
.. ..

...
~

...

..
"II'

~

--------- ------= ~ ::: --------_.-
GC30-3084-2

Systems
Network
Architecture

Transaction Programmer's
Reference Manual For
LU Type 6.2

GC30-3084-2
File No. 370/4300/8100-30

Third Edit;on (November 1985)

This edition, GC30-3084-2, is a major revision of the previous edition, GC30-3084-1,
and obsoletes that edition.

Changes are periodically made to the information in IBM systems publications. Before
using this publication in connection with the operation of IBM systems, consult your
IBM representative to find out which editions are applicable and current. For a sum­
mary of the changes in this book, see page v.

Any reference to an IBM program product in this document is not intended to state or
imply that only IBM's program product may be used. Any functionally equivalent pro­
gram may be used instead.

It is possible that this material may contain references to, or information about, IBM
products (machines and programs), programming, or services that are not announced in
your country. Such references or information must not be construed to mean that IBM
intends to announce such products, programming, or services in your country.

This book is not intended for production use and is furnished as is. IBM assumes no
responsibility for the use of the functions as described in this book in any pro­
duction manner.

Publications are not stocked at the address below; requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your
locality.

A form for reader's comments is provided at the back of this pUblication. If the form
has been removed, comments may be addressed to IBM Corporation, Information Develop­
ment, Department E02, P.O. Box 12195, Research Triangle Park, Horth Carolina 27709,
U.S.A. IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever. You may, of course,
continue to use the information you supply.

(£) Copyright International Business Machines Corporation 1982, 1983, 1985

ii SMA Transaction Programmer's Reference Manual for LU Type 6.2

PREFACE

CHAPTERS

This book presents detailed information on the functions that Systems
Network Architecture (SNA) logical unit type 6.2 (LU 6.2) provides to
system and application programs. This book is written for individuals
that design system or application programs for use on an implementa­
tion of LU 6.2. The information in this book applies to all IBM pro­
ducts that implement LU 6.2, not to any specific IBM product. 1 This
book should be used with the applicable product pUblications for the
IBM products that implement LU 6.2.

LU 6.2 provides for interprogram communication between two or more
programs# such that:

• The programs can be di stri buted among mul t i pIe SNA nodes wi thi n an
SNA network.

• The SNA products that make up the network can be different from
one another.

• The programs ~~r. be designed independently of where in the network
they arp located and of the SNA products on whi ch they are run.

This book describes the functions that allow programs to communica~o
with each other independent of the underlying SNA network configura­
tion.

The processing of transact.ons typically involves several programs
distributee; over a network communicating with each other. When used
in conjunction with applicable IBM product publications, this book is
especially useful to those who design trans~ctions and the programs
that process the transactions.

This book assumes that the reader is familiar with the SNA concepts
presented in Systems Network Archi tecture Concepts and Products,
GC30-3072. The related publications, listed at the end of the pre­
face, are also helpful in understanding the material in this book.

The material in the first three chapters of this book is organized so
that one may read the material straight through. Successive sections
in these chapters bu ild on the materi al presented in precedi ng
sections. The material in the remaining chapters is organized for
ease of reference. These chapters contain the detailed descriptions
of the functions, called verbs, used to invoke LU 6.2 services.

The chapters of thi s book are:

"Chapter 1. Introduction" provides an introduction to LU type 6.2 and
its servi ces.

"Chapter 2. LU 6.2 Protocol Boundary" presents a general description
of the LU 6.2 protocol boundary.

"Chapter 3. Transaction Program Verbs" gives an overview of the func­
tions available to the programmer for interacting with resources.

1 This book provides a general description of LU 6.2 functions.
Implementation of some of the functions is optional. Optional
functions may not be available on all IBM products that implement
LU 6.2. All IBM products implementing a particular LU 6.2 func­
tion provide that function as described in this book; however, the
programmi ng interface that a product provi des to invoke that
function may differ in syntax from the syntax represented in this
book.

Preface iii

APPENDIXES

"Chapter 4. Conversation Verbs" contains a detailed description of
the conversation verbs.

"Chapter S. Control-Operator Verbs" contains a detailed description
of the control operator verbs.

The appendixes to this book are:

"Appendix A. Base and Option Sets for Product Support" gives a break­
down of the product-support requirements for implementing the verbs.

"Appendix B. Examples Using Basic Conversation Verbs" provides exam­
ples of the use of some of the basic conversation verbs. These are
examples only; they represent no specific application.

"Appendix C. Symbol String Conventions" defines the symbol strings
referred to throughout the manual.

"Appendix D. list of SNA Service Transaction Programs" contains a list
of SNA service transaction programs.

"Appendix E. Conversation State Matrices" provides matrix represent­
ations of the state transitions and state-check conditions that occur
at the conversation protocol boundary for programs using the basic and
type-independent conversation verbs.

PREREQUISITE PUBLICATION

Systems Network Architecture Concepts and Products, GC30-3072

RELATED PUBLICATIONS

Systems Network Architecture Ref~r~oce Sc~m3r~, GAl7-3136

Systems Network Ar~h!~~cture Technical Overview, GC30-3073

SY5t~ms Network Architecture Format and Protocol Reference Manual:
A£chitecture Logic for LU Type 6.2, SC30-3269.

Systems Netwoc~ Architecture Fermat and eCgtesel Reference ~!nY!l:
Distribution Servici5, SC30-3098.

Systems Network Architectu[~ Format and Protocol B~f~r~nc~ ~anual:
ArchitectYral Logic, SC30-3112.

Systems Hetwor~ Architecture Session! B~t~~en Logical Unit!.
GC20-1868.

Document Interchange Architecture: Technical Referenc~, SC23-0781.

Dosument Interchange Architecture: Interchange Document erefile Ref­
erence, SC23-0764.

Document Interchange Architectyre: Transaction Programmer's Gujde,
SC23-0763.

iv SNA Transaction Programmer's Reference Manual for lU Type 6.2

SUMMARY OF AMENDMENTS

This edition includes the following new functions# technical changes#
and editorial changes:

New Funct;ons:

• Session-level LU-LU verification has been added to LU 6.2 securi­
ty.

• The SECURITY_USER_ID and SECURITY_PROFILE parameters have been
added to the MC_GET_ATTRIBUTES and GET_ATTRIBUTES verbs.

• The MC_RECEIVE_IMMEDIATE and MC_TEST mapped conversation verbs
have added.

• The RECEIVE_IMMEDIATE and TEST basic conversation verbs have been
added.

• The CONFIRM argument has been added to the TYPE parameter of the
MC_DEALLOCATE, MC_PREPARE_TO_RECEIVE# DEALLOCATE, and PRE­
PARE_TO_RECEIVE verbs.

• The DATA_TRUNCATED and FMH_DATA_TRUNCATED indications have been
added to the WHAT_RECEIVED parameter of the MC_RECEIVE_AND_WAIT
and MC_RECEIVE_IMMEDIATE verbs.

• The FORCE parameter has been added to the RESET_SESSION_LIMIT
verb.

Techn;cal Changes:

• Conversation-level security has been enhanced for LU 6.2 securi­
ty.

• The definition of the base and option sets for product support of
the verbs, parameter# return codes, and what-received indications
has been changed.

• The character set used for SNA-defined transaction program names
has been changed.

• The list of return codes for the MC_TEST, TEST, and WAIT verbs has
been expanded.

• The way in which the CLU,mode) session limit for single-session
connections is specified on the INITIALIZE_SESSION_LIMIT verb has
been changed.

• The DEFINE and DISPLAY verbs have been expanded into a set of four
DEFINE verbs and four DISPLAY verbs# and a DELETE verb has been
added.

Edjtor;al Changes:

• The material in this book has been reorganized:

The verb syntax diagrams have been modified to express cer­
tain parameters as syntactically optional.

The mapped and basic conversation verbs have been combined
into a single chapter, and the verbs that apply to both con­
versation types have heen sep~~~~~~ tnto their own section of
the chapter.

The aescriptions of the conversation states for all of the
conversation verbs have been consolidated into one section of
the chapter.

Summary of Amendments v

The descriptions of the return codes for all of the conversa­
ti on verbs have been consol i dated into one secti on of the
chapter.

The bass- and option-set definition for product support of
all the verbs--conversation verbs and control operator
verbs--has been consolidated into an appendix.

• A clarification has been added to the list of product option sets
to di fferentiate between those for whi ch only local support is
needed for their use, and those for which both local and remote
support is needed.

• A list is added showing the SMA-defined transaction program names
assigned for use by LU 6.2 products.

• A chart is added showing the hexadecimal codes for character sets
A and AE.

• An appendix has been added containing a matrix representation of
the state transi t ions that occur at the conversati on protocol
boundary for programs using the basic and type-independent con­
versation verbs.

• Other less significant editorial improvements have been made.

All these addi ti ons and changes, excludi ng the reorgani zati on of .
material, are indicated in the left margin with a vertical line.

vi SMA Transaction Programmer's Reference Manual for LU Type 6.2

CONTENTS

Chapter 1. Introduction • • • • • • • • • • • • • • • • • •
Systems Network Architecture
Logical Unit Type 6.2
Transaction Program
Protocol Boundary •
Interprogram Communicati~n

Chapter 2. LU 6.2 Protocol Boundary

Interprogram Communication
Protocol Boundary Structure

• • • • • • • • • •

Chapter 3. Transaction Program Verbs
Transaction Program Structure and Execution
Verb Overview ••••••••••••

Conversation Verbs •••••••••
Mapped Conversation Verbs ••••
Type-Independent Conversation Verbs
Basic Conversation Verbs

Control-Operator Verbs •••••
Change Number of Sessions Verbs
Session Control Verbs
LU Definition Verbs

ABEND Conditions •••••
Product-Support Subsetting
Verb Description Format

Chapter 4. conversation Verbs
Verb Descri pti ons ••••••

Mapped Conversation Verbs
MC_ALLOCATE
MC_CONFIRM
MC_CONFIRMED
MC_DEALLOCATE
MC_FLUSH •••••••
MC_GET_ATTRIBUTES
MC_POST_ON_RECEIPT

~g:~:~~~~~:I~D~~~~~VE
MC_RECEIVE_IMMEDIATE
MC_REQUEST_TO_SEND
MC_SEND_DATA
MC_SEND_ERROR

. .
MC_TEST • • • • • • • • •

Type-Independent Conversation Verbs
BACKOUT
GET_TYPE ••••••••
SYNCPT • • • •
WAIT •• •••• • •

Basic Conversation Verbs ••••
ALLOCATE
CONFIRM • • • •
CONFIRMED • • • •
DEALLOCATE ••••••••
FLUSH ••••••••••
GET_ATTRIBUTES ••••••
POST_ON_RECEIPT ••••
PREPARE_TO_RECEIVE
RECEIVE_AND_WAIT
RECEIVE_IMMEDIATE
REQUEST_TO_SEND
SEND_DATA
SEND_ERROR
TEST

.'. .

Contents

1-1
1-1
1-1
1-1
1-2
1-3

2-1

2-1
2-2

3-1

3-1
3-3
3-3
3-3
3-4
3-5
3-6
3-6
3-7
3-7
3-7
3-8
3-9

4-1

4-1
4-2
4-3
4-8

4-10
4-11
4-15
4-16
4-18
4-20
4-24
4-29
4-34
4-35
4-38
4-41
4-44
4-45
4-46
4-47
4-50
4-52
4-53
4-59
4-61
4-62
4-67
4-68
4-70
4-73
4-77
4-82
4-86
4-87
4-90
4-94

vii

Conversation States
Return Codes ••••

.
Chapter 5. control-operator Verbs
LU-LU Sessions •••.•••

Single and Parallel Sessions
Contention-Winner Polarity

Verb Descriptions •••• '••.•.•
Change Number of Sessions Verbs ••.•••••••.•.

CHANGE_SESSION_LIMIT •• •••• •
INITIALIZE_SESSION_LIMIT •.•••••••••••••.
RESET_SESSION_LIMIT •••.••••••
PROCESS SESSION LIMIT •..••.•.

Session Control Verbs •••••••••
ACTIVATE_SESSION • • • •
DEACTIVATE_SESSION

LU Definition Verbs
DEFINE_LOCAL_LU
DEFINE_REMOTE_LU
DEFINE_MODE .•••••••••••.••••••
DEFINE_TP
DISPLAY_LOCAL_LU
DISPLAY_REMOTE_LU
DISPLAY_MODE ..•••.
DISPLAY_TP
DELETE

Return Codes

Appendix A. Base and option sets for Product support • • •

4-97
4-99

5-1

5-1
5-1
5-2
5-3
5-4
5-5
5-8

5-12
5-16
5-18
5-19
5-21
5-22
5-23
5-26
5-30
5-34
5-40
5-42
5-44
5-47
5-49
5-51

A-1

Support for Mapped Conversation Verbs and Parameters ..•• A-5
SUpport for Type-Independent Conversation Verbs and Parameters A-8
Support for Basic Conversation Verbs and Parameters A-9
Support for Conversation Return Codes and What-Received

Indications •..••.• • • . • • • • • . • • • A-12
Support for Control-Operator Verbs and Parameters for CNOS A-14
Support for Control-Operator Verbs and Parameters for Session

Control .••.••... • . . • • . . • . A-15
SUpport for Control-Operator Verbs and Parameters for LU
Definition ••.•••• • • • . A-16

Support for Control-Operator Return Codes ••.. A-19
Notes on Implementation Details .•....•..••••• A-20

Appendix B. Examples using Basic conversation Verbs

Appendix c. symbol string conventions

Symbol String Type
Symbol String Length

.

APpendix D. List of SNA Service Transaction Programs

SNA Service Transaction Program Names
Scheduler • • • . .• •••••••• •
Queue•..••.
DLl'l•....••.
Change Number of Sessions
Resynchronization
Distributed Data Management .
Document Interchange Architecture
SNA Distribution Services •••.
Product Oriented•.•••

APpendix E. conversation state "atrices

Index • •

vi;; SNA Transaction Programmer's Reference Manual for LU Type 6.2

B-1

C-l

C-l
C-4

D-1

D-l
D-l
D-l
D-2
D-2
D-2
D-2
D-2
D-2
D-2

E-l

X-l

LIST OF FIGURES

Chapter 1. Introduction

Figure 1-1. Transaction Programs and SNA Resources 1-2

Chapter 2. LU 6.2 Protocol Boundary

Figure 2-1. Program-to-Program Connection Through the SNA
Network•..••.• 2-1

Figure 2-2. Effective Program-to-Program Connection 2-2
Figure 2-3. A Configuration of Interconnected Programs 2-2

Chapter 3. Transaction Program Verbs

Figure 3-1. Format Box for Representing Verb Syntax

Chapter 4. conversation Verbs

Figure 4-1. Correlation of Conversation Verbs to the
Conversation States Allowing Their Issuance

Figure 4-2. Correlatio~ of Return Codes to Verbs

Chapter s. control-Operator Verbs

Figure 5-1. Correlation of Return Codes to Verbs

APpendix A. Base and option sets for Product Support

Fi gure A-I.

Figure A-2.

Figure A-3.

Figure A-it.

Figure A-5.

Figure A-6.

Figure A-7.

Figure A-8.
Figure A-9.

Figure A-I0.

Fi gure A-ll.

Figure A-12.

Fi gure A-13.

Figure A-14.

Figure A-15.

Support for Mapped Conversation Verbs and
Parameters (Part 1 of 3)
Support for Mapped Conversation Verbs and
Parameters (Part 2 of 3)
Support for Mapped Conversation Verbs and
Parameters (Part 3 of 3) • • •
Support for Type-Independent Conversation Verbs
and Parameters ..••.•.•.•..
Support for Basic Conversation Verbs and
Par'ameters (Part 1 of 3) ••..•..
Support for Basic Conversation Verbs and
Parameters (Part 2 of 3) ..•.•••
Support for Basic Conversation Verbs and
Parameters (Part 3 of 3) ..••.•.•••
Support for Conversation Return Codes
Support for Conversation What-Received
Indications ..•....•.•...
Support for Control Operator Verbs and

Parameters for CNOS . • . . . • . •
Support for Control Operator Verbs and

Parameters for Session Control .•••
Support for Control Operator Verbs and

Parameters for LU Definition (Part 1 of 3)
Support for Control Operator Verbs and

Parameters for LU Definition (Part 2 of 3)
Support for Control Operator Verbs and

Parameters for LU Definition (Part 3 of 3)
Support for Control Operator Return Codes

APpendix B. Examples Using BaSic Conversation Verbs

Figure B-1. ALLOCATE. SEND_DATA, DEALLOCATE
SYNC_LEVEL(NONE) •...•••••

3-10

4-98
it-lOS

5-54

A-5

A-6

A-7

A-8

A-9

A-lO

A-ll
A-12

A-13

A-14

A-IS

A-16

A-17

A-18
A-19

B-2

List of Figures ix

Figure 8-2. ALLOCATE, SEND_DATA, DEALLOCATE
SYNC_LEVELCCONFIRM) · . . . · Figure 8-3. RECEIVE_AND_WAIT, DEALLOCATE --
SYNC_LEVELCCONFIRM) · · · · · · Figure 8-4. PREPARE_TO_RECEIVE -- SYNC_LEVELCNONE)

Figure 8-5. PREPARE_TO_RECEIVE -- SYNC_LEVELCCOHFIRM)
Figure 8-6. CONFIRM · · · · · · · · · Figure 8-7. SEND_ERROR in Send State
Figure 8-8. SEND_ERROR in Receive state
Figure 8-9. REQUEST_TO_SEND · Figure 8-10. POST_ON_RECEIPT, WAIT
Figure 8-11. POST_ON_RECEIPT, TEST
Figure 8-12. SYNCPT · · · · Figure B-13. SYNCPT, BACKOUT

Appendix C. symboi string Com,entions

Figure r.-l. Character Sets A and AE
~~gure C-2. ~ymbol-String Types
Figure C-3. Symbol-String Lengths

· ·
· · · · ·

· · · · · ·
· · · ·

Appendix D. List of SNA service Transaction Programs

Appendix E. Conversation state Matrices

Figure E-l. Conversation State Transition Matrix
3) · · · · · · · · · · · · · · · · Figure E-2. Conversation State Transition Matrix
3) · · · · · · · · · · · · · · · · Figure E-3. Conversation State Transition Matrix
3) · · · · · · · · · · · · · · Figure E-4. Conversation State Check Matrix · ·

x SHA Transaction Programmer's Reference Manual for LU Type 6.2

· · · · ·

(Part
· · (Part
· · (Part

· · ·

· ·

· ·
· · · ·

1

· · 2

· · 3
· · · ·

·

·
· ·

of
· of
· of
· ·

8-4

8-6
8-8

8-10
8-12
8-14
8-16
8-18
8-20
8-22
8-24
B-26

C-2
C-3
C-5

E-2

E-4

E-6
E-8

CHAPTER 1. INTRODUCTION

This chapter introduces the reader to general concepts used through­
out the book.

SYSTEMS NETWORK ARCHITECTURE

Systems Network Architecture (SNA) is the description of the logical
structure, formats, protocols, and operational sequences for trans­
mitting information units through networks and for controlling the
configuration and operation of networks. A formal description of SNA
is provided in SNA Format and Protocol Reference Manual: Architec­
tural Logic. The description of SNA in this book is limited to the
services that SNA logical-unit type 6.2 (LU 6.2) provides to trans­
action programs. A formal description of LU 6.2 is provided in ~
Format and Protocol Reference Manual: Archjtecture Logic for LU Type
L,Z.

LOGICAL UNIT TYPE 6.2

In SNA, the physical network consists of actual processors, called
nodes, and data links between the nodes. The logical network consists
of logical processors, called logical units (LUs),1 and logical con­
nections, called sessions. One or more sessions connect one LU to
another LU. Information is transmitted from one LU to another LU over
a session.

LU 6.2 is a particular type of SHA logical unit. LU 6.2 provides a
connecti on, or port, between its transacti on programs and network
resources. Each LU 6.2 makes a set of resources avai lable to its
transact i on programs. The exact set is product- and
configuration-dependent; examples are processor machine cycles and
main storage, files on magnetic disk or tape, input.loutput devices
such as keyboard and display terminals, and logical resources such as
sessions, queues, and data-base records. Some of these resources are
local to a program, that is, attached to the same LU as the program.
Other resources are remote, that is, attached to other LUs (remote is
defined in terms of the logical configuration of the network; the LUs
can be within the same physical node).

Resource allocation and control is a central function of LU 6.2. Pro­
grams can request the LU for access to a resource. The LU schedules
allocati on to seri ally-reusable resources, creati ng new copi es of
logical resources, such as sessions, when necessary. The LU provides
resource control in order to nsure integrity of the program's access
to the resource. For example, the LU maintains a state2 represen­
tation of the resource, allowing the program to perform an operation
on the resource only when the resource is in the appropriate state for
that operation. The LU may also provide other resource-related serv­
ices to its programs, such as resource synchronization-point process­
ing that synchronizes committed changes to resources.

TRANSACTION pROGRAM

Transaction programs process transactions. A transaction hi a type of
application. It usually involves a specific set of input data and
triggers the execution of a specific process or job. One example is

1 Other logical prOC~9sors, such as physical units (PUs) and system
services ec~~rol points (SSCPs), also exist and are described in
~NA Concepts and Products.

4 A specific operating condition of the resource as it appear~ to
the program at a particular time of access. Over time, the
resource changes f~om one state to another in accord with the pro­
gram's operations on the resource.

Chapter 1. Introduction 1-1

the entry of a customer's deposit and the updating of the customer's
balance. A second example is the process of recording item sales,
arriving at the amount to be paid by or to a customer, verifying
checks before accepting them as tender, and receiving payment for the
merchandise. A third example is the transfer of a message to one or
more destination points.

A transaction program, as the term is used in this pUblication, is a
program that is executed by or within lU 6.2 and performs services
related to the processing of a transaction. For example, the program
may be an application program that processes a transaction or is one
of several programs that make up a transacti on processi ng appl i ca­
tion, or it may be a system program that performs system services for
an application program processing a transaction.

Distributed processing of a transaction within an SNA network occurs
when transaction programs communicate by exchanging information over
the sessions between their LUs, treating the sessiori as a resource
that is shared between the programs. Figure 1-1 illustrates the con­
nection of two programs to SNA resources, including a session between
thei r lUs.

1 Program A ·1
I

••• I
• Other •
• Resources.
• for •
• Program A.

SNA Network

Session --------~

• Other •
• Resources.
• for •
.Program B.

• ••
1 l~ 6.2

I

I Program 8 1

Figure 1-1. Transaction Programs and SNA Resources

The "other resources" shown in the figure may include other sessions
as well as local files and devices. The other sessions allow program
A or program B to communicate with other programs. During the commu­
nication between two programs, one program may send a message over the
session to another program, requesting access to a local resource of
the other program. In this way, a local resource of program B, for
example, may become a remote resource of program A.

PROTOCOL BOUNDARY

The LU 6.2 protocol boundary, as the term is used in this pUblication,
is the generi c descri pti on of the transacti on program's logi cal
interface to an SNA network, from the perspective of the transaction
program~ LU 6.2 provides the protocol boundary between the program and
the network. The description is generic in the sense that it provides
a syntactical representation of the functions common to all IBM pro­
ducts that implement LU 6.2; the syntactical descriptjon is not neces­
sarily of any specific IBM product. IBM products implementing LU 6.2
may provide a programming interface that differs in syntax from the
protocol boundary described herein~ however, the results achieved are
functionally equivalent to the results described in this book. For
information about the functional correspondence between the product's
programmi ng interface and the protocol boundary descri bed in thi s
book, refer to the IBM product publication describing the product's
programming interface.

1-2 SMA Transaction Programmer's Reference Manual for LU Type 6.2

The generi C: protocol boundary descri bed herei n represents the trans­
action program's logical interface to SNA and its services, and is the
primary subject of this book. The value of a generic description is
that the transacti on program desi gner may plan an appl i cati on that
spans many different products using a single generic interface, and
then map the design to the individual product-dependent interfaces.

Nota: Prod4cts may provide additional functions for their trans­
acti on programs, that is, product-uni que functi ons that are not
descri bed in thi 5 book. A gi ven product-uni que functi on may cause
information to be sent on an LU 6.2 session, depending on the func­
tion; however, the formats and protocols used on the LU 6.2 session
are unchanged. (See SNA Format and Protocol Reference Manual: Archi­
tecture Logic for LU Type 6,2 for a definition of the formats and pro­
tocols associated with LU 6.2 sessions.) When designing an
appli cati on that may be executed on di fferent prodUcts, the trans­
act i on program desi gner should not depend on the product-speci fi c
functions being available across the different products.

INIERpROGRAM COMMUNICATION

Among the services that SNA and, in particular, LU 6.2 provides is
interprogram communication. IBM products implementing LU 6.2 provide
thi s servi ce as Advanced Program-to-Program Communj cati on (APPC).
Refer to the individual IBM product pUblications for details of their
APPC implementations.

Interprogram communication permits distribution of the processing of
a transaction among multiple programs within a network. The programs
coordinate the distributed processing by exchanging control informa­
tion or data. The protocol boundary provides the structure for pro­
grams to communicate with one another in order to process a
transaction. This structure meets the following requirements,
described in terms of their SNA realization:

Simultaneous activatian--. Many distributed applications require
their component programs to be active simultaneously. If the
sender of a request waits for the reply, the sending program is
depending upon timely execution by its partner. SNA achieves this
by simply carrying the program name in the request and letting the
receiving LU create an instance of the desired partner program.
This concept is recognizably that of transactions. 50 in SNA the
communicating programs are called transaction programs. Itfol­
lows that distributed transactions are executed by distributed
transaction programs.

Efficient allacation--. Just as programs use local resources by
asking the LU for access to them, programs ask the LU for access
to sessi ons for use as i nterprogram communi cati on resources.
However, the program is not really concerned with the session,
which is (usually) a long-term connection between LUs. Nor is the
program concerned with the possibility of other programs using
the session before or after its own use. What the program asks
the LU for is a period of exclusive use of a session, that is, for
an abstract resource that is the unit of sharing of the session
resource. This resource is called a conversation.

Conversation overhead --. Conversations should be efficient in
allocation, data transfer, and deallocation. For instance, what
the programs see as two short messages, perhaps an inquiry and its
reply, should result in two short messages flowing in the network.
The LU achieves this by multiplexing conversations over a pool of
sessions, scheduling each session as a serially reusable
resource.

Conversation Ufatime --. Conversati ons last for a time that is
determined only by the communicating programs. So, conversations
vary from a single, short message to many exchanges of long or
short messages. A conversation could continue indefinitely, ter­
minated only by failures.

Two-way alternate data transfer --. Conversati ons use two-way
alternate (half duplex) data transfer. This makes it easiar to

Chapter 1. Introduction 1-3

write transaction programs, in contrast to two-way simultaneous
(full duplex) transfer of data whi ch experi ence shows leads to
more complicated and error-prone programs.

Attention mechanism -- Conversations include an attention mech­
anism to handle asynchronous, but non-error, events.

Error notification -- Conversati ons provi de each program wi th a
method to noti fy its partner of errors when they are detected.

commitment control -- When errors occur, recovery is greatly sim­
pli fi ed if the changes that a program has been mak i ng to its
resources can be made to appear atomic; for example, if resources
A and B are changed, then after a failure, B will be observed to
have changed if and only if A is also observed to have changed.
Commi tti ng changes atomi cally is a servi ce that SNA extends to
distributed transaction programs. SNA calls this the sync point 3
service. Conversations are defined to the sync point service in
each LU as either being protected by sync point or as being unpro­
tected. In the latter case, the transaction programs are them­
selves responsible for error recovery synchronization.

symmetry -- Conversati ons are allocated by one acti ve program,
but all other protocols (data transfer, attention, error notifi­
cation, and deallocation) are fully symmetric.

Mode of service -- The program allocating the conversation names
the desired mode of transmission service, such as "interactive"
or "batch," to be provi ded by the network.

Levels of conversations -- In order to adequately serve the needs
of system programs and application. transactions, two levels of
conversations exist: basic conversations, for system transaction
programs, and mapped conversations, for application transaction
programs.

subset definition -- A subsetting is defined for LU 6.2 by a base
set of functions and a limited number of option sets. IBM pro­
ducts that implement LU 6.2 all provide the base set of functions,
and may provide any of the option sets.

Sync point is a shortened term for synchronization point.

1-4 SNA Transaction Programmer's Reference Manual for LU Type 6.2

CHAPTER 2. LU 6.2 PROTOCOL BOUNDARY

The LU 6.2 protocol boundary is a generic interface between trans­
action programs and the SNA network. The protocol boundary permits
access to SNA servi ces and resources, especi ally tha sarvl cas and
resources associ ated wi th i nterprogram communi cati on. By means of
interprogram communication, distributed transactions can be designed
and implemented.

The distributed processing of a transaction also requires access to
system services and resources not related to interprogram communi­
cation; however, such services and resources are product-dependent.
The reader should refer to the individual product publications for
i nformat 1 on about a parti cular product's programmi ng interface to
resources such as di sk or tape fi les, input/output devi ces, and
processor main storage, and to non-SNA services that the product pro­
vides.

INTER pROGRAM COMMUNICATION

The protocol boundary permi ts transacti on programs to commun i cate
with one another without being involved in the interactions that take
place within the network. Figure 2-1 shows two programs connected
through the SNA network. The lUs are connected by an LU-lU session,
and the programs are connected by a conversation allocated on the ses­
sion. For each LU-lU session, one lU is the contention winner of the
session and the other lU is the contention loser of the session.
These terms relate to how contenti on is resolved when the two LUs
attempt to allocate a conversation on the session at the same time.
Specific details are given in SNA Format and Protocol Reference Manu­
al: Architecture logjc for lU Type 6.2.

Program A

SNA Network
LU 6.2

lU 6.2

Program B

Figure 2-1. Program-to-Program Connection Through the SNA Network

From the programs' view, only the conversation is visible. The acti­
vation of the session and actual messages that the lUs exchange on
that session are hidden from the programs. Only the dalays associated
with the buffering and transmission of information within the network
are apparent to the programs. The program-to-program connection can
therefore be represented as shown in Figure 2-2.

Chapter 2. LU 6.2 Protocol Boundary 2-1

Program A Program B

Figure 2-2. Effective Program-to-Program Connection

This view of program-to-program connection can be extended to a more
general configuration of interconnected programs. Figure 2-3 shows
an example of one way in which seven programs can be interconnected.
The interconnection is logical; the physical configuration- of the
network is not apparent to the programs.

r
Program E

Program B

I Program F

Program A Program C

Program D Program G

Figure 2-3. A Configuration of Interconnected Programs

The configuration of interconnected programs changes over time. In
the example shown in Figure 2-3, the configuration may have evolved as
follows:

1. Program A connects to Program B, then to Program C, and then to
Program D.

2. Program B connects to Program E and then to Program F.

3. Program D connects to Program G.

This configuration may have evolved in other ways, as well, and it may
be an interim configuration that ultimately grows to a much larger
confi gurati on of interconnected programs. All confi gurati ons of
interconnected programs, however large, are made UP of program-to­
program connections between pairs of programs. One program initiates
the interconnection process; in Figure 2-3. the initiating program is
Program A.

PROTOCOL BOUNDARY STRUCTURE

The protocol boundary is a structured interface. It is defined by
means of formatted functions. called ~, and the protocols for the
verbs. The protocols are the allowed sequences of verbs. that is, the
order in which a transaction program can issue verbs. The protocols
are defined in terms of resource states. A transaction program can
issue a particular verb only when the the resource to which that verb
applies 15 in the appropriate state for that verb.

2-2 SNA Transaction Programmer's Reference Manual for LU Type 6.2

The verbs and states that represent the lU 6.2 protocol boundary ena­
ble the user to desi gn di stri buted transacti ons, processed by di s­
tri buted transact i on programs. The number of transact i on programs
can be small, involving only two programs, or large, involving many
programs. The transaction can have a fixed structure in which the
processing by all programs is predetermined at design time, such as a
si ngle i nqui ry and reply between two programs. In contrast, the
transacti on can have a flexi ble structure in whi ch the programs
involved and the processing are determined at execution time, possi­
bly varying from one invocation of the transaction to the next; an
example is the updating of information in a distributed data base.

An overview description of the verbs is given in "Chapter 3. Trans­
action Program Verbs". The detailed descriptions of the verbs are
gi ven in "Chapter 4. Conversati on Verbs" and "Chapter 5.
Control-Operator Verbs". Resource states associated with the conver­
sation verbs are described in "Chapter 4. Conversation Verbs".

Chapter 2. lU 6.2 Protocol Boundary 2-3·

This page intentionallY left blank

2-4 SMA Transaction Programmer's Reference Manual for LU Type 6.2

CHAPTER 3, TRANSACTION PROGRAM VERBS

The LU 6.2 protocol boundary is defined by verbs that request the LU
to perform services. The verbs are described from the transaction
programmer's view of the LU 6.2 protocol boundary. Events occurring
below the protocol boundary and not apparent at the boundary are not
described. Refer to SNA Format and Protocol Reference Manual: Archi­
tecture logic for LU Tvpe 6.2 for details of events that occur below
the protocol boundary.

TRANSACTION PROGRAM STRUCTURE AND EXECUTION

All transaction programs h~ve the following general structure:

name: PROCEDURE (resource-;d t,p;pl t"" t,p;pn] J])J

: } yerbs and .ther pr •• ra. statement.

RETURN;
END name;

The elements of the transaction program structure are:

1

name is the name of the transaction program. The transaction pro­
gram name is carried in the allocation request sent by a partner
program. The LU receiving the request locates the program by name
and creates a new instance,l or executable copy, of the program.
The location of the program, such as in a program library, is
product-dependent.

PROCEDURE begins the main procedure of the transaction program.

resource-;d is the name of the variable in which the LU places the
resource ID of the conversation on which the allocation request
was received. The conversation connects this transaction program
to the partner program that sent the allocation request.

Nate: The description in this book assumes that transaction pro­
grams are always started by means of an allocati on request
received on a conversation. The manner in which a product starts
the first program of an interconnected configuration of programs
is product-dependent. For example, the fi rst program may be
started in response to a "load" request from an operator.

p;pl, ••• ,p;pn are the names of the variables in whi ch the LU
places program initialization parameters (PIPs) 1 through n.
Product send and receive support of PIPs is optional; see Fig­
ure C-3 in "Appendix C. Symbol String Conventions" for details.
The PIPs are 5uppli ed by the allocati ng program. The contents of
the PIPs have meaning only to the transaction programs---they are
not examined or acted upon by the LU.

verbs and ather program statements represent the combi nati on of
verbs, descri bed in thi s book, and other programmi ng-Ianguage
statements that make up the transaction-processing portion of the
program. Thus, the program's processing of a transaction begins

When it i s "~ambi guous to do so, a program instance is si mply
referrp~ to as a program.

Chapter 3. Transaction Program Verbs 3-1

with the first verb or other program statement after the PROCEDURE
statement. It ends with the last verb or other program statement
preceding the RETURN statement. or with the processing implied by
the RETURN statement (discussed next).

RETURN ends execution of the program by returning control to the
LU. As part of the LU's processing of the RETURN statement. it
deallocates all conversations (and other resources) that the pro­
gram has not. itself. deallocated. Depending on the product. the
LU may perform other resource-related functions. including the
execution of verb functions for conversations still allocated.
before deallocating the resources.

END nama identifies the physical end of the program. It is the
last statement in the program.

Nata: The PROCEDURE, RETURN. and END statements are not
described elsewhere in this book. They are presented here only to
illustrate the general structure of all transacti on programs.
IBM products implementing LU 6.2 may provide programming language
statements that differ in syntax from this description. However.
the functions of the product programming language statements are
equivalent to the functions described here.

Program execution. in terms of the verbs. occurs when the transaction
program issues a verb and the LU executes it; verbs are issued and
executed one at a time. When the program issues a verb. the program's
processing is suspended while the LU executes the verb. The program
resumes processing when the LU returns control to the program. The
program may then issue another verb.

Conversations use two-way alternate data transfer. Once a conversa­
tion is allocated. send-receive relationship is established between
the programs connected to the conversation. One program issues verbs
to send data and the other program issues verbs that receive the data.
When the sending program finishes sending data. it transfers control
of sending data to the other program.

The LUs at each end of a conversation have a buffer for sending and
receiving the data on the conversation. When the program issues a
verb that sends data. it specifies an area containing the data. The
LU moves the data to its send buffer. accumUlating the data behind any
data from previous verbs. The LU transmits the data. or flushes its
send buffer, when either it accumulates a sufficient amount for trans­
mission. or the program issues a verb that explicitly causes the LU to
transmit the accumulated data. The amount of data sufficient for
transmission is determined by the maximum size request unit that can
be sent on the session on which the conversation is allocated. The
amount can vary f~om one session to another. and therefore from one
conversation to another.

As incoming data arrives on a conversation. the LU places the data in
its receive buffer. accumUlating the data behind any it previously
received. When the program issues a verb that receives data. it spec­
ifies an area in which the LU is to place the data. The LU moves the
requested amount of data from the front of its receive buffer to the
area specified by the program. In this way. the LU can accumulate
incoming data in its receive buffer in advance of the program issuing
the verb. or verbs. that receive the data.

Verbs are defi ned that send i nformati on other than data. These verbs
cause the LU to flush its send buffer and then place the information
at the front of the buffer. behind which it accumUlates data from sub­
sequent verbs. The receiving LU accumulates this information in its
receive buffer in the order it is received. with reference to other
information including data.

Program execution ends when the program returns control to the LU at
the completion of the transaction. This is accomplished by the RETURN
statement.

3-2 SNA Transaction Programmer's Reference Manual for LU Type 6.2

VERB OVERVIEW

This section presents an overview of the verbs in terms of their indi­
vidual functions. The verbs are divided into categories. These cate­
gori es are:

Conversation verbs
Control-operator verbs

Each category defines a major subdivision of the lU 6.2 protocol
boundary. The conversati on verbs defi ne the means for program-to­
program communication. The control-operator verbs define the means
for program or operator control of the lU's resources.

In the following overview, and in the remaining chapters of this book,
the verbs are described from the perspective of the transaction pro­
gram issuing the verb. From this point of view, the program issuing
the verb is referred to as the local program, and the program at the
other end of the conversation is referred to as the remote program.
Similarly, the lU processing the local program is referred to as the
local lU, and the lU processing the remote program is referred to as
the remote lU.2 The overview description of the conversation verbs and
control-operator verbs follows.

CONVERSATION VERBS

The conversati on verbs provi de program-to-program communi cati on by
means of conversations between programs. The following conversation
types are defi ned:

Mapped
Basic

The verbs defining the conversation protocol boundary are divided
into subcategories based on the conversation type. The subcategories
of verbs are:

Mapped conversation verbs
Type-independent conversation verbs
Basic conversation verbs

An overview of the conversation verbs follows.

Mapped CDnversatiDn Verbs

The mapped conversat i on verbs are intended for use by appli cati on
transaction programs. These verbs provide functions that are suit­
able for application programs written in high-level programming lan­
guages. A brief description of the mapped conversation verbs follows.

2

MC_ALLOCATE allocates a mapped conversation connecting the local
transaction program to a remote transaction program. A unique
resource ID is assigned to the mapped conversation. This verb is
issued prior to any verbs that refer to the mapped conversation.

MC_CONFIRM sends a.confirmation request to the remote transaction
program and waits for a reply, in order for the two programs to
synchronize their proce~~~~g.

MC_CONFIRMF~ ~ends a confirmation reply to the remote transaction
program, in order for the two programs to synchronize their proc­
essing. The program issues the verb in response to receivin2 a
confirmation request.

MC_DEALLOCATE deallocates a mapped conversation resource from the
transaction program. The program issues this verb when it is fin­
ished using the mapped conversation.

When it is unambiguous to do so, the local program is simph'
referred to as the program, and the local lU is simply referred to
as the lU.

Chapter 3. Transaction Program Verbs 3-3

MC_FLUSH transmits all information that the lU has buffered, such
as data records from preceding MC_SEND_DATAs.

MC_GET_ATTRIBUTES returns information pertaining to a mapped con­
versation. Examples of information that may be requested are the
mode name, the name of the lU at which the remote transaction pro­
gram is located, or the synchronization level allocated for the
mapped conversation.

MC_POST_ON_RECEIPT requests posting of the specified mapped con­
versation when information is available for the program to
receive. The information can be a data record, mapped conversa­
tion status, or a request for confirmation or sync point.

MC_PREPARE_TD_RECEIVE changes the mapped conversation from send
state to receive state in preparation to receive data. A SEND
indication is sent to the remote program. The remote program's
end of the mapped conversation changes to send state when the pro­
gram receives the SEND indication.

MC_RECEIVE~AND_WAIT waits for information to arrive on the mapped
conversation and then receives the information. If information
is alreadY available, the program receives it without waiting.
The information can be a data record, mapped conversation status,
or a request for confirmation or sync point. Control is returned
to the program with an indication of the type of information. The
verb can be issued when the mapped conversation is in send state.
In this case, the verb first sends a SEND indication to the remote
program, changing the mapped conversation to receive state, and
then waits for information to arrive.

MC_RECEIVE_It'lMEDIATE recei ves any i nformati on that is avai lable
from the specified mapped conversation, but does not wait for
information to arrive. The information (if any) can be a data
record, mapped conversation status, or a request for confirmation
or sync point. Control i5 returned to the program with an indi­
cation of whether any information was received and, if so, the
type of information.

MC_REQUEST_TO_SEND noti fi es the remote program that the local
program is requesting to enter send state for the mapped conversa­
tion. The mapped conversation will be changed to send state when
the local program subsequently recei ves a SEND i ndi cati on from
the remote program.

MC_SEND_DATA sends one data record to the remote transaction pro­
gram. The data record consists entirely of data. The program can
specify data mapping as a function of the verb, or it can indicate
that the data record includes FM headers.

t'lC_SEND_ERROR informs the remote transacti on program that the
local program has detected an a~plication error. For example, the
local program can issue this verb to inform the remote program of
an error it detected in a data record it received, or to reject a
confirmation request. Upon successful completion of the verb,
the local program is in send state for the mapped conversation and
the remote program is in receive state.

MC_TEST tests the mapped conversation to determine whether it has
been posted, as a result of a preceding MC_POST_ON_RECEIPT verb,
or whether a request-to-send notification has been received.

Type-Independent Canversat;on Verbs

The type-i ndependent conversati on verbs are intended for use wi th
both mapped and basic conversations. These verbs provide functions
that span both conversat i on types. A br i ef descr i pt i on of the
type-independent verbs follows.

BACKDUT restores all protected resources throughout a distributed
transaction to their status as of the last synchronization point.
Protected resources are those that are protected by the sync point
service of lU 6.2.

3-4 SHA Transaction Programmer's Reference Manual for lU Type 6.2

GET_TYPE returns the type of resource. For mapped conversations
the type is MAPPED_CONVERSATION, and for basic conversations the
type is BASIC_CONVERSATION.

SYNCPT advances all protected resources throughout a distributed
transaction to the next synchronization point.

WAIT waits for posting to occur on any mapped or basic conversa­
tion from among a list of mapped and basic conversations. The
posting of mapped conversations is performed as a result of a pre­
ceding MC_POST_ON_RECEIPT verb issued for each of the mapped con­
versati ons. Si mi larly, the posti ng of basi c conversati ons is
performed as a result of a preceding POST_ON_RECEIPT verb issued
for each of the basic conversations.

Basie Conversation Verbs

The basic conversation verbs are intended for use by LU services pro­
grams. The LU services programs can provide end-user services or pro­
tocol boundaries for end-user application transaction programs. For
example, the mapped conversation LU services component issues basic
conversat i on verbs dur i ng its processi ng of mapped conversat i on
verbs. A brief description of the basic conversation verbs follows.

ALLOCATE allocates a conversati on connecti ng the local trans­
action program to a remote transaction program. The conversation
type can be basic or mapped. A unique resource ID is assigned to
the conversati on. Thi s verb is issued pri or to any verbs that
refer to the conversation.

CONFIRM sends a confi rmation request to the remote program and
waits for a reply, in order for the two programs to synchronize
their processing.

CONFIRMED sends a confi rmati on reply to the remote program, in
order for the two programs to synchronize their processing. The
program issues this verb in response to receiving a confirmation
request.

DEALLOCATE deallocates a conversation from the transaction pro­
gram. The program issues this verb when it is finished using the
conversation.

FLUSH transmits all information that the LU has buffered, such as
data from preceding SEND_DATAs.

GET ATTRIBUTES returns information pertaining to a conversation.
Examples of information that may be requested are the mode name,
the name of the LU at whi ch the remote transacti on program is
located, or the synchronization level allocated for the conversa­
tion.

POST_ON_RECEIPT requests posting of the specified conversation
when information is available for the program to receive. The
information can be data, conversation status, or a request for
confirmation or sync point.

PREPARE_TO_RECEIVE changes the conversati on from send state to
receive state in preparation to receive data. A SEND indication
is sent to the remote program. The remote program's end of the
conversation changes to send state When the program receives the
SEND indication.

RECEIVE_AND_WAIT waits for information to arrive on the conversa­
tion and then receives the information. If information is alreadY
available, the program receives it without waiting. The informa­
tion can be data, conversation status, or a request for confirma­
tion or sync point. Control is returned to the program with an
indication of the type of information. The verb can be issued
when the conversati on is in send state. In thi s case, the verb
first sends a SEND indication to the remote program, changing the
conversation to receive state, and then waits for i~formation to
arrive.

Chapter 3. Transaction Program Verbs 3-5

RECEIVE_IMMEDIATE receives any information that is available from
the specified conversation, but does not wait for information to
arrive. The information (if any) can be data, conversation sta­
tus, or a request for confirmation or sync point. Control is
returned to the program with an indication of whether any informa­
tion was received and, if so, the type of information.

REQUEST_TO_SEND notifies the remote program that the local pro­
gram is requesting to enter send state for the conversation. The
conversation will be changed to send state when the local program
subsequently receives a SEND indication from the remote program.

SEND_DATA sends data to a remote program. The data format con­
sists of logical records. The amount of data is specified inde­
pendently of the data format. A logical record contains a length
field and a data field. The length field is 2 bytes long; the
data field can be any length within the range of 0 to 32765 bytes.

SEND_ERROR informs the remote program that the loc'al program has
detected an error. For example, the local program can issue this
verb to truncate an incomplete logical record it is sending, to
inform the remote program of an error it detected in data it
received, or to reject a confirmation request. Upon successful
completion of the verb, the local program is in send state for the
conversation and the remote program is in receive state.

TEST tests the conversati on to determi ne whether it has been
posted, as a result of a preceding POST_aN_RECEIPT verb, or wheth­
er a request-to-send notification has been received.

CONTROL-OPERATOR VERBS

The control-operator verbs are intended for use by control-operator
transaction programs, that is, programs that assist the control oper­
ator in performing functions related to the control of an lU. The
verbs defi ni ng the control-operator protocol boundary are di vi ded
into subcategories based on their functions. The subcategories are:

Change number of sessions verbs
Session control verbs
lU definition verbs

An overview of the control-operator verbs follows.

Change Number of Sess;ons Verbs

Thi s subcategory of control-operator verbs consi sts of four verbs
called the change-number-of-sessions, or CNOS, verbs. The CNOS verbs
change the (lU,mode) session limit, which controls the number of lU-LU
sessions per mode name that are available between two lUs for allo­
cation to conversations. In conjunction with changing the (LU,mode)
session limit, the eNOS verbs change related operating parameters of
the two LUs.

The two lUs may cooperate in the execution of the CNOS verbs by means
of a eNOS request and eNOS reply. The lU executing the control-oper­
ator transaction program sends a eNOS request to the partner lU. The
partner LU invokes an SNA service transaction program called the "CNOS
service transaction program" (see "Appendix D. list of SNA Service
Transaction Programs"), which causes the partner LU to process the
eNOS request and send back a CNOS reply.

The CNOS verbs that a control-operator transaction program may issue
are:

CHANGE_SESSION_LIMIT changes the (LU,mode) session limit from one
nonzero value to another nonzero value.

INITIALIZE_SESSION_LIMIT changes the (LU,mode) session limit from
o to a value greater than O.

3-6 SNA Transaction Programmer's Reference Manual for LU Type 6.2

RESET_SESSION_LIMIT changes the (lU.mode) session limit from a
value greater than 0 to O.

The eNOS verb that the eNOS service transaction program issues is:

PROCESS_SESSION_LIMIT causes the lU receiving the eNOS request to
process the request and send back a CNOS reply to the partner lU.

Session Control Verbs

This subcategory of control-operator verbs consists of two verbs used
for session control. one that activates an lU-lU session and one that
deactivates an lU-lU session. These verbs are:

ACTIVATE_SESSION activates an lU-lU session between the local lU
and a specified lU.

DEACTIVATE_SESSION deactivates a speci fi ed lU-LU sessi on. The
type of deactivation can be cleanup or normal.

LU Definition Verbs

ABEND CONDITIONS

This subcategory of control-operator verbs is used to define or modify
the local lU' 5 operati ng parameters. exami ne the parameters, and
delete the parameters. These verbs are:

DEFINE_LOCAL_LU i ni ti ali zes or modi fi es parameter values that
control the operation of the local lU.

DEFINE_REMOTE_LU in i ti ali zes or modi fi es parameter values that
control the operation of the local LU in conjunction with a remote
LU.

DEFINE_MODE initializes or modifies parameter values that control
the operation of the local lU in conjunction with a group of ses­
sions with a remote LU, the group being identified by a mode name.

DEFINE_TP initializes or modifies parameter values that control
the operation of the local lU in conjunction with a local trans­
act i on program.

DISPLAY_LOCAL_LU returns parameter values that control the opera­
tion of the local lU.

DISPLAY_REMOTE_LU returns parameter values that control the oper­
ation of the local lU in conjunction with the remote lU.

DISPLAY_HODE returns parameter values that control the operation
of the local lU in conjunction with a group of sessions with a
remote LU, the group being identified by a mode name.

DISPLAY_TP returns parameter values that control the operation of
the local lU in conjunction with a local transaction program.

DELETE deletes the local lU's operating-parameter values that
have been defi ned by means of the DEFINE verbs.

Certain errors related to the execution of the verbs can cause an
abnormal ending (ABEND) of the transaction program. These ABEND con­
ditions are a direct consequence of an invalid specification or exe­
cution of a verb. When the lU terminates a program because of an
ABEND condition. it deal locates all of the program's active conversa­
tions. Depending on the product. the LU may abnormally deallocate the
conversations. or deallocate the conversations in the same way it does
for the RETURN statement (see the RETURN statement under "Transaction
Program Structure and Execution" on page 3-1).

The ABEND conditions are:

Chapter 3. Transaction Program Verbs 3-7

Parameter Check occurs when the program issues a verb for whi ch
local support is not available, or when the program specifies a
verb parameter with an invalid argument. The source of the inval­
id argument is considered to be part of the program definition.
(Contrast this definition with the definition of the return code,
PARAMETER_ERROR, in the secti on "Return Codes" in Chapter 4.) The
detailed verb descriptions list the applicable parameter checks.

The omi ssi on of a requi red parameter, the speci fi cati on of an
undefined parameter, and the specification of an undefined argu­
ment on a parameter that requires one of a defined set of keywords
are also parameter check conditions. The parameter checks for the
omission of a required parameter and for the specification of an
undefined parameter apply to all verbs. The parameter check for
an undefined keyword argument applies to all verbs that specify
one or more parameters with keyword arguments. These parameter
checks are not explicitly listed with each detailed verb
description.

state Check occurs when the program attempts to issue a verb for a
conversation that is in a state in which the verb is not allowed.
The section "Conversation states" in Chapter 4 defines the allow­
able states for each conversation verb. The control-operator
verbs do not have states associated with them and therafnre do not
have any state checks defined~

The individual verb aescriptions list the applicable ABEND condi­
tions.

Note: In lieu of treating these ABEND conditions as described here,
products may provide a different method for handling the ABEND condi­
tions. For example, a product may return" an error indication to the
program when it attempts to issue a verb in a state in which the verb
is not permitted. allowing the program to continue processing, or a
product may provide a compile-time check for the specification of
opti onal verbs and parameters that the product doe'S not support.
Refer to the individual product's publications for details about how
it treats these conditions.

PRODUCT-SUPPORT SUBSETTING

Product-support subsetting of the verbs is defined by means of func­
ti onal groups, or sets. A set consi sts of all the functi ons that
together represent an indivisible group for products to implement.
That is, a product implementing a particular set implements all of the
functions within that set.

All products implement a subset of LU 6.2 functions called the base
set. The functions that are not part of the base set are optional.

The base set and option sets are defined in terms of the LU 6.2 proto­
col boundary, as follows:

Base set is the set of LU 6.2 verbs, parameters, return codes, and
what-received indications that all products support.

Opt;on sets are the sets of LU 6.2 verbs, parameters. return
codes, and what-received indications that a product may support,
depending on the product. A product may support any number of
option sets, or none. For each option set supported, all verbs,
parameters, return codes, and what-received indications in that
set are supported.

The base set and option sets are further defined in terms of local
support and remote support.

LOcal support is the support of LU 6.2 verbs, parameters, return
codes, and what-received indications that the product provides at
the local end of a conversation, as seen by the local transaction
program. The program may issue an optional verb or parameter only
when the local product supports the option set. An attempt by the
program to issue an optional verb or parameter for which local
support is not available is considered an ABEND condition (see

3-8 SNA Transaction Programmer's Reference Manual for LU Type 6.2

"ABEND Condi ti ons" on page 3-7). An opti onal return code or
what-received indication can be reported to the program only when
the local product supports the option set.

Remote support is the support of verbs and parameters that the
product provides at the remote end of a conversation# as seen by
the local transaction program. (Remote support does not apply to
the return codes and what-received indications.) Only certain
verbs and parameters invoke processing at the remote end of the
conversation; the other verbs and parameters are processed
entirely at the local end of the conversation. When the program
issues a verb or parameter that invokes remote processi ng# and the
remote product does not provide remote support for the verb or
parameter# a return code i ndi cati ng the lack of support is
reported to the program. The return code can be reported on the
verb for whi ch remote support is not ava i lable or on a later verb#
depending on the verb.

The base and optional support for the conversation verbs and control­
operator verbs is defined in "Appendix A. Base and Option Sets for
Product Support".

Note: The base- and option-set definition for product support
described in this boo~ applies only to LU 6.2 products that provide an
appl i cati on programml ng interface (API) for user-wri tten programs
that is equivalent to the conversation verbs. The definition does not
apply to LU 6.2 products that are not user-programmable# or to pro­
ducts that are user-programmable but do not provide an API equivalent
to the conversation verbs; such products need support only the LU 6.2
functions required for their applications.

VERB DESCRIPTION FORMAT

This section explains the format used to describe the verbs in the
following chapters. The verb descriptions are presented alphabet­
ically# by name# in terms of each verb's fUnction# syntactic format#
parameters# state changes# ABEND conditions# and usage notes.

The description of each verb begins with a brief explanation of its
function.

The verb's syntax is described next using a format box. The general
representation of the format box is shown in Figure 3-1 on page 3-10.

Chapter 3. Transaction Program Verbs 3-9

3-10

Sueelied Parametet~:

verb-name parameter (argument)

parameter (argument)
(argument)

parameter (argument argument ... argument)

[parameter (argument)]

[parameter (default-argument)] (argument)

Sueeljgg-and-Returned Parameter2:

parameter (argument)

Returned earameters:

parameter (argument)

[parameter (argument)]
;

Figure 3-1. Format Box for Representing Verb Syntax

As shown in the preceding general format box, the syntax -description
for each verb includes a verb name, verb parameters, and the ending
delimiter "i" (semicolon). The number of verb parameters depends on
the verb, and a verb may not have any parameters.

Parameter names are shown as uppercase keywords. Parameter arguments
are shown as uppercase keywords, as "variables," or as a combination
of keywords and "variables." An argument keyword is used to show a
specific argument value associated with the parameter. An argument
"variable" is used to show that the argument value can vary; it can be
program data, for example.

Some parameters show a vertical list of argument keywords (possibly
combi ned wi th "vari abIes")' The verti cal list means the arguments ara
limited to those within the list, one of which is specified when the
verb is issued. Other parameters show an argument list as "variablel
••• variablen." The number of arguments in the argument list depends
on the verb; the number may be constant or it may vary from one issu­
ance of the verb to the next.

The parameters are grouped as "suppl i ed parameters,"
"suppl i ed-and-returned parameters," or "returned parameters."

• Supplied parameters contain arguments whose values are supplied
by the program when it issues the verb.

• Supplied-and-returned parameters contain arguments whose values
are suppl i ed by the program when it issues the verb and whose val­
ues are returned to the program when it resumes processing.

• Returned parameters contain arguments whose values are returned
to the program when it resumes processing.

Some parameters are shown within brackets. The bracket notation is
used to show which parameters may be omitted when the verb is issued.
It it also used for-cross-publication reference purposes, so that oth-

SHA Transaction Programmer's Reference Manual for LU Type 6.2

er SNA and product publicati~~s that ~~~~r tc the verbs in this book
may omit references to thd bracketed parameters. In particular:

• Some bracKeted supplied parameters have multiple arguments with
one being a default argument, shown as underscored. Omission of
any of these parameters is treated as if the default argument WQ~
specified on the pp.rameter.

• Other bracketed suppli ed parameters have no default argument.
Omissi~n of any of these parameters is treated as described for
the parameter.

• If a bracketed returned parameter is ami "t:ted, the argument valu"
is not returned.

Following the syntax is a description of the verb's parameters.
Included is a list of the return codes that can be returned to the
transaction program when it resumes processing.

The changes, if any, to the state of the conversation at the protocol
boundary are described next. The state changes occur as a result of
executing the verb.

After the description of state changes, the ABEND conditions are given
for each verb.

Finally, notes are given to describe certain aspects of the verb's
usage in order to further clari fy the acti ons of the verb.

Nates:

1. Products may provide application programming interfaces (APIs)
that differ from the verb syntax described in this book. For
example, a product may have different names for operations that
are equivalent to the verbs and parameters described herein; it
may combine the functions of certain verbs into one operation,
such as the functions of MC_SEND_DATA and MC_CONFIRM; and it may
separate the functions of a single verb into distinct operations,
such as separating the functions of MC_ALLOCATE into an operation
that acqu i res the sessi on and an operati on that allocates the con­
versation on the session. These are syntactical, not functional,
differences.

2. The bracket notation used in the syntax diagrams is unrelated to
the product-support subsetting described in this book. See
nproduct-Support Subsettingn on page 3-8 and nAppendix A. Base
and Option Sets for Product Supportn in Appendix A for details
about product support. The bracket notation i5 also unrelated to
any product's API definition. The product may allow a different
set of parameters to be ami tted, if any, and have di fferent
defaults for the supplied parameters. Refer to the product's pro­
gramming publications for details of its API.

Chapter 3. Transaction Program Verbs 3-11

Th;s page ;ntent;onally left blank

3-12 SHATransact;on Programmer's Reference Manual for LU Type 6.2

CHAPTER 4. CONVERSATION VERBS

Thi s chapter descri bes the category of verbs called conversati on
verbs. The conversation verbs define the LU 6.2 conversation protocol
boundary. These verbs are used for program-to-program communications
over a conversation connecting two programs. Each conversation is of
a specific type:

Mapped
Basic

The conversation verbs are divided into subcategories, based on the
conversation type to which they apply:

Mapped conversation verbs
Type-independent conversation verbs
Basic conversation verbs

The mapped conversat i on verbs apply to mapped conversati ons. The
type-independent conversation verbs apply to both mapped and basic
conversations. The basic conversation verbs apply to basic conversa­
tions, and to mapped conversations for use by the mapped conversation
LU services component. Refer to SNA Format and Protocol Reference
Manual: Architecture logic for lU Type 6.2 for a description of the
mapped conversation lU services component.

Following the descriptions of the conversation verbs is a description
of conversati on states that allow issuance of the verbs, and a
description of the return codes that apply to the conversation verbs.

VERB DESCRIPTIONS

The detailed descriptions of the mapped, type-independent, and basic
conversation verbs follow.

Chapter 4. Conversation Verbs 4-1

"APPED CONVERSATION VERBS

This section describes the subcategory of conversation verbs called
mapped conversation verbs. These verbs are intended for use by appli­
cation transaction programs. They provide functions, such as data
mapping (a product option), that make the verbs suitable for applica­
tion programs written in a high-level programming language. Addi­
tionally, these verbs conceal from the application program the
logical-rp.cord data-stream format that a program using the basic con­
versation verbs must manage. The detailed descriptions of the mapped
conversation verbs follow.

Note: Every conversation is either a mapped or basic conversation.
The mapped conversation verbs are used for operations only on mapped
conversations. Thus, throughout the descriptions of the mapped con­
versation verbs, references are made only to mapped conversations.
The program allocates a mapped conversation when it issues the
MC_ALLOCATE verb. Contrast this with the basic conversation verb,
ALLOCATE, which can allocate a conversation of either type, mapped or
basic.

4-2 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Happed conversation Verbs

Allocates a session between the local lU and a remote lU, and on that
session allocates a mapped conversation between the local transaction
program and a remote transaction program. A resource ID is assigned
to the mapped conversation. This verb is issued prior to any verbs
that refer to the mapped conversation. .

supplied Parameters:

LU_NAHE (OWN)
(OTHER (variable))

HODE_NAME (variable)

TPN (variable)

(WHEN SESSION ALLOCATED)

[SYNC_LEVEL

[
(

SECURITY (
(

(DELAYED_ALLOCATION_PERHITTED
(IHtiEDIATE)

(NONE)] (CONFIRH)
(SYNCPT)

NONE)
SAME)
PGM (USER_ID (variable) PASSWORD

PROFILE (variable)))
(variable

[PIP (NO)]
(YES (variable! variable2 ••• variablen))

Returned Parameters:

RESOURCE (variable)

RETURN_CODE (variable)

;

supplied Parameters:

)]

LU_NAHE specifies the name of the remote LU at which the remote trans­
acti on program is located. Thi s LU name is any name by whi ch the
local LU knows the remote LU for the purpose of allocating a mapped
conversation. The local LU transforms this locally-known LU name to
an lU name used by the network, if the names are different.

• OWN specifies that the remote transaction program is located at
the same lU as the local program.

• OTHER specifies that the remote transaction program is located at
another LU. The specified variable contains the lU name.

HODE_NAME specifies the mode name designating the network properties
for the session to be allocated for the mapped conversation. The net­
work properties include, for example, the class of service to be used,
and whether data is to be enciphered or translated to ASCII before it
is sent. The SNA-defined mode name, SNASVCMG, is not allowed to be
specified on the MC_ALLOCATE verb (contrast this with the ALLOCATE
verb).

TPN specifies the name of the remote transaction program to be con­
nected at the other end of the mapped conversation. TPN cannot speci­
fy an SNA service transaction program name at the mapped conversation
protocol boundary. (See "Appendix D. list of SNA Service Transaction

Chapter 4. Conversation Verbs 4-3

Programs" for more detai Is about SNA service transaction program
names.)

RETURN_CONTROL specifies when the local LU is to return control to the
local program, in relation to the allocation of a session for the
mapped conversation. An allocation error resulting from the local
LU's fai lure to obtai n a sessi on for the mapped conversat; on is
reported either on this verb or a subsequent verb, depending on the
argument specified for this parameter. An allocation error resulting
from the remote LU's rejection of the allocation request is reported
on a subsequent verb.

• WHEN_SESSION_ALLOCATED specifies to allocate a session for the
mapped conversation before returning control to the program. An
error in allocating a session is reported on this verb.

• DELAYED_ALLOCATION_PERMITTED specifies to allocate a session for
the mapped conversation after returning control to the program.
An error in allocating a session is reported on a subsequent verb.

• IMMEDIATE specifies to allocate a session for the mapped conver­
sation if a session is immediately available, and return control
to the program with a return code indicating whether a session is
allocated.

A return code of OK indicates a session is immediately avail­
able and is allocated for the mapped conversation. A session
is immediately available when it is active, it is not allo­
cated to another mapped conversation, and the local LU is the
contention winner for the session.

A return code of UNSUCCESSFUL indicates a session is not imme­
diatelyavailable. Allocation is not performed.

An error in allocating a session that is immediately available is
reported on this verb.

SYNC_LEVEL speci fi es the synchroni zati on level that the local and
remote transaction programs can use on this mapped conversation.

• NONE speci fi es that the transacti on programs wi 11 not perform
confi rmati on or sync poi nt processi ng on thi s mapped conversa­
tion. The programs will not issue any verbs and will not recog­
nize any returned parameters relating to these synchronization
functions.

• CONFIRM specifies that the transaction programs can perform con­
firmation processing but not sync-point processing on this mapped
conversation. The programs may issue verbs and will recognize
returned parameters relating to confirmation, but they will not
issue any verbs and will not recognize any returned parameters
relating to sync point.

• SYNCPT specifies that the transaction programs can perform both
confirmation and sync-point processing on this mapped conversa­
tion. The programs may issue verbs and will recognize returned
parameters relating to confirmation or sync point. For
sync-point processing, a mapped conversation allocated with this
synchronization level is a protected resource.

SECURITY speci fi es access securi ty i nformati on that the remote LU
uses to verify the identity of the end user and validate access to the
remote program and its resources. The access security information
consists of a user ID, a password, and a profile.

• NONE specifies to omit access security information on this allo­
cation request.

• SAME specifies to use the user ID and profile (if present) from
the allocation request that initiated execution of the local pro­
gram. The password (if present) is not used; instead, the user ID
is indicated as being already verified. If the allocation request
that initiated execution of the local program contained no access

4-4 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Mapped Conversation Verbs

security information, then access security information is omitted
on this allocation request.

• PGM speci fi es to use the access securi ty i nformati on that the
local transaction program provides on this parameter. The local
program provides the information by means of the following argu­
ments:

USER_ID specifies the variable containing the user ID. The
remote LU uses this value and the password to verify the iden­
tity of the end user making the allocation request. In addi­
tion, the remote LU may use the user ID for auditing or
accounting purposes, or it may use the user ID, together with
the profile (if present), to determine which remote programs
the local program may access and which resources the remote
program may access.

PASSWORD specifies the variable containing the password. The
remote LU uses this value and the user ID to verify the iden­
tity of the end user making the allocation request.

PROFILE specifies the variable containing the profile. The
remote LU may use this value, in addition to or in place of
the user ID, to determine which remote programs the local pro­
gram may access, and which resources the remote program may
access.

Specifying a null value for any of the access security arguments
is equivalent to omitting the argument.

PIP specifies program initialization parameters for the remote trans­
action program.

• NO specifies that PIP data is not present.

• YES specifies that PIP data is present.

variable1 variable2 ••• variablen contain the PIP data to be
sent to the remote transaction program. The PIP data consists
of one or more subfields, each of which is specified by a sep­
arate variable; variables 1 through n correspond to subfields
1 through n. If a variable is omitted in the PIP parameter or
it is of null value, the correspondi ng PIP subfi eld is made to
be of zero length. The number of PIP subfields must agree
with the number of PIP variables specified on the remote pro­
gram's PROC statement (see "Transaction Program Structure and
Execution" in Chapter 3).

Returned Parameters:

RESOURCE specifies the variable in which the resource ID is to be
returned. The length and actual format of the resource ID is product
dependent. The resource ID is returned tq the program when the return
code is either OK or ALLOCATION_ERROR.

RETURN_CODE specifies the variable in which a return code is returned
to the local program. The return code indicates the result of verb
execution. The RETURN_CONTROL parameter determines which of the fol­
lowing return codes can be returned to the program.

• If RETURN_CONTROL (WHEN_SESSION_ALLOCATED) is specified, one of
the following return codes is returned:

OK
ALLOCATION_ERROR (with one of the following subcodes)

ALLOCATION_FAILURE_NO_RETRY
ALLOCATION_FAILURE_RETRY
SYNC_LEVEL_NOT_SUPPORTED_BY_LU

PARAMETER_ERROR (for one of the following reasons)
Inval i d LU name
Invalid mode name

• If RETURN_CONTROL (DELAYED_ALLOCATION_PERMITTED) is specified,
one of the following return codes is returned:

Chapter 4. Conversation Verbs 4-5

OK
PARAMETER_ERROR (for one of the following reasons)

Inval i d LU name
Inval i d mode name

• If RETURN_CONTROL(IMMEDIATE) is specified, one of the following
return codes is returned:

OK
ALLOCATION_ERROR (with the following subcode)

SYNC_LEVEL_NOT_SUPPORTED_BY_LU
PARAMETER_ERROR (for one of the following reasons)

Invali d LU name
Invalid mode name

UNSUCCESSFUL (for the following reason)
Session not immediately available

stata Changes (when RETURN CODE indicates OK):

Send state is entered.

ABEND Conditions:

Parameter Check

• The program does not have mapped conversation support defined.
• LU_NAME(OWN) is specified and not supported.
• MODE_NAME specifies the SNA-defined mode name, SNASVCMG.
• TPN specifies an SNA service transaction program.
• TPN specifies a null (zero length} value.
• RETURN_CONTROL (DELAYED_ALLOCATION_PERMITTED) is specified and

not supported.
• RETURN_CONTROL(IMMEDIATE) is specified and not supported.
• SYNC_LEVEL(SYNCPT) is specified and not supported.
• SECURITYCSAME) is specified and not supported.
• SECURITYCPGMCUSER_IDCvariable) PASSWORDCvariable») is specified

and not supported.
• SECURITYCPGM(PROFILECvariable») is specified and not supported.
• PIP(YES(variable» is specified and not supported.

state check

None

Notas:

1. Depending on the product, the LU may send the allocation request
to the remote LU as soon as it allocates a session for the mapped
conversation. Alternatively, the LU may buffer the allocation
request until it accumulates from the PIP parameter of this verb
or from one or more subsequent MC_SEND_DATA verbs a suffi ci ent
amount of information for transmission, or until the local pro­
gram issues a subsequent verb other than MC_SEND_DATA that
explicitly causes the LU to flush its send buffer. The amount of
information that is sufficient for transmission dElpend!'; on the
characteristics of the sessi~~ allcc=tGd for the mapped conversa­
t ion, and can vary frol11 (HIe session to another.

