

Note ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-.

Before using this information and the product it supports, be sure to read the general information under
"Notices" on page xxiii.

First Edition (March 1992)

The following paragraph does not apply to the United Kingdom or any country where such provisions are inconsistent
with locsl law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not
allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to
you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made to the
information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time.

It is possible that this publication may contain reference to, or information about, IBM products (machines and
programs), programming, or services that are not announced in your country. Such references or information must
not be construed to mean that IBM intends to announce such IBM products, programming, or services in your
country.

Requests for technical information about IBM products should be made to your IBM Authorized Dealer or your IBM
Marketing Representative.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of
this document does not give you any license to these patents. You can send license inquiries, in writing, to the IBM
Director of Commercial Relations, IBM Corporation, Purchase, NY 10577.

COPYRIGHT LICENSE: This publication contains printed sample application programs in source language, which
illustrate OS/2 programming techniques. You may copy and distribute these sample programs in any form without
payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to
the OS/2 application programming interface.

Each copy of any portion of these sample programs or any derivative work, which is distributed to others, must
include a copyright notice as follows: "©(your company name) (year) All Rights Reserved."

©Copyright International Business Machines Corporation 1992. All rights reserved.
Note to U.S. Government Users - Documentation related to restricted rights - Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Notices .. xxiii
Double-Byte Character Set (DBCS) . xxiii
Common User Access (CUA) Terminology . xxiii

About This Book . xxv

Presentation Manager Window Programming ~nterface

© Copyright IBM Corp. 1992

Chapter 1. Windows . 1-1
About Windows . 1-1

Desktop Window and Desktop-Object Window 1-1
Window Relationships . 1-2

Parent-Child Relationship 1-3
Owne.rship ... 1-5
Object Windows 1-5

Application Windows 1-6
Window Input and Output . 1-7

Active Window and Focus Window 1-7
Messages . 1-8
Enabled and Disabled Windows 1-9
System-Modal Window 1-9

Window Creation .. 1-9
Window-Creation Functions . 1-11
Window-Creation Messages . 1-11

Window Classes . 1-11
Public Window Classes . 1-11
Private Window Classes . 1-13

Window Styles . 1-13
Window Handles . 1-14
Window Size and Position . 1-14

Size . 1-15
Position . 1-15
Size and Position Messages . 1-16
System Commands . 1-16

Window Data . 1-16
Window Resources . 1-17
Maximized and Minimized Windows . 1-18
Window Visibility . 1-18
Window Destruction . 1-19

Using Windows . 1-20
Creating a Top-Level FrameWindow . 1-20
Creating an Object Window . 1-22
Querying Window Data . 1-22
Changing the Parent Window . 1-22
Finding a Parent, Child, or Owner Window . 1-23
Setting an Owner Window . 1-24
Retrieving the HandJe of a Child or Owned Window 1-24
Enumerating Top-Level Windows . 1-25
Moving and Sizing a Window . 1-25
Redrawing Windows . 1-26
Changing the Z-Order of Windows . 1-27

Ill

Showing or Hiding a Window . 1-28

Maximizing, Minimizing, and Restoring a Frame Window 1-28

Destroying a Window . 1-29

Summary . 1-29

Chapter 2. Messages and Message Queues . 2-1

About Messages and Message Queues . 2-1

Messages ... 2-1

Message Queues . 2-2

Message Handling 2-3

Message Loops . 2-3

Window Procedures 2-5

Posting and Sending Messages 2-5

Message Types . 2-6

System-Defined Messages 2-7

Application-Defined Messages 2-7

Semaphore Messages . 2-8

Message Priorities 2-8

Message Filtering .. 2-9

Using Messages . 2-9

Creating a Message Queue and Message Loop . 2-9

Examining the Message Queue . 2-11

Posting a Message to a Window 2-12

Sending a Message to a Window 2-12

Broadcasting a Message . 2-12

Using Message Macros 2-13

Summary . 2-14

Chapter 3. Window Classes . 3-1

About Window Classes . 3-1

Private Window Classes 3-1

Class Name . 3-1

Class Styles . 3-2

Window Procedure 3-3

Window Data Size 3-3

Custom Window Styles 3-3

Public Window Classes . 3-3

System-Defined Public Window Classes . 3-3

Custom Public Window Classes 3-5

Class Data . 3-5

Using Window Classes . 3-5

Registering a Private Window Class . 3-5

Summary . 3-6

Chapter 4. Window Procedures . 4-1

About Window Procedures 4-1

Structure of a Window Procedure 4-1

Default Window Procedure . 4-2

Window-Procedure Subclassing 4-2

Using Window Procedures . 4-2

Designing a Window Procedure . 4-3

Associating a Window Procedure with a Window Class 4-4

Subclassing a Window . 4-4

Summary . 4-6

Chapter 5. Mouse and Keyboard Input . 5-1

iv OS/2 Programming Guide-Volume II

About Mouse and Keyboard Input 5-1
System Message Queue . 5-1
Window Activation .. 5-1
Keyboard Focus . 5-2
Keyboard Messages . 5-3

Message Flags . 5-4
Key-Down or Key-Up Events . 5-5
Repeat-Count Events . 5-5
Character Codes . 5-5
Virtual-Key Codes . 5-5
Scan Codes .. 5-6
Accelerator-Table Entries 5-6

Mouse Messages .. 5-6
Capturing Mouse Input . 5-7

Button Clicks ... 5-7
Mouse Movement . 5-7

Using the Mouse and Keyboard 5-8
Determining the Active Status of a Frame Window 5-8
Checking for a Key-Up or Key-Down Event 5-9
Responding to a Character Message . 5-9
Handling Virtual-Key Codes . 5-10
Handling a Scan Code 5-11

Summary . 5-11

Chapter 6. Frame Windows . 6-1
About Frame Windows 6-1

Main Window ... 6-1
Frame Controls . 6-2
Client Window ... 6-2
Additional Frame-Window Items . 6-2
Frame-Control Identifiers . 6-3

Frame-Window Creation 6-3
Frame Window Controls and Styles 6-3
Frame-Window Resources . 6-4

Frame-Window Class Data ... , . 6-8
Frame-Window Data 6-8
Frame-Window Operation 6-9
Nonstandard Frame Windows 6-10
Default Frame-Window Behavior . 6-10

Using Frame Windows . 6-12
Creating a Main Window . 6-12
Retrieving a Frame Handle . 6-15

Summary . 6-15

Chapter 7. Control Windows . 7-1
About Control Windows . 7-1
Using Control Windows . 7-2

Using Control Windows in a Dialog Window 7-2
Using Control Windows in a Non-Dialog Window 7-3
Creating a Custom Control Window 7-3

Summary . 7-5

Chapter 8. Button Controls . 8-1
About Button Controls . 8-1

Button Types . 8-1
Button Styles ... 8-3

Contents V

Default Button Behavior . 8-5

Button Notification Messages 8-7

Button States ... 8-8

Custom Buttons . 8-8

Using Button Controls 8-8

Using Buttons in a Dialog Window . 8-9

Using Buttons in a Client Window . 8-10

Summary .. 8-11

Chapter 9. List-Box Controls .

About List Boxes .

Using List Boxes .. .

Creating a List-Box Window

Using a List Box in a Dialog Window

Adding or Deleting an Item in a List Box

Responding to a User Selection in a List Box

Handling Multiple Selections

Creating an Owner-Drawn List Item

Default List-Box Behavior .

Summary

Chapter 10. Combination-Box Controls .

About Combination Boxes

Combination-Box Styles

Notification Codes .

Using Combination Boxes

Summary

9-1
9-1
9-1
9-2
9-3
9-3
9-4
9-4
9-5
9-7
9-8

10-1
10-1
10-1
10-3
10-3
10-3

Chapter 11. Menus . 11-1

About Menus . 11-1

Menu Bar and Pul I-Down Menus . 11-1

Pop-Up Menus . 11-2

System Menu . 11-3

Menu Items . 11-3

The Help Item . 11-4

Menu-Item Styles . 11-4

Menu-Item Attributes . 11-4

Menu-Item Structure . 11-5

Menu Access . 11-6

Mnemonics . 11-6

Accelerators . 11-7

Using Menus . 11-7

Defining Menu Items in a Resource File . 11-8

Including a Menu Bar in a Standard Window . 11-9

Creating a Pop-up Menu . 11-10

Adding a Menu to a Dialog Window . 11-10

Accessing the System Menu . 11-11

Responding to a User's Menu Choice . 11-11

Setting and Querying Menu-Item Attributes . 11-12

Adding and Deleting Menu Items . 11-12

Creating a Custom Menu Item . 11-15

Summary . 11-17

Chapter 12. Entry-Field Controls . 12-1

About Entry Fields . 12-1

Entry-Field Styles . 12-1

Vi OS/2 Programming Guide-Volume II

Entry-Field Notification Codes . 12-2
Default Entry-Field Behavior . 12-3
Entry-Field Text Editing . 12-5
Entry-Field Control Copy and Paste Operations 12-6
Entry-Field Text Retrieval . 12-6

Using Entry-Field Controls . 12-6
Creating an Entry Field in a Dialog Window . 12-6
Creating an Entry Field in a Client Window . 12-7
Changing the Default Size of an Entry Field . 12-7
Retrieving Text From an Entry Field . 12-8

Summary . 12-10

Chapter 13. Multiple-Line Entry Field Controls . 13-1
About Multiple-Line Entry Field Controls . 13-1

MLE Styles . 13-1
MLE Control Notification Codes . 13-1
MLE Text Editing . 13-3
MLE Text Formatting . 13-4
MLE Text Import and Export Operations . 13-5
MLE Field Control Cut, Copy, and Paste Operations 13-5
MLE Field Control Search and Replace Operations 13-6

Using Multiple-Line Entry Field Controls . 13-6
Creating an MLE Field Control . 13-6
Importing and Exporting MLE Text . 13-7
Searching MLE Text . 13-10

Summary . 13-11

Chapter 14. Scroll-Bar Controls . 14-1
About Scrol I Bars . 14-1

Scroll-Bar Creation . 14-1
Scroll-Bar Styles . 14-2
Scroll-Bar Range and Position . 14-2

Scroll-Bar Notification Messages . 14-3
Scrol I Bars and the Keyboard . 14-5

Using Scro I I Bars . 14-6
Creating Scroll Bars . 14-7
Retrieving a Scroll-Bar Handle . 14-8
Using the Scroll-Bar Range and Position . 14-9

Summary . 14-10

Chapter 15. Spin Button Controls . 15-1
About Spin Buttons . 15-1
Creating a Spin Button . 15-1
Graphical User Interface Support for Spin Buttons 15-3
Summary . 15-4

Chapter 16. Static Controls . 16-1
About Static Controls . 16-1

Keyboard Focus . 16-1
Static-Control Handle . 16-1
Static-Control Styles . 16-2
Default Static-Control Performance . 16-3

Using Static Controls . 16-4
Including a Static Control in a Dialog Window . 16-4
Including a Static Control in a Client Window . 16-5

Summary . 16-6

Contents Vii

Chapter 17. Tiiie-Bar Controls . 17-1
About Title Bars . 17-1

Default Title-Bar Behavior . 17-2
Using Title-Bar Controls . 17-2

Including a Title Bar in a Frame Window . 17-2
Altering Dragging Action . 17-3

Summary . 17-4

Chapter 18. Container Controls . 18-1
About Container Controls . 18-1

Container Control Functions . 18-1
Container Control Basics . 18-2

Creating a Container . 18-3
Understanding Container Items . 18-4
Allocating Memory for Container Records . 18-4
Allocating Memory for Container Columns . 18-5

Understanding Container Views . 18-5
Icon View . 18-6
Name View . 18-7

Non-Flowed Name View . 18-8
Flowed Name View 18-8

Text View . 18-9
Non-Flowed Text View . 18-9
Flowed Text View . 18-10

Tree View . 18-10
Tree Icon View and Tree Text View . 18-12

Tree Name View . 18-13
Details View . 18-14
Changing a Container View . 18-17

Using a Container . 18-17
Inserting Container Records . 18-17
Removing Container Records . 18-21
Setting the Container Control Focus . 18-22

Graphical User Interface Support . 18-22
Scro Iii ng . 18-22
Dynamic Scrolling . 18-23
Selecting Container Items . 18-23

Selection Types . 18-23
Selection Techniques . 18-23
Selection Mechanisms . 18-24

Providing Emphasis . 18-25
Using Direct Manipulation . 18-27
Specifying Space between Container Items . 18-27

Enhancing Container Control Performance . 18-28
Positioning Container Items . 18-28

Scrollable Workspace Areas . 18-28
Workspace and Work Area Origins . 18-30

Specifying Deltas for Large Amounts of Data . 18-31
Direct Editing of Text in a Container . 18-31
Specifying Container Titles . 18-32
Specifying Fonts and Colors . 18-34
Drawing Container Items and Painting Backgrounds 18-34
Filtering Container Items . 18-34
Optimizing Container Memory Usage . 18-35

Allocating Memory for Container Records When Using
MINIRECORDCORE . 18-35

Viii OS/2 Programming Guide-Volume II

Sharing Records Among Multiple Containers 18-35

Invalidating Records Shared by Multiple Containers 18-36

Freeing Records Shared by Multiple Containers 18-36

Summary . 18-36

Chapter 19. Notebook Controls . 19-1

About Notebook Controls . 19-1

Notebook Creation . 19-1

Understanding the Default Notebook Style . 19-2

Notebook Control Styles . 19-5

Working with Notebook Pages and Windows . 19-8

Inserting Notebook Pages . 19-8

Associating Application Page Windows with Notebook Pages 19-10

Associating a Window or Dialog with a Notebook Page 19-10

Deleting Notebook Pages . 19-15

Graphical User Interface Support . 19-15

Notebook Navigation Techniques . 19-16

Tailoring Notebook Colors . 19-19

Changing Colors Using WinSetPresParam . 19-20

Changing Colors Using BKM_SETNOTEBOOKCOLORS 19-20

Enhancing Notebook Control Performance and Effectiveness 19-21

Dynamic Resizing and Scrolling . 19-21

Tab Painting and Positioning . 19-22

Summary . 19-23

Chapter 20. Slider Controls . 20-1

About Slider Controls . 20-1

Creating a Slider . 20-2

Retrieving Data for Selected Slider Values . 20-5

Graphical User Interface Support for Sliders . 20-5

Pointing Device Support . 20-6

Keyboard Support . 20-6

Summary . 20-7

Chapter 21. Value Set Controls . 21-1

About Value Sets . 21-1

Creating and Using Value Set Controls . 21-2

Creating a Value Set · 21-2

Retrieving Data for Selected Value Set Items 21-4

Arranging Value Set Items . 21-4

Graphical User Interface Support . 21-5

Navigating to and Selecting Value Set Items . 21-5

Pointing Device Support . 21-5

Keyboard Support . 21-6

Dynamic Resizing . 21-6

Summary . 21-7

Chapter 22. Keyboard Accelerators . 22-1

About Keyboard Accelerators . 22-1

Accelerator Tables . 22-1

Accelerator-Table Resources . 22-2

Accelerator-Table Handles . 22-2

Accelerator-Table Data Structures . 22-2

Accelerator-Item Styles . 22-2

Using Keyboard Accelerators . 22-3

Creating an Accelerator-Table Resource . 22-3

Contents ix

Including an Accelerator Table in a Frame Window 22-4
Modifying an Accelerator Table . 22-4

Summary . 22-6

Chapter 23. Dialog Windows . 23-1
About Dialog Windows 23-1

Modal and Modeless Dialog Windows 23-1
Dialog Items . 23-1
Dialog-Item Groups . 23-2
Message Boxes . 23-3
Dialog Data Structures . 23-4
Dialog Resources . 23-4

Using Message Boxes and Dialog Windows 23-4
Creating a Message Box 23-4

Creating a System-Modal Message Box . 23-5
Using a Dialog Window . 23-5

Creating a Dialog Template . 23-6
Creating a Modal Dialog Window . 23-6
Creating a Modeless Dialog Window 23-7
Initializing a Dialog Window . 23-8
Adding a Menu in a Dialog Window 23-9
Creating a Dialog Procedure . 23-9
Manipulating Dialog Items . 23-11

Summary . 23-12

Chapter 24. Font Dlalog Controls . 24-1
About the Font Dialog Control . 24-1
Creating a Font Dialog . 24-1
Graphical User Interface Support for the Font Dialog 24-2
Customizing the Font Dialog . 24-3
Summary . 24-4

Chapter 25. Fiie Dialog Controls . 25-1
About File Dialogs . 25-1
Creating a File Dialog . 25-2

Creating an Open Dialog . 25-3
Creating a SaveAs Dialog . 25-3

The File Dialog User Interface . 25-3
File Name Field . 25-3
File List Box . 25-4
Directory List Box . 25-4
Drive Field . 25-4
Type Field . 25-4
Standard Button and Default Action . 25-5

Customizing the File Dialog . 25-5
Summary .. 25-5

Chapter 26. Mouse Pointers and Icons . 26-1
About Mouse Pointers and Icons . 26-1

Mouse-Pointer Hot Spot . 26-1
Predefined Mouse Pointers . 26-2
System Bit Maps . 26-4

Using Mouse Pointers and Icons . 26-5
Changing the Mouse Pointer . 26-6

Summary . 26-6

X OS/2 Programming Guide-Volume II

Chapter 27. Cursors . 27-1

About Cursors . 27-1

Cursor Creation and Destruction . 27-1

Position and Size . 27-1

Other Cursor Characteristics . 27-1

Cursor Visibility . 27-2

Using Cursors . 27-2

Creating and Destroying a Cursor . 27-2

Summary . 27-3

Chapter 28. Painting and Drawing . 28-1

About Painting and Drawing . 28-1

Presentation Spaces and Device Contexts . 28-1

Window Regions . 28-3

Window Styles for Painting . 28-4

WS_CLIPCHILDREN, CS_CLIPCHILDREN . 28-5

WS_CLIPSIBLINGS, CS_CLIPSIBLINGS . 28-5

WS_PARENTCLIP, CS_PARENTCLIP . 28-5

WS_SAVEBITS, CS_SAVEBITS . 28-5

WS_SYNCPAINT, CS_SYNCPAINT . 28-5

CS_SIZEREDRAW . 28-5

Strategies for Painting and Drawing . 28-6

Drawing in a Window . 28-6

The WM_PAINT Message . 28-7

Drawing the Minimized View . 28-7

Drawing Without the WM_PAINT Message . 28-8

Three Types of Presentation Spaces . 28-9

Normal Presentation Spaces . 28-1 O

Micro Presentation Spaces . 28-12

Cached-Micro Presentation Spaces . 28-13

Summary . 28-15

Chapter 29. Drawing in Windows . 29-1

About Window-Drawing Functions . 29-1

Points . 29-1

Rectangles . 29-1

Using Window-Drawing Functions . 29-2

Working with Points and Rectangles . 29-2

Determining the Dimensions of a Rectangle 29-2

Filling a Rectangle . 29-2

Scrolling the Contents of a Window . 29-3

Drawing a Bit Map . 29-4

Drawing Text . 29-4

Summary . 29-5

Chapter 30. Hooks . 30-1

About Hooks . 30-1

Hook Lists . 30-1

Message-Monitoring Hooks . 30-1

Hook Functions . 30-2

Input Hook . 30-2

Send-Message Hook . 30-3

Message-Filter Hook . 30-3

Journal-Record Hook . 30-4

Journal-Playback Hook . 30-5

Help Hook . 30-6

Contents Xi

Find-Word Hook . 30-8
Codepage-Changed Hook . 30-9

Using Hooks . 30-9
Installing and Releasing Hook Functions . 30-9

Summary . 30-10

Chapter 31. Cllpboards . 31-1
About the Clipboard . 31-1

Shared Memory and the Clipboard . 31-2
Clipboard Operations . 31-2

Cut and Copy Operations . 31-3
Paste Operation . 31-3

Standard Clipboard-Data Formats . 31-4
Private Clipboard-Data Formats . 31-4

Format Identification Number . 31-5
Display Formats . 31-5

Delayed Rendering . 31-5
Clipboard Viewer . 31-6
Clipboard Owner . 31-6

Using the Clipboard . 31-8
Putting Data on the Clipboard . 31-8
Retrieving Data from the Clipboard . 31-9
Viewing Data on the Clipboard . 31-10

Summary . 31-12

Chapter 32. Dynamic Data Exchange . 32-1
About Dynamic Data Exchange . 32-1

Client and Server Interaction . 32-1
Sample DOE System . 32-2
Detailed ODE Example 32-2
Applications, Topics, and Items . 32-3
The System Topic . 32-4
ODE Initiation . 32-5
Shared-Memory Object . 32-6
Transaction Status Flags . 32-7
Transaction and Response Messages . 32-7

Request and Poke Transactions . 32-8
Advise and Unadvise Transactions . 32-8
Execute Transaction . 32-10
DOE Termination . 32-10

Unique Data Formats . 32-10
Synchronization Rules . 32-11
Language-Sensitive ODE Applications . 32-12

Using Dynamic Data Exchange . 32-12
Creating a Shared-Memory Object for DOE . 32-12
Sending a Positive Acknowledgment . 32-14
Sending a Negative Acknowledgment . 32-14
Performing a One-Time Data Transfer . 32-15
Establishing a Permanent Data Link . 32-16
Executing Commands in a Remote Application 32-17
Terminating a DOE Conversation . 32-18

Summary . 32-18

Chapter 33. Direct Manlpulatlon . 33-1
About Direct Manipulation . 33-1
Using Direct Manipulation in an Application . 33-2

Xii OS/2 Programming Guide-Volume II

Writing a Source Application . 33-2
Dragging the Objects . 33-5
Application-Defined Drag Operations . 33-6
Completing a Direct Manipulation Operation 33-6

DRAGDROP Sample Program . 33-6
Summary of Functions Used by the Source . 33-7
Writing a Target Application . 33-7

Messages Sent to a Target Application . 33-7
Responding to Messages and Providing Visible Feedback 33-8
Providing Customized Images . 33-9
Providing Target Emphasis . 33-9

Keyboard Augmentation . 33-10
Summary of Functions Used by the Target . 33-10

Two-Object Drag . 33-12
Application Interaction after a Drop . 33-14

Conversation Initiation . 33-14
Considerations when Establishing a Conversation 33-14
Determining Whether Data Can be Exchanged 33-15
Determining How To Exchange the Data . 33-15
Performance Considerations . 33-15
Using Direct Manipulation Data Transfer in an Application 33-15

Conversation after the Drop . 33-17
Standard Rendering Mechanisms . 33-18

OS/2 File Rendering Mechanism . 33-18
Print Rendering Mechanism . 33-20
Dynamic Data Exchange (ODE) Rendering Mechanism 33-20

Application Extensions to the Direct Manipulation Data Transfer Protocol 33-22
Rendering Mechanism Name . 33-22
Native Mechanism Actions . 33-22
Naming Conventions . 33-22
Performance Considerations . 33-22

Summary . 33-23

Chapter 34. Window Timers . 34-1
About Window Timers . 34-1
Using Window Timers 34-2
Summary . 34-4

Chapter 35. Atom Tables . 35-1
About Atom Tables . 35-1

System Atom Table . 35-1
Private Atom Tables . 35-1
Atom-Table Handle . 35-2
Atom Types . 35-2

String Atoms . 35-2
Integer Atoms . 35-2

Atom Creation and Usage Count . 35-3
Atom-Table Queries . 35-3
Atom String Formats . 35-4

Using Atom Tables . 35-4
Creating Unique Window-Message Atoms . 35-4
Creating DOE Formats and a Unique Clipboard Format 35-5
Summary . 35-7

Chapter 36. lnltlallzatlon Flies . 36-1
About Initialization Files . 36-1

Contents Xiii

Using Initialization Files . 36-1
Creating, Opening, and Closing Initialization Files 36-2
Reading and Writing Settings . 36-2
Identifying the OS/2 Initialization Files . 36-3

Summary . 36-4

Appendix A •. Comparison of 1989 and 1991 CUA User Interface Guldellnes A-1

Appendix B. Documenting the CUA User Interface In Products B-1
General Terminology Guidelines . B-1
How to Use This Table B-1

Appendix C. List of Approved Deviations from CUA User Interface Guldellnes . C-1

Index X-1

XIV OS/2 Programming GuidErVolume 11

Figures

1-1.
1-2.
1-3.
1-4.
1-5.
1-6.
1-7.
1-8.
1-9.

1-10.
1-11.
1-12.
1-13.
1-14.
1-15.
1-16.
1-17.
1-18.
1-19.
1-20.
1-21.
1-22.
1-23.
2-1.
6-1.
6-2.
6-3.
6-4.
6-5.
6-6.
8-1.
8-2.
8-3.
8-4.
8-5.
9-1.

10-1.
10-2.
10-3.
11-1.
11-2.
11-3.
12-1.
12-2.
12-3.
12-4.
12-5.
14-1.
14-2.
14-3.
15-1.
15-2.

© Copyright IBM Corp. 1992

Desktop Window Containing Windows of Several Applications 1-1

Typical Window Relationships . 1-3

Window Hierarchy . 1-4

Main Window with Secondary Windows 1-6

User Input to a Window 1-8

Window Sizing and Positioning . 1-15

Visible Region for Window A . 1-19

Structure of a Simple Presentation Manager Application 1-21

Creating an Object Window . 1-22

Getting the Window Identifier . 1-22

Changing the Parent Window . 1-23

Finding the Parent Window . 1-23

Finding the Topmost Child Window . 1-23

Setting the Owner Window . 1-24

Getting a Handle to an Owner or Child Window 1-24

Enumerating Top-Level Windows . 1-25

Moving a Window . 1-25

Moving and Sizing a Window . 1-26

Changing the Size of a Window . 1-26

Changing the Z-order of a Window . 1-27

Exchanging the Z-order of Windows . 1-28

Maximizing a Frame Window . 1-28

Destroying a Window . 1-29

Input Message Processing Loop 2-4

Typical Frame Window and Its Components 6-1

Defining Resources for Header File . 6-5

Defining Resources for Resource (.RC) File 6-5

Using FCF Flags to Indicate What Resources to Load 6-6

Indicating that a Resource is Stored in the Application File 6-6

Sample Program for Loading Resources in a Frame Window 6-7

Push Button in a Dialog Box 8-2

Radio Buttons in a Dialog Box . 8-2

Check Boxes in a Dialog Box . 8-2

Defining Dialog-Window Buttons in a Dialog Template 8-9

Creating a Button Control for a Client Window 8-10

List Box in a Dialog Box . 9-1

Combination Box . 10-1

Drop-Down Combination Box . 10-2

Drop-Down List Box . 10-2

Menus . 11-1

Pop-Up Menu . 11-2

Examples of Mnemonics . 11-7

Example of Entry Fields . 12-1

Code for Creating an Entry Field in a Client Window 12-7

Code for Creating Entry Field with 12-Character Text Limit 12-8

Code for Creating Entry Field with 20-Character Text Limit 12-8

Code for Flagging a Text Change in an Entry Field 12-9

Scroll Bars in a Window . 14-1

Determining Scroll-Bar Range . 14-2

Standard Window Scroll Bar and Command Codes 14-4

Example of a Spin Button . 15-1

Sample Code for Creating a Spin Button 15-2

xv

17-1.
18-1.
18-2.
18-3.
18-4.
18-5.
18-6.
18-7.
18-8.
18-9.

18-10.
18-11.
18-12.
18-13.
18-14.
18-15.
18-16.
18-17.
18-18.
18-19.
18-20.
18-21.
18-22.
18-23.
19-1.
19-2.
19-3.
19-4.
19-5.
19-6.
19-7.
19-8.
19-9.

19-10.
19-11.
19-12.
19-13.
19-14.
19-15.
20-1.
20-2.
20-3.
21-1.
21-2.
21-3.
22-1.
23-1.
23-2.
24-1.
25-1.
25-2.
26-1.
26-2.
27-1.
28-1.
28-2.

Title Bar in a Standard Frame Window . 17-1
Sample Code for Creating a Container . 18-3
Sample Code for Allocating Memory for Container Records 18-4
Icon View with Items Positioned at Workspace Coordinates 18-6
Icon View When Items Are Arranged or Automatically Positioned 18-7
Non-Flowed Name View 18-8
Flowed Name View 18-8
Non-Flowed Text View . 18-9
Flowed Text View . 18-10
Sample Tree View Showing Root Level, Parent, and Child Items . . 18-11
Tree Icon View . 18-12
Tree Text View . 18-12
Tree Name View . 18-14
Details View . 18-15
Details View with Split Bar . 18-16
Sample Code for Changing a Container View 18-17
Sample Code for Inserting a Record into a Container 18-19
Sample Code for Removing Container Records 18-21
Selected-State and Unavailable-State Emphasis 18-25
Workspace X- and Y-Axes . 18-29
Workspace Bounds . 18-30
Non-Flowed Text View with Container Title 18-33
Split Details View with Container Title . 18-33
Sample Code for Allocating Memory for Smaller Container Records 18-35
Notebook Example . 19-1
Sample Code for Creating a Notebook . 19-2
Default Notebook Style . 19-3
Default Style and Placement of Major and Minor Tabs 19-4
Sample Code for Changing the Notebook Style 19-7
Notebook with Style Settings Changed . 19-8
Sample Code for Inserting a Notebook Page 19-9
Calendar Inserted into an Application Page Window 19-11
Sample Code for Associating a Window with a Notebook Page 19-11
Dialog Used As an Application Page Window 19-13
Sample Code for Associating a Dialog with a Notebook Page 19-14
Sample Code for Deleting a Notebook Page 19-15
Notebook with Tab Scroll Buttons Displayed 19-17
Sample Code for Changing the Color of the Notebook Outline 19-20
Sample Code for Changing the Color of the Major Tab Background 19-21
Sample Slider . 20-1
Sample Code for Creating a Slider . 20-2
Retrieving a Slider Value . 20-5
Sample Value Set . 21-1
Sample Code for Creating a Value Set . 21-2
Sample Code for Retrieving Data for Value Set Items 21-4
Accelerators . 22-1
Dialog Window with Control Windows . 23-2
Example of a Message Box . 23-3
Font Dialog . 24-1
Open Dialog . 25-1
SaveAs Dialog . 25-2
Bit Values in the AND and XOR Masks . 26-1
Mouse Pointers . 26-2
Response to a WM_SETFOCUS message 27-2
Application's Flow of Graphics Commands 28-2
Clip Region and Visible Region of a Window's Presentation Space 28-4

xvi 05/2 Programming Guide-Volume II

28-3. Presentation Space versus Window . 28-9
28-4. Normal Presentation Space . 28-11
28-5. Micro Presentation Space . 28-12
29-1. Types of Rectangles . 29-1
31-1. A Copy Operation Between Applications Using the Clipboard 31-1
31-2. A Paste Operation Between Applications Using the Clipboard 31-1
32-1. Linking a DOE Client with a DOE Server . 32-1
32-2. Initiating a DOE Conversation . 32-5
33-1. Dragging Data to a Printer 33-1

Figures xvii

XViii 05/2 Programming Guide-Volume II

Tables

1-1.
1-2.
1-3.
1-4.
1-5.
1-6.
1-7.
2-1.
2-2.
2-3.
2-4.
2-5.
2-6.
3-1.
3-2.
3-3.
3-4.
4-1.
4-2.
4-3.
5-1.
5-2.
5-3.
5-4.
5-5.
6-1.
6-2.
6-3.
6-4.
6-5.
6-6.
6-7.
7-1.
7-2.
7-3.
8-1.
8-2.
8-3.
8-4.
8-5.
8-6.
8-7.
9-1.
9-2.
9-3.
9-4.
9-5.
9-6.

10-1.
10-2.
10-3.
10-4.

©Copyright IBM Corp. 1992

Window Classes . 1-12
StandardWindow Styles . 1-13
System Commands . 1-16
Presentation Manager-Defined Resource Types 1-18
Window Functions . 1-29
Window Messages . 1-31
Window Data Structures . 1-32
Message Categories . 2-7
Message Priorities . 2-9
Commonly Used Message and Message Queue Functions 2-14
Seldom-Used Message and Message Queue Functions 2-14
Almost-Never Used Message and Message Queue Functions 2-14
Message and Message Queue Structures 2-15
Class Styles . 3-2
Public Window Classes . 3-4
Window Class Functions . 3-6
Window Cl ass Structure . 3-6
Window Procedure Arguments . 4-2
Window Procedure Functions . 4-6
Default Window Procedure Messages . 4-6
Keyboard Character Flags . 5-4
Mouse/Keyboard Functions . 5-11
Focus-Change and Activation Messages 5-12
Mouse Messages . 5-12
Keyboard Messages 5-12
Frame-Control Identifiers 6-3
Frame Window Flags and Styles Requiring Resources 6-4
Frame Window State Flags and Their Meanings 6-8
Default Frame-Window Messages and Behavior 6-10
Frame-Window Functions 6-15
Frame-Window Structures . 6-15
Frame-Window Messages . 6-15
Control Window Classes 7-1
Messages Received by a Control Window 7-5
Messages Generated by a Control Window to its Owner 7-5
Button Styles 8-3
Messages Processed by the WC_ BUTTON Class 8-5
Notification Code for Button Control Messages 8-7
Button-Control Functions . 8-11
Button-Control Structure . 8-11
Messages Received by a Button control . 8-11
Messages Generated by a Button Control 8-12
List Item Position Index . 9-3
Messages Handled by WC_LISTBOX Class 9-7
List-Box Structure . 9-8
List-Box Functions . 9-8
Messages Generated by a List Box to Its Owner 9-9
Messages Received by a List Box . 9-9
Combination-Box Styles . 10-1
Combination-Box Notification Codes . 10-3
Messages Received by a Combination Box 10-3
Message Sent From a Combination Box to Its Owner 10-3

xix

11-1.
11-2.
11-3.
11-4.
11-5.
12-1.
12-2.
12-3.
12-4.
12-5.
12-6.
12-7.
13-1.
13-2.
13-3.
13-4.
13-5.
13-6.
14-1.
14-2.
14-3.
14-4.
14-5.
14-6.
14-7.
14-8.
15-1.
15-2.
15-3.
16-1.
16-2.
16-3.
16-4.
17-1.
17-2.
17-3.
17-4.
18-1.
18-2.
18-3.
18-4.
18-5.
18-6.
18-7.
19-1.
19-2.
19-3.
19-4.
19-5.
20-1.
20-2.
20-3.
20-4.
20-5.
21-1.
21-2.

Keystroke Menu Access . 11-6
Menu Functions . 11-17
Menu Structures . 11-17
Messages Received by a Menu . 11-17
Messages Generated by a Menu . 11-18
Entry-Field Styles . 12-1
Notification of Entry-Field Events . 12-2
Messages Handled by WC_ENTRYFIELD Class 12-3
Entry-Field Functions . 12-10
Entry-Field Structure . 12-10
Messages Sent to an Entry Field . 12-10
Message Generated by an Entry Field to its Owner Window 12-11
Multiple-Line Entry Field Styles . 13-1
Multiple-Line Entry Field Control Notification Codes 13-2
Multiple-Line Entry Field Text Format . 13-5
Multiple-Line Entry Field Control Structures 13-11
Messages Received by an MLE Field Control 13-11
Messages Issued by an MLE Field Control to Its Owner Window . . 13-13
Scroll-Bar Styles . 14-2
Scroll-Bar Command Codes . 14-4
Scroll-bar Notification Messages . 14-5
Focus Window Message Responses to Keys 14-6
List Box Responses to Keys . 14-6
Scroll-Bar Structure . 14-10
Messages Sent to a Scroll Bar . 14-10
Messages Sent from a Scroll Bar to Its Owner Window 14-11
Spin Button Control Notification Codes . 15-4
Spin Button Control Notification Message 15-4
Spin Button Control Window Messages . 15-4
Static-Control Styles . 16-2
Messages Handled by WC_STATIC Class 16-3
Static-Control Functions . 16-6
Static-Control Messages . 16-6
Messages Processed by Title-Bar Control 17-2
Title-Bar Functions . 17-4
Title-Bar Structures . 17-4
Title-Bar Messages . 17-5
Types of Container Views for Displaying Types of Data 18-4
Views of a Container's Contents . 18-5
Differences between RECORDCORE and MINIRECORDCORE 18-35
Container Control Structures . 18-36
Container Control Notification Codes . 18-37
Container Control Notification Messages 18-38
Container Control Window Messages . 18-38
Notebook Window Style Settings . 19-6
Notebook Control Structures . 19-23
Notebook Control Notification Codes . 19-23
Notebook Control Notification Messages 19-24
Notebook Control Window Messages . 19-24
Slider Control Functions . 20-7
Slider Control Structure . 20-7
Slider Control Notification Codes . 20-7
Slider Control Notification Messages . 20-8
Slider Control Window Messages 20-8
Value Set Control Structures . 21-7
Value Set Control Functions 21-7

XX OS/2 Programming Guide-Volume II

21-3. Value Set Control Notification Codes . 21-7

21-4. Value Set Control Notification Messages 21-8

21-5. Value Set Control Window Messages . 21-8

22-1. Accelerator-Item Styles . 22-3

22-2. Accelerator-Table Functions . 22-6

22-3. Accelerator-Table Structures . 22-6

22-4. Accelerator-Table Messages . 22-6

23-1. Dialog Functions . 23-12

23-2. Dialog Structures . 23-13

23-3. Dialog Messages . 23-13

24-1. Font Dialog Structures . 24-4

24-2. Font Dialog Messages . 24-4

24-3. Font Dialog Functions . 24-4

24-4. Standard Font Dialog Controls . 24-4

25-1. File Dialog Structure 25-5

25-2. File Dialog Messages . 25-5

25-3. File Dialog Functions . 25-5

25-4. File Dialog Minimum Set of Standard Controls 25-6

26-1. Predefined Mouse Pointers . 26-2

26-2. Presentation Manager Mouse Pointers . 26-3

26-3. Standard System Bit Maps . 26-4

26-4. Pointer and Bit Map Functions . 26-6

26-5. Pointer Structure . 26-7

27-1. Cursor Functions 27-3

27-2. Cursor Structure . 27-3

28-1. Window Regions 28-3

28-2. Presentation Space, Device Context, and Window Region Functions 28-15

29-1. Window-Drawing Functions 29-5

29-2. Window-Drawing Structures . 29-6

30-1. Hook Types . 30-1

30-2. Message Filter Hook Parameter Values . 30-4

30-3. Hook Functions . 30-1 O

30-4. Hook Functions . 30-10

31-1. Operations on Clipboard Data . 31-2

31-2. Clipboard Data Formats . 31-4

31-3. Messages Handled by Clipboard Owner . 31-7

31-4. Clipboard Functions . 31-12

31-5. Clipboard Messages . 31-12

32-1. DOE System Topics . 32-4

32-2. DOE Status Flags . 32-7

32-3. DOE Data Formats . 32-10

32-4. Window Procedure Syntax . 32-18

32-5. ODE Structures . 32-18

32-6. DOE Messages . 32-19

33-1. Summary of Functions Used by the Source 33-7

33-2. Summary of Functions Used by the Target 33-10

33-3. Direct Manipulation Structures . 33-23

33-4. Direct Manipulation (Drag) Messages . 33-23

34-1. System Timers . 34-2

34-2. Window Timer Functions 34-4

34-3. Window Timer Message 34-4

35-1. Atom String Formats . 35-4

35-2. Atom Table Functions . 35-7

36-1. Initialization File Functions . 36-4

B-1. Technical Terms with Equivalent User Terms and User Definitions ... B-2

C-1. CUA-Approved Deviations and Guidelines C-1

Tables XXi

XXii 05/2 Programming Guide-Volume II

Notices

The following terms, denoted by an asterisk(*) in this publication, are trademarks of
the IBM Corporation in the United States and/or other countries:

IBM
Operating System/2
Systems Application Architecture
Personal System/2
Common User Access
Presentation Manager

IBM C/2
OS/2
SAA
PS/2
CUA

The following terms, denoted by a double-asterisk(**) in this publication, are
trademarks of other corporations, as follows:

Helvetica
Times New Roman

Trademark of Linotype Co.
Trademark of Monotype Corp.

Double-Byte Character Set (DBCS)
Throughout this publication, you will see reference to specific values for character
strings. The values are for single-byte character set (SBCS). If you use the
double-byte character set (DBCS), notice that one DBCS character equals two SBCS
characters.

Common User Access (CUA) Terminology

© Copyright IBM Corp. 1992

For the understanding of the Programming Guide audience, there are instances in
this document when the terminology is not compliant with the 1991 CUA User
Interface Guidelines. The first occurrence of such instances is noted in text and in
appendixes in the back of the book.

xx iii

XXiV OS/2 Programming Guide-Volume 11

About This Book

© Copyright IBM Corp. 1992

The three volumes of the IBM OS/2 2.0 Programming Guide provide information and

code examples to enable you to start writing source code, using the functions in the

application programming interface (API) of the OS/2* 2.0 operating system (OS/2).

Each volume covers a different facet of the operating system, as follows:

Programming Gulde: Volume I-Control Program Programming Interface

Introduces you to the Control Program Programming Interface and describes the

functionality provided by the base operating system.

Programming Guide: Volume II-Presentation Manager Window Programming

Interface (this book).
Describes the Presentation Manager* (PM) window programming interface. This

volume will familiarize you with the windowed, message-based, PM user interface.

Note: Except where noted in text and in the appendixes, this document conforms to

the 1991 IBM Systems Application Architecture* (SAA*) Common User

Access* (CUA*) guidelines for the new Presentation Manager API functions.

Programming Gulde: Volume Ill-Graphics Programming Interface

Describes the Graphics Programming Interface. This volume provides information

on how to prepare graphical output for display and printing.

For complete and comprehensive information about the API, refer to the OS/2 2.0

Control Program Programming Reference and the Presentation Manager

Programming Reference-Volumes I, II, and Ill.

For information on how to compile and link your programs, refer to the compiler

publications for the programming language you are using.

The OS/2 2.0 operating system is a 32-bit system, and this guide is about

programming 32-bit applications. (Sixteen-bit applications still are supported by the

operating system.)

To illustrate programming with the API, this guide makes extensive use of code

fragments. Also, there are sample applications available with the Developer's

Toolkit for OS/2 2.0 (Toolkit). You should familiarize yourself with the operation of

each sample from a user's viewpoint. That will help you understand the code in the

samples.

xxv

Structure of the Books
Each chapter of these books is divided into two sections: about the topic and using
the functions related to that topic. The first section of each chapter provides
concepts, terms, and background material; the second section describes the
applicable functions and is divided into subsections, each providing information
about how to accomplish a specific task. Code fragments are included for most of
the functions.

Prerequisite Knowledge
These books are for application designers and programmers who are familiar with
the following:

• Information contained in the Application Design Guide

• Information contained in the Control Program and Presentation Manager
reference materials

• C Programming Language.

Note: Programming experience on a multitasking operating system also would be
helpful.

XXVi OS/2 Programming Guide-Volume 11

Presentation Manager Window Programming Interface

© Copyright IBM Corp. 1992

OS/2 Programming Guide-Volume II

Chapter 1. Windows

About Windows

To most users, a window is a rectangular area of the display screen where an
application receives input from the user and displays output. This chapter describes
the parts of the operating system that enable a Presentation Manager* (PM)
application to create and use windows; manage relationships between windows;
and size, move, and display windows. An overview of the following topics is
presented:

• Types of windows
• Window classes and styles
• Window-creation techniques
• Window messages and message queues
• Methods of window input and output
• Window resources and procedures
• Window identification and modification.

Subsequent chapters present more in-depth descriptions of windows, their
advantages and uses, along with example code fragments.

The only way a PM application can interact with the user and perform tasks is by
way of windows. Each window shares the screen with other windows, including
those from other applications. The user employs the mouse and keyboard to
interact with the windows and with the applications that own the windows.

Desktop Window and Desktop-Object Window

©Copyright IBM Corp. 1992

OS/2* automatically creates the desktop window (known as the workplace in user
terminology) when it starts a PM session.

Main Window 2

Chil
Win
2A

Main Window 1

Child Window 1a

Child Window 1 b

Figure 1-1. Desktop Window Containing Windows of Several Applications

1-1

The desktop window paints the background color of the screen and serves as the
"progenitor" of all the windows displayed by all PM applications (but not of object
windows, which. do not require screen display). To make the desktop the parent in
the WinCreateStdWindow function, you specify HWND_DESKTOP.

The windows immediately below the desktop are called main or top~level windows;
these are called primary windows in user terminology. Every PM application
creates at least one window to serve as the main window for that application. Most
applications also create many other windows, directly or indirectly, to perform tasks
related to the main window.

Each window helps display output and receive input from the user. Figure 1-1 on
page 1-1 shows the desktop window containing windows of several applications.
Notice that the main windows can overlap one another. (At times, it is possible for a
main window to be completely hidden.) Operations in one main window normally
do not affect the other main windows.

The desktop-object window is like a desktop window that is never displayed; it
serves as the base window to coordinate the activity of an application's object
windows. The desktop-object window cannot display windows nor process
keyboard and mouse input. The primary purpose of the desktop-object window is to
enable you to create windows that need not respond to messages at the same rate
as the user interface.

Window Relationships
Window relationships define how windows interact with each other-on the screen
and through messages.· There are parent-child window relationships and
window-owner relationships.

The parent-child relationship determines where and how windows appear when
drawn on the screen. It also determines what happens to a window when a related
window is destroyed or hidden. The parent-child rules apply to all windows at all
times and cannot be modified.

Ownership determines how windows communicate using messages. Cooperating
windows define and carry out their rules of ownership. Although some windows
(such as windows of the preregistered public window class, WC_FRAME) have very
complex rules of ownership, the application usually defines the ownership rules.

1-2 OS/2 Programming Guide-Volume II

Figure 1-2 represents the logical relationship of the windows in two applications.

Desktop Window
Application 1 n Appllcatlon 2 -----------ff___________ r-----------f f _________ _

ii1

• j

1

j

0

•

1

~ I n
Child

Wlndow1.1

~
Child

Window 1.1.1

Child
Window 1.21

I
I
I
I
I
I
I
I
I
I ________________________ J

: Child Child
: Window 2.1 Window 2.2
I
I
I
I
I
I
I
I
I
I

L-----------------------l
Figure 1-2. Typical Window Relationships

Parent-Child Relationship
Most windows have a parent window. (The exceptions are the desktop and
desktop-object windows, which the system creates at system startup.) An
application specifies the parent when it creates a window; then, the system uses the
parent to determine where and how to draw any new windows, as well as when to
destroy the windows (free all associated resources and remove the windows from
the screen).

A child window is drawn relative to its parent. The coordinates given to specify the
position of a window's lower-left corner are relative to the lower-left corner of its
parent. For example, a main window (child of the desktop) is drawn relative to the
lower-left corner of the screen (the desktop window's lower-left corner).

All main windows are siblings because they share a common parent, the desktop
window. Because sibling windows can overlap, an application or a user arranges
the windows, one behind another (like a stack of papers on a desk), in the desired
viewing order (called z-order) as illustrated in Figure 1-1 on page 1-1. Z-order uses
the desktop as a reference point for a "three-dimensional" ranking of the
overlapping windows: the topmost window has the highest ranking, while the
window at the bottom of the stack has the lowest ranking. The parent of the sibling
windows is always at the bottom of the z-order.

Chapter 1. Windows 1-3

Figure 1-3 illustrates the hierarchy of such an arrangement.

Desktop

Parent Child

Figure 1-3. Window Hierarchy

Although PM supports z-order, it does not enforce the expected appearance unless
you specify the CS_CLIPCHILDREN or CS_CLIPSIBLINGS styles. No part of a child
window ever appears outside the borders of its parent. If an application creates a
window that is larger than its parent, or positions a window so that some or all of it
extends beyond the borders of the parent, the extended portion of the child window
is not drawn.

An application can use the WS_CLIPCHILDREN or WS_CLIPSIBLINGS styles to
remove from a window's clipping area (the area in which the window can paint) the
area occupied by its child or sibling windows. For example, an application can use
these styles to prevent a window from painting over a child or sibling window
containing a complex graphic that would be time-consuming to redraw.

When a window is minimized, hidden, or destroyed, all of its children are hidden,
minimized, or destroyed as well. The order of destruction is always such that every
window is destroyed before its parent. The window-destruction sequence starts at
the bottom of descendancy so that all related windows can be cleaned up; the last
one to go is the window you asked to be destroyed. The final PM task in a
window-destruction sequence is to send a WM_DESTROY message to that window,
so it has one last chance to release any resources it has allocated and may still be
holding.

Every window has only one parent, but can have any number of children. Referring
back to Figure 1-3, any window in this tree is said to be a descendant of any window
appearing above it in the branch, and an ancestor of any window appearing below
it. There are two special cases, of course: the window immediately above is called
the window's parent, and any window immediately below it is called its child. An
application can change a window's parent window at any time by using the
WinSetParent function. Changing the parent window also changes where and how
the child window is drawn. The system displays the child within the borders of the
new parent and draws the window according to the styles specified for the new
parent.

1-4 OS/2 Programming Guide-Volume II

Ownership
Any window can have an owner window. Typically, an application uses ownership
to establish a connection between windows so that they can perform useful tasks
together. For example, the title bar in an application's main window is owned by the
frame window; but, together, the user can move the entire main window by clicking
the mouse in the title bar and dragging. An application can set the owner window
when it creates the window or at a later time.

Ownership establishes a relationship between windows that is independent of the
parent-child relationship. While there are few predefined rules for owner- and
owned-window interaction, a window a/ways notifies its owner of anything
considered a significant event.

The preregistered public window classes provided by OS/2* recognize ownership.
Control windows of classes such as WC_TITLEBAR and WC_SCROLLBAR, notify
their owners of events; frame windows, of class WC_FRAME, receive and process
notification messages from the control windows they own. For example, a title-bar
control sends a notification message to its owner when it receives a mouse click. If
the owner is a frame window, it receives the notification message and prepares to
move itself and its children.

Owner and owned windows must be created by the same thread; that is, they must
belong to the same message queue. Because ownership is independent of the
parent-child relationship, the owner and owned windows do not have to be
descendants of the same parent window. However, this can affect how windows are
destroyed. Destroying an owner window does not necessarily destroy an owned
window. Except for frame windows, an application that needs to destroy an owned
window that is not a descendant of the owner window must do so explicitly.

Frame windows sometimes own windows that are not descendants but, instead, are
siblings. A frame window has the following special ownership properties:

• When the frame window is destroyed, it destroys all of the windows it owns, even
if they are not descendants.

• When a frame window moves, the windows it owns move also. Owned windows
that are not descendants maintain their positions, relative to the upper-left (not
the usual lower-left) corner of the owner window. An owned window with the
style FS_NOMOVEWITHOWNER does not move.

• When the frame window changes its position in the z-order, it changes the
z-order of all the windows it owns.

• When the frame window is minimized or hidden, it hides all the windows it owns.
Owned windows hidden this way are restored when the frame window is
restored.

If an application needs this type of special processing for its own window classes, it
must provide that support in the window procedures for those classes.

Object Windows
Any descendant of the desktop-object window is called an object window. Typically,
an application uses an object window to provide services for another window. For
example, an application can use an object window to manage a shared database. In
this way, a window can obtain information from the shared database by sending a
message to and receiving a reply from the object window.

Only two system-defined messages are available to an object window-

Chapter 1. Windows 1-5

WM_ CREATE and WM_DESTROY-but the object window enables the user to
implement a set of user-defined messages. The window procedure for an object
window does not have to process paint messages or user input. The object window
processes only messages that affect the data belonging to the object.

HWND_OBJECT is the only identifier needed to create an object window. It is very
unwise to create descendants of HWND_OBJECT in the same thread that creates
descendants of HWND _DESKTOP: this causes the system to hang up or, at the very
least, behave slowly. Object windows, sometimes referred to as orphan windows,
require no owner.

The rules for parent-child and ownership relationships also apply to object windows.
In particular, changing the parent window of an object window to the desktop
window, or to a descendant of the desktop window, causes the system to display the
object window if the object window has the WS_ VISIBLE style.

Application Windows
An application can use several types of secondary windows: frame windows, client
windows, control windows, dialog windows, message boxes, and menus. Typically,
an application's main window consists of several of these windows acting as one.
Figure 1-4 shows an example of a main window and its secondary windows.

Title-Bar
icon

Menu bar

Window
border

Information
area

Window title

Horizontal scroll bar

Figure 1-4. Main Window with Secondary Windows

Window sizing buttons

.. !J Title-Bar
::
::

Vertical
scroll
bar

A frame window is a window that an application uses as the base when constructing
a main window or other composite window, such as a dialog window or message
box. (A composite window is a collection of windows that interact with one another
and are kept together as a unit.) A frame window provides basic features, such as
borders and a menu bar. Frame windows have a set of resources associated with
them. These include icons, menus, and accelerators (shortcut keys to the user),
which, typically, are defined in an application's resource file.

A dialog window is a frame window that contains one or more control windows.
Dialog windows are used almost exclusively for prompting the user for input. An

1-6 05/2 Programming Guide-Volume II

application usually creates a dialog window when it needs additional information to
complete a command. The application destroys the dialog window after the user
has provided the requested information.

A message box is a frame window that an application uses to display a note,
caution, or warning to the user. For instance, an application can use a message box
to inform the user of a problem that the application encountered while performing a
task.

