

— Note

Before using this information and the product it supports, be sure to read the general information under
“Notices” on page xxiii.

First Edition (March 1992)

The following paragraph does not apply to the United Kingdom or any country where such provisions are inconsistent
with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not
allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to
you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made to the
information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time.

It is possible that this publication may contain reference to, or information about, IBM products (machines and
programs), programming, or services that are not announced in your country. Such references or information must
not be construed to mean that IBM intends to announce such IBM products, programming, or services in your
country.

Requests for technical information about IBM products should be made to your IBM Authorized Dealer or your IBM
Marketing Representative.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of
this document does not give you any license to these patents. You can send license inquiries, in writing, to the IBM
Director of Commercial Relations, IBM Corporation, Purchase, NY 10577.

COPYRIGHT LICENSE: This publication contains printed sample application programs in source language, which
illustrate OS/2 programming techniques. You may copy and distribute these sample programs in any form without
payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to
the 0S/2 application programming interface.

Each copy of any portion of these sampie programs or any derivative work, which is distributed to others, must
include a copyright notice as follows: “® (your company name) (year) All Rights Reserved.”

© Copyright International Business Machines Corporation 1992. Al rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Notices xXiii
Double-Byte Character Set (DBCS) xxiii
Common User Access (CUA) Terminology xxiii

AboutThisBook, XXV

Presentation Manager Window Programming !nterface

Chapter1. Windows 1-1
AboutWindows Lo 14
Desktop Window and Desktop-Object Window 1-1
Window Relationships 1-2
Parent-Child Relationship 1-3
Oownership e 1-5
ObjectWindows 1-5
Application Windows 1-6
Window InputandOutput 1-7
Active Window and FocusWindow 1-7
Messages 1-8
Enabled and Disabled Windows 1-9
System-Modal Window 1-9
Window Creation 1-9
Window-Creation Functions 1-11
Window-CreationMessages 1-11
Window Classes 1-11
PublicWindow Classes 1-11
Private WindowClasses 1-13
Window Styles 1-13
WindowHandles 1-14
Window Size and Position 1-14
Size ... 1-15
Position 1-15
Size and Position Messages PR 1-16
SystemCommands 1-16
Window Data 1-16
Window Resources 1-17
Maximized and MinimizedWindows 1-18
Window Visibility 1-18
Window Destruction- 1-19
UsingWindows e 1-20
Creating a Top-Level Frame Window 1-20
Creating an ObjectWindow 1-22
QueryingWindowData 1-22
Changing the ParentWindow 1-22
Finding a Parent, Child, orOwnerWindow 1-23
SettinganOwnerWindow 1-24
Retrieving the Handle of a Child or Owned Window 1-24
Enumerating Top-LevelWindows 1-25
Moving and SizingaWindow 1-25
RedrawingWindows 1-26
Changing the Z-Orderof Windows 1-27

© Copyright IBM Corp. 1992 ifi

Showing or HidingaWindow 1-28

Maximizing, Minimizing, and Restoring a Frame Window 1-28
DestroyingaWindow 0. 1-29
SUMMAIY . . e e e e e e e e e e e 1-29
Chapter 2. Messages and MessageQueues 2-1
About Messages and Message Queues 2-1
MESSAGES e e e 2-1
Message QUeUESttt e 2-2
Message Handling 2-3
Message Loops e 2-3
Window Procedures e 2-5
Posting and Sending Messagesy 2-5
Message TYPeSttt e e 2-6
System-Defined Messages 2-7
Application-Defined Messages 2-7
SemaphoreMessages 2-8
Message Priorities 2-8
Message Filtering i 2-9
USing MesSagest 2-9
Creating a Message Queue and Messageloop 2-9
Examiningthe Message Queue 2-11
Posting a MessagetoaWindow 2-12
Sending a MessagetoaWindow, 2-12
BroadcastingaMessage i, 2-12
UsingMessage Macros i, 2-13
SUMMANY . . .ttt e e e e e e e 2-14
Chapter3. WindowClasses 3-1
About Window Classes 3-1
Private Window Classes« 3-1
Class Name ittt it e 3-1
Class Styles e 3-2
Window Procedure 3-3
Window Data Size it 3-3
CustomWindow Styles i 3-3
PublicWindow Classes 3-3
System-Defined Public Window Classes 3-3
Custom Public WindowClasses 3-5
Class Data i e e 3-5
UsingWindow Classes 3-5
Registering a Private Window Class 3-5
SUMMATY . . . ot e e e e e 3-6
Chapter 4. Window Procedures 4-1
About Window Procedures 4-1
Structure of a Window Procedure 0., 4-1
Default Window Procedure i, 4-2
Window-Procedure Subclassing 4-2
UsingWindow Procedures 4-2
Designing a Window Procedure 4-3
Associating a Window Procedure with a Window Class 4-4
SubclassingaWindow 4-4
SUMMATY . . . it e e e e e e 4-6
Chapter 5. Mouse and KeyboardInput 5-1

0S/2 Programming Guide—Volume i

About Mouse and KeyboardInput, 5-1

System Message Queue 5-1
Window Activation 5-1
Keyboard Focus 5-2
Keyboard Messages, 5-3
MessageFlags 5-4
Key-DownorKey-UpEvents 5-5
Repeat-CountEvents 5-5
CharacterCodes i, 5-5
Virtual-Key Codes, 5-5
ScanCodes 5-6
Accelerator-Table Entries 5-6
Mouse Messages 5-6
CapturingMouse Input 5-7
Button Clicks 5-7
Mouse Movement, 5-7
Using the Mouseand Keyboard 5-8
Determining the Active Status of a Frame Window 5-8
Checking for a Key-Up or Key-DownEvent 5-9
Responding to a CharacterMessage 5-9
Handling Virtual-Key Codes 5-10
HandlingaScanCode, 5-11
Summary ..., 5-11
Chapter 6. FrameWindows 6-1
About Frame Windows 6-1
MainWindow 6-1
Frame Controls 6-2
ClientWindow 6-2
Additional Frame-Window ltems 6-2
Frame-Control Identifiers 6-3
Frame-Window Creation 6-3
Frame Window Controlsand Styles 6-3
Frame-Window Resources 6-4
Frame-Window ClassData 6-8
Frame-Window Data 6-8
Frame-Window Operation 6-9
Nonstandard Frame Windows 6-10
Default Frame-Window Behavior 6-10
Using Frame Windows 6-12
Creatinga MainWindow 6-12
Retrievinga FrameHandle 6-15
SUMMArY . . . 6-15
Chapter 7. Control Windows 7-1
About Control Windows, 7-1
Using Control Windows 7-2
Using Control Windows in a DialogWindow 7-2
Using Control Windows in a Non-DialogWindow 7-3
Creating a Custom Control Window 7-3
Summary .. 7-5
Chapter 8. ButtonControls 8-1
AboutButtonControls 8-1
Button Types 8-1
Bulton Styles 8-3

Contents V

Default Button Behavior i e 8-5

Button Notification Messages 8-7
Button States 8-8
CustomBULIONS e 8-8
UsingButtonControls 8-8
Using Buttons ina DialogWindow 8-9
Using Buttonsina ClientWindow 8-10
SUMMAIY . o o it e et e e e e e e 8-11
Chapter 9. List-BoxControls 9-1
AbOUt LISt BOXES i e 9-1
Using LISt BOXes 9-1
Creating a List-Box Windowc.... 9-2
Using a List Box in a DialogWindow 9-3
Adding or Deleting anlteminalistBox 9-3
Responding to a User SelectioninalistBox 9-4
Handling Multiple Selections 9-4
Creating an Owner-Drawn Listltem 9-5
Default List-Box Behavior i 9-7
SUMMANY . . oot e e e e e e 9-8
Chapter 10. Combination-BoxControls 10-1
About Combination Boxes 10-1
Combination-Box Styles e . 10-1
NotificationCodes e 10-3
Using Combination Boxes 10-3
SUMMANY . . et e e e e 10-3
Chapter11. Menus i 11-1
AboUut MenuUS e 11-1
Menu Bar and Pull-DownMenuscc. ..., 11-1
Pop-UpMenus e 11-2
SystemMenu 11-3
MenuU emsS e e 11-3
TheHelpltem 11-4
Menu-ltem Styles 11-4
Menu-ltem Attributes 11-4
Menu-ltem Structure 11-5
MENU ACCESS . . . o i ot it e e e e 11-6
MRBMONICS e e e e 11-6
Accelerators 11-7
Using MenUS 11-7
Defining Menu ltems in a Resource File 11-8
Including a Menu Bar in a Standard Window 11-9
Creatinga Pop-upMenu 11-10
Adding a Menu to a DialogWindow 11-10
Accessingthe SystemMenu 11-11
Responding to a User's Menu Choice 11-11
Setting and Querying Menu-ltem Attributes 11-12
Adding and Deleting Menultems 11-12
Creatinga CustomMenultem 11-15
SUMMANY . . o it e e e e e e e 11-17
Chapter 12. Entry-FieldControls 12-1
AboutEntry Fields 12-1
Entry-Field Styles 12-1

0S/2 Programming Guide—Volume Il

Entry-Field NotificationCodes 12-2

Default Entry-Field Behavior 12-3
Entry-Field Text Editing 12-56
Entry-Field Control Copy and Paste Operations 12-6
Entry-Field Text Retrieval 12-6
Using Entry-Field Controls 12-6
Creating an Entry Field ina DialogWindow 12-6
Creating an Entry Fieldina ClientWindow 12-7
Changing the Default Size of anEntryField 12-7
Retrieving Text From anEntry Field 12-8
SUMMaAIY . . e e 12-10
Chapter 13. Multiple-Line Entry FieldControls 13-1
About Multiple-Line Entry Field Controls 13-1
MLE Styles e 13-1
MLE Control NotificationCodes 13-1
MLE TextEditing 13-3
MLE Text Formatting 13-4
MLE Text Import and Export Operations 13-5
MLE Field Control Cut, Copy, and Paste Operations 13-5
MLE Field Control Search and Replace Operations 13-6
Using Multiple-Line Entry FieldControls 13-6
Creatingan MLE FieldControl 13-6
Importing and Exporting MLE Text 13-7
SearchingMLE Text 13-10
Summary .. e 13-11
Chapter 14. Scroll-BarControls 14-1
AboutScroliBars e 14-1
Scroll-Bar Creation 14-1
Scroll-Bar Styles e 14-2
Scroll-Bar Range and Position 14-2
Scroll-Bar NotificationMessages 14-3
Scroli BarsandtheKeyboard 14-5
UsingScroll Bars 14-6
CreatingScroll Bars e 14-7
Retrieving a Scroll-BarHandie 14-8
Using the Scroll-Bar Range and Position 14-9
SUMMAIY . . . e 14-10
Chapter 15. SpinButtonControls 15-1
About SpinButtons 15-1
Creatinga SpinButton 15-1
Graphical User Interface Support for SpinButtons 15-3
SuUmMmMaAry . 15-4
Chapter 16. StaticControls 16-1
About StaticControls e 16-1
Keyboard Focus 16-1
Static-ControlHandle 16-1
Static-Control Styles 16-2
Default Static-Control Performance 16-3
Using StaticControls 16-4
Including a Static Control in a DialogWindow 16-4
Including a Static Control ina ClientWindow 16-5
SUMMaArY e 16-6

Contents VI

viii

Chapter 17. Title-BarControls 17-1

AboutTitle Bars e 17-1
Default Title-Bar Behavior 17-2
Using Title-Bar Controls 17-2
Including a Title Barina Frame Window 17-2
Altering Dragging Action 17-3
SUMMAIY . .t et e et e e e e e 17-4
Chapter 18. ContainerControls 18-1
About Container Controls 18-1
Container Control Functionsc...o... 18-1
Container Control Basics 18-2
CreatingaContainer 18-3
Understanding Containeritems 18-4
Allocating Memory for Container Records 18-4
Allocating Memory for ContainerColumns 18-5
Understanding Container Views 18-5
lcon VieWw e e 18-6
Name View e e 18-7
Non-Flowed Name View, 18-8
Flowed Name View 18-8
Text View e 189
Non-Flowed Text View 18-9
Flowed TextView it 18-10
Tree View 18-10
Tree lcon View and Tree TextView 18-12
TreeName View e 18-13
Details View e 18-14
Changing aContainer Viewuiuirn.. 18-17
UsingaContainer i 18-17
Inserting Container Records 18-17
Removing ContainerRecords 18-21
Setting the Container Control Focus 18-22
Graphical User Interface Support 18-22
Scrolling e 18-22
DynamicScrolling 18-23
Selecting Containerltems 18-23
Selection Types i e 18-23
Selection Techniques 18-23
Selection Mechanisms 18-24
Providing Emphasis 18-25
Using Direct Manipulation 18-27
Specifying Space between Containerltems 18-27
Enhancing Container Control Performance 18-28
Positioning Containerltems L. 18-28
Scrollable Workspace Areas, 18-28
Workspace and Work Area Origins 18-30
Specifying Deltas for Large AmountsofData 18-31
Direct Editing of Textina Container 18-31
Specifying Container Titles 18-32
Specifying Fontsand Colors 18-34
Drawing Container ltems and Painting Backgrounds 18-34
Filtering Containerltems 18-34
Optimizing Container Memory Usage 18-35
Allocating Memory for Container Records When Using
MINIRECORDCORE i 18-35

0S/2 Programming Guide—Volume Il

Sharing Records Among Multiple Containers 18-35

Invalidating Records Shared by Multiple Containers 18-36
Freeing Records Shared by Muitiple Containers 18-36
SUMMAIY . o o et ot e e e et e e e e 18-36
Chapter 19. Notebook Controls 19-1
About Notebook Controls it 19-1
Notebook Creation i i e 19-1
Understanding the Default Notebook Style 19-2
Notebook Control Styles 19-5
Working with Notebook Pages and Windows 19-8
Inserting Notebook Pages 19-8
Associating Application Page Windows with Notebook Pages 19-10
Associating a Window or Dialog with a Notebook Page 19-10
Deleting Notebook Pages 19-15
Graphical User Interface Support 19-15
Notebook Navigation Techniques 19-16
Tailoring Notebook Colors 19-19
Changing Colors Using WinSetPresParam 19-20
Changing Colors Using BKM_SETNOTEBOOKCOLORS 19-20
Enhancing Notebook Control Performance and Effectiveness 19-21
Dynamic Resizingand Scrolling 19-21
Tab Painting and Positioning 19-22
SUMMANY . o oot ettt e e e i e e 19-23
Chapter 20. SliderControls 20-1
About Slider Controls e 20-1
CreatingaSlider 20-2
Retrieving Data for Selected Slider Values 20-5
Graphical User Interface Supportfor Sliders 20-5
Pointing Device Support 20-6
Keyboard SUPPOrt 20-6
SUMMANY .« o oot et et e e e e e e 20-7
Chapter 21. Value SetControls 21-1
About Value Setso 21-1
Creating and Using Value SetControls 21-2
CreatingaValueSetottt s - 21-2
Retrieving Data for Selected Value Setltems 21-4
Arranging Value Setltems 21-4
Graphical User Interface Support 21-5
Navigating to and Selecting Value Setitems 21-5
Pointing Device Support 21-5
Keyboard Support 21-6
DynamicResizing 21-6
SUMMAEIY . o ot e et et et e i e 21-7
Chapter 22. Keyboard Accelerators 22-1
About Keyboard Accelerators 22-1
Accelerator Tables oo it 22-1
Accelerator-Table Resources m 22-2
Accelerator-TableHandles 22-2
Accelerator-Table Data Structures 22-2
Accelerator-ltem Styles 22-2
Using Keyboard Accelerators 22-3
Creating an Accelerator-Table Resource 22-3

Contents iX

Including an Accelerator Table in a Frame Window 22-4

Modifying an Accelerator Table 22-4
Summary ... 22-6
Chapter 23. DialogWindows 23-1
About DialogWindows 23-1

Modal and Modeless DialogWindows 23-1

Dialogltems 23-1

Dialog-ltem Groups 23-2

Message Boxes 23-3

Dialog Data Structures 23-4

DialogResources 23-4
Using Message Boxes and Dialog Windows 23-4

CreatingaMessage Box 23-4

Creating a System-Modal Message Box 23-5
Usinga Dialog Window 23-5
CreatingaDialog Template 23-6
Creating a Modal DialogWindow 23-6
Creating a Modeless Dialog Window 23-7
Initializing a DialogWindow, 23-8
Adding a Menu ina DialogWindow 23-9
Creating a Dialog Procedure 23-9
Manipulating Dialogltems 23-11
Summary .. 23-12
Chapter 24. FontDlalogControls 24-1
About the Font Dialog Control 24-1
CreatingaFontDialog 24-1
Graphical User Interface Support for the Font Dialog 24-2
Customizingthe FontDialog 24-3
Summary .. 24-4
Chapter 25. File DialogControls 25-1
About File Dialogs 25-1
CreatingaFileDialog 25-2

CreatinganOpenDialog 25-3

CreatingaSaveAsDialog 25-3
The File Dialog User Interface 25-3

FileName Field 25-3
FileListBox 25-4
Directory ListBox 25-4
Drive Field 25-4
Type Field 25-4
Standard Button and Default Action 25-5
Customizingthe FileDialog 25-5
Summary .. 25-5
Chapter 26. Mouse Pointersandlcons 26-1
About Mouse Pointersandlcons 26-1

Mouse-Pointer Hot Spot, 26-1

Predefined Mouse Pointers 26-2

SystemBitMaps 26-4
Using Mouse Pointersand Icons 26-5

Changing the Mouse Pointer 26-6
Summary ... 26-6

X 0S/2 Programming Guide—Volume Il

Chapter27. CUISOISttt 27-1

ADOUL CUISOIS o o e e e 27-1
Cursor Creation and Destruction 271
Positionand Size 27-1
Other Cursor Characteristics 27-1
Cursor Visibility 27-2
USiNG CUIMSOrS o e 27-2
Creating and Destroyinga Cursort 27-2
SUMMANY . . . it e e e 27-3
Chapter 28. PaintingandDrawing 28-1
About PaintingandDrawing o 28-1
Presentation Spaces and Device Contexts 28-1
Window Regions 28-3
Window Styles for Painting 28-4
WS_CLIPCHILDREN, CS_CLIPCHILDREN 28-5
WS_CLIPSIBLINGS, CS_CLIPSIBLINGS 28-5
WS_PARENTCLIP, CS_PARENTCLIP 28-5
WS_SAVEBITS,CS_SAVEBITS 28-5
WS_SYNCPAINT, CS_SYNCPAINT 28-5
CS_SIZEREDRAW 28-5
Strategies for PaintingandDrawing 28-6
DrawinginaWindow 28-6
The WM_PAINT Message oo, 28-7
Drawing the Minimized View 28-7
Drawing Without the WM_PAINT Message 28-8
Three Types of PresentationSpaces 28-9
Normal PresentationSpaces 28-10
Micro PresentationSpaces 28-12
Cached-Micro PresentationSpaces 28-13
SUMMANY . . ottt e e e e e e e e 28-15
Chapter 29. DrawinginWindows 29-1
About Window-Drawing Functions 29-1
POINES e e 29-1
Rectangles 29-1
Using Window-Drawing Functions 29-2
Working with Points and Rectangles 29-2
Determining the Dimensions of a Rectangle 29-2
FillingaRectangle 29-2
Scrolling the Contentsof aWindow 29-3
Drawinga BitMap 29-4
Drawing Text e 29-4
SUMMANY . . .ttt e e e 29-5
Chapter30. Hooks 30-1
AboutHooks RS 30-1
Hook Lists e 30-1
Message-MonitoringHooks oo 30-1
Hook FUNCHIONS e e e e 30-2
INpUtHoOK 30-2
Send-Message Hook 30-3
Message-FilterHook 30-3
Journal-Record Hook 30-4
Journal-Playback Hook, 30-5

