 

PS.CONY stores in the RCB information that tells HS what bit settings to use 
when HS sends data out over a link. Part of the information states whether 
the data being sent to HS is the beginning of a conversation or part of an 
existing conversation. Since a new session comes up in-conversation la fact 
that is unknown by PS.CONY>, RM changes the information in the RCB to indicate 
to HS that the next record it will receive from PS.CONY will not be the start 
of a conversation. 

Referenced procedures, FSMs, and data structures: 
CREATE_SCB 
SESSION_ACTIVATED_ALLOCATION 
PS 
HS 
FSM_SCB_STATUS_BIDDER 
FSM_SCB_STATUS_FSP 
LU_NAME 
MODE_NAME 
SESSION_INFORMATION 
SCB 
RM_SESSION_ACTIVATED 
GET_SESSION 
YIELD_SESSION 
SESSION_ALLOCATED 

page 3--37 
page 3-52 
page 5.0-5 
page 6.0-3 
page 3-63 
page 3-64 
page 3-69 
page 3-69 
page A-35 
page A-9 
page A-33 
page A-26 
page A-30 
page A-33 

Chapter 3. LU Resources Manager 3-59 



SUCCESSFUL_SESSION_ACTIVATION 

Call CREATE SCB(LU NAME, MODE NAME, SESSION INFORMATION) (page 3-37). 
If this is a prima;y half-ses;ion then -

Call #FSM_SCB_STATUSCR, SESSION_ACTIVATEO, PRIJ (page 3-63). 
!State of #FSH SCB STATUS = SESSION ACTIVATION). 

Do until the activated session is us;d to service a waiting request, or 
the session is yielded. 

If there is a waiting request for this LU and mode name then 
If the session does not SL'Pport the sync level specified by the 
waiting request then 

Create a SESSION ALLOCATED record with RETURN CODE set to 
SYNC_LEVEL_NOT_SUPPORTED and send it to the PS !Chapter 5.ll associated 
with the waiting request. 

Discard the waiting request. 
Else (session support is OKI 

Create a GET_SESSION record initialized with information from 
the waiting request. 

Call SESSION_ACTIVATED_ALLOCATIONCGET_SESSION, SCB.HS_IDl (page 3-521. 
Discard the waiting request. 

Else (no waiting requests) 
Call #FSH SCB STATUSCS, YIELD SESSION, UNDEFINED> Cpage 3-631. 
Create a YIELO_SESSION record-and send it to the HS (Chapter 6.0) 

representing the newly activated session. 
Else (secondary half-session) 

Call #FSH_SCB_STATUSCR, SESSION_ACTIVATED, SECJ (page 3-63). 
!State of #FSH_SCB_STATUS = PENDING_ATTACHJ. 

If there is a pending CNOS operator session activation request then 
Create an RM_SESSION_ACTIVATED record with RETURN_CODE set to OK and send 
it to the PS !Chapter 5.4) that originally issued 
the RM_ACTIVATE_SESSION record to RM. 

TEST_FOR_FREE_FSP_SESSION 

FUNCTION: This procedure tests for a free first-speaker half-session. If one is found, 
a new RCB is created and the support levels provided by the session are 
checked to see if they are compatible with those requested in the ALLO­
CATE_RCB. If they are not compatible, the RETURN_CODE on the RCB_ALLOCATED 
record is set to indicate an unsuccessful allocation. If the support levels 
are compatible, the half-session is allocated to the RCB, the ID of the RCB is 
placed in the passed RCB_ALLOCATED record. 

If a free first-speaker half-session is not found, the RETURN_CODE in the 
passed RCB_ALLOCATED record is changed to indicate an unsuccessful allocation. 

INPUT: ALLOCATE_RCB and RCB_ALLOCATED. 
CATE_RCB_PROC. 

RCB_ALLOCATED was created by ALLO-

OUTPUT: RCB ALLOCATED with the RCB_ID field set to the ID of the allocated RCB, or 
with the RETURN_CODE set to UNSUCCESSFUL 

Referenced procedures, FSHs, and data structures: 
CREATE_RCB 
SET_RCB_AND_SCB_FIELDS 
CONNECT_RCB_AND_SCB 
ALLOCATE_RCB 
RCB_ALLOCATED 

If a free first-speaker session exists for ALLOCATE_RCB.LU_NAME and 
ALLOCATE_RCB.MODE_NAME then 

Call CREATE_RCBIALLOCATE_RCB, RCB_ALLOCATEDJ !page 3-36). 
If sync level requested in ALLOCATE_RCB is not supported by partner 

Set RCB_ALLOCATED.RETURN_CODE to SYNC_LEVEL_NOT_SUPPORTED. 
Else 

Call SET_RCB_ANO_SCB_FIELDSIRCB_IO, HS_IDJ !page 3-57). 
Call CONNECT_RCB_AND_SCBCRCB_ID, HS_IDJ (page 3-34). 
Remove the session from the free-session pool. 

Else (no free first-speaker sessions). 
set RCB_ALLOCATED.RETURN_CODE to UNSUCCESSFUL. 

3-60 SNA Format and Protocol Reference Manual for LU Type 6.2 

page 3-36 
page 3-57 
page 3-34 
page A-25 
page A-32 

LU then 



UNBIND_PROTOCOL_ERROR_PROC 

UNBIND_PROTOCOL_ERROR_PROC 

FUNCTION: Th;s procedure processes an UNBIND_PROTOCOL_ERROR record from a .presentation 
serv;ces component. Presentat;on serv;ces sends an UNBIND_PROTOCOL_ERROR to 
the resources manager when ;t discovers that the other s;de of the 
half-sess;on has comm;tted a protocol v;olat;on. 

INPUT: 

OUTPUT: 

UNBIND_PROTOCOL_ERROR 

The sess;on ;dentif;ed by UNBIND_PROTOCOL_ERROR.HS_ID is deact;vated with an 
UNBINDIX'FE') and sense data spec;f;ed by UNBIND_PROTOCOL_ERROR.SENSE_CODE. 
The resources manager sends a CONVERSATION_FAILUREIPROTOCOL_VIOLATION) to 
presentat;on serv;ces. 

Referenced procedures, FSMs, and data structures: 
RM_PROTOCOL_ERROR 
UNBIND_PROTOCOL_ERROR 

page 3-46 
page A-28 

Call RM_PROTOCOL_ERRORIUNBIND_PROTOCOL_ERROR.HS_ID, UNBIND_PROTOCOL_ERROR.SENSE_CODE) 
lpage 3-46). 

Chapter 3. LU Resources Manager 3-61 



UNSUCCESSFUl_SESSION_ACT!VATION 

UNSUCCESSFUl_SESSION_ACT!VATION 

FUNCTION: This procedure handles the processing that occurs when a new session could not 
be activated by LU network services. 

INPUT: 

OUTPUT: 

This procedure checks to see if any session has been activated for this 
(LU_NAME, MODE_NAMEI pair. If so, no action is taken by this procedure. The 
previously allocated session(s) will eventually be available for use by the 
transaction program!s) that requested a session. Similarly, if no sessions 
have been activated for this ClU_NAME, MODE_NAMEJ pair, but there are out­
standing (pending) session activation requests that network services has not 
yet responded to, no action is taken. Some of the pending requests may suc­
ceed in activating sessions, and these sessions can eventually be used by oth­
er transaction programs. 

If, on the other hand, no session has been successfully activated for this 
lU_NAME and MODE_NAME and there are no other pending activation requests for 
this lU_NAME and MODE_NAME Ci.e., all session activation requests have been 
responded to by network services), the procedure will send a SESS!ON_ALLOCATED 
record to all instances of presentation services that have requested sessions 
for this lU_NAME and MODE_NAME. 

The RETURN_CODE field of the SESSION_ALLOCATED record is set to UNSUCCESS­
FUL_RETRY or UNSUCCESSFUL_NO_RETRY depending on the ERROR_TYPE parameter. 

LU NAME and MODE NAME of the lU to which session activation was unsuccessful; 
and ERROR_TYPE, indicating RETRY or NO_RETRY 

SESSION_ALLOCATED to PS, or no output 

Referenced procedures, FSMs, and data structures: 
PS 
LU_ NAME 
MODE_NAME 
MODE 
RM_SESSION_ACT!VATED 
SESSION_ALLOCATED 

page 5.0-5 
page 3-69 
page 3-69 
page A-3 
page A-33 
page A-33 

Get addressability to the MODE control block associated with LU_NAME and MODE_NAME. 
If MODE.ACTIVE_SESSION_COUNT = 0 and MODE.PENDING_SESSION_COUNT = 0 then 

Do for each waiting request for a session to ILU_NAME, MODE_NAMEl: 
Create a SESSION_ALLOCATED record with RETURN_CODE set to 

UNSUCCESSFlJL_RETRY or UNSlJCCESSFUL_NO_RETRY according to 
ERROR_ TYPE. 

Send the SESSION ALLOCATED record to the PS !Chapter 5.11 
that issued the-original request. 

Discard the waiting request. 
Do for each pending CNOS operator session activation request for a 
session to !LU NAME, MODE NAMEl: 

Create an RM=SESSION_ACT!VATED record with RETURN_CODE set to 
ACTIVAT!ON_FAILURE_RETRY or ACTIVATION_FA!LURE_NO_RETRY 
according to ERROR_TYPE. 

Send the RM_SESSION_ACTIVATED record to the PS !Chapter 5.ll 
that issued the original request. 

Discard the pending session activation request. 

3-62 SNA Format and Protocol Reference Manual for LU Type 6.2 



FINITE-STATE MACHINES 

IFSM_SCB_STATUS 

IFSM_SCB_STATUS is a generic FSM that main­
tains the state of a half-session. There is 
one #FSM_SCB_STATUS for each session known to 
the resources manager. #FSH_SCB_STATUS is 
initialized to either FSM_SCB_STATUS_BIDDER 
or FSM_SCB_STATUS_FSP, depending on the ses­
sion polarity, when the resources manager 
becomes aware of the existence of a new ses­
sion. This initialization occurs in CRE­
ATE_SCB Cpage 3-37). 

The states of FSH_SCB_STATUS_BIDDER and 
FSM_SCB_STATUS_FSP are: 

FSH_SCB_STATUS_BIDDER 

• SESSION ACTIVATION--the initial state, 
following activation of the session 

• FREE--the session is free for use by a 
conversation 

• PENDING ATTACH--the session is in the 
in-brackets state and the local LU is 
waiting for an Attach FM header from the 
remote LU. 

• IN USE--the session is in use by a con­
versation 

The first input denotes whether a record has 
been sent CS> or received CRl by RM, and the 
second input denotes the particular record 
type. 

FUNCTION: To remember the status of a bidder half-session. 

NOTES: 1. The initial state of this FSM is SESSION_ACTIVATION. 

2. When HS on the bidder side of a half-session receives an Attach, it converts 
the Attach into separate BID and ATTACH_HEADER records. RM Cbidder side) 
always sends a positive BID_RSP to HS (unless a protocol error has occurred). 
HS Cbidder sidel discards the BID RSP and then sends the ATTACH HEADER to RM. 
RM on the first-speaker side -does not generate the separate BID and 
ATTACH_HEADER records, and furthermore does not expect a BID_RSP since a 
first-speaker half-session always gains access to the session. 

3. A YIELD_SESSION will move the FSM from SESSION_ACTIVATION state to the IN_USE 
state. A FREE_SESSION is expected from the half-session to then change the 
state to FREE. 

STATE NAMES----> SESSION FREE PENDING IN 
ACTIVATION ATTACH USE 

INPUTS STATE NUMBERS--> 01 02 03 04 

R, POS_BID_RSP 4 4 / / 

R, BID / 3 / / 
R, ATTACH / / 4 / 

R, FREE_SESSION / / 2 2 

s, YIELD_SESSION 4 / / / 

R, SESSION_ACTIVATED, PRI - / / / 
R, SESSION_ACTIVATED, SEC 3 / / / 

Chapter 3. LU Resources Manager 3-63 



FSM_SCB_STATUs_FSP 

FSM_SCB_STATUS_FSP 

FUNCTION: To remember the status of a first-speaker half-session. 

NOTES: 1. The initial state of this FSM is SESSION_ACTIVATION. 

2. A YIELD_SESSION will move the FSM from SESSION_ACTIVATION state to the IN-USE 
state. A FREE_SESSION is expected from the half-session to then change the 
state to FREE. 

STATE NAMES----> SESSION FREE PENDING IN 
ACTIVATION ATTACH USE 

INPUTS STATE NUMBERS--> 01 02 03 04 

s. GET_SESSION 4 4 / / 

R, BID / 3 / / 
R, ATTACH / I 4 / 

R, FREE_ SESSION I / 2 2 

s, YIELD_SESSION 4 / I / 

R, SESSION_ACTIVATED, PRI - / / / 
R, SESSION_ACTIVATED, SEC 3 / / / 

3-64 SNA For11at and Protocol Reference Manual for LU Type 6.2 



#FSM_BIS 

#FSM BIS ;s a generic FSM that maintains the 
stat; of the BIS protocol for a half-session. 
There is one #FSM BIS for each session known 
to the resources ~anager. #FSM_BIS is i ni -
tialized to either FSM BIS BIDDER or 
FSM_BIS_FSP, depending on th~ses~ion polari­
ty, when the resources manager becomes aware 
of the existence of a new session. This 
initialization occurs in CREATE_SCB (page 
3-37). 

FSM_BIS_BIDDER 

The states of FSM_BIS_BIDDER and FSM_BIS_FSP 
are: 

• RESET--the initial state; BIS has been 
neither sent nor received 

• BIS SENT--the local LU has sent BIS 
• BIS RCVD--the local LU has received BIS 
• CLOSED--the local LU has both sent and 

received BIS 

The first input denotes whether a record has 
been sent CSJ or received CRJ by RM, and the 
second input denotes the particular record 
type. 

FUNCTION: To remember the status of a bidder half-session with respect to BIS_RQ and 
BIS_REPLY. 

NOTES: 1. The initial state of this FSM is RESET. 

2. After BIS_RQ and BIS_REPLY have been exchanged over a session, this FSM will 
be in the CLOSED state, indicating that the session is being deactivated. The 
CLOSED state is a terminating state, in that the FSM will not leave this state 
until it (along with its corresponding SCBJ is destroyed. 

Referenced procedures, FSMs, and data structures: 

INPUTS 

s, BIS_RQ 

SEND_DEACTIVATE_SESSION 
CHECK_FOR_BIS_REPLY 
BIS_RACE_LOSER 
RM_PROTOCOL_ERROR 
HS_ID 

STATE NAMES----> 

STATE NUMBERS--> 

R, BIS_REPLY 

R, BIS_RQ 
s, BIS_REPLY 

OUTPUT FUNCTION 
CODE 

RESET 

01 

2 
>I ERROR J 

3!B l 
I 

BIS 
SENT 
02 

/ 
4CAJ 

41CJ 
/ 

BIS 
RCVD 
03 

/ 
>!ERROR) 

>(ERROR) 
4 

page 3-51 
page 3-36 
page 3-32 
page 3-46 
page 3-69 

CLOSED 

04 

/ 
/ 

/ 
/ 

A Call SEND_DEACTIVATE_SESSION!ACTIVE, HS_ID, NORMAL, X' 00000000' ) C page 3-Sll. 

B Call CHECK_FOR_BIS_REPLYCHS_IDJ (page 3-36). 

c Call BIS_RACE_LOSERIHS_IDJ !page 3-32!. 

ERROR Call RM_PROTOCOL_ERRORCHS_ID, X'20100000') (page 3-46 ) • 

Chapter 3. LU Resources Manager 3-65 



FSl1_BIS_FSP 

FSl1_BIS_FSP 

FUNCTION: To remember the status of a first-speaker half•session with respect to BIS_RQ 
and BIS_REPLY. 

NOTES: 1. The initial state of this FSl1 is RESET. 

2. After BIS_RQ and BIS_REPLY have been exchanged over a session, this FSl1 will 
be in the CLOSED state, indicating that the session is being deactivated. The 
CLOSED state is a terminating state, in that the FSl1 will not leave this state 
until it (along with its corresponding SCB> is destroyed. 

Referenced procedures, FSMs, and data structures: 

INPUTS 

s. BIS_RQ 

SEND_DEACTIVATE_SESSION 
CHECK_FOR_BIS_REPLY 
RM_PROTOCOL_ERROR 
HS_ID 

STATE NAMES----> 

STATE NUMBERS--> 

R, BIS_REPLY 

R, BIS_RQ 
s. BIS_REPLY 

OUTPUT FUNCTION 
CODE 

RESET 

01 

2 
>(ERROR> 

3(B) 
I 

BIS 
SENT 
02 

I 
4(A) 

-
I 

BIS 
RCVD 
03 

I 
>(ERROR) 

>(ERROR) 
4 

page 3-51 
page 3-36 
page 3-46 
page 3-69 

CLOSED 

04 

I 
I 

I 
I 

A Call SEND_DEACTIVATE_SESSIONIACTIVE, HS_ID1 NORMAL, x•oooooooo• > <page 3-51>. 

B Call CHECK_FOR_BIS_REPLYIHS_ID> (page 3-36). 

ERROR Call RM_PROTOCOL_ERRORIHS_ID, X'20100000') <page 3-46). 

3-66 SNA Format and Protocol Reference Manual for LU Type 6.2 



IFSM_RCB_STATUS 

IFSM_RCB_STATUS is a generic FSM that main­
tains the state of a conversation resource. 
There is one IFSM_RCB_STATUS for each conver­
sation known to the resources manager. 
IFSM_RCB_STATUS is initialized to either 
FSH_RCB_STATUS_BIDDER or FSH_RCB_STATUS_FSP, 
depending on the polarity of the underlying 
session, resources manager creates the con­
versation resource. This initialization 
occurs in BIDDER_PROC Cpage 3-31), CREATE_RCB 
C page 3-36), and PS_CREATION_PROC C page 
3-44). 

The states of FSM_RCB_STATUS_BIDDER and 
FSM_RCB_STATUS_FSP are: 

FSM_RCB_STATUS_BIDDER 

• FREE--the initial state; the conversation 
is inactive 

• IN USE--the conversation is in progress 
• PENDING SCB CBIDDER only>--the conversa­

tion is awaiting allocation of a session, 
pending receipt of RSPCBid> 

• INITIAL CFSP onlyl--the conversation is 
the initial conversation established by 
UPH_IPL 

The first input denotes whether a record has 
been sent CS> or received CRl by RM, and the 
second input denotes the particular record 
type. 

FUNCTION: To remember the status of a conversation resource associated with a bidder 
half-session. 

NOTES: 1. The initial state of this FSM is FREE. 

2. The RCB may be in the FREE state when a DEALLOCATE_RCB is issued if RH discov­
ers that an ALLOCATION_ERROR exists before it attempts to get a session for 
the transaction program. The ALLOCATION_ERRORs that can occur in this situ­
ation are ALLOCATION_FAILURE_* and SYNC_LEVEL_NOT_SUPPORTED_BY_LU. 

STATE NAMES----> FREE IN PENDING 
USE SCB 

INPUTS STATE NUMBERS--> 01 02 03 

s. GET_SESSION 3 I I 

R, POS_BID_RSP I I 2 
R, NEG_BID_RSP I I 1 

R, ATTACH, HS 2 I I 

s, DEALLOCATE_RCB - l I 

Chapter 3. LU Resources Manager 3-67 



FSM_RCB_STATUS_FSP 

FSM_RCB_STATUS_FSP 

FUNCTION: To remember the status of a conversat;on resource associated with a 
first-speak·er half-session. 

NOTES: 1. The initial state of this FSM is FREE. 

2. The RCB may be in the•FREE state when a DEALLOCATE_RCB is issued if RM discov­
ers that an ALLOCATION_ERROR exists before it attempts to get a session for 
the transaction program. The ALLOCATION_ERRORs that can occur in this situ­
ation are ALLOCATION_FAILURE_* and SYNC_LEVEL_NOT_SUPPORTED_BY_LU. 

STATE NAMES----> FREE IN INITIAL 
USE 

INPUTS STATE NUMBERS--> 01 02 03 

s. ALLOCATE_RCB - I I 
s. GET_SESSION 2 I I 

R, ATTACH, HS 2 I I 
R, ATTACH, UPM 3 I I 

s. DEALLOCATE_RCB - 1 1 

3-68 SNA Format and Protocol Reference Manual for LU Type 6.2 



LOCAL DATA STRUCTURES 

LU_NAME 

LU_NAME: LU name 

MODE_NAME 

MODE_NAME: mode name 

HS_ID 

HS_ID: half-session identifier 

RCB_ID 

RCB_ID: conversation resource identifier 

TCB_ID 

TCB_ID: TP-PS process identifier 

Chapter 3. LU Resources t1anager 3-69 



SENSE_ CODE 

SENSE_ CODE 

SENSE_CODE: 4-byte sense data 

3-70 SNA Format and Protocol Reference Manual for LU Type 6.2 



CHAPTER ~ LU NETWORK SERVICES 

Resources 
Manager 

A 
I 
v 

< 

11 < 

I < 

I ~ > Network 
Services v v I v :j 

PNCP-LU SSCP-LU LU-LU j Half-Session Half-Session Half-Session 
Services Manager 

PU <-

A A A LU 
I I I 
v v v 

Path Control 

Notes: 
.----o;:;ly the LU components having a protocol boundary with LU network services are shown. 
• The PNCP-LU half-session is present only in peripheral nodes. 

Figure 4-1. Protocol Boundaries Between LU Network Services and Other Components 

GENERAL DESCRIPTION 

This chapter describes the network services 
component within an LU. Figure 4-1 shows the 
LU network services component and i ts 
relation to other components within the node. 
The arrows joining the components represent 
the protocol boundaries that exist between 
the LU network services component and the 
other components. 

The LU network services component C abbrevi -
ated LNSJ initiates and terminates LU-LU ses­
sions in response to requests from the 
resources manager and from the remote LU. 
LNS also activates and deactivates CP-LU ses­
sions. 

The initiation and termination of LU-LU ses­
sions involves exchanging session-services 
RUs between the LU and a CP, and exchanging 
session-control RUs between the LU and a 
partner LU. The exchange of session-control 
RUs performs the actual activation and deac­
tivation of the LU-LU sessions. The exchange 
of session-services RUs precedes and follows 
the activation and deactivation of the LU-LU 
sessions. 

Session-control requests and responses are 
sent on the expedited flow with the RU cate­
gory indicating session control !SCJ. 
Session-control RUs are sent field-formatted. 

Chapter 4. LU Network Serv1ces 4-1 



Full details of the formats for 
field-formatted RUs are given in "Appendix E. 
Request-Response Unit (RU l Formats". 

Session-services requests and responses 
belong to the network-services CNS) format of 
RUs. All session-services requests and 
responses are sent on the normal flow with 
the RU category indicating FM data CFMD). 

Session-services requests flowing between an 
LU and a CP may be field-formatted CRH Format 
i ndi ca tor set to 0) or character-coded (RH 
Format indicator set to 1). Character-coded 
requests contain RUs consisting of character 
strings that can be translated into equiv­
alent field-formatted RUs. A translation 
protocol is provided by the CP. The format 
of character-coded requests and the trans­
lation rules that apply to them are 
implementation-dependent and are not defined 
in this book. 

All nodes contain a CP. The CP in a type-S 
Csubarea) node is called a system services 
control point CSSCP>. The CP in a peripheral 
node is called a peripheral node control 
point CPNCP>. When initiating or terminating 
an LU-LU session, the LU exchanges session 
services RUs with one CP--the one configured 
to mediate the initiation or termination of 
the particular LU-LU session. 

When the LU-LU session is between subarea 
nodes or between a subarea node and a periph­
eral node, an SSCP mediates the session ini­
tiation or termination. In this case, the 
LU-LU session uses a route in a subarea 
path-control network. When the LU-LU session 
is between peripheral nodes, the PNCP in one 
of the two nodes mediates the session initi­
ation ·or termination. In this case, the 
LU-LU session does not use subarea 
path-control, but instead uses a direct route 
between the two peripheral nodes. 

When initiating and terminating SSCP-mediated 
sessions, the session-services RUs are 
exchanged between the LU and the SSCP over an 
SSCP-LU session. Similarly, for 
PNCP-mediated sessions, the RUs are exchanged 
between the LU and the PNCP over a PNCP-LU 
session within the peripheral node, and no 
session-services RUs flow outside the node. 

Activation and deactivation of a CP-LU ses­
sion is accomplished by exchanging 
session-control RUs between the CP and LNS. 
The CP-LU session is activated prior to ini­
tiating any LU-LU sessions for which that CP 
is the mediator. 

LNS informs the CP--elther an external SSCP 
or the internal CP--about the characteristics 
and current status of the LU during the acti­
vation of the CP-LU session. LNS negotiates 
session parameters with the LNS component in 
the partner LU during LU-LU session acti­
vation. 

The LU resources manager (abbreviated RM) in 
one of the two LUs directs the activation or 
deactivation of an LU-LU session. Upon com­
pletion of the activation or deactivation, 

LNS in each of the two LUs informs its local 
RM that the LU-LU session has been activated 
or deactivated. 

LNS is aware of the type of node (peripheral 
or subarea ) in which the LU resides and of 
the identity of the CP-medi a tor ( PNCP or 
SSCP> for each LU-LU session. LNS absorbs 
differences in protocols that result from the 
type of node in which it resides. This per­
mits other components of the LU to be inde­
pendent of the node type. LNS also isolates 
the other components from the CP-mediator for 
the LU-LU sessions, and thus the rout­
ing--subarea path-control or direct~used for 
the sessions. 

OVERVIEW OF CP-LU SESSION ACTIVATION 

The CP di rec ts the LU to activate a CP-LU 
session by sending it an ACTLU request. The 
PU in the node receives the ACTLU request, 
determines which LU is to receive the 
request, and passes the request to the LNS 
component in the LU. LNS processes the ACTLU 
request and activates a CP-LU half-session. 
LNS's processing of the ACTLU request 
includes the following: 

• Check for error conditions associated 
with the request, and for conditions that 
prevent activation of the session. 

• Notify path control within the node that 
a new session is being activated. 

• Send an ACTLU response to the CP. 

• Create and initialize the half-session 
process for the LU's side of the CP-LU 
session. 

After the CP-LU session is activated, the LU 
can initiate LU-LU sessions for which that CP 
is the mediator. 

OVERVIEW OF CP-LU SESSION DEACTIVATION 

The CP directs the LU to deactivate a CP-LU 
session by sending it a DACTLUCNormal> 
request Cin contrast to a DACTLUCSON) result­
ing from session outage>. The PU in the node 
receives the DACTLU request, determines which 
LU is to receive the request, and passes the 
request to the LNS component in the LU. LNS 
processes the DACTLU request and deactivates 
the CP-LU half-session. LNS's processing of 
the DACTLU request includes the following: 

• Check for error conditions associated 
with the request. 

• Send a DACTLU response to the CP. 

• Notify path control within the node that 
the session has been deactivated. 

• Reset all LU-LU half-sessions for which 
this CP was the session-initiation 
mediator. 

4-2 SNA ~ormat and Protocol Reference Manual for LU Type 6.2 



• Destroy the half-session process for the 
LU's side of the CP-LU session. 

When the LU receives a DACTLUCSONl request, 
LNS performs similar processing except that 
it does not reset any LU-LU half-sessions. 

After the CP-LU session is deactivated, the 
LU cannot initiate LU-LU sessions for which 
that CP is the mediator. 

OVERVIEW OF LU-LU SESSION INITIATION 

RM directs the LU to activate an LU-LU ses­
sion by sending LNS an ACTIVATE_SESSION 
record across an protocol boundary. LNS 
processes the ACTIVATE_SESSION record and 
initiates an LU-LU half-session. The LNS 
components in the two LUs activate the LU-LU 
session by exchanging a BIND request and 
response. LNS's processing of the ACTI­
VATE_SESSION record, which constitutes its 
part of the LU-LU session i ni ti at ion, 
includes the following: 

• 

• 

• 

• 

• 

• 

Check for conditions that prevent acti­
vation of the session. 

Obtain the identification of the CP that 
will mediate the LU-LU session initi­
ation. 

Send an !NIT-SELF request to the CP. The 
request directs the CP to mediate the 
initiation of the LU-LU session. 

Obtain the session parameters and acti -
vate the LU-LU session, as follows: 

If the LU is to be the primary for 
the session, then receive a CIIHT 
request from the CP, build a BIND 
request that specifies the desired 
parameters for the LU-LU session, 
send the BIND request to the partner 
(secondary! LU, and receive the BIND 
response. 

If the LU is to be the secondary for 
the session, then receive the BIND 
request, build a negotiated BIND 
response that specifies the agreed-to 
parameters for the LU-LU session, and 
send the BIND response to the partner 
lprimaryl LU. 

Notify path con·trol within the node that 
a new session is being activated. 

Create and initialize the half-session 
process for this LU's side of the LU-LU 
session. 

Notify the CP that a new LU-LU session is 
activated. 

Notify RM that the requested LU-LU ses­
sion is active. 

The partner LU to the one initiating the 
LU-LU session is directed to activate the 
LU-LU ses!id on by means of receiving either 

the CINIT request when it is the primary LU, 
or the BIND request when it is the secondary 
LU. Its processing following receipt of the 
CINIT or BIND request is similar to the proc­
essing just outlined. However, instead of 
replying to RM with a notification that a 
requested session is activated, LNS informs 
RM that an LU-LU session has been activated 
at the direction of the remote LU. After the 
LU-LU session is activated, the two LUs can 
allocate the session for conversations 
between transaction programs. 

The parameters used for the LU-LU session and 
carried in the BIND request and response have 
the following sources: 

• Fixed parameters: These have fixed val­
ues for all BIND requests and responses 
for LU 6.2 sessions. 

• Implementation-dependent parameters: 
These have values that are determined 
during the design of the implementation 
of the node. 

User installation-specified parameters: 
These have values that are determined by 
the user at the node's installation. 

CINIT parameters: These have values tak­
en from the CINIT request and sent in the 
BIND request. 

OVERVIEW OF LU-LU SESSION TERMINATION 

RM directs the LU to deactivate an LU-LU ses­
sion by sending LNS a DEACTIVATE SESSION 
record across an internal protocol b~undary. 
LNS processes the DEACTIVATE_SESSION record 
and terminates the LU-LU half-session. The 
two LUs deactivate the LU-LU session by 
exchanging an UNBIND request and response. 
LNS's processing of the DEACTIVATE SESSION 
record, which constitutes its part- of the 
LU-LU session termination, includes the fol­
lowing: 

• 

• 

• 

• 

Send an UNBIND request to the partner LU 
and receive the UNBIND response. 

Notify path control within the node that 
the session has been deactivated. 

Notify the CP that the LU-LU session has 
been deactivated. 

Destroy the half-session process for this 
LU's side of the LU-LU session. 

The partner LU to the one terminating the 
LU-LU session is directed to deactivate the 
LU-LU session by means of rece1v1ng the 
UNBIND request. Its processing following 
receipt of the UNBIND request is simihr to 
the processing just outlined. However, after 
the session has been deactivated, LNS informs 
RM that an LU-LU session has been deactivated 
at the direction of the remote LU. 

RM may request deactivation of an LU-LU ses­
sion that is pending activation, that is, 111 

Chapter 4. LU Network Services 4-3 



session for which LNS has sent an !NIT-SELF 
request to the CP and has not yet received 
the CINIT or BIND request for the session. 
LNS terminates a pending-active session by 
sending the CP a TERM-SELF request. The 
TERM-SELF request directs the CP to terminate 
the pending-active session without completing 
the initiation. LHS terminates the 
pending-active session when it sends 
TERM-SELF, without waiting for the response. 

SESSION OUTAGE AND SESSION REINITIATION 

An active session between two LUs may be 
interrupted by a failure of one or both of 
the LUs, by a reset of one or both of their 
half-sessions, or by a failure of the path 

NETWORK CONTEXT FOR SESSION INITIATION AND TERMINATION 

Certain terms are used that relate to LU-LU 
session initiation and termination. The 
terms are used to identify the roles of the 
LUs in the context of initiating and termi­
nating LU-LU sessions. The terms are: 

• Initiating LU CILUJ 
• Terminating LU CTLUI 
• Origin LU COLUJ 
• Destination LU CDLUJ 
• Primary LU CPLUJ 
• Secondary LU CSLUJ 

The abbreviations in parentheses following 
the terms appear in the format descriptions 
of the session-services and session-control 
RUs given in "Appendix E. Request-Response 
Unit CRUJ Formats" and are also used through­
out this chapter. 

nu AND TLU 

ILU and TLU refer to the role of an LU in 
initiating and terminating a particular LU-LU 
session. The LU that initiates an LU-LU ses­
sion is the ILU, and the LU that terminates 
an LU-LU session is the TLU. The ILU or TLU 
may be one of the session partners, in which 
case the LU the CP an !NIT-SELF or TERM-SELF 
request, respectively. The ILU or TLU may, 
instead, be a third-party LU that is not one 
of the session partners. Session initiation 
or termination by a third-party LU applies 
only to SSCP-mediated sessions. Details of 
the formats and protocols for third-party LUs 
are not described. 

The ILU or TLU may reside in either a subarea 
node or peripheral node for SSCP-mediated 
sessions, except that a third-party ILU or 

that connects the lUs. This interruption 
causes a session outage, and notification to 
the LU of the session outage is referred to 
as session outage notification, or SON. When 
LNS receives a session outage notification, 
i t notifies RM for each LU-LU session 
affected by the session outage. 

When session outage occurs, RM may direct LNS 
to reinitiate the sessions. For example, RM 
requests session reinitiation when the ses­
sion outage causes the number of active ses­
sions for which the LU is the contention 
winner to decrease below a mini mum number. 
See "Chapter 3. LU Resources Manager" and 
"Chapter 5.4. Presentation Serv-
ices--Control-Operator Verbs" for more 
details. 

TLU always resides in a subarea node. The 
ILU or TLU resides in a peripheral node for 
PNCP-mediated sessions. 

OLU AND DLU 

OLU and DLU refer to the role of an LU and 
its CP during session initiation or termi­
nation. An ILU or TLU that is one of the 
session partners is also the OLU. An LU 
whose SSCP receives an initiation or termi­
nation request from a third-party LU is the 
OLU. The OLU's session partner is the DLU. 
The !NIT-SELF includes the name of the DLU. 

The OLU or DLU may reside in either a subarea 
node or peripheral node for SSCP-mediated 
sessions. The OLU or DLU reside in a periph­
eral node for PNCP-mediated sessions. 

PLU AND SlU 

PLU and SLU refer to the role of an LU in 
providing, respectively, primary or secondary 
half-session control for an LU-LU session of 
which it is a partner. The PLU sends the 
BIND request and receives the BIND response. 
Correspondingly, the SLU receives the BIND 
request and sends the BIND response. 

The PLU resides in a subarea node for 
SSCP-mediated sessions, and a peripheral node 
for PNCP-mediated sessions. The SLU may 
reside in either a subarea node or peripheral 
node for SSCP-mediated sessions; it resides 
in a peripheral node for PNCP-mediated ses­
sions. 

4-4 SNA Format and Protocol Reference Manual for LU Type 6.2 



RU PARAMETERS 

The following sections define some parameters 
that are common to many session-services and 
session-control field-formatted RUs. 

NETWORK NAl1E 

A network name is the name by wh; ch an LU is 
known throughout an individual SNA network. 
Network names are unique within an individual 
network. 

FULLY QUALIFIED NETWORK NAl1E 

A fullv qualified network ll!!!!!! is the name by 
which an LU is known throughout an intercon­
nected SNA network. An interconnected net­
work comprises one or more individual 
networks. A fully qualified network name 
consists of a network identifier and a net­
work LU name. Fully qua 1 i f i ed network names 
are unique throughout an interconnected net­
work. 

UNINTERPRETED NA11E 

An uninterpreted ll!!!!!! is any name by which an 
LU and its CP know another LU for the purpose 
of initiating an LU-LU session. It can be 
used by an ILU to identify a DLU. An unin­
terpreted name requ i res i nterpreta ti on ( or 
transformation) by the CP in order to yield 
the network name. An uninterpreted name may 
be the same as a network name. 

USER REQUEST CORRELATION 

A ~ request correlation CURC> field 
denotes a variable-length byte string con­
sisting of a Length field and the URC itself. 
It is assigned by the end user for placement 
in an INIT-SELF or TER11-SELF request. Its 
usage allows subsequent requests involving 
the ILU or TLU to be associated with the 
INIT-SELF or TERl1-SELF request. The associ­
ated requests either contain a field specif­
ically defined for this purpose or use a 
session key <discussed under "Session Key and 
Session Key Content"). 

l10DE NAME 

The CP has information about the LU that aids 
in the construction of the BIND image (car­
ried in CINITL The CP derives the BIND 
image contents from the mode name. The LU 
supplies the mode name in INIT-SELF requests. 

In add i ti on to the BIND image, the CP uses 
the mode name to select a class of service 
for the LU-LU session. As an example, some 

sessions may require service tiiith a fast 
response time <implying, for example, 
high-speed links, shortest distance, and high 
transmission priority>, while others may 
require large bandwidth or more secure paths. 
Different mode names can be defined in order 
to select the different classes of service. 

Using the mode name, a transaction program is 
able to select for a conversation the session 
cnaracteristics it desires. Then, when allo­
cating the conversation to a session, LRM 
supplies the mode name for the session in its 
session-activation request to LNS. 

The derivation of the BIND image and the 
class of service from the mode name is 
implementation-dependent and 
installation-specified. 

SESSION KEY AND SESSION KEY CONTENT 

There are various ways of denoting which 
LU-LU session a request is referring to; this 
may be, for example, by name pair, address 
pair, or by the URC. The session ~ and 
session ~ content permit requests that 
refer to sessions to do so in one or more 
ways. The session key content contains the 
particular fields denoted by the session key. 
The format description, in "Appendix E. 
Request-Response Unit CRU> Formats", of a 
request specifying a session key and session 
key content also specifies the keys permitted 
(or required> with that request. 

When the session key content contains a name 
pa i r or an address pa i r, i t i s an ordered 
pair. The order is CPLU,SLU> unless other­
wise specified by the session key definition. 
Exceptions exist for requests whose formats 
use the LU designations, OLU and DLU. For 
these formats the session key content order 
is COLU,DLU> and other related fields specify 
which is PLU and which is SLU. 

SPECIFICATION OF RU PARAMETERS 

Throughout the descriptions of the RUs in 
this chapter, reference is made to the spec­
ification of a parameter. Specification 
refers to a specific value that is supplied 
for the parameter when the RU is being built, 
prior to its being sent. 

IMPLEMENTATION-DEPENDENT PARAMETERS 

Throughout the descriptions of the RUs in 
this chapter, reference is made to 
implementation-dependent parameters. 
Implementation-dependent means that the par­
ticular value, or values, that a parameter of 
an RU can take on is determined by implemen­
tation design. 

Chapter 4. ,LU Network Services 4-5 



INSTALLATION-SPECIFIED PARAMETERS 

Throughout the descriptions of the RUs in 
this chapter, reference is made to 
installation-specified parameters. 
Installation-specified means that the partic­
ular value; or values, that a parameter of an 

RU can take on is determined by the user at 
the node installation. 
Installation-specified values can be estab­
lished during system configuration of a node, 
or later during its operation. The method 
for establishing values of 
installation-specified parameters is 
implementation-dependent. 

4-6 SNA Format and Pro.tocol Reference Manual for LU Type 6. 2 



SESSION-SERVICES RU'S 

This section descr1bes the session-services 
requests and extended responses that LNS 
sends and receives. These RUs belong to the 
FM-data category of network-services RUs. 

Preceding the individual descriptions is a 
list of the RUs, grouped according to their 
use. L1 s ted with each RU is the number of 
the page on which the description of the RU 
begins. In addition, Figure 4-2 on page 4-8 
shows the RH formats for the session-services 
requests and responses that LNS sends and 
receives. 

Each RU description includes the RU flow and 
a discussion of the function and use of the 
RU. Refer to "Appendix E. Request-Response 
Unit !RU) Formats" for specifications of the 
RU formats. 

Session-services RUs pertaining to LU-LU ses­
sion initiation are: 

RU Page 

INITIATE-SELF IINIT-SELFl 4-9 
CONTROL INITIATE ICINITl 4-9 
RSPCCINITl 4-10 
SESSION STARTED CSESSSTl 4-11 
BIND FAILURE CBINDFl 4-11 

RUs pertaining to session termination are: 

RU Page 

TERMINATE-SELF CTERM-SELFl 4-11 
CONTROL TERMINATE CCTERMl 4-12 
CLEAN UP SESSION CCLEANUPl 4-12 
SESSION ENDED ISESSENDl 4-13 
UNBIND FAILURE IUNBINDFl 4-13 

The following RU pertains to reporting the 
status of the session initiation or termi­
nation, or of the LU: 

RU Page 

NOTIFY 4-14 

Chapter 4. LU Net1«>rk Services 4-7 



Session-Services RU --> INIT-SELF SESSST 
CINIT SESSEND 
TERM-SELF BINDF 
CTERM UNBINDF 
CLEANUP 
NOTIFY 

Header Indicators 

TH EFI Normal Normal A 

RH Byte 0 Bit 0 RRI RQ RQ 
Bits 1-2 RU_CTGY FMD FMD 
Bit 3 reserved 0 0 
Bit 4 FI 1 1 
Bit S SDI *SD *SD 
Bit 6 BCI BC BC 
Bit 7 ECI EC EC 

RH Byte l Bit 0 DRlI DRl -.ORI 
Bit 1 reserved 0 0 
Bit 2 DR2I .. DR2 .. DR2 
Bit 3 ERI -.ER .. ER Request 
Bits 4-S reserved 00 00 
Bit 6 QRI -.QR -.QR 
Bit 7 PI -.PAC .. PAC 

RH Byte 2 Bit 0 BBI .. BB .. BB 
Bit 1 EBI -.EB -.EB 
Bit 2 CDI .. co .. co 
Bit 3 reserved 0 0 
Bit 4 CSI Code 0 Code 0 
Bit s EDI .. ED .. ED 
Bit 6 PDI .. po .. po 
Bit 7 CEBI .. CEB .. CEB v 

TH EFI Normal A 

RH Byte 0 Bit 0 RRI RSP 
Bits 1-2 RU_CTGY FMD 
Bit 3 reserved 0 
Bit 4 FI 1 
Bit S SDI *SD 
Bit 6 BCI BC 
Bit 7 ECI EC 

Response 
RH Byte l Bit 0 DRlI DRl 

Bit l reserved 0 
Bit 2 DR2I -.DR2 
Bit 3 RTI ±RSP 
Bits 4-S reserved 00 
Bit 6 QRI -.QR 
Bit 7 PI -.PAC 

RH Byte 2 Bits 0-7 reserved 00000000 v 

Notes: 
1. *XX means either XX or -.xx. 
2. See "Appendix D. RH Formats" for complete RH descriptions. 
3. The TH formats are not described in this book. 
4. SESSST, SESSEND, BINDF, and UNBINDF are sent with no-response indicated. 

Figure 4-2. Session-Services RH Formats 

4-8 SNA Format and Protocol Reference Manual for LU Type 6.2 



INITIATE-SELF (INIT-SELF> 

Flot1: From ILU to CP (Normal) 

INIT-SELF requests that the CP assist in the 
initiation of a session between the LU send­
ing the request (the ILU, which also becomes 
the OLU> and the LU named in the request (the 
DLU). The INIT-SELF indicates 
definite-response requested. 

For SSCP-mediated sessions, the ILU may be 
located in either a subarea node or peripher­
al node. For PNCP-mediated sessions, the ILU 
is located in a peripheral node. 

The INIT-SELF request contains, among other 
parameters, the uninterpreted name of the DLU 
with which the session is to be initiated, 
the mode name for the session, and a URC for 
the initiation request. 

The DLU may be unavailable for activation of 
an LU-LU session. This occurs when the DLU 
is not currently able to comply with the 
PLUISLU specification, or when it is at its 
session limit. At CP-LU session activation 
time, the LU informs the CP of its availabil­
ity by means of control vector X'OC' carried 
in its positive response to ACTLU. Subse­
quently, during the active CP-LU session, the 
LU reports changes in its availability (such 
as changes in its PLUISLU capability or its 

CONTROL INITIATE ICINIT) 

Flow: From CP to PLU (Normal) 

CINIT requests that the LU receiving the 
request attempt to activate an LU-LU session 
wi th the LU named in the request. The LU 
receiving CINIT is the PLU for the session. 
The LU named in the request is the SLU for 
the session. The CINIT indicates 
definite-response requested. 

For SSCP-mediated sessions, the PLU is 
located in a subarea node. For PNCP-mediated 
sessions, the PLU is located in a peripheral 
node. · 

The parameters in CINIT include the suggested 
parameters for the BIND, which represent the 
fil.t:!Q image. The BIND image parameters are 
selected by the CP. Selection is based on 
optional implementation-dependent and 
installation-specified parameters for the PLU 
or SLU to which the respective parameters 
apply, and on the mode-name parameter in the 
INIT-SELF associated with the CINIT. 

The PLU inspects the Format and URC fields in 
the BIND image for errors. If Format 0 is 
not specified, or if the PLU initiated the 

session limit) by sending NOTIFY( Vector Key 
X'OC') to the CP. 

The CP queues the initiation request if the 
INIT-SELF indicates that queuing is permit­
ted, the CP supports queuing, and the DLU is 
currently unavailable. The CP queues the 
INIT-SELF request until the DLU becomes 
available. 

The URC that the ILU sends in INIT-SELF is 
returned in the CINIT. When the PLU sends 
the INIT-SELF, the URC received in CINIT 
allows the PLU to correlate the CINIT with 
the INIT-SELF. When the SLU sends the 
INIT-SELF, the PLU copies the URC from CINIT 
into BIND to allow the SLU to correlate the 
BIND with the INIT-SELF. 

The CP returns a positive response to the 
INIT-SELF request after it verifies the 
resource availability and mode name, and, if 
applicable, it queues the initiation request. 
If an initiation failure occurs after a posi­
tive response has been returned, the CP noti­
fies the ILU by means of NOTIFY(Vector Key 
X'03'). The NOTIFY includes the URC from the 
INIT-SELF in order to allow the ILU to corre­
late the NOTIFY with the INIT-SELF. 

session 
request 
request 
sent on 
rejects 
response 

and the URC is omitted from the CINIT 
or the URC included on the CINIT 

does not match the URC that the PLU 
a previous INIT-SELF, then the PLU 
the CINIT by returning a negative 
to CINIT. 

The PLU also inspects the mode name carried 
in a control vector on CINIT. If the mode 
name does not match the one on the corre­
sponding !NIT-SELF that the PLU sent, the PLU 
rejects the CINIT. Similarly, if the SLU or 
a third-party LU initiated the session and 
the mode name does not match one that is 
system-defined for the SLU, the PLU rejects 
the CINIT. 

If the PLU finds no errors with the CINIT, it 
sends back a positive CINIT response. 

The PLU copies some CINIT parameters into the 
BIND without modification. These are the 
Staging indicators, the PLU Name field, and 
the SLU Name field. The URC field is copied 
into BIND when the SLU sends the INIT-SELF, 
and the Cryptography Options field is copied 

Chapter 4. LU Network Services 4-9 



into BIND when both LUs support session-level 
mandatory cryptography. The mode name from 
the control vector on CINIT is copied into 
the Mode Name Structured Data Subfield of the 
User Data field of BIND. 

CINIT may include a User Data field in the 
BIND image of CINIT. If i t does, the PLU 
discards the user data and does not copy the 
field into the BIND. 

When the SLU sends an INIT-SELF, the PLU Name 
field in the associated CINIT carries the 
uninterpreted name of the PLU sent in the 
INIT-SELFI otherwise, it carries the network 
name of the PLU. 

If the INIT-SELF designated the PLU as the 
DLU, the PLU copies the URC from the BIND 
image of CINIT into the BIND. Otherwise, the 
PLU omits the URC from BIND. 

If both the PLU and SLU support session-level 
mandatory cryptography and it is specified 
for the mode name sent in INIT-SELF, the 
associated CINIT carries the session 
cryptography key enciphered twice--once under 
the PLU master cryptography key and once 
under the SLU master cryptography key; the 
former is used at the PLU, while the latter 
(carried in the BIND image) is passed by the 
PLU in BIND for use at the SLU. The session 
cryptography key is a pseudo-random number. 
See "Chapter 6. 2. Transmission Control" for 
details on cryptography. 

The PLU may modify other parameters supplied 
in the CINIT before sending them in the BIND. 
Specifically, the PLU may change the primary 
and secondary TCs' pacing window sizes and 

RSPCCINITJ 

Flow: From PLU to CP (Normal> 

A positive response to CINIT informs the CP 
that the PLU accepts the CINIT request and 
will attempt to activate the requested LU-LU 
session with the LU named in the CINIT 
request. 

For SSCP-mediated sessions, the PLU is 
located in a subarea node. For PNCP-mediated 
sessions, the PLU is located in a peripheral 
node. 

The CINIT request includes a BIND image that 
the PLU uses in building the BIND request for 
the LU-LU session. The PLU inspects the For­
mat and URC fields in the BIND image for 
errors. If Format 0 is not specified, or if 
the PLU initiated the session CPLU = ILU) and 
the URC is omitted from the CINIT request or 
the URC included on the CINIT request does 

the maximum RU sizes specified in CINIT. 
More details are given in the description of 
BIND in this chapter. 

The changing of any of the pacing parameters 
and maximUilt RU sizes on one session may 
affect the performance characteristics of 
that session and of concurrently active ses­
sions that share network resources with it. 

See the description of BIND in this chapter 
for additional rules on TS Profile and TS 
Usage modifications that are allowed. 

The route to be used for the LU-LU session is 
identified in the CINIT. For SSCP-mediated 
LU-LU sessions, CINIT carries a control vec­
tor that contains the mode name, class of 
service, and virtual route list associated 
with the subarea path-control route to be 
used for the session. The PLU and SLU 
addresses to be used for the session flows 
are network addresses, carried in either a 
session key field or a control vector. 

For PNCP-mediated sessions, CINIT carries a 
control vector that contains the mode name 
for the LU-LU session. PNCP-mediated ses­
sions use a direct route between peripheral 
nodes and do not use network addresses for 
the session flows. Therefore, in place of 
network addresses, CINIT carries an identifi­
er of the adjacent link station associated 
with the node in which the SLU resides. 
CINIT can result from an INIT-SELF from one 
of the session partners C the PLU or SLUJ. 
Alternatively, CINIT can result from an ini­
tiation request from a third-party LU. The 
formats and protocols for session initiation 
by a third-party LU are not described. 

not match the URC that the PLU sent on a pre­
vious INIT-SELF, then the PLU rejects the 
CINIT by returning a negative response to 
CINIT. Otherwise, the PLU accepts the CINIT 
by returning a positive CINIT response. 

The CINIT response has an extended format 
that differs from the CINIT request. The 
CINIT response specifies control vector X'FE' 
as the only parameter of the response. 

Control vector X' FE' contains a 1 is t of con­
trol vector keys, received on the CINIT 
request, that the PLU does not recognize. If 
the SLU receives on the CINIT request a con­
trol vector it does not recognize, the SLU 
includes control vector X'FE' on the CINIT 
response. Otherwise, the SLU omits control 
vector X'FE' from the CINIT response. 

4-10 SNA Format and Protocol Reference Manual for LU Type 6.2 



SESSION STARTED CSESSSTJ 

Flow: From LU to CP !Normal) 

SESSST notifies the CP that an LU-LU session 
has been successfully activated. Both the 
PLU and SLU send SESSST to their CP. The 
SESSST indicates no-response requested. 

For SSCP-mediated sessions, the PLU is 
located in a subarea node and sends SESSST to 
its SSCP. The SLU is located in either a 
subarea node or peripheral node and sends 
SESSST to either its SSCP or PNCP, respec­
tively. 

For PNCP-medi ated sessions, the PLU and SLU 
are loc;ited in peri pher;il nodes. Each LU 
sends SESSST to its PNCP. 

BIND FAILURE CBINDFI 

Flow: from PLU to CP (Normal) 

BINDF informs the CP that an attempt to acti­
vate an LU-LU session has failed, for the 
reason indicated in the BINDF. The BINDF 
indicates no-response requested. 

For SSCP-medi ated sessions• the PLU is 
located in a subarea node and sends BINDF to 
its SSCP. The BINDF identHies the LU-LU 
session that failed to be activated. A ses-

TERMINATE-SELF (TERM-SELF) 

Flow: From TLU to CP !Normal) 

TERM-SELF requests that the CP assist in the 
termination of a session between the sender 
of the request !the TLUl and LU named in the 
request !the DLUl. The TERM-SELF indicates 
definite-response requested. 

For SSCP-mediated sessions, the TLU may be 
located in either a subarea node or peripher­
al node. For PNCP-mediated sessions, the TLU 
is located in a peripheral node. 

The session to be terminated can be either 
queued or pending-active, from the TLU's per­
spective. Therefore, only the ILU can send 

SESSST sent to the SSCP identifies the LU-LU 
session that is started. A session key con­
taining the network addresses of the PLU and 
SLU is used for this purpose. 

The SESSST sent to the SSCP may carry addi­
tional information by means of control vec­
tors. Further details are not defined. 

SESSST sent to the PNCP identifies the adja­
cent link station for the node in which the 
partner LU is located. This SESSST has an 
internal format different from the SESSST 
sent to the SSCP. 

sion key containing the network addresses of 
the PLU and SLU is used for this purpose. 
Sense data identifying the error and a reason 
code for the error are included in the BINDF. 

For PNCP-medi ated sessions, 
located in a peripheral node. 
not send BINDF to its PNCP. 

the PLU is 
The PLU does 

TERM-SELF, because only the ILU is aware of 
sessions that are queued or pending-active. 
Note that from the SSCP's perspective, the 
session may be active, as well as 
pending-active or queued. 

The LU does not send TERM-SELF to terminate 
an active LU-LU session. Instead, the LU 
sends UNBIND to the partner LU. 

The TERM-SELF request identifies the session 
to be terminated by means of the URC session 
key. The URC session key is the same as the 
one sent in the INIT-SELF that initiated the 

Chapter 4. LU Network Services 4-11 



session. The URC field 
URC session key) can 
TERM-SELF to correlate 
subsequent NOTIFY"*' 

(distinct from the 
be specified in 

a TERM-SELF wi th a 

The TERM-SELF request designates the type of 
termination to be performed, which is always 
Forced. TERM-SELF( Forced) requests the CP to 
assist in terminating the pending-active or 
queued session immediately and uncondi­
tionally. 

The CP returns a pos i ti ve response once it 
has validated the TERM-SELF request. For 

CONTROL TERMINATE tCTERM) 

Flow: From CP to PLU <Normal) 

CTERM requests that the PLU attempt to deac­
tivate an LU-LU session. The CTERM indicates 
definite-response requested. 

CTERM is used to terminate an SSCP-medi ated 
LU- LU session. The SSCP sends CT ERM to the 
PLU, located in a subarea node, as a result 
of receiving a terminate request from an LU. 
The LU that sent the terminate request to the 
SSCP can be the PLU or SLU for the session, 
or a third-party LU. See the description of 
TERM-SELF for more details about when the PLU 
or SLU sends a termination request to the 
SSCP. Details of session termination result­
ing from a request sent by a third-party LU 
are not defined. 

The CTERM identifies the session to be termi­
nated by means of a session key containing 
the network addresses of the PLU and SLU. 
The CTERM also specifies the type of termi­
nation requested and the reason for termi­
nation. 

CLEAN UP SESSION (CLEANUP) 

Flow: CP to LU (Normal) 

CLEANUP informs the LU that it is to deacti­
vate the LU-LU session immediately, even if a 
conversation is using the session. The 
CLEANUP indicates definite response 
requested. 

CLEANUP is used to deactivate an 
SSCP-mediated LU-LU session. The SSCP sends 
CLEANUP to the LU, located in subarea node, 
as a result of receiving a terminate request 
from an LU. The LU that sent the terminate 
request to the SSCP can be the PlU or SLU for 

SSCP-medi ated sessions, if an error occurs 
after a positive response has been sent, the 
SSCP notifies the TLU by means of NOTI­
FYCVector Key X'03' J. The NOTIFY includes 
the URC from the TERM-SELF so that the TLU 
can correlate the NOTIFY with the TERM-SELF. 

For SSCP-mediated sessions, if the SSCP's 
perspective of the session is that i t is 
active, the SSCP sends CTERNt Fcrced) to the 
PLU. See the description of CTERM in this 
chapter for more information. 

The type of termination specified in CTERM is 
either Orderly or Forced. CTERMCOrderlyl 
allows the PLU to delay deactivating the ses­
sion. In particular, the PLU does not deac­
tivate the session while a. conversation is 
using the session. CTERMCForcedl requires an 
unconditional attempt to deactivate theses­
sion, even if a conversation is using the 
session. 

CTERMCForcedJ is the only type of termination 
that can result from a TERN-SELF sent to the 
SSCP by the PLU or SLU. Both CTERN!Orderly) 
and CTERM< Forced) can result from a termi­
nation request sent by a third-party LU. 

CTERM is not used for PNCP-mediated sessions. 
When a PNCP-mediated session is to be termi­
nated, the LU sends UNBIND to the partner LU. 
The PNCP does not send a terminate request to 
the LU. 

the session, or a third-party LU. See the 
description of TERM-SELF for more deta i ls 
about when the PLU or SLU sends a termination 
request to the SSCP. Details of session ter­
mination resulting from a request sent by a 
third-party LU are not defined. 

CLEANUP can result from a TERM-SELFCForcedl. 
This occurs when the SSCP is unable to proc­
ess the TERM-SELF(ForcedJ and therefore must 
promote the forced termination to a cleanup 
termination. 

4-12 SNA Format and Protocol Reference Manual for LU Type 6.2 



The CLEANUP ;dentifies the session to be ter­
minated by means of a session key containing 
the network addresses of the PLU and SLU. 
The CLEANUP also specifies the the reason for 
ter111ination. 

In response to rece1vmg CLEANUP, the LU 
sends UNBIND with the Type set to Cleanup. 
UNBINDCCleanup) deactivates the sender's 
half-session, without waiting for a response 
to the UNBIND. 

SESSION ENDED CSESSEND) 

Flow: from LU to CP (Normal) 

SESSEND notifies the CP that an LU-LU session 
has been successfully deactivated. Both the 
PLU and SLU send SESSEND to their CP. The 
SESSEND indicates no-response requested. 

For SSCP-mediated sessions, the PLU is 
located in a subarea node and sends SESSEND 
to its SSCP. The SLU is located in either a 
subarea node or peripheral node and sends 
SESSEND to either its SSCP or PNCP, respec­
tively. 

For PNCP-mediated sessions, the PLU and SLU 
are located in peripheral nodes. Each LU 
sends SESSEND to its PNCP. 

UNBIND FAILURE CUNBINDF l 

Flow: From PLU to CP !Normal) 

UNBINDF informs the CP that an attempt of 
deactivate a session has failed, for the rea­
son indicated in the UNBINDF. The UNBINDF 
indicates no-response requested. 

For SSCP-mediated sessions, the PLU is 
located in a subarea node and sends UNBINDF 
to its SSCP. The UNBIHDF identifies the 
LU-LU session that failed to be deactivated. 

CLEANUP is received only by an LU in a sub­
area node. When the SLU of an SSCP-mediated 
session is located in a peripheral node, the 
SLU receives a DACTLU followed by ACT LU in 
place of CLEANUP. 

CLEANUP is not used for PNCP-mediated ses­
sions. When a PNCP-mediated session is to be 
terminated, the LU sends UNBIND to the part­
ner LU. The PNCP does not send a terminate 
request to the LU. 

SESSEND sent to the SSCP identifies the LU-LU 
session that is ended. A session key con­
taining the network addresses of the PLU and 
SLU is used for this purpose. SESSEND also 
indicates the cause of the deactivation. 

SESSEND sent to the PNCP identifies the adja­
cent link station for the node in which the 
partner LU ·is located. This SESSEND has an 
internal format different from the SESSEND 
sent to the SSCP. 

A session key containing the network 
addresses of the PLU and SLU is used for this 
purpose. Sense data identifying the error 
and a reason code for the error are included 
in the UNBINDF. 

For PNCP-mediated sessions, 
located in a peripheral node. 
not send UNBINDF to its PNCP. 

the PLU is 
The PLU does 

Chapter 4. LU Network Services 4-13 



NOTIFY 

Flow: From CP to LU and from LU to CP (Normal) 

NOTIFY is used to send information from a CP 
to an LU, or from an LU to a CP. The NOTIFY 
indicates definite-response requested. 

NOTIFY is 
only. An 
peripheral 
pertaining 
NOTIFY is 
sions. 

used for SSCP-medi ated sessions, 
LU in either a subarea node or 

node can send or receive NOTIFY 
to an SSCP-mediated session. 

not used for PNCP-medi ated ses-

NOTIFY carries information in the form of a 
(vector key, vector data> pair: 

• 

• 

Vector key X'03'-ILUITLU notification: 
Sent in NOTIFY from the SSCP to the ILU 
or TLU in order to not i fy the LU of a 
session-initiation or -termination fail­
ure after a positive response has been 
returned to the INIT-SELF or TERM-SELF. 
For a session-initiation failure, the 
NOTIFY indicates a setup procedure error; 
for a session-termination failure, it 
indicates a takedown procedure error. 
The NOTIFY also includes the reason for 
the error and the sense data identifying 
the error. 

The URC from the INIT-SELF or TERM-SELF 
is carried in the NOTIFY to allow the ILU 
or TLU to correlate the NOTIFY with the 
INIT-SELF or TERM-SELF. 

Vector key X'OC'-LU-LU session-services 
capabilities: Sent in NOTIFY from an LU 
to an SSCP to convey changes in the LU's 
current LU-LU session-services capabili­
ties. 

The parameters of the LU-LU 
session-services capabilities include the 
LU' s session count and limit, its capa­
bility to act as a PLU or SLU, and its 
capability to support parallel sessions. 
Its capability to act as a PLU or SLU is 
indicated as: 

Enabled--sessions can be started 

Di sabled--sess ions can be queued but 
not started 

Inhibited--sessions can be neither 
queued nor started 

Whenever an event occurs during an active 
CP-LU session causing a change in an LU's 
session-services capabilities, the LU 
sends NOTIFY to the SSCP to convey its 
new sess i on-serv i ces capabilities • C At 
CP-LU session activation time, the LU 
conveys its session-services capabilities 
to the SSCP by means of control vector 
X' OC' carried in the LU' s response to 
ACTLU.J 

The session-services-capabilities parame­
ters determine whether a DLU is available 
for initiation of an LU-LU session. In 
terms of these parameters, a OLU is 
available for session initiation when all 
of the following conditions are met: 

The OLU's session count is less than 
its session limit. 

It is enabled for PLU or SLU capabil­
ity, as requested in the INIT-SELF 
request. 

It supports parallel sessions with 
the OLU !this condition applies when 
one session between the OLU and DLU 
is already active). 

Otherwise, the DLU is unavailable for 
session initiation. 

The parameters specifying the LU's ses­
sion count and limit, and its PLU or SLU 
capability, are used to determine whether 
to queue an INIT-SELF request, as fol­
lows: 

When an INIT-SELF designates a DLU 
that is currently unavail­
able-because its session count 
equals its session limit or because 
its PLU or SLU capability as 
requested in the INIT-SELF is disa­
bled--and the INIT-SELF specifies 
initiate/queue and the SSCP supports 
queuing of IN IT-SELF, the IN IT-SELF 
is queued. 

When an !NIT-SELF designates a DLU 
that is currently unavailable and 
either Cl) the INIT-SELF specifies 
initiate only, (2) the SSCP does not 
support queuing of INIT-SELF, C3) the 
DLU's PLU or SLU capability as 
requested in the INIT-SELF is inhib­
ited, or (4) the DLU does not support 
parallel sessions and a session 
between the OLU and DLU is already 
active, the INIT-SELF request is 
rejected (a negative response is 
returned). 

When the DLU sends a NOTIFY indicat­
ing it has become available, the SSCP 
dequeues INIT-SELF requests (up to 
the session limit) for that DLU, 
resuming the session-initiation proc­
ess. 

When INIT-SELF designates a DLU that 
is available (and other necessary 
conditions are met), the session is 
initiated. 

The defined (vector key, vector data> pairs 
are specified in Appendix E. 

4-14 SNA Format and Protocol Reference Manual for LU Type 6.2 



SESSION-CONTROL RU'S 

This section describes the session-control 
requests and extended responses that LNS 
sends and receives. Preceding the individual 
descriptions is a list of the RUs, grouped 
according to their use. Listed wit~ each RU 
is the number of the page on which the 
description of the RU begins. In addition, 
Figure 4-3 on page 4-16 shows the RH formats 
for the session-control requests and 
responses that LNS sends and receives. 

Each RU description includes the RU flow and 
a discussion of the function and use of the 
RU. Refer to "Appendix E. Request-Response 
Unit (RUJ Formats" for specifications of the 
RU formats. 

Session control RUs pertaining to CP-LU ses­
sion activation and deactivation are: 

RU Page 

ACTIVATE LOGICAL UNIT IACTLUl 4-17 
RSP<ACTLUJ 4-17 
DEACTIVATE LOGICAL UNIT IDACTLUJ 4-19 

Session-control RUs pertaining to LU-LU ses­
sion activation and deactivation are: 

RU 

BIND SESSION <BINDJ 
RSPIBINDJ 
UNBIND SESSION IUNBINDJ 

Page 

4-19 
4-25 
4-28 

Chapter 4. LU NetNOrk Services 4-15 



Session Control RU -> ACTLU 
DACTLU 
BIND 
UNBIND 

Header Indicators 

TH EFI Expedited A 

RH Byte 0 Bit 0 RRI RQ 
Bits l-2 RU_CTGY SC 
Bit 3 reserved 0 
Bit 4 FI l 
Bit 5 SDI *SD 
Bit 6 BCI BC 
Bit 7 ECI EC 

RH Byte l Bit 0 DRU DRl Request 
Bit 1 reserved 0 
Bit 2 DR2I ~DR2 

Bit 3 ERI ~ER 

Bits 4-5 reserved 00 
Bit 6 QRI ~QR 

Bit 7 PI ~PAC 

RH Byte 2 Bit 0 BBI ~BB 

Bit 1 EBI ~EB 

Bit 2 CDI ~co 

Bi ts 3-6 reserved 0000 
Bit 7 CEB ~CEB v 

TH EFI Expedited A 

RH Byte 0 Bit 0 RRI RSP 
Bi ts 1-2 RU_CTGY SC 
Bit 3 reserved 0 
Bit 4 FI 1 
Bit 5 SDI *SD 
Bit 6 BCI BC 
Bit 7 ECI EC 

Response 
RH Byte l Bit 0 DRII DRl 

Bit 1 reserved 0 
Bit 2 DR2I ~DR2 

Bit 3 RTI ±RSP 
Bits 4-5 reserved 00 
Bit 6 QRI ~QR 

Bit 7 PI *PAC 

RH Byte 2 Bits 0-7 reserved 00000000 v 

~ 
1. *XX means either XX or ~xx. 
2. See Appendix D for complete RH descriptions. 
3. The TH formats are not described in this book. 

Figure 4-3. Session-Control RH Formats 

4-16 SHA Form01t and Protocol Reference Manual for LU Type 6.2 



ACTIVATE LOGICAL UNIT (ACTLU> 

Flow: From CP to LU (Expedited> 

ACTLU requests that the LU activate a CP-LU 
session between itself and the CP that sent 
the ACTLU request. The CP assumes the role 
of primary NAU, while the LU assumes the role 
of secondary. The ACTLU indicates 
definite-response requested. 

The LU sends back either a positive or nega­
tive response, depending on the parameters of 
the ACTLU request. In addition, if the for­
mat of the ACTLU request is in error, or the 
LU already has a CP-LU session with the CP 
that sent the request, it sends back • nega­
tive response. 

A description of the parameters in the ACTLU 
request follows. 

Tvpe: This specifies the type of CP-LU ses­
sion activation requested. Type ERP (error 
recovery procedure) is always specified; no 
other type is defined for the ACTLU request. 
The LU sends back a negative response i f the 
ACT LU request specifies a type other than 
ERP. 

Type ERP is used to activate the CP-LU ses­
sion without affecting any active LU-LU ses­
sions. The type of session activation that 
the LU actually performs is indicated on the 

RSPCACTLUJ 

Flow: From LU to CP (Expedited) 

A positive response to ACTLU completes acti­
vation of a CP-LU session between the LU and 
the CP that sent the ACTLU request. The 
ACTLU response also informs the CP of the 
CP-LU session capabilities and the LU-LU ses­
sion services capabilities of the LU. 

The positive ACT LU response has an extended 
format. If the ACTLU request is acceptable 
to the LU, it sends back a positive ACT LU 
response that specifies the parameters for 
the CP-LU session and for the LU's session 
services capabilities. 

A description of the parameters in the ACTLU 
response follows. , 

Tvpe: This specifies the type of CP-LU ses­
sion activation that the LU is performing. 
The type of session activation may be either 
Cold or ERP (error recovery procedure). 

The LU specifies type Cold when it has no 
active or pending-active LU-LU sessions. 
Otherwise, the LU specifies type ERP. 

response. The LU may perform either ERP or 
Cold session activation. 

FM Profile: This specifies the FM profile to 
be used for the CP-LU session. The FM pro­
file indicated in the ACTLU request can be 0 
or 6. The FM profile actually used for the 
CP-LU session is indicated on the response. 

For LUs located in subarea nodes, FM profile 
6 is always used. If the ACTLU request indi­
cates FM profile o, the LU negotiates it to 
6. 

For LUs located in peripheral nodes, either 
FM profile 0 or 6 may be used. If the LU 
implementation supports FM Profile 6, then 6 
is used; if the ACTLU request indicates o, 
the LU negotiates it to 6. If the LU imple­
mentation does not support FM profile 6, then 
FM profile 0 is used; if the ACTLU request 
indicates 6, the LU rejects the request and 
sends back a negative response. 

TI! Profile: This specifies the TS profile to 
be used for the CP-LU session. TS profile 1 
is the only one defined. The LU sends back a 
negative response if the ACTLU request speci­
fies a TS profile other than 1. 

FM Profile: This specifies the FM profile to 
be used for the CP-LU session. The FM pro­
file may be 0 or 6. For LUs located in sub­
area nodes, FM profile 6 is always used and 
indicated in the ACTLU response. 

For LUs located in peripheral nodes, either• 
FM profile 0 or 6 may be used. If the LU 
implementation supports FM Profile 6, then 6 
is used and indicated in the response. If 
the LU implementation does not support FM 
profile 6 and FM profile 0 is indicated in 
the ACTLU request, then FM profile 0 is used 
and indicated in the response. 

TS Profile: This specifies the TS profile to 
be used for the CP-LU session. TS profile 1 
is the only one defined. 

Control Vector X'OO'--CP-LU Session Capabili­
ties: This specifies the LU's capabilities 
for the CP-LU session with the CP that sent 
the ACTLU request. The CP-LU session capa­
bilities are installation-specified for each 

Chapter 4. LU Network Services 4-17 



CP. and may be different for sessions with 
different CPs. The LU specifies the CP-LU 
session capabilities by means of parameters 
on the control vector. Details of the param­
eters follow. 

• ~ This specifies the control vector 
key. X'OO'. 

• Maximum RU Size: This specifies the max­
imum RU size that either half-session may 
send. This parameter may specify a spe­
cific maximum RU size or no maximum RU 
size. 

• Character-Coded Capabilitv: This speci­
fies whether the CP is permitted to send 
unsolicited character-coded requests to 
the LU. The capability to receive unso-
1 i cited character-coded requests on the 
CP-LU session is 
implementation-dependent. 

• Field-Formatted Capability: This speci­
fies whether the CP is permitted to send 
unsolicited field-formatted requests to 
the LU. The capability to receive unso­
licited field-formatted requests on the 
CP-LU session is 
implementation-dependent. 

Control Vector X' OC'-LU-LU Session-Services 
Capabilities: This specifies the LU's capa­
bilities for LU-LU sessions for which the CP 
that sent the ACTLU request will be the 
mediator. The LU session-services capabili­
ties are installation-specified for each CP. 
and may be different for sessions Nith dif­
ferent CPs. The LU specifies the LU session 
services capabilities by means of parameters 
on the control vector. Details of the param­
eters follow. 

• Key: This specifies the control vector 
key. x•oc•. 

• .bm:!9!b S!.f Vector Data: This specifies 
the length of the remainder of the con­
trol vector. 

• Primary .!.Y Capability: This specifies 
whether the LU is currently available as 
a PLU for LU-LU session initiation. The 
LU's current PLU capability is specified 
as enabled. disabled, or inhibited. 

Enabled: This LU can activate ses­
sions for which it is the PLUt pro­
vided its LU-LU session count is less 
then its LU-LU session limit. 

Disabled: This LU cannot activate 
sessions for which it is the PLU. but 
the CP may queue session-initiation 
requests that specify (1) this LU is 
the PLU for the session and C2> queue 
if this LU is currently unable to 
comply Nith the PLU/SLU speci fica­
tion. 

Inhibited: This LU cannot activate 
sessions for which it is the PLU. and 
the CP cannot queue 
session-initiation requests that 

specify this LU is the PLU for the 
session. 

LUs located in peripheral nodes are able 
to activate SSCP-mediated sessions only 
as SLUs. Therefore. these LUs alNays 
specify their PLU capability as inhibited 
when the CP is an SSCP. 

• Secondary LU Capability: This specifies 
whether the LU is .currently available as 
an SLU for LU-LU session initiation. The 
LU's current SLU capability is specified 
as enabled. disabled, or inhibited. 

Enabled: This LU can activate ses­
sions for wh1ch it is the SLU. pro­
vided its LU-LU session count is less 
then its LU-LU session limit. 

Disabled: This LU cannot activate 
sessions for which it is the SLU. but 
the CP may queue session-initiation 
requests that specify Cl) this LU is 
the SLU for the session and C2l queue 
if this LU is currently unable to 
comply with the PLU/SLU speci fica­
tion. 

Inhibited: This LU cannot activate 
sessions for which it is the SLU. and 
the CP cannot queue 
session-initiation requests that 
specify this LU is the SLU for the 
session. 

• LU-LU Session Limit: This specifies the 
LU's current session limit for initiating 
sessions for which the CP is the 
mediator. Initiation of sessions for 
which the CP is not the mediator are not 
constrained by this session limit. A 
specification of 0 means the LU has no 
session limit. 

If the LU is in a peripheral node and the 
CP is an SSCP. the LU always specifies 
its session limit as 1. 

• LU-LU Session Count: This specifies the 
LU's current session count of active ses­
sions for which the CP is the mediator. 
Active sessions for which the CP is not 
the mediator are not included in this 
session count. 

If the session limit is not 0 and it is 
greater than the session count. the LU is 
available for LU-LU session initiation. 
If the session limit is not 0 and it 
equals the session count. the LU is una­
vailable for LU-LU session initiation and 
the CP may queue session-initiation 
requests that specify queue if the ses­
sion limit is exceeded. 

• Parallel-Session Capability: This speci­
fies the LU' s capab il i ty to support 
parallel-session protocols for sessions 
for which the CP is the mediator. If the 
LU is in a peripheral node and the CP is 
an SSCPt the LU always specifies parallel 
sessions are not supported. 

4-18 SNA Forl!IQt and Protocol Reference Manual for LU Type 6.2 



• SESSST Capabilitv:. This specifies wheth­
er the LU, as an SLU, will send a SESSST 
request to an SSCP. If the LU is in a 
peripheral node, the LU always specifies 

DEACTIVATE LOGICAL UNIT !DACTLUJ 

Flow: From CP to LU (Expedited) 

DACTLU requests the LU to deactivate the 
CP-LU session between itself and the CP that 
sent the DACTLU request. The DACTLU indi­
cates definite-response requested. 

The LU sends back either a positive or nega­
tive response, depending on the parameters of 
the DACTLU request. If the format of the 
DACTLU request is in error, or the type 
parameter specifies a type other than normal 
or SON, the LU sends back a negative 
response. Otherwise, the LU sends back a 
positive response, even i f it has no CP-LU 
half-session to which it can correlate the 
DACTLU request. 

A description of the parameters in the DACTLU 
request follows. 

Type: This specifies the type of CP-LU ses­
sion deactivation requested. The type of 
deactivation is either normal or session out­
age notification (SONI. 

BIND SESSION (BIND! 

Flow: From PLU to SLU !Expedited> 

BIND is sent from a PLU to an SLU to activate 
a session between the LUs. The BIND i ndi -
cates definite-response requested. 

The BIND request carries the PLU's suggested 
parameters for the session. The specifica­
tions of the BIND parameters are based on the 
PLU's implementation-dependent support, on 
the installation-specified values currently 
in effect for the parameters, or on the CINIT 
request for the session, depending on the 
particular parameter. 

The SLU uses the BIND parameters to help 
determine whether it wi 11 send back a pos i -
tive or negative response to BIND. In addi­
tion, if the format of the BIND request is in 
error, the SLU sends back a negative 
response. Control information in either LU 
is updated only when a positive response is 
returned. A successful BIND causes a 
half-session to be created at both PLU and 
SLU. 

• 

• 

it will not send SESSST. If the LU is in 
a subarea node, the LU always specifies 
it will send SESSST. 

Normal: This specifies that the LU 
deactivate the CP-LU session and 
its half-sessions for all of the 
sessions for which the CP is 
mediator. 

is to 
reset 
LU-LU 

the 

Session-Outage Notification: This speci­
fies that the LU is to deactivate the 
CP-LU session but not reset i ts LU- LU 
half-sessions. The DACTLU request 
includes a specification of the cause of 
the SON deactivation. See "Session Out­
age and Session Reinitiation" on page 4-4 
for more information on SON. See the 
definition of the DACTLU request in 
Appendix E for a list of the cause codes 
and a description of the causes. 

Receipt of DACTLU does not cause the LU to 
terminate any LU-LU sessions. 

If the LU receives a BIND request after send­
ing a BIND request, and either (1) parallel 
sessions between the two LUs are not sup­
ported, or (2) the current number of active 
sessions within the mode-name group is 1 less 
than the session limit for that group, then a 
BIND race has occurred. The BIND race is 
resolved in one of the following ways, with 
one LU being the winner of the race lits BIND 
is accepted l and the other being the loser 
!its BIND is rejected>: 

• If the Fully QuaH fled PLU Network Name 
subfield of the user data is omitted from 
both BINDs, the winner of the race is the 
LU that sent BIND with the OAF' -OAF' 
Assignor indicator <ODAI) set to 1. The 
ODAI is carried in byte o, bit 6 of the 
trans mission header (TH) of BIND. The 
ODAI and TH are not further described in 
this book. 

Chapter 4. LU Network Services 4-19 



• If the Fully Qualified PLU Network Name 
subfield is present in only one of the 
BINDst the winner is the LU that sent the 
BIND containing the subfield. 

• If the Fully Qualified PLU Network Name 
subfield is present in both BINDs • the 
winner is determined by comparing the 
fully qualified PLU network names in the 
BINDs. Fully qualified PLU network names 
are unique throughout a network; there­
fore, one will always compare greater 
than the other in the EBCDIC collating 
sequence of the two names. The LU that 
sent the BIND containing the greater of 
the two fully qualified PLU network names 
is the winner. 

The comparison is made by comparing the 
two names as EBCDIC character strings, 
left-justified, and filled on the right 
with space characters, if necessary. 
Fully qualified LU network names contain 
no leading or embedded space characters. 

The LU that is the winner of the BIND race 
sends back a negative response to the BIND it 
received. The other LU sends back a positive 
response, unless the BIND is not acceptable 
for other reasons, such as invalid format. 

The BIND request and its response do not have 
an ERP type, in contrast to other 
session-activation requests and their 
responses, such as ACTLU. The distinction 
between simple activation and resynchronizing 
reactivation following a failure is made 
after the session has been activated. In 
some cases• change-number-of-sessions proto­
cols are used; in others• end-user protocols 
are invoked. 

The SLU does not reject the BIND because of 
any incompatibility it may have with the BIND 
parameters. Rather, if the BIND request is 
otherwise acceptable (for example, there are 
no format errors and the session limit is not 
exceeded ), the S LU returns a pos i ti ve 
response with an extended format that carries 
the complete set of session parameters. The 
specifications for the parameters can match 
those sent in the BIND request, or they can 
differ, where the SLU chooses different 
options. The parameters for which the SLU 
may choose different options are referred to 
as negotiable parameters. 

The PLU receives the positive BIND response 
and checks the parameter specifications. If 
they are acceptable, then these specifica­
tions are used for the activated session. 
Otherwise, the PLU sends UNBIND. 

A description of the parameters in the BIND 
request follows. 

Format: This 
BIND request. 
Format O. 

specifies the format of the 
Only one format is defined: 

!3a!!u Thi s spec i fies the type of BIND 
request. The type is always specified as 
negotiable. The positive response to BIND 
has the same general format as the BIND 

request. The negotiable type of BIND request 
permits the SLU to return a positive response 
in which the negotiable parameters may differ 
from those in the request. 

.Et! Profile: This specifies the FM profile to 
be used for the LU-LU session. FM profile 19 
is the only one defined for LU 6.2. The FM 
profile is supplemented by the FM usage 
parameters of the BIND request. 

I§ Profile: This specifies the TS profile to 
be used for the LU-LU session.. TS profile 7 
is the on:y one defined for LU 6.2. The TS 
profile 1s supplemented by the TS usage 
parameters of the BIND request. 

.Et! Usage (PLU>-Chaining Use: This specifies 
the PLU's use of chains that it sends to the 
SLU. Multiple-RU chains is the only use 
defined for LU 6.2. Chains may consist of 
one or more RUs. The maximum-size RU that 
the PLU sends and the verbs that the trans­
action program issues to the PLU determine 
the nl.Rnber of RUs that make up the chain. 

.Et! Usage (PLU)-Reauest Control Mode: This 
specifies the PLU's protocol for sending 
chains. Immediate-request mode is the only 
protocol defined for LU 6.2. The PLU waits 
for a response to a def i ni te-response chain 
before it sends another chain. 

.Et! Usage (PLU>-Chain Response Protocol: 
This specifies the PLU's protocol for 
requesting responses to chains. Definite- or 
exception-response requested is the only pro­
tocol defined. A chain indicating 
definite-response requested requires a 
response from the SLU; the response may be 
positive or negative. A chain indicating 
exception-response requested requires a 
response from the SLU only when the response 
is negative; a positive response is not 
returned. 

f.t! Usage <PLU)-Send End Bracket: This spec­
ifies that the PLU does not send EB chains. 

FM Usage (SLU>-Chainina Use: This specifies 
the SLU's use of chains that it sends to the 
PLU. Multiple-RU chains is the only use 
defined for LU 6.2. Chains may consist of 
one or more RUs. The maximum-size RU that 
the SLU sends and the verbs that the trans­
action program issues to the SLU determine 
the number of RUs that make up the chain. 

FM Usage ISLU>-Reguest Control Mode: This 
specifies the SLU's protocol for sending 
chains. Immediate-request mode is the only 
protocol defined for LU 6.2. The SLU waits 
for a response to a definite-response chain 
before it sends another chain. 

/1 
FM Usage ISLU>-Chain Response Protocol: 
This specifies the SLU's protocol for 
requesting responses to chains. Definite- or 
exception-response requested is the only pro­
tocol defined. A chain indicating 
definite-response requested requires a 
response from the PLU; the response may be 
positive or negative. A chain indicating 
exception-response requested requires a 

4-.20 SNA Format and Protocol Reference Manual for LU Type 6.2 



response fro111 the PLU only when the response 
is negative; a positive response is not 
returned. 

FM Usage ( SLU J-Send ~ Bracket: This spec­
ifies that the SLU does not send EB chains. 

U! Usage ICommonJ-Session Segmenting: This 
specifies whether the PLU supports receiving 
segmented BIUs on the session. Support for 
session-level segmenting of BIUs is 
implementation-dependent. When both the PLU 
and SLU specify in the BIND request and BIND 
response, respectively, that they support 
session segmenting, then RUs can be segmented 
on the session; otherwise, segmenting of RUs 
will not occur. Session segmenting affects 
the specifications of the maximum-size RUs 
sent by the PLU and SLU. For more details, 
see the descriptions of the TS usage parame­
ters, Maximum-Size RU Sent by PLU and 
Maximum-Size RU Sent by SLU. 

U! Usage ICommonJ-FM Header Usage; This 
specifies that FM headers are used on the 
session. 

U! Usage (Common >-Bracket Usage and Reset 
~ This specifies that brackets are used 
on the session and that the bracket reset 
state for the session is in-bracket ( INB l; 
that is, the session is in the in-bracket 
state following successful activation. 

U! Usage ICommonJ-Bracket Termination Rule: 
This specifies that rule 1, conditional ter-
111ination, will be used on the session. The 
sender of the end-bracket ICEB> chain deter­
mines whether the bracket is to end condi -
tionally or unconditionally. If conditional, 
the receiver is allowed to reject the 
end-bracket chain and thereby keep the ses­
sion in the in-bracket state. 

FM Usage (CommonJ-BIND Response Queuing: 
This specifies whether the SLU is permitted 
to queue I hold) the BIND response for an 
indefinite period. Whether the PLU permits 
the SLU to queue the BIND response is 
implementation-dependent. If the PLU does, 
then the permission is installation-specified 
for each partner SLU. All sessions with the 
same SLU have the same specification for this 
parameter; however, the specification may 
differ for different SLUs. 

U! Usage ICommonJ-Normal-Flow Send/Receive 
Mode: This spec i f i es that the send/rece i ve 
protocol for FMD requests on the normal· flow 
is half-duplex flip-flop. 

U! Usage (Commonl-Recovery Responsibility: 
This specifies the responsibility for recov­
ery from an error within the session. Sym­
metric recovery is the only value defined for 
LU 6.2. The sender of a negative response is 
responsible for recovery, regardless of 
whether the sender is the PLU or SLU. 

U! Usage (Common)-Contention Winner/Loser: 
This specifies whether the PLU or SLU will be 
the contention winner for the session. The 
contention winner is the brackets first 
speaker, and the contention loser is the bid-

der. The specification of contention winner 
or loser depends on whether the session is a 
parallel or single session, as indicated by 
the PS usage parameter, Parallel Session Sup­
port, in the BIND request. 

For a parallel session, the PLU specifies 
that it is the contention winner if, for the 
mode name, the number of active sessions for 
which the PLU is the contention winner is 
less than its maximum; otherwise, the PLU 
specifies the SLU as the contention winner. 
The PLU's maximum number of contention-winner 
sessions is determined from the last 
change-number-of-sessions protocol executed 
by the two LUs. 

For a single session, the PLU specifies that 
it is the contention winner if, for the mode 
name, the SLU is to be the contention loser; 
otherwise, the PLU specifies the SLU as the 
contention winner. For each mode name asso­
ciated with a single-session, the contention 
winner IPLU or SLUl for the session is 
installation-specified. 

FM Usage (Common)-Half-Duplex Flip-Flop 
Reset States: This specifies the half-duplex 
flip-flop reset states for the PLU and SLU 
following successful activation of the ses­
sion. The reset states are send for the PLU 
and receive for the SLU; that is, the PLU 
sends first. 

!§ Usage-Staging for Secondary TC !g Primary 
lli This specifies whether pacing of 
normal-flow requests from the SLU to the PLU 
occurs in one stage or more than one stage. 
The specification is taken from the CINIT 
request for the session. See "Chapter 6.2. 
Transmission Control" for details on 
session-level pacing. 

TS Usage-Secondary TC's Send Window Size: 
This specifies whether pacing of normal-flow 
requests sent by the SLU will occur. If 
one-stage pacing from the SLU to the PLU is 
specified for the session, this specification 
is the same as that for the primary TC's 
receive window size. Otherwise, this spec­
ification is taken from the CINIT request for 
the session. 

!§ Usage-Secondary ~ Receive Window Size: 
This specifies whether pacing of normal-flow 
requests received by the SLU will occur. The 
specification is taken from the CINIT request 
for the session. 

!§ Usage-Maximum-Size RU Sent h)l SLU: This 
specifies the maximum-size RU that the SLU 
may send to the PLU on the normal flow. The 
PLU sets this value to the maximum size it 
allows for received RUs. All implementations 
permit the specification of a maximum-size RU 
of 256. 

The specification of the maximum-size RU is 
between a lower bound and an upper bound, 
which are installation-specified. The lower 
and upper bounds can range between 8 and 
491420, with the lower bound less than or 
equal to the upper bound. The particular 
values allowed for the lower bound and upper 

Chapter 4. LU Network Services 4-21 



bound is implementation-dependent, except 
that mlmmum lower bound is less than or 
equal to 256 and the maximum upper bound is 
greater than or equal to 256. 

If session segmenting can occur for the ses­
sion, the upper bound used is the 
installation-specified value. Otherwise, the 
upper bound used is the minimum of (1) path 
control's maximum-size RU for the PLU node 
and (2) the installation-specified value. 
The lower bound used is always the 
installation-specified value. 

Based on the lower and upper bounds and on 
the CINIT for the session, the PLU sets the 
value for the maximum-size RU sent by SLU as 
follows: 

• If the value specified in CINIT is 
between the lower and upper bounds, the 
PLU copies the value from CINIT into 
BIND. 

• If the value specified in CINIT is less 
than the lower bound, the PLU sets the 
value in BIND to the lower bound. 

• If the value specified in CINIT is great­
er than the upper bound, or the value in 
CINIT is not specified, the PLU sets the 
value in BIND to the upper bound. 

ll Usag-Maximum-Size BY §fill! ID£ f.bY.l This 
specifies the maximum-size RU that the PLU 
may send to the SLU on the normal flow. The 
PLU sets this value to the maximum-size RU it 
can send. The algorithm used for determining 
the maximum-size RU sent by the PLU is the 
same as that used for determining the 
maximum-size RU sent by the SLU. 

ll Usag-staaing for Primary TC jg Secondary 
TC: This specifies whether pacing of 
normal-flow requests from the PLU to the SLU 
occurs in one stage or more than one stage. 
The specification is taken from the CINIT 
request for the session. 

ll Usag-Primary TC's Send ~ Size: 
This specifies whether pacing of normal-flow 
requests sent by the PLU wi 11 occur. If 
one-stage pacing from the PLU to the SLU is 
specified for the session, this specification 
is the same as that for the secondary TC's 
receive window size. Otherwise, this spec­
ification is taken from the CINIT request for 
the session. 

TS Usag-Primary TC's Receive Window Size: 
This specifies whether pacing of normal-flow 
requests received by the PLU will occur. The 
specification is based on the CINIT request 
for the session and an installation-specified 
value, as follows: 

• If the CINIT for the session specifies a 
primary TC's receive window size of o, 
this specification is taken from the 
installation-specified value. 

• If CINIT specifies a window size other 
than 0 and the installation-specified 

value is o, this specification is taken 
from CINIT. 

• If CINIT specifies a window size other 
than 0 and the installation-specified 
value is also other than o, this specifi­
cation is taken from the minimum of the 
value in CINIT and the 
installation-specified value. 

A window size of 0 means the PLU will receive 
RUs unpaced. 

fi;! Profil-PS Usage Format: This specifies 
the PS usage format. The Basic format is the 
only PS usage format defined. 

PS Profil-LU Twe: This specifies type-6 
as the LU type. 

PS Usag-LU .!vmt:k Level: This specifies 
the level of LU type-6. Level 2 is the LU 
type-6 level defined for LU 6.2. 

PS Usaq-synchronization Level: This speci­
fies the level of synchronization support for 
the session. One of two levels of support 
may be specified: 

1. Confirm 
2. Confirm, Sync point, and Backout 

The level of support specified for the ses­
sion determines the synchronization levels 
that can be specified for a conversation 
allocated to the session. The synchroniza­
tion level, "None" (not listed>. can be spec­
ified for a conversation allocated to any 
session; therefore, "None" is not explicitly 
specified for the session. 

All LU implementations support the Confirm 
levell support for Sync point and Backout is 
implementation-dependent. If the PLU imple­
mentation supports Sync point and Backout, 
the specification of support-level 1 versus 
support-level 2 is installation-specified for 
each mode name. All sessions with the same 
mode name have the same specification for 
this parameter; however, the specification 
may differ for different mode names. See 
"Chapter 5.3. Presentation Services--Sync 
Point Services Verbs" for details about Sync 
point and Backout. 

fi;! Usag-Responsibility for Sessjon Reiniti­
ation: This specifies the responsibility for 
reinitiation of a session following a session 
outage. This parameter applies only to ses­
sions for which parallel sessions and change 
number of sessions CCNOS) are not supported. 
Four levels of responsibility are defined: 

1. Operator controlled. 
2. Primary half-session will reinitiate. 
3. Secondary half-session will reinitiate. 
4. Either half-session may reinitiate. 

Operator controlled reinitiation 11eans nei­
ther LU will automatically attempt to reinj­
tiate the session. The particular level of 
responsibility for reinitiation of the ses­
sion-operator controlled or otherwis-can 

4-22 SNA Format and Protocol Reference Manual for LU Type 6.2 



be implementation-dependent or 
installation-specified. 

Other events may cause a session to be acti­
vated, independent of the reinitiation 
res pons i bH ity. For example, if the 
resources manager has queued a request for 
allocation of a conversation, the resources 
manager will request activation of a session 
when LNS informs the resources manager that 
the current session has been deactivated. 

PS Usage--Parallel-Session Support: This 
specifies whether parallel sessions are sup­
ported between the PLU and SLU. Support for 
parallel sessions is 
implementation-dependent. If the PLU imple­
mentation supports it, the indication of sup­
port versus no support is 
installation-specified for each partner SLU. 
All sessions with the same SLU have the same 
specification for this parameter; however, 
the speci fi ca ti on may di ff er for different 
SLUs. 

PS Usage--Change-Number-Of-Sessions Support: 
This specifies whether the PLU and SLU sup­
port the change-number-of-sessions ( CNOS I 
protocols, which includes exchange of the 
Change Number Of Sessions GOS variable. Sup­
port for CNOS is implementation-dependent; 
however, if parallel sessions are supported, 
CNOS is also supported. If the PLU implemen­
tation supports CNOS, then the indication of 
support versus no support is 
installation-specified for each partner SLU. 
All sessions with the same SLU have the same 
specification for this parameter; however, 
the specification may differ for different 
SLUs. 

Cryptography Options: This specifies whether 
session-level mandatory cryptography is sup­
ported for the session, and, i f so, the 
cryptography options to be used. Support for 
session-level mandatory cryptography is 
implementation-dependent. If the PLU imple­
mentation supports it, the indication of sup­
port versus no support is 
installation-specified for each mode name for 
the session, and also depends on whether the 
CINIT for the session specified session-level 
mandatory cryptography. If both the mode 
name and the CINIT for the session indicate 
support for session-level mandatory 
cryptography, then the PLU specifies in BIND 
that it is supported; otherwise, the PLU 
specifies it is not supported. All sessions 
with the same mode name have the same spec­
ification for this parameter; however, the 
specification may differ for different SLUs. 

The cryptography options include a length 
parameter. The PLU indicates that 
session-level cryptography is not to be used 
for the session by specifying 0 for the 
length of the cryptography options. 
Session-level mandatory cryptography is the 
only session-level cryptography defined. See 
"Sessions with Cryptography" in "Chapter 6.2. 
Transmission Control" for additional informa­
tion. 

Primary LU Name: This specifies the name of 
the PLU for the session. The PLU name is 
always specified for an SSCP-medi ated ses­
s1 on. Whether it is specified for a 
PNCP-mediated session is 
implementation-dependent. The PLU omits the 
PLU name by specifying 0 for the length of 
the PLU name (applicable only to 
PNCP-mediated sessions I. 

The PLU name is taken from the CINIT for the 
session. When the SLU initiates the session, 
the PLU name is the uninterpreted name from 
the !NIT-SELF. When the PLU or a third-party 
LU initiates the session, the PLU name is the 
network PLU name derived by the CP. 

This parameter is not used by LNS. Instead, 
LNS uses the fully-qualified PLU network name 
carried in the user data to identify the PLU 
to the SLU. 

User Data: This specifies, in a structured 
format, further parameters for the session. 
LNS makes use of the user data in the BIND 
request and response, only; LNS does not 
supply or examine the user data in the 
session-services RUs. 

Figure 4-4 shows the format of the user data 
and the preceding length. The user-data Key 
is always specified as X'OO', which indicates 
structured subfields follow. 

User Data ----->I 
..----.----..------r-~1-..------~ 

Length Key Subfield 1 ••• Subfield n 
X'OO' 

I 
I \ 

I \ 
I \ 

I \ 

'Length,Numberl Value 

Figure 4-4. Format of User Data 

Each subfield includes a length and is iden­
tified by a subfield number following the 
length. When more than one subfield are 
included, they appear in ascending order by 
subfield number. 

The structured subfields that the PLU sends 
in BIND are: 

Number Name 

X'OO' 
X'02' 
X'03' 
X'04' 

Unformatted Data 
Mode Name 
Session-Instance ID 
Fully Qualified PLU Network Name 

The PLU 11ay 
whether it 

omit 
does 

one or more subfieldsJ 
omit a subfield is 

Chapter 4. LU Net11COrk Services 4-23 



implementation-dependent. If it does, the 
entire subfield, including its length, are 
omitted. 

A T2.1-node implementation that contains a 
single LU and a single link connection, that 
does not support parallel sessions and CNOS, 
and that does not support the synchronization 
level for Sync point and Backout, may omit 
all user-data subfields. The PLU omits all 
User Data subfields either by specifying 0 
for the length of the user data, or by speci­
fying 1 for the length and specifying user 
data consisting only of the user-data Key; 
the choice is implementation-dependent. 

Details of each subfield follow. 

• Subfield X'OO'-Unformatted Data: This 
subfield carries installati;,;::;pecified 
data. Support for this subfield is 
implementation-dependent. 

• 

• 

Subfield X'02'-Mode Name: Mode name 
specifies the type of-;;;::;ice required 
for the session. Mode names are 
installation-specified. The same mode 
names are configured at both the PLU and 
SLU for all sessions between the two LUs. 
The installation-specified configuration 
for each mode name associates that mode· 
name with the set of session properties 
to be used for all sessions for that mode 
name. For a given session, the PLU uses 
the mode name from CINIT for the mode 
name in the Mode Name subfield. The par­
ticular set of session properties associ­
ated with a mode name is 
implementation-dependent. 

A mode name may be null; that is, a null 
mode name is a valid mode name. When 
specifying a null mode name, the PLU may 
omit the Mode Name subfield entirely. 
Alternatively, the PLU may specify only 
the length and number for the null mode 
name, in which case the length is 1, or 
it may specify a mode name of all space 
( X' 40' ) characters, which is equivalent 
to a null mode name. The particular form 
that the PLU uses to represent a null 
mode name is implementation-dependent. 

A T2.l-node implementation that contains 
a single LU and a single link connection, 
and that does not support parallel ses­
sions and CNOS, may omit the Mode Name 
subfield entirely. 

Subfield X'03'-Sessfon-Instance Identj­
fier: The session-instance ID is used to 
uniquely identify the session from among 
multiple sessions between the PLU and 
SLU. Using the session-instance ID, con­
trol operators at the PLU and SLU can 
coordinate the diagnostics (traces, for 
example l or clean-up procedures for a 
specific session. The session-instance 
ID is used also during resynchronization 
of a conversation after session outage. 

The LU that is the primary LU for a given 
session generates th@ session-instance 
ID. The first byte of the 

• 

session-instance ID is used to differen­
tiate the IDs generated by one LU from 
those generated by the other LU; thls 
ensures uniqueness of all the IDs used 
between two LUs. The value of the first 
byte is either X'FO' or X'OO', depending 
on which LU has the greater fully quali -
fied LU network name. The IDs generated 
by the LU with the greater fully qud i­
f i ed LU network name have a first byte of 
X'FO'. The appropriate value CX'FO' or 
X'OO'J of the first byte is determined by 
the SLU and sent in the BIND response. 

The PLU specifies the session-instance ID 
when parallel sessions and CNOS are' sup­
ported, when the synchronization level 
for the session permits Sync point and 
Backout, or when the session-instance ID 
is used as part of an 
implementation-dependent function. Oth­
erwise, the PLU omits the 
Session-Instance Identifier subfield. 

Subfield X'04'~Fully Qualified f.!.Y Net­
work Name: The fully qualified PLU net­
work name allows the PLU to identify 
itself to the SLU. The fully qualified 
PLU network name is 
i nstallati on-speci fled at both the PLU 
and ~LU. 

An LU resolves BIND-race conditions by 
comparing the fully qualified PLU network 
name it sent in the-BIND request with the 
fully qualified PLU network name it 
received in a BIND request sent by the 
partner LU. BIND race conditions are 
discussed in more deta i l in the first 
part of this description of the BIND 
request. 

A T2.l-node implementation that contains 
a single LU and a single link connection, 
that does not support parallel sessions 
and CNOS, and that does not support the 
synchronization level for Sync point and 
Backout, may have no fully qualified PLU 
network name. In this case, the PLU 
omits the Fully Qualified PLU Network 
Name subfield from the BIND request. 

User Request Correlation: This specifies the 
user request correlation CURCI value for the 
session when the SLU initiates the session 
CSLU = ILUJ. The SLU uses the URC to corre­
late the BIND with the !NIT-SELF it sent. 
When the SLU does not initiate the session, 
the PLU omits the URC from BIND. The PLU 
omits the URC by specifying 0 for the length 
of the URC. 

Secondary LU Name: This specifies the SLU 
name used to route the BIND to the intended 
SLU for the session. For PNCP-mediated ses­
sions, the PU uses the SLU name to route the 
BIND to the appropriate LU in its node. For 
SSCP-mediated sessions, the PU uses the des­
tination address in the TH, instead of the 
SLU name, to route the BIND request to the 
appropriate LU in its node. 

A T2.1-node implementation that contains a 
single LU and a single link connection, that 

4-24 SNA Format and Protocol Reference Manual for LU Type 6.2 



does not support parallel sessions and CNOS, 
and that is connected over the single link to 
another T2.l-node implementation containing a 
single LU and single 1 ink connectl on, may 

RSP( BIND) 

Flow: From SLU to PLU (Expedited> 

A positive response to BIND is sent from an 
SLU to a PLU to complete activation of a ses­
sion between the LUs. The positive BIND 
response has an extended format that is the 
same as the BIND request. 

When the SLU receives a BIND request that is 
acceptable (for example, there are no format 
errors and the SLU's session limit is not 
exceeded), the SLU sends back a positive BIND 
response containing the complete set of ses­
sion parameters. The specifications for the 
parameters can match those received in the 
BIND request, or they can differ, where the 
SLU chooses different optl ons. The parame­
ters for which the SLU may choose different 
options are referred to as negotiable parame­
ters. 

The specifications for the matching parame­
ters are taken directly from the BIND 
request. The specifications for the negoti­
able parameters are determined by the SLU, 
based on its implementation-dependent sup­
port, on the installation-specified values 
currently in effect for the parameters, or on 
the BIND request, depending on the particular 
parameter. 

The following description of the 
BIND-response parameters indicates the spec­
ifications that are used for the session and, 
where applicable, how they are determined. 
See the description of the corresponding 
parameters in the BIND request for details of 
the function and use of the parameters. 

Format: The SLU specifies format 0. 

Type: The SLU specifies negotiable. 

FM Profile: The SLU specifies FM profile 19. 

TS Profile: The SLU specifies TS profile 7. 

FM Usage IPLUl-Chaining Use: The SLU speci­
fies multilple-RU chains. 

FM Usage (PLUl-Reguest Control Mode: The 
SLU specifies immediate-request mode. 

FM Usage IPLU>-Chain Response Protocol: The 
SLU specifies definite- or exception-response 
requested. 

FM Usage (PLUl-Send End Bracket: 
specifies EB is not sent. 

The SLU 

omit the SLU name. The PLU omits the SLU 
name by specifying 0 for the length of the 
SLU name. 

.fl! Usage (SLUl-Chainina ~ The SLU speci­
fies multilple-RU chains. 

.fl! Usage ISLUl-Reguest Control Mode: The 
SLU specifies immediate-request mode • 

.fl! Usage (SLUl-Chain Response Protocol: The 
SLU specifies definite- or exception-response 
requested. 

.fl! Usage (SLU>-Send End Bracket: 
specifies EB is not sent. 

The SLU 

.fl! Usage (Commonl-Session Segmenting: The 
SLU specifies whether it supports receiving 
segmented RUs on the session. 

FM Usage (Common>-FM Header Usaae: The SLU 
specifies FM headers are used. 

FM Usage (Common I-Bracket Usage and Reset 
State: The SLU specifies brackets are used 
and the bracket reset state is in-bracket 
IINB>. 

FM Usage (Commonl-Bracket Termination Rule: 
The SLU specifies rule 1, conditional termi­
nation. 

FM Usage (Commonl-BIND Response Queuing: 
Taken from the BIND request. 

FM Usage (Commonl-Normal-Flow Send/Receive 
Mode: The SLU specifies half-duplex 
flip-flop. 

FM Usage (Commonl-Recoverv Responsibility: 
The SLU specifies symmetric responsibility. 

FM Usage (Commonl-Contention Winner/Loser: 
This specification depends on whether the 
session is a parallel or single session, as 
indicated by the PS usage parameter, Parallel 
Session Support, in the BIND response. For a 
parallel session, the specification is taken 
from the BIND request-the SLU accepts, and 
does not change, the specification of the LU 
that is to be the contention winner for a 
parallel session. 

For a single session, the SLU specifies that 
it is the contention winner if, for the mode 
name, the SLU is to be the 
installation-specified contention winner; 
otherwise, the specification is taken from 
the BIND request. 

Chapter 4. LU Network Services 4-25 



f!! ~ (Common)~Half-Duplex Flip-Flop 
Reset States: The SLU specifies send for the 
PLU and receive for the SLU. 

ll Usag-Staging for Secondary TC to Primary 
TC: Taken from the BIND request. 

TS Usag-Secondary TC's Send Window Size: 
Taken from the BIND request, as follows: If 
the BIND request specifies one-stage pacing 
from the SLU to the PLU, this specification 
is taken from the primary TC's receive window 
size; otherwise, this specification is taken 
directly from the secondary TC's send window 
size. 

ll Usag-Secondary TC's Receive Window Size; 
This specification is based on the BIND 
request for the session and an 
installation-specified value associated with 
the mode name, as follows: 

• If the BIND request for the session spec­
ifies a secondary TC's receive Nindow 
size of o, this specification is taken 
from the installation-specified value. 

• If BIND specifies a window size other 
than O and the installation-specified 
value is o, this specification is taken 
directly from BIND. 

• If BIND specifies a window size other 
than 0 and the installation-specified 
value is also other than o, this specifi­
cation is taken from the minimum of the 
value in BIND and the 
installation-specified value. 

TS Usag-Maximum-Size BY Sent !!v SLU: The 
SLU specifies a value between a lower bound 
and an upper bound, as follows: 

• If the value specified in the BIND 
request is betNeen the lower and upper 
bounds, the value in the BIND response is 
taken from the BIND request. 

• If the value specified in BIND is less 
than the lower bound, the SLU sets the 
value in the BIND response to the lower 
bound. 

• If the value specified in BIND is greater 
than the upper bound, the SLU sets the 
value in the BIND response to the upper 
bound. 

ll Usag-Maximum-Size RU Sent !!v fbYl The 
SLU specifies a value between a lower bound 
and an upper bound, as described above for 
the maximum-size RU sent by the SLU. 

TS Usag-Staqing for Primary CPMGR !g ~ 
ondary CPMGR: Taken from the BIND request. 

ll Usag-Primary TC's Send Window Size: 
Taken from the BIND request, as follows: If 
the BIND request specifies one-stage pacing 
from the PLU to the SLU, this specification 
is taken from the seconcary TC's receive win­
dow size; otherwise, this specification is 
taken directly from the secondary TC' s send 
window size. 

ll Usag-Primary ~ Receive Window Size: 
Taken from the BIND request. 

~ Profil-PS Usage Format: The SLU speci­
fies basic format. 

PS Profil-LU Type: The SLU specifies LU 
type-6. 

~ Usag-LU Type-6 Level: The SLU specifies 
level 2. 

~ Usaq-Synchronization Level: The SLU 
specifies the synchronization level for the 
session, as follows: 

• If a session between the SLU and PLU is 
already active for the mode name, the SLU 
spec i fies the same level of support as 
specified for the active session. 

• If no sessions between the SLU and PLU 
are active for the mode name and the BIND 
request specifies Confirm, Sync point, 
and Back out , the S LU spec i fies the 
installation-specified value associated 
with the mode name for the session. 

• If no sessions between the SLU and PLU 
are active for the mode name and the BIND 
request specifies Confirm, the SLU speci­
fies Confirm. 

PS Usag-Responsibility for Session Reiniti­
ation: The SLU specifies the responsibility 
for reinitiation based on the 
installation-specified responsibility and on 
the specification in the BIND request for the 
session. 

The matrix in Figure 4-5 shows how the SLU 
derives the specification for the BIND 
response. The rows of the matrix give the 
installation-specified responsibility and the 
columns give the responsibility specified in 
the BIND request. The cells of the matrix 
g i ve the responsibility that the S LU spec i -
fies for the BIND response. 

4-26 SHA Format and Protocol Reference Manual for LU Type 6.2 



Rows indicate installation-specified 
responsibility. 

Columns indicate responsibility 
received in BIND request. 

....._> 

v 

Operator 

Primary 

Secondary 

Either 

• Cells indicate responsibility 
sent in BIND response. 

Oper- Pri- Sec- Either 
a tor mary ondary 

Oper- Oper- Oper- Oper-
a tor a tor a tor a tor 

Oper- Pri- Either Pri-
a tor mary mary 

Oper- Either Sec- Sec-
a tor ondary ondary 

Oper- Pri- Sec- Either 
a tor mary ondary 

PS Usaqe--Parallel-Session Support: The SLU 
specifies parallel-session support for the 
session, as follows: 

• 

• 

If a session between the SLU and PLU is 
already active, the SLU specifies the 
same support as specified for the active 
session. 

If no sessions between the SLU and PLU 
are active and the BIND request specifies 
parallel sessions are supported, the SLU 
specifies the installation-specified val­
ue associated with the PLU. 

• If no sessions between the SLU and PLU 
are active and the BINO request specifies 
parallel sessions are not supported, the 
SLU specifies parallel sessions are not 
supported. 

fl! Usage--Chanqe-Number-Of-Sessions Support: 
The SLU specifies support for the use of 
change-number-of-sessions CCNOS> protocols, 
as follows: 

• If a session between the SLU and PLU is 
already active, the SLU specifies the 
same support as specified for the active 
session. 

• If no sessions between the SLU and PLU 
are active and the BIND request specifies 
CNOS is supported, the SLU specifies the 
installation-specified value associated 
with the PLU. 

• If no sessions between the SLU and PLU 
are active and the BIND request specifies 
CNOS is not supported, the SLU specifies 
CNOS is not supported. 

Crvptoqraphv Options: 
request. 

Taken fr-0111 the BIND 

Primary LU Name: 
request. 

Taken from the BIND 

User Data: The SLU specifies further parame­
ters for the session, by means of the User 
Data structured subfields. If the SLU 
receives a BIND request containing a subfield 
it does not recognize, it ignores the sub­
fi eld and does not send it in the BIND 
response. 

The User Data subfields that the SLU sends in 
the BIND response are: 

Number Name 

X'OO' 
X'02' 
X'03' 
X'OS' 

Unformatted Data 
Mode Name 
Session-Instance ID 
Fully-Qualified SLU Network Name 

The SLU may omit one or more subfields I 
whether it does omit a subfield is 
implementation-dependent. If it does, the 
entire subfield, including its length, is 
omitted. 

A T?.1-node implementation that contains a 
single LU and a single link connection, that 
does not support parallel sessions and CNOS, 
and that does not support the synchronization 
level for Sync point and Backout, may omit 
all User Data subfields. 

Details of each subfield follow. 

• Subfield X'OO'-Unformatted Data: This 
subfield carries installation-specified 
data. Support for this subfield is 
implementation-dependent. 

• Subfield X'02'-Mode ~ Taken fr-0nt 
the BIND request. 

• Subfield X'03'-Session Instance Identi­
fier: Taken from the BIND request, 
except that the SLU changes the value of 
the first byte, if necessary, to make the 
session-instance ID unique. The SLU sets 
the first byte to X'FO' if the PLU's ful­
ly qualified LU network name is greater 
than its own. Otherwise, it sets the 
first byte to x•oo•. 

• Subfield X'OS'-Fully Qualified §.!!! H!!= 
work ~ The fully qualified SLO net­
work name allows the S LU to conf i rnt i ts 
identify to the PLU. The fully qualified 
SLU network name is 
installation-specified at both the SLU 
and PLU. 

All T2.1-node products can receive a BIND 
request with the fully qualified PLU net­
work name subfield omitted. If the SLU 
receives such a BIND request, it uses a 
unique default fully qualified PLU net­
work name in order to locally i dent i fy 
the PLU. 

Chapter 4. LU NetNOrk Services 4-27 



A T2.l-node implementation that contains 
a single LU and a single link connection, 
that does not support parallel sessions 
and CNOS, and that does not support the 
synchronization level for Sync point and 
Backout, may have no fully qualified SLU 
network name. In this case, the SLU 
omits the Fully Qualified SLU Network 
Name subfield from the BIND response. 

UNBIND SESSION CUNBIND> 

Flow: From LU to LU (Expedited) 

UNBIND requests the partner LU to deactivate 
the LU-LU session. The UNBIND indicates 
definite-response requested. 

The LU can send an UNBIND request as a result 
of an action at the LU Cone that its CP does 
not initiate), or as a result of rece1v1ng a 
CTERM or CLEANUP request from its CP. Send­
ing UNBIND as a result of local action is the 
normal case for terminating SSCP-mediated 
sessions and the only case for terminating 
PNCP-mediated sessions. 

Sending UNBIND as a result of rece1 v1 ng a 
CTERM or CLEANUP request occurs when an LU 
other than one of the session partners 
requests termination of the LU-LU session, or 
when one of the session partners sends its 
SSCP a TERM-SELF request to terminate a 
pending-active or queued session and the SSCP 
for the PLU has already sent CINIT to the 
PLU. 

The LU rece1v1ng the UNBIND request can send 
back a positive or negative response to the 
UNBIND. If the response is positive, both 
LUs send their respective CPs a SESSEND 
request. If the response is negative, the 
session was SSCP-mediated, and the PLU sent 
the UNBIND request, the PLU sends the SSCP an 
UNBINDF request. 

The LU sends back a negative response i f the 
format of the UNBIND request is in error. 

User Request Correlation Field: 
the BIND request. 

Secondary LU Name: 
request. 

Taken fro11 

Taken from 

the BIND 

Otherwise, the LU sends back a positive 
response, even if it has no LU-LU 
half-session to which it can correlate the 
UNBIND request. 

A description of the parameter in the UNBIND 
request follows. 

Type: This specifies the type of LU-LU ses­
sion deactivation requested. The LU speci­
fies normal deactivation when it 1s 
deactivating the session normally, that is, 
not as a result of an error condition. In 
this case, the two LUs stop all activity on 
the session prior to deactivating it. Activ­
ity is stopped by exchanging BIS requests. 
See "Chapter 6.1. Data Flow Control" for a 
description of the BIS request, and "Chapter 
3. LU Resources Manager" for details of i ts 
use. 

The other types of session deactivation are 
associated with error conditions. Some of 
these types of session deactivation are 
caused by session outage notification CSON). 
See "Session outage and Session Reinitiation" 
on page 4-4 for more information about SON. 

One of the other types indicates a format or 
protocol error. When this type is specified, 
sense data is also included in the UNBIND 
request. The sense data identifies the rea­
son for the format or protocol error. 

4-28 SNA Format and Protocol Reference Manual for LU Type 6.2 



MAINTENANCE-SERVICES BY.:.! 

This section describes the 
maintenance-services requests that LNS sends 
and receives. These RUs belong to the 
FM-data category of network-services RUs. 

Preceding the individual descriptions is a 
list of the RUs. Listed with each RU is the 
number of the page on which the description 
of the RU begins. In addition, Figure 4-6 on 
page 4-30 shows the RH formats for the 
maintenance-services requests and responses 
that LNS sends and receives. 

Each RU description includes the RU flow and 
a discussion of the function and use of the 

RU. Refer to Appendix E for specifications 
of the RU formats. 

The maintenance-services RUs listed below 
permit an LU to send test data on a CP-LU 
session and receive a copy of the data from 
the CP. 

RU Page 

ECHO TEST (ECHOTEST> 4-31 
REQUEST ECHO TEST (REQECHO> 4-31 

Chapter 4. LU Network Services 4-29 



MS RU -> REQECHO 
ECHOTEST 

Header Indicators 

TH EFI NORMAL A 

RH Byte 0 BIT 0 RRI RQ 
BITS 1-2 RU_CTGY FMD 
BIT 3 reserved 0 
BIT 4 FI 1 
BIT 5 SDI *SD 
BIT 6 BCI BC 
BIT 7 ECI EC 

RH Byte 1 BIT 0 DRlI ORI Request 
BIT 1 reserved 0 
BIT 2 DR2I .. DR2 
BIT 3 ERI .. ER 
BITS 4-5 reserved 00 
BIT 6 QRI .. qR 
BIT 7 PI *PAC 

RH Byte 2 BIT 0 BBI .. BB 
BIT 1 EBI .. EB 
BIT 2 CDI .. co 
BITS 3-6 reserved 0000 
BIT 7 CEB .. CEB v 

TH EFI NORMAL A 

RH Byte 0 BIT 0 RRI RSP 
BITS 1-2 RU_CTGY FMD 
BIT 3 reserved 0 
BIT 4 FI 1 
BIT 5 SDI *SD 
BIT 6 BCI BC 
BIT 7 ECI EC 

Response 
RH Byte 1 BIT 0 DRlI DRl 

BIT 1 reserved 0 
BIT 2 DR2I .. DR2 
BIT 3 RTI ±RSP 
BITS 4-5 reserved 00 
BIT 6 QRI .. qR 
BIT 7 PI *PAC 

RH Byte 2 BITS 0-7 reserved 00000000 v 

Notes: 
1. *XX means either XX or .. xx. 
2. See Appendix D for complete RH descriptions. 
3. The TH formats are not described in this book. 

Figure 4-6. Maintenance Services RU Formats 

4-30 SNA Format and Protocol Reference Manual for LU Type 6.2 



ECHO TEST (ECHOTEST) 

Flow: From CP to LU (Expedited> 

ECHOTEST carries test data to the LU; the 
test data is the same as that carried in the 
corresponding REQECHO request that the LU 
sent. The ECHOTEST indicates 
definite-response requested. 

The number of ECHOTESTs that the CP sends 
back to the LU is specified by the repetition 

REQUEST ECHO TEST <REQECHO) 

Flow: From LU to tP !Expedited) 

REQECHO requests that the CP return in an 
ECHOTEST request the spec i f i ed test data • 
The REQECHO indicates definite-response 
requested. 

The repetition factor in the REQECHO request 
spec i f i es the number of ti mes the CP is to 

factor in the REQECHO 
prematurely terminate 
ECHOTESTs by returning 

request • The LU can 
the CP's sending of 
a negative response. 

Support for ECHOTEST is 
implementation-dependent. 

send back ECHOTEST requests, 
the same test data as carried 
request. Support for 
implementation-dependent. 

each carrying 
in the REQECHO 
REQECHO is 

CChapter 4. LU Network Services 4~31 



.IJ§ fROTOCOL BOUNQARIES 

This section sholol!I the protocol bO\l'ldaries 
that LNS has Ni th other components of the LU 
and with the PU. LNS interacts with other LU 
components and the PU by sending and receiv­
ing records at its protocol boundaries. Fig­
ure 4-7 on page 4-33 shows the protocol 
boundaries and lists the record names associ-

ated with these protocol boundaries. The 
FAPL procedures and finite-state machines 
(FSHs) of this chapter describe 'LNS's proto­
cols for sending and receiving these records. 
See "Appendix A. Node Data Structures" for a 
definiUon of the formats of these records. 

4-32 SNA Format and Protocol Reference Manual for LU Type 6.2 



< 

< 
LU Network 
Services 

< 

< 

Records that LNS sends: 
IA> ACTIVATE_SESSION_RSP 

SESSION_ACTIVATED 
SESSION_DEACTIVATED 
CTERM_DEACTIVATE_SESSION 

CC) BIND_RQ_SEND_RECORD 
BIND_RSP_SEND_RECORD 
UNBINO_RQ_SENO_RECORD 
UNBIND_RSP_SEND_RECORD 
ACTLU_RSP_SEND_RECORD 
DACTLU_RSP_SEND_RECORD 
PC_ CONNECT 
HIERARCHICAL_RESET_RSP 
PC_HS_CONNECT 
PC_HS_OISCONNECT 

IE) INIT_HS 

18) 

IDl 

HS_SEND_RECORD !contains follow;ng RUs) 
RQCPID 1 

INIT_SELF2 
TERM SELF 2 
NOTIFY_oc3 
REQECH03 
:!:RSPC CINIT >2 
:!:RSPCCTERMl3 
:!:RSPCCLEANUPl3 
:!:RSPCNOTIFY 03)3 
:!:RSPCECHOTEST>3 
SESSST3 
SESSSTI4 
SESSEND3 
SESSENDI 4 
BINOF3 
UNBINDF3 

IG) INIT_HS 

Notes: 

> 
Resources Manager 

,I PU 

CP-LU Half-Sess;on ;n LU 

LU-LU Half-Sess;on 

Records that .bt§ rece;ves: 
CB) ACTIVATE_SESSION 

DEACTIVATE_ SESSION 

ID) BIND_RQ_RCV_RECORD 
BIND_RSP_RCV_RECORD 
UNBIND_RQ_RCV_RECORD 
UNBIND_RSP_RCV_RECORD 
ACTLU_RQ_RCV_RECORD 
DACTLU_RQ_RCV_RECORD 
PC_CONNECT_RSP 
HIERARCHICAL_RESET 
SESSION_ROUTE_INOP 

If) INIT_HS_RSP 
HS_RCV_RECORD (contains following RUsl 

:!:RSPC RQCPID) 1 
:!:RSPIINIT_SELF>2 
:!:RSPITERM_SELF> 2 
:!:RSPCNOTIFY 0Cl 3 
:!:RSPIREQECH0)3 
CINIT2 
CTERM3 
CLEANUP3 
NOTIFY_033 
ECHOTEST3 

!Hl INIT_HS_RSP 
ABORT_HS 

r-s;;:;t to or received from the PNCP-LU half-session. 
2 Applies to both SSCP- and PNCP-mediated sessions. 
3 Appl;es only to SSCP-mediated sess;ons. 
4 Internal form of SESSST and SESSEND, sent to the PNCP-LU half-sess;on. 

f;gure 4-7. Records Exchanged Between LNS and Other Components 

Chapter 4. LU NetNOrk Services 4-.33 



This section shows examples of sequence flows 
that can occur between LNS and other compo­
nents of the LU and other nodes. These 
flows, which are shown in the following 
pages, illustrate some examples of CP-LU ses­
sion activation and deactivation, and LU-LU 
session initiation and termination. 

Flows for an LU in a peripheral node .are 
shown in Figure 4-8 on page 4-35 through Fig­
ure 4-16 on page 4-40. Flows for an LU in a 
subarea node are shown in Figure 4-17 on page 
4-41 through Figure 4-24 on page 4-45. The 
names shown on the flows represent the 
records listed in "LNS Protocol Boundaries" 
on page 4-32. 

The subject LU in the illustrations is 
referred to as the local LU. Components of 
the local LU, with which LNS interacts, are 
shown. Except for the PNCP-LU half-session, 

the components of the PNCP are not shown in 
detail. The PNCP-LU half-session is shown 
simply for clarity of the PNCP-LU session 
flows within the peripheral node. 

The following legend applies to these fig­
ures: 

n---->o 
o--o-->o 

LNS 
LU 
LU-LU HS 
PC 
PNCP 
PNCP-LU HS 
PU 
RM 
SSCP 
SSCP-LU HS 

intercomponent flow 
intercomponent flow with 
intermediate-component processing 
LU network services 
logical unit 
LU-LU half-session 
path control 
peripheral node control point 
PNCP-LU half-session 
physical unit 
resources manager 
system services control point 
SSCP-LU half-session 

4-34 SNA Format and Protocol Reference Manual for LU Type 6.2 



FLOWS fQR A PERIPHERAL .bY 

Peripheral Node 

LU PNCP PU PC SSCP LU 

RH LNS LU-LU HS SSCP-LU HS PNCP-LU HS PNCP PNCP-LU HS 

0 
ACTLU ~ o<-------------------------------------------------------, 

0---0 I PC_HS_CONNECT 

+RSP 
0 0 

l---~------~~~~~~~~----:----------->~ o< ~ I INIT_HS 
~------------------------------>o 

INIT_HS_RSP(+) I 
o<------------------------------' 

Figure 4-8. PNCP-LU Session Activation 

Ped pheral Node 

LU PNCP PU PC SSCP LU 

RH LNS LU-LU HS SSCP-LU HS PNCP-LU HS PNCP PNCP-LU HS 

0----------------0----0 

DACTLU I 
o<---------------------------------------------0------
1 

+RSP 
0 0 

l----------~~~~~~~~~---:----------->~ o<--------------·~ I PC_HS_DISCONNECT 
~--------------------------------------------------------0--->o 

Figure 4-9. PNCP-LU Session.Deactivation 

Chapter .4. LU NetNOrk Services 4-35 



Peripheral Node 

LU PNCP PU PC SSCP LU 

RM LNS LU-LU HS SSCP-LU HS PNCP-LU HS PNCP PNCP-LU HS 

ACTLU 
o< 

I PC_HS_CONNECT 
0 >o 

+RSP 
0-- >o 

l ____ ::~~~~~~--------->~ I INIT_HS 
~-~~~~~~~~~>o 

INIT_HS_RSP(+) I 
o<~~~~~~~~~--' 

Figure 4-10. SSCP-LU Session Activation to an LU in a Peripheral Node 

Peripheral Node 

LU PNCP PU PC SSCP LU 

RM LNS LU-LU HS SSCP-LU HS PNCP-LU HS PNCP PNCP-LU HS 

DACTLU 

+RSP 
'--~~~~~~~~~~~~~~~~~~~~~~~~-'-~~~o-- >o 

l ____ :~~~~~~~~-------->~ I PC_HS_DISCONNECT 
o >o 

Figure 4-11. SSCP-LU Session Deactivation to an LU in a Peripheral Node 

4-36 SNA Format and Protocol Reference Manual for LU Type 6.2 



RM 

ACTIVATE_ 
SESSION 

LNS 

Ped pheral Node 

LU PNCP PU PC SSCP 

LU-LU HS SSCP-LU HS PNCP-LU HS PNCP PNCP-LU HS 

RQCPID 
o-------->0--------------------------------0------------------------------n 

ACTIVATE_ 
SESSION_ 
RSP<+l 

o<-------co)-------------' 

'~-------0---------------0 
+RSP CPNCP IDJ 

o<-------------------------------0------------------------------' 

I !NIT-SELF 

o<-------co)-------------' 

~'-------~-------------,0 
+RSP I 

o<-------------------------------00------------------------------' 
'--------0-------------,0 

CINIT 
o<-------------------------------&------------------------------' 
I +RSP 

0 
I o<-------CO)-------------' 

PC_CONNECT 
o--->o 

~ PC_CONNECT_RSP!+l 
o<---------------------------------------------------------, 

o--->o I PC_HS_CONNECT 

BIND 
0 

+RSP 
o<---------------------------------------------------------0---0 

0 1 
SESSST 

I I · o< o 
~>o: ______________________ c_R_v __ c_i_f_us __ ,_·n_g __ c_r_yp __ to __ i ___________ , ______________ _ 

• INIT_HS_ 
• RSPC+l +RSP 

LU 

>o 

I 

>o 

o<--------o<--------,o<---------------------------------------------------c:>---------------' 0 I 
~ This figure applies only to PNCP-mediated sessions. 

Figure 4-12. LU-LU Session Initiation by Local PLU in a Peripheral Node 

Chapter 4. LU Network Services 4-37 



RM 

ACTIVATE_ 
SESSION 

LNS 

Peripheral Node 

LU PNCP PU PC 

LU-LU HS SSCP-LU HS PNCP-LU HS PNCP PNCP-LU HS 

RQCPID 
<>--------><>--------------------------------0------------------------------0 

+RSP ( SSCP ID ) 

!NIT-SELF 

+RSP 

BIND 

o<------~01------------~I 
'~~~-n-~~~~·o 

SSCP LU 

o<---------------------------------------------------------,~<>-------------~o 

L~~~~~~~~>~ 
I PC_HS_CONNECT 
'--------------------------------------------------------~,o-->o I +RSP 
'--------------------------------------------------------~,~o--------------->o 