A client window is the window in which the application displays the current
document or data. For example, a desktop-publishing application displays the
current page of a document in a client window. Most applications create at least
one client window. The application must provide a function, called a window
procedure, to process input to the client window and to display output.

A control window is a window used in conjunction with another window to perform
useful tasks, such as displaying a menu or scrolling information in a client window.
The operating system provides several predefined control-window classes that an
application can use to create control windows. Control windows include buttons,
entry fields, list boxes, combination boxes, menus, scroll bars, static text, and title
bars.

A menu is a control window that presents a list of commands and other menus to
the user. Using a mouse or the keyboard, the user can select a task; the application
then performs the selected task.

Window Input and Output
The user directs input data to windows from a mouse and the keyboard. Keyboard
input goes to the window with input focus, and, normally, mouse input goes to the
window under the mouse pointer.

Windows also are places to display output data. PM uses windows to display text
and graphics on the screen and to process input from the mouse and keyboard.
Windows provide the same input and output capabilities as a virtual graphics
terminal without having direct control of the hardware.

An application is responsible for painting the data for the window classes it
registers and creates. This data can be graphics text or pictures or fixed-size
alphanumeric text. Normally it is not necessary for the application to paint the
system-provided window classes; the OS/2 window procedures for those window
classes do the painting.

Active Window and Focus Window
All frame-window ancestors of the input focus window are said to be active,
meaning that the user interacts with them. The active window usually is the topmost
main window, which is positioned above all other top-level windows on the screen.
The active window is indicated by some form of highlighting. For example, a
highlighted title bar shows that a standard frame window is active; an active dialog
window has a highlighted border. These types of highlighting ensure that the user
can see the window that is accepting input.

A main window (or one of its child windows) is activated by using a mouse or the
keyboard. When a window is activated, it receives a WM_ACTIVATE message with
its first parameter set to TRUE. When it is deactivated, it receives a WM_ACTIVATE
message with its first parameter set to FALSE. Figure 1-5 on page 1-8 illustrates
user interaction with a window.

Chapter 1. Windows 1-7

Active Window

Pointer

'\

Input Focus
Window

Figure 1-5. User Input to a Window

The focus window can be the active window or one of its descendant windows. The
user can change the input focus the same way active windows are changed-by
mouse or keyboard. However, the application has more control over the input
focus. For example, in a window containing several text entry fields, the tab keys
can move the input focus from one input field to another. A WM_SETFOCUS
message is sent to the window procedure when a window is gaining or losing the
input focus. The WinQueryFocus function tells the user which window has the input
focus.

Messages
Messages are a fundamental part of the operating system. PM applications use
messages to communicate with the operating system and one another. The system
uses messages to communicate with applications to ensure concurrent running and
sharing of devices. Typically, a message notifies the receiving application that an
event has occurred. The operating system identifies the appropriate application
window to receive a message by the window handle included in the message.
Sources of events that cause messages to be issued to applications are the user,
the operating system, the application, or another application.

The User: Mouse or keyboard input to an application window causes the operating
system to direct messages to that window.

The Operating System: Managing the application windows on the screen, the
operating system issues messages to the windows, usually as an indirect result of
user interaction. These messages enable the system to work in a uniform and
well-ordered manner. For example, where several application windows overlap,
and the user terminates an application so that its window disappears, the operating
system issues messages to the underlying application windows so that they can
repaint themselves.

The Application: An event can occur in the application to which another part of that
application should respond; for example, when the contents of its window no longer
accurately reflect the status of the application. The application can define its own
messages outside the range of system-defined messages to communicate such
events.

1-8 OS/2 Programming Guide-Volume II

Another Application: Communication with other applications through the operating
system ensures cooperative use of the system; it even can be used to exchange
data. For example, an arithmetic application can supply the results of a lengthy
calculation to a business graphics application.

Enabled and Disabled Windows
An application uses the WinEnableWindow function to enable or disable window
input. By default, a window is enabled when it is created. However, an application
can disable a newly created window.

An application usually disables a window to prevent the user from using the
window. For example, an application might disable a push button in a dialog
window. Enabling a window restores normal input; an application can enable a
disabled window at any time.

When an application uses the WinEnableWindow function to disable an existing
window, that window also loses keyboard focus. WinEnableWindow sets the
keyboard focus to NULL, which means that no window has the focus. If a child
window or other descendant window has the keyboard focus, it loses the focus when
the parent window is disabled.

An application can determine whether a window is enabled by calling
WinlsWindowEnabled.

System-Modal Window
An application can designate a system-modal window: a window that receives all
keyboard and mouse input, effectively disabling all other windows. The user must
respond to the system-modal window before continuing work in other windows. An
application sets and clears the system-modal window by using the
WinSetSysModalWindow function.

Because system-modal windows have absolute control of input, you must be careful
when using them in your applications. Ideally, an application uses a system-modal
window only when there is danger of losing data if the user does not respond to a
problem immediately.

Although an application can destroy a system-modal window, the new active
window then becomes a system-modal window. An application can make another
window active while the first system-modal window exists. But again, the new
active window will become the system-modal window. In general, once a
system-modal window is set, it continues to exist in the PM session until the
application explicitly clears it.

Window Creation
Before any thread in an application can create windows, it must:

1. Call Winlnitialize to create an anchor block
2. Call WinCreateMsgQueue to create a message queue for the thread.

Then, it can create one or more windows by calling one of the window-creation
functions, such as WinCreateWindow.

The window-creation functions require that the following information be supplied in
some form:

• Class
• Styles

Chapter 1. Windows 1-9

•Name
• Parent window
• Position relative to the parent window
• Position relative to any sib1ing windows (z-order)
• Di mens ions
• Owner window
• Identifier
• Class-specific data
• Resources.

Every window belongs to a window class that defines that window's appearance and
behavior. The chief component of the window class is the window procedure. The
window procedure is the function that receives and processes all messages sent to
the window.

Every window has a style. The window style specifies aspects of a window's
appearance and behavior that are not specified by the window's class. For
example, the WC_FRAME class always creates a frame window, but the
FS_BORDER, FS_DLGBORDER, and FS_SIZEBORDER styles determine the style of
a frame window's border. A few window styles apply to all windows, but most apply
only to windows of specific window classes. The window procedure for a given
class interprets the style and allows an application to adapt a window of a given
class for a special circumstance. For example, an application can give a window
the style WS_SYNCPAINT to cause it to be painted immediately whenever any
portion of the window becomes invalid. Normally, a window is painted only if there
are no messages waiting in the message queue.

A window can have a text string associated with it. Typically, the window text is
displayed in the window or in a title bar. The class of window determines whether
the window displays the text and, if so, where the text appears within the window.

Every window except the desktop window and desktop-object window has a parent
window. The parent provides the coordinate system used to position the window
and also affects aspects of a window's appearance. For example, when the parent
window is minimized, hidden, or destroyed, the parent's child windows are
minimized, hidden, or destroyed also.

Every window has a screen position, size, and z-order position. The screen position
is the location of the window's lower-left corner, relative to the lower-left corner of
its parent window. A window's size is its width and height, measured in pels. A
window's z-order position is the position of the window in the order of overlapping
windows. This viewing order is oriented along an imaginary axis, the z axis,
extending outward from the screen. The window at the top of the z-order overlaps
all sibling windows (that is, windows having the same parent window). A window at
the bottom of the z-order is overlapped by all sibling windows. An application sets a
window's z-order position by placing it behind a given sibling window or at the top
or bottom of the z-order of the windows.

A window can own, or be owned by, another window. The owner-owned
relationship affects how messages are sent between windows, allowing an
application to create combinations of windows that work together. A window issues
messages about its state to its owner window; the owner window issues messages
back about what action to perform next.

The window handle is a unique number across the system that is totally
unambiguous-it identifies one particular window in the system and is assigned by

1-10 OS/2Programming Guide-Volume II

Window Classes

the system. A window identifier is analogous to a "given" name in family
relationships-the only requirement is that the name be unique among siblings.

A window can have class-specific data that further defines how the window appears
and behaves when it is created. The system passes the class-specific data to the
window procedure, which then applies the data to the new window.

Window-Creation Functions
The basic window-creation function is WinCreateWindow. This function uses
information about a window's class, style, size, and position to create a new
window. All other window-creation functions, such as WinCreateStdWindow and
WinCreateDlg, supply some of this information by default and create windows of a
specific class or style.

Although the WinCreateWindow function provides the most direct means of creating
a window, most applications do not use it. Instead, they often use the
WinCreateStdWindow function to create a main window and the WinDlgBox or
WinCreateDlg functions to create dialog windows.

The WinCreateMenu, WinloadMenu, WinloadDlg, WinMessageBox, and
WinCreateFrameControls functions also create windows. Each of these functions
substitutes for one or more required calls to WinCreateWindow to create a given
window. For example, an application can create a frame window, one or more
control windows, and a client window in a single call to WinCreateStdWindow.

Window-Creation Messages
While creating a window, the system sends messages to that window's window
procedure. The window procedure receives a WM_CREATE message, saying that
the window is being created. The window also receives a
WM_ADJUSTWINDOWPOS message, specifying the initial size and position of the
window being created. This message lets the window procedure adjust the size and
position of the window before the window is displayed.

The system also sends other messages while creating a window; the number and
order of these messages depend on the class and style of the window and the
function used to create it.

Each window of a specific window class uses the window procedure associated with
that class. An application can create one or more windows that belong to the same
window class. Because each window of the same class is processed by the same
window procedure, they all behave the same way. Since many windows can result
from one window procedure, coding overhead is greatly reduced. There are two
types of window classes: public and private.

Public Window Classes
A public window class is one that has a reentrant window procedure that is
registered and resides in a dynamic link library (DLL); it can be used by any process
in the system to create windows. The operating system provides several
preregistered public window classes. You can specify the system-provided window
classes by using the symbolic identifiers that have the prefix WC_, as shown in the
following table:

Chapter 1. Windows 1-11

Table 1-1. Window Classes

Class Name

WC_BUTTON

WC_CONTAINER

WC_ENTRYFIELD

WC_FRAME

WC_LISTBOX

WC_MENU

WC_NOTEBOOK

WC_SCROLLBAR

WC_SLIDER

WC_SPINBUTTON

WC_STATIC

WC_TITLEBAR

WC_VALUESET

Description

Consists of buttons and boxes the user can select by clicking the
pointing device or using the keyboard.

Creates a control for the user to group objects in a logical
manner. A container can display those objects in various
formats or views. The container control supports drag and drop
so the user can place information in a container by simply
dragging and dropping.

Consists of a single tine of text that the user can edit.

A window class that can contain child windows of many of the
other window classes.

Presents a list of text items from which the user can make
selections.

Presents a list of items that can be displayed horizontally as
menu bars, or vertically as pull-down menus. Menus usually are
used to provide a command interface to applications.

Creates a control for the user that is displayed as a number of
pages. The top page is visible, and the others are hidden, with
their presence being indicated by a visible edge on each of the
back pages.

Lets the user scroll the contents of an associated window.

Creates a control that is usable for producing approximate
(analog) values or properties. Scroll bars were used for this
function in the past, but the slider provides a more flexible
method of achieving the same result, with less programming
effort.

Creates a control that presents itself to the user as a scrollable
ring of choices, giving the user quick access to the data. The
user is presented only one item at a time, so the spin button
should be used with data that is intuitively related.

Simple display items that do not respond to keyboard or pointing
device events.

Displays the window title or caption and lets the user move the
window's owner.

Creates a control similar in function to the radio buttons but
provides additional flexibility to display graphical, textual, and
numeric formats. The values set with this control are mutually
exclusive.

With the exception of WC_FRAME, the system-provided window classes are known
as control window classes, because they give the user an easy means of controlling
specific types of interaction. For example, the WC_BUTTON class allows single or
multiple selections. These windows conform to the IBM* Systems Application
Architecture* (SAA*) Common User Access* (CUA*) definition. They are designed
specifically to provide function that meets the needs for a graphics-based standard
user interface. The code fragments provided in this guide make extensive use of
the system window classes.

1-12 05/2 Programming Guide-Volume II

Window Styles

Private Window Classes
A private window class is one that an application registers for its own use; it is

available only to the process that registers it. The application-provided window

procedure for a private window class resides either in the application's executable

files or in a DLL file. A private window class is deleted when its registering process

is terminated.

A window can have a combination of styles; an application can combine styles by

using the bitwise inclusive OR operator. An application usually sets the window

styles when it creates the window. The OS/2 operating system provides several

standard window styles that apply to all windows. It also provides many styles for

the predefined frame and control windows. The frame and control styles are unique

to each predefined window class and can be used only for windows of the

corresponding class.

Initially, the styles of the window class used to create the window determine the

styles of the new window. For example, if the window class has the style

CS_SYNCPAINT, all windows created using that class, by default, will have the

window style WS_SYNCPAINT.

The OS/2 operating system has the following standard window styles:

Table 1-2 (Page 1 of 2). Standard Window Styles

Style Name Description

WS_CLIPCHILDREN Prevents a window from painting over its child windows. This

style increases the time necessary to calculate the visible

region. This style is usually not necessary, because if the parent

and child windows overlap and both are invalidated, the system

draws the parent window before drawing the child window. If the

child window is invalidated independently of the parent window,

the system redraws only the child window. If the update region

of the parent window does not intersect the child window,

drawing the parent window causes the child window to be

redrawn. This style is useful to prevent a child window that

contains a complex graphic from being redrawn unnecessarily.

WS_CLIPCHILDREN is an absolute requirement if a window with

children ever performs output in response to any message other

than WM_PAINT. Only WM_PAINT processing is synchronized

such that the children will get their messages after the parent.

WS_CLIPSIBLINGS Prevents a window from painting over its sibling windows. This

style protects sibling windows but increases the time necessary

to calculate the visible region. This style is appropriate for

windows that overlap and that have the same parent window.

WS_DISABLED Used by an application to disable a window. It is up to the

window to recognize this style and reject input.

WS_GROUP Specifies the first control of a group of controls in which the user

can move from one control to the next by using the ARROW

keys. All controls defined after the control with the WS_GROUP

style belong to the same group. The next control with the

WS_GROUP style ends the first group and starts a new group.

WS_MAXIMIZED Enlarges a window to the maximum size.

WS_MINIMIZED Reduces a window to the size of an icon.

Chapter 1. Windows 1-13

Table 1-2 (Page 2 of 2). Standard Window Styles

Style Name

WS_PARENTCLIP

ws_SAVEBITS

WS_SYNCPAINT

WS_TABSTOP

WS_VISIBLE

Window Handles

Description

Extends a window's visible region to include that of its parent
window. This style simplifies the calculation of the child
window's visible region but is potentially dangerous, because
the parent window's visible region is usually larger than the
child window.

Saves the screen area under a window as a bit map. When the
user hides or moves the window, the system restores the image
by copying the bits; there is no need to add the area to the
uncovered window's update region. The style can improve
system performance but also can consume a great deal of
memory. It is recommended only for transient windows, such as
menus and dialog windows, not for main application windows.

Causes a window to receive WM_PAINT messages immediately
after a part of the window becomes invalid. Without this style,
the window receives WM_PAINT messages only if no other
message is waiting to be processed.

Specifies one of any number of controls through which the user
can move by tabbing. Pressing the TAB key moves the keyboard
focus to the next control that has the WS_TABSTOP style.

Makes a window visible. The operating system draws the
window on the screen unless overlapping windows completely
obscure it. Windows without this style are hidden. If overlapping
windows completely obscure the window, the window is still
considered visible. (Visibility means that the operating system
draws the window if it can.)

After creating a window, the creation function returns a window handle that uniquely
identifies the window. An application can use this handle to direct the action of
functions to the window. Window handles have the data type HWND; applications
must use this data type when declaring variables that hold window handles.

There are special constants that an application can use instead of a window handle
in certain functions. For example, an application can use HWND_DESKTOP in the
WinCreateWindow function to specify the desktop window as the new window's
parent. Similarly, HWND_OBJECT represents the desktop-object window.
HWND_TOP and HWND_BOTTOM represent the top and bottom positions relative to
the z-order position of a window.

Although the NULL constant is not a window handle, an application can use it in
some functions to specify that no window is affected. For example, an application
can use NULL in the WinCreateWindow function to create a window that has no
owner window. Some functions might return NULL, indicating that the given action
applies to no window.

Window Size and Position
A window's size and position can be expressed as a bounding rectangle, given in
coordinates relative to its parent. An application specifies the window's initial size
and position when creating the window.

To use the system-default values for the initial size and position of a frame window,
an application can specify the FCF _SHELLPOSITION frame-creation flag. The

1-14 OS/2 Programming Guide-Volume II

application can change a window's size and position at any time. Figure 1-6 on
page 1-15 indicates the size and position coordinates of a parent window and a
child window.

Desktop

1
ex

y ,_____________.

x

Figure 1-6. Window Sizing and Positioning

Notes:

1. The default coordinate system for a window specifies that the point (0,0) is at the
lower-left corner of the window, with coordinates increasing as they go upward
and to the right.

2. A window can be positioned anywhere in relation to its parent.

Size
A window's size (width and height) is given in pels, in the range 0 through 65535. A
window can have 0 width and height; however, a window with 0 width or height is
not drawn on the screen, even though it has the WS_ VISIBLE style.

An application can create very large windows; however, it should check the size of
the screen before enlarging a window size. One way to choose an appropriate size
is to use the WinGetMaxPosition function to retrieve the size of the maximized
window. A window that is larger than its maximized size will be larger than the
screen also.

An application can retrieve the current size of the window by using the
WinQueryWindowRect function.

Position
A window's position is defined as the x,y coordinates of its lower-left corner. These
coordinates, sometimes called window coordinates, always are relative to the
lower-left corner of the parent window. For example, a window having the
coordinates (10, 10) is placed 10 pels to the right of, and 10 pels up from, the
lower-left corner of its parent window. Notice, however, that a window can be
positioned anywhere in relation to its parent, but always relative to the parent's
lower-left corner.

Adjusting a window's position can improve drawing performance. For example, an
application could position a window so that its horizontal position is a multiple of 8,
relative to the screen origin (the lower-left corner of the screen). Coordinates that

Chapter 1. Windows 1-15

Window Data

are multiples of 8 correspond to byte boundaries in the screen-memory bit map. It
is usually faster to start drawing at a byte boundary.

By default, the system positions a frame window on a byte boundary; but an
application can override this action by using the FCF _NOBYTEALIGN style when
creating the window.

Size and Position Messages
A window receives messages when it changes size or position. Before a change is
made, the system might send a WM_ADJUSTWINDOWPOS message to allow the
window procedure to make final adjustments to the window's size and position.
This message includes a pointer to an SWP structure that contains the requested
width, height, and position. If the window procedure adjusts these values in the
structure, the system uses the adjusted values to redraw the window. The
WM_ADJUSTWINDOWPOS message is not sent if the change is a result of a call to
the WinSetWindowPos function with the SWP _NOADJUST constant specified.

After a change has been made to a window, the system sends a WM_SIZE message
to specify the new size of the window. If the window has the class style
CS_MOVENOTIFY, the system also sends a WM_MOVE message, which includes the
new position for the window. The system sends a WM_SHOW message if the
visibility of the window has changed.

System Commands
An application that has a window with a system menu can change the size and
position of that window by sending system commands. The system commands are
generated when the user chooses commands from the system menu. An application
can emulate the user action by sending a WM_SYSCOMMAND message to the
window.

Following are some of the system commands:

Table 1-3. System Commands

Command

SC_SIZE

SC_MOVE

SC_MINIMIZE

SC_MAXIMIZE

SC_RESTORE

sc_CLOSE

Description

Starts a Size command. The user can change the size of the
window with a mouse and the keyboard.

Starts a Move command. The user can move the window with a
mouse and the keyboard.

Minimizes the window.

Maximizes the window.

Restores a minimized or maximized window to its previous size
and position.

Closes the window. This command sends a WM_ CLOSE
message to the window. The window performs all tasks needed
to clean up and destroy itself.

Every window has an associated data structure. The window data structure contains
all the information specified for the window at the time it was created and any
additional information supplied for the window since that time. Although the exact
size and meaning of the information in the window data structure are private to the
system, an application can access any of the following data items via
system-provided functions:

1-16 OS/2 Programming Guide-Volume II

• Pointer to window-instance data structure
• Pointer to window procedure
• Parent-window handle
• Owner-window handle
• Handle of first child window
• Handle of next sibling window
• Window size and position (expressed as a rectangle)
• Window style
• Window identifier
• Update-region handle
• Message-queue handle.

An application can examine and modify this data by using functions such as
WinQueryWindowUShort and WinSetWindowUShort. These functions let an
application access data that is stored as 16-bit integers. Other functions let an
application access data containing 32-bit integers and pointers. Several functions
indirectly affect the data items in the window data structure. For example, the
WinSubclassWindow function replaces the window-procedure pointer, and the
WinSetWindowPos function changes the size and position of the window.

An application can extend the number of available data items in the window data
structure by specifying a count of extra bytes when it registers the corresponding
window class. Then, the window procedure can use these bytes to store information
about the window. The WinQueryWindowUShort and WinSetWindowUShort
functions give direct access to the extra bytes.

It generally is not a good idea to use direct storage in the window data. It is better
to allocate a data structure dynamically and set a pointer to that data structure in
the window words. This provides two advantages:

1. Most importantly, it is a symbolic way of referencing the data structure. It is very
easy to make mistakes and provide the wrong offsets to WinQueryWindowUShort
and so forth.

2. You now can add and remove fields without cross dependencies, because you
now use symbolic references; whereas, when you use the technique of putting
window words directly in the window data structure, you have to account for
changed offsets.

Window Resources
Window resources are read-only data segments stored in an application's .EXE file
or in a dynamic link library's .DLL file. Predefined PM window resources include
keyboard accelerator tables, icons, menus, bit maps, dialog boxes, and so forth;
these are not a regular part of the application window's code and data. Because, in
most cases, window resources are not loaded into memory when the operating
system runs a program, the resources can be shared by multiple instances of the
same application.

Most window resources are stored in a format that is unique to each resource type.
The application does not need to know these formats because the system translates
them, as necessary, for use in PM functions. The following table lists the ten most
commonly used PM window resource types.

Chapter 1. Windows 1-17

Table 1-4. Presentation Manager-Defined Resource Types

Resource Identifier Description

RT _ACCEL TABLE Keyboard accelerator table

RT_BITMAP Bit map

RT_DIALOG Dialog box template

RT_FONT Font

RT_FONTDIR Font directory

RT_MENU Menu template

RT_MESSAGE Message string

RT_POINTER Icon or mouse

RT_RCDATA Programmer-defined data

RT_STRING Text string

To access these resources, you must prepare a resource file (ASCII file with the
extension .RC). Then the ASCII resource file must be compiled into binary images
using the resource compiler. The compiled resource file extension is .RES; it can
be linked into your program's .EXE file or to a dynamic link library's .DLL file.

Maximized and Minimized Windows
A maximized window is a window that has been enlarged to fill the screen.
Although a window's size can be set so that it fills the screen exactly, a maximized
window is slightly different: the system automatically moves the window's title bar
to the top of the screen and sets the WS_MAXIMIZED style for the window.

A minimized window is a window whose size has been reduced to exactly the size
of an icon or, in the workplace shell, it disappears altogether (by default). Like a
maximized window, a minimized window is more than just a window of a given size;
typically, the system moves the (icon) minimized window to the lower part of the
screen and sets the WS_MINIMIZED style for that window. The lower part of the
screen is sometimes called the icon area. Unless the application specifies another
position, the system moves a minimized window into the first available icon position
in the icon area.

If a window is created with the WS_MAXIMIZED or WS_MINIMIZED styles, the
system draws the window as a maximized or minimized window.

An application can restore maximized or minimized windows to their previous size
and position by specifying the SWP _RESTORE flag in a call to the WinSetWindowPos
function.

Window Visibility
A window that is a descendant of the desktop window can be either visible or
invisible. The system displays a visible window on the screen. It hides an invisible
window by not drawing it. If a window is visible, the user can supply input to the
window and view the window's output. If a window is invisible, the window, in
effect, is disabled. An invisible window can process messages from the system or
from other windows, but it cannot process user input or display output. An
application sets a window's visibility state when it creates the window. Later, a user
or the application can change the visibility state.

1-18 OS/2 Programming Guide-Volume II

The visible region of a window is the position clipped by any overlapping windows.
These overlapping windows can be child windows or other main windows in the
system. The visible region is defined by a set of one or more rectangles, as shown
in Figure 1-7 on page 1-19.

- Visible Region for Window A

Figure 1-7. Visible Region for Window A

A window is visible if the WS_ VISIBLE style is set for the window. By default, the
WinCreateWindow function creates invisible windows unless the application
specifies WS_ VISIBLE. The application often hides a window to keep its operational
details from the user. For example, an application can keep a new window invisible
while it customizes the window's appearance. An application can determine
whether a window has the WS_ VISIBLE style by using the WinlsWindowVisible
function.

Even if a window has the WS_VISIBLE style, the user might not be able to see the
window on the screen because other windows completely overlap it, or it might
have been moved beyond the edge of its parent. A visible window is subject to the
clipping rules established by its parent-child relationship. If the window's parent
window is not visible, the window will not be visible. Because a child window is
drawn relative to its parent's lower-left corner, if the parent window is moved
beyond the edge of the screen, the child window also will be moved. In other words,
if a user moves the parent window containing the child window far enough off the
edge of the screen, the user will not be able to see the child window, even though
the child window and its parent window have the WS_ VISIBLE style. To determine
whether the user actually can see a window, an application can use the
WinlsWindowShowing function.

Window Destruction
In general, an application must destroy all the windows it creates. It does this by
using the WinDestroyWindow function. When a window is destroyed, the system
hides the window, if it is visible, and then removes any internal data associated with
the window. This invalidates the window handle so that it can no longer be used by
the application.

An application destroys many of the windows it creates soon after creating them.
For example, an application usually destroys a dialog window as soon as the
application has sufficient input from the user to continue its task. An application
eventually destroys the main window of the application (before terminating).

Destroying a window does not affect the window class from which the window was
created. New windows still can be created using that class, and any existing
windows of that class continue to operate.

Chapter 1. Windows 1-19

Using Windows

When the application calls WinDestroyWindow, the system searches the
descendancy tree for all windows below the specified window and destroys them
from the bottom up, so each child receives WM_DESTROY before its parent. Each
destroyed window is responsible for cleaning up its own resources in response to
the WM_DESTROY message.

If a presentation space was created by the WinGetPS function for any of the
windows to be destroyed, it must be released by calling the WinReleasePS function.
The application must do this before calling the WinDestroyWindow function. If a
presentation space is associated with the device context for the window, the
application must disassociate or destroy the presentation space by using the
GpiAssociate or GpiDestroyPS function before calling WinDestroyWindow. Failing to
release a resource can cause an error.

For more information about presentation spaces and device contexts, see
Chapter 28, "Painting and Drawing" on page 28-1.

If the window being destroyed is the active window, both the active and focus states
are transferred to another window. The window that becomes the active window is
the next window, as determined by the Alt+Esc key combination. The new active
window then determines which window receives the keyboard focus.

The following sections explain how to create and use windows in an application,
how to manage ownership and parent-child window relationships, and how to move
and size windows.

Creating a Top-Level Frame Window
The main window in most applications is a top-level frame window. An application
creates a top-level frame window by specifying the handle of the desktop window, or
HWND_DESKTOP, as the hwndParent parameter in a call to the
WinCreateStdWindow function.

Figure 1-8 on page 1-21 shows the main() function for a simple PM application.
This function initializes the application, creates a message queue, and registers the
window class for the client window before creating a top-level frame window.

1-20 OS/2 Programming Guide-Volume II

#define IDR_RESOURCES 1.

MRESULT EXPENTRY ClientWndProc(HWND, ULONGt MPARAM, MPARAM);

Figure 1-8. Structure of a Simple Presentation Manager Application

Chapter 1. Windows 1-21

Creating an Object Window
An application can create an object window by using the WinCreateWindow function
and setting the desktop-object window as the parent window. The code fragment in
Figure 1-9 shows how to create an object window.

hwndOoject ·• = w; nCreateWi 11d9wJ
HWND..,.OBJECT, /* Pal"ent. is• ~bject .. wjnd.ow.
11MyObjClass11

' I* Wlnde>w cl ass for client
NULL, /* Window text . . :
0, /* No styles for obJecf window
0, <h . /* Lower;..1 eft corner ·
a, 0, /* Width and height
"ULbfA.VDt.£; /* No owner *I
HWND BOTTOM, /* Inserts window at bottom of z-order *I
ID OBJWINDOW, /* Window identifier */
NULL, /* No class-sped fi c data *I
NULL); /* No presentation data * /

Figure 1-9. Creating an Object Window

Querying Window Data
An application can examine the values in the data structure associated with a
window by using the WinQueryWindowUShort and WinQueryWindowULong
functions. Each of these functions specifies a structure data item to examine. The
index value can be an integer representing a zero-based byte index or a constant
(QWS_) that identifies a specific item of data. The code fragment in Figure 1-10
obtains the programmer-defined identifier of the object window defined in the
previous example:

HWND J1wridObj~~:1: i
USHORT us~bjiD;

Figure 1-10. Getting the Window Identifier

Changing the Parent Window
An application can change a window's parent window by using the WinSetParent
function. For example, in an application that uses child windows to display
documents, you might want only the active document window to show a system
menu. You can do this by changing that menu's parent window back and forth
between the document window and the object window when WM_ACTIVATE
messages are received. This technique is shown in the code fragment in
Figure 1-11 on page 1-23:

1-22 OS/2 Programming Guide-Volume II

Figure 1-11. Changing the Parent Window

Finding a Parent, Child, or Owner Window
An application can determine the parent, child, and owner windows for any window
by using the WinQueryWindow function. This function returns the window handle of
the requested window.

The code fragment in Figure 1-12 determines the parent window of the given
window:

Figure 1-12. Finding the Parent Window

The code fragment in Figure 1-13 determines the topmost child window (the child
window in the top z-order position):

Figure 1-13. Finding the Topmost Child Window

If a given window does not have an owner or child window, WinQueryWindow
returns NULL.

Chapter 1. Windows 1-23

Setting an Owner Window
An application can set the owner for a window by using the WinSetOwner function.
Typically, after setting the owner, a window notifies the owner window of the new
relationship by sending it a message.

The code fragment in Figure 1-14 shows how to set the owner window and send it a
message:

Figure 1-14. Setting the Owner Window

A window can have only one owner, so WinSetOwner removes any previous owner.

Retrieving the Handle of a Child or Owned Window
A parent or owner window can retrieve the handle of a child or owned window by
using the WinWindowFromlD function and supplying the identifier of the child or
owned window. WinWindowFromlD searches all child and owned windows to locate
the window with the given identifier. The window identifier is set when the
application creates the child or owned window.

Typically, an owned window uses WinQueryWindow to get the handle of the owner
window; then uses WinSendMsg to issue a notification message to its owner
window.

The code fragment in Figure 1-15 retrieves the window handle of an owner window
and sends the window a WM_ENABLE message:

Figure 1-15. Getting a Handle to an Owner or Child Window

1-24 OS/2 Programming Guide-Volume II

An application also can retrieve the handle of a child window by using the
WinWindowFromPoint function and supplying a point in the corresponding parent
window.

Enumerating Top-Level Windows
An application can enumerate all top-level windows in the system by using the
WinBeginEnumWindows and WinGetNextWindow functions. An application also can
create a list of all child windows for a given parent window using
WinBeginEnumWindows. This list contains the window handles of immediate child
windows. By using WinGetNextWindow, the application then can retrieve the
window handles, one at a time, from the list. When the application has finished
using the list, it must release the list with the WinEndEnumWindows function.

The code fragment in Figure 1-16 shows how to enumerate all top-level windows
(all immediate child windows of the desktop window):

Figure 1-16. Enumerating Top-Level Windows

Moving and Sizing a Window
An application can move a window by using the WinSetWindowPos function and
specifying the SWP _MOVE constant. The function changes the position of the
window to the specified position. The position is always given in coordinates
relative to the parent window.

The code fragment in Figure 1-17 moves the window to the position (10, 10):

Figure 1-17. Moving a Window

Chapter 1. Windows 1-25

An application can set the size of a window by using the WinSetWindowPos function
and specifying the SWP _SIZE constant. WinSetWindowPos changes the width and
height of the window to the specified width and height.

An application can combine moving and sizing in a single function call, as shown in
Figure 1-18.

Figure 1-18. Moving and Sizing a Window

An application can retrieve the current size and position of a window by using the
WinQueryWindowPos function. This function copies the current information to an
SWP structure.

The code fragment in Figure 1-19 uses the current size and position to change the
height of the window, leaving the width and position unchanged:

Figure 1-19. Changing the Size of a Window

An application also can move and change the size of several windows at once by
using the WinSetMultWindowPos function. This function takes an array of SWP
structures. Each structure specifies the window to be moved or changed.

An application can move and size a window even if it is not visible, although the
user is not able to see the effects of the moving and sizing until the window is
visible.

Redrawing Windows
When the system moves a window or changes its size, it can invalidate all or part of
that window. The system attempts to preserve the contents of the window and copy
them to the new position; but if the window's size is increased, the window must fill
the area exposed by the size change. If a window is moved from behind an
overlapping window, any area formerly obscured by the other window must be
drawn. In these cases, the system invalidates the exposed areas and sends a
WM_PAINT message to the window.

1-26 OS/2 Programming Guide-Volume II

An application can require that the system invalidate an entire window every time
the window moves or changes size. To do this, the application sets the
CS_SIZEREDRAW class style in the corresponding window class. Typically, this
class style is selected for use in an application that uses a window's current size
and position to determine how to draw the window. For example, a clock
application always would draw the face of the clock so that it filled the window
exactly.

An application also can explicitly specify which parts of the window to preserve
during a move or size change. Before any change is made, the system sends a
WM_CALCVALIDRECTS message to windows that do not have the style
CS_SIZEREDRAW. This enables the window procedure to specify what part of the
window to save and where to align it after the move or size change.

Changing the Z-Order of Windows
An application can move a window to the top or bottom of the z-order by passing the
SWP _ZORDER constant to the WinSetWindowPos function. An application specifies
where to move the window by specifying the HWND_TOP or HWND_BOTTOM
constants.

The code fragment in Figure 1-20 uses WinSetWindowPos to change the z-order of a
window:

Figure 1-20. Changing the Z-order of a Window

An application also can specify the window that the given window is to move behind.
In this case, the application specifies the window handle instead of the HWND_TOP
or HWND_BOTTOM constant.

Chapter 1. Windows 1-27

Figure 1-21. Exchanging the Z-order of Windows

Showing or Hiding a Window
An application can show or hide a window by using the WinShowWindow function.
This function changes the WS_ VISIBLE style of a window to the specified setting. An
application can also use the WinlsWindowVisible function to check the visibility of a
window. This function returns TRUE if the window is visible.

Maximizing, Minimizing, and Restoring a Frame Window
An application can maximize, minimize, or restore a frame window by using the
WinSetWindowPos function and specifying the constant $WP _MAXIMIZE,
SWP _MINIMIZE, or SWP _RESTORE. Only a frame window can maximize and
minimize by default. For any other window, an application must provide support for
these actions in the corresponding window procedure.

Figure 1-22 shows how to maximize a frame window:

Figure 1-22. Maximizing a Frame Window

1-28 OS/2 Programming Guide-Volume II

Destroying a Window

Summary

An application can destroy a window by using the WinDestroyWindow function.

Figure 1-23 shows how to create and then destroy a control window:

. ijWNo ! ~~nJtetrJ ;: ·~
'.: !Mt!D: tjwtt~P.a;r,e~~;

Figure 1-23. Destroying a Window

Following are the OS/2 functions, messages, and data structures used with

windows.

Table 1-5 (Page 1 of 3). Window Functions

Window Creation Functions

WlnCreateWindow The most direct way of creating a window. The
window is of class ClassName and returns hwnd.

WlnCreateStdWindow Creates a main window. Requires an anchor
block.

Window Destruction Functions

WinDestroyWindow Destroys a window and its child windows, and
releases all their resources.

Window Data Functions

WinQueryWlndowUShort Obtains the unsigned short integer value of a given
window at a specified offset from the reserved
window word's memory.

WinSetWindowUShort Sets an unsigned, short integer value into the
memory of the reserved window words.

WlnQueryWlndowULong Obtains the unsigned long integer value of a given
window, at a specified offset, from the memory of a
reserved window word.

WinSetWlndowULong Sets an unsigned, long integer value into the
memory of the reserved window words.

WinQueryWindowPtr Retrieves a pointer value from the memory of the
reserved window word.

WlnSetWlndowPtr Sets a pointer value into the memory of the
reserved window words.

WinSetWlndowBits Sets a number of bits into the memory of the
reserved window words.

Window Relationship Functions

WinSetParent Sets the parent for hwnd to NewParent.

Chapter 1. Windows 1-29

Table 1-5 (Page 2 of 3). Window Functions

WlnQueryWindow

WlnSetOwner

WinBeglnEnumWlndows

WlnGetNextWlndow

WinEndEnumWlndows

WlnlsChild

WinQueryDesktopWindow

WinQueryObjectWindow

WlnWlndowfromlD

WinWindowfromPolnt

WinMultWindowfromlDs

Window Size and Position Functions

WinSetWindowPos

WinQueryWindowPos

WlnSetMultWlndowPos

WlnQueryWindowRect

WinGetMinPosltlon

Window Visibility Functions

WlnlsWlndowShowing

WinShowWlndow

WlnlsWlndowVlsible

Window Input Functions

WlnQueryActiveWindow

WinSetActiveWlndow

WinQueryFocus

WinSetFocus

WinQuerySysModalWindow

WinRequestMutexSem

WinSetSysModalWindow

1-30 OS/2 Programming Guide-Volume II

Returns the handle of a window that has a
specified relationship to a specified window.

Changes the owner of a specified window.

Begins the enumeration process for all the
immediate child windows of a specified window.

Gets the window handle of the next window in a
specified enumeration list.

Ends the specified enumeration process.

Tests to determine whether one window is a
descendant of another.

Returns the desktop window handle.

Returns the desktop-object window handle.

Returns the handle of the child window with the
specified ID.

Finds the window, below a specified point, that is a
descendant of a specified window.

Finds the handles of child windows that belong to a
specified window and that have window IDs within
a specified range.

Facilitates the general positioning of a window.

Obtains the size and position of a window.

An efficient means of repositioning multiple
windows with one call, provided all windows being
positioned have the same parent.

Returns a window rectangle.

Returns the position to which a window is
minimized.

Determines whether any part of the window, hwnd,
is physically visible.

Sets the visibility state of a window.

Returns the visibility state of a window.

Returns the active window for HWND_DESKTOP or
other parent window.

Sets the main window as the active window.

Returns the focus window; NULL if there is no
focus window.

Sets the focus window.

Returns the current system-modal window.

Requests the ownership of a mutex semaphore or
waits for a PM message.

Either sets a system-modal window or ends the
system-modal state.

Table 1-5 (Page 3 of 3). Window Functions

WlnStartApp

Win Terminate

WlnTermlnateApp

WlnWaltEventSem

WlnWaltMuxWaitSem

Table 1-6. Window Messages

Message

WM_ACTIVATE

WM_ADJUSTWINDOWPOS

WM_CALCFRAMERECT

WM_CALCVALIDRECTS

WM_CLOSE

WM_CREATE

WM_DESTROY

WM_ENABLE

WM_MOVE

WM_PAINT

WM_QUERYWINDOWPARAMS

WM_SETWINDOWPARAMS

WM_SHOW

WM_SIZE

WM_WINDOWPOSCHANGED

Starts an application.

Terminates an appHcation thread's use of PM and
releases all of its associated resources.

Terminates an application started with
WinStartApp.

Waits for an event semaphore to be posted or for a
PM message.

Waits for a muxwait semaphore to clear or for a
PM message.

Description

Sent to a window as it gains or loses
activation.

Sent to adjust a window's position. Not
sent if SWP _NOADJUST is specified.

Occurs when an application uses the
WinCalcFrameRect call.

Sent from WinSetWindowPos and
WinSetMultWindowPos to determine
which areas of a window will be
preserved if a window is sized and whtch
should be redisplayed.

Sent to a frame window to indicate that
the window is being closed by the user.

Occurs when the application requests
creation of a window.

Occurs when the application requests
destruction of a window.

Sets the enable state of a window.

Occurs when a window with the style
CS_MOVENOTIFY changes its absolute
position.

Occurs when a window needs repainting.

Occurs when an application queries the
window parameters.

Occurs when an application sets or
changes the window parameters.

Occurs when a window's WS_ VISIBLE
state is being changed.

Occurs when a window changes its size.

Sent to the window procedure of the
window whose position is changed.

Chapter 1. Windows 1-31

Table 1-7. Window Data Structures

Data Structure Description

CREATESTRUC Create window.

WNDPARAMS Window parameters.

1-32 OS/2 Programming Guide-Volume II

Chapter 2. Messages and Message Queues

The OS/2 operating system uses messages and message queues to communicate
with applications and the windows belonging to those applications. This chapter
explains how to create and use messages and message queues in PM applications.

About Messages and Message Queues

Messages

© Copyright IBM Corp. 1992

Unlike traditional applications that take complete control of the computer's
keyboard, mouse, and screen, PM applications must share these resources with
other applications that are running at the same time. All applications run
independently and rely on the operating system to help them manage shared
resources. The operating system does this by controlling the operation of each
application, communicating with each application when there is keyboard or mouse
input or when an application must move and size its windows.

A message is information, a request for information, or a request for an action to be
carried out by a window in an application.

The operating system, or an application, sends or posts a message to a window so
that the window can use the information or respond to the request.

There are three types of messages:

• User-initiated
• Application-initiated
• System-initiated.

A user-initiated message is the direct result of a user action, such as selecting a
menu item or pressing a key. An application-initiated message is generated by one
window in the application to communicate with another window. System-initiated
messages are generated by the interface as the indirect result of a user action (for
example, resizing a window) or as the direct result of a system event (such as
creating a window).

A message that requires an immediate response from a window is sent directly to
the window by passing the message data as arguments to the window procedure.
The window procedure carries out the request or lets the operating system carry out
default processing for the message.

A message that does not require an immediate response from a window is posted
(the message data is copied) to the application's message queue. The message
queue is a storage area that the application creates to receive and hold its posted
messages. Then, the application can retrieve a message at the appropriate time,
sending it to the addressed window for processing.

Every message contains a message identifier, which is a 16-bit integer that
indicates the purpose of the message. When a window processes a message, it
uses the message identifier to determine what to do.

Every message contains a window handle, which identifies the window the message
is for. The window handle is important because most message queues and window
procedures serve more than one window. The window handle ensures that the
application forwards the message to the proper window.

2-1

A message contains two message parameters-32-bit values that specify data or the
location of data that a window uses when processing the message. The meaning
and value of a message parameter depend on the message. A message parameter
can contain an integer, packed bit flags, a pointer to a structure that contains
additional data, and so forth. Some messages do not use message parameters and,
typically, set the parameters to NULL. An application always checks the message
identifier to determine how to interpret the message parameters.

A queue message is a QMSG data structure that contains six data items,
representing the window handle, message identifier, two message parameters,
message time, and mouse-pointer position. The time and position are included
because most queue messages are input messages, representing keyboard or
mouse input from the user. The time and position also help the application identify
the context of the message. The operating system posts a queue message by filling
the QMSG structure and copying it to a message queue.

A window message consists of the window handle, the message identifier, and two
message parameters. A window message does not include the message time and
mouse-pointer position, because most window messages are requests to perform a
task that is not related to the current time or mouse-pointer position. The operating
system sends a window message by passing these values, as individual arguments,
to a window procedure.

Message Queues
Every PM application must have a message queue. A message queue is the only
means an application has to receive input from the keyboard or mouse. Only
applications that create message queues can create windows.

An application creates a message queue by using the WinCreateMsgQueue
function. This function returns a handle that the application can use to access the
message queue. After an application creates a message queue, the system posts
messages intended for windows in the application to that queue. The application
can retrieve queue messages by specifying the message-queue handle in the
WinGetMsg function. It also can examine messages, without retrieving them, by
using the WinPeekMsg function. When an application no longer needs the message
queue, it can destroy the queue by using the WinDestroyMsgQueue function.

One message queue serves all the windows in a thread. This means a queue can
hold messages for several windows. A message specifies the handle of the window
to which it belongs so the application can forward a message easily to the
appropriate window. The message loop recognizes a NULL window handle and the
message is processed within the message loop rather than passed to
WinDispatchMessage. See Figure 2-1 on page 2-4 for an example of an
input-message processing loop.

An application that has more than one thread can create more than one message
queue. The system allows one message queue for each thread. A message queue
created by a thread belongs to that thread and has no connection to other queues in
the application. When an application creates a window in a given thread, the
system associates the window with the message queue in that thread. The system
then posts all subsequent messages intended for that window to that queue.

Note: The recommended way to structure PM applications is to have at least two
threads and two message queues. The first thread and message queue
control all the user-interface windows, and the second thread and message
queue control all the object windows.

2-2 OS/2 Programming Guide-Volume II

Several windows can use one message queue; it is important that the message
queue be large enough to hold all messages that possibly can be posted to it. An
application can set the size of the message queue when it creates the queue by
specifying the maximum number of messages the queue can hold. The default
maximum number of messages is 10.

To minimize queue size, several types of posted messages are not actually stored
in a message queue. Instead, the operating system keeps a record in the queue of
the message being posted and combines any information contained in the message
with information from previous messages. Timer, semaphore, and paint messages
are handled this way. For example, if more than one WM_PAINT message is posted,
the operating system combines the update regions for each into a single update
region. Although there is no actual WM_PAINT message in the queue, the operating
system constructs one WM_PAINT message with the single update region when an
application uses the WinGetMsg function.

The operating system handles mouse and keyboard input messages differently from
the way it handles other types of messages. The operating system receives all
keyboard and mouse events, such as keystrokes and mouse movements, into the
system message queue. The operating system converts these events into
messages and posts them, one at a time, to the appropriate application message
queue. The application retrieves the messages from its queue and dispatches them
to the appropriate window, which processes the messages.

The operating system message queue usually is large enough to hold all input
messages, even if the user types or moves the mouse very quickly. If the operating
system message queue does run out of space, the system ignores the most recent
keyboard input (usually by beeping to indicate the input is ignored) and collects
mouse motions into a WM_MOUSEMOVE message.

Every message queue has a corresponding MQINFO data structure that specifies
the identifiers of the process and thread that own the message queue and gives a
count of the maximum number of messages the queue can receive. An application
can retrieve the structure by using the WinQueryQueuelnfo function.

A message queue also has a current status that indicates the types of messages
currently in the queue. An application can retrieve the queue status by using the
WinQueryQueueStatus function. An application also can use the WinPeekMsg
function to examine the contents of a message queue. WinPeekMsg checks for a
specific message or range of messages in the queue and gives the application the
option of removing messages from the queue. An application can call the
WinQueryQueueStatus function to determine the contents of the queue before
calling the WinPeekMsg or WinGetMsg function to remove a message from the
queue.

Message Handling
To handle and process messages, an application can use a message loop and the
window procedure. These terms are explained in the following two sections.

Message Loops
Every application with a message queue is responsible for retrieving the messages
from that queue. An application can do this by using a message loop, usually in the
application's main function, that retrieves messages from the message queue and
dispatches them to the appropriate windows. The message loop consists of two

Chapter 2. Messages and Message Queues 2-3

calls: one to the WinGetMsg function; the other to the WinDispatchMsg function. The

message loop has the following form:

An application starts the message loop after creating the message queue and at

least one application window. Once started, the message loop continues to retrieve

messages from the message queue and to dispatch (send) them to the appropriate

windows. WinDispatchMsg sends each message to the window specified by the

window handle in the message.

Figure 2-1 illustrates the typical routing of an input message through the operating

system's and application's message loops.

Appl

Message
Preprocessor

Input
Router

Accelerator
Key Translation

Sysyem
Event (time ordered)
Queue

Scan code
Translation

,--------- ---------------------------• I
I
I
I
I
I
I
I
I
I
I

App's
Message
Loop

priority
ordered

WinGetMsg0
WinDispatchMsg0

WindowlProcedure

----rettrn;

I
I
I
I

------------------------------------~
Figure 2-1. Input Message Processing Loop

Only one message loop is needed for a message queue, even if the queue contains

messages for more than one window. Each queue message is a QMSG structure

that contains the handle of the window to which the message belongs.

WinDispatchMsg always dispatches the message to the proper window. WinGetMsg

retrieves messages from the queue in first-in, first-out (FIFO) order, so the

messages are dispatched to windows in the same order they are received.

2-4 OS/2 Programming Guide-Volume II

If there are no messages in the queue, the operating system temporarily stops

processing the WinGetMsg function until a message arrives. This means that CPU

time that, otherwise, would be spent waiting for a message can be given to the

applications (or threads) that do have messages in their queues.

The message loop continues to retrieve and dispatch messages until WinGetMsg

retrieves a WM_QUIT message. This message causes the function to return FALSE,

terminating the loop. In most cases, terminating the message loop is the first step

in terminating the application. An application can terminate its own loop by posting

the WM_QUIT message in its own queue.

An application can modify its message loop in a variety of ways. For example, it

can retrieve messages from the queue without dispatching them to a window. This

is useful for applications that post messages without specifying a window. (These

messages apply to the application rather than a specific window; they have NULL

window handles.) Also, an application can direct the WinGetMsg function to search

for specific messages, leaving other messages in the queue. This is useful for

applications that temporarily need to bypass the usual FIFO order of the message

queue.

Window Procedures
A window procedure is a function that receives and processes all input and requests

for action sent to the windows. Every window class has a window procedure; every

window created using that class uses that window procedure to respond to

messages.

The system sends a message to the window procedure by passing the message

data as arguments. The window procedure takes the appropriate action for the

given message. Most window procedures check the message identifier, then use

the information specified by the message parameters to carry out the request.

When it has completed processing the message, the window procedure returns a

message result. Each message has a particular set of possible return values. The

window procedure must return the appropriate value for the processing it

performed.

A window procedure cannot ignore a message. If it does not process a message, it

must pass the message back to the operating system for default processing. The

window procedure does this by calling the WinDefWindowProc function to carry out

a default action and return the message result. Then, the window procedure must

return this value as its own message result.

A window procedure commonly processes messages for several windows. It uses

the window handle specified in the message to identify the appropriate window.

Most window procedures process just a few types of messages and pass the others

on to the operating system by calling WinDefWindowProc.

Posting and Sending Messages
Any application can post and send messages. Like the operating system, an

application posts a message by copying it to a message queue. It sends a message

by passing the message data as arguments to a window procedure. To post and

send messages, an application uses the WinPostMsg and WinSendMsg functions.

An application posts a message to notify a specific window to perform a task. The

WinPostMsg function creates a QMSG structure for the message and copies the

message to the message queue corresponding to the given window. The

application's message loop eventually retrieves the message and dispatches it to

Chapter 2. Messages and Message Queues 2-5

Message Types

the appropriate window procedure. For example, one message commonly posted is
WM_ QUIT. This message terminates the application by terminating the message
loop.

An application sends a message to cause a specific window procedure to carry out
a task immediately. The WinSendMsg function passes the message to the window
procedure corresponding to the given window. The function waits until the window
procedure completes processing and then returns the message result. Parent and
child windows often communicate by sending messages to each other. For
example, a parent window that has an entry-field control as its child window can set
the text of the control by sending a message to the child window. The control can
notify the parent window of changes to the text (carried out by the user) by sending
messages back to the parent window.

Occasionally, an application might need to send or post a message to all windows in
the system. For example, if the application changes a system value, it must notify
all windows about the change by sending a WM_SYSVALUECHANGED message. An
application can send or post messages to any number of windows by using the
WinBroadcastMsg function. The options in WinBroadcastMsg determine whether
the message is sent or posted and specify the windows that will receive the
message.

Any thread in the application can post a message to a message queue, even if the
thread has no message queue of its own. However, only a thread that has a
message queue can send a message. Sending a message between threads is
relatively uncommon. For one reason, sending a message is costly in terms of
system performance. If an application posts a message between threads, it is likely
to be a semaphore message, which permits window procedures to manage a shared
resource jointly.

An application can post a message without specifying a window. If the application
supplies a NULL window handle when it calls the WinPostMsg function, the function
posts the message to the queue associated with the current thread. The application
must process the message in the message loop. This is one way to create a
message that applies to the entire application instead of to a specific window.

A window procedure can determine whether it is processing a message sent by
another thread by using the WinlnSendMsg function. This is useful when message
processing depends on the origin of the message.

A common programming error is to assume that the WinPostMsg function always
succeeds. It fails when the message queue is full. An application should check the
return value of the WinPostMsg function to see whether the message was posted. In
general, if an application intends to post many messages to the queue, it should set
the message queue to an appropriate size when it creates the queue. The default
message-queue size is 10 messages.

This section describes the three types of OS/2 messages:

• System-defined
• Application-defined
• Semaphore.

2-6 OS/2 Programming Guide-Volume II

System-Defined Messages
There are many system-defined messages that are used to control the operations of
applications and to provide input and other information for applications to process.
The system sends or posts a system-defined message when it communicates with
an application. An application also can send or post system-defined messages.
Usually, applications use these messages to control the operation of control
windows created by using preregistered window classes.