Help HooK 30-6

Contents Xi

xii

Find-Word Hook 30-8

Codepage-Changed Hook 30-9
Using Hooks e 30-9
Installing and Releasing Hook Functions 30-9
SUMMaAIY . . . e 30-10
Chapter31. Clipboards 31-1
Aboutthe Clipboard e 31-1
Shared Memory and the Clipboard 31-2
Clipboard Operations 31-2
Cutand CopyOperations u... 31-3
Paste Operation 31-3
Standard Clipboard-Data Formats 31-4
Private Clipboard-DataFormats 314
Format ldentification Number, 31-5
Display Formats 31-5
Delayed Rendering 31-5
Clipboard Viewer e 31-6
Clipboard Owner e 31-6
Usingthe Clipboard 31-8
Putting Dataonthe Clipboard 31-8
Retrieving Data from the Clipboard 31-9
Viewing Dataonthe Clipboard 31-10
SUMMArY . . . e e 31-12
Chapter 32. Dynamic DataExchange 32-1
About Dynamic DataExchange 32-1
Client and Server Interaction 32-1
Sample DDE System 32-2
Detailed DDEExample 32-2
Applications, Topics,andltems 32-3
The System Topic i e 32-4
DDE Initiation 32-5
Shared-Memory Object 32-6
Transaction Status Flags 32-7
Transaction and Response Messages 32-7
Request and Poke Transactions 32-8
Advise and Unadvise Transactions 32-8
Execute Transaction 32-10

DDE Termination 32-10
Unique DataFormats 32-10
Synchronization Rules 32-11
Language-Sensitive DDE Applications 32-12
Using Dynamic DataExchange 32-12
Creating a Shared-Memory Objectfor DDE 32-12
Sending a Positive Acknowledgment 32-14
Sending a Negative Acknowledgment 32-14
Performing a One-Time Data Transfer 32-15
Establishing a Permanent Data Link 32-16
Executing Commands in a Remote Application 32-17
Terminatinga DDE Conversation 32-18
SUMMANY . .. e e e 32-18
Chapter 33. Direct Manipulation 33-1
About Direct Manipulation 33-1
Using Direct Manipulation in an Application 33-2

08/2 Programming Guide—Volume Il

Writing a Source Application, 33-2

Draggingthe Objects 33-5
Application-Defined Drag Operations 33-6
Completing a Direct Manipulation Operation 33-6
DRAGDROP Sample Program 33-6
Summary of Functions Used by the Source 33-7
Writing a Target Application 33-7
Messages Sent to a Target Application 33-7
Responding to Messages and Providing Visible Feedback 33-8
Providing Customizedlmages 33-9
Providing TargetEmphasis 33-9
Keyboard Augmentation, 33-10
Summary of Functions Used by the Target 33-10
Two-ObjectDrag e 33-12
Application Interaction afteraDrop 33-14
Conversation Initiation 33-14
Considerations when Establishing a Conversation 33-14
Determining Whether Data Canbe Exchanged 33-15
Determining How To ExchangetheData 33-15
Performance Considerations 33-15
Using Direct Manipulation Data Transfer in an Application 33-15
Conversation aftertheDrop 33-17
Standard Rendering Mechanisms 33-18
0OS/2 File Rendering Mechanism 33-18
Print Rendering Mechanism 33-20
Dynamic Data Exchange (DDE) Rendering Mechanism 33-20
Application Extensions to the Direct Manipulation Data Transfer Protocol .. 33-22
Rendering MechanismName 33-22
Native Mechanism Actions 33-22
Naming Conventions 33-22
Performance Considerations 33-22
SUMMAINY e e e e 33-23
Chapter34. WindowTimers 34-1
About Window Timers e 34-1
Using Window Timers i 34-2
SUMMAINY e e e e e e 34-4
Chapter 35. AtomTables 35-1
About Atom Tables e e 35-1
System Atom Table 35-1
Private AtomTables 35-1
Atom-TableHandle 35-2
AtOM TYPeS . . . 35-2
String Atoms L 35-2
Integer Atoms L 35-2
Atom CreationandUsageCount 35-3
Atom-Table Queries 35-3
Atom StringFormats 35-4
Using Atom Tables e 35-4
Creating Unique Window-Message Atoms 35-4
Creating DDE Formats and a Unique Clipboard Format 35-5
SUMMAIY e 35-7
Chapter 36. InitializationFiles 36-1
About Initialization Files 36-1

Contents Xili

Using Initialization Files 36-1

Creating, Opening, and Closing InitializationFiles 36-2
Reading and Writing Settings 36-2
Identifying the OS/2 InitializationFiles 36-3
SUMMAIY . . . e e e 36-4
Appendix A. Comparison of 1989 and 1991 CUA User Interface Guidelines ... A-1
Appendix B. Documenting the CUA User Interface inProducts B-1
General Terminology-Guidelines B-1
HowtoUseThisTable B-1

Appendix C. List of Approved Deviations from CUA User Interface Guidelines . C-1

xiv 0S/2 Programming Guide—Volume Il

Figures

© Copyright IBM Corp. 1992

1-1.
1-2.

1-4.
1-5.
1-6.
1-7.
1-8.
1-9.
1-10.
1-11.
1-12.
1-13.
1-14.
1-15.
1-16.
1-17.
1-18.
1-19.
1-20.
1-21.
1-22.
1-23.
2-1.
6-1.
6-2.
6-3.
6-4.
6-5.
6-6.
8-1.
8-2.
8-3.
8-4.
8-5.
9-1.
10-1.
10-2.
10-3.
11-1.
11-2.
11-3.
12-1.
12-2.
12-3.
12-4.
12-5.
14-1.
14-2.
14-3.
15-1.
15-2.

Desktop Window Containing Windows of Several Applications 1-1
Typical Window Relationships 1-3
Window Hierarchy 1-4
Main Window with Secondary Windows 1-6
UserinputtoaWindow 1-8
Window Sizing and Positioning 1-15
Visible Region for Window A 1-19
Structure of a Simple Presentation Manager Application 1-21
Creating an ObjectWindow 1-22
Getting the Window Identifier 1-22
Changing the ParentWindow 1-23
Finding the ParentWindow 1-23
Finding the Topmost Child Window 1-23
Settingthe OwnerWindow 1-24
Getting a Handle to an Owner or Child Window 1-24
Enumerating Top-Level Windows 1-25
MovingaWindow 1-25
Moving and SizingaWindow 1-26
Changing the SizeofaWindow 1-26
Changing the Z-orderof aWindow 1-27
Exchanging the Z-order of Windows 1-28
Maximizing a Frame Window 1-28
DestroyingaWindow 1-29
Input Message Processingloop 2-4
Typical Frame Window and Ilts Components 6-1
Defining Resources for HeaderFile 6-5
Defining Resources for Resource (RC) File 6-5
Using FCF Flags to Indicate What Resourcestoload 6-6
Indicating that a Resource is Stored in the Application File 6-6
Sample Program for Loading Resources in a Frame Window 6-7
Push ButtoninaDialogBox 8-2
Radio ButtonsinaDialogBox 8-2
Check BoxesinaDialogBox 8-2
Defining Dialog-Window Buttons in a Dialog Template 8-9
Creating a Button Control for a Client Window 8-10
List BoxinaDialogBox 9-1
Combination BOX 10-1
Drop-Down CombinationBox 10-2
Drop-DownListBox 10-2
MENUS . . v o o e e e e e e 11-1
Pop-UpMenu 11-2
Examples of Mnemonics o 11-7
Exampleof EntryFields 12-1
Code for Creating an Entry Field in a Client Window 12-7
Code for Creating Entry Field with 12-Character Text Limit 12-8
Code for Creating Entry Field with 20-Character Text Limit 12-8
Code for Flagging a Text Change inanEntry Field 12-9
Scroll BarsinaWindow oo 14-1
Determining Scroll-Bar Range 14-2
Standard Window Scroll Bar and Command Codes 14-4
ExampleofaSpinButton 15-1
Sample Code for Creatinga SpinButton 15-2

XV

xvi

17-1.
18-1.
18-2.
18-3.
18-4.
18-5.
18-6.
18-7.
18-8.
18-9.
18-10.
18-11.
18-12.
18-13.
18-14.
18-15.
18-16.
18-17.
18-18.
18-19.
18-20.
18-21.
18-22.
18-23.
19-1.
19-2.
19-3.
19-4.
19-5.
19-6.
19-7.
19-8.
19-.
19-10.
19-11.
19-12.
19-13.
19-14,
19-15.
20-1.
20-2.
20-3.
21-1.
21-2.
21-3.
22-1.
23-1.
23-2.
24-1.
25-1.
25-2.
26-1.
26-2.
27-1.
28-1.
28-2.

Title Bar in a Standard Frame Window 17-1
Sample Code for Creatinga Container 18-3
Sample Code for Allocating Memory for Container Records 18-4
Icon View with items Positioned at Workspace Coordinates 18-6
Icon View When ltems Are Arranged or Automatically Positioned .. 18-7
Non-Flowed Name View 18-8
Flowed Name View 18-8
Non-Flowed TextView 18-9
Flowed TextView 18-10
Sample Tree View Showing Root Level, Parent, and Child ltems .. 18-11
TreelconView 18-12
TreeTextView 18-12
TreeName View 18-14
Details View 18-15
Details View with SplitBar 18-16
Sample Code for Changing a Container View 18-17
Sample Code for Inserting a Record into a Container 18-19
Sample Code for Removing Container Records 18-21
Selected-State and Unavailable-State Emphasis 18-25
Workspace X-and Y-Axes 18-29
WorkspaceBounds 18-30
Non-Flowed Text View with Container Title 18-33
Split Details View with Container Title 18-33
Sample Code for Allocating Memory for Smaller Container Records 18-35
Notebook Example 19-1
Sample Code for CreatingaNotebook 19-2
Default Notebook Style 19-3
Default Style and Placement of Major and MinorTabs 19-4
Sample Code for Changing the Notebook Style 19-7
Notebook with Style SettingsChanged 19-8
Sample Code for Inserting a NotebookPage 19-9
Calendar Inserted into an Application Page Window 19-11
Sample Code for Associating a Window with a Notebook Page ... 19-11
Dialog Used As an Application PageWindow 19-13
Sample Code for Associating a Dialog with a Notebook Page 19-14
Sample Code for Deleting a NotebookPage 19-15
Notebook with Tab Scroll Buttons Displayed 19-17
Sample Code for Changing the Color of the Notebook Outline 19-20
Sample Code for Changing the Color of the Major Tab Background 19-21
SampleSlider 20-1
Sample Code for Creatinga Slider 20-2
Retrievinga SliderValue 20-5
SampleValueSet 211
Sample Code for CreatingaValueSet 21-2
Sample Code for Retrieving Data for Value Setltems 21-4
Accelerators, 22-1
Dialog Window with Control Windows 23-2
ExampleofaMessageBox 23-3
FontDialog 241
OpenDialog 25-1
SaveAsDialog 25-2
Bit Values inthe ANDand XORMasks 26-1
Mouse Pointers, 26-2
Responseto a WM_SETFOCUSmessage 27-2
Application’s Flow of GraphicsCommands 28-2
Clip Region and Visible Region of a Window’s Presentation Space .. 284

08/2 Programming Guide—Volume It

28-3.
28-4.
28-5.
20-1.
31-1.
31-2.
32-1.
32-2.
33-1.

Presentation Space versus Window 28-9
Normal PresentationSpace 28-11
Micro PresentationSpace 28-12
Typesof Rectangleso .. 29-1
A Copy Operation Between Applications Using the Clipboard 31-1
A Paste Operation Between Applications Using the Clipboard 3141
Linking a DDE Client withaDDE Server 32-1
Initiating a DDE Conversation 32-5
Dragging DatatoaPrinter 33-1

Figures xvii

08/2 Programming Guide—Volume |l

Tables

© Copyright IBM Corp. 1992

7-1.

10-1.
10-2.
10-3.
10-4.

WindowClasses 1-12
StandardWindow Styles 1-13
SystemCommands 1-16
Presentation Manager-Defined Resource Types 1-18
Window Functions 1-29
WindowMessages, 1-31
Window Data Structures 1-32
Message Categories 2-7
Message Priorities 2-9
Commonly Used Message and Message Queue Functions 2-14
Seldom-Used Message and Message Queue Functions 2-14
Almost-Never Used Message and Message Queue Functions 2-14
Message and Message Queue Structures 2-15
Class Styles e 3-2
PublicWindowClasses, 3-4
Window Class Functions 3-6
Window Class Structure 3-6
Window Procedure Arguments 4-2
Window Procedure Functions 4-6
Default Window Procedure Messages 4-6
Keyboard CharacterFlags 5-4
Mouse/Keyboard Functions 5-11
Focus-Change and ActivationMessages 5-12
MouseMessages, 5-12
Keyboard Messages, 5-12
Frame-Control Identifiers 6-3
Frame Window Flags and Styles Requiring Resources 6-4
Frame Window State Flags and Their Meanings 6-8
Default Frame-Window Messages and Behavior 6-10
Frame-Window Functions 6-15
Frame-Window Structures 6-15
Frame-Window Messages 6-15
Control Window Classes 7-1
Messages Received by a ControlWindow 7-5
Messages Generated by a Control Window toitsOwner 7-5
Button Styles e 8-3
Messages Processed by the WC_BUTTONClass 8-5
Notification Code for Button Control Messages 8-7
Button-Control Functions 8-11
Button-Control Structure 8-11
Messages Received by a Buttoncontrol 8-11
Messages Generated by a Button Control 8-12
List Item PositionIndex 9-3
Messages Handled by WC_LISTBOXClass 9-7
List-Box Structure 9-8
List-Box Functions 9-8
Messages Generated by a List BoxtoltsOwner 9-9
Messages Received by alListBox 9-9
Combination-Box Styles 10-1
Combination-Box NotificationCodes 10-3
Messages Received by a CombinationBox 10-3
Message Sent From a Combination Box to ltsOwner 10-3

Xix

111,
11-2.
113,
11-4.
11-5.
12-1.
12-2.
12-3.
12-4,
12-5.
12-6.
12-7.
13-1.
13-2.
13-3.
13-4.
13-5.
13-6.
14-1,
14-2.
14-3.
14-4,
14-5.
14-6.
14-7.
14-8.
15-1.
15-2.
15-3.
16-1.
16-2.
16-3.
16-4.
17-1.
17-2.
17-3.
17-4.
18-1.
18-2.
18-3.
18-4.
18-5.
18-6.
18-7.
19-1.
19-2.
19-3.
19-4.
19-5.
20-1.
20-2.
20-3.
20-4.
20-5.
21-1.
21-2.

Keystroke Menu ACCesSSiuiiiinennnn.. 11-6
Menu Functionst 11-17
Menu Structures 11-17
Messages ReceivedbyaMenu 11-17
Messages GeneratedbyaMenu 11-18
Entry-FieldStyles i 12-1
Notification of Entry-FieldEvents 12-2
Messages Handled by WC_ENTRYFIELD Class 12-3
Entry-Field Functions 12-10
Entry-Field Structure L., 12-10
Messages SenttoanEntry Field 12-10
Message Generated by an Entry Field to its Owner Window 12-11
Multiple-Line Entry Field Styles 13-1
Multiple-Line Entry Field Control Notification Codes 13-2
Multiple-Line Entry Field TextFormat 13-5
Multiple-Line Entry Field Control Structures 13-11
Messages Received by an MLE Field Control 13-11
Messages Issued by an MLE Field Control to Its Owner Window .. 13-13
Scroll-BarStyles 14-2
Scroli-BarCommandCodes 14-4
Scroll-bar Notification Messages 14-5
Focus Window Message ResponsestoKeys 14-6
List Box ResponsestoKeys 14-6
Scroll-Bar Structure e 14-10
Messages SenttoaScroliBar 14-10
Messages Sent from a Scroll Bar to lts Owner Window 14-11
Spin Button Control NotificationCodes 15-4
Spin Button Control NotificationMessage 15-4
Spin Button Control Window Messages 15-4
Static-Control Styles oo 16-2
Messages Handled by WC_STATICClass 16-3
Static-Control Functions 16-6
Static-Control Messages 16-6
Messages Processed by Title-Bar Control 17-2
Title-Bar Functions i 17-4
Title-Bar Structures 17-4
Title-Bar Messages 17-5
Types of Container Views for Displaying Typesof Data 18-4
Views of a Container'sContents 18-5
Differences between RECORDCORE and MINIRECORDCORE 18-35
Container Control Structures 18-36
Container Control NotificationCodes 18-37
Container Control Notification Messages 18-38
Container Control Window Messages 18-38
Notebook Window Style Settings 19-6
Notebook Control Structures 19-23
Notebook Control NotificationCodes 19-23
Notebook Control Notification Messages 19-24
Notebook Control Window Messages 19-24
Slider Control Functions 20-7
Slider Control Structure 20-7
Slider Control NotificationCodes 20-7
Slider Control Notification Messages 20-8
Slider Control Window Messages 20-8
Value Set Control Structures, 21-7
Value Set Control Functions 21-7

XX 0S/2 Programming Guide—Volume Il

21-3.
21-4.
21-5.
22-1.
22-2.
22-3.
22-4.
23-1.
23-2.
23-3.
24-1.
24-2.
24-3.
24-4,
25-1.
25-2.
25-3.
25-4.
26-1.
26-2.
26-3.
26-4.
26-5.
27-1.
27-2.
28-1.
28-2.
29-1.
29-2.
30-1.
30-2.
30-3.
30-4.
31-1.
31-2.
31-3.
31-4.
31-5.
32-1.
32-2.
32-3.
32-4.
32-5.
32-6.
33-1.
33-2.
33-3.
33-4.
34-1.
34-2.
34-3.
35-1.
35-2.
36-1.

B-1.

C-1.

Value Set Control NotificationCodes 21-7

Value Set Control Notification Messages 21-8
Value Set Control Window Messages 21-8
Accelerator-ltem Styles 22-3
Accelerator-Table Functions 22-6
Accelerator-Table Structures 22-6
Accelerator-Table Messages 22-6
Dialog Functions 23-12
Dialog Structurest 23-13
DialogMessagest 23-13
Font Dialog Structures 24-4
FontDialogMessageso 24-4
Font Dialog Functions 24-4
Standard Font Dialog Controls 24-4
File Dialog Structure 25-5
File DialogMessages 25-5
File Dialog Functions 25-5
File Dialog Minimum Set of Standard Controls 25-6
Predefined Mouse Pointers 26-2
Presentation Manager Mouse Pointers 26-3
Standard System BitMaps oo 26-4
Pointer and Bit Map Functions 26-6
Pointer Structure e 26-7
Cursor FUnctions i 27-3
CursorStructure 27-3
Window Regions 28-3
Presentation Space, Device Context, and Window Region Functions 28-15
Window-Drawing Functions 29-5
Window-Drawing Structureso 29-6
HOOK TYPES ot e e e 30-1
Message Filter Hook Parameter Values 30-4
Hook FUNCHIONS i e i e s 30-10
Hook Functions e 30-10
Operations on ClipboardData 31-2
Clipboard Data Formats 31-4
Messages Handled by Clipboard Owner 31-7
Clipboard Functions 31-12
Clipboard Messagesot 31-12
DDE System TOpiCS i 324
DDEStatusFlags, 32-7
DDEDataFormats i 32-10
Window Procedure Syntax 32-18
DDE StruCtUIresS v oot i i e e e e 32-18
DDE MESSAQESt v vttt it 32-19
Summary of Functions Used by the Source 33-7
Summary of Functions Used bythe Target 33-10
Direct Manipulation Structures 33-23
Direct Manipulation (Drag) Messages 33-23
System Timers e e e e e e e 34-2
Window Timer Functions 34-4
Window Timer Message 34-4
Atom StringFormats o 354
Atom Table Functions o 35-7
Initialization File Functions 36-4
Technical Terms with Equivalent User Terms and User Definitions ... B-2
CUA-Approved Deviations and Guidelines C-1

Tables XXi

xxii 0S/2 Programming Guide—Volume II

Notices

The following terms, denoted by an asterisk (7) in this publication, are trademarks of
the IBM Corporation in the United States and/or other countries:

IBM IBM C/2
Operating System/2 08S/2
Systems Application Architecture SAA
Personal System/2 PS/2
Common User Access CUA

Presentation Manager

The following terms, denoted by a double-asterisk (**) in this publication, are
trademarks of other corporations, as follows:

Helvetica Trademark of Linotype Co.
Times New Roman Trademark of Monotype Corp.