2. The)~c31 program can ensure that the remote program is connected
as soon as possible by issuing MC_FLUSH immediately after
MC_ALLOCATE.

3. Two LUs connected by a sessi on may both attempt to allocate a
mapped conversati on on the sessi on at the same ti me. Thi sis
called conte~tion. Contention is resolved by making one LU the
contention winner of the session and the other LU the contention
loser of the session. The contention-winner LU all~cates a mapped
conversation on a session without asking permission from the con­
tention-loser LU. Conversely, the contention-loser LU requests
permission from the contention-winner LU to allocate a mapped
conversation on the session, and the contention-winner LU either
grants or rejects the request.

4-6 SHA Transaction Programmer's Reference Manual for LU Type 6.2

Mapped Canversatian Verbs
4. If the program issues MC_AllOCATE wUh the parameter

RETURN_CONTROl(DElAYED_AllOCATION_PERMITTED). the lU delays
allocation of the session until it flushes its send buffer. At
that time the LU allocates the session and transmits the allo­
cation request to the remote LU. The program is unaffected by the
delayed allocation of the session. with one exception: When the
LU allocates a contention-loser session. it does 50 by transmit­
ting the allocation request and then waiting for information to
arrive before returning control to the program. This can affect
the sequence of the verbs that the program can issue.

For example. suppose the program has the followi ng sequence of
verbs:

MC_ALLOCATE wi th
RETURN_CONTROL (DELAYED_ALLOCATION_PERMITTED)

MC_PREPARE_TO_RECEIVE with TYPE (FLUSH)

MC_REQUEST_TO_SEND

In this example. assume the program is using MC_REQUEST_TO_SEND
to prompt the remote program to begi n sendi ng i nformat ion.
instead of requesting send control. However. if the LU allocates
a contention-loser session (and an allocation error or resource
failure does not occur), control ;s not returned to the program
after it issues the MC_PREPARE_TO_RECEIVE until the remote pro­
gram sends some information. If the remote program waits for the
REQUEST_TO_SEND notification before sending any information. a
deadlock condition occurs. This deadlock can be avoided by issu­
ing the MC_ALLOCATE with either RETURN_CONTROL
CWHEN_SESSION_ALLOCATED) or RETURN_CONTROL (IMMEDIATE).

5. SYNC_LEVEUSYNCPT) permi ts use of the SYNCPT and BACKOUT verbs
and the Resynchroni zati on transacti on program (an SNA servi ce
transaction program). to aid in maintaining consistency across
all protected resources wi thi n a di stri buted logi cal uni t of
work. The Resynchronization program performs sync point'resyn­
chronization. which maintains this consistency when session fail­
ure and reinitiation occurs. See SNA Format and Protocol
Reference Manual: Archjtecture logjc for LU Tvpe 6.2 for more
details of sync point resynchron;zation.

6. Each LU indicates at session activation time whether it will
accept LU security parameters on allocation requests the partner
LU sends. If the remote LU will not accept any security parame­
ters from the local LU. and the local program specifies SECURI­
TYCSAME) or SECURITYCPGMC ..• ». the local LU downgrades the
specifi cation to SECURITYCNONE). SimilarlY. if the remote LU
will not accept the local LU's verification of the user ID and
password, and the local program speci fi es SECURITYCSAME). the
local LU downgrades the specification to SECURITYCNONE).

7. The remote program is connected to the other end of the mapped
conversation in receive state.

8. The program uses the resource ID. returned to the program on the
RESOURCE parameter. on all subsequent mapped conversation verbs
it issues for this mapped conversation.

9. References in this verb description to a program being in a par­
ticular state are only in terms of the allocated mapped conversa­
tion.

Chapter 4. Conversation Verbs 4-7

MC_CONFIRM

Sends a confirmation request to a remote transaction program and waits
for a reply. This verb allows the local and remote programs to syn­
chronize their processing with one another. The LU flushes its send
buffer as a function of this verb.

su~~lied pa~ametars:

RESOURCE (variable)

Returned Parameters:

RETURN_CODE (variable)

REQUEST_TO_SEND_RECEIVED (variable)

J

Su~~l;ed Parameters:

RESOURCE speci fi es the vari able contai ni ng the resource ID. The
mapped conversation must be allocated with a synchronization level of
CONFIRM or SYNCPT.

Returned Parameters:

RETURN_CODE specifies the variable in which a return code is returned
to the local program. The return code iDdicates the result of verb
execution.

• OK (remote program replied MC_CONFIRMED)
• ALLOCATION_ERROR
• BACKED_OUT
• DEALLOCATE_ABEND
• FMH_DATA_NOT_SUPPORTED
• MAPPING_NOT_SUPPORTED
• MAP_NOT_FOUND
• MAP_EXECUTION_FAILURE
• PROG_ERROR_PURGING
• RESOURCE_FAILURE_NO_RETRY
• RESOURCE_FAILURE_RETRY

REQUEST_TO_SEND_RECEIVED specifies the variable in which is returned
an indication of whether REQUEST TO SEND has been received. The indi-
cation is either YES or NO. --

• YES indicates a REQUEST_TO_SEND notification has been received
from the remote transacti on program. The remote program has
issued MC_REQUEST_TO_SEND, requesting the local program to enter
receive state and thereby place the remote program in send state.

• NO indicates a REQUEST_TO_SEND notification has not been
received.

state Changes (when RETURN CODE indicates OK):

Receive state is entered when the verb is issued in defer state fol­
lowing MC_PREPARE_TO_RECEIVE.

Reset state is entered when the verb is issued in defer state follow­
ing MC_DEALLOCATE.

No state change occurs when the verb is issued in send state.

ABEND Conditions:

Parameter Check

• This mapped conversation was allocated with SYHC_LEVELCHONE).
• RESOURCE specifies an unassigned resource ID.

4-8 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Happed conversation verbs
state Check

The mapped conversatton is not in send or defer state.

Notes:

1. The program may use this verb for various application-level func­
tions. For example:

• The program may issue this verb immediately following an
MC_ALLOCATE in order to determine whether the allocation of
the mapped conversation is successful before sending any data
records.

• The program may issue this verb as a request for acknowledge­
ment of data records it sent to the remote program. The
remote program may respond by i ssui ng MC_CONFIRMED as an
i ndi cati on that it recei ved and processed the data records
without error, or by issuing MC_SEND_ERROR as an indication
that it encountered an error.

2. When REQUEST_TO_SEND_RECEIVED indicates YES, the remote program
requests the local program to enter recei ve state and thereby
place the remote program in send state. A program enters receive
state by means of the MC_PREPARE_TO_RECEIVE or
MC_RECEIVE_AND_WAIT verb. The partner program enters the corre­
spondi ng send state when it issues an f'lC_RECEIVE_AND_WAIT or
MC RECEIVE IMMEDIATE verb and receives the SEND indication (on
the WHAT_RECEIVED parameter).

3. References in this verb ·description to a program being in a par­
ticular state are only in terms of the specified mapped conversa­
tion.

Chapter 4. Conversation Verbs 4-9

HC_CONFIRHED

Sends a confirmation reply to the remote transaction program. This
v~rb allows the local and remote programs to synchronize their proc­
essing with one another. The local program can issue this verb when
it receives a confirmation request (see the WHAT_RECEIVED parameter
of the MC_RECEIVE_AND~WAIT or MC_RECEIVE_IMMEDIATE verb).

Sueelied Parameters:

RESOURCE (variable)

;

sueplied Parameters:

RESOURCE specifies the variable containing the resource ID.

state Changes:

Receive state is entered when CONFIRM was received on the preceding
MC_RECEIVE_AND_WAIT or MC_RECEIVE_IMMEDIATE.

Send state is entered when CONFIRM SEND was received on the preceding
MC_RECEIVE_AND_WAIT or MC_RECEIVE_IMMEDIATE.

Deallocate state is entered when CONFIRM_DEALLOCATE was received on
the preceding MC_RECEIVE_AND_WAIT or MC_RECEIVE_IMMEDIATE.

ABEND Conditions:

Parameter Check

RESOURCE specifies an un.assigned resource ID.

state Check

The mapped conversation is not in confirm state.

Notes:

1. The program can issue this verb only as a reply to a confirmation
request; the verb cannot be issued at any other time.

2. The program may use this verb for various application-level func­
tions. For example, the remote program may send some data records
followed by a confi rmati on request. When the local program
receives the confirmation request, it may issue this verb as an
indication that it received and processed the data records with­
out error.

3. References in this verb description to a program being in a par­
ticular state are only in terms of the specified mapped conversa­
tion.

4-10 SMA Transaction Programmer's Reference Manual for LU Type 6.2

MC_DEALLOCATE

Mapped Conversation Verbs

Deallocates the specified mapped conversation from the transaction
program. The deallocation can be either completed as part of this
verb, or deferred until the program issues an MC_FLUSH, MC_CONFIRM, or
SYNCPT verb. When it is completed as part of this verb it can include
the funct i on of the MC_FLUSH or MC_CONFIRM verb. The resource ID
becomes unassigned when deallocation is complete.

SUl!l!lied Para~ters:

RESOURCE (variable)

[I SYNC LEVEL)

] (FLUSH)
TYPE (CONFIRM)

(ABEND)
(LOCAL)

Retutned paramgters:

RETURN_CODE (variable)

J

SUl!l!l;ed Parameters:

RESOURCE specifies the variable containing the resource ID of the
mapped conversation to be deallocated.

TYPE specifies the type of deallocation to be performed.

• SYNC_LEVEL specifies to perform deallocation based on the syn­
chronization level allocated to this mapped conversation:

If SYNC_LEVELCNONE), execute the functi on of the MC_FLUSH
verb and deallocate the mapped conversation normally.

If SYNC_LEVELCCONFIRM), execute the function of the
MC_CONFIRM verb and if it is successful (as indicated by a
return code of OK on this MC_DEALLOCATE verb), deallocate the
mapped conversation normally; if it is not successful, the
state of the mapped conversation is determined by the return
code.

If SYNC_LEVEL(SYNCPT), defer the deallocation until the pro­
gram issues a SYNCPT, or the program issues an MC_CONFIRM or
MC_FLUSH for thi s mapped conversati on. If the SYNCPT or
MC_CONFIRM is successful (as indi~ated by a return code of OK
on that verb) or MC_FLUSH is issued, the mapped conversation
is then deallocated normally; otherwi se, the state of the
mapped conversation is determined by the return code.

• FLUSH specifies to execute the function of the MC_FLUSH verb and
deallocate the mapped conversation normally.

• CONFIRM specifies to execute the function of the MC_CONFIRM verb
and if it is successful (as indicated by a return code of OK on
thi 5 MC_DEALLOCATE verb), deallocate the mapped conversati on
normally; if it is not successful, the state of the mapped conver­
sation is determined by the return code.

• ABEND specifies to execute the function of the MC_FLUSH verb when
the mapped conversation is in send or defer state, and deallocate
the mapped conversation abnormally. Data purging can occur when
the mapped conversation is in receive state.

• LOCAL specifies to deallocate the mapped conversation locally.
This type of deallocation must be specified if, and only if, the
mapped conversation is in deallocate state. Deallocate state is

Chapter 4. Conversation Verbs 4-11

entered when the program receives on a previously issued verb a
return code indicating the mapped conversation has been deallo­
cated C see "Return Codes" on page 4-99).

The execution of the MC_FLUSH or MC_CONFIRM function as part of this
verb includes the flushing of the LU's send buffer. Whan, instaad,
the deallocation is deferred, the LU also defars flushing its send
buffer until the program issues a subsequent verb for this mapped con­
varsation.

Returned Parameters:

RETURN_CODE spacifies the variable in which a return code is returnad
to the local program. The return code indicatas the result of verb
executi on. The TYPE parameter determi nes whi ch of the followi ng
return codes can be returned to the program.

• If TYPECSYNC_LEVEL) is specified and the synchronization level
allocated to thi s mapped conversation is HONE, or TYPECFLUSH),
TYPECABEHD), or TYPECLOCAl) is specified, the following return
code is returned:

OK Cdeallocation is complete)

• If TYPECSYNC_LEVEL) is specified and the synchronization level
allocated to this ma~ped conversation is CONFIRM, or
TYPECCONFIRM) is specified, one of the following return codes is
returned:

OK Cdeallocation is complete)
ALLOCATION_ERROR

~~~:~2~~~~D~~~~~PORTED 
M"APPING_NOT _SUPPORTED 
MAP_NOT_FOUHD 
MAP_EXECUTION_FAILURE 
PROG_ERROR_PURGING 
RESOURCE_FAILURE_NO_RETRY 
RESOURCE_FAILURE_RETRY 

• If TYPECSYNC_LEVEl) is specified and the synchronization level 
allocated to this mapped conversation is SYNCPT, the following 
return code is returned: 

OK Cdeallocation is deferred) 

state Changes (when RETURN CODE indicates OK): 

Defer state is entered when TYPECSYNC_LEVEL) is specified and the syn­
chronization level is SYHCPT. 

Reset state is entered when TYPECFLUSH), TYPECCONFIRM), TYPECLOCAL), 
or TYPECABEND) is specified, or when TYPECSYNC_LEVEL) is specified 
and the synchronization level is NONE or CONFIRM. 

ABEND Conditions: 

Parameter Check 

• RESOURCE specifies an unassigned resource ID. 
• TYPECCONFIRM) is specified and the mapped conversation is allo­

cated with SYNC_LEVELCNONE). 

state Check 

• TYPECFLUSH), TYPECCONFIRM), or TYPECSYNC_LEVEL) is specified and 
the mapped conversation is not in send state. 

• TYPECABEND) is specified and the mapped conversation is not in 
send, defer, receive, confirm, or sync point state. 

• TYPECLOCAL) is specified and the mapped conversation is not in 
deallocate state. 

4-12 SNA Transaction Programmer's Reference Manual for LU Type 6.2 



"apped conversat;on Verbs 
Hates: 

1. When the deallocation is deferred (see the TYPE parameter), the LU 
buffers the deallocation information to be sent to the remote LU 
until the local program issues a verb that causes the LU to flush 
its send buffer. 

2. The TYPE( SYNC_LEVEL> parameter is intended to be used by the 
transaction program in order to deallocate the mapped conversa­
tion based on the synchronization level allocated to the mapped 
conversation. 

3. 

• If the synchronization level is NONE, the mapped conversation 
is unconditionally deallocated. 

• If the sYnchronization level is CONFIRM, the mapped conversa­
tion is deallocated when the remote program responds to the 
confi rmati on request by i ssui ng MC CONFIRMED. The mapped 
conversation remains allocated when the remote program 
responds to the confirmation request by issuing 
MC_SEND_ERROR. 

• If the synchronization level is SYNCPT, the mapped conversa­
ti on is deallocated when the local program subsequently 
issues SYNCPT and all programs throughout the transaction, 
connected to conversations having the synchronization level 
of SYNCPT, respond to the sync poi nt request by i ssui ng 
SYNCPT. The mapped conversation remains allocated when the 
remote program responds to the sync point request by issuing 
MC_SEND_ERROR, or one or more programs respond by i ssui ng 
BACKOUT. 

The TYPECFLUSH) parameter is intended to be used by the 
action program in order to unconditionally deallocate the 
conversation regardless of its synchronization 
TYPE(FLUSH) is functionally equivalent to: 

• TYPE(SYNC_LEVEL) with a synchronization level of NONE. 

trans­
mapped 
level. 

• TYPE(SYNC LEVEL) with a synchronization level of SYNCPT, fol­
lowed by the MC_FLUSH verb. 

4. The TYPE(CONFIRM) parameter is intended to be used by the trans­
acti on program in order to condi ti onaUy deallocate the mapped 
conversation, depending on the remote program's response, when 
the synchronization level is CONFIRM or SYNCPT. TYPE(CONFIRM) is 
functionally equiv~lent to: 

• TYPE(SYNC_LEVEL) with a synchronization level of CONFIRM. 

• TYPE(SYNC_LEVEL) with a synchronization level of SYNCPT, fol­
lowed by the MC_CONFIRM verb. 

The mapped conversation is deallocated when the remote program 
responds to the confi rmation request by issuing MC_CONFIRMED. 
The mapped conversation remains allocated when the remote program 
responds to the confirmation request by issuing MC_SEND_ERROR. 

5. The TYPE(ABEND) parameter is intended to be used by the trans­
action program in order to Unconditionally deallocate the mapped 
conversation regardless of its synchronization level and its cur­
rent state. Specifically, the parameter is intended to be used 
when the program detects an error condition that prevents further 
useful communications, that is, communications that would lead to 
successful completion of the transaction. The specific use and 
meaning of ABEND are program-defined. 

6. The TYPE(LOCAL) parameter is intended to be used by the trans­
action program in order to complete the program's deallocation of 
the mapped conversation after receiving an indication that the 
mapped conversati on has been deallocated from the sessi on, an 
indication such as a DEALLOCATE_NORMAL or RESOURCE_FAILURE_RETRY 
return code. 

Chapter 4. Conversation Verbs 4-13 



7. Th~ remote transaction program receives the deallocate notifica­
tion by means of a return code or what-received indication, as 
follows: 

• DEALLOCATE NORMAL return code: The local program specified 
either TYPECFLUSH); TYPECSYNC_LEVEL) and the synchronization 
level is NONE; or TYPECSYNC_LEVEL), the synchronization level 
is SYNCPT, and the local program subsequently issued 
MC_FlUSH. 

• CONFIRM DEALLOCATE what-received indication: The local pro­
gram specified either TYPECCONFIRM); TYPECSYNC_LEVEL) and the 
synchroni zati on level is CONFIRM; or TYPECSYNC_LEVEU, the 
synchronization level is SYNCPT, and the local program subse­
quently issued MC_CONFIRM. 

• TAKE_SYNCPT_DEALLOCATE what-received indication: The local 
program specified TYPECSYNC_LEVEL), the synchronization level 
is SYNCPT, and the local program subsequently issued SYNCPT. 

• DEALLOCATE_ABEND return code: The local program speci fi ed 
TYPECABEND), with the followi ng excepti on: If the remote 
program has issued MC_SEND_ERROR in receive state, a DEALLO­
CATE_NORMAL return code is reported instead of DEALLO­
CATE_ABEND. 

8. MC_DEALLOCATE with TYPECABEND) resets or cancels posting. If 
posting is active and the mapped conversation has been posted, 
posting is reset. If posting is active and the mapped conversa­
tion has not been posted, posting is canceled Cposting will not 
occur). See the MC_POST_ON_RECEIPT .verb for more details about 
posting. 

9. References in this verb description to a program being in a par­
ticular state are only in terms of the specified mapped conversa­
tion. 

4-14 SNA Transaction Programmer's Reference Manual for LU Type 6.2 



"C_FLUSH 

"apped canversat;an Verbs 

Flushes the local LU's send buffer. The LU sends any information it 
has buffered to the remote LU. Information the LU buffers can come 
from MC_ALLOCATE, MC_DEALLOCATE, MC_SEND_DATA, 
MC_PREPARE_TO_RECEIVE, or MC_SEND_ERROR. Refer to the descriptions 
of these verbs for details of the information the LU buffers and when 
buffering occurs. 

IUE!E!ligd !Itamatetl: 

RESOURCE ( var;able ) 

J 

SUE!E!l;ad Plrametetl: 

RESOURCE specifies the variable containing the resource ID. 

Sbte Changel: 

Rece;ve state is entered when the verb is issued in defer state fol­
lowing MC_PREPARE_TO_RECEIVE. 

Reset state is entered when the verb is issued in defer state follow­
ing MC_DEALLOCATE. 

No state change occurs when the verb is issued in send state. 

ABEND cand;t;ans: 

parameter Check 

• This verb is not supported. 
• RESOURCE specifies an unassigned resource 10. 

sbte Check 

The mapped conversation is not in send or defer state. 

Natgs: 

1. This verb ;5 useful for optimization of processing between the 
local and remote programs. The LU normally buffers the data 
records from consecutive MC_SEND_DATAs until it has a sufficient 
amount for transmission. At that time it transmits the buffered 
data records. However, the local program can issue MC_FLUSH in 
order to cause the LU to transmit the buffered data records. In 
this way, the local program can minimize the delay in the remote 
program's processing of the data records. 

2. This verb can be issued after MC_DEALLOCATE with TYPECSYNC_LEVEL) 
when the synchron i zat i on level for the mapped conversat ion is 
SYNCPT. The effect to the remote program is the same as issuing 
MC_DEALLOCATE with TYPECFlUSH). The mapped conversation is deal­
located at the completion of the Me_FLUSH verb. 

3. This verb can be issued after MC_PREPARE_TO_RECEIVE with 
TYPECSYNC_LEVEL) when the synchronization level for the mapped 
conversation is SYNCPT. The effect to the remote program is the 
same as i ssui ng MC_PREPARE_TO_RECEIVE with TYPEC FLUSH)' The 
mapped conversation enters receive state at the completion of the 
MC_FLUSH verb. 

4. The LU flushes its send buffer only when it has some information 
to transmit. If the LU has no information in its send buffer, 
nothing is transmitted to the remote LU. 

5. References in this verb description to a program being in a par­
ticular state are only in terms of the specified mapped conversa­
tion. 

Chapter 4. Conversation Verbs 4-15 



Returns information pertaining to the specified mapped conversation. 

Supplied Parameters: 

RESOURCE ( variable ) 

Returned parameters: 

[ OWN_FULLY_QUALIFIED_LU_NAHE ( variable ) ] 

[ PARTNER_LU_NAHE ( variable ) ] 

[ PARTNER_FULLY_QUALIFIED_LU_NAME ( variable ) ] 

[ MODE_NAHE ( variable ) ] 

[ SYNC_LEVEL ( variable ) ] 

[ SECURITY_USER_ID ( variable ) ] 

[ SECURITY_PROFILE ( variable ) ] 

[ LUW_IDENTIFIER ( variable ) ] 

[ CONVERSATION_CORRELATOR ( variable ) ] 

J 

Supplied parameters: 

RESOURCE specifies the variable containing the resource ID of the 
mapped conversation of which the attributes are desired. 

Returned Parameters: 

OWN_FULLY_QUALIFIED_LU_NAHE specifies the variable for returning the 
fully qualified name of the LU at which the local transaction program 
is located. If the local fully qualified LU name is not known, a null 
value is returned. 

PARTNER_LU_NAME specifies the variable for returning the name of the 
LU at which the remote transaction program is located. This is a name 
by which the local LU knows the remote LU for the purpose of allocat­
ing a mapped conversation. Refer to the description of the LU_NAME 
parameter of MC_ALLOCATE for more detai Is. 

PARTNER_FULLY_QUALIFIED_LU_NAHE specifies the variable for returning 
the fully qualified name of the LU at which the remote transaction 
program is located. If the partner's fully qualified LU name is not 
known, a null value is returned. 

HODE_NAHE specifies the variable for returning the mode name for the 
session on which the mapped conversation is allocated. 

SYNC_LEVEL specifies the variable for returning the level of synchro­
nization processing being used for the mapped conversation. The syn­
chronization levels are: 

• NONE 
• CONFIRM 

4-16 SNA Transaction Programmer's Reference Manual for LU Type 6.2 



"apped Conversation Verbs 

• SYHCPT 

SECURITY_USER_ID specifies the variable for returning the user ID 
carried on the allocation request that initiated execution of the 
local program. A null value is returned if the allocation request did 
not contain a user ID. 

SECURITY_PROFILE speci fi es the variable for returni ng the profi Ie 
carried on the allocation request that initiated execution of the 
local program. A null value is returned if the allocation request did 
not contain a profile. 

LUW_IDENTIFIER specifies the variable for returning the logical unit 
of work (lUW) identifier associated with the mapped conversation. The 
lUW identifier is created and maintained by the lU. The lU uses it to 
identify the most recent sync point and for accounting purposes. If 
no lUW identifier is used on the mapped conversation, a null value is 
returned. 

CONVERSATION_CORRELATOR specifies the variable for returning the con­
versat ion correlator. The conversati on correlator is created and 
maintained by the lU. The lU uses it during sync point resynchroniza­
tion. If no conversation correlator is used on the mapped conversa­
tion, a null value is returned. 

state Changes: 

Hone 

ABEND Conditions: 

Parameter Check 

• This verb is not supported. 
• RESOURCE specifies an unassigned resource ID. 
• SECURITY_USER_ID is specified and not supported. 
• SECURITY_PROFILE is specified and not supported. 
• lUW IDENTIFIER is specified and not supported. 
• CONVERSATION_CORRElATOR is specified and not supported. 

State Check 

None 

Notes: 

1. 

2. 

3. 

4. 

The program may issue this verb in order to obtain the attributes 
of the mapped conversation, including the one by which the program 
was started. 

Specifying SECURITY USER ID or SECURITY_PROFILE returns the user 
ID or profile carried on the allocation request that initiated 
execution of the local program, regardless of which resource ID is 
supplied on the RESOURCE parameter. 

The lU creates the lUW identifier for its use during sync point 
processing, and for accounting purposes. For sync point, the lUW 
i denti fi er uni quely i denti fi es the most recent synchroni zati on 
point. 

The lU creates the conversation correlator for its use during sync 
point resynchronization. For sync point resynchronization, the 
conversation correlator correlates the logical unit of work to 
the sync point states associated with the current instance of the 
local program. 

Chapter 4. Conversation Verbs 4-17 



KC_POST_ON_RECEIPT 

Causes the LU to post the specified mapped conversation when informa­
tion is available for the program to receive. The information can be 
data. mapped conversation status. or a request for confirmation or 
sync point. WAIT should be issued after MC_POST_OH_RECEIPT in.order 
to wait for posting to occur. Alternatively. MC_TEST may be lssued 
following MC_POST_OH_RECEIPT in order to determine when posting has 
occurred. 

Sueeli!d ~a~amatars: 

KC_POST_ON_RECEIPT RESOURCE ( v~r,able ) 

LENGTH ( variable ) 

J 

Sueeliad ~aramaters: 

RESOURCE specifies the variable containing the resource ID. 

LENGTH specifies the variable containing a length value. which is the 
maximum length data record that the program can receive. This parame­
ter is used to determine when to post the mapped conversation for the 
receipt of a data record. 

state Chanses: 

None 

ABEND Conditions: 

Parameter Check 

• This verb is not supported. 
• RESOURCE specifies an unassigned resource ID. 

state Check 

The mapped conversation is not in receive state. 

Nates: 

1. This verb is intended to be used in conjunction with Me TEST or 
WAIT. The use of this verb and WAIT allows a program to-perform 
synchronous receiving from multiple mapped conversations. where 
the program issues this verb for each of the mapped conversations 
and then issues WAIT (for each mapped conversation) to wait until 
information is available to be received on the mapped conversa­
tions. The use of this verb and MC_TEST allows a program to con­
tinue its processing and test the mapped conversations to 
determine when information is available to be received. 

2. Posting occurs when the LU has any information that the program 
can receive, such as a data record, mapped conversation status, or 
a request for confirmation or sync point. Refer to the 
MC_~ECEIVE_AHD_WAIT verb.for a description of the types of infor­
matlon a program can recelve. 

3. Posting is active for a mapped conversation when 
MC_POST_ON_RECEIPT has been issued for the mapped conversation 
and posting has not yet been reset or cancelled. 

Posting is reset when any of the following verbs is issued for the 
same mapped conversation as specified on MC_POST_ON_RECEIPT Af1gc 
the mapped conversation is posted: 

4-18 SNA Transaction Programmer's Reference Manual for LU Type 6.2 



Mapped conversat;on Verbs 

Posting is cancelled when any of the following verbs is issued for 
the same mapped conversation as specified on MC_POST_ON_RECEIPT 
before the mapped conversation is posted: 

BACKOUT 
MC_DEALLOCATE with TYPE(ABEND) 
MC_RECEIVE_IMMEDIATE 
MC_SEND_ERROR 

In order for the program to activate posting again after posting 
has been reset or cancelled, the program issues another 
MC_POST_ON_RECEIPT. 

4. Any number of MC_POST_ON_RECEIPTs may be issued for a given mapped 
conversati on before posti ng is reset or cancelled. The last 
MC_POST_ON_RECEIPT issued for a mapped conversation ;5 the one 
that determines when posting will occur for data. For example, if 
a program issues MC_POST_ON_RECEIPT with LENGTHCI000) in prepara­
tion to receive a 1000 byte data record, and then issues the verb 
again with LEHGTH(500), posting will occur when 500 bytes of the 
data record are avai lable. 

5. MC_POST_ON_RECEIPT with LENGTHCO) has no special significance. 
I t spec i fi es that post i ng for a data record is to occur upon 
receipt of any amount of the data record of one byte or more. It 
is equivalent to MC_POST_ON_RECEIPT with LEHGTH(l). 

6. References in this verb description to a program being in a par­
ticular state are only in terms of the specified mapped conversa­
tion. 

Chapter 4. Conversation Verbs 4-19 



Changes the mapped conversation from send to receive state in prepara­
tion to receive data. The change to receive state can be either com­
pleted as part of this verb, or deferred until the program issues an 
MC_FLUSH, MC_CONFIRM, or SYNCPT verb. When it is completed as part of 
this verb it includes the function of the MC_FLUSH or MC_CONFIRM verb. 

Sueelied paramatgts: 

HC_PREPARE_TO_RECEIVE RESOURCE ( variable ) 

[ ( SYNC LEVEL ) ] TYPE ( FLUSH ) 
( CONFIRM ) 

[ LOCKS ( SHORT ) ] 
( LONG ) 

Reiurned parameteefi: 

RETURN_CODE ( variable ) 

; 

sueeligd parametees: 

RESOURCE specifies the variable containing the resource ID. 

TYPE specifies the type of prepare-to-receive to be performed for this 
mapped conversation. 

• SYNC_LEVEL specifies to perform the prepare-to-receive based on 
the synchronization level allocated to this mapped conversation: 

If SYNC_LEVELCNONE), execute the functi on of the MC_FlUSH 
verb and enter receive state. 

If SYNC_LEVEL CCONFIRM), execute the functi on of the 
MC_CONFIRM verb and if it is successful (as indicated by a 
return code of OK on this MC_PREPARE_TO_RECEIVE verb), enter 
recei ve state; if it is not successful, the state of the 
mapped conversation is determined by the return code. 

If SYNC_LEVELCSYNCPT), enter defer state until the program 
issues a SYNCPT, or the program issues an MC_CONFIRM or 
MC_FlUSH for thi s mapped conversati on. If the SYNCPT or 
MC_CONFIRM is successful (as indicated by a return code of OK 
on that verb) or MC_FLUSH is issued, receive state is then 
entered for this mapped conversation; otherwise, the state of 
the mapped conversation is determined by the return code. 

• FLUSH specifies to execute the function of the MC_FLUSH verb and 
enter receive state. 

• CONFIRM specifies to execute the function of the MC_CONFIRM verb 
and, if it is successful (as indicated by a return code of OK on 
this MC_PREPARE_TO_RECEIVE verb), enter receive state; if it is 
not successful, the state of the mapped conversati on is deter­
mined by the return code. 

The execution of the MC_FLUSH or MC_CONFIRM function as part of this 
verb includes the flushing of the LU's send buffer. When, instead, 
defer state is entered, the LU defers flushing its send buffer until 
the program issues a subsequent verb for this mapped conversation. 

LOCKS specifies when control is to be returned to the local program 
following execution of the CONFIRM function of this verb or following 
execution of an MC_CONFIRM verb issued subsequent to this verb. This 

4-20 SNA Transaction Programmer's Reference ~dnual for' LU Type 6.2 



Kapped Conversation verbs 

parameter is significant only when TYPECCONFIRM) is also specified or 
when TYPECSYNC_lEVEU is also specified and the synchronization level 
for this mapped conversation is CONFIRM; or when TYPECSYNC lEVEL) is 
also specified, the synchronization level for this mapped-conversa­
tion is SYNCPT, and a subsequent MC_CONFIRM is issued. Otherwise, 
this parameter has no meaning and is ignored. 

• SHORT specifies to return control when an affirmative reply is 
received, as follows: 

When the synchroni zati on level is CONFIRM, return control 
from axecuti on of thi s verb when an MC CONFIRMED reply is 
received. -

When the synchroni zati on level is SYNCPT, return control 
immediately from execution of this verb; return control from 
execution of a subsequent MC_CONFIRM verb when a correspond­
ing MC_CONFIRMED reply is received. 

• LONG specifies to return control when information, such as data, 
is recei ved from the remote program followi ng an affi rmati va 
reply, as follows: 

When the synchron i zat i on level is CONFIRM, return control 
from execution of this verb when information is received fol­
lowing an MC_CONFIRMED reply. 

When the synchroni zati on level is SYNCPT, return control 
immediately from execution of this verb; return control from 
execution of a subsequent MC_CONFIRM verb when information is 
received following a corresponding MC_CONFIRMED reply. 

Returned parameters: 

RETURN_CODE specifies the variable in which a return code is returned 
to the local program. The return code indicates the result of verb 
executi on. The TYPE parameter determi nes whi ch of the followi ng 
return codes can be returned to the program. 

• If TYPECFlUSH) is specified, or if TYPECSYNC_lEVEl) is specified 
and the synchronization level allocated to this mapped conversa­
tion is NONE, the following return code is returned: 

OK 

• If TYPECSYNC lEVEL) is specified and the synchronization level 
allocated to this mapped conversation is CONFIRM, or 
TYPECCONFIRM) is specified, one of the following return codes is 
returned: 

OK 
AllOCATION_ERROR 
DEALLOCATE_ABEND 
FMH_DATA_NOT_SUPPORTED 
MAPPING_NOT_SUPPORTED 
MAP_NOT_FOUND 
MAP_EXECUTION_FAIlURE 
PROG_ERROR_PURGING 
RESOURCE_FAILURE_NO_RETRY 

,RESOURCE_FAILURE_RETRY 

• If TYPECSYNC LEVEL) is specified and the synchronization level 
allocated to-this mapped conversation is SYNCPT, the following 
return code is returned: 

OK 

State Changes (when RETURN CODE indicates OK): 

Defer state is entered when TYPECSYNC_LEVEL) is specified and the syn­
chronization level is SYNCPT. 

Chapter 4. Conversation Verbs 4-21 



MC_PREPARE_TO_RECEIVE 

Receive state ;5 entered when TYPECFLUSH) or TYPECCOHFIRM) is speci­
fied~ or when TYPECSYNC_LEVEL) is specified and the synchronization 
level is NONE or CONFIRM. 

AIEND conditions: 

Parameter Check 

• Thi 5 verb is not supported. 
• RESOURCE specifies an unassigned resource ID. 
• TYPECCONFIRM) is specified and the conversation is allocated with 

SYHC_LEVELCHONE). 
• LOCKSCLONG) is specified and not supported. 

state Check 

The mapped conversation is not in send state. 

Nates: 

1. The TYPECSYNC LEVEL> parameter 19 intended to be used by the 
transaction program in order to transfer send control to the 
remote program based on the synchroni zati on level allocated to 
the mapped conversation. 

• If the synchronization level is HONE~ send control is trans­
ferred to the remote program without any synchronizing 
acknowledgment. 

• If the synchron i zati on level i s CONFIRM~ send control is 
transferred to the remote program wi th confi rmati on 
requested. 

• If the synchronization level is SYHCPT~ transfer of send con­
trol is deferred. When the local program subsequently issues 
SYNCPT t send control is transferred to the remote program 
with sync point requested. 

2. The TYPECFLUSH) parameter is intended to be used by the trans­
action program in order to transfer send control to the remote 
program without any synchronizing acknowledgment. TYPECFLUSH) is 
functionally equivalent to: 

• TYPE(SYHC_LEVEL) with a synchronization level of HONE. 

• TYPE(SYNC_LEVEL) with a synchronization level of SYNCPT~ fol­
lowed by the MC_FLUSH verb. 

3. The TYPECCONFIRM) parameter is intended to be used by the trans­
action program in order to transfer send control to the remote 
program with confirmation requested. TYPECCONFIRM) is func­
tionally equivalent to: 

• TYPECSYNC_LEVEL) with a synchronization level of COHFIRM. 

• TYPECSYNC_LEVEL) with a synchronization level of SYHCPT~ fol­
lowed by the MC_CONFIRM verb. 

4. The remote transaction program receives send control by means of a 
what-received indication of SEND~ COHFIRM_SEND~ or 
TAKE_SYNCPT_SEND, as follows: 

• SEND: The local program specified either TYPECFLUSH); 
TYPE(SYHC_LEVEL) and the synchronization level is NONE; or 
TYPECSYNC_LEVEL> ~ the synchroni zati on level h SYNCPT. and 
the local program subsequently issued MC_FLUSH. -

• CONFIRM_SEND: The local program specified either 
TYPECCOHFIRM). TYPE(SYNC_LEVEL) and the synchronization level 
;s CONFIRM; or TYPE(SYNC_LEVEL)~ the synchronization level ;s 
SYHCPT~ and the local program subsequently issued MC_CONFIRM. 

4-22 SNA Transaction Programmer's Reference Manual for LU Type 6.2 



Happed Conversat;on verbs 

• TAKE_SYNCPT_SEND: The local program speci fi ed 
TYPECSYNC_LEVEL>. the synchroni zati on level is SYNCPT. and 
the local program subsequently issued SYNCPT. 

5. If TYPECSYNC_LEVEL) is specified and the synchronization level 
for the mapped conversation is SYNCPT. the LU buffers the SEND 
notification to be sent to the remote LU until the local program 
issues a verb that causes the LU to flush its send buffer. 

6. The mapped conversation for the remote program enters the corre­
spondi ng send state when it issues an MC_RECEIVE_AND_WAIT or 
MC_RECEIVE_IMMEDIATE verb and receives the SEND indication (on 
the WHAT_RECEIVED parameter). The remote program can then send 
data to the local program. 

7. References in this verb description to a program being in a par­
ticular state are only in terms of the specified mapped conversa­
tion. 

Chapter 4. Conversatior. Verbs 4-23 



Waits for information to arrive on the specified mapped conversation 
and then receives the information. If information is already avail­
able. the program receives it without waiting. The information can be 
a data record. mapped conversation status. or a request for confirma­
tion or sync point. Control is returned to the program with an indi­
cation of the type of information. 

The program can issue this verb when the mapped conversation is in 
send state. In this case. the lU flushes its send buffer. sending all 
buffered information and the SEND indication to the remote program. 
This changes the mapped conversation to receive state. The lU then 
waits for information to arrive. The remote program can send data to 
the local program after it receives the SEND indication. 

SUE!E!H ed Parameters: 

MC_RECEIVE_AND_WAIT RESOURCE ( variable ) 

4-24 

SYE!E!lied-and-Returned Parameters: 

LENGTH ( variable ) 

Rgturned Parameters: 

RETURN_CODE ( variable ) 

REQUEST_TO_SEND_RECEIVED ( variable ) 

DATA ( variable ) 

WHAT_RECEIVED ( variable ) 

[ MAP_NAME ( variable ) ] 

; 

SUE!E!lied Parameters: 

RESOURCE specifies the variable containing the resource ID. 

SUE!plied-and-Rgturned Parameters: 

LENGTH specifies the variable containing a length value that is the 
maximum amount of the data record the program is to receive. When 
control is returned to the program this variable contains the actual 
amount of the data record the program received. up to the maximum. If 
the program recei ves i nformati on other than data. thi s variable 
remains unchanged. 

Returned Parameters: 

RETURN_CODE specifies the variable in which a return code is returned 
to the program. The return code indicates the result of verb exe­
cution. The return codes that can be returned depend on the state of 
the mapped conversation at the time this verb is issued. 

• If this verb is issued in send state. the following return codes 
can be returned: 

SNA Transaction Programmer's Reference Manual for lU Type 6.2 



Happed canversatian Verbs 

• If thi s verb is issued in recei ve state, the followi ng return 
codes can be returned: 

OK 
AllOCATION_ERROR 
BACKED_OUT 
DEALLOCATE_ABEND 
DEALLOCATE_NORMAL 
FMH_DATA_NOT_SUPPORTED 
MAPPING_NOT_SUPPORTED 
MAP_NOT_FOUND 
MAP_EXECUTION_FAILURE 
PROG_ERROR_NO_TRUNC 
PROG_ERROR_PURGING 
RESOURCE_FAILURE_NO_RETRY 
RESOURCE_FAILURE_RETRY 

REQUEST_TO_SEND_RECEIVED specifies the variable in which is returned 
an indication of whether REQUEST TO SEND has been received. The indi-
cation is either YES or NO. --

• YES indicates a REQUEST_TO_SEND notification has been received 
from the remote transacti on program. The remote program has 
issued MC_REQUEST_TO_SEND, requesting the local program to enter 
receive state and thereby place the remote program in send state 

• NO indicates a REQUEST_TO_SEND notification has not been 
received. 

DATA specifies the variable in which the program is to receive the 
data. When the program receives information other than data, as indi­
cated by the WHAT_RECEIVED parameter, nothing is placed in this vari­
able. 

WHAT RECEIVED specifies the variable in which is returned an indi­
cation of what the transaction program receives. The program should 
examine this variable only when RETURN_CODE indicates OK; otherwise, 
nothing is placed in this variable. 

• DATA_COMPLETE indicates the program received a complete data 
record or the last remaining portion of the record. 

• DATA TRUNCATED indicates the program received less than a com­
plete data record, and the LU discarded the remainder of the data 
record. 

• DATA INCOMPLETE indicates the program received less than a com­
plete data record, and the LU retained the remainder of the data 
record. The program may receive the remainder of the data record 
by i ssu i ng another MC_RECEIVE_AND_WAIT (or possi bly multiple 
MC_RECEIVE_AND_WAITs). 

• FMH_DATA_COMPLETE indicates the program received a complete data 
record or the last remaining portion of the record, and the data 
record contains FM headers. 

• FMH DATA TRUNCATED i ndi cates the program recei ved less than a 
complete-data record containing FM headers, and the LU discarded 
the remainder of the data record. 

• FMH_DATA_INCOMPLETE indicates the program received less than a 
complete data record containing FM headers, and the LU retained 
the remainder of the data record. The program may receive the 
remai nder of the data record by i ssui ng another 
MC_RECEIVE_AND_WAIT (or possibly multiple MC_RECEIVE_AND_WAITs). 

• SEND i ndi cates the rEmote program has entered recei ve state, 
placing the local program in send state. The local program may 
now issue Me_SEND_DATA. 

Chapter 4. Conversation Verbs 4-25 



MC_RECEIVE_AND_WAIT 

• CONFIRM i ndi cates the remote program has issued MC_CONFIRM, 
requesting the local program to respond by issuing MC_CONFIRMED. 
The program may respond, instead, by issuing a verb other than 
MC_CONFIRMED, such as MC_SEND_ERROR. 

• CONFIRM_SEND indicates the remote program has issued 
MC PREPARE TO RECEIVE with TYPE(CONFIRM); or with 
TYPE(SYNC_LEVEL), and either the synchronization level is CON­
FIRM, or it is SYNCPT and. the remote program subsequently issued 
MC CONFIRM. The local program may respond by i ssui ng 
MC:CONFIRMED, or by issuing another verb such as MC_SEND_ERROR. 

• CONFIRM DEALLOCATE indicates the remote program has issued 
MC_DEALIOCATE with TYPE(CONFIRM); or with TYPE(SYNC_LEVEL), and 
either the synchronization level is CONFIRM, or it is SYNCPT and 
the remote program subsequently issued MC_CONFIRM. The local 
program may respond by issuing MC_CONFIRMED, or by issuing anoth­
er verb such as MC_SEND_ERROR. 

• TAKE_SYNCPT i ndi cates the remote program has issued SYNCPT, 
requesting the local program to respond by issuing SYNCPT in order 
to perform the sync-poi nt functi on on all protected resources 
throughout the transaction. Issuing the SYNCPT verb also causes 
an affirmative reply to be returned to the remote program if the 
sync-poi nt functi on is successful. The program may respond, 
instead. by issuing a verb other than SYNCPT, such as BACKOUT or 
MC_SEND_ERROR. 

• TAKE_SYNCPT_SEND indicates the remote program has issued 
MC_PREPARE_TO_RECEIVE with TYPE(SYNC_LEVEL), the synchronization 
level is SYNCPT, and the remote program subsequently issued 
SYNCPT. The local program may respond by issuing SYNCPT, or by 
i ssu i ng another verb such as BACK OUT or MC_S END_ERROR. 

• TAKE_SYNCPT_DEALLOCATE i ndi cates the remote program has issued 
MC_DEALLOCATE with TYPE(SYNC_LEVEL), the synchronization level is 
SYNCPT, and the remote program subsequently issued SYNCPT. The 
local program may respond by issuing SYNCPT, or by issuing another 
verb such as BACKOUT or MC_SEND_ERROR. 

MAP_NAME specifies the variable in which is returned the name of the 
format (such as the name of a DSECT or DECLARE) that defi nes the 
structure of the data record. A null value returned means the data 
record has not been mapped. That is, mapping of this data record is 
suppressed. 

When the program receives information other than data, as indicated by 
the WHAT_RECEIVED parameter, nothing is placed in this variable. 

state Changes (when RETURN CODE indicates OK): 

Receive state is entered when the verb is issued in send state and 
WHAT_RECEIVED indicates DATA_COMPLETE, DATA_INCOMPLETE, 
FMH_DATA_COMPLETE, or FMH_DATA_INCOMPLETE. 

Send state is entered when WHAT_RECEIVED indicates SEND. 

Confirm state is entered when WHAT_RECEIVED indicates CONFIRM, CON­
FIRM_SEND, or CONFIRM_DEALLOCATE. 

Sync-point state is entered when WHAT_RECEIVED indicates TAKE_SYNCPT, 
TAKE_SYNCPT_SEND, or TAKE_SYNCPT_DEALLOCATE. 

No state change occurs when the verb is issued in receive state and 
WHAT_RECEIVED indicates DATA_COMPLETE, DATA_INCOMPLETE, 
FMH_DATA_COMP.LETE, or FMH_DATA_INCOMPLETE. 

ABEND Conditions: 

Parameter Check 

• RESOURCE specifies an unassigned resource ID. 
• MAP~NAME is specified and not supported. 

4-26 SNA Transaction Programmer's Reference Manual for LU Type 6.2 



Happed conversation Verbs 
state Check 

The mapped conversat.i on is not in send or recei va state. 

Notes: 

1. When the program issues MC RECEIVE AND WAIT in send state, the LU 
implici tly executes an Me PREPARE TO-RECEIVE wi th TYPEC FLUSH) 
before executi ng the MC_RECEIVE_AND_WAIT. Refer to the 
description of MC_PREPARE_TO_RECEIVE for details of its function. 

2. The mapped conversation protocol boundary provides for the send­
ing and receiving of data records. Unlike the logical records 
defined for the basic conversation protocol boundary, data 
records contain only data; they do not contain the logical record 
length field. 

3. The MC_RECEIVE_AND_WAIT verb can receive only as much of the data 
record as specified by the LENGTH parameter. The WHAT RECEIVED 
parameter indicates whether the program has received a-complete 
or incomplete data record, as follows: 

• The WHAT_RECEIVED parameter indicates DATA_COMPLETE or 
FMH_DATA_COMPLETE when the program receives a complete data 
record or the last remaining portion of a data record. The 
length of the record or portion of the record is equal to or 
less than the length specified on the LENGTH parameter. 

• The WHAT_RECEIVED parameter indicates DATA_TRUNCATED, 
DATA_INCOMPLETE, FMH_DATA_TRUNCATED, or FMH_DATA_INCOMPLETE 
when the program receives a portion of a data record other 
than the last remalning portion. The data record is incom­
plete because the length of the record is greater than the 
length specified on the LENGTH parameter; the amount received 
equals the length specified. 

4. Whether the LU discards or retains the remainder of an incomplete­
ly received data record depends on the product and the data-record 
format i ndi cated by the format name returned on the MAP_NAME 
parameter. A product may imply by some or all of its format names 
Cincluding the null value) that the remaining data is discarded, 
rather than retained. 

5. MC_RECEIVE_AND_WAIT with LENGTHCO) has no special significance. 
The type of information available is indicated by the RETURN_CODE 
and WHAT_RECEIVED parameters, as usual. However, the program 
receives no data. 

6. The program receives only one kind of information at a time. For 
example, it may receive data or a CONFIRM request, but it does not 
receive both at the same time. The RETURN_CODE and WHAT_RECEIVED 
parameters indicate to the program the kind of information the 
program receives. 

7. MC_RECEIVE_AND_WAIT includes posti ng. If posti ng is already 
active when this verb is issued, this verb supersedes the prior 
MC_POST_ON_RECEIPT function. Posting is reset at the completion 
of this verb. See the MC_POST_ON_RECEIPT verb for more details 
about posting. 

8. It is the responsibility of both sending and receiving installa­
tions to maintain the map-name definitions referenced by their 
application transaction programs. 

9. The function of FM headers in the data record is significant only 
to the transaction programs; the sending and receiving LUs per­
form no FM-header related processing other than indicating that 
the data record contains FM headers. The presence of FM headers 
in the data record is specified by the remote transaction program 
by means of the FMH_DATA parameter of the MC_SEND_DATA that sent 
the data record. 

10. The REQUEST_TO_SEND notification is usually received when the 
local transaction program is in send state, and reported to the 

Chapter 4. Conversation Verbs 4-27 



program on an MC_SEND_DATA verb or on an MC_SEND_ERROR verb issued 
in send state. However, the notification can be received when the 
program is in receive state under the following conditions: 

• When the local program just entered recei ve state and the 
remote program issued MC_REQUEST_TO_SEND before it entered 
send state. 

• When the remote program has just entered recei ve state by 
means of the MC_PREPARE_TO_RECEIVE verb (not 
MC_RECEIVE_AND_WAIT), and then issued MC_REQUEST_TO_SEND 
before the local program enters send state. This can occur 
because the REQUEST_TO_SEND is transmitted as an expedited 
request and can therefore arrive ahead of the request carry­
ing the SEND indication. Potentially, the local program can­
not distinguish this case from the first. This ambiguity is 
avoided when the remote program waits until it receives 
i nformati on from the local program before it issues the 
MC_REQUEST_TO_SEND. 

• When the remote program issues the MC_REQUEST_TO_SEHD in send 
state (see "Notes on Implementation Details" in Appendix A). 

11. The REQUEST_TO_SEND notification is returned to the program in 
addition to (not in place of) the information indicated by the 
RETURN_CODE and WHAT_RECEIVED parameters. 

12. References in this verb description to a program being in a par­
ticular state are only in terms of the specified mapped conversa­
tion. 

4-28 SNA Transaction Programmer's Reference Manual for LU Type 6.2 



Mapped Conversation Verbs 

Receives any information that is available from the specified mapped 
conversation, but does not wait for information to arrive. The infor­
mation (if any) can be data, mapped conversation status, or a request 
for confirmation or sync point. Control is returned to the program 
with an indication of whether any information was received and, if so, 
the type of information. 

Su~~l;ed parameters: . 
MC_RECEIVE_IMMEDIATE RESOURCE ( variable ) 

Sy~~l;ed-and-Returned Parameters: 

LENGTH ( variable ) 

Betyrned parametgrs: 

RETURN_CODE ( variable ) 

REQUEST_TO_SEND_RECEIVED ( variable ) 

DATA ( variable ) 

WHAT_RECEIVED ( variable ) 

[ MAP_NAME ( variable ) ] 

; 

Su~~lied Parameters: 

RESOURCE specifies the variable containing the resource ID. 

Su~~lied-and-Returned Parameters: 

LENGTH specifies the variable containing a length value that is the 
maximum amount of the data record the program is to receive. When 
control is returned to the program this variable contains the actual 
amount of the data record the program received, UP to the maximum. If 
the program receives information other than data, or no information at 
all, this variable remains unchanged. 

Returned Parameters: 

RETURN_CODE specifies the variable in which a return code is returned 
to the program. The return code indicates the result of verb exe­
cution. 

• OK 
• ALLOCATION_ERROR 
• BACKED_OUT 
• DEALLOCATE_ABEND 
• DEALLOCATE_NORMAL 
• FMH_DATA_NOT_SUPPORTED 
• MAPPING_NOT_SUPPORTED 
• ~:~:~~~C~~~~~_FAILURE • 
• PROG_ERROR_NO_TRUNC 
• ~~ggU~~~~~A~~~~~~~O_RETRY • 
• RESOURCE_FAILURE_RETRY 
• UNSUCCESSFUL - There is nothing to receive. 

REQUEST_TO_SEND_RECEIVED specifies the variable in which is returned 
an indication of whether REQUEST_TO_SEND has been received. The indi­
cation is either YES or NO. 

Chapter 4. Conversation Verbs 4-29 



MC_RECEIVE_IMMEDIATE 

• YES indicates a REQUEST_TO_SEND notification has been received 
from the remote transacti on program. The remote program has 
issued MC_REQUEST_TO_SEND, requesting the local program to enter 
receive state and thereby place the remote program in send state 

• NO indicates a REQUEST_TO_SEND notification has not been 
received. 

DATA specifies the variable in which the program is to receive the 
data. When the program receives information other than data, as indi­
cated by the WHAT_RECEIVED parameter, nothing is placed in this vari­
able. 

WHAT_RECEIVED specifies the variable in which is returned an indi­
cation of what the transaction program received. The program should 
examine this variable only when RETURN_CODE indicates OK; otherwise, 
nothing is placed in this variable. 

• DATA_COMPLETE i ndi cates the program recei ved a complete data 
record or the last remaining portion of the record. 

• DATA_TRUNCATED indicates the program received less than a com­
plete data record, and the LU discarded the remainder of the data 
record. 

• DATA_INCOMPLETE indicates the program received less than a com­
plete data record, and the LU retained the remainder of the data 
record. The program may receive the remainder of the data record 
by issuing another MC_RECEIVE_IMMEDIATE Cor possibly multiple 
MC_RECEIVE_IMMEDIATEs). 

• FMH_DATA_COMPLETE indicates the program received a complete data 
record or the last remaining portion of the record, and the data 
record contains FM headers. 

• FMH_DATA_TRUNCATED i ndi cates the program recei ved less than a 
complete data record containing FM headers, and the LU discarded 
the remainder of the data record. 

• FMH_DATA_INCOMPLETE indicates the program received less than a 
complete data record containing FM headers, and the LU retained 
the remainder of the data record. The program may receive the 
remai nder of the data record by i ssui ng another 
MC_RECEIVE_IMMEDIATE (or possibly multiple 
MC_RECEIVE_IMMEDIATEs). 

• SEND i ndi cates the remote program has entered recei ve state, 
placing the local program in send state. The local program may 
now issue MC_SEND_DATA. 

• CONFIRM i ndi cates the remote program has issued MC_CONFIRM, 
requesting the local program to respond by issuing MC_CONFIRMED. 
The program may respond, instead, by issuing a verb other than 
MC_CONFIRMED, such as MC_SEND_ERROR. 

• CONFIRM_SEND indicates the remote program has issued 
MC_PREPARE_TO_RECEIVE with TYPECCONFIRM); or with 
TYPECSYNC_LEVEL), and either the synchronization level is CON­
FIRM, or it is SYNCPT and the remote program subsequently issued 
MC_CONFIRM. The local program may respond by i ssui ng 
MC_CONFIRMED, or by issuing another verb such as MC_SEND_ERROR. 

• CONFIRM_DEALLOCATE indicates the remote program has issued 
MC_DEALLOCATE with TYPECCONFIRM); or with TYPECSYNC_LEVEL), and 
either the synchronization level is CONFIRM, or it is SYNCPT and 
the remote program subsequently issued MC_CONFIRM. The local 
program may respond by issuing MC_CONFIRMED, or by issuing anoth­
er verb such as MC_SEND_ERROR. 

• TAKE_SYNCPT i ndi cates the remote program has issued SYNCPT, 
requesting the local program to respond by issuing SYNCPT in order 
to perform the sync-po i nt funct i on on all protected resources 
throughout the transaction. Issuing the SYNCPT verb also causes 
an affirmative reply to be returned to the remote program if the 

4-30 SNA Transaction Programmer's Reference Manual for LU Type 6.2 



Mapped conversation Verbs 

sync-poi nt functi on is successful. The program may respond, 
instead, by issuing a verb other than SYNCPT, such as BACKOUT or 
MC_SEND_ERROR. 

• TAKE_SYNCPT_SEND indicates the remote program has issued 
MC_PREPARE_TO_RECEIVE with TYPECSYHC_LEVEL), the synchronization 
level is SYNCPT,. and the remote program subsequently issued 
SYNCPT. The local program may respond by issuing SYHCPT, or by 
i ssui ng another verb such as BACKOUT or MC_SEND_ERROR. 

• TAKE_SYHCPT_DEALLOCATE indicates the remote program has issued 
MC_DEALLOCATE with TYPECSYNC_LEVEL), the synchronization level is 
SYHCPT, and the remote program subsequently issued SYHCPT. The 
local program may respond by issuing SYHCPT, or by issuing another 
verb such as BACKOUT or MC_SEND_ERROR. 

MAP_NAME specifies the variable in which is returned the name of the 
format (such as the name of a DSECT or DECLARE) that defi nes the 
structure of the data record. A null value returned means the data 
record has not been mapped. That is, mapping of this data record is 
suppressed. 

When the program receives information other·than data, as indicated by 
the WHAT_RECEIVED parameter, nothing is placed in this variable. 

state Changes (when RETURN CODE indicates OK): 

Send state is entered when WHAT_RECEIVED indicates SEND. 

Confirm state is entered when WHAT_RECEIVED indicates CONFIRM, CON­
FIRM_SEND, or CONFIRM_DEALLOCATE. 

Sync-point state is entered When WHAT_RECEIVED indicates TAKE_SYHCPT, 
TAKE_SYNCPT_SEND, or TAKE_SYHCPT_DEALlOCATE. 

No state change occurs when WHAT_RECEIVED indicates DATA_COMPLETE, 
DATA_INCOMPLETE, FMH_DATA_COMPLETE, or FMH_DATA_INCOMPLETE. 

ABEND Conditions: 

Parameter Check 

• Thi s verb is not supported. 
• RESOURCE specifies an unassigned reSOUrce ID. 
• MAP_NAME is specified and not supported. 

state check 

The mapped conversation is not in receive state. 

Notes: 

1. The mapped conversation protocol boundary provides for the send­
i ng and recei vi ng of data records. Unli ke the logi cal records 
defined for the basic conversation protocol boundary, data 
records contain only data; they do not contain the logical record 
length field. 

2. The MC_RECEIVE_IMMEDIATE verb can receive only as much of the data 
record as specified by the LENGTH parameter. The WHAT_RECEIVED 
parameter indicates whether the program has received a complete 
or incomplete data record, as follows: 

• 

• 

The WHAT_RECEIVED parameter indicates DATA_COMPLETE Or 
FMH_DATA_COMPLETE when the program receives a complete data 
record or the last remaining portion of a data record. The 
length of the record or portion of the record is equal to Or 
less than the length specified on the LENGTH parameter. 

~~TA_I~~~~P~~~~~VE~MH_C:T::T~~NCATkD~i~~t~MH_g:~~:I~g~~~l~~E 
when the program receives a portion of a data record other 
than the last remaining portion. The data record is incom­
plete because: 

Chapter 4. Conversation Verbs 4-31 



4-32 

The length of the record is greater than the length speci­
f i ed on the LENGTH pa rameter; i n th i s ca se the amount 
received equals the length specified. 

Only a portion of the data record is available, the por­
tion being equal to or less than the length specified on 
the LENGTH parameter. 

3. Whether the LU discards or retains the remainder of an incomplete­
ly received data record depends on the product and the data-record 
format i ndi cated by the format name returned on the MAP_NAME 
parameter. A product may imply by some or all of its format names 
Cincluding the null value) that the remaining data is discarded. 
rather than retained. 

4. MC_RECEIVE_IMMEDIATE with LEHGTHCO) has no special significance. 
The type of information available. if any, is indicated by the 
RETURN_CODE and WHAT_RECEIVED parameters. as usual. However, the 
program receives no data. 

5. The program receives only one kind of information at a time. For 
example. it may receive data or a CONFIRM request. but it does not 
receive both at the same time. The RETURN_CODE and WHAT_RECEIVED 
parameters indicate to the program the kind of information the 
program receives. if any. 

6. Me_RECEIVE_IMMEDIATE resets or cancels posti ng. If posti ng is 
active and the mapped conversation has been posted. posting is 
reset. If posting is active and the mapped conversation has not 
been posted, posting is cancelled (posting will not occur). See 
the MC_POST_ON_RECEIPT verb for more details about posting. 

7. It is the responsibility of both sendIng and receiving installa­
tions to maintain the map-name definitions referenced by their 
application transaction programs. 

8. The function of FM headers in the data record is significant only 
to the transaction programs; the sending and receiving lUs per­
form no FM-header related processing other than indicating that 
the data record contains FM headers. The presence of FM headers 
in the data record is specified by the remote transaction program 
by means of the FMH_DATA parameter of the MC_SEND_DATA that sent 
the data record. 

9. The REQUEST_TO_SEND notification is usually received when the 
local transaction program is in send state, and reported to the 
program on an MC_SEND_DATA verb or on an MC_SEND_ERROR verb issued 
in send state. However, the notification can be received when the 
program is in rec~ive state under the following conditions: 

• When the local program just entered recei ve state and the 
remote program issued MC_REQUEST_TO_SEND before it entered 
send state. 

• When the remote program has just entered recei ve state by 
means of the MC PREPARE TO RECEIVE verb (not 
MC_RECEIVE_AND_WAIT>, and then - issued MC_REQUEST_TO_SEND 
before the local program enters send state. This can occur 
because the MC_REQUEST_TO_SEND is transmitted as an expedited 
request and can therefore arrive ahead of the request carry­
ing the SEND indication. Potentially, the local program can­
not distinguish this case from the first. This ambiguity is 
avoided when the remote program waits untH it receives 
i nformat i on from the local program before it issues the 
MC_REQUEST_TO_SEND. 

• When the remote program issues the MC_REQUEST_TO_SEND in send 
state (see "Notes on Implementation Details" in Appendix A). 

10. The REQUEST TO SEND notification is returned to the program in 
addition to-Cnot in place of) the information indicated by the 
RETURN_CODE and WHAT_RECEIVED parameters. 

SNA Transaction Programmer's Reference Manual for LU Type 6.2 



Happed CDnversat;o~ Verbs 

11. References in this verb description to a program being in a par­
ticular state are only in terms of the specified mapped conversa­
tion. 

Chapter 4. Conversation Verbs 4-33 



"C_REQUEST_TO_SEND 

Notifies the remote program that the local program is requesting to 
enter send state for the mapped conversation. The mapped conversation 
wi 11 be changed to send state when the local program subsequently 
receives a SEND indication from the remote program. 

sueel;ed parameters: 

"C_REQUEST_TO_SEND RESOURCE ( var;able ) 

J 

Suepl;ed parameters: 

RESOURCE specifies the variable containing the resource ID. 

state Changes: 

None 

ABEND Cond;t;ons: 

Parameter Check 

RESOURCE specifies an unassigned resource ID. 

state Check 

• The mapped conversation is not in receive. confirm. or sync-point 
state. 

Nates: 

1. The REQUEST_TO_SEND notific~tion is indicated to the remote pro­
gram by means of the REQUEST_TO_SEND_RECEIVED parameter. When 
the REQUEST_TO_SEND_RECEIVED parameter is set to YES. the remote 
program is requested to enter receive state and thereby place the 
local program in send state. A program enters receive state by 
means of the MC_RECEIVE_AND_WAIT or MC_PREPARE_TO_RECEIVE verb. 
The partner program enters the corresponding send state when it 
issues an MC_RECEIVE_AND_WAIT or MC_RECEIVE_IMMEDIATE ver~ and 
receives the SEND i ndi cati on (on the WHAT_RECEIVED parameter). 

2. The REQUEST_TO_SEND_RECEIVED indication of YES is nQrmally 
returned to the remote program when it is in send state. that is. 
on an MC_SEND_DATA or on an MC_SEND_ERROR issued in send state. 
However, it can be returned on an MC_RECEIVE_AND_WAIT or 
MC_RECEIVE_IMMEDIATE verb; see the description of 
MC_RECEIVE_AND_WAIT or MC_RECEIVE_IMMEDIATE for detai Is about 
when this can occur. 

3. When the remote LU receives the REQUEST_TO_SEND notification. it 
retains the notification until the remote program issues a verb on 
which the notification can be indicated, that is, a verb with the 
REQUEST_TO_SEND_RECEIVED parameter. The remote LU wi 11 retai n 
only one REQUEST_TO_SEND notification at a time (per mapped con­
versation); additional notifications are discarded until the 
retained notification is indicated to the remote program. It is 
therefore possi ble for the local program to issue the 
MC_REQUEST_TO_SEND verb more times than are i ndi cated to the 
remote program. 

4. References in this verb description to a program being in a par­
ticular state are only in terms of the specified mapped conversa­
tion. 

4-34 SNA Transaction Programmer's Reference Manual for LU Type 6.2 



HC_SEND_DATA 

Mapped Conversation Verbs 

Sends one data record to the remote transaction program. The data 
record consists entirely of data. The program can specify data map­
ping as a function of this verb, and it can indicate whether the data 
record includes FM headers. 

§uee1ied Parameters: 

RESOURCE ( variable ) 

DATA ( variable ) 

LENGTH ( variable ) 

( NO ) [ MAP_NAME 
( YES ( variable ) ) ] 

[ FMH_DATA ( NO ) ] ( YES ) 

Returned Parameters: 

RETURN_CODE ( variable ) 

REQUEST_TO_SEND_RECEIVED ( variable ) 

J 

supplied parameter.sJ. 

RESOll!tCE specifies the variable containing the resource ID of the 
mapped conversation on which the data record is to be sent. 

DATA specifies the vadable containing the data record to be sent. 
The data record consists entirely of data. 1 The length of the data 
record is given by the LENGTH parameter. 

LENGTH specifies the variable containing the length of the data record 
to be sent. The length may be zero or grent~r. If zero, a null data 
record is sent. 

MAP_NAME speci fi es whether the data record is to be mapped: 

• NO speci fi es that data mappi ng is to be suppressed. The data 
record is sent as is, without being mapped. 

• YES specifies that the data record is to be mapped using the map 
name contained in the variable. The map name is a non-null 
user-defined name that identifies the format of the data record 
and the mapping to be performed on the data record before it is 
sent. 

FHH_DATA specifies whether the data record contains FM headers. 

• NO specifies that FM headers are not present in the data record. 

• YES specifies that the data record contains FM headers. 

Returned Parameters: 

RETURN_CODE specifies the variable in which a return code is returned 
to the local program. The return code indicates the result of verb 
execution. 

1 The data format for the basic conversation verb. SEND_DATA, con­
sists of logical records, which include a length field. See the 
description of SEND_DATA for more details. 

Chapter 4. Conversation Verbs 4-35 



• OK 
• ALLOCAlION ERROR 
• BACKED OUT-
• DEALLOCATE_ABEND 
• FMH_DATA_NOT_SUPPORTED 
• MAPPING_NOT_SUPPORTED 
• MAP_NOT_FOUND 
• MAP_EXECUTION_FAILURE 
• PROG_ERROR_PURGING 
• RESOURCE_FAILURE_NO_RETRY 
• RESOURCE_FAILURE_RETRY 

REQUEST_TO_SEND_RECEIVED specifies the variable in which is returned 
an indication of whether REQUEST_lO_SEND has been received. The indi­
cati on is ei ther YES or NO. 

• YES indicates a REQUEST_TO_SEND notification has been received 
from the remote transacti on program. The remote program has 
issued MC_REQUEST_TO_SEND~ requesting the local program to enter 
receive state and thereby place the remote program in send state. 

• NO indicates a REQUEST_TO_SEND notification has not been 
received. 

state Changes (when RETURN CODE indicates OK): 

None 

ABEND Conditions: 

Parameter Check 

• RESOURCE specifies an unassigned resource ID. 
• MAP_NAMECYESCvariable» is specified and not supported. 
• FMH_DATACYES) is specified and not supported. 

state Check 

The mapped conversation is not is send state. 

Nates: 

1. The mapped conversation protocol boundary provides for the send­
i ng and recei vi ng of data records. Unli ke the logi cal records 
defined for the basic conversation protocol boundary~ data 
records contain only data; they do not contain the logical record 
length field. 

2. The MC_SEND_DATA verb sends one complete data ~ecord. Thus~ the 
sending program cannot truncate a data record. 

3. The LU buffers the data to be sent to the remote LU until it accu­
mUlates from one or more MC_SEND_DATA verbs a sufficient amount 
for transmission, or until the local program issues a verb that 
causes the LU to flush its send buffer. The amount of data that 
is sufficient for transmission depends on the characteristics of 
the session allocated for the mapped conversation, and can vary 
from one session to another. 

4. The MAP_NAME parameter is used to specify data mapping. The data 
mapping function uses the MAP_NAME parameter as follows: 

• MAP_NAMECNO) is used to generate a null (zero-length) value 
for the map name~ which suppresses data mapping. 

• MAP_NAMECYES(variable» is used to specify a non-null map 
name~ which invokes data mapping. 

The data mapping may be performed by the local LU, remote LU, or 
both~ depending on the data mapping function. When a mapped con­
versation is started, data mapping is initially suppressed until 
MAP_NAME(YES(variable» is specified, at which time data mapping 
is invoked. During the remainder of the conversation data mapping 

4-36 SNA Transaction Programmer's Reference Manual for LU Type 6.2 



Mapped Conversat;on Verbs 

of each data record is ei ther invoked or suppressed as the 
MAP_NAME parameter specifies. 

The data mapping function underlying the mapped conversation pro­
tocol boundary includes the sending of the map name to the remote 
LU. The local LU sends the map name when data mapping is first 
invoked on the mapped conversation, and thereafter whenever the 
one to be sent differs from the one previously sent. This proto­
col for .sending the map name and data applies independently in 
each direction on the mapped conversation. 

5. The data mapping function underlying the mapped conversation pro­
tocol boundary may include mapping of the map name itself, depend­
ing on the mapping function. Consequently, the local program may 
specify a map name that differs from the map name the remote pro­
gram recei ves. For example, the DATA parameter may speci fy a 
high-level-language data structure, which the local LU must seri­
alize for transmission. Correspondingly, the remote LU may have 
to map the seri al i zed data into a (possi bly di fferent> 
hi gh-level-language data structure for the remote program~ In 
this example, the local LU maps the program-specified map name to 
a second map name that describes the format of the serialized 
data, and sends the second map name together with the serialized 
data to the remote LU. The remote LU maps the second map name to a 
third map name that describes the structure of the data passed to 
the remote program. 

6. It is the responsibility of both sending and receiving installa­
tions to maintain the map-name definitions referred to by their 
application transaction programs. 

7. The function of FM headers in the data record is significant only 
to the transaction programs; the sending and receiving LUs per­
form no FM-header related processing other than indicating that 
the data record contains FM headers. The presence of FM headers 
in the data record is indicated to the remote transaction program 
by means of the WHAT_RECEIVED parameter of the 
MC_RECEIVE_AND_WAIT or MC_RECEIVE_IMMEDIATE verb that recei ves 
the data record. 

8. When REQUEST_TO_SEND_RECEIVED indicates YES, the remote program 
is requesti ng the local program to enter recei ve state and thereby 
place the remote program in send state. A program enters receive 
state by means of the MC_PREPARE_TO_RECEIVE or 
MC_RECEIVE_AND_WAIT verb. The partner program enters the corre­
spondi ng send state when it issues an MC_RECEIVE_AHD_WAIT or 
MC_RECEIVE_IMMEDIATE verb and receives the SEND indication (on 
the WHAT_RECEIVED parameter). 

9. References in this verb description to a program being in a par­
ticular state are only in terms of the specified mapped conversa­
tion. 

Chapter 4. Conversation Verbs 4-37 



"C_SEND_ERROR 

Informs the remote transaction program that the local program 
detected an application error. If the mapped conversation is in send 
state. the LU flushes its send buffer. 

Upon successful completion of this verb. the local program is in send 
state and the remote program is in receive state. Further action is 
defined by transaction program· logic. 

Sueeljed Parameters: 

RESOURCE ( variable ) 

Returned parameters: 

RETURN_CODE ( variable ) 

REQUEST_TO_SEND_RECEIVED ( variable ) 

J 

Sueelied Parameters: 

RESOURCE specifies the variable containing the resource ID. 

Returned Parameters: 

RETURN_CODE specifies the variable in which a return code is returned 
to the local program. The return code i~dicates the result of verb 
execution. The return codes that can be returned depend on the state 
of the mapped conversation at the time this verb is issued: 

• If this verb is issued in send state. the following return codes 
can be returned: 

• If thi s verb is; ssued in recei ve state. the following return 
codes can be returned: 

OK 
DEALLOCATE_NORMAL 
RESOURCE_FAILURE_NO_RETRY 
RESOURCE_FAILURE_RETRY 

• If this verb is issued in confirm state or sync-point state. the 
following return codes can be returned: 

OK 
RESOURCE_FAILURE_NO_RETRY 
RESOURCE_FAILURE_RETRY 

REQUEST_TO_SEND_RECEIVED specifies the variable in which is returned 
an indication of whether REQUEST_TO_SEND has been received. The indi­
cati on is ei ther YES or NO. 

• YES indicates a REQUEST_TO_SEND notification has been received 
from the remote transacti on program. The remote program has 
issued MC_REQUEST_TO_SEND. requesting the local program to enter 
receive state and thereby place the remote program in send state. 

4-38 SMA Transaction Programmer's Reference Manual for LU Type 6.2 



Mapped conversation Verbs 

• NO indicates a REQUEST_TO_SEND notification has not been 
received. 

state Changes (when RETURN CODE indicates OK): 

Send state is entered when the verb is issued in receive, confirm, or 
sync-point state. 

No state change occurs when the verb is issued in send state. 

ABEND conditions: 

Parameter Check 

RESOURCE specifies an unassigned resource ID. 

state Check 

The mapped conversati on is not in send, recei ve, confi rm, or 
sync-point state. 

Notes: 

1. The LU may send the error notification to the remote LU immediate­
ly, that is, during the processing of this verb, or the LU may 
defer sending the notification until a later time. The determi­
nation is made as follows: 

• If the local product does not support the MC_FLUSH verb (see 
"Notes on Implementation Details" in Appendix A), then the LU 
sends the error notification immediately. 

• If the local product does support the MC_FLUSH verb, then the 
LU mayor may not send the notification immediately, depend­
ing on the product. If the LU defers sending the notifica­
ti on, it buffers the noti fi cati on until it accumulates a 
sufficient amount of information for transmission, or until 
the local program issues a verb that causes the LU to flush 
its send buffer. The amount of information that is sufficient 
for transmission depends on the characteristics of the ses­
sion allocated for the mapped conversation, and can vary from 
one session to another. 

2. The local program can ensure that the remote program receives the 
error notification as soon as possible by issuing MC_FLUSH imme­
diatelY after MC_SEND_ERROR. 

3. MC_SEND_ERROR is reported to the remote transaction program as 
one of the following return codes: 

• PROG_ERROR_NO_TRUNC - The local program issued MC_SEND_ERROR 
in send state. No da'a truncation occurs at the mapped con­
versation protocol boundary, 

• PROG_ERROR_PURGING - The local program issued MC_SEND_ERROR 
in receive state and all data sent by the remote program and 
not yet received by the local program, if any, has been 
purgedJ or the local program issued MC_SEND_ERROR in confirm 
or sync-point state, in which case no purging has occurred. 

4. When MC_SEND_ERROR is issued in receive state, purging of incom­
ing information occurs. The incoming information that is purged 
includes the following return code indications: 

• ALLOCATION_ERROR 
• BACKED_OUT 
• DEALLOCATE_ABEND 
• FMH_DATA_NOT_SUPPORTED 
• MAPPING_NOT_SUPPORTED 
• MAP_NOT_FOUND 
• MAP_EXECUTION_FAILURE 
• PROG_ERROR_NO_TRUNC 
• PROG_ERROR_PURGING 

Chapter 4. Conversation Verbs 4-39 



The return code DEALLOCATE_NORMAL is reported instead of ALLO­
CATION_ERROR or DEALLOCATE_ABEND. The return code OK is reported 
instead of the other return codes. When the return code 
BACKED_OUT is purged, the remote LU resends the BACKED_OUT indi­
cation and the local program receives the return code on a subse­
quent verb. 

The other kinds of incoming information that are purged are: 

• Data, sent by means of the MC_SEND_DATA verb. 

• Map name, sent by means of the MC_SEND_DATA verb. 

• Confirmation request, sent by means of the MC_CONFIRM, 
MC_PREPARE_TO_RECEIVE, or MC_DEALLOCATE verb. 

• Sync po i nt request, sent by means of the SYNCPT, 
MC_PREPARE_TO_RECEIVE, or MC_DEALLOCATE verb. 

If the confir~ation or sync point request was sent in conjunction 
wi th the MC_DEAllOCATE verb (by means of its TYPE(CONFIRM) or 
TYPE(SYNC_l EVEL> parameter), the deallocati on request is also 
purged. 

Incoming information that is not purged is the REQUEST_TO_SEND 
indication. This indication is reported to the program when it 
issues a verb that includes the REQUEST_TO_SEND_RECEIVED parame­
ter. 

5. When REQUEST_TO_SEND_RECEIVED indicates YES, the remote program 
is requesting the local program to enter receive state and thereby 
place the remote program in send state. A program enters receive 
state by means of the MC_RECEIVE_AND_WAIT or 
MC_PREPARE_TO_RECEIVE verb. The partner program enters the cor­
respondi ng send state when . it issues an MC_RECEIVE_AND_WAIT or 
MC_RECEIVE_IMMEDIATE verb and receives the SEND indication (on 
the WHAT_RECEIVED parameter). 

6. The program may use this verb for various application-!eve! func­
tions. For examp!e, the program may issue this verb to inform the 
remote program of an error it detected in the data records it 
received, or to reject a confirmation or sync-point request. 

7. MC_SEND_ERROR resets or cancels posting. If posting is active and 
the mapped conversat; on has been posted, posti ng is reset. If 
posting is active and the mapped conversation has not been posted, 
posting is canceled (posting will not occur). See the 
MC_POST_ON_RECEIPT verb for more details about posting. 

8. References in this verb description to a program being in a par­
ticular state are only in terms of the specified mapped conversa­
tion. 

4-40 SNA Transaction Programmer's Reference Manual for LU Type 6.2 



HC_TEST 

Happed conversation Verbs 

Tests the specified mapped conversation for a condition. The return 
code indicates the result of the test. 

Sueel;ed Parameters: 

RESOURCE ( variable ) 

[ TEST ( POSTED ) 
( REQUEST_TO_SEND_RECEIVED ) ] 

Returned Parameters: 

RETURN_CODE ( variable ) 

J 

Supplied Parameters: 

RESOURCE specifies the variable containing the resource ID. 

TEST specifies the condition to be tested. 

• POSTED specifies to test whether the mapped conversation has been 
posted. The return code indicates whether posting has occurred. 

• REQUEST_TO_SEND_RECEIVED specifies to test whether 
REQUEST_TO_SEND notification has been received from the remote 
transaction program. The return code indicates whether the 
notification has been received. 

Returned Parameters: 

RETURN_CODE specifies the variable in which a return code is returned 
to the program. The return code indicates the result of the test. 
The TEST parameter determines which of the following return codes can 
be returned to the program. 

• If TEST(POSTED) is specified~ one of the following return codes is 
returned: 

OK 
DATA 
NOT_DATA 

POSTING_NOT_ACTIVE 
UNSUCCESSFUL 
ALLOCATION_ERROR 
BACKED_OUT 
DEALLOCATE_NORMAL 
DEALLOCATE_ABEND 
FMH_DATA_NOT_SUPPORTED 
MAP_EXECUTION_FAILURE 
MAP_NOT_FOUND 
MAPPING_HOT_SUPPORTED 
PROG_ERROR_HO_TRUNC 
PROG_ERROR_PURGING 