I SESSST 
~~~~~~~~~~~-·--~~~~~~~~~~o 

I INIT_HS I ---->o o< o ·
CRV <if using crypto)

o<--~i:>----------------0
ACTIVATE_ I
SESSION_ INIT_HS_ '---0------------~>o
RSP< +) RSPC +) I
o<-------o<----------

+RSP

liQ!!u. This figure applies only to SSCP-mediated sessions.

Figure 4-13. LU-LU Session Initiation by Local SLU in a Peripheral Node

4-38 SNA Format and Protocol Reference Manual for LU Type 6.2

Peripheral Node

LU PNCP PU PC SSCP LU

RM LNS LU-LU HS SSCP-LU HS PNCP-LU HS PNCP PNCP-LU HS

BIND
o< 0-- 0

L~~~~~~~~>~
I PC_HS_CONNECT

o-->o
+RSP

0-- >o
SESSST

0
INIT_HS I >o o< 0

CRV (if using crypto)
o< 0

I +RSP
SESSION_ INIT_Hs_ >o
ACTIVATED RSPl+l I o< o<

Note: This figure applies to both PNCP- and SSCP-mediated sessions.

Figure 4-14. LU-LU Session Initiation by Remote LU to Local LU in a Peripheral Node

Chapter 4. LU Network Services 4-39

RM LNS

DEACTIVATE_
SESSION

Peripheral Node

LU PNCP

LU-LU HS SSCP-LU HS PNCP-LU HS PNCP PNCP-LU HS

UNBIND

PU PC SSCP LU

o-------->·0--0-----c:>-----------~>o

+RSP I
o<---0---00---------------
1 PC_HS_DISCONNECT
~---0-->o

I SESSEND

Figure 4-15. LU-LU Session Termination by Local LU in a Peripheral Node

Peripheral Node

LU PNCP PU PC SSCP LU

RM LNS LU-LU HS SSCP-LU HS PNCP-LU HS PNCP PNCP-LU HS

SESSION_
DEACTIVATED UNBIND
o< o< 0--- 0

+RSP
0--- >o

PC_HS_DISCONNECT
o-->o

SESSEND
0

L~~~~~~~~~o o< 0 I
Figure 4-16. LU- LU Sess i on Termination by Remote LU to Local LU in a Peripheral Node

4-40 SNA Format and Protocol Reference Manual for LU Type 6.2

Subarea Node

LU PU PC SSCP LU

RM LNS LU-LU HS SSCP-LU HS

ACTLU
o< 0 0 0

I PC_HS_CONNECT
0 0

1 +RSP
>o

l---~~~~~~~~---------->~
I INIT_HS

>o
INIT_HS_RSPC+) I o<

Figure 4-17. SSCP-LU Session Activation to an LU in a Subarea Node

Subarea Node

LU PU PC SSCP LU

RM LNS LU-LU HS SSCP-LU HS

DACTLU
o< 0 0

I +RSP
0 >o

l---~~~~~~~~~--------->~
I PC_HS_DISCONNECT

o--->o

Figure 4-18. SSCP-LU Session Deactivation to an LU in a Subarea Node

Chapter 4. ,LU Network Services 4-41

Subarea Node

LU PU PC SSCP LU

RM LNS LU-LU HS SSCP-LU HS

ACTIVATE -SESSION INIT-SELF
> >o

+RSP
o< 0

CINIT
o< 0

I +RSP
>o

L~=~~~:~~>~
I PC_CONNECT

o-->o
PC_CONNECT_RSPC+I

o< 0 0

I PC_HS_CONNECT
o-->o

I BIND
>o

+RSP I o< 0 0

I SESSST
0 >o

I INIT_HS CRV (if using cryptol
> >o

ACTIVATE -

I SESSION - INIT_HS -RSPC+l RSP!+l +RSP
o< o< o< 0

Figure 4-19. LU-LU Session Initiation by Local PLU in a Subarea Node

4-42 SNA Format and Protocol Reference Manual for LU Type 6.2

RM

ACTIVATE_
SESSION

LNS

Subarea Node

LU

LU-LU HS SSCP-LU HS

!HIT-SELF

+RSP

BIND

PU PC SSCP LU

o<---------------6---c..-------~-·o

L~=~~~~~~>~
I PC_HS_CONNECT
~----------------·o------>o I +RSP
~----------------•o>---~•,.__------->o I SESSST
~-----------<>--------~•,.__--->o I IHIT_HS
~----->o

CRV !if using cryptol
o<•~------------•,__------~o

ACTIVATE_ I
SESSION_ IHIT_HS_ '---------------n-------->o
RSP(+) RSP!+) I
o<----o<------'-

RSP

Figure 4-20. LU-LU Session Initiation by Local SLU in a Subarea Node

Subarea Node

LU PU PC SSCP LU

RM LNS LU-LU HS SSCP-LU HS

CIHIT
o< 0 0

I +RSP
>o

L~=~~~~~~>~
I PC_COHHECT

o------>o
PC_COHHECT_RSP!+l

o< 0 0

I PC_HS_COHHECT
o------>o

I BIND
>o

+RSP I o< 0 0

I SESSST
>o

I IHIT_HS CRV <if using crypto)
> >o

ACTIVATE -

I SESSION_ • IHIT_HS_
RSP(+) RSP(+) +RSP
o< < o< 0

Figure 4-21. LU-LU Session Initiation by Remote PLU to Local SLU in a Subarea Node

Chapter 4. LU Network Services 4-43

Subarea Node

LU PU PC SSCP LU

RM LNS LU-LU HS SSCP-LU HS

BIND
o< 0

L~~~~~~~~>~
PC_HS_CONNECT

o--->o
+RSP

0 >o
SESSST

>o
INIT_HS

>o .
CRV Cif using crypto>

o<

I RSP
SESSION_ INIT_HS_ >o
ACTIVATED RSP(+) I
o< o<

Figure 4-22. LU-LU Session Initiation by Remote PLU to Local SLU in a Subarea Node

4-44 SNA Format and Protocol Reference Manual for LU Type 6.2

Subarea Node

LU PU PC SSCP LU

RM LNS LU-LU HS SSCP-LU HS

DEACTIVATE -SESSION UNBIND
> >o

+RSP I o< 0 0

I PC_HS_DISCONNECT
o--->o

I SE SS END
>o

L:~=~~~~~!o
Figure 4-23. LU-LU Session Termination by Local LU

Subarea Node

LU PU PC SSCP LU

RM LNS LU-LU HS SSCP-LU HS

SESSION_
DEACTIVATED UNBIND
o< o< 0 0

L +RSP
>o

I PC_HS_DISCONNECT
o--->o

I SE SS END
0 >o

L:~=~~~~~!o
Figure 4-24. LU-LU Session Termination by Remote LU

Chapter 4. LU Network Services 4-45

INTRODUCTION IQ FORMAL DESCRIPTION

The remaining pages of this chapter contain
the formal description of LNS. This
description consists of procedures,
finite-state machines CFSMs), and data struc­
tures used only by LNS. The procedures are
divided into two sections: High-level and
low-level. The high-level procedures are
organized hierarchically. The highest level
is the root procedure of the calling tree,
named LNS C same as the overall component) •
The LNS root procedure calls the other
high-level procedures.

The low-level procedures are arranged alpha­
betically by name. Some are called by the

high-level procedures; the ~thers are called
by the low-level procedures.

Throughout this formal description, certain
error checks are described. The error checks
that all implementations make are identified
as being required. The other error checks
described herein are optional; implementa­
tions may make some, none, or all of these
checks. These required and optional error
checks are the only error checks that imple­
mentations make.

4-46 SNA Format and Protocol Reference Hanwa! for LU Type 6.2

HIGH-LEVEL PROCEDURES

LNS

FUNCTION:

INPUT:

OUTPUT:

LU network services CLNSJ is responsible for activating and deactivating ses­
sions between this LU and another LU or a control point (CPI. There is one
LNS process per LU in the node, and it is created !destroyed) when the LU is
created (destroyed). LNS receives records from the resources manager CRH),
half-session CHSJ, and nodal NAU manager CNNMl processes. When the records
are received, they are routed to the appropriate procedures where they are
processed. LNS uses process data (called LOCAL! that can be accessed by any
procedure in the LNS process.

Records from RM, HS, and NNM

Received records routed to appropriate procedures in LNS

Referenced procedures, FSMs, and data structures:
PROCESS_RECORD_FROM_RM
PROCESS_RECORO_FROM_HS
PROCESS_RECORO_FROM_NNM
RM_TO_LNS_RECORO
NNM_TO_LNS_RECORO
HS_TO_LNS_RECORD
LOCAL
LUCB

Set up addressability to the control blocks used by LNS. The LNS

page
page
page
page
page
page
page
page

process data (LOCAL) is a data area that may be referenced by any procedure
or FSM in LNS. LOCAL is referenced only within LNS.
The LU control block ILUCBl, partner-LU control block CPARTNER_LU in
LUCB.PARTNER_LU_LISTl, and mode control block !MODE in PARTNER_LU.MODE_LISTl
are used but not created by LNS. The CP-LU control block CCPLU_CB in
LOCAL.CPLU_LISTl and LU-LU control block CLULU_CB in LOCAL.LULU_CB_LISTl are
created and used only by LNS.

Do until LNS process is destroyed.
Select based on one of the following conditions:

When record is received from RM
Call PROCESS RECORD FROM RMCRM TO LNS RECORD) (page 4-481.

When record is ;eceived fro; HS - - -
Call PROCESS_RECORO_FROM_HSCHS_TO_LNS_RECORDl !page 4-48).

When record is received from NNM
Call PROCESS_RECORD_FROM_NNMCNNM_TO_LNS_RECORDl !page 4-50).

4-48
4-48
4-50
A-30
A-21
A-10
4-99
A-1

Chapter 4. LU Network Services 4-47

PROCESS_RECORD_FROH_Rtt

PROCESS_RECORD_FROH_RH

FUNCTION: Route records received from RH to appropriate procedures.

INPUT: Rtt_TO_LNS_RECORD (contains a request to activate or deactivate a session>

Referenced procedures, FSMs, and data structures:
PROCESS_ACTIVATE_SESSION
PROCESS_DEACTIVATE_SESSION
RM_TO_LNS_RECORD
ACTIVATE_ SESSION
DEACTIVATE_SESSION

Select based on RM_TO_LNS_RECORD type:
When type is ACTIVATE_SESSION

Call PROCESS_ACTIVATE_SESSIONIACTIVATE_SESSIONl ~page 4-78).
When type is DEACTIVATE_SESSION

Call PROCESS_DEACTIVATE_SESSIONIDEACTIVATE~SESSION) Cpage 4-861.

PROCESS_RECORD_FROH_HS

page 4-78
page 4-86
page A-30
page A-31
page A-31

FUNCTION: Route records received from the half-session !HS> process to the appropriate
procedures. The HS process represents either an LU-LU or an LU-CP session.
If the record cannot be routed, a negative response is sent or the error is
logged.

INPUT: HS_TO_LNS_RECORD (usually contains a network services BIU>

Referenced procedures, FSMs, and data structures:
PROCESS_INIT_HS_RSP
PROCESS_ABORT_HS
PROCESS_CINIT_RQ
PROCESS_NOTIFY_RQ
PROCESS_ECHOTEST_RQ
PROCESS_CLEANUP_RQ
PROCESS_CTERM_RQ
PROCESS_INIT_SELF_RSP
PROCESS_TERM_SELF_RSP
PROCESS_REQECHO_RSP
PROCESS_NOTIFY_RSP
BUILD_ANO_SEND_RSP_OR_LOG
LOCAL
HS_ TO_LNS_RECORD
INIT_HS_RSP
ABORT_HS
HS_RCV_RECORD

4-48 SNA Format and Protocol Reference Manual for LU Type 6.2

page 4-87
page 4-78
page 4-81
page 4-88
page 4-86
page 4-83
page 4-84
page 4-87
page 4-90
page 4-89
page 4-88
page 4-66
page 4-99
page A-10
page A-11
page A-11
page A-11

Initialize LOCAL.SENSE_CODE to x•oooooooo•.

Select based on HS_TO_LNS_RECORD type:

PROCESS_RECORD_FROH_HS

When type is INIT_HS_RSP CThis record is received only from LU-LU half-sessions.
INIT_HS_RSP from CP-LU half-session is explicitly received elsewhere.)

Call PROCESS_INIT_HS_RSPCINIT_HS_RSP) Cpage 4-87>.

When type is ABORT_HS (received only from LU-LU half-sessions)
Call PROCESS_ABORT_HSCABORT_HSJ Cpage 4-78).

When type is HS_RCV_RECORD (received only from CP-LU half-sessions)
CHS_RCV_RECORD always contains an NS header)

Optionally check the format of the RH Csee Figure 4-2 on page 4-8 for correct
RH formats I.

If there is an RH format error then
Call BUILD_AND_SEND_RSP_OR_LOGCHS_RCV_RECORD> Cpage 4-66)
to send a negative response or log the error.

Else
If HS_RCV_RECORD contains a request CRH.RRI=RQ) then

Select based on the NS header (first 3 bytes) in HS_RCV_RECORD.RU:
When CINIT

Call PROCESS_CINIT_RQCHS_RCV_RECORD) Cpage 4-81).
When NOTIFY

Call PROCESS_NOTIFY_RQCHS_RCV_RECORD> !page 4-88).
When ECHOTEST

Call PROCESS_ECHOTEST_RQCHS_RCV_RECORO) Cpage 4-861.
When CLEANUP and this node is a subarea node

Call PROCESS_CLEANUP_RQCHS_RCV_RECORD> !page 4-83).
When CTERM and this node is a subarea node

Call PROCESS_CTERM_RQIHS_RCV_RECORD) (page 4-841.
Otherwise

Set LOCAL.SENSE_CODE to X'l0030000' (function not supported>.
Call BUILD_AND_SEND_RSP_OR_LOGCHS_RCV_RECORDJ !page 4-66)
to send a negative response or log the error.

Else IHS_RCV_RECORD contains a response)
Select based on the NS header !first 31bytes for positive responseJ 3 bytes

following sense data for negative response) in HS_RCV_RECORD.RU:
When INIT_SELF

Call PROCESS_INIT_SELF_RSPIHS_RCV_RECORD) (page 4-87).
When TERM_SELF

Call PROCESS_TERM_SELF_RSPCHS_RCV_RECORD> Cpage 4-90).
When REQECHO

Call PROCESS_REQECHO_RSPIHS_RCV_RECORD> !page 4-891.
When NOTIFY

Call PROCESS_NOTIFY_RSPCHS_RCV_RECORDJ !page 4-88>.
Otherwise

Optionally log the error with sense code 1003 (function not supported>.

Chapter 4. LU Network Services 4-49

PROCESS_RECORD_FROM_NNM

PROCESS_RECORD_FROM_NNM

FUNCTION: Route records received from the nodal NAU manager CNNM> to the appropriate
procedures.

INPUT: NNM TO LNS RECORD (usually contains a session activation or session deacti­
vatTon-BIU)

Referenced procedures, FSMs, and data structures:
PROCESS_BIND_RQ
PROCESS_BIND_RSP
PROCESS_UNBIND_RQ
PROCESS_UNBIND_RSP
PROCESS_ACTLU_RQ
PROCESS_DACTLU_RQ
PROCESS_PC_CONNECT_RSP
PROCESS_SESSION_ROUTE_INOP
PROCESS_HIERARCHICAL_RESET
NNM_TO_LNS_RECORD
BIND_RQ_RCV_RECORD
BIND_RSP_RCV_RECORD
UNBIND_RQ_RCV_RECORD
UNBIND_RSP_RCV_RECORD
ACTLU_RQ_RCV_RECORO
DACTLU_RQ_RCV_RECORD
PC_CONNECT_RSP
SESSION_ROUTE_INOP
HIERARCHICAL_RESET
LOCAL

Set LOCAL.SENSE_COOE to X'OOOOOOOO'.

Select based on NNM_TO_LNS_RECORD type:
When type is BIND_RQ_RCV_RECORD

Call PROCESS_BIND_RQ!BIND_RQ_RCV _RECORD l (page 4-80 L
When type is BIND_RSP_RCV_RECORD

Call PROCESS_BIND_RSP<BIND_RSP_RCV_RECORDl (page 4-81).
When type is UNBIND_RQ_RCV_RECORD

Call PROCESS_UNBINO_RQ(UNBIND_RQ_RCV_RECORDl Cpage 4-90).
When type is UNBIND_RSP_RCV_RECORD

Call PROCESS_UNBIND_RSPIUNBIND_RSP_RCV_RECORD> !page 4-91).
When type is ACTLU_RQ_RCV_RECORD

Call PROCESS_ACTLU_RQIACTLU_RQ_RCV_RECORDl (page 4~79).
When type is DACTLU_RQ_RCV_RECORD

Call PROCESS_DACTLU_RQ(OACTLU_RQ_RCV_RECORD) (page 4-85).
When type is PC_CONNECT_RSP

Call PROCESS_PC_CONNECT_RSP<PC_CONNECT_RSPl (page 4-89>.
When type is SESSION_ROUTE_INOP

Call PROCESS_SESSION_ROUTE_INOPCSESSION_ROUTE_INOP) Cpage 4-89).
When type is HIERARCHICAL_RESET

Call PROCESS_HIERARCHICAL_RESETCHIERARCHICAL_RESETl (page 4-86).

4-50 SNA Format and Protocol Reference Manual for LU Type 6.2

page 4-80
page 4-81
page 4-90
page 4-91
page 4-79
pcige 4-85
page 4-89
page 4-89
page 4-86
page A-21
page A-21
page A-22
page A-23
page A-23
page A-21
page A-22
page A-22
page A-23
page A-22
page 4-99

LOW-LEVEL eROCEDURES 11.t:! ALPHABETICAL ORDER)

ACTIVATE_SESSION_ERROR

FUNCTION: Perform error check;ng upon receipt of an activate-session request from RM.
These error checks are required.

OUTPUT: TRUE if errorl otherwise, FALSE. When TRUE, ERROR_TYPE is set. When FALSE,
CP_ID is set.

Referenced procedures, FSMs, and data structures:
LU_MODE_SESSION_LIMIT_EXCEEOED
ACTIVATE_ SESSION
PARTNER_ LU
MOOE
CP_ID
ERROR_ TYPE

If there is not sufficient storage ava;lable to start a new session then
Return with a value of TRUE CERROR_TYPE-RETRY>.

page 4-77
page A-31
page A-2
page A-3
page A-2
page 4-99

Determine the control point identif;er CCP_ID> to be associated w;th the new
LU-LU session. For LUs in a subarea node, the CP_ID is obtained from the
control block associated with the active SSCP-LU sess;on. If the SSCP-LU
session is not act;ve, the CP_ID cannot be obtained. For LUs ;n a peripheral
node, a "request CP ;dent;f;er CRQCPID>" record is sent to the local control
po;nt CPNCP). The PNCP attempts to determine the control po;nt to be used
based on the (partner LU, modename) pa;r. If determined successfully and an
active session ex;sts between th;s LU and that CP, a RQCPIO response record
is returned conta;n;ng the correct CP_IO. Otherwise, a negat;ve RQCPID
response ;s returned conta;n;ng no CP_ID.

If the CP_IO cannot be obtained then
Return w;th a value of TRUE CERROR_TYPE-NO_RETRY).

Locate the PARTNER_LU and MODE control blocks us;ng the partner LU and mode names
from the passed ACTIVATE_SESSION record.

Call LU_MOOE_SESSION_LIMIT_EXCEEOEOCPARTNER_LU.FULLY_QUALIFIED_LU_NAME, MODE,
ACTIVATE_SESSION.SESSION_TYPE, ACTIVE_AND_PENDING_ACTIVEI Cpage 4-771.

If the LU-LU session l;m;t for the (partner LU, modenamel pair w;11 be
exceeded then

Return w;th a value of TRUE CERROR_TYPE-RETRY>.

If the LU-LU sess;on lim;t assoc;ated w;th the control po;nt will be exceeded then
CThe control point has a session l;mit for every LU it is mediating sessions for.
Th;s limit indicates the maximum number of sessions this LU may have with other
LUs.)

Return with a value of TRUE CERROR_TYPE-RETRYl.

If the new LU-LU session is to be PNCP-mediated and th;s LU ;s unable to act as
a PLU then

Return w;th a value of TRUE CERROR_TYPE-NO_RETRYl.

If th;s LU ;s unable to act as a PLU or SLU then
Return w;th a value of TRUE CERROR_TYPE-NO_RETRY).

Return w;th a value of FALSE Cno error found).

Chapter 4. LU Network Servfoes 4-51

BIND_RQ_;STATE_ERROR

BIND_RQ_;STATE_ERROR

FUNCTION: Determine if there is a state error on receipt of a BIND request. Required
checks are explicitly indicated.

INPUT: BIND_RQ_;RCV_RECDRD

OUTPUT: TRUE if error; otherwise, FALSE. If TRUE, LOCAL.SENSE_CDDE is set to appro­
priate sense data.

Referenced procedures, FSMs, and data structures:
BIND_SESSION_LIMIT_EXCEEDED
LOCAL
BIHD_RQ_;RCV_RECORD
PARTNER_ LU
MODE
SESSION_ TYPE

Note: The following checks are optional except when specifically
as required.

indicated

If there is insufficient storage available to establish a new session then
Set LOCAL.SEHSE_CDDE to X'08120000' Cinsufficient resources).
Return with a value of TRUE Cerrorl.

If this LU is currently unable to act as an SLU then
Set LOCAL.SENSE_CODE to X'083AOOOO' CLU not enabled).
Return with a value of TRUE CerrorJ.

page 4-56
page 4-99
page A-21
page A-2
page A-3
page 4-99

Locate the PARTHER_LU control block using the user data PLU name field in BIND.
Locate the MODE control block using the user data mode name field in BIND.
If either control block cannot be located then

Set LOCAL.SENSE_CODE to X'0835xxxx' Cxxxx is offset to PLU name or mode name).
Return with a value of TRUE Cerrorl.

The following determines the session type for this LU so that the check for
whether the session limit will be exceeded may be made.

If parallel sessions are not supported with the partner LU and
MODE.MIN_CONWIHNERS_LIMIT = 1 then

Set SESSION_TYPE to FIRST_SPEAKER.

Else Cuse value in BIND request I
If BIND specifies the secondary as contention winner then

Set SESSION_TYPE to FIRST_SPEAKER.
Else

Set SESSION_TYPE to BIDDER.

Call BIND_SESSION_LIMIT_EXCEEDEDCPARTNER_LU.FULLY_QUALIFIED_LU_NAME, MODE;
SESSION_TYPE, BIND_RQ_;RCV_RECORD.ADDRESSI (page 4-561.

If the session limit will be exceeded then
Return with a value of TRUE CLOCAL.SENSE_CODE is set by BIND_SESSION_LIMIT_EXCEEDEDI.

Do consistency checks Con PS usage fields I for parallel sessions using either the
same partner-LU or the same Cpartner-LU, mode name) pair (see BIND request in Appendix El.

If there is a consistency error then
Set LOCAL.SENSE_CODE to X'0835xxxx' Cxxxx is offset to inconsistent fieldl.
Return with a value of TRUE Cerrorl.

If this LU's cryptography support capability does not match that specified in BIND then
Cthis check is required>

Set LOCAL.SENSE_CODE to X'0835xxxx' Cxxxx is offset to cryptography fieldl.
Return with a value of TRUE (error).

If cryptography is supported with the partner LU, but the cryptography
component Cthat enciphers and deciphers) is not active then Cthis check is required)

Set LOCAL.SENSE_CODE to X'08480000' (cryptography function inoperative).
Return with a value of TRUE (error).

If a duplicate user data session instance identifier exists then (another active session
is using the same identifier--use SESSION_ID field in LULU_CBI

Set LOCAL.SENSE_CODE to X'08520001' Cduplicate session-activation request>.
Return with a value of TRUE (error).

4-52 SNA Format and Protocol Reference Manual for LU Type 6.2

If the SLU supports sending segments, the PLU does not support receiving
segments, and the lower bound of the maximum RU size (see the discussion
in BIND [page 4-19)) sent for this !partner-LU, mode name) pair
is greater than the maximum RU size for the link then

BIND_RQ_STATE_ERROR

Set LOCAL.SENSE_CODE to X'0835xxxx' (xxxx is offset to segmenting field>.
Return with a value of TRUE (error).

BIND_RSP_STATE_ERROR

FUNCTION: Perform state error checking on a received BIND response. Required checks are
explicitly indicated.

INPUT: BIND_RSP_RCV_RECORD, LULU_CB

OUTPUT: TRUE if error; otherwise, FALSE

Referenced procedures, FSMs, and data structures:
BIND_RSP_RCV_RECORD
LULU_CB

Note: The following checks are done only on positive response to BIND and
are optional except where explicitly indicated as required.

page A-22
page A-5

If the BIND request specified that an alternate code set will not be used and
the BIND response specifies that an alternate code set may be used then

Return with a value of TRUE (error).

Pacing and maximum RU size checks

If the pacing staging indicators in the BIND response are not the same as
those specified in the BIND request then

Return with a value of TRUE (error).

If secondary-to-primary pacing is one-stage and the secondary send window size
in the BIND response is not the same as that specified in the BIND request then

Return with a value of TRUE (error).

If the secondary receive window size in the BIND response is greater than that
specified in the BIND request or the primary send window size is greater than
that specified in the BIND request then (a window size of 0 is treated as
infinitely large for these comparisons I

Return with a value of TRUE !error).

If the primary receive window size in the BIND response is not the same as
that specified in the BIND request then

Return with a value of TRUE (error).

Determine if the secondary or primary send maximum RU sizes are within installation­
defined bounds. If path control for the PLU does not support segmenting, then the
secondary send maximum RU size must not exceed the maximum size allowed on the link.

If the secondary or primary send maximum RU sizes are not within the installation­
defined bounds then

Return with a value of TRUE CerrorJ.

Chapter 4. LU Network Services 4-53

BIND_RSP_STATE_ERROR

PS usage checks

If there are other active sessions for this (partner-LU, ·mode name) pair and
the values of the BIND response fields for synchronization level and session
reinitiation do not equal those of the other active sessions then

Return with a value of TRUE (consistency error).

Else (no other sessions active for this (partner-LU, mode name) pair)
If the BIND response specifies a synchronization level of Confirm, Sync Point,
and Backout and the BIND request specified only Confirm then

Return with a value of TRUE (error).
If the BIND response specifies session reinitiation responsibility as not
operator controlled and the BIND request specified operator controlled then

Return with a value of TRUE (error).

If the BIND response specifies session reinitiation responsibility as
secondary will reinitiate and the BIND request specified primary will
reinitiate then

Return with a value of TRUE (error).

If the BIND response specifies session reinitiation responsibility as
primary will reinitiate and the BIND request specified secondary will
reinitiate then

Return with a value of TRUE (error).

If the values of the BIND response fields for parallel sessions support and
change number of sessions support are not the same as specified in the BIND
request then

Return with a value of TRUE Cerrorl.

Contention winner checks

If the BIND response specifies parallel sessions supported then
If the value of the BIND response contention winner field is not the
same as that specified in the BIND request then

Return with a value of TRUE (error).

Else (parallel sessions not supported)
If the BIND response contention winner is specified as the primary and the

BIND request was specified as the secondary then
Return with a value of TRUE (error).

Cryptography checks Cthese checks are required).

If the BIND response cryptography field values are not the same as those specified
in the.BIND request then

Return with a value of TRUE CerrorJ.

PLU name (not in user data) checks

If the primary LU name (the one not in the User Data field> in the BIND
response is not the same as that specified in the BIND request then

Return with a value of TRUE (error).

4-54 SNA Format and Protocol Reference Manual for LU Type 6.2

User data subfield checks

If the user-data mode name in the BIND response is not the same as that
specified in the BIND request then

Return with a value of TRUE (error).

If the user-data session-instance identifier in the BIND response is not
specified correctly (see page E-16) then

Return with a value of TRUE (error).

URC checks

If the URC in the BIND response is not the same as that specified
in the BIND request then

Return with a value of TRUE (error).

Return with a value of FALSE lno error).

BIND_RSP_STATE_ERROR

Chapter 4. LU NetNOrk Services 4-55

BIND_SESSIOH...;LIHIT_EXCEEDED

BIND_SESSION_LIHIT_EXCEEDED

FUNCTION:

INPUT:

OUTPUT:

Deter11ine whether or not session li11Hs are exceeded for a received BIND
request.

PARTNER_LU.FULLY_QUALIFIED....;LUNAHE, MODE, SESSION_TYPE (FIRST_SPEAKER or BID­
DER), ADDRESS <TH address fields from the received BIND request).

TRUE if limits exceededJ otherwise, FALSE. If TRUE, LOCAL.SENSE_CODE is set
to appropriate sense data.

Referenced procedures, FSHs, and data structures:
LU_HODE_SESSION_LIHIT_EXCEEDED
LOCAL
HOOE
ADDRESS
PARTNER_ LU

page 4-77
page 4-99
page A-3
page A-33
page A-2

Call LU_HODE_SESSIOH_LIHIT_EXCEEDED(PARTNER...;LU.FULLY....;QUALIFIED_LU_NAHE, MODE, SESSION_TYPEt AC
TIVEI

!page 4-771.
If the session limit will be exceeded then

Return with a value of TRUE CLOCAL.SENSE_CODE is set by
LU_HODE_SESSION_LIHIT_EXCEEDED>.

The following handles BIND race conditions.
Call LU_HODE_SESSION_LIMIT_EXCEEDEDCPARTNER_LU.FULLY_QUALIFIED_LU_NAME,HODE,SESSION_TYPE,

ACTIVE_AND_PENDING_ACTIVE) Cpage 4-77).
If the session limit will be exceeded then CLOCAL.SENSE_CODE is set if the
limit will be exceeded)

Determine which LU is the BIND race winner. A comparison is made between the
SLU name and PLU name CPARTNER_LU.FULLY_QUALIFIED_LU_NAME) using the EBCDIC collating sequ

ence.

#-'

The "greater" one is the winner. Before the comparison is made, the shorter
name is padded with space CX'40') characters so that the lengths are equal.
If neither LU name is known, the result is equivalent to name equality in the
comparison !this can occur only for LUs in peripheral nodes that do not know
their names). When this occurs, the winner is determined by' using the ODAI
field in the ADDRESS of the BIND request. If the ODAI value is o, then this
LU is the winnerJ otherwise, the other LU is the winner.

If this LU is the winner then
Return with a value of TRUE.

Else
Reset LOCAL. SENSE_ CODE to X' 00000000' •
Return with a value of FALSE.

Else (session limit will not be exceeded)
Return with a value of FALSE.

4-56 SNA Format and Protocol Reference Manual for LU Type 6.2

BUILD_AND_SEND_ACT_SESS_RSP_NE6

BUILD_AND_SEND_ACT_SESS_RSP_NE6

FUNCTION: Build and send ACTIVATE_SESSIOH_RSP (negative> to RM.

INPUT: Correlator (in LULU_CB or ACTIVATE_SESSIOHJ to activate-session request and
ERROR_TYPE (indicates retry or no retryJ.

OUTPUT: ACTIVATE_SESSION_RSP sent to RM

Referenced procedures, FSMs, and data structures:
ACTIVATE_SESSION_RSP
ACTIVATE_ SESSION
LULU_CB
ERROR_JTYPE

Create ACTIVATE_SESSION_RSP record.
Set ACTIVATE_SESSION_RSP.CORRELATOR to passed correlator.
Set ACTIVATE_SESSION_RSP.TYPE to NEG.
Set ACTIVATE_SESSION_RSP.ERROR_TYPE to passed ERROR_TYPE.

Send ACTIVATE_SESSION_RSP to RM.

BUILD_AND_SEND_ACT_SESS_RSP_POS

FUNCTION: Build and send ACTIVATE_SESSION_RSP lpositiveJ to RM.

INPUT: LULU_CB

OUTPUT: ACTIVATE_SESSION_RSP sent to RM

Referenced procedures, FSMs, and data structures:
LULU_ CB
ACTIVATE_SESSIOH_RSP

Create ACTIVATE_SESSION_RSP record.

page A-20
page A-31
page A-5
page 4-99

page A-5
page A-20

Set ACTIVATE_SESSION_RSP.CORRELATOR to LULU_CB.CORRELATOR (enables RM to correlate
this response with the original ACTIVATE_SESSION request).

Set ACTIVATE_SESSION_RSP.TYPE to POS !positive).
Set ACTIVATE_SESSION_RSP.HS_ID to LULU_CB.LU_LU.HS_ID lthe identifier of the
half-session just activated).

Set ACTIVATE_SESSION_RSP.SESSIOH_INFORMATION.HALF_SESSION_TYPE to
LULU_CB.HALF_SESSION_TYPE !primary or secondary).

Set ACTIVATE_SESSION_RSP.SESSIOH_INFORMATION.BRACKET_TYPE to LULU~CB.SESSION_TYPE
!first speaker or bidder).

Send ACTIVATE_SESSION_RSP to RM.

Chapter 4. LU Network Services 4-57

BUILD_AND_SEND_ACTLU_RSP~NEG

BUILD_AND_SEND_ACTLU_RSP_NEG

FUNCTION: Build and send a negative ACTLU response.

INPUT: ACTLU_RQ,_RCV_RECORD

OUTPUT: ACTLU_RSP_SEND_RECORD sent to NNl1

Referenced procedures, FSMs, and data structures:
LOCAL
ACTLU_RQ_RCV_RECORD
ACTLU_RSP_SEND_RECORD

Create ACTLU_RSP_SEND_RECORD.
Set ACTLU_RSP_SEND_RECORD.LU_ID to this LU's identifier.
Copy the PC_ID, ADDRESS, EFI, SNF, and RH from the ACTLU_RQ,_RCV_RECORD to

the ACTLU_RSP_SEND_RECORD.
Set ACTLU_RSP_SEND_RECORD.DCF to the apprc>priate value.
Set ACTLU_RSP_SEND_RECORD.RH to indicate negative response (SD, NEG, and
byte 2 of RH set to all O's).

page 4-99
page A-21
page A-17

Set ACTLU_RSP_SEND_RECORD.RU to the sense data (from LOCAL.SENSE_CODE> followed
by the ACTLU request code.

Send the ACTLU_RSP_SEND_RECORD to the CP via the nodal. NAU manager.

4-58 SNA Format and Protocol· Reference Manual for W Type 6.2

BUILD_AND_SEND_ACTLU_RSP_POS

BUILD_AND_SEND_ACTLU_RSP_POS

FUNCTION: Build and send a positive ACTLU response.
half-session.

Also, initialize the CP-LU

INPUT: ACTLU_RQ_RCV_RECORD, INIT_HS_RSP

OUTPUT: CP-LU half-session initialized and ACTLU_RSP_SEND_RECORD sent to NNH

Referenced procedures, FSMs, and data structures:
FSM_STATUS
LULU_CB
ACTLU_RQ_RCV_RECORD
ACTLU_RSP_SEND_RECORD
INIT_HS
INIT_HS_RSP

Create ACTLU_RSP_SEND_RECORD.
Set ACTLU_RSP_SEND_RECORD.LU_ID to this LU's identifier.

page 4-92
page A-5
page A-21
page A-17
page A-16
page A-11

Copy the PC_ID, ADDRESS, EFI, SNF, and RH fields from the ACTLU_RQ_RCV_RECORD
into the ACTLU_RSP_SEND_RECORD.

Set ACTLU_RSP_SEND_RECORD.RH to indicate positive response IRSP, ~so, POS,
and RH byte 2 set to all O's).

The following builds the ACTLU response RU--see Appendix E description for
field settings not explicitly shown here.

Find all LU-LU sessions (represented by LULU_CBs) being
mediated by this CP I the CP_ID in ACTLU matches that in the LULU_CBl.

If there are no active or pending active LU-LU sessions being mediated by this
CP then

Set ACTLU response type of activation to cold.
Reset all LU-LU sessions being mediated by this CP by calling FSM_STATUS
with a RESET_NORMAL signal (page 4-92).

Else
Set ACTLU response type of activation to ERP.

If FM profile 6 is supported by this LU then
Set the FM profile field in the ACTLU response to 6.

Build control vector X'OO' (Appendix El.
Build control vector X'OC' (Appendix El. Peripheral nodes always suppress
sending the SESSST RU; subarea nodes always send SESSST. The LU-LU session
count is determined by counting all the LULU_CBs associated with (being
mediated byl this CP. For peripheral node sessions with an SSCP las opposed
to a PNCP) the primary LU capability is inhibited (not able ever to be a primary),
the LU-LU session limit is 1, and parallel session capability is not supported.

Put the control vectors in the ACTLU response RU.
(End of building ACTLU response RU.>

Create the new CP-LU half-session process.
Create an INIT_HS record to be sent to the CP-LU half-session.
Set INIT_HS.PC_ID to ACTLU_~Q_RCV_RECORD.PC_ID.
Set INIT_HS.TYPE to secondary (LU is always secondary with respect to CPJ.
Set INIT_HS.DATA_TYPE to indicate this record contains an ACTLU_IMAGE.
Set INIT_HS.ACTLU_IMAGE.FM_PROFILE and TS_PROFILE to the corresponding field values

from the ACTLU response RU.
Set INIT HS.ACTLU IMAGE.MAX RU SIZE to the maximum RU size allowed on this session

limplem;ntation-definedl. - -

Send the ACTLU_RSP_SEND_RECORD to the CP via the nodal NAU manager INNH).
Send the INIT_HS record to the CP-LU half-session.
Receive the INIT_HS_RSP from the CP-LU half-session (this response is always positive>.

This response is used just so CP-LU and LU-LU half-sessions operate in the same
manner.

Chapter 4. LU NetNOrk Services 4-59

BUILD_AND_SEND_BIND_RQ

BUILD_AND_SEND_BIND_RQ

FUNCTION: Build and send a BIND request.

INPUT: LULU_CB

OUTPUT: BIND_RQ_SEND_RECORD sent to NN1'1

Referenced procedures, FSMs, and data structures:
LULU_CB
BIND_RQ_SEND_RECORD

Create BIND_RQ_SEND_RECORD to contain the BIND request.
Set BIND_RQ_SEND_RECORD.LU_ID to this LU's identifier.

page A-5
page A-17

Set BIND_RQ_SEND_RECORD.PC_ID to LULU_CB.LU_LU.PC_ID (identifies the path control
that the BIND will flow through>.

Set BIND_RQ_SEND_RECORD.ADDRESS to LULU_CB.LU_LU.ADDRESS CTH addresses).
Set BIND_RQ_SEND_RECORD.EFI to EXP (expedited>.
Set BIND_RQ_SEND_RECORD.SNF to a unique identifier. This identifier is
also saved in LULU_CB.SENT_BIND_RQ.SNF for correlating the BIND response later.

Set BIND_RQ_SEND_RECORD.RH to the appropriate values (figure 4-3 on page 4-16).
Set BIND_RQ_SEND_RECORD.RU to the appropriate values (see page 4-19).
Set BIND_RQ_SEND_RECORD.DCF to the appropriate value.
Save the BIND request in the LULU_CB for later uses (e.g., checking the BIND response).

Send BIND_RQ_SEND_RECORD to the other LU via the nodal NAU manager.

BUILD_AND_SEND_BIND_RSP_NEG

FUNCTION: Build and send a negative BIND response.

INPUT: BIND_RQ_RCV_RECORD

OUTPUT: BIND_RSP_SEND_RECORD sent to NNM

Referenced procedures, FSMs, and data structures:
LOCAL
BIND_RQ_RCV_RECORD
BIND_RSP_SEND_RECORD

Create the BIND_RSP_SEND_RECORD to contain the negative BIND response.
Set BIND_RSP_SEND_RECORD.LU_ID to this LU's identifier.
Copy the PC_ID, ADDRESS, EFI, SNF, and RH from the BIND_RQ_RCV_RECORD into

the BIND_RSP_SEND_RECORD.
Indicate negative response in BIND_RSP_SEND_RECORD.RH CRSP, SD, NEG, and
byte 2 of RH set to all O's).

page 4-99
page A-21
page A-17

Set BIND_RSP_SEND_RECORD.RU to LOCAL.SENSE_CODE followed by BIND request code.
Set BIND_RSP_SEND_RECORD.DCF field to appropriate value.

Send BIND_RSP_SEND_RECORD to the LU via the nodal NAU manager.

4-60 SHA Format and Protocol Reference Manual for LU Type 6.2

BUILD_AND_SENO_BIHD_RSP_POS

BUILO_AND_SEND_BIND_RSP_POS

FUNCTION: Bu;ld and send a pos;t;ve BIND response.

INPUT: BIND_RQ_RCV_RECORD, LULU_CB

OUTPUT: BIND_RSP_SEND_RECORD sent to NNM and BIND image returned Ci.e. BIND image from
BIND response just sent)

Referenced procedures, FSMs, and data structures:
LULU_CB
BIND_RQ_RCV_RECORD
BIND_RSP_SEND_RECORD
PARTNER_ LU
MODE

Create BIND_RSP_SEND_RECORD to contain the positive BIND response.
Set BIND_RSP_SEND_RECORD.LU_ID to this LU's identifier.
Copy the PC_ID, ADDRESS, EFI, SNF, and RH from the BIND_RQ_RCV_RECORD ;nto

the BIND RSP SEND RECORD.

page A-5
page A-21
page A-17
page A-2
page A-3

Set BIND_RSP_SEND_RECORD.RH to indicate pos;tive response CRSP, ~so, POS, and
byte 2 of RH set to all O'sl.

Set BIND_RSP_SEND_RECORD.RU to the appropriate values Csee page 4-251.
The PARTNER LU, MODE, and LULU CB are used in construction of the BIND RU.

Set BIND_RSP=SEND_RECORD.DCF to-appropriate value.

Send BIND_RSP_SEND_RECORD to the other LU via the nodal NAU manager.
Return a copy of BIND image from the BIND response RU.

BUILD_AND_SEND_BINDF_RQ

FUNCTION: Build and send BINDF !BIND failure) request to SSCP cv;a SSCP-LU
half-session). This procedure is used only within subarea nodes.

INPUT: Reason code Ctype of BINDF to send>, LULU_CB, sense data

OUTPUT: HS_SEND_RECORD (containing BINOF request) sent to SSCP-LU half-sess;on

Referenced procedures, FSMs, and data structures:
LULU_CB
HS_SEND_RECORD

page A-5
page A-16

If this node is a subarea node then (the BINDF request is sent only by subarea nodes I
Create HS_SEND_RECORD to contain the BINDF request.
Set HS_SEND_RECORD.EFI to NORMAL.
Set HS_SEND_RECORD.SNF to a unique identifier.
Set HS_SEND_RECORD.DCF to appropriate value.
Set HS_SEND_RECORD.RH to appropriate values !Figure 4-2 on page 4-81.
Set HS_SEND_RECORD.RU (see BINDF request in Appendix El. Set the BINDF reason
field in accordance with the passed reason code and the BINDF sense data to the
passed sense data parameter. The passed LULU_CB contains information (e.g., addresses)
used in building the RU.

Send HS_SEND_RECORD to the CP via the CP-LU half-session.

Chapter 4. LU Network Services 4-61

BUILO_AND_SEND_CINIT_RSP

BUILD_AND_SEND_CINIT_RSP

FUNCTION: Build and send a positive or negative CINIT response.

INPUT: HS_RCV_RECORO containing CINIT request. LOCAL.SENSE_CODE indicates what type
of response (positive or negative) to build.

OUTPUT: HS_SEND_RECORD (containing CINIT response) sent to CP via CP-LU half-session

Referenced procedures, FSMs, and data structures:
LOCAL
HS_RCV_RECORO
HS_SENO_RECORD

Create HS_SEND_RECORD to contain CINIT response.
Copy the EFI, SNF, and RH from the HS_RCV_RECORD to the HS_SEND_RECORO.

If LOCAL.SENSE_CODE = X'OOOOOOOO' then Cbuild a positive response)
Set HS_SEND_RECORD.RH to indicate positive response CRSP, ~so, POS, and
byte 2 of RH set to all O's).

Set HS_SEND_RECORD.RU to the CINIT request code.

page 4-99
page A-11
page A-16

If there are any unknown control vectors in the CINIT request RU then
Append control vector X'FE' to the CINIT response RU (see control vectors

in Appendix E).

Else Cbuild a negative response)
Set HS_SEND_RECORD.RH to indicate negative response CRSP, SO, NEG, and
byte 2 of RH set to all O's).

Set HS_SEND_RECORD.RU to the sense data CLOCAL.SENSE_CODE) followed by
the CINIT request code.

Set the HS_SEND_RECORO.DCF to the appropriate value.
Send the HS_SEND_RECORD (containing the CINIT response) to the CP via the

CP-LU half-session.

4-62 SNA Format and Protocol Reference Hanual for LU Type 6.2

BUILD_AND_SEND_DACTLU_RSP

BUILD_AND_SEND_DACTLU_RSP

FUNCTION: Build and send a positive or negative DACTLU response.

INPUT: DACTLU_RQ_RCV_RECORD

OUTPUT: DACTLU_RSP_SEND_RECORD sent to CP via nodal NAU manager

Referenced procedures, FSMs, and data structures:
LOCAL
DACTLU_RSP_SEND_RECORD
DACTLU_RQ_RCV_RECORD

Create the DACTLU_RSP_SEND_RECORD to contain the DACTLU response.
Set DACTLU RSP SEND RECORD.LU ID to this LU's identifier.

page 4-99
page A-17
page A-22

Copy the PC_Io: ADDRESS, EFI,-SNF, and RH from the DACTLU_RQ_RCV_RECORD into
the DACTLU_RSP_SEND_RECORD.

If LOCAL.SENSE_CODE = X'OOOOOOOO' then Cbuild a positive response)
Set DACTLU_RSP_SEND_RECORD.RH to indicate positive response lRSP, ~so, POS,

and byte 2 of RH set to all O's).
Set DACTLU_RSP_SEND_RECORD.RU to DACTLU request code.
Set DACTLU_RSP_SEND_RECORD.DCF to appropriate value.

Else (build a negative response)
Set DACTLU_RSP_SEND_RECORD.RH to indicate negative response CRSP, SD, NEG,

and byte 2 of RH set to all O's).
Set DACTLU_RSP_SEND_RECORD.RU to LOCAL.SENSE_CODE followed by the DACTLU

request code.
Set DACTLU_RSP_SEND_RECORD.DCF to appropriate value.

Send D~r,TLU_RSP_SEND_RECOR~ to the CP via the nodal NAU manager.

BUILD_AND_SEND_DEACTIVATE_SESS

FUNCTION: Build and send CTERM_DEACTIVATE_SESSION to RM. This is sent to RM when a
CTERM-ORDERLY is received for ar. active LU-LU session. LNS cannot deactivate
a session in an orderly manner because it does not know when to send BIS.
Therefore, it must tell RM to do it.

INPUT: HS identifier of the half-session to be deactivated

OUTPUT: CTERM_DEACTIVATE_SESSION sent to RM

Referenced procedures, FSMs, and data structures:
CTERM_DEACTIVATE_SESSION

Create CTERM DEACTIVATE SESSION record.
Set CTERM_DEACTIVATE_SESSION.HS_ID to passed HS identifier (identifies the
half-session to be deactivated).

Send CTERM_DEACTIVATE_SESSION to RM.

page A-20

Chapter 4. LU Network Services 4-63

BUILD_AND_SEND_HIER_RESET_RSP

BUILD_AND_SEND_HIER_RESET_RSP

FUNCTION: Build and send a HIERARCHICAL_RESET response to the nodal NAU manager.

INPUT: HIERARCHICAL_RESET

OUTPUT: HIERARCHICAL_RESET_RSP sent to nodal NAU manager

Referenced procedures, FSMs, and data structures:
HIERARCHICAL_RESET_RSP
HIERARCHICAL_RESET

Create HIERARCHICAL_RESET_RSP record.
Set HIERARCHICAL_RESET_RSP.LU_ID to this LU's identifier.

page A-18
page A-22

Copy the PC_ID and CP_ID fields from HIERARCHICAL_RESET into HIERARCHICAL_RESET_RSP.

Send HIERARCHICAL_RESET_RSP to the nodal NAU manager.

BUILD_AND_SEND_INIT_Hs

FUNCTION: Build an INIT_HS Cinitialize half-session! record and send it to the
half-session designated by the passed LULU_CB.

INPUT: LULU_CB, BIND image, and half-session type CPRI or SEC>

OUTPUT: INIT_HS sent to HS !LU-LU half-session)

Referenced procedures, FSMs, and data structures:
LULU_CB
INIT_HS

Create INIT HS record.

page A-5
page A-16

Set INIT_HS~PC_ID to LULU_CB.LU_LU.PC_ID (path control the LU-LU half-session will
send to and receive from).

Set INIT_HS.TYPE to passed half-session type parameter (primary or secondary).
Set INIT_HS.DATA_TYPE to BIND image type !indicates data is a BIND image).
Set INIT_HS.DATA.BIND_IMAGE to the passed BIND image <half-session protocols are based on
fields in the BIND image).

Send INIT_HS record to HS Cthe LU-LU half-session identified by LULU_CB.LU_LU.HS_IDJ.

4-64 SNA Format and Protocol Reference Manual for LU Type 6.2

BUILD_AND_SEND_INIT_RQ

BUILD_AND_SEND_INIT_RQ

FUNCTION: Build and send an INIT-SELF request to the control point CSSCP or PNCPI.

INPUT: LULU_CB, DLU role !PLU or SLU>

OUTPUT: HS_SEND_RECORD (containing INIT-SELF request) sent to CP-LU half-session

Referenced procedures, FSMs, and data structures:
LULU_CB
HS_SEND_RECORD

Create HS_SEND_RECORD to contain INIT-SELF request.
Set HS SEND RECORD.EFI to NORMAL.
Set HS=SEND=RECORD.SNF to a unique identifier.
Set HS_SEND_RECORD.RH to appropriate values (figure 4-2 on page 4-81.
Set HS_SENO_RECORD.RU to appropriate values (see INIT-SELF request in
The choice of initiate type (I or I/QI is installation defined. The
specification is set according to the passed OLU role parameter.

Set HS_SENO_RECORO.OCF to the appropriate value.

page A-5
page A-16

Append i >< E I.
PLU/SLU

(Save information from the !NIT-SELF request. This information is used to correlate
with the INIT-SELF response [SNFJ and with the CINIT or BIND request CURCI.I

Set LULU CB.SENT INITIATE RQ.SNF to HS SEND RECORO.SNF.
Set LULU=CB.SENT=INITIATE=RQ.URC to th; URC-field of the INIT-SELF RU.

Send HS_SEND_RECORO to the CP via the CP-LU half-session.

Chapter 4. LU Network Services 4-65

BUILD_AND~SEND_RSP_OR_LOG

BUILD_AND_SEND_RSP_OR_LOG

FUNCTION: Build and send a positive or negative response to passed HS_RCV_RECORD if pos­
sible. If an error has occurred and a negative response cannot be sent, the
error is logged.

INPUT: HS_Rcv:_RECORD (to be responded to>. LOCAL.SENSE_CODE <has nonzero value ;f
error occurred)

OUTPUT: HS_SEND_RECORD <containing response) sent to HS (CP-LU half-session), or error
is logged

Referenced procedures, FSMs, and data structures:
LOCAL
HS_SEND_RECORD
HS_RCV_RECORD

page 4-99
page A-16
page A-11

If HS_RCV_RECORD contains a response or a request asking for no response then
If LOCAL.SENSE_CODE is nonzero then

Optionally log the error.

Else (request that requires a response)
Create HS_SEND_RECORD to contain response.
Set HS_SEND_RECORD.PIU to HS_RCV_RECORD.PIU (copy request PIU into response).
Set HS_SEND_RECORD.RH to indicate response <RSP, BC, EC, ~PAC, and byte 2
of RH set to all O's).

Set HS_SEND_RECORD.RU with data other than sense data. For formatted FMD
requests use the 3-byte NS header; for any non-FMD request use the 1-byte
request code; otherwise, use no data.

If LOCAL.SENSE_CODE = X'OOOOOOOO' then <build positive response)
Set HS_SEND_RECORD.RH to indicate a positive response <~so, POSJ.

Else (build negative response)
Set HS_SEND_RECORD.RH to in4icate a negative response CSD, NEG).
Insert LOCAL.SENSE_CODE in HS_SEND_RECORD.RU Cfirst 4 bytes of RU).

Set HS_SEND_RECORD.DCF to appropriate value.

Send HS_SEND_RECORD to the control point via the CP-LU half-session.

4-66 SNA Format and Protocol Reference Manual for LU Type 6.2

BUILD_AND_SEND_PC_CONNECT

BUILD_AND_SEND_PC_CONNECT

FUNCTION: Build and send a path control connect record. The purpose of this record is
to obtain lvia a response) the process ID lPC_IDl of the path control to which
BIND will be sent and get path control characteristics necessary to build a
BIND request. Also, for peripheral nodes only, this procedure obtains the
address that will represent the LU-LU session being activated. For subarea
nodes, this record may cause a virtual route to be activated.

INPUT: LULU_CB

OUTPUT: PC_CONNECT sent to nodal NAU manager

Referenced procedures, FSMs, and data structures:
LULU_CB
PC_ CONNECT

Create PC_CONNECT record.
Set PC_CONNECT.LU_ID to this LU's identifier.

page A-S
page A-18

Set PC_CONNECT.HS_ID to LULU_CB.LU_LU.HS_ID (half-session process identifier).

If this node is a peripheral node then
Set PC_CONNECT.TYPE to PERIPHERAL.
Set PC CONNECT.ALS to LULU CB.LU LU.ALS (identifies adjacent link station

to be-used for this LU-LU-session).

Else (subarea node)
Set PC CONNECT.TYPE to SUBAREA.
Set PC-CONNECT.PATH INFORMATION to the class-of-service and virtual-route-identifier­
list from the control vector X'OD' of the CINIT request. This information is used to
select the virtual route.

Set PC_CONNECT.SUBAREA_ADDRESS to the subarea portion of the address of the target LU.

Send PC_CONNECT to path control via the nodal NAU manager.

BUILD_AND_SEND_PC_HS_CONNECT

FUNCTION: Build and send a path control half-session connect record. The purpose of
this record is to tell path control a new half-session process has been
started that uses the specified address. Path control needs this
HS_ID/ADDRESS relationship in order to route incoming PIUs and build THs for
outgoing PIUs.

INPUT:

OUTPUT:

Process identifier lPC ID> of the path control to which
record is to be sent, process identifier CHS IDl of the
activated, ADDRESS (address for the half-session)

PC_HS_CONNECT sent to path control via nodal NAU manager

Referenced procedures, FSMs, and data structures:
PC_HS_CONNECT
ADDRESS

Create PC HS CONNECT record.
Set PC HS-CONNECT.LU ID to this LU's identifier.
Set Pc:Hs:coNNECT.PC=ID to passed path control identifier.
Set PC_Hs_CONNECT.HS_ID to passed half-session identifier.
Set PC_HS_CONNECT.ADDRESS to passed ADDRESS CTH addresses).

Send PC_HS_CONNECT to path control via the nodal NAU manager.

the PC_HS_CONNECT
half-session just

page A-18
page A-33

Chapter 4. LU Network Services 4-67

BUILD_AND~SEND_PC_HS_DISCONNECT

BUILD_AND_SEND_PC_HS_DISCONNECT

FUNCTION: Build and send a path control half-session disconnect record. This is to
notify path control that a half-session is deactivated.

INPUT: Half-session process identifier CHS ID>

OUTPUT: PC_HS_DISCONNECT sent to path control via nodal NAU manager

Referenced procedures, FSMs, and data structures:
PC_HS_DISCONNECT page A-18

Create PC_HS_DISCONNECT record.
Set PC_HS_DISCONNECT.LU_ID to this LU's identifier.
Set PC_HS_DISCONNECT.HS_ID to passed half-session identifier.

Send PC_HS_DISCONNECT to path control via nodal NAU manager.

BUILD_AND_SEND_SESS_ACTIVATED

FUNCTION: Build and send SESSION_ACTIVATED to RM to indicate that a half-session has
become active. It also indicates information about the half-session.

INPUT: LULU_CB

OUTPUT: SESSION_ACTIVATED sent to RM

Referenced procedures, FSMs, and data structures:
LULU_CB
SESSION_ACTIVATED

Create SESSION_ACTIVATED record.

page A-5
page A-20

Set SESSION_ACTIVATED.HS_ID to LULU_CB.LU_LU.HS_ID (identifies half-session that
has been .activated>.

Set SESSION_ACTIVATED.SESSION_INFORMATION.HALF_SESSION_TYPE to
LULU_CB.HALF_SESSION_TYPE <indicates primary or secondary).

Set SESSION_ACTIVATED.SESSION_INFORMATION.BRACKET_TYPE to LULU_CB.SESSION_TYPE
I indicates bidder or first speaker>.

Set SESSION_ACTIVATED.LU_NAME to LULU_CB.LUNAME.LOCAL I locally known name of the
target LU>.

Set SESSION_ACTIVATED.MODE_NAME to LULU_CB.MODENAME.

Send SESSION_ACTIVATED TO RM (notify RM that an LU-LU session has been activated>.

4-68 SNA Format and Protocol Reference Manual for LU Type 6.2

BUILD_AND_SEND_SESS_DEACTIVATED

BUILD_AND_SEND_SESS_DEACTIVATED

FUNCTION: Build and send SESSION_DEACTIVATED to RM to indicate that a session has been
deactivated.

INPUT: Process identifier (HS ID) of half-session deactivated, reason code (reason
for deactivation)

OUTPUT: SESSION_DEACTIVATED sent to RM

Referenced procedures, FSMs, and data structures:
SESSION_DEACTIVATED page A-21

Create SESSION DEACTIVATED record.
Set SESSION_DEACTIVATED.HS_ID to passed HS ID (identifies half-session that was
deactivated).

Set SESSION_DEACTIVATED.REASON to passed reason code (indicates the reason the
half-session was deactivated!.

Send SESSION_DEACTIVATED to RM !notify RM that an LU-LU session has been deactivated).

BUILD_AND_SEND_SESSEND_RQ

FUNCTION: Build and send SESSEND request to the control point (SSCP or PNCPl to indicate
that a session has ended.

INPUT: LULU_CB

OUTPUT: HS_SEND_RECORD (containing SESSEND request) sent to CP-LU half-session

Referenced procedures, FSMs, and data structures:
LULU_CB
HS_SEND_RECORD

Create HS_SEND_RECORD to contain SESSEND request.
Set HS_SEND_RECORD.EFI to NORMAL.
Set HS_SEND_RECORD.SNF to a unique identifier.
Set HS_SEND_RECORD.RH to appropriate values (figure 4-2 on page 4-8).
Set HS_SEND_RECORD.RU as specified in Appendix E. Fields from the LULU_CB
(e.g., addresses) are used in building this RU.

Send HS_SEND_RECORD to the control point via the CP-LU half-session.

page A-5
page A-16

Chapter 4. LU Network Services 4-69

BUILD_AND_SEND_SESSST_RQ

BUILD_AND_SEND_SESSST_RQ

FUNCTION: Build and send SESSST request to the control point CSSCP or PNCPJ to indicate
that a session has been activated.

INPUT: LULU_ CB

OUTPUT: HS_SENO_RECORD (containing SESSST request! sent to CP-LU half-session

Referenced procedures, FSMs, and data structures:
LULU_CB
HS_SEND_RECORD

Create HS_SEND_RECORD to contain SESSST request.
Set HS_SEND_RECORO.EFI to NORMAL.
Set HS_SEND_RECORD.SNF to a unique identifier.
Set HS_SENO_RECORO.RH to appropriate values (Figure 4-2 on page 4-81.
Set HS_SEND_RECORO.RU as specified in Appendix E. Fields from the LULU_CB
(e.g., addresses) are used in building this RU.

Send HS_SEND_RECORD to the control point via the CP-LU half-session.

BUILD_AND_SEND_TERM_RQ

page A-5
page A-16

FUNCTION: Build and send TERM-SELF request to the control point ISSCP or PNCPJ.

INPUT: LULU_CB, OEACTIVATE_SESSION.TYPE Ctype of TERM-SELF to send)

OUTPUT: HS_SEND_RECORD (containing TERM-SELF request! sent to HS CCP-LU half-session)

Referenced procedures, FSMs, and data structures:
HS_SEND_RECORD
LULU_CB
DEACTIVATE_ SESSION

Create HS_SEND_RECORO to contain the TERM-SELF request.
Set HS SEND RECORD.EFI to NORMAL.
Set HS=SENO=RECORD.SNF to a unique identifier.
Set HS_SEND_RECORD.RH to appropriate values CFigure 4-2 on page 4-8).

page A-16
page A-5
page A-31

Set HS_SEND_RECORD.RU to appropriate values (see TERM-SELF request in Appendix El.
The termination reason field is set according to the passed DEACTIVATE_SESSION.TYPE.
Fields from the LULU_CB (e.g., URC from the INIT-SELF request! are used in building
this RU.

Set HS_SENO_RECORO.OCF to the appropriate value.

Send HS_SEND_RECORO to the CP via the CP-LU half-session.

4-70 SHA Format and Protocol Reference Manual for LU Type 6.2

BUILD_AND_SEND_UNBIND_RQ

BUILD_AND_SEND_UNBIND_RQ

FUNCTION: Build and send an UNBIND request.

INPUT: LULU CB c;ndicates the LU-LU sess;on to UNBINDJ, UNBIND type code, sense data
Cused for format-or-protocol-error type UNBINDs onlyl

OUTPUT: UNBIND_RQ_SEND_RECORD sent to nodal NAU manager

Referenced procedures, FSMs, and data structures:
LULU_CB
UNBIND_RQ_SEND_RECORD

Create UNBIND_RQ_SEND_RECORD to contain UNBIND request.
Set UNBIND_RQ_SEND_RECORD.LU_ID to this LU's identifier.

page A-5
page A-19

Set UNBIND_RQ_SEND_RECORD.PC_ID to LULU_CB.LU_LU.PC_ID Cidentifies path control
through which the UNBIND will flow).

Set UNBIND_RQ_SEND_RECORD.ADDRESS to LULU_CB.LU_LU.ADDRESS Ito be used in the TH
address field I •

Set UNBIND_RQ_SEND_RECORD.EFI to EXP Cexpedited-flowl.
Set UNBIND_RQ_SEND_RECORD.SNF to a unique identifier. Also, save this identifier

in LULU_CB.SENT_UNBIND_RQ.SNF (used to correlate UNBIND response).
Set UNBIND_RQ_SEND_RECORD.DCF to the appropriate value.
Set UNBIND_RQ_SEND_RECORD.RH to the appropriate values CFigure 4-3 on page 4-161.
Set UNBIND_RQ_SEND_RECORD.RU to the appropriate values (see UNBIND request in Appendix El.

The UNBIND Type field is set according to the passed UNBIND type code. If the type is
X'FE' (format or protocol error) then the passed sense data is included in the UNBIND RU.

Send UNBIND_RQ_SEND_RECORD to the other LU via the nodal NAU manager.

BUILD_AND_SEND_UNBIND_RSP

FUNCTION: Build and send an UNBIND response.

INPUT: UNBIND_RQ_RCV_RECORD, LOCAL.SENSE_CODE I indicates what type of response [posi­
tive or negative] to build)

OUTPUT: UNBIND_RSP_SEND_RECORD sent to nodal NAU manager

Referenced procedures, FSMs, and data structures:
LOCAL
UNBIND_RQ_RCV_RECORD
UNBIND_RSP_SEND_RECORD

Create an UNBIND RSP SEND RECORD.
Set UNBIND_RSP_SEND_RECORO.LU_ID to this LU's identifier.
Set UNBIND_RSP_SEND_RECORD.PC_ID to UNBIND_RQ_RCV_RECORD.PC_ID.
Set UNBIND_RSP_SEND_RECORD.ADDRESS to UNBIND_RQ_RCV_RECORD.ADDRESS.
Set UNBIND_RSP_SEND_RECORD.EFI to EXP.
Set UNBIND_RSP_SEND_RECORD.SNF to UNBIND_RQ_RCV_RECORD.SNF.
Initialize UNBIND_RSP_SEND_RECORD.RH to UNBIND_RQ_RCV_RECORD.RH.
Indicate response RH CRSP and byte 2 of RH set to all O's).

If LOCAL.SENSE CODE = X'OOOOOOOO' then

page 4-99
page A-23
page A-19

Set UNBIND_RSP_SEND_RECORD.RH to indicate a positive response c~sD, POSI.

Else
Set UNBIND_RSP_SEND_RECORD.RH to indicate a negative response CSD, NEGI.

Build the UNBIND RU, including the sense data if necessary.
Set UNBIND_RSP_SEND_RECORD.DCF to appropriate value.

Send UNBIND_RSP_SEND_RECORD to the other LU via the nodal NAU manager.

Chapter 4. LU Network Services 4-71

BUILD_AND_SEND~UNBINDF_RQ

BUILD_AND_SEND_UNBINDF_RQ

FUNCTION: BuHd and send UNBINDF request to the SSCP (for subarea nodes only>.

INPUT: Sense data (from UNBIND negative response), LULU_CB

OUTPUT: HS_SEND_RECORD (containing UNBIND request) sent to HS (SSCP-LU half-session)

Referenced procedures, FSMs, and data structures:
LULU_ CB
HS.,.SEND_RECORD

page A-5
page A-16

If this node is a subarea node and this LU is primary then HJNBINDF is sent only by
primary LUs in subarea nodes)

Create HS_SEND_RECORD to contain UNBINDF request.
Set HS_SEND_RECORD.EFI to NORMAL.
Set HS_SEND_RECORD.SNF to a unique value.
Set HS_SEND_RECORD.RH to the appropriate values (figure 4-2 on page 4-81.
Set HS_SEND_RECORD.RU to the appropriate values lsee UNBINDF request in Appendix El.

Set sense data in the RU to the passed sense data. Indicate UNBIND error in
reaching SLU as the reason. Fields from the passed LULU_CB (e.g., addresses)
are used in building this RU.

Send HS_SEND_RECORD to the CP via the CP-LU half-session.

CINIT_R~STATE_ERROR

FUNCTION: Perform state error checking on received CINIT request.
optional.

These checks are

INPUT: HS_RCV_RECORD !containing CINIT request), LULU_CB pointer (if null, indicates
unsolicited CINIT; otherwise, indicates solicited CINIT)

OUTPUT: TRUE if error; otherwise, FALSE. If TRUE, LOCAL.SENSE_CODE is set to appro­
priate sense code.

Referenced procedures, FSMs, and data structures:
LU_MODE_SESSION_LIMIT_EXCEEDED
LOCAL
HS_RCV_RECORD
PARTNER_ LU
MODE
LULU_ CB
SESSION_ TYPE

4-72 SNA Format and Protocol Reference Manual for LU Type 6.2

page 4-77
page 4-99
page A-11
page A-2
page A-3
page A-5
page 4-99

CINIT_RQ_STATE_ERROR

If the passed LULU_CB pointer contains a null value (indicating unsolicited CINIT> then
If there are insufficient resources (e.g., storage) to start a new LU-LU session then

Set LOCAL.SENSE CODE to X'08120000' (insufficient resources).
Return with a value of TRUE (error).

If this LU cannot currently act as a primary LU then
Set LOCAL.SENSE_CODE to X'083AOOOO' !LU not enabled>.
Return with a value of TRUE (error>.

Locate the PARTNER_LU control block in which the
PARTNER LU.FULLY QUALIFIED LU NAME matches the
SLU name in the CINIT request:

If unable to locate the PARTNER_LU control block then
Set LOCAL.SENSE_CODE to X'0835xxxx' lxxxx is the offset to SLU name>.
Return with a value of TRUE Cerror).

Locate the MODE control block in which MODE.NAME matches the
mode name in the X'OD' control vector of the CINIT request.

If unable to locate the MODE then
Set LOCAL.SENSE CODE to X'0835xxxx' lxxxx is the offset to mode name

in CINIT control vector X'OD'>.
Return with a value of TRUE (error>.

~ Unsolicited CINIT reauests occur only when not using parallel sessions.
The following determines whether the local LU will be the bidder or first
speaker for the session so that the proper session limit checks can be made.

If MODE.MIN_CONLOSERS_LIMIT = 1 then
Set SESSION_TYPE to BIDDER.

Else
Set SESSION_TYPE to FIRST_SPEAKER.

Call LU_MODE_SESSION_LIMIT_EXCEEDEDCPARTNER_LU.FULLY_QUALIFIED_LU_NAME, MODE,
SESSION_TYPE, ACTIVE_AND_PENDING_ACTIVEl Cpage 4-77).

If the session limit will be exceeded then
LOCAL.SENSE_CODE was set to the correct sense code by LU_MODE_SESSION_LIMIT_EXCEEDED.
Return with a value of TRUE (error).

Else
Return with a value of FALSE (no error).

Else (solicited CINIT request)
If LULU CB.MODENAME ~ the mode name in control vector X'OD' of the CINIT request
then !The mode name must be the same as was sent in the INIT-SELF request.)

Set LOCAL.SENSE CODE to X'0835xxxx' !xxxx is the offset to mode name in CINIT
control vector-X'OD'l.

Return with a value of TRUE Cerrorl.

Locate the PARTNER LU and MODE control blocks using the partner-LU name and
mode name from the LULU CB. These control blocks will always be found for
solicited CINIT requests.

Call LU_MODE_SESSION_LIMIT_EXCEEDEDCPARTNER_LU.FULLY_QUALIFIED_LU_NAME, MODE,
LULU_CB.SESSION_TYPE, ACTIVE_AND_PENDING_ACTIVE) (page 4-77).

If the session limit will be exceeded then
LOCAL.SENSE_CODE was set to the correct sense data by LU_MODE_SESSION_LIMIT_EXCEEDED.
Return with a value of TRUE !error).

Else
Return with a value of FALSE !no error).

Chapter 4. LU Network Services 4-73

CLEANUP_LU~LU_SESSION

CLEANUP_LU_LU_SESSION

FUNCTION: Clean up LU-LU session. This may include sending a SESSEND request to the CP
and a PC_HS_DISCONNECT record to path control.

INPUT: LULU_CB of session to be cleaned up

OUTPUT: LU-LU session cleaned up

Referenced procedures, FSMs, and data structures:
BUILD_AND_SEND_SESSEND_RQ
BUILD_AND_SEND_PC_HS_DISCONNECT
LULU_CB

If SESSST has been sent to the control point then
Call BUILD_AND_SEND_SESSEND_RQCLULU_CB> Cpage 4-69).

If PC_HS_CONNECT has been sent to path control then
Call BUILD_AND_SEND_PC_HS_DISCONNECTCLULU_CB.LU_LU.HS_ID) (page 4-68).

Release any resources (e.g., buffers> held by this LU-LU session.

INITIALIZE_LULU_CB_ACT_SESS

page 4-69
page 4-68
page A-5

FUNCTION: Initialize an LULU_CB for an LU-LU session being activated as a result of an
ACTIVATE_SESSION received from RM.

INPUT: ACTIVATE_SESSION, LULU_CB Ito be initialized>, CP_ID (control point identifier
associated with this session)

OUTPUT: LULU_CB (initialized)

Referenced procedures, FSMs, and data structures:
CP_ID
ACTIVATE_ SESSION
LULU_CB
PARTNER_ LU

Set LULU_CB.CP_ID to passed control point identifier CCP_IDJ.

page A-2
page A-31
page A-5
page A-2

Determine whether the local LU is to indicate the primary or secondary role for
itself in INIT-SELF. An LU in a peripheral node indicates primary for
PNCP-mediated sessions; otherwise, it indicates secondary. An LU in a subarea
node indicates primary whenever it is capable of acting as a primary;
otherwise, it indicates secondary.

Set LULU CB.HALF SESSION TYPE to PRI or SEC as determined above.
Set LULu:cB.CP_LU.HS_ID to the identifier of the CP-LU half-session.
Set LULU_CB.CORRELATOR to ACTIVATE_SESSION.CORRELATOR.

Locate the PARTNER_LU control block using ACTIVATE_SESSION.LU_NAME.

Set LULU_CB.LUNAME.FQ to PARTNER_LU.FULLY_QUALIFIED_LU_NAME.
Set LULU_CB.LUNAME.LOCAL to ACTIVATE_SESSION.LU_NAME.
Set LULU_CB.MODENAME to ACTIVATE_SESSION.MODE_NAME.
Set LULU_CB.SESSION_TYPE to ACTIVATE_SESSION.SESSION_TYPE.

4-74 SNA Format and Protocol Reference Manual for LU Type 6.2

INITIALIZE_LULU_CB_BIND

INITIALIZE_LULU_CB_BIND

FUNCTION: Initialize an LULU_CB for an LU-LU session being activated as a result of
receiving an unsolicited BIND request.

INPUT: BIND_R!l_RCV_RECORD, LULU_CB !to be initialized)

OUTPUT: LULU_CB <initialized>

Referenced procedures, FSMs, and data structures:
BIND_RQ_RCV_RECORD
PARTNER_ LU
MODE
LULU_CB

page A-21
page A-2
page A-3
page A-5

Set the identifier (LULU_CB.CP_ID> of the control point mediating this LU-LU
session. The mediating control point for peripheral nodes is identified by
either the adjacent link station (ALS) for an SSCP or a special identifier
for the PNCP. The control point for subarea nodes is identified by its
address.

Set the CP-LU half-session identifier <LULU CB.CP LU.HS ID>
(set to a null value if control point does-not h;ve an-active session with
this LU>.

Locate the partner-LU control block CPARTNER_LU) using the user-data PLU name
in BIND.

Set LULU_CB.LUNAME.LOCAL to PARTNER_LU.LOCAL_LU_NAME.
Set LULU_CB.LUNAME.FQ to user-data PLU name in BIND.
Set LULU_CB.MODENAME to user-data mode name in BIND.
Set LULU_CB.HALF_SESSION_TYPE to SEC CBIND receiver is secondary).

If parallel sessions are supported with the partner LU then
If BIND specifies secondary as contention winner then

Set LULU CB.SESSION TYPE to FIRST_SPEAKER.
Else - -

Set LULU_CB.SESSION_TYPE to BIDDER.

Else !parallel sessions not supported with the partner LU>
If MODE.MIN_CONWINNERS_LIMIT = 1 then

Set LULU_CB.SESSION_TYPE to FIRST_SPEAKER.
Else

Set LULU_CB.SESSION_TYPE to BIDDER.

Chapter 4. LU Network Services 4-75

INITIALIZE_LULU_CB_CINIT

INITIALIZE_LULU_CB_CINIT

FUNCTION: Initialize an LULU_CB for an LU-LU session being activated as • result of
receiving an '6i50licited CINIT request.

INPUT: HS_RCV_RECORD (containing CINIT request), LULU_CB (to be initialized)

OUTPUT: LULU_CB <initialized>

Referenced procedures, FSMs, and data structures:
LULU CB
PARTNER_ LU
CPLU_CB
MODE
HS_RCV_RECORD

Locate the CP-LU control block <CPLU_CB> using the half-session identifier
(ffS_ID> from HS_RCV_RECORD. It Nill always b'ii!. found.

Set LULU_CB.CP_ID to CPLU_CB.CP_ID (control point identifier).
Set LULU_CB.CP_LU.HS_ID to CPLU_CB.HS_ID ICP-LU half-session identifier).
Set LULU_CB.HALF_SESSION_TYPE to PRI ICINIT receiver is always primary>.

Locate the PARTNER_LU control block using the SLU name in the CINIT request
as a search argument. It will always be found.

Set LULU_CB.LUNAME.LOCAL to PARTNER_LU.LOCAL_LU_NAME.
Set LULU_CB.LUNAME.FQ to the SLU name from CINIT.
Set LULU_CB.MODENAME to the mode name in control vector X'OD' of CINIT.

page A-5
page A-2
page A-1
page A-3
page A-11

Note: The C!NIT request can be received only if parallel sessions are not supported.
Locate the MODE control block using LULU_CB.MODENAME
as a search argument. It will always be found.

If MODE.MIN_CONLOSERS_LIMIT = 1 then
Set LULU_CB.SESSION_TYPE to BIDDER <the local LU is bidder).

Else
Set LULU_CB.SESSION_TYPE to FIRST_SPEAKER (the local LU is first speaker).

4-76 SNA Format and Protocol Reference Manual for LU Type 6.2

LU_MODE_SESSION_LIMIT_EXCEEDED

LU_MODE_SESSION_LIMIT_EXCEEDED

FUNCTION: Determ;ne whether or not session limits associated with a given (LU, mode
name) pair are exceeded for the given state conditions.

NOTE: If parallel sessions are not supported with the partner LU and the total ses­
sion limit will not be exceeded, then a session-activation request specifying
this LU as first speaker is accepted. For example, a BIND request is received
specifying the SEC as first speaker (contention winner). The SEC LU does not
support parallel sessions with the BIND sender and SESSION_LIMIT=l,
MIN CONWINNERS LINIT=O, and MIN CONLOSERS LINIT=l (these values are associated
with the m;dename specifled in -the BINDJ. Even though the
NIN_CONWINNERS_LIMIT of 0 will be exceeded, the BIND is accepted.

INPUT: PARTNER_LU.FULl.Y_QUALIFIED_LU_NAME, MODE, session type (in SESSION_ TYPE, ACTI­
VATE_SESSION.SESSION_TYPE, or LULU_CB.SESSION_TYPE~FIRST_SPEAKER or BIDDER!,
state (ACTIVE or ACTIVE_AND_PENDING_ACTIVEl

OUTPUT: TRUE if session limits exceeded; otherwise, FALSE. If TRUE, LOCAL.SENSE_CODE
is set to appropriate sense data.

Referenced procedures, FSMs, and data structures:
LOCAL
MODE

If STATE_CONDITION = ACTIVE then
Set BIDDER_SESSION_COUNT to the number of active bidder sessions.
Set FSP_SESSION_COUNT to the number of active first speaker sessions.

Else
Set BIDDER SESSION COUNT to the number of active and pending active
bidder sessions. -

Set FSP SESSION COUNT to the number of active and pending active first
speake; sessio~s.

Set TOTAL_LIMIT to MOOE.SESSION_LIMIT.
Set FSP_LIMIT to MODE.MIN_CONWINNERS_LIMIT.
Set BIDDER_LIMIT to MODE.MIN_CONLOSERS_LIMIT.

Select based on one of the following conditions:

page 4-99
page A-3

When FSP SESSION COUNT + BIDDER SESSION COUNT ~ TOTAL_LIMIT
Set LOCAL.SENSE CODE to X'08050000' !total session limit will be exceeded).

When FSP SESSION COUNT ~ TOTAL LIMIT - BIDDER LIMIT and
SESSION=TYPE = FIRST_SPEAKER ;nd parallel sessions are supported with
the partner LU (see Note in prologue)

Set LOCAL.SENSE_CODE to X'08050001' (first speaker session limit will be
exceeded).

When BIDDER_SESSION_COUNT ~ TOTAL_LIMIT - FSP_LIMIT and SESSION_TYPE = BIDDER
Set LOCAL.SENSE CODE to X'08050001' (bidder session limit will be exceeded).

Otherwise -
Set LOCAL.SENSE_CODE to X'OOOOOOOO' (session limit will not be exceeded).

If LOCAL.SENSE CODE = X'OOOOOOOO' then
Return with-a value of FALSE (session limit will not be exceeded).

Else
Return with a value of TRUE (session limit will be exceeded!.

Chapter 4. LU Network Services 4-77

PROCESS_ABORT_HS

PROCESS_ABORT_HS

FUNCTION: Process an ABORT_HS record received from LU-LU half-session.

INPUT: ABORT_HS record

Referenced procedures, FSMs, and data structures:
FSM_STATUS
LOCAL
ABORT_HS
LULU_CB

page 4-92
page 4-99
page A-11
page A-5

Determine which LU-LU session is being aborted by searching through the LU-LU
control block list (LOCAL.LULU_CB_LISTJ for an LULU_CB with a half-session
identifier <HS_IDJ matching that of the half-session that sent the ABORT_HS
record (ABORT HS.HS IDJ.

If the LULU CB-is lo~ated then
Call FSM=STATUS(ABORT_Hs, LULU_CBJ (page 4-92).

PROCESS_ACTIVATE_SESSION

FUNCTION: Process an ACTIVATE_SESSION record received from RM.

INPUT: ACTIVATE_SESSION record

Referenced procedures, FSMs, and data structures:
ACTIVATE_ SESSION_ ERROR
BUILD AND SEND ACT SESS RSP NEG
INITIALIZE_LULU_CB=ACT_SESS­
FSM_STATUS
ACTIVATE_SESSION
LULU_CB
CP_ID
ERROR_ TYPE

page 4-51
p<ige 4-57
page 4-74
page 4-92
page A-31
page A-5
page A-2
page 4-99

Call ACTIVATE SESSION ERROR(ACTIVATE SESSION, ERROR TYPE, CP IDJ (page 4-51).
If there is a~ error then !ERROR TYPE is returned if error) -

Call BUILD_AND_SEND_ACT_SESS_RSP_NEG<ACTIVATE_SESSION.CORRELATOR, ERROR_TYPEJ
(page 4-57!.

Else (control point identifier [CP_IDJ is returned if no error)
Create an LU-LU control block (LULU_CBJ and initialize its fields.
Call INITIALIZE_LULU_CB_ACT_SESSIACTIVATE_SESSION, LULU_CB, CP_ID> Cpage 4-74).
Call FSM_STATUS(ACTIVATE_SESSION record, LULU_CBJ Cpage 4-92!.

4-78 SNA Format and Protocol Reference Manual for LU Type 6.2

PROCESS_ACTLU_RQ

FUNCTION: Process a received ACTLU request.

INPUT: ACTLU_RQ_RCV_RECORD

Referenced procedures, FSMs, and data structures:
BUILD_ANO_SEND_PC_HS_CONNECT
BUILD_AND_SEND_ACTLU_RSP_NEG
BUILD_ANO_SENO_ACTLU_RSP_POS
LOCAL
ACTLU_RQ_RCV_RECORD
CPLU_CB

PROCESS_ACTLU_RQ

page 4-67
page 4-58
page 4-59
page 4-99
page A-21
page A-1

0pt;onally check the ACTLU request for format errors. Th;s ;ncludes check;ng the
RH !see Figure 4-3 on page 4-16 for correct format of RH) and RU !Appendix El for
syntax errors. Also, if the FM prof;le of ACTLU is specified as 6, and this LU
does not support 6, then it is an error.

If there is a format error then
Set LOCAL.SENSE_CODE to the appropriate value !Appendix 61.
Call BUILD_AND_SEND_ACTLU_RSP_NEGCACTLU_RQ_RCV_RECORDI (page 4-58) to
send a negat;ve response to ACTLU.

Else !no format error)
Determine if a CP-LU session already exists (search for a CP-LU half-session
control block CCPLU_CBI with a CP_ID the same as ACTLU_RQ_RCV_RECORD.CP_IDI.

If a CP-LU session already exists then
Set LOCAL.SENSE_CODE to X'08150000' (funct;on already active).
Call BUILD_AND_SEND_ACTLU_RSP_NEGCACTLU_RQ_RCV_RECORDl !page 4-58) to
send a negative response to ACTLU.

Else CCP-LU sess;on does not already exist)
If resources !e.g., storage) are not available to create a new CP-LU
session then

Set LOCAL.SENSE CODE to X'08120000' !insufficient resources).
Call BUILD_AND_SEND_ACTLU_RSP_NEGCACTLU_RQ_RCV_RECORDI !page 4-58).

Else (resources are available)
Create a CPLU_CB to represent a new CP-LU session and insert it

in LOCAL.CPLU CB LIST.
Copy the CP_ID-and PC_ID fields into the CPLU_CB from the ACTLU_RQ_RCV_RECORD.
Set CPLU_CB.HS_ID to a unique value for the CP-LU half-session process.
Call BUILD_ANO_SENO_PC_HS_CONNECTCCPLU_CB.PC_ID, CPLU_CB.HS_ID,

ACTLU_RQ_RCV_RECORD.ADDRESSl !page 4-671 to indicate to path
control that a new half-session has been activated.

Call BUILD_AND_SENO_ACTLU_RSP_POSCACTLU_RQ_RCV_RECORD> !page 4-591
to send a posit;ve response to ACTLU and create the CP-LU half-session.

Chapter 4. LU NetNOrk Services 4-79

PROCESS_BIND_RQ

PROCESS_BIND_RQ

FUNCTION: Process a received BIND request.

INPUT: BIND_RQ_RCV_RECORD

NOTE: It is possible for a BIND conta;ning a IJRC to be received with no matching
LULU_CB. This can occur when session outage CDACTLU-SONJ occurs on the CP-LU
session after the INIT has been sent but before the BIND is received. In this
case, the BIND is accepted even though there is currently no active CP-LU ses­
sion.

Referenced procedures, FSHs, and data structures:
BUILD_AND_SEND_BIND_RSP_NEG
BIND_RQ_STATE_ERROR
INITIALIZE_LULU_CB_BIND
FSM_STATUS
LOCAL
BIND_RQ_RCV_RECORD
LULU_CB

page 4-60
page 4-52
page 4-75
page 4-92
page 4-99
page A-21
page A-5

Check BIND request for basic syntax errors that would inhibit further processing
of the BIND, including errors in the RH, the TH DCF and the BIND length fields
(see Appendix E and Figure 4-3 on page 4-16).
Syntax errors are format errors and, as such, are state-independent. When a syntax
error is found, LOCAL.SENSE_CODE is set to the appropriate sense data CX'l002' for
overall length errors and X'0835' with offset for individual length field errors).
Syntax error checking is required.

If a syntax error exists then
Call BUILD_AND_SENO_BIND_RSP_NEGCBIND_RQ_RCV_RECORDJ (page 4-60).
Optionally log the error.

Else Cno syntax error)
Determine if a BIND request is solicited.

A solicited BIND is one that the local LU solicited by having previously sent
an !NIT-SELF. The LULU CBs are searched for a match on either the ADDRESS
field in BIND_RQ_RCV_RECORD Cor ADDRESS and PC_ID for peripheral nodes)
or the URC field of the BIND RU. If a match is found on either field, the
BIND is considered solicited.

If the BIND is solicited then
Optionally check BIND for semantic errors !Appendix El and if an error exists,
set LOCAL.SENSE_CODE with sense data reflecting error. Semantic errors are
field content errors (e.g., a field does not cont~in an allowable value). Like
syntax errors, these errors are format errors and are state-independent.
If a semantic error is found, LOCAL.SENSE_CODE is set to the sense data X'0835'
with the offset to the field in error.

Call BIND_RQ_STATE_ERRORCBIND_RQ_RCV_RECORDJ Cpage 4-52)
to check for state errors. If an error is found, LOCAL.SENSE_CODE contains
the sense data indicating the type of error.

Call FSH_STATUSCBIND_RQ_RCV_RECORD, LULU_CBJ (page 4-921.

Else <BIND is unsolicited--session was not initiated by this LU Csee Note in prologue))
Check the BIND for semantic and state errors as described above.
If an error exists then

Call BUilD_AND_SEND_BIND_RSP_NEG!BIND_RQ_RCV_RECORDJ Cpage 4-60).

Else
Create an LU-LU half-session control block ClULU_CBJ and initialize its fields.
Call INITIALIZE_LULU_CB_BIND!BIND_RQ_RCV_RECORD, LULU_CBJ !page 4-75).
Call FSM_STATUSCBIND_RQ_RCV_RECORD, LULU_CBJ (page 4-921.

4-80 SNA Format and Protocol Reference Manual for LU Type 6.2

PROCESS_BIND_RSP

PROCESS_BIND_RSP

FUNCTION: Process a received BIND response.

INPUT: BIND_RSP_RCV_RECORD

NOTE: The LOCAL.SENSE_CODE is not always set by the BIND response error checking
procedures. FSM_STATUS determines whether or not an error has occurred by
checking for a nonzero value in the LOCAL.SENSE_CODE field. Therefore, the
LOCAL.SENSE_CODE is set to a dummy nonzero value X'FFFFFFFF'.

Referenced procedures, FSMs, and data structures:
BIND_RSP_STATE_ERROR
FSM_STATUS
LOCAL
BIND RSP RCV RECORD
ww::cB - -

Attempt to correlate the BIND response with a previously sent BIND request.

page 4-53
page 4-92
page 4-99
page A-22
page A-5

A search is made for an LULU CB in which LULU CB.PC ID =
BIND_RSP_RCV_RECORD.PC_ID and LULU_CB.SENT_BIND_RQ.SNF = BIND_RSP_RCV_RECORD.SNF.

If the correlation is successful then Ian LULU_CB has been found)
Check the BIND response for basic syntax errors that would inhibit further
processing, including errors in the RH, the TH DCF and the BIND length
fields lsee Appendix E and Figure 4-3 on page 4-16). Syntax errors are format
errors and, as such, are state-independent. These error checks are required.

Optionally check the BIND response for semantic errors (Appendix E>. Semantic
errors are field content errors (e.g., a field does not contain an allowable
value). Like syntax errors, these errors are format errors and are state­
independent.

Optionally call BIND_RSP_STATE_ERRORIBIND_RSP_RCV_RECORD, LULU_CB> (page 4-53)
to check for state errors.

If either a syntax, semantic, or state error is detected then
Set LOCAL.SENSE_CODE to the value X'FFFFFFFF' (see Note in prologue).

Call FSM_STATUSIBIND_RSP_RCV_RECORD, LULU_CB) (page 4-92).

Else (unable to correlate the BIND response>
Set LOCAL.SENSE_CODE to X'200EOOOO' (response correlation error>.
Optionally log the error.

PROCESS_CINIT_RQ

FUNCTION: Process a received CINIT request.

INPUT: HS_RCV_RECORD containing CINIT request

Referenced procedures, FSMs, and data structures:
BUILD_AND_SEND_CINIT_RSP
CINIT_RQ_STATE_ERROR
INITIALIZE_LULU_CB_CINIT
FSM_STATUS
LOCAL
HS_RCV_RECORD
LULU_CB

page 4-62
page 4-72
page 4-76
page 4-92
page 4-99
page A-11
page A-5

Chapter 4. LU Network Services 4-81

PROCESS_cINIT_RQ

~ Peripheral nodes receive CINIT from the PNCP only when initiating a session
with a peer T2.l LU (i.e., the session is PNCP-mediatedl.

If the local node is a peripheral node and the CINIT request has been received from
an SSCP (as opposed to a PNCP) then

Set LOCAL.SENSE_CODE to X'l0030000' (function not supported).
Call BUILD_AND_SEND_CINIT_RSP(HS_RCV_RECORDJ (page 4-62J
to send a negative response to CINIT.

Optionally log the error.

Else
Optionally check the CINIT request for syntax errors. This includes checking

the TH DCF field and length fields within the CINIT RU. If the DCF is
incorrect, sense data X'10020000' is used; otherwise, X'0835xxxx' is used
(xxxx is the offset to the field in error). An additional check is made to
determine whether the URC field !within the BIND image in CINITJ is present
if required. See CINIT request in Appendix E for correct format.

If there is a syntax error then
Set LOCAL.SENSE_CODE to appropriate value.
Call BUILD_AND_SEND_CINIT_RSP!HS_RCV_RECOROJ !page 4-62)
to send a negative response to CINIT.

Optionally log the error.

Else (no syntax error)
If the CINIT request indicates either third-party-initiated (INITIATE or1g1n
specifies ILU is not OLUJ or secondary-LU-initiated CSLU is OLUJ then
(unsolicited CINIT processing)

Optionally check the CINIT request for semantic errors. This includes checking
that the proper session keys and control vectors are included. The sense
data X'0835xxxx' is used to indicate fields in error (xxxx is the offset to the
field in error!. See CINIT request in Appendix E for correct RU values.
Optionally perform CINIT state checks by calling CINIT_RQ_STATE_ERROR
CHS_RCV_RECORD, LULU_CB pointer! !page 4-72J. If any errors are
found LOCAL.SENSE_CODE is set to the appropriate sense data.

If there is a semantic or state error then
Call BUILD AND SEND CINIT RSP(HS RCV RECORD) !page 4-62)

to send a-neg;tive-respo~se to CINIT.

Else Cno errors)
Create and initialize an LU-LU half-session control block CLULU_CBJ.
Call INITIALIZE_LULU_CB_CINITCHS_RCV_RECORD, LULU_CBl (page 4-761.
Call FSM_STATUS!HS_RCV_RECORD, LULU_CB) !page 4-921.

Else (not unsolicited CINITl
Attempt to correlate this CINIT request to a previously sent !NIT-SELF

request to the same CP. Search for an LU-LU half-session control
block CLULU_CBJ where LULU_CB.SENT_INITIATE_RQ.URC = the URC field in
the BIND image of the CINIT request.

If the CINIT request is correlated successfully then (solicited CINIT
processing)

Check for CINIT request semantic and state errors as described above.
If an error is found, LOCAL.SENSE CODE is set.

Call FSM_STATUSCHS_RcV_RECORO, LULU_CBJ Cpage 4-921.

Else (unable to correlate CINITJ
Set LOCAL.SENSE CODE to X'081EOOOO' !session reference error).
Call BUILD_ANO_SEND_CINIT_RSPCHS_RCV_RECORDJ (page 4-621
to send a negative response to CINIT.

Optionally log the error.

4-82 SNA Format and Protocol Reference Manual for LU Type 6.2

PROCESS_CLEANUP_RQ

FUNCTION: Process a CLEANUP request received by a subarea LU.

INPUT: HS_RCV_RECORO containing CLEANUP request

Referenced procedures, FSMs, and data structures:
BUILO_ANO_SEND_RSP_OR_LOG
FSM_STATUS
LOCAL
LULU_ CB
HS_RCV_RECORO

Optionally check the CLEANUP request for format errors. This includes
checking the TH OCF field for RU length errors IX'l0020000' J, checking for
format 0 CX'l0030000'), and checking for valid session keys CX'0835xxxx'l.
See CLEANUP request in Appendix E for correct format.

If there is a format error then
Set LOCAL.SENSE_COOE to the appropriate value.
Call BUILO_AND_SEND_RSP_OR_LOG!HS_RCV_RECOROJ !page 4-661
to send a negative response to CLEANUP.

Else lno format error)
Determine the LU-LU session (mediated by the CP that sent the CLEANUP)

to be cleaned up by searching for an LU-LU half-session control
block ILULU_CBI that has an address pair (LULU_CB.ADDRESSJ
matching the address pair specified in the CLEANUP RU. IThe addresses
of the address pair in CLEANUP may be specified in any order.I

If an LULU_CB is found then
Call BUILO_ANO_SEND_RSP_OR_LOG!HS_RCV_RECOROJ (page 4-66)

to send a positive response to CLEANUP.
Call FSM_STATUS!HS_RCV_RECORO, LULU_CB) !page 4-92).

Else (unable to determine which LU-LU session to clean upl
Set LOCAL.SENSE CODE to X'081EOOOO' !session reference error!.
Call BUILO_ANO_SEND_RSP_OR_LOG!HS_RCV_RECOROJ (page 4-66)

to send a negative response to CLEANUP.

PROCESS_CLEANUP_RQ

page 4-66
page 4-92
page 4-99
page A-5
page A-11

Chapter 4. LU Network Services 4-83

PROCESS~CT~RM_RQ

PROCESS_CTERM_RQ

FUNCTION: Process a CTERM request received by a subarea LU.

INPUT: HS_RCV_RECORD containing CTERM request

Referenced procedures, FSMs, and data structures:
BUILD_AND_SEND_RSP_OR_LOG
FSM_STATUS
LOCAL
LULU_ CB
HS_RCV_RECORD

Optionally check the CTERM for format errors. This includes checking
the TH DCF field CX'l0020000'), the Format and Type flelds CX'l0030000'),
and the Session Key field !X'0835xxxx'). See CTERM request in Appendix E
for correct format.

If there is a format error then
Call BUILD_AND_SEND_RSP_OR_LOGCHS_RCV_RECORD) Cpage 4-66)
to send a negative response to CTERM.

Else Cno format error)
Determine the LU-LU session (mediated by the CP that sent the CTERM>
to be cleaned up by searching for an LU-LU half-session control
block CLULU_CB) that has an address pair CLULU_CB.ADDRESS)
matching the address pair specified in the CTERM RU. CThe addresses
of the address pair in CTERM may be specified in any order.>

If an LULU_CB if found then
Call BUILD_AND_SEND_RSP_OR_LOG!HS_RCV_RECORD) (page 4-66)
to send a positive response to CTERM.

Call FSM_STATUSCHS_RCV_RECORD, LULU_CB> (page 4-92).

Else (unable to determine Nhich LU-LU session to clean up>
Set LOCAL.SENSE_CODE to X'081EOOOO' (session reference error).
Call BUILD_AND_SEND_RSP_OR_LOGCHS_RCV_RECORD) (page 4-66)
to send a negative response to CTERM. '

4~84 SNA Format and Protocol Reference Manual for LU Type 6.2

page 4-66
page 4-92
page 4-99
page A-5
page A-11

PROCESS_DACTLU_RQ

FUNCTION: Process a received DACTLU request.

INPUT: DACTLU_RQ_RCV_RECORD

Referenced procedures, FSMs, and data structures:
BUILD AND SEND DACTLU RSP
BUILD:AND:SEND:Pc_HS_DISCONNECT
FSM_STATUS
LOCAL
DACTLU_RQ_RCV_RECORD
CPLU_CB

PROCESS_DACTLU_RQ

page 4-63
page 4-68
page 4-9e
page 4-99
page A-ee
page A-1

Optionally check the DACTLU request for RH format errors (see Figure 4-3 on page 4-16 for
correct RH format!.

If an error is found then
Set LOCAL.SENSE_CODE to the appropriate value (Appendix GJ.
Call BUILD_AND_SEND_DACTLU_RSPCDACTLU_RQ_RCV_RECORDJ Cpage 4-631

to send a negative response to the DACTLU request.

Else (no error found>
Call BUILD_AND_SEND_DACTLU_RSPCDACTLU_RQ_RCV_RECORDl Cpage 4-631
to send a positive response to the DACTLU request.

Determine if a CP-LU session is active by searching for a CPLU_CB Cin
LOCAL.CPLU_CB_LISTI to determine whether DACTLU_RQ_RCV_RECORD and CPLU_CB have
matching control point identifiers.

If a CP-LU session is active then
If the DACTLU RU length is less than 3 or the DACTLU deactivation type is
normal then

Reset all active and pending active LU-LU sessions mediated by this
CP by calling FSM_STATUS (page 4-921 with a
RESET_NORMAL signal for each LU-LU session.

Else (must be DACTLU with type SONI
Reset all LU-LU sessions that have not become active or pending active by
calling FSM_STATUS Cpage 4-921 with a RESET_SON
signal for each LU-LU session.

Destroy the CP-LU half-session process.
Call BUILD_AND_SEND_PC_HS_DISCONNECTCCPLU_CB.HS_IDI Cpage 4-681
to notify path control that a half-session has been deactivated.

Chapter 4. LU Network Services 4-85

PROCESS_DEACTIVATE_SESSION

PROCESS_DEACTIVATE_SESSION

FUNCTION: Process a DEACTIVATE_SESSION record received from RM.

INPUT: DEACTIVATE_SESSION record

Referenced procedures, FSMs, and data structures:
FSM_STATUS
DEACTIVATE_ SESSION
LULU_CB

If RM is deactivating a pending-active session CDEACTIVATE_SESSION.STATUS =
PENDING> then

page 4-92
page A-31
page A-5

Attempt to locate the LU-LU half-session control block CLULU_CB> using the
DEACTIVATE_SESSION.CORRELATOR field.

Else CRM is deactivating an active session--from its perspective)
Attempt to locate the LU-LU half-session control block CLULU_CB> using the

DEACTIVATE_SESSION.HS_ID field.

If an LULU_CB has been located then
Call FSM_STATUSCDEACTIVATE_SESSION, LULU_CB> Cpage 4-92).

PROCESS_ECHOTEST_RQ

FUNCTION: Process a received ECHOTEST request in an implementation-defined way.

INPUT: HS_RCV_RECORD containing ECHOTEST request

Referenced procedures, FSMs, and data structures:
HS_RCV_RECORD page A-11

See page 4-31.

PROCESS_HIERARCHICAL_RESET

FUNCTION: Process a HIERARCHICAL_RESET record received from the nodal NAU manager. This
record is generated as a result of a DACTPU.

INPUT: HIERARCHICAL_RESET record

Referenced procedures, FSMs, and data structures:
BUILD_AND_SEND_HIER_RESET_RSP
FSM_STATUS
HIERARCHICAL_RESET
CPLU_CB

page 4-64
page 4-92
page A-22
page A-1

Attempt to locate the CP-LU session control block by searching for a CPLU CB
with a control point identifier matching that in the HIERARCHICAL_RESET record.

If a CPLU_CB is located then
Reset all LU-LU sessions mediated by this CP by calling FSM_STATUS

(page 4-92> with a RESET_NORMAL signal for each LU-LU session.
Destroy the CP-LU half-session.

Call BUILD_AND_SEND_HIER_RESET_RSPCHIERARCHICAL_RESET> Cpage 4-64).

4-86 SNA Format and Protocol Reference Manual for LU Type 6.2

PROCESS_INIT_HS_RSP

PROCESS_INIT_HS_RSP

FUNCTION: Process an INIT_HS_RSP record received from an LU-LU half-session.

INPUT: INIT_HS_RSP record

Referenced procedures, FSMs, and data structures:
FSM_STATUS
INIT_HS_RSP
LULU_ CB

page 4-92
page A-11
page A-5

Attempt to locate the LU-LU half-session control block CLULU_CB> associated
with the half-session that sent the INIT HS RSP. Search the list of LULU CBs
for one with a half-session identifier CHS_IDl matching that of the half-;ession
the INIT_HS_RSP was received from.

If an LULU CB is located then
Call FSM_STATUS!INIT_HS_RSP, LULU_CB) !page 4-92).

PROCESS_INIT_SELF_RSP

FUNCTION: Process a received INIT-SELF response.

INPUT: HS_RCV_RECORD containing INIT-SELF response

Referenced procedures, FSMs, and data structures:
FSM_STATUS
HS_RCV_RECORD
LULU_CB

Attempt to correlate the INIT-SELF response with a sent INIT-SELF request.
Search for an LU-LU control block !LULU_CB> where LULU_CB.CP_LU.HS_ID =
HS_RCV_RECORD.HS_ID and LULU_CB.SENT_INITIATE_RQ.SNF = HS_RCV_RECORD.SNF.

If the response is correlated successfully then
Call FSM_STATUS!HS_RCV_RECORO, LULU_CBl !page 4-92).

Else
Optionally log the error using sense data X'200EOOOO'.

page 4-92
page A-11
page A-5

Chapter 4. LU Network Services 4-87

PROCESS_NOTIFY_RQ

PROCESS_NOTIFY_RQ

FUNCTION: Process a received NOTIFY request.

HS_RCV_RECORD containing NOTIFY request INPUT:

Referenced procedures, FSMs, and data structures:
BUILD_AND_SEND_RSP_OR_LOG
FSM_STATUS
LOCAL
HS_RCV_RECORD
LULU_CB

Optionally check the NOTIFY request for format errors. Tkis includes
checking the TH DCF and length fields CX' 10020000' J, the vecto.r type
('0835xxxx' J, and the session keys (X' 0835xxx><' > C where xxxx is an offset
in each easel. See NOTIFY request in Appendix E for correct format.

If there is a format error then
Set LOCAL.SENSE_CODE to the appropriate value.
Call BUILD_ANO_SEND_RSP_OR_LOGCHS_RCV_RECORD) Cpage 4-66)
to send a negative response to NOTIFY.

Else lno format error)

page 4-66-
page 4-92
page 4-99
page A-11
page A-:5

Attempt to correlate this NOTIFY request w1th a previously sent INIT-SELF
request (for the same CP). Search for an LU-LU half-session control block
CLULU_CBl where LULU_CB.SENT_INITIATE_RQ.URC matches the URC field in tke
NOTIFY request RU.

If an LULU_CB is found then.
Call FSM_STATUSCHS_RCV_RECORD, LULU_CB) !page 4-92>.

Else (unable to correlate the NOTIFY request)
Set LOCAL.SENSE_CODE to X'081EOOOO' (session reference error).
Call BUILD_AND_SEND_RSP_OR_LOGCHS_RCV_RECORD) !page 4-66)
to send a negative response to NOTIFY.

PROCESS_NOTIFY_RSP

FUNCTION: Process a received NOTIFY response.

INPUT: HS_RCV_RECORD containing received NOTIFY response.

Referenced procedures, FSMs, and data structures:
HS_RCV_RECORO

See page 4-13 for a general discussion; details are not formally defined.

4-88 SNA format and Protocol Reference Manual for LU Type 6.2

page A-11

PROCESS_PC_COHNECT_RSP

PROCESS_PC_COHNECT_RSP

FUNCTION: Process a path control connect response (PC_CONNECT_RSP) received from NNM.

INPUT: PC_COHNECT_RSP

Referenced procedures, FSHs, and data structures:
FSM_STATUS
LULU_ CB
PC_CONNECT_RSP

page 4-92
page A-5
page A-22

Attempt to locate the LU-LU half-session control block (LULU_CB) in which the
half-session identifier (HS_ID) matches that in the PC_CONNECT_RSP record.

If an LULU_CB is located then
Call FSM~STATUS(PC_CONNECT_RSP, LULU_CB> (page 4-92).

PROCESS_REQECHO_RSP

FUNCTION: Process a received REQECHO response in an implementation-defined Nay.

INPUT: HS_RCV_RECORD containing received REQECHO response

Referenced procedures, FSMs, and data structures:
HS_RCV_RECORD

See page 4-31.

PROCESS_SESSION_ROUTE_INOP

FUNCTION: Process a SESSION_ROUTE_INOP record received from NNM.

INPUT: SESSION_ROUTE_INOP

Referenced procedures, FSMs, and data structures:
FSM_STATUS
SESSION_ROUTE_INOP
LULU_ CB
CPLU_CB

page A-11

page 4-92
page A-23
page A-5
page A-1

Reset all CP-LU sessions that are using the path control process that failed.
This is done by locating all the CP-LU session control blocks (CPLU_CBs)
that have a path control identifier (PC_ID) matching that of the path
control process that failed. Each CPLU_CB located is then destroyed.

Reset all LU-LU-sessions that are using the path control process that failed.
This is done by locating all the LU-LU session control blocks (LULU_CBs>
that have a path control identifier (PC_ID) matching that of the path
control process that failed. For each LULU_CB located,
FSM_STATUS (page 4-92) is called with a RESET_NORMAL signal
to reset that session.

Chapter 4. LU Network Services 4-89

PROCESS_TERM_SELF_RSP

PROCESS_TERM_SELF_RSP

FUNCTION: Process a received TERM-SELF response. Nothing is done for a TERM-SELF
response because the LU-LU session awareness is cleaned up when the TERM-SELF
request is sent. The TERM-SELF response is simply discarded.

INPUT: HS_RCV_RECORD containing TERM-SELF response

Referenced procedures, FSMs, and data structures:
HS_RCV_RECORD

No processing is done for a TERM-SELF response.

PROCESS_UNBIND_RQ

FUNCTION: Process a received UNBIND request.

INPUT: UNBIND_RQ_RCV_RECORD

Referenced procedures, FSMs, and data structures:
BUILD_AND_SEND_UNBIND_RSP
FSM_STATUS
LOCAL
UNBIND_RQ_RCV_RECORD
LULU_CB

page A-11

page 4-71
page 4-92
page 4-99
page A-23
page A-5

Optionally check the UNBIND request for syntax errors. Syntax errors include checking
the RH (see Figure 4-3 on page 4-16 for correct format) and checking the length
CDCFl for being too short (see UNBIND request in Appendix El.

If there is a syntax error then
Set LOCAL.SENSE_CODE to appropriate value.
Call BUILD AND SEND UNBIND RSPtUNBIND RQ RCV RECORD)

(page 4-7ll to send a neg;tive response-to UNBIND.
Optionally log the error.

Else Cno syntax error)
Attempt to correlate the UNBIND with an existing LU-LU session by locating an LULU_CB
where LULU_CB.LU_LU.PC_ID = UNBIND_RQ_RCV_RECORD.PC_ID and
LULU CB.LU LU.ADDRESS = UNBIND RQ RCV RECORD.ADDRESS.

If th; UNBIND correlates to an ;xi~ting session Can LULU_CB is found) then
Call FSM_STATUSCUNBIND_RQ_RCV_RECORD, LULU_CBI (page 4-92).

Else (UNBIND does not correlate to an existing session)
Call BUILD AND SEND UNBIND RSPCUNBINO RQ RCV RECORDJ

!page 4-7ll to send positive respons; to UNBIND.

4-90 SNA Format and Protocol Reference Manual for LU Type 6.2

PROCESS_UNBIND_RSP

FUNCTION: Process a received UNBIND response.

INPUT: UNBIND_RSP_RCV_RECORD

Referenced procedures, FSMs, and data structures:
FSM_STATUS
LULU_CB
UNBIND_RSP_RCV_RECORD

Optionally check the UNBIND response RH for format errors
(see Figure 4-3 on page 4-16 for correct format of RHJ.

If there is an RH error then
Optionally log the error.

Else Cno RH error)

PROCESS_UNBIND_RSP

page 4-92
page A-5
page A-23

Correlate this UNBIND response with a sent UNBIND request. Search for an
LU-LU half-session control block CLULU CBJ where LULU CB.LU LU.PC ID=
UNBIND_RSP_RCV_RECORD.PC_ID and LULU_CB.SENT_UNBIND_RQ.SNF ; -
UNBIND RSP RCV RECORD.SNF.

If the UNBIND r~sponse is correlated successfully then
Call FSM_STATUSCUNBIND_RSP_RCV_RECORD, LULU_CBJ Cpage 4-92).

Else (unable to correlate UNBIND response!
Optionally log the error with sense data X'200EOOOO' (response correlation error).

Chapter 4. LU Network Services 4-91

FINITE-STATE MACHINES

FSM_STATUS

FUNCTION:

NOTE:

INPUT:

This FSM maintains the state of an LU-LU session from initiation through ter­
mination. State name abbreviations are as follows:

• RES = reset

• PND IHI RSP PLU = pending receipt of !NIT-SELF response Nhere !NIT-SELF
was sent specifying this LU as PLU

• PND INI RSP SLU = pending receipt of !NIT-SELF response where !NIT-SELF
was sent specifying this LU as SLU

• PND CIN = pending receipt of CINIT request

• PND BIN = pending receipt of BIND request

• PND PC RSP THI = pending receipt of PC_CONNECT_RSP for a session this LU
initiated (sent !NIT-SELF forl

• PND BIN RSP THI = pending receipt of a BIND response for a session this LU
initiated (sent !NIT-SELF forl

• PND INI HS RSP THI = pending receipt of INIT_HS_RSP for a session this LU
initiated (sent INIT-SELF for)

• PND PC RSP OTH = pending receipt of PC_CONNECT_RSP for a session the other
LU initiated (sent !NIT-SELF forl

• PND BIN RSP OTH = pending receipt of a BIND response for a session the
other LU initiated (sent INIT-SELF for)

• PND INI HS RSP OTH = pending receipt of INIT_HS_RSP for a session the oth­
er LU initiated (sent !NIT-SELF forl

• ACT = active

• PND UNB RSP = pending UNBIND response

The state of the LU-LU session may be considered "active" or "pending active."
States 8, 11, 12, and 13 are considered "active." States 6, 7, 9, and 10 are
considered "pending active." All other states are considered neither "active"
nor "pending active."

Error type is "retry" if the first 2 bytes of LOCAL.SENSE_CODE are 0812 or
0805; otherwise, error type is "no retry."

The record to be processed and the LU-LU half-session control block CLULU_CBl.
The input record is used as an input to this FSM. These inputs denote RUs
(Appendix El, interprocess records (i.e., from HS, RM, or NNM [Appendix AJJ,
results of earlier sense data settings CLOCAL.SENSE_CODE set to NG or OKJ, and
session roles CPLU or SLUl of the local LU (as ILUl.

4-92 SNA Format and Protocol Reference Manual for LU Type 6.2

Referenced procedures, FSMs, and data structures:
BUILD_AND_SEND_DEACTIVATE_SESS
BUILD_AND_SEND_UNBINDF_RQ
BUILD_AND_SEND_BIND_RSP_NEG
BUILD_AND_SEND_BIND_RSP_POS
BUILD_AND_SEND_UNBIND_RQ
BUILD_AND_SEND_INIT_HS
BUILD_AND_SEND_ACT_SESS_RSP_POS
BUILD_AND_SEND_SESS_ACTIVATED
CLEANUP_LU_LU_SESSION
BUILD_ANO_SEND_BINDF_RQ
BUILO_AND_SENO_TERM_RQ
BUILD_AND_SEND_UNBIND_RSP
BUILO_AND_SEND_INIT_RQ
BUILD_AND_SENO_ACT_SESS_RSP_NEG
BUILD_AND_SEND_PC_HS_CONNECT
BUILD_ANO_SENO_PC_CONNECT
BUILO_AND_SEND_PC_HS_DISCONNECT
BUILO_ANO_SEND_RSP_OR_LOG
BUILD_ANO_SEND_SESSST_RQ
BUILO_AND_SEND_BIND_RQ
BUILD_AND_SEND_CINIT_RSP
BUILO_ANO_SEND_SESS_DEACTIVATED
DEACTIVATE_ SESSION
BIND_RQ._RCV_RECORD
UNBIND_RQ._RCV_RECORO
UNBINO_RSP_RCV_RECORO
PC_CONNECT_RSP
INIT_HS_RSP
ABORT_HS
HS_RCV_RECORO
LULU_CB
LOCAL

page 4-63
page 4-72
page 4-60
page 4-61
page 4-71
page 4-64
page 4-57
page 4-68
page 4-74
page 4-61
page 4-70
page 4-71
page 4-65
page 4-57
page 4-67
page 4-67
page 4-68
page 4-66
page 4-70
page 4-60
page 4-62
page 4-69
page A-31
page A-21
page A-23
page A-23
page A-22
page A-11
page A-11
page A-11
page A-5
page 4-99

FSM_STATUS

Chapter 4. LU NetNOrk Services 4-93

FSM_STATUS

STATE NAMES----> RES PND PND PND PND PND PND PND PND PND PND ACT PND
INI INI CIN BIN PC BIN INI PC BIN INI UNB
RSP RSP RSP RSP HS RSP RSP HS RSP
PLU SLU THI THI RSP OTH OTH RSP

THI OTH
INPUTS STATE NUMBERS--> 01 02 03 04 05 06 07 08 09 010 011 012 013

ACT_SESS,ILU=PLU 2U I I I I I I I I I I I I
ACT_SESS,ILU=SLU 3V I I I I I I I I I I I I
+RSPI INIT_SELF) I 4 5 I I I I - I I I - -
-RSP!INIT_SELF> I IAA IAA I I I I / / I I / I

NOTIFY_03 I lW lW lW lW -R -R -R -R -R -R -R -R
CINIT,OK 9BB 6BB -Y 6BB -Y -Y -Y -Y -Y -Y -Y -Y -Y
CINIT,NG I lJJ -Y lJJ -Y -Y -Y -Y -Y -Y -Y -Y -Y

+PC_CONNECT_RSP I I I I I 7F I I !OF I / I I
-PC_CONNECT_RSP I / I I I !LL / I IMM I / I /

+RSP!BIND >.OK I / I I I I 8C I I llC I I -
+RSP! BIND>, NG I I I / I I 13X I I 13Q I I -
-RSP! BIND> ,OK I / I I I I IFF / I lUU I I lI
-RSP! BIND) ,NG 1. / I / I I INN I I lN I I lN

+INIT_HS_RSP I I I I I I I 12D I I 12G I -
-INIT_HS_RSP I I I I I I I 13J I I 13H I -
BIND,OK llE -EE 8E -EE 8E -EE -EE -EE / / I -EE -EE
BIND,NG I -EE !TT -EE !TT -EE -EE -EE I I I -EE -EE

DEACT_SESS_PEND I lK lK lK lK lA 13B 13B I I I 13B -
DEACT_SESS_ACT / I I I I I I I I / I 13B -
DEACT_SESS_ACT_CU I I I I I I / I I I I lT lT
ABORT_HS I I I / I I I / I I I 13M -
+RSP! UNBIND> I I I I I I I I I I I / lI
-RSP!UNBIND) / I I I I I I I I I I I lZ
UNBIND I I / I I I lHH IHH I IP IP IS IP

CLEANUP I / I I I !CC !DD !DD lA lT lT lKK lT
CTERM_ORDERLY I / I / I !CC 13PP 13PP lA 13QQ 13QQ -RR -
CTERM_FORCED I I / I I !CC 13PP 13PP IA 13QQ 13QQ 13SS -

SIGNAL!RESET_SON> - lL ll IL - - - - - - - - -
SIGNALIRESET_NORMAL) - lL IL IL lL !CC IL lL lI lI lI lGG lI

4-94 SNA Format and Protocol Reference Manual for LU Type 6.2

FSM_STATUS

OUTPUT FUNCTION
CODE

A Call BUILD_AND_SEND_PC_HS_DISCOtlNECT!LULU_CB.LU_LU.HS_ID) !page 4-68).
Call CLEANUP_LU_LU_SESSIONILULU_CBl !page 4-74).

B If DEACTIVATE SESSION.TYPE =NORMAL then
Call BUILD=AND_SEND_UNBIND_RQ!LULU_CB, NORMAL, X'OOOOOOOO') !page 4-71).

Else
Call BUILD_AND_SEND_UNBIND_RQILULU_CB, FORMAT_OR_PROTOCOL_ERROR,

DEACTIVATE_SESSION.SENSE_CODEl !page 4-71).

c If either node's path control does not support segmenting and the primary send
maximum RU size in the BIND response is greater than the link segment size then

Set the maximum RU size to the link maximum RU segment size.

If the BIND response specifies the primary as contention winner then
Set LULU_CB.SESSION_TYPE to FIRST_SPEAKER.

Else
Set LULU_CB.SESSION_TYPE to BIDDER.

Call BUILD_AND_SEND_SESSST_RQ!LULU_CBl !page 4-70).
Call BUILD_AND_SEND_INIT_HSILULU_CB, BIND image from BIND response RU, PRil

(page 4-64).

D Call BUILD_AND_SEND_ACT_SESS_RSP_POSCLULU_CBl !page 4-57).

E Set fields in LULU_CB from BIND request record !ADDRESS, ALS [peripheral nodes
only], PC_ID, and user-data session-instance identifier).

Create LU-LU half-session with unique identifier (save identifier in
LULU_CB.LU_LU.HS_IDJ.

Call BUILD_AND_SEND_PC_HS_CONNECTILULU_CB.LU_LU.PC_ID, LULU_CB.LU_LU.HS_ID,
LULU_CB.LU_LU.ADDRESSl :~age 4-67).

Call BU!Ln_AtID_SEND_BIND_RSP_POSCBIND_RQ_RCV_RECORD, LULU_CBl !negotiated
BIND image returned, page 4-61).

Call BUILD_AND_SEND~SESSST_RQILULU_CB) (page 4-70).
Call BUILD_AND_SEND_INIT_HSILULU_CB, negotiated BIND image, SEC>

(page 4-64).

F If this node is a ~eripheral node then
Set LULU_CB.LU_LU.ADDRESS to PC_CONNECT_RSP.ADDRESS to save the assigned

address for later use. Subarea nodes obtain the address from the CINIT request.
Call BUILD_AND_SEND_PC_HS_CONNECTILULU_CB.LU_LU.PC_ID, LULU_CB.LU_LU.HS_ID,

LULU_CB.LU_LU.ADDRESS> !page 4-67).
Call BUILD_AND_SEND_BIND_RQILULU_CB) !page 4-60).

6 Call BUILD_AND_SEND_SESS_ACTIVATEDILULU_CB) !page 4-68).

H Call BUILD_AND_SEND_UNBIND_RQILULU_CB, FORMAT_OR_PROTOCOL_ERROR,
INIT_HS_RSP.SENSE_CODEl lpage 4-71).

I Call CLEANUP_LU_LU_SESSIONILULU_CBl (page 4-74>.

J Call BUILD_AND_SEND_ACT_SESS_RSP_NEG!LULU_CB.CORRELATOR, NO_RETRYl
!page 4-57).

Call BUILD_AND_SEND_UNBIND_RQILULU_CB, FORMAT_OR_PROTOCOL_ERROR,
INIT_HS_RSP.SENSE_CODEl (page 4-71).

K Call BUILD_AND_SEND_TERM_RQ!LULU_CB, DEACTIVATE_SESSION.TYPEl (page 4-70).
Call CLEANUP_LU_LU_SESSION!LULU_CBl (page 4-74).

L Call BUILD_AND_SEND_ACT_SESS_RSP_NEG!LULU_CB.CORRELATOR, NO_RETRYl
lpage 4-57).

Call CLEANUP_LU_LU_SESSIONILULU_CBl !page 4-74>.

M Call BUILD_AND_SEND_UNBIND_RQCLULU_CB, FORMAT_OR_PROTOCOL_ERROR,
ABORT_HS.SENSE_CODEl !page 4-71).

Call BUILD_AND_SEND_SESS_DEACTIVATEDILULU_CB.LU_LU.HS_ID, ABNORMAL_NO_RETRYl
(page 4-69).

Chapter 4. LU NetNOrk Services 4-95

FSM_STATUS

N Call BUILD_AND_SEND_BINDF_RQCSETUP_REJECT_AT_SLU, LULU_CB, LOCAL.SENSE_CODE)
(page 4-6 U .

Call CLEANUP_LU_LU_SESSIONCLULU_CB) ! page 4-74 l.

p Call BUILD_AND_SEND_UNBIND_RSPCUNBIND_RQ_RCV_RECORD,LULU_CB_PTR>
{page 4-71 L

Call CLEANUP_LU_LU_SESSIONCLULU_CBl (page 4-74 J.

Q Call BUILD_AND_SEND_UNBIND_RQCLULU_CB, INVALID_PARMS, X'OOOOOOOO')
(page 4-711.

R If LOCAL.SENSE CODE = x. 00000000 I then
Set LOCAL.SENSE_CODE = X'08090000' (mode inconsistency).

Call BUILD_AND_SEND_RSP_OR_LOGCHS_RCV_RECORDl
(send -RSPINOTIFY), page 4-66).

s Call BUILD_AND_SEND_UNBIND_RSPCUNBIND_RQ_RCV_RECORD,LULU_CB_PTR)
(page 4-71 l •

Determine the reason for the session deactivation. If the UNBIND type is normal or
BIND forthcoming, the reason is NORMAL. If the UNBIND type is virtual route
inoperative or route extension inoperative, the reason is ABNORMAL_RETRY. For
all other UNBIND types, the reason is ABNORMAL_NO_RETRY.

Call BUILD_AND_SEND_SESS_DEACTIVATEDCLULU_CB.LU_LU.HS_ID, reason)
(page 4-69 l.

Call CLEANUP_LU_LU_SESSIONCLULU_CBJ C page 4-74 J.

T Call BUILD_AND_SEND_UNBIND_RQILULU_CB, CLEANUP, X'OOOOOOOO'l !page 4-71).
(Send UNBINDCCLEANUPJ, page 4-711.

Call CLEANUP_LU_LU_SESSION!LULU_CBl (page 4-74).

u Call BUILD_AND_SEND_INIT_RQ!LULU_CB, SLUl (page 4-65).

v Call BUILD_AND_SEND_INIT_RQ(LULU_CB, PLUJ (page 4-65).

w Call BUILD_AND_SEND_RSP_OR_LOGCHS_RCV_RECORDl !send ±RSP!NOTIFYJ, page 4-66l.
Determine the error type by examining the sense data in the NOTIFY request

(see Note in prologue).
Call BUILD_AND_SEND_ACT_SESS_RSP_NEGCLULU_CB.CORRELATOR, error type}

(page 4-57).
Call CLEANUP_LU_LU_SESSIONCLULU_CB) (page 4-74 l.

x Call BUILD_AND_SEND_UNBIND_RQCLULU_CB, INVALID_PARMS, X'OOOOOOOO')
!page 4-71).

Call BUILD_AND_SEND_ACT_SESS_RSP_NEGCLULU_CB.CORRELATOR, NO_RETRY)
(page 4-57 l.

y If LOCAL.SENSE CODE = X'OOOOOOOO' then
Set LOCAL.SENSE_CODE to X'08150000' !function already active).

Call BUILD_AND_SEND_CINIT_RSPCHS_RCV_RECORDI !page 4-62).

z Call BUILD_AND_SEND_UNBINDF_RQCsense data from UNBIND_RSP_RCV_RECORD, LULU_CBJ
(page 4-72 J.

Call CLEANUP _LU_LU_SESSIOM< LULU_ CB l C page 4-74) •

AA Determine the error type by examining the sense data in the !NIT-SELF response
(see Note in prologue).

Call BUILD_AND_SENO_ACT_SESS_RSP_NEGCLULU_CB.CORRELATOR, error type!
!page 4-57!.

Call CLEANUP_LU_lU_SESSIONCLULU_CBJ (page 4-74 l •

BB Call BUILD_AND_SEND_CINIT_RSPCHS_RCV_RECORDJ !page 4-62) to send +RSPtCINITl.
Create a new half-session CHS) process.
Call BUILD_AND_SEND_PC_CONNECTCLULU_CBl !page 4-67).
Save the CINIT request in the LULU_CB for later use in building the BIND request.

cc Call BUILD_AND_SEND_ACT_SESS_RSP_NEG!LULU_CB.CORRELATOR, NO_RETRY>
(page 4-57).

Call BUILD_AND_SEND_PC_HS_DISCONNECTCLULU_CB.LU_LU.HS_ID) (page 4-68) •
Call CLEANUP_LU_LU_SESSION!LULU_CBl C page 4-74 l.

4-96 SNA Format and Protocol Reference Manual for LU Type 6.2

FSM_STATUS

DD Call BUILD_AND_SEND_UNBIND_RQILULU_CB, CLEANUP, X'OOOOOOOO') lpage 4-71)
Call BUILD_AND_SEND_ACT_SESS_RSP_NEGILULU_CB.CORRELATOR, NO_RETRY)

(page 4-57).
Call CLEANUP_LU_LU_SESSIONILULU_CB) (page 4-74).

EE If LOCAL.SENSE CODE = x•oooooooo• then
Set LOCAL.SENSE_CODE = X'08150000' lfunct;on already act;vel.

Call BUILD_AND_SEND_BIND_RSP_NEGIBIND_RQ_RCV_RECORDl (page 4-60).

FF Call BUILD_AND_SEND_BINDF_RQISETUP_REJECT_AT_SLU, LULU_CB, sense data from
the BIND response> (page 4-61).

Determine the error type by examining the sense code ;n the BIND response
(see Note in prologue).

Call BUILD_AND_SEND_ACT_SESS_RSP_NEGCLULU_CB.CORRELATOR, error type)
l page 4-57 >.

Call CLEANUP_LU_LU_SESSIONCLULU_CBl I page 4-74).

GG Call BUILD_AND_SEND_SESS_DEACTIVATEDCLULU_CB.LU_LU.HS_ID, ABNORMAL_NO_RETRYl
!page 4-69).

Call CLEANUP_LU_LU_SESSIONCLULU_CB) (page 4-74) •

HH Call BUILD_ANO_SEND_UNBIND_RSPIUNBIND_RQ_RCV_RECORDl (page 4-71).
Determine the error type by examining the Type field ;n the UNBIND request.
If it is virtual route ;noperat;ve or route extension ;noperative, then the error
type is RETRY; otherwise, the error type is NO_RETRY.

Call BUILD_AND_SEND_ACT_SESS_RSP_NEG!LULU_CB.CORRELATOR, error type)
(page 4-57).

Call CLEANUP_LU_LU_SESSION!LULU_CBl (page 4-74).

JJ If LOCAL.SENSE CODE = X'OOOOOOOO' then
Set LOCAL.SENSE_CODE = X'08150000' !function already active).

Call BUILD_ANO_SEHO_CINIT_RSPCHS_RCV_RECORDl !page 4-62) to send -RSP! CINIT l.
Determine the error type by examining LOCAL.SENSE_CODE !see Note ;n prologue).
Call BUILD_AND_SEND_ACT_SESS_RSP_NEGCLULU_CB.CORRELATOR, error typel

(page 4-571.
Call CLEANUP_LU_LU_SESSIONILULU_CBl I page 4-74).

KK Call BUILD_AND_SEND_SESS_DEACTIVATEDCLULU_CB.LU_LU.HS_ID, ABNORMAL_NO_RETRYl
!page 4-69).

Call BUILD_AND_SEND_UNBIND_RQILULU_CB, CLEANUP, X'OOOOOOOO'l (page 4-71 l •
Call CLEANUP_LU_LU_SESSIONILULU_CBl (page 4-74).

LL If LOCAL.SENSE_CODE = x·oooooooo• then
Set LOCAL.SENSE CODE to PC CONNECT RSP.SENSE CODE.

Call BUILD_AND_SEND_BINDF_RQ!SETUP_REJECT_AT_PLU, LULU_CB, LOCAL.SENSE_CODEl
!page 4-61 l.

Determine the error type by examining LOCAL.SENSE_CODE !see Note in prologue>.
Call BUILD_AND_SEND_ACT_SESS_RSP_NEGCLULU_CB.CORRELATOR, error type)

(page 4-57 l.
Call CLEANUP_LU_LU_SESSIONCLULU_CBI I page 4-74 I.

MM If LOCAL.SENSE_CODE = X'OOOOOOOO' then
Set LOCAL.SENSE_CODE to PC_CONNECT_RSP.SENSE_CODE.

Call BUILD_AND_SEND_BINOF_RQCSETUP_REJECT_AT_PLU, LULU_CB, LOCAL.SENSE_CODEl
! page 4-61).

Call CLEANUP_LU_LU_SESSION!LULU_CBI !page 4-74).

NN Determine the error type by examining LOCAL.SENSE_CODE !see Note in prologue).
Call BUILD_AND_SEND_ACT_SESS_RSP_NEGILULU_CB.CORRELATOR, error typel

(page 4-57).
Call BUILD_AND_SEND_BINDF_RQISETUP_REJECT_AT_SLU, LULU_CB, LOCAL.SENSE_CODEl

(page 4-61 l.
Call CLEANUP_LU_LU_SESSIONILULU_CB) (page 4-74 l.

Chapter 4. LU Network Services 4-97

FSM_STATUS

pp Call BUILD_AND_SEND_ACT_SESS_RSP_NEGCLULU_CB.CORRELATOR, NO_RETRYJ
(page 4-57).

Call BUUD_AND_SEND_UNBIND_RQC LULU_CB, NORMAL, X'OOOOOOOO') (page 4-71).

QQ Call BUILD_AND_SEND_UNBIND_RQCLULU_CB, NORMAL, x·oooooooo• > (page 4-71 J •

RR Call BUILD_AND_SEND_DEACTIVATE_SESSCLULU_CB.LU_LU.HS_IDJ !page 4-63).

SS Call BUILD_AND_SEND_UNBIND_RQCLULU_CB, NORMAL, X'OOOOOOOO'J !page 4-71).
Call BUILD_AND_SEND_SESS_OEACTIVATEDCLULU_CB.LU_LU.HS_ID, ABNORMAL_NO_RETRYl

C page 4-69 l.

TT Call BUILD_ANO_SEND_BIND_RSP_NEGCBIND_RQ_RCV_RECORDJ Cpage 4-601.
Call BUILO_ANO_SEND_ACT_SESS_RSP_NEG!LULU~CB.CORRELATOR, error type (see Note in

prologue l l C page 4-57 l.
Call CLEANUP_LU_LU_SESSIONCLULU_CB) !page 4-74).

w Call BUILD_AND_SEND_BINDF _RQ(SETUP _REJECT_AT_SLU, LULU_CB, sense data
from the BIND response) (page 4-61).

Call CLEANUP_LU_LU_SESSIONCLULU_CBJ !page 4-741.

4-98 SNA Format and Protocol Reference Manual for LU Type 6.2

LOCAL DATA STRUCTURES

LOCAL

LOCAL Cthis control block is accessible by any procedure in LNS)
CPLU_CB_LIST list of CP-LU half-session control blocks (page A-1)
LULU_CB_LIST list of LU-LU half-session control blocks (page A-5)
SENSE_COOE Cthis field is set with a sense data value whenever an error is found)

ERROR_ TYPE

ERROR_TYPE: possible values: RETRY, NO_RETRY

SESSION_ TYPE

SESSION_TYPE: possible values: FIRST_SPEAKER, BIDDER

Chapter 4. LU Network Services 4-99

100 SNA Format and Protocol Reference Manual for LU Type 6.2

CHAPTER 2..J!... OVERVIEW OF PRESENTATION SERVICES

GENERAL DESCRIPTION

Presentation services (PS J ; s the component
of the LU with wM ch transaction programs
interact directly. Each exP.cutfon instance
of a transaction program at the LU is served
by its own PS process. This PS process is
responsible for processing the transaction
program's requests for LU services. The
transaction program requests these services
by issuing verbs.

The verbs, along with their supplied and
returned parameters, are fully described in
SNA Transaction Programmer's Reference Manual
for LU ~ ~· which defines both the serv­
ices that the LU provides and a syntax for
transaction program requests for those serv­
ices. The basic services are SHA-defined and
are provided by all LU implementations, but
the syntax of requests for the services may
be implementation-defined.

The services requested by verbs usually
involve communication over a conversation
with a transaction program at a remote LU.
The supplied parameters of a verb therefore
usually include an identifier of the conver­
sation on which the verb is being issued.
The data exchanged by conversing transaction
programs is carried on a session assigned to
the conversation.

PS interacts with various other LU compo­
nents. The LU resources manager CRMJ creates
and destroys the PS process, and assigns
half-sessions to it for conversation traffic.
PS exchanges data with these half-sessions in
carrying out transaction program verb
requests. PS also interacts with the trans­
action program; or, more predsely, PS con­
tains, and is driven by, a transaction
program execution instance CTPJ.

PS COMP9NENT FUNCTIONS

Figure 5.0-1 on page 5.0-2 shows the compo­
nents of PS. PS. INITIALIZE loads and calls
the TP. The TP then issues verbs, which are
processed by the other PS components. The TP
ends by returning to PS.INITIALIZE. The
functions and interactions of the PS compo­
nents are further described below.

TP:

• Interacts directly with local end users
and resources.

• Requests LU services Cfor interaction
with remote resources) by issuing verbs.

PS.INITIALIZE:

• Receives program initialization parame­
ters (PIP data).

• Loads and calls the TP.
• Instructs RM (after the TP completes and

returns) to destroy this PS process.

PS.VERB_ROUTER:

• Checks every verb for compa ti b il i ty with
the type of the conversation on which it
was issued.

• Routes valid verb-issuances to the appro­
priate verb-processing component.

PS.MC, PS.SPS, ••• , PS.COPR:

• Process non-basic verbs that request
optional special services C these compo­
nents and their associated services are
described in separate chapters of this
book J.

• Translate non-basic verbs into basic
verbs.

PS.CONV:

• Processes basic conversation verbs.
• Checks each basic conversation verb for

compatibility with the state of the con­
versation on which it was issued.

• Performs Ci n co-operation with or at the
request of other verb-processing compo­
nents) all basic conversation services.

All the components of the PS process !includ­
ing the transaction program execution
instance) interact synchronously (using
call/return logic). PS may exchange informa­
tion with other LU components by means of
asynchronous inter-process communication (us­
ing send/receive logic).

DATA BASE STRUCTURE

PS uses several data structures to record
information needed to provide services to the
transaction program. These data structures
include PS_PROCESS_DATA, the transaction con­
trol block (TCB), and the resource control
block list !RCB_LISTl. This chapter
describes the use of these data structures
by the PS.INITIALIZE and PS.VERB_ROUTER com­
ponents. Use of data structures by other PS

Chapter 5.,0. Overview of Presentation Services 5.0-1

I .. : .. , • Transact 1 on Program ••••••••••••••••••••••••••••••••••••••• .._ __ _,

A I

: : : : : : : : : : : : I : I : ~ . .: . .: . .: . .: . .: . .: . .: . .: . .:. ~ : : : :

::::::::::::1::::::::::::::::::::::::::::v::::::::::::::::::::::::::::::::v:::::::::::::::::::1::::
• ::::l PS.VERB_ROUTER J:::i:::: :::: :::1:::: 1 1 1 1 1

::::::1:::::::::::::::::1::::::::::::::::::1:::::::::::::::::::1:::::::::1::::
: : : : : : I::::::::::::::::: v:::::::::::::::::: v::::::::::::::: :: : : v::::::::: I::::
::::::,::::::::::: :::,::::

............... 1
• • • PS.COPR4 :::1::::

.
PS.MC2

.
PS.SPS3

::::::1:::::::::::
PS.INITIALIZE ::::::1:::::::::::

::::::1:::::::::::
...... ·---- ~• ·-
•••••• 1 •••••••••••••••••• 1 ••••••••••••••••• 1 ••••••••••••••••••• 1 ••••••••• 1 ••••

::::::1::::::::::::::::::l·.:·.:·.:·.:·.:·.:·.:·.:·i·.:·.:·.:·.:·.:·.:·.:·.:·.:·i·.:·.:·.:·.:·J::::

•••... v ••.•••••.•.••••....•.•.••.•••..•••••••.•.••.••.•••••.•••••••••••.•••••.

::::1··1:::::::: • PS.CONV 1 ••••••••••••••••••••••••••••••••••
..._ ____________ __.

::::::::::::·:::::::::1:::::!::::::::::::::::·::::::::::::::::·:::::::~~~~~~~~:~~~~:~~~:::

1
2
J
4

v v v v
Resources Manager Half- Half-

Session Session

See "Chapter 5.1. Presentation Services--Conversation Verbs"
See "Chapter 5.2. Presentation Services--Mapped Conversation Verbs"
See "Chapter 5.3. Presentation Services--Sync Point Services Verbs"
See "Chapter 5.4. Presentation Services--Control-Operator Verbs"

Note: A dashed line denotes a synchronous Ci.e., a CALL) protocol boundary between components,
while a solid line denotes an asynchronous Ci.e., a SEND> protocol boundary.

Figure 5.0-1. Overview of Presentation Services, Emphasizing PS.INITIALIZE and PS.VERB_ROUTER

5.0-2

components is described in detail in the cor­
responding chapters.

PS_PROCESS_DATA on page 5.0-20 contains data
that is accessible by all components of the
PS process. This data includes pointers to

lists of shared control blocks, and to single
control blocks describing the local LU and
this PS p.rocess. These pointers are initial­
ized with data passed from RM when it creates
the PS process, and they remain unchanged
thereafter.

SHA Format and Protocol Reference Manual for LU Type 6.2

(1)

(2)

(3)

(4)

(5)

(6)

Half­
Session

Resources
M<inager PS. INITIALIZE

create PS process
->

ATTACH_HEADER

Transaction
Program

RECEIVE_DATA }
-----> only if PIP data present

CALL TPCRCB_IO, PIPl, ..• , PIPn)
- - - - - - - - - ->

TP executes

return
<- -

} zero or more times

DEALLOCATE_RCB

RCB_DEALLOCATED

TERMINATE_ PS

destroy PS process
- - - - - - - - - ->

Figure 5.0-2. Initialization and Termination of Presentation Services and Transaction Program

The transaction control block CTCB, page
A-lOl contains information specific to the
transaction program instance, such as the
list of resources allocated to it. The TCB
also contains the CONTROLLING_COMPONENT
field, which is maintained by PS.VERB_ROUTER,
and records whether the verb was issued by
the TP or by a verb-processing component Con
behalf of the TPl. The TCB is created by RM
when the PS process is created and destroyed
by RM when the PS process is destroyed.

The resource control block C RCB, page A-7 l
contains information specific to a particul<ir
resource, such as the state of a conversation
or the conversation type. One RCB exists for
each active resource. The RCB is created and
destroyed by RM at the request of PS as p<irt
of the processing of the ALLOCATE and DEALLO­
CATE verbs. Certain fields of the RCB are
shared between PS and RM, while other fields
are used exclusively by PS.

INITIALIZATION AND TERMINATION
(PS. INITIALIZE l

The PS.INITIALIZE component performs initial­
ization and termination of PS and the TP.

Figure 5.0-2 shows the protocol boundary
flows that are used by PS. INITIALIZE for
initialization and termination of the PS
process. The steps below correspond to the
numbers in the figure.

1. The PS process is created by RM, which
passes it several parameters, including
the LUCB LIST PTR, the TCB_ LIST _PTR and
the RCB LIST PTR. These parameters are
used t; inrtialize the PS_PROCESS_DATA
structure.

2. PS next receives from RM an FMH-5 !At­
tach), accompanied by the TCB ID of this
instance of PS, the RCB ID of the initial
conversation !the conversation on which
the Attach flowed), and sense data con­
taining the result of RM's checking of
the Attach. If the sense data is 0 (in­
dicating no error was found by RMJ,
PS.INITIALIZE performs additional check­
ing of the Attach. This checking
includes a check of the secur i ty fields
and the transaction program's support of
the conversation type and program
initialization parameters CPIP data). If
the Attach is in error !as determined by
RM or PS.INITIALIZE) the conversation is
terminated. Depending on the error
detected, the session may be deactivated,

Chapter 5.0. Overview of Presentation Services 5.0-3

5.0-4

or the conversation ended with DEALLOCATE
TYPECABEND_PROG).

3. The Attach indicates whether PIP data
follows. If the Attach is correct, the
PIP data Cif any) is received as a single
GOS variable, and is then separated into
a list of individual PIP subfields.

4. An execution instance of the transaction
program named in the Attach is then cre­
ated. This TP is called with arguments
of the RCB ID of the initial conversation
and the list of PIP subfields (if pres­
ent).

5. When the TP completes processing
(normally or abnormally), it returns to
PS. INITIALIZE. PS. INITIALIZE terminates
and deallocates (in an
implementation-dependent way) the TP's
remaining active conversations I if any1
the list of conversations that are still
active is found in the RESOURCES_LIST of
the TCB).

6. Finally, PS.INITIALIZE sends a TERMI­
NATE_PS record to the resources manager
and waits to be terminated. On receipt
of the TERMINATE_Ps record, RM destroys
the PS process.

VERB PROCESSING CPS.VERB_ROUTER>

PS.VERB_ROUTER routes verbs to the appropri­
ate PS verb-processing component. It also
processes resource-independent verbs such as
WAIT and GET_ TYPE. The suppll ed RESOURCE
parameter of most verbs i dent i fies the con­
versation on which the verb is being issued.
The value in the RESOURCE parameter must

match one in TCB.RESOURCES_lIST, the list of
resources allocated to the TP; if it does
not, the TP is terminated abnormally.

PS. VERB_ROUTER also maintains the CONTROL­
UNG_COMPONENT field of the TCB. The value
of CONTROLUNG_COMPONENT is TP if the verb
has been issued directly by the TP. The val­
ue is SERVICE_COMPONENT if the verb has been
issued by another PS component as part of its
verb processing.

WAIT Verb Processing

The WAIT verb is not processed by PS. CONV,
because (unlike most verbs) it is not issued
over a conversation. Instead, it allows a TP
to wait until specified conditions are satis­
fied I "posted" l for any of several conversa­
tions. WAIT processing includes:

• Checking that all the resource IDs are
valid and that at least one resource is
activated for posting

• Determining whether a resource is already
posted (and, if one is, returning imme­
diately)

• Awaiting, H no posting condition has
been satisfied, the arrival of data that
will cause a resource to be posted

GET TYPE Verb Processing

GET_TYPE processing is handled locally in
PS. VERB_ROUTER by copying the conversation
type from the appropriate RCB into a returned
parameter of the verb.

SNA format and Protocol Reference Manual for LU Type 6.2

HIGH-LEVEL PROCEDURES

PS

FUNCTION: Presentat;on services CPS> provides verb-processing services to a transaction
program execut;on instance CTPJ. PS invokes, terminates, contains, and is
driven by the TP.

INPUT: LUCB_LIST_PTR, TCB_LIST_PTR, and RCB_LIST_PTR,
TCB_LIST, and RCB_LIST, respect;vely; LU_ID, the
the ID of th;s PS process

po;nters to
ID of tMs LU;

LUCB_LIST,
and TCB_ID,

OUTPUT: Process data is init;alized and PS.INITIALIZE is invoked.

Referenced procedures, FSMs, and data structures:
PS_INITIALIZE

PS_PROCESS_DATA
TCB
LUCB

LUCB_LIST_PTR
RCB_LIST_PTR
TCB_LIST_PTR
LU_ID
TCB_ID

Copy the input parameters into the fields of PS_PROCESS_DATA !page 5.0-20).

page 5.0-6

page 5.0-20
page A-10
page A-1

page 5.0-21
page 5.0-21
page 5.0-21
page 5.0-21
page 3-69

Set PS_PROCESS_DATA.LUCB_PTR to po;nt to the LUCB for th;s LU 1;dentified by LU_IDJ.
Set PS_PROCESS_DATA.TCB_PTR to point to the TCB for th;s transact;on process

Cident;fied by TCB_IDJ.

Call PS.INITIALIZE !page 5.0-6).

Chapter 5.0. Overview of Presentation Services 5.0-5

PS_INITIALIZE

PS_INITIALIZE

5.0-6

FUNCTION: This procedure creates and invokes an instance of the transaction program
named in a received FMH-5 CAttachJ.

After PS is created by RM, PS.INITIALIZE receives the Attach and other infor­
mation from RM. As shown in "Function Management Header 5: Attach " on page
H-6, the Attach contains the name of the transaction program to be invoked,
and an indicator of whether program initialization parameters !PIP data) will
accompany the Attach. PS.INITIALIZE receives the PIP data Cif any) from the
half-session, and validates fields of the Attach.

If the Attach is valid, PS invokes the transaction program named in the
Attach. When the TP returns to PS.INITIALIZE, the PS process is destroyed (by
calling DEALLOCATION_CLEANUP_PROC).

If the Attach contains an error, ATTACH_ERROR_PROC is called and the PS proc­
ess is destroyed; no transaction program is invoked.

INPUT: Attach information (from RM>

OUTPUT: An execution instance of a transaction program is loaded and called. The TP
is passed the RCB_ID representing the conversation between the attached pro­
gram and the attaching program, and PIP data, if there is any.

NOTE: Rather than invoking the transaction program immediately upon receipt of the
Attach, PS may await the receipt of data indicating end-of-chain before dis­
patching the transaction program.

Referenced procedures, FSMs, and data structures:
PS

INITIALIZE_ATTACHED_RCB
RECEIVE_PIP_FIELD_FROM_HS
PS_ATTACH_CHECK
UPM_EXECUTE
ATTACH_ERROR_PROC
DEALLOCATION_CLEANUP_PROC

PS_PROCESS_DATA
TCB
RCB
PIP_FIELD
PIP_LIST
CODE, see SEHSE_DATA

Receive Attach information from RM.
If the Attach !see page H-6 for format) indicates
that PIP data is present, then

Call RECEIVE_PIP_FIELD_FROM_HSCRCB,PIP_FIELDJ Cpage 5.0-7).
Else

Set PIP_FIELD to null.
Call PS_ATTACH_CHECK !page 5.0-8),

and pass it PIP_FIELD and relevant Attach information.
Store the resulting sense data in CODE.
If the Attach is valid CCODE=O> then

Set RCB to the RCB_LIST-element identified by ATTACH_RECEIVED.RCB_ID.
Call INITIALIZE_ATTACHED_RCBCATTACH_RECEIVEDJ !page 5.0-17).

page

page
page
page
page
page
page

page
page
page
page
page
page

Copy the transaction program name and access security fields of the Attach
into the TCB.

Set TCB.CONTROLLIHG_COMPONENT to TP.

Call RCB.FSM_CONVERSATIONCR, ATTACH, RCBJ (page 5.1-59).
Call UPM_EXECUTECTCB.TRANSACTION_PROGRAM_NAME, RCB.RCB_ID, PIP_LISTJ

!page 5.0-18) (see Hotel.
Else !Attach is not valid>

Call ATTACH_ERROR_PROCCRCB, CODE) (page 5.0-10).

Call DEALLOCATION_CLEANUP_PROC Cpage 5.0-14).

SNA Format and Protocol Reference Manual for LU Type 6.2

5.0-5

5.0-17
5.0-7
5.0-8
5.0-18
5.0-10
5.0-14

5.0-20
A-10
A-7
5.0-20
5.0-21
5.0-22

RECEIVE_PIP_FIELD_FROM_HS

RECEIVE_PIP_FIELD_FROM_HS

FUNCTION: During invocation of the transaction program, this procedure receives a pro­
gram initialization parameter CPIP) field by issuing a RECEIVE_AND_WAIT verb.
If this verb-issuance succeeds in receiving a complete logical record contain­
ing a PIP Data GOS variable, then the received PIP field is returned to
PS.INITIALIZE. If it fails, a protocol violation has been committed by the
partner LU; the session is deactivated and the transaction program is not
invoked.

INPUT: The RCB for the TP's initial conversation; a PIP Data GOS variable from the
half-session

OUTPUT: A RECEIVE AND WAIT verb is issued in order to retrieve the expected PIP data,
which is returned to PS.INITIALIZE via PIP_FIELD.

NOTES: 1. The RECEIVE_AND_WAIT structure that is created in this procedure cannot be
destroyed at only the end of the procedure. The reason for this is that if a
protocol violation is detected and DEALLOCATION CLEANUP PROC is invoked, this
process ends without ever returning to this procedur; Cin this case, the
RECEIVE_AND_WAIT would never be destroyed).

2. This error occurs if the partner indicates in the Attach that PIP data fol­
lows, but either no data follows or the data that follows is not PIP data.

Referenced procedures, FSMs, and data structures:
PS

PS_PROTOCOL_ERROR
DEALLOCATION_CLEANUP_PROC

PS_PROCESS_DATA
RCB
PIP_FIELD

Issue a RECEIVE_AND_WAIT verb on this conversation, with
a MAX_LENGTH of X'7FFF', a FILL of LL, and a DATA parameter of PIP_FIELD.

If PIP FIELD does not now contain
a complete PIP Data GDS variable (see page H-15 for format),
then (optional receive check~see Note 2)

Call PS_PROTOCOL_ERRORCRCB.HS_ID, RCB.RCB_ID, X'l008201D'J Cpage 5.0-16J.
Call DEALLOCATION_CLEANUP_PROC !page 5.0-14)

page 5.0-5

page 5.0-16
page 5.0-14

page 5.0-20
page A-7
page 5.0-20

Chapter 5.0. Overview of Presentation Services 5.0-7

PS_ATTACH_CHECK

PS_ATTACH_CHECK

5.0-8

FUNCTION: This procedure validates SOllle fields of the received Attach (RH validates the
other fl elds) •

INPUT: Attach information (from RH> and program initialization parameter (PIP> data
from HS.

OUTPUT: o, if no invalid fields are found; the appropriate sense data, otherwise

NOTE: If RM finds the Attach invalid, it is acc0111Panied by sense data (in
SENSE_COOE) with one of the following values:

X' 10086000'
X'l0086005'
X' 10086009'
X'l008600B'
X' 10086011'
X' 10086021'
X'l0086040'
x' 08486031 '
X'084C0000'
X'l0086040'
X' 10086041'

FMH length not correct
Access Security Information field length invalid
Invalid parameter length
Unrecognized FMH command
LUW length invalid
TPN not recognized
Invalid Attach parameter
Transaction program not available--retry
Transaction program not available--no retry
Sync level not supported by LU
Sync level not supported by TP

otherwise, SENSE_COOE = x•oooooooo•.

Referenced procedures, FSMs, and data structures:
PS

PS_PROCESS_DATA
TCB
LUCB
TRANSACTION_PROGRAM
PIP_FIELD
SENSE_CODE, see SENSE_DATA

SNA Format and Protocol Reference Manual for. LU Type 6. 2

page 5.0-5

page 5.0-20
page A-10
page A•l
page A-4
page 5.0-20
page 5.0-22

If SENSE_CODE > O, then
Return sense data set by RM.

Else (continue seeking Attach errors)
Set TRANSACTION_PROGRAM to the LUCB.TRANSACTION_PROGRAM_LIST-element

named in Attach.

Select, in order, based on
the contents of the Attach (for format, see page H-6):

Errors that cause the session to be deactivated

When the Logical Unit of Work Identifier fields are incorrectly formatted
Return X'l0086011'.

Errors that cause an FMH-7 to be generated

When TRANSACTION_PROGRAM.NUMBER_OF_PIP_SUBFIELDS=O,
but the Attach indicates that PIP data is present

Return X'l0086031' IPIP not allowed>.

When TRANSACTION_PROGRAM.NUMBER_OF_PIP_SUBFIELDS is positive, but
the actual number of PIP subfields lin PIP FIELD) differs from it,
or PIP data is not indicated as present -

Return X'l0086032' IPIP not specified correctly>.

When the Resource type is not supported by the transaction program
li.e., is not on the TRANSACTION_PROGRAM.RESOURCES_SUPPORTED_LIST)

Return X'l0086034' (conversation type mismatch>. ·

When the Access Security Information fields are not valid
(according to page H-7>

Return X'080F6051'.

Otherwise (ATTACH is valid>
Return X'OOOOOOOO'.

PS_ATTACH_CHECK

Chapter 5.0.· Overview of Presentation Services 5.0-9

ATTACH_ERROR_PROC

ATTACH_ERROR_PROC

5.0-10

FUNCTION: This procedure handles the processing required when an invalid FMH-5 (Attach>
is received.

INPUT:

OUTPUT:

Depending upon the type of Attach error (as reflected in the passed SENSE_CODE
parameter), PS either generates an (FMH-7,CEBI or causes the session over
which the Attach flowed to be deactivated.

When the Attach contains an error that violates defined protocols, PS requests
that the session be deactivated.

For all other Attach errors, PS first issues a SEND_ERROR record to the
half-session. PS then creates an FMH-7 error message that con.ta ins sense
data identifying the type of Attach error encountered. PS also sends DEALLO­
CATE_RCB to RM, and then instructs RM to terminate the PS process.

The RCB corresponding to the conversation over which the invalid Attach was
received, and sense data specifying the type of Attach error are received as
parameters.

The session is deactivated or an FMH-7
half-session and the conversation is ended.
and sent with the FMH-7.l

error message is sent to the
!Error data is optionally logged

Referenced procedures, FSMs, and data structures:
PS

PS_PROTOCOL_ERROR
DEALLOCATION_CLEANUP_PROC
GET_END_CHAIN_FROM_HS
SEND_ERROR_TO_HS_PROC
UPM_ATTACH_LOG
SEND_DATA_BUFFER_MANAGEMENT
SEND_DATA_TO_HS_PROC

PS_PROCESS_DATA
RCB
BUFFER_ELEMENT
SENSE_CODE, see SENSE_DATA

SNA Format and Protocol Reference Manual for LU Type 6.2

page 5.0-5

page 5.0-16
page S.0-14
page S.1-34
page S.1-52
page S.0-19
page S.1-47
page 5.1-48

page S.0-20
page A-7
page A-8
page S.0-22

ATTACH_ERROR_PROC

If SENSE_CODE is
X'l008200E', X'l0086000', X'l0086005', X'l0086009', X'l0086011', or X'l0086040',
then (deactivate the session)

Call PS_PROTOCOL_ERRORCRCB.HS_ID, RCB.RCB_ID, SENSE_CODEl (page 5.0-16).
Call DEALLOCATION_CLEANUP_PROC !page 5.0-14).

Else !generate an FMH-7)
Call SEND_ERROR_TO_HS_PROCCRCBl !page 5.l-52l.
Call GET_END_CHAIN_FROM_HSCRCBl (page 5.1-34).
Set BUFFER_ELEMENT to the last entry in RCB.HS_TO_PS_BUFFER_LIST.
If the BUFFER_ELEMENT type is

DEALLOCATE CONFIRM, CONFIRM, PREPARE TO RCV CONFIRM, or PREPARE_TO_RCV_FLUSH
then - - - -

Call UPM_ATTACH_LOG (page 5.0-19) to
generate log data describing this Attach error.

If this log data is non-null, then
Log it in the local system error log.
Put into the conversation's send buffer CRCB.PS_TO_HS_RECORD.DATAl
an FMH-7 (page H-8) indicating that
log data follows and sense data (from SENSE_CODEl is included.

Append to the conversation's send buffer an

Else

Error Log GOS variable !page H-15) containing the log data.
and append this GOS variable to the send buffer.

Put into the conversation's send buffer CRCB.PS_TO_HS_RECORD.DATAl
an FMH-7 (page H-8) indicating that
no log data follows and sense data (from SENSE_CODEl is included.

Call SEND_DATA_BUFFER_MANAGEMENTC null string, RCB l (page 5.1-47).
Set RCB.PS TO HS RECORD.TYPE to DEALLOCATE FLUSH.
Call SEND_DATA_TO_HS_PROCCRCBl !page 5.l-4Sl.

Send a DEALLOCATE_RCB record (page A-26J, derived from this RCB, to RM.

Chapter 5.0. Overview of Presentation Services S.0-11

PS_VERB_ROUTER

PS_VERB_ROUTER

s.0-12

FUNCTION: This procedure receives all verbs issued by the TP and routes them to the
appropriate PS component (e.g., basic conversation verbs to PS.CONY, and
control-operator verbs to PS.COPR) for processing.

INPUT: The current transaction program verb.

OUTPUT: Refer to the PS components that are called frOlll this process for the specific
outputs.

NOTES: 1. As a general rule, basic verbs must be issued on basic conversations. This
check enforces that rule; however, there are some exceptions. Non-basic
verb-processing components reside above PS.CONY, and may issue basic conversa­
tion verbs in carrying out the functions of non-basic verbs. When the TP
issues a mapped conversation verb, PS.VERB_ROUTER routes the verb to PS.MC.
PS.MC begins processing the verb, and then, in general, issues one or more
basic conversation verbs, which are processed by PS.CONY. Thus, PS.MC may
issue a basic conversation verb on a mapped conversation. PS.MC is allowed to
do this because it is a "service" component that is part of PS; the trans­
action program is not. PS.VERB_ROUTER maintains knowledge, via the CONTROL­
LING_COMPONENT field in the TCB, of whether the verb currently being processed
was issued by the transaction program or by a service component such as PS.MC.

2. If the TP issues a verb that is incompatible with the specified resource, such
as a mapped conversation verb specifying a basic conversation, then the TP has
committed a protocol violation and is terminated abnormally.

Referenced procedures, FSMs, and data structures:
PS

PS_CONV
DEALLOCATION_CLEANUP_PROC
WAIT_PROC
PS_MC
PS_COPR
PS_SPS

PS_PROCESS_DATA
TCB
RCB

Select based on TRANSACTION_PGM VERB contents

page S.0-S

page s.1-10
page S.0-14
page S.0-15
page S.2-20
page S.4-32
page 5.3-20

page 5.0-20
page A-10
page A-7

Verbs Processed by Presentation Services for Conversations

When ALLOCATE
Call PS_CONVCverb,,parameters) (page 5.1-10).

When CONFIRM, CONFIRMED, DEALLOCATE, FLUSH, GET_ATTRIBUTES, POST_ON_RECEIPT,
PREPARE_TO_RECEIVE, RECEIVE_AND_WAIT, REQUEST_TO_SEND, SEND_DATA, or SEND_ERROR

If the supplied RESOURCE parameter of the verb
fails to identify a conversation assigned to this transaction
(i.e., does not occur on on TCB.RESOURCES_LIST), then

Call DEALLOCATION_CLEANUP_PROC Cpage 5.0-14).
Find the RCB for the conversation identified by the supplied RESOURCE parameter.
If RCB.CONVERSATION_TYPE~BASIC_CONVERSATION and
TCB.CONTROLLING_COMPONENT~SERVICE_COMPONENT
then (see Note 1)

Call DEALLOCATION_CLEANUP_PROC Cpage 5.0-14).
Call PS_CONVCverb,parametersl (page 5.1-10).

SNA Format and Protocol Reference Manual for LU Type 6.2

Verbs Processed by Presentation Services for Mapped Conversations

When MC ALLOCATE
Call-PS_MCCverb parameters) (page 5.2-20).

When MC_CONFIRM, MC_CONFIRMED, MC_DEALLOCATE, MC_FLUSH, MC_GET_ATTRIBUTES,
MC_POST_ON_RECEIPT, MC_PREPARE_TO_RECEIVE, MC_RECEIVE_AND_WAIT,
MC_REQUEST_TO_SEND, MC_SEND_DATA, or MC_SEND_ERROR

If the verb's supplied RESOURCE parameter
fails to identify a conversation assigned to this transaction
Ci.e., fails to occur on TCB.RESOURCES LIST), then

Call DEALLOCATION_CLEANUP_PROC (page-5.0-14).
Find the RCB for the conversation identified by RESOURCE.
If RCB.CONVERSATION TYPE is not MAPPED CONVERSATION,

then Cit should be: because this verb-is mapped)
Call DEALLOCATION_CLEANUP_PROC (page 5.0-141.

Set TCB.CONTROLLING_COMPONENT to SERVICE_COMPONENT.
Call PS_MC(verb,parametersl (page 5.2-20).
Set TCB.CONTROLLING_COMPONENT back to TP.

Verbs Processed by Presentation Services for the Control Operator

When INITIALIZE_SESSION_LIMIT, CHANGE_SESSION_LIMIT, RESET_SESSION_LIMIT,
SET_LUCB, SET_PARTNER_LU, SET_MODE,
SET_MODE_OPTION, SET_TRANSACTION_PROGRAM, SET_PRIVILEGED_FUNCTION,
SET_RESOURCE_SUPPORTED, SET_SYNC_LEVEL_SUPPORTED,
SET_MC_FUNCTION_SUPPORTED_TP, SET_CPLU_CAPABILITY,
GET_LUCB, GET_PARTNER_LU, GET_HODE, GET_LU_OPTION, GET_HODE_OPTION,
GET_TRANSACTION_PROGRAM, GET_PRIVILEGED_FUNCTION, GET_RESOURCE_SUPPORTED,
GET_SYNC_LEVEL_SUPPORTED, GET_MC_FUNCTION_SUPPORTED_LU,
GET_HC_FUNCTION_SUPPORTEO_TP, GET_CPLU_CAPABILITY,
LIST_PARTNER_LU, LIST_MODE, LIST_LU_OPTION, LIST_MODE_OPTION,
LIST_TRANSACTION_PROGRAM, LIST_PRIVILEGED_FUNCTION, LIST_RESOURCE_SUPPORTED,
LIST_SYNC_LEVEL_SUPPORTED, LIST_MC_FUNCTION_SUPPORTED_LU,
LIST_MC_FUNCTION_SUPPORTED_TP, LIST_CPLU_CAPABILITY,
PROCESS_SESSION_LIMIT, ACTIVATE_SESSION, or DEACTIVATE_SESSION

Set TCB.CONTROLLING_COMPONENT to SERVICE_COMPONENT,
Call PS_COPRCverb parameters) (page 5.4-32), and
Set TCB.CONTROLLING_COMPONENT back to TP.

Resource-Independent Verbs

When SYNCPT or BACKOUT
Set TCB.CONTROLLING COMPONENT to SERVICE_COMPONENT,
Call PS_SPS Cpage 5:3-20),
Set TCB.CONTROLLING_COMPONENT back to TP.

When GET TYPE
If th; verb's supplied RESOURCE parameter
fails to identify a conversation assigned to this transaction, then

Call DEALLOCATION_CLEANUP_PROC (page 5.0-141.
Find the RCB for the conversation identified by RESOURCE.
Copy RCB.CONVERSATION_TYPE into the verb's returned TYPE parameter.

When WAIT
Set TCB.CONTROLLING COMPONENT to SERVICE COMPONENT,
Call WAIT_PROC(verb:parametersl (page s:o-15J,
Set TCB.CONTROLLING_COMPONENT back to TP.

RETURN;

PS_VERB_ROUTER

Chapter 5.0. Overview of Presentation Services 5.0-13

DEALLOCATION_CLEANUP_PROC

DEALLOCATION_CLEANUP_PROC

S.0-14

FUNCTION: This procedure, which manages the destruction of this process, is invoked
after the TP has ended !normally or abnormally> by returning to PS_INITIALIZE
on page 5.0-6. It calls UPM_RETURN_PROCESSING on page 5.0-19 to deallocate
the process's remaining conversations, and sends DEALLOCATE_RCB to RM to get
rid of RCBs and any other resources allocated to the process. Finally, it
instructs RM lby sending a TERMINATE_PS record) to destroy the process.

INPUT: TCB.RESOURCES_LIST

OUTPUT: DEALLOCATE_RCB and TERMINATE_PS to RM.

Referenced procedures, FSMs, and data structures:
PS

UPM_RETURN_PROCESSING

PS_PROCESS_DATA
TCB
RCB
TERMINATE_PS
RCB_ID

For each RCB_ID on TCB.RESOURCES_LIST, do the following:
Find the RCB for the conversation identified by RCB_ID.
If the conversation is not already in RESET or END_CONV state, then

Call UPM_RETURN_PROCESSINGIRESOURCE.RCB_ID> !page 5.0-191.
Send a DEALLOCATE_RCB record !page A-261, derived from this RCB, to RM.

Send a TERMINATE PS record to RM.
Wait to be destroyed by RM.

SNA Format and Pro.tocol Reference Manual for. LU Type 6.2

page 5.0-5

page 5.0-19

page 5.0-20
page A-10
page A-7
page A-27
page 3-69

WAIT_PROC

WAIT_PROC

FUNCTION: This procedure processes WAIT verbs. First, it validates the resources speci­
fied in the verb's RESOURCE_LIST parameter. While checking this list, this
procedure creates a sublist of it called TEMPORARY_RESOURCE_LIST. This sub­
list contains only those resources from RESOURCE_LIST that are currently acti­
vated for posting. !If none of the resources specified in the supplied
RESOURCE_LIST parameter is activated for posting, this procedure sets the
RETURN_CODE field of the WAIT to POSTING_NOT_ACTIVE.)

After creating the TEMPORARY_RESOURCE_LIST, this
if any of the resources in the list have already
resources has been posted, this procedure waits
become posted.

procedure next checks to see
been posted. If none of the
for one of the resources to

WAIT verb parameters; incoming conversation data INPUT:

. OUTPUT: The verb's returned parameters are set
whether the WAIT completed successfully.
CESSFUL or POSTING NOT ACTIVE indicates
WAIT completed succes;fully.l If the
RESOURCE_POSTED ir.dicates which resource

as follows. RETURN_CODE indicates
!Any return code other than UNSUC­

that a resource was posted and the
verb completed successfully, then

has been posted.

Referenced procedures, FSMs, and data structures:
PS

TEST_FOR_RESOURCE_POSTED
DEALLOCATION_CLEANUP_PROC

PS_PROCESS_DATA
TCB
RCB
RC, see RETURN_CODE

Check that all resources in the supplied RESOURCE_LIST parameter

page

page
page

page
page
page
page

are validly allocated to this transaction (i.e., occur in TCB.RESOURCES_LIST),
and that at least one of them has posting active.

If any resource is invalid, then
Call DEALLOCATION_CLEANUP_PROC (page 5.0-14).

If no resource has been posted, then
Set the verb's primary RETURN_CODE to POSTING_NOT_ACTIVE, and return.

5.0-5

5.0-18
5.0-14

5.0-20
A-10
A-7
5.0-20

At this point !since all resources are valid and some have "posting
active"), it is safe to wait for a resource to become posted. If some
resource is already posted, though, then there is no need to wait.

For each resource that has posting active,
Call TEST_FOR_RESOURCE_POSTED (page 5.0-18)

on its RCB, and save the result in RC.
If RC is not UNSUCCESSFUL, then

Set the verb's RETURN_CODE to RC, and return.

Since no active resource is posted yet, wait until one is.

Initialize RC to UNSUCCESSFUL.
Do While RC remains UNSUCCESSFUL

Suspend this process until an HS for a posting-active resource forwards received
data to that resource.

Set RCB to the RCB for the conversation on which the data has arrived.
Call TEST_FOR_RESOURCE_POSTED!RCB> (page 5.0-18--see Note 4),

and save the result in RC.
Set the returned RESOURCE_POSTED parameter to RCB.RCB_ID.
Set the verb's RETURN_CODE to RC.

Chapter 5.0. Overview of Presentation Services 5.0-15

LOW-LEVEL PROCEDURES

5.0-16

PS_PROTOCOL_ERROR

FUNCTION: This procedure processes receive error conditions that require the session to
be deactivated.

INPUT:

OUTPUT:

An UNBINO_PROTOCOL_ERROR record is sent to the resources manager to request
deactivation of the session that committed the protocol violation. Then the
procedure creates a CONVERSATION_FAILURE (PROTOCOL_VIOLATION> record and con­
tinues the conversation failure processing.

The HS ID for the half-session that committed the protocol violation, the RCB
ID for the conversation that is using the session, and the sense data to be
sent on the UNBIND

UNBIND_PROTOCOL_ERROR (to RM), with the TCB ID for this PS process, and the
input HS ID and sense data

Referenced procedures, FSMs, and data structures:
CONVERSATION_FAILURE_PROC

PS_PROCESS_DATA
UNBIND_PROTOCOL_ERROR
CONVERSATION_FAILURE
HS_ID
RCB_ID
SENSE_CODE, see SENSE_DATA

Create an UNBINO_PROTOCOL_ERROR record (page A-28)
with this TCB_ID, HS_ID, and SENSE_CODE.

Send UNBINO_PROTOCOL_ERROR to RM. "

Create a CONVERSATION_FAILURE record with RCB_ID for this conversation.
Set its REASON to PROTOCOL VIOLATION.
Call CONVERSATION_FAILURE_PROC(CONVERSATION_FAILURE> (page 5.1-29).

SNA Format a.nd Protocol Reference Manual for LU Type 6.2

page 5.1-29

page 5.0-20
page A-28
page A-32
page 3-69
page 3-69
page 5.0-22

INITIALIZE_ATTACHED_RCB

INITIALIZE_ATTACHED_RCB

FUNCTION: This procedure initializes fields in the RCB for the resource specified in the
received Attach.

This procedure is invoked by PS.INITIALIZE when RM forwards Attach information
to PS.

INPUT: Attach information (from RM> (see "Function Management Header 5: Attach " on
page H-6 for format)

OUTPUT: Fields in the specified RCB are initialized.

Referenced procedures, FSMs, and data structures:
PS

PS_PROCESS_DATA
RCB

Find the RCB identified in the received Attach.
Initialize this RCB's fields as follows:

PS_TO_HS_RECORD.ALLOCATE to NO
PS_TO_HS_RECORD.FMH to NO
PS TO HS RECORD.TYPE to NOT END OF DATA
PS=TO=HS=RECORD.DATA to null st;ing

SEND_LL_REMAINDER to 0
RECEIVE_LL_RENAINDER to 0
MAX_BUFFER_LENGTH to an implementation-defined maximum
RQ_TO_SEND_RCVD to NO
LOCKS to SHORT
POST_CONDITIONS.FILL to LL
POST_CONDITIONS.MAX_LENGTH to 0
SENO_LL_BYTE to NOT_PRESENT

SYNC_LEVEL to the synchronization level specified in the Attach
CONVERSATION_TYPE to the Resource type specified in the Attach

If RCB.CONVERSATION_TYPE = MAPPED_CONVERSATION then
Initialize additional RCB fields as follows:

MC_RQ_TO_SEND_RCVD to NO
MC_POST to RESET
MC_MAX_SEND_SIZE to an implementation-defined value
MAPPER_SAVE_AREA according to an implementation-defined algorithm.

page 5.0-5

page 5.0-20
page A-7

Chapter 5.0. Overview of Presentation Services 5.0-17

TEST_FOR_RESOURCE_POSTED

TEST_FOR_RESOURC€_POSTED

FUNCTION: This procedure determines if the resource corresponding to the passed RCB has
been posted. Depending on the type of conversation indicated by the RCB, this
procedure calls either TEST_PROC on page 5.1-26 or MC_TEST_PROC on page 5.2-28
to test whether the resource has been po

INPUT: The RCB for the resource whose posting status is to be determined

OUTPUT: The return code returned from the TEST_PROC or MC_TEST_PROC call.

Referenced procedures, FSMs, and data structures:
PS

TEST_PROC
MC_TEST_PROC

PS_PROCESS_DATA
RCB
RETURN_ CODE

Select based on RCB.CONVERSATION_TYPE:
When basic:

Call TEST_PROC(RCB,POSTEDJ (page 5.1-261.
When mapped:

Call MC TEST PROCCRCB,POSTEDJ !page 5.2-28).
Return the ve;b's RETURN_CODE.

page 5.0-5

page 5.1-26
page 5.2-28

page 5.0-20
page A-7
page 5.0-20

!DEFINED PROTOCOL MACHINES

5.0-18

UPM_EXECUTE

FUNCTION:

INPUT:

OUTPUT:

This UPM loads and executes a transaction program.

The name of the transaction program, the resource ID Ito be passed to the
transaction program), and a list of PIP data !to be passed to the transaction
program).

None.

Not defined by SNA

SNA Format and Protocol Reference Manual for LU Type 6.2

UPH_ATTACH_LOG

FUNCTION:

INPUT:

OUTPUT:

UPH_ATTACH_LOG

This UPM is invoked upon discovery of an error in an FMH-5 !Attach>. It
returns log data describing the error. This data is logged in the local sys­
tem error log and is sent back to the conversation partner in an Error-Log GOS
variable accompanying an FMH-7.

Attach error sense data

Log data !may be null>

Not defined by SNA

UPH_RETURN_PROCESSING

FUNCTION:

INPUT:

OUTPUT:

This UPM is invoked when a TP ends and returns to PS without having deallo­
cated all its resources. It terminates and deallocates a remaining active
resource in an implementation-specific way. Two of the many ways in which an
implementation could do this are to: ·

• Issue DEALLOCATE TYPEIABEND_PROG> for the still-allocated resource.

• Issue DEALLOCATE TYPEISYNC_LEVEL> if the resource is in SEND state and
data in PS's send buffer is on a logical record boundary. If the attempt
to synchronize fails, or the data was not on a logical record boundary,
then issue DEALLOCATE TYPEIABEND_PROG>.

Regardless of what other actions are taken, this UPM causes FSM_CONVERSATION
(page 5.1-591 to enter the reset state.

The RCB_ID of the still-allocated resource

See above.

Not defined by SNA

Chapter 5.0. Overview of Presentation Services 5.0-19

LOCAL !2ill STRUCTURES

5.0-20

PS_PROCESS_DATA

PS_PROCESS_DATA is available to all procedures in the presentation services process. The
structure is initialized by the PS process (page 5.0-5) and remains unchanged for the
lifetime of the PS process.

PS_PROCESS_DATA
LUCB_LIST_PTR:
LU_ID:
LUCB_PTR:
TCB_LIST_PTR:
TCB_ID:
TCB_PTR:
RCB_LIST_PTR:

Pointer to the LUCB_LIST
ID of this PS's LU
Pointer to the LUCB for this PS's LU
Pointer to the TCB_LIST
ID of this PS
Pointer to the TCB for this PS
Pointer to the RCB_LIST of this PS

PIP_FIELD

Program Initialization Parameter (PIP> data is sent as a 6DS variable immediately follow­
ing the FMH-5 if the FMH-5 indicated that PIP data follows.

NOTES: 1. The value in the LL field includes the length of the LL field itself.

2. PIP subfields are type G symbol strings. Minillllllll send and receive support for
PIP_SUBFIELD.DATA is 64 characters.

PIP_FIELD:
LL: Length of this logical record (See Note 1.).
ID: GDS ID for PIP Data GDS Variable (X'l2F5').
DATA: Character string containing PIP data.

RETURN_ CODE

The primary and secondary return codes that may be returned on transaction program verbs
are described in SNA Transaction Programmer's Reference Manual for LU~ 2.:.!

RETURN_ CODE
PRIMARY_CODE:

SECONDARY_CODE:

possible values:
see fil:!A Transaction Programmer's Reference Manual for LU ~ 6.2

possible values:
see SNA Transaction Programmer's Reference Manual for LU ~ 6.2

SNA Format and Protocol Reference Manual fOr LU Type 6.2

PIP_LIST

PIP_LIST

PIP_LIST: List of PIP data subfields.

LU_ID

LU_ID: ID of this LU.

TCB_LIST_PTR

TCB_LIST_PTR: Pointer to the list of TCBs for TP/PS processes at this LU.

RCB_LIST_PTR

RCB_LIST_PTR: Pointer to the RCB_LIST for this TP/PS process.

LUCB_LIST_PTR

LUCB_LIST_PTR: Pointer to the list of LUCBs for LUs known to this LU.

Chapter 5.o. Overviei.11 of Presentation Services 5.0-21

SENSE_DATA

SENSE_DATA

SENSE_DATA: 4-byte sense data

S.0-22 SNA Format and Protocol Reference Manual for LU Type 6.2

CHAPTER ~ PRESENTATION SERVICES--CONVERSATION ~

GENERAL DESCRIPTION

A PS process handles requests for LU serv­
ices. A transaction program execution
instance CTPI makes these requests by issuing
verbs. The verbs are divided into catego­
ries, and PS is divided into components.
Each verb-processing component of PS proc­
esses the verbs of one specific category.
Presentation services for basic conversations
CPS.CONVI is the component of PS that proc­
esses verbs of the basic conversation catego­
ry. Figure 5.1-1 on page 5.1-2 provides an
overview of PS, showing the relationship of
PS.CONV to the other PS components.

The basic conversation verbs correspond to
the most basic services provided by the LU.
Other PS components, such as PS. MC ("Chapter
S.2. Presentation Services--Mapped Conversa­
tion Verbs") and PS.COPR ("Chapter 5.4. Pres­
entation Services--Control-Operator Verbs")
use basic converse ti on verbs in providing
their higher-level functions. Open-AP!
implementations may choose to expose only the
mapped conversation protocol boundary to
user-application transaction programming,
while leaving the lower-level basic conversa­
tion protocol boundary "closed".

See Chapter 5.0 for an overview of PS and its
components, and of the relationship of PS to
the other components of the LU. Refer to SNA
Transaction Programmer's Reference Manual for
LU ~ ~ for a complete description of the
basic conversation verbs.

PS.CONV FUNCTIONS

The functions of PS.CONV include:

• Requesting the allocation and deallo­
cation of conversation resources.

• Maintaining and checking the basic con­
versation state.

•

•

Transferring conversation data between
the half-session and transaction program
variables.

Tracking logical record lengths •

COMPONENT INTERACTIONS

PS.CONV interacts with PS.VERB_ROUTER ("Chap­
ter 5.0. Overview of Presentation Services"),

the resources manager ("Chapter 3. LU
Resources Manager") , and one or more
half-session components ("Chapter 6. 0.
Half-Session" I.

All verb service requests are routed through
PS.VERB ROUTER, which forwards basic conver­
sation ~erbs to PS.CONV. After PS.CONV has
performed the requested service, control is
returned to the caller, with updated values
in those variables that are the verb's
returned parameters, or in which it requested
a result to be returned.

PS.CONV interacts with the resources manager
(RMI to request allocation and deallocation
of LU resources, such as conversations and
associated control blocks, and to report pro­
tocol errors. Since PS.CONV and RM may be in
different processes, this interaction may
occur by means of asynchronous inter-process
communication (send/receive logic). RM also
informs PS.CONV if a conversation being used
by PS.CONV fails for some reason.

PS.CONV interacts with one half-session proc­
ess for each active conversation used by
PS.CONV. Each half-session serves a single
conversation. Since the TP may have active
conversations with several partners s i mul­
taneously, PS.CONV may be interacting with a
number of different half-session processes.

PS.CONV DATA-BASE STRUCTURE

PS.CONV uses a number of control blocks and
data structures. The most important ones are
described here. See "Appendix A. Node Data
Structures"-for full details.

LU Control Block CLUCBI and Associated Lists

The LU control block CLUCB--see Figure 5.1-2
on page 5.1-3) is used by PS.CONV. One LUCB
exists for each LU in the node. The LUCB is
identified by the LU_ID, which is a unique
identifier for each LU in the node. Each
LUCB contains information such as the fully
qualified LU name.

Associated with each LUCB is a TRANS­
ACTION_PROGRAM_LIST. The TRANS­
ACTION PROGRAM LIST for an LU contains an
entry -for each transaction program known by
the LU. The information in a TRANS­
ACTION_PROGRAM_LIST entry includes the trans-

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-1

\

I
.. : ... · · 1
• . • • • • • • Transact 1 on Program ••••••••••••••••••••••••••••••••••••••• .
'"-------------------~~·------------------------------

A I

: : : : : : : : : : : : I : I : ~ . .: . .: . .: . .: . .: . .: . .: . .: . .:. ~ : : : :

::::::::::::1::::::::::::::::::::::::::::v::::::::::::::::::::::::::::::::v:::::::::::::::::::1::::
....... :'------. : : : : t: ... ·j·... : : : I : : : :
• . • • PS. VERB_ROUTER •••
• ••••••••••••••. •• 1 •••• .. .

PS.INITIALIZE

...... 1 1 1 1 1
::::::1:::::::::::::::::1::::::::::::::::::1:::::::::::::::::::1:::::::::1::::
::::::1:::::::::::::::::v::::::::::::::::::v:::::::::::::::::::v:::::::::1::::
.•...........•... .--------.
• • • • • • 1 ••••••••••.
•••••• 1 •••••••••••

::::::1:::::::::::
::::::1:::::::::::

...-------.
• •• 1 ••••

.
PS.SPS2 • • • PS.COPR 3

:::1::::
:::1::::
:::1::::

. ·-..... .____. ·-
•••••• 1 •••••••••••••••••• 1 ••••••••••••••••• 1 ••••••••••••••••••• 1 ••••••••• 1 ••••
::::::1::::::::::::::::::L·_:·_:·_:·_:·_:·_:·_:·.:·i·.:·_:·_:·_:·_:·_:·_:·_:·.:·i·_:·_:·_:·_:·J::::

•••••• v •••

.___~ ~ ~-~ ~ ~-~ ~ ~-~ ~ ~ ___.~ ~ ~ : : : :I.._ -----Ps_.coNV _____ __.I H H

::::::::::::·:::::::::i:::::!::::::::::::::::·::::::::::::::::·:::::::~~~~~~;~~:~~~~~~:~~~:::
• • •

l
2
J

v v v
Resources Manager Half-

Session

v
Half-

Session

See "Chapter 5.2. Presentation Services--Mapped Conversation Verbs"
See "Chapter 5.3. Presentation Services--Sync Point Services Verbs"
See "Chapter 5.4. Presentation Services--Control-Operator Verbs"

Note: A dashed line denotes a synchronous (call/return> protocol boundary between components,
while a solid line denotes an asynchronous (send/receive) protocol boundary.

Figure 5.1-1. Overview of Presentation Services, Emphasizing Presentation Services for Basic
Conversations

action program name and whether i t supports
various optional features (e.g., sync point,
mapped conversations).

Another list associated with the LUCB is the
PARTNER_LU_LIST (see Figure 5.1-2 on page
5.l-3J. The PARTNER_LU_LIST contains one
entry for each partner LU of the LU repres­
ented by the LUCB. The PARTNER_LU entry con­
tains information that is fixed for the

specific partner LU, such as the local and
fully qualified names of the partner LU.

Associated with each PARTNER_LU entry is a
MODE_LIST (see Figure 5.1-2 on page 5.1-3),
which has one entry for each mode name that
is defined for the particular partner LU
name. The MODE entry contains information
that is fixed on a mode basis, such as the
mode name.

5.1-2 SNA Format and Protocol Reference Manual for LU Type 6.2

LUCB_LIST

LUCBl LU_ID

LUCBn LU_ID

TRANSACTION_PROGRAM_LIST PARTNER_ LU_ LIST
..----~-...---...---.<.---- L---->

TPN LU_NAME ...
...
. . .

TPN LU_NAME . . . •

r
v MODE_ LIST

MODE_NAME

MODE_NAME

Figure 5.1-2. LU Control Block List and Associated Lists

Transaction Control Block (TCB)

The transaction control block ITCB--see Fig­
ure 5.1-3 on page 5.1-4) contains information
associated with the TP-PS process. One TCB
exists for each TP-PS process. Each TCB con­
tains a TCB_ID, which is a unique identifier
of the TP-PS process being represented by the
TCB. The TCB_ID is used in all communication
between the resources manager and the PS
servicing the transaction program. For exam­
ple, when PS sends a record to the resources
manager, it provides its TCB_ID so that the
resources manager will know, of all the
transaction programs it manages, which PS
process to send a reply to.

Associated with each TCB is the
RESOURCES_LIST, a list of the resources used
by the TP-PS process. The RESOURCES_LIST has
one entry for each resource associated Ni th
the transaction program.

...

. ..
. . .

PS PROCESS DATA

PS_PROCESS_DATA lpage 5.0-20) contains data
that is available to all procedures in the PS
process. It contains information about this
particular TP-PS process. such as the LU ID
and the pointer to the RCB_LIST. It is ini­
tialized by the root procedure of the PS
process (page 5.0-5) from parameters received
from RM when the PS process is created.

Resource Control Block CRCB)

One resource control block CRCB--see Fig­
ure 5.1-4 on page 5.1-5) represents each
active conversation allocated to a trans­
action program. The RCBs for all active con­
versations in an LU are kept in the RCB_LIST.
RCBs are added to or removed from the
RCB_LIST by the LU resources manager, at the
request of PS.CONY. RCBs are also linked to
the RESOURCES_LIST for the particular TP-PS
process to which they are allocated. The TCB

Chapter 5.1. PresentationServices--Conversation Verbs 5.1-3

RESOURCES_ LIST
TCB_LIST >

RCB_ID
TCBl TCB_ID

. . .
TCBn TCB_ID •

RCB_ID

Figure 5.1-3. Transaction Control Block CTCB)

for the process contains, in its
RESOURCES_LIST, the list of RCBs for
resources allocated to the process.

An RCB contains information pertaining to a
particular conversation, such as its resource
ID, state, and characteristics (established
when the conversation is allocated). Compo­
nents of PS will update certain fields of the
RCB as the conversation is used.

The RCB is identified by a unique RCB_ID.
This ID accompanies most transaction program
verb issuances (as the RESOURCE parameter) to
identify the conversation to which the verb
is to be applied. The RCB also contains the
TCB_ID of its owning TP-PS process, and the
HS_ID of the local half-session that carries
the conversation's data. Other fields asso­
ciated with the RCB are discussed in more
detail below.

FSM_CONVERSATION (page 5.1-59) is a
finite-state machine that tracks the
state of the conversation associated with
the RCB. The state of FSM_CONVERSATION
is the state of the conversation from the
viewpoint 2f the local TP. For example,
the conversation changes from receive to
send state 111hen the transaction program
is notified by a WHAT_RECEIVED = SEND
from a receive verb. The state of the
conversation does not change until
PS.CONY has actually notified the trans­
action program, even though the send
indication may have arrived from the
half-session sometime earlier.

PS_TO_HS_RECORD (page A-24) is used as a
buffer to contain data that.has been gen­
erated by verb processing but that has
not yet been sent to the half-session.
The record is sent to the half-session
when either a maximum size is reached or
as the result of some transaction program
verb (e.g., FLUSH, CONFIRM).

FSM_ERROR_OR_FAILURE Cpage 5.1-61) is a
finite-state machine that stores error or
failure records Cwhich may arrive from RM
or the half-session) until they can be
returned to the TP in verb parameters.

HS_TO_PS_BUFFER_LIST contains a list of
records that have been received from the

half-session but not yet passed to the
transaction program.

VERB PARAMETERS

The TP requests LU services by issuing verbs.
A verb and its parameters are passed as
parameters to PS_CONV (page 5.1-10). The
service requested is i dent i f i ed by the verb
name and the supplied parameter fields, and
some results of the service (along with any
other pertinent incoming data) are returned
to the TP in the returned parameter fields.
Each verb issuance has

1. an indicator of which verb is being
issued CALLOCATE, CONFIRM, etc.),

2. some supplied parameters, including ctyp­
ically> an identifier of the conversation
on which the verb is being issued, and

3. some returned parameters, including (typ­
ically> a return code telling whether the
requested service was performed success­
fully.

Some examples of exceptions to these parame­
ter rules are the following. ALLOCATE does
not supply a conversation ID (although it
does return one), while WAIT supplies a whole
list of conversation IDs. CONFIRMED and
FLUSH do not need any returned parameters.
The basic conversation verbs and their param­
eters are fully described in SNA Transaction
Programmer's Reference Manual .f2!: LU .!llrul
Ll·

PS-RM RECORDS

PS.CONY sends PS_TO_RM_RECORDs Cpage A-25) to
RM and receives RM_TO_PS_RECORDs Cpage A-31)
from RM. There are several types of PS_TO_RM
records. Each contains a TCB_ID identifying
the PS process that sent the record, and pos­
sibly additional fields. RM_ TO_PS_RECORDs
are usually sent in reply to a
PS_TO_RM_RECORD request, as shown in Fig­
ure 5.1-5.

5.1-4 SNA Format and Protocol Reference Manual for LU Type 6.;2

HS_TO_PS_BUFFER_LIST
RCB_LIST >

RCB_ID
RCBl RCB_IO

RCBn RCB_IO • •
RCB

FSM_CONVERSATION v HS_TO_PS_RECORD

~~I<
v

FSM_ERROR_OR_FAILURE

Figure 5.1-4. Resource Control Block CRCBJ

PS.CONV Request

ALLOCATE_RCB
GET_SESSION
DEALLOCATE_RCB

RCB_ALLOCATED
SESSION_ALLOCATED
RCB_DEALLOCATED

Figure 5.1-5. PS.CONV Requests and
Associated RM Responses

The only exception is CONVERSATION_FAILURE,
which is sent, unsolicited, to PS.CONV when a
conversation being used by PS.CONV fails.

PS-HS RECORDS

PS. CONV sends PS_ TO_HS_RECORDs C page A-24 l
to a half-session and receives
HS_ TO_PS_RECORDs C page A-12 l from a
half-session.

A PS TO HS RECORD contains a VARIANT NAME
field-; ide;:;tifying the particular variant;
and additional fields, in the case of
SEND_DATA_RECORD. SEND_DATA_RECORD is used
to send data and RH information to the
half-session when the local transaction pro­
gram is in send state for the conversation.
Included in the SEND DATA RECORD is the
transaction program dat~ to -be sent and an
encoding of the RH bits C see "Append i x D . RH
Formats" l that are to be set by the
half-session when the data is sent to the
remote LU. Data to be sent to a half-session
with a SEND_DATA_RECORD is buffered by
PS.CONV until either a maximum data length
!given by RCB.MAX_BUFFER_LENGTHJ is reached,

ID -

or the transaction program issues a verb that
forces the data to be passed on for trans­
mission (e.g., CONFIRM, RECEIVE_AND_WAIT, or
DEALLOCATE!.

The other PS_ TO_HS_RECORD variants are sent
to the half-session only when the local
transaction program is in receive state.
These include CONFIRMED, used to reply posi­
tively to a previous CONFIRM record;
REQUEST_TO_SEND, used to request the send
indicator from the partner transaction pro­
gram; and SEND_ERROR, used to send -RSPC0846l
to the partner LU.

The HS_TO_PS_RECORD contains a VARIAITT_NAME
field and an HS ID field. The HS ID is used
to identify which half-session- sent the
record to PS. CONV. The HS_ TO_PS_RECORD is
symmetric to the PS_TO_HS_RECORD. That is,
RECEIVE_DATA corresponds to a
SEND_DATA_RECORD issued by the remote
PS.CONV, CONFIRMED corresponds to CONFIRMED,
RECEIVE_ERROR to SEND_ERROR, and
REQUEST_TO_SEND to REQUEST_TO_SEND.
RSP_TO_REQUEST_TO_SEND has no equivalent in
the PS_TO_HS_RECORD, since
RSP_TO_REQUEST_TO_SEND is generated
internally to the remote half-session.

TRACKING LOGICAL RECORD LENGTH

Transaction programs using a basic conversa­
tion must ensure that the data they exchange
is formatted into logical records. The
length of a logical record is given by the
low-order 15 bits of the first two bytes of
the record. C The high-order bi t i s the "con­
tinuation bit", which is used for GOS vari­
ables by "Chapter 5.2. Presentation

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-5

5. l-6

Services--Mapped Conversation Verbs" in Chap­
ter 5.2.) The value in the Length field
includes the length of the field itself; thus
the length value is normally in the range
2-32767. length values of 0 and 1 are used
to indicate a PS header (See "Chapter 5.3.
Presentation Services--Sync Point Services
Verbs" in Chapter 5.3 for more details.).

When sending data, the transaction program is
responsible for correctly setting the length
bytes of each logical record. The amount of
d;;ita sent by a SEND_DATA verb need have no
relation to ;;i logical record.

PS.CONY performs some checking of the logic;;il
record length field supplied by the tr;;ins­
;;iction program. The value of the length
field must be greater than 1, unless
TCB.CONTROLLING COMPONENT : SERV­
ICE_COMPONENT, that is, unless some PS serv­
ice component (e.g., PS.MC or PS.SPS) is
sending a PS header in the record on beh;;ilf
of ;;i transaction program.

Cert;;iin verbs (e.g., CONFIRM> may be validly
issued only at logical record boundaries.
PS.CONV enforces this rule by remembering how
many bytes are rem;;iining to be sent in the
current logical record, ;;ind terminating the
transaction program abnorm;;illy if this
remainder is not O when the verb is issued.
SEND_ERROR and DEALLOCATE TYPE!ABEND> are the
only verbs th;;it can prematurely truncate a
logical record.

PS.CONV also tr;;icks the v;;ilue of the length
field on logical records received from the
partner transaction progr;;im. logical records
with a Length of l are p;;issed to PS_SPS.
PS.CONY maintains a count o.f the number of
bytes rema 1 m ng in the current logi c;;il
record. PS.CONV performs an optional receive
check to determine if the partner LU has vio­
lated PS protocols by ;;illowing the partner
tr;;insaction program to invalidly truncate the
logical record. Only an FMH-7 c;;in validly
truncate a logical record.

Fin;;illy, when a receive verb is issued with
FILL!LL}, PS uses the receive count remainder
to determine how many bytes of received data
to pass to the transaction program.

MAINTAINING AND CHECKING THE BASIC CONVERSA­
TION STATE

PS.CONV mainhins the current state of each
conversation in FSM_CONVERSATION (page
5.1-59). As noted earlier, the state of
FSM CONVERSATION is the st;;ite of the conver­
sation ;;is viewed by the local trans;;iction
progreim.

The st;;ite of the conversation meiy cheinge as a
result of verbs issued by the treinseiction
progreimJ e.g., PREPARE_TO_RECEIVE cheinges the
steite from send to receive. These inputs
h;;ive DIRECTION=S in FSM_CONVERSATION. The
st;;ite m;;iy eilso ch;;inge as a result of datei or
indicators received from the heilf-sessionl
e.g., receiving the send indicator cheinges

the state of the conversation from receive to
send. These inputs have DIRECTION=R in
FSM_CONVERSATION.

The current state of the conversation deter­
mines the verbs theit can be validly issued;
e.g., a SEND_DATA verb cannot be issued in
receive state.

VERB PROCESSING

Oetails of PS.CONV's processing of some verbs
are described here. See also "Chapter 2.
Overview of the LU" for more flow di eigrams
corresponding to the processing of these and
other verbs.

Verb Checking

PS.CONV perform a number of checks on verb
requests received from the transaction pro­
gram. These include:

• Peirameter checks, such as that:

The parameters specified on the ALLO­
CATE are supported by the LUs.
The verb conforms to the SYNC_LEVEL
of the conversation (as specified on
ALLOCATE).
The DATA pareimeter on SEND_DATA con­
tains a veilid length field (see
"Treicking logical Record Length" on
page 5.1-5>.

• State checks, such as that:

The verb can be issued in the current
converseition steite (see "Meiintaining
and Checking the Basic Converseition
State").
The treinseiction progreim has completed
the current logical record, if neces­
sary (see "Tr;;icking Logiceil Record
length" on peige 5.1-5).

ALLOCATE

Processing of the ALLOCATE verb by PS.CONY
includes:

• Requesting that RM alloceite a resource
control block !RCB).

•

•

Requesting that RM allocate a session for
the converseition.

Creating an Atteich FMH-5 •

The order of performing the last two items
depends on the supplied RETURN_CONTROL peireim­
eter of the ALLOCATE verb, as described
below.

A conversation resource is represented by a
resource control block !RCB--see "PS.CONY
Dat;;i-B;;ise Structure" on page 5.1-1). PS.CONV
requests the creation of an RCB by sending an

SNA Formeit and Protocol Reference Manual for LU Type 6.2

ALLOCATE_RCB record to the resources manager
IRM> and waiting for an RCB_ALLOCATED record
in reply. If RETURN_CONTROLIIMMEDIATE) is
specified, the ALLOCATE_RCB record is a com­
posite request for the creation of an RCB and
the allocation of a first-speaker session.
This situation is indicated to RM by setting
ALLOCATE_RCB.IMMEDIATE_SESSION = YES.

After the RCB has been created, PS.CONY
requests the resources manager to allocate a
session for use by the conversation I if a
session has not already been allocated as a
result of IMMEDIATE_SESSION = YES). PS.CONY
does this by sending a GET_SESSION record to
RM and waiting for a SESSION_ALLOCATED record
in reply.

If DELAYED_ALLOCATION PERMITTED is specified
on the ALLOCATE, the session allocation
request is delayed until either the PS.CONY
send buffer is full or the transaction pro­
gram issues a verb that causes the data to be
passed on for transmission. Furthermore,
PS.CONV instructs RM lvia the GET_SESSION
record) whether to bid for (request use of)
the session with or without sending the buf­
fered data. The bid is to be sent without
data if the data buffered thus far would not
require a definite response from the partner
LU. Otherwise, the bid is to be sent with
data.

PS.CONV creates an Attach FMH-5 based on the
parameter settings on the ALLOCATE verb. The
Attach is inserted in
RCB.PS_TO_HS_RECORD.DATAt to be sent later.

POST ON RECEIPT

POST_ON_RECEIPT establishes the posting con­
ditions for the conversation. The post con­
ditions CFILL = BUFFER or LL, and LENGTH) are
retained in the RCB associated with the con­
versation. The posting status (reset, pend­
ing post, or posted) of a conversation is
maintained by FSM_POST, also in the RCB.
Whenever PS.CONY receives information from
the half-session, the posting conditions are
checked, and the state of FSM_POST is updated
if necessary. If POST_ON_RECEIPT has been
issued, the state of FSM_POST may be checked
by calling TEST_PROC on page 5.1-26 • This
procedure is used by the WAIT verb to deter­
mine whether the post conditions have been
satisfied for any of several conversations.

REQUEST TO SEND

When the transaction program issues a
REQUEST_TO_SEND verb, PS.CONV checks the con­
versa ti on state to see i f the verb can be
validly issued now, and checks that the con-

versation is still active. If so, PS.CONV
sends a REQUEST_TO_SEND record to the appro­
priate half-session process and then waits
for a RSP_TO_REQUEST_TO_SEND record from the
half-session. By waiting for a response from
the half-session before returning to the
transaction program, PS.CONY prevents the
transaction program from flooding the network
with expedited-flow FMD RUs.

On receipt of a REQUEST_TO_SEND record from a
half-session, PS.CONV sets
RCB.RQ_TO_SEND_RCVD to YES, and notifies the
transaction program at the earliest opportu­
nity.

SEND ERROR

Processing of the SEND_ERROR verb by PS.CONY
includes:

• If not in send state:

Sending a SEND_ERROR record to the
half-session. This causes a
-RSPC0846) to be sent to the partner
LU.
Waiting until EC is received from the
partner LU. The half-session purges
all data until EC is received.

• Creating an FMH-7 with the sense data
based on the SEND_ERROR type and the cur­
rent state of the conversation.

• Creating a log data variable, if log data
is present.

-RSPC0846) is not sent and data is not purged
if the conversation is in send state for the
transaction program issuing the SEND_ERROR.
In the case of both sides of a conversation
issuing SEND_ERROR, the side that was in
receive state always wins the SEND_ERROR
race. Figure 5.1-6 on page 5.1-8 shows a
flow diagram for a simple SEND_ERROR race.

Figure 5.1-7 on page 5.1-8 shows a SEND_ERROR
race with deallocation. In this case, nei­
ther error gets reported to the other side.
This problem could be avoided by following
the SEND_ERROR with a PREPARE_ TO_RECEIVE t as
shown in the previous figure.

On receipt of a RECEIVE_ERROR record from the
half-session C as a result of the partner LU
sending a -RSP[0846J), PS.CONY sends
end-of-chain to the half-session, if it has
not already done so. It then receives the
expected FMH-7 and notifies the transaction
program, at the earliest opportunity, with a
return code based on the FMH-7 sense data.

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-7

PS.CONY PS.CONY

SEND_DATA SEND_ERROR
------------> <:----

· < - - RC=OK - - -

SEND_ERROR -RSPC0846) SEND_ERROR
-------~> <'.------
< - - RC=OK - - -

PREPARE_TO_RECEIVE I
SEND_DATA_RECORD

purge

I
-------~>
< - - RC=OK - - -

-------> v
FMH7,RQE1,EC,CD RECEIVE_DATA
------> ------>

- - RC=OK ->
RECEIVE_ ERROR

<-------
RECEIVE_AND_WAIT ---------> RC=PROG_ERROR_PURGING

<- - - - - - - - - -

Figure S.1-6. SEND_ERROR Race

PS.CONY

SEND_DATA --------->
< - - RC=OK - - -

SEND_ERROR --------->
< - - RC=OK - - -

DEALLOCATE TYPECFLUSH) --------->
< - - RC=OK - - -

SEND_DATA_RECORD
------->

RECEIVE_ ERROR
<~-------

CRECEIVE_ERROR
ignored by PS_.CONV)

PS.CONY

SEND_ERROR
<.----

-RSPC0846) SEND_ERROR
<------

purge

I
v

FMH7,RQE1,EC,CEB RECEIVE_DATA
------> ------>

RC=DEALLOCATE_NORHAL
- - - - - - - - - ->

Figure S.1-7. SEND_ERROR Race with Deallocation

S.1-8

PROTOCOL ERRORS

CONY contains a number of optional receive
checks to determine if the partner LU has
violated SNA-defined protocols. Examples of
protocol violations checked by PS.CONY
include:

• Sending data when in receive state
• Invalidly truncating a logical record

(see "Tracking Logical Record Length" on
page S.1-5)

• Sending an incorrectly formatted FHH-7

When PS.CONY detects a protocol error, it
requests that RH deactivate the session and
sets FSH_ERROR_OR_FAILURE to indicate that a

SNA Format and .Protocol Reference Manual for LU Type 6.2

conversation
occurred.

failure

CONVERSATION FAILURES

(protocol error)

PS.CONY is notified of a conversation failure
by the CONVERSATION_FAILURE record, sent by
RM. The conversation failure may result from
either session outage or a protocol vio­
lation.

On receipt of a CONVERSATION_FAILURE record,
PS.CONV sets RCB.FSM ERROR OR FAILURE to
indicate either CONV_FAILURE_SON or
CONV_FAILURE_PROTOCOL_ERROR. PS.CONV noti­
fies the transaction program of the conversa­
tion failure by returning a RESOURCE_FAILURE
return code on the next verb that admits one.

Chapter 5.1. Presentation Services--Conversation Verbs

HIGH-LEVEL PROCEDURES

5.1-10

PS_CONV

FUNCTION: Receives conversation verbs issued by the TP or by other PS components, and
calls appropriate procedures to process them.

INPUT: Transaction program verb and parameters

OUTPUT: Refer to the procedures that are called from this process for the specific
outputs.

Referenced procedures, FSMs, and data structures:
ALLOCATE_PROC
CONFIRM_PROC
CONFIRMED_PROC
DEALLOCATE_PROC
FLUSH_PROC
GET_ATTRIBUTES_PROC
POST_ON_RECEIPT_PROC
PREPARE_TO_RECEIVE_PROC
RECEIVE_AND_WAIT_PROC
REQUEST_TO_SEND_PROC
SEHD_DATA_PROC
SEND_ERROR_PROC

Select based on the transaction program verb:
When ALLOCATE

Call ALLOCATE_PROCCverb parameters) (page 5.1-111.
When CONFIRM

Call CONFIRM_PROCCverb parameters) (page 5.1-12).
When CONFIRMED

Call CONFIRMED_PROCCverb parameters) (page 5.1-141.
When DEALLOCATE

Call DEALLOCATE_PROCCverb parameters) (page 5.1-141.
When FLUSH

Call FLUSH_PROC(verb parameters) !page 5.1-161.
When GET ATTRIBUTES

Call GET_ATTRIBUTES_PROCCverb parameters) (page 5.1-171.
When POST ON RECEIPT

Call POST=ON_RECEIPT_PROC(verb parameters) !page 5.1-171.
When PREPARE TO RECEIVE

Call PREPARE=TO_RECEIVE_PROCCverb parameters) (page 5.1-161.
When RECEIVE AND WAIT

Call RECEIVE_AND_WAIT_PROC(verb parameters) !page 5.1-191.
When REQUEST TO SEND

Call REQUEST=TO_SEND_PROCCverb parameters) (page 5.1-211.
When SEND_DATA

Call SEND_DATA_PROCCverb parameters I (page 5.1-221.
When SEND_ERROR

Call SEND_ERROR_PROCCverb parameters I (page 5.1-241.

SNA Format and Protocol Reference Manual for LU Type 6.2

page 5.1-11
page 5.1-12
page 5.1-14
page 5.1-14
page 5.1-16
page 5.1-17
page 5.1-17
page 5.1-16
page 5.1-19
page 5.1-21
page 5.1-22
page 5.1-24

ALLOCATE_PROC

ALLOCATE_PROC

FUNCTION: Handles allocat;on of new resources to the transact;on program.

If the ALLOCATE parameters are val;d, th;s procedure requests that RM create a
new resource control block (RCB>. If the suppl;ed RETURN_CONTROL parameter
spec;f;es IMMEDIATE, PS at this time also requests RM to acquire a session for
use by the conversation resource. If the RETURN_CONTROL ;s set to
DELAYED_ALLOCATION_PERMITTED or WHEN_SESSION_ALLOCATED, PS sends a separate
session request to RM at a later t;me.

INPUT: ALLOCATE verb with parameters; RCB_ALLOCATED record received from RM

OUTPUT: ALLOCATE_RCB to RM

Referenced procedures, FSMs, and data structures:
PS
RM
RCB_ALLOCATED_PROC
WAIT_FOR_RM_REPLY
DEALLOCATION_CLEANUP_PROC
ALLOCATE_RCB
RCB_ALLOCATED
MODE

Check ALLOCATE for ABEND conditions (see ALLOCATE verb ;n
.fil!A TransacHon Programmer's Reference Manual for LU Ilm!! 6.2).

If ABEND cond;t;ons found then
Call DEALLOCATION_CLEANUP_PROC Cpage 5.0-14>.

Else

page 5.0-5
page 3-17
page 5.1-44
page 5.1-56
page 5.0-14
page A-25
page A-32
page A-3

If a MODE control block ex;sts for the LU_NAME and MODE_NAME parameters spec;f;ed ;n the
ALLOCATE then

Create and ;nit;alize ALLOCATE_RCB request record w;th the
parameters of the ALLOCATE.

Send ALLOCATE_RCB request to RM.
Call WAIT_FOR_RM_REPLY to receive RCB_ALLOCATED from RM (page 5.1-56).
Call RCB_ALLOCATED_PROCCRCB_ALLOCATED, ALLOCATE parameters),
to build an FMH-5 Attach header, and to set the RETURN CODE
parameter to the appropriate value (page 5.1-44). -

Else
Set RETURN_COOE of the ALLOCATE verb to PARAMETER_ERROR.

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-11

CONFIRM_PROC

CONFIRM_PROC

5.1-12

FUNCTION: Handles the CONFIRM verb processing.

INPUT:

OUTPUT:

If it is appropriate for the transaction program to issue a CONFIRM for the
specified conversation Ci.e., the SYNC_LEVEL of the conversation for which the
CONFIRM was issued is CONFIRM or SYNCPT and any data issued by the transaction
program is on a log.ical record boundary), this procedure first retrieves any
records from HS and RM. Appropriate action is taken depending upon which, if
any, record was received (as reflected by the state of FSM_ERROR_OR_FAILUREJ.

CONFIRM verb parameters

See below.

NOTES: 1. If a CONVERSATION FAILURE has been received from the resources manager, PS
returns to the tra;:;saction program after setting the RETURN_CODE parameter of
the CONFIRM to RESOURCE_FAILURE.

2. If the local LU has detected an error while attempting to allocate a session
to this conversation, but PS has not yet had the opportunity to relay that
information to the transaction program, it does so at this time by setting the
RETURN_CODE parameter of the CONFIRM to reflect the type of allocation error.

3. If a RECEIVE ERROR has been received from HS, PS sends a SEND DATA record with
the TYPE field set to PREPARE_TO_RCV_FLUSH to HS. (Any data- in the RCB send
buffer was purged when the RECEIVE_ERROR record was received.> PS then waits
for the expected FMH-7 error message to arrive. The RETURN_CODE parameter of
the CONFIRM is set based on the sense data carried in the FMH-7.

4. If there are no error or failure conditions, COMPLETE_CONFIRM_PROC Cpage
5.1-27) is called to complete the processing of the CONFIRM.

Referenced procedures, FSMs, and data structures:
DEALLOCATION_CLEANUP_PROC
PROCESS_RM_OR_HS_TO_PS_RECORDS
SEND_DATA_TO_HS_PROC
POST_AND_WAIT_PROC
DEQUEUE_FMH7_PROC
COMPLETE_CONFIRM_PROC
FSM_CONVERSATION
FSM_ERROR_OR_FAILURE
RCB

SNA Format and Protocol Reference Manual for LU Type 6.2

page 5.0-14
page 5.1-43
page 5.1-48
page 5.1-37
page 5.1-33
page 5.1-27
page 5.1-59
page 5.1-61
page A-7

CONFIRH_PROC

Find the RCB for the conversation identified in the RESOURCE parameter.

If RCB.SYNC_LEVEL = NONE and the send data is not at a logical record boundary then
Call DEALLOCATION_CLEANUP_PROC !page 5.0-14).

Else
If executing FSH_CONVERSATIONIS, CONFIRM, RCB)
(page 5.1-59) would cause a state-check (>) condition then

Execute the corresponding output code in the FSH.
Else

Call PROCESS_RH_OR_HS_TO_PS_RECORDSIRCB.RCB_ID, NO_SUSPEND> (page 5.1-43).

Select based on the state of FSH_ERROR_OR_FAILURE:
When CONV_FAILURE_PROTOCOL_ERROR

Set RETURN_CODE to RESOURCE_FAILURE_NO_RETRY.
Call FSM_CONVERSATION(R, RESOURCE_FAILURE_RC, RCB> (page 5.1-59).

When CONV_FAILURE_SON
Set RETURN_CODE to RESOURCE_FAILURE_RETRY.
Call FSH_CONVERSATIONIR, RESOURCE_FAILURE_RC, RCB) (page 5.1-59).

When ALLOCATE_FAILURE_RETRY, ALLOCATE_FAILURE_NO_RETRY,
or SYNCLEVEL_NOT_SUPPORTED

Set RETURN_CODE to ALLOCATION_ERROR concatenated with
ALLOCATION_FAILURE_RETRY, ALLOCATION_FAILURE_NO_RETRY, or
SYNC_LEVEL_NOT_SUPPORTED_BY_LU, as appropriate.

Call FSH_CONVERSATIONIR, ALLOCATION_ERROR_Rc, RCB) (page 5.1-59).
When RCVD_ERROR

Set RCB.PS_TO_HS_RECORD to PREPARE_TO_RCV_FLUSH.
Call SEND_DATA_TO_HS_PROCIRCB) !page 5.1-48).
Call POST_AND_WAIT_PROCIRCB, LL, X'7FFF'> to post the

resource when the whole FHH7 is received (page 5.1-37).
Call DEQUEUE_FHH7_PROCICONFIRH verb parameters, RCB> (page 5.1-33).

When NO_RQS
Call COMPLETE_CONFIRH_PROCCCONFIRH verb parameters, RCB) (page 5.1-27).

If REQUEST_TO_SEND has been received but not reported to TP then
Set returned REQUEST_TO_SEND_RECEIVED parameter to YES.

Chapter 5.1. Presentation Services--Conversation Verbs S.1•13

CONFIRMED_PROC

CONFIRMED_PROC

5.1-14

FUNCTION: Handles CONFIRMED verb processing.

PS first retrieves any records from HS and RM. Appropriate action is taken
depending upon which. if any. record was received.

INPUT: CONFIRMED verb parameters

OUTPUT: See below.

NOTES: 1. If a CONVERSATION_FAILURE record has been received from the resources Manager.
PS returns to the transaction program without sending any data to HS. Since
CONFIRMED verb does not have a RETURN_CODE parameter. the conversation failure
cannot be reported to the transaction program at this time. PS remembers the
failure lvia FSM_ERROR_OR_FAILUREJ and reports it to the transaction program
at a later time li.e., when the transaction program issues a verb with a
RETURN_CODE parameter.)

2. PS sends a CONFIRMED record !page A-24) to HS.

Referenced procedures, FSMs. and data structures:
PS
HS
PROCESS_RM_OR_HS_TO_PS_RECORDS
FSM_CONVERSATION
FSM_ERROR_OR_FAILURE
RCB
CONFIRMED

Find the RCB for the conversation identified by the RESOURCE parameter.
If executing FSM_CONVERSATIONCS, CONFIRMED. RCBJ (page 5.1-59J.
would cause a state-check (>) condition then

Execute the corresponding output code in the FSM.
Else

Call PROCESS_RM_OR_HS_TO_PS_RECORDIRCB.RCB_ID, NO_SUSPENDJ
I page 5.1-43 I.

If state of FSM_ERROR_OR_FAILURE is NO_RQS then
Call FSM_CONVERSATIONISt CONFIRMED. RCBI (page 5.1-59).
Create a CONFIRMED record, initialize it. and send it to HS.

Else (errors reported)
Do nothing (see Note 11.

DEALLOCATE_PROC

FUNCTION: Handles the deallocation of resources.

page 5.0-5
page 6.0-3
page 5.1-43
page 5.1-59
page 5.1-61
page A-7
page A-24

If the resource specified in the DEALLOCATE is a valid resource and the con­
versation is in a pertinent state, PS calls the appropriate deallocation pro­
cedure to continue processing the DEALLOCATE.

INPUT:

OUTPUT:

DEALLOCATE verb parameters

The pertinent deallocation procedure is called. When appropriate, PS sends
DEALLOCATE_RCB to RM.

Referenced procedures, FSMs. and data structures:
DEALLOCATION_CLEANUP_PROC
DEALLOCATE_FLUSH_PROC
DEALLOCATE_CONFIRM_PROC
DEALLOCATE_ABEND_PROC
FSM_CONVERSATION
DEALLOCATE_RCB
RCB

SNA Format and Protocol Reference Manual for LU Type 6.2

page 5.0-14
page 5.1-32
page 5.1-31
page 5.1-30
page 5.1-59
page A-26
page A-7

DEALLOCATE_PROC

F;nd the RCB for the conversat;on ;dent;fied in the supplied RESOURCE
parameter of the DEALLOCATE.

Select based on the following criteria:
When TYPE parameter of DEALLOCATE is FLUSH, or TYPE parameter is SYNC_LEVEL

and RCB.SYNC_LEVEL is NONE
If executing FSM_CONVERSATIONCS, DEALLOCATE_FLUSH, RCBl !page 5.1-59) would
cause a state-check (>) condition then

Execute the corresponding output code in the FSM.
Else

Call DEALLOCATE_FLUSH_PROCIDEALLOCATE verb parameters, RCBl (page 5.1-32).
Purge all records from HS to PS process.
Create DEALLOCATE RCB, initialize it, and send it to RM.

When TYPE parameter is -CONFIRM
If executing FSM_CONVERSATIONIS, DEALLOCATE_CONFIRM, RCBl !page 5.1-59) would
cause a state-check (>) condition then

Execute the corresponding output code in the FSM.
Else

If RCB.SYNC_LEVEL is CONFIRM or SYNCPT then
Call DEALLOCATE_CONFIRM_PROCCDEALLOCATE verb parameters, RCBl Cpage 5.1-31).

Else
Call DEALLOCATION_CLEANUP_PROC Cpage 5.0-14).

When TYPE parameter is SYNC_LEVEL and RCB.SYNC_LEVEL = CONFIRM
If executing FSM_CONVERSATION!S, DEALLOCATE_CONFIRM, RCB) !page 5.1-59) would
cause a state-check (>) condition then

Execute the corresponding output code in the FSM.
Else

Call DEALLOCATE_CONFIRM_PROC!DEALLOCATE, RCB> Cpage 5.1-31>.
When TYPE parameter is SYNC_LEVEL and RCB.SYNC_LEVEL = SYNCPT

If executing FSM_CONVERSATIONCS, DEALLOCATE_DEFER, RCB> !page 5.1-59) would
cause a state-check (>) condition then

Execute the corresponding output code in the FSM.
Else

If the data sent by TP is on a logical record boundary then
Call FSM_CONVERSATIONIS, DEALLOCATE_DEFER, RCB> !page 5.1-59).
Set RETURN_CODE to OK.

Else
Call DEALLOCATION_CLEANUP_PROC (page 5.0-14).

When TYPE parameter is ABEND_PROG, ABEND_SVC, or ABEND_TIMER
If executing FSM_CONVERSATION!S, DEALLOCATE_ABENO, RCB> !page 5.1-59) would
cause a state-check (>) condition then

Execute the corresponding output code in the FSM.
Else

Call DEALLOCATE_ABEND_PROC!DEALLOCATE verb parameters, RCB> (page 5.1-30). ·
Purge all records from HS to PS process.
Create DEALLOCATE RCB, initialize it, and send it to RM.

When TYPE parameter is LOCAL
If executing FSM_CONVERSATION!S, DEALLOCATE_LOCAL, RCB> !page 5.1-59) would
cause a state-check (>) condition then

Execute the corresponding output code in the FSM.
Else

Call FSM_CONVERSATION!S, DEALLOCATE_LOCAL, RCB) (page 5.1-59).
Set RETURN_CODE to OK.
Purge all records from HS to PS process.
Create DEALLOCATE_RCB record, initialize it, and send it to RM.

Chapter 5.1. Presentation Services--Conversation Verbs S.1-15

FLUSH_PROC

FLUSH_PROC

5.1-16

FUNCTION: Handles the FLUSH verb processing.

INPUT:

OUTPUT:

The procedure first receives records front RM and HS. Appropriate action is
taken depending upon the type of the received record as indicated by the
FSM_CONVERSATION and FSM_ERROR_OR_FAILURE states.

FLUSH verb parameters, records from RM and HS

See below.

NOTES: 1. If PS has received a RECEIVE ERROR from HS, or no error records have been
received, PS sends any data r;maining in the RCB send buffer to HS with the
TYPE field of the SENO_OATA set to FLUSH, PREPARE_TO_RCV_FLUSH, or DEALLO­
CATE_FLUSH, depending on the state of the conversation. !If a RECEIVE_ERROR
was received, any data in PS's send buffer has already been purged.I

2. If FSM_ERROR_OR_FAILURE indicates that a conversation failure or allocation
error has occurred, PS returns to the transaction program without sending any
data to HS. Since FLUSH does not have a RETURN_CODE parameter, the error can­
not be reported to the transaction program at this time. PS remembers the
error (via FSM_ERROR_OR_FAILUREI and reports it to the transaction program at
a later time !i.e., when PS receives a record from the transaction program
that has a RETURN_CODE fieldl.

Referenced procedures, FSMs, and data structures:
PS
HS
RM
PROCESS_RM_OR_HS_TO_PS_RECORDS
SEND_DATA_TO_HS_PROC
FSM_CONVERSATION
FSM_ERROR_OR_FAILURE
RCB
DEALLOCATE_RCB

Find RCB for the conversation identified by the RESOURCE parameter.
If executing FSM_CONVERSATIONCS, FLUSH, RCBI !page 5.1-591 would
cause a state-check (>) condition then

Execute the corresponding output code in the FSM.

Else

page 5.0-5
page 6.0-3
page 3-17
page 5.1-43
page 5.1-48
page 5.1-59
page 5.1-61
page A-7
page A-26

Call PROCESS_RM_OR_HS_TO_PS_RECORDS<RCB.RCB_Io, NO_SUSPENDI (page 5.1-431.

If the state of FSM_ERROR_OR_FAILURE Cpage 5.1-611
is RCVD_ERROR or NO_RQS then

Select based on state of FSM_CONVERSATION (page 5.1-591:
When SEND

Set RCB.PS_TO_HS_RECORD.TYPE to FLUSH.
When PREP_TO_RCV_DEFER

Set RCB.PS_TO_HS_RECORD.TYPE to PREPARE_TO_RCV_FLUSH.
When DEALL_DEFER

Set RCB.PS_TO_HS_RECORD.TYPE to DEALLOCATE_FLUSH.
Call SEND_DATA_TO_HS_PROC<RCBI (page 5.1-48>.
If state of FSM_CONVERSATION is DEALL_DEFER then

Send a DEALLOCATE_FLUSH record to HS.
Purge all records from HS to this PS.
Create DEALLOCATE_RCB, initialize it, and send it to RM.

Call FSM_CONVERSATIONCS, FLUSH, RC.BJ Cpage 5.1-59).

SNA Format and Protocol Reference Manual for LU Type 6.2

GET_ATTRIBUTES_PROC

GET_ATTRIBUTES_PROC

FUNCTION: Handles requests for information about a conversation.

Information about the conversation resource is retrieved from the pertinent
control blocks, and placed in the returned parameters of the GET_ATTRIBUTES
verb.

INPUT: GET_ATTRIBUTES verb parameters

OUTPUT: GET_ATTRIBUTES verb returned parameters containing information about the con­
versation

Referenced procedures, FSNs, and data structures:
FSN_CONVERSATION
LUCB
PARTNER_ LU
RCB

page 5.1-59
page A-1
page A-2
page A-7

Find the RCB for the conversation identified in the supplied RESOURCE parameter.

Set the GET_ATTIBUTES returned parameters as follows:
OWN_FULLY_QUALIFIED_LU_NANE to LUCB.FULLY_QUALIFIED_LU_NAME,
PARTNER_LU_NANE to RCB.LU_NANE,
PARTNER_FULLY_QUALIFIED_LU_NANE to PARTNER_LU.FULLY_QUALIFIED_LU_NANE,
NODE_NANE to RCB.NODE_NANE,
SYNC_LEVEL to RCB.SYNC_LEVEL.

Call FSN_CONVERSATION(S, GET_ATTRIBUTES, RCB) !page 5.1-591.

POST_ON_RECEIPT_PROC

FUNCTION: Performs the processing of the POST_ON_RECEIPT verb.

The procedure updates FSN_CONVERSATION and FSN_POST, saves the post conditions
in the RCB, and retrieves any records originated 1n RN and HS. The data just
received from RN or HS may cause the resource to be posted.

INPUT: POST_ON_RECEIPT verb parameters

OUTPUT: Updated FSN_CONVERSATION, FSM_POST, and post conditions in the RCB

Referenced procedures, FSMs, and data structures:
PROCESS_RM_OR_HS_TO_PS_RECORDS
FSM_CONVERSATION
FSM_POST
RCB

Find the RCB for the conversation identified by the RESOURCE parameter.
If executing FSM_CONVERSATIONCS, POST_ON_RECEIPT, RCBJ lpage 5.1-591.
would cause a state-check C>J condition then

Execute the corresponding output code in the FSM.

Else
Call FSM_CONVERSATION!S, POST_ON_RECEIPT, RCBJ !page 5.1-59).
Call FSM_POSTCPOST_ON_RECEIPTJ !page 5.1-621.

page 5.1-43
page 5.1-59
page 5.1-62
page A-7

Copy FILL and LENGTH parameters of the POST_ON_RECEIPT verb into RCB.POST CONDITIONS.
Call PROCESS_RM_OR_HS_TO_PS_RECORDSCRCB.RCB_ID, NO_SUSPENDJ !page 5.1-431.

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-17

PREPARE_TO_RECEIVE_PROC

PREPARE_TO_RECEIVE_PROC

5.1-18

FUNCTION: Handles the PREPARE_TO_RECEIVE verb. Depending on the TYPE of the PRE­
PARE_TO_RECEIVE (FLUSH, CONFIRM or SYNC_LEVEL> and the SYNC_LEVEL of the con­
versation (NONE, CONFIRM, or SYNCPT>, the processing of the PREPARE_TO_RECEIVE
is continued by other procedures.

INPUT: PREPARE_TO_RECEIVE verb parameters

OUTPUT: If the PREPARE_TO_RECEIVE specifies TYPE = SYNC_LEVEL and the SYNC_LEVEL of
the conversation is SYNCPT, the RETURN_CODE is set to OK and FSM_CONVERSATION
(page 5.1-59> is updated to indicate that completion of the PREPARE_TO_RECEIVE
processing is deferred until a FLUSH, CONFIRM, or SYNCPT verb is issued. Oth­
erwise, processing is continued by other procedures.

Referenced procedures, FSMs, and data structures:
PREPARE_TO_RECEIVE_FLUSH_PROC
PREPARE_TO_RECEIVE_CONFIRM_PROC
DEALLOCATION_CLEANUP_PROC
FSM_CONVERSATION
RCB

page 5.1-39
page 5.1-38
page 5.0-14
page 5.1-59
page A-7

Find the RCB for the conversation identified by the RESOURCE para111eter.
If data sent by TP is on a logical record boundary then

Select based on one of the following conditions:
When TYPE parameter = FLUSH or <TYPE parameter = SYNC_LEVEL and the
conversation sync level of the conversation is = NONE>

'If executing FSM_CONVERSATIONCS, PREPARE_TO_RECEIVE_FLUSH, RCBJ (page 5.1-59).
would cause a state-check (>) condition then

Execute the corresponding output code in the FSM.
Else

Call PREPARE_TO_RECEIVE_FLUSH_PROC<PREPARE_TO_RECEIVE para111eters, RCB)
(page 5.1-39).

When TYPE parameter = CONFIRM
If executing FSM_CONVERSATION(S, PREPARE_TO_RECEIVE_CONFIRM, RCBJ (page 5.1-59).
would cause a state-check (>) condition then

Execute the corresponding output code in the FSM.
Else

If sync level of the conversation is CONFIRM or SYNCPT then
Call PREPARE_TO_RECEIVE_CONFIRM_PROC(PREPARE_TO_RECEIVE para111eters, RCB>

(page 5.1-38).
Else

Call DEALLOCATION_CLEANUP_PROC (page 5.0-14).
When TYPE'parameter = SYNC_LEVEL

Else

If executing FSM_CONVERSATION(S, PREPARE_TO_RECEIVE_DEFER, RCB) (page 5.1-59).
would cause a state-check (>) condition then

Execute the corresponding output code in the FSM.
Else

If sync level of the conversation is SYNCPT then
Call FSM_CONVERSATIONCS, PREPARE_TO_RECEIVE_DEFER, RCBJ (page 5.1-59).
Copy LOCKS parameter into RCB.
Set RETURN_CODE parameter to OK.

Else ·
Call DEALLOCATION_CLEANUP_PROC (page 5.0-14).

Call DEALLOCATION_CLEANUP_PROC (page 5.0-14).

SNA Format and Protocol Reference Manual for LU Type 6.2

RECEIYE_AND_WAIT_PROC

RECEIYE_AND_WAIT_PROC

FUNCTION: Handles the RECEIYE_AND_WAIT verb.

If the resource specified in the RECEIYE_AND_WAIT is valid and the conversa­
tion is in an appropriate state Ci.e., RECEIYE_AND_WAIT can be issued when the
conversation is in the send or receive state), processing of the record con­
tinues. PS first receives any records from RM and HS. Appropriate action is
taken depending upon which, if any, record was received Cas reflected by the
state of FSM_ERROR_OR_FAILURE).

INPUT: RECEIYE_AND_WAIT verb parameters

OUTPUT: See below.

NOTES: 1. If a CONYERSATION_FAILURE has been received from the resources manager, PS
returns to the transaction program after setting the RETURN_CODE parameter to
RESOURCE_FAILURE.

2. If the local LU has detected an error while attempting to allocate a session
to this conversation, but PS has not yet had the opportunity to relay that
information to the transaction program, it does so at this time by setting the
RETURN_CODE parameter to reflect the type of allocation error.

3. If a RECEIYE_ERROR record has been received from HS, PS sends a
SEND_DATA_RECORD with the TYPE field set to PREPARE_TO_RCV_FLUSH to HS. CAny
data in the RCB data buffer was purged when the RECEIVE_ERROR record was
received.) PS then waits for the expected FMH-7 error message to arrive. The
RETURN_CODE parameter is set based on the sense data carried in the FMH-7.

4. If the conversation is in the SEND state, PS sends a SEND_DATA_RECORD with the
TYPE field set to PREPARE TO RCV FLUSH to HS. All data in the RCB send buffer
is placed in the SEND_DATA_RECORD. Regardless of the state of the conversa­
tion, PS initializes the post conditions, waits for information to arrive to
cause the conversation to become posted, and returns to the transaction pro­
gram with the received information.

Reterenced procedures, FSMs, and data structures:
PROCESS_RM_OR_HS_TO_PS_RECORDS
SEND_DATA_TO_HS_PROC
POST_AND_WAIT_PROC
DEQUEUE_FMH7_PROC
PERFORM_RECEIVE_PROCESSING
FSM_CONVERSATION
FSM_ERROR_OR_FAILURE
RECEIVE_ERROR
SEND_DATA_RECORD
RCB

Find RCB for the resource identified in the RESOURCE parameter.
If executing FSM_CONYERSATIONCS,RECEIVE_AND_WAIT, RCB) would
cause a state-check (>) condition then

Execute the corresponding output code in the FSM.

Else

page 5.1-43
page 5.1-48
page 5.1-37
page 5.1-33
page 5.1-36
page 5.1-59
page 5.1-61
page A-12
page A-24
page A-7

Call PROCESS_RM_OR_HS_TO_PS_RECORDSCRCB.RCB_ID, NO_SUSPEND) Cpage 5.1-43).

Select based on the state of FSM_ERROR_OR_FAILURE Cpage 5.1-61):
When CONV_FAILURE_PROTOCOL_ERROR

Set RETURN_CODE to RESOURCE_FAILURE_NO_RETRY.
Call FSM_CONVERSATIONCR. RESOURCE_FAILURE_Rc, RCB) (page 5.1-59).

When CONV_FAILURE_SON
Set RETURN_CODE to RESOURCE_FAILURE_RETRY.
Call FSM_CONVERSATIONIR, RESOURCE_FAILURE_Rc, RCB) (page 5.1-59).

When ALLOCATE_FAILURE_RETRY I ALLOCATE_FAILURE_NO_RETRY I SYNCLEVEL_NOT_SUPPORTED
Set RETURN_CODE to ALLOCATION_ERROR concatenated with

ALLOCATION_FAILURE_RETRY, ALLOCATION_FAILURE_NO_RETRY, or
SYNC_LEVEL_NOT_SUPPORTED_BY_LU, as appropriate.

Call FSM_CONYERSATIONCR, ALLOCATION_ERROR_Rc, RCBJ (page 5.1-59).

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-19

RECEIVE_AND_WAIT_PROC

5.1-20

When RCVD ERROR
If state of FSM_CONVERSATION = SEND then

Set RCB.PS_TO_HS_RECORD type to PREPARE_TO_RCV_FLUSH.
Call SEND_DATA_TO_HS_PROCIRCB) (page 5.1-48).
Call POST_AND_WAIT_PROCCRCB, LL, X'7FFF') !page 5.1-37).
Call DEQUEUE_FMH7_PROCtRECEIVE_AND_WAIT, RCB) !page 5.1-33).

Else
Call POST_AND_WAIT_PROC(RCB, LL, X'7FFF') (page 5.1-37).
Call DEQUEUE_FMH7_PROCCRECEIVE_AND_WAIT, RCB) (page 5.1-33).

When NO_RQS
Call FSM_CONVERSATIONCS, RECEIVE_AND_WAIT, RCB> (page 5.1-59).
If state of FSM ERROR OR FAILURE is ALLOCATE FAILURE RETRY,

ALLOCATE_FAILURE_NO_RETRY. OR SYNCLEVEL_NoT:suPPORTED then
Set RETURN_CODE to ALLOCATION_ERROR concatenated with

ALLOCATION_FAILURE_RETRY, ALLOCATION_FAILURE_NO_RETRY, or
to SYNC_LEVEL_NOT_SUPPORTED_BY_LU, as appropriate.

Call FSM_CONVERSATIONCR, ALLOCATION_ERROR_RC, RCB> (page 5.1-59).
Else

Call POST_AND_WAIT_PROC with RCB, FILL and LENGTH parameters !page 5.1-37).
Call PERFORH_RECEIVE_PROCESSINGCRCB, RECEIVE_AND_WAIT parameters) !page 5.1-36).

If REQUEST_TO_SEND has been received but not reported to TP then
Set REQUEST_TO_SEND_RECEIVED parameter to YES.

SNA Format and Protocol Reference Manual for LU Type 6.2

REQUEST_TO_SEND_PROC

REQUEST_TO_SEND_PROC

FUNCTION: Handles REQUEST_TO_SEND verb processing.

If the conversation is in the RECEIVE state, PS completes the processing of
the REQUEST_TO_SEND record, as described below.

INPUT: REQUEST_TO_SEND verb parameters

OUTPUT: See below.

NOTES: 1. Since REQUEST_TO_SEND does not have a RETURN_CODE parameter, error conditions
cannot be relayed to the transaction program at this time. PS remembers the
error (via FSM_ERROR_OR_FAILURE) and reports it to the transaction program at
a later time (i.e., when a verb is issued by the transaction program that has
a RETURN_CODE parameter!.

2. A REQUEST TO SEND record is not sent to HS if the partner transaction program
has already issued a DEALLOCATE for the specified conversation.

3. A REQUEST_TO_SEND record is not sent to HS if the partner transaction program
has already issued a PREPARE_TO_RECEIVE for the specified conversation.

4. If no records have been received from HS, or records have been received
not indicate DEALLOCATE or PREPARE_TO_RCV, this procedure
REQUEST_TO_SEND to HS and waits for the expected RSP_TO_REQUEST_TO_SEND
returning to the transaction program.

but do
sends

before

Referenced procedures, FSMs, and data structures:
PS
HS
PROCESS_RM_OR_HS_TO_PS_RECORDS
WAIT_FOR_RSP_TO_RQ_TO_SEND_PROC
FSM_CONVERSATION
RCB
REQUEST_TO_SEND

Find RCB for the resource identifier in REQUEST_TO_SEND.
If executing FSM_CONVERSATIONIS, REQUEST_TO_SEND, RCB) !page 5.1-59) would
cause a state-check (>)condition then

Execute the corresponding output code in the FSM.
Else

page 5.0-5
page 6.0-3
page 5.1-43
page 5.1-57
page 5.1-59
page A-7
page A-24

Call PROCESS_RM_OR_HS_TO_PS_RECORDSIRCB.RCB_ID, NO_SUSPENDJ !page 5.1-43).
If Change Direction <CDJ indication has not been received from HS then

Send a REQUEST TO SEND record to the HS.
Call WAIT_FOR_RsP:ro_RQ_TO_SEND_PROCIRCBJ (page 5.1-57).

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-21

SEND_DATA_PROC

s.1-22

SEND DATA_PROC

FUNCTION: Handles the receipt of data from the transaction program.

If the resource specified in the SEND_DATA is valid and the conversation is in
the SEND state, processing of the record continues. PS first retrieves any
records from RM and HS. Appropriate action is taken depending upon which, if
any, record was received.

INPUT: SEND_DATA verb parameters

OUTPUT: See below.

NOTES: 1. If a CONVERSATION_FAILURE record has been received from the resources manager,
PS returns to the transaction program after setting the RETURN_CODE parameter
of the SEND_DATA to RESOURCE_FAILURE.

2. If the local LU has detected an error while attempting to allocate a session
to this conversation, but PS has not yet had the opportunity to relay that
information to the transaction program, it does so at this time by setting the
RETURN_CODE parameter of the SEND_DATA to reflect the type of allocation
error.

3. If a RECEIVE ERROR has been received from HS, PS sends a SEND DATA with the
TYPE field s;t to PREPARE_TO_RCV_FLUSH to HS. (Any data in the RCB data buff­
er was purged when the RECEIVE_ERROR record was received.> PS then waits for
the expected FMH-7 error message to arrive. The RETURN_CODE of the SEND_DATA
is set based on the sense data carried in the FMH-7.

4. If no error or failure condition has occurred, PS scans the data in the passed
SENO_DATA for logical record boundaries. !PS maintains in the RCB a count of
the number of bytes of data remaining to be sent from the transaction program
to finish the current logical record.> If there is enough data to send to HS,
PS sends it.

5. If no session has been allocated to this conversation Ci.e., the ALLOCATE that
allocated the conversation specified RETURN_CONTROL =
DELAYED_ALLOCATION_PERMITTEDJ, PS now requests a session from the resources
manager. If, while attempting to allocate a session, the local LU detects an
error, PS sets the RETURN_CODE field in the SEND_DATA to reflect the type of
allocation error and returns control to the transaction program.

Referenced procedures, FSMs, and data structures:
PROCESS_RM_OR_HS_TO_PS_RECOROS
SEND_DATA_TO_HS_PROC
POST_AND_WAIT_PROC
DEQUEUE_FNH7_PROC
SEND_DATA_BUFFER_MANAGEMENT
DEALLOCATION_CLEANUP_PROC
FSM_CONVERSATION
FSM_ERROR_OR_FAILURE
RCB
CONVERSATION_FAILURE
RECEIVE_ ERROR

Find the RCB for the resource identified in the RESOURCE parameter.
If executing FSM_CONVERSATION(S, SEND_DATA, RCBJ (page 5.1-59)
would cause a state-check (>) condition then

Execute the corresponding output code in the FSM.

Else

page 5.1-43
page 5.1-48
page 5.1-37
page 5.1-33
page 5.1-47
page 5.0-14
page 5.1-59
page 5.1-61
page A-7
page A-32
page A-12

Call PROCESS_RM_OR_HS_TO_PS_RECORDS(RCB.RCB_ID, NO_SUSPENDJ Cpage 5.l-43J.

Select based on state of FSM_ERROR_OR_FAILURE (page 5.1-61):
When CONV_FAILURE_SON (see Note lJ

Set RETURN_CODE to RESOURCE_FAILURE_RETRY.
Call FSM_CONVERSATION!R, RESOURCE_FAILURE_RC, RCBI (page 5.1-591.

When CONV_FAILURE_PROTOCOL_ERROR (see Note 11
Set RETURN_CODE to RESOURCE_FAILURE_NO_RETRY.
Call FSM_CONVERSATIONCR, RESOURCE_FAILURE_Rc, RCBI (page 5.1-59).

SNA Format and Protocol Reference Manual for LU Type 6.2

SEND_DATA_PROC

When ALLOCATE_FAILURE_RETRY, ALLOCATE_FAILURE_HO_RETRY, or
SYNCLEVEL NOT SUPPORTED (see Note 2)

Set RETURN_CODE to ALLOCATION_ERROR concatenated with
ALLOCATION_FAILURE_RETRY, ALLOCATION_FAILURE_NO_RETRY, or
SYNC_LEVEL_NOT_SUPPORTED_BY_LU, as appropriate.

Call FSN_CONVERSATION!R, ALLOCATION_ERROR_RC, RCB) !page 5.1-59).
When RCVD_ERROR !see Note 31

Set RCB.PS_TO_HS_RECORD type to PREPARE_TO_RCV_FLUSH.
Call SEND_DATA_TO_HS_PROC!RCB> (page 5.1-48).
Call POST_AND_WAIT_PROC!RCB, LL, X'7FFF' l (page 5.1-37).
Call DEQUEUE_FNH7_PROCCRECEIVE_AND_WAIT, RCB) (page 5.1-33).

When NO RQS
Perf~rm the LL processing (see Note 4).
If LL is not valid Ci.e., values x•oooo•, x•sooo•, and X'8001' are not validJ
X'OOOl' is valid only for PS headers--see Appendix H) then

Call DEALLOCATION_CLEANUP_ABEND Cpage 5.0-14).
Call SEND_DATA_BUFFER_NANAGENENT Cpage 5.1-47)
with the first LENGTH bytes of the DATA Csee SEND_DATA verb parameters) and RCB.

If the state of FSN_ERROR_OR_FAILURE Cpage 5.1-61)
is ALLOCATE_FAILURE_RETRY, ALLOCATE_FAILURE_NO_RETRY, or
SYNCLEVEL NOT SUPPORTED Csee Note 5) then

Set RETURN_CODE to ALLOCATION_ERROR concatenated with
ALLOCATION_FAILURE_RETRY, ALLOCATION_FAILURE_NO_RETRY, or
SYNC_LEVEL_NOT_SUPPORTED_BY_LU, as appropriate.

Call FSM_CONVERSATIONCR, ALLOCATION_ERROR_RC, RCB) !page 5.1-59).
Else

Set RETURN_CODE to OK.

If REQUEST_TO_SEND has been received but not reported to TP then
Set REQUEST_TO_SEND_RECEIVED return parameter to YES.

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-23

SEND_ERROR_PROC

SEND_ERROR_PROC

5.1-24

FUNCTION: Handles the SEND_ERROR verb processing.

If the resource specified in the SEND_ERROR is valid and the conversation is
in an appropriate state, processing of the SEND~ERROR continues. PS first
retrieves any records from RM and HS. Appropriate action is taken depending
upon which, if any, record was received (as reflected by the state of
FSM_ERROR_OR_FAILURE>.

INPUT: SEND_ERROR verb parameters

OUTPUT: See below.

NOTES: 1. If a CONVERSATION_FAILURE has been received from the resources manager, PS
returns to the transaction program after setting the RETURN_CODE parameter of
the SEND_ERROR to RESOURCE_FAILURE.

2. If the local LU has detected an error while attempting to allocate a session
to this conversation, but PS has not yet had the opportunity to relay that
information to the transaction program, it does so at this time by setting the
RETURN_CODE parameter of the SEND_ERROR to reflect the type of allocation
error.

3. If RECEIVE_ERROR has been received from HS or no error records have been
received, further processing of the SEND_ERROR is performed, depending upon
the state of the conversation.

Referenced procedures, FSMs, and data structures:
PS
HS
PROCESS_RM_OR_HS_TO_PS_RECORDS
SEND_ERROR_IN_SEND_STATE
SEND_ERROR_DONE_PROC
SEND_ERROR_IN_RECEIVE_STATE
FSM_CONVERSATION
FSM_ERROR_OR_FAILURE
RCB
BUFFER_ELEMENT
SEND_ERROR

Find the RCB for the resource identifier for SEND_ERROR.
If executing FSM_CONVERSATIONCS, SEND_~RROR, RCB> Cpage 5.1-59)
would cause a state-check (>) condition then
· Execute the corresponding output code in the FSM.

Else

page 5.0-5
page 6.0-3
page 5.1-43
page 5.1-51
page 5.1-49
page 5.1-50
page 5.1-59
page 5.1-61
page A-7
page A-8
page A~24

Call PROCESS_RM_OR_HS_TO_PS_RECORDSCRCB.RCB_ID, NO_SUSPEND) (page 5.1-43).

Select based on state of FSM_ERROR_OR_FAILURE:
When CONV_FAILURE_SON (see Note 1)

Set RETURN_CODE of SEND_ERROR verb to RESOURCE_FAILURE_RETRY.
Call FSM_CONVERSATION(R, RESOURCE_FAILURE_Rc, RCB) (page 5.1-59).

When CONV_FAILURE_PROTOCOL_ERROR !see Note 1)
Set RETURN_CODE of SEND_ERROR verb to RESOURCE_FAILURE_NO_RETRY.
Call FSM_CONVERSATIONCR, RESOURCE_FAILURE_Rc, RCB) (page 5.1-59).

When ALLOCATE_FAILURE_RETRY, ALLOCATE_FAILURE_NO_RETRY, or
SYNCLEVEL_NOT_SUPPORTED !see Note 2)

Set RETURN_CODE of SEND_ERROR verb to ALLOCATION_ERROR concatenated with
ALLOCATION_FAILURE_RETRY, ALLOCATION_FAILURE_NO_RETRY, or
SYNC_LEVEL_NOT_SUPPORTED_BY_LU, as appropriate.

Call FSM_CONVERSATIONCR, ALLOCATION_ERROR_RC, RCB) Cpage 5.1-59).

SNA For111at and Protocol Reference Manual for LU Type 6.2

SEND_ERROR_PROC

When NO_RQS or RCVD_E~ROR Csee Note 31

Select based on the state of FSM_CONVERSATION (page 5.1-591:
When SEND

Call SEND_ERROR_IN_SEND_STATECSEND_ERROR parameters, RCBI (page 5.1-511.
When RCVD_CONFIRM, RCVD_CONFIRM_SEND, or RCVD_CONFIRM_DEALL

Send SEND ERROR record to HS.
Call FSM_CONVERSATIONCS, SEND_ERROR, RCBJ (page 5.1-591.
Call SENO_ERROR_DONE_PROCCSEND_ERROR, RCBl (page 5.1-491.

When RCV
Call SEND_ERROR_IN_RECEIVE_STATECSENO_ERROR parameters, RCBl (page 5.1-501.

Remove all entries in the RCB.HS TO PS BUFFER LIST.
If REQUEST_TO_SEND has been received but not ;eported to TP then

Set REQUEST_TO_SEND_RECEIVED parameter of SEND_ERROR verb to YES.

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-25

TEST_PROC

5.1-26

TEST_PROC

FUNCTION: Performs the processing of a TEST record.

INPUT:

OUTPUT:

The procedure first receives any records from RM and HS. It then tests wheth­
er the conversation has been posted or whether REQUEST_TO_SEND notification
has been received from the remote transaction. The RETURN_CODE field of TEST
records the result of the test.

TEST record

The RETURN_CODE field of TEST records the result of the test.

Referenced procedures, FSMs, and data structures:
PROCESS_RM_OR_HS_TO_PS_RECORDS
POST_AND_WAIT_PROC
DEQUEUE_FMH7_PROC
FSM_CONVERSATION
FSM_ERROR_OR_FAILURE
FSM_POST
TEST
RCB
BUFFER_ELEMENT

page 5.1-43
page 5.1-37
page 5.1-33
page 5.1-59
page 5.1-61
page 5.1-62
page 5.1-63
page A-7
page A-8

Find the RCB for the resource identified in the RESOURCE field of the TEST record.
If executing FSM_CONVERSATIONCS, TEST, RCB) Cpage 5.1-59)
would cause a state-check (>) condition then

Execute the corresponding output code in the FSM.
Else

Call PROCESS_RM_OR_HS_TO_PS_RECORDSCRCB.RCB_ID, NO_SUSPEND> (page 5.1-43).
Select based on test type (recorded in TEST.TEST>:

When POSTED
If state of FSM_POST = RESET then

Set RETURN_COOE of TEST to POSTING_NOT_ACTIVE.
Else

Select based on the state of FSM_ERROR_OR_FAILURE:
When CONV_FAILURE_SON

Set RETURN_CODE of TEST to RESOURCE_FAILURE_RETRY.
Call FSM_CONVERSATIONCR, RESOURCE_FAILURE_Rc, RCB> (page 5.1-59).

When CONV_FAILURE_PROTOCOL_ERROR
Set RETURN_CODE of TEST to RESOURCE_FAILURE_NO_RETRY.
Call FSM_CONVERSATIONCR, RESOURCE_FAILURE_Rc, RCB) (page 5.1-59).

When ALLOCATE_FAILURE_RETRY, ALLOCATE_FAILURE_NO_RETRY, or
SYNCLEVEL_NOT_SUPPORTED

Set RETURN_CODE of TEST to ALLOCATION_ERROR concatenated with
ALLOCATION_FAILURE_RETRY, ALLOCATION_FAILURE_NO_RETRY, or

SYNC_LEVEL_NOT_SUPPORTED_BY_LU respectively.
Call FSM_CONVERSATIONCR, ALLOCATION_ERROR_Rc, RCB) (page 5.1-59).

When RCVD_ERROR
Call POST_AND_WAIT_PROCCRCB, LL, X'77FF') (page 5.1-37).
Call DEQUEUE_FMH7_PROCCTEST, RCBl (page 5.1-331.

When NO_RQS
Select on state of FSM_POST:

When PEND POSTED
Set RETuRN CODE of TEST to UNSUCCESSFUL.

When POSTED -
Set RETURN_CODE of TEST to OK concatenated to NOT_DATA
or DATA as the RCB.HS_TO_PS_BUFFER_LIST is or is not empty.

Call FSM_CONVERSATIONCS, TEST, RCBl Cpage 5.1-59).
Call FSM_POSTCTESTl Cpage 5.1-621.

When REQUEST_TO_SEND_RECEIVED
If REQUEST_TO_SEND has been received but not reported to TP then

Set RETURN_CODE of TEST to OK.
Record as reported to TP the REQUEST_TO_SEND.

Else
Set RETURN_CODE to UNSUCCESSFUL.

SHA Format and Protocol Reference Manual for LU Type 6.2

LOW-LEVEL PROCEDURES

COMPLETE_CONFIRM_PROC

FUNCTION: Completes the processing of a CONFIRM verb.

It is called by CONFIRM_PROC (page 5.1-12) when there are no error or failure
conditions indicated by FSM_ERROR_OR_FAILURE (page 5.1-61). The action of
this procedure is dependent on the state of the conversation, as described
below.

INPUT: CONFIRM parameters and the RCB corresponding to the resource specified in the
CONFIRM verb

OUTPUT: See below.

NOTES: 1. If FSM_CONVERSATION is in the SEND state, a SEND_DATA_RECORD with TYPE field
set to CONFIRM is sent to HS.

2. If FSM_CONVERSATION is in the PREPARE TO RECEIVE DEFER state, a
SEND_DATA_RECORD with TYPE field set to PREPARE_TO_RCV_CONFIRM is sent to HS.

3. If FSM CONVERSATION is in the DEALLOCATE DEFER state, a SEND DATA RECORD with
TYPE field set to DEALLOCATE_CONFIRM is s;nt to HS. - -

4. If no session has been allocated to this conversation (i.e., the ALLOCATE verb
issued to allocate the conversation specified RETURN_CONTROL =
DELAYED_ALLOCATION_PERMITTEDI, PS now requests a session from the resources
manager. If, while attempting to allocate a session, the local LU detects an
error, PS sets the RETURN_CODE parameter of the CONFIRM to reflect the type of
allocation error and returns control to the transaction program.

Referenced procedures, FSMs, and data structures:
SEND_DATA_TO_HS_PROC
WAIT_FOR_CONFIRMED_PROC
FSM_CONVERSATION
FSM_ERROR_OR_FAILURE
RCB
SEND_DATA_RECORD

Select based on the state of FSM_CONVERSATION (page S.1-59l:
When SEND (see Note l.l

Set RCB.PS_TO_HS_RECORD.TYPE to CONFIRM.
When PREP_TO_RCV_DEFER (see Note 21

Set RCB.PS_TO_HS_RECORD.TYPE to PREPARE_TO_RCV_CONFIRM~SHORT or
PREPARE_TO_RCV_CONFIRM_LONG as indicated by RCS.LOCKS.

When DEALL_DEFER (see Note 3)
Set RCS.PS TO HS RECORD.TYPE to DEALLOCATE CONFIRM.

Call FSM_CONVERSATIONCS, CONFIRM, RCBI Cpage 5.1:591.
Call SEND_DATA_TO_HS_PROCCRCBI Cpage 5.1-48).

If state of FSM_ERROR_OR_FAILURE is ALLOCATE_FAILURE_RETRY,
ALLOCATE_FAILURE_NO_RETRY, OR SYNCLEVEL_NOT_SUPPORTED (see Note 4) then

Set RETURN_CODE to ALLOCATION_ERROR concatenated with
ALLOCATION_FAILURE_RETRY, ALLOCATION_FAILURE_NO_RETRY, or
to SYNC_LEVEL_NOT_SUPPORTED_BY_LU, as appropriate.

Call FSM_CONVERSATIONCR, ALLOCATION_ERROR_RC, RCB> Cpage 5.1-59).

Else
Call WAIT_FOR_CONFIRMED_PROCCCONFIRM parameters, RCBI Cpage 5.1-55).

page 5.1-48
page 5.1-55
page 5.1-59
page 5.1-61
page A-7
page A-24

Chapter 5.1. Presentation Services-~conversation Verbs 5.1-27

COMPLETE_DEALLOCATE_ABEND_PROC

5.1-28

COMPLETE_DEALLOCATE_ABEND_PROC

FUNCTION: Completes the processing of a DEALLOCATE verb that specifies TYPE = ABEND.

PS creates an FMH-7 and places it in the RCB send buffer. The FMH-7 carries
sense data indicating DEALLOCATE_ABEND. If there is any log data associated
with the DEALLOCATE, PS creates an Error Log GDS variable (see "Appendix H. FM
Header and LU Services Commands") and places it in the RCB buffer to be sent
to the partner LU. PS also places the GDS variable Cminus the LL and GDS ID
fields) in the local LU's system error log. PS then sends a SEND_DATA_RECORD,
containing the FMH-7 and optional Error Log GDS variable, to HS.

INPUT: DEALLOCATE verb parameters and the RCB corresponding to the resource specified
in the DEALLOCATE

OUTPUT: SEND_DATA to HS. Any log data supplied with the DEALLOCATE is logged.

NOTE: If no session has been allocated to this conversation Ci.e., the ALLOCATE that
allocated the conversation specified RETURN_CONTROL =
DELAYED_ALLOCATION_PERMITTEDJ, PS now requests a session from the resources
manager. If, while attempting to allocate a session, the local LU detects an
error, PS sets the RETURN_CODE parameter in the DEALLOCATE to reflect the type
of allocation error and returns control to the transaction program.

Referenced procedures, FSMs, and data structures:
SEND_DATA_TO_HS_PROC
SEND_DATA_BUFFER_MANAGEMENT
FSM_CONVERSATION
FSM_ERROR_OR_FAILURE
RCB
SEND_DATA_RECORD

Set SENSE_DATA based on the DEALLOCATE type as follows:
set to X'08640000' if ABEND PROG, to X'08640001' if ABEND_svc, or
to X'8640002'if ABEND_TIMER:

Set CONTINUE to true.

If state of FSM_CONVERSATION Cpage 5.1-59)
is SEND, PREP_TO_RCV_DEFER, or DEALL_DEFER
and RCB.PS_TO_HS_RECORD.SEND_PARM.DATA is not null then

Set RCB.PS_TO_Hs_RECORD.TYPE to FLUSH._
Call SEND_DATA_TO_HS_PROCCRCB) (page 5.1-48).
If state of FSM_ERROR_OR_FAILURE Cpage 5.1-61)

page 5.1-48
page 5.1-47
page 5.1-59
page 5.1-61
page A-7
page A-24

is ALLOCATE_FAILURE_RETRY, ALLOCATE_FAILURE_NO_RETRY, or SYNCLEVEL_NOT_SUPPORTED then
Set CONTINUE to false.

If CONTINUE then
If LOG_DATA parameter has been supplied then

Create FMH-7 with log data indicator and SENSE_DATA.
Set RCB.HS_TO_PS_RECORD.DATA to this FMH-7.
Create Error Log GOS variable and concatenate it to

RCB.PS_TO_HS_RECORD.DATA.
Log it in the system error log.

Else
Create FMH-7 with SENSE_DATA but no log data.
Set RCB.HS_TO_PS_RECORD.DATA to this FMH-7.

Call SEND_DATA_BUFFER_MANAGEMENTCnull data, RCB) Cpage 5.1-47).
Set RCB_PS_TO_HS record type to DEALLOCATE_FLUSH.
Call SEND_DATA_TO_HS_PROCCRCB) Cpage 5.1-48).

SNA Format and Protocol Reference Manual for LU Type 6.2

CONVERSATION_FAILURE_PROC

FUNCTION:

INPUT:

Processes CONVERSATION_FAILURE records.

A CONVERSATION_FAILURE record

CONVERSATION_FAILURE_PROC

OUTPUT: FSM_ERROR_OR_FAILURE is set to the appropriate state. PS remembers the con­
versation failure until that information can be relayed to the transaction
program.

Referenced procedures, FSMs, and data structures:
FSM_ERROR_OR_FAILURE
FSM_POST
CONVERSATION_FAILURE
RCB

Find the RCB for the CONVERSATION FAILURE record.
If CONVERSATION_FAILURE.REASON : PROTOCOL_VIOLATION then

Call FSM_ERROR_OR_FAILURE (page S.1-61) and
pass it a CONV_FAIL_PROTOCOL signal.

Else
Call FSM_ERROR_OR_FAILURE Cpage S.1-61)
and pass it a CONV_FAIL_SON signal.

If state of FSM_POST is PEND_POSTED then
Call FSM_POSTCPOST) (page S.1-62).

page S.1-61
page S.1-62
page A-32
page A-7

Chapter S.1. Presentation Services--Conversation Verbs S.1-29

DEALLOCATE~ABEND_PROC

DEALLOCATE_ABEND_PROC

5~1-30

FUNCTION: Invoked when the TYPE parameter of DEALLOCATE verb is ABEND_PROG, ABEND_SVC,
or ABEND_TIMER.

INPUT:

OUTPUT:

PS first receives any records from RM and HS. Appropriate action is taken
depending upon which, if any, record was received and upon the state of the
conversation. The state of the conversation and the information in the
HS_TO_PS_BUFFER_LIST determine whether or not a SEND_ERROR record is sent to
HS prior to sending the FMH-7 that is created as a result of the DEALLOCATE
<TYPE = ABEND_*). Receipt of certain types of information (e.g., notification
that the conversation has been deallocated by the partner transaction. program)
causes PS to return to the transaction program without taking any action.

DEALLOCATE verb parameters and the RCB corresponding to the resource specified
in the DEALLOCATE

Depending upon the state of the conversation and the information contained in
the HS_TO_PS_BUFFER_LIST, an FMH~7 (possibly preceded by a SEND_ERROR record>
is created and sent to HS, or no output is created. All elements are purged
from the HS_TO_PS_BUFFER_LIST before returning to the transaction program.

Referenced procedures, FSMs, and data structures:
PS
HS
PROCESS_RM_OR_HS_TO_PS_RECORDS
WAIT_FOR_SEND_ERROR_DONE_PROC
COMPLETE_DEALLOCATE_ABEND_PROC
FSM_CONVERSATION
FSM_ERROR_OR_FAILURE
RCB
SEND_ERROR

Call PROCESS_RM_OR_HS_TO_PS_RECORDSCRCB.RCB_ID, NO_SUSPEND1' (page 5.1-43).

If the state of FSM_ERROR_OR_FAILURE (page 5.1-61> is
ND_RQS or RCVD_ERROR then

Select based on the state of FSM_CONVERSATION (page 5.1-59):
When RCV

page 5.0-5
page 6.0-3
page 5.1-43
page 5.1-58
page 5.1-28
page 5.1-59
page, 5.1-61
page A-7
page A-24

If the first entry of RCB.HS_TO_PS_BUFFER_LIST is not DEALLOCATE_FLUSH then
Send SEND_ERROR record to HS.
Call WAIT_FOR_SEND_ERROR_DONE_PROCCDEALLOCATE parameters, RCB>

(page 5.1-58).
When RCVD_CONFIRM I RCVD_CONFIRM_SEND I RCVD_CONFIRM_DEALL

Send SEND ERROR record to HS.
Call COMPLETE_DEALLOCATE_ABEND_PROCCDEALLOCATE parameters, RCB>

(page 5.1-28).
When SEND I PREP_TO_RCV_DEFER I DEALL_DEFER

Call COMPLETE_DEALLOCATE_ABEND_PROCCDEALLOCATE parameters, RCB)
(page 5.1-28).

Purge all buffers in HS_TO_PS_BUFFER_LIST.
Set RETURN_CODE to OK.
Call FSM_CONVERSATIONCS, DEALLOCATE_ABEND> (page 5.1-59),

SNA Format and Protocol Reference Manual for LU Type 6.2

DEALLOCATE_CONFIRM_PROC

DEALLOCATE_CONFIRM_PROC

FUNCTION: Invoked when DEALLOCATE TYPE(SYNC_LEVEL> ;s ;ssued for a conversat;on whose
SYNC_LEVEL is CONFIRM.

PS f;rst retr;eves any records from HS. Appropr;ate action is taken depending
upon which, ;f any, record was received.

INPUT: DEALLOCATE verb parameters and the RCB corresponding to the resource specified
;n the DEALLOCATE

OUTPUT: See below.

NOTES: 1. If a CONVERSATION_FAILURE has been received from the resources manager, PS
returns to the transaction program after setting the RETURN_CODE parameter of
the DEALLOCATE to RESOURCE_FAILURE.

2. If the local LU has detected an error while attempting to allocate a session
to th;s conversation, but PS has not yet had the opportunity to relay that
information to the transaction program, ;t does so at this time by setting the
RETURN_COOE parameter of the DEALLOCATE to reflect the type of allocation
error.

3. If a RECEIVE_ERROR has been received from HS, PS sends a SEND_DATA_RECORD with
the TYPE field set to PREPARE_TO_RCV_FLUSH to HS. (Any data in the RCB send
buffer was purged when the RECEIVE_ERROR_RECORD was received.> PS then waits
for the expected FMH-7 error message to arrive. The RETURN_CODE parameter of
the DEALLOCATE is set based on the sense data carried in the FMH-7.

4. If no error or failure condition has occurred, PS sends a SEND_DATA_RECORD
with the TYPE field set to DEALLOCATE_CONFIRM to HS.

5. If no session has been allocated to this,.conversation (; .e., the ALLOCATE that
allocated the conversation specified RETURN_CONTROL =
DELAYED_ALLOCATION_PERMITTED), PS now requests a session from the resources
manager. If, while attempting to allocate a session, the local LU detects an
error, PS sets the RETURN_CODE parameter of the DEALLOCATE to reflect the type
of allocation error and returns control to the transaction program.

Referenced procedures, FSMs, and data structures:
PROCESS_RM_OR_HS_TO_PS_RECORDS
SEND_DATA_TO_HS_PROC
POST_AND_WAIT_PROC
DEQUEUE_FMH7_PROC
WAIT_FOR_CONFIRMED_PROC
DEALLOCATION_CLEANUP_PROC
FSM_CONVERSATION
FSM_ERROR_OR_FAILURE
RCB
SEND_DATA_RECORD

If data sent by TP is not at a logical record boundary then
Call DEALLOCATION_CLEANUP_PROC !page 5.0-141.

Else
Call FSM_CONVERSATIONCS, DEALLOCATE_CONFIRM, RCBl !page 5.1-59).

page 5.1-43
page 5.1-48
page 5.1-37
page 5.1-33
page 5.1-55
page 5.0-14
page 5.1-59
page 5.1-61
page A-7
page A-24

Call PROCESS_RM_OR_HS_TO_PS_RECORDS(RCB.RCB_ID, NO_SUSPEND> !page 5.1-43).

Select based on the state of FSM_ERROR_OR_FAILURE (see Note l>:
When CONV_FAILURE_PROTOCOL_ERROR

Set RETURN_CODE of DEALLOCATE to RESOURCE_FAILURE_NO_RETRY.
Call FSM_CONVERSATIONCR, RESOURCE_FAILURE_RC, RCBl !page S.1-59).

When CONV_FAILURE_SON
Set RETURN_CODE of DEALLOCATE to RESOURCE_FAILURE_RETRY.
Call FSM_CONVERSATIONCR, RESOURCE_FAILURE_RC, RCBl !page 5.1-59).

When ALLOCATE_FAILURE_RETRY, ALLOCATE_FAILURE_NO_RETRY, or
SYNCLEVEL_NOT_SUPPORTED !see Note 21

Set RETURN_CODE of DEALLOCATE to ALLOCATION_ERROR concatenated with
ALLOCATION_FAILURE_RETRY, ALLOCATION_FAILURE_NO_RETRY, or
SYNC_LEVEL_NOT_SUPPORTED_BY_LU, as appropriate.

Call FSM_CONVERSATIONCR, ALLOCATION_ERROR_RC, RCB> (page 5.1-59>.

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-31

DEAUOCATE_CONFIRM_PROC

5.1-32

When RCVD_ERROR lsee Note 3)
Set RCB.PS_TO_HS_RECORD type to PREPARE_TO_RCV_FLUSH.
Call SEND_DATA_TO_HS_PROC(RCBJ !page 5.1-48).
Call POST_AND_WAIT_PROC!RCB, LL, X'7FFF' J to post the resource

when the whole FNH7 is received (page 5.1-37).
Call DEQUEUE_FNH7_PROC(RECEIVE_AND_WAIT, RCBJ (page 5.1-33).

When NO_RQS Csee Note 4)
Set RCB.PS_TO_HS_RECORD type to PREPARE_TO_RCV_FLUSH.
Call SEND_DATA_TO_HS_PROCIRCBl Cpage 5.1-48).

If state of FSM_ERROR_OR_FAILURE is ALLOCATE_FAILURE_RETRY,
ALLOCATE FAILURE NO RETRY, or SYNCLEVEL NOT SUPPORTED then

Set RETURN_CODE of DEALLOCATE to ALLOCATION_ERROR concatenated with
ALLOCATION_FAILURE_RETRY, ALLOCATION_FAILURE_NO_RETRY, or
SYNC_LEVEL_NOT_SUPPORTED_BY_LU, as appropriate.

Call FSM_CotWERSATION!R, ALLOCATION_ERROR_RC, RCBJ (page 5.1-59).
Call WAIT_FOR_CONFIRNED_PROC!DEALLOCATE parameters, RCBJ !page 5.1-55).

DEALLOCATE_FLUSH_PROC

FUNCTION: Invoked when a DEALLOCATE is received that specifies TYPE = FLUSH, or TYPE =
SYNC_LEVEL and the SYNC_LEVEL of the conversation is NONE.

After checking that the data for the conversation
boundary, the procedure accepts any records from
action is taken, depending upon which, if any,
reflected by the state of FSH_ERROR_OR_FAILUREJ.

is on a logical record
RH and HS. Appropriate
record was received las

INPUT: DEALLOCATE verb parameters and the RCB corresponding to the resource specified
in the DEALLOCATE

OUTPUT: See below.

NOTES: 1. If a RECEIVE ERROR was received from HS, or no error records have been
received, PS ;ends any data remaining in the RCB send buffer to HS with the
TYPE field of the SEND_DATA_RECORD set to DEALLOCATE_FLUSH. !If a
RECEIVE_ERROR was received, any data in PS's buffer has already been purged.>

2. If CONVERSATION FAILURE record has been received from RH, or if an allocation
error has been detected by the local LU, no further records are sent to HS.

Referenced procedures, FSMs, and data structures:
PROCESS_RH_OR_HS_TO_PS_RECORDS
SEND_DATA_TO_HS_PROC
DEALLOCATION_CLEANUP_PROC
FSH_CONVERSATION
FSM_ERROR_OR_FAILURE
RCB
SEND_DATA_RECORD
RECEIVE_ERROR

If the data sent by TP is not at a logical record boundary then
Call DEALLOCATION_CLEANUP _PROC !page 5.0-14 l.

Else

page
page
page
page
page
page
page
page

Call PROCESS_RM_OR_HS_TO_PS_RECORDSCRCB.RCB_ID, NO_SUSPENDJ (page 5.1-43).
If state of FSM_ERROR_OR_FAILURE is RCVD_ERROR or NO_RQS (see Note lJ then

Set RCB.PS_TO_HS record type to DEALLOCATE_FLUSH.
Call SEND_DATA_TO_HS_PROCCRCBl !page 5.1-48!.

Else (see Note 2)
Do nothing.

Set RETURN CODE of DEALLOCATE to OK.
Call FSM_CONVERSATION!S, DEALLOCATE_FLUSH, RCBJ Cpage 5.1-59>.

SHA Format and Protocol Reference Manual for LU Type 6.2

5.1-43
5.1-48
5.0-14
5.1-59
5.1-61
A-7
A-24
A-12

DEQUEUE_FMH7_PROC

DEQUEUE_FMH7_PROC

FUNCTION: Invoked upon receipt of a RECEIVE_ERROR from HS. The next element expected in
the HS_TO_PS_BUFFER_LIST is an FHH-7 buffer element. If the next element in
the buffer is an FMH-71 it is removed from the buffer and processed !the
RETURN_CODE parameter of the passed verb parameters is set based upon the
sense data carried in the FHH-7 buffer element!. If the next element is not
an FMH-7 buffer element, the partner LU has violated the protocol and, as an
implementation-dependent option, the session over which the protocol violation
occurred is deactivated.

INPUT: The transaction program verb parameters currently being processed and the RCB
corresponding to the resource specified in parameters of the verb

OUTPUT: The RETURN_CODE parameter is set to reflect the sense data carried in the
FHH-7 buffer element.

Referenced procedures, FSHs, and data structures:
PROCESS_FMH7_PROC
PS_PROTOCOL_ERROR
FSH_POST
RCB
BUFFER_ELEHENT

Call FSM_POSTCRECEIVE_IHMEDIATEJ !page 5.1-62!.
If first entry in RCB.HS_TO_PS_BUFFER_LIST is FHH-7 then

Remove the first entry of RCB.HS_TO_PS_BUFFER_LIST.
Call PROCESS_FHH7_PROCCRCB, BUFFER_ELEHENT.DATA, TP verb parameters)

(page 5.1-42).
Set RCB.RECEIVE_ll_REMAINDER to o.

Else las an implementation-dependent option)
Call PS_PROTOCOL_ERROR with X'l008201D' for Request Error,

FHH-7, and Associated Data Mismatch (page 5.0-161.

page 5.1-42
page 5.0-16
page 5.1-62
page A-7
page A-8

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-33

GET_END_CHAIN_FROH_HS

GET_END_CHAIN_FROH_HS

5.1-34

FUNCTION: Invoked after PS sends a SEND_ERROR record to HS (as a result of a SEND_ERROR
or DEALLOCATE (TYPE = ABEND_PROG, ABEND_SVC, ABEND_TIMER) issued for the con­
versation while it is in the receive state). This procedure Naits for a
RECEIVE DATA whose TYPE field indicates EC to arrive from HS. TYPE values
that indicate EC are CONFIRM, PREPARE_TO_RCV_CONFIRM, PREPARE_TO_RCV_FLUSH,
DEALLOCATE_CONFIRM, and DEALLOCATE_FLUSH.

INPUT: The RCB corresponding to the conversation for Nhich the EC is desired

OUTPUT: See beloN.

NOTES: 1. If a REQUEST_TO_SEND record is received, PS stores that information in the RCB
to be relayed to the transaction program at a later time, and continues to
wait for the EC.

2. If a RECEIVE_ERROR record is received, no action is taken. PS continues to
wait for the EC to arrive. This situation occurs if, immediately prior to
issuing the SEND_ERROR or DEALLOCATE (TYPE = ABEND_*)• the transaction program
issued a PREPARE TO RECEIVE CTYPE = FLUSH) or PREPARE TO RECEIVE (TYPE =
SYNC_LEVEL> and the-SYNC_LEVEL of the conversation is NONE,-and the partner
transaction program (Nhile still in RECEIVE state) issues a SEND_ERROR or
DEALLOCATE (TYPE = ABEND_•>.

3. When PS sends SEND_ERROR to HS, it begins to purge any data it receives from
HS until a record indicating EC is received.

Referenced procedures, FSMs, and data structures:
RECEIVE_RM_OR_HS_TO_PS_RECORD
CONVERSATION_FAILURE_PROC
RCB
BUFFER_ELEMENT
RECEIVE_DATA

If the type of BUFFER_ELEMENT in the RCB.HS_TO_PS_BUFFER LIST is
CONFIRM, PREPARE_TO_RCV_CONFIRM, PREPARE_TO_RCV_FLUSH,
DEALLOCATE_CONFIRM, or DEALLOCATE_FLUSH then

Set EC_HAS_ARRIVED to true.
Else

Set EC_HAS_ARRIVED to false.

Set NOT_CONVERSATION_FAILURE to true.
Do Nhile EC_HAS_ARRIVED not true and NOT_CONVERSATION_FAILURE is true:

Call RECEIVE_RM_OR_HS_TO_PS_RECORD(RCB.RCB_IS, SUSPEND) to receive
record (page 5.1-471 to receive RECORD.

If RECORD arrived from RM then
Call CONVERSATION_FAILURE_PROC with RECORD Cpage 5.1-291.
Set NOT_CONVERSATION_FAILURE to false.

If RECORD arrived from HS then
Select based on the RECORD type received:

When REQUEST_TO_SEND (see Note 1)
Set RCB.RQ_TO_SEND_RCVD to YES.

When RECEIVE ERROR (see Note 2)
Do nothing.

When RECEIVE_DATA (see Note 3)

page 5.1-47
page 5.1-29
page A-7
page A-8
page A-12

If RECEIVE_DATA type is CONFIRM, PREPARE_TO_RCV_CONFIRM,
PREPARE_TO_RCV_FLUSH, DEALLOCATE_CONFIRM, or DEALLOCATE_FLUSH then

Enqueue RECORD to RCB.HS_TO_PS_BUFFER_LIST.
Set EC_HAS_ARRIVED to false.

SNA Format,and Protocol Reference Manual for LU Type 6.2

OBTAIN_SESSION_PROC

OBTAIN_SESSION_PROC

FUNCTION: Handles the acquisition of a session for use by a conversation resource.

INPUT:

OUTPUT:

This procedure sends a GET_SESSION record to the resources manager and waits
for a SESSION_ALLOCATED reply.

PS can instruct RM to send the RCB send buffer containing the FMH-5 CAttach)
for this conversation to HS when both of the following conditions hold:

• The transaction program has issued DEALLOCATE, PREPARE_TO_RECEIVE, and/or
CONFIRM.

• No data has as yet been sent to HS Ci.e., the data sent by the transaction
program to PS has not been of sufficient quantity to cause PS's send buff­
er to overflow).

This situation can occur only if the ALLOCATE that caused this conversation to
be initiated specified RETURN_CONTROL = DELAYED_ALLOCATION_PERMITTED.

If the allocation of a session fails, the reason is saved in
FSM_ERROR_OR_FAILURE. PS informs the transaction program at the earliest
opportunity of the failure with an allocation error return code of the appro­
priate kind.

The RCB corresponding to the conversation that is to use the obtained session,
and an ATTACH/NO_ATTACH indicator !specifying whether RM is to send the send
buffer containing the Attach to HS as it acquires the session) are passed as
parameters to this procedure. SESSION_ALLOCATED is received from RM.

GET_SESSION is sent to RM

Referenced procedures, FSMs, and data structures:
WAIT_FOR_RM_REPLY
FSM_ERROR_OR_FAILURE
RCB
GET_SESSION
SESSION_ALLOCATED

Copy TCB_ID and RCB_ID from RCB into GET_SESSION record.

page 5.1-56
page 5.1-61
page A-7
page A-26
page A-33

Set GET_SESSION.BID_INDICATOR to ATTACH or NO_ATTACH to agree with the input indicator.
Send GET_SESSION request to RM.
Call WAIT_FOR_RM_REPLY Cpage 5.1-561 to receive SESSION_ALLOCATED.
Select based on SESSION ALLOCATED.RETURN CODE:

When OK - -
Do nothing.

When UNSUCCESSFUL_NO_RETRY
Call FSM_ERROR_OR_FAILURE Cpage 5.1-611

and pass it an ALLOCATE_FAIL_NO_RETRY signal.
When SYNC_LEVEL_NOT_SUPPORTED

Call FSM_ERROR_OR_FAILURE (page 5.1-61)
and pass it a SYNCLEVEL_NOT_SUPPTD signal.

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-35

PERFORM_RECEIVE_PROCESSIHG

PERFORM_RECEIVE_PROCESSING

5.1-36

FUNCTION: Checks the appropriate HS_TO_PS_BUFFER_LIST receive buffer to see if any
information has arrived for the conversation specified in the passed RECEIVE
verb parameters and, if so, updates the verb parameters to reflect that infor­
mation. Examples of the type of information that can be received include a
request for confirmation, notification that the partner transaction program
has deallocated the conversation, and conversation data.

INPUT:

OUTPUT:

If no information has been received for the specified conversation, the
RETURN_CODE parameter is set to UNSUCCESSFUL and control is returned to the
calling procedure.

The entry in the RCB_LIST corresponding to the resource specified in the verb
parameters, and RECEIVE verb parameters

Various parameters are updated, depending on the type of information contained
in the receive buffer. The information is removed from the
HS_TO_PS_BUFFER_LIST after being placed in RECEIVE_VERB.

NOTES: 1. PS performs an optional receive check to determine if the partner LU has vio­
lated PS protocols by allowing the partner transaction program to invalidly
truncate the logical record the program was in the process of sending <i.e.,
the partner transaction program issued a verb, such as CONFIRM, before com­
pleting the current logical record>. Only an FNH-7 can validly be received
before the current logical record is completed, in which case the FMH-7 con­
tains sense data indicating data truncation.

2. PS performs an optional receive check to determine if the partner LU has vio­
lated the protocols by allowing the partner transaction program to issue a
request for confirmation on a conversation whose SYNC_LEVEL is NONE.

3. Logical record processing begins anew following receipt of an FMH-7.

Referenced procedures, FSNs, and data structures:
PS_PROTOCOL_ERROR
PROCESS_FNH7_PROC
PROCESS_DATA_PROC
FSM_CONVERSATION
FSM_ERROR_OR_FAILURE
FSM_POST
RCB
BUFFER_ELENENT

Call FSM POSTCRECEIVE IMMEDIATE) !page 5.1-61),
to reset posting, if-activated.

If RCB.HS_TO_PS_BUFFER_LIST is not empty then
Set BUFFER_ELEMENT to first entry of the list.

If partner sent CONFIRM, DEALLOCATE_CONFIRM, DEALLOCATE_FLUSH,
PREPARE_TO_RCV_CONFIRM, or PREPARE_TO_RCV_FLUSH
before completing sending of the logical record, or
partner sent CONFIRM, PREPARE_TO_RCV_CONFIRN, or DEALLOCATE on a

page 5.0-16
page 5.1-42
page 5.1-40
page 5.1-59
page 5.1-61
page 5.1-62
page A-7
page A-8

conversation with SYNC_LEVEL = NONE then (as an implementation-dependent option)
Call PS_PROTOCOL_ERROR !page 5.0-16)
with X'10010000' for RU Data Error.

Else
Remove BUFFER_ELENENT from the list.

Select based on BUFFER ELEMENT type:
When CONFIRM -

Set RETURN_CODE parameter to OK.
Set WHAT_RECEIVED parameter CONFIRM.
Call FSM_CONVERSATION!R, CONFIRM_INDICATOR, RCB) (page 5.1-59).

When PREPARE_TO_RCV_CONFIRM
Set RETURN_CODE parameter to OK.
Set WHAT_RECEIVED parameter to CONFIRM_SEND.
Call FSM_CONVERSATIONCR, CONFIRM_SEND_INDICATOR, RCB) Cpage 5.1-59).

SHA Format and Protocol Reference Manual for LU Type 6.2

PERFORM_RECEIVE_PROCESSING

When PREPARE_TO_RCV_FLUSH
Set RETURN_CODE parameter to OK.
Set WHAT_RECEIVED parameter to SEND.
Call FSM_CONVERSATIONCR, SEND_INDICATOR, RCBI Cpage 5.1-591.

When DEALLOCATE_CONFIRM
Set RETURN_CODE parameter to OK.
Set WHAT_RECEIVED parameter to CONFIRM_DEALLOCATE.
Call FSM_CONVERSATIONCR, CONFIRM_DEALLOCATE_INDICATOR, RCBI (page 5.1-591.

When DEALLOCATE_FLUSH
Set RETURN_CODE parameter to DEALLOCATE_NORMAL.
Call FSM_CONVERSATIONCR, CONFIRM_DEALLOCATE_NORMAL_RC, RCBI Cpage 5.1-591.

When FMH7
Call PROCESS_FMH7_PROCCRCB, BUFFER_ELEMENT.DATA, RECEIVE verb parameters)

!page 5.1-421.
When DATA

Call PROCESS_DATA_PROCCRCB, BUFFER_ELEMENT.DATA, RECEIVE verb parameters)
(page 5.1-401.

If length of BUFFER_ELEMENT.DATA > 0 then
Insert BUFFER_ELEMENT at the beginning of the RCB.HS_TO_PS_BUFFER_LIST.

POST_AND_WAIT_PROC

FUNCTION: Establishes post conditions for a resource and waits for information to arrive
from HS to cause those post conditions to be satisfied.

INPUT: The RCB corresponding to the resource to be posted, a FILL indicator specify­
ing whether data is to be received independent of its lpgical record format
!FILL = BUFFER vers~s LLJ, and the length of the maximum amount of data that
is ~o bG received

OUTPUT: The post conditions are satisfied on return to the calling procedure.

Referenced procedures, FSMs, and data structures:
TEST_FOR_POST_SATISFIED
PROCESS_RM_OR_HS_TO_PS_RECORDS
FSM_POST
RCB

Call FSM_POSTCPOST_ON_RECEIPTI !page 5.1-621.
Set RCB.POST_CONDITIONS.FILL to supplied FILL parameter.
Set RCB.POST_CONDITIONS.MAX_LENGTH to the supplied LENGTH parameter.
Call TEST_FOR_POST_SATISFIEDCRCBI !page 5.1-541.

Do while state of FSM POST ~ POSTED:
Call PROCESS_RM_OR=HS_TO_PS_RECORDSCRCB.RCB_ID, SUSPEND> Cpage 5.1-431.

page 5.1-54
page 5.1-43
page 5.1-62
page A-7

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-37

PREPARE_TO_RECEIYE_CONFIRM_PROC

PREPARE_TO_RECEIYE_CONFIRM_PROC

5.1-38

FUNCTION: Continues the processing of • PREPARE_TO_RECEIVE Nhen TYPE = SYNC_LEYEL •nd
the SYNC_LEVEL of t.he conversation is CONFIRM.

INPUT:

OUTPUT:

PREPARE_TO_RECEIVE verb p•rameters and the RCB corresponding to the resource
specified in the PREPARE_TO_RECEIYE

See below.

NOTES: 1. If a CONVERSATION_FAILURE has been received from the resources Manager, PS
returns to the transaction program after setting the RETURN_CODE p;arameter of
the PREPARE_TO_RECEIVE verb to RESOURCE_FAILURE.

2. If a RECEIYE_ERROR has been received from HS, PS sends • SEND_DATA_RECORD with
the TYPE field set to PREPARE_TO_RCV_FLUSH to HS. (Any data in the RCB send
buffer was purged Nhen the RECEIVE_ERROR record was received.) PS then waits
for the expected FMH-7 error message to arrive. The RETURN_CODE parameter of
the PREPARE_TO_RECEIVE verb is set based on the sense data carried in the
FMH-7.

3. If no error or failure condition has occurred, PS sends • SEND_DATA record
with the TYPE field set to PREPARE_TO_RCV_CONFIRM to HS and waits for a CON­
FIRMED reply.

4. If no session has been allocated to this conversation (i.e., the ALLOC.ATE that
allocated the conversation specified RETURN_CONTROL =
DELAYED_ALLOCATION_PERMITTEOJ, PS now requests a session from the resources
manager. If, while attempting to allocate a session, the local LU detects an
error, PS sets the RETURN_CODE field in the PREPARE_TO_RECEIVE to reflect the
type of allocation error and returns control to the transaction program.

5. If the local LU has detected an error while attempting to allocate a session
to this conversation, but PS has not yet had the opportunity to relay that
information to the transaction program, it does so at this time by setting the
RETURN_CODE parameter of the PREPARE_TO_RECEIVE to reflect the type of allo­
cation error.

Referenced procedures, FSMs, and data structures:
PROCESS_RM_OR_HS_TO_PS_RECORDS
SEND_DATA_TO_HS_PROC
POST_AND_HAIT_PROC
DEQUEUE_FMH7_PROC
HAIT_FOR_CONFIRMED_PROC
FSM_CONVERSATION
FSM_ERROR_OR_FAILURE
RCB
SEND_DATA_RECORD
RECEIVE_ ERROR

Call FSM_CONVERSATION(S, PREPARE_TO_RECEIVE_CONFIRM, RCBJ (page 5.1-59).
Call PROCESS_RM_OR_HS_TO_PS_RECORDS<RCB.RCB_ID, NO_SUSPENDJ (page 5.1-43).

Select based on state of FSM_ERROR_OR_FAILURE (page 5.1-61):
When CONV_FAILURE_PROTOCOL_ERROR (see Note 1)

Set RETURN_CODE of PREPARE_TO_RECEIVE to RESOURCE_FAILURE_NO_RETRY.
Call FSM_CONVERSATION(R, RESOURCE_FAILURE_Rc, RCB) (page 5.1-59).

When CONV_FAILURE_SON (see Note ll
Set RETURN_CODE of PREPARE_TO_RECEIVE to RESOURCE_FAILURE_RETRY.
Call FSM_CONVERSATION(R, RESOURCE_FAILURE_Rc, RCB) (page 5.1-59).

When RCVD_ERROR (see Note 2)
Set PS_TO_HS_RECORD.TYPE to PREPARE_TO_RCY_FLUSH.
Call SEND_DATA_TO_HS_PROC(RCB) (page 5.1-48).
Call POST_AND_HAIT_PROC(RCB, LL, X'7FFF') to receive the whole

FMH7 (page 5.1-37).

page 5.1-43
page 5.1-48
page 5.1-37
page 5.1-33
page 5.1-55
page 5.1-59
page 5.1-61
page A-7
page A-24
page A-12

Call DEQUEUE_FMH7_PROC(PREPARE_TO_RECEIYE parameters, RCB) (page 5.1-33).

SHA Format. and Protocol Reference Manual for LU Type 6. 2

PREPARE_TO_RECEIVE_CONFIRM_PROC

When NO_RQS (see Note 3):
If LOCKS supplied parameter is SHORT then

Set RCB.PS_TO_HS.TYPE to PREPARE_TO_RCV_CONFIRM_SHORT.

Else
Set RCB.PS_TO_HS.TYPE to PREPARE_TO_RCV_CONFIRM_LONG.

Call SENO_OATA_TO_HS_PROC<RCB> (page 5.1-48).
If state of FSM_ERROR_OR_FAILURE (page 5.1-61> is

ALLOCATE_FAILURE_RETRY I ALLOCATE_FAILURE_NO_RETRY I SYNCLEVEL_NOT_SUPPORTED
(see Note 4l then
Set RETURN CODE of PREPARE TO RECEIVE to ALLOCATION ERROR concatenated

with ALLOCATION_FAILURE_RETRY, ALLOCATION_FAILURE_NO_RETRY,
or with SYNC_LEVEL_NOT_SUPPORTED_BY_LU, as appropriate. .

Call FSM_CONVERSATIONCR, ALLOCATION_ERROR_RC, RCBl (page 5.1-59).

Else
Call WAIT_FOR_CONFIRMED_PROC<PREPARE_TO_RECEIVE parameters, RCB> (page 5.1-55).

When ALLOCATE_FAILURE_RETRY I ALLOCATE_FAILURE_NO_RETRY I SYNCLEVEL_NOT_SUPPORTED
Set RETURN_CODE of PREPARE_TO_RECEIVE to ALLOCATION_ERROR concatenated

with ALLOCATION_FAILURE_RETRY, ALLOCATION_FAILURE_NO_RETRY,
or with SYNC_LEVEL_NOT_SUPPORTED_BY_LU, as appropriate.

Call FSM_CONVERSATION(R, ALLOCATION_ERROR_RC, RCBJ (page 5.1-59).

PREPARE_TO_RECEIVE_FLUSH_PROC

FUNCTION: Continues the processing of a PREPARE_TO_RECEIVE when TYPE = FLUSH, or TYPE =
SYNC_LEVEL and the SYNC_LEVEL of the conversation is NONE.

INPUT: PREPARE_TO_RECEIVE verb parameters and the RCB corresponding to the resource
specified in the PREPARE_TO_RECEIVE

OUTPUT: The RETURN_CODE is set to OK. See below for additional output.

NOTES: 1. If a RECEIVE_ERROR record has been received from HS, or no error records have
been received, PS sends any data remaining in the RCB send buffer to HS with
the TYPE indicator set to PREPARE_TO_RCV_FLUSH. !If a RECEIVE_ERROR was
received, any data in PS's send buffer has already been purged.)

2. If a locally detected allocation error Ci.e., an allocation error detected by
the local LUJ or a conversation failure has occurred, no action is taken. PS
reports the error to the transaction program at a later time.

Referenced procedures, FSMs, and data structures:
PROCESS_RM_OR_HS_TO_PS_RECORDS
SENO_DATA_TO_HS_PROC
FSM_CONVERSATION
FSM_ERROR_OR_FAILURE
RCB
RECEIVE_ ERROR
PS_ TO_HS_RECORD

Call PROCESS_RM_OR_HS_TO_PS_RECORDS<RCB.RCB_ID, NO_SUSPEND) (page 5.1-43).

page 5.1-43
page 5.1-48
page 5.1-59
page 5.1-61
page A-7
page A-12
page A-24

If the state of FSM_ERROR_OR_FAILURE !page 5.1-61) is RCVD_ERROR or NO_RQS then
Set RCB.PS_TO_HS_RECORD.TYPE to PREPARE_TO_RECEIVE_FLUSH.
Call SEND_DATA_TO_HS_PROC with RCB (page 5.1-48!

Set RETURN_CODE of PREPARE_TO_RECEIVE to OK.
Call FSM_CONVERSATION(S, PREPARE_TO_RECEIVE_FLUSH, RCBJ (page 5.1-59).

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-39

PROCESS_DATA_PROC

PROCESS_DATA_PROC

s.1 .. 40

FUNCTION: Handles the processing of a DATA buffer element from the HS~TO_PS_BUFFER_LIST.

INPUT:

OUTPUT:

The procedure first checks to see if the data at the beginning of the buffer
is a PS header or a logical record having an invalid LL value, in order to
take appropriate action.

If the data at the beginning of the buffer is not a PS header or an invalid
LL, further processing of the DATA buffer element occurs, as described below.

The RCB corresponding to the resource specified in the passed RECEIVE verb
parameters, the DATA buffer element from the HS_TO_PS_BUFFER_LIST, and RECEIVE
verb parameters.

The RETURN_CODE and WHAT_RECEIVED parameters of the RECEIVE verb are updated.

NOTES: 1. If the data in the passed BUFFER_DATA begins on a logical record boundary
Ci.e., the last data passed to the transaction program was a complete conver ..
sation record or the last remaining portion of a logical record, or no data
has been passed to the transaction program since it last entered the receive
state) and both bytes of the next logical record's LL field are present in
BUFFER_DATA, data is moved from the BUFFER_DATA parameter to the DATA parame­
ter of the passed RECEIVE verb.

2. If the data in the passed BUFFER_DATA begins on a logical record boundary, but
only the first byte of the next 2-byte LL field is present in BUFFER_DATA,
this procedure checks to see if any other information has been received fol­
lowing the first byte of the LL. If the LL has been truncated by receipt of
an FMH-7, the LL byte is placed in the DATA parameter of the passed RECEIVE
verb and control is returned to the transaction program. (The FMH-7 is proc­
essed when the transaction program issues another record.) If the LL has been
truncated invalidly by receipt of information other than an FMH-7, the partner
LU has committed a protocol violation and the session over which the conversa­
tion is occurring is deactivated. If no information follows the first byte of
the LL, it is saved in the buffer and control is returned to the transaction
program. !The first byte of the LL is not passed to the transaction program.
Until the second byte of the 2-byte LL field arrives, PS does not know if the
LL is associated with a logical record or with a PS header.I

3. If the data in the passed BUFFER_DATA does not begin on a conversation record
boundary Ci.e., part, but not all, of a logical record has already been passed
to the transaction program), data is moved from the BUFFER_DATA to the DATA
parameter of the passed RECEIVE verb.

Referenced procedures, FSMs, and data structures:
PS_SPS
PS_PROTOCOL_ERROR
RECEIVE_DATA_PROCESSING
RCB

Select based on the following conditions:
When BUFFER_DATA is the beginning of a logical

record and is a PS header
If RCS.SYNC LEVEL = SYNCPT then

Call PS_SPS !page 5.3-201.
Else (as an implementation-dependent option)

Call PS_PROTOCOL_ERROR Cpage.5.0-161
with X'lOOlOOOO' for RU Data Error

When BUFFER_DATA is the beginning of a logical record and
has an invalid LL (as an implementation-dependent option)

Call PS_PROTOCOL_ERROR !page 5.0-161
with X'lOOlOOOO' for RU Data Error.

Otherwise
Select based on the following conditions:

When BUFFER_DATA is the beginning of a logical
record and its length is greater than 1

page 5.3-20
page 5.0-16
page 5.1-46
page A-7

Call RECEIVE_DATA_PROCESSING CRCB, BUFFER_DATA, RECEIVE verb parameters)
(page 5.1-46 l.

SNA Format and Protocol Reference Manual for LU Type 6.2

PROCESS_DATA_PROC

When BUFFER_DATA ;s the beginn;ng of a log;cal record and
its length ;s 1 c;.e., LL field possibly split at buffer boundaries):

If HS_TO_PS_BUFFER_LIST is not empty then
If buffer in the HS_TO_PS_BUFFER_LIST is of FMH-7 type then

Set RETURN CODE of the RECEIVE verb to OK.
If RCB.POST CONDITIONS.MAX LENGTH > 0 then

Set DATA-of RECEIVE verb to BUFFER DATA.
Set BUFFER DATA to null value. -
Set LENGTH-of RECEIVE verb to 1.

If RCB.POST CONDITIONS.FILL = BUFFER then
Set WHAT=RECEIVED of receive verb to DATA.

Else
Set WHAT_RECEIVED of RECEIVE verb to DATA_INCOMPLETE.

Else (optional installation check>
Call PS_PROTOCOL_ERROR (page 5.0-16)

with X'l0010000' for RU Data Error.
Else Ci.e., buffer l;st is empty>

Set RETURN CODE of RECEIVE verb to UNSUCCESSFUL.
When BUFFER_DATA-is the continuation of a logical record partially
already received:

Call RECEIVE_DATA_PROCESSINGIRCB.BUFFER_DATA, RECEIVE verb parameters)
!page 5.1-46 l.

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-41

PROCESS_FMH7_PROC

PROCESS_FMH7_PROC

5.1-42

FUNCTION: Invoked upon encountering a~ FMH-7 buffer element in the HS_TO_PS_BUFFER_LIST.

The RETURN_CODE parameter of the passed transaction program verb is set .based
Upon the sense data carried in the FMH-7. If the FMH-7 indicates that log
data follows, this procedure simulates a RECEIVE_AND_WAIT verb and causes
receive processing to take place. The RECEIVE_ANO_WAIT processing waits for a
logical record, which consists of the log data, to arrive from HS. If the
sense data carried in the FMH-7 indicates a type of DEALLOCATE_ABEND_* this
procedure retrieves the deallocation notification from the receive buffer
before returning to the transaction program.

INPUT: The RCB corresponding to the resource to which the FMH-7 applies, the received
FMH-7, and the transaction program verb currently being processed

OUTPUT: The RETURN_CODE parameter of the verb is set, based upon the sense data car­
ried in the passed FMH-7; if log data follows the FMH-7, PS retrieves the log­
ical record containing the Error Log GDS variable and places it (minus the LL
and GDS ID fields I in the system error log of the local LU.

NOTE: This error occurs when the FMH-7 specifies that log data follows, but no log
data is present.

Referenced procedures, FSMs, and data structures:
PS_PROTOCOL_ERROR
POST_AND_WAIT_PROC
PERFORM_RECEIVE_PROCESSING
SET_FMH7_RC
FSM_CONVERSATION
RCB

As an implementation-dependent option perform receive check of the FMH-7.
If error found then

Call PS_PROTOCOL_ERROR (page 5.0-161
with X'l0086000' !Request Error--FMH Length Incorrect) or with
X'l008200E' (Request Error--Invalid Concatenation Bitl.

Set RCB.RECEIVE_LL_REMAINDER to O.
If Error Log GOS variable follows then

Call POST_AND_WAIT_PROCIRCB, LL, X'7FFF'I (page 5.1-371
to get the whole GOS variable.

Create and initialize RECEIVE_AND_WAIT verb parameters. Set the
RESOURCE parameter to RCB.RCB_IO, FILL to· LL, and LENGTH to X'7FFF'.

page 5.0-16
page 5.1-37
page 5.1-36
page 5.1-53
page 5.1-59
page A-7

Call PERFORM_RECEIVE_PROCESSINGCRCB, RECEIVE_AND_WAIT parameters) (page 5.1-361.
If RETURN_CODE of RECEIVE_AND_WAIT is OK and WHAT_RECEIVED
is DATA COMPLETE then

Insert error data into system error log.
Else (as an implementation-dependent option)

Call PS_PROTOCOL_ERROR !page 5.0-161
with X'l008201D' (log data is expected but absent I.

If sense data is DEALLOCATE ABEND then
Call PROCESS_RM_OR_HS_To:ps_RECORDS (page 5.1-43)

with RCB_ID and SUSPEND, and remove DEALLOCATE buffer from· RCB.HS_TO_PS_BUFFER_LIST.
If no DEALLOCATE_FLUSH or DEALLOCATE_CONFIRM is found then·

Call PS_PROTOCOL_ERROR !page 5.0-161· with X'l008201D'.
If the state of FSM_CONVERSATION !page 5.1-591 = SEND then

Set RCB.SEND LL REMAINDER to 0.
Set RCB.SEND-LL-BYTE of RCB to NOT PRESENT.

Call SET_FMH7_RCIRCB, FMH-7, transaction program verb parameters) (page 5.1-531.
DECLARE TEMP _DATA CHARACTER! MAX_INTEGER I VARYING;

SNA Format and Protocol Reference Manual for LU Type 6.2

PROCESS_RH_OR_HS_TO_PS_RECORDS

PROCESS_RH_OR_HS_TO_PS_RECORDS

FUNCTION: Processes records received from RH and HS for the conversation identified by
RCB_ID. If posting has been activated for the conversation, the
TEST_FOR_POST_SATISFIED procedure is called to determine whether the post con­
ditions have been satisfied by the newly received information.

INPUT: RCB_ID, the ID of the conversation and SUSPEND_FLAG. If SUSPEND_FLAG = SUS­
PEND, this procedure waits for at least one record to be received from RH or
HS.

OUTPUT: The RCB associated with each received record is updated to record the receipt
of the record.

NOTES: 1. The only records that PS can receive from RH here are CONVERSATION_FAILURE
records.

2. RECEIVE_DATA is enqueued in the appropriate RCB.HS_TO_PS_BUFFER_LIST. For
other HS TO PS RECORDs, an indication that the record was received is stored
in the appropriate RCB.

Referenced procedures, FSHs, and data structures:
PS
HS
RM
RECEIVE_RH_OR_HS_TO_PS_RECORD
CONVERSATION_FAILURE_PROC
PS_PROTOCOL_ERROR
TEST_FOR_POST_SATISFIED
FSH_CONVERSATION
FSH_ERROR_OR_FAILURE
FSH_POST
RCB
RH_TO_PS_RECORD
HS_TO_PS_RECORD

Call RECEIVE_RH_OR_HS_TO_PS_RECORDCRCB_ID, SUSPEND_FLAGl (page 5.1-47)
to receive RECORD.

Do while RECORD is not null:

Select based on the origin of the record:
When origin is RM

Call CONVERSATION_FAILURE_PROC Cpage 5.1-29)
with RECORD.

When origin is HS

Select based on RECORD type:
When REQUEST_TO_SEND

Record that a request to send was received
on this conversation.

When RECEIVED_ERROR

page 5.0-5
page 6.0-3
page 3-17
page 5.1-47
page 5.1-29
page 5.0-16
page 5.1-54
page 5.1-59
page 5.1-61
page 5.1-62
page A-7
page A-31
page A-12

Call FSM_ERROR_OR_FAILURECRECEIVE_ERROR, RCB) (page 5.1-61).
When RECEIVE_DATA

If state of FSM CONVERSATION is RCV or
state of FSM_ERROR_OR_FAILURE (page 5.1-61) is RCVD_ERROR then

Insert the record into RCB.HS_TO_PS_LIST.

Else (as an implementation-dependent option)
Call PS_PROTOCOL_ERROR !page 5.0-16)
with X'20040000' for State Error--Direction.

Call RECEIVE_RM_OR_HS_TO_PS_RECORDCRCB_ID, SUSPEND_FLAG) Cpage 5.1-47)
and receive RECORD.

If state of FSM_POST !page 5.1-62) is PEND_POSTED then
Call TEST_FOR_POST_SATISFIEDCRCB) (page 5.1-54).

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-43

RCB_ALLOCATED_PROC

RCB_ALLOCATED_PROC

5.1-44

FUNCTION: Performs further processing of an ALLOCATE request. It is invoked when PS
receives an RCB_ALLOCATED record from the resources manager.

INPUT:

OUTPUT:

The RETURN_CODE parameter of the ALLOCATE verb is set based upon the return
code field of the RCB ALLOCATED record. If the return code is OK, PS finishes
initializing the new -RCB (i.e., those fields not already initialized by RMl.
In addition, if the RETURN_CONTROL parameter of ALLOCATE is
WHEN_SESSION_ALLOCATED, PS requests that a session be obtained for this con­
versation.

If the return code in RCB_ALLOCATED is not OK, PS sets the RETURN_COOE parame­
ter of the ALLOCATE appropriately.

RCB_ALLOCATED record and ALLOCATE verb parameters

PS creates an FMH-5 Attach header and stores it in the send buffer in the RCB.

NOTES: 1. If RETURN CONTROL= IMMEDIATE, RM has allocated both an RCB and a session as a
result of rece1v1ng ALLOCATE_RCB from PS •. , If RETURN_CONTROL =
DELAYED_ALLOCATION_PERMITTEO, PS defers sending a session request to RM until
it has accumulated enough data Cvia SENO_DATAs from. the transaction program)
to fill its send buffer.

2. A return code of UNSUCCESSFUL in reply to an ALLOCATE (RETURN CONTROL = IMME­
DIATE) indicates that no first-speaker half-sessions are curre~tly available.

3. The resources manager returns to PS an ALLOCATE_FAILURE return code to a ses­
sion allocation request when no sessions having the specified (LU name, mode
name) pair are active and a condition (either temporary or permanent, as
reflected in the return code) exists such that no sessions can currently be
activated.

4. The resources manager returns to PS a SYNC LEVEL NOT SUPPORTED return code to
a session allocation request when a session ha;ing-the specified CLU name,
mode name) pair is active, but the synchronization level specified by the
transaction program on ALLOCATE is not supported by the partner LU.

Referenced procedures, FSMs, and data structures:
OBTAIN_SESSION_PROC
SEND_DATA_TO_HS_PROC
FSM_CONVERSATION
FSM_ERROR_OR_FAILURE
RCB_ALLOCATED
ATTACH_RECEIVED
RCB

SNA Format and Protocol Reference Manual for LU Type 6.2

page 5.1-35
page 5.1-48
page 5.1-59
page 5.1-61
page A-32
page A-32
page A-7

RCB_ALLOCATED_PROC

Select based on RCB_ALLOCATED.RETURN_CODE (see Notes 1, 2, and 3):
When OK

Set RETURN CODE of ALLOCATE verb to OK.
Call FSH_CONVERSATIONCS, ALLOCATE, RCB) Cpage 5.1-59).
Set RESOURCE parameter of ALLOCATE to RCB identifier.

Initialize allocated RCB: set RCB.PS_TO_HS_RECORD fields to
ALLOCATE, FHH, NOT_ENO_OF_DATA, and null data.
Set SEND_LL_REMAINDER to O, RECEIVE_LL_REHAINDER to O,
MAX_BUFFER_LENGTH to maximum buffer length allowed
(implementation dependent), RQ_TO_SEND_RCVD to NO,
LOCKS to SHORT, POST_CONDITIONS.FILL to LL,
POST CONDITIONS.MAX LENGTH to o, SEND LL BYTE to
NOT_PRESENT, CONVERSATION_TYPE to TYPE parameter value of ALLOCATE verb,
and SYNC_LEVEL to ALLOCATE.SYNC_LEVEL.

Build FMH-5 Attach header with data in ALLOCATE (see Appendix H>
and place it in the RCB.PS_TO_HS_RECORD.DATA.

If RETURN_CONTROL parameter is WHEN_SESSION_ALLOCATED
(see Note 1 for the other cases) then

Call OBTAIN_SESSION_PROCIRCB, NO_ATTACH) Cpage 5.1-35).

If state of FSM_ERROR_OR_FAILURE Cpage 5.1-61) is
IALLOCATE_FAILURE_RETRY f SYNCLEVEL_NOT_SUPPORTED f ALLOCATE_FAILURE_NO_RETRY) then

Set RETURN_CODE of ALLOCATE to ALLOCATION_ERROR concatenated with
ALLOCATION FAILURE RETRY, ALLOCATION FAILURE NO RETRY, or
SYNC_LEVEL=NOT_SUPPORTED_BY_LU, as appropriate.-

Call FSM_CONVERSATIONCR, ALLOCATION_ERROR_Rc, RCB) (page 5.1-59).

Else
If the FMH-5 is to be flushed las an implementation-dependent option) then

Set the RCB.PS_TO_HS_RECORD.TYPE to FLUSH.
Call SEND_DATA_TO_HS_PROC CRCB) Cpage 5.1-48).

When UNSUCCESSFUL
Set RETURN CODE of ALLOCATE to UNSUCCESSFUL.

When SYNC LEVEL NOT SUPPORTED
Call FSM_CONVERSATION(S, ALLOCATE, RCB) Cpage 5.1-59).
Initialize allocated RCB (for details see above).
Call FSM_CONVERSATIONIR. ALLOCATION_ERROR_Rc, RCB) (page 5.1-59).
Set RETURN_CODE to ALLOCATION_ERROR_SYNC_LEVEL_NOT_SUPPORTED_BY_LU (see Note 4).

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-45

RECEIVE_i>ATA_PROCESSINE;

RECEIVE_OATA_PROCESSING

5.1-46

FUNCTION: Moves data from the passed BUFFER_OATA parameter to the returned DATA parame­
ter of the passed RECEIVE verb.

If the transact;on program has spec;f;ed that it ;s to rece;ve data in terms
of the log;cal record format of the data (;.e., RC~.POST_CONDITIONS.FILL =
LL), data ;s moved from BUFFER_DATA to the DATA parameter of the passed
RECEIVE verb.

If the transacHon program has specH;ed that it ;s to rece;ve data independ­
ent of the log;cal record format of the data (;.e., RCB.POST_CONDITIONS.FILL =
BUFFER>, data ;s moved from BUFFER_DATA to the DATA parameter of the passed
rece;ve verb one or more times, depending upon the amount of data requested by
the transact;on program and the number of logical records ;n the buffer. For
example, if the transact;on program has requested 20 bytes of data and 25
bytes of data (compr;s;ng 3 log;cal records of lengths 7 bytes, 9 bytes, and 9
bytes, respectively> are in BUFFER_DATA, RECEIVE_DATA_BUFFER_MANAGEMENT is
;nvoked once to rece;ve the f;rst log;cal record (yielding 7 bytes of data in
the DATA field). It is ;nvoked a second time to rece;ve the second logical
record (yielding 16 bytes of data ;n the DATA f;eldl. And finally it is
;nvoked again to receive the first four bytes of the th;rd log;cal record
(yielding 20 bytes of data in the DATA f;eld, which is the amount the trans­
action program requested!.

INPUT: The entry in the RCB_LIST corresponding to the resource specified ;n
RECEIVE_ VERB, a data buffer element lDATA_BUFFER) from the
RCB.HS_TO_PS_BUFFER_LIST, and RECEIVE verb parameters

OUTPUT: The DATA_BUFFER, and WHAT_RECEIVED and DATA parameters of the passed RECEIVE
verb are updated.

NOTE: When FILL = LL is specified, the WHAT_RECEIVED parameter of the RECEIVE verb
;s set to DATA_COMPLETE when a complete logical record or the last remaining
portion of a logical record, ;s passed to the transaction program. Otherwise,
the WHAT_RECEIVED ;s set to DATA_INCOMPLETE when FILL = LL is spec;fied.

Referenced procedures, FSMs, and data structures:
RCB

Select based on RCB.POST_CONDITIONS.FILL:
When LL

If already received a complete logical record
Ci.e., RCB.POST_CONDITIONS.MAX_LENGTH = 0) then

Set WHAT_RECEIVED of receive verb to DATA_INCOMPLETE.
Else

Set DATA of receive verb to the first LEN bytes
CLEN is the smaller of RECEIVE_ll_REMAINDER and
RCB.POST_CONDITIONS.MAX_LENGTHl of the DATA_BUFFER and
subtract LEN from RECEIVE LL REMAINDER and
RCB.POST_CONDITIONS.MAX_LENGTH. Remove the first LEN bytes
from the DATA_BUFFER.

If RECEIVE_LL_REMAINDER = 0 then
Set WHAT RECEIVED of RECEIVE verb to DATA_COMPLETE.

Else -
Set WHAT_RECEIVED of RECEIVE verb to DATA_INCOMPLETE.

When BUFFER
Set WHAT_RECEIVED of RECEIVE verb to DATA.
Do while RCB.POST_CONDITIONS.MAX_LENGTH > 0 and
while the of length BUFFER_DATA > 0

If RECEIVE_LL_REMAINDER = 0 and length of BUFFER_DATA = 1 then
Set RCB.POST_CONDITIONS.MAX_LENGTH to 0.

Else
Set DATA of RECEIVE verb to DATA BUFFER as described above.

Set RETURN_CODE of RECEIVE verb to OK. -
Set LENGTH parameter of RECEIVE verb to length of DATA of RECEIVE verb.

SNA Format and Protocol Reference Manual for LU Type 6.2

page A-7

RECEIVE_RM_OR_HS_TO_PS_RECORD

RECEIVE_RM_OR_HS_TO_Ps_RECORD

FUNCTION: Returns a record sent by RM (or HS) to the conversat;on ;dent;f;ed by RCB_ID.

INPUT: RCB_ID (the ID of the conversat;on), and SUSPEND_FLAG

OUTPUT: A record rece; ved from RM or HS. TM s record may be null ;f no record ; s
ava;lable and SUSPEND_FLAG = NO_SUSPEND.

NOTE: CONVERSATION_FAILURE ;s the only poss;ble record that can arr;ve from RM.

Referenced procedures, FSMs, and data structures:
PS
HS
RM
CONVERSATION_FAILURE
HS_TO_PS_RECORD
RCB

If SUSPEND_FLAG = SUSPEND then
Wait until a record has arr;ved from RM or HS for
conversation RCB_ID.

Else (i.e., when SUSPEND_FLAG=NO_SUSPEND)
Get the record arrived from RM or HS

(Record may be null if no record has arrived yet.)
Return record.

SEND_DATA_BUFFER_MANAGEMENT

FUNCTION: Determines if there is enough data to be sent to HS.

page 5.0-5
page 6.0-3 '
page 3-17
page A-32
page A-12
page A-7

PS continues to send data to HS until the amount of data rema1n1ng to be sent
;s less than or equal to the maximum buffer size, ;n which case PS stores the
data in the RCB until more data is issued by the transaction program or the
buffer is flushed. If the data in the buffer ;s exactly equal to the maximum
buffer size, PS stores the data to be sent later.

INPUT: Data to be sent to HS and the RCB corresponding to the resource specified in
the current TRANSACTION_PGM_VERB

OUTPUT: If enough data has been accumulated ;n the RCB buffer, one or more
SEND_DATARECORDs are sent to HS. Otherwise, the data is stored in the RCB to
be sent at a later time.

Referenced procedures, FSMs, and data structures:
SEND_DATA_TO_HS_PROC
FSM_ERROR_OR_FAILURE
RCB

Set TEMP_BUFFER to RCB.PS_TO_HS_RECORD_DATA concatenated to DATA.
Set NO_ERROR_OR_FAILURE to true.
Do while length of TEMP_BUFFER > RCB.MAX_BUFFER_LENGTH
and NO ERROR OR FAILURE is true:

Set RCB.Ps:To:Hs_RECORD.DATA to first RCB.MAX_BUFFER_LENGTH bytes
of the TEMP_BUFFER, remove these bytes from TEMP_BUFFER.

Call SEND_DATA_TO_HS_PROC(RCB) (page 5.1-48).
If state of FSM_ERROR_OR_FAILURE (page 5.1-61)

page 5.1-48
page 5.1-61
page A-7

;s ALLOCATE_FAILURE_RETRY I ALLOCATE_FAILURE_NO_RETRY SYNCLEVEL_NOT_SUPPORTED then
Set NO_ERROR_OR_FAILURE to false.

Move TEMP_BUFFER into RCB.PS_TO_HS_RECORD.DATA.

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-47

SEND:.,;;DATA_TO_f:!S_PROC

5.1-48

SEND_DATA_TO_HS_PROC

FUNCTION: Handles the sending of data to HS to be sent to the partner transaction pro­
gram.

If no session has as yet been allocated to the conversation associated with
the passed RCB, PS now requests a session from the resources manager. If the
transaction program has stopped sending data and has issued DEALLOCATE• PRE­
PARE_TO_RECEIVE, and/or CONFIRM, PS requests RM to send the data, which con­
tains an Attach header, when RM allocates the session. Otherwise, PS sends
the data itself when RM has allocated a session.

INPUT: The RCB associated with the conversation

OUTPUT: SEND_DATA_RECORD to HS

Referenced procedures, FSMs, and data structures:
PS
HS
OBTAIN_SESSION_PROC
RCB
SEND_DATA_RECORD

If no session has been allocated to this conversation then
If RCB.PS_TO_HS_RECORD.TYPE = FLUSH I NOT_END_OF_DATA then

Call OBTAIN_SESSION_PROCCRCB, NO_ATTACH> Cpage 5.1-35).
Create a SEND_DATA_RECORD, copy RCB.PS_TO_HS_RECORD into it, and
send it to HS.

Else
Call OBTAIN_SESSION_PROCCRCB, ATTACH> Cpage 5.1-35).

Else (session previously allocated!
Create a SEND_DATA_RECORD, copy RCB.PS_TO_HS_RECORD into it, and
send it to HS.

Set RCB.PS_TO_HS_RECORD fields as follows:
ALLOCATE to NO, FMH to NO, TYPE to NOT_END_OF_DATA, and DATA to null.

SNA Format and Protocol Reference Manual for LU Type 6.2

page 5.0-5
page 6.0-3
page 5.1-35
page A-7
page A-2't

SEND_ERROR_DONE_PROC

SEND_ERROR_DONE_PROC

FUNCTION: Th;s procedure performs further processing of the SEND_ERROR verb.

It creates an FMH-7 record, and selects the sense data to be ;nserted ;n the
FMH-7 based upon the type of SEND_ERROR, the state of the conversation, and
whether the outgo;ng logical record is complete. If the transact;on program
;s in send state and has completed the current log;cal record, sense data
indicating that no truncation of data has taken place is ;nserted into the
FMH-7. If the transaction program is ;n send state and has not completed the
current logical record, sense data indicating data truncation has occurred in
;nserted ;nto the FMH-7. Finally, if the transact;on program is ;n receive
state, sense data indicating that data sent by the partner transaction program
is being purged by the half-session is inserted ;nto the FMH-7.

Sense data X'08890000' and X'08890100' have either of two meanings, depend;ng
upon whether the transaction program ;s ;n send or receive state.

INPUT: SEND_ERROR verb parameters and the RCB corresponding to the resource specified
in the SEND_ERROR

OUTPUT: An FMH-7 is created and stored ;n the RCB send buffer. If any log data is
associated with the SEND_ERROR, PS creates an Error Log 6DS variable (see "Ap­
pendix H. FM Header and LU Serv;ces Commands") and stores the 6DS variable in
the RCB send buffer following the FMH-7. PS also places the 6DS variable (m;­
nus the LL and 6DS ID fields) ;n the system error log at the local LU. PS
returns to the transaction program w;th the RETURN_CODE parameter in the
SEND_ERROR set to OK.

Referenced procedures, FSMs, and data structures:
SEND_DATA_TO_HS_PROC
SEND_DATA_BUFFER_MANA6EMENT
FSM_CONVERSATION
RCB

Select based on the following cond;tions:
When TYPE parameter of SEND_ERROR verb is PROS and state
of FSM_CONVERSATION (page 5.1-59) is SEND

If data sent by the TP ;s at a log;cal record boundary then
Set SENSE DATA to X'08890000'.

Else -
Set SENSE DATA to X'08890001'.

When TYPE param;ter of SEND_ERROR verb ;s PROS
and state of FSM_CONVERSATION (page 5.1-59) is RCV,
RCVD_CONFIRM, RCVD_CONFIRM_SEND, RCVD_CONFIRM_DEALL

Set SENSE DATA to X'08890000'.
When type of SEND_ERROR is SVC

and state of FSM_CONVERSATION (page 5.1-59) is SEND
If data sent by the TP ;s at a logical record boundary then

Set SENSE DATA to X'08890100'.
Else -

Set SENSE_DATA to X'08890101'.
When TYPE parameter of SEND_ERROR is SVC

and state of FSM_CONVERSATION Cpage 5.1-59) ;s
RCV I RCVD_CONFIRM I RCVD_CONFIRM_SEND I RCVD_CONFIRH_DEALL

Set SENSE DATA to X'08890100'.
If LOG_DATA parameter of SEND_ERROR is not null then

Move SENSE DATA ;nto RCB.PS TO HS RECORD.DATA as an FMH-7 record.
Create Error log 6DS variable with the LOG_DATA and concatenate
it to RCB.PS_TO_HS_RECORD.DATA.

Insert Error Log 6DS variable into a system error log.
Else

Move SENSE_DATA into RCB.PS_TO_HS_RECORD.DATA as an FMH-7 record.
If FLUSH verb is not ;mplemented or the FMH-7 ;s
to be flushed ;mmediately then (as an implementation-dependent option>

Set type of RCB.PS_TO_HS_RECORD to FLUSH.
Call SEND_DATA_TO_HS_PROC(RCBJ (page 5.1-48).

Else
Call SEND_DATA_BUFFER_MANA6EMENT (null data, RCBJ Cpage 5.1-47).

Set RETURN_CODE of SEND_ERROR to OK.

page 5.1-48
page 5.1-47
page 5.1-59
page A-7

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-49

SEND_ERROR_IN_RECEIVE_STATE

5.1-50

SEND_ERROR_IN_RECEIVE_STATE

FUNCTION: Invoked when. the transaction program issues a SEND_ERROR for a conversati.on
that is in the RECEIVE state. Further processing of the SEND_ERROR is depend­
ent upon what information, if any, has been received from HS and stored in the
HS_TO_PS_BUFFER_LIST, as described below.·

INPUT:

OUTPUT:

SEND_ERROR verb parameters and the RCB corresponding to the resource si:>ecified
in the SEND_ERROR record

See below.

NOTES: 1. If a RECEIVE_DATA record Mith TYPE parameter set to DEALLOCATE has been
received from HS, PS returns to the transaction program after setting the
RETURN_CODE parameter of the SENO_ERROR to DEALLOCATE_NORHAL.

2. If the first element in the RCB.HS_TO_PS_BUFFER_LIST is not a DEALLOCATE buff­
er element, or if the RCB.HS_TO_PS_BUFFER_LIST is empty, PS sends a SENO_ERROR
record to HS. PS then creates an FHH-7 and stores it in the RCB send buffer.

Referenced procedures, FSMs, and data structures:
PS
HS
WAIT_FOR_SEND_ERROR_DONE_PROC
FSH_CONVERSATION
RCB
SEND_ERROR

page 5.0-5
page 6.0-3
page 5.1-58
page 5.1-59
page A-7
page A-24

If first entry on RCB.HS_TO_PS_BUFFER_LIST is DEALLOCATE_FLUSH (see Note lJ then
Set RETURN_CODE parameter of the SEND_ERROR verb to DEALLOCATE_NORMAL.
Call FSM_CONVERSATION(R, DEALLOCATE_NORHAL_Rc, RCBJ (page 5.1-59).

Else (see Note 2)
Send SEND_ERROR record to HS.
Call WAIT_FOR_SEND_ERROR_DONE_PROC(SEND_ERROR verb parameters, RCBJ (page 5.1-58).

SNA Format and Protocol Reference Manual for LU Type 6.2

SEND~ERROR_IN_SEND_STATE

SEND_ERROR_IN_SEND_STATE

FUNCTION: Invoked when the transact;on program ;ssues a SEND_ERROR verb for a conversa­
t;on that ;s ;n the SEND state.

If the state of FSM_ERROR_OR_FAILURE ;nd;cates that no RECEIVE_ERROR record
has been rece;ved from HS, any data ;n PS's send buffer ;s sent to HS and an
FMH-7 is created and stored ;n the buffer.

If the state of FSM_ERROR_OR_FAILURE ;ndicates that a RECEIVE_ERROR record has
been rece;ved from HS, PS sends a SEND_DATA record with the TYPE field set to
PREPARE_TO_RCV_FLUSH to HS. !Any data ;n the RCB send buffer was purged when
the RECEIVE_ERROR record was received.) PS then waits for the expected FMH-7
to arrive. The RETURN_CODE parameter of the SEND_ERROR ;s set based upon the
sense data carr;ed in the FMH-7.

INPUT: SEND_ERROR verb parameters and the RCB correspond;ng to the resource specified
in the SEND_ERROR.

OUTPUT: Any data in PS's buffer is sent to HS and an FMH-7 is created and stored in
the RCB.

NOTE: If no session has been allocated to tMs conversat;on !i.e., the ALLOCATE verb
;ssued to allocate the conversation specified RETURN_CONTROL =
DELAYED_ALLOCATION_PERMITTEDJ, PS now requests a session from the resources
manager. If, while attempting to allocate a sess;on, the local LU detects an
error, PS sets the RETURN_CODE parameter in the SEND_ERROR to reflect the type
of allocat;on error and returns control to the transaction program.

Referenced procedures, FSMs, and data structures:
SEND_DATA_TO_HS_PROC
SEND_ERROR_DONE_PROC
POST_AND_WAIT_PROC
DEQUEUE_FHH7_PROC
FSM_CONVERSATION
FSM_ERROR_OR_FAILURE
RCB

If state of FSM_ERROR_OR_FAILURE = NO_RQS then
Set CONTINUE to true.

If RCB.PS_TO_HS_RECORD.TYPE is not null then
Set RCB.PS_TO_HS_RECORD.TYPE to FLUSH.
Call SEND_DATA_TO_HS_PROCIRCBJ !page 5.l-48J.

page 5.1-48
page 5.1-49
page 5.1-37
page 5.1-33
page 5.1-59
page 5.1-61
page A-7

If state of FSM_ERROR_OR_FAILURE !page 5.1-61) ;s
ALLOCATE_FAILURE_RETRY I ALLOCATE_FAILURE_NO_RETRY
I SYNCLEVEL NOT SUPPORTED then Csee Notel

Set RETURN_CODE parameter of SEND_ERROR verb to ALLOCATION_ERROR concatenated with
ALLOCATION_FAILURE_RETRY, ALLOCATION_FAILURE_NO_RETRY, or
SYNC_LEVEL_NOT_SUPPORTED_BY_LU, as appropriate.

Call FSM_CONVERSATIONIR, ALLOCATION_ERROR_RC, RCBJ Cpage 5.l-59J.
Set CONTINUE to false.

If CONTINUE then
Call FSM_CONVERSATIONIS, SEND_ERROR, RCBJ !page 5.1-48).
Call SEND_ERROR_DONE_PROCISEND_ERROR verb parameters, RCBJ (page 5.1-49).
Set RCB.SEND_LL_REMAINDER to 0 and set RCB.SEND_LL_BYTE to NOT_PRESENT to

indicate that the data sent by TP is at a logical boundary.

Else (i.e., RCVD_ERRORJ
Set RCB.PS_TO_HS_RECORD type to PREPARE_TO_RCV_FLUSH.
Call SEND_DATA_TO_HS_PROCCRCBJ (page 5.l-48J.
Call POST_AND_WAIT_PROCCRCB, LL, X'7FFF'J Cpage 5.1-37) to post

when the whole FHH7 is received.
Call DEQUEUE_FHH7_PROCCSEND_ERROR verb parameters, RCBJ (page 5.1-331.

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-51

SEND_ERROR_TO_HS_PROC

SEND_ERROR_TO_HS_PROC

FUNCTION: This procedure creat»!s a SEND_ERROR and sends it to HS.

INPUT:, The RCB associated with the HS to which the SEND_ERROR is to be sent

5.1-52

OUTPUT: SEND_ERROR la variant of PS_TO_HS_RECORD) to PS

Referenced procedures, FSMs, and data structures:
PS

PS_PROCESS_DATA
RCB
SENO_ERROR

Create a SEND_ERROR record lpage A-24) with RCB.RCB_ID.

Send this SEND_ERROR record to HS.

SHA ForNat and Protocol Reference Manual for LU Type 6.2

page 5.0-5

page 5.0-20
page A-7
page A-24

SET_FMH7_RC

SET_FMH7_RC

FUNCTION: Sets the RETURN_CODE parameter of the passed transaction program verb based
upon the sense data carried ;n the passed FMH-7.

INPUT: The RCB corresponding to the resource to which the FMH-7 applies, the received
FMH-7, and the transaction program verb parameters currently being processed

OUTPUT: The RETURN_CODE parameter of the verb is set, based upon the sense data car­
ried in the FMH-7.

Referenced procedures, FSMs, and data structures:
PS_PROTOCOL_ERROR
FSM_CONVERSATION
FSM_ERROR_OR_FAILURE
RCB

Select based on the Sense Data in FMH-7:
When ALLOCATION ERROR code

page 5.0-16
page 5.1-59
page 5.1-61
page A-7

Call PROCESS=RM_OR_HS_TO_PS_RECORDS with RCB_ID and SUSPEND Cpage 5.1-43),
and remove DEALLOCATE buffer from RCB.HS TO PS BUFFER LIST.
If neither DEALLOCATE_FLUSH nor DEALLOCATE_CONFIRM ar; found then

Call PS_PROTOCOL_ERROR (page 5.0-16) with X'l008201D'.
Set RETURN_CODE parameter of the verb to the corresponding value (see Appendix H to
find the value corresponding to a given Sense Data).

Call FSM_CONVERSATIONIR, ALLOCATION_ERROR, RCBJ (page 5.1-59).
When RESOURCE FAILURE NO RETRY

Set RETURN=CODE param;ter of the TP verb to RESOURCE_FAILURE_NO_RETRY.
Call FSM_CONVERSATIONCR, RESOURCE_FAILURE_RC, RCBJ Cpage 5.1-5~).

When PROG_ERROR_NO_TRUNC or PROG_ERROR_PURGING
If state of FSM_ERROR_OR_FAILURE Cpage 5.1-61) is RCVD_ERROR then

Set RETURN_CODE parameter of the verb to PROG_ERROR_PURGING.

Else
Set RETURN_CODE parameter of the verb to PROG_ERROR_NO_TRUNC.

Call FSM_CONVERSATIONIR, PROGRAM_ERROR_RC, RCBJ (page 5.1-59).
When PROG ERROR TRUNC

Set RETURN_CODE parameter of the verb to PROG_ERROR_TRUNC.
Call FSM_CONVERSATIONIR, PROGRAM_ERROR_RC, RCBJ (page 5.1-59).

When SVC ERROR NO TRUNC or SVC ERROR PURGING
If stite of-FSM_ERROR_OR_FAILURE Cpage 5.1-61) is RCVD_ERROR then

Set RETURN_CODE parameter of the verb to SVC_ERROR_PURGING.

Else
Set RETURN_CODE parameter of the verb to SVC_ERROR_NO_TRUNC.

Call FSM_CONVERSATIONIR, SERVICE_ERROR_RCJ !page 5.l-59J.
When SVC_ERROR_TRUNC

Set RETURN_CODE parameter of the verb to SVC_ERROR_TRUNC.
Call FSM_CONVERSATION(R, SERVICE_ERROR_Rc, RCBJ (page 5.1-59).

When DEALLOCATE_ABEND
Set RETURN_CODE parameter of the verb to DEALLOCATE_ABEND_PROG, DEALLOCATE_ABEND_SVC,

DEALLOCATE_ABEND_TIMER, or to DEALLOCATE_ABEND_RC
as shown ;n Append;x G under X'0864' Sense Code.

Call FSM_CONVERSATION!R, DEALLOCATE_ABEND_Rc, RCBJ.
Otherwise Cas an implementation-dependent option>:

Call PS_PROTOCOL_ERROR (page 5.0-16) with FMH-7 Sense Data.

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-53

TEST_FOR_POST_SATISFIED

TEST_FOR_POST_SATISFIED

5.1-54

FUNCTION: Tests whether the post conditions specified in the RCB have been satisfied.

INPUT: The entry in the RCB_LIST corresponding to the resource to be tested.

OUTPUT: The state of FSM_POST is set to POSTED if the post conditions are satisfied.

NOTES: 1. If there are no entries on the HS_TO_PS_BUFFER_LIST, the resource cannot be
posted.

2.

3.

4.

Receipt of a CONFIRM, PREPARE TO RCV, or DEALLOCATE indicator causes the con­
versation to be posted. A l;te; (optional) receive check determines if the
received indicator invalidly truncates a logical record and, if so, appropri­
ate action is taken at that time. Similarly, receipt of a logical record with
associated LL field containing an invalid value or indicating a PS header
causes posting to occur. Processing of the invalid LL or PS header takes
place at a later time.

The high-order bit of the LL field is a Continuation bit, which is on unless
this logical record is the final one in the current GOS variable. (Continued
GOS variables and the information in this bit are specific to "Chapter 5.2.
Presentation Services--Mapped Conversation Verbs" in Chapter 5.21.

If more than one entry is on the RCB.HS_TO_PS_BUFFER_LIST, one of the entries
must be a CONFIRM, PREPARE TO RCV, or DEALLOCATE indicator, which causes the
conversation to be posted. - -

Referenced procedures, FSMs, and data structures:
FSM_POST
RCB
BUFFER_ELEMENT

page 5.1-62
page A-7
page A-8

Select based on number of entries in the RCB.HS_TO_Ps_BUFFER_LIST:
When O

Do nothing Csee Note ll.
When 1

Select based on the type of the first buffer in the list:
When CONFIRM I PREPARE_TO_RCV_CONFIRM I PREPARE_TO_RCV_FLUSH I

DEALLOCATE CONFIRM I DEALLOCATE FLUSH I FMH7
Call FSM=POST (page 5.1-62) a~d pass it a POST signal (see Note 21.

When DATA
Select based on RCB.POST CONDITIONS.FILL:

When BUFFER -
If length of buffer data ~ maximum length in POST_CONDITIONS,
or if PS header or invalid length present (see Appendix HJ then

Call FSM_POST lpage 5.1-62) and pass it a POST signal.
When LL

If RCB.RECEIVE_LL_REMAINDER = 0 and length of buffer data ~ 2 then
If PS header or invalid LL (see Appendix H and Note 3) then

Call FSM_POST !page 5.1-62) and pass it a POST signal.

Else

Else

Calculate RCB.RECEIVE_LL_REMAINDER from LL in the buffer
and high order bit forced to 0.

If length of buffer ~ RCB.RECEIVE_LL_REMAINDER
or ~ RCB.POST CONDITIONS.MAX LENGTH then

Call FSN_POST (page 5.l-62l and pass it a POST signal.
Else

Do nothing.

If length of buffer data ~ RCB_RECEIVE_LL_RENAINDER
or ~ RCB.POST CONDITIONS.MAX LENGTH then

Call FSN_POST (page 5.l-62l and pass it a POST signal.
Otherwise (number of entries is ~ 2, see Note 4!
Call FSM_POST Cpage 5.1-62) and pass it a POST signal.

SNA Format and Protocol Reference Manual for LU Type 6.2

WAIT_FOR_CONFIRMED_PROC

WAIT_FOR_CONFIRMED_PROC

FUNCTION: Invoked after a SEND_DATA record indicating CONFIRM has been sent to HS and a
CONFIRMED record is expected in reply.

INPUT:

OUTPUT:

HS can send other records to PS while PS is waiting for the expected CONFIRMED
record. Appropriate action is taken, depending upon the record received Csee
below).

The transaction program verb that caused the CONFIRM indicator to be sent to
HS, and the RCB corresponding to the resource specified in the transaction
program verb

See below.

NOTES: 1. If a REQUEST_TO_SEND record is received, PS stores that information in the RCB
to be relayed to the transaction program at a later time, and continues to
wait for the expected CONFIRMED record.

2. If a RECEIVE_ERROR record is received, PS waits for the FMH-7 record corre­
sponding to the RECEIVE_ERROR to arrive from HS. The RETURN_CODE of the
passed transaction program verb is set based upon the sense data carried in
the FMH-7. Control is then returned to the transaction program.

3. If the expected CONFIRMED is received, PS returns control to the transaction
program.

4. If the transaction program has issued a DEALLOCATE CTYPE = SYNC_LEVELJ and the
SYNC_LEVEL of the conversation is CONFIRM, FSM_CONVERSATION will be in the
PEND_DEALL state when the CONFIRMED record arrives. The CONFIRMED record
causes the requested deallocation to be completed.

Referenced procedures, FSMs, and data structures:
PS
HS
RM
RECEIVE_RM_OR_HS_TO_PS_RECORD
CONVERSATION_FAILURE_PROC
POST_AND_WAIT_PROC
DEQUEUE_FMH7_PROC
FSM_CONVERSATION
FSM_ERROR_OR_FAILURE
RCB
HS_TO_PS_RECORD
RM_TO_PS_RECORD

Set CONTINUE to true.
Do while CONTINUE is true:

Wait for record to arrive.
If record arrived from RM then

Call CONVERSATION_FAILURE_PROC with record Csee page 5.1-29).

page 5.0-5
page 6.0-3
page 3-17
page 5.1-47
page 5.1-29
page 5.1-37
page 5.1-33
page 5.1-59
page 5.1-61
page A-7
page A-12
page A-31

If state of FSM_ERROR_OR_FAILURE Cpage 5.1-61) is CONV_FAILURE_SON then
Set RETURH_CODE parameter of the verb to RESOURCE_FAILURE_RETRY.

Else
Set RETURH_CODE parameter of the verb to RESOURCE_FAILURE_HO_RETRY.

Call FSM_CONVERSATIONCR, RESOURCE_FAILURE_RC, RCBJ Cpage 5.1-59).
Set CONTINUE to false.

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-55

WAIT~FOR_CONFIRMED_PROC

5.1-56

Else (i.e., record arrived from HS)
Select based on record type:

When REQUEST_TO_SEHD
Record in the RCB that request to send was received on the conversation.

When RECEIVE_ERROR
Call FSM_ERROR_OR_FAILURE(RECEIVE_ERROR, RCBI (page 5.1-611.
Call POST_ANO~WAIT_PROC(RCB, LL, X'7FFF' I Cpage 5.1-37).
Call DEQUEUE_FMH7_PROCCCONFIRM verb parameters, RCBI !page 5.1-331.
Set CONTINUE to false.

When CONFIRMED
Set RETURN_COOE parameter of the verb to OK.
If state of FSM_CONVERSATION is PEHD_DEALL then

Call FSM_CONVERSATIONIR, DEALLOCATION_IHDICATOR, RCBI (page 5.1-591.
Purge all records from HS to PS process.
Create OEALLOCATE_RCB, initialize it, and send it to RM.

Set CONTINUE to FALSE.

WAIT_FOR_RM_REPLY

FUNCTION: Waits for an expected reply from the LU resources manager.

INPUT: None

OUTPUT: A record received from the resources manager

NOTES: 1. CONVERSATION_FAILURE is the only record that can arrive unexpectedly from the
resources manager.

2. Any record from the resources manager, other than CONVERSATION_FAILURE must be
the expected reply. No more than one reply from the resources manager is out­
standing at any time.

Referenced procedures, FSMs, and data structures:
PS
RM
CONVERSATION_FAILURE_PROC
RM_TO_PS_RECORD

Set CONTINUE to true.
Do while CONTINUE is true:

Wait until RM_TO_PS_RECORD has arrived from RM.
If RM_TO_PS_RECORO type is CONVERSATION_FAILURE then

Call CONVERSATION_FAILURE_PROCIRM_TO_PS_RECORDI !page 5.1-291.

Else
Set CONTINUE to false.
Return with RM_TO_PS_RECORD.

SNA Format and Protocol Reference Manual for LU Type 6.2

page 5.0-5
page 3-17
page 5.1-29
page A-31

WAIT_FOR_RSP_TO_RQ_TO_SEND_PROC

WAIT_FOR_RSP_TD_RQ_TO_SEND_PROC

FUNCTION: Invoked after PS has issued a REQUEST_TO_SEND to HS. The next record that is
expected from HS is RSP_TO_REQUEST_TO_SEND.

INPUT:

OUTPUT:

HS can send records to PS while PS is waiting for
RSP_TO_REQUEST_TO_SEND record. Appropriate action is taken,
the record received Csee below>.

the expected
depending upon

The RCB corresponding to the conversation for which the REQUEST_TO_SEND was
issued is passed as a parameter to this procedure; HS_TO_PS_RECORDs are
received from HS.

See below.

NOTES: 1. If a REQUEST_TO_SEND is received, PS stores that information in the RCB and
continues to wait for the RSP_TO_REQUEST_TO_SEND.

2. Since REQUEST_TO_SEND has no RETURN CODE parameter, if a RECEIVE_ERROR is
received, the information is stored in FSM_ERROR_OR_FAILURE to be presented to
the transaction program when it issues a record that does have a RETURN_CODE
field.

3. When RSP_TO_REQUEST_TO_SEND is received, control is returned to the trans­
action program.

4. Any data received from HS before the RSP_TO_REQUEST_TO_SEND arrives is stored
in the HS_TO_PS_BUFFER_LIST. PS continues to wait for the
RSP_TO_REQUEST_TO_SEND. However, if a RECEIVE_DATA record with TYPE field set
to DEALLOCATE FLUSH is received, the RSP TO REQUEST TO SEND will not be
received by PS~ so PS returns control to the-transactio~ program.

Referenced procedures, FSMs, and data structures:
RECEIVE_RM_OR_HS_TO_PS_RECORD
CONVERSATION_FAILURE_PROC
FSM_ERROR_OR_FAILURE
RCB
BUFFER_ELEMENT

Set CONTINUE to true.
Do while CONTINUE is true:

Call RECEIVE_RM_OR_HS_TO_PS_RECORDCRCB.RCB_ID, SUSPEND)
and receive record Cpage S.1-47).

If record arrived from RM then
Call CONVERSATION_FAILURE_PROC with record Cpage S.1-29).
Set CONTINUE to false.

If record arrived from HS then

Select based on the type of the record:
When REQUEST_TO_SEND Csee Note 1)

Set RCB.RQ_TO_SEND_RCVD to YES.
When RECEIVE_ERROR Csee Note 2)

Call FSM_ERROR_OR_FAILURECRECEIVE_ERROR, RCBl Csee page S.1-61)
When RSP_TO_REQUEST_TO_SEND (see Note 3l

Set CONTINUE to false.
When RECEIVE_DATA Csee Note 4l

Enqueue record to RCB.HS_TO_PS_BUFFER_LIST.
Set BUFFER_ELEMENT to the last entry of HS_TO_PS_RECORD_LIST.
If BUFFER_ELEMENT type = DEALLOCATE_FLUSH then

Set CONTINUE to false.

page S.1-47
page S.l-29
page S.1-61
page A-7
page A-8

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-57

WAIT_FOR_SEND_ERROR_DONE_PROC

WAIT_FOR_SEND_ERROR_DONE_PROC

5.1-58

FUNCTION: Invoked after a SEND_ERROR record has been sent to HS. The SEND_ERROR was
sent to HS as a result of the transaction program issuing a SEND_ERROR or
DEALLOCATE CTYPE = ABEND_PROG, ABEND_SVC, or ABEND_TIMER) for a conversation
that is in receive state.

INPUT:

OUTPUT:

The procedure calls GET_END_CHAIN_FROM_HS (page 5.1-34) to await the arrival
from HS of a record indicating EC. Appropriate action is taken depending on
the type of record received.

Transaction program verb parameters and the RCB corresponding to the resource
specified in the verb

See below.

NOTES: 1. If the record received from HS is a RECEIVE_DATA with TYPE field set to DEAL­
LOCATE FLUSH, the conversation is deallocated and the return code of the verb
is set-to indicate the deallocation.

2. If the record received from HS is a RECEIVE_DATA with TYPE field set to DEAL­
LOCATE_CONFIRM, CONFIRM, PREPARE_TO_RCV_CONFIRM, or PREPARE_TO_RCV_FLUSH, the
processing of the verb is continued.

3. FSM_ERROR_OR_FAILURE is reset to NO_RQS because, in certain SEND_ERROR race
cases, a RCVO_ERROR condition is not reported to the transaction program.
Normally, FSM_ERROR_OR_FAILIJli!E is reset to NO_RQS by SET_FMH7_RC (page 5.1-53)
when the error is reported to the TP.

Referenced procedures, FSMs, and data structures:
GET_END_CHAIN_FROM_HS
SEND_ERROR_DONE_PROC
COMPLETE_DEALLOCATE_ABEND_PROC
FSM_CONVERSATION
FSM_ERROR_OR_FAILURE
RCB
BUFFER_ ELEMENT

Call GET_END_CHAIN_FROM_HSCRCB) (page 5.1-34).

Select based on the state of FSM_ERROR_OR_FAILURE (page 5.1-61):
When CONV_FAILURE_SON

Set RETURN_CODE of the verb to RESOURCE_FAILURE_RETRY.
Call FSM_CONVERSATIONCR, RESOURCE_FAILURE_Rc, RCB) (page 5.1-59).

When CONV_FAILURE_PROTOCOL_ERROR
Set RETURN_CODE of the verb to RESOURCE_FAILURE_NO_RETRY.
Call FSM_CONVERSATION(R, RESOURCE_FAILURE_RC, RCB) Cpage 5.1-59).

Otherwise
Get BUFFER_ELEMENT from HS_TO_PS_BUFFER_LIST.

Select based on the following conditions:

page 5.1-34
page 5.1-49
page 5.1-28
page 5.1-59
page 5.1-61
page A-7
page A-8

When BUFFER_ELEMENT type is DEALLOCATE_FLUSH (see Note 1) and the verb is SEND_ERROR
Set RETURN_CODE of verb to DEALLOCATE_NORMAL.
Call FSM_CONVERSATION(R, DEALLOCATE_NORMAL_RC, RCBJ (page 5.1-59).

When BUFFER_ELEMENT type is DEALLOCATE_FLUSH and the verb is DEALLOCATE
Set RETURN_CODE of the verb to OK.

When BUFFER_ELEMENT type is DEALLOCATE_CONFIRM, CONFIRM, PREPARE_TO_RCV_CONFIRM,
or PREPARE_TO_RCV_FLUSH (see Note 2) and the verb is SEND_ERROR

Call SEND_ERROR_OONE_PROC(transaction program verb parameters, RCBJ
Cpage 5.1-49).

Call FSM_CONVERSATIONCS, SEND_ERROR, RCBJ (page 5.1-591.
When BUFFER_ELEMENT type is DEALLOCATE_CONFIRM, CONFIRM, PREPARE_TO_RCV_CONFIRM,
or PREPARE_TO_RCV_FLUSH, and the verb is· DEALLOCATE

Call COMPLETE_DEALLOCATE_ABEND_PROC(transaction program verb parameters, RCB)
(page 5.1-28).

Call FSM_ERROR_OR_FAILURE Cpage 5.1-61) and pass it a RESET signal (see Note3).

SNA Format and Protocol Reference Manual for LU Type 6.2

FINITE-STATE MACHINES

FSM_CONVERSATIOH

FUNCTION: This finite-state machine maintains the status of a conversation resource.
The states have the following meanings:

INPUT:

NOTE:

• RESET = conversation initial state, the program can allocate it

• SEND = the program can send data, request confirmation, or request sync
point

• RCV = receive, the program can receive information from the remote program

• RCVD_COHFIRM = received confirm, PS received the confirm indicator from
the HS

• RCVD CONFIRM SEND = received confirm send, PS received the confirm send
indicator from HS

• RCVD_CONFIRM_DEALL = received confirm deallocate, PS received the confirm
deallocate from HS

• PREP_TO_RCV_DEFER = prepare to receive defer, the program issued a PRE­
PARE_TO_RECEIVE verb with SYNCPT

• DEALL_DEFER = deallocate defer, the program issued DEALLOCATE verb with
SYNCPT

• PEND_DEALL = pending deallocate, the program issued DEALLOCATE verb with
CONFIRM

The inputs are marked with S if they result from an action of the local trans­
action program and with R if they result from a record sent to PS by HS. The
RCB is passed to provide the information needed to perform the state transi­
tion of the FSM_CONVERSATION and its output function.

PEND_DEALL is an intermediate state. PS does not return control to the trans­
action program when the conversation is in this state.

Referenced procedures, FSMs, and data structures:
PS
HS
SEND_DATA_TO_HS_PROC
DEALLOCATION_CLEANUP_PROC
FSM_ERROR_OR_FAILURE
RCB

page 5.0-5
page 6.0-3
page 5.1-48
page 5.0-14
page S.1-61
page A-7

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-59

FSM_CONVERSATION

STATE NAMES----> RESET SEND RCV RCVD RCVD RCVD PREP DEA LL PEND END
CONFIRM CONFIRM CONFIRM TO DEFER DEA LL CONV

SEND DEA LL RCV
DEFER

INPUTS STATE NUMBERS--> 01 02 03 04 05 06 07 08 09 010

s, ALLOCATE 2 I I I I I I I I I
R, ATTACH 3 I I I I I I I I I

s, SEND_DATA I - >CAI >CA> >CA> >CA) >CA) >CA) I >CA>
s, PREP_TO_RCV_FLUSH I 3 >CAI >CA> >CAI >CA> >CAI >CAI I >CA>
s, PREP_TO_RCV_CONFIRM I 3 >CA I >CA> >CA> >CAI >CAI >CA> I >CAI
s, PREP_TO_RCV_DEFER I 7 >CAI >CAI >C Al >CAI >CA> >CAI I >CA>
s, FLUSH I - >CA> >CAI >CA) >CA) 3 1 I >CA>
s, CONFIRM I - >CAI >CAI >CA I >CA) 3 9 I >CA>

s, SEND_ERROR I - 2 2 2 2 >CAI >CAI I >CAI
s, RECEIVE_AND_WAIT I 3CBI - >CA I >CAI >CAI >CAI >CA> I >CAI

s, POST_ON_RECEIPT I >CA> - >CAI >CAI >CAI >CAI >CA> I >CAI
s, WAIT I >CAI - >CAJ >(A I >CAI >CAI >CAI I >CA>
s, TEST I >CAI - >CAI >C Al >CA> >CAI >CA) I >CAI
s, REQUEST_TO_SEND I >CA> - - >CAI >C Al >CAI >CAI I >CAI

R, SEND_INDICATOR I I 2 I I I I I I I
R, CONFIRM_INDICATOR I I 4 I I I I I I I
R, CONFIRM_SEND_IND I I 5 I I I I I I I
R, CONFIRM_DEALLOC_IND I I 6 I I I I I I I

s, CONFIRMED I >CAI >CAI 3 2 10 >CAI >CAI I >CAI

R, PROGRAM_ERROR_RC I 3CCI -cc) I I I 3CCI 3CCI 3CCI I
R, SERVICE_ERROR_RC I 3CCI -cc) I I I 3CCI 3CCI 3CCI I

R, DEALLOC_NORMAL_RC I 10 10 I I I I I I I
R, DEALLOC_ABEND_RC I lOCCI lOCCI I I I lOCC> lOCC I lOCC I I
R, RESOURCE_FAILURE_RC I lOCCl lOC Cl I I I lOICI lOCCl lOIC I I
R, ALLOCATION_ERROR_RC I lOCCl lOCCI I I I lOCCI lOIC I lOCC I I

s, DEAL LOCA TE_F LUSH I 1 >CAI >CAI >CAI >CA I >CAI >CAI I >C Al
s, DEALLOCATE_CONFIRM I 9 >CAI >CAI >CAI >CAI >CA> >CA I I >CA>
s, DEALLOCATE_DEFER I 8 >CAI >CA> >CA) >CAI >CAI >CA I I >CAI
s, DEALLOCATE_ABEND I 1 1 l l 1 l l I >CA)
s, DEALLOCATE_LOCAL I >CA> >CAI >CA> >CA> >CA) >CAI >CA I I l

R, DEALLOCATED_IND I I I I I I I I l I

s, GET_ATTRIBUTES I - - - - - - - I -

OUTPUT FUNCTION
CODE

A
Call DEALLOCATION_CLEANUP_PROC Cpage 5.0-141.

B
If data sent by TP ;s on a log;cal record boundary then

Set RCB.PS_TO_HS_RECORD.TYPE to PREPARE_TO_RCV_FLUSH.
Call SEND_DATA_TO_HS_PROCCRCB> (page 5.1-481.

Else
Call DEALLOCATION_CLEANUP_PROC Cpage 5.0-141.

c
Call FSM_ERROR_OR_FAILURE with RESET Cpage 5.1-611. ..

5.1-60 SNA Format and Protocol Reference Manual for LU Type 6.2

FSM_ERROR_OR_FAILURE

FSM_ERROR_OR_FAILURE

FUNCTION: This finite-state machine remembers if any error or failure records (either
HS_TO_PS_RECORDs or RM_TO_PS_RECORDs> have been received by PS. This know­
ledge is maintained until the information reflected by the records can be
passed to the transaction program. The meanings of the states are as follows:

NOTE:

• NO_RQS = the initial state of the FSM

• RCVD_ERROR = a RECEIVE_ERROR was received

• CONV_FAILURE_PROTOCOL_ERROR = a conversation protocol error record was
received

• CONV_FAILURE_SON = a session outage notification for the conversation was
received

• ALLOCATE_FAILURE_RETRY = an allocation failure with retry was received

• ALLOCATE_FAILURE_NO_RETRY = an allocation failure with no retry allowed
was received

• SYNCLEVEL_NOT_SUPPORTED = sync level not supported for the conversation is
signaled

The inputs are the error and failure records from the HS and RM.

Referenced procedures, FSMs, and data structures:
HS
RM
RCB

STATE NAMES---->

INPUTS STATE NUMBERS-->

SIGNALCCONV_FAIL_PROTOCOL)
SIGNALCCONV_FAIL_SON)

RECEIVE_ ERROR

SIGNAL!ALLOC_FAIL_RETRY)
SIGNAL!ALLOC_FAIL_NO_RETRY>

SIGNALCSYNCLEVEL_NOT_SUPPTD>

SIGNAL!RESET>

OUTPUT FUNCTION
CODE

A

NO RCVD
RQS ERROR

01 02

3 3
4 4

2CA> I

5 I
6 I

7 I

- 1

CONV CONV ALLOCATE
FAILURE FAILURE FAILURE
PROTOCOL SON RETRY
ERROR
03 04 05

I I I
I I I

- - I

I I I
I I I

I I I

1 1 1

Set RCB.PS_TO_HS_RECORD.DATA to null (purge send buffer).

page 6.0-3
, page 3-17

page A-7

ALLOCATE SYNC LEVEL
FAILURE NOT
NO_RETRY SUPPORTED

06 07

I I
I I

I I

I I
I I

I I

l 1

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-61

FSM_POST

S.1-62

FSM_POST

FUNCTION: This finite-state machine maintains the posting status of a conversation. The
meanings of the states are as follows:

• RESET = the initial state of the FSM
,•

• PEHD_POSTED = state after the FSM received a·'POST_ON_RECEIPT input

• , POST.ED = state to show that post conditions were satisfied

NOTES: 1. If POST_ON_RECEIPT is issued after posting has already been activated (i.e.t a
prior POST_ON_RECEIPT has been issued>t the post conditions used to test for
post satisfied are reinitialized to those carried in the most recent
POST_ON_RECEIPT.

2. RECEIVE_IMMEDIATE resets posting. If posting is activated and the conversa­
tion has been posted, this FSM is reset. If posting is activated and the con­
versation has not been posted, posting is canceled and this FSM is reset.

3. The initial state of this FSM is RESET.

STATE NAMES----> RESET PEND POSTED
POSTED

INPUTS STATE NUMBERS--> 01 02 03

POST_ON_RECEIPT 2 - [Note 1] 2 [Note 1J
TEST - - 1
WAIT - - 1
RECEIVE_IMMEDIATE - 1 [Note 2J 1 [Note 2J

SIGNAL(POST) I 3 -

SNA Format and Protocol Refer•iice Manual for LU Type 6,.2

TEST

TEST conta;ns ;nformat;on that descr;bes the test to be performed on the conversat;on and
the result of the test.

TEST
RESOURCE: resource ;dent;f;er
TEST: possible values: POSTED, REQUEST_TO_SEND_RECEIVED
RETURN_CODE: possible values: OK, UNSUCESSFUL, POSTING_NOT_ACTIVE

RESOURCE_FAILURE_RETRYt RESOURCE_FAILURE_NO_RETRY, ALLOCATION_ERROR

Chapter 5.1. Presentat;on Services--Conversat;on Verbs 5.1-63

64 SHA Fol"lllilt and Protocol Reference Manual for LU Type 6.2

CHAPTER 5,2. PRESENTATION SERVICES--MAPPED CONVERSATION VERBS

GENERAL DESCRIPTION

A Transaction Program CTP> requests LU serv­
ices by issuing verbs. The verbs request
several different kinds of services, and are
therefore divided into several different cat­
egories Csee fil:IA Transaction Programmer's
Reference Manual for LU :Ll£e!l ~ for a com­
plete description of the verbs), Each
verb-processing component of PS processes the
verbs of one specific category. Presentation
Services for Mapped Conversations !PS.MC) is
the PS component that processes the verbs of
the mapped conversation category !basic con­
versation verbs are processed by "Chapter
5, 1. Presentation Servi ces--Conversat ion
Verbs" in Chapter 5.1).

PS.MC FUNCTIONS

The primary function of PS.MC is reformatting
the data contained in the DATA parameters of
the MC SEND DATA and MC_RECEIVE_AND_WAIT
verbs. Its subsidiary functions include the
processing of errors related to this refor­
matting, and the translation of mapped con­
versation verbs into basic conversation verbs
in support of services unrelated to format­
ting.

When the TP issues a mapped conversation
verb, PS.MC processes the verb and performs
the services that it requests. PS.MC does
not, however, perform al 1 of the services
requested by every mapped conversation verb.
PS.MC performs only those services related to
data formatting. If the.verb requests addi­
tional conversation services that are not
related to data formatting, then PS.MC, by
issuing one or more basic conversation verbs,
causes PS.CONV to perform those services.

In general, the TP is faced with two format­
ting problems. The data format that it pre­
fers for computational processing differs
from the formats in which data is presented
to Cor byl:

•
•

Local end users and resources

Half-sessions Cfor communication with
remote end users and resources>.

PS.MC solves the formatting problem for local
end users and resources by rouHng all data
presented to Cor by> them through a component
called "the Mapper" tUPM_MAPPER on page

The mapped conversation verbs are issued on
mapped conversations, and basic conversation
verbs are issued on basic conversations.
Both the basic and the mapped conversation
verbs request communication services for
transaction programs. A mapped conversation,
however, is easier for the communicating
transaction programs to use because it also
provides data formatting services that the
programs would have to perform for themselves
if they were using a basic conversation.

5.2-46), which transforms data into Cwhen
receiving> or out of Cwhen sending) formats
preferred by end users. For communication
with conversation partners, TP data must be
made to conform to the format that SNA
defines for the conversation data stream. On
basic conversations, the conversing TPs must
perform this formatting for themselves, but
on mapped conversations, PS.MC adds !when
sending> and strips Cwhen receiving) the
data-stream details required by the format.

The functions that PS.MC performs for the
transaction program are summarized below:

• Adding and stripping conversation
data-stream formatting details Csee "Con­
versation Data Stream Formatting" on page
5.2-5)

• Data mapping Csee "Data Mapping and the
Mapper" on page 5.2-8)

•

•

•

Allowing function management headers
CFMHs) to flow on the mapped conversation
(see "FM Header Data" on page 5.2-7>

Detecting service errors committed by
the partner transaction program Csee
"Service Errors Detected in Received
Data" on page 5.2-14)

Processing service errors committed by
the local transaction program and
detected by the partner LU (see "Process­
ing of a Service Error Detected by Part­
ner LU" on page 5.2-17>.

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-1

Transact;on Program .. ~
'-~~~~~~~~~~~~~~~~~~~~~~~~-•~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A I
~~~~~~~~~~~-1~~~~~~~~~~~~~~~~~~~~~~~--. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 