Double-Byte Character Set (DBCS)

Throughout this publication, you will see reference to specific values for character
strings. The values are for single-byte character set (SBCS). If you use the
double-byte character set (DBCS), notice that one DBCS character equals two SBCS
characters.

Common User Access (CUA) Terminology

.© Copyright IBM Corp. 1992

For the understanding of the Programming Guide audience, there are instances in
this document when the terminology is not compliant with the 1991 CUA User
Interface Guidelines. The first occurrence of such instances is noted in text and in
appendixes in the back of the book.

xxiii

XXiV 0S/2 Programming Guide—Volume !l

About This Book

© Copyright IBM Corp. 1992

The three volumes of the IBM 0S/2 2.0 Programming Guide provide information and
code examples to enable you to start writing source code, using the functions in the
application programming interface (API) of the 0S/2" 2.0 operating system (0S/2).
Each volume covers a different facet of the operating system, as follows:

Programming Guide: Volume I—Control Program Programming Interface
Introduces you to the Control Program Programming Interface and describes the
functionality provided by the base operating system.

Programming Guide: Volume ll—Presentation Manager Window Programming
Interface (this book).

Describes the Presentation Manager” (PM) window programming interface. This
volume will familiarize you with the windowed, message-based, PM user interface.

Note: Except where noted in text and in the appendixes, this document conforms to
the 1991 IBM Systems Application Architecture’ (SAA") Common User
Access” (CUA") guidelines for the new Presentation Manager API functions.

Programming Guide: Volume lll—Graphics Programming Interface
Describes the Graphics Programming Interface. This volume provides information
on how to prepare graphical output for display and printing.

For complete and comprehensive information about the API, refer to the 0S/2 2.0
Control Program Programming Reference and the Presentation Manager
Programming Reference—Volumes I, I, and lll.

For information on how to compile and link your programs, refer to the compiler
publications for the programming language you are using.

The 0S/2 2.0 operating system is a 32-bit system, and this guide is about
programming 32-bit applications. (Sixteen-bit applications still are supported by the
operating system.)

To illustrate programming with the API, this guide makes extensive use of code
fragments. Also, there are sample applications available with the Developer’s
Toolkit for 0S/2 2.0 (Toolkit). You should familiarize yourself with the operation of
each sample from a user’s viewpoint. That will help you understand the code in the
samples.

XXv

xxvi

Structure of the Books

Each chapter of these books is divided into two sections: about the topic and using
the functions related to that topic. The first section of each chapter provides
concepts, terms, and background material; the second section describes the
applicable functions and is divided into subsections, each providing information
about how to accomplish a specific task. Code fragments are included for most of
the functions.

Prerequisite Knowledge
These books are for application designers and programmers who are familiar with
the following:

¢ Information contained in the Application Design Guide

¢ Information contained in the Control Program and Presentation Manager
reference materials

* C Programming Language.

Note: Programming experience on a multitasking operating system also would be
helpful.

08S/2 Programming Guide—Volume Il

#
Presentation Manager Window Programming Interface

© Copyright IBM Corp. 1992

0S/2 Programming Guide—Volume Il

a.a.pter 1. Windows

To most users, a window is a rectangular area of the display screen where an
application receives input from the user and displays output. This chapter describes
the parts of the operating system that enable a Presentation Manager* (PM)
application to create and use windows; manage relationships between windows;
and size, move, and display windows. An overview of the following topics is
presented:

Types of windows

Window classes and styles
Window-creation techniques

Window messages and message queues
Methods of window input and output
Window resources and procedures
Window identification and modification.

Subsequent chapters present more in-depth descriptions of windows, their
advantages and uses, along with example code fragments.

About Windows

The only way a PM application can interact with the user and perform tasks is by
way of windows. Each window shares the screen with other windows, including
those from other applications. The user employs the mouse and keyboard to
interact with the windows and with the applications that own the windows.

Desktop Window and Desktop-Object Window

0S/2* automatically creates the desktop window (known as the workplace in user
terminology) when it starts a PM session.

Main Window 3

Main Window 2

Main Window 1

Child Window 1a

Child Window 1b

Figure 1-1. Desktop Window Containing Windows of Several Applications

© Copyright IBM Corp. 1992 1-1

The desktop window paints the background color of the screen and serves as the
“progenitor” of all the windows displayed by all PM applications (but not of object
windows, which do not require screen display). To make the desktop the parent in
the WinCreateStdWindow function, you specify HWND_DESKTOP.

The windows immediately below the desktop are called main or top-level windows;
these are called primary windows in user terminology. Every PM application
creates at least one window to serve as the main window for that application. Most
applications also create many other windows, directly or indirectly, to perform tasks
related to the main window.

Each window helps display output and receive input from the user. Figure 1-1 on
page 1-1 shows the desktop window containing windows of several applications.
Notice that the main windows can overlap one another. (At times, it is possible for a
main window to be completely hidden.) Operations in one main window normally
do not affect the other main windows.

The desktop-object window is like a desktop window that is never displayed; it
serves as the base window to coordinate the activity of an application’s object
windows. The desktop-object window cannot display windows nor process
keyboard and mouse input. The primary purpose of the desktop-object window is to
enable you to create windows that need not respond to messages at the same rate
as the user interface.

Window Relationships

Window relationships define how windows interact with each other—on the screen
and through messages. There are parent-child window relationships and
window-owner relationships.

The parent-child relationship determines where and how windows appear when
drawn on the screen. It also determines what happens to a window when a related
window is destroyed or hidden. The parent-child rules apply to all windows at all
times and cannot be modified.

Ownership determines how windows communicate using messages. Cooperating
windows define and carry out their rules of ownership. Although some windows
(such as windows of the preregistered public window class, WC_FRAME) have very
complex rules of ownership, the application usually defines the ownership rules.

1-2 o0s2 Programming Guide—Volume Il

Figure 1-2 represents the logical relationship of the windows in two applications.

Child
Window 1.1.1

Desktop Window
Application 1 Application 2

ceeny [] oo AOPMCIORZ i
! -
! T 1 ;
! Main Window 1 b Main Window 2 :
i P i
]]]]
]] 1 1
]) 1]
]]]]
[! ']
] t 1]
[} t 1]
]] 1]
: P :
H Child Chid | | Child Child |
! Window1.1 Window 1.2 E ! Window 2.1 Window 2.2 E
)]
: P ;
) 1
i P :
] 1 1]
] [} 1 '
i P i

1 1

Figure 1-2. Typical Window Relationships

Parent-Child Relationship

Most windows have a parent window. (The exceptions are the desktop and
desktop-object windows, which the system creates at system startup.) An
application specifies the parent when it creates a window; then, the system uses the
parent to determine where and how to draw any new windows, as well as when to
destroy the windows (free all associated resources and remove the windows from
the screen).

A child window is drawn relative to its parent. The coordinates given to specify the
position of a window’s lower-left corner are relative to the lower-left corner of its
parent. For example, a main window (child of the desktop) is drawn relative to the
lower-left corner of the screen (the desktop window’s lower-left corner).

All main windows are siblings because they share a common parent, the desktop
window. Because sibling windows can overlap, an application or a user arranges
the windows, one behind another (like a stack of papers on a desk), in the desired
viewing order (called z-order) as illustrated in Figure 1-1 on page 1-1. Z-order uses
the desktop as a reference point for a “three-dimensional” ranking of the
overlapping windows: the topmost window has the highest ranking, while the
window at the bottom of the stack has the lowest ranking. The parent of the sibling
windows is always at the bottom of the z-order.

Chapter 1. Windows 1-3

Figure 1-3 illustrates the hierarchy of such an arrangement.

Figure 1-3. Window Hierarchy

Although PM supports z-order, it does not enforce the expected appearance unless
you specify the CS_CLIPCHILDREN or CS_CLIPSIBLINGS styles. No part of a child
window ever appears outside the borders of its parent. If an application creates a
window that is larger than its parent, or positions a window so that some or all of it
extends beyond the borders of the parent, the extended portion of the child window
is not drawn.

An application can use the WS_CLIPCHILDREN or WS_CLIPSIBLINGS styles to
remove from a window’s clipping area (the area in which the window can paint) the
area occupied by its child or sibling windows. For example, an application can use
these styles to prevent a window from painting over a child or sibling window
containing a complex graphic that would be time-consuming to redraw.

When a window is minimized, hidden, or destroyed, all of its children are hidden,
minimized, or destroyed as well. The order of destruction is always such that every
window is destroyed before its parent. The window-destruction sequence starts at
the bottom of descendancy so that all related windows can be cleaned up; the last
one to go is the window you asked to be destroyed. The final PM task in a
window-destruction sequence is to send a WM_DESTROY message to that window,
so it has one last chance to release any resources it has allocated and may still be
holding.

Every window has only one parent, but can have any number of children. Referring
back to Figure 1-3, any window in this tree is said to be a descendant of any window
appearing above it in the branch, and an ancestor of any window appearing below
it. There are two special cases, of course: the window immediately above is called
the window’s parent, and any window immediately below it is called its child. An
application can change a window’s parent window at any time by using the
WinSetParent function. Changing the parent window also changes where and how -
the child window is drawn. The system displays the child within the borders of the
new parent and draws the window according to the styles specified for the new
parent.

1-4 0S/2 Programming Guide—Volume Il

Ownership

Any window can have an owner window. Typically, an application uses ownership
to establish a connection between windows so that they can perform useful tasks
together. For example, the title bar in an application’s main window is owned by the
frame window; but, together, the user can move the entire main window by clicking
the mouse in the title bar and dragging. An application can set the owner window
when it creates the window or at a later time.

Ownership establishes a relationship between windows that is independent of the
parent-child relationship. While there are few predefined rules for owner- and
owned-window interaction, a window always notifies its owner of anything
considered a significant event.

The preregistered public window classes provided by OS/2* recognize ownership.
Control windows of classes such as WC_TITLEBAR and WC_SCROLLBAR, notify
their owners of events; frame windows, of class WC_FRAME, receive and process
notification messages from the control windows they own. For example, a title-bar
control sends a notification message to its owner when it receives a mouse click. If
the owner is a frame window, it receives the notification message and prepares to
move itself and its children.

Owner and owned windows must be created by the same thread; that is, they must
belong to the same message queue. Because ownership is independent of the
parent-child relationship, the owner and owned windows do not have to be
descendants of the same parent window. However, this can affect how windows are
destroyed. Destroying an owner window does not necessarily destroy an owned
window. Except for frame windows, an application that needs to destroy an owned
window that is not a descendant of the owner window must do so explicitly.

Frame windows sometimes own windows that are not descendants but, instead, are
siblings. A frame window has the following special ownership properties:

* When the frame window is destroyed, it destroys all of the windows it owns, even
if they are not descendants.

¢ When a frame window moves, the windows it owns move also. Owned windows
that are not descendants maintain their positions, relative to the upper-left (not
the usual lower-left) corner of the owner window. An owned window with the
style FS_NOMOVEWITHOWNER does not move.

¢ When the frame window changes its position in the z-order, it changes the
z-order of all the windows it owns.

* When the frame window is minimized or hidden, it hides all the windows it owns.
Owned windows hidden this way are restored when the frame window is
restored.

If an application needs this type of special processing for its own window classes, it
must provide that support in the window procedures for those classes.

Object Windows

Any descendant of the desktop-object window is called an object window. Typically,
an application uses an object window to provide services for another window. For
example, an application can use an object window to manage a shared database. In
this way, a window can obtain information from the shared database by sending a
message to and receiving a reply from the object window.

Only two system-defined messages are available to an object window—

Chapter 1. Windows 1-5

WM_CREATE and WM_DESTROY—but the object window enables the user to
implement a set of user-defined messages. The window procedure for an object
window does not have to process paint messages or user input. The object window
processes only messages that affect the data belonging to the object.

HWND_OBJECT is the only identifier needed to create an object window. It is very
unwise to create descendants of HWND_OBJECT in the same thread that creates
descendants of HWND_DESKTOP: this causes the system to hang up or, at the very
least, behave slowly. Object windows, sometimes referred to as orphan windows,
require no owner.

The rules for parent-child and ownership relationships also apply to object windows.
In particular, changing the parent window of an object window to the desktop
window, or to a descendant of the desktop window, causes the system to display the
object window if the object window has the WS_VISIBLE style.

Application Windows
An application can use several types of secondary windows: frame windows, client
windows, control windows, dialog windows, message boxes, and menus. Typically,
an application’s main window consists of several of these windows acting as one.
Figure 1-4 shows an example of a main window and its secondary windows.

Title-Bar Window title Window sizing buttons
icon
Title-Bar
Menu bar
Vertical
Window —
border — sg::ll
Information
area

Horizontal scroll bar

Figure 1-4. Main Window with Secondary Windows

A frame window is a window that an application uses as the base when constructing
a main window or other composite window, such as a dialog window or message
box. (A composite window is a collection of windows that interact with one another
and are kept together as a unit.) A frame window provides basic features, such as
borders and a menu bar. Frame windows have a set of resources associated with
them. These include icons, menus, and accelerators (shortcut keys to the user),
which, typically, are defined in an application’s resource file.

A dialog window is a frame window that contains one or more control windows.
Dialog windows are used almost exclusively for prompting the user for input. An

1-6 0S/2 Programming Guide—Volume Ii

application usually creates a dialog window when it needs additional information to
complete a command. The application destroys the dialog window after the user
has provided the requested information.

A message box is a frame window that an application uses to display a note,
caution, or warning to the user. For instance, an application can use a message box
to inform the user of a problem that the application encountered while performing a
task.

A client window is the window in which the application displays the current
document or data. For example, a desktop-publishing application displays the
current page of a document in a client window. Most applications create at least
one client window. The application must provide a function, called a window
procedure, to process input to the client window and to display output.

A control window is a window used in conjunction with another window to perform
useful tasks, such as displaying a menu or scrolling information in a client window.
The operating system provides several predefined control-window classes that an
application can use to create control windows. Control windows include buttons,
entry fields, list boxes, combination boxes, menus, scroll bars, static text, and title
bars.

A menu is a control window that presents a list of commands and other menus to
the user. Using a mouse or the keyboard, the user can select a task; the application
then performs the selected task.

Window Input and Output

The user directs input data to windows from a mouse and the keyboard. Keyboard
input goes to the window with input focus, and, normally, mouse input goes to the
window under the mouse pointer.

Windows also are places to display output data. PM uses windows to display text
and graphics on the screen and to process input from the mouse and keyboard.
Windows provide the same input and output capabilities as a virtual graphics
terminal without having direct control of the hardware.

An application is responsible for painting the data for the window classes it
registers and creates. This data can be graphics text or pictures or fixed-size
alphanumeric text. Normally it is not necessary for the application to paint the
system-provided window classes; the 0S/2 window procedures for those window
classes do the painting.

Active Window and Focus Window

All frame-window ancestors of the input focus window are said to be active,
meaning that the user interacts with them. The active window usually is the topmost
main window, which is positioned above all other top-level windows on the screen.
The active window is indicated by some form of highlighting. For example, a
highlighted title bar shows that a standard frame window is active; an active dialog
window has a highlighted border. These types of highlighting ensure that the user
can see the window that is accepting input.

A main window (or one of its child windows) is activated by using a mouse or the
keyboard. When a window is activated, it receives a WM_ACTIVATE message with
its first parameter set to TRUE. When it is deactivated, it receives a WM_ACTIVATE
message with its first parameter set to FALSE. Figure 1-5 on page 1-8 illustrates
user interaction with a window.

Chapter 1. Windows 1-7

Active Window
Input Focus
Window
3
Pointer
| S
T ITTT
'Illllllllllllllllll'lllll %---
I ENENENARANN] nEn
LI I I
Illlllllll Ill - .

Figure 1-5. User Input to a Window

The focus window can be the active window or one of its descendant windows. The
user can change the input focus the same way active windows are changed—by
mouse or keyboard. However, the application has more control over the input
focus. For example, in a window containing several text entry fields, the tab keys
can move the input focus from one input field to another. A WM_SETFOCUS
message is sent to the window procedure when a window is gaining or losing the
input focus. The WinQueryFocus function tells the user which window has the input
focus.

Messages

Messages are a fundamental part of the operating system. PM applications use
messages to communicate with the operating system and one another. The system
uses messages to communicate with applications to ensure concurrent running and
sharing of devices. Typically, a message notifies the receiving application that an
event has occurred. The operating system identifies the appropriate application
window to receive a message by the window handle included in the message.
Sources of events that cause messages to be issued to applications are the user,
the operating system, the application, or another application.

The User: Mouse or keyboard input to an application window causes the operating
system to direct messages to that window.

The Operating System: Managing the application windows on the screen, the
operating system issues messages to the windows, usually as an indirect result of
user interaction. These messages enable the system to work in a uniform and
well-ordered manner. For example, where several application windows overlap,
and the user terminates an application so that its window disappears, the operating
system issues messages to the underlying application windows so that they can
repaint themselves.

The Application: An event can occur in the application to which another part of that
application should respond; for example, when the contents of its window no longer
accurately reflect the status of the application. The application can define its own
messages outside the range of system-defined messages to communicate such
events.

1-8 0S/2 Programming Guide—Volume II

Another Application: Communication with other applications through the operating
system ensures cooperative use of the system; it even can be used to exchange
data. For example, an arithmetic application can supply the results of a lengthy
calculation to a business graphics application.

Enabled and Disabled Windows

An application uses the WinEnableWindow function to enable or disable window
input. By default, a window is enabled when it is created. However, an application
can disable a newly created window.

An application usually disables a window to prevent the user from using the
window. For example, an application might disable a push button in a dialog
window. Enabling a window restores normal input; an application can enable a

0 disabled window at any time.
<
3
‘Pw"v ,)g«“’ When an application uses the WinEnableWindow function to disable an existing
oY de\k e window, that window also loses keyboard focus. WinEnableWindow sets the
NE) o rw“ keyboard focus to NULL, which means that no window has the focus. If a child
o S window or other descendant window has the keyboard focus, it loses the focus when

the parent window is disabled.

An application can determine whether a window is enabled by calling
WinlsWindowEnabled.

System-Modal Window

An application can designate a system-modal window: a window that receives all
keyboard and mouse input, effectively disabling all other windows. The user must
respond to the system-modal window before continuing work in other windows. An
application sets and clears the system-modal window by using the
WinSetSysModalWindow function.

Because system-modal windows have absolute control of input, you must be careful
when using them in your applications. Ideally, an application uses a system-modal
window only when there is danger of losing data if the user does not respond to a
problem immediately.

Although an application can destroy a system-modal window, the new active
window then becomes a system-modal window. An application can make another
window active while the first system-modal window exists. But again, the new
active window will become the system-modal window. In general, once a
system-modal window is set, it continues to exist in the PM session until the
application explicitly clears it.

Window Creation
Before any thread in an application can create windows, it must:

1. Call Wininitialize to create an anchor block
2. Call wWinCreateMsgQueue to create a message queue for the thread.

Then, it can create one or more windows by calling one of the window-creation
functions, such as WinCreateWindow.

The window-creation functions require that the following information be supplied in
some form:

¢ Class
¢ Styles

Chapter 1. Windows 1-9

Name

Parent window

Position relative to the parent window

Position relative to any sibling windows (z-order)
Dimensions

Owner window

Identifier

Class-specific data

Resources.

Every window belongs to a window class that defines that window’s appearance and
behavior. The chief component of the window class is the window procedure. The
window procedure is the function that receives and processes all messages sent to
the window.

Every window has a style. The window style specifies aspects of a window’s
appearance and behavior that are not specified by the window’s class. For
example, the WC_FRAME class always creates a frame window, but the
FS_BORDER, FS_DLGBORDER, and FS_SIZEBORDER styles determine the style of
a frame window’s border. A few window styles apply to all windows, but most apply
only to windows of specific window classes. The window procedure for a given
class interprets the style and allows an application to adapt a window of a given
class for a special circumstance. For example, an application can give a window
the style WS_SYNCPAINT to cause it to be painted immediately whenever any
portion of the window becomes invalid. Normally, a window is painted only if there
are no messages waiting in the message queue.