~~~gtl~g~:~~~ttl~~:~~T~~TRY 
• If TESTCREQUEST_TO_SEND_RECEIVED) is specified~ one of the fol­

lowing return codes is returned:

OK
UNSUCCESSFUL

state Changes (when RETURN CODE indicates OK):

Hone

Chapter 4. Conversation Verbs 4-41

ABEND Conditions:

Parameter Check

• This verb is not supported.
• TESTCPOSTED) is specified and not supported.
• TESTCREQUEST_TO_SEND_RECEIVED) is specified and not supported.
• RESOURCE specifies an unassigned resource ID.

state Check

• TESTCPOSTED) is specified and the mapped conversation is not in
receive state.

• TEST(REQUEST_TO_SEND_RECEIVED) is specified and the mapped con­
versation is not in send, defer, or receive state.

Notes:

1. The TEST(POSTED) parameter on this verb is intended to be used in
conjuncti on wi th MC_POST _ON_RECEIPT. The use of
MC_POST_ON_RECEIPT and this verb allows a program to continue its
processi ng while wai ti ng for i nformati on to become available,
where the program issues MC_POST_ON_RECEIPT for one or more
mapped conversat ions and then issues thi s verb for· each mapped
conversation to determine when information is available to be
received.

2. For TESTCPOSTED), the return code indicates whether posting has
occurred, as follows:

• OK indicates posting was active for the mapped conversation
and it has been posted. Posting is now reset. The subcode of
the OK return code indicates why the mapped conversation has
been posted.

DATA i ndi cates data is ava Hable for the program to
receive.

NOT_DATA indicates information other than data, such as a
SEND, CONFIRM, or TAKE SYNCPT indication, is available
for the program to receive.

The program should issue MC_RECEIVE_AND_WAIT or
MC_RECEIVE_IMMEDIATE in order to receive the information.
The program may use the sUbcode to determine whether it needs
to specify the DATA parameter on the MC_RECEIVE_AND_WAIT or
MC_RECEIVE_IMMEDIATE verb.

• POSTING_NOT_ACTIVE indicates posting is not active for the
mapped conversation.

• UNSUCCESSFUL indicates posting is active for the mapped con-
versation and it has not been posted. Posting remains active.

The remaining return codes indicate posting was active for the
mapped conversation and it has been posted for the reason indi­
cated by the specific return code. Posting is now reset.

3. Posting is active for a mapped conversation when
MC_POST_ON_RECEIPT has been issued for the mapped conversation
and post; ng has not been reset or canceled C see the
MC_POST_ON_RECEIPT verb).

4. The TESHREQUEST_TO_SEND_RECEIVED) parameter specifies to test
whether REQUEST_TO_SEND notification has been received from the
remote transacti on program. The return code i ndi cates whether
the notification has been received, as follows:

• OK indicates REQUEST_TO_SEND has been received. The remote
program has issued MC_REQUEST_TO_SEND, requesting the local
program to enter receive state and thereby place the remote
program in send state. A program enters recei ve state by
means of the MC_RECEIVE_AND_WAIT or MC_PREPARE_TO_RECEIVE
verb. The partner program enters the correspondi ng send

4-42 SNA Transaction Programmer's Reference Manual for LU Type 6.2

"apped Conversation Verbs

state when it issues an MC_RECEIVE_AND_WAIT or
MC_RECEIVE_IMMEDIATE verb and receives the SEND indication
(on the WHAT_RECEIVED parameter).

• UNSUCCESSFUL indicates REQUEST_TO_SEND has not been received.

5. References in this verb description to a program being in a par­
ticular state are only in terms of the specified mapped conversa­
tion.

Chapter 4. Conversation Verbs 4-43

TYPE-INDEPENDENT CONVERSATION VERBS

4-44

This section describes the subcategory of conversation verbs called
type-independent conversation verbs. These verbs are intended for
use on both mapped conversations and basic conversations. In partic­
ular, the BACKOUT, SYNCPT, and WAIT verbs can be issued against multi­
ple conversati ons, whi ch can consi st of ei ther mapped or basi c
conversations or both. The GET_TYPE verb is issued against a single
conversation, either mapped or basic.

The detailed descriptions of the type-independent conversation verbs
follow. References to verbs that can be either mapped or basic con­
versation verbs are shown with the n[MC_ln prefix in the verb name.

SMA Transaction Programmer's Reference Manual for LU Type 6.2

BACKOUT

BACKOUT J

Type-Independent conversation Verbs

Restores all protected" resources to their status as of the last syn­
chronization point. Protected resources are those currently allo­
cated to the transaction with a synchronization level of SYNCPT. The
last synchronization point is either the start of the transaction. or
the completion of the last successful sync point function if one was
executed since the start of the transaction. As part of the backout
function. the LU flushes its send buffers for all protected resources
that are in send or defer state.

Parameters:

No parameters are defi ned for thi s verb.

state Changes:

The state of each protected resource at the completion of this verb is
the same as it was immediately following the last synchronization
point.

ABEND Conditions:

Parameter Check

Thi s verb is not supported.

state Check

At least one protected resource is not in send. defer. receive.
confirm. sync point. or backed-out state.

Nates:

1. The BACKOUT verb causes the local LU to restore all local pro­
tected resources to their status as of the last synchronization
point. and to send a backed-out indication on all protected con­
versations. (A protected conversation is one that is allocated
with a synchronization level of SYNCPT.)

2. Any program throughout the distributed transaction may initiate
the backout function, that is. may be the first to issue BACKOUT
since the last synchronization point. It does 50 when it deter­
mines that an error or exceptional condition exists that requires
restoring all protected resources to their last synchronization
point. The program can initiate the backout function as a
response to a sync point request. or at other times unrelated to a
sync point request. All other programs interconnected by pro­
tected conversat ions are informed. by means of the BACKED_OUT
return code. that the backout function has been initiated.

3. A program must issue this verb whenever it receives a BACKED_OUT
return code. in order to extend the backout function to all pro­
tected resources throughout the transaction.

4. BACKOUT resets or cancels posting. If posting is active and the
resource has been posted. posting is reset. If posting is active
and the resource has not been posted, posting is canceled (posting
will not occur). See the [MC_]POST_ON_RECEIPT verb for details
about posting of a conversation.

Chapter 4. Conversation Verbs 4-45

GET_TYPE

Returns the type of resource to which the specified resource ID is
assigned.

SUE!E!Hed parameters:

RESOURCE (variable)

RetUtned Parameters:

TYPE (variable)

;

SUE!E!lied Parameters:

RESOURCE specifies the variable containing the resource ID of the
resource of which the type is desired.

Returned Parameters:

TYPE specifies the variable for returning the type of resource that is
allocated. The types are:

• BASIC_CONVERSATION
• MAPPED_CONVERSATION

state Changes:

None

ABEND Cond;t;ons:

Parameter Check

• This verb is not supported.
• RESOURCE specifies an unassigned resource ID.

state Check

None

Notes:

1. A program that can be processed at either the basic conversation
protocol boundary or the mapped conversation protocol boundary
issues this verb in order to determine which category of verbs.
basic conversation or mapped conversation. it is to use for the
resource.

4-46 SNA Transaction Programmer's Reference Manual for LU Type 6.2

SYNCPT

SYNCPT

Type-Independent Conversation Verbs

Advances all protected resources to the next synchronization point.
Protected resources are those currently allocated to the transaction
with a synchronization level of SYNCPT. As part of the sync point
function, the lU flushes its send buffers for all protected resources
that are in send or defer state.

Bgiy~oed !I~amet!~s:

RETURN_CODE (variable)

REQUEST_TO_SEND_RECEIVED (variable)

J

Bgiurned !arameters:

RETURN_CODE specifies the variable in which a return code is returned
to the program. The return code indicates the resul tof the sync
point function.

• OK (sync point is successful)
• BACKED_OUT
• HEURISTIC_MIXED

REQUEST_TO_SEND_RECEIVED specifies the variable in which is returned
an indication of whether REQUEST_TO_SEND has been received. The indi­
cati on is ei ther YES or NO.

• YES indicates a REQUEST_TO_SEND notification has been received
from one or more remote programs.

• NO indicates a REQUEST_TO_SEND notification has not been
received.

state Chaoses (when RETURN CODE iodicatgs OK):

Reset state is entered when the verb is issued in the defer state
entered by the preceding [MC_lDEAllOCATE verb.

Receive state is entered when the verb is issued in the defer state
entered by the preceding [MC_1PREPARE_TO_RECEIVE verb, or when the
verb is issued in the sync poi nt state entered by recei pt of
TAKE SYNCPT on the preceding [MC_lRECEIVE_AND_WAIT or
[MC_IRECEIVE_IMMEDIATE verb.

send state is entered when the verb is issued in the sync point state
entered by receipt of TAKE_SYNCPT_SEND on the preceding
[MC_lRECEIVE_AND_WAIT or [MC_lRECEIVE_IMMEDIATE verb.

Deallocate state is entered when the verb is issued in the sync point
state entered by receipt of TAKE_SYNCPT_DEAllOCATE on the preceding
[MC_lRECEIVE_AND_WAIT or [MC_lRECEIVE_IMMEDIATE verb.

No state change occurs when the verb is issued in send state.

ABEND Canditiaos:

Parameter Check

• Thi s verb is not supported.

state Check

• A protected resource is not in send, defer, or sync point state.
• A protected resource is in send state, and the program started but

did not finish sending a basic conversation logical record.

Chapter 4. Conversation Verbs 4-47

SYNCPT

Notes:

1. The program may issue SYNCPT when all protected conversations are
in send, defer, or sync point state, or a combination of these
states; however, only one conversation can be in sync point state.
(A protected conversation is one that is allocated with a synchro­
nization level of SYNCPT.) The remote programs receive the sync
point request by means of the WHAT_RECEIVED parameter of the
[MC_1RECEIVE_AND_WAIT or [MC_1RECEIVE_IMf1EDIATE verb, as follows:

• On conversations for which the local program is in send state,
the remote programs receive the TAKE_SYNCPT indication.

• On conversations in defer state entered by means of a preced­
ing [MC_1PREPARE_TO_RECEIVE verb, the remote programs receive
the TAKE_SYNCPT_SEND indication.

• On conversations in defer state entered by means of a preced­
i ng [MC_1DEALLOCATE verb, the remote programs recei ve the
TAKE_SYNCPT_DEALLOCATE indication.

2. In a distributed transaction, one program (usually chosen during
transaction design) is the initiator for sync point processing.
The other progr.ams each cooperate in propagati ng the sync poi nt
processing throughout the distributed transaction. The program
initiating sync point processing issues SYNCPT, which causes its
lU to send a sync point request on all of the protected conversa­
tions allocated to the program. Each program receiving the sync
point request may issue SYNCPT, thereby propagating the request
throughout the transaction. When all participating programs
respond to the sync point request by issuing SYNCPT, their LUs and
the initiating program's LU advance their respective local
resources to the next synchronization point.

3. All protected resources, i ncludi ng conversati ons, allocated to
the local transacti on program must be in send, defer, or sync
point state when the program issues SYNCPT. If one or more pro­
tected conversations are in receive state, the program may issue
[MC_1REQUEST_TO_SEND on those conversations to request send con­
trol.

~. The return code indicates whether the sync point function was suc­
cessful.

• OK indicates all protected resources have been advanced to
the next synchronization point.

• BACKED_OUT indicates all protected resources are to be
restored to their status as of the last synchronization
point. The program must issue BACKOUT, which causes the back­
out functi on to be performed on all protected resources
throughout the transaction.

• HEURISTIC_MIXED indicates that some protected resources
throughout the distributed transaction have been advanced to
the next synchronization point and others have been restored
to the previous synchronization point as a result of an error
during the sync point processing. This mixed status of pro­
tected resources occurs when an LU operator intervenes in an
attempt to recover from the error. See SMA Format and Proto­
col Reference Manual: Architecture logjc for lU Type 6.2 for
more detai Is.

5. Use of sync point ensures consistency of the protected resources
involved in a distributed transaction. Consistency means that if
the return code, OK, is returned to the transaction program that
issued the first SYNCPT verb (called the initiator), OK will also
have been returned to the dependent SYNCPT verbs issued by every
other transaction program participating in the distributed log­
ical unit of work.

Similarly, consistency means that if the BACKED_OUT return code
is received on any protected conversation in a distributed trans-

4-48 SHA Transaction Programmer's Reference Manual for LU Type 6.2

Type-Independent Conversation Verbs

action, BACKED_OUT will be received on all protected conversa­
tions in the distributed transaction. Further, all protected
local resources that share in the distributed logical unit of work
will be backed out to the most recent point of successful commit­
ment.

Of particular importance are updates to files or data bases. For
example, ~ake the case of a fund transfer from an account main­
tained at one node to an account maintained at another node; use
of SYNCPT will ensure, except when heuristic decisions must be
made, that the debit from one account will be credited to the oth­
er.

6. The processing of unprotected resources is the program's respon­
sibility. If the sync point function is successful, the program
should advance all unprotected resources associ ated wi th the
transaction to a consistent state. If the sync point function is
unsuccessful, the unprotected resources should be restored to a
state consistent with the previous synchronization point.

7. When REQUEST_TO_SEND_RECEIVED indicates YES, one or more remote
programs are requesting the local program to enter receive state
and thereby place the remote programs in send state. For each
resource on which a REQUEST_TO_SEND notification was received,
the notification will also be reported to the local program on the
next resource-specific verb it issues that has the
REQUEST_TO_SEND_RECEIVED parameter.

s. References in this verb description to a program being in a par­
ticular state are only in terms of each resource.

Chapter 4. Conversation Verbs 4-49

WAIT

NAIT

Waits for posting to occur on any basic or mapped conversation from
among a list of conversations. Posting of a conversation occurs when
posting is active for the conversation and the lU has any information
that the program can receive. such as data. conversation status. or a
request for confirmation or sync point.

Su~~lied ~aram9te~s:

RESOURCE_LIST (variablel variable2 ••• variablen)

Returned ~arameters:

RETURN_CODE (variable)

RESOURCE_POSTED (variable)

J

Su~plied Parameters:

RESOURCE_LIST specifies the variables containing the resource IDs of
the conversations for which posting is expected.

• variable! variable2 ••• variablen are the variables containing
the i ndi vi dual resource IDs. One or more resource IDs may be
specified.

Returned Parameters:

RETURN_CODE specifies the variable in which a return code is returned
to the program. The return code indicates the result of verb exe­
cution. The type of conversation posted determines which of the
return codes can be returned to the program.

• If a mapped conversation is posted, one of the following return
codes is returned:

OK

• If a basic conversation is posted, one of the following return
codes is returned:

OK

4-50 SHA Transaction Programmer's Reference Manual for lU Type 6.2

SYC_ERROR_NO_TRUNC
SVC_ERROR_PURGING
S VC_ERROR_ TRUNC·

~~~g~~g~:~~~t~:~::~T:~TRY 

Type-Independent Conversation verbs 

RESOUP.CE_POSTED spacifies the variable in which the resource ID of the 
posted conversation is returned to the program. 

state Changes (when RETURN CODE indicates OK): 

None 

ABEND Conditions: 

Parameter Check 

• This verb is not supported. 
• RESOURCE_LIST specifies an unassigned resource ID. 

state Check 

None 

Nates: 

1. Thi s verb is intended to be used in conjuncti on wi th 
[MC_1POST_ON_RECEIPT. The use of [MC_1POST_ON_RECEIPT and this 
verb allows a program to perform synchronous receiving from mul­
tiple conversations, where the program issues 
[MC_1POST_ON_RECEIPT for each of the conversati ons and then 
issues this verb (for each conversation) to wait until informa­
tion is available to ba received on the conversations. 

2. The RESOURCE_LIST parameter may specify any combination of basic 
and mapped conversations. Posting for each conversation may be 
active or not active. This verb waits for posting to occur only 
on the conversat; ons for whi ch post; ng is acti ve. When a conver­
sation is posted, the resource 10 of the posted conversation is 
returned to the program by means of the RESOURCE_POSTED parame­
ter. 

3. The return code indicates whether posting has occurred, as fol­
lows: 

• OK indicates posting was active for a conversation and it has 
been posted. Posting is now reset for the conversation. The 
subcode of the OK return code indicates why the conversation 
has been posted. 

DATA indicates data is available for the program to 
receive. 

NOT_DATA indicates information other than data, such as a 
SEND, CONFIRM, or TAKE_SYNCPT i ndi cati on, is available 
for the program to receive. 

The program should issue [MC_1RECEIVE_AHD_WAIT or 
[MC_1RECEIVE_IMMEDIATE in order to receive the information. 
The program may use the subcode to determine whether it needs 
to specify the DATA parameter on the [MC_1RECEIVE_AND_WAIT or 
[MC_1RECEIVE_IMMEDIATE verb. 

• POSTING_HOT_ACTIVE indicates posting is not active for any 
and all of the conversations. 

The remaining return codes indicate posting was active for a con­
versation and it has been posted for the reason indicated by the 
specific return code. Posting is now reset for the conversation. 

4. Posting is active for a conversation when [MC_1POST_ON_RECEIPT 
has been issued for the conversation and posting has not been 
reset or canceled (see the [MC_1POST_ON_RECEIPT verb). 

Chapter 4. Conversation Verbs 4-51 



BASIC CONVERSATION VERBS 

4-52 

This section describes the subcategory of conversation verbs called 
basi c conversatj on verbs. These verbs are intended for use by lU 
se"v ices programs. The lU servi ces programs can provi de end-user 
services or protocol boundaries for end-user application transaction 
programs. Examples of LU servi ces programs are: 

• The lU services component programs that process mapped conversa­
tion verbs and control-operator verbs. These verbs define the LU 
6.2 protocol boundary for mapped conversations and the control 
operator. 

• SNA serv ice transact i on programs. These programs prov ide 
end-user protocol boundaries that are defined by the specific IBM 
product implementations of the service programs. Refer to the IBM 
product publications for a description of the SNA service pro­
grams and their protocol boundaries that each product provides. 
The names of some SNA service transaction programs that have gen­
eral applicability are listed in "Appendix D. list of SNA Service 
Transaction Programs". 

The detailed descriptions of the basic conversation verbs follow. 

Note: Every conversation is either a basic or mapped conversation. 
The basic conversation verbs can be used for operations on both types. 
The mapped conversation verbs can be used for operations only on a 
mapped conversation. The capability to use basic conversation verbs 
on mapped conversations is provided for implementation of a mapped 
conversat i on LU servi ces component program. Throughout the 
descriptions of the basic conversation verbs, references to a basic 
conversation or mapped conversation are made only when it is necessary 
to make a distinction between them. Otherwise, references are made 
simply to conversations. 

SNA Transaction Programmer's Reference Manual for lU Type 6.2 



ALLOCATE 

ALLOCATE 

Dasic Conversation Verb~ 

Allocates a session between the local LU and a remote LU, and on that 
session allocates a basic or ~apped conversation between the local 
program and a remote program. A resource ID is assigned to the con­
versation. This verb is issued prior to any verbs that refer to the 
conversation. 

Sup~lied Parameters: 

LU_NAME ( OWN ) 
( OTHER ( variable ) ) 

MODE_NAME ( variable ) 

TPN ( variable ) 

[ TYPE ( BASIC CONVERSATION ) ] 
( MAPPED_CONVERSATION ) 

[ 
( WHEN SESSION ALLOCATED ) 1 

RETURN_CONTRO~ ( DELAYED_ALLOCATION_PERMITTED ) 
( IMMEDIATE ) 

SYNC_LEVEL ( CONFIRM ) [ 
( NONE) 1 
( SYNCPT ) . 

[
(NONE ) ] SECURITY ( SAME ) 
( PGM ( USER_ID ( variable ) PASSWORD ( variable ) 

. PROFILE ( variable ) ) ) 

[ PIP ( NO ) ] 
( YES ( variablel variable2 ••• variablen ) ) 

Returned Parameters: 

RESOURCE ( variable ) 

RETURN_CODE ( variable ) 

Supplied Parameters: 

LU_NAME speci fi es the name of the remote LU at whi ch the remote trans­
action program is located. This LU name ;5 any name by which the 
local LU knows the remote LU for the purpose of allocati ng a conversa­
t;on. The local LU transforms this locally-known LU name to an LU 
name used by the network, if the names are different. 

• OWN specifies that the remote program is located at the same LU as 
the local program. 

• OTHER specifies that the remote program is located at another LU. 
The specified variable contains the LU name. 

MODE_NAME specifies the mode name designating the network properties 
for the sessi on to be allocated for the conversati on. The network 
properties include, for example, the class of 'service to be used, and 
whether data is to be enciphered or translated to ASCII before it is 
sent. The SMA-defined mode name, SHASVCMG, may be specified, but only 
by an LU s~rvices program. 

Chapter 4. Conversation Verbs 4-53 



ALLOCATE 

4-54 

TPN specifies the name of the remote transaction program to be con­
nected at the other end of the conversation. A transaction program 
that has the appropr i ate pr i v ilege may spec i fy the name of an SNA 
service transaction program. Privilege is an identification that a 
product or installation defines in order to differentiate LU services 
transaction programs from other programs, such as application trans­
action programs. (See "Appendix D. List of SNA Service Transaction 
Programs" for more detai Is about SMA servi ce transacti on program 
names.) 

TYPE spec; fi es the type of conversati on to be allocated. 

• BASIC_CONVERSATION specifies to allocate a basic conversation. 

• MAPPED_CONVERSATION specifies to allocate a mapped conversation. 
This argument is used in support of mapped conversation verbs. It 
may be specified only by a mapped conversation LU services pro­
gram. 

RETURN_CONTROL specifies when the local LU is to return control to the 
local program, in relation to the allocation of a session for the con­
versation. An allocation error resulting from the local LU's failure 
to obtain a session for the conversation is reported either on this 
verb or a subsequent verb, depending on the argument specified for 
this parameter. An allocation error resulting from the remote LU's 
rejection of the allocation request is reported on a subsequent verb. 

• WHEN_SESSION_ALLOCATED specifies to allocate a session for the 
conversation before returning control to the program. An error in 
allocating a session is reported on this verb. 

• DELAYED_ALLOCATION_PERMITTED specifies to allocate a session for 
the conversati on after returni ng control to the program. An error 
in allocating a session is reported on a subsequent verb. 

• IMMEDIATE specifies to allocate a session for the conversation if 
a session is immediately available, and return control to the pro­
gram with a return code indicating whether a session is allocated. 

A return code of OK indicates a session is immediately avail­
able and is allocated for the conversation. A session is 
immediately available when it is active, it is not allocated 
to another conversation, and the local LU is the contention 
winner for the session. 

A return code of UNSUCCESSFUL indicates a session ;s not imme­
diatelyavailable. Allocation is not performed. 

An error in allocating a session that is immediately available is 
reported on this verb. 

SYNC_LEVEL specifies the synchronization level that the local and 
remote programs can use on this conversation. 

• NONE specifies that the programs will not perform confirmation or 
sync point processing on this conversation. The programs will not 
issue any verbs and will not recognize any returned parameters 
relating to these synchronization functions. 

• CONFIRM speci fi es that the programs can perform confi rmati on 
processing but not sync-point processing on this conversation. 
The programs may issue verbs and will recognize returned parame­
ters relating to confirmation, but they will not issue any verbs 
and will not recognize any returned parameters relating to sync 
point. 

• SYNCPT specifies that the programs can perform both confirmation 
and sync-point processing on this conversation. The programs may 
issue verbs and will recognize returned parameters relating to 
confirmation or sync point. For sync-point processing, a conver­
sation allocated with this synchronization level is a protected 
resource. 

SNA Transaction Programmer's Reference Manual for LU Type 6.2 



Basic canversatian Ver~~ 

SECURITY speci fi es access securi ty i nformati on that the remote LU 
uses to verify the identity of the end-user and validate access to the 
remote program and its resources. The access security information 
consists of a user ID, a password, and a profile. 

• NONE specifies to omit access security information on this allo­
cation request. 

• SAME speclfies to use the user ID and profile (if present) from 
the allocation request that initiated execution of the local pro­
gram. The password (if present) is not used; instead, the user ID 
is indicated as being already verified. If the allocation request 
that initiated execution of the local program contained no access 
security information, then access security information is omitted 
on this allocation request. 

• PGM specifies to use the access security information that the 
local program provides on this parameter. The local program pro­
vides the information by means of the following arguments: 

USER_ID specifies the variable containing the user ID. The 
remote LU uses thi s value and the password to veri fy the i den­
tity of the end-user making the allocation request. In addi­
tion, the remote LU may use the user 10 for auditing or 
accounting purposes, or it may use the user 10, together with 
the profile (if present), to determine which remote programs 
the local program may access and which resources the remote 
program may access. 

PASSWORD specifies the var'iable containing the password. The 
remote LU uses this value and the user 10 to verify the iden­
tity of the end-user making the allocation request. 

PROFILE specifies the variable containing the profile. The 
remote LU may use this value, in addition to or in place of 
the user 10, to determine which remote programs the local pro­
gram may access, and which resources the remote program may 
access. 

Specifying a null value for any of the access security arguments 
is equivalent to omitting the argument. 

PIP specifies program initialization parameters for the remote pro­
gram. 

• NO specifies that PIP data is not present. 

• YES specifies that PIP data is present. 

variable! variable2 ••• variablen contain the PIP data to be 
sent to the remote program. The PIP data consists of one or 
more subfields, each of which is specified by a separate vari­
able; variables 1 through n correspond to subfields 1 through 
n. If a variable is omitted in the PIP parameter Dr it is of 
null value, the corresponding PIP subfield is made to be of 0 
length. The number of PIP subfields must agree with the num­
ber of PIP variables specified on the remote program's PROC 
statement (see "Transaction Program Structure and Execution" 
'i n Chapter 3). 

Returned Parameters: 

RESOURCE specifies the variable in which the resource ID is to be 
returned. The length and actual format of the resource 10 ;s product 
dependent. The resource ID is returned to the program when the return 
code is either OK or ALLOCATION_ERROR. 

RETURN CODE specifies the variable in which a return code is returned 
to the-local program. The return code indicates the result of verb 
execution. The RETURN_CONTROL parameter determines which of the fol­
lowing return codes can be returned to the program. 

• If RETURN_CONTROL (WHEN_SESSION_ALLOCATED) is specified, one of 
the following return codes is returned: 

Chapter 4. Conversation Verbs 4-55 



ALLOCATE 

OK 
ALLOCATION_ERROR Cwith one of the following subcodes) 

ALLOCATION_FAILURE_NO_RETRY 
ALLOCATION_FAILURE_RETRY 
SYNC_LEVEL_NOT_SUPPORTED_BY_LU 

PARAMETER_ERROR (for the following reasons) 
Inval i d LU name 
Invalid mode name 

• If RETURH_CONTROL(DELAYED_ALLOCATION_PERMITTED) is specified, 
one of the following return codes is returned: 

OK 
PARAMETER_ERROR (for one of the following reasons) 

Invali d LU name 
Inval i d mode name 

• If RETURH_COHTROL(IMMEDIATE) is specified, one of the following 
return codes is returned: 

OK 
ALLOCATION_ERROR (with the following subcode) 

SYNC_LEVEL_NOT_SUPPORTED_BY_LU 
PARAMETER_ERROR (for one of the following reasons) 

Invali d LU name 
Invalid mode name 

UNSUCCESSFUL Cfor the following reason) 
Session not immediately available 

state Changes (when RETURN CODE indicates OK): 

Send state is entered. 

ABEND Conditions: 

Parameter Check 

• LU_NAMECOWN) is specified and not supported. 
• MODE_NAME specifies SNASVCMG and the local program is not an LU 

services program. 
• TPN speci fi es an SHA servi ce transact i on program name and the 

local program does not have the appropriate privilege to allocate 
a conversation to an SHA service program. 

• TPH specifies a null (0 length) value. 
• TYPECBASIC_CONVERSATION) is specified and the local program does 

not have basic conversation support defined. 
• TYPECMAPPED_COHVERSATION) is specified and the local program is 

not a mapped conversation LU services program. 
• RETURN_COHTROLCDELAYED_ALlOCATION_PERMITTED) is specified and 

not supported. 
• RETURN_COHTROLCIMMEDIATE) is specified and not supported. 
• SYHC_LEVElCSYNCPT) is.specified and not supported. 
• SECURITYCSAME) is specified and not supported. 
• SECURITYCPGM(USER_ID(variable) PASSWORD(variable») is specified 

and not supported. 
• SECURITYCPGMCPROFILECvariable») is specified and not supported. 
• PIP(YES(variable» is specified and not supported. 

state Check 

None 

Notes: 

1. This verb is used by a transaction program to allocate a basic 
conversation. It is also used by an LU services component program 
to allocate either a basic conversation or a mapped conversation, 
depending on the function that the component program provides. 
For example, a component program that processes c~ntrol operator 
verbs uses this verb to allocate a basic conversation, and a com­
ponent program that processes mapped conversation verbs uses this 
verb to allocate a mapped conversation. 

4-56 SHA Transaction Programmer's Reference Manual for LU Type 6.2 



Basic Conversation Verbs 

2. Depending on the product~ the LU may send the allocation request 
to the rem6te LU as soon as it allocates a sessi on for the conver­
sation. Alternatively~ the LU may buffer the allocation request 
until it accumulates from the PIP parameter of this verb or from 
one or more subsequent SEND DATA verbs a sufficient amount of 
information for transmission~-or until the local program issues a 
subsequent verb other than SEND_DATA that explicitly causes the 
LU to flush its send buffer. The amount of information that is 
sufficient for transmission depends on the characteristics of the 
session allocated for the conversation~ and can vary from one ses­
sion to another. 

3. The local program can ensure that the remote program is connected 
as soon as possible by issuing FLUSH immediately after ALLOCATE. 

4. Two LUs connected by a session may both attempt to allocate a con­
versation on the session at the same time. This is called con­
tention. Contention is resolved by making one LU the contention 
winner of the session and the other LU the contention loser of the 
session. The contention-winner LU allocates a conversation on a 
session without asking permission from the contention-loser LU. 
Conversely~ the contention-loser LU requests permission from the 
contention-winner LU to allocate a conversation on the session~ 
and the contention-winner LU either grants or rejects the 
request. 

5. If the program issues ALLOCATE with the parameter 
RETURN_CONTROLCDELAYED_ALLOCATION_PERMITTED)~ the LU delays 
allocation of the session until it flushes its send buffer. At 
that time the LU allocates the session and transmits the allo­
cation request to the remote LU. The program is unaffected by the 
delayed allocation of the session~ with one exception: When the 
LU allocates a contention-loser session~ it does so by transmit­
ting the allocation request and then waiting for information to 
arrive before returning control to the program. This can affect 
the sequence of the verbs that the program can issue. 

For example~ suppose the program has the following sequence of 
verbs: 

ALLOCATE with RETURN_CONTROLCDELAYED_ALLOCATION_PERMITTED) 

PREPARE_TO_RECEIVE with TYPECFLUSH) 

REQUEST_TO_SEND 

In this example, assume the program is using REQUEST_TO_SEND to 
prompt the remote program to begin sending information, instead 
of requesting send control. However, if the LU allocates a con­
tention-loser session (and an allocation error or resource fail­
ure does not occur), control is not returned to the program after 
it issues the PREPARE_lO_RECEIVE until the remote program sends 
some information. If the remote program waits for the 
REQUEST_TO_SEND noti fi cati on before sendi ng any i nformati on, a 
deadlock condition occurs. This deadlock can be avoided by issu­
ing the ALLOCATE with either RETURN_CONTROL 
(WHEN_SESSION_ALLOCATED) or RETURN_CONTROL (IMMEDIATE). 

6. SYNC LEVELCSYNCPT) permits use of the SYNCPT and BACKOUT verbs 
and -the Resynchronization transaction program Can SNA service 
transaction program), to aid in maintaining consistency across 
all protected resources within a distributed logical unit of 
work. The Resynchronization program performs sync point resyn­
chronization, which maintains this consistency when session fail­
ure and reinitiation occurs. See SNA Format and Protocol 
Reference Manual: Arch; tecture logi c for lU Type 6.2 for more 
details of sync point resynchronization. 

7. Each LU indicates at session activation time whether it will 
accept LU security parameters on allocation requests the partner 
LU sends. If the remote LU will not accept any security parame­
ters from the local LU, and the local program specifies SECURI­
TY( SAME) or SECURITYCPGM( ... », the local LU downgrades the 
speci fi cati on to SECURITYCNONE). Si mi larly~ if the remote LU 

Chapter 4. Conversation Verbs 4-57 



ALLOCATE 

4-58 

will not accept the local lU's verification of the user ID and 
password, and the local program speci fi es SECURITYCSAME), the 
local LU downgrades the specification to SECURITYCHOHE). 

8. The remote program is connected to the other end of the conversa­
tion in receive state. 

9. The program uses the resource ID, returned to the program on the 
RESOURCE parameter, on all subsequent basic conversation verbs it 
issues for this conversation. 

10. References in this verb description to a program being in a par­
ticular state are only in terms of the allocated conversation. 

SMA Transaction Programmer's Reference Manual for LU Type 6.2 



CONFIRM 

CONFIRM 

Basic Conversation Verbs 

Sends a confirmation request to a remote transaction program and waits 
for a reply. This verb allows the local and remote programs to syn­
chronize their processing with one another. The LU flushes its send 
buffer as a function of this verb. 

SueeHed par;ameters: 

RESOURCE ( variable ) 

Betur;ned Parameters: 

RETURN_CODE ( variable ) 

REQUEST_TO_SEND_RECEIVED ( variable ) 

J 

Sueelied Parameters: 

RESOURCE specifies the variable containing the resource ID. The con­
versation must be allocated with a synchronization level of CONFIRM or 
SYNCPT. 

Returned Par;ameters: 

RETURN_CODE specifies the variable in which a return code is returned 
to the local program. The return code indicates the result of verb 
execution. 

• OK Cremote program replied CONFIRMED) 
• ALLOCATION ERROR 
• BACKED_OUT-
• DEALLOCATE_ABEND_PROG 
• DEALLOCATE_ABEND_SVC 
• DEALLOCATE_ABEND_TIMER 
• PROG_ERROR_PURGING 
• RESOURCE_FAILURE_NO_RETRY 
• RESOURCE_FAILURE_RETRY 
• SVC_ERROR_PURGING 

REQUEST_TO_SEND_RECEIVED specifies the variable in which is returned 
an indication of whether REQUEST_TO_SEND has been received. The indi­
cation is either YES or NO. 

• YES indicates a REQUEST_TO_SEND notification has been received 
from the remote transacti on program. The remote program has 
issued REQUEST_TO_SEND, requesti ng the local program to enter 
receive state and thereby place the remote program in send state. 

• NO indicates a REQUEST_TO_SEND notification has not been 
received. 

state Changes (when RETURN CODE indicates OK): 

Receive state ;s entered when the verb is issued in defer state fol­
lowing PREPARE_TO_RECEIVE. 

Reset state is entered when the verb is issued in defer state follow­
ing DEALLOCATE. 

No state change occurs when the verb is issued in send state. 

ABEND Conditions: 

Parameter Check 

• The conversation was allocated with SYNC_lEVELCNONE). 
• RESOURCE specifies an unassigned resource ID. 

Chapter 4. Conversation Verbs 4-59 



CONFIRM 

state Check 
• The conversation is not in send or defer state. 
• The conversation is in send state, and the program started but did 

not finish sending a logical recard. 

Nates: 

1. The program may use this verb for various application-level func­
tions. For example: 

• The program may issue thi s verb immedi ately followi ng an 
ALLOCATE in order to determine whether the allocation of the 
conversation is successful before sending any data. 

• The program may issue this verb as a request for acknowledge­
ment of data it sent to the remote program. The remote pro­
gram may respond by issuing CONFIRMED as an indication that it 
received and processed the data without error, or by issuing 
SEND_ERROR as an indication that it encountered an error. 

2. When REQUEST_TO_SEND_RECEIVED indicates YES, the remote program 
requests the lo.cal program to enter recei ve state and thereby 
place the remote program in send state. A program enters receive 
state by means of the PREPARE_TO_RECEIVE or RECEIVE_AND_WAIT 
verb. The partner program enters the correspondi ng send state 
when it issues a RECEIVE_AND_WAIT or RECEIVE_IMMEDIATE verb and 
receives the SEND indication (on the WHAT_RECEIVED parameter). 

3. References in this verb description to a program being in a par­
ticular state are only in terms of the specified conversation. 

4-60 SNA Transaction Programmer's Reference Manual for LU Type 6.2 



CONFIRMED 

CONFIRMED 

Basic conversa~ion Verbs 

Sends a confirmation reply to the remote transaction program. This 
verb allows the local and remote programs to synchronize their proc­
essing with one another. The local program can issue this verb when 
it receives a confirmation request (see the WHAT_RECEIVED parameter 
of the RECEIVE_AND_WAIT or RECEIVE_IMMEDIATE verb). 

Su~~lied Parameters: 

RESOURCE ( variable ) 

; 

supplied Parameters: 

RESOURCE specifies the variable containing the resource ID. 

State Changes: 

Receive state is entered when CONFIRM was received on the preceding 
RECEIVE_AND_WAIT or RECEIVE_IMMEDIATE. 

Send state is entered when CONFIRM_SEND was received on the preceding 
RECEIVE_AND_WAIT or RECEIVE_IMMEDIATE. 

Deallocate state is entered when CONFIRM_DEALLOCATE was received on 
the preceding RECEIVE_AND_WAIT or RECEIVE_IMMEDIATE. 

ABEND Conditions: 

Parameter Check 

RESOURCE specifies an unassigned resource ID. 

state Check 

The conversation is not in confirm state. 

Nates: 

1. The program can issue this verb only as a reply to a confirmation 
request; the verb cannot be issued at any other time. 

2. The program may use this verb for various application-level func­
tions. For example. the remote program may send data followed by 
a confirmation request. When the local program receives the con­
firmation request. it may issue this verb as an indication that it 
received and processed the data without error. 

3. References in this verb description to a program being in a par­
ticular state are only in terms of the specified conversation. 

Chapter 4. Conversation Verbs 4-61 



DEALLOCATE 

DEALLOCATE 

Deallocates the specified conversation from the transaction program. 
The deallocati on can be ei ther completed as part of thi s verb, or 
deferred until the program issues a FLUSH, CONFIRM, or SYNCPT verb. 
When it is completed as part of this verb it can include the function 
of the FLUSH or CONFIRM verb. The resource ID becomes unassigned when 
deallocation is complete. 

Sueelied Parameters: 

RESOURCE ( var;able ) 

r- . 
( SYHC LEVEL ) 
( FLUSH ) 
( CONFIRM ) 

TYPE ( ABEND_PROG ) 
( ABEND_SVC ) 
( ABEND_TIMER ) 
( LOCAL ) 

[ LOG DATA ( NO ) 
- ( YES ( var;able ) ) ] 

Returned Parameters: 

RETURN_CODE ( var;able ) 

J 

Suepl;ed Parameters: 

RESOURCE specifies the variable containing the resource ID of the con­
versation to be deallocated. 

TYPE specifies the type of deallocation to be performed. 

• SYNC_LEVEL speci fi es to perform deallocati on based on the syn­
chronization level allocated to this conversation: 

If SYNC_LEVELCNONE), execute the function of the FLUSH verb 
and deallocate the conversation normally. 

If SYNC_LEVELCCONFIRM), execute the function of the CONFIRM 
verb and if it is successful Cas indicated by a return code of 
OK on thi s DEALLOCATE verb), deallocate the conversat ion 
normally; if it is not successful, the state of the conversa­
tion is determined by the return code. 

If SYNC_LEVELCSYNCPT), defer the deallocation until the pro­
gram issues a SYNCPT, or the program issues a CONFIRM or FLUSH 
for this conversation. If the SYNCPT or CONFIRM is successful 
Cas indicated by a return code of OK on that verb) or FLUSH is 
issued, the conversation is then deallocated normally; other­
wi se, the state of the conversati on is determi ned by the 
return code. 

• FLUSH specifies to execute the function of the FLUSH verb and 
deallocate the conversation normally. 

• CONFIRM specifies to execute the function of the CONFIRM verb and 
if it is successful (as indicated by a return code of OK on this 
DEALLOCATE verb), deallocate the conversation nor,mally; if it is 
not successful, the state of the conversation is determined by the 
return code. 

• ABEND_PROG, ABEND_SVC, or ABEND_TIMER specifies to execute the 
function of the FLUSH verb when the conversation is in send or 
defer state, and deallocate the conversation abnormally. 

4-62 SNA Transaction Programmer's Reference Manual for LU Type 6.2 



Bas;c Conversation Verbs 

Logical-record truncation can occur when the conversation is in 
send state; data purgi ng ca'n occur when it is in recei ve state. 

• LOCAL speci fi es to deallocate the conversati on locally. Thi s 
type of deallocation must be specified if. and only if. the con­
versation is in deallocate state. Deallocate state is entered 
when the program receives on a previously issued verb a return 
code indicating the conversation has been deallocated (see "Re­
turn Codes" on page 4-99). 

The execution of the FLUSH or CONFIRM function as part of this verb 
includes the flushing of the LU's send buffer. When. instead. the 
deallocation is deferred. the LU also defers flushing its send buffer 
until the program issues a subsequent verb for this conversation. 

LOG_DATA specifies whether product-unique error information is to be 
placed in the system error logs of the LUs supporting this conversa­
tion. This parameter can be specified only when TYPE(ABEND PROG). 
TYPE(ABEND_SVC), or TYPE(ABEND_TIMER) is also specified. -

• NO specifies that no error information is to be placed in the sys­
tem error logs. 

• YES specifies that product-unique error information is to be 
placed in the system error logs of the local and remote LUs. The 
specified variable contains the product-unique error information. 
in the format of the Error Log GDS variable. See SNA Format and 
Protocol Reference Manual: Architecture Logic for lU Type 6.2 for 
a definition of the Error Log GDS variable. 

Returned Parameters: 

RETURN_CODE specifies the variable in which a return code is returned 
to the local program. The return code indicates the result of verb 
executi on. The TYPE parameter determi nes whi ch of the followi ng 
return codes can be returned to the program. 

• If TYPE(SYNC_LEVEL) is specified and the synchronization level 
allocated to this conversation is NONE; or TYPE(FLUSH), 
TYPECABEND_PROG). TYPECABEND_SVC), TYPECABEND_TIMER), or 
TYPECLOCAL) is specified; the following return code is returned: 

OK (deallocation is complete) 

• If TYPECSYNC_LEVEL) is specified and the synchronization level 
allocated to this conversation is CONFIRM, or TYPECCONFIRM) is 
specified, one of the following return codes is returned: 

OK (deallocation is complete) 
ALLOCATION_ERROR 
DEALLOCATE_ABEND_PROG 
DEALLOCATE_ABEND_SVC 
DEALLOCATE_ABEND_TIMER 
PROG_ERROR_PURGING 
SVC_ERROR_PURGING 
RESOURCE_FAILURE_NO_RETRY 
RESOURCE_FAILURE_RETRY 

• If TYPE(SYNC_LEVEL) is specified and the synchronization level 
allocated to thi s conversati on is SYNCPT, the followi ng return 
code is returned: 

OK (deallocation is deferred) 

state Changes (when RETURN CODE indicates OK): 

Defer state is entered when TYPECSYNC_lEVEL) is specified and the syn­
chronization level is SYNCPT. 

Reset state is entered when TYPE(FLUSH), TYPE(CONFIRM), TYPE(LOCAL), 
TYPECABEND_PROG), TYPE(ABEND_SVC), or TYPE(ABEND_TIMER) is specified; 
or when TYPECSYNC_lEVEL) is specified and the synchronization level 
is NONE or CONFIRM. 

Chapter 4. Conversation Verbs 4-63 



DEALLOCATE 

ABEND Conditions: 

Parameter Check 

• RESOURCE specifies an unassigned resource ID. 
• TYPECCOHFIRM) is specified and the conversation is allocated with 

SYHC_LEYELCHOHE). 
• TYPE(ABEHD_SYC). or TYPE(ABEND_TIMER) is specified and not sup-

ported. 
• LOG_DATA is specifi~d and not supported. 

state Check 

• TYPECFLUSH), TYPECCOHFIRM), or TYPECSYNC_LEVEl) is specified and 
the conversation is not in send state. 

• TYPEC FLUSH), TYPECCOHFIRM), or TYPECS.YHC_lEYEL> is speci fied, the 
conversation is in send state, and the program started but did not 
finish sending a logical record. 

• TYPECABEHD PROG), TYPECABEHD SYC), or TYPECABEHD_TIMER) is speci­
fied and the conversation isnot in send, defer, receive, confirm, 
or Sync-point state. 

• TYPECLOCAL) 'is specified and the conversation is not in deallo­
cate state. 

Nates: 

1. When the deallocation is deferred (see the TYPE parameter), the LU 
buffers the deallocation information to be sent to the remote LU 
until the local program issues a verb that causes the LU to flush 
its send buffer. 

2. The TYPE(SYHC_LEVEL> parameter is intended to be used by the 
transaction program in order to deallocate the conversation based 
on the synchronization level allocated to the conversation. 

• If the synchroni zati on level is HOHE, the conversati on is 
unconditionally deallocated. 

• If the synchronization level is CONFIRM, the conversation is 
deallocated when the remote program responds to the confirma­
tion request by issuing COHFIRMED. The conversation remains 
allocated when the remote program responds to the confirma­
tion request by issuing SEHD_ERROR. 

• If the synchronization level is SYHCPT, the conversation is 
deallocated when the local program subsequently issues SYHCPT 
and all programs throughout the transacti on, connected to 
conversations having the synchronization level of SYHCPT, 
respond to the sync poi nt request by i ssu i ng SYNCPT. The con­
versation remains allocated when the remote program responds 
to the sync point request by issuing SEHD_ERROR, or one or 
more programs respond by issuing BACKOUT. 

3. The TYPECFLUSH) parameter is intended to be used by the trans­
action program in order to unconditionally deallocate the conver­
sation regardless of its synchronization level. TYPE(FlUSH) is 
functionally equivalent to: 

• TYPECSYHC_LEVEL) with a synchronization level of HONE. 

• TYPECSYNC_LEYEL) with a synchronization level of SYNCPT, fol­
lowed by the FLUSH verb. 

4. The TYPECCOHFIRM) parameter is intended to be used by the trans­
action program in order to conditionally deallocate the conversa­
ti on, dependi ng on the remote program's response, when the 
synchronization level is CONFIRM or SYNCPT. TYPECCOHFIRM) is 
functionally equivalent to: 

• TYPECSYNC_LEYEL) with a synchronization level of CONFIRM. 

• TYPECSYHC_LEVEL) with a synchronization level of SYHCPT, fol­
lowed by the CONFIRM verb. 

4-64 SNA Transaction Programmer's Reference Manual for lU Type 6.2 



Basic Conversation Verbs 
The conversation is deallocated when the remote program responds 
to the confirmation request by issuing CONFIRMED. The conversa­
tion remains allocated when the remote program responds to the 
confirmation request by issuing SEND_ERROR. 

5. The TYPECABEND~PROG). TYPECABEND_SVC), and TYPECABEND_TIMER) 
parameters are intended to be used in order to unconditionally 
deallocate the conversati on regardless of its synchroni zati on 
level and its current state. Specifically: 

• The TYPECABEND_PROG) parameter is intended to be used by a 
transaction program when it detects an error condition that 
prevents further useful communi cati ons. that is, communi­
cat ions that would lead to successful complet i on of the 
transaction. The specific use and meaning of ABEND PROG are 
program-defined. -

• The TYPECABEND_SVC) parameter is intended to be used by an LU 
services component. such as one that processes mapped conver­
sation verbs. when it detects an error condition caused by its 
peer LU services component in the remote LU. An example is a 
format error in control information sent by the peer LU serv­
ices component. The specific use and meaning of ABEND SVC are 
product-defined. -

• The TYPECABEND_TIMER) parameter is intended to be used by an 
LU services component. such as one that processes mapped con­
versation verbs. when it detects or is informed of a condition 
that requires the conversation to be deallocated without fur­
ther communications. For example. too much time elapses 
without receiving any information. or an operator prematurely 
ends program execution. The specific conditions and the 
means by whi ch the LU servi ces component detects or is 
informed of the conditions are product-defined. The specific 
use and meaning of ABEND_TIMER are also product-defined. 

6. The TYPECLOCAL) parameter is intended to be used by the trans­
action program in order to complete the program's deallocation of 
the conversation after receiving an indication that the conversa­
tion has been deallocated from the session. an indication such as 
a DEALLOCATE_NORMAL or RESOURCE_FAILURE_RETRY return code. 

7. The remote transaction program receives the deallocate notifica­
tion by means of a return code or what-received indication, as 
follows: 

• DEALLOCATE NORMAL return code: The local program specified 
either TYPECFLUSH); TYPECSYNC_LEVEL) and the synchronization 
level is NONE; or TYPECSYNC_LEVEL), the synchronization level 
is SYNCPT, and the local program subsequently issued FLUSH. 

• CONFIRM DEALLOCATE what-received indication: The local pro­
gram specified either TYPECCONFIRM); TYPECSYNC_LEVEL) and the 
synchronization level is CONFIRM; or TYPECSYNC_LEVEL), the 
synchronization level is SYNCPT,·and the local program subse­
quently issued CONFIRM. 

• TAKE_SYNCPT_DEALLOCATE what-received indication: The local 
program specified TYPECSYNC_LEVEL), the synchronization level 
is SYNCPT, and the local program subsequently issued SYNCPT. 

• DEALLOCATE ABEND PROG. DEALLOCATE_ABEND SVC. or DEALLO­
CATE ABEND-TIMER-return code: The local-program specified. 
respectively, TYPECABEND_PROG). TYPECABEND_SVC). or 
TYPECABEND TIMER), with the following exception: If the 
remote program has issued a SEND_ERROR in recei ve state, a 
DEALLOCATE_NORMAL return code is reported instead of one of 
the DEALLOCATE_ABEND return codes. 

8. DEALLOCATE w.ith TYPECABEND_PROG), TYPECABEND_SVC), or 
TYPECABEHD TIMER) resets or cancels posting. If posting is 
active and-the conversation has been posted. posting is reset. If 
posting is active and the conversation has not been posted, post-

Chapter 4. Conversation Verbs 4-65 



DEALLOCATE 

ing is canceled (~osting will not occur). See the POST_OH_RECEIPT 
verb for more details about posting. 

9. References in this verb description to a program being in a par­
ticular state are only in terms of the specified conversation. 

4-66 SHA Transaction Programmer's Reference Manual for LU Type 6.2 



FLUSH 

FLUSH 

Basic conversation verbs 

Flushes the local LU's send buffer. The LU sends any information it 
has buffered to the remote LU. Information the LU buffers can come 
from ALLOCATE, DEALLOCATE, SEND DATA, PREPARE TO RECEIVE, or 
SEND_ERROR. Refer to the descriptions of these verbs for details of 
the i nformati on the LU buffers and when bufferi ng occurs. 

Iyeeljad pa~gmgtars: 

RESOURCE ( variable ) 

. , 
Iyeelied pargmetars: 

RESOURCE specifies the variable containing the resource ID. 

Stlte Changes: 

Receive state is entered when the verb is issued in defer state fol­
lowing PREPARE_TO_RECEIVE. 

Reset state is entered when the verb is issued in defer state follow­
ing DEALLOCATE. 

No 'state change occurs when the verb is issued in send state. 

ABEND Condjtigns: 

Parameter Check 

• This verb is not supported. 
• RESOURCE specifies an unassigned resource ID. 

state Check 

The conversation is not in send or defer state. 

Notes: 

1. This verb is useful for optimization of processing between the 
local and remote programs. The LU normally buffers the data from 
consecut;ve SEND_DATAs untH it has a sufficient amount for 
transmission. At that time it transmits the buffered data. How­
ever, the local program can issue FLUSH in order to causa the LU 
to transmit the buffered data. In this way, the local program can 
minimize the delay in the remote program's processing of the data. 

2. This verb can be issued after DEALLOCATE with TYPECSYNC_LEVEL) 
when the synchronization level for the conversation is SYNCPT. 
The effect to the remote program is the same as issuing DEALLOCATE 
with TYPECFLUSH). The conversation is deallocated at the com­
pletion of the FLUSH verb. 

3. This verb can be issued after PREPARE_TO_RECEIVE wi th 
TYPECSYNC_LEVEL) when the synchronization level for the conversa­
tion is SYNCPT. The effect to the remote program is the same as 
issuing PREPARE_TO_RECEIVE with TYPECFLUSH). The conversation 
enters receive state at the completion of the FLUSH verb. 

4. The LU flushes its send buffer only when it has some information 
to transmi t. If the LU has no i nformati on in its send buffer, 

'nothing is transmitted to the remote LU. 

5. References in this verb description to a program being in a par­
ticular state are only in terms of the specified conversation. 

Chapter 4. Conversation Verbs 4-67 



GET_ATTRIBUTES 

GET_ATTRIBUTES 

Returns information pertaining to the specified conversation. 

Supplied Parameters: 

RESOURCE ( variable ) 

Returned Parameters: 

[ OWN_FULLY_QUALIFIED_LU_NAME ( variable ) ] 

[ PARTNER_LU_NAME ( variable ) ] 

[ PARTNER_FULLY_QUALIFIED_LU_NAME ( variable ) ] 

[ MODE_NAME ( variable ) ] 

[ SYNC_LEVEL ( variable ) ] 

[ SECURITY_USER_ID ( variable ) ] 

[ SECURITY_PROFILE ( variable ) ] 

[ LUW_IDENTIFIER ( variable ) ] 

[ CONVERSATION_CORRELATOR ( variable ) ] 

Supplied Parameters: 

RESOURCE specifies the variable containing the resource ID of the con­
versation of which the attributes are desired. 

Returned Parameters: 

OWN_FULLY_QUALIFIED_LU_NAME specifies the variable for returning the 
fully qualified name of the LU at which the local transaction program 
is located. If the local fully qualified LU name is not known. a null 
value is returned. 

PARTNER_LU_NAME specifies the variable for returning the name of the 
LU at which the remote transaction program is located. This is a name 
by which the local LU knows the remote LU for the purpose of allocat­
ing a conversation. Refer to the description of the LU_HAME parameter 
of ALLOCATE for more details. 

PARTNER_FULLY_QUALIFIED_LU_NAME specifies the variable for returning 
the fully qualified name of the LU at which the remote transaction 
program is located. If the partner's fully qualified LU name is not 
known. a null value is returned. 

MODE_NAME specifies the variable for returning the mode name for the 
session on which the conversation is allocated. 

SYNC_LEVEL specifies the variable for returning the level of synchro~ 
nization processing being used for the conversation. The synchroni­
zation levels are: 

• HONE 
• CONFIRM 

4-68 SHA Transaction Programmer's Reference Manual for LU Type 6.2 



Basic Conversation Verbs 

• SYNCPT 

SECURITY_USER_ID speci fi es the variable for returni ng the user ID 
carried on the allocation request that initiated execution of the 
local program. A null value is returned if the allocation request did 
not contain a user ID. 

SECURITY_PROFILE spec; f; es the variable for returning the profile 
carried on the allocation request that initiated execution of the 
local program. A null value is returned if the allocation request did 
not contain a profile. 

LUW_IDENTIFIER specifies the variable for returning the logical unit 
of work (LUW) identifier associated with the conversation. The LUW 
identifier is created and maintained by the LU. The LU uses it to 
identify the most recent sync point and for accounting purposes. and 
for accounting purposes. If nQ LUW identifier is used on the conver­
sation, a null value is returned. 

CONVERSATION_CORRELATOR specifies the variable for returning the con­
versati on correlator. The conversati on correlator is created and 
maintained by the LU. The LU uses it during sync point resynchroniza­
tion. If no conversation correlator is used on the conversation, a 
null value is returned. 

state Changes: 

None 

ABEND Conditions: 

Parameter Check 

• RESOURCE specifies an unassigned resource ID. 
• SECURITY_USER_ID is specified and not supported. 
• SECURITY_PROFILE is specified and not supported. 
• LUW_IDENTIFIER is specified and not supported. 
• CONVERSATION_CORRELATOR is specified and not supported. 

state Check 

None 

Notes: 
1. The program issues this verb in order to obtain the attributes of 

the conversat ion, i ncludi ng the one by wh i ch the program was 
started. 

2. Specifying SECURITY_USER_ID or SECURITY_PROFILE returns the user 
ID or profile carried on the allocation request that initiated 
execution of the local program, regardless of which resource ID is 
supplied on the RESOURCE parameter. 

3. The LU creates the LUW identifier for its use during sync point 
processing, and for accounting purposes. For sync point, the LUW 
i dent if i er un i quel y i dent if i es the mo st recent synchron i zat ion 
point. 

4. The LU creates the conversation correlator for its use during sync 
point resynchronization. For sync point resynchronization, the 
conversation correlator correlates the logical unit of work to 
the sync point states associated with the current instance of the 
local program. 

Chapter 4. Conversation Verbs 4-69 



Causes the" LU to post the specified conversation when information is 
available for the program to receive. The information can be data, 
conversation status, or a request for confirmation or sync point. 
WAIT should be issued after POST_ON_RECEIPT in order to wait for post­
ing to occur. Alternatively, TEST may be issued following 
POST_ON_RECEIPT in order to determine when posting has occurred. 

SUl!l!lied Parameters: 

POST_aN_RECEIPT RESOURCE ( variable ) 

[ FILL ( Ys ) 
( BUFFER ) ] 

LENGTH ( variable ) 

J 

SUl!l!lied Parameters: 

RESOURCE specifies the variabl~ containing the resource ID. 

FILL specifies whether posting for data is to occur in terms of the 
logical-record format of the data. 

• LL specifies to post when a complete or truncated logical record 
is received, or when a part of a logical record is received that 
is at least equal in length to that specified on the LENGTH param­
eter, whichever occurs first. 

• BUFFER speci fi es to post when data (i ndependent of its 
logi cal-record format) is avai lable that is at least equal in 
length to that specified by the LENGTH parameter, or when the end 
of data is available, whichever occurs first. 

The specification and effect of FILLCLL) versus FILLCBUFFER) is rele­
vant only at the time the verb is issued. The specification does not 
depend on past use, and has no bearing on subsequent use, of this 
parameter on any verbs to which it applies (POST_ON_RECEIPT, 
RECEIVE_IMMEDIATE, and RECEIVE_AND_WAIT). 

Posting also occurs independent of the FILL specification when infor­
mation other than data is received, such as conversation status (a 
SEND, PROG_ERROR_TRUNC, or DEALLOCATE_NORMAL indication, for exam-
ple), or a confirmation or sync-point request. " 

LENGTH specifies the variable containing a length value, which is the 
maximum length of data that the program can receive. This parameter 
is used along with FILL to determine when to post the conversation for 
the receipt of data. 

state Changes: 

None 

ABEND Conditions: 

Parameter Check 

• This verb is not supported. 
• RESOURCE specifies an unassigned resource ID. 

state Check 

The conversation is not in receive state. 

4-70 SNA Transaction Programmer's Reference Manual for LU Type 6.2 



Basic conversation Verbs 
Nates: 

1. This verb is intended to be used in conjunction with TEST or WAIT. 
The use of this verb and WAIT allows a program to perform synchro­
nous recei vi ng from multi pIe conversati ons, where the program 
issues this verb for each of the conversations and then issues 
WAIT (for each conversation) to wait until information is avail­
able to be received on the conversations. The use of this verb 
and TEST allows a program to continue its processing and test the 
conversations to determine when information is available to be 
received. 

2. Posting occurs when the LU has any information that the program 
can receive, such as data, conversation status, or a request for 
confirmation or sync point. Refer to the RECEIVE AND WAIT verb 
for a descri pti on of the types of informati on -a program can 
receive. 

3. Posting is active for a conversation When POST_ON_RECEIPT has 
been issued for the conversati on and posti ng has not yet been 
reset or cancelled. 

4. 

5. 

Posting is reset when any of the following verbs is issued for the 
same conversation as specified on POST_ON_RECEIPT after the con­
versation is posted: 

BACKOUT 

DEALLOCATE with TYPE(ABEND_PROG), TYPE(ABEND_SVC), or 
TYPE(ABEND_TIMER) 

RECEIYE_AND_WAIT 

RECEIVE_IMMEDIATE 

SEND_ERROR 

TEST 

WAIT 

Posting is cancelled when any of the following verbs is issued for 
the same conversation as specified on POST_ON_RECEIPT before the 
conversation is posted: 

BACKOUT 

DeALLOCATE with TYPECABEND_PROG), TYPECABEND_SVC), or 
TYPE(ABEND_TIMER) 

RECEIVE_IMMEDIATE 

SEND_ERROR 

In order for the program to activate posting again after posting 
has been reset or cancelled, the program issues another 
POST_ON_RECEIPT. 

Any number of POST_ON_RECEIPTs may be issued for a given conversa­
tion before posting is reset or cancelled. The last 
POST ON RECEIPT issued for a conversation is the one that deter­
mines when posting will occur for data. For example, if a program 
hsues POST ON RECEIPT with FILL<BUFFER) and LENGTH(1000) in 
preparation to -receive 1000 bytes of data, and then issues the 
verb again with LENGTH(SOO), posting will occur when 500 bytes of 
~ata are available; or if the program issues the verb again with 
FILl(ll), posting will occur in terms of logical records. 

POST ON RECEIPT with lENGTH(O) has no special significance. It 
specifies that posting for data is to occur upon receipt of any 
amount of data of one byte or more. It is equi valent to 
POST_ON_RECEIPT with LENGTH(!). 

Chapter 4. Conversation Verbs 4-71 



4-72 

6. When FILL(BUFFER) is specified, posting for data occurs independ­
ent of its logical record format. The conversation is posted when 
an amount of data is available that is equal to, or less than, the 
length specified on the LENGTH parameter. Posting for less data 
can occur only when the end of the data is available. The end of 
data occurs when it is followed by an indication of a change in 
the state of the conversation, that is, a change to send, confirm, 
sync-point, or deallocate state. See RECEIVE_AND_WAIT for addi­
tional information. 

7. References in this verb description to a program being in a par­
ticular state are only in terms of the specified conversation. 

SMA Transaction Programmer's Reference Manual for LU Type 6.2 



Basic Conversation Verbs 

Changes the conversation from send to receive state in preparation to 
receive data. The change to receive state can be either completed as 
part of this verb, or deferred until the program issues a FLUSH, CON­
FIRM, or SYNCPT verb. When it is completed as part of this verb it 
includes the fUncti on of the flUSH or CONFIRM verb. 

SUl!l!lied Parameters: 

PREPARE_TO_RECEIVE RESOURCE ( variable ) 

[ I SVNC LEVEL ) ] TYPE ( FLUSH ) 
( CONFIRH ) 

[ LOCKS ( SHORT ) ] 
( LONG ) 

Returned Parameters: 

RETURN_CODE ( variable ) 

. , 
SUl!l!lied Parameters: 

RESOURCE specifies the variable containing the resource ID. 

TY~E specifies the type of prepare-to-receive to be performed for this 
conversation. 

• SYNC_LEVEL specifies to perform the prepare-to-receive based on 
the synchronization level allocated to this conversation: 

If SYNC LEVELCNONE), execute the function of the FLUSH verb 
and enter receive state. 

If SYNC_LEVELCCONFIRM), execute the function of the CONFIRM 
verb and if it is successful (as indicated by a return code of 
OK on this PREPARE_TO_RECEIVE verb), enter receive state; if 
it is not successful, the state of the conversation is deter­
mined by the return code. 

If SYNC_LEVElCSYNCPT), enter defer state until the program 
issues a SYNCPT, or the program issues a CONFIRM or FLUSH for 
this conversation. If the SYNCPT or CONFIRM is successful Cas 
indicated by a return code of OK on that verb) or FLUSH is 
issued, receive state is then entered for this conversation; 
otherwise, the state of the conversation is determined by the 
return code. 

• FLUSH speci fi es to execute the functi on of the FLUSH verb and 
enter receive state. 

• CONFIRH specifies to execute the function of the CONFIRM verb and 
if it is successful (as indicated by a return code of OK on this 
PREPARE_TO_RECEIVE verb), enter receive state; if it is not suc­
cessful, the state of the conversation is determined by the return 
code. 

The execution of the FLUSH or CONFIRM function as part of this verb 
includes the flushing of the LU's send buffer. When, instead, defer 
state is entered, the LU defers flushing its send buffer until the 
program issues a subsequent verb for this conversation. 

LOCKS specifies when control is to be returned to the local program 
following execution of the CONFIRM function of this verb or following 
execution of a CONFIRM verb issued subsequent to this verb. This 

Chapter 4. Conversation Verbs 4-73 



parameter is significant only when TYPECCONFIRM) is also specified, 
or when TYPECSYNC_LEVEL> is also speci fi ed and the synchroni zati on 
level for this conversation is CONFIRM; or when TYPECSYNC_LEVEL) is 
also specified, the synchronization level for this conversation is 
SYNCPT, and a subsequent CONFIRM is issued. Otherwise, this parameter 
has no meaning and is ignored. 

• SHORT speci fi es to return control when an affi rmati ve reply is 
received, as follows: 

When the synchroni zati on level is CONFIRM, return control 
from executi on of thi 5 verb when a CONFIRMED reply is 
received. 

When the synchroni zati on level is SYNCPT, return control 
immediately from execution of this verb; return control from 
execution of a subsequent CONFIRM or SYNCPT verb when a corre­
sponding CONFIRMED or SYNCPT reply is received. 

• LONG specifies to return control when information, such as data, 
is recei ved from the remote program followi ng an affi rmati ve 
reply, as follows: 

When the synchron i zati on level is CONFIRM, return control 
from execution of this verb when information is received fol­
lowing a CONFIRMED reply. 

When the synchronization level is SYNCPT, return control 
immediately from execution of this verb; return control from 
execution of a subsequent CONFIRM or SYNCPT verb when infor­
mati on is recei ved followi ng a correspondi ng CONFIRMED or 
SYNCPT reply. 

Returned Parameters: 

RETURN_CODE specifies the variable in which a return code is returned 
to the local program. The return code indicates the result of verb 
executi on. The TYPE parameter determi nes whi ch of the followi ng 
return codes can be returned to the program. 

• If TYPECFLUSH) is specified, or if TYPECSYNC_LEVEL) is specified 
and the synchronization level allocated to this conversation is 
NONE, the following return code is returned: 

OK 

• If TYPECSYNC_LEVEL) is specified and the synchronization level 
allocated to thi 5 conversati on is CONFIRM, or TYPECCONFIRM) is 
specified, one of the following return codes is returned: 

OK 
ALLOCATION_ERROR 
DEALLOCATE_ABEND_PROG 
DEALLOCATE_ABEND_SVC 
DEALLOCATE_ABEND_TIMER 
PROG_ERROR_PURGING 
SVC_ERROR_PURGING 

~~~g~~g~:~:~t~~~:~~T~~TRY 
• If TYPECSYNC_LEVEL) is specified and the synchronization level

allocated to this conversation is SYNCPT, the following return
code is returned:

OK

state Changes (when RETURN CODE indicates OK):

Defer state is entered when TYPECSYNC_LEVEL) is specified and the syn­
chronization level is SYNCPT.