.••••••••••• 1 ••••••.••••••••••••••••••••• v ................................ v ................... 1 •••• 

l 
2 
3 

PS.INITIALIZE 

v 

PS.VERB_ROUTER . . . . ... 
• • • 1 ••• • .... . . . . ..... . 

•••••• 1 ••••••••••••••••• 1 •••••••••••••••••• 1 ••••••••••••••••••• 1 ••••••••• 1 •••• . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 
•••••• 1 ••••••••••••••••• 1 •••••••••••••••••• 1 ••••••• · •••••••••••• 1 ••••••••• 1 •••• . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 
• • • • • • 1 ••••••••••••••••• v .................. v ... ............... . v ......... 1 •••• 

::::::,::::::::::: 
::::::1::::::::::: 
::::::,::::::::::: . . . . . . . ......... . 
• • • • • • 1 •••••• ••••• 

PS.MC • • • 

..-------............. . 
•• • 1 ••• • . . . . .. . 
.. . 1 ... . 

. . . . ... 
• • • 1 •••• . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 

•••••• 1 •••••••••••••••••• 1 ••••••••••••••••• 1 ••••••••••••••••••• 1 ••••••••• 1 •••• 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. . . . . . v ......... ............................................................. . 

: : : : : : : : : : : : : :: : : : : : : : : : ... PS:Co;.vi ... :::::::: ::: : : : : : : : : : : : : : :: 

v v 
Resources Manager 

v 
Data Flow 

Control 
Data Flo1o1 
Control 

See "Chapter 5.1. Presentation Servfoes--Conversat;on Verbs" 
See "Chapter 5.3. Presentation Servfoes--Sync Po;nt Servfoes Verbs" 
See "Chapter 5.4. Presentat;on Services--Control-Operator Verbs" 

Note: A dashed l;ne denotes a synchronous Cor call/return> protocol boundary bet1o1een PS components, 
wh;le a sol;d l;ne denotes an asynchronous (or send/receive) protocol boundary. 

Figure 5.2-1. Overv;ew of Presentat;on Serv;ces, Emphasiz;ng Presentat;on Serv;ces for Mapped 
Conversat;ons 

COMPONENT INTERACTIONS 

5.2-2 

In terms of layering, non-bas;c-conversat;on 
verb-process; ng components C such as PS. MC ) 
res;de below the TP but above the PS.CONY 

sublayer of presentat;on serv;ces. PS.MC 
communfoates pdmarHy wHh the TP and 
PS.CONY. F;gure 5.2-2 on page 5.2-3 ;uus,.. 

SNA Format and Protocol Reference Manual for LU Type 6.2 



Transaction Program 

'--------------------------------------~·------------------------------------------------------' 
A 1 

1 

.---------- --------------------1------------------------------------------------------. 
::::::::::::,:::::::::::::::::::::::::: 1 

1 
1 
v 

•••••••••••••••••••••••••••• 333333333333333333333 . . . . . . . . . . . . . ........................ . • • • • • • • • • • • • • • • • • • • • • • • • • • • • 3 3 
• • • • • • • • • • • • 1 ........................... . • • • . • • • . • . • • . . • • • • • • . • • • • . • • v . • • • . • • • • • • • • • . 3 ,...:_:_: _: :-:-: ~·-:-: :_:_:_: ...... : : : T PS. YERB_ROUTER J: 

·•·•··········· .... ·--------------~·-----------------· . . 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

PS. INITIALIZE 

4 ••••••••••••• 2 ················'···················'······· : ::::::::::::: ~ ::::::::::::::::,:::::::::::::::::::,::::::: 
4 • • • • • • • • • • • • • 2 
4 ............. v 
4 
4 
4 
4 
4 
4 
4 
4 

PS.MC 

...•...•........ v ...•••.••..•.•..... v ••..... 
3 

• • • • • • • • • • • • • • • • • • • • • • • • 3 
• • • • • • • • • • • • • • • • • • • • • • • • 3 
• • • • • • • • • • • • • • • • • • • • • • • • • 3 

PS.SPS • • • PS.COPR 3 
• • • • • • • • • • • • • • • • • • • • • • • • • 3 
• • • • • • • • • • • • • • • • • • • • • • • • • 3 
• • • • • • • • • • • • • • • • • • • • • • • • 3 

4 
4 
4 

......... '----·- ..... 1...---• . . . . . ·- . 3 

4 
4 
v 

3 ••••••••••••••• 1 ••••••••••••••••••• 1 ••••••• 3 
3 v v 3 
3333333333333333333333333333333333333333333333333 

.....__:: :_~ ~ :_: ~ :_~ ~: :__.:: : : : : l.___ _____ Ps_.coNV _____ __.I H H 
::::::::::::·:::::::::1:::::!::::::::::::::::·::::::::::::::::·:::::::~~~~~~~~~:~~~~:~~~~::: 

v v v v 
Resources Manager Data Flow Data Flow 

Control Control 

Note: See "Component Interactions" on page S.2-2 for an explanation of the flows 
shown in this figure. 

Figure S.2-2. PS.Me's Use of the Basic Conversation Protocol Boundary 

trates the flow of processing. PS.MC accepts 
issuances of mapped conversation verbs from 
the TP, but issues basic conversation verbs 
to PS. CONV. In both cases, the interaction 
actually occurs indirectly through 
PS. VERB_ROUTER (Chapter 5. 0 l. Whenever a 
verb is issued by any component (for exam­
ple, the TPl, PS. VERB_ROUTER gains control 
and is responsible for rout i ng the verb to 
the appropriate PS component for processing. 

When the TP issues a mapped conversation verb 
(flow l in Figure 5.2-2), the verb is 
inspected by PS. VERB_ROUTER. PS. VERB_ROUTER 
determines that the verb is a mapped conver-

sation verb and calls PS.MC, passing to it 
the received verb (flow 2>. PS.MC may issue 
a basic conversation verb during its process­
ing of the mapped conversation verb. If it 
does, then PS. VERB_ROUTER once again gains 
control, receiving the verb issued by PS.MC 
(flow 3). This time, PS.VERB_ROUTER discov­
ers that the verb is a basic conversation 
verb, so it calls PS.CONY and passes the verb 
to it <flow 4). PS.CONY processes the basic 
conversation verb, after which control 
returns along the same path to PS.MC. 

A transaction program may support only mapped 
conversations or only basic conversations. 

Chapter 5.2. Presentation Services--Maf:>ped Conversation Verbs 5.2-3 



Alternatively, it may support both types of 
conversation. In the latter case, the trans­
action program may have mapped conversations 
and basic conversations allocated concurrent­
ly. The PS. VERB_ROUTER requires the TP to 

PS.MC DATA BASE STRUCTURE 

In order to perform i ts functions , PS 
requires information about the transaction 
program that it is serving and about the 
resources currently allocated to that trans­
action program. This information, which is 
described in "PS.CONV Data-Base Structure" on 
page 5.1-1 • is stored in lists of control 
blocks in the LU (see Appendix A for complete 
definitions of the lists and of the entities 
that may be found in the lists). Some of the 
fields in these control blocks are especially 
important to PS.MC. Those fields are 
described below. 

TRANSACTION CONTROL BLOCK CTCB> 

Each transaction control block CTCB) contains 
information about one execution instance of a 
transaction program. PS. MC identifies the 
TCB describing the particular transaction 
program instance that it is serving by means 
of the TCB_ID that RM passed to PS when the 
transaction program instance was created. 
The TCB fields used by PS.MC contain such 
information as the name of the transaction 
program that PS is serving and the LU_ID of 
the LU in which the PS resides. 

LU CONTROL BLOCK CLUCBl 

PS.MC accesses the appropriate LUCB using a 
unique LU_ID, which is stored in the TCB to 
which PS.MC has access. The LUCB fields in 
which PS.MC is particularly interested con­
tain information about whether the LU sup­
ports various mapped conversation options, 
such as handling of FM header data. 

Transaction Program Control Block CTPCB) 

Each LUCB also contains a pointer to a list 
of transaction program control blocks 
CTPCBsl. For a given LU, the list contains a 
TPCB for each transaction program that is 
capable of running at the LU. The informa­
tion contained in a TPCB includes the name of 
the transaction program and whether it sup­
ports various optional features. PS.MC, in 
particular, is interested in whether or not 
the TP supports mapped conversations. 

issue only mapped conversation verbs on 
mapped conversations and only basic conversa­
tion verbs on basic conversations. However, 
PS. VERB_ROUTER allows PS.MC to issue basic 
conversation verbs on a mapped conversation. 

RESOURCE CONTROL BLOCK CRCB) 

PS.MC also requires information about all the 
mapped conversations allocated to the trans­
action program. This information is found in 
the resource control block C RCB l, one for 
each resource associated with any transaction 
programs running at an LU. As in the case of 
the TCB, PS.MC is interested in only those 
RCBs containing information about mapped con­
versation resources allocated to its own 
transaction program. It does not need infor­
mation about resources that are not mapped 
conversations or are allocated to other 
transaction programs. 

PS.MC accesses an RCB by means of the RCB_ID. 
The transaction program supplies an RCB_ID in 
the RESOURCE parameter of a verb in order to 
indicate the particular conversation resource 
on which the verb is being issued. Whenever 
a new resource is allocated, the resources 
manager C "Chapter "3. LU Resources Manager" in 
Chapter 3 l creates a new RCB_ID and returns 
it to the transaction program in the RESOURCE 
parameter of the MC~ALLOCATE verb. The RCB 
also contains the TCB_ID of the transaction 
program instance that has allocated the 
resource. RCB information is initialized 
when the conversation is allocated. 

The following RCB fields are especially 
important to PS.MC. 

MC_MAX_SEND_SIZE contains the length of the 
longest logical record that can be 
sent on the conversation, and is 
used to segment outgoing data Csee 
"Construction of GOS Variables" on 
page 5.2-5). 

MAPPER_SAVE_AREA contains information used in 
data mapping, such as the currently 
effective map names (see "Map 
Names" on page 5.2-8>. The mapper 
may also, however, use data stored 
in this area to perform 
implementation-defined Cas opposed 
to SNA-map-name-definedl data map­
ping. The mapper also uses this 
area to save any error data or 
indicators of events that occurred 
during data mapping. 

MC_RECEIVE_BUFFER contains information that 
has arrived from a conversation 
partner but that has !lot yet been 
received by the transaction pro­
gram. 

5.2-4 SNA Format and Protocol Reference Manual for LU Type 6.2 



CONVERSATION DATA STREAM FORMATTING 

When a transaction program sends data on a 
basic conversation, it must ensure that that 
data conforms to the format of the conversa­
tion data stream. A transaction program that 
allocates a mapped conversation, however, 
does not need to perform this task, because 
PS.MC assumes responsibility for editing the 
data to make it conform to the format of the 
conversation data stream. Transaction pro­
grams communicating over a mapped conversa­
tion may supply their data in any format. 

All data flowing on any conversation is for­
matted into logical records. A logical 
record consists of a 2-byte logical record 
length field llll followed by a data field. 
A transaction program sending data over a 
basic conversation must take care to include 
the LL fields in its data, and to complete 
the logical record that it is sending before 
leaving SEND state. 

A TP sending data over a mapped conversation 
has neither of these concerns, because PS.MC 
computes and inserts the LLs for it. The TP 
simply supplies the data in the DATA parame­
ter of MC_SEND_DATA. PS.MC then maps the 
data and formats the mapped data into one or 
more complete logical records. 

CONSTRUCTION OF GOS VARIABLES 

PS.MC formats all data flowing on a mapped 
conversation into general data stream (GOS) 
variables (see Figure 5.2-3). A GOS variable 
consists of one or more complete logical 
records. The data field of the first logical 
record in a GOS variable begins with a 2-byte 
GOS ID that identifies the type of informa­
tion contained in the variable. The informa­
tion itself begins in the third byte of the 
data field of the first logical record, and 
continues throughout the data fields of the 
variable's remaining logical records, which 
do not contain the GOS ID. 

GOS Variable 
!Consisting of 1 Logical Record) 

LL GOS ID data 

Logical Record 

LL data 

Figure 5.2-3. GOS Variables and Logical 
Records' 

The following types of GOS variables flow on 
mapped conversations: 

• Map Name 
• Application Data 
• User Control Data 
• Error Data 
• Error Log 
• Null Structured Data 

!See Appendix H for descriptions of all the 
valid types of GOS variables and their GOS ID 
values.) 

Map Name GOS variables are generated from the 
MAP _NAME parameter of MC_SEND_DATA (see "Map 
Names" on page 5.2-8 for details>. Applica­
tion Data and User Control Data GOS variables 
(collectively called data GOS variables) are 
generated from data supplied via the DATA 
parameter of MC_SEND_DATA. If this verb is 
issued with FMH_DATA!YESlt the data is put 
into a User Control Data GOS variable; other­
wise, it is put into an Application Data GOS 
variable. Error Data GOS variables are gen­
erated when the TP issues MC SEND ERROR or 
when PS detects an error (see '0Mapp;d Conver­
sation Errors" on page 5,.2-12 for details>. 

Null Structured Data GOS variables are gener­
ated when the TP, after entering SEND state, 
leaves SEND state without sending any data. 
!Instead of issuing MC_SEND_DATA, the TP 
issues MC_ CONFIRM, MC_PREPARE_ TO_RECEIVE, or 
some other verb that removes the TP from SEND 
state.) The partner must be notified of 
this change in state. However, the RH that 
conveys this state-change notification !CD 
for MC PREPARE TO RECEIVE, or RQD2 for 
MC_CONFIRM> can flow to the partner only as a 
prefix to some GOS variable created by PS.MC. 
PS.MC cannot create a data GOS variable with 
a null data field for this purpose, because 
that would erroneously indicate that the TP 
had issued MC_SEND_DATA with LENGTH! 0), when 
the TP has not issued MC_SEND_DATA at all. 
To solve this problem, PS.MC sends a Null 
Structured Data GOS variable. 

GOS Variables with Multiple Logical Records 

Only data GOS variables may consist of multi­
ple logical records; Error and Map Name GOS 
variables each consist of a single logical 
record. Whether a data GOS variable will 
have more than one logical record is deter­
mined by the value of MC_MAX_SEND_SIZE, which 
is the length of the longest logical record 
that may be sent on the mapped conversation. 
MC_MAX_SEND_SIZE may vary from mapped conver­
sation to mapped conversation, or it may be 
the same for all mapped conversations. 
MC MAX SEND SIZE is stored in the resource 
coj;trol bl~k associated with the conversa­
tion (see "PS.CONY Data-Base Structure" on 
page 5.1-1 and "PS.MC Data Base Structure" 
on page 5.2-4 for further details>. 

If the length of the data returned from the 
mapper does not exceed MC_MAX_SEND_SIZE, 
PS.MC creates a GOS variable containing a 

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-5 



data* 

v 

mapping 

v 

mapped data 

-- OR --

I I I I 
v v v v 

LL GOS ID data LL GOS ID data LL data LL data 

'-----~·v,__ ___ __.._ __ v,__ _ __, '---v----' 
logical record logical record logical record logical record 

GOS variable containing 
one logical record 

GOS variable containing multiple logical records 

* This data is supplied by the transaction program in an MC_SEND_DATA verb. 

Note: The DATA field of the first, or only, logical record in a GOS variable begins Nith a 2-byte 
GOS ID. Subsequent logical records in the same GOS variable do not carry a GOS ID value. 

Figure 5.2-4. Transformation of Data from MC_SEND_DATA to a GOS Variable 

5.2-6 

single logical record. MC_MAX_SEND_SIZE is 
used only to determine how many logical 
records to create from the data; i t is not 
~sed to determine whether enough data exists 
to be sent to the partner LU. CSee Fig­
ure 5.2-4.) 

If PS.MC determines that multiple logical 
records are required, the LL fields of all 
but the last logical record have the 
high-order bit turned .!ID to indicate that 
the data is continued in the next logical 
record. PS.MC continues to create logical 
records containing data returned from the 
mapper until the end of the data is reached. 
The high-order bit of the LL field of the 
last logical record in the outgoing GOS vari-

able is turned off by the mapper. Fig­
ure S.2-4 illustrates the transfer of 
outgoing data from its beginning in the DATA 
parameter of MC_SEND_DATA to its final posi­
tion in a logical record in a GOS variable. 

When the TP is receiving data, this process 
is reversed. PS.MC continues to receive data 
from PS.CONY until it receives a logical 
record in which the high-order bit of the LL 
field is off. At this point, PS.MC has a 
complete data GOS variable. Next, PS.MC 
strips the GOS ID and LLs from the received 
data, and maps the data according to the cur­
rently effective map name.. The mapped data 
goes into application transaction program 
variables. 

SNA Format and Protocol Reference Manual for LU Type 6.2 



In either case, exactly one data GOS variable 
is creci ted cis a result of each issuance of 
MC_SEND_DATA, and excictly one GOS varicible is 
received as a result of each issuance of 
MC_RECEIVE_AND_WAIT. 

FM HEADER DATA 

In LU 6.2, FM header data is normally proc­
essed by PS rather than by the transaction 
program. All FMHs except FMH-5 Cto initiate 
a conversation) and FMH-7 (to report a PS or 
trcinsact ion progrcim error) cire trcipped cis 
errors. In LU 6.1, however, cin FMH-5 could 
be used for trcinsaction program functions 
(for example, transaction progrcim parameters 
were sometimes encoded in an FMH-5), and 
could flow at any time during a conversation. 
Therefore, in order to allow transaction pro­
grams that were written for LU 6.1 to run on 
LU 6.2, PS.MC provides a way for transaction 

EXAMPLES OF MAPPED CONVERSATION VERB PROCESSING 

As discussed in "PS.MC Functions" on page 
5.2-1, one function of PS.MC is to translate 
mapped conversation verbs and their parame­
ters into basic conversation verbs and param­
eters Cthe other functions relate 
specifically to the mapping of data). The 
functions of PS.MC that relate to verb trans­
lation are i llus t rated and described below. 
!The data-mapping-related functions are 
described in detail in "Data Mapping and the 
Mapper" on page 5.2-8.) 

ESTABLISHING A MAPPED CONVERSATION 

A mapped conversation is established when the 
transaction program issues MC_ALLOCATE. 
PS.MC, upon receipt of MC_ALLOCATE from the 
transaction program, performs some initial 
processing. If the processing succeeds, then 
PS.MC issues the basic conversation verb 
ALLOCATE, with TYPECMAPPED CONVERSATION), to 
PS.CONY. PS.CONV copies the supplied TYPE 
value into the Resource Type field in the 
FMH-5 that it creates as a result of the 
ALLOCATE. Then, after completing its normal 
ALLOCATE processing, returns control to 
PS.MC. 

When the FMH-5 arrives at the target LU, it 
causes the conversation partner transaction 
program to be attached C or invoked l. When 
the partner program is attached, it is only 
for the mapped conversation with the trans­
action program that has just invoked it. It 
may, however, request additional mapped con­
versations by issuing MC_ALLOCATE verbs of 
its own. 

Once PS.MC returns control to the transaction 
program after processing of the MC_ALLOCATE 

progrcims to prevent PS from intercepting the 
FM header data that they are trying to 
exchange. 

If the TP wants to send application data con­
taining FM headers to its partner, the TP 
issues MC SEND DATA with FMH DATACYES). This 
causes PS.MC to create a U~er Control Data 
GDS variable to contain the data. When FM 
header data is contained in a User Control 
Data GOS variable, the sending PS and the 
receiving PS do not process it; they allow it 
to flow directly to the receiving TP. PS.MC 
notifies the receiving TP of the presence of 
FM headers in the received data on the 
MC RECEIVE AND WAIT verb (see SHA Transaction 
Pr;;grammer-;-s Reference Manual for LU ~ 
~) that the receiving TP issues to receive 
the data. 

Currently, the sole use of User Control Data 
GOS variables on mapped conversations is this 
processing of FM header data. 

is complete, the transaction program may 
issue m<1pped conversation verbs on the con­
versation whose ID was returned in the 
RESOURCE_ID parameter of the MC_ALLOCATE. 

PS.VERB_ROUTER prohibits the transaction pro­
gram from issuing basic conversation verbs 
specifying the resource ID of this mapped 
conversation. When the transaction program 
issues a mapped conversation verb, however, 
PS. VERB_ROUTER allows PS. MC, as part of its 
processing of that verb, to issue a basic 
conversation verb on the same mapped conver­
sation. See Chapter 5.0 for a further dis­
cussion of this topic. 

TERMINATING A MAPPED CONVERSATION 

When the transaction program determines that 
its processing related to a mapped conversa­
tion has completed, or that the mapped con­
versation should be ended for other reasons, 
it causes the conversation to be terminated 
by issuing MC_DEALLOCATE. PS.MC processes 
this by issuing DEALLOCATE to PS.CONV. How­
ever, if the MC_DEALLOCATE specified a deal­
location type of ABEND Csee SHA Transaction 
Programmer's Reference Manual for LU !YJ1!! 
6.2), PS.MC first translates the ABEND value 
to ABEND_PROG before setting the type of 
deallocation. This reflects the fact that it 
is the transaction program, rather than 
PS.MC, that caused the DEALLOCATE to be 
issued. For all other types of deallocation, 
PS.MC sets the TYPE field of the DEALLOCATE 
to the value specified in that field of the 
MC_DEALLOCATE. 

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-7 



5.2-8 

The transaction program sends data to its 
partner by issuing MC_SEND_DATA. The partner 
transaction program receives this data by 
issuing MC_RECEIVE_AND_WAIT. Whenever PS.MC 
processes either of these verbs, it passes 
the data through a component called the 
mapper !page 5.2-46). All m<ipped conversa­
tion dat<i is thus m<ipped twice: once when 
sent, and once when received. PS.MC's proc­
essing of MC_SEND_DATA is called send 
J.!@.rullng; i ts processing of 
MC RECEIVE AND WAIT is called receive 
m<ipping. -The- p<irticuhr m<ippings that the 
mappers perform are determined by the map 
name supplied by the sending transaction pro­
gram. 

BLOCK MAPPING 

PS.MC performs block mapping, where a block 
is the amount of data contained in one data 
GOS variable (see "Construction of GOS Vari­
ables" on page 5.2-5 for definitions and 
descriptions of GOS variables). Typically, a 
data GOS variable (or block J resides in a 
transaction program buffer variable dedicated 
to network communication. The ultimate 
source or destination of the data, however, 
is usually one or more other trans<iction pro­
gram variables th<it are si gni fi cant to the 
transaction progr<im application. A map pro­
vides an algorithm for transferring data 
between trans<iction program application vari­
ables and the trans<iction program buffer var­
iable, and for performing any changes in the 
format or representation of the data that 
this transfer may require. Thus, in receive 
mapping, the received data is mapped out of a 
block and into application variables, whHe 
in send mapping, the data is mapped out of 
application variables and into a block before 
being sent to the conversation partner. 

MAPPING EXAMPLE 

Figure 5.2-5 on page 5.2-9 shows a high-level 
overview of the transformations that map name 
and data undergo during mapping by the send­
ing and receiving transaction programs. Map• 
ping is symmetric, in that receive mapping is 
basically the inverse of send mapping. 

The transaction program sending data on a 
mapped conversation supplies a map name with 
each issuance of MC_SEND_DATA. The map name 
supplied by the sending transaction program 
determines the kind of mapping that occurs. 
In the fl gure, transaction program A issues 
MC_SEND_DATA, supplying MAP_NAMECmap-name-ll 
and DATA!data-1 l. PS.MC, as part of its 
processing of this verb, then invokes the 
mapper. PS.MC passes to the mapper 
map-name-1 and data-1. 

The output from the mapper is map-name-2 and 
data-2. Data-2 may be a different size from 

data-1 and may be in an entirely different 
format. After reformatting data-2 into a GOS 
variable (by break.i ng it into logical records 
according to MC_MAX_SEND_SIZE, and prefixing 
a GOS ID), PS.MC sends map-name-2 and data-2 
to the partner LU. 

When the data arrives, the PS.MC component at 
the partner LU processes the 
MC_RECEIVE_AND_WAIT by repeatedly issuing 
RECEIVE AND WAIT with a fi 11 value of LL. 
PS.MC accu;ulates the data, one logical 
record at a time, until it receives a logical 
record whose LL field indicates that it is 
the final logical record of the incoming data 
GOS variable. At this point, PS.MC has one 
complete data GOS variable. It then strips 
the GOS ID and LLs, and invokes the mapper, 
passing it map-name-2 and data-2. Here, at 
the receiving LU, the map name and data once 
again go through a transformation. The 
receiving mapper trans forms map-name-2 and 
data-2 into map-name-3 and data-3, and 
returns these to the receiving transaction 
program in the MAP_NAME and DATA parameters 
of MC_RECEIVE_AND_WAIT Conly the amount of 
data requested by the transaction program is 
passed to it; any rem<iining data that is not 
requested and returned is discarded). Data-3 
may again differ in size and format from 
data-2, or from data-1. Map-name-3, similar­
ly, may be different from map-name-2 and 
map-name-1. In the simplest case, the three 
map names are identical. 

"Send Mapping" on page 5.2-10 "Receive Map­
ping" on page 5.2-11 show more details of the 
processing of HC_SEND_DATA and 
MC_RECEIVE_AND_WAIT. 

MAP NAMES 

With every issuance of MC SEND DATA, the 
transaction program supplies - a m;p name to 
PS.MC and the mapper. Similarly, on every 
issuance of MC_RECEIVE_AND_WAIT, the mapper 
returns a map name to the transaction pro­
gram. The sending transaction program may 
supply the same map name repeatedly, and the 
same map name may be received repeatedly by 
the receiving transaction program, but the 
sending PS.MC does not send consecutive 
duplicate map names. Instead, the locally 
known map name supplied by the transaction 
program is translated into a globally known 
map name and stored in the MAPPER_SAVE_AREA 
as the currently effective map name. This 
map name is similarly stored by the receiving 
PS.MC. The sending PS.MC sends (and the 
receiving PS.MC receives) a new map name only 
when the currently effective map name 
changes. The currently effective map name 
changes when the map name supplied by the 
sending transaction program is translated 
into a globally known map name that differs 
from the currently effective one stored in 
the MAPPER_SAVE_AREA. When the mapper dis­
covers this difference, it updates the cur-

SNA Format and Protocol Reference Manual for LU Type 6.2 



TPCA) 

map-name-1, data-I 

!Sending LU) 
PS.MC 

C UPM_MAPPER ) 

map-name-2, data-2 

!Receiving LU) 
PS.MC 

CUPM_MAPPER) 
TPCB) 

map-name-3, data-3 

Map-name-I and data-I are supplied by the sending transaction program on MC_SEND_OATA. Map-name-2 
and data-2 flow from sending PS.MC to receiving PS.MC as GOS variables. Map-name-3 and data-3 are 
passed to the receiving transaction program via MC_RECEIVE_ANO_WAIT 

See "Mapping Example" for an explanation of the flows shown in this figure. 

Figure 5.2-5. An Example of Mapping 

rently effective map name in its 
MAPPER_SAVE_AREA, and informs PS.MC of this 
change by returning an indicator and the new 
map name. 

The mapper can translate map names in many 
different ways. It may, for example, trans­
late the supplied map name to null, thereby 
preventing the data from being transformed. 
The mapper may also translate two different 
locally known map names to the same globally 
known map name. For instance, if the trans­
action program issues MC_SENO_OATA with map 
name A followed by another MC_SENO_OATA with 
map name B, the mapper may map both map names 
to map name C. Moreover, the mapper may 
translate the same locally known map name 
differently on different occasions. If the 
transaction program issues MC_SENO_OATA with 
map name A and the mapper translates it to 
map name B, then when the transaction program 
again issues MC_SENO_OATA with map name A, 
the mapper may, because of information known 
only to itself, translate this map name to 
map name C. Nevertheless, the translation of 
map names by the mapper is subject to some 
constraints. For example, the mapper never 
translates a null map name to a nonnull map 
name. 

.t!!e ~ GOS Variables 

To complete its processing of a change in the 
effective map name, the sending PS.MC must 
notify the receiving PS.MC of the change. It 
does this by sending to the receiving PS.MC a 
Map Name GOS variable containing the new 
effective map name. In this situation, a 
single MC_SENO_OATA causes two GOS variables 

to be created: a Map Name GOS variable and a 
data GOS variable. 

Similarly, the receiving mapper saves, in its 
MAPPER_SAVE_AREA, the map name received in a 
Map Name GOS variable. When subsequent data 
GOS variables are received with no interven­
ing Map Name GOS variables, the mapper uses 
the saved map name in mapping the new data. 
Once a Map Name GOS variable is received, 
that map name remains in effect until another 
map name is received or the mapped conversa­
tion ends. 

When the effective map name is null !with a 
length of zero), mapping is said to be "off"; 
that is, any data passed to the mapper is 
returned unchanged. At the beginning of all 
mapped conversations, the effective map names 
are initialized to null. This happens prior 
to any flow of Map Name GOS variables. A Map 
Name GOS variable containing a null map name 
is sent to the partner only to change the 
effective map name back to null after it has 
not previously been null. If the transaction 
program always supplies a null map name, no 
Map Name GOS variable is ever sent to the 
partner LU. 

MAPPER INVOCATION 

PS.MC invokes the mapper whenever any of the 
following occurs: 

• "The transaction program sends or receives 
. data (that is, issues MC_SEND_OATA or 

MC_RECEIVE_AND_WAIT>. The data may be 
application data or FM header data; both 
of these types of data may be mapped. 

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-9 



5.2-10 

• PS.MC receives, from PS.CONY, information 
indicating that the partner transaction 
program has received and processed all 
the recently sent map names. This 
includes information such as a positive 
reply to CONFIRM or to SYNCPT, or any 
information that the partner transaction 
program issued from SEND state (see 
explanation below). 

The mapper is also invoked during the error 
processing triggered by the events listed 
below. This processing is more thoroughly 
described in "Mapper Errors" on page 5.2-12. 

• 

• 

• 

• 

• 

The transaction program issues 
MC_SEND_ERROR. 

PS.MC issues SENO_ERROR with a type value 
of SVC (see SNA Transaction Programmer's 
Reference Manual for LU ~ Ll J. 

The transaction program or the sync point 
manager ("Chapter 5.3. Presentation Serv­
i ces--Sync Point Services Verbs") issues 
BACKOUT. 

A return code of SVC_ERROR_* is received 
from PS. Cot-IV. 

A return code of PROG_ERROR_* is received 
from PS.CONV. 

A positive reply to CONFIRM or to SYNC PT 
informs the mapper that any map names it has 
caused to be sent to the partner have been 
received and processed by it. For example, 
if the mapper causes a Map Name GDS variable 
to be sent to the partner LU, and is informed 
that a pos i ti ve reply to CONFIRM has been 
received, and is next invoked because the 
partner LU detected an error while in RECEIVE 
state, the mapper knows, because of the 
intervening confirmation, that the error 
processing at the partner did not cause the 
map name to be purged. The mapper does not 
cause a duplicate map name to be sent in this 
case. 

In addition, receipt of data from the partner 
also indicates that all the recently sent map 
names have been processed, because the part­
ner cannot have sent data unless it has 
entered SEND state, and it cannot have 
entered SEMO state (from RECEIVE state, which 
is the state it was in when it was receiving 
and processing the data sent by the trans­
action program) unless it has finished 
receiving and mapping all the data that the 
transaction program was sending. Moreover, 
not only receipt of data, but receipt of any 
information whatsoever that the partner 
issued from SEND state (such as a SEND indi­
cator, CONFIRM, or even an error notifica­
tion J indicates to the mapper that the 
partner has received and processed the most 
recently sent map names. 

MAPPER PARAMETERS 

Each time PS.MC invokes the mapper, 1t sup­
plies required information to th'1! mapper. 

This information ineludes, in addition to the 
map name and the data to be mapped, such 
information as whether send or receive map­
ping is to be performed. Also, based upon 
the reason for the mapper invocation, infor­
mation may be returned by the mapper to 
PS.MC. The mapper also uses other data 
structures in the RCB to store currently 
effective map names and incoming data. The 
information used and returned by the mapper 
is listed below. For a further descdption 
of mapper input and output, see the formal 
description of the UPM_MAPPER on page 5.2-46. 

Supplied Information 

• Reason for the mapper invocation 

Data mapping 

Errors 

Positive confirmation 

• Data polarity 

Send 

Receive 

• FMH data indicator 

• Input map name 

• Input data 

• Error code 

Returned Information 

• Output map name 

• Output data (mapped data> 

• Mapper return code 

SEND MAPPING 

When the transaction program is sending data 
(i.e., when PS.MC is processing 
MC_SEND_DATAJ, the mapper is responsible for: 

• Mapping the data supplied by the trans­
action program !in the verb's DATA param­
eter l in accordance with the MAP _NAME 
parameter supplied by the transaction 
program 

• Mapping the locally known map name sup­
plied by the transaction program to a 
globally known map name corresponding to 
the format of the mapped data 

Determining whether to send a Map Name 
GOS variable to the partner LU, and pre­
venting duplicate Map Name GOS variables 
from flowing consecutively to the partner 
LU 

SHA Format and Protocol Reference Manual for LU Type 6.2 



• Determining whether to resend a Map Name 
GOS varh:ible to the partner LU, in the 
event of an error 

PS.MC's processing of MC_SEND_DATA is 
described below. For example, the trans­
action program issues MC_SEND_DATA with 
MAP_NAME!A) and DATA!data-1). PS.MC invokes 
the mapper, informing it that send mapping is 
to be performed. PS.MC also passes to the 
mapper the supplied map name and data. 

The mapper translates map name A to map name 
B and maps data-1 to data-2, to be sent to 
the partner LU. The translated map name, 
since it differs from the currently effective 
map name (which is stored in the 
MAPPER_SAVE_AREA and is initially null> is 
returned to PS.MC. The translated data is 
also returned. 

When control is returned to PS.MC from the 
mapper call, PS.MC first determines whether 
the mapper succeeded in mapping the supplied 
data (it could have failed if the trans­
action program had provided a map name 
unknown to the mapper J • Si nee the mapping 
was successful, PS.MC next determines whether 
a new map name has been returned. In this 
case, the mapper has returned the ouput map 
name, because the translated map name B dif­
fers from the currently effective map name. 
Therefore, PS.MC updates the currently effec­
tive map name to B and creates a Map Name GOS 
variable !to be sent to the partner) contain­
ing map name B. PS.MC next formats the data 
returned by the mapper as a an Application 
Data or User Control Data GOS variable, by 
segmenting it into logical records and pre­
fixing the GOS ID. PS.MC uses the 
MC_MAX_SEND_SIZE field in the RCB to deter­
mine the size of the logical records. 

Finally, PS.MC issues SEND DATA, with a DATA 
parameter containing the Map Name and data 
GOS variables. When the SEND_DATA completes 
successfully, PS.MC returns control to the 
transaction program, indicating that the 
MC_SEND_DATA was also successful. 

When the transaction program again issues 
MC_SEND_DATA, again specifying a map name of 
A, PS.MC again invokes the mapper. As in the 
previous invocation, the mapper translates 
map name A to map name B. Since it has 
already caused PS.MC to send map name B to 
the partner LU, it does not return an output 
map name to PS.MC. 

Since no map name was returned from the 
mapper, PS.MC does not create a Map Name GOS 
variable. It processes the output data as 
above, creating an Application Data or User 
Control Data GOS variable containing the 
data. Finally, it issues SEND_DATA with a 
DATA parameter containing only the data GOS 
variable. An OK return code is returned on 
the SEND DATA, and PS.MC returns a return 
code of OK on the MC_SEND_DATA. 