A window can have a text string associated with it. Typically, the window text is
displayed in the window or in a title bar. The class of window determines whether
the window displays the text and, if so, where the text appears within the window.

Every window except the desktop window and desktop-object window has a parent
window. The parent provides the coordinate system used to position the window
and also affects aspects of a window’s appearance. For example, when the parent
window is minimized, hidden, or destroyed, the parent’s child windows are
minimized, hidden, or destroyed also.

Every window has a screen position, size, and z-order position. The screen position
is the location of the window’s lower-left corner, relative to the lower-left corner of
its parent window. A window's size is its width and height, measured in pels. A
window's z-order position is the position of the window in the order of overlapping
windows. This viewing order is oriented along an imaginary axis, the z axis,
extending outward from the screen. The window at the top of the z-order overlaps
all sibling windows (that is, windows having the same parent window). A window at
the bottom of the z-order is overlapped by all sibling windows. An application sets a
window’s z-order position by placing it behind a given sibling window or at the top
or bottom of the z-order of the windows.

A window can own, or be owned by, another window. The owner-owned
relationship affects how messages are sent between windows, allowing an
application to create combinations of windows that work together. A window issues
messages about its state to its owner window; the owner window issues messages
back about what action to perform next.

The window handle is a uniqgue number across the system that is totally
unambiguous—it identifies one particular window in the system and is assigned by

1-10 0S/2 Programming Guide—Volume Ii

the system. A window identifier is analogous to a “given” name in family
relationships—the only requirement is that the name be unique among siblings.

A window can have class-specific data that further defines how the window appears
and behaves when it is created. The system passes the class-specific data to the
window procedure, which then applies the data to the new window.

Window-Creation Functions

The basic window-creation function is WinCreateWindow. This function uses
information about a window’s class, style, size, and position to create a new
window. All other window-creation functions, such as WinCreateStdWindow and
WinCreateDlIg, supply some of this information by default and create windows of a
specific class or style.

Although the WinCreateWindow function provides the most direct means of creating
a window, most applications do not use it. Instead, they often use the
WinCreateStdWindow function to create a main window and the WinDIigBox or
WinCreateDlg functions to create dialog windows.

The WinCreateMenu, WinLoadMenu, WinLoadDlg, WinMessageBox, and
WinCreateFrameControls functions also create windows. Each of these functions
substitutes for one or more required calls to WinCreateWindow to create a given
window. For example, an application can create a frame window, one or more
control windows, and a client window in a single call to WinCreateStdWindow.

Window-Creation Messages

While creating a window, the system sends messages to that window’s window
procedure. The window procedure receives a WM_CREATE message, saying that
the window is being created. The window also receives a
WM_ADJUSTWINDOWPOS message, specifying the initial size and position of the
window being created. This message lets the window procedure adjust the size and
position of the window before the window is displayed.

The system also sends other messages while creating a window; the number and
order of these messages depend on the class and style of the window and the
function used to create it.

Window Classes

Each window of a specific window class uses the window procedure associated with
that class. An application can create one or more windows that belong to the same
window class. Because each window of the same class is processed by the same
window procedure, they all behave the same way. Since many windows can result
from one window procedure, coding overhead is greatly reduced. There are two
types of window classes: public and private.

Public Window Classes

A public window class is one that has a reentrant window procedure that is
registered and resides in a dynamic link library (DLL); it can be used by any process
in the system to create windows. The operating system provides several
preregistered public window classes. You can specify the system-provided window
classes by using the symbolic identifiers that have the prefix WC_, as shown in the
following table:

Chapter 1. Windows 1-11

Table 1-1. Window Classes

Class Name

Description

WC_BUTTON

WC_CONTAINER

WC_ENTRYFIELD
WC_FRAME

WC_LISTBOX

WC_MENU

WC_NOTEBOOK

WC_SCROLLBAR
WC_SLIDER

WC_SPINBUTTON

WC_STATIC
WC_TITLEBAR

WC_VALUESET

Consists of buttons and boxes the user can select by clicking the
pointing device or using the keyboard.

Creates a control for the user to group objects in a logical
manner. A container can display those objects in various
formats or views. The container control supports drag and drop
so the user can place information in a container by simply
dragging and dropping.

Consists of a single line of text that the user can edit.

A window class that can contain child windows of many of the
other window classes.

Presents a list of text items from which the user can make
selections.

Presents a list of items that can be displayed horizontally as
menu bars, or vertically as pull-down menus. Menus usually are
used to provide a command interface to applications.

Creates a control for the user that is displayed as a number of
pages. The top page is visible, and the others are hidden, with
their presence being indicated by a visible edge on each of the
back pages.

Lets the user scroli the contents of an associated window.

Creates a control that is usable for producing approximate
(analog) values or properties. Scroll bars were used for this
function in the past, but the slider provides a more flexible
method of achieving the same result, with less programming
effort.

Creates a control that presents itself to the user as a scrollable
ring of choices, giving the user quick access to the data. The
user is presented only one item at a time, so the spin buiton
should be used with data that is intuitively related.

Simple display items that do not respond to keyboard or pointing
device events.

Displays the window title or caption and lets the user move the
window’s owner.

Creates a control similar in function to the radio buttons but
provides additional flexibility to display graphical, textual, and
numeric formats. The values set with this control are mutually
exclusive.

With the exception of WC_FRAME, the system-provided window classes are known
as control window classes, because they give the user an easy means of controlling
specific types of interaction. For example, the WC_BUTTON class allows single or
multiple selections. These windows conform to the IBM* Systems Application
Architecture’ (SAA") Common User Access” (CUA") definition. They are designed
specifically to provide function that meets the needs for a graphics-based standard
user interface. The code fragments provided in this guide make extensive use of
the system window classes.

1-12 0S/2 Programming Guide—Volume II

Private Window Classes

A private window class is one that an application registers for its own use; it is
available only to the process that registers it. The application-provided window
procedure for a private window class resides either in the application’s executable
files or in a DLL file. A private window class is deleted when its registering process
is terminated.

Window Styles

A window can have a combination of styles; an application can combine styles by
using the bitwise inclusive OR operator. An application usually sets the window
styles when it creates the window. The 0S/2 operating system provides several
standard window styles that apply to all windows. It also provides many styles for
the predefined frame and control windows. The frame and control styles are unique
to each predefined window class and can be used only for windows of the
corresponding class.

Initially, the styles of the window class used to create the window determine the
styles of the new window. For example, if the window class has the style
CS_SYNCPAINT, all windows created using that class, by default, will have the
window style WS_SYNCPAINT.

The OS/2 operating system has the following standard window styles:

Table 1-2 (Page 1 of 2). Standard Window Styles

Style Name Description

WS_CLIPCHILDREN Prevents a window from painting over its child windows. This
style increases the time necessary to calculate the visible
region. This style is usually not necessary, because if the parent
and child windows overlap and both are invalidated, the system
draws the parent window before drawing the child window. If the
child window is invalidated independently of the parent window,
the system redraws only the child window. If the update region
of the parent window does not intersect the child window,
drawing the parent window causes the child window to be
redrawn. This style is useful to prevent a child window that
contains a complex graphic from being redrawn unnecessarily.
WS_CLIPCHILDREN is an absolute requirement if a window with
children ever performs output in response to any message other
than WM_PAINT. Only WM_PAINT processing is synchronized
such that the children will get their messages after the parent.

WS_CLIPSIBLINGS Prevents a window from painting over its sibling windows. This
style protects sibling windows but increases the time necessary
to calculate the visible region. This style is appropriate for
windows that overlap and that have the same parent window.

WS_DISABLED Used by an application to disable a window. Itis up to the
window to recognize this style and reject input.

WS_GROUP Specifies the first control of a group of controls in which the user
can move from one control to the next by using the ARROW
keys. All controls defined after the control with the WS_GROUP
style belong to the same group. The next control with the
WS_GROUP style ends the first group and starts a new group.

WS_MAXIMIZED Enlarges a window to the maximum size.
WS_MINIMIZED Reduces a window to the size of an icon.

Chapter 1. Windows 1-13

Table 1-2 (Page 2 of 2). Standard Window Styles

Style Name Description

WS_PARENTCLIP Extends a window’s visible region to include that of its parent
window. This style simplifies the calculation of the child
window’s visible region but is potentially dangerous, because
the parent window’s visible region is usually larger than the
child window.

WS_SAVEBITS Saves the screen area under a window as a bit map. When the
user hides or moves the window, the system restores the image
by copying the bits; there is no need to add the area to the
uncovered window’s update region. The style can improve
system performance but also can consume a great deal of
memory. it is recommended only for transient windows, such as
menus and dialog windows, not for main application windows.

WS_SYNCPAINT Causes a window to receive WM_PAINT messages immediately
after a part of the window becomes invalid. Without this style,
the window receives WM_PAINT messages only if no other
message is waiting to be processed.

WS_TABSTOP Specifies one of any number of controls through which the user
can move by tabbing. Pressing the TAB key moves the keyboard
focus to the next control that has the WS_TABSTOP style.

WS_VISIBLE Makes a window visible. The operating system draws the
window on the screen unless overlapping windows completely
obscure it. Windows without this style are hidden. If overlapping
windows completely obscure the window, the window is still
considered visible. (Visibility means that the operating system
draws the window if it can.)

Window Handles

After creating a window, the creation function returns a window handle that uniquely
identifies the window. An application can use this handle to direct the action of
functions to the window. Window handles have the data type HWND; applications
must use this data type when declaring variables that hold window handles.

There are special constants that an application can use instead of a window handle
in certain functions. For example, an application can use HWND_DESKTOP in the
WinCreateWindow function to specify the desktop window as the new window’s
parent. Similarly, HWND_OBJECT represents the desktop-object window.
HWND_TOP and HWND_BOTTOM represent the top and bottom positions relative to
the z-order position of a window.

Although the NULL constant is not a window handle, an application can use it in
some functions to specify that no window is affected. For example, an application
can use NULL in the WinCreateWindow function to create a window that has no
owner window. Some functions might return NULL, indicating that the given action
applies to no window.

Window Size and Position

A window'’s size and position can be expressed as a bounding rectangle, given in
coordinates relative to its parent. An application specifies the window’s initial size
and position when creating the window.

To use the system-default values for the initial size and position of a frame window,
an application can specify the FCF_SHELLPOSITION frame-creation flag. The

1-14 0s/2 Programming Guide—Volume II

application can change a window’s size and position at any time. Figure 1-6 on
page 1-15 indicates the size and position coordinates of a parent window and a
child window.

Desktop

cy

4

_——
X

Figure 1-6. Window Sizing and Positioning

Notes:

1. The defauit coordinate system for a window specifies that the point (0,0) is at the
lower-left corner of the window, with coordinates increasing as they go upward
and to the right.

2. A window can be positioned anywhere in relation to its parent.

Size

A window’s size (width and height) is given in pels, in the range 0 through 65535. A
window can have 0 width and height; however, a window with 0 width or height is
not drawn on the screen, even though it has the WS_VISIBLE style.

An application can create very large windows; however, it should check the size of
the screen before enlarging a window size. One way to choose an appropriate size
is to use the WinGetMaxPosition function to retrieve the size of the maximized
window. A window that is larger than its maximized size will be larger than the
screen also.

An application can retrieve the current size of the window by using the
WinQueryWindowRect function.

Position

A window’s position is defined as the x,y coordinates of its lower-left corner. These
coordinates, sometimes called window coordinates, always are relative to the
lower-left corner of the parent window. For example, a window having the
coordinates (10,10} is placed 10 pels to the right of, and 10 pels up from, the
lower-left corner of its parent window. Notice, however, that a window can be
positioned anywhere in relation to its parent, but always relative to the parent’s
lower-left corner.

Adjusting a window’s position can improve drawing performance. For example, an

application could position a window so that its horizontal position is a multiple of 8,
relative to the screen origin (the lower-left corner of the screen). Coordinates that

Chapter 1. Windows 1-15

Window Data

are multiples of 8 correspond to byte boundaries in the screen-memory bit map. It
is usually faster to start drawing at a byte boundary.

By default, the system positions a frame window on a byte boundary; but an
application can override this action by using the FCF_NOBYTEALIGN style when
creating the window.

Size and Position Messages

A window receives messages when it changes size or position. Before a change is
made, the system might send a WM_ADJUSTWINDOWPOS message to allow the
window procedure to make final adjustments to the window’s size and position.
This message includes a pointer to an SWP structure that contains the requested
width, height, and position. If the window procedure adjusts these values in the
structure, the system uses the adjusted values to redraw the window. The
WM_ADJUSTWINDOWPOS message is not sent if the change is a result of a call to
the WinSetWindowPos function with the SWP_NOADJUST constant specified.

After a change has been made to a window, the system sends a WM_SIZE message
to specify the new size of the window. If the window has the class style
CS_MOVENOTIFY, the system also sends a WM_MOVE message, which includes the
new position for the window. The system sends a WM_SHOW message if the
visibility of the window has changed.

System Commands

An application that has a window with a system menu can change the size and
position of that window by sending system commands. The system commands are
generated when the user chooses commands from the system menu. An application
can emulate the user action by sending a WM_SYSCOMMAND message to the
window.

Following are some of the system commands:

Table 1-3. System Commands

Command Description

SC_SIZE Starts a Size command. The user can change the size of the
window with a mouse and the keyboard.

SC_MOVE Starts a Move command. The user can move the window with a
mouse and the keyboard.

SC_MINIMIZE Minimizes the window.

SC_MAXIMIZE Maximizes the window.

SC_RESTORE Restores a minimized or maximized window to its previous size
and position.

SC_CLOSE Closes the window. This command sends a WM_CLOSE

message 1o the window. The window performs all tasks needed
to clean up and destroy itself.

Every window has an associated data structure. The window data structure contains
all the information specified for the window at the time it was created and any
additional information supplied for the window since that time. Although the exact
size and meaning of the information in the window data structure are private to the
system, an application can access any of the following data items via
system-provided functions:

1-16 0S/2 Programming Guide—Volume ii

Pointer to window-instance data structure
Pointer to window procedure
Parent-window handle

Owner-window handle

Handle of first child window

Handle of next sibling window

Window size and position (expressed as a rectangle)
Window style

Window identifier

Update-region handle

Message-queue handle.

® & & & o ©o o o o o o

An application can examine and modify this data by using functions such as
WinQueryWindowUShort and WinSetWindowUShort. These functions let an
application access data that is stored as 16-bit integers. Other functions iet an
application access data containing 32-bit integers and pointers. Several functions
indirectly affect the data items in the window data structure. For example, the
WinSubciassWindow function replaces the window-procedure pointer, and the
WinSetWindowPos function changes the size and position of the window.

An application can extend the number of available data items in the window data
structure by specifying a count of extra bytes when it registers the corresponding
window class. Then, the window procedure can use these bytes to store information
about the window. The WinQueryWindowUShort and WinSetWindowUShort
functions give direct access to the exira bytes.

It generally is not a good idea to use direct storage in the window data. It is better
to allocate a data structure dynamically and set a pointer to that data structure in
the window words. This provides two advantages:

1. Most importantly, it is a symbolic way of referencing the data structure. It is very
easy to make mistakes and provide the wrong offsets to WinQueryWindowUShort
and so forth.

2. You now can add and remove fields without cross dependencies, because you
now use symbolic references; whereas, when you use the technique of putting
window words directly in the window data structure, you have to account for
changed offsets.

Window Resources
Window resources are read-only data segments stored in an application’s .EXE file
or in a dynamic link library’s .DLL file. Predefined PM window resources include
keyboard accelerator tables, icons, menus, bit maps, dialog boxes, and so forth;
these are not a regular part of the application window’s code and data. Because, in
most cases, window resources are not loaded into memory when the operating
system runs a program, the resources can be shared by multiple instances of the
same application.

Most window resources are stored in a format that is unique to each resource type.
The application does not need to know these formats because the system translates
them, as necessary, for use in PM functions. The following table lists the ten most
commonly used PM window resource types.

Chapter 1. Windows 1-17

Table 1-4. Presentation Manager-Defined Resource Types
Resource Identifier Description
RT_ACCELTABLE Keyboard accelerator table
RT_BITMAP Bit map

RT_DIALOG Dialog box template
RT_FONT Font

RT_FONTDIR ’ Font directory

RT_MENU Menu template
RT_MESSAGE Message string
RT_POINTER Icon or mouse
RT_RCDATA Programmer-defined data
RT_STRING Text string

To access these resources, you must prepare a resource file (ASClI file with the
extension .RC). Then the ASCII resource file must be compiled into binary images
using the resource compiler. The compiled resource file extension is .RES; it can
be linked into your program’s .EXE file or to a dynamic link library’s .DLL file.

Maximized and Minimized Windows

A maximized window is a window that has been enlarged to fill the screen.
Although a window’s size can be set so that it fills the screen exactly, a maximized
window is slightly different: the system automatically moves the window’s titie bar
to the top of the screen and sets the WS_MAXIMIZED style for the window.

A minimized window is a window whose size has been reduced to exactly the size
of an icon or, in the workplace shell, it disappears altogether (by default). Like a
maximized window, a minimized window is more than just a window of a given size;
typically, the system moves the (icon) minimized window to the lower part of the
screen and sets the WS_MINIMIZED style for that window. The lower part of the
screen is sometimes called the icon area. Unless the application specifies another
position, the system moves a minimized window into the first available icon position
in the icon area.

If a window is created with the WS_MAXIMIZED or WS_MINIMIZED styles, the
system draws the window as a maximized or minimized window.

An application can restore maximized or minimized windows to their previous size
and position by specifying the SWP_RESTORE flag in a call to the WinSetWindowPos
function.

Window Visibility
A window that is a descendant of the desktop window can be either visible or
invisible. The system displays a visible window on the screen. It hides an invisible
window by not drawing it. If a window is visible, the user can supply input to the
window and view the window’s output. If a window is invisible, the window, in
effect, is disabled. An invisible window can process messages from the system or
from other windows, but it cannot process user input or display output. An
application sets a window’s visibility state when it creates the window. Later, a user
or the application can change the visibility state.

1-18 0S/2 Programming Guide—Volume il

The visible region of a window is the position clipped by any overlapping windows.
These overlapping windows can be child windows or other main windows in the
system. The visible region is defined by a set of one or more rectangles, as shown
in Figure 1-7 on page 1-19.

- Visible Region for Window A
Figure 1-7. Visible Region for Window A

A window is visible if the WS_VISIBLE style is set for the window. By default, the
WinCreateWindow function creates invisible windows unless the application
specifies WS_VISIBLE. The application often hides a window to keep its operational
details from the user. For example, an application can keep a new window invisible
while it customizes the window’s appearance. An application can determine
whether a window has the WS_VISIBLE style by using the WinisWindowVisible
function.

Even if a window has the WS_VISIBLE style, the user might not be able to see the
window on the screen because other windows completely overlap it, or it might
have been moved beyond the edge of its parent. A visible window is subject to the
clipping rules established by its parent-child relationship. If the window’s parent
window is not visible, the window will not be visible. Because a child window is
‘drawn relative to its parent’s lower-left corner, if the parent window is moved
beyond the edge of the screen, the child window also will be moved. In other words,
if a user moves the parent window containing the child window far enough off the
edge of the screen, the user will not be able to see the child window, even though
the child window and its parent window have the WS_VISIBLE style. To determine
whether the user actually can see a window, an application can use the
WinlsWindowShowing function.

Window Destruction
In general, an application must destroy all the windows it creates. It does this by
using the WinDestroyWindow function. When a window is destroyed, the system
hides the window, if it is visible, and then removes any internal data associated with
the window. This invalidates the window handle so that it can no longer be used by
the application.

An application destroys many of the windows it creates soon after creating them.
For example, an application usually destroys a dialog window as soon as the
application has sufficient input from the user to continue its task. An application
eventually destroys the main window of the application (before terminating).

Destroying a window does not affect the window class from which the window was

created. New windows still can be created using that class, and any existing
windows of that class continue to operate.