ReCe;ve state is entered when TYPECFLUSH) or TYPECCONFIRM) is speci­
fied, or when TYPECSYNC_LEVEL) is specified and the synchronization
level is NONE or CONFIRM.

4-74 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Bas;c Conversation verbs
ABEND Conditions:

Parameter Check

• Thi s verb is not supported.
• RESOURCE specifies an unassigned resource ID.
• TYPECCOHFIRM) is specified and the conversation is allocated with

SYHC_LEVELCHONE).
• LOCKSCLONG) is specified and not supported.

state Check

• The conversation is not in send state.
• The conversation is in send state, and the program started but did

not finish sending a logical record.

Notes:

1. The TYPECSYNC_LEVEL) parameter is intended to be used by the
transacti on program in order to transfer send control to the
remote program based on the synchroni zati on level allocated to
the conversation.

• If the synchronization level is NONE, send control is trans­
ferred to the remote program without any synchronizing
acknowledgment.

• If the synchroni zati on level is CONFIRM, send control is
transferred to the remote program wi th confi rmati on
requested.

• If the synchronization level is SYNCPT, transfer of send con­
trol is deferred. When the local program subsequently issues
SYNCPT, send control is transferred to the remote program
with sync point requested.

2. The TYPECFLUSH) parameter is intended to be used by the trans­
action program in order to transfer send control to the remote
program without any synchronizing acknowledgment. TYPECFLUSH) is
functionally equivalent to:

• TYPECSYNC_LEVEL) with a synchronization level of NONE.

• TYPECSYNC_LEVEL) with a synchronization level of SYNCPT, fol­
lowed by the FLUSH verb.

3. The TYPECCONFIRM) parameter is intended to be used by the trans­
action program in order to transfer send control to the remote
program with confirmation requested. TYPECCONFIRM) is func­
tionally equivalent to:

• TYPECSYNC_LEVEL) with a synchronization level of CONFIRM.

• TYPECSYNC_LEVEL) with a synchronization level of SYNCPT, fol­
lowed by the CONFIRM verb.

4. The remote transaction program receives send control by means of a
what-received indication of SEHD, CONFIRM_SEND, or
TAKE_SYNCPT_SEND, as follows:

• SEND: The local program specified either TYPECFlUSH);
TYPECSYHC_LEVEl) and the synchronization level is NONE; or
TYPECSYNC_lEVEU, the synchronizati on level is SYNCPT, and
the local program subsequently issued FLUSH.

• CONFIRM_SEND: The local program specified either
TYPECCONFIRM); TYPECSYNC_LEVEL) and the synchronization level
is CONFIRM; or TYPECSYNC_LEVEL), the synchronization level ;s
SYNCPT, and the local program subsequently issued CONFIRM.

• TAKE_SYNCPT_SEHD: The local program speci fi ed
TYPECSYNC_LEVEU, the synchrol)i zati on level h SYNCPT, and
the local program subsequently lssued SYNCPT.

Chapter 4. Conversation Verbs 4-75

PREPARE_lO_RECEIVE

5. If TYPECSYNC_LEVEL) is specified and the synchronization level
for the conversation is SYNCPT, the LU buffers the SEND notifica­
tion to be sent to the remote program until the local program
issues a verb that causes the LU to flush its send buffer.

6. The conversation for the remote program enters the corresponding
send state when.it issues a RECEIVE_AND_WAIT or RECEIVE_IMMEDIATE
verb and receives the SEND indication (on the WHAT_RECEIVED
parameter.) The remote program can then send data to the local
program.

7. References in this verb description to a program being in a par­
ticular state are only in terms of the specified conversation.

4-76 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Bas;c Conversation Verbs

Waits for information to arrive on the specified conversation and then
receives the information. If information is already available, the
program receives it without waiting. The information can be data,
conversati on status, or a request for confi rmati on or sync po i nt.
Control is returned to the program with an indication of the type of
information.

The program can issue thi s verb When the conversati on is in send
state. In this case, the LU flushes its send buffer, sending all buf­
fered information and the SEND indication to the remote program. This
changes the conversati on to rece; ve state. The LU then wa i ts for
information to arrive. The remote program can send data to the local
program after it receives the SEND indication.

§ueelied Parameters:

RECEIVE_AND_WAIT RESOURCE (variable)

[FILL (LL)]
(BUFFER)

sueel;gd-aod-Rgtytned Patametets:

LENGTH (variable)

BgjjutOgd Pgramejjers:

RETURN_CODE (variable)

REQUEST_TO_SEND_RECEIVED (variable)

DATA (variable)

WHAT_RECEIVED (variable)

J

sueel;ed Parameters:

RESOURCE specifies the variable containing the resource 10.

FILL specifies whether the program is to receive data in terms of the
logical-record format of the data.

• LL specifies the program is to receive one complete or truncated
logical record, or a portion of the logical record that is equal
to the length specified by the LENGTH parameter.

• BUFFER specifies the program is to receive data independent of its
logical-record format. The amount of data received will be equal
to, or less than, the length specified by the LENGTH parameter.
The amount is le~s than the specified length when the program
receives the end of the data.

The specification and effect of FILLCLL) versus FILLCBUFFER) is rele­
vant only at the time the verb is issued. The specification does not
depend on past use, and has no bearing on subsequent use, of this
parameter on any verbs to which it applies CPOST_ON_RECEIPT,
RECEIVE_AND_WAIT, and RECEIVE_IMMEDIATE).

§Yeelied-and-Beturned patgmejjets:

LENGTH specifies the. variable containing a length value that is the
maximum amount of data the program is to receive. When control is
returned to the program this variable contains the actual amount of
data the program received UP to the maximum. If the program receives
information other than data, this variable remains unchanged.

Chapter 4. Conversation Verbs 4-77

Returned Parameters:

RETURN_CODE specifies the variable in which a return code is returned
to the program. The return code indicates the result of verb exe­
cution. The return codes that can be returned depend on the state of
the conversation at the time this verb is issued.

• If this verb is issued in send state, the following return codes
can be returned:

OK
ALLOCATION_ERROR
BACKED_OUT
DEALLOCATE_ABEND_PROG
DEALLOCATE_ABEND_SVC
DEALLOCATE_ABEND_TIMER
PROG_ERROR_PURGIHG
SVC ERROR PURGING
RESOURCE_FAILURE_NO_RETRY
RESOURCE_FAILURE_RETRY

• If thi s verb is issued in recei ve state, the followi ng return
codes can be returned:

OK
AllOCA TION_ERROR
BACKED_OUT
DEAL LOCATE_ABEHD_PROG
DEALLOCATE_ABEND_SVC
DEAL LOCATE_ABEND_TIMER
DEALLOCATE_NORMAL
PROG_ERROR_NO_TRUNC
PROG_ERROR_PURGING
PROG_ERROR_TRUNC
SVC_ERROR_NO_TRUNC
SVC_ERROR_PURGING
SVC_ERROR_TRUNC
RESOURCE_FAILURE_NO_RETRY
RESOURCE_FAILURE_RETRY

REQUEST_TO_SEND_RECEIVED specifies the variable in which is returned
an indication of whether REQUEST_TO_SEND has been received. The indi­
cation is either YES or NO.

• YES indicates a REQUEST_TO_SEND notification has been received
from the remote transaction program. The remote program has
issued REQUEST_TO_SEND, requesting the local program to enter
receive state and thereby place the remote program in send state.

• NO indicates a REQUEST_TO_SEND notification has not been
received.

DATA speci fi es the vari able in whi ch the program is to rece; ve the
data. When the program receives information other than data, as indi­
cated by the WHAT_RECEIVED parameter, nothing is placed in this vari­
able.

WHAT_RECEIVED specifies the variable in which is returned an indi­
cation of what the transaction program received. The program should
examine this variable only when RETURN_CODE indicates OK; otherwise,
nothing is placed in this variable.

• DATA is indicated when FILLCBUFFER) is specified and data Cinde­
pendent of its logical-record format) is received by the program.

• DATA_COMPLETE is indicated when FILLCLL) is specified and a com­
plete logical record, or the last remaining portion thereof, is
received by the program.

• DATA_INCOMPLETE is indicated When FILl(LL) is specified and less
than a complete logical record is received by the program. The
transaction program issues another RECEIVE_AND_WAIT (or possibly
multiple RECEIVE_AND_WAITs) to receive the remainder of the data.

4-78 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Basic conversation Verbs

• LL_TRUNCATED;s indicated when FILLCLL) is specified and the
2-byte LL field of a logical record has been truncated after the
first byte. The LU discards the truncated LL field; it is not
received by the program.

• SEND i ndi cates the remote program has entered recei ve state,
placing the local program in send state. The local program may
now issue SEND_DATA.

• CONFIRM indicates the remote program has issued CONFIRM, request­
ing the local program to respond by issuing CONFIRMED. The pro­
gram may respond, instead, by issuing a verb other than CONFIRMED,
such as SEND_ERROR.

• CONFIRM_SEND indicates the remote program has issued PRE­
PARE_TO_RECEIVE with TYPECCONFIRM); or with TYPECSYNC_LEVEL), and
either the synchronization level is CONFIRM, or it is SYNCPT and
the remote program subsequently issued CONFIRM. The local pro­
gram may respond by issuing CONFIRMED, or by issuing another verb
such as SEND_ERROR.

• CONFIRM_DEALLOCATE indicates the remote program has issued DEAL­
LOCATE with TYPECCONFIRM); or with TYPECSYNC_LEVEL), and either
the synchronization level is CONFIRM, or it is SYNCPT and the
remote program subsequently issued CONFIRM. The local program
may respond by issuing CONFIRMED, or by issuing another verb such
as SEND_ERROR.

• TAKE_SYNCPT indicates the remote program has issued SYNCPT,
requesting the local program to respond by issuing SYNCPT in order
to perform the sync-po i nt functi on on all protected resources
throughout the transaction. Issuing the SYNCPT verb also causes
an affirmative reply to be returned to the remote program if the
sync-poi nt functi on is successful. The program may respond,
instead, by issuing a verb other than SYNCPT, such as BACKOUT or
SEND_ERROR.

• T.AKE SYNCPT SEND i ndi cates the remote program has issued PRE­
PARE:TO_RECEIVE with TYPECSYNC_LEVEL), the synchronization level
is SYNCPT, and the remote program subsequently issued SYNCPT. The
local program may respond by issuing SYNCPT, or by issuing another
verb such as BACKOUT or SEND_ERROR.

• TAKE SYNCPT DEALLOCATE i ndi cates the remote program has issued
DEALLOCATE -with TYPECSYNC LEVEll, the synchronization level is
SYNCPT, and the remote program subsequently issued SYNCPT. The
local program may respond by issuing SYNCPT, or by issuing another
verb such as BACKOUT or SEND_ERROR.

state Changes (when RETURN CODE indicates OK):

Receive state is entered when the verb is issued in send state and
WHAT_RECEIVED indicates DATA, DATA_COMPLETE, DATA_INCOMPLETE, or
LL_TRUNCATED.

Send state is entered when WHAT_RECEIVED indicates SEND.

Confirm state is entered when WHAT_RECEIVED indicates CONFIRM, CON­
FIRM_SEND, or CONFIRM_DEALLOCATE.

sync-point state is entered when WHAT_RECEIVED indicates TAKE_SYNCPT,
TAKE_SYNCPT_SEND, or TAKE_SYNCPT_DEALLOCATE.

No state change occurs when the verb is issued in receive state and
WHAT_RECEIVED indicates DATA, DATA_COMPLETE, DATA_INCOMPLETE, or
LL_TRUNCATED.

ABEND Conditions:

Parameter Check

RESOURCE speci fi es an unassi gned resource ID.

Chapter 4. Conversation Verbs 4-79

4-80

state Check

• The conversation is not in send or receive state.
• The conversation is in send state. and the program started but did

not finish sending a logical record.

Notes:

1. When the program issues RECEIVE_AND_WAIT in send state, the LU
implicitly executes a PREPARE_TO_RECEIVE with TYPECFLUSH) before
executing the RECEIVE_AND_WAIT. Refer to the description of PRE­
PARE_TO_RECEIVE for details of its function.

2. When FILL(LL) is specified. the program is to receive a logical
record and there are the following possibilities:

• The program recei ves a complete logi cal record or the last
remai ni ng porti on of a complete record. The length of the
record or portion of the record is equal to or less than the
length specified on the LENGTH parameter. The WHAT_RECEIVED
parameter indicates DATA_COMPLETE.

• The program receives an incomplete logical record. The log-
ical record is incomplete because:

The length of the logi cal record is greater than the
length spec; fi ed on the LENGTH parameter; in th; s case
the amount received equals the length specified.

Only a portion of the logical record is available because
it has been truncated. the portion being equal to or less
than the length specified on the LENGTH parameter.

The WHAT_RECEIVED parameter indicates DATA_INCOMPLETE. The
program issues another RECEIVE_AND_WAIT (or possibly multiple
RECEIVE_AND_WAITs) to receive the remainder of the logical
record.

• The program receives no part of the logical record because it
was truncated after the fi rst byte of the LL fi eld. The
WHAT_RECEIVED parameter indicates LL_TRUNCATED.

Refer to the SEND_DATA verb for a defi ni ti on of complete and
incomplete logical records.

3. When FILLCBUFFER) is specified, the program is to receive data
independent of its logical-record format. The program receives
an amount of data equal to. or less than. the length specified on
the LENGTH parameter. The program can receive less data only when
it receives the end of the data. The end of data occurs when it is
followed by an indication of a change in the state of the conver­
sation, that is. a change to send. confirm, sync-point, or deallo­
cate state. The program is responsible for tracking the
logical-record format of the data.

4. RECEIVE_AND_WAIT with LENGTH(O) has no special significance. The
type of information available is indicated by the RETURN_CODE and
WHAT_RECEIVED parameters. as usual. If data is avai lable and
FILL<LU is specified, the WHAT_RECEIVED parameter indicates
DATA_INCOMPLETE. If data is available and FILLCBUFFER) is speci­
fi ed, the WHAT_RECEIVED parameter i ndi cates DATA. In ei ther
case, however, the program receives no data.

5. The program receives only one kind of information at a t'me. For
example, it may receive data or a CONFIRM request, but it does not
receive both at the same time. Also, if the remote program trun­
cates a logical record, the local program receives the indication
of the truncation on the RECEIVE_AND_WAIT it issues ~fter receiv­
i ng all of the truncated record. The RETURN_CODE and
WHAT_RECEIVED parameters i ndi cate to the program the ki nd of
information the program receives.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Bas;c conVBrsat;on Verbs
6. RECEIVE_AND_WAIT includes posting. If posting is already active

when this verb is issued, this verb supersedes the prior
POST_ON_RECEIPT function. Posting is reset at the completion of
this verb. See the POST_ON_RECEIPT verb for more details about
posting.

7. The REQUEST_TO_SEND notification is usually received when the
local transaction program is in send state, and reported to the
program on a SEND_DATA verb or on a SEND_ERROR verb issued in send
state. However, the notification can be received when the program
is in receive state under the following conditions:

• When the local program just entered rece; ve state and the
remote program issued REQUEST_TO_SEND before it entered send
state.

• When the remote program has just entered recei ve state by
means of the PREPARE_TO_RECEIVE verb (not RECEIVE_AND_WAIT),
and then issued REQUEST_TO_SEND before the local program
enters send state. This can occur because the
REQUEST_TO_SEND is transmitted as an expedited request and
can therefore arrive ahead of the request carrying the SEND
indication. Potentially, the local program cannot distin­
guish this condition from the first. This ambiguity is
avo i ded when the remote program wa its unt iii t rece i ves
i nformati on from the local program before it issues the
REQUEST_TO_SEND.

• When the remote program issues the REQUEST_TO_SEND in send
state (see "Notes on ·Implementation DetaHs" in Appendix A).

8. The REQUEST_lO_SEND notification is returned to the program in
addition to (not in place of) the information indicated by the
RETURN_CODE and WHAT_RECEIVED parameters.

9. References in this verb description to the program being in a par­
ticular state are only in terms of the specified conversation.

Chapter 4. Conversation Verbs 4-81

RECEIVE_IMMEDIATE

Receives any information that is available from the specified conver­
sation, but does not wait for information to arrive. The information
(if any) can be data, conversation status, or a request for confirma­
tion or sync point. Control is returned to the program with an indi­
cation of whether any information was received and, if so, the type of
information.

Sueelied Paramete~§:

RECEIVE_IMMEDIATE RESOURCE (variable)

4-82

[FILL (LL)]
(BUFFER)

Sueelied-gnd-Returned Parameters:

LENGTH (variable)

Returned !a~;meters:

RETURN_CODE (variable)

REQUEST_TO_SEND_RECEIVED (variable)

DATA (variable)

WHAT_RECEIVED (variable)

;

Sueelied Parameters:

RESOURCE specifies the variable containing the resource ID.

FILL specifies whether the program is to recei~e data in terms of the
logical-record format of the data.

• LL specifies the program is to receive one logical record, or
whatever portion of the logical record is available, up to the
length specified by the LENGTH parameter.

• BUFFER specifies the program is to receive data independent of its
logical-record format, up to the length specified by the LENGTH
parameter.

The specification and effect of FILL(LL) versus FILL(BUFFER) is rele­
vant only at the time the verb is issued. The specification does not
depend on past use, and has no-bear4~.~n subsequent use, of this
kE~Eiv~~IMM~DIAT~~ a~:r:ECEi3E_A~~SAI~i. appljes (POST_ON_RECEIPT,

Sueelied-and-Returned !arameters:

LENGTH specifies the variable containing a length value that is the
maximum amount of data the program is to receive. When control ;s
returned to the program this variable contains the actual amount of
data the program received UP to the maximum. If the program receives
information other than data, or no information at all, this variable
remains unchanged.

Returned p;rameters:

RETURN_CODE specifies the variable in which a return code is returned
to the program. The return code indicates the result of verb exe­
cution.

• OK
• ALLOCATION_ERROR

SNA Transaction Programmer's Reference Manual for LU Type 6.2

•
• •
• • •
•
•
•
• •
• • •

Basic conversation Verbs

REQUEST_TO_SEND_RECEIVED specifies the variable in which is returned
an indication of whether REQUEST_TO_SEND has been received. The indi­
cation is either YES or NO.

• YES indicates a REQUEST_TO_SEND notification has been received
from the remote program. The remote program has issued
REQUEST_TO_SEND, requesting the local program to enter receive
state and thereby place the remote program in send state.

• NO indicates a REQUEST_TO_SEND notification has not been
received.

DATA specifies the variable in which the program is to receive the
data. When the program receives information other than data, as indi­
cated by the WHAT_RECEIVED parameter, nothing is placed in this vari­
able.

WHAT_RECEIVED specifies the variable in which is returned an indi­
cation of what the transaction program received. The program should
examine this variable only when RETURN_CODE indicates OK; otherwise,
nothing is placed in this variable.

• DATA is indicated when FILLCBUFFER) is specified and data Cinde­
pendent of its logical-record format) is received by the program.

• DATA COMPLETE is indicated when FILlCLL) is specified and a com­
plete logical record, or the last remaining portion thereof, is
received by the program.

• DATA_INCOMPLETE is indicated when FILLCLL) is specified and less
than a complete logical record is received by the program. The
transaction program issues another RECEIVE_IMMEDIATE Cor possibly
multiple RECEIVE_IMMEDIATEs) to receive the remainder of the log­
ical record.

• LL TRUNCAT ED is i nd i cated when FIL LC L l) is spec if i ed and the
2-byte Ll field of a logical record has been truncated after the
first byte. The LU discards the truncated LL field; it is not
received by the program.

• SEND i ndi cates the remote program has entered recei ve state,
placing the local program in send state. The local program may
now issue SEND_DATA.

• CONFIRM indicates the remote program has issued CONFIRM, request­
ing the local program to respond by issuing CONFIRMED. The pro­
gram may respond, instead, by issuing a verb other than CONFIRMED,
such as SEND_ERROR.

• CONFIRM SEND indicates the remote program has issued PRE­
PARE_TO:RECEIVE with TYPE(CONFIRM); or with TYPECSYNC_LEVEl), and
either the synchronization level is CONFIRM, or it is SYNCPT and
the remote program subsequently issued CONFIRM. The local pro­
gram may respond by i ssui ng CONFIRMED, or by i ssui ng another verb
such as SEND_ERROR.

• CONFIRM_DEALLOCATE indicates the remote program has issued DEAL­
LOCATE with TYPE(CONFIRM); or with TYPECSYNC_LEVEL), and either
the synchronization level is CONFIRM, or it is SYNCPT and the

Chapter 4. Conversation Verbs 4-83

RECEIVE_IHHEDIATE

remote program subsequently issued CONFIRM. The local program
may respond by issuing CONFIRMED, or by issuing another verb such
as SEND_ERROR.

• TAKE SYNCPT i ndi cates the remote program has issued SYNCPT,
requesting the local program to respond by issuing SYNCPT in order
to perform the sync-point function on all protected resources
throughout the transaction. Issuing the SYNCPT verb also causes
an affirmative reply to be returned to the remote program if the
sync-point function is successful. The program may respond,
instead, by issuing a verb other than SYNCPT, such as BACKOUT or
SEND_ERROR.

• TAKE SYNCPT SEND i ndi cates the remote program has issued PRE­
PARE:TO_RECEIVE with TYPE(SYNC_LEVEL), the synchronization level
is SYNCPT, and the remote program subsequently issued SYNCPT. The
local program may respond by issuing SYNCPT, or by issuing another
verb such as BACKOUT or SEND_ERROR. .

• TAKE SYNCPT DEAllOCATE i ndi cates the remote program has issued
DEALLOCATE -with TYPE(SYNC_LEVEU, the synchronization level is
SYNCPT, and the remote program subsequently issued SYNCPT. The
local program may respond by issuing SYNCPT, or by issuing another
verb such as BACKOUT or SEND_ERROR.

state Changes (when RETURN CODE indicates OK):

Send state is entered when WHAT_RECEIVED i ndi cates SEND.

Confirm state is entered when WHAT_RECEIVED indicates CONFIRM, CON­
FIRM_SEND, or CONFIRM_DEALLOCATE.

Sync-paint state is entered when WHAT_RECEIVED indicates TAKE_SYNCPT,
TAKE_SYNCPT_SEND, or TAKE_SYNCPT_DEALLOCATE.

No state change occurs when WHAT_RECEIVED i ndi cates DATA,
DATA_COMPLETE, DATA_INCOMPLETE, or LL_TRUNCATED.

ABEND Conditions:

Parameter Check.

• This verb is not supported.
• RESOURCE specifies an unassigned resource ID.

state Check

The conversation is not in receive state.

Nates:

1. When FILL(LL) is specified, the program is to receive a logical
rec~rd and there are the followi ng possi bi! i ti es:

• The program recei ves a complete logi cal record or the last
remaining portion of a complete record. The length of the
record or portion of the record is equal to or less than the
length specified on the LENGTH parameter. The WHAT_RECEIVED
parameter indicates DATA_COMPLETE.

• The program receives an incomplete logical record. The log-
ical record is incomplete because:

The length of the logi cal record is greater than the
length specified on the LENGTH parameter; in this case
the amount received equals the length specified.

Only a portion of the logical record ;s available (possi­
bly because it has been truncated), the portion being
equal to or less than the length specified on the LENGTH
parameter.

The WHAT RECEIVED parameter indicates DATA_INCOMPLETE. The
program issues another RECEIVE_IMMEDIATE (or possibly multi-

4-84 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Bas;c Conversat;on verbs
pie RECEIVE IMMEDIATEs) to receive the remainder of the log­
i cal record:-

• The program receives no part of the logical record because it
was truncated after the first byte of the LL field. The
WHAT_RECEIVED parameter indicates LL_TRUNCATED.

Refer to the SEND DATA verb for a definition of complete and
incomplete logical records.

2. When FILLCBUFFER) is speci fi ed, the program is to recei ve data
independent of its logical-record format. The program receives
whatever data is available, up to the amount specified on the
LENGTH parameter. The program is responsible for tracking the
logical-record format of the data.

3. RECEIVE_IMMEDIATE with LENGTH(O) has no special significance.
The type of information available, if any, is indicated by the
RETURN_CODE and WHAT_RECEIVED parameters, as usual. If data is
available and FILL(LL) is specified, the WHAT_RECEIVED parameter
indicates DATA_INCOMPLETE. If data is available and FILL(BUFFER)
is specified, the WHAT_RECEIVED parameter indicates DATA. In
either case, however, the program receives no data.

4. The program receives only one kind of information at a time. For
example, it may receive data or a CONFIRM request, but it does not
receive both at the same time. Also, if the remote program trun­
cates a logical record, the local program receives the indication
of the truncation on the RECEIVE_IMMEDIATE it issues after
receiving all of the truncated record. The RETURN_CODE and
WHAT_RECEIVED parameters indicate to the program the kind of
information the program receives, if any.

5. RECEIVE_IMMEDIATE resets or cancels posting. If posting is
active and the conversation has been posted, posting is reset. If
posting is active and the conversation has not been posted, post­
ing is canceled (posting will not occur). See the POST_ON_RECEIPT
verb for more detai 15 about posti ng.

6. The REQUEST_TO_SEND noti fi cati on is usually recei ved when the
local transaction program is in send state, and reported to the
program on a SEND_DATA verb or on a SEND_ERROR verb issued in send
state. However, the notification can be received when the program
is in receive state under the following conditions:

• When the local program just entered recei ve state and the
remote program issued REQUEST_TO_SEND before it entered send
state.

• When the remote program has just entered recei ve state by
means of the PREPARE_TO_RECEIVE verb (not RECEIVE_AND_WAIT),
and then issued REQUEST_TO_SEND before the local program
enters send state. This can occur because the
REQUEST_TO_SEND is transmitted as an expedited request and
can therefore arrive ahead of the request carrying the SEND
indication. Potentially, the local program cannot distin­
guish this case from the first. This ambiguity is avoided
when the remote program waits until it receives information
from the local program before it issues the REQUEST_TO_SEND.

• When the remote program issues the REQUEST_TO_SEND in send
state (see "Notes on Implementation Details" in Appendix A).

7. The REQUEST_TO_SEND notification is returned to the program in
addition to (not in place of) the information indicated by the
RETURN_CODE and WHAT_RECEIVED parameters.

8. References in this verb description to a program being in a par­
ticular state are only in terms of the specified conversation.

Chapter 4. Conversation Verbs 4-85

Notifies the remote program that the local program is requesting to
enter send state for the conversation. The conversation will be
changed to send state when the local program subsequently receives a
SEND indication from the remote program.

IYE!E!lilld parameters:

REQUEST_TO_SEND RESOURCE (varjable)

J

IUE!E!l;ed parameters:

RESOURCE specifies the variable containing the resource ID.

state Chanslls:

None

ABEND Conditions:

Parameter Check

• RESOURCE specifies an unassigned resource ID.

state Check

• The conversation is not in receive, confirm, or sync-point state.

Natlls:

1. The REQUEST_TO_SEND notification is indicated to the remote pro­
gram by means of the REQUEST_TO_SEND_RECEIVED parameter. When
the REQUEST_TO_SEND_RECEIVED parameter is set to YES, the remote
program is requested to enter receive state and thereby place the
local program in send state. A program enters receive state by
means of the RECEIVE_AND_WAIT or PREPARE_TO_RECEIVE verb. The
partner program enters the correspondi ng send state when it
issues a RECEIVE_AND_WAIT or RECEIVE_IMMEDIATE verb and receives
the SEND indication (on the WHAT_RECEIVED parameter).

2. The REQUEST_TO_SEND_RECEIVED indication of YES is normally
returned to the remote program when it is in send state, that is,
on a SEND_DATA verb or on a SEND_ERROR verb issued in send state.
However, it· can be returned on a RECEIVE_AND_WAIT or
RECEIVE_IMMEDIATE verb; see the description of RECEIVE_AND_WAIT
or RECEIVE_IMMEDIATE for detai Is about when thi s can occur.

3. When the remote LU receives the REQUEST TO SEND notification, it
retains the notification until the remote program issues a verb on
which the notification can be indicated, that is, a verb with the
REQUEST_TO_SEND_RECEIVED parameter. The remote LU wi 11 retai n
only one REQUEST_TO_SEND noti fi cati on at a time (per conversa­
tion); additional notifications are discarded until the retained
notification is indicated to the remote program. It is therefore
possible for the local program to issue the REQUEST TO SEND verb
more ti mes than are i ndi cated to the remote program. - -

4. References in this verb description to a program being in a par­
ticular state are only in terms of the specified conversation.

4-86 SNA Transaction Programmer's Reference Manual for LU Type 6.2

SEND_DATA

Basic conversation Verbs

Sends data to the remote transaction program. The data format con­
sists of logical records. The amount of data is specified independ­
ently of the data format.

su!!,ied Parameters:

RESOURCE (variable)

DATA (variable)

LENGTH (variable)

8eturnld Parameters:

RETURN_CODE (variable)

REQUEST_TO_SEND_RECEIVED (variable)

J

Supplied Parameters:

RESOURCE specifies the variable containing the resource 10 of the con­
versation on which the data is to be sent.

DATA specifies the variable containing the data to be sent. The data
consi sts of logi cal records. Each logi cal record consi sts of a
two-byte length field (denoted as LL) followed by a data field; the
length of the data fi eld can range from zero to 32765 bytes. The
two-byte length field contains the IS-bit binary length of the record,
and a high-order bit that is not examined by the LU Cit is used, for
example, by the LU's mapped conversation component in support of the
mapped conversation verbs). The length of the record includes the
two-byte length field, that is, it equals the length of the data field
plus two. Thus, logical-record length values of hex2 0000, 0001,
8000, and 8001, are invalid.

LENGTH specifies the variable containing the length of the data to be
sent. This data length is not related in any way to the length of a
logical record. It is used only to determine the length of the data
located at the variable specified by the DATA parameter.

The data length may be zero or greater. If zero. no data is sent for
this issuance of the verb. and the DATA parameter is not significant.
However. the other parameters are significant and retain their mean­
i ng as descri bed.

Returned Parameters:

RETURN_CODE specifies the variable in which a return code is returned
to the local program. The return code indicates the result of verb
execution.

• • •
•
•
•
•
• •
•
REQUEST_TO_SEND_RECEIYED specifies the variable in which is returned
an indication of whether REQUEST_TO_SEND has been received. The indi­
cation is either YES or NO.

2 Hex (meaning hexadecimal) refers to the base-16 numbering system.

Chapter 4. Conversation Verbs 4-87

4-88

• YES indicates a REQUEST TO SEND notification has been received
from the remote transacti on program. The remote program has
issued REQUEST_TO_SEND, requesti ng the local program to enter
receive state and thereby place the remote program in send state.

• NO indicates a REQUEST_TO_SEND notification has not been
received.

state Changes (when RETURN CODE indicates OK):

None

ABEND Conditions:

Parameter Check

• RESOURCE specifies an unassigned resource ID.
• DATA contains an invalid logical record length (LL) value of hex

0000, 0001, 8000, or 8001.

state Check

The conversation is not in send state.

Notes:

1. The data sent by the program consists of logical records. The
logical records are independent of the length of data as specified
by the LENGTH parameter. That is, the data may consist of one or
more complete records, the beginning of a record, the middle of a
record, or the end of a record. The following combinations of
these are also possi ble:

• One or more complete records, followed by the beginning of a
record.

• The end of a record<, followed by one or more complete records.

• The end of a record, followed by one or more complete records,
followed by the beginning of a record.

• The end of a record, followed by the beginning of a record.

2. The program must finish sending a logical record before issuing
any of the following verbs:

CONFIRM
DEALLOCATE with TYPE(FLUSH), TYPE(CONFIRM), or

TYPE(SYNC_LEVEL)
PREPARE_TO_RECEIVE
RECEIVE_AND_WAIT
SYNCPT

A program finishes sending a logical record when it sends a com­
plete record or when it truncates an incomplete record.

3. A complete logical record contains the two-byte LL field and all
bytes of the data fi eld, as determi ned by the logi cal-record
length. (If the data field is of zero length, the complete log­
ical record contains only the two-byte length field.) An incom­
plete logical record consists of any amount of data less than a
complete record. It can consist of only the first byte of the LL
field, the two-byte lL field plus all of the data field except the
last byte, or any amount in between. A logical record is incom­
plete until the last byte of the data field is sent, or until the
second byte of the LL field is sent if the data field is of zero
length.

4. A program can truncate an incomplete logical record by issuing the
SEND_ERROR verb. SEND_ERROR causes the LU to flush its send buff­
er. which includes sending the truncated record. The LU then
treats the first two bytes of data specified in the next SEND_DATA
as the II fi eld. Issui ng DEALLOCATE wi th TYPECABEND_PROG),

SNA Transaction Programmer's Reference Manual for LU Type 6.2

Basic Conversation Verbs
TYPE(ABEND_SVC), 0... TYPE(ABEND TIMER) also t ... uncates an i ncom­
plete logical ... eco ... d.

S. The LU buffe ... s the data to be sent to the ... emote LU until it accu­
mulates f ... om one 0 ... mo ... e SEHD_DATAs a sufficient amount for t ... ans­
mission, 0 ... until the local p ... og ... am issues a ve ... b that causes the
LU to flush its send buffe.... The amount of data that is suffi­
cient fo ... t ... ansmission depends on the characteristics of the ses­
sion allocated fo ... the conversation, and can vary f ... om one session
to anothe

6. When REQUEST_TO_SEHD_RECEIVED indicates YES, the ... emote p ... og ... am
is ... equesting the local p ... og ... am to ente eceive state and the ... eby
place the ... emote p ... og ... am in send state. A p ... og ... am ente ... s ... eceive
state by means of the RECEIVE_AND_WAIT 0 ... PREPARE_TO_RECEIVE
verb. The pa ... tne ... prog ... am ente ... s the co esponding send state
when it issues a RECEIVE_AND_WAIT 0 ... RECEIVE_IMMEDIATE verb and
... eceives the SEND indication (on the WHAT_RECEIVED pa ... amete ...).

7. Refe ... ences in this ve ... b desc ... iption to a p ... og ... am being in a pa ... -
ticula ... state a ... e only in te ... ms of the specified conve ... sation.

Chapte ... 4. Conve ... sation Ve ... bs 4-89

SEND_ERROR

Informs the remote transaction program that the local program
detected an error. If the conversati on is in send state, the LU
flushes its send buffer.

Upon successful completion of this verb, the local program is in send
state and the remote program is in receive state. Further action is
defined by transaction program logic.

Sueelied paramete~s:

RESOURCE (var;able)

[TYPE f :egG))]
[LOG_DATA (NO)

(YES (var;able))]
RetUtoed parameters:

RETURN_CODE (var;able)

REQUEST_TO_SEND_RECEIVED (var;able)

J

Suppl;ed Parameters:

RESOURCE specifies the variable containing the resource ID.

TYPE specifies the level of error-application or service-being
reported. This parameter is intended to distinguish between errors to
be reported to end-user application transaction programs and errors
to be reported to LU services transaction programs.

• PROG speci fi es an end-user appl i cati on program error is bei ng
reported. For instance, this error type is used by the LU serv­
ices component for mapped conversation verbs in its processing of
the MC_SEND_ERROR verb. The correspondi ng component at the
remote LU wi 11 pass the error return code on to the remote
end-user application program.

• SVC specifies an LU services error is being reported. For
instance, this error type is used by the LU services component for
mapped conversation verbs to report errors detected within the LU
serv ices layer.

LOG_DATA specifies whether product-unique error information is to be
placed in the system error logs of the LUs supporting this conversa­
tion.

• NO specifies that no error information is to be placed in the sys­
tem error logs.

• YES specifies that product-unique error information is to be
placed in the system error logs of the local and remote LUs. The
specified variable contains the product-unique error information,
in the format of the Error Log GDS variable. See SNA Format and
Protocol Reference Manual: Architeeture logjc for lU Type 6.2 for
a definition of the Error Log GDS variable.

Returned Parameters:

RETURN_CODE specifies the variable in which a return code is returned
to the local program. The return code indieates the result of verb
execution. The return codes that can be returned depend on the state
of the conversation at the time this verb is issued:

4-90 SHA Transaction Programmer's Reference Manual for LU Type 6.2

Basic conversation Verbs

• If the SEND_ERROR is issued in send state, the following return
codes can be returned:

OK
ALLOCATION ERROR
DEALLOCATE-ABEND PROG
DEALLOCATE-ABEND-SYC
DEALLOCATE:ABEND:TIMER
PROG_ERROR_PURGING
SYC_ERROR_PURGING
BACKED_OUT
RESOURCE_FAILURE_NO_RETRY
RESOURCE_FAILURE_RETRY

• If the SEND_ERROR is issued in receive state, the following return
codes can be returned:

OK
DEALLOCATE_NORMAL
RESOURCE_FAILURE_NO_RETRY
RESOURCE_FAILURE_RETRY

• If the SEND_ERROR is i5sued in confirm state or sync-point state,
the following return codes can be returned:

OK
RESOURCE_FAILURE_NO_RETRY
RESOURCE_FAILURE_RETRY

REQUEST_TD_SEND_RECEIVED specifies the variable in which is returned
an indication of whether REQUEST_TO_SEND has been received. The indi­
cation is either YES or NO.

• YES indicates a REQUEST_TO_SEND notification has been received
from the remote transacti on program. The remote program has
issued REQUEST_TO_SEND, requesti n9 the local program to enter
receive state and thereby place the remote program in send state.

• NO indicates a REQUEST_TO_SEND notification has not been
received.

state Changes (when RETURN CODE indicates OK):

Send state is entered when the verb is issued in receive, confirm, or
sync-point state.

No state change occurs when the verb is issued in send state.

ABEND Conditions:

Parameter Check

• LOG_DATA is specified and not supported.
• RESOURCE specifies an unassigned resource 10.

state Check

The conversation is not in send, receive, confirm, or sync-point
state.

Notes:

1. The LU may send the error notification to the remote lU immediate­
ly, that is, during the processing of this verb, or the LU may
defer sending the notification until a later time. The determi­
nati on is made as follows:

• If the local product does not support the FLUSH verb (see
"Notes on Implementation Details" in Appendix A), then the LU
sends the error notification immediately.

• If the local product does support the FLUSH verb, then the LU
mayor may not send the notification immediately, depending
on the product. If the LU defers sending the notification, it

Chapter 4. Conversation Verbs 4-91

buffers the notification until it accumulates a sufficient
amount of information for transmission, or until the local
program issues a verb that causes the LU to flush its send
buffer. The amount of i nformat i on that is suffi ci ent for
transmission depends on the characteristics of the session
allocated for the conversation, and can vary from one session
to another. Transmission of the information may begin imme­
diately, if the LOG_DATA parameter is specified with suffi­
cient log data, or transmission may not begin until
sufficient data from subsequent SEND_DATA verbs is also buf­
fered.

2. The local program can ensure that the remote program receives the
error notification as soon as possible by issuing FLUSH imme­
diately after ~END_ERROR.

3. SEND_ERROR is reported to the remote transaction program as one of
the following return codes (based on the TYPE parameter):

• PROG_ERROR_TRUNC or SVC ERROR TRUNC - The local program
issued SEND_ERROR in send state after sending an incomplete
logical record (see SEND_DATA). The record has been trun­
cated.

• PROG_ERROR_NO_TRUNC or SVC_ERROR_NO_TRUNC - The local program
issued SEND_ERROR in send state after sending a complete log­
ical record (see SEND_DATA) or prior to sending any record.
No truncation has occurred.

• PROG_ERROR_PURGING or SVC_ERROR_PURGING - The local program
issued SEND_ERROR in receive sta~e and all information sent
by the remote program and not yet received by the local pro­
gram, if any, has been purged; or the local program issued
SEND_ERROR in confirm or sync-point state, in which case no
purging has occurred.

4. When SEND_ERROR is issued in receive state, purging of incoming
information occurs. The incoming information that is purged
includes the following return code indications:

• •
• • •
•
•
• •
• •
The return code DEAllOCATE_NORMAL is reported instead of AllO­
CATION_ERROR, DEALLOCATE_ABEND_PROG, DEALLOCATE_ABEND_SVC, or
DEALLOCATE_ABEND_TIMER. The return code OK is reported instead
of the other return codes. When the return code BACKED OUT is
purged, the remote LU resends the BACKED OUT indication and the
local program receives the return code on a subsequent verb.

The other kinds of incoming information that are purged are:

• Data, sent by means of the SEND_DATA verb.

• Confirmation request, sent by means of the CONFIRM, PRE-
PARE_TO_RECEIVE, or DEALLOCATE verb.

• Sync point request, sent by means of the SYNCPT, PRE-
PARE_TO_RECEIVE, or DEALLOCATE verb.

If the confirmation or sync point request was sent in conjunction
with the DEALLOCATE verb (by means of its TYPE(CONFIRM) or
TYPE(SYNC_LEVEU parameter), the deallocati on request is also
purged.

4-92 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Basic Conversation Verbs

Incoming information that is not purged is the REQUEST_TO_SEND
indication. This indication is reportecl to the program when it
issues a verb that includes the REQUEST_TO_SEND_RECEIVED parame­
ter.

5. When REQUEST_TO_SEND_RECEIVED indicates YES, the remote program
is requesting the local program to enter receive state and thereby
place the remote program in send state. A program enters receive
state by means of the RECEIVE_AND_WAIT or PREPARE_TO_RECEIVE
verb. The partner program enters the correspondi ng send state
when it issues a RECEIVE_AND_WAIT or RECEIVE_IMMEDIATE verb and
receives the SEND indication (on the WHAT_RECEIVED parameter).

6. The program may use this verb for various application-level func­
tions. For example, the program may issue this verb to truncate
an incomplete logical record it is sending, to inform the remote
program of an error it detected in data it received, or to reject
a confirmation or sync-point request.

7. SEND_ERROR resets or cancels posting. If posting is active and
the conversation has been posted, posting is reset. If posting is
active and the conversation has not been posted, posting is can­
celed (posting will not occur). See the POST_ON_RECEIPT verb for
more details about posting.

8. References in this verb description to a program being in a par­
ticular state are only in terms of the specified conversation.

Chapter 4. Conversation Verbs 4-93

TEST

TEST

Tests the specified conversation for a condition. The return code
indicates the result of the test.

su~~l;ed Parameters:

RESOURCE (variable)

[TEST (POSTED)
(REQUEST_TO_SEND_RECEIVED)]

Returned Parameters:

RETURN_CODE (variable)

;

Su~~lied Parameters:

RESOURCE specifies the variable containing the resource ID.

TEST specifies the condition to be tested.

• POSTED specifies to test whether the conversation has been
posted. The return code indicates whether posting has occurred.

• REQUEST_TO_SEND_RECEIVED specifies to test whether
REQUEST_TO_SEND notification has been received from the remote
transaction program. The return code indicates whether the
notification has been received.

Returned Parameters:

RETURN_CODE specifies the variable in which a return code is returned
to the program. The return code indicates the result of the test.
The TEST parameter determines which of the following return codes can
be returned to the program.

• If TEST(POSTED) is specified, one of the following return codes is
returned:

OK

OK
UNSUCCESSFUL

~-9~ SMA Transaction Programmer's Reference Manual for lU Type 6.2

Basic conversation Verbs

state Changes (when RETURN CODE ;nd;cates OK):

None

ABEND Cond;t;ons:

Parameter Check

• This verb is not supported.
• TESTCPOSTED) is specified and not supported.
• TESTCREQUEST_TO_SEND_RECEIVED) is specified and not supported.
• RESOURCE specifies an unassigned resource ID.

state Check

• TESTCPOSTED) is specified and the conversation is not in receive
state.

• TESTCREQUEST_TO_SEND_RECEIVED) is specified and the conversation
is not in send, defer, or receive state.

Notes:

1. The TESTCPOSTED) parameter on this verb is intended to be used in
conjunction with POST_ON_RECEIPT. The use of POST_ON~RECEIPT and
this verb allows a program to continue its processing while wait­
ing for information to become available, where the program issues
POST_ON_RECEIPT for one or more conversati ons and then issues
this verb for each conversation to determine when information is
available to be received.

2. For TEST(POSTED), the return code indicates whether posting has
occurred, as follows:

• OK indicates posting was active for the conversation and it
has been posted. Posting is now reset. The subcode of the OK
return code indicates why the conversation has been posted.

DATA i ndi cates data is available for the program to
receive.

NOT_DATA indicates information other than data, such as a
SEND, CONFIRM, or TAKE_SYNCPT i ndi cati on, is avai lable
for the program to receive.

The program should issue RECEIVE_AND_WAIT or
RECEIVE_IMMEDIATE in order to receive the information. The
program may use the subcode to determine whether it needs to
specify the DATA parameter on the RECEIVE_AND_WAIT or
RECEIVE_IMMEDIATE verb.

• POSTING_NOT_ACTIVE indicates posting is not active for the
conversation.

• UNSUCCESSFUL indicates posting is active for the conversation
and it has not been posted. Posting remains active.

The remaining return codes indicate posting was active for the
conversation and it has been posted for the reason indicated by
the specific return code. Posting is now reset.

3. Posting is active for a conversation when POST_ON_RECEIPT has
been issued for the conversation and posting has not been reset or
canceled (see the POST_ON_RECEIPT verb).

4. The TESTCREQUEST_TO_SEND_RECEIVED) parameter specifies to test
whether REQUEST_TO_SEND notification has been received from the
remote transacti on program. The return code i ndi cates whether
the notification has been received, as follows:

• OK indicates REQUEST_TO_SEND has been received. The remote
program has issued REQUEST_TO_SEND, requesting the local pro­
gram to enter receive state and thereby place the remote pro­
gram in send state. A program enters receive state by means

Chapter 4. Conversation Verbs 4-95

TEST

of the' RECEIVE_AND_WAIT or PREPARE_TO_RECEIVE verb. The
partner program enters the corresponding send state when it
issues a RECEIVE_AND_WAIT or RECEIVE_IMMEDIATE verb and
receives the SEND indication (on the WHAT_RECEIVED parame­
ter).

• UNSUCCESSFUL indicates REQUEST_TO_SEND has not been received.

S. References in this verb description to a program being in a par­
ticular state are only in terms of the specified conversation.

4-96 SNA Transaction Programmer's Reference Manual for LU Type 6.2

CONVERSATION STATES

The verbs that a program may issue for a parti cular conversati on
depend on the state of the conversation. As the program issues verbs,
the state of the conversation can change. The change in the state of
the conversation is a result of the function of the verb, a result of
a verb issued by the remote program, or a result of network errors.

The state of a conversation is defined in terms of the local program's
view of the local end of the conversation. The local end of the con­
versation is the end to which the local program is connected. The
states of other conversations allocated to the program can be differ­
ent. For example, one conversation can be in receive state and anoth­
er in send state, concurrently. The following conversation states are
defined at the conversation protocol boundary (where the prefix [MC_]
in a verb name means the verb can be either a mapped or basic conver­
sation verb):

Reset is the state in which the program can allocate the conversa­
tion.

Send is the state in which the program can send data, request con­
firmation, or request sync point.

Defer is the state, entered by the [MC_]PREPARE_TO_RECEIVE or
[MC_lDEAllOCATE verb, in which the program can request sync point
or confirmation, or simply flush the LUIs send buffer, in order to
complete the transition to receive or reset state.

Receive is the state in which the program can receive information
from the remote program.

Conf i rm is the state in whi ch the program can reply to a confi rma­
tion request.

Sync paint is the state in which the program can respond to a sync
point request.

Backed aut is the state in whi ch the program can respond to a
backed out indication.

Deallocate is the state in which the program can deallocate the
conversation locally.

The state of the conversation determines the verbs that a program is
allowed to issue. Figure 4-1 on page 4-98 correlates the verbs, and
parameters if applicable, to the conversation states. For each verb
and state, a "yes," "no," or un/a" is indicated. The "yes" means the
program is allowed to issue the verb when the conversation is in that
state. The "no" means the program cannot issue the verb when the con­
versation is in that state because the verb is disallowed in that
state. A verb issued for a conversati on ina di sallowed state is
treated as a state-check ABEND condition (see "ABEND Conditions" in
Chapter 3), The i ndi vi dual verb descri pti ons Ii st the appIi cable
state-check ABEND conditions. The Un/a" means the state is not appli­
cable either because it cannot exist at the time the verb is issued or
because it is not relevant to the verb.

The SYNCPT and BACKOUT verbs apply to all protected resources at the
time the verbs are issued, and only to protected resources. A conver­
sation is protected when it is allocated with a synchronization level
of SYNCPT. Therefore, the correlation of the SYNCPT and BACKOUT verbs
to conversation states applies only to protected conversations. The
states of unprotected conversati ons - those allocated wi th a syn­
chronization level other than SYNCPT - are not relevant to SYNCPT and
BACKOUT.

Chapter 4. Conversation Verbs 4-97

Conversation states

Reset Send Defer Re- Con- Sync Backed Deal-
Verb ceive firm point out locate

[MC_lALLOCATE yes n/a n/a n/a n/a n/a n/a n/a

[MC_lCONFIRM n/a yes yes no no no no no

[MC_lCOHFIRMED n/a no no no yes no no no

[MC_lDEALLOCATE with n/a yes no no no no no no
TYPECFLUSH),
TVPECCONFIRM), or
TYPECSYNC_LEVEL)

[MC_lDEALLOCATE with n/a yes yes yes yes yes no no
TYPECABEND_PROG),
TYPECABEHD_SVC), or
TVPECABEND_TIMER)

[MC_lDEALLOCATE with n/a no no no no no no yes
TYPECLOCAU

[MC_lFlUSH n/a yes yes no no no no no

[MC_lGET_ATTRIBUTES n/a yes yes yes yes yes yes yes

[MC_lPOST_OH_RECEIPT n/a no no yes no no no no

[MC_lPREPARE_TO_RECEIVE n/a yes no no nb no no no

[MC_]RECEIVE_AND_WAIT n/a yes no yes no no no no

[MC_]RECEIVE_IMMEDIATE n/a no no yes no no no no

[MC_lREQUEST_TO_SEHD n/a no no yes yes yes no no

tMC_lSEND_DATA n/a yes no no no no no no

[MC_]SEND_ERROR n/a yes no yes yes yes no no

[MC_JTEST wi th n/a no no yes no no no no
TESTCPOSTED)

[MC_JTEST wi th n/a yes yes yes no no no no
TESTCREQUEST_TO_SEND_

RECEIVED)

BACKOUT nla yes yes yes yes yes yes nla

GET_TYPE nla yes yes yes yes yes yes yes

SYNCPT n/a yes yes no no yes no nla

WAIT nla no no yes no no no no

Figure 4-1. Correlation of Conversation Verbs to the Conversation states Allowing
Their Issuance

4-98

A conversation enters a particular state when the program issues a
verb that causes a state transition or when the program receives a
return code that i ndi cates a state transi ti on. The speci fi estate
transitions are defined in the individual verb descriptions under the
headi ng "State Changes," and in the return code descri pti ons under
"Return Codes" on page 4-99.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

RETURN CODES

Some verbs have a parameter called RETURN_CODE used to pass a return
code back to the program at the completion of the LUiS execution of a
verb. The return code indicates the result of verb execution. includ­
ing any state changes to the specified conversation. See "Conversa­
tion states" on page 4-97 for a definition ~f the states.

Some of the return codes indicate results of the local LU's processing
of a verb; these return codes are returned on the verb that invoked
the local processing. Other return codes indicate results of process­
ing invoked at the remote end of the conversation and. depending on
the verb. can be returned on the verb that invoked the remote process­
ing or on a subsequent verb. Still other return codes report events
that originate at the remote end of the conversation. In any case.
only one code is returned at a time. Other verb-specific information
may be passed back in verb-unique parameters. See each specific verb
for a description of any verb-unique parameters.

Some of the return codes have the suffix "RETRY" or "NO_RETRY" in
their name. RETRY means that the condition indicated by the return
code may not be permanent. and the program may attempt to allocate the
conversation again. Whether the retry attempt succeeds depends on the
duration of the condition. In general, the program should limit the
number of times it attempts to retry without success. after which it
should consider the condition permanent. NO_RETRY means that the con­
dition is most likelY permanent. and. in general, no attempt should be
made to allocate the conversation again until the condition is cor­
rected.

The return codes are described below. Each description includes the
meaning of the return code. the origin of the condition indicated by
the return code. when the return code can be reported to the program.
and the state of the conversation when control is returned to the pro­
gram. The individual verb descriptions list the applicable return
codes.

ALLOCATION_ERROR indicates the local program issued an
MC_ALLOCATE or ALLOCATE verb and allocation of the specified con­
versation could not be completed. The ALLOCATION_ERROR indi­
cati on together wi th one of the followi ng subcodes form the
complete return code that is returned to the program; the subcode
identifies the specific error. (The remote LU and remote program
referred to in the following subcode definitions are the LU named
on the LU_NAME parameter and the program named on the TPN parame­
ter, respectively, of the verb.) When ALLOCATION_ERROR (with any
subcode) is returned to the program. the conversation is in deal­
locate state.

• ALLOCATION_FAILURE_NO_RETRY indicates the conversation can­
not be allocated on a session because of a condition that is
not temporary. For example. the session to be used for the
conversati on cannot be acti vated because the current
(LU.mode) session limit for the specified (LU-name.mode-name)
pair is O. or because of a system definition error or a
session-activation protocol error; or the session was deacti­
vated because of a session protocol error before the conver­
sation could be allocated. The program should not retry the
allocation request until the condition is corrected. This
return code is returned on the MC_ALLOCATE or ALLOCATE verb
when the program speci fi es (by means of the RETURN_CONTROL
parameter) that the local LU is to attempt to allocate a ses­
sion before returning control to the program; otherwise, it
is returned on a subsequent verb.

• ALLOCATION_FAILURE_RETRY indicates the conversation cannot be
allocated on a session because of a condition that may be tem­
porary. For example. the session to be used for the conversa­
ti on cannot be acti vated because of a temporary lack of
resources at the local LU or remote LUi or the session was
deactivated because of session outage before the conversation
could be allocated. The condition may be temporary, and the
program can retry the allocation request. This return code is
returned on the MC_ALLOCATE or ALLOCATE verb when the program

Chapter 4. Conversation Verbs 4-99

4-100

specifies (by means of the RETURN_CONTROL parameter) that the
local LU is to attempt to allocate a session before returning
control to the program; otherwise, it is returned on a subse­
quent verb.

• CDNVERSATIDN_TYPE_"IS"ATCH indicates the remote LU rejected
the aU6cati on request because the local program issued an
MC_ALLOCATE or ALLOCATE verb and the remote program does not
support the respective mapped- or basic-conversation protocol
boundary, or the local program issued an MC_ALLOCATE verb and
the remote LU does not support mapped conversations. This
return code is returned on a subsequent verb.

• PIP_NOT_ALLOWED indicates the remote LU rejected the allo­
cation request because the local program specified program
initialization parameters (by means of the PIP(YES) parame­
ter) and either the remote LU does not support PIP data, or
the remote program has no PIP variables defined (see "Trans­
action Program Structure and Execution" in Chapter 3). This
return code is returned on a subsequent verb.

• PIP_NDT_SPECIFIED_CDRRECTLY indicates the remote LU rejected
the allocation request because the remote program has one or
more PIP variables defined and the local program specified no
program initialization parameters (by means of the PIP(NO)
parameter), or it specified program initialization parameters
(by means of the PIP (YES) parameter) that do not correspond in
number to those defined for the remote program. This return
code is returned on a subsequent verb.

• SECURITY_NOT_VALID indicates the remote LU rejected the allo­
cation request because the access security information (spec­
ified by means of the SECURITY parameter) is invalid. This
return code is returned on a subsequent verb.

• SYNC_LEVEL_NDT _SUPPDRTED_BY_LU i ndi cates the local LU
rejected the allocati on request because the local program
specified a synchronization level (by means of the SYNC_LEVEL
parameter) that the remote LU does not support. This return
code is returned on the MC_ALLOCATE or ALLOCATE verb when the
program specifies (by means of the RETURN_CONTROL parameter)
that the local LU is to attempt to allocate a session before
returning control to the program; otherwise, it is returned
on a subsequent verb.

• SYNC_LEVEL_NDT_SUPPDRTED_BY_PG" indicates the remote LU
rejected the allocati on request because the local program
specified a synchronization level (by means of the SYNC_LEVEL
parameter) that the remote program does not support. This
return code is returned on a subsequent verb.

• TPN_NDT_RECDGNIZED indicates the remote LU rejected the allo­
cation request because the local program specified a remote
program name that the remote LU does not recogni ze. TM s
return code is returned on a subsequent verb.

• TRANS_PG"_NDT_AVAIL_ND_RETRY indicates the remote LU rejected
the allocation request because the local program specified a
remote program that the remote LU recogni zes but cannot
start. The condition is not temporary, and the program should
not retry the allocation request. This return code is
returned on a subsequent verb.

• TRANS_PG"_NDT_AVAIL_RETRY i ndi cates the remote LU rejected
the allocation request because the local program specified a
remote program that the remote LU recogni zes but currently
cannot start. The condition may be temporary, and the program
can retry the allocation request. This return code is
returned on a subsequent verb.

With one exception, the subcodes of ALLOCATION_ERROR are not
explicitly listed in the individual verb descriptions, as any of
them can be- returned as part of the ALLOCATION_ERROR return code.
The exception to this is for the MC_ALLOCATE and ALLOCATE verbs,

SNA Transaction Programmer's Reference Manual for LU Type 6.2

on whi ch only ce ... tai n subcodes can be "'etu ... ned; the ... efo ... e~ the
applicable subcodes a ... e listed fo ... these ve ... bs.

BACKED_OUT indicates the ... emote p ... og ... am issued a BACKOUT~ 0 ... the
local 0 emote LU has done 50, in o ... de ... to ... esto ... e all protected
resources to thei ... status as of the las~ synch ... onization point.
This ... eturn code can be repo ... ted to the local program on a ve ... b it
issues in send~ defe ... ~ 0 eceive state. The conve ... sation is in
backed-out state.

DEALLOCATE_ABEND indicates the ... emote p ... og ... am issued an
MC_DEALLOCATE ve ... b specifying the TYPECABEND) pa ... ameter, 0 ... the
remote LU has done 50 because of a remote program ABEND condition.
If the conve ... sation for the ... emote p ... og ... am was in receive state
when the ve ... b was issued, information sent by the local prog ... am
and not yet received by the remote prog ... am is purged. This ... eturn
code can be repo ... ted to the local p ... og ... am on a verb it issues in
send~ defe ... ~ or receive state. The conversation is in deallocate
state.

DEALLOCATE_ABEND_PROG indicates the ... emote prog ... am issued a DEAL­
LOCATE verb speci fyi ng the TYPECABEND_PROG) parameter ~ 0 ... the
remote LU has done so because of a ... emote p ... ogram ABEND condition.
If the conversation fa ... the remote p ... ogram was in ... eceive state
when the verb was issued, info ... mation sent by the local prog ... am
and not yet received by the remote p ... ogram is pu ... ged. This ... etu ... n
code can be reported to the local program on a verb it issues in
send~ defer, or receive state. The conve ... sation is in deallocate
state.

DEALLOCATE ABEND SVC indicates the remote p ... ogram issued a DEAL­
LOCATE verb specifying the TYPECABEND_SVC) pa ... amete.... If the
conversation for the remote program was in receive state when the
verb was issued~ information sent by the local program and not yet
received by the remote p ... ogram is purged. This retu ... n code can be
reported to the local program on a ve ... b it issues in send~ defe ... ~
or ... eceive state. The conve ... sation is in deallocate state.

DEALLOCATE_ABEND_TIMER indicates the ... emote program issued a
DEALLOCATE verb specifying the TYPECABEND_TIMERl pa ... amete.... If
the conversation for the remote p ... og ... am was in receive state when
the ve ... b was issued, info ... mation sent by the local p ... og ... am and not
yet ... eceived by the remote p ... ogram is pu ... ged. This return code
can be reported to the local program on a verb it issues in send,
defer, or ... eceive state. The conve ... sation is in deallocate state.

DEALLOCATE_NORMAL i ndi cates the remote prog ... am issued an
MC DEALLOCATE or DEALLOCATE ve ... b specifying the TYPECSYNC_LEVEL) 0"'- TYPECFLUSH) pa ... amete ... ; if TYPE(SYNC_LEVEL)~ either the syn­
chronization level is NONE 0 ... it is SYNCPT and the remote prog ... am
subsequently issued an MC_FLUSH 0 ... FLUSH ve ... b. This ... etu ... n code
is repo ... ted to the local prog ... am on a verb it issues in receive
state. The conve ... sation is in deallocate state.

FMH_DATA_NOT_SUPPORT~D indicates the local program issued an
MC_SEND_DATA specifYlng that the data record contains FM headers
Cby means of the FMH_DATA paramete ...)~ and either the remote LU or
remote p ... og ... am does not suPpo ... t FM header data. This retu ... n code
is reported on a subsequent verb. All information sent by the
local program on the MC_SEND_DATA verb and subsequent ve ... bs prior
to the reporting of the FMH_DATA_NOT_SUPPORTED return code is
purged. The conversation is in send state.

HEURISTIC_MIXED indicates the local p ... ogram issued a SYNCPT and
an er ... or occu ... red during the sync point processing within the dis­
tributed t ... ansaction. As a result of the er ... or and subsequent LU
operator intervention~ at least one LU advanced its local P ... o-
tected resources to the next synch ... onization point and at least
one LU restored its local protected ... esou ... ces to the previous syn-
ch ... onization point.