RECEIVE MAPPING 

When the transaction program is receiving 
data (i.e., when PS.MC is processing 
MC RECEIVE AND WAIT), ihe mapper is responsi­
bl; for - -

• Mapping the data received from the part­
ner LU in accordance with the currently 
effective map name, 

• Mapping the currently effective map name 
to a locally known map name corresponding 
to the format of the mapped data, and 
returning this map name and the mapped 
data to the transaction program, and 

• Optionally, checking incoming Map Name 
GOS variables from the partner LU for 
duplication and symbol-string consisten­
cy. 

An example of PS.MC's processing of 
MC_RECEIVE_AND_WAIT is described below. 

Fi rs t, PS. MC issues the basic conversation 
verb RECEIVE_AND_WAIT to PS.CONV, specifying 
a fill value of LL (see SNA Transaction Pro­
grammer's Reference Manual for LU ~ Ll) 
to request that PS.CONV return one logical 
record. After the RECEIVE_AND_WAIT completes 
successfully, PS.MC finds that the data 
received consists of a Map Name GOS variable. 
Knowing that a data GOS variable is to follow 
the map name, PS. MC again issues 
RECEIVE_AND_WAIT to PS.CONV, again retriev­
ing one logical record. The data received in 
the second RECEIVE_AND_WAIT is application or 
FM header data, but the high-order bit of the 
LL field in the logical record indicates that 
more data follows that is to be associated 
with the data just received; that is, the 
data GOS variable consists of multiple log­
ical records Csee "Construction of GOS Vari­
ables" on page 5.2-5). PS.MC continues to 
request data from PS.CONV until the 
high-order bit of the LL field of the 
received logical record is off, indicating 
that the entire data GOS variable has been 
received. In the example, this occurs on the 
third RECEIVE_AND_WAIT. 

PS.MC has now received a map name and data to 
be mapped. It invokes the mapper and 
receives from the mapper the map name and 
mapped data to be passed to the transaction 
program. PS.MC passes to the transaction 
program the amount of data that the trans­
action program has requested, and discards 
any remaining data. 

MC TEST PROC 

An implementation of the mapped conversation 
verbs includes an entry point, MC_TEST_PROC, 
which can be used to determine whether a com­
plete data GOS variable has been rece 1 ved 
from the remote TP without causing the call­
ing program to wait if data is not available 
htmediately. This entry point is called by 
the implementation of the WAIT verb, which 

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-11 



enables a TP to wait for arrival of data on 
any of a list of basic and mapped conversa­
tions. 

An MC_POST_ON_RECEIPT verb must be issued 
before a call to MC_PROC_TEST is effective. 
Thus~ MC_POST_ON_RECEIPT must be issued 
before a WAIT verb that includes a mapped 
conversation in its list. Then a sequence of 
calls can be made to MC_TEST_PROC, which 
returns the code OK when a complete data GOS 
variable is available. 

In order to determine whether a complete data 
GOS variable has been received from the 
remote TP, MC_ TEST _PROC has to issue a 
RECEIVE_AND_WAIT verb, so that it can examine 
the data. Several RECEIVE_ANO_WAIT verbs may 
be required before a complete data GOS vari­
able is received. As the pieces of the data 
GOS variable are received, they are placed in 
an RCB field, MC_RECEIVE_BUFFER, where they 
are held until the local TP issues an 
MC_RECEIVE_AND_WAIT verb. 

To make sure that the RECEIVE_AND_WAIT verbs 
that it issues do not cause waits for data to 
be received from the remote TP, MC TEST PROC 
calls a similar entry point of- PS.CONV, 
TEST_PROC, to determine whether a logical 
record has already been received. Only when 
such a record is ava i !able does it issue a 
RECEIVE_AND_WAIT verb. 

An example of the use of MC_ TEST _PROC is 
illustrated in Figure 5.2-6 on page 5.2-13 
and described below. This figure begins with 
the TP issuing an MC_POST_ON_RECEIPT verb for 
a specified mapped conversation. It then 
issues a WAIT verb, which causes the 
PS.VERB_ROUTER to call MC_TEST_PROC for the 
specified conversation, as well as others. 
MC_ TEST _PROC first checks the 
MC RECEIVE BUFFER in the RCB associated with 
the conve.=;.at ion to see if i t holds a com­
plete data GOS variable. In this example, 
PS.MC does not have a data GOS variable 
ready. Therefore, MC_TEST_PROC calls 
TEST_PROC to determine whether PS.CONV has 
any data ready to be received. PS.CONV 
returns to PS.MC with a code indicating that 
data is available, WHAT_RECEIVED = 
DATA_COMPLETE. PS.MC issues RECEIVE_AND_WAIT 
to retrieve the waiting data. After inspect­
ing the data, PS.MC discovers that it is not 

MAPPED CONVERSATION ERRORS 

MAPPER ERRORS 

In send mapping, the supplied map name is not 
checked for symbol-string consistency; its 
symbol-string restrictions, if any, are 
implementation-defined. The mapper trans­
lates the supplied map name to a globally 
known map name that conforms to the 
symbol-string definitions in the SNA Trans­
action Proarammer's Reference Manual for .J.Y 
!.i£Q! 6.2. PS.MC, therefore, also performs no 

sufficient to complete the current data GOS 
variable. PS.MC stores the received data in 
MC_RECEIVE_BUFFER, issues POST_ON_RECEIPT to 
request that PS.CONV reinitiate posting, and 
returns the code UNSUCCESSFUL to 
PS.VERB_ROUTER. PS.VERB_ROUTER resumes test­
ing this resource and all others specified in 
the WAIT verb for receipt of a complete data 
GOS variable. 

In this example, had the call to TEST_PROC 
returned any code other than OK--DATA, PS.MC 
would not issue RECEIVE_AND_WAIT but would 
return to PS. VERB_ROUTER the same code that 
it received from TEST PROC. On the other 
hand, had the data returned by 
RECEIVE_AND_WAIT completed a data GOS vari­
able, MC TEST PROC would not have issued 
POST _ON_RECEIPT but would have returned the 
code OK--DATA to PS.VERB_ROUTER. 

When MC_TEST PROC is called, 
MC_RECEIVE_BUFFER is in one of the following 
states: 

• It is empty. 
• It contains the initial logical records 

of a data GOS variable (perhaps preceded 
by an associated map name GOS variable>, 
but does not yet contain the remaining 
logical records of the data GOS variable, 
which must be received before the data 
can be passed to the transaction program. 

• It contains a complete data GOS variable 
that is ready to be mapped and passed to 
the transaction program. 

Once a complete data GOS variable has been 
received, PS.MC requests no more information 
from PS.CONV unti 1 it passes to the trans­
action program the data already in 
MC_RECEIVE_BUFFER. 

MC_RECEIVE_BUFFER may contain many different 
types of information. It may contain tran­
sient information, such as a return code or a 
SEND indicator, which is returned to the 
transaction program as soon as processing of 
the current verb is completed. It may con­
tain part or all of a data GOS variable. 
These logical records remain in the list 
until the incoming data GOS variable is com­
plete and is retrieved by RECEIVE_AND_WAIT. 

checking of the globally known map name 
returned by the mapper; the mapper is respon­
sible for supplying map names that conform to 
SHA-defined formats. In receive mapping, 
however, the mapper does check the map name 
received in a Map Name GOS variable for 
symbol-string consistency. The mapper 
informs PS.MC via a return code of 
MAP_NOT_FOUND when the map name violates 
SHA-defined symbol-string types, or when the 
map name conforms to defined symbol-string 
types but i s unknown to the mapper ( see 

5.2-12 SHA Format and Protocol Reference Manual for LU Type 6.2 



TP PS.VERB_ROUTER PS.MC PS.CONY 

MC_POST_ON_RECEIPT POST_ON_RECEIPT (FILL = LL) 