Each system message has a unique message identifier and a corresponding
symbolic constant. The symbolic constant, defined in the system header files, states
the purpose of the message. For example, the WM_PAINT constant represents the
paint message, which requests that a window paint its contents.

The symbolic constants also specify the message category. System-defined
messages can belong to several categories; the prefix identifies the type of window
that can interpret and process the messages. The following table lists the prefixes
and their related message categories:

Table 2-1. Message Categories

Prefix Message category

BKM Notebook control -
BM Button control -
CBM Combination-box control -
CM Container control -
EM - Entry-field control

LM List-box control -
MLM - Multiple-line entry field control

MM Menu control -
SBM Scroll-bar control -
SLM Slider control -
SM Static control -
TBM Title-bar control -
VM Value set control -
WM General window -

General window messages cover a wide range of information and requests,
including:

• Mouse and keyboard-input
• Menu- and dialog-input
• Window creation and management
• Dynamic data exchange (ODE).

Application-Defined Messages
An application can create messages to use in its own windows. If an application
does create messages, the window procedure that receives the messages must
interpret them and provide the appropriate processing.

The operating system reserves the message-identifier values in the range OxOOOO
through OxOFFF (the value of WM_USER -1) for system-defined messages.
Applications cannot use these values for their private messages.

Chapter 2. Messages and Message Queues 2-7

Values in the range Ox1000 (the value of WM_USER) through OxBFFF, however, are

available for message identifiers, defined by an application, for use in that
application.

Warning: It is very important that applications do not broadcast messages in the

Ox1000 through OxBFFF range because of the risk of misinterpretation by other

applications.

Values in the range OxCOOO through OxFFFF are reserved for message identifiers

that an application defines and registers with the system atom table; these can be

used in any application. Values above OxFFFF (Ox00010000 through OxFFFFFFFF)

are reserved for future use; applications must not use messages in this range.

Semaphore Messages
A semaphore message provides a way of signaling, through the message queue,

the end of an event. An application uses a semaphore message the same way it

uses system semaphore functions-to coordinate events by passing signals. A

semaphore message often is used in conjunction with system semaphores.

There are four semaphore messages:

WM_SEM1
WM_SEM2
WM_SEM3
WM_SEM4.

An application posts one of these messages to signal the end of a given event. The

window that is waiting for the given event receives the semaphore message when

the message loop retrieves and dispatches the message.

Each semaphore message includes a bit flag that an application can use to uniquely

identify the 32 possible semaphores for each semaphore message. The application

passes the bit flag (with the appropriate bit set) as a message parameter with the

message. The window procedure that receives the message then uses the bit flag

to identify the semaphore.

To save space, the system does not store semaphore messages in the message

queue. Instead, it sets a record in the queue, indicating that the semaphore
message has been received, and then combines the bit flag for the message with

the bit flags from previous messages. When the window procedure eventually

receives the message, the bit flag specifies each semaphore message posted since

the last message was retrieved.

Message Priorities
The WinGetMsg function retrieves messages from the message queue based on

message priority. WinGetMsg retrieves messages with higher priority first. If it

finds more than one message at a particular priority level, it retrieves the oldest

message first. Messages have the following priorities:

2-8 OS/2 Programming Guide-Volume II

Table 2-2. Message Priorities

Priority Message

1 WM_SEM1

2 Messages posted using WinPostMsg

3 Input messages from the keyboard or mouse

4 WM_SEM2

5 WM_PAINT

6 WM_SEM3

7 WM_ TIMER

8 WM_SEM4

Message Filtering

Using Messages

An application can choose specific messages to retrieve from the message queue
(and ignore other messages) by specifying a message filter with the WinGetMsg or
WinPeekMsg functions. The message filter is a range of message identifiers
(specified by a first and last identifier}, a window handle, or both. The WinGetMsg
and WinPeekMsg functions use the message filter to select the messages to retrieve
from the queue. Message filtering is useful if an application needs to search ahead
in the message queue for messages that have a lower priority or that arrived in the
queue later than other less important messages.

Any application that filters messages must ensure that a message satisfying the
message filter can be posted. For example, filtering for a WM_ CHAR message in a
window that does not receive keyboard input prevents the WinGetMsg function from
returning. Some messages, such as WM_COMMANO, are generated from other
messages; filtering for them also can prevent WinGetMsg from returning.

To filter for mouse, button, and ODE messages, an application can use the following
constants:

WM_MOUSEFIRST and WM_MOUSELAST
WM_BUTTONCLICKFIRST and WM_BUTTONCLICKLAST
WM_DDE_FIRST and WM_DDE_LAST.

This section explains how to perform the following tasks:

• Create a message queue and message loop.
• Examine the message queue.
• Post and send messages between windows.
• Broadcast a message to multiple windows.
• Use message macros.

Creating a Message Queue and Message Loop
An application needs a message queue and message loop to process messages for
its windows. An application creates a message queue by using the
WinCreateMsgQueue function. An application creates a message loop by using the
WinGetMsg and WinDispatchMsg functions. The application must create and show
at least one window after creating the queue but before starting the message loop.

Chapter 2. Messages and Message Queues 2-9

The following code fragment shows how to create a message queue and message
loop:

Both the WinGetMsg and WinDispatchMsg functions take a pointer to a QMSG
structure as a parameter. If a message is available, WinGetMsg copies it to the
QMSG structure; WinDispatchMsg then uses the data in the structure as arguments
for the window procedure.

2-10 OS/2 Programming Guide-Volume II

Occasionally, an application might need to process a message before dispatching it.
For example, if a message is posted but the destination window is not specified (that
is, the message contains a NULL window handle), the application must process the
message to determine which window should receive the message. Then the
WinDispatchMsg function can forward the message to the proper window. The
following code fragment shows how the message loop can process messages that
have NULL window handles:

Examining the Message Queue
An application can examine the contents of the message queue by using the
WinPeekMsg or WinQueryQueueStatus function. It is useful to examine the queue if
the application starts a lengthy operation that additional user input might affect, or if
the application needs to look ahead in the queue to anticipate a response to user
input.

An application can use WinPeekMsg to check for specific messages in the message
queue. This function is useful for extracting messages for a specific window from
the queue. It returns immediately if there is no message in the queue. An
application can use WinPeekMsg in a loop without requiring the loop to wait for a
message to arrive. The following code fragment checks the queue for WM_ CHAR
messages:

An application also can use the WinQueryQueueStatus function to check for
messages in the queue. This function is very fast and returns information about the
kinds of messages available in the queue and which messages have been posted
recently. Most applications use this function in message loops that need to be as
fast as possible.

Chapter 2. Messages and Message Queues 2-11

Posting a Message to a Window
An application can use the WinPostMsg function to post a message to a window.
The message goes to the window's message queue. The following code fragment
posts the WM_QUIT message:

The WinPostMsg function returns FALSE if the queue is full, and the message cannot
be posted.

Sending a Message to a Window
An application can use the WinSendMsg function to send a message directly to a
window. An application uses this function to send messages to child windows. For
example, the following code fragment sends an LM_INSERTITEM message to direct
a list-box control to add an item to the end of its list:

·HWND :'hw11dL i ~taox ~
•·· st:~ttc CHl~~: siWeekd~,y[J

WinSendMsg calls the window's window procedure and waits for it to handle the
message and return a result. An application can send a message to any window in
the system, as long as the application has the handle of the target window. The
message queue does not store the message; however, the thread making the call
must have a message queue.

Broadcasting a Message
An application can send a message to multiple windows by using the
WinBroadcastMsg function. Often this function is used to broadcast the
WM_SYSVALUECHANGED message after an application changes a system value.
The following code fragment shows how to broadcast this message to all frame
windows in all applications:

2-12 OS/2 Programming Guide-Volume II

An application can broadcast messages to all windows, just frame windows, or just
the windows in the application.

Using Message Macros
The system header files define several macros that help create and interpret
message parameters.

One set of macros helps you construct message parameters. These macros are
useful for sending and posting messages. For example, the following code fragment
uses the MPFROMSHORT macro to convert a 16-bit integer into the 32-bit message
parameter:

A second set of macros helps you extract values from a message parameter. These
macros are useful for handling messages in a window procedure. The following
code fragment determines whether the window receiving the WM_FOCUSCHANGE
message is gaining or losing the keyboard focus. The fragment uses the
SHORT1 FROM MP macro to extract the focus-change flag, the SHORT2FROMMP
macro to extract the focus flag, and the HWNDFROMMP macro to extract the window
handle.

A third set of macros helps you construct a message result. These macros are
useful for returning message results in a window procedure, as the following code
fragment illustrates:

Chapter 2. Messages and Message Queues 2-13

Summary
Following are the functions and structures used with OS/2 messages and message

queues.

Table 2-3. Commonly Used Message and Message Queue Functions

Function Name

WinCreateMsgQueue

WlnDefDlgProc

WlnDefWlndowProc

WinDestroyMsgQueue

WinDlspatchMsg

WinGetMsg

WlnPeekMsg

WlnPostMsg

WlnSendDlgltemMsg

WinSendMsg

Description

Creates a message queue.

Invokes the default dialog procedure.

Invokes the default window procedure.

Destroys the message queue.

Invokes a window procedure.

Gets a message from the thread's message queue
and returns msg when a message conforming to
the filtering criteria is available.

Inspects the thread's message queue and returns
to the application with or without a message.

Posts a message to the message queue associated
with the window defined by hwnd.

Sends a message to the dialog item defined by
item in the dialog window specified by Dig

Sends a message with identity Msgid to hwnd.

Table 2-4. Seldom-Used Message and Message Queue Functions

Function Name Description

WinBroadcastMsg Broadcasts a message to multiple windows.

WinCallMsgFllter Calls a message-filter hook.

WinlnSendMsg Determines whether the current thread is
processing a message sent by another thread.

WinPostQueueMsg Posts a message to a message queue.

Table 2-5 (Page 1 of 2). Almost-Never Used Message and Message Queue

Functions

Function Name

WlnQueryMsgPos

WinQueryQueuelnfo

WinQueryQueueStatus

WinRegisterUserMsg

WinSetClassMsglnterest

WinSetMsglnterest

WinSetMsgMode

Description

Returns the pointer position, in screen
coordinates, when the last message obtained from
the current message queue is posted.

Returns the information for the specified queue.

Returns a code indicating the status of the
message queue associated with the caller.

Registers a user message and defines its
parameters.

Sets the message interest of a message class.

Sets a window's message interest.

Indicates the mode for the generation and
processing of messages for the private window
class of an application.

2-14 OS/2 Programming Guide-Volume II

Table 2-5 (Page 2 of 2). Almost-Never Used Message and Message Queue
Functions

Function Name Description

WlnTranslateAccel Translates a WM_CHAR message.

WlnWaltMsg Waits for a filtered message.

Table 2-6. Message and Message Queue Structures

Structure Name Description

HMQ Message-queue handle.

MQINFO Message-queue information structure.

QMSG Message structure.

Chapter 2. Messages and Message Queues 2-15

2-16 OS/2 Programming Guide-Volume II

Chapter 3. Window Classes

A window class determines which styles and which window procedure are given to
a window when it is created. This chapter explains how a PM application creates
and uses window classes.

About Window Classes
Every window is a member of a window class. An application must specify a
window class when it creates a window. Each window class has an associated
window procedure that is used by all windows of the same class. The window
procedure handles messages for all windows of that class and, therefore, controls
the behavior and appearance of the window.

A window class must be registered before an application can create a window of
that class. Registering a window class associates a window procedure and class
styles with a class name. When an application specifies the class name in a
window-creation function such as WinCreateWindow, the system creates a window
that uses the window procedure and styles associated with the class name.

An application can register private classes or use preregistered public window
classes.

Private Window Classes

©Copyright IBM Corp. 1992

A private window class is any class registered within an application. An application
registers a private class by calling the WinRegisterClass function. A private class
cannot be shared with other applications. When an application terminates, the
system removes any data associated with the application's private window classes.

An application can register a private class anytime but, typically, does so as part of
application initialization. To register a private class during application initialization,
the application also must call Winlnitialize and, usually, WinCreateMsgQueue before
class registration.

An application cannot de-register a private window class; it remains registered and
available until the application terminates.

When an application registers a private window class, it must supply the following
information:

• Class name
• Class styles
• Window procedure
• Window data size.

Class Name
The class name identifies the window class. The application uses this name in the
window-creation functions to specify the class of the window being created. The
class name can be a character string or an atom, and it must be unique within the
application. The system checks as to whether a public class or a class already
registered by the application has the same name. If the class name is not unique to
that application, the system returns an error.

3-1

Class Styles
Each window class has one or more values, called class styles, that tell the system
which initial window styles to give a window created with that class. An application
sets the class styles for a private window class when it registers the class. Once a
class is registered, the application cannot change the styles.

An application can specify one or more of the following class styles in the
WinRegisterClass function, combining them as necessary by using the bitwise OR
operator:

Table 3-1. Class Styles

Style Name Description

CS_CLIPCHILDREN Prevents a window from painting over its child windows, but
increases the time necessary to calculate the visible region. This
style usually is not necessary, because if the parent and child
windows overlap and are both invalidated, the operating system
draws the parent window before drawing the child window. If the
child window is invalidated independently of the parent window,
the system redraws only the child window. If the update region
of the parent window does not intersect the child window,
drawing the parent window causes the child window to be
redrawn. This style is useful to prevent a child window
containing a complex graphic from being redrawn
unnecessarily.

CS_CLIPSIBLINGS Prevents a window from painting over its sibling windows. This
style protects sibling windows but increases the time necessary
to calculate the visible region. This style is appropriate for
windows that overlap and have the same parent window.

CS_FRAME Identifies the window as a frame window.

CS_HITTEST Directs the operating system to send WM_HITTEST messages to
the window whenever the mouse pointer moves in the window.

CS_MOVENOTIFY Directs the system to send WM_MOVE messages to the window
whenever the user moves the window.

CS_PARENTCLIP Extends a window's visible region to include that of its parent
window. This style simplifies the calculation of the child
window's visible region but, potentially, is dangerous, because
the parent window's visible region is usually larger than the
child window.

CS_SAVEBITS Saves the screen area under a window as a bit map. When the
user hides or moves the window, the system restores the image
by copying the bits; there is no need to add the area to the
uncovered window's update region. This style can improve
system performance, but also can consume a great deal of
memory. It is recommended only for transient windows such as
menus and dialog windows-not for main application windows.

CS_SIZEREDRAW Causes the window to receive a WM_PAINT message and be
completely invalidated whenever the window is resized, even if
it is made smaller. (Typically, only the uncovered area of a
window is invalidated when a window is resized.) This class
style is useful when an application scales graphics to fill the
window.

CS_SYNCPAINT Causes the window to receive WM_PAINT messages
immediately after a part of the window becomes invalid. Without
this style, the window receives WM_PAINT messages only if no
other message is waiting to be processed.

3-2 OS/2 Programming Guide-Volume II

Window Procedure
The window procedure for a window class processes all messages sent or posted to
all windows of that class. It is the chief component of the window class because it
controls the appearance and behavior of each window created with the class.
Window procedures are shared by all windows of a class, so an application must
ensure that no conflicts arise when two windows of the same class attempt to
access the same global data. In other words, the window procedure must protect
global data and other shared resources.

Window Data Size
The system creates a window data structure for each window, which includes extra
space that an application can use to store additional data about a window. An
application specifies the number of extra bytes to allocate in the WinRegisterClass
function. All windows of the same class have the same amount of window data
space.

An application can store window data in a window's data structure by using the
WinSetWindowUShort and WinSetWindowULong functions. It can retrieve data by
using the WinQueryWindowUShort and WinQueryWindowULong functions.

Custom Window Styles
An application that registers a window class also can support its own set of styles
for windows of that class. Standard window styles-for example, WS_VISIBLE and
WS_SYNCPAINT-still apply to these windows. A window style is a 32-bit integer,
and only the high 16 bits are used for the standard window styles; an application can
use the low 16 bits for custom styles specific to a window class.

The operating system has unique window styles for all preregistered window
classes. Styles such as FS_BORDER and BS_PUSHBUTTON are processed by the
window procedure for the corresponding class. This means that an application can
build the support for its own window styles into the window procedure for its private
class. A window style designed for one window class will not work with another
window class.

Public Window Classes
Public window classes are registered during system initialization. Their window
procedures are in dynamic link libraries. Therefore, to use a public window class,
an application need not register it. Nor does the application need to import the
window procedure for a public window class because the system resolves
references to the window procedure.

An application cannot use a public window class name when it registers a private
window class.

System-Defined Public Window Classes
The system provides a number of public window classes that support menus, frame
windows, control windows, and dialog windows. An application can create a
window of a system-defined public window class by specifying one of the following
class name constants in a call to WinCreateWindow:

Chapter 3. Window Classes 3-3

Table 3-2. Public Window Classes

Class Name

WC_BUTTON

WC_COMBOBOX

WC_CONTAINER

WC _ENTRYFIELD

WC_FRAME

WC_LISTBOX

WC_MENU

WC_NOTEBOOK

WC_SCROLLBAR

WC_SLIDER

WC _SPINBUTTON

WC_STATIC

WC_ TITLEBAR

WC_ VALUESET

Description

Consists of buttons and boxes the user can select by clicking the
pointing device or using the keyboard.

Creates a combination-box control, which combines a list-box
control and an entry-field control. It enables the user to enter
data either by typing in the entry field or by choosing from the
list in the list box.

Creates a control in which the user can group objects in a logical
manner. A container can display those objects in various
formats or views. The container control supports drag and drop
so the user can place information in a container by simply
dragging and dropping.

Consists of a single line of text that the user can edit.

A composite window class that can contain child windows of
many of the other window classes.

Presents a list of text items from which the user can make
selections.

Presents a list of items that can be displayed horizontally as
menu bars, or vertically as pull-down menus. Usually menus
are used to provide a command interface to applications.

Creates a control for the user that is displayed as a number of
pages. The top page is visible, and the others are hidden, with
their presence being indicated by a visible edge on each of the
back pages.

Consists of window scroll bars that let the user scroll the
contents of the associated window.

Creates a control that is usable for producing approximate
(analog) values or properties. Scroll bars were used for this
function in the past, but the slider provides a more flexible
method of achieving the same result, with less programming
effort.

Creates a control that presents itself to the user as a scrollable
ring of choices, giving the user quick access to the data. The
user is presented only one item at a time, so the spin button
should be used with data that is intuitively related.

Simple display items that do not respond to keyboard or pointing
device events.

Displays the window title or caption and lets the user move the
window's owner.

Creates a control similar in function to radio buttons but
provides additional flexibility to display graphical, textual, and
numeric formats. The values set with this control are mutually
exclusive.

Each system-defined public window class has a corresponding set of window styles
that an application can use to customize a window of that class. For example, a
window created with the WC_BUTTON class has styles that include
BS _PUSHBUTTON and BS_ CHECKBOX. Window styles enable you to customize
aspects of a window's behavior and appearance. The application specifies the
window styles in the WinCreateWindow function.

3-4 OS/2 Programming Guide-Volume II

Class Data

Custom Public Window Classes
An application can create a custom public window class, but it must do so during
system initialization. Only the shell can register a public window class, and it can
do so only when the system starts. Registering a public window class requires a
special load entry in the os2.ini file. That entry instructs the shell to load a dynamic
link library whose initialization routine registers the window class. Custom public
window classes must be registered using WinRegisterClass and must have the class
style CS_PUBLIC. If a custom public window class registered this way has the same
name as an existing public window class, the custom class replaces the original
class.

If a dynamic link library replaces an existing public window class, the library can
save the address of the original window procedure and use the address to subclass
the original window class. The dynamic link library retrieves the original window
procedure address using the WinQueryClasslnfo function. The custom window
procedure then passes unprocessed messages to the original window procedure
instead of calling WinDefWindowProc.

When subclassing a public window class, the custom public window procedure must
not make the window data size smaller than the original window data size, because
all public window classes that the operating system defines use 4 extra bytes for
storing a pointer to custom window data. This size is guaranteed only for public
window classes defined by the operating system dynamic link libraries.

An application can examine public window class data by using the
WinQueryClasslnfo and WinQueryClassName functions. An application retrieves the
name of the class for a given window by using the WinQueryClassName function. If
the window is one of the preregistered public window classes, the name returned is
in the form #nnnnn, where nnnnn is up to 5 digits, representing the value of the
window class constant. Using this window class name, the application can call
WinQueryClasslnfo to retrieve the window class data. WinQueryClasslnfo copies
the class style, window procedure address, and window data size to a CLASSINFO
data structure.

Using Window Classes
This section explains how to perform the following tasks:

• Register a private window class.
• Register an imported window procedure.

Registering a Private Window Class
An application can register a private window class at any time by using the
WinRegisterClass function. You must define the window procedure in the
application, choose a unique name, and set the window styles for the class.

Chapter 3. Window Classes 3-5

Summary

The following code fragment shows how to register the window class name
"MyPrivateClass":

Following are the operating system functions and the structure used with window
classes.

Table 3-3. Window Class Functions

Function Name Description

WlnQueryClasslnfo Returns window class information.

WlnQueryClassName Copies, into a buffer, the window class name as a
null-terminated string.

WinReglsterClass Registers a window class.

WinSubclassWlndow Subclasses the indicated window by replacing its
window procedure with another window
procedure.

Table 3-4. Window Class Structure

Structure Name Description

CLASSINFO Class-information structure.

3-6 OS/2 Programming Guide-Volume II

Chapter 4. Window Procedures

Windows have an associated window procedure-a function that processes all
messages sent or posted to a window. Every aspect of a window's appearance and
behavior depends on the window procedure's response to the messages. This
chapter explains how window procedures function, in general, and describes the
default window procedure.

About Window Procedures
Every window belongs to a window class that determines which window procedure
a particular window uses to process its messages. All windows of the same class
use the same window procedure. For example, the operating system defines a
window procedure for the frame window class (WC_FRAME), and all frame windows
use that window procedure.

An application typically defines at least one new window class and an associated
window procedure. Then, the application can create many windows of that class, all
of which use the same window procedure. This means that the same piece of code
can be called from several sources simultaneously; therefore, you must be careful
when modifying shared resources from a window procedure.

Dialog procedures have the same structure and function as window procedures.
The primary difference between a dialog procedure and a window procedure is the
absence of a client window in the dialog procedure; that is, the controls in a dialog
procedure are the immediate child windows of the frame, whereas the controls in a
normal window are the grandchildren of the frame. This makes significant
differences in the code between the two; for example, WinSendDlgltemMsg does not
work from a client window if you pass the client window handle as the first
parameter.

Structure of a Window Procedure

© Copyright IBM Corp. 1992

A window procedure is a function that takes 4 arguments and returns a 32-bit
pointer. The arguments of a window procedure consist of a window handle, a
ULONG message identifier, and two arguments, called message parameters, that
are declared with the MPARAM data type. The system defines an MPARAM as a
32-bit pointer to a VOID data type (a generic pointer). The message parameters
actually might contain any of the standard data types. The message parameters are
interpreted differently, depending on the value of the message identifier. OS/2 2.0
includes several macros that enable the application to cast the information from the
MPARAM values into the actual data type. SHORT1FROMMP, for example, extracts
a 16-bit value from a 32-bit MPARAM.

4-1

The window-procedure arguments are described in the following table:

Table 4-1. Window Procedure Arguments

Argument Description

hwnd Handle of the window receiving the message.

msg Message identifier. The message will correspond to one of the
predefined constants (for example, WM_CREATE) defined in the
system include files or be an application-defined message
identifier. The value of an application-defined message
identifier must be greater than the value of WM_USER, and less
than or equal to Oxffff.

mp1,mp2 Message parameters. Their interpretation depends on the
particular message.

The return value of a window procedure is defined as an MRESULT data type. The

interpretation of the return value depends on the particular message. Consult the

description of each message to determine the appropriate return value.

Default Window Procedure
All windows in the system share certain fundamental behavior, defined in the

default window-procedure function, WinDefWindowProc. The default window

procedure provides the minimal functionality for a window. An application-defined

window procedure should pass any messages it does not process to

WinDefWindowProc for default processing.

Window-Procedure Subclassing
Subclassing enables an application to intercept and process messages sent or

posted to a window before that window has a chance to process them. Subclassing

most often is used to add functionality to a particular window or to alter a window's

default behavior.

An application subclasses a window by using the WinSubclassWindow function to

replace the window's original window procedure with an application-defined window

procedure. Thereafter, the new window procedure processes any messages that

are sent or posted to the window. If the new window procedure does not process a

particular message, it must pass the message to the original window procedure, not
to WinDefWindowProc, for default processing

Using Window Procedures
This section explains how to:

• Design a window procedure
• Associate a window procedure with a window class
• Subclass a window.

4-2 OS/2 Programming Guide-Volume II

Designing a Window Procedure
The following code fragment shows the structure of a typical window procedure and
how to use the message argument in a switch statement, with individual messages
handled by separate case statements. Notice that each case returns a specific
value for each message. For messages that it does not handle itself, the window
procedure calls WinDefWindowProc.

A dialog window procedure does not receive the WM_CREATE message; however, it
does receive a WM_INITDLG message when all of its control windows have been
created.

At the very least, a window procedure should handle the WM_PAINT message to
draw itself. Typically, it should handle mouse and keyboard messages as well.
Consult the descriptions of individual messages to determine whether your window
procedure should handle them.

An application can call WinDefWindowProc as part of the processing of a message.
In such a case, the application can modify the message parameters before passing
the message to WinDefWindowProc or can continue with the default processing after
performing its own operations.

Chapter 4. Window Procedures 4-3

Associating a Window Procedure with a Window Class
To associate a window procedure with a window class, an application must pass a
pointer to that window procedure to the WinRegisterClass function. Once an
application has registered the window procedure, the procedure automatically is
associated with each new window created with that class.

The following code fragment shows how to associate the window procedure in the
previous example with a window class:

Subclassing a Window
To subclass a window, an application calls the WinSubclassWindow function,
specifying the handle of the window to subclass and a pointer to the new window
procedure. The WinSubclassWindow function returns a pointer to the original
window procedure; the application can use this pointer to pass unprocessed
messages to the original procedure.

4-4 OS/2 Programming Guide-Volume II

The following COde fragment subclasses a PUsh button control Window. The new

window procedure generates a beep Whenever the user clicks the PUsh button.

Chapter 4. Window Procedures 4-5

Summary
Following are the window-procedure functions and messages processed by the

default window procedure.

Table 4-2. Window Procedure Functions

Function Name Description

WinDefDlgProc The default dialog procedure.

WlnDetwlndowProc The default window procedure.

WinRegisterClass Registers a window class.

WlnSubclassWlndow Subclasses the indicated window by replacing its
window procedure.

Table 4-3 (Page 1 of 2). Default Window Procedure Messages

Message

WM_BUTION1 DBLCLK

WM_BUTION1 DOWN

WM_BUTTON1 UP

WM_BUTION2DBLCLK

WM_BUTION2DOWN

WM_BUTION2UP

WM_BUTION3DBLCLK

WM_BUTION3DOWN

WM_BUTION3UP

WM_ CALCVALIDRECTS

WM_CHAR

WM_CLOSE

WM_CONTROLPOINTER

WM_DDE_INITIATE

WM_DDE_INITIATEACK

WM_FOCUSCHANGE

WM_HELP

WM_HITIEST

WM_MENUSELECT

Description

Occurs when the user presses button 1 of the
pointing device twice.

Occurs when the user presses pointer button 1.

Occurs when the user releases pointer button 1.

Occurs when the user presses button 2 of the
pointing device twice.

Occurs when the user presses pointer button 2.

Occurs when the user releases pointer button 2.

Occurs when the user presses button 3 of the
pointing device twice.

Occurs when the user presses pointer button 3.

Occurs when the user releases pointer button 3.

Sent to determine which areas of a window can be

preserved if a window is sized and which can be
redisplayed.

Occurs when the user presses a key.

Sent to a frame window to indicate that the window
is being closed by the user.

Sent to a control's owner window when the pointer
moves over the control window, allowing the user
to set the pointer.

Sent by an application to one or more other
applications to request initiation of a conversation.

Sent by a server application in response to a
WM_DDE_INITIATE message.

Occurs when the focus window is changed.

Occurs when a control has a significant event to
notify to its owner, or when a key stroke has been
translated into a WM_HELP by an accelerator
table.

Sent to determine which window is associated with
an input from the pointing device.

Occurs when a menu item is selected.

4-6 OS/2 Programming Guide-Volume II

Table 4-3 (Page 2 of 2). Default Window Procedure Messages

Message

WM_MOUSEMOVE

WM_PAINT

WM_QUERYCONVERTPOS

WM_QUERYFOCUSCHAIN

WM_QUERYFRAMECTLCOUNT

WM_QUERYWINDOWPARAMS

WM_ TIMER

WM_TRANSLATEACCEL

Description

Occurs when the pointing device pointer moves.

Occurs when a window needs repainting.

Sent by an application to determine whether it is
appropriate to begin DBCS conversion.

Requests the handle of a window in the focus
chain.

Sent to the frame window in response to receipt of
a WM_SIZE or WM_UPDATEFRAME message.

Occurs when an application queries the window
parameters.

Posted when a timer times out.

Sent to the focus window when a WM_ CHAR
message occurs.

Chapter 4. Window Procedures 4-7

4-8 OS/2 Programming Guide-Volume II

Chapter 5. Mouse and Keyboard Input

An OS/2 Presentation Manager application can accept input from both a mouse (or
other pointing device) and the keyboard. This chapter explains how these input
events should be received and processed.

About Mouse and Keyboard Input
Only one window at a time can receive keyboard input, and only one window at a
time can receive mouse input; but they do not have to be the same window. All
keyboard input goes to the window with the input focus, and, normally, all mouse
input goes to the window under the mouse pointer.

System Message Queue
The operating system routes all keystrokes and mouse input to the system message
queue, converting these input events into messages, and posts them, one at a time,
to the proper application-defined message queues. An application retrieves
messages from its queue and dispatches them to the appropriate window
procedures, which process the messages.

Mouse and keyboard input events in the system message queue are strictly ordered
so that a new event cannot be processed until all previous events are fully
processed: the system cannot determine the destination window of an input event
until then. For example, if a user types a command in one window, clicks the mouse
to activate another window, then types a command in the second window, the
destination of the second command depends on how the application handles the
mouse click. The second command would go to the second window only if that
window became active as a result of the mouse click.

It is important for an application to process all messages quickly to avoid slowing
user interaction with the system. A message must be responded to immediately in
the current thread, but the processing it initiates should be done asynchronously in
another thread that has no windows in the desktop tree.

OS/2 can display multiple windows belonging to several applications at the same
time. To manage input among these windows, the system uses the concepts of
window activation and keyboard focus.

Window Activation

© Copyright IBM Corp. 1992

Although the operating system can display windows from many different
applications simultaneously during a PM session, the user can interact with only
one application at a time-the active application. The other applications continue to
run, but they cannot receive user input until they become active.

To enable the user to easily identify the active application, the system activates all
frames in the tree between HWND_DESKTOP and the window with input focus. That
is, the system positions the active frame window above all other top-level windows
on the screen. If the active window is a standard frame window, the window's title
bar and sizing border are highlighted.

The user can control which application is active by clicking on a window or by
pressing the Alt+ Tab or Alt+Esc key combinations. An application can set the

5-1

Keyboard Focus

active frame window by calling WinSetActiveWindow; it also can obtain the handle
of the active frame window by using WinQueryActiveWindow.

When one window is deactivated and another activated, the system sends a
WM_ACTIVATE message, first to the window being deactivated, then to the window
being activated. The fActive parameter of the WM_ACTIVATE message is set to
FALSE for the window being deactivated and set to TRUE for the window being
activated. An application can use this message to track the activation state of a
client window.

The keyboard focus is a temporary attribute of a window; the window that has the
keyboard focus receives all keyboard input until the focus changes to a different
window. The system converts keyboard input events into WM_CHAR messages and
posts them to the message queue of the window that has the keyboard focus.

An application can set the keyboard focus to a particular window by calling
WinSetFocus. If the application does not use WinSetFocus to explicitly set the
keyboard-focus window, the system sets the focus to the active frame window.

The following events occur when an application uses WinSetFocus to shift the
keyboard focus from one window (the original window) to another (the new window):

1. The system sends the original window a WM_SETFOCUS message (with the
fFocus parameter set to FALSE), indicating that that window has lost the
keyboard focus.

2. The system then sends the original window a WM_SETSELECTION message,
indicating that the window should remove the highlight from the current
selection.

3. If the original (frame) window is being deactivated, the system sends it a
WM_ACTIVATE message (with the fActive parameter set to FALSE), indicating
that the window is no longer active.

4. The system then sends the new application a WM_ACTIVATE message (with
fActive set to TRUE), indicating that the new application is now active.

5. If the new (main) window is being activated, the system sends it a
WM_ACTIVATE message (with fActive set to TRUE), indicating that the main
window is now active.

6. The system sends the new window a WM_SETSELECTION message, indicating
that the window should highlight the current selection.

7. Finally, the system sends the new window a WM_SETFOCUS message (with
fFocus set to TRUE), indicating that the new window has the keyboard focus.

If, while processing a WM_SETFOCUS message, an application calls
WinQueryActiveWindow, that function returns the handle of the previously-active
window until the application establishes a new active window. Similarly, if the
application, while processing WM_SETFOCUS, calls WinQueryFocus, that function
returns the handle of the previous keyboard-focus window until the application
establishes a new keyboard-focus window. In other words, even though the system
has sent WM_ACTIVATE and WM_SETFOCUS messages (with the fActive and fFocus
parameters set to FALSE) to the previous windows, those windows are considered
the active and focus windows until the system establishes new active and focus
windows.

5-2 OS/2 Programming Guide-Volume II

If the application calls WinSetFocus while processing a WM_ACTIVATE message,
the system does not send a WM_SETFOCUS message (with fFocus set to FALSE),
because no window has the focus.

A client window receives a WM_ACTIVATE message when its parent frame window
is being activated or deactivated. The activation or deactivation message usually is
followed by a WM_SETFOCUS message that specifies whether the client window is
gaining or losing the keyboard focus. Therefore, if the client window needs to
change the keyboard focus, it should do so during the WM_SETFOCUS message, not
during the WM_ACTIVATE message.

Keyboard Messages
The system sends keyboard input events as WM_CHAR messages to the message
queue of the keyboard-focus window. If no window has the keyboard focus, the
system posts WM_CHAR messages to the message queue of the active frame
window. Following are two typical situations in which an application receives
WM_CHAR messages:

An application has a client window or custom control window, either of which
can have the keyboard focus. If the window procedure for the client or control
window does not process WM_CHAR messages, it should pass them to
WinDefWindowProc, which will pass them to the owner. Dialog control windows,
in particular, should pass unprocessed WM_CHAR messages to the
WinDefDlgProc function, because this is how the user interface implements
control processing for the Tab and Arrow keys.

An application window owns a control window whose window procedure can
handle some, but not all, WM_CHAR messages. This is common in dialog
windows. If the window procedure of a control in a dialog window cannot
process a WM_CHAR message, the procedure can pass the message to the
WinDefDlgProc function. This function sends the message to the control
window's owner, which usually is a dialog frame window. The application's
dialog procedure then receives the WM_ CHAR message. This also is the case
when an application client window owns a control window.

A WM_CHAR message can represent a key-down or key-up transition. It might
contain a character code, virtual-key code, or scan code. This message also
contains information about the state of the Shift, Ctrl, and Alt keys.

Each time a user presses a key, at least two WM_ CHAR messages are generated:
one when the key is pressed, and one when the key is released. If the user holds
down the key long enough to trigger the keyboard repeat, multiple WM_CHAR
key-down messages are generated. If the keyboard repeats faster than the
application can retrieve the input events from its message queue, the system
combines repeating character events into one WM_CHAR message and increments
a count byte that indicates the number of keystrokes represented by the message.
Generally, this byte is set to 1, but an application should check each WM_CHAR
message to avoid missing any keystrokes.

An application can ignore the repeat count. For example, an application might
ignore the repeat count on Arrow keys to prevent the cursor from skipping
characters when the system is slow.

Chapter 5. Mouse and Keyboard Input 5-3

Message Flags
Applications decode WM_ CHAR messages by examining individual bits in the flag
word contained in the first message parameter (mp1) that the system passes with
every WM_ CHAR message. The type of flag word indicates the nature of the
message. The system can set the bits in the flag word in various combinations. For
example, a WM_CHAR message can have the KC_CHAR, KC_SCANCODE, and
KC_SHIFT attribute bits all set at the same time. An application can use the
following list of flag values to test the flag word and determine the nature of a
WM_ CHAR message:

Table 5-1 (Page 1 of 2). Keyboard Character Flags

Flag Name

KC_ALT

KC_CHAR

KC_COMPOSITE

KC_CTRL

KC_DEADKEY

KC_INVALIDCHAR

KC_INVALIDCOMP

KC_KEYUP

KC_LONEKEY

KC_PREVDOWN

KC_SCANCODE

KC_SHIFT

5-4 OS/2 Programming Guide-Volume II

Description

Indicates that the Alt key was down when the message was
generated.

Indicates that the message contains a valid character code for a
key, typically an ASCII character code.

In combination with the KC_CHAR flag, this flag indicates that
the character code is a combination of the key that was pressed
and the previous dead key. This flag is used to create
characters with diacritical marks.

Indicates that the Ctrl key was down when the message was
generated.

In combination with the KC_CHAR flag, this flag indicates that
the character code represents a dead-key glyph (such as an
accent). An application displays the dead-key glyph and does
not advance the cursor. Typically, the next WM_ CHAR message
is a KC_COMPOSITE message, containing the glyph associated
with the dead key.

Indicates that the character is not valid for the current
translation tables.

Indicates that the character code is not valid in combination with
the previous dead key.

Indicates that the message was generated when the user
released the key. If this flag is clear, the message was
generated when the user pressed the key. An application can
use this flag to determine key-down and key-up events.

In combination with the KC_KEYUP flag, this flag indicates that
the user pressed no other key while this key was down.

In combination with the KC_VIRTUALKEY flag, this flag indicates
that the virtual key was pressed previously. If this flag is clear,
the virtual key was not previously pressed.

Indicates that the message contains a valid scan code generated
by the keyboard when the user pressed the key. The system
uses the scan code to identify the character code in the current
code page; therefore, most applications do not need the scan
code unless they cannot identify the key that the user pressed.
WM_CHAR messages generated by user keyboard input
generally have a valid scan code, but WM_ CHAR messages
posted to the queue by other applications might not contain a
scan code.

Indicates that the Shift key was down when the message was
generated.

Table 5-1 (Page 2 of 2). Keyboard Character Flags

Flag Name Description

KC_TOGGLE Toggles on and off every time the user presses a specified key.
This is important for keys like Numlock, which have an on or off
state.

KC_ VIRTUALKEY Indicates that the message contains a valid virtual-key code for a
key. Virtual keys typically correspond to function keys.

The mp1 and mp2 parameters of the WM_ CHAR message contain information
describing the nature of a keyboard input event, as follows:

• SHORT1FROMMP (mp1) contains the flag word.
• CHAR3FROMMP (mp1) contains the key-repeat count.
• CHAR4FROMMP (mp1) contains the scan code.
• SHORT1FROMMP (mp2) contains the character code.
• SHORT2FROMMP (mp2) contains the virtual key code.

An application window procedure should return TRUE if it processes a particular
WM_CHAR message or FALSE if it does not. Typically, applications respond to
key-down events and ignore key-up events.

The following sections describe the different types of WM_ CHAR messages.
Generally, an application decodes these messages by creating layers of conditional
statements that discriminate among the different combinations of flag and code
attributes that can occur in a keyboard message.

Key-Down or Key-Up Events
Typically, the first attribute that an application checks in a WM_ CHAR message is
the key-down or key-up event. If the KC_KEYUP bit of the flags word is set, the
message is from a key-up event. If the flag is clear, the message is from a
key-down event.

Repeat-Count Events
An application can check the key-repeat count of a WM_CHAR message to
determine whether the message represents more than 1 keystroke. The count is
greater than 1 if the keyboard is sending characters to the system queue faster than
the application can retrieve them. If the system queue fills up, the system combines
consecutive keyboard input events for each key into a single WM_ CHAR message,
with the key-repeat count set to the number of combined events.

Character Codes
The most typical use of WM_ CHAR messages is to extract a character code from the
message and display the character on the screen. When the KC_ CHAR flag is set in
the WM_CHAR message, the low word of mp2 contains a character code based on
the current code page. Generally, this value is a character code (typically, an ASCII
code) for the key that was pressed.

Virtual-Key Codes
WM_CHAR messages often contain virtual-key codes that correspond to various
function keys and direction keys on a typical keyboard. These keys do not
correspond to any particular glyph code but are used to initiate operations. When
the KC_VIRTUALKEY flag is set in the flag word of a WM_CHAR message, the high
word of mp2 contains a virtual-key code for the key.

Chapter 5. Mouse and Keyboard Input 5-5

Note: Some keys, such as the Enter key, have both a valid character code and a
virtual-key code. WM_ CHAR messages for these keys will contain character
codes for both newline characters (ASCII 11) and virtual-key codes
(VK_ENTER).

Scan Codes
A third possible value in a WM_CHAR message is the scan code of the key that was
pressed. The scan code represents the value that the keyboard hardware generates
when the user presses a key. An application can use the scan code to identify the
physical key pressed, as opposed to the character code represented by the same
key.

Accelerator-Table Entries
The system checks all incoming keyboard messages to see whether they match any
existing accelerator-table entries (in either the system message queue or the
application message queue). The system first checks the accelerator table
associated with the active frame window; if it does not find a match, the system uses
the accelerator table associated with the message queues. If the keyboard input
event corresponds to an accelerator-table entry, the system changes the WM_CHAR
message to a WM_ COMMAND, WM_SYSCOMMAND, or WM_HELP message,
depending on the attributes of the accelerator table. If the keyboard input event
does not correspond to an accelerator-table entry, the system passes the WM_CHAR
message to the keyboard-focus window.

Applications should use accelerator tables to implement keyboard shortcuts rather
than translate command keystrokes. For example, if an application uses the F2 key
to save a document, the application should create a keyboard accelerator entry for
the F2 virtual key so that, when pressed, the F2 key generates a WM_ COMMAND
message rather than a WM_ CHAR message.

Mouse Messages
Mouse messages occur when a user presses or releases one of the mouse buttons
(a click) and when the mouse moves. All mouse messages contain the x and y

coordinates of the mouse-pointer hot spot (relative to the coordinates of the window
receiving the message) at the time the event occurs. The mouse-pointer hot spot is
the location in the mouse-pointer bit map that the system tracks and recognizes as
the position of the mouse pointer.

If a window has the CS_HITTEST style, the system sends the window a WM_HITTEST
message when the window is about to receive a mouse message. Most applications
pass WM_HITTEST messages on to WinDefWindowProc by default, so disabled
windows do not receive mouse messages. Windows that specifically respond to
WM_HITTEST messages can change this default behavior. If the window is enabled
and should receive the mouse message, the WinDefWindowProc function (using the
default processing for WM_HITTEST) returns the value HT_NORMAL. If the window
is disabled, WinDefWindowProc returns HT_ERROR, in which case the window does
not receive the mouse message.

The default window procedure processes the WM_HITTEST message and the usHit
parameter in the WM_MOUSEMOVE message. Therefore, unless an application
needs to return special values for the WM_HITTEST message or the usHit
parameter, it can ignore them. One possible reason for processing the
WM_HITTEST message is for the application to react differently to a mouse click in a
disabled window.

5-6 OS/2 Programming Guide-Volume II

The contents of the mouse-message parameters (mp1 and mp2) are as follows:

• SHORT1FROMMP (mp1) contains the x position.
• SHORT2FROMMP (mp1) contains they position.
• SHORT1 FROM MP (mp2) contains the hit-test parameter.

Capturing Mouse Input
The operating system generally posts mouse messages to the window that is under
the mouse pointer at the time the system reads the mouse input events from the
system message queue. An application can change this by using the WinSetCapture
function to route all mouse messages to a specific window or to the message queue
associated with the current thread. If mouse messages are routed to a specific
window, that window receives all mouse input until either the window releases the
mouse or the application specifies another capture window. If mouse messages are
routed to the current message queue, the system posts each mouse message to the
queue with the hwnd member of the QMSG structure for each message set to NULL.
Because no window handle is specified, the WinDispatchMsg function in the
application's main message loop cannot pass these messages to a window
procedure for processing. Therefore, the application must process these messages
in the main loop.

Capturing mouse input is useful if a window needs to receive all mouse input, even
when the pointer moves outside the window. For example, applications commonly
track the mouse-pointer position after a mouse "button down" event, following the
pointer until a "button up" event is received from the system. If an application does
not call WinSetCapture for a window and the user releases the mouse button, the
application does not receive the button-up message. If the application sets a
window to capture the mouse and tracks the mouse pointer, the application receives
the button-up message even if the user moves the mouse pointer outside the
window.

Some applications are designed to require a button-up message to match a
button-down message. When processing a button-down message, these
applications call WinSetCapture to set the capture to their own window; then, when
processing a matching button-up message, they call WinSetCapture, with a NULL
window handle, to release the mouse.

Button Clicks
An application window's response to a mouse click depends on whether the window
is active. The first click in an inactive window should activate the window.
Subsequent clicks in the active window produce an application-specific action.

A common problem for an application that processes WM_BUTTON1 DOWN or
similar messages is failing to activate the window or set the keyboard focus. If the
window processes WM_CHAR messages, the window procedure should call
WinSetFocus to make sure the window receives the keyboard focus and is activated.
If the window does not process WM_ CHAR messages, the application should call
WinSetActiveWindow to activate the window.

Mouse Movement
The system sends WM_MOUSEMOVE messages to the window that is under the
mouse pointer, or to the window that currently has captured the mouse, whenever
the mouse pointer moves. This is useful for tracking the mouse pointer and
changing its shape, based on its location in a window. For example, the mouse
pointer changes shape when it passes over the size border of a standard frame
window.

Chapter 5. Mouse and Keyboard Input 5-7

All standard control windows use WM_MOUSEMOVE messages to set the

mouse-pointer shape. If an application handles WM_MOUSEMOVE messages in

some situations but not others, unused messages should be passed to the
WinDefWindowProc function to change the mouse-pointer shape.

Using the Mouse and Keyboard
This section explains how to perform the following tasks:

• Determine the active status of a frame window.
• Check for a key-up or key-down event.
• Respond to a character message.
• Handle virtual-key codes.
• Handle a scan code.

Determining the Active Status of a Frame Window
The activated state of a window is a frame-window characteristic. The system does

not provide an easy way to determine whether a client window is part of the active

frame window. That is, the window handle returned by the WinQueryActiveWindow

function identifies the active frame window rather than the client window owned by

the frame window.

Following are two methods for determining the activated state of a frame window

that owns a particular client window:

• Call WinQueryActiveWindow and compare the window handle it returns with the

handle of the frame window that contains the client window, as shown in the
following code fragment:

HWNO.hwndClient;
BOOL fActivated;

• Each time the frame window is activated, the client window receives a

WM_ACTIVATE message with the low word of the mp2 equal to TRUE. When the

frame window is deactivated, the client window receives a WM_ACTIVATE

message with a FALSE activation indicator.

5-8 05/2 Programming Guide-Volume II

\

Checking for a Key-Up or Key-Down Event
The following code fragment shows how to decode a WM_ CHAR message to
determine whether it indicates a key-up event or a key-down event:

Responding to a Character Message
The following code fragment shows how to respond to a character message:

If the KC_CHAR flag is not set, the mp2 parameter from CHAR1FROMMP still might
contain useful information. If either the Alt key or the Ctrl key, or both, are down,
the KC_CHAR bit is not set when the user presses another key. For example, if the
user presses the a key when the Alt key is down, the low word of mp2 contains the
ASCII value for "a" (Ox0061), the KC_ALTflag is set, and the KC_CHAR flag is clear.
If the translation does not generate any valid characters, the char field is set to 0.

Chapter 5. Mouse and Keyboard Input 5-9

The to\lowing code fragment shOws hOW to decode a WM_ CHAR message

ttand\\ng Virtua\-KeY codes containing a valid virtua\-iteY code:

5· 10 QS/2 programming Guide-Volume II

\

Handling a Scan Code

Summary

All WM_CHAR messages generated by keyboard input events have valid scan
codes. WM_CHAR messages posted by other applications might or might not have
valid scan codes. The following code fragment shows how to extract a scan code
from a WM_CHAR message:

Following are the OS/2 functions and messages used with activation and
keyboard/mouse input.

Table 5-2. Mouse/Keyboard Functions

Function Name

WlnEnablePhyslnput

WlnFocusChange

WlnGetKeyState

WinGetPhysKeyState

WlnlsPhyslnputEnabled

WlnQueryActlveWlndow

WinQueryCapture

WlnQueryFocus

WlnSetActlveWlndow

WlnSetCapture

WlnSetFocus

WinSetKeyboardStateTable

Description

Enables or disables queuing of physical
input.

Changes the focus window.

Returns the state of the key at the time
the last message from the message
queue was posted.

Returns the physical key state.

Returns the status of the hardware
(on/off)

Returns the active window for
HWND_DESKTOP or other parent window.

Returns the handle of the window the
pointer has captured.

Returns the focus window; NULL if there
is not focus window.

Makes the frame window the active
window.

Captures all pointing device messages.

Sets the focus window.

Gets or sets the keyboard state.

Chapter 5. Mouse and Keyboard Input 5-11

Table 5-3. Focus-Change and Activation Messages

Message

WM_ACTIVATE

WM_FOCUSCHANGE

WM_QUERYFOCUSCHAIN

WM_SETFOCUS

WM_SETSELECTION

Table 5-4. Mouse Messages

Message

WM_BUTTON1 DBLCLK

WM_BUTTON1 DOWN

WM_BUTTON1 UP

WM_BUTTON2DBLCLK

WM_BUTTON2DOWN

WM_BUTTON2UP

WM_BUTTON3DBLCLK

WM_BUTTON3DOWN

WM_BUTTON3UP

WM_HITTEST

WM_MOUSEMOVE

Table 5-5. Keyboard Messages

Message

WM_CHAR

WM_COMMAND

5-12 OS/2 Programming Guide-Volume II

Description

Sent when a different window becomes the active
window.

Occurs when the window having the focus is

changed.

Requests the handle of a window in the focus
chain.

Occurs when a window is to lose or gain the input

focus.

Occurs when a window is selected or deselected.

Description

Occurs when the user presses button 1 of the
pointing device twice.

Occurs when the user presses pointer button 1.

Occurs when the user releases pointer button 1.

Occurs when the user presses button 2 of the
pointing device twice.

Occurs when the user presses pointer button 2.

Occurs when the user releases pointer button 2.

Occurs when the user presses button 3 on the
pointing device twice.

Occurs when the user presses pointer button 3.

Occurs when the user releases pointer button 3.

Sent to determine which window is associated with
an input from the pointing device.

Occurs when the pointing device pointer moves.

Description

Occurs when the user presses a key.

Occurs when a control has a significant event to
notify to its owner, or when a keystroke has been
translated by an accelerator table into
WM_COMMAND.

Chapter 6. Frame Windows

A frame window is the basic window used by most Presentation Manager
applications to enable the user to perform manipulation functions. This chapter
explains how to create and use frame windows in PM applications.

About Frame Windows

Main Window

© Copyright IBM Corp. 1992

An application nearly always starts with a frame window to create a composite
window (for example, a main window) that consists of the frame window, several
frame-control windows, and a client window. The frame controls conform to the
Common User Access (CUA) user interface guidlines. The frame window
coordinates the actions of the frame controls and client window, enabling the
composite window to act as a single unit.

Frame windows have the preregistered public window class WC_FRAME. The
frame-window class, like the preregistered control classes, defines the appearance
and behavior of the frame window.

The main window of an appHcation, typically, is composed of a frame window and a
client window. The frame window usually includes control windows such as a title
bar, system menu, menu bar (action bar or menu in user terminology), and scroll
bars. Figure 6-1 is an example of a typical frame window.

Title-Bar
Icon

Menu bar

Window
border

Information
area

Window title

Horizontal scroll bar

Figure 6-1. Typical Frame Window and Its Components

Window sizing buttons
.. ~
' !} Title-Bar

:~
::
·:

Vertical
scroll
bar

A frame window provides the standard services the user expects from a window-for
example, moving, sizing, minimizing, and maximizing. The frame window receives
input from the control windows (called frame controls) and sends messages to both
the frame controls and the client window.

6-1

Frame Controls
When creating a frame window, an application also can create one or more frame
controls as child windows of the frame window. Most frame windows contain at
least a system menu and title bar. Other optional controls might include a menu bar
and scroll bar as shown above.

An application can create a frame window with specified frame controls by calling
WinCreateStdWindow with the appropriate frame-control flags.

The frame window owns the child frame-control windows, which can send
notification messages that tell the frame window what the user is doing with the
frame controls. For example, using a mouse, a user can move a window by clicking
the title bar and dragging the window to a new position. The title-bar control
responds to the click by sending a message to the frame window, notifying it of the
user's request to move the window. Then the frame window tracks the mouse
motion and moves the frame window and all of its child windows to the new
position.

PM, rather than the application, handles the processing of the frame controls, thus
providing the user a consistent interface for manipulating and interacting with
windowed applications on the screen. Frame controls are described in individual
chapters. For more information about control windows, see Chapter 7, "Control
Windows" on page 7-1.