Chapter 1. Windows 1-19

When the application calls WinDestroyWindow, the system searches the
descendancy tree for all windows below the specified window and destroys them
from the bottom up, so each child receives WM_DESTROY before its parent. Each
destroyed window is responsible for cleaning up its own resources in response to
the WM_DESTROY message.

If a presentation space was created by the WinGetPS function for any of the

windows to be destroyed, it must be released by calling the WinReleasePS function.
The application must do this before calling the WinDestroyWindow function. If a
presentation space is associated with the device context for the window, the
application must disassociate or destroy the presentation space by using the
GpiAssociate or GpiDestroyPS function before calling WinDestroyWindow. Failing to
release a resource can cause an error.

For more information about presentation spaces and device contexts, see
Chapter 28, “Painting and Drawing” on page 28-1.

If the window being destroyed is the active window, both the active and focus states
are transferred to another window. The window that becomes the active window is
the next window, as determined by the Alt+Esc key combination. The new active
window then determines which window receives the keyboard focus.

Using Windows

The following sections explain how to create and use windows in an application,
how to manage ownership and parent-child window relationships, and how to move
and size windows.

Creating a Top-Level Frame Window

The main window in most applications is a top-ievel frame window. An application
creates a top-level frame window by specifying the handie of the desktop window, or
HWND_DESKTOP, as the hwndParent parameter in a call to the
WinCreateStdWindow function.

Figure 1-8 on page 1-21 shows the main() function for a simple PM application.

This function initializes the application, creates a message queue, and registers the
window class for the client window before creating a top-level frame window.

1-20 0S/2 Programming Guide—Voiume Ii

A
tion 1

G
G

mmn‘zgv
S 3

Figure 1-8. Structure of a Simple Presentation Manager Application

Chapter 1. Windows 1-21

Creating an Object Window

An application can create an object window by using the WinCreateWindow function
and setting the desktop-object window as the parent window. The code fragment in
Figure 1-9 shows how to create an object window.

Figure 1-9. Creating an Object Window

Querying Window Data

An application can examine the values in the data structure associated with a
window by using the WinQueryWindowUShort and WinQueryWindowULong
functions. Each of these functions specifies a structure data item to examine. The
index value can be an integer representing a zero-based byte index or a constant
(QWS_) that identifies a specific item of data. The code fragment in Figure 1-10
obtains the programmer-defined identifier of the object window defined in the
previous example:

Figure 1-10. Getting the Window Identifier

Changing the Parent Window

An application can change a window’s parent window by using the WinSetParent
function. For example, in an application that uses child windows to display
documents, you might want only the active document window to show a system
menu. You can do this by changing that menu’s parent window back and forth
between the document window and the object window when WM_ACTIVATE
messages are received. This technique is shown in the code fragment in

Figure 1-11 on page 1-23:

1-22 0S/2 Programming Guide—Volume il

i

Menu,

parent

e
s
e

2 s
B
e

G :
S : o S
- i e - L . i

o

=
e

Finding a Parent, Child, or Owner Window
An application can determine the parent, child, and owner windows for any window
by using the WinQueryWindow function. This function returns the window handle of
: the requested window.

The code fragment in Figure 1-12 determines the parent window of the given
window:

Figure 1-12. Finding the Parent Window

The code fragment in Figure 1-13 determines the topmost child window (the child
window in the top z-order position):

.
e
B

EErdamiaaag
s

If a given window does not have an owner or child window, WinQueryWindow
returns NULL.

Chapter 1. Windows 1-23

Setting an Owner Window

An application can set the owner for a window by using the WinSetOwner function.
Typically, after setting the owner, a window notifies the owner window of the new
relationship by sending it a message.

The code fragment in Figure 1-14 shows how to set the owner window and send it a
message:

i
i
S
i

Figure 1-14. Setting the Owner Window

A window can have only one owner, so WinSetOwner removes any previous owner.

Retrieving the Handle of a Child or Owned Window

A parent or owner window can retrieve the handie of a child or owned window by
using the WinWindowFromID function and supplying the identifier of the child or
owned window. WinWindowFromID searches all child and owned windows to locate
the window with the given identifier. The window identifier is set when the
application creates the child or owned window.

Typically, an owned window uses WinQueryWindow to get the handle of the owner
window; then uses WinSendMsg to issue a notification message to its owner
window.

The code fragment in Figure 1-15 retrieves the window handle of an owner window
and sends the window a WM_ENABLE message:

. 1L S codes.

i

Figure 1-15. Getting a Handle to an Owner or Child Window

1-24 0S/2 Programmiing Guide—Volume I

An application also can retrieve the handle of a child window by using the
WinWindowFromPoint function and supplying a point in the corresponding parent
window.

Enumerating Top-Level Windows

An application can enumerate all top-level windows in the system by using the
WinBeginEnumWindows and WinGetNextWindow functions. An application also can
create a list of all child windows for a given parent window using
WinBeginEnumWindows. This list contains the window handles of immediate child
windows. By using WinGetNextWindow, the application then can retrieve the
window handles, one at a time, from the list. When the application has finished
using the list, it must release the list with the WinEndEnumWindows function.

The code fragment in Figure 1-16 shows how to enumerate all top-level windows
(all immediate child windows of the desktop window):

i i
i e
e

shie

GhEE e

S sy
-

Figure 1-16. Enumerating Top-Level Windows

Moving and Sizing a Window
An application can move a window by using the WinSetWindowPos function and
specifying the SWP_MOVE constant. The function changes the position of the
window to the specified position. The position is always given in coordinates
relative to the parent window.

The code fragment in Figure 1-17 moves the window to the position (10,10):

i it & . & e i
s .

GoEi e

e
T

Figure 1-17. Moving a Window

Chapter 1. Windows 1-25

An application can set the size of a window by using the WinSetWindowPos function
and specifying the SWP_SIZE constant. WinSetWindowPos changes the width and
height of the window to the specified width and height.

An application can combine moving and sizing in a single function call, as shown in
Figure 1-18.

s
e

S

i
.
i

-

=
i
ik

o
e e
i Sl

s

b

ey

i

Figure 1-18. Moving and Sizing a Window

An application can retrieve the current size and position of a window by using the
WinQueryWindowPos function. This function copies the current information to an
SWP structure.

The code fragment in Figure 1-19 uses the current size and position to change the
height of the window, leaving the width and position unchanged:

5 - o i -

ure 1-19. Changing the Size of a Window

An application also can move and change the size of several windows at once by
using the WinSetMultWindowPos function. This function takes an array of SWP
structures. Each structure specifies the window to be moved or changed.

An application can move and size a window even if it is not visible, although the
user is not able to see the effects of the moving and sizing until the window is
visible. .

Redrawing Windows
When the system moves a window or changes its size, it can invalidate all or part of
that window. The system attempts to preserve the contents of the window and copy
them to the new position; but if the window’s size is increased, the window must fill
the area exposed by the size change. If a window is moved from behind an
overlapping window, any area formerly obscured by the other window must be
drawn. In these cases, the system invalidates the exposed areas and sends a
WM_PAINT message to the window.

1-26 0S/2 Programming Guide—Volume I .

An application can require that the system invalidate an entire window every time
the window moves or changes size. To do this, the application sets the
CS_SIZEREDRAW class style in the corresponding window class. Typically, this
class style is selected for use in an application that uses a window's current size
and position to determine how to draw the window. For example, a clock
application always would draw the face of the clock so that it filled the window
exactly.

An application also can explicitly specify which parts of the window to preserve
during a move or size change. Before any change is made, the system sends a
WM_CALCVALIDRECTS message to windows that do not have the style
CS_SIZEREDRAW. This enables the window procedure to specify what part of the
window to save and where to align it after the move or size change.

Changing the Z-Order of Windows
An application can move a window to the top or bottom of the z-order by passing the
SWP_ZORDER constant to the WinSetWindowPos function. An application specifies
where to move the window by specifying the HWND_TOP or HWND_BOTTOM
constants.

The code fragment in Figure 1-20 uses WinSetWindowPos to change the z-order of a
window:

Figure 1-20. Changing the Z-order of a Window

An application also can specify the window that the given window is to move behind.
In this case, the application specifies the window handle instead of the HWND_TOP
or HWND_BOTTOM constant.

Chapter 1. Windows 1-27

EStoEs

TR B

henum; .

e 3 i
€ i

i = R TR S P00 PR 0 S

Figure 1-21. Exchanging the Z-order of Win

Showing or Hiding a Window

An application can show or hide a window by using the WinShowWindow function.
This function changes the WS_VISIBLE style of a window to the specified setting. An
application can also use the WinisWindowVisible function to check the visibility of a
window. This function returns TRUE if the window is visible.

Maximizing, Minimizing, and Restoring a Frame Window

An application can maximize, minimize, or restore a frame window by using the
WinSetWindowPos function and specifying the constant SWP_MAXIMIZE,
SWP_MINIMIZE, or SWP_RESTORE. Only a frame window can maximize and
minimize by default. For any other window, an application must provide support for
these actions in the corresponding window procedure.

Figure 1-22 shows how to maximize a frame window:

o
st
.

i

B

1-28 osr2 Programming Guide—Volume Il

Destroying a Window

An application can destroy a window by using the WinDestroyWindow function.
Figure 1-23 shows how to create and then destroy a control window:

Figure 1-23. Destroying a Window

Summary

Following are the 0S/2 functions, messages, and data structures used with
windows.

Table 1-5 (Page 1 of 3). Window Functions

Window Creation Functions

WinCreateWindow

WinCreateStdWindow

The most direct way of creating a window. The
window is of class ClassName and returns hwnd.

Creates a main window. Requires an anchor
block.

Window Destruction Functions

WinDestroyWindow

Destroys a window and its child windows, and
releases all their resources.

Window Data Functions

WinQueryWindowUShort

WinSetWindowUShort

WinQueryWindowULong

WinSetWindowULong

WinQueryWindowPtr

WinSetWindowPtr

WinSetWindowBits

Obtains the unsigned short integer value of a given
window at a specified offset from the reserved
window word’s memory.

Sets an unsigned, short integer value into the
memory of the reserved window words.

Obtains the unsigned long integer value of a given
window, at a specified offset, from the memory of a
reserved window word.

Sets an unsigned, long integer value into the
memory of the reserved window words.

Retrieves a pointer value from the memory of the
reserved window word.

Sets a pointer value into the memory of the
reserved window words.

Sets a number of bits into the memory of the
reserved window words.

Window Relationship Functions

WinSetParent

Sets the parent for hwnd to NewParent.

Chapter 1. Windows 1-29

Table 1-5 (Page 2 of 3). Window Functions

WinQueryWindow

WinSetOwner
WinBeginEnumWindows

WinGetNextWindow

WinEndEnumWindows
WinisChild

WinQueryDesktopWindow
WinQueryObjectWindow
WinWindowFromiD

WinWindowFromPoint

WinMultWindowFromiDs

Returns the handle of a window that has a
specified relationship to a specified window.

Changes the owner of a specified window.

Begins the enumeration process for all the
immediate child windows of a specified window.

Gets the window handle of the next window in a
specified enumeration list.

Ends the specified enumeration process.

Tests to determine whether one window is a
descendant of another.

Returns the desktop window handle.
Returns the desktop-object window handle.

Returns the handle of the child window with the
specified ID.

Finds the window, below a specified point, that is a
descendant of a specified window.

Finds the handles of child windows that belong to a
specified window and that have window IDs within
a specified range.

Window Size and Position Functions

WinSetWindowPos
WinQueryWindowPos
WinSetMultWindowPos

WinQueryWindowRect
WinGetMinPosition

Facilitates the general positioning of a window.
Obtains the size and position of a window.

An efficient means of repositioning multiple
windows with one call, provided all windows being
positioned have the same parent.

Returns a window rectangle.

Returns the position to which a window is
minimized.

Window Visibility Functions

WinlsWindowShowing

WinShowWindow
WinlsWindowVisible

Determines whether any part of the window, hwnd,
is physically visible.

Sets the visibility state of a window.

Returns the visibility state of a window.

Window Input Functions

WinQueryActiveWindow

WinSetActiveWindow
WinQueryFocus

WinSetFocus
WinQuerySysModalWindow

WinRequestMutexSem

WinSetSysModalWindow

Returns the active window for HWND_DESKTOP or
other parent window.

Sets the main window as the active window.

Returns the focus window; NULL if there is no
focus window.

Sets the focus window.
Returns the current system-modal window.

Requests the ownership of a mutex semaphore or
waits for a PM message.

Either sets a system-modal window or ends the
system-modal state.

1-30 0S/2 Programming Guide—Volume II

Table 1-5 (Page 3 of 3). Window Functions

WinStartApp
WinTerminate

Starts an application.

Terminates an application thread'’s use of PM and

releases all of its associated resources.

WinTerminateApp Terminates an application started with
WinStartApp.

WinWaitEventSem Waits for an event semaphore to be posted or for a
PM message.

WinWaitMuxWaitSem Waits for a muxwait semaphore to clear or for a
PM message.

Table 1-6. Window Messages

Message Description

WM_ACTIVATE

WM_ADJUSTWINDOWPOS

WM_CALCFRAMERECT

WM_CALCVALIDRECTS

WM_CLOSE

WM_CREATE

WM_DESTROY

WM_ENABLE

WM_MOVE

WM_PAINT
WM_QUERYWINDOWPARAMS
WM_SETWINDOWPARAMS
WM_SHOW

WM_SIZE
WM_WINDOWPOSCHANGED

Sent to a window as it gains or loses
activation.

Sent to adjust a window’s position. Not
sent if SWP_NOADJUST is specified.

Occurs when an application uses the
WinCalcFrameRect call.

Sent from WinSetWindowPos and
WinSetMultWindowPos to determine
which areas of a window will be
preserved if a window is sized and which
should be redisplayed.

Sent to a frame window to indicate that
the window is being closed by the user.

Occurs when the application requests
creation of a window.

Occurs when the application requests
destruction of a window.

Sets the enable state of a window.

Occurs when a window with the style
CS_MOVENOTIFY changes its absolute
position.

Occurs when a window needs repainting.

Occurs when an application queries the
window parameters.

Occurs when an application sets or
changes the window parameters.

Occurs when a window’s WS_VISIBLE
state is being changed.

Occurs when a window changes its size.

Sent to the window procedure of the
window whose position is changed.

Chapter 1. Windows 1-31

Table 1-7. Window Data Structures

Data Structure Description
CREATESTRUC Create window.
WNDPARAMS Window parameters.

1-32 0Ss/2 Programming Guide—Volume Il

Chapter 2. Messages and Message Queues

The OS/2 operating system uses messages and message queues to communicate
with applications and the windows belonging to those applications. This chapter
explains how to create and use messages and message queues in PM applications.

About Messages and Message Queues

Messages

© Copyright {BM Corp. 1992

Unlike traditional applications that take complete control of the computer’s
keyboard, mouse, and screen, PM applications must share these resources with
other applications that are running at the same time. All applications run
independently and rely on the operating system to help them manage shared
resources. The operating system does this by controlling the operation of each
application, communicating with each application when there is keyboard or mouse
input or when an application must move and size its windows.

A message is information, a request for information, or a request for an action to be
carried out by a window in an application.

The operating system, or an application, sends or posts a message to a window so
that the window can use the information or respond to the request.

There are three types of messages:

* User-initiated
¢ Application-initiated
¢ System-initiated.

A user-initiated message is the direct result of a user action, such as selecting a
menu item or pressing a key. An application-initiated message is generated by one
window in the application to communicate with another window. System-initiated
messages are generated by the interface as the indirect result of a user action (for
example, resizing a window) or as the direct result of a system event (such as
creating a window).

A message that requires an immediate response from a window is sent directly to
the window by passing the message data as arguments to the window procedure.
The window procedure carries out the request or lets the operating system carry out
default processing for the message.

A message that does not require an immediate response from a window is posted
(the message data is copied) to the application’s message queue. The message
queue is a storage area that the application creates to receive and hold its posted
messages. Then, the application can retrieve a message at the appropriate time,
sending it to the addressed window for processing.

Every message contains a message identifier, which is a 16-bit integer that
indicates the purpose of the message. When a window processes a message, it
uses the message identifier to determine what to do.

Every message contains a window handle, which identifies the window the message
is for. The window handie is important because most message queues and window
procedures serve more than one window. The window handle ensures that the
application forwards the message to the proper window.

A message contains two message parameters—32-bit values that specify data or the
location of data that a window uses when processing the message. The meaning
and value of a message parameter depend on the message. A message parameter
can contain an integer, packed bit flags, a pointer to a structure that contains
additional data, and so forth. Some messages do not use message parameters and,
typically, set the parameters to NULL. An application always checks the message
identifier to determine how to interpret the message parameters.

A queue message is a QMSG data structure that contains six data items,
representing the window handle, message identifier, two message parameters,
message time, and mouse-pointer position. The time and position are included
because most queue messages are input messages, representing keyboard or
mouse input from the user. The time and position also help the application identify
the context of the message. The operating system posts a queue message by filling
the QMSG structure and copying it to a message queue.

A window message consists of the window handle, the message identifier, and two
message parameters. A window message does not include the message time and
mouse-pointer position, because most window messages are requests to perform a
task that is not related to the current time or mouse-pointer position. The operating
system sends a window message by passing these values, as individual arguments,
to a window procedure.

Message Queues

Every PM application must have a message queue. A message queue is the only
means an application has to receive input from the keyboard or mouse. Only
applications that create message queues can create windows.

An application creates a message queue by using the WinCreateMsgQueue
function. This function returns a handle that the application can use to access the
message queue. After an application creates a message queue, the system posts
messages intended for windows in the application to that queue. The application
can retrieve queue messages by specifying the message-queue handle in the
WinGetMsg function. It also can examine messages, without retrieving them, by
using the WinPeekMsg function. When an application no longer needs the message
queue, it can destroy the queue by using the WinDestroyMsgQueue function.

One message queue serves all the windows in a thread. This means a queue can
hold messages for several windows. A message specifies the handle of the window
to which it belongs so the application can forward a message easily to the
appropriate window. The message loop recognizes a NULL window handle and the
message is processed within the message ioop rather than passed to
WinDispatchMessage. See Figure 2-1 on page 2-4 for an example of an
input-message processing loop.

An application that has more than one thread can create more than one message
queue. The system allows one message queue for each thread. A message queue
created by a thread belongs to that thread and has no connection to other queues in
the application. When an application creates a window in a given thread, the
system associates the window with the message queue in that thread. The system
then posts all subsequent messages intended for that window to that queue.

Note: The recommended way to structure PM applications is to have at least two
threads and two message queues. The first thread and message queue
control all the user-interface windows, and the second thread and message
queue control all the object windows.

2-2 o0s/2 Programming Guide—Volume Il

Several windows can use one message queue; it is important that the message
queue be large enough to hold all messages that possibly can be posted to it. An
application can set the size of the message queue when it creates the queue by
specifying the maximum number of messages the queue can hold. The default
maximum number of messages is 10.

To minimize queue size, several types of posted messages are not actually stored
in a message queue. Instead, the operating system keeps a record in the queue of
the message being posted and combines any information contained in the message
with information from previous messages. Timer, semaphore, and paint messages
are handled this way. For example, if more than one WM_PAINT message is posted,
the operating system combines the update regions for each into a single update
region. Although there is no actual WM_PAINT message in the queue, the operating
system constructs one WM_PAINT message with the single update region when an
application uses the WinGetMsg function.

The operating system handles mouse and keyboard input messages differently from
the way it handles other types of messages. The operating system receives all
keyboard and mouse events, such as keystrokes and mouse movements, into the
system message queue. The operating system converts these events into
messages and posts them, one at a time, to the appropriate application message
queue. The application retrieves the messages from its queue and dispatches them
to the appropriate window, which processes the messages.

The operating system message queue usually is large enough to hold all input
messages, even if the user types or moves the mouse very quickly. If the operating
system message queue does run out of space, the system ignores the most recent
keyboard input (usually by beeping to indicate the input is ignored) and collects
mouse motions into a WM_MOUSEMOVE message.

Every message queue has a corresponding MQINFO data structure that specifies
the identifiers of the process and thread that own the message queue and gives a
count of the maximum number of messages the queue can receive. An application
can retrieve the structure by using the WinQueryQueuelnfo function.