~------------------------------ <- - - - - - - - - - - - - -

WAIT Call MC_TEST_PROC 

MC_RECEIVE_BUFFER does not hold 
a complete data GOS variable 

Call TEST_PROC 

return code = OK--DATA 
<- - - - - - - - - - - - - -

PS.CONV has data 

RECEIVE_AND_WAIT (FILL = LL> 
~~~~~~~~~~~~~> 

WHAT_RECEIVED = DATA_COMPLETE
<- - - - - - - - - - - - - -

More Data to be Received.

POST_ON_RECEIPT IFILL = LL>

return code = UNSUCCESSFUL
<- - - - - - - - - - - - - -

Continue testing for posting by
any resource specified in the verb

<- - - - - - - - - - - - - -

See "MC_TEST_PROC" on page 5.2-11 for an explanation of the flows shown in this figure.

Note: Only those parameters pertinent to the example are shown.

Figure 5.2-6. MC_TEST_PROC

Appendix H for definitions of the valid
symbol-string types).

The mapper also performs an optional receive
check to determine if it has received a map
name that is the duplicate of the map name
last received. If it has, then the mapper
informs PS.MC, which ends the mapped conver­
sation. See "Protocol Violations" on page
5.2-14 for details.

If notification of an error is received,
PS.MC passes the error notification to the
transaction program as a return code. In
addition, PS.MC invokes the mapper to inform
it of the error. The mapper then determines
whether a map name needs to be re-sent, since
the MC_SENO_ERROR issued by the partner
transaction program or PS.MC might have
caused the map name to be purged on receipt.

If notification of an error is received and
the mapper has previously caused PS.MC to
send a map name to the partner LU, the mapper
checks to see if any information has been
received that would indicate that the partner
LU has received and processed the map name.
Examples of the type of information that
would indicate this are an affirmative reply
to CONFIRM or to SYNCPT, received data, or a
SEND indicator. If none of the above has
been received, the mapper causes a map name
to be re-sent to the partner LU. The map
name that is sent is based upon the map name
supplied by the transaction program on the
next MC_SEND_DATA.

The mapper needs to be informed of any errors
that occur on a mapped conversation, and of
any issuances of BACKOUT that occur on a
mapped conversation whose synchronization

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-13

level is SYNC PT, because these events may
require the mapper to re-send the currently
effective map name. In the case of an error
detected by the partner LU, a map name that
the mapper has sent to the partner may have
been purged by the partner as a result of its
error processing. Therefore, the mapper has
to determine whether it needs to re-send the
map name that may have been purged. In the
case of BACKOUT, the entire mapped conversa­
tion is required to revert to the status it
had at the last issuance of SYNPCT. If the
currently effective map name has changed
s i nee then, the mapper needs to resend the
map name that was in effect at the last issu­
ance of SYNCPT.

ERROR DATA GDS VARIABLES

A GDS variable that is not created as a
direct result of action taken by the trans­
action program is the Error Data GDS vari­
able. When PS. MC detects an error in the
data being received from the p;;irtner LU, it
issues a SEND_ERROR TYPE (SVC l followed by a
SEND_DATA. The DATA parameter of the
SEND DATA contains the Error Data GOS vari­
able: which describes the exact nature of the
error encountered. The transaction program
serviced by the PS.MC that received the data
and detected the error is not informed of the
error. The trans;;ict ion program that issued
the data in which an error was found is told
of the error via a return code derived from
the information contained in the Error Data
GOS variable (see "Processing of a Service
Error Detected by Partner LU" on page
5. 2-17 l. An example of the type of error
that PS.MC might encounter in received data
is receipt of a User Control Data GOS vari­
;;ible when FM he;;ider data is not supported by
the tr;;insaction program or the LU.

PROTOCOL VIOLATIONS

PS.MC performs optional receive checks to
determine if the partner LU h;;is committed Q

protocol violation. An example of a protocol
violation PS.MC can detect is the receipt of
a Map N;;ime GOS variable followed by something
other th;;in a dat;;i GOS vari ;;ible C m;;ip n;;imes
h;;ive to be followed by d;;it;;iJ.

When PS.MC detects a protocol violation such
;;is the one ;;ibove, it issues DEALLOCATE with
TYPE!ABENO SVCJ and returns a return code. of
RESOURCE FAILURE NO RETRY to the tr;;ins;;iction
program.- Cor.=-espondingly, when PS.MC
receives a return code of DEALLO-
CATE ABEND SVC or DEALLOCATE ABEND TIMER from
PS.CONY, Tt transl;;ites th; retu;:n code to
RESOURCE_FAILURE_NO_RETRY, ;;ind p;;isses it to
the trans;;iction program.

If, however, the protocol violation occurred
because the mapped convers;;ition ended prem;;i­
turely at the partner LU (i.e., the partner
LU has issued ;;i de;;illocation notific;;ition
th;;it indicates a protocol error), then PS.MC
simply logs the error and passes the

RESOURCE_FAILURE_NO_RETRY return code to the
transaction program. Since the mapped con­
vers;;ition has ;;ilre;;idy been dealloc;;ited ;;it the
p;;irtner LU, PS.MC c;;innot issue the DEALLOCATE
!TYPE=ABEND_SVC> th;;it it normally issues when
it detects a protocol viol;;ition.

SERVICE ERRORS

The TP, upon detecting ;;in error on a mapped
convers;;ition, issues MC_SEND_ERROR with
TYPECPROGJ. This indic;;ites that the type of
error detected was ;;i progr;;im error Ci.e., was
;;in error discovered by Q TPJ. Another c;;ite­
gory of errors may be detected by the LU
rather th;;in the TP. These errors are c;;illed
service errors because they are detected by a
present;;it ion services component wi tM n the
LU.

As ;;i service component, PS.MC checks for cer­
tain types of service errors. If a p;;irtner
TP requests a function, such ;;is h;;indling of
function m;;inagement header CFMH) d;;it;;i, th;;it
is not supported by the loc;;il LU or tr;;ins­
;;iction progr;;im, PS.MC performs service error
processing ;;ind ;;idvises the partner LU of the
lack of support for that function.

Another servke error th;;it PS.MC m;;iy detect
is receipt of a map n;;ime from the partner LU
th;;it is not known by the mapper. Similarly,
the m;;ipper m;;iy find th;;it the data and.the m;;ip
n;;ime it h;;is received from the p;;irtner LU ;;ire
incomp;;itible, i.e., that the data c;;innot be
mapped using the received m;;ip n;;ime.

PS.MC also h;;indles receipt of a service error
notific;;ition from a p;;irtner LU when it is the
p;;irtner th;;it discovered the service error.

The following sections describe the process­
ing th;;it PS.MC performs when it detects Q

service error, ;;ind the processing that
results when PS.MC le;;irns th;;it the p;;irtner
detected ;;in error.

SERVICE ERRORS DETECTED IN RECEIVED DATA

As mentioned e;;irlier, one type of error th;;it
PS.MC m;;iy detect is receipt of an invalid map
n;;ime. Figure 5.2-7 on p;;ige 5.2-15 illus­
tr;;ites this service error. In the figure,
PS.MC has issued ;;i RECEIVE_AND_WAIT to
PS. CONY as ;;i result of the
MC_RECEIVE_AND_WAIT issued by the TP. The
data returned in the RECEIVE_AND_WAIT is ;;i
M;;ip Name GOS v;;iri;;ible. PS.MC stores the m;;ip
name and issues ;;inother RECEIVE_ANO_WAIT in
order to receive the data that follows the
map n;;ime. In this ex;;imple, PS.MC receives Q

complete data GOS variable in the
RECEIVE ANO WAIT (;;ind therefore does not
retriev; any more d;;ita from PS.CONY).

PS.MC invokes the mapper, passing it the
received m;;ip n;;ime and dat;;i. Inste;;id of map­
ping the d;;it;;i, however, the mapper returns to
PS.MC a return code indic;;iting that the m;;ip
n;;ime received is invalid. The m;;ipper h;;is

SNA Format and Protocol Reference Manual for LU Type 6.2

TP PS.He HAPPER PS.CONV

HC_RECEIVE_AND_WAIT RECEIVE_AND_WAIT lFILL = LL)
~--------------------~> --->

WHAT_RECEIVED = DATA_COMPLETE
~------------------------------

Data ;s a Hap Name GDS var;able.
RECEIVE_AND_WAIT lFILL = LL)

--->
WHAT_RECEIVED = DATA_COMPLETE

~------------------------------
Data ;s a complete data GDS var;able.

INPUT_DATA=data-1
INPUT_HAP_NAHE=map-name-1

----------------------~>

RETURN_CODE=HAP_NOT_FOUND
<-------------

SEND_ERROR (TYPE = SVC>
--->

RETURN_CODE = OK
~------------------------------

SEND_DATA IDATA = Error Data GOS var;able>
--->

RETURN_CODE = OK
~------------------------------

PREPARE_TO_RECEIVE ITYPE = FLUSH>
--->

RETURN_CODE = OK
~------------------------------

RECEIVE_AND_WAIT
--->

WHAT_RECEIVED = DATA_COMPLETE
~------------------------------

• •
•

See "Serv;ce Errors Detected ;n Received Data" for an explanation of the flows shown in tMs figure.

Figure 5.2-9 on page 5.2-18 is the complement of this figure, showing the processing that occurs
when an LU is informed of an error comm;tted at that LU. Note: Only those parameters pertinent to
the example are shown.

F;gure 5.2-7. Detect;ng a Service Error as a Result of MC_RECEIVE_AND_WAIT Process;ng

detected a service error and informed PS. t1C
of the error.

PS.MC now has to inform the partner that a
service error occurred and to return SEND
control of the mapped conversation to the
partner TP. PS. MC first ; ssues SEND_ERROR

with TYPE(SVC). Th; s tells the partner LU
only that an error occurred; it does not
indicate to the partner the exact nature of
the error. In order to convey this important
information to the partner, PS.HC creates an
Error Data GOS variable. The GOS variable
carr;es an indicaUon that the received map

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-15

PS.VERB_ROUTER PS.MC PS.CONV

Call MC_TEST_PROC

RETURN_CODE = UNSUCCESSFUL
<-

TEST

RETURN_CODE = OK
<- - -

RECEIVE_AND_WAIT !FILL = LL)

WHAT_RECEIVED = DATA_COMPLETE
<- - - - - - - - - - - - - - - - - - -

PS.MC examines the data
and detects an error.

SEND_ERROR CTYPE = SVC}

RETURN_CODE = OK
<- - - - - - - -

SEND_DATA !DATA = Error Data GOS variable)

RETURN_CODE = OK
<- -

PREPARE_TO_RECEIVE !TYPE = FLUSH)

RETURN_CODE = OK
<-

POST_ON_RECEIPT CFILL = LLl

~---------------------

See "Service Errors Detected in Received Data" for an explanation of the flows shown in this figure.

Note: Only those parameters pertinent to the example are shown.

Figure 5.2-8. Detecting a Service Error as a Result of a Call to MC_TEST_PROC

5.2-16

name was not found in the mapper's library of
map names; the invalid map name is also
returned to the partner LU in the Error Data
GOS variable so that the partner LU will know
exactly which map name was unknown. PS.MC
then issues a SEND_DATA carrying the Error
Data GOS variable to PS.CONV.

PS. MC completes i ts processing of the
received service error by issuing PRE­
PARE TO RECEIVE with TYPECFLUSHl, which
retu;ns-SEND control of the mapped conversa­
tion to the partner TP.

PS. MC does not inform i ts local TP of the
service error committed by the partner LU.
It instead returns SEND control of the mapped
conversation to the partner TP, which is
informed of the error, and waits for the
partner TP to recover from the error. The
transaction program that committed the error

is responsible for determining what error
recovery is to take place. When the service
error is detected as a result of an
MC_RECEIVE_AND_WAIT, PS.MC immediately issues
another RECEIVE_AND_WAIT to wait for informa­
tion from the partner.

Figure 5.2-8 illustrates a slightly different
situation in which a service error is
detected. This time, the error is detected
in data that was received as a result of a
call to MC_TEST_PROC by the PS.VERB_ROUTER
while it is processing a WAIT verb. Another
difference is that instead of the mapper
detecting the error, PS.MC discovers it. One
cause of this type of error would be incoming
data requesting a function that the receiving
PS.MC did not support I for example, the func­
tion of handling FM header data when User
Control Data GOS variables are not supported
by the receiving PS.MC).

SNA Format and Protocol Reference Manual for LU Type 6.2

In handling this error during a call to
MC_TEST_PROC, PS.MC, as in the
MC RECEIVE AND WAIT example, issues
SEND_ERROR-; f;;llowed by SEND_DATA with an
Error Data GOS variable, followed by PRE­
PARE ro RECEIVE with lYPElfLUSHJ. PS.MC then
contTnu;s, however, in a manner different
from the MC_RECEIVE_AND_WAIT example:
MC TEST PROC returns to the PS. VERB ROUTER,
after p;ssing SEND control of the mapped con­
versation to the partner (and after causing
posting to be re-activated). The
PS. VERB_ROUTER is informed that its MC_ TEST
was unsuccessful, but not of the spec i f i c
error.

PROCESSING OF A SERVICE ERROR DETECTED BY
PARTNER LU

PS.MC also handles service errors that are
detected by the partner LU. The error could
have been detected in data sent to the part­
ner LU by the local TP. Alternatively, the
partner LU may have detected an error while
sending data to PS.MC. Figure 5.2-9 on page
5.2-18 and Figure 5.2-10 on page 5.2-19
illustrate these two cases of error notifica­
tion.

In Figure 5.2-9 on page 5.2-18, the trans­
action program is in the midst of sending
data to the partner transaction program.
However, a return code of SVC_ERROR_PURGING
is returned on one of the SEND_DATAs that
PS.MC issues to PS.CONY. The
SVC ERROR PURGING return code indicates that
the - partn-;r LU has detected an error in the
data it has received. PS.MC, upon receipt of
the SVC ERROR PURGING return code, issues a
RECEIVE_::-AND_WAIT to learn the type of service
error the partner LU encountered. The data
returned in the RECEIVE_ANO_WAIT consists of
an Error Data GOS variable specifying the
type of service error. The return code that
PS.MC returns to the transaction program is
derived from the information carried in the
Error Data GOS variable. Before returning to
the transaction program, PS.MC issues another
RECEIVE AND WAIT to retrieve the SEND indica­
tor. As discussed in the previous section,
the transaction program that caused a service
error to be committed is responsible for
determining what error recovery is to occur.
PS.MC returns to the transaction program with

a return code, in this example, of
MAP_NOT_FOUND. The transaction program still
has SEND control of the mapped conversation
!the transaction program is placed in SEND
state as a result of a remotely detected
error, even if the transaction program was in
RECEIVE state when it issued the verb on
which the error is reported!.

The example shown in Figure 5.2-7 on page
5.2-15 and described in "Processing of a
Service Error Detected by Partner LU" is the
complement of the example just discussed and
shown in Figure 5.2-9 on page 5.2-18. The
f i rs t figure mentioned shows a transaction
program requesting to receive data on a
mapped conversation and the LU detecting an
error in the data received. The second fig­
ure shows a transaction program sending data
on a mapped conversation and being notified
that a problem with the data was encountered
at the partner LU.

As was pointed out in "Block Mapping" on page
5.2-8, PS.MC never sends a service-error
notification to its partner from SEND state.
An LU providing implementation-defined map­
ping, however, could issue such an error.
For example, the LU may have mapped some, but
not all, of the data issued by the trans­
action program in an MC_SEND_DATA. The part
of the data that has been mapped is sent on
the mapped conversation. While mapping the
remainder of the data, however, the mapper
discovers a problem. H informs its PS.MC
component, which then issues a service-error
notification indicating that data truncation
has occurred at the sending LU. An LU with
implementation-defined mapping may also, at
some point, need to notify its partner that
an error was detected but no data truncation,
has occurred.

While PS.MC does not issue service errors
from SEND state, it does handle receipt of
notifications that the partner LU detected a
service error while it was in SEND state.
Figure 5.2-10 on page 5.2-19 illustrates the
processing that PS.MC performs as a result of
this error. If it has received any incom­
plete data prior to receiving the
service-error notification, PS.MC purges the
data and immediately begins to wait for new
data to arrive. Again, the transaction pro­
gram is not informed of the error.

Chapter 5. 2. Presentation Servi ces--Mapped C,onversat ion Verbs 5.2-17

TP

MC_SEND_DATA

RETURN_CODE = OK
~-~-------------------

MC_SEND_DATA

PS.He PS.CONY

•
• •

$END_DATA

RETURN_CODE = OK

~---------------------

SEND_DATA

RETURN_CODE = SVC_ERROR_PURGING
~---------------------

RECEIVE_AND_WAIT

WHAT_RECEIVED = DATA_COMPLETE
~---------------------

Data ;s an Error Data GDS var;able.

RECEIVE_AND_WAIT

RETURN_CODE = MAP_NOT_FOUND WHAT_RECEIVED = SEND
~--------------------- ~---------------------

See "Process;ng of a Servfoe Error Detected by Partner LU" for an explanation of the flows that are
shown ;n th;s f;gure.

f;gure 5.2-7 on page 5.2-15 ;s the complement of this figure, showing the processing that occurs at
the LU that detects an error ;n received data. The SVC_ERROR_PUR~ING return code can be returned on
several verbs. SEND_DATA is used here as an example of one of the verbs possible.

Note: Only those parameters pertinent to the example are shown.

Figure 5.2-9. Receipt by PS.MC of a SVC_ERROR_PURGING Return Code

5.2-18 SNA,format and Protocol Reference Manual for LU Type 6.2

TP PS.MC PS.CONV

MC_RECEIVE_AND_WAIT RECEIVE_AND_WAIT <FILL = LL)
--> -->

RETURN_COOE = svc_ERROR_TRUNC/SVC_ERROR_NO_TRUNC
~---------------------

PS.MC purges any data that it has received
prior to the service error notification.

RECEIVE_AND_WAIT
-->

• • •
See "Processing of a Service Error Detected by Partner LU" for an explanation of the flows that are
shown in this figure.

The processing that occurs when a SVC_ERROR_TRUNC or SVC_ERROR NO TRUNC return code is received by
PS.MC while processing a call to MC TEST PROC differs from thi; figure only in that PS.MC does not
issue a RECEIVE_ANO_WAIT after receiving-the return code. PS.MC returns a code of UNSUCCESSFUL to
the PS.VERB_ROUTER.

Note: Only those parameters pertinent to the example are shown.

Figure 5.2-10. Receipt by PS.MC of a SVC_ERROR_TRUNC or SVC_ERROR_NO_TRUNC Return Code

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-19

PS_MC

5.2-20

PS_MC

FUNCTION: This procedure receives mapped conversation verbs 1ssued by the transaction
program, and routes each verb to the appropriate procedure for processing.

PS. MC is c.alled by PS. VERB_ROUTER (Chapter 5. 0) as a result of the transaction
program's issuing a mapped conversation verb.

INPUT: The current transaction program verb
PS_PROCESS_DATA is provided by the resources
be accessed by all the procedures within PS.

is passed with parameters;
manager at creation time and may

OUTPUT: Refer to the procedures that are called from this procedure for the specific
outputs.

Referenced procedures, FSHs, and data structures:
MC_ALLOCATE_PROC
MC_CONFIRM_PROC
MC_CONFIRMED_PROC
MC_DEALLOCATE_PROC
MC_FLUSH_PROC
MC_GET_ATTRIBUTES_PROC
MC_POST_ON_RECEIPT_PROC
MC_PREPARE_TO_RECEIVE_PROC
MC_RECEIVE_AND_WAIT_PROC
MC_REQUEST_TO_SEND_PROC
MC_SEND_DATA_PROC
MC_SEND_ERROR_PROC

PS_PROCESS_DATA

Select based on the mapped conversation verb (issued by the TPl:
When ALLOCATE

Call MC_ALLOCATE_PROC !page 5.2-21).
When CONFIRM

Call MC_CONFIRM_PROC !page 5.2-221.
When CONFIRMED

Call MC_CONFIRMED_PROC !page 5.2-23).
When DEALLOCATE

Call MC_DEALLOCATE_PROC !page 5.2-23).
When FLUSH

CALL MC_FLUSH_PROC (page 5.2-24).
When GET ATTRIBUTES
Call MC_GET_ATTRIBUTES_PROC (page 5.2-24).

When POST_ON_RECEIPT
Call MC_POST_ON_RECEIPT_PROC !page 5.2-251.

When PREPARE TO RECEIVE
Call MC_PREPARE:ro_RECEIVE_PROC (page 5.2-26).

When RECEIVE AND WAIT
Call MC_RECEIVE_AND_WAIT_PROC !page 5.2-271.

When REQUEST_TO_SEND
Call MC_REQUEST_TO_SEND_PROC (page 5.2-37).

When SEND DATA
Call MC_SEND_DATA_PROC !page 5.2-38).

When SEND_ERROR
Call MC_SEND_ERROR_PROC Cpage 5.2-40).

SNA Format and Protocol Reference Manual for LU Type 6.2

page 5.2-21
page 5.2-22
page 5.2-23
page 5.2-23
page 5.2-24
page 5.2-24
page 5.2-25
page 5.2-26
page 5.2-27
page 5.2-37
page 5.2-38
page 5.2-40

page 5.0-20

MC_ALLOCATE_PROC

MC_ALLOCATE_PROC

FUNCTION: This procedure handles the allocation of mapped conversations.

INPUT: MC_ALLOCATE verb parameters (See fil:!A Transaction Programmer's Reference Manual
for LU~ L,g.I

OUTPUT: A return code as described in SNA Transaction Programmer's Reference Manual
for LU~ L,g. Also, if the allocation is successful, PS.MC initializes the
mapped conversation fields in the RCS that is created by the ALLOCATE verb and
returns the ID of this RCS.

NOTES: 1. The SNASVCMG mode name is not allowed at the mapped conversation protocol
boundary.

2. A return code on ALLOCATE of PARAMETER ERROR or UNSUCCESSFUL indicates that no
resource has been allocated (and, the;efore, no RCS has been created!. When
the ALLOCATE returns a RETURN_CODE value of OK or ALLOCATION_ERROR, an RCS has
been created.

Referenced procedures, FSMs, and data structures:
PS_VERS_ROUTER
DEALLOCATION_CLEANUP_PROC

RCS

If the transaction program supports mapped conversations and
the mode name is not SHASVCMG (see Note 11 then

Call PS_VERS_ROUTER !Chapter 5.01 to issue an ALLOCATE
verb using the parameters given with the MC_ALLOCATE verb and
specifying that the conversation type is mapped.

Set the return code to the value returned by the ALLOCATE verb.
If the return code from ALLOCATE was OK or ALLOCATION_ERROR then

Prepare to return the ID of the RCS created by the ALLOCATE verb.
Initialize RCS.MAPPER_SAVE_AREA as required by·the implementation.
Set RCS.MC_MAX_SEHD_SIZE to the implementation limit on the

length of RUs that can be sent to the partner LU.

Else (allocation of a conversation is not allowed!
Call DEALLOCATIOH_CLEANUP_PROC !Chapter 5.01.

page 5.0-12
page 5.0-14

page A-7

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-21

MC_CONFJ;RM_PROC

MC_CONFIRM_PROC

s.2-22

FUNCTION: This procedure processes MC_CONFIRM verbs.

INPUT: MC_CONFIRM verb parameters (See SNA Traosaction Proarammer's Reference Manual
for LU !.)m.! 6 • 2 •)

OUTPUT: A return code as described in .fil:!A Transaction Programmer's Reference Manual
for LU !,)m,! 6.2. If a request to send is received from the remote transaction
program while processing a CONFIRM verb, this request is also indicated to the
local TP.

NOTES: 1. PS.MC performs no check to determine if the conversation is in an appropriate
state to receive an MC_CONFIRM verb. A state check is performed by PS.CONY
(Chapter 5.1) during its processing of the CONFIRM verb.

2. The processing that PS.MC performs as a result of receiving a return code of
SVC_ERROR_PURGING involves issuing the necessary RECEIVE_AND_WAIT verbs. A
request to send by the remote TP may be indicated by one of these
RECEIVE_AND_WAIT verbs, as well as by the CONFIRM verb. In either case, the
indication is passed to the local TP.

Referenced procedures, FSMs, and data structures:
RCVD_svc_ERROR_PURGING
PS_SPS
UPM_MAPPER
PS_VERB_ROUTER

RCB

Find the RCB for the specified conversation (resource).
Call PS~VERB_ROUTER (Chapter 5.0) to issue a CONFIRM verb

for the current conversation.

Select based on the code returned by CONFIRM:
When OK

Set the return code to the value returned by the CONFIRM verb.
Call UPM_MAPPER (page 5.2-46) to record a positive confirmation.

When PROG_ERROR_PURGING
Set the return code to the value returned by the CONFIRM verb.
Call UPM_MAPPER (page 5.2-46) to record a remotely detected
error of the type indicated by the return code from CONFIRM.

page S.2-42
page S.3-20
page S.2-46
page S.0-12

page A-7

When ALLOCATION_ERROR, RESOURCE_FAILURE_RETRY, or RESOURCE_FAILURE_NO_RETRY
Set the return code to the value returned by CONFIRM.

When .DEALLOCATE_ABEND_PROG
Set the return code to DEALLOCATE_ABEND.

When DEALLOCATE_ABEND_SVC or DEALLOCATE~ABEND_TIMER
Set the return code to RESOURCE_FAILURE_NO_RETRY.

When BACKED OUT
Call PS_SPS (sync point manager, Chapter 5.31.
Set the return code to the value returned by CONFIRM.

When SVC_ERROR_PURGING
Call RCVO_svc_ERROR_PURGING (page 5.2-42) to
get and process error data from the remote TP.

Set the return code to the value returned by RCVO_SVC_ERROR_PURGING.
If a request to send has been received from the remote TP and not

indicated on a prior MC_CONFIRM, MC_RECEIVE_AND_WAIT, MC_SEND_DATA, or
MC_SEND_ERROR verb then

Return a request to send received indication to the local TP.

SNA Format and Protocol Reference Manual for LU Type 6.2
(

HC_CONFIRMED_PROC

HC_CONFIRMED_PROC

FUNCTION: This procedure processes MC~CONFIRMED verbs.

INPUT: MC_CONFIRMED verb parameters (See SNA Transaction Programmer's Reference !:!!DY=
al for LU ~ Ll. J

NOTE: PS.MC performs no check to determine if the conversation is in an appropriate
state to receive an MC CONFIRMED. A state check is performed by PS.CONV
(Chapter 5.1) during its-processing of the CONFIRMED verb.

Referenced procedures, FSMs, and data structures:
PS_VERB_ROUTER

Call PS_VERB_ROUTER (Chapter 5.0J to issue a CONFIRMED
verb for the current conversation.

HC_DEALLOCATE_PROC

page 5.0-12

FUNCTION: This procedure handles the deallocation of mapped conversation resources.

INPUT: MC_DEALLOCATE verb parameters (See ~ Transaction Programmer's Reference ~
ual for LU Dm.! 6.2.)

OUTPUT: A return code as described in SNA Transaction Programmer's Reference Manual
for LU Dm.! Ll·

NOTE: PS.MC performs no check to determine if the conversation is in an appropriate
state to receive an MC DEALLOCATE. A state check is performed by PS.CONV
(Chapter 5.1) during its-processing of the DEALLOCATE verb.

Referenced procedures, FSMs, and data structures:
RCVD_svc_ERROR_PURGING
PS_VERB_ROUTER
UPM_MAPPER

RCB

Find the RCB for the specified conversaUon (resource).
If the deallocation type is ABEND then

Clear RCB.MC_RECEIVE_BUFFER.
Call PS_VERB_ROUTER !Chapter 5.0) to issue a DEALLOCATE

Else

verb for the current conversation with no error data and indicating
that the type of deallocation is ABEND_PROG.

Call PS_VERB_ROUTER (Chapter 5.0J to issue a DEALLOCATE
verb for the current conversation with no error data and the
specified deallocation type.

Select based on the return code from DEALLOCATE:

page 5.2-42
page 5.0-12
page 5.2-46

page A-7

When OK, ALLOCATION_ERROR, RESOURCE_FAILURE_RETRY, or RESOURCE_FAILURE NO RETRY
Set the return code to the code returned by DEALLOCATE.

When PROG ERROR PURGING
Set th; return code to the code returned by DEALLOCATE.
Call UPM_MAPPER (page 5.2-46) to record a

remotely detected error of the type indicated by the return code
from the DEALLOCATE verb.

When DEALLOCATE_ABEND_PROG
Set the return code to DEALLOCATE_ABEND.

When DEALLOCATE_ABEND_SVC or DEALLOCATE_ABEND_TIMER
Set the return code to RESOURCE_FAILURE_NO_RETRY.

When SVC_ERROR_PURGING
Call RCVD_svc_ERROR_PURGING (page 5.2-42).

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-23

MC_FLUSH_PROC

5.2-24

MC_F LUSH_PROC

FUNCTION:

INPUT:

NOTE:

This procedure processes MC_FLUSH verbs.

MC_FLUSH verb parameters (See fil:!A Transaction Proarammer's Reference Manual
fQJ: ..bY !la!!! Ll .)

PS.MC performs no check to determine if the conversation is in an appropriate
state to receive an MC_FLUSH. A state check is performed by PS.CONV !Chapter
5.1) during its processing of the FLUSH verb.

Referenced procedures, FSMs, and data structures:
PS_VERB_ROUTER

Call PS_VERB_ROUTER !Chapter 5.0) to issue a FLUSH
verb for the current conversation.

MC_GET_ATTRIBUTES_PROC

page 5.0-12

FUNCTION: This procedure handles requests from the transaction program for information
about a mapped conversation.

INPUT:

OUTPUT:

MC_GET_ATTRIBUTES verb parameters (See SNA Transaction Proarammer's Reference
Manual for LU !la!!! Ll.)

PS.MC issues a GET_ATTRIBUTES verb for the resource specified in
MC_GET_ATTRIBUTES. PS.MC places the information returned in the
GET_ATTRIBUTES verb into the appropriate fields in the MC_GET_ATTRIBUTES and
returns control to the transaction program.

Issue a basic GET_ATTRIBUTES verb on the current conversation.

Return the attributes of the mapped conversation, returned
from the GET_ATTRIBUTES verb, to the TP, such as the fully
qualified LU names of both LUs of the conversation, the
mode name, and the synchronization level.

SNA Format and Protocol Reference Manual. for LU Type 6.2

MC_POST_ON_RECEIPT_PROC

MC_POST_ON_RECEIPT_PROC

FlJNCTION: Thfa p1ocedure processes MC_POST_Ol-i_RECEIPT verbs.

INPUT:

OUTPUT:

MC_POST_ON_RECEIPT verb parameters !See SNA Transaction Programmer's Re'ference
Manual for LU ~ Ll. l

If the MC_RECEIVE_BUFFER is empty when the MC_POST_ON_RECEIPT is issued, PS.MC
issues a POST_ON_RECEIPT verb Otherwise, no POST_ON_RECEIPT is necessary !see
below l.

NOTES: 1. If the MC_RECEIVE_BUFFER is not empty, the transaction program has, prior to
issuing the current MC POST ON RECEIPT, issued one or more MC_POST_ON_RECEIPTs
followed by one or m~re MC TESTs. The MC TEST processing caused PS.MC to
receive data !via a RECEIVE ANO WAITI from PS.CONY !Chapter 5.ll and PS.MC has
stored that data in the MC_RECEIVE_BUFFER. See "MC_TEST_PROC" on page 5.2-11
for a discussion of MC_TEST.

2. If the information stored in the MC_RECEIVE_BUFFER indicates that a complete
Application Oata or User Control Data GOS variable has been received (and that
the data in that variable has been mapped), then PS.MC has already informed
the transaction program via the RETURN_CODE on a previous MC_TEST that posting
has been satisfied. The transaction program, however, has issued another
MC_POST_ON_RECEIPT (after having issued an MC_TEST on which was returned a
return code of OK--DATAJ. PS.MC remembers the fact that an MC POST ON RECEIPT
has been issued, in case the transaction program issues another MC_TEST, but
does not issue a POST_ON_RECEIPT to PS.CONY.

3. If the data stored in the MC RECEIVE BUFFER is not complete Ci.e., a Map Name
GOS variable, but no data, has bee~ received; or part, but not all, of the
data in an Application or FMH Data GOS variable has been received), posting is
still activated. PS.MC, therefore, does not issue a POST ON RECEIPT to
PS.CONY. In this situation, the transaction program has issu;d ~ne or more
prior MC_TESTs, all of which have been unsuccessful.

4. PS.MC performs no check to determine if the conversation is in an appropriate
state to receive an MC_POST_ON_RECEIPT. This state check is performed by
PS.CONV !Chapter 5.ll during its processing of the POST_ON_RECEIPT verb, if
PS.MC issues one. As described above, there are certain situations in which
PS.MC receives an MC_POST_ON_RECEIPT from the transaction program but does not
issue a POST ON RECEIPT to PS.CONY. In these situations, however, the
MC_RECEIVE_BUFFER-in the RCB is not empty. This indicates that the conversa­
tion is in RECEIVE state and therefore the MC_POST_ON_RECEIPT is valid at the
present time.

Referenced procedures, FSMs, and data structures:
RCB page A-7

If the RCB.MC_RECEIVE_BUFFER for the current conversation is empty then
Issue a basic POST_ON_RECEIPT verb on this conversation, specifying the maximum
length of the data to be received before posting, and that posting should
be done after receiving a complete logical record.

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-25

MC_PREPARE_TO_RECEIVE_PROC

MC_PREPARE_TO_RECEIVE_PROC

5.2-26

FUNCTION: This procedure processes MC_PREPARE_TO_RECEIVE verbs.

PS.MC issues a PREPARE_TO_RECEIVE verb against the resource specified in the
MC PREPARE TO RECEIVE. It sets the return code field in the
MC=PREPARE:To:RECEIVE based upon the value returned in the PREPARE TO RECEIVE.
Some return codes, such as OK, are placed in the MC PREPARE TO RECEIVE
unchanged. Others, such as DEALLOCATE ABEND PROG, are transformed-to-another
value before being placed in the MC-PREPARE TO RECEIVE. In addition, some
return codes cause PS.MC to perform further -pr~cessing. For example, when
PS.MC receives a return code of PROG_ERROR_PURGING to its PREPARE_TO_RECEIVE,
it invokes the mapper to inform that procedure that an error was detected by
the partner transaction program. (See "Mapper Invocation" on page 5.2-9.)
When a return code of SVC_ERROR_PURGING is received, PS.NC performs the proc­
essing necessary to determine what type of service error the PS.MC component
at the partner LU encountered. A return code reflecting the type of error is
returned to the local transaction program in the MC_PREPARE_TO_RECEIVE. (See
"Processing of a Service Error Detected by Partner LU" on page 5.2-17.l

INPUT: MC_PREPARE_TO_RECEIVE verb parameters <See SNA Transaction Programmer's Refer­
~ Manual for LU Turul Ll·)

OUTPUT: PS.NC issues a PREPARE_TO_RECEIVE
NC_PREPARE_TO_RECEIVE based upon
PARE_TO_RECEIVE.

verb and sets the return code
the corresponding field

field in the
in the PRE-

NOTE: PS.MC performs no check to determine if the conversation is in an appropriate
state to receive an MC PREPARE TO RECEIVE. This state check is performed by
PS.CONV (Chapter 5.1) d~ring it; p~ocessing of the PREPARE_TO_RECEIVE verb.

Referenced procedures, FSNs, and data structures:
UPN_MAPPER
RCVD_SVC_ERROR_PURGING
PS_VERB_ROUTER

RCB

Find the RCB for the current conversation.
Call the PS_VERB_ROUTER (Chapter 5.0) to issue a

PREPARE_TO_RECEIVE verb, specifying a LOCKS value and verb type,
for the current RCB.

Select based on the returned PREPARE TO RECEIVE return code:

page 5.2-46
page 5.2-42
page 5.0-12

page A-7

When !OK, ALLOCATION_ERROR, RESOURCE=FAILURE_RETRY, RESOURCE_FAILURE NO RETRY!
Set the NC PREPARE TO RECEIVE return code to the PREPARE_TO_RECEIVE return code.

When !PROG ERROR PURGING)
Call th; UPM_MAPPER !page 5.2-461 to record

the return code for the remotely detected error.
When !DEALLOCATE ABEND PROGJ

Set the MC PREPARE-TO RECEIVE return code to DEALLOCATE ABEND.
When !DEALLOCATE_ABEND:svc, DEALLOCATE_ABEND_TIMERJ -

Set the MC PREPARE TO RECEIVE return code to RESOURCE FAILURE NO RETRY.
When CSVC ERROR PURGING>- - - -

Call RCVD_svc:ERROR_PURGING lpage 5.2-421 to
do service error processing, specifying the return code and current RCB.

SNA Format and Protocol Reference Manual for LU Type 6.2

MC_RECEIVE_AND_WAIT_PROC

MC_RECEIVE_AND_WAIT_PROC

FUHCTIOH: This procedure processes HC_RECEIVE_AND_WAif verbs.

INPUT:

OUTPUT:

PS.MC first determines the status of the MC RECEIVE BUFFER. Processing of the
MC_RECEIVE_AND_WAIT continues based upon th; status-of the buffer.

The MC RECEIVE BUFFER contains any information that has been received from
PS.CONV CChapt;r 5.ll but has not yet been passed to the transaction program.
It is in one of the following states: Cl) the buffer is empty, (2) the buffer
contains information, but the information is incomplete and more has to be
received before it can be passed to the transaction program, or (3) the buffer
contains information that is complete and ready to be passed to the trans­
action program.

If the MC_RECEIVE_BUFFER is not empty, the transaction program has issued one
or more prior HC_TEST verbs. The pro.cessing that PS.MC performed as a result
of the MC_TEST(s) involved receiving data from PS.CONV. It is the data that
resulted from the MC_TESTCsl that is stored in the MC_RECEIVE_BUFFER.

MC_RECEIVE_AND_WAIT verb parameters CSee SHA Transaction Programmer's Refer­
~ Manual for LU ~ Ll. J

Fields in the MC_RECEIVE_AND_WAIT are set based upon the type of information
being returned to the transaction program.

If the MC_RECEIVE_BUFFER is empty or contains incomplete data, this procedure
causes one or more RECEIVE AND WAIT verbs to be issued to PS.CONV. PS.MC con­
tinues to issue RECEIVE_ANO_WAITs until it has a complete piece of informa­
tion.

NOTES: 1. PS.MC performs no check to determine if the conversation is in an appropriate
state to receive an MC RECEIVE AND WAIT. This state check is performed by
PS.CONV !Chapter 5.JJ d~ring its pr;cessing of the RECEIVE_AND_WAIT verb, if
PS.MC issues one. If the MC_RECEIVE_BUFFER already contains complete informa­
tion ready to be passed to the transaction program, PS.MC does not issue a
RECEIVE_AND_WAIT. However, the fact that the MC_RECEIVE_BUFFER is not empty
indicates that the mapped conversation is in RECEIVE state and that the
MC_RECEIVE_AND_WAIT is valid at the present time.

2. RECEIVE_INFO_PROC C page 5.2-30) issues a RECEIVE AND WAIT to PS.CONV and
causes processing of the information returned in -the-RECEIVE_ANO_WAIT to
occur. It is possible that when control is returned from this procedure, the
MC_RECEIVE_BUFFER is empty, even though data was returned in the
RECEIVE ANO WAIT. This is the case when PS.MC detects an error in the data
(e.g., the data specified a function not supported). Nothing is placed in the
buffer during this invocation of RECEIVE_INFO_PROC. For more details, see
"Service Errors Detected in Received Data" on page 5.2-14.

Referenced procedures, FSMs, and data structures:
RECEIVE_INFO_PROC page 5.2-30

RCS page A-7

If the RCS.MC_RECEIVE_BUFFER contains a null entry, map name, data-continued
indicator, or map name and data-continued indicator then

Call RECEIVE_INFO_PROCCRCSJ !page 5.2-30!
to issue a RECEIVE ANO WAIT verb.

If the RCS.MC RECEIVE BUFFER does not contain a null entry, or contains
mapped data ;r a ret~rn code entry then

Select based on the contents of the RCS.MC RECEIVE BUFFER:
When the buffer element contains a WHAT=RECEIVED indicator

Put the WHAT RECEIVED indicator in the MC RECEIVE ANO WAIT verb.
Set the MC RECEIVE ANO WAIT return code t; OK. - -

When the buff;r eleme~t c;ntains a return code
Set the MC RECEIVE AND WAIT return code to the buffer return code.

When the buff;r eleme~t c;ntains mapped data
Retrieve the mapped data from the MC_RECEIVE_BUFFER and place the

amount of data requested by the transaction program into the DATA
field of the HC_RECEIVE_ANO_WAIT. Indicate whether data was complete
or truncated, and indicate that FMH data, if present, was complete.

Chapter 5.2. Presentation Services--Napped Conversation Verbs 5.2-27

MC_RECEIVE_AND_WAIT_PROC

S.2-28

Clear the MC RECEIVE BUFFER for the current RCB.
If a request-to send-has been received from the remote TP and not returned on
a prior MC_CONFIRM, MC_RECEIVE_AND_WAIT, MC_SEND_DATA, or MC_SEND_ERROR verb then

Return a request-to-send-received indication to the local TP on the verb.

MC_TEST_PROC

FUNCTION: This procedure is used by the WAIT verb to check that an incoming GOS variable
is complete.

INPUT:

OUTPUT:

The RCB for the current conversation and the type of test: POSTED or
REQUEST_TO_SEND_RECEIVED

A return code value of OK, OK--DATA, or UNSUCCESSFUL, the return code stored
in RCB.MC_RECEIVE_BUFFER, or a return code obtained by calling TEST_PROC (page
S.l-26J.

NOTES: 1. If RCB.MC_RECEIVE_BUFFER is not empty when a return code of OK--NOT_DATA is
received, the partner LU has committed a protocol violation. For example, the
partner LU has sent data with an indication that the data is continued in the
next logical record, but instead of sending the remaining data, the partner LU
allowed a SEND indicator to flow.

2. RCB.MC_RECEIVE_BUFFER may be empty at this point. This occurs when the TEST
verb just issued returns OK--DATA but an error is detected in the data by
RECEIVE_INFO_PROC (page S.2-30). For more details, see "Service Errors
Detected in Received Data" on page S.2-14.

3. An INDICATOR element cannot appear in RCB.MC_RECEIVE_BUFFER here. If the TEST
verb just issued returns OK--NOT_DATA, the conversation indicator that caused
this return code remains 1n PS.CONV's buffer. PS.MC does not issue a
RECEIVE_AND_WAIT to PS.CONV to get the indicator until the transaction program
issues an MC_RECEIVE_AND_WAIT.

4. The RCB.MC RECEIVE BUFFER contains data
action pr~gram a; a result of one
(TEST=POSTEDJ.

Referenced procedures, FSMs, and data structures:
TEST_PROC
RECEIVE_INFO_PROC
PROTOCOL_ERROR_PROC
PROCESS_ERROR_OR_FAILURE_RC
PS_VERB_ROUTER
RCB

ready to be returned to
or more prior calls

the trans­
to MC_TEST

page S.1-26
page S.2-30
page S.2-47
page S.2-31
page S.0-12
page A-7

SNA Format and Protocol Reference Manual for LU Type 6.2

Select based on the specified type of test:
When POSTED

If RCB.MC_RECEIVE_BUFFER is empty
or contains a map name or unmapped data then

Call TEST_PROC \petge 5.1-261 io dei:ermine whether i:iie current
conversation has been posted indicating that data, status, or a
request for confirmation has been received from the remote TP.

Select based on the return code from TEST PROC:
When OK--DATA -

Call RECEIVE INFO PROC lpage 5.2-301 to receive
the data and pla;e it in RCB.MC_RECEIVE_BUFFER.

When OK--NOT DATA
If RCB.MC=RECEIVE_BUFFER is empty then

Put the return code from TEST PROC in RCB.MC RECEIVE BUFFER.
Else (optional check when receiving data; see N~te IJ

Call PROTOCOL_ERROR_PROC lpage 5.2-47)
to deallocate the current conversation.

Replace the contents of RCB.MC_RECEIVE_BUFFER with the
return code RESOURCE FAILURE NO RETRY.

When POSTING NOT ACTIVE or UNSUCCESSFUL
Put the r;turn code from TEST PROC in RCB.MC RECEIVE BUFFER.

Otherwise - - -
Call PROCESS_ERROR_OR_FAILURE_RC lpage 5.2-311
to process the return code from TEST_PROC.

If RCB.MC_RECEIVE_BUFFER is empty or contains a map name or
unmapped data (see Note 2J then

Set the code to be returned by this routine to UNSUCCESSFUL.
Call PS_VERB_ROUTER !Chapter 5.0J to issue a POST_ON_RECEIPT

verb specifying posting when a complete or truncated logical
record is received.

Else

Else

Select based on the type of information in RCB.MC_RECEIVED_BUFFER
(see Note 3l:

When it is mapped data
Set code returned by this routine to OK--DATA.

When it is a return code
Set the code returned by this routine to the return

code found in RCB.MC_RECEIVE_BUFFER.
Clear RCB.MC_RECEIVE_BUFFER.

If there is mapped data in RCB.MC_RECEIVE_BUFFER and the local
TP has issued a MC POST ON RECEIPT verb since this data was
mapped then (see N~te 4J -

Set the code to be returned by this routine to OK--DATA.
Else

Set the code to be returned to POSTING_NOT_ACTIVE.

When REQUEST_TO_SEND_RECEIVED
If a request to send has been received from the remote TP and not
yet returned to the local TP then

Return a request-to-send-received indication to the local TP.
Else

Call TEST_PROC lpage 5.1-26) to determine whether
a request to send has been received from the remote TP and is
being held by PS.CONY.

If a request to send was held by PS.CONY then
Return a request-to-send-received indication to the local TP.

MC_TEST_PROC

Chapter 5.2. Presenfation Servic:es--Mapped Conversation Verbs 5.2-29

RECEIVE_INFO_PROC

RECEIVE_INFO_PROC

5.2-30

FUNCTIQN: The purpose of this procedure is to receive information from PS.CONY (Chapter
5.1> and to place that information in the MC_RECEIVE_BUFFER.

This procedure issues a RECEIVE_AND_WAIT for the .apped
sponding to the passed RCB •. ,PS.MC continues the
RECEIVE_AND_WAIT iri other procedures, depending upon the
in the RECEIVE_AND_WAIT.

conversation corre­
process ing of the
return code carried

INPUT: The RCB corresponding to the mapped conversation specified in the TRAHS­
ACTION_PGM_VERB currently being processed

OUTPUT: See the procedures called for the specific outputs.

Referenced procedures, FSMs, and data structures:
PROCESS_ERROR_OR_FAILURE_RC
PROTOCOL_ERROR_PROC
PROCESS_DATA_COMPLETE
PROCESS_DATA_INCOMPLETE
UPM_MAPPER

RCB

Issue a basic RECEIVE_AND_WAIT verb for a complete logical record
specifying the maximum length of the data.

If a request to send data was received from the remote TP then
Save an indication of the request to be returned later.

If the RECEIVE_AND_WAIT was successful then
Select based on the WHAT_RECEIVED field on the RECEIVE_AND_WAIT verb:

When the data received is complete
Call PROCESS_DATA_COMPLETEIRCB, RECEIVE_AND_WAIT) (page 5.2-33).

When the data received is incomplete
Call PROCESS_DATA_INCOMPLETEIRCB) (page 5.2-36).

When the RCB.MC_RECEIVE_BUFFER is empty
Put the WHAT_RECEIVED indicator in the MC_RECEIVE_BUFFER

of the current RCB.
Call the UPM_MAPPER !page 5.2-46) to save an

indication that the end of the logical message was received.

page 5.2-31
page 5.2-47
page 5.2-33
page 5.2-36
page 5.2-46

page A-7

When the RCB.MC_RECEIVE_BUFFER is not empty, but does not contain data,
Clear the MC_RECEIVE_BUFFER in the current RCB.

Else

Call PROTOCOL_ERROR_PROC (page 5.2-471
to deallocate the current conversation.

Put the RESOURCE_FAILURE_NO_RETRY return code in the
MC_RECEIVE_BUFFER of the current RCB.

Call PROCESS_ERROR_OR_FAILURE_RC !page 5.2-31)

SNA Format and Protocol Reference Manual for LU Type 6.2

PROCESS_ERROR_OR_FAILURE_RC

PROCESS_ERROR_OR_FAILURE_RC

FUNCTION: This procedure is invoked after PS.MC has issued a RECEIVE_AN!J_WA!T to which
has been returned a RETURN_CODE value other than OK. Processing of the return
code continues in other procedures, depending upon the return code.

INPUT: The RCB corresponding to the conversation specified in the verb being proc­
essed, and the RECEIVE_ANO_WAIT return code to be processed

OUTPUT: A return code value is placed in RCB.MC_RECEIVE_BUFFER.

NOTES: 1. Certain return codes are invalid if RCB.MC_RECEIVE_BUFFER is not empty, and,
if received at such a time, indicate that the partner LU has committed a pro­
tocol violation. Depending upon the return code, PS.MC may end the mapped
conversation.

2. A return code on RECEIVE AND WAIT of ALLOCATION ERROR cannot occur if prior
information has been received-on the specified mapped conversation.

3. A return code on RECEIVE_AND_WAIT of PROG_ERROR_PURGING or SVC_ERROR_PURGING
cannot occur if MC_RECEIVE_BUFFER is not empty. It can occur only if the
RECEIVE_AND_WAIT was issued by PS.MC while the mapped conversation was in SEND
state. CThe partner transaction program or LU that issued the *_ERROR_PURGING
information was in RECEIVE state.) Since the mapped conversation was in the
SEND state locally, no information can be in RCB.MC_RECEIVE_BUFFER.

4. The return codes that reference this note can be received at any time and are
valid regardless of the status of RCB.MC_RECEIVE_BUFFER.

5. A return code of * ERROR TRUNC cannot be received on the RECEIVE_ANO_WAIT
issued by this procedur; because it can only be received following a
RECEIVE AND WAIT in which a WHAT RECEIVED value of DATA INCOMPLETE is
returned. (This procedure is not invoked after a DATA_INCOMPLETE indicator
has been received.)

Referenced procedures, FSMs, and data structures:
PS_SPS
RCVD_SVC_ERROR_TRUNC_NO_TRUNC
RCVD_SVC_ERROR_PURGING
UPM_MAPPER
PROTOCOL_ERROR_PROC

RCB

Select based on the RECEIVE_ANO_WAIT return code being processed:
When ALLOCATION ERROR Csee Note 2)

Put the retu;n code in RCB.MC_RECEIVE_BUFFER.
When DEALLOCATE NORMAL

If RCB.MC_RECEIVE_BUFFER is empty then
Put the return code in RCB.MC_RECEIVE_BUFFER.

Else (optional check when receiving data; see Note 1)
Replace the contents of RCB.MC_RECEIVE_BUFFER by the return

code value RESOURCE FAILURE NO RETRY.
Optionally log imple;entatio~-d;pendent error data.

When DEALLOCATE_ABEND_PROG
If RCB.MC_RECEIVE_BUFFER is empty then

Put the return code DEALLOCATE ABEND in RCB.MC RECEIVE BUFFER.
Else (optional check when receivi~g data; see Not; 1) -

Replace the contents of RCB.MC_RECEIVE_BUFFER by the return
code RESOURCE FAILURE NO RETRY.

Optionally log-impleme~tation-dependent error data.
When PROG ERROR PURGING (see Note 3)

Put th; retu;n code parameter in RCB.MC_RECEIVE_BUFFER.
Call UPM_MAPPER Cpage 5.2-46) to record a remotely detected
error of the type indicated by the return code parameter.

page 5.3-20
page 5.2-41
page 5.2-42
page 5.2-46
page 5.2-47

page A-7

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-31

PROCESS_ERROR_OR_FAILURE_RC

5.2-32

When PROG ERROR NO TRUNC
If RCB~HC_RECEIVE_BUFFER is empty then

Put the return code in RCS.MC RECEIVE BUFFER.
Call UPM_HAPPER !page 5.2-46l-to record a remotely detected
error of the type indicated by the return code.

Else CopHonal check when receiving data; see Note 1)
Call PROTOCOL_ERROR_PROC (page 5.2-47)
to deallocate the current conversation.

Replace the contents of RCB.HC_RECEIVE_BUFFER by the return
code RESOURCE_FAILURE_NO_RETRY.

When DEALLOCATE ABEND SVC, DEALLOCATE ABEND TIMER (see Note 41
Replace the ~ontents of RCB.MC_RECEIVE_BUFFER by the return

code RESOURCE FAILURE NO RETRY.
When RESOURCE FAILURE RETRY,-RESOURCE FAILURE NO RETRY (see Note 4)

Replace th; contents of RCB.HC_RECEIVE_BUFFER-by the return code.
When BACKED OUT

If RCB.HC_RECEIVE_BUFFER is empty then
Call PS_SPS (sync point manager, Chapter 5.3).
Put the return code in RCB.HC RECEIVE BUFFER.

Else !optional check when receiving data; see Note ll
Call PROTOCOL_ERROR_PROC (page 5.2-471

to deallocate the current conversation.
Replace the contents of RCB.HC_RECEIVE_BUFFER by the return

code RESOURCE FAILURE NO RETRY.
When SVC_ERROR_NO_TRUNC !see-Note 41

Clear the RCB.HC RECEIVE BUFFER.
Call RCVD SVC ERROR TRUNC NO TRUNC !page 5.2-411
to proce~s the ret~rn code.-

When SVC_ERROR_PURGING !see Note 31
Call RCVD_SVC_ERROR_PURGING !page 5.2-42J to get

and process error data from the partner LU.
Put the code it returns in RCB.MC_RECEIVE_BUFFER.

SNA Format and Protocol Reference Manual for LU Type 6.2

PROCESS_DATA_COMPLETE

PROCESS_DATA_COMPLETE

FUNCTION: This procedure is invoked when PS.MC issues a RECEIVE_AND WAIT and a value of
DATA_COMPLETE is returned in the WHAT_RECEIVED field of the RECEIVE_AND_WAIT.
The purpose of this procedure is to process the received data.

INPUT:

The data received in the RECEIVE_AND_WAIT is a logical record. It may be the
first or only logical record in a GDS variable. Alternatively, it may be a
subsequent logical record in a GOS variable containing multiple logical
records. A subsequent logical record does not carry a GDS ID field.

If the MC_RECEIVE_BUFFER is empty, the data in the RECEIVE_AND_WAIT is the
initial or only logical record in a GDS variable. This procedure checks the
GDS ID in the logical record and calls the appropriate procedure to process
the data carried in the DATA field of the logical record.

If the MC_RECEIVE_BUFFER contains a map name but no data, the data in the
RECEIVE_AND_WAIT is again the initial or only logical record in a GDS vari­
able. The GDS variable following a Map Name GDS variable has to contain
application or user control data.

If the MC_RECEIVE_BUFFER contains incomplete data or a map name and incomplete
data <i.e., the last logical record in a GDS variable that contains multiple
logical records has not been received), the appropriate procedure is called to
add the data carried in the DATA field of the subsequent logical record to the
data already contained in the MC_RECEIVE_BUFFER If the subsequent logical
record is the last logical record in the GDS variable, additional processing
is performed.

The RCB associated with the mapped conversation specified, in the current verb
issued by the transaction program and the RECEIVE_AND_WAIT <issued by PS.MC)
that contains the data to be processed

OUTPUT: Depending upon the data received, the MC_RECEIVE BUFFER may be updated. See
the procedures called for specific outputs.

Referenced procedures, FSMs, and data structures:
SEND_SVC_ERROR_PURGING
PROTOCOL_ERROR_PROC
PROCESS_MAPPER_RETURN_CODE
UPM_MAPPER

RCB

page 5.2-45
page 5.2-47
page 5.2-35
page 5.2-46

page A-7

If the MC_RECEIVE_BUFFER for the current conversation is empty (no map name) then
Select based on the type of GOS variable in the passed data (first record>:

When a Map Name GDS variable
If the LU receiving the map name supports mapping and the TP for this
conversation supports mapping then

.Put the unmapped map name in the MC_RECEIVE_BUFFER (data incomplete).
Else (the LU or TP doesn't support mapping)

Call SEND_SVC_ERROR_PURGING !page 5.2-45) to
handle the invalid map name and mapping request.

When an Application Data GOS variable
Put the passed unmapped data and an indication that FM headers are
not included in the data in the MC RECEIVE BUFFER.

If data is not continued in the next logical record (only one record> then
Call the UPM_MAPPER!RCB.MAPPER_SAVE_AREA> !page 5.2-46)

to map the received data, specifying that FMH data is not included.
<No mapping will occur if no map name is found.)

Call PROCESS_MAPPER_RETURN_CODE (page 5.2-35).

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-33

PROCESS_DATA-COHPLETE

5.2-34

When • User Control Data GOS variable
If the LU for the current conversation supports FMH data and
the TP for the current conversation supports FMH data then

Put the passed unmapped data and an indication that FM headers are
included in the data in the MC_RECEIVE_BUFFER. ,

If the data is not continued in the next record (one logical record) then
Call the UPM_MAPPERCRCB.MAPPER_SAVE_AREA) (page 5.2-46)

to get the map name and to map the received data, specifying that FMH
data is included. CNo mapping will occur if no map name is found.)

Call PROCESS_MAPPER_RETURN_CODE(RCB) (page 5.2-35).
Else Cthe LU or TP doesn't Support FMH-data)

Call SEND_SVC_ERROR_PURGING (page 5.2-45)
to perform service error purging, and to notify the partner LU.

When a Null Structured Data GOS variable
Do nothing.

When an Error Data GOS variable, optionally
Cal_l PROTOCOL_ERROR_PROC (page 5.2-47)

to deallocate the current conversation.
Put the return code in the MC_RECEIVE_BUFFER of the current RCB.

When the GOS ID is invalid
Call SEND_svc_ERROR_PURGING (page 5.2-45) to
handle the invalid GDS ID Cno such variable type).

Else (the MC_RECEIVE_BUFFER is not empty)
If the buffer element in the MC_RECEIVE_BUFFER is a map name then

Select based on the contents of the passed RECEIVE_AND_WAIT data:
When the GOS ID indicates an Application Data variable

Add the passed data and an indication that FM headers are
not included in the d&ta to the unmapped map name in the
MC_RECEIVE_BUFFER.

If the data is not continued in the next record Cone record) then
Call the UPM_MAPPER I RCB. MAPPER_SAVE_AREA) C page 5. 2-46)

to map the received data in the MC_RECEIVE_BUFFER.
Call PROCESS~MAPPER_RETURN_CODE (page 5.2-35).

When the GOS ID indicates a User Control Data GOS variable
If the LU for the current conversation supports FMH data and
the TP for the current conversation supports FMH data then

Add the passed data and an indication that FM headers are included
in the data to the unmapped map name in the MC_RECEIVE_BUFFER.

If the data is not continued in the next record (only one record) then
Call the UPM_MAPPERIRCB.MAPPER_SAVE_AREA> !page 5.2-46)
to map the received data in the MC_RECEIVE_BUFFER.

Call PROCESS_MAPPER_RETURN_CODE !page 5.2-35).
Else (the LU or TP doesn't support FMH data)

Call SEND_svc_ERROR_PURGING (page 5.2-45)
to perform service error purging, and to notify the partner LU.

When the GOS ID is invalid for a map name buffer element, optionally
Purge the MC_RECEIVE_BUFFER for the current RCB.
CALL PROTOCOL_ERROR_PROC !page 5.2-47) to
deallocate the conversation.

Put the return code in the MC_RECEIVE_BUFFER of the current RCB.
Else lthe buffer element indicates continued data, with or without a map name)

Add the passed data to the data contained in the MC_RECEIVE_BUFFER.
If the data is not continued in the next logical record then

Call the UPM_MAPPER !page 5.2-46) to map the contents
of the MC_RECEIVE_BUFFER la complete variable), specifying the map
name, if any, and that FM header data is included.

SNA Format and Protocol Reference Manual for LU Type 6.2

PROCESS_MAPPER_RETURN_CODE

PROCESS_MAPPER_RETURN_CODE

FUNCTION: This procedure determines whether the mapper Has successful in mapping data.
It ;s ;nvoked after the mapper has been called to process data rece;ved from
the partner transact;on program.

INPUT:

OUTPUT:

The RCB corresponding to the mapped conversat;on over lllhich the data to be
mapped flowed; and a structure containi.ng ;nformation that ;s both suppl;ed
to, and returned from, the mapper

If the mapper was able to successfully map the received data, the mapped data,
along w;th a locally known map name provided by the mapper and an indication
of the format of the mapped data, ;s placed ;n the MC_RECEIVE_BUFFER. If map­
ping was unsuccessful, PS.MC performs service error purg;ng process;ng to
notify the partner LU that the rece;ved data could not be mapped. CSee "Serv­
ice Errors Detected in Rece;ved Data" on page 5.2-14.)

NOTES: 1. If the mapper was successful in mapp;ng the rece;ved data, it always provides
to PS.MC a protocol boundary map name known to the local transaction program.
The map name is supplied by the mapper even when it was invoked without a map
name (in which case, the mapper uses a previously received map name). If map­
ping is off, the mapper supplies a null map name, which is passed to the
transaction program.

2. If the mapper encountered an error in mapping the data, it provides to PS.MC
the map name, known to the remote LU, that was in effect lllhen the mapper was
invoked. PS.MC places the map name in an Error Data GDS variable, lllhich is
sent to the partner LU to notify it of the mapping failure.

3. A return code of MAP_NOT_FOUND cannot be returned from the mapper if the
mapper is invoked without a map name. If the mapper is invoked without a map
name, it determines that it is to use a previously received map name. If the
map name had been unknown to the mapper, this fact would have been discovered
as a result of the earlier mapper invocation.

Referenced procedures, FSMs, and data structures:
SEND_svc_ERROR_PURGING
PROTOCOL_ERROR_PROC

RCB

Select based on the return code from the mapper:
When mapping was successful

Put the mapped map name, an indication that FM headers are included
in the data, and the mapped data in the MC_RECEIVE_BUFFER.

When mapping failed to execute successfully
Call SEND_SVC_ERROR_PURGING (page 5.2-451
specifying the current RCB and the error type.

When the provided map name was not found
Call SEND_svc_ERROR_PURGING (page 5.2-45)
specifying the current RCB and the error type.

When the map name was a duplicate (optional processing for rece;ve only>
Call PROTOCOL_ERROR_PROC !page 5.2-471 to
deallocate the current conversation.

page 5.2-45
page 5.2-47

page A-7

Put a dupl;cate map name return code in the current MC_RECEIVE_BUFFER.

Chapter 5.2. Presentat;on Serv;ces--Mapped Conversation Verbs

\
- \

5.2~35

PROCESS_DATA_INCOMPLETE

PROCESS_DATA_INCOMPLETE

S.2-36

FUNCTION: This procedure is invoked when PS.MC issues a RECEIVE_AND_WAIT as a result of
a mapped conversation verb issued by the transaction program. PS.MC has exam­
ined the value returned in the WHAT_RECEIVED field of the RECEIVE_ANO_WAIT,
determined that the value received is DATA INCOMPLETE, and has discarded the
incomplete logical record. returned in the RECEIVE_AND_WAIT.

This procedure purges the HC_RECEIVE_BUFFER of any data that has been received
via one or more prior RECEIVE_AND_WAITs. It then issues a RECEIVE_AND_WAIT to
determine the reason for the logical record being truncated. Processing con­
tinues based upon the RETURN_CODE value received in the RECEIVE_AND_WAIT.

INPUT: The RCB corresponding to the resource specified in the RECEIVE_AND_WAIT in
which DATA_INCOMPLETE was returned.

OUTPUT: This procedure issues a RECEIVE_AND_WAIT. Depending upon the RETURN_CODE val­
ue returned on the RECEIVE_AND_WAIT, a return code buffer element may be
inserted into the MC_RECEIVE_BUFFER.

NOTE: RETURN_CODE values of DEALLOCATE_ABEND_PROG, PROG_ERROR_TRUNC, and BACKED_OUT
following a DATA_INCOHPLETE notification indicate that the partner LU has com­
mitted a protocol violation by allowing the transaction program to truncate
data. This should never occur at the mapped conversation protocol boundary.
The PS.MC at the partner LU is allowed to truncate a logical record with
SVC_ERROR_TRUNC, for instance; the transaction program is not.

Referenced procedures, FSHs, and data structures:
RCVD_svc_ERROR_TRUNC_NO_TRUNC
PROTOCOL_ERROR_PROC
PS_VERB_ROUTER

RCB

Clear the RCB.MC_RECEIVE_BUFFER.
Call the PS_VERB~ROUTER !Chapter 5.0) to issue a

RECEIVE_AND_WAIT verb to get the return code that explains why the
data was incomplete.

If a request to send data was received from the remote TP then
Save an indication of the request to be returned later.

Select based on the RECEIVE_AND_WAIT return code:
When the return code is SVC_ERROR_TRUNC

Call RCVD_SVC_ERROR_TRUNC_NO_TRUNC to do service error processing
(page 5.2-41).

When the return code is DEALLOCATE ABEND SVC or DEALLOCATE ABEND TIMER
Put the return code RESOURCE_FAILURE_HO_RETRY in the - -

HC_RECEIVE_BUFFER of the current RCB.

page 5.2-41
page 5.2-47
page 5.0-12

page A-7

When the return code is RESOURCE_FAILURE_RETRY or RESOURCE_FAILURE_NO_RETRY
Put the return code in the MC RECEIVE BUFFER of the current RCB.

When the return code is DEALLOCATE_ABEND=PROG, optionally do the following:
Put the return code RESOURCE_FAILURE_NO_RETRY in the

HC_RECEIVE_BUFFER of the current RCB.
Log implementation-dependent error data in the system error log.

When the return code is PROG_ERROR_TRUNC or BACKED_OUT, optionally do the follDNing:
Call PROTOCOL_ERROR_PROC (page 5.2-47) to deallocate the
current conversation.

Put the return code in the MC_RECEIVE_BUFFER of the current RCB.

SNA Format and Protocol Reference Manual for LU Type 6~2

MC_REQUEST_TO_SEND_PROC

HC_REQUEST_TO_SEND_PROC

FUNCTION:

INPUT:

NOTE:

This procedure processes MC_REQUEST_TO_SEND verbs.

PS.HC issues a REQUEST_TO_SEND verb against the resource specified in the
HC_REQUEST_TO_SEND and returns control to the transaction program.

HC_REQUEST_TO_SEND verb parameters.

PS.He performs no check to determine if the conversation is in an appropriate
state to receive an MC_REQUEST_TO_SEND verb. A state check is performed by
PS.CONY CChapter 5.1) during its processing of the REQUEST_TO_SEND verb.

Referenced procedures, FSHs, and data structures:
PS_VERB_ROUTER

Call PS_VERB_ROUTER CChapter 5.0) to issue a
REQUEST_TO_SEND verb for the current conversation.

page 5.0-12

Chapter 5.2. Presentation Services--Happed Conversation Verbs 5.2-37

MC_SEND_DATA_PROC

MC_SEND_DATA_PROC

5.2-38

FUNCTION: This procedure processes MC_SEND_DATA verbs.

INPUT:

OUTPUT:

This procedure causes the mapper to be invoked. If the mapper is successful
in mapping the data contained in the MC_SEND_DATA, or if the mapper determines
that mapping is not being performed, the output data from the mapper is placed
in an Application Data or User Control Data GOS variable !the variable may
contain one or more logical records!. The mapper may also return to PS.MC a
map name that is to be sent to the partner LU, in which case PS.MC also cre­
ates a Map Name GOS variable that precedes the data GOS variable. This proce­
dure then issues a SEND_DATA containing the GOS variable!sl.

PS.MC sets the return code field in the MC_SEND_DATA based upon the value
returned in the SEND_DATA. Some return codes, such as OK, are placed in the
MC_SEND_DATA unchanged. Others, such as DEALLOCATE_ABEND_PROG, are trans­
formed to another value before being placed in the MC_SEND_DATA. In addition,
some return codes cause PS.MC to perform further processing. For example,
when PS.MC receives a return code of PROG_ERROR_PURGING to its SEND_DATA, it
invokes the mapper to inform that procedure that the partner transaction pro­
gram detected an error. (See "Mapper Invocation" on page 5. 2-9.) When a
return code of SVC_ERROR_PURGING is received, PS.MC performs the processing
necessary to determine what type of service error the PS.MC component at the
partner LU encountered. A return code reflecting the type of error is
returned to the local transaction program in the MC_SEND_DATA. (See "Process­
ing of a Service Error Detected by Partner LU" on page 5.2-17.J

MC_SEND_DATA verb parameters (See SNA Transaction Programmer's Reference Man­
.l!ii!! for 1!l .Die.! Ll . l

PS.MC issues a SEND DATA verb. It sets fields in the MC_SEND_DATA based upon
the corresponding v;lues returned in the SEND~DATA.

NOTES: 1. PS.MC performs a check to determine if the conversation is in an appropriate
state to receive an MC_~END_DATA. This is unlike its processing of most
mapped conversation verbs, in that PS.MC generally does not perform this state
check, but instead allows it to be performed by PS.CONV <Chapter 5.ll. PS.MC
performs the state check, rather than deferring it, for the following reasons:
unlike other verbs, the MC_SEND_DATA causes PS.MC to perform some amount of
processing before issuing a basic conversation verb. By PS.MC performing the
state check, any state errors are detected before the processing is performed.
In addition, if the data provided in the MC_SEND_DATA could not be mapped by
the mapper procedure, no basic conversation verb is issued; in order to catch
any state errors, PS.MC has to perform the state check.

2. The processing that PS.MC performs as a result
SVC_ERROR_PURGING involves issuing one or
REQUEST TO SEND RECEIVED information may
RECEIVE=AND_WAIT!sl, and, if this is the case,
reflect this information.

Referenced procedures, FSMs, and data structures:
RCVD_SVC_ERROR_PURGING
PS_SPS
RCB
PS_VERB_ROUTER
UPM_MAPPER
SEND_BUFFER

SNA Format and Protocol Reference Manual for LU Type 6.2

of receiving a return code of
more RECEIVE_AND_WAIT verbs.

be returned on the
the MC_SEND_DATA is updated to

page 5.2-42
page 5.3-20
page A-7
page 5.0-12
page 5.2-46
page 5.2-48

MC_SE"81_DATA_PROC

Find the RCB for the resource specified in the MC_SE"81_DATA verb.
If the resource is in a state to receive data (Chapter 5.lJ then

Call the UPM_MAPPER(RCB.MAPPER_SAVE_AREAJ (page 5.2-46)
to map the data to be sent, specifying the map name and whether or not the data
contains FM header data (all from the verb>.

Select based on the return code from the mapper:
When the mapper return code is MAP_NOT_FOUND

Set the MC_SEND_DATA return code to MAP_NOT_FOUND.
When the mapper return code is MAP_EXECUTION_FAILURE

Set the MC_SEND_DATA return code to MAP_EXECUTION_FAILURE.
Optionally, log implementation-dependent error data in system error log.

When the mapping was successful
If a map name was returned from the mapper then

Create a Map Name GOS variable for the map name and put it in the SEND_BUFFER.
Create a GOS variable that contains the data passed with the verb,

which has been successfully mapped. The GOS variable, depending on the
amount of data, may consist of one logical record or of multiple continued
logical records. Only the first logical record will carry the GDS ID
indicating either a User Control Data or an Application Data GOS variable type.

Put, or add, the data GOS variable in, or to, the SEND_BUFFER.
Call the PS_VERB_ROUTER <Chapter 5.0) to issue a

SEND_DATA verb, specifying the SEND_BUFFER and the length of the data
to send, for the current RCB.

If the SEND_DATA verb processing resulted in a saved request in the
current RCB, from the remote TP, to send data then

Save this request to be returned to the local TP on the MC_SEND_DATA verb.
Select based on the SEND_OATA return code:

When OK do nothing.
When ALLOCATION_ERROR, RESOURCE_FAILURE_RETRY, or RESOURCE_FAILURE_NO_RETRY

Set the MC SEND DATA return code to the SEND DATA return code.
When DEALLCCATE_ABEND_PROG -

Set the MC_SEND_DATA return code to DEALLOCATE_ABENO.
When DEALLOCATE_ABEND_SVC or DEALLOCATE_ABENO_TIMER

Set the MC_SEND_DATA reurn code to RESOURCE_FAILURE_NO_RETRY.
When PROG ERROR PURGING

Set th; MC_SEND_DATA return code to the SENO_DATA return code.
Call UPM_MAPPERCRCB.MAPPER_SAVE_AREAI Cpage 5.2-461

to notify the mapper of the remotely detected error.
When BACKED_OUT

Call PS_SPS (Chapter 5.3).
Set the MC_SEND_DATA return code to the SENO_DATA return code.

When SVC_ERROR_PURGING
Call RCVD_SVC_ERROR_PURGING passing the current RCB and the

SEND_DATA return code !page 5.2-421.
If a request to send has been received from the remote TP and not
returned on a prior MC_CONFIRM, MC_RECEIVE_ANO_WAIT, MC_SENO_DATA,
or MC_SEND_ERROR verb then

Return a request-to-send-received indication to the local TP on
the MC_SEND_DATA verb.

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-39

MC_SEND_ERROR_PROC

MC_SEND_ERROR_PROC

5.2-,40

FUNCTION: This procedure processes MC_SEND_ERROR verbs.

INPUT: MC_SEND_ERROR verb parameters
Manual for LU ~ Ll.)

(See SHA Transaction Programmer's Reference

OUTPUT: A return code indicating the result of the verb execution. An indication that
a request to send has been received from the remote TP may also be returned.

NOTES: 1. PS.MC performs no check to determine if the conversation is in an appropriate
state to receive an MC_SEND_ERROR. A state check is performed by PS.CONV
(Chapter 5.lJ during its processing of the SEND_ERROR verb.

2. The processing that PS.MC performs as a result of receiving a return code of
SVC_ERROR_PURGING involves issuing one or more RECEIVE_AND_WAIT verbs. A
request to send from the remote TP may be returned on a RECEIVE_AND_WAIT and,
if this is the case, an indication of the request is passed to the local TP.

Referenced procedures, FSMs, and data structures:
RCVD_SVC_ERROR_PURGING
PS_SPS
PS_VERB_ROUTER
UPM_MAPPER

RCB

Find the RCB for the specified conversation.
Clear RCB.MC RECEIVE BUFFER.
Call PS_VERB=ROUTER (chapter 5.0l to issue a SEND_ERROR
verb for the current conversation without data for the system error log
and indicating that the request originated from the transaction program.

Select based on the return code from SEND_ERROR:
When OK

Set the return code to the code returned by SEND_ERROR.
If the conversation is in send state !Chapter 5.IJ then

Call UPM_MAPPER !page 5.2-461 to record a locally detected
error of the type PROG_ERROR_NO_TRUNC.

Else
Call UPM_MAPPER !page 5.2-46) to record a locally detected
error of the type PROG_ERROR_PURGING.

When PROG ERROR PURGING
Set th; retu;:n code to the code returned by SEND_ERROR.
Call UPM_MAPPER (page 5.2-46) to record a remotely detected
error of the type indicated by the return code from SEND_ERROR.

When ALLOCATION_ERROR, DEALLOCATE_NORMAL, RESOURCE_FAILURE_RETRY, or
RESOURCE FAILURE NO RETRY

Set th; return-code to the code returned by SEND_ERROR.
When DEALLOCATE ABEND PROG

Set the retu;:n cod; to DEALLOCATE_ABEND.
When DEALLOCATE_ABEND_svc or DEALLOCATE_ABEND_TIMER

Set the return code to RESOURCE_FAILURE_NO_RETRY.
When BACKED_OUT

Call PS_SPS !Chapter 5.3J.
Set the return code to the code returned by SEND_ERROR.

When svc_ERROR_PURGING
Call RCVD_SVC_ERROR_PURGING !page 5.2-42>.
Set the return code to the code returned by RCVD_SVC_ERROR_PURGING.

If a request to send has been received from the remote TP and not
indicated to the local TP on a prior MC_CONFIRM, MC_RECEIVE_AND_WAIT,
MC_SEND_DATA, or MC_SEND_ERROR verb then

Return a request-to-send-received indication to the local TP
(see fil:M Jransaction Programmer's Reference Manual for LU~ Lll.

SNA Format and Protocol Reference Manual for LU Type 6.2

page 5.2-42
page 5.3-20
page 5.0-12
page 5.2-46

page A-7

RCVD_SVC_ERROR_TRUNC_NO_TRUNC

RCVD_SVC_ERROR_TRUNC_NO_TRUNC

FUNCTION: This procedure is invoked when a return code of SVC_ERROR_TRUNC or
SVC_ERROR_NO_TRUNC is returned by a RECEIVE_AND_WAIT verb. This return code
indicates that the partner LU detected a map execution failure while sending
data. All or only part of the date may have been sent. Any data that was
received prior to the error is purged. Error information is optionally placed
in the system error log, but the local transaction program is not informed of
the error.

INPUT: The RCB associated with the mapped conversation on which the service error was
detected and the SVC_ERROR_TRUNC or SVC_ERROR_NO_TRUNC return code

NOTES: 1. If the expected Error Data GOS variable is not received, or is received but
indicates an ~rror condition that is invalid in the present situation, the
partner LU has committed a protocol violation. If the protocol violation
occurred as a result of the partner LU allowing the mapped conversation to be
prematurely ended without having sent the error data, PS.MC simply logs the
error. Otherwise, PS.MC ends the mapped conversation. In either case, PS.MC
inserts a return code of RESOURCE_FAILURE_NO_RETRY in RCB.MC_RECEIVE_BUFFER.

2. A return code of RESOURCE_FAILURE_RETRY or _NO_RETRY can occur at any time and
does not indicate that the partner LU committed a protocol violation.

Referenced procedures, FSMs, and data structures:
UPM_MAPPER
PS_VERB_ROUTER
PROTOCOL_ERROR_PROC

RCB
ERROR~DATA_STRUCTURE

Call UPM_MAPPER !page 5.2-46) to record a remot~ly
detected error of the type SVC_ERROR_TRUNC or SVC_ERROR_NO_TRUNC
as indicated by the input parameter.

Call PS_VERB_ROUTER !Chapter 5.0) to issue a RECEIVE_AND_WAIT
verb for the current conversation, specifying a wait for
the receipt of a complete logical record.

Select based on the return code from RECEIVE_AND_WAIT:
When OK

Interpret the data returned by the RECEIVE_AND_WAIT verb as
an ERROR DATA STRUCTURE.

If RECEIVE_AND=WAIT returns DATA_COMPLETE, the GDS_ID in
ERROR DATA STRUCTURE indicates that the structure contains
error-data-Csee Appendix H>, and ERROR_DATA_STRUCTURE.ERROR_CODE
indicates a map execution failure Csee Appendix H> then

Optionally log implementation-dependent error data.
Else !optional check when receiving data; see Note 1 >

Call PROTOCOL_ERROR_PROC !page 5.2-47>
to deallocate the current conversation.

Put the return code RESOURCE_FAILURE_NO_RETRY in the
MC_RECEIVE_BUFFER of the current RCB.

When RESOURCE_FAILURE_RETRY or RESOURCE_FAILURE_NO_RETRY Csee Note 2>
Put the return code from the RECEIVE_AND_WAIT verb in the

MC_RECEIVE_BUFFER of the current RCB.
When PROG_ERROR_NO_TRUNC, SVC_ERROR_NO_TRUNC, or BACKED_OUT

(optional check when receiving data; see Note 1)
Call PROTOCOL_ERROR_PROC !page 5.2-471
to deallocate the current conversation.

Put the return code RESOURCE_FAILURE_NO_RETRY in the
MC_RECEIVE_BUFFER of the current RCB.

When DEALLOCATE_NORMAL, DEALLOCATE_ABEND_PROG, DEALLOCATE_ABEND_svc, or
DEALLOCATE_ABEND_TIMER (optional check when receiving data; see Note 1)

Put the return code RESOURCE_FAILURE_NO_RETRY in the
MC_RECEIVE_BUFFER of the current RCB.

Optionally log implementation-dependent error data.

page 5.2-46
page 5.0-12
page 5.2-47

page A-7
page 5.2-48

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-41

RCVD_SVC_ERROR_PURGING

5.2-42

RCVD SVC ERROR_PURGING

FUNCTION: This procedure is invoked when PS.MC issues a basic conversation verb in which
a return code of SVC_ERROR_PURGING is returned. Unlike SVC_ERROR_TRUNC and
SVC_ERROR_NO_TRUNC, the SVC_ERROR_PURGING return code can be returned on a
verb issued while the mapped conversation is in either send or receive state.

INPUT: The RCB corresponding to the specified conversation.

OUTPUT: A return code reflecting the outcome of the service error processing.

NOTES: 1. If the expected Error Data GOS variable is not received, the partner LU has
committed a protocol violation. The checks for these violations given below
are optional. If the protocol violation occurred as a result of the partner
LU allowing the mapped conversation to be prematurely ended without having
sent the error data, PS.MC simply logs the error. Otherwise, PS.MC ends the
mapped conversation. In either case, PS.MC returns the code
RESOURCE_FAILURE_NO_RETRY.

2. A return code of RESOURCE_FAILURE_RETRY or RESOURCE_FAILURE_NO_RETRY can occur
at any time and does not indicate that the partner LU committed a protocol
violation.

Referenced procedures, FSMs, and data structures:
UPM_MAPPER
PS_VERB_ROUTER
PROCESS_ERROR_DATA
GET_SEND_INDICATOR
PROTOCOL_ERROR_PROC
RCB
ERROR_DATA_STRUCTURE

Call UPM_MAPPER (page 5.2-461 to record a remotely
detected error of the type SVC_ERROR_PURGING as indicated by the
return code from the last verb issued.

Call PS_VERB_ROUTER (Chapter 5.0l to issue a RECEIVE_AND_WAIT
verb for the current conversation, specifying a wait for
the receipt of a complete logical record.

Select based on the return code from RECEIVE AND WAIT:
When OK - -

Interpret the data returned by the RECEIVE_AND_WAIT verb as
an ERROR DATA STRUCTURE.

If RECEIVE_AND=WAIT returns DATA_COMPLETE and the GDS_ID of
ERROR_DATA_STRUCTURE indicates that the structure contains
error data then

Call PROCESS_ERROR_DATA (page 5.2-43) and
pass it the ERROR_DATA_STRUCTURE.

Set the return code to the code returned by PROCESS_ERROR_DATA.
If the return code is not RESOURCE FAILURE NO RETRY then

Call GET_SEND_INDICATOR (page 5~2-44l. - -
Else (Note ll

Call PROTOCOL_ERROR_PROC (page 5.2-47)
to deallocate the current conversation.

Set the return code to RESOURCE FAILURE NO RETRY.
When RESOURCE FAILURE RETRY or RESOURCE FAILURE NO RETRY !Note 2l

Set the return cod; to the code retu;ned by RECEIVE_AND_WAIT.
When PROG_ERROR_NO_TRUNC, SVC_ERROR_NO_TRUNC, or BACKEO_OUT !Note ll

Call PROTOCOL_ERROR_PROC Cpage 5.2-47)
to deallocate the current conversation.

Set return code to RESOURCE_FAILURE_NO_RETRY.
When DEALLOCATE_NORHAL, DEALLOCATE_ABEND_PROG,

DEALLOCATE_ABEND_SVC or DEALLOCATE_ABEND_TIMER !Note ll
Optionally log implementation-dependent error data.
Set the return code to RESOURCE_FAILURE_NO_RETRY.

SHA Format and Protocol Reference Manual for LU Type 6.2

page S.2-46
page s.0-12
page S.2-43
page 5.2-44
page 5.2-47
page A-7
page 5.2-48

PROCESS_ERROR_DATA

PROCESS_ERROR_DATA

FUNCTION: This procedure is invoked during the processing that PS.MC performs as a
result of receiving a return code of SVC_ERROR_PURGING. It is called after
receiving the Error Data GDS variable that follows the service error notifica­
tion. The purpose of this procedure is to process the information carried in
the Error Data GOS variable.

INPUT:

OUTPUT:

The Error Data GOS variable received from the remote TP

If the Error Data GOS variable contains no invalid values,
returns a code that reflects the information carried in the
logs the error information in the system error log. If the
tains an invalid value, PS.MC ends the mapped conversation.

this procedure
error data and
error data con-

NOTE: When the Error Data GDS variable indicates MAP_NOT_FOUND or
MAP_EXECUTION_FAILURE, the map name that caused the error is carried in the
ERROR_PARM field of the Error Data GOS variable. When the Error Data GDS var­
iable indicates INVALID_GDS_ID, the GDS_ID that specifies a function not sup­
ported by the partner LU or transaction program is carried in the ERROR_PARM
field.

Referenced procedures, FSMs, and data structures:
PROTOCOL_ERROR_PROC

ERROR_DATA_STRUCTURE

Select based on ERROR_DATA_STRUCTURE.ERROR_CODE:
When it indicates an invalid GDS_ID (see Appendix H)

Select based on the GDS_ID in ERROR_DATA_STRUCTURE.ERROR_PARM:
When it indicates user control data (see Appendix Hl

Set the return code to FMH_DATA_NOT_SUPPORTED.
Optionally log implementation-dependent error data.

When it indicates map name Csee Appendix Hl
Set the return code to MAPPING_NOT_SUPPORTED.
Optionally log implementation-dependent error data.

Otherwise (optional check when receiving data)
Call PROTOCOL_ERROR_PROC Cpage 5.2-471

to deallocate the current conversation.
Put the return code RESOURCE_FAILURE_NO_RETRY in the

MC_RECEIVE_BUFFER of the current RCB.
When it indicates map not found !see Appendix Hl

Set the return code to MAP_NOT_FOUHD.
Optionally log implementation-dependent error data.

When it indicates map execution failure (see Appendix Hl
Set the return code to MAP_EXECUTION_FAILURE.
Optionally log implementation-dependent error data.

Otherwise (optional check when receiving datal
Call PROTOCOL_ERROR_PROC (page 5.2-471
to deallocate the current conversation.

Put the return code RESOURCE_FAILURE_NO_RETRY in the
MC_RECEIVE_BUFFER of the current RCB.

page 5.2-47

page 5.2-48

Chapter 5.2. Presentation Services-.,.Mapped Conversation Verbs 5.2-43

GET_SEND_INDICATOR

GET_SEND_INDICATOR

S.2-44

FUNCTION: This procedure is invoked during the processing that PS.MC performs as a
result of receiving a return code of SVC_ERROR_PURGING. This procedure is
called after the Error Data GOS variable that follows the service error
notification has been received and processed. The purpose of this procedure
is to receive the SEND indication that follows the Error Data GOS variable.

INPUT: The RCB that corresponds to the specified conversation

OUTPUT: A return code reflecting the results of the processing

Referenced procedures, FSMs, and data structures:
PS_VERB_ROUTER
PROTOCOL_ERROR_PROC

RCB

Call PS_VERB_ROUTER CChapter S.0) to issue a RECEIVE_AND_WAIT
verb for the current conversation, specifying a wait for
the receipt of a complete logical record.

Select based on the return code from RECEIVE_AND_WAIT:
When OK (optional check when receiving data)

If RECEIVE_AND_WAIT returns WHAT_RECEIVED other than SEND then
Call PROTOCOL_ERROR_PROC Cpage S.2-47)
to deallocate the current conversation.

Set the return code to RESOURCE_FAILURE_NO_RETRY.
When RESOURCE_FAILURE_RETRY or RESOURCE_FAILURE_NO_RETRY

Set the return code to the code returned by RECEIVE_AND_WAIT.
When DEALLOCATE_NORHAL, DEALLOCATE_ABEND_PROG,

DEALLOCATE_ABEND_svc, or DEALLOCATE_ABEND_TIMER
(optional check when receiving data)

Set the return code to RESOURCE_FAILURE_NO_RETRY.
Optionally log implementation-dependent error data.

When PROG_ERROR_NO_TRUNC, SVC_ERROR_NO_TRUNC, or BACKED_OUT
(optional check when receiving data)

Call PROTOCOL_ERROR_PROC Cpage S.2-47)
to deallocate the current conversation.

Set the return code to RESOURCE_FAILURE_NO_RETRY.

SNA Format and Protocol Reference Manual for LU Type 6.t

page S.0-12
page S.2-47

page A-7

SEND_SVC_ERROR_PURGING

SEND_SVC_ERROR_PURGING

FUNCTION: This procedure performs service error purging processing. It is invoked when
PS.NC receives a GOS variable specifying a function not supported by either
the LU or the transaction program associated with the mapped conversation over
which the GOS variable flowed, or when PS.MC receives a GOS variable contain­
ing an unrecognized GOS ID, or when data mapping is being performed and the
mapper procedure has encountered an error in mapping the received data.

INPUT: The RCB corresponding to the conversation on which the service error occurred;
an error code specifying the type of error encountered; and an error parameter
that provides more information about the error

OUTPUT: If any of the verbs issued by this procedure do not complete successfully, the
procedure inserts into the RCB.MC_RECEIVE_BUFFER an appropriate return code.

NOTE: If mapping is supported and the mapper does not already know about the error,
the mapper is notified of the type of error encountered. The mapper is not
invoked when the error encountered is a MAP_NOT_FOUND or MAP_EXECUTION_FAILURE
condition--the mapper is already aware of the error. (The mapper discovered
the error.) If the error encountered indicates MAPPING_NOT_SUPPORTED, no
mapper exists.

Referenced procedures, FSMs, and data structures:
UPM_MAPPER
PS_VERB_ROUTER
PROTOCOL_ERROR_PROC
RCB
ERROR_DATA_STRUCTURE

page 5.2-46
page 5.0-12
page 5.2-47
page A-7
page 5.2-48

If the input error code indicates an invalid GDS_ID (see Appendix HJ and the GOS ID in the
input error parameter does not indicate a map name Csee Appendix HJ then

Call UPN_MAPPER Cpage 5.2-46) to record a remotely detected error of
the type SVC_ERROR_PURGING, as indicated by the return code from the last verb issued.

Call PS_VERB_ROUTER (Chapter 5.0) to issue a SEND_ERROR verb for the current
conversation, specifying error type SVC and implementation-dependent error log data.

Select based on the return code from SEND_ERROR:
When OK

Create an ERROR_DATA_STRUCTURE Ca single logical record) using the data in the
parameters ERROR_CODE and ERROR_PARM.

Call PS_VERB_ROUTER !Chapter 5.0) to issue a SEND_DATA verb to send the
ERROR_DATA_STRUCTURE to the remote TP.

Select based on the return code from SEND DATA:
When OK -

Call PS_VERB_ROUTER !Chapter 5.0) to issue a PREPARE_TO_RECEIVE verb for
the current conversation with the type parameter set to FLUSH and locks set
to SHORT.

When RESOURCE_FAILURE_RETRY or RESOURCE_FAILURE_NO_RETRY
Put the return code from SEND_DATA in the MC_RECEIVE_BUFFER of the current RCB.

When PROG_ERROR_PURGING, SVC_ERROR_PURGING, or BACKED_OUT
!this check is optional when receiving data>
Call PROTOCOL_ERROR_PROC (page 5.2-471 to deallocate the current conversation.
Put the return code RESOURCE_FAILURE_HO_RETRY in the MC_RECEIVE_BUFFER of the
current RCB.

When DEALLOCATE_ABEND_svc, DEALLOCATE_ABEND_TIMER, or DEALLOCATE_ABEND_PROG
(optional check when receiving data)

Optionally log implementation-dependent error data.
Put the return code RESOURCE_FAILURE_NO_RETRY in the MC_RECEIVE_BUFFER of the
current RCB.

When DEALLOCATE_NORMAL, RESOURCE_FAILURE_RETRY, or RESOURCE_FAILURE_NO_RETRY
Put the return code from SEND_DATA in the MC_RECEIVE_BUFFER of the current RCB.

Chapter 5.2. Presentation Services--Happed Conversation Verbs 5.2-45'

UPM_tlAPPER

UPM_MAPPER

FUNCTION:

INPUT:

OUTPUT:

This procedure, referred to elsewhere in this chapter as "the mapper", per­
forms mapping of data in an implementation-defined way. The MAPPER_SAVE_AREA
in the RCB for the current conversation contains information used in data map­
ping, such as the currently effective map names (see "Map Names" on page
5.2-8).

Refer to "Data Mapping and the Mapper" on page 5.2-8 for a detailed
description of the processing that occurs when data is mapped.

1. Reason why the mapper was invoked:

• Data is to be sent to, or was received from, the partner LU. The map name
supplied by the sending transaction program determines the kind of mapping
that occurs.

• An error occurred and was detected either remotely or locally.

• A positive reply to CONFIRM or to SYNCPT was received. This positive con­
firmation informs the mapper that any map names sent to the partner have
been received and processed by it, and were not purged during error proc­
essing.

2. The polarity indicates whether send mapping or receive mapping is to be
performed. This parameter is used when the mapper invocation is for data map­
ping.

3. FMH data indicator indicates whether the passed data includes function
management CFM> headers. The mapper requires this information in the event
that the same map name could cause a different mapping to take place depending
upon whether the data being mapped includes FM headers. This parameter is
used when the mapper invocation is for data mapping.

4. Input map name contains the locally known map name supplied by the trans­
action program on an MC_SEND_DATA, if send mapping is to be performed, or the
map name that flows in a Map Name GOS variable between LUs, if receive mapping
is to be performed. This parameter is only used if the mapper invocation is
for data mapping.

5. Input data contains the data supplied by the transaction program on the
MC_SEND_DATA verb for SEND mapping, or data that flows in a data GOS variable
for RECEIVE mapping. Again, this parameter is used only in data mapping.

6. Error code informs the mapper of the type of error encountered (for exam­
ple, SVC_ERROR_PURGING or PROG_ERROR_NO_TRUNC). This is needed when the
mapper invocation is for an error occurrence.

1. Output map name contains the "mapped" !global) map name that is sent to
the partner LU if send mapping is performed, or the locally known map name
that is passed to the transaction program if receive mapping was performed.
This output is returned when the mapper invocation was for data mapping, and
always after receive mapping.

2. Output data contains the data that is sent to the partner LU for send map­
ping, or the data that is passed to the transaction program for receive map­
ping. Again, this data is returned if the the mapper was called for data
mapping.

3. Mapper return code indicates whether the mapper successfully performed the
mapping or encountered problems, and is returned after data mapping inv­
ocations.

SNA Format and Protocol Reference Manual for LU Type 6.2

PROTOCOL_ERROR_PROC

PROTOCOL_ERROR_PROC

FUNCTION:

INPUT:

This procedure handles protocol error processing. It is invoked Nhen PS.MC
detects an architectural protocol error committed at the partner LU.

The RCB corresponding to the mapped conversation over which the protocol vio­
lation occurred.

NOTE: Error log data is entered into the system log by PS.CONV (Chapter 5.1> during
its processing of the DEALLOCATE issued by this procedure.

Referenced procedures, FSMs, and data structures:
PS_VERB_ROUTER

RCB

Call PS_VERB_ROUTER (Chapter 5.0) to issue a DEALLOCATE verb for the
current conversation, specifying a deallocation type of ABEND_SVC and
indicating that the resource ID is to be discarded.

Optionally, implementation-dependent error data may be recorded in the
system error log.

page 5.0-12

page A-7

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-47

~ QA!A STRUCTURES

S.2-48

ERROR_DATA_STRUCTURE

ERROR_DATA_STRUCTURE: an instance of a GOS variable
LL_LENGTH: the high-order bit is set to 0 indicating a single-segment record
GDS_ID (see format of an Error Data GOS variable in Appendix H>
DATA

ERROR_CODE !see Appendix H>
ERROR_PARM (see Appendix H>

SEND_BUFFER

SEND_BUFFER: a buffer containing the mapped data to be sent.

SNA Format and Protocol Reference Manual for LU Type ~.2

CHAPTER 5.3. PRESENTATION SERVICES--SYNC POINT SERVICES ~

Recovery from errors and failures is a cen­
tral consideration in the design of trans­
action programs. LU 6.2 provides optional
services to aid transaction programs in
recovery from errors. A synchronization

ERRORS, FAILURES, AND RECOVERY

Errors and failures can be classified as:

• Application errors--these errors may
occur frequently; recovery is part of the
application design. In data entry, for
instance, field validation and requests
for repeated input are normal portions of
the application logic.

•

•

•

Recoverable system errors--these errors
occur frequently; recovery is part of the
system logic. Bracket race errors are an
example (see "Chapter 6.1. Data Flow Con­
trol" l; link-level retransmission is
another.

Program fai lures--transact ion programs
sometimes end abnormally. In a
well-tested system, this will not occur
frequently. Appl i ca ti on level recovery
varies by application. See "Chapter 5.1.
Presentation Services--Conversation
Verbs" for details of abnormal termi­
nation processing.

Conversation failures--conversations will
sometimes fail as a result of failure of
the underlying sessions and the physical
components over which the sessions are
carried. The reactivation of failed ses­
sions is handled by system logic; see
"Chapter 4. LU Network Services" for
details. Application-level recovery from
conversation failure is discussed in more
deta i 1 in SNA Transaction Programmer• s
Reference Manual for LU ~ 6.2.

service is selected by the SYNC_LEVEL parame­
ter in the ALLOCATE verb. This chapter is
primarily concerned with the sync point syn­
chronization service. 1

•

•

LU fai lures--LUs will sometimes fai 1 by
themselves or as a result of the failure
of underlying hardware or software. Much
of the recovery from LU failures, as seen
b:,; other LUs, is handled by the recovery
of sessions that have failed. Other
aspects of this recovery are the concern
of the sync point service.

local resource failures--local resources
(e.g., files l wi 11 sometimes fai 1. If
the local resource that fails is not pro­
tected by the sync point service, recov­
ery is an application-level
res pons i bi li ty.

Applications are often designed as a sequence
of logical units of work, each unit consist­
; ng of some changes to the resources under
the control of the transaction program. Each
logical unit of work CLUWl is recoverable by
itself. The simplest case occurs when there
is one LUW for a transaction program; recov­
ery can often then consist of running the
transaction again from the beginning. LUWs
are delimited by the start-up of a trans­
action program and by execution of each
SYNCPT verb. The SYNC_LEVELCSYNCPTl service
simplifies the design of transaction programs
that use protected resources since changes to
those resources will be seen by the applica­
tion transaction program as having occurred
only after one LUW completes and before the
next LUW begins. 2

Figure 5.3-1 on page 5.3-2 illustrates the
relationships among failures and recovery.

1

2

Full support of sync point services in actual implementations includes prov1s1ons for syn­
chronizing local resources as well as distributed resources accessed through conversations.
For completeness, this section sketches fully general sync point services. Details of sync
point services for local resources are not specified by SNA, but are implementation defined.
The sync point service is not always able to provide a consistent state for the protected
resources. When this occurs, a heuristic decision is made. This sometimes damages the LUW
by making the states of its protected resources inconsistent. More details about this are
provided in "RESOURCE_FAILURE_*• Recovery, and Heuristic Decisions" on page 5.3-13.

Chapter 5.3. Presentation Services--Sync Point Services Verbs 5.3-1

(various externQl CQusesl

v

LU CQuses
FAILURE >

c MQy CQUSe or ••
Q ,- - -----------u
s
e CexternQl QCtionl
s I

v v v

PROGRAM LU
FAILURE RECOVERY

For SYNC LEVEL
of SYNCPT in
ALLOCATE,

LeQds to

v CQUSes

LUW
BACK OUT

When required, leQds to

Allows

v

SESSION
FAILURE

v

SESSION
RESTART

v v

LUW
RE SYNC

v

PROGRAM
RESTART

Network
mQy Qllow

MQy be needed
prior to

Figure 5.3-1. RelQtionships Qmong FQilures Qnd Recovery

PROCESSING BY PS.SPS

The component of LU presentQtion services
thQt provides the sync point service is
cQlled PS.SPS, Qlso cQlled the sync point
manager. When all the resources used by Q TP
are Qt one LU, only one copy of PS.SPS is
executed. Usually the situation is mo.re com­
plicated since every conversation allocated
with the SYNC_LEVEUSYNCPT> option connects
two separate TPs, which cooperate to perform
one or more distributed units of work. In
the distributed cases, one TP is the first to
issue the SYNCPT verb,· and its local sync
point manager becomes the sync point initi­
ator with respect to the sync point managers
on the other ends of any conversation. These
other sync point managers become agents with
respect to the initiator, but may in turn
become initiators with respect to additional,
cascaded, sync point managers.

The sync point managers maintain consistency
of the changes to protected resources by the
propagation throughout the network of these
sync point commands:

•

•

•

•

Prepare--Solicits Request Commit. This
command tells the agent to place its pro­
tected resources in a state that allows
them to be fully committed to the changes
that have been accumulQted during this
LUW, but that also allows these changes
to be reversed, or backed out. The
choice to commit or back out is made by
the initiator Qfter interaction with all
agents.

Request Commit--Solicits Committed. This
command says that the issuer has suc­
ceeded in preparing all of its protected
resources.

Committed--Informs the soliciting sync
point manager that all resources attached
through this conversation are committed.

Forget--Informs the sync point manager
that sent Committed that its log record

5.3-2 SNA Format and Protocol Reference Manual for LU Type 6.2

for this LUW can be erased. 3 Forget also
tells the initiating sync point manager
that the sync point is complete and that
control can be returned to the TP.

• Backed Out--Informs the rece;v;ng sync
point manager that the sending sync point
manager has backed out the LUW.

w TP 3

TP 2

11 TP 4

1------
TP 1 TP 5

t----i

TP 6 TP 7

Figure 5.3-2. A Typical Sync Point Tree

LUW STATES

A distributed transaction program is a tree,
with individual TPs as nodes on the tree, and
conversations as branches. Distributed TPs
support distributed LUWs, consisting of local
LUWs at the individual nodes. The distrib­
uted LUW has a state made up of all the local
LUW states. For.the distributed transaction
program shown in Figure 5.3-2, the distrib­
uted LUW state is a vector with seven compo­
nents:

LUW = [LUW1,LUW2, ••• LUW7J

The first TP to issue SYNCPT becomes the root
of the tree for the global LUW that is ended
by that verb. In the figure, the root, or
initiator, is TP 1.

The SN.A encodings for trans111ission of these
commands are described in "Appendix H. FM
Header and LU Services Commands" under PS
headers for the first four, and FMH-7 sense
data for Backed Out.

The sync point managers at each node of the
tree cooperate to place all the LUW compo­
nents into the same consistent state. They
do this with four waves of sync point com­
mands.

The Prepare wave starts at the root and
spreads down the tree. The Request Commit
wave starts at the leaves Cnodes without sub­
ordinate nodes) and spreads up the tree to
the root. The Committed wave returns down
the tree, and the Forget wave flows up the
tree to the root. Figure 5.3-3 on page 5.3-4
shows these waves as they occur between the
root and one of the nodes adjacent to the
root.

The sync point managers keep records about LUWs on logs, held on nonvolatile storage by the
log manager, so that LUWs can be kept consistent across failures of LUs.

Chapter 5.3. Presentation Services--Sync Point Services Verbs 5.3-3

PS.SPS PS.SPS

0
Initiator Agent

0
SYNC PT
---> Prepare

> TAKE_SYNCPT
-->
SYNC PT
<--

Request Commit

Committed

Forget

OK
<---

Figure 5.3-3. Basic Sync Point Flows

PS.SPS PS.SPS

0
Initiator Agent

0
SYNC PT
---> Prepare

> TAKE_SYNCPT
-->
SYNC PT
<--

Forget
<

OK
<---

Figure 5.3-4. Optimized Flow: No Resource Changed

0
SYNC PT
--->

OK
<---

PS.SPS
Initiator

PS.SPS
Agent

Request Commit
--------> TAKE_SYNCPT

-->
SYNC PT
<--

Committed

Figure 5.3-5. Optimized Flow: Last Resource

5.3-4 SNA Format and Protocol Reference Manual for LU Type 6.2

FLOW OPTIMIZATION

Since message flows are costly, the sync
point managers attempt to reduce the number
of flows. Figure 5.3-4 on page 5.3-4 illus­
trates one such case: when a sync point man­
ager agent determines that the state of the
local LUW is reset, that is, no protected
resources have been changed, it answers For­
get to Prepare. Intermediate agents can
reply Forget only if all the local LUWs in
their entire subtree are reset.

Transaction Program

'-~~~~~--A.--~~~~~~--'

I <11.<3>
..-~~~~~--v~~~~~~~---.

PS Router
.__~~.A,.....---------------A------~

I c 3>
(5)

Figure 5.3-5 on page 5.3-4 shows the other
flow reduction that can be used. The initi­
ator can pick one adjacent agent to receive
Request Commit rather than Prepare. The
Request Commit can be sent only after all the
prepared agents have sent Request Commit up
their subtree to the initiator, making the
selected agent the last agent. This last
agent is then free to select one of its cas­
caded agents also to be last, and so on.

VPoint
nager
S.SPS)

> Log
Manager

>
A------~

(1) I c4, (2)
....... --~v-----------------v------....

Protection Manager
'-~~~~~--A----------------'

I cu
..---~--~----v--~~----~----.

Local Resource

Figure 5.3-6. Sync Point Services for Local CNonconversational) Resources, Such as Files

SYNC POINT AND OTHER LU COMPONENTS

The relationships among the transaction pro­
gram, its resources, and the sync point man­
ager are illustrated in Figure 5.3-6 through
Figure 5.3-8.

The following notes correspond to the numbers
in Figure 5.3-6.

1. The transaction program issues a resource
verb, which is passed, by the PS router,
to the proper procedure to handle the
local resource. See "Chapter 5 .1. Pres­
entation Services--Conversation Verbs"
for details.

2. The local resource is protected, and so
it has a protection manager, which exam­
ines the resource verb. If the resource
is changed by the verb Ce.g., it is a
Write of some kind), the protection man-

ager writes a log record containing the
before-change data. 4

3. Eventually the transaction program issues
SYNCPT or BACKOUT. The PS router invokes
the sync point manager, which coordinates
the action of all sync point managers
involved in the distributed LUW.

4. The sync point manager interacts with the
protection manager for each protected
resource, exchanging signals indicating
Prepare, Request Commit, Committed, and
Forget to coordinate commitment, or a
signal indicating Backed Out to coordi­
nate backout of changes, either as
requested by the TP, or as required by a
resource failure.

5. When all resources are prepared, the LUW
is committed when the sync point manager
writes Committed on the log, and forces
the log. 5 The single force of the log is
sufficient to commit the entire . LUW

4 Logging before-change data is the technique suggested in the formal description. Other

5
equivalent techniques are possible and permissible.
Some writes to the log can be made to volatile log buffers. If these are lost because of a
failure of the LU, no damage results. Other writes (called forced writes) to the log must

Chapter 5.3. Presentation Services--Sync Point Services Verbs 5.3-5

because all local resources used by a
single TP share a single log, which is
also the log used by the TP's sync point
manager.

Transaction Program

'---------A.-------__. I u >.c3> .---------v·---------.
PS Router

'----A A.----'
I c 3>

VPoint
nager
S.SPS)
A----'

cu I c4>

C~A Protection Manage~~
(PS.CRPM> .---------A

Conv~r:::ion _J
Resource CCR> < (4)

(l>

Half­
Session

(5)
>

(2)

Recovery that uses the log racords is
discussed later in "ResynchronizaHon
Logic" on page 5.3-15.

Figure 5.3-7. Sync Point Services for Conversation Resources

5.3-6

The following notes correspond to the numbers
in Figure 5.3-7.

1. The transaction program uses a conversa­
tion. The conversation resource pro­
tection manager is not sensitive to any
of the conversation verbs.

2. The CR protection manager does not write
any log records. RM does write log
records as part of ALLOCATE processing in
order to be able to recreate the resource
control blocks CRCBl and their relation­
ship to transaction control blocks CTCB>
following an LU failure. See RCB on page
A-7 for details of the RCB and TCB on
page A-10 for details of the TCB.

3. Eventually the transaction program issues
SYNCPT or BACKOUT. The PS router invokes
the sync point manager to do the coordi­
nation.

4. The sync point manager interact~ with the
protection manager for each protected
conversation, exchanging Prepare, Request

Commit, Committed, and Forget signals to
coordinate commitment, or Backed Out to
coordinate backout of changes, either as
requested by the TP, or as required by a
resource failure.

Protected conversations are treated some­
what differently from protected local
resourcess this difference is driven by a
local/nonlocal6 indicator in the RCB. A
Backed out signal can be received from
nonlocal resources. Compare States
signals can be exchanged with them to
resynchronize following conversation
failures.

The local protection manager for the con­
versation communicates with its remote
partner by exchanging PS headers and the
Backed Out FMH-7 sense data. The
half-session has no knowledge that a pro­
tected conversation is assigned to it.

5. The sync point manager has to do addi­
tional writes to the log whenever nonlo­
cal resources are pointed to by a TCB.

6

be made to the nonvolatHe log itself before the sync point protocol can proceed, if the LUW
is to be kept synchronized even across LU failuras. This use of the nonvolatile log is
called forcing the ,!Qg.
Local resources are· those that share the sync point manager's log.

SNA Format and Protocol Reference Manual for LU Type 6.2

Also, addi tfonal forces of the log are
required. Finally, the sync point manag­
er attempts resynchronization Nith an

Transaction Program

'---------A.---------' I (1),(3)

..--------v--------.
PS Router

.._ __ A,---------A.---~
I c 1>
VPoint
nager
S.SPSI
A---~

u> I c41 c: Protection Manage~~
I u >

~:=J (4)

I u >

i----vA----vA--, L_ ,- PS Router __J

lu> lc4>

C~A Protection Manage~~
CPS.CRPNI .---------A

I u1 _J
~rsation
urce CCR) < (4)
A.-----'
I u > ----v-----

H al f-

(5)
>

(2)

(2)

Log
Manager

exchange of Compare States signals Ni th
its partner sync point manager after
resource failures.

Figure 5.3-8. Sync Point Services for Function Shipping

The following notes correspond to the numbers
in Figure 5.3-8.

1. The transaction program allocates a
resource that is located remotely. The
local resource manager uses a conversa­
tion to communicate to the remote
resource.

2. Neither the local-resource protection
manager nor the CR protection manager
writes log records. The only logging is
done by RM in order to be able to recre­
ate the resource RCBs and their relation­
ship to TCBs. The ALLOCATE issued by the
local resource manager is understood to
be for a function shipping situation, so
the conversation's RCB is chained under
the local resource's RCB rather than
being chained directly to the TCB. At

the same time, the local resource's RCB
is marked nonlocal.

3. Eventually the transaction program issues
SYNCPT or BACKOUT. The PS router invokes
the sync point manager to do the coordi­
nation.

4. The sync point manager interacts Nith the
protection manager for each protected
resource, exchanging Prepare, Request
Commit, Committed, and Forget signals to
coordinate commitment, and Backed Out to
coordinate backout of changes, either as
requested by the TP, or as required by a
resource failure.

The nonlocal resources are treated the
same as protected conversations: Backed

Chapter 5.3. Presentation Services--Sync Point Services Verbs 5.3-7

5.3-8

Out can be received; Compare States
signals can be exchanged. ..
The protection manager for the local
resource, after dealing with local states
Ce.g., on a Prepare it may need to flush
a local buffer), passes the sync point
signals that it receives from the sync
point manager to the CR protection manag-
er.

5. The sync point manager has to do addi­
tional writes to the log whenever nonlo­
cal resources are pointed to by a TCB.
Also, additional forces of the log are
required to handle the extra error states
introduced by the existence of remote
logs. Finally, the sync point manager
attempts resynchronization via exchange
of Compare States signals with partner
sync point managers after resource fail­
ures.

SYNC POINT LOGIC

A transaction program can issue a SYNCPT verb
as an initiator, or in reply to a
WHAT RECEIVED value of SYNCPT_REQUIRED on
RECEIVE. After giving the TAKE_SYNCPT indi­
cation, the conversation resource rejects
most verbs until SYNCPT, BACKOUT, or
SEND ERROR is issued. See SNA Transaction
Prog;ammer's Reference Manual for LU~ 6.2
for details.

PS.SPS processes the SYNCPT verb in the
phases described below.

CLASSIFICATION PHASE

Since SYNCPT can be issued under many circ1.nn­
stances, PS.SPS begins by scanning the
resources allocated to the transaction pro­
gram in order to determine their states.
Further PS.SPS processing varies according to
the states of the local resources and TP:

1. PREPARE RECEIVED state--Prepare was
received from an initiating sync point
manager. The local TP did not initiate
sync pointing. PS.SPS prepares its local
and down-tree protected resources and
replies up-tree with Request Commit if
preparation succeeds. If it fails, it
replies Backed Out.

2. REQUEST COMMIT RECEIVED state--Request
Commit was received from an initiating
sync point manager. The local TP did not
initiate sync pointing. Since the initi­
ating PS.SPS has used an optimized flow,
which it can do only for the last
resource that it is attempting to coordi­
nate, the local PS.SPS commits its local
and down-tree resources and replies Com­
mitted if commitment succeeds. If it
fails, it replies Backed Out.

3. SEND state--All protected conversations
are verified to be in SEND state. Before

issuing the SYNCPT verb, the transaction
program puts all its protected resources

, into SEND state. If required, this can
be done by issuing REQUEST_TO_SEND and
waiting for the right .to send.

4. Unprotected resource--Resource was allo­
cated with SYNC_ LEVE LI NONE I CONFIRM I.
The resource is not affected by, . the
SYNCPT verb.

At the end of the scan, PS. SPS knows i f a
resource Ci .e., the one in PREPARE RECEIVED
state) must be sent Request Commit during its
local coordination. Request Commit must be
sent last, after all other resources have
been prepared. If no last resource is iden­
tified, a UPM is used to select one. The UPM
can consider things like minimizing session
flows !which leads to making a remote conver­
sation last whenever possible>. It can also
choose to prepare all resources, which allows
all coordination to proceed in parallel,
since Prepares can be sent simultaneously to
several resources.

If any protected resources are in Receive
state or more than one last resource is iden­
tified, a state error is recognized and the
TP is abnormally terminated. Otherwise,
PS.SPS advances to the Prepare phase.

PREPARE PHASE

PS.SPS now issues Prepare to all nonlast
resources. When Request Commit has been
received from all of them, the next phase is
entered. Other replies to Prepare are dis­
cussed in "Errors During Sync Point" on page
5.3-13. If no nonlast resources exist, this
phase is skipped and PS.SPS proceeds directly
to the Request Commit phase.

REQUEST COMMIT PHASE

After receiving Request Commit from all non­
last resources, PS.SPS issues Request Commit
to the last resource, and waits for a reply,
thus entering the Committed phase.

COMMITTED PHASE

PS.SPS completes sync point processing after
receiving Committed from the last resource,
by sending Committed to all nonlast
resources, thus entering the Forget phase.

FORGET PHASE

In the Forget phase, PS.SPS waits for Forgets
from all the nonlast resources. When all
Forgets have been received, PS.SPS gives the
SYNCPT verb that was issued by the local TP a
return code of OK.

SNA Format and Protocol Reference Manual for LU Type 6.2

ILLUSTRATIVE ~ POINT FLOWS

The following figures and commenbi Hlustre'l:e
the preceding discussion.

PS.SPS PS.SPS
Initiator Agent

0 RESET RESET
v v

---> (1) <---
A A
I I

PGM PENDING PGM PENDING
I

SYNC PT v
---> (2) Prepare*

A >(3) TAKE_SYNCPT
>

SYNC PT
<

v
SPM PENDING (4) Prepare*

A
I

SPM PENDING
I
v

(5) Request Commit*
v Request Commit* A <

(6) <
A Request Commit

I >

IN DOUBT IN DOUBT

I Committed
<

v
(7)

implied Forget (8)
A >

Committed* v
>(9)

A Committed*
I

COMMITTED COMMITTED

I Forget*
<

Forget* v RETURN_ CODE
v < (10) >

(11)

RETURN_ CODE
<---

Cascaded
Agent

>

>

NOTE: The * ;ndicates sending to, or receiving from, '111Ultiple agents.

F;gure 5.3-9. Illustrative Sync Point Flow: General Case

The following notes correspond to the numbers
in Figure 5.3-9.

1. The distributed LUW begins in RESET
state. Any change to a local protected
resource or receipt by PS of any message
unit (including the initial Attach) over

a protected conversation dr;ves a local
LUW from RESET to PGM PENDING.

2. The initiating TP ;ssues SYNCPT. PS.SPS
logs all affected conversations except
the last as [INITIATOR, SPM PENDING]

Chapter 5.3. Presentation Services--Sync Point Services Verbs 5.3-9

5.3-10

lllhile the last one is not logged yet. 7

The log is forced once. PS. SPS sends
Prepare to all but the last agent (where
the * at the end of Prepare means all the
agents, except possibly the last).

3. Each agent PS.SPS presents a return code
of TAKE_SYNCPT to its transaction pro­
gram. All TPs agree by issuing SYNCPT.

4. The agent logs [AGENT, SPM PENDING] for
the conversation over which the Prepare
is received. It logs [INITIATOR-CASCADE,
SPM PENDING] for all the cascaded conver­
sations, if any exist (there might only
be local resources). The log is forced
once if and only if any cascaded conver­
sations exist.

5. All cascaded agents agree to commit.
[AGEBT, IN DOUBT] is placed on the log
and the log is forced.

6. All agents agree to commit. [INITIATOR,
IN DOUBT J is placed on the log if and
only if the last resource is being opti­
mized with the last resource sequence.
If IN DOUBT is placed on the log, the log
is forced and then Request Commit is sent
to the last agent.

7. The last agent replies Committed (if the
last agent is using the optimiz~d flowl.
[INITIATOR, COMMITTED] is logged and the
log is forced. Committed is sent to all
agents (except the optimized last).

8. An implied .Forget is sent to the last
agent with the aid of RM and the session

process. The implied Forget is the next
normal-flow RU of any kind that flows
from the initiator to the last agent.
For instance, if the agent sent Committed
as CEB, then the next RU might be a
(BB,Attachl; or it might be a
IBB,LUSTATI; or BISI or a data reply to a
BB that came from the agent's
half-session. Since the Committed can
get lost, the agent retains the state of
the LUW across session outage. Since the
Implied Forget can get lost, and since
the initiator may have erased its log,
the agent carries a resync responsibility
for itself. Only in this way can it
erase its log. "Resynchronization Logic"
on page 5.3-15 describes resync in more

. detail.

9. PS.SPS logs [Initiator-Cascade, Commit­
ted] for all cascade agents and forces
the log. It then sends Committed to the
cascaded agents.

10. All cascaded agents return Forget.
PS.SPS resets the LUW by erasing the log1
then PS.SPS sends Forget to the initiator
and returns control to the agent TP.

11. All agents return Forget. PS.SPS erases
the log and returns control to the initi­
ating TP. The log does not have to be
forced before PS.SPS sends Forget since
any Forgets lost during a failure can be
reconstructed by resynchronizing with
cascaded agents.

7 The log records are [state of local PS.SPS relative to remote PS.SPS, state of local LUWJ.

SHA Format and Protocol Reference Manual for LU Type 6.2

PS.SPS
Initiator

---> (1)

RESET
v

A
I

PGM PENDING
I

SYNC PT V

PS.SPS
Agent

RESET
v

A
I

PGM PENDING

TP

<---

---> (2) Request Commit
A >(3) TAKE_SYNCPT

---->
SYNC PT
<----

v
IN DOUBT (4) Prepare*

Cascaded
Agent

A >
I

SPM PENDING
I
v

(5) Request Commit*
<----------

(6) A Committed*
I >

INITIATOR-CASCADE, COMMITTED
I Forget*
v <----------

(7) A
V Committed RETURN_ CODE

(8) <------ ---->
A
I

COMMITTED
RETURN_ CODE I
<--- v

RESET

COMMITTED

implied Forget C9l
-----> v

Figure 5.3-10. Illustrative Sync Point Flow: Last Resource Optimization

The following notes correspond to the numbers
in Figure 5.3-10.

1. The distributed LUW begins in RESET
state. Any change to a local protected
resource or receipt by PS of any message
unit (including the initial Attach) over
a protected conversation drives a local
LUW from RESET to PGM PENDING.

2. The initiating TP issues SYNCPT. PS.SPS
logs the last conversation as [INITIATOR,
IN DOUBT). It forces the log and sends
Request Commit.

3. The agent PS.SPS presents TAKE_SYNCPT to
the agent transaction program. The TP
agrees by issuing SYNCPT.

4. The agent PS.SPS logs [AGENT, SPM PEND­
ING] for the conversation over which the
Request Commit is received. It logs
[INITIATOR-CASCADE, SPM PENDING] for all
the cascaded conversations, if any exist
(there might be only local resources l.

It forces the log if and only if any cas­
caded conversations exist.

5. All cascaded agents agree to commit. The
agent PS.SPS logs [INITIATOR-CASCADE,
COMMITTED J and forces the log again (in
the example, the agent is not using the
last resource optimization on cascaded
resources l. Then it sends Committed to
all cascaded agents.

6. The agent PS.SPS waits for all cascaded
agents to return Forget. This is done so
that in case of failures and resynchroni­
zation, it can return to the initiator an
accurate report of any heuristic damage
that may occur.

7. All Forgets are returned. The subtree
for which this PS.SPS is responsible is
COMMITTED. The agent PS.SPS returns Com­
mitted to the initiator, even 1f no
down-tree resources were changed, and
then returns control to its TP.

Chapter 5.3. Presentation Services-~Sync Point Services Verbs 5.3-11

8. The initiator sees the Committed. If
there are no other participants, the ini­
tiator erases the log for the LUW and
returns OK to the initiating transaction
program. If there are other agents, [IN­
ITIATOR, COMMITTED I is placed on the log

PS.SPS
Initiator

---> (1)

RESET
v

A
I

PGM PENDIHG
I

SYNC PT V
---> (2) Prepare*

PS.SPS
Agent

RESET
v

A
I

PGM PENDIHG

<---

A ------>(3) TAKE_SYNCPT
----->
SYNCPT

v <-----
SPM PENDING i

SPM PENDING

I
Forget V RETURN_CODE

v <------(4 J >
(5)

while the Forgets are collected. See
Figure 5.3-9 on page 5.3-9 for this type
of sequence.

9. IMPLIED_FORGET is sent to the last agent
with the aid of the session process.

Cascaded
Agent

Figure 5.3-11. Illustrative Sync Point Flow: No Resources Changed

5.3-12

The following notes correspond to the numbers
in Figure 5.3-11. The situation that the
figure illustrates arises when a sync point
is requested, but no remote resources have
been altered during the LUW. In this case
the Request Commit and Committed flows are
not necessary and are omitted.

1. The distributed LUW begins in RESET
state. Any change to a local protected
resource or receipt by PS of any message
unit !including the initial Attach) over
a protected conversation drives a local
LUW from RESET to PGM PENDING.

2. The initiating TP issues SYNCPT. PS.SPS
logs all affected conversations but the
last as [INITIATOR, SPM PENO ING I , not
logging the last one yet. It forces the
log once, then sends Prepare to all but
the last agent (represented by the * fol­
lowing PREPARE).

3. The agent PS.SPS presents TAKE_SYNCPT to
the agent TP, which agrees to commit.
The rest of this flow illustrahs the
processing performed by a single agent
where no resources have been changed.
The generalization to cascaded LUWs is
straightforward.

4. The agent PS.SPS sees (by rece1v1ng For­
gets from the local resources) that no
resources have been changed. It resets
the LUW by erasing the log, sends Forget
to the initiator, and returns control to
the agent TP.

5. The agent returns Forget. The Request
Commit and Committed flows were not
needed; the initiator PS.SPS still proc­
esses the flows from other conversations
that may or may not require the addi -
tional flows.

SNA Format and Protocol Reference Manual for LU Type 6.2

FORCING THE ..!.Q§

PS.SPS needs to forcQ the log only once when
all resources are local, while it uses at
least two forces of the log as the initiator
C SPM PEND ING and COMMITTED states) and may
use an additional force CIN DOUBT state> if
the last resource is flow optimized.

PS.SPS uses at least one log for-ce as the
agent CIN DOUBT state), but if any cascaded

The preceding discussion assumed that sync
point processing completed normally, without
incident. This section shows how consistency
can be maintained even when er-rors occur-.

The er-r-or-s addressed are those caused by many
tr-ansaction progr-ams operating independently
of each other-, communicating only when
r-equir-ed. With this independence, unexpected
return codes can occur- after any ver-b. As
the issuer of inter-nal ver-bs to PS.CRPM in
order- to exchange sync point commands with
partner- sync point manager-s, PS.SPS has logic
to deal with these r-eturn codes:

• PROG_ERROR_*• including SVC_ERROR_*
• BACKED_OUT
• DEALLOCATE_ABEND_*
• RESOURCE_FAILURE_*

Because recovery from conver-sat ion fa i lur-e
can require that a session be r-eactivated,
PS.SPS gives special consideration to the
casa where this cannot be accomplished in a
timely manner.

PROG_ERROR_*

PS.SPS tr-eats PROG_ERROR_* as BACKED_OUT. It
is the using transaction progr-am's r-esponsi­
bility to avoid this by cor-r-ect transaction
design.

BACKED_OUT

BACKED_OUT is the r-eturn code given when the
r-emote tr-ansaction pr-ogr-am issues a BACKOUT
verb. Contr-ar-y to PROG_ERROR_*• where the TP
that issued SEND_ERROR gives the TP that
receives the PROG_ERROR_* an option, on BACK­
OUT the issuing TP expects the entir-e dis­
tr-ibuted LUW to be backed out. The TP that
r-eceives BACKED_OUT therefore must pr-opagate
the backout to all other r-esour-ces by also
issuing the BACKOUT verb.

conv&i"Siit'ions ex'ist for this LUW, the ageni:
PS.SPS has to appear- to the cascaded agents
as if it wer-e the initiator. Ther-efor-e, the
middle agent has to force the log CSPM PEND­
ING state) in order- to reliably assume the
r-esync r-esponsibility if it should terminate
abnor-mally.

DEALLOCATE_ABEND_*

PS.SPS may r-eceive DEALLOCATE_ABEND_•. Since
PS.SPS for- the abnormally terminating TP will
back out all of the TP's local resources, the
local PS.SPS tr-eats these r-etur-n codes as
BACKED_OUT.

RESOURCE_FAILURE_*• RECOVERY, AND HEURISTIC
DECISIONS

Recover-y from conversation failur-e depends
upon the state of the conver-sation at the
time of the outage:

1. If the conver-sation is under the control
of the sync point manager-, an attempt
will be made to recover from the failur-e
by exchanging COMPARE_STATES GOS vari­
ables with the r-emote sync point manager.
PS.SPS does this by issuing ALLOCATE to
the LU resync ser-vice TP X'06F2'. See
"Resynchr-onization Logic" on page 5.3-15
for the logic that is executed dur-ing
this resynchr-onization effort.

If resynchr-onization succeeds, PS.SPS
absor-bs the RESOURCE_FAILURE_* retur-n
code and retur-ns from the SYNCPT or BACK­
OUT verb. PS gives the
RESOURCE FAILURE * return code to the TP
on the n;xt verb-issued against the fail­
ing conversation, thus making the sync
point verb and the resource failur-e
appear- to have occurred in the r-ever-se
or-der. A TP that is using pr-otected
r-esour-ces can take advantage of this by
issuing SYNCPT or- BACKOUT whenever a con­
versation failure return code is recog­
nized.

Because a new session may not be i mme­
di a tely available, the sync point manager
and the lock manager have a pr-otocol
boundary that pr-ovi des a capability to
free locks on resources that may be
needed by other- TPs. When the lock man­
ager needs to release locks, PS.SPS uses
the guidance pr-ovided in the TP's entl"y
in the TRANSACTION_PROGRAM list in RM
either to hold the locks or to choose to

Chapter 5.3. Presentation Services--Sync Point Services Verbs 5.3-13

do a partial commit or a partial backout
of those resources with which communi -
cation has been maintained. As PS.SPS
11akes this decisicm with only partial
information, it is called a heuristic
decision. PS.SPS reports the resource
state (whichever is chosen, HEURISTIC
COMMIT or HEURISTIC RESET) to the LU con­
trol operator (since the .heuristic deci­
sion may result in a loss of
synchronization among the distributed
resources that has to be repaired by
operator action) and saves the state for
comparison during resynchronization. The
PS.SPS that is responsible for resync
continues resync attempts until resync
completes. At this time, PS.SPS writes
another message to the LU control opera­
tor and erases the LUW's log entries.

BACKQUT PRQCESSING

When processing the BACKOUT verb, PS.SPS
causes all protected resources in the LUW to
be restored to their condition at the start
of the LUW. The exception is that protected
conversations are not deallocated, and the
remote TPs that they started are not termi­
nated by backout processing.

Like SYNCPT, BACKOUT is propagated to all TPs
associated with the LUW. Also like SYNCPT,
BACKOUT propagation requires all transaction
programs tha.t share a distributed unit of
work to participate by issuing verbs, i.e.,
BACKOUT.

When a transaction program is notified of a
BACKOUT initiated by another transaction pro­
gram, the remote BACKOUT is complete. That

A B

Committed Sequence Backed Out Sequence 1

1. A -> B - Prepare 1. A -> B - Prepare
2. B -> C - Prepare 2. B -> C - Prepare
3. B -> D - Prepare 3. B -> D - Prepare
4. C -> B - Request Commit 4. C -> B - Request Commit
5. D -> B - Request Commit 5. D -> B - Backed Out
6. B -> A - Request Commit 6. B -> C - Backed Out
7. A -> B - Committed 7. B -> A.- Backed Out
8. B -> C - Committed
9. B -> D - Committed

STATUS = Committed STATUS = Backed Out

Figure 5.3-12. Back Out Example l

2. If the conversation is not under the con­
trol of the sync point Manager, the
responsibility for recovery is the trans­
action program's. However, if sync point
is in use, the TP will typically turn the
recovery processing over to the sync
point manager by using the SYNCPT or
BACKOUT verb as soon as any desired proc­
essing has been completed. Resources
that are not protected are cleaned up
according to application program logic.
A failure by one TP or the other to
return control to the sync point manager
can lead to an extended holding of locks
on shared resources. It may also lead to
heuristic decisions if the locks have to
be broken.

is, the conversation resource that reports
BACKED_OUT has already done so. The return
code indicating this, BACKED_OUT, may be
returned on several of the verbs. No backout
of other resources in the local unit of work
has been done. The TP MUst issue BACKOUT
before it issues any other verb against pro­
tected resources.

Of particular interest is the case where
BACKOUT is issued in the midst of SYNCPT
processing. The locally issued BACKOUT takes
precedence over the SYNCPT requested by the
remote TP if the LUW stays intact. See Fig­
ure 5.3-12 and Figure 5.3-13 for examples
that illustrate how this is accomplished.
For brevity, the Forget commands are not
shown.

Backed Out Sequence 2

1. A-> B - Prepare
2. B -> C - Prepare
3. B -> D - Prepare
4. C -> B - Request Commit
5. D -> B - Request Commit
6. B -> A - Request Commit
7. A -> B - Backed Out
8. B -> C - Backed Out
9. B -> D - Backed Out

STATUS = Backed Out

5.3-14 SHA.Format and Protocol Reference Manual for LU Type 6.2

B

c

D

C0111111itted Sequence Backed Out Sequence 1

1. A-> B - Prepare 1. A -> B - Prepare
2. A-> C - Prepare 2. A -> C - Prepare
3. B -> A - Request Commit 3. B -> A - Request Commit
4. C -> A - Request Commit 4. C -> A - Backed Out
5. A-> D - Request Commit 5. A -> B - Backed Out
6. D -> A - Committed 6. A -> D - Backed Out
7. A-> B - Committed
8. A-> C - Committed

STATUS = Committed STATUS = Backed Out

Figure 5.3-13. Back Out Example 2

HEURISTIC DECISIQNS AND RELIABLE RESOURCES

Each implementation of the sync point option
set makes ava Hable to transaction programs
at least one protected resource that is fully
reliable in that it is not subject to
heuristic decisions. This can be done in a
variety of ways; the simplest is to allow
application designers to designate certain

RESYNCHRONIZATION ~

PS.SPS includes resynchronization logic for
these cases:

• If an IPL has occurred, RM retrieves log
records from the log manager and recon­
structs the protected TCBs and RCBs that
were active at the time of the failure.
It then causes PS.SPS to gain control on
the reconstructed TCB. PS.SPS uses the
log to restore its relevant states. For
instance, it restores the initiator/agent
state for each resource. PS.SPS also
supplies log records to the protection

Backed Out Sequence 2

1.
2.
3.
4.
5.
6.
7.
8.

A -> B - Prepare
A -> C - Prepare
B -> A - Request Commit
C -> A - Request Commit
A-> D - Request Commit
D -> A - Backed Out
A -> B - Backed Out
A -> C - Backed Out
STATUS = Backed Out

resources as not subject to heuristic deci­
sions. However the reliable resource is pro­
vided, application designers can use data
kept in the reliable resource to aid in
recovery fro111 any heuristic mismatches that
may occur.

managers for each resource so that they
can back out their resources if this is
required.

• When PS.SPS finishes, RM deallocates the
TCB.

• If the resync is occurring without an
IPL, PS.SPS will return control to the TP
or to the abnormal termination process­
or, depending on the caller. The abnor­
mal termination processor, of course,
will deallocate all resources as needed.

Chapter 5.3. Presentation Services--Sync Point Services Verbs 5.3-15

• Since it can happen that multiple conver­
sations connect TCBs with the same LUW
IDs in two separate LUs, resynchroni za­
ti on uses the conversation correlator
field carried in Attach. to uniquely
identify the states to be compared.

The decision to initiate resync by either end
is dependent upon the state of the unit of
work. The following table reflects the
action PS.SPS takes after a conversation
failure or an IPL of the LU.

UNIT-OF-WORK STATE ACTION
(in local log l

Not Found ••••••••••• No Action
Agent, not last •••• Wait for resync
Agent, last •••••••• Resync after timeout
Initiator •••••••••• Initiate resync

(1) SYNCPT

~
~

---->

<-------Session Outage Notification

ALLOCATE same LUWID,
SYNC_LEVEL(CONFIRMJ,
TPNIX'06F2') ••• ,

[BIND] --->

Attach< •••)

log Name(warml
--------------~----~---->

Compare States command, CD (2)

log NameCwarml
<------------------------

(2) Comp a re States reply, CD
<------~------------------

LUST ATC X' 0006' }, RQD2, CEB (3)

(3) +DR2

<-------------------------

Figure 5.3-14. Resync After Conversation Failure

The following notes correspond to the numbers
in Figure 5.3-14.

1. The TP issues SYNCPT or BACKOUT, giving
PS.SPS control. Conversation failure
results from the session outage. PS.SPS
detects this and begins resynchronization
by issuing ALLOCATE to the resync trans­
action program, X'06F2'. The optional
BIND may flow as a result of RM logic;

VALIDATION OF LOG IDS

The first level of resynchronization is the
validation of the log IDs. PS.SPS accom­
plishes this by exchanging LOG_ID GOS vari -
ables. When this exchange validates the
integrity of the LU pair's logs, PS.SPS
exchanges COMPARE_STATES. The following fig­
ures illustrate the resync logic performed by
the sync point manager.

(optional)

PS. SPS does not know if it flows. PS
retrieves the LUWID carried in this
Attach from the TCB.

2. PS.SPS validates the logname and then
executes resync logic. Each conversation
to be resynchronized is processed in a
separate resync conversation using a sep­
arate copy of the resync TP.

5.3-16 SNA Format and Protocol Reference Manual for LU Type 6.2

3. PS.SPS tells the log manager to erase the
LUW's log records.

~
~

I 11 LU falls

ALLOCATE same LUWID,
SYNC_LEVELCCONFIRMl,
TPNCX'06F2'l ... ;

BIND
>

Attach! •••)
>

Log Namelwarm)
>

~
~

Compare States command, CD (2)
>

Log Name(warm)
<

12) Compare States reply, CD
<

LUSTAT!X'0006' J, RQD2, CEB (3)
>

C 3) +DR2
<.~------------~--~-------

Figure S.3-15. Resync after LU Failure

The following notes correspond to the numbers
in Figure 5.3-15.

1. The LU fails. After the LU is IPLed, RM
reads the sync point records from the
log, rebuilds the TCB and RCBs, and gives
PS.SPS control. After re-establishing
the states of the local protected
resources in cooperation with their pro­
tection managers, PS.SPS proceeds to
resync each LUW in a separate conversa­
tion, s i nee the reply can be delayed
while cascaded resync occurs. If all the
resync conversations are processed in

.bQ§ ~ PROCESSING

The following two figures illustrate
processing of log names so that log
matches do not occur.

the
mis-

parallel !a UPM determines the degree of
parallelism J, multiple sessions wi 11 be
used--up to one per LUW to be resynchro­
nized. This can cause as many BINDs as
LUWs that are in resynchronization.

2. PS.SPS validates the logname and then
executes resync logic.

3. PS.SPS erases the log. If a conversation
or LU failure occurs during
resynhronization, PS.SPS repeats resyn­
chronization until both logs are erased.

Chapter 5.3. Presentation Services--Sync Point Services Verbs 5.3-17

r;;:-1
~

r;;:-i
~

(1) LU IPLs Cold

ALLOCATE same LUWIDt
SYNC_LEVEL(CONFIRM>,
TPN<X'06F2') ••• ;

BIND
>

Attach< ••• >
>

Log Name< cold>, CD (2)
>

(3) Log Name< cold) , RQD2t CEB
<

+DR2 (4)
>

Figure 5.3-16. Cold Start of an LU

The follONing notes correspond to the numbers
in Figure 5.3-16.

1. The LU IPLs cold, that is, Nith a neN log
tape or neN log dataset. No resync
attempt occurs since the log is empty.
If the name of the LU's log is changed, a
cold IPL is required.

PS.SPS is given control before any con­
versations with SYNC_LEVEL<SYNCPT> are
allocated in order to exchange log names
with PS.SPS in the partner LU.

2. The resync TP, X'06F2't accepts the cold
log name and returns its own LU' s log
name.

3. Upon logging the log name of the partner
PS.SPSt PS.SPS tells RM that
SYNC_LEVEUSYNCPT> conversations can now
be allocated to the partner LU.

4. The partner PS.SPS similarly infor111S its
RM. Race conditions can cause this
transaction to be executed tNice, once in
each direction.

5.3-18 SNA Format and Protocol Reference Manual for LU Type 6.2 •·

r;;:-i
~

(1) LU IPLs WarMt N;th Nrong log YOluine

ALLOCATE same LUWID,
SYNC_LEVEL(CONFIRMJ,
TPNtX'06F2') ••• S

BIND

Attach(•••)

Log Name(Na rm)
------------------------~>

r;;:-i
~

Compare States command, CD (2)
------------------------~> (3) Log Name(error reply>, RQEl, CEB
<------------------------~

f;gure 5.3-17 •. Log Name H;smatch dur;ng Resync

The follow;ng notes correspond to the numbers
;n f;gure 5.3-17.

1. The LU IPLs wartn, but the wrong log vol­
ume ;s active. However, RH and PS.SPS do
not know this at first, so proceed with
resync process1ng.

2. Yhe partner PS.SPS detects the Mismatch
of log names, notifies ;ts control opera­
tor, and returns an error reply.

3. PS.SPS sees the error reply and notif;es
its control operator of the mismatch.
Conversations with SYNC_LEVEL(SYNCPT)
cannot be allocated between these LUs
until the mismatch has been f;xed. Per­
haps the correct volume can be act;vated.
Or the operator can use a cold IPL,
although this may damage the consistency
of protected resources.

Chapter 5.3. Presentation Serviees--Sync Point Services Verbs 5.3-19

PROCEDURES ~ §l: ~

5.3-20

PS_SPS

FUNCTION: To coordinate sync point processing, as described in this chapter. Details
are not formally specified.

SNA Format and Protocol Reference ttanual for LU Type 6.2

CHAPTER 5.4. PRESENTATION SERVICES--CONTROL-OPERATOR ~

INTRODUCTION

This chapter presents an overview of LU serv­
ices for the LU control operator, and in par­
ticular describes those services contained in
the presentation services components of the
LU and in LU service transaction programs.

FUNCTION SUMMARY

The control operator is represented to the LU
by a control-operator transaction program
which invokes operator functions by issuing
LU-defined control-operator verbs. The
relationship between the control-operator
transaction program and the control operator
is implementation-defined .. nd is not deter­
mined by SNA. Throughout this chap~<! • ., the
terms control·oper~tnr and control-operator
transaction program are used synonymously.

The control-operator transaction program dif­
fers from application transaction programs in
its focus on control-operator concerns and
its privileged access to the control-operator
verbs.

The functions available to the control oper­
ator and the control-operator verbs that
invoke them are described in SNA Transaction
Programmer's Reference Manu .. 1 for ..bY ~
6. 2. That book is a prerequisite to this
chapter.

The control oper .. tor describes and controls
the availability of cerh in resources. The
particular functions and corresponding
control-operator verbs are:

• To describe the network
accessed by the local LU, such
action programs, partner LUs,
names. The relevant verbs are:

CONCEPTS ~ TERMS

resources
as trans­
and mode

This section discribes some of the concepts
and terms used throughout this ch .. pter.

•

•

DEFINE
DISPLAY

To control the number of sessions between
the LU and its partners. :rhe relevant
verbs are:

INITIALIZE_ SESSION_ LIMIT
RESET_SESSION_LIHIT
CHANGE_ SESSION_ LIMIT
ACTIVATE_SESSION
DEACTIVATE_SESSION

To invoke local processing on behalf of a
control-operator verb issued at a remote
LU. The relevant verb is:

PROCESS_SESSION_LIMIT <This verb is
not available to the local operator,
but is issued from within the LU.>

STRUCTURE SUMMARY

This chapter describes two LU components for
control-operator functions: presentation
services for the control operator CPS.COPR>,
Q component of present .. tion services, and the
CNOS service tr .. nsaction program CCNOS serv­
ice TPl. It also describes the functional
rel .. tionship of these components to the
installation- or implementation-defined
control-operator transaction program, to the
LU resources man .. ger CRH--see Chapter 3), to
presentation services for conversations
CPS.CONV--see Chapter S.O and Chapter S.l>,
and to half-sessions CHS--see "Chapter 6.0.
Half-Session").

Figure S.4-1 on page S.4-2 shows the struc­
tural relationship of these components (see
Chapter 2 for the complete structure of the
LU>.

OPERATOR

The control-operator transaction program is
an implementation-defined transaction program
that interacts with presentation services on
behalf of, or in lieu of, a human operator.

Chapter S.4. Presentation Services--Control-Operator Verbs 5.4-1

l::c:~~t;~i.:.:::::
.---~----~> •• Operator •••••

• • Transaction ••
•• Program ••••••

::::::::1
----->

CNOS
Service
Transaction
Program

............. "_ __ ..,.. _______ ..

................

.Presentation
••• Services ••
•• Initiali- ••
••• zation ••••

-----.A----""

. ..._ ____ _

:~::~:~~~'.~'.'.~.~~:~~-~~:~.~~'.i:::~::
.................... .---------v-

Presenta ti on
Services
for the
Control
Operator
(PS.COPR) :::::::::::::::[

: : : : : : : : : : : : : : : ... -.-.-.-. -.-.-.-. -.-.-.-. -.-.-.-1--.-..... : :

.. l 3·· •••• Presentation Services for ••••••
•• •• Conversations (PS.CONY) ••••••••
•• A ••
........................ I
••••••••• Presentation Services CPS> ••

r----------.... ,_.1:::::::::::::: ::::::::::: :::::::::::::::::::::::: :::::::::::::::::::
•••• Resource •••• <----------

• ••.• Manager ••••• J<------------------........................... .
••••••••••• (RHJ .. .

.
• ••••••• LU-LU. • • • • • • • • • •••••••
• LU Services Manager •• Half-Session •••••••••••••

. CE§villfJ]
.
• • • • .. •• A • • " • • • • • ... ,
• •• • • • • • • • • • • • •• • • •• • • • • • • • •• • • • • • • • • •• •• • • • • •• • • • • • • • • • • Logical Unit ••

v
Path Control Network

Note: Unshaded components are described in this chapter.

Figure 5.4-1. Control-Operator Components in Relation to Other Components of the LU

5.4-2

The control-operator transaction program
interacts with presentation services by issu­
ing control-operator verbs to control the LU
or to control the interactions of the LU with
a partner LU.

A control-operator verb is a privileged verb
that may be issued by the control-operator
transaction program to convey the operator's
request to the internal components of the LU.
Control-operator verbs are described in fill.A

SNA Format and Protocol Reference Manual for LU Type .6.2

Transact;on Programmer's Reference Manual .f2!:
LU Im!! 6.2.

SCOPE OF CONTROL-OPERATOR FUNCTIONS

LU control-operator-verb functions vary ;n
scope.

Control-operator local funct;ons affect only
that LU whose control operator ; ssues the
control-operator verb, or they affect a ses­
s; on w;th another LU but take effect w;thout
the concurrent part;c;pation of a
control-operator transact;on program at the
other LU. These funct;ons include descr;b;ng
LU-accessed resources, regulat;ng the number
of sess;ons with single-session LUs, and
activating and deactivating specific ses­
sions.

Control-operator distr;buted functions affect
the relationship between the LU at which the
control-operator verb is issued (called the
source LU) and another LU w; th which ; t
shares one or more sessions (called the !!!.!:.=
.9!!! LU). The funct;ons take effect only with
the cooperation of transaction programs
represent;ng the control operators at the two
LUs. These funct;ons involve pr;mar;ly regu­
lating the number of parallel sess;ons with
other LUs, ;nclud;ng orderly ;ncrease from no
sess;ons and decrease to no sessions1 they
are called change-number-of-sessions CCNOS)
functions.

A control-operator verb for distr;buted func­
tions may be ;ssued at either LU. Thus, the
roles of source LU and target LU are relative
to a part;cular verb issuance: a particular
LU may be source LU for one ;ssuance and tar­
get LU for another.

LU-ACCESSED NETWORK RESOURCES

The control operator descr;bes to the local
LU those network resources accessed from the
local LU (LU-accessed network resources).
The follow;ng resources are descr;bed.

• The local JM itself

• A control po;nt e.g., an SSCP, that pro­
v;des sess;on serv;ces dur;ng sess;on
inith1tion

• Transact i on programs ava Hable for exe­
cution at th;s LU

• Partner LUs: The remote LUs with wh;ch
th;s LU can have sess;ons

• Modes: def;ned sets of character;stics
for sessions w;th part;cular partner LUs
COne or more modes are defined for each
potential partner LU.>

The control operator also controls the number
and availability of the following resources:

Each LU resource ;s ;dent;f;ed to the opera­
tor- either implicitly or by a resource key
such as a transaction program name, a partner
LU name, a mode name, or a sess;on ;dent;fi­
er.

Each LU resource is described by JM parame­
ters that characterize the way the LU can use
it. For example, these include transaction
program characteristics such as availability
status and optional functions supported; LU
capabilities such as parallel sessions! mode
name attributes such as session limits, RU
size bounds, and cryptography! and control
po;nt capabil;ties such as INIT Clogon) for­
mats supported.

SESSION CHARACTERISTICS

Most control-operator verbs do not specify •
specif;c session, but spec;fy only the part­
ner LU and mode name for the sess; on I the
;mplementation selects the particular ses­
s;on. Some verbs, however, can reference a
spec;fic sess;on by specifying an
implementation-suppl;ed un;que session !!2·

Single- .x!..o. Parallel-Sess;ons

An LU can be characterized by the number of
sess;ons it allows 1o1ith other LUs. A
s i ngle-sess; on LU can have only one LU- LU
sess;on at a time; Cit can have success;ve
sessions with different partner LUs selected
from a group of LUs known to i t) • A
parallel-session LU can have one or more con­
currently active sessions with each of one or
more LUs, subject to sess;on limits discussed
below. No middle capability exists, i.e., no
LU supports concurrent sess; ons to multiple
single-session LUs without also supporting
multiple concurrent sessions Cor parallel
sess;ons> with any other parallel-sess;on LU.

The term parallel session denotes any session
bet1o1een a pair of parallel-sess;on LUs, even
;f only one such session is currently active.
Th;s contrasts w;th the term .§.inal!! sess;on,
which denotes a session between a pair of
s;ngle-sess;on LUs or between a
single-session LU and a parallel-session LU.
A parallel session--even a sol;tary parallel
session--uses protocols d;fferent from those
used on a s;ngle sess;on.

Content;on Polarity

Sess;ons are also characterized by their Sm1:
tent ion - polarity. This determines which of
the two LUs has the r;ght to control use of
the sess;on. If two LUs attempt to initiate
a conversation on the same session simultane­
ously, the LU that is contention winner for

Chapter 5.4~ Presentat;on ServiC:es--Control-Operator Verbs 5.4-3

5.4-4

that session will succeed and the other, the
contention loser, will fail.

When used in reference to sessions, these
terms are relative to the perspective of one
of the LUs: a session for which an LU is the
contention Minner is called a
contention-Minner session from its perspec­
tive, but it is a contention-loser session
from the perspective of the partner LU.
Unless otherwise specified, the perspective
used in this chapter is that of the LU at
wMch a relevant control-operator verb is
issued.

SESSION LIMITS AND COUNTS

The number of active sessions between two LUs
fluctuates as a result of transaction program
demand and explicit operator action. The
number of sessions active at any given time
is called the session count.

The maximum number of sessions allowed
between LUs is set dynamically by the LU
operators. This number is called a session
limit. Several session limits may be speci­
fied by the operator.

The total LU-LU session limit is the maximum
number of LU-LU sessions allowed by the local
LU. If this limit is 1, the LU is a
single-session LU; if it is greater than 1,
the LU is a parallel-session LU. This limit
regulates the total LU-LU session .!22.Y!'.l!·

The operator can regulate the number of ses­
sions between the LU and a particular partner
LU, and hence the number of transactions that
can be active concurrently using that pair of
LUs.

The (LU,modeJ session limit specifies the
currently allowed maximum number of sessions
with a specific partner LU using a specific
mode name. This li mi ts the corresponding
(LU.mode) session count, i.e., the number of
currently active sessions with that partner
LU using that mode name. One such limit and
count exist for each mode name that is
defined for each potential partner LU.

In this chapter, unless otherMise specified,
the unqualified terms "session limit" and
"session count" refer to the (LU,mode> ses­
sion limit and count, respectively.

For parallel-session connections, other lim­
its regulate the <LU,mode> session count
Mithin the (LU,mode> session limit.

The operator can assure that each LU can
allocate a minimum share of the concurrent
conversations by setting limits on session
contention polarities.

The local-LU minimum contention-winner 1imi!
is the minimum number of sessions with a par­
ticular (LU,mode> pair for Mhich the local LU
is allowed to be the contention MinnerJ the
partner..:LU minimum contention-winner limit is

the m1n1111um number of sessions with that
(LU,mode> pair for which the 'partner LU is
allowed to be the contention-Minner. When
activating a session, each LU selects a
contention-polarity for the session that is
consistent Mith these limits, i.e., it does
not encroach on the partner's allowed con­
tention Minner sessions.

The operator can specify that a certain num­
ber of sessions be activated whenever the
relevant limits allow, without Maiting for
explicit requests for each session.

The automatic-activation limit is the maximum
number of sessions that the local LU may
activate in the absence of explicit requests
from transaction programs or the operator.

SESSION BRINGUP AND TAKEDOWN

The following four phases of session bringup
and takedown activities exist, although some
phases are omitted in some circumstances.

Session-limit initialization and reset con­
sists of issuing control-operator verbs to
specify the number of sessions the LU can
have with a given partner, and to specify
conditions for their activation and deacU­
vation.

Session initiation .!!!!I termination consists
of control-point activity that mediates
requests for session activation and deacti­
vation, such as issuing INITEATE (INIT_SELF>
and CONTROL INITIATE (CINIT) or TERMINATE
(TERM_SELF> RUs.

Session shutdown consists of the LU activity
to terminate conversation activity (brackets>
on the session by issuing BRACKET INITIATION
STOPPED IBIS> RUs.

Session activation and deactivation consists
of exchanging the BIND or UNBIND request and
response RUs betMeen the LUs.

Control-Operator Functions

The operator can cause an orderly deacti­
vation of sessions between a pair of LUs by
specifying that the (LU,mode) session limits
be reset to o.

The . operator can also specify Nhether to
drain <i.e., satisfy> pending allocation
requests before deactivating sessions. It
can specify drain separately for each of the
source and target LUs. If drain is specified
for an LU, that LU continues using sessions
until there are no further
transaction-program allocation requests for a
session. If drain is not specified, the LU
shuts down and deactivates the sessions as
soon as the current transactions finish.

SNA Format and Protocol Reference Manual for LU.Type 6.2

The operator can specify session-deactivation
responsibility, i.e., it can request that
either the source LU or the target LU take
responsibility for any session deactivations
required as a consequence of a particular
verb issuance. Session limit decreases might
leave the current session count in excess of
the new limits. In this case, the LU with
sess i on-deactivation responsibility computes
a termination ~· which is the number of
sessions it must deactivate to reach the new
limits. Each LU has its own termination
count, i.e., one LU could be responsible for
deactivating sessions to one limit, but
before it had done so, a subsequent verb
could make the partner LU responsible for
deactivating sessions from that limit to a
newer limit.

CLU,MODE> ENTRY

The LU maintains an <LU.mode) entry for each
defined combination of partner LU and mode
name. This describes the dynamic relative
state of the local and partner LU for that
mode name. This includes the session limits,
session counts, drain state, and termination
count.

DISTRIBUTED OPERATOR CONTROL

Change number of sess i ons 1Q!Qfil is a
control-operator distributed function to reg­
ulate the number of parallel sessions between
a pair of LUs and to determine when sessions
will be activated or deactivated. A CNOS
verb issuance causes the source LU to negoti­
ate with the target LU to establish a mutual­
ly acceptable number of parallel sessions.

LOCAL FUNCTIONS AND SERVICES

Local control-operator verbs update
definitional and operational parameters at
the local LU without the participation of the
operator at the remote LU.

LU-PARAMETER VERBS

LU-parameter verbs, DEFINE and DISPLAY, are
local control-operator verbs that define or
display the locally-known characteristics of
the local LU and of network resources it
accesses. These resources and the principal
characteristics that can be defined or dis­
played are:

• Local LU: the fully-qualified LU name
and the optional capabilities the LU sup­
ports such as parallel sessions and 111ap
names

• Tran5action programs: the transaction
program name, its availability, and the

To do this, the control-operator transaction
program at the source LU initiates a distrib­
uted transaction, using a conversation, with
the target LU. It uses the conversation to
send a copy of the operator command to the
partner LU and to receive a reply from the
partner.

At the target LU, the transaction program
that constitutes the partner for this trans­
action is the CNOS service transaction pro­
gram (CNOS service TP) , which issues
complementary control-operator verbs to
receive the command and send a negotiated
reply. The negotiation uses an
implementation-defined algorithm that does
not depend on interaction with a human opera­
tor, i.e., it can run unattended, but it may
use values supplied by that operator by ear­
lier verb issuances, e.g., from LU parameter
verbs. The CNOS service TP may, however, use
non-interactive implementation-defined means
to inform the operator of any changes.

Each program then changes its session limits
and performs its local respons i bi 1 i ty for
deactivating sessions.

The CNOS transaction requires use of a ses­
sion. In order to allow operator commands to
be exchanged regardless of the state of ses­
sion traffic between the LUs, an SHA-defined
mode !!fill!!• SNASVCMG, is dedicated to sessions
for the control-operator transactions. Each
LU supports one session of each contention
polarity for this mode name with each active
partner LU. Thus, an LU can always obtain a
contention-winner session to send a CNOS com­
mand to its partner.

•

•

•

optional functions that it supports such
as map names and sync point.

Control point: the allowed formats of
network addresses and session-services
RUs used on the CP-LU session

Modes: the mode name and optional func­
tions that are supported by a partner LU
on a mode basis, such as sync point; and
session parameters that characterize this
mode, such as maximum RU size, pacing
counts, and cryptography.

Partner LUs: the various names of poten­
tial partner LUs: local LU name,
fully-qualified LU name, and uninterpret­
ed LU name; the optional capabilities of
the partner LU such as parallel sessions;
and the list of lllOde descriptions for
that LU.

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-5

LOCAL SESSION-CONTROL VERBS

Local sessfon..,control , -~ are local
control-operator verbs that set the session
limits, contention polarity, and drain spec­
ification for single-session mode names and
for mode name SNASVCHG, or that activate and
deactivate single or parallel sessions for
any mode name.

The local session-control. verbs are the fol­
lowing.

• INITIALIZE_SESSION_LIMIT . sets the
(LU,mode> session limit to allow one ses­
s1on, for a single-sessions mode name, or
to allow one session of each contention
polarity, for the parallel-session mode
name SNASVCMG. This allows a session to
be activated Nhen. requested by a trans­
action program, or to be activated imme­
diately (automatic activation> if so
specified by a previously issued

DISTRIBUTED FUNCTIONS AND SERVICES

CHANGE NUMBER OF SESSIONS VERBS

Change number of sessions (CNOS)
control-operator verbs specify the 111aximum
number of parallel sessions between two LUs,
and, by implication, allow or require ses­
sions to be act.ivated or deactivated. The
verbs also specify the minimum number of ses­
sions allowed. with each.contention polarity.
The verbs further specify whether the ses­
sions are to be activated or deactivated
immediately or according to the needs pf
transaction programs, and Nhich LU is respon­
sible for activating or deactivating sessions
to attain or maintain the number of sessions
within the agreed limits.

CNOS verbs are distributed-function
control-operator verbs; they take effect only
with the mutual participation of both the
control operator at the source LU ·and the
CNOS service transaction program at the tar­
get LU, which enforces constraints previously
specified by the control operator at that LU.

The CNOS verbs are:

• INITIALIZE_SESSION_LIMIT

• RESET_SESSION_LIMIT

• CHANGE_SESSION_LIMIT

• PROCESS_SESSION_LIMIT

LU-parameter verb. It also specifies the
contention polarity to be selected when a
session is activated by the local LU and
the contention-polarity negot.iation rule
to be used when a session· is activated by
a remote LU.

• RESET_SESSION_LIMIT. sets the (LU,modeJ
session limits to 0 to cause deactivation
of any currently active ·sessions and to
disallow any further session activations.
It also specifies the drain mode, indi­
cating Nhether sessions are to be deacti­
vated immediately or only when there are
no remaining requests for their use.

• ACTIVATE_SESSION requests il.lllll9diate acti­
vation of a session.

• DEACTIVATE_SESSION requests deactivation
of a .specific session. <This is the only
control-operator verb that explicitly
identifies a specific session.>

(The INITIALIZE_SESSION LIMIT and
RESET_SESSION_LIMIT verbs are included in
both the local verbs and CNOS verbs. They
are distinguished by the characteristics of
their specified mode name.)

CNOS verbs control the number. of parallel
sessions by setting the (LU,nipde) session
limit; this limits the corresponding
(LU,mode) session count.

A CNOS verb identifies the particular
(LU,mode> entry that it affects, or it indi­
cates that it affects all (LU,mode> entries
for a given partner LU name. In the latter
case, it affects all the (LU,mode> entries
for the specified LU in the same way, e.g.,
it applies the same drain specification and
sess.ion-deactivation .responsibility to all
sessions.

FUNCTIONAL RELATIONSHIPS FOR DISTRIBUTED VERB
PROCESSING

The complete processing function for a CNOS
.verb issuance is .distributed among several
components at both the source and the target
LUs. Figure 5.4-2 on page 5.4-7 illustrates
the relationships among the major LU compo­
n.~nts involved in processing a CNOS verb.
Different components are active at the source
and target LUs; only the components active
for the LU's role are shown for that LU.

5.4-6 SHA .Format and Protocol Reference Manual for. LU Type (>.2

Source LU Target LU

Control Operator ,,.
I

..----'V'------.
Control Operator

Transaction
Program

.-----v-----....
PS.COPR

(Source-LU
Session-Limit

..----·~·:._ces l ---.<ll ..
PS.CONV

.._---A-----..J

(LU,
model

entries

Control Operator
A

l
CNOS Service
Transaction

Program
X'06Fl'

-----v-----.
PS.COPR

(Target-LU
Session-limit

(LU,
model

entries I > Services)

1.....----v-----.
PS.CONV '----A-----

-----·v
Resol:lrces

Manager

l
> Transact; on

J Program

l
> PS.COPR

J
, Presentation

> Services for
J Conversations

(RM)
A--.,.... l w

I I > Services
v...-..-......

LU Network
Services

(LNSl

v--­
LU.Network j ~~~·
Services

(lNSl

.._---A-----..J
Source Half-Session

•

'----·~~:~~~~I ~,
Target Half-Session

•

Half­
Session
Services

•••
LEGEND:

••••• > Call/return relationship (within a process)
<--> Send/receive relationship (between processes)

Access to shared data (within the LUI
<••••> Transaction program interaction (between LUs)

Figure 5.4-2. LU Component Relationships for Distributed Session-Control Verbs

OPERATION PHASES

When the LU control operator invokes a CNOS
function, the source and target lUs perform
the following functions, in four phases.

1. Operator Phase--Control-Operator Trans­
action Program

At the source-LU, the control-operator
transaction program receives a CNOS
request from the LU control operator (in
an implementation-defined way) and, on
behalf of the LU control operator, issues
a CNOS verb. The appropriate CNOS verb
invokes PS.COPRJ this begins the next
phase.

Further details appear fo
"Control-Operator Transaction Program" on
page 5.4-22.

2. Negotiation Phase--PS.COPR

PS.COPR at the source LU initiates a con­
versation with PS.COPR at the target LU,
via the CNOS service transaction program
at the target LU. Using the conversa­
tion, the source LU sends a change number
of sessions GOS variable ICNOS command)
carrying an encoding of the parameters
that were specified in the CNOS
control-operator verb. The target LU
receives the CNOS command, negotiates
acceptable session limits, drain specifi­
cation, and session-deactivation respon­
sibility, and sends the acceptable values

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-7

S.4-8

of the parameters back to the source LU
in another change number of sessions 605
variable CCNOS .!:.rui!:Y>.

The two tUs then terminate their conver­
sation and make the agreed-upon changes
to their respective CLU,mode> entries.
Each LU then determines whether it is
responsible for changing the session
count, and if so, notifies its resources
manager that the limits have been
changed.

This phase is performed synchronously
with the transaction program issuing the
CNOS verb, i.e., it completes prior to
return of control to the control-operator
transaction program. Further details
appear in "Session-Limit Services at the
Source LU" on page 5.4-25 , "CNOS Service
Transaction Program" on page 5.4-22, and
"Session-Limit Services at the Target LU"
on page 5.4-28.

3. Action Phase--Resources Manager

The resources manager (RM) at each LU
receives the session-limits-change
notification CCHANGE_SESSIONS) from
PS.COPR. RM determines whether any ses­
sion activations or additional deacti­
vations are required to bring the session
count within the new session limits. If
so, it performs the necessary session
shutdown and issues requests for session
deactivation to LU network services. For
example:

•

•

•

•

If the current session count is less
than the mtntmum contention-winner
limit and is also less than the
automatic-activation limit, RM
requests activations to reach the
lower of these limits.

If the CLU,mode> session limit is
decreased and the current session
count is between the previous limit
and the new limit, RM shuts down and
requests deactivation of the number
of sessions necessary to reduce the
session count from the present value
to the new limit.

If the (LU,mode) session limit was
decreased but the current session
count is above the previous limit, RM
requests the additional deactivations
necessary to reduce the session count
from the prev i ous li mi t to the new
limit <the RM with
session-deactivation responsibility
for the previous limit continues to
request the deactivations that are
necessary to reach that limit>.

If the session count for either con­
tention polarity encroaches on the
mt nt mum contention-winner limit for
the opposite polarity, RM requests
deactivations sufficient to allow the

minimum of each polarity, even if
this would reduce the CtU,mode> ses­
sion count below the CLU,mode) limit.

When RM determines that some sessions
must be deactivated, it might be that a
sufficient number of sessions are not
immediately free. So, each RM maintains
a count, the termination .!<2!:!!!!• of the
number of sessions for which it has
session-deactivation responsibility. It
increments this count whenever a limits
change requires the LU to deactivate
additional sessions. It decrements this
count when it requests a session deacti­
vation.

If the termination count is not o, and
the mutually-accepted drain specification
so indicates, RM performs drain action,
i.e., it continues to initiate conversa­
tions until no requests for new conversa­
tions for the specified LU name and mode
name are pending from any transaction
program.

When drain action is completed, or if is
was not requested, RM selects sessions of
appropriate contention-polarity to be
deactivated. It then shuts down all
traffic on each selected session: after
each partner LU ends its last bracket, it
sends the BIS RU; when the partner
receives this, it knows that there are no
more brackets in transit from its part­
ner. RM then issues requests to LU net­
work services to deactivate the selected
sessions.

This phase is performed asynchronously
with the transaction program issuing the
CNOS verb. <Details of these functions
are discussed in Chapter 3. I

4. Enforcement Phase--lU Network Services

Whenever LU network services receives a
request to activate a session from RM or
from the remote LU (vi a the PU), it
checks the current session counts and
session limits to determine whether
another session of that contention polar­
ity is allowed. !The resources manager
also assists in limits enforcement by
checking the current counts and limits
before issuing session activation
requests.I If another session is
allowed, LNS issues the appropriate BIND
or response to BIND; otherwise, it
rejects the request.

Whenever LU network services receives a
request to deactivate a session, it
issues UNBIND or response to UNBIND.

This
with
CNOS
(For
4.)

phase is performed asynchronously
the transaction program issuing the
verb and after the action phase.
details of this phase, see Chapter

SNA Format and Protocol Referenee Manual for LU Type 6.2

Control­
Operator
Transaction
Prortram

PS.COPR
Source LU

Information
Exchanged

PS.COPR
Target LU

CNOS
Servfoe
Transaction
Program

(1) o *_SESSION_LIHIT

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10) •

(11) •

(12) •

. . o ALLOCATE
TPNCX'06Fl') >- - attach - - - - - - - T - - - - - - > o X' 06Fl' : PROCEDURE

I 0 PROCESS_SESSION_LIHIT

~ - > o 6ET_TYPE

L - > ~ GET_ATTRIBUTES

o SEND_DATA o RECEIVE_AND_WAIT
DATA(connnand) >- - COlllllland - - - - - - - - > , DATA=command

o RECEIVE_AND_WAIT
o RECEIVE_AND_WAIT >- - change direction - - - -> • WHAT_RECEIVED=SEND . .

o (negotiate limits)

o SEND_DATA
DATA=reply <- - - - - - - - - - - reply - -< • DATACreplyJ

o RECEIVE_AND_WAIT o DEALLOCATE
RETURN CODE= <- - - - deallocate normal - -< • TYPECNORHALJ

DEALLOCATE_NORHAL

o DEALLOCATE
TYPECLOCALJ .

o (update Limitsl o (update limits1
inform resources manager> inform resources manager)

(13) o (inform operator) o <inform operator)

Notes:
• The figure shows the verbs issued and their lllOSt significant parameters.
• Numbers in the left column refer to the explanation in the text.
• Arrows represent information exchange resulting fre11 verbs issued by the tNo transaction

programs. (for an explanation of the actual message units exchanged, see Figure 5.4-4 on page
S.4-10.J

Figure S.4-3. Sequence of Verbs and Information Exchange fo CNOS Transaction Programs

CNOS TRANSACTION

The control-operator transaction program and
the CNOS service transaction program, togeth­
er with their corresponding PS.COPR compo­
nents, process a distributed transaction to
exchange the CNOS command and reply. The
sequence of basic conversation verbs issued
by PS.COPR at the source and target LUs is
shown in Figure 5.4-3. The following com­
ments correspond to the numbered 1 i nes in
that figure.

1. The control-operator transaction program
at the source LU issues one ',of the

· control-operator verbs INITIAL-
IZE_SESSION_LIHIT t CHANGE_SESSION_LIHITt
or RESET_SESSION_LIHIT. This activates
PS.COPR at the source LU (source-LU
session-limit services, abbreviated

SSLS >. SSLS builds the CNOS command and
issues a sequence of conversation verbs.

2. The source LU issues ALLOCATE to initiate
a conversation Mith the target LU and to
build an Attach FM header to invoke the
CNOS service transaction program.

3. When the target LU receives the Attach,
it initiates the CNOS service transaction
program. This program issues the PROC­
ESS_SESSION_LIHIT verb. This activates
PS.COPR at the target LU <target-LU
session-limit services, abbreviated
TSLS>. Nhich issues a sequence of conver­
sation verbs complementary to those being
issued at the source LU.

4. TSLS issues the 6ET_TYPE verb to verify
that this is a basic conversation.

Chapter 5.4. Presentation Services--Control-Operator Verbs S.4-9

Notes;

5. TSLS issues the 6ET_ATTRIBUTES verb to
verify thltt the •ttributes of the conver­
sation •re those expected, •nd to get the
partner LU name. The l•tter is used to
resolve r•~eS between concurrent CNOS
connnands.

6. .SSLS issues SEND_DATA to send the CNOS
command to TSLS.

Meanwhile, TSLS issues RECEIVE_AND_WAIT
to rece.i ve the C0111111and.

7. SSLS issues RECEIVE_AND_WAIT to receive
the reply fro111 SSLS. Thia verb has the
added effect of sending •
change-dh•ectiCM indicriion to TSLS, giv­
ing TSLS permission to send .•

~tlicltit T9t& .·issues R!CHVE,..AND..,WAIT
to NaeeiYe ·the change-d.il"eC!ticm indi­
cation~.

a. tsus, ~w•·-..,~;-.• 11..,
it p~ , b!.i:U,da "'- .CNGS N!Pb·

9~ :rttS i~ sae ... tJ.U;;to .. ·Hflld h replp
to 9'LS;• .

f!lheli 'ttt. repj.y af'ri"1! et the s~ ltl;.
the . RfCEIVE_ANl>:,..NAIT ver'b pNvi.ously
issued by SSLS c0111pletes., and SSLS
receives the reply.

10. TSLS issues DEALLOCATE to end the conver­
sation. This sends •n indication to the
source LU that the converaation is ended.

Source LU
Half-Session
0

tteanwhUe, SSLS issues RECEIVE_AND_WAIT
to receive the deallocation notification.

11. SSLS issues DEALLOCATE to complete its
processing of the conversation.

12. HOM both SSLS and TSLS have a copy of the
negotiated reply record containing the
agreed-upon limits, drain specification,
and deactivation responsibility. They
each update the se511ion limits in their
local data structures and inform the
resources manager.

13. When SSLS and TSLS have. finished process­
ing the CNOS reply, they return to their
respective callers, the transaction pro­
'fl"mns that issued the CNOS verbs • These
transaction progralllS then perform any
further implementation-defined actions,
5'i1Ch. as notifying the W operators of the
change.

·, d'

:if, ·. ·~· . th4t eonversatif>n• either LU
de._'hl ·• . tia&Hge unit or return code that
doe t'lOt COAfof'M. t.o this protocol, it termi­
.na-. $(;w conv...-tion ·by issuing DEALLOCATE
TYPe-tARND> tnot shoNn in Figure 5.4-3), and
the partner re5J>01"ds Mith DEALLOCATE
TY.PE< lOCM. .>.

(for· furthe.r informaiion on verb usage, see
Ji!:fA Transaction Programmer's Reference Manual
!2!:: .bY him y.

Target LU
Half-Session

0

.•BB, RQE., CD, Fl"IH-S(Attach TPN=X'06Fl'), 6DSID=X'1210', command data

RQElt CEB, 6DSID=x•1210•, reply data

• Each arrON represents a chain, Nhich comprises one or MOre request units.
• FHH-5(Attach TPN=X'06Fl') is the encoding of the Attach from the ALLOCATE verbs.
• Request-header indication CD is the encoding of change~direction.
• GOS ID=X'1210' distinguishes the CNOS command or reply record from other 6DS variables.
• Request-header indication CEB is the encoding of deallocate-normal.
• These flows are generated by the CNOS transaction as illustrated in Figure 5.4-3 on page 5.4-9.

Unless errors occur, the CNOS transaction ab1ays generates the same flow.

Figure 5.4-4. CNOS External Message-Unit FlONS

CNOS EXTERNAL MESSAGE-UNIT FLOWS

The CNOS transaction presented in "CNOS
Transaction" on page 5.4-9 causes other LU
components to generate the request chains
shoNn in Figure 5.4-4. This is the external
representation of the information exchanged
by the verbs.

Exactly one bracket is i ni ti ated for each
CNOS verb issued at the source LU. The
bracket consists of exactly two chains, each
containing exactly one Change Number Of Ses­
sions 6DS variable CCNOS command or CNOS
reply>.

A single CNOS verb generates only one chain
in each direction, even if HODE_NAHE(ALL> is
specified. In that case, the verb affects
all mode names the same, ·e.g., there is a

5.4-10 SNl Format and Protocol Reference Manual for LU Type 6~2

single negotiated r-ponse, and all (ne1111)

session deactivations have the same drain

••••••••••••••••••••••••
•
•
• •
•
• •
• •
•
• •
•
•

PS. INITIALIZE

CNOS
Service

Transaction
Program
X'06Fl'

Target-LU
Session- [sLDLMj
Limit I

Services .
PS.COPR <

•
•
•
• •
•
•
•
•
• . ; i

J • •
• • PS.CONY
• • A
• CNOS Target •
• Transaction Program •
• Process •
••••••••••• • •••••••••••

(LU,
mode)

entries

status and session-deactivation responsibil­
ity.

• •••••••••••••••••••••••
•
•
• •
• •
• •
•
• i ; .

PS.INITIALIZE

Control-Operator
Transaction

Program

Source-LU
iSLDLMJ Session-

Limit I . Services
> PS.COPR

• •
•
•
•
•
•
•
•
•
• •
•
• L • •

• • PS.CONY
• • A
• CNOS Source •
• Transaction Program •
• Process •
•••••••••••••••••••••••

•••••• ••••••••••••••••••••••••• • •••••
• rv . v----, ·:
: ~ Resources Manager CRMJ ___J

•••••••••••••••••••••••••••••••••••••••
••••••••••• • •••••••••••

~ l~------0-~.~:~~~~~~~~I ~
• Target Half-Session • ••••••••••••••••••••••••

•
•

<••············ Cto source LU)

LEGEND:

••••••••••• • •••••••••••

~ I
v

I ~
DFC

TC
A

• Source Half-Session • • •••••••••••••••••••••••
•
•
··············••> (to target LU>

juxtaposed boxes: Call/return relationship (within a process)
<----> Send/receive relationship Cbetween processes)

Access to shared data
•••••• Process boundaries
<••••> Transaction program interaction Cwith transaction progra111S at other LUs)
SLDLM SESSION_LIMIT_DATA_LOCK_MANAGER

Note: Verb routers have been omitted.

Figure 5.4-5. CNOS Process Interactions at a Single LU

THE CNOS PROCESS RELATIONSHIPS

Processes

The LU components that support the CNOS func­
tion are distributed among several processes,
as illustrated in Figure 5.4-5.

The source transaction-program process con­
tains the control-operator transacUon pro­
gram; this program interacts with the
internal LU components by issuing
control-operator verbs, specifically, INI-

TIALIZE_S£SSION_LIMIT, CHANGE_SESSION_LIMIT,
and RESET_SESSION_LIMIT.

The target transaction-program process con­
tains the CNOS service transaction program.
This program interacts with the internal LU
components by issuing the PROC­
ESS_SESSION_LIMIT verb.

(The transaction programs also interact with
the LU .control operators in an
implementation-defined way.>

Each transaction-program process also con­
tains within PS.COPR a session-limit services
component (source or target), which processes

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-11

the control-operator verbs. In processing a
CNOS control-operator verb, session-limit
services interacts with other LU components
and, indirectly, with its peer in the partner
LU, by issuing basic conversation verbs,
e.g., ALLOCATE, SEND_DATA, RECEIVE_AND_WAIT,
and DEALLOCATE. Session-limit services also
accesses the (LU,model entries within the
internal environment of the LU.

Multiple CNOS transaction-program processes,
and corresponding half-session processes, can
be active concurrently at any LU. For exam­
ple, both the local control operator and a
remote control operator might issue a CNOS
verb at about the same time. Or two remote
operators might both issue CNOS to the same
LU. The local LU implementation might even
allow two control-operator transaction pro­
grams to be active at the same time.

An CLU,model entry is a shared data structure
owned by the LU process (not shown). An
C LU,model entry exists for each combination
of mode name and potential partner LU. Each
(LU, model entry contains the session limits
and other CNOS parameters affected by the
CNOS verbs, such as the drain status. (It
also contains other fields not used by CNOS.)

Each ILU,mode} entry also is associated with
a session-limit-data lock field, that serves
as a lock on that entry to prevent simultane­
ous changes to the entry by different
control-opera tor verb issuances. The state
of the session-limit-data lock is maintained
by the session-limit-data-lock manager
(SLDLM l, a PS. COPR component that each
transaction-program process invokes to obtain

(Only one instance of the resources-manager
process exists per LU.)

.or release exclusive use of an !LU,model
entry.

TARGET

•••••••••••
• CNOS •
• Target •
• Trans- •
• action •
• Program •
• Process •
• (not •
• active>•
•••••••••••

LU A

(LU,
model

entires

SOURCE
###############

TARGET
###############

••••••••••• # # ••••••••••• #

• CNOS • # # • CNOS • #
• Source • # # • Target • #
• Trans- • # # • Trans- • #

action • # # • action
• Program • # # • Program • #
• Process • # # • Process • #

LU B

C LU,
model

entries

~=••••A••••= : : =••••A••••=-=----i
:···;~v•••: ; I : : I ; :••v;~····:
••••••••••• w # # • • ••••••••••

•••••v••••• # # •••••v••••• #
• Source • # # • Target • #
• Half- • # # • Half- • #
• Session • # # • Session • #
•••••A••••• # # •••••A••••• #
• ######### • #
• • #
••••••••••••••••••••••• #

#####################################

SOURCE

•••••••••••
• CNOS •
• Source •
• Trans- •
• action •
• Program •
• Process •
• C not •
• activel•
•••••••••••

LEGEND:
<~~> Send/receive relationship (between processes)

Access to shared data !within the LUJ
Transaction-handling boundaries
•••••• Process boundaries
<••••> Transaction program intl!!raction !between LUsl

Figure 5.4-6. Transaction Handling Component Relationships--Case 1: Single Verb Issuance

5.4-12

Transaction-Handling Process Relationships

Single Verb Issuance: A single issuance of a
CNOS verb uses unique instances of a
control-operator transaction program process

and half-session process at the source LU and
of a CNOS service-transaction program proc­
esses and half-session process at the target
LU. These processes have shared access to
the single instances of the resources manager
process and the set of CLU,modeJ entries at
their respective LUs. These components, with

SHA Format and Protocol Reference Manual for LU Type 6.2

the conversation between them, process a sin­
gle CNOS transaction, as illustrated in Fig­
ure 5.4-6.

Several different cases of process and trans­
action relationships can occur when two CNOS
verbs are issued concurrently at a local LU,
at two partner LUs, or at both a local and a
partner LU. If the two verb issuances are
not contending for the same CLU,model entry,
both verb issuances complete concurrently !if
no errors occur). But if the two verb issu-

LU A

ances are contending for the same (LU,mode)
entry, one of the issuances will fail.

To determine whether two transactions are
contending for the same (LU,mode) entry, and
if so, which one wins the contention, .:ach
transaction-program process invokes its
session-limit-data-lock manager. Details of
this contention detection and resolution are
described in "CNOS Race Resolution" on page
5.4-14.

LU B

TARGET SOURCE TARGET SOURCE
############### ############### ############### ###############
••••••••••• # # ••••••••••• # # ••••••••••• # # ••••••••••• #

• CNOS • # # • CNOS • # # • CNOS • # I • CNOS • I
#•Target •I !LU, I• Source • # #•Target • # (LU, #•Source • #
• Trans- • I mode) I • Trans- • I # • Trans- • # mode) I • Trans- • #
• action entries action • # # • action entries action • I
• Program • I # • Program • I # • Program • # # • Program • #
• Process • I # • Process • # # • Process • # # • Process • I
• < > < # # • < > • #
•••••A••••• # # •••••A••••• # # •••••A••••• # # •••••A••••• I
I # •••V••V•••• # I I # I # •••V••V•••• # I #
I # • RM • # # # # • RM • I #
••••••••••• # # # # ••••••••••• # I
•••••V••••• 1 # •••••v••••• # 1 •••••V••••• • • •••••v••••• •
• Target • # # • Source • # # • Target • # # • Source • #
• Half- • # # • Half- • # I • Half- • # # • Half- • I
I • Session • I # • Session • # # • Session • # # • Session • I
•••••A••••• # # •••••A••••• # # •••••A••••• # # •••••A••••• I
I • I I • ###111111 • I I • I
• I # • • # I • #
• # I ••••••••••••••••••••••• # # • I
• # I # I • #
• # #########l#l########l#l#ll###l#l####I # • #
I • I # • I
• # I • #
• # # • #
• #####l##l#####l###l##l#######l#######l#l#l###l#####l##ll#l##I######## • I
I • • I
••• #

I
#ll##l#l###l##l#####################l##l#lll##l#ll##l#ll####l#####l###l#########llllllllllll#lll#

LEGEND:
<~~> Send/receive relationship (between processes)

Access to shared data !within the LU)
111111 Transaction-handling boundaries
•••••• Process boundaries
<••••> Transaction program interaction !between LUs)

Figure 5.4-7. Transaction Handling Component Relationships--Case 2: Simultaneous Verb Issuances at
Partner LUs

Si mu! taneous Verb Issuances at Partner LUs:
When the LU i~ncurrently pi=;:;-cessing a CNOS
verb from both the local LU and from the
partner LU, for either the same or different
(LU.model entries, both the source and the
target processes are active at each LU, as
illustrated in Figure 5.4-7.

Simultoineous Verb Issuances at the Same .!JJ:
If the local LU allows two control-operator
transaction programs to be concurrently

active, then if two CNOS verbs are issued
concurrently at that LU, two source-LU
transaction-program processes become active
at that LU, as illustrated in Figure 5.4-8
on page 5. 4-14. If contention results, the
process handling the later verb issuance will
terminate without initiating a conversation
with its partner. If no contention results,
two source processes and transactions are
active at the local LU. This case is not
illustrated, but is similar to Figure 5.4-7,

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-13

with the roles of source-LU and target-LU
appropr;ately reversed.

SOURCE

•••••••••••
• CNOS •
• Source •
• Trans- •
• action
• Program •
• Process •
•
•

•
•

•••••••••••
<Note 1)

LU A

C LU,
mode)

entries

SOURCE
111111111111111

TARGET
111111111111111

I ••••••••••• I I ••••••••••• I
I • CNOS • I I • CNOS • I
I • Source • I I • Target • I
I • Trans- • I I • Trans- • I

act;on • I I • act;on
I • Program • I I • Program • I
I • Process • I I • Process • I

LU B

CLU,
mode)

entries

i--;-: ~ : : : ~71
I • •••••A••••• I I •••••A••••• • I

••••••v•••• 1 I 1 1 I 1 •••V•••••••
• RM • I I I I • RM •
••••••••••• I I I I •••••••••••

I •••••V••••• I I •••••V••••• I
I • Source • I I • Target • I
I • Half- • I I • Half- • I
I • Sess;on • I I • Sess;on • I
I •••••A••••• I I •••••A••••• I
I • 111111111 • I
I • • I
I ••••••••••••••••••••••• I'
I I
1111111111111111111111111111111111111

TARGET

•••••••••••
• CNOS •
• Target •
• Trans- •
• action •
• Program •
• Process •
• !not •
• active>•
•••••••••••

<Note 2)

LEGEND:
<~~> Send/receive relationship Cbetween processes)

Access to shared data !within the LUJ
111111 Transaction-handl;ng boundaries
•••••• Process boundaries
<••••> Transaction program interaction !between LUsl

Notes:
~e CNOS source transaction-program process attempts to lock an CLU,mode) entry in the

LU_MODE_LIST after another source transaction-program had locked it but had not yet unlocked it.
The later process is denied the lock and recognizes the contention! it goes away.

2. A target transaction-program process corresponding to the failing source process is never
activated.

Figure 5.4-8. Transact;on Handling Component Relationsh;ps--Case 3: Simultaneous Verb Issuances at
the Same LU

5.4-14

CNOS RACE RESOLUTION

Command Race

Two LU control operators m;ght simultaneously
issue a CNOS verb affecting the same LU name
and mode name. If such a verb is ;ssued
while another such verb at either the source
or the target LU is in the negotiation
phase, i.e., a prior instance of PS.COPR is
ac ti ve on e i ther LU for the same (LU, mode)
entry or entries, a command .!:!!£!! has
occurred, and one Cbut not both) of the verbs
fails.

If a verb is issued when a previous verb is
in the action phase, i.e., PS.COPR has
already updated the CLU,model entry, but the
resources manager and LU network services
have not yet completed adjustments to the

session count, an action .!:!!£!! has occurred
and neither verb fails. For details, see SNA
Transaction Programmer's Reference Manual for
LU ~ ~ and Chapter 3 of this volume.

Locking .!b.! CLU,model Entry

When a command race occurs , PS. COPR assures
that exactly one of the commands completes
successfully by observing a locking protocol
for the (LU,model entry. The sess;on-limit
services routines invoke a shared component,
SESSION LIMIT DATA LOCK MANAGER (abbreviated
SLDLM hereafter),- to -prevent simultaneous
access to an CLU,mode) entry, to detect
races, and to resolve double-failure race
conditions.

Source-LU session-limit services CSSLS) of
PS.COPR tests and simultaneously sets the

SNA Format and Protocol Reference Manual for LU Type 6.2

CNOS lock in the CLU,model entry by issuing
LOCK to its SLDLM before allocating a conver­
sation to the target LU. If another instance
of session-limit services has already locked
the (LU,mode l f!ntry, SSLS returns an error
code. It does not send the CNOS command to
the target LU or modify the session-limit
parameters in the CLU,model entry.

If SSLS succeeds, target-LU session-limit
services (TSLSl at the partner LU issues LOCK
to its SLDLM after receiving the CHOS command
from the source LU. If TSLS finds the lock
at its LU already set (for example, because a
control-operator transaction program at its
LU, acting as source LU, had simultaneously
issued a CNOS verb l, then TSLS sends the
partner LU a CNOS reply with a reply-modifier
value indicating that a command race was
detected. It does not modify the
session-limit parameters in the CLU,model
entry.

In some cases, two commands issued simultane­
ously from each LU could both be rejected.
For example, each LU might issue its command
before the other arrived. Each target
session-limit services would then reject the
command from the partner because its source
session-limit services had a command out­
standing. This is called a double-failure
race condition. To detect this case, SLDLM
maintains another indicator, LOCK DENIED.
This is set by TSLS when it ;ends a
command-race-detected reply modifier.

When SSLS receives the reply from TSLS, it
checks the reply to determine whether the
partn4!r LU rejected the command because it
detected a race. If so, it also tests the
session-limit-data lock to determine if,
meanwhile, its LU, acting as a target LU for
another CNOS command, has rejected a comm<ind
from the partner LU. SLDLM determines this
from the LOCK DENIED indicator.
(LOCK_DENIED, together - with the receipt of a
command-race-detected reply modifier, indi­
cates a double-failure race condition;
either LOCK DENIED or command-race-detected
alone does n~t represent a double failure.)

Example flows for the types of command races
that can occur are shown in Figure 5.4-10 on

page 5.4-17, Figure 5.4-11 on page 5.4-18,
and Figure 5.4-12 on page 5.4-19. The flows
for the no-race case are shown in Fig­
ure 5.4-9 on page 5.4-16 for comparison.

In the figures:

• The change number of sessions commands
sent from each of the two LUs are on dif­
ferent conversations.

• The columns labeled "Transact i on-x" show
the actions performed by the CNOS
transaction-program processes in process­
ing a CNOS verb issued by the control
operator at LUa.

• The columns labeled "Transact i on-y" show
the actions performed in processing a
CNOS verb issued by the control operator
at LUb.

•

•

•

The column labeled " (LU, model entry
C LUb, m)" shows the changes made by the
two transactions to the C LU,mode l entry
for LUb, mode name m at LUa.

The column labeled "(LU,model entry
C LUa, ml" shows the changes in the corre­
sponding C LU,model entry for LUa, mode
name m at LUb.

MAX_SESS represents the session limit for
mode name min the CLU,model entry.

• SLD_LOCK represents the state CLOCKED,
UNLOCKED, DENIED J of the
session-limit-data lock.

The flows shown are:

• A CHANGE_SESSIOH_LIMIT verb (abbreviated
CHANGE_SESSLIM l

• The CNOS commands and replies exchanged
by the CNOS transaction-program proc­
esses,

• The internal requests !LOCK, TEST,
UNLOCK l and their rep! i es C OK, REJECT,
DENIED l

• Update actions on
session-limit field of
entry

the
the

!LU,model
C LU,mode)

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-15

LU a LUb

Transactio~x
source process

(LU,mode)
entry

CLUb,m>

Transactio~y
target process

Transactio~y
source process

(LU,mode I
entry

Transaction-x
target process

MAX_SESS
SOL_ LOCK

(1)

(2)

(3)

(4)

SOL LOCK -(5)

(6)

(7)

MAX_ SE SS
(8)

SOL_ LOCK

is n
is UNLOCKED

.CNOS
<

'LOCK'
< •••••••••••••••
is LOCKED

'OK'
••••••••••••••• >

.CNOS

(LUa ,m I

MAX_SESS is n
SDL_LOCK is UNLOCKED

CHANGE_SESSLIMCLUCal MODECml MAX_SESSCjJI
'LOCK'

• •••••••••••••• >
SDL_LOCK is LOCKED
'OK'

< •••••••••••••••

command CMODECm) MAX_SESS(j)).

reply CMODECml OKJ
------------------->

.update CMAX_SESSCj)) .update CMAX_SESSCjlJ
< •••••••••••••• • • >
is j MAX_SESS is j

'UNLOCK' 'UNLOCK'
< •••••••••••••• • • >
is UNLOCKED SDL_LOCK is UNLOCKED

Note: Numbers in the left column refer to explanations in the text.

Figure 5.4-9. No Race: Only One LU Issues a CNOS Verb

5.4-16

HQ Bfil<!: If only one LU issues a CNOS com­
mand, no race occurs, and the transaction is
successful.

Figure 5.4-9 shows the no-race case. In this
example:

1. Before sending the CNOS command, the
source LU (LUb I attempts to lock the
affected CLU,mode) entry.

2. Since no other CNOS transaction at LUb
has the CLU,mode> entry locked, the
attempt is successful.

3. LUb now issues the CNOS command.

4. When the target LU (LUa) receives the
CNOS command, it attempts to lock the
CLU,mode) entry.

5. Since no other CNOS transaction at LUa
has the (LU.mode> entry locked, the
attempt is successful.

6. LUa then negotiates and sends the CNOS
reply.

7. LUa then updates the (LU,mode entry).

Similarly, when LUb receives the reply,
it also updates its CLU,mode> entry.

8. Both LUs unlock the (LU,mode) entries.
The (LU,mode) entries are now avai !able
for updating by subsequent CNOS verbs.

Single-Failure Races: In the single-failure
cases <Figure 5.4-10 on page 5.4-17 and Fig­
ure 5.4-11 on page 5.4-18), one transaction
failsl it does not modify the session-limit
parameters in the CLU,model entry. The other
transaction succeeds and changes the
session-limit parameters.

Figure 5.4-10 on page 5.4-17 shows a
single-failure race condition in which one
transaction's command and reply both cross
the reply of the transaction for a verb
issued at the other LU. In this example,

1 • LUa 's command succeeds because LUb was
not busy when the command arrived.

2. LUb's command fails because LUa's verb
has not completed at LUa when LUb's com­
mand arrives, even though LUa's verb
processing has completed at LUb.

3. When LUb receives the REJECT reply, it
tests for LOCK_DENIEO, which is not set,
and so determines that no command from
LUa (for mode name m > has been rejected

SNA Format and Protocol Reference Manual for LU Type 6.2

LUa LUb

Transaction-><
scurc~ pr-ccess

(LU.mode I
en1:ry

Transaction-y
t~rg~t proces5

Transaction-y
o;ourr.P process

(LU,mode l
entry

Transaction-><
target process

{!)

(2)

(3)

< LUb,ml

MAX_SESS is n
SDL_LOCK is UNLOCKED

CHANGE_SESSLIM!LU!LUbl MODECml MAX_SESS(i))
'LOCK'

••••••••••••••• >
SDL_LOCK is LOCKED
'OK'

< •••••••••••••••
• CNOS command !HODECml HAX_SESS!ill

(LUa ,m)

MAX_SESS is n
SDL_LOCK is UNLOCKED

'LOCK'
< •••••••••••••••

SDL_LOCK is LOCKED
'OK'

••••••••••••••• >
CNOS reply CHODE!ml OKl.

.update !HAX_SESS(i ll
< •••••••••••••••

HAX_SESS is i
'UNLOCK'

< •••••••••••••••
SDL_LOCK is UNLOCKED

CHANGE_SESSLIM!LU!LUa' MODE!ml HAX_SESSCjll
'LOCK'

••••••••••••••• >
SDL_LOCK is LOCKED
'OK'

< •••••••• ~ ••••••
• CNOS command (MODE(Hl MAX_SESSljll.
<~~~~~~~~~~

'LOCK'
< •••••••••••••••

SDL_LOCK is DENIED
'REJECT'

••••••••••••••• >
HAX_SESS is n (no change)

.CNOS reply CMODE!Ml RACE_REJECTJ

MAX_SESS is
'TEST'

••••••••••••••• >
'OK'

<~~~~~~~~~~~~~~~~~---' < •••••••••••••••
.update lHAX_SESSCi ll 'UNLOCK'
••••••••••••••• > ••••••••••••••• >

(no change)

HAX_SESS is SDL_LOCK is UNLOCKED
'UNLOCK'

••••••••••••••• >
SDL_LOCK is UNLOCKED

~ Numbers in the left column refer to explanations in the text.

Figure 5.4-10. Single-Failure Race Condition--Case l: Command Crosses Reply

and therefore does not attempt to retry
the command.

Figure 5.4-11 on page 5.4-18 shows another
single-failure race condition, in which one
transact; on' s command and reply cross the

command of the transaction for a verb issued
at the other LU. In this example,

1. LUb's command fails because LUa's command
has not completed when LUb's command
arrives.

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-17

w• Lllb

Transacti on-x
source process

(LU,mode)
entry

Transaction-y
target process

Transaction-y
source process

(LU,mode)
entry

CLUa,m)

Transactiort-x
target process

(LUb;m)

.
MAX_SESS is n
SDL_LOCK is UNLOCKED . .

.
MAX_SESS is n
SDL_LOCK is UNLOCKED

CHANGE_SESSLIMCLUCLUb) MODE(m) MAX_SESS(i))

(1)

(2)

(3)

'LOCK'
••••••••••••••• >

SDL_LOCK is LOCKED
'OK'

< ••••••••••••••• .
.CNOS command CMODECm> MAX_SESSCiJJ

.

. .
CHANGE_SESSLIMCLUCLUa> MODE(•) MAX_SESS(j))

'LOCK'
••••••••••••••• >

SDL_LOCK is LOCKED
'OK'

< •••••••••••••••
• CNOS command CMODE(m) MAX_SESS(jJ).

'LOCK'
< •••••••••••••••

SDL_LOCK is DENIED
'REJECT'

••••••••••••••• >
MAX_SESS is n (no change)

.CNOS reply (MODE Cm) RACE_REJECT)

MAX_SESS is n (no change)
'TEST'

••••••••••••••• >
'OK'

< •••••••••••••••
'UNLOCK'

• >
SDL_LOCK is UNLOCKED

'LOCK'
< •••••••••••••••

SDL_LOCK is LOCKED
'OK'

••••••••••••••• >
CNOS reply CMODE<m> OKJ.

<--~
.update CMAX_SESSCi)) .UPDATE CMAX_SESS(i)J
••••••••••••••• >

MAX_SESS is
'UNLOCK'

• >
SDL_LOCK is UNLOCKED

<----------
MAX_ SE SS is i

'UNLOCK'
< •••••••••••••••

SDL_LOCK is UNLOCKED

NOTE: Numbers in left column refer to the explanations in the text.

Figure 5.4-11. Single-Failure Race Condition--Case 2: Command and Reply Cross Command

5.4-18

2. When LUb receives the REJECT reply, it
tests LOCK DENIED and determines that no
command fr~m LUa (for mode name m l has
been rejected and therefore it does not
attempt to retry the command.

3. LUa 's command succeeds because LUb 's
unsuccessful command has already ce>111-
pleted at LUb, and has released the lock,
before LUa's command arrives at LUb.

SNA Format and Protocol Reference Manual for LU Type 6.2

LUa LUb

Transaction-x
source process

(lU,mode)
entry

lLUb,m>

Transaction-y
target process

Transaction-y
source process

C LU,mode>
entry

Transaction-x
target process

tfAX_SESS is n
SDL_LOCK is UNLOCKED

C LUa,m>

tfAX_SESS is n
SDL_LOCK is UNLOCKED

Cl) CHANGE_SESSLitfCLUCLUb> tfODECml tfAX_SESSCi>> CHANGE_SESSLitfCLUCLUa> tfODECm> tfAX_SESSCj))

(2)

(3)

(4)

(5)

(6)

'LOCK'
••••••••••••••• >

SDL_LOCK is LOCKED
'OK'

< •••••••••••••••
.CNOS command CtfODE(m) tfAX_SESSCil>

<-----'
'LOCK'

< •••••••••••••••
SDL_LOCK is DENIED

'REJECT'
••••••••••••••• >

tfAX_SESS is n Cno change)
.CNOS reply

'LOCK'
••••••••••••••• >

SDL_LOCK is LOCKED
'OK'

< •••••••••••••••
CNOS command CtfODECm> tfAX_SESSCj))

'LOCK'
<

SDL_LOCK is DENIED
'REJECT'

••••••••••••••• >
tfAX_SESS is n (no change)

CtfODECml RACE_REJECT>
.CNOS reply CtfODECm> RACE_REJECT>

<.------------------~ ----->
'TEST' 'TEST'

..................... > ••••••••••••••• >
'DENIED' 'DENIED'

< ••••••••••••••• < •••••••••••••••

C 7 l (' LUa ' < ' LUb • J C ' LUb' > ' LUa ' J

(8)

(9)

this LU will not retry> this LU will retry).

'UNLOCK'
••••••••••••••• >

SDL_LOCK is UNLOCKED

.CNOS command CtfODECm> tfAX_SESSCj>>. <-----------
'LOCK'

< •••••••••••••••
SDL_LOCK is LOCKED

'OK'
••••••••••••••• >

.CNOS reply CtfODECm> OK>
------------->

.update (MAX_SESS(jl>
< •••••••••••••••

1'1AX_SESS is j
'UNLOCK'

< •••••••••••••••
SDL_LOCK is UNLOCKED

.update CtfAX_SESSCjl)
••••••••••••••• >

tfAX_SESS is j
'UNLOCK'

••••••••••••••• >
SDL_LOCK is UNLOCKED

Note: Numbers in left column refer to explanations in the text.

Figure 5.4-12. Double-Failure Race Condition: Command Crosses Command, Reply Crosses Reply

Double-Failure Race: In the double-failure
case (Figure 5.4-12), both transactions ini­
tially fail. The SSLS components at each LU

discover the double failure and compare their
fully-qualified LU names to resolve it. CFor
the comparison, the fully-qualified LU names

Chapter 5.4. Present.ation Services--Control-Operator ,Verbs 5.4-19

are left-justified and padded to the right
with space [X'40'] characters to make the
lengths equal. J The LU with LU name lower
in EBCDIC collating sequence loses; the verb
fails as in a single-failure race condition.
The LU with LU name higher in EBCDIC collat­
ing sequence retries the CNOS command, i.e.,
it allocates a new conversation and sends the
same CNOS command again. If no further
errors occur, the verb eventually succeeds.

Figure 5.4-12 on
double-failure case.

page 5.4-19 shows
In this example:

a

1. Operators at both LUs simultaneously
issue CNOS verbs.

2. The source processes successfully lock
the ILU,mode> entries at their respective
LUs, and issue CNOS commands.

3. The commands cross in transit.

4. When the commands arrive, the target
processes attempt to lock the (LU,mode J
entries but fail because they are already
locked by the source processes of the
other transaction, each of which has not
yet received the reply to its own com­
mand. The fai H ng attempt to lock also
sets the LOCK_DENIED state of the lock.
MAX_SESSIONS remains temporarily at D·

5. Each target process sends a reply i ndi­
cating a race reject. These replies also
cross in transit.

6. When the REJECT replies arrive, each
source transaction program tests
LOCK_DENIED and finds it set, indicating
that a target transaction program at the
same LU had attempted to set the lock but

BASIC A!:m OPTIONAL SUPPORT

The basic and optional functions available at
the control-operator protocol boundary are
defined in SNA Transaction Programmer's Ref­
~ Manual for LU ~ 2.,g. This section
relates those functions to the capabilities
of the components in the formal description.

BASE-FUNCTION-SET SUPPORT

All implementations support an
implementation-defined control-operator
transaction program that is able to issue any
of the required !base function set>
control-operator verbs and all optional
control-operator verbs and parameters that
the LU supports.

The base function set, supported by all
implementations, includes the functions cor­
responding to the LU-parameter verbs, i • e. ,
the ability to specify the values of certain
LU parameters that are chosen by the instal­
lation. An implementation may support issu-

had been refused. This is a double fail­
ure: the local LU's own command has
failed, and meanwhile the local LU has
rejected a command from the partner LU.

7. Each source process compares LU names to
determine whether it should retry.

8. The LU with low LU name (LUa J releases
the lock and terminates its CNOS verb to
avoid another race.

9. The LU with the high LU name CLUbJ
re-issues the command. Processing con­
tinues as in the no-race case (fig­
ure 5.4-9 on page 5.4-16).

RECOVERY FROM CONVERSATION FAILURE

If conversation failure, e.g~, session out­
age, were to occur during CNOS processing,
the CNOS command would not complete success­
fully at the source LU. Nevertheless, it
might complete at the target LU, for example,
because the reply was lost after the target
LU had already deallocated the conversation.
In this case, the session limits could become
different at the two LUs.

To prevent this discrepancy, SSLS retries any
command that fails because of conversation
failure. Since the original session has been
lost, SSLS attempts to obtain a new session
on the same or another mode name. It first
tries to obtain a session with the mode name
that failed, then with mode name SNASVCMG (if
different>, then with each mode name affected
by the command, until either the command suc­
ceeds or the LU determines that no session
can be allocated with any affected mode name.

i ng these verbs from the control-operator
transaction program. Alternatively, instead
of exposing these verbs at the
control-operator protocol boundary, the
implementation may provide other support in
the form of installation-time, IPL-time, or
run-time processing of the system-definition
values, as long the values are initialized
prior to first use.

The base function set also includes local
support of the functions of INITIAL­
IZE_SESSION_LIMIT and RESET_SESSION_LIMIT
that apply to single-session mode names, and
includes receive support for remotely-issued
ACTIVATE_ SESSION and DEACTIVATE_SESSION
verbs.

All LUs providing an "open" protocol bounda­
ry, i.e., one to which application trans­
action programs have access, also support
parallel sessions, including the CNOS minimum
support (see "CNOS Minimum Support Set" on
page 5.4-21 J.

5.4-20 SNA Format and Protocol Reference Manual for LU Type 6.2

Parallel-session LUs optionally support
optional function set parameters of the CNOS
verbs (see "Parallel-Session Optional Func­
tions" on page 5.4-21 l.

LUs with a "closed" protocol boundary, i.e.,
one to which application transaction programs
do not have &ccess, may optionally support
parallel sessions and the corresponding CNOS
minimum support.

CNOS MINIMUM SUPPORT SET

The CNOS minimum-support functions are:

•

•

•

Send (source) support for
IZE_SESSION_LIHIT

INITIAL-

This increases the session limit from 0.

Send support for
RESPONSIBLE< SOURCE)
DRAIN_ TARGET(YES)

RESET_SESSION_LIMIT
DRAIN_SOURCE<NO)

DRAIN_SOURCEIYESl

This resets the session limit to 0. This
does not allow the local LU to initiate
new conversations after the verb com­
pletes, but it allows the LU to accept
new conversations initiated by a partner
LU.

Receive (target) support for all CNOS
verbs, except that:

The target LU may unconditionally
change RESPONSIBLECTARGETJ to RESPON­
SIBLE (SOURCE l.

The target LU may unconditionally
change DRAIN_TARGETIYESJ to
DRAIN_TARGETCNOJ.

The minimum-support CNOS components are:

•

•

•

•

An implementation-supplied
control-operator transaction program that
can issue the CNOS minimum-support verbs

The CNOS service transaction program
CTPN=X'06Fl'l

Presentation services for the control
operator <PS.COPRI, except for the
optional functions listed in
"Par01llel-Session Optional Functions"

Support for a sufficient number of
reserved sessions using the SNA-defi ned
mode name SNASVCMG

The LU provides the capabi Ii ty for two
such sessions for each LU with which the
LU can have concurrently-active parallel
sessions; these mode-name-SNASVCHG ses­
sions are in addition to the sessions

provided for user transactions. For each
potential parallel-session partner LU,
the operator specifies an (LU.model entry
with mode name SNASVCMG and with 1 i mi ts
allowing one contention-winner and one
contention-loser session.

<The SNA-defined mode name is provided so
that PS.COPR will always be able to acti­
vate a session to send the CNOS command,
even when all other session limits are
o, as in the initial state, or when all
other active sessions are in in-brackets
state or are bidder sessions on which a
bid request is being refused.!

An LU that provides only the CNOS
minimum-support does not expose
HIN CONWINNERS TARGET, RESPONSIBLE, or
DRAIN_TARGET at the control-operator protocol
boundary. In that case, the source LU sends
HIN_CONWINNERS_TARGET!implementation choice!,
RESPONSIBLE(SOURCEI, and DRAIN_TARGET<YESl
for those parameters that it does not expose.

PARALLEL-SESSION OPTIONAL FUNCTIONS

The optional parallel-session CNOS functions
Qre:

• Receive support for DRAIN_TARGETCYESl

•

•

•

This means that the LU supports local
drain, i.e., it is able to start new con­
versations after the session limit is
reset to 0 ilnd to defer deactivating ses­
sions until there are no more local
requests for new conversations.

Send support for any or all of the fol­
lowing:

MIN_CONWINNERS_TARGET

RESPONSIBLE(TARGET)

DRAIN_ TARGET(NO J

This means that the LU exposes these
pi!rameters at the control-operator proto­
col boundary.

Receive support for RESPONSIBLECTARGETl

This means the LU can be responsible for
decreasing the session count to a nonzero
value, i.e., it maintains an exact count
of sessions to be terminated.

Send support for CHANGE_SESSION_LIMIT

This means that the LU can increase or
decrease the session 1 i mi t to a nonzero
value when it is currently nonzero.

Chapter S.4. Presentation Services--Control-Operator Verbs 5.4-21

COMPONENT INTERRELATIONSHIPS

This section describes the
interrelationships of the
control-operator functions.

The principal components are:

functions
components

and
for

• Presentation services for the control
operator (PS.COPR>

• Control-operator transaction program

• CNOS service transaction program

To perform its functions, PS.COPR may invoke
the following other LU components:

• Resources manager (RM), which performs
session shutdown and invokes LU network
services for session initi-
ation/termination and acti-
vation/deactivation

• Presentation services for conversations,
which uses an LU-LU half-session for the
conversation with the partner LU.

Figure 5.4-1 on page 5.4-2 illustrates the
relationships among these components.

TRANSACTION PROGRAMS

Control-Operator Transaction Program

The control-operator transaction program is
an implementation-defined transaction pro­
gram at the source LU that represents the LU
control operator. It forms part of the
local-LU (source-LU> transaction-program
process. It is invoked by. presentation
serv1 ces (PS. INITIALIZE) as a result of an
implementation-defined program-initiation
request.

The control-operator transaction program may
interact with a human operator, at the imple­
mentation- and/or installation-option, to
obtain input parameters or to present
results. It issues any of the supported
control-operator verbs exposed at the
control-operator protocol boundary.

The transaction program passes to PS.COPR a
transaction-program-verb structure specifying
the verb type and verb parameters. When
PS.COPR processing is complete, the trans­
action program is returned the same structure
containing the returned parameter values,
e.g., a return code indicating success or a
failure reason.

CNOS Service Transaction Program

The CNOS service transaction program is that
SNA-defined transaction program with

transaction-program name (TPN) X'06Fl'. It
represents the control operator at the target
LU. It is invoked by presentation services
(PS. INITIALIZE) when the target LU receives
the Attach FM header that resulted from the
ALLOCATE verb issued by PS.COPR at the source
LU.

The CNOS service transaction program performs
the following functions.

•

•

•

It is the target for the ALLOCATE verb
issued by the source-LU control-operator
transaction program. By being invoked,
i t completes the activation of the con­
versation for the CNOS transaction.
(The characteristics of the conversation
are discussed in section "CNOS Conversa­
tion Allocation" on page 5.4-27. The
conversation parameters from the Attach
FM header are verified by the resources
manager and presentation services for
conversations before this program is
invoked.>

It issues the PROCESS_SESSION_LIMIT verb
before any other processing. Thus, the
CNOS service transaction program does not
induce any undue delay, e.g., it does
not wait on operator input. It also does
not affect the values of the negotiable
parameters; these values are determined
by an algorithm within PS.COPR.

The CNOS service transaction program
passes to PS.COPR a
transaction-program-verb data structure
specifying the verb type and identifying
the return parameters for the CNOS verb.
When PS.COPR processing is complete, the
CNOS service transaction program is
returned the same structure containing a
return code indicating success or a fail­
ure reason and other parameters identify­
ing the C LU,mode> entry or entries
affected by the CNOS com1nand. The PROC­
ESS_SESSION_LIMIT verb does not provide
the values of the session-limit parame­
ters to the CNOS service transaction pro­
gram; these values are available by
issuing the DISPLAY verb.

When control returns from the PROC­
ESS SESSION LIMIT verb, the conversation
with the source LU has already been deal­
located and the session-limit parameters
have been updated at the target LU.

It performs an implementation-defined
action to notify its control operator of
the activity. For example, it could
trigger an interrupt to the LU's
control-operator transaction program (see
section "Control-Operator Transaction
Program") to allow that program to exam­
ine the new session-limit parameters and
display them for the operator.

5.lt-.22 SHA format and Protocol Referenc11 Manual for LU Type 6.2

PS Verb Router

jo;~CTIVATE_j I DEFI~;-i
RESE~=---i
CHAN~U

V'-----.
ACTIVATE_
SESSION_

PROC

.----v
INITIALIZE_

SESSION_
LIMIT

PRocY

SESSION_
LIMIT_

PROC
---A

J .ISPr.v J

.-.

PROC~[]S_

.-. A

sou~~E
SESSION_

LIMIT_

Source-LU I
Session-Limit
Services

SESSION_ I
LIMIT_ < •••••• :
DATA_
LOCK_

MANAGER

'------··-----:--•--~

.~A~········>

:-- '----~

Target-LU
Session-Limit
Servi_c_es __ ,

Presentation Services for the
Control Operator CPS.COPRl :-- --------:-- -------------- ----1

v
Resources
Manager

v
PS
Verb
Router

v
Resources

Manager

v
PS
Verb
Router

v
Resources

Manager

v
PS
Verb
Router

v
Resources
Manager

1 These routines are verb handlers for both local- and distributed-function session-limit verbs.

LEGEND:
••••• > Call/return relationship (within a process)
<--> Send/receive relationship (between processes l

Figure 5.4-13. Structure of Presentation Services for the Control Operator

PS.COPR COMPONENTS

Figure 5.4-13 shows the structure of PS.COPR.
Its main components are:

• The control-operator-verb router (repres­
ented in the figure by the connecting
arrows from the PS verb router to the
various verb-handler routines)

•

•

A verb handler for each verb Ce.g., ACTI­
VATE_SESSION_PROC, DEFINE_PROC, DIS­
PLAY_PROC, INITIALIZE_SESSION_LIMIT_PROC,
PROCESS_SESSION_LIMIT~PROCl

Common verb-processing routines for
groups of verbs:

Local session-limit services,
single-session mode names and
mode name SNASVCMG
CAL_SESSION_LIMIT_PROCl

for
for,

CLO-

Source-LU CNOS session-limit services
CSOURCE_SESSION_LIMIT_PROCl

Target-LU CNOS session-limit services
(combined with PROC­
ESS_SESSION_LIMIT_PROCl

• The session-limit-data lock manager that
controls contention between source-LU
session-limit services (running on behalf
of a locally-issued verb) and target-LU
session-limit services (running on behalf
of a remotely-issued verb).

Chapter 5.4. Presentation Services--Control-Operator Verbs S.4-23

The control-operator verb router component is
the root procedure of PS.COPR. It is invoked
by the PS verb router C see Chapter 5. O) when
a transaction program issues a
control-operator verb. It forms part of the
transaction-program process. It is passed
the transaction-program-verb structure
C TRANSACTION_PGM_ VERB) from the PS verb
router, and passes this structure on to the
corresponding verb handler. Upon rega1mng
control from the verb handler, it returns to
the PS verb router.

LOCAL CONTROL-OPERATOR VERB PROCESSING

Local-verb services comprises the verb han­
dlers for two groups of local-function verbs:
LU-parameter verbs and local session-control
verbs.

LU-PARAMETER VERB PROCESSING

The LU-parameter verbs include DEFINE and
DISPLAY (see Figure 5.4-13) These verbs allow

an implementation to define and display the
parameters that are configuration dependent
(i.e., the ma>dmum number of sessions) and
optional capabilities that are supported by
the LU, the partner LUs, the MODES, and the
transaction programs.

The verb handler checks privilege to deter­
mine that the requesting control-operator
transaction program has DEFINE or DISPLAY
privilege, as appropriate to the verb. It
locates the relevant data structure and its
containing structures using the keys provided
as verb parameters. It provides a return
code indicating whether the operation was
performed successfully.

The verb handler copies values from
control-operator transaction program vari­
ables into the LU data structures, or vice
versa; the transaction program never has
direct access or addressabi 1 ity to the LU
data structures.

Verb Parameter Values Contention Polarity to be Used

LU_MODE_ MINIMUM_ MINIMUM_
SESSION_ CONWINNERS CONWINNERS_
LIMIT SOURCE - TARGET

Polarity for
Locally Activated
Sessions

Polarity Negotiation
for Remotely Activated
Sessions

0 * * parameter combination not allowed

1 0 0 contention winner accept partner choice
1 1 0 contention winner contention winner

1 0 1 contention loser accept partner choice
1 1 1 parameter combination not allowed

2 or more * * parameter combination not allowed

LEGEND:
* any value

Figure 5.4-14. Single-Session Contention Polarity Determined by Minimum-Contention-Winner-Limit
Parameters

5.4-24

LOCAL SESSION-CONTROL VERB PROCESSING

The session-activation verb handlers (e.g.,
ACTIVATE_SESSION_PROC) have an inter-process
(send/receive) relationship with the
resources manager for exchanging the
session-activation and -deactivation records.

The local session-limit services component
CLOCAL_SESSION_LIMIT_PROC) provides the func­
tions of the sess i on-li mi t verbs for both
single-session mode names and for the
parallel-session mode name SNASVCMG, i.e.,
the mode name reserved for use by CNOS.
CEven though SNASVCMG-mode-name sessions are

parallel sessions, local verbs are used to
initialize--to fixed session limits--and to
reset the SNASVCMG mode name, because a ses­
sion with this mode name must be activated
before the first CNOS command and reply can
be sent.) This component has an
inter-process I send/receive) relationship
with the resources manager to notify RM of
limits changes.

INITIALIZE SESSION LIMIT: When this verb is
issued for a single-session mode name or for
mode name SNASVCMG, local session-limit serv­
ices checks session-limit constraints and
sets the ILU,model session limit at the local
LU. The partner LU does not parU ci pate in

SNA Format and Protocol Reference Manual for LU Type 6.2

setting the limits. Local session-limit
services sends a change-sessions notification
to the resources manager so that the
resources manager may request activation of
the allowed sessions according to its
session-activation algorithm.

For single-session mode names, local
session-limit services also determines the
contention polarity to be used when a session
is activated by the local LU and determines
the contention-polarity negotiation rule to
be used when a session is activated by a
partner LU. It determines these settings
from the minimum-contention-winner limit
parameters of the verb, as specified in Fig­
ure 5.4-14 on page 5.4-24.

In the figure, the first three columns list
possible combinations of verb parameter val­
ues. The next column (locally activated ses­
sions) specifies the corresponding
contention-polarity choice that will be sent
in a BIND RU issued by the local LU; the
partner LU may negotiate contention-winner to
contention-loser (i.e., make the partner LU
the contention winner), but not the reverse.
The next column (remotely activated sessions)
specifies the contention-polarity that will
be sent in the response issued by the local
LU to a BIND from a partner LU. The local LU
may change a received contention-loser into a
contention-winner, but not the reverse. The
last two columns also indicate those combina­
tions of verb parameter values that are
invalid with single-session mode names.

For the parallel-session mode name SNASVCMG,
the verb parameters have their usual inter­
pretation, but the only accepted values are:
(LU.mode> session limit = 2, minimum
contention-winner limit (source> = 1, minimum
contention-winner limit (target> = 1.

RESET SESSION LIMIT: When this verb is
issued for a single-session mode name or for
mode name SNASVCMG, local session-limit serv­
ices checks session-limit constraints and
sets the (LU,mode) session limit to 0 at the
local LU. It also sets the drain specifica­
tion for the local and remote LUs. The part­
ner LU does not participate in setting these
limits. Local session limit services sends a
change-sessions notification to the resources
manager so that the resources manager wi 11
deactivate the specified sessions according
to its drain and session-deactivation algo­
rithms.

For mode name SNASVCMG, local session-limit
services also verifies that all other mode
names for the specified partner LU are fully
reset, i.e., have !LU,mode) session limit= 0
and drain state NO. If so, it sets theses­
sion limits for mode name SNASVCMG to 0 and
notifies RM to deactivate the
SNASVCMG-mode-name sessions; otherwise. it
does not change the limits but sets the
appropriate return code.

ACTIVATE SESSION: For this verb, the verb
handler sends a session-activation request to
the resources manager, and receives a reply

record indicating whether the session Nas
successfully activated.

DEACTIVATE SESSION: For this verb, PS.COPR
sends a session-deactivation request to the
resources manager; the resources manager
sends no· reply, as session deactivation is
assured.

SESSION-LIMIT SERVICES AT THE SOURCE LU

Source-LU session-limit services (SSLS) proc­
esses CNOS verbs issued at the source LU. It
forms a part of the source-LU
transaction-program process that includes the
control-operator transaction program. It is
invoked via the presentation services !PS>
verb router and PS.COPR when the
control-operator transaction program issues a
CNOS verb, and returns to the
control-operator transaction program via the
routers upon completing processing.

SSLS interacts with other LU components as
follows (see Figure 5.4-15 on page 5.4-26).

A verb-handling routine corresponding to the
specific verb <INITIALIZE_SESSION_LIMIT_PROC,
CHANGE_SESSION_LIMIT_PROC, or
RESET_SESSION_LIMIT_PROCJ, receives the verb
parameters from the PS.COPR router. It then
invokes the common session-limit services
routine SOURCE_SESSION_LIMIT _PROC. It is
returned the same structure with a return
code, which it passes back to the PS.COPR
router.

SOURCE_SESSION_LIMIT_PROC is passed the CNOS
verb parameters Nhich it returns updated Nith
a return code when its processing is· com­
plete. It performs the remainder of SSLS
processing, as follows.

• It verifies that .the program issuing the
verb is privileged to issue CNOS verbs.

• It allocates a conversation Nith the tar­
get.

• Using that conversation, it sends a CNOS
command record and receives a CNOS reply
record

• It invokes the session-limit-data-lock
manager !see "Session-limit Data Lock
Manager" on page 5. 4-30) to prevent
simultaneous updating of the same
(LU,mode) entry, or entries, and to
resolve races.

• It updates the (LU,mode) entry with the
accepted session-limit parameters.

• If necessary, it notifies the resources
manager to increase or decrease the cur­
rent number of sessions.

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-25

LU Control Operator
A
I ,.._ _______ .V'--------~

•••••••••••• > Control-Operator

(local ini~iation)l
Transaction Program

JR~NSACTION_PGM_VERB ,
..----------------------v----------------------. Control-Operator Verb Router CPS.COPR)

INITIALIZE_
SESSION_ LIMIT

CHANGE_
SESSION_ LIMIT

RESET_
SESSION_ LIMIT

INITIA~~ZE
SESSION_LIMIT_

PROC
------:

Va CHANGE
SESSION_ LIMIT_

PROC
Va RESET

SESSION_ LIMIT_
PROC

.
: : : CNOS '.'erb

V-V-V---, LOCK/UNLOCK SESSION_LIMIT_DATA_
SOURCE_ ••••••••••••••••••••••••••• > LOCK_MANAGER

SESSION_ I I
LIHIT _ ••••••••••••••••••••••••••••••••••••

PROC <----------------------.

SESSION_LIMIT_SERVICES_SOURCE

ALLOCATE
SEND_DATA

.-.
nu,
mode)
entry

CNOS command
RECEIVE_AND_WAIT

CNOS reply
DEALLOCATE

CHANGE_ SESSIONS

1,2

-----------·v----------.... Presentation Services
for Conversations

CPS.CONY)
"----------.A----------_,

11
..--------v-------.

LU-LU Half-Session
C'SNASVCMG' or

other mode name)
'--------A--------'

Resources
Manager

<RM>

• ->ATTACH TPNCX'06Fl 1) CFMH-5)
• -> CNOS command CGDS ID=X'l210')
• <- CNOS reply (GDS ID=X'l210')
•
••••••••••••••••••••••••••••••••••••>to target LU

LEGEND:
••••• > Call/return relationship (within a process)
<--> Send/receive relationship (between processes)

Access to shared data (within the LU)
<••••> Transaction program interaction <between LUsJ

1 See Chapter 5.1 for these interactions.
2 PS router detail has been omitted.

Figure 5.4-15. Source-LU Component Interactions for CNOS

5.4-26 SNA Format and Protocol R~fer~rlCe Manual for LU Type 6.2

Privilege Checking

SSLS examines the source-LU's transaction
program llst to determine whether the
control-operator transaction program is
authorized to issue CNOS verbs, i.e., whether
it has change-number-of-sessions pr1vilege.
If not, SSLS causes the verb to fa;1.

(Since the target transaction program has a
priv1leged transaction-program name, i.e.,
TPN less than X'40', presentat1on serv1ces
for conversat1ons also verifies, by check1ng
the transact1on-program Hst at the source
LU, that the transaction program 1ssu1ng the
ALLOCATE 1s allowed to invoke privileged pro­
grams.)

CNOS Conversation Allocation

SSLS allocates a conversation with the target
LU to exchange the CNOS command and reply.
The conversation requires only conversation
verbs in the base set, but an implementation
may use verbs and parameters from the
locally-supported "performance" option sets
that do not require remote support (see SHA
Transaction Programmer's Reference Manual for
LU Im! 6.2).

The following subsections discuss the allo­
cation parameters for the conversation.

LU D!J!!!U SSLS uses the target LU name sup­
plied by the CNOS verb.

Mode D!J!!!U SSLS uses an
implementation-defined algorithm to select a
mode name for the CNOS conversation; for
example, the algorithm can select a mode name
for which a session is currently active and
available. If no session is available on any
other implementation-selected mode name, SLSS
uses the SNA-defined mode name SNASVCMG. It
also uses SNASVCMG for the first CNOS verb
issued by the LU, i.e., when no sessions are
active for other mode names and the session
limits for all mode names (except SNASVCMG)
are all O.

CThe operator previously initializes the ses­
sion 1 i mi ts for mode name SNASVCMG to
MAX_SESSIONSC2), MIN_CONWINNERS_SOURCE(l),
and MIN_CONWINNERS_TARGETCllt so that the
source LU may always succeed in activating
one contention winner sess1on to send the
CNOS command and reply.)

Type: Basic Conversation

Transaction Program Name: SSLS establishes
the conversation with the CNOS service
transact1on program, whose SNA-defined trans­
action program name CTPNl is X'06Fl', at the
target LU.

Security: Conversation-level security is not
used for CNOS transactions.

Synchronization level: The CNOS conversation
uses SYNC_LEVELCNONE).

Recoverv level: The CNOS conversation uses
RECOVERY_LEVELCNONEl.

Program Initialization Parameters: The CNOS
conversation does not use program initializa­
tion parameter data, i.e., it uses PIPCNO>.

GDS Variable

SSLS builds a CNOS command containing the
verb and parameter information passed from
the CNOS service transaction program and
sends it to the target transaction program.
The Change Number of Sessions GOS variable
and the CNOS command and reply are described
in "Appendix H. FM Header and LU Services
Commands". It receives from the target
transaction program a similar CNOS reply con­
taining a reply code that indicates either
that the command was accepted or the reason
for its rejection.

SSLS generates a conversation between the
source-LU and the target-LU transaction pro­
grams. The sequence of conversation verbs
issued by SSLS, and the complementary verbs
issued by the partner program SES­
SION_LIMIT_SERVICES_TARGET, are shown in Fig­
ure 5.4-3 on page 5.4-9.

SSLS analyzes the CNOS verb parameters for
transaction program errors, checks the return
codes from conversation verbs for conversa­
tion errors such as session failure or proto­
col violation, and analyzes the CNOS reply
for target-detected errors or changes to
negotiable parameters, and determines the
proper return code for the CNOS verb.

If conversation failure (session outage)
occurs, the source LU retr;es the CNOS com­
mand as described in "Recovery from Conversa­
tion Failure" on page 5.4-20.

Update CLU,model Entry

If the command and reply exchange is com­
pleted without error, SSLS updates the
session-limit parameters for the specified
CLU,mode) entry using the new values of
LU_MODE_SESSION_LIMIT, MIN_CONWINNERS_SOURCE,
MIN_CONWINNERS_TARGET, RESPONSIBLE, and
DRAIN_TARGET from the reply record. If the
command specifies MODE_NAMECALL), the limits
for all mode names defined for the specified
LU name, except the SHA-defined mode name
SNASVCMG, are updated. SSLS then invokes the
session-limit-data lock manager to unlock the
entries it locked (see "Session-Limit Data
Lock Manager" on page 5.4-30).

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-27

5.4-28

The new 1 i mi ts are en'forced by the resources
manager (see "Chapter 3. LU Resources Manag­
er") and by LU network services (see "Chapter
4. LU Network Services").

Request Changes in Session ~

If the CNOS command action is Set, or if it
designates the source LU as responsible for
session deactivation, SSLS issues a
CHANGE_SESSIONS request, identifying the
affected LU name and mode names, to the
resources manager CRH>. If MODE_NAMECALL> is
specified, SLSS sends a separate
CHANGE_SESSIONS request for each mode name
except mode name SNASVCMG.

The CHANGE_SESSIONS request notifies RM that
the session limit parameters have changed and
that, as a consequence, RM may make changes
to the number of sessions. RM determines the
actual changes to be made to the session
count and issues appropriate requests to LU
network services to activate or deactivate
sessions.

Return to the Transaction Program

When the above functions are completed, SSLS
returns to the control-operator transaction
program, passing back the appropriate return
code in the transaction-program-verb struc­
ture.

SESSION-LIMIT SERVICES AT THE TARGET LU

Target-LU session-limit services CTSLSJ proc­
esses the CNOS verbs issued at the target LU.
It functions in a manner complementary to
SSLS Csee "Session-Limit Services at the
Source LU" on page 5. 4-25). It forms a part
of the target-LU transaction-program process
that includes the CNOS service transaction
program. It is invoked via the presentation
serv 1 ces C PS) verb router and the PS. COPR
router when the CNOS service transaction pro­
gram issues the PROCESS_SESSION_LIMIT verb;
it returns to the CNOS service transaction
program upon completion of processing.

TSLS interacts with other LU components as
follows (see Figure 5.4-16 on page 5.4-29).

• It receives the transaction-program-verb
structure representing the PROC-
ESS_SESSION_LIMIT verb

When its processing is complete, It
returns to the CNOS service transaction
program, passing back the
transaction-program-verb structure
updated with a return code and the i den­
t ity of the affected CLU,model entries.
CThe latter may be used by the implemen­
tation to inform the control operator of
the changes.)

•

•

•

•

•

•

It determines whether the issuing trans­
action program is the CNOS service trans­
action program CTPN=X'06Fl'I and has the
change-number-of-sessions pri vi 14;!ge. If
not, TSLS abnormally terminates the
transaction program, which causes the LU
issue DEALLOCATE TYPECABEND) on the con­
versation.

It communicates with SSLS at the source
LU, using the conversation with which the
CNOS service transaction program was
attached, by issuing conversation verbs
to presentation services for conversa­
tions.

It receives a CNOS command from the
source LU, changes the source LU ' s
requested session-limit parameters to
values acceptable to the target LU, if
necessary, and sends a CNOS reply, with
the same format, back to the source LU.

It invokes
manager (see
Manager" on
simultaneous
entry.

It updates
entries.

the session-limit-data-lo6k
"Session-Limit Data Lock

page 5.4-30) to prevent
updating of any C LU,mode)

the affected (LU,modeJ

If necessary, it notifies the resources
manager to increase or decrease the cur­
rent number of sessions.

TSLS receives from the source-LU transaction
program a CNOS command record containing the
verb and parameter information passed from
the control-operator transaction program. It
builds a similar CNOS reply record containing
the acceptable values of the negotiable
session-limit parameters--see "Session-Limit
Parameter Negoti at i on"--and a reply code,
which either indicates that the command was
accepted or gives the reason for its
rejection, and sends it to the source LU.

Session-Limit Parameter Negotiation

TSLS executes an implementation-determined
algorithm to accept or modify the negotiable
session-limit parameters received from the
source LU, subject to the negotiation rules
given below. It sets the Reply Modifier
field in the CNOS reply to indicate whether
the all parameters were accepted as received
or whether any were negotiated to new values,
and sends it with the received or modified
values to the source LU in the CNOS reply.
C The source LU accepts any modified values
that satisfy the negotiation rules.)

The negotiation rules are as follows. Cin
the formulas, variables prefixed with c_
refer to values of verb parameters specified
by the source LU in the CNOS command record;
variables prefixed with R_ refer to values of

SNA Format and Protocol Reference Manual for LU. Type 6.2

CNOS LU-Serv;ce
•••••• > Transact;on Program

TPN=X I 06F l '

: TRANSACTION PROGRAM VERB
(invoked via ATTACH :1,2 - -

from source LU l 1

.---------v---------.
Control Operator Verb Router

(PS.COPR l

PROCESS_ SESSION_ LIMIT

.-----v----. LOCK/UNLOCK SESSION_LIMIT_DATA_
PROCESS_
SESSION_

LIMIT_
PROC

••.•••.••.••••••••••••••••• > LOCK_NANAGER
I I

SESSION_LIMIT_SERVICES_TARGET
.-
(LU,
model
entry

GET_ATTRIBUTES
~ECEIVE_AND_WAIT

CNOS command
SEND DATA

CHOS reply
CHANGE_ SESSIONS

DEALLOCATE
i,2

Presentation Services
for Conversations

I PS.CONVl

l

.-----v------.
LU-LU Half-Sess;on

('SNASVCMG' or
other mode name)

'------A-----'

Resources
Manager

IRMJ

• ->ATTACH TPN<X'06Fll CFMH-51

LEGEND:

• -> CNOS command (GDSID=X'l210')
• <- CNOS reply <GDSID=X'l210')
•

from source LU •

<••················

••••• > Call/return relationship (within a process)
<--> Send/rece; ve relationship I between processes)

Access to shared data (within the LUI
<••••> Transaction program interaction !between LUsl

1 See Chapter 5.1 for these interactions.
2 PS router detail has been omitted.

Figure 5.4-16. Target-LU Component Interactions for CNOS

these parameters as modified by the target LU
and returned in the CNOS reply record.

If the command action is Set (INITIALIZE_ or
CHANGE_SESSION_LIMIT verb issuedl:

• If the current (LU.model session count is
o, then, based on an
implementation-defined decision, the LU
may ref use to accept the command by
returning an abnormal reply with
reply-modifier value abnormal--(LU.mode)

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-29

5.4-30

session 1 i mi t is 0. Both LUs then ignore
the sess i on-1 i mit parameters of the
reply; they. do not change the current
session-limit parameters in the
(LU.mode> entry.

• The target LU may decrease
LU_MODE_SESSION_LIMIT to a lower number
of sessions, but not too, i.e., the new
value satisfies:

0 < R LU MODE SESSION_LIMIT S

C_LU_MODE_SESSION_LIMIT.

• If the proposed source contention winners
(C_MIN_CONWINNERS_SOURCE> exceeds
R_LU_MODE_SESSION_LIMIT/2, the target LU
may change MIN_CONWINNERS_SOURCE to any
lower value not less than
R_LU_MODE_SESSION_LIMIT/2 rounded down­
ward, i.e., the new value satisfies:

C_MIN_CONWINNERS_SOURCE ~

R_MIN_CONWINNERS_SOURCE ~

MINIC_MIN_CONWINNERS_SOURCE,
R_LU_MODE_SESSION_LIMIT/2).

• The target LU may change its own minimum
contention-winner limit
IR_MIN_CONWINNERS_TARGET> to any value
not exceeding the difference between the
total session limit and
MIN_CONWINNERS_SOURCE, i.e., the new val­
ue satisfies:

0 S R_MIN_CONWINNERS_TARGET S

<R_LU_MODE_SESSION_LIMIT -
R_MIN_CONWINNERS_SOURCE).

• The target LU may change RESPONSIBLE to
SOURCE.

If the command action is Close for only one
mode name CRESET SESSION LIMIT
(MODE_NAME<ONE, •••) issued):

• If the (LU,mode) session count is 0 and
the current drain state is NO, then,
based on an implementation-defined deci­
sion, the target LU may refuse to accept
the command by returning an abnormal
reply with reply modifier abnor­
mal--ILU,mode> session limit is 0. Both
LUs then ignore the session-limit parame­
ters of the reply; they do not change the
current session-limit parameters in the
I LU,mode) entry.

• The target LU may change RESPONSIBLE to
SOURCE.

• The target LU may change its own drain
action <DRAIN_TARGET> from YES to NO.

• The target
DRAIN_SOURCE.

LU does not change

If the command action is Close for all mode
names IRESET_SESSION_LIMIT (MODE_NAME<ALLI
issued>:

• If the <LU,mode) session count is 0 and
the current drain state is NO for all
mode names with the partner LU, then,
based on an implementation-defined deci­
sion., the target LU may refuse to accept
the command by returning an abnormal
reply with reply modifier abnor­
mal--CLU,mode) session limit is O. Both
LUs then ignore the session-limit parame­
ters of the reply; they do not change the
current sess i on-limit parameters in the
(LU,mode> entry.

• ·The target LU may change RESPONSIBLE to
SOURCE. If so, it changes all mode names
not already at SESSION_LIMIT = 0 to the
same <SOURCE> responsibility.

• The target LU does not send a changed
value for DRAIN_TARGET in the reply, but
echoes the value received. Nevertheless,
if the command specifies
DRAIN_TARGET(YES), the target LU may set
its local drain state for any mode names
to either YES or NO, regardless of the
previous drain state.

• The target
DRAIN_SOURCE.

LU does not change

If TSLS detects a condition that precludes
performing the nominal action (e.g., a race
cond i ti on or unrecogn i zed mode name), but
that does not violate architectural rules, it
sends an abnormal reply with the appropriate
reply modifier (see "Appendix H. FM Header
and LU Services Commands" for reply-modifier
codes).

If it detects an invalid command from the
source LU, e.g., undefined or disallowed
parameter values, it treats this as a proto­
col violation. TSLS does not change the CNOS
parameters or send a reply, but instead
issues DEALLOCATE TYPE I ABEND I • TSLS also
reports any errors detected to the CNOS serv­
ice transaction program via the
transaction-program-verb structure.

Other Interactions

Other TSLS interactions are similar to the
corresponding interactions of SSLS.

SESSION-LIMIT DATA LOCK MANAGER

Locking the ILU,model Entry

The session-limit services routines invoke a
shared component, SES­
SION_LIMIT_DATA_LOCK_MANAGER (SLDLMI, to pre­
vent simultaneous access to an (LU,mode)
entry, to detect races, and to resolve
double-failure race conditions, as described
in "CNOS Race Resolution" on page 5.4-14.

SNA Format and Protocol Reference Manual for LU Type 6.2

SLDLM is a shared routine, invoked from both
SSLS and TSLS, that ma;nta;ns the
session-l;mit data lock. A session-limit
data lock exists for each (LU,mode> entry.
It is in one of the following states:

UNLOCKED: No CNOS component is currently
using the CLU,mode> entry. The
lock is reset to this state whenev­
er the process that locked ;t com­
pletes processing.

LOCKED_BY_SOURCE: SSLS has locked the
(LU,mode) entry to process a CNOS
command ;ssued at the local LU.
The lock had previously been in
UNLOCKED state.

LOCKED_BY_TARGET: TSLS has locked the
C LU ,mode) entry to process a CNOS
command issued at a remote LU. The
lock had previously been in
UNLOCKED state.

LOCK DENIED: While the lock was
LOCKED_BY_SOURCE state,
attempted to lock it on behalf
remotely-issued verb. TSLS
refused.

;n
TSLS
of a

was

This state allows SSLS to determ;ne
whether a double-failure race
occurred.

Chapter 5•4. Presentation Serv;ces--Control-Operator Verbs 5.4-31

VERB-ROUTING PROCEDURE

5.4-32

PS_COPR

FUNCTION: This. procedure receives all control-operator verbs issued by the transaction
program and routes the input to the appropriate procedure for processing. It
is invoked by and returns to the presentation-services verb router and forms
part of the transaction-program process. ·

INPUT: CNOS verb parameters, received from caller, updated by called procedures

OUTPUT: Updated return code and verb-specific returned parameters

Referenced procedures, FSMs, and data structures:
INITIALIZE_SESSION_LIMIT_PROC
CHANGE_SESSION_LIMIT_PROC
RESET_SESSION_LIMIT_PROC
PROCESS_SESSION_LIMIT_PROC
ACTIVATE_SESSION_PROC
DEACTIVATE_SESSION_PROC

Select based on type of verb parameters:
When INITIALIZE_SESSION_LIMIT

page 5.4-33
page 5.4-35
page 5.4-34
page 5.4-57
page 5.4-36
page 5.4-37

Call INITIALIZE_SESSION_LIMIT_PROC with the verb parameters (page 5.4-33).
When CHANGE_SESSION_LIMIT

Call CHANGE_SESSION_LIMIT_PROC with the verb parameters Cpage 5.4-35).
When RESET_SESSION_LIMIT

Call RESET_SESSION_LIMIT_PROC with the verb parameters (page 5.4-34).
When PROCESS SESSION LIMIT

Call PROCESS_SESSION_LIMIT_PROC with the verb parameters (page 5.4-57).
When DEACTIVATE_SESSION

Call DEACTIVATE_SESSION_PROC with the verb parameters (page 5.4-37).
When ACTIVATE~SESSION

Call ACTIVATE_SESSION_PROC with the verb parameters (page 5.4-36).
When DEFINE

Call DEFINE_PROC with the verb parameters (page 5.4-38).
When DISPLAY

Call DISPLAY_PROC with the verb parameters (page 5.4-39).

SHA For•at and Protocol Reference Manual for LU Type 6.2

SESSION-CONTROL VERB HANDLERS

INITIALIZE_SESSION_LIMIT_PROC

FUNCTION: This procedure is called by PS_COPR, the control-operator-verb router, when a
transaction program issues an INITIALIZE_SESSION_LIMIT verb. It determines
the connection type (single or parallel). If the connection is single-session
or the mode name is SNASVCMG, it passes the CNOS verb parameters to
LOCAL_SESSION_LIMIT_PROC; if the connection is parallel-session, it passes the
CNOS verb parameters to SOURCE_SESSION_LIMIT_PROC. It passes the return code
to the original caller. If an ABEND condition occurs, it calls PS to abnor­
mally terminate the transaction-program process.

INPUT: INITIALIZE_SESSION_LIMIT verb parameters from callerJ CNOS RETURN_CODE from
LOCAL_ or SOURCE_SESSION_LIMIT_PROC

OUTPUT: RETURN_CODE of INITIALIZE_SESSION_LIMIT to caller

Referenced procedures, FSMs, and data structures:
SOURCE_SESSION_LIMIT_PROC
LOCAL_SESSION_LIMIT_PROC
DEALLOCATION_CLEANUP_PROC
LUCB

page 5.4-45
page 5.4-40
page 5.0-14
page A-1

If thic tran~action pr~grcm is not authorized to issue the CNOS verb then
Call DEALLOCATION_CLEANUP_PROC (page 5.0-14)

Else

to abnormally terminate this instance of the transaction program
(control is not returned).

Using the LUCB, determine the type of sessions possible with
the partner LU, either single or parallel.

For parallel session connections, an LU may elect not to expose the
MIN_CONWINNERS_TARGET parameter at the control-operator protocol
boundary. In this case, the implementation may choose any value that
satisfies the description of this parameter in SNA Transaction Pro­
grammer's Reference Manual for LU Ila!!! 6.2.

If the specified LU is not defined as a partner LU for this LU then
Set the CNOS RETURN_CODE to PARAMETER_ERROR.

Else
If the type of connection is parallel sessions
and the mode name is not SNASVCMG then

Call SOURCE_SESSION_LIMIT_PROC (page 5.4-45),
with the verb parameters, to begin the negotiation phase of the CNOS
process.

Else (local control-operator verb)
Call LOCAL_SESSION_LIMIT_PROC (page 5.4-40),
with the verb parameters, to perform the CNOS action solely at the
local LU.

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-33

RESET_SESSION_LIMIT_PROC

RESET_SESSION_LIMIT_PROC

5.4-34

FUNCTION: This procedure is called by PS_COPR, the control-operator-verb router, when a
transaction program issues a RESET_SESSION_LIMIT verb. It determines the con­
nection type (single or parallel). If the connection is single-session or the

, mode name is SNASVCMG, it passes the CNOS verb parameters to
LOCAL_SESSIOH_LIMIT_PROCJ if the connection is parallel-session, it passes the
CNOS verb parameters to SOURCE_SESSION_LIMIT_PROC. It passes the return code
to the oi-iginal caller. If an ABEND condition occurs, it calls PS to abnor­
mally terminate the transaction-program process.

INPUT: RESET_SESSION_LIMIT verb' parameters from caller; CNOS RETURN_CODE fro111 LOCAL_
or SOURCE_SESSIOH_LIMIT_PROC

OUTPUT: RETURN_CODE of RESET_SESSION_LIMIT verb to caller

Referenced procedures, FSMs, and data structures:
SOURCE_SESSION_LIMIT_PROC
LOCAL_SESSIOH_LIMIT_PROC
DEALLOCATION_CLEANUP_PROC
LUCB

If this transaction program is not authorized to issue the CNOS verb then
Call DEALLOCATION_CLEANUP_PROC (page 5.0-14)

Else

to abnormally terminate this instance of the transaction program
(control is not returned>.

Using the LUCB, determine the type of sessions possible Nith
· the partner LU, either single or parallel.

page 5.4-45
page 5.4-40
page 5.0-14
page A-1

For parallel-session connections, an LU may elect not to expose the
DRAIN_TARGET, and RESPONSIBLE parameters at the control-operator pro­
tocol boundary. In this case, the implementation provides default
values for these parameters consistent with the description on page

' 5.4-21.

For single-session connections, the DRAIN_TARGET and RESPONSIBLE
parameters are not applicable. These attributes cannot be modified
for the SNA-defined mode name.

If the specified LU is not defined as a partner LU for this LU then
Set the CNOS RETURN_CODE to PARAMETER_ERROR.

Else
If the type of connection is parallel sessions
and the mode name is not SNASCVHG then

Call SOURCE_SESSION_LIMIT_PROC (page 5.4-45>,
with the verb parameters, to begin the negotiation phase of the CNOS process.

Else (local control-operator verb>
Call LOCAL_SESSION_LIMIT_PROC (page 5.4-40),
with the verb parameters, to perform the CNOS action solely at the local LU.

SNA Format and Protocol Reference Manual· for. LU Type 6. 2

CHANGE_SESSIOH_LIMIT_PROC

CHANGE_SESSIOH_LIMIT_PROC

FUNCTION: Th;s procedure ;s called by PS_COPR, the control-operator-verb router, when a
transact;on program issues a CHANGE_SESSION_LIMIT verb. It passes the CNOS
verb parameters to SOURCE_SESSION_LIMIT_PROC and passes the return code to
the original caller. If an ABEND condition occurs, ;t calls PS to abnormally
terminate the transact;on-program process.

INPUT: CHANGE_SESSIOH_LIMIT parameters from callerJ CNOS RETURN_CODE from
SOURCE_SESSIOH_LIMIT_PROC

OUTPUT: RETURN_CODE of CHANGE_SESSIOH_LIMIT to caller

Referenced procedures, FSMs, and data structures:
SOURCE_SESSION_LIMIT_PROC
DEALLOCATION_CLEANUP_PROC
LUCB

If the control-operator ~ransaction program, at the source LU,
;s not authorized to issue the CNOS verb then

Call DEALLOCATION_CLEANUP_PROC (page 5.0-14)

Else

to abnormally terminate this ;nstance of the transact;on program
(control is not returned).

Using the LUCB, determine the type of sessions possible with
the partner LU, either single or parallel.

page 5.4-45
page 5.0-14
page A-1

An LU m;ght elect not to expose the RESPONSIBLE and
MIN_CONWINNERS_TARGET parameters at the control-operator protocol
boundary. In this case, the implementation provides default values
for these parameters consistent with the description on page 5.4-21
and the parameter spec;ficat;on in .fil:!A Transaction Programmer's Refer­
ence Manual .f.2!: LU ~ 6.2.

If the spec;fied LU is not defined as a partner for this LU then
Set the CNOS RETURN_CODE to PARAMETER_ERROR.

Else
If the type of connection is parallel sess;ons and the mode name is not SNASCVMG the

Call SOURCE_SESSION_LIMIT_PROC (page 5.4-45),
with the verb parameters, to begin the negotiat;on phase of the CNOS process.

Else
Call DEALLOCATION_CLEANUP_PROC (page 5.0-14)
to abnormally terminate this ;nstance of the transaction program
(control ;s not returned).

Chapter 5.4. Presentation Serv;ces--Control-Operator Verbs 5.4-35

ACTIVATE_SESSION_PROC

ACTIVATE_SESSION_PROC

5.4-36

.•

FUNCTION: This procedure is called by PS_COPR, ~the control-operator-verb router, lllhen a
transaction program issues an ACTIVATE_SESSION verb. It sends an
RM_ACTIVATE_SESSION reqUest to RM to activate a session, and receives the
reply indicating whether the session was activated.

INPUT: The CNOS verb CACTIVATE_SESSION>, the reply from RM CRM_ACTIVATE_SESSION>

OUTPUT: The reqUest to RM CRM_ACTIVATE_SESSION), RETURN_CODE of ACTIVATE_SESSION verb

NOTE: This procedure has addressability to RM via PS_PROCESS_DATA.LU_ID.
\

Referenced procedures, FSMs, and data structures:
DEALLOCATION_CLEANUP_PROC
PS_PROCESS_DATA
RM_ACTIVATE_SESSION
RM_SESSION_ACTIVATED

Verify that the verb parameters specified satisfy the
parameter values for the ACTIVATE_SESSION_VERB described in
§!::!A Transaction Programmer's Reference Manual for LU .!l£e!l 2...,!.

Select based on result of parameter verification:
When an ABEND condition is identified

Call DEALLOCATION_CLEANUP_PROC Cpage 5.0-14) to abnormally·

page 5.0-14
page 5.0-20
page A-27
page A-33

terminate this instance of the transaction program (control is not returned).
When a parameter error is identified

Set the CNOS RETURN_COOE to PARAMETER_ERROR.
When all parameters are correct

Create an ACTIVATE_SESSION reqUest record.
Set RM_ACTIVATE_SESSION.TCB_ID to PS_PROCESS_DATA.TCB_ID to identify

the transaction control block describing this instance of PS.
Set RM_ACTIVATE_SESSION.LU_NAME to the LU name specified in the CNOS verb.
Set RM_ACTIVATE_SESSION.MOOE_NAME to the mode name specified in the CNOS verb.
Send ACTIVATE_SESSION request to RM.
Receive SESSION_ACTIVATEO reply from RM.
Set CNOS RETURN_COOE according to the return code in the

SESSION_ACTIVATEO reply received from RM.

SNA fol"lllat and Protocol Reference Manual for LU Type 6.2

DEACTIVATE_SESSION_PROC

DEACTIVATE_SESSION_PROC

FUNCTION: This procedure is called by PS_COPR, the control-operator-verb router, when a
transaction program issues a DEACTIVATE_SESSION verb. It sends an
RM_DEACTIVATE_SESSION request to RM to activate a session.

INPUT: The CNOS DEACTIVATE_SESSION verb

OUTPUT:

NOTE:

Request to RM (RM_DEACTIVATE_SESSION>, RETURN_CODE of DEACTIVATE_SESSION verb

This procedure has addressability to RM via PS_PROCESS_DATA.LU_ID.

Referenced procedures, FSMs, and data structures:
DEALLOCATION_CLEANUP_PROC
PS_PROCESS_DATA
RM_DEACTIVATE_SESSION

If this transaction program is not authorized
to issue the CNOS verb then

Call DEALLOCATION_CLEANUP_PROC (page 5.0-14)

Else

to abnormally terminate this instance of the transaction program
(control is not returned).

Set the CNOS RETURN_CODE to OK.
Create a DEACTIVATE_SESSION request record.
Set RM_DEACTIVATE_SESSION.TCB_ID to PS_PROCESS_DATA.TCB_ID to identify
the transaction control block describing this instance of PS.

page 5.0-14
page 5.0-20
page A-27

Set RM_DEACTIVATE_SESSION.SESSION_ID to the SESSION_ID specified in the CNOS verb.
Set RM_DEACTIVATE_SESSION.TYPE to the TYPE specified in the CNOS verb.
Send DEACTIVATE_SESSION request to RM.

Chapter 5,4. Presentation Services--Control-Operator Verbs 5.4-37

DEFINE_PROC

DEFINE_PROC

5.4-38

FUNCTION: This procedure is called by PS_COPR, the control-operator-verb router, INhen a
transaction program issues a DEFINE verb. It is used to initialize or lllOdify
system definition parameters in the LUCB, PARTNER_LU and MODE data structures.

INPUT: The DEFINE verb parameters

OUTPUT: The system definition parameters are defined Nith the specified values

NOTE: This verb may be used to define any other system definition parameters that
are meaningful for a given implementation.

Referenced procedures, FSMs, and data structures:
LUCB
PARTNER_ LU
MODE

Verify that the verb parameters specified satisfy the
parameter values for the DEFINE verb in
.§ti! Transaction Proarammer's Reference Manual .f2c !!.! !lBZ.! ~.

If an ABEND condition is identified then
Call DEALLOCATION_CLEANUP_PROC (page 5.0-14) to abnormal
this instance of the transaction program (control is not returned>.

Else

page A-1
page A-2
page A-3

The parameters specified are all valid fields of the LUCB, PARTNER_LU,
and MODE data structures.

Assign values to the system definition parameters according to those
specified on the DEFINE verb.

SNA Format and Protocol Reference Manual for LU Type 6.2

DISPLAY_PROC

DISPLAY_PROC

FUNCTION: This procedure is called by PS_COPR, the control-operator-verb router, when a.
transaction program issues a DISPLAY verb. It is used to display system defi­
nition parameters in the LUCB, PARTNER_LU and MODE data structures.

INPUT: The DISPLAY verb parameters

OUTPUT: The specified system definition parameters are displayed for the user.

NOTE: This verb may be used to display any other system definition parameters that
are meaningful for a given· implementation.

Referenced procedures, FSMs, and data structures:
LUCB
PARTNER_ LU
MODE

Verify that the verb parameters specified satisfy the
parameter values for the DISPLAY verb in
SNA Transaction Programmer's Reference Manual .f2C LU~ 6.2.

If an ABEND condition is identified then
Call DEALLOCATION_CLEANUP_PROC Cpage S.0-14) to abnormal
this instance of the transaction program (control is not returned).

Else

page A-1
page A-2
page A-3

The parameters specified are all valid fields of the LUCB, PARTNER_Lu,
and MODE data structures.

Display the requested LUCB, PARTNER_LU, and MODE attributes as they
are currently defined.

Chapter 5.4. Presentation.Services•-Control-Operator Verbs 5~4-39

LOCAL_SESSION_LIMIT_PROC

LOCAL_SESSION_LIMIT_PROC

5.4•40

FUNCTION: This procedure is invoked by either of the following verb-specific CNOS proce­
dures: INITIALIZE_SESSION_LIMIT, RESET_SESSION_LIMIT. It processes CNOS
control-operator verbs that affect only the local LU: INITIALIZE_ and
RESET_SESSION_LIMIT for single-session connections and for mode name SNASVCMG.

INPUT: The CNOS source LU verb parameters from the calling procedure

OUTPUT: Return code for the CNOS verb CCNOS RETURN_CODE>

NOTE: This procedure read-locks the MODE for the entire procedure.

Referenced procedures, FSMs, and data structures:
LOCAL_VERB_PARAMETER_CHECK
SHASVCMG_VERB_PARAMETER_CHECK
CHANGE_ACTION
LUCB

Using the LUCB, determine the type of session possible
with the partner LU, either single or parallel.

If the type of connection is single session then
Call LOCAL_VERB_PARAMETER_CHECK Cpage 5.4-41),
with the CNOS verb parameters, to verify the verb parameters.

Else
Call SNASVCMG_VERB_PARAMETER_CHECK Cpage 5.4-42), with the CNOS verb

parameters, to perform the appropriate parameter checks.

If the check found no errors then
Call CHANGE_ACTIOH Cpage 5.4-43), with the CNOS verb parameters,

page 5.4-41
page 5.4-42
page 5.4-43
page A-1

to change the session limits at the source LU according to the parameters specified.

SNA Format and Protocol Reference Manual for LU Type 6.2

LOCAL_VERB_PARAMETER_CHECK

LOCAL_VERB_PARAMETER_CHECK

FUNCTION: This procedure performs validity checks on a CNOS verb for single-session con­
nections, and it returns the CNOS-verb RETURN_CODE for any error detected.

INPUT: The CNOS source LU verb parameters, PARTNER_LU_LIST, and MOOE_LIST

OUTPUT: CNOS verb RETURN_CODE value

Referenced procedures, FSMs, and data structures:
DEALLOCATION_CLEANUP_PROC
LUCB
PARTNER_ LU
MODE

Verify that the verb parameters specified satisfy the single-session
parameter values as described for this verb in
SNA Transaction Programmer's Reference Manual for LU~~·

page 5.0-14
page A-1
page A-2
page A-3

Attributes of the mode are verified against fields in the appropriate
MODE structure for the specified PARTNER_LU.

Select based on result of parameter verification:
When all parameters are correct

Set the CNOS RETURN CODE to OK--AS SPECIFIED.
When an ABEND conditio~ is identified-

Call DEALLOCATION_CLEANUP_PROC (page 5.0-14!
to abnormally terminate this instance of the transaction progra~
(control is not returned!.

If the single-session CNOS optional function set is supported then a
mode name value of ALL constitutes an ABEND condition when the CNOS
verb is RESET_SESSION_LIMIT.

When a parameter error is identified
Set the CNOS RETURN CODE for this verb to PARAMETER_ERROR.

When the MOOE.SESSION LIMIT is not 0
Set the CNOS RETURN_CODE to LU_MOOE_SESSION_LIMIT_NOT_ZERO.

When the session limit specified exceeds the session limit Cin the LUCBl for the LU
or would exceed the session limit for the LU in the process of adding
a single session with the specified LU name and mode name Cpage 5.4-4) then

Set the CNOS RETURN_CODE for this verb to REQUEST_EXCEEDS_MAX_ALLOWEO.

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-41

SNASVCMG_VERB_PARAMETER_CHECK

SNASVCMG_VERB_PARAMETER_CHECK

5.4-42

FUNCTION: This procedure performs validity checks on a CNOS verb for mode name
SNASVCMG, and it returns the CNOS-verb RETURN_CODE for any error detected.

INPUT: Transaction program verb parameters, PARTNER_LU_LIST, and MODE_LIST

OUTPUT: CNOS verb RETURN_CODE value if any errors are detected, otherwise OK is
returned

Referenced procedures, FSMs, and data structures:
DEALLOCATION_CLEANUP_PROC
LUCB
PARTNER_ LU
MODE

page 5.0-14
page A-1
page A-2
page A-3

Verify that the verb parameters specified satisfy the parameter values appropriate
for parallel-session connections, as described in
SNA Transaction Programmer's Reference Manual for LU ~ 6.2.

Attributes of the mode are verified against fields in the appropriate
MODE structure for the specified PARTNER_LU.

Select, in order, based on result of parameter verification:
When an ABENO condition is identified

Call DEALLOCATION_CLEANUP_PROC (page 5.0-14)
to abnormally terminate this instance of the transaction program
(control is returned!.

When a parameter error is identified
Set the CNOS RETURN_CODE to PARAMETER_ERROR.

When the MODE.SESSION_LIMIT is not 0
Set the CNOS RETURN_CODE to LU_MODE_SESSION_LIMIT_NOT_ZERO.

When the session limit specified, could not be added without exceeding
the session limit in the LUCB for the LU (page 5.4-4)

Set the CNOS RETURN_CODE to REQUEST_EXCEEDS_MAX_ALLOWED.

SNA Format and Protocol Reference Manual for LU Type 6.2

CHANGE_ACTION

FUNCTION:

INPUT:

OUTPUT:

NOTE:

CHANGE_ACTIOH

Th;s procedure ;s called when the LU accepts a val;d (and negot;ated, ;f nec­
essary) CNOS command. This procedure updates the (LU,mode) entr;es for
affected mode names with the new session limit parameters. It decides wheth­
er th;s LU is responsible for taking any action to change the session count,
and if so, sends a CHANGE_SESSIONS request to RM.

The CNOS verb parameters specified, if the CNOS verb ;s local to th;s LU only;
the new session limit parameters in the CNOS reply record, ;f the CNOS act;on
;s d;str;buted; the role of the LU to be mod;f;ed (source or target), PART­
NER_LU_LIST and MODE_LIST

Session l;m;ts and dra;n state are updated ;n the MODE; CHANGE_SESSIONS to RM

Th;s procedure locks the MODE for the ent;re procedure.

See SNA Transaction Programmer's Reference Manual for ..!..Y Ille! §..:.! for the
session-limit parameters affected by each CNOS verb.

Th;s procedure has addressab;1;ty to RM v;a PS_PROCESS_DATA.LU_ID.

Referenced procedures, FSMs, and data structures:
CHANGE_ SESSIONS
PARTNER_ LU
MODE

page A-26
page A-2
page A-3

Chapter 5 .• 4. Presentation Services--Control-Operator Verbs 5.4-43

CHANGE_ACTION

5.4-44

Select based on whether one MODE or all MODEs Mith the PARTNER_LU are affected
(see the MODE_LIST associated with the PARTNER_LU):

When only one MODE is affected
Update the session-limit parameters for the specified nu, mode) entry

<MOOE.SESSION_LIMIT, MOOE.MIN_CONWINNERS_LIMIT, MODE.MIN_CONLOSERS_LIMIT,
MODE.DRAIN_SELF, MODE.DRAIN_PARTNER, MODE.RESPONSIBLE) as they are applicable:

For single-session mode names and for mode name SNASVCMG, the session limit
parameters affected are those specified on the particular CNOS verb and the
changes are reflected in the source LU only.

MOOE.MINCONWINNERS_LIMIT is set from MINCONWINNERS_SOURCE specified in
the CNOS command. MODE.MINCONLOSERS_LIMIT is set from
MINCONWINNERS_TARGET specified in the CNOS command.

For parallel-session connections defined with the partner LU, the session limit
parameters affected are those specified on the CNOS reply and the changes are
reflected as appropriate in both the source and the target LU <when this
procedure is called from SOURCE_SESSION_LIMIT (or LOCAL_SESSION_LIMIT) and
PROCESS_SESSION_LIMIT, respectively).

At the source LU, MODE.MIN_CONWINNERS_LIMIT is set from
MIN_CONWINNERS_SOURCE specified in the CNOS reply and
MODE.MIN_CONLOSERS_LIMIT is set from MIN_CONWINNERS_TARGET specified
in the CNOS reply. The reverse is true at the target LU.

If the verb issued at the source LU is INITIALIZE_SESSION_LIMIT or CHANGE_SESSION_LIMIT,
or, according to the responsible field of the CNOS reply (applicable only when the
CNOS function is distributed), this LU is responsible for session deactivation then

Create a CHANGE_SESSIONS request record.
Set CHANGE_SESSIONS.TCB_ID to PS_PROCESS_DATA.TCB_ID to identify the transaction
control block describing this instance of PS.

Set CHANGE_SESSIONS.LU_NAME to PARTNER_LU.LOCAL_LU_NAME.
Set CHANGE_SESSIONS.MODE_NAME to the affected mode name as specified on the

CNOS verb.
Set CHANGE_SESSIONS.DELTA to the difference between the LU_MOOE_SESSION_LIMIT
specified on the CNOS command or reply and the current MODE.SESSION_LIMIT.

If the verb issued by the source LU is CHANGE_SESSION_LIMIT and the limit in the
reply is less than the current session limit, or the verb issued by the source LU
is the distributed function RESET_SESSION_LIMIT verb then

If the responsible field value in the CNOS reply specifies the. current LU <which
could be source or target) then

Set CHANGE SESSIONS.RESPONSIBLE to YES.
Else -

Set CHANGE_SESSIONS.RESPONSIBLE to NO.
Else <RESPONSIBLE value will not be significant to RM>

Set CHANGE_SESSIONS.RESPONSIBLE to NO.
Send the CHANGE_SESSIONS request to RM.

When all MODEs are affected Cin which case the verb issued by the source LU is
RESET_SESSION_LIMIT)

Do the following for each MODE (except SNASVCMG) with the PARTNER_LU
Set SESSION_LIMIT, MIN_CONWINNERS_LIMIT and MIN_CONLOSERS_LIMIT to O.
If this LU is responsible for session deactivation then

Create a CHANGE_SESSIONS request record as described in detail above.
Send the CHANGE_SESSIONS request to RM.

SNA Format and Protocol Reference Manual for LU Type 6.2

SOURCE-LU CNOS PftOCEDURES

SOURCE_SESSION_LIMIT_PROC

FUNCTION: Th;s procedure ;s ;nvoked by any of the follow;ng verb-spec;f;c CNOS proce­
dures: INITIALIZE_SESSION_LIMIT, CHANGE_SESSION_LIMIT, RESET_SESSION_LIMIT.
It prov;des common overall processing of a parallel-session CNOS
control-operator verb issued by a source LU control operator transaction pro­
gram. It invokes other procedures to check the verb parameters for validity,
detect and resolve race conditions with any other CNOS transaction, build a
command record, allocate a conversation with the target LU, exchange command
and reply records with the target LU, update the PARTNER_LU_LIST and MODE_LIST
with the new sess;on lim;t parameters, and, if necessary, request the
resources manager to activate or deactivate sessions. If errors are detected
at any point, it skips subsequent steps and cleans up from previous steps.
It passes a RETURN_CODE to the calling procedure indicating success or a
failure reason.

INPUT:

OUTPUT:

CNOS source LU verb parameters, from the calling procedure; the CNOS reply
from the target LU, via SOURCE_CONVERSATION_CONTROL; the ILU,model entries
with the session limits in the MODE, PARTNER_LU_LIST and MODE_LIST, and other
CNOS parameters; the lock to control contention for the PARTNER_LU_LIST and
MODE_LIST by CNOS transaction processes, and to resolve CNOS races (maintained
by SESSION_LIMIT_DATA_LOCK_MANAGER>

Return code for the CNOS verb, CNOS RETURN_CODE; procedure SOURCE_CONVERSATION
allocates and deallocates a conversation with the target LU and issues con­
versation verbs; specified ILU,mode) entries updated via CHANGE_ACTION in the
MODE; CHANGE_SESSIONS issued to RM--via CHANGE_ACTION

Referenced procedures, FSMs, and data structures:
SESSION_LIMIT_DATA_LOCK_MANAGER
VERB_PARAMETER_CHECK
SOURCE_CONVERSATION_CONTROL
CHECK_CNOS_REPLY
CHANGE_ACTION
PARTNER_ LU