MAP EXECUTION FAILURE indicates the local prog ... am issued an
MC_SEND_DATA specifying the data reco ... d is to be mapped Cby means
of the MAP_NAME paramete ...) ~ and the local LU or the remote LU

Chapter 4. Conversation Ve ... bs 4-101

4-102

could not map the data record based on the map name. This return
code is returned on the MC SEND DATA verb when the Map execution
failed at the local LU. -Otherwi se, the remote LU rejects the
data, and the return code is reported on a subsequent verb. All
information sent by the local program on that ~IC_SEND_DATA verb
and subsequent verbs prior to the reporting of the
MAP EXECUTION FAILURE return code is purged. The conversation is
in send state:-

HAP_NOT_FOUND indicates the local program issued an MC_SEND_DATA
speci fyi ng the data record is to be mapped (by means of the
MAP NAME parameter), and the map name is unknown to the local LU
or -the remote LU. This return code is reported on the
MC SEND DATA verb when the map name is unknown to toe local LU.
Otherwise, the remote LU rejects the data, and the return code is
reported on a subsequent verb. All information sent by the local
program on that MC_SEND_DATA verb and subsequent verbs prior to
the reporting of the MAP _HOT_FOUND return code ·i s purged. The
conversation is in send state.

HAPPING_NOT_SUPPORTED indicates the local program issued an
MC_SEND_DATA specifying the data record is to be mapped (by means
of the MAP_NAME parameter), and either the remote LU or remote
program does not support data mappi ng. Thi 5 r·eturn code is
reported on a subsequent verb. All information sent by the local
program on that MC_SEND_DATA verb and subsequent verbs prior to
the reporting of the MAPPING_NOT_SUPPORTED return code is purged.
The conversation is in send state.

OK indicates the verb issued by the local program executed suc­
cessfully. That is, the function defined for the verb, up to the
point at which control is returned to the program, was performed
as specified. The state of the conversation is as defined for the
verb.

For some verbs, the OK indication together with one of the follow­
ing subcodes form the complete return code that is returned to the
program; the subcode provides additional information.

• DATA indicates data is available for the program to receive.

• NOT_DATA indicates information other than data is available
for the program to receive.

PARAttETER_ERROR i ndi cates the local program issued a verb speci­
fying a parameter containing an invalid argument. The source of
the argument is considered to be outside the program definition,
such as an LU name supplied by a terminal operator and used as the
argument of LU_NAME on MC_ALLOCATE or ALLOCATE. Contrast this
definition with the definition of the ABEND condition. Parameter
Check. in the section "ABEND Conditions" in Chapter 3. This
return code is returned on the verb specifying the invalid argu­
ment. The state of the conversation remains unchanged.

POSTING_NOT_ACTIVE indicates the local program issued a verb that
determines whether a resource has been posted, and posting is not
active for any of the specified resources.

PROG_ERROR_NO_TRUNC indicates one of the following:

• The remote program issued an MC_SEND_ERROR verb and the con­
versation for the remote program was in send state. No trun­
cation occurs at the mapped conversation protocol boundary.
Thi s return code is reported to the local program on an
MC_RECEIVE_AHD_WAIT or MC_RECEIVE_IMMEDIATE verb it issues
prior to receiving any data records or after receiving one or
more data records.

• The remote program issued a SEND_ERROR verb speci fyi ng the
TYPE(PROG) parameter. the conversation for the remote program
was in send state, and the verb did not truncate a logical
record. No truncation occurs at the basic conversation pro­
tocol boundary when a program issues SEND_ERROR before send­
ing any logical records or after sending a complete logical

SHA Transaction Programmer's Reference Manual for LU Type 6.2

record. This return code is reported to the local program on
a RECEIVE_AND_WAIT or RECEIVE_IMMEDIATE verb it issues prior
to receiving any logical records or after receiving one or
more complete logical records.

The conversation remains in receive state.

PROG_ERROR_PURGING i ndi cates the remote program issued an
MC_SEND~ERROR verb or it issued a SEND_ERROR verb specifying the
TYPECPROG) parameter, and the conversation for the remote program
was in receive. confirm. or sync point state. The verb may have
caused information to be purged. Purging occurs when a program
issues MC_SEND_ERROR or SEND_ERROR in receive state before
receiving all the information sent by its partner program. that
is, all the i nformati on sent pri or tf) the reporting of the
PROG_ERROR_PURGING return code to the partner program. The purg­
ing can occur at the local LU, remote LU. or both. No purging
occurs when a program issues the verb in confirm state or sync
point state, or in receive state after receiving all the informa­
tion sent by its partner program. This return code is normally
reported to the local program on a verb it issues after sending
some information to the remote program. However. the return code
can be reported on a verb the program issues prior to sending any
information, depending on the verb and when it is issued. The
conversation is in receive state.

PROG_ERROR_TRUNC indicates the remote program issued a SEND_ERROR
verb specifying the TYPE(PROG) parameter. the conversation for
the remote program was in send state. and the verb truncated a
logical record. Truncation occurs at the basic conversation pro­
tocol boundary when a program begins sending a logical record and
then issues SEND_ERROR before sending the complete logical
record. This return code is reported to the local program on a
RECEIVE_AND_WAIT or RECEIVE_IMMEDIATE verb it issues after
receiving the truncated logical record. The conversation remains
in receive state.

SVC_ERROR_NO_TRUI~C i ndi cates the remote program issued a
SEND_ERROR verb specifying the TYPE(SVC) parameter. Otherwise.
this return code, as it applies to the basic conversation protocol
boundary. has the same meaning as PROG_ERROR_NO_TRUNC. The con­
versation remains in receive state.

SVC_ERROR_PURGING indicates the remote program issued a
SEND_ERROR verb specifying the TYPECSVC) parameter. Otherwise.
this return code, as it applies to the basic conversation protocol
boundary, has the same meaning as PROG_ERROR_PURGING. The con­
versation is in receive state.

SVC_ERROR_TRUNC indicates the remote program issued a SEND_ERROR
specifying the TYPECSVC) parameter. Otherwise. this return code
has the same mean i ng as PROG_ERROR_ TRUNC. The conversat ion
remains in receive state.

RESOURCE_FAILURE_NO_RETRY indicates a failure occurred that
caused the conversation to be prematurely terminated. For exam­
ple, the session being used for the conveisation was deactivated
because of a session protocol error, or the conversation was deal­
located because of a protocol error between the mapped conversa­
tion components of the LUs. The condition is not temporary. and
the program should not retry the transaction until the condition
is corrected. This return code can be reported to the local pro­
gram on a verb it issues in any state other than reset or deallo­
cate. The conversation is in deallocate state.

RESOURCE_FAILURE_RETRY indicates a failure occurred that caused
the conversation to be prematurely terminated. For example, the
session being used for the conversation was deactivated because
of a session outage, such as a line failure. a modem failure, or a
crypto engine failure. The condition may be temporary. and the
program can retry the transact ion. Thi s return code can be
reported to the local program on a verb it issues in any state
other than reset or deallocate. The conversation is in deallocate
state.

Chapter 4. Conversation Verbs 4-103

4-104

UNSUCCESSFUL
not execute
unsuccessful
unchanged.

indicates the verb issued by the local program did
successfully. This return code is returned on the

verb. The state of the conversation remains

Figure 4-2 on page 4-105 shows the correlation of the return codes to
the verbs on which they can be returned. The "X" in the figure means
the return code can be returned on the corresponding verb. A verb
without any "X"s beside it means no return codes are defined for the
verb.

SHA Transaction Programmer's Reference Manual for LU Type 6.2

Return Codes

A B D D D D D F H M M M o P P P P P R R S S S U
L A E E E E E M E A A A K A 0 R R R E E V V V N
L C A A A A A H U P P P R S 0 0 o S S C C C S
0 K L L L L l R P A T G G G 0 0 U
C E L L l L L D I E N I M I U U E E E C
A D 0 o 0 o 0 A S X 0 N E N E E E R R R R R C
T C C C C C T T E T G T G R R R C C R R R E
I 0 A A A A A A I C E R R R E E 0 o 0 S
0 U T T T T T C U F N R N 0 0 0 R R R S
H T E E E E E N T o 0 0 R R R F F F

0 M I U T E T A A H P T U
E A A A A N T I 0 H R N P T I I 0 U R L
R B B B B 0 X N D S R A 0 U R L L R U
R E E E E R S E U 0 C R U U U T G N
0 N N N N M U D F P R T T G N R R R I C
R D D D D A P A P I R I C E E U N

L P I 0 V U N N G
P S T 0 L R E N G N R C
R V I R U T C 0 E
0 C M T R E T
G E E E D R R

R D E Y
T
R

Verbs Y

MC_ALLOCATE X X X X
MC_CONFIRM X X X X X X X X X X X
MC_CONFIRMED
MC_DEALLOCATE X X X X X X X X X X
MC_FLUSH
MC_GET_ATTRIBUTES
MC_POST_ON_RECEIPT
MC_PREPARE_TO_RECEIVE X X X X X X X X X X
MC_RECEIVE_AND_WAIT X X X X X X X X X X X X X
MC_RECEIVE_IMMEDIATE X X X X X X X X X X X X X X
MC_R£QUEST_TO_SEND
MC_SEND_DATA X X X X X X X X X X X
MC_SEND_ERROR X X X X X X X X X X X X
MC_TEST X X X X X X X X X X X X X X X

BACKOUT
GET_TYPE
SYNCPT X X X
WAIT X

ALLOCATE X X X X
CONFIRM X X X X X X X X X X
CONFIRMED
DEALLOCATE X X X X X X X X X
FLUSH
GET_ATTRIBUTES
POST_ON_RECEIPT
PREPARE_TO_RECEIVE X X X X X X X X X
RECEIVE_AND_WAIT X X X X X X X X X X X X X X X
RECEIVE_IMMEDIATE X X X X X X X X X X X X X X X X
REQUEST_TO_SEND
SEND_DATA X X X X X X X X X X
SEND_ERROR X X X X X X X X X X X
TEST X X X X X X X X X X X X X X X X X

Figure 4-2. Correlation of Return Codes to Verbs

Chapter 4. Conversation Verbs 4-105

This page intentionally left blank

4-106 SMA Transaction Programmer's Reference Manual for LU Type 6.2

CHAPTER 5. CONTROL-OPERATOR VERBS

lU-lU SESSIONS

This chapter describes the category of verbs called control-operator
~. The control-operator verbs define the protocol boundary for a
control-operator transacti on program. In parti culer. the control­
operator protocol boundary is intended for use by transacti on pro­
grams that assist the control operator in performing functions
related to the control of an LU.

Preceding the detailed descriptions of the control-operator verbs is
a discussion of LU-LU sessions and functional SUbcategories of the
control-operator verbs. Following the verb descriptions is a
description of the return codes that apply to the control-operator
verbs.

The following characteristics of LU-LU sessions are relevant to the
control-operator verbs:

• The means of connecti ng LUs - si ngle sessi on or parallel sessi ons

• The contention-winner polarities of LU-LU sessions

SINGLE AND PARALLEL SESSIONS

Two LUs may connect to each other by means of one LU-lU sessi on.
called a single sessjon. or multiple LU-LU sessions. called parallel
sessions. The means of connection. single session or parallel ses­
sions. depends on the products implementing the LUs. LU 6.2 products
that provide an application programming interface (API). for
user-written programs, equivalent to the conversation verbs support
both single-session and parallel-session connections. Products that
are not user programmable, or that are but do not provi de an API
equivalent to the conversation verbs, may support only single-session
connections, and typically do so; however. they may also support par­
allel-session connections.

• When parallel-session support is available to both LUs, they can
connect to each other using a single session or parallel sessions.

• When parallel-session support is unavailable to either LU, they
can connect to each other using only a single session.

The session activation request that one LU sends to another indicates
whether the session is a single session or a parallel session.

An lU for which parallel session support is available establishes the
means of connection to a partner LU at the time the partner LU is
defined (see the DEFIHE_REMOTE_LU verb). Two LUs cannot be connected
by both single and parallel sessions at the same time.

For single-session connections. an implied limit of 1 is imposed on
the number of active sessions between the two LUs. That is, another
session cannot be activated until the active session is deactivated.

For parallel-session connections, the sessions can be partitioned
into groups. Each group has a limit on the number of active sessions
within that group. which is agreed to by both LUs. Additional ses­
sions within a group can be activated up to its limit.

Each single session or group of parallel sessions has associated with
it a set of similar network properties and a corresponding mode name.
The mode name serves as an identifier of the set of network proper­
ties. It allows a transaction program to select the set of network
properties to be used for a conversation.

Chapter 5. Control-Operator Verbs 5-1

The set of similar network properties includes, for example, the high­
est· synchroni zati on level for conversati ons on the sessi ons, the
class of' service for the sessions, whether the sessions provide trans­
mi ssi on security by means of sessi on- or li nk-level cryptography, and
the session routing and delay characteristics. The correlation of
mode names to the sets of network properties is established at the
time the mode name is defined for the partner LU (see the DEFINE_MODE
verb). .

The similarity of network properties among a group of sessions does
not imply that the network properties must be identical for all ses­
sions in the group. For example, the sessions within a group can be
activated on different physieal transmission facilities and yet have
equivalent class of service, or they can have different physical secu­
rity characteristics and still have equivalent level of transmission
security.

CONTENTION-WINNER POLARITY

For each single or parallel LU-LU session, only one LU is the con­
tention winner of the session; the other LU is the contention loser of
the session. Thi·s contention-winner polarity of LU-LU sessions
determi nes how contenti on is resolved when the two LUs attempt to
allocate a conversation on the session at the same time. 1 The conten­
tion-winner LU allocates a conversation on a session without asking
permission from the contention-loser LU. Conversely, the conten­
ti on-loser LU requests permi ssi on from the contenti on-wi nner LU to
allocate a conversation on the session, and the contention-winner LU
either grants or rejects the request. The contention-winner polarity
of a session is established at session activation time.

For single sessions, the LU initiating the session activation can
request that it be the contention winner or loser. The LU responding
to the session activation can accept the requested polarity or change
the polarity, depending on the requested polarity. If the initiating
LU requests that it be the contention winner, the responding LU can
accept the polarity or change the polarity making it the contention
winner. If the initiating LU requests that it be the contention
loser, the responding LU always accepts the polarity.

For parallel sessions, each mode-name group of sessions can be parti­
ti~ned based on contention-winner polarities. A number of sessions in
the group can be designated as the minimum number of contention-winner
sessions for one LU, and all or part of the remaining sessions can be
designated as the minimum number of contention-winner sessions for
the other LU. This partitioning allows two LUs to divide a group of
parallel sessions between them such that each LU is assured of being
the contention winner of a minimum number of the sessions.

The LU initiating the activation of a parallel session designates that
it be the ~ontention winner or ~ontention loser. Details of how the
initiating LU determines whether it is to be the contention winner or
loser of a session are given in the notes in the descriptions of the
CHANGE_S.ESSION;..LIMIT and INITIALIZE_SESSION_LIMIT verbs. The LU
responding to the activation of a parallel session always accepts the
designated polarity.

Sessions can be activated by means of certain control-operator verbs,
and as a result of allocation requests. The control-operator verbs
that can cause sessi ons to be acti vated are CHANGE_SESSION_LIMIT,
INIT·IA-LIZE_SESSION_LIMIT, and ACTIVATE_SESSION. Refer to the
·descript.ions of these verbs for more details about session acti­
vation.

Note: The contention-winner polarity of sessions assigned the
SNA-defined mode name, SNASVCMG, is not negotiable. That is, the LU
respondi ng to the acti vati on of an SNASVCMG s~ssi on always accepts the
designated polarity.

1 Specific details are given in SNA Format and Protocol Refgrencg
Manual: Architectyrg logjc for lU Typg 6,2.

5-2 SNA Transaction Programmer's Reference Manual for LU Type 6.2

VERB DESCRIPTIONS

The control-operator verbs ara divided into the following ~ubcatego­
ries:

Change number of sessions verbs
Session control verbs
LU definition verbs

The detailed descriptions of the control-operator verbs follow.

Chapter 5. Control-Operator Verbs 5-3

I CHANGE NU"BER OF SESSIONS VERBS

Thi 5 subcategory of control-operator verbs consi sts of four verbs
called the change-number-of-sessions, or CNOS, verbs. The CNOS verbs
change the (LU,mode) session limit, which controls the number of LU-lU
sessions per mode name that are available between two LUs for allo­
cation to conversations. The CNOS verbs apply to both single- and
parallel-session connections.

For single sessions and SNASVCMG sessions, the CNOS verbs change the
(LU,mode) session limit only at the local LU. The remote LU is not
involved in processing the change. The CNOS verbs that a control­
operator transacti on program may issue for a si ngle sessi on or
SNASYCMG session are:

For parallel sessions, the CNOS verbs change the (lU,mode) session
limit as well as other CNOS parameters of the LUs, and both LUs are
involved in processing the changes. These other CNOS parameters con­
trol the minimum number of contention-winner LU-LU sessions for each
LU, control which LU is responsible for selecting and deactivating
LU-LU sessions when the (LU,mode) session limit is decreased or reset,
and control the draining of allocation requests when the (LU,mode)
session limit is reset.

The two LUs cooperate in the execution of the CNOS verbs by means of a
CNOS request and CNOS reply. The LU executing the control-operator
transaction program sends a CNOS request to the partner LU. The part­
ner LU invokes an SNA service transaction program called the "CNOS
service transaction program" (see "Appendix D. List of SNA Service
Transaction Programs"), which causes tOhe partner LU to process the
CNOS request and send back a CNOS reply. The CNOS request and reply
are sent on a basic conversation, referred to in this chapter as the
"CNOS conversation." The CNOS conversation is normally allocated on
an SNASVCMG session. However, if an SNASYCMG session is not active,
because of session outage for example, the CNOS conversation may be
allocated on another active session.

The LU that sends the CNOS request is referred to as the source LU;
the LU that receives the CNOS request is referred to as the target LU.
The executi on of a CNOS verb by the two LUs is consi dered a CNOS
transaction. The role of the LU as a source LU or target LU lasts for
the duration of the CNOS transaction.

The CNOS verbs that a control-operator transaction program may issue
for parallel sessions are:

Only a transaction program that has CNOS privilege may issue these
verbs. The program is designated to have CNOS privilege when it is
defined to the local LU (see the DEFINE_TP verb).

The CNOS verb that the CNOS service transaction program issues for
parallel sessions is:

PROCESS_SESSION_LIMIT

The detailed descriptions of the CNOS verbs follows.

5-4 SMA Transaction Programmer's Reference Manual for LU Type 6.2

Change Number Df Sessions Verbs

Changes the (lU,mode) .session limit and contention-winner polarities
for parallel-session connections. The verb applies to the group of
sessions with the specified mode name between this (source) lU and the
specified (target) LU. The new (LU,mode) session limit and conten­
tion-winner polarities are enforced until changed by a subsequent
CNOS verb. As a consequence of changing the CLU,mode) session limit
and contention-winner polarities, LU-LU sessions with the specified
mode name may be activated or deactivated to conform to the new ses­
sion limit and polarities.

Su~~l;ed Parameters:

CHANGE_SESSION_LIMIT LU_NAME (variable).

MODE_NAME (variable)

LU_HODE_SESSION_LIHIT (variable)

MIN_CONWINNERS_SOURCE (variable)

HIN_CONWINNERS_TARGET (variable)

[RESPONSIBLE (SOURCE
(TARGET ~]

Returned Parametgrs:

RETURN_CODE (variable)

J

Supplied Parameters:

LU_NAHE specifies the name of the target LU to which the change in
session limit and polarities applies. The lU name is a name that is
valid as the LU_NAME parameter of the ALLOCATE verb (see "ALLOCATE" in
Chapter 4).

HODE_NAHE speci fi es the mode name for whi ch the sessi on 1 imi t and
polarities are to be changed. The specified mode name cannot be the
SNA-defined mode name. SNASVCMG.

LU_MODE_SESSION_LIMIT specifies the (LU,mode) session limit, that is,
the maximum number of sessions to be allowed, between the source LU
and target LU, for the specified mode name.

The specified session limit must be greater than O. The target LU can
negotiate this parameter to a value greater than 0 and less than the
specified session limit. The specified session limit. or the negoti­
ated session limit if it is negotiated. becomes the new session limit.

The value specified on this parameter must be greater than or equal to
the sum of the values speci fi ed on the MIN_CONWINNERS_SOURCE and
MIN_CONWINNERS_TARGET parameters.

HIN_CONWINNERS_SOURCE specifies the number of sessions of which the
source LU is designated to be the contention winner. The specified
number must be 0 or greater. The specified number. or the negotiated
number if it is negotiated. becomes the new minimum number of conten­
tion-winner sessions for the source LU. The sum of this number and
the target LUiS new minimum number of contention-winner sessions can­
not exceed the new session limit.

When the specified number is greater than 1/2 the new session limit
(rounded downward), the target LU can negotiate this parameter to a
number greater than or equal to 1/2 the new session limit and less
than the specified number. When the specified number is less than or

Chapter 5. Control-Operator Verbs 5-5

CHANGE_SESSION_LIMIT

equal to 1/2 the new session limit, the target lU cannot negotiate
this parameter.

MIN_CONWINNERS_TARGET specifies the number of sessions of which the
target lU is designated to be the contention winner. The specified
number must be 0 or greater. The specified number, or the negotiated
number if it is negotiated, becomes the new minimum number of conten­
tion-winner sessions for the target lU. The sum of this number and
the source lU's new minimum number of contention-winner sessions can­
not exceed the new session limit.

The target lU can negotiate this parameter to a number less than or
equal to the new session limit minus the new minimum number of conten­
tion-winner sessions for the source lU.

RESPONSIBLE specifies which lU is responsible for selecting and deac­
tivating sessions as a result of a change that decreases the session
limit or the maximum number of contention-winner sessions for the
source or target lUi see note 4 for details. If no sessions need to be
deactivated, th~s parameter is ignored.

• SOURCE specifies that the source lU is responsible. The target lU
cannot negotiate this argument.

• TARGET specifies that the target lU is responsible. The target lU
can negotiate this argument to SOURCE, in which case the source lU
becomes responsible.

The responsible lU can deactivate a session when both lUs are finished
using the session. This verb will not terminate active conversations.

Returned parameters:

RETURN_CODE specifies the variable in which a return code is returned
to the program. The ret~rn ~ode indicates the result of verb exe­
cution.

• OK (with one of the following subcodes)
AS_SPECIFIED
AS_NEGOTIATED

• AllOCATION_ERROR
• COMMAND_RACE_REJECT
• lU_MODE_SESSION_lIMIT_ZERO
• lU_SESSION_LIMIT_EXCEEDED
• PARAMETER_ERROR (for one of the following reasons)

Inval i d LU name
Invalid mode name

• REQUEST_EXCEEDS_MAX_ALlOWED
• RESOURCE_FAILURE_NO_RETRY
• UNRECOGNIZED_MODE_NAME

ABEND Conditions:

Parameter Check

• Thi s verb is not supported.
• The program issuing this verb does not have CHOS privilege.
• MODE_NAME specifies the SNA-defined mode name, SHASVCMG.
• LU_MODE_SESSION_lIMIT specifies O.
• MIN_CONWINNERS_TARGET is specified and not supported.
• The sum of MIN_CONWINNERS_SOURCE and MIN_COHWIHNERS_TARGET speci­

fies a number greater than LU_MODE_SESSIOH_LIMIT.
• RESPOHSIBLE(TARGET) is specified and not supported.

Nates:

1. This verb applies only to parallel-session connections.

2. All of the parallel sessions between two LUs can be partitioned
into groups, with all the sessions in a group having the same mode
name. This verb is used to change the limits on the number of
acti ve sessi ons that can exi st concurrently wi thi n a mode-name
group between the source LU and target LU. The limits im~osed on

5-6 SNA Transaction Programmer's Reference Manual for lU Type 6.2

Change Number of Sessions Verbs
the number of active parallel sessions within a mode-name group
are:

a. The number of active sessions cannot exceed the CLU.mode)
session limit.

b. The number of active contention-winner sessions for the
source LU cannot exceed the ClU,mode) session limit minus the
minimum number of contention-winner sessions for the target
LU.

c. The number of active contention-winner sessions for the tar­
get lU cannot exceed the CLU.mode) session limit minus the new
minimum number of contention-winner sessions for the source
LU.

As a result of issuing this verb, sessions may be activated, deac­
tivated, or both to conform to the new limits. The next two notes
describe the conditions under which sessions may be activated or
deactivated.

3. The source or target LU may activate parallel sessions, up to the
limits given in note 2. as follows:

• It may activate new contention-winner sessions when the num­
ber of its active contention-winner sessions is less than the
new (lU,mode) session limit minus the new minimum number of
contention-winner sessions for its partner lU.

• It may activate new contention-loser sessions when the number
of its active contention-loser sessions is less than the new
ClU,mode) session limit minus its own new minimum number of
contention-winner sessions.

The LU may activate contention-winner or -loser sessions in
response to allocation requests or by means of the ACTI­
VATE_SESSION verb. Also, it may activate contention-winner ses­
sions automatically. after completion of this verb, up to the
lesser of the its new minimum number of contention-winner ses­
sions and its automatic-activation limit currently in effect (see
the DEFINE_MODE verb).

4. Parallel sessions are deactivated when this verb causes one or
more of the limits given in note 2 to be exceeded. The lU respon­
sible for selecting and deactivating sessions is designated by
the RESPONSIBLE parameter. The responsible LU deactivates ses­
sions until all three limits given in note 2 are met. When all
three limits are met, no more sessions are deactivated.

The responsible lU deactivates sessions that are not allocated to
conversations. If a session to be deactivated is currently allo­
cated to a conversation, the responsible LU waits until the con­
versation is deallocated and then deactivates the session.

The responsible LU can deactivate only those sessions that are in
excess of an LU's minimum number of contention-winner sessions.
If the number of currently active contention-winner sessions for
the source or target LU is less than or equal to its minimum num­
ber of contention-winner sessions. none of its contention-winner
sessions are deactivated.

Chapter 5. Control-Operator Verbs 5-7

INITIALIZE_SESSION_LI"IT

Establishes the initial CLU,mode) session limit for single- or paral­
lel-sessi on connecti ons, and the contenti on-wi nner polari ti es for
parallel-session connections. The verb applies to the group of ses­
sions with the specified mode name between the source LU and the tar­
get LU. The new CLU,mode) session limit and contention-winner
polarities are enforced until changed by a subsequent CNOS verb. As a
consequence of initializing the session limit, one or more LU-LU ses­
sions with the specified mode name may be activated.

Sueeligd Paramete~§:

INITIALIZE_SESSION_LI"IT LU_NA"E (variable)

MODE_NA"E I ~:~l:~~=G!)

LU_"ODE_SESSION_LI"IT (variable)

"IN_CONWINNERS_SOURCE (variable)

"IN_CONWINNERS_TARGET (variable)

BgiyrDgd ~I~ameiers:

RETURN_CODE (variable)

;

Sueelied Plrameters:

LU_NAME specifies the name of the target LU to which the initializa­
tion of session limit and polarities applies. The LU name is a name
that is valid as the LU_HAME parameter of the ALLOCATE verb Csee "AL­
LOCATE" in Chapter 4).

MODE_NAl1E specifies the mode name for which the session limit and
polarities are to be initialized.

• variable-contains the mode name.

• 'SNASVC"G' specifies the SNA-defined mode name, which is used for
exchanging the CNOS request and reply when the source LU and tar­
get LU are connected by parallel sessions.

LU_"ODE_SESSION_LI"IT specifies the CLU,mode) session limit for par­
allel-session connections, that is, the maximum number of parallel
sessions to be allowed, between the source LU and target LU, for the
specified mode name.

The specified session limit must be greater than O. The target LU can
negotiate this parameter to a value greater than 0 and less than the
specified session limit. The specified session limit, or the negoti­
ated session limit if it is negotiated, becomes the new session limit.

The value spec; fi ed on th; s parameter must be greater than or equal to
the sum of the values speci fi ed on the MIN_CONWINNERS_SOURCE and
MIN_CONWIHNERS_TARGET parameters.

For single-session connections, the specified CLU,mode) session limit
must be 1.

For the SNASVCMG mode name, the specified CLU,mode) session limit must
be 2.

"IN_CONWINNERS_SOURCE speci fi es the number of parallel sessi ons of
which the source LU is designated to be the contention winner. The
specified number must be 0 or greater. The specified number, or the
negotiated number if it is negotiated, becomes the new minimum number
of contention-winner sessions for the source LU. The sum of this num-

5-8 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Change Number of Sessions Verbs

ber and the target LU's new mlnlmum number of contention-winner ses­
sions cannot exceed the new session limit.

When the specified number is greater than 1/2 the new session limit
(rounded downward), the target LU can negotiate this parameter to a
number greater than or equal to 1/2 the new session limit and less
than the specified number. When the specified number is less than or
equal to 1/2 the new session limit. the target lU cannot negotiate
thi s parameter.

For single-session connections. the specified minimum number of con­
tention-winner sessions for the source lU may be 0, or it may be 1 if
the value specified on the MIN_CONWINNER_TARGET parameter is O.

For the SNASVCMG mode name, the specified minimum number of conten­
tion-winner sessions for the source lU must be 1.

HIN_CONWINNERS_TARGET speci fi es the number of parallel sessi ons of
which the target LU is designated to be the contention winner. Tho
specified number must be 0 or greater. The specified number, or the
negotiated number if it is negotiated. becomes the new minimum number
of contention-winner sessions for the target lU. The sum of this num­
ber and the source lU's new minimum number of contention-winner ses­
sions cannot ex~ed the new session limit.

The target LU can negotiate this parameter to a number less than or
equal to the new session limit minus the new minimum number of conten­
tion-winner sessions for the source LU.

For single-session connections. the specified minimum number of con­
tention-winner sessions for the target LU may be 0, or it may be 1 if
the value specified on the MIN_CONWINNER_SOURCE parameter is O.

For the SNASVCMG mode name. the specified minimum number of conten­
tion-winner sessions for the target lU must be 1.

Returned Parameters:

RETURN_CODE specifies the variable in which a return code is returned
to the program. The return code indicates tho result of verb exe­
cution.

• OK (with one of the following subcodes)
AS_SPECIFIED
AS_NEGOTIATED

• ALLOCATION_ERROR
• COMMAND_RACE_REJECT
• lU_MODE_SESSION_LIMIT_CLOSED
• LU_MODE_SESSION_LIMIT_NOT_ZERO
• LU_SESSION_LIMIT_EXCEEDED .
• PARAMETER_ERROR (for one of the followlng reasons)

Inval i d LU name
Invalid mode name

• REQUEST_EXCEEDS_MAX_ALlOWED
• RESOURCE_FAILURE_NO_RETRY
• UNRECOGNIZED_MODE_NAME

AREND Cond;t;ons:

Parameter Check

• The program issuing this verb does not have CNOS privilege.
• LU_MODE_SESSION_LIMIT speci fi es a value greater than 1 for a

single-session connection.
• MODE_NAMEC'SNASVCMG') is specified and lU_MODE_SESSION_lIMIT,

MIN_CONWINNERS_SOURCE, and MIN_CONWINNERS_TARGET do not specify
2. 1, and 1, respectively.

• lU_MODE_SESSION_lIMIT specifies O.
• MIN_CONWINNERS_TARGET is specified and not supported.
• The sum of MIN_CONWINNERS_SOURCE and MIN_CONWINNERS_TARGET speci­

fies a number greater than lU_MODE_SESSION_LIMIT.

Chapter 5. Control-Operator Verbs 5-9

INITIALIZE_SESSION_LIMIT

Notes:

5-10

1. The UU,mode) session limit for a single-session connection is
initialized only locally at the source LU; a CNOS request and
reply are not exchanged between the two LUs. Thus, the INITIAL­
IZE SESSION LIMIT verb must be issued at both lUs before either lU
can-activate the corresponding session. From each lU's perspec­
tive, each is the source lU for the processing of this verb.

2. For a single-session connection, the contention-winner polarity
for the sessi on is determi ned from the MIN_CONl.JINNER_SOURCE and
MIN CONWINNER TARGET parameters on the verbs issued at both lUs.
The -l U act i vati ng the sess i on :

• Requests that it be the contention winner when the verb issued
at that lU specifies MIN_CONWINNERS_TARGETCO).

• Requests that it be the contention loser when the verb speci­
fies MIN_CONWINNERS_TARGET(l).

The partner LU:

• Accepts the requested contenti on-wi nner polari ty when the
verb issued at that lU specifies MIN_CONWINNERS_SOURCECO).

• Negotiates the polarity so that it is the contention winner
when the verb specifies MIN_CONWINNERS_SOURCE(I).

3. For a single-session connection, the LU may have more than one
mode defined at a time to a partner LU. Each (lU,mode) session
limit can be either 0 or 1. and more than one (lU.mode) session
limit can be 1. concurrently. for the partner lU. This permits
the lU to activate a session for any of the modes that have an
(lU,mode) session limit of 1; however. only one session can be
active at a time.

4. For a parallel-session connection to a target LU, the (lU,mode)
session limit and contention-winner polarities for the SNASVCMG
mode name and target lU must be initialized before (lU,mode) ses­
sion limit and contention-winner polarities can be initialized
for any other mode name for the target lU. The (lU,mode) session
limit and contention-winner polarities for the SNASVCMG mode name
and target lU are initIaliZed only at the source lU; a CNOS
request and reply are not exchanged between the two lUs.

The ClU,mode) session limit and contention-winner polarities for
the SNASVCMG mode name must be initialized at both the source lU
and target lU before either lU can activate the corresponding ses­
sions; a CNOS request and reply are not exchanged between the two
lUs. From each LU's perspective, each is the source lU for the
processing of INITIALIZE_SESSION_lIMIT with
MODE_NAMEC'SNASVCMG').

5. All the parallel sessions between two LUs can be partitioned into
groups, wi th all the sessi ons ina group havi ng the same mode
name. This verb can be used to initialize the limits on the num­
ber of active parallel sessions that can exist concurrently with­
ina mode-name group between the source and target LUs. The
limits imposed on the number of active parallel sessions within a
mode-name group are:

a. The number of acti ve sessi ons cannot exceed the (lU ,mode)
sessi on 1 i mi t.

b. The number of active contention-winner sessions for the
source LU cannot exceed the (lU,mode) session limit minus the
minimum number of contention-winner sessions for the target
lU.

c. The number of active contention-winner sessions for the tar­
get lU cannot exceed the (lU,mode) session limit minus the new
minimum number of contention-winner sessions for the source
lU.

SNA Transaction Programmer's Reference Manual for lU Type 6.2

ChanS8 Number of Sessions Verbs

As a result of issuing this verb. parallel sessions may be acti­
vated to conform to.the new limits.

6. For single- and parallel-session connections. an LU may activate
contention-winner or -loser sessions in response to allocation
requests or by means of the ACTIVATE_SESSION verb. Also. it may
activate contention-winner sessions automatically. after com­
pletion of this verb. UP to the lesser of the its new minimum num­
ber of contention-winner sessions and its automatic-activation
limit currently in effect.

Chapter S. Control-Operator Verbs 5-11

RESET_SESSION_LIMIT

Resets to 0 the (LU,mode) session limit for single or parallel-session
connections, and the contention-winner polarities for the parallel­
session connections. The verb applies to the group of sessions with
the specified mode name, or all mode names, between the source LU and
the target LU. The reset (lU,mode) session limit and contention­
winner polarities are enforced until initialized by a subsequent INI­
TIALIZE SESSION LIMIT verb. As a consequence of resetting the
session-limit and polarities, all active sessions with the specified
mode name, or all mode names, are deactivated.

supplied Parameters:

LU_NAME (variable)

[
(ALL)

MODE_NAME (ONE (variable)
(ONE ('SNASVCMG'

[RESPONSIBLE (SOURCE)
(TARGET)

[DRAIN_SOURCE (
(

[DRAIN_TARGET (
(

[FORCE (NO)]
(YES)

NO)
YES)

NO)
YES)

Returned Parameters:

]
]

RETURN_CODE (variable)

J

Supplied Parameters:

]

LU_NAME specifies the name of the target LU to which the resetting of
the session limit and polarities applies. The LU name is a name that
is valid as the LU_NAME parameter of the ALLOCATE verb (see "AllOCATE"
in Chapter 4).

MODE_NAME specifies the mode name for which the session limit and
polarities are to be reset to O.

• ALL specifies that the session limit and polarities for all mode
names that apply to the target LU are to be reset to 0, except for
the SNA-defined mode name, SNASVCMG, which remains unchanged.

• ONE(variable) specifies that the session limit and polarities for
only the specified mode name are to be reset to O.

• ONE('SNASVCMG') specifies the SNA-defined mode name, which is
used for exchanging the CNOS request and reply when the source LU
and target LU are connected by parallel sessions.

RESPONSIBLE specifies which LU is responsible for deactivating the
sessions as a result of resetting the session limit for parallel-ses­
sion connections. This parameter is not applicable to single-session
connections or the SNASVCMG sessions.

• SOURCE specifjes that the source LU is responsible. The target LU
cannot negotiate this argument.

5-12 SMA Transaction Programmer's Reference Manual for LU Type 6.2

Change Number af Sessians Verbs

• TARGET specifies that the target lU is responsible. The target lU
can negotiate this argument to SOURCE. in which case the source lU
becomes responsible.

The parameters DRAIN_SOURCE and DRAIN_TARGET determine when the
responsible lU can deactivate the sessions:

• If an lU is to drai nits allocati on requests. it conti nues to
allocate conversations to active sessions. The responsible lU
deactivates a session only when the conversation allocated to the
session is deallocated and no request is awaiting allocation to
any session with the specified mode name. The allocation of an
awaiting request takes precedence over the deactivation of a ses­
sion.

• If an lU is not to drain its allocation requests. the responsible
lU deactivates a session as soon as the conversation allocated to
the session is deallocated. If no conversation is allocated to
the session. the responsible lU deactivates the session imme­
diately.

In no case. however. does this verb force deallocation of active con­
versations.

The RESPONSIBLE and MODE_NAME parameters are interrelated, as fol­
lows:

• If MODE_NAMECAll) is specified, RESPONSIBLE is ignored for those
mode names for which the session limit is currently O.

• If MODE_NAMECONECvariable» is specified and the current session
limit for that mode name is 0, RESPONSIBLE is ignored.

DRAIN_SOURCE specifies whether the source LU can drain its allocation
requests. For parallel-sessi on connecti ons, the target lU cannot
negotiate this parameter. This parameter is not applicable to the
SNASVCMG sessions.

• NO speci fi es that the source lU cannot drai nits allocati on
requests. All requests currently awaiting allocation, or subse­
quently issued, at the source lU are rejected with a return code
indicating the session limit is O.

• YES specifies that the source lU can drain its allocation
requests. The source lU continues to allocate conversations to
the sessions until no requests are awaiting allocation, at which
time its draining is ended. All allocation requests issued at the
source lU after draining is ended are rejected with a return code
indicating the session limit is O.

For parallel-sessi on connecti ons. the DRAIN_SOURCE and MODE_NAME
parameters are interrelated. as follows:

• If MODE_NAMECAlL) and DRAIN_SOURCECYES) are specified,
DRAIN_SOURCE is ignored for those mode names for which the session
limit is currently O.

• If MODE_NAMECALl) and DRAIN_SOURCECNO) are specified,
DRAIN_SOURCE is accepted for all mode names, regardless of the
current session limit.

• If MODE_NAMECONECvariable» is specified, the current session
limit for that mode name is 0, and DRAIH_SOURCECYES) is currently
in effect, DRAIN_SOURCECNO) if specified causes the source lU's
draining to terminate.

• If MODE_NAME<ONECvariable» is specified, the current session
limit for that mode name is 0, and DRAIN_SOURCECNO) is currently
in effect, DRAIN_SOURCECNO) must be specified.

DRAIN_TARGET specifies whether the target lU can drain its allocation
requests. This parameter is not applicable to the SNASVCMG sessions.

Chapter 5. Control-Operator Verbs 5-13

RESET_SESSION_LIMIT

5-14

• NO specifies that the target lU cannot drain its allocation
requests. All requests currently awaiting allocation, or subse­
quently issued, at the target lU are rejected with a return code
indicating the session limit is o. For parallel-session con­
nections, the target lU cannot negotiate this argument.

• YES specifies that the target lU can drain its allocation
requests. The target lU continues to allocate conversations to
the sessions until no requests are awaiting allocation, at which
time its draining is ended. All allocation requests issued at the
target lU after draining is ended are rejected with a return code
indicating the session limit is O. For parallel-session con­
necti ons, the target lU can negoti ate thi s argument -to NO, in
which case the target lU cannot drain its allocation requests.

For parallel-session connections, the DRAIN_TARGET and MODE_NAME
parameters are interrelated, as follows:

• If MODE_NAMECAll) and DRAIN_TARGETCYES) are specified,
DRAIN_TARGET is ignored for those mode names for which the session
limit is currently O.

• If MODE_NAMECAll) and DRAIN_TARGETCHO) are specified,
DRAIN_TARGET is accepted for all mode names, regardless of the
current session limit.

• If MODE_NAME(ONE(vari able» is speci fi ed, the current sessi on
limit for that mode name is 0, and DRAIN_TARGET(YES) is currently
in effect, DRAIN_TARGETCNO) if specified causes the target lU's
draining to terminate.

• If MODE_NAME(ONECvari able» is speci fi ed, the current sessi on
limit for that mode name is 0, and DRAIH_TARGETCNO) is currently
in effect, DRAIN_TARGETCYES) if specified can be either accepted
by the target lU or negotiated to NO. If accepted, the target lU
can drain its remaining allocation requests if draining has not
already ended.

FORCE specifies whether the source LU is to force the resetting of its
session limit when certain error conditions occur that prevent suc­
cessful exchange of the CNOS request and reply. This parameter is not
applicable to single-session connections or the SNASVCMG sessions.

• NO specifies that the session limit is to be reset only upon suc­
cessful completion of the exchange of the CNOS request and reply.

• YES specifies that the session limit is to be reset upon either
successful or unsuccessful completion of the exchange of the CNOS
request and reply, except for certain error conditions (see the
RETURN_CODE parameter). If a forced reset occurs, the source lU's
sessi on I imi tis reset, and RESPONSIBlE(SOURCE) and
DRAIN_SOURCECNO) are assumed (regardless of what the respective
parameters specify). The target LU's CNOS parameters may not be
changed, depending on the error condition and when it occurred
during the CNOS exchange.

Returned parameters:

RETURN_CODE specifies the variable in which a return code is returned
to the program. The return code indicates the result of verb exe­
cution. The FORCE parameter determines which of the following return
codes can be returned to the program.

• If FORCECNO) is specified, one of the following return codes is
retUrned:

OK (with one of the following subcodes)
AS_SPECIFIED
AS_NEGOTIATED

ALLOCATION_ERROR

t3~~~~~:~~;~Y~~:[¥~IT_CLOSED
PARAMETER_ERROR (for one of the following reasons)

Inval i d LU name

SHA Transaction Programmer's Reference Manual for lU Type 6.2

Invalid mode name
RESOURCE_FAILURE_NO_RETRY
UNRECOGNIZED_MODE_NAME

Change Number of Sessions Ver~s

• If FORCE(YES) is specified, one of the following return codes is
returned:

OK Cwith one of the following subcodes)
AS_SPECIFIED
AS_NEGOTIATED
FORCED

COMMAND_RACE_REJECT
PARAMETER_ERROR Cfor one of the following reasons)

Inval i d LU name
Invali d mode name

ABEND Candit;ons:

Parameter Check

• The program issuing this verb does not have CNOS privilege.
• MODE_NAMECONEC'SNASVCMG'» is specified and one or more CLU,mode)

session limits for the target LU are not o.
• MODE_NAMECONECvariable» and DRAIN_SOURCECYES) are specified, the

current CLU,mode) session limit is 0, and DRAIN_SOURCE(NO) is
currently in effect.

• RESPONSIBLE(TARGET) is specified and not supported.
• DRAIN_TARGET(NO) is specified and not supported.
• FORCECYES) is specified and not supported.

Nates:

1. The (LU,mode) session limit for a single-session connection to a
target LU is reset only at the source LUi a CNOS request and reply
are not exchanged between the two LUs. The source LU deactivates
the session, if it is active, in accordance with the DRAIN_SOURCE
and DRAIN_TARGET parameters.

2. For parallel-session connections, when a mode name is specified
other than the SNA-defined mode name, SNASVCMG, or when ALL mode
names are indicated, the responsible LU deactivates the sessions
associated with the specified mode name, or all mode names other
than SNASVCMG, in accordance wi th the DRAIN_SOURCE and
DRAIN_TARGET parameters. The (LU,mode) session limits and con­
tention-winner polarities for all mode names other than SNASVCMG
must be reset before issuing this verb with the SHASVCMG mode name
specified.

3. When the SNASVCMG mode name is specified, the CLU,mode) session
limit and contention-winner polarities for the SHASVCMG mode name
are reset only at the source LUi a CNOS request and reply are not
exchanged between the two lUs. The source LU deactivates the ses­
sions associated with the SNASVCMG mode name as soon as all other
active sessions between the source LU and target LU are deacti­
vated. If no other sessions between the two LUs are active, the
source LU immediately deactivates the sessions associated with
the SNASVCMG mode name.

4. This verb can be issued when the (LU,mode) session limit is o. In
particular, this verb may be issued multiple times without issu­
ing an intervening INITIALIZE_SESSION_LIMIT verb. For example,
if this verb was first issued specifying DRAIN_TARGETCYES) and
subsequently it is decided to disallow further draining by the
target LU, this verb can be issued a second time specifying
DRAIN TARGETCNO). When the (LU,mode) session limit is already 0,
the RESPONSIBLE parameter is ignoredi the LU CSOURCE or TARGET)
specified on the first RESET_SESSION_LIMIT remains responsible
for deactivating sessions.

Chapter 5. Control-Operator Verbs 5-15

Processes the session limit. contention-winner polarities, and
related CNOS parameters from the source LU and, if necessary, negoti­
ates them to values acceptable to the target LU.

&ueelied Parameters:

PROCESS_SESSION_LIMIT RESOURCE (variable)

Returned pa~ameters:

LU_NAME (variable)

MODE_NAME (variablel variable2)

RETURN_CODE (variable)
. ,

sueelied parameters:

RESOURCE specifies the resource ID of the conversation that started
thi s program.

Returned Parameters:

LU_NAME specifies the variable in which is returned the name of the
source LU.

MODE_NAME specifies the variables in which are returned an indication
of whether one or all mode names are affected, and. if one, the spe­
cific mode name.

• variablel is the variable in which is returned an indication of
Whether one or all mode names associated with the source LU are
affected.

ONE i ndi cates a speci fi c mode name is affected. The mode name
is returned in variable2.

ALL indicates all mode names are affected. Nothing is placed
in variable2.

• variable2 is the variable in which is returned the specific mode
name when only one is affected.

RETURN_CODE specifies the variable in which a return code is returned
to the program. The return code indicates the result of verb exe­
cution.

• OK (wi th one of the followi ng subcodes>
AS_SPECIFIED
AS_NEGOTIATED

• RESOURCE_FAILURE_NO_RETRY

ABEND Conditions:

Parameter Check

The program issuing this verb is not the SNA service transaction
program identified as hex 06F1.

Ngtes:

1. This verb applies only to parallel session connections.

2. This verb is issued by an SNA service transaction program called
the "CNOS service transaction program," identified with the name
of hex 06F1. The CNOS service transaction program is invoked at
the target LU as a result of a CNOS verb bei ng issued at the
source LU. The CNOS service transaction program then issues this

5-16 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Change Humber of Sessions Verbs

verb in order to initiate the target LU's processing of the CNOS
request sent by t~e source LU.

3. The program issues the DISPLAY_MODE verb in order to obtain the
new session limit, contention-winner polarities, and related CNOS
parameters.

Chapter 5. Control-Operator Verbs 5-17

SESSION CONTROL VERBS

This subcategory of control-operator verbs consists of two verbs used
for session control, one that activates an lU-lU session and one that
deactivates an lU-lU session. The lU executing the verb is designated
the source lU and is responsible for the session activation or deacti­
vation. The other lU for the session is the target lU. These verbs
are:

ACTIVATE_SESSION
DEACTIVATE_SESSION

Only a transacti on program that has sessi on-control pri vi lage may
issue these verbs. The program is designated to have session-control
privilege when it is defined to the local lU (see the DEFINE_TP verb).

The detailed descriptions of these verbs follows.

5-18 SNA Transaction Programmer's Reference Manual for lU Type 6.2

Session Control Verbs

ACTIVATE_SESSION

Activates a session with the specified mode name to the target lU.
The session is activated as a contention winner for either the source
lU or target lU.

Sue~lied Parameters:

ACTIVATE_SESSION LU_NAME (variable)

MODE_NAME (variable)
('SNASVCMG')

Returned Parameters:

RETURN_CODE (variable)

J

Sue~lied Parameters:

LU_NAME specifies the name of the target lU to which the session is to
be activated. This lU name is any name by which the source lU knows
the target LU for the purpose of activating a session. The source lU
transforms this locally-known lU name to an lU name used by the net­
work. if the names are different.

MODE_NAME specifies the mode name for the session.

• variable contains the mode name.

• 'SNASVCMG' specifies the SNA-defined mode name, which is used for
exchanging the CNOS request and reply when the source LU and tar­
get LU are connected by parallel sessions.

Returned Parameters:

RETURN_CODE specifies the variable in which a return code is returned
to the program. The return code indicates the result of verb exe­
cution.

• OK (with one of the following subcodes)
AS_SPECIFIED
AS_NEGOTIATED

• ACTIVATION_FAIlURE_NO_RETRY
• ACTIVATION_FAILURE_RETRY
• PARAMETER_ERROR (for one of the following reasons)

Invalid lU name.
Invalid mode name.

• lU_MODE_SESSION_LIMIT_EXCEEDED

ABEND Conditions:

Parameter Check

• This verb is not supported.
• The program issuing this verb does not have session-control priv­

ilege.

Notes:

1. This verb can be used to activate a single session as a contention
winner for either the source lU or the target lU. The lU to be the
contention winner is established by means of the INITIAL­
IZE_SESSION_LIMIT verb.

2. This verb can be used to activate one or both parallel sessions
for the SNASVCMG mode name to a target lU. The source lU is the
contention winner for the first session; the target lU is the con­
tention winner for the second session.

Chapter 5. Control-Operator Verbs

ACTIVATE_SESSION

3. This verb can be used to activate a parallel session as a con­
tention winner for either the source lU or the target lU. The
session is activated as a contention winner for the source lU when
the number of currently active contention-winner sessions for the
source lU is less than the new ClU,mode) session limit minus the
new minimum number of contention-winner sessions for the target
lU. Otherwise, the session is activated as a contention wtnner
for the target lU.

5-20 SNA Transaction Programmer's Reference Manual for lU Type 6.2

session Control verbs

DEACTIVATE_SESSION

Deactivates the specified LU-lU session. The type of deactivation can
be cleanup or normal.

Sueelied earamei!~s:

DEACTIVATE_SESSION SESSION_ID (variable)

[TYPE (CLEANUP)]
(NORMAL)

R!turned Parameters:

RETURN_CODE (variable)

J

Sueel;!d paramet!rs:

SESSION_ID specifies the identifier of the lU-lU session to be deacti­
vated.

TYPE specifies the type of deactivation.

• CLEANUP spec if i es that the "Sess i on i s to be deact i vated i mme­
diately. regardless of whether a conversation is currently allo­
cated to the session.

• NORMAL specifies that the session is to be deactivated normally.
after the conversat i on currently allocated to the sessi on is
deallocated. If no conversati on is currently allocated to the
session. normal deactivation begins immediately.

Returned Parameters:

RETURN_CODE specifies the variable in which a return code is returned
to the program. The return code indicates the result of verb exe­
cution.

• OK • PARAMETER ERROR (for the following reason)
The speci fied sessi on i denti fi er is not assi gned to a cur­
rently active session.

ABEND Conditions:

Parameter Check

• This verb is not supported.
• The program issuing this verb does not have session-control priv­

ilege.

Chapter 5. Control-Operator Verbs 5-21

LU DEFINITION VERBS
This subcategory of control-operator verbs consists of the following
verbs, which are used to define or modify the local LU's operating
parameters, examine the parameters, and delete the parameters. These
verbs are:

The execution of these verbs involves only the local LU. They do not
cause any information to be sent outside the LU.

Some of the local LU's operating parameters can be added, modified, or
deleted only under appropriate conditions. An attempt to alter any of
these parameters when conditions are inappropriate is an error, caus­
ing the LU to return the PARAMETER_ERROR return code on the verb. The
parameters that are restri cted in thi s way and the correspondi ng
errors are identified in the verb descriptions.

The DEFINE verbs may be issued multiple times to initialize or update
the local LU's operating parameters. The first time a verb parameter
is specified, the LU's corresponding operating parameter is initial­
ized; thereafter, it is changed. The following notes apply to all
verb parameters, except where stated otherwise in the individual verb
descriptions:

• If the LU's operating parameter is not currently defined and the
corresponding verb parameter is specified, the operating parame­
ter is initialized with the supplied value.

• If the LU's operating parameter is not currently defined and the
corresponding verb parameter is omitted, the operating parameter
remains undefined.

• If the LU's operating parameter is currently defined and the cor­
responding verb parameter is specified, the operating parameter
value is replaced with the supplied value.

• If the LU's operating parameter is currently defined and the cor­
respondi ng verb parameter is omi tted, the operati ng parameter
value remains unchanged.

The DISPLAY verbs return current values of the local LU's operating
parameters. When a DISPLAY verb is issued specifying a parameter that
is not currently defined at the loca~ LU, a null value is returned.

The DELETE verb deletes the local LU's operating parameters. After a
parameter is deleted, it is no longer defined at the local LU.

Only a transaction program that has define privilege may issue the
DEFINE verbs and DELETE verb, and only a program that has di splay
privilege may issue the DISPLAY verbs. The program is designated to
have define or display privilege when it is defined to the local LU
(see the DEFINE_TP verb). The program that initially establishes
define privilege for other programs has implicit define privilege.

The detailed descriptions of these verbs follow.

5-22 SNA Transaction Programmer's Reference Manual for LU Type 6.2

LU Definition Verbs

Defines the fully qualified name for the local LU, and initializes or
changes parameters that control the operation of the local LU.

~ueel;ed Parameters:

DEFINE_LOCAL_LU FULLY_QUALIFIED_LU_NAME (variable)

[LU_SESSION_LIMIT (NONE)]
(VALUE (variable))

[
(ADD (USER_ID (variable)

) 1
PASSWORD (variable)

SECURITY PROFILE (variable)))
(DELETE (USER_ID (variable)

PROFILE (variable))

[MAP_NAME ~ ADD (vari able))]
DELETE (variable))

Returned Paramete~s:

RETURN_CODE (variable)

;

Sueplied Parameters:

FULLY QUALIFIED LU NAME speci fi es the fully quali fi ed name of the
local-LU. If the specified name is not currently defined, this verb
defines the name by which the local LU is known throughout the net­
work, replacing the current name if one exists, and initializes the
LU-LU session limit. If the specified name is already defined, this
verb changes the other parameter values.

LU_SESSION_LIMIT specifies the LU-LU session limit for the total num­
ber of sessions for the local LU.

• NONE specifies that no limit is to be defined.

• VALUE specifies a number representing the LU-LU session limit.

SECURITY specifies to add or delete access security information that
the local LU uses for conversati on-level securi ty veri fi cati on of
i ncomi ng allocati on requests on an LU-wi de basi s. (Contrast thi s
parameter with the SECURITY_REQUIRED and SECURITY_ACCESS parameters
of the DEFINE_TP verb.) The local LU updates a conversati on-level
security verification list from the information supplied on this
parameter. The veri fi cat; on list consi sts of one or more user IDs and
corresponding passwords, and zero or more profiles associated with
each user ID.

• ADD speci fi es to add access securi ty i nformati on to the LU r s
conversation-level security verification list. A user ID must be
specified together with either, or both, a password or profile.

USER_ID specifies a user ID. If the user ID is not currently
defined, a password must also be specified, and the lU adds
the user ID, password, and profi Ie (i f speci fi ed) to its
conversation-level security verification list. If the user
ID is already defined, the list is updated with the password
or profi Ie.

PASSWORD speci fi es the password for thi s user ID. If the user
ID is already defined, the password replaces the one current­
ly defined.

Chapter 5. Control-Operator Verbs 5-23

PROFILE specifies a profile for this user 10. If the user 10
is already defi ned. the profi Ie is added to the ones currently
defined.

• DELETE specifies to delete access security information from the
LU's conversation-level security verification list. The user ID
may be specified alone or together with a profile.

USER_ID specifies the user ID. If a profile is not specified.
the user ID and its associ ated password and profi les are
deleted. If a profile is also specified. the user ID and its
associated password and ~ther profiles remain defined.

PROFILE specifies the profile to be deleted.

MAP_NAME specifies to add or delete a map name that the local LU is to
support for local data mapping. Local transaction programs may speci­
fy this map name on the MAP_NAME parameter of the MC_SEND_DATA verb.
and remote LUs may send this map name to the local LU over mapped con­
versations.

• ADD speci fi es the map name to be added.

• DELETE speci fi es the map name to be deleted.

Returned Parameters:

RETURN_CODE returns an indication of the result of verb execution.

• OK
• PARAMETER_ERROR Cfor one of the following reasons)

FULLY_QUALIFIED_LU_NAME specifies a value that is not a
type-A symbol string.
LU_SESSION_LIMITeVALUECvariable» specifies a value that is
less than the sum of.the (LU.mode) session limits currently in
effect.
SECURITYCAODC ••• » specifies a user 10. password, or profile
that is not a symbol-string type (A. AE, GR. or 08) that the
product supports.
SECURITYCAODC ••. » specifies only a user 10. or a password or
profile but no user ID.
SECURITYCDELETEC ... » specifies a user ID or profile that is
not currently defined at the local LU.
SECURITYCDELETE(..• » specifies only a profile.
MAP_NAMECADDCvariable» specifies a map name that is not a
symbol-string type CA. AE. or GR) that the product supports.
MAP_NAMECDELETECvariable» specifies a map name that is not
currently defined at the local LU.

ABEND Cond;t;ons:

Parameter Check

• This verb is not supported.
• The program issuing this verb does not have define privilege.

Notes:

1. This verb can be used to define the name by which the local LU is
known throughout the network. To use it for this purpose. the
verb should be issued prior to the local LU's participation in any
network activity, such as initializing CLU,mode) session limits.

2. The LU-LU session limit is the maximum number of sessions that the
local LU can have active at a time. It represents the upper bound
on the sum of the CLU.mode) session limits. and it must be equal
to or greater than the sum of the CLU,mode) session limits cur­
rently in effect; see the description of the return code,
LU_SESSION_LIMIT_EXCEEDED. in "Return Codes" on page 5-51 for
more details.

3. If no LU-LU session limit is defined at the local LU. the upper
bound. if ·any. on the sum of the CLU.mode) session Pmits is

5-24 SNA Transaction Prn~rammer's Reference Manual for LU Type 6.2

LU Definition Verbs

product-determined. For example, the upper bound may be a fixed
value or determi ned by an algori thm.

4. When the first user ID and associated password and profiles are
added, the lUis conversation-level security verification list is
created. When the last user 10 and associated password and pro­
files are deleted, the conversation-level security verification
list itself is deleted.

S. The local lU uses the conversation-level security verification
list to verify the access security information on allocation
requests it receives. Specifically, when the lU receives an allo­
cation request carrying a user 10 and password, it verifies that
the user 10 and password are present in its conversation-level
security verification list. If the allocation request also car­
ries a profile, the lU verifies that the profile is also present
in the list. Allocation requests that carry no access security
information, or that carry a user 10 and an already-verified indi­
cation (and may also carry a profile), are not verified against
the conversation-level security verification list. However,
these requests may be subject to resource-access verification, as
determined by the SECURITY_ACCESS parameter on DEFINE_TP.

6. If the conversation-level security verification list does not
exist, the local lU will perform no conversation-level security
verification. Allocation requests that carry a user ID and pass­
word will not be accepted.

7. If no map names are defined at the local lU, it will perform no
data mapping.

8. More details concerning the lU's use of these operating parame­
ters are gi ven in SNA Format and Protocol Reference Manual:
Architecture logic for lU Type 6.2.

Chapter S. Control-Operator Verbs 5-25

Initializes or changes parameters that control the operation of the
local lU in conjunction with a remote lU.

Supplied Parameters:

FULLY_QUALIFIED_LU_NAME (variable)

(NONE) [LOCALLY_KNOWN_LU_NAME
(NAME (variable))

[UNINTERPRETED_LU_NAME (NONE)
(NAME (variable

[INITIATE_TYPE (INITIATE_ONLY)]
(INITIATE_DR_QUEUE)

[PARALLEL_SESSION_SUPPORT (YES)]
(NO)

[CNOS_SUPPORT (YES)]
(NO)

[LU_LU_PASSWORD (NONE)]
(VALUE (variable))

[(NONE)
SECURITY_ACCEPTANCE (CONVERSATION)

(ALREADY_VERIFIED

Returned Parameters:

RETURN_CODE (variable)

Supplied Parameters:

))

]
]

FULLY_QUALIFIED_LU_NAME speci fi es the fully qual i fi ed name of the
remote lU. If the specified name is currently undefined to the local
lU, this verb defines the remote lU's fully qualified name and ini­
tializes the other parameter values specified on this verb. If the
specified name is already defined to the local lU, this verb changes
the other parameter values.

LOCALLY_KNOWN_LU_NAME specifies the locally-known name of the remote
lU that local transaction programs can specify on the lU_NAME parame­
ter of the MC_AllOCATE and AllOCATE verbs.

• NONE specifies that no locally-known lU name is to be defined.

• NAME specifies the locally-known lU name of the remote lU. This
name is not sent outside the local lU.

UNINTERPRETED_LU_NAME speci fi es the uni nterpreted lU name of the
remote lU, which the local lU uses on INITIATE and TERMINATE requests
it sends to its SSCP.

• NONE specifies that no uninterpreted lU name is to be defined.

• NAME spec if i es the un interpreted lU name of the remote lU.

5-26 SNA Transaction Programmer's Reference Manual for lU Type 6.2

LU Definition Verbs

INITIATE_TYPE specifies the session-initiation type that the local LU
is to use on INITIATE requests it sends to its SSCP for initiating
sessi ons wi th the remote LU.

• INITIATE_ONLY specifies that session initiation requests are to
indicate "initiate only." The SSCP will not queue the session
initiation requests.

• INITIATE_OR_QUEUE specifies that session initiation requests are
to indicate "initiate or queue." The SSCP may queue session the
initiation requests. if necessary. while waiting for the remote
LU to become available.

PARALLEL_SESSION_SUPPORT specifies whether the local LU supports par­
allel sessions with the remote LU. The local LU uses this parameter
to determine the indication for parallel session support that it spec­
ifies in session activation (BIND) requests and responses.

• YES specifies that parallel sessions are supported.

• NO specifies that parallel sessions are not supported.

CNOS_SUPPORT specifies whether the local LU supports the exchange of
CNOS requests and replies with the remote LU. The local LU uses this
parameter to determine the indication for CNOS support that it speci­
fies in session activation (BIND) requests and responses.

•

•

YES specifies that CNOS is supported.
LEL_SESSION_SUPPORTCYES) must also be specified.

NO speci fi es that CNOS is not supported.
LEL_SESSION_SUPPORT(NO) must also be specified.

PARAL-

PARAL-

LU_LU_PASSWORD speci fi es the LU-LU password to be used for
session-level LU-LU verification during session activation. The
LU-LU password must be the same as that defi ned at the remote LU.

• NONE specifies that no LU-LU password is to be defined.

• NAME specifies the LU-LU password. It must be a random binary
value up to 64 bits (8 bytes) in length. It should be specified
in a form that can yield any binary value. For example. it could
be specified using the hexadecimal digits 0, 1, 2 •••• , E, F to
represent each group of 4 bits. After being defined, the LU-LU
password is nondisplayable.

SECURITY_ACCEPTANCE specifies the level of access security informa­
tion that the local LU will accept on allocation requests it receives
from the remote LU. Access security information that includes a pass­
word is verified against the LU's conversation-level security verifi­
cation list prior to acceptance, as described for the SECURITY
parameter an the DEFINE_LOCAL_LU verb.

• NONE speci fi es that no access securi ty i nformati on is to be
accepted on allocation requests received from the remote LU.

• CONVERSATION speci fi es that the local LU wi 11 accept
conversation-level access security information, which must
include bath a user 10 and password. and may also include a pro­
fi Ie. The local LU wi 11 not accept allocation requests that
include the already-verified indication.

• ALREADY_VERIFIED specifies that the local LU will accept
conversation-level access security information, which may include
the already-verified indication in place of a password.

Returned parameters:

RETURN_CODE returns an indication of the result of verb execution.

• OK • PARAMETER_ERROR Cfor one of the following reasons) .
- FULLY_QUALIFIED_LU_NAME specifies a value that is not a

type-A symbol string.

Chapter 5. Control-Operator Verbs 5-27

PARALLEL_SESSION_SUPPORT(YES) is specified and the total
LU-LU session limit is 1.
PARALLEL_SESSION_SUPPORT(YES) and CNOS_SUPPORTEDCNO) are
speci fied.
PARALLEL_SESSION_SUPPORTCNO) and CNOS_SUPPORTEDCYES) are
specified.
PARALLEL_SESSION_SUPPORT. CNOS_SUPPORT. LU_LU_PASSWORD. or
SECURITY_ACCEPTANCE is specified and at least one CLU.mode)
session limit for the remote LU is not zero. or the LU-LU ses­
sion count between the local and remote LUs is not zero.

ABEND conditions:

Parameter Check

• This verb is not supported.
• The program issuing this verb does not have define privilege.

Notes:

1.

2.

3.

5.

6.

7.

Thi s verb can be used to defi ne the fully qual i fi ed name of a
remote LU. In this case. the verb should be issued prior to the
local LU participating in any network activity involving the
remote LU.

If no locally-known name of the remote LU is defined at the local
LU. local transaction programs may specify the remote LU's fully
qualified LU name. or its uninterpreted name if one is currently
defined at the local LU. on the LU_NAME parameter of the
MC_ALLOCATE and ALLOCATE verbs.

An uninterpreted name of the remote·LU must be defined at both the
local LU and its SSCP before the local LU sends INITIATE and TER­
MINATE requests to its SSCP.

If no initiate type is defined at the local LU for the remote LU
and the product LU sends INITIATE requests to its SSCP, the type
used on the requests is product-determined.

Parallel-session support must be defined at the local LU for the
remote LU before it activates sessions with the remote LU.

CNOS support must be defined at the local LU for the remote LU
before it activates sessions with the remote LU.

Session-level LU-LU verification is used to verify the identity
of each LU to its session partner LU during activation of an LU-LU
sessi on. It uses an LU-LU password as the key to the Data
Encryption Standard (DES) algorithm, in conjunction with an
LU-generated random-data value carried on the session-activation
request and response.

The same LU-LU password specification must be defined at both LUs.
either NONE or an LU-LU password. An LU-LU password should be a
random binary value. The means for specifying the LU-LU password
is product-dependent. The product may provide a utility proce­
dure for generating an LU-LU password, or it may require the user
to enter the password manually. In the latter case. the human
operator may use the following method to produce a random value:

• Enter the password value by means of hex digits (the numerals
o through 9 and the upper-case characters A through F).

• Enter 16 random hex digits (fewer digits or non-random digits
will reduce the effective security for LU-LU verification).

• For each of the 16 hex digits. flip a coin four times. At
each flip of the coin. follow the path illustrated in the fol­
lowing figure. The fourth flip will select the hex digit to
be used. Repeat this procedure until all 16 hex digits are
obtained. The result is a 64-bit random LU-LU password.

5-28 SNA Transaction Programmer's Reference Manual for LU Type 6.2

"heads" to the left

1st flip ->

2nd flip ->

3rd flip ->

4th fli I' ->

start

LU DefinitiDn Verbs

to the right

finish ---> 0 1 2 3 4 5 6 7 8 9 A 8 C D E F <- hex digit

The total number of coin flips is 64. Of course, the equivalent
value for the lU-lU password can be obtained in binary notation,
where each coin flip, of "heads" or "tails," selects the next
binary digit, 0 or 1, respectively.

8. If no lU-LU password is defined at the local LU for the remote LU,
no session-level lU-LU verification will take place between the
two LUs.

9. Conversation-level access security information is carried on
allocation requests in order for the receiving LU to verify the
identity of the user ID, and to control access to its resources.
The information includes a user 10 together with a password or the
already-verified indication; the information may also include a
profile. Allocation requests that include a password are veri­
fi ed agai nst the lU' 5 conversati on-level securi ty veri fi cati on
list; see the SECURITY parameter on the OEFIHE_LOCAL_LU verb for
more details about conversation-level security verification. The
already-verified indication signifies that the identity of the
user 10 has already been verified.

10. If no conversation-level security is defined at the local LU for
the remote LU, the local LU will accept from the remote LU only
allocation requests that carry no access security information.

11. More details concerning the LU's use of these operating parame­
ters are gi ven in SHA Format and Protocol Reference Manual:
Architecture logic for lU Type 6.2.

Chapter 5. Control-Operator Verbs 5-29

Initializes or changes parameters that control the operation of the
local lU in conjunction with a group of sessions to the specified
remote lU, the session group being identified by a mode name.