A message queue also has a current status that indicates the types of messages
currently in the queue. An application can retrieve the queue status by using the
WinQueryQueueStatus function. An application also can use the WinPeekMsg
function to examine the contents of a message queue. WinPeekMsg checks for a
specific message or range of messages in the queue and gives the application the
option of removing messages from the queue. An application can call the
WinQueryQueueStatus function to determine the contents of the queue before
calling the WinPeekMsg or WinGetMsg function to remove a message from the
queue.

Message Handling

To handle and process messages, an application can use a message /oop and the
window procedure. These terms are explained in the following two sections.

Message Loops

Every application with a message queue is responsible for retrieving the messages
from that queue. An application can do this by using a message loop, usually in the
application’s main function, that retrieves messages from the message queue and
dispatches them to the appropriate windows. The message loop consists of two

Chapter 2. Messages and Message Queues 2-3

calls: one to the WinGetMsg function; the other to the WinDispatchMsg function. The
message loop has the following form:

An application starts the message loop after creating the message queue and at
least one application window. Once started, the message loop continues to retrieve
messages from the message queue and to dispatch (send) them to the appropriate
windows. WinDispatchMsg sends each message to the window specified by the
window handle in the message.

Figure 2-1 illustrates the typical routing of an input message through the operating
system’s and application’s message loops.

return;

Mouse Keystrokes
Sysyem
Event (time ordered)
Queue
y
Input Scancode
Router Translation
\
Message Accelerator
Preprocessor Key Translation
1
)
Appl |
)
H Appl priority
‘ msgQ ordered
E
1]
:
H WinGetMsg0
E WinDispatchMsg0
)
1 App's
! Message
1} .
! Loop Window, Procedure
1
1]
1]
1]
[}
1

-

Figure 2-1. Input Message Processing Loop

Only one message loop is needed for a message queue, even if the queue contains
messages for more than one window. Each queue message is a QMSG structure
that contains the handle of the window to which the message belongs.
WinDispatchMsg always dispatches the message to the proper window. WinGetMsg
retrieves messages from the queue in first-in, first-out (FIFO) order, so the
messages are dispatched to windows in the same order they are received.

2-4 0s/2 Programming Guide—Volume il

If there are no messages in the queue, the operating system temporarily stops
processing the WinGetMsg function until a message arrives. This means that CPU
time that, otherwise, would be spent waiting for a message can be given to the
applications (or threads) that do have messages in their queues.

The message loop continues to retrieve and dispatch messages until WinGetMsg
retrieves a WM_QUIT message. This message causes the function to return FALSE,
terminating the loop. In most cases, terminating the message loop is the first step
in terminating the application. An application can terminate its own loop by posting
the WM_QUIT message in its own queue.

An application can modify its message loop in a variety of ways. For example, it
can retrieve messages from the queue without dispatching them to a window. This
is useful for applications that post messages without specifying a window. (These
messages apply to the application rather than a specific window; they have NULL
window handles.) Also, an application can direct the WinGetMsg function to search
for specific messages, leaving other messages in the queue. This is useful for
applications that temporarily need to bypass the usual FIFO order of the message
queue.

Window Procedures

A window procedure is a function that receives and processes all input and requests
for action sent to the windows. Every window class has a window procedure; every
window created using that class uses that window procedure to respond to
messages.

The system sends a message to the window procedure by passing the message
data as arguments. The window procedure takes the appropriate action for the
given message. Most window procedures check the message identifier, then use
the information specified by the message parameters to carry out the request.
When it has completed processing the message, the window procedure returns a
message result. Each message has a particular set of possible return values. The
window procedure must return the appropriate vaiue for the processing it
performed.

A window procedure cannot ignore a message. If it does not process a message, it
must pass the message back to the operating system for default processing. The
window procedure does this by calling the WinDefWindowProc function to carry out
a default action and return the message result. Then, the window procedure must
return this value as its own message result.

A window procedure commonly processes messages for several windows. It uses
the window handle specified in the message to identify the appropriate window.
Most window procedures process just a few types of messages and pass the others
on to the operating system by calling WinDefWindowProc.

Posting and Sending Messages

Any application can post and send messages. Like the operating system, an
application posts a message by copying it to a message queue. It sends a message
by passing the message data as arguments to a window procedure. To post and
send messages, an application uses the WinPostMsg and WinSendMsg functions.

An application posts a message to notify a specific window to perform a task. The
WinPostMsg function creates a QMSG structure for the message and copies the
message to the message queue corresponding to the given window. The
application’s message loop eventually retrieves the message and dispatches it to

Chapter 2. Messages and Message Queues 2-5

the appropriate window procedure. For example, one message commonly posted is
WM_QUIT. This message terminates the application by terminating the message
loop.

An application sends a message to cause a specific window procedure to carry out
a task immediately. The WinSendMsg function passes the message to the window
procedure corresponding to the given window. The function waits until the window
procedure completes processing and then returns the message result. Parent and
child windows often communicate by sending messages to each other. For
example, a parent window that has an entry-field control as its child window can set
the text of the control by sending a message to the child window. The control can
notify the parent window of changes to the text (carried out by the user) by sending
messages back to the parent window.

Occasionally, an application might need to send or post a message to all windows in
the system. For example, if the application changes a system value, it must notify
all windows about the change by sending a WM_SYSVALUECHANGED message. An
application can send or post messages to any number of windows by using the
WinBroadcastMsg function. The options in WinBroadcastMsg determine whether
the message is sent or posted and specify the windows that will receive the
message.

Any thread in the application can post a message to a message queue, even if the
thread has no message queue of its own. However, only a thread that has a
message queue can send a message. Sending a message between threads is
relatively uncommon. For one reason, sending a message is costly in terms of
system performance. If an application posts a message between threads, it is likely
to be a semaphore message, which permits window procedures to manage a shared
resource jointly.

An application can post a message without specifying a window. If the application
supplies a NULL window handle when it calls the WinPostMsg function, the function
posts the message to the queue associated with the current thread. The application
must process the message in the message loop. This is one way to create a
message that applies to the entire application instead of to a specific window.

A window procedure can determine whether it is processing a message sent by
another thread by using the WinlnSendMsg function. This is useful when message
processing depends on the origin of the message.

A common programming error is to assume that the WinPostMsg function always
succeeds. It fails when the message queue is full. An application should check the
return value of the WinPostMsg function to see whether the message was posted. In
general, if an application intends to post many messages to the queue, it should set
the message queue to an appropriate size when it creates the queue. The default
message-queue size is 10 messages.

Message Types

This section describes the three types of 0S/2 messages:

* System-defined
* Application-defined
¢ Semaphore.

2-6 0s/2 Programming Guide—Volume I

System-Defined Messages

There are many system-defined messages that are used to control the operations of
applications and to provide input and other information for applications to process.
The system sends or posts a system-defined message when it communicates with
an application. An application also can send or post system-defined messages.
Usually, applications use these messages to control the operation of control
windows created by using preregistered window classes.

Each system message has a unique message identifier and a corresponding
symbolic constant. The symbolic constant, defined in the system header files, states
the purpose of the message. For example, the WM_PAINT constant represents the
paint message, which requests that a window paint its contents.

The symbolic constants also specify the message category. System-defined
messages can belong to several categories; the prefix identifies the type of window
that can interpret and process the messages. The following table lists the prefixes
and their related message categories:

Table 2-1. Message Categories

Prefix Message category
BKM_ Notebook control

BM_ Button control

CBM_ Combination-box control
CM_ Container control

EM_ Entry-field control

LM_ List-box control

MLM_ Multiple-line entry field control
MM_ Menu control

SBM_ Scroll-bar control

SLM_ Slider control

SM_ Static control

TBM_ Title-bar control

VM_ Value set control

WM_ General window

General window messages cover a wide range of information and requests,
including:

¢ Mouse and keyboard-input

* Menu- and dialog-input

¢ Window creation and management
* Dynamic data exchange (DDE).

Application-Defined Messages

An application can create messages to use in its own windows. If an application
does create messages, the window procedure that receives the messages must
interpret them and provide the appropriate processing.

The operating system reserves the message-identifier values in the range 0x0000

through OxOFFF (the value of WM_USER - 1) for system-defined messages.
Applications cannot use these values for their private messages.

Chapter 2. Messages and Message Queues 2-~7

Values in the range 0x7000 (the value of WM_USER) through 0xBFFF, however, are
available for message identifiers, defined by an application, for use in that
application.

Warning: It is very important that applications do not broadcast messages in the
0x1000 through OxBFFF range because of the risk of misinterpretation by other
applications.

Values in the range 0xC000 through OxFFFF are reserved for message identifiers
that an application defines and registers with the system atom table; these can be
used in any application. Values above OxFFFF (0x00010000 through OxFFFFFFFF)
are reserved for future use; applications must not use messages in this range.

Semaphore Messages

A semaphore message provides a way of signaling, through the message queue,
the end of an event. An application uses a semaphore message the same way it
uses system semaphore functions—to coordinate events by passing signals. A
semaphore message often is used in conjunction with system semaphores.

There are four semaphore messages:

WM_SEMH1

WM_SEM2
WM_SEM3
WM_SEM4.

An application posts one of these messages to signal the end of a given event. The
window that is waiting for the given event receives the semaphore message when
the message loop retrieves and dispatches the message.

Each semaphore message includes a bit flag that an application can use to uniquely
identify the 32 possible semaphores for each semaphore message. The application
passes the bit flag (with the appropriate bit set) as a message parameter with the
message. The window procedure that receives the message then uses the bit flag
to identify the semaphore.

To save space, the system does not store semaphore messages in the message
queue. Instead, it sets a record in the queue, indicating that the semaphore
message has been received, and then combines the bit flag for the message with
the bit flags from previous messages. When the window procedure eventually
receives the message, the bit flag specifies each semaphore message posted since
the last message was retrieved.

Message Priorities

The WinGetMsg function retrieves messages from the message queue based on
message priority. WinGetMsg retrieves messages with higher priority first. If it
finds more than one message at a particular priority level, it retrieves the oldest
message first. Messages have the following priorities:

2-8 o0s2 Programming Guide—Volume Il

Table 2-2. Message Priorities

Priority Message
WM_SEM1
Messages posted using WinPostMsg

Input messages from the keyboard or mouse
WM_SEM2

WM_PAINT

WM_SEM3

WM_TIMER

WM_SEM4

W N O O A~ ON =

Message Filtering
An application can choose specific messages to retrieve from the message queue
(and ignore other messages) by specifying a message filter with the WinGetMsg or
WinPeekMsg functions. The message filter is a range of message identifiers
(specified by a first and last identifier), a window handle, or both. The WinGetMsg
and WinPeekMsg functions use the message filter to select the messages to retrieve
from the queue. Message filtering is useful if an application needs to search ahead
in the message queue for messages that have a lower priority or that arrived in the
queue later than other less important messages.

Any application that filters messages must ensure that a message satisfying the
message filter can be posted. For example, filtering for a WM_CHAR message in a
window that does not receive keyboard input prevents the WinGetMsg function from
returning. Some messages, such as WM_COMMAND, are generated from other
messages; filtering for them also can prevent WinGetMsg from returning.

To filter for mouse, button, and DDE messages, an application can use the following
constants:

WM_MOUSEFIRST and WM_MOUSELAST
WM_BUTTONCLICKFIRST and WM_BUTTONCLICKLAST
WM_DDE_FIRST and WM_DDE_LAST.

Using Messages
This section explains how to perform the following tasks:

¢ Create a message queue and message loop.
¢ Examine the message queue.

¢ Post and send messages between windows.
¢ Broadcast a message to multiple windows.

¢ Use message macros.

Creating a Message Queue and Message Loop
An application needs a message queue and message loop to process messages for
its windows. An application creates a message queue by using the
WinCreateMsgQueue function. An application creates a message loop by using the
WinGetMsg and WinDispatchMsg functions. The application must create and show
at least one window after creating the queue but before starting the message loop.

Chapter 2. Messages and Message Queues 2-9

The following code fragment shows how to create a message queue and message
loop:

o
-

- o

-
e
-

B
w
i

o

@

e

SR
.
-
=

e

No

oo

R G

Both the WinGetMsg and WinDispatchMsg functions take a pointer to a QMSG
structure as a parameter. If a message is available, WinGetMsg copies it to the
QMSG structure; WinDispatchMsg then uses the data in the structure as arguments
for the window procedure.

2-10 os2 Programming Guide—Volume I

Occasionally, an application might need to process a message before dispatching it.
For example, if a message is posted but the destination window is not specified (that
is, the message contains a NULL window handle), the application must process the
message to determine which window should receive the message. Then the
WinDispatchMsg function can forward the message to the proper window. The
following code fragment shows how the message loop can process messages that
have NULL window handles:

Examining the Message Queue

An application can examine the contents of the message queue by using the
WinPeekMsg or WinQueryQueueStatus function. It is useful to examine the queue if
the application starts a lengthy operation that additional user input might affect, or if
the application needs to look ahead in the queue to anticipate a response to user
input.

An application can use WinPeekMsg to check for specific messages in the message
queue. This function is useful for extracting messages for a specific window from
the queue. It returns immediately if there is no message in the queue. An
application can use WinPeekMsg in a loop without requiring the loop to wait for a
message to arrive. The following code fragment checks the queue for WM_CHAR
messages:

An application also can use the WinQueryQueueStatus function to check for
messages in the queue. This function is very fast and returns information about the
kinds of messages available in the queue and which messages have been posted
recently. Most applications use this function in message loops that need to be as
fast as possible.

Chapter 2. Messages and Message Queues 2-11

Posting a Message to a Window :

An application can use the WinPostMsg function to post a message to a window.
The message goes to the window’s message queue. The following code fragment
posts the WM_QUIT message:

The WinPostMsg function returns FALSE if the queue is full, and the message cannot
be posted.

Sending a Message to a Window

An application can use the WinSendMsg function to send a message directly to a

window. An application uses this function to send messages to child windows. For

example, the following code fragment sends an LM_INSERTITEM message to direct
- alist-box control to add an item to the end of its list:

WinSendMsg calls the window’s window procedure and waits for it to handle the
message and return a result. An application can send a message to any window in
the system, as long as the application has the handle of the target window. The
message queue does not store the message; however, the thread making the call
must have a message queue. '

Broadcasting a Message

An application can send a message to multiple windows by using the
WinBroadcastMsg function. Often this function is used to broadcast the
WM_SYSVALUECHANGED message after an application changes a system value.
The following code fragment shows how to broadcast this message to all frame
windows in all applications:

2-12 0S/2 Programming Guide—Volume il

An application can broadcast messages to all windows, just frame windows, or just
the windows in the application.

Using Message Macros

The system header files define several macros that help create and interpret
message parameters.

One set of macros helps you construct message parameters. These macros are
useful for sending and posting messages. For example, the following code fragment
uses the MPFROMSHORT macro to convert a 16-bit integer into the 32-bit message
parameter:

A second set of macros helps you extract values from a message parameter. These
macros are useful for handling messages in a window procedure. The following
code fragment determines whether the window receiving the WM_FOCUSCHANGE
message is gaining or losing the keyboard focus. The fragment uses the
SHORT1FROMMP macro to extract the focus-change flag, the SHORT2FROMMP
macro to extract the focus flag, and the HWNDFROMMP macro to extract the window
handle.

A third set of macros helps you construct a message result. These macros are
useful for returning message results in a window procedure, as the following code
fragment illustrates:

Chapter 2. Messages and Message Queues 2-13

Summary

Following are the functions and structures used with OS/2 messages and message

queues.

Table 2-3. Commonly Used Message and Message Queuse Functions

Function Name

Description

WinCreateMsgQueue
WinDefDIgProc
WinDefWindowProc
WinDestroyMsgQueue
WinDispatchMsg
WinGetMsg

WinPeekMsg

WinPostMsg

WinSendDlgltemMsg

WinSendMsg

Creates a message queue.

Invokes the default dialog procedure.
Invokes the default window procedure.
Destroys the message queue.

Invokes a window procedure.

Gets a message from the thread’s message queue
and returns msg when a message conforming to
the filtering criteria is available.

Inspects the thread’s message queue and returns
to the application with or without a message.

Posts a message to the message queue associated
with the window defined by hwnd.

Sends a message to the dialog item defined by
item in the dialog window specified by Dig

Sends a message with identity Msgid to hwnd.

Table 2-4. Seldom-Used Message and Message Queue Functions

Function Name

Description

WinBroadcastMsg
WinCallMsgFilter
WinInSendMsg

WinPostQueueMsg

Broadcasts a message to multiple windows.
Calls a message-filter hook.

Determines whether the current thread is
processing a message sent by another thread.

Posts a message to a message queue.

Functions

Table 2-5 (Page 1 of 2). Almost-Never Used Message and Message Queue

Function Name

Description

WinQueryMsgPos

WinQueryQueuelnfo

WinQueryQueueStatus

WinRegisterUserMsg

WinSetClassMsginterest
WinSetMsginterest
WinSetMsgMode

Returns the pointer position, in screen
coordinates, when the last message obtained from
the current message queue is posted.

Returns the information for the specified queue.

Returns a code indicating the status of the
message queue associated with the caller.

Registers a user message and defines its
parameters.

Sets the message interest of a message class.
Sets a window’s message interest.

Indicates the mode for the generation and
processing of messages for the private window
class of an application.

2-14 0S/2 Programming Guide—Volume Il

Table 2-5 (Page 2 of 2). Almost-Never Used Message and Message Queue
Functions

Function Name Description
WinTranslateAccel Translates a WM_CHAR message.
WinWaitMsg Waits for a filtered message.

Table 2-6. Message and Message Queue Structures

Structure Name Description

HMQ Message-queue handle.

MQINFO Message-queue information structure.
QMSG Message structure.

Chapter 2. Messages and Message Queues

2-15

2-16 0s/2 Programming Guide—Volume I

Chapter 3. Window Classes

A window class determines which styles and which window procedure are given to
a window when it is created. This chapter explains how a PM application creates
and uses window classes.

About Window Classes

Every window is a member of a window class. An application must specify a
window class when it creates a window. Each window class has an associated
window procedure that is used by all windows of the same class. The window
procedure handles messages for all windows of that class and, therefore, controls
the behavior and appearance of the window.

A window class must be registered before an application can create a window of
that class. Registering a window class associates a window procedure and class
styles with a class name. When an application specifies the class name in a
window-creation function such as WinCreateWindow, the system creates a window
that uses the window procedure and styles associated with the class name.

An application can register private classes or use preregistered public window
classes.

Private Window Classes
A private window class is any class registered within an application. An application
registers a private class by calling the WinRegisterClass function. A private class
cannot be shared with other applications. When an application terminates, the
system removes any data associated with the application’s private window classes.

An application can register a private class anytime but, typically, does so as part of
application initialization. To register a private class during application initialization,
the application also must call Winlnitialize and, usually, WinCreateMsgQueue before
class registration.

An application cannot de-register a private window class; it remains registered and
available until the application terminates.

When an application registers a private window class, it must supply the following
information:

Class name
Class styles
Window procedure
Window data size.

Class Name

The class name identifies the window class. The application uses this name in the
window-creation functions to specify the class of the window being created. The
class name can be a character string or an atom, and it must be unique within the
application. The system checks as to whether a public class or a class already
registered by the application has the same name. If the class name is not unique to
that application, the system returns an error.

© Copyright IBM Corp. 1992 3-1

Class Styles

Each window class has one or more values, called class styles, that teli the system

which initial window styles to give a window created with that class. An application
sets the class styles for a private window class when it registers the class. Once a

class is registered, the application cannot change the styles.

An application can specify one or more of the following class styles in the
WinRegisterClass function, combining them as necessary by using the bitwise OR
operator:

Table 3-1. Class Styles

Style Name Description

CS_CLIPCHILDREN Prevents a window from painting over its child windows, but
increases the time necessary to calculate the visible region. This
style usually is not necessary, because if the parent and child
windows overlap and are both invalidated, the operating system
draws the parent window before drawing the child window. if the
child window is invalidated independently of the parent window,
the system redraws only the child window. If the update region
of the parent window does not intersect the child window,
drawing the parent window causes the child window to be
redrawn. This style is useful to prevent a child window
containing a complex graphic from being redrawn
unnecessarily.