Client Window
Every main window has a client window, which is the window in which the
application displays output and receives mouse and keyboard input from the user.
What an application displays in the client window, how it displays it, and how it
interprets input to the window are controlled by the client's application-defined
window procedure.

An application creates the client window when it creates the frame window. The
client window, which is specific to the application, is nearly always created using a
private window class (a class registered by the application). Like a frame control,
the client window is a child window and is owned by the frame window. This
means, for example, that the client window is moved when the frame window
moves, is clipped to the frame-window size, and is destroyed when the frame
window is destroyed.

The relationship between the frame window and the client window allows the frame
window to pass messages between other frame controls and the client window. For
example, a client window can send a message to the frame window requesting that
the frame window change the window title. The frame window, in turn, sends a
message to the title-bar control, telling it to change the title of the window.

Additional Frame-Window Items
In addition to its frame controls, a frame window also can contain a sizing border
and the minimize and maximize buttons (also known as maximize and minimize
icons). These items are not frame controls, because the frame window draws and
maintains them. (Frame controls are windows that draw and maintain themselves.)

The sizing border encloses the frame window and lets the user change the size of
the window using a mouse. The minimize button, at the right end of the title bar,
lets the user reduce the frame window to an icon. The maximize button, to the right
of the minimize button, lets the user enlarge the window so that it fills the screen.

6-2 05/2 Programming Guide-Volume II

An application can add these items to a frame window by using the
FCF_SIZEBORDER, FCF_MAXBUTTON, and FCF_MINBUTTON (or FCF_MINMAX)

styles. (The FCF _MINMAX style adds both a maximize button and a minimize

button.)

Frame-Control Identifiers
A frame window uses a set of standard constants to identify the frame controls and

the client window. The frame-control identifiers all begin with the prefix FID_ and

can be used in functions such as WinWindowFromlD to uniquely identify a given

control or the client window. The frame controls also use these identifiers in

notification messages sent to the frame window. The following table describes the

frame-control identifiers:

Table 6-1. Frame-Control Identifiers

Identifier Description

FID_CLIENT Identifies a client window.

FID _HORZSCROLL Identifies a horizontal scroll bar.

FID_MENU Identifies a menu.

FID_MINMAX Identifies the minimize and maximize
{window-sizing) buttons.

FID_SYSMENU Identifies a system menu.

FID _ TITLEBAR Identifies a title bar.

FID_ VERTSCROLL Identifies a vertical scroll bar.

Frame-Window Creation
An application typically creates a frame window by using the WinCreateStdWindow

function, which creates a frame window, a client window, and the specified frame

controls. The application also can call WinCreateWindow with the WC_FRAME

window class, which creates the frame window and controls but not the client

window. To create the client, the application can call WinCreateWindow, specifying

the original frame window as the parent and owner.

An application also can use a frame window to create a dialog window. For a dialog

window, the frame window contains control windows but no client window. The

application creates the dialog window by using the WinloadDlg or WinCreateDlg

functions. These functions require an appropriate dialog template from the

application's resource-definition file. The dialog template specifies the styles and

dimensions for the frame window and for the control windows that compose the

dialog window.

Frame Window Controls and Styles
An application uses frame-control flags in the WinCreateStdWindow function to

specify which frame controls to give to the frame window. Frame-control flags are

constants that have the FCF _ prefix.

The frame-window class (WC_FRAME), like other public window classes, provides

many class-specific window styles that applications can use to adapt the

appearance and behavior of a frame window. To specify the frame-window styles,

an application can use either frame-control flags or the frame-window style

constants, which have the FS_ prefix. Each style constant has a corresponding

frame-control flag. Both produce exactly the same styles in a frame window.
Typically, if an application is creating a frame window that uses frame controls, the

Chapter 6. Frame Windows 6-3

application uses frame-control flags to specify the frame-window styles-if not, the
application uses frame-style constants. An application can combine the frame-style
constants with the standard window styles when creating a frame window.

When an application calls WinCreateStdWindow without setting any frame-control
flags, the function creates a standard window that is invisible and behind all its
sibling windows, that has a width and height of 0, and that is positioned at the
lower-left corner of its parent window. After the call to WinCreateStdWindow
returns, the application can use the WinSetWindowPos function to change the
window's size, coordinates, z-order position, and visibility.

If an application calls WinCreateStdWindow with the FCF _SHELLPOSITION
frame-control fJag, the function creates the window so that it is in front of its sibling
windows and has a standard size and coordinates determined by the system.

Frame-Window Resources
If an application specifies FCF _ACCELTABLE, FCF _ICON, FCF _MENU,
FCF _STANDARD, FS_ACCELTABLE, FS_ICON, or FS_STANDARD when creating a
frame window, the application must provide the resources to support the specified
style. Failure to do so causes the window creation to fail. Depending on the style, a
frame window might attempt to load one or more resources from the application's
executable files.

The following table shows the frame-control flags and frame-window styles that
require resources:

Table 6-2. Frame Window Flags and Styles Requiring Resources

Flag Style Description

FCF _ACCELTABLE FS_ACCELTABLE Requires an
accelerator-table
resource. The frame
window uses the
accelerator table to
translate WM_CHAR
messages to
WM_COMMAND,
WM_HELP, or
WM_SYSCOMMAND
messages.

FCF_ICON FS_ICON Requires an icon
resource. The frame
window draws the icon
when the user minimizes
the window.

FCF_MENU FS_MENU Requires a menu-template
resource. A frame window
uses the menu template to
create a menu containing
the commands and menus
specified by the resource.

FCF _STANDARD FS_STANDARD Requires a menu-template
resource
(FCF _STANDARD only),
an accelerator-table
resource, and an icon
resource.

6-4 OS/2 Programming Guide-Volume II

You can use the resource compiler to add icon, menu, and accelerator-table
resources to the application's executable file. Each resource must have a resource
identifier that matches the resource identifier specified in the FRAMECDATA
structure passed to the WinCreateWindow function, or in the idResources parameter
of the WinCreateStdWindow function.

Note: For detailed information about icon, menu, and accelerator-table resources,
see Chapter 26, "Mouse Pointers and Icons" on page 26-1, Chapter 11,
"Menus" on page 11-1, and Chapter 22, "Keyboard Accelerators" on
page 22-1 respectively.

The following sample code illustrates how to use WinCreateStdWindow to load and
set up certain resources for a frame window. Normally the first step is to set up a
header file defining the the IDs of the applicable resources:

Figure 6-2. Defining Resources tor Header File

Then, make a resource (.RC) file, defining each resource:

Figure 6-3. Defining Resources for Resource (.RC) File

When using WinCreateStdWindow with more than one resource, each resource can
have the same ID, as in the above example (ID_RESOURCE or 1), but only if each
resource is of a different type. Resources of the same type must have unique IDs.

Chapter 6. Frame Windows 6-5

Use FCF flags to indicate what resources to load:

Figure 6-4. Using FCF Flags to Indicate What Resources to Load

Use O (or NULL) in the seventh parameter of WinCreateStdWindow to indicate that

the resource is stored in the application file, as follows:

Figure 6-5. Indicating that a Resource is Stored in the Application File

6-6 OS/2 Programming Guide-Volume II

Following is the full listing of the sample program:

Figure 6-6 (Part 1 of 2). Sample Program for Loading Resources in a Frame Window

Chapter 6. Frame Windows 6-7

Figure 6-6 (Part 2 of 2). Sample Program for Loading Resources in a Frame Window

Frame-Window Class Data
An application can specify class-specific data for a frame window by passing to the

WinCreateWindow function a pointer to the FRAMECDATA structure. The

class-specific data contains the frame-control flags (FCF _flags), resource-module

handle, and resource identifier to be used when creating the frame window. The

resource-module handle and the resource identifier specify where to find resources

for the frame window.

Supplying class-specific data with WinCreateWindow is similar to using the

WinCreateStdWindow function without creating a client window.

Frame-Window Data
Frame-window data specifies the state of the frame window at a given time. An

application can retrieve the frame-window data by calling the

WinQueryWindowUShort function. A frame window has the following state flags:

Table 6-3 (Page 1 of 2). Frame Window State Flags and Their Meanings

Flag Description

FF_ACTIVE Indicates that the frame window is active.

FF _DLGDISMISSED Indicates that a dialog window has been dismissed
by a call to the WinDismissDlg function.

FF _FLASHHILITE Indicates that the frame window is flashing and its
flash state is TRUE.

FF _FLASHWINDOW Indicates that the frame window flashes as the
result of either a call to the WinFlashWindow
function or a WM_FLASHWINDOW message.

6-8 OS/2 Programming Guide-Volume II

Table 6-3 (Page 2 of 2). Frame Window State Flags and Their Meanings

Flag

FF _NOACTIVATESWP

FF_ OWNERDISABLE

FF_ OWNERHIDDEN

FF _SELECTED

Fl_ACTIVATEOK

Fl_FRAME

Fl_NOMOVEWITHOWNER

Fl_OWNERHIDE

Frame-Window Operation

Description

Indicates that the system should do no z-ordering
on this frame window.

For a frame window that is part of a dialog window,
this flag indicates whether the owner window was
enabled or disabled when the dialog window was
loaded.

Indicates that the frame window's owner window is
hidden or minimized, in which case the frame
window also is hidden.

Indicates that the frame window has been
selected.

Indicates that the window can be activated.

Indicates that the window is a frame window.

Indicates that the window should move when its
owner window moves.

Indicates that the frame window should be hidden
or shown as a result of its owner window being
hidden, shown, minimized, or maximized.

The frame window maintains the size, position, and visibility of itself, its frame
controls, and its client window. The frame window responds to user requests to
move, size, minimize, maximize, and redraw itself. It also responds to requests to
close (destroy) itself and to change the focus and activation state.

The frame window, when being moved or sized, maintains the position of each
owned window relative to its owner window's lower-left corner.

Whenever the frame window redraws itself (for example, after being moved or
sized), it draws the frame controls and then lets the application draw the client
window. This order ensures that the rapidly drawn frame controls are drawn before
the client window.

The order in which the frame controls are drawn depends on the z-order position of
the controls. The following list specifies the z-order position of the frame controls
(from top to bottom):

FID_SYSMENU
FID_TITLEBAR
FID_MENU
FID_ VERTSCROLL
FID_HORZSCROLL
FID_CLIENT

Although an application can change the z-order position of any window~ changing
the relative positions of frame controls is not recommended.

When the user maximizes the frame window, the size of the frame window
increases to the size of its parent window, plus an additional amount on each of its
four sides equal to the width of its sizing border. A window always is clipped to its

Chapter 6. Frame Windows 6-9

parent window; a maximized standard frame window does not show its sizing
border in its normal maximized position.

Frame controls owned by a frame window or windows owned by child windows of a
frame window are destroyed automatically when the frame window processes the
WM_DESTROY message.

Nonstandard Frame Windows
Although most applications use frame windows to create their main windows and
dialog windows, they are not limited to frame windows. Applications can create
nonstandard frame windows and still use the standard frame controls, such as the
title bar and system menu, within the nonstandard windows.

An application can create a nonstandard frame window either by subclassing a
frame window or by creating a private frame-window class. An application that
subclasses a frame window can intercept the messages sent to the window and
process them in new ways. An application that creates private frame-window
classes essentially rewrites the frame-window procedure. In either case, by
creating nonstandard frame windows, the application gains much more control over
the arrangement of frame controls in the frame window.

The messages WM_FORMATFRAME, WM_UPDATEFRAME, and
WM_CALCVALIDRECTS control the arrangement of frame controls for applications
that subclass the frame-window procedure. By intercepting these messages, an
application can rearrange the frame controls in a frame window.

To maintain the size and position of frame controls, an application that creates
private frame-window classes can use the WinCreateFrameControls and
WinCalcFrameRect functions. These functions provide capabilities that are similar
to those provided by frame windows.

Default Frame-Window Behavior
The following table lists all the messages specifically handled by the window
procedure of the predefined frame-window class (WC _FRAME) and describes how
the window procedure responds to each message.

Table 6-4 (Page 1 of 3). Default Frame-Window Messages and Behavior

Message

WM_ACTIVATE

WM_BUTTON1DOWN

WM_BUTTON2DOWN

WM_BUTTON3DOWN

WM_BUTTON1UP

WM_BUTTON1DBLCLK

6-10 OS/2 Programming Guide-Volume II

Description

Sets the highlighted state of the title bar or border
so that it matches the frame window's activation
state.

If the frame window is minimized, captures the
mouse; otherwise, activates the frame window.

Activates the frame window.

Activates the frame window.

Processes messages from minimized window
frames.

If the frame window is minimized, posts a
WM_SYSCOMMAND message to itself; otherwise,
activates the frame window.

Table 6-4 (Page 2 of 3). Default Frame-Window Messages and Behavior

Message

WM_CALCVALIDRECTS

WM_CLOSE

WM_ CREATE

WM_DESTROY

WM_ENABLE

WM_ERASEBACKGROUND

WM_FORMATFRAME

WM_HITTEST

WM_MINMAXFRAME

WM_MOUSEMOVE

WM_PAINT

WM_QUERYTRACKINFO

WM_SHOW

WM_SIZE

Description

If the frame window has no client window or if the
client window has the CS_SIZEREDRAW style,
returns the CVR_REDRAW flag to invalidate the
entire window.

If the frame window has a client window, passes
this message to the client; otherwise, returns the
result of the WinDefWindowProc function.

Creates the specified frame controls by calling the
WinCreateFrameControls function. Also creates
any accelerator tables, loads icons, and adds itself
to the Window List. These actions depend on the
frame-window styles and frame-control flags
specified for the window.

If the focus is held by a child window of the frame
window, sets the focus to the frame window's
parent window, destroys any owned windows or
child windows, destroys any icons created by
using the FS_ICON style, and destroys any
accelerator tables created by using the
FS_ACCEL TABLE style.

Returns the result of the WinDefWindowProc
function.

Returns TRUE, signaling that the window should
erase the client-window area. The frame window
sends this message to itself during WM_PAINT
processing.

Calculates the sizes and positions of the frame
controls and the client window.

If the frame window is minimized and disabled,
returns HT_ERROR; otherwise, returns TF _MOVE.

If the frame window has a client window, passes
this message to the client window; otherwise,
passes this message to the WinDefWindowProc
function.

Determines the correct mouse pointer to use and
returns the result of WinDefWindowProc.

If the frame window is minimized, sends
WM_QUERYICON and WM_ERASEBACKGROUND
to itself and draws the icon; otherwise, paints the
control windows, sends a
WM_ERASEBACKGROUND message to the client
window, and paints the client window.

Starts track-move processing of the title-bar
control window.

Returns the result of WinDefWindowProc.

Sends a WM_FORMATFRAME message to itself.

Chapter 6. Frame Windows 6-11

Table 6-4 (Page 3 of 3). Default Frame-Window Messages and Behavior

Message Description

WM_SYSCOMMAND If the frame window has captured the mouse,

ignores the system command; otherwise, uses one

of the following commands: SC_APPMENU,

SC_CLOSE, SC_MOVE, SC_NEXT,

SC_NEXTFRAME, SC_RESTORE, SC_SIZE,

SC_SYSMENU, SC_ TASKMANAGER.

WM_UPDATEFRAME Reformats and updates the appearance of the

frame window. Sent after a frame control has been

added to or removed from the frame window.

Using Frame Windows
This section explains how to:

• Create a main window
• Retrieve a frame-control handle.

Creating a Main Window
An application can create a main window by using the WinCreateStdWindow

function. The following code fragment creates a typical main window-a frame

window that has a system menu, title bar, menu, vertical and horizontal scroll bars,

minimize and maximize (window-sizing) buttons, and a sizing border:

An application also can create a standard main window by creating a frame window

with the FCF _STANDARD flag. The application must include icon, menu, and

accelerator-table resources if it uses the FCF _STANDARD flag.

6-12 OS/2 Programming Guide-Volume II

The application creates the standard window by using the WinCreateStdWindow
function, as shown in the following code fragment:

Another way to create a main window and its frame controls is to use the
WinCreateWindow function to create the frame window and the frame controls, then
call WinCreateWindow again to create the cJient window. One advantage of this
approach is that, when creating the frame window, the application can specify the
window's initial size and position. The following code fragment illustrates this
approach:

Chapter 6. Frame Windows 6-13

6-14 OS/2 Programming Guide-Volume II

Retrieving a Frame Handle

Summary

An application can retrieve a frame-control handle by using the WinWindowFromlD
function. The following code fragment retrieves the handle of a title-bar control:

Given a frame-control handle, an application can retrieve its parent frame-window
handle by using the WinQueryWindow function:

By using identifiers to identify frame controls, rather than using window classes, an
application can create its own controls to replace the predefined controls.

Following are the OS/2 functions, structures, and messages used with frame
windows.

Table 6-5. Frame-Window Functions

Function Name Description

WlnCalcFrameRect Calculates a client rectangle from a frame rectangle or a frame
rectangle from a client rectangle.

Table 6-6. Frame-Window Structures

Structure Name Description

FRAMECDATA Frame-control data structure.

HSVWP Frame window repositioning handle.

Table 6-7 (Page 1 of 3). Frame-Window Messages

Message Description

WM_ACTIVATE Occurs when an application causes the
activation or deactivation of a window.

WM_BUTION1 DOWN Occurs when the user presses pointer
button 1.

WM_BUTION2DOWN Occurs when the user presses pointer
button 2.

WM_BUTION3DOWN Occurs when the user presses pointer
button 3.

WM_BUTION1 UP Occurs when the user releases point
button 1.

Chapter 6. Frame Windows 6-15

Table 6-7 (Page 2 of 3). Frame-Window Messages

Message

WM_CALCVAUDRECTS

WM_CLOSE

WM_CREATE

WM_DESTROY

WM_ENABLE

WM_ERASEBACKGROUND

WM_FLASHWINDOW

WM_FOCUSCHANGE

WM_FORMATFRAME

WM_HITIEST

WM_MINMAXFRAME

WM_MOUSEMOVE

WM_NEXTMENU

WM_PAINT

WM_QUERYFRAMECTLCOUNT

WM_QUERYFRAMEINFO

WM_QUERYICON

WM_QUERYTRACKINFO

WM_SETACCELTABLE

WM_SETBORDERSIZE

WM_SETICON

6-16 OS/2 Programming Guide-Volume II

Description

Sent to determine which areas of a
window can be preserved and which can
be displayed when a window is sized.

Sent to a frame window to indicate that
the user is closing the window.

Occurs when the application requests
creation of a window.

Occurs when an application requests
destruction of a window.

Sets the enable state of a window.

Causes a client window to be filled with
the background, if appropriate.

Occurs when an application .has issued a
WinFlashWindow call.

Occurs when the window possessing the
focus is changed.

Sent to a frame window to calculate the
sizes and positions of al I the frame
controls and the client window.

Sent to determine which window is
associated with an input from the pointing
device.

Sent to a frame window that is being
minimized, maximized, or restored.

Occurs when the pointing device pointer
moves.

Occurs when either the beginning or the
end of the menu is reached using the
cursor control keys.

Occurs when a window needs painting.

Sent to the frame window in response to
the receipt of a WM_SIZE or
WM_UPDATEFRAME message.

Enables an application to query
information about frame windows.

Sent to a frame window to query its
associated icon.

The frame control and title bar generate
this message after receiving a
WM_ TRACKFRAME message.

Establishes the window accelerator table
to be used for translation when the
window is active.

Sent to the frame window to change the
width and height of the border.

Sent to a frame window to set its
associated icon.

Table 6-7 (Page 3 of 3). Frame-Window Messages

Message

WM_SHOW

WM_SIZECLIPBOARD

WM_SYSCOMMAND

WM_ TRACKFRAME

WM_TRANSLATEACCEL

WM_UPDATEFRAME

WM_WINDOWPOSCHANGED

Description

Occurs when a window's WS_VISIBLE
state is changing.

Sent when the clipboard contains a data
handle for the CFl_OWNERDISPLAY
format, and the clipboard application
window has changed size.

Occurs when a control has a significant
event to notify to its owner or when a
keystroke has been translated by an
accelerator table into a
WM_SYSCOMMAND message.

Sent to a window whenever it is to be
moved or sized.

Sent to the focus window whenever a
WM_CHAR message occurs.

Sent by an application after frame
controls have been added or removed
from the window frame.

Sent to the window procedure of the
window whose position is changed.

Chapter 6'. Frame Windows 6-17

6-18 OS/2 Programming Guide-Volume II

Chapter 7. Control Windows

A control window is a window that an application uses in conjunction with another
window to carry out simple input and output tasks. This chapter describes how to
create and use control windows in PM applications.

About Control Windows

© Copyright IBM Corp. 1992

Control windows are used most often as part of a frame or dialog window, but they
also can be used in a client window. An application can create control windows in a
frame window by using frame-control flags in the WinCreateStdWindow function, or
it can create control windows individually by calling the WinCreateWindow function.

Including control windows in a dialog window requires the use of a dialog template,
which is a data structure that describes a dialog window and its control windows.
The system uses the data in the dialog template to create the dialog window and
control windows. An application can create a dialog template at run time, or it can
use the system resource compiler to create a dialog-template resource.

The operating system provides many types of predefined control windows. An
application can create a control of a particular type by specifying the appropriate
control-window class name, either in the WinCreateWindow function or in a dialog
template. The following is a list of the predefined control-window classes:

Table 7-1 (Page 1 of 2). Control Window Classes

Class name

WC_BUTTON

WC_COMBOBOX

WC_CONTAINER

WC_ENTRYFIELD

WC_FRAME

WC_LISTBOX

WC_MENU

WC_NOTEBOOK

WC_SCROLLBAR

Description

Consists of buttons and boxes the user can select by clicking the
pointing device or using the keyboard.

Creates a combination-box control, which combines a list-box
control and an entry-field control. It allows the user to enter data
by typing in the entry field or choosing from a list in the list box.

Creates a control for the user to group objects in a logical
manner. A container can display those objects in various
formats or views. The container control supports drag and drop
so the user can place information in a container by simply
dragging and dropping.

Consists of a single line of text that the user can edit.

A composite window class that can contain child windows of
many of the other window classes.

Presents a list of text items from which the user can make
selections.

Presents a list of items that can be displayed horizontally as
action bars, or vertically as pull-down menus. Menus usually
are used to provide a command interface to applications.

Creates a control for the user that is displayed as a number of
pages. The top page is visible, and the others are hidden, with
their presence being indicated by a visible edge on each of the
back pages.

Consists of window scroll bars that let the user request to scroll
the contents of an associated window.

7-1

Table 7-1 (Page 2 of 2). Control Window Classes

Class name

WC_SLIDER

WC_SPINBUTTON

WC_STATIC

WC_ TITLEBAR

WC_ VALUESET

Description

Creates a control that is usable for producing approximate
(analog) values or properties. Scroll bars were used for this
function in the past, but the slider provides a more flexible
method of achieving the same result, with less programming
effort.

Creates a control that presents itself to the user as a scrollable
ring of choices, giving the user quick access to the data. The
user is presented only one item at a time, so the spin button
should be used with data that is intuitively related.

Simple display items that do not respond to keyboard or pointing
device events.

Displays the window title or caption and lets the user move the
window's owner.

Creates a control similar in function to the radio buttons but
provides additional flexibility to display graphical, textual, and
numeric formats. The values set with this control are mutually
exclusive.

A control window is always owned by another window, usually a frame or dialog
window. This relationship is important because a control window sends
WM_ CONTROL messages to its owner whenever an input event occurs in the control
window. Each WM_ CONTROL message includes the identifier of the control window
in which the event occurred and a notification code that specifies the nature of the
event. An application specifies a control window's ID either in the
WinCreateWindow function or in a dialog template. Each ID must be unique.

Control windows are like other predefined window classes in that they respond to
standard window-management messages and functions, such as WinSetWindowText
and WinShowWindow.

All control-window classes have a set of specific messages they send and receive.
The summary at the end of this chapter lists the messages that all control windows
have in common.

The system paints most control windows synchronously-that is, it redraws a control
window as soon as any part of that window becomes invalid.

Using Control Windows
An application can use control windows in a dialog window, standard frame window,
or client window. The following sections describe how to use control windows in an
application.

Using Control Windows in a Dialog Window
To use a control window in a dialog window, an application specifies the control in a
dialog template in the application's resource-definition file. A dialog template
typically includes several control windows. When the application loads the
dialog-template resource and displays the dialog window, the system automatically
displays the control windows as part of the dialog window.

7-2 OS/2 Programming Guide-Volume II

An application can send messages, through the dialog-window procedure, to a
control window to change its state. The control window sends notification messages
to the dialog-window procedure. The content of a notification message depends on
the type of control window.

Using Control Windows in a Non-Dialog Window
To use a control window in a non-dialog window, an application must call the
WinCreateWindow function, using the appropriate window class name. An
application usually specifies one of its client windows as the owner of the control
window. Therefore, the client-window procedure receives notification messages
from the control window. In cases where a control is owned by the frame window
(such as a menu control), the notification messages to the frame window are passed
to the client window.

Creating a Custom Control Window
The operating system provides the foHowing three ways to create custom control
windows:

• Use ownerdraw list boxes and menus or buttons.
• Subclass an existing control-window class.
• Register and imp~ement a window class from scratch.

list boxes and menus can have an ownerdraw style, and buttons can have a
user-button style, which cause the system to send a message to the owner of the
ownerdraw control whenever the control must be drawn. (If the owner is a frame
window, it sends these messages on to its client windows for handling by the client
window procedure.) This feature lets an application alter the appearance of a
control window. For menus and list boxes, the owner window draws the items
within the control, and the system draws the outline of the control. For buttons, the
user-button style affects the drawing of the entire control.

Subclassing an existing control window is an easy way to create .a custom control.
The subclass procedure can alter selected behavior of the control window by
processing only those messages that affect the selected behaviors. All other
messages pass to the original control-window procedure.

The techniques for defining a custom control-window class are the same as those
used for creating a cUent-window class. When you create a custom control-window
class, be sure the window procedure can send and receive the messages listed in
Table 7-2 on page 7-5 and Table 7-3 on page 7-5.

Chapter 7. Control Windows 7-3

If an application creates a private control-window class, the name of the private
class could be used in the dialog template, just like a predefined window-class
constant. For example, if an application defines and registers a window class called
"MyControlClass", it could create a dialog window that contains that type of control
window by using the following resource definition:

7-4 OS/2 Programming Guide-Volume II

Summary
Following are the OS/2 messages used with control windows.

Table 7-2. Messages Received by a Control Window

Message Description

WM_ADJUSTWINDOWPOS Sent by WinSetWindowPos to enable the
window to adjust its new position or size
when it is about to be moved.

WM_QUERYDLGCODE Sent by the dialog manager to identify the
type of control, to determine what kinds
of messages the control understands, and
to determine whether an input message
may be processed by the dialog manager
or passed down to the control.

Table 7-3. Messages Generated by a Control Window to its Owner

Message Description

WM_COMMAND Occurs when a control has a significant
event to notify to its owner, or when a
keystroke has been translated by an
accelerator table.

WM_CONTROLPOINTER Sent to a control's owner window when
the pointing device pointer moves over
the control window, allowing the owner to
set the pointer.

WM_HELP Occurs when a control has a significant
event to notify to its owner, or when a
keystroke has been translated into a
WM_HELP message by an accelerator
table.

WM_SYSCOMMAND Occurs when a control has a significant
event to notify to its owner, or when a
keystroke has been translated into a
WM_SYSCOMMAND message by an
accelerator table.

Chapter 7. Control Windows 7-5

7-6 OS/2 Programming Guide-Volume II

Chapter 8. Button Controls

A button is a type of control window used to initiate an operation or to set the
attributes of an operation. This chapter describes how to create and use buttons in
PM applications.

About Button Controls

Button Types

© Copyright IBM Corp. 1992

A button control can appear alone or with a group of other buttons. When buttons
are grouped, the user can move from button to button within the group by pressing
the Arrow keys. The user also can move among groups by pressing the Tab key.

A user can select a button by clicking it with the mouse, pressing the spacebar when
the button has the keyboard focus, or sending a BM_CLICK message. In most
cases, a button changes its appearance when selected.

A button control is always owned by another window, usually a dialog window or an
application's client window. A button control posts WM_ COMMAND messages or
sends WM_CONTROL notification messages to its owner when a user selects the
button. The owner window receives messages from a button control and can send
messages to the button to alter its position, appearance, and enabled/disabled
state.

To use a button control in a dialog window, an application specifies the control in a
dialog template in the application's resource-definition file. The application
processes button messages in the dialog-window procedure.

An application creates a button control in a client window by calling
WinCreateWindow, specifying a window class of WC_BUTTON, and identifying the
client window as the owner of the button control.

There are four main types of buttons: push buttons, radio buttons, check boxes, and
three-state check boxes. A button's type determines how the button looks and
behaves.

A radio button, check box, or three-state check box controls an operation; a push
button initiates an operation. For example, a user might set printing options (such
as paper size, print quality, and printer type) in a print-command dialog window
containing an array of radio buttons and check boxes. After setting the options, the
user would select a push button to tell an application that printing should begin (or
be canceled). Then, the application would query the state of each check box and
radio button to determine the printing parameters.

A push button is a rectangular window that contains a text string, as shown in
Figure 8-1 on page 8-2. Typically, an application uses a push button to let the user
start or stop an operation.

8-1

Figure 8-1. Push Button in a Dialog Box

When selected, a push button control posts a WM_COMMAND message to its owner

window.

A radio button is a window with text displayed to the right of a small circular

indicator. Each time the user selects a radio button, that button's state toggles

between selected and unselected. This state remains until the next time the user

selects the button. An application typically uses radio buttons in groups, as shown

in Figure 8-2.

Radio button

Figure 8-2. Radio Buttons in a Dialog Box

Within a group, usually one button is selected by default, and the user can move the

selection to another button by using the cursor keys; however, only one button can

be selected at a time. Radio buttons are appropriate if an exclusive choice is

required from a fixed list of related options. For example, applications often use

radio buttons to allow the user to select the screen foreground and background

colors. A radio-button control sends WM_ CONTROL messages to its owner window.

Check boxes are similar to radio buttons, except that they can offer multiple-choice

selection as well as individual choice. Figure 8-3 offers the user a fixed list of

choices, with the option of selecting more than one, or even all.

Figure 8-3. Check Boxes in a Dialog Box

8-2 OS/2 Programming Guide-Volume II

Button Styles

Check boxes also toggle application features on or off. For example, a word
processing application might use a check box to let the user turn word wrapping on
or off. A check-box control sends WM_CONTROL messages to its owner window.

Three-state check boxes are similar to check boxes, except that they can be
displayed in halftone as well as selected and unselected. An application might use
the halftone state to indicate that, currently, the checkbox is not selectable. A
three-state check-box control sends WM_CONTROL messages and posts
WM_ COMMAND messages to its owner window.

In addition to using the four predefined button-control types, an application can
create button controls that appear as defined by the owner window. When they must
be drawn or highlighted, these button controls send WM_CONTROL messages with
BN_PAINT as the notification code to their owner windows.

The following table describes the button styles an application can use when creating
button controls:

Table 8-1 (Page 1 of 3). Button Styles

Style

BS_3STATE

BS_AUT03STATE

BS_AUTOCHECKBOX

BS_AUTORADIOBUTION

BS_CHECKBOX

Description.

Creates a three-state check box (see also
BS_CHECKBOX). When the user selects
the check box, it sends a WM_ CONTROL
message to the owner window. The
owner should set the check box to the
appropriate state: selected, unselected,
or halftone.

Creates an auto-three-state check box
(see also BS_CHECKBOX). When the user
selects the check box, the system
automatically sets the check box to the
appropriate state: selected, unselected,
or halftone.

Creates an auto-check box (see also
BS_CHECKBOX). The system
automatically toggles the check box
between the selected and unselected
states each time the user selects the box.

Creates an auto-radio button (see also
BS_RADIOBUTTON). When the user
selects an auto-radio button, the system
automatically selects the button and
removes the selection from the other
auto-radio buttons in the group.

Creates a check box-a small square that
has text displayed to its right. When the
user selects a check box, the check box
sends a WM_CONTROL message to the
owner window. The owner window should
toggle the check box between selected
and unselected states.

Chapter 8. Button Controls 8-3

Table 8-1 (Page 2 of 3). Button Styles

Style

BS_DEFAULT

BS_HELP

BS_NOCURSORSELECT

BS_NOBORDER

BS_NOPOINTERFOCUS

BS_PUSHBUTTON

8-4 OS/2 Programming Guide-Volume II

Description.

Creates a push button that has a heavy

black border. The user can select this

push button by pressing the spacebar.

This style is useful for letting the user

quickly select the most likely set of

options in a dialog window. This style is

valid only in combination with the

BS _PUSHBUTTON style or the
PUSHBUTTON statement in a
resource-definition file.

Creates a push button that posts a
WM_HELP message (instead of a

WM_COMMAND message) to its owner

window when the user selects the button.

This style is valid only in combination

with the BS_PUSHBUTTON style or the

PUSHBUTTON statement in a
resource-definition file.

Creates an auto-radio button that will not

be selected automatically when the user

moves the cursor to the button using the

cursor-movement keys. This style is valid

only in combination with the
BS_AUTORADIOBUTTON style or the

AUTORADIOBUTTON statement in a

resource-definition file.

Creates a push button that has no border.

This style is valid only in combination

with the BS_PUSHBUTTON style or the

PUSHBUTTON statement in a
resource-definition file.

Creates a radio button or check box that

does not receive the keyboard focus

when the user selects it. This style is

valid in combination with the
BS _AUTORADIOBUTTON,
BS_RADIOBUTTON, BS_3STATE,
BS_AUT03STATE; BS_AUTOCHECKBOX,

and BS_CHECKBOX styles, or the

AUTORADIOBUTTON, RADIOBUTTON,

AUTOCHECKBOX,orCHECKBOX
statements in a resource-definition file.

Creates a push button-a round-cornered

rectangle with text displayed inside it.

When selected, the push button posts a

WM_ COMMAND message to its owner

window.

Table 8-1 (Page 3 of 3). Button Styles

Style Description.

BS_RADIOBUTTON Creates a radio button-a small circle that
has text displayed to its right. Radio
buttons usually are used in groups of
related, but exclusive, choices. When the
user selects a radio button, the button
sends a WM_CONTROL message to its
owner window. The user should select
the button and remove the selection from
the other radio buttons in the group.

BS_SYSCOMMAND Creates a button that posts a
WM_SYSCOMMAND message (instead of
a WM_COMMAND message) to the owner
window when the user selects the button.
This style is valid only in combination
with the BS_PUSHBUTTON style or the
PUSHBUTTON statement in a
resource-definition file.

BS_USERBUTTON Creates a user-defined button that sends
a WM_CONTROL message to the owner
window when the button needs to be
drawn, highlighted, or disabled. A
user-defined button also posts
WM_COMMAND messages to the owner
window when the user selects the button.

Default Button Behavior
Following are the messages processed by the predefined button-control window
class (WC_BUTION). Each message is described in terms of how a button control
responds to that message.

Table 8-2 (Page 1 of 2). Messages Processed by the WC_BUTTON Class

Message

BM_CLICK

BM_QUERYCHECK

BM_ QUERYCHECKINDEX

BM_ QUERYHILITE

BM_SETCHECK

BM_SETDEFAULT

BM_SETHILITE

Description

Sends a WM_BUTTON1DOWN and
WM_BUTTON1 UP message to itself to
simulate a user button selection.

Returns the checked state of the button.

Returns the 0-based index to the selected
button in a group. Returns -1 if no button
in the group is selected or if the button
receiving the message is not a radio
button or an auto-radio button.

Returns the highlighted state of the
button.

Sets the checked state of the button and
returns the previous checked state.

Sets the default button state and redraws
the button.

Sets the highlighted state of the button
and returns the previous highlighted
state.

Chapter 8. Button Controls 8-5

Table 8-2 (Page 2 of 2). Messages Processed by the WC_BUTTON Class

tu €AohleJ d1.:v(..l.e

b.;ttu~

Message

WM_BUTTON1DBLCLK

WM_BUTTON1 DOWN

WM_BUTTON1UP

WM_CHAR

WM_CREATE

WM_DESTROY

1- WM_ENABLE -

WM_MATCHMNEMONIC

WM_MOUSEMOVE

WM_PAINT

WM_QUERYDLGCODE

WM_QUERYWINDOWPARAMS

WM_SETFOCUS

WM_SETWINDOWPARAMS

8-6 OS/2 Programming Guide-Volume II

Description

Marks button 1, sending a
BN_DBLCLICKED notification code when

the button-up message arrives.

Sets the button 1 window so it can
capture mouse input.

If the button 1 window can capture mouse
input, and if the mouse pointer is inside
button 1 when the button is released, this
message releases the mouse and sends
a notification message to the owner
window. If the button is a push button,
the push button control posts a
WM_COMMAND message; otherwise, the
button control sends a WM_CONTROL
message with the BN_CLICKED
notification code.

Sets the button window so.it can capture
mouse input when the spacebar is
pressed; releases the mouse when the
spacebar is released. Passes other key
messages to the default window
procedure.

Validates the requested button style and
sets the window text.

Frees the memory containing the
window's text.

Sent when an application changes the
enabled state of a window.

Returns TRUE if mp1 matches a
mnemonic in the control window's text.

Sets the default mouse pointer. If the
button has the mouse captured, the
button's highlighted state changes as the
mouse pointer moves in and out of the
button boundary.

Draws the button according to its style
and current state.

Returns the DLGC_BUTTON code
combined with other DLGC_ codes that
designate the button's type.

Returns the requested window
parameters.

Creates a cursor if the button-control
window is receiving the focus. Destroys
the cursor if the button-control window is
losing the focus.

Sets the requested window parameters
and redraws the button, including the
cursor, if the button-control window has

the focus.

Button Notification Messages
A button that was created using the BS_PUSHBUTTON or BS_USERBUTTON style
posts a WM_COMMAND message to its owner when the user selects it. An
application can change this behavior by combining the BS_HELP or
BS_SYSCOMMAND styles with the BS_PUSHBUTTON or BS_USERBUTTON styles
when creating the button.

A button control that has a style other than BS_PUSHBUTTON or BS_USERBUTTON
sends WM_CONTROL messages to its owner when the user selects it.

When the user selects a push button using the mouse pointer, the system
automatically highlights the button. The button's window procedure tracks the
movement of the pointer until the user releases the button. If the user moves the
pointer so that it is outside the button boundary, the system turns off the highlight.
The push button control does not post a WM_ COMMAND message until the user
releases the pointer button, and then, only if the button is released inside the push
button boundary. When the owner window receives a WM_COMMAND message
from a push button, the low word of the first parameter in the message contains the
identifier of the button as specified either in the dialog template or in the
WinCreateWindow function when the button was created.

An application should avoid duplicating identifiers for menu items and button
controls, because both the items and the controls post identifiers to owner windows
as WM_COMMAND messages. However, the application can determine whether a
WM_ COMMAND message came from a menu or a push button control by looking for
the value CMDSRC_MENU or CMDSRC_PUSHBUTTON in the low word of the
message's second parameter.

When the user selects any button other than a push button, that button sends a
WM_CONTROL message. The application can examine SHORT1FROMMP(mp1) in
the WM_ CONTROL message to find the button identifier, and can examine
SHORT2FROMMP(mp2) to determine the notification code for the control message.
The notification code can be one of the following:

Table 8-3. Notification Code for Button Control Messages

Code Description

BN_CLICKED The user selected the button.

BN_DBLCLICKED The user double-clicked the button.

BN_PAINT A user-defined button needs to be drawn. Buttons with the
BS_USERBUTTON style send this notification code to instruct the
owner window to draw the button control. The second message
parameter of the WM_ CONTROL message contains a pointer to a
USERBUITON structure that contains the information necessary
for drawing the button.

When the user selects a check box or radio button, the button control sends the
WM_CONTROL message with the BN_CLICKED notification code to the owner
window. In response, the owner window should set the display state of the button
by sending the appropriate message back to the button.

An application need not respond to WM_CONTROL messages sent by an auto-check
box or an auto-radio button; the system automatically sets the states of these
buttons.

Chapter 8. Button Controls 8-7

Button States

Custom Buttons

An application can query and set the highlighted and checked states of its buttons

by sending messages to them. An application can obtain the handle of a button by

calling WinWindowFromlD, using the parent window handle and the identifier of the

button. In the case of a dialog window, the parent window would be the dialog

window, and the identifier would be the button identifier from the dialog template.

Button-control text is stored as window text. An application can set and retrieve this

text by using the WinSetWindowText and WinQueryWindowText functions. To set the

size, position, and visibility of a button control, an application uses the standard

window functions.

An application can customize the appearance of a button by using the

BS_USERBUTTON style in combination with other button styles. The owner window

receives WM_ CONTROL messages for these custom buttons whenever they must be

drawn, highlighted, or disabled.

When a button must be drawn, the owner window receives a WM_CONTROL

message with the high word of the first parameter equal to BN_PAINT. The second

parameter is a pointer to a USERBUTTON structure that contains information the

application needs to draw the button.

An application uses the hwnd member of the USERBUTTON structure in a call to the

WinQueryWindowRect function to find the bounding rectangle for the button. The

hps member is used as a presentation space for any drawing. The fsState member

contains flags that tell an application how to draw the button: highlighted,

unhighlighted, or disabled. The fsStateOld member contains flags that describe the

current highlighted, unhighlighted, or disabled state of the button.

Using Button Controls
This section explains how to perform the following tasks:

• Create a dialog template for a button resource.

• Create a button for a client window.

An application creates a group by setting the WS_GROUP style bit for the first

member of the group.

8-8 OS/2 Programming Guide-Volume II

Using Buttons in a Dialog Window
You can define dialog-window buttons as part of a dialog template in a
resource-definition file, as shown in the following Resource Compiler source-code
fragment:

;oo :: ·• 1•. ::· 2::::.!a:::·ia· .: 2gs:; 1fs~: : :wsc2\r:1s:xeiie ···: :Fcl nrfGeoRoE:R
' •... · ..•.•. ··'.:.·· .f •· ·'·"''" :!:····. ' •. ,,. •· ... ·'· .. ' . .;.;.· , ·'· .. :··· :· .. ···. .:

~:~; ·:.:,·· ... ::.:: ; '•·.· ... · .. ·.:':
' : Al'.JTfJ~D rtetl .··· ·11Rad1'()."':l•11 ::·: .· UJ i AADi;Q]; ...•... l..15 : 8'0 ":45:
: ; .~UTQ~AQlOBOif~o~:::~~·~.ad1 ~·?Z.i;:::;;·1~08Aottjz.·::; i~·:· :;59::.::~s.::

.•AB:FO~l)·tOB .. N:; :11Radi:o:73": ·: rtf RADI03 . · .i:s .'49; ... 45
F ; ... ; ;." ~ ···. .~ ,:· .:; .~ :, ;,, ... ·:·· ·'. :, . .. : .. :· .: ' · ::· ,:, .,; .;· .:·: ··. :h: .:~ ,.;: '. :'' .. ;.-.. ;, :'. .·: ·· ·: .''·'" , .. , · .. !·,.:·· :' .. ~ :··. ·' .~ ;,:· .. ; ···: :·:· · .. : .•

· : '1'UT:OM,AIOQ . :~tf .·~~~~jo{ .. 411
;,: :0~9.:.;~9·~ '1:5:~ ... 20.:· :~~ ;:

:: :; .1>,i1sflaoH6N ... !'afi~t~h i;{~: 1o{:·f>ust11: 20 .. i~a:.: sa, :;t4,. ws GROUP
. · · .. · .. :. . :z::.:.::::=r>u.s~eut10N.::"slit.tort1 '.2'1.:·'tn7eusfl2:i:··.1s,::1~a~ ae.;.: :14~. ws~Gaou1>.
s:··,: .. · .. ,;:,:::::;;/J.:·{f~tlsfieiJtf6ij.:!!B~:it«>1{a:·:~•;:,:fo)UStt~f.J1:~,);~~~§:5~~:l4,,~.ws1~ROUP:,

.,. .,,.,,.·~'" ;. ., ~ ...

to: c~ECKl:•.
···Q~Je.~:; :;(<:.:: .. :.;tt:(tHi~K~:.·
hect .• Boi: 3-11

,, lD7cHECKJ ·
:·: :· ',: :· . ··.·; ;:~ ::.~· .;. :·::''::"'· .. : .: ... · ::: . < .!: : '.' '.,'

·· :,r~.l:atijkJN ?~*
,,,., «.,:x ,~:.:: >;:

''«;····,.

Figure 8-4. Defining Dialog-Window Buttons in a Dialog Template

Each button in a dialog window has an identifier (for example, ID_RADI01) that
allows an application to identify the source of the WM_COMMAND and
WM_CONTROL messages. An application can use the identifier as the second
argument of the WinWindowFromlD function to retrieve the button-window handle.

The dialog template also contains the text for each button. For push buttons, this
text is displayed in a rectangular box. If the text is too long to fit in the box, the text
is clipped. For radio buttons and check boxes, text is displayed to the right of the
button. A user selects the button by clicking either the button or the text itself.

The WS_GROUP style identifies the beginning of each new group of buttons. In the
preceding example, the four auto-radio buttons are in the same group, and each of
the other buttons is in its own group. The auto-radio buttons in the first group can
be selected one at a time only. An application must ensure that only one check box
in a group is selected at a time. The order in which items can be selected in the
group can wrap around from the end of the item list to its beginning.

Notice that the DEFPUSHBUTTON style in the preceding example has the identifier
DID_OK. It is customary to include an OK button with this identifier in most dialog
windows to provide a uniform user interface. The DEFPUSHBUTTON style draws a
thick border around a button and allows a user to select the button by pressing the
spacebar.

The dialog-window procedure for a dialog window that contains buttons must
respond to WM_COMMAND and WM_CONTROL messages. A common strategy is to
use auto-radio buttons and auto-check boxes to let the user set a list of capabilities
for a command, and, then, let the user execute the command by choosing an OK
push button. With this strategy, the dialog-window procedure ignores all
WM_ CONTROL messages that come from auto-radio buttons and auto-check boxes.

Chapter 8. Button Controls 8-9

When the dialog-window procedure receives a WM_ COMMAND message for the OK
push button, the procedure should query the auto-radio buttons and auto-check
boxes to determine which options have been selected.

Using Buttons in a Client Window
An application can create a button control using an application client window as the
owner. The following code fragment shows how an application can use buttons in
client windows:

Figure 8-5. Creating a Button Control for a Client Window

Once created in the client window, the button control posts a WM_COMMAND
message or sends a WM_CONTROL message to the client-window procedure. This
window procedure should examine the message identifier to determine which
button posted or sent the message.

An application that has client-window buttons can move and size the buttons when
the client window receives a WM_SIZE message. An application can move and size
a window by using the WinSetWindowPos function. An application can obtain a
window handle for a button control by calling the WinWindowFromlD function,
specifying the handle of the parent window and the window identifier for each
button.

8-10 OS/2 Programming Guide-Volume II

Summary
!

I Following are the OS/2 functions, structures, and messages used with button
controls:

Table 8-4. Button-Control Functions

Function Name Description

WinCreateWindow Creates a new window.

WinQueryWlndowText Copies window text into a buffer.

WlnSetWlndowText Sets the window text for the specified window.

WlnWindowFromlD Returns the handle of the child window with the specified
identify.

Table 8-5. Button-Control Structure

Structure Name Description

USER BUTTON User-button structure.

Table 8-6. Messages Received by a Button control

Message Description

BM_CLICK Application sends this message to cause the effect
of the user clicking a push button.

BM_QUERYCHECK Returns the zero-based index of a checked radio
button.

BM_QUERYCHECKINDEX Returns the zero-based index of a checked radio
button.

BM_ QUERYHILITE Returns the highlighting state of a button control.

BM_SETCHECK Sets the checked state of a button control.

BM_SETDEFAULT Sets the default state of a button control.

BM_SETHILITE Sets the highlight state of a button control.

Chapter 8. Button Controls 8-11

Table 8-7. Messages Generated by a Button Control

Message

WM_COMMAND

WM_CONTROL

WM_CONTROLPOINTER

WM_ENABLE

WM_HELP

WM_MATCHMNEMONIC

WM_QUERYCONVERTPOS

WM_QUERYWINDOWPARAMS

WM_SETWINDOWPARAMS

WM_SYSCOMMAND

8-12 OS/2 Programming Guide-Volume II

Description

Occurs when a control has a significant event to
notify to its owner, or when a keystroke has been

translated by an accelerator table.

Occurs when a control has a significant event to

notify to its owner.

Sent to a control's owner window when the pointer

moves over the control window, allowing the
owner to set the pointer.

Sets the enable state of a window.

Occurs when a control procedure does not expect

to receive this message and, therefore, takes no

action on it, other than to set count to the default

value of NULL

Sent by the dialog box to a control window to

determine whether a typed character matches a

mnemonic in its window text.

Sent by an application to determine whether it is

appropriate to begin conversion of DBCS
characters.

Occurs when an application queries the button

control window procedure window parameters.

Occurs when an application sets or changes the

button control window procedure window
parameters.

Occurs when a control window has a significant

event to notify to its owner, or when a keystroke

has been translated by an accelerator table into a

WM_SYSCOMMAND.

Chapter 9. List-Box Controls

A list box is a control window that displays several text items at a time, one or more
of which can be selected by the user. This chapter explains how to create and use
list-box controls in PM applications.

About List Boxes
An application uses a list box when it requires a list of selectable fields that is too
large for the display area or a list of choices that can change dynamically. Each list
item contains a text string and a handle. Usually, the text string is disp.layed in the
list-box window; but the handle is available to the application to reference other
data associated with each of the items in the list.

A list box always is owned by another window that receives messages from the list
box when events occur, such as when a user se.lects an item from the list box.
Typically, the owner is a dialog window (as shown in Figure 9-1) or the client
window of an application frame window. The client- or dialog-window procedure
defined by the application responds to messages sent from the list box.

Figure 9-1. List Box in a Dialog Box

A list box always contains a scroll bar for use when the list box contains more items
than can be displayed in the list-box window. The list box responds to mouse clicks
in the scroll bar by scrolling the list; otherwise, the scroll bar is disabled.

The maximum number of items permitted in a list box is 32767.

Using List Boxes

© Copyright IBM Corp. 1992

An application uses a list-box control to display a list in a window. List boxes can
be displayed in standard application windows, although they are more commonly
used in dialog windows. In either case, notification messages are sent from the list
box to its owner window, enabling the application to respond to user actions in the
list.

Once a list box is created, the application controls the insertion and deletion of list
items. Items can be inserted at the end of the list, automatically sorted into the list,
or inserted at a specified index position. Applications can turn list drawing on and
off to speed up the process of inserting numerous items into a list.

The owner-window procedure of the list box receives messages when a user
manipulates the list-box data. Most default list actions (for example, highlighting

9-1

selections and scrolling) are handled automatically by the list box itself. The
application controls the responses when the user chooses an item in the list, either
by double-clicking the item or by pressing Enter after an item is highlighted. The list
box also notifies the application when the user changes the selection or scrolls the
list.

Normally, list items are text strings drawn by a list box. An application also can
draw and highlight the items in a list. This enables the application to create
customized lists that contain graphics. When an application creates a list box with
the LS_OWNERDRAW style, the owner of the list box receives a WM_DRAWITEM
message for each item that should be drawn or highlighted. This is similar to the
owner-drawn style for menus, except that the owner-drawn style applies to the
entire list rather than to individual items.

Creating a List-Box Window
List boxes are WC_LISTBOX class windows and are predefined by the system.
Applications can create list boxes by calling WinCreateWindow, using WC_LISTBOX
as the window-class parameter.

A list box passes notification messages to its owner window, so an application uses
its client window, rather than the frame window, as the owner of the list. The
client-window procedure receives the messages sent from the list box.

For example, to create a list box that completely fills the client area of a frame
window, an application would make the client window the owner and parent of the
list-box window, and make the list-box window the same size as the client window.
This is shown in the following code fragment:

..

Wdefine IO_LJ$TWINDOW

HWND · hwndC.1 i ent. hwndLtst;
RECTL .. rel; ·

/*·Ho)'t. big ts .. ·the.• cli~pt wfndo~? •. ~!
WinQuer~w~:f'!dowRect(hwndClien~• &rel);

Because the list box draws its own border, and a frame-window border already
surrounds the client area of a frame window due to the adjacent frame controls, the
effect is a double-thick border around the list box. You can change this effect by
calling WinlnflateRect to overlap the list-box border with the surrounding
frame-window border, resulting in only one list-box border.

9-2 OS/2 Programming Guide-Volume II

Notice that the code specifies the list-box window style LS_NOADJUSTPOS. This
ensures that the list box is created exactly the specified size. If the
LS_NOADJUSTPOS style is not specified, the list-box height is rounded down, if
necessary, to make it a multiple of the item height. Enabling a list box to adjust its
height automatically is useful for preventing partial items being displayed at the
bottom of a list box.

Using a List Box in a Dialog Window
List boxes most commonly are used in dialog windows. A list box in a dialog box is
a control window, like a push button or an entry field. Typically, the application
defines a list box as one item in a dialog template in the resource-definition file, as
shown in the following resource compiler source-code fragment:

Once the dialog resource is defined, the application loads and displays the dialog
box as it would normally. The application inserts items into the list when processing
the WM_INITDLG message.