Supplied Parameters:

FULLY_QUALIFIED_LU_NAME (variable)

MODE_NAME (variable)

[SEND_PACING_WINDOW (variable)]

[RECEIVE_PACING_WINDOW (variable)]
[SEND_MAX_RU_SIZE_LOWER_BOUND (variable

[SEND_MAX_RU_SIZE_UPPER_BOUND (variable

)]
)]

[RECEIVE_MAX_RU_SIZE_LOWER_BOUND (variable)]
[RECEIVE_MAX_RU_SIZE_UPPER_BOUND (variable)]

[SYNC_LEVEl_SUPPORT (CONFIRM)]
(CONFIRM_SYNCPT)

[SINGLE_SESSION_REINITIATION ! OPERATOR)
PLU)
SLU)
PLU_OR_SLU

[
[

SESSION_LEVEL_CRYPTOGRAPHY (NO)]
(YES)

Returned Parameters:

RETURN_CODE (variable)
. •

supplied Paramaters:

FULLY_QUALIFIED_LU_NAME specifies the fully qualified name of the
remote lU to whi ch the other parameters of thi s verb apply.

MODE_NAME specifies the mode name for the group of sessions to which
the remaining parameters of this verb apply. If the specified name is
currently undefined at the local lU for the remote LU, this verb
defines the mode name and initializes the other parameter values spec­
ified on this verb. If the specified name is already defined at the
local lU for the remote lU, this verb changes the other parameter val­
ues.

SEND_PACING_WINDOW specifies the pacing window size to be used on the
sessions for normal-flow requests that the local LU sends. The local
LU uses this parameter to determine the values for its send window
size and the remote lU's receive window size that it specifies in ses­
sion activation (BIND) requests.

5-30 SHA Transaction Programmer's Reference Manual for LU Type 6.2

LU Definition Verbs

RECEIVE_PACING_WINDOW specifies the pacing window size to be used on
the sessions for normal-flow requests that the local lU receives. The
local lU uses this parameter to determine the values for its receive
window size and the remote lU's send window size that it specifies in
session activation (BIND) requests and responses.

SEND_MAX_RU_SIZE_LOWER_BOUND specifies the lower bound for the maxi­
mum size of normal-flow requests that the local lU sends on the ses­
sions. This value must be less than or equal to the value specified
on SEND_MAX_RU_SIZE_UPPER_BOUND. The local lU uses these lower- and
upper-bound values to determine the value for its send maximum RU size
that it specifies in session activation (BIND) requests and
responses.

SEND_MAX_RU_SIZE_UPPER_BOUND specifies the upper bound for the maxi­
mum size of normal-flow requests that the local lU sends.

RECEIVE_MAX_RU_SIZE_LOWER_BOUND spec if i es the lower bound fo r the
maximum size of normal-flow requests that the local lU receives on the
sessions. This value must be less than or equal to the value speci­
fi ed on RECEIVE_MAX_RU_SIZE_UPPER_BOUND. The local lU uses these
lower- and upper-bound values to determine the value for its receive
maximum RU size that it specifies in session activation (BIND)
requests and responses.

RECEIVE_MAX_RU_SIZE_UPPER_BOUND speC; fi es the upper bound for the
maximum size of normal-flow requests that the local lU receives.

SYNC_LEVEL_SUPPORT specifies the synchronization levels that the
local lU supports for conversations allocated to the sessions. The
local LU uses this parameter to determine the indication for the syn­
chronization level that it specifies in session activation (BIND)
requests and responses.

• CONFIRM specifies that conversations may use a synchronization
level of NONE or CONFIRM.

• CONFIRM_SYNCPT specifies that conversations may use a synchroni-
zation level of NONE, CONFIRM, or SYNCPT.

SINGLE_SESSION_REINITIATION specifies the responsibility for session
reinitiation of a single session with the remote lU. The local LU
uses this parameter to determine the indication for session reiniti­
ation responsibility that it specifies in session activation (BIND)
requests and responses. The remote lU must be defined to not support
parallel sessions (see the PARALLEL_SESSION_SUPPORT parameter on the
DEFIHE_REMOTE_LU verb).

• OPERATOR specifies that neither lU will automatically attempt to
reinitiate the session. If a reinitiation race occurs~ where the
operators at both LUs attempt to reinitiate the session at the
same time, the reinitiation is successfully completed by the lU
with the greater fully qualified lU name (provided no session
activation errors are encountered) .. The comparison of the fully
qualified LU names is based on their hexadecimal values.

• PLU specifies that the primary lU will automaticallY attempt to
reinitiate the session.

• SLU specifies that the secondary lU will automatically attempt to
reinitiate the session.

• PLU OR SLU specifies that either lU may automatically attempt to
reinitTate the session. A reinitiation race between the two lUs
is resolved in the same way as for operator reinitiation.

SESSION_LEVEL_CRYPTOGRAPHY speci fi es whether the local lU supports
session-level cryptography for the sessions. The local lU uses this
parameter to determine the indication for cryptography support that
it specifies in session activation (BIND) requests and responses.

• NONE specifies that no session-level cryptography is to be used.

Chapter 5. Control-Operator Verbs 5-31

• MANDATORY speci fi'es that sessi on-level mandatory cryptography ; s
to be used on all FMD requests flowing on the sessions.

CONWINNER_AUTO_ACTIVATE_LIMIT specifies the automatic-activation
limit on the number of contention-winner sessions that the local LU
can automatically activate when the minimum number of contention­
winner sessions for the local lU increases (as a result of CNOS proc­
essing). The actual limit on the number of contention-winner sessions
automatically activated is the lesser of the value specified on this
parameter and the new minimum number of contention-winner sessions
for the local LU.

A value of 0 specifies that the local lU is to automaticallY activate
no sessions.

Returned Parameters:

RETURN_CODE returns an indication of the result of verb execution.

• OK
• PARAMETER_ERROR (for one of the following reasons)

FUll Y_QUALIFIED_lU_NAME does not speci fy a remote lU name
defined at the local lU.
FUllY_QUALIFIED_lU_NAME specifies a value that is not a
type-A symbol string.
MODE_NAME speci fi es a value that is not a type-A symbol
string.
SEND_MAX_RU_SIZE_lOWER_BOUND specifies a value exceeding that
on SEND_MAX_RU_SIZE_UPPER_BOUND.
RECEIVE_MAX_RU_SIZE_lOWER_BOUND specifies a value exceeding
that on RECEIVE_MAX_RU_SIZE_UPPER_BOUND.
SINGLE_SESSION_REINITIATION is specified for a remote lU that
is currently defined as supporting parallel sessions.
A parameter other than CONWINNER_AUTO_ACTIVATE_lIMIT is spec­
ified and the (lU,mode) session limit and count for the mode
name are not zero.

ABEND Conditions:

Parameter Check

• This verb is not supported.
• The program issuing this verb does not have define privilege.

Notes:

1. If the mode name is currently defined, the (lU,mode) session limit
and count must be zero when this verb is issued specifying any of
the parameters other than CONWINNER_AUTO_ACTIVATE_lIMIT. The
auto-activation limit on the number of contention-winner sessions
may be initialized or changed at anytime.

2. If no send or receive pacing window size is defined, a
product-determined window size is used.

3. If no lower bound is defined for the send or receive maximum size
of normal-flow requests, a product-determined lower bound is
used.

4. If no upper bound is defined for the send or receive maximum size
of normal-flow requests, a product-determi ned upper bound is
used.

5. If no synchronization level support is defined for the mode name,
conversations may use NONE or CONFIRM.

6. If no responsibility for session reinitiation of a single session
is defined for the mode name, a product-determined responsibility
is used.

7. If no sessi on-level cryptography is defi ned for the mode name,
none is used.

5-32 SNA Transaction Programmer's Reference Manual for lU Type 6.2

LU Def;n;tion Verbs

8. If no automatic-activation limit for contention-winner sessions
is defined for the mode name, the local lU may not automatically
activate any sessions, or it may automaticallY activate sessions
up to the minimum number of the lU's contention-winner sessions
currently in effect, depending on the product.

9. More details concerning the lU's use of these operating parame­
ters are gi ven in SHA Format and Protocol Reference Manual:
Architec·ture logic for lU Type 6.2.

Chapter 5. Control-Operator Verbs 5-33

Initializes or changes parameters that control the operation of the
local lU in conjunction with a transaction program.

Supplied Parameters:

DEFINE_TP TP_NAME (variable)

[
(ENABLED)

STATUS (TEMP_DISABLED
(PERIt_DISABLED

[CONVERSATION_TYPE (ItAPPED I BASIC)]

[SYNC_LEVEL (NONE I CONFIRM I SYNCPT)]

NONE)
CONVERSATION)

[SECURITY_REQUIRED j

[SECURITY_ACCESS :

(PROFILE))
ACCESS (USER_ID))

(USER_ID_PROFILE

ADD (USER_ID (variable)
PROFILE (variable)))

DELETE (USER_ID (var.iable)
PROFILE (variable))

[PIP (NO)]
(YES (variable))

[DATA_ItAPPING (NO)]
(YES)

[FltH_DATA (NO)]
(YES)

[
(NONE)

PRIVILEGE (CNOS I ·SESSION_CONTROL
ALLOCATE_SERVICE_TP)

Returned Parameters:

[RETURN_CODE (variable)]

Supplied Parameters:

I DEFINE I DISPLAY I]

TP_NAltE specifies the local transaction program name. If the speci­
fied name is not currently defined at the local LU, this verb defines
the program name and initializes the other parameter values specified
on this verb. If the specified name is already defined to the local
LU, thi 5 verb changes the other parameter values.

STATUS specifies the status for starting execution of the transaction
program when the local LU receives an allocation request naming the
program.

• ENABLED specifies that the local LU can start the program.

5-34 SMA Transaction Programmer's Reference Manual for LU Type 6.2

LU Definition Verbs

• TEHP_DISABLED specifies that the local LU cannot start the pro­
gram. The local LU rejects the allocation request with an indi­
cation that the program is not available but retry is possible.

• PERH_DISABLED specifies that the local LU cannot start the pro­
gram. The local LU rejects the allocation request with an indi­
cation that the program is not available and no retry is possible.

CONVERSATION_TYPE speci fi es the conversati on type allowed on allo­
cation requests that start the transaction program.

• HAPPED specifies that allocation requests indicating mapped con­
versation are allowed to start the program.

• BASIC specifies that allocation requests indicating basic conver-
sation are allowed to start the program.

One or both of these arguments may be speci fi ed.

SYNC_LEVEL specifies the synchronization level allowed on allocation
requests that start the transaction program.

• NONE specifies that allocation requests indicating a synchroniza­
tion level of none are allowed to start the program.

• CONFIRH specifies that allocation requests indicating a synchro­
nization level of confirm are allowed to start the program.

• SYNCPT specifies that allocation requests indicating a synchroni­
zation level of sync point are allowed to start the program.

Any combination of these arguments may be specified.

SECURITY_REQUIRED speci fi es the type of securi ty veri fi cati on
required to be performed on incoming allocation requests that desig­
nate the transaction program. (Conversation-level security verifica­
tion, when required, is performed as specified on the SECURITY
parameter of the DEFINE_LOCAl_lU verb.>

• NONE specifies that no verification is required. Allocation
requests designating the transaction program may omit or include
access security information. Conversation-level security verifi­
cation will be performed on those requests that include a user ID
and password, but no resource-access verification is performed.

• CONVERSATION specifies that conversation-level security veri fica­
ti on is to be performed on requests that carry a user ID and pass­
word, but no resource-access veri fi cat ion is performed.
Allocation requests designating the transaction program must car­
ry a user ID and either a password or an already-verified indi­
cation. (Acceptance of the already-verified indication is
determined by the SECURITY_ACCEPTANCE parameter of the
DEFINE_REMOTE_lU verb.>

• ACCESS specifies that conversation-level security verification is
to be performed on requests that carry a user ID and password, and
resource-access verification is also to be performed. Allocation
requests designating the transaction program must carry a user ID
and either a password or an already-verified indication. (Ac­
ceptance of the already-verified indication is determined by the
SECURITY_ACCEPTANCE parameter of the DEFINE_REMOTE_lU verb.> The
local lU performs resource-access veri fi cat ion usi ng a
resource-access authori zati on list associ ated wi th the trans­
action program. The li st is created by means of the SECURI­
TY_ACCESS parameter. The type of resource-access verification to
be performed is specified as follows:

PROFILE specifies that the profile carried on the allocation
request is to be verified against the resource-access author­
ization list. The allocation request must carry a profile
that matches one in the authorization list. The user ID on
the allocati on request is ignored for the resource-access
verification.

Chapter 5. Control-Operator Verbs 5-35

USER_ID specifies that the user ID carried on the allocation
request is to be verified against the resource-access author­
ization list. The allocation request must carry a user ID
that matches one in the authorization list. The profile (if
present) on the allocation request is ignored for the
resource-access verification.

USER_ID_PROFILE specifies that the user ID and profil~ car­
ried on the allocation request are to be verified against the
resource-access authorization list. The allocation request
must carry a user ID and profile that match a user 10 and
associated profile in the authorization list.

SECURITY_ACCESS specifies to add or delete access security informa­
tion that the local LU uses for resource-access verification. This
parameter must be speci fi ed when the SECURITY REQUIRED parameter
specifies that resource-access verification is required. The local
LU updates a resource-access authorization list, associated with the
transaction program, from the information supplied on this parameter.
The resource-access authorization list consists of either (1) one or
more profiles, or (2) one or more user IDs with zero or more profiles
associated with each user ID.

• ADD specifies to add access security information to the
resource-access authori zati on 1 i st associated wi th the trans­
action program. A profile may be specified alone, or a user ID
may be speci fi ed alone or together wi th a profi Ie.

USER_ID specifies a user ID. A user ID must be specified when
the SECURITY_REQUIRED parameter specifies resource-access
verification that includes verification of user IDs. A pro­
file may also be specified, depending on the SECURI­
TY _REQUIRED parameter. If the user ID is not currently
defined for the transaction program, the LU adds it and the
profile (if specified) to the resource-access authorization
list. If the user ID is already defined, the list is updated
wi th the profi Ie.

PROFILE speci fi es a profi Ie to be added to the
resource-access authorization list. A profile may be speci­
fi ed only when the SECURITY_REQUIRED parameter speci fi es
resource-access verification that includes verification of
profiles. A profile must be specified alone when the
resource-access verification includes verification of only
profiles. A user 10 must also be specified when the
resource-access verification includes verification of both
user IDs and profiles. If a user ID is also specified, the
profile is added to those associated with the user 10.

• DELETE specifies to delete access security information from the
resour"ce-access authori zati on 1 i st associ ated wi th the trans­
action program. A profile may be specified alone, or a user ID
may be specified alone or together with a profile.

USER_ID specifies a user ID. A user ID must be specified when
the SECURITY_REQUIRED parameter specifies resource-access
verification that includes verification of user IDs. A pro­
file may also be specified, depending on the SECURI­
TY_REQUIRED parameter. If a user ID is specified alone, the
user ID and all of its associated profiles are deleted from
the resource-access authorization list. If a profile is also
specified, the user ID and profile are deleted when no other
profiles are currently defined for the user ID; if other pro­
files are currently defined for the user ID, the user ID and
other profiles remain defined.

PROFILE specifies a profile to be deleted from the
resource-access authorization list. A profile may be speci­
fi ed only when the SECURITY_REQUIRED parameter speci fi es
resource-access veri fi cati on that includes veri fi cati on of
profiles. A profile must be specified alone when the
resource-access verification includes verification of only
profiles. A user ID must also be specified when the SECURI-

5-36 SMA Transaction Programmer's Reference Manual for LU Type 6.2

LU Definition Verbs

TY_REQUIRED parameter specifies resource-access verification
that includes verification of both user IDs and profiles.

PIP specifies whether PIP data is required on allocation requests that
start the transaction program.

• NO speci fi es that no PIP data is requi red. Only allocati on
requests carrying no PIP data are allowed to start the program.

• YES specifies that PIP data is required. Only allocation requests
carrying the number of PIP subfields specified on this parameter
are allowed to start the program. The specified number should
agree with the number of PIP variables associated with the pro­
gram. For more information about the association of PIP variables
wi th the program, see "Transacti on Program Structure and Exe­
cution" in Chapter 3.

DATA_MAPPING specifies whether data mapping support is to be provided
to the transaction program. This parameter applies only when CONVER­
SATION_TYPECMAPPED) or CONVERSATION_TYPECMAPPEDIBASIC) is also speci­
fied.

• NO specifies that no data mapping support is to be provided. Map
names received on any mapped conversations allocated to the pro­
gram are rejected.

• YES speci fi es that data mappi ng support is to be prov i ded.

FMH_DATA specifies whether FMH data support is to be provided to the
transacti on program. Thi s parameter appli es only when CONVERSA­
TION_TYPECMAPPED) or CONVERSATION_TYPECMAPPEDIBASIC) is also speci­
fied.

• NO specifies that no FMH data support is to be provided. FMH data
received on any mapped conversations allocated to the program is
rejected.

• YES specifies that FMH data support is to be provided.

PRIVILEGE specifies the category of control operator verbs that the
transaction program is allowed to issue. Either NONE or any combina­
tion of CNOS, SESSION_CONTROL, DEFINE, DISPLAY, and ALLO­
CATE_SERVICE_TP may be specified.

• NONE specifies that the program is not allowed to issue verbs that
require a privilege to do so.

• CNOS speci fi es that the program is allowed to issue the CNOS
verbs.

• SESSION_CONTROL specifies that the program is allowed to issue
the ACTIVATE_SESSION and DEACTIVATE_SESSION verbs.

• DEFINE specifies that the program is ~llowed to issue the DEFINE
verbs and the DELETE verbs.

• DISPLAY specifies that the program is allowed to issue the DISPLAY
verbs.

• ALLOCATE_SERVICE_TP speci fi es that the program is allowed to
issue the ALLOCATE verb with its TPN parameter specifying an SNA
service transaction program.

Returned Parameters:

RETURN_CODE returns an indication of the result of verb execution.

• OK • PARAMETER_ERRORCfor one of the following reasons)
- CONVERSATION_TYPE(BASIC) and either DATA_MAPPINGCYES) or

FMH_DATACYES) are specified.
SECURITY_ACCESS is specified, SECURITY_REQUIRED is omitted,
and no type of security verification is currently defined.

Chapter 5. Control-Operator Verbs 5-37

SECURITY_ACCESS is specified and the type of security verifi­
cati on speci fi ed on SECURITY_REQUIRED or currently defi ned
does not include resource-access verification.
SECURITY_ACCESS speci fi es a user ID or profile and the type of
security verification specified on SECURITY_REQUIRED or cur­
rently defined does not include the respective verification
of user IDs or profi les.
SECURITY_ACCESS specifies only a profile and the type of
security verification specified on SECURITY_REQUIRED or cur­
rently defined includes verification of User IDs.
SECURITY_ACCESS(ADD(••. » specifies a user ID or profile that
is not a symbol-string type (A~ AE~ GR~ or DB) that the prod­
uct supports.
SECURITY_ACCESS(DELETEC •.• » specifies a user ID or profile
that is not currently defined at the local LU.

ABEND Conditions:

Parameter Check

• Thi s verb is not supported.
• The program issuing this verb does not have define privilege.

Nates:

1. The values specified on the parameters of this verb take effect at
the next invocation of the transaction program.

2. If the status for starting execution of the transaction program is
not defined, the program's status is ENABLED.

3. If the conversati on type allowed on allocati on requests that
start the transaction program is not defined, a mapped or basic
conversation is allowed.

4. If the synchronization level allowed on allocation requests that
start the transaction program is not defined, a synchronization
level of NONE or CONFIRM is allowed.

5. Resource-access verification is used to verify the access securi­
ty information on incoming allocation requests for the authority
to access the transaction program named on the requests and the
local resources that the program allocates. The local LU main­
tains a resource-access authorization list for this purpose. The
authorization list is created and updated from information sup­
plied on the SECURITY_ACCESS parameter. The list may consist of
profiles alone, or it may consist of user IDs alone or with asso­
ciated profiles, as determined by the SECURITY_REQUIRED parame­
ter.

6. There is a resource-access author; zat i on list for each trans­
action program for which resource-access verification is defined.
When the first user 10 and associated password and profiles are
added, or the first profile is added, a resource-access authori­
zati on list is created for the program. When the last user ID and
associated password and profiles are deleted, or the last profile
is deleted, the resource-access authori zati on Ii st i tsel f is
deleted.

7. If resource-access verification is to be performed and it
includes verification of user IDs, the authorization list must
contain one or more user IDs When the verification of allocation
requests takes place. Similarly, if the verifi cati on includes
profiles, the list must contain one or more profiles.

8. If the type of security verification required on incoming allo­
cation requests is currently defined and a different type is spec­
ified, the new type replaces the current type. If resource-access
verification is currently defined as being required and a differ­
ent type of resource-access verification is specified, the
resource-access authorization list is deleted and a neW list is
created.

5-38 SNA Transaction Programmer's Reference Manual for LU Type 6.2

LU Definition verbs

9. If SECURITY_ACCESS is speci fi ed wi thout SECURITY_REQUIRED, the
type of security verification currently defined applies to the
use of the SECURITY_ACCESS parameter.

10. If no type of security verification is currently defined, none is
required to start the program. However, if the allocation request
carries access security information, the local lU performs
conversation-level security verification.

11. If no PIP subfi eld number h defi ned at the local lU for the
transaction program. only allocation requests carrying no PIP
data are allowed to start the program.

12. If no data mappi ng support h defi ned at the local lU for the
transaction program, none is provided.

13. If no FMH data support is defined at the local LU for the trans­
action program, none is provided.

14. If no privilege is defined at the local LU for the transaction
program, the program may issue only conversation verbs.

15. More details concerning the LU's use of these operating parame­
ters are gi ven in SNA Format and Protocol Reference Manual:
Architecture Logic for LU Type 6.2.

Chapter 5. Control-Operator Verbs 5-39

Returns current values of parameters that control the operation of the
local LU.

Supplied Parameters:

FULLY_QUALIFIED_LU_NAHE (variable)

Returned Parameters:

[LU_SESSION_LIHIT (variable)]
[LU_S ESS I ON_COUNT (variable)]
[SECURITY (variable)]

[HAP_NAHES (variable)]

[REHOTE_LU_NAHES (variable)]
[TP_NAHES (variable)]

. ,
supplied Parameters:

FULLY_QUALIFIED_LU_NAHE specifies the fully qualified name of the
local LU.

Returned Parameters:

RETURN_CODE returns an indication of the result of verb execution.

• OK • PARAMETER_ERROR (for the following reason)
FULLY_QUALIFIED_LU_NAME does not specify a local LU name cur­
rently defined at the local LU.

LU_SESSION_LIHIT returns the LU-LU session limit currently defined at
the local LU.

LU_SESSION_COUNT returns the LU-LU session count, which is the total
number of active sessions for the local LU.

SECURITY returns the conversati on-level securi ty veri fi cati on list
currently defined at the local LU.

HAP_NAHES returns a list of the local map names currently defined at
the local lU.

REHOTE_LU_NAHES returns a list of the remote LU names currently
defined at the local LU.

TP_NAHES returns a list of the local transaction program names cur­
rently defined at the local LU.

ABEND Conditions:

Parameter Check

• This verb is not supported.
• The program issuing this verb does not have display privilege.

5-40 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Nates:

1. This verb can be used to obtain operating parameter values that
are establ i shed by the DEFINE_lOCAl_lU. DEFINE_REMOTE_lU, and
DEFIHE_TP verbs. as well as the current LU-LU session count.

2. More details concerning the LU's use of these operating parame­
ters are gi ven in SNA Format and Protocol Reference Manual:
Architecture Logic for lU Tvpe 6.2.

Chapter 5. Control-Operator Verbs 5-41

Returns current values of parameters that control the operation of the
local LU in conjunction with a remote lU.

Supplied Parameters:

FULLY_QUALIFIED_LU_NAME (variable)

Returned Parameters:

RETURN_CODE (variable)

[LOCALLY_KNOWN_LU_NAME (variable)]
[UNINTERPRETED_LU_NAME (variable)]
[INITIATE_TYPE (variable)]
[PARALLEL_SESSION_SUPPORT (variable)]
[CNOS_SUPPORT (variable)]

[SECURITY_ACCEPTANCE_LOCAL_LU (variable)]

[SECURITY_ACCEPTANCE_REMOTE_LU (variable)]

[MODE_NAMES (variable)]

supplied Parameters:

FULLY_QUALIFIED_LU_NAME speci fi es the fully qual i fi ed name of the
remote LU.

Returned Parameters:

RETURN_CODE returns an indication of the result of verb execution.

• OK • PARAMETER_ERROR (for the following reason)
FULL Y_QUALIFIED_LU_NAME does not speci fy a remote LU name
currently defined at the local LU.

LOCALLY_KNOWN_LU_NAME returns the locally-known name of the remote
LU, currently defined at the local LU.

UNINTERPRETED_LU_NAME returns the un interpreted name of the remote
LU, currently defined at the local LU.

INITIATE TYPE returns an indication of the session-initiation type
for the remote LU, currently defined at the local LU.

PARALLEL SESSION SUPPORT returns an indication of the parallel ses­
sion support for-sessions with the remote LU. If one or more sessions
are active between the local and remote LUs, this parameter returns an
indication of the actual parallel session support; otherwise, it
returns an indication of the support currently defined at the local
LU.

CNOS_SUPPORT ret~rns an indication of the eNOS support for sessions
with the remote LU. If one or more sessions are active between the

5-42 SNA Transaction Programmer's Reference Manual for LU Type 6.2

LU Definition Verbs

local and remote LUs, thi s parameter returns an i ndi cati on of the
actual CNOS support; otherwise, it returns an indication of the sup­
port currently defined at the local LU.

SECURITY_ACCEPTANCE_LOCAL_LU returns an i ndi cati on of the level of
access security information that the local LU will accept on allo­
cation requests it receives from the remote LU, currently defined at
the local LU.

SECURITY_ACCEPTANCE_REHOTE_LU returns an indication of the level of
access security information that the remote LU will accept on allo­
cation requests it receives from the local LU, when one or more ses­
sions are active between the local and remote LUs. The value returned
is what is currently defined at the remote LU, which is conveyed to
the local LU during session activation.

MODE_NAMES returns a list of the mode names currently defined at the
local LU for sessions with the remote LU.

ABEND Conditions:

Parameter Check

• This verb is not supported.
• The program issuing this verb does not have display privilege.

Notes:

1. This verb is used to obtain operating parameter values that are
defined by the DEFINE_REMOTE_LU and DEFINE_MODE verbs.

2. More details concerning the LU's use of these operating parame­
ters are gi ven in SNA Format and Protocol Reference Manual:
Architecture Logic for LU Type 6.2.

Chapter 5. Control-Operator Verbs 5-43

Returns current values of parameters that control the operation of the
local lU in conjunction with a group of sessions to a remote LU~ the
session group being identified by a mode name.

Supplied Parameters:

DISPLAY_HODE FULLY_QUALIFIED_LU_NAHE (variable)

HODE_NAHE (variable)

Returned Parameters:

RETURN_CODE (variable)

[SEND_PACING_WINDOW (variable)]

[RECEIVE_PACING_WINDOW (variable)]

[SEND_HAX_RU_SIZE_LOWER_BOUND (variable)]

[SEND_HAX_RU_SIZE_UPPER_BOUND (variable)]

[RECEIVE_HAX_RU_SIZE_LOWER_BOUND (variable)]

[RECEIVE_HAX_RU_SIZE_UPPER_BOUND (variable)]

[SYNC_LEVEl_SUPPORT (variable)]

[SINGLE_SESSION_REINITIATION (variable)]

[SESSION_LEVEL_CRYPTOGRAPHY (variable)]

[CONWINNER_AUTO_ACTIVATE_LIHIT (variable)]

[LU_HODE_SESSION_LIHIT (variable)]

[HIN_CONWINNERS (variable)]

[HIN_CONLOSERS (variable)]

[TERMINATION_COUNT (variable)]

[DRAIN_LOCAL_LU (variable)]

[DRAIN_REHOTE_LU (variable)]

[LU_HODE_SESSION_COUNT (variable)]

[CONWINNERS_SESSION_COUNT (variable)]

5-44 SNA Transaction Programmer's Reference Manual for LU Type 6.2

LU Definition verbs

(continued from preceding page)

[CONLOSERS_SESSION_COUNT (variable)]
[SESSION_IDS (variable)]

;

supplied parameters:

FULLV_QUALIFIED_LU_NAHE speci fi es the fully qual1 fi ed name of the
remote LU.

HODE_NAHE specifies the mode name.

Returned Parameters:

RETURN_CODE returns an indication of the result of verb execution.

• OK • PARAMETER_ERROR (for one of the following reasons)
FULLY_QUALIFIED_LU_NAME does not speci fy a remote LU name
currently defined at the local LU.
MODE_NAME does not specify a mode name currently defined at
the local LU.

SEND_PACING_WINDOW returns the local lU's send pacing window size for
the sessions, currently defined at the local lU.

RECEIVE_PACING_WINDOW returns the local LU's receive pacing window
size for the sessions, currently defined at the local LU.

SEND_HAX_RU_SIZE_LOWER_BOUND returns the lower bound for the maximum
size of normal-flow requests that the local LU sends on the sessions,
currently defined at the local LU.

SEND_HAX_RU_SIZE_UPPER_BOUND returns the upper bound for the ma~imum
size of normal-floW requests that the local LU sends on the seSSlons,
currently defined at the local lU.

RECEIVE_HAX_RU_SIZE_LOWER_BOUND returns the lower bound for the maxi­
mum size of normal-flow requests that the local lU receives on the
sessions, cUrrently defined at the local LU.

RECEIVE_HAX_RU_SIZE_UPPER_BOUND returns the upper bound f~r the maxi­
mum size of normal-flow requests that the local lU recelves on the
sessions, currently defined at the local lU.

SYNC_LEVEL returns an indication of the synchronization levels that
are supported for conversations allocated to the sessions. If one or
more sessions within the mode name group are active between the local
and remote LUs, this parameter returns an indication of the actual
synchronization level support; otherwise, it returns an indication of
the support currently defined at the local LU.

SINGLE_SESSION_REINITIATION returns an indication of the session
reinitiation responsibility for a single session with the remote lU.
If a session is active between the local and remote LUs, this parame­
ter returns an indication of the actual session reinitiation respon­
sibility; otherwise, it returns an indication of the responsibility
currently defined at the local lU.

SESSION LEVEL CRYPTOGRAPHY returns an indication of the session-level
cryptography support for the sessions. If one or more sessions within
the mode name group are active between the local and remote LUs, this
parameter returns an indication of the actual session-level
cryptography support; otherwise, it returns an indication of the sup­
port currently defined at the local lU.

Chapter 5. Control-Operator Verbs 5-~5

CONWINNER_AUTO_ACTIVATE_LIMIT returns the local lU's
automatic-activation limit on the number of contention winner ses­
sions, currently defined at the local lU.

LU_MODE_SESSION_LIMIT returns the current (lU,mode) session limit.

MIN_CONWINNERS returns the current mi ni mum number of sessi ons for
which the local lU is designated to be the contention winner.

MIN CONLOS.ERS returns the current mi nimum number of sessi ons for
which the remote lU is designated to be the contention winner, making
the local lU the contention loser.

TERMINATION_COUNT returns the termination count, which is the number
of sessions for which that the local LU is responsible to deactivate
as a result of CNOS processing.

DRAIN_LOCAL_LU returns an i ndi cat i on of whether the local lU is
allowed to drain its allocation requests as a result of CNOS process­
ing that resets the (lU,mode) session limit.

DRAIN_REMOTE_LU returns an i ndi cati on of whether the remote lU is
allowed to drain its allocation requests as a result of CNOS process­
ing that resets the (lU,mode) session limit.

LU_MODE_SESSION_COUNT returns the current (LU,mode) session count.

CONWINNERS_SESSION_COUNT returns the number of act i ve sessi ons for
which the local lU is the contention winner.

CONLOSERS_SESSION_COUNT returns the number of acti ve sessi ons for
which the local lU is the contention loser.

SESSION_IDS returns a list of the session identifiers assigned to the
active sessions.

ABEND Conditions:

Parameter Check

• Thi s verb is not supported.
• The program issuing this. verb does not have display privilege.

Notes:

1. This verb can be used to obtain operating parameter values that
are establ i shed by the DEFINE_MODE verb and the CNOS verbs.

2. More details concerning the lU's use of these operating parame­
ters are gi ven in SMA Format and Protocol Reference Manual:
Architecture logic for lU Tvpe 6.2.

5-46 SNA Transaction Programmer's Reference Manual for lU Type 6.2

LU Definition Verbs

Returns current values' of parameters that control the operation of the
local lU in conjunction with a transaction program.

Supplied Parameters:

TP_NAHE (variable)

Returned Parameters:

[RETURN_CODE (variable)]

[STATUS (variable)]

[COt~VERSATION_TYPE (variable)]

[SYNC_LEVEL (variable)]

[SECURITY_REQUIRED (variable)]

[SECURITY_ACCESS (variable)]

[PIP (variable)]

[DATA_HAPPING (variable)]

[FHH_DATA (variable)]

[PRIVILEGE (variable)]

Supplied Parameters:

TP_NAHE specifies the local transaction program name.

Returned Parameters:

RETURN_CODE returns an indication of the result of verb execution.

• OK • PARAMETER ERROR (for the following reason)
TP_NAME does not specify a transaction program name that is
currently defined at the local lU.

STATUS returns an indication of the status for starting execution of
the transaction program, as currently defined at the local lU.

CONVERSATION TYPE returns an i ndi cati on of the conversati on type
required on allocation requests that start the transaction program,
as currently defined at the local lU.

SYNC_LEVEL returns an indication of the synchronization level
required on allocation requests that start the transaction program,
as currently defined at the local lU.

SECURITY_REQUIRED returns an indication of the type of security ver­
ification that is required to be performed on incoming allocation
requests designating the transaction program.

Chapter 5. Control-Operator Verbs 5-47

SECURITY ACCESS returns the resource-access authorization list cur­
rently defined for the transaction program at the local LU.

PIP returns the number of PIP subfields required on allocation
requests that start the transaction program~ as currently defined at
the local LU.

DATA_HAPPING returns an indication of whether data mapping support is
provided to the transaction program~ as currently defined at the local
LU.

FHH_DATA returns an indication of whether FMH data support is provided
to the transaction program. as currently defined at the local LU.

PRIVILEGE returns an indication of the class of privileged verbs that
the transaction program is allowed to issue. as currently defined at
the local LU.

ABEND Conditions:

Pa ... amete ... Check'

• This verb is not supported.
• The program issuing this verb does not have display privilege.

Notes:

1. This verb can be used to obtain operating parameter values that
are established by the DEFIHE_TP verb.

2. More details concerning the LU's use of these operating parame­
ters are gi ven in SHA Format and Protocol Reference Manual:
Architecture logic for lU Type 6.2.

5-48 SHA Transaction Programmer's Reference Manual for LU Type 6.2

DELETE

DELETE

LU DefinitiDn Verbs

Deletes parameter values, established by means of the DEFINE verbs,
that control the operation of the local lU. The execution of this
verb involves only the local lU; it does not cause any information to
be sent outside the lU.

Sueelied Parameters:

[LOCAL_LU_NAHE (variable)]
[REHOTE_LU_NAHE (variable)]
[HODE_NAHE (variable)]
[TP_NAHE (variable)]
Returned Parameters:

RETURN_CODE (variable)

;

Sueelied Parameters:

LOCAL_LU_NAI1E speci fi es the fully qual i fi ed name of the local lU.
This parameter must be specified alone. Specifying this parameter
deletes the local lU name and all parameter values associated with the
local lU; that is, it deletes all parameter values that have been
defined by means of the DEFINE_lOCAl_lU, DEFINE_REMOTE_lU,
DEFINE_MODE. and DEFINE_TP verbs.

REHOTE_LU_NAHE specifies the fully qualified name of the remote lU.
This parameter may be specified together with the MODE_NAME parame­
ter. Specifying this parameter without the MODE_NAME parameter
deletes the remote lU name and all parameter values associated with
the remote lU; that is, it deletes all parameter values that have been
defined by means of the DEFINE_REMOTE_lU and DEFINE_MODE verbs. Spec­
ifying this parameter together with the MODE_NAME parameter deletes
parameter values associated with the mode name. but the remote lU name
and all parameter values not associated with the mode name remain
unchanged.

HODE_NAHE specifies the mode name. This parameter must be specified
together with the REMOTE_lU_NAME parameter. Specifying this parame­
ter deletes all parameter values associ.ated wi th the mode name for the
remote lU; that is, it deletes the mode name and all parameter values
that have been defined by means of the DEFINE_MODE_NAME verb.

TP_NAHE specifies the local transaction program name. Specifying
thi s parameter deletes all parameter values associated with the
transaction program; that is. it deletes the program name and all
parameter values that have been defi ned by means of the DEFINE_TP
verb.

Returned Parameters:

RETURN_CODE returns an indication of the result of verb execution.

• OK
• PARAMETER_ERROR (for one of the following reasons)

lOCAl_LU_NAME specifies a local LU name not currently defined
at the local lU.
lOCAl_lU_NAME is not specified alone.
REMOTE_lU_NAME spec; fi es a remote lU name not currently
defined at the local lU.

Chapter 5. Control-Operator Verbs 5-49

DELETE

MODE_NAME specifies a mode name not currently defined at the
local LU.
MODE_NAME is specified without REMOTE_LU_HAME.
TP_NAME specifies a local transaction program name not cur­
rently defined at the local LU.

ABEND Conditions:

Parameter Check

• This verb is not supported.
• The program issuing this verb does not have define privilege.

Notes:

1. Deleting parameter values makes those values undefined to the
local LU.

2. When deleting a local LU name and all its associated parameter
values, verb should be issued only when the local LU is not par­
ticipating in any network activity.

3. When deleting a remote LU name and all its associated parameter
values, verb· should be issued only when the local LU is not par­
ticipating in any network activity involving the remote LU.

4. When deleting a mode name and all its associated parameter values,
verb should be issued only when the local LU is not participating
in any network activity involving the remote LU and mode name.

5. When deleting a transaction program name and all its associated
parameter values, verb should be issued only when the transaction
program is not in use.

6. More details concerning the LU's use of the LU-LU session limit
are given in SNA Format and Protocol Reference Manual: Architec­
ture Logic for LU Type 6.2.

5-50 SNA Transaction Programmer's Reference Manual for LU Type 6.2

RETURN CODES

Some verbs have a parameter called RETURN_CODE used to pass a return
code back to the transaction program at the completion of the lU's
execution of a verb. The return code indicates the result of process­
ing the verb on which it is returned. Only one code is returned at a
time. Other verb-specific information may be passed back in
verb-unique .parameters. See each specific verb for a description of
any verb-unique parameters.

The return codes are described below. Each description includes the
meaning of the return code and the origin of the condition indicated
by the return code.

ACTIVATION_FAILURE_NO_RETRY indicates the ACTIVATE_SESSION verb
failed to activate the session because of a condition that is not
temporary. For example, the session cannot be activated because
the (lU,mode) session limit for the specified target lU and mode
name is currently 0 at the target lU--this applies to single ses­
sions and to sessions for the SNASVCMG mode name; or because of a
system definition error or a session-activation protocol error.
The control operator should not retry the transaction until the
condition is corrected.

ACTIVATION_FAILURE_RETRY i ndi cates the ACTIVATE_SESSION verb
failed to activate the session because of a temporary condition.
For example, the session cannot be activated because of a tempo­
rary lack of resources at the source lU or target lU. The control
operator may retry the session activation later.

ALLOCATION ERROR indicates the CNOS verb did not execute success­
fully because the allocation of the control operator conversation
wi th the target lU cannot be completed. The AllOCATION_ERROR
indication together with one of the following subcodes form the
complete return code that is returned to the transaction program;
the subcode identifies the specific error. The source and target
lUs' CNOS parameters are not changed.

ALLOCATION FAILURE NO RETRY i ndi cates the control operator
conversation cannot be allocated because of a condition that
is not temporary. For example, the session to be used for the
control operator conversation cannot be activated because the
<LU,mode) session limit for the specified target lU and
SNASVCMG mode name is currently 0 at either the source lU or
target lUi or because of a system definition error or a
session-activation protocol error; or because a session pro­
tocol error caused the session to be deactivated before the
conversation could be allocated. The control operator should
not retry the transaction until the condition is corrected.

ALLOCATION FAILURE RETRY indicates the control operator con­
versation cannot be allocated because of a temporary condi­
tion. For example, the session to be used for the control
operator conversation cannot be activated because of a tempo­
rary lack of resources at the source lU or target lUi or the
session was deactivated because of session outage before the
conversation could be allocated. The condition ;s temporary,
and the control operator can retry the transaction later.

TRANS_PGM_NOT_AVAIL_RETRY indicates the target lU is current­
ly unable to start the transaction program identified as hex
06FI, which is the SNA service transaction program for the
control operator. For example, there may be a temporary lack
of resources the target lU needs to start the transaction pro­
gram. The condition is temporary, and the control operator
can retry the transaction later.

COMMAND_RACE_REJECT indicates the CNOS verb did not execute suc­
cessfully because the source lU or target lU is currently process­
ing another CNOS transaction for the same mode name. The other
CNOS transaction is processed to completion. ·The source and tar­
get lUs' CNOS parameters are not changed by the unsuccessful CNOS
verb.

Chapter 5. Control-Operator Verbs 5-51

5-52

LU_HODE_SESSION_LIHIT_CLOSED indicates the CNOS verb did not exe­
cute successfully because the target lU currently will not allow
the (lU,mode) session limit for the specified mode name to be
raised above O. The (lU,mode) session limit remains at O. This
condition is not necessarily permanent; the control operator may
retry the CNOS transaction later.

LU_HODE_SESSION_LIMIT_EXCEEDED indicates the ACTIVATE_SESSION
verb could not activate the session with the specified mode name
to the target lU, for one of the following reasons:

1. For a single session connection to the target lU, either the
ClU,mode) session limit is currently 0, or an lU-lU session is
already active (with the specified or a different mode name).

2. For a parallel session connection to the target LU, the number
of currently active sessions with the specified mode name
equals the CLU,mode) session limit.

LU_HODE_SESSION_LIMIT_NOT_ZERO indicates the program attempted to
initialize an (lU,mode) session limit that is already initial­
ized, that is, the session limit is already greater than O. The
source and target lUs' CNOS parameters are not changed.

LU MODE SESSION LIMIT ZERO indicates the program attempted to
change an ClU,mode) session limit that has not been initialized,
that is, the session limit is O. The source and target LUs' CNOS
~arameters are not changed.

LU_SESSION_LIMIT_EXCEEDED indicates the CNOS verb did not execute
successfully because the new (lU,mode) session limit would cause
the sum of the (lU,mode) session li·mits to exceed the total LU-LU
session limit for the source LU (see the DEFINE_LOCAL_lU verb).
The sum of the (LU,mode) session limits is calculated as follows:

1. A single session connection to a target LU is counted as 1 if
at least one of the (LU,mode) session limits for that target
lU is 1, including the specified session limit. Otherwise, it
is counted as O.

2. A parallel session connection to a target lU is counted as the
sum of all CLU,mode).session limits for the target LU, includ­
ing the specified session limit.

OK indicates the verb executed successfully. The following sub­
codes augment this return code and indicate whether the parameter
values were processed as specified or as negotiated by the target
LU:

AS_SPECIFIED indicates the two LUs executed the verb as spec­
ified, without negotiation.

AS_NEGOTIATED i ndi cates the two LUs executed the verb as
negotiated by the target LU. One or more parameter values
have been negotiated. The transaction program can obtain the
negotiated parameter values by issuing the DISPLAY_MODE verb.
The verb descriptions define which parameter values can be
negotiated.

FORCED indicates the source LU forced the resetting of its
(LU,mode) session limit as a result of an error condition that
prevented successful completion of the exchange of the CNOS
request and reply. The target lU's CNOS parameters may not be
changed, depending on the error condition and when it
occurred during the CNOS exchange.

PARAMETER ERROR indicates the verb did not execute successfully
because it specifies a parameter that contains an invalid argu­
ment. The source of the argument may be outside'the transaction
program definition, such as a control-operator supplied LU name
or mode name. When this return code is returned on a eNOS verb,
the source and target LUs' CNOS parameters are not changed. When
it is returned on a session activation or deactivation verb, the
LU-LU session is not activated or deactivated, respectively.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

When it is returned on a define, display, or delete verb, the LU
operating parameters are not altered or returned.

REQUEST_EXCEEDS_MAX_ALLOWED indicates the CNOS verb did not exe­
cute sUccessfully because it specifies an (LU,mode) session limit
that exceeds the source LU's maximum (lU,mode) session limit
defi ned for the target LU and mode name (see the DEFINE_MODE
verb). The source and target LUs' CNOS parameters are not
changed.

RESOURCE_FAILURE_NO_RETRY indicates the eNOS verb did not execute
successfully because of a failure that caused the control opera­
tor conversation to be prematurely deallocated. For example, the
sessi on bei ng used for the control operator conversati on was
deactivated because of a. session protocol error, or because of
session outage from which the control operator component of the LU
could not recover; or the conversation was deallocated because of
a protocol error between the control operator components of the
LUs. The condition is not temporary, and the control operator
should not retry the transact ion unt i 1 the condi t ion is cor­
rected. The CNOS parameters remain unchanged at the source LU, or
both the source and target LUs, depending on when the failure
occurred.

UNRECOGNIZED_MODE_NAME i ndi cates the CNOS verb di d not execute
successfully because the target LU does not recognize the speci­
fied mode name. The source and target LUs' CNOS parameters are
not changed.

Figure 5-1 on page 5-54 shows the correlation of the return codes to
the verbs on which they c"an be returned. The "X" in the figure means
the return code can be returned on the corresponding verb. A verb
without any "X"s under it means no return codes are defined for the
verb. The individual verb descriptions list the applicable return
codes. However, the subcodes of ALLOCATION_ERROR are not explicitly
listed, as any of them can be returned as part of the ALLOCATION_ERROR
return code.

Chapter 5. Control-Operator Verbs 5-53

Return Codes

A A A C l l l l L 0 P R R U
C C l 0 U U U U U K A E E H
T T L M R Q S R
I I 0 M M M M M S A U 0 E
V V C A 0 0 0 0 E M E U C
A A A H D D D D S E S R 0
T T T D E E E E S T T C G
I I I I E E H
0 0 0 R S S S S 0 R E I
H H N A E E E E H X F Z

C S S S S E C A E
F F E E S S S S L R E I D
A A R I I I I I R E l
I I R R 0 o 0 0 M 0 D U M
l L o E N N N N I R S R 0
U U R J T E D
R R E l l L L M E
E E C I I I I E A H

T M M M M X X o N
N R I I I I C A
o E T T T T E A R M

T E l E E
R R C E N Z D l T
E Y l X o E E o R
T o C T R D W Y
R S E 0 E
Y E E Z D

D D E
E R

Verbs D 0

CHANGE_SESSION_lIMIT X X X X X X X X
INITIALIZE_SESSION_LIMIT X X X X X X X X X X
PROCESS_SESSION_LIMIT X X
RESET_SESSIOH_LIMIT X X X X X X X

ACTIVATE_SESSION X X X X X
DEACTIVATE_SESSION X X

DEFIHE_lOCAL_lU X X
g~~~~~:~~~~TE_LU X X

X X

g~~~~iY~rOCAl_lU X X
X X

DISPLAY_REMOTE_LU X X
DISPLAY_MODE X X
g~~~i~Y_TP X X

X X

Figure 5-1. Correlation of Return Codes to Verbs

5-5~ SNA Transaction Programmer's Reference Manual for LU Type 6.2

APPENDIX A. BASE AND OPTION SETS FOR PRODUCT SUPPORT

The lU 6.2 functions available to a transaction program are described
in this book by means of verbs and their supplied and returned parame­
ters. The returned parameters include the return codes of the
RETURN_CODE parameter. defined for most verbs. and the what-received
indications of the WHAT_RECEIVED parameter, defined for the
MC_RECEIVE_AND_WAIT. MC_RECEIVE_IMMEDIATE, RECEIVE_AND_WAIT. and
RECEIVE_IMMEDIATE verbs.

An lU 6.2 product may provide support for all of the verbs. parame­
ters, return codes. and what-recei ved i ndi cati ons. or a permi tted
subset of them. The permitted subsetting for lU 6.2 products is
defined by means of a base set and a number of option sets (see
"Product-Support Subsetting" in Chapter 3 for a discussion of base and
opti on sets). The opti on sets defi ned for the verbs, parameters.
return codes. and what-received indications are: 1

1. Conversaticms between programs located at the same LU: Thi s
option set allows a local program to allocate a conversation to a
remote program located. at the same lU as the local program.

2. Delayed allocation of a session: This option set allows a program
to delay allocation of a session until the lU must flush its send
buffer.

3. Immediate allocation of a session: This option set allows a pro­
gram to allocate a contention-winner session only if one is imme­
diately available; otherwise. the allocation is unsuccessful.

4. Sync point services: This option set allows a program to request
sync point processing of all protected resources throughout the
scope of the transaction. This option set includes the SYNCPT and
8ACKOUT verbs.

5. Session-level LU-LU verification: This option set allows a pro­
gram or operator to designate the LU-LU passwords, associated
with remote lUs. that the local lU uses to verify the identity of
a remote lU at session activation time.

6. User ID verification: This option set allows a program or opera­
tor to designate the user IDs and associated passwords that the
local lU uses to veri fy the i denti ty of a user ID carri ed on allo­
cation requests it receives, and to designate the remote lUs that
are permitted to send to the local lU allocation requests carrying
a user ID and either a password or an already-verified indication.
This option set also allows the program allocating a conversation
to specify that the allocation request carry the user ID received
on the request that started the program, together with an
already-verified indication. Opti~n set 5 is a prerequisite.

7. Program supplied user ID and password: This option set allolols the
program allocating a conversation to supply the user ID and pass­
word to be sent on the allocation request. Option set 5 is a pre­
requisite.

8. User ID authorization: This option set allows a program or opera­
tor to designate the user IDs that are authorized access to spe­
cific resources of the lU, such as transaction programs. Option
set 6 is a prerequisite.

9. Profile verification and authorization: This option set allows a
program or operator to designate the profiles that the local lU
uses to veri fy a profile carri ed on allocati on requests it

1 The numbers associated with these option sets are used only for
descri pti ve purposes; they have no archi tectural si gni fi cance,
and may change from one edi ti on of thi 5 book to the next.

Appendix A. Base and Option Sets for Product Support A-I

recei ves, and· to desi gnate the profi les that are authorl zed
access to specific resources of the lU, such as transaction pro­
grams. Option set 6 is a prerequisite.

10. Profile passthrough: This option set allows the program allocat­
ing a conversation to specify that the allocation request carry
the profi Ie recei ved on the request that started the program.
Option set 6 is a prerequisite.

11. Program supplied profile: This option set allows the program
allocating a conversation to supply the profile to be sent on the
allocation request. Option set 7 is a prerequisite.

12. PIP data: This option set 1lIli0ws the program allocating a conver­
sation to provide the remote program with initialization parame­
ters.

13. Lagging of data in a system lag: This option set allows a program
to record error information in the system's error log.

14. Flush the LU's send buffer: This option set allows a program to
explicitly cause the lU to flush its send buffer.

15. LUW identifier: This option set allows an lU implementation to
use the lUW'identifier for accounting purposes.

16. Prepare to receive: This option set allows a program to change
the conversation from send state to receive state and at the same
time flush the lU's send buffer, request confirmation, or request
sync point.

17. Lang locks: This option set allows a program to perform the
prepare-to-receive function and request confirmation, and resume
processing when information, such as data or conversation status,
is recei ved from the remote program followi ng an affi rmati ve
reply~ Option set 16 is a prerequisite.

18. Past on receipt with wait: This option set allows a program to
request posting of multiple conversations and then to wait (sus­
pend its processing) until information is available on anyone of
the conversations. Option set 16 is a prerequisite.

19. Past on receipt with test for pasting: This option set allows a
program to request posting of a conversation and then to test the
conversation to determine whether information is available.
Option set 16 is a prerequisite.

20. Receive immediate: This option set allows a program to receive
whatever information is available on a conversation without hav­
ing to request posting of the conversation. Option set 16 is a
prerequisite.

21. Test for request-to-send received: This option set allows a pro­
gram to test whether a request-to-send noti fi cati on has been
recei ved on a conversati on, for example followi ng sync poi nt
processing.

22. Data mapping: This option set allows a program to request mapping
of the data by the local and remote lUs.

23. FHH data: This option set allows programs to send and receive
data records containing FM header data. The FM header data h~s
meaning only to the application programs.

24. Get attributes: This option set allows a program to obtain attri­
butes of a mapped conversation.

25. Get conversation type: This option set allows a program that sup­
ports both the basic conversation and mapped conversation proto­
col boundaries to determine which category of verbs it should use
in conjunction with a resource ID.

A-2 SMA Transaction Programmer's Reference Manual for lU Type 6.2

26. Happed Conversation LU services Component: This option set
allows implementation of a mapped conversation LU services compo­
nent program, which processes mapped conversation verbs.

27. CHANGE_SESSION_LIHIT verb: This option set allows a program or
operator at the source lU to request a change in the (LU,mode)
session limit from one nonzero value to another, or a change in
the minimum number of contention-winner sessions for the source
LU or target lU.

28. HIN_CONWINNERS_TARGET parameter: This option set allows a pro­
gram or operator at the source lU to request a nonzero value for
the target lU's minimum number of contention-winner sessions.
Option set 27 is a prerequisite for this parameter on
CHANGE_SESSION_lIMIT.

29. RESPONSIBLE(TARGET) parameter: This option set allows a program
or operator at the source lU to request that the target LU be
responsible for session deactivations when the verb requires a
decrease in the number of active sessions. Option set 27 is a
prerequisite for this parameter on CHANGE_SESSION_lIMIT.

30. DRAIN_TARGET(NO) parameter: This option set allows a program or
operator at the source LU to prevent the target LU from draining
its allocation requests as a result of resetting the (LU,mode)
session limit to O.

31. FORCE parameter: This option set allows a program or operator to
specify that the (LU,mode) session limit is to be reset to 0 even
if the CNOS exchange between the source LU and target LU is unsuc­
cessful.

32. ACTIVATE_SESSION verb: Thi s opt i 0" set allows a program or opera­
tor to activate LU-LU sessions.

33. DEACTIVATE_SESSION verb: This opt; on set allows a program or
operator to deactivate lU-LU sessions.

34. LU-parameter verbs: This option set allows a program or operator
to specify the operating parameters of its lU. Within this option
set, the individual operating parameters that a product supports
and makes accessi ble to the program or operator are
product-dependent.

35. LU-LU session limit: Thi s opti on set allows a program or operator
to specify the LU-lU session limit.

36. Locally-known LU names: Thi s opti on set allows a program or oper­
ator to specify the locally-known names of remote LUs.

37. Uninterpreted LU names: Thi s option set allows a program or oper­
ator to specify the uninterpreted names of remote LUs.

38. Single-session reinitiation: This option set allows a program or
operator to specify the responsibility for reinitiation of single
sessions to remote lUs.

39. Haximum RU size bounds: Thi s option set allows a program or oper­
ator to specify the lower and upper bounds for the maximum RU
sizes on sessions within an (LU,mode) group.

40. Session-level mandatary cryptography: This option set allows a
program or operator to specify that session-level mandatory
cryptography is to be used on sessions within an (LU,mode) group.

41. Contention winner automatic activation limit: Thi s opti on set
allows a program or operator to specify the limit for automat­
ically activating contention-winner sessions within an (LU,mode)
group.

The following figures identify local and remote support of the base
set and opti on sets for the verbs, parameters, return codes, and
what-received indications. local support is defined for· all of these.
Re~ote support is defined only for the verbs and parameters, as it

Appendix A. Base and Option Sets for Product Support A-3

does not apply to the return codes and what-received indications. Two
hyphens (--) are shown for remote support of a verb or parameter that
does not invoke remote processing.

The verbs. parameters. return codes. and what-received indications
belonging to the base set are identified by "8" in the local-support
or remote-support column. Those belonging to an option set are iden­
tified by the number of that option set.

For some of the verbs, parameters. return codes. and what-received
indications, more than one option set is identified. An identifica­
tion of the form "a or b" means the verb, parameter, return code, or
what-recei ved i nd; cati on is supported when ei ther opti on set "a" or
"b" is supported. An identification of the form "a and b" means the
verb. parameter, return code, or what-recei ved i ndi cat; on is sup­
ported when both option sets "a" and "b" are supported.

Hotes pertaining to the base and optional support of the verbs, param­
eters, return codes, and what-received indications are listed follow­
i ng the fi gures, begi nni ng on page A-20. The verbs, parameters,
return codes, and what-received indications to which the notes apply
include a note reference, shown as "[nl." in the local- or
remote-support column. The notes explai n certai n implementati on
details, which are product dependent.

Note: As shown in the figures for the conversation verbs and parame­
ters, most of the option sets are optional only for local support;
remote support for the verbs and parameters of these option sets is
either part of the base set (indicated with "8") or is not applicable
(indicated with " __ H). The local program may use these conversation
verbs and parameters whenever its product supports them. Use of the
remaining conversation verbs and parameters---those for which remote
support of an option set is shown---depen~s on the remote support that
the remote product provides. In particular, the local program may use
the verbs and parameters of the following option sets whenever its
product supports them and the remote product provi des the support
indicated in the remote-support column:

4. Sync point services
6. End-user verification
7. Program supplied user 10 and password
10. Profile passthrough
11. Program supplied profile
12. PIP data
22. Oata mapping
23. FMH data

A-A SHA Transaction Programmer's Reference Manual for LU Type 6.2

I SUPPORT FOR HAPPED CONVERSATION VERBS AND PARAHETERS

Verb and Parameter Local Support Remote Support

MC_ALlOCATE B B [lJ
LU_NAMECOWN) 1 --
LU_NAMECOTHERCvariable» B B
MODE_NAME B B
TPN B B
RETURN_CONTROLCWHEN_SESSION_ALLOCATED) B [2] --
RETURN_CONTROLCDELAYED_ALlOCATION_PERMITTED) 2 --
RETURN_CONTROLCIMMEDIATE) 3 --
SYNC l EVEUNONE) B B
SYNC:lEVElCCONFIRM) B B
SYNC_lEVElCSYNCPT) 4 4
SECURITYCNONE) B B
SECURITYC SAME) 6 or 10 [3] 6, 8, 9 or

10
SECURITYCPGMCUSER_IDevariable) 7 6 or 8

PASSWORD(variable) 7 6
PROFIlE(variable») 11 9 or 10

PIPCNO) B B
PIP(YES(variable» 12 [4] 12 [4]
RESOURCE B --
RETURN_CODE B --

MC_CONFIRM B B
RESOURCE B --
RETURN CODE B --
REQUEST_TO_SEND_RECEIVED B --

MC_CONFIRMED B B
RESOURCE B --

MC_DEALlOCATE B B
RESOURCE B --
TYPECSYNC_lEVEL) B B
TYP-€C FLUSH) B B
TYPECCONFIRM) B B
TYPECABEND) B B
TYPEClOCAU B --
RETURN_CODE B --

MC_FLUSH 14 B
RESOURCE 14 --

I Figure A-I. Support for Mapped Conversation Verbs and Parameters CPart 1 of 3)

Appendix A. Base and Option Sets for Product Support A-5

Verb and Parameter local Support Remote Support

MC_GET_ATTRIBUTES 4, 6, 9, 15, --
or 24

RESOURCE 4, 6, 9, 15, --
or 24

OWN_FUllY_QUAlIFIED_lU_NAME 24 --
PARTNER_lU_NAME 24 --
PARTNER_FUllY_QUAlIFIED_lU_NAME 24 --
MODE_NAME 24 --
SYNC_lEVEL 4 or 24 --
SECURITY_USER_ID 6, --
SECURITY_PROFILE 9 --
lUW_IDENTlFIER 4 or 15 --
CONVERSATION_CORRElATOR 4 --

MC_POST_ON_RECEIPT 18 or 19 [5] --
RESOURCE 18 or 19 --
LENGTH 18 or 19 [10] --

MC_PREPARE_TO_RECEIVE 16 B
RESOURCE 16 --
TYPECSYNC_LEVEl) 16 B
TYPECFLUSH) 16 B
TYPE(CONFIRM) 16 B
LOCKS(SHORT> 16 B
LOCKSClONG) 17 B
RETURN_CODE 16 --

MC_RECEIVE_AND_WAIT B [6] --
RESOURCE B --
LENGTH B [10] --
RETURN_CODE B --
REQUEST_TO_SEND_RECEIVED B [9] --
DATA B --
WHAT_RECEIVED B [7] --
MAP_NAME 22 --

MC_RECEIVE_IMMEDIATE 20 --
RESOURCE 20 --
LENGTH 20 [10] --
RETURN_CODE 20 --
REQUEST_TO_SEND_RECEIVED 20 [9] --
DATA 20 --
WHAT_RECEIVED 20 [7] --
MAP_NAME 20 and 22 --

MC_REQUEST_TO_SEND B [8] B
RESOURCE B --

Figure A-2. Support for Mapped Conversation Verbs and Parameters (Part 2 of 3)

A-6 SNA Transaction Programmer's Reference Manual for lU Type 6.2

Verb and Parameter Local Support Remote Support

MC_SEND_DATA B B
RESOURCE B --
DATA B B
LENGTH B [10] B
MAP_NAME(NO) B [11] B
MAP_NAMECYES(variable» 22 22
FMH_DATACNO) B B
FMH_DATA(YES) 23 [12] 23 [12]
RETURN_CODE B --
REQUEST_TO_SEND_RECEIVED B --

MC_SEND_ERROR B B
RESOURCE B --
RETURN_CODE B --
REQUEST_TO_SEND_RECEIVED B --

MC_TEST 19 or 21 --
RESOURCE 19 or 21 --
TESTCPOSTED) 19 --
TEST(REQUEST_TO_SEND_RECEIVED) 21 --
RETURN_CODE 19 or 21 --

I Figure A-3. Support for Mapped Conversation Verbs and Parameters (Part 3 of 3)

Appendix A. Base and Option Sets for Product Support A-7

SUPPORT FOR TYPE-INDEPENDENT CONVERSATION VERBS AND PARA"ETERS

Verb and Parameter local Support Remote Support

BACKOUT 4 4

GET_TYPE 25 --
RESOURCE 25 --
TYPE 25 --

SYNCPT 4 4

:~~~~~T:~g:SEND_RECEIYED 4 --
4 --

WAIT 18 --
RESOURCE_LIST 18 --
:~~~~~C~~~gSTED 18 --

18 --
I Figure A-4. Support for Type-Independent Conversation Verbs and Parameters

A-8 SNA Transaction Programmer's Reference Manual for LU Type 6.2

I SUPPORT FOR BASIC CONVERSATION VERBS AND PARAMETERS

Verb and Parameter local Support Remote Support

AllOCATE B B [1]
lU_HAME(OWH) 1 --
lU_HAME(OTHER(variable» B B
MODE_NAME B B
TPN B 8
TYPECBASIC_CONVERSATION) B B
TYPE(MAPPED_CONVERSATION) 26 B
RETURN_CONTROL (WHEN_SESSION_AllOCATED) 8 [2] --
RETURN_CONTROlCDElAYED_AllOCATION_PERMITTED) 2 --
RETURN_CONTROl(IMMEDIATE) 3 --
SYNC_lEVEl(NONE) B B
SYNC_lEVEL(CONFIRM) B B
SYNC_LEVELCSYNCPT) 4 4
SECURITY(NONE) 8 B
SECURITYCSAME) 6 or 10 [3] 6, 8, 9 or

10
SECURITYCPGMCUSER_IDCvariable) 7 6 or 8

PASSWORDCvariable) 7 6
PROFIlE(variable») 11 9 or 10

PIPCNO) B B
PIP(YES(variable» 12 [4] 12 [4]
RESOURCE B --
RETURN_CODE B --

CONFIRM B 8
RESOURCE B --
RETURN_CODE B --
REQUEST_TO_SEND_RECEIVED B --

CONFIRMED B B
RESOURCE B --

DEALLOCATE B B
RESOURCE B --
TYPECSYNC_LEVEl) B B
TYPE(FlUSH) B B
TYPE(CONFIRM) B B
TYPECABEND_PROG) B B
TYPECABEND_SVC) 26 [14] B
TYPECABEND_TIMER) 26 [14] B
TYPE(LOCAl) B --
lOG_DATACNO) B B
lOG_DATA(YESCvariable» 13 B [15]
RETURN_CODE B --

FLUSH 14 B
RESOURCE 14 --

Figure A-5. Support for Basic Conversation Verbs and Parameters (Part 1 of 3)

Appendix A. Base and Option Sets for Product Support A-9

Verb and Parameter Local Support Remote Support

GET_ATTRIBUTES B --
RESOURCE B --
OWN_FULLY_QUALIFIED_LU_NAME B --
PARTNER_LU_NAME B --
~~~~~~~M~ULLY_QUALIFIED_lU_NAME B --

B --
SYNC_LEVEL B --
SECURITY_USER_ID 6 --
SECURITY_PROFILE 9 --
LUW_IDENTIFIER it or 15 --
CONVERSATION_CORRELATOR it --

POST_ON_RECEIPT 18 or 19 [5] --
RESOURCE 18 or 19 --
FILL< ll) 18 or 19 [16] --
FIlL<BUFFER) 18 or 19 (16) --
LENGTH 18 or 19 --

PREPARE_TO_RECEIVE 16 B 
RESOURCE 16 --
TYPECSYNC_LEVEL) 16 B 
TYPE(FLUSH) 16 B 
TYPE(CONFIRM) 16 B 
LOCKS(SHORT) 16 B 
lOCKS (lONG) 17 B 
RETURN_CODE 16 --

RECEIVE_AND_WAIT B [6) --
RESOURCE B --
FIll( ll) B [16] --
FIlL<BUFFER) B [16] --
LENGTH B --
RETURN CODE B --
REQUEST_TO_SEND_RECEIVED B [9] --
DATA B --
WHAT_RECEIVED B [7] --

RECEIVE_IMMEDIATE 20 --
RESOURCE 20 --
FILL (ll) 20 [16] --
FIlUBUFFER) 20 [16] --
LENGTH 20 --
RETURN_CODE 20 --
REQUEST_TO_SEND_RECEIVED 20 [9] --
DATA 20 --
WHAT_RECEIVED 20 [1] --

REQUEST_TO_SEND B [8] B 
RESOURCE B --

Figure A-6. Support for Basic Conversation Verbs and Parameters (Part 2 of 3) 

A-I0 SNA Transaction Programmer's Reference Manual for LU Type 6.2 



Verb and Parameter Local Support Remote Support 

SEND_DATA B B 
RESOURCE B --
DATA B B 
LENGTH B B 
RETURN_CODE B --
REQUEST_TO_SEND_RECEIVED B --

SEND_ERROR B B 
RESOURCE B --
TYPE(PROG) B B 
TYPECSVC) 26 [14] B 
LOG_DATA(NOl B B 
LOG_DATA(YESCvariable» 13 B [IS] 
RETURN_CODE B --
REQUEST_TO_SEND_RECEIVED B --

TEST 19 or 21 --
RESOURCE 19 or 21 --
TESHPOSTED) 19 --
TESTCREQUEST_TO_SEND_RECEIVED) 21 --
RETURN_CODE 19 or 21 --

Figure A-7. Support for Basic Conversation Verbs and Parameters (Part 3 of 3) 

Appendix A. Base and Option Sets for Product Support A-II 



I SUPPORT FOR CONVERSATION RETURN CODES AND WHAT-RECEIVED INDICATIONS 

Return Code Local Support 

ALLOCATION_ERROR B 
ALLOCATION_FAILURE_NO_RETRY B 
ALLOCATION_FAILURE_RETRY B 
CONVERSATION_TYPE_MISMATCH B 
PIP_NOT_AllOWED 12 
PIP_NOT_SPECIFIED_CORRECTLY B 
SECURITY_NOT_VALID 6# 7 # 10 or 

11 
SYNC_LEVEL_NOT_SUPPORTED_BY_PGM B 
~~~:H~~~~~c~g~I~~~PORTED_BY_LU 4 

B
TRANS_PGM_NOT_AVAIL_NO_RETRY B
TRANS_PGM_NOT_AVAIL_RETRY B

BACKED_OUT 4

DEALlOCATE_ABEND_PROG B

DEALLOCATE_ABEND_SVC B

DEAllOCATE_ABEND_TIMER B

DEALLOCATE_NORMAL B

FMH_DATA_NOT_SUPPORTED 23

HEURISTIC_MIXED 4

MAP_EXECUTION_FAILURE 22

MAP_NOT_FOUND 22

MAPPING_NOT_SUPPORTED 22

OK B

DATA 18 or 19

NOT_DATA 18 or 19

PARAMETER_ERROR B

POSTING_NOT_ACTIVE 18 or 19

PROG_ERROR_NO_TRUNC B

PROG_ERROR_PURGING B

RESOURCE_FAILURE_NO_RETRY B

RESOURCE_FAILURE_RETRY B

SVC_ERROR_NO_TRUNC B

SVC_ERROR_PURGING B

SVC_ERROR_TRUNC B

UNSUCCESSFUL 3 # 19 # 20 or
21

Figure A-8. Support for Conversation Return Codes

A-12 SNA Transaction Programmer's Reference Manual for LU Type 6.2

What-Received Indication local Support

CONFIRM B

CONFIRM_DEAllOCATE B

CONFIRM_SEND 8

DATA B

DATA_COMPLETE B

DATA_INCOMPLETE 8

DATA_TRUNCATED B [13]