MODE

page 5.4-66
page 5.4-47
page 5.4-48
page 5.4-55
page 5.4-43
page A-2
page A-3

Chapter 5.4. Presentat;on Serv;ces--Control-Operator Verbs 5.4-45

SOURCE_SESSION_LIMIT_PROC

5.4-46

Call VERB_PARAMETER_CHECK (page 5.4-47),
with the verb parameters, to verify the syntax of the parameters.

If all parameters are determined to be correct then

Call SESSION_LIMIT_DATA_LOCK_MANAGER !page 5.4-66)
to perform a source-LU lock on the affected CLU,model entry or entries
and prevent simultaneous access by other CNOS transactions.

Select based on one of the following conditions:
When the state of the lock is changed from UNLOCKED to

LOCKED_BY_SOURCE for each affected ILU,mode) entry

MODE is now locked against any other CNOS transaction.

Build a CNOS command record with the parameters specified on the verb
and consistent with the change-number-of-sessions record
C Appendix H > •

Do until the CHECK_CNOS_REPLY procedure does not return RETRY

The verb completes or a permanent error occurs.

Call SOURCE_CONVERSATION_CONTROL (page 5.4-48),
with the CNOS command, to send on the conversation and to receive the CNOS reply.

If the SOURCE_CONVERSATION_CONTROL returns OK Ca CNOS reply was
successfully received) then

Optionally, perform syntax checking on the CNOS reply record
according to the description in Appendix H.

If the CNOS reply is syntactically correct, or the syntax
check was not performed then

Call CHECK_CNOS_REPLY with the CNOS reply record and the
fully-qualified LU names for the source and target LUs
to determine the result of the negotiation (page 5.4-55).

Else
Set the CNOS RETURN_CODE to RESOURCE_FAILURE_NO_RETRY.

If the session limits were successfully accepted or negotiated then
Call CHANGE_ACTION (page 5.4-43), with the CNOS reply,
to update the limits in the MODE structure for the source LU and notify RM.

Call SESSION_LIMIT_DATA_LOCK_MANAGER Cpage 5.4-66)
to perform the unlock operation on the affected CLU,mode) entry or entries.

When the lock operation performed on any of the affected !LU.mode) entries
was other than a state change from UNLOCKED to LOCKED_BY_SOURCE
!because of a previous lock operation performed for a different CNOS command)

Set the CNOS RETURN_CODE to COMMAND_RACE_REJECT.

When the mode name is not found for the PARTNER_LU
Set the CNOS RETURN_CODE to PARAMETER_ERROR.

SNA Format and Protocol ~eference Manual for LU Type 6.2

VERB_PARAMETER_CHECK

VERB_PARAMETER_CHECK

FUNCTION: This procedure performs validity checks on the CNOS
control-operator transaction program at the source LU,
CNOS-verb RETURN_CODE for any error detected.

verb issued by the
and it returns tne

INPUT: Parameters from transaction program verb, PARTNER_LU_LIST and MODE_LIST

OUTPUT: CNOS verb RETURN_CODE value if any errors are detected; otherwise, OK is
returned

NOTE: This procedure locks the MODE for the entire procedure.

Referenced procedures, FSMs, and data structures:
DEALLOCATION_CLEANUP_PROC
LUCB
PARTNER_ LU
MODE

Verify that the verb parameters specified satisfy the parameter values as

page 5.0-14
page A-1
page A-2
page A-3

described for this verb in SNA Transaction Programmer's Reference Manual for LU ~ 6.2.

Attributes of the mode name are verified against fields in the appro­
priate MODE structure for the specified PARTNER_LU.

Select based on result of parameter verification:
When all parameters are correct

Set the CNOS RETURN_CODE for this verb to OK--AS_SPECIFIED.
When an ABEND error condition is identified

Call DEALLOCATION_CLEANUP_PROC Cpage 5.0-14)
to abnormally terminate this instance of the transaction program
(control is not returned!.

When a parameter error is identified
Set the CNOS RETURN_CODE to PARAMETER_ERROR.

When the verb issued is INITIALIZE_SESSION_LIMIT and the MODE.SESSION_LIMIT
is not 0 for the affected MODE at the PARTNER_LU

Set the CNOS RETURN_CODE to LU_MODE_SESSION_LIMIT_NOT_ZERO.
When the verb issued is CHANGE_SESSION_LIMIT and the MODE.SESSION_LIMIT
is 0 for the affected MODE at the PARTNER_LU

Set the CNOS RETURN_CODE to LU_MODE_SESSION_LIMIT_ZERO.
When the session limit specified could not be added without exceeding

the session limit in the LUCB for the LU (page 5.4-41.
Set the CNOS RETURN_CODE to REQUEST_EXCEEDS_MAX_ALLOWED.

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-47

SOURCE_ CONVERSATION_ CONTROL

S.4-48

SOURCE_ CONVERSATION_ CONTROL

FUNCTION: Th;s procedure controls a conversat;on w;th the target LU to send the CNOS
command and rece;ve the CNOS reply. It controls the select;on of mode name
for the conversat;on. In the event of session outage, ;t retr;es the conver­
sat;on either until it succeeds or until no sessions are active for any mode
name affected by the CNOS verb.

INPUT:

OUTPUT:

CNOS verb parameters ;ncluding the name of the target LU; CNOS command; Summa­
ry of the success or failure of the CNOS exchange across the conversation
(provided by the SOURCE_CONVERSATION procedure) so th;s rout;ne can make a
retry dec;sion:

• OK: conversat;on completed successfully
• SON: sess;on outage occurred; retry for the same mode name m;ght succeed
• NO_SESSION: no sess;on ;s ava;lable for th;s mode name; retry for another

mode name m;ght succeed
• FAILED: conversation or transact;on fa;lure; retry ;s not l;kely to suc­

ceed

CNOS reply; summary of outcome of conversat;on for caller

Referenced procedures, FSMs, and data structures:
SOURCE_ CONVERSATION
LUCB
PARTNER_ LU
MODE

Do unt;l the SOURCE_CONVERSATION procedure returns a value
OK or FAILED, or ;f all possible modes are tried but no sess;ons
are available on any of these

Choose a mode name with which to allocate a conversation. The mode
name is optionally selected from an implementation-def;ned list
Cif any of these sessions is ;mmed;ately ava;lable) or the SNA­
def;ned mode name SNASVCMG.

Choose the RETURN_CONTROL value for the ALLOCATE verb
Csee ~ Transaction Programmer's Reference Manual !et LU ~ ~).

page S.4-49
page A-1
page A-2
page A-3

In;t;ally, choose mode names from the ;mplementation def;ned list and
use a RETURN CONTROL value of IMMEDIATE. Once these have been
exhausted, try-the SHA-defined mode CSNASVCMG) w;th a RETURN_CONTROL
value of WHEN SESSION ALLOCATED. If this ;s not successful, choose a
mode name from those-that will be affected by this CNOS command and
use a RETURN_CONTROL value of WHEN_SESSION_ALLOCATED.

Call SOURCE_CONVERSATION Cpage S.4-49) w;th the parameters
chosen above and the CNOS command record. SOURCE_CONVERSATION w;11 issue
the bas;c conversation verbs to send the CNOS command, rece;ve the CNOS
reply over the conversat;on and obta;n the fully-qual;f;ed LU names for this and the
partner LU for later compar;son.

If SON Csess;on outage not;ficat;on) ;s returned, the conversat;on ;s
retried on another sess;on for the same mode name.

Set the return value for th;s routine to the value returned from
SOURCE_CONVERSATION.

SHA Format and Protocol Reference Manual for LU Type 6.2

SOURCE_ CONVERSATION

SOURCE_ CONVERSATION

FLINCTION: This proc!!'dure conducts a eonversai:ion wii:h i:he i:argei: LU to send the CNOS
command and receive the CNOS reply. It issues the conversation verbs. It
invokes other routines to analyze the return codes to determine when and how
to deallocate the conversation and whether retry is necessary.

INPUT:

OUTPUT:

NOTE:

LU name of the partner, mode name for the conversation on which the
CHANGE_NUMBER_OF_SESSIONS command and reply records are exchanged; the
RETURN_CONTROL parameter for the ALLOCATE verb; CNOS command

CNOS reply; summary of the success or failure of a particular basic conversa­
tion verb, according to the particular RESULT_CHECK_* procedure called:

• OK: conversation completed successfully
• SON: session outage occurred; retry for the same mode name might succeed
• NO_SESSION: no session is available for this mode name; retry for another

mode name might succeed
• FAILED: conversation or transaction failure; retry is not likely to suc­

ceed

The SOURCE_CONVERSATION_CONTROL procedure will make a retry decision based on
this information.

See SHA Transaction Programmer's Reference Manual for .!.Y ~ 6.2 for conver­
satioo verbs.

Referenced procedures, FSMs, and data structures:
RESULT_CHECK_ALLOCATE
RESULT_CHECK_SEND_COMMAND
RESULT_CHECK_RECEIVE_REPLY
RESULT_CHECK_RECEIVE_DEALLOCATE
LUCB
PARTNER_ LU

Conduct a conversation with the partner.

Issue the ALLOCATE verb according to the mode name and RETURN_CONTROL values
passed to this procedure and default values as described on page 5.4-27.

page 5.4-51
page 5.4-52
page 5.4-53
page 5.4-54
page A-1
page A-2

Call RESULT CHECK ALLOCATE to examine the RETURN CODE value from the ALLOCATE
(according-to th; RETURN_CONTROL value specified on the verb> and DEALLOCATE the
conversation if appropriate !page 5.4-51).

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-49

SOURCE~CONVERSATION

5.4-50

If the ALLOCATE verb returned OK then
Issue a GET_ATTRIBUTES verb, with the RESOURCE parameter returned
from the ALLOCATE, to obtain the fully qualified LU names for
this LU and.the partner LU.

These LU names are required for comparison in the CHECK_CNOS_REPLY to
determine the winner for a double-failure race.

Issue a SEND_DAfA verb to send the CNOS command.
Call RESULT_CHECK_SEND_Cot1MAND (page 5.4-52) to examine

the parameters returned from the SEND_DATA verb and perform the DEALLOCATE
if appropriate.

If the SEND_DATA verb returned OK then
Issue a RECEIVE_AND_WAIT verb to receive the CNOS reply.
Call RESULT_CHECK_RECEIVE_REPLY (page 5.4-53) to examine
the parameters returned from the RECEIVE_AND_WAIT verb and perform the DEALLOCATE
if appropriate.

If the RECEIVE_AND_WAIT verb returned OK then
Issue the RECEIVE_AND_WAIT verb to receive the DEALLOCATE from the
partner LU. .

Call RESULT_CHECK_RECEIVE_DEALLOCATE (page 5.4•54) to examine
the parameters returned from the RECEIVE_AND_WAIT verb and perform the DEALLOCATE
if appropriate.

Set the return code for this procedure from the value returned by the .l.ast
RESULT_CHECK_* procedure called.

SNAFormat and Protocol Reference Manual for LU Type 6.2

RESULT_CHECK_ALLOCATE

RESULT_CHECK_ALLOCATE

FUNCTION: This procedure analyzes the RETURN_CODE and other significant returned parame­
ters from the ALLOCATE verb that allocates the CNOS conversation, and it clas­
sifies the out~ome for use in later decisions, specifically whether to retry,
quit, or continue. For some error conditions, the conversation will need to
be deallocated.

INPUT: RETURN_CODE, RETURN_CONTROL

OUTPUT: Summary of the success or failure of the ALLOCATE verb:

NOTE:

• OK: conversation completed successfully
• SON: session outage occurred; retry for the same mode name might succeed
• NO_SESSION: no session is available for this mode name; retry for another

mode name might succeed
• FAILED: conversation or transaction failure; retry is not likely to suc­

ceed

This information will be used by SOURCE_CONVERSATION_CONTROL to make a retry
decision.

Checks are required unless designated optional.

Select based on the RETURN_CONTROL value specified on the ALLOCATE verb:
When IMMEDIATE (implementation-selected mode name>

Select based on the RETURN_CODE value from the ALLOCATE verb:
When OK

Return OK to the SOURCE_CONVERSATION procedure.
When ALLOCATION_ERROR (optional check>

Issue a DEALLOCATE verb with TYPE=LOCAL to deallocate
the conversation locally.

Return FAILED to the SOURCE_CONVERSATION procedure.
When UNSUCCESSFUL <no session is immediately available>

Return NO_SESSION to the SOURCE_CONVERSATION procedure.
Otherwise (optional check>

Return FAILED to the SOURCE_CONVERSATION procedure.

When WHEN_SESSION_ALLOCATED

Select based on the RETURN CODE value from the ALLOCATE verb:
When OK -

Return OK to the SOURCE_CONVERSATION procedure.
When ALLOCATION_ERROR--ALLOCATION_FAILURE_RETRY

Issue a DEALLOCATE verb with TYPE=LOCAL to deallocate the
conversation locally.

Return NO_SESSION to the SOURCE_CONVERSATION procedure.
Otherwise (optional check>

Return FAILED to the SOURCE_CONVERSATION procedure.

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-51

RESULT_CHECK_SEND_COMMAND

RESULT_CHECK_SEND_COMMAND

S.4-52

FUNCTION: This procedure analyzes the RETURN_CODE and other significant returned parame­
ters from the SEND_DATA verb that sends the CNOS command, and it classifies
the outcome for use in later decisions, specifically whether to retry, quit.
or continue. For some error conditions, the conversation may need to be deal­
located.

INPUT:

OUTPUT:

NOTE:

RETURN_CODE, REQUEST_TO_SEND_RECEIVED

Summary of the success or failure of the SEND_DATA verb:

• OK: conversation completed successfully
• SON: session outage occurred; retry for the same mode name might succeed
• NO_SESSION: no session is available for this mode name; retry for another

mode name might succeed
• FAILED: conversation or transaction failure; retry is not likely to suc­

ceed

This information will later be used by SOURCE_CONVERSATION_CONTROL to make a
retry decision.

Checks are required unless designated optional.

If the REQUEST_TO_SEND_RECEIVE~ parameter returned from the SEND_DATA verb is NO then

Select, in order, based on the RETURN_CODE parameter from the SEND_DATA verb:

Else

When OK
Return OK to the SOURCE_CONVERSATION procedure.

When RESOURCE_FAILURE_RETRY
Issue a DEALLOCATE verb with TYPE=LOCAL to deallocate the conversation
locally.

Return SON (session outage notification) to the SOURCE_CONVERSATION procedure.

When ALLOCATION_ERROR--SECURITY_NOT_VALID,
ALLOCATION_ERROR--TP_NOT_AVAILABLE_NO_RETRY,
or ALLOCATION_ERROR--TP_NOT_AVAILABLE_RETRY

Issue a DEALLOCATE verb with TYPE=LOCAL to deallocate the
conversation locally.

Return FAILED to the SOURCE_CONVERSATION procedure.
When ALLOCATION_ERROR--* !optionally check for any other variety of ALLOCATION_ERROR)

Issue a DEALLOCATE verb with TYPE=LOCAL to deallocate the
conversation locally.

Return FAILED to the SOURCE_CONVERSATION procedure.

When DEALLOCATE_ABEND_PROG
Issue a DEALLOCATE verb with TYPE=LOCAL to deallocate the conversation
locally.

Return FAILED to the SOURCE_CONVERSATION procedure.
Otherwise

Issue a DEALLOCATE verb with TYPE=ABEND_PROG to deallocate the
conversation.

Return FAILED to the SOURCE_CONVERSATION procedure.

Issue a DEALLOCATE verb with TYPE=ABEND_PROG to deallocate the conversation.
Return FAILED to the SOURCE_CONVERSATION procedure.

SNA Format and Protocol Reference Manual for LU Type 6.2

RESULT_CHECK_RECEIVE_REPLY

RESULT_CHECK_RECEIVE_REPLY

FUNCTION: Thls procedure analyzes the RETURN_CODE and oi:her- s;gnH;cant returned parame­
ters fr-om the RECEIVE_AND_WAIT verb that r-ece;ves the CNOS reply, and it clas­
sifies the outcome for- use in later- dec;sions, specifically whether- to retry,
quit, or- continue. For- some err-or- condit;ons, the conversation may need to be
deallocated.

INPUT: RETURN_CODE, REQUEST_TO_SENT_RECEIVED, WHAT_RECEIVED

OUTPUT: Summary of the success or- failure of the RECEIVE_AND_WAIT verb:

NOTE:

• OK: conversation completed successfully
• SON: session outage occur-red; retry for- the same mode name m;ght succeed
• NO_SESSION: no session is available for- th;s mode nameJ retry for- another­

mode name might succeed
• FAILED: conver-sat;on or- tr-ansact;on failure; retry is not likely to suc­

ceed

This information will later- be used by SOURCE_CONVERSATION_CONTROL to make a
retry decision.

Checks are required unless des;gnated optional.

If the REQUEST_TO_SEND_RECEIVED parameter- fr-om the RECEIVE_AND_WAIT verb ;s NO then

Select based on the RETURN_CODE value returned fr-om the
RECEIVE_AND_WAIT verb:

When OK
If the WHAT_RECEIVED parameter- returned is DATA_COMPLETE then

Return OK to the SOURCE_CONVERSATION procedure.

Else
Issue a DEALLOCATE verb with TYPE=ABEND_PROG to deallocate the
conversation.

Return FAILED to the SOURCE_CONVERSATION procedure.

When RESOURCE_FAILURE_RETRY
Issue a DEALLOCATE verb with TYPE=LOCAL to deallocate the
conversation locally.

Return SON !session outage notification> to the SOURCE_CONVERSATION procedure.

Else

When ALLOCATION_ERROR--SECURITY_NOT_VALIO,
ALLOCATION_ERROR--TP_NOT_AVAILABLE_NO_RETRY,
or- ALLOCATION_ERROR--TP_NOT_AVAILABLE_RETRY

Issue a DEALLOCATE verb with TYPE=LOCAL to deallocate the
conversation locally.

Return FAILED to the SOURCE_CONVERSATION procedure.
When ALLOCATION ERROR--*

(opt;onally ch;ck for- any other- variety of ALLOCATION_ERROR>
Issue a DEALLOCATE verb with TYPE=LOCAL to deallocate the
conversation locally.

Return FAILED to the SOURCE_CONVERSATION procedure.

When OEALLOCATE_NORMAL or- OEALLOCATE_ABEND_PROG !optional check>
Issue a DEALLOCATE verb with TYPE=LOCAL to deallocate the
conversation locally.

Return FAILED to the SOURCE_CONVERSATION procedure.
Other-wise

Issue a DEALLOCATE verb with TYPE=ABEND_PROG to deallocate the
conversation.

Return FAILED to the SOURCE_CONVERSATION procedure.

Issue a DEALLOCATE verb with TYPE=ABEND_PROG to deallocate the
conversation.

Return FAILED to the SOURCE_CONVERSATION procedure.

Chapter- 5.4. Presentation Ser-vices--Contr-ol-Oper-ator- Verbs 5.4-53

RESULT_CHECK_RECEIVE_DEALLOCATE

5.4-54

RESULT_CHECK_RECEIVE_DEALLOCATE

FUNCTION: This procedure analyzes the RETURN_CODE and other significant returned parame­
ters from the RECEIVE_AND_WAIT verb that receives DEALLOCATE from the target
LU, and it classifies the outcome for use in later decisions, specifically
whether to retry, quit, or continue. For some error conditions, the conversa­
tion may need to be deallocated.

INPUT:

OUTPUT:

RETURN_CODE, REQUEST_TO_SEND_RECEIVED, WHAT_RECEIVED (used only for error log>

Summary of the success or failure of the RECEIVE_IMMEDIATE verb:

• OK: conversation completed successfully
• SON: session outage occurred; retry on the same mode name might succeed
• NO_SESSION: no session is available for this mode name; retry on another

mode name might succeed
• FAILED: conversation or transaction failure; retry is not likely to suc­

ceed

If the REQUEST_TO_SEND_RECEIVED parameter returned from the DEALLOCATE verb is NO then

Select based on the RETURN CODE value returned from the DEALLOCATE verb:

Else

When DEALLOCATE_NORMAL -
Issue a DEALLOCATE verb with TYPE=LOCAL to deallocate the conversation locally.
Return OK to the SOURCE_CONVERSATION procedure.

When RESOURCE_FAILURE_RETRY
Issue a DEALLOCATE verb with TYPE=LOCAL to deallocate the conversation
locally.

Return SON (session outage notification) to the SOURCE_CONVERSATION procedure.
When DEALLOCATE_ABEND_PROG

Issue a DEALLOCATE verb with TYPE=LOCAL to deallocate the conversation locally.
Return FAILED to the SOURCE_CONVERSATION procedure.

Otherwise
Issue a DEALLOCATE verb with TYPE=ABEND_PROG to deallocate the conversation.
Return FAILED to the SOURCE_CONVERSATION procedure.

Issue a DEALLOCATE verb with TYPE=ABEND PROG to deallocate the conversation.
Return FAILED to the SOURCE_CONVERSATION procedure.

SNA Format and Protocol Reference Manual for LU Type 6.2

CHECK_CNOS_REPLY

CHECK_CNOS_REPLY

FUNCTION: This procedure is called when the conversation with the target LU completes.
It determines whether the conversation must be retried due to a double-failure
race condition, whether the verb must be terminated due to error, or whether
to continue with the action phase of CNOS processing.

It performs optional receive checks on the validity of the reply. It sets the
return code for the CNOS verb.

INPUT: Fields of the CNOS reply record, PARTNER_LU_LIST and MODE_LIST for current
session limit

OUTPUT: CNOS RETURN_CODE, if any errors are found; RETRY, used by caller to select
subsequent processing

NOTE: Checks are required unless designated optional.

Referenced procedures, FSMs, and data structures:
LUCB
PARTNER_ LU
MODE

Select based on the reply modifier field of the CNOS reply record:
When the reply modifier is MODE_NAME_NOT_RECOGNIZED

Set the CNOS RETURN_CODE to UNRECOGNIZED_MODE_NAME.
When the reply modifier indicates an CLU,mode) session limit of 0

page A-1
page A-2
page A-3

Verify that, for the PARTNER_LU MODEs specified on the original CNOS verb,
that the SESSION_LIMIT=O, and DRAIN_SELF=NO.

If these MODE attributes are correctly verified then
Set the CNOS RETURN_CODE to LU_MODE_SESSION_LIMIT_CLOSED.

Else
Set the CNOS RETURN_CODE to RESOURCE_FAILURE_NO_RETRY.

When the reply modifier is COMMAND_RACE_DETECTED
Check the state of the lock to determine whether the race is a single- or
double-failure race (page 5.4-30).

Compare the fully-qualified LU names for the source and target LUs
(returned from the GET_ATTRIBUTES verb in the SOURCE_CONVERSATION
procedure) with respect to the EBCDIC collating sequence (page 5.4-14).

If the race detected is a single-failure race or the LU name of the target
LU is greater by the above comparison then

Set the CNOS RETURN_CODE to COMMAND_RACE_REJECT.

Else (double-failure race condition and source LU name is greater)
Return RETRY to SOURCE_SESSION_LIMIT_PROC.

When the reply modifier is ACCEPTED
Set the CNOS RETURN CODE to OK--AS SPECIFIED.

When the reply modifier is NEGOTIATED-
Optionally verify that the parameters in the CNOS reply were correctly
negotiated, according to page 5.4-28.

If the reply parameters were successfully verified or the optional
checks were not implemented then

Set the CNOS RETURN_CODE to OK--AS_NEGOTIATED.

Else
Set the CNOS RETURN_CODE to RESOURCE_FAILURE_NO_RETRY.

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-55

TARGET-LU CNOS PROCEDURES

5.4-56

X06Fl

FUNCTION:

OUTPUT:

NOTE:

This procedure is the CNOS service transaction program at the target LU. It
is invoked by PS_INITIALIZE as a result of an FHH-5 Attach header being
received from the source LU. It issues the PROCESS SESSION LIMIT control
operator verb to activate CNOS processing at the target LU. it informs the
target-LU operator of the CNOS action.

Issues control-operator verb PROCESS_SESSION_LIHIT

See SNA Transaction Programmer's Reference Manual for LU Ila!!! ~ for
control-operator verbs.

Issue the PROCESS_SESSION_LIMIT verb to be processed by PS_COPR
(page 5.4-32) and inform the target-LU operator of the
resulting CNOS RETURN_CODE.

The algorithm to inform the operator is implementation dependent.
This algorithm may make use of DEFINE or DISPLAY control-operator
verbs to determine the current session limits, in the MODE, and then
display them on the operator console.

SNA Format and Protocol Reference Manual for LU Type 6.2

PROCESS_SESSION_LIMIT_PROC

PROCESS_SESSION_LIMIT_PROC

FUNCTION: This procedure is invoked by PS_COPR, the control-operator-verb router, when
the CNOS service transaction program at the target LU issues a PROC­
ESS_SESSION_LIMIT control-operator verb. This procedure directs overall proc­
essing of CHANGE_NUt1BER_OF_SESSIONS at the target LU. This procedure receives
the CNOS command from the source LU and sends the CNOS reply. It invokes TAR­
GET_CONVERSATION to issue the conversation verbs and process the return codes.

INPUT:

OUTPUT:

It invokes other procedures to check the verb and the conversation attributes
for validity, detect and resolve race conditions with any other CNOS trans­
action, negotiate CNOS parameters, update the affected MODEs with the newses­
sion limit parameters, and, if necessary, request the resources manager to
activate or deactivate sessions. If errors are detected at any point, it
skips subsequent steps and cleans up from previous steps. It passes a
RETURN_CODE to the calling procedure in the PROCESS_SESSION_LIMIT record indi­
cating success or a failure reason. If an ABEND condition occurs, it calls PS
to abnormally terminate the transaction-program process.

PROCESS_SESSION_LIMIT verb, CNOS command from the source LU via the conversa­
tion; PARTNER_LU_LIST and MODE_LIST

Outcome of the operation to the caller in PRDCESS_SESSION_LIMIT CRETURN_CODEl;
CNOS reply sent to the source LU via the conversation; updated MODE entries
via CHANGE ACTION; CHANGE SESSIONS record to RM, via CHANGE ACTION; SES­
SION_LIMIT_DATA lock - tested, set, and reset - via SES­
SION_LIMIT_DATA_LOCK_MANAGER

Referenced procedures, FSMs, and data structures:
CHECK_CNOS_COMMAND
CHANGE_ ACTION
TARGET_COMMAND_CONVERSATION
TARGET_REPLY_CONVERSATION
SESSION_LIMIT_DATA_LOCK_MANAGER
DEALLOCATION_CLEANUP_PROC
LUCB
PARTNER_ LU
MODE

page 5.4-62
page 5.4-43
page 5.4-59
page 5.4-64
page 5.4-66
p<ige 5.0-14
page A-1
page A-2
page A-3

Chapter 5.4. Presentation Services--Control-Operator,Verbs 5.4-57

PROCESS_SESSION_LIMIT_PROC

5.4-58

Check the verb parameters to detect ABEND conditions as described in
.fil:fA Transaction Programmer's Reference Manual for LU ~ ~ for this verb.

If either of the ABEND conditions exists then
Call DEALLOCATION_CLEANUP_PROC (page 5.0-14) to abnormally

terminate this instance of the transaction program (control is not returned).

Else
Call TARGET_COMMAND_CONVERSATION !page 5.4-59)
with the resource ID of the conversation with the partner LU to receive
the CNOS command from the source LU.

If an error occurs before the CNOS command can be successfully received then
Set the CNOS RETURN_CODE to RESOURCE_FAILURE_NO_RETRY.

Else
Call SESSION_LIMIT_DATA_LOCK_MANAGER to perform a target-LU lock
on the appropriate ILU,mode) entry or entries to prevent
simultaneous access by other CNOS transactions (page 5.4-66).

Optionally, perform syntax checking on the CNOS command record according
to the description in Appendix H.

Select, in order, based on the values of fields in the CNOS command:
When syntax errors are identified

Issue a DEALLOCATE verb with TYPE=ABEND_PROG to deallocate the
conversation.

When the MODEs specified on the CNOS command cannot be found
in the list of MODEs for the PARTNER LU

Set the reply modifier field for the CNOS reply to MODE_NAME_NOT_RECOGNIZED.
When the MODEs specified on the CNOS command have SESSION_LIMIT=O, and

DRAIN_SELF=NO then
The LU may refuse to accept the command by returning an abnormal reply
modifier field specifying an lLU,mode) session limit of 0
!this is implementation defined).

Otherwise

Select based on result of SESSION_LIMIT_DATA_LOCK_MANAGER:
When the state of the LOCKs have changed from UNLOCKED
to LOCKED_BY_TARGET

Call CHECK_CNOS_COMMAND !page 5.4-62), with the CNOS command,
to perform optional receive checks (if errors are found,
the conversation is deallocated).

If the checks were not performed or no errors were detected then
Call NEGOTIATE_REPLY (page 5.4-63), with the CNOS command

record, in order to generate the negotiated values of the
CNOS parameters.

Otherwise (if any LOCK has been rejected)
Set the reply modifier field for the CNOS reply to COMMAND_RACE_DETECTED.

If the conversation has not been deallocated then
Build the CNOS reply record consistent with the original CNOS command, the reply modifier
field reflecting the identified errors, and the negotiated CNOS limits, as
appropriate Csee Appendix H).

Call TARGET_REPLY_CONVERSATION Cpage 5.4-641
with the CNOS reply record to be sent to the source LU.

If the CNOS reply is successfully sent across the conversation then
Set the CNOS RETURN_CODE for the PROCESS_SESSION_LIMIT verb according

to the modifier field of the CNOS reply.
If the reply modifier field indicates that the CNOS limits were either ACCEPTED
or NEGOTIATED then

Else

Call CHANGE_ACTION (page 5.4-43) with the CNOS reply record
to change the session limits at the target LU.

Set the CNOS RETURN_CODE to RESOURCE_FAILURE_NO_RETRY.
Call SESSION_LIMIT_DATA_LOCK MANAGER (page 5.4-66) to UNLOCK the affected

CLU,model entry or entries.

SNA Format and Protocol Reference Manual for LU Type 6.2

TARGET_COMNAND_CONVERSATION

TARGET_COMNAND_CONVERSATION

FUNCTION: This procedure checks the attaching conversation for v~!idity ~nd returns the
partner LU name to the caller. If the conversation is valid, this procedure
receives the CNOS command from the source LU. If an error is detected, it
terminates the conversation with DEALLOCATE TYPE!ABEND_PROGl.

INPUT: Resource ID of the conversation with the partner (source) LU, conversation
attributes via GET_ATTRIBUTES

OUTPUT: Partner LU name, from conversation via GET_ATTRIBUTESI CNOS command, from the
source LU via the conversation;

NOTE: See SNA Transaction Programmer's Reference Manual for LU~~ for conver­
sation verbs.

Referenced procedures, FSMs, and data structures:
RESULT_CHECK_RECEIVE_COMMAND
RESULT_CHECK_RECEIVE_SEND
RESULT_CHECK_SEND_REPLY

page 5.4-60
page 5.4-61
page 5.4-65

Issue a GET_TYPE verb (according to the input parameters provided> to verify that the
type of conversation is BASIC.

Issue a GET_ATTRIBUTES verb !according to the input parameters provided> to verify
that the connection type is parallel sessions and that the SYNC_LEVEL
is NONE (optional receive checkl.

The GET_ATTRIBUTES verb returns the name of the source LU. The target then uses
this information to determine the type of sessions possible with the source LU as
a conversation partner.

If the above conversation attributes are not verified to be correct then
(optional check)

Issue a DEALLOCATE verb with TYPE=ABEND_PROG and return from this procedure.

Else

The LOG_DATA parameter of the DEALLOCATE verb, if used, is supplied by the
implementation. For its format, see ERROR LOG GOS VARIABLE in
"Appendix H. FM Header and LU Services Commands".

Issue a RECEIVE_AND_WAIT verb to receive the CNOS command.
Call RESULT_CHECK_RECEIVE_COMMAND to examine the parameters returned and perform

the DEALLOCATE, if appropriate !page 5.4-60).

If RESULT_CHECK_RECEIVE_COMMAND returns OK then
Issue a RECEIVE AND WAIT verb to receive the SEND indicator.
Call RESULT_CHECK_RECEIVE_SEND to examine the parameters returned and perform

the DEALLOCATE, if appropriate !page 5.4-61). If RESULT_CHECK_RECEIVE_SEND
returns OK, the CNOS command was successfully received.

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-59

RESULT_CHECK_RECEIVE_COMMAND

RESULT_CHECK_RECEIVE_COMMAND

5.4-60

FUNCTION: This procedure analyzes the RETURN_CODE and other significant returned parame­
ters from the RECEIVE_AND_WAXT verb that receives the CNOS command; it deter­
mines whether to issue DEALLOCATE, and what TYPE to specify.

INPUT: RETURN_CODE, REQUEST_TO_SEND_RECEIVED, WHAT_RECEIVED

NOTE: Checks are required unless designated optional.

If the REQUEST_TO_SEND_RECEIVED parameter returned from the
RECEIVE_AND_WAIT verb is NO then

Select based on the RETURN_CODE parameter returned from
RECEIVE_AND_WAIT:

When OK
If WHAT_RECEIVED = DATA_COMPLETE then

Return OK to TARGET_COMMAND_CONVERSATION.

Else (optional check>
Issue a DEALLOCATE verb with TYPE=ABEND_PROG to
deallocate the conversation.

When RESOURCE_FAILURE_RETRY, DEALLOCATE_NORMAL or
DEALLOCATE_ABEND_PROG (optional check)

Issue a DEALLOCATE verb with TYPE=LOCAL to deallocate
the conversation locally.

When RESOURCE_FAILURE_NO_RETRY
Issue a DEALLOCATE verb with TYPE=ABEND_PROG to
deallocate the conversation.

Otherwise (optional check>
Issue a DEALLOCATE verb with TYPE=ABEND_PROG to
deallocate the conversation.

Else (REQUEST_TO_SEND_RECEIVED=YES--an optional check)
Issue a DEALLOCATE verb with TYPE=ABEND_PROG to
deallocate the conversation.

SNA Format and Protocol Reference Manual for LU Type 6.2

RESULT_CHECK_RECEIVE_SEND

RESULT_CHECK_RECEIVE_SEND

FUNCTION: This procedure analyzes the RETURN_CODE and other significant returned parame­
ters from the RECEIVE AND WAIT verb that receives SEND; it determines whether
to issue DEALLOCATE, ;nd ;hat TYPE to specify.

INPUT: RETURN_CODE, REQUEST_TO_SEND_RECEIVED, WHAT_RECEIVED

NOTE: Checks are required unless designated optional.

If the REQUEST_TO_SEND_RECEIVED parameter returned from the RECEIVE_AND_WAIT
is NO then

Select based on the RETURN_CODE parameter returned from the RECEIVE_AND_WAIT:

Else

When OK
If WHAT_RECEIVED = SEND then

Return OK to TARGET_COMMAND_CONVERSATIDN.
Else

Issue a DEALLOCATE verb with TYPE=ABEND_PROG to deallocate
the conversation.

When RESOURCE_FAILURE_RETRY, DEALLOCATE_NORMAL, or
DEALLOCATE_ABEND_PROG (optional checkl

Issue a DEALLOCATE verb with TYPE=LOCAL to deallocate the
conversation locally.

Otherwise
Issue a DEALLOCATE verb with TYPE=ABEND_PROG to deallocate
the conversation.

Issue a DEALLOCATE verb with TYPE=ABEND_PROG to deallocate
the conversation.

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-61

CHECK_CNOS_COMl'IAND

CHECK_CNOS_eot1t1AND

5.4-62

FUNCTION: This pl"'ocedure perfol"'ms receive checks at the target LU on the CNOS command
received from the source LU. If erl"'ors are detected, DEALLOCATE ABEND
replaces a CNOS reply.

INPUT: CNOS command parameters

NOTE: Check51 al"'e required unless designated optional.

Referenced pl"'ocedul"'es, FSMs, and data structul"'u:
LUCB
PARTNER_ LU
MODE

Optionally check the verb parameters, encoded as fields in the
CNOS command, fol"' ABEND conditions as described in
SNA Transaction Progl"'ammer's Reference Manual for .LY ~ !...t·

page A-1
page A-2
page A-3

Since the session limits of the SHA-defined mode name, SNASVCMG, may
not be changed, a mode name of SNASVCMG in the CNOS command consti­
tutes anothel"' ABEND condition.

Some pal"'ameter checks may l"'equire knowledge of mode attributes that
currently exist. For these, see the appropriate MODE structure for
the specified PARTNER_LU.

If any ABEND condition is identified then
Issue a DEALLOCATE verb with TYPE=ABEND_PROG
to deallocate the conversation.

SNA Format and Protocol Reference Mani.la! fol"' LU Type 6.2

NEGOTIATE_REPLY

NEGOTIATE_REPLY

FUNCTION: Th;s procedure generates the negot;ated values of the CNOS l;m;ts for the CNOS
reply, includ;ng the reply mod;fier field.

Th;s procedure assumes that the session l;m;t parameters ;n the command are
vaHd.

INPUT: Source-LU spec;f;ed CNOS verb parameters, PARTNER_LU_LIST, and MODE_LIST

OUTPUT: Sess;on l;m;t parameters for reply

NOTE: Th;s procedure does not change the CNOS limits ;n the MODE.

Referenced procedures, FSMs, and di.ta structures:
CLOSE_ONE_REPLY
PARTNER_ LU
MOOE

If the CNOS verb ;ssued at the source LU ;s INITIALIZE_SESSION_LIMIT

page 5.4-64
page A-2
page A-3

or CHANGE_SESSION_LIMIT Cwhen the act;on f;eld of the CNOS command ;s SET) then
Negotiate the LU_MODE_SESSION_LIMIT, MIN_CONWINNERS_SOURCE,
and MIN_CONWINNERS_TARGET parameters Cas described ;n
SNA Transact;on Programmer's Reference Manual for .bY Ilm!! 6.2) according to
an ;mplementat;on-dependent algorithm.

Else CRESET_SESSION_LIMIT verb>
If the command affects only one MODE at the PARTNER_LU then

Call CLOSE_ONE_REPLY Cpage 5.4-64)
w;th the CNOS command record to build the CNOS reply record.

Else Call mode names affected>
For MODE_NAMECALL), only RESPONSIBLE may be negotiated.
Negot;ate the RESPONSIBLE parameter from TARGET to

SOURCE.

If any of these parameters ;s negot;ated then
Set the reply modif;er field of the CNOS reply to NEGOTIATED.

Else
Set the reply mod;f;er f;eld of the CNOS reply to ACCEPTED.

Chapter 5 •. 4. Presentat;on Serv;ces--Control-Operator Verbs 5.4-63

CLOSE_ONE_REPLY

CLOSE_ONE_REPLY

5.4-64

FUNCTION: This procedure builds the target-LU's reply whenever the verb issued at the
source LU is RESET_SESSION_LIMIT (action field of the CNOS command is CLOSE)
and only one mode name is affected. It optionally sets the reply-modifier
field of the CNOS reply to MODE_NAME_CLOSED if there is an error in
DRAIN_SOURCE.

INPUT: LU_NAME of partner LU; MODE, for current state of CNOS parameters; CNOS COll­

mand parameters

OUTPUT: Updated reply modifier and negotiated parameters

Referenced procedures, FSMs, and data structures:
PARTNER_ LU
MODE

page A ... 2
pageA-3

Create the CNOS reply according to the negotiation rules described on
page 5.4-28 Cwhen the action field in the CNOS command
is CLOSE and only one mode name is affected) and the description of
the DRAIN and RESPONSIBLE parameters Qf the RESET_SESSION_LIMITS verb in
SNA Transaction Programmer's Reference Manual for LU :Lile!! 6.2.

If the current session limit is o, the drain for the source LU
CMODE.DRAIN_PARTNERl is set to NO and the command specifies
DRAIN_SOURCECYES), the target LU may either issue a DEALLOCATE with
TYPE=ABEND or send a CNOS reply with the MODIFIER field specifying an
CLU,mode) session limit of O.

This condition occurs only when there is a design error in the source
LU such that this ABEND condition is not recognized and the command is
forwarded to the target LU.

TARGET_REPLY_CONVERSATION

FUNCTION:

INPUT:

This procedure sends the CNOS reply.

Resource ID of the conversation with the partner (source)
change-number-of-sessions record, in this case, a CNOS reply;

LU, the

OUTPUT: Outcome of conversation (reply and DEALLOCATE NORMAL sent; DEALLOCATE ABEND
sent or DEALLOCATE received)

NOTE: See SNA Transaction Programmer's Reference Manual for LU :Lile!! !..,! for conver­
sation-verbs.

Referenced procedures, FSMs, and data structures:
RESULT_CHECK_SEND_REPLY

Issue a SEND_DATA verb Cwith the resource ID of the attaching conversation)
to send the CNOS reply to the source LU.

Call RESULT_CHECK_SEND_REPLY (page 5.4-65) to examine

page 5.4-65

the parameters returned on the verb and perform a DEALLOCATE of the conversation,
if appropriate.

SNA Format and Protocol Reference Manual for LU Type 6.2

RESULT_CHECK_SEND_REPLY

RESULT_CHECK_SEND_REPLY

FUNCTION: This procedure analyzes the RETURN_CODE and other significant returned parame­
ters from the SEND_DATA verb that sends the CNOS reply, and it determines
whether to issue DEALLOCATE, and what TYPE to specify.

INPUT: RETURN_CODE, REQUEST_TO_SEND_RECEIVED

If the REQUEST_TO_SEND_RECEIVED parameter returned from the SEND_DATA
verb is NO then

Select based on the RETURN_CODE parameter returned from the SEND_DATA verb:

Else

When OK
Issue a DEALLOCATE verb with TYPE=SYNC_LEVEL to deallocate
the conversation normally.

When RESOURCE_FAILURE_RETRY or DEALLOCATE_ABEND_PROG
Issue a DEALLOCATE verb with TYPE=LOCAL to deallocate the
conversation locally.

When RESOURCE_FAILURE_NO_RETRY
Issue a DEALLOCATE verb with TYPE=ABEND_PROG to deallocate
the conversation.

Otherwise
Issue a DEALLOCATE verb with TYPE=ABEND_PROG to deallocate
the conversation.

Issue a DEALLOCATE verb with TYPE=ABEND_PROG to deallocate
the conversation.

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-65

SESSION_LIMIT_DATA_LOCK_HANAGER

SESSION_LIMIT_DATA_LOCK_MANAGER

.,

l

FUNCTION: This procedure determines whether the specified MODEs exist, and ;f so, sets
or resets the session-limit-data lock in the MODE entry to prevent simultane­
ous access by another CNOS transaction initiated at this or the partner LU.

INPUT: The operation to be performed, identification of whether source or target LU
issued the request, partner LU name and mode name, PARTNER_LU_LIST, and
MODE_ LIST

OUTPUT: The state of the lock in affected MODE entries is updated

NOTE: This procedure locks the MODE.

Referenc.ed procedures, FSMs, and data structures:
LUCB
PARTNER_ LU
MODE

Select based on the requested locking operation:

When LOCK
Change the state of the lock (or locks> as described on page S.4-30.

The four resulting lock states depend upon their previous lock

page A-1
page A-2
page A-3

state (if applicable> and the input that caused the transition to that state.
For any input operation and current lock state combination not explicitly
described, the state of the lock does not change.

If the CNOS command affects all MODEs for the PARTNER_LU
then the lock is to be placed on all affected (LU,model entries.
If any of the affected (LU,mode) entries has been previously
LOCKED_BY_SOURCE, LOCK_DENIED is set for that mode name,
but the others are left unlocked.

When UNLOCK
The state of the (LU.model-entry lock can be changed to the UNLOCK state
only when the UNLOCK is attempted by the transaction program at the LU
that currently has the entry locked.

Note that, in the LOCK_DENIED state, the transaction program at the
source LU has the lock on the (LU.model entry.

I· If the CNOS command affects ALL MODEs, the UNLOCK is performed for all
affected (LU,mode) entries.

S.4,-66 ... SNA Format and Protocol Reference Manual for LU Type 6. 2

CHAPTER ~ HALF-SESSIQN

GENERAL DESCRIPTION

LU Network Services CLNS)

A A
Resources Manager CRM>

I Presentation

v v v v

Initializer <-->

Router

<-->

A

Path Control CPC>

Figure 6.0-1. Overview of Half-Session

The half-session component !see Figure 6.0-1)
resides in the LU and represents a session
with another LU or with a control point
(e.g., an SSCP). The half-session's primary
function is to control the data traffic flow
for a session. It also performs initializa­
tion when activated and, when necessary,
causes itself to be deactivated.

The components of the half-session are an
initializer, a router, data flow control
C DFC:--see "Chapter 6 .1. Data Flow Control"),
and transmission control CTC--see "Chapter
6.2. Transmission Control">. The initializer
records information from the session acti­
vation request Ce.g., BIND) for later use by

A
I

A
Services CPS)

1-

Data Flow Control CDFC)

A
I
v

Transmission Control (TC)

Half-session CHS)

v

DFC and TC. The router distributes message
units to DFC and TC. Message units received
from LU network services (LNS--see "Chapter
4. LU Network Services"), resources manager
(RM--see "Chapter 3. LU Resources Manager"),
and presentation services (PS--see "Chapter
5.0. Overview of Presentation Services") are
routed to DFC. Message uni ts received from
path control CPC> are routed to TC. The pri­
mary functions of DFC are to translate
between BIUs and records produced from trans­
action program verbs and to control the flow
of data between the half-session and PS, RM,
and LNS. The primary function of TC is to
control the flow of data between the
half-session and path control.

Chapter 6.0. Half-Session 6.0-1

The LU half-session is created by LNS when a
session-activation request !BIND or ACTLUl
has been successfully processed. The
half-session is destroyed by LNS when (l) a
session-deactivation request !UNBIND or
DACTLU) has been processed, (2) a session
route outage has occurred, or (3) a control
point session has been deactiv.ated .and
requires a heirarchical reset of all related
sessions Ce. g. • the PU-CP session has been
deactivated l.

The half-session, RM, PS, LNS, and PC are all
separate processes. Message uni ts are sent

PROTOCOL BOUNDARIES BETWEEN !!.§ A!:!Q OTHER COMPONENTS

to HS by RM, PS, LNS, and PC. When a message
unit arrives, HS may receive and process it.
Another message unit cannot be received by HS
until the current one is completely proc­
essed.

HS can selectively receive from these proc­
esses; e.g., when HS is waiting for a
required reply or response from the partner
HS, HS may elect to ignore messages from PS
and process messages from only RM, u.is, and
PC.

Message units that flow from HS to RM: Message units that flow from RM to HS:
ATTACH_HEADER
BID
BID_RSP
FREE_ SESSION
BIS_RQ
BIS_REPLY
RTR_RQ
RTR_RSP

Message units that flow from HS to PS:
RECEIVE_DATA
CONFIRMED
RECEIVE_ERROR
REQUEST_TO_SEND
RSP_TO_REQUEST_TO_SEND

Message units that flow from HS to LNS:
INIT_HS_RSP
Network services BIUs
(carried in HS_RCV_RECORD)

ABORT_HS

Message units that flow from HS to PC:
PIU information containing a request
or response BIU

BID_WITHOUT_ATTACH
BID_WITH_ATTACH
BID_RSP
YIELD_SESSION
BIS_RQ
BIS_REPLY
RTR_RQ
RTR_RSP
HS_PS_CONNECTED

Message units that flow from PS to HS:
SEND_DATA_RECORD
CONFIRMED
SEND_ERROR
REQUEST_TO_SEND

Message units that flow from LNS to HS:
INIT_HS
Network services BIUs
!carried in HS_SEND_RECORD>

Message units that flow from PC to HS:
PIU information containing a request
or response BIU

6.0-2 SNA Format and Protocol Reference Manual for LU Type 6.2

FORMAL DESCRIPTION

HS

FUNCTION: Th;s procedure causes the half-session to be initialized and invokes the
appropriate router according to the type of half-session CLU-CP or LU-LU>.

INPUT: At creation time, HS_ID Chalf-session identifier> and LU_ID CLU ident;f;er>;
at run time, INIT_HS received from LNS

OUTPUT: INIT_HS_RSP sent to LNS, HS_ID and LU_ID recorded for other procedures in the
half-session. The following are recorded for use by other procedures in the
half-session: LOCAL.SENSE_CODE is initialized to O; the PC_ID of the path
control that the half-session uses; the half-sess;on role CPRI or SEC>; and
the FM and TS profile types.

Referenced procedures, FSMs, and data structures:
TC.INITIALIZE
DFC_INITIALIZE
PROCESS_ LU_ LU_ SESSION
PROCESS_CP_LU_SESSION
INIT_HS
INIT_HS_RSP
LOCAL

page 6.2-8
page 6.1-18
page 6.0-4
page 6.0-5
page A-16
page A-11
page 6.0-6

Before the half-sess;on can begin processing, it must be initialized.
Therefore, the first thing HS does after creation is to receive an
initialization record CINIT_HS> from LNS. The initialization record
specifies the rules and parameters that th;s session will use Cthis
;nformation comes from BIND or ACTLU).

Record the HS_ID and LU_ID to make the informat;on available to all
half-session procedures.

Set LOCAL.SENSE_CODE to 0 Cthe no error state>.
From INIT_HS.TYPE, record an indication that this half-session is
primary IPR!) or secondary CSEC>.

Depending on whether the INIT_HS.DATA_TYPE = ACTLU_IMAGE or BIND_IMAGE,
record the FM profile and TS profile types from the ACTLU or BIND image.

Initialize the half-session by calling
TC.INITIALIZECINIT_HS record> Cpage 6.2-8) and
DFC_INITIALIZECINIT_HS record> Cpage 6.1-18), passing them
the INIT_HS record.

If TC and DFC initialization is successful then
Send a positive INIT_HS_RSP to LNS Cuse 0 for the SENSE_CODE, POS for lYPE,

and HS_ID to identify this HS>.
If FM profile is 0 or 6 CCP-LU session) then

Call PROCESS_CP_LU_SESSION (page 6.0-5).
Else CFM profile is 19, for an LU-LU session!

Call PROCESS_LU_LU_SESSION Cpage 6.0-4>.

Else (initialization unsuccessful--LOCAL.SENSE_CODE
Send a negative INIT_HS_RSP to LNS for this LU.

LOCAL.SENSE_CODE as the INIT_HS_RSP sense code,
and HS_ID to identify this HS.

Wait to be destroyed.

indicates the type of error)
~e
NEG for TYPE,

Chapter 6.0. Half-Session 6.0-3

PROCESS_~U_LU_SESSION

6.0-4

PROCESS_LU_LU_SESSION

FUNCTION: Does processing for LU-LU half-session (FM profile 19>. Message units
received from RM and PS are routed to DFC. Message units received from PC are
routed to TC. The LU-LU half-session continues to operate until an error con­
dition occurs or the half-session process is destroyed. If an error condition
occurs, LOCAL.SENSE_CODE is set (by DFC or TC) with the sense data indicating
what kind of error occurred. When this field is set, the half-session sends
an ABORT message to LNS. This causes LNS to send an UNBIND(protocol error)
for this LU-LU session.

INPUT: Message units received from PS, RM, and PCJ LOCAL.SENSE_CODE

OUTPUT: ABORT _HS sent to LNS i f error

Referenced procedures, FSMs, and data structures:
DFC_SEND_FROM_RM
DFC_SEND_FROM_PS
TRY_TO_RCV_SIGNAL
TC.RCV
TC.TRY_TO_SEND_IPR
FSM_BSM_FMP19
FSM_CHAIN_SEND_FMP19
ABORT_HS
LOCAL

Do while LOCAL.SENSE_CODE = O. (Do while no errors.)
Select based on the source of the record:

When the record is from PS
Call DFC_SEND_FROM_PS (page 6.1-19) to route the record to DFC.

(When the session is between brackets
[state of FSM_BSM_FMP19 = BETBJ or PS is sending data and the
half-session is expecting either a response or a reply
[state of FSM_CHAIN_SEND_FMP19 = PEND_RSP or PEND_RCV_REPLYJ,
processing of request records from PS is deferred until
this condition is resolved.)

When the record is from RM
Call DFC_SEND_FROM_RM (page 6.1-20) to route the record to DFC.

When the record is from PC
Call TC.RCV (page 6.2-15) to route the record to TC.

The input to those procedures is the received record.

SNA Format and Protocol Reference Manual for LU Type 6.2

page 6.1-20
page 6.1-19
page 6.1-22
page 6.2-15
page 6.2-19
page 6.1~43
page 6.1-46
page A-11
page 6.0-6

PROCESS_LU_LU_SESSION

If LOCAL.SENSE_CODE ~ 0 (error found> then
Send an ABORT_HS record to LNS. The ABORT_HS.SENSE_CODE comes from

LOCAL.SENSE_CODE; ABORT_HS.HS_ID is the HS_ID saved during HS initialization.
(LNS sends an UNBIND.>

Else (no error found--continue processing)
Call TRY_TO_RCV_SIGNAL (page 6.1-22) to
try to process a queued SIGNAL request. Whether or not a queued SIGNAL
request is processed depends on the state of the half-session.
The state of the half-session may change each time a record is
received and processed; therefore, the TRY_TO_RCV_SIGNAL
procedure is called after each record so that it can check
the current half-session state and process a SIGNAL request if necessary.

Call TC.TRY_TO_SEND_IPR (page 6.2-19> to
see if an ISOLATED PACING RESPONSE (IPR> may be sent, depending
on the pacing state of the half-session. The TC.TRY_TO_SEND_IPR
procedure is called so that it can check the current half-session
pacing state and send an IPR if necessary.
IThe formal description sends IPRs even if a response
will be the next RU sent. Implementations may optimize flows
by setting the Pacing indicator to PAC on the response, rather than
sending an IPR followed by a response that has the pacing
i ndi ca tor set to ~PAC.) .

PROCESS_CP_LU_SESSION

FUNCTION: Does processing for CP-LU half-session (FM profiles 0 and 6). Message units
received from LNS are routed to DFC. Message units received from PC are
routed to TC. The CP-LU half-session continues to operate until the
half-session process is destroyed (e.g., because of a DACTLU request>.

If an error condition occurs, LOCAL.SENSE_CODE is set with the sense data
indicating the kind of error, the half-session component detecting the error
sends a -RSP or logs the error. The CP-LU half-session continues to operate.

INPUT: Message units received from LNS and PC; FM profile type

OUTPUT: LOCAL.SENSE_CODE

Referenced procedures, FSMs, and data structures:
DFC_SEND_FROM_LNS
TC.RCV
FSM_IMMEDIATE_RQ_MODE_SEND
LOCAL

Do until HS process is destroyed.
Set LOCAL.SENSE_CODE to 0.
Select based on the source of the record:

When the record is from LNS
Call DFC_SEND_FROM_LNS (page 6.1-22) to route the record to DFC.

page 6.1-22
page 6.2-15
page 6.1-48
page 6.0··6

IWhen the session is using immediate request mode [FM profile = OJ
and a request is already outstanding [FSM_IMMEDIATE_RQ_MODE_SEND
(page 6.1-48) is in the PEND_RSP state], processing of
request records from LNS is deferred until a response to the outstanding
request is received.>

When the record is from PC
Call TC.RCV (page 6.2-151 to route the record to TC.

Chapter 6.0. Half-Session 6.0-S

DATA STRUCTURES

6.0-6

LOCAL

This is the definition of the process data used by the half-session. This data may be
accessed by any procedure in the half-session process.

LOCAL
COMMON: fields shared by all HS components

SENSE_ CODE

DFC: fields used only by DFC
LU_LU: fields used for LU-LU sessions (FM profile 19)

SQN_SEND_CHT: contains SNF (see page 6.0-6)
PHS_BB_REGISTER: contains SNF Csee page 6.0-6)
SHS_BB_REGISTER: contains SNF Csee page 6.0-6)
CURREHT_BRACKET_SQN: contains SNF (see page 6.0-6)
SEND_ERROR_RSP_STATE: possible values: RESET, NEG_OWED (negative

response owed>
SIG_RECEIVED: possible values: YES, NO
SEND_BUFFER: buffer area for collecting transaction program data until

the maximum RU size is reached or DFC is instructed to send the data.
TC: fields used only by TC

TCCB
Q_PAC: the outbound pacing queue for send pacing. Holds BIUs
that were not sent earlier because the send pacing count
was O. They are now waiting for a pacing response to
let the next pacing group (window) be sent.

SEND_PACING_COUNT: the number of requests that the local
half-session can send before having to wait for a
pacing response (varies between 2n-1 and o, where n is the
send window size)

RCV_PACING_COUNT: the number of requests that the local
half-session can yet receive from the partner half-session
in the currently allowed windows (varies between 2n-l and o,
where n is the receive window size).
If a request is received when this count is o,
the request is refused with a negative response.

SQN_RCV_CNT: the last received sequence number on the norul flON.
Wraps to zero after 65535.

SNF

Defines sequence number field.

SNF: a 16-bit sequence number field.
SQN: a 16-bit sequence number whose value wraps to 0 after 65535.

BRACKET_STARTED_BY: possible values are PRI (1) or SEC (0).
The high-order bit of the sequence number field is set when the bracket is started
by the primary half-session and reset when the bracket is started by the secondary
half-session. This is done so that sequence numbers on BB requests are unique.

NUMBER: a 15-bit sequence number whose value wraps to 0 after 32767.

SHA Format and Protocol Reference Manual for LU Type 6.2

I
CHAPTER~. DATA FLOW CONTROL

INTRODUCTION

The bas;c funct;on of data flow control IDFC>
component ;s to control the flow of data
between half-sessions. DFC and FMD RUs flow
through the data flow control component; net­
work control and session control RUs do not.
An LU may have a sess;on with another LU or a
control po;nt ICPl. The protocol rules
(e.g., FM profile) to be used on the session
are established when the sess;on is activated
and di ff er based on the type of session.

DFC FOR LU-LU HALF-SESSIONS

OVERVIEW OF PFC FUNCTIONS

The following functions are done by DFC for
LU- LU sessions:

• Request/Response Formattlng: DFC
enforces correct RH parameter settl ngs
for FMD and PFC requests and responses.

• Cha;n;ng Protocol: Chaining is a means
of sending or receiving a group of RUs
for which there will be at most one
response. DFC enforces the chaining pro­
tocol.

• Request/Response Correlation: PFC corre­
lates responses with their associated

LU-LU sessions use FM profile 19; CP-LU ses­
sions use FM profile 0 or 6. Data flow con­
trol protocols d;ffer significantly based on
the FM profile. Protocols associated w;th FM
profHe 19 contain many more functions and
capabilities then those associated with FM
profile 0 or 6. The follow;ng describes the
data flow control protocols for LU-LU and
CP-LU sessions.

DFC STRUCTURE

The DFC structure is shown in Figure 6.1-1 on
page 6.1-2.

Initialization

The DFC ;nitializat;on procedure is called by
the half-session router (see "Chapter 6.0.
Half-Session") at the activation of each ses­
sion. It initializes FSMs and other protocol
related parameters to be used during the ses­
sion.

requests. Send

• Request/Response Mode Protocols: Immedi­
ate request and immediate response modes
are enforced by PFC.

• Send/Receive Mode Protocols: The
normal-flow send/receive mode
(half-duplex flip-flop) specifies a par­
ticular form of coordination between
sending and rece1v1ng of normal-flow
requests and responses.

• Bracket Protocols: Bracket protocols
provide a means of sending or receiving a
sequence of chains as a delimited trans­
action entity.

• Purging: When a bracket error negative
response is sent for an incoming. begin
bracket IBB> chain, the remainder of that
chain is purged.

The DFC send procedures receive records from
presentation services IPS> and from the
resources manager (RM). They also receive
records from the PFC receive procedure. The
send procedures process the records and sends
them on to transmission control I TC). The
send processing consists of creating corre­
spond;ng BIU records and updating the states
of DFC send FSMs.

Receive

The DFC receive procedure IDFC_RCV) receives
BIU records from TC, processes them, and
sends them on to PS or RM. It also generates
BIU records that it sends to the DFC send
procedures. DFC_RCV optionally checks the
BIU records for receive error conditions.
These are conditions that occur only when the
other half-session has violated the architec-

Chapter 6.1. Data Flow Control 6.1-1

Presentation Services CPS>

A

I Resources Manager CRMI I
I A

I v v

DFC_ DFC_SEt-1> <-> DFC_RCV
INITIALIZATION (Note)
CNotel

A
DFC

v

Transmission Control ITC)

Note: Called by half-session router ("Chapter 6.0. Half-Session")

Figure 6.1-1. Overview of DFC for LU-LU Half-Sessions

ture. When DFC_RCV detects an error condi­
tion, it sets the sense code (in global
process data) and returns to the half-session
router. The router will then cause the
half-session to be deactivated. If no
receive errors are detected, the processing
consists mainly of updating the states of DFC
receive FSMs and creating corresponding
records to be sent on to PS or RM.

Termination

DFC and other half-session components stay
active until a deactivation request (UNBIND
or DACTLU) flows. On LU-LU sessions, DFC
causes an UNBIND to be sent when an error is
detected. See Chapter 6.0.

PROTOCOL BOUNDARIES

DFC sends• receives, and processes records.
The records DFC sends to and receives from RM
and PS represent commands and replies unique
to DFC's protocol boundaries with RM and PS.
DFC maps the commands and replies it receives
from RM and PS into BIU records suitable for
its processing; similarly, it maps BIU
records into commands and replies suitable
for processing by RM and PS. The records DFC
sends to, and receives from, TC are BIU
records that represent RU chains.

The protocol boundary information (records
exchanged) is summarized in Figure 6.1-2 on
page 6. l-3. The detailed speci fi,cations of
the protocol boundaries with PS, iRM, and TC
are defined by the individual DFC procedures.

Throughout this chapter, references to
request units (requests) and response units
(responses) pertain to the BIU records that
represent the requests and responses. Refer­
ences to the sending or receiving of requests
and responses pertain to the protocol bounda­
ry with TC, unless stated otherwise.

FUNCTION MANAGEMENT PROFILE 19

FM profiles are used to convey information
about the protocols used on a session. FM
profile 19 is used for LU-LU half-sessions.
The DFC requests for this profile are BIS,
LUSTAT, RTR, and SIG. These requests are
used to control the flow of data between the
half-sessions and are described in "DFC
Request and Response Descriptions" on page
6.1-14.

The FM usage settings in Bit-1> are as follows:

• Chaining use (primary and secondary):
multiple RU chains.

• Request control mode selection (primary
and secondary>: immediate.

• Form of response requested (primary and
secondary): RQE or RQD.

• Compression indicator (primary and sec­
ondary): no compression.

• Send CEB indicator Cprimary and second­
ary>: either end may send CEB.

• FM header usage: FM headers Conly FMH-5
(Attach> and FMH-7 CErrorl) are used.

6.1 .. 2 SNA Format and Protocol Reference Manual for LU Type 6.2

lsEND_DATA_RECORDI
CONfIRMED
SEND_ERROR
REQUEST_TO_SENO

BID_WITHOUT_ATTACH
BID_WITH_ATTACH

PS

RH

A
BID_RSP
RTR_RSP

A

I
RECEIVE_DATA
CONFIRMED
RECEIVE_ERROR
REQUEST_TO_SENO

ATTACH_HEADER RSP_TO_REQUEST_TO_SEND
FREE_ SESSION

DFC_PS_CONNECTED HS_PS_CONNECTED BID

v

DFC_SEND_
FROM_ PS
!Note)

v

LUST AT
FMD
SIG
+RSPCRQD2l3>
-RSP(0846l

DFC_SENO_FS

BIS_RQ
BIS_REPLY
YIELD_ SESSION
RTR_RQ

v

DFC_SEND_
FROM_RM
!Note l

LUSTAT,BB,RQDl
LUSTAT,CEB,RQEl
FMD,ATTACH,BB
BIS "REQUEST"
BIS "REPLY"
RTR

v

MS

RQ
RSP

v

v

I
+RSP<LUSTAT,BBl
-RSPCBBl
±RSPCRTR)
-RSPC0846>
+RSPCCEB,RQDll

v

I<
+RSPCSIGl

TC

BID_RSP
RTR_RQ
RTR_RSP
BIS_RQ
BIS_REPLY

DFC_RCV_FSMS I
A A

NORM_RQ I
NORM_RSP
RSPCSIGl [TRY TO RCV J

SIGNAL CNotel

l=l I I LOG
A
ISIG A

ISTRAY_RSP

I DFC_RCV I
A

DFC

RQ
RSP

Note: Called by half-session router !"Chapter 6.0. Half-Session")

Figure 6.1-2. Detailed Structure and Protocol Boundaries of DFC for LU-LU Half-Sessions

• Brackets: brackets are used and the
reset state is in-brackets.

• Bracket termination rule: conditional
termination.

• Alternate Code Set Allowed indicator:
may or may not be used.

• Normal-flow send/receive mode:
half-duplex flip-flop.

• Recovery responsibility: symmetric.

• Contention winner/loser: primary
half-session !BIND sender) or secondary
half-session CBIND receiver). The state
is negotiated at BIND time. This deter­
mines who is bidder (contention loser)
and who is first speaker (contention win­
ner).

• Half-duplex flip-flop reset states: BIND
sender is in send state after RSPCBINDl.

More detail of FM usage settings, and the
formats and protocols implied by them, may be
found in the following pages.

Chapter 6.1. Data Flow Control 6.1-3

6.1-4

USAGE ASSOCIATED WITH FM PROFILE 19

Conditional End Bracket (CEBl

The Conditional End Bracket !CEBJ is used to
indicate bracket termination. It is allowed
only on an RH with EC. The bracket is termi­
nated in all cases except that a -RSP to a
CCEB,RQD2f 3> chain leaves the session
in-bracket CINBJ. The bracket terminates in
all other circumstances. !See "Bracket Pro­
tocols" on page 6. l-8 for more details on
bracket termination.)

The Format i ndi ca tor C FI> in the RH is used
to indicate the presence of an FM header as
the first byte of FM data following this RH.
The FM headers that are indicated by the FI
are either FMH-5CAttachl or FMH-7!ErrorJ,
which are described in "Appendix H. FM Header
and LU Services Commands".

The FMH-5!Attach) may be carried only in an
RU with the Begin Chain i ndi cat or C BCI) set
to BC.

The FMH-7!Error) may appear in any RU in a
chain at any time during the life of a brack­
et; it may be followed by data (i.e., it does
not terminate the chain) or it may terminate
a chain. The FMH-7 is not related to or
bound by the chain state; it may be sent in a
IBC, .. Ee), C .. sc, .. EC), I .. BC,EC >. or IBC, EC l
request.

DRl is sent in a positive response to an RQDl
request in order to indicate that the
requested function has been performed. The
following are the only uses of DRl in +RSP.

1. When the sender of Attach elects to bid
for the session without sending an
Attach, it may do so with an CRQDl,BBl
LUSTATI0006). The receiver sends the
+DRl when the session has been "allo­
cated" to the sender. The only request
that may follow this sequence is an
FMH-5CAttachl to attach a transaction
program or LUSTAT with CRQEl,CEBJ to can­
cel the bid. (See "Chapter 3. LU
Resources Manager" for more details on
bidding.>

2. When RTR flows. IRTR is always sent
RQDl.)

3. When (RQDl,BB,CEB,Attach,data ••• >
received, i.e., a Bid with data.

is

4. When IRQDl,CEBl is received as a result
of the remote transaction program issuing

the DEALLOCATE verb with the ABEND
option.

5. When !RQDl,CEB) is received at sequence
numbering wrap points, as part of the
stray SIGNAL and stray response logic
(see "Stray SIGNALs and Responses" on
page 6.1-5).

Sending ~ with ~ from Contention loser

The contention loser is allowed to send
(RQE*,BB,CD,FMH-5,data) as a Bid.

Usage of LUSTATI0006) IRQEl,CEBl

LU-LU sessions are activated in the
in-brackets IINBl state. If, for some rea­
son, RM decides a newly activated session is
not needed, it sends YIELD_SESSION to DFC.
This results in an CRQEl,CEBl LUSTATI0006)
being sent to terminate the unused bracket.

Usage of SIGNALCOOOlOOOll

PS issues the REQUEST_TO_SEND command to DFC
when the conversation is in receive state,
requesting that the conversation be placed in
send state Csee "Send/Receive Mode Protocols"
on page 6. 1-10) • SIGNA.L a !ways uses the code
Request to Send CX'OOOlOOOl'). DFC then
sends SIGNAL to the other half-sess;on. When
+RSP(SIG) ; s received, DFC passes the
RSP_TO_REQUEST_TO_SEND reply up to PS. The
conversation enters the send state when an RU
carrying CD is received.

Sequence Numbering of Requests and Responses

DFC assigns sequence numbers to DFC and FMD
requests and responses, as follows:

• For normal-flow requests, the send
sequence number count is incremented by 1
and then assigned to the request.

• A normal-flow BB response is assigned the
sequence number of the corresponding BB
request. The high-order bit is 0 if the
bracket was started by the secondary
half-session, or l if the bracket was
started by the primary half-session.

• SIGNAL (the only expedited-flow DFC
request) and all other responses are
assigned the sequence number of the cur­
rent bracket.

• A normal-flow RTR response is assigned
the sequence number of the corresponding
RTR request.

Figure 6.1-3 on page 6.1-5 illustrates an
example of the use of sequence numbers. In

SHA Format and Protocol Reference Manual for LU Type 6.2

Sending Receiving
Sequence Sequence
Number Number

!Note 1)

!Note 2)
!Note 1)

!Note 2)
1 !Note 3)

(Note 4)
2

!Note 4)
3

!Note 4)
!Note 4)

!Note 4)
4

!Note 4)
CNote 11

!Note 2)
(Note 1)

!Note 2)
1

!Note 4)
2

!Note 41
3

!Note 4)

LUa

<
------CRV-
<
------Normal
< --------R
------Normal
< --------R
-------Normal
< ----------R
< -----SIGNAL

------Normal
< ---------R

•------UNBIND
< ---------R
1------BINu-
<
•------Normal
< ---------R
------Normal
< --------R
------Normal
< --------1R

RSPIBIND>

RSPICRV)
-flow RU
SPINormal-flow RU>
-flow RU
SPINormal-flow RU>
-flow RU
SPINormal-flow RU>

RSPISIGNAL>
-flow RU
SPINormal-flow RU)

SPIUNBIND>

RSPCBIND>
-flow RU
SPINormal-flow RU)
-flow RU
SPINormal-flow RUl
-flow RU
SPINormal-flow RU>

•
•
•

LUb

>

>

>

>

>

>
>

>

>

>

>

>

1. The sequence number in this case is an identifier, which can have any value 0-65535.

2. The sequence number in this case is an identifier, which has the same value as the request.

3. The first normal-flow RU following the BIND begins the first bracket. This is done for
efficiency. The bracket sequence number is o, the sequence number of the first RU is 1. After
the first bracket is ended, subsequent brackets begin with a BB request. The bracket sequence
number is the sequence number that flowed on the BB request.

4. The sequence number in this case is an identifier, which has the following properties:

• The low-order 15 bi ts are the same as the low-order 15 bi ts of the sequence number that
started the bracket.

• The high-order bit is 0 if the bracket was started by the secondary half-session, or 1 if the
bracket was started by the primary half-session.

Figure 6.1-3. Use of Sequence Numbers

this figure, some session control RUs !BIND,
UNBIND, and CRVl are also illustrated.

Stray SIGNALs and Responses

When a request is sent (RQEl , CEB) or
IRQD•,CEBI a stray SIGNAL or response can
occur. This is a SIGNAL or response that is
received outside the bracket it is intended
for, and which could be disruptive if not

eliminated or not recognized as a stray.
SIGNALs received outside the intended (cur­
rent> bracket may be "early" or "late".
"Early" SIGNALs are those received in a
bracket that was started prior to the current
bracket. "Late" SIGNALs are those received
in a bracket that was started after the cur­
rent bracket. Responses received outside the
current bracket are always "late". Examples
are shown in the following figures.

Chapter 6.1. Data FlON Control 6.1-5

6.1-6

SIGNAL or -RSP

RQEl,CEB

BB

<--------'

Bracket B gets the SIGNAL intended for A.

Figure 6 .1-4. Case 1: "late" SIGNAL or
Response

RQEl,CEB

B

SIGNAL

A <--------'

B <----------'
I
Bracket A gets the SIGNAL intended for B.

Figure 6.1-5. Case 2: "Early" SIGNAL

+RSP,QR

SIGNAL

A<----'

B <-----__,
I
Bracket A gets SIGNAL intended for B.

Figure 6.1-6. Case 3: "Early" SIGNAL

The following subsections discuss how prob­
lems with strays are avoided.

SENDING SIGNAL AND RESPONSES: Each LU elimi-·
nates problems with stray SIGNAls and stray
responses by keeping three 16-bit "bracket
ID" registers, a I-bit switch, and a 15-bit
normal-flow request counter:

• PHS_BB_REGISTER

Bit 0:
Bits 1-15:

1
low-order 15 bits of TH
sequence number of last BB
request .sent by (or received
from) primary half-session
CPHS>

• SHS_BB_REGISTER

Bit 0:
Bits 1-15:

0
low-order 15 bi ts of TH
sequence number of last BB
request sent by (or received
from) secondary half-session
ISHS)

• · CURRENT_BRACKET_SQN

Bit 0: 1 = Bracket started by PHS
0 = Bracket started by SHS

Bits 1-15: low-order 15 bits of TH
sequence number of current
bracket

• An indication that a definite response is
required on the next CEB

Bit 0: 0 = No RQD required on next
CEB sent
1 = RQD required on next CEB
sent

• A count of normal-flow requests

Bits 0-14: A count of the number of
normal-flow requests sent and
received since the last-sent
!RQD,CEB>

When a normal-flow response !except for
RSP!RTR>> or a SIGNAL is sent, DFC places the
contents of the CURRENT_BRACKET_SQN register
in the sequence number field I SNF > of the
response or SIGNAL. The current bracket
sequence is not used for RSP!RTRl because it
does not flow within a bracket.

RQD REQUIRED ON CEB: RQD is required on some
CEB requests to enable proper recognition of
stray SIGNAls and stray responses. Since the
CURRENT_BRACKET_SQN field is 15 bits, an
identical value can occur after 2**15 RUs
flow, causing the field to wrap. This can
lead to confusion when recognizing stray
SIGNAls and stray responses. In order to
avoid this confusion, the normal flow is
cleaned out periodically by the use of an
CRQD,CEB> request and its response. This
results in the following:

l. Whenever the count of normal-flow
requests reaches 2**14, tha indication

SHA Format and Protocol Reference Manual for lU Type 6.2

that a definite response is required ·on
the next CEB is set to YES.

2. Whenever the indication that a definite
response is required on the next CEB is
set to YES, the next CEB request is sent
using RQDl, RQD2, or RQD3. The indi­
cation that a definite response is
required on the next CEB is reset to NO
and the count of normal-flow requests is
reset to O. If DFC receives the CEB with
an indication to send it RQEl Ce.g., the
transaction program issued DEALLOCATE
with the FLUSH option>. DFC wi 11 change
it to RQDl in order to comply with this

.rule. When a response is received to an
CRQDl,CEB> request, no information is
forwarded to PS because the transaction
program is no longer communicating with
the half-session.

RECEIVING SIGNAL REQUESTS: When SIGNAL is
received, the DFC component of the
half-session does the following:

1.

2.

Validates the SIGNAL code--if it is other
than Request to Send CX'OOOlOOOl'), an
UNBIND indicating protocol error
CX'FE,10050000') is sent. The SIGNAL
response is sent immediately. This cre­
ates the potential for receiving further
SIGNALs before this one is processed. A
I-deep queue for SIGNAL is defined, so
later SIGNALs overlay earlier ones. If
overlaying occurs, the receiving trans­
action program only gets a single i ndi -
cation that a SIGNAL has been received,
even though more than one SIGNAL has been
sent. This is sufficient since all
SIGNALs indicate Request to Send.

Places the SIGNAL in the correct brack­
et--the TH identifier field CSNF> is com­
pared against the CURRENT_BRACKET_SQN
register.

• If they are equal, the SIGNAL is
accepted and processed.

• If the SIGNAL is early (see Fig­
ure 6.1-5 on page 6.1-6 and Fig­
ure 6.1-6 on page 6.1-6 >. it 1s
pushed into the correct bracket by
saving the SIGNAL value until the
correct BB arrives, which can be
several brackets in the future.

• If the SIGNAL is late Csee Fig­
ure 6.1-4 on page 6.1-5), it is dis­
carded because the transaction
program is no longer communicating
with the half-session Ci.e., the con­
versation has ended>.

3. Reports receipt of the SIGNAL, via a
REQUEST_TO_SEND record, to the PS compo­
nent of the transaction's process. See
"Chapter 5. 1. Presentation Serv­
i ces--Conversat ion Verbs" for further
discussion of the PS logic.

RECEIVING RESPONSES: When a response is
received, the DFC component:

1. Identifies failures--path errors and
invalid sense code values are detected
and a conversation failure is reported to
PS and RM. An UNBINDCX'FE •••• '> with
sense code from the negative response is
sent to terminate the session itself.

2. Detects stray negative responses--the TH
identifier field CSNF) of the response is
compared against the CURRENT_BRACKET_SQN
register. If they are equal, the -RSP is
intended for the current chain. If the
-RSP is late Csee Figure 6.1-4 on page
6.1-5), it is discarded because the
transaction program the response is
intended for is no longer communicating
with the half-session. (If a positive
response, other than +RSPCSIGJ, is not in
the correct bracket, an UNBIND protocol
error CX'FE,200EOOOO'> is sent; +RSPCSIG)
is discarded.)

3. Reports RTR responses--responses to RTR
are reported to RM without regard for the
bracket boundaries.

4. Reports responses to RQDl requests--in
general, responses to RQDl requests, such
as a Bid request CLUSTAT with CRQDl,BBJ),
are reported to RM; an exception is
RSPCSIGJ, which is reported to PS.

5. Reports responses to RQD2
requests--responses to RQD2
requests are reported to PS.

SEND ERROR Processing

and RQD3
and RQD3

PS issues the SEND_ERROR command to DFC when
PS is in HDX receive state, in order to
change to send state so that it CPS> can send
FMH-7CError). Cif already in send state, PS
sends the FMH-7 without issuing the
SEND_ERROR command I see "Chapter 5. 0. Over­
view of Presentation Services" for more
details. l

Issuing SEND_ERROR in receive state causes
DFC to send -RSPC ERP message forthcom­
i ng--0846) i f some data has been rece i ved.
If no data has been received, DFC waits until
a chain is received and then responds with
-RSPC 0846 l.

After the EC request is received, PS can send
the FMH-7C Error l; the FMH-7 includes sense
data for PS's use--it is not processed by
DFC. If the EC request ended the bracket, PS
does not send the fMH-7.

DETAILED DESCRIPTION OF DFC FUNCTIONS

REQUEST/RESPONSE FORMATTING

DFC optionally checks that the requests and
responses it receives are formatted correct-

Chapter 6.1. Data Flow Control 6.1-7

6.1-8

ly. The formatting checks involve:

• ~Enforcing that invalid RH bit combina­
tions are not used, e.g.• BBI=BB and
BCI=~Bc. or CDI=CD and ECI=~Ec.

• Enforcing that the FH profile 19 rules
are not violated, e.g., the receiving of
an expedited-flow DFC request other than
SIGNAL, or the receiving of a request
with BB that is neither LUSTAT nor FHH-5
(Attach).

Format checks occur before the use of
finite-state machines CFSHs). (State checks
are checks that involve FSMs.) FSMs require
the BIU record to be formatted correctly
before processing it.

CHAINING PROTOCOL

Chaining provides a means to send (and
receive) a sequence of requests as one entity
in the context of error recovery. At most
one response is sent per chain.

A chain consists of a single response RU or
one or more request RUs with the following
properties:

• The requests belong to the same flow (ex­
pedited or normal).

• The requests flow in the same direction.

• The first request is marked BC (Begin
Chain) in the RH.

• The last request is marked EC (End Chain)
in the RH.

• All requests that are neither first nor
last are marked c~Bc, ~EC) in the RH.

The checking of received requests for proper
chaining is provided for each half-session.

Each response and each expedited-flow request
is a single-RU chain, i.e., the RH indicates
(BC,EC).

Only chains of the following types are sent:

• Exception-response
request in the
exception-response.

CRQE) chain: Each
chain is marked

• Definite-response CRQD) chain: The last
request in the chain is marked
definite-response; all other requests in
the chain are marked exception-response.

See "Appendix D. RH Formats" for details of
the possible variations within each type.

The sender of the chain sets the Form of
Response Requested bits properly in each
request of the chain. Thus, the receiver of
a chain need examine the Form of Response
Requested bits only in the last request in a
chain, or in a request in error.

Normal-flow DFC requests may not be sent
while sending a normal-flow, FMD,
multiple-request chain.

If a chain sender receives a negative
response to a chain being sent, the chain may
be ended prematurely by sending the
end-of-chain CEC) request.

REQUEST/RESPONSE CORRELATION

In order to remember the information on
normal-flow chains that DFC sends or
receives, DFC maintains two correlation
entries: one for sent chains and one for
received chains. There can never be more
than one sent or received chain outstanding
at any point in time CFH profile 19 protocol
rules do not allow it), hence the need for
only two entries. A correlation entry is
established when the first RU in a chain is
sent or received. The entry is reset when
the chain has been completely processed, that
is, when the end-of-chain request and its
response, if any, have been processed. A
correlation entry includes such information
as selected RH parameters needed by DFC
(e.g., RU category, BBI, and CEBI>. and the
DFC request code.

Some examples of how the correlation entry is
used are:

• When receiving a response, the entry for
the sent chain is checked to verify that
the RU category in the response is the
same as the RU category of the sent
chain.

• When sending a response, the entry for
the received chain is examined to deter­
mine whether a bracket has begun (i.e.,
the first RU in the chain was FHD with
BBI=BB, or the single-RU chain was LUSTAT
with BBI:BB).

REQUEST/RESPONSE HOOE PROTOCOLS

Every half-session issues requests and
responses according to the immediate request
mode and the immediate response mode. Imme­
diate request mode means that all request
chains are sent under the constraint that no
request may be sent by a given half-session
when a previously sent request is still
awaiting a response or reply. (A reply i s a
request sent in reaction to a received, RQE,
request unit.) Request chains are replied or
responded to fo order of receipt. DFC
enforces immediate request and response mode
in the chaining FSHs.

There are only two expedited RUs used (SIG
and CRV) and both use the immediate request
mode. The two RUs flow at di fferent ti mes
!when in use, the CRV exchange must be com­
pleted before SIG is ever sent), and there­
fore the protocol can be enforced by the
initiating components--DFC enforces the pro­
tocol for SIG, and TC enforces it for CRV.

SNA Format and Protocol Reference Hanual for LU Type 6.2

The immediate response mode requires that
responses be sent in the order the requests
are received (i.e.• requests are processed
and responses i ssued fi rs t- in• fi rs t-out).
When a response to a particular request is
received, it means that all requests in the
same flow sent before the responded-to
request have been processed by the receiver,
and that their responses, if any, have been
sent.

BRACKET PROTOCOLS

A bracket is a sequence of normal-flow
request chains and their responses, exchanged
in either or both directions between two
half-sessions. Bracket protocols allow con­
tention for session resources and assist in
resolving the race condition that can result
from that contention.

The primary use of brackets is to carry con­
versations between transaction programs. A
transaction program requests a conversation
wi th another transaction program by issuing
the ALLOCATE verb. ALLOCATE causes the
resources manager <RM> to select a
half-session (based on ALLOCATE parameters)
and attempt to initiate a bracket on it. If
the bracket is successful, that half-session
is used to carry the conversation. (See
"Chapter 3. LU Resources Manager" for more
details.) A transaction program ends a con­
versation by issuing a DEALLOCATE verb. This
causes the half-session to terminate the
bracket carrying the conversation. When the
bracket terminates, the half-session becomes
available again for selection by RM.

The bracket rules regulate the initiation and
termination of a bracket.

A bracket is delimited by setting BBI to
Begin Bracket <BB> in the first request of
the first chain, and CEBI to Conditional End
Bracket <CEB> in the last request of the last
chain in the bracket.

BIND parameters specify one of the
half-sessions as first speaker and the other
as bidder. The first speaker has the freedom
to begin a bracket without requesting permis­
sion from the other half-session to do so.
Any request carrying BB sent by the first
speaker will begin a bracket. The bidder
must request and receive permission from the
first speaker to begin a bracket. The brack­
et protocols are verHied by the bracket
state manager in the receiving half-session.

The bidder may attempt to initiate a bracket
(i.e., Bid) by sending an FMD request chain
with (RQO,BB,QR) or with <RQE,BB,CO,QR).
(See "Queued Response Protocol" on page
6.1-10 for description of QR usage.) The
first speaker grants the attempt via a reply
to an IRQE,CO) (see "Send/Receive Mode Proto­
cols" on page 6.1-10 for definition of reply)
or a pos i ti ve or negative response (other
than 0813, 0814, or 088B> or refuses the
attempt via negative response (0813, 0814, or
088B).

A negative response with sense code 0813,
0814, or 088B indicates that the first speak­
er has denied permission for the bidder to
begin a bracket. A READY TO RECEIVE I RTR)
request may be sent later by the first
speaker when permission to start a bracket is
granted. !The first speaker may or may not
have the capability to subsequently send RTR.
The 0814 sense code is used only when the
first speaker has the capability to send
RTR •) If the f i rs t speaker w i 11 send RTR
later, the sense code with the negative
response is 0814 !Bracket Bid Reject--RTR
Forthcoming). In this case, the bidder waits
for the RTR before sending another BB. If
the RTR will not be sent. the sense code is
either 0813 !Bracket Bid Reject--No RTR
Forthcoming) or 088B (BB Not Accepted--BIS
Reply Requested). In the 0813 case, the bid­
der will send BB again, if it still wants to
begin a bracket. In the 088B case, the BB is
not sent again because no more conversations
will be allowed to start. A BIS request will
be received shortly and a BIS reply will be
sent.

Expedited requests and responses are not
affected by bracket indicators on normal-flow
requests, nor by the states of the bracket
FSMs.

The following rules apply to the bracket
indicators:

• BB may be indicated only on the first (or
only> request of a chain.

• CEB may be indicated only on the last (or
only> request of a chain. It indicates
the last chain in the bracket. <If CEB
is set, CD must not be indicated because
CEB overrides CO.)

• BB and CEB may both be indicated within
the same chain.

• BB or CEB may be indicated by either
half-session.

• BB or CEB may be indicated on FMD
requests.

• Neither BB nor CEB may be indicated on
any normal-flow DFC request except
LUSTAT.

• Neither BB nor CEB may be indicated on
responses or on expedited requests.

The following bracket termination rule is
used:

• Bracket Termination Rule: Bracket termi­
nation is controlled by the form of
response requested <definite or excep­
tion) for the chain containing CEB. If
the chain requests a definite response,
the bracket is not terminated until a
positive response is processed. A nega­
tive response to the last request (marked
definite response) causes the bracket to
be continued. If the chain requests
exception response, the bracket is termi­
nated uncondi tfonally when the request

Chapter 6.1. Data Flow Control 6.1-9

6.1-10

containing CEB is processed. A negative
response to an (RQE,CEB> request will not
be found in the receive correlation enti­
ty, and therefore will be logged and dis­
carded.

No more than one BB can be outstanding from a
half-session.

The normal-flow DFC requests, RTR and BIS,
may be sent only between brackets and do not
carry bracket bits. FHD requests always car­
ry BB when flowing between brackets. LUSTAT
is treated exactly like an FHD request con­
taining (BC,EC), and may be used with BB to
bid for, or with CEB to end, a bracket.

The following types of error conditions are
detected in the management of brackets:

• Bracket protocol errors detected at the
receiver and caused by sender error.

• Errors detected at the receiver and
caused by race conditions. The appropri­
ate action is for the receiver to send a
Bracket Bid Reject sense code 10813,
0814, or 088B> on a negative response to
the other half-session. A retry of the
operation may be necessary.

SEND/RECEIVE HOOE PROTOCOLS

Once a bracket has started, the normal-flow
send/receive mode protocol is half-duplex
flip-flop CHDX-FF). One half-session is des­
ignated HDX-FF bidder, and the other, HDX-FF
first speaker. Parameters in BIND specify
which half-session is first speaker and which
is bidder. The bidder may send a request
containing BB, but its bid for the bracket is
pending until it receives a response.

Once a bracket is begun, a half-duplex
flip-flop state is established, and the send­
er issues normal-flow requests and the
receiver issues responses. When the sender
completes its transmission of normal-flow
requests, it transfers control of sending to
the other half-session by setting the Change
Direction indicator to CD on the last request
sent. See "Bracket Protocols" on page 6 .1-8
for additional details.

The Change Direction indicator CCDil is used
in the HDX-FF protocols. Only a request on
the normal flow that is marked End Chain may
carry CDI=CD. When the sending half-session
includes CD in a request, it indicates that
it is prepared to receive and that its paired
half-session may send. CD is not conveyed in
a response or on a request that carries CEB.

An exception-response IRQE> chain always has
CD indicated on the last RU of the chain,
unless that RU carries CEB, in which case it
does not indicate CD.

A "reply" is the request sent by a
half-session immediately after receiving an
CRQE,CD> chain. A reply is treated as
implicitly containing a positive response.
That is, once an CRQE,CD) chain is replied
to, a negative response to that chain is not
permitted. A BIS, RTR, or an RU carrying BB
is not treated as a reply.

QUEUED RrSPONSE PROTOCOL

DFC enforces the setting of the Queued
Response indicator (QRI) bit on requests.
The setting of the QR! bit is the same for
all RUs in a chain. See "Appendix D. RH For­
mats" for a discussion of this RH indicator.

QR is always indicated on a chain carrying BB
that is sent by the bidder. When QR is indi­
cated in a response, that response will not
pass any other RUs flowing through the net­
work on the same session. It is used so that
a positive response to the bidder's BB chain
will not interfere with a bracket sent earli­
er by the first speaker. The positive
response will be received after the first
speaker's bracket ends. QR is not indicated
on any other chain.

PS SEND AND RECEIVE RECORDS

This section describes how the
SEND_DATA_RECORD (sent from PS to HSl and the
RECEIVE DATA record Csent from HS to PS> are
mapped to and from the RH portion of a BIU
containing a request. The SEND_DATA_RECORD
is used by PS to send data in accordance with
the verbs issued by a transaction program.
This record (defined using transaction pro­
gram verb terminology) is mapped into a
request BIU by DFC before being sent. The
RECEIVE_DATA record is used to inform PS
about data received on the half-session.
This record (defined using transaction pro­
gram verb terminology) is mapped from a
received BIU containing a request. Fig­
ure 6.1-7 on page 6.1-11 summarizes the
SEND_DATA_RECORD to RH mapping and Fig­
ure 6.1-8 on page 6.1-11 summarizes the RH to
RECEIVE_DATA record mapping.

SNA Format and Protocol Reference Manual for LU Type 6.2

Parameters in SEND_DATA_RECORD Request RH indicators

ALLOCATE=YES (see Note 1) BB
FMH=YES (see Note 1) FMH

NOT_END_OF_DATA ~EC,RQEl

FLUSH ~EC,RQEl

CONFIRM EC,RQD3
PREPARE_TO_RECEIVE_CONFIRM_SHORT EC,CD,RQD3
PREPARE_TO_RECEIVE_CONFIRM_LONG EC,CD,RQE3

PREPARE_TO_RECEIVE_FLUSH EC,CD,RQEl
DEALLOCATE_ CONFIRM EC,CEB,RQD3
DEALLOCATE FLUSH with EC,CEB, RQDl

DEALLOCATE_ABEHD_* FM header
(see Note 3)

DEALLOCATE FLUSH without EC,CEB, RQEl
DEALLOCATE_ABEND_* FM header
Csee Note 3)

1. This parameter is used in conjunction with the rest of the parameters (e.g., if ALLOCATE is YES and
FMH is YES, specified with DEALLOCATE_CONFIRM, the request RH indicators are BB,FMH,EC,CEB,RQD3>.

2. RH indicators not shown (e.g., QRI> are set independently from the SEND_DATA_RECORD parameters.

3. To indicate a DEALLOCATE_ABEND_* action, FMH is set to YES and DATA (offset 2 through 4) is set to
X'070864'.

Figure 6.1-7. SEND_DATA_RECORD to Request RH Mapping

Request RH indicators Parameters set in RECEIVE_DATA Record

FMH FMH=YES (see Note 1)

~EC NOT_END_OF_DATA

EC,RQD2l3 CONFIRM
EC,CD,RQ*2l3 PREPARE_TO_RECEIVE_CONFIRM
EC,CD,RQEl PREPARE_TO_RECEIVE_FLUSH

EC,CEB,RQD2l3 DEALLOCATE_CONFIRM
EC,CEB,RQEl or RQDl DEALLOCATE_FLUSH

1. This parameter is set in conjunction with the rest of the parameters Ce.g., if FMH,EC,CEB,RQD2l3
are indicated in the RH, FMH is YES and DEALLOCATE_CONFIRM is indicated in the RECEIVE_DATA
record>.

2. Other RH indicators (e.g., QRI> have no effect on the RECEIVE_DATA record parameter settings.

Figure 6.1-8. Request RH to RECEIVE_DATA Record Mapping

DFC REQUEST AND RESPONSE FORMATS

This section describes the DFC request and
response formats; the RH formats are shown in

this section; the RU formats are shown in
"Appendix E. Request-Response Unit CRU> For­
mats". Figure 6.1-9 on page 6.1-12 and Fig­
ure 6.1-10 on page 6.1-13 show the format of
DFC requests and responses, respectively.
The Expedited Flow indicator CEFI in the TH>

Chapter 6.1. Data Flow Control 6.1-11

shows wMch flow, expedited or normal, the
DFC request or response flows on.

DFC Request -----> BIS RTR
Header Indicators

TH EFI Normal Normal

RH Byte 0 Bit 0 RRI RQ RQ
Bits 1-2 RU category DFC DFC
Bit 3 reserved 0 0
Bit 4 FI l 1
Bit 5 SDI *SD *SD
Bit 6 BCI BC BC
Bit 7 ECI EC EC

RH Byte 1 Bit 0 DRlI DR! DRl
Bit 1 reserved 0 0
Bit 2 DR2I *DR2 .. DR2
Bit 3 ERI ER .. ER
Bit 4 reserved 0 0
Bit 5 reserved 0 0
Bit 6 QRI .. QR .. QR
Bit 7 PI *PAC *PAC

.RH Byte 2 Bit 0 BBI .. BB .. BB
Bit 1 EBI .. EB .. EB
Bit 2 CDI .. co .. co
Bit 3 reserved 0 0
Bit 4 reserved 0 0
Bit 5 reserved 0 0
Bit 6 reserved 0 0
Bit 7 CEBI .. CEB .. CEB

1. *XX means either XX or .. xx.

LUST AT

Normal

RQ
DFC
0
1
*SD
BC
EC

*ORI
0
*DR2
*ER
0
0
*QR
*PAC

*BB
.. EB
*CD
0
0
0
0
*CEB

2. See "Appendix D. RH Formats" for complete RH description.

3. If CEBI is set to CEB, CDI is set to .. co.

4. For LUSTAT: !DR1I,DR2I> = (0,1) I u,o> I 11,n.

5. For LUSTAT: QRI is set to QR when BBI is set to BB.

6. The SNF and DCF TH fields are also set by DFC.

7. The TH formats are not described in this volume.

Figure 6.1-9. DFC Request Formats

SIGNAL

Exp

RQ
DFC
0
1
*SD
BC
EC

DR!
0
.. DR2
.. ER
0
0
.. QR
.. PAC

.. BB

.. EB

.. co
0
0
0
0
.. CEB

6.1-12 SHA Format and Protocol Reference Manual for LU Type 6.2

DFC Response-----> BIS RTR LUST AT
Header Indicators

TH EFI Normal Normal Normal

RH Byte 0 Bit 0 RRI RSP RSP RSP
Bits 1-2 RU category DFC DFC DFC
Bit 3 reserved 0 0 0
Bit 4 FI 1 1 1
Bit 5 SDI *SD *SD *SD
Bit 6 BCI BC BC BC
Bit 7 ECI EC EC EC

RH Byte 1 Bit 0 DRlI DRl DRl *DRl
Bit 1 reserved 0 0 0
Bit 2 DR2I *DR2 .. DR2 *DR2
Bit 3 RTI :!: :!: :!:
Bit 4 reserved 0 0 0
Bit 5 reserved 0 0 0
Bit 6 QRI .. QR .. QR *QR
Bit 7 PI *PAC *PAC *PAC

RH Byte 2 Bit 0-7 reserved 0 ••.• 0 o ••• o o ••• o

1. *XX means either XX or .. xx.
2. See "Appendix D. RH Formats" for complete RH description.

3. For LUSTAT: DRlI, DR2I, and QRI are set the same as they were
on the request.

4. The SNF and DCF TH fields are also set by DFC.

5. The TH formats are not described in this volume.

Figure 6.1-10. DFC Response Formats

SIGNAL

Exp

RSP
DFC
0
1
.. SD
BC
EC

DRl
0
.. DR2
+
0
0
.. QR
.. PAC

o ••• o

Chapter 6.1. Data FlON Control 6.1-13

6.1-14

DFC REQUEST AND RESPONSE DESCRIPTIONS

The DFC requests for FH prof;le 19 are
descr;bed below.

BIS <BRACKET INITIATION STOPPED)

Flott: Prh1ary to secondary and secondary to pr;•ary (Normal)

Pr;nc;pal FSM:
None ;n DFC

BIS ;s sent by a half-sess;on to ;nd;cate
that ; t w; 11 not attempt to beg; n any more
brackets (Le. , send any more BB requests) •

LUSTAT (LOGICAL UNIT STATUS)

The use of BIS and H's pr;nc;ple FSM& are
descr;bed ;n more detaU ;n "Chapter 3. W
Resources Manager".

Flow: Pr;mary to secondary and secondary to primary (Normal)

Pr;nc;pal FSM:
Uses same FSMs as normal-flow data

LUSTAT ;s used to accompany RH bHs. The sta­
tus value ; s set to X' 0006 • • SpecH; cally,
LUSTAT ;s used in place of a null RU; that
is, when ;t ;s time to send an RU to DFC, and
the RU ;s marked lBC,ECl and has RU length =
o, an LUSTATl0006) is sent instead. This
results in the following RH encodings wHh
LUSTATl 0006):

1. lRQDl,BBl: send;ng half-sess;on bids
without data.

2. (RQE2,CD): Send;ng half-session trans­
fers send control to the other
half-sess;on, specif;es that a Conf;rm be
taken, and that completion of the Confirm
be ind;cated by rece;pt of the next
request from the other half-session.
Confirm--means that the transaction pro-

gram connected to the other half-sess;on
has received and processed the RU data
successfully.

3. (RQD2,CD): Same as 2, except that com­
pletion of the Conf;rm w;11 be ;ndicated
by rece;pt of +RSP.

4. (RQEl,CD>: Sending half-session transfer
send control to the other hal:f-sessfon
spec;fying no Conf;rm.

5. (RQD2,CEB>: Same as 3, plus the bracket
will be terminated when a +RSP is
rece;ved.

6. (RQEl,CEB>: Same as 4, plus the bracket
is terminated unconditionally.

SNA Format and Protocol Reference Manual for LU Type 6.2

RTR (READY TO RECEIVE>

Flow: First speaker to bidder (Nor111alJ

PrhlCi pal FSM:
None in DFC

RTR indicates to the bidder that it is now
allowed to initiate a bracket. An RTR
request is sent only by the first speaker
(see "Bracket Protocols" on page 6.1-8). The

SIG (SIGNAL)

use of RTR and it's principal FSMs are
described in more detail in "Chapter 3. LU
Resources Manager".

Flow: Primary to secondary and secondary to primary (Expedited)

Principal FSM:
None

SIG is an expedited request that can be sent
between half-sessions, regardless of the sta­
tus of the normal flows. It is the only
expedited DFC request defined for FM profile
19. It carries a four-byte value, of which
the first two bytes are the Signal code and
the last two bytes are the Signal extension
value.

The only Signal code def;ned for use with FM
profile 19 is X'OOOlOOOl'. This signal code
is used in conjunction with the PS command
REQUEST_TO_SEND. See "Chapter 5.1. Presenta­
tion Services--Conversation Verbs" for more
details.

Chapter 6.1. Data Flow Control 6.1-15

DFC FOR ~ HALF-SESSIONS

The overview, structure, and protocol bounda­
ries for DFC for CP-LU half-sessions is shown
in Figure 6.1-11 on page 6.1-17.

The CP-LU session uses FH profile 0 or 6.
Immediate request and immediate response
modes are used for FM profile O. Delayed
request and delayed response modes are used
for FH profile 6 • Chai n
form-of-response-requested indications for FM
profile 0 are restricted to RQD, while FM
profile 6 allows any IRQD, RQE, or RQNJ. FM
profiles 0 and 6 share the following proper­
ties:

• Only single-RU chains are allowed.
• Compression is not used.
• Brackets are not used.
• FH headers are not used.
• Alternate code is not allowed.
• Send/Receive mode is full duplex IFDXJ.

DFC is initialized at half-session activation
time to the FM profile being used.

OVERVIEW OF DFC FUNCTIONS

The functions of DFC for CP-LU half-sessions
are:

•

•

Enforce correct request and response for­
mats (e.g., RH parameter settings).

Enforce immediate request and immediate
response mode for sending and receiving
normal-flow data. No enforcement is nec­
essary for the delayed request or delayed
response mode.

Request/Response Formatting

DFC optionally checks that received requests
and responses are formatted correctly. For
example, all RHs must have BCI=BC and ECI=EC.
Formats may vary depending upon the FM pro­
file used on the session. For instance, FM
profile 0 allows chains asking only for defi­
nite response IRQDJ.

Immediate Regyest and Immediate Response ~
Enforcement

DFC optionally checks that received requests
do not violate immediate request mode proto­
cols for sessions using FM profile 0. Once a
request asking for a definite response has
been received, it must be responded to before
another request is received. Immediate
response mode is also enforced for those ses­
sions using FM profile O. Any response
received must be to an outstanding RQD
request.

ERROR PROCESSING

If a format error or immediate request or
immediate response mode violation occurs, a
negative response is sent if possible; other­
wise, the error is logged. The half-ses£ion
then continues to run until it is destroyed
Ce.g., via DACTLUJ.

6.1-16 SHA Format and Protocol Reference Manual for LU Type 6.2

LU Network Services ILNS)

A
INIT_HS HS_SEND_RECORD HS_RCV_RECORD

v v

DFC_INITIALIZE DFC_SEND_FROM_LNS
I DFC_RCV I !see note) !see note)

A
DFC

BIU BIU
v

Transmission Control ITC)

tf2.!!u Called by half-session router ("Chapter 6.0. Half-Session")

Figure 6.1-11. Overview, Structure, and Protocol Boundaries of DFC for CP-LU Half-Sessions

/

Chapter 6.1. Data Flow Control 6.1-17

HIGH-LEVEL PffOCEDVRES

6.1-18

DFC_INITIALIZE

FUNCTION: Initialize fields in the half-session's local storage (for process data) that
are used by DFC. This procedure is called by the half-session router ("Chap­
ter 6.0. Half-Session") when the half-session is created.

INPUT: INIT_HS record containing either ACTLU or BIND image; the following informa­
tion is made available to DFC by the half-session router: FM profile type,
indication that half-session is primary or secondary, LU_ID that identifies
the LNS and RM associated with this half-session, HS_ID used to indicate to
PS, RM, and LNS the half-session associated with a particular request.

OUTPUT: SUCCESSFUL return code and half-session initialized

NOTE: 1) When a half-session is activated it comes up in-brackets. The first BIU
sent on the session uses a value of X'OOOl' in the TH sequence number field
and does not carry BB. The BB, in effect, was carried on the session acti­
vation request (BIND>. Therefore, the current bracket sequence number (LO­
CAL.CURRENT_BRACKET_SQNJ associated with the first bracket on a session is
initialized to O.

21 The TS and FM profile type are checked for validity prior to calling this
procedure.

Referenced procedures, FSMs, and data structures:
FSM_BSM_FMP19
FSM_RCV_PURGE_FMP19
FSM_QRI_CHAIN_RCV_FMP19
FSM_CHAIN_RCV_FMP19
FSM_CHAIN_SEND_FMP19
FSM_IMMEDIATE_RQ_MODE_SEND
FSM_IMMEDIATE_RQ_MODE_RCV
LOCAL
INIT_HS

Set all of the FSMs in this chapter to the reset state (state number 1).
If the INIT_HS record is for an LU-LU session (contains a BIND image) then

page 6.1-43
page 6.1-50
page 6.1-49
page 6.1-44
page 6.1-46
page 6.1-48
page 6.1-48
page 6.0-6
page A-16

Record information from BIND image in the INIT_HS record that will be used by DFC
throughout the life of this session:

• First speaker or bidder (contention winner or loser)
• Maximum send RU size
• Alternate code set allowed

Set LOCAL.SQN_SEND_CNT to O.
Set LOCAL.PHS_BB_REGISTER.BRACKET_STARTED_BY to PRI.
Set LOCAL.PHS_BB_REGISTER.NUMBER to O.
Set LOCAL.SHS_BB_REGISTER.BRACKET_STARTED_BY to SEC.
Set LOCAL.SHS_BB_REGISTER.NUMBER to 0.
Set LOCAL.CURRENT_BRACKET_SQN.BRACKET_STARTED_BY to PRI.
Set LOCAL.CURRENT_BRACKET_SQN.NUMBER to O. (See Note 11

Set LOCAL.SEND_ERROR_RSP_STATE to RESET.
Set LOCAL.SIG_RECEIVED to NO.

SNA Forma~ and Protocol Reference Manual for LU Type 6.2

DFC_SEND_FROM_PS

DFC_SEND_FROM_PS

FUNCTION: Process records received from presentation services IPS). This procedure is
called by the half-session router ("Chapter 6.0. Half-Session").

INPUT: PS_TO_HS_RECORD and the form of response requested for the last chain received

OUTPUT: Indication may be set that a negative response is to be sent to the next chain
received ILOCAL.SEND_ERROR_RSP_STATEJ; a SIGNAL may be sent to the partner
half-session.

Referenced procedures, FSMs, and data structures:
PROCESS_SEND_PARM
SEND_RSP_BIU
DFC_SEND_FSMS
FSM_CHAIN_RCV_FMP19
PS_TO_HS_RECORD
SEND_DATA_RECORD
SEND_ERROR
REQUEST_TO_SEND
CONFIRMED
LOCAL

Select based on PS_TO_HS_RECORD type:
When SEND DATA RECORD

Call PROCEss:sEND_PARMISEND_PARM from input record) !page 6.1-35).

When CONFIRMED
If last request received was RQD2 or RQD3 then

Call SEND_RSP_BIU !page 6.1-38) to send normal-flow,
positive response. BIU_PTR passed to procedure has null value.

When SEND ERROR
If stat; of FSM_CHAIN_RCV_FMP19 = BETC !between chains) then

page 6.1-35
page 6.1-38
page 6.1-25
page 6.1-44
page A-24
page A-24
page A-24
page A-24
page A-24
page 6.0-6

Set LOCAL.SEND_ERROR_RSP_STATE to NEG_OWED to indicate that a negative
response should be sent to the next RU received.

Else (send -RSP to chain currently being processed)
Call SEND_RSP_BIU Cpage 6.1-38) to send normal-flow, -RSP with

sense data X'08460000'. BIU_PTR passed to the procedure has null value.

When REQUEST_TO_SEND
Create a BIU and initialize it to all O's. See Appendix D.
Set EFI to indicate expedited.
Set RH as described in Figure 6.1-9 on page 6.1-12.
Set RU as described under SIG request in Appendix E.
Call DFC_SEND_FSMSCBIUJ Cpage 6.1-25).

Chapter 6.1. Data Flow Control 6.1-19

DFC_SEND_FROH_RM

DFC_SEND~FROH_RM

6.1-20

FUNCTION: Process records received from the resources manager CRM). This procedure is
called by the half-session router ("Chapter 6.0. Half-Session").

INPUT: RM_TO_HS_RECORDo indication that session just started, first speaker indica-

OUTPUT:

NOTE:

tor, primary or secondary half-session indicator, and
LOCAL.SQN_SEND_CNT.NUMBER

In addition an HS_PS_CONNECTED record may be received from RM

The following RUs may be sent: Bid with Attach Can Attach carrying BB>o Bid
LUSTAT CA LUSTAT carrying BB) BIS, RTRo or a YIELD SESSION LUSTAT CLUSTAT car­
rying CEBJ.

The following fields may be altered: LOCAL.CURRENT_BRACKET_SQN.NUMBER,
LOCAL.CURRENT_BRACKET_SQN.BRACKET_STARTED_BY, LOCAL.PHS_BB_REGISTER.NUMBERo
LOCAL.SHS_BB_REGISTER.NUMBERo

In addition, the ID of the PS that is connected to this HS is saved to identi­
fy the PS that is using this HS, indication that session just started.

This procedure uses the BIU Csee Appendix D). In addition, the EFI field of
the TH may be set.

Referenced procedures, FSMso and data structures:
DFC_SEND_FSMS
PROCESS_SEND_PARM
FSM_BSM_FMP19
RM_TO_HS_RECORD
BID_WITHOUT_ATTACH
BID_WITH_ATTACH
HS_PS_CONNECTED
LOCAL

Select based on RM_TO_HS_RECORD type:
When BID_WITH_ATTACH

page 6.1-25
page 6.1-35
page 6.1-43
page A-28
page A-29
page A-28
page A-29
page 6.0-6

If the session just started Cthis is the first conversation on this session) then
Cno need to set current bracket sequence number because it has already
been properly initialized)

Receive the HS_PS_CONNECTED record that RM sends immediately after it sends the
BID_WITH_ATTACH record. Save the PS identifier CHS_PS_CONNECTED.PS_ID).

Call FSM_BSM_FMP19 Cpage 6.1-43) with an INB signal to indicate that
this half-session is connected to a PS.

Record that the session did not just start.

Else Cthe session did not just start)
If this half-session is the first speaker then

Receive the HS_PS_CONNECTED record that RM sends immediately following the
BID_WITH_ATTACH record. Save the PS identifier CHS_PS_CONNECTED.PS_ID>.

Call FSM_BSM_FMP19 with an INB signal to indicate that this half-session is
connected to a PS Cpage 6.1-43).

The following sets the current bracket sequence number and LOCAL.*_BB_REGISTER
before the BB request i~ sent:

Set LOCAL.CURRENT_BRACKET_SQN.NUMBER to LOCAL.SQN_SEND_CNT.NUMBER + 1 (taking
the wrap case into account).

If the half-session is primary then
Set LOCAL.CURRENT_BRACKET_SQN.BRACKET_STARTED_BY to PRI.
Set LOCAL.PHS_BB_REGISTER.NUMBER to LOCAL.CURRENT_BRACKET_SQH.NUMBER.

Else
Set LOCAL.CURRENT_BRACKET_SQN.BRACKET_STARTED_BY to SEC.
Set LOCAL.SHS_BB_REGISTER.NUMBER to LOCAL.CURRENT_BRACKET_SQN.NUMBER.

Call PROCESS_SEND_PARMCBID_WITH_ATTACH.SEND_PARMJ Cpage 6.1-35).

SNA For111at and Protocol Reference Manual for LU Type 6.2

DFC_SEND_FROH_RM

When BID_WITHOUT_ATTACH
Create and send a (LUSTAT, BB, RQDl) request to bid for a conversation on
this session as follows:

Create a BIU and initialize it to all O's. Set EFI to indicate normal-flow.
Set the RH to indicate DFC, FMH, BC, EC, RQDI, QR, and BB. Set the RU to an
LUSTAT as described in Appendix E.

Call DFC_SENO_FSMS(BIU) Cpage 6.1-25).

When BIS REPLY
Creat; a BIU and initialize it to all O's. Set EFI to indicate normal-flow.
Set the RH to indicate DFC, FMH, BC, EC, RQE3, QR, and BB. Set the RU to
BIS as described in Appendix E.

Call DFC_SEND_FSMSCBIUl (page 6.1-25).

When BIS_RQ
Same as processing for BIS_REPLY (above) except RH indicates RQEl instead of RQE3.

When HS_PS_CONNECTED
Save the ID of the PS lHS_PS_CONNECTED.PS_ID> that is connected to this HS.
Call FSM_BSM_FMP19 (page 6.1-43) with an INB signal to indicate that
this half-session is connected to a PS.

If the session did not just start (i.e., this is not the first conversation
on this session) then

The following calculates the value for the current bracket sequence number and
the BB_REGISTER before the BB request (to be sent) is received by DFC.

Set LOCAL.CURRENT_BRACKET_SQN.NUMBER to LOCAL.SQN_SEND_CNT.NUMBER + 1 (taking
the wrap case into account).

If the half-session is primary then
Set LOCAL.CURRENT_BRACKET_SQN.BRACKET_STARTED_BY to PRI.
Set LOCAL.PHS_BB_REGISTER.NUMBER to LOCAL.CURRENT_BRACKET_SQN.NUMBER.

Else
Set LOCAL.CURRENT_BRACKET_SQN.BRACKET_STARTED_BY to SEC.
Set LOCAL.SHS_BB_REGISTER.NUMBER to LOCAL.CURRENT_BRACKET_SQN.NUMBER.

Else (session just started)
Record that the session did not just start.

When RTR_RQ
Create a BIU and initialize it to all O's. Set EFI to indicate normal-flow.
Set the RH to indicate DFC, FMH, BC, EC, and RQDl. Set the RU to RTR as
described in Appendix E.

Call DFC_SEND_FSMSCBIUJ (page 6.1-25).

When YIELD_SESSION
If the session just started then

Record that the session did not just start.
The following sends an CLUSTAT, RQEl, CEBl to end the current conversation on
this session.

Create a BIU and initialize it to all O's. Set EFI to indicate normal-flow.
Set the RH to indicate DFC, FMH, BC, EC, RQEI, and CEB. Set the RU to LUSTAT as
described in Appendix E.

Call DFC_SENO_FSMSCBIUl Cpage 6.1-25).

Chapter 6.1. Data Flow Control 6.1-21

DFC_SEND_FROM_LNS

DFC_SEND_FROH_LNS

6.1-22

FUNCTION: Process record received from LU network services <LNS). This procedure is
called by the half-session router ("Chapter 6.0. Half-Session") and is used
for SSCP-LU half-sessions only.

INPUT:

OUTPUT:

HS_SEND_RECORD variant of LNS_TO_HS_RECORD

TC.SEND procedure is called to send the data that is included in the input
record to the partner half-session.

Referenced procedures, FSMs, and data structures:
TC.SEND
FSM_IMMEDIATE_RQ.._MODE_SEND
FSM_IMMEDIATE_RQ.._MODE_RCV
LOCAL
LNS_TO_HS_RECORD
HS_SEND_RECORD

page 6.2-13
page 6.1-48
page 6.1-48
page 6.0-6
page A-15
page A-16

If FM profile= O <FM profile O uses immediate request mode.> then
Call FSM_IMMEDIATE_RQ.._MODE_SEND(the BIU from the HS_SEND_RECORD.PIU> <page 6.1-48).
Call FSM_IMMEDIATE_RQ.._MODE_RCV<the BIU from the HS_SEND_RECORD.PIU> (page 6.1-48>.

Call TC.SEND(the BIU from the HS_SEND_RECORD.PIU along Ni th the EFI and SNF> (page 6.2-13).

TRY_TO_RCV_SIGNAL

FUNCTION: Determine if a REQUEST_TO_SEND record should be sent to PS to indicate a SIG­
NAL has been received. This procedure is called by the half-session router
("Chapter 6.0. Half-Session").

INPUT:

OUTPUT:

Indication that a SIGNAL has been received <LOCAL.SIG_RECEIVED), the sequence
number of the signal, LOCAL.CURRENT_BRACKET_SQN, LOCAL.PHS_BB_REGISTER,
LOCAL.SHS_BB_REGISTER

REQUEST_TO_SEND sent to PS if required, indication that a SIGNAL has been
received (LOCAL.SIG_RECEIVED) may be altered

Referenced procedures, FSMs, and data structures:
FSM_BSM_FMP19
REQUEST_TO_SEND
LOCAL

page 6.1-43
page A-13
page 6.0-6

If the state of FSM_BSM_FMP19 is INB and LOCAL.SIG RECEIVED = YES then
If the sequence number of the received SIGNAL r;quest = LOCAL.CURRENT_BRACKET_SQN then

(a SIGNAL request has been received for the current bracket>.
Create and send a REQUEST_TO_SEND record to PS.
Set LOCAL.SIG_RECEIVED to NO.

Else (the SIGNAL is either stray or future>
Set BB_REGISTER (see below> to the low-order 15 bits of either LOCAL.PHS_BB_REGISTER or

LOCAL.SHS_BB_REGISTER according to the value of the high order bit of the SIGNAL
sequence number (e.g., if it indicates primary (1) use PHS_BB_REGISTER).

Set SIG_NUMBER (see below> to the low-order 15 bits of the SIGNAL sequence number.

Calculate <SIG_NUMBER - BB_REGISTER> modulo 2**15.
If the result is 0 or > 2**14 then

The SIGNAL is a stray that was intended for a previous conversation.
Optionally log the condition and set LOCAL.SIG_RECEIVED to NO.

Else
The SIGNAL is for a future conversation. Save it until the bracket in

which it was sent sent becomes the current bracket.

SNA Format and Protocol Reference Manual for LU Type 6.2

DFC_RCV

FUNCTION: Process BIUs received from TC. This procedure is called by TC ("Chapter 6.2.
Transmission Control").

INPUT: BIU, FM profile type, LU_ID, and HS_ID

OUTPUT: LOCAL.SIG_RECEIVED is set if SIGNAL is received and the SNF of the SIGNAL is
saved.

NOTE: This procedure and the procedures it calls use the BIU see Appendix D and
Appendix E • In addition, the EFI and SNF fields of the TH are used.

Referenced procedures, FSMs, and data structures:
DFC_RCV_FSMS
FORMAT_ERROR
SEND_RSP_BIU
STRAY_RSP
SEND_NEG_RSP_OR_LOG
FORMAT_ERROR_SSCP_LU
STATE_ERROR_SSCP_LU
FSM_IMMEDIATE_RQ._MODE_SEND
FSM_IMHEDIATE_RQ._MODE_RCV
LOCAL
HS_RCV_RECORD

page 6.1-24
page 6.1-26
page 6.1-38
page 6.1-41
page 6.1-37
page 6.1-30
page 6.1-40
page 6.l""'.48
page 6.1-48
page 6.0-6
page A-11

If FM profile for this session is 19 <X'l3'J, indicating LU-LU session, then
If the BIU indicates RQ, FMD, ~so, CODE!, and the RU length > O then

Translate the data in the RU from ASCII to EBCDIC.

Call FORMAT_ERROR<BIUJ to perform optional format error checks (page 6.1-26J.
If a format error was found in the BIU then

Return to the HS router ("Chapter 6.0. Half-Session") with LOCAL.SENSE_CODE set
to a nonzero value. This will cause the session to be deactivated and the
half-session to be destroyed.

Else Cno format error>
If RQ then

If EFI = normal-flow then
Call DFC_RCV_FSMSCBIUJ (page 6.1-24).

Else (expedited-flow SIGNAL request>
Save only the latest SIGNAL request received. Set LOCAL.SIG_RECEIVED = YES and
save the sequence number. The sequence number is used in determining the
bracket the SIGNAL was intended for.

Call SEND_RSP_BIU Cpage 6.1-38) to send an expedited positive
response to the SIGNAL request immediately.

Else <RSPJ
Call STRAY_RSPCBIUJ to determine if response is stray (page 6.1-41J.
If response is not stray then

Call DFC_RCV_FSMSCBIUJ Cpage 6.1-24).

Else <CP-LU half-session, FM profile O or 6.J
Call FORMAT_ERROR_SSCP_LUCBIUJ Cpage 6.1-30).
Call STATE_ERROR_SSCP_LUCBIUJ Cpage 6.l-40J.
If there is either a format or state error then

Call SEND_NEG_RSP_OR_LOGCBIUJ Cpage 6.1-37).
Else Cno errors)

If FM profile= 0 then CFM profile 0 uses immediate request mode.)
Call FSM_IMMEDIATE_RQ_MODE_SENDCBIUJ Cpage 6.1-48).
Call FSM_IMMEDIATE_RQ_MODE_RCVCBIUl Cpage 6.1-48).

Incorporate the BIU in an HS_RCV_RECORD and send it to the LNS associated with this HS.
The HS_RCV_RECORD includes the HS_ID to identify this half-session.

Chapter 6.1. Data Flow Control 6.1-23

DFC_RCV_FSHS

6.1-24

DFC_RCV_FSMS

FUNCTION: Enforce data flow control protocols for received requests and responses.

INPUT: BIU containing request or response, LOCAL.SEND_ERROR_RSP_STATE

OUTPUT: LOCAL.PHS_BB_REGISTER or LOCAL.SHS_BB_REGISTERJ LOCAL.SEND_ERROR_RSP_STATEJ
RSP_TO_REQUEST_TO_SEND record may be sent to PS

Referenced procedures, FSMs, and data structures:
RCV_STATE_ERROR
GENERATE_RM_PS_INPUTS
SEND_RSP_TO_RM_OR_PS
UPDATE_FSMS
SEND_RSP_BIU
FSM_RCV_PURGE_FMP19
FSM_CHAIN_RCV_FMP19
FSM_CHAIN_SEND_FMP19
RSP_TO_REQUEST_TO_SEND
LOCAL

Call RCV_STATE_ERRORCBIU> (page 6.1-36). These checks are optional.
If a state error is found then

page 6.1-36
page 6.1-31
page 6.1-39
page 6.1-42
pagl! 6.1-38
page 6.1-50
page 6.1-44
page 6.1-46
page A-13
page 6.0-6

An error has occurred that 111ill cause this session to be deactivated and the
half-session process to be destroyed. LOCAL.SENSE_CODE contai!15 sense data
indicating the type of error. The HS router ("Chapter 6.0. Half-Session") 111ill
cause the abnormal termination of the half-session as a result of LOCAL.SENSE_CODE
being set.

Else (no state error)
Select based on RRI and EFI:

When normal-flow request
If BBI = BB then

Set LOCAL.PHS_BB_REGISTER.NUMBER Cif this half-session is primary> or
LOCAL.SHS_BB_REGISTER.NUMBER Cif secondary) to the low-order 15 bits
of request SNF.

If the state of FSM_RCV_PURGE_FMP19 ~ PURGE then
Call GENERATE_RM_PS_INPUTSCBIU) Cpage 6.1-31).

Else
Call UPDATE_FSMSCBIU> Cpage 6.1-42).

If LOCAL.SEND_ERROR_RSP_STATE = NEG_OWED, BCI = BC, BBI = ~BB, and
CRU category is FMD or this request is an LUSTAT> then

Call SEND_RSP_BIUCBIU, NORMAL, NEG, X'08460000') Cpage 6.1-38) to send
negative response to the chain.

Set LOCAL.SEND_ERROR_RSP_STATE to RESET.

If the state of FSM_CHAIN_RCV_FMP19 = PEND_RSP Ca response is owed), CEBI = CEB,
and form of response requested is RQDl then

Call SEND_RSP_BIUCBIU, NORMAL, POS, X'OOOOOOOO') (page 6.1-38) to send
a positive response.

Nhen normal-flow response
Call SEND_RSP_TO_RM_OR_PSCBIU> (page 6.1-39).
Call FSM_CHAIN_SEND_FMP19CBIU> Cpage 6.1-46).

When expedited-flow response Ci.e., a positive response to SIGNAL>
Create and send a RSP_TO_REQUEST_TO_SEND record to PS.

SNA Format and Protocol Reference Manual for LU Type 6.2

DFC_SEND_FSMS

DFC_SEND_FSMS

FUNCTION:

INPUT:

OUTPUT:

Maintain states while sending requests and responses.

BIU containing request or response

TC.SEND is called with the BIU to send. In addition, the follow;ng fields may
be set: sequence number for request or response, LOCAL.SQN_SEND_CNT,
LOCAL.PHS_BB_REGISTER, LOCAL_SHS_BB_REGISTER, and RH fields.

NOTE: Th;s procedure and the procedures ;t calls use the BIU see Append;x D and
Append;x E . In addition, the EFI and SNF fields of the TH are used.

Referenced procedures, FSMs, and data structures:
TC.SEND
FSM_CHAIN_RCV_FMP19
FSM_CHAIN_SEND_FMP19
LOCAL

Select based on BIU.RRI and BIU.EFI:
When normal-flow request

page 6.2-13
page 6.1-44
page 6.1-46
page 6.0-6

Increment LOCAL.SQN_SEND_CNT.SQN by 1 !taking the wrap case into account>
and assign it to the SNF for th;s request.

If CEBI = CEB then
Indicate RQDl on this CEB request if necessary. A count is kept of all the
normal-flow requests sent and received. When this count exceeds 16384 12**14)
the next CEB request sent indicates RQDl so that any SIGNAL requests or responses
are flushed (received by this half-session) before the response to the RQDl request.
Th;s allows stray SIGNALs and responses to be accurately recognized.

If the stat~ ~f FSM CHAIN RCV FMP19 = PEND SEND REPLY then
Call FSM_CHAIN_RCV_FMPl9CBIUJ Cpage 6.1:44);-this request is an implicit response.

If BBI = BB then
Set LOCAL.PHS_BB_REGISTER.NUMBER !if this half-session is primary) or

LOCAL.SHS_BB_REGISTER.NUMBER !if secondary) to the low-order 15 bits
of request SNF.

If BCI = BC then
Call FSM_CHAIN_SEND_FMP19CBIU, BEGIN_CHAINJ !page 6.1-46).

If ECI = EC then
Call FSM_CHAIN_SEND_FMP19CBIU, END_CHAINl.

If it is specified to send the data as ASCII !implementation-defined) then
Translate the data in the RU from EBCDIC to ASCII. Set CSI to CODEl.

When normal-flow response
If this is an RTR response then

Set the SNF to the SNF value received on the RTR request.
Else (response to FMD or LUSTATJ

If this is a response to a BB chain then
Set the high-order bit of the response SNF to indicate the half-session

that sent the BB chain Cif primary sent the BB, then the bit is l;
otherwise, it's OJ. Set the low-order 15 bits of the response SNF to
the low-order 15 bits of the BB request.

Else
Set the SNF to LOCAL.CURRENT_BRACKET_SQN.

Call FSM_CHAIN_RCV_FMP19CBIUl !page 6.1-44).

When expedited-flow request Ci.e., a SIGNAL request>
Set the SNF to LOCAL.CURRENT_BRACKET_SQN.

When expedited-flow response !i.e., a SIGNAL response)
Set the SNF to the SNF value received on the SIGNAL request.

Call TC.SEND!BIU along with the EFI and SNF of the THJ !page 6.2-13).

Chapter 6.1. Data Flow Control 6.1-25

LOW-LEVEL PBOCEDVRES il.H ALPHABETICAL m!2filU

6.1-26

FORMAT_ERROR

FUNCTION: Perform· format checks on all requests and responses for LU-LU session. These
checks are optiOnal. None, some, or all of these checks may be done.

INPUT: BIU

OUTPUT: TRUE H format errorJ otherwise, FALSE. If TRUE, LOCAL.SENSE_CODE is set to
appropriate sense data.

Referenced procedures, FSMs, and data structures:
FORMAT_ERROR_RQ_FMD
FORMAT-ERROR_RQ_DFC
FORMAT_ERROR_NORM_RSP
FORMAT_ERROR_EXP_RSP
LOCAL

Seleet based on one of the following conditions:
When request with RU category of FMD

Call FORMAT_ERROR_RQ_FMD<BIUJ (page 6.1-29)~

When request with RU category of DFC
Call FORMAT_ERROR_RQ_DFC<BIUJ (page 6.1-28),

When normal-flow response
Call FORMAT_ERROR_NORM_RSP(BIUJ (page 6.1-27).

When expedited-fl0w response
Call FORMAT_ERROR_EXP_RSP<BIUJ (page 6.1-27).

(LOCAL.SENSE_CODE is set with the sense data indicating the type of error
if an error is found by any of the above called procedures.)

lf LOCAL.SENSE_CODE ~ 0 then
Return with a value of TRUE (format error found).

Else
Return with a value of FALSE (no format error found),

SNA Format and Protocol Reference Manual for LU Type 6.2

page 6.1-29
page 6.1-28
page 6.1-27
page 6.1-27
page 6.0-6

FORMAT_ERROR_EXP_RSP

FORMAT_ERROR_EXP_RSP

FUNCTION:

INPUT:

Perform format checks on expedited-flow responses. These checks are optional.

BIU containing expedited-flow response

OUTPUT: If error, LOCAL.SENSE_CODE is set to appropriate sense data.

Referenced procedures, FSHs, and data structures:
LOCAL page 6.0-6

Select, in order, based on fields in the BIU:
When RU category is not DFC

Set LOCAL.SENSE CODE to X'40110000'.
When FI = ~FMH -

Set LOCAL.SENSE CODE to X'400FOOOO'.
When (SDI = SD and-RTI = POS) or (SDI = ~so and RTI = NEG)

Set LOCAL.SENSE CODE to X'40130000'.
When BCI = ~ac or ECI = ~EC

Set LOCAL.SENSE CODE to X'400BOOOO'.
When QRI = QR -

Set LOCAL.SENSE CODE to X'40150000'.
When request code ; SIGNAL

Set LOCAL.SENSE_CODE to X'40120000'.
When RTI = NEG (-RSP to expedited request>

Set LOCAL.SENSE_CODE to BIU.SENSE_CODE.

FORMAT_ERROR_NORM_RSP

FUNCTION: Perform format checks on normal-flow responses. These checks are optional.

INPUT: BIU containing normal-flow response

OUTPUT: If error, LOCAL.SENSE_CODE is set to appropriate sense data.

Referenced procedures, FSMs, and data structures:
LOCAL

Select,in order, based on BIU fields:
When BCI = ~ac or ECI = ~EC

Set LOCAL.SENSE_CODE to X'400BOOOO'.
When (SDI = SD and RTI = POS> or (SDI = ~so and RTI = NEG>

Set LOCAL.SENSE CODE to X'40130000'.
When RU category is DFC and FI = ~FMH

Set LOCAL.SENSE CODE to X'400FOOOO'.
When RU category is FMD, RTI = POS, and FI = FMH

Set LOCAL.SENSE_CODE to X'400FOOOO'.

page 6.0-6

When RTI =NEG (negative response) and the sense data is not X'08130000',
X'08140000', X'08190000', X'08460000', or X'088BOOOO'

Set LOCAL.SENSE_CODE to the response sense data.

Chapter 6.1. Data FloN Control 6.1-27

FORMAT_ERROR_RQ_DFC

FORMAT_ERROR_RQ_DFC

6.1-28

FUNCTION: Perform format checks for data flow control (DFC> requests. These checks are
optional.

INPUT: BIU containing DFC request

OUTPUT: If error, LOCAL.SENSE_CODE is set to appropriate sense data.

Referenced procedures, FSMs, and data structures:
FORMAT_ERROR_RQ_FMD
LOCAL

Select, in order, based on one of the following conditions:
When normal-flow and the request code is not BIS, LUSTAT, or RTR

Set LOCAL.SENSE CODE to X'l0030000'.
When expedited-flow and request code is not SIGNAL

Set LOCAL.SENSE CODE to X'l0030000'.

page 6.1-29
page 6.0-6

When expedited-flow and request code is SIGNAL but the SIGNAL Extension field is not
set to "soft"

Set LOCAL.SENSE_CODE to X'l0050000'.
When FI ¢ FMH

Set LOCAL.SENSE CODE to X'400FOOOO'.
When BCI = ~BC or ECI = ~EC

Set LOCAL.SENSE CODE to X'400BOOOO'.
When CSI = CODEl -

Set LOCAL.SENSE CODE to X'40100000'.
When EDI = ED -

Set LOCAL.SENSE_CODE to X'40160000'.
When POI = PD

Set LOCAL.SENSE_CODE to X'40170000'.
Otherwise

If request code is LUSTAT then
If LUSTAT Status Value field is "no-op" (only vaHd LUSTAT type) then

Call FORMAT_ERROR_RQ_FMDCBIU), since LUSTAT is like FM data (page 6.1-29).
(LOCAL.SENSE_CODE set by called procedure if error.)

Else
Set LOCAL.SENSE_COOE to X'l0050000'.

Else Cnot LUSTAT DFC request)
Select, in order, based on one of the following:

When !request code is BIS and form of response requested is not RQEl or RQE3) or
(request code is not BIS and form of response requested is not RQDl)

Set LOCAL.SENSE_CODE to X'40140000'.
When QRI = QR

Set LOCAL.SENSE_CODE to X'40150000'.
When BBI = BB or EBI = EB or CEBI = CEB

Set LOCAL.SENSE_CODE to X'400COOOO'.
When CDI = CD

Set LOCAL.SENSE_CODE to X'40090000'.

SNA Format and Protocol Reference Manual for LU Type 6.2

FORMAT_ERROR_RQ_FMD

FORMAT_ERROR_RQ_FMD

!'llNCTION: Perform format checks on FM data CFMD) requests. These checks are optional.

INPUT: BIU containing FMD request, indication that alternate code will or will not be
used

OUTPUT: If error, LOCAL.SENSE_CODE is set to appropriate sense data.

Referenced procedures, FSMs, and data structures:
LOCAL

Select, in order, based on one of the following conditions:
When expedited-flow

Set LOCAL.SENSE_CODE to X'40110000'.
When the form of response requested is not RQE or RQD

Set LOCAL.SENSE_CODE to X'40140000'.

When the form of response requested is RQD and ECI = ~EC
Set LOCAL.SENSE_CODE to X'40070000'.

When BBI = BB and BCI = ~BC
Set LOCAL.SENSE_CODE to X'40030000'.

page 6.0-6

When BBI = BB and RU category is FMD and ~CFI = FMH and FM header type = 5)
Set LOCAL.SENSE_CODE to X'40030000'.

When CSI = CODEl and alternate code will not be used
Set LOCAL.SENSE_CODE to X'40100000'.

When EBI =EB CEB not used with FM profile 19.)
Set LOCAL.SENSE_CODE to X'40040000'.

When CDI = CD and ECI = ~EC CCD allowed only on EC>
Set LOCAL. SENSE_ CODE to' X '40090000' •

When CDI =CD and form of response requested is RQDl CCD may not be sent RQDl)
Set LOCAL.SENSE CODE to X'40090000'.

When CEBI = CEB and ECI = ~EC
Set LOCAL.SENSE_CODE to X'40040000'.

When CBB, ~QR) request is received from the bidder or
CBB, QR) request is received from the first speaker

Set LOCAL.SENSE_CODE to X'40180000'.
When CEBI = CEB and CDI =CD !Transaction program verbs cannot generate this combination.>

Set LOCAL.SENSE_CODE to X'40090000'.

When CEBI = CEB and form of response requested is RQE2 or RQE3
!DEALLOCATE-CONFIRM CCEB,RQD2l31 and DEALLOCATE-FLUSH CCEB,RQEl) are validl

Set LOCAL.SENSE_CODE to X'40040000'.
When CEBI = ~CEB, CDI = ~co, ECI = EC, and form of response requested is RQE

Set LOCAL.SENSE_CODE to X'40190000'.

When RU category is FMD, CEBI = ~CEB, and form of response requested is RQDl
Set LOCAL.SENSE CODE to X'40190000'.

When BBI = BB, CEBI = CEB, form of response requested is RQEl, and this
half-session is the first speaker CBB, CEB, RQE not allowed from bidder)

Set LOCAL.SENSE_CODE to X'40040000'.

When FI = FMH, RU category is FMD, and FM header type is not 5 or 7
Set LOCAL.SENSE_CODE to X'l0084001'.

Chapter 6.1. Data Flow Control 6.1-29

FORMAT_ERROR_SSCP_LU

FORMAT_ERROR_SSCP_LU

6.1-30

FUNCTION: Perform format error checks on RUs received on the SSCP-LU secondary
half-session (for FM profiles 0 and 6). These checks are optional; none,
some, or all of the checks may be done.

INPUT: BIU, indication of FM profile type

OUTPUT: TRUE if error; otherwise, FALSE. If TRUE, LOCAL.SENSE_CODE is set to appro­
priate sense data.

Referenced procedures, FSMs, and data structures:
LOCAL

If expedited-flow then
Set LOCAL.SENSE_CODE to X'40110000'.

Else !normal-flow>
If request (RRI = RQ> then

Select, in order, based on one of the following conditions:
When the RU length is < 3

Set LOCAL.SENSE CODE to X'l0020000'.
When RU category i; not FMD

Set LOCAL.SENSE CODE to X'40110000'.
When FI ;i! FMH -

Set LOCAL.SENSE_CODE to X'400FOOOO'.
When SDI = SD

Set LOCAL.SENSE CODE to the first 4 bytes of the RU data.
When BCI = .. 5c or ECI = .. Ee

Set LOCAL.SENSE_CODE to X'400BOOOO'.
When FM profile is 0 and the form of response requested is not RQD

Set LOCAL.SENSE_CODE to X'40140000'.

page 6.0-6

When FM profile is 6 and the form of response requested is not RQE> RQD, or RQN
Set LOCAL.SENSE_CODE to X'40140000'.

When QRI = QR
Set LOCAL.SENSE CODE to X'40150000'.

When PI = PAC -
Set LOCAL.SENSE_CODE to X'40080000'.

When BBI = BB, EBI = EB, or CEBI = CEB
Set LOCAL.SENSE CODE to X'400COOOO'.

When CDI = CD -
Set LOCAL.SENSE_CODE to X'400DOOOO'.

When CSI = CODE!
Set LOCAL.SENSE_CODE to X'40100000'.

When EDI = ED
Set LOCAL.SENSE_CODE to X'40160000 •.

When POI = PD
Set LOCAL.SENSE_CODE to X'40170000'.

Else (response>
Select, in order, based on one of the following conditions:

When <RTI = POS and RU length < 3) or <RTI = NEG and RU length < 7>
Set LOCAL.SENSE_CODE to X'10020000'.

When RU category is not FMD
Set LOCAL.SENSE_CODE to X'40110000'.

When FI ;i! FMH
Set LOCAL.SENSE_CODE to X'400FOOOO'.

When BCI = .. BC or ECI = .. EC
Set LOCAL.SENSE_CODE to X'400BOOOO'.

When IRTI = POS and SDI = SD> or CRTI = NEG and SDI = .. SD>
Set LOCAL. SENSE_ CODE to X' 40130000' •

When QRI = QR
Set LOCAL.SENSE_CODE to X'40150000'.

When PI = PAC
Set LOCAL.SENSE_CODE to X'40080000'.

If LOCAL.SENSE_CODE = 0 then
Return with a value of FALSE (no format error found>.

Else
Return with a value of TRUE (format error found>.

SNA Format and Protocol Reference Manual for LU Type 6.2

6ENERATE_RM_PS_INPUTS

6ENERATE~RM_PS_INPUTS

.FUNCTION: Generate the appropriate records for RM and PS based on the passed BIU's con­
tent.

INPUT: BIU conta;ning normal-flOH request, information about the last request.sent

In addition, a BID_RSP or an RTR_RSP record may be received fre>111 RM.

OUTPUT: Appropr;ate records sent to RM and PS, LOCAL.CURRENT_BRACKET_SQN, ID of the PS
connected to th;s HS

Referenced procedures, FSMs, and data structures:
PROCESS_RU_DATA
OK_TO_REPLY
SEND_RSP_BIU
UPDATE_FSMS
FSM_BSM_FMP19
FSM_RCV_PURGE_FMP19
HS_TO_RM_RECORD
ATTACH_HEADER
BID
BID_RSP
FREE_ SESSION
BIS_RQ
BIS_REPLY
RTR_RQ
RTR_RSP
BID_RSP
RTR_RSP
LOCAL

Select, ;n order, based on one of the follOHing conditions:
When BB request

Create and send a BID record to RM.
Rece;ve the BID_RSP from RM.
If a posit;ve Bid response ;s rece;ved (BID RSP.RTI = POS> then

Call UPDATE_FSMS(BIU> (page 6.1-42).
If RU category is FMD then

Call PROCESS_RU_DATACBIU> Cpage 6.1-34).
Else

page 6.1-34
page 6.1-33
page 6.1-38
page 6.1-42
page 6.1-43
page 6.1-50
page A-13
page A-13
page A-14
page A-14
page A-15
page A-14
page A-14
page A-15
page A-15
page A-28
page A-30
page 6.0-6

Call SEND_RSP_BIUCBIU, NORMAL, POS, X'OOOOOOOO') (page 6.1-38) to send
a positive respons• to the BB request.

Else (negative response to b;d)
Call FSM_RCV_PURGE_FMP19 SI6NALCPURGE> (page 6.1-50) to cause the

remainder of tMs BB chain to be purged.
Call UPDATE_FSMSCBIU> (page 6.1-42).
Call SEND_RSP_BIU(BIU, NORMAL, NEG, BID_RSP.SENSE_CODE> (page 6.1-38) to send
a negative response to the BB request.

When BIS request
Call UPDATE_FSMSCBIU) (page 6.1-42).
If the form of response requested = RQEl then

Create and send a BIS_RQ record to RM.
Else CRQE3)

Create and send a BIS_REPLY record to RM.

Chllpter 6.1. DataflOM Control 6.1-31

GENERATE_RM_PS_INPUTS

6.1-32

When RTR request
Create and send an RTR_RQ record to RM.
Call UPDATE_FSMSCBIU) (page 6.1-42).
Receive RTR_RSP from RM.
If RTR_RSP.RTI = POS then

Call SEND_RSP_BIUCBIU, NORMAL, POS, BID_RSP.SENSE_CODE) (page 6.1-38) to send
a positive response to the RTR request.

Else (negative response to RTR)
Call SEND_RSP_BIUCBIU, NORMAL, NEG, RTR_RSP.SENSE_CODE> Cpage 6.1-38) to send

a negative response to the RTR request.

Otherwise
Call OK_TO_REPLYCBIUJ Cpage 6.1-331 to determine if BIU is a reply.
If BIU is a reply then

If FSM_BSM_FMP19 is in BETB state, and the last sent chain carried BB
Cthis BIU is a reply to BBl then

Create and send a BID_RSP !positive) record to RM.
Receive the HS_PS_CONNECTED record from RM Cthis is a reply to the BID_RSP record).
Record the ID of the PS connected to this HS.
Set LOCAL.CURRENT_BRACKET_SQN to the sequence number of the sent BB request.
tall FSM_BSM_FMP19 !page 6.1-43) with an INB signal to indicate
that this HS is now connected to a PS.

If the last chain sent was RQE2 or RQE3 then
Create and send a CONFIRMED record to PS.

Call PROCESS_RU_DATACBIU> (page 6.1-34).
Call UPDATE_FSMS!BIUI Cpage 6.1-42).

INVALID_ SENSE_ CODE

FUNCTION: Determine if sense data on negative response is valid.

INPUT:

OUTPUT:

BIU containing negative response, information about the last chain sent, first
speaker indicator

TRUE if invalid sense data; otherwise, FALSE.

If this is a response to a BB chain then
If this half-session is first speaker then

If the response sense data is not X'08460000' or X'088BOOOO' then
Return with a value of TRUE !invalid sense data).

Else !bidder)
If response to LUSTAT then Ci.e., RSPCLUSTAT,BBll

If the response sense data is not X'08130000', X'08140000',
or X'088BOOOO' then

Return with a value of TRUE (invalid sense datal.
Else (response to BB not LUSTAT)

If the response sense data is not X'08130000', X'08140000',
X'088BOOOO', X'08460000' then

Return with a value of TRUE (invalid sense data).

Else (response to ~BB chain>
If response to RTR then

If the response sense data is not X'08190000' then
Return with a value of TRUE (invalid sense data).

Else (not response to RTR)
If response to BIS then (negative response to BIS not allowed)

Return with a value of TRUE (invalid sense data).
Else

If the sense data is not X'08460000'' then
Return with a value of TRUE (invalid sense data).

Return with a value of FALSE (valid sense data).

SNA Format and Protocol Reference Manual for LU Type 6.2

OK_TO_REPLY

OK_TO_REPLY

FUNCTION: Determine whether or not a request is a valid reply. A reply is a request
sent (or received> after receiving (or sending> an (RQE,CD> request.

INPUT: BIU containing a normal-flow request, LOCAL.CURRENT_BRACKET_SEQUENCE_NUMBER,
information about the last chain sent

OUTPUT: TRUE if valid reply; otherwise, FALSE.

Referenced procedures, FSMs, and data structures:
FSM_BSM_FMP19
FSM_CHAIN_RCV_FMP19
FSM_CHAIN_SEND_FMP19
LOCAL

Select, in order, based on one of the following conditions:
When the request is BIS or RTR

Return with a value of FALSE (not a valid reply>.

When the request indicates BB or ~Be
Return with a value of FALSE (not a valid replyl.

page 6.1-43
page 6.1-44
page 6.1-46
page 6.0-6

When (sending and the state of FSM_CHAIN_RCV_FMP19 is not PEND_SEND_REPLY> or
(receiving and the state of FSM_CHAIH_SEND_FMP19 is not PEND_RCV_REPLY>
(page 6.1-44 and page 6.1-46)

Return with a value of FALSE (not valid reply>.

When receiving and state of FSM_BSM_FMP19 (page 6.1-43> is INB and the
last chain sent carried BB and LOCAL.CURRENT_BRACKET_SQN ~ the SNF of that chain

Return with a value of FALSE (not a valid reply>.

Return with a value of TRUE (a valid reply>.

Chapter 6.1. Data Flow Control 6.1-33

PROCESS_RU_DATA

PROCESS...;RU_DATA

6.1-34

FUNCTION: Process an RU and, based on the content of the RU, send the appropr;ate
records tO RM and PS.

INPUT:

OUTPUT:

NOTE:

BIU contain;ng a normal-flON request,
LOCAL.PHS_BB_REGISTER, HS_IDt DCF frOll TH of
half-session is primary or secondary

LOCAL.SHS_BB_REGISTER,
request, indication that

In addiUon, an HS_PS_CONNECTED record may ba received frOll RM.

Appropriate records sent to RM and PSJ if an FMH-5 is present,
LOCAL.CURRENT_BRACKET_SQN is set and ID of PS that is connected to this HS is
saved.

PS and RM require that any FtlH data is sent in a separate record from other RU
data.

Referenced procedures, FSHs, and data structures:
FSM_BSM_FMP19
RECEIVE_DATA
HS..;TO_RM_RECORD
ATTACH_HEADER
HS_PS_CONNECTED
LOCAL

page 6.1-43
page A-12
page A-13
page A-13
page A-29
page 6.0-6

Determine if a complete FM header is present. FM headers may fit into a s;ngle RU
(along with other data) or span several RUs with;n a cha;n. FM head•r data is treated
separately from other data. When FM headers span RUs (this can be determined by examining
the data count field and the FMH length fields) the data is accumulated ·
until the entire header has been received. The RH of the first (or only> RU containing
an FM header indicates FtlH and an RU category of FMD. FtlH is indicated only in the first
RU; successive RUs containing FM header data indicate ~FMH.

If a complete FM header is present then
Select based on the FM header type:

When type 5 (Attach>
Create and send an ATTACH_HEADER record (contains the FM header 5 data) to RM.
Receive the HS_PS_CONNECTED record from RH (this is a reply to ATTACH_HEADER>.
Save the ID of the PS that is connected to this HS.

Call FSH_BSM_FMP19 (page 6.1-43) with an INB signal to
indicate that this HS is now connected to a PS.

Update the current bracket sequence number using the sequence number of the
last received BB request as follows:

If this half-session is primary then
Set LOCAL.CURRENT_BRACKET_SQN to LOCAL.SHS_BB_REGISTER.

Else
Set LOCAL.CURRENT_BRACKET_SQN to LOCAL.PHS_BB_REGISTER.

When type 7 (Error data)
Create a RECEIVE_DATA record and send it to PS (FMH=YES, TYPE=NOT_END_OF_DATA,

DATA=FH header 7 data from BIU).

If EC or data other than FM header data is present then
Create and send a RECEIVE_DATA record to PS (FMH=NO, DATA=non-FtlH data from BIU,

TYPE =see Figure 6.1-8 on page 6.1-11).

SNA Fo.rmat and Protocol Reference Manual for LU Type 6.2

PROCESS_SEND_PARM

PROCESS_SEND_PARM

FUNCTION: Create and send Fl1D requests. The appropriate RH indicators are set for each
RU of a chain based on the input parameters. Each RU size will not exceed the
maximun RU size specified at session activation.

INPUT: SEND_PARM record

OUTPUT: One or more BIU records sent representing each RU, LOCAL.SEM:J_BUFFER

Referenced procedures, FSMs, and data structures:
SEND_BIU
SEND_PARM
LOCAL

If SEND_PARM.FMH = YES and LOCAL.SEND_BUFFER contains data then
Call SEND_BIUCdata in LOCAL.SEND_BUFFER, FLUSH! Cpage 6.1-371 to flush

out data so this FM header may begin in a new RU.

page 6.1-37
page A-35
page 6.0-6

Concatenate data to be sent CSEND_PARM.DATAI with the data in LOCAL.SEND_BUFFER.

Divide LOCAL.SEND_BUFFER into pieces of the maximum size and send all but the
last one by calling SEND_BIU and passing it the data from the send buffer and
indicating that it needs to be flushed. The last piece is saved to
minimize sending null RUs CRUs that contain no data>. Otherwise, if the last
piece is sent and the next SEND from PS indicates EC but no data, a null EC
would have to be sent.

If SEND_PARM.TYPE = NOT_END_OF~DATA or
CSEND_PARM.TYPE = FLUSH and the LOCAL.SEND_BUFFER is empty> then

Don't send out a BIU now.

Else (send out a BIUI
Call SEND_BIUCLOCAL.SEND_BUFFER, SEND_PARM.TYPEI (page 6.1-37).

Chapter 6.1. Data Flow Control 6.1-35

RCV_STATE_ERROR

RCV_STATE_ERROR

6.1-36

FUNCT.ION: Perform state error checking on received requests and responses_. The types of
errors .found here are protocol violations by the sender of the request or
response. These checks are optional. None, some, or all of the checks may be
made.

INPUT: BIU containing request or response, indicator that a response to a SIGNAL is
expected

OUTPUT: TRUE if a state error Nas encountered; otherNise,
LOCAL.SENSE_COOE is set to appropriate sense code.

Referenced procedures, FSMs, and data structures:
INVALID_SENSE_CODE
FSM_BSM_FMP19
FSM_QRI_CHAIN_RCV_FMP19
FSM_CHAIN_RCV_FMP19
FSM_CHAIN_SEND_FMP19
LOCAL

Select based on EFI and RRI:
When normal-floN request

Select based on the folloNing conditions:
When a (RQE,BB,CEB> chain is received from the bidder

FALSE. If TRUE,

page 6.1-32
page 6.1-43
page 6.1-49
page 6.1-44
page 6.1-46
page 6.0-6

Set LOCAL.SENSE_CODE to X'40040000' {(RQE,BB,CEB> not allowed from bidder).

When executing FSM_BSM_FMP19(BIU) Cpage 6.1-43),
FSM_CHAIN_RCV_FMP19CBIU) Cpage 6.1-44), or
FSM_QRI_CHAIN_RCV_FMP19CBIU) Cpage 6.1-49>,.Nould cause a state
check (>) condition

Execute the corresponding output code in the first FSM that encountered
a state-check condition Cto set LOCAL.SENSE_CODE).

When normal-floN response
Select based on the following conditions:

When RU category of the response ~ RU category of the request
Set LOCAL.SENSE CODE to X'40ll0000'.

When RU category of the response = DFC and the request code of the response
~ the request code of the request

Set LOCAL.SENSE_CODE to X'40120000'.
When the QRI field of the response ~ the QRI of the request

Set LOCAL.SENSE_CODE to X'40210000'.
When response is negative and contains an invalid sense data

Ccall INVALID_SENSE_CODECBIU> [page 6.1-321>
Set LOCAL.SENSE CODE to X'20120000'.

When executing FSM=CHAIN_SEND_FMP19CBIU) Cpage 6.1-46).
Nould cause a state-check (>) condition

Execute the corresponding output code Cto set LOCAL.SENSE_COOE>.

When expedited-floN response (i'.e., a positive response to SIGNAL>
If a SIGNAL request is not outstanding (not Naiting for response to SIGNAL> then

Set LOCAL.SENSE_CODE to X'200EOOOO' (response correlation error).

SNA Format and Protocol Reference Manual for LU Type 6.2

SEND_BIU

SEND_BIU

FUNCTION: Create and send a BIU according to passed instructions.

INPUT: DATA, SEND_PARM.TYPE information from SEND_DATA_RECORD

OUTPUT: Appropriate BIU sent

Referenced procedures, FSMs, and data structures:
DFC_SEND_FSMS page 6.1-25

Create a BIU and initialize it to all O's.
If starting a new chain (the last RU sent was EC> then

Set BCI to BC.
Set other RH indicators as described in Figure 6.1-7 on page 6.1-11.
If sending a BB chain and this half-session is the bidder then

Set QRI to QR for every RU in this chain.
Set the RU to the passed input data.
If this BIU indicates (BC, EC> and there is no data in the RU then

Convert the RU to an LUSTAT CRH indicates FMH and DFC; RU contains an LUSTAT
(see Appendix EJ.

Call DFC_SEND_FSMSCBIU> !page 6.1-25).

SEND_NEG_RSP_OR_LOG

FUNCTION: Convert the BIU to a negative response or log the error.

INPUT: BIU and LOCAL.SENSE_CODE

OUTPUT: Response BIU sent if possible; otherwise, error logged.

Referenced procedures, FSMs, and data structures:
TC.SEND
LOCAL

page 6.2-13
page 6.0-6

If BIU is a response or a request with a form of response requested of RQN then
Unable to send a negative response; optionally log the error.

Else I this is a request to which a negative response may be sent)
Build and send a negative response. This is done by copying the RH, EFI,

and SNF from the request to the response and setting the following RH
fields: RSP, so, BC, EC, NEG, ~PAC, ~BB, ~co, CODEO, ~ED. ~Po, ~CEB

Set the response BIU RU to LOCAL.SENSE_CODE followed by the
request code of the request BIU. For CP-LU sessions the BIU
indicates FMH, the RU category is FMD, and the request code is 3 bytes long.
For request with an RU category of DFC the request code is l byte long.

Call TC.SENDCresponse BIU along with the SNF and EFI) (page 6.2-13).

Chapter 6.1. Data Flow Control 6.1-37

SEND_RSP_BIU

SEND_RSP_BIU

6.1-38

FUNCTION: Create and send a response. The response is based on the request BIU (if
passed by the caller) or on information about the last received chain Cwhen a
null BIU is passed).

INPUT: Request BIU (may be null value), flow !expedited or normal), response type
(pos;tive or negative), sense data !Information about the last received chain
will be used when the input request BIU has a null value.)

OUTPUT: BIU containing response sent if possible

Referenced procedures, FSMs, and data structures:
DFC_SEND_FSMS
FSM_CHAIN_RCV_FMP19

Create a response BIU and initialize it to all O's.
Set the RH fields of the response BIU to (RSP, BC, EC>.
If the input response type is negative CNEG> then

Set the RH to (SD, NEG> and copy the input sense data

If input flow is normal then
If input request BIU has null value then

Copy the RU category; FI; DR!I; DR2I; QRI; and if
code; from the last received normal-flow request

Else (a request BIU was passed as input>
Copy the RU category; FI; DRlI; DR2I; QRI; and if

code; from the input request BIU to the response

page 6.1-25
page 6.1-44

into the response BIU data.

the RU category = DFC, the request
into the response BIU.

the RU category = DFC, the request
BIU.

Else (expedited, the only expedited-flow response is for SIGNAL)
Set EFI to expedited, RU category to DFC, DRl, and request code to SIGNAL

in the response BIU.

(Note: the DFC request code always immediately follows the sense data in the RU>

If executing FSM_CHAIN_RCV_FMP19!response BIUJ (page 6.1-44)
would cause a state-check (>) condition then

Execute the corresponding output code in the FSM.
Else

Call DFC_SEND_FSMS(response BIUJ (page 6.1-25) to send the response.

SNA Format and Protocol Reference Manu~l for LU Type 6.2

SEND_RSP_TO_RM_OR_PS

SEND_RSP_TO_RM_OR_PS

FUNCTION: Build and send records to RH or PS based on the passed response BIU.

INPUT: BIU containing a response, ;nd;cator that sess;on ;s first speaker, ;nforma­
t;on about the last sent request.

In addition, an HS_PS_CONNECTED record 111ay be received from RM.

OUTPUT: Appropriate "response" record sent to RM or PS. LOCAL.CURRENT_BRACKET_SQN set
to the sequence number of the last sent BB request. The ID of the PS con­
nected to this HS may be saved.

Referenced procedures, FSHs, and data structures:
FSM_BSH_FMP19
CONFIRHED
RECEIVE_ERROR
BID_RSP
RTR_RSP
HS_PS_CONHECTED
LOCAL

page 6.1-43
page A-12
page A-12
page A-14
page A-15
page A-29
page 6.0-6

If the response is RTR then
Create and send an RTR_RSP record to RM.

Else
If the response ;s positive (RTI = POS) then

If last chain sent was a BB chain and the state of FSM_BSM_FMP19
·C page 6 .1-43) is BETB then

Create and send a BID_RSP (positive) record to RM.
Receive the HS_PS_CONNECTED record from RM Cthis is a reply to BID_RSP record).
Save the ID of the PS connected to this HS.
Set LOCAL.CURRENT_BRACKET_SQN to the sequence number of the sent BB request.
Call FSM_BSM_FMP19 Cpage 6.1-43) with an INB signal to

indicate that this HS is now connected to a PS.

If the form of response requested of the last chain sent was R~2 or RQD3 then
Create and send a CONFIRMED record to PS.

Else (response is negative>
If the response sense data is X'08460000' then

If this half-session is not the f;rst speaker and the last chain sent
carried BB (this is a response to a bidder's BB Mith data) then

Create and send a BID_RSP Cpositive> record to RM.
Receive the HS_PS_CONNECTED record from RM (this is a reply to BID_RSP record).
Save the ID of the PS connected to this HS.
Set LOCAL.CURRENT_BRACKET_SQN to the sequence number of the sent BB request.
Call FSM_BSM_FMP19 (page 6.1-43) with an INB signal to

indicate that this HS is now connected to a PS.

Create and send a RECEIVE_ERROR record to PS.

Else (bracket reject, i.e., X'08130000', X'08140000', or X'088B0000')
Create and send a BID_RSP record <indicates negative response and
contains the sense data from the response) to RM.

Chapter 6.1. Data FlON Control 6.1-39

STATE_ERROR_SSCP_LU

STATE_ERROR_SSCP LU

6.1-40

FUNCTION: Perform state error checks on RUs received on the CP-LU secondary half-session
(FM profiles 0 and 61. These checks are optional; none, some, or all of the
checks may be done.

INPUT: BIU,• FM profile type, sequence number of the last sent request

OUTPUT: TRUE if error; otherwise, FALSE. If TRUE, LOCAL.SENSE_CODE is set to appro­
priate sense data.

Referenced procedures, FSMs, and data structures:
FSM_IMMEDIATE_RQ_MODE_SEND
FSM_IMMEDIATE_RQ_MODE_RCV
LOCAL

If this session is using FM profile O Cusing immediate request model then
If RRI = RQ then

If executing FSM_IMMEDIATE_RQ_MODE_RCVlBIUI (page 6.1-481
would cause a state-check (>) condition then

page 6.1-48
page 6.1-48
page 6.0-6

Execute the corresponding output code in that FSM to set LOCAL.SENSE_CODE.

Else (response)
If the state of FSM_IMMEDIATE_RQ_MODE_SEND (page 6.1-481 is PEND_RSP
(Half-session is awaiting a response to a sent RQD request.> then

If the response SNF ~ the SNF of the last sent request then
Set LOCAL.SENSE_CODE to X'200EOOOO' (response correlation error).

Else (not waiting for a response)
Set LOCAL.SENSE_CODE to X'200E0000' (response correlation error).

If LOCAL.SENSE_CODE = 0 then
Return with a value of FALSE (no state error).

Else
Return with a value of TRUE (state error).

SNA Format and Protocol Reference Manual for LU Type 6.2

STRAY_RSP

FUNCTION:

STRAY_RSP

Determine if a response ;s stray. A stray response is one that was sent ;n a
bracket (conversat;on) but received in a different llater> bracket.

INPUT: BIU conta;n;ng a response, ;nformat;on about the
LOCAL.CURRENT_BRACKET_SQN

last request sent,

OUTPUT: TRUE ;f stray response; otherwise, FALSE. If stray response represents a
response correlation error, LOCAL.SENSE_CODE is set.

NOTE: An outstanding request is a request that has not been responded to nor replied
to.

Referenced procedures, FSMs, and data structures:
FSM_BSM_FMP19
LOCAL

page 6.1-43
page 6.0-6

If the response is RTR, there ;s an outstanding request chain, and the response SNF ~ the
sequence number of the outstanding (awa;ting a response) request then

Set LOCAL.SENSE_CODE to X'200EOOOO' (response correlat;on error).
Indicate that the response is stray.

If the response is SIGNAL and its SNF ~ LOCAL.CURRENT_BRACKET_SQN then
Indicate that the response is stray.

If the response is LUSTAT or the RU category is FMD then
If there ;s an outstanding request cha;n then

If the outstanding chain carried BB and the BB SNF does not match
that in the response then

Indicate that the response is stray.
Else

If the response SNF ~ LOCAL.CURRENT_BRACKET_SQN or the state of
FSM BSM FMP19 is BETB then

Indic;te that the response is stray.
Else (no outstanding request chain)

Indicate that the response is stray.

If the response is stray then
If the response is pos;tive IRTI = POS> and it is not a SIGNAL

(no posit;ve response other than SIGNAL can be stray) then
Set LOCAL.SENSE_CODE to X'200EOOOO' (response correlation error).

Else
Optionally log the stray response.

Return with a value of TRUE (stray response).
Else

Return with a value of FALSE (not stray response).

Chapter 6.1. Data Flow Control 6.1-41

UPDATE_FSMS

UPDATE_FSMS

6.1-42

FUNCTION: Update the appropriate FSMs for received requests.

INPUT: BIU containing request

OUTPUT: FSMs updated

Referenced procedures, FSMs, and data structures:
FSM_RCV_PURGE_FMP19
FSM~QRI_CHAIN_RCV_FMP19
FSM_CHAIN_RCV_FMP19
FSM_CHAIN_SEND_FMP19

Call FSM_RCV_PURGE_FMP19CBIU) Cpage 6.1-50).
If the state of FSM_CHAIN_SEND_FMP19 = PEND_RCV_REPLY then

Call FSM_CHAIN_SEND_FMP19CBIU) (page 6.1-46).

If BCI = BC then
Call FSM_CHAIN_RCV_FMP19CBIU, BEGIN_CHAIN) (page 6.1-44).

If ECI = EC then
Call FSM_CHAIN_RCV_FMP19CBIU, END_CHAIN) (page 6.1-44).

Call FSM_QRI_CHAIN_RCV_FMP19CBIU) (page 6.1-49).

SHA Format and Protocol Reference Manual for LU Type 6.2

page 6.1-50
page 6.1-49
page 6.1-44
page 6.1-46

FINITE-STAJE MACHINES

These are the FSM ;nput def;n;uons used for
all the FSMs ;n th;s chapter:

• R or S: BIU that ;s be;ng processed ;s
be;ng received or sent, respectively.

• RQ, RSP, BC, EC, CO, CEB, FMD, QR: Refer
to the RH of the BIU.

• BEGIN_CHAIN or END_CHAIN: Refer to values
of CHAIN_INDICATOR. CHAIN_INDICATOR does
not have to be specified. In that case,
it is neither BEGIN_CHAIN nor END_CHAIN.

• RQD: BIU = RQDl, RQD2, or RQD3.

• RQE: BIU = RQEl1 RQE2, or RQE3.

• REPLY: A call to OK_TO_REPLYCBIU> Cpage
6.1-33) returns TRUE.

FSM_BSM_FMP19

• BIS: BIU ;s a BIS RU.

• RTR: BIU is an RTR RU.

• FMHS: BIU contains an FMHS.

• LUSTAT: BIU is a LUSTAT request or
response.

• NOT_BIO_REPLY: BIU = BC, ~BB and either
the last sent chain did not carry BB or a
call to OK_TO_REPLY Cpage 6.1-33) returns
a value of FALSE.

• CEB_UNCOND: BIU = CEB and response cate-
gory = CRQDllRQEl).

NOTE: FSM_IMMEOIATE_RflJ100E_SEND and
FSM_IMMEDIATE_RQ_MODE_RCV are used for CP-LU
sessions. All others are used for LU-LU ses­
sions.

FUNCTION: Enforce the bracket protocol. State transitions are made via the signals INB
Cgo in brackets) and BETB Cgo between brackets). The inputs R,RQ, ••• are
used for error checking only. INB state means Oft Cthe half-session) is con­
nected to a PS; BETB state means DFC is not connected to a PS.

INPUT: BIU or a signal that the FSM should be set to the specified state

OUTPUT: If an error is discovered, LOCAL.SENSE_CODE is set.

NOTE: The state names mean the following:

• BETB: between brackets

• INB: in bracket

Referenced procedures, FSMs, and data structures:
LOCAL

INPUTS

SIGNALCINB>
SIGNALC BETB)

R,RQ,CFMDILUSTAT>,NOT_BID_REPLY,~FMHS,~CEB_UNCOND

OUTPUT FUNCTION
CODE

STATE NAMES---->
STATE NUMBERS-->

R Set LOCAL.SENSE_CODE to X'20030000' (bracket error).

page 6.0-6

BETB
01

2
-
>CR)

Chapter 6. 1. Oa ta Flow Control

INB
02

-
1

-

6.1-43

FSM_CHAIN_RCV_FHP19

FSM_CHAIN_RCV_FMP19

6 .• 1-44

FUNCTION: Enforce the chaining protocol for received chains. A chain is "complete" when
the end-of-chain CEC> request has been received and any required associated
response or reply.has been sent. A. reply is a request sent after receiving an
C RQE , CD) chain that has not been negatively res.ponded to. A reply implies a
positive response to the CRQE,CD> chain.

INPUT:

OUTPUT:

NOTE:

BIU, CHAIN_INDICATOR (possible values are BEGIN_CHAIN, .END_CHAIN and
NOT_SPECIFIED), information about the last received request.

If the bracket was ended by the request,
information recorded about the last
LOCAL.SENSE_CODE may be set.

The state names mean the following:

• BETC: between chains

• INC: in the middle of a chain

the HS will be disconnected from PS;
received request may be erased;

• NEG RSP SENT: in the middle of a chain and a negative response has been
sent

• PEND RSP: has received CEC,RQD>. and is waiting for the response to be
sent

• PEND SEND REPLY: has received CEC,RQE,CD> and is waiting for the reply or
negative response to be sent

Referenced procedures, FSMs, and data structures:

·-:

. •

OK_TO_REPLY
FREE_ SESSION
LOCAL

..

SNA Format and Protocol Reference Manual for LU Type 6.2

page 6.1-33
page A-15
page 6.0-6

FSM_CHAIN_RCV_FMP19

STAtE NAMES----> BETC INC NEG PEND PEND
RSP RSP SEND
SENT REPLY

INPUTS STATE NUMBERS--> 01 02 03 04 05

R,RQ,BEGIN_CHAIN 2 I I I . I
R,RQ,END_CHAIN,RQD I 4 lC A) I I
R,RQ,END_CHAIN,RQE,CEB I lCA) lCAl I I
R,RQ,END_CHAIN,RQE,CD I 5 lCA) I I
R,RQ,END_CHAIN,BIS I 1 I I /.

s,-RSP,CFMDILUSTATI > 3 > lCAI i.< A I
s,+RSP,CFMDILUSTATI > I > lCAI I
S,:tRSP,RTR I I I 1 I

S,RQ,REPLY I I I I 1

R,RQ,BC - >CRll >CRll >CR21 >CR31
R,RQ,-.BC >CRll - - >CR2 I >CRll

SIGNALCRESETI - 1 1 1 1

OUTPUT FUNCTION
CODE

A If the last cha;n rece;ved.d;d not carry BB or
c;t carr;ed BB and ;twas accepted, i.e., there was no negative response to the
BB chain with sense data X'08130000', X'08140000', or X'088B0000') then

If the bracket has ended Cthe last received cha;n carried CEB and either [l]
the form of response requested was RqE or RQDl, or [2] no negative response
was sent to the chain) then

Stop communication between PS and HS. This ;nvolves purging records currently
in transit from PS and disabling PS's capability to send to this HS.

Create and send a FREE_SESSION record to RM.
Call FSM_BSM_FMP19 with a BETB s;gnal Cpage 6.1-431.

Rl Set LOCAL.SENSE_CODE to X'20020000' Cchain;ng errorl.

R2 Set LOCAL.SENSE_CODE to X'200AOOOO' c;mmed;ate request mode error) •

R3 Set LOCAL.SENSE_CODE to X'20040000' (half-duplex errorl •

Chapter 6.1. Data FlON Control 6.1-45

FSf'LCHAIN_SEND_Ft1Pl9

FSH_CHAIH~SEND_Ft1P19

6.1-46

FUNCTION: Enforce the chaining protocol for sending chains. A chain is "complete" Nhen
the end-of-chain (EC> request has been sent and any required associated
response or reply has been received. A reply is a request received after
sending an (RQE,CDJ chain that has not received a negative response. A reply
iinplies a positive response to the (RQE,CDJ chain.

INPUT:

OUTPUT:

NOTE:

BIU, CHAIH_IHDICATOR (possible values are BEGIH_CHAIH,
HOT_SPECIFIEDJ, information about the last received request.

END_CHAIN and

If the bracket Nas ended by the request,
information recorded about the last
LOCAL.SEHSE_CODE may be set.

The state names mean the follo...ing:

• BETC: between chains

• INC: in the middle of a chain

the HS Nill be disconnected from PSI
received request May be erased1

• NEG RSP RCVD: in the Middle of a chain and a negative response has been
received

• PEND RSP: has sent (EC,RQD) and is -iting for the response to be
received

• PEND SEND REPLY: has seht <EC,RQE,CDJ and is 111aiting for the reply or
negative·response to be received

Referenced procedures, FSHs, and data structures:
OK_TO_REPLY
FSH_BSM_Ft1P19
FREE~SESSION
LOCAL

SHA Format anc:IProtoC()l Reference Manual for LU Type 6.2

page 6.1-33
page 6.1-43
page A-15
page 6.0-6

FSM_CHAIN_SEND_FMp19

STATE NAMES----> BETC INC NEG PEND PEND
RSP RSP RCV
RCW REPLY

INPUTS STATE NUl1BERS--> 01 02 03 04 05

S,RQ,BEGIN_CHAIN 2 I I I I
S,RQ,END_CHAIN,RQD I 4 lCA) I I
S,RQ,END_CHAIN,RQE,CEB I HA> l(A) I /
S,RQ,END_CHAIN,RQE,CD / 5 HA) I /
S,RQ,END_CHAIN,BIS I 1 I I /

Ro-RSP,CFMDILUSTAT> >CR) 3 >CR> UA> HA>
Rt+RSP,CFMDILUSTAT> >CR> >CR) >CR J lCA) >CR>
R,:!:RSP,RTR >CR> >CR> >CR) 1 >CR>

R,RQ,REPLY I I I I 1

SIGNALCRESET> - 1 1 1 1

OUTPUT FUNCTION
CODE

A If the last chain sent did not carry BB or
Cit carried BB and it was accepted, i.e., there was no negative response to the
BB chain w.ith sense data X'08130000', X'08140000', or X'088BOOOO'> then

If the bracket has ended Cthe last sent chain carried CEB and either [lJ
the form of response requested was RQE or RQDl, or [2] no negative response
was received for the chain) then

Stop communication between PS and HS. This involves purging records currently
in transit from PS and disabling PS's capability to send to this HS.

Create and send a FREE_SESSION record to RM.
Call FSM_BSM_FMP19 with a BETB signal (page 6.1-43).

R Set LOCAL.SENSE_CODE to X'200FOOOO' (response protocol error>.

Chapter6.1. Data Flow Contro~ · 6.1-47

FSM_IMMEDIATE_RQ_MODE_SEND

FSM_IMMEDIATE_RQ_MODE_SEND

6.1-48

FUNCTION: Enforce the immediate request mode send protocol.
half-sessions using FM profile O.

It is used only on CP-LU

INPUT: BIU

OUTPUT: LOCAL.SENT_RQD_SNF may be set.

NOTE: The state names mean the following:

• RESET: no request is awaiting a response.

• PEND_RSP: a response is expected to the last sent request.

STATE NAMES----> RESET PEND
RSP

INPUTS STATE NUMBERS--> 01 02

S,RQ,RQD 2 /
R,::!:RSP - 1

SIGNALC RESET) - 1

FSM_IMMEDIATE_RQ_MODE_RCV

FUNCTION: Enforce the immediate request mode receive protocol. It is used only on CP-LU
half-sessions using FM profile O.

INPUT: BIU

OUTPUT: LOCAL.SENSE_CODE is set if an error is found.

NOTE: The state names mean the following:

• RESET: a response is not owed to a chain.

• PEND RSP: a chain was received to which a response is owed.

Referenced procedures, FSMs, and data structures:
LOCAL page 6.0-6

STATE NAMES----> RESET PEND
RSP

INPUTS STATE NUMBERS--> 01 02

R,RQ,RQD 2 >CE>
S,::!:RSP - 1

SIGNALC RESET) - 1

OUTPUT FUNCTION
CODE

E Set LOCAL.SENSE_CODE to X'200AOOOO' (immediate request mode violation).

SNA Format and Protocol Reference Manual for LU Type 6.2

FSM_QRI_CHAIN_RCY_FMP19

FSM_QRI_CHAIN_RCV_FMP19

FUNCTION:

INPUT:

OUTPUT:

NOTE:

Enforce the setting of the QRI indicator in the RH. This indicator is set the
same for all BIUs in a chain; i.e., all BXUs in a chain have QRI=QR or have
QRI=~QR.

BIU

If a QRI state error is detected, LOCAL.SENSE_CODE is set.

1) The state names mean the following:

• RESET: no chain is currently being received

• INC QR: the chain that is being received is a QR chain

• INC NOT QR: the chain that is being received is not a QR chain

2) The implementation of this FSM is optional because it is used only to
detect receive error conditions.

Referenced procedures, FSMs, and data structures:
LOCAL page 6.0-6

STATE NAMES----> RESET INC INC
QR NOT

QR
INPUTS STATE NUMBERS--> 01 02 03

R,RQ, QR, EC - 1 >(R >
R,RQ, QR,~EC 2 - >(R)

R,RQ,~QR, EC - >(R) 1
R,RQ,~QR,~EC 3 >(R) -
SIGNAL(RESET) - 1 1

OUTPUT FUNCTION
CODE

R Set LOCAL.SENSE_CODE to X'200BOOOO' (QRI state error).

Chapter 6.1. Data Flow Control 6.1-49

FSM~RCV_PURGE~FMP19

FSM_RCV_PURGE_FMP19

6.1-50

FUNCTION: Maintain a purging state for received BB chains that have been negatively
responded to indicating a bracket error (0813, 0814, 0888). It is called 111ith
a PURGE signal when the negative response is sent and reset when the
end-of-chain (EC> RU is received. When in the purging state, no records are
generated for PS or RM as a result of receiving a request RU in the 88 chain
(i.e., the remainder of the 88 chain is purged>.

INPUT: BIU

OUTPUT: None

STATE NAMES----> RESET PURGE
INPUTS STATE NUMBERS--> 01 lt2

R, EC - 1
SIGNAL(PURGE) 2 -
SIGNAL(RESET) - 1

SHA For111at and Protocol Reference Manual for LU Type 6.2

CHAPTER 6.2. TRANSMISSION CQNTROL

INTRODUCTION

A disUnct transmission control (TC) element
is provided for each half-session supported
in a node.

Each TC element participates in two activ­
ities:

Variable initialization
Cryptography initialization

• Normal operation:

Sending data from data flow control
CDFC> to path control CPC>
Receiving data from PC and giving it
to DFC .

The protocol machine for session initializa­
tion, TC.INITIALIZE (page 6.2-8), is invoked
after LU network services (LNS> processes a
BIND or ACTLU. TC.INITIALIZE, provides
session-specific support for starting data
flows in the session. When session-level
cryptography is used, TC.INITIALIZE checks
that the enciphering and deciphering func­
tions are operative before any user data is
permitted to flow.

The TC. SEND and TC. RCV components control
sequence number checking, pacing, enciphering
and deciphering, and manage expedited and
normal flows.

The relationship of transmission control to
the other elements of the half-session, after
initialization, is shown in Figure 6.2-1.

Presentation Services CSee Chapter 5.0.)

l 1
! I
. > .. Data Flow Control ** . . .

A

Half-Session
Router * Transmission Control

v

l : TC.SEND] I TC.RCV : I
~

A
Half-Session

received data sent data
v

Path Control

* See "Chapter 6.0. Half-Session" for details.
** See "Chapter 6.1. Data Flow Control" for details.

Figure 6.2-1. Structure of TC and Flow of Data within the Half-Session

Chapter 6.2. Transmission Control 6.2-1

INITIALIZATION PHASE

6.2-2

TC.INITIALIZE (page 6.2-8) is called by
half-session initialization ("Chapter 6.0.
Half-Session") during initiaHzation when a
half-session is being activated. The
initialization procedure sets up pacing,
CRYPTOGRAPHY VERIFICATION CCRVJ, and sequence
number usage variables according to the TS
profile in use.

CRYPTOGRAPHY VERIFICATION CCRVJ

For sessions that support cryptography, the
initialization procedure calls
TC.EXCHANGE_CRV (page 6.2-IOl to perform the
message-unit exchanges necessary to enable
data enciphering and deciphering.

Flow: From primary LU to secondary LU CExpeditedl

When session-level cryptography is specified
in the BIND, CRV is sent by the primary LU TC
to the secondary LU TC to enable sending and
receiving of enciphered FMD requests by both
half-sessions. CRV is a valid request only
when session-level cryptography is selected
in BIND. CRV carries an 8-byte field (see
"Appendix E. Request-Response Unit CRUJ For­
mats") that contains a transform of the deci­
phered test value (enciphered ur.der the
session cryptography keyl. The test value is
received by the primary LU in the +RSPCBINDli
the transform in CRV is the test value with
each bit of its first four bytes inverted
Ci.e., a l becomes a 0 and a 0 becomes all.
!The test value is also used as the session
seed, or initial chaining value, when enci­
phering and deciphering FMD RUs while the
session is active.) The secondary TC element
obtains the r.eturned test value by decipher­
; ng the aforementioned 8-byte field in CRV
and inverting the fi rs t four bytes; it then
compares it with the test value sent !enci­
phered l in +RSP!BIND). Failure to compare
resets the session cryptography key and the
session seed. Failure to compare also causes
the session to be deactivated.

Valid cryptography options are defined under
the BIND format in "Appendix E.
Request-Response Unit CRUJ Formats"; "Appen­
dix D. RH Formats" describes the RH bits used
for cryptography.

Where session cryptography is used, session
key distribution is managed by the CP of the
primary LU; session keys are conveyed (enci­
phered under LU master cryptography keys) to
the PLU in a CINIT RU and then to the second­
ary LU in a BIND request (see "Appendix E.
Request-Response Unit CRUl Formats" and Fig­
ure 6.2-2 on page 6.2-3). The flows involved
in distributing the session seed to the .LU
are shown in Figure 6.2-2 on page 6.2-3.

The comments below correspond to the numbers
in Figure 6.2-2 on page 6.2-3.

1. In the CINIT RU, the session cryptography
key is distributed to the primary LU in

two enciphered formats: it is enciphered
using the master cryptography key of the
primary LU and in another field it is
enciphered using the master cryptography
key of the secondary LU. The initial
chaining value is 0 for both cases.

2. In the BIND RU, the primary LU sends the
session cryptography key to the secondary
LU as it was received in the CINIT RU:
enciphered using the master cryptography
key of the secondary LU as the
cryptography key and 0 as the initial
chaining value.

3. The secondary LU deciphers the session
cryptography key using its master
cryptography key as the cryptography key
and 0 as the initial chaining value. The
secondary LU then generates a
pseudo-random value, retains it for use
as the session seed, and enciphers it
using the session cryptography key as the
cryptography key and 0 as the initial
chaining value. This enciphered value is
returned on the response to BIND. The
value serves two purposes: it is used as
a test value <i.e., when returned in CRV
discussed below), and is subsequently
used as the session seed, or initial
chaining value, in enciphering and deci­
phering FMD requests within the session.

4. The primary LU deciphers the test value
received in the RSPCBINDJ using theses­
sion cryptography key as the deciphering
key and 0 as the initial chaining value.
The resulting value is retained for use
as the session seed and then transformed
by exclusive-ORing it with
X'FFFFFFFFOOOOOOOO'. This inverts the
bit settings in the first four bytes.
The transformed value is then enciphered
using the session cryptography key as the
key and 0 as the initial chaining value.
This transformed, enciphered value is
sent on the CRV request.

s. The secondary LU deciphers the enci­
phered, transformed test value using the

SNA Format and Protocol Reference Manual for LU Type 6.2

CP PRIMARY LU SECONDARY LU

CINIT !MKp (SK) o, MKs CSK] 0) I lJ
>
BIND CMKs (SK) 0) [2]

>
RSP!BINO, SK [SS) 0) [3)
<
CRV!SK [transformed SS) 0) [4]

>
RSP!CRV) (5]
<
FMO request I SK [RU data] SS) [6 J

>

FMO request I SK (RU data] SS) (6]

<

LEGEND:

MKp master cryptography key for primary LU (obtained from
installation- and implementation-dependent system definition).

MKs master cryptography key for secondary LU (obtained from
installation- and implementation-dependent system definition).

SK session cryptography key
SS session seed

NOTE: Enciphered data is represented in the diagram as follows:

cryptography key [data I initial chaining value

For example, to show an RU that was enciphered using the session key
as the cryptography key and 0 as the initial chaining value,
the following string is used:

SK (RU data] O.

Figure 6.2-2. Distributing the Session Cryptography Key and Session Seed to the LU

session cryptography key as the key and 0
as the initial chaining value. The
result is then exclusive-ORed with
X'FFFFFFFFOOOOOOOO' to recreate the ori­
ginal pseudo-random value sent by the
secondary LU in RSP!BINDl. The recreated
value is compared with the actual value
that was created by the secondary LU. If
the recreated value matches the original
value, a positive response is sent to
CRV. The test value can then be used as
the session seed.

6. From then on, all FMO requests are enci­
phered using the session cryptography key
as the key and the session seed as the
initial chaining value.

Cryptography verification is the only session
control (SC) request handled by TC. SC

requests for session activation and deacti­
vation (for example, BIND and UNBIND> are
routed from PC to LNS (see "Chapter 4. LU
Network Services") without passing through
TC. Session control requests and responses
have the header bit-settings described below.

All SC requests are issued by TC or by LNS.
The following fields of the TH and RH are set
for session control RUs.

TH: All SC requests and responses are
sent expedited !the EFI bit is Q!J in the
TH).

RH: The RH settings for SC requests are
defined in TC.BUILD_CRV on page 6.2-11 •

Chapter 6.2. Transmission Control 6.2-3

DFC

RQ&RSP

v

-RSP
TC.SEND <----------------------~
(page 6.2-13)

I v

DFC
A

RQ&RSP

~
TC.RCV

v

Q_PAC

I
v

TC.DEQUEUE_
PAC

(page 6.2-18)

RQ & RSP

v
Path Control (PC)

A A

TC.TRY_TO_
SEND_IPR

(page 6.2-19)

IPR

v

(page 6.2-15)

A

TC

RQ&RSP

Half-Session Router (HS)

Figure 6.2-3. Interrelation of TC.SEND and TC.RCV

tfQB!!!!. OPERATION

The TC.SEND and TC.RCV protocol machines are
related as shown in Figure 6.2-3 •. Detailed
definitions for TC.SEND and TC.Rev, the major
TC procedures, are shown on page 6.2-13 and
page 6.2-15, respectively.

The protocols supported by TC include:

• Checking of sequence numbers on received
normal-flow requests (Sequence numbers
are assigned to normal-flow requests by
DFC, see "Chapter 6 .1. Data Flow Con­
trol")

• Proper separation of the normal flows
from the expedited flows 111ith respect to
sequencing and pacing.

• Sending of normal-flow requests using
pacing; this involves a queue (LO­
CAL.Q_PAC> for temporarily holding outgo­
ing requests, and a set of coupled FSMs
and procedures that manage the sending
and receiving of pacing requests and
responses (FSM_PAC_RQ_SEND [page 6.2-201
and FSM_PAC_RQ_RCV [page 6.2-21))

• Proper routing of requests and responses
to PC and DFC

• Enciphering and deciphering control for
all LU-LU FMD request RUs on sessions
using session-level mandatory
cryptography (see TC.TRY_TO_ENCIPHER
[page 6.2-141 and TC.RCV_NORM_RQ [page
6.2-171)

TC PROCEDURES INVOKED FROM OTHER COMPONENTS
OF THE HALF-SESSION

Procedures TC.RCV (page 6.2-15) and
TC.TRY_TO_SEND_IPR (page 6.2-19) are invoked
by the half-session router (see "Chapter 6.0.
Half-Session" for details) •

When the half-session router receives a mes­
sage unit from path control, it calls TC.RCV
to initiate TC processing of the message
unit.

TC.TRY_TO_SEND_IPR, which is called period­
ically from the half-session router, is

6.2-4 SHA Format and Protocol Reference Manual for LU Type 6.2

responsible for generating an ISOLATED PACING
RESPONSE (IPR, see "Pacing"> when both the
architectural and resource requirements are
satisfied.

TC.SEND (page 6.2-13) is called by DFC when
DFC has a full buffer to send or when DFC is
flushing a partially filled buffer. The
buffer is considered full when i t contains
more than the maximum RU size as specified in
BIND.

SEQUENCE NUMBERING OF REQUESTS AND RESPONSES

For TS profile 7 (used in LU-LU sessions, see
"Appendix F. Profiles"> each request that is
sent on the normal flow is assigned a
sequence number. The sequence number is ini­
tialized to 0 when a half-session is acti­
vated lBIND is sent or rece i ved H i t is
incremented by 1 before sending each request.
Thus, the sequence number for the first
request is 1. After reaching 65,535, the
sequence number wraps to O. (A sequence num­
ber of 0 is sent in the wrap situation only.>
Sequence numbers are assigned in the sending
half-session by DFC and are checked in the
receiving half-session by TC.

For the expedited flow, an identifier is
assigned to each request sent. The identifi­
er is not necessarily managed as a sequence
number, but is used to uniquely identify each
outstanding expedited-flow request sent. The
expedited-flow DFC RU SIGNAL is assigned an
identifier by DFC; the expedited-flow request
CRV is assigned an identifler by TC;
expedited-flow session-activation <BIND> and
session-deactivation <UNBIND> requests are
assigned identifiers by LNS (see "Chapter 4.
LU Network Services").

For TS profile l (used in CP-LU and CP-PU
sessions), identifiers are used on the normal
flows as well as on the expedited flows.

The sequence number or the i dent i f i er, as
appropriate, is given to path control with
the associated BIU, to be carried in the TH.

The sequence number or identifier generated
by the sending component is retained for use
in correlating responses to requests Ca
response carries the sequence number or iden­
tifier of the corresponding request).

For further information on sequence number­
ing, see "Sequence Numbering of Requests and
Responses" in "Chapter 6 .1. Data Flow Con­
trol".

SESSIONS WITH CRYPTOGRAPHY

If session-level mandatory cryptography is
selected when the session is activated, TC
enciphers all FMD request RUs being sent and
deciphers all those being received. The
process of enciphering involves the following
acdons:

• The RU is padded, lllhen necessary, to an
fotegral multiple of eight bytes. The
padding bytes are added at the end and
contain unpredictable values, except for
the last pad byte, which contains an
unsigned 8-bit binary count of the pad
bytes. If only one byte of pad is
required, that byte is the pad byte and
it contains a l. If padding is per­
formed, the Padded Data indicator (PDI>
in the RH is set to PD.

• Prior to enciphering, the first eight
bytes of an RU are exclusive-ORed with
the session seed (i.e., the initial
chaining value>; the result is then enci­
phered. Each subsequent 8-byte block
within the same RU is exclusive-ORed with
the output of the previously enciphered
block. This technique is referred to as
"block chaining with cipher text feed­
back." When an enc i phered RU is sent ,
the Enciphered Data indicator <EDI> in
the RH is set to ED.

• Enciphering employs an 8-byte block chain
algorithm and an 8-byte key, the session
cryptographv m' and is in accordance
with the Data Encryption Standard <DES)
algorithm described in Federal Informa­
tion Processing Standards Publication~·
dated January 15, 1977.

The deciphering process is simply the inverse
of enciphering.

SESSION-LEVEL PACING

Session-level pacing allows TC to control the
rate at ;..ihich it receives requests on the
normal flow. If pacing is selected when the
session is activated, all normal-flow
requests are paced. Send pacing controls the
outbound flow of data. Receive pacing con­
trols the inbound flow of data. A TC.SEND
performing send pacing has a session partner
TC.RCV that is doing receive pacing.
Requests and responses on the expedited flow
are not paced and are unaffected by pacing on
the normal flow. Pacing is generally used
when the sending TC is capable of sending
requests faster than the receiving TC can
process them.

The pacing environment assumes that the
receiving TC is able to accept no more than 'a
certain number of requests CN> at a time.
This number, called the window size, is
defined when the session is being activated.
Pacing operates according to the following
cycle. The sending TC initially may send up
to N requests. On the fl rst request, it
turns on the Pacing Request indicator. After
the receiving TC receives the request that
contains the Pacing Request indication, it
can signal the sending TC <by using the Pac­
ing Response indication) when it is ready to
receive another group of requests.

The sending TC keeps a count of the number of
requests that it can send before receiving a
pacing response; this number is kept in the

Chapter 6.2. Transmission Control 6.2-5

6.2-6

pacing count field (SEND_PACING_COUNT>. This
field and all others related to
session-level pacing or the maximum RU size
are maintained in the transmission control
control block (TCCBL The TCCB is a sub­
structure of the control block named LOCAL
When a pacing response is received, the send­
ing TC can send N more requests and therefore
increases the pacing count by N. This makes
the pacing count equal to the window size <N>
plus the residual pacing count <the remaining
requests not yet sent from the previous win­
do111). If the pacing count drops to O, the
sender waits until a pacing response is
received before sending any more requests.
The value of the pacing count can range from
0 to 2N-1.

Only one pacing response is generated for
each pacing request. There are t1110 methods
by which the pacing response may be returned:
on a normal-flow response header or on an
ISOLATED ~ RESPONSE <IPR). The IPR may
be used at any time; however, it is especial­
ly useful when no other response to a request
is available in which to send the pacing
response or when the available response is
blocked on the pacing queue. IPR can be sent
on the normal or expedited flo111.

TC. TRY_TO_SEND_IPR, which includes all the
checks to determine if a pacing response
should be sent, is invoked by the
half-session router (see "Chapter 6.0.
Half-Session"). The decision on whether
there are sufficient resources for sending a
pacing response is implementation-dependent.

Normal-flow responses that have the Queued
Response indicator (QRI> set to QR are placed
on the pacing queue, but do not cause the
pacing count to be decremented when they are
sent. When normal-flow responses indicate
.. QR, they can pass requests and responses
marked QR at the queuing point in TC. If a
request is held up by pacing, all responses
marked QR and queued behind the request are
also held up.

A Pacing Response indication is never added
to a response held in Q_PAC; it is added only
to a response with QRI=QR as it is dequeued
from Q_PAC or to a response with QRI= .. QR. If
FSM_PAC_RQ_SEND <page 6.2-20) is preventing
the only available responses from flowing
from the queue, an IPR can be generated and
sent directly to PC; this prevents session
sfeadlock, which could occur when both TCs'
pacing queues contain a request that cannot
flow and that blocks the flow of the only
available responses that might be used to
carry the Pacing Response indication.

In the BIND RU, four fields exist that define
values for the send and receive window sizes
of each stage of pacing. BIND also contains
the staging indicators that specify one or

two stages of pacing in the PLU-to-SLU direc•
tion and in the SLU-to-PLU direction.

If pacing on a session stage in a particular
direction is not. to be performed, the values
for the window size on that stage are set to
0. For example, if there is to be no pacing
in the SLU-to-PLU direction, the PLU-receive
and the SLU-send window sizes are both set to
o.

When a T2 .1 node is sending a BIND to act i -
vate a session with an LU in an adjacent T2.l
node, the PLU sets the staging indicators to
specify one-stage in both directions, and
sets the pacing window sizes to
implementation-dependent values.

ISOLATED PACING RESPONSE <IPR>

An IPR is sent by TC. TRY_TO_SEND_IPR (page
6.2-19) to return a Pacing indication as dis­
cussed in the preceding section.

The following fields of the TH and RH are set
for an IPR:

TH: The normal or expedited flow is
indicated. The sequence number is unde­
fined <it may be set to any value, and it
is not checked by the receiver>.

RH: IPRs are coded all O's except for
the Response indication, the Pacing
Response indication, and the chaining
bits; thus, the IPR RH is coded
X'830100', and the test for an IPR is:
RRI=RSP, .. DRl, .. DR2, and PI=PAC. IPR is
the only response that indicates both
.. DR 1 and .. DR2 •

There is no RU accompanying the TH and RH •

REQUEST AND RESPONSE CONTROL MODES

TC enforces the immediate request mode during
CRYPTOGRAPHY VERIFICATION (CRV) exchange as
part of TC initialization. The last thing
that the primarv TC does during initializa­
tion is to send a CRV request and receive the
CRV response. The last thing that the sec­
ondary TC does during initialization is to
receive the CRV request and send the CRV
response. TC accepts no other records from
HS components, and nothing from Path Control
except CRV, during this time.

TC is not involved in enforcing i111111ediate
request mode at any other time.

TC is not involved in inforcing i111111ediate
response mode.at any time.

SNA Format and Protocol Reference Manual for LU Type 6.2

TRANSMISSION CONTROL CALLING TREES

Figure 6.2-4 through Figure 6.2-6 show the
calling trees for transmission control
initialization and CRV exchange <Fig­
ure 6.2-4), sending data (figure 6.2-5), and
receiving data (Figure 6.2-61. In addition

TC.INITIALIZE

to the procedures in these calling trees, TC
also contains TC.TRY_TO_SEND_IPR, a procedure
that is called only by the half-session
router.

TC.EXCHANGE_
CRV

FSM_PAC_RQ_SEND FSM_PAC_RQ_RCV

TC.BUILD_CRV TC.FORMAT_
CHECK

Figure 6.2-4. TC Initialization Calling Tree

TC.TRY_TO_
ENCIPHER

TC,SFND

FSM_PAC_RQ_SEND

Figure 6.2-5. SEND Calling Tree

TC.Rev_
CHECKS

TC.RCV

SEND_NEG_
RSP_OR_LOG*

FSM_PAC_
RQ_SEND

FSM_PAC_RQ_
RCV

TC.Rev_ DFC_RCV
NORM_RQ *

* See "Chapter 6.1. Data Flow Control" for details.

Figure 6.2-6. RCV Calling Tree

TC.DEQUEUE_
PAC

Chapter 6.2. Transmission Control 6.2-7

FORMAL DESCRIPTION

SESSION INITIALIZATION PROCEDURES

6.2-8

TC.INITIALIZE

FUNCTION: Sets up session parameters needed by TC. This procedure is called by
half-session initialization (see Chapter 6.0) when the session is being acti­
vated. The TCCB (a substructure of LOCAL) is initialized according to whether
this is a primary or secondary LU-LU half-session or a CP-LU half-session.
The maximum receive RU size is initialized.

INPUT: INIT_HS is a structure that indicates whether the type of session to initial­
ize is an LU-LU session or a CP-LU session. For LU-LU sessions, the INIT_HS
record contains BIND information. For CP-LU sessions, the INIT_HS record con­
tains ACTLU information. The BIND or ACTLU information contains the values to
which the fields of the TCCB will be initialized. The TS and FM profiles, the
identifier of the path control with which this half-session is associated, the
role (primary or secondary) of the half-session, and LOCAL.SENSE_CODE are ini­
tialized prior to calling this procedure. Caller checks that the TS profile
is l or 7.

OUTPUT: The correct initialization procedure is executed. A variable indicating that
initialization was SUCCESSFUL or UNSUCCESSFUL is set.

Referenced procedures, FSMs, and data structures:
TC.EXCHANGE_CRV page 6.2-10
FSM_PAC_RQ,_SEND page 6.2-20
FSM_PAC_RQ,_RCV page 6.2-21
LOCAL page 6.0-6
INIT_HS page A-16

Initialize the half-session according to the TS profile (see Appendix F> and the session
activation RU !see Appendix El. The procedure has access to the INIT_HS record
and the LOCAL control block.

SNA Format and Protocol Reference Manual for LU Type 6.2

TC.INITIALIZE

If CP-LU half-session then
see TS profile 1 and the ACTLU RU. Record the following information:
• Maximum RU size that can be received (obtained from the INIT_HS.ACTLU_IMAGEJ,

converted from exponent/mantissa form to binary form (see BIND in Appendix E
for the conversion table>. The maximum RU size parameter is not part of
the ACTLU RU, but is initialized by LNS and passed in the ACTLU_IMAGE

• That identifiers are used
• That neither send nor receive pacing is active
• That cryptography is not active

Else (LU-LU sessions--see TS profile 7 and the BIND RU>
Record the following information:
• Maximum RU size sent by the partner half-session on the nor111al flow,

(obtained from the INIT_HS.BIND_IMAGEJ, converted from exponent/mantissa
form to binary form

• That sequence numbers are used
• for a primary half-session,

• Whether send pacing is active, and, if so, the primary send windON size
• Whether receive pacing is active, and , if so, the primary receive windON size

• For a secondary half-session,
• Whether send pacing is active, and, if so, the secondary send windON size
• Whether receive pacing is active, and, if so, the secondary receive windON size

• lillether cryptography is active

If the BIND_IMAGE indicates that cryptography is active then
Call TC.EXCHANGE_CRVtINIT_HS.BIND_IMAGEJ (page 6.2-10> to participate in
cryptography verification. (The BIND image and the CRV format are found in
Appendix E.>

If cryptography verification is unsuccessful tLOCAL.SENSE_CODE ~ OJ then
Return with a value of UNSUCCESSFUL.

Call FSM_PAC_RQ_SEND (page 6.2-20) and FSM_PAC_RQ_RCV (page 6.2-21), passing
them RESET signals.

Purge the pacing queue tLOCAL.Q_PACJ, set the send and receive pacing counts
(LOCAL.SEND_PACING_COUNT and LOCAL.RCV_PACING_COUNTJ to the values of the
corresponding window sizes, and initialize the receive, sequence number
tLOCAL.SQN_RCV_CNT> to O.

Return with a value of SUCCESSFUL.

Chapter 6.2. Transmission Control 6.2-9

TC.EXCHANGE_CRV

TC.EXCHANGE_CRV

6.2-10

FUNCTION: Called from a primary half-session to initiate the exchange of CRV with a sec­
ondary and to receive RSP<CRV>. Called from a secondary half-session to
receive CRV and return RSPCCRVJ to the primary.

INPUT:

OUTPUT:

BIND image (received in RSP[BIND]l contains the enciphered pseudo-random value
to be used as a test value Cand later as the session seed). This value is
enciphered using the session key as the cryptography key and 0 as the initial
chaining value.

The initialization of a secondary TC instance involves receiving a
PC_TO_HS_RECORD containing a CRV request, and the initialization of a primary
TC instance involves receiving a PC_TO_HS_RECORD containing a CRV response.

CRV exchange completed. If successful, LOCAL.SENSE_CODE = O.

The initialization of a secondary TC instance involves S£nding an
HS_TO_PC_RECORD containing a CRV response, and the initialization of a primary
TC instance involves sending an HS_TO_PC_RECORD containing a CRV request.

Referenced procedures, FSMs, and data structures:
TC.FORMAT_CHECK
TC.BUILD_CRV
LOCAL
PC_TO_HS_RECORD
HS_TO_PC_RECORD

If primary half-session then

page 6.2-11
page 6.2-11
page 6.0-6
page A-23
page A-11

Call TC.BUILD_CRVIBIND_IMAGE,BIUl Cpage 6.2-11> to build a CRV request BIU,
including the appropriate PIU fields.

Incorporate the BIU into the PIU field of the HS_TO_PC_RECORD Csee page 6.2-13).
Send the HS_TO_PC_RECORD to the path control that the half-session uses.
Receive a PC_TO_HS_RECORD from path control. This implies a possible wait.
Extract the BIU from the PIU field of the PC TO HS RECORD.
If not a CRV response then - - -

Set LOCAL.SENSE_CODE to X'20090000' CSC protocol error).
Else CCRV response)

Optionally, call TC.FORMAT_CHECKCBIUJ Cpage 6.2-11) to verify the RH.
If the format checked out OK then

If RTI = NEG then
Set LOCAL.SENSE_COOE to the sense data value in the BIU.

Else (secondary half-session)
Receive a PC_TO_HS_RECORD from path control. This implies a possible wait.
Extract the BIU from the PIU field of the PC TO HS RECORD.
If that received record is a CRV request then

Optionally call TC.FORMAT_CHECKIBIUl (page 6.2-llJ to verify the RH.
If the format checked out OK then

Check that the CRV test value was correctly encoded by the session partner by:
deciphering the test value !bytes 2-9 of the RU data) using the session key
and 0 as the initial chaining value, inverting the bits
in the first 4 bytes, and comparing the results with the value that was
generated by LNS for the +RSPIBINDl.

If the values are equal then
Incorporate a positive response into the PIU field of the HS_TO_PC_RECORD.
See page 6.2-13 for details on constructing the HS_TO_PC_RECORO.
Send the HS_TO_PC_RECORD to the path control that the half-session uses.

Else !values not equal!
Set LOCAL.SENSE CODE.to X'08350001' (Invalid Parameter).

CLOCAL.SENSE_CODE now has a value of nonzero, so the half-session router
will cause UNBIND to be sent.)

Else !RH not valid>
CLOCAL.SENSE_CODE already has a value of nonzero, so the half-session
router will cause UNBIND to be sent.)

Else (not CRV request)
Set LOCAL.SENSE CODE to X'20090000' CSC protocol error). CLOCAL.SENSE_CODE

now has a valu; of nonzero, so the half-session router will cause UNBIND
to be sent.)

SNA Format and Protocol Reference Manual for LU Type 6.2

TC.BUILD_CRV

TC.BUILD_CRV

FUNCTION: This procedure builds a CRV BIU by appropriately assigning the RH and RU
fields.

INPUT: BIND information and BIU to be initialized. The test value sent in CRV is
derived from the BIND image.

OUTPUT: The CRV PIU, including the TH settings for EFI and SNF.
cryptography seed is retained.

NOTE: For the actual TH and RH bit settings see Appendix D •

Set EFI to EXP.
Set SNF to some value (implementation-dependent). CRV is on the TC-TC flow,

not the half-session to half-session flow, so is not related to the half-session
send sequence number (LOCAL.SQN_SEND_CNT>.

Set the RH to the following values:
(RQ, sc, FMH, ~so, BC, EC, RQDl, ~QR, ~PAC, ~BB, ~co, CODEO, ~ED, ~po, ~cEBl.

Set the RU data to CRV request code {see page A-33).
Prepare the cryptography test value:
Decipher the test value in the BIND image, which is in the INIT_HS record.
Use the session cryptography key that was received from the CP in the CINIT
request as the cryptography key, and 0 as the initial chaining value.
See the Data Encryption Standard for details. Retain the resulting value
for use as the session seed. Transform the result by inverting each bit
of the first four bytes and enciphering the transformed value (use the session
key as the cryptography key and 0 as the initial chaining value).

Append this transformed test value to the RU data.

TC.FORMAT_CHECK

FUNCTION: Checks the RH bits of the request or response. All of these checks
optional. An implementation may choose to do all, some, or none of them.

INPUT: A request or response BIU.

OUTPUT: OK if all bits are properly set; otherwise, NG. If NG, LOCAL.SENSE_CODE
set to a nonzero value.

Referenced procedures, FSMs, and data structures:
LOCAL page 6.0-6

Chapter 6.2. Transmission Control

are

is

6.2-11

TC.FORMAT_CHECK

6.2-12

If EFI ;e EXP then
Set LOCAL.SENSE_CODE to X'40110000'.

Else (expecl;ted BIU>
If RRI = RQ then

Select in the following order, based on the RH bits:
When (SDI ;e SD and RU_LENGTH < 1) or

CSDI = SD and RU_LENGTH < 5)
Set LOCAL.SENSE_CODE to X'10020000'.

When FI ;e FMH
Set LOCAL.SENSE_CODE to X'400FOOOO'.

When SDI = SD
Set LOCAL.SENSE_CODE to the sense data fo the BIU.

When BCI ;e BC
Set LOCAL.SENSE_CODE to X'400BOOOO'.

When ECI ;e EC
Set LOCAL.SENSE_CODE to X'400BOOOO'.

When response category ;e RQDl
Set LOCAL.SENSE_CODE to X'40140000'.

When QRI = QR
Set LOCAL.SENSE_CODE to X'40150000'.

When PI = PAC
Set LOCAL.SENSE_CODE to X'40080000'.

When BBI = BB
Set LOCAL.SENSE_CODE to X'400COOOO'.

When EBI = EB
Set LOCAL.SENSE_CODE to X'400COOOO'.

When CDI = CD
Set LOCAL.SENSE_CODE to X'400DOOOO'.

When CSI = CODEl
Set LOCAL.SENSE_CODE to X'40100000'.

When EDI = ED
Set LOCAL.SENSE_CODE to X'40160000'.

When POI = PD
Set LOCAL.SENSE_CODE to X'40170000'.

When CEBI = CEB
Set LOCAL.SENSE_CODE to X'400COOOO'.

Else Cresponsel
Select in the following order, based on RH bits:

When <RTI = POS and RU_LENGTH < 11 or
CRTI = NEG and RU_LENGTH < 51
Set LOCAL.SENSE_CODE to X'l0020000'.

When FI ;e FMH
Set LOCAL.SENSE_CODE to X'400FOOOO'.

When BCI ;e BC
Set LOCAL.SENSE_CODE to X'400BOOOO'.

When ECI ;e EC
Set LOCAL.SENSE_CODE to X'400BOOOO'.

When DRII ;e DRl
Set LOCAL.SENSE_CODE to X'40140000'.

When DR2I = DR2
Set LOCAL.SENSE_CODE to X'40140000'.

When CRTI = POS and SDI = SDI or
<RTI = NEG and SDI = NOT_SD)
Set LOCAL.SENSE_CODE to X'40130000'.

When QRI = QR .
Set LOCAL.SENSE_CODE to X'40150000'.

When PI = PAC
. Set LOCAL.SENSE_CODE to X'40080000'.

If LOCAL.SENSE_CODE = 0 <no error) then
Return with a value of OK.

Else (format error>
Return with a value of NG.

SHA For11at and Protocol Reference Manual for LU Type 6.2

~ SEND AND RECEIVE PROCEDURES

TC.SEND

FUNCTION: Send the input BIU to path control. If required, the message un;t ;s enc;­
phered. If pacing is supported, the message unit may be placed on Q_PAC rath­
er than sent directly to path control.

INPUT: BIU along with the EFI and SNF. CThe RH, and the RU were set up by the proce­
dure that passed this record to TCl; whether send pacing is active; whether
receive pacing is active; and the send pacing count CLOCAL.SEND_PACING_COUNTl
if send pacing is active.

OUTPUT: If no errors, BIU is sent to PC or placed on Q_PAC. The Pacing indicator is
set to specify whether or not the BIU is a pacing request or response. If
send pacing is active, LOCAL.SEND_PACING_COUNT is decremented.
LOCAL.SENSE_CODE = O.

If any errors are detected, a nonzero sense code is returned to the caller in
LOCAL.SENSE_COOE.

Referenced procedures, FSMs, and data structures:
TC.TRY_TO_ENCIPHER
FSM_PAC_RQ_SEND
FSM_PAC_RQ_RCV
LOCAL
HS_TO_PC_RECORD

Initialize PI to ~PAC.
Select in the following order, based on RRI and EFI RH bits:

When EFI = EXP
Indicate that the pacing queue does not need to be checked.

When RRI = RQ
If send pac;ng is active then

Indicate that the pacing queue needs to be checked.
Else (send pacing not active)

Indicate that the pacing queue does not need to be checked.
Call TC.TRY_TO_ENCIPHERCBIUl Cpage 6.2-141 to encipher the BIU.

LOCAL.SENSE_COOE will be nonzero if enciphering failed.

When RRI = RSP

page 6.2-14
page 6.2-20
page 6.2-21
page 6.0-6
page A-11

If send pacing is active and QRI =QR and the pacing queue CLOCAL.Q_PACl
is not empty then

Indicate that the pacing queue needs to be checked.
Else

Indicate that the pacing queue does not need to be checked.
If receive pacing is active and FSM_PAC_RQ_RCV Cpage 6.2-211
is in the PEND state and there are sufficient Cimplementation-dependent)
resources then

Call FSM_PAC_RQ_RCVCBIUl (page 6.2-211 to manipulate the Pacing
indicator in this response.

Chapter 6.2. Transmission Control 6.2-13

TC.SEND

6.2-14

If LOCAL.SENSE_CODE = 0 then
Select, based on whether the pacing queue should be checked (as indicated

above):

When YES
If RRI = RQ and LOCAL.SEND PACING COUNT > 0 then

Call FSM_PAC_RQ_SEND!BIUJ !page 6.2-20) to record the ability
to send a session-level pacing request for send pacing.

Decrement LOCAL.SEND_PACING_COUNT by 1.
Incorporate the BIU into the PIU field of the HS_TO_PC_RECORD:
Set the HS_ID to the identifier of the half-session that

is sending this record.
CEFI, SNF, the RH, and the RU were set up by the procedure that
passed this record to TC.)

Set DCF to the length of the RH plus the length of the RU.
Send the HS_TO_PC_RECORD to the path control that the half-session
uses.

Else !not normal flow or send pacing count ~ 0)
Enqueue the BIU to the end of the pacing send queue (LOCAL.Q_PACJ.

When NO
Incorporate the BIU into the PIU field of the HS_TO_PC_RECORD
(see above):

Send the HS_TO_PC_RECORD to the path control that the half-session uses.

Else (cryptography error)
!The half-session router will cause the session to be terminated because

LOCAL.SENSE_CODE is nonzero.)

TC.TRY_TO_ENCIPHER

FUNCTION: Encipher a normal-flow request if necessary.

INPUT: A BIU that includes a normal-flow request from TC.SEND; indicator of whether
cryptography is active for the session; the cryptography session key and ses­
sion seed !the technique for providing the cryptography session key and ses­
sion seed is defined by the implementation).

OUTPUT: If necessary, BIU is enciphered and padded, and EDI and POI are set according­
ly.

Referenced procedures, FSMs, and data structures:
LOCAL

If the RU category is FMD and the RU data length > 0
and cryptography is active then

If the RU length is not an even multiple of 8 then

page 6.0-6

Pad the RU to an integral number of eight bytes. The padding bytes are
added to the end and contain unpredictable values, except for the last
pad byte, which contains an unsigned 8-bit binary count of the pad bytes
preceding it. If only one byte of pad is required, it is the count byte
itself and contains 1.

Set POI to PD.
Else

Set POI to ~Po.

Encipher the RU data:
Execute the Data Encryption Standard CDESJ algorithm, using the session key
as the cryptography key and the session seed as the initial chaining value.
The manner in which the session key and the session seed are made available
to this procedure is implementation-defined. Details of the DES algorithm
are not formally specified in this book.

If enciphering fails then
Set LOCAL.SENSE_CODE to X'08480000' (cryptography function inoperative>.

Else
Set EDI to ED.

SNA Format and Protocol Reference Manual for LU Type 6.2

TC.RCV

TC.RCV

FUNCTION: Receive message
checks are made.
essed. Requests
Sequence numbers

units sent to the half-session by PC. The usage and state
If the message unit contains a pacing response, ;t is proc­

and responses are routed and pacing requests are processed.
are processed.

INPUT: A request or response BIU from the half-session router Csee Chapter 6.0l.

OUTPUT: If no errors, DFC.RCV is called to process the BIU. If an error ;s encount­
ered for CP-LU sessions, a negative response is generated. If an error is
encountered for LU-LU sessions, LOCAL.SENSE CODE is set to a nonzero value and
the half-session router causes an UNBIND to-be generated.

If the BIU is an Isolated Pacing Response CIPRl it is discarded.

Referenced procedures, FSHs, and data structures:
TC.RCV_CHECKS
TC.RCV_NORH_RQ
DFC_RCV
SEND_NEG_RSP_OR_LOG
LOCAL
PC_TO_HS_RECORD

page 6.2-16
page 6.2-17
page 6.1-23
page 6. l-37
page 6.0-6
page A-23

This procedure has access to the PC TO HS RECORD and to the LOCAL control block.
Extract the BIU from the PIU field of the-PC_TO_HS_RECORD.

Call TC.RCV_CHECKSCBIUJ Cpage 6.2-16) to check for
errors in the received BIU.

If there is a receive check error (LOCAL.SENSE CODE~ Ol then
If this is an LU-LU session then -

CThe nonzero setting of LOCAL.SENSE_CODE causes an UNBIND to terminate
the session.)

Else CCP LU session)
Call SEND_NEG_RSP_OR_LOGCBIUl (page 6.1-371 to send a negative

response or to log the error.

Else Cno receive-check errors)
If send pacing is active then

If RRI=RSP and PI=PAC then
Call FSH_PAC_RQ_SENDCBIUl Cpage 6.2-201 to record the ability to send

a pacing request for send pacing.
Call TC.DEQUEUE_PAC (page 6.2-181 to remove BIUs from the
send pacing queue CLOCAL.Q_PACl.

If RRI=RSP and PI=PAC and DRlI~DRl and DR2I~DR2 Cit is an IPR! then
Discard the IPR.

Else C not IPR l
If EFI = NORMAL and RRI = RQ then

Call TC.RCV_NORH_RQCBIUl !page 6.2-171 to decipher the RU data c;f necessary),
update the receive pacing FSH, and increment the last received sequence
number CLOCAL.SQH RCV CHTl.

If LOCAL.SENSE CODE =-0 then
Call DFC_RCVCBIUl !page 6.1-231 to pass the record to DFC.

Else
!The nonzero setting of LOCAL.SEHSE_CODE causes an UNBIND to terminate
an LU-LU session.I

Chapter 6.2. Transmission Control 6.2-15

TC.RCV_CHECKS

TC.RCV_CHECKS

6.2-16

FUNCTION: Usage checks are made for valid RU length and valid sequence number on a
normal-flow request. If cryptography is to be used, an optional check is made
that EDI is set when enciphering is mandatory, and the length of the RU is
checked for being a multiple of 8. An optional check is made that the pacing
protocol was not violated by the sender. The procedure verifies that all FSMs
are in the proper state.

INPUT: A request or response BIU from TC.RCV; indication whether maximum receive RU
size is being enforced, and the maximum receive RU size <LO­
CAL.MAX_RCV_RU_SIZE> if so; indication whether sequence numbers are being
used, and the last receive sequence number if so; indication whether receive
pacing is active, and the receive pacing count (LOCAL.RCV_PACING_COUNT) if soJ
indication whether cryptography is active.

OUTPUT: If a problem is found, LOCAL.SENSE_CODE is set to nonzero.

Referenced procedures, FSMs, and data structures:
LOCAL

If RRI = RQ and SDI = SD then
Return with LOCAL.SENSE_CODE set to the sense code of the BIU.

If EFI = NORMAL then
If a maximum receive RU size was specified at session activation and

the length of the received RU > maximum receive RU size then
Return with LOCAL.SENSE_CODE set to X'l0020000' IRU length error).

If RRI = RQ then
If sequence numbers are being used then

If SNF ~next expected sequence number (LOCAL.SQN_RCV_CNT + 1)
(including consideration of the wrap easel then

page 6.0-6

Return with LOCAL.SENSE_CODE set to X'20010000' (sequence number errorl.
If PI = PAC but receive pacing is not active then

Return with LOCAL.SENSE_CODE set to X'40080000' Cpacing not supported).

If cryptography is active and the RU category is
FMD and the length of the RU > 0 then

If EDI = ~ED then
Return with LOCAL.SENSE_CODE set to X'08090000' Cmode inconsistency).

Else (enciphered>
If the RU data length is not an even multiple of 8 bytes then

Return with LOCAL.SENSE_CODE set to X'10010000' CRU data error).

(The following is an optional check for pacing protocol violation)
If receive pacing is active and the receive pacing count CLOCAL.RCV_PACING_COUNT>

:: O then
Return with LOCAL.SENSE_CODE set to X'20110000' (pacing error).

If the RU category is network control or session control then
Return with LOCAL.SENSE_CODE set to X'10070000' (category not supported).

Return with LOCAL.SENSE_CODE set to 0 (no errors>.

SNA Format and Protocol Reference Manual for LU Type 6.2

TC.RCV_NORM_RQ

TC.RCV_NORM_RQ

FUNCTION: Decipher a normal-flow request if necessary, update receive pacing FSM, and
increment sequence number.

INPUT: Normal-flow request BIU; indication whether cryptography is active; indication
whether sequence numbers are used, and, if so, the last received sequence num­
ber CLOCAL.SQN_RCV_CNT); indication whether receive pacing is active, and, if
so, the receive pacing count CLOCAL.RCV_PACING_COUNTll the session
cryptography key and seed.

OUTPUT: Normal-flow request deciphered if input was enciphered. If sequence numbers
are used, the sequence number is updated. If receive pacing is active, the
receive pacing count is decremented.

Referenced procedures, FSMs, and data structures:
FSM_PAC_RQ_RCV
LOCAL

If cryptography is active and the RU category is FMD and the RU data
length > 0 then

page 6.2-21
page 6.0-6

Execute the DES decipher algorithm. Use the session key as the cryptography key.
Use the session seed as the initial chaining value. The manner in which
the session key and the session seed are made available to this procedure
is implementation-defined. Details of the DES algorithm are not formally
specified in this book.

If deciphering is not successful then
Set LOCAL.SENSE CODE to X'08480000' (cryptography function inoperative).
Log the error. -

Else (deciphering was successful)
If PI : PAD then

If the pad count is less than 1 or greater than 7 then
Set LOCAL.SENSE_CODE to X'lOOlOOOO', RU data error.
Log the error.

Else
Eliminate the padding. Set PI to ~PAD.

If sequence numbers are being used then
Increment the last received sequence number (LOCAL.SQN_RCV_CNTl by 1, including
handling the wrap condition.

If receive pacing is active then
Call FSM_PAC_RQ_RCVCBIUl Cpage 6.2~211 to record the ability to send a session

pacing response for receive pacing.
Decrement the receive pacing count (LOCAL.RCV_PACING_COUNTI by 1.

Chapt~r 6.2. Transmission Control 6.2-17

TC.DEQUEUE.-PAC

TC.DEQUEUE_PAC

6.2-18

FUNCTIOt{: A pacing response has been received so Q_PAC is now unlocked. Determine if it
is valid to remove a BIU from Q_PAC. It is valid to remove a BIU from Q_PAC
if it is a response or if it is a request and the pacing count is nonzero.

INPUT:

OUTPUT:

NOTE:

If valid, removes BIU from Q_PAC and sends it to path control. This procedure
may cause the Pacing indicator in the BIU to be set to PAC.

LOCAL.Q_PAC has BIUs that were not sent earlier because a pacing response was
outstanding; state of FSH_PAC_RQ_RCVJ the send pacing count (LO­
CAL.SEND_PACING_COUNT>.

HS_TO_PC_RECORD is sent to path control.

Procedure called only if LOCAL.SEND_PACING = YES.

Referenced procedures, FSHs, and data structures:
FSH_PAC_RQ_SEND
FSH_PAC_RQ_RCV
LOCAL
HS_TO_PC_RECORD

page 6.2-20
page 6.2-21
page 6.0-6
page A-11

Do while LOCAL.Q_PAC is not empty and (send pacing count [LOCAL.SEND_PACING_COUHTJ > 0
or the top entry on Q_PAC is a response)

Remove the first enqueued BIU from Q_PAC.
Select, based on the RRI of the removed BIU:

When RRI = RQ
CALL FSH_PAC_RQ_SEND(removed BIU) (page 6.2-20) to manipulate the PI

in the BIU being sent and to manage send pacing states.
Decrement the send pacing count CLOCAL.SEND_PACING_COUNTJ by 1.

When RRI = RSP
If sufficient (implementation-dependent) resources exist and FSH_PAC_RQ_RCV

Cpage 6.2-21) is in the PEND state and receive pacing is active then
CALL FSH_PAC_RQ_RCV(removed BIU> (page 6.2-21) to manipulate

the PI in the BIU being sent and to manage receive pacing states.

Incorporate the BIU into the PIU field of the HS_TO_PC_RECORD (see page 6.2-13
for detalls).

CEFI, SNF, the RH, and the RU data were set up by the process that originally
passed this record to TC.)

Send the HS_TO_PC_RECORD to the path control that the half-session uses.

sm Format and Protocol Reference Manual for LU Type 6.2

TC.TRY_TO_SEND_IPR

TC.TRY_TO_SEND_IPR

FUNCTION: Determines if an ISOLATED PACING RESPONSE CIPR) may be sent, based on the
state of FSM_PAC_RQ_RCV (page 6.2-21) and the availability of resources. If
an IPR may be sent, the procedure generates an ISOLATED PACING RESPONSE
CRH=X'830100') and sends it to path control.

INPUT: An indication whether receive pacing is active for the session; state of the
FSM PAC_RQ_RCV.

OUTPUT: If an IPR is allowed, an ISOLATED PACING RESPONSE is sent to path control.

NOTE: 1) An IPR is unique because it is the only response that can be sent with DRlI
and DR2I off (response category = RQN).

2) When an implementation sets the return code to NG, a method must be pro­
vided to insure that the half-session router will execute again when resources
become available. Otherwise, the session could deadlock.

IPRs are needed to prevent deadlocks when no responses are being sent that can
carry the pacing response or when the only available responses are blocked on
the pacing queue. IPRs cannot be blocked on the pacing queue.

This routine is called periodically by the half-session router (see Chapter
6.0).

Referenced procedures, FSMs, and data structures:
FSM_PAC_RQ_RCV
LOCAL

page 6.2-21
page 6.0-6

If receive pacing is active and the state of FSM_PAC_RQ_RCVCBIU) Cpage 6.2-21)
is PEND then

If sufficient (implementation-dependent) resources exist then
Create a BIU to contain the IPR.

Set EFI to NORMAL or EXP (either normal or expedited flow is valid).

Set SNF to some value (implementation dependent). IPR is on the TC-TC flow,
not the half-session to half-session flow, so is not related to the half­
session send sequence number CLOCAL.SQN_SEND_CNT>.

Set DCF to the length of the RH plus the length of the RU.

Set the RH to X'830100':
CRSP, FMD, ~FMH, ~so, BC, EC, RQN, POS, ~DRl, ~DR2, ~QR, PAC,
~BB, ~co, CODEO, ~ED, ~po, ~CEBl.

Set the RU to the null value.
Call FSM_PAC_RQ_RCVCBIU) (page 6.2-21) to manage receive pacing.
Incorporate the BIU into the PIU field of the HS_TO_PC_RECORD.
Send the HS_TO_PC_RECORD to the path control that the half-session uses.

Else
NOTE: When the implementation does not have sufficient resources at this
time, a method must be provided to insure that the half-session router
will execute again when resources become available. Otherwise, the session
could deadlock.

Chapter 6.2. Transmission Control 6.2-19

~ FINITE-STATE MACHINES

6.2'-20

FSM_PAC_RQ...SEND

FUNCTION: Records the ability to send a session-level pacing request for send pacing.
RESET state indicates that a pacing request can be sent. AWAITING indicates
that a pacing request has been sent but no pacing response has been received.

INPUT: BIU; send pacing count (LOCAL.SEND.;_PACING_COUNT).

s, RQ, FIRST_IN_WINDOW means sending a BIU with RRI=RQ when the send pacing
count equals the send window size.

s, RQ, .. FIRST_IN_WINDOW means sending a BIU with RRI=RQ, when the send pacing
count does not equal the send window size.

R, RSP, PAC means receiving a BIU with RRI=RSP and PI=PAC.

OUTPUT: PI, LOCAL.SEND_PACING_COUNT.

NOTE: FIRST_IN_WINDOW is TRUE when the pacing count equals the window size. This is
never true when the FSM is in the AWAITING state because when the FSM enters
the AWAITING state, the pacing count is set to 1 less than the window size.
The pacing count is increased only when a pacing response is received, at
which time the FSM returns to the RESET state.

Referenced procedures, FSMs, and data structures:
LOCAL page 6.0-6

STATE NAMES----> RESET AWAITING
INPUTS STATE NUMBERS--> 01 02

s, RQ, FIRST_IN_WINDOW 2CPACRQ) /NOTE
s, RQ, .. fIRST_IN_WINDOW -CNOPAC> -CNOPAC >

R, RSP, PAC -C PACERR > lCPACRSP)

SIGNALC RESET> - 1

OUTPUT FUNCTION
CODE

PACRQ Set PI to PAC.

NOPAC Set PI to .. PAC.

PACERR Set PI to .. PAC.
Log the unexpected pacing response that was received.

PACRSP Increase the send pacing count CLOCAL.SEND_PACING_COUNT)
by the value of one send window (specified at session activation).

SNA Format and Protocol Reference Manual for LU Type 6.2

FSt1_PAC_RQ_RCY

FSt1_PAC_RQ_RCY

FUNCTION: Records the ability to send a session pacing response for receive pacing. In
RESET state. no pacing response is sent; in PEND state. it is.

INPUT:

OUTPUT:

In PEND state this half-session has resources to receive another window of
BIUs but there has not been a response flowing on which to indicate the condi­
tion. The half-session is looking for a response to be sent.

When a pacing response is sent. the receive-pacing count is incremented by the
receive-pacing window size. The receive-pacing count field is required only
for an optional receive check. ·

Receive pacing count CLOCAL.RCY_PACING_COUNTl.

Rt RQt PAC means receiving a BIU with RRI=RQ and PI=PAC.

St RSP means sending a BIU with RRI=RSP. PI must be .. PAC.

PI may be set to PAC or .. PAC; LOCAL.RCV_PACING_COUNT may have been incremented
by 111indow size.

Referenced procedures. FSMs. and data structures:
LOCAL page 6.0-6

STATE NAMES----> RESET PEND
INPUTS STATE NUMBERS--> 01 02

R. RQ. PAC 2 -<PACERR l

s. RSP - lCPACl

SIGNAL< RESET l - 1

OUTPUT FUNCTION
CODE

PAC Set PI to PAC.
Increase the receive pacing count CLOCAL.RCY_PACING_COUNTl
by the value of one receive 111indow (specified at session activation).

PACERR Set PI to .. PAC.
Log the unexpected pacing request that was received.

Chapter 6.2. Transmission Control 6.2-21

22 SHA For111at and Protocol Reference Hanwal for W Type 6.2

APPENDIX Az. NODE DATA STRUCTURES

This appendix contains the shared data struc­
tures for LU 6.2.

CPLU_CB

The CP-LU control block represents an active session between this LU and a control point
C SSCP or PNCP) •

CPLU_CB
CP_ID:
PC_ID:
HS_ID:

control point identifier Csee page A-21
identifier of path control being used by this CP-LU session
identifier of the CP-LU half-session

LUCB

The LUCB_LIST contains information about LUs. There is one LUCB_LIST per node and one
LUCB per LU.

The LUCB_LIST is created at system-definition time. The initial values of the fields in
each LUCB entry are implementation-specific.

NOTES: 1. Fully-qualified LU names consist of type-A symbol strings. Transaction pro­
gram names consist of type-AE up through type-GR symbol strings, depending on
the implementation. See "Appendix E. Request-Response Unit CRU> Formats" for
symbol-string definitions.

LUCB

2. If the LU name is not present, the FULLY_QUALIFIED_LU_NAME field is null.
Subarea LUs, LUs doing sync point, and LUs using parallel sessions have to
know their own names.

3. The FULLY_QUALIFIED_LU_NAME contains no trailing blanks.

Shared Data

LU_ID: identifier of the local LU
FULLY_QUALIFIED_LU_NAME Csee Notes)
PARTNER_LU_LIST Csee page A-2>

Data Unique to PS.COPR

LU_SESSION_LIMIT: maximum number of LU-LU sessions the local LU can have

Appendix A. Node Data Structures A-1

CP_Ib

CP;):D

The CP_ID structure ;s the un;que control po;nt (e.g., SSCP, PNCP> ;dent;f;er.

CP..;ID
Subarea node contents:

CP_NETWORK_ADDRESS: full network address of control po;nt
Peripheral node contents:

ALS: adjacent link staUon that control pofot is using for CP-LU and CP-PU sessions

PARTNER_ LU

The PARTNER_LU_LIST is a list conta;ned within each LUCB entry. There is one PART­
NER_LU_LIST per LU and one PARTNER_LU entry for each LU name known by a given LU. Each
PARTNER_LU entry contains information that ;s LU name spec;fic Ci.e., information that is
constant across all mode names for a given LU name).

The PARTNER_LU_LIST is created at system-def;nition time. The initial values of the
fields in each PARTNER_LU entry are implementation specific.

NOTES: 1. The (partner) LOCAL_LU_NAME is the name that a transaction program specifies
in conjunction with the MODE_NAME when requesting the allocation of a conver­
sation. It is a local. name by which one LU knows another LU and is not sent
outside the LU. The maximum length of the LU_NAME is implementat;on-def ined.

There may be an entry in the PARTNER_LU_LIST whose LOCAL_LU_NAME is the same
as the LU name of this LU. Th;s allows for cases when the remote transaction
program is located ;n the same LU as the local program.

2. Local LU names consist of type-G symbol strings. Fully-qualified LU names con­
sis:t of type-A symbol strings. See "Appendix E. Request-Response Unit CRU)
Formats" for symbol-string definitions.

3. The (partner) FULLY..;.QUALIFIED_LU_NAME is the LU name that is sent on external
flows, e.g., BIND.

4. The LOCAL_LU_NAME, FULLY_QUALIFIED_LU_NAME, and UNINTERPRETED_LU_NAME fields
contain no trailing blanks.

PARTNER_ LU

Shared Data

LOCAL_LU_NAME Csee Notes 1, 2, and 4)
FULLY_QUALIFIED_LU_NAME Csee Notes 2, 3, and 4)
UNINTERPRETED_LU_NAME Csee Note 4J
MODE_LIST Csee page A-3J
SESSION_LIMIT: maximum number of sessions that the local LU can have with

the partner LU

A-2 SNA Format and Protocol Reference Manual for LU Type 6.2

MODE

MODE

The MODE_LIST ;s a l;st conta;ned w;th;n each PARTNER_LU entry. There ;s one MODE entry
;n the MODE_LIST for each mode name that ;s assoc;ated w;th PARTNER_LU.LOCAL_LU_NAME.
Each MODE entry contains mode-name specific information.

The MODE_LIST ;s created at system-definition time. The initial values of the fields in
each MODE entry are implementation specific.

NOTES: 1. The WAITING_REQUEST_LIST contains requests for sessions sent by PS.CONY
("Chapter 5.1. Presentation Services--Conversat;on Verbs") that the resources
manager cannot presently fulfill because no free sessions are available.
Entries are removed from the list when an existing sess;on becomes free or
when a new session is activated.

MODE

2. The FREE_SCB_LIST is a list of sessions that are currently not in use by any
conversation. The list is an ordered list in that all first-speaker
half-sessions are grouped at the front of the list with all bidder
half-sessions following. A new first-speaker entry ;s inserted at the begin­
ning of the list, while a new bidder entry is inserted at the end.

The FREE_SCB_LIST and the WAITING_REQUEST_LIST are mutually exclusive. An
entry in the FREE_SCB_LIST precludes there being an entry in the WAIT­
ING_REQUEST_LIST, and vice versa.

3. Mode names consist of type-A symbol strings. See "Appendix E.
Request-Response Unit (RU> Formats" for symbol-string definitions.

4. TERMINATION_COUNT is the count of the number of sessions that this LU is
responsible for deactivating. PENOING_TERMINATION_* counts sessions that are
pending termination. A session is pending termination from the time that RM
("Chapter 3. LU Resources Manager") sends BIS(RQEU or BIS(RQE3) to the time
that the LU resources manager sends DEACTIVATE_SESSION or receives SES­
SION_DEACTIVATED.

5. ACTIVE * COUNT counts active sessions. These counts are maintained by RM
("Chapter 3. LU Resources Manager"). A session is active from the time that
the resources manager receives SESSION_ACTIVATED or +ACTIVATE_SESSION_RSP to
the time that the resources manager sends DEACTIVATE_SESSION or receives SES­
SION_DEACTIVATED. ACTIVE_*_COUNT includes sessions that are pending termi­
nation lsee below). ACTIVE_SESSION_COUNT is the sum of
ACTIVE_CONWINNERS_COUNT and ACTIVE_CONLOSERS_COUNT.

6. PENOING_*_COUNT counts pending-active sessions. These counts are maintained
by RM ("Chapter 3. LU Resources Manager"). A session is pending active from
the time that the resources manager sends ACTIVATE_SESSION to the time that
the resources manager receives ACTIVATE_SESSION_RSP. PENOING_SESSION_COUNT is
the sum of PENDING_CONWINNERS_COUNT and PENOING_CONLOSERS_COUNT.

Shared Data

NAME: mode name (see Note 3)
SESSION_LIMIT: maximum number of sessions allowed for this partner (LU, model pair
MIN_CONWINNERS_LIMIT: minimum number of contention winner sessions
MIN_CONLOSERS_LIMIT: minimum number of contention loser sessions

ACTIVE_SESSION_COUNT Csee Note 5)
ACTIVE_CONWINNERS_COUNT
ACTIVE_CONLOSERS_COUNT

PENOING_SESSION_COUNT (see Note 6)
PENDING_CONWINNERS_COUNT
PENOING_CONLOSERS_COUNT

DRAIN_SELF: possible values: YES, NO
DRAIN_PARTNER: possible values: YES, NO
AUTO_ACTIVATIONS_LIMIT

Appendix A. Node Data Structures A-3

MOOE

Data Unique to LU Resources Manager

TERMINATION_COUNT !see Note 4>
PENDING_TERMINATION_CONWINNERS
PENDING_TERMINATION_CONLOSERS
SINGLE_SESSION_POLARITY: possible values: FIRST_SPEAKER, BIDDER

TRANSACTION_ PROGRAM

Each LUCB contains a TRANSACTION_PROGRAM_LIST. This list contains one entry for each
transaction program known at the LU. Each TRANSACTION_PROGRAM entry in the TRANS­
ACTION_PROGRAM_LIST contains information describing one transaction program.

The TRANSACTION_PROGRAM_LIST is created at system-definition time • The initial values of
the fields in each TRANSACTION_PROGRAM entry are implementation-defined.

NOTE: Transaction program names consist of type-AE up through type-GR symbol
strings, depending upon the implementation. See "Appendix E. Request-Response
Unit CRUI Formats" for symbol-string definitions.

TRANSACTION_ PROGRAM

Shared Data

TRANSACTION_PROGRAM_NAME (up to 64 bytes long!
PRIVILEGED_FUNCTIONS_LIST: possible values: ATTACH_SERVICE_TP, CHANGE_NUMBER_OF_SESSIONS,

DEFINE_LU_PARAMETERS, DISPLAY_LU_PARAMETERS
RESOURCES_SUPPORTED_LIST: possible values: BASIC_CONVERSATION, MAPPED_CONVERSATIN

Data Unique to PS.INITIALIZE

NUMBER_OF_PIP_SUBFIELDS

Data Unique to RM

SYNC_LEVELS_SUPPORTED_LIST: possible values: NONE, CONFIRM, SYNCPT

Data Unique to PS.MC

MC_FUNCTIONS_SUPPORTED_LIST: possible values: MAPPING, FMH_DATA

A-4 SNA Format and Protocol Reference Manual for LU Type 6.2

LULU_CB

LULU_CB

The LU-LU session control
about an LU-LU session.

block is used bv LU network services (LNS) to keep information
There is one LULU_CB for each LU-LU session.

LULU_CB

The following fields are always set to the correct value when the
LULU_CB is created and initialized !independent of what caused it to
be created).

CP_LU: contains information pertaining to CP_LU session
CP_ID: control point identifier (see page A-21
HS ID: identifier for CP-LU half-session

LUNAME: contains local and fully qualified target LU names
MODENAME: mode name for this LU-LU session
SESSION_ID: session instance identifier
SESSION INFORMATION

HALF=SESSION_TYPE: possible values: PRI, SEC
SESSION_TYPE: possible values: FIRST_SPEAKER, BIDDER

CORRELATOR field is set when an ACTIVATE_SESSION (from RMl causes the
creation of the LULU_CB. It is used by RM to correlate ACTI­
VATE_SESSION_RSP to ACTIVATE_SESSION.

CORRELATOR
LU_LU: information pertaining to the LU-LU session

PC_ID

ALS

PC_ID--path control identifier representing the path control process
being used by this LU-LU session. This field is set when a BIND
request or PC_CONNECT_RSP is received.

ALS--adjacent link station identifier representing the link this LU-LU
session is using. This field is set when a BIND request is received
or a PC_CONNECT is sent. It is used only in peripheral nodes.

ADDRESS--the addresses of the LUs for this LU-LU session. For subarea
nodes this field is set when a CINIT or BIND request is received. For
peripheral nodes it is set when a BIND request or PC_CONNECT_RSP is
received.

ADDRESS (see page A-33)

Appendix A. Node Data Structures A-5

LULU_ CB

HS_ID--this field contains the process identifier for the LU-LU
half-session process (HS>. When the half-session process does not
exist, this field is set to a null value.

HS_ID

SENT_INITIATE_RQ fields are set when an INIT-SELF request is sent.

SENT_INITIATE_RQ
URC: used to correlate future CINIT or BIND request.
SNF: TH sequence number of sent INIT-SELF request {used to correlate

INIT-SELF response).

SENT_BIND_RQ fields are set when a BIND request is sent.
the sent BIND request RU is saved because it is needed
error checking on the received BIND response.

SENT_BIND_RQ

A copy of
to perform

-

SNF: TH sequence number of sent BIND request (used to correlate BIND resonse>
BIND_R~RU: saved BIND request RU

SENT_UNBIND_RQ fields are set when an UNBIND request is sent.

SENT_UNBIND_RQ
SNF: TH sequence number of sent UNBIND request (used to correlate UNBIND response)

A-6 SNA Format and Protocol Reference Manual for LU Type 6.2

RCB

RCB

The RCB_LIST contains information about resourceso There is one RCB_LIST per LU and one
RCB per resource known by that LU. The RCB_LIST is managed by RM ("Chapter 3. LU
Resources Manager"). Entries are added to, and deleted from, the RCB_LIST by the
resources manager. The RCB_LIST is also referenced by presentation services, e.g.,
PS.CONY ("Chapter S.l. Presentation Services--Conversation Verbs"). The RCB_LIST contains
entries for all the resources associated with all the transaction program instances active
at a particular LU.

NOTES: 1. The (partner) LU_NAME is the name that a transaction program specifies in con­
junction with the MODE_NAME when requesting the allocation of a conversation.
It is a local name by which one LU knows another LU and is not sent outside
the LU. The maximum length of the LU_NAME is implementation-defined, but is
shown here as having a maximum length of 17 characters.

RCB

2. LU names consist of type-G symbol strings. Mode names consist of type A symbol
strings. See "Appendix E. Request-Response Unit <RU> Formats" for symbol
string definitions.

3. When the resources manager receives a GET_SESSION (page A-26) from PS.CONY and
determines that only a bidder half-session is available (i.e., all first
speaker half-sessions are in use), it has to request permission to use the
half-session. Because permission may be denied, SESSION_PARMS_PTR points to
the GET_SESSION record while the request for permission to use the session is
outstanding. If permission is denied, the GET_SESSION record is used to issue
a new request for a session. After permission has been granted, or if a first
speaker session can be allocated, SESSION_PARMS_PTR has a value of NULL.

Shared Data

RCB_ID: ID of this RCB
TCB_ID: ID of the transaction that owns this RCB
HS_ID: ID of the half-session associated with this
LU_NAME: Partner LU name (see Notes 1 and 2>

RCB

MODE_NAME (see Note 2>
CONVERSATION_TYPE: possible values: BASIC_CONVERSATION, MAPPED_CONVERSATION

FSM_CONVERSATION page S.l-59

Data Unique to RM

SESSION_PARMS_PTR (see Note 3)

Appendix A. Node Data Structures A-7

RCB

Data Unique to PS.CONY

PS_TO_HS_RECORD, see SEND_DATA_RECORD page A-24
SEND_LL_REMAIHDER: number of bytes remaining to be sent in the outgoing

logical record
RECEIVE_LL_REMAINDER:
logical record

POST_CONDITIONS

number of bytes remaining to be received in the incoming

FILL: possible values: BUFFER. LL
MAX_LENGTH: maximum number of bytes in incoming logical record or buffer
LOCKS: possible values: SHORT, LONG

SEND_LL_BYTE: possible values: PRESENT, NOT_PRESENT
SAVED_BYTE: retains SEND_LL_BYTE I reserved when SEND_Ll_BYTE=NOT PRESENT>
MAX_BUFFER_LENGTH: maximum number of bytes in outgoing logical r;cord or buffer
SYNC_LEVEL: possible values: NONE, CONFIRM, SYNCPT
RQ_TO_SEND_RCVD: possible values: YES, NO

FSM_ERROR_OR_FAILURE
FSM_POST

HS_TO_PS_BUFFER_LIST: List of BUFFER_ELEMENT !see page A-8>

Data Unique to PS.MC

MC_RECEIVE_BUFFER: Contains RECEIVED_INFO !see page A-8)
MAPPER_SAVE_AREA

page 5.1-61
page 5.1-62

MC_MAX_SEND_SIZE: maximum number of bytes in a mapped-conversation logical record

BUFFER_ELEMENT

BUFFER_ELEMENT is the structure that is inserted into the HS_TO_PS_BUFFER_LIST. The
HS_TO_PS_BUFFER_LIST is contained within an RCB and consists of information received by
PS.CONV !"Chapter 5.1. Presentation Services--Conversation Verbs") from the half-session
but not yet p,assed to the transaction program.

BUFFER_ELEMENT:
TYPE: possible values: DATA, FMH7, CONFIRM, PREPARE_TO_RCV_FLUSH,

PREPARE_TO_RCV_CONFIRM, DEALLOCATE_FLUSH, DEALLOCATE_CONFIRM
DATA (reserved when TYPE~DATA, FMH7>

RECEIVED_INFO

RECEIVED_INFO is the structure that is inserted into the MC_RECEIVE_BUFFER_LIST. The
MC_RECEIVE_BUFFER_LIST is contained within an RCB and consists of information received by
PS.MC ("Chapter 5.2. Presentation Services--Mapped Conversation Verbs") but not yet passed
to the transaction program.

RECEIVED_INFO
TYPE: possible values: MAP_NAME, MAP_NAME_AND_DATA_CONTINUED,

DATA_CONTINUED, MAPPED_DATA. INDICATOR, RC

\
A-8 SNA Format and Protocol Reference Manual for LU Type 6.2

SCB

SCB

There is one SCB per half-session. SCBs are maintained by the resources manager.

NOTES: 1. The (partner) LU_NAME is the name that a transaction program specifies in con­
junction with the MODE_NAME when requesting the allocation of a conversation.
It is a local name by which one LU knows another LU and is not sent outside
the LU. The maximum length of the LU_NAME is implementation-defined, but is
shown here as having a maximum length of 17 characters.

2. LU names consist of type-G symbol st~ings. Fully-qualified LU names and mode
names consist of type-A symbol strings. See "Appendix E. Request-Response
Unit CRU) Formats" for symbol-string definitions.

SCB

HS_ID: unique SCB identifier
LU_NAME: partner LU name Csee Notes)
MODE_NAME: mode name (see Note 2)

Shared Data

RCB_ID: ID of RCB representing the conversation that is using this session;
null if no conversation is using this session

FULLY_QUALIFIED_LU_NAME: Partner LU name (see Note 2)

Appendix A. Node Data Structures A-9

TCB

TCB

The TCB_LIST contains information about active transaction program instances. There is
one TCB_LIST per LU and one TCB per active transaction program instance running at that
LU. The TCB_LIST is managed by RM ("Chapter 3. LU Resources Manager"). Entries are added
to and deleted from the TCB_LIST by the resources manager. The TCB_LIST is also refer­
enced by presentation services, e.g., PS.CONY ("Chapter 5.1. Presentation Serv­
ices--Conversation Verbs").

Each TCB contains an embedded RESOURCES_LIST, which contains one (pointer) entry for each
resource associated with a particular transaction program instance.

NOTES: 1. Transaction program names and access security information subfield consist of
type-AE up through type-GR symbol strings, depending upon the implementation.
See "Appendix E. Request-Response Unit (RU> Formats" for symbol-string defi­
nitions.

2. Each entry in the RESOURCES_LIST has a corresponding entry in the RCB_LIST.
The RCB_LIST contains entries for all the resources associated with all the
transaction program instances running at the LU. In contrast, the
RESOURCES_LIST contains entries for only those resources associated with a
particular transaction program instance.

TCB

TCB_ID: identifies the PS process
TRANSACTION_PROGRAM_NAME (See Note 1)
OWN_LU_ID
LUW_IDENTIFIER

FULLY_QUALIFIED_LU_NAME
LUW_INSTANCE
LUW_SEQUENCE_NUMBER

RESOURCES_LIST (see Note 2)

Shared Data

CONTROLLING_COMPONENT: possible values: TP, SERVICE_COMPONENT
ACCESS_SECURITY_INFORMATION (see Note l>

TYPE_O: contains profile
TYPE_l: contains password
TYPE_2: contains user ID

HS_TO_LNS_RECORD

HS_TO_LNS_RECORD is a record sent by the half-session (HS> to LU network services (LNS>.

HS_TO_LNS_RECORD: contains INIT_HS_RSP, HS_RCV_RECORD, or ABORT_HS record (see below)

A-10 SNA Format and Protocol Reference Manual for LU Type 6.2

ABORT_HS

ABORT_HS

ABORT_HS indicates to LU network services that the half-session has found a severe error
and cannot continue processing. This will cause an UNBIND request i:o be sent for the
aborted half-session.

NOTE: This record is sent only by LU-LU half-sessions.

ABORT_HS
HS_ID: identifies the half-session sending this record
SENSE_CODE: indicates the reason the half-session aborted

HS_RCV_RECORD

This record contains PIU information pertaining to FMD NS RUs that flow from the control
point to the LU on the LU-CP session (e.g., CINIT, NOTIFY).

NOTE: This record is sent only by LU-CP half-sessions.

HS_RCV_RECORD
HS_ID: identifies the half-session sending this record
PIU (see page A-35)

INIT_HS_RSP

This record is a response to the INIT_HS record that was sent from LU network services
(LNSJ to the half-session !HSJ to initialize the half-session. The response indicates
whether or not the initialization was successful <POSJ or not <NEGJ. When NEG, the reason
is indicated by the sense data in SENSE_CODE.

INIT_HS_RSP
TYPE: possible values: POS, NEG
SENSE_CODE: indicating the type of error !reserved when TYPE=POSJ
HS_ID: identifies the half-session sending the record

HS_TO_PC_RECORD

HS_TO_PC_RECORD is a record sent by the half-session <HS) to path control !PC). It con­
tains the sending half-session.'s process identifier !many half-sessions may send to the
same path control) and PIU information from which path control will build and send a PIU.

HS_TO_PC_RECORD
HS_ID: identifier of the half-session sending this record.
PIU: contains path information unit (see page A-35)

Appendix A. Node Data Structures A-11

HS_TO_PS_RECORD

HS_TO_PS_RECORD

The HS_TO_PS_RECORD is the record that HS ("Chapter 6.0. Half-Sess;on") sends to PS_CONV
("Chapter 5.1. PresentaUon Services--Conver5ation Verbs").

HS_TO_PS_RECORD: contain5 a RECEIVE_DATA, REQUEST_TO_SEND,
RSP_TO_REQUEST_TO_SEND, RECEIVE_ERROR, or CONFIRMED record (see below)

CONFIRMED

CONFIRMED ;s sent by the half-session to PS_CONV to inform PS_CONV that a pos;t;ve
response to the previous request for confirmation has been received. Confirmation is
requested when SEND_PARM.TYPE (page A-35) = CONFIRM, DEALLOCATE_CONFIRM, PRE­
PARE_TO_RCV_CONFIRM_SHORT, or PREPARE_TO_RCV_CONFIRM_LONG.

CONFIRMED
HS_ID: identifies the half-session sending this record

RECEIVE_DATA

RECEIVE_DATA is 5ent by the half-session to PS_CONV to inform PS_CONV of receipt of con­
versation data. The data is passed to PS_CONV in the DATA field. If FMH = YES, the DATA
contains an FMH-7.

RECEIVE_DATA
HS_ID: ident;fies the half-session sending this record
FMH: possible values: YES, NO (If FMH=YES, DATA contains an FMH-7.)
TYPE: possible values: NOT_END_OF_DATA, CONFIRM, PREPARE_TO_RCV_CONFIRMt

PREPARE_TO_RCV_FLUSH, DEALLOCATE_CONFIRM, DEALLOCATE_FLUSH
DATA: data received from partner transaction program

RECEIVE_ ERROR

RECEIVE_ERROR is sent by the half-sess;on to PS_CONV to inform PS_CONV that a -RSP(0846)
has been received.

RECEIVE_ ERROR
HS_ID: identif;es the half-session sending this record

A-12 SNA Format and Protocol Reference Manual for LU Type 6.2

REQUEST_TO_SEND

REQUEST_TO_SEND

REQUEST_TO_SEND is sent by the half-session to PS_CONV to inform PS_CONV that the trans­
action program at the partner LU has requested to enter the send state for the conversa­
tion.

REQUEST_TO_SEND
HS_ID: identifies the half-session sending this record

RSP_TO_REQUEST_TO_SEND

RSP_TO_REQUEST_TO_SEND is sent by the half-session to PS_CONV to inform PS_CONV that the
response to the previous REQUEST_TO_SEND record Cpage A-26) has been received.

RSP_TO_REQUEST_TO_SEND
HS_ID: identifies the half-session sending this record

HS_TO_RM_RECORD

The HS_TO_RM_RECORD is the record that HS ("Chapter 6.0. Half-Session") sends to RM
("Chapter 3. LU Resources Manager").

HS_TO_RM_RECORD: contains ATTACH_HEADER, BID, BID_RSP, FREE_SESSION,
BIS_RQ, BIS_REPLY, RTR_RQ, or RTR_RSP record (see below>

ATTACH_HEADER

ATTACH_HEADER is sent by the half-session to the resources manager to inform the res0urces
manager of the receipt of an FMH-5 on the half-session. The HEADER field contains the
FMH-5.

ATTACH_HEADER
HS_ID: identifies the half-session sending this record
HEADER: contains the received FMH-5

Appendix A. Node Data Structures A-13

BID

BID

BID ;s sent by the half-session to the resources manager to inform the resources manager
that the partner LU has requested permission to use the half-session for a conversation.
The resources manager will reply with a BID_RSP record Cpage A~28). The half-session will
send a BID record to the resources manager even if the partner LU is the first-speaker.

BID
HS_ID: identifies the half-session sending this record

BID_RSP

BID_RSP is sent by the half-session to the resources manager to inform the resources man­
ager of the partner LU's response to the local LU's request to use the session Csee
BID_WITHOUT_ATTACH [page A-29) and BID_WITH_ATTACH [page A-28)). BID_RSP is sent by the
half-session only if the local LU is the bidder. If RTI = NEG, SENSE_CODE contains the .
sense data carried on the negative response.

BID_RSP
HS_ID: identifies the half-session sending this record
RTI: type of response--possible values: POS, NEG
SENSE_CODE: indicates the type of error (reserved when RTI=POS)

BIS_RQ

BIS_RQ is sent by the half-session to the resources manager to inform the resources manag­
er that a BISCRQEl) request unit was received.

BIS_RQ
HS_ID: identifies the half-session sending this record

BIS_REPLY

BIS_REPLY is sent by the half-session to the resources manager to inform the resources
manager that a BISCRQE3) request unit was received.

BIS_REPLY
HS_ID: identifies the half-session sending this record

A-14 SNA Format and Protocol Reference Manual for LU Type 6.2

FREE_ SESSION

FREE_ SESSION

FREE_SESSIOH is sent by the half-session to the resources manager to inform the resources
manager that the half-session has become free (i.~., not in use by a conversation).

FREE_ SESSION
HS_ID: identifies the half-session sending this

record Cthe half-session that has become free)

RTR_RQ

RTR_RQ is sent by the half-session to the resources manager to inform the resources manag­
er that an RTR request unit was received.

RTR_RQ
HS_ID: identifies the half-session sending this record

RTR_RSP

RTR_RSP is sent by the half-session to the resources manager to inform the resources man­
ager that an RTR response unit was received. If RTI = NEG, SENSE_CODE contains the sense
data carried on the negative response.

RTR_RSP
HS_ID: identifies the half-session sending this record
RTI type of response: possible values: POS, NEG
SENSE_CODE: indicates the type of error (reserved when RTI=POS)

LNS_TO_HS_RECORD

LNS_TO_HS_RECORD is a record sent by LU network services CLNSJ to the half-session CHS>.

LNS_TO_HS_RECORD: contains HS_SENO_RECORD or INIT_HS record Csee below)

Appendix A. Node Data Structures A-15

HS_SEND_RECORD

HS_SEND_RECORD

This record contains PIU information pertaining to FMD NS RUs that flow from the LU to the
control point on the LU-CP session (e.g., INIT-SELF, SESSST).

NOTE: This record is sent only to LU-CP half-sessions.

HS_SEND_RECORD
~IU (see page A-35)

INIT_HS

This record contains the information necessary for the half-session to initialize itself.
It is sent when a successful session activation occurs and contains information from the
activation RUs (e.g., BIND, ACTLU>. This is the first record received by the half-session
after its creation.

INIT_HS
PC_ID: identifies the path control the half-session communicates with
TYPE of half-session: possible values: PRI, SEC
DATA_TYPE: specifies whether the DATA contains ACTLU image or BIND image
DATA: contains either ACTLU image or BIND image

ACTLU_IMAGE: contains fields associated with activating an LU-CP half-session
FM_PROFILE (see ACTLU in Appendix E>
TS_PROFILE Csee ACTLU in Appendix E>
MAX_RU_SIZE: maximum RU size to be used on the LU-CP session

BIND_IMAGE: fields associated with activating an LU-LU half-session
Csee BIND request in Appendix E>

LNS_TO_NNM_RECORD

LNS_TO_NNM_RECORD is a record sent by LU network services CLNS> to the nodal NAU manager
CNNM>.

LNS TO NNM_RECORD: contains BIND_RQ_SEND_RECORD, BIND_RSP_SEND_RECORD,
UNBIND_RQ_SEND_RECORD, UNBIND_RSP_SEND_RECORD, ACTLU_RSP_SEND_RECORD,
DACTLU_RSP_SEND_RECORD, PC_CONNECT, HIERARCHICAL_RESET_RSP,
or PC_HS_CONNECT record Csee below>

A-16 SNA Format and Protocol Reference Manual for LU Type 6.2

ACTLU_RSP_SEND_RECORD

ACTLU_RSP_SEND_RECORD

This record contains information for an ACTLU response PIU that is to be sent.

ACTLU_RSP_SEND_RECORD
LU_ID: process identifier of the sending LU
PC_ID: process identifier of path control to be sent to
ADDRESS: contains TH address fields (see page A-33)
PIU: contains ACTLU response (see page A-35>

BIND_RQ_SEND_RECORD

This record contains information for a BIND request PIU that is to be sent.

BIND_RQ_SEND_RECORD
LU_ID: process identifier of the sending LU
PC_ID: process identifier of path control to be sent to
ADDRESS: contains TH address fields (see page A-33)
PIU: contains BIND request (see page A-35>

BIND_RSP_SEND_RECORD

This record contains information for a BIND response PIU that is to be sent.

BIND_RSP_SEND_RECORD
LU_ID: process identifier of the sending LU
PC_ID: process identifier of path control to be sent to
ADDRESS: contains TH address fields (see page A-33)
PIU: contains BIND response (see page A-35)

DACTLU_RSP_SEND_RECORD

This record contains information for a DACTLU response PIU that is to be sent.

DACTLU_RSP_SEND_RECORD
LU_ID: process identifier of the sending LU
PC_ID: process identifier of path control to be sent to
ADDRESS: contains TH address fields (see page A-33)
PIU: contains DACTLU response (see page A-35)

Appendix A. Node Data Structures A-17

HIERARCHICAL;_RESET_RSP

HIERARCHICAL;_RESET_RSP

This record is a response to • HIERARCHICAL_RESET record. It indicates that hierarchical
reset processing is complete.

HIERARCHICAL_RESET_RSP
LU_ID: process identifier of the sending LU
PC_ID: process identifier of path control to be sent to
CP_ID: control point identifier (see page A-2)

PC_ CONNECT

This record is used, by primary LUs, to request information about a path control that will
be \15ed to activate an LU-LU session. For peripheral nodes, the adjacent link station
(ALS> is used to specify the path to be used. For subarea nodes, the subarea address for
the secondary LU (SIJBAREA_ADDRESS> and path information (PATH_INFORHATION> are used to
specify the path. Path information includes the class-of-service name and the virtual
route identifier list.

PC_CONNECT
LU_ID: process identifier of the sending LU
HS_ID: half-session process identifier used to correlate the PC_CONNECT_RSP
TYPE of node this PLU resides in: possible values: PERIPHERAL, SUBAREA
ALS: adjacent link station (reserved when TYPE=SUBAREA>
SUBAREA_ADDRESS: for SLU needed to assign route I reserved when TYPE=PERIPHERAL>
PATH_INFORMATION: contains class-of-service and virtual-route-identifier list

(reserved when TYPE=PERIPHERAL)

PC_HS_CONNECT

This record is used to noHfy a path control that it can now send to, and receive from, a
newly activated half-session.

PC_HS_CONNECT
LU_ID: process identifier of the sending LU
PC_ID: process identifier of path control to be sent to
HS_ID: half-session process identifier
ADDRESS: contains TH address fields (see page A-33)

PC_HS_DISCONNECT

This record is used to notify a path control that a half-session has been deactivated.
Path control will stop sending to, and receiving from, the half-session.

PC_HS_DISCONNECT
LU_ID: process identifier of the sending LU
HS_ID: process identifier of half-session being deactivated

A-18 SNA-format and Protocol Reference Manual for LU Type 6.2

PC_HS_DISCONHECT

UNBIND_Rfl_SEND_RECORD

This record contains infortwation for an UNBIND request PIU that is to be sent,,.,

UNBIND_Rfl_SEND_RECORD
LU_ID: process identifier of the sending LU
PC_ID: process identifier of path control to be sent to
ADDRESS: contains TH address fields (see page A-33)
PIU: contains UNBIND request (see page A-35)

UNBIND_RSP_SEND_RECORD

This record contains infor~ation for an UNBIND response PIU that is to be sent.

UNBIND_RSP_SEND_RECORD
LU_ID: process identifier of the sending LU
PC_ID: process identifier of path .control to be sent to
ADDRESS: contains TH address fields (see page A-33>
PIU: contains UNBIND response (see page A-35)

LNS_TO_RM_RECORD

The LNS_TO_RM_RECORD is the record that LNS ("Chapter 4. LU Netw0rk Services"> sends to RM
("Chapter 3. LU Resources Manager">.

LNS_TO_RM_RECORD: contains ACTIVATE_SESSION_RSP, SESSION_ACTIVATED,
SESSION_DEACTIVATED, or CTERM_DEACTIVATE_SESSION record (see below)

Appendix A. Node Data Structures A-19

ACTIVATE_SESSION_RSP

ACTIVATE_SESSION_RSP

ACTIVATE_SESSION_RSP is sent by LU network services to the resources manager in reply to
an ACTIVATE_SESSION record (page A-31). ACTIVATE_SESSION_RSP records need not be sent in
the same order as the the ACTIVATE SESSION records, so CORRELATOR is used to correlate the
ACTIVATE SESSION RSP to the ACTIVATE SESSION. If TYPE = POS Ca session was activated),
SESSION_INFORMATION contains session-characteristics. If TYPE = NEG (a session was not
activated), ERROR_TYPE contains a retry/no-retry indication.

ACTIVATE_SESSION_RSP
CORRELATOR: as supplied in ACTIVATE_SESSION (see page A-31)
TYPE of response: possible values: POS, NEG
SESSION INFORMATION !reserved when TYPE=NEG--see page A-35)
ERROR_TYPE: possible values: RETRY, NO_RETRY (reserved when TYPE=POSI

CTERM_DEACTIVATE_SESSION

CTERM DEACTIVATE SESSION is sent by LU network services to the resources manager to
reque;t normal shutdown Ci.e., BIS exchange followed by DEACTIVATE_SESSIONI of the session
identified by HS_ID.

CTERM_DEACTIVATE_SESSION
HS_ID: identifier of the half-session to be shut down

SESSION_ACTIVATED

SESSION_ACTIVATED is sent by LU network services to the resources manager to notify the
resources manager that the partner LU named by LU_NAME and MODE_NAME has activated a ses­
sion to this LU. The characteristics of the session are given in SESSION_INFORMATION.

NOTES: 1. The (partner) LU_NAME is the name that a transaction program specifies in con­
junction with the MODE_NAME when requesting the allocation of a conversation.
It is a local name by which one LU knows another LU and is not sent outside
the LU. The maximum length of the LU_NAME is implementation-defined.

2. LU names consist of type-G symbol strings. Mode names consist of type-A sym­
bol strings. See "Appendix E. Request-Response Unit CRUI Formats" for
symbol-string definitions.

SESSION_ACTIVATED
SESSION_INFORMATION (see page A-35)
LU_NAME (see Notes 1 and 2>
MODE_NAME Csee Note 2)

A-20 SNA Format and Protocol Reference Manual for LU Type 6.2

SESSION_DEACTIVATED

SESSION_DEACTIVATED

SESSIOH DEACTIVATED ;s sent by LU network services to the resources manager to notify the
resourc;s manager that the session identified by HS_ID has been deact1vated by the partne~
LU.

SESSION DEACTIVATED
HS ID: identifies half-session that was deactivated
REASON for deactivation: possible values: NORMAL, ABNORMAL_RETRY, ABNORMAL_NO_RETRY

NNM_TO_LNS_RECORD

NNM_TO_LNS_RECORD is a record sent by the nodal NAU manager (NNM) to LU network services
I LNS>.

NNM TO LNS_RECORD: contains BIND_RQ_RCV_RECORD, BIND_RSP_RCV_RECORD,
UNBIND_RQ_RCV_RECORD, UNBIND_RSP_RCV_RECORD, ACTLU_RQ_RCV_RECORD,
DACTLU_RQ_RCV_RECORD, PC_CONNECT_RSP, SESSION_ROUTE_INOP, or
HIERARCHICAL_RESET record (see below)

ACTLU_RQ_RCV_RECORD

This record contains information about a received ACTLU request PIU.

ACTLU_RQ_RCV_RECORD
PC_ID: process identifier of path control that received this PIU
ADDRESS: contains TH address fields (see page A-33)
CP_ID: control point identifier (see page A-2)
PIU: contains ACTLU request (see page A-35)

BIND_RQ_RCV_RECORD

This record contains information about a received BIND request PIU and information about
the path control that received it.

BIND_RQ_RCV_RECORD
PC_ID: process identifier of path control that received this PIU
ADDRESS: contains TH address fields (see page A-33)
PC_CHARACTERISTICS: path control characteristics (see page A-34)
PIU: contains BIND request (see page A-35)

Appendix A. Node Data Structures A-21

BIND_RSP_RCV_RECORD

BIND_RSP_RCV_RECORD

This record contains information about a received BIND response PIU.

BIND_RSP_RCV_RECORD
PC_ID: process identHier of path control that received this PIU
ADDRESS: contains TH address fields (see page A-33)
PIU: contains BIND response (see page A-35>

DACTLU_R~RCV_RECORD

This record contains information about a received DACTLU request PIU.

DACTLU_R~RCV_RECORD
PC_ID: process identifier of path control that received this PIU
ADDRESS: contains TH address fields (see page A-33)
CP_ID: control point identifier (see page A-2)
PIU: contains DACTLU request (see page A-35)

HIERARCHICAL_RESET

This record is used to reset all sessions with respect to a specific control point Ce.g.,
SSCPJ session. It contains the identifier of the control point affected CCP_ID> and path
control process identifier associated with that control point CPC_ID>.

HIERARCHICAL_RESET
PC_ID: path control process identifier associated with the CP-LU session
CP_ID: control point identifier Csee page A-2)

PC_CONNECT_RSP

This record is a response to a PC_CONNECT record sent by LU network services CLNS). If
positive, it contains information about the path control CPC_ID and PC_CHARACTERISTICS)
that will be used for the LU-LU session being activated. For peripheral nodes, it also
contains an assigned address CADDRESSJ for the LU-LU session.

PC_CONNECT_RSP
HS_ID: half-session process identifier used to correlate to PC_CONNECT record
TYPE of response: possible values: POS, NEG
PC_ID: process identifier of path control that received this PIU

(reserved when TYPE=NEGJ
ADDRESS: contains TH address fields (for peripheral node--see page A-33)
PC_CHARACTERISTICS: path control characteristics I reserved when TYPE=NEG--see page A-34)
SENSE_CODE: indicating the type of error (reserved when TYPE=POSJ

A-22 SNA Format and Protocol Reference Manual for LU Type 6.2

SESSION_ROUTE_INOP

SESSION_ROllTE_INOP

This record indicates that a route, represented by a path control process, MS become
inoperative.

SESSION_ROllTE_INOP
PC_ID: process identHier of path control process that Ms become inoperative

UNBIND_RQ_RCV_RECORD

This record contains information about a received UNBIND request PIU.

UNBIND_RQ_RCV_RECORD
PC_ID: process identifier of path control tMt received this PIU
ADDRESS: contains TH address fields (see page A-33)
PIU: contains UNBIND request (see page A-35)

UNBIND_RSP_RCV_RECORD

This record contains information about a received UNBIND response PIU.

UNBIND_RSP_RCV_RECORD
PC_ID: process identifier of path control that received this PIU
ADDRESS: contains TH address fields Csee page A-33)
PIU: contains UNBIND response Csee page A-35)

PC_TO_HS_RECORD

PC TO HS RECORD is a record sent by path control CPC) to the half-session CHS). It con­
tains-PIU information that path control obtained from a received PIU.

PC_TO_HS_RECORD
PIU .csee page A-35)

Appendix A. Node Data Structures A-23

PS_TO_HS_RECORD

PS_TO_HS_RECORD

The PS_TO_HS_RECORD is the record that PS_CONV ("Chapter 5.1. PresentaUon Serv­
ices--Conversation Verbs") sends to HS ("Chapter 6.0. Half-Session").

PS_TO_HS_RECORD: contains SEND_DATA_RECORD, SEND_ERROR, REQUEST_TO_SEND,
or CONFIRMED record !see below)

CONFIRMED

CONFIRMED is sent by PS_CONV to the half-session to request the half-session to send a
positive response to a previous request for confirmation by the partner transaction pro­
gram.

CONFIRMED

REQUEST_TO_SEND

REQUEST_TO_SEND is sent by PS_CONV to the half-session to request the half-session to send
a SIGNALCSOFT). SIGNALISOFT) is used to request permission to enter the send state for
the conversation.

REQUEST_TO_SEND

SEND_DATA_RECORD

SEND_DATA is sent by PS_CONV to the half-session to request the half-session to send con­
versation data.

SEND_DATA_RECORD
SEND_PARM (see page A-35)

SEND_ERROR

SEND_ERROR is sent by PS_CONV to the half-session to request the half-session to send a
-RSPC0846).

SEND_ERROR

A-24 SHA Format and Protocol Reference Manual for LU Type 6.2

PS_TO_RH_RECORD

PS_TO_RH_RECORD

The PS_TO_RH_RECORD is the record that presentation services Ci.e., PS.CONV ["Chapter 5.1.
Presentation Services--Conversation Verbs"], PS.1NITIALIZE ["Chapter 5.0. Overview of
Presentation Services"], or PS.COPR ["Chapter 5.4. Presentation Services--Control-Operator
Verbs"]) sends to RH ("Chapter 3. LU Resources Manager") to request that a certain func­
tion be performed.

PS_TO_RH_RECORD: contains ALLOCATE_RCB, GET_SESSION, DEALLOCATE_RCB, TERHINATE_PS,
CHAHGE_SESSIONS, UNBIHD_PROTOCOL_ERROR, RH_ACTIVATE_SESSION, or
RH_DEACTIVATE_SESSION record (see below)

ALLOCATE_RCB

ALLOCATE_RCB is sent by PS.CONV to the resources manager to request creation and initial­
ization of a resource control block. The resources manager will also attempt to reserve a
first-speaker session if IMMEDIATE_SESSION = YES. The resources manager will reply to the
ALLOCATE_RCB with an RCB_ALLOCATED record Cpage A-32).

NOTES: 1. The (partner) LU_NAHE is the name that a transaction program specifies in con­
junction with the MODE_NAME when requesting the allocation of a conversation.
It is a local name by which one LU knows another LU and is not sent outside
the LU. The maximum length of the LU_HAHE is implementation-defined, but is
shown here as having a maximum length of 17 characters.

2. LU names consist of type-G symbol strings. Hode names consist of type-A sym­
bol strings. See "Appendix E. Request-Response Unit CRUl Formats" for
symbol-string definitions.

ALLOCATE_RCB
TCB_ID: ID of PS process that sent ALLOCATE_RCB
LU_HAME (see Notes 1 and 2)
HOOE NAME Csee Note 2)
IHMEDIATE_SESSIOH: possible values: YES, NO
SYHC_LEVEL: possible values: NOHE, CONFIRM, SYNCPT

Appendix A. Node Data Structures A-25

CHANGE_ SESSIONS

CHANGE_ SESSIONS

CHANGE_SESSIONS is sent by PS.COPR to the resources manager to inform the resources manag­
er of a change in the session limits for (LU_NAME, NODE_NAME>. PS.COPR changes the ses­
sion limlts in the MODE control block (page A-3) before sending this record to the
resources manager. RESPONSIBLE = YES if this LU is responsible for deactivating sessions
to satisfy the new session limits. DELTA contains the (signed> difference between the
current MODE.SESSION_LIMIT and the previous MODE.SESSION_LIMIT.

NOTES: 1. The (partner> LU_NAME is the name that a transaction progra11 specifies ;n con­
junction wHh the MODE_NAME when requesting the allocation of a conversation.
It is a local name by which one LU knows another LU and is not sent outside
the LU. The maximum length of the LU_NAME is implementation-defined.

2. LU names consist of type-G symbol strings. Mode names consist of type-A sym­
bol strings. See "Appendix E. Request-Response Unit (RU) Formats" for symbol
string definitions.

CHANGE_ SESSIONS
TCB_ID: ID of the PS process that sent CHANGE_SESSIONS
RESPONSIBLE: possible values: YES, NO
LU_NAME (see Notes 1 and 2)
MODE_NAME (see Note 2>
DELTA: change in MODE.SESSION_LIMIT

DEALLOCATE_RCB

DEALLOCATE_RCB is sent by PS.CONV to the resources manager to request destruction of the
resource control block identified by RCB_ID. The resources manager will reply to the
DEALLOCATE_RCB with an RCB_DEALLOCATED record (page A-32).

DEALLOCATE_RCB
TCB_ID: ID of the PS process that sent DEALLOCATE_RCB
RCB_ID: ID of the RCB to deallocate

GET_SESSION

GET_SESSION is sent by PS.CONV to the resources manager to request the allocation of a
session to the conversation identified by RCB_ID. The resources manager will reply to the
GET_SESSION with a SESSION_ALLOCATED record (page A-33).

GET_SESSION
TCB_ID: ID of the PS process that sent GET_SESSION
RCB_ID: ID of the conversation
BID_INDICATOR: possible values: ATTACH, NO_ATTACH

A-26 SNA Format and Protocol Reference Manual for LU Type 6.2

RH_ACTIVATE_SESSION

RH_ACTIVATE_SESSION

RH_ACTIVATE_SESSION ;s sent by PS.COPR to the resources manager to request act;vat;on of •
new session with the partner LU identified by LU_NAME on mode name identified by
HODE_NAHE. This record ;s sent as a result of the ACTIVATE_SESSION control operator verb.

NOTES: 1. The (partner) LU_NAME ;s the name that a transact;on program spec;f;es ;n con­
junction with the MODE_NAME when requesting the allocation of a conversation.
It is a local name by which one LU knows another LU and is not sent outside
the LU. The maximum length of the LU_NAHE is implementation-defined, but ;s
shown here as having a maximum length of 17 characters.

2. LU names consist of type-G symbol strings. Mode names consist of type-A sym­
bol strings. See "Appendix E. Request-Response Unit <RU) For111ats" for
symbol-string definitions.

RH_ACTIVATE_SESSION
TCB_ID: ID of the PS process that sent RH_ACTIVATE_SESSION
LU_NAME <see Notes 1 and 2)
HODE_NAHE <see Note 2)

RH_DEACTIVATE_SESSION

RH_DEACTIVATE_SESSION is sent by PS.COPR to tHe resources manager to request deactivation
of the session ;dentified by SESSION_ID. This record is sent as a result of the DEACTI­
VATE_SESSION control-operator verb.

RH_DEACTIVATE_SESSION
TCB_ID: ID of the PS process that sent RH_DEACTIVATE_SESSION
SESSION_ID: identifies the session
TYPE: poss;ble values: NORMAL, CLEANUP

TERHINATE_PS

TERHINATE_PS is sent by PS_INITIALIZE to the resources manager to request termination of
the process that comprises presentation services and the transaction program.

TERHINATE_PS
TCB_ID: ID of the PS process to be terminated

Appendix A. Node Data Structures A-27

UNBIND_PROTOCOL_ERROR

UNBIND_PROTOCOL_ERROR

lJNBIND_PROTOCOL_ERROR is sent by PS_CONV or PS_INITIALIZE to the resources manager to
request abnormal termination of the session identified by HS_ID. The record is sent when
the partner LU commHs a seriol.ls protocol erl".or. The sense data to be carried on the
UNBIND is in SENSE_CODE.

UNBIND_PROTOCOL_ERROR . .
TCB_ID: ID of the PS process that sent UNBIND_PROTOCOL_ERROR
HS_ID: ID of the half-session to be deactivated
SENSE_ CODE

RM_TO_HS_RECORD

The RM_TO_HS_RECORD is the record that RM ("Chapter 3. LU Resources Manager") sends to HS
("Chapter 6.0. Half-Session").

RM_TO_HS_RECORD: contains BID_WITHOUT_ATTACH, BID_RSP, BID_WITH_ATTACH, BIS_REPLY,
HS_PS_CONNECTED, BIS_RQ, YIELD_SESSION, RTR_RQ, or RTR_RSP record Csee below).

BID_RSP

BID_RSP is sent by the resources manager to the half-session in response to a previous BID
record (page A-14> from the half-session. If RTI = POS, the partner LU is granted permis­
sion to use the session. If RTI = NEG, permission is denied and SENSE_CODE contains the
sense data to be sent on the negative response.

BID_RSP
RTI: possible values: POS, NEG
SENSE_CODE (reserved when RTI=POS)

BID_WITH_ATTACH

BID_WITH_ATTACH is sent by the resources manager to the half-session to request permission
(from the partner LU> to use the session. The request for permission is accompanied by
conversation data Cincluding the FMH-5 that wHl attach the remote transaction program) in
the SEND_PARM structure (page A-35). The resources manager will send BID_WITH_ATTACH if
this LU is the first speaker or the bidder. When bidding for a session, the resources
manager chooses between BID_WITHOUT_ATTACH and BID_WITH_ATTACH on the basis of the
BID_INDICATOR field in the GET_SESSION Cpage A-26) from PS_CONV. If this LU is the bid­
der, the half-session will inform the resources manager of the partner LU's response with
a BID_RSP record (page A-14).

BID_WITH_ATTACH
SEND_PARM Csee page A-35)

A-28 SNA For~t and Protocol Reference Manual for LU Type 6.2

BID_WITHOUT_ATTACh

BID_WITHOUT_ATTACH

BID_WITHOUT_ATTACH is sent by the resources manager to the half-session to request permis­
sion (from the partner LU> to use the session. The request for permission is not accompa­
nied by any other data. The resources manager will send BID_WITHOUT_ATTACH only if this
LU is the bidder, since it does not need permission from the partner LU to use a
first-speaker session. The half-session will inform the resources manager of the partner
LU's response with a BID_RSP record (page A-14>.

BID_WITHOUT_ATTACH

BIS_REPLY

BIS_REPLY is sent by the resources manager to the half-session to request the half-session
to send a BIS(RQE3> request unit.

BIS_REPLY

BIS_RQ

BIS_RQ is sent by the resources manager to the half-session to request the half session to
send a BIS(RQEl> request unit.

BIS_RQ

HS_PS_CONNECTED

HS_PS_CONNECTED is sent by the resources manager to the half-session to inform the
half-session that it has been connected to a presentation services process. This occurs
as a result of allocation of a session to a conversation.

HS_PS_CONNECTED
PS_ID: ID of presentation services process

Appendix A. Node Data Structures A-29

RTR_RQ

RTR_RQ

RTR_RQ ;s sent by the resources 11anager to the half-sessfon to request the half-sess;on to
send an RTR request unit.

RTR_RQ

RTR_RSP

RTR_RSP ;s sent by the resources manager to the half-session to request the half-session
to send an RTR response unit. If RTI = NEG, SENSE_CODE conta;ns the sense data to be sent
with the negative response.

RTR_RSP
RTI: possible values: POS, NEG
SENSE_CODE (reserved when RTI=POS>

YIELD_SESSION

YIELD_SESSION is sent by the resources mana~er to the half-session to end the open bracket
in a newly activated session. When a session is activated, the session comes up in the
"in-brackets" state with the primary LU ;n control. If the resources manager at the pri­
mary LU does not have a waiting session-allocation request (see GET_SESSION, page A-26),
it will send YIELD_SESSION to the half-session; the half-session then reverts to con­
tention state.

YIELD_SESSION

RM_TO_LNS_RECORD

The RM TO LNS RECORD is the record. that RM ("Chapter 3. LU Resources Manager") sends to
LNS ("Chapter-4. LU Network Servfoes").

RM_TO_LNS_RECORD: contains ACTIVATE_SESSION or DEACTIVATE_SESSION record (see below>

A-30 SNA Format and Protocol Reference Manual for LU Type 6.2

ACTIVATE_ SESSION

ACTIVATE_ SESSION

ACTIVATE~SESSION is sent by the resources manager to LU network services to request the
activation of a session of type SESSION_TYPE with the partner LU identified by LU_NAME and
mode name identified by MODE_NAME. LU network services will reply to ACTIVATE_SESSION
with an ACTIVATE_SESSION_RSP record (page A-20> that has the same CORRELATOR value as that
in the ACTIVATE_SESSION.

NOTES: 1. The (partner) LU_NAME is the name that a transaction program specifies in con­
junction with the MODE_NAME when requesting the allocation of a conversation.
It is a local name by which one LU knows another LU and is not sent outside
the LU. The maximum length of the LU_NAME is implementation-defined.

2. LU names consist of type-G symbol strings. Mode names consist of type-A sym­
bol strings. See "Appendix E. Request-Response Unit CRU> Formats" for
symbol-string definitions.

ACTIVATE_ SESSION
CORRELATOR
SESSION_TYPE: possible values: FIRST_SPEAKER, BIDDER
LU_NAME (see Notes 1 and 2)
MODE_NAME (see Note 2)

DEACTIVATE_SESSION

DEACTIVATE_SESSION is sent by the resources manager to LU network services to request the
deactivation of a session. If STATUS = ACTIVE, the session is identified by HS_ID. If
STATUS = PENDING, the session is identified by CORRELATOR, which contains the same value
used in the ACTIVATE_SESSION request.

DEACTIVATE_ SESSION
STATUS: possible values: ACTIVE, PENDING
CORRELATOR (reserved when STATUS=ACTIVE)
HS ID (reserved when STATUS = PENDING)
TYPE of deactivation: possible values: NORMAL, CLEANUP, ABNORMAL

(CLEANUP or ABNORMAL imply STATUS=ACTIVEJ
SENSE_CODE: reason for deactivation (reserved when TYPE~ABNORMAL)

RM_TO_PS_RECORD

The RM_TO_PS_RECORD is the record that RM ("Chapter 3. LU Resources Manager") sends to
PS_INITIALIZE ("Chapter 5.0. Overview of Presentation Services") or PS_CONV !"Chapter 5.1.
Presentation Services--Conversation Verbs").

RM_TO_PS_RECORD: contains ATTACH_RECEIVED, RCB_DEALLOCATED, RM_SESSION_ACTIVATED,
or CONVERSATION_FAILURE record !see below).

Appendix A. Node Data Structures A-31

ATTACH_RECEIVED

ATTACH_RECEIVED

ATTACH RECEIVED is sent by the resources manager to PS INITIALIZE in a newly created PS
process (created as the result of an Attach FMH-51. TCB_ID is the ID of the transaction
control block, RCB_ID is the ID of the initial resource control block, and FMH_S is the
FMH-5 that initiated the new presentation services process. The resources manager per­
forms some validity checks on the FMH-5 before passing it to presentation services.
SENSE_CODE indicates the result of these checks.

ATTACH_RECEIVED
TCB_ID: ID of transaction control block
RCB_ID: ID of resource control block
SENSE CODE
FMH_5~ Attach FMH-5 header (see Appendix H>

CONVERSATION_FAILURE

CONVERSATION_FAILURE is sent by the resources manager to PS_CONV to
services of the failure of the conversation identified by RCB_ID.
assumes only the values SON or PROTOCOL_VIOLATION.

CONVERSATION_FAILURE
RCB_ID: ID of failed conversation
REASON: possible values: SON, PROTOCOL_VIOLATION

RCB_ALLOCATED

notify presentation
The REASON field

RCB_ALLOCATED is sent by the resources manager to PS_CONV in reply to an ALLOCATE_RCB
(page A-25). RETURN_CODE indicates the success of the allocation. If RETURN_CODE = OK,