A dialog window with a list box usually has an OK button. The user can select items
in the list, and then indicate a final selection by double-clicking, pressing Enter, or
clicking the OK button. When the dialog-window procedure receives a message
indicating that the user has clicked the OK button, it queries the list box to
determine the current selection (or selections, if the list allows multiple selections),
and then responds as though it had received a WM_CONTROL message with the
LN_ENTER notification code.

Adding or Deleting an Item in a List Box
Applications can add or delete an item in a list box by sending an LM_INSERTITEM
or LM_DELETEITEM message to the list-box window. Items in a list are specified
with a 0-based index (beginning at the top of the list). A new list is created empty;
then, the application initializes the list by inserting items.

The application specifies the text and position for each new item. It can specify an
absolute-position index or one of the following predefined index values:

Table 9-1. List Item Position Index

Value Meaning

LIT_END Insert item at end of list.

LIT _SORT ASCENDING Insert item alphabetically ascending into list.

LIT _SORTDESCENDING Insert item alphabetically descending into list.

Chapter 9. List-Box Controls 9-3

The application must send an LM_DELETEITEM message and supply the
absolute-position index of the item when deleting items from a list. The
LM_DELETEALL message deletes all items in a list.

One way an application can speed up the insertion of list items is to suspend
drawing until it has finished inserting items. This is a particularly valuable
approach when using a sorted insertion process (when inserting one item can cause
rearrangement of the entire list). You can turn off list drawing by calling
WinEnableWindowUpdate, specifying FALSE for the enable parameter, and then
calling WinShowWindow. This forces a total update when insertion is complete.
The following code fragment illustrates this concept:

Notice that this optimization is unnecessary if an application is adding list items
while processing a WM_INITDLG message, because the list box is not visible, and
the list-box routines are internally optimized.

Responding to a User Selection in a List Box
When a user chooses an item in a list, the primary notification an application
receives is a WM_CONTROL message, with the LN_ENTER control code sent to the
owner window of the list. Within the window procedure for the owner window, the
application responds to the LN_ENTER control code by querying the list box for the
current selection (or selections, in the case of an LS_MULTIPLESEL or
LS_EXTENDEDSEL list box).

The LN_ENTER control code notifies the application that the user has selected a list
item. A WM_ CONTROL message with an LN_SELECT control code is sent to the
list-box owner whenever a selection in a list changes, such as when a us.er moves
the mouse pointer up and down a list while pressing the mouse button. In this case,
items are selected but not yet chosen. An application can ignore LN_SELECT
control codes when the selection changes, responding only when the item is
actually chosen. Or an application can use LN_SELECT to display
context-dependent information that changes rapidly with each selection made by the
user.

Handling Multiple Selections
When a list box has the style LS_MULTIPLESEL or LS_EXTENDEDSEL, the user can
select more than one item at a time. An application must use different strategies
when working with these types of lists. For example, when responding to an
LN_ENTER control code, it is not sufficient to send a single LM_QUERYSELECTION
message, because that message will find only the first selection. To find all current
selections, an application must continue sending LM_QUERYSELECTION messages,
using the return index of the previous message as the starting index of the next
message, until no items are returned.

9-4 OS/2 Programming Guide-Volume II

Creating an Owner-Drawn List Item
To draw its own list items, an application must create a list that has the style
LS_OWNERDRAW: the owner window of the list box must respond to the
WM_MEASUREITEM and WM_DRAWITEM messages.

When the owner window receives a WM_MEASUREITEM message, it must return
the height of the list item. All items in a list must have the same height (greater
than or equal to 1). The WM_MEASUREITEM message is sent when the list box is
created, and every time an item is added. You can change the item height by
sending an LM_SETITEMHEIGHT message to the list-box window.

The owner window receives a WM_DRAWITEM message whenever an item in an
owner-drawn list should be drawn or highlighted. Although it is quite common for
an owner-drawn list to draw items, it is less common to override the system-default
method of highlighting. (This method inverts the rectangle that contains the item.)
Do not create your own highlighting unless, for some reason, the system-default
method is unacceptable to you.

The WM_DRAWITEM message contains a pointer to an OWNERITEM data structure.
The OWNERITEM structure contains the window identifier for the list box, a
presentation-space handle, a bounding rectangle for the item, the position index for
the item, and the application-defined item handle. This structure also contains two
fields that determine whether a message draws, highlights, or removes the
highlighting from an item. The OWNERITEM structure has the following form:

When the item must be drawn, the owner window receives a WM_DRAWITEM
message with the fsState field set differently from the fsStateOld field. If the owner
window draws the item in response to this message, it returns TRUE, telling the
system not to draw the item. If the owner window returns FALSE, the system draws
the item, using the default list-item drawing method.

You can get the text of a list item by sending an LM_QUERYITEMTEXT message to
the list-box window. You should draw the item using the hps and re/Item arguments
provided in the OWNERITEM structure.

If the item being drawn is currently selected, the fsState and fsStateOld fields are
both TRUE; they both will be FALSE if the item is not currently selected. The
window receiving a WM_DRAWITEM message can use this information to highlight
the selected item at the same time it draws the item. If the owner window highlights
the item, it must leave the fsState and fsStateOld fields equal to each other. If the
system provides default highlighting for the item (by inverting the item rectangle),
the owner window must set the fsState field to 1 and the fsStateOld field to 0 before
returning from the WM_DRAWITEM message.

Chapter 9. List-Box Controls 9-5

The owner window also receives a WM_DRAWITEM message when the highlight

state of a list item changes. For example, when a user clicks an item, the

highlighting must be removed from the currently selected item, and the new

selection must be highlighted. If these items are owner-drawn, the owner window

receives one WM_DRAWITEM message for each unhighlighted item and one

message for the newly highlighted item. To highlight an item, the fsState field must

equal TRUE, and the fsStateOld field must equal FALSE. In this case, the

application should highlight the item and return the fsState and fsStateOld fields

equal to FALSE, which tells the system not to highlight the item. The application

also can return the fsState and fsStateOld fields with two different (unequal) values

and the list box will highlight the item (the default action).

To remove highlighting from an item, the fsState field must equal FALSE and the

fsStateOld field must equal TRUE. In this case, the application removes the

highlighting and returns both the fsState and the fsStateOld fields equal to FALSE.

This tells the system not to attempt to remove the highlighting. The application also

can return the fsState and fsStateOld fields with two different (unequal) values, and

the list box will remove the highlighting (the default response).

The following code fragment shows these selection processes:

9-6 OS/2 Programming Guide-Volume II

Default List-Box Behavior
This following table lists all the messages handled by the predefined list-box
window-class procedure.

Table 9-2 (Page 1 of 2). Messages Handled by WC_LJSTBOX Class

Message

LM_DELETEALL

LM_DELETEITEM

LM_INSERTITEM

LM_QUERYITEMCOUNT

LM_ QUERYITEMHANDLE

LM_ QUERYITEMTEXT

LM_ QUERYITEMTEXTLENGTH

LM_ QUERYSELECTION

LM_ QUERYTOPINDEX

LM_SEARCHSTRING

LM_SELECTITEM

LM_SETITEMHANDLE

LM_SETITEMHEIGHT

LM_SETITEMTEXT

LM_SETTOPINDEX

WM_ADJUSTWINDOWPOS

WM_BUTTON2DOWN

WM_BUTTON3DOWN

WM_ CHAR

WM_ CREATE

Description

Deletes all items in the list.

Removes the specified item from the list,
redrawing the list as necessary. Returns the
number of items remaining in the list.

Inserts a new item in the list according to the
position information passed with the message.

Returns the number of items in the list.

Returns the specified item handle.

Copies the text of the specified item to a buffer
supplied by the message sender.

Returns the text length of the specified item.

For a single-selection list box, returns the
zero-based index of the currently selected item.
For a multiple-selection list box, returns the next
selected item or LIT _NONE if no more items are
selected.

Returns the zero-based index to the item currently
visible at the top of the list.

Searches the list for a match to the specified
string.

Selects the specified item. If the list is a
single-selection list, deselects the previous
selection. Sends a WM_CONTROL message (with
the LN_SELECT code) to the owner window.

Sets the specified item handle.

Sets the item height for the list. All items in the list
have the same height.

Sets the text for the specified item.

Shows the specified item as the top item in the list
window, scrolling the list as necessary.

If the list box has the style LS_NOADJUSTPOS,
makes no changes to the SWP structure and
returns FALSE. Otherwise, adjusts the height of the
list box so that a partial item is not shown at the
bottom of the list. Returns TRUE if the SWP
structure is changed.

Returns TRUE; the message is ignored.

Returns TRUE; the message is ignored.

Processes virtual keys for line and page scrolling.
Sends an LN_ENTER notification code for the Enter
key. Returns TRUE if the key is processed;
otherwise, passes the message to the
WinDefWindowProc function.

Creates an empty list box with a scroll bar.

Chapter 9. List-Box Controls 9-7

Summary

Table 9-2 (Page 2 of 2). Messages Handled by WC_LISTBOX Class

Message

WM_DESTROV

WM_ENABLE

WM_MOUSEMOVE

WM_PAINT

WM_SETFOCUS

WM_ TIMER

WM_SCROLL

Description

Destroys the list and deallocates any memory

allocated during its existence.

Enables the scroll bar if there are more items than

can be displayed in a list-box window.

Sets the mouse pointer to the arrow shape and

returns TRUE to show that the message was

processed.

Draws the list box and its items.

If the list box is gaining the focus, creates a cursor

and sends an LN_SETFOCUS notification code to

the owner window. If the list box is losing the

focus, this message destroys the cursor and sends

an LN_KILLFOCUS notification code to the owner

window.

Uses timers to control automatic scrolling that

occurs when a user drags the mouse pointer

outside the window.

Handles scrolling indicated by the list-box scroll

bar.

Following are the operating system structure, functions, and messages used with

list boxes.

Table 9-3. List-Box Structure

Structure Name

OWNERITEM

Table 9-4. List-Box Functions

Function Name

WlnDeleteLboxltem

WlnlnsertLboxltem

WinQueryLboxCount

WlnQueryLboxltemText

WlnQueryLboxltemTextLength

WlnQueryLboxSelectedltem

WinSetlboxltemText

Description

Owner item.

Description

Deletes the indexed item from the list box.

Returns the number of items left.

Inserts text into a list box at index. Returns the

actual index where it was inserted.

Returns the number of items in the list box.

Fills the buffer with the text of the indexed item.

Returns the length of the text.

Returns the length of the text of the indexed item in

the list box.

Returns the index of the selected item in the list

box. For single selection only.

Sets the text of the list box indexed item to buffer.

9-8 05/2 Programming Guide-Volume II

Table 9-5. Messages Generated by a List Box to Its Owner

Message

WM_ CONTROL

WM_DRAWITEM

WM_MEASUREITEM

WM_QUERYCONVERTPOS

WM_QUERYWINDOWPARAMS

WM_SETWINDOWPARAMS

Description

Occurs when a list box control has a significant
event to notify to its owner.

Notification sent to the owner of a list box control
each time an item is to be drawn.

Notification sent to the owner of a specific list box
control to establish the height and width of an item
in that control.

Sent by an application to determine whether it is
appropriate to begin conversion of DBCS
characters.

Occurs when an application queries the list box
control window parameters.

Occurs when an application sets or changes the
list box control window parameters.

Table 9-6. Messages Received by a List Box

Message

LM_DELETEALL-

LM_DELETEITEM

LM_INSERTITEM

LM_QUERYITEMCOUNT

LM_QUERYITEMHANDLE

LM_QUERYITEMTEXT

LM_ QUERYITEMTEXTLENGTH

LM_QUERYSELECTION

LM_QUERYTOPINDEX

LM_SEARCHSTRING

LM_SELECTITEM

LM_SETITEMHANDLE

LM_SETITEMHEIGHT

LM_SETITEMTEXT

LM_SETTOPINDEX

Description

Sent to a Ust box control to delete all the items in
the list box.

Deletes an item from the list box control.

Inserts an item into a list box control

Returns a count of the number of items in the list
box control.

Returns the handle of the indexed item of the list
box control.

Returns the text of the specified list box item.

Returns the length of the text of the specified list
box item.

Used to enumerate the selected item, or items, in a
list box.

Obtains the index of the item currently at the top of
the list box.

Retu ms the index of the I ist box item whose text
matches the string.

Used to set the selection state of an item in a list
box.

Sets the handle of the specified list box item.

Sets the height of the items in a list box.

Sets the text into the specified list box item.

Used to scroll a particular item to the top of the list
box.

Chapter 9. List-Box Controls 9-9

9-10 OS/2 Programming Guide-Volume II

Chapter 10. Combination-Box Controls

A combination box is two controls in one: an entry field and a list box. This chapter
describes how to use combination-box controls, also called combination boxes and
prompted entry fields, to let the user choose and edit items from a list in a PM
application.

About Combination Boxes
Combination-box controls enable the user to enter data by typing in the entry field
or by choosing from a list in the list box. Figure 10-1 is an example of a
combination box.

Figure 10-1. Combination Box

A combination-box control automatically manages the interaction between the entry
field and the list box. For example, when the user chooses an item in the list box,
the combination-box control displays the text for that item in the entry field. Then,
the user can edit the text without affecting the item in the list box. When the user
types a letter in the entry field, the combination-box control scrolls the list box
contents so that items beginning with that letter become visible.

Combination-Box Styles
A combination box can have one of the following styles:

Table 10-1 (Page 1 of 2). Combination-Box Styles

Style Description

CBS_SIMPLE Creates a simple combination box, which always
displays its list box. The user can enter and edit
text in the entry field or choose items from the list
box.

© Copyright IBM Corp. 1992 10-1

Table 10-1 (Page 2 of 2). Combination-Box Styles

Style Description

CBS_DROPDOWN Creates a drop-down combination box, which

displays its list box only if the user clicks the

drop-down icon at the right end of the entry field.

See Figure 10-2 for an example of a drop-down

combination box. The combination-box control

hides the list box when the user clicks the icon a

second time. In a drop-down combination box, the

user can enter and edit text in the entry field or

choose items from the list box.

CBS_DROPDOWNLIST Creates a drop-down-list combination box, which

is similar to the drop-down combination box,

except that the user can choose items only from

the list box. The user cannot enter or edit text in

the entry field. See Figure 10-3 following this

table for an example of a drop-down list box.

For combination boxes that have the CBS_DROPDOWN or CBS_DROPDOWNLIST

styles, an application can display the list by using the CBM_SHOWLIST message.

Figure 10-2. Drop-Down Combination Box

Figure 10-3. Drop-Down List Box

An application can determine whether the list is already showing by using the

CBM_ISLISTSHOWING message.

10-2 OS/2 Programming Guide-Volume II

Applications also can use any of the entry-field (EM_) and list-box (LM_) messages
with combination boxes. Entry-field messages affect the entry field; list-box
messages affect the list box. For example, an application can use the
LM_INSERTITEM message to insert items into the list box.

Notification Codes
A combination-box control sends WM_CONTROL messages containing notification
codes to its parent window. These notification codes are similar to those sent by
entry-field and list-box controls. A combination-box control sends the following
notification codes to its owner window:

Table 10-2. Combination-Box Notification Codes

Code Description

CBN_EFCHANGE Indicates that the text in a combination-box entry field has
changed.

CBN_EFSCROLL Indicates that the text in a combination-box entry field has been
scrolled.

CBN_ENTER Indicates that a combination-box item has been selected.

CBN_LBSCROLL Indicates that a combination-box list has been scrolled.

CBN_LBSELECT Indicates that a combination-box list item has been selected.

CBN_MEMERROR Indicates that the combination-box control cannot allocate
sufficient memory.

CBN_SHOWLIST Indicates that a combination-box list has dropped down (is
visible).

Using Combination Boxes

Summary

You can create a combination box by using the WinCreateWindow function or by
specifying a COMBOBOX statement in a dialog-window template in a resource file.
When creating a combination box using WinCreateWindow, you must specify the
predefined class WC_COMBOBOX. If you do not specify a style, the function uses
the default styles WS_GROUP, WS_TABSTOP, and WS_VISIBLE.

The following table lists the OS/2 messages used with combination-box controls:

Table 10-3. Messages Received by a Combination Box

Message Description

CBM_HILITE Sets the highlighting state of the entry field control.

CMB_ISLISTSHOWING Determines whether the list box control is
showing.

CBM_SHOWLIST Sets the showing state of the list box control.

Table 10-4. Message Sent From a Combination Box to Its Owner

Message Description

WM_CONTROL Occurs when a control has a significant event to
notify to its owner.

Chapter 10. Combination-Box Controls 10-3

10-4 OS/2 Programming Guide-Volume II

Chapter 11. Menus

About Menus

A menu is a window that contains a list of items-text strings, bit maps, or images
drawn by the application-that enables the user, by mouse or keyboard, to choose
from these predetermined choices. This chapter describes how to use menus in
your PM applications.

A menu always is owned by another window, usually a frame window. When a user
makes a choice from a menu, the menu posts a message containing the unique
identifier for the menu item to its owner by way of the owner window's window
procedure.

Menu bar

Figure 11-1. Menus

Pull-down Cascaded
menu menu

Pop-up
menu

An application typically defines its menus using Resource Compiler, and then
associates the menus with a frame window when the frame window is created.
Applications also can create menus by filling in menu-template data structures and
creating windows with the WC_MENU class. Either way, applications can add,
delete, or change menu items dynamically by issuing messages to menu windows.

Menu Bar and Pull-Down Menus

© Copyright IBM Corp. 1992

A typical application uses a menu bar and several pull-down submenus. The
pull-down submenus ordinarily are hidden, but become visible when the user makes
selections in the menu bar. Pull-down submenus always are attached to the menu
bar.

The menu bar is a child of the frame window; the menu bar window handle is the
key to communicating with the menu bar and its submenus. You can retrieve this
handle by calling WinWindowFromlD, with the handle of the parent window and the
FID_MENU frame-control identifier. Most messages for the menu bar and its

11-1

Pop-Up Menus

submenus can be issued to the menu-bar window. Flags in the messages tell the
window whether to search submenus for requested menu items.

A pop-up menu is like a pull-down submenu, except that it is not attached to the
menu bar; it can appear anywhere in its parent window. A pop-up menu usually is
associated with a portion of a window, such as the client window (see Figure 11-2);
or it is associated with a specific object, such as an icon.

Pop-up menu

Figure 11-2. Pop-Up Menu

A pop-up menu remains hidden until the user selects it (either by moving the cursor
to the appropriate location and pressing Enter or clicking on the location with the
mouse). Typically, pop-up menus are displayed at the position of the cursor or
mouse pointer; they provide a quick mechanism for selecting often-used menu
items.

To include a pop-up menu in an application, you first must define a menu resource
in a resource-definition file, then load the resource using the WinloadMenu or
WinCreateMenu functions. You must call WinPopupMenu to create the pop-up menu
and display it in the parent window. Applications typically call WinPopupMenu in a
window procedure in response to a user-generated message, such as
WM_BUTTON2DBLCLK or WM_CHAR.

WinPopupMenu requires that you specify the pop-up menu's handle and also the
handles of the parent and owner windows of the pop-up menu. WinloadMenu and
WinCreateMenu return the handle of the pop-up menu window, but you must obtain
the handles of the parent and owner by using the WinWindowFromlD function.

You determine the position of the pop-up menu in relation to its parent by specifying
coordinates and style flags in WinPopupMenu. The x and y coordinates determine

11-2 OS/2 Programming Guide-Volume II

System Menu

Menu Items

the position of the lower-left corner of the menu relative to the lower-left corner of
the parent. The system may adjust this position, however, if you include the
PU_HCONSTRAIN or PU_VCONSTRAIN style flags in the call to WinPopupMenu. If
necessary, PU_HCONSTRAIN adjusts the horizontal position of the menu so that its
left and right edges are within the borders of the desktop window. PU_ VCONSTRAIN
makes the same adjustments vertically. Without these flags, a desktop-level pop-up
menu can lie partially off the screen, with some items not visible nor selectable.

The PU_POSITIONONITEM flag also can affect the position of the pop-up menu. This
flag positions the pop-up menu so that, when the pop-up menu appears, the
specified item lies directly under the mouse pointer. Also, PU_POSITIONONITEM
automatically selects the item. PU_POSITIONONITEM is useful for placing the
current menu selection under the pointer so that, if the user releases the mouse
button without selecting a new item, the current selection remains unchanged.

The PU_SELECTITEM flag is similar to PU_POSITIONONITEM except that it just
selects the specified item; it does not affect the position of the menu.

You can enable the user to choose an item from a pop-up menu by using the same
mouse button that was used to display the menu. To do this, specify the
PU_MOUSEBUTTONn flag, where n corresponds to the mouse button used to display
the menu. This flag specifies the mouse buttons for the user to interact with a
pop-up menu once it is displayed.

By using the PU_MOUSEBUTTONn flag, you can enable the user to display the
pop-up menu, select an item, and dismiss the menu, all in one operation. For
example, if your window procedure displays the pop-up window when the user
double-clicks mouse button 2, specify the PU_MOUSEBUTTON2DOWN flag in the
WinPopupMenu function. Then, the user can display the menu with mouse button 2;
and, while holding the button down, select an item. When the user releases the
button, the item is chosen and the menu dismissed.

The system menu in the upper-left corner of a standard frame window is different
from the menus defined by the application. The system menu is controlled and
defined almost exclusively by the system; your only decision about it is whether to
include it when creating a frame window. (It is unusual for a frame window not to
include a system menu.) The system menu generates WM_SYSCOMMAND
messages instead of WM_COMMAND messages. Most applications simply use the
default behavior for WM_SYSCOMMAND messages, although applications can add,
delete, and change system-menu entries.

All menus can contain two main types of menu items: command items and submenu
items. When the user chooses a command item, the menu immediately posts a
message to the parent window. When the user selects a submenu item, the menu
displays a submenu from which the user may choose another item. Since a
submenu window also can contain a submenu item, submenus can originate from
other submenus.

When the user chooses a command item from a menu, the menu system posts a
WM_COMMAND, WM_SYSCOMMAND, or WM_HELP message to the owner window,
depending on the style bits of the menu item.

Chapter 11. Menus 11-3

Applications can change the attributes, style, and contents of menu items, and insert
and delete items at run time, to reflect changes in the command environment. An
application also can add items to or delete items from the menu bar, a pop-up
menu, or a submenu. For example, an application might maintain a menu of the
fonts currently available in the system. This application would use graphics
programming interface (Gpi) calls to determine which fonts were available and,
then, insert a menu item for each font into a submenu. Furthermore, the application
might set the check-mark attribute of the menu item for the currently chosen font.
When the user chose a new font, the application would remove the check-mark
attribute from the previous choice and add it to the new choice.

The Help Item
To present a standard interface to the novice user, all applications must have a Help
item in their menu bars. The Help item is defined with a particular style, attributes,
and position in the menu. When the user chooses the Help item, the menu posts a
WM_HELP message to the owner window, enabling the application to respond
appropriately.

The item should read Help, have an identifier of 0, and have the
MIS_BUTTONSEPARATOR or MIS_HELP item styles. The Help menu item should be
the last item in the menu template, so that it is displayed as the rightmost item in
the menu bar.

If an application uses the system default accelerator table, the user can select the
Help item using either a mouse or the F1 key.

Menu-Item Styles
All menu items have a combination of style bits that determine what kind of data the
item contains and what kind of message it generates when the user selects it. For
example, a menu item can have the MIS_ TEXT, MIS_BITMAP, or other styles that
specify the visual representation of the menu item on the screen. Other styles
determine what kinds of messages the item sends to its owner and whether the
owner draws the item. Menu-item styles typically do not change during program
execution, but you can query and set them dynamically by sending MM_QUERYITEM
and MM_SETITEM messages with the menu-item identifier to the menu-bar window.
For text menu items (MIS_ TEXT), an MM_SETITEMTEXT message sets the text. The
MM_QUERYITEMTEXT message queries the text of the item. For non-text menu
items, the hltem field of the MENUITEM structure typically contains the handle of a
display object, such as a bit-map handle for MIS_BITMAP menu items.

An application can draw a menu item by setting the style MIS_OWNERDRAW for the
menu item. This usually is done by specifying the MIS_OWNERDRAW style for the
menu item in the resource-definition file; but it also can be done at run time. When
the application draws a menu item, it must respond to messages from the menu
each time the item must be drawn.

Menu-Item Attributes
Menu items have attributes that determine how the items are displayed and whether
or not the user can choose them. An application can set and query menu-item
attributes by sending MM_SETITEMATTR and MM_QUERYITEMATTR messages,
with the menu-item identifier, to the menu-bar window. If the specified item is in a
submenu, there are two methods of determining its attributes. The first is to send
MM_SETITEMATTR and MM_QUERYITEMATTR messages to the top-level menu,
specifying the identifier of the item and setting a flag so that the message searches
all submenus for the item. Then, you can retrieve the handle of the menu-bar by

11-4 OS/2 Programming Guide-Volume II

calling WinWindowFromlD, with the handle of the frame window and the FID_MENU
frame-control identifier.

The second method, which is more efficient if you want to either work with more
than one submenu item or set the same item several times, involves two steps:

1. Send an MM_QUERYITEM message to the menu, with the identifier of the
submenu. The updated MENUITEM structure contains the window handle of the
submenu.

2. Send an MM_QUERYITEMATTR (or MM_SETITEMATTR) message to the
submenu window, specifying the identifier of the item in the submenu.

Menu-Item Structure
A single menu item is defined by the MENUITEM data structure. This structure is
used with the MM_INSERTITEM message to insert items in a menu or to query and
set item characteristics with the MM_QUERYITEM and MM_SETITEM messages.
The MENUITEM structure has the following form:

You can derive the values of most of the fields in this structure directly from the
resource-definition file. However, the last field in the structure, hltem, depends on
the style of the menu item.

The iPosltlon field specifies the ordinal position of the item within its menu window.
If the item is part of the menu bar, iPosltlon specifies its relative left-to-right
position, with O being the leftmost item. If the item is part of a submenu, iPosition
specifies its relative top-to-bottom and left-to-right positions, with 0 being the
upper-left item. An item with the MIS_BREAKSEPARATOR style in a pull-down
menu causes a new column to begin.

The afStyle field contains the style bits of the item. The afAttribute field contains the
attribute bits.

The id field contains the menu-item identifier. The identifier should be unique but
does not have to be. Just remember that, when multiple items have the same
identifier, they post the same command number in the WM_ COMMAND,
WM_SYSCOMMAND, and WM_HELP messages. Also, any message that specifies a
menu item with a non-unique identifier will find the first item that has that identifier.

The hwndSubMenu field contains the window handle of a submenu window (if the
item is a submenu item). The hwndSubMenu field is NULL for command items.

The hltem field contains a handle to the display object for the item, unless the item
has the MIS_ TEXT style, in which case, hltem is 0. For example, a menu item with
the MIS_BITMAP style has an hltem field that is equal to its bit-map handle.

Chapter 11. Menus 11-5

Menu Access
The OS/2 operating system is designed to work with or without a mouse or other

pointing device. The system provides default behavior that enables a user to

interact with menus without a mouse. Following are the keystrokes that produce

this default behavior:

Table 11-1. Keystroke Menu Access

Keystroke Action

Alt Toggres in and out of menu-bar mode.

Alt+ Spacebar Shows the system menu.

F10 Backs up one level. If a submenu is displayed, it is canceled. If
no submenu is displayed, this keystroke exits the menu.

Shlft+Esc Shows the system menu.

Right Arrow Cycles to the next top-level menu item. If the selected item is at
the far-left side of the menu, the .menu code sends a
WM_NEXTMENU message to the frame window. The default
processing by the frame window is to cycle between the
application and system menus. (An application can modify this
behavior by subclassing the frame window.) If the selected item
is in a submenu, the next column in the submenu is selected, or
the next top-level menu item is selected; this keystroke also can
send or process a WM_NEXTMENU message.

Left Arrow Works like the Right Arrow key, except in the opposite direction.
In submenus, this keystroke backs up one column, except when
the currently selected item is in the far-left column, in which
case the previous submenu is selected.

Up Arrow or Down When pressed in a top-levet menu, activates a submenu. When

Arrow pressed in a submenu, this keystroke selects the previous or
next or item, respectively.

Enter Activates a submenu, and highlights the first item if an item has
a submenu associated with it; otherwise, this keystroke chooses
the item as though the user released the mouse button while the
item was selected.

Alphabetic Selects the first menu item with the specified character as its

character mnemonic key. A mnemonic is defined for a menu item by
placing a tilde(-) before the character in the menu text. If the
selected item has a submenu associated with it, the menu is
displayed, and the first item is highlighted; otherwise, the item is
chosen.

An application does not support the default keyboard behavior with any unusual

code; instead, the application receives a message when a menu item is chosen by

the keyboard just as though it had been chosen by a mouse.

Mnemonics
Adding mnemonics to menu items is one way of providing the user with keyboard

access to menus. You can indicate a mnemonic keystroke for a menu item by

preceding a character in the item text with a tilde, as in -nFi/e; Figure 11-3 on

page 11-7 shows the result on screen. Then, the user can choose that item by

pressing. the mnemonic key when the menu is active.

11-6 OS/2 Programming Guide-Volume II

Using Menus

Mnemonics

Figure 11-3. Examples of Mnemonics

The menu bar is active when the user presses and releases the Alt key, and the first
item in the menu bar is highlighted. A pop-up or pull-down menu is active when it is
open.

Accelerators
In addition to mnemonics, a menu item can have an associated keyboard
accelerator. Accelerators are different from mnemonics in that the menu need not
be active for the accelerator key to work. If you have associated a menu item with a
keyboard accelerator, display the accelerator to the right of the menu item. Do this
in the resource-definition file by placing a tab character (\t) in the menu text before
the characters that will be displayed on the right. For example, if the Close item
had the F3 function key as its keyboard accelerator, the text for the item would be
Close\tF3.

This section explains how to perform the following tasks:

• Define menu items in a resource file.
• Include a menu bar in a standard window.
• Create a pop-up menu.
• Add a menu to a dialog window.
• Access the system menu.
• Respond to a the menu choice of a user.
• Set and query menu-item attributes.
• Add and delete menu items.
• Create a custom menu item.

Chapter 11. Menus 11-7

Defining Menu Items in a Resource File
Typically, a menu resource represents the menu bar or pop-up menu and all the
related submenus. A menu-item definition is organized as shown in the following
code:

The menu resource-definition file specifies the text of each item in the menu, its
unique identifier, its style and attributes, and whether it is a command item or a
submenu item. A menu item that has no specification for style or attributes has the
default style of MIS_ TEXT and all attribute bits off, indicating that the item is
enabled. The MIS_SEPARATOR style identifies nonselectable lines between menu
items. Following is sample Resource Compiler source code that defines a menu
resource. The code defines a menu with three submenu items in the menu bar (File,
Edit, and Font) and a command item (Help). Each submenu has several command
items, and the Font submenu has two other submenus within it.

11-8 OS/2 Programming Guide-Volume II

To define a menu item with the MIS_BITMAP style, an application must use a tool
such as Icon Editor to create a bit map, include the bit map in its resource-definition
file, and define a menu in the file (as shown in the following code fragment). The
text for the bit map menu items is an ASCII representation of the resource identifier
of the bit map resource to be displayed for that item.

/* 'Brin9 externally' created .bit maps into th~ respurce file.
BUMAP ·101 but'tpn. bnip.
BITMAP JG2 hi rest. b~p
BITMAP 103 ,hizoom.bmp
BITMAP·· 1.04 .. hi r:E!d. bmp

Including a Menu Bar in a Standard Window
If you have defined a menu resource in a resource-definition file, you can use the
menu resource to create a menu bar in a standard window. You include the menu
bar by using the FCF _MENU attribute flag and specifying the menu-resource
identifier in a call to WinCreateStdWindow, as shown in the following code fragment:

HWND hwndFr;ame;
CHARszClas~Name[]"',.MYC1assu;
CHAR szTitle[l=:"My Title";

hwndFrame = WiriCreateStdWindow(HWND OESKWP*
WS VISlBLE, -
&flControlStyle;
szClassName';
szTitle,
(;), '(HMQDULt~ NtlLL;
ID ;MENU RES()URCE,
NULL); -

After you make this call, the operating system automatically includes the menu in
the window, drawing the menu bar across the top of the window. When the user
chooses an item from the menu, the menu posts the message to the frame window.
The frame window passes any WM_COMMAND messages to the client window.
(The frame window does not pass WM_SYSCOMMAND messages to the client
window.) WM_HELP messages are posted to the focus window. The
WinDefWindowProc function passes WM_ HELP messages to the parent window. If a
WM_HELP message is passed to a frame window, the frame window calls the

Chapter 11. Menus 11-9

HK_HELP hook. Your client window procedure must process these messages to

respond to the user's actions.

Creating a Pop-up Menu
The following code fragment shows how to make a pop-up menu appear when the

user double-clicks mouse button 2 anywhere in the parent window. The menu is

positioned with the mouse pointer located on the item having the IDM_OPEN

identifier and is constrained horizontally and vertically. Then, the user can select

an item from the pop-up menu using mouse button 2.

· · · #define •. ! IDJ1EN~~RE'.S«>tJJlcE:r
#define U:)M...JOPEN ·

liWND hwtidFraTillK.
• • • y

. .,;, ,

MRESUL t>CJ tei1tWndProc (
HWND.hwnd,
U~ONG m~g .•
. MPARA~ rnpl,
MPARAM ·:mp2)
{

swi· tch (msglr {

caseWM·BUTTON2DSLCLK!
~wndMenu = \41tnloa~Menu(hwnd, (HMODULE) NULL, ID_MENU_RESOURCE);
fSuccess. = WinPopupMenu(hwnd,

Adding a Menu to a Diaiog Window

· hwnctfirarne,
kwndMenu~
20,
5«:),.
~Df•LOPEN.
Pu .. ··po~tHQNO~lJEM
Pµ 7HGO~STRA:I~ ···.
PlJ~VCONSJ:RAIN

. .. :Pp1~~il5.£8p~fo~~a~wN
... Bu.•· MOUSESUTION2).;. : ,'' ~1 ·:· ~· ... ··=,--,·----~, ;,· ,· ·:· ;, "'"·'~--~·. ':., . ',,;,~

You might want to use menus in windows that were not created using the

WinCreateStdWindow function. For these windows, you can load a menu resource

by using the WinloadMenu function and specifying the parent window for the menu.

WinloadMenu assigns the specified menu resource to the parent. To see the menu

in the window, you must send a WM_UPDATEFRAME message to the parent after

loading the menu resource. This strategy is especially useful for adding menus to a

window created as a dialog window, but it can be used no matter what type of

window is specified as the parent.

11-10 OS/2 Programming Guide-Volume II

Accessing the System Menu
Although most applications do not alter the system menu, you can obtain the handle
of the system menu by calling WinWindowFromlD with a frame-window handle (or
dialog-window handle) and the identifier FID_SYSMENU. Once you have the handle
of the system menu, you can access the individual menu items by using predefined
constants. For example, the following code fragment shows how to disable the
Close menu item in the system menu of a window:

Responding to a User's Menu Choice
When a user chooses a menu item, the client window procedure receives a
WM_ COMMAND message with SHORT1FROMMP(mp1) equal to the menu identifier
of the chosen item. Your application must use the menu identifier to guide its
response to the choice. Typically, the code in the client window procedure
resembles the following code fragment:

The function that translates the menu identifier into an action typically resembles
the following code fragment:

The menu window sends a WM_MENUSELECT message every time the menu
selection changes. SHORT1FROMMP(mp1) contains the identifier of the item that is

Chapter 11. Menus 11-11

changing state, and SHORT2FROMMP(mp2) is a 16-bit Boolean value that describes

whether or not the item is chosen; the mp2 parameter contains the handle of the

menu.

If the Boolean value is FALSE, the item is selected but not chosen; for example, the

user may have moved the cursor or mouse pointer over the item while the button

was down. An application can use this message to display Help information at the

bottom of the application window. The return value is ignored.

If the Boolean value is TRUE, the item is chosen-that is, the user pressed Enter or

released the mouse button while an item was selected. If the application returns

FALSE, the menu does not generate a WM_ COMMAND, WM_SYSCOMMAND, or

WM_HELP message, and the menu is not dismissed.

Setting and Querying Menu-Item Attributes
Menu-item attributes are represented in the fAttribute field of the MENUITEM data

structure. Typically, attributes are set in the resource-definition file of the menu and

are changed at run time as required. Applications can use the MM_SETITEMATTR

and MM_QUERYITEMATTR messages to set and query attributes for a particular

menu item. One of the most common uses of these messages is to check and

uncheck menu items to let the user know what option is selected currently. For

example, if you have a menu item that should toggle between checked and

unchecked each time the user selects it, you can use the following code fragment to

change the checked attribute. In this example, you send an MM_QUERYITEMATTR

message to the menu item to obtain its current checked attribute; then, you use the

exclusive OR operator to toggle the state; and finally, you send the new attribute

state back to the item using an MM_SETITEMATTR message.

usAttrib = SHORTlFROMMR(
WinSendMsg(hwndMenu~
MM QUERYlTEMATTR,
(MPARAM)itemIDi
(MP~RAM)MlA CHEC~EO
)) ; -

Adding and Deleting Menu Items

/* Submenu window
/~ Message
/* Item identifier
/"# ··At.~rib!Jt~. lllask.

An application can add and delete items from its menus dynamically by sending

MM_INSERTITEM and MM_DELETEITEM messages to the menu window. Any item,

including those in submenus, can be deleted by sending a message to the menu

window. Messages to insert items in submenus must be sent to the submenu's

window (rather than to the window of the top-level menu). You can retrieve the

handle of a submenu of the menu bar by sending an MM_QUERYITEM message to

the menu-bar and specifying the identifier of the submenu item for the submenu, as

shown in the following code fragment:

11-12 OS/2 Programming Guide-Volume II

Once the application has the handle of the submenu, it can insert an item by filling
in a MENUITEM structure and sending an MM_INSERTITEM message to the
submenu. For text-menu items, the application must send a pointer to the text string
as well as to the MENUITEM structure.

To delete an item, the application sends an MM_DELETEITEM message to the menu
bar, specifying the identifier of the item to delete. For example, to clear all the
items following IDM_MYMENU_FIRST in a submenu in which the items are
numbered sequentially, use the following code:

Adding a complete submenu to the menu bar is a more complicated procedure than
that shown in the previous examples. There are two strategies. The recommended
technique is to define all possible submenus in your resource-definition file; and
then, as your application runs, selectively remove and insert the submenus as
needed.

For example, assume that your application has a submenu that you want to be
displayed only when a particular application tool is in use. You must first define the
submenu as part of the main menu resource in your resource-definition file, so that

Chapter 11. Menus 11-13

the system reads in the resource menu template and creates the submenu window

along with the rest of the menu. You then can remove the submenu from the menu

bar, saving the title of the submenu and the MENUITEM structure that defines the

submenu, as shown in the following code fragment:

.··• ··.::liwN[} ·nwrrdM~ryu, .ljw~dc.1 i~nt;
,;. MENin;r.EM:;tni; '.:

CHAR szMenuTitle[MAX_STRlNGSJZ·Eh .

/* Obtain lhe ·handle of a menu: · · · · . . .:~./L
hwndMenu·· ::;.:·. Wi:nWit'JdO\'l:F'.l'.'omID (Wi nQueryWi ndowfhwndC l ·i·ent.;.:~W;;..PARENT:~:i·.: : ·

FIO_;_M~NUh ; ·• .· >· ..
; .;· .''· :·;· ;:~ .;;: y;"' · .. ; ,

/*' Obta1r1.·inf<>'rmati on on. t.he· :;·teliffd·'remp,v:e: . .•; ;· ...
Wi nSendMsg(hwndMenu, MM_QUER'llT~M.~

M~fR()M2S~()RT (lDM MEN~lo·~ }.RUE) ; . : T'RVE ;:·to; $~afq~:.;~!JbtDep~s~I i, ··.
(MPARAMJ∈J_·; - ·······:' .. ·;;: ·: ·····················••:·• .. ·.: .. ·· .,:,>·:·"·····••:.·.:.···· ...

l* ·. scivt(th~ :. t~xt·::J(£rf.l:h~·.:·.~ ·~nu'·fte!fl: ·~···· .. ·
'w; o.sendMsg{nwod"enit~ tfi:.·ow. . :IiEtitte:n; . .:;. · .•...

'MRF~9ftf2SMOQT (.IOM~FON'T',.: MAX]$1R.IN~SJZE:)~;
(f4~ARA~~:$t~entfTit'l~) J ·· . . .

It is important to use the MM_REMOVEITEM message, rather than

MM_DELETEITEM, to remove the item; deleting the item destroys the submenu

window-removing it does not. The submenu should remain intact so that you can

insert it later.

To reinsert the submenu, send an MM_INSERTITEM message to the menu bar,

passing the MENUITEM structure and menu title that you saved when you removed

the item. The following code fragment shows how to insert a submenu that was

removed by using the previous code example:

The other technique that you can use to insert a submenu in the menu bar is to build

up, in memory, a data structure as a menu template and use that template and

WinCreateWindow to create a submenu. The resultant submenu window handle

then is placed in the hwndSubMenu field of a MENUITEM structure, and the menu

item is sent to the menu bar with an MM_INSERTITEM message.

You also can create an empty submenu window by using Wi'nCreateWindow. Pass

NULL for the pCt/Data and pPresParams parameters, instead of building the menu

11.;14 OS/2 Programming Guide-Volume 11

template in memory. Then insert a new menu item in the menu bar by using the
MM_INSERTITEM message, setting the MIS_SUBMENU style, and putting the
window handle of the created menu into the hwndSubMenu field. Then use the
MM_INSERTITEM message to insert the items in the new pull-down menu.

Creating a Custom Menu Item
Applications can customize the appearance of an individual menu item by setting
the MIS_OWNERDRAW style bit for the item. The operating system sends two
different messages to an application that include owner-drawn menu items:
WM_MEASUREITEM and WM_DRAWITEM. Both messages include a pointer to an
OWNERITEM data structure.

WM_MEASUREITEM is sent only once for each owner-drawn item when the menu is
initialized. The message is sent to the owner of the menu (typically, a frame
window), which forwards the message to its client window. Typically, the client
window procedure processes WM_MEASUREITEM by filling in the yTop and Right
fields of the RECTL structure, specified by the rclltem field of this OWNERITEM
structure; this specifies the size of the rectangle needed to enclose the item when it
is drawn. The following code fragment responds to a WM_MEASUREITEM message.

case WM MEASUREITEM:
((POWNERITEM) mp2)->rc1Item.xRight = 26;
((POWN~RITEM) mp2)->rc1Item.yTop = 10;
return a;

If a menu item has the MIS_OWNERDRAW style, the owner window receives a
WM:....DRAWITEM message every time the menu item needs to be drawn. You
process this message by using the hps and rclltem fields of the OWNERITEM
structure to draw the item. There are two situations in which the owner window
receives a WM_DRAWITEM message:

• When the item must be redrawn completely
• When the item must be highlighted or have its highlight removed.

You can choose to handle one or both of these situations. Typically, you handle the
drawing of the item. You may not want to handle the second situation, however,
since the system-default behavior (inverting the bits in the item rectangle) often is
acceptable.

The two situations in which a WM_DRAWITEM message is received are detected by
comparing the values of the fsState and fsStateOld fields of the OWNERITEM
structure that is sent as part of the message. If the two fields are the same, draw
the item. Before drawing the item, however, check its attributes to see whether it
has the attributes MIA_CHECKED, MIA_FRAMED, or MIA_DISABLED. Then draw
the item according to the attributes.

For example, when the checked attribute of an owner-drawn menu item changes,
the system sends a WM_DRAWITEM message to the item so that it can redraw itself
and either draw or remove the check mark. If you want the system-default check
mark, simply draw the item and leave the fsAttribute and fsAttributeOld fields
unchanged; the system draws the check mark if necessary. If you draw the check
mark yourself, clear the MIA_ CHECKED bit in both fsAttribute and fsAttributeOld so
that the system does not attempt to draw a check mark.

Chapter 11. Menus 11-15

In the same example, if fsAttrlbute and fsAttrlbuteOld are not equal, the highlight
showing that an item is selected needs to change. The MIA_HILITED bit of the
fsAttribute field is set if the item needs to be highlighted and is not set if the
highlight needs to be removed. If you do not want to provide your own highlighting,
you should ignore any WM_DRAWITEM message in which fsAttrlbute and
fsAttrlbuteOld are not equal. If you do not alter these two fields, the system
performs its default highlighting operation. If you want to provide your own visual
cue that an item is selected, respond to a WM_DRAWITEM message in which the
fsAttribute and fsAttributeOld fields are not equal by providing the cue and clearing
the MIA_HILITED bit of both fields before returning from the message.

Likewise, the MIA_ CHECKED and MIA_FRAMED bits of fsAttrlbute and
fsAttributeOld either can be used to perform the corresponding action or passed on,
unchanged, so that the system performs the action.

The following code fragment shows how to respond to a WM_DRAWITEM message
when you want to draw the item and also be responsible for its highlighted state:

case WM DRAWITEM:
{ -
PQWNERITEM.poi;
RECTL rel;
MPARAM mp2;

poi = (POWNERITEM) mp2;

I*
*If the new attribute equals the old attribute,
*.redraw the· entire item.
*I

' y '

if (poi ->fsAttri bute ~= poi"".>fsAtt ri bute01 d) {

/*
* Draw •. the item in pof..;>hps and poh>rclitem, and check the
* attributes .. for check marks. Jf you .produce your own check marks~
* · use this··· 1; ne of code.:

11-16 OS/2 Programming Guide-Volume II

Summary
This section lists the OS/2 functions, structures, and messages used with menus.

Table 11-2. Menu Functions

Function Name Description

WinCreateMenu Creates a menu window from the menu template.

WinCheckMenultem Sets the check state of the specified menu item to
the flag.

WinEnableMenultem Sets the state of the specified menu item to the
enable flag.

WinlsMenultemChecked Returns the state (checked/not checked) of the
identified menu item.

WinlsMenultemEnabled Returns the state (enable/disable) of the specified
menu item.

WinlsMenultemValid Returns TRUE if the specified item is a valid
choice.

Win Load Menu Creates a menu window from the menu template
Menuid from Resource, and returns in Menu the
window handle for the created window.

WinPopupMenu Displays a pop-up menu.

WinSetMenultemText Sets the text for menu indexed item to buffer.

Table 11-3. Menu Structures

Structure Name Description

MENU ITEM Menu item.

OWNERITEM Owner item.

Table 11-4 (Page 1 of 2). Messages Received by a Menu

Message

MM_DELETEITEM

MM_ENDMENUMODE

MM_INSERTITEM

MM_ISITEMVALID

MM_ITEMIDFROMPOSITION

MM_ITEMPOSITIONFROMID

MM_QUERYITEM

MM_QUERYITEMATTR

MM_QUERYITEMCOUNT

MM_QUERYITEMRECT

MM_QUERYITEMTEXT

MM_ QUERYITEMTEXTLENGTH

Description

Deletes a menu item.

Sent to a menu control to terminate menu
selection.

Inserts a menu item in a menu.

Returns the selectable status of a specified menu
item.

Returns the identity of a menu item of a specified
index.

Returns the index of a menu item of a particular
identify.

Returns the definition of the specified menu item.

Returns the attributes of a menu item.

Returns the number of items in the menu.

Returns the bounding rectangle of a menu item.

Returns the text of the specified menu item.

Returns the text length of the specified menu item.

Chapter 11. Menus 11-17

Table 11-4 (Page 2 of 2). Messages Received by a Menu

Message Description

MM_ QUERYSELITEMID Returns the identity of the selected menu item.

MM_REMOVEITEM Removes a menu item.

MM_SELECTITEM Selects or deselects a menu item.

MM_SETITEM Sets the definition of a menu item.

MM_SETITEMATTR Sets the attributes of a menu item.

MM_SETITEMHANDLE Sets the handle of a menu item.

MM_SETITEMTEXT Sets the text of a menu item.

MM_STARTMENUMODE Used to begin menu selection.

Table 11-5 (Page 1 of 2). Messages Generated by a Menu

Message Description

WM_ADJUSTWINDOWPOS Sent by WinSetWindowPos to enable the window to
adjust its new position or size whenever it is about
to be moved.

WM_BUTTON1 DOWN Occurs when the user presses pointer button 1.

WM_BUTTON2DOWN Occurs when the user presses pointer button 2.

WM_BUTTON3DOWN Occurs when the user presses pointer button 3.

WM_ COMMAND Occurs when a control has a significant event to
notify to its owner or when a keystroke has been
translated by an accelerator table.

WM_CONTEXTMENU Occurs when the operator requests a pop-up
menu.

WM_CONTROLPOINTER Sent to the owner window of a control when the
pointing device pointer moves over the control
window, enabling the owner to set the pointer.

WM_CREATE Occurs when an application requests the creation
of a window.

WM_DESTROY Occurs when an application requests the
destruction of a window.

WM_DRAWITEM Sent to the owner of a menu control each time an
item is to be drawn.

WM_ENABLE Sets the enable state of a window.

WM_FOCUSCHANGE Occurs when the window possessing the focus is
changed.

WM_HELP Occurs when a control has a significant event to
notify to its owner or when a keystroke has been
translated by an accelerator table into a
WM_HELP.

WM_INITMENU Occurs when a menu control is about to become
active.

WM_MEASUREITEM Sent to the owner of a meu control to establish the
height for an item in that control.

WM_MENUEND Occurs when a menu control is about to terminate.

WM_MENUSELECT Occurs when a menu item has been selected.

WM_MOUSEMOVE Occurs when the pointing device pointer moves.

11-18 OS/2 Programming Guide-Volume II

Table 11-5 (Page 2 of 2). Messages Generated by a Menu

Message Description

WM_NEXTMENU Occurs when either the beginning or the end of the

menu is reached using the cursor control keys.

WM_PAINT Occurs when a window needs repainting.

WM_QUERYCONVERTPOS Sent by an application to determine whether it is

appropriate to begin conversion of DBCS

characters.

WM_SETFOCUS Occurs when a window is to receive or lose the

input focus.

WM_SETWINDOWPARAMS Occurs when an application sets or changes the

menu parameters.

WM_SYSCOMMAND Occurs when a control has a significant event to

notify to its owner or when a keystroke has been

translated by an accelerator table into a
WM_SYSCOMMAND.

Chapter 11. Menus 11-19

11-20 OS/2 Programming Guide-Volume II

Chapter 12. Entry-Field Controls

An entry field is a control window that enables a user to view and edit a single line
of text. This chapter describes how to create and use entry-field controls in your PM
applications.

About Entry Fields
An entry field provides the text-editing capabilities of a simple text editor and is
useful whenever an application requires a short line of text from the user as
illustrated in Figure 12-1.

Read-only
field

Figure 12-1. Example of Entry Fields

Entry
fields

If the application requires more sophisticated text-editing capabilities and multiple
lines of text from the user, the application can use a multiple-line entry (MLE) field.
See Chapter 13, "Multiple-Line Entry Field Controls" on page 13-1 for more
information about MLE controls.

Both the user and the application can edit text in an entry field. Applications
typically use entry fields in dialog windows, although they can be used in non-dialog
windows as well.

An application creates an entry field by specifying either the WC_ENTRYFIELD
window class in the WinCreateWindow function or the ENTRYFIELD statement in a
resource-definition file.

Entry-Field Styles

©Copyright IBM Corp. 1992

An entry field has a style that determines how it appears and behaves. An
application specifies the style in either the WinCreateWindow function or the
ENTRYFIELD statement in a resource-definition file. An application can specify a
combination of the following styles for an entry field:

Table 12-1 (Page 1 of 2). Entry-Field Styles

Style Description

ES_ANY Allows the entry-field text to contain a mixture of double-byte
and single-byte characters.

12-1

Table 12-1 (Page 2 of 2). Entry-Field Styles

Style

ES_AUTOSCROLL

ES_AUTOSIZE

ES_AUTOTAB

ES_CENTER

ES_DBCS

ES_LEFT

ES_MARGIN

ES_MIXED

ES_READONL Y

ES_RIGHT

ES_SBCS

ES_UNREADABLE

Entry-Field Notification Codes

Description

Automatically scrolls text horizontally to show the insertion
point.

Automatically sets the size of the entry field, based on the width
of the field's text string and the metrics of the current system
font. This style can set the width, height, or both- whichever
has a value of-1 in the WinCreateWindow function or
resource-definition file. This style affects only the initial size of
the entry field; it does not adjust the size as the font or
text-string width changes.

Automatically moves the cursor to the next control window when
the user enters the maximum number of characters.

Centers text within the entry field.

Specifies that the entry-field text consist of double-byte
characters only.

Left-aligns text within the entry field.

Draws a border around the entry field. The border is
1/2-character wide and 1/4-character high. Without this style, the
application draws no border around the entry field. The width of
the entry-field rectangle is increased on all sides by the width of
this margin. After an entry field with the ES_MARGIN style is
created, the WinQueryWindowRect function returns a larger
rectangle that includes this margin and whose origin, therefore,
is different from the origin specified when the entry field was
created. If an application does not adjust for this size difference
when moving or sizing an entry field, the entry field becomes
larger after each moving and sizing operation.

Allows the entry-field text to contain a mixture of single-byte and
double-byte characters. Unlike the ES_ANY style, this style lets
ASCII DBCS data be converted to EBCDIC DBCS data without
causing an overflow condition.