CS_CLIPSIBLINGS Prevents a window from painting over its sibling windows. This
style protects sibling windows but increases the time necessary
to calculate the visible region. This style is appropriate for
windows that overiap and have the same parent window.

CS_FRAME Identifies the window as a frame window.

CS_HITTEST Directs the operating system to send WM_HITTEST messages to
the window whenever the mouse pointer moves in the window.

CS_MOVENOTIFY Directs the system to send WM_MOVE messages to the window
whenever the user moves the window.

CS_PARENTCLIP Extends a window’s visible region to include that of its parent
window. This style simplifies the calculation of the child
window’s visible region but, potentially, is dangerous, because
the parent window’s visible region is usually larger than the
child window.

CS_SAVEBITS Saves the screen area under a window as a bit map. When the
user hides or moves the window, the system restores the image
by copying the bits; there is no need to add the area to the
uncovered window’s update region. This style can improve
system performance, but also can consume a great deal of
memory. It is recommended only for transient windows such as
menus and dialog windows—not for main application windows.

CS_SIZEREDRAW Causes the window to receive a WM_PAINT message and be
completely invalidated whenever the window is resized, even if
it is made smaller. (Typically, only the uncovered area of a
window is invalidated when a window is resized.) This class
style is useful when an application scales graphics to fill the
window.

CS_SYNCPAINT Causes the window to receive WM_PAINT messages
immediately after a part of the window becomes invalid. Without
this style, the window receives WM_PAINT messages only if no
other message is waiting to be processed.

3-2 0S/2 Programming Guide—Volume Il

Window Procedure

The window procedure for a window class processes all messages sent or posted to
all windows of that class. It is the chief component of the window class because it
controls the appearance and behavior of each window created with the class.
Window procedures are shared by all windows of a class, so an application must
ensure that no conflicts arise when two windows of the same class attempt to
access the same global data. In other words, the window procedure must protect
global data and other shared resources.

Window Data Size

The system creates a window data structure for each window, which includes extra
space that an application can use to store additional data about a window. An
application specifies the number of extra bytes to allocate in the WinRegisterClass
function. All windows of the same class have the same amount of window data
space.

An application can store window data in a window’s data structure by using the
WinSetWindowUShort and WinSetWindowULong functions. It can retrieve data by
using the WinQueryWindowUShort and WinQueryWindowULong functions.

Custom Window Styles

An application that registers a window class also can support its own set of styles
for windows of that class. Standard window styles—for example, WS_VISIBLE and
WS_SYNCPAINT—still apply to these windows. A window style is a 32-bit integer,
and only the high 16 bits are used for the standard window styles; an application can
use the low 16 bits for custom styles specific to a window class.

The operating system has unique window styles for all preregistered window
classes. Styles such as FS_BORDER and BS_PUSHBUTTON are processed by the
window procedure for the corresponding class. This means that an application can
build the support for its own window styles into the window procedure for its private
class. A window style designed for one window class will not work with another
window class.

Public Window Classes
Public window classes are registered during system initialization. Their window
procedures are in dynamic link libraries. Therefore, to use a public window class,
an application need not register it. Nor does the application need to import the
window procedure for a public window class because the system resolves
references to the window procedure.

An application cannot use a public window class name when it registers a private
window class.

System-Defined Public Window Classes

The system provides a number of public window classes that support menus, frame
windows, control windows, and dialog windows. An application can create a
window of a system-defined public window class by specifying one of the following
class name constants in a call to WinCreateWindow:

Chapter 3. Window Classes 3-3

Table 3-2. Public Window Classes

Class Name

Description

WC_BUTTON

WC_COMBOBOX

WC_CONTAINER

WC_ENTRYFIELD
WC_FRAME

WC_LISTBOX

WC_MENU

WC_NOTEBOOK

WC_SCROLLBAR

WC_SLIDER

WC_SPINBUTTON

WC_STATIC

WC_TITLEBAR

WC_VALUESET

Consists of buttons and boxes the user can select by clicking the
pointing device or using the keyboard.

Creates a combination-box control, which combines a list-box
control and an entry-field control. It enables the user to enter

data either by typing in the entry field or by choosing from the
list in the list box.

Creates a control in which the user can group objects in a logical
manner. A container can display those objects in various
formats or views. The container control supports drag and drop
so the user can place information in a container by simply
dragging and dropping.

Consists of a single line of text that the user can edit.

A composite window class that can contain child windows of
many of the other window classes.

Presents a list of text items from which the user can make
selections.

Presents a list of items that can be displayed horizontally as
menu bars, or vertically as pull-down menus. Usually menus
are used to provide a command interface to applications.

Creates a control for the user that is displayed as a number of
pages. The top page is visible, and the others are hidden, with
their presence being indicated by a visible edge on each of the
back pages.

Consists of window scroll bars that let the user scroll the
contents of the associated window.

Creates a control that is usable for producing approximate
(analog) values or properties. Scroll bars were used for this
function in the past, but the slider provides a more flexible
method of achieving the same result, with less programming
effort.

Creates a control that presents itself to the user as a scrollable
ring of choices, giving the user quick access to the data. The
user is presented only one item at a time, so the spin button
should be used with data that is intuitively related.

Simple display items that do not respond to keyboard or pointing
device events.

Displays the window title or caption and lets the user move the
window’s owner.

Creates a control similar in function to radio buttons but
provides additional flexibility to display graphical, textual, and
numeric formats. The values set with this control are mutually
exclusive.

Each system-defined public window class has a corresponding set of window styles
that an application can use to customize a window of that class. For example, a
window created with the WC_BUTTON class has styles that include
BS_PUSHBUTTON and BS_CHECKBOX. Window styles enable you to customize
aspects of a window's behavior and appearance. The application specifies the
window styles in the WinCreateWindow function.

3-4 osi2 Programming Guide—Volume i

Class Data

Custom Public Window Classes

An application can create a custom public window class, but it must do so during
system initialization. Only the shell can register a public window class, and it can
do so only when the system starts. Registering a public window class requires a
special load entry in the 0s2.ini file. That entry instructs the shell to load a dynamic
link library whose initialization routine registers the window class. Custom public
window classes must be registered using WinRegisterClass and must have the class
style CS_PUBLIC. If a custom public window class registered this way has the same
name as an existing public window class, the custom class replaces the original
class.

If a dynamic link library replaces an existing public window class, the library can
save the address of the original window procedure and use the address to subclass
the original window class. The dynamic link library retrieves the original window
procedure address using the WinQueryClassinfo function. The custom window
procedure then passes unprocessed messages to the original window procedure
instead of calling WinDefWindowProc.

When subclassing a public window class, the custom public window procedure must
not make the window data size smaller than the original window data size, because
all public window classes that the operating system defines use 4 extra bytes for
storing a pointer to custom window data. This size is guaranteed only for public
window classes defined by the operating system dynamic link libraries.

An application can examine public window class data by using the
WinQueryClassinfo and WinQueryClassName functions. An application retrieves the
name of the class for a given window by using the WinQueryClassName function. If
the window is one of the preregistered public window classes, the name returned is
in the form #nnnnn, where nnnnn is up to 5 digits, representing the value of the
window class constant. Using this window class name, the application can call
WinQueryClassinfo to retrieve the window class data. WinQueryClassinfo copies
the class style, window procedure address, and window data size to a CLASSINFO
data structure.

Using Window Classes

This section explains how to perform the following tasks:

¢ Register a private window class.
¢ Register an imported window procedure.

Registering a Private Window Class

An application can register a private window class at any time by using the
WinRegisterClass function. You must define the window procedure in the
application, choose a unique name, and set the window styles for the class.

Chapter 3. Window Classes 3-5

The following code fragment shows how to register the window class name
“MyPrivateClass”:

.
.

e —
e

Summary

Following are the operating system functions and the structure used with window
classes.

Table 3-3. Window Class Functions

Function Name Description

WinQueryClassinfo Returns window class information.

WinQueryClassName Copies, into a buffer, the window class name as a
null-terminated string.

WinRegisterClass Registers a window class.

WinSubclassWindow Subclasses the indicated window by replacing its
window procedure with another window
procedure.

Table 3-4. Window Class Structure

Structure Name Description

CLASSINFO Class-information structure.

3-6 0S/2 Programming Guide—Volume II

Chapter 4. Window Procedures

Windows have an associated window procedure—a function that processes all
messages sent or posted to a window. Every aspect of a window's appearance and
behavior depends on the window procedure’s response to the messages. This
chapter explains how window procedures function, in general, and describes the
default window procedure.

About Window Procedures

Every window belongs to a window class that determines which window procedure
a particular window uses to process its messages. All windows of the same class
use the same window procedure. For example, the operating system defines a
window procedure for the frame window class (WC_FRAME), and all frame windows
use that window procedure.

An application typically defines at least one new window class and an associated
window procedure. Then, the application can create many windows of that class, all
of which use the same window procedure. This means that the same piece of code
can be called from several sources simultaneously; therefore, you must be careful
when modifying shared resources from a window procedure.

Dialog procedures have the same structure and function as window procedures.
The primary difference between a dialog procedure and a window procedure is the
absence of a client window in the dialog procedure; that is, the controls in a dialog
procedure are the immediate child windows of the frame, whereas the controls in a
normal window are the grandchildren of the frame. This makes significant
differences in the code between the two; for example, WinSendDlgltemMsg does not
work from a client window if you pass the client window handle as the first
parameter.

Structure of a Window Procedure

A window procedure is a function that takes 4 arguments and returns a 32-bit
pointer. The arguments of a window procedure consist of a window handle, a
ULONG message identifier, and two arguments, called message parameters, that
are declared with the MPARAM data type. The system defines an MPARAM as a
32-bit pointer to a VOID data type (a generic pointer). The message parameters
actually might contain any of the standard data types. The message parameters are
interpreted differently, depending on the value of the message identifier. 0S/2 2.0
includes several macros that enable the application to cast the information from the
MPARAM values into the actual data type. SHORT1IFROMMP, for example, extracts
a 16-bit value from a 32-bit MPARAM.

© Copyright IBM Corp. 1992 4-1

The window-procedure arguments are described in the following table:

Table 4-1. Window Procedure Arguments

Argument Description
hwnd Handle of the window receiving the message.
msg Message identifier. The message will correspond to one of the

predefined constants (for example, WM_CREATE) defined in the
system include files or be an application-defined message
identifier. The value of an application-defined message
identifier must be greater than the value of WM_USER, and less
than or equal to Oxffff.

mp1,mp2 Message parameters. Their interpretation depends on the
particular message.

The return value of a window procedure is defined as an MRESULT data type. The
interpretation of the return value depends on the particular message. Consult the
description of each message to determine the appropriate return value.

Default Window Procedure

All windows in the system share certain fundamental behavior, defined in the
default window-procedure function, WinDefWindowProc. The default window
procedure provides the minimal functionality for a window. An application-defined
window procedure should pass any messages it does not process to
WinDefWindowProc for default processing.

Window-Procedure Subclassing

Subclassing enables an application to intercept and process messages sent or
posted to a window before that window has a chance to process them. Subclassing
most often is used to add functionality to a particular window or to ailter a window’s
default behavior.

An application subclasses a window by using the WinSubclassWindow function to
replace the window’s original window procedure with an application-defined window
procedure. Thereafter, the new window procedure processes any messages that
are sent or posted to the window. If the new window procedure does not process a
particular message, it must pass the message to the original window procedure, not
to WinDefWindowProc, for default processing

Using Window Procedures
This section explains how to:

¢ Design a window procedure
¢ Associate a window procedure with a window class
¢ Subclass a window.

4-2 0S/2 Programming Guide—Volume Il

Designing a Window Procedure

The following code fragment shows the structure of a typical window procedure and
how to use the message argument in a switch statement, with individual messages
handled by separate case statements. Notice that each case returns a specific
value for each message. For messages that it does not handle itself, the window
procedure calls WinDefWindowProc.

1
g

S

i

e

i@ o e
e anae
.

A dialog window procedure does not receive the WM_CREATE message; however, it
does receive a WM_INITDLG message when all of its control windows have been
created.

At the very least, a window procedure should handle the WM_PAINT message to
draw itself. Typically, it should handle mouse and keyboard messages as well.
Consult the descriptions of individual messages to determine whether your window
procedure should handle them.

An application can call WinDefWindowProc as part of the processing of a message.
In such a case, the application can modify the message parameters before passing
the message to WinDefWindowProc or can continue with the default processing after
performing its own operations.

Chapter 4. Window Procedures 4=3

Associating a Window Procedure with a Window Class

To associate a window procedure with a window class, an application must pass a
pointer to that window procedure to the WinRegisterClass function. Once an
application has registered the window procedure, the procedure automatically is

) associated with each new window created with that class.

The following code fragment shows how to associate the window procedure in the
previous example with a window class:

s
-

o
o
s

s

Subclassing a Window

To subclass a window, an application calls the WinSubclassWindow function,
specifying the handle of the window to subclass and a pointer to the new window
procedure. The WinSubclassWindow function returns a pointer to the original
window procedure; the application can use this pointer to pass unprocessed
messages to the original procedure.

4-4 0s/2 Programming Guide—Volume Ii

The following code fragment subclasses a push button control window. The new
window procedure generates a beep whenever the user clicks the push button.

e

e

b
=

Chapter 4. Window Procedures 4-5

Summary

Following are the window-procedure functions and messages processed by the

default window procedure.

Table 4-2. Window Procedure Functions

Function Name

Description

WinDefDIgProc
WinDefWindowProc
WinRegisterClass
WinSubclassWindow

The default dialog procedure.
The defauit window procedure.
Registers a window class.

Subclasses the indicated window by replacing its
window procedure.

Table 4-3 (Page 1 of 2). Default Window Procedure Messages

Description

WM_BUTTON1DBLCLK

WM_BUTTON1DOWN
WM_BUTTON1UP
WM_BUTTON2DBLCLK

WM_BUTTON2DOWN
WM_BUTTON2UP
WM_BUTTON3DBLCLK

WM_BUTTON3DOWN
WM_BUTTON3UP
WM_CALCVALIDRECTS

WM_CHAR

WM_CLOSE

WM_CONTROLPOINTER

WM_DDE_INITIATE

WM_DDE_INITIATEACK

WM_FOCUSCHANGE
WM_HELP

WM_HITTEST

WM_MENUSELECT

Occurs when the user presses button 1 of the
pointing device twice.

Occurs when the user presses pointer button 1.
Occurs when the user releases pointer button 1.

Occurs when the user presses button 2 of the
pointing device twice.

Occurs when the user presses pointer button 2.
Occurs when the user releases pointer button 2.

Occurs when the user presses button 3 of the
pointing device twice.

Occurs when the user presses pointer button 3.
Occurs when the user releases pointer button 3.

Sent to determine which areas of a window can be
preserved if a window is sized and which can be
redisplayed.

Occurs when the user presses a key.

Sent to a frame window to indicate that the window
is being closed by the user.

Sent to a control’s owner window when the pointer
moves over the control window, allowing the user
to set the pointer.

Sent by an application to one or more other
applications to request initiation of a conversation.

Sent by a server application in response to a
WM_DDE_INITIATE message.

Occurs when the focus window is changed.

Occurs when a control has a significant event to
notify to its owner, or when a key stroke has been
translated into a WM_HELP by an accelerator
table.

Sent to determine which window is associated with
an input from the pointing device.

Occurs when a menu item is selected.

4-6 0S/2 Programming Guide—Volume |l

Table 4-3 (Page 2 of 2). Default Window Procedure Messages

Message Description

WM_MOUSEMOVE Occurs when the pointing device pointer moves.

WM_PAINT Occurs when a window needs repainting.

WM_QUERYCONVERTPOS Sent by an application to determine whether it is
appropriate to begin DBCS conversion.

WM_QUERYFOCUSCHAIN Requests the handle of a window in the focus
chain.

WM_QUERYFRAMECTLCOUNT Sent to the frame window in response to receipt of
a WM_SIZE or WM_UPDATEFRAME message.

WM_QUERYWINDOWPARAMS Occurs when an application queries the window
parameters.

WM_TIMER Posted when a timer times out.

WM_TRANSLATEACCEL Sent to the focus window when a WM_CHAR

message occurs.

Chapter 4. Window Procedures 4-7

4-8 0S/2 Programming Guide—Volume II

Chapter 5. Mouse and Keyboard Input

An 0S/2 Presentation Manager application can accept input from both a mouse (or
other pointing device) and the keyboard. This chapter explains how these input
events should be received and processed.

About Mouse and Keyboard Input

Only one window at a time can receive keyboard input, and only one window at a
time can receive mouse input; but they do not have to be the same window. All
keyboard input goes to the window with the input focus, and, normally, all mouse
input goes to the window under the mouse pointer.

System Message Queue
The operating system routes all keystrokes and mouse input to the system message
queue, converting these input events into messages, and posts them, one at a time,
to the proper application-defined message queues. An application retrieves
messages from its queue and dispatches them to the appropriate window
procedures, which process the messages.

Mouse and keyboard input events in the system message queue are strictly ordered
so that a new event cannot be processed until all previous events are fully
processed: the system cannot determine the destination window of an input event
until then. For example, if a user types a command in one window, clicks the mouse
to activate another window, then types a command in the second window, the
destination of the second command depends on how the application handles the
mouse click. The second command would go to the second window only if that
window became active as a result of the mouse click.

It is important for an application to process all messages quickly to avoid slowing
user interaction with the system. A message must be responded to immediately in
the current thread, but the processing it initiates should be done asynchronously in
another thread that has no windows in the desktop tree.

0S/2 can display multiple windows belonging to several applications at the same
time. To manage input among these windows, the system uses the concepts of
window activation and keyboard focus.

Window Activation
Although the operating system can display windows from many different
applications simultaneously during a PM session, the user can interact with only
one application at a time—the active application. The other applications continue to
run, but they cannot receive user input until they become active.

To enable the user to easily identify the active application, the system activates all
frames in the tree between HWND_DESKTOP and the window with input focus. That
is, the system positions the active frame window above all other top-level windows
on the screen. If the active window is a standard frame window, the window’s title
bar and sizing border are highlighted.

The user can control which application is active by clicking on a window or by
pressing the Alt+Tab or Alt+Esc key combinations. An application can set the

© Copyright IBM Corp. 1992 : 5-1

active frame window by calling WinSetActiveWindow; it also can obtain the handle
of the active frame window by using WinQueryActiveWindow.

When one window is deactivated and another activated, the system sends a
WM_ACTIVATE message, first to the window being deactivated, then to the window
being activated. The fActive parameter of the WM_ACTIVATE message is set to
FALSE for the window being deactivated and set to TRUE for the window being
activated. An application can use this message to track the activation state of a
client window.

Keyboard Focus

The keyboard focus is a temporary attribute of a window; the window that has the
keyboard focus receives all keyboard input until the focus changes to a different
window. The system converts keyboard input events into WM_CHAR messages and
posts them to the message queue of the window that has the keyboard focus.

An application can set the keyboard focus to a particular window by calling
WinSetFocus. If the application does not use WinSetFocus to explicitly set the
keyboard-focus window, the system sets the focus to the active frame window.

The following events occur when an application uses WinSetFocus to shift the
keyboard focus from one window (the original window) to another (the new window):

1. The system sends the original window a WM_SETFOCUS message (with the
fFocus parameter set to FALSE), indicating that that window has lost the
keyboard focus.

2. The system then sends the original window a WM_SETSELECTION message,
indicating that the window should remove the highlight from the current
selection.

3. lf the original (frame) window is being deactivated, the system sends it a
WM_ACTIVATE message (with the fActive parameter set to FALSE), indicating
that the window is no longer active.

4. The system then sends the new application a WM_ACTIVATE message (with
fActive set to TRUE), indicating that the new application is now active.

5. If the new (main) window is being activated, the system sends it a
WM_ACTIVATE message (with fActive set to TRUE), indicating that the main
window is now active.

6. The system sends the new window a WM_SETSELECTION message, indicating
that the window should highlight the current selection.