RCB_ID contains the ID of the newly created resource control block.

RCB_ALLOCATED
RETURN_CODE: possible values: OK, UNSUCCESSFUL, SYNC_LEVEL_NOT_SUPPORTED
RCB_ID: ID of newly created resource control block (reserved when RETURN_CODE~OK)

RCB_DEALLOCATED

RCB_DEALLOCATED is sent by the resources manager to PS_CONV in reply to a DEALLOCATE_RCB
record (page A-26).

RCB_DEALLOCATED

A-32 SNA Format and Protocol Reference Manual for LU Type 6.2

RM_SESSION_ACTIVATED

RM_SESSION_ACTIVATED

RM SESSION ACTIVATED is sent bv the
RM=ACTIVATE_sESSION record (page A-27).
is indicated in the RETURN_CODE field.

resources manaqer to PS COPR in reply to an
The success or failure of the session activation

RM_SESSION_ACTIVATED
RETURN_CODE: possible values: OK, ACTIVATION_FAILURE_NO_RETRY,

ACTIVATION_FAILURE_RETRY, LU_MODE_SESSION_LIMIT_EXCEEDED

SESSION_ALLOCATED

SESSION_ALLOCATED is sent by the resources manager to PS_CONV in reply to a GET SESSION
record (page A-26). RETURN_CODE indicates the success or failure of the sessi~n allo­
cation.

SESSION ALLOCATED
RETURN_CODE: possible values: OK, UNSUCCESSFUL_RETRY, UNSUCCESSFUL_NO_RETRY,

CRV_RQ,__RU

CRV_RQ,__RU
RQ_CODE: possible values: X'CO' (signifying CRV)
CRYPTO_SEED

ADDRESS

ADDRESS contains TH addresses. For subarea nodes they are 6-byte network addresses. For
peripheral nodes, they are the local 1-byte representations for network addresses plus the
ODAI field.

ADDRESS
Subarea address structure:

THIS NAU: address of the local NAU (contains 32-bit subarea and 16-bit
ele;ent address)

OTHER_NAU: address of the partner NAU !contains 32-bit subarea and 16-bit
element address)

Peripheral node structure:
ODAI: origin/destination assignment indicator
THIS_NAU: 8-bit address representing the local NAU
OTHER_NAU: 8-bit address representing the partner NAU

Appendix A. Node Data Structures A-33

BIU

BIU

Th;s record ;s used only by the half-sess;on CHS> process. It conta;ns inforuUon about
TH, RH, and RU f;elds.

BIU: same as PIU (see page .A-35)

PC_ CHARACTERISTICS

PC_CHARACTERISTICS: path control characterist;cs

PATH_COHTROL_TYPE~PEER means that this path control is be;ng used for
a PHCP-mediated sess;on;' BACKBONE means that th;s path control ;s
be;ng used for an SSCP-mediated session.

PATH_COHTROL_TYPE: possible values: PEER, BACKBONE

ALS

AL~adjacent link station address associated with this path control.
This field is used only by peripheral nodes.

SEGMEHTIHG--path control segmenting capability. This applies to both
send and receive segmenting. Either both are supported or both are
not supported.

SEGMENTING: possible values: SUPPORTED, HOT_SUPPORTED

MAX_RU_SEGHEHT_SIZE..,-the maximum number of RU bytes '!:hat may be sent
or received by this path control. This value is independent of path
control's segmenting capability.

MAX_RU_SEGMEHT_SIZE

A-34 SHA Format and Protocol Reference Manual for LU Type 6.2 ...

PIU

This record contains selected TH fields, an RH, and an RU. This is the information used
by components in layers above path control dealing with PIUs le.g., half-session, LU net­
work services). The PIU data structure does not contain a complete TH. It contains only
the TH fields that are needed by the layers above PC. Other TH fields are not visible
above PC.

PIU
TH: fields from the transmission header needed above the PC layer

EFI expedited-flow indicator: possible values: EXP, NORMAL
SNF: contains a 16-bit sequence number field
DCF: data count field--contains length of BIU

BIU: basic information unit
RH: request/response header lsee Appendix Dl
RU: request unit lsee Appendix El

SEND_PARM

SEND PARM is a substructure that is embedded in SEND_DATA_RECORD !page A-24) and
BID_WITH_ATTACH !page A-28). It contains the data to be sent to the half-session as well
as an encoding of the RH bit settings. If ALLOCATE = YES, this data is the first to be
sent on a conversation. If FMH = YES, DATA begins with an FM header IFMH-5 or FMH-7).

SEND_PARM
ALLOCATE: possible values: YES, NO lif ALLOCATE=YES, DATA is first in bracket)
FMH: possible values: YES, NO lif FMH=YES, DATA begins with FM header)
TYPE: possible values: NOT_END_OF_DATA, FLUSH, CONFIRM, DEALLOCATE_CONFIRM,

DEALLOCATE_FLUSH, PREPARE_TO_RCV_FLUSH, PREPARE_TO_RCV_CONFIRM_SHORT,
PREPARE_TO_RCV_CONFIRM_LONG

DATA: data to be sent on the half-session

SESSION_INFORMATION

SESSION_INFORMATION is a substructure that is embedded in SESSION_ACTIVATED (page A-20)
and ACTIVATE_SESSION_RSP (page A-20). Sent from LU Network Services to Resources Manager,
SESSION_INFORMATION contains data about the session that has just been established.

SESSION_INFORMATION
HS_ID: half-session identifier
HALF_SESSION_TYPE: possible values: PRI, SEC
BRACKET_TYPE: possible values: FIRST_SPEAKER, BIDDER

PIU

Appendix A. Node Data Structures A-35

36 SHA For111at and Protocol.Reference Manual for LU Type 6.2

APPENDIX D..., R!:! FORMATS

The request/response header IRHI is a 3-byte
field; it may be a request header or a
response header. Figure D-1 on page D-2
shows the RH formats and summarizes the
allowed values.

The control fields in the request header
include:

Request indicator

RU Category

Format indicator

Sense Data Included indicator

Form of Response Requested

Queued Response indicator

Pacing indicator

Bracket Control

Change Direction indicator

Code Selection indicator

Enciphered Data indicator

Padded Data indicator

The control fields in the response header
include:

Response indicator

RU Category

Format indicator

Sense Data Included indicator

Chaining Control

Response Type indicator

Queued Response indicator

Pacing indicator

The above RH control fields are described
below.

Request/Response Indicator IRRI>: Denotes
whether this is a request or a response.

RU Category: Denotes that the BIU belongs to
one of four categories: session control
ISC), network control (HCI, data flow control
(DFC), or function management data IFMD l.
(The HC category is not supported by T2. 1
nodes.)

Format Indicator: Indicates which of two
formats (denoted Format l and Format 01 is
used within the associated RU (but not
including the sense data field, if any; see
Sense Data Included indicator, below).

For SC, HC, and DFC RUs, tMs indicator is
always set to Format l.

For ISSCP,PUI and ISSCP,LUI sessions, Format
1 indicates on FMD requests that the request
RU includes a network services (NS) header
and is field-formatted (with various
encodings, such as binary data or
bit-significant data, in the individual
fields). Format 0 indicates that no HS head­
er is contained in the request RU and the RU
is character-coded. The Format indicator
value on a response is the same as on the
corresponding request.

For LU-LU sessions that support FM headers on
FMD requests, Format l indicates that an FM
header is present. The Format indicator is
always set to 0 on positive responses.

Sense Data Included Indicator (SDI I: Indi -
cates that a 4-byte sense data field is
included in the associated RU. The sense
data field (when present) always immediately
follows the RH and has the format and meaning
described in Appendix G. Any other data con­
tained in the RU follows the sense data
field. Sense data is included on negative
responses and on EXRs, where it indicates the
type of condition causing the exception.

(The Format i ndi ca tor does not describe or
affect the sense data, which is always in the
4-byte format shown in Appendix G.I

Chaining Control: Indicates that a sequence
of contiguous transmitted requests is being
grouped in a chain. Two indicators, Begin
Chain indicator CBCII and End Chain indicator
IECII, together denote the relative position
of the associated RU within a chain. The 1
values of these indicators IBCI = 1 and ECI =
11 are referred to as BC and EC, respective­
ly.

CBC, ~ECI = first RU in chain

l~Bc, ~ECI = middle RU in chain

<~Be, ECl = last RU in chain

CBC, ECI = only RU in chain

Responses are always marked "only RU in
chain."

f.ru:!!! of Response Requested: In a request
header, defines the response protocol to be
executed by the request receiver.

Appendix D. RH Formats D-1

Request Header
I Byte o Byte l Byte 2

RU I I I
RRI Category FI SDI BCI ECIIDRlI DR2I ERI QRI PI IBBI EBI CDI CSI EDI PQI CEBII
= ol I I r I I I I I I r I I I r I r I I I I r J I I I

Response !:!nsfm:

RU I
RRI Category FI SDI 1 1 IDRII DR.2I RTI QRI PI
= 11 I I r I I I I lrl I lrlrl I rlrlrlrlrlrlrlr

Field
RRI

Description
Request/Response indicator

Explanation/Usage
0 = request (RQ>; 1 = response (RSP>

RU Category Request/Response Unit Category 00 = FH data (Fl1D) 10 = data flow control (DfC)
11 = session control (SC>

FI

SDI

BCI

ECI

DRII

DR2I

ERI

RTI

QRI

PI

BBI

EBI

CDI

CSI

EDI

PDI

Format indicator

Sense Data Included indicator

Begin Chain indicator

End Chain indicator

Definite Response 1 indicator

Definite Response 2 indicator

Exception Response indicator

Response Type indicator

Queued Response indicator

Pacing indicator

Begin Bracket indicator

End Bracket indicator

Change Direction indicator

Code Selection indicator

Enciphered Data indicator

Padded Data indicator

CEBI Conditional End Bracket
indicator

EJ = Reserved

Figure D-1. RH Formats

01 = network control (NC>

O = no FH header (~FHH>, for LU-LU sessions1 or
character-coded without an NS header (~NSH>,
for network services (NS·>

1 = FM header (FHH> follows, for LU-LU sessions1 or
field-formatted with an NS header (NSH), for NS

0 = not included (~so H 1 = included (SD >

0 = not first in chain (~BC>I 1 = first in chain (BC>

0 = not last in chain (~ECh 1 = last in chain (EC>

0 = ~DRU 1 = DRl

0 = ~DR2; 1 = DR2

Used in conjunction with DRII and DR2I to indicate,
in a request, the form of response requested:
(DRlI, DR2I, ERI> = 000 means no-response requested

= lOOIOlOlllO means definite-response requested
= lOllOllllll means exception-response requested

0 = positive (+); 1 = negative (-)

0 = response bypasses TC queues (~QR)I
1 = enqueue response in TC queues (QR)

0 = ~PAC; 1 = PAC

0 = ~BB; 1 = BB

0 = ~EB; 1 = EB (reserved for LU type 6.2)

0 = do not change direction (~CD>;
1 = change direction (CD)

0 = code O; 1 = code 1

0 = RU is not enciphered (~ED>; 1 = RU is enciphered (ED>

0 = RU is not padded (~PD>; 1 = RU is padded (PQ)

0 =not conditional end bracket (~CEB>; 1 =conditional
end bracket (CEB> (used for LU type 6.2; else, reserved>

D-2 SNA Format and.Protocol Reference Manual for LU Type 6.2

Three bits in a request header specify the
form of response that is desired. They are:
Definite Response 1 indicator CDRlIJ, C!efi­
nite Response 2 indicator CDR2I), and the
Exception Response indicator (ERIJ. They can
be coded to request:

1. No-response, which means that a response
will not be issued by the half-session
receiving the request. (DR1I,DR2IJ =
(0,0J = C~DR1,~DR2J and ERI=O is the only
coding possible; the abbreviation RQN
refers to a request with this coding. CA
special response, ISOLATED PACING
RESPONSE [IPR J, does set
[DR1I,DR2I,ERIJ=[O,O,OJ, but it is used
independently of the other responses
Hsted. IPR is sent in connection with
session-level pacing; the sequence number
in its associated TH does not correlate
it to any given request.)

2. Exception response, which means that a
negative response will be issued by the
half-session receiving the r-equest only
in the event of a detected exception (a
positive response will not be issued).
CDRlI, DR2IJ = (l,OlfCO,l)fCl,lJ and
ERI=l are the possible codings; RQEl,
RQE2, and RQE3 are the abbreviations,
respectively; the abbreviation RQE or
RQE* refers to a request with any of
these codings.

3. Definite response, which means that a
response will always be issued by the
half-session rece1v1ng the request,
whether the response is positive or nega­
tive. CDRlI, DR2IJ = (l,OJf(O,lllCl,l)
and ERI=O are the possible codings; RQDl,
RQD2, and RQD3 are the abbreviations,
respectively; the abbreviation RQD or
RQD* refers to a request with any of
these codings.

A request that asks for an exception response
or a definite response has one or.both of the
DRlI and DR2I bits set to 1 Cthree combina­
tions J; a response to a request returns the
same CDRU, DR2IJ bit combination (see Fig­
ure D-2 on page D-4J.

The setting of the DRlI, DR2I, and ERI bits
varies by RU category. Chapter 4 and Chap­
ter 6.2 define the settings for SC; Chapter
6 .1 defines them for DFC; Chapter 4 defines
them for network services FMD.

In the case of LU-LU sessions, BIND parame­
ters (see Appendi >< E) specify the form of

response to be requested during the session;
see Chapter 2 and Chapter 5. 3, as well as
Figure D-2 on page 0-4.

The <DRlI, DR2I. ERI> = (0, O, l) combin~tion
is reserved.

Queued Response Indicator (QRI): In a
response header for a normal-,flow RU, the
Queued Response indicator denotes whether the
response is to be enqueued in TC queues:
QRI:.:QR, or whether it is to bypass these
queues: QRI=~QR. In a request header for a
normal-flow RU, it indicates what the setting
of the QRI should be on the response, if any,
to this request Ci.e., the values on the
request and response are the same).

For expedited-flow RUs, this bit is reserved.

The setting of the QRI bit is the same for
all RUs in a chain.

Response .Dle!!: In a response header, two
basic response types can be indicated: posi­
tive response or negative response. For neg­
ative responses, the RH is always immediately
followed by four bytes of sense data in the
RU. Thus, RTI=NEG and RTI=POS occur jointly
with SDI=SD and SDI=~so, respectively.

Three kinds of positive and negative
responses correspond to the three valid
CDRlI, DR2IJ combinations allowed on
requests. The settings of the DRlI and DR2I
bits in a response always equal the settings
of the DRlI and DR2I bits of the
form-of-response-requested field of the cor­
responding request header, except as shown in
Figure D-2 on page D-4.

Pacing:
Request
element
tor.

In a request header, the Pacing
indicator denotes that the sending TC
can accept a Pacing Response indica-

The Pacing Response indfoator in a response
header is used to indicate to the receiving
TC element that additional requests may be
sent on the normal flow. The Pacing Response
indicator may be 2!l in an RH that is attached
to a response RU on the normal flow; or, if
desired, a separate, or isolated, response
header may be used, to which no RU is
attached. This latter RH signals only the
pacing response; it is called an ISOLATED
PACING RESPONSE C see Chapter 6. 2). Isolated
and noni solated pacing responses are func­
tionally equivalent.

Appendix D. RK Formats D-3

REQUEST VALID RESPONSE MEANING OF RESPONSE

RQDl=Cl,O,Ol +RSPl=Cl,O,Ol positive response
-RSP 1 = (1 , 0, 1 l negative response

!Used by DFCl

RQE1=c1,o,1> -RSP1=c1,o,11 negative response

CUsed by
DFC and PSl

RQD213=1•,l,Ol +RSP2 I 3= C *, 1 , 0 l confirmed
-RSP213=C*,l,ll not confirmed

RQE213=C•,l,l l implied +RSP213 reply received with no inter-
vening response

-RSP2 I 3= I*, l, l l not confirmed
(Used by PSl

RQN =co,0,01

CNot usedl

NOTES:

1. Values displayed in this table are in the order CDRlI,DR2I,ERil for requests and CDR1I,DR2I,RTil
for responses.

2. All ~EC requests are sent as RQEl.

Figure D-2. FMD Request/Response Combinations for Sessions between Two LU 6.2s

Bracket Control: Used to indicate the begin­
ning or end of a group of exchanged requests
and responses called a bracket. Bracket pro­
tocols are used only on LU-LU sessions. When
used, BB appears only on the first request in
the first chain of a bracket; CEB appears
only on the last request of the last chain of
a bracket. CWhen bracket usage is specified
in BIND, the BIND request carries an implied
BB.) The bracket indicators are set only on
LUSTAT and FMD requests, and are thus sent
normal-flow. See Chapter 6 .1 for detailed
discussion of bracket protocols.

Change Direction Indicator CCDil: Used when
there is half-duplex <HDX) control of the
normal flows within a session (not to be con­
fused with link-level HDX protocols>. It
permits a sending half-session to direct the
receiving half-session to send. The HDX pro­
tocol is useful to half-sessions with limited
input/output capabilities that cannot simul­
taneously send and receive user data. When
used, CD appears only on the last request in
a chain; it is set only on LUSTAT and FMD
requests. See Chapter 6.1 for detailed dis­
cussion of this protocol.

Code Selection Indicator CCSil: Specifies
the encoding used for the associated FMD RU.
When a session 1s activated, · the
half-sessions can choose to allow use of two
codes in their FMD RUs (e.g., EBCDIC and
ASCII), which they designate as Code 0 and
Code 1. FM headers and request and response
codes are not affected by the Code Selection
indicator.

For sc, NC, and DFC RUs, this bit is
reserved.

Enciphered Data Indicator (EDil: Indicates
that information in the associated RU is
enciphered under session-level cryptography
protocols.

Padded Data Indicator IPDil: Indicates that
the RU was padded at the end, before
enc i pherment, to the next integral multiple
of 8 bytes in length; the last byte of such
padding is the count of pad bytes added, the
count being a number Cl-7 inclusive) in
unsigned 8-bit binary representation.

D-4 SHA Format and Protocol Reference Manual for LU Type 6.2

APPENDIX !... REQUEST-RESPONSE J.lt:!!I (RU> FORMATS

This appendix defines detailed ·Ru formats. A categorized list of RU abbreviations is presented
first, followed by an alphabetic list of request RU format descriptions, a summary of response
RUs, and a list of response format descriptions for those positive response RUs that return data
in addition to the request code. Two final sections describe control vectors and session keys.

The .initial line for each RU in the two RU format description lists is in one of the following
formats:

RegUests

"RU ABBREVIATION; Origin NAU-->Destination NAU, Normal !Norm> or Expedited <Exp) Flow; RU Cate­
gory IRU NAME>"

Responses

"RSP(RU ABBREVIATION>; Origin NAU-->Destination NAU, Nor11 or Exp Flow; RU Category"

1. "RU Category" is abbreviated as follows:

DFC data flow control

SC session control

FHD NS(mal function management data, network services, maintenance services

FMD NS<s> function management data, network services, session services

2. The formats of character-coded FHD NS RUs are implementation dependent I LU-->LU FHD RUs
(e.g., FM headers) are described in "Appendix H. FM Header and LU Services Commands" •

3. All values for field-formatted RUs that are not defined in this section are reserved.

4. The request code value X' FF' and the NS header values X' I 3l 7IBI F)f****' and
X'**l3171BIF>F**' are set aside for implementation internal use, and will not be otherwise
defined in SNA.

5. Throughout this appendix the following symbol-string types are used:

• Type-A (Assembler oriented): a byte string consisting of one or more EBCDIC uppercase
letters IA through Z>, numerics 10 through 9), $, 1, and a, the first character of which
is nonnumeric.

• Type-USS ("unformatted system services" or character-coded subset of the SNA character
set>: a byte string consisting of one or more EBCDIC uppercase letters IA through Zlo
numerics 10 through 9>, $, 1, a, line feed IX'lS'>• space IX'40') and the following 11
special characters: '=I),+-•./& with no restriction on the first character.

• Type-AE IA extended>: a byte string consisting of one or more EBCDIC lowercase letters
I a through z >, uppercase letters I A through Z >, numerics IO through 9 >. $, 1, a, and
period I.), with no restriction on the first character.

• Type-GR !EBCDIC graphics>: a byte string consisting of one or more EBCDIC'characters in
the range X'41' through X'FE', with no restriction on the first character.

• Type-6 I general>: a byte string consisting of one or more bytes of binary values 0
through 255.

The RU field to which a type-A, type-AE, or type-GR symbol string is assigned may be longer
than the symbol string; in this case, the symbol string is left-justified within the field,
which is filled out to the r.i ght with space IX' 40' > characters. Space characters, if pres­
ent, are not part of the symbol string. If the·symbol string is formed from the concat­
enation of two or more individual symbol strings, such as the fully-qualified LU name, the
concatenated symbol string as a whole. is left-justified within the field ,which is filled
out to the right with space characters. Space characters, if present, are not part of the
concatenated symbol string.

Appendix E. Request-R~sponse Unit IRU> Formats E-1

6. Throughout this appendix, r-erved is used as f.ollONS: reserved bits, or fields, are cur;..
rently set to O's (unless explicitly stated otherNise)J reserved values are those that cur­
rently are invalid. Correct usage of reserved fields is enforced by the sender; no receive
checks are made on.these fields.

7. Throughout this appendix, retired fields and values are those that Nere once defined by SNA
but are no longer defined. To accommodate implementations of back-level SNA, current imple­
mentations of SNA treat ·retired fields as follows: send checks enforce the setting of
retired fields to all O's except Nhere other unique values are required (described i.ndivid­
ually in this appendix)J no receive checks are made on these fields, thereby accepting
back-level settings of these fields. Special handling of retired fields, such as echoing or
passing on retired fields as received, is discussed Nhere appropriate.

E-2 SHA Format and Protocol Reference Manual for LU Type 6.2

SlJt1HARY .Qf; REQUEST BY!§ Bl CATEGQRY

*ACT LU
*BIND

BIS

f!m NSCmal

ECHOTEST

BINDF
•CI NIT

CLEANUP

CRY

LUST AT

REQECHO

CTERH
INIT-SELF
NOTIFY

DACTLU

RTR

SESSEND
SESSST

UNBIND

SIG

TERH-SELF
UNBINDF

* These request RUs requ;re response RU& that, U pos;Hve, may contafo data ;n addH;on to the NS
header or request code. See "Summary of Response RU's" on page E-18 and "Pos;Hve Response RU's wHh
Extended Formats" on page E-18 •

AppencHx E. Request-Response lmit CRU> Formats E-3

~ .QE RY.!.§ §.'! t§ HEADERS Mm REQUEST CODES

Within DFC, SC, or any specific FMD NS category, the request code is uiique. However, while a request
code has only one meaning in a specific category, a given code can represent different requests in sepa­
rate categories.

FMD NS Headers CThird byte is the request code)

DFC

SC

X'810387'
X'810389'
X'810601'
X'810602'
X'810620'
X'810629'
X'810681'
X'810683'
X'810685'
X'810686'
X'810687'
X'810688'

Request Codes

X'04'
X'05'
X'70'
X'C9'

Request Codes

X'OD'
X'OE'
X'31'
X'32'
x•co•

REQECHO
ECHOTEST
CI NIT
CT ERM
NOTIFY (SSCP<-->LU>
CLEANUP
INIT-SELF (format 1)
TERM-SELF (format 1>
BINDF
SES SST
UNBINDF
SE SS END

LUST AT
RTR
BIS
SIG

ACTLU
DACTLU
BIND
UNBIND
CRV

E-4 SNA Format and Protocol Reference Manual for LU Type 6.2

ACTLU

REQUEST f!Y FORMATS

ACTLUJ SSCPIPNCP-->LU, Exp; SC (ACTIVATE LOGICAL UNIT)

0
1

2

ACTLU is sent from an SSCPIPNCP to an LU to activate a session between
the SSCPIPNCP and the LU and to establish common session parameters.

X'OD' request code
Type activation requested:
X'Ol' cold
X'02' ERP
bits 0-3, FH profile:

X'O' FH profile 0
X'6' FH profile 6

bits 4-7, TS profile:
X'l' TS profile 1 (only value defined)

BIND; PLU-->SLU, Exp; SC CBIND SESSION)

0
1

2

3

4

5

6

BIND is sent from a primary LU to a secondary LU to activate a session
between the LUs. The secondary LU uses the BIND parameters to help
determine whether it will respond positively or negatively to BIND.

X'31' request code
bits 0-3, format: 0000
bits 4-7, type:

0000 negotiable
FH profile:
X'13' FH profile 19
TS profile:
X'07' TS profile 7
f.!:! Usag~Primarv LU Protocols for FH Data
bit o, chaining use selection:

1 multiple-RU chains allowed from primary LU half-session
bit 1, request control mode selection:

0 immediate request mode
bits 2-3, chain response protocol used by primary LU half-session for FHD requests;

chains from primary will ask for:
11 definite or exception response

bits 4-6, reserved
bit 7, send End Bracket indicator:

O primary will not send EB
f.!:! Usag~Secondary LU Protocols for FH ~
bit o, chaining use selection:

1 multi.pie-RU chains allowed from secondary LU half-session
bit 1, request control mode selection:

0 immediate request mode
bits 2-3, chain response protocol used by secondary LU half-session for FHD requests;

chains from secondary will ask for:
11 definite or exception response

bits 4-6, reserved
bit 7, send End Bracket indicator

0 secondary will not send EB
f.!:! Usag~Common .!..!.! Protocols
bit o, session segmenting support:

0 this LU supports reception of segments on this session
1 this LU does not support reception of segments on this session; the BIND

sender and receiver set the maximum RU sizes, in bytes 10-11 of BIND and
RSPCBIND), so that segmenting will not occur on the link for this session

bit 1, FM header usage:
1 FM headers allowed

bit 2, brackets usage and reset state:
0 brackets are used and bracket state managers' reset states are INB

bit 3, .. bracket termination .rule selection
1 Rule 1 !conditional termination) will be used during this session

bit 4, alternate code set allowed indicator:
0 alternate code set will not be used
1 alternate code set may be used

bits 5-6, reserved
bit 7, BIND response queue capability:

O BIND response cannot be held/queued

Appendix E. Request-Response Unit CRU> Formats E-5

BIND

7

8

9

10

11

12

13

lit

15

16-22

1 BIND sender allONS bind receiver to queue BIND and Ni thhold BIND response
for an indefinite period

Note: BIND sender may provide a timer or operator interface to send UNBIND if
session activation time exceeds BIND sender's limits. BIND queuing is termi­
nated by sending UNBIND to the BIND receiver.

bits 0-1, normal-flow send/receive mode selection:
10 half-duplex flip-flop

bit 2, recovery responsibility:
1 symmetric responsibility for recovery

bit 3, contention winner/loser:
0 secondary is contention Minner and prh1ary is contention loser
1 primary is contention Minner and secondary is contention loser
Note: Contention winner is also brackets first speaker.

bits ft-5, alternate code processing identifier (reserved unless Alternate Code Set
AllONed indicator (byte 6, bit ft) is 1):
01 process alternate code FMD RUs as ASCII-8
t!2!!!.i. When the Alternate Code Processing Identifier indicator is set to the
value 01, the entire FMD request RU is to be translated using the transforms
defined by the ANSI X3.26 Hollerith Card Code.

bit 6, reserved \
bit 7, half-duplex flip-flop reset states:

1 HDX-FF reset state is SEND for the primary and RECEIVE for the secondary
(e.g., the primary sends normal-flON requests first after session acti-
vation) '

I! Usage
bit o, staging indicator for secondary TC to primary TC normal flow:

O pacing in this direction occurs in one stage (only value used for
PNCP-mediated sessions>

1 pacing in this direction occurs in more than one stage
Note: The meanings of 0 and 1 are reversed from the staging indicator for
primary TC to secondary TC.

bit 1, reserved
bits 2-7, secondary TC's send Nindow size: 0 means no pacing of requests flowing frOlll

the secondary
bits 0-1, reserved
bits 2-7, secondary TC's receive window size: a value of 0 causes the boundary func­

tion to substitute the value set by a system definition pacing parameter (if
the system definition includes such a parameter) before it sends the BIND RU
on to the secondary half-.ession; a value of 0 received at the secondary is
interpreted to mean no pacing of requests flONing to the secondary

HaxilllUlll RU size sent on the normal flow by the secondary half-session: bit O is set
to 1, and the byte is interpreted as X'ab' = a•2••b. (By definition, a~8 and there­
fore X'ab' is a normalized floating point representation.) See Figure E-1 on page E-8
for all possible values.
Haximum RU size sent on the normal flow by the primary half-session: identical encod­
ing as described for byte 10
bit o, staging indicator for primary TC to secondary TC normal flow:

1 pacing in this direction occurs in one stage (only value used for
PNCP•mediated sessions)

O pacing in this direction occurs in two stages
Note: The meanings of 0 and 1 are reversed from the staging indicator for
secondary to primary TC.

bit 1, reserved
bits 2-7, primary TC's send window size: a value of O causes the value set by a sys­

tem definition pacing parameter (if the system definition includes such a
parameter) to be assumed for the session; if this is also o, it means no
pacing of requests flowing from the primary. IFor single-stage pacing in
the primary-to-secondary direction, this field is redundant with, and indi­
cates the same value as, the secondary TC's receive window size--see byte 9,
bits 2-7, above.)

bits 0-1, reserved
bits 2-7, primary TC's receive window size: a value of 0 means no pacing of requests

flowing to the primary. (For single-stage pacing in the secondary-to-pri­
mary direction, this field is redundant with, and indicates the same value
as, the secondary TC's send window size--see byte 8, bits 2-7, above.)

f! Profile
bit o, PS Usage field format:

0 basic format
bits 1-7, LU type:

0000110 LU type 6
f! Usage characteristics
LU-6 level:
X'02' Level 2 (i.e., LU 6.2>
Reserved

E-6 SNA Format and Protocol Reference Hanual for LU Type 6.2

23

24

25

26-k

26

27

28-k

k+l

k+2-•

m+l
m+2-n
m+2

11+3-n

n+l

n+2-p
p+l

p+2-r

b;ts 0-2, ret;red
b;ts 3-7, reserved
bit o, reserved
b;ts 1-2, synchron;zation level:

01 conf;rm ;s supported
10 conf;rm, sync po;nt, and backout are supported

b;t 3, reserved
b;ts 4-5, respons;b;1;ty for sess;on re;n;tiation:

00 operator controlled
01 primary half-session will reinit;ate
10 secondary half-session w;11 rein;t;ate
11 either may rein;tiate

bit 6, parallel sess;on support for LU-LU pair:
0 not supported
1 supported

BIND

bit 7, Change Number of Sessions GOS var;able flow support (set to 1 if byte 24, b;t
6 = 1):
0 not supported
1 supported

Note 1: f;elds def;ned by bits 0-5 are consistent with the correspond;ng fields in
other BINDs used for the same (partner LU, mode name) pa;r.
Note !,;. fields def;ned by bits 6-7 are consistent w;th the corresponding fields in
other BINDs used for the same partner LU.
Reserved
E:!s! 2f fl2 Usaae f;eld
Cryptographv Options
~ Cryptography usage is consistent for all parallel sessions with the same (part­
ner LU, mode name) pa;r.
bits 0-1, reserved
bits 2-3, session-level cryptography options:

00 no session-level cryptography supported
11 session-level mandatory cryptography supported! all cryptography key man­

agement is supported by the SSCP and LU; exchange (via +RSP<BINO)) and
veriffoation (via CRV> of the cryptography session-seed value is sup­
ported by the LUs for the session; all FMD requests are enci­
phered/deciphered by TC

bits 4-7, session-level cryptography options field length:
X'O' no session-level cryptography specified; additional cryptography

options fields (bytes 27-k> omitted
X'9' session-level cryptography specified; additional options follow in next

n;ne bytes
bits 0-1, sess;on cryptography key enc;pherment method:

00 sessfon cryptography key enc;phered under SLU master cryptography key
using a seed value of 0

b;ts 2-4, reserved
bits 5-7, cryptography c;pher method:

000 block chaining with seed and cipher text feedback, using the Data
Encrypt;on Standard (DES> algorithm

Sess;on cryptography key enc;phered under secondary LU master cryptography key; an
e;ght-byte value that, when dec;phered, y;elds the sess;on cryptography key used for
enc;phering and deciphering FMD requests
Length of primary LU name. (for a session ;nvolv;ng two T2.l nodes, values 0 to 8 are
va1;d1 otherw;se, values 1 to 8 are val;d.)
Note: X'OO' = no primary LU name present.
Pr;mary LU name or, ;f the secondary LU ;ssued the INIT-SELF, the IM'l;nterpreted name
as carried in that RU
Length of user data
User data
User data key:
X'OO' structured subfields follow

Note: Individual structured subfields may be omitted entirely. When present,
they appear ;n ascending field number order.

Structured subf; elds. (For detailed def; nit; ons, see "User Data Structured Subf; eld
Formats" on page E-16 .)
Length of user request correlat;on (lJRC) field (values O to 12 are valid)
Note: X'OO' = no URC present.
URC: LU-def;ned identif;er (present only if carried ;n INIT from SLU)
Length of secondary ·LU name. (for a session involv;ng two T2.l nodes, values 0 to 8
are valid; otherw;se, values 1 to 8 are valid.)
Note: X'OO' = no secondary LU name present.
Secondary LU name

tl21I !.;. The length of the BIND RU cannot exceed 256 bytes, lest a negative response be
returned.

Appendix E. Request-Response Un;t (RU> Formats E~7

BIND

.t!sl!.!! !.!. If the last byte of a request is a length field and tha_t field is o, that byte 11ay be
omitted from the BIND request.

Mantissa (al

Exponent 8 9 A B c D E F
(b) (10) (11) (12) (13) (14) (15)

0 8 9 10 11 12 13 14 15

1 16 18 20 22 24 26 28 30

2 32 36 40 44 48 52 56 60

3 64 72 80 88 96 104 112 120

4 128 144 160 176 192 208 224 240

5 256 288 320 352 384 416 448 480

6 512 576 640 704 768 832 896 960

7 1024 1152 1280 1408 1536 1664 1792 1920

8 2048 2304 2560 2816 3072 3328 3584 3840

9 4096 4608 5120 5632 6144 6656 7168 7680

A (10) 8192 9216 10240 11264 12288 13312 14336 15360

B (11) 16384 18432 20480 22528 24576 26624 28672 30720

c (12) 32768 36864 40960 45056 49152 53248 57344 61440

D (13) 65536 73728 81920 90112 98304 106496 114688 122880

E (14) 131072 147456 163840 180224 196608 212992 229376 245760

F (15) 262144 294912 327680 360448 393216 425984 458752 491520

t:fs!!!!: A value of X'ab' in byte 10 or byte 11 of BIND represents a•2••b. For exainple, X'CS'
represents (in deci11all 12•2••5 = 384.

Figure E-1. RU Sizes Corresponding to Values X'ab' in BIND

E-8 SHA Format and Protocol Reference Manual for l,.U Type 6 .• 2

BINDF

BINDFI PLU-->SSCP, Norm; FMD NSCs) !BIND FAILURE)

BINDF is sent, with no-response requested, by the PLU to notify the
SSCP that the attempt to activate the session between the specified
LUs has failed.

0-2 X'810685' NS header
3-6 Sense data
7 Reason:

bit o, reserved
bit 1, 1 BIND error in reaching SLU
bit 2, 1 setup reject at PLU
bit 3, 1 setup reject at SLU
bits 4-7, reserved

8-111 Session key, as described in the section "Session Keys" on page E-23
Note: One of the following session keys is used:
X'07' network address pair: PLU and SLU, respectively
X'lS' network-qualified address pair: PLU and SLU, respectively

BISI LU-->LU, Norm; DFC !BRACKET INITIATION STOPPED)

0

BIS is sent by a half-session to indicate that it will not attempt to
begin any more brackets.

X'70' request code

CINIT; SSCP-->PLU, Norm; FMD NSCsl !CONTROL INITIATE)

CINIT requests the PLU to attempt to activate, via a BIND request, a
session with the specified SLU.

0-2 X'810601' NS header
3 Format

4

5-9

10-11
12-m

m+l-n
m+l
m+2
m+3-n
n+l-n+2
n+3-r
n+3

n+4-r
r+l-s
r+l-r+2

r+3-s
s+l

bits 0-3, 0000 Format 0 (cn!y value defined)
Noie: CINIT format 0 may carry control vectors at the end of the basic
RU.

bits
bit

4-7, reserved
O, INITIATE or1g1n:

0 ILU is OLU
l ILU is not OLU

bit 1, reserved
bit 2, origin LU:

0 SLU is OLU
1 PLU is OLU

bit 3, initiator:
0 network user is the initiator
1 network manager is the initiator

bits 4-7, reserved
Session key, &s described in the section "Session Keys" on page E-23
Note: The following session key is used:
X'07' network address pair: PLU &nd SLU, respectively

Note: If control vector X' 15' is supported by the LU, then bytes 5-9 &re
~ved; otherwise, these bytes contain session key X'07' when sent from the
SSCP to a subarea LU.

Length, in binary, of BIND Image field
BIND image: bytes 1-p of the BIND RU, i.e., through the URC field (see BIND format
description)
Note: The URC Length field is included, even if it is set to O.
Name of SLU
Type:-x7f3• logical unit
Length, in binary, of symbolic name (1-8 characters)
Symbolic name, in EBCDIC characters
Retired--set to X'OOOO'
User Field
Length, in binary, of user data
~ X'OO' = no user data is present.
User d&t& !retired for LU 6.2-not sent by current-level implementation)
LU .Q.C Non-SNA Device Specifications
Length, in binary, of Char&cteristics field
Note: X'OOOO' = no Characteristics field is present.
Characteristics field (retired for LU 6.2-not sent by current-level implementation)
Length of Session Cryptography Key field
Note: X'OO' = no Session Cryptography Key field present.

Appendix E. Request-Response Unit CRU) Formats E-9

CINIT

s+2-t Session Cryptography Key field: session cryptography key enciphered under PLU .. star
cryptography key

!m!!u, End of base RU

t+l-u Control vector, as described in the section "Control Vectors" on page E-20
Note: The following vector keys are used in CINIT:
X'OD' Mode/Class of Service/Virtual Route List (this control vector is always present>
X'15' network-qualified address pair: PLU and SLU, respectively <This control vector

is always present when using extended network addressing1 otherwise, it is
optional.>

CLEANUPI SSCP-->SLU, Nortnl FHD NS(s) (CLEAN UP SESSION>

CLEANUP is sent by the SSCP to an LU (in a subarea node or BF for
peripheral LU> requesting that the LU or BF attempt to deactivate the
session for the specified (PLU,SLU> network address pair.

0-2 X'810629' NS header
3 bits 0-3, 0000 Format O

bits 4-7, reserved
4 Reserved
5 Reason:

bit o, 0 network user
l network manager

bit 1, 0 normal
1 abnormal

bits 2-7, reserved
6-n Session key, as described in the section "Sessfon Keys" on page E-23

Note; One of the following session keys is used:
X'07' network address pair: PLU and SLU, respectively
X'15' network-qualified address pair: PLU and SLU, respectively

CTERH1 SSCP-->PLU, Norm; FHD NS<s> (CONTROL TERMINATE>

CTERH requests that the PLU attempt to deactivate a session identified
by the specified (PLU,SLU> network address pair.

0-2 X'810602' NS header
3 bits 0-3, 0000 Format 0

bits 4-7, reserved
4 Type:

bits 0-1, reserved
bits 2-3, 00 reserved

01 orderly
10 forced
11 reserved

bits 4-7, reserved
5 Reason:

bit O, 0 network user ·.
1 network manager

bit 1, 0 normal
l abnormal

bits 2-7, reserved
6-7 Reserved
8-11 Session key, as described in the section "Session Keys" on page E-23

Note: One of the following session keys is used:
X'07' network address pair: PLU and SLU, respectively
X'15' network-qualified address pair: PLO and SLU, respectively

m+l-m+2 Retired: set to X'OOOO'

CRVI PLU-->SLU, E><pl SC (CRYPTOGRAPHY VERIFICATION>

CRV, a valid request only when session-level cryptography was selected
in BIND, is sent by the primary LU session control to verify
cryptography security and thereby enable sending and receiving of FHO
requests by both half-sessions.

0 X'CO' request code
1-8 A transform of the <deciphered> cryptography session-seed value received (enciphered>

in bytes 28-k of +RSP<BIND>, re-enciphered under the session cryptography key using a
seed value of 01 the transform is the cryptography session-seed value with the first
four bytes inverted
Note: The cryptography session-seed is used as the seed for all session-level
cryptography encipherment and decipherment provided for FHD RUs.

E-10 SHA Format and Protocol Reference Manual for LU Type 6.2

DACTLU

DACTLU; SSCP-->LU, Exp; SC !DEACTIVATE LOGICAL UNIT>

1

2

DACTLU ;s sent to deact;vate the sess;on between the SSCP and the LU.

X'OE' request code
End of short lone-byte) request.

Type of deact;vation requested:
X'Ol' normal deactivation
X'03' sess;on outage notification ISON>
Cause (reserved if byte 1 ~ X'03'):
X'07' v;rtual route ;noperative: the v;rtual route serv;ng the SSCP-LU sessfon has

become ;noperative, thus forcing the deactivat;on of the sess;on
X'08' route extension ;noperative: the route extension serving the SSCP-LU session

has become inoperative, thus forcing the deactivation of the session
X'09' hierarchical reset: the SSCP-LU session is being deactivated because of a

+RSPIACTPU, Cold>
X'OB' virtual route deactivated: the SSCP-LU session is being deact;vated because of

a forced deactivation of the virtual route being used by the session
X'OC' SSCP or LU failure--unrecoverable: the SSCP-LU session had to be reset because

of an abnormal termination; recovery from the failure was not possible
X'OD' session override: the SSCP-LU session has to be deactivated because of a more

recent session activation request for the SSCP to subarea PU session over a dif­
ferent virtual route

X'OE' SSCP or LU failure--recoverable: the SSCP-LU session had to be deactivated
because of an abnormal termination of the SSCP or LU of the session; recovery
from the failure may be possible

X'OF' cleanup: the SSCP is resetting its half-session before receiving the response
from the LU being deactivated

ECHOTEST; SSCP-->LU, Norm; FMD NSlma) IECHO TEST)

ECHOTEST carries test data to the target LU; the test data is the same
as that carried in the corresponding REQECHO.

0-2 X'810389' NS header
3-n Echo data field: same as bytes 4-m in the soliciting REQECHO
3 Number of data bytes
4-n Data

INIT-SELF Format l; ILU-->SSCP, Norm; FMD NSls) !INITIATE-SELF)

INIT-SELF from the ILU requests that the SSCP authorize and assist in
the initiation of a session between the LU sending the request (that
is, the ILU, which also.becomes the OLU> and the LU named in the
request <the DLUl.

0-2 X'810681' NS header
3 bits 0-3, format:

0001 Format 1
bits 4-7, reserved

4 Type:

s

bits 0-1, 01 ;nit;ate only CI>: do not enqueue
11 initiate/enqueue CI/Q): enqueue the request if it cannot be satisf;ed

immediately
bits 2-4, reserved
bits 5-6, PLU/SLU specification:

00 DLU is PLU
01 DLU is SLU

bit 7, reserved
Queuing conditions for DLU:
bit o, 0 do not enqueue if session limit exceeded

1 enqueue if session limit exceeded
bit 1, 0 do not enqueue if DLU is not currently able to comply with the PLU/SLU spec­

ification las given in byte 4, bits 5-6)
1 enqueue if DLU is not currently able to comply with the PLU/SLU specifica­

tion
bits 2-4, reserved
bits 5-6, queuing position/service:

01 enqueue this request FIFO
bit 7, reserved
Note: Since queuing conditions are specified for the DLU only, the following default
values are used by SSCPCOLUl for the OLU:
• Enqueue if session limit exceeded.

Appendix E. Request-Response Unit IRU) Formats E-11

INIT-SELF Format 1

_• Enqueue this request at the back of the queue (FIFO).
6-7 Reserved
8-15 Mode name: an eight~character symbolic name I implementation and installation depend­

ent) that identifies the set of rules and protocols to be used for the session; used
by the SSCPISLU) to select the BIND image that will be used by the SSCPCPLUl to build
the CINIT request

16-n Uninterpreted Name of DLU
16 Type: X'F3' logical unit
17 Length, in binary, of DLU name
18-n DLU name EBCDIC character string
n+l-n+2 Retired: set to X'OOOO'
n+3-rC=n+3) Reserved
r+l-s User Request Correlation CURC) Field
r+l Length, in binary, of URC

!12!.!l X'OO' =no URC. <The length field is always present.)
r+2-s URC: end-user defined identifier; this value can be returned by the SSCP in a subse­

quent NOTIFY to correlate a given session to this initiating request

LUSTAT; LU-->LU(SSCP, Norm; DFC (LOGICAL UNIT STATUS>

LUSTAT is .used by one half-session to send up to four bytes of status
information to its paired half-session.

0 X'04' request code
1-4 Status value+ status extension field !two bytes each):

X'0006'+'rrrr' no-op (used to allow an RH to be sent when no other request is avail­
able or allowed) + reserved field

NOTIFY! SSCP<-->LU, Norm; FMD NS(s) (NOTIFY)

NOTIFY is used to send information between an SSCP and an LU. NOTIFY
carries information in the form of a (vector key, vector data) pair.

0-2 X'810620' NS header (for SSCP-->LU and LU-->SSCP)
3-p One NOTIFY vector as described in detail below

!12!.!l One of the following vector keys is used:
X'03' ILU/TLU Notification: sent by the SSCP to inform the sender of an INIT or TERM

request of the status of the session
X'OC' LU Session Services Capabilities: sent by the LU to inform the SSCP having an

active session with the sending LU of the current LU-LU session services capa­
bility of that LU

NOTIFY vectors (described zero-origin>

ILU/TLU Notification NOTIFY Vector
0
l

2-9
10

11-14
15-m

111+1-n
m+l
m+2-n

LU-LU
0
l
2-m

Key: X'03'
Status:
X'03' procedure error
PCID: a unique value used as a session identifier
Reason <defined for Status field value of X'03' only>
Setup Procedure Error
bit o, 1 CINIT error in reaching the PLU
bit 1, 1 BIND error in reaching the SLU
bit 2, 1 setup reject at the PLU
bit 3, l setup reject at the SLU
bit 4, 0 setup procedure error
bit 5, reserved
bit 6, 1 setup reject at SSCP
bit 7, reserved
Sense data
Session key, as described in the section "Session Keys" on page E-23
Note: One of the following session keys is used:
X'06' network name pair: CPLU or OLUl and CSLU or DLU), respectively
X'15' network-qualified address pair: PLU and SLU, respectively
~ Request Correlation .!.!!fila Field
Length, in binary, of the URC
URC: end user defined identifier, specified in an INIT request; used to correlate the
NOTIFY to the initiating requests

Session Services Capabilities NOTIFY Vector
Key: X'OC'
Length, in binary, of Vector Data field
~!!ill

E-12 SNA Format and Protocol Reference Manual for LU Type 6.2

NOTIFY

2 bits 0-3, primary LU capability:
0000 PLU capability is inhibited, sessions can neither be queued nor started
0001 PLU capability is disabled, sessions can be queued but not started
0010 reserved
0011 PLU capability is enabled, sessions can be queued or started

bits 4-7, secondary LU capability:
0000 SLU capability is inhibited, sessions can neither be queued nor started
0001 SLU capability is disabled, sessions can be queued but not started
0010 reserved
0011 SLU capability is enabled, sessions can be queued or started

3-4 LU-LU session limit !where a value of 0 means that no session limit is specified)
S-6 LU-LU session count: the number of LU-LU sessions that are not reset, for this LU,

and for which SESSEND will be sent to the SSCP
7 bit o, parallel session capability:

0 parallel sessions not supported
l parallel sessions supported

bit 1, reserved
bit 2, SESSST capability in RSPCACTLUI (reserved in NOTIFY):

0 SESSST RU is suppressed if SLU
1 SESSST RU is sent if SLU

bits 3-7, reserved
8-lSC=ml Retired (set to X'4040404040404040' l or omitted

REQECHOI LU-->SSCP, Norm; FMD NSCmal <REQUEST ECHO TESTI

0-2
3

4-m
4
s-m

REQECHO requests that the SSCP return to the LU in ECHOTEST the data
included in REQECHO.

X'810387' NS header
Repetition factor:
Note: X'OO' is not
Echoed Data Field
Number of data bytes
Echoed data

number of times the test data is to be echoed to the target LU
a valid repetition factor.

to be echoed

RTRI LU-->LU, Norml DFC CREADY TO RECEIVE>

0

RTR indicates to the bidder that it is now allowed to initiate a
bracket. RTR is sent only by the first speaker.

X'OS' request code

SESSENDI LU-->SSCP, Norm; FMD NS!sl (SESSION ENDED>

SESSEND is sent, with no response
ry function on behalf of the LU
SSCP that the session between the
deactivated.

0-2 X'810688' NS header
3 bits 0-3, format:

0010 format 2
bits 4-7, reserved

requested, by the LU Cor the bounda­
in a peripheral node) to notify the
specified LUs has been successfully

4 Cause: indicates the reason for the deactivation of the LU-LU session (see UNBIND for
values)

S Action indicating if any resultant action is to be taken and by whom:
X'Ol' normal, no resultant automatic action

6-n Session key, as described in the section "Session Keys" on page E-23
~ One of the following session keys is used:
X'07' network address pair: PLU and SLU, respectively
X'lS' network-qualified address pair: PLU and SLU, respectively

SESSSTI LU-->SSCP, Norm; FMD NSlsl ·!SESSION STARTED!

SESSST is sent, with no response requested, by the LU (or the boundary
function on behalf of the LU in a peripheral node> to notify the SSCP
that the session between the specified LUs has been successfully acti­
vated.

0-2 X'810686' NS header
3 Format:

X'OO' Format O: no control vectors present
X'Ol' Format 1: control vectors present in bytes n+l-p

4-n Session key, as described in the section "Session Keys" on page E-23

Appendix E. Request-Response Unit CRU> Formats E-13

SESSST

n+l-p

Note; One of the following session keys is used:
X'07' network address pair: PLU and SLU, respectively
X'l5' network-qualified address pair: PLU and SLU, respectively

Note: End of Format O; Format l continues below.

One 011 more control vectors, as described in the section "Control Vectors" on page
E-20
Note: The following vector keys may be used in SESSST:
X'lE' VR-ER Mapping Data
X'23' Local Form Session Identifier

SIG; LU-->LU, Exp; DFC !SIGNAL>

SIG is an expedited request that can be sent between half-sessions,
regardless of the status of the normal flows. It carries a four-byte
value, of which the first two bytes are the signal code and the last
two bytes are the signal extension value.

0 X'C9' request code
1-2 Signal code:

X'OOOl' request to send
3-4 Signal extension:

X'OOOl' soft

TERM-SELF Format 11 TLU-->SSCP, Norm; FHD NS(s) !TERMINATE-SELF>

0-2
3

4

5

6-7
8-n

n+l-n+2
n+3-p
n+3

n+4-p

TERM-SELF from the TLU requests that the SSCP assist in the termi­
nation of one or more sessions between the sender of the request CTLU
= OlUl and the DLU.

X'810683' NS header
bits 0-3, format:

0001 Format 1
bits 4-6, reserved
bit 7, 1 indicates that byte 3, bits 0-3, contain the format value
Type:
bits 0-1, 01 the request applies to active, pending-active, and queued sessions
bit 2, reserved if byte 4, bit 7 = l; othe~wise:

0 forced termination--session to be deactivated immediately and uncondi­
tionally
orderly termination--permitting an end-of-session procedure to be executed
at the PLU before the session is deactivated

bit 3, l send DACTLU to OLU when appropriate; no further session initiation request
will be sent (from this sender> for OLU

bit 4, reserved
bits 5-6, 00 select session(s) for which DLU is PLU

01 select session(s) for which DLU is SLU
10 select session(s) regardless of whether DLU is SLU or PLU
11 reserved

bit 7, 0 orderly or forced (see byte 4, bit 2)
1 clean up

Reason:
bit o, 0 network user
bit 1, 0 normal termination

1 abnormal termination
bits 2-7, reserved
Reserved
Session key, as described in the section "Session Keys" on page E-23
Note: One of the following session keys is used:
X'OA' URC

Note: This URC is the one carried in the INIT issued previously by the same LU
!i.e., ILU = TLU), and differs from the one in bytes n+4 through p.

Retired: set to x•oooo•
User Request Correlation CURCl Field
length, in binary, of URC field
Note: X'OO' = no URC.
URC: end-user defined identifier; this value can be returned by the SSCP in a subse­
quent NOTIFY to correlate the NOTIFY to this terminating request

UNBIND; LU-->LU, Exp; SC (UNBIND SESSION)

UNBIND is sent to deactivate a session between the two lUs.

E-14 SNA Format and Protocol Reference Manual for LU Type 6.2

0
l

X'32'
Type:
X'Ol'
X'02'

X'06'

X'07'

X'08'

X'09'

X'OA'

X'OB'

UNBIND

request code

normal end of session
BIND forthcoming: retain the node resources ~llocated to this session, if pos­
sible
invalid session parameters: the BIND negotiation has failed due to an inability
of the primary half-ses£ion to support parameters specified by the secondary
virtual route inoperative: the virtual route used by the LU-LU session has
become inoperative, thus forcing the deactivation of the identified LU-LU ses­
sion
route extension inoperative: the route extension used by the LU-LU session has
become inoperative, thus forcing the deactivation of the identified LU-LU ses­
sion
hierarchical reset: the identified LU-LU session is being deactivated because
of a +RSPC(ACTPU I ACTLUI, Coldl
SSCP gone: the identified LU-LU session had to be deactivated because of a
forced deactivation of the SSCP-PU or SSCP-LU session (e.g., DACTPU, DACTLU, or
DISCONTACT)
virtual route deactivated: the identified LU-LU session had to be deactivated
because of a forced deactivation of the virtual route being used by the LU-LU
session

X'OC' LU failure--unrecoverable: the identified LU-LU session had to be deactivated
because of an abnormal termination of the PLU or SLU; recovery from the failure
was not possible

X'OE' LU failure--recoverable: the identif;ed LU-LU session had to be deactivated
because of an abnormal termination of one of the LUs of the session; recovery
from the failure may be possible

X'OF' cleanup: the LU sending UNBIND is resetting its half-session before receiving
the response from the partner LU

X'll' gateway node cleanup: a gateway node is cleaning up the session because a gate­
way SSCP has directed the gateway node <via NOTIFY) to deactivate the session
(e.g., a session setup error or session takedown failure has occurred)

X'FE' format or protocol error: the LU sending UNBIND has detected a format or proto­
col error; the error is identified by the associated sense data

2-5 Sense data (included only when Type= X'FE'; otherwise, this field is omitted>: same
value as generated at the time the error was originally detected (e.g., for a negative
response, receive check, or EXRI

UNBINDF; PLU-->SSCP, Norm; FMD NS(s) (UNBIND FAILURE)

UNBINDF is sent, with no-response requested, by the PLU to notify the
SSCP that the attempt to deactivate the session between the specified
LUs has failed (for example, because of a path failure).

0-2 X'810687' NS header
3-6 Sense data
7 Reason:

bit o, reserved
bit 1, l UNBIND error in reaching SLU
bit 2, 1 takedown reject at PLU
bits 3-7, reserved

8-n Session key, as described in the section "Session Keys" on page E-23
Note: One of the following session keys is used:
X'07' network address pair: PLU and SLU, respectively
X'l5' network-qualified address pair: PLU and SLU, respectively

Appendix E. Request-Response Unit <RU> Formats E•l5

User Data Subfields

USER DATA STRUCTURED SUBFIELD FORMATS

The structured subfields of the User Data field are defined as follows (shown Nith zero-origin
indexing of the subfield bytes--see the individual RU description for the actual displacement
Nithin the RU). Each subfield starts with a one-byte binary Length field and is identified by a
subfield number in the following byte. The length does not include the Length byte itself.
When more than one subfield is included, they appear in ascending order by subfield number.

Any subfields received in the Structured User Data field of BIND that are not recognized by the
SLU are discarded and not returned as part of the Structured User Data field of the RSP(BINDJ.

Unformatted Data Structured Data Subfield

The Unformatted Data subfield may optionally be sent in BIND or
RSP(BIND). The content is implementation-defined.

O Length of the remainder of the Unformatted Data subfield: values 1 to 17 are valid
1 X'OO'
2-n Unformatted data: a type-6 symbol string

Mode Name Structured Data Subfield

The Mode Name subfield is present in both BIND and RSP(BIND) if the
PLU knows the mode name being used by the session.

O Length of the remainder of the Mode Name Structured User Data subfield: values 1 to 9
are valid

1 X'02'
2-n Mode name: O to 8 type-A symbol string characters with optional (but not significant)

trailing blanks

Session Instance Identifier Structured Data Subfield

The Session Instance Identifier subfield may be present in both BIND
. and RSP(BIND).

0 Length of the remainder of the Session Instance Identifier subfield: values 3 to 9
are valid

1 X'03'
2-n Session instance identifier: a type-6 symbol string

Note: In BIND, the PLU sets a unique session instance identifier of length 1 to 7 and
appends it to X'OO'. If known, the SLU compares its fully qualified name with that of
the PLU; if the PLU name > SLU name then the SLU changes the f,i rst byte of the Session
Instance Identifier subfield in the BIND response from X'OO' to X'FO'J if the PLU name
< SLU name then the subfield is simply echoed. The session instance identifier is
alway present when using either parallel sessions or synchronization level "all."

Fully Qualified PLU Network Name Structured Data Subfield

0

BIND contains the Fully Qualified PLU Network Name subfield (if the
name is known by the PLU).

Length of the remainder of the Fully Qualified PLU Network Name subfield: values 2 to
18 are valid ··

1 X'04'
2-n Fully qualified PLU network name

H2!!U The fully qualified PLU network name is 1 to 17 bytes in length, consisting of
an optional 1- to 8-byte network ID and a 1- to 8-byte LU name, both of which are
type-A symbol strings. When present, the network ID is concatenated to the left of
the LU name, using a separating period and having the form "NWID.NAME"J when the net­
work ID is omitted, the period is also omitted.

Fully Qualified SLU Network Name Structured Data Subfield

The RSP!BIND> contains the Fully Qualified SLU Network Name subfield
(if the name is known by the SLU).

O Length of the remainder of the Fully Qualified SLU Network Name subfield: values 2 to
18 are valid

1 x•os•
2-n Fully qualified S~U network name

E~16 SNA For11at and Protocol Reference Manual for. LU Type 6.2

User Data Subf;elds

tf2!!ll The fully quali f; ed S LU network name ; s 1 to 1 7 bytes in length, consisting of
an opUonal 1- to 8-byte network ID and a 1- to 8-byte LU name, both of wh;ch are
type-A symbol str;ngs. When present, the network ID ;s concatenated to the left of
the LU name, us;ng a separaUng period and hav;ng the for11 "NWID.NAME"; when the net­
work ID is om;tted, the per;od ;s also om;tted.

Appendix E. Request-Response UnH (RU> For111ats E-17

SUMMARY QE RESPONSE RU'S

Apart from the exceptions cited below, response RUs return the number of bytes specified in the
following table! only enough of the request RU is returned to include the field-formatted
request code.

RY Category of Response

SC
DFC
FMD NS lFI=l> (field-formatted)
FMD NS (FI=O> (character-coded)
FMD C LU-LU)

l
l
3
0
0

Various positive response RUs return additional data. See "Positive Response RU's with Extended
Formats" for detaHs.

All negative responses return four bytes of sense data in the RU, followed by either (1) the
number ·of bytes specified in the table above or (2) three bytes Cor the entire request RU, if
shorter than three bytes>. The second option applies where a sensitivity to SSCP-based sessions
versus LU-LU sessions does not exist and can be chosen for implementation simplicity. Refer to
"Appendix G. Sense Data" for sense data values and their corresponding meanings.

POSITIVE RESPONSE RU'S WITH EXTENDED FORMATS

RSPCACTLU)J LU-->SSCP, Expl SC
0 X'OD' request code
l Type of activation selected:

2

X'Ol' cold
X'02' ERP
bits 0-3, FM profile:

X'O' FM Profile 0
X'6' FM Profile 6
Note: This field contains the same value as the
in the ACTLU request except in the following case.
FM profile o, the LU may respond either FM profile

bits 4-7, TS profile: same as the corresponding request

FM profile field received
If the request specified

0 or FM profile 6.

3-m Control vectors, as described in the section "Control Vectors" on page E-20

Note: Two versions of this RU are defined.

• A full response can be sent in which all fields and control vectors are present. These con­
trol vectors always appear in the following order:

X'OO' SSCP-LU session capabilities
X'OC' LU-LU session services capabilities

• A two-byte response can be sent; it means maximum RU size= 256 bytes, LU-LU session limit =
1, the LU can act as a secondary LU, and all other fields in control vectors X'OO' and X'OC'
are defaulted to O's.

E-18 SNA Format and Protocol Reference Manual for LU Type 6.2

RSPIBIND>

RSPIBIND>; SLU-->PLU, Exp; SC
0
1

z-zs

26-k
26

27

28-k

k+l-r

X'31' request code
bits 0-3, format: 0000
bits 4-7, type:

0000 negotiable
Bytes as .received on BIND request, or bytes having the same format, but possibly with
values changed from those received on the BIND request
Crvptoqraphy Options
bits 0-1, reserved
bits 2-3, session-level cryptography options
bits 4-7, session-level cryptography options field length: same value returned as

received in the request. lBytes 27-k are omitted if this length field is
omitted or set to O.>

bits 0-1, session cryptography key encipherment method: same value returned as
received in the request, if present

bits 2-4, reserved
bits 5-7, cryptography cipher method: same value returned as received in the request,

if present
An eight-byte implementation-chosen, nonzero, pseudo random session-seed cryptography
value enciphered under the session cryptography key, if session-level cryptography is
specified
Bytes as received on BIND request, or bytes having the same format, but possibly with
values changed from those received on the BIND request

The extended format is required for the BIND response •

.t:!Q!!! 2: On a response, if the last byte of a response is a Length field and that field is o,
that byte may be omitted from the response. This applies also to byte 26 !where the count occu­
pies only bits 4-7> if bits 0-3 are also o~the entire byte may be omitted if no bytes follow •

.t:!Q!!! 3: Reserved fields in the BIND are set by the SLU to bi nary 0 's in the RSP(BIND>; any
fields at the end of the BIND that are not recognized by the SLU are discarded and not returned
in the RSPIBIND>.

RSPICINIT>; PLU-->SSCP, Norm; FMD HS(s)
0-2 X'810601' HS header
3-n Control vectors as described in the section "Control Vectors" on page E-20

li2!.!..;. The following control vector key is used in RSPICIHIT>:
X'FE' control vector keys not recognized

Appendix E. Request-Response Unit CRU> Formats E-19

Control Vectors

~ STRUCTURED SUBFIELDS

CONTROL VECTORS

The following table shows, by key value, the control vector and the 111eSsage-unit structures that
can carry the control vector.

~ Control Vector Applicable Message-Unit Structures

X'OO' SSCP-LU Session Capabilities
X'OC' LU Session Services Capabilities
X'OD' Mode / Class-of-Service /

RSPlACTLU>
RSPCACTLU>
CI NIT

Virtual-Route-Identifier-List
X'lS' Network-~ualified Address Pair
X'lE' YR-ER Mapping Data

CI NIT
SESSST
SESSST
RSPCCINIT>

X'23' Local-Form Session Identifier
X'FE' Control Vector Keys Not

Recognized

Note: Control vector X'FE' is used to report receipt of one or more unrecognized control vec­
tors, provided that each unrecognized contr9l vector has a key greater thatn X'08'. A negative
response i ndi cat i ng sense code 0835--Invali d Parameter (with Pointer Only >-is returned if a
request is received with an unrecognized control vector with a key less than or equal to X'08'.
When all unrecognized control vectors have keys greater than 8, the receiver responds using a
X'FE' control vector that identifies each unrecognized control vector by key; this allows the
response sender to indicate that some control vectors have been processed, while others have
not.

The control vectors are defined as follows <with zero-or1g1n indexing of the vector bytes-see
the individual RU description for the actual displacement within the RU):
Note: When more than one control vector. 111ay appear in an RU, the vectors may appear in any
order, unless otherwise stated.

SSCP-LU
0
1

2-3

Session Capabilities Control Vector
Key: X'OO'
Maximum RU size sent on the normal flow by either half-session: if bit 0 is set to o,
then no maximum is specified and the remaining bits 1-7 are ignored; if bit 0 is set
to 1, then the byte is interpreted as X'ab' = a•2**b. (Notice that, by definition,
a~8 and therefore X'ab' is a normalized floating point representation. l See Fig­
ure E-1 on page E-8 for all possible values.
LU capabilities:
bit o, character-coded capability:

O the SSCP may not send unsolicited character-coded requests; a solicited
request is a reply request or a request that carries additional error infor­
mation to supplement a previously sent negative response or error informa­
tion after a positive response has already been sent

1 the SSCP may send unsolicited character-coded requests
bit l, field-formatted capability:

0 the SSCP may not send unsolicited field-formatted requests
1 the SSCP may send unsolicited field-formatted requests

bits 2-15, reserved
Reserved

E-20 SNA Format and Protocol Reference Manual for LU Type 6.2

LU-LU
0
1
2-m
2

3-4
5-6

7

Session Services Capabilities Control Vector
Key: X'OC'
Length, in binary, of Vector Data field
Vector Data
bits 0-3, primary LU capability:

Control Vectors

0000 PLU capability is inhibited, sessions can n<=ither b<= queued nor started
0001 PLU capability is disabled, sessions can be queued but not started
0010 reserved
0011 PLU capabiljty is enabled, sessions can be queued or started

bits 4-7, secondary LU capability:
0000 SLU capability is inhibited, sessions can neither be queued nor started
0001 SLU capability is disabled, sessions can be queued but not started
0010 reserved
0011 SLU capability is enabled, sessions can be queued or started

LU-LU session limit !where a value of 0 means that no session limit is specified)
LU-LU session count: the number of LU-LU sessions that are not reset, for this LU,
and for which SESSEND will be sent to the SSCP
bit o, parallel session capability:

0 parallel sessions not supported
l parallel sessions supported

bit 1, reserved
bit 2, SESSST capability in RSP!ACTLU) (reserved in NOTIFY):

0 SESSST RU is suppressed if SLU
1 SESSST RU is sent if SLU

bits 3-7, reserved
8-15(:m) Retired (set to X'4040404040404040') or omitted

Mode/ Class-of-Service/ Virtual-Route-Identifier-List Control Vector
0
l
2-n
2-9

10-17
18-n
18

19

20

21
22-n

Key: X'OD'
Length, in binary, of Vector Data field
Vector Data
Mode na-;;;;:- an eight-character symboHc name (implementation and installation depend­
ent) of type-A symbol string characters that identifies the set of rules and protocols
to be used for the session; used by the SSCPCSLU) to select the BIND image that is to
be used by the SSCPCPLU> to build the CINIT request
COS name: symbolic name of class of service in EBCDIC characters
Virtual Route Information
Length lin bytesl~binary, not including this length field, of remainder of Virtual
Route Information field
Format of virtual route identifier list:
X'OO' format 0
Type of virtual route required:
X'OO' only virtual routes mapping to ERO from the subarea of the SLU to the subarea of

the PLU may be used
X'Ol' virtual routes mapping to any ERN may be used
Number of entries in the virtual route identifier list
Virtual route identifier list: two-byte !VRN, TPFI entries where VRN is one byte and
TPF is one byte

Network-Qualified Address Pair Control Vector
0 Key: X'l5'
1 Length, in binary, of Vector Data field
2-n ~ Data
2-7 NAU l network address
8-13 NAU 2 network address

.!:!2!!u See the RUs that carry this vector for NAU1/NAU2 definitions and order require­
ments.

14-2l!=nl Network ID of the subnetwork in which the above addresses are valid
.!:!2!!u If the Network ID contains all space (X' 40 ••• 40' I characters, the network
addresses are in the sender's network.

Appendix E. Request-Response Unit !RUI For111ats E-21

Control Vectors

VR-ER
0
1
2-n
2

3

4(=nl

local
0
l
2-p
2

3-p
3
4
5(:p)

3-p
3(=pl

Happing Data Control Vector
Key: X'lE'
length, in binary, of Vector Data field
~I!!!!
VRN and TPF data:
bits 0-3, virtual route number (VRN> used by the session indicated in the containing

RU
bits 4-5, reserved
bits 6-7, Transmission Priority field (TPF) used by the session indicated in the con-

taining RU
Explicit rout~ data:
bits 0-3, reserved
bits 4-7, outbound ERN for the VRN specified in byte 2, bits 0-3
Reverse explicit route data:
bits 0-3, reserved
bits 4-7, RERN corresponding to the VRN specified in byte 2, bits 0-3

Form Session Identifier Control Vector
Key: X'23'
length, in binary, of Vector Data field
~Data
Format:
X'02' Format 2:
X'03' Format 3:

FID 2 format session identifier
FID 3 format session identifier

• For format 2~FID 2
Session identifier for Format 2~FID 2
OAF' from the TH of the BIND request
DAF' from the TH of the BIND request
Flags:
bits 0-5, reserved
bit 6, ODAI field from TH of the BIND request
bit 7, reserved

• For format 3--FID 3
Session identifier for Format 3--FID 3
lSID from TH of the BIND request

Control
0

Vector Keys Not Recognized Control Vector
Key: X'FE'

l
2-n

length, in binary, of Vector Data field
Vector data: one or more one-byte control vector key values that were not recognized
in the corresponding request

E-22 SHA Format and Protocol Reference Manual for LU Type 6,2

Session Keys

SESSION KEYS

The following table shows, by key value, the session key and the message-laiit structures that
can carry the session key.

K!!ll Session K!!ll Applicable Hessage-Uni1 Structures

X'06' Network name pair NOTIFY

X'07' Network address pair BINDF, CINIT, CLEANUP, CTERM, NOTIFY, SESSEND, SESSST,
UNBINDF

X'OA' URC NOTIFY, TERM-SELF

X'l5' Network-Qualified address pair BINDF, CLEANUP, CTERH, NOTIFY, SESSEND, SESSST, UNBINDF

The session keys are defined as follows I with zero-or1 g1 n indexing of the key bytes--see the
individual RU description for the actual displacement within the RU).

Network
0
1
2
3-m
m+l
m+2
m+3-n
!:!!tl!ll

Network
0
1-2
3-4

Name Pair Session Key
Key: X'06'
Type: X'F3' logical unit
Length, in binary, of PLU (or OLU or LUI) name
Name in EBCDIC characters (see Note below)
Type: X'F3' logical unit
Length, in binary, of SLU (or DLU or LU2) name
Name in EBCDIC characters (see Note below)

The names in this session key consist of type-A symbol

Address Pair Session Key
Key: X'07'
Network address of NAUl
Network address of NAU2

string characters.

Note: See the RUs that carry this
requirements.

session key for NAU1/NAU2 definitions and order

URC Session Key
0 Key: X'OA'
1 Length, in binary, of the URC
2-n URC: LU-defined identifier

Network-Quall f i ed Address Pair Sess fon Key
0
l
2-21
2-7
8-13

14-21

Key: X' 15'
Length, in binary, of Key Data field
KEY Data field
NAUl network address
NAU2 network address
!:!!tl!ll See the RUs that carry this session key for NAU1/NAU2 definitions and order
requirements.
Network ID of the subnetwork in which the above addresses are valid
Note: The Length byte is set to 12 when network ID is not included and to 20 when
network ID is included. If the Network ID contains all space CX'40 ••• 40') characters,
the network addresses are in the sender's network.

Appendix E. Request-Response Unit (RU) Formats E-23

Common Subvectors

COMMON SUBVECTORS

The follow;ng table shows, by key value, the common subvectors and the message-unit structures
that can carry the subvector.

X'lO'
X'll'

Subvector

Product Set ID
Product ID

Applicable Message-Unit Structures

Error Log GOS variable
Error Log GOS variable

The common subvectors are defined as follows <with zero-origin indexing of the vector bytes~see
the specific major vector for the actual displacement within the RU>:

Product Set ID (X'lO') Common Subvector

The Product Set ID subvector is a common subvector that identifies one
or more products that implement a network component being referenced.

0 Length (p+ll, in binary, of the Product Set ID subvector
1 Key: X' 10'
2 Retired
3-p Network product ID consisting of one or more Product ID (X'll') Common Subvectors, as

described below, one for each product in the product set implementing the network com­
ponent indicated in byte 2. Each Product ID !X'll') Common Subvector uniquely identi­
fies a product instance and, optionally, gives its characteristics such as release
level, or product being emulated.

Product ID CX'll'l Common Subvector

The Product ID Common Subvector uniquely identifies a product instance
and, optionally, gives its characteristics.

0 Length (q+l), in binary, of the Product ID subvector
l Key: X'll'
2 bits 0-3, reserved

bits 4-7, product classification:
X'l' IBM machine
X'3' IBM or non-IBM machine <not distinguished)
X'4' IBM programming
X'9' non-IBM machine
X'C' non-IBM programming
X'E' IBM or non-IBM programming lnot distinguished)

3-q One or more subfields containing product- and installation-specific information on
hardware, microcode, and programming (listed by Key value below and described in
detail following):

X'OO' Product Instance Identifier
X'Ol' Emulated Product Identifier <hardware)
X'03' Software Product Version and Release-Level Identifier
X'OS' PTF-Level Data

~ If byte 2, bits 4-7 <product classification) = X' l', X'3', or X'9', subfields
X'03' and X'OS' are not supported. If byte 2, bits 4-7 (product classification) =
X'4', X'C', or X'E', subfield X'Ol' is not supported. Subfields X'04', X'09', X'OE',
X'OF'• X'lO', and X'9E' are reserved.

Product Instance Product ID Subfield
Identifier IX'OO'l

0
1
2

This subfield provides sufficient data to identify the product
instance uniquely. For hardware, this. normally describes the machine
type, plant of manufacture, and serial number. For software, this
normally is the program number.

Length lr+l), in binary, of the Product Instance Identifier subfield
Key: X'OO'
Format type:

E-24 SNA Format and Protocol Reference Manual for LU Type 6.2

Common Subvectors

X'lO' product instance is identified by a serial number unique by machine type and if
required, IBM plant of manufacture

X'll' product instance is identified by a serial number, unique by machine type, model
number, and if required, IBM plant of manufacture.

X'l2' product instance is identified by a serial number, unique by machine type and if
required, IBM plant of manufacture Cas in Format X'lO' above). This format pro­
vides the model number for the purpose of additional information only.

X'13' product instance is identified by a serial number, unique by machine type, model
number, and if required, a 3-digit Corporate Accounting Instruction Code

X'40' product instance software identified by the Program Number
X'41' product instance software identified by the Program Number that contains a

3-byte product modifier
Note: FormatsX'lO', X'll', X'l2', and X'l3' are applicable orily to hardware, while
formats X'40' and X'41' are applicable only to software. One and only one format can
be used in a Product Instance Identifier CX'OO') subfield.

3-r Product identification
H2!.!ll The originator of a message unit Ce.g., PU-MSU, XID> reporting for another
product that does not supply information required for the Product Instance Identifier
subfield inserts binary O's into the appropriate fields (except for the Machine Type
field where EBCDIC O's [X'FO'] are inserted) of the Product Identification field to
indicate that no identification information is available.

• Format X'lO'
3-6 Machine type: four numeric EBCDIC characters
7-8 Serial number modifier--plant of manufacture: two numeric EBCDIC characters or two

EBCDIC O's if plant of manufacture is not required to uniquely identify product
instance

9-lSC=r> Serial number: seven upper-case alphanumeric EBCDIC characters, right justified, with
EBCDIC O's CX'FO'> fill on the left

3-6
7-9
10-11

• Format X' 11'
Machine type: four numeric EBCDIC characters
Machine model number: three upper-case alphanumeric EBCDIC characters
Serial number modifier--IBM plant of manufacture: two numeric EBCDIC characters or
two EBCDIC O's if plant of manufacture is not required to uniquely identify product
instance

12-18(:r) Serial number: seven upper-case alphanumeric EBCDIC characters, right justified, with
EBCDIC O's CX'FO'> fill on the left

3-6
7-9
10-11

•Format X'l2'
Machine type: four numeric EBCDIC characters
Machine model number: three upper-case alphanumeric EBCDIC characters
Serial number modifier--IBM plant of manufacture: two numeric EBCDIC characters or
two EBCDIC O's if plant of manufacture is not required to uniquely identify product
instance

12-18C=r> Serial number: seven upper-case alphanumeric EBCDIC characters, right justified, with
EBCDIC O's CX'FO') fill on the left

3-6
7-9
10-12

• Format X' 13'
Machine type: four numeric EBCDIC character
Machine model number: three upper-case alphanumeric EBCDIC characters
Serial number modifier--Corporate Accounting Instruction Code: three upper-case
alphanumeric EBCDIC characters or three EBCDIC O's if Corporate Accounting Instruction
Code is not required to uniquely identify product instance

13-19C=r> Serial number: seven upper-case alphanumeric EBCDIC characters, right justified, with
EBCDIC O's CX'FO'> fill on the left

3-9

10-r

3-9

10-12

13-r

• Format X'40'
Program Number: seven upper-case alphanumeric EBCDIC characters identifying the soft­
ware Program Information Department CPID> order number as documented in the IBM prod­
uct announcement documentation
Customer-specified identifier (type-G symbol-string> to allow differentiation among
system-definition options, configurations, or capabilities

• Format X'41'
Program Number: seven upper-case alphanumeric EBCDIC characters identifying the soft­
ware Program Information Department CPID> order number as documented in the IBM prod­
uct announcement documentation
A product-specified modifier to bytes 3-9 to allow unique product instance identifica­
tion: three upper-case alphanumeric EBCDIC characters
Customer-specified identifier Cin type-G symbol-string) to allow differentiation among
system-definition options, configurations, or capabilities

Appendix E. Request-Response Unit CRU> Formats E-25

Common Subvectors

Ellllllated Product Identifier (X'Ol') ~roduct ID Subfield

0
1
2-5
6-8(=r>

This subfield describes the hardware of the product being elllUlated in
sufficient detail to allow problem determination.

Length (r+l), in binary, of the E111Ulated Product ID subfield
Key: X'Ol'
Machine type of product being emulated: four numeric EBCDIC characters
Model number of product being emulated: three upper-case alphanumeric EBCDIC charac-
ters

Software Product Version and Release Leval Identifier (X'03') Product ID Subfield

This subfield provides the version and release-level number of the
software running in the product.

O Length (r+l>, in binary, of the Software Product Release or Level IdentUier subfield
1 Key: X'03'
2-r Software version and release-level identifier (upper-case alphanumeric EBCDIC charac­

ters> identifying the software version and release-level number as documented in the
IBM product annouicement documentation for IBM products

PTF-Level Data (X'OS') Product ID Subfield

This subfield provides the PTF-level related data for the product
(software>.

0 Length (r+l), in binary, of the PTF-Level Data subfield
1 Key: X'OS'
2-r PTF-level product-defined data for the software (in type-AE symbol-string> identifying

the software PTF level data as documented in the IBM product announcement documenta­
tion for IBM products

E-26 StfA !;or.at and.Protocol Reference Manual for LU Type 6.2

APPENDIX f.a. PROFILES

FUNCTIQN MANAGEMENJ lFM> PROFILES

Jh;s secHon descr;bes the functfon manageinent lFM> profiles and the;,. use for LU 6.2 sessions.
Prof;le numbers not shown are reserved in these sessions.

Note: If the FM Usage field in BIND specif;es a value for a parameter, that value is used
unless ;t conflicts with a value specified by the FM profile. The FM profile overrides the FM
Usage field.

FM PROFILE 0

Profile O (used on SSCP-LU sessions> specifies the following session rules:

Primary and secondary half-sessions use immediate request mode and immediate response llOde.

Only single-RU chains allowed.

Primary and secondary half-session chains indicate definite response.

No compression.

Primary half-session sends no DFC RUs.

Secondary LU half-session may send LUSTAT.

No brackets.

No FM headers.

No alternate code.

Normal-flow send/receive lllOde is full-duplex.

Appendix F. Profiles F-1

Fft PROFILE 6

Profile 6 (used on SSCP-LU sessions> specifies the following session rules:

Primary and secondary half-sessions use delayed request Mede and delayed response lllOde.

Only single-RU chains allowed.

Primary and secondary half-session chains may indicate definite response, exception
response, or no response.

No compression.

Primary half-session sands no DFC RUs.

Secondary half-session may send LUSTAT.

No brackets.

No Fft headers.

No alternate coda.

Normal-flow send/receive llOde is full-duplex.

F-2 SNA Format and Protocol Reference ttanual for LU Type 6.2

FM PROFILE 19

Prof;le 19 Cused on LU-LU sess;ons) spec;f;es the follow;ng sess;on rules:

Pr;mary LU half-sess;on and secondary LU half-sess;on use ;mmediate request and ;mmediate
response mode.

Mult;ple RU cha;ns allowed.

Primary LU half-sess;on and secondary LU half-sess;on cha;ns ;ndicate def;n;te or exception
response.

No compression.

Primary and secondary half-sess;ons support the following DFC functions:

SIGNAL
LUST AT
BIS
RTR

Brackets are used.

FM headers <types 5 and 7 only) are allowed.

Conditional termination for brackets Cspecif;ed by CEB) will be used--primary and secondary
half-sessions may send CEB.

The following combinations of RQE, RQD, CEB, and CD are allowed on end-chain RUs:

RQE*• CD, .. CEB
RQD2, CD, .. CEB
RQD3, CD, .. CEB
RQEl, .. co, CEB
RQD*• .. co, CEB
RQD*, .. CD, .. CEB

Normal-flow send/receive mode is half-duplex flip-flop.

Half-duplex flip-flop reset state is send for the primary LU half-session and receive for
the secondary LU half-session after RSPCBIND).

Symmetric responsibility for recovery.

Contention winner/loser polarity is negotiated at BIND ti111eJ the contention winner is the
first speaker and the contention loser is the bidder.

The only FM Usage field defining options for Profile 19 is Contention Winner/Loser.

Appendix F. Prof;les F-3

Ftl PROFILE VS. TYPE OF SESSION

The follotting table specifies Nhich Ftl profiles MY be"used Mith each type of session.

Type of Session

Ftl Profile SSCP-LU LU-LU

0 yes no

6 yes no

19 no yes

LUs in the same node as an SSCP use Ftl profile 6
for the SSCP-LU sessions otherNise, the LU uses Ftl profile O.

F-4 SNA Format and Protocol Reference tlamHol for LU Type 6.2

TRANSMISSION SERVICES CTS> PROFILES

This section describes the transmission serviees (TS) profiles and the;r use for LU ~-2 se!!­
sions. Profile numbers not shown are reserved in these sessions.

Note: If the TS Usage field in BIND specifies a value for a parameter, that value is used
unless it conflicts with a value soecified by the TS profile. The TS profile overrides the TS
Usage field.

TS PROFILE 1

Profile 1 (used on SSCP-LU sessions) specifies the following session rules:

No pacing.

Identifiers rather than seq-uence numbers are used on the normal flows.

SOT, CLEAR, RQR, STSN, and CRY are not supported.

Maximum RU size on the normal flow for either half-sess;on is 256, unless a different value
is specified in RSPIACTLUl.

There is no TS Usage field associated with this profile.

TS PROFILE 7

Profile 7 (used on LU-LU sessions) specifies the following session rules:

Primary-to-secondary and secondary-to-primary normal flows are optionally paced.

Sequence numbers are used on the normal flows.

SOT, CLEAR, RQR, and STSN are not supported.

CRY is supported when session-level cryptography is selected Cvia a BIND parameter).

The TS Usage subfields in BIND defining the options for this profile are:

Pacing window sizes

Maximum RU sizes on the normal flows

Appendix F. Profiles F-5

TS PROFILE V~. TYPE OF SESSION

The following table specifies Nhich TS profile may be used with each type of session.

Type of Session

TS Profile SSCP-LU LU-LU

1 ' yes no

7 no yes

F-6 SNA Format and Protocol Reference Manual for LU Type 6.2

APPENDIX .!L. ~ DATA

The sense data included with an EXCEPTION REQUEST CEXR>, a negative response, an UNBIND request,
a function management header type 7 CFMH-7>, or a send or receive check is a four-byte field
(see Figure G-1) that generally includes a one-byte category value, a one-byte modifier value,
and two bytes of sense code specific information, whose format is defined along with the sense
code definition, below.

Byte 0 3

Category Modi fl er Sense code specific
information

I I I
I<-- Sense Code -->I I
I I I
I<~~~~~~~ Sense Data ~~~~~~~~>I
I I

Figure G-1. Sense Data Format

Together, the category byte o, the modifier byte 1, and the sense code specific bytes 2 and 3
hold the sense data defined for the exception condition that has occurred.

The following categories are defined; all others are reserved:

VALUE CATEGORY

x•oo• User Sense Data Only
X'08' Request Reject
X'lO' Request Error
X'20' State Error
X'40' Request Header CRH> Usage Error
X'80' Path Error

The category User Sense Data Only CX'.00' > allows the end users to exchange sense data in bytes
2-3 for conditions not defined by SNA within the other categories Cand perhaps unique to the end
users involved). The modifier value is also X'OO'. In earlier versions of SNA, user data Cas
well as implementation-specific data) generally could be carried in bytes 2-3 for all catego­
ries. This is no longer permitted. Bytes 2-3 are used only for SNA-defined conditions for non­
zero categories.

The sense codes for the other categories are discussed below.

REQUEST REJECT (CATEGORY CODE= X'08')

This category indicates that the request was delivered to the intended half-session component
and was understood and supported, but not executed.

Category and modifier Cin hexadecimal):

0801 Resource Not Available: The LU, PU, or link specified in an RU is not. available.

Appendix G. Sense Data G-1

0805 Session limit Exceeded: The requested session cannot be activated, as one of the NAUs
is at its session limit (e.g., LU-LU session limit, or l:LU, mode] session limit>.
Applies to ACTCDRM, INIT, BIND, and CINIT requests.

Bytes 2 and 3 may contain the following sense code specific information:

0000 No specific code applies.

0001 If accepted, the BIND request would prevent either the rece1v1ng LU or the send­
ing LU from activating the number of contention winner sessions to the partner
LU that were agreed upon during a change-number-of-sessions procedure.

0806 Resource Unknown: The request contained a name or address not identifying a PU, LU,
link, or link station known to the receiver.

0809 Mode Inconsistency: The requested function cannot be performed in the present state
of the receiver.

080A Permission Rejected: The receiver has denied an implicit or explicit request of the
sender; when sent in response to BIND, it implies either that the secondary LU will
not notify the SSCP when a BIND can be accepted, or that the SSCP does not recognize
the NOTIFY vector key X'OC'. (See the X'0845' sense code for a contrasting response.)

OBOE NAU Not Authorized: The requesting NAU does not have access to the requested
resource.

080F End User Not Authorized: The requesting end user does not have access to the
requested resource.

Bytes 2 and 3 may contain the following sense code specific information:

0000 No specific code applies.

6051 Access Security Information Invalid: The request specifies an Access Security
Information field that is unacceptable to the receiver; for security reasons, no
further detail on the error is provided. This sense data is sent in FMH-7 or
UNBIND.

0812 Insufficient Resource: Receiver cannot act on the request because of a temporary lack
of resources.

0813 Bracket Bid Reject--No RTR Forthcoming: BID (or BBi was received while the first
speaker was in the in-bracket state, or while the first speaker was in the
between-brackets state and the first speaker denied permission. RTR will not be sent.

0814 Bracket Bid Reject--RTR Forthcoming: BID Cor BBl was received while the first speaker
was in the in-bracket state, or while the first speaker was in the between-brackets
state and the first speaker denied permission. RTR will be sent.

0815 Function Active: A request to activate a network element or procedure tJas received,
but the element or procedure was already active.

0816 Function Inactive: A request to deactivate a network element or procedure was
received, but the element or procedure was not active.

0819 RTR Not Required: Receiver of READY TO RECEIVE has nothing to send.

081A Request Sequence Error: Invalid sequence of requests.

0820 Control Vector Error: Invalid data for.the control vector specif;ed by the target net­
work address and key.

0823 Unknown Control Vector: The control vector specified by a network address and key is
not known to the receiver.

0824 logical Unit of Work Aborted: The current unit of work has been aborted; when sync
point protocols are in use, both sync point managers are to revert to the previously
committed sync point.

Bytes 2 and 3 may contain the following sense code specific information:

0000 For LU 6.2, Backout Initiated: A transaction program or its LU has initiated
backo~t. The protected resources for the distributed logical unit of work are

6-2 SNA Format and Protocol Reference Manual for LU Type 6.2

to be restored to the previously committed sync point. This sense data is sent
only in FMH-7.

For non-LU 6.2, no specific code applies.

082C Resource-Sharing Limit Reached: The request received from an SSCP was to activate •
half-session, a link, or a procedure, when that resource was at its share limit.

0835 Invalid Parameter Cwith Pointer Onlyl: The request contained a fixed- or
variable-length field whose contents are invalid or not supported by the NAU that
received the request. Bytes 2 and 3 are used for sense code specific information:

nnnn Bytes 2 and 3 contain a two-byte bi nary count that indexes (zero-origin l the
first byte of the fixed- or variable-length field having invalid contents.

0836 PLU/SLU Specification Mismatch: For a specified LU-LU session, both the origin LU
COLUl and the destination LU !DLUl have only the primary capability or have' only the
secondary capability.

0837 Queuing Limit Exceeded: For an LU-LU session initiation request UNIT, CDINIT, or
INIT-OTHER-CDl specifying (1) Initiate or Queue Cif Initiate not possible) or (2)
Queue Only, the queuing limit of either the OLU or the DLU, or both, was exceeded.

0839 LU-LU or SSCP-LU Session Being Taken Down: At the time an LU-LU session initiation or
termination request is received, the SSCP of at least one of the LUs is either proc­
essing a CDTAKED request or is in the process of deactivating the associated SSCP-LU
session.

083A LU Not Enabled: At the time an LU-LU session initiation request is received at the
SSCP, at least one of the two LUs, although having an active session with its SSCP, is
not ready to accept CINIT or BIND requests.

0842 SSCP-SSCP Session Not Active: The SSCP-SSCP session, which is required for the proc­
essing of a network services request, is not active; e.g., at the time an LU-LU ses­
sion initiation or termination request is received, at least one of the following
conditions exists:

• The SSCP of the ILU and the SSCP of the OLU do not have an active session with
each other, and therefore INIT-OTHER-CD cannot flow.

• The SSCP of the OLU and the SSCP of the DLU do not have an active session with
each other, and therefore CDINIT or CDTERM cannot flow.

0845 Permission Rejected--SSCP Will Be Notified: The receiver has denied an implicit or
explicit request of the sender; when sent in response to BIND, it implies that the
secondary LU will notify the SSCP (vi a NOTIFY vector key X' OC') when a BIND can be
accepted, and the SSCP of the SLU supports the notification. !See the X'OSOA' sense
code for a contrasting response.)

0846 ERP Message Forthcoming: The received request was rejected for a reason to be speci­
fied in a forthcoming request.

0848 Cryptography Function Inoperative: The receiver of a request was not able to decipher
the request because of a malfunction in its cryptography facility.

084B Requested Resources Not Available: Resources named in the request, and required to
honor it, are not currently available. It is not known when the resources will be
made available.

Bytes 2 and 3 may contain the following sense code specific information:

0000 No specific code applies.

6031 Transaction Program Not Available--Retry Allowed: The FMH-5 Attach command
specifies a transaction program that the receiver is unable to start. Either
the program is not authorized to run or the resources to run it are not avail­
able at this time. The condition is temporary. The sender is responsible for
subsequent retry. This sense data is sent only in FMH-7.

084C Permanent Insufficient Resource: Receiver cannot act on the request because resources
required to honor the request are permanently unava Hable. The sender should not
retry immediately because the situation is not transient.

Bytes 2 and 3 may contain the following sense code specific information:

Appendix 6. Sense Data 6-3

0000 For LU 6.2, Transaction Program Not Available -- No Retry: The FMH-5 Attach
command spec;fies a transaction program that the receiver is unable to start.
The condition is not temporary. The sender should not retry immediately. This
sense data is sent only in FMH-7.

For non-LU 6.2, no additional information is specified.

084D Invalid Session Parameters--BF: Session parameters were not valid or were unaccepta­
ble by the boundary function. Bytes 2 and 3 following the sense code contain a binary
count that indexes (zero origin) the first byte of the fixed- or variable-length field
having invalid contents.

084E Invalid Session Parameters--PRI: A positive response to an activation request Ce.g.,
BIND) was received and was changed to a negative response because of invalid session
parameters carried in the response. The services manager receiving the response will
send a deactivation request for the corresponding session.

0852 Duplicative Session Activation Request: Two session activation requests have been
received with related identifiers. The relationship of the identifiers and the
resultant action varies by request. For BIND, it means that the BIND request was
received with the same session instance identifier Cin the structured subfield X'03'
of the User Data field> as an active session's; the current request is refused.

0856 SSCP-SSCP Session Lost: Carried in the Sense Data field in a NOTIFY (Third-Party
Notification vector. X'03') or -RSPCINIT OTHER) sent to an ILU to indicate that the
activation of the LU-LU session is unce.=-tain because the SSCPCILUJ-SSCPCOLUI session
has been lost. !Another sense code, X'0842', is used when it is known that the LU-LU
session activation cannot be completed.>

0857 SSCP-LU Session Not Active: The SSCP-LU session, required for the processing of a
request, is not active; e.g., in processing REQECHO, the SSCP did not have an active
session with the target LU named in the REQECHO RU.

0859 REQECHO Data Length Error: The specified length of data to be echoed Cin REQECHOJ vio­
lates the maximum RU size limit for the target LU.

0861 Invalid COS Name: The class of service ICOSJ name, either specified by the ILU or
generated by the SSCP of the SLU from the mode table is not in the "COS name to VR
identifier list" table used by the SSCP of the PLU.

Bytes 2 and 3 may contain the following sense code specific information:

0000 COS name was generated by the SSCP.

0001 COS name was generated by the ILU.

0003 CDINIT request for response) contains a Session Initiation control vector that
has class of service CCOS> name fields that have not been properly specified.
If the RU is a positive response, it is changed into a negative response and
sent to the request sender; a CDTERM is sent to the CDINIT response sender.
!This is to cover a system definition error in the event a gateway SSCP down­
stream from another gateway SSCP receives a CDINIT or RSPCCDINITl without valid
information in the appropriate COS name fields of the Session Initiation control
vector.I

0864 Function Abort: The conversation was terminated abnormally. Other terminations may
occur after repeated reexecutions; the request sender is responsible to detect such a
loop.

Bytes 2 and 3 may contain the following sense code specific information:

0000 For LU 6.2, Premature Conversation Termination: The conversation is terminated
abnormally; for example, the transaction program may have issued a DEALLO­
CATE_ABEND verb, or the program may have terminated (normally or abnormally)
without explicitly terminating the conversation. This sense data is sent only
in FMH-7.

For non-LU 6.2, no additional information is specified.

0001 System Logic Error--No Retry: A system logic error has been detected. No retry
of the conversation should be attempted. This sense data is sent only in FMH-7.

0002 Excessive Elapsed Time--No Retry: Excessive time has elapsed while waiting for
a required action or event. For example, a transaction program has faHed to

G-4 SNA Format and Protocol Reference Manual for LU Type 6.2

issue a conversation-related protocol boundary verb. No retry of the conversa­
tion should be attempted. This sense data is sent in UNBIND when there is no
chain to respond tol otherwise, it is sent in FMH-7.

0889 Transaction Program Error: The transaction program has detected an error.

This sense code is sent only in FMH-7.

Bytes 2 and 3 may contain·the following sense code specific information:

0000 Program Error--No Data Truncation: The transaction program sending data
detected an error but did not truncate a logical record.

Program Error--Purging: The transaction program receiving data detected an
error. All remaining information, if any, that the receiving program had not
yet received, and that the sending program had sent prior to being notified of
the error, is discarded.

0001 Program Error--Data Truncation: The transaction program sending data detected
an error and truncated the logical record it was sending.

0100 Service Error--No Data Truncation: The presentation services component for
mapped conversations detected an error while sending data but did not truncate a
logical record.

Service Error--Purging: The presentation services component for mapped conver­
sations detected an error while receiving data. All remaining information, if
any, that the receiving mapped-conversations component had not yet received, and
that the sending component had sent prior to being notified of the error, is
discarded.

0101 Service Error--Data Truncation: The presentation services component for mapped
conversations detected an error while sending data and truncated the logical
record it was sending.

088B BB Not Accepted--BIS Reply Requested: Sent in response to a BB (either an LUSTAT bid
or an Attach) to indicate that the receiver has sent a BIS request and wishes to ter­
minate the session without processing any more conversations, but without sending an
UNBIND. A BIS reply is requested so that the negative response sender may send a
normal UNBIND. This sense code is sent only by LUs not supporting
change-number-of-session protocols.

088C Missing Control Vector: The RU did not contain a control vector which was expected to
appear. The first byte of the sense code specific field contains the hex code of the
control vector first noticed to be missing. If more than one control vector is miss­
ing, only the first omission is reported. The second byte of the sense code specific
field is set to X'OO'.

REQl!EST ERROR CCATEGORY ~ = ~

This category indicates that the RU was delivered to the intended NAU component, but could not
be interpreted or processed. This condition represents a mismatch of NAU capabilities.

Category and modifier Cin hexadecimal!:

1001 RU Data Error: Data in the request RU is not acceptable to the rece1v1ng componenti
for example, a character code is not in the set supported, a formatted data field is
not acceptable to presentation services, a value specified in the length field CLL) of
a structured field is invalid, or a required name in the request has been omitted.

1002 RU Length Error: The request RU was too long or too short.

1003 Function Not Supported: The function requested is not supported. The function may
have been specified by a formatted request code, a field in an RU, or a control char­
acter.

1005 Parameter Error: A parameter modifying a control function is invalid, or outside the
range allowed by the receiver.

Appendix G. Sense Data G-5

1007 Category Not Supported: DFC, SC, NC, or FMD request was received by a half-session not
supporting any requests in that category; or an NS request byte 0 was not set to a
defined value, or byte 1 was not set to an NS category supported by the receiver.

1008 Invalid FM Header: The FM header was not understood or translatable by the receiver,
or an FM header was expected but not present. This sense code is sent in FMH-7 or
UNBIND.

Bytes 2 and 3 may contain the following sense code specific information:

0000 Reserved.

200E Invalid Concatenation Indicator: The concatenation indicator is sm but concat­
enation is not allowed.

201D FM Header and Associated Data Mismatch: The FM header indicated associated data
would or would not follow (e.g., FM header 7 followed by log data, or FM header
5 followed by program i ni ti ali zat ion parameters), but this i ndi cation was in
error; or a previously received RU [e.g., -RSP(0846)] implied that an FM header
would follow, but none was received.

4001 Invalid FM Header Type: The type of the FM header is other than 5 or 7.

6000 FM Header Length Not Correct: The value in the FM header Length field differs
from the sum of the lengths of the subfields of the FM header.

6005 Access Security Information Length Field Not Correct: The value in the Access
Security Information Length field differs from the sum of the lengths of the
Access Security Information subfields.

6009 Invalid Parameter Length. The field that specifies the length of fixed-length
parameters has an invalid setting.

600B Unrecogized FM Header Command Code: The partner LU received an FM header com­
mand code that it does not recognize. For LU 6.2, this sense data is sent only
in FMH-7.

6011 Invalid Logical Unit of Work: The LUW Length field Cin a Compare States GDS
variable or an FMH-51 is incorrect or the LUW is invalid or a LUWID is not pres­
ent but is required by the setting of the synchronization level field.

6021 Transaction Program Name Not Recognized: The FMH-5 Attach command specifies a
transaction program name that the receiver does not recognize. This sense data
is sent only in FMH-7.

6031 PIP Not Allowed: The FMH-5 Attach command specifies program initialization
parameter CPIP) data is present but the receiver does not support PIP data for
the specified transaction program. This sense data is sent only in FMH-7.

6032 PIP Not Specified Correctly: The FMH-5 Attach command specifies a transaction
program name that requires program initialization parameter (PIPJ data and
either the FMH-5 specifies PIP data is not present or the number of PIP sub­
fields present does not agree with the number required for the program. This
sense data is sent only in FMH-7.

6034 Conversation Type Mismatch: The FMH-5 Attach command specifies a conversation
type that the receiver does not support for the specified transaction program.
This sense data is sent only in FMH-7.

6040 Invalid Attach Parameter: A parameter in the FMH-5 Attach command conflicts
with the statement of LU capability previously provided in the BIND negotiation.

6041 Synchronization Level Not Supported: The FMH-5 Attach command specifies a syn­
chronization level that the receiver does not support for the specified trans­
action program. This sense data is sent only in FMH-7.

STATE ERROR (CATEGORY CODE.:; X'20')

G-6 SNA Format and Protocol Reference Manual for LU Type 6.2

This category indicates a sequence number error, or an RH or RU that is not allowed for the
receiver's current session control or data flow control state. These errors prevent delivery of
the request to the intended half-session component.

Category and modifier <in hexadecimal):

2001 Sequence Number: Sequence number received on normal-flow request was not 1 greater
than the last.

2002 Chaining: Error in the sequence of the chain indicator settings (BCI, ECI), such as
first, middle, first.

2003 Bracket: Error resulting from failure of sender to enforce bracket rules for session.
(This error does not apply to contention or race conditions.)

2004 Direction: Error resulting from a normal-flow request received while the half-duplex
flip-flop state was not Receive.

2008 No Begin Bracket: An FMD request specifying BBI=BB was received after the receiver
had previously received a BRACKET INITIATION STOPPED request.

2009 Session Control Protocol Violation: An SC protocol has been violated1 a request,
allowed only after a successful exchange of an SC request and its associated positive
response, has been received before such successful exchange has occurred (e.g., an FMD
request has preceded a required CRYPTOGRAPHY VERIFICATION request). The request code
of the particular SC request or response required, or X'OO' if undetermined, appears
in the fourth byte of the sense data.

200A Immediate Request Mode Error: The immediate request mode protocol has been violated
by the request.

200B Queued Response Error: The Queued Response protocol has been violated by a request,
i.e., QRI=~QR when an outstanding request had QRI=QR.

200E Response Correlation Error: A response was received that cannot be correlated to a
previously sent request.

200F Response Protocol Error: A violation has occurred in the response protocol1 e.g., a
+RSP to an RQE chain was generated.

2010 BIS Protocol Error: A BIS protocol error was detected; e.g., a BIS request was
received after a previous BIS was received and processed.

2011 Pacing Error: A normal-flow request is received by a half-session after the pacing
count has been reduced to 0 and before a pacing response has been sent.

2012 Invalid Sense Code Received: A negative response was received that contains an
SHA-defined sense code that cannot be used for the sent request.

fil! USAGE ERROR (CATEGORY CODE ,;: ~

This category indicates that the value of a field or combination of fields in the RH violates
architectural rules or previously selected BIND options. These errors prevent delivery of the
request to the intended half-sess1on component and are independent of the current states of the
session. They may result from the failure of the sender to enforce session rules. Detection by
the receiver of each of these errors is optional.

Category and modifier (in hexadecimal!:

4003 BB Not Allowed: The Begin Bracket indicator <BBI> was specified incorrectly, e.g.,
BBI=BB with BCI=~Bc.

4004 CEB or EB Not Allowed: The Conditional End Bracket indicator CCEBI> or End Bracket
indicator CEBIJ was specified incorrectly, e.g., CEBI=CEB when ECI=~EC or EBI=EB with
BCI=~sc, or by the primary half-session when only the secondary may send EB, or by the
secondary when only the primary may send EB.

4005 Incomplete RH: Transmission shorter than full TH-RH.

Appendix G. Sense Data G-7

4006 Exception Response Not AlloNed: Exception response -s requested t!lhen not permitted.

4007 Definite Response Not AllOHed: Definite response -s requested when not per111itted.

4008 Pacing Not Supported: The Pacing indicator Nas set on a request, but the receiving
half-session or boundary function half-session does not support pacing for this ses­
sion.

4009 CD Not Allowed: The Change Direction indicator CCDI> Nas specified incorrectly, e.g.,
CDI=CD Nith ECI=~Ec ' or CDI=CD Nith EBI=EB.

400A No-Response Not AllONed: No-response Nas specified on a request when not per11itted.
<Used only on EXR. >

400B Chaining Not Supported: The chaining indicators CBCI and ECU 1o1ere specified incor­
rectly, e.g., chaining bits indicated other than CBC,ECJ, but multiple-request chains
are not supported for the session or for the category specified in the request header.

400C Brackets Not Supported: The bracket indicators CBBI, CEBI, and EBI> were specified
incorrectly, e.g., a bracket indicator Nas set CBBI=BB, CEBI=CEB, or EBI=EB), but
brackets are not used for the session.

400D CD Not Supported: The Change-Direction indicator was set, but is not supported.

400F Incorrect Use of Format Indicator: The Format indicator CFI> 1o1as specified incorrect­
ly, e.g., FI was set with BCI=~ec, or FI was not set on a DFC request.

4010 Alternate Code Not Supported: The Code Selection indicator CCSI> was set when not sup­
ported for the session.

4011 Incorrect Specification of RU Category: The RU Category indicator 111as specified incor­
rectly, e.g., an expedited-flow request or response was specified with RU Category
indicator = FMD.

4012 Incorrect Specification of Request Code: The request code on a response does not
match the request code on its corresponding request.

4013 Incorrect Specification of CSDI, RTI>: The Sense Data Included indicator CSDI> and the
Response Type indicator CRTI> were not specified properly on a response. The proper
value pairs are CSDI=SD, RTI=negative) and CSDI=~sD, RTI=positive).

4014 Incorrect Use of CDRlI, DR2I, ERI): The Definite Response l indicator CDRlI), Definite
Response 2 indicator CDR2U, and Exception Response indicator CERU were specified
incorrectly, e.g., a SIGNAL request was not specified with DRlI=DRl, DR2I=~DR2, and
ERI=~ER.

4015 Incorrect Use of QRI: The Queued Response indicator CQRU was specified incorrectly,
e.g., QRI=QR on an expedited-flow request.

4016 Incorrect Use of EDI: The Enciphered Data indicator CEDI) was specified incorrectly,
e.g., EDI=ED on a DFC request.

4017 Incorrect Use of POI: The Padded Data indicator CPDU 111as specified incorrectly, e.g.,
PDI=PD on a DFC request.

4018 Incorrect Setting of QRI with Bidder's BB: The first speaker half-session received a
BB chain requesting use of a session Cvia LUSTATCX'0006')), but .the QRI was specified
incorrectly, i.e., QRI =~QR.

4019 Incorrect Indicators with Last-In-Chain Request: A last-in-chain request has speci­
fied incompatible RH settings, e.g., RQE*• CEBI=~CEBt and CDI=~CD.

4021 QRI Setting in Response Different FrOll That in Request: The QRI setting in the
response differs ·from the QRI setting in the corresponding request.

fA!H ERROR CCAJEGDRY ~ ,: ~

This category indicates that the request could not be delivered to the intended receiver,
because of a path outage, an invalid sequence of activation requests, or one of the listed path
information unit CPIU) errors. (Some PIU errors fall into other categories, e.g., sequence num-

6-8 SNA Format and Protocol Reference Manual for LU Type 6.2

ber errors are category X'20'.) A path error received Nhile the session is active generally
indicates that the path to the session partner has been lost.

Category and modifier (in hexadecimal>:

8001 Intermediate Node Failure: Machine or program check in a node providing intermediate
routing function. A response may or may not be possible.

8003 NAU Inoperative: The NAU is unable to process requests or responses, e.g., the NAU has
been disrupted by an abnormal termination.

8004 Unrecognized Destination: A node in the path has no routing information for the des­
tination specified either by the SLU name in a BIND request or by the TH.

8005

Bytes 2 and 3 may contain the following sense code specific information:

0000 No specific code applies.

0001 A request Nas received by a gateway function that could not be rerouted because
of invalid or incomplete routing information.

No Session: No half-session is active in the receiving end node for the
origination-destination pair, or no boundary function half-session component
for the origin-destination pair in a node providing the boundary function.
activation request is needed.

Bytes 2 and 3 may contain the following sense code specific information:

0000 No specific· code applies.

indicated
is active
A session

0001 The receiver received a request other than session control request when no LU-LU
session was active.

0002 The receiver received a request other than session control request when no
LU-SSCP session was active.

0003 The receiver received a session control request other than BIND/UNBIND when no
LU-LU session was active.

0004 The receiver received an UNBIND Nhen no LU-LU session Nas active.

0005 The receiver received a session control request other than ACTLU/DACTLU for the
LU-SSCP session when no LU-SSCP session was active.

0006 The receiver received DACTLU Nhen no LU-SSCP session Nas active.

8006 Invalid FID: Invalid FID for the receiving node. (Note 1)

8007 Segmenting Error: First BIU segment had less than 10 bytesJ or mapping field sequenc­
ing error, such as first, last, middle; or segmenting not supported and MPF not set to
11. (Note 2)

8008 PU Not Active: The SSCP-PU secondary half-session in the receiving node has not been
activated and the request was not ACTPU for this half-session; for example, the
request was ACTLU from an SSCP that does not have an active SSCP-PU session Nith the
PU associated with the addressed LU.

8009 LU Not Active: The destination address specifies an LU for Nhich the SSCP-LU second­
ary half-session has not been activated and the request Nas not ACTLU.

8008 Incomplete TH: Transmission received -s shorter than a TH. (Note ll

800C DCF Error: Data Count field inconsistent Nith transmission length.

800E Unrecognized Origin: The origin address specified in the TH was not recognized.

800F Invalid Address Combination: The (OAF' ,OAF') lFI02) combination or the LSID lFI03)
·specified an invalid type of session, e.g., a PU-LU combination.

8010 Segmented RU Length Error: An RU Nas found to exceed a maximum length, or required
buffer allocation that might cause future buffer depletion.

Appendix 6. Sense Data 6-9

8013 COS Not Available: A session ectivetion request cannot be ••tisfied because none of
the virtual routes requested for the session is availeble.

!:!2!u:

Bytes 2 end 3 11ay contain the follotdng sense code specific inforMtion:

Byte 2 indicates the environment in Nhich the feilure Nas detected:

00 Single netNOrk

01 Interconnected netNork: Failure NH detected at a node in • subnetNDrk other
than .that of the HAU sending the activation request.

Byte 3 indicates the reason for the session-activation feilure:

00 No Specific Code applies: This means an error occured, but none of the condi­
tions listed belON applies.

01 No Mapping Specified: A session activation request cannot be satisfied because
for each VR in the VR identifier list for the session, no VR to ER mapping is
specified.

02 No Explicit Routes Defined: A session activation request cannot be satisfied
because each VR in the VR identifier list for the session maps to a correspond­
ing ER that is not defined.

03 No VR Resource Available: A session activation request cannot be satisfied
because each VR specified in the VR identifier list for the session requires a
node resource that is not available.

04 No Explicit Routes Operative: A session activation request cannot be satisfied
because no underlying ER is operative for any VR specified in the VR identifier
list for the session.

05 No Explicit Route Can Be Activated: A session activation request cannot be sat­
isfied because no VR specified in the VR identifier list for the session mapped
to a defined and operative ER that could be activated.

06 No Virtual Route Can Be Activated: A session activation request cannot be sat­
isfied because no VR specified in the VR identifier list for the session can be
activated by the PU, though for at least one VR an underlying ER is defined,
operative, and activated.

07 No Virtual Route Identifier List Available: A session activation request cannot
be satisfied because a VR identifier list is not available •

.1:12!!!!: If none of the virtual routes specified in the VR identifier list for the ses­
sion is active or can be activated, the reported reason is set based on a hierarchy of
failure events. The "highest" of the failures that occurred within the set of virtual
routes is returned on the response. For example, if the VR manager receives a nega­
tive response to an NC_ACTVR request for a VR specified in the VR identifier list and
for all other VRs in the list no VR to ER mapping is specified, then reason X'06' is
reported. The hierarchy of the failure reasons is in ascending numeric order (e.g.,
reason X'02' is higher than reason X'Ol').

1. It is generally not possible to send a response for this exception condition, since informa­
tion (fID, addresses) required to generate a response is not available. It is logged as an
error if this capability exists in the receiver.

2. If segmenting is not supported, a negative response is returned for the first segment only,
since this contains the RH. Subsequent segments are discarded.

6-10 SHA For11111t and Protocol Reference t'lanual for LU Type 6.2

APPENDIX !i.. .Et! HEADER AND LU SERVICES COMMANDS

Throughout this appendix the same symbol-string types are used as defined in "Appendix E.
Request-Response Unit lRU> Formats". The symbol-string types define the character sets that
LU's and transaction programs use to specify the symbol strings used in RU's. Depending on the
symbol string, support is defined by either a single type or a range of types.

The range of types identifies a lower and upper bound for the set of characters that an imple­
mentation can support for a specific symbol string. The type bounding the lower end of a range
is always a subset of the type bounding the upper end of the range. (In order of increasing
generality, the types are ranked: A, AE, GR, and G.) The support a product provides for each
of these symbol strings is implementation-defined within the range.

Figure H-1 defines the send and receive support for each symbol string in terms of the
symbol-string types. Where support is defined to be within a range of types, the range is given
as "lower-type<->upper-type," which identifies the lower and upper bounds of the range.

Type

Symbol String Send Receive
Support Support

Network ID A A

LU Name A A

Fully Qualified LU Name (11 A.A A.A

Mode Name A A

Transaction Program Name (2] AE<->GR A<->GR

Access Security Subfields AE<->GR A<->GR

Program Initialization Parameters (PIP> G G

Session Instance ID G G

Map Name A<->GR A<->GR

NOTES:

1. The fully qualified LU name consists of two symbol strings of
type A concatenated by a period (.). The lefthand symbol
string represents the network ID; the righthand symbol string
represents the network LU name. The period is not part of
the network ID or the network LU name.

2. The first character of an SNA-defined service transaction
program name is not a type-A, type-AE, or type-GR character;
it is a character ranging in value from X'OO' through X'3F'.
A list of SNA-defined service programs is given in
"SNA-Defined Transaction Program Names" on page H-14.

Appendix H. FM Header and LU Services Commands H-1

SYMBOL-STRING LENGJH

The symbol-string length represents the number of characters a symbol string can contain. Three
symbol-string lengths are defined:

• Minimum specification length: the m1n1mum number of characters that a transaction program
is allowed to use to specify the symbol string. For some symbol strings, the minimum spec­
ification length is O. Zero-length strings are valid symbol strings and are subject to the
same usage conditions as nonzero-length strings that fulfill the definition of the specific
symbol-string type (or range of types) allowed.

• Maximum send support: the maximum number of characters that every implementation can send
in the symbol string.

• Maximum receive support: the maximum number of characters that every implementation can
receive in the symbol string.

The maximum send or receive support for a symbol-string's length is defined either by a single
value or within a range of values, depending on the symbol string:

• The single value is the maximum number of characters in a symbol string that every implemen­
tation can send or receive.

• The range of values represents a lower and upper bound of the maximum number of characters
in a symbol string that an implementation can send or receive. The specific maximum number
of characters an implementation can send or receive for each of these symbol strings is
implementation-defined within the range. Compatibility in the maximum lengths allowed by
sender and receiver is a concern of system definition and program design.

Figure H-2 on page H-3 defines the product maximum send and receive support for each symbol
string in terms of the symbol-string lengths. Where support is defined to be within a range of
values, the range is given as "lower-value<->upper-value," which identifies the lower and upper
bounds of the range.

The variable to which a type-A, type-AE, or type-GR symbol string is assigned may be longer than
the symbol string; in this case, the symbol string is left-justified within the variable and the
variable is filled out to the right with space CX'40') characters. Space characters, if pres­
ent, are not part of the symbol string. If the symbol string is formed from the concatenation
of two or more individual symbol strings, such as the fully qualified LU name, the concatenated
symbol string as a whole is left-justified within the variable and the variable is filled out to
the right with space characters. Space characters, if present, are not part of the concatenated
symbol string.

H-2 SNA Format and Protocol Reference Manual for LU Type 6.2

Length

Symbol Str;ng M;n;mum Max; mum Max; mum
SpecH;catfon Send Support Rece;ve Support

Network ID 0 8 8

LU Name 0 8 8

Fully QuaHf;ed LU Name 1 17 17

Mode Name 0 8 8

Transaction Program Name 1 8<->64 8<->64

Access Security Subfields 0 8<->10 0<->10

PIP Subfields [lJ 0 64<->2:64 [2] 64<->2:64 [3]

Session Instance ID 2 8 8

Map Name 0 [4] 8<->64 7<->64

NOTES:

1. Support of PIP subf;elds is optional, and send support ;s ;ndependent of
rece;ve support. The max;mum number of PIP subf;elds an ;mplementat;on
can send or rece;ve ;s ;mplementat;on-def;ned; it is any number greater
than or equal to 16.

2. The 11axh1u11 send support for PIP subf; elds is ;mplementation-def;ned.

3. The max;mum rece;ve support for PIP subf;elds is ;mplementation-defined.

4. The zero-length map name has a special meaning: it ;ndicates mapping ;s
not to be performed by the LU.

F;gure H-2. Symbol String Lengths

Appendix H. FM Header and LU Serv;ces Commands H-3

.fH HEADERS

Th;s secHan explahw hoN functfon -nage11ent (ftt) head•rs are used to exchange infor111aHon by
LU 6.2. It also def;nes the for11ats of the FM headers and how they are related to other data ;n
request un;ts.

The request header (RH> contains a format indicator (fl) that, when m:!t indicates that an Ftt
header is at the beginning of the RUJ FM headers 11ay appear only singly at the beginning of an
RU. The RU containing the FM header may appear anywhere 111ithin a chain.

The placement of Ftt headers IMithin a reqUest unit isshoilllr'I belON:

Ftt Header Contained in One RU:

I RH: FMH, •BC,•EC I Ftt header Data

Ftt Header Contained in Two Contiguous RUs of a Chain:

I RH: FMH. •ec.~Ec I First of FM header

Rest of FM header Data

NOTE: FM headers are placed at the beginning of a request unit, but not necessarily the
first or last request unit of a chain. When the FM header is longer than one RU Nill hold,
the FM header is continued in as many additional RUs as are needed to hold it.

Figure H-3. Examples of FM Header Placement

•

H-4 SHA Format and Protocol Reference Manual for LU Type 6.2

The follONing FH headers are used by W 6.2:

• Fttt-5 carries a request for a conversation to be established betNeen bto transaction pro­
grams. The Fttl-5 identifies the transaction program that is to be put into execution and
connected to the receiving half-session.

When a transaction program issues an ALLOCATE verb (see ~ Transaction Programmer's Refer­
ence Manual !2!: LU .nte! ~ for details) naming a transaction program to be run at the other
end of the conversation, an Attach FMH-5 carries the transaction program name (TPN) to the
receiving LU.

• FMH-7 carries information that relates to an error on the session or conversation. For
example, an FMH-7 and additional error information are sent when an FMH-5 specifies a nonex­
istent transaction program name.

The formats for these FM headers are shown belOlll.

Appendix.H.· FM Header and LU Services C0111111ands H-5

Function Management Header 5: Attach

The function management header 5 (FMH-5), with a command of Attach, has the following format.

0 Length, in binary, of FMH-5, including this Length byte
1 bit o, reserved

bits 1-7, FMH type: 0000101
2-3 Command code: X'02FF' (Attach)
4 bits 0-3, reserved

5

6-j
6

7
8(:j)

j+l-p
j+l
j+2-k
k+l
k+2-m

m+l

m+2-n
m+2
m+3-w

w+l-w+6
w+7-

bit 4, program initialization parameter (PIP) presence:
O PIP not present following this FMH-5
1 PIP present following this FMH-5 (see "PIP Variable " on page H-7 for for­

mat>
bits 5-7, reserved
Length (j-5), in binary,
sion possible)
Fixed Length Parameters
Resource type:
X'DO' basic conversation
X'Dl' mapped conversation

of Fixed Length Parameters field (currently 3--future expan-

Reserved
bits 0-1, synchronization level:

00 none
01 confirm
10 confirm, sync point, and backout
11 reserved

bits 2-7, reserved
Variable Length Parameters
Length !values 1 to 64 are valid), in binary, of transaction program name
Transaction program name (see Figure H-1 on page H-1 for valid formats)
Length (0 or m-k-1), in binary, of Access Security Information subfields
Zero or more Access Security Information subfields (see "Access Security Information
Subfields " on page H-7 for format)
Length (values 0 and 10 to 26 are valid), in binary, of Logical-Unit-of-Work Identifi­
er field
Logical-Unit-of-Work Identifier
Length (values 1 to 17 are valid), in binary, of fully qualified LU network name
Fully qualified LU network name (format described in "User· Data Structured Subfield
Formats" in "Appendix E. Request-Response Unit CRUl Formats")
Logical-unit-of-work instance number, in binary

w+8C =nl Logical-unit-of-work sequence number, in binary
n+l Reserved
Note: Trailing Length fields (bytes n+l, m+l, and k+l) that have value X'OO' can be omitted.

H-6 SHA Format and Protocol Reference Manual for LU Type 6.2

=

Access Secur;ty Informat;on Subf;elds

The Access Security Informat;on subf;elds ;n FMH-5 have the follON;ng formats:

0 Length CvaHd values are 1 to 11), in binary, of remainder of subfield--does not
include this length byte

1 Subfield type:
X'OO' profHe
X' 01 ' password
X'02' user ID

2-i Data Csee F;gure H-1 on page H-1 for the symbol-string type and Figure H-2 on page H-3
for the symbol-string length restrictions)

Note 1: The Access Security Information subfields may appear in any order in the Access Securi­
ty Information field of the FMH-5.

Note !.!, In FMH-5, the offset "m" represents the end of the last subfield.

PIP Var;able

The PIP variable following FMH-5 Attach has the following format:

0-1 Length C4 or n+l), in binary, of PIP variable, includ;ng this Length f;eld
2-3 GOS indicator: X'l2F5'
4-n Zero or more PIP subfields, each of which has the follow;ng format Cshollll'l using

zero-origin)
0-1 Length, ;n binary, of PIP subf;eld, including this Length field
2-3 GDS indicator: X'l2E2'
4-m PIP subfield data Csee Figure H-1 on page H-1 for the symbol-str;ng type and F;g­

ure H-2 on page H-3 for the symbol-string length restrictions)

Appendix H. FM Header and LU Services C0111111ands H-7

=

Function Management Header 7: Error Description

The function management header 7 (FMH-7> has the following format:

O length (7), in binary, of FMH-7, including this length byte
l bit o, reserved

bits 1-7, type: 0000111
2-5 SHA-defined sense data !see below)
6 bit o, error log variable presence:

0 no error log variable follows this FMH-7
1 error log GOS variable follows this FMH-7

bits 1-7, reserved

The following sense data (in hexadecimal) can be sent in an FMH-7; see "Appendix 6. Sense Data"
for additional details on the sense data; The phrases following the sense data are the symbolic
return codes provided to the application program in. LU 6.2 verbs (see SNA Transaction Program­
mer's Reference Manual for ..!.!.! ~ ~l when the sense data is received.

10086006 RESOURCE_FAILURE_NO_RETRY

10086021 ALLOCATION_ERROR--TPN_NOT_RECOGNIZED

10086031 ALLOCATION_ERROR--PIP_NOT_ALLOWED

10086032 ALLOCATION_ERROR--PIP_NOT_SPECIFIED_CORRECTLY

10086034 ALLOCATION_ERROR--CONVERSATION_TYPE_MISMATCH

10086041 ALLOCATION_ERROR--SYNC_LEVEL_NOT_SUPPORTED_6Y_PGM

10086042 ALLOCATION_ERROR--RECONNECT_LEVEL_NOT_SUPPORTED_6Y_PGM

10086043 ALLOCATION_ERROR--TRANS_PGM_NOT_AVAIL_NO_RETRY

10086044 ALLOCATION_ERROR--TRANS_PGM_NOT_AVAIL_RETRY

080F6051 ALLOCATION_ERROR--ACC_NOT_VALID

08240000 6ACKED_OUT

08466031 ALLOCATION_ERROR--TRANS_PGM_NOT_AVAIL_RETRY

084COOOO ALLOCATION_ERROR--TRANS_PGM_NOT_AVAIL_NO_RETRY

08640000 DEALLOCATE_A6END_PROG

08640001 DEALLOCATE_A6END_svc

08640002 DEALLOCATE_A6END_TIMER

08890000 PROG_ERROR_NO_TRUNC or PROG_ERROR_PURGING

08890001 PROG_ERROR_TRUNC

08890100 SVC_ERROR NO TRUNC or SVC_ERROR_PURGIHG

08890101 svc_ERROR_TRUNC

H-8 SHA Format and Protocol Reference Manual for LU Type 6.2

=
PRESENJATIQN SERVICES ~ HEADERS

Presentation services (PS) headers convey information between PS component sync point managers
when the conversation using the session is allocated with the sync-point synchronization level.
"Chapter 5.3. Presentation Services--Sync Point Services Verbs" describes the use of tliese PS
headers.

Transaction program data is delimited using a 2-byte length field called an LL, containing a
value that is tlie number of bytes contained in the transaction program data plus 2 (tlie length
of the LL field itself>.

LL transaction program data

All PS headers are identified by an LL of X'OOOl' illllllediately preceding the lieader. X'OOOl' is
an illegal LL value for use by transaction programs because the LL• s value must include tlie
length of itself, which is 2 bytes. Therefore, all LLs indicating a length of less than 2 are
reserved for use by the LU. The format of PS headers is shown below.

Presentation Services Header 10: Sync Point Control

Presentation Services Header 10 (Sync Point Control> has tlie following format:

0 Length, in binary, of PS header, including this length field
1 bit o, reserved

bits 1-7, type: 0001010 sync point control (only value defined>
2-3 Sync point command type:

X'OOOS' Prepare
X'0006' Request Commit
X'0007' Committed
X'0008' Forget
X'0009' Heuristic Mixed

4-5 Modifier specifying next flo11t (present only if bytes 2-3 = X'OOOS' or X'0006' J
reserved when bytes 2-3 = X'0006' and 2-phase sync point being used>:
X'OOOO' request PREPARE TO RECEIVE
X'OOOl' request DEALLOCATE
X'0002' request SEND
Note: Bytes 4-5 affect the CD and CEB settings generated by data flow control on tlie
last PS header in the sync point sequence, i.e., Forget if Prepare was received, and
Committed if Request Commit was the first PS header received (see "Chapter 5.3. Pres­
entation Services--Sync Point Services Verbs" for details>.

Appendix H. FM Header and LU Services Commands H-9

=
FORMATS 2f RECORDS USED §I LU 6.2 SERVICE TRANSACTION PROGRAMS

A TPN value starting with X'06' in the Attach header indicates that the LU resources manager is
to initiate execution of one of the LU.service transaction programs.

LU services managers exchange data directly via GOS variables. A group of 6DS IDs of the form
X'l2**' is assigned for use by the LU service transaction programs; the commands use a Service
Flag (SFJ byte (following the GOS IDJ to denote the processing options of the command; the spe­
cific options are encoded in the last four bits of the Service Flag byte as shown in the indi­
vidual GOS variables. Requests have bit 4 set to 0 and replies have bit 4 set to l; therefore,
requests and replies have the same ID values. The first four bits are uiique to the command.

H-10 SNA Format and Protocol Reference Manual for LU Type 6.2

=

Change Number of Sessions (CNOS)

See "Chapter 5.4. Presentation Services--Control-Operator Verbs" for a detailed description of
the use of this command.

0-1

2-3
4

5

6

7

8

9-10

11-12

13-14

15

16

17-n

leng'U1 \17 or n+ll, rn b~m1ry, uf Cha11ge t.:umber uf Sessions GDS variable, including
this Length field
GOS ID: X'l210'
Service flag:
bits 0-3, reserved
bits 4-7, request/reply indicator:

0010 request
1000 reply, function completed abnormal
1010 reply, function accepted but not yet completed

Reply modifier (reserved if byte 4, bits 4-7 = 00101:
X'OO' normal--no negotiation performed
X'Ol' abnormal--command race detected
X'02' abnormal--mode name not recognized
X'03' reserved
X'04' normal--negotiated reply
X'05' abnormal--(LU,model session limit is 0
Action:
X'OO' set (LU,mode) session limits
X'Ol' reserved
X'02' close
Drain immediacy:
bits 0-2, reserved
bit 3, source LU drain (reserved if byte 6 ~= 02):

0 no (send BIS at next opportunity)
1 yes

bits 4-6, reserved
bit 7, target LU drain (reserved if byte 6 ~= 02):

0 no (send BIS at next opportunity)
1 yes

Action flags:
bits 0-6, reserved
bit 7, session deactivation responsibility:

0 sender of Change Number of Sessions request (source LU)
l receiver of Change Number of Sessions request Ctarget LU)

Note: Bytes 9-14 are reserved if byte 6 ~= O.
CLU,model session limit:
bit o, reserved
bits 1-15, maximum <LU.model session count, in binary
Source LU contention winners:
bit o, reserved
bits 1-15, guaranteed minimum number of contention winner sessions at source LU, in

binary
Target LU contention winners:
bit o, reserved
bits 1-15, guaranteed minimum number of contention winner sessions at target LU, in

binary
Mode name selection:
bits 0-6, reserved
bit 7, mode names affected by this command:

0 a single mode name is affected
l all mode names are affected

•:..ength (values 0 to 8 are valid; reserved if byte 15, bit 7 = 1), in binary, of mode
name
Mode name (omitted if byte 16 = X'OO'l

Appendix H. FM Header and LU Services Commands H-11

=

Exchange log Na111e

See "Chapter 5.3. Presentation Services--Sync Point Services Verbs" for a detailed description
of the use of this command.

0-1

2-3
4

s

6
7-n

n+l
n+2-p

length (p+l), in bi nary, of Exchange log Name GOS variable, including this length
field
GOS ID: X' 1211'
Service flag:
bits 0-3, reserved
bits 4-7, request/reply indicator:

0010 request
1000 reply,. function completed abnormally
1001 reply, function completed normally

Sync point manager flags:
bit o, program reconnect support:

O no
1 yes

bits 1-6, reserved
bit 7, log status:

0 cold
1 warm

length (values 1 to 17 are valid>. in binary, of fully qualified LU network name
Fully qualified LU network name (format described in "User Data Structured Subfield
Formats" in "Appendix E. Request-Response Unit (RU> Formats")
length (values 1 to 64 are valid), in binary, of log name
Log name (symbol-string type-AE>

H-12 SNA Format and Protocol Reference Manual for LU Type 6.2

=

Compare States

See "Chapter 5.3. Presentation Services--Sync Point Services Verbs" for • detailed description
of the use of this command.

0-1
2-3
4

5

6

7

8-n
8
8-111

111+1-111+6
w+7-
w+8(=nl

n+l
n+2-q

q+l
q+2-p

Length (p+ll. in binary. of Compare States SDS variable~ including this Length field
GDS ID: X'1213'
Service flag:
bits 0-3, reserved
bits 4-7, request/reply indicator:

0010 request
1000 reply, fuiction completed abnormally
1001 reply, fuiction completed normally

Sync point manager state:
X'Ol' RESET
X'02' SYNC_POINT_MANAGER_PENDING
X'03' IN_DOUBT
x I 04 I COMMITTED
X'OS' HEURISTIC_RESET
X'06' HEURISTIC_COMMITTED
X'07' HEURISTIC_MIXED
bit o, transaction program status:

0 transaction program not restartable
1 transaction program restartable

bits 1-7, reserved
Length, in binary, of Logical-Unit-of-Work Identifier field (values 10 to 26 are val­
id>
Logical-Unit-of-Work Identifier
Length, in binary, of fully qualified LU network name (values 1 to 17 are valid>
Fully qualified LU network name (format described in "User Data Structured Subfield
Formats" in "Appendix E. Request-Response Unit (RU l Formats" l
Logical-uiit-of-work instance number, in binary

Logical-uiit-of-work sequence number, in binary
Length (values O to 8 are valid), in binary, of conversation correlator
Conversation correlator of transaction program to restart: see FMH-5 for format of
thl s correlator
Length (values 2 to 8 are valid), of session instance identifier
Session instance identifier of session being used by conversation at time of failure
(See "User Data Structured Subfield Formats" in "Appendix E. Request-Response Unit
CRUl Formats" for the format of this identifier.I

Appendix H. FM Header and LU Services Co1N1ands H-13

=
SNA-DEFINED TRANSACTION PROGRAM NAMES

The following transaction program names <TPNs) specify SNA-defined service transaction programs
discussed in this book.

X'06Fl'
X'06F2'

Service Transaction Program

Change Number of Sessions
Sync Point Resynchronization

H-14 SNA Format and Protocol Reference Manual for LU Type 6.2

=
§mi VARIABLES

The following chart hicHcates (using an "X") each GDS variable code point (wHh first byte =
X'12'j used by LU 6.z.

rFirst hexadecimal digit
I rSecond hexadecimal digit
I I .
I I
I I
I L >
I
L> 0

1

2

3

4

5

6

7

8

9

A

B

c

D

E

F

0

x

x

1 2 3 4

x x

x x

x x x x

5 6

x

The code points used by LU 6.2 are:

7

Change Number of Sessions
Exchange log Name
Compare States

8 9

X'1210'
x· 1211 •
X'l213'
X'l2AO'
X'l2El'
X'l2E2'
X'l2Fl'
X'12F2'
X' 12F3'
X' 12F4'
X'12FS'
X'l2FF'

Workstation Display Passthrough
Error log
PIP Subfield Data
Null Structured Data
User Control Data
Hap Name
Error Data
PIP Data
Application Data

A B c D E F

x

x

Appendix H. FM Header and LU Services Connnands H-15

=

Format of Application Data GDS Variable

The Application Data GDS variable, ID X'l2FF', contahw application data. The application
transaction program's data as specified in the HC_SEND_DATA verb is (optionally) mapped and then
sent as X'l2FF' variables.

Format of Null Structured Data Variable

The Null Structured Data GDS variable, ID X' 12Fl', contains no application data. Th.is variable
may optionally be generated (see "Chapter 5.2. Presentation Services--Mapped Conversation
Verbs") to carry certain control information (e.g., Confirm) when no application data is avail­
able.

Format of User Control Data GDS Variable

The User Control Data GDS variable, ID X'l2F2', contains user control data. The meaning of this
data is known only to the LU Services Component Programs or the transaction programs and their
mapping programs. This data can be used, for example, as prefix control information for an
Application Data GDS variable that follows it or to carry FH Header Data for a 111apped conversa­
tion transaction.

Format of Hap Name GDS Variable

The Map Name GDS variable, ID X'l2F3', is follONed by a 0- to 64-byte map name. See Figure H•l
on page H-1 for the valid map name symbol-string type.

Format of an Error Data GDS variable

The Error Data GDS variable, ID X'12F4', is used to convey information about mapping errors. It
is sent using the SEND_DATA verb. following a SEND_ERROR verb. Its format is:

0-1 Length (n+l), in binary, of Error Data GDS variable, including this Length field
2-3 GDS ID: X'12F4'
4-7 Error code:

X'OOOlOOOO' Invalid GDS ID: The mapped conversation verb component Csee·"Chapter 5.2.
Presentation Services--Happed Conversation Verbs") encountered a GDS ID
that it did not recognize.

X'00030001' Hap Not Found: The specified map was not available at the target, or
access to the referenced map could not be completed.

X'00030002' Hap Execution Failure: The map program was not able to process the data
stream.

8 Length Cn-8), in binary, of error parameter
9-n Error parameter: for a mapping failure, the map name carried in the GDS variable for

which the error occurred; for an invalid GDS ID, the 2-byte GDS ID that Na& not recog­
nized

Format of Error Log GDS Variable

The Error Log GDS variable, ID X'l2El', following an FHH-7 conveys implementation-specific error
information to an LU, where it is added to the system error log for use in debugging and error
recovery. It is not .used by SNA-def i ned service transaction programs (other than to log it)
since it contains implementation-specific data. The Error Log variable is sent as a consequence
of issuing the SEND_ERROR verb, but is not passed to the receiving transaction program. Its
format is:

0-1 Length Cn+l), in binary, of Error Log GDS variable, including this Length field
2-3 GDS ID: X'l2El'
4-m Product !Jl
4-5 Length, in binary, of product ID, including this Length field (values 2 to 32,767 are

valid)
Note: The Length field is always present; a value of 2 indicates no Product ID vector
follows.

6-m Product ID vector (format described in "Product Set ID" CNH subvector in "Appendix E.
Request-Response Unit CRU) Formats")

m+l-n Message Text
m+l-m+2 Length, in binary, of message text, including this Length fifeld (values 2 to 32,767

are valid>
Note: The Length field is always presents a value of 2 indicates no message text fol­
lr.1ws.

m+3-n Message text data: implementation-specific data

H-16 SNA Format and Protocol Reference Manual for LU Type 6.2

APPENDIX l.:. GENERAL DATA STREAM

This appendix defines the general data stream
(GDS>, which is used in a variety of ways by
SNA products. Fer instance, it is used to
encode the Document Interchange Architecture
(DIA) message units. The basic structural
unit in GOS is the structured field, a string
of bytes beginning with a length and followed
by a GOS identifier no > that defines the
structure of the remainder of the field.
Some structured fields are used by components
of SHA that are defined fo this book; these
uses are defined in "Appendix E.
Request-Response Unit (RU> Formats" and "Ap­
pendix H. FM Header and LU Services
Commands".

STRUCTURED ill.!J;!!

Each structured field has the format shown in
Figure I-1.

LENGTH
(LU

0
Byte

2

IDENTIFIER INFORMATION
UD>

4

Figure I-1. GOS Structured Field

LENGTH (LL) DESCRIPTION

...

n

Bi ts 1 to 15 of the LL contain a binary num­
ber from 4 through 32767, which is the
length, in bytes, of the entire GOS structure
field, including the LL bytes. Length values

GOS IDs are assigned, generally in blocks of
consecutive values, to different layers and
components of SNA and to other i ntercon­
nect ion architectures. For a complete list­
ing of these block assignments, see the .fil:iA
Reference Summarv.

The general data stream applies to data
exchanged between nodes over SNA links, over
non-SHA links, and to data exchanged via
removable storage media or shared storage
facilities.

of O through 3 are reserved for use as escape
sequences. For example, a value of X'OOOl'
indicates a presentation services header fol­
lows, which is used for sync point manage­
ment.

Bit 0 of byte 0 (high-order bit> is used for
a continuation indicator, where a value of 0
means last GOS variable segment, and a value
of 1 means not-last segment. Some data
streams built from structured fields use oth­
er methods to create data objects that are
longer than a 15-bit length can specify.

IDENTIFIER (ID) DESCRIPTION

The 2-byte identifier that follows the length
field describes the format and meaning of the
data that follow. Sometimes additional val­
ues appearing in the information field are
needed to completely specify the information
field's content.

Appendix I. General Data Stream I-1

2 SNA Format and Protocol Reference Manual for LU Type 6.2

APPENDIX .1:L. FSM NOTATION

A finite-state machine iE.fil1.! is a combination of processing and memory, where the memory con­
sists of the state of the FSM. The state can take one of a small number of named values Cthe
~ ~). An FSM is defined by a matrix that lists the states and specifies the processing
to be performed when the FSM is called. This processing typically depends on the current state
of the FSM and on the input passed to the FSM, and may change the FSM state (resulting in a
state transition) and produce output. Within this matrix definition, each state is given a num­
ber as well as its name, for notational convenience.

A number of alternative FSM definitions may be grouped together as a generic FSM, the definition
to be used being assigned dynamically. The assignment of a particular definition to be used at
a given time is called the binding of the generic FSM. A generic FSM can also be assigned to be
a "no operation."

The following operations are performed on an FSM:

• Call. Processing is performed as defined in the FSM definition for the existing combination
of current state and input. This may involve a state transition.

• State check. Validity checking is performed for the existing combination of current state
and input.

• State test. The current state of the FSM is tested for equality or inequality with a speci­
fied value.

An FSM is represented by a state-transition matrix.

The syntax of the state-transition matrix FSM definition is shown in Figure N-1 on page 2. The
column headings give the FSM state names, while the row headings name the inputs to the FSMs.
The matrix elements--lrow,column) intersections~define the state transitions and output
actions.

Horizontal lines are used to group input lines together to improve readability. Their location
has no bearing on the FSM function. For compactness, mnemonic abbreviations are used in the
matrices.

The input lines within the matrix are scanned from top to bottom at execution time. The first
input line found with all its conditions true is used to address the matrix for the next state
and the output code. No more than one input line in a matrix has all its conditions true during
a scan.

An FSM comes into existence initiallzed to state 1. If another state is to be the initial
state, the FSM is initialized explicitly by calling the FSM with an appropriate signal.

Calling an FSM executes the FSM; i.e., an FSM action code is selected based on the current state
of the FSM and the input line that is true. The input line evaluation uses the parameters or
signal passed to the FSM. The FSM is scanned for a !!:Y.! input line from top to bottom of the
matrix.

If the next-state indicator is a number n, the FSM enters state n. If the next-state indicator
is a state-check indicator (>), the call of the FSM would act as if a no-state-change indicator
(-) were encountered. <In practice, the formal description checks for such conditions prior to
calling an FSM in order to perform special error handling.) If the next-state indicator is a
cannot-occur indicator (/), this is an execution-time error; calls of the FSM cannot encounter
this indicator because previous logic has filtered out the input for that state of the FSM.

If no input line is ~· the CALL acts as if a no-state-change indicator (-) were encountered.

Appendix N. FSM Notation N-1

[

fnanie:

STATE NAMES---->

INPUTS STATE NUMBERS-->

ic [, ic J . . .
ic [, ic J . . .
ic [, ic J
ic [, ic J . . .

OUTPUT FUNCTION
CODE

oc-1 output logic statements

. . .
oc-n output logic statements

= optional parameter
fname = FSM name
snam = state name component
snum = state number
ic = input condition name
ac = action code

sna11

[. . .] . . .
snun

ac

ac

ac

ac

An action code Cac) has the syntax: ns[Coc)J, where:

ns = next-state indicator
oc = output code CThe parentheses around the oc are

sometimes omitted to save space.)

Possible next-state indicators and associated action code
formats are:

n[Coe> J

-[Coe)]
>[Coe)]

I

normal state transition to state n (corresponding
to some snum)
same-state transition--remain in the same state
error condition, no state change
"cannot occur" condition, no state change

Figure N-1. Syntax of an FSM State-Transition Matrix

2 SNA Format and Protocol Reference Manual for LU Type 6.2

l

l

APPENDIX !:. TERMINOLOGY: ACRONYMS A!:!!l ABBREVIATIONS

ACT activate

ACTLU ACTIVATE LOGICAL UNIT

API application programming interface

ASCII

BB

American Standard Code for Informa­
tion Interchange

Begin Bracket

BBI Begin Bracket indicator

BC Begin Chain

BCI Begin Chain indicator

BETB betNeen brackets

BIND BIND SESSION

BINDF BIND FAILURE

BIS BRACKET INITIATION STOPPED

BIU basic information uiit

CD Change Direction

CDI Change Direction indicator

CEB Conditional End Bracket

CI NIT CONTROL INITIATE

CLEANUP CLEAN UP SESSION

CNOS change number of sessions

COPR control operator services

COS class of service

CP control point

CR conversation resource

CRV CRYPTOGRAPHY VERIFICATION

CSI Code Selection indicator

CT correlation table

CTERM CONTROL TERMINATE

DACTLU DEACTIVATE LOGICAL UNIT

DES Data Encryption Standard

DFC data flON control

DIA Document Interchange Architecture

DLC data link control

DLU destination LU

DRl Definite Response 1

DRII Definite Response 1 indicator

DR2 Definite kesponse 2

DR2I Definite Response 2 indicator

DSU distribution service uiit

EC End Chain

ECHOTEST ECHO TEST

ECI End Chain indicator

ED Enciphered Data

Appendix T. Terminology: Acronyms and Abbreviations T-1

EDI Enciphered Data indicator

EFI Expedited Flow indicator

ERI Exception Response indicator

ERP error recovery procedure(s)

EXP expedited

EXR EXCEPTION REQUEST

FOX full-duplex

FF flip-flop

FI Format Indicator

FIC first in chain (BC, ~EC)

Ft1 function management

FMD function management data

FMH FM header

FMP FM profile

FSM finite-state machine

FSP first speaker

GOS general data stream

HDX half-duplex

HDX-FF HDX flip-flop

HS half-session

HSID half-session identification

ID identifier, identification

ILU initiating
INIT-SELF>

LU (LU sending

INIT initiate

INIT-SELF INITIATE-SELF

IPR ISOLATED PACING RESPONSE

LIC last in chain <~BC, EC)

LL logical record length <prefix>

LLID logical record length and GOS ID
<prefix>

lNS LU network services

LU logical unit

LUCB LU control block

LUSTAT LOGICAL UNIT STATUS

LUW logical unit of work

MC mapped conversation

MCR mapped conversation record

MGR manager

MIC middle in chain c~ec,~EC>

t1SG message

MU message unit

NAU network addressable \rlit

NC network control

NEG negative

NG no good

NNl1 nodal NAU 11anager

NS network services

T-2 SNA Fonnat and Protocol Reference Manual for LU Type 6.2

NTWK network

OIC only in chain (BC, EC>

OLU origin LU

p

PAC Pacing Request, Pacing Response
(value of PI in RH>

PC path control

PD Padded Data

PDI Padded Data indicator

PI Pacing indicator

PIP program initialization parameters

PIU path information unit

PLU primary LU

POS positive

PRI pri11ary

PS presentation services

PTR pointer

PU physical unit

queue

QR queued Response

QRI Queued Response indicator

R receive, receiving

RC return code

RCB resource control block

RCV receive

REQECHO REQUEST ECHO TEST

RES resource(s)

RE SYNC sync point resynchronization serv­
ice TP

RH request/response header

RQ request

RQD RQ indicating definite-response
required

RQE

RQN

RRI

RSP

RTI

RTR

RU

s

RQ i ndi cat i ng exception-response
requested

RQ indicating no response required

Request/Response indicator

response

Response Type indicator

READY TO RECEIVE

request/response unit

secondary, sending

SCB session control block

SCS SNA character string

SD Sense Data Included

SDI Sense Data Included indicator

SEC secondary

SESS session

SESSEND SESSION ENDED

SESSST SESSION STARTED

Appendix T. Terminology: Acronyms and Abbreviations T-3

SETCV SET CONTROL VECTOR

SIG SIGNAL

SLDLM

SLU secondary LU

SNA Systems Network Architecture

SHADS SHA Distribution Services

SNASVCMG SNA services manager (LU-LU session
mode name}

SNF sequence number field

SON session outage notification

SQN sequence number

SS session services

SSCP system services control point

SSLS source-LU session-limit services

SVC service

SYNC PT synchronization point

TC transmission control

TCB transaction control block

TCCB transmission control control block

TERM terminate, terminating,
nation, terminal

TERM-SELF TERMINATE-SELF

TH transmission header

termi-

TLU terminating logical unit HU send­
ing TERM)

TP transaction program

TS transmission services

TSLS target-LU session-limit services

TSP TS profile

UNBIND UNBIND SESSION

UNBINDF UNBIND FAILURE

UPM undefined protocol machine

URC user request correlation

T-4 SHA Format and Protocol Reference Manual for LU Type 6.2

SPECIAL CHARACTERS

• (period), to separate name qualifiers
denot;ng decompos;t;on 1-5

_ (underscore), in name phrases 1-5
I (vertical stroke), to mean "ei­
ther ••• or" 1-5

& (ampersand), to ;nc:1;cate compos;tion in
names 1-5

* (aster;sk), to mean "any value" or "don't
care" 1-6

ABORT_HS structure A-11
referenced by

FSM_STATUS 4-93
PROCESS_ABORT_HS 4-78
PROCESS_LU_LU_SESSION 6.0-4
PROCESS_RECORD_FROM_HS 4-48

Access Secur;ty Informat;on Subf;elds H-7
format H-7

action codes
calling result N-1

ACTIVATE LOGICAL UNIT (ACTLU) 4-17, E-5
ACTIVATE_NEEDED_SESSIONS procedure 3-21

referenced by

~~:~~~~~~~~~~~i~:~PR~353-54
ACTIVATE_SESSION_ERROR procedure 4-51

referenced by
PROCESS_ACTIVATE_SESSION 4-78

ACTIVATE_SESSION_PROC procedure 5.4-36
referenced by

PS_COPR 5.4-32
ACTIVATE_SESSION_RSP_PROC procedure 3-22

referenced by
PROCESS_LNS_TO_RM_RECORD 3-19

ACTIVATE_SESSION_RSP structure A-20
referenced by

ACTIVATE_SESSION_RSP_PROC 3-22
BUILD_AND_SEND_ACT_SESS_RSP_NEG 4-57
BUILD_AND_SEND_ACT_SESS_RSP_POS 4-57

ACTIVATE_SESSION structure A-31
referenced by

ACTIVATE_NEEDED_SESSIONS 3-21
ACTIVATE_SESSION_ERROR 4-51
BUILD_AND_SEND_ACT_SESS_RSP_NEG 4-57
INITIALIZE_LULU_CB_ACT_SESS 4-74
PROCESS_ACTIVATE_SESSION 4-78
PROCESS_RECORD_FROM_RM 4-48
SEND_ACTIVATE_SESSION 3-48

ACTIVATE_SESSION verb 5.4-6, 5.4-20
processing by PS.COPR 5.4-25

activation, session
CP-LU 4-2, 4-17

Cold 4-17
ERP 4-17

LU-LU 4-3, 4-19
ACTLU E-5

See also ACTIVATE LOGICAL UNIT
ACTLU response 4-17

ACTLU_RQ_RCV_RECORD structure A-21
referenced by

BUILD_AND'_SEND_ACTLU_RSP_NEG 4-58
BUILD_AND_SEND_ACTLU_RSP_POS 4-59
PROCESS_ACTLU_RQ 4-79
PROCESS_RECORD_FROM_NNM 4-50

ACTLU_RSP_SEND_RECORD structure A-17
referenced by

BUILD_AND_SEND_ACTLU_RSP_NEG 4-58
BUILD_AND_SEND_ACTLU_RSP_POS 4-59

address
See network address

ADDRESS structure A-33
referenced by

BIND_SESSION_LIMIT_EXCEEDED 4-56
BUILD_AND_SEND_PC_HS_CONNECT 4-67

ALLOCATE_PROC procedure 5.1-11
referenced by

PS_CONV 5.1-10
ALLOCATE_RCB_PROC procedure 3-23

referenced by
PROCESS_PS_TO_RM_RECORD 3-20

ALLOCATE_RCB structure A-25

API

referenced by
ALLOCATE_PROC 5.1-11
ALLOCATE_RCB_PROC 3-23
CREATE_RCB 3-36
TEST_FOR_FREE_FSP_SESSION 3-60

See application program interface (API)
application program ;nterface (API> 2-4

See also protocol boundary
closed 2-11
open 2-11

application transaction program 2-1
See also transact;on program

asynchronous transfer 2-7, 2-36
See also SNA Distribution Services (SHADS)

ATTACH_CHECK procedure 3-24
referenced by

ATTACH_PROC 3-26
ATTACH_ERROR_PROC procedure 5.0-10

referenced by
PS_INITIALIZE 5.0-6

Attach FM header <FMH-5)
See also FM header, type 5 (Attach)
purpose of H-5

ATTACH_HEADER structure A-13
referenced by

ATTACH_CHECK 3-24
ATTACH_PROC 3-26
GENERATE_RM_PS_INPUTS 6.1-31
PROCESS_RU_DATA 6.1-34
PS_CREATION_PROC 3-44

ATTACH_LENGTH_CHECK procedure 3-25
referenced by

ATTACH_CHECK 3-24
ATTACH_PROC procedure 3-26

referenced by
PROCESS_HS_TO_RM_RECORD 3-18
RM 3-17

ATTACH_RECEIVED structure A-32
referenced by

ATTACH_PROC 3-26
RCB_ALLOCATED_PROC 5.1-44

attach;ng transact;on programs 2-36, 2-44
ava;lability of an LU

Index X-1

for sessi.on initiation 4-9
notification using NOTIFY(Vector Key
x•.oc• > 4-14

back-out
See sync point. back-out

Backed out
See sync point, commands, Backed out

base function set 2-10, .2-11
CNOS functions 5.4-21
control operator functions 5.4-20

basic conversation 2-3, 2-11
See also conversation
state 5.1-6

basic conversation message 2-12
basic information unit (BIU) 2-13, 2-16,

2-30
Begin Bracket indicator (BBI>

use 6.1-1, 6.1-4, 6.1-6. 6.1-9, 6.1-10,
6.1-11, 6.1-12, 6.J-14

Begin Chain indicator CBCIJ
use 6.1-8, 6.1-12, 6.1-13

bid
See bracket. bid

BID_PROC procedure 3-27
referenced by

PROCESS_HS_TO_RM_RECORD 3-18
BID_RSP_PROC procedure 3-29

referenced by
PROCESS_Hs_To_RM_RECORD 3-18

BID_RSP structure A-14t A-28
referenced by

BID_PROC 3-27
BID_RSP_PROC 3-29
GENERATE_RM_PS_INPUTS 6.1-31
SEND_RSP_TO_RM_OR_PS 6.1-39

BID structure A-14
referenced by

BID_PROC 3-27
GENERATE_RM_PS_INPUTS 6.1-31

BID_WITH_ATTACH structure A-28
referenced by

BIDDER_PROC 3-31
DFC_SEND_FROM_RM 6.1-20
FIRST_SPEAKER_PROC 3-40
SESSION_ACTIVATED_ALLOCATION 3-52

BID_WITHOUT_ATTACH structure A-29
referenced by

BIDDER_PROC 3-31
DFC_SEND_FROM_RM 6.1-20

bidder 2-8, 2-33
See also bracket, bidder
See also contention loser

BIDDER_PROC procedure 3-31
referenced by

GET_SESSION_PROC 3-42
bidding 2-33, 3-5, 3-10

See also bracket, bidding
bidding with data

See bracket, bidding
BIND 2-8, 2-13, 2-34, E-5

See also BIND SESSION
BIND FAILURE (BINDFJ 4-11, E-9
BIND image

derived from mode name 4-5
in CINIT 4-9

BIND negotiation 2-34
BIND response 4-25
BIND_RQ_RCV_RECORD structure A-21

referenced by.
BIND_RQ_STATE_ERROR 4-52
BUILD_AND_SEND_BIND_RSP_NEG 4-60
BUILD_AND_SEND_BIND_RSP_POS 4-61
FSM_STATUS 4-93
INITIALIZE_LULU_CB_BIND 4-75
PROCESS_BIND_RQ 4-80
PROCESS_RECORD_FROM_NNM 4-50

BIND_RQ_SEND_RECORD structure A-17
referenced by

BUILD_AND_SEND_BIND_RQ 4-60
BIND_RQ_STATE_ERROR procedure 4-52

referenced by
PROCESS_BIND_RQ 4-80

BIND_RSP_RCV_RECORD structure A-22
referenced by

BIND_RSP_STATE_ERROR 4-53
PROCESS_BIND_RSP 4-81
PROCESS_RECORD_FROM_NNM 4-50

BIND_RSP_SEND_RECORD structure A-17
referenced by

BUILD_AND_SEND_BIND_RSP_NE6 4-60
BUILD_AND_SEND_BIND_RSP_POS 4-61

BIND_RSP_STATE_ERROR procedure 4-53
referenced by

PROCESS_BIND_RSP 4-81
BIND SESSION (BIND! 4-19, E-5
BIND_SESSION_LIMIT_EXCEEDED procedure 4-56

referenced by
BIND_RQ_STATE_ERROR 4-52

BINDF E-9
See also BIND FAILURE

binding of generic finite-state machines N-1
BIS 2-130 2-340 E-9

See also BRACKET INITIATION STOPPED
BIS (BRACKET INITIATION STOPPED> 6.1-14
BIS_RACE_LOSER procedure 3-32

referenced by
FSM_BIS_BIDDER 3-65

BIS_REPLY_PROC procedure 3-32
referenced by

PROCESS_HS_TO_RM_RECORD 3-18
BIS_REPLY structure A-14, A-29

referenced by
BIS_RACE_LOSER 3-32
BIS_REPLY_PROC 3-32
6ENERATE_RM_PS_INPUTS 6.1-31
SEND_BIS_REPLY 3-49.

BIS_RQ_PROC procedure 3-33
referenced by

PROCESS_HS_TO_RM_RECORD 3-18
BIS_RQ structure A-14, A-29

BIU

referenced by
BIS_RQ_PROC 3-33
6ENERATE_RM_PS_INPUTS .6. l-31
SEND_BIS_RQ 3-50

See basic information unit (BIUl
BIU structure A-34
blanks

See space (X'40') characters
block chaining cryptography 6.2-5
block diagram representation 1-1
block diagram, arrow and line conventions
within 1-6

blocking of message units
See reblocking

bracket 2-130 2-16, 2-33
See also message units, session sequences
bid 6.1-4, 6.l-9t 6.1-10, 6.1-14
bidder 6.1-3. 6.1-9, 6.1-10, 6.1-15
bidding 6.1-4, 6.1-9
error conditions 6.1-10
first on session 2-33

X-2 $NA Format and Protocol Reference Manual for LU Type 6.2

first speaker 6.1-3, 6.1-9, 6.1-10
initiation 6.1-9
protocols 6.1-1, 6.1-9
relationship to conversation 6.1-9
RH indicators 6.1-9, 6.1-10
termination 6.1-3, 6.1-4, 6.1-9

BRACKET INITIATION STOPPED (BISJ 3-15,
5.3-10, 6.1-2. 6.1-9, 6.1-10. 6.1-12,
6.1-13, 6.1-14, E-9

bracket state 2-33, 2-34
BUFFER_ELEMENT structure A-8

referenced by
ATTACH_ERROR_PROC 5.0-10
DEQUEUE_FMH7_PROC 5.1-33
GET_END_CHAIN_FROM_HS 5.1-34
PERFORM_RECEIVE_PROCESSING 5.1-36
SEND_ERROR_PROC 5.1-24
TEST_FOR_POST_SATISFIED 5.1-54
TEST_PROC 5.1-26
WAIT_FOR_RSP_TO_RQ...TO_SEND_PROC 5.1-57
WAIT_FOR_SEND_ERROR_DONE_PROC 5.1-58

buffer record 2-12, 2-16, 2-29, 2-30
buffering between LU component proc­
esses 2-30

BUILD_AND_SEND_ACT_SESS_RSP_NEG proce­
dure 4-57

referenced by
FSM_STATUS 4-93
PROCESS_ACTIVATE_SESSION 4-78

BUILD_AND_SEND_ACT_SESS_RSP_POS proce-
dure 4-57

referenced by
FSM_STATUS 4-93

BUILD_AND_SEND_ACTLU_RSP_NEG procedure 4-58
referenced by

PROCESS_ACTLU_RQ 4-79
BUILD_AND_SEND_ACTLU_RSP_POS procedure 4-59

referenced by
PROCESS_ACTLU_RQ 4-79

BUILD_AND_SEND_BIND_RQ procedure 4-60
referenced by

FSM_STATUS 4-93
BUILD_AND_SEND_BIND_RSP_NEG procedure 4-60

referenced by
FSM_STATUS 4-93
PROCESS_BIND_RQ 4-80

BUILD_AND_SEND_BIND_RSP_POS procedure 4-61
referenced by

FSM STATUS 4-93
BUILD_AND=SEND_BINDF_RQ procedure 4-61

referenced by
FSM_STATUS 4-93

BUILD_AND_SEND_CINIT_RSP procedure 4-62
referenced by

FSM_STATUS 4-93
PROCESS_CINIT_RQ 4-81

BUILD_AND_SEND_DACTLU_RSP procedure 4-63
referenced by

PROCESS_DACTLU_RQ 4-85
BUILD_AND_SEND_DEACTIVATE_SESS proce-
dure 4-63

referenced by
FSM_STATUS 4-93

BUILD_AND_SEND_HIER_RESET_RSP procedure 4-64
referenced by

PROCESS_HIERARCHICAL_RESET 4-86
BUILD_AND_SEND_INIT_HS procedure 4-64

referenced by
FSM_STATUS 4-93

BUILD_AND~SEND_INIT_RQ procedure 4-65
referenced by

FSM_STATUS 4-93
BUILD_AND_SEND_PC_CONNECT procedure 4-67

referenced by

FSM_STATUS 4-93
BUILD_AND_SEND_PC_HS_CONNECT procedure 4-67

referenced by
FSM_STATUS 4-93
PROCESS_ACTLU_RQ 4-79

BUILD_AND_SEND_PC_HS_DISCONNECT proce-
dure 4-68

referenced by
CLEANUP_LU_LU_SESSION 4-74
FSM_STATUS 4-93
PROCESS_DACTLU_RQ 4-85

BUILD_AND_SEND_RSP_OR_LOG procedure 4-66
referenced by

FSM_STATUS 4-93
PROCESS_CLEANUP_RQ 4-83
PROCESS_CTERM_RQ 4-84
PROCESS_NOTIFY_RQ 4-88
PROCESS_RECORD_FROM_HS 4-48

BUILD_AND_SEND_SESS_ACTIVATED procedure 4-68
referenced by

FSM_STATUS 4-93
BUILD_AND_SEND_SESS_DEACTIVATED proce-
dure 4-69

referenced by
FSM_STATUS 4-93

BUILD_AND_SEND_SESSEND_RQ procedure 4-69
referenced by

CLEANUP_LU_LU_SESSION 4-74
BUILD_AND_SEND_SESSST_RQ procedure 4-70

referenced by
FSM_STATUS 4-93

BUILD_AND_SEND_TERM_RQ procedure 4-70
referenced by

FSM STATUS 4-93
BUILD_AND=SEND_UNBIND_RQ procedure 4-71

referenced by
FSM_STATUS 4-93

BUILD_AND_SEND_UNBIND_RSP procedure 4-71
referenced by

FSM_STATUS 4-93
PROCESS_UNBIND_RQ 4-90

BUILD_AND_SEND_UNBINDF_RQ procedure 4-72
referenced by

FSM_STATUS 4-93

CALL/RETURN procedure interaction
CALL statement

finite-state machines N-1
input signal N-1
next-state indicator N-1

calUng trees
TC initialization calling tree 6.2-7
TC RCV calling tree 6.2-7
TC SEND calling tree 6.2-7

category value, sense code G-1
See also sense data

chain 2-13, 2-15, 2-16
relationship to verbs 2-17

chaining
definite-response chain 6.1-8
exception-response chain 6.1-8
general description 6.1-1, 6.1-8
RH indicators 6.1-8
use in FM profiles 6.1-2, 6.1-16

CHANGE_ACTION procedure 5.4-43
referenced by

LOCAL_SESSION_LIMIT_PROC 5.4-40
PROCESS_SESSION_LIMIT_PROC 5.4-57
SOURCE_SESSION_LIMIT_PROC 5.4-45

Index X-3

Change Direction indicator (CDI>
use 6.1-4, 6.1-9, 6.1-10, 6.1-11, 6.1-12,
6.1-14

change number of sessions (CNOS> 2-36,
5.4-3, 5.4-5, H-11

See also presentation services for the
control operator (PS.COPR>

command format H-11
component relationship 5.4-6

source-LU services 5.4-25
target-LU services 5.4-28

conversation 5.4-7
allocating 5.4-27
Attach processing 5.4-22
basic conversation verbs used 5.4-9
mode name 5.4-20, 5.4-27

error recovery
See error recovery, CNOS

locking (LU,mode> entry 5.4-14, 5.4-30
message unit flows 5.4-10
privilege 5.4-24, 5.4-27
processes 5.4-11

concurrency 5.4-12
race resolution

action race 5.4-14
command race 5.4-14
double command failure 5.4-15, 5.4-19
LU name comparison 5.4-19
no race 5.4-16
single command failure 5.4-16

relationship to HS 5.4-12
relationship to LNS 5.4-8
relationship to PS.CONY
relationship to RM 5.4-8, 5.4-28
retry

See change number of sessions (CNOS),
race resolution, double command fail­
ure

See error recovery, CNOS
security

See change number of sessions (CNOS),
privilege

transaction 5.4-9, S.4-12
Change Number of Sessions GOS variable S.4-7

CNOS command 5.4-7, 5.4-27
action field
Close action 5.4-30
service flag field
Set action S.4-28, 5.4-29

CNOS reply 5.4-7, 5.4-27, 5.4-28
See also Change Number of Sessions GDS
variable, CNOS command

Accepted reply modifier S.4-28
Command Race reply modifier S.4-15,
S.4-30

Mode Name Closed reply modifi­
er S.4-29, 5.4-30

Mode Name Not Recognized reply modifi-
er S.4-30

Negotiated reply modifier S.4-28
reply modifier field S.4-30
service flag field

change-number-of-sessions service transaction
program S.4-1, 5.4-S, S.4-11, S.4-21,
5.4-22

name 5~4-22, 5.4-27
protocol boundary
relationship to PS.COPR 5.4-1, S.4-28

CHANGE_SESSION_LIMIT_PROC procedure 5.4-35
referenced by

PS_COPR 5.4-32
CHANGE_SESSION_LIMIT verb 5.4-6, 5.4-15,

5.4-21
processing by PS.COPR 5.4-29

CHANGE_SESSIONS 5.4-80 5.4-240 5.4-25,
5.4-28

CHANGE_SESSIONS_PROC procedure 3-35
referenced by

PROCESS_PS_TO_RM_RECORD 3-20
CHANGE_SESSIONS structure A-26

referenced by
CHANGE_ACTION 5.4-43
CHANGE_SESSIONS_PROC 3-35

CHECK_CNOS_COMMAND procedure 5.4-62
referenced by

PROCESS_SESSION_LIMIT_PROC 5.4-57
CHECK_CNOS_REPLY procedure 5.4-55

referenced by
SOURCE_SESSION_LIMIT_PROC 5.4-45

CHECK_FOR_BIS_REPLY procedure 3-36
referenced by

FSM_BIS_BIDDER 3-65
FSM_BIS_FSP 3-66

CINIT E-9
See also CONTROL INITIATE

CINIT response 4-10
CINIT_R~STATE_ERROR procedure 4-72

referenced· by
PROCESS_CINIT_RQ 4-81

class of service 2-3, 4-5
CLEAN UP SESSION (CLEANUP) 4-12, E-10
CLEANUP E-10

See also CLEAN UP SESSION
CLEANUP_LU_LU_SESSION procedure 4-74

referenced by
FSM_STATUS 4-93

CLOSE_ONE_REPLY procedure 5.4-64
referenced by

NEGOTIATE_REPLY 5.4-63
CNOS

See change number of sessions (CNOS>
CNOS service TP

See change-number-of-sessions service
transaction program

commit
See sync point, commitment

commitment
See sync point, commitment

Committed
See sync point, commands, Connitted

Common Subvector
Product ID (X'll') E-24
Product Set ID CX'lO') E-24

Compare States H-13
command format H-13

COMPLETE_CONFIRM_PROC procedure 5.1-27
referenced by

CONFIRM_PROC 5.1-12
COMPLETE_DEALLOCATE_ABEND_PROC proce-
dure 5.1-28

referenced by
DEALLOCATE_ABEND_PROC 5.1-30
WAIT_FOR_SEND_ERROR_DONE_PROC 5.1-58

COMPLETE_HS_ATTACH procedure 3-33
referenced by

ATTACH_PROC 3-26
conditional bracket termination

See bracket, termination
Conditional End Bracket indicator (CEBI>

use 6.1-2, 6.1-4, 6.1-6, 6.1-9, 6.1-11,
6.1-14

CONFIRM_PROC procedure 5.1-12
referenced by

PS_CONV 5.1-10
CONFIRMED_PROC procedure 5.1-14

referenced by
PS_CONV 5.1-10

CONFIRMED structure A-12, A-24

X-4 SNA Format and Protocol Reference Manual for LU Type 6.2

referenced by
CONFIRMED_PROC 5.1-14
DFC_SEND_FROM_PS 6.1-19
SEND_RSP_TO_RM_OR_PS 6.1-39

CONNECT_RCB_AND_SCB procedure 3-34
referenced by

BID_RSP_PROC 3-29
COMPLETE_HS_ATTACH 3-33
FIRST_SPEAKER_PROC 3-40
SESSION_ACTIVATED_ALLOCATION 3-52
TEST FOR FREE FSP SESSION 3-60

contention-los;r 2:8, 2-33, 5.4-3, 5.4-4
See also bidder
See also bracket, bidder
See also session, contention polarity

contention winner 2-8, 2-33, 5.4-4
See also bracket, first speaker
See also first speaker
See also session, contention polarity

contention, bracket
See bracket, protocols

continuation bit in length prefix 2-12
See also length prefix CLLl

control component
See service component

CONTROL INITIATE CCINITl 4-9, E-9
control mode

delayed request
delayed response
immediate request
6.1-16

6.1-16
6.1-16
6.1-1, 6.1-2. 6.1-8,

immediate response 6.1-1, 6.1-2, 6.1-8,
6.1-16

control operator 2-2, 2-3, 2-36, 5.4-1,
5.4-22

See also control-operator transaction pro­
gram

control-operator transaction program 2-3,
2-34, 2-36, 2-43, 5.4-1, 5.4-5, 5.4-7,
5.4-11, 5.4-20, 5.4-21, 5.4-22

protocol boundary
relationship to PS.COPR 5.4-1, 5.4-25

control-operator verbs 2-3, 2-8, 2-36, 5.4-2
CNOS 5.4-6, 5.4-21

See also change number of sessions
<CNOSl

distributed function 5.4-3, 5.4-5, 5.4-6
local function 5.4-3, 5.4-5, 5.4-6,
5.4-24

local session control 5.4-6
LU-parameter 5.4-5, 5.4-20
processing by PS.COPR 5.4-24

control point !CPI 2-4, 2-6, 2-8, 2-9, 2-17,
2-33, 2-40, 4-2

See also PNCP (peripheral node control
point I

See also SSCP (system services control
point)

relationsh1p to LU 2-26, 2-34
CONTROL TERMINATE ICTERMl 4-12, E-10
Control Vector

Control Vector Keys Not Recognized E-22
Local Form Session Identifier E-22
LU-LU Session Services Capabilities E-21
Mode/ Class-of-Service/
Virtual-Route-Identifier-List E-21

Network-Qualified Address Pair E-21
SSCP-LU Session Capabilities E-20
VR-ER Mapping Data E-22

Control Vector Keys Not Recognized Control
Vector E-22

conversation 2-1, 2-3, 6.1-9
See also bracket

allocation to transaction program 2-33,
3-4. 5.1-6

basic
See basic conversation

deallocation 2-33
mapped

See mapped conversation
relationship to bracket 6.1-9
termination 3-12

conversation exchange 2-13
See also message units, conversation
sequences

conversation failure
See errors, conversation failure

CONVERSATION_FAILURE_PROC procedure 5.1-29
referenced by

GET_END_CHAIN_FROM_HS 5.1-34
PROCESS_RM_OR_HS_TO_PS_RECORDS 5.1-43
PS_PROTOCOL_ERROR 5.0-16
WAIT_FOR_COHFIRMED_PROC 5.1-55
WAIT_FOR_RM_REPLY 5.1-56
WAIT_FOR_RSP_TO_RQ_TO_SEND_PROC 5.1-57

CONVERSATION FAILURE structure A-32
referenced by

COHVERSATION_FAILURE_PROC 5.1-29
PS_PROTOCOL_ERROR 5.0-16
RECEIVE_RM_OR_HS_TO_PS_RECORD 5.1-47
SEND_DATA_PROC 5.1-22
SESSIOH_DEACTIVATED_PROC 3-54

conversation message 2-12, 2-13, 2-15
See also basic conversation message
See also message units

conversation resource 2-33, 2-40
See also conversation

correlation
See request/response correlation

correlation entries
See request/response correlation

cos
See class of serv;ce

CP
See control point CCP)

CP ID structure A-2
-referenced by

ACTIVATE_SESSION_ERROR 4-51
INITIALIZE_lULU_CB_ACT_SESS 4-74
PROCESS ACTIVATE SESSION 4-78

CP-LU session- 2-17, 2:33, 2-43
See also session

CPLU_CAPABILITY structure 2-40
CPLU_CB structure A-1

referenced by
INITIALIZE_LULU_CB_CINIT 4-76
PROCESS_ACTLU_RQ 4-79
PROCESS_DACTLU_RQ 4-85
PROCESS_HIERARCHICAL_RESET 4-86
PROCESS SESSION ROUTE INOP 4-89

CREATE_RCB pr;cedure -3-36 -
referenced by

ALLOCATE_RCB_PROC 3-23
TEST_FOR_FREE_FSP_SESSION 3-60

CREATE_SCB procedure 3-37
referenced by

SUCCESSFUL_SESSION_ACTIVATION 3-59
CRV E-10

See also CRYPTOGRAPHY VERIFICATION
See also CRYPTOGRAPHY VERIFICATION CCRV)

CRV_RQ_RU structure A-33
cryptography 6.2-1, 6.2-2, 6.2-3, 6.2-4,
6.2-5

See also session cryptography
block chaining 6.2-5
CRV 6.2-2, 6.2-3

initial chaining value 6.2-2, 6.2-3

Index X-5

session cryptography key 6.2-2
session seed 6.2-2
test value 6.2-2

Data Encryption Standard !DES> 6.2-5
initial chaining value 6.2-2, 6.2-3
initialization 6.2-2
parameters in BIND 4-23
session cryptography key 6.2-2, 6.2-5
session key distribution 6.2-3
session-level 4-23
session seed 6.2-2, 6.2-5
session seed distribution 6.2-3

cryptography key, session
in BIND image

enciphered under SLU master key 4-10
in CINIT

enciphered under PLU master key 4-10
CRYPTOGRAPHY VERIFICATION !CRVI 6.2-2, E-10

session cryptography key 6.2-2
session seed 6.2-2
test value 6.2-2

CTERM E-10
See also CONTROL TERMINATE

CTERM_DEACTIVATE_SESSION_PROC procedure 3-37
referenced by

PROCESS_LNS_TO_RM_RECORD 3-19
CTERM_DEACTIVATE_SESSION structure A-20

referenced by
BUILD_AND_SEND_DEACTIVATE_SESS 4-63
CTERM DEACTIVATE SESSION PROC 3-37

current bra~ket ID - -
See current bracket sequence number

current bracket sequence number 6.1-4, ,
6 • 1-6 • 6 • 1-7

DACTLU E-11
See also DEACTIVATE LOGICAL UNIT

DACTLU_RQ...RCV_RECORD structure A-22
referenced by

BUILD_AND_SEND_DACTLU_RSP 4-63
PROCESS_DACTLU_RQ 4-85
PROCESS_RECORO_FROM_NNM 4-50

OACTLU_RSP_SEND_RECORO structure A-17
referenced by

BUILD_ANO_SEND_DACTLU_RSP 4-63
data base resources 2-4, 2-37

consistency of updates
See sync point, data base update con­
sistency

Data Encryption Standard !DESI 6.2-5
data flow control !OFCJ

BIS 6.1-2, 6.1-9, 6.1-10, 6.1-12, 6.1-13,
6.1-14

initialization 6.1-1
LUSTAT 6.1-2, 6.1-4, 6.1-10, 6.1-12,
6.1-13, 6.1-14

protocol boundaries 6.1-3, 6.1-17
request formats 6.1-12, 6.1-13
response formats
RTR 6.1-2, 6.1-4, 6.1-7, 6.1-9, 6.1-10,
6.1-12, 6.1-13, 6.1-15

SIG 6.1-2, 6.1-4, 6.1-5, 6.1-6, 6.1-7,
6.1-12, 6.1-13, 6.1-15

structure 6.1-1
data record 2-11, 2-29, 2-36
data shipping
data structures 2-40

system definition 2-40
data traffic

activation 6.2-1
deactivation 6.2-1

data traffic protocols
CRV 6.2-2

session cryptography key 6.2-2
session seed 6.2-2
test value 6.2-2

session cryptography key 6.2-2
session seed 6.2-2

OEACTIVATE_FREE_SESSIONS procedure 3-38
referenced by

CHANGE_SESSIONS_PROC 3-35
DEACTIVATE LOGICAL UNIT !OACTLUI 4-19, E-11
OEACTIVATE_PENDING_SESSIONS procedure 3-38

referenced by
CHANGE SESSIONS PROC 3-35

OEACTIVATE_SESSION_PROC procedure 5.4-37
referenced by

PS_COPR 5.4-32
DEACTIVATE_SESSION structure A-31

referenced by
BUILO_ANO_SEND_TERM_RQ 4-70
FSM_STATUS 4-93
PROCESS_OEACTIVATE_SESSION 4-86
PROCESS_RECORO_FROM_RM 4-48
SENO_DEACTIVATE_SESSION 3-51

OEACTIVATE_SESSION verb 5.4~6, 5.4-20
processing by PS.COPR 5.4-25

deactivation, session
CP-LU 4-2, 4-19
LU-LU 4-3, 4-28

deadlock 6.2-6
OEALLOCATE_ABENO_PROC procedure 5.1-30

referenced by
DEALLOCATE PROC 5.1-14

DEALLOCATE_CONFIRM_PROC procedure 5.1-31
referenced by

DEALLOCATE_PROC 5.1-14
DEALLOCATE_FLUSH_PROC procedure 5.1-32

referenced by
DEALLOCATE_PROC 5.1-14

DEALLOCATE_PROC procedure 5.1-14
referenced by

PS_CONV 5.1-10
DEALLOCATE RCB structure A-26

referen~ed by
DEALLOCATE_PROC 5.1-14
FLUSH_PROC 5.1-16
PROCESS_PS_TO_RM_RECORD 3-20

DEALLOCATION_CLEANUP_PROC procedure 5.0-14
referenced by

ACTIVATE_SESSION_PROC 5.4-36
ALLOCATE_PROC 5.1-11
ATTACH_ERROR_PROC 5.0-10
CHANGE_SESSION_LIMIT_PROC 5.4-35
CONFIRM_PROC 5.1-12
DEACTIVATE_SESSION_PROC 5.4-37
DEALLOCATE_CONFIRM_PROC 5.1-31
DEALLOCATE_FLUSH_PROC 5.1-32
DEALLOCATE_PROC 5.1-14
FSM_CONVERSATION 5.1-59
INITIALIZE_SESSION_LIMIT_PROC 5.4-33
LOCAL_VERB_PARAMETER_CHECK 5.4-41
MC_ALLOCATE_PROC 5.2-21
PREPARE_TO_RECEIVE_PROC 5.1-18
PROCESS_SESSION_LIMIT_PROC 5.4-57
PS_INITIALIZE 5.0-6
PS_VERB_ROUTER 5.0-12
RECEIVE_PIP_FIELD_FROM_HS 5.0-7
RESET_SESSION_LIMIT_PROC 5.4-34
SEND_DATA_PROC 5.1-22
SNASVCHG_VERB_PARAMETER_CHECK 5.4-42
VERB_PARAMETER_CHECK 5.4-47
WAIT_PROC 5.0-15

X-6 SNA Format and Protocol Reference Manual for LU Type 6.2

deciphering 6.2-1, 6.2-4, 6.2-5
block chaining 6.2-5
CRV 6.2-2

session cryptography key 6.2-2
session seed 6.2-2
test value 6.2-2

Data Encryption Standard CDESl 6.2-5
session cryptography key 6.2-2, 6.2-5
session seed 6.2-2

DEFINE_PROC procedure 5.4-38
definite-response chain

See chaining, definite-response chain
delayed request mode

See control mode, delayed request
delayed response mode

See control mode, delayed response
DEQUEUE_FMH7_PROC procedure 5.1-33

referenced by
CONFIRM_PROC 5.1-12
DEALLOCATE_CONFIRM_PROC 5.1-31
PREPARE_TO_RECEIVE_CONFIRM_PROC 5.1-38
RECEIVE_AND_WAIT_PROC 5.1-19
SEND_DATA_PROC 5.1-22
SEND_ERROR_IN_SEND_STATE 5.1-51
TEST_PROC 5.1-26
WAIT_FOR_CONFIRMED_PROC 5.1-55

DEQUEUE_WAITING_REQUEST procedure 3-39
referenced by

FREE_SESSION_PROC 3-41
RTR RSP PROC 3-48

destinati~n LU CDLU) 4-4
destination transaction program 2-7
DFC_INITIALIZE procedure 6.1-18

referenced by
H::> 6.0-3

DFC_RCV_FSMS procedure 6.1-24
referenced by

DFC_RCV 6.1-23
DFC_RCV procedure 6.1-23

referenced by
TC.RCV 6.2-15

DFC_SEND_FROM_LNS procedure 6.1-22
referenced by

PROCESS_CP_LU_SESSION 6.0-5
DFC_SEND_FROM_PS procedure 6.1-19

referenced by
PROCESS_LU_LU_SESSION 6.0-4

DFC_SEND_FROM_RM procedure 6.1-20
referenced by

PROCESS_LU_LU_SESSION 6.0-4
DFC_SEND_FSMS procedure 6.1-25

DIA

referenced by
DFC_SEND_FROM_PS 6.1-19
DFC_SEND_FROM_RM 6.1-20
SEND_BIU 6 .1-37
SEND_RSP_BIU 6.1-38

See Document Interchange Architecture
COIA>

DISPLAY_PROC procedure 5.4-39
distributed operator control 2-3

See also control-operator verbs, distrib­
uted function

distributed processing 2-1
distributed transaction 2-1, 2-35, 2-43

CNOS 5.4-9
distributed transaction program

See logical unit of work CLUWJ, distrib­
uted

distribution service unit CDSUl 2-36
DLU

See destination LU CDLU>
Document Interchange Architecture <DIA) 2-36
document interchange services

See Document Interchange Architecture
IDIAl

domain, definition of 1-5
drain 2-34, 2-43
drain of sessi'on allocation requests 3-15,
5.4-4, 5.4-8, 5.4-21, 5.4-25, 5.4-30

negotiation by CNOS 5.4-30
DSU

See distribution service unit CDSUl

ECHO TEST IECHOTESTJ 4-31, E-11
ECHOTEST E-11

See also ECHO TEST
EDI

See Enciphered Data indicator CEDIJ
Emulated Product Identifier CX'Ol' l Product

ID Subfield E-26
Enciphered Data indicator CEDil 6.2-5
enciphering 6.2-1, 6.2-4, 6.2-5

block chaining 6.2-5
CRV 6.2-2

session cryptography key 6.2-2
session seed 6.2-2
test value 6.2-2

Data Encryption Standard CDESJ 6.2-5
session cryptography key 6.2-2, 6.2-5
session seed 6.2-2

End Chain indkator (ECI>
use 6.1-8, 6.1-11

end of conversation message 2-12, 2-13,
2-18, 2-29, 2-30

ERP (error recovery procedure)
type of RSPIACTLUJ 4-17

error category
See sense data

ERROR_DATA_STRUCTURE structure 5.2-48
referenced by

PROCESS_ERROR_DATA 5.2-43
RCVD_SVC_ERROR_PURGING 5.2-42
RCVD_SVC_ERROR_TRUNC_NO_TRUNC 5.2-41
SEND SVC ERROR PURGING 5.2-45

Error Desc~iption FM-header CFMH-71 H-5
See also FM header, type 7 CError
Description)

error recovery
See also errors
CNOS 5.4-27, 5.4-30

conversation failure 5.4-20, 5.4-27
protocol violation 5.4-30
unrecognized command parameters 5.4-30

confirmation 2-10, 2-13
control operator 2-10
conversation deallocation 2-10
distributed

See sync point
LU 2-10
program 2-10, 2-13
session deactivation 2-10
sync point

See sync point
transaction program 2-10

ERROR TYPE structure 4-99
referenced by

ACTIVATE_SESSION_ERROR 4-51
BUILD_AND_SEND_ACT_SESS_RSP_NEG 4-57
PROCESS_ACTIVATE_SESSION 4-78

errors 2-9
See also error recovery
See also errors and failures

Index X-7

application-detected 2-9
conversation failure 2'-9; 2-34
local resource 2-9
LU failure 2-10, 2-39
program failure 2-9
protocol
session failure 2-9
system recoverable 2-9

errors and failures 5.3-1
application errors 5.3-1
conversation failures 5.3-1
local resource failures 5.3-1
LU failures 5.3-1
program failures 5.3-1
recoverable system errors 5.3-1

errors during sync point
See sync point, errors during sync point

exception-response chain
See chaining, exception-response chain

Exchange Log Name H-12
command format H-12

expedited flow
in contrast to normal flow 6.2-4, 6.2-5
TC 6.2-1, 6.2-4, 6.2-5

EXR (EXCEPTION REQUEST)
sense data included with 6-1

failures
See errors and failures

FI
See Format indicator (fIJ

files
See sync point, local resources

finite-state machine (fSMJ, basic notion
of 1-1

finite-state machines
binding N-1
call N-1
generic finite-state machines N-1
initialization N-1
no-op finite-state machines N-1
state N-1
state check N-1
state name N-1
state test N-1
state transition N-1

first speaker 2-8, 2-33
See also bracket, first speaker
See also contention winner

FIRST_SPEAKER_PROC procedure 3-40
referenced by

GET_SESSION_PROC 3-42
flip-flop, half-duplex

See send/receive mode, half-duplex
flip-flop <HDX-FF>

flow sequences
basic conversation 2-47
external protocol boundaries 2-17

application-detected error cases 2-23
error-free cases 2-18
REQUEST_TO_SEND case 2-23

internal protocol boundaries 2-47
session activation and deactivation 2-48,
2-so, 4-34

FLUSH_PROC procedure 5.1-16
referenced by

PS_CONV 5.1-10
FM (function management)

profiles F-1

Usage field F-1
FM header 2-13, 2-15, 2-16, .2-39

relationship to ver'bs 2-17
type 5 <Attach> 2-9, 2-13, 2-30, 2-32,
2-33, 3-2, 3-9, 5.0-3, 5.1-1, 5.3-10,
6.1-2, 6.1-4

type 7 (Error Description> 2-12, 2-13,
5.1-1, 6.1-2, 6.1-4, 6.1-1

use in FM profile 19 6.1-2
Ftf headers

using H-4
Ftf profile

See also profiles
in BIND 4-20

Ftf profile 0 6.1-1, 6.1-16
Ftf profile 19 6.1-1, 6.1-2, 6.1-3, 6.1-8,
6.1-14

Ftf profile 6 6.1-1, 6.1-16
FM Usage field F-1

in BIND 4-20
FMH value in RH

use in chains H-4
FMH-5

See also FM header, type 5 <Attach>
format H-6
purpose of H-5

FMH-7
See also FM header, type 7 (Error
Description>

format H-8
purpose of H-5

Forget
See sync point, commands, Forget

formal description, definition of 1-1
FORMAT_ERROR_EXP_RSP procedure 6.1-27

referenced by
FORMAT_ERROR 6.1-26

FORMAT_ERROR_NORM_RSP procedure 6.1-27
referenced by

FORMAT_ERROR 6.1-26
FORMAT_ERROR procedure 6.1-26

referenced by
DFC_RCV 6.1-23

FORMAT_ERROR_R~DFC procedure 6.1-28
referenced by

FORMAT_ERROR 6.1-26
FORMAT_ERROR_R~FMD procedure 6.1-29

referenced by
FORMAT_ERROR 6.1-26
FORMAT_ERROR_R~DFC 6.1-28

FORMAT_ERROR_SSCP_LU procedure 6.1-30
referenced by

DFC_RCV 6.1-23
Format indicator (fl)

of RH H-4
use 6.1-4

Format of an Error Data GDS variable H-16
Format of Application Data GDS Variable H-16
Format of Error Log GDS Variable H-16
Format of Map Name GDS Variable H-16
Format of Null Structured Data Variable H-16
Format of User' Control Data GDS Vari-
able H-16

FREE_SESSION_PROC procedure 3-41
referenced by

PROCESS_HS_TO_RM_RECORD 3-18
FREE_SESSION structure A-15

referenced by
FREE_SESSION_PROC 3-41
FSM_CHAIN_RCV_FMP19 6.1-44
FSM_CHAIN_SEND_FHP19 6.1-46
GENERATE_RM_PS_INPUTS 6.1-31

FSM_BIS_BIDDER 3-65
FSM_BIS_BIDDER FSM

X-8 SNA Format and Protocol Reference Manual for LU Type 6.2

referenced by
BID_PROC 3-27
BIS_REPLY_PROC 3-32
BIS_RQ_PROC 3-33
FREE_SESSIOH_PROC 3-41
PROCESS_HS_TO_RM_RECORD ~-1~

RM_DEACTIVATE_SESSIOH_PROC 3-46
RTR_RSP_PROC 3-48
SEHD_BIS 3-49
SEHD_BIS_REPLY 3-49
SEHD_BIS_RQ 3-50
SHOULD_SEHD_BIS 3-58

FSM_BIS_FSP 3-66
FSM_BIS_FSP FSM

referenced by
BID_PROC 3-27
BIS_REPLY_PROC 3-32
BIS_R<l_PROC 3-33
FREE_SESSION_PROC 3-41
PROCESS_HS_TO_RM_RECORD 3-18
RM_DEACTIVATE_SESSIOH_PROC 3-46
RTR_RSP_PROC 3-48
SEHD_BIS 3-49
SEND_BIS_REPLY 3-49
SENO_BIS_RQ 3-50
SHOULD_SEND_BIS 3-58

FSM_BSM_FMP19 6.1-43
FSM_BSM_FMP19 FSM

referenced by
DFC_INITIALIZE 6.1-18
DFC_SEND_FROM_RM 6.1-20
FSM_CHAIN_SEND_FMP19 6.1-46
GENERATE_RM_PS_INPUTS 6.1-31
OK_TO_REPLY 6.1-33
PROCESS_LU_LU_SESSION 6.0-4
PROCESS_RU_DATA 6.1-34
RCV_STATE_ERROR 6.1-36
SEND_RSP_TO_RM_OR_PS 6.1-39
STRAY_RSP 6.1-41
TRY_TO_RCV_SIGNAL 6.1-22

FSM_CHAIN_RCV_FMP19 6.1-44
FSM_CHAIN_RCV_FMP19 FSM

referenced by
DFC_INITIALIZE 6.1-18
DFC_RCV_FSMS 6.1-24
DFC_SEND_FROM_PS 6.1-19
DFC_SEND_FSMS 6.1-25
OK_TO_REPLY 6.1-33
RCV_STATE_ERROR 6.1-36
SEND_RSP_BIU 6.1-38
UPDATE_FSMS 6.1-42

FSM_CHAIN_SEND_FMP19 6.1-46
FSM_CHAIN_SEND_FMP19 FSM

referenced by
DFC_INITIALIZE 6.1-18
DFC_RCV_FSMS 6.1-24
DFC_SEND_FSMS 6.1-25
OK_TO_REPLY 6.1-33
PROCESS_LU_LU_SESSION 6.0-4
RCV_STATE_ERROR 6.1-36
UPDATE_FSMS 6.1-42

FSM_CONVERSATION 5.1-59
FSM CONVERSATION FSM

referenced by
COMPLETE_CONFIRM_PROC 5.1-27
COMPLETE_DEALLOCATE_ABEND_PROC 5.1-28
CONFIRM_PROC 5.1-12
CONFIRNED_PROC 5.1-14
DEALLOCATE_ABEND_PROC 5.1-30
DEALLOCATE_CONFIRM_PROC 5.1-31
DEALLOCATE_FLUSH_PROC 5.1-32

·aEALLOCATE_PROC 5.1-14
FLUSH_PROC 5.1-16
GET_ATTRIBUTES_PROC 5.1-17

PERFORM_RECEIVE_PROCESSING 5.1-36
POST_ON_RECEIPT_PROC 5.1-17
PREPARE_TO_RECEIVE_CONFIRM_PROC 5.1-38
PREPARE_TO_RECEIVE_FLUSH_PROC 5.1-39
PREPARE_TO_RECEIVE_PROC 5.1-18
PROCESS_FMH7_PROC 5.1-42
PROCESS_RM_OR_HS_TO_PS_RECORDS 5.1-43
RCB_ALLOCATED_PROC 5.1-44
RECEIVE_AND_WAIT_PROC 5.1-19
REQUEST_TO_SEND_PROC 5.1-21
SEND_DATA_PROC 5.1-22
SEND_ERROR_DONE_PROC 5.1-49
SEND_ERROR_IN_RECEIVE_STATE 5.1-50
SEND_ERROR_IN_SEND_STATE 5.1-51
SEND_ERROR_PROC 5.1-24
SET_FMH7_RC 5.1-53
TEST_PROC 5.1-26
WAIT_FOR_CONFIRNED_PROC 5.1-55
WAIT_FOR_SEND_ERROR_DONE_PROC 5.1-58

FSM_ERROR_OR_FAILURE 5.1-61
FSM ERROR OR FAILURE FSM

referenced by
COMPLETE_CONFIRM_PROC 5.1-27
COMPLETE_DEALLOCATE_ABEND_PROC 5.1-28
CONFIRM_PROC 5.1-12
CONFIRMED_PROC 5.1-14
CONVERSATION_FAILURE_PROC 5.1-29
DEALLOCATE_ABEND_PROC 5.1-30
DEALLOCATE_CONFIRM_PROC 5.1-31
DEALLOCATE_FLUSH_PROC 5.1-32
FLUSH_PROC 5.1-16
FSM_CONVERSATION 5.1-59
OBTAIN_SESSION_PROC 5.1-35
PERFORM_RECEIVE_PROCESSING 5.1-36
PREPARE_TO_RECEIVE_CONFIRM_PROC 5.1-38
PREPARE_TO_RECEIVE_FLUSH_PROC 5.1-39
PROCESS_RM_OR_HS_TO_PS_RECORDS 5.1-43
RCB_ALLOCATED_PROC 5.1-44
RECEIVE_AHO_WAIT_PROC 5.1-19
SEND_DATA_BUFFER_MANAGEMENT 5.1-47
SEND_DATA_PROC 5.1-22
SEND_ERROR_IN_SEND_STATE 5.1-51
SEND_ERROR_PROC 5.1-24
SET_FMH7_RC 5.1-53
TEST_PROC 5.1-26
WAIT_FOR_CONFIRMED_PROC 5.1-55
WAIT_FOR_RSP_TO_R<l_TO_SEND_PROC 5.1-57
WAIT_FOR_SEND_ERROR_DONE_PROC 5.1-58

FSM_IMMEDIATE_R<l_MODE_RCV 6.1-48
FSM_IMMEDIATE_R<l_MODE_RCV FSM

referenced by
DFC_INITIALIZE 6.1-18
DFC_RCV 6.1-23
DFC_SEND_FROM_LNS 6.1-22
STATE_ERROR_SSCP_LU 6.1-40

FSM_IMMEDIATE_R<l_MODE_SEND 6.1-48
FSM_IMMEDIATE_R<l_HODE_SEND FSM

referenced by
DFC_INITIALIZE 6.1-18
DFC_RCV 6.1-23
DFC SEND FROM LNS 6.1-22
PROCESS_CP_LU=SESSION 6.0-5
STATE_ERROR_SSCP_LU 6.1-40

FSM_PAC_R<l_RCV 6.2-21
FSM_PAC_R<l_RCV FSM

referenced by
TC.DEQUEUE_PAC 6.2-18
TC.INITIALIZE 6.2-8
TC.RCV_NORM_RQ 6.2-17
TC.SEND 6.2-13
TC.TRY_TO_SEND_IPR 6.2-19

FSM_PAC_R<l_SEND 6.2-20
FSM PAC RQ SEND FSM

ref eren~ed by

Index X-9

T~.DEQUEUE~PAC 6.2-18
TC.INITIALlZE 6.2-8
TC.SEND 6.2-13

FSM_POST 5.1-62
FSM_POST FSM

referenced by
CONVERSATION_FAILURE_PROC 5.1-29
DEQUEUE_FMH7_PROC 5.1-33
PERFORM_RECEIVE_PROCESSING 5.1-36
POST_AND_WAIT_PROC 5.1-37
POST_ON_RECEIPT_PROC 5.1-17
PROCESS_RM_OR_HS_TO_PS_RECORDS 5.1-43
TEST_FOR_POST_SATISFIED 5.1-54
TEST_PROC 5.1-26

FSM_QRI_CHAIN_RCV_FMP19 6.1-49
FSM_QRI_CHAIN_RCV_FMP19 FSM

referenced by
DFC_INITIALIZE 6.1-18
RCV_STATE_ERROR 6.1-36
UPDATE_FSMS 6.1-42

FSM_RCB_STATUS_BIDDER 3-67
FSM_RCB_STATUS_BIDDER FSH

referenced by
BID_RSP_PROC 3-29
BIDDER_PROC 3-31
PS_CREATION_PROC 3-44
SESSION_ACTIVATED_ALLOCATION 3-52
SESSION_DEACTIVATED_PROC 3-54
SET_RCB_AND_SCB_FIELDS 3-57

FSM_RCB_STATUS_FSP 3-68
FSM_RCB_STATUS_FSP FSM

referenced by
BID_RSP_PROC 3-29
BIDDER_PROC 3-31
PS_CREATION_PROC 3-44
SESSION_ACTIVATED_ALLOCATION 3-52
SESSION_DEACTIVATED_PROC 3-54
SET_RCB_AND_SCB_FIELDS 3-57

FSM_RCV_PURGE_FMP19 6.1-50
FSM_RCV_PURGE_FMP19 FSM

referenced by
DFC_INITIALIZE 6.1-18
DFC_RCV_FSMS 6.1-24
GENERATE_RM_PS_INPUTS 6.1-31
UPDATE_FSMS 6.1-42

FSM_SCB_STATUS_BIDDER 3-63
FSM_SCB_STATUS_BIDDER FSM

referenced by
ATTACH_PROC 3-26
BID_PROC 3-27
COMPLETE_HS_ATTACH 3-33
FREE_SESSION_PROC 3-41
SESSION_DEACTIVATED_PROC 3-54
SET_RCB_AND_SCB_FIELDS 3-57
SUCCESSFUL_SESSION_ACTIVATION 3-59

FSM_SCB_STATUS_FSP 3-64
FSM_SCB_STATUS_FSP FSM

referenced by
ATTACH_PROC 3-26
BID_PROC 3-27
COMPLETE_HS_ATTACH 3-33
FREE_SESSION_PROC 3-41
SESSION_DEACTIVATED_PROC 3-54
SET_RCB_AND_SCB_FIELDS 3-57
SUCCESSFUL_SESSION_ACTIVATION 3-59

FSM_STATUS 4-92
FSM_STATUS FSM

referenced by
BUILD_AND_SEND_ACTLU_RSP_POS 4-59
PROCESS_ABORT_HS 4-78
PROCESS_ACTIVATE_SESSION 4-78
PROCESS_BIND_RQ 4-80
PROCESS_BIND_RSP 4-81
PROCESS_CINIT_RQ 4-81

PROCESS_CLEANUP_RQ 4-83
PROCESS_CTERM_RQ 4-84
PROCESS_DACTLU_RQ. 4-85
PROCESS_DEACTIVATE_SESSION 4-86
PROCESS_HIERARCHICAL_RESET 4-86
PROCESS_INIT_HS_RSP 4-87
PROCESS_INIT_SELF_RSP 4-87
PROCESS_NOTIFY_RQ 4-88
PROCESS_PC_CONNECT_RSP 4-89
PROCESS_SESSION_ROUTE_INOP 4-89
PROCESS_UNBIND_RQ 4-90
PROCESS_UNBIND_RSP 4-91

full-duplex send/receive mode
See send/receive mode, full-duplex CFDX>

fully qualified LU name
See LU name, fully qualified

fully qualified network name 4-5
Fully Qualified PLU Network Name Structured
Data Subfield E-16

Fully Qualified SLU Network Name Structured
Data Subfield E-16

function management CFM) profiles F-1
Function Management Header 5: Attach H-6
Function Management Header 7: Error
Description H-8

function management headers
See FM headers and FMH

function shipping

GOS

See sync point, function shipping
resource

See resource, function-shipped

See general data stream
See general data stream variable

GOS header
See general data stream header

GOS ID
See general data stream variable identifi­
er

GOS variable
See general data stream variable

general data stream I-1
general data stream header 2-12, 2-29, 2-30
general data stream variable 2-12, 2-36,
5.2-5, 1-1

Application Data 5.2-5, 5.2-11, H-16
Change Number of Sessions 2-36

See also Change Number of Sessions 6DS
variable

code points H-15
Compare States 2-39
Error Data 5.2-14, 5.2-15, H-16
Error Log H-16
Exchange Log Name 2-39
format H-10
Map Name 2-37, 5.2-9, 5~2-11, H-16
Null Data H-16
Null Structured Data 5.2-5
User Control Data 5.2-5, 5.2-11, 5.2-14,
H-16

general data stream variable identifier 2-12
general data stream variables

for mapped conversations 2-15, 2-37
for resynchronization 2-39

6ENERATE_RM_PS_INPUTS procedure 6.1-31
referenced by

DFC_RCV_FSMS 6.1-24
generic finite-state ma'chines N-1

X-10 SNA Format and Protocol Reference Manual for LU Type 6.2

binding N-1
no-op finite-state machines N-1

GET_ATTRIBUTES_PROC procedure 5.1-17
referenced by

PS CONV 5.1-10
GET_END_CHAIN_FROM_HS procedure 5.1-34

referenced by
ATTACH_ERROR_PROC 5.0-10
WAIT_FOR_SEND_ERROR_DONE_PROC 5.1-58

GET_SEND_INDICATOR procedure 5.2-44
referenced by

RCVD_SVC_ERROR_PURGING 5.2-42
GET_SESSION_PROC procedure 3-42

referenced by
BID_RSP_PROC 3-29
DEQUEUE_WAITING_REQUEST 3-39
PROCESS_PS_TO_RM_RECORD 3-20
RTR_RQ_PROC 3-47
SESSION DEACTIVATED PROC 3-54

GET_SESSION structure A-26
referenced by

BID_RSP_PROC 3-29
BIDDER_PROC 3-31
DEQUEUE_WAITING_REQUEST 3-39
FIRST_SPEAKER_PROC 3-40
GET_SESSION_PROC 3-42
OBTAIN_SESSION_PROC 5.1-35
RTR_RQ_PROC 3-47
SESSION_ACTIVATED_ALLOCATION 3-52
SESSION_DEACTIVATED_PROC 3-54
SUCCESSFUL_SESSION_ACTIVATION 3-59

half-duplex flip-flop send/receive mode 2-6
See also send/receive mode, half-duplex
flip-flop CHDX-FF)

See also two-way alternate send/receive
protocol

half-session CHS) 2-1
activation and deactivation 6.0-1
components 6.0-1
function summary 2-35
process 2-33, 2-34, 2-40, 2-44
process queues 6.0-2
processes 6.0-2
protocol boundaries 2-46, 2-47, 6.0-2

half-session ID 2-6
HIERARCHICAL_RESET_RSP structure A-18

referenced by
BUILD_AND_SEND_HIER_RESET_RSP 4-64

HIERARCHICAL_RESET structure A-22

HS

referenced by
BUILD_AND_SEND_HIER_RESET_RSP 4-64
PROCESS_HIERARCHICAL_RESET 4-86
PROCESS_RECORD_FROM_NNM 4-50

See half-session CHSl
HS_ID structure 3-69

referenced by
BIDDER_PROC 3-31
BIS_RACE_LOSER 3-32
CHECK_FOR_BIS_REPLY 3-36
COMPLETE_HS_ATTACH 3-33
CONNECT_RCB_AND_SCB 3-34
DEQUEUE_WAITING_REQUEST 3-39
FIRST_SPEAKER_PROC 3-40
FSM_BIS_BIDDER 3-65
FSM_BIS_FSP 3-66
PS_PROTOCOL_ERROR 5.0-16
RM_PROTOCOL_ERROR 3-46

SEND_BIS 3-49
SEND_BIS_REPLY 3-49
SEND_BIS_RQ 3-50
SESSION_ACTIVATED_ALLOCATION 3-52
SET_RCB_AND_SCB_FIELDS 3-57
SHOULD_SEND_BIS 3-58

HS-initiated procedure
HS process 6.0-3

referenced by
BID_PROC 3•27
BIDDER_PROC 3-31
BIS_RACE_LOSER 3-32
CONFIRMED_PROC 5.1-14
CONNECT_RCB_AND_SCB 3-34
DEALLOCATE_ABEND_PROC 5.1-30
FIRST_SPEAKER_PROC 3-40
FLUSH_PROC 5.1-16
FREE_SESSION_PROC 3-41
FSM CONVERSATION 5.1-59
FSM:ERROR_OR_FAILURE 5.1-61
PROCESS_RM_OR_HS_TO_PS_RECORDS 5.1-43
RECEIVE_RM_OR_HS_TO_PS_RECORD 5.1-47
REQUEST_TO_SEND_PROC 5.1-21
RTR_RQ_PROC 3-47
SEND_BIS_REPLY 3-49
SEND_BIS_RQ 3-50
SEND_DATA_TO_HS_PROC 5.1-48
SEND_ERROR_IN_RECEIVE_STATE 5.1-50
SEND_ERROR_PROC 5.1-24
SESSION_ACTIVATED_ALLOCATION 3-52
SUCCESSFUL_SESSION_ACTIVATION 3-59
WAIT_FOR_CONFIRMED_PROC 5.1-SS

HS_PS_CONNECTED structure A-29
referenced by

CONNECT_RCB_AND_SCB 3-34
DFC_SEND_FROM_RM 6.1-20
PROCESS_RU_DATA 6.1-34
SEND_RSP_TO_RM_OR_PS 6.1-39

HS_RCV_RECORD structure A-11
referenced by

BUILD_AND_SEND_CINIT_RSP 4-62
BUILD_AND_SEND_RSP_OR_LOG 4-66
CINIT_RQ_STATE_ERROR 4-72
DFC_RCV 6.1-23
FSM_STATUS 4-93
INITIALIZE_LULU_CB_CINIT 4-76
PROCESS_CINIT_RQ 4-81
PROCESS_CLEANUP_RQ 4-83
PROCESS_CTERM_RQ 4-84
PROCESS_ECHOTEST_RQ 4-86
PROCESS_INIT_SELF_RSP 4-87
PROCESS_NOTIFY_RQ 4-88
PROCESS_NOTIFY_RSP 4-88
PROCESS_RECORD_FROM_HS 4-48
PROCESS_REQECHO_RSP 4-89
PROCESS_TERM_SELF_RSP 4-90

HS_SEND_RECORD structure A-16
referenced by

BUILD_AND_SEND_BINDF_RQ 4-61
BUILD_AND_SEND_CINIT_RSP 4-62
BUILD AND SEND INIT RQ 4-65
BUILD:AND:seND:RsP_OR_LOG 4-66
BUILD_AND_SEND_SESSEND_RQ 4-69
BUILD_AND_SEND_SESSST_RQ 4-70
BUILD_AND_SEND_TERM_RQ 4-70
BUILD_AND_SEND_UNBINDF_RQ 4-72
DFC_SEND_FROM_LNS 6.1-22

HS_TO_LNS_RECORD structure A-10
referenced by

LNS 4-47
PROCESS_RECORD_FROM_HS 4-48

HS_TO_PC_RECORD structure A-11
referenced by

TC.DEQUEUE_PAC 6.2-18

Index X-11

TC.EXCHANGE_CRV 6.2-10
TC.SEND 6.2-13

HS_TO_PS_RECORD structure A-12
referenced by

PROCESS_RM_OR_HS_TD_PS_RECORDS 5.1-43
RECEIVE_RM_OR_HS_TD_PS_RECORD 5.1-47
WAIT_FOR_CONFIRMED_PROC 5.1-55

HS_TO_RM_RECORD structure A-13
referenced by

GENERATE_RM_PS_INPUTS 6.1-31
PROCESS_HS_TO_RM_RECORD 3-18
PROCESS_RU_DATA 6.1-34

identification of session
in BIND 4-24
in BIND image in CINIT

PLU network name 4-10
PLU uninterpreted name 4-10

in BINDF
PLU-SLU network addresses 4-11

in CINIT
URC 4-10

in CLEANUP
PLU-SLU network addresses 4-12

in CTERM
PLU-SLU network addresses 4-12

in !NIT-SELF
DLU uninterpreted name 4-9
URC 4-9

in NOTIFYCVector Key X'03')
PLU-SLU network names 4-14

in SESSEND
PLU-SLU network addresses 4-13

in SESSST
PLU-SLU network addresses 4-11

in TERM-SELF
URC 4-11

in UNBINDF
PLU-SLU network addresses 4-13

identity transformation of uninterpreted
name 4-5

ILU
See initiating LU CILU>

ILU/TLU Notification NOTIFY Vector E-12
immediate request mode 6.1-8

See also control mode, immediate request
immediate response mode 6.1-8

See also control mode, immediate response
implementation-dependent parameters 4-5
implementation-determined functions

See also non-SNA functions
API 2-4

closed 2-11
buffer sizes 2-29, 2-30
control operator 2-3
control operator TP 2-36
error recovery 2-9
initiating TP locally 2-32
logging 2-39
mapping 2-36
names 2-5
network configuration 2-5
optional function sets 2-10
password verification 2-9
record length and format con-
straints 2-11. 2-29

resources 2-28, 2-37, 2-39
function-shipping

system definition 2-43

INIT_HS_RSP structure A-11
referenced by

BUILD_AND_SEND_ACTLU_RSP_POS 4-59
FSM_STATUS 4-93
HS 6.0-3
PROCESS_INIT_HS_RSP 4-87
PROCESS_RECORD_FROM_HS 4-48

INIT HS structure A-16
referenced by

BUILD_AND_SEND_ACTLU_RSP_POS 4-59
BUILD_AND_SEND_INIT_HS 4-64
DFC_INITIALIZE 6.1-18
HS 6.0-3
TC.INITIALIZE 6.2-8

INIT-SELF E-11
See also INITIATE-SELF

INIT-SELF Format l
See INITIATE-SELF

initial chaining value 6.2-2, 6.2-3
INITIALIZE_ATTACHED_RCB procedure 5.0-17

referenced by
PS_INITIALIZE 5.0-6

INITIALIZE_LULU_CB_ACT_SESS procedure 4-74
referenced by

PROCESS_ACTIVATE_SESSION 4-78
INITIALIZE_LULU_CB_BIND procedure 4-75

referenced by
PROCESS_BIND_RQ 4-80

INITIALIZE_LULU_CB_CINIT procedure 4-76
referenced by

PROCESS_CINIT_RQ 4-81
INITIALIZE_SESSION_LIMIT_PROC proce-
dure 5.4-33

referenced by
PS_COPR 5.4-32

INITIALIZE_SESSION_LIMIT verb 5.4-6, 5.4-20
processing by PS.COPR

parallel-session mode name 5.4-29
single-session mode name 5.4-24
SNASVCMG mode name 5.4-24

INITIATE-SELF CINIT-SELF> 4-9, E-11
initiating LU !ILU) 4-4
installation-specified parameters 4-6
intermediate routing 1-4
internal transaction routine
INVALID_SENSE_CODE procedure 6.1-32

IPR

referenced by
RCV_STATE_ERROR 6.1-36

See Isolated Pacing Response CIPR>
Isolated Pacing Response lIPR> 6.2-5, 6.2-6

last resource
See sync point, flows, last resource opti-
mization

layer of SNA 2-4, 2-26
layer protocols 2-4
length prefix CLL) 2-3, 2-12, 2-15, 2-29,
5.1-5, 1-1

accumulation and checking 2-29, 2-30
LL

See length prefix CLL>
LLID

See general data stream header
LNS

See LU network services ILNS)
LNS process 4-47

referenced by
SEND_ACTIVATE_SESSION 3-48

X-12 SNA Format and Protocol Reference Manual for LU Type 6.2

LNS_TO_HS_RECORD structure A-15
referenced by

DFC_SEND_FROM_LNS 6.1-22
LNS_TO_NNM_RECORD structure A-16
LNS_TO_RM_RECORD structure A-19

referenced by
PROCESS_LNS_TO_RM_RECORD 3-19

Local Form Session Identifier Control Vec­
tor E-22

local LU characteristics 2-40
local LU name

See LU name, local
local resources

See resource, local
See sync point, local resources

LOCAL_SESSION_LIMIT_PROC procedure 5.4-40
referenced by

INITIALIZE_SESSION_LIMIT_PROC 5.4-33
RESET_SESSION_LIMIT_PROC 5.4-34

LOCAL structure 4-99, 6.0-6
referenced by

BIND_RQ_STATE_ERROR 4-52
BIND_SESSION_LIMIT_EXCEEDED 4-56
BUILD_AND_SEND_ACTLU_RSP_NEG 4-58
BUILD_AND_SEND_BIND_RSP_NEG 4-60
BUILD_AND_SEND_CINIT_RSP 4-62
BUILD_AND_SEND_DACTLU_RSP 4-63
BUILD_AND_SEND_RSP_OR_LOG 4-66
BUILD_AND_SEND_UNBIND_RSP 4-71
CINIT_RQ_STATE_ERROR 4-72
DFC_INITIALIZE 6.1-18
DFC_RCV 6.1-23
DFC_RCV_FSMS 6.1-24
DFC_SEND_FROM_LNS 6.1-22
DFC_SEND_FROM_PS 6.1-19
DFC_SEND_FROM_RM 6.1-20
DFC_SEND_FSMS 6.1-25
FORMAT_ERROR 6.1-26
FORMAT_ERROR_EXP_RSP 6.1-27
FORMAT_ERROR_NORM_RSP 6.1-27
FORMAT_ERROR_RQ_DFC 6.1-28
FORMAT_ERROR_RQ_FMD 6.1-29
FORMAT_ERROR_SSCP_LU 6.1-30
FSM_BSM_FMP19 6.1-43
FSM_CHAIN_RCY_FMP19 6.1-44
FSM_CHAIN_SEND_FMP19 6.1-46
FSM_IMMEDIATE_RQ_MODE_RCV 6.1-48
FSM_PAC_RQ_RCV 6.2-21
FSM_PAC_RQ_SEND 6.2-20
FSM_QRI_CHAIN_RCV_FMP19 6.1-49
FSM_STATUS 4-93
GENERATE_RM_PS_INPUTS 6.1-31
HS 6.0-3
LNS 4-47
LU_MODE_SESSION_LIMIT_EXCEEDED 4-77
OK_TO_REPLY 6.1-33
PROCESS_ABORT_HS 4-78
PROCESS_ACTLU_RQ 4-79
PROCESS_BIND_RQ 4-80
PROCESS_BIND_RSP 4-81
PROCESS_CINIT_RQ 4-81
PROCESS_CLEANUP_RQ 4-83
PROCESS_CP_LU_SESSION 6.0-5
PROCESS_CTERM_RQ 4-84
PROCESS_DACTLU_RQ 4-85
PROCESS_LU_LU_SESSION 6.0-4
PROCESS_NOTIFY_RQ 4-88
PROCESS_RECORD_FROM_HS 4-48
PROCESS_RECORD_FROM_NNM 4-50
PROCESS_RU_DATA 6.1-34
PROCESS_SEND_PARM 6.1-35
PROCESS_UNBINO_RQ 4-90
RCY_STATE_ERROR 6.1-36
SEND_NEG~RSP_OR_LOG 6.1-37

SEND_RSP_TO_RM_OR_PS 6.1-39
STATE_ERROR_SSCP_LU 6.1-40
STRAY_RSP 6.1-41
TC.DEQUEUE_PAC 6.2-18
TC.EXCHANGE_CRY 6.2-10
TC.FORMAT_CHECK 6.2-11
TC.INITIALIZE 6.2-8
TC.RCV 6.2-15
TC.RCV_CHECKS 6.2-16
TC.RCV_NORM_RQ 6.2-17
TC.SEND 6.2-13
TC.TRY_TO_ENCIPHER 6.2-14
TC.TRY_TO_SEND_IPR 6.2-19
TRY_TO_RCV_SIGNAL 6.1-22

LOCAL_YERB_PARAMETER_CHECK procedure 5.4-41
referenced by

LOCAL_SESSION_LIMIT_PROC 5.4-40
local, role of LU and TP 2-5
lock manager

See sync point, heuristic decision, and
lock manager

log manager 5.3-3
log name

See sync point, log
logging 2-4

See also sync point, logging
logical record 2-12, 2-15, 2-29, 2-30, 5.1-5
logical unit CLU>

See LU (logical unit)
logical unit of work

See sync point
logical unit of work (LlJW) 5.3-1

delimiting 5.3-1
distributed 5.3-3
local 5.3-3
state of 5.3-3

LOGICAL UNIT STATUS lLUSTATJ 6.1-2, 6.1-4,
6.1-10, 6.1-12, 6.1-13, 6.1-14, E-12

loser, contention
See bracket, bidder

LU llogical unit> 2-1
association with end users 1-3
component interaction 2-47
control block lLUCB> 5.1-1
creation 2-43
definition 1-3
parallel-session 5.4-3
peripheral 1-5
single-session S.4-3
structure 2-26
subarea 1-5

LU data structures
LU control block CLUCB> 5.2-4
transaction program control block

<TPCBJ S.2-4
LU_ID structure 5.0-21

referenced by
PS S.0-5

LU-LU session
See session

LU-LU Session Services Capabilities Control
Vector E-21

LU-LU Session Services Capabilities NOTIFY
Vector E-12

LU-LU sessions
initiation

overview 4-3
RUs 4-7

status notification RUs 4-7
See also session status notification

RUs
termination

overview 4-3
RUs 4-7

Index X-13

LU-mode 2-4
LU-mode entry 5.4-5, 5.4-12

locking for CNOS
See change number of sessions (CNOS),

locking ILU,model entry
processing by PS.COPR CCNOS) 5.4-8,
5.4-27

LU_MODE_SESSION_LIMIT_EXCEEDED proce-
dure 4-77

referenced by
ACTIVATE_SESSION_ERROR 4-51
BIND_SESSION_LIMIT_EXCEEDED 4-56
CINIT_RQ_STATE_ERROR 4-72

LU name 2-6, 2-32
fully qualified 2-6, 2-40
local 2-6, 2-40
network-qualified

See LU name, fully qualified
uninterpreted 2-6, 2-40

LU_NAME structure 3-69
referenced by

ACTIVATE_NEEDED_SESSIONS 3-21
BIS_RACE_LOSER 3-32
CREATE_SCB 3-37
DEACTIVATE_PENDING_SESSIONS 3-38
DEQUEUE_WAITING_REQUEST 3-39
SEND_ACTIYATE_SESSION 3-48
SESSION_ACTIVATION_POLARITY 3-53
SESSION_DEACTIVATION_POLARITY 3-56
SHOULD_SEND_BIS 3-58
SUCCESSFUL_SESSION_ACTIVATION 3-59
UNSUCCESSFUL_SESSION_ACTIVATION 3-62

LU network services CLNSl 4-1
formal description 4-46
function summary 2-35
general description 4-1
process 2-43
protocol boundaries 2-46, 2-47, 4-32

LU-parameter 5.4-3
LU services manager

See LU network services !LNS>
See resources manager CRM>

LU services record
See Change Number of Sessions GOS variable

LUCB_LIST_PTR structure 5.0-21
referenced by

PS 5.0-5
LUCB structure 2-40, A-1

referenced by
CHANGE_SESSION_LIMIT_PROC 5.4-35
CHECK_CNOS_COMMAND 5.4-62
CHECK_CNOS_REPLY 5.4-55
DEFINE_PROC 5.4-38
DISPLAY_PROC 5.4-39
GET_ATTRIBUTES_PROC 5.1-17
INITIALIZE SESSION LIMIT PROC 5.4-33
LNS 4-47 - - -
LOCAL_SESSION_LIMIT_PROC 5.4-40
LOCAL_VERB_PARAMETER_CHECK 5.4-41
PROCESS_SESSION_LIMIT_PROC 5.4-57
PS 5.0-5
PS_ATTACH_CHECK 5.0-8
RESET_SESSION_LIMIT_PROC 5.4-34
SESSION_LIMIT_DATA_LOCK_MANAGER 5.4-66
SNASVCMG_VERB_PARAMETER_CHECK 5.4-42
SOURCE_CONYERSATION 5.4-49
SOURCE_CONVERSATION_CONTROL 5.4-48
VERB_PARAMETER_CHECK 5.4-47

LULU_CB structure A-5
referenced by

BIND_RSP_STATE_ERROR 4-53
BUILD_AND_SEND_ACT_SESS_RSP_NEG 4-57
BUILD_AND_SEND_ACT_SESS_RSP_POS 4-57
BUILD_AND_SEND_ACTLU_RSP_POS 4-59

BUILD_AND_SEND_BIND_RQ 4-60
BUILD_AND_SEND_BIND_RSP_POS 4-61
BUILD_AND_SEND_BINDF_RQ 4-61
BUILD_AND_SEND_INIT_HS 4-64
BUILD_AND_SEND_INIT_RQ 4-65
BUILD_AND_SEND_PC_CONNECT 4-67
BUILD_AND_SEND_SESS_ACTIVATED 4-68
BUILD_AND_SEND_SESSEND_RQ 4-69
BUILD AND SEND SESSST RQ 4-70
BUILD=AND=SEND=TERM_RQ 4-70
BUILD_AND_SEND_UNBIND_RQ 4-71
BUILD_AND_SEND_UNBINDF_RQ 4-72
CINIT_RQ_STATE_ERROR 4-72
CLEANUP_LU_LU_SESSION 4-74
FSM_STATUS 4-93
INITIALIZE_LULU_CB_ACT_SESS 4-74
INITIALIZE_LULU_CB_BIND 4-75
INITIALIZE_LULU_CB_CINIT 4-76
PROCESS_ABORT_HS 4-78
PROCESS_ACTIVATE_SESSION 4-78
PROCESS_BIND_RQ 4-80
PROCESS_BIND_RSP 4-81
PROCESS_CINIT_RQ 4-81
PROCESS_CLEANUP_RQ 4-83
PROCESS_CTERM_RQ 4-84
PROCESS_DEACTIVATE_SESSION 4-86
PROCESS_INIT_HS_RSP 4-87
PROCESS_INIT_SELF_RSP 4-87
PROCESS_NOTIFY_RQ 4-88
PROCESS_PC_CONNECT_RSP 4-89
PROCESS_SESSION_ROUTE_INOP 4-89
PROCESS_UNBIND_RQ 4-90
PROCESS_UNBIND_RSP 4-91

LUSTAT E-12
See also LOGICAL UNIT STATUS

LUSTAT !LOGICAL UNIT STATUS> 6.1-14
LUW

See logical unit of work (LUW)

maintenance services RUs 2-17, 4-29
ECHOTEST 4-31
REQECHO 4-31

manager component
map 2-36
map name 2-36

globally known 2-36
receiver locally known 2-37
sender locally known 2-36

mapped conversation 2-3, 2-11, 5.2-3, 5.2-5
See also conversation
data stream format 5.2-5
errors 5.2-14, 5.2-16, 5.2-17
function summary 5.2-1
initiation 5.2-7
protocol boundary 5.2-1
termination 5.2-7

mapped-conversation message 2-13
mapped-conversation record 2-11, 2-15, 2-29
mapper 2-37
mapping 2-7, 2-11, 2-15, 2-29, 2-36, 5.2-1,
5.2-8

errors 5.2-14
map names 5.2-8, 5.2-9, 5.2-12
mapper 5.2-8, 5.2-11. 5.2-12, 5.2-14

parameters 5.2-10
save area 5.2-4, 5.2-8, 5.2-9

receive mapping 5.2-11
receive-buffer list 5.2•4

send mapping 5.2-9, 5.2-10

-14 SNA Format and Protocol Reference Manual for LU Type 6.2

maximum send size 5.2-5, 5.2-4
HC_ALLOCATE_PROC procedure 5.2-21

referenced by
PS_MC 5.2-20

MC_CONFIRM_PROC procedure 5.2-22
referenced by

PS_MC 5.2-20
HC_CONFIRMED_PROC procedure 5.2-23

referenced by ·
PS_MC 5.2-20

MC_DEALLOCATE_PROC procedure 5.2-23
referenced by

PS_MC 5.2-20
MC_FLUSH_PROC procedure 5.2-24

referenced by
PS_MC 5.2-20

MC_GET_ATTRIBUTES_PROC procedure 5.2-24
referenced by

PS_MC 5.2-20
HC_POST_ON_RECEIPT_PROC procedure 5.2-25

referenced by ·
PS_MC 5.2-20

MC_PREPARE_TO_RECEIVE_PROC procedure 5.2-26
referenced by

PS_MC 5.2-20
HC_RECEIVE_AND_WAIT_PROC procedure 5.2-27

referenced by
PS_MC 5.2-20

HC_REQUEST_TO_SEND_PROC procedure 5.2-37
referenced by

PS_MC 5.2-20
HC_SEND_DATA_PROC procedure 5.2-38

referenced by
PS_MC 5.2-20

HC_SEND_ERROR_PROC procedure 5.2-40
referenced by

PS_MC 5.2-20
MC_TEST_PROC procedure 5.2-28

referenced by
TEST_FOR_RESOURCE_POSTED 5.0-18

message-unit transformation 2-29
basic conversation 2-15, 2-30
mapped conversation 2-15, 2-29

See also mapping
message units 2-11

basic conversation 2-12
CNOS

See Change Number of Sessions GDS vari­
able

conversation sequences 2-12
data record

See data record
header 2-11
length limitations 2-12
mapped conversation 2-11
session 2-13
session sequences 2-13

mode
control block 3-3, 5.1-2

Mode/ Class-of-Service/
Virtual-Route-Identifier-List Control Vec­
tor E..;.21

mode name 2-6, 2-32, 2-40, 4-5
deriving BIND image from 4-5
in CINIT 4-9
in INIT-SELF 4-9

MODE_NAME structure 3-69
referenced by

ACTIVATE_NEEDED_SESSIONS 3-21
ACTIVATE_SESSION_RSP_PROC 3-22
BIS_RACE_LOSER 3-32
CREATE_SCB 3-37
DEACTIVATE_PENDING_SESSIONS 3-38
DEQUEUE_WAITING_REQUEST 3-39

SEND_ACTIVATE_SESSION 3-48
SESSION_ACTIVATION_POLARITY 3-53
SESSION_DEACTIVATION_POLARITY 3-56
SHOULD_SEND_BIS 3-58
SUCCESSFUL_SESSION~ACTIVATION 3-59
UNSUCCESSFUL_SESSION_ACTIVATION 3-62

Mode Name Structured Data Subfield E-16
MODE structure 2-40, A-3

referenced by
ACTIVATE_NEEDED_SESSIONS 3-21
ACTIVATE_SESSION_ERROR 4-51
ACTIVATE_SESSION_RSP_PROC 3-22
ALLOCATE_PROC 5.1-11
BID_PROC 3-27
BIND_RQ_STATE_ERROR 4-52
BIND_SESSION_LIMIT_EXCEEDED 4-56
BIS_RACE_LOSER 3-32
BUILD_AND_SEND_BIND_RSP_POS 4-61
CHANGE_ACTION 5.4-43
CHANGE_SESSIONS_PROC 3-35
CHECK_CNOS_COMMAND 5.4-62
CHECK_CNOS_REPLY 5.4-55
CHECK_FOR_BIS_REPLY 3-36
CINIT_RQ_STATE_ERROR 4-72
CLOSE_ONE_REPLY 5.4-64
DEACTIVATE_PENDING_SESSIONS 3-38
DEFINE_PROC 5.4-38
DISPLAY_PROC 5.4-39
INITIALIZE_LULU_CB_BIND 4-75
INITIALIZE_LULU_CB_CINIT 4-76
LOCAL_VERB_PARAMETER_CHECK 5.4-41
LU_MODE_SESSIOH_LIMIT_EXCEEDED 4-77
NEGOTIATE_REPLY 5.4-63
PROCESS_SESSION_LIMIT_PROC 5.4-57
SEND_ACTIVATE_SESSION 3-48
SEND_BIS_REPLY 3-49
SEND_BIS_RQ 3-50
SEND_DEACTIVATE_SESSION 3-51
SESSION_ACTIVATED_PROC 3-53
SESSION_ACTIVATION_POLARITY 3-53
SESSION_DEACTIVATED_PROC 3-54
SESSION_DEACTIVATION_POLARITY 3-56
SESSION_LIMIT_DATA_LOCK_MANAGER 5.4-66
SHOULD_SEND_BIS 3-58
SNASVCMG_VERB_PARAMETER_CHECK 5.4-42
SOURCE_CONVERSATION_CONTROL 5.4-48
SOURCE_SESSION_LIMIT_PROC 5.4-45
UNSUCCESSFUL_SESSION_ACTIVATION 3-62
VERB_PARAMETER_CHECK 5.4-47

111ede, control
See control mode

mode, LU 2-3, 2-4, 2-6, 2-40
See also transport characteristics

modifier value, sense code G-1
See also sense data

multiple-session LU 2-7
See also session, parallel

name 2-5
fully qualified LU

See LU name, fully qualified
local alias 2-5
LU

See LU name
mode

See mode name
name translation 2-5, 2-6, 2-17
naming conventions

using periods 1-5

Index X-15

using underscores 1-5
NAU (network addressable unit> 2-17

definition 1-3
negative response

sense data included with G-1
negotiable BIND 4-20, 4-25
NEGOTIATE_REPLY procedure 5.4-63
nested nodes 1-4
network

path control 1-3, 1-5
SNA 1-3

network address 2-6, 2-17, 2-33
network address of LU

in BINDF 4-11
in CLEANUP 4-12
in CTERM 4-12
in SESSEND 4-13
in SESSST 4-11
in UNBINDF 4-13

Network Address Pair Session Key E-23
network addressable unit

See NAU (network addressable unit>
network ID 2-6
network LU name 2-6
network name 4-5
network name of LU

in BIND image 4-10
in NOTIFYCVector Key X'03') 4-14

Network Name Pair Session Key E-23
Network-Qualified Address Pair Control Vec­
tor E-21

Network-Qualified Address Pair Session
Key E-23

network-qualified LU name
See LU name, fully qualified

NNM_TO_LNS_RECORD structure A-21
referenced by

LNS 4-47
PROCESS_RECORD_FRDl1_NNl1 4-50

no-op finite-state machines N-1
node

definition 1-3
SNA 1-3, 1-4
SNA product 1-3, 1-4
synonymous with "SNA node" 1-3
type

1 1-3
2.0 1-3
2.1 1-3
4 1-3
5 1-3

user-application 1-3, 1-4
node type 2-17
nodes

nesting of 1-3, 1-4
non-SNA functions

See also implementation-determined func-
tions

API 2-4
error recovery 2-9
mapping 2-36
names 2-5
resources 2-9, 2-28, 2-39

local 2-4
normal flow 6.2-1

session-level pacing 6.2-5
TC 6.2-4

normal-flow send/receive mode
See send/receive mode

notational conventions, general 1-5
notification

of changes in LU's session services capa­
bilities 4-14

of LU's availability

using NOTIFYCVector Key X'OC') 4-14
of session initiation failure

using NOTIFYCVector Key X'03') 4-14
of session termination failure

using NOTIFYCVector Key X'03'> 4-14
NOTIFY 4-14, E~12
NOTIFY Vector

ILU/TLU Notification E-12
LU-LU Session Services Capabilities E-12

OAF'-DAF' assignor indicator CODAI> 4-19
OBTAIN_SESSION_PROC procedure 5.1-35

referenced by

ODAI

RCB_ALLOCATED_PROC 5.1-44
SEND_DATA_TO_HS_PROC 5.1-48

See OAF'-DAF' assignor indicator CODAI>
OK_TO_REPLY procedure 6.1-33

referenced by
FSl1_CHAIN_RCV_Fl1Pl9 6.1-44
FSl1_CHAIN_SEND_Fl1P19 6.1-46
GENERATE_RM_PS_INPUTS 6.1-31

OLU
See origin LU COLU>

one-way conversation 2-7
operator

See control operator
optimized flows

See sync point, flows
optional function sets 2-10, 2-11, 2-36,

2-40
CNOS 5.4-21
receive options 2-10
send options 2-10

origin LU COLU> 4-4
origin transaction program 2-7

pacing 6.2-6
See also session-level pacing
initialization 6.2-2
pacing queue 6.2-6
Queued Response indicator CQRI> 6.2-6
sessicn-level 6.2-1, 6.2-4, 6.2-5

deadlock 6.2-6
FSM_PAC_R~RCV 6.2-21
FSM_PAC_R~SEND 6.2-20
IPR 6.2-6
pacing count 6.2-6
parameter set up 6.2-2, 6.2-6
PI 6.2-5, 6.2-6
stages 6.2-5
window size 6.2-5

Pacing Request indicator CPI> 6.2-5
Pacing Response indicator CPI> 6.2-5, 6.2-6
Padded Data indicator CPDI> 6.2-5
parallel session

See session, parallel
parallel session LU 2-7, 2-36

See also session, parallel
partner LU 2-4, 2-40

See also remote, role of LU and TP
control block 5.1-2

PARTNER_LU structure 2-40, A-2
referenced by

X-16 SNA Format and Protocol Reference Manual for LU Type 6.2

ACTIVATE_SESSION_ERROR 4-51
BINO_RQ_STATE_ERROR 4-52
BIND_SESSION_LIMIT_EXCEEDED 4-56
BUILD_ANO_SEND_BIND_RSP_POS 4-61
CHANGE_ACTION 5.4-43
CHECK_CNOS_COMMANO 5.4-62
CHECK_CNOS_REPLY 5.4-55
CINIT_RQ_STATE_ERROR 4-72
CLOSE_ONE_REPLY 5.4-64
DEFINE_PROC 5.4-38
DISPLAY_PROC 5.4-39
GET_ATTRIBUTES_PROC 5.1-17
INITIALIZE_LULU_CB_ACT_SESS 4-74
INITIALIZE_LULU_CB_BINO 4-75
INITIALIZE_LULU_CB_CINIT 4-76
LOCAL_VERB_PARAMETER_CHECK 5.4-41
NEGOTIATE_REPLY 5.4-63
PROCESS_SESSION_LIMIT_PROC 5.4-57
SESSION_LIMIT_DATA_LOCK_MANAGER 5.4-66
SNASVCMG_VERB_PARAMETER_CHECK 5.4-42
SOURCE_CONVERSATION 5.4-49
SOURCE_CONVERSATION_CONTROL 5.4-48
SOURCE_SESSIOH_LIMIT_PROC 5.4-45
VERB PARAMETER CHECK 5.4-47

password 2-9 -
path control network 1-3, 1-5, 2-1, 2-26

protocol boundary with LU 2-26, 2-46
PC

See path control network
PC_CHARACTERISTICS structure A-34
PC_COHNECT_RSP structure A-22

referenced by
FSM_STATUS 4-93
PROCESS_PC_COHHECT_RSP 4-89
PROCESS_RECORD_FROM_HNM 4-50

PC_COHNECT structure A-18
referenced by

BUILD_AND_SENO_PC_CONHECT 4-67
PC_HS_CONHECT structure A-18

referenced by
BUILD_AND_SENO_PC_HS_CONNECT 4-67

PC_HS_DISCONNECT structure A-18
referenced by

BUILD_AND_SEND_PC_HS_DISCOHNECT 4-68
PC_TO_HS_RECORD structure A-23

referenced by
TC.EXCHANGE_CRV 6.2-10
TC.RCV 6.2-15

roI
See Padded Data indicator CPDil

peer protocols 2-4
PERFORM_RECEIVE_PROCESSING procedure 5.1-36

referenced by
PROCESS_FMH7_PROC 5.1-42
RECEIVE AND WAIT PROC 5.1-19

performance-r;lat;d options 2-11
periods, separating name qualifiers denoting

decomposition 1-5
peripheral LU 1-5
peripheral node 1-4

See also node
peripheral node control point IPNCP)

See PNCP (peripheral node control point)
peripheral node to peripheral node communi­
cation 2-1

See also PNCP-mediated sessions
peripheral node to subarea node communi­
cation 2-1

See also SSCP-mediated sessions
peripheral PU 1-5
phases, sync point

See sync point, commands
physical unit CPUJ

See PU !physical unit)

PI
See Pacing Request or Pacing Response

indicator IPI>
PIP

See program initialization parameters
lPIP>

PIP_FIELD structure 5.0-20
referenced by

PS_ATTACH_CHECK 5.0-8
PS_INITIALIZE 5.0-6
RECEIVE_PIP_FIELD_FROM_HS 5.0-7

PIP_LIST structure 5.0-21
referenced by

PS_INITIALIZE 5.0-6
PIP Variable H-7
PIU structure A-35
PLU

See primary LU lPLU)
PLU name

in BIND 4-23
PNCP (peripheral node control point) 1-5,
4-2

PNCP-mediated sessions 4-2
POST_ANO_WAIT_PROC procedure 5.1-37

referenced by
CONFIRM_PROC 5.1-12
DEALLOCATE_CONFIRM_PROC 5.1-31
PREPARE_TO_RECEIVE_CONFIRM_PROC 5.1-38
PROCESS_FMH7_PROC 5.1-42
RECEIVE_AND_WAIT_PROC 5.1-19
SEND_DATA_PROC 5.1-22
SEND_ERROR_IN_SEND_STATE 5.1-51
TEST_PROC 5.1-26
WAIT_FOR_CONFIRMED_PROC 5.1-55

roST_ON_RECEIPT_PROC procedure 5.1-17
referenced by

PS_CONV 5.1-10
Prepare

See sync point, commands, Prepare
PREPARE_TO_RECEIVE_CONFIRM_PROC proce­
dure 5.1-38

referenced by
PREPARE_TO_RECEIVE_PROC 5.1-18

PREPARE_TO_RECEIVE_FLUSH_PROC proce-
dure 5.1-39

referenced by
PREPARE_TO_RECEIVE_PROC 5.1-18

PREPARE_TO_RECEIVE_PROC procedure 5.1-18
referenced by

PS CONV 5.1-10
presentation services CPS> 5.0-1, 5.2-1

creation 3-16
data structures 5.2-4
function summary 2-35
process 2-32, 2-33, 5.0-3
protocol boundaries 2-46, 5.0-2
structure 2-28, 5.0-2, 5.1-1
termination 3-16

presentation services CPS) headers 2-39,
5.1-6

definition H-9
format H-9

presentation services CPSJ initialize 2-28,
5.0-3

See also presentation services CPS)
protocol boundaries 5.0-3

presentation services CPS> verb router 2-28,
5.0-4

See also presentation services CPS>
See also recursion in PS

presentation services for conversations
CPS.CONV) 2-28

See also presentation services CPS)
function summary 5.1-1

Index X-17

protocol boundaries 2-46, 5.1-1
structure 5.1-1

presentation services for mapped conversa-
tions CPS.MCI 2-28, 2•36

See also mapped conversation
See also mapping
See also presentation services CPSl
protocol boundaries 2-46

presentation services for sync point services
CPS.SPSl 2-28, 2-39

See also presentation services CPSl
See also sync point
protocol boundaries 2-39

presentation services for the control opera-
tor CPS.COPRl 2-28, 5.4-1, 5.4-21

See also change number of sessions CCNOSl
See also presentation services CPSl
local-verb services 5.4-24
protocol boundaries 2-46
session-limit-data lock 5.4-12, 5.4-31
session~limit-data-lock manager S.4-12,
5.4-14, 5.4-30

shared data 5.4-12
See also LU-mode entry

source-LU session-limit services 5.4-12,
5.4-14, 5.4-25

See also change number of sessions
CCNOSl, component relationship,
source-LU services

structure 5.4-1, 5.4-23
target-LU session-limit services 5.4-12,
5.4-15, 5.4-28

See also change number of sessions
CCNOSl, component relationship,
target-LU services

verb router 5.4-24
Presentation Services Header 10: Sync Point
Control H-9

presentation services verb router 5.2-3
presentation space 2-7
primary LU CPLUl 2-8, 2-33, 2-34, 4-4

See also session, activation polarity
primary LU name

in BIND 4-23
process 2-40
PROCESS_ABORT_HS procedure 4-78

referenced by
PROCESS_RECORD_FROM_HS 4-48

PROCESS_ACTIVATE_SESSION procedure 4-78
referenced by

PROCESS_RECORD_FROM_RM 4-48
PROCESS_ACTLU_RQ procedure 4-79

referenced by
PROCESS_RECORD_FROM_NNH 4-50

PROCESS_BIND_RQ procedure 4-80
referenced by

PROCESS_RECORD_FROM_NNH 4-50
PROCESS_BIND_RSP procedure 4-81

referenced by
PROCESS_RECORD_FROM_NNH 4-50

PROCESS_CINIT_RQ procedure 4-81
referenced by

PROCESS_RECORD_FROM_HS 4-48
PROCESS_CLEANUP_RQ procedure 4-83

referenced by
PROCESS_RECORD_FROM_HS 4-48

process connection 2-33, 2-34
PROCESS_CP~LU_SESSION procedure 6.0-5

referenced by
HS 6.0-3

PROCESS_CTERM_RQ procedure 4-84
referenced by

PROCESS_RECORD_FROM_HS 4-48
PROCESS_DACTLU_RQ procedure 4-85

referenced by.
PROCESS_RECORD_FROH_NNH 4-50

PROCESS_DATA_COMPLETE procedure 5.2•33
referenced by

RECEIVE_INFO_PROC 5.2-30
PROCESS_DATA_INCOHPLETE procedure 5.2-36

referenced by
.RECEIVE~INFO_PROC 5.2-30

PROCESS_DATA_PROC procedure 5.1-40
referenced by

PERFORM_RECEIVE_PROCESSING 5.1-36
PROCESS_DEACTIVATE_SESSION procedure 4-86

referenced by
PROCESS_RECORD_FROH_RM 4-48

PROCESS_ECHOTEST_RQ procedure 4-86
referenced by

PROCESS_RECORD_FROM_HS 4-48
PROCESS_ERROR_DATA procedure 5.2-43

referenced by
RCVD_SVC_ERROR_PURGING 5.2-42

PROCESS_ERROR_OR_FAILURE_RC procedure 5.2-31
referenced by

MC_TEST_PROC 5.2-28
RECEIVE INFO PROC 5.2-30

PROCESS_FMH7_PROC procedure 5.1-42
referenced by

DEQUEUE_FMH7_PROC 5.1-33
PERFORM_RECEIVE_PROCESSING 5.1-36

PROCESS_HIERARCHICAL_RESET procedure 4-86
referenced by

PROCESS_RECORD_FROM_NNM 4-50
PROCESS_HS_TO_RM_RECORD procedure 3-18

referenced by
RM 3-17

PROCESS_INIT_HS_RSP procedure 4-87
referenced by

PROCESS_RECORD_FROM_HS 4-48
PROCESS_INIT_SELF_RSP procedure 4-87

referenced by
PROCESS_RECORD_FROM_HS 4-48

PROCESS_LNS_TO_RM_RECORD procedure 3-19
referenced by

RM 3-17
PROCESS_LU_LU_SESSION procedure 6.0-4

referenced by
HS 6.0-3

PROCESS_MAPPER_RETURN_CODE procedure 5.2-35
referenced by

PROCESS_DATA_COMPLETE 5.2-33
PROCESS_NOTIFY_RQ procedure 4-88

referenced by
PROCESS_RECORD_FROM_HS 4-48

PROCESS_NOTIFY_RSP procedure 4-88
referenced by

PROCESS_RECORD~FROM_HS 4-48
PROCESS_PC_CONNECT~RSP procedure 4-89

referenced by
PROCESS_RECORD_FROM_NNH 4-50

PROCESS_PS_TO_RM_RECORD procedure 3-20
referenced by

RM 3-17
PROCESS_RECORD_FROM_HS procedure 4-48

referenced by
LNS 4-47

PROCESS_RECORD_FROM_NNM procedure 4-50
referenced by

LNS 4-47
PROCESS_RECORD_FROM_RM procedure 4-48

referenced by
LNS 4-47

PROCESS_REQECHO_RSP procedure 4-89
referenced by

PROCESS_RECORD_FROM_HS 4-48

X-18 SNA Format and Protocol Reference Manual for LU Type 6.2

PROCESS_R11_0R_HS_TO_PS_RECORDS proce­
dure 5.1-43

referenced by
CONFIRM_PROC 5.1-12
CONFIRMED_PROC 5.1-14
DEALLOCATE_ABEND_PROC 5.1-30
DEALLOCATE_CONFIRM_PROC 5.1-31
DEALLOCATE_FLUSH_PROC 5.1-32
FLUSH_PROC 5.1-16
POST_AND_WAIT_PROC 5.1-37
POST_ON_RECEIPT_PROC 5.1-17
PREPARE_TO_RECEIVE_CONFIRM_PROC 5.1-38
PREPARE_TO_RECEIVE_FLUSH_PROC 5.1-39
RECEIVE_AND_WAIT_PROC 5.1-19
REQUEST_TO_SEND_PROC 5.1-21
SEND_DATA_PROC 5.1-22
SEND_ERROR_PROC 5.1-24
TEST_PROC 5.1-26

PROCESS_RU_DATA procedure 6.1-34
referenced by

GENERATE_RM_PS_INPUTS 6.1-31
PROCESS_SEND_PARM procedure 6.1-35

referenced by
DFC_SEND_FROM_PS 6.1-19
DFC_SEND_FROM_RM 6.1-20

PROCESS_SESSION_LIMIT_PROC procedure 5.4-57
referenced by

PS~COPR 5.4-32
PROCESS_SESSION_LIMIT verb 5.4-6

processing by PS.COPR 5.4-22, 5.4-28
PROCESS_SESSION_ROUTE_INOP procedure 4-89

referenced by
PROCESS_RECORD_FROM_NNM 4-50

PROCESS_TERM_SELF_RSP procedure 4-90
referenced by

PROCESS_RECORD_FROM_HS 4-48
PROCESS_UNBIND_RQ procedure 4-90

referenced by
PROCESS_RECORD_FROM_NNM 4-50

PROCESS_UNBIND_RSP procedure 4-91
referenced by

PROCESS_RECORD_FROM_NNM 4-50
Product ID lX'll') Common Subvector E-24
Product ID Subfield

Emulated Product Identifier lX'Ol') E-26
Product Instance E-24
PTF-Level Data (X'05') E-26
Software Product Version and Release Level
Identifier IX'03'l E-26

Product Instance Product ID Subfield E-24
Product Set ID (X'10') Common Subvector E-24
profiles 2-9

corresponding to type of session F-4, F-6
FM (function management) F-1
FM profile 0 2-9, F-1
FM profile 19 27 9, F-3
FM profile 6 2-9, F-2
TS <transmission services) F-5
TS.profile 1 2-9, F-5
TS profile 7 2-9, F-5

program initialization parameters
IPIP> 2-11, 5.0-4

program-to-program communication 2-1
protection

See sync point
protection manager

See sync point, protection manager
protocol boundary 2-4, 2-46

See also application program interface
<API)

See also under individual component
between layers 2-4
between peer components 2-4
general definition 1-1

internal 2-46
partitioned 2-4

PROTOCOL_ERROR_PROC procedure 5.2-47
referenced by

GET_SEND_INDICATOR 5.2-44
HC_TEST_PROC 5.2-28
PROCESS_DATA_COMPLETE 5.2-33
PROCESS_DATA_INCOMPLETE 5.2-36
PROCESS_ERROR_DATA 5.2-43
PROCESS_ERROR_OR_FAILURE_RC 5.2-31
PROCESS_MAPPER_RETURN_CODE 5.2-35
RCVD_SVC_ERROR_PURGING 5.2-42
RCVD_SVC_ERROR_TRUNC_NO_TRUNC 5.2-41
RECEIVE_INFO_PROC 5.2-30
SEND_SVC_ERROR_PURGING 5.2-45

protocol machine, definition of 1-1
PS

See presentation services IPS>
PS_ATTACH_CHECK procedure 5.0-8

referenced by
PS_INITIALIZE 5.0-6

PS.CONV
See presentation services for conversa­
tions IPS.CONV>

PS_CONV procedure 5.1-10
referenced by

PS_VERB_ROUTER 5.0-12
PS.COPR

See presentation services for the control
operator IPS.COPR>

PS_COPR procedure 5.4-32
referenced by

PS_VERB_ROUTER 5.0-12
PS_CREATION_PROC procedure 3-44

referenced by
ATTACH PROC 3-26

PS header -
See presentation services (PS) headers

PS_INITIALIZE procedure 5.0-6
referenced by

PS 5.0-5
PS.MC

See presentation services for mapped con­
versations (PS.MC)

PS_MC procedure 5.2-20
referenced by

PS_VERB_ROUTER 5.0-12
PS process 5.0-5

referenced by
ALLOCATE_PROC 5.1-11
ALLOCATE_RCB_PROC 3-23
ATTACH_ERROR_PROC 5.0-10
ATTACH_PROC 3-26
BID_RSP_PROC 3-29
CONFIRMED_PROC 5.1-14
DEALLOCATE_ABEND_PROC 5.1-30
DEALLOCATION_CLEANUP_PROC 5.0-14
FIRST_SPEAKER_PROC .3-40
FLUSH_PROC 5.1-16
FSM_CONVERSATION 5.1-59
GET_SESSION_PROC 3-42
INITIALIZE_ATTACHED_RCB 5.0-17
PROCESS_Ps_ro_RM_RECORD 3-20
PROCESS_RM_OR_HS_TO_PS_RECORDS 5.1-43
PS_ATTACH_CHECK 5.0-8
PS_CREATION_PROC 3-44
PS_INITIALIZE 5.0-6
PS_VERB_ROUTER 5.0-12
RECEIVE_PIP_FIELD_FROM_HS 5.0-7
RECEIVE_RM_OR_Hs_ro_PS_RECORD 5.1-47
REQUEST_TO_SEND_PROC 5.1-21
RM_ACTIVATE_SESSION_PROC 3-45
SEND_DATA_TO_HS_PROC 5.1-48
SEND_ERROR_IN_RECEIVE_STATE 5.1-50

Index X-19

SEND_ERROR_PROC 5.1-24
SEND_ERROR_TO_HS_PROC 5.1-52
SESSION_ACTIVATED_ALLOCATION 3-52
SESSION_DEACTIVATED_PROC 3-54
SUCCESSFUL_SESSION_ACTIVATION 3-59
TEST_FOR_RESOURCE_POSTED 5.0-18
UNSUCCESSFUL_SESSION_ACTIVATION 3-62
WAIT_FOR_CONFIRMED_PROC 5.1-55
WAIT_FOR_RM_REPLY 5.1-56
WAIT_PROC 5.0-15

PS_PROCESS_DATA structure. 5.0-2, 5.0-20,
5.1-3

referenced by
ACTIVATE_SESSION_PROC 5.4-36
ATTACH_ERROR_PROC 5.0-10
DEACTIVATE_SESSION_PROC 5.4-37
DEALLOCATION_CLEANUP_PROC 5.0-14
INITIALIZE_ATTACHED_RCB 5.0-17
PS 5.0-5
PS_ATTACH_CHECK 5.0-8
PS_INITIALIZE 5.0-6
PS_MC 5.2-20
PS_PROTOCOL_ERROR 5.0-16
PS_VERB_ROUTER 5.0-12
RECEIVE_PIP_FIELD_FROM_HS 5.0-7
SEND_ERROR_TO_HS_PROC 5.1-52
TEST_FOR_RESOURCE_POSTED 5.0-18
WAIT_PROC 5.0-15

PS profile
in BIND 4-22

PS_PROTOCOL_ERROR procedure 5.0-16
referenced by

PS.SPS

ATTACH_ERROR_PROC 5.0-10
DEQUEUE_FMH7_PROC 5.1-33
PERFORM_RECEIVE_PROCESSING 5.1-36
PROCESS_DATA_PROC 5.1-40
PROCESS_FMH7_PROC 5.1-42
PROCESS_RM_OR_HS_TO_PS_RECORDS 5.1-43
RECEIVE_PIP_FIELD_FROM_HS 5.0-7
SET_FMH7_RC 5.1-53

See also presentation services for sync
point services (PS.SPS>

See also sync point, manager
logic 5.3-8

PS_SPS procedure 5.3-20
referenced by

MC_CONFIRM_PROC 5.2-22
MC_SEND_DATA_PROC 5.2-38
MC_SEND_ERROR_PROC 5.2-40
PROCESS_DATA_PROC 5.1-40
PROCESS_ERROR_OR_FAILURE_RC 5.2-31
PS_VERB_ROUTER 5.0-12

PS_TO_HS_RECORD structure A-24
referenced by

DFC_SEND_FROM_PS 6.1-19
PREPARE_TO_RECEIVE_FLUSH_PROC 5.1-39

PS_TO_RM_RECORD structure A-25
referenced by

PROCESS_PS_TO_RM_RECORD 3-20
PS Usage field

in BIND 4-22
PS_VERB_ROUTER procedure 5.0-12

referenced by
GET_SEND_INDICATOR 5.2-44
MC_ALLOCATE_PROC 5.2-21
MC_CONFIRM_PROC 5.2-22
MC_CONFIRMED_PROC 5.2-23
MC_DEALLOCATE_PROC 5.2-23
MC_FLUSH_PROC 5.2-24
MC_PREPARE_TO_RECEIVE_PROC 5.2-26
MC_REQUEST_TO_SEND_PROC 5.2-37
MC_SEND_DATA_PROC 5.2-38
MC_SEND_ERROR_PROC 5.2-40

MC_TEST_PROC 5.2-28
PROCESS_DATA_INCOMPLETE 5.2-36
PROTOCOL_ERROR_PROC 5.2-47
RCVD_SVC_ERROR_PURGING 5.2-42
RCVD_SVC_ERROR_TRUNC_NO_TRUNC 5.2-41
SEND_SVC_ERROR_PURGING 5.2-45

PTF-Level Data (X'05') Product ID Sub­
field E-26

PU (physical unit> 1-3, 2-17, 2-34
peripheral 1-5
protocol boundary to LU 2-46
relationship to LU 2-17, 2-260 2-34, 2-43
subarea 1-5

PU type 1-5
corresponding to node type 1-5

purging of chains 2-10. 2-13, 6.1-1

QIU
See Queued Response indicator (QRI)

queue 2-4
See also SEND/RECEIVE process interaction

Queued Response indicator (QRII 6.2-6
use 6.1-9, 6.1-10

queuing of session initiation RUs
determination using NOTIFY(Vector Key

X'OC' I 4-14
INIT-SELF 4-9

RCB
See resource control block (RCBI

RCB_ALLOCATED_PROC procedure 5.1-44
referenced by

ALLOCATE_PROC 5.1-11
RCB_ALLOCATED structure A-32

referenced by
ALLOCATE_PROC 5.1-11
ALLOCATE_RCB_PROC 3-23
CREATE_RCB 3-36
RCB_ALLOCATED_PROC 5.1-44
TEST_FOR_FREE_FSP_SESSION 3-60

RCB_DEALLOCATED structure A-32
referenced by

PROCESS_PS_TO_RM_RECORD 3-20
RCB_ID structure 3-69

referenced by
ATTACH_PROC 3-26
COMPLETE_HS_ATTACH 3-33
CONNECT_RCB_AND_SCB 3-34
DEALLOCATION_CLEANUP_PROC 5.0-14
PS_PROTOCOL_ERROR 5.0-16
SET_RCB_AND_SCB_FIELDS 3-57

RCB_LIST_PTR structure 5.0-21
referenced by

PS 5.0-5
RCB structure A-7

referenced by
ATTACH_ERROR_PROC 5.0-10
BID_RSP_PROC 3-29
BIDDER_PROC 3-31
COMPLETE_CONFIRM_PROC 5.1-27
COMPLETE_DEALLOCATE_ABEND_PROC 5.1-28
CONFIRM_PROC 5.1-12
CONFIRMED_PROC 5.1-14
CONVERSATION_FAILURE_PROC 5.1-29

X-20 SNA Format and Protocol Reference Manual for LU Type 6.2

CREATE_RCB 3-36
DEALLOCATE_ABEND_PROC 5.1-30
DEALLOCATE_CONFIRM_PROC 5.1-31
DEALLOCATE_FLUSH_PROC 5.1-32
DEALLOCATE_PROC 5.1-14
DEALLOCATION_CLEANUP_PROC 5.0-14
DEQUEUE_FMH7_PROC 5.1-33
FIRST_SPEAKER_PROC 3-40
FLUSH_PROC 5.1-16
FREE_SESSION_PROC 3-41
FSM_CONVERSATION 5.1-59
FSM_ERROR_OR_FAILURE 5.1-61
GET_ATTRIBUTES_PROC 5.1-17
GET_END_CHAIN_FROM_HS 5.1-34
GET_SEND_INDICATOR 5.2-44
GET_SESSION_PROC 3-42
INITIALIZE_ATTACHED_RCB 5.0-17
MC_ALLOCATE_PROC 5.2-21
MC_CONFIRM_PROC 5.2-22
MC_DEALLOCATE_PROC 5.2-23
MC_POST_ON_RECEIPT_PROC 5.2-25
MC_PREPARE_TO_RECEIVE_PROC 5.2-26
MC_RECEIVE_ANO_WAIT_PROC 5.2-27
MC_SEND_DATA_PROC 5.2-38
MC_SEND_ERROR_PROC 5.2-40
MC_TEST_PROC 5.2-28
OBTAIN_SESSION_PROC 5.1-35
PERFORM_RECEIVE_PROCESSING 5.1-36
POST_AND_WAIT_PROC 5.1-37
POST_ON_RECEIPT_PROC 5.1-17
PREPARE_TO_RECEIVE_CONFIRM_PROC 5.1-38
PREPARE_TO_RECEIVE_FLUSH_PROC 5.1-39
PREPARE_TO_RECEIVE_PROC 5.1-18
PROCESS_DATA_COMPLETE 5.2-33
PROCESS_DATA_INCOMPLETE 5.2-36
PROCESS_DATA_PROC 5.1-40
PROCESS_ERROR_OR_FAILURE_RC 5.2-31
PROCESS_FMH7_PROC 5.1-42
PROCESS_MAPPER_RETURN_CODE 5.2-35
PROCESS_RM_OR_HS_TO_PS_RECORDS 5.1-43
PROTOCOL_ERROR_PROC 5.2-47
PS_CREATION_PROC 3-44
PS_INITIALIZE 5.0-6
PS_VERB_ROUTER 5.0-12
RCB_ALLOCATED_PROC 5.1-44
RCVD_svc_ERROR_PURGING 5.2-42
RCVD_SVC_ERROR_TRUNC_NO_TRUNC 5.2-41
RECEIVE_AND_WAIT_PROC 5.1-19
RECEIVE_DATA_PROCESSING 5.1-46
RECEIVE_INFO_PROC 5.2-30
RECEIVE_PIP_FIELD_FROM_HS 5.0-7
RECEIVE_RM_DR_HS_TO_PS_RECORD 5.1-47
REQUEST_TO_SEND_PROC 5.1-21
SEND_DATA_BUFFER_MANAGEMENT 5.1-47
SEND_DATA_PROC 5.1-22
SEND_DATA_TO_HS_PROC 5.1-48
SENO_ERROR_DONE_PROC 5.1-49
SEND_ERROR_IN_RECEIVE_STATE 5.1-50
SEND_ERROR_IN_SEND_STATE 5.1-51
SEND_ERROR_PROC 5.1-24
SEND_ERROR_TO_HS_PROC 5.1-52
SEND_SVC_ERROR_PURGING 5.2-45
SESSION_ACTIVATED_ALLOCATION 3-52
SESSION_DEACTIVATED_PROC 3-54
SET_FMH7_RC 5.1-53
SET_RCB_AND_SCB_FIELDS 3-57
TEST_FOR_POST_SATISFIED 5.1-54
TEST_FOR_RESOURCE_POSTED 5.0-18
TEST_PROC 5.1-26
WAIT_FOR_CONFIRMED_PROC 5.1-55
WAIT_FOR_RSP_TO_RQ_TO_SEND_PROC 5.1-57
WAIT_FOR_SEND_ERROR_DONE_PROC 5.1-58
WAIT_PROC 5.0-15

RCV_STATE_ERROR procedure 6.1-36

referenced by
DFC_RCV_FSMS 6.1-24

RCVD_SVC_ERROR_PURGING procedure 5.2-42
referenced by

MC_CONFIRM_PROC 5.2-22
MC_DEALLOCATE_PROC 5.2-23
MC_PREPARE_TO_RECEIVE_PROC 5.2-26
MC_SEND_DATA_PROC 5.2-38
MC_SEND_ERROR_PROC 5.2-40
PROCESS_ERROR_OR_FAILURE_RC 5.2-31

RCVD_svc_ERROR_TRUNC_NO_TRUNC proce-
dure 5.2-41

referenced by
PROCESS_DATA_INCOMPLETE 5.2-36
PROCESS_ERROR_OR_FAILURE_RC 5.2-31

READY TO RECEIVE (RTR) 3-10, 6.1-2, 6.1-4,
6.1-7, 6.1-9, 6.1-10, 6.1-12, 6.1-13,
6.1-15, E-13

reblock;ng 2-11, 2-16, 2-30
RECEIVE_AND_WAIT_PROC procedure 5.1-19

referenced by
PS_CONV 5.1-10

receive check
sense data included with G-1

RECEIVE_DATA_PROCESSING procedure 5.1-46
referenced by

PROCESS_DATA_PROC 5.1-40
RECEIVE DATA structure A-12

referenced by
GET_END_CHAIN_FROM_HS 5.1-34
PROCESS_RU_DATA 6.1-34

RECEIVE_ERROR structure A-12
referenced by

DEALLOCATE_FLUSH_PROC 5.1-32
PREPARE_TO_RECEIVE_CONFIRM_PROC 5.1-38
PREPARE_TO_RECEIVE_FLUSH_PROC 5.1-39
RECEIVE_AND_WAIT_PROC 5.1-19
SEND_DATA_PROC 5.1-22
SEND RSP TO RM OR PS 6.1-39

RECEIVE_INFO_PROC-pr~cedure 5.2-30
referenced bJf

MC_RECEIVE_AND_WAIT_PROC 5.2-27
MC_TEST_PROC 5.2-28

RECEIVE_PIP_FIELD_FROM_HS procedure 5.0-7
referenced by

PS_INITIALIZE 5.0-6
RECEIVE_RM_OR_HS_TO_PS_RECORD proce­
dure 5.1-47

referenced by
GET_END_CHAIN_FROM_HS 5.1-34
PROCESS_RM_OR_HS_TO_PS_RECORDS 5.1-43
WAIT_FOR_CONFIRMED_PROC 5.1-55
WAIT_FOR_RSP_TO_RQ_TO_SEND_PROC 5.1-57

RECEIVED_INFO structure A-8
receiving data 2-30
recovery

See errors and failures
recursion in PS 2-29, 2-30
remote, role of LU and TP 2-5, 2-40
reply in HDX-FF protocol

See send/receive mode, half-duplex
flip-flop (HDX-FF>

REQECHO E-13
See also REQUEST ECHO TEST

Request Commit
See sync point, commands, Request Commit

request control mode 6.2-6
See also control mode
immediate request mode 6.1-8

REQUEST ECHO IREQECHO> 4-31
REQUEST ECHO TEST (REQECHOl 4-31, E-13
request/response correlation 6.1-1, 6.1-8
request/response header !RH) 2-13, 2-16,

2-17, 2-30, D~l, D-2

Index X-21

discussion of bit usage and val-
ues 0-1-0-4

format and bit settings D-2
Format indicator (FI) H-4
relationship to verbs 2-17
session control 6.2-3

request/response units !RUs> 2-13
See also individual RUs
character-coded 4-2
field-formatted 4-2
LU-LU session initiation 4-7
LU-LU session status notification 4-7
LU-LU session termination 4-7
maintenance services 4-29
maximum size 2-9, 2-16, 2-30, 2-40, 6.2-5
session control 4-15
session services 4-7

REQUEST_TO_SEND_PROC procedure 5.1-21
referenced by

PS_CONV 5.1-10
REQUEST_TO_SEND structure A-13, A-24

referenced by
DFC_SEND_FROM_PS 6.1-19
REQUEST_TO_SENO_PROC 5.1-21
TRY_TO_RCV_SIGNAL 6.1-22

request unit !RU>
FM headers in H-4

RESET_SESSION_LIMIT_PROC procedure 5.4-34
referenced by

PS_COPR 5.4-32
RESET_SESSION_LIMIT verb 5.4-6, 5.4-20

processing by PS.COPR
all mode names 5.4-6, 5.4-27, 5.4-28,
5.4-30

parallel-session mode name 5.4-30
single-session mode name 5.4-25
SNASVCMG mode name 5.4-25

resource 2-3, 2-43
dynamic 2-40
function-shipped
local 2-4
network, LU-accessed 2-3, 2-4, 2-36,

2-40, 2-43, 5.4-1, 5.4-3, 5.4-5
control point 5.4-5
local LU 5.4-5
mode 5.4-5
partner LU 5.4-5
transaction program 5.4-5

posting 5.0-4, 5.1-7
protected 2-4, 2-37

resource control block CRCB> 5.2-4, 2-40,
3-3. 5.0-3, 5.1-3, 5.2-4

resource ID 2-6
resources manager CRM> 2-39, 3-1

function summary 2-35, 3-2
process 2-43
protocol boundaries 2-46, 2-47
protocol boundary 3-2

resources, local
See sync point, local resources

response control mode 6.2-6
See also control mode
immediate response mode 6.1-8

response correlation 2-30
response to chain

See request/response units (RUs>
responsible parameter 3-15

See also session, deactivation, responsi­
bility

negotiation by CNOS 5.4-30
RESULT_CHECK_ALLOCATE procedure 5.4-51

referenced by
SOURCE_CONVERSATION 5.4-49

RESULT_CHECK_RECEIVE_COMMAND proce-
dure 5.4-60

referenced by
TARGET_COMMAND_CONVERSATION 5.4-59

RESULT_CHECK_RECEIVE_DEALLOCATE proce­
dure 5.4-54

referenced by
SOURCE CONVERSATION 5.4-49

RESULT_CHECK=RECEIVE_REPLY procedure 5.4-53
referenced by

SOURCE CONVERSATION 5.4-49
RESULT_CHECK=RECEIVE_SEND procedure 5.4-61

referenced by
TARGET_COMMAND_CONVERSATION 5.4-59

RESULT_CHECK_SEND_COMMAND procedure 5.4-52
referenced by

SOURCE_CONVERSATION 5.4-49
RESULT_CHECK_SEND_REPLY procedure 5.4-65

referenced by
TARGET_COMMAND_CONVERSATION 5.4-59
TARGET_REPLY_CONVERSATION 5.4-64

resync service transaction program
See sync point, resynchronization

resynchronization
See sync point

return
See CALL/RETURN procedure interaction

RETURN_CODE structure 5.0-20

RH

RM

referenced by
TEST_FOR_RESOURCE_POSTED 5.0-18
WAIT_PROC 5.0-15

See request/response header !RH>

See resources manager !RM>
RM_ACTIVATE_SESSION_PROC procedure 3-45

referenced by
PROCESS_PS_TO_RM_RECORD 3-20

RM_ACTIVATE_SESSION structure A-27
referenced by

ACTIVATE_SESSION_PROC 5.4-36
RM_ACTIVATE_SESSION_PROC 3-45

RM_DEACTIVATE_SESSION_PROC procedure 3-46
referenced by

CTERM_DEACTIVATE_SESSION_PROC 3-37
PROCESS_PS_TO_RM_RECORD 3-20

RM_DEACTIVATE_SESSION structure A-27
referenced by

CTERM_DEACTIVATE_SESSION_PROC 3-37
DEACTIVATE_SESSION_PROC 5.4-37
RM_DEACTIVATE_SESSION_PROC 3-46

RM process 3-17
referenced by

ALLOCATE_PROC 5.1-11
FLUSH_PROC 5.1-16
FSM_ERROR_OR_FAILURE 5.1-61
PROCESS_RM_OR_HS_TO_PS_RECORDS 5.1-43
RECEIVE_RM_OR_HS_TO_PS_RECORD 5.1-47
WAIT_FOR_CONFIRMED_PROC 5.1-55
WAIT_FOR_RM_REPLY 5.1-56

RM_PROTOCOL_ERROR procedure 3-46
referenced by

ATTACH_PROC 3-26
BID_PROC 3-27
FSM_BIS_BIDDER 3-65
FSM_BIS_FSP 3-66
RTR_RQ_PROC 3-47
UNBIND_PROTOCOL_ERROR_PROC 3-61

RM_SESSION_ACTIVATED structure A-33
referenced by

ACTIVATE_SESSION_PROC 5.4-36
RM_ACTIVATE_SESSION_PROC 3-45
SESSION_DEACTIVATED_PROC 3-54
SUCCESSFUL_SESSION_ACTIVATION 3-59

X-22 SHA Format and Protocol Reference Manual for LU Type 6.2

UNSUCCESSFUL_SESSION_ACTIVATION 3-62
RM_TO_HS_RECORO structure A-28

referenced by
OFC_SENO_FROM_RM 6.1-20

RM_TO_lNS_RECORO structure A-30
referenced by

LNS 4-47
PROCESS_RECORO_FROM_RM 4-48

RM_TO_PS_RECORO structure A-31
referenced by

PROCESS_RM_OR_HS_TO_PS_RECORDS 5.1-43
WAIT_FOR_CONFIRHEO_PROC 5.1-55
WAIT_FOR_RH_REPLY 5.1-56

role of LU and TP 2-5
route 2-40
routing and checking logic, representation
within the formal description

RSP_TO_REQUEST_TO_SEND structure A-13
referenced by

OFC_RCV_FSMS 6.1-24
RSPCACTLUJ 4-17, E-18
RSPCBINDJ 4-25, E-19
RSPCCINITJ 4-10, E-19
RTR E-13

See also REAOY TO RECEIVE
RTR CREAOY TO RECEIVE) 6.1-15
RTR_RQ_PROC procedure 3-47

referenced by
PROCESS_HS_TO_RM_RECORD 3-18

RTR_RQ structure A-15, A-30
referenced by

FREE_SESSION_PROC 3-41
GENERATE_RM_PS_INPUTS 6.1-31
RTR_RQ_PROC 3-47

RTR_RSP_PROC procedure 3-48
referenced by

PROCESS_HS_TO_RM_RECORO 3-18
RTR RSP structure A-15, A-30

RU

referenced by
GENERATE_RM_PS_INPUTS 6.1-31
RTR_RQ_PROC 3-47
RTR_RSP_PROC 3-48
SEND_RSP_TO_RM_OR_PS 6.1-39

See request/response units CRUs)
RU parameters

implementation-dependent 4-5
installation-specified 4-6
specification of 4-5
used by LU network services 4-5

rule 1 !conditional termination)
See bracket, termination

SCB structure A-9
referenced by

ATTACH_PROC 3-26
COMPLETE_HS_ATTACH 3-33
CREATE_SCB 3-37
FREE_SESSION_PROC 3-41
PROCESS_HS_TO_RM_RECORD 3-18
SENO_OEACTIVATE_SESSIOH 3-51
SESSION_DEACTIVATEO_PROC 3-54
SET_RCB_ANO_SCB_FIELDS 3-57
SUCCESSFUL_SESSION_ACTIVATION 3-59

secondary LU ISLUJ 2-34, 4-4
See also session, activation polarity

secondary LU name
in BIND 4-24

security 2-9

SEND_ACTIVATE_SESSIOH procedure 3-48
referenced by

ACTIVATE_NEEOEO_SESSIONS 3-21
GET_SESSION_PROC 3-42
RM_ACTIVATE_SESSION_PROC 3-45

SEND_BIS procedure 3-49
referenced by

OEACTIVATE_FREE_SESSIONS 3-38
FREE_SESSION_PROC 3-41
RTR_RQ_PROC 3-47
RTR RSP PROC 3-48

SEND_BIS_REPLY procedure 3-49
referenced by

CHECK_FOR_BIS_REPLY 3-36
SEND BIS 3-49

SEND_BIS_RQ procedure 3-50
referenced by

BIS_RACE_LOSER 3-32
RM_OEACTIVATE_SESSION_PROC 3-46
SENO BIS 3-49

SEND_BIU procedure 6.1-37
referenced by

PROCESS_SEND_PARM 6.1-35
SEND BUFFER structure 5.2-48

r;ferenced by
MC_SEND_DATA_PROC 5.2-38

send check
sense data included with G-1

SEND_DATA_BUFFER_MANAGEMENT procedure 5.1-47
referenced by

ATTACH_ERROR_PROC 5.0-10
COMPLETE_DEALLOCATE_ABEND_PROC 5.1-28
SEND_DATA_PROC 5.1-22
SEND ERROR DONE PROC 5.1-49

SEND_DATA_PROC proced~re 5.1-22
referenced by

PS_CONV 5.1-10
SEND_DATA_RECORO structure A-24

referenced by
COHPLETE_CONFIRM_PROC 5.1-27
COMPLETE_OEALLOCATE_ABEND_PROC 5.1-28
OEALLOCATE_CONFIRM_PROC 5.1-31
OEALLOCATE_FLUSH_PROC 5.1-32
OFC_SEND_FROM_PS 6.1-19
PREPARE_TO_RECEIVE_CONFIRM_PROC 5.1-38
RECEIVE_AND_WAIT_PROC 5.1-19
SENO DATA TO HS PROC 5.1-48

SEND_DATA_TO_HS=PROC procedure 5.1-48
referenced by

ATTACH_ERROR_PROC 5.0-10
COMPLETE_CONFIRM_PROC 5.1-27
COHPLETE_DEALLOCATE_ABEND_PROC 5.1-28
CONFIRM_PROC 5.1-12
DEALLOCATE_CONFIRM_PROC 5.1-31
DEALLOCATE_FLUSH_PROC 5.1-32
FLUSH_PROC 5.1-16
FSM_CONVERSATION 5.1-59
PREPARE_TO_RECEIVE_CONFIRM_PROC 5.1-38
PREPARE_TO_RECEIVE_FLUSH_PROC 5.1-39
RCB_ALLOCATED_PROC 5.1-44
RECEIVE_AND_WAIT_PROC 5.1-19
SEND_DATA_BUFFER_MANAGEMENT 5.1-47
SEND_DATA_PROC 5.1-22
SEND_ERROR_DONE_PROC 5.1-49
SEND_ERROR_IN_SEND_STATE 5.1-51

SEND_DEACTIVATE_SESSION procedure 3-51
referenced by

BID_RSP_PROC 3-29
DEACTIVATE_FREE_SESSIONS 3-38
DEACTIVATE_PENDING_SESSIONS 3-38
FSM_BIS_BIDDER 3-65
FSH_BIS_FSP 3-66
RM_DEACTIVATE_SESSION_PROC 3-46
RM_PROTOCOL_ERROR 3-46

Index X-23

SEND_ERROR_DONE.PROC. procedure 5.1-49
referenced by ·

SEND_ERROR_IN_SEND_STATE 5.1-51
SEND_ERROR_PROC 5.1-24
WAIT_FOR_SEND_ERROR_DONE_PROC 5.1-58

SEND_ERROR_IN_RECEIVE~STATE procedure 5.1-50
referenced by

SENO_ERROR_PROC 5.1-24
SEND_ERROR_IN_SEND_STATE procedure 5.1-51

referenced by
SEND_ERROR_PROC 5.1-24

SEND_ERROR_PROC procedure 5.1-24
referenced by

PS_CONV 5.1-10
SEND_ERROR structure A-24

referenced by
DEALLOCATE_ABEND_PROC 5.1-30
DFC_SEND_FROM_PS 6.1-19
SEND_ERROR_IN_RECEIVE_STATE 5.1-50
SEND_ERROR_PROC 5.1-24
SEND_ERROR_TO_HS_PROC 5.1-52

SEND_ERROR_TO_HS_PROC procedure 5.1-52
referenced by

ATTACH_ERROR_PROC 5.0-10
SEND_NEG_RSP_OR_LOG procedure 6.1-37

referenced by
DFC_RCV 6.1-23
TC.RCV 6.2-15

SEND_PARM structure A-35
referenced by

PROCESS_SENO_PARM 6.1-35
send/receive concurrency 2-6
send/receive mode

full-duplex CFDX) 6.1-16
half-duplex flip-flop CHDX-FFJ 6.1-1,
6.1-3, 6.1-10

SEND/RECEIVE process interaction 2-40
send/receive state of conversation 2-6,

2-29, 2-32, 2-33
See also half-duplex flip-flop
send/receive mode

SEND_RSP_BIU procedure 6.1-38
referenced by

DFC_RCV 6.1-23
DFC_RCV_FSMS 6.1-24
DFC_SEND_FROM_PS 6.1-19
GENERATE_RM_PS_INPUTS 6.1-31

SEND_RSP_TO_RM_OR~PS procedure 6.1-39
referenced by

DFC_RCV_FSMS 6.1-24
SEND_SVC_ERROR_PURGING procedure 5.2-45

referenced by
PROCESS_DATA_COMPLETE 5.2-33
PROCESS_MAPPER_RETURN_CODE 5.2-35

sending data 2-29
sense code

See sense data
sense-code specific information G-1
SENSE_CODE structure 3-70

referenced by
RM_PROTOCOL_ERROR 3-46

sense data G-1
format of G-1
in FMH-7 2-18
sense code

category X'OO' (user sense data
only> G-1

category X'08' (request reject) G-1,
G-1

category X'lO' (request error) G-5,
G-1

category X'20' (state error) G-7, G-1
category X'40' CRH usage error) G-7,

G-1

category X'80' Cpath error> G-8, G-1
modifier G-1
modifier value of X'OO' 6-1

sense-code specific information 6-1
user-defined data G-1

SENSE_DATA structure 5.0-22
referenced by

ATTACH_ERROR_PROC 5.0-10
PS_ATTACH_CHECK 5 .• 0-8
PS_INITIALIZE 5.0-6
PS_PROTOCOL_ERROR 5.0-16

sequence numbers and IDs
use in data flow control 6.1-4

sequence numbers, TH 2-13, 2-30, 6.2-5
checking 6.2-1
expedited flow 6.2-5
identifiers 6.2-5
initialization 6.2-20 6.2-5
normal flow 6.2-5
TC 6.2-4
wrapping 6.2-5

service component
service transaction program 2-3, 2-35, 2-36

See also transaction program
CNOS 2-3
DIA 2-3
resync CX'06F2'J

See sync point, resynchronization
resynchronization 2-3
SNADS 2-3, 2-7

SESSEND E-13
See also SESSION ENDED

session 2-1, 2-3
See also CP-LU session
activation 2-8, 2-33, 2-34, 2-36, 2-43,

2-44. 5.4-4. 5.4-8
CP-LU 4-2, 4-17
LU-LU 4-3, 4-19
newly active session 2-33
relation to PS.COPR 5.4-8

activation polarity 2-8
allocation to conversation 2-7, 2-33, 3-4

session selection 2-8, 2-33, 3-5
contention polarity 2-8, 2-33, 5.4-3,
5.4-8

See also session limits, minimum con­
tention winner

processing by PS.COPR--mode name
SNASVCMG session 5.4-25

processing by PS.COPR--single ses­
sion 5.4-25

cryptography 4-10
See als.o cryptography key, session

deactivation 2-8, 2-30, 2-34, 2-36, 2-43,
5.4-ct, 5.4-8

CP-LU 4-2, 4-19
LU-LU 4•3, 4-28
operator controlled 2-34
relation to PS.COPR 5.4-8, 5.4-25
responsibility 5.4-5, 5.4-8, 5.4-210
5.4-28

specific session 2-34
identification 5.4-3

See also identification of session
initiation 2-8, 2-17, 2-33, 5.4-4
initiation, LU-LU 4-3

failure notification using NOTI­
FYCVector Key X'03') 4-14

key 4-5
content 4-5

LU-LU
activation 3-13

multiplicity 2-7
parallel 2-1, 2-7, 5.4-3, 5.4-20

X-24 SNA Format and P~otocol Reference Manual for LU Type 6.2

shutdown 2-8, 2-34, 5.4-4, 5.4-8
single 2-7, 5.4-3, 5.4-20
state 2-30
termination 2-8, 5.4-4
termination~ LU-LU 4-3

failure notification using NOTI­
FY<Vector Key X'03') 4-14

type, for termination
implied by CLEANUP 4-12
specified in CTERM 4-12
specified in TERM-SELF 4-12

SESSION_ACTIVATED_ALLOCATION procedure 3-52
referenced by

SUCCESSFUL_SESSION_ACTIVATION 3-59
SESSION_ACTIVATED_PROC procedure 3-53

referenced by
PROCESS_LNS_TO_RM_RECORD 3-19

SESSION_ACTIVATED structure A-20
referenced by

BUILD_AND_SEND_SESS_ACTIVATED 4-68
SESSION_ACTIVATED_PROC 3-53

SESSION_ACTIVATION_POLARITY procedure 3-53
referenced by

ACTIVATE_NEEDED_SESSIONS 3-21
GET_SESSION_PROC 3-42
RM_ACTIVATE_SESSION_PROC 3-45

SESSION_ALLOCATED structure A-33
referenced by

BID_RSP_PROC 3-29
CHANGE_SESSIONS_PROC 3-35
FIRST_SPEAKER_PROC 3-40
GET_SESSION_PROC 3-42
OBTAIN_SESSION_PROC 5.1-35
SEND_DEACTIVATE_SESSION 3-51
SESSION_ACTIVATED_ALLOCATION 3-52
SUCCESSFUL_SESSION_ACTIVATION 3-59
UNSUCCESSFUL_SESSION_ACTIVATION 3-62

session control block (SCBJ 3-3
session control RUs 2-17, 2-34, 2-43

ACTLU 4-17
BIND 4-19
CRV 6.2-2, 6.2-3
DACTLU 4-19
RH 6.2-3
RSP(ACTLU) 4-17
RSPIBINDJ 4-25
TH 6.2-3
UNBIND 4-28

session counts 5.4-4, 5.4-8
See also session limits
relationship to CNOS 5.4-6, 5.4-28
termination count 3-15, 5.4-5, 5.4-8

session cryptography 2-9, 2-30, 2-33, 2-40
key 2-9, 2-33
session seed 2-9
verification 2-34

SESSION_DEACTIVATED_PROC procedure 3-54
referenced by

PROCESS_LNS_TO_RM_RECORD 3-19
SEND_DEACTIVATE_SESSION 3-51

SESSION_DEACTIVATED structure A-21
referenced by

BUILD_AND_SEND_SESS_DEACTIVATED 4-69
SEND_DEACTIVATE_SESSION 3-51
SESSION_DEACTIVATED_PROC 3-54

SESSION_DEACTIVATION_POLARITY procedure 3-56
referenced by

BIS_RACE_LOSER 3-32
DEACTIVATE_FREE_SESSIONS 3-38
OEACTIVATE_PENDING_SESSIONS 3-38
SHOULD_SEND_BIS 3-58

SESSION ENDED (SESSENDJ 4-13, E-13
SESSION_INFORMATION structure A-35

referenced by

CREATE_SCB 3-37
SUCCESSFUL_SESSION_ACTIVATION 3-59

session initiation RUs 4-7
BINDF 4-11
CINIT 4-9
INIT-SELF 4-9
RSP(CINIT> 4-10
SESSST 4-11

Session Instance Identifier Structured Data
Subfield E-16

Session Key
Network Address Pair E-23
Network Name Pair E-23
Network-Qualified Address Pair E-23
URC E-23

Session Keys
table of E-23

session-level pacing 2-9, 2-30, 6.2-1, 6.2-5
deadlock 6.2-6
FSM_PAC_RQ_RCV 6.2-21
FSM_PAC~RQ_SEND 6.2-20
IPR 6.2-6
pacing count 6.2-6
pacing queue 6.2-6
parameter set up 6.2-2
PI 6.2-5, 6.2-6
Queued Response indicator IQRIJ 6.2-6
response 2-9, 2-30
stages 6.2-5
window 2-9, 2-30
window size 2-3, 2-9, 2-40, 6.2-5

SESSION_LIMIT_DATA_LOCK_MANAGER proce-
dure 5.4-66

referenced by
PROCESS_SESSION_LIMIT_PROC 5.4-57
SOURCE_SESSION_LIMIT_PROC 5.4-45

session limits 2-8, 3-13, 3-14, 5.4-4, 5.4-8
automatic activation 2-8, 2-34, 3-14,

3-15, 5.4-4, 5.4-8
initialization 2-8, 2-33, 2-36, 2-43,
5.4-4

LU-mode 2-8, 5.4-4, 5.4-8
minimum contention winner 2-8, 3-14,
5.4-4. 5.4-8, 5.4-21, 5.4-25

negotiation by CNOS 5.4-7, 5.4-28
reset 2-8, 2-34, 2-43, 5.4-4
total LU-LU 2-8, 5.4-4

session outage 3-16
See also errors and failures

session outage notification ISON) 2-9, 2-34,
4-4

See also errors, conversation failure
CNOS recovery 5.4-20

See also error recovery, CNOS, conver­
sation failure

session pool 2-7
See also session, allocation to conversa­
tion

SESSION_ROUTE_INOP structure A-23
referenced by

PROCESS_RECORD_FROM_NNM 4-50
PROCESS_SESSION_ROUTE_INOP 4-89

session seed 6.2-2
session services capabilities

conveyed in NOTIFYIVector Key X'OC') 4-14
conveyed in RSPIACTLU) 4-18

session services RUs 2-17, 2-33, 2-40, 4-7,
4-15

BINDF 4-11
CINIT 4-9
CLEANUP 4-12
CTERM 4-12
for reporting status 4-7
for session initiation 4-7

Index X-25

for sess;on term;nat;on 4-7
INIT-SEL:F 4-9
NOTIFY 4-14
RSPCCINIT> 4-10
SESSEND 4-13
SESSST 4-11
TERM-SELF 4-11
UNBINDF 4-13

SESSION STARTED CSESSST> 4-11, E-13
session status notificat;on RUs 4-7

NOTIFY 4-14
session termination RUs 4-7

CLEANUP 4-12
CTERM 4-12
SESSEND 4-13
TERM-SELF 4-11
UNBINDF 4-13

SESSION_TYPE structure 4-99
referenced by

BIND_RQ_STATE_ERROR 4-52
CINIT_RQ_STATE_ERROR 4-72

SESSST E-13
See also SESSION STARTED

SET_FMH7_RC procedure 5.1-53
referenced by

PROCESS_FMH7_PROC 5.1-42
SET_RCB_AND_SCB_FIELDS procedure 3-57

referenced by
BID_RSP_PROC 3-29
FIRST_SPEAKER_PROC 3-40
SESSION_ACTIVATED_ALLOCATION 3-52
TEST_FOR_FREE_FSP_SESSION 3-60

sharing sessions
See session, allocation to conversation

SHOULD_SEND_BIS procedure 3-58
referenced by

FREE_SESSION_PROC 3-41
RTR_RQ_PROC 3-47
RTR_RSP_PROC 3-48

shutdown of LU 2-43
shutdown of sessions

See session, shutdown
SIG E-14

See also SIGNAL
SIG (Signal RU> 2-23
SIG CSIGNAL> 6.1-15
SIGNAL (SIG> 6.1-2, 6.1-4, 6.1-5, 6.1-6,
6.1-7, 6.1-12, 6.1-13, 6.1-15, E-14

single session
See session, single

single session LU 2-7
See also session, single

SLU
See secondary LU CSLU>

SLU name
in BIND 4-24

SHA-defined mode name for CNOS
CSNASVCMG> 2-43, 5.4-5, 5.4-21, 5.4-27

SNA Distribution Services (SHADS) 2-7, 2-36
SNA network, definition of 1-3
SNA node 1-3, 1-4

See also node
SNA product node 1-3, 1-4

See also node
SHADS

See SNA Distribution Services CSNADS>
SNASVCMG

See SHA-defined mode name for CNOS
CSNASVCMG)

SNASVCMG_VERB_PARAMETER~CHECK proce­
dure 5.4-42

referenced by
LOCAL_SESSION_LIMIT_PROC 5.4-40

SNF structure 6.0-6

Software Product Version and Release Level
Identifier CX'03') Product ID Subfield E-26

SON
See session outage notification (SON)

SOURCE_CONVERSATION_CONTROL procedure 5.4-48
referenced by

SOURCE_SESSION_LIMIT_PROC 5.4-45
SOURCE_CONVERSATION procedure 5.4-49

referenced by
SOURCE_CONVERSATION_CONTROL 5.4-48

SOURCE_SESSION_LIMIT_PROC procedure 5.4-45
referenced by

CHANGE_SESSION_LIMIT_PROC 5.4-35
INITIALIZE_SESSION_LIMIT_PROC 5.4-33
RESET_SESSION_LIMIT_PROC 5.4-34

source, role of TP and LU 2-5, 5.4-3
space IX'40') characters

trailing
in LU name comparison 5.4-19

SSCP (system services control point> 1-3,
4-2

SSCP-LU Session Capabilities Control Vec-
tor E-20

SSCP-mediated sessions 4-2
startup of LU 2-43
STATE_ERROR_SSCP_LU procedure 6.1-40

referenced by
DFC_RCV 6.1-23

state name N-1
state transition N-1
state-transition matrix N-1

actl on codes
calling result N-1

calling N-1
input signal N-1
next-state indicator N-1

initialization N-1
inputs to N-1
output actions N-1
state name N-1
state transitions N-1

state, FSM N-1
statements

CALL
finite-state machines N-1

stray responses 6.1-5
STRAY_RSP procedure 6.1-41

referenced by
DFC_RCV 6.1-23

stray SIGNALS 6.1-5
Structured Data Subfield

Fully Qualified PLU Network Name E-16
Fully Qualified SLU Network Name E-16
Mode Name E-16
Session Instance Identifier E-16
Unformatted Data E-16

structured fields I-1
See also general data stream

subarea 1-4
subarea LU 1-5
subarea node 1-4

See also node
subarea node to peripheral node communication

See peripheral node to subarea node commu­
nication

subarea node to subarea node communi­
cation 2-1

See also SSCP-mediated sessions
subarea PU 1-5
sublayers of PS 2-4
SUCCESSFUL_SESSION_ACTIVATION procedure 3-59

referenced by
ACTIVATE_SESSION_RSP_PROC. 3-22
SESSION_ACTIVATED_PROC 3-53

X-26 SNA Format and Protocol Reference Manual for LU Type 6.2

symbol string
lengths H-2
lengths chart H-2
Type-A E-1
Type-AE E-1
Type-G E-1
Type-GR E-1
Type-USS E-1
types H-1

sync point 2-4, 2-10, 2-11, 2-37, 5.3-1
back-out 2-37, 2-39
commands

Backed Out 5.3-3
Committed 5.3-2, 5.3-8
Forget 5.3-2, 5.3-8
Prepare 5.3-2, 5.3-8
Request Commit 5.3-2, 5.3-8

commitment 2-37, 2-39
conversation resources 5.3-6

conversation resource protection manag-
er 5.3-6

data base update consistency 2-37
errors during sync point 5.3-13
failures and recovery

relationships among 5.3-2
flows

general case 5.3-9
last resource optimization 5.3-5,
5. 3-8. 5.3-11

no changes optimization 5.3-5, 5.3-12
function shipping 5.3-7
heuristic decision 5.3-11, 5.3-13, 5.3-14

and lock manager 5.3-13
local resources 5.3-5, 5.3-6
log 5.3-3, 5.3-6

See also log manager
forcing 5.3-6

logging 2-37, 2-39
logical unit of work 2-37
manager 5.3-2
phases

See also sync point, commands
classification 5.3-8

presentation services header
See presentation services CPS) headers

protection manager 2-39, 5.3-5, 5.3-13
protocol 2-39
resynchronization 2-39, 5.3-13, 5.3-15
roles

agent 5.3-2
cascaded agent 5.3-2
initiator 5.3-2

structure 2-37
synchronization point 2-37
unit of work

See sync point, logical unit of work
sync point protocols

RH bit settings D-4
synchronized unit of work

See sync point, logical unit of work
synchronous transfer 2-7, 2-36
SYNC PT

See sync point
system services control point CSSCP)

See SSCP (system services control point)

!ARGET_COMMAND_cm,IVERSAT!ON pro~~llre 5,4-59
referenced by

PROCESS_SESSION_LIMIT_PROC 5.4-57
TARGET_REPLY_CONVERSATION procedure 5.4-64

referenced by
PROCESS SESSION LIMIT PROC 5.4-57

target, role of TP and LU 2-5, 5.4-3
TC

See transmission control CTC)
TC.BUILD_CRV procedure 6.2-11

referenced by
TC.EXCHANGE_CRV 6.2-10

TC.DEQUEUE_PAC procedure 6.2-18
TC.EXCHANGE_CRV procedure 6.2-10

referenced by
TC.INITIALIZE 6.2-8

TC.FORMAT_CHECK procedure 6.2-11
referenced by

TC.EXCHANGE_CRV 6.2-10
TC.INITIALIZE 6.2-2
TC.INITIALIZE procedure 6.2-8

referenced by
HS 6.0-3

TC.RCV_CHECKS procedure 6.2-16
referenced by

TC.RCV 6.2-15
TC.RCV_NORM_RQ procedure 6.2-17

referenced by
TC.RCV 6.2-15

TC.RCV procedure 6.2-15
referenced by

PROCESS_CP_LU_SESSION 6.0-5
PROCESS_LU_LU_SESSION 6.0-4

TC.SEND procedure 6.2-13
referenced by

DFC_SEND_FROM_LNS 6.1-22
DFC_SEND_FSMS 6.1-25
SEND_NEG_RSP_OR_LOG 6.1-37

TC.TRY_TO_ENCIPHER procedure 6.2-14
referenced by

TC.SEND 6.2-13
TC.TRY_TO_SEND_IPR 6.2-4, 6.2-19
TC.TRY_TO_SEND_IPR procedure 6.2-19

referenced by
PROCESS_LU_LU_SESSION 6.0-4

TCB
See transaction control block CTCB)

TCB_ID structure 3-69
referenced by

ATTACH_PROC 3-26
COMPLETE_HS_ATTACH 3-33
PS 5.0-5

TCB_LIST_PTR structure 5.0-21
referenced by

PS 5.0-5
TCB structure A-10

referenced by
DEALLOCATION_CLEANUP_PROC 5.0-14
PS 5.0-5

TCCB

PS_ATTACH_CHECK 5.0-8
PS_CREATION_PROC 3-44
PS_INITIALIZE 5.0-6
PS_VERB_ROUTER 5.0-12
WAIT_PROC 5.0-15

See transmission control control block
(TCCB>

TERM-SELF E-14
See also TERMINATE-SELF

TERM-SELF Format 1

Index X-27

See TERMINATE-SELF
terminal 2-1, 2-4

See also peripheral node to subarea node
communication

See also resource, local
TERMINATE_PS structure A-27

referenced by
DEALLOCATION_CLEANUP_PROC 5.0-14

TERMINATE-SELF CTERM-SELFl 4-11, E-14
terminating LU CTLU> 4-4
termination count

See session counts, termination count
termination rules, bracket

See bracket, termination
TEST_FOR_FREE_FSP_SESSION procedure 3-60

referenced by
ALLOCATE_RCB_PROC 3-23

TEST_FOR_POST_SATISFIED procedure 5.1-54
referenced by

POST_AND_WAIT_PROC 5.1-37
PROCESS RM OR HS TO PS RECORDS 5.1-43

TEST_FOR_RESOURCE_POSTED procedure 5.0-18
referenced by

WAIT_PROC 5.0-15
TEST_PROC procedure 5.1-26

referenced by
MC_TEST_PROC 5.2-28
TEST_FOR_RESOURCE_POSTED 5.0-18

TEST structure 5.1-63

TH

referenced by
TEST_PROC 5.1-26

See transmission header CTH>
TLU

See terminating LU CTLU>
TP

See transaction program instance
TP-PS process

TPN

See presentation services CPS), process
See transaction program, process

See transaction program name CTPN>
transaction control block ITCB) 3-3, 5.0-3,
5.1-3, 5.2-4

TRANSACTION_PGM_VERB structure
processing by PS.COPR 5.4-24, 5.4-28

transaction program 2-1, 2-4, 2-40
See also transaction program code
See also transaction program instance
invoking initial Clocal> 2-2, 2-32, 2-44,
3-3

invoking remote 2-32, 3-3, 3-9
process 2-40, 2-44
protocol boundary 2-4, 2-26

See also presentation services for con­
versations (PS.COIN), protocol bounda­
ries

See also presentation services for
mapped conversations CPS.MC>, protocol
boundaries

See also presentation services for the
control operator CPS.COPR), protocol
boundaries

terminating 2-32, 5.0-4
transaction program code 2-32

See also transaction program
transaction program instance 2-40

See also transaction program
identifying 2-6

transaction program name CTPN> 2-5, 2-32,
2-36, 2-40, H-14

TRANSACTION_PROGRAM structure 2-40, 5.1-1,
A-4

referenced by

PS_ATTACH_CHECK 5.0-8
transaction program verbs 2-3, 2-4, 2-29,
2-46, 5.1-4

See also basic conversation
See also presentation services for mapped
conversations CPS.MC>, protocol bounda­
ries

See also presentation services for the
control operator CPS.COPR>, protocol
boundaries

See also transaction program, protocol
boundary

examples 2-17
GET_TYPE verb 5.0-4
issued by LU 2-29, 2-32, 2-35, 2-36
parameter checks 5.1-6
POST_ON_RECEIPT 5.1-7
REQUEST_TO_SEND 5.1-7
SENO_ERROR 5.1-7
state 5.1-6
WAIT verb 5.0-4

transaction services 2-35
See also transaction program, protocol

boundary
transmission control CTC)

CRV 6.2-2
initial chaining value 6.2-2, 6.2-3
session cryptography key 6.2-2
session seed 6.2-2
test value 6.2-2

cryptography 6.2-1, 6.2-4, 6.2-5
block chaining 6.2-5
Data Encryption Standard CDES> 6.2-5
enciphering/deciphering 6.2-1, 6.2-4,
6.2-5

initial chaining value 6.2-2, 6.2-3
session cryptography key 6.2-5
session seed 6.2-2

data traffic protocols 6.2-1
deadlock 6.2-6
deciphering 6.2-1, 6.2-4
enciphering 6.2-1, 6.2-4
expedited flow 6.2-1, 6.2-4
HS-initiated procedures 6.2-4
initial chaining value 6.2-2, 6.2-3
Isolated Pacing Response !IPR> 6.2-5,
6.2-6

normal flow 6.2-4
pacing

pacing queue 6.2-6
Queued Response indicator CQRI> 6.2-6
session-level 6.2-1

QRI 6.2-6
Queued Response indicator CQRI> 6.2-6
request control mode 6.2-6
sequence numbers, TH 6.2-4, 6.2-5

assignment 6.2-5
checking 6.2-1
expedited flow 6.2-5
identifiers 6.2-5
initialization 6.2-5
normal flow 6.2-5
wrapping 6.2-5

session cryptography key 6.2-2
session-level pacing 6.2-1, 6.2-4, 6.2-5,
6.2-20, 6.2-21

FSM_PAC_RQ_RCV 6.2-21
FSM_PAC_RQ_SEND 6.2-20
IPR 6.2-6
pacing count 6.2-6
PI 6.2-5, 6.2-6
stages 6.2-5
window size 6.2-5

session seed 6.2-2, 6.2-5

X-28 SNA Format and Protocol Reference Manual for LU Type 6.2

structure
;nterrelat;on of TC.SEND and
TC.RCV 6.2-4

relat;on to the half-sess;on 6.2-1
TC ;n;t;a1;zation calling tree 6.2-7
TC RCV calling tree 6.2-7
TC SEND calling tree 6.2-7

TC.RCV 6.2-4
TC.SEND 6.2-4
transmission header (TH) 6.2-3
TS profile 1 6.2-5
TS profile 7 6.2-5

transmission control calling trees 6.2-7
TC initialization calling tree 6.2-7
TC RCV calling tree 6.2-7
TC SEND calling tree 6.2-7

transmission control control block
tTCCB> 6.2-5

transmission header CTH> 2-13, 2-16, 2-30
session control 6.2-3

transmiss;on services CTS> profiles F-5
transport characterist;cs 2-3

See also mode, LU
tree

See logical unit of work CLUW), distrib­
uted

truncation of logical records 2-10, 2-12
TRY_TO_RCV_SIGNAL procedure 6.1-22

referenced by
PROCESS_LU_LU_SESSION 6.0-4

TS (transmission services>
profiles F-5
Usage field F-5

TS <transmission services> profile
in BIND 4-20

TS profile
See profiles

TS prof;le 1 6.2-5
TS prof;le 7 6.2-5
TS Usage Held

;n BIND 4-21
two-way alternate send/receive protocol

See half-duplex fl;p-flop send/receive
mode

Type-A symbol string E-1
Type-AE symbol string E-1
Type-G symbol string E-1
Type-GR symbol string E-1
type of session termination

implied by CLEANUP 4-12
specified in CTERM 4-12
specified in TERM-SELF 4-12

Type-USS symbol string E-1
type, node 1-3

See also node
type, PU 1-5

See also PU type

UNBIND 2-13, 2-34, E-14
See also UNBIND SESSION
session failure 2-30

UNBIND FAILURE CUNBINDF> 4-13, E-15
UNBIND_PROTOCOL_ERROR_PROC procedure · 3-61

referenced by
PROCESS_PS_TO_RM_RECORD 3-20

UNBIND_PROTOCOL_ERROR structure A-28
referenced by

PS_PROTOCOL_ERROR 5.0-16
UNBIND_PROTOCOL_ERROR_PROC 3-61

UNBIND_RQ_RCV_RECORD structure A-23
referenced by

BUILD_AND_SEND_UNBIND_RSP 4-71
FSM_STATUS 4-93
PROCESS_RECORD_FROM_NNM 4-50
PROCESS_UNBIND_RQ 4-90

UNBIND_RQ_SEND_RECORD structure A-19
referenced by

BUILD_AND_SEND_UNBIND_RQ 4-71
UNBIND_RSP_RCV_RECORD structure A-23

referenced by
FSM_STATUS 4-93
PROCESS_RECORD_FROM_NNM 4-50
PROCESS_UNBIND_RSP 4-91

UNBIND_RSP_SEND_RECORD structure A-19
referenced by

BUILD_AND_SEND_UNBIND_RSP 4-71
UNBIND SESSION !UNBIND> 4-28, E-14
UNBIND without CTERM 4-12
UNBINDF E-15

See also UNBIND FAILURE
undefined protocol machine CUPM>, definition
of 1-6

underscores, separating multiple terms of a
name phrase 1-5

Unformatted Data Structured D.ata Sub­
field E-16

uninterpreted LU name 4-5
See also LU name
identity transformation of 4-5
in CINIT 4-10
in INIT-SELF ~-9
interpretation of 4-5

unit of work
See sync point, logical unit of work

UNSUCCESSFUL_SESSION_ACTIVATION proce­
dure 3-62

referenced by
ACTIVATE_SESSION_RSP_PROC 3-22

UPDATE_FSMS procedure 6.1-42
referenced by

DFC_RCV_FSMS 6.1-24
GENERATE_RM_PS_INPUTS 6.1-31

UPM (undefined protocol machine), definition
of 1-6

UPM_ATTACH_LOG procedure 5.0-19
referenced by

ATTACH_ERROR_PROC 5.0-10
UPM_EXECUTE procedure 5.0-18

referenced by
PS_INITIAL.IZE 5.0-6

UPM_MAPPER procedure 5.2-46
referenced by

MC_CONFIRM_PROC 5.2-22
MC_DEALLOCATE_PROC 5.2-23
MC_PREPARE_TO_RECEIVE_PROC 5.2-26
MC_SEND_DATA_PROC 5.2-38
MC_SEND_ERROR_PROC 5.2-40
PROCESS_DATA_COMPLETE 5.2-33
PROCESS_ERROR_OR_FAILURE_RC 5.2-31
RCVD_svc_ERROR_PURGING 5.2-42
RCVD_SVC_ERROR_TRUNC_NO_TRUNC 5.2-41
RECEIVE_INFO_PROC 5.2-30
SEND_SVC_ERROR_PURGING 5.2-45

UPM_RETURN_PROCESSING procedure 5.0-19
referenced by

DEALLOCATION_CLEANUP_PROC 5.0-14
URC

See user request correlation (URC>
URC Session Key E-23 ·
user-application node 1-3, 1-4

See also node
User Data field

in BIND 4-23

Index X l9

user ID 2-9
user of LU 2-1
user request correlation (lJRC) 4-5

in BIND 4-24
in CINIT 4-10
in INIT-SELF 4-9
in TERM-SELF 4-11

VERB_PARAMETER_CHECK procedure 5.4-47
referenced by i·

SOURCE SESSION LIMIT PROC 5.4-45
VR-ER Mapping Data C ntrol-Vector E-22

WAIT_FOR_CONFIRMED_PROC procedure 5.1-55
referenced by

COMPLETE_CONFIRM_PROC 5.1-27
DEALLOCATE_CONFIRM_PROC 5.1-31
PREPARE_TO_RECEIVE_CONFIRM_PROC 5.1-38

WAIT_FOR_RM_REPLY procedure 5.1-56
referenced by ,

ALLOCATE_PROC 5.1-11
OBTAIN_SESSION_PROC 5.1-35

WAIT_FOR_RSP_TO_RQ_TO_SEND_PROC proce­
dure 5.1-57

referenced by

REQUEST_TO_SEND_PROC 5.1-21
WAIT_FOR_SEND_ERROR_DONE_PROC proce­
dure 5.1-58

referenced by
DEALLOCATE_ABEND_PROC 5.1-30
SEND_ERROR_IN_RECEIVE_STATE 5.1-50

WAIT_PROC procedure 5.0-15
referenced by

PS_VERB_ROUTER 5.0-12
window size

session-level pacing 6.2-5
winner, contention

'See bracket, first speaker
workstation

See peripheral node to peripheral node
communication

See peripheral node to subarea node commu­
nication

See resource, local

X06Fl procedure 5.4-56

YIELD SESSION structure A-30
referenced by

SUCCESSFUL_SESSION_ACTIVATION 3-59

X-30 SNA Format and Protocol Reference Manual for LU Type 6.2

Systems Network Architecture
Format and Protocol
Reference Manual:
Architecture Logic for LU Type 6.2

Order No. SC30-3269-2

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. You may use this form to communicate your
comments about this publication, its organization, or subject matter, with the understanding
that IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you;

Note: Copies of IBM publications are not stocked at the location to which this form is
addressed. Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

What is your occupation?
~~~~~~~~~~~~~~~~~~~~~~~~~ 