Prevents the user from entering or editing text in the entry field.

Right-aligns text within the entry field.

Specifies that the entry-field text must consist of single-byte
characters only.

Displays each character as an asterisk(*). This style is useful
when obtaining a password from the user.

An entry field is always owned by another window. A WM_ CONTROL notification
message is sent to the owner whenever an event occurs in the entry field. This
message contains a notification code that specifies the exact nature of the event.
An entry field can send the following notification codes to its owner:

Table 12-2 (Page 1 of 2). Notification of Entry-Field Events

Notification Code Description

EN_CHANGE Indicates that the contents of an entry field have
changed.

EN_INSERTMODETOGGLE Indicates that the insert mode has been toggled.

12-2 OS/2 Programming Guide-Volume II

Table 12-2 (Page 2 of 2). Notification of Entry-Field Events

Notification Code Description

EN_KILLFOCUS Indicates that an entry field has lost the keyboard
focus.

EN_MEMERROR Indicates that an entry field cannot allocate enough
memory to perform the requested operation, such
as extending the text limit.

EN_ OVERFLOW Indicates that either the user or the application
attempted to exceed the text limit.

EN_SCROLL Indicates that the text in an entry field is about to
scroll.

EN_SETFOCUS Indicates that an entry field received the keyboard
focus.

An application typically ignores notification messages from an entry field, thus
allowing default text editing to occur. For more specialized uses, an application can
use notification messages to filter input. For example, if an entry field is intended
for numbers only, an application can use the EN_CHANGE notification code to check
the contents of the entry field each time the user enters a non-numeric character.

As an alternative, an application can prevent inappropriate characters from
reaching an entry field by using EN_SETFOCUS and EN_KILLFOCUS, in filter code,
placed in the main message loop. Whenever the entry field has the keyboard focus,
the filter code can intercept and filter WM_ CHAR messages before the
WinDispatchMsg function passes them to the entry field. An application also can
respond to certain keystrokes, such as the Enter key, as long as the entry-field
control has the keyboard focus.

Default Entry-Field Behavior
The following table lists and describes all the messages specifically handled by the
predefined entry-field control-window class (WC_ENTRYFIELD).

Table 12-3 (Page 1 of 3). Messages Handled by WC_ENTRYFIELD Class

Message

EM_ CLEAR

EM_COPY

EM_CUT

EM_PASTE

EM_QUERYCHANGED

EM_ QUERYFIRSTCHAR

EM_QUERYREADONLY

Description

Deletes the current text selection from the control
window.

Copies the current text selection to the system
clipboard, in CF _TEXT format.

Copies the current text selection to the system
clipboard, in CF _TEXT format, and deletes the
selection from the control window.

Copies the current contents of the system
clipboard that have CF_ TEXT format, replacing the
current text selection in the control window.

Returns TRUE if the text has changed since the last
EM_ QUERYCHANGED message.

Returns the offset to the first character visible at
the left edge of the control window.

Determines whether the entry field is in the
read-only state.

Chapter 12. Entry-Field Controls 12-3

Table 12-3 (Page 2 of 3). Messages Handled by WC_ENTRYFIELD Class

Message Description

EM_QUERYSEL Returns a long word that contains the offsets for
the first and last characters of the current selection
in the control window.

EM_SETFIRSTCHAR Scrolls the text so that the character at the
specified offset is the first character visible at the
left edge of the control window.

EM_SETINSERTMODE Toggles the text-entry mode between insert and
overstrike.

EM_SETREADONL Y Sets the entry field to the read-only state.

EM_SETSEL Sets the current selection to the specified
character offsets.

EM_SETTEXTLIMIT Allocates memory from the control heap for the
specified maximum number of characters,
returning TRUE if it is successful and FALSE if it is
not. Failure causes the entry field to send a
WM_CONTROL message with the EN_MEMERROR
notification code to the owner window.

WM_ADJUSTWINDOWPOS Changes the size of the control rectangle if the
control has the ES_MARGIN style.

WM_BUTTON1 DBLCLK Occurs when the user presses mouse button 1
twice.

WM_BUTTON1 DOWN Sets the mouse capture and keyboard focus to the
entry field, and prepares to track the movement of
the mouse during WM_MOUSEMOVE messages.

WM_BUTTON1 UP Releases the mouse.

WM_BUTTON2DOWN Returns TRUE to prevent this message from being
processed further.

WM_BUTTON3DOWN Returns TRUE to prevent this message from being
processed further.

WM_CHAR Handles text entry and other keyboard input
events.

WM_CREATE Validates the requested style and sets the window
text.

WM_DESTROY Frees the memory used for the window text.

WM_ENABLE Sent when an application changes the enabled
state of a window.

WM_MOUSEMOVE If the mouse button is down, the entry field tracks
the text selection. If the mouse button is up, the
entry field sets the mouse pointer to the default
arrow shape.

WM_PAINT Draws the entry field and text.

WM_QUERYDLGCODE Returns the predefined DLGC_ENTRYFIELD
constant.

WM_QUERYWINDOWPARAMS Returns the requested window parameters.

12-4 OS/2 Programming Guide-Volume II

Table 12-3 (Page 3 of 3). Messages Handled by WC_ENTRYFIELD Class

Message Description

WM_SETFOCUS If the entry field is gaining the focus, it creates a
cursor and sends the owner window a
WM_CONTROL message with the EN_SETFOCUS
notification code. If the entry field is losing the
focus, it destroys the current cursor and sends the
owner window a WM_CONTROL message with the
EN_KILLFOCUS notification code.

WM_SETSELECTION Toggles the current selection status.

WM_SETWINDOWPARAMS Sets the specified window parameters, redraws
the entry field, and sends the owner window a
WM_CONTROL message with the EN_CHANGE
notification code.

WM_ TIMER Blinks the insertion point if the entry field has the
focus. The entry field scrolls the text, if necessary,
while extending the selection to text that becomes
visible in the window.

Entry-Field Text Editing
The user can insert (type) text or numeric values in an entry field when that entry
field has the keyboard focus. An application can insert text by using the
WinSetWindowText function. An application can insert numeric values by using the
WinSetDlgltemShort function. The text or numeric value is inserted into the entry
field at the cursor position.

The entry field's entry mode, etther insert or overstrike, determines what happens
when the user enters text. The user sets the entry mode by pressing the Insert key;
the entry mode toggles each time the Insert key is pressed. The application can set
the entry mode by sending the EM_SETINSERTMODE message to the entry field.

The cursor position, identified by a blinking bar, is specified by a character offset
relative to the beginning of the text. The user can set the cursor position by using
the mouse or the Arrow keys. An application can set the cursor position by using
the EM_SETSEL message. This message directs the entry field to move the blinking
bar to the given character position.

The EM_SETSEL message also sets the selection. The selection is one or more
characters of text on which the entry field carries out an operation, such as deleting
or copying to the clipboard. The user selects text by pressing the Shift key while
moving the cursor, or by pressing mouse button 1 while moving the mouse. An
application selects text by using the EM_SETSEL message to specify the cursor
position and the anchor point. The selection includes all text between the cursor
position ~nd the anchor point. If the cursor position and anchor point are equal,
there is no selection. An application can retrieve the selection (cursor position and
anchor point) by using the EM_QUERYSEL message.

The user can delete characters, one at a time, by pressing the Delete key or the
Backspace key. The Delete key deletes the character to the right of the cursor; the
Backspace key deletes the character to the left of the cursor. The user also can
delete a group of characters by selecting them and pressing the Delete key. An
application can delete selected text by using the EM_CLEAR message.

Chapter 12. Entry-Field Controls 12-5

An application can use the EM_QUERYCHANGED message to determine whether

the contents of an entry field have changed.

An application can prevent the user from editing an entry field by setting the
ES_READONL Y style in the WinCreateWindow function or in the ENTRYFIELD

statement in the resource-definition file. The application also can set and query the

read-only state by using the EM_SETREADONLY and ES_QUERYREADONLY

messages.

If text extends beyond the left or right edges of an entry field, the user can scroll the

text by using the Arrow keys. An application can scroll the text by using the

EM_SETFIRSTCHAR message to specify the first character visible at the left edge of

the entry field. For scrolling to occur, the entry field must have the
ES_AUTOSCROLL style. An application can use the EM_QUERYFIRSTCHAR

message to obtain the first character that is currently visible.

Entry-Field Control Copy and Paste Operations
The user can cut, copy, and paste text in an entry field by using the Shift+ Delete

and Ctrl +Insert key combinations. An application, either by itself or in response to

the user, can cut, copy, and paste text by using the EM_CUT, EM_ COPY, and

EM_PASTE messages. An application can use the ES_CUT and EM_COPY

messages to copy the selected text to the clipboard. The EM_CUT message also

deletes the text (EM_COPY does not). The EM_PASTE message copies the text on

the clipboard to the current position in the entry field, replacing any existing text

with the copied text. An application can delete the selected text, without copying it

to the clipboard, by using the EM_CLEAR message.

Entry-Field Text Retrieval
An application can retrieve selected text from an entry field by calling
WinQueryWindowText and then sending an EM_QUERYSEL message to retrieve the

offsets to the first and last characters of the text selection. These offsets are used to

retrieve selected text.

An application can retrieve numeric values by calling WinQueryDlgltemShort,

passing the entry-field identifier and the handle of the owner window.
WinQueryDlgltemShort converts the entry-field text to a signed or unsigned integer

and returns the value in a specified variable. The application can use the

WinWindowFromlD function to retrieve the handle of the control window. The

entry-field identifier is specified in the dialog template in the application's

resource-definition file.

Using Entry-Field Controls
This section explains how to perform the following tasks:

• Create an entry field in a dialog or client window.
• Change the default size of the entry field.

Creating an Entry Field in a Dialog Window
A dialog window usually serves as the parent and owner of an entry field. The

dialog window often includes a button that indicates whether the user wants to carry

out an operation. When the user selects the button, the application queries the

contents of the entry field and proceeds with the operation.

12-6 OS/2 Programming Guide-Volume II

The definition of an entry field in an application's resource-definition file sets the
initial text, window identifier, size, position, and style of the entry field. The
following example shows how to define an entry field as part of a dialog template:

Creating an Entry Field in a Client Window
To create an entry field in a non-dialog window, an application calls
WinCreateWindow with the window class WC_ENTRYFIELD. The entry field is
owned by an application's client window, whose window procedure receives
notification messages from the entry field.

The following code fragment shows how to create an entry field in a client window:

Figure 12-2. Code for Creating an Entry Field in a Client Window

Changing the Default Size of an Entry Field
The default text limit of an entry field is 32 characters. An application can set a
non-default size when creating an entry field by setting the cchEditLlmit member of
an ENTRYFDATA structure and supplying a pointer to the structure as the pCt/Data
parameter to WinCreateWindow. The following code fragment creates an entry field
with a text Ii m it of 12 characters:

Chapter 12. Entry-Field Controls 12-7

·~WND .. ·.• .• :·.·.h ... ·.·.:.··.w.·.:.· .. ·.·~ .• ·;a~A.~·.r .. y.;:~.~·~1·~:2: ... · .. :· ·•.·.·.· .. ·: ".:§i ;~i::: :: : .:}}if ; :, ·:' .::J,i::::; . ···{ ...
. , , ·;, ,, .. · ... , ··:. , ~ ., .: ;· -.;. ·: L,.;_:::;:~

.:.HW~P::.~·.'.. :; .::' ···:'· .''.':'. ::·:·::r::::: ·· ·· : .. ·.: .: ;:··::;'· · .. ,
:. ~N~·Ryi~t:l. • erd; "*, ·:< . . '" .. , ·· ·

·· .. J9~~::··*P.o~ .••. ,· · =.s.~:., .·~Ros·:· ·· · · ·• 1
:·· •

. ;LQ~~:'.~~itl:~fl .:7 :'":'~~·;;
.:; .:::'.:: .~:.: ;:x~ ,~ ,. :,. ,,,., ,, ,,, :;,v,~;,

~.··. fr ;1~1}1:,1s~~0t;:
· · · · · ·efdi.c~·:.,;f si;zeo.

·efd.i:Ctt£dittimt:t:= ·••fa· ...
~f~.i~hMi·~s~(~:0,; :·::·;·. ~··
~fd .~ tcfl~axSel: ;;.;· .~; .•· :; ; : :·:

;: .. <.-.<:.,;,.,-,,,.

··l~:cre~~·(f~§~:en~·~y.· .. ¥;:e1d: .. · ~]::
hY1ndEnttyfi ~1ig2 :: .::·; :~ate\·lj n4o~'(:: .' : .•..•. •••• > : ..•. · .•... • •• ••• ••. • •

hwn.dc·lj:~11~.: .. ·· ··. " · .1~: .• ·.·Pa·~7nt:..w.ir'l~.ow hantil·e ····~/
· · W~· :E~TRY~:lEl.D;,: . . t·~J~!:t1q9r' :~la~~: */

• 11 p't9~·~c~s~~h 11
· tkN~·:in:iti~·l:t~~t ·.~!

WS: VISIBl.E··• .1 /* Visible ·~~en .. ·created ·*/
.. ES)A.RGIN J 1* . C;r~,~~: a: b~~~~r· : ; .. */

ES :A~I~s1.zt,. r ..• ·sys;e~ .:~.e~s:··~he ···size. *1 ..
x~o~9YPRs, · .. ···· K*:·:x.and·i·:pos1ti!ori$ */
~W1~th .:y,~ei9ht• '~" W.i ~th' :a.~d ·:~e•i,9~r. * l
hw;ldCltent, . ..l*: :O~r),,r.;.wi,rid~··h~ndl e *l
FIW~o· TPP' ·'.'/* z~order .position .. *l
~! - t~ w~ nd~~ :-·i'.denti fi e.r · . * /
&erd, I* c.ontrol d~ta . . , ~l
NULL);]* No pres. p~rameters· */

Figure 12-3. Code for Creating Entry Field with 12-Character Text Limit

To expand or reduce the text limit after creating the entry field, an application can

send an EM_SETTEXTLIMIT message specifying a new maximum text limit for the

entry field. The following code fragment increases to 20 characters the text limit of

the entry field created in the previous example:

WihS~trdMsg (hwn~Eritr~Fte l d2 t . EM~§ET'TEXTLIM!T ~
. . (MPARAt.i)~G~.(M~AR~)~l;

Figure 12-4. Code for Creating Entry Field with 20-Character Text Limit

Retrieving Text From an Entry Field
An application can use the WinQueryWindowTextlength and WinQueryWindowText

functions to retrieve the text from an entry field. WinQueryWindowTextlength

returns the length of the text; WinQueryWindowText copies the window text to a

buffer.

Typically, an application needs to retrieve the text from an entry field only if the user

changes the text. An entry field sends an EN_CHANGE notification code in the low

word of the first message parameter of the WM_CONTROL message whenever the

text changes. The following code fragment sets a flag when it receives the

EN_CHANGE code, checks the flag during the WM_ COMMAND message and, if it is

set, retrieves the text of the entry field:

12-8 OS/2 Programming Guide-Volume II

Figure 12-5. Code for Flagging a Text Change in an Entry Field

Chapter 12. Entry-Field Controls 12-9

Summary
Following are the OS/2 functions, structures, and messages used with entry-field
controls.

Table 12-4. Entry-Field Functions

Function Name Description

WlnQueryDlgltemShort Converts the text of a dialog item into an integer
value.

WinQueryWindowText Copies window text into a buffer.

WlnQueryWlndowTextlength Returns the length of the window text, excluding
any NULL termination character.

WlnSetDlgltemShort Converts an integer value into the text of a dialog
item.

WinSetWlndowText Sets the window text for a specified window.

Table 12-5. Entry-Field Structure

Structure Name Description

ENTRYFDATA Entry-field data structure

Table 12-6. Messages Sent to an Entry Field

Message Description

EM_CLEAR Deletes the text that forms the current selection.

EM_COPY Sends the current selection to the clipboard.

EM_CUT Sends the text that forms the current selection to
the clipboard, then deletes it from the entry field
control.

EM_PASTE Replaces the text that forms the current selection
with text from the clipboard.

EM_QUERYCHANGED Queries whether the text of the entry field control
has been changed since the last inquiry.

EM_ QUERYFIRSTCHAR Returns the zero-based offset of the first character
displayed in the entry field control.

EM_QUERYREADONLY Returns the read-only state of an entry field
control.

EM_QUERYSEL Gets the zero-based offsets of the bounds of the
text that forms the current selection.

EM_SETFIRSTCHAR Specifies the offset of the character to be displayed
in the first position of the entry field control.

EM_SETINSERTMODE Sets the insert mode of an entry field.

EM_SETREADONLY Sets the read-only state of an entry field control.

EM_SETSEL Sets the zero-based offsets of the bounds of the
text that forms the current selection.

EM_SETTEXTLIMIT Sets the maximum number of bytes that an entry
field control can contain.

12-10 OS/2 Programming Guide-Volume II

Table 12-7. Message Generated by an Entry Field to its Owner Window

Message Description

WM_ CHAR Occurs when the user presses a key.

WM_CONTROL Occurs when a control has a significant event to
notify to its owner.

WM_QUERYCONVERTPOS Sent by an application to determine whether it is
appropriate to begin conversion of DBCS
characters.

WM_QUERYWINDOWPARAMS Occurs when an application queries the entry field
control window parameters.

WM_SETWINDOWPARAMS Occurs when an application sets or changes the
entry field control window parameters.

Chapter 12. Entry-Field Controls 12-11

12-12 OS/2 Programming Guide-Volume II

Chapter 13. Multiple-Line Entry Field Controls

A multiple-line entry (MLE) field is a sophisticated control window that enables a

user to view and edit multiple lines of text. This chapter describes how to create

and use multiple-line entry field controls in a PM application.

About Multiple-Line Entry Field Controls

MLE Styles

An MLE field control gives an application the text-editing capabilities of a simple

text editor. The application can create a multiple-line entry field by using the

WinCreateWindow function or by specifying the MLE statement in a dialog-window

template in a resource-definition file.

The style of an MLE field control determines how the MLE field appears and

behaves. An application can specify a combination of the following styles for an

MLE field:

Table 13-1. Multiple-Line Entry Field Styles

Style Description

MLS_BORDER Draws a border around the MLE field.

MLS_HSCROLL Adds a horizontal scroll bar to the MLE field. The MLE control

enables this scroll bar whenever any line exceeds the width of
the MLE field.

MLS_IGNORETAB Directs the MLE control to ignore the Tab key.

MLS_READONL Y Prevents the MLE field from accepting text from the user. This

style is useful for displaying lengthy static text in a client or
dialog window.

MLS_ VSCROLL Adds a vertical scroll bar to the MLE field. The MLE control
enables this scroll bar whenever the number of lines exceeds

the height of the MLE field.

MLS_WORDWRAP Automatically breaks lines that are longer than the width of the
MLE field.

MLE Control Notification Codes

© Copyright IBM Corp. 1992

An MLE field control sends WM_CONTROL messages containing notification codes

to its owner whenever certain events occur-for example, when the user or

application tries to insert too much text, or when the user uses the scroll bars. The

owner window uses the notification codes either to carry out custom operations for

the MLE field or to respond to errors.

13-1

An MLE field control can send the following notification codes to its owner:

Table 13-2. Multiple-Line Entry Field Control Notification Codes

Code Description

MLN_CHANGE Indicates that the contents of the MLE field have
changed.

MLN_ CLPBDFAIL Indicates that a clipboard operation failed.

MLN_HSCROLL Indicates that the MLE text is about to scroll
horizontally.

MLN_KILLFOCUS Indicates that the MLE field lost the input focus.

MLN_MARGIN Indicates that the mouse moved across the MLE
field margin.

MLN_MEMERROR Indicates that the MLE field control cannot allocate
enough memory to perform the requested
operation.

MLN_OVERFLOW Indicates that the specified MLE operation would
overflow the field's text limit or the format
rectangle.

MLN_PIXHORZOVERFLOW Indicates that the user entered more text than
could fit horizontally in the MLE field.

MLN_PIXVERTOVERFLOW Indicates that the user entered more text than
could fit vertically in the MLE field.

MLN_SEARCHPAUSE Indicates that the MLE field control paused during
a search operation initiated by an MLM_SEARCH
message.

MLN_SETFOCUS Indicates that the MLE field received the input
focus.

MLN_ TEXTOVERFLOW Indicates that the user or application attempted to
exceed the text limit of the MLE field.

MLN_UNDOOVERFLOW Indicates that the MLE field control cannot undo a
text change because the undo operation involves
too much text.

MLN_ VSCROLL Indicates that the MLE text is about to scroll
vertically.

The MLE field control sends the MLN_HSCROLL or MLN_ VSCROLL notification
codes when the user enables the scroll bars so that the application can monitor the
visible contents of the MLE field. The application also can monitor the contents of
an MLE field by using the MLM_QUERYFIRSTCHAR message, which specifies the
offset of the character in the upper-left corner of the MLE field. This represents the
first MLE character that is visible to the user. To provide an alternative way of
scrolling the contents of an MLE field, an application can move the character at the
specified offset to the upper-left corner of an MLE field using the
MLM_SETFIRSTCHAR message.

The MLE field control sends an MLN_CHANGE notification code when the user
changes the text in some way. This notification code is especially useful when the
MLE field is in a dialog window, because the dialog procedure can use this code to
determine whether it should process the contents of the MLE field. If an application
does not process MLN_CHANGE notification codes, it can use the
MLM_ QUERYCHANGED message to determine whether the user has made changes
to the MLE text. The MLM_SETCHANGED message makes the MLE field control

13-2 OS/2 Programming Guide-Volume II

send an MLN_CHANGE notification code with every event that occurs in the MLE

field, regardless of whether the user has changed anything. This code also can be

used to hide a change made by a user.

MLE Text Editing
An MLE field contains one or more lines of text. Each line consists of one or more

characters and ends with one or more characters that represent the end of the line.

The end-of-line characters are determined by the format of the text.

The user can type text in an MLE field when the MLE field has the focus. The

application can insert text at any time by using the MLM_INSERT message and

specifying the text as a null-terminated string. The MLE field control inserts the text

at the cursor position or replaces the selected text.

The MLE field control entry mode, insert or overstrike, determines what happens

when the user inserts text. The user sets the entry mode by pressing the Insert key.

The entry mode alternates each time the user presses Insert. When overstrike

mode is enabled, at least one character is selected. This means that the

MLM_INSERT message always replaces at least one character. If insert mode is

enabled, the MLM_INSERT message replaces only those characters the user or

application has selected. Otherwise, the MLE field makes room for the inserted

characters by moving existing characters to the right, starting at the cursor position.

The cursor position, identified by a blinking bar, is specified as a character offset

relative to the beginning of the text. The user can set the cursor position by using

the mouse or Arrow keys to move the blinking bar. An application can set the

cursor position by using the MLM_SETSEL message, which directs the MLE field

control to move the blinking bar to a given character position. The MLM_SETSEL

message also can set the selection.

The selection is one or more characters of text on which the MLE field control

carries out an operation, such as deleting or copying. The user selects text by

pressing the Shift key while moving the cursor or by pressing mouse button 1 while

moving the mouse. The user also can select a word in a block of text by

double-clicking on the word. An application selects text by using the MLM_SETSEL

message to specify the cursor position and the anchor point. The selection is all the

text between the cursor position and the anchor point. If the cursor position and

anchor point are equal, there is no selection. An application can retrieve the cursor

position, anchor point, or both, by using the MLM_QUERYSEL message.

The user can delete characters, one at a time, by pressing the Delete key or the

Backspace key. Pressing the Delete key deletes the character to the right of the

cursor; pressing the Backspace key deletes the character to the left of the cursor

and changes the cursor position. An application can delete one or more characters

by using the MLM_DELETE message, which directs the MLE field control to delete a

specified number of characters, starting at the given position. This message does

not change the cursor position. An application can delete selected text by using the

MLM_CLEAR message.

An application can reverse the previous operation by using the MLM_UNDO

message, which restores the MLE field to its previous state. This is a quick way to

fix editing mistakes. However, not all operations can be undone.

Chapter 13. Multiple-Line Entry Field Controls 13-3

The application determines whether the previous operation can be undone by using
the MLM_QUERYUNDO message, which returns TRUE and indicates the type of
operation that can be undone. Using the MLM_RESETUNDO message, an
application can prevent a subsequent MLM_UNDO message from changing the state
of an MLE field.

MLE Text Formatting
An application can retrieve the number of lines of text in an MLE field by using the
MLM_QUERYLINECOUNT message and can retrieve the number of characters in the
MLE field by using the MLM_QUERYTEXTLENGTH message. The amount of text
and, subsequently, the number of lines to be entered in an MLE field depend on the
text limit. An application sets the text limit by using the MLM_SETTEXTLIMIT
message and determines the current limit by using the MLM_QUERYTEXTLIMIT
message. The user cannot set the text limit. If the user types to the text limit, the
MLE field control beeps and ignores any subsequent keystrokes. If the application
attempts to add text beyond the limit, the MLE field control truncates the text.

An application can control the length of each line in an MLE field by enabling word
wrapping. When word wrapping is enabled, the MLE field control automatically
breaks any line that is longer than the MLE field is wide. An application can set
word wrapping by using the MLM_SETWRAP message, and it can determine
whether the MLE field control is wrapping text by using the MLM_QUERYWRAP
message. Word wrapping is disabled by default unless the application specifies the
MLS_WORDWRAP style when creating the MLE field control.

An application can set tab stops for an MLE control by using the MLM_SETTABSTOP
message. Tab stops specify the maximum width of a tab character. When the user
or an application inserts a tab character, the MLE field control expands the
character so that it fills the space between the cursor position and the next tab stop.
The MLM_SETTABSTOP message sets the distance (in pels) between tab stops, and
the MLE field control provides as many tab stops as necessary, no matter how long
the line gets. An application can retrieve the distance between tab stops using the
MLM_ QUERYT ABSTOP message.

An application can use the MLM_SETFORMATRECT message to set the format
rectangle (MLE field). The format rectangle is used to set the horizontal and vertical
limits for text. The MLE control sends a notification message to the parent window
of the MLE field if text exceeds either of those limits. An application typically uses
the format rectangle to provide its own word wrapping or other special text
processing. An application can retrieve the current format rectangle by using the
MLM_ QUERYFORMATRECT message.

An application can prevent the user's editing of the MLE field by setting the
MLS_READONLY style in the WinCreateWindow function or in the MLE statement in
the resource-definition file. The application also can set and query the read-only
state by using the MLM_SETREADONLY and MLM_QUERYREADONL Y messages,
respectively.

An application can set the colors and font for an MLE field by using the
MLM_SETTEXTCOLOR, MLM_SETBACKCOLOR, and MLM_SETFONT messages.
These messages affect all text in the MLE field. An MLE field cannot contain a
mixture of fonts and colors. An application can retrieve the current values for the
colors and font by using the MLM_QUERYTEXTCOLOR, MLM_QUERYBACKCOLOR,
and MLM_QUERYFONT messages.

13-4 OS/2 Programming Guide-Volume II

MLE Text Import and Export Operations
An application can copy text to and from an MLE field by importing and exporting.

To import text to an MLE field, an application can use the MLM_IMPORT message,

which copies text from a buffer to the MLE field. To export text from an MLE field,

the application can use the MLM_EXPORT message, which copies text from the MLE

field to a buffer. The application uses the MLM_SETIMPORTEXPORT message to

set the import and export buffers.

An application can import and export text in a variety of formats. A text format, set

with the MLM_FORMAT message, identifies which characters are used for the

end-of-line characters. An MLE field can have the following text formats:

Table 13-3. Multiple-Line Entry Field Text Format

Format Description

MLFIE_CFTEXT Exported lines end with a carriage return/newline character pair

(OxOD, OxOA). Imported lines must end with a newline character,

carriage return/newline character pair, or newline/carriage

return character pair.

MLFIE_NOTRANS Imported and exported lines end with a newline character

(OxOA).

MLFIE_WINFMT For exported lines, the carriage return/newline character pair

marks a hard linebreak (a break entered by the user). Two

carriage-return characters and a newline character (OxOD, OxOD,

OxOA) mark a soft linebreak (a break inserted during word

wrapping and not entered by the user). For imported lines, the

extra carriage-return in soft linebreak characters is ignored.

The text format can affect the number of characters in a selection. To ensure that

the export buffer is large enough to hold exported text, an application can send the

MLM_QUERYFORMATLINELENGTH message. The application can send the

MLM_QUERYFORMATTEXTLENGTH message to determine the number of bytes in

the text to be exported.

Each time an application inserts text in an MLE field, the MLE field control

automatically refreshes (repaints) the display by drawing the new text. When an

application copies large amounts of text to an MLE field, refreshing can be quite

time-consuming, so the application should disable the refresh state. The application

disables the refresh state by sending the MLM_DISABLEREFRESH message. After

copying all the text, the application can restore the refresh state by sending the

M LM _ ENABLEREFRESH message.

MLE Field Control Cut, Copy, and Paste Operations
The user can cut, copy, and paste text in an MLE field by using the Ctrl +Delete,

Shift+ Delete, and Shift+ Insert key combinations. An application-either by itself or

in response to the user-can cut, copy, and paste text by using the MLM_CUT,

MLM_COPY, and MLM_PASTE messages. The MLM_CUT and MLM_COPY

messages copy the selected text to the clipboard. The MLM_CUT message also

deletes the text from the MLE field; MLM_COPY does not. The MLM_PASTE

message copies the text from the clipboard to the current position in the MLE field,

replacing any existing text with the copied text. An application can delete the

selected text without copying it to the clipboard by using the MLM_CLEAR message.

Chapter 13. Multiple-Line Entry Field Controls 13-5

An application also can copy the selected text from an MLE field to a buffer by using
the MLM_QUERYSELTEXT message. This message does not affect the contents of
the clipboard.

MLE Field Control Search and Replace Operations
An application can search for a specified string within MLE field text by using the
MLM_SEARCH message, which searches for the string. The MLE field control
returns TRUE if the string is found. The cursor does not move to the string unless
the message specifies the MLFSEARCH_SELECTMATCH option.

An application also can use the MLM_SEARCH message to replace one string with
another. If the message specifies the MLFSEARCH_CHANGEALL option, the MLE
field control replaces all occurrences of the search string with the replacement
string. Both the search string and the replacement string must be specified in an
MLE_SEARCHDATA structure passed with the message.

Using Multiple-Line Entry Field Controls
This section explains how to create an MLE field control by using the
WinCreateWindow function and by specifying the MLE statement in a dialog
template in a resource-definition file.

Creating an MLE Field Control
The following code fragment shows how to create an MLE field control by using
WinCreateWindow:

It also is common to create an MLE field control by using an MLE statement in a
dialog-window template in a resource file, as shown in the following code fragment:

13-6 OS/2 Programming Guide-Volume II

The predefined class for an MLE control is WC_MLE. If you do not specify a style for
the MLE control, the default styles used are MLS_BORDER, WS_GROUP, and
WS_TABSTOP.

Importing and Exporting MLE Text
Importing and exporting MLE text takes place though a buffer. An import operation
copies text from the buffer to the MLE field; an export operation copies text from the
MLE to the buffer. Before an application can import or export MLE text, it must send
an MLM_SETIMPORTEXPORT message to the MLE field control, specifying the
address and size of the buffer.

To import text, an application sends the MLM_IMPORT message to the MLE field
control. This message requires two parameters: p/Offset and cbCopy. The p/Offset
parameter is a pointer to a variable that specifies the position in the MLE field
where the text from the buffer is to be placed. The position is an offset from the
beginning of the MLE text (that is, the number of characters from the beginning of
the MLE text). If p/Offset points to a variable that equals -1, the MLE field control
places the text starting at the current cursor position. On return, this variable
contains the offset to the first character beyond the imported text. The cbCopy
parameter of the MLM_IMPORT message points to a variable that specifies the
number of bytes to import. The following code fragment reads text from a file to a
buffer, then imports the text to an MLE field:

Chapter 13. Multiple-Line Entry Field Controls 13-7

13-8 OS/2 Programming Guide-Volume II

To export MLE text, an application sends the MLM_EXPORT message to the MLE
control. like MLM_IMPORT, the MLM_EXPORT message takes the p/Offset and
cbCopy parameters. The p/Offset parameter is a pointer to a variable that specifies
the offset to the first character to export. A value of -1 specifies the current cursor
position. On return, the variable contains the offset to the first character in the MLE
field not copied to the buffer. The cbCopy parameter is a pointer to a variable that
specifies the number of bytes to export. On return, this variable equals 0 if the
number of characters actually copied does not exceed the number specified to be
copied. The following code fragment shows how to export text from an MLE field,
then store the text in a file:

Chapter 13. Multiple-Line Entry Field Controls 13-9

Searching MLE Text
An application uses the MLM_SEARCH message and the MLE_SEARCHDATA

structure to search for strings in MLE text. The first parameter of the MLM_SEARCH

message is an array of flags that specify the style of the search. The application can

set the MLFSEARCH_CASESENSITIVE flag if a case-sensitive search is required. If

the application sets the MLFSEARCH_SELECTMATCH flag, the MLE field control

highlights a matching string and, if necessary, scrolls the string into view. An

application can use the MLFSEARCH_CHANGEALL flag to replace every occurrence

of the string with the string specified in the pchReplace member of the

MLE_SEARCHDATA structure.

The second parameter of the MLM_SEARCH message is a pointer to an

MLE_SEARCHDATA structure that contains information required to perform the

search operation. This structure includes a pointer to the string and, if the

MLFSEARCH_CHANGEALL flag is set in the MLM_SEARCH message, a pointer to

the replacement string. The iptStart and iptStop members specify the starting and

ending positions of the search. These positions are specified as offsets from the

beginning of the MLE field. A value of -1 in the iptStart member causes the search

to start at the current cursor position. A negative value in the iptStop member

causes the search to end at the end of the MLE field. If a matching string is found,

the MLE field control returns the length of the string in the cchFound member.

The following code fragment uses an entry field to obtain a search string from the

user, then searches an MLE field for an occurrence of the string. The search begins

at the current cursor position and ends at the end of the MLE text. When the

MLFSEARCH_SELECTMATCH flag is specified, the MLE field control highlights a

matching string and scrolls it into view.

HWND:hwnd;
HW_ND 'hwridgntryFld; _
HWND hwridMle: . . .
MLE S,EAR~HDPffA ~Tesrc~;<·····.
:cHAR $ZS~~r¢~S~~1 ~g (~4] ;: .

13-10 05/2 Programming Guide-Volume II

Summary
Following are the OS/2 structures and messages used with multiple-line entry field
controls.

Table 13-4. Multiple-Line Entry Field Control Structures

Structure Name Description

MLECTLDATA Multiple-line entry field control data structure.

MLEMARGSTRUCT Multiple-line entry field margin information

MLEOVERFLOW Multiple-line entry field overflow error structure.

MLE_SEARCHDATA Multiple-line entry field search structure.

Table 13-5 (Page 1 of 2). Messages Received by an MLE Field Control

Message

MLM_ CHARFROMLINE

MLM_CLEAR

MLM_COPY

MLM_CUT

MLM_DELETE

MLM_DISABLEREFRESH

MLM_ENABLEREFRESH

MLM_EXPORT

MLM_FORMAT

MLM_IMPORT

MLM_INSERT

MLM_LINEFROMCHAR

MLM_PASTE

MLM_QUERYBACKCOLOR

MLM_QUERYCHANGED

MLM_QUERYFIRSTCHAR

MLM_QUERYFONT

MLM_ QUERYFORMATLINELENGTH

MLM_QUERYFORMATRECT

MLM_QUERYFORMATTEXTLENGTH

MLM_ QUERYIMPORTEXPORT

Description

Returns the first insertion point on a
given line.

Clears the current selection.

Copies the current selection to the
clipboard.

Copies the text that forms the current
selection to the clipboard, then deletes
the text from the MLE field control.

Deletes text.

Disables screen refresh.

Enables screen refresh.

Exports text to a buffer.

Sets the format to be used for buffer
importing and exporting.

Imports text from a buffer.

Deletes the current selection and
replaces it with a text string.

Returns the line number corresponding to
a given insertion point.

Replaces the text that forms the current
selection with text from the clipboard.

Queries the background color.

Queries the changed flag.

Queries the first visible character.

Queries which font is in use.

Returns the number of bytes to end of line
after formatting is applied.

Queries the format dimensions and
mode.

Returns the length of a specified range of
characters after the current formatting is
applied.

Queries the current transfer buffer.

Chapter 13. Multiple-Line Entry Field Controls 13-11

Table 13-5 (Page 2 of 2). Messages Received by an MLE Field Control

Message

MLM_ QUERYLINECOUNT

MLM_ QUERYLINELENGTH

MLM_QUERYREADONLY

MLM_QUERYSEL

MLM_QUERYSELTEXT

MLM_QUERYTABSTOP

MLM_QUERYTEXTCOLOR

MLM_QUERYTEXTLENGTH

MLM_ QUERYTEXTLIMIT

MLM_QUERYUNDO

MLM_QUERYWRAP

MLM_RESETUNDO

MLM_SEARCH

MLM_SETBACKCOLOR

MLM_SETCHANGED

MLM_SETFIRSTCHAR

MLM_SETFONT

MLM_SETFORMATRECT

MLM_SETIMPORTEXPORT

MLM_SETREADONL Y

MLM_SETSEL

MLM_SETABSTOP

MLM_SETTEXTCOLOR

MLM_SETTEXTLIMIT

MLM_SETWRAP

MLM_UNDO

13-12 OS/2 Programming Guide-Volume II

Description

Queries the number of lines of text.

Returns the number of bytes between a
given insertion point and the end of line.

Queries the read-only mode.

Returns the location of the selection.

Copies the currently selected text into a
buffer.

Queries the pel interval at which tab
stops are placed.

Queries the text color.

Returns the number of characters in the
text.

Queries the maximum number of bytes
that a multiple-line entry field control can
contain.

Queries the possible undo or redo
operations.

Queries the wrap flag.

Resets the undo state to indicate the no
undo operations are possible.

Searches for a specified text string.

Sets the background color.

Sets or clears the changed flag.

Sets the first visible character.

Sets a font.

Sets the format dimensions and mode.

Sets the current transfer buffer.

Sets or clears read-only mode.

Sets a selection.

Sets the pet interval at which tab stops
are placed.

Sets the text color.

Sets the maximum number of bytes that a
multiple-line entry field control can
contain.

Sets the wrap flag.

Performs any available undo operations.

Table 13-6. Messages Issued by an MLE Field Control to Its Owner Window

Message

WM_BUTTON1 DBLCLK

WM_BUTTON1 DOWN

WM_BUTTON1 UP

WM_CHAR

WM_CONTROL

WM_ENABLE

WM_MOUSEMOVE

WM_QUERYWINDOWPARAMS

WM_SETWINDOWPARAMS

Description

Occurs when the user presses pointer button 1
twice within a specified time.

Occurs when the user presses pointer button 1.

Occurs when the user releases pointer button 1.

Sent when the user presses a key.

Occurs when an MLE field control has a significant
event to notify to its owner.

Sets the state of the MLE field.

Occurs when the pointing device pointer moves.

Occurs when an application queries the entry field
control window parameters.

Occurs when an application sets or changes the
entry field control window parameters.

Chapter 13. Multiple-Line Entry Field Controls 13-13

13-14 OS/2 Programming Guid~Volume II

Chapter 14. Scroll-Bar Controls

Scroll bars are control windows that convert mouse and keyboard input into
integers; they are used by an application to scroll the contents of a client window.
This chapter describes how to create and use scroll bars in PM applications.

About Scroll Bars
A scroll bar has three main parts: the bar, its arrows, and a slider (see Figure 14-1).

11 t. ~~r.roll Bms am
I:

· This window has vertical and horizontal scroll bars.

Slider ---+I

Vertical scroll bar --+ r Horizontal scroll bar

IT

Figure 14-1. Scroll Bars in a Window

The arrows are located at each end of the scroll bar. The left scroll arrow, on the
left side of a horizontal scroll bar, enables the user to scroll to the left in a
document. The right scroll arrow lets the user scroll to the right.

On a vertical scroll bar, the upper scroll arrow enables the user to scroll upward in
the document; the lower scroll arrow, downward. The slider, which lies between the
two scroll arrows, reflects the current value of the scroll bar. Scroll bars monitor
the slider and send notification messages to the owner window when the slider
position changes as a result of mouse or keyboard input.

Although, typically, scroll bars are used in frame windows, an application can use
stand-alone scroll bars of any size or shape, at any position, in a window of almost
any class. Scroll bars can be used as parts of other control windows; for example, a
list box uses a scroll bar to enable the user to view items when the list box is too
small to display all the items.

Scroll-Bar Creation

© Copyright IBM Corp. 1992

An application can include a scroll bar in a standard frame window by specifying the
FCF _HORZSCROLL or FCF _ VERTSCROLL flag in the WinCreateStdWindow function.
To create a scroll bar in another type of window, an application can specify the
predefined (preregistered) window class WC_SCROLLBAR in the WinCreateWindow
function or in the CONTROL statement in a resource file.

Although most applications specify an owner window when creating a scroll bar, an
owner is not required. If an application does not specify an owner, the scroll bar
does not send notification messages.

14-1

Scroll-Bar Styles
A scroll bar has styles that determine what it looks like and how it responds to input.

Styles are specified in the WinCreateWindow function or the CONTROL statement.

A scroll-bar can have the following styles:

Table 14-1. Scroll-Bar Styles

Style Meaning

SBS _AUTOTRACK Causes the entire slider to track the movement of the mouse

pointer when the user scrolls the window. Without this style, only

an outlined image of the slider tracks the movement of the

mouse pointer, and the slider jumps to the new location when

the user releases the mouse button.

SBS_HORZ Creates a horizontal scroll bar.

SBS_THUMBSIZE Causes the SBCDATA structure to store information used to

calculate the size of the scroll-bar slider.

SBS_VERT Creates a vertical scroll bar.

Scroll-Bar Range and Position
Every scroll bar has a range and a slider position. The range specifies the

minimum and maximum values for the slider position. As the user moves the slider

in a scroll bar, the scroll bar reports the slider position as an integer in this range.

If the slider position is the minimum value, the slider is at the top of a vertical scroll

bar or at the left end of a horizontal scroll bar. If the slider position is the maximum

value, the slider is at the bottom or right end of the vertical or horizontal scroll bar,

respectively.

a Jo

rows = cyClient/yChar=20

80 • sScrollMax 80 4iv

Figure 14-2. Determining Scroll-Bar Range

100
1 ines

Document
sCurPos = 0

----19

----38

4---- 57

4---- 76

----80

An application can adjust the range to convenient integers by using the

SBM_SETSCROLLBAR message (or initially, by using the SBCDATA structure). This

makes it easy to translate the slider position into a value that corresponds to the

data being scrolled. For example, an application attempting to display 100 lines of

text in a window that can show only 20 lines at a time could set the vertical

scroll-bar range from 1 through 100. If the slider were at position 0, the first line

14-2 05/2 Programming Guide-Volume II

would be at the top of the window. If the slider were at position 100, the last line

would be at the bottom of the window.

To establish a useful relationship between the scroll-bar range and the data, an

application must adjust the range whenever the data or the size of the window

changes. This means the application should adjust the range as part of processing

WM_ SIZE messages.

An application must move the slider in a scroll bar. Although the user requests

scrolling in a scroll bar, the scroll bar does not update the slider position. Instead, it

passes the request to the owner window, which scrolls the data and updates the

slider position using the SBM_SETPOS message. The application controls the slider

movement and can move the slider in the increments best suited for the data being

scrolled.

An application can retrieve the current slider position of a scroll bar by sending the

SBM_QUERYPOS message to the scroll bar.

If a scroll bar is a descendant of a frame window, its position relative to its parent

can change when the position of the frame window changes. Frame windows draw

scroll bars relative to the upper-left corner of the frame window (rather than the

lower-left corner). The frame window can adjust they coordinate of the scroll-bar

position, which would be desirable if the scroll bar is a child of the frame window,

but would be undesirable if the scroll bar is not a child window.

Scroll-Bar Notification Messages
A scroll bar sends notification messages to its window whenever the user clicks the

scroll bar. WM_ VSCROLL and WM_HSCROLL are the notification messages for

vertical and horizontal scroll bars, respectively. If the scroll bar is a frame control

window, the frame window passes the message to its client window.

Each notification message includes the scroll-bar identifier, scroll-bar command

code corresponding to the action of the user, and, in some cases, the position of the

slider. If an application creates a scroll bar as part of a frame control window, the

scroll-bar identifier is the predefined constant FID _ VERTSCROLL or

FID_HORZSCROLL. Otherwise, it is the identifier given in the WinCreateWindow

function.

The scroll-bar command codes specify the action the user has taken. Operating

system user-interface guidelines recommend certain responses for each action.

Figure 14-3 on page 14-4 illustrates the SBM_xxx messages your application can

send to a scrol I bar.

Chapter 14. Scroll-Bar Controls 14-3

x[~a

i +-
+-

WM_VSCROLL:

SBJ..INEUP

SBJ>AGEUP

..--- SHder ---+! +- sa_sLIDERPOSITI ON

....
()

......... ..,.

+-

[:j+-

SBJ>AGEDOWN

SBJ..INEDOWN

WMJISCROLL:

SBJ..INERIGHT
SBJ>AGERIGHT
sa_sLIDERPOSITION
SBJ>AGELEFT
SBJ..INELEFT

Figure 14-3. Standard Window Scroll Bar and Command Codes

Following is a list of the command codes; for each code, the user action is specified,
followed by the application's response. In each case, a scrolling unit, appropriate
for the given data, must be defined by the application. For example, for scrolling
text vertically, the typical unit is a line.

Table 14-2 (Page 1 of 2). Scroll-Bar Command Codes

Command Code Description

SB_LINEUP Indicates that the user clicked the top scroll arrow.
Decrement the slider position by one, and scroll
toward the top of the data by one unit.

SB_LINEDOWN Indicates that the user clicked the bottom scroll
arrow. Increment the slider position by one, and
scroll toward the bottom of the data by one unit.

SB_LINELEFT Indicates that the user clicked the left scroll arrow.
Decrement the slider position by one, and scroll
toward the left end of the data by one unit.

SB_LINERIGHT Indicates that the user clicked the right scroll
arrow. Increment the slider position by one, and
scroll toward the right end of the data by one unit.

se_PAGEUP Indicates that the user clicked the scroll-bar
background above the slider. Decrement the slider
position by the number of data units in the window,
and scroll toward the top of the data by the same
number of units.

SB_PAGEDOWN Indicates that the user clicked the scroll-bar
background below the slider. Increment the slider
position by the number of data units in the window,
and scrol I toward the bottom of the data by the
same number of units.

SB_PAGELEFT Indicates that the user clicked the scroll-bar
background to the left of the slider. Decrement the
slider position by the number of data units in the
window, and scroll toward the left end of the data
by the same number of units.

14·4 OS/2 Programming Guide-Volume II

Table 14-2 (Page 2 of 2). Scroll-Bar Command Codes

Command Code Description

SB_PAGERIGHT Indicates that the user clicked the scroll-bar
background to the right of the slider. Increment the
slider position by the number of data units in the
window, and scroll toward the right end of the data
by the same number of units.

SB_SLIDERTRACK Indicates that the user is dragging the slider.
Applications that draw data quickly can set the
slider to the position given in the message, and
scroll the data by the same number of units the
slider has moved. Applications that cannot draw
data quickly should wait for the
SB_SLIDERPOSITION code before moving the
slider and scrolling the data.

SB_SLIDERPOSITION Indicates that the user released the slider after
dragging it. Set the slider to the position given in
the message, and scrol I the data by the same
number of units the slider was moved.

SB_ENDSCROLL Indicates that the user released the mouse after
holding it on an arrow or in the scroll-bar
background. No response is necessary.

If the command code is SB_SLIDERTRACK or SB_SLIDERPOSITION, indicating that
the user is moving the scroll-bar slider, the notification message also contains the
current position of the slider.

The owner window can send a message to the scroll bar to read or reset the current
value and range of the scroll bar. To reflect any changes in the state of the scroll
bar, the owner window also can adjust the data the scroll bar controls.

An application can use the WinEnableWindow function to disable a scroll bar. A
disabled scroll bar ignores the actions of the user, sending out no notification
messages when the user tries to manipulate it. If an application has no data to
scroll, or if all data fits in the client window, the application should disable the scroll
bar.

Scroll Bars and the Keyboard
When a scroll bar has the keyboard focus, it generates notification messages for the
following keys:

Table 14-3. Scroll-bar Notification Messages

Keys Response

UP SB_LINEUP or SB_LINELEFT

LEFT SB_LINEUP or SB_LINELEFT

DOWN SB_LINEDOWN or SB_LINERIGHT

RIGHT SB_LINEDOWN or SB_LINERIGHT

PGUP SB_PAGEUP or SB_PAGELEFT

PGDN SB _PAGEDOWN or SB _PAGERIGHT

Chapter 14. Scroll-Bar Controls 14·5

If an application uses scroll bars to scroll data but does not give the scroll bar the

input focus, the window with the focus must process keyboard input. The window

can generate scroll-bar notification messages or carry out the indicated scrolling.

The following table shows the responses to keys that a window must process:

Table 14-4. Focus Window Message Responses to Keys

Key Response

UP SB_LINEUP

DOWN SB _LINE DOWN

PGUP SB_PAGEUP

PGDN SB_PAGEDOWN

CTRL+HOME SB_SLIDERTRACK, with the slider set to the
minimum position

CTRL+END SB_SLIDERTRACK, with the slider set to the
maximum position

LEFT SB_LINELEFT

RIGHT SB_LINERIGHT

CTRL+PGUP SB_PAGELEFT

CTRL+PGDN SB_PAGERIGHT

HOME SB_SLIDERTRACK, with the slider set to the
minimum position

END SB_SLIDERTRACK, with the slider set to the
maximum position

For vertical scroll bars that are part of list boxes, the following table shows the

responses to keys:

Table 14-5. List Box Responses to Keys

Key Command

CTRL+UP SB_SLIDERTRACK, with the slider set to
the minimum position

CTRL+DOWN SB_ SLIDERTRACK, with the slider set to
the maximum position

F7 SB_PAGEUP

f 8 SB_PAGEDOWN

Using Scroll Bars
This section explains how to perform the following tasks:

• Create scroll bars.
• Retrieve a scroll-bar handle.
• Initialize, adjust, and read the scroll-bar range and position.

14-6 OS/2 Programming Guide-Volume II

Creating Scroll Bars
When creating a frame window, you can add scroll bars by specifying the

FCF _HORZSCROLL flag, FCF _ VERTSCROLL flag, or both flags in the

WinCreateStdWindow function. This adds horizontal, vertical, or both (as specified)

scroll bars to the frame window. The frame window owns the scroll bars and

passes notification messages from the scroll bars to the client window.

The following code fragment adds scroll bars to a frame window:

Scroll bars created this way have the window identifier FID_HORZSCROLL or

FID_VERTSCROLL. To determine the size and position of the scroll bars, the frame

window uses the standard size specified by the system values SV _ CXVSCROLL and

SV_CYHSCROLL. The position always is defined by the right and bottom edges of

the frame window.

Chapter 14. Scroll-Bar Controls 14-7

Another way to create scroll bars is using the WinCreateWindow function. This
method is most commonly used for stand-alone scroll bars. Creating scroll bars this
way lets you set the size and position of the scroll bars. You also can specify which
window should receive notification messages.

The following code fragment creates a stand-alone scroll bar:

Retrieving a Scroll-Bar Handle
If you use the WinCreateStdWindow function to create a scroll bar as a child of the
frame window, you must be able to retrieve the scroll-bar handle. One way to do
this is to use the WinWindowFromlD function, the frame-window handle, and a
predefined identifier (such as FID_HORZSCROLL or FID_VERTSCROLL), as shown in
the following code fragment:

If the standard frame window includes a client window, you can use that handle to
access the scroll bars. The idea is to get the frame-window handle first; then, the
scroll-bar handle.

14-8 OS/2 Programming Guide-Volume II

Using the Scroll-Bar Range and Position
You can initialize the current value and range of a scroll bar to non-default values
by sending the SBCDATA structure with class-specific data for a call to
WinCreateWindow:

#define lD_SCROLL_BAR 1

SBCOATA. sbcd;
HWNO hwlldScroll,hWndClient;

/* Set up scroll-bar control data.
sbtd.posFirst = 200;
sbcd~poslast = 400;
sbcd.posThumb = 300;

/* Create the scrol 1 bar •.
hwndScroll :: Wi nCreat~Wi ndowf hwndCli ent,

we SCROLLBAR, (pszr NULL~ ...
SBS,...VERT I WS,...VISIBLE,
10, l<h
i<hl00;
h\'lndCli ent,
HW~D;;_1~9p, ·

.. ~Io··· SCROLL·•· BAR,
&~b¢d. -
NULL};

*/

*I

You can adjust a scroll-bar value and range by sending it an SBM_SETSCROLLBAR
message:

Chapter 14. Scroll-Bar Controls 14-9

You can read a scroll-bar value by sending it an SBM_QUERYPOS message:

Similarly, you can set a scroll-bar value by sending an SBM_SETPOS message:

You can read a scroll-bar range by sending it an SBM_QUERYRANGE message:

Summary
Following are the operating system structure and messages used with scroll bars.

Table 14-6. Scroll-Bar Structure

Structure name Description

SBCDATA Scroll-bar control data structure.