FMH_DATA_COMPlETE 23

FMH_DATA_INCOMPlETE 23

FMH_DATA_TRUNCATED 23 [13]

ll_TRUNCATED B [17]

SEND B

TAKE_SYNCPT 4

TAKE_SYNCPT_DEAllOCATE 4

TAKE_SYNCPT_SEND 4

I Figure A-9. Support for Conversation What-Receiv~d Indications

Appendix A. Base and Option Sets for Product Support A-13

I SUPPORT FOR CONTROL-OPERATOR VERBS AND PARAMETERS FOR eNDS

Verb and Parameter Local Support Remote Support

CHANGE_SESSION_LIMIT 27 8
LU_NAME 27 B
MODE_NAME 27 B
LU_MODE_SESSION_LIMIT 27 B
MIN_CONWINNERS_SOURCE 27 B
MIN_CONWINNERS_TARGET 28 B
RESPONSIBLE(SOURCE) 27 B
RESPONSIBLECTARGET) 29 B [19]
RETURN_CODE 27 --

IN~~~~~~~E_SESSION_lIMIT B B
B B

MODE_NAME B B
LU_MODE_SESSION~LIMIT B B
MIN_CONWINNERS_SOURCE B B
MIN_CONWINNERS_TARGET 28 B
RETURN_CODE B --

PROCESS_SESSION_LIMIT B B
LU_NAME B --
MODE_NAME B --
RETURN_CODE B --

RESET_SESSION_LIMIT B B
LU_NAME B B
MODE_NAMECALU B B
MODE_NAMECONECvariable» B B
RESPONSIBLECSOURCE) B B
RESPONSIBLECTARGET) 29 8 [19]
DRAIN_SOURCECNO) B [18] B
DRAIN_SOURCECYES) B [18] 8
DRAIN_TARGETCNO) 30 B
DRAIN_TARGETCYES) B B [20]
FORCECNO) B 8
FORCECYES) 31 B
RETURN_CODE B --

Figure A-IO. Support for Control Operator Verbs and Parameters for CNOS

A-14 SNA Transaction Programmer's Reference Manual for lU Type 6.2

I SUPPORT FOR CONTROL-OPERATOR VERBS AND PARAHETERS FOR SESSION CONTROL

Verb and Parameter Local Support Remote Support

ACTIVATE_SESSION 32 B
LU_NAME 32 B
MODE_NAME 32 B
RETURN_CODE 32 --

DEACTIVATE_SESSION 33 B
SESSION_ID 33 --
TYPECCLEANUP) 33 B
TYPECNORMAU 33 B
RETURN_CODE 33 --

Figure A-11. Support for Control Operator Verbs and Parameters for Session Control

Appendix A. Base and Option Sets for Product SUPport A-IS

I SUPPORT FOR CONTROL-OPERATOR VERBS AND PARAMETERS FOR lU DEFINITION

Verb and Parameter Local Support Remote Support

DEFINE_LOCAL_LU 34 --FULlY_QUALIFIED_LU_NAME 34 --LU_SESSION_lIMIT(NONE) 34 --
LU_SESSION_LIMIT(VALUECvariable» 34 and 35 --SECURITYCADD(USER_IDCvariable) 34 and 6 --

PASSWORD(variable) 34 and 6 --
PROFIlECvariable») 34 and 9 --

SECURITYCDELETECUSER_IDCvariable) 34 and 6 --
PROFILECvariable») 34 and 9 --MAP_NAMECADDCvariable» 34 and 22 --

MAP_NAME(DELETECvariable» 34 and 22 --
RETURN_CODE 34 --

DEFINE_REMOTE_LU 34 --
FULLY_QUALIFIED_LU_NAME 34 --LOCAL LY_KNOWN_LU_NAMEC NONE) 34 --
lOCALLY_KNOWN_LU_NAMECNAMECvariable» 34 and 36 --UNINTERPRETED_LU_NAMECNONE) 34 --
UNINTERPRETED_LU_NAMECNAMECvariable» 34 and 37 --
INITIATE_TYPECINITIATE_ONLY) 34 --
~:~Ift~r:~~~i~~~~~~~~~R~~y~~~UE) 34 --

34 --PARALLEL_SESSION_SUPPORTCNO) 34 --
CNOS_SUPPORT(YES) 34 --CNOS_SUPPORT(NO) 34 --LU_LU_PASSWORDCNONE) 34 --
LU_LU_PASSWORD(VALUECvariable» 34 and 5 --SECURITY_ACCEPTANCE(NONE) 34 --SECURITY_ACCEPTANCECCONVERSATION) 34 and 6 --
SECURITY_ACCEPTANCECALREADY_VERIFIED) 34 and 6 --RETURN_CODE 34 --

DE~~~ry~g~~LIFIED_LU_NAME 34 [21] --
34 --MODE_NAME 34 --SEND_PACING_WINDOW 34 --

RECEIVE_PACING_WINDOW 34 --
SEND_MAX_RU_SIZE_LOWER_BOUND(256) 34 --
SEND_MAX_RU_SIZE_LOWER_BOUNDC~256) 34 and 39 --
SEND_MAX_RU_SIZE_UPPER_BOUND(256) 34 --
SEND_MAX_RU_SIZE_UPPER_BOUNDC~256) 34 and 39 --
RECEIVE_MAX_RU_SIZE_LOWER_BOU~D(256) 34 --
RECEIVE_MAX_RU_SIZE_LOWER_BOUNDC~256) 34 and 39 --
RECEIVE_MAX_RU_SIZE_UPPER_BOUND(256) 34 --
RECEIVE_MAX_RU_SIZE_UPPER_BOUND(~256) 34 and 39 --
SYNC_LEVEL_SUPPORTCCONFIRM) 34 --
SYNC_LEVEL_SUPPORTCCONFIRM_SYNCPT) 34 and 4 --
SINGLE_SESSION_REINITIATIONCOPERATOR) 34 --SINGLE_SESSION_REINITIATIONCPLU) 34 and 38 --
SINGLE_SESSION_REINITIATIONCSLU) 34 and 38 --
SINGLE_SESSION_REINITIATION(PLU_OR_SLU) 34 and 38 --SESSION_LEVEL_CRYPTOGRAPHY(NO) 34 --
SESSION_LEVEL_CRYPTOGRAPHYCYES) 34 and 40 --CONWINNER_AUTO_ACTIVATE_LIMIT 34 and 41 --
RETURN_CODE 34 --

Fi gure A-12. Support for Control Operator Verbs and Parameters for LU Defi ni ti on
(Part 1 of 3)

A-16 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Verb and Parameter Local Support Remote Support

DEFINE_TP 34 --
TP_NAME 34 --
STATUSCENABLED) 34 --
STATUSCTEMP_DISABLED) 34 --
STATUSCPERM_DISABLED) 34 --
CONVERSATION_TYPECMAPPED) 34 --
CONVERSATION_TYPECBASIC) 34 --
SYNC_LEVELCNONE) 34 --
SYNC_LEVELCCONFIRM) 34 --
SYNC_LEVELCSYNCPT) 34 and 4 --
SECURITY_REQUIREDCNONE) 34 --
SECURITY_REQUIREDCCONVERSATION) 34 and 6 --
SECURITY_REQUIREDCACCESSCPROFILE» 34 and 9 --
SECURITY_REQUIREDCACCESSCUSER_ID» 34 and 8 --
SECURITY_REQUIREDCACCESSCUSER_ID_PROFIlE» 34, 8 and --

9
SECURITY_ACCESS(ADD(USER_IDCvariable) 34 and 8 --

PROFllECvariable») 34 and 9 --
SECURITY_ACCESSCDElETECUSER_IDCvariable) 34 and 8 --

PROFILECvariable») 34 and 9 --
PIPCNO) 34 --
PIPCYESCvariable» 34 and 12 --
DATA_MAPPINGCNO) 34 --
DATA MAPPINGCYES) 34 and 22 --
FMB_DATACNO) 34 --
FMH_DATACYES) 34 and 23 --
PRIVILEGECNONE) 34 --
PRIVILEGEC CNOS) 34 --
PRIVILEGECSESSION_CONTROL) 34. and --

32 or 33
PRIVILEGECDEFINE) 34 --
PRIVILEGECDISPLAY) 34 --
PRIVILEGECAllOCATE_SERVICE_TP) 34 --
RETURN_CODE 34 --

DISPlAY_lOCAl_LU 34 --
FUllY_QUAlIFIED_lU_NAME 34 --
RETURN_CODE 34 --
lU_SESSION_lIMIT 34 --
lU_SESSION_COUNT 34 --
SECURITY 34 and 6 --
MAP_NAMES 34 --
REMOTE_lU_NAMES 34 --
TP_NAMES 34 --

DISPlAY_RE~10TE_lU 34 --
FUllY_QUALIFIED_lU_NAME 34 --
RETURN_CODE 34 --
lOCAllY_KNOWN_lU_NAME 34 and 36 --
UNINTERPRETED_LU_NAME 34 and 37 --
INITIATE_TYPE 34 --
PARAllEl_SeSSION_SUPPORT 34 --
CNOS_SUPPORT 34 --
SECURITY_ACCEPTANCE_lOCAl_lU 34 and 6 --
SECURITY_ACCEPTANCE_REMOTE_LU 34 and 6 --
MODE_NAMES 34 --

Figure A-I3. Support for Control Operator Verbs and Parameters for lU Definition
CPart 2 of 3)

Appendix A. Base and Option Sets for Product Support A-I7

Verb and Parameter local Support Remote Support

DI~~tt~:~3~~IFIED_lU_NAME 34 --
34 --

MODE_NAME 34 --
RETURN_CODE 34 --
SEND_PACING_WINDOW 34 --
RECEIVE_PACING_WINDOW 34 --
SEND_MAX_RU_SIZE_lOWER_BOUND 34 and 39 --
SEND_MAX_RU_SIZE_UPPER_BOUND 34 and 39 --
RECEIVE_MAX_RU_SIZE_LOWER_BOUND 34 and 39 --
RECEIVE_MAX_RU_SIZE_UPPER_BOUND 34 and 39 --
SYNC_LEVEL_SUPPORT 34 --
SINGLE_SESSION_REINITIATION 34 and 38 --
SESSION_LEVEl_CRYPTOGRAPHY 34 and 40 --
CONWINNER_AUTO_ACTIVATE_LIMIT 34 and 41 --
LU_MODE_SESSION_LIMIT 34 --
MIN_CONWINNERS 34 --
MIN_CONlOSERS 34 --
TERMINATION_COUNT 34 --
DRAIN_LOCAL_LU 34 --
DRAIN_REMOTE_lU 34 --
LU_MODE_SESSION_COUNT 34 --
CONWINNERS_SESSION_COUNT 34 --
~g~~~~~~~D~ESSION_COUNT 34 --

34 --
DISPLAY_TP 34 --

~~T~~~:CODE 34 --
34 --

STATUS 34 --
CONVERSATION_TYPE 34 --
SYNC_LEVEL 34 --
SECURITY_REQUIRED 34 and 6 --
SECURITY_ACCESS 34, and --

8 or 9
PIP 34 and 12 --
DATA_MAPPING 34 and 22 --
FMH_DATA 34 and 23 --
PRIVILEGE 34 --

DELETE 34 --
LOCAL_lU_NAME 34 --
REMOTE_lU_NAME 34 --
MODE_NAME 34 --
TP_NAME 34 --
RETURN_CODE 34 --

Figure A-14. Support for Control Operator Verbs and Parameters for LU Definition
(Part 3 of 3)

A-18 SNA Transaction Programmer's Reference Manual for LU Type 6.2

I SUPPORT FOR CONTROL-OPERATOR RETURN CODES

Return Code Local Support

ACTIVATION_FAILURE_NO_RETRY 32

ACTIVATION_FAILURE_RETRY 32

ALLOCATION_ERROR B
ALLOCATION_FAILURE_NO_RETRY B
ALLOCATION_FAILURE_RETRY B
TRANS_PGM_NOT_AVAIL_RETRY B

COMMAND_RACE_REJECT B

LU_MODE_SESSION_LIMIT_CLOSED B

LU_MODE_SESSION_LIMIT_EXCEEDED 32

LU_MODE_SESSION_LIMIT_NOT_ZERO B

LU_MODE_SESSION_LIMIT_ZERO 21

LU_SESSION_LIMIT_EXCEEDED B

OK B
AS_SPECIFIED B
AS_NEGOTIATED B
FORCED 31

PARAMETER_ERROR B

REQUEST_EXCEEDS_MAX_ALLOWED B

RESOURCE_FAILURE_NO_RETRY B

UNRECOGNIZED_MODE_NAME B

Figure A-1S. Support for Control Operator Return Codes

Appendix A. Base and Option Sets for Product Support A-19

I NOTES ON I"PLE"ENTATION DETAILS

The following notes pertain to the base and optional support shown in
the preceding figures. These notes describe certain implementation
details, which are product dependent.

Notes that Apply to conversation Verbs:

1. The MC_ALLOCATE and ALLOCATE verbs send an allocation request to
the remote LU. The remote LU starts the transaction program named
in the allocation request. As this function is described in this
book, the remote LU starts a new execution instance of the named
transacti on program. All products support thi s capabil i ty. A
product may, in addition, allow an already-executing tnstance of
the named transaction program to receive an allocation request by
means of a product-dependent verb. This product-dependent capa­
bility provides no means in the LU for correlating the new conver­
sation to a previous one.

2. The RETURN_CONTROL parameter on the MC_ALLOCATE and ALLOCATE
verbs specifies when local processing of the verb is to be com­
pleted, in terms of the allocation of a session for the conversa­
tion. A product may provide for the specification of additional
conditions for allocating sessions, such as a variation of the
argument WHEN_oSESSION_ALLOCATED that omi ts contenti"on-loser ses­
sions from the selection process.

3. Products that provide local support for option set 6
Cconversation-level security verification) but not option set 7
(program supplied user ID and password) may choose to not make the
SECURITY parameter on the MC_ALLOCATE and ALLOCATE verbs explic­
i tly avai lable to thei r transacti on programs. Such products
implicitly support both SECURITYCSAME) and SECURITYCNONE) in that
they downgrade SECURITYCSAME) to SECURITYCNONE) when the remote
LU does not accept conversation-level security, or the already­
verified indication, from the local LU.

4. Support of the PIP parameter on the MC_ALLOCATE and ALLOCATE verbs
is optional and local support is independent of remote support. A
product may provide either local or remote support, or both.

5. The MC_POST_ON_RECEIPT and POST_ON_RECEIPT verbs, as described in
this book, may be issued for a given conversation any number of
times before posting is reset or cancelled. CSee the notes under
the descriptions of the verbs for more details.> However, a prod­
uct may, instead, permit the verbs to be issued only once for a
gi ven conversat i on and di sallow subsequent use of the verbs on
that conversation until posting is reset or cancelled.

6. The MC_RECEIVE_AND_WAIT and RECEIVE_AND_WAIT verbs are used ~o
wait until the requested amount of data or other information 1S
available for the program to receive, receive the data or other
i nformat ion, and then resume program execut ion. Rather than
resuming program execution as soon as the requested amount of data
is recei ved, the product may defer resumi ng program executi on
until it receives something other than data, such as a SEND, CON­
FIRM, TAKE_SYNCPT, or DEALLOCATE indication.

7. The WHAT_RECEIVED parameter on the MC_RECEIVE_AND_WAIT.
MC_RECEIVE_IMMEDIATE, RECEIVE_AND_WAIT, and RECEIVE_IMMEDIATE
verbs returns to the transaction program only one indication at a
time. This serialization of returning what-received indications
to the program results in discrete states of the conversation for
each returned indication. (See the verb descriptions in this book
for the state changes that can occur.) A product may, instead,
return more than one indication at a time. For example, the prod­
uct may return i ndi cati ons for both DATA and SEND at the com­
pletion of the verbs. In this case, the state changes that occur
at the completion of the verbs may differ from that described in
this book. Refer to the product's publication for further
detai Is.

a. The MC_REQUEST_TO_SEND and REQUEST_TO_SEND verbs, as describe~ in
this book, may be issued only when the conversation is in rece1ve,

A-20 SNA Transaction Programmer's Reference Manual for LU Type 6.2

confirm, or sync point state. Issuing the verbs for a conversa­
tion in any other state is described as a state-check ABEND condi­
tion. As an alternative to the ABEND condition, a product may
also permit its transaction programs to issue the verbs for con­
versations in send or defer state.

9. The REQUEST_TO_SEND_RECEIVED parameter on the
MC_RECEIVE_AND_WAIT, MC_RECEIVE_IMMEDIATE, RECEIVE_AND_WAIT, and
RECEIVE_IMMEDIATE verbs 'i s used to recei ve a request-to-send
notification when the conversation is in receive state. CSee the
notes under the descriptions of these verbs for details of when
thi s can occur.) HOl"ever, a product may defer passi ng the
request-to-send noti ficati on to the program unti I the program
issues an MC_SEND_DATA or SEND_DATA verb, or issues an
MC_SEND_ERROR or SEND_ERROR verb when the conversation is in send
state.

Also, a product that defers passing the request-to-send notifica­
tion to the program may discard the notification, and not pass it
to the program, if the program issues an MC_PREPARE_TO_RECEIVE or
PREPARE_TO_RECEIVE verb, issues an MC_RECEIVE_AND_WAIT or
RECEIVE_AND_WAIT verb when the conversation is in send state, or
receives a PROG_ERROR_PURGING or SVC_ERROR_PURGING return code
when the conversation is in send state.

Notes that Apply Only tq Happed conversation Verbs:

10. A base local and remote support is defined for the data record
length specified by the LENGTH parameter on the
MC_POST_ON_RECEIPT, MC_RECEIVE_AND_WAIT, MC_RECEIVE_IMMEDIATE,
and MC_SEND_DATA verbs. The base support for the data record
length is 2048. All transaction programs are allowed to send and
receive data records up to 2048 bytes in length. Local and remote
support for data records greater than 2048 bytes in length is
optional, and the maximum length is product-dependent.

11. The MAP_NAME parameter on the MC_SEND_DATA verb is used to specify
data mapping. MAP_NAME(NO) Yields a null value for the map name,
whi ch suppresses data mappi ng, whereas MAP _NAMECYES(variable»
specifies a non-null map name, which invokes data mapping. Pro­
ducts that support option set 22 (data mapping) provide local and
remote support for both MAP_HAMECNO) and MAP_NAMECYESCvariable».
However, a product may provi de local support only for
MAP_HAME(YES(variable» on MC_SEND_DATAs issued on conversations
that use data mapping.

12. The FMH_DATACYES) parameter on the MC_SEND_DATA verb specifies
that the data record contains FM header data. Transaction pro­
grams written for a product that implements LU 6.1 make use of the
specification of FM header data. A product that implements LU 6.2
may provide local and remote support for this parameter, either
because it processes LU 6.1 programs or because it processes LU
6.2 programs that connect to LU 6.1 programs.

13. The what-received indications, DATA_TRUNCATED and
FMH_DATA_TRUNCATED, inform the program that it received only part
of the data record and the LU has discarded the remaining part. A
product may. instead, retain the remaining data and indicate
DATA_INCOMPLETE or FMH_DATA_INCOMPLETE. Alternatively, the prod­
uct may support both capabilities and allow the program to select
whether the LU is to discard or retain remaining data.

Notes that APply only to Basic conyersation Verbs:

14. The TYPE(ABEHD_SVC) and TYPE(ABEND_TIMER) parameters on the DEAL­
LOCATE verb and the TYPECSVC) parameter on the SEND_ERROR verb are
used to indicate errors that the mapped conversation LU services
component detects. A product that does not support option set 26
Cmapped conversation LU services component) may, nevertheless.
support these parameters at its basi c conversati on protocol
boundary.

15. The LOG_DATA parameter on the DEALLOCATE and SEND_ERROR verbs is
used to record product-unique error information in the system

Appendix A. Base and Option Sets for Product Support A-21

A-22

error logs of the local and remote LUs. The capability to receive
the log data is part of the base remote support. However~ a prod­
uct that does not provide local support for option set 13 (logging
of data in a system log) may discard the received log data rather
than process it.

16. The FILL parameter on the POST_ON_RECEIPT~ RECEIVE_AND_WAIT~ and
RECEIVE_U1MEDIATE verbs has two arguments: LL and BUFFER. A prod­
uct may support only one of the arguments, or it may support both
of them.

The arguments are described in this book as being independent of
each other; that is, the specification of either one does not
depend on the past use of the parameter, and has no bearing on its
subsequent use. A product supporting both arguments may treat
them as described, or it may treat them in a dependent manner,
allowing the program to specify only one or the other for certain
sequences of the verbs and indicating an error if this restriction
is violated.

17. The what-received indication, LL_TRUNCATED, informs the program
that the LU received only the first byte of the LL field of a log­
ical record, because it was truncated. The truncated LL field is
di scarded by the recei vi ng LU rather than bei ng passed to the
recelvlng program. A product may, instead, pass the truncated LL
field to the program and indicate DATA_INCOMPLETE rather than
LL_TRUNCATED.

Notes that Apply to control-operator Verbs:

18. A product may provide local (source LU) support for only one of
the arguments, NO or YES, of the DRAIN_SOURCE parameter on the
RESET_SESSION_LIMIT verb, or it may support both arguments. How­
ever, all products provide remote (target LU) support for both
arguments.

19. Remote support for the RESPONSIBLECTARGETl parameter of the
CHANGE_SESSION_LIMIT and RESET_SESSION_LIMIT verbs is part of the
base set of functions. However, a product may provide remote sup­
port for this parameter by always negotiating the TARGET argument
to SOURCE duri ng its remote processi ng, as a target LU, of
CHANGE_SESSION_LIMIT and RESET_SESSION_LIMIT.

20. Remote support for the DRAIN_TARGEHYES) parameter of the the
RESET SESSION LIMIT verb is part of the base set of functi ons.
However, a product may provide remote support for this parameter
by always negotiating the YES argument to NO during its remote
processing, as a target LU, of RESET_SESSION_LIMIT.

21. A product may allow the control operator or transaction program to
specify certain parameters of the DEFINE_MODE verb by means of the
DEFINE_LOCAL_LU or DEFINE_REMOTE_lU verb, instead. These parame­
ters are:

SYNC_LEVEl_SUPPORT
SINGLE_SESSION_REINITIATION
SESSION_LEVEL_CRYPTOGRAPHY

When these parameters are specified by means of DEFINE_LOCAL_LU,
the local LU's corresponding operating parameters are constant
across all mode names for all remote LUs. Similarly, when these
parameters are specified by means of DEFINE_REMOTE_LU, the local
LU's corresponding operating parameters are constant across all
mode names for a given remote LU, but they may differ for each
remote LU.

SNA Transaction Programmer's Reference Manual for LU Type 6.2

APPENDIX B. EXAMPLES USING BASIC CONVERSATION VERBS

This appendix contains examples of the use of some of the basic con­
versation verbs. Each example shows two transaction programs, TPCa)
and TP(b). connected by a conversation. The letters a and b represent
each program's name.

Each example concentrates on the use of one, two or three verbs. in
conjunction with several other verbs. and how the verbs issued by one
program relate to the verbs issued by the other program. When a verb
causes the lU to send information to the other program, the resulting
flow is shown as an arrow (---». Some verbs cause the lU to suspend
the program's processing until the lU completes execution of the verb;
a vertical line (I) under the verb indicates the suspension of program
processing.

Some parameters are shown with the verbs. The parameters shown are
those that are significant to the example. Supplied parameters are
shown as "parameter-name(suppl i ed-value)." and returned parameters
are shown as "parameter-name=returned-value." Parameters not signif­
icant to the example are not shown.

On the page facing the example are notes that explain What the example
is illustrating. The notes are numbered. The part of the example to
which the note applies is keyed with the same number. shown within
braces. For instance. the part of the example in Figure B-1 on page
B-2 that is keyed by "(11" is explained by note 1 on the facing page.

The examples contain a few comments. which are shown within brackets.
For example, the comment, "[TP(a) running]," in Figure B-1 on page B-2
means the program is already processi ng at the poi nt the example
begins.

Appendix B. Examples Using Basic Conversation Verbs B-1

TP(a)

[TPCa) running]

AllOCATE U}
TPNC'b')
SYNC_LEVELCNONE) {2}
RETURN_CODE=OK {3}

SEND_DATA {4}
RETURtCCODE=OK

DEAI,LOCATE {5}
TYPECSYNC_LEVEL)
RETURH_CODE=OK {6}

[end conversation] {7}

TP(b)

--------------------> [start TP(b)] {al

DEALLOCATE {II}
TYPE<lOCAU
RETURN_CODE=OK

[end conversation] {I2l

Figure B-1. ALLOCATE, SEND_DATA, DEALLOCATE -- SYNC_LEVEL(NONE)

B-2 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Notes for Figure B-1:

1. TP(a) issues ALLOCATE to request a
conversation with partner program
'b', designated by the TPN parame­
ter.

2. The SYNC_LEVEL(NONE) parameter
specifies a synchronization level
of NONE, which means no confirma­
tion or sync point processing.

3. The LU places the allocation
request in its send buffer and
returns control to TPCa) with the
conversation in send state. Noth­
ing is sent.

4. TPCa) issues SEND_DATA, causing the
LU to place the data (a logical
record) in its buffer behind the
allocation request. Still, nothing
is sent, because the LU does not
yet have a sufficient amount of
information for transmission (in
this example).

5. TP(a) issues DEALLOCATE with
TYPECSYNC_LEVEL), which implies no
synchronization and causes the LU
to send the contents of its buffer

together with a DEALLOCATE NORMAL
indication. -

6. Because the synchronization level
is NONE, DEALLOCATE with
TYPECSYNC_LEVEL) completes imme­
diately and successfully. Contrast
this with Figure B-2 on page B-4.

7. The conversation is deallocated
from the session at the completion
of DEALLOCATE.

8. TPCb) is started, with the conver­
sation in receive state, when its
LU receives the allocation request.

9. TPCb) issues RECEIVE_AND_WAIT and
receives the complete logical
record.

10. TP(b) issues another
RECEIVE_AND_WAIT and receives the
DEALLOCATE_NORMAL indication.

11. TPCb) issues DEALLOCATE with
TYPECLOCAL), causing the LU to dis­
card its control information for
the conversation.

12. The conversation ends for TPCb).

Appendix B. Examples Using Basic Conversation Verbs B-3

TPCa)

[TPCa) running]

AllOCATE U)
TPN('b')
SYNC_LEVELCCONFIRM) (2)
RETURH_CODE~OK (3)

DEAllOCATE (5)
TYPECSYNC_LEVEU

{6}

RETURN_CODE=OK {II}

[end conversation] (12)

TPCb)

-------------------> [start TPCb)] (7)

<------------------ CONFI RMED U O}

DEALLOCATE U3}
TYPE(LOCAL)
RETURN_CODE=OK

[end conversation) {14}

Figure 8-2. ALLOCATE. SEND_DATA. DEALLOCATE -- SYNC_LEVELCCONFIRM)

8-4 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Notes for Figure B-2:

1. TP(a) issues ALLOCATE to request a
conversation with partner program
'b' .

2. The SYNC_LEVEL(CONFIRM) parameter
specifies a synchronization level
of CONFIRM. which means confirma­
tion processing is permitted.

3. The LU places the allocation
request in its send buffer and
returns control to TPCa) with the
conversation in send state. Noth­
ing is sent.

4. TP(a) issues SEND DATA. causing the
LU to place the data Ca logical
record) in its buffer behind the
allocation request. still, nothing
is sent.

5. TPCa) issues DEALLOCATE with
TYPECSYNC_LEVEL), which implies
confirmation processing and causes
the LU to send the contents of its
buffer together with a CON­
FIRM_DEALLOCATE request.

6. Because the synchronization level
is CONFIRM, DEALLOCATE with
TYPECSYNC_LEVEL) causes the LU to
suspend TP(a)'s processing until it
receives a response, affirmative or
negative.

7. TPCb) is started. with the conver­
sation in receive state, when its
LU receives the allocation request.

8. TPCb) issues RECEIVE_AND_WAIT and
receives the complete logical
record.

9. TPCb) issues another
RECEIVE_AND_WAIT and receives the
CONFIRM_DEALLOCATE request.

10. TPCb) responds affirmatively by
issuing CONFIRMED, causing its LU
to send a positive response. If
TPCb) responded negatively by issu­
ing SEND_ERROR (not shown). the
conversation would remain allo­
cated.

11. The LU returns control to TP(a),
indicating an affirmative response
and successful completion of the
DEAllOCATE.

12. The conversation is deallocated
from the session at the completion
of DEAllOCATE.

13. TPCb) issues DEALLOCATE with
TYPEClOCAL), causing the LU to dis­
card its control information for
the conversation.

14. The conversation ends for TP(b).

Appendix B. Examples Using Basic Conversation Verbs 8-5

TPCa)

[TPCa) running &
in conversati on] U}

SEND DATA {2)
RETURN_CODE=OK

TPCb)

[TPCb) running &
in conversation]

REiEIVE_AHD_WAIT {31

---------> RETURN CODE=OK {S}
WHAT_RECEIVED=DATA_COMPLETE

SEND_DATA {71
RETURN_CODE=OK

DEAllOCATE {S}
RETURN_CODE=OK tID} (----------- TYPECSYNC_lEVEL)
WHAT_RECEIVED=DATA_COMPLETE {9}

RECEIVE_AND_WAIT {Il}
RETURN CODE=OK
WHAT_RECEIVED=CONFIRM_DEALLOCATE

CONFIRMED U2}

DEAllOCATE US}
TYPEClOCAU
RETURN_CODE=OK

[end conversation] {l6}

------------------->
[end conversation] {l4}

Figure 8-3. RECEIVE_AND_WAIT. DEALLOCATE -- SYNC_LEVELCCONFIRM)

8-6 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Notes for Figure B-3:

1. Assume TPCa) has already allocated
the conversation with
SYNC_LEVELCCONFIRM), and the con­
versation is now in send state for
TPCa) and receive state for TPCb).

2. TPCa) issues SEND DATA. causing the
LU to place the data (a logical
record) in its buffer. Nothing is
sent.

3. TPCb) issues RECEIVE AND WAIT,
causing the LU to suspend TPCb)'s
processing until it receives infor­
mation.

4. TPCa) issues RECEIVE_AND_WAIT.
causing the LU to send the contents
of its buffer together with the
SEND indication. The LU suspends
TPCa)'s processing until it
receives information.

5. The LU returns control to TPCb).
indicating that the program has
received the complete logical
record.

6. TPCb) issues another
RECEIVE_AND_WAIT and receives the
SEND indication.

7. TPCb) issues SEND_DATA. causing the
LU to place the data (a logical
record) in its buffer. Nothing is
sent.

8. TPCb) issues DEALLOCATE with
TYPiCSYNC_LEVEL). which implies

confirmation processing and causes
the LU to send the contents of its
buffer together with a CON­
FIRM_DEALLOCATE request.

9. Because the synchronization level
is CONFIRM. DEALLOCATE with
TYPECSYNC LEVEL) causes the LU to
suspend TPCb)'s processing until it
receives a response. affirmative or
negative.

10. The LU returns control to TPCa).
indicating that the program has
received the complete logical
record.

11. TP(a) issues another
RECEIVE_AND_WAIT and receives the
CONFIRM_DEALLOCATE request.

12. TPCa) responds affirmatively by
issuing CONFIRMED. causing its LU
to send a positive response.

13. The LU returns control to TP(b).
indicating an affirmative response
and successful completion of the
DEALLOCATE.

14. The conversation is deallocated
from the session at the completion
of DEALLOCATE.

15. TPCa) issues DEALLOCATE with
TYPECLOCAL), causing the LU to dis­
card its control information for
the conversation.

16. The conversation ends for TPCa).

Appendix B. Examples Using Basic Conversation Verbs B-7

TP(a)

[TPCa) running &
in conversation] {l)

TPCb)

[TP(b) running &
in conversation]

---------> RETURN CODE=OK {71
WHAT_RECEIVED=DATA_COMPlETE

RECEIVE_AND_WAIT {S}
RETURN_CODE=OK
WHAT_RECEIVED=SEND

Figure 8-4. PREPARE_TO_RECEIVE -- SYNC_lEVElCNONE)

8-8 SNA Transaction Programmer's Reference Manual for lU Type 6.2

Notes for Figure B-4:

1. Assume TPCa) has already allocated
the conversation with
SYNC_lEVElCNONE). and the conversa­
tion is now in send state for TPCa)
and receive state for TP(b).

2. TPCa) issues SEND DATA, causing the
LU to place the data (a logical
record) in its buffer. Nothing is
sent.

3. TP(b) issues RECEIVE_AND_WAIT,
causing the LU to suspend TP(b)'s
processing until it receives infor­
mation.

4. TPCa) issues PREPARE_TO_RECEIVE
with TYPECSYHC_LEVEL). which
implies no synchronization and
causes the lU to send the contents
of its buffer together with the
SEND indication.

5. Because the synchronization level
is NONE. PREPARE_TO_RECEIVE with
TYPECSYNC_LEVEL) completes imme­
diately and successfully. Contrast
this with Figure B-5 on page B-IO.

6. The conversation for TP(a) Is now
in receiVe state. so TP(a) issues a
RECEIVE_AND_WAIT.

7. The LU returns control to TP(b),
indicating that the program has
received the complete logical
record.

8. TP(b) issues another
RECEIVE_AND_WAIT and receives the
SEND indication.

9. The conversation for TP(b) is now
in send state, so TP(b) issues a
SEND_DATA.

Appendix B. Examples Using Basic Conversation Verbs B-9

TP(a)

[TP(a) running &
in conversation] {ll

TP(b)

[TP(b) running &
in conversation]

----------> RETURN CODE=OK {6}
WHAT_RECEIVED=DATA_COMPLETE

<------------- CONFIRMED {8l

Figure 8-5. PREPARE_TO_RECEIVE -- SYNC_LEVELCCONFIRM)

8-10 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Notes for Figure B-5:

1. Assume TPCa) has already allocated
the conversation with
SYNC_LEVELCCONFIRM), and the con­
versation is now in send state for
TPCa) and receive state for TPCb).

2. TP(a) issues SEND_DATA, causing the
LU to place the data (a logi"cal
record) in its buffer. Nothing is
sent.

3. TPCb) issues RECEIVE_AND_WAIT.
causing the lU to suspend TP(b)'s
processing until it receives infor­
mation.

4. TP(a) issues PREPARE_TO_RECEIVE
with TYPE(SYNC_LEVEU. which
implies confirmation processing and
causes the lU to send the contents
of its buffer together with the
CONFIRM_SEND request.

5. Because the synchronization level
is CONFIRM, PREPARE_TO_RECEIVE with
TYPECSYNC_lEVEl) causes the lU to
suspend TPCa)'s processing until it

receives a response, affirmative or
negative.

6. The lU returns control to TPCb),
indicating that the program has
received the complete logical
record.

7. TPCb) issues another
RECEIVE_AND_WAIT and receives the
CONFIRM_SEND request.

8. TPCb) responds affirmatively by
issuing CONFIRMED, causing its lU
to send a positive response.

9. The conversation for TP(b) is now
in send state, so TP(b) issues a
SEND_DATA.

10. The lU returns control to TPCa),
indicating an affirmative response
and successful completion of the
PREPARE_TO_RECEIVE.

11. The conversation for TP(a) is now
in receive state, so TP(a) issues a
RECEIVE_AND_WAIT.

Appendix B. Examples Using Basic Conversation Verbs 8-11

TP(a) TP(b)

[TP(a) running & [TP(b) running &
in conversation] {I} in conversation]

SEND_DATA (2) REC1EIVE_AND_WAIT (3}
RETURN_CODE=OK

CONFIRM (4} > RETURN_CODE=OK (5}
WHAT_RECEIVED=DATA_COMPLETE

RETURN_CODE=OK {9} <--------- CONFIRMED (7}

Figure B-6. CONFIRM

B-12 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Notes for Figure B-6:

1. Assume TPCa) has already allocated
the conversation with
SYNC_lEVElCCONFIRM), and the con­
versation is now in send state for
TPCa) and receive state for TP(b).

2. TPCa) issues SEND DATA,
lU to place the data (a
record) in its buffer.
sent.

causing the
logical
Nothing is

3. TPCb) issues RECEIVE_AND_WAIT,
causing the lU to suspend TP(b)'s
processing until it receives infor­
mation.

4. TP(a) issues CONFIRM in order to
synchronize the processing of the
two programs. The CONFIRM verb
causes the lU to send the contents
of its buffer together with the
CONFIRM request. The lU suspends
TPCa)'s processing until it
receives a response, affirmative or
negative.

5. The lU returns control to TPCb),
indicating that the program has
received the complete logical
record.

6. TPCb) issues another
RECEIVE_AND_WAIT and receives the
CONFIRM request.

7. TPCb) responds affirmatively by
issuing CONFIRMED, causing its lU
to send a positive response.

8. The conversation for TPCb) is still
in receive state, so TPCb) issues
another RECEIVE_AND_WAIT.

9. The lU returns control to TPCa),
indicating an affirmative response
and successful completion of the
CONFIRM.

10. The conversation for TPCa) is still
in send state, so TPCa) issues
another SEND_DATA.

Appendix B. Examples Using Basic Conversation Verbs B-13

TP(a)

[TPCa) running &
in conversation]

TPCb)

[TPCb) runni ng &
(1) in conversation]

{S)

REiEIVE-AHD_WAIT 13l

---------> RETURN_COOE=OK (1)
WHAT_RECEIVEO=OATA_COMPlETE

--------------->

Figure 8-7. SEND_ERROR in Send State

8-14 SMA Transaction Programmer's Reference Manual for lU Type 6.2

Notes for Figure B-7:

1. Assume TP(a) has already allocated
the conversation and it is now send
state for TPCa) and receive state
for TP(b).

2. TP(a) issues SEND_DATA, causing the
lU to place the data (a logical
record) in its buffer. Nothing is
sent.

3. TP(b) issues RECEIVE_AND_WAIT,
causing the lU to suspend TPCb)'s
processing until it receives infor­
mation.

4. TP(a) issues SEND_ERROR in order to
notify the partner program of an
error. The SEND_ERROR verb causes
the lU to send the contents of its
buffer.

5. After sending the contents of its
buffer, the lU sends the error

notification and returns control to
the program.

6. The conversation for TPCa) is still
in send state, so TPCa) issues
another SEND_DATA, possibly con­
taining additional error-recovery
information.

7. The lU returns control to TPCb),
indicating that the program has
received the complete logical
record.

8. TPCb) issues another
RECEIVE_AND_WAIT and receives the
error notification,
PROG_ERROR_NO_TRUNC, meaning TP(a)
issued a SEND_ERROR that did not
truncate the logical record it
sent.

9. The conversation for TPCb) is still
in receive state, so TPCb) issues
another RECEIVE_AND_WAIT.

Appendix B. Examples Using Basic Conversation Verbs B-15

TPCa)

[TPCa) running &
in conversation] (ll

TPCb)

[TPCb) rUnning &
in conversation]

---------> RETURN_CODE=OK (5)
WHAT_RECEIVED=DATA_COMPlETE

(7) <--------- SEND_ERROR (6l

SEr-DATA (8] ------------>
RETURN CODE=PROG ERROR

- PURGING 111) <------------

Figure B-8. SEND_ERROR in Receive State

8-16 SNA Transaction Programmer's Reference Manual for lU Type 6.2

Notes for Figure B-8:

1. Assume TP(a) has already allocated
the conversation and it is now send
state for TP(a) and receive state
for TPCb).

2. TPCa) issues SEND DATA~ causing the
lU to place the data Ca logical
record) in its buffer. Nothing is
sent.

3. TPCb) issues RECEIVE AND WAIT~
causing the lU to suspend TPCb)'s
processing until it receives infor­
mation.

4. TPCa) issues another SEND DATA~
causing the LU to place the data
(another logical record) in its
buffer. The LU now has more than
enough data for transmission~ so it
sends some of the contents of its
buffer, and retains the remainder
for later transmission.

5. The LU returns control to TP(b),
indicating that the program has
received a complete logical record.

6. TPCb) issues SEND ERROR in order to
notify the partner program of an
error. The SEND ERROR verb causes
the LU to purge information it has
received and not yet passed to
TP(b)~ and to send a negative

response. The LU then suspends
TPCb)'s processing awaiting the
receipt of SEND control.

7. The LU for TP(a) receives the nega­
tive response, causing it to purge
the remaining contents of its buff­
er.

8. TPCa) issues SEND_DATA. The
SEND_DATA is unsuccessful -- the LU
does not place the data in its
buffer. The SEND_DATA causes the
LU to send the SEND control without
data. The lU then suspends TPCa)'s
processing awaiting the receipt of
the error notification.

9. The LU for TP(b) receives the SEND
control, sends the error notifica­
tion, and returns control to TPCb).

10. The conversation for TPCb) is now
in send state~ so TP(b) issues a
SEND_DATA, possibly containing
additional error-recovery informa­
tion.

11. The LU returns control to TPCa),
indicating that it has received the
error notification~
PROG_ERROR_PURGING.

12. The conversation for TPCa) is now
in receive state~ so TPCa) issues a
RECEIVE_AND_WAIT.

Appendix B. Examples Using Basic Conyorsation Verbs 8-17

TPCa)

[lPCa) running &
in conversation] (1)

SEND_DATA (5)
RETURN_CODE=OK

TPCb)

[TPCb) running &
in conversation]

\

(--------- REQUEST_TO_SEND (2)

---------> RETURN_CODE=OK (7)
WHAT_RECEIVED=DATA_COMPlETE

RECEIVE_AND_WAIT (8)
RETURN_CODE=OK
WHAT_RECEIVED=DATA_COMPlETE

8-18 SNA Transaction Programmer's Reference Manual for lU Type 6.2

Notes for Figure 8-9:

1. Assume TPea) has already allocated
the conversation and it is now send
state for TP(a) and receive state
for TP(b).

2. TP(b) issues REQUEST_TO_SEND and
the LU sends the REQUEST TO SEND
indication. The conversation for
TPCb) remains in receive state
because REQUEST_TO_SEND does not
force a turnaround of SEND control.
Contrast this with SEND ERROR in
Figure 8-S on page 8-16:

3. TPCb) issues RECEIVE_AND_WAIT,
causing the LU to suspend TPCb)'s
processing until it receives infor­
mation.

4. TPCa) issues SEND_DATA, causing the
LU to place the data (a logical
record) in its buffer, and indicate
that it has received a
REQUEST_TO_SEND indication. Noth­
ing is sent.

5. TP(a) i~sues another SEND DATA,
causing the LU to place the data

Canother logical record) in its
buffer. The LU still does not have
enough data for transmission, so
nothing is sent.

6. TPCa) issues RECEIVE_AND_WAIT,
causing the LU to send the contents
of its buffer together with the
SEND indication. The LU suspends
TP(a)'s processing until it
receives information.

7. The LU returns control to TPCb),
indicating that the program has
received a complete logical record.

S. TP(b) issues another
RECEIVE AND WAIT and receives
another-complete logical record.

9. TPCb) issues another
RECEIVE_AND_WAIT and receives the
SEND indication.

10. The conversation for TPCb) is now
in send state, so TP(b) issues a
SEND_DATA.

Appendix B. Examples Using Basic Conversation Verbs 8-19

TPCa)

[TPCa) running &
in conversation] (1)

FLUSH {9}

TPCb)

[TPCb) running &
in conversation]

WAIT (4)
iESOURC"-LIST(~g=~::~l

RETURN_CODE=OK (5)
RESOURCE_POSTED=CONV_BC

---------> RETURN_CODE=OK {to}
WHAT_RECEIVED=DATA_COMPlETE

Figure B-l0. POST_ON_RECEIPT, WAIT

8-20 SNA Transaction Programmer's Reference Manual for lU Type 6.2

Notes for Figure 8-10:

1. Assume TPCa) has already allocated
the conversation and it is now in
send state for TPCa) and receive
state for TPCb).

2. TPCb) issues POST_ON_RECEIPT for
the conversation with TPCa).

3. TP(b) issues another
POST_ON_RECEIPT for the conversa­
t~on with TP(c), not shown.

4. TP(b) then issues WAIT with a
resource list specifying both con­
versations. In this way, the pro­
gram can receive the information on
the conversation on which it
arrives first. The WAIT causes the
LU to suspend TP(b)'s processing
until it receives information on
either conversation.

5. Information arrives on the conver­
sation with TP(c). The LU resets

the posting on that conversation
and returns control to TPCb).

6. TPCb) issues RECEIVE_AND_WAIT for
the conversation with TPCc) and
receives a complete logical record.

7. TPCb) then issues RECEIVE_AND_WAIT
for the conversation with TPCa),
causing the LU to suspend TPCb)'s
processing until it receives irifor­
mation on that conversation.

8. TPCa) issues SEND_DATA,
LU to place the data (a
record) in its buffer.
sent.

causing the
logical
Nothing is

9. TP(a) issues FLUSH, causing the LU
to send the contents of its buffer.

10. The LU returns control to TPCb),
indicating that the program has
received a complete logical record.

Appendix B. Examples Using Basic Conversation Verbs B-21

TP(a)

[TP(a) running &
in conversation] {l}

FlUSH {5}

TP(b)

[TPCb) running &
in conversation]

TEST {3}
RETURN_CODE=UNSUCCESSFUl

---------> {6}

TEST {71
RETURN_CODE=OK

RECEIVE_AND_WAIT (S}
RETURN CODE=OK
WHAT_RECEIVED=DATA_COMPlETE

8-22 SNA Transaction Programmer's Reference Manual for lU Type 6.2

Notes for Figure B-11:

1. Assume TP(a) has already allocated
the conversation and it is now in
send state for TPCa) and receive
state for TPCb).

2. TP(b) issues POST_ON_RECEIPT for
the conversation with TP(a).

3. TP(b) then issues TEST, which
returns with
RETURN_CODE=UNSUCCESSFUL indicating
information is not available.
Posting remains active and TPCb)
continues processing.

4. TP(a) issues SEND_DATA, causing the
LU to place the data (a logical

record) in its buffer. Nothing is
sent.

5. TP(a) issues FLUSH, causing the LU
to send the contents of its buffer.

6. Data arrives on the conversation,
causing the LU to post the event.

7. Some time later, TP(b) issues TEST
again. This time it returns with
RETURN_CODE=OK, and posting is
reset.

8. TP(b) issues RECEIVE_AND_WAIT for
the conversation and receives a
complete logical record.

Appendix B. Examples Using Basic Conversation Verbs B-23

TPCa) TPCb)

[TPCa) running & [TPCb) running &
in conversation) U) in conversation) (2)

SEND_DATA {3} RErI V E_AHD_WA IT {4}
RETURN_CODE=OK

(6)
SYNCPT (S) > RETURN_CODE=OK {7}

WHAT_RECEIVED=DATA_COMPLETE

RECEIVE_AND_WAIT {a}
RETURN_CODE=OK
WHAT_RECEIVED=TAKE_SYNCPT

(9)

SYNCPT no)

uu I
RETURH_CODE=OK U4} < RETURN_CODE=OK U2}

SEND_DATA US} RECEIVE_AND_WAIT un

Figure 8-12. SYNCPT

8-24 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Notes for Figure 8-12:

1. Assume TPCa) has already allocated
the conversation with
SYNC_LEVEL(SYHCPT)~ and the conver­
sation is now in send state for
TP(a) and receive state for TPCb).

2. Assume TP(b) has also allocated one
or more conversations with
SYHC_LEVELCSYHCPT) to other pro­
grams.

3. TP(a) issues SEND DATA~ causing the
LU to place the data (a logical
record) in its buffer. Nothing is
sent.

4. TP(b) issues RECEIVE_AND_WAIT.
causing the lU to suspend TP(b)'s
processing until it receives infor­
mation.

5. TP(a) issues SYHCPT in order to
advance all protected resources
throughout the distributed logical
unit of work to the next synchroni­
zation point. The LU suspends
TP(a)'s processing until the sync
point processing is complete. As
part of the sync point processing,
the LUs send and receive commands
on the conversations; the commands
are referred to in this example as
a sync point request and reply.
These commands are not apparent to
the programs.

6. The SYHCPT verb causes the LU to
send the contents of its buffer
together with the initial sync
point request.

7. The LU for TPCb) receives the data
and sync point request. The LU
returns control to TP(b), indicat­
ing that the program has received a
complete logical record.

8. TPCb) issues another
RECEIVE_AND_WAIT and receives the
TAKE_SYNCPT request, which is what
the LU indicates to the program as
a result of receiving the sync
point request.

9. TP(b) finishes processing of pro­
tected local resources, if neces­
sary, and ensures all other
protected conversations are in send
state.

10. TPCb) issues SYNCPT, causing the LU
to send the contents of its buffers
(one for each conversation) togeth­
er with a sync point request on all
other protected conversati~ns. The
LU suspends TPCb)'s processing
until a sync point reply is
received on all these conversa­
tions.

11. After receiving sync point replies
on all of the other protected con­
versations, the LU for TPCb) sends
a sync point reply on the conversa­
tion on which it received the ini­
tial sync point request.

12. The LU returns control to TPCb)
indicating successful completion of
the SYHCPT for all protected
resources allocated to TPCb) and
all "down stream" TPs, that is~ to
all TPs other than TPCa).

13. The conversation for TPCb) is still
in receive state~ so TP(b) issues
another RECEIVE_AND_WAIT.

14. The LU for TP(a) receives the final
sync point reply and returns con­
trol to TPCa) indicating successful
completion of the SYNCPT for all
protected resources throughout the
distributed logical unit of work.

15. The conversation for TPCa) is still
in send state. so TPCa) issues
another SEND_DATA.

Note: More sync point commands may
actually be exchanged between the par­
ticipating LUs than the flows in this
example indicate. See SNA Format and
Protocol Reference Manual: Architec­
ture logic for lU Type 6.2 for details.

Appendix B. Examples Using Basic Conversation Verbs 8-25

TPCa)

[TPCa) running &
in conversation] (1)

{U
SYNCPT (5) ------------------->

TPCb)

[TPCb) running &
in conversation] (2)

REjEIVE_AHDjWAIT (4)

:~I~~:Eg~~~~g~DA~I:cOMPlETE

RECEIVE_AND_WAIT (8)
RETURN_CODE=OK
WHAT_RECEIVED=TAKE_SYNCPT

(9)

SYNCPT UO}
I
RETURN_CODE=BACKED_OUT (11)

<------------------ BACKOUT (12)

(13) ---------------> t16)
BACKOUT U4}

Figure B-13. SYNCPT. BACKOUT

B-26 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Notes for Figure B-13:

1. Assume TPCa) has already allocated
the conversation with
SYNC_LEVElCSYNCPT). and the conver­
sation is now in send state for
TPCa) and receive state for TPCb).

2. Assume TPCb) has also allocated one
or more conversations with
SYNC_l EVEL C SYNCPT) to other pro­
grams.

3. TPCa) issues SEND_DATA, causing the
lU to place the data Ca logical
record) in its buffer. Nothing is
sent.

4. TPCb) issues RECEIVE_AND_WAIT,
causing the LU to suspend TPCb)'s
processing until it receives infor­
mation.

S. TPCa) issues SYNCPT in order to
advance all protected resources
throughout the distributed logical
unit of work to the next synchroni­
zation point. The lU suspends
TPCa)'s processing until the sync
point processing is complete. As
part of the sync point processing.
the lUs send and receive commands
on the conversations; the commands
are referred to in this example as
a sync point request and reply.
These commands are not apparent to
the programs.

6. The SYNCPT verb 'causes the lU to
send the contents of its buffer
together with the initial sync
point request.

7. The lU for TPCb) receives the data
and sync point request. The lU
returns control to TPCb). indicat­
ing that the program has received a
complete logical record.

8. TPCb) issues another
RECEIVE_AND_WAIT and receives the
TAKE_SYNCPT request, which is what
the lU indicates to the program as
a result of receiving the sync
point request.

9. TPCb) finishes processing of pro­
tected local resources, if neces­
sary. and ensures all subordinate
conversations are in send state.

10. TPCb) issues SYNCPT, causing the lU
to send the contents of its buffers
Cone for each conversation) togeth­
er with a sync point request on all

other protected conversations. The
lU suspends TPCb)'s processing
until the sync point processing on
all these conversations is com­
plete.

11. Instead of receiving sync point
replies on all of the other pro­
tected conversations. the LU for
TPCb) receives at least one
BACKED_OUT indication. The lU
returns control to TPCb) with the
BACKED_OUT indication.

12. TPCb) issues BACKOUT. causing the
lU to restore all protected local
resources to the last synchroniza­
tion point, and send BACKED_OUT
indications on all protected con­
versations except the oneCs) on
which it received the preceding
BACKED_OUT indication. BACKOUT is
accomplished throughout the dis­
tributed logical unit of work in
the same manner as for TPCb). That
is, the LU for each program
receives a BACKED_OUT indication,
returns control to its program with
the BACKED_OUT indication, and then
when the program issues BACKOUT it
restores all protected local
resources to the last synchroniza­
tion point and sends BACKED_OUT
indications on all remaining pro­
tected conversations, if any.

13. The LU for TPCa) receives the
BACKED_OUT indication, sends back a
positive response, and returns con­
trol to TPCa) with the BACKED_OUT
indication.

14. TPCa) issues BACKOUT, causing the
lU to restore all protected local
resources to the last synchroniza­
tion point.

15. The conversation for TPCa) is
restored to send state--the state
at the completion of the last syn­
chronization point--so TPCa) issues
another SEND_DATA, possibly con­
taining error-recovery information.

16. The lU for TPCb) receives the posi­
tive response from the LU for TPCa)
and all other lUs to which it sent
the BACKED_OUT indication, and
returns control to TPCb).

17. The conversation for TPCb) is
restored to receive state--the
state at the completion of the last
synchronization point--so TPCb)
issues another RECEIVE_AND_WAIT.

Appendix B. Examples Using Basic Conversation Verbs B-27

This page intentionally left blank

B-28 SMA Transaction Programmer's Reference Manual for LU Type 6.2

APPENDIX C. SY"BOl STRING CONVENTIONS

This manual refers to the following symbol strings:

Network ID
lU Name
Fully-Qualified lU Name
Mode Name
Transaction Program Name
SECURITY Subfields
PIP Subfi elds
Map Name

This appendix defines the type and length of these symbol strings.
The mean i ngs of these symbol stri ngs are defi ned in the chapters
describing the individual verbs that refer to these symbol strings.
The type and length of each symbol string is defined in terms of the
send and receive support of all lU 6.2 products that implement the
symbol string.

SY"BOl STRING TYPE

The symbol-string type identifies the set of characters from which the
symbol string can be composed, and therefore the characters a trans­
action program can use to specify the symbol string. The following
symbol-string types are defined:

• Type A (Assembler ori ented): a character stri ng consi sti ng of one
or more EBCDIC uppercase letters A through Z; numerics 0 through
9; and special characters $, I, and a; the first character of
which is an uppercase letter or a special character.

• Type AE (A extended): a character string consisting of one or
more EBCDIC lowercase letters a through z; uppercase letters A
through Z; numerics 0 through 9; special characters $, ., a; and
the period (.); with no restriction on the first character.

• Type GR (EBCDIC graphics): a character string consisting of one
or more EBCDIC characters in the range hex 41 through hex FE with
no restriction on the first character.

• Type DB (double byte): a byte string consisting of an even number
of four or more bytes beginning with a byte of hex OE, followed by
bytes in the range hex 41 through hex FE, and ending with a byte
of hex OF.

• Type G (general): a byte string consisting of one or more bytes
in the range hex 00 through hex FF, wi th no restri cti on on the
fi rst byte.

The set of type-A and type-AE characters, and the hex codes for these
characters. are shown in Figure C-1 on page C-2.

Appendix C. Symbol String Conventions C-1

Hex Gra- Set Hex Gra- Set
Code phic Description Code phic Description

A AE A AE

48 Period X C4 D D. Capi tal X X
58 $ Dollar Sign X X C5 E E. Capital X X
78 I Number Sign X X C6 F F. Capital X X
7C G'I At Sign X X C7 G G. Capital X X
81 a a. Small X C8 H H, Capital X X
82 b b. Small X C9 I I, Capi tal X X
83 c c. Small X D1 J J, Capital X X
84 d d. Small X D2 K K. Capital X X
85 e e. Small X D3 l l. Capi tal X X
86 f f, Small X D4 M M. Capi tal X X
87 g g. Small X D5 N N, Capital X X
88 h h. Small X 06 0 O. Capital X X
89 i i , Small X 07 P P, Capital X X
91 j j, Small X D8 Q Q. Capital X X
92 k k. Small X D9 R R. Capital X X
93 I I, Small X E2 S S, Capital X X
94 m m. Small X E3 T T, Capital X X
95 n n, Small X E4 U U. Capital X X
96 0 o. Small X E5 V V, Capi tal X X
97 p P. Small X E6 W W, Capital X X
98 q q. Small X E7 X X. Capital X X
99 r r. Small X E8 Y Y. Capi tal X X
A2 s s. Small X E9 Z Z. Capital X X
A3 t t. Small X FO 0 Zero X X
A4 u u. Small X F1 1 One X X
AS v v. Small X F2 2 Two X X
A6 w w. Small X F3 3 Three X X
A7 x x. Small X F4 4 Four X X
A8 y Y. Small X FS 5 Five X X
A9 z z, Small X F6 6 Six X X
C1 A A, Capital X X F7 7 Seven X X
C2 B B. Capital X X F8 8 Eight X X
C3 C C, Capital X X F9 9 Nine X X

Figure C-1. Character Sets A and AE

Figure C-2 on page C-3 defines the product send support and receive
support for each symbol string in terms of the symbol-string types.
Depending on the symbol string. product send support or receive sup­
port is indicated either by a single type or multiple types. Where
multiple types are indicated. the type selected is product-defined
and send support may differ from receive support.

C-2 SNA Transaction Programmer's Reference Manual for lU Type 6.2

Symbol String Type

Send Support Receive Support

Network ID A A

lU Name [1J - -
Fully-Qual i fi ed lU Name [23 A.A A.A

Mode Name A A

Transaction Program Name [3] AE, GR, or DB A, AE, GR, or DB

lU-lU Password [4J - -
SECURITY Subfields AE, GR, or DB A, AE, GR, or DB

PIP Subfields G G

Map Name A, AE, or GR A, AE, or GR

Notes:

1- The lU name is a locally-known name; it is the name by which
one lU knows another lU. A transaction program specifies
this lU name in conjunction with the mode name when it
allocates a session for a conversation. This lU name is not
sent outside the lU. The symbol-string type is G.

2. The fully-qualified lU name consists of two symbol strings of
type A concatenated by a period ("."). The lefthand symbol
string represents the network ID; the righthand symbol string
represents the network lU name. The period is not part of
the network ID or the network lU name.

3. The first character of an SNA service transaction program
name is a character ranging in value from hex 00 through hex
OD and hex 10 through hex 3F (excluding hex OE and hex OF),
More details about SNA service transaction program names and
a Ii st of SHA service transaction programs is given in
"Appendix D. list of SHA Service Transaction Programs".

4. The lU-lU password is a locally-specified value and is not
sent outside the lU. The symbol-string type is G.

Figure C-2. Symbol-String Types

Appendix C. Symbol String Conventions C-3

SYMBOL STRING LENGTH

The symbol-string length represents the number of characters a symbol
string can contain. Three symbol-string lengths are defined:

• Minimum specification length: the minimum number of characters
that a transaction program is allowed to use to specify the symbol
string. For' some symbol strings, the minimum specification
length is zero. Zero-length strings are valid symbol strings and
are subject to the same usage conditions as valid non-zero length
strings. l

• Maximum send support: the maximum number of characters that all
products can send for the symbol string.

• Maximum receive support: the maximum number of characters that
all products can receive for the symbol string.

The maximum send or receive support for a symbol string's length is
defined either by a single value or within a range of values, depend­
ing on the symbol string.

The si ngle value is the maxi mum number of characters ina symbol
string that all products can send or receive.

The range of values represents a lower and upper bound of the maximum
number of characters in a symbol string that a product can send or
receive. The specific maximum number of characters a product can send
or receive for each of these symbol strings is product-defined within
the range.

Figure C-3 on page C-5 defines the product maximum send and receive
support for each symbol string in terms of the symbol-string lengths.
Where support is defined to be within a range of values, the range is
given as "lower-value<->upper-value," which identifies the lower and
upper bounds of the range~

Note: The variable to which a type-A, type-AE, type-GR, or type-DB
symbol string is assigned may be longer than the symbol string; in
this case, the symbol string is left-justified within the variable and
the variable is filled out to the right with space (hex 40) charac­
ters. Space characters. if present, are not part of the symbol
string. If the symbol string is formed from the concatenation of two
or more individual symbol strings, such as the fully-qualified lU
name, the concatenated symbol stri ng as a whole is left-justi fi ed
within the variable and the variable is filled out to the right with
space characters. Space characters, if present, are not part of the
concatenated symbol string.

1 A valid symbol string is one that meets the requirements of the
symbol-string type defined for that symbol string.

C-4 SNA Transaction Programmer's Reference Manual for lU Type 6.2

Symbol String Length

Minimum Maximum Maximum
Specification Send Support Receive Support

Hetwork ID 0 8 8

LU Hame [1] 0 - -
Fully-Quali fi ed LU Hame 1 17 17

Mode Hame 0 8 8

Transaction Program Hame 1 8<->64 8<->64

LU-LU Password [2] 1 - -
SECURITY Subfields 0 8<->10 0<->10

PIP Subfields [3] 0 64<->* [4] 64<->* [5]

Map Hame 1 8<->64 7<->64

Notes:

1- The LU name is a locally-known name; it is the name by which
one LU knows another LU. A transaction program specifies
this LU name in conjunction with the mode name when it
allocates a session for a conversation. This LU name is not
sent outside the LU. The maximum specification length of the
LU name is product-defined.

2. The LU-LU password is a locally-specified value and is not
sent outside the LU. It is 64 bits (8 bytes) in length. At
least 8 bits (1 byte) must be specified. If less than 64
bits are specified, the local LU fills the password out to
the right with binary O's.

3. Product support of PIP subfields is optional, and send
support is independent of receive support. The maximum
number of PIP subfields a product can send or receive is
product-defined; it can be any number greater than or equal
to 7.

4. The maximum send support for PIP subfields is
product-defined; it can be any length greater than or equal
to 64.

5. The maximum receive support for PIP subfields is
product-defined; it can be any length greater than or equal
to 64.

Figure C-3. Symbol-String Lengths

Appendix C. Symbol String Conventions C-5

Th;s page ;ntent;onally left blank

C-6 SMA· Transact; on Programmer's Reference Manual for LU Type 6.2

APPENDIX D. LIST OF SNA SERVICE TRANSACTION PROGRAMS

This appendix lists the classes of SNA service transaction programs.
The SHA serv.i ce transacti on programs are categori zed accordi ng to
functional classes. A class is identified by the first one or two
characters of the name. All SNA service transaction programs belong­
ing to a given class have the same class identifier.

The SNA service transaction program classes are:

Class Identifier (in hex)

Scheduler
Queue
DL/I
Change Number of Sessions
Resynchronization
Distributed Data Management
Document Interchange Architecture
SNA Distribution Services
Product Oriented

02
03
05
06Fl
06F2
07FO
20FO
21FO
30FO

SNA SERVICE TRANSACTION PROGRAM NAMES

SCHEDULER

QUEUE

SNA service transaction programs are distinguished by their names, in
particular the first (leftmost) character. The name of an SNA service
transaction program can be one to four characters in length; typical­
ly, however, they are four characters in length. The first character
of the name can range in value from hex 00 through hex 00 and hex 10
through hex 3F (excluding hex OE and hex OF). The remaining charac­
ters of the name are type-A, wi thout any restri cti on on the fi rst
type-A character. By contrast, names of programs other than SNA serv­
ice transacti on programs are type-A, type-AE, type-GR, or type-DB
symbol strings.

Usi ng the fi rst character of the name, a product may restri ct the
right of access of its programs to SNA service transaction programs.
For example, a product may allow only its "privileged" programs to
allocate conversations to SNA service transaction programs, and per­
mit its nnonprivileged" programs to allocate conversations only to
transaction programs other than SNA service transaction programs.

Listed below are the individual SNA service transaction programs,
grouped by class.

Name (in hex) Descr-l pti on

02 LU 6.1 scheduler transaction program.

See the supporting IBM product's publications for more details.

Name (in hex) Description

03 lU 6.1 queue transaction program.

See the supporting IBM product's pUblications for more details.

Appendix D. List of SNA Service Transaction Programs D-l

DL/l

Name (in hex) Description

05 LU 6.1 Dl/l transaction program.

See the supporting IBM product's publications for more details.

CHANGE NUMBER OF SESSIONS

Name (in hex) Description

06Fl CNOS service transaction program

See SNA Format and Protocol Reference Manual: Architecture logic for
LU Type 6.2 for more details.

RESYNCHRONIZATION

Hame (in hex) Description

06F2 Sync point resynchronization transaction program.

See SNA Format and Protocol Reference Manual: Architecture logic for
lU Type 6.2 and the supporting IBM product's pUblications for more
details.

DISTRIBUTED DATA MANAGEMENT

Name (in hex) Description

07FOFOFl Distributed data management synchronous conversation
transaction program.

See the supporting IBM product's publications for more details.

DOCUMENT INTERCHANGE ARCHITECTURE

Name (in hex) Description

20FOFOFO DIA process transaction program.
20FOFOFl DIA file server transaction program.

See Document Interchange Architecture: Technical Reference for more
details.

SNA DISTRIBUTION SERVICES

PRODUCT ORIENTED

Name (in hex)

21FOFOFl
21FOFOF2
21FOFOF3
21FOFOF6

Description

SHADS DS_SEND transaction program.
SHADS DS_RECEIVE transaction program.
SHADS DS_ROUTER_DIRECTOR transaction program.
SHADS general server transaction program.

See SNA Format and Protocol Reference Manual: Distribution Services
for more details.

The following SNA service transaction programs are provided by spe­
cific products.

Hame (in hex) Description

30FOFOFO Printer CPDS transaction program for IBM 3820.
30FOFOFl Printer level 2 transaction program for IBM 3820.

D-2 SHA Transaction Programmer's Reference Manual for lU Type 6.2

30FOFOF3

30FOFOF4
30FOFOF5

30FOFOF6

30FOFOF7

Object distribution transaction program for IBM Sys­
tem/38.
HETDATA server transaction program for IBM System/38.
IBM 5250 device passthrough transaction program for
IBM System/36 and IBM System/38.
Virtual disk transaction program for IBM System/36 and
IBM System/38.
Virtual printer transaction program for IBM System/36
and IBM System/38.

See the IBM product's publications for more details.

Appendix D. list of SHA Service Transaction Programs D-3

This page intentionally left blank

D-4SHA Transaction Programmer's Reference· Manual for LU Type 6.2

APPENDIX E. CDNVERSATIDN STATE "ATRICES

This appendix shows the conversation state transitions that can occur
when a program issues a basic or type-independent conversation verb.
A state transition can occur as a result of a verb the local program
issues, a verb the remote program issued, or a network error; the lat­
ter two are indicated when a return code of other than OK is returned
to the local program.

The conversati on state transi ti ons are represented by means of a
matrix; see Figure E-I, Figure E-l, and Figure E-3. The columns of
the matrix show the individual states, and the rows show the individ­
ual verbs. A verb is shown more than once when a parameter of the verb
or the return code determines the state transitions that can occur.

Following the state-transition matrix is a matrix showing the
state-check ABEND conditions that can occur; see Figure E-4. A state
check occurs when the program attempts to issue a verb for a conversa­
tion that is in a state in which the verb is not allowed.

The conversation states are:

Reset --- the state in which the program can allocate the conversa­
tion.

Send --- the state in which the program can send data, request con­
firmation, or request sync point.

Defer Receive and Defer Deallocate -- the states in which the pro­
gram can request sync point or confirmation, or simply flush the
LU's send buffer, when the synchronization level is SYNCPT.

Receive --- the state in which the program can receive information
from the remote program.

Confirm, Confirm Send, and Confirm Deallocate -- the states in
which the program can reply to a confirmation request.

Sync-point, sync-point Send, and sync-point Deallocate -- the
states in which the program can respond to a sync point request.

Deallocate --- the state in which the program can deallocate the
conversation locally.

Abbreviations are used for the parameters, return codes, and
what-received indications. The abbreviations and symbols used in the
state-transi ti on matri x are defi ned at the bottom of Fi gure E-3.
Abbreviations and symbols used in the state-check matrix are defined
at the bottom of Figure E-4.