Number of latest Newsletter associated with this publication: 
~~~~~~~~~~~~~~~ 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you
may mail directly to the address in the Edition Notice on the back of the title page.)

SC30-3269-2

Reader's Comment Form

Fold and tape Please Do Not Staple Fold and tapa

... ·

111111

BUSINESS REPLY MAIL

Fold and tape_

--... -- .---.-. ... - _ - _. _..._ - -.. _......,_ - -.. -----

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Dept. E01
P.O. Box 12195
Research Triangle Park, N.C. 27709-2195

Please Do Not Staple

=~= ~ =®

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

Systems Network Architecture
Format and Protocol
Reference Manual:
Architecture Logic for LU Type 6.2

Order No. SC30-3269-2

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. You may use this form to communicate your
comments about this publication, its organization, or subject matter, with the understanding
that IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

Note: Copies of IBM publications are not stocked at the location to which this form is
addressed. Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

What is your occupation?
~~~~~~~~~~~~~~~~~~~~~~~~~ 

Number of latest Newsletter associated with this publication: 
~~~~~~~~~~~~~~~ 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you
may mail directly to the address in the Edition Notice on the back of the title page.)

SC30-3269-2

Reader's Comment Form

Fold and tape Please Do Not Staple

111111

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Dept. E01
P.O. Box 12195
Research Triangle Park, N.C. 27709-2195

Fold and tape Please Do Not Staple

--... --
----~ ---- ----..-- _.. -. - -... -~-- -- -~-=="= ~ =®

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

Fold and tape

APPENDIX !..:. TERMINOLOGY: ACRQNYNS A!::!Q ABBREVIATION$

ACT activate

ACTLU ACTIVATE LOGICAL UNIT

API application programming interface

ASCII

BB

BBI

American Standard Code for Informa­
tion Interchunge

Begin Bracket

Begin Bracket indicator

BC Begin Chain

BCI Begin Chain indicator

BETB between brackets

BIND BIND SESSION

BINDF BIND FAILURE

BIS BRACKET INITIATION STOPPED

BIU basic information 1.r1it

CD Change Direction

CDI Change Direction indicator

CEB Conditional End Bracket

CI NIT CONTROL INITIATE

CLEANUP CLEAN UP SESSION

CNOS change number of sessions

COPR control operator services

COS class of ~ervice

CP control point

CR conversation resource

CRV CRYPTOGRAPHY VERIFICATION

CSI Code Selection indicator

CT correlation table

CT ERM CONTROL TERMINATE

DACTLU DEACTIVATE LOGICAL UNIT

DES Data Encryption Standard

DFC data flow control

DIA Document Interchunge Architecture

DLC data link control

DLU destination LU

DRl Definite Response 1

DRlI Definite Response 1 indicator

DR2 Definite Response 2

DR2I Definite Response 2 indicator

DSU distribution service unit

EC End Chuin

ECHOTEST ECHO TEST

ECI End Chain indicator

ED Enciphered Data

Appendix T. Terminology: Acronyms and Abbreviations T-1

EDI Enciphered Data indicator INIT initiate

EFI Expedited Flow indicator INIT-SELF INITIATE-SELF

ERI Exception Response indicator IPR ISOLATED PACING RESPONSE

ERP error recovery procedure(s)
LIC last in chain (~Be, EC>

EXP expedited
LL logical record length (prefix)

EXR EXCEPTION REQUEST
LLID logical record length and GOS ID

(pref ix)

FOX full-duplex LNS LU network services

FF flip-flop LU logical unit

FI Format Indicator LUCB LU control block

FIC first in chain (BC, ~EC> LUST AT LOGICAL UNIT STATUS

FM function management LUW logical unit of work

FMD function management data
MC mapped conversation

FMH FM header
MCR mapped conversation record

FMP FM profile
MGR manager

FSM finite-state machine
MIC middle in chain (~BC ,~EC)

FSP first speaker
MSG message

GOS general data stream t1U message unit

HDX half-duplex NAU network addressable unit

HDX-FF HDX flip-flop NC network control

HS half-session NEG negative

HSID half-session identification NG no good

NNM nodal NAU manager
ID identifier, identification

NS network services
ILU initiating LU (LU sending

INIT-SELF>

·2 SNA For•at and Protocol Reference Manual for LU Type 6.2

network

OIC only in chain CBC, EC>

OLU origin LU

p primary

PAC Pacing Request, Pacing Response
(value of PI in RH)

PC path control

PD Padded Data

POI Padded Data indicator

PI Pacing indicator

PIP

PIU path information unit

PLU primary LU

POS positive

PRI

PS presentation services

PTR pointer

PU physical unit

Q queue

QR Queued Response

QRI Queued Response indicator

R receive, receiving

RC return code

RCB resource control block

RCV

REQECHO REQUEST ECHO TEST

RES resource(s)

RE SYNC sync point resynchronization serv­
ice TP

RH request/response header

RQ request

RQD RQ indicating definite-response
required

RQE

RQN

RRI

RSP

RTI

RTR

RU

s

RQ indicating exception-response
requested

RQ indicating no response required

Request/Response indicator

response

Response Type indicator

READY TO RECEIVE

request/response unit

secondary, sending

SCB session control block

scs SNA character string

SD Sense Data Included

SDI Sense Data Included indicator

SEC secondary

SESS session

SESSEND SESSION ENDED

SESSST SESSION STARTED

Appendix T. Terminology: Acronyms and Abbreviations T-3

SETCV SET CONTROL VECTOR

SIG SIGNAL

SLDLM session-limit data-lock manager

SLU secondary LU

SNA Systems Network Architecture

SNADS SHA Distribution Services

SNASVCMG SNA services manager CLU-LU session
mode name)

SNF sequence number field

SON session outage notification

SQN sequence number

SS session services

SSCP system services control point

SSLS source-LU session-limit services

SVC service

SYNC PT synchronization point

TC transmission control

TCB transaction control block

TCCB transmission control control block

TERM terminate, terminating,
nation, terminal

TERM-SELF TERMINATE-SELF

TH transmission header

termi-

TLU terminating logical unit CLU send­
ing TERM)

TP transaction program

TS transmission services

TSLS target-LU session-limit services

TSP TS profile

UNBIND UNBIND SESSION

UNBINDF UNBIND FAILURE

UPM undefined protocol machine

URC user request correlation

SHA Format and Protocol Reference Manual for LU Type 6.2

~- ----- --------~- -----~·~~~-