Table 14-7. Messages Sent to a Scroll Bar

Message Description

SBM_QUERYPOS Returns the slider position.

SBM_QUERYRANGE Returns the scroll bar range.

SBM_SETPOS Sets the position of the slider.

SBM_SETSCROLLBAR Sets the scroll-bar range and slider positions.

SBM_SETTHUMBSIZE Sets the scroll bar slider size.

14-10 OS/2 Programming Guide-Volume II

Table 14-8. Messages Sent from a Scroll Bar to Its Owner Window

Message Description

WM_HSCROLL Occurs when a horizontal scroll bar control has a
significant event to notify to its owner.

WM_QUERYCONVERTPOS Sent by an application to determine whether it is
appropriate to begin conversion of DBCS
characters.

WM_QUERYWINDOWPARAMS Occurs when an application queries the scroll bar
control window parameters.

WM_SETWINDOWPARAMS Occurs when an application sets or changes the
scroll bar control window.

WM_VSCROLL Occurs when a vertical scroll bar control has a
significant event to notify to its owner.

Chapter 14. Scroll-Bar Controls 14-11

14-12 OS/2 Programming Guide-Volume II

Chapter 15. Spin Button Controls

A spin button control (WC_SPINBUTTON window class) is a visual component that
gives users quick access to a finite set of data by letting them select from a
scrollable ring of choices. Since the user can see only one item at a time, a spin
button should be used only with data that is intuitively related, such as a list of the
months of the year, or an alphabetic list of cities or states. This chapter explains
when and how to use spin buttons in PM applications.

About Spin Buttons
A spin button consists of at least one spin field that is a single-line entry (SLE) field,
and up and down arrows that are stacked on top of one another. These arrows are
positioned to the right of the SLE field. Figure 15-1 shows an example.

Spin button

(87~ _i~@-)·,)I
t~.~
\ 10 \ /

......... 11 ::,., /

Figure 15-1. Example of a Spin Button

You can create multi-field spin buttons for those applications in which users must
select more than one value. For example, in setting a date, the spin button control
can provide individual fields for setting the month, day, and year. The first spin field
in the spin button could contain a list of months; the second, a list of numbers; and
the third, a list of years.

The application uses a multi-field spin button by creating one master component
that contains a spin field and the spin arrows, and servant components that contain
only spin fields. The spin buttons are created at component initialization. The
servant components are passed a handle to the master component in a message.
When a servant spin field has the focus, it is spun by the arrows in the master
component.

The list of values in a spin button entry field can be an array of data or a list of
consecutive integers, defined by an upper and a lower limit.

Creating a Spin Button

© Copyright IBM Corp. 1992

A spin button is created as a public window class by using the WinCreateWindow
function, with a class style of WC_SPINBUTTON and a window style of WS_ VISIBLE.
These are joined with any of the spin button style flags by using a logical OR (I).
The spin button style flags let you specify:

• Character input restrictions (none, numeric, read-only)
• Presentation of the data in the spin field (left-justified, right-justified, centered)
• Presence or absence of a border around the spin field

15-1

• Spin speed
• Zero-padding of numeric spin fields.

The placement and width of the spin button component are specified as parameters

in the WinCreateWindow function.

The upper and lower limits of numeric fields, the value array pointer for arrays of

strings, and the initial value in the spin field are all set by messages sent from the

application to the component.

You can destroy the spin button component window using the WinDestroyWindow

function when finished. The component handle that was returned when the spin

button was created is the input parameter to the WinDestroyWindow function.

Figure 15-2 is an example of how to create a spin button.

Figure 15-2 (Part 1 of 2). Sample Code for Creating a Spin Button

15-2 OS/2 Programming Guide-Volume II

.;!::l~~~~~~:~~·~*,;'*~~~**~~~~~~-~~~~~*.*,~·!~~~~~~~,~·~.~~~*~~·!~~~-~*~t1:~'*.**~~~.*,~:*~*}
·: ·1.*··s~t:.·the·.. \St:»in: Buth~~ .conttal ,· ..•. :$tnee.·:i:t:·has: ·a :sty:l~-· · :···.·:t/

~I -

. . .. ·· · '.··:·:\£~;~~·. 'f \:;r~JX ...
: .. ·: .. :;.,1··,.,,.

Figure 15-2 (Part 2 of 2). Sample Code for Creating a Spin Button

Graphical User Interface Support for Spin Buttons
Users can interact with the spin button using either the keyboard or a pointing
device, such as a mouse, as follows:

• Using the select button (button 1) on the pointing device, users first give focus to
the spin field they want to change, and then click on either the Up Arrow or Down
Arrow until the value they want is displayed in the spin field.

• Using a keyboard, users press the:

Up Arrow and Down Arrow keys to see the choices

Left Arrow and Right Arrow keys to move the cursor left and right within a
spin field

Home and End keys to move the cursor to the first and last characters in a
spin field

Tab and Back Tab (Shift+ Tab) keys to move the input focus from one field to
another in multi-field spin buttons.

Users can view the values in a spin field one at a time, or they can rapidly scroll a
list by keeping either the Up or Down Arrow keys pressed. When a spin button is
not read-only, users can advance quickly to the value they want to set in a spin field
by typing over the value currently displayed.

Chapter 15. Spin Button Controls 15-3

Summary
Following are tables that describe the OS/2 spin button control notification codes,

notification message, and window messages:

Table 15-1. Spin Button Control Notification Codes

Code name Description

SPBN_CHANGE Sent when the contents of the spin field change.

SPBN_DOWNARROW Sent when the Down Arrow button is clicked on or
the Down Arrow key is pressed.

SPBN_ENDSPIN Sent when the user releases the select button or
one of the arrow keys while spinning a button.

SPBN_KILLFOCUS Sent when the spin field loses the focus.

SPBN_SETFOCUS Sent when the spin field is selected.

SPBN_UPARROW Sent when the Up Arrow button is clicked on or the
Up Arrow key is pressed.

Table 15-2. Spin Button Control Notification Message

Message Description

WM_CONTROL Occurs when the spin button control has a significant event to

notify to its owner.

Table 15-3. Spin Button Control Window Messages

Message Description

SPBM_ OVERRIDESETLIMITS Causes the component to set or reset
numeric limits.

SPBM_ QUERYLIMITS Enables an application to query the limits
of a numeric spin field.

SPBM_QUERYVALUE Causes the component to show the value
in the spin field.

SPBM_SETARRAY Causes the component to set or reset the
array of data.

SPBM_SETCURRENTVALUE Causes the component to set or reset the
current numeric value or array index.

SPBM_SETLIMITS Causes the component to set or reset
numeric limits.

SPBM_SETMASTER Causes the component to identify its
master.

SPBM_SETTEXTLIMIT Sets the maximum number of characters
allowed in a spin fie1d.

SPBM_SPINDOWN Causes the component to show the
previous value (spin backward).

SPBM_SPINUP Causes the component to show the next
value (spin forward).

15-4 OS/2 Programming Guide-Volume II

Chapter 16. Static Controls

A static control is a simple text field, bit map, or icon that an application can use to
label, enclose, or separate other control windows. This chapter describes how to
create and use static controls in a PM application.

About Static Controls

Keyboard Focus

Unlike the other types of control windows, a static control does not accept user input
nor send notification messages to its owner. The primary advantage of a static
control is that it provides a label or graphic that requires little attention from an
application. At most, an application might change the text or position of a static
control.

A static control never accepts the keyboard focus. When a static control receives a
WM_SETFOCUS message, or when a user clicks the static control, the system
advances the focus to the next sibling window that is not a static control. If the
control has no siblings, the system gives the focus to the owner of the static control.

Static-Control Handle

©Copyright IBM Corp. 1992

Every static control is associated with a 32-bit data field. A static control with the
SS_BITMAP or SS_ICON style uses this field to store the handle of the bit map or
icon that it displays. An application can obtain that handle by sending the
SM_QUERYHANDLE message to the control. An application can replace the bit map
or icon by sending the SM_SETHANDLE message to the control, specifying a valid
icon or bit map handle. Changing the handle causes the system to redraw the
control.

For a non-icon or non-bit map static control, the data field is available for
application-defined data and has no effect on the appearance of the control.

An application can retrieve the data field of a static-control window by calling
WinWindowFromlD, using the handle of the owner and the window identifier of the
static control. The static-control window identifier is specified in either the
dialog-window template or the WinCreateWindow function.

16-1

Static-Control Styles
A static control has style bits that determine whether the control displays text, draws

a simple box containing text, displays an icon or a bit map, or shows a framed or

unframed colored box. Applications can specify a combination of the following

styles for a static control:

Table 16-1. Static-Control Styles

Style Description

SS_BITMAP Draws a bit map. The bit map resource must be provided in the

resource-definition file. To include the bit map in a dialog

window, the resource identifier must be specified in the text

parameter of the CONTROL statement in the resource definition

file. To include the bit map in a non-dialog window, the ASCII

representation of the identifier must be specified in the pszName

parameter of the WinCreateWindow function. That is, the first

byte of the pszName parameter must be the cross-hatch

character(#), and the remaining text must be the ASCII
representation of the identifier (for example, #125).

SS_BKGNDFRAME Creates a box whose frame has the background color.

SS_BKGNDRECT Creates a rectangle filled with the background color.

SS_FGNDFRAME Creates a box whose frame has the foreground color.

SS_FGNDRECT Creates a rectangle filled with the foreground color.

SS_GROUPBOX Creates a box whose upper-right corner contains control text.

This style is useful for enclosing groups of radio buttons or

check boxes in a box.

SS_HALFTONEFRAME Creates a box whose frame has halftone shading.

SS_HALFTONERECT Creates a box filled with halftone shading.

SS_ICON Draws an icon. The resource identifier for the icon resource is

determined the same way as the SS_BITMAP style. The icon

resource must be in the resource-definition file.

SS_SYSICON Draws a system-pointer icon. The resource identifier for the

system-pointer resource is determined the same way as the

SS_BITMAP style. To display this system pointer, the system

calls WinQuerySysPointer with the specified identifier.

SS_TEXT Creates a box with formatted text. An application can combine

various formatting options with this style to produce formatted

text in the boundaries of the control. The formatting flags are the

same as those used for the WinDrawText function.

16-2 OS/2 Programming Guide-Volume II

Default Static-Control Performance
The messages specifically handled by the predefined static-control class

(WC_STATIC) are as follows:

Table 16-2 (Page 1 of 2). Messages Handled by WC_STATIC Class

Message Description

SM_SETHANDLE Sets the handle associated with the static
control and invalidates the control
window, forcing it to be redrawn.

SM_QUERYHANDLE Returns the handle associated with the
static-control window.

WM_ADJUSTWINDOWPOS Adjusts the SWP structure so that the new
window size matches the bit map, icon, or
system-pointer dimensions associated
with the static control.

WM_CREATE Sets the text for a static-text control.
Loads the bit map or icon resource for .
the bit map or icon static control. Returns
TRUE if the resource cannot be loaded.

WM_DESTROY Frees the text for a static-text control.
Destroys the bit map or icon for a bit map
or icon static control. The icon for a
system-pointer static control is not
destroyed because it belongs to the
system.

WM_ENABLE Invalidates the entire static-control
window, forcing it to be redrawn.

WM_HITTEST Returns the value HT_ TRANSPARENT for
the following static-control styles:

SS_BKGNDFRAME
SS_BKGNDRECT
SS_FGNDFRAME
SS_FGNDRECT
SS_GROUPBOX
SS_HALFTONEFRAME
SS_HALFTONERECT.

For other styles, this message returns the
result of the WinDefWindowProc function.

WM_MATCHMNEMONIC Returns TRUE if the mnemonic passed in
the mp1 parameter matches the
mnemonic in the control-window text.

WM_MOUSEMOVE Sets the mouse pointer to the arrow
pointer and returns TRUE.

WM_PAINT Draws the static control based on its style
attributes.

WM_QUERYDLGCODE Returns the predefined constant
DLGC_STATIC.

WM_QUERYWINDOWPARAMS Returns the requested window
parameters.

WM_SETFOCUS Sets the focus to the next sibling window
that can accept the focus; or if no such
sibling exists, sets the focus to the parent
window.

Chapter 16. Static Controls 16-3

Table 16-2 (Page 2 of 2). Messages Handled by WC_STATIC Class

Message Description

WM_SETWINDOWPARAMS Allows the text to be set (static-text
controls only).

Using Static Controls
This section explains how to perform the following tasks:

• Include a static control in a dialog window.
• Include a static control in a client window.

Including a Static Control in a Dialog Window
To include a static control in a dialog window, you must define the control in a
dialog-window template in a resource-definition file. The following
resource-definition file creates a dialog window that contains a static-text control
and three static-icon controls:

BEGI~. : < > m•.. . .• mm . .
·crnxr "Select a tool11

, IDS TEXT, 49, 110, 56, s,
·. SS JEXT J OT·. CENTER. J OT . TOP l. WS GROUP I WS V.ISIBLE
AUTORADIOBUTTON 11 Paitltbrush11

,. IDB_BRUSH, 63, 87, 61.-rn.
WS TABST()P I WS GROUP .1 WS VJSIBL~·

Ai.ffORADI()l,3UTTON 1'-Sciss·ots 11
,. IDB SclSSORS, 63, 64, 6fh lG,

. L . WS}~f3SJOP J WS• VlSIBL(:. .. ·
AUTORADlOBU']'.TON 11 Et(ls.erii,IDB••· E.RASER, .•. 6s,. 39; 43, ;10,

\;/S_TABSTOP . I w~.:..visreIE ·
IGON IDI_BRU~H, IDl.,..BRUSHIGON,:33,a4, 22, 16,

·.·· ... •· WS ~ROQP.li~S ···VIS~BLE
' ·ICON Jor. ·s~ISSHRS, . IQF '::SCISSORSIC()N' :i3' 6C:ly 22' . 16 ~

·: ·!: · •· •........ ~s :G~p.u~ :t· w~ :iISI13t£ ••..•...•. · .•• · ·.•• · •..••. · · ·• . ·: · : · .· ·. · .. · .•.. · ·
:: :Iciqrt IQ~ E:~~~R~• .. :I~l.fRAS:ER1CO~.:·t3:r 36:'?2 •. ~ .. 1:6'•· · .. · . · · :'.~ WS;o;.GROUP J wsjuS1$LE .•.... > . . ' :. . .: • : · ..

P.USHBUU0N 11 0K11
' DID ()~, 10, 12, 38, 13i ws TABSn>P

'::;. ·: • ·. WS GROUP I WS VISIBLE m.. • - • ..

.. '"' ~t~tf!1Ca .. ~~~J ~ :(!Ji~ .. ¢.~~:.: · l:~:~: · 1~ ~ : .. • . : .. , :
~~tr:.:. I.;: .• ·rm~:·· p:·: :v:1;~~8:~~· ·

16-4 OS/2 Programming Guide-Volume II

Including a Static Control in a Client Window
An application can include a static control in a non-dialog window by calling
WinCreateWindow with the window class WC_STATIC. The f/Style parameter to
WinCreateWindow defines the appearance of the control.

The following code fragment creates a static text control whose size and position
are based on the size of the client window and the metrics for the current font:

If your application creates a static control with the SS_ICON or SS_BITMAP style,
make sure that the resource identifier specified in the pszName parameter
corresponds to an icon or a bit map resource in the resource-definition file. If there
is no resource, the application cannot create the static control.

Chapter 16. Static Controls 16-5

Summary
Following are the operating system functions and messages used with static
controls:

Table 16-3. Static-Control Functions

Function name Description

WlnQuerySysPolnter Returns the system pointer handle.

WlnSetWlndowPos Allows the general positioning of a window.

WlnSetWindowText Sets the window text for a specified window.

WlnWlndowFromlD Returns the handle of the child window with the
specified identity.

Table 16-4. Static-Control Messages

Message Description

SM_QUERYHANDLE Returns the icon or bit map handle of a static
control.

SM_SETHANDLE Sets the icon or bit map handle of a static control.

WM_MATCHMNEMONIC Sent by the dialog box to a control window to
determine whether a typed character matches a
mnemonic in its window text.

WM_QUERYCONVERTPOS Sent by an application to determine whether it is
appropriate to begin conversion of DBCS
characters.

WM_QUERYWINDOWPARAMS Occurs when an application queries the static
control window procedure window parameters.

WM_SETWINDOWPARAMS Occurs when an application sets or changes the
static control window procedure window
parameters.

16-6 OS/2 Programming Guid&-Volume II

Chapter 17. Title-Bar Controls

About Title Bars

© Copyright IBM Corp. 1992

A title-bar is one of several control windows that comprise a standard frame
window, giving the frame window its distinctive look and performance capabilities.
This chapter describes how to create and use title-bar control windows in PM
applications.

The title bar in a standard frame window performs the following four functions:

• Displays the title of the window across the top of the frame window.

• Changes its highlighted appearance to show whether the frame window is active.
(Ordinarily, the topmost window on the screen is the active window.)

• Responds to the actions of the user-for example, dragging the frame window to
a new location on the screen.

• Flashes (as a result of the WinFlashWindow function) to get the attention of the
user.

<-

a Jo
Ii

I~
>

Figure 17-1. Title Bar in a Standard Frame Window

Once the frame controls are in place in the frame window, an application typically
ignores them, because the system handles frame controls. In some cases, however,
an application can take control of the title bar by sending messages to the title-bar
control window.

17-1

Default Title-Bar Behavior
A title-bar control window sends messages to its owner (the frame window) when

the control receives user input. Following are the messages that the title-bar

control processes. Each message is described in terms of how the title-bar control

responds to that message.

Table 17-1. Messages Processed by Title-Bar Control

Message Description

TBM_QUERYHILITE Returns the highlighted state of the title bar.

TBM_SETHILITE Sets the highlighted state of the title bar,
repainting the title bar if the state is changing.

WM_BUTTON1 DBLCLK Restores the title bar if the owner window is
minimized or maximized. If the window is neither
minimized nor maximized, this message
maximizes the window.

WM_BUTTON1 DOWN Sends the WM_TRACKFRAME message to the
owner window to start the tracking operation for
the frame window.

WM_CREATE Sets the text for the title bar. Returns FALSE if the
text is al ready set.

WM_DESTROY Frees the window text for the title bar.

WM_HITTEST Always returns HT _NORMAL, so that the title bar
does not beep when it is disabled. (It is disabled
when the frame window is maximized.)

WM_PAINT Draws the title bar.

WM_QUERYDLGCODE Returns the predefined constant DLGC _STATIC.
The user cannot use the Tab key to move to the
title bar in a dialog window.

WM_QUERYWINDOWPARAMS Returns the requested window parameters.

WM_SETWINDOWPARAMS Sets the specified window parameters.

WM_WINDOWPOSCHANGED Returns FALSE. Processes this message to
prevent the WinDefWindowProc function from
sending the size and show messages.

Using Title-Bar Controls
This section explains how to:

• Include a title bar in a frame window.
• Alter the dragging action of a title bar.

Including a Title Bar in a Frame Window
An application can include a title bar in a standard frame window by specifying the

FCF _TITLEBAR flag in the WinCreateStdWindow function.

17 ·2 OS/2 Programming Guide-Volume II

The following code fragment shows how to create a standard frame window with a

title bar, minimize and maximize (window-sizing) buttons, size border, system

menu, and an application menu.

To get the window handle of a title-bar control, an application calls
WinWindowFromlD, specifying the frame-window handle and a constant identifying

the title-bar control, as shown in the following code fragment:

To set the text of a title bar, an application can use the WinSetWindowText function.

The frame window passes the new text to the title-bar control in a

WM_SETWINDOWPARAMS message.

Altering Dragging Action
When the user clicks the title bar, the title-bar control sends a WM_ TRACKFRAME

message to its owner (the frame window). When the frame window receives the

WM_ TRACKFRAME message, the frame sends a WM_ QUERYTRACKINFO message

to itself to fill in a TRACKINFO structure that defines the tracking parameters and

boundaries. To modify the default behavior, an application must subclass the frame

window, intercept the WM_QUERYTRACKINFO message, and modify the

TRACKINFO structure. If the application returns TRUE for the
WM_QUERYTRACKINFO message, the tracking operation proceeds according to the

information in the TRACKINFO structure. If the application returns FALSE, no

tracking occurs.

Chapter 17. Title-Bar Controls 17-3

Summary
Following are the OS/2 functions, structures, and messages used with title-bar
controls.

Table 17-2. Title-Bar Functions

Function name Description

WlnCreateStdWlndow Creates a standard window.

WlnFlashWlndow Starts or stops the flashing of a window.

WlnSelWlndowText Sets the window text for a specified window.

WlnWlndowFromlD Returns the handle of the child window with the
specified identity.

Table 17-3. Title-Bar Structures

Structure name Description

SWP Set window position structure.

TRACKINFO Tracking information structure.

17-4 OS/2 Programming Guide-Volume II

Table 17-4. Title-Bar Messages

Message

TBM_QUERYHILITE

TBM_SETHILITE

WM_BUTTON1 DBLCLK

WM_BUTTON1 DOWN

WM_CREATE

WM_DESTROY

WM_HITTEST

WM_PAINT

WM_QUERYCONVERTPOS

WM_QUERYDLGCODE

WM_QUERYWINDOWPARAMS

WM_SETWINDOWPARAMS

WM_TRACKFRAME

WM_WINDOWPOSCHANGED

Description

Returns the highlighting state of a title-bar control.

Used to highlight or unhighlight a title-bar control.

Occurs when the user presses button 1 of the
pointing device twice.

Occurs when the user presses pointer button 1.

Occurs when an application requests the creation
of a window.

Occurs when an application requests the
destruction of a window.

Sent to determine which window is associated with
an input from the pointing device.

Occurs when a window needs repainting.

Sent by an application to determine whether it is
appropriate to begin conversion of DBCS
characters.

Sent by the dialog manager to identify the type of
control, to determine what kinds of messages the
control understands, and to determine whether an
input message can be processed by the dialog
manager or passed down to the control.

Occurs when an application queries the title-bar
control window procedure window parameters.

Occurs when an application sets or changes the
title-bar control window procedure window
parameters.

Sent to a window whenever it is to be moved or
sized.

Sent to the window procedure of the window
whose position is changed.

Chapter 17. Title-Bar Controls 17-5

17-6 05/2 Programming Guide-Volume II

Chapter 18. Container Controls

A container control (WC_ CONTAINER window class) is a visual component that
holds objects. It provides a powerful and flexible component for easily developing
products that conform to the Common User Access (CUA) user interface guidelines.
This chapter describes the container control component and how to use it in PM
applications.

About Container Controls
A container can display objects in various formats and views. Generally speaking,
each view displays different information about each object. If a container's data is
too large for the window's client area (hereinafter referred to as work area in
accordance with CUA guidelines), scrolling mechanisms are enabled. The CUA
direct manipulation protocol is fully supported, enabling a user to visually drag an
object in a container window and drop it on another object or container window.

Containers are an integral component of the CUA user interface. For a complete
description of CUA containers, refer to the SAA CUA Guide to User Interface Design
and the SAA CUA Advanced Interface Design Reference.

Container Control Functions

© Copyright IBM Corp. 1992

The container control implements the following functions:

• Multiple types of views of a container's contents, such as:

Icon view
Name view
Text view
Tree view
Details view.

• Switching between container views quickly and easily

• Sharing records among multiple containers in the same process

• Displaying each view with a different font

• Directly editing container control text in all views, including blank text fields

• A split bar for vertically splitting the details view into two parts so that a user can
widen one part to see more information

• Supporting various data types, such as:

Icons or bit maps for the icon, name, tree, and details views. In the details
view, this includes the ability to use icons or bit maps in column headings as
well as in the columns themselves.

Text that is supported in the following situations:

- For container titles in all views
- Beneath icons or bit maps in the icon view
- To the right of icons or bit maps in the name and tree views
- For any column or column heading in the details view
- For container items in the text view.

Date, time, and number format, for container items in the details view.

18-1

• Direct manipulation

• Selection types, such as:

Single selection
Extended selection
Multiple selection.

• Selection techniques, such as:

Marquee selection
Two-swipe selections, such as:

- Touch swipe
- Range swipe.

First-letter selection.

• Selection mechanisms, such as:

- Any pointing device
- Keyboard.

• Multiple forms of emphasis:

In-use emphasis
Selected-state emphasis
Target emphasis.

• Ownerdraw, which enables an application to draw the container items instead of

the container control's drawing them. In the details view, this can be done for

each column.

• Sorting and filtering container items

• Arranging container items in the icon view, such as:

Automatic reposition mode that, when set, repositions container items as a

result of inserting, removing, sorting, or filtering items, or changing window

or font size

Arrange message mode that arranges overlapping icons or bit maps so that

they no longer overlap.

• Scrolling a container's work area, such as:

When the current size of a container's work area is not large enough for all

the container items to be visible

Dynamic scrolling to provide visible feedback, showing the movement of the

container items relative to the position of the scroll box.

• Data caching:

- To efficiently remove items from, and insert items in, a container as they

scroll in and out of view.

• An option to optimize memory usage.

Container Control Basics
This section contains basic information about the container control that you need to

understand before reading the remainder of the chapter. This important information

is presented in the following order:

• Creating a container
• Understanding container items
• Allocating memory for container records and columns

18-2 OS/2 Programming Guide-Volume II

• Understanding container views
• Changing a container view.

Creating a Container
You create a container by using the WC_CONTAINER window class name in the
ClassName parameter of the WinCreateWindow function. Figure 18-1 shows the
creation of the container. The styles specified in the ulCnrStyles variable (the
CCS_* values) specifies that the container is to be created with the automatic
positioning of container items and extended selection.

Figure 18-1. Sample Code for Creating a Container

The container is created with a default set of control data, which can be changed
using the CM_SETCNRINFO message. Refer to the OS/2 2.0 Programming
Reference for a list of the default control data for the CNRINFO data structure.

Chapter 18. Container Controls 18-3

Understanding Container Items
Container items can be anything that your application or a user might store in a

container. Examples are executable programs, word processing files, graphics

images, and database records.

Container item data is stored in RECORDCORE and MINIRECORDCORE data

structures. Both the application and the container have access to the data stored in

these records. Refer to the OS/2 2.0 Programming Reference for more information

about the RECORDCORE and MINIRECORDCORE data structures.

The application is responsible for allocating memory for each record by using the

CM_ALLOCRECORD message. See "Allocating Memory for Container Records"

and "Allocating Memory for Container Columns" on page 18-5 for more information.

The maximum number of records is limited by the amount of memory in the user's

computer. The container control does not limit the number of records that a

container can have.

The following list shows which types of data can be displayed for each container

view. See "Understanding Container Views" on page 18-5 for descriptions of the

container views.

Table 18-1. Types of Container Views for Displaying Types of Data

View Types Data

Icon Icons or bit maps with text strings beneath.

Name Icons or bit maps with text strings to the right.

Text Text strings.

Tree Icons or bit maps. and text strings.

Details Icons or bit maps, text strings, numbers, times, and dates.

Allocating Memory for Container Records
Your application is required to allocate memory for a container record by using the

CM_ALLOCRECORD message, which also enables you to allocate memory for

additional application data. The sample code in Figure 18-2 shows how to allocate

memory for one record. A pointer to the record is returned.

Figure 18-2. Sample Code for Allocating Memory for Container Records

Your applicati.on also can use the CM_ALLOCRECORD me_ssage to allocate memory

for .more than one container record. The application can request n container

records with th~ nRecords parameter. If n is greater than one, the pRecord

18-4 OS/2 Programming Guide-Volume II

parameter returns a pointer to the first record in a linked list of n records. Refer to
the OS/2 2.0 Programming Reference for a description of the CM_ALLOCRECORD
message and the RECORDCORE data structure.

Allocating Memory for Container Columns
In addition to allocating memory for records, an application also must allocate
memory for columns of data if the details view is used. In the details view, a
container's data is displayed in columns, each of which is described in a FIELDINFO
data structure.

Memory is allocated for FIELDINFO data structures using the
CM_ALLOCDETAILFIELDINFO message. Unlike the CM_ALLOCRECORD message,
the CM_ALLOCDETAILFIELDINFO message does not allow the application to
allocate memory for additional application data. However, the pUserData field of
the FIELDINFO data structure can be used to store a pointer to the
application-allocated data.

Multiple FIELDINFO data structures can be allocated with the nfieldlnfo parameter
of the CM_ALLOCDETAILFIELDINFO message. See "Details View" on page 18-14
for a description of the details view. Refer to the OS/2 2.0 Programming Reference
for descriptions of the FIELDINFO data structure and the
CM_ALLOCDETAILFIELDINFO message.

Understanding Container Views
When a user opens a container, the contents of that container are displayed in a
window. A container window can present various views of its contents. Each view
can provide different information about its container items. The container control
provides the following views:

Table 18-2. Views of a Container's Contents

Type of View Contents Displayed

Icon view Displays either icons or bit maps, with text beneath the icons or
bit maps, to represent container items. These are called
icon/text or bit-map/text pairs. Each icon/text or bit-map/text
pair represents one container item. This is the default view.
See "Icon View" on page 18-6 for a description of the icon view.

Name view Displays either icons or bit maps, with text to the right of the
icons or bit maps, to represent container items. These are
called icon/text or bit-map/text pairs. Each icon/text or
bit-map/text pair represents one container item. See "Name
View" on page 18-7 for a description of the name view.

Text view Displays a simple text list to represent container items. See
"Text View" on page 18-9 for a description of the text view.

Tree view Displays a hierarchical view of the container items. Three types
of tree views are available: tree text, tree icon, and tree name.
See "Tree View" on page 18-10 for a description of the tree
view.

Details view Displays detailed information about each container item. The
same type of data is displayed for each container item, arranged
in columns. The data in each column can consist of an icon or
bit map, text, numbers, dates, or times. See "Details View" on
page 18-14 for a description of the details view.

Chapter 18. Container Controls 18-5

Icon View

The container control does not support both icons and bit maps in the same view.

To specify whether icons or bit maps are used, an application can set either the

CA_DRAWICON attribute or CA_DRAWBITMAP attribute, respectively, in the

flWlndowAttr field. The default is the CA_DRAWICON attribute. The size of the icon

or bit map can be specified in the slBltmapOrlcon field. flWlndowAttr and

slBltmapOrlcon are fields of the CNRINFO data structure. Refer to the OS/2 2.0

Programming Reference for a description of the CNRINFO data structure.

If a text string is not specified for a view in a place where a text string could be

used, a blank space is used as a placeholder. For example, if a text string is not

placed beneath an icon in the icon view, a blank space is inserted just as though the

text string was there. If this blank space is not a read-only field, the user can put

text in the space by editing it directly. See "Direct Editing of Text in a Container" on

page 18-31 for more information about editing text directly in a container control.

The icon view (CV_ICON attribute) displays icon/text pairs or bit-map/text pairs to

represent container items; this is the default. CV _ICON is an attribute of the

CNRINFO data structure's flWlndowAttr field.

In the icon view, icon/text pairs and bit-map/text pairs are icons and bit maps,

respectively, with one or more lines of text displayed below each icon or bit map.

Each line can contain one or more text characters, which are centered below the

icon or bit map. The container control does not limit the number of lines or the

number of characters in each line.

Generally, the icon or bit map contains an image that depicts the type of container

item that it represents. For example, an icon or bit map that represents a bar chart

might contain an image of a bar chart.

In the icon view, container items are positioned according to x- and y-coordinate

positions. These are called workspace coordinates. You can supply these

coordinates for each container item by using the ptllcon field of the RECORDCORE

data structure. See "Positioning Container Items" on page 18-28 for information

about using workspace coordinates to position container items. Refer to the OS/2

2.0 Programming Reference for a description of the RECORDCORE data structure.

Figure 18-3 provides an example of the icon view with various x- and y-coordinates

specified in the ptllcon field.

Sales Teii<t

Sales Reports
1980-1990

-.-a
Install

Figure 18-3. Icon View with Items Positioned at Workspace Coordinates

18-6 05/2 Programming Guide-Volume II

Name View

If you do not specify x- and y-coordinate positions, the container control positions

the icons or bit maps at (0,0). However, your application can arrange the icons or

bit maps either by sending the CM_ARRANGE message or by setting the

CCS_AUTOPOSITION style bit when creating a container. With both of these

methods, the container items are arranged in rows, and any coordinates specified in

the ptllcon field are ignored.

The container items fill the topmost row until the width of the work area is reached.

The container items then wrap to form another row immediately below the filled

row. This process is repeated until all the container items are positioned in rows.

Default spacing is implemented according to the guidelines for the CUA user

interface. Figure 18-4 shows an example of the container after the CM_ARRANGE

message was sent, or if the container was created with the CCS_AUTOPOSITION

style bit set.

1r··::~;;:::;: ·.······················· w.·.······································ ... ••••••••·•·•••·•••·•·•·•·• .. ,

rt.~J
II SU~rt SUTe~

n Sales Reports Host Connect Install

/! 1991
;:;;... ___

Figure 18-4. Icon View When Items Are Arranged or Automatically Positioned

If the CCS_AUTOPOSITION style bit is set and the container is displaying the icon

view, container items are arranged automatically without the CM_ARRANGE

message being sent when:

• The window size changes
• Container items are inserted, removed, sorted, invalidated, or filtered

• The font or font size changes.

In all of these cases, container items are arranged the same as when the

CM_ARRANGE message is sent. The CCS_AUTOPOSITION style bit is valid only

when it is used with the icon view.

If the CM_ARRANGE message is issued and the container control is not currently

displaying the icon view, the container items are still arranged logically. Nothing

changes in the current view; the arrangement of the container items is not visible

until the user switches to the icon view.

The name view (CV_NAME attribute) displays icon/text or bit-map/text pairs to

represent container items. CV _NAME is an attribute of the CNRINFO data

structure's flWindowAttr field.

In the name view, icon/text pairs and bit-map/text pairs are icons and bit maps,

respectively, with one or more lines of text displayed to the right of each icon or bit

map. Each line can contain one or more text characters, which are left-justified.

Chapter 18. Container Controls 18-7

The container control does not limit the number of lines or the number of characters
in each line.

The container control offers the option of flowing or not flowing the container items
in the name view. To flow container items means to dynamically arrange them in
columns.

Non-Flowed Name View
If the container items are not flowed, the icon/text or bit-map/text pairs are placed in
a single column in the leftmost portion of the work area, as in Figure 18-5.

:.······

!:f ;~~]::::: ii
i ; ~=rn:o"" . J

~
Figure 18-5. Non-Flowed Name View

Flowed Name View
If the container items are flowed (CV_NAME I CV_FLOW}, the container appears as
in Figure 18-6. In this case, the container items fill the leftmost column until the
depth of the work area is reached. The container items then wrap to form another
column immediately to the right of the filled column. This process is repeated until
all of the container items are positioned in columns.

The width of each column is determined by the widest text string within the column.
The depth of the work area is determined by the size of the window.

r~:;s~:===>~~:=""
C:J Sales Text Host Connect

I
'"'"T

Sales Reports r~IQ. Install
, 980-, 990 ~-

11 .. l'.~l'.l!! ... ~~~l'.~l'.lll'.!l'.l'.l'.l!'.l'.f:l'.l'.l'.~'.l~!'.~'.l'.~~'.l'.~~f:l~'.~l~'.lll'.ll~l'.f.~l'.~'.~ll!l'.l'.l'.l'.l'.lll'.l~ ·.·············· m~i~1 ::

Figure 18-6. Flowed Name View

18-8 OS/2 Programming Guide-Volume II

Text View
The text view (CV_TEXT attribute) displays one or more lines of text to represent

container items. CV_ TEXT is an attribute of the CNRINFO data structure's

flWlndowAttr field.

Each line can contain one or more text characters, which are left-justified. The

container control does not limit the number of lines or the number of characters in

each line.

The container control offers the option of flowing or not flowing the container items

in the text view.

Non-Flowed Text View
If the text strings are not flowed, the text for each container item is placed in a

single column in the leftmost portion of the work area, as in Figure 18-7.

r~:~:;~~·,=-"'=-=w-~>-
11 Sales TeHt

1~ Sales Reports
Ii 1900-1990

1~ Sales Reports

111991

II Host Connect !j

H Install · 11

!l !adMfu.,~-~r!:=~····· ···=~v~~·='-i1
Figure 18-7. Non-Flowed Text View

Chapter 18. Container Controls 18-9

Tree View

Flowed Text View
If the text strings are flowed (CV_TEXT I CV_FLOW), the container appears as in
Figure 18-8. In this case, the text strings fill the leftmost column until the depth of
the work area is reached. The text strings then wrap to form another column
immediately to the right of the filled column. This process is repeated until all the
text strings are positioned in columns.

The width of each column is determined by the widest text string within the column.
The depth of the work area is determined by the size of the window.

,' ~!J!~lbiCJ Picture Printer

II Sales T eMt

1~ Sales Reports
111980-1990

n Sales Reports
111991

II Host Connect

Print Manager

Sales Report
January 1991

j~ Install . j
lU!~,f ~!!!!!!!!!!!!~~!!!ft !!!!!!!!f~!~~!!!~1!!!!!!!f t!!f f !!f !~L,,;;;
Figure 18-8. Flowed Text View

The tree view (CV_ TREE attribute) displays container items arranged hierarchically.
CV_TREE is an attribute of the CNRINFO data structure's flWindowAttr field.

The leftmost items displayed in the tree view are at the root level and are the same
items displayed in all the other container views. Items that contain other items are
called parent items. The item or items that a parent item contains are called child
items and can be displayed only in the tree view. Child items that contain other
items serve a dual role: they are the children of their parent item, but they are
parent items as well, with children of their own. For example, a parent item might
be a book that contains individual child items for its chapters, or a folder that
contains several reports. The chapters or reports, in turn, could be parent items
that contain their own children, such as the major sections of a chapter or report.

18-10 OS/2 Programming Guide-Volume II

If the child item or items of a parent item are not displayed, the parent item can be
expanded to display them as a new branch in the tree view. Once a parent item has
been expanded, it can be collapsed to remove its child items from the display.

You can use the cxTreelndent and cxTreellne fields of the CNRINFO data structure
to specify the number of pels that a new branch is to be indented horizontally, and
the width of the lines that are used to connect branches of the tree. These lines are
displayed only if the CA_TREELINE attribute is specified in the flWlndowAttr field.

The tree view has three different types: tree icon view, tree text view, and tree name
view. Figure 18-9 uses the tree icon view to provide examples of root level, parent,
and child items that were defined in this section. The expanded and collapsed bit
maps shown in this figure are defined in the following section.

Collapsed
Bit Map

Expanded
Bit Map

Sales Te~d

Sales Reports
1980-1990

~ Sales Reports
~1980

~ Sales Reports
~ 1981

Root Level Parent Item
Collapsed

Root Level Parent Item
Expanded

Child Items

Figure 18-9. Sample Tree View Showing Root Level, Parent, and Child Items

Chapter 18. Container Controls 18-11

Tree Icon View and Tree Text View
The tree icon and tree text views are identical in every aspect except one: their

appearance on the screen. Container items in the tree icon view
(CV_TREE I CV_ICON) are displayed as either icon/text pairs or bit-map/text pairs.

The items are drawn as icons or bit maps with one or more lines of text displayed to

the right of each icon or bit map. Figure 18-10 provides an example of a tree icon

view that uses the default expanded and collapsed bit maps.

1±1 C:J Sales T eMt

I Sales Reports
1980-1990

~ Sales Reports
~1980

..--- r_,,..,.., Sales Reports
1981

Figure 18-10. Tree Icon View

Container items in the tree text view (CV_ TREE I CV_ TEXT) are displayed as text

strings. In both views, the container control does not limit the number of lines of

text or the number of characters in each line. Figure 18-11 provides an example of

the tree text view, again showing the default expanded and collapsed bit maps .

...,__ __ Sales Reports
1980

___ Sales Reports

~;,;,;,;,;,;,.,,;;;;,;..;,,;,;,;;;;,;,;;;;.,;.v;,~;~;~;;;;;;,;,;;,;,;;,;,;,;;,;,;,;;;;;;;,;,;;,;..;,,;,;,;,;,;,;,;,;,;,;,;,;,;,;,;;,;,;,;;,;,;,;,;,;!J
Figure 18-11. Tree Text View

18-12 OS/2 Programming Guide-Volume II

Tree Name View

In the tree icon and tree text views, a parent item is expanded by selecting the
collapsed icon/bit map, which is displayed to the left of the parent item.

The collapsed icon/bit map should contain some visible indication that the item can
be expanded. The default collapsed bit map that is provided by the container
control uses a plus sign(+) to indicate that more items, the children of this parent,
can be added to the view.

When the child items of a parent item are displayed, the collapsed icon/bit map to
the left of that parent item changes to an expanded icon/bit map. Just as the
collapsed icon/bit map provides a visible indication that an item can be expanded,
so should the expanded icon/bit map indicate that an item can be collapsed. The
default expanded bit map provided by the container control uses a minus sign(-) to
indicate that the child items of this parent can be subtracted from the view. If any of
the child items have children of their own, a collapsed or expanded icon/bit map is
displayed to their immediate left as well.

To display your own collapsed and expanded icons or bit maps, specify their
handles by using the hptrCollapsed and hptrExpanded fields of the CNRINFO data
structure for icons, and the hbmCollapsed and hbmExpanded fields for bit maps.
Also, you can use the slTreeBitmapOrlcon field to specify the size, in pets, of these
collapsed and expanded icons and bit maps. Refer to the description of the
CNRINFO data structure in the OS/2 2.0 Programming Reference for more
information.

Container items in the tree name view (CV_TREE I CV_NAME) are displayed as
either icon/text pairs or bit-map/text pairs. Similar to the tree icon view, the items
are drawn as icons or bit maps with one or more lines of text displayed to the right
of each icon or bit map. The container control does not limit the number of lines or
the number of characters in each line of text.

Unlike the tree icon view, however, separate collapsed and expanded icons/bit
maps are not used. Instead, if an item is a parent, the icon or bit map that
represents that item contains the same type of visible indication that is placed in a
separate icon/bit map in the tree icon view to show that an item can be collapsed or
expanded. In this way, the icon or bit map that represents the parent item can serve
a dual purpose, and thus preserve space on the screen, an important consideration
if the text strings used to describe items become too long.

Chapter 18. Container Controls 18-13

Details View

The container control does not provide default icons or bit maps for the tree name
view. To display your own collapsed and expanded icons or bit maps, specify their
handles using the hptrCollapsed and hptrExpanded fields of the TREEITEMDESC
data structure for icons, and the hbmCollapsed and hbmExpanded fields for bit
maps. Also, you can use the slBltmapOrlcon field of the CNRINFO data structure to
specify the size, in pels, of these collapsed and expanded icons and bit maps. Refer
to the description of the TREEITEMDESC and CNRINFO data structures in the OS/2
2.0 Programming Reference for more information about these data structures and
Figure 18-12 for an example of the tree name view.

~ Sales Reports
~1980

Figure 18-12. Tree Name View

The details view (CV_DETAIL attribute} of the container control can display the
.following data types to represent container items: icons or bit maps, text, numbers,
dates, and times. CV_DETAIL is an attribute of the CNRINFO data structure's
flWlndowAnr field.

The data is arranged in columns, which can have headings. Each column can
contain data that belongs to only one of the valid data types. Column headings can
contain text, icons, or bit maps.

The width of each column can be explicitly specified in the cxWldth field of the
FIELDINFO data structure. If a column width is not specified, it is determined by the
widest entry in the column. Refer to the OS/2 2.0 Programming Reference for a
description of the FIELDINFO data structure.

18-14 OS/2 Programming Guide-Volume II

Columns can be inserted or removed dynamically. All of the columns in a given row
represent a single container item; selecting the data portion of a row selects the
entire row, not just the individual column.

Details view column headings and data can be top- or bottom-justified or vertically
centered, as well as left- or right-justified or horizontally centered. In addition,
horizontal separator lines can be specified between the column headings and the
data; vertical separator lines can be placed between columns. In the example in
Figure 18-13, Container Items, the icon, Description, and Item Size are the column
headings.

Ownerdraw is supported for each column. See "Drawing Container Items and
Painting Backgrounds" on page 18-34 for more information about. ownerdraw.

1rr-,~--__ , _____ ,, __ ,,·~----:
H Container ! Item jj Items 1 Description Size C!

I' I I SALES.CBT ~~!;~: 18628630

1Jl!~,:!~:~!!~!!~!!~!~~~!~!!~!!!~!f!!~!!~~~~?!!!!!f~~~~=f~!!!L,ll;;;ll;;;;;;;~;;;;;;;;;;;;~v«<<~<<~v<<<«<<~l,~~v<~i
Figure 18-13. Details View

Split Bar Support for the Details View

Column
Headings

A split bar enables the application to split the container window vertically between
two column boundaries. This function is available only in the details view.

The two portions of the work area on either side of the split bar appear side-by-side.
They scroll in unison vertically, but they scroll independently horizontally.

The application is responsible for specifying the position of the split bar, which is
defined with the xVertSplitbar field. Also, the rightmost column of the left split
window is specified with the pfleldlnfolast field. xVertSplltbar and pfleldlnfolast
are fields of the CNRINFO data structure. Refer to the OS/2 2.0 Programming
Reference for a description of the CNRINFO data structure.

Chapter 18. Container Controls 18-15

The left split window cannot be empty if there is data in the right window. The right

split window is not required to have data. However, because data cannot be

scrolled from the right split window into the left split window, or from left to right,

the split bar loses much of its usefulness if the right split window is empty.

The user can drag the vertical split bar within the limits of the window. As the user

drags the split bar to the left, the right split window becomes wider; and as the split

bar is dragged to the right, the left split window becomes wider.

Each container control can have one vertical split bar. Horizontal split bars are not

supported.

Figure 18-14 shows a split bar between the Description column and the Date

Created column.

Split Bar

Figure 18-14. Details View with Split Bar

18-16 OS/2 Programming Guide-Volume II

Changing a Container View
The sample code in Figure 18-15 shows how to use the CM_SETCNRINFO message
to change from the current view of a container (name, details, or text) to the icon
view.

Figure 18-15. Sample Code for Changing a Container View

Refer to the OS/2 2.0 Programming Reference for a complete description of the
CM_SETCNRINFO message.

Using a Container
You need the following information to use a container control in your application
after it is created:

• Inserting container records
• Removing container records
• Setting the container control focus.

Inserting Container Records
After the memory is allocated (see "Allocating Memory for Container Records" on
page 18-4), you can insert one or more container records by using the
CM_INSERTRECORD message. This message enables you to provide two pointers.
The first pointer points to the record or records that are to be inserted, which is
specified in the pRecord parameter. When you are inserting multiple records, use
this parameter to specify a pointer to a linked list of records.

The second pointer points to a RECORDINSERT data structure, which specifies
information the container needs for inserting records.

Chapter 18. Container Controls 18-17

One of the elements of information that this data structure contains is the order in

which the record or records are to be inserted, which is specified in the

pRecordOrder field. In this field you have two options. The first option is to specify

a pointer to a container record. The record or records being inserted will be placed

immediately after that record. In this case, the pRecordParent field is ignored.

The second option is to specify whether the record or records being inserted are to

be placed at the beginning or end of a list of records. This is done by specifying

either the CMA_FIRST or CMA_END attributes, respectively. If you choose this

option, the list of records used depends on the value of the pRecordParent field.

If CMA_FIRST or CMA_END is specified and the value of the pRecordParent field is

NULL, the inserted record or records are placed at the beginning or end,

respectively, of the root level records. However, if CMA_FIRST or CMA_END is

specified and pRecordParent contains a pointer to a parent item record, the records

are inserted at the beginning or end, respectively, of the list of child item records

that this parent record contains. See "Tree View" on page 18-10 for more

information about root level, parent, and child items.

The RECORDINSERT structure also lets you specify the z-order position of the

record or records being inserted. The CMA_TOP and CMA_BOTTOM attributes of

the zOrder field place the record at the top or bottom, respectively, relative to the

other records in the z-order list. This field applies to the icon view only.

To specify the number of records that are being inserted, use the cRecordslnsert

field. The value of this field must be greater than 0.

The last field in the RECORDINSERT structure is fllnvalldateRecord, which enables

you to control whether the record or records are displayed automatically when they

are inserted. If you specify TRUE in this field, the display is updated automatically.

However, if you specify FALSE, the application must send the

CM_INVALIDATERECORD message after the record or records are inserted to

update the display.

Where items are positioned in a container depends on the view the user has

specified. If the icon view is specified and the CCS_AUTOPOSITION style bit is not

set, the x- and y-coordinates for each record, which are stored in the ptllcon field of

the RECORDCORE and MINIRECORDCORE data structures, determine its position.

Records displayed in the name view, text view, tree view, and details view are

positioned as previously described in this section.

Note: Records inserted into a list of child record items can be displayed in the tree

view only. These records will be visible only if the parent record item to

which these child record items belong is expanded.

18-18 OS/2 Programming Guide-Volume II

Figure 18-16 provides sample code that inserts a record into a container.

Figure 18-16 (Part 1 of 2). Sample Code for Inserting a Record into a Container

Chapter 18. Container Controls 18-19

/***.*********'****************I
/*Initialize CM_INSERTRECORD data structure.· . */
/***********************************'It**********************************/
recordlnsert. pRecordOrder = (PRECOR~CORE} CMA_FI RST;
recordJnsert.zQrder = (ULONG)CMA_TOP;
recordlnsert.cRecordsinsert = n8ecord$;
recordlnsert.flnvaltdateRecord = TRUE;
recordinsert.pRecordParent:= ·NULL;

··•·· .··ltt~~:itt1t'li~~*11t"!;''Nt*~~**"****!~***~'lt***t~*t':**·*~~*.*·~*~*.**~·**.*i*:~*~***.~·~**~l
:/*, :~l ~a:~; :tir:h . > ,. . . : : r• •.....•.•.. : . • • .. : •. : .. · ... · *I :

•··.·1*~*,*,~~''.*'!t:'~*:~****~~*****::*"Y~~****~';*f~~:**·**.·**:**:*11'."'f~'ff***·****t!f*****'!'****/'
. :D~~f:r~~Mul,e.(h~odiconsl; ·
· •wt~Rel;E!~se:PSfbps):; ·

Figure 18-16 (Part 2 of 2). Sample Code for Inserting a Record into a Container

18-20 OS/2 Programming Guide-Volume II

Removing Container Records
The CM_REMOVERECORD message can be used to remove one or more container
records from the container control. The application must set the pointers to each
record in an array to be removed.

If the fRemoveRecord parameter of this message includes the CMA_FREE attribute,
the records are removed and the memory is freed. If this attribute is not set, the
records are removed from the list of items in the container, and the application must
use the CM_FREERECORD message to free the memory. The default is to not free
the memory.

If the fRemoveRecord parameter includes the CMA_INVALIDATERECORD attribute,
the container is invalidated after the records are removed. The default is to not
invalidate the container. The CMA_INVALIDATERECORD attribute can be used with
the CMA_FREE attribute, separated by a logical OR operator (I), to free the record's
memory and invalidate the container.

The sample code in Figure 18-17 removes all records from a container and frees the
memory associated with those records. It is the application's responsibility to free
all application-allocated memory that is associated with the removed container
records. The container is invalidated and repainted.

USHORT ••.. cN~mRe~ord;
USH()Rl .·fR~llloveRe~()l"d;

· /* NulD~er:of records· to l>e: removed
/* ... C()ptatner oiess~ge·• attrtbutes

*/
*/

]**'*~**~*,*****~*,*1:*,***,***t**,**,*"f~*****,~~*****it*****":************~*****ft/
l* zer:o me~ns .remove an records• . ··. */
/*****,**'****"f**************************r******************************r/
cNumRecord ··:::: a;

/*****;*,.**1r***,******;*******,********,***********,*~**,***,******************* t.
/*Specify attrib~tes to .invalidat~ the container and free the memory */
/*****************************'************'*****************************/
fRemoveRecorcL ... =

CMA,_.INVALIDATERECORD I pMAjFREE;

/*****~~**,*,*************~************~*********.*********'tr*************/
/*, Reltl()ve the recg,.r:ds. .· ·•.· , . , . */
l******'ft******,*********~*******~******;********,*********~.*************'lt;*J
WtnSeJJd~.sg (h\'!ndCnr; /* CQnt<lt~er ~i:ndow :.handle •· •· .. . *l

C~J~EMOVER~CORD, /* Cont:ain~r inessage· for removing :*/
· · · f* reco'rd$· */

·I.* NOLL PRECORDARRJ\~ .*/ ·

Figure 18-17. Sample Code for Removing Container Records

Chapter 18. Container Controls 18-21

Setting the Container Control Focus
The application must set the focus of the container control by using the WinSetFocus

function.

Graphical User Interface Support

Scrolling

The following describes the container control support for graphical user interfaces

(GUls). Except where noted, this support conforms to the guidelines in the SAA CUA

Advanced Interface Design Reference. The GUI support provided by the container

control consists of:

• Scrolling
• Selecting container items
• Providing emphasis
• Using direct manipulation
• Specifying space between container items.

The container control automatically provides horizontal or vertical scroll bars, or

both, whenever all or part of one or more container items are not visible in a

container window's work area.

If all container items are visible in the work area, the scroll bars are either removed

or disabled, depending on the view and how the items are positioned, as follows:

• If container items are displayed in the icon or tree view, and one or more items

are not visible in the work area, a horizontal scroll bar, vertical scroll bar, or

both, are provided, depending on the position of the items outside of the work

area. If container items are positioned to the right or left of the work area, a

horizontal scroll bar is provided; if container items are positioned below or

above the work area, a vertical scroll bar is provided.