Appendix E. Conversation State Matrices E-l

Verb Conversation States

Reset Send Defer Defer Receive Confirm
Receive Deallo-

cate

1 2 3 4 5 6

Initiating Conversation 5 / / / / /
AllOCATE[okJ 2 / / / / /
AllOCATE[aeJ 12 / / / / /
ALLOCATE[peJ - / / / / /
AllOCATE[unJ - / / / / /

BACKOUT / * * if * * CONFIRM[okl / - 5 1 / /
CONFIRM[ae] / 12 12 12 / /
CONFIRM[bol / * * if / /
CONFIRM[dal / 12 12 12 / /

CONFIRM[ep] / 5 5 5 / /
CONFIRM[rfJ / 12 12 12 / /
CONFIRMED / / / / I 5
DEAllOCATECF)[okl / 1 / / / /
DEAllOCATECC)[okJ / 1 / / / /

DEAllOCATECS)[okl / 4 / / / /
DEALlOCATECA)[okl / 1 1 1 1 1
DEALlOCATECl)[okJ / / / / / /
DEAllOCATECC)[ae] / 12 / / / /
DEAllOCATECC)[dal / 12 / / / /

DEAllOCATECC)[epJ / 5 / / / /
DEAllOCATECC)[rfl / 12 / / / /
flUSH / - 5 1 / /
GET_ATTRIBUTES / - - - - -
GET_TYPE / - - - - -
POST_ON_RECEIPT / / / / - /
PREPARE_TO_RECEIVECF)[okl / 5 / / / /

~:~~::~:~g::~g~~~~~~~~~~~ / 5 / / / /
/ 3 / / / /

PREPARE_TO_RECEIVECC) [ael / 12 / / / /

PREPARE_TO_RECEIVECC) [daJ / 12 / / / /

~=~~::~:~g:=~g~~~~~g~~~~~ / 5 / / / /
/ 12 / / / /

=~g~~~~:~~g:~:~~~~~~~~:l / 5 / / - /
/ - / / 2 /

RECEIVE_AND_WAIT[okJ{co) / 6 / / 6 /
RECEIVE_AND_WAIT[ok] (cs) / 7 / / 7 /
RECEIVE_AND_WAIT[okl{cdl / 8 / / 8 /
RECEIVE_AND_WAIT[ok] (Sy) / 9 / / 9 /
RECEIVE_AND_WAIT[okl{ssl / 10 / / 10 /

RECEIVE_AND_WAIT[okl{sd) / 11 / / 11 /
RECEIVE_AND_WAIT[ael / 12 / / 12 /
RECEIVE_AND_WAIT[bol / if / / if /
RECEIVE_AND_WAIT[dal / 12 / / 12 /
RECEIVE_AND_WAIT[dnl / 12 / / 12 /

RECEIVE_AND_WAIT[enl / 5 / / - /
RECEIVE_AND_WAITtepl / 5 / / - /
RECEIVE_AND_WAITtetl / / / / - /
RECEIVE_AND_WAIT[rfl / 12 / / 12 /

Figure E-l. Conversation State Transition Matrix (Part 1 of 3)

E-2 SNA Transaction Programmer's Reference Manual for lU Type 6.2

Conversation States (continued) Verb

Confirm Confirm Sync- Sync- Sync- Deallo-
Send Deallo- point point point cate

cate Send Deallo-
cate

7 8 9 10 11 12

/ / / / / / Initiating Conversation
/ / / / / / ALLOCATE[okl
/ / / / / / ALLOCATE[ael
/ / / / / / ALLOCATE[pel
/ / / / / / ALlOCATE[unl

* * * * * / BACKOUT
/ / / / / / CONFIRM[okl
/ / / / / / CONFIRM[ael
/ / / / / / CONFIRM[bo]
/ / / / / / CONFIRM[dal

/ / / / / / COHFIRM[ep]
/ / / / / / CONFIRM[d]
2 12 / / / / CONFIRMED
/ / / / / / DEAllOCATECF)[okl
/ / / / / / DEAllOCATE(C)[okl

/ / / / / / DEAllOCATE(S)[ok]
1 1 1 1 1 / DEAllOCATECA)[ok]
/ / / / / 1 DEAllOCATE(l)[okl
/ / / / / / DEAllOCATECC)[ael
/ / / / / / DEAllOCATECC)[dal

/ / / / / / DEALLOCATE(C)[ep]
/ / / / / / DEAllOCATECC)[rfl
/ / / / / / FLUSH - - - - - - GET_ATTRIBUTES - - - - - - GET_TYPE

/ / / / / / POST_ON_RECEIPT
/ / / / / / PREPARE_TO_RECEIVECF) [okl
/ / / / / / PREPARE_TO_RECEIVECC) [okl
/ / / / / / PREPARE_TO_RECEIVE(S) [ok]
/ / / / / / PREPARE_TO_RECEIVECC) [ae]

/ / / / / / PREPARE_TO_RECEIVECC) [da]
/ / / / / / PREPARE_TO_RECEIVECC)[ep]
/ / / / / / PREPARE_TO_RECEIVECC)[rf]
/ / / / / / RECEIVE_AND_WAIT[ok] (da)
/ / / / / / RECEIVE_AND_WAIT[okl(se)

/ / / / / / RECEIVE_AND_WAIT[okl(co)
/ / / / / / RECEIVE_AND_WAIT[okl(cs)
/ / / / / / RECEIVE_AHD_WAIT[okl{cd)
/ / / / / / RECEIVE_AND_WAIT[ok] (Sy)
/ / / / / / RECEIVE_AND_WAIT[ok] (ss)

/ / / / / / RECEIVE_AND_WAIT[ok] {sdl
/ / / / / / RECEIVE_AND_WAIT[ae]
/ / / / / / RECEIVE_AND_WAIT[bo]
/ / / / / / RECEIVE_AHD_WAIT[dal
/ / / / / / RECEIVE_AND_WAIT[dn]

/ / / / / / RECEIVE_AND_WAIT[en]
/ / / / / / RECEIVE_AHD_WAIT[epl
/ / / / / / RECEIVE_AHD_WAIT[etl
/ / / / / / RECEIVE_AHD_WAIT[rf]

Appendix E. Conversation State Matrices E-3

Verb Conversation states

Reset Send Defer Defer Receive Confirm
Receive Deallo-

cate

1 2 3 4 5 6

~~g~~~~:~~~~g~:~~I:~~I~:J / / / / - /
/ / / / 2 /

RECEIVE_IMMEDIATE[ok] (co) / / / / 6 /
RECEIVE_IMMEDIATE[ok] (cs) / / / / 7 /
RECEIVE_IMMEDIATE[ok] (cd) / / / / 8 /

RECEIVE_IMMEDIATE[ok] (sy) / / / / 9 /
RECEIVE_IMMEDIATE[ok] (ss) / / / / 10 /
RECEIVE_IMMEDIATE[ok] (sd) / / / / 11 /
RECEIVE_IMMEDIATE[ae] / / / / 12 /
RECEIVE_IMMEDIATE[bo] / / / / * /

~~g~~~~:~~~~g~:~~I~~~ / ,/ / / 12 /
/ / / / 12 /

RECEIVE_IMMEDIATE[en] / / / / - /

~~g~~~~:~~~~g~:~~I:~~ / / / / - /
/ / / / - /

~~g~~~~:~~~~g~:~~I~~~ / / / / 12 /
,/ / / / - /

~~~g:~h·I~o~~HD ,/ / / / - -
/ - / / / / 

SEHD_DATA[ae] / 12 / / / / 

SEHD_DATA[bo] / * / / / / 
SEHD_DATA[da] ,/ 12 / / / / 
SEHD_DATA[ep] / 5 / / / / 
SEHD_DATA[rf] / 12 / / / / 
SEHD_ERROR[ok] / - / / 2 2 

SEHD_ERROR[ae] / 12 / / / / 

~~~g:~~:g:I~:~ / * / / / / 
/ 12 / / ,/ /

SEND_ERROR[dn] / / / / 12 /
SEHD_ERROR[ep] / 5 / / / /

SEND_ERROR[rf] / 12 / / 12 12
SYHCPT[ok] ,/ - 5 1 / /
SYHCPT[bo] / * * * / /
SYHCPT[hm] / - 5 1 / /
TESHP) [ok] / / / / - /
TESTCP)[ae] / / / / 12 /

TESHP) [bo] / / / / * /
TESHP)[da] / / / / 12 /
TESHP)[dn] / / / / 12 /
TESHP)[en] / / / / - /
TESHP)[ep] / / / ,/ - /
TESHP)[et] / / ,/ / - /

TESHP)[pn] / / / / - /
TESHP)[rf] / / ,/ / 12 /
TESHP)[un] / / / / - /
TESHQ)[ok] / - - - - /
TESHQ)[un] / - - - - /

Figure E-2. Conversation State Transition Matrix (Part 2 of 3)

E-4 SHA Transaction Programmer's Reference Manual for LU Type 6.2

Conversation States (continued) Verb

Confirm Confirm Sync- Sync- Sync- Deallo-
Send Deallo- point point point cate

cate Send Deallo-
cate

7 8 9 10 11 12

/ / / / / / RECEIVE_IMMEDIATE[ok] (da)
/ / / / / / RECEIVE IMMEDIATE[ok]{se}
/ / / / / / RECEIVE=ImlEDIATE[okl (co)
/ / / / / / RECEIVE_IMMEDIATE[ok] (cs)
/ / / / / / RECEIVE_IM~lEDIATE[okl (cd)

/ / / / / / RECEIVE_HtMEDIATE[ok] (sy)
/ / / / / / RECEIVE_H1MEDIA TE[ok] (ss)
/ / / / / / RECEIVE_IM~lEDIATE[ok] {sd)
/ / / / / / RECEIVE_IMMEDIATE[ae]
/ / / / / / RECEIVE_IM~EDIATE[bo]

/ / / / / / RECEIVE_HtMEDIATE[da]
/ / / / / / RECEIVE IMMEDIATE[dn]
/ / / / / / RECEIVE=It1MEDIATE[en]
/ / / / / / RECEIVE IMMEDIATE[epl
/ / / / / / RECEIVE=IMtlEDIATE[et]

/ / / / / / RECEIVE INMEDIATE[rf]
/ / / / / / RECEIVE=UIMEDIATE[un]
/ / - / / / REQUEST_TO_SEND
/ / / / / / SEND_DATA[ok]
/ / / / / / SEND_DATA[ae]

/ / / / / / SEND_DATA[bol
/ / / / / / SEND_DATA[daJ
/ / / / / / SEND_DATArepl
/ / / / / / SEND DATA[rf]
2 2 2 2 2 / SEND=ERROR[ok]

/ / / / / / SEND ERROR[ae]
/ / / / / / SEND-ERROR[bo]
/ / / / / / SEtW=ERROR[da]
/ / / / / / SEND ERROR[dn]
/ / / / / / SEtW=ERROR[ep]

12 12 12 12 12 / SEND ERROR[rf]
/ / 5 2 12 / SYNCPHok]
/ / * * * / SYNCPHbo]
/ / 5 2 12 / SYNCPHhm]
/ / / / / / TESTeP)[okl
/ / / / / / TESTeP)[ae]

/ / / / / / TESTePHbo]
/ / / / / / TESTeP) [da]
/ / / / / / TESTeP) [dnJ
/ / / / / / TESTeP) [en]
/ / / / / / TESTCP)[ep]
/ / / / / / TESTePHet]

/ / / / / / TESTeP) [pn]
/ / / / / / TESTeP)[rf]
/ / / / / / TESTeP) [un]
/ / / / / / TESTeQ) [ok]
/ / / / / / TESTeQ) [un]

Appendix E. Conversation State Matrices E-5

Verb Conversation States

Reset Send Defer Defer Receive Confirm
Receive Deallo-

cate

1 2 3 4 5 6

WAIT[ok] / / / / - /
WAIT[ae] / / / / 12 /
WAIT[bo] / / / / * /
WAIT[da] / / / / 12 /
l~AIHdn] / / / / 12 /
WAIHen] / / / / - /

WAIT[ep] / / / / - /
WAIT[et] / / / / - /
WAIT[pn] / / / / - /
WAIT[rf] / / / / 12 /

Param~ter Abbreviations C ...) Return-Code Abbreviations t ...]
A TYPE(A8END_PROG), TYPECABEND~SVC), ae ALLOCATION_ERROR

or TYPECABEND_TIMER) bo BACKED_OUT
C TYPECCONFIRM) , or TYPECSYNC_LEVEL) da DEALLOCATE_ABEND_PROG.

with synchronization level CONFIRM DEALLOCATE_ABEND_SVC. or
F TYPE<FLUSH) DEALLOCATE_ABEND_TIMER
L TYPECLOCAL) dn DEALLOCATE NORMAL
P TESHPOSTED) en PROG_ERROR:NO_TRUNC or
Q TESTCREQUEST_TO_SEND_RECEIVED) SVC_ERROR_NO_TRUNC
S TYPECSYNC_LEVEL) with ep PROG_ERROR_PURGING or

synchronization level SYNCPT SVC_ERROR_PURGING
et PROG_ERROR_TRUNC or

SVC_ERROR_TRUNC
nm HEURISTIC_MIXED
ok OK
pe P.ARAMETER ERROR
pn POSTING_NOT_ACTIVE
rf RESOURCE_FAILURE_NO_RETRY or

RESOURCE_FAILURE_RETRY
un UNSUCCESSFUL

Figure E-3. Conversation State Transition Matrix (Part 3 of 3)

E-6 SNA Transaction Programmer's Reference Manual for LU Type 6.2

Conversation states (continued) Verb

Confirm Confirm Sync- Sync- Sync- Dea11o-
Send Dea11o- point point point cate

cate Send Deallo-
cate

7 8 9 10 11 12

/ / / / / / WAIT[okl
/ / / / / / WAIT[ae]
/" / / / / / WAIT[bo]
/ / / / / / ~oJAIT[dal
/ / / / / / WAIT[dnl
/ / / / / / loJAIT[en]

/ / / / / / WAIT[ep]
/ / / / / / WAIT[etl
/ / / / / / WAIT[pn]
/ / / / / / WAIT[rfl

What-Received Abbreviations L .. } Matri~ S!z!mbols
co CONFIRM / Verb cannot be issued in this
cd CONFIRM_DEALLOCATE state
cs CONFIRM_SEND - Remain in current state
da DATA, DATA_COMPLETE, number Number of next state

DATA_INCOMPLETE, or ll_TRUNCATED * State at completion of most
sd TAKE_SYNCPT_DEALlOCATE recent synchronization point
se SEND
55 TAKE_SYNCPT_SEND
sy TAKE_SYHCPT

Appendix E. Conversation State Matrices E-7

Verb Conversation states

Reset Send Defer Defer Receive Confirm
Receive Deallo-

cate

1 2 3 4 5 6

Initiating Conversation / / / / / /
AllOCATE / / / / / /
BACKOUT / / / / / /
CONFIRM / X / / > >
CONFIRMED / > > > > /

DEAllOCATEC F) / X > > > >
DEAllOCATECC) / X / / > >
DEAllOCATECS) / X > > > >
DEALLOCATECA) / / / / / /
DEAllOCATEC L) / > > > > >

flUSH / / / / > >
GET_ATTRIBUTES / / / / / /
GET_TYPE / / / / / /
POST_ON_RECEIPT / > > > / >
PREPARE_TO_RECEIVECF) / X > > > >

PREPARE_TO_RECEIVECC) / X / / > >
PREPARE_TO_RECEIVECS) / X > > > >
RECEIVE_AND_WAIT / X > > / >
RECEIVE_IMMEDIATE / > > > / >
REQUEST_TO_SEND / > > > / /

SEND_DATA / / > > > >
SEND_ERROR / / > > / /
SYNCPT / X / / > >
TESTeP) / > > > / >
TESHQ) / / / / / >

WAIT / / / / / /

Parameter Abbreviations C ...)
A TYPECABEND_PROG), TYPEeABEND_SVC), or TYPECABEND TIMER)
C TYPEeCONFIRM), or TYPECSYNC_LEVEL) with synchronization level CONFIRM
F TYPECFlUSH)
L TYPEe LOCAL>
P TESTCPOSTED)
Q TESTCREQUEST_TO_SEND_RECEIVED)
5 TYPECSYHC_LEVEL) with synchronization level SYHCPT

Figure E-4. Conversation State Check Matrix

E-8 SHA Transaction Programmer's Reference Manual for LU Type 6.2

Conversation States (continued) Verb

Confirm Confirm Sync- Sync- Sync- Dea11o-
Send Deallo- point point point cate

cate Send Deallo-
cate

7 8 9 10 11 12

/ / / / / / Initiating Conversation
/ / / / / / ALLOCATE
/ / / / / > BACKOUT
> > > > > > CONFIRM
/ / > > > > CONFIRMED

> > > > > > DEALLOCATEC F)
> > / / / > DEALLOCATECC)
> > > > > > DEALLOCATECS)
/ / / / / > DEALLOCATECA)
> > > > > / DEALLOCATE(L)

> > > > > > FLUSH
/ / / / / / GET_ATTRIBUTES
/ / / / / / GET_TYPE
> > > > > > POST_ON_RECEIPT
> > > > > > PREPARE_TO_RECEIVE(F)

> > / / / > PREPARE_TO_RECEIVECC)
> > > > > > PREPARE_TO_RECEIVECS)
> > > > > > RECEIVE_AND_WAIT
> > > > > > RECEIVE_IMf'lEDIATE
> > / > > > REQUEST_TO_SEND

> > > > > > SEND_DATA
/ / / / / > SEND_ERROR
> > / / / > SYNCPT
> > > > > > TESTCP)
> > > > > > TESTCQ)

/ / / / / / WAIT

Hatrix Sl/:mbol:i
> State check ABEND condition occurs in this state
X state check ABEND condition occurs in this state if the program is in the

process of sending a logical record and the record is incomplete
/ State check ABEND condition cannot occur in this state

Appendix E. Conversation State Matrices E-9

This page intentionallY left blank

E-IO SHA Transaction Programmer's Reference Manual for lU Type 6.2

ABEND conditions
for basic conversation verbs

. parameter check 3-8
for LU 6.2 verbs

product-dependent alterna­
tives 3-8

state check 3-8
abnormal ending

See ABEND conditions
access security

already verified indication
4-55

for conversation 4-55
for mapped conversation 4-4
NONE 4-4
PGM 4-5
SAME 4-4

access, resource 5-35
accumulating data

in LUIS receive buffer 3-2

4-4,

in LUIS send buffer 3-2
ACTIVATE_SESSION verb 5-19
ACTIVATION_FAILURE_NO_RETRY return code

for control operator verbs 5-51
ACTIVATION_FAILURE_RETRY return code

for control operator verbs 5-51
Advanced Program-to-Program Communi­
cation (APPC) 1-3

ALLOCATE verb 4-53
used 6y LU services component 4-56
used by transaction program 4-56

allocation
of a conversation 4-53
of a mapped conversation 4-3
of an LU-LU session 4-3, 4-53

ALLOCATION ERROR return code
for control operator verbs 5-51
for conversation verbs 4-99

ALLOCATION_ERROR subcodes
for control operator verbs

ALLOCATION_FAILURE_NO_RETRY 5-51
ALLOCATION_FAILURE_RETRY 5-51
lRANS_PGM_NOT_AVAIL_RETRY 5-51

allocation requests, draining 5-13
already verified 5-27, 5-25
already verified indication 4-4, 4-55
APPC

See Advanced Program-to-Program Com­
munication (APPC)

application transaction program 4-2,
4-44

arguments, parameter
See parameter, arguments

authorization list
resource access 5-35

BACKED_OUT return code 4-101
backed out state

of a conversation 4-97
See also conversation state

changes
backout request

sent by BACKOUT verb 4-45
BACKOUT verb 4-45
base and optional support

basic conversation verbs A-9
CNOS verbs A-14
control operator return codes A-19
conversation return codes A-12
LU definition verbs A-16
mapped conversation verbs A-5
notes on implementation details A-20
session control verbs A-IS
type-independent conversation
verbs A-8

what-received indications A-13
base and options sets

applicability to LU 6.2 products 3-9
base set

of LU 6.2 verbs 3-8
base set of verbs 3-8
base support of verbs

See base and optional support
basic conversation

used as a eNOS conversation 5-4
basic conversation verbs 4-52, 3-5,

4-52
See also individual verbs
correlation to conversation
states 4-98

examples of use B-1
boundary, protocol

for conversation verbs
ALLOCATION_FAILURE_NO_RETRY 4-99
ALLOCATION_FAILURE_RETRY 4-99
CONVERSATION_TYPE_MISMATCH 4-100
PIP NOT ALLOWED 4-100
PIP:NOT:SPECIFIED_CORRECTLY 4-100
SECURITY_NOT_VALID 4-100
SYNC_LEVEL_NOT_SUPPORTED_BY_LU
SYNC_LEVEL_NOT_SUPPORTED_BY_PGM
lPN_NOT_RECOGNIZED 4-100
TRANS_PGM_NOT_AVAIL_NO_RETRY 4-100
TRANS_PGM_NOT_AVAIL_RETRY 4-100

4-100 See protocol boundary

ALLOCATION_FAILURE_NO_RETRY
See ALLOCATION_ERROR subcodes

ALLOCATION_FAILURE_RETRY
See ALLOCATION_ERROR subcodes

allocation request
carrying transaction program

name 3-1

4-100bracketed parameters 3-10
buffering by LU

general description 3-2
of allocation request 4-6, 4-56
of data 4-36, 4-88
of deallocation request 4-13, 4-64
of error notification 4-38, 4-90
of SEND indication 4-23, 4-76

Index X-I

change number of sessions
See CNOS

CHANGE_SESSION_LIMIT verb 5-5
changing

CLU,mode) session limit 5-5
contention-winner polarities 5-5
operating parameters for a mode 5-30
operating parameters for a remote

LU 5-26
operating parameters for a trans­
action program 5-34

operating parameters for the local
LU 5-23

characteristics. protocol boundary
See protocol boundary characteristics

cleanup, type of deactivation 5-21
CNOS

conversation 5-4
request and reply 5-4
transaction 5-4
verbs 5-4

CNOS_SUPPORT parameter
of DEFINE_REHOTE_LU verb 5-27
of DISPLAY_REMOTE_LU verb 5-42

COMfolAND_RACE_REJECT return code
for control operator verbs 5-51

communication. interprogram
See interprogram communication

complete data record
received by MC_RECEIVE_AND_WAIT

verb 4-25
received by MC RECEIVE IMMEDIATE
verb 4-30 - -

CONFIRM_DEALLOCATE indication
received by HC RECEIVE AND WAIT
verb 4-26 - --

received by MC_RECEIVE_IMMEDIATE
verb 4-30

received by RECEIVE_AND_WAIT
verb 4-79

recei ved by RECEIVE_H1MEDIATE
verb 4-83

CONFIRM indication
recei ved by r-1C_RECEIVE_AND_WAIT
verb 4-26

received by MC_RECEIVE_IMMEDIATE
verb 4-30

received by RECEIVE_AND_WAIT
verb 4-79

received by RECEIVE_IMMEDIATE
verb 4-83

CONFIRM_SEND indication
recei ved by 1'1C_RECEIVE_AND_WAIT
verb 4-26

received by Me_RECEIVE_IMMEDIATE
verb 4-30

received by RECEIVE_AND_WAIT
verb 4-79

received by RECEIVE_IMMEDIATE
verb 4-83

confirm state
of a conversation 4-97

See also conversation state
changes

CONFIRM synchronization level 4-4, 4-54
CONFIRM verb 4-59
confirmation reply

sent by CONFIRMED verb 4-61
sent by MC_CONFIRMED verb 4-10

confirmation request

received by MC_RECEIVE_AND_WAIT
verb 4-26

received by MC_RECEIVE_IMMEDIATE
verb 4-30

received by RECEIVE_AND_WAIT
verb 4-79

received by RECEIVE_IMMEDIATE
verb 4-83

sent by CONFIRM verb 4-59
sent by MC CONFIRM verb 4-8

CONFIRMED verb 4-61
CONLOSERS_SESSION_COUNT parameter

of DISPLAY_MODE verb 5-46
connection, LU-to-LU

See LU-to-LU connection
connection, program-to-program

See program-to-program connection
contention winner and loser

See LU-LU session
contention-winner polarities

changing 5-5
initializing 5-8
processing by target lU 5-16
resetting 5-12

control-operator
transaction program 5-1

control-operator verbs 5-1, 3-6
See also individual verbs
correlation to return codes 5-54
return codes for

See return codes for control oper­
ator verbs

sUbcategories 5-3
conversation

allocated on LU-LU session 2-1
allocation of 4-53
changing to receive state

using PREPARE_TO_RECEIVE
verb 4-73

using RECEIVE_AND_WAIT verb 4-77
changing to send state

using SEND_ERROR verb 4-90
deallocation of 4-62
obtaining attributes of 4-68
requesting change to send state

using REQUEST_TO_SEND verb 4-86
send-receive relationship 3-2
starting, resource 1D of 3-1
two-way alternate data transfer 3-2

CONVERSATION_CORRELATOR parameter
of MC_GET_ATTRIBUTES verb 4-17, 4-69

conversation-level security 5-29
conversation-level security verifica­
tion 5-23

conversation resource 1-3
conversation state changes

backed-out state, entered by
BACKED_OUT return code 4-101

confirm state, entered by
RECEIVE_AND_WAIT verb 4-79
RECEIVE_IMMEDIATE verb 4-84

deallocate state, entered by
ALLOCATION_ERROR return code 4-99
CONFIRMED verb 4-61
DEALLOCATE_ABEtID_PROG return

code 4-101
DEALLOCATE_ABEND return

code 4-101
DEALLOCATE_ABEND_SVC return

code 4-101
DEALLOCATE_ABEND_TIMER return

code 4-101
DEALLOCATE_NORMAL return

code 4-101

X-2 SNA Transaction Programmer's Reference Manual for lU Type 6.2

MC_CONFIRMED verb 4-10
RESOURCE_FAILURE_NO_RETRY return
code 4-103

RESOURCE_FAILURE_RETRY return
code 4-103

SYNCPT verb 4-47
defer state, entered by

DEALLOCATE verb 4-63
PREPARE_TO_RECEIVE verb 4-74

receive state, entered by
CONFIRM verb 4-59
CO~FIRMED verb 4-61
connected remote program 4-57
FLUSH verb 4-67
PREPARE_TO_RECEIVE verb 4-74
PROG_ERROR_PURGING return
code 4-103

RECEIVE_AND_WAIT verb 4-79
SVC_ERROR_PURGING return

code 4-103
SYNCPT verb 4-47

reset state. entered by
CONFIRM verb 4-59
DEALLOCATE verb 4-63
FLUSH verb 4-67
SYNCPT verb 4-47

send state. entered by
ALLOCATE verb 4-56
CONFIRMED verb 4-61
FMH_DATA_NOT_SUPPORTED return
code 4-101

MAP_EXECUTION_FAILURE return
code 4-102

MAP_NOT_FOUND return code 4-102
MAPPING_NOT_SUPPORTED return

code 4-102
MC_CONFIRMED verb 4-10
RECEIVE_AND_WAIT verb 4-79
RECEIVE_IMMEDIATE verb 4-84
SEND_ERROR verb 4-91
SYNCPT verb 4-47

state after last synchronization
point. entered by

BACKOUT verb 4-45
state unchanged by

CONFIRM verb 4-59
flUSH verb 4-67
GET_ATTRIBUTES verb 4-69
GET_TYPE verb 4-46
MC_POST_OH_RECEIPT verb 4-18
MC_TEST verb 4-41
POST_ON_RECEIPT verb 4-70
RECEIVE_AND_WAIT verb 4-79
RECEIVE_IMMEDIATE verb 4-84
REQUEST_TO_SEND verb 4-86
SEND_DATA verb 4-88
SEND_ERROR verb 4-91
SYNCPT verb 4-47
TEST verb 4-95
WAIT verb 4-51

sync-point state. entered
RECEIVE_AND_WAIT verb
RECEIVE_IMMEDIATE verb

conversation state matrices
conversation states

by
4-79

4-84
E-1

See also conversation state changes
backed out 4-97
confirm 4-97
correlation to basic conversation

verbs 4-98
deallocate 4-97
defer 4-97
local program's view of 4-97
receive 4-97

reset 4-97
send 4-97
sync point 4-97

conversation type 3-3
specified by TYPE parameter 4-54

CONVERSATION_TYPE_MISMATCH
See ALLOCATION ERROR subcodes

CONVERSATION_TYPE-parameter
of DEFINE_TP verb 5-35
of DISPLAY TP verb 5-47

conversation verbs 4-1. 3-3
correlation to return codes 4-105
return codes for

See return codes for conversation
verbs

subcategories 4-1
CONWINNER_AUTO_ACTIVATE_LIMIT parameter

of DEFHIE_1'10DE verb 5-32
of DISPLAY_MODE verb 5-46

CONWINNERS_SESSION_COUNT parameter
of DISPLAY_MODE verb 5-46

data
See also OK subcodes
mapping 4-35
posting receipt of 4-70
received by RECEIVE_AND_WAIT
verb 4-77

received by RECEIVE_IMMEDIATE
verb 4-82

sent by SEND_DATA verb 4-87
Data Encryption Standard (DES) 5-28
data field of a logical record 4-87
DATA MAPPING parameter

of DEFINE_TP verb 5-37
of DISPLAY_TP verb 5-48

DATA parameter
of MC_RECEIVE_AND_WAIT verb 4-25
of MC_RECEIVE_IMMEDIATE verb 4-30
of MC_SEND_DATA verb 4-35
of RECEIVE_AND_WAIT verb 4-78
of RECEIVE_IMMEDIATE verb 4-83
of SEND_DATA verb 4-87

data record
posting receipt of 4-18
received by MC_RECEIVE_AHD_WAIT
verb 4-24

received by MC_RECEIVE_IMMEDIATE
verb 4-29

sent by MC_SEND_DATA verb 4-35
DEACTIVATE_SESSION verb 5-21
DEALLOCATE_ABEND_PROG return code 4-101
DEALLOCATE_ABEND return code 4-101
DEALLOCATE_ABEND_SVC return code 4-101
DEALLOCATE_ABEND_TIMER return

code 4-101
DEALLOCATE_NORMAL return code 4-101
deallocate state

of a conversation 4-97
See also conversation state

changes
DEALLOCATE verb 4-62
deallocation

of a conversation 4-62
of a mapped conversation 4-11

defer state
of a conversation 4-97

See also conversation state
changes

Index X-3

DEFINE_LOCAL_LU verb 5-23
DEFINE_MODE verb 5-30
DEFIHE_REMOTE_LU verb 5-26
DEFINE TP verb 5-34
DELETE-verb 5-49
deleting

operating parameters of local
LU 5-49

DISPLAY_LOCAL_LU verb 5-40
DISPLAY_MODE verb 5-44
DISPLAY_REMOTE_LU verb 5-42
DISPLAY_TP verb 5-47
displaying

operating parameters for a mode 5-44
operating parameters for a remote

LU 5-42
operating parameters for a trans­
action program 5-47
o~erating parameters for the local

LU 5-40
DRAIN_LOCAL_LU parameter

of DISPLAY_MODE verb 5-46
DRAIN_REMOTE_lU parameter

of DISPLAY_MODE verb 5-46
DRAIN_SOURCE parameter

of RESET_SESSION_LIMIT verb 5-13
DRAIN_TARGET parameter

of RESET_SESSIOH_LIMIT verb 5-13

effective program-to-program con­
nection 2-2

END statement 3-2
error notification

indicated by return code 4-102
sent by MC_SEND_ERROR verb 4-38
sent by SEND_ERROR verb 4-90

execution
transaction program 3-1
verb 3-2

FILL parameter
of POST_ON_RECEIPT verb
of RECEIVE_AND_WAIT verb
of RECEIVE IMMEDIATE verb

FLUSH verb 4~67
flushing LU's send buffer

by ALLOCATE verb 4-56
by BACKOUT verb 4-45
by CONFIRM verb 4-59
by DEALLOCATE verb 4-63
by FLUSH verb 4-67
by MC_ALLOCATE verb 4-6
by MC_CONFIRM verb 4-8

4-70
4-77

4-82

by MC_DEALLOCATE verb 4-12
by Me_FLUSH verb 4-15
by MC_PREPARE_TO_RECEIVE verb 4-20
by MC_RECEIVE_AND_WAIT verb 4-24
by MC_SEND_ERROR verb 4-38
by PREPARE_TO_RECEIVE verb 4-73
by RECEIVE_AND_WAIT verb 4-77
by SEND_ERROR verb 4-90
by SYNCPT verb 4-47

general description 3-2
FM header data

received by MC_RECEIVE_AND_WAIT
verb 4-25

received by MC_RECEIVE TMMEDIATE
verb 4-30

sent by MC_SEND_DATA verb 4-35
FMH_DATA_NOT_SUPPORTED return
code 4-101

FMH_DATA parameter
of DEFINE TP verb 5-37
of DISPLAY_TP verb 5-48
of MC_SEND_DATA verb 4-35

FORCE parameter
of RESET_SESSION_LIMIT verb 5-14

FULLY_QUALIFIED_LU_NAME parameter
of DEFINE_LOCAL_LU verb 5-23
of DEFINE_MODE verb 5-30
of DEFINE_REMOTE_LU verb 5-26
of DISPLAY_lOCAL_LU verb 5-40
of DISPLAY_MODE verb 5-45
of DISPLAY_REMOTE_LU ver'b 5-42

generic protocol boundary 1-2
GET_ATTRIBUTES verb 4-68
GET_TYPE verb 4-46

half-duplex dnta transfer
See two-way alternate dnta transfer

HEURISTIC_MIXED retur"n code 4-101
hex (hexadecimal) 4-87

incomplete data record
received by MC RECEIVE_AND_WAIT
verb 4-25

received by MC_RECEIVE_IMMEDIATE
verb 4-30

INITIALIZE_SESSION_LIMIT verb 5-8
initializing

(LU,mode) session limit 5-8
contention-winner polarities 5-8
operating parameters for a mode 5-30
operating parameters for a remote

LU 5-26
operating parameters for a trans­
action program 5-34

operating parameters for the local
lU 5-23

INITIATE_TYPE parameter
of DEFINE_RE~10TE_LU verb 5-27
of DISPLAY_REMOTE_lU verb 5-42

instance of transaction program 3-1
interconnection of programs

initiating 2-2
logical 2-2

interprogram communication 2-1. 1-3
issuing verbs 3-2

X-4 SNA Transaction Programmer's Reference Manual for LU Type 6.2

length (LL) field of a logical
record 4-87

LENGTH parameter
of MC_POST_ON_RECEIPT verb
of MC_RECEIVE_AND_WAIT verb
of MC_RECEIVE_IMMEDIATE verb
of MC_SEND_DATA verb 4-35

4-18
4-24

4-29

of POST_ON_RECEIPT verb 4-70
of RECEIVE AND WAIT verb 4-77
of RECEIVE=H1MEDIATE verb 4-82
of SEND_DATA verb 4-87

lengths of symbol strings C-l
local LU

defining operating parameters
for 5-23

definition 3-3
deleting operating parameters
of 5-49

displaying operating parameters
for 5-40

LOCAL_LU_NAME parameter
of DELETE verb 5-49

local program
definition 3-3

local resources 1-1
local support

of LU 6.2 verbs 3-8
LOCALLY_KNOWN_LU_NAME parameter

of DEFINE_REMOTE_LU verb 5-26
of DISPLAY_REMOTE_LU verb 5-42

LOCKS parameter
of MC_PREPARE_TO_RECEIVE verb 4-20
of PREPARE_TO_RECEIVE verb 4-73

LOG DATA parameter
of DEALLOCATE verb 4-63
of SEND_ERROR verb 4-90

logical network 1-1
logical records

complete and incomplete 4-88
data field of 4-87
length (LL) field of 4-87
posting receipt of 4-70
received by RECEIVE_AND_WAIT
verb 4-77

received by RECEIVE_IMMEDIATE
verb 4-82

sent by SEND_DATA verb 4-87
logical resources 1-1
logical unit (LU) 1-1

See also LU
logical unit type 6.2 1-1
LU

local 3-3
See also local LU

remote 3-3
See also remote LU

source 5-4
See also source LU

target 5-4
See also target LU

LU definition verbs 5-22
LU-LU password

example for entering 5-28
use 5-28

LU_LU_PASSWORD parameter

of DEFINE_REMOTE_lU verb 5-27
LU-LU session

activation
by ACTIVATE_SESSION verb 5-19
by CHANGE_SESSION_LIMIT verb 5-5
by HIITIALIZE_SESSION_LIMIT

verb 5-8
allocation of 4-3, 4-53
contention loser 2-1
contention winner 2-1
conversation allocated on 2-1
deactivation

by CHANGE_SESSION_LIMIT verb 5-5
by DEACTIVATE_SESSION verb 5-21
by RESET_SESSION_LIMIT verb 5-12

logical connection 1-1
LUs connected by 2-1
serially reusable resource 1-3

LU-LU sessions 5-1
parallel 5-1
single 5-1

LU_MODE_SESSION_COUHT parameter
of DISPLAY_MODE verb 5-46

LU_MODE_SESSION_lIMIT_CLOSED return code
for control operator verbs 5-52

LU_MODE_SESSION_lIMIT_EXCEEDED return
code

for control operator verbs 5-52
LU_MODE_SESSION_LIMIT_NOT_ZERO return
code

for control operator verbs 5-52
LU_MODE_SESSION_LIMIT parameter

of CHANGE_SESSION_LIMIT verb 5-5
of DISPLAY_MODE verb 5-46
of INITIALIZE_SESSION_LIMIT verb 5-8

LU_MODE_SESSION_LIMIT_ZERO return code
for control operator verbs 5-52

LU_NAME parameter
of ACTIVATE_SESSION verb 5-19
of ALLOCATE verb 4-53
of CHANGE_SESSION_LIMIT verb 5-5
of INITIALIZE_SESSION_LIMIT verb 5-8
of MC_ALLOCATE verb 4-3
of PROCESS_SESSION_LIMIT verb 5-16
of RESET_SESSION_LIMIT verb 5-12

lU services component program 4-52
lU_SESSION_COUNT parameter

of DISPlAY_lOCAl_LU verb 5-40
lU_SESSION_LIMIT_EXCEEDED return code

for control operator verbs S-52
LU_SESSION_LIMIT parameter

of DEFINE_lOCAL_LU verb 5-23
of DISPLAY_LOCAL_LU verb 5-40

LU-to-LU connection
parallel-session 5-1
single-session 5-1

lU 6.2
protocol boundary 2-1
type of logical unit 1-1

lU,mode session limit
changing 5-5
initializing 5-8
processing by target LU 5-16
resetting 5-12
specified by LU_MODE_SESSIDN_LIMIT
parameter 5-5

lUW_IDENTIFIER parameter
of GET_ATTRIBUTES verb 4-69
of MC_GET_ATTRIBUTES verb 4-17

Index X-S

MAP_EXECUTION_FAILURE return code 4-101
MAP_NAME parameter

of DEFINE LOCAL LU verb 5-24
of MC_RECEIVE_AND_WAIT verb 4-26
of MC_RECEIVE_IMMEDIATE verb 4-31
of MC_SEND_DATA verb 4-35

MAP_NAMES
of DISPLAY_LOCAL_LU verb 5-40

MAP_NOT_FOUND return code 4-102
mapped conversation

allocation of 4-3
changing to receive state

using MC_PREPARE_TO_RECEIVE
verb 4-20

using MC_RECEIVE_AND_WAIT
verb 4-24

chang!ng to send state
uSing MC_SEND_ERROR verb 4-38

deallocation of 4-11
obtaining attributes of 4-16
requesting change to send state

using MC_REQUEST_TO_SEND
verb 4-34

mapped conversation state changes
confirm state. entered by

MC_RECEIVE_AND_WAIT verb 4-26
MC_RECEIVE_IMMEDIATE verb 4-31

defer state. entered by
MC_DEALLOCATE verb 4-12
MC_PREPARE_TO_RECEIVE verb 4-21

receive state. entered by
connected remote program 4-7
MC_CONFIRM verb 4-8
MC_CONFIRMED verb 4-10
MC_FLUSH verb 4-15
MC_PREPARE_TO_RECEIVE verb 4-22
MC_RECEIVE_AND_WAIT verb 4-26

reset state. entered by
MC_CONFIRM verb 4-8
MC_DEALLOCATE verb 4-12
MC_FLUSH verb 4-15

send state. entered by
MC_ALLOCATE verb 4-6
MC_RECEIVE_AND_WAIT verb 4-26
MC_RECEIVE_IMMEDIATE verb 4-3'1
MC_SEND_ERROR verb 4-39

state unchanged by
MC_CONFIRM verb 4-8
MC_FLUSH verb 4-15
MC_GET_ATTRIBUTES verb 4-17
MC_RECEIVE_AND_WAIT verb 4-26
MC_RECEIVE_IMMEDIATE verb 4-31
MC_REQUEST_TO_SEND verb 4-34
MC_SEND_DATA verb 4-36
MC_SEND_ERROR verb 4-39

sync-point state. entered by
MC_RECEIVE_AND_WAIT verb
~'C_RECEIVE_IMMEDlA TE verb

mapped conversation verbs 4-2,

4-26
4-31

3-3, 4-2
See also individual verbs

MAPPING_NOT_SUPPORTED return code 4-102
mapping of data 4-35
MC_ALLOCATE verb 4-3
MC_CONFIRM verb 4-8
MC_CONFIRMED verb 4-10
MC_DEALLOCATE verb 4-11
MC_FLUSH verb 4-15
MC_GET_ATTRIBUTES verb 4-16
MC_POST_ON_RECEIPT verb 4-18
MC_PREPARE_TO_RECEIVE verb 4-20

MC_RECEIVE_AND_WAIT verb 4-24
MC RECEIVE IMMEDIATE verb 4-29
MC:REQUEST:TO_SEND verb 4-34

attention mechanism
See MC_REQUEST_TO_SEND verb

MC_SEND_DATA verb 4-35
MC SEND ERROR verb 4-38
MIN_CONloSERS parameter

of DISPLAY_MODE verb 5-46
MItCCONWINNERS parameter

of DISPLAY_MODE verb 5-46
MIN_CotlWINNERS_SOURCE parameter

of CHANGE_SESSION_LIMIT verb 5-5
of INITIALIZE SESSION LIMIT verb 5-8

MIN_CONWINNERS_TARGET para~eter
of CHANGE_SESSION_LIMIT verb 5-6
of INITIALIZE SESSION LIMIT verb 5-9

mode --
defining operating parameters
for 5-30

displaying operating parameters
for 5-44

MODE_NAME parameter
of ACTIVATE SESSION verb 5-19
of ALLOCATE-verb 4-53
of CHANGE_SESSION_LIMIT verb 5-5
of DEFINE_MODE verb 5-30
of DELETE verb 5-49
of DISPLAY_MODE verb 5-45
of GET ATTRIBUTES verb 4-68
of INITIALIZE_SESSION_LIMIT verb 5-8
of MC_ALLOCATE verb 4-3
of MC GET ATTRIBUTES verb 4-16
of PROCESS_SESSION_LIMIT verb 5-16
of RESET_SESSION_LIMIT verb 5-12

MODE_NAMES parameter
of DISPLAY_REMOTE_LU verb 5-43

name
LU 4-3, 4-53
mode 4-3, 4-53
transaction program 3-1, 4-3. 4-54

negotiation of eNOS parameters 5-52
network

logical 1-1
physical 1-1

network properties designated by mode
name 4-3. 4-53

NONE access security 4-4, 4-55
NOHE synchronization level 4-4, 4-54
normal, type of deactivation 5-21
NOT_DATA

See OK subcodes

OK return code
for control operator verbs 5-52
for conversation verbs 4-102

OK subcodes
for control operator verbs

AS NEGOTIATED 5-52
AS:SPECIFIED 5-52
FORCED 5-52

for conversation verbs
DATA 4-102

X-6 5NA Transaction Programmer's Reference Manual for lU Type 6.2

NOT DATA 4-102
OK subcodes

See OK sUbcodes
operating parameters for a mode

defining 5-30
displaying 5-44

operating parameters for a remote lU
defining 5-26
displaying 5-42

operating parameters for a transaction
program

defining 5-34
displaying 5-47

operating parameters for the local LU
defining 5-23
displaying 5-40

operating parameters of local LU
deleting 5-49

option sets
of LU 6.2 verbs 3-8

optional sets of verbs 3-8
optional support of verbs

See base and optional support
overview description of verbs 3-3
OloltCFUll Y_QUALlFIED_LU_NAME parameter

of GET_ATTRIBUTES verb 4-68
of MC_GET_ATTRIBUTES verb 4-16

PARAllEL_SESSION_SUPPORT parameter
of DEFINE_REf'TOTE_LU verb 5-27
of DISPlAY_REMOTE_lU verb 5-42

parallel sessions
defi niti on 5-1

parameter
arguments

keyword
variable
vertical

3-10
3-10

Ii st of 3-10
name 3-10

parameter check
See ABEND conditions

PARAMETER_ERROR return code
for control operator verbs 5-52
for conversation verbs 4-102

parameters. verb
See verb, parameters

PARTNER_FULLY_QUALIFIED_LU_NAME parame­
ter

of GET_ATTRIBUTES verb 4-68
of Me_GET_ATTRIBUTES verb 4-16

PARTNER_LU_NAME parameter
of GET_ATTRIBUTES verb 4-68
of MC_GET_ATTRIBUTES verb 4-16

PGM access security 4-5, 4-55
physical network 1-1
PIP

See program initialization parameters
(PIP)

PIP_NOT_ALLOWED
See ALLOCATION_ERROR subcodes

PIP_NOT_SPECIFIED_CORRECTLY
See ALLOCATION_ERROR subcodes

PIP parameter
of ALLOCATE verb 4-55
of DEFINE_IP verb 5-37
of DISPLAY_TP verb 5-48
of Me_ALLOCATE verb 4-5

POST_ON_RECEIPT verb 4-70
POSTING_NOT_ACTIVE return code 4-102

PREPARE_TO_RECEIVE verb 4-73
PROCEDURE statement 3-1
PROCESS_SESSION_LIMIT verb 5-16
processing by target LU

(LU,mode) session limit 5-16
contention-winner polarities 5-16

product-support subsetting
applicability to LU 6.2 products 3-9
definition 3-8

PROG_ERROR_NO_TRUNC return code 4-102
PROG_ERROR_PURGING return code 4-103
PROG_ERROR_TRUHC return code 4-103
program

interconnection 2-2
local 3-3

See also local program
remote 3-3

See also remote program
transaction

See transaction program
program initialization parameters (PIP)

on ALLOCATE verb 4-55
on MC_ALLOCATE verb 4-5
on PROCEDURE statement 3-1

program-to-program connection
effective 2-2
through SNA network 2-1

protected resource
See also resources, protected
allocating a conversation as 4-54
allocating a mapped conversation
as 4-4

backout of 4-45
sync point of 4-47

protocol boundary
definition 1-2
generic 1-2
LU 6.2 2-1
states 2-2
structure 2-2
verbs 2-2

protocol boundary characteristics
attention mechanism 1-3
commitment control 1-4
conversation lifetime 1-3
conversation overhead 1-3
efficient allocation 1-3
error notification 1-4
levels of conversations 1-4
mode of service 1-4
simUltaneous activation 1-3
subset definition 1-4
symmetry 1-4
sync-point service 1-4
two-way alternate data transfer 1-3

purging of information
by MC SEND ERROR verb 4-39
by SEND_ERROR verb 4-92
return codes indicating 4-103

RECEIVE_AND_WAIT verb 4-77
receive buffer of LU

accumulating data in 3-2
RECEIVE IMMEDIATE verb 4-82
RECEIVC~1"X_RU_SIZE_LOWER_BOUND parame­
ter

of DEFINE_MODE verb 5-31
of DISPLAY_MODE verb 5-45

Index X-7

RECEIVE_MAX_RU_SIZE_UPPER_BOUND parame­
ter

of DEFINE_MODE verb 5-31
of DISPLAY MODE verb 5-45

RECEIVE_PACING_WINDOW parameter
of DEFINE_MODE verb 5-31
of DISPLAY_MODE verb 5-45

receive state
changing conversation to

using PREPARE_lO_RECEIVE
verb 4-73

using RECEIVE_AND_WAIT verb 4-77
changing mapped conversation to

using MC_PREPARE_TO_RECEIVE
verb 4-20

using MC_RECEIVE_AND_WAIT
verb 4-24

of a conversation 4-97
See also conversation state
changes

receive support of symbol strings C-3
receiving information

using MC_RECEIVE_AND_WAIT verb 4-24
using MC_RECEIVE_IMMEDIATE verb 4-29
using RECEIVE_AND_WAIT verb 4-77
using RECEIVE_IMMEDIATE verb 4-82

remote LU
defining operating parameters

for 5-26
definition 3-3
displaying operating parameters

for 5-42
specified by LU_HAME parameter 4-3.
4-53

REMOTE_LU_NAME parameter
of DELETE verb 5-49

REMOTE_LU_NAMES
of DISPLAY_LOCAL_LU verb 5-40

remote program
definition 3-3
specified by TPN parameter 4-3. 4-54

remote resources 1-1
remote support

of LU 6.2 verbs 3-9
REQUEST_EXCEEDS_MAX_ALLOWED return code

for control operator verbs 5-53
REQUEST_TO_SEND_RECEIVED parameter

of CONFIRM verb 4-59
of MC_CONFIRM verb 4-8
of MC_RECEIVE_AND_WAIT verb 4-25
of Me_RECEIVE_IMMEDIATE verb 4-29
of MC_SEND_DATA verb 4-36
of MC_SEND_ERROR verb 4-38
of RECEIVE_AND_WAIT verb 4-78
of RECEIVE IMMEDIATE verb 4-83
of SEND_DATA verb 4-87
of SEND_ERROR verb 4-91
of SYNCPT verb 4-47

REQUEST_lO_SEND verb 4-86
RESET_SESSION_LIMIT verb 5-12
reset state

of a conversation 4-97
See also conversation state

changes
resetting

(LU,mode) session limit 5-12
contention-winner polarities 5-12

resource
obtaining type of 4-46

resource access
RESOURCE_FAILURE_NO_RETRY return code

for control operator verbs 5-53
for conversation verbs 4-103

RESOURCE FAILURE RETRY return
code 4=103 -

resource ID
assigned to conversation 4-53
assigned to mapped conversation 4-3
of starting conversation 3-1
unassigned from conversation 4-62
unassigned from mapped conversa-
ti on 4-11

RESOURCE LIST parameter
of WAIT verb 4-50

RESOURCE parameter
of ALLOCATE verb 4-55
of CONFIRM verb 4-59
of CONFIRMED verb 4-61
of DEALLOCATE verb 4-62
of FLUSH verb 4-67
of GET ATTRIBUTES verb 4-68
of GET:TYPE verb 4-46
of MC ALLOCATE verb 4-5
of MC-CONFIRM verb 4-8
of MC-CONFIRMED verb 4-10
of MC-DEALLOCATE verb 4-11
of MC-FLUSH verb 4-15
of MC:GET_ATTRIBUTES verb 4-16
of MC_POST_ON_RECEIPT verb 4-18
of MC_PREPARE_TO_RECEIVE verb 4-20
of MC RECEIVE AND WAIT verb 4-24
of MC:RECEIVE:IMMEDIATE verb 4-29
of MC REQUEST TO SEND verb 4-34
of MC:SEHD_DATA verb 4-35
of MC_SEND_ERROR verb 4-38
of MC_TEST verb 4-41
of POST_ON_RECEIPT verb 4-70
of PREPARE_TO_RECEIVE verb 4-73
of PROCESS_SESSION_LIMIT verb 5-16
of RECEIVE_AND_WAIT verb 4-77
of RECEIVE_H1MEDIATE verb 4-82
of REQUEST_TO_SEND verb 4-86
of SEND DATA verb 4-87
of SEND-ERROR verb 4-90
of TEST-verb 4-94

resources
conversation

See conversation resource
examples of 1-1
local 1-1
logical 1-1
protected 1-4

See also protected resource
remote 1-1
serially reusable 1-3
state representation of 1-1
unprotected 1-4, 4-49

RESPONSIBLE parameter
of CHANGE_SESSION_LIMIT verb 5-6
of RESET_SESSION_LIMIT verb 5-12

RETURN_CODE parameter
of ACTIVATE SESSION verb 5-19
of ALLOCATE-verb 4-55
of CHANGE_SESSION_LIMIT verb 5-6
of CONFIRM verb 4-59
of DEACTIVATE_SESSION verb 5-21
of DEALLOCATE verb 4-63
of DEFINE LOCAL LU verb 5-24
of DEFINE:MODE verb 5-32
of DEFIHE_REMOTE_LU verb 5-27
of DEFINE_TP verb 5-37
of DELETE verb 5-49
of DISPLAY_LOCAL_LU verb 5-40
of DISPLAY_MODE verb 5-45
of DISPlAY_REMOTE_LU verb 5-42
of DISPLAY_TP verb 5-47
of INITIALIZE_SESSION_LIMIT verb 5-9

X-8 SMA Transaction Programmer's Reference Manual for LU Type 6.2

of MC_ALLOCATE verb 4-5
of MC_CONFIRM verb 4-8
of MC_DEALLOCATE verb 4-12
of MC_PREPARE_TO_RECEIVE verb 4-21
of MC_RECEIVE_AND_WAIT verb 4-24
of MC_RECEIVE_If'lMEDIATE verb 4-29
of MC_SEND_DATA verb 4-35
of MC_SEND_ERROR verb 4-38
of MC_TEST verb 4-41
of PREPARE TO RECEIVE verb 4-74
of PROCESS:SESSION_LIMIT verb 5-16
of RECEIVE AND WAIT verb 4-78
of RECEIVE:IMMEDIATE verb 4-82
of RESET_SESSION_LIMIT verb 5-14
of SEND_DATA verb 4-87
of SEND_ERROR verb 4-90
of SYNCPT verb 4-47
of TEST verb 4-94
of WAIT verb 4-50

return codes for control operator verbs
ACTIVATIOH_FAILURE_NO_RETRY 5-51
ACTIVATION FAILURE RETRY 5-51
ALLOCATION:ERROR 5-51
ALLOCATION_ERROR subcodes

See ALLOCATION ERROR subcodes
COMr1AHD_RACE_REJECT 5-51
correlation table 5-54
LU_MODE_SESSION_LIMIT_CLOSED 5-52
LU_MODE_SESSION_LIMIT_EXCEEDED 5-52
LU_MODE_SESSION_LIMIT_NOT_ZERO 5-52
LU_MODE_SESSION_LIMIT_ZERO 5-52
LU_SESSION_LIMIT_EXCEEDED 5-52
OK 5-52
OK subcodes

See OK subcodes
PARAMETER_ERROR 5-52
REQUEST_EXCEEDS_MAX_ALLOWED 5-53
RESOURCE_FAILURE_t~O_RETRY 5-53
UNRECOGNIZED310DE_NAME 5-53

return codes for conversation verbs
ALLOCATION ERROR 4-99
ALLOCATION:ERROR subcodes

See ALLOCATION_ERROR subcodes
BACKED_OUT 4-101
correlation table 4-105
DEALLOCATE ABEND 4-101
DEALLOCATE:ABEND_PROG 4-101
DEALLOCATE_ABEND_SVC 4-101
DEALLOCATE_ABEND_TIMER 4-101
DEALLOCATE_NORMAL 4-101
FMH_DATA_NOT_SUPPORTED 4-101
HEURISTIC_MIXED 4-101
MAP_EXECUTION_FAILURE 4-101
MAP_NOT_FOUND 4-102
MAPPING_NOT_SUPPORTED 4-102
OK 4-102
PARAMETER_ERROR 4-102
POSTING_NOT_ACTIVE 4-102
PROG_ERROR_NO_TRUNC 4-102
PROG_ERROR_PURGING 4-103
PROG_ERROR_TRUNC 4-103
RESOURCE_FAILURE_NO_RETRY 4-103
RESOURCE_FAILURE_RETRY 4-103
SVC_ERROR_NO_TRUNC 4-103
SVC_ERROR_PURGING 4-103
SVC_ERROR_TRUNC 4-103
UNSUCCESSFUL 4-104

RETURN_CONTROL parameter
of ALLOCATE verb 4-54
of MC_ALLOCATE verb 4-4

RETURN statement 3-2
returned parameters 3-10

SAME access security 4-4, 4-55
security

conversation-level 5-29
session-level 5-28
verification,
conversation-level 5-23

SECURITY_ACCEPTAHCE_LOCAL_LU parameter
of DISPLAY_REMOTE_lU verb 5-43

SECURITY_ACCEPTANCE parameter
of DEFINE_REMOTE_LU verb 5-27

SECURITY _ACCEPTANCE_REt10TE_LU parameter
of DISPLAy_RErl0TE_LU verb 5-43

SECURITY_ACCESS paraMeter
of DEFINE_TP verb 5-36
of DISPLAY_TP verb 5-48

SECURITY_HOT_VALID
See ALLOCATION ERROR subcodes

SECURITY parameter
of ALLOCATE verb 4-55
of DEFINE_LOCAl_LU verb 5-23
of DISPLAY_LOCAL_lU verb 5-40
of MC_ALLOCATE verb 4-4

SECURITY PROFILE parameter
of GET_ATTRIBUTES verb 4-69
of f>lC_GET_A TTRIBUTES verb 4-17

SECURITY REQUIRED parameter
of DEFINE_TP verb 5-35
of DISPLAY TP verb 5-47

SECURITY_USER:ID parameter
of GET ATTRIBUTES verb 4-69
of r-1C_GET _A TTRIBUTES verb 4-17

send buffer of LU
accumulating data in 3-2

See also buffering by LU
flushi ng 3-2

See also flushing LU's send buffer
SEND DATA verb 4-87
SEND:ERROR verb 4-90
SEND indication

received by MC_RECEIVE_AND WAIT
verb 4-25

received by MC_RECEIVE_IMMEDIATE
verb 4-30

received by RECEIVE_AND_WAIT
verb 4-79

received by RECEIVE_IMMEDIATE
verb 4-83

sent by MC_PREPARE_TO_RECEIVE
verb 4-22

sent by MC_RECEIVE_AND_WAIT
verb 4-24

sent by PREPARE_TO_RECEIVE verb 4-75
sent by RECEIVE_AtW_WAIT verb 4-77

SEND_MAX_RU_SIZE_LOWER_BOUND parameter
of DEFINE MODE verb 5-31
of DISPLAY_MODE verb 5-45

SEND_MAX_RU_SIZE_UPPER_BOUND parameter
of DEFINE_MODE verb 5-31
of DISPLAY_MODE verb 5-45

SEND_PACING_~JINDOW pllrameter
of DEFINE_MODE verb 5-30
of DISPLAY_~10DE verb 5-45

send state
changing conversation to

using SEND_ERROR verb 4-90
changing mapped conversation to

usi ng MC_SEi,C,-ERROR verb 4-38
of a conversation 4-97

See also conversation state
changes

Index X-9

requesting change in conversation to·
using REQUEST_TO_SEND verb 4-86

requesting change in mapped conversa­
tion to

using MC_REQUEST_TO_SEND
verb 4-34

send support of symbol strings C-3
sending data

using MC_SEND_DATA verb 4-35
using SEND_DATA verb 4-87

sending error notification
using MC_SEND_ERROR verb 4-38
using SEND_ERROR verb 4-90

serially reusable resource 1-3
session

See LU-LU session
session control verbs 5-18
SESSION_ID parameter

of DEACTIVATE_SESSION verb 5-21
SESSION_IDS parameter

of DISPLAY_MODE verb 5-46
SESSION_LEVEl_CRYPTOGRAPHY parameter

of DEFINE MODE verb 5-31
of DISPLAY_MODE verb 5-45

session-level security 5-28
SINGLE_SESSION_REINITIATIOH parameter

of DEFINE_MODE verb 5-31
of DISPLAY_MODE verb 5-45

single sessions

SNA
definition 5-1

See Systems Network Architecture
(SNA)

SNA service transaction program 4-52.
D-1

CNOS service transaction pro­
gram 5-4, 5-17

specified by TPM parameter 4-54
SNASVCMG mode name

for CNOS conversation 5-4
on ACTIVATE verb 5-19
on ALLOCATE verb 4-53
on INITIALIZE_SESSION_LIMIT verb 5-8
on RESET_SESSION_LIMIT verb 5-12

source lU
defi niti on 5-4
returned on LU_NAME parameter 5-16

specification of symbol strings C-3
state changes

conversation
See conversation state changes

state check
See ABEND conditions

state representation of resources 1-1
states

conversation
See conversation states

STATUS parameter
of DEFINE TP verb 5-34
of DISPLAY_TP verb 5-47

structure
protocol boundary 2-2
transaction program 3-1

subsetting of verbs 3-8
supplied-and-returned parameters 3-10
supplied parameters 3-10
support of LU 6.2 verbs

base set
definition 3-8

local support
definition 3-8

option sets
definition 3-8

remote support

definition 3-9
support of verbs

See also base and optional support
option sets

descriptions A-I
SVC ERROR NO lRUNC return code 4-103
SVC:ERROR:rURGItIG return code 4-103
SVC_ERROR_TRUHC return code 4-103
symbol string

conventions C-l
~ength C-l
type C-l

SYNC_LEVEL_NOT_SUPPORTED_BY_LU
See ALLOCATION ERROR subcodes

SYNC_LEVEL_NOT_SUPPORTED_BY_PGM
See ALLOCATION_ERROR subcodes

SYNC_LEVEL parameter
of ALLOCATE verb 4-54
of DEFINE TP verb 5-35
of DISPLAY MODE verb 5-45
of DISPLAY:TP verb 5-47
of GET_ATTRIBUTES verb 4-68
of MC_ALLOCATE verb 4-4
of MC_GET_ATTRIBUTES verb 4-16

SYNC_lEVEL_SUPPORT parameter
of DEFINE_MODE verb 5-31

sync-point request
received by MC_RECEIVE_AND_WAIT
verb 4-26

received by RECEIVE_AND_WAIT
verb 4-79

received by RECEIVE_IMMEDIATE
verb 4-84

sent by SYNCPT verb 4-47
sync-point service 1-4
sync point state

of a conversation 4-97
See also conversation state

changes
synchronization level

changing conversation to receive
state based on 4-73

changing mapped conversation to
receive state based on 4-20

deallocating conversation based
on 4-62

deallocating mapped conversation
based on 4-11

for conversation 4-54
for mapped conversation 4-4

SYNCPT synchronization level 4-4# 4-54
SYNCPT verb 4-47
Systems Network Architecture (SNA) 1-1

TAKE_SYNCPT_DEALLOCATE indication
received by MC_RECEIVE_AND_WAIT
verb 4-26

received by MC_RECEIVE_IMMEDIATE
verb 4-31

received by RECEIVE_AND_WAIT
verb 4-79

received by RECEIVE_IMMEDIATE
verb 4-84

TAKE_SYNCPT indication
received by MC_RECEIVE_AND_WAIT
verb 4-26

received by MC_RECEIVE_IMMEDIATE
verb 4-30

X-lO SMA Transaction Programmer's Reference Manual for LU Type 6.2

received by RECEIVE_AND_WAIT
verb 4-79

received by RECEIVE_IMMEDIATE
verb 4-84

TAKE_SYNCPT_SEND indication
,"ece; ved by r1C_RECEIVE_AND_WAIT
verb 4-26

received by Me_RECEIVE_IMMEDIATE
verb 4-31

received by RECEIVE_AND_WAIT
verb 4-79

received by RECEIVE_IMMEDIATE
verb 4-84

target LU
defi nit ion 5-4
specified by LU NAME parameter 5-5

TERMINATION_COUNT parameter
of DISPLAY MODE verb 5-46

test for posting
using MC_TEST verb 4-41
using TEST verb 4-94

test for REQUEST_TO_SEND notification
using ~IC_TEST verb 4-41
uSlng TEST verb 4-94

TEST parameter
of MC_TEST verb 4-41
of TEST verb 4-94

TEST verb 4-41, 4-94
TP_NAME parameter

of DEFINE_TP verb 5-34
of DELETE verb 5-49
of DISPLAY TP verb 5-47

TP_NAMES -
of DISPLAY LOCAL LU verb 5-40

TPN_NOT_RECOGNIZED -
See ALLOCATION_ERROR subcodes

TPN parameter
of ALLOCATE verb 4-54
of MC ALLOCATE verb 4-3

TRANS_PGM_NOT_AVAIL_NO_RETRY
See ALLOCATION ERROR subcodes

TRANS_PGM_NOT_AVAIL_RETRY
See ALLOCATION_ERROR subcodes

transaction
definition 1-1
distributed processing of 1-2
example 1-1

transaction program
abnormal ending

See ABEND conditions
application 4-2, 4-44
control-operator 5-1
defining operating parameters
for 5-34

definition 1-2
displaying operating parameters
for 5-47

example 1-2
execution 3-1
instance 3-1
LU services component 4-52
name

carried in allocation request 3-1
specified by TPH parameter 4-3,

4-54
other program statements of 3-1
SHA service 4-52. D-l
structure 3-1
verbs 3-1

See also verbs
truncated data record

received by MC_RECEIVE_AND_WAIT
verb 4-25

received by MC_RECEIVE_IMMEDIATE
verb 4-30

truncated LL field
indicated on RECEIVE_AND_WAIT
verb 4-79

indicated on RECEIVE IMMEDIATE
verb 4-83 -

truncation of logical records
by SEND_ERROR verb 4-92
return codes indicating 4-103

two-waY alternate data transfer 3-2.
1-3

type-independent conversation
verbs 4-44. 3-4. 4-44

See also individual verbs
TYPE parameter

of ALLOCATE verb 4-54
of DEACTIVATE_SESSION verb 5-21
of DEALLOCATE verb 4-62
of GET_TYPE verb 4-46
of MC_DEALLOCATE verb 4-11
of MC_PREPARE_TO_RECEIVE verb 4-20
of PREPARE_TO_RECEIVE verb 4-73
of SEND_ERROR verb 4-90

types of symbol strings C-1

UNINTERPRETED_LU_NAME parameter
of DEFINE_REMOTE_LU verb 5-26
of DISPLAY_REMOTE_LU verb 5-42

unprotected resources 4-49
UNRECOGNIZED_MODE_NAtlE return code

for control operator verbs 5-53
UNSUCCESSFUL return code 4-104

verb
ending semicolon 3-10
format box 3-10
name 3-10
parameters

bracketed 3-10
returned 3-10
supplied 3-10
supplied-and-returned 3-10

verb description format 3-9
verbs

ABEND conditions
See ABEND conditions, for LU 6.2

verbs
base and optional support

See base and optional support
base set of 3-8
basic conversation

See also basic conversation verbs
examples of use B-1

categories of 3-3
control-operator

See control-operator verbs
conversation verbs

See conversation verbs
execution of 3-2
format for describing 3-9
issued by transaction program 3-2
LU services programs use of 4-52
mapped conversation

Index X-ll

See mapped conversation verbs
optional sets of 3-8
overview description of 3-3
overview descrlptions 3-3
product-support subsets of 3-8
syntax description of 3-9
transaction program 3-1
type-independent conversation

See type-independent conversation
verbs

verification
conversation-level security 5-23
1 i st 5-23
resource access 5-35

WAIT verb 4-50
waiting for informatl0n

using MC_RECEIVE_AND_WAIT verb 4-24
using RECEIVE_AND_WAIT verb 4-77

WHAT_RECEIVED parameter
of MC_RECEIVE_AND_WAIT verb 4-25
o~ MC_RECEIVE_IMMEDIATE verb 4-30
of RECEIVE_AND_WAIT verb 4-78
of RECEIVE_UtMEDIATE verb 4-83

X-12 SHA Transaction Programmer's Reference Manual for LU Type 6.2

Systems Network Architecture
Transaction Programmer's
Reference Manual For
LU Type 6.2

Publication No. GC30-3084-2

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers,
and operators of IBM systems. You may use this form to communicate your comments about this
publication, its organization, or subject matter, with the understanding that IBM may use or distribute
whatever information you supply in any way it believes appropriate without incurring any obligation
to you.

Note: Copies of IBM publications are not stocked at the location.to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

What is your occupation?

Number of latest Newsletter associated with this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an
IBM office or representative will be happy to forward your comments or you may mail directly to the
address in the Edition Notice on the back of the title page.)

GC30-3084-2

Reader's Comment Form

Fold and tope Please Do Not Staple

111111

BUSINESS REPLY MAIL

Fold and tape

--..------- --_ ---- -.. ---- -- --------
-~-,.-

®

FIRST CLASS PERMIT NO. 40 ARMONK. N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Dept. E01
P.O. Box 12195
Research Triangle Park, N.C. 27709-2195

Please Do Not Staple

Fold and tapa

NO POSTAGE
NECESSARY
IF MAILED

lNTHE
UNITED STATES

Fold and tape

•

File No. 370/4300/8100-30

GC30-3084-2

Printed in U.S.A.

GC30-3084-02

I

	00000
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	4-001
	4-002
	4-003
	4-004
	4-005
	4-006
	4-007
	4-008
	4-009
	4-010
	4-011
	4-012
	4-013
	4-014
	4-015
	4-016
	4-017
	4-018
	4-019
	4-020
	4-021
	4-022
	4-023
	4-024
	4-025
	4-026
	4-027
	4-028
	4-029
	4-030
	4-031
	4-032
	4-033
	4-034
	4-035
	4-036
	4-037
	4-038
	4-039
	4-040
	4-041
	4-042
	4-043
	4-044
	4-045
	4-046
	4-047
	4-048
	4-049
	4-050
	4-051
	4-052
	4-053
	4-054
	4-055
	4-056
	4-057
	4-058
	4-059
	4-060
	4-061
	4-062
	4-063
	4-064
	4-065
	4-066
	4-067
	4-068
	4-069
	4-070
	4-071
	4-072
	4-073
	4-074
	4-075
	4-076
	4-077
	4-078
	4-079
	4-080
	4-081
	4-082
	4-083
	4-084
	4-085
	4-086
	4-087
	4-088
	4-089
	4-090
	4-091
	4-092
	4-093
	4-094
	4-095
	4-096
	4-097
	4-098
	4-099
	4-100
	4-101
	4-102
	4-103
	4-104
	4-105
	4-106
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	D-01
	D-02
	D-03
	D-04
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	X-01
	X-02
	X-03
	X-04
	X-05
	X-06
	X-07
	X-08
	X-09
	X-10
	X-11
	X-12
	replyA
	replyB
	xBack