7. Finally, the system sends the new window a WM_SETFOCUS message (with
fFocus set to TRUE), indicating that the new window has the keyboard focus.

If, while processing a WM_SETFOCUS message, an application calls
WinQueryActiveWindow, that function returns the handle of the previously-active
window until the application establishes a new active window. Similarly, if the
application, while processing WM_SETFOCUS, calls WinQueryFocus, that function
returns the handle of the previous keyboard-focus window until the application
establishes a new keyboard-focus window. In other words, even though the system
has sent WM_ACTIVATE and WM_SETFOCUS messages (with the fActive and fFocus
parameters set to FALSE) to the previous windows, those windows are considered
the active and focus windows until the system establishes new active and focus
windows.

5-2 osr2 Programming Guide—Volume Ii

If the application calls WinSetFocus while processing a WM_ACTIVATE message,
the system does not send a WM_SETFOCUS message (with fFocus set to FALSE),
because no window has the focus.

A client window receives a WM_ACTIVATE message when its parent frame window
is being activated or deactivated. The activation or deactivation message usually is
followed by a WM_SETFOCUS message that specifies whether the client window is
gaining or losing the keyboard focus. Therefore, if the client window needs to
change the keyboard focus, it should do so during the WM_SETFOCUS message, not
during the WM_ACTIVATE message.

Keyboard Messages

The system sends keyboard input events as WM_CHAR messages to the message
queue of the keyboard-focus window. If no window has the keyboard focus, the
system posts WM_CHAR messages to the message queue of the active frame
window. Following are two typical situations in which an application receives
WM_CHAR messages:

An application has a client window or custom control window, either of which
can have the keyboard focus. If the window procedure for the client or control
window does not process WM_CHAR messages, it should pass them to
WinDefWindowProc, which will pass them to the owner. Dialog control windows,
in particular, should pass unprocessed WM_CHAR messages to the
WinDefDIgProc function, because this is how the user interface implements
control processing for the Tab and Arrow keys.

An application window owns a control window whose window procedure can
handle some, but not all, WM_CHAR messages. This is common in dialog
windows. If the window procedure of a control in a dialog window cannot
process a WM_CHAR message, the procedure can pass the message to the
WinDefDIgProc function. This function sends the message to the control
window's owner, which usually is a dialog frame window. The application’s
dialog procedure then receives the WM_CHAR message. This also is the case
when an application client window owns a control window.

A WM_CHAR message can represent a key-down or key-up transition. It might
contain a character code, virtual-key code, or scan code. This message also
contains information about the state of the Shift, Ctrl, and Alt keys.

Each time a user presses a key, at least two WM_CHAR messages are generated:
one when the key is pressed, and one when the key is released. If the user holds
down the key long enough to trigger the keyboard repeat, multiple WM_CHAR
key-down messages are generated. If the keyboard repeats faster than the
application can retrieve the input events from its message queue, the system
combines repeating character events into one WM_CHAR message and increments
a count byte that indicates the number of keystrokes represented by the message.
Generally, this byte is set to 1, but an application should check each WM_CHAR
message to avoid missing any keystrokes.

An application can ignore the repeat count. For example, an application might

ignore the repeat count on Arrow keys to prevent the cursor from skipping
characters when the system is slow.

Chapter 5. Mouse and Keyboard Input 5-3

Message Flags

Applications decode WM_CHAR messages by examining individual bits in the flag
word contained in the first message parameter (mp7) that the system passes with
every WM_CHAR message. The type of flag word indicates the nature of the
message. The system can set the bits in the flag word in various combinations. For
example, a WM_CHAR message can have the KC_CHAR, KC_SCANCODE, and
KC_SHIFT attribute bits all set at the same time. An application can use the
following list of flag values to test the flag word and determine the nature of a

WM_CHAR message:

Table 5-1 (Page 1 of 2). Keyboard Character Flags

KC_COMPOSITE

KC_CTRL

KC_DEADKEY

KC_KEYUP

KC_LONEKEY

KC_PREVDOWN

KC_SCANCODE

KC_SHIFT

KC_INVALIDCHAR

KC_INVALIDCOMP

Flag Name Description

KC_ALT Indicates that the Alt key was down when the message was
generated.

KC_CHAR Indicates that the message contains a valid character code for a

key, typically an ASCIi character code.

In combination with the KC_CHAR flag, this flag indicates that
the character code is a combination of the key that was pressed
and the previous dead key. This flag is used to create
characters with diacritical marks.

Indicates that the Ctrl key was down when the message was
generated.

In combination with the KC_CHAR flag, this flag indicates that
the character code represents a dead-key glyph (such as an
accent). An application displays the dead-key glyph and does
not advance the cursor. Typically, the next WM_CHAR message
is a KC_COMPOSITE message, containing the glyph associated
with the dead key.

Indicates that the character is not valid for the current
transiation tables.

Indicates that the character code is not valid in combination with
the previous dead key.

Indicates that the message was generated when the user
released the key. If this flag is clear, the message was
generated when the user pressed the key. An application can
use this flag to determine key-down and key-up events.

In combination with the KC_KEYUP fiag, this flag indicates that
the user pressed no other key while this key was down.

In combination with the KC_VIRTUALKEY flag, this flag indicates
that the virtual key was pressed previously. If this flag is clear,
the virtual key was not previously pressed.

Indicates that the message contains a valid scan code generated
by the keyboard when the user pressed the key. The system
uses the scan code to identify the character code in the current
code page; therefore, most applications do not need the scan
code unless they cannot identify the key that the user pressed.
WM_CHAR messages generated by user keyboard input
generally have a valid scan code, but WM_CHAR messages
posted to the queue by other applications might not contain a
scan code.

Indicates that the Shift key was down when the message was
generated.

5-4 0s/2 Programming Guide—Volume Il

Table 5-1 (Page 2 of 2). Keyboard Character Flags

Flag Name Description

KC_TOGGLE Toggles on and off every time the user presses a specified key.
This is important for keys like NumLock, which have an on or off
state.

KC_VIRTUALKEY Indicates that the message contains a valid virtual-key code for a
key. Virtual keys typically correspond to function keys.

The mp1 and mp2 parameters of the WM_CHAR message contain information
describing the nature of a keyboard input event, as follows:

SHORT1FROMMP (mp1) contains the flag word.
CHAR3FROMMP (mp1) contains the key-repeat count.
CHAR4FROMMP (mp1) contains the scan code.
SHORT1FROMMP (mp2) contains the character code.
SHORT2FROMMP (mp2) contains the virtual key code.

An application window procedure should return TRUE if it processes a particular
WM_CHAR message or FALSE if it does not. Typically, applications respond to
key-down events and ignore key-up events.

The following sections describe the different types of WM_CHAR messages.
Generally, an application decodes these messages by creating layers of conditional
statements that discriminate among the different combinations of flag and code
attributes that can occur in a keyboard message.

Key-Down or Key-Up Events

Typically, the first attribute that an application checks in a WM_CHAR message is
the key-down or key-up event. If the KC_KEYUP bit of the flags word is set, the
message is from a key-up event. If the flag is clear, the message is from a
key-down event.

Repeat-Count Events

An application can check the key-repeat count of a WM_CHAR message to
determine whether the message represents more than 1 keystroke. The count is
greater than 1 if the keyboard is sending characters to the system queue faster than
the application can retrieve them. If the system queue fills up, the system combines
consecutive keyboard input events for each key into a single WM_CHAR message,
with the key-repeat count set to the number of combined events.

Character Codes

The most typical use of WM_CHAR messages is to extract a character code from the
message and display the character on the screen. When the KC_CHAR flag is set in
the WM_CHAR message, the low word of mp2 contains a character code based on
the current code page. Generally, this value is a character code (typicalily, an ASCII
code) for the key that was pressed.

Virtual-Key Codes

WM_CHAR messages often contain virtual-key codes that correspond to various
function keys and direction keys on a typical keyboard. These keys do not
correspond to any particular glyph code but are used to initiate operations. When
the KC_VIRTUALKEY fiag is set in the flag word of a WM_CHAR message, the high
word of mp2 contains a virtual-key code for the key.

Chapter 5. Mouse and Keyboard Input 5-5

Note: Some keys, such as the Enter key, have both a valid character code and a
virtual-key code. WM_CHAR messages for these keys will contain character
codes for both newline characters (ASCll 11) and virtual-key codes
(VK_ENTER).

Scan Codes

A third possible value in a WM_CHAR message is the scan code of the key that was
pressed. The scan code represents the value that the keyboard hardware generates
when the user presses a key. An application can use the scan code to identify the
physical key pressed, as opposed to the character code represented by the same
key.

Accelerator-Table Entries

The system checks all incoming keyboard messages to see whether they match any
existing accelerator-table entries (in either the system message queue or the
application message queue). The system first checks the accelerator table
associated with the active frame window; if it does not find a match, the system uses
the accelerator table associated with the message queues. [f the keyboard input
event corresponds to an accelerator-table entry, the system changes the WM_CHAR
message to a WM_COMMAND, WM_SYSCOMMAND, or WM_HELP message,
depending on the attributes of the accelerator table. If the keyboard input event
does not correspond to an accelerator-table entry, the system passes the WM_CHAR
message to the keyboard-focus window.

Applications should use accelerator tables to implement keyboard shortcuts rather
than translate command keystrokes. For example, if an application uses the F2 key
to save a document, the application should create a keyboard accelerator entry for
the F2 virtual key so that, when pressed, the F2 key generates a WM_COMMAND
message rather than a WM_CHAR message.

Mouse Messages

Mouse messages occur when a user presses or releases one of the mouse buttons
(a click) and when the mouse moves. All mouse messages contain the x and y
coordinates of the mouse-pointer hot spot (relative to the coordinates of the window
receiving the message) at the time the event occurs. The mouse-pointer hot spot is
the location in the mouse-pointer bit map that the system tracks and recognizes as
the position of the mouse pointer.

If a window has the CS_HITTEST style, the system sends the window a WM_HITTEST
message when the window is about to receive a mouse message. Most applications
pass WM_HITTEST messages on to WinDefWindowProc by default, so disabled
windows do not receive mouse messages. Windows that specifically respond to
WM_HITTEST messages can change this default behavior. If the window is enabled
and should receive the mouse message, the WinDefWindowProc function (using the
default processing for WM_HITTEST) returns the value HT_NORMAL. If the window
is disabled, WinDefWindowProc returns HT_ERROR, in which case the window does
not receive the mouse message.

The default window procedure processes the WM_HITTEST message and the usHit
parameter in the WM_MOUSEMOVE message. Therefore, unless an application
needs to return special values for the WM_HITTEST message or the usHit
parameter, it can ignore them. One possible reason for processing the
WM_HITTEST message is for the application to react differently to a mouse clickin a
disabled window.

5-6 0s/2 Programming Guide—Volume 1i

The contents of the mouse-message parameters (mp7 and mp2) are as follows:

¢ SHORT1FROMMP (mp17) contains the x position.
* SHORT2FROMMP (mp1) contains the y position.
¢ SHORT1FROMMP (mp2) contains the hit-test parameter.

Capturing Mouse Input

The operating system generally posts mouse messages to the window that is under
the mouse pointer at the time the system reads the mouse input events from the
system message queue. An application can change this by using the WinSetCapture
function to route all mouse messages to a specific window or to the message queue
associated with the current thread. If mouse messages are routed to a specific
window, that window receives all mouse input until either the window releases the
mouse or the application specifies another capture window. If mouse messages are
routed to the current message queue, the system posts each mouse message to the
queue with the hwnd member of the QMSG structure for each message set to NULL.
Because no window handle is specified, the WinDispatchMsg function in the
application’s main message loop cannot pass these messages to a window
procedure for processing. Therefore, the application must process these messages
in the main loop.

Capturing mouse input is useful if a window needs to receive all mouse input, even
when the pointer moves outside the window. For example, applications commonly
track the mouse-pointer position after a mouse “button down” event, following the
pointer until a “button up” event is received from the system. If an application does
not call WinSetCapture for a window and the user releases the mouse button, the
application does not receive the button-up message. If the application sets a
window to capture the mouse and tracks the mouse pointer, the application receives
the button-up message even if the user moves the mouse pointer outside the
window.

Some applications are designed to require a button-up message to match a
button-down message. When processing a button-down message, these
applications call WinSetCapture to set the capture to their own window; then, when
processing a matching button-up message, they call WinSetCapture, with a NULL
window handle, to release the mouse.

Button Clicks

An application window’s response to a mouse click depends on whether the window
is active. The first click in an inactive window should activate the window.
Subsequent clicks in the active window produce an application-specific action.

A common problem for an application that processes WM_BUTTON1DOWN or
similar messages is failing to activate the window or set the keyboard focus. If the
window processes WM_CHAR messages, the window procedure should call
WinSetFocus to make sure the window receives the keyboard focus and is activated.
If the window does not process WM_CHAR messages, the application should call
WinSetActiveWindow to activate the window.

Mouse Movement

The system sends WM_MOUSEMOVE messages to the window that is under the
mouse pointer, or to the window that currently has captured the mouse, whenever
the mouse pointer moves. This is useful for tracking the mouse pointer and
changing its shape, based on its location in a window. For example, the mouse
pointer changes shape when it passes over the size border of a standard frame
window.

Chapter 5. Mouse and Keyboard Input 5-7

All standard control windows use WM_MOUSEMOVE messages to set the
mouse-pointer shape. If an application handies WM_MOUSEMOVE messages in
some situations but not others, unused messages should be passed to the
WinDefWindowProc function to change the mouse-pointer shape.

Using the Mouse and Keyboard
This section explains how to perform the following tasks:

¢ Determine the active status of a frame window.
Check for a key-up or key-down event.
Respond to a character message.

Handle virtual-key codes.

Handle a scan code.

Determining the Active Status of a Frame Window

The activated state of a window is a frame-window characteristic. The system does
not provide an easy way to determine whether a client window is part of the active
frame window. That is, the window handle returned by the WinQueryActiveWindow
function identifies the active frame window rather than the client window owned by
the frame window.

Following are two methods for determining the activated state of a frame window
that owns a particular client window:

e Call WinQueryActiveWindow and compare the window handle it returns with the
handle of the frame window that contains the client window, as shown in the
following code fragment:

¢ Each time the frame window is activated, the client window receives a
WM_ACTIVATE message with the low word of the mp2 equal to TRUE. When the
frame window is deactivated, the client window receives a WM_ACTIVATE
message with a FALSE activation indicator.

5-8 082 Programming Guide—Volume i

Checking for a Key-Up or Key-Down Event
The following code fragment shows how to decode a WM_CHAR message to
determine whether it indicates a key-up event or a key-down event:

T

HERE s

Responding to a Character Message
The following code fragment shows how to respond to a character message:

If the KC_CHAR flag is not set, the mp2 parameter from CHAR1FROMMP still might
contain useful information. If either the Alt key or the Ctrl key, or both, are down,
the KC_CHAR bit is not set when the user presses another key. For example, if the
user presses the a key when the Alt key is down, the low word of mp2 contains the
ASCII value for “a” (0x0061), the KC_ALT flag is set, and the KC_CHAR flag is clear.
If the translation does not generate any valid characters, the char field is set to 0.

Chapter 5. Mouse and Keyboard lnput 5-9

Handling Virtual-Key Codes
The following code fragment shows how to decode a WM_CHAR message
containing a valid virtual-key code:

o
‘!Sxxgﬁsyéﬁl

5-10 0S/2 Programming Guide—Volume Ii

Handling a Scan Code
All WM_CHAR messages generated by keyboard input events have valid scan
codes. WM_CHAR messages posted by other applications might or might not have
valid scan codes. The following code fragment shows how to extract a scan code
from a WM_CHAR message:

Summary

Following are the OS/2 functions and messages used with activation and
keyboard/mouse input.

Table 5-2. Mouse/Keyboard Functions

Function Name Description

WinEnablePhysinput Enables or disables queuing of physical
input.

WinFocusChange Changes the focus window.

WinGetKeyState Returns the state of the key at the time
the last message from the message
queue was posted.

WinGetPhysKeyState Returns the physical key state.

WinlisPhysinputEnabled Returns the status of the hardware
(on/off)

WinQueryActiveWindow Returns the active window for
HWND_DESKTOP or other parent window.

WinQueryCapture Returns the handle of the window the
pointer has captured.

WinQueryFocus Returns the focus window; NULL if there
is not focus window.

WinSetActiveWindow Makes the frame window the active
window.

WinSetCapture Captures all pointing device messages.

WinSetFocus Sets the focus window.

WinSetKeyboardStateTable Gets or sets the keyboard state.

Chapter 5. Mouse and Keyboard Input 5-11

Table 5-3. Focus-Change and Activation Messages

Description

WM_ACTIVATE

WM_FOCUSCHANGE

WM_SETFOCUS

WM_SETSELECTION

WM_QUERYFOCUSCHAIN

Sent when a different window becomes the active
window.

Occurs when the window having the focus is
changed.

Requests the handle of a window in the focus
chain.

Occurs when a window is to lose or gain the input
focus.

Occurs when a window is selected or deselected.

Table 5-4. Mouse Messages

Description

WM_BUTTON1DBLCLK

WM_BUTTON1DOWN
WM_BUTTON1UP
WM_BUTTON2DBLCLK

WM_BUTTON2DOWN
WM_BUTTON2UP
WM_BUTTON3DBLCLK

WM_BUTTON3DOWN
WM_BUTTON3UP
WM_HITTEST

WM_MOUSEMOVE

Occurs when the user presses button 1 of the
pointing device twice.

Occurs when the user presses pointer button 1.
Occurs when the user releases pointer button 1.

Occurs when the user presses button 2 of the
pointing device twice.

Occurs when the user presses pointer button 2.
Occurs when the user releases pointer button 2.

Occurs when the user presses button 3 on the
pointing device twice.

Occurs when the user presses pointer button 3.
Occurs when the user releases pointer button 3.

Sent to determine which window is associated with
an input from the pointing device.

Occurs when the pointing device pointer moves.

Table 5-5. Keyboard Messages

Description

WM_CHAR
WM_COMMAND

Occurs when the user presses a key.

Occurs when a control has a significant event to
notify to its owner, or when a keystroke has been
translated by an accelerator table into
WM_COMMAND.

5-12 05/2 Programming Guide—Volume i

Chapter 6. Frame Windows

A frame window is the basic window used by most Presentation Manager
applications to enable the user to perform manipulation functions. This chapter
explains how to create and use frame windows in PM applications.

About Frame Windows

Main Window

© Copyright IBM Corp. 1992

An application nearly always starts with a frame window to create a composite
window (for example, a main window) that consists of the frame window, several
frame-control windows, and a client window. The frame controls conform to the
Common User Access (CUA) user interface guidlines. The frame window
coordinates the actions of the frame controls and client window, enabling the
composite window to act as a single unit.

Frame windows have the preregistered public window class WC_FRAME. The
frame-window class, like the preregistered control classes, defines the appearance
and behavior of the frame window.

The main window of an application, typically, is composed of a frame window and a
client window. The frame window usually includes control windows such as a title
bar, system menu, menu bar (action bar or menu in user terminology), and scroll
bars. Figure 6-1 is an example of a typical frame window.

Ti:ie-Bar Window title Window sizing buttons
con
Title-Bar
Menu bar
Vertical
Window
border sﬁ;‘:,"
Information
area

Horizontal scroll bar

Figure 6-1. Typical Frame Window and Its Components

A frame window provides the standard services the user expects from a window—for
example, moving, sizing, minimizing, and maximizing. The frame window receives
input from the control windows (called frame controls) and sends messages to both
the frame controls and the client window.

6-1

Frame Controls

When creating a frame window, an application also can create one or more frame
controls as child windows of the frame window. Most frame windows contain at
least a system menu and title bar. Other optional controls might include a menu bar
and scroll bar as shown above.

An application can create a frame window with specified frame controls by calling
WinCreateStdWindow with the appropriate frame-control flags.

The frame window owns the child frame-control windows, which can send
notification messages that tell the frame window what the user is doing with the
frame controls. For example, using a mouse, a user can move a window by clicking
the title bar and dragging the window to a new position. The title-bar control
responds to the click by sending a message to the frame window, notifying it of the
user’'s