Scroll bars are not provided if all the container items are visible in the work

area. Scroll bars are removed from the container window if either of the

following occurs:

Container items positioned outside the work area are moved into the work
area

The size of the container window is increased so that container items

formerly not visible become visible.

• If container items are displayed in non-flowed text and non-flowed name views, a

vertical scroll bar is provided; this scroll bar is disabled if all the container items

are visible in the work area. A horizontal scroll bar is used in these views only

when the work area is too narrow to allow the widest container item to be seen

in its entirety. If the user changes the window size to allow the entire widest
container item to be seen, the horizontal scroll bar is removed.

• If container items are displayed in flowed text and flowed name views, a

horizontal scroll bar is provided; this scroll bar is disabled if all the container

items are visible in the work area. A vertical scroll bar is used in these views

only when the work area is too short to allow the tallest container item to be

seen in its entirety. If the user changes the window size to allow the entire

tallest container item or items to be seen, the vertical scroll bar is removed.

18-22 OS/2 Programming Guide-Volume II

• If container items are displayed in the details view, both horizontal and vertical
scroll bars are provided. These scroll bars are disabled if all the container items
are visible in the work area.

Dynamic Scrolling

Note: A details view that is split has two horizontal scroll bars, one for each
portion of the split window.

The container control supports dynamic scrolling, which enables the user to drag
the scroll box in the scroll bar and get immediate visible feedback on where the
scrolling will stop when the scroll box is dropped. If the scrolling range is greater
than 32KB pels, dynamic scrolling is disabled.

Selecting Container Items
Except during direct manipulation and direct editing of text in a container, a user
must select a container item before performing an action on it. The container
control provides several selection types, along with selection techniques to
implement those types. The container control also supports two selection
mechanisms: any pointing device, such as a mouse, and the keyboard.

Selection Types
The container control supports the following selection types:

• Single selection

Single selection enables a user to select only one container item at a time. This
is the default selection type for all views and is the only selection type supported
for the tree view.

• Extended selection

Extended selection enables a user to select one or more container items, in any
combination. The CUA-defined keyboard augmentation keys are implemented
for extended selection. When used with a pointing device, these keys enable a
user to select discontiguous sets of container items. Extended selection is valid
for all views except the tree view.

• Multiple selection

Multiple selection enables a user to select none, some, or all of the container
items. Multiple selection is valid for all views except the tree view.

Only one of these selection types can be used for each container. The selection
type for a container is defined when the container is created.

These selection types conform to the guidelines in the SAA CUA Advanced Interface
Design Reference. Refer to that book for detailed information.

Selection Techniques
Depending on the type of view and the type of selection, a user can select container
items using the following selection techniques:

• Marquee selection

Marquee selection is supported only in the icon view and is only valid with the
extended and multiple selection types. This selection technique enables a user
to begin selection from an anchor point that is established by moving the pointer
to white space in the container and pressing, but not releasing, the select button
on the pointing device. As the user presses the select button and drags the

Chapter 18. Container Controls 18-23

pointer, a tracking rectangle is drawn between the anchor point and the current

pointer position. All items whose icons or bit maps are entirely within the

tracking rectangle are dynamically selected.

• Swipe selection

Swipe selection is valid only with the extended and multiple selection types. The

container control implements two techniques for swipe selection: touch swipe

and range swipe.

Touch swipe

Touch swipe selection is implemented in the icon view. With this selection

technique, the pointer must pass over some portion of a container item while

the user is pressing the select button for that item to be selected.

Range swipe

In views other than the icon and tree views, range swipe selection is

available. With this method, the user presses the select button while moving

the pointer. However, the pointer does not have to pass directly over a
container item for that item to be selected. Aside from pressing the select

button and moving the pointer, the only other requirement for selection is that

the container item must be within a range of items that is being selected. The

range begins at the pointer's position when the user presses the select

button; it ends at the pointer's position when the user releases the select

button. Refer to the SAA CUA Advanced Interface Design Reference for

complete information on touch swipe and range swipe selection.

• First-letter selection

For the icon, name, text, and tree views, first letter selection occurs when a

character key is pressed, and the first container item whose text begins with that

character is displayed with selected-state emphasis. The same is true for the

details view, except that all the columns for a record are searched for a

matching character before the next record is searched. The effect of first letter

selection on other selected container items depends on the chosen selection

type (single, multiple, or extended).

All these selection techniques conform to the descriptions in the SAA CUA Guide to

User Interface Design.

Note: If more than one container window is open, selecting a container item in one

window has no effect on the selections in any other window.

Selection Mechanisms
The SAA CUA Guide to User Interface Design defines mouse button 1, the select

button, to be used for selecting container items and mouse button 2, the drag button,

to be used for dragging and dropping container items during direct manipulation.

These definitions also apply to the same buttons on any other pointing device.

In addition, a user can press a keyboard key while pressing a mouse button; this is

called keyboard augmentation. The only instance of keyboard augmentation defined

specifically for the container control is pressing the Alt key with the select button,

which starts direct editing of text in a container. Refer to the SAA CUA Advanced

Interface Design Reference for a complete list of the keys that are defined in the

CUA guidelines for keyboard augmentation.

18-24 OS/2 Programming Guide-Volume II

In addition, the container control supports two keyboard cursors that can be moved

by using keyboard navigation keys:

• The selection cursor, a dotted black box drawn around a container item, which

represents the current position for the purpose of keyboard navigation.

• The text cursor, a vertical line that shows the user where text can be inserted or

deleted when container text is being edited directly.

Keyboard navigation consists of the use of the Up, Down, Left, and Right Arrow

keys, the Home key, the End key, the PgUp (page up) key, and the PgDn (page

down) key. If container items are not visible within the work area, navigation with

these keys causes the items to scroll into view if the user is not editing container

text directly. Refer to the SAA CUA Guide to User Interface Design for a description

of the keyboard interface model.

Providing Emphasis
The container control supports various types of emphasis. Emphasis is applied as

described in the SAA CUA Guide to User Interface Design. Refer to that book for

complete information about the use of emphasis. The following list describes forms

of emphasis that have a distinct visible representation in the container control:

• Selected-state emphasis

When a container item is selected, the entire container item receives

selected-state emphasis, which means that selected-state emphasis is applied to

icon/text or bit-map/text pairs in the icon, name, tree icon, and tree name views;

text strings in the text and tree text views; and an entire row that represents a

container item in the details view. Figure 18-18 illustrates selected-state and

unavailable-state emphasis; the emphasis on the choice in the pull-down menu

indicates that the choice is unavailable.

Selected-state emphasis Unavailable-state emphasis

Figure 18-18. Selected-State and Unavailable-State Emphasis

The color for selected-state emphasis can be changed by using the control

panel, or the WinSetPresParam function, which results in a

WM_PRESPARAMCHANGED message being sent to the container. See the

WinSetPresParam function and WM_PRESPARAMCHANGED (in Container

Controls) message in the OS/2 2.0 Programming Reference for more information.

Chapter 18. Container Controls 18-25

• In-use emphasis

Cross-hatching behind an icon or bit map indicates in-use emphasis. In-use
emphasis is not applied to container items in the text view, tree text view, or
details view when it contains text only. However, the details view often includes
icons or bit maps in one column of each record, usually the leftmost column. In
this situation, specify the column that contains the icons or bit maps so that
in-use emphasis can be applied to them. This column can be set by using the
pFleldlnfoObject field of the CNRINFO data structure.

• Target emphasis

Target emphasis is used during direct manipulation. When a user drags one
container item over another, the item beneath the dragged item displays target
emphasis. Two forms of target emphasis (visible feedback) are available: a
black line and a black border. These forms of emphasis indicate the target,
where the container item will be dropped if the user releases the drag button.
The CA_ORDEREDTARGETEMPH and CA_MIXEDTARGETEMPH attributes of the
CNRINFO data structure's flWlndowAttr field determine the form of emphasis
applied for the text, name, and details views, as follows:

If the CA_ORDEREDTARGETEMPH attribute is set:

- The CN_DRAGAFTER notification code is sent when a container item is
being dragged.

- A black line is drawn between container items to show the current target
position.

If the CA_MIXEDTARGETEMPH attribute is set:

- The CN_DRAGAFTER and CN_DRAGOVER notification codes are sent
when a container item is being dragged. The notification code sent
depends on the position of the pointer relative to the item it is positioned
over.

- A black line is drawn if the pointer is positioned such that the item being
dragged will be inserted between two target items.

- A black border is drawn around either the entire target item for the text
and details views or the icon or bit map for the name view if the pointer is
positioned such that the item being dragged will be dropped on the target
item.

If the CA_ORDEREDTARGETEMPH and CA_MIXEDTARGETEMPH attributes
are not set:

- The CN_DRAGOVER notification code is sent when a container item is
being dragged.

- A black border is drawn around the entire target item for the text and
details views, and around the icon or bit map only for the name view.

18-26 OS/2 Programming Guide-Volume II

For the icon and tree view, the CA_ORDEREDTARGETEMPH and
CA_MIXEDTARGETEMPH attributes are ignored, so target emphasis is applied
as follows:

The CN_DRAGOVER notification code is sent when a container item is
dragged.

A black border is drawn around the target, as follows:

- For the icon view, if the target is another container item, a black border is
drawn around the icon or bit map that represents the container item, but
not around the text string beneath it. If the target is white space, a black
border is drawn around the outer edge of the entire work area.

- For the tree icon and tree name views, a black border is drawn around the
icon or bit map that represents the container item, but not around the text
string to the right of it.

- For the tree text view, a black border is drawn around the entire target
item.

Using Direct Manipulation
Direct manipulation is a protocol that enables the user to drag a container item
within its current window or from one window to another. The user can drop the
container item either on white space in a window or on another item.

Direct manipulation can be performed with all views of the container control. An
API is provided so that the application is notified if an item is dropped on another
item in the container and if an item is dragged from the container.

The user can drag any container item, whether or not it is selected. If the user
presses the drag button when the pointer is over a selected container item, the
application drags all selected items. See "Selection Techniques" on page 18-23 for
information about the selection techniques.

If the user presses the drag button when the pointer is over a container item that is
not selected, the application drags only the item that the pointer is over.

The container control fully supports direct manipulation. Refer to the SAA CUA
Guide to User Interface Design for more information about the effects of direct
manipulation.

Specifying Space between Container Items
You can specify the amount of vertical space, in pels, to allow between container
items by using the cyllneSpaclng field of the CNRINFO data structure. If you do not
specify how much vertical space can be used, the container control sets the space
between the items using a default value. For the tree view, you can specify the
horizontal distance between the levels by using the cxTreelndent field of the
CNRINFO data structure. If this value is less than 0, a default is used.

Chapter 18. Container Controls 18-27

Enhancing Container Control Performance
The following offers information about fine-tuning a container to enhance its

performance and effectiveness:

• Positioning container items
• Specifying deltas for large amounts of data
• Direct editing of text in a container
• Specifying container titles
• Specifying fonts and colors
• Drawing container items and painting backgrounds
• Filtering container items
• Optimizing container memory usage
• Sharing records among multiple containers.

Positioning Container Items
Container items are positioned in the icon view according to workspace

coordinates.

The workspace is a two-dimensional Cartesian coordinate system. The user can

see a portion of the workspace in the work area, which is the scrollable viewing

area of the container that is defined by the size of the container window. The work

area is logically scrollable within the workspace.

Figure 18-19 on page 18-29 shows the x- and y-axes of the workspace with a

container window and its work area superimposed. (This figure is not drawn to

scale.)

Scrollable Workspace Areas
Figure 18-19 on page 18-29 shows the scrollable area of the workspace, and thus

the container.

18-28 OS/2 Programming Guide-Volume II

y Bounded Workspace

Sales Text
==========~ ,

Host Connect

Work [[~I] s;~~;g•: ... 1:.':[~:·1·:.ll: ·'1

1

.'

Area I Sales Chart ~ .!:!.

.~ ~ ~1~----P_ic:_~_re_·"_Pr_in_te_r x

y

Figure 18-19. Workspace X- and Y-Axes

Chapter 18. Container Controls 18-29

This area is indicated by the solid black line that runs even with:

• The top and bottom edges, respectively, of the topmost and bottommost

container items

• The left and right edges, respectively, of the leftmost and rightmost container

items.

The scrollable workspace area, then, is defined by the minimum and maximum x­
and y-coordinates of the items in the container. That is, the work area of the

container window can be scrolled only within the workspace and only as far as is

necessary to see the topmost, bottommost, leftmost, and rightmost container items.

Figure 18-20 further illustrates a bounded workspace. In this example, the topmost

and bottommost container items limit the workspace.

In Figure 18-20, the work area has been scrolled so that all elements are not within

the work area. The work area could be scrolled to the left so that it would include

the leftmost element, or scrolled down and to the right to include the rightmost

element, but it could not be scrolled any farther in either direction.

Workspace and Work Area Origins
When the container is created, the work area and workspace share the same origin,

(0,0), as represented in Figure 18-19 on page 18-29. If the application requires that

the work area and the workspace have different origins, the application can use the

ptlOrigln field of the CNRINFO data structure and the CM_SETCNRINFO message to

set the origin of the work area. The application could use the CM_QUERYCNRINFO

and CM_SETCNRINFO messages to obtain the origin when the user ends the

application, and reset it when the user restarts the application.

Container items are located in reference to the workspace origin. There is a visual

shift as the work area is scrolled; but because the work area moves over a fixed

workspace, the coordinates of the container items do not change.

Container Item
in Workspace

• Host Connect

Container Item
in Work Area

i~I =0=
~·············-···j

: Sale; Chart

Sales Reports
1991

Sales Reports
1980-1990

Bounded
Workspace

~CJ.a
Sales Text Picture Printer

Figure 18-20. Workspace Bounds

18-30 OS/2 Programming Guide-Volume II

Specifying Deltas for Large Amounts of Data
The container control can accommodate large amounts of data with an
application-defined delta. The delta is an application-defined threshold, or number
of container items, from either end of the list. The application is responsible for
specifying the delta value in the CNRINFO data structure's cDelta field. It also is
responsible for setting the delta value with the CMA_DELTA attribute of the
CM_SETCNRINFO message's ulCnrlnfoFI parameter. Refer to the OS/2 2.0
Programming Reference for description of CM_SETCNRINFO message.

The container control monitors its place in the list of container items when the user
is scrolling through it. When the user scrolls to the delta from either end of the list,
the container control sends a CN_QUERYDELTA notification code to the application
as a request for more container items in the list.

The application is responsible for managing the records in the container. When the
application receives the CN_QUERYDELTA notification code, the application is
responsible for removing and inserting container records by using the
CM_REMOVERECORD message and the CM_INSERTRECORD message
respectively.

Notes:

1. The delta concept is intended for applications with large amounts of data, or
several thousand records. Applications with smaller amounts of data are not
required to use the delta function. The default delta value is 0.

2. The delta function is not available in the icon view because it is intended for data
displayed in a linear format.

Direct Editing of Text in a Container
Direct editing of text is supported for any text field in a container, including the
container title, column headings, and container items. If a text field, such as the text
field beneath an icon in the icon view, has no text and is not read-only, a user can
place text in that field by editing the field directly. The font specified for the
container by the application is used for the edited text.

Direct editing is supported only for text data. Therefore, if the data type in the
details view is other than CFA_STRING, a user cannot edit it. CFA_STRING is an
attribute of the FIELDINFO data structure's flData field.

You can prevent a user from editing any of the text in a container window by setting
the CCS_READONLY style bit when a container is created. If you do not set this
style bit, the user can edit any of the text in a container window unless you set the
following read-only attributes: CA_TITLEREADONLY, CRA_RECORDREADONL Y,
CFA_FIREADONLY, and CFA_FITITLEREADONL Y. If a read-only attribute is set, a
user's attempts to edit container text directly are ignored. See the description of the
CCS_READONL Y style bit in the OS/2 2.0 Programming Reference for more
information about these attributes.

Chapter 18. Container Controls 18-31

A user can edit container text directly by doing either of the following:

• Moving the pointer to an editable text field, holding down the Alt key, and

clicking the select button
• Sending a CM_OPENEDIT message to the container control.

The application can assign a key or menu choice to this message so that the

keyboard can be used to edit container text directly.

The container control responds by using the WM_CONTROL message to send the

CN_BEGINEDIT notification code to the application. A window that contains a

multiple-line entry (MLE) field opens to show that container text can be edited

directly.

The editing actions supported by MLEs, such as Cut, Copy, and Paste, are also

supported by the container control. These actions can be performed using

system-defined shortcut keys. The actions and shortcut keys are defined in the SAA

CUA Advanced Interface Design Reference.

If the user enters a text string that is longer than the text field, the text string scrolls.

Also, if multiple lines of text are wanted, a user can press the Enter key and type on

the following line whenever another line is needed.

A user can end the direct editing of container text and save the changes by doing

either of the following:

• Moving the pointer outside the MLE and pressing the select button

• Sending a CM_CLOSEEDIT message to the container control.

The application can assign a key or menu choice to this message so that the

keyboard can be used to end the direct editing of container text.

The container responds by sending the WM_ CONTROL message to the application

again, but this time with the CN_REALLOCPSZ notification code. The application

can allocate more memory on receipt of the CN_REALLOCPSZ notification code, if

necessary. If the application returns TRUE, the container control copies the new

text to the application's text string. If the application returns FALSE, the text change

in the MLE is disregarded. The container then sends the WM_CONTROL message to

the application again, this time with the CN_ENDEDIT notification code. The MLE

field is removed from the screen, leaving only the text string.

A user can end the direct editing of container text without saving any changes to the

text in numerous ways, including the following:

• Pressing the Esc key
• Dragging the container item that is being edited

• Pressing the Alt key and the select button before the direct editing of container

text has ended
• Scrolling the container window.

The CN_ENDEDIT notification code is sent to the application in each of these cases.

Specifying Container Titles
The container control can have a non-scrollable title that consists of one or more

lines of text. The container control does not limit the number of lines or the number

of characters in each line. If specified, this title is the first line or lines of the

container control. The text of the title is determined by the application and can be

18-32 OS/2 Programming Guide-Volume II

used to identify the container or to contain status information. Figure 18-21 on
page 18-33 shows an example of a container title.

Container Title
with Separator Line

\§:~~~:~fi~r:CJ Host Connect

Sales T eMt Install

Sales Reports
1980-1990

Sales Reports
1991

Picture Printer

Print Manager

Sales Report
January 1991

Figure 18-21. Non-Flowed Text View with Container Title

The CA_CONTAINERTITLE attribute must be set to include a title in a container
window. The default is no container title.

Container Title
without Separator Line

cri:.ner I Ill
1

Desc~n ~ c{!~d ~
l~rr;;~~~~~·-·r-·-~:~~~::;:·-·- -···;~;~--- ·;~~;-11
-·T;;·-····-·:;~~~~~~~--·4··---~~~~::::::·-·-· -··~;;-·- ··;.;~-;·- ~.!

File Cabinet
SALES.CST for 1980-1990 113180 04:36:15 .,

: .. , , ;.·_.,··-··;··-,··············, .. _ . ., .. ,_ ... ~.··,···;·~···;·;·······-·.,.·,,··~···;·;-···-·····;·;·~···················~···~···~·····;·;·~···;·;······,,··-· .. ;.;·;·;·~···;·;·;······S·······a'';l·;e·";·;s·;·;·~·R··;·;··e·;···.P·.····o;.;<-r·;·t;·;s·;·;·;····;··· .. ·;·;·;·· ... ;.;:::.~·;.:::: ·.·.::.::.·;·:·.,_.:.::::::·;·,:.::·.· .. :.:· . .-·.·;:·~·::::·;.::·,:_::_::_::::;, .. _· .. ;.············;·;·;·;·;·;::: .• =.:;_:::._~:'·-.:·.:=·::.·.:;;.-.::.,:···.·.::i· .•. ···;·;~.~--.~ .• ~.l-~ .. ;· .. · .. ~.:', !~l~l~~~~~~~l~~llf~~~~~~~;ll~1*~~~~~ll~llllll~l~llll:~~l~~lllili~~l~~~!1*~ll~~~ll~~l:~:: '"- .: ::... - ·- ,..... ~ '"

Figure 18-22. Split Details View with Container Title

If you do not want the user to be able to edit the container title directly, you can set
the CA_ TITLEREADONL Y attribute. The default is that the container title can be
edited. See "Direct Editing of Text in a Container" on page 18-31 for more
information about editing container text directly.

Below the title in Figure 18-21, a horizontal line separates the container title from
the container items. Ttie CA_TITLESEPARATOR attribute must be set in order to

Chapter 18. Container Controls 18-33

include a separator line in a container window. The default is no separator line, as

shown in Figure 18-22.

The container titles in both figures are centered. This is the default. However, the

CA_TITLECENTER, CA_TITLELEFT, or CA_TITLERIGHT attribute can be used to

specify whether a container title is to be centered, left-justified, or right-justified,

respectively.

All the container attributes described here are attributes of the CNRINFO data

structure's flWlndowAttr field.

Specifying Fonts and Colors
A different font can be specified for each view. The same font is used for the text

within each view. Text color can be configured from the system control panel. The

application can override the system-defined font and colors by using the

WinSetPresParam function.

The font and color can be changed for the text in all views. However, font and color

cannot be changed for text in individual columns in the details view. Therefore, all

text in the details view, including the container title, columns, and column headings,

has the same font and color.

Drawing Container Items and Painting Backgrounds
The container control enables your application to paint the container's background,

draw the container items, or both. If the CA_OWNERPAINTBACKGROUND attribute

is set, the container control sends the CM_PAINTBACKGROUND message to itself.

Your application can control background painting by subclassing the container

control and intercepting the CM_PAINTBACKGROUND message.

CA_OWNERPAINTBACKGROUND is an attribute of the CNRINFO data structure's

flWindowAttr field.

To support ownerdraw, the drawing of container items by the application, the

container control provides the CA_OWNERDRAW attribute of the CNRINFO data

structure's flWlndowAttr field. If this attribute is set and the application processes

the WM_DRAWITEM window message, the application is responsible for drawing

each container item, including the types of emphasis.

In addition, the container control supports ownerdraw for each column in the details

view. This support is indicated by the CFA_OWNER attribute, which is specified in

the FIELDINFO data structure's flData field.

If the CA_OWNERDRAW attribute or CFA_OWNER attribute is set, the container

control sends the application a WM_DRAWITEM message with a pointer to an

OWNERITEM data structure as the ownerltem parameter. Refer to the OS/2 2.0

Programming Reference for a description of the OWNERITEM data structure fields

as they apply to the container control.

Filtering Container Items
If the CRA_FILTERED attribute is set for a container item, that item is not displayed.

Therefore, filtering can be used to hide container items. CRA_FILTERED is an

attribute of the RECORDCORE data structure's flRecordAttr field.

18-34 OS/2 Programming Guide-Volume II

Optimizing Container Memory Usage
The container control provides an option to enable you to develop applications that
minimize the amount of memory used for each container record. This is done by
specifying the CCS_MINIRECORDCORE style bit when the container is created,
which causes a smaller version of the RECORDCORE data structure,
MINIRECORDCORE, to be used. The following table shows the differences between
these two data structures.

Table 18-3. Differences between RECORDCORE and MINIRECORDCORE

RECORDCORE MINIRECORDCORE

Up to eight image handles can be Only one image handle can be specified
specified for each record. for each record.

Note: This image must be an icon.

Up to four text strings can be specified for Only one text string can be specified for
each record. each record.

Allocating Memory for Container Records When Using
MINIRECORDCORE
The sample code in Figure 18-23 shows how to allocate memory for one container
record when the MINIRECORDCORE data structure is used. A pointer to the
MINIRECORDCORE structure is returned. This is the same sample code as that
used in Figure 18-2 on page 18-4 except for one line, which is highlighted.

Figure 18-23. Sample Code for Allocating Memory for Smaller Container Records

Sharing Records Among Multiple Containers
The container control enables the application to share records that are allocated
among multiple containers in the same process. That is, records can be allocated·
once and then inserted into many containers in the same process. Only one copy of
each record is in memory, but the container provides the flexibility for the records to
appear as though they are independent of one another.

When a record is inserted into the container, the flRecordAHr and ptllcon fields of
the record structure are saved internally. The values in these fields cause the
record attributes for all views and the icon position for the icon view to be
associated with the specific container into which the record is inserted. If the same
record is inserted into multiple containers, the attributes and icon location of each
record are maintained separately. The application uses the
CM_QUERYRECORDINFO message to retrieve the current values of these two fields
for a particular record in a specific container.

Chapter 18. Container Controls 18-35

Summary

Invalidating Records Shared by Multiple Containers
When a record is invalidated by an application, the flRecordAttr and ptllcon fields

are saved internally, just as when a record is inserted. Therefore, use the

CM_QUERYRECORDINFO message to acquire the current data for each record that

is being invalidated. After querying the current data, you can change any of this

data before invalidating its record.

Freeing Records Shared by Multiple Containers
When an application attempts to free a record in an open container, the record is

freed only if it is not being used in any other open container. The methods of

freeing records in an open container are to use the CM_FREERECORD message, or

use the CM_REMOVERECORD message and specify the CMA_FREE attribute.

Following are tables that describe the OS/2 container control structures, notification

codes, notification messages, and window messages:

Table 18-4 (Page 1 of 2). Container Control Structures

Structure name

CDATE

CNRDRAGINFO

CNRDRAGINIT

CNRDRAWITEMINFO

CNREDITDATA

CNRINFO

CTIME

FIELDINFO

FIELDINFOINSERT

MINIRECORDCORE

NOTIFYDEL TA

NOTIFYRECORDEMPHASIS

NOTIFYRECORDENTER

NOTIFYSCROLL

OWNERBACKGROUND

Description

Contains date information for a data element in the
details view of the container.

Contains information about a direct manipulation
event occurring over the container.

Contains information about a direct manipulation
event that was initiated in a container.

Contains information about the item being drawn
in the container.

Contains information about the direct editing of
container text.

Contains information about the container.

Contains time information for a data element in the
details view of the container.

Contains information about column data in the
details view of the container.

Contains information about the FIELDINFO
structure or structures that are being inserted into
the container.

Contains information for container records that are
smaller than those defined by the RECORDCORE
structure.

Contains information about the placement of delta
information for the container.

Contains information about the emphasis applied
to a container record.

Contains information about the input device being
used with the container.

Contains information about scrolling the container
window.

Contains information about painting the container
window's background.

18-36 OS/2 Programming Guide-Volume II

Table 18-4 (Page 2 of 2). Container Control Structures

Structure name Description

QUERYRECFROMRECT Contains information about a container record that
is bounded by a specified rectangle.

QUERYRECORDRECT Contains information about the rectangle that
bounds a specified container record.

RECORDCORE Contains information for container records.

RECORDINSERT Contains information about the RECORDCORE
structure or structures that are being inserted into
the container.

SEARCHSTRING Contains information about the container text
string that is the object of the search.

TREEITEMDESC Contains icons and bit maps used to represent the
state of an expanded or collapsed parent item in
the tree name view.

Table 18-5 (Page 1 of 2). Container Control Notification Codes

Code name Description

CN_BEGINEDIT Sent when container text is about to be edited.

CN_ COLLAPSETREE Sent when a parent item is collapsed in the tree
view.

CN_CONTEXTMENU Sent when the container receives a
WM_CONTEXTMENU message.

CN_DRAGAFTER Sent when the container receives a
DM_DRAGOVER message.

CN_DRAGLEAVE Sent when the container receives a
DM_DRAGLEAVE message.

CN_DRAGOVER Sent when the container receives a
DM_DRAGOVER message.

CN_DROP Sent when the container receives a DM_DROP
message.

CN_DROPHELP Sent when the container receives a
DM_DROPHELP message.

CN_EMPHASIS Sent when the attributes of a container record
change.

CN_ENDEDIT Sent when direct editing of the container text ends.

CN_ENTER Sent either when the Enter key is pressed while
the container window has the focus, or when the
select button is double-clicked while the pointer is
over the container window.

CN_EXPANDTREE Sent when the container expands a parent item in
the tree view.

CN_HELP Sent when the container receives a WM_HELP
message.

CN_INITDRAG Sent when the drag button is pressed and the
pointer is moved while over the container control.

CN_KILLFOCUS Sent when the container is losing the focus.

Chapter 18. Container Controls 18-37

Table 18-5 (Page 2 of 2). Container Control Notification Codes

Code name Description

CN_QUERYDELTA Sent to query for more data when the user scrolls
to a preset delta value.

CN_REALLOCPSZ Sent when container text is edited (before
CN_ENDEDIT is sent).

CN_SCROLL Sent when the container window scrolls.

CN_SETFOCUS Sent when the container receives the focus.

Table 18-6. Container Control Notification Messages

Message Description

WM_CONTROL Occurs when the container control has a
significant event to notify to its owner.

WM_ CONTROLPOINTER Sent to the container control's owner window when
the pointing device pointer moves over the
container window, allowing the owner to set the
pointing device pointer.

WM_DRAWITEM Sent to the owner of the container control each
time an item is to be drawn.

Table 18-7 (Page 1 of 3). Container Control Window Messages

Message

CM_ALLOCDETAILFIELDINFO

CM_ALLOCRECORD

CM_ARRANGE

CM_CLOSEEDIT

CM_ COLLAPSETREE

CM_ERASERECORD

CM_EXPANDTREE

CM_FILTER

CM_FREEDETAILFIELDINFO

CM_FREERECORD

CM_HORZSCROLLSPLITWINDOW

18-38 05/2 Programming Guide-Volume II

Description

Allocates memory for one or more
FIELDINFO structures.

Allocates memory for one or more
RECORDCORE structures.

Arranges the container records in the
icon view.

Closes the window containing the
multiple-line entry (MLE) field used to
edit container text directly.

Causes one parent item in the tree view
to be collapsed.

Erases the source record from the
current view when a move occurs as a
result of direct manipulation.

Causes one parent item in the tree view
to be expanded.

Filters the contents of a container so that
a subset of the container items can be
viewed.

Frees the memory associated with one or
more FIELDINFO structures.

Frees the memory associated with one or
more RECORDCORE structures.

Scrolls a split window in the split details
view.

Table 18-7 (Page 2 of 3). Container Control Window Messages

Message Description

CM_INSERTDETAILFIELDINFO Inserts one or more FIELDINFO structures

into a container control.

CM_INSERTRECORD Inserts one or more RECORDCORE

structures into a container control.

CM_INVALIDATEDETAILFIELDINFO Notifies the container control that any or

all FIELDINFO structures are not valid

and that the view must be refreshed.

CM_INVALIDATERECORD Notifies the container control that any or

all RECORDCORE structures are not valid

and must be refreshed.

CM_ OPENEDIT Opens the window that contains the
multiple-line entry {MLE) field used to

edit container text directly.

CM_PAINTBACKGROUND Informs an application when a container's

background is painted if the
CA_ OWNERPAINTBACKGROUND

attribute of the CNRINFO data structure is

specified.

CM_QUERYCNRINFO Returns the container's CNRINFO
structure.

CM_ QUERYDETAILFIELDINFO Returns a pointer to the requested

FIELDINFO structure.

CM_QUERYDRAGIMAGE Returns a handle to the icon or bit map

for the record in the current view.

CM_QUERYRECORD Returns a pointer to the requested

RECORDCORE structure.

CM_QUERYRECORDEMPHASIS Queries for a container record with the
specified emphasis attributes.

CM_QUERYRECORDFROMRECT Queries for a container record that is

bounded by the specified rectangle.

CM_QUERYRECORDINFO Updates the specified records with the

current information for the container.

CM_QUERYRECORDRECT Returns the rectangle of the specified

container record, relative to the container

window origin.

CM_QUERYVIEWPORTRECT Returns a rectangle that contains the
coordinates of the container's work area.

CM_REMOVEDETAILFIELDINFO Removes one, multiple, or all FIELDINFO

structures from the container control.

CM_REMOVERECORD Removes one, multiple, or all
RECORDCORE structures from the
container control.

CM_SCROLLWINDOW Scrolls an entire container window.

CM_SEARCHSTRING Returns the pointer to a. container record

whose text matches the string.

CM_SETCNRINFO Sets or changes the data for the container

control.

CM_SETRECORDEMPHASIS Sets the emphasis attributes of the
specified container record.

Chapter 18. Container Controls 18-39

Table 18-7 (Page 3 of 3). Container Control Window Messages

Message Description

CM_SORTRECORD Sorts the container records in the
container control.

WM_PRESPARAMCHANGED Sent when a presentation parameter is
set or removed dynamically from a
window instance.

18-40 OS/2 Programming Guide-Volume II

Chapter 19. Notebook Controls

A notebook control (WC_NOTEBOOK window class) is a visual component that
organizes information on individual pages so that a user can find and display that
information quickly and easily. This chapter explains how to use notebook controls
in PM applications.

About Notebook Controls
This notebook control component simulates a real notebook, but improves on it by
overcoming its natural limitations. A user can select and display pages by using a
pointing device or the keyboard.

[~~.~·.~.~-~~-~-.-·]

'-.. ___,,. View

Figure 19-1. Notebook Example

The notebook can be customized to meet varying application requirements, while
providing a user interface component that can be used easily to develop products
that conform to the Common User Access (CUA) user interface guidelines. The
application can specify different colors, sizes, and orientations for its notebooks, but
the underlying function of the control remains the same. For a complete description
of CUA notebooks, refer to the SAA CUA Guide to User Interface Design and the
SAA CUA Advancedlnterface Design Reference.

Notebook Creation

© Copyright IBM Corp. 1992

You create a notebook by using the WC_NOTEBOOK window class name in the
C/assName parameter of the WinCreateWindow function. Figure 19-2 on page 19-2
shows the creation of the notebook. The style set in the u/NotebookStyles variable
(the BKS_* values) specifies that the notebook is to be created with a solid binding
and the back pages intersecting at the bottom right corner, major tabs placed on the
right edge, tab type square, tab text centered, and status text left-justified. These
are the default settings and are given here only to show how notebook styles are
set.

19-1

Figure 19-2. Sample Code for Creating a Notebook

Understanding the Default Notebook Style
As specified in the preceding sample code, Figure 19-3 on page 19-3 shows how
the default notebook control looks when it is created.

19-2 OS/2 Programming Guide-Volume II

Notebook
Binding

Empty Status Line

Figure 19-3. Default Notebook Style

Back.ward
Page Button

Forward
Pnge Button

The notebook control resembles a real notebook in its general appearance. For
example, as Figure 19-3 shows, the notebook has a binding that, along with
recessed pages on the right and bottom edges, gives the notebook a
three-dimensional appearance. The default binding is solid and is placed on the left
side. This binding is used if no style bit is specified or if the BKS_SOLIDBIND style
bit is specified.

In the bottom right corner of the notebook in Figure 19-3 are the page buttons.
These buttons are for bringing one page of the notebook into view at a time. They
are a standard component that is automatically provided with every notebook.
However, the application can change the default width and height of the page
buttons by using the BKM_SETDIMENSIONS message.

Selecting the forward page button (the arrow pointing to the right) causes the next
page to be displayed; while selecting the backward page button (the arrow pointing
to the left) causes the previous page to be displayed. In Figure 19-3, the page
buttons are displayed with unavailable-state emphasis because no pages have been
inserted in the notebook yet. Therefore, in this example, selecting either page
button would not bring a page into view.

To the left of the page buttons in the default notebook style setting is the status line,
which enables the application to provide information to the user about the page
currently displayed. The notebook does not supply any default text for the status
line. The application is responsible for associating a text string with the status line
of each page on which a text string is to be displayed. The procedure for
associating a text string with a status line is described in "Inserting Notebook
Pages" on page 19-8. Text displayed in the status line is left-justified by default. In
Figure 19-2 on page 19-2, this setting is specified by the BKS_STATUSTEXTLEFT
style bit. See "Notebook Control Styles" on page 19-5 for information about other
style bits that can be set for the notebook.

The page buttons always are located in the corner where the recessed edges of the
notebook intersect. These recessed edges are called the back pages. The default
notebook's back pages intersect in the bottom right corner, which means the

Chapter 19. Notebook Controls 19-3

recessed pages are on the bottom and right edges. In Figure 19-2 on page 19-2,

this setting is specified by the BKS_BACKPAGESBR style bit.

The back pages are important because their intersection determines where the

major tabs can be placed, which in turn determines the placement of the binding

and the minor tabs. Major and minor tabs are used to organize related pages into

sections; minor tabs define subsections within major tab sections. The content of

each section has a common theme, which is represented to the user by a tabbed

divider, similar to a tabbed page in a notebook.

In the figure, the BKS_MAJORTABRIGHT style bit specifies that major tabs, if used,

are to be placed on the right side of the notebook. This is the default major tab

placement when the back pages intersect at the bottom right corner of the notebook.

The binding is located on the left, because it is always located on the opposite side

of the notebook from the major tabs.

The default notebook shown in Figure 19-3 on page 19-3 has no major tabs, even

though the BKS_MAJORTABRIGHT style bit was specified, because major tab

attributes, if desired, can be specified only at the time a page is inserted in the

notebook. This is done by specifying the BKA_MAJOR attribute in the

BKM_INSERTPAGE message.

Similarly, minor tabs are specified using the BKA_MINOR attribute. Minor tabs

always are placed perpendicular to the major tabs, based on the intersection of the

back pages and the major tab placement. Only one major or minor tab attribute can

be specified for each notebook page. Minor tabs are displayed only if the

associated major tab page is selected or if the notebook has no major tab pages.

Figure 19-4 is an example of a notebook for which both major and minor tab

attributes were specified.

Minor Tabs

Figure 19-4. Default Style and Placement of Major and Minor Tabs

19-4 OS/2 Programming Guide-Volume II

Major
Tabs

The default shape of the tabs used on notebook divider pages is square. In
Figure 19-2 on page 19-2, this setting is specified by the BKS_SQUARETABS style
bit. As with the page buttons, the application can change the default width and
height of the major and minor tabs by using the BKM_SETDIMENSIONS message.

A notebook tab can contain either text or a bit map. Text is placed on a tab by using
the BKM_TABTEXTCENTER style bit. A bit map is placed on a tab by using the
BKM_SEITABBITMAP message. A bit map cannot be positioned on a tab because
the bit map stretches to fill the rectangular area of the tab; therefore, no style bit is
used.

The following paragraphs provide details about changing notebook style settings,
along with additional information about the effect of the back pages intersection on
notebook style.

Notebook Control Styles
The notebook control provides style bits so that your application can specify or
change the default style settings described in "Understanding the Default Notebook
Style" on page 19-2. One style bit from each of the following groups can be
specified:

• Type of binding

BKS_SOLIDBIND
BKS_SPIRALBIND

• Intersection of back pages

BKS_BACKPAGESBR
BKS_BACKPAGESBL
BKS_BACKPAGESTR
BKS_BACKPAGESTL

• Location of major tabs

BKS _ MAJORTABRIGHT
BKS_MAJORTABLEFT
BKS_MAJORTABTOP
BKS_MAJORTABBOITOM

• Shape of tabs

BKS_SQUARETABS
BKS_ROUNDEDTABS
BKS _POL YGONTABS

Solid (default).
Spiral.

Bottom right corner (default).
Bottom left corner.
Top right corner.
Top left corner.

Right edge (default).
Left edge.
Top edge.
Bottom edge.

Square (default).
Rounded.
Polygonal.

• Alignment of text associated with tabs

BKS_TABTEXTCENTER
BKS_TABTEXTLEFT
BKS_ TABTEXTRIGHT

• Alignment of status line text.

Centered (default).
Left-justified.
Right-justified.

BKS_STATUSTEXTLEFT Left-justified (default).
BKS_STATUSTEXTRIGHT Right-justified.
BKS _ STATUSTEXTCENTER Centered.

If you specify more than one style bit, you must use an OR operator (I) to combine
them. See the OS/2 2.0 Programming Reference for definitions of the notebook style
bits.

Chapter 19. Notebook Controls 19-5

Two styles are provided for the notebook binding: solid and spiral. The notebook is

displayed with a solid binding by default, but the application can specify

BKS_SPIRALBIND to display a spiral binding.

The most important of the style bits are those that determine the corner at which the

back pages intersect and those that indicate the side where the major tabs are to be

placed. For example, if the application specifies the back pages intersection at the

bottom right corner (BKS_BACKPAGESBR, the default), the major tabs can be

placed on either the bottom edge (BKS_MAJORTABBOTTOM) or the right edge

(BKS_MAJORTABRIGHT) of the notebook. In this situation, if the application

specifies that major tabs are to be placed on the left or top edges of the notebook,

the notebook control places them on the right edge anyway,-the default placement

for back pages intersecting at the bottom right corner.

The placement of the minor tabs and binding depends entirely on the placement of

the back pages and major tabs respectively. The binding always is located on the

side of the notebook opposite the side where the major tabs are. The minor tabs

always are located on the recessed page side that has no major tabs. Table 19-1

describes the available notebook window style settings.

Table 19-1. Notebook Window Style Settings

Back Pages Major Tabs Minor Tabs Binding

Bottom right {default) Bottom Right Top

Bottom right {default) Right {default) Bottom Left

Bottom left Bottom {default) Left Top

Bottom left Left Bottom Right

Top right Top {default) Right Bottom

Top right Right Top Left

Top left Top Left Bottom

Top left Left {default) Top Right

The shape of the tabs can be square, rounded, or polygonal. The tab text can be

drawn left-justified, right justified, or centered. Once set, these styles apply to the

major and minor tabs for all the pages in the notebook. Text is associated with a tab

page by using the BKM_SETTABTEXT message. Notebook tab text is centered by

default or by specifying the BKS_TABTEXTCENTER style when creating the

notebook window.

The application can associate status line text with each inserted notebook page.

The status text is drawn left-justified by default, but also can be drawn centered or

right-justified. The same status text justification applies to all pages in the

notebook. The location of the back pages intersection and the major tabs has no

effect on the specification of the tab shape and status line position. These style bits

can be set for the entire notebook.

19-6 OS/2 Programming Guide-Volume II

Figure 19-5 shows some sample code for setting the notebook style to spiral
binding, back pages that intersect at the bottom left corner, major tabs on the
bottom edge, rounded tabs, tab text left justified, and status line text centered.

Figure 19-5. Sample Code for Changing the Notebook Style

Chapter 19. Notebook Controls 19-7

Figure 19-6 shows how the notebook appears when these style bits are set.

Compare this figure to the notebook shown in Figure 19-4 on page 19-4. Both of

these figures assume that pages have been inserted in the notebook with major and

minor tab attributes.

rllilrlid.t-HdirUrU-UrilrUriL-irlli-lidt-1-U-ilrliri-U-: N~te.book '-'--- Bmdtng,

Minor Tabs
on the
Left Edge
and
Rounded

Bottom Left
Intersection
of Back Pages

Figure 19-6. Notebook with Style Settings Changed

Working with Notebook Pages and Windows

Always
Opposite
from
Major Tabs

Centered
------- Status Line

Major Tabs
on the Bottom Edge
and Rounded

Text

The following sections tell you how to insert information in, create and associate

windows for, and remove information from a notebook.

Inserting Notebook Pages
After a notebook is created, pages can be inserted in the notebook by using the

BKM_INSERTPAGE message. BKM_INSERTPAGE provides several attributes that

can affect the inserted pages. When inserting pages into either a new notebook or

an existing one, carefully consider how the user will expect those pages to be

organized.

The two attributes that have the most impact on how notebook pages are organized

are BKA_MAJOR and BKA_MINOR, which specify major and minor tabs

respectively. Major tab pages define the beginning of major sections in the

notebook, while minor tab pages define the beginning of subsections within a major

section. Major sections should begin with a page that has a BKA_MAJOR attribute.

Within major sections, information can be organized into minor sections, each of

which should begin with a page that has a BKA_MINOR attribute.

For an existing notebook, the underlying hierarchy, if one exists, must be observed

when inserting new pages, to provide efficient organization and navigation of the

information in the notebook.

19-8 OS/2 Programming Guide-Volume II

For example, if the notebook has minor sections but no major sections, you could
confuse the user if you inserted a page with a major tab attribute between related
minor sections or at the end of the notebook.

If you insert pages without specifying tab attributes, those pages become part of the
section in which they are inserted. For example, if page 7 of your notebook has a
minor tab, and you insert a new page 8 without specifying a tab attribute, page 8
becomes part of the section that begins with the minor tab on page 7.

Since tab pages are not mandatory, the application can create a notebook that
contains no major or minor tab pages. That style would be similar to that of a
com position notebook.

Another group of attributes that can affect the organization of pages being inserted
into a notebook consists of BKA_LAST, BKA_FIRST, BKA_NEXT, and BKA_PREV.
These attributes cause pages to be inserted at the end, at the beginning, after a
specified page, and before a specified page of a notebook, respectively.

Each page has an optional status line that can be used to display information for the
user. To include this status line, the application must specify the
BKA_STATUSTEXTON attribute when inserting the page. If the application inserts
the page without specifying this attribute, the status line is not available for that
page.

To display text on the status line of the specified page, the application must use the
BKM_SETSTATUSLINETEXT message to associate a text string with the page. A
separate message must be sent for each page that is to display status line text. If
the application does not send a BKM_SETSTATUSLINETEXT message for a page, no
text is displayed in the status line of that page. The application can send this
message to the notebook at any time to change the status line text. The status line
can be cleared by setting the text to NULL.

Figure 19-7 shows how to insert a page in a notebook, where the inserted page has
a major tab attribute, the status line is available, and the page is inserted after the
last page in the notebook. This sample code also shows how to associate a text
string with the status line of the inserted page.

~WNtJ.· ... h\fl~dNotebook;
UUJIG· ulPage.Id;

/*·Not~ti6ukwindow:tia~dle
Y*• ~~age· i~entlfier

/****************.*********************"!*******************************·*I /* I rrsert a .new page into a notebook */
l*·*~*..**'f'*********.*****************~*•*"!**~~****'ft************~********** I ulPageid= (ULONG} WinSendMsg(

hwnQNoteb<?ok, /* Noteb?o:k w,ind.ow t\~ndlf? * /
· sl(M.)NSERTPAGE, /* f1essage• f()r,' ·inserting a page· */
· (MPARAM} NULL, /* NUU> for page· ID . . *f

Figure 19-7 (Part 1 of 2). Sample Code for Inserting a Notebook Page

Chapter 19. Notebook Controls 19-9

Figure 19-7 (Part 2 of 2). Sample Code for Inserting a Notebook Page

Associating Application Page Windows with Notebook Pages
After a page is inserted into a notebook, you must facilitate the display of

information for this page when it is brought to the top of the book. The notebook

provides a top page area in which the application can display windows or dialogs

for the topmost page. For each inserted page, the application must associate the

handle of a window or dialog that is to be invalidated when the page is brought to

the top of the book. The application can associate the same handle with different

pages if desired.

The application must send a BKM_SETPAGEWINDOWHWND message to the

notebook order to associate the application page window or dialog handle with the

notebook page being inserted. Once done, the notebook invalidates this window or

dialog whenever the notebook page is brought to the top of the book. If no

application page window handle is specified for an inserted page, no invalidation

can be done by the notebook for that page. However, the application will receive a

BKN_PAGESELECTED notification code when a new page is brought to the top of

the notebook, at which time the application can invalidate the page.

Associating a Window or Dialog with a Notebook Page
The following sections describe how to associate either a window handle or a dialog

handle with an inserted page.

19-10 05/2 Programming Guide-Volume II

Associating a Window with a Notebook Page
A calendar example is used to show how a page can be implemented as a window.

Figure 19-8 shows a calendar that is divided into four years (major tabs). Within

each year are months (minor tabs,) grouped into quarters. The top page has a

window associated with it.· The window paint processing displays the days for the

currently selected month and year.

October

s M T w T F s
1 2 3 4 5

6 1 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31

Figure 19-8. Calendar Inserted into an Application Page Window

The sample code in Figure 19-9 shows how the window procedure for the calendar

in Figure 19-8 is registered with the application. Also, it shows how the window is

created and associated with the notebook page. The example ends by showing the

window procedure for the associated window.

Figure 19-9 (Part 1 of 3). Sample Code for Associating a Window with a Notebook Page

Chapter 19. Notebook Controls 19-11

l***t'!ttilr*:**~*****:*.*:.*:ilr.******'Jt**:'lt.*.*:*:~*'!r.**·******:******·'Jt*:*.*:*:"5*:.t!.**1't*****;**./.'.

;'.~?~~~~!~~=~~~;.:.~E~*~~~Ht:~~**•*t!~~~!*'A~~~,.~~+it.;t~~~,~~r;~~2
.; ::h~~~:R•9~; ::: .. wj:~~re~tew.i nd~w.Ch\1.?Q~~~~b9~~ ~ .. : : ... f:*::c :~~r~nt. TI/

ll.~al~n.4~r .. eage'~.~ l~ .. Cla~~. h •.• • •.• Y .. .
NQLL, /* nt·l e text. *I
ac, ... ·: p~. sty~e: :•r·
. a, ·0, a. :;(i),. j* .Qrigt" and. . ·t/

' , ·'· .::.. : . ' "'" ,·. :. : . . '.: .. . ; <, •. . i ·; ~. < ~ •• :. :. ·' , ; •• < • ·~ .,

. hwndNotep~o~, · /*:o.Wn~t. :• ·:*:/:
HWND.JOP, /* 2-order *:/
JD~WIN_~A~ENDAR..;.PAGE, /* .~D . ~/
H.Ui..~, · .. : . l* J.o~t.r;9J;. d~ta: :· M:
NVLLJ; . /* ... ~.r~s;:.t>~rams · *./..

,, ;: ... , ... '· ., :· :; :·. :·o. ·:. ·,: ,: ; ;. ~ .. :. ~ .,·: '.~ >; < :< ·'.'. :;· ' ·~· :.:.: '· ., , •••• ·;

/****************************•***********************~~·*********:***~~/· ...
/*· Assoc.tate window.wtth· ·t•he inse~t~d:nQt~~ook:pag~~. .•. .. . t{·
·./'lf*.*******.**·*'lt*:***;****~"f*:**-:*1'1t**"'.***~***~********.~~*'lf**.ft.*********:*~*~l
.. Wi oSendf.t~9 (h\'lnd~~?~,

.. . . ~l<f.t_$ET~~~EW~NDO~~~~:Q~:
MPFRO.MLONG·(u1 ~~gel~J:, .
MP~ROMHWND(hwndPage));

/7***:**~~~*~*~*:***.**************************.**"+**~,~***:**~*~***~*H*~~/:
l* Wi rt~.Q\1 .. P!':~c:efJ,µr~~ . ··. . . <. ·. •· ··.· . < •• '" ' ' •••• •. • • •• " '. '.' •••••• • .. ··•. ";l
/*****************~**********~~*~**************.**:**~**:******'ft******l
MRESULTEXPENTRY·PageWndProc:{ttWND hwnd9USHORT msg~MPARAMmpl,

· MPARAM mp2) . .
{

HPS .,hps;.·

Figure 19-9 (Part 2 of 3). Sample Code for Associating a Window with a Notebook Page

19-12 OS/2 Programming Guide-Volume II

case ;WM PAINT : . : ·.. . .. ·· .. ·..
/*"'***;*********~******.*******1t***·**********.******:*************** I
/* Draw the calendar fo.r the current selected year and month */
/*******~***~*.*:tr******~1t**~*~****~***:**************************** I
hps :== Wi.~Begin~ai':nt(~wn~ •.. NUlt, .. :NUt~); ·
'dtawM9nthCa l~ndar(hps, ·wi ndowSize,. ¢urrDa.t~~year;. currDate .month);
WinEnCIPaintJhps); ·
ore(lk;

Figure 19-9 (Part 3 of 3). Sample Code for Associating a Window with a Notebook Page

Associating a Dialog with a Notebook Page
To illustrate the notebook implemented as a dialog, a properties notebook is used.
In this example, the various objects whose properties can be changed or updated
are displayed as major tabs. Included are sections that represent a folder, a printer,
and a display. The printer object is currently selected. Within the printer object, the
user can choose to "View" or "Update" the printer settings. The topmost page is a
printer dialog from which the user can update the printer name, type, and device
information.

View [:.·.~~~.~-~~.~--~~-] ::: __ _
,,,___ __, ·

Figure 19-10. Dialog Used As an Application Page Window

Chapter 19. Notebook Controls 19-13

The sample code in Figure 19-11 shows how the printer dialog is created and

associated with a notebook page. The example ends by showing the dialog

procedure for the associated dialog.

Figure 19-11. Sample Code for Associating a Dialog with a Notebook Page

19-14 OS/2 Programming Guide-Volume II

Deleting Notebook Pages
The BKM_DELETEPAGE message is used to delete one or more pages from the
notebook. The application can delete one page (BKA_SINGLE attribute), all pages
within a major or minor tab section (BKA_TAB attribute), or all of the pages in the
notebook (BKA_ALL attribute). The default, if no attributes are specified, is to delete
no pages. The following example shows how the BKM_QUERYPAGEID message is
used to get the ID of the top page and how the BKM_DELETEPAGE message is then
used to delete that page.

Figure 19-12. Sample Code for Deleting a Notebook Page

Graphical User Interface Support
The following describes the support for graphical user interfaces (GUls) provided by
the notebook control. Except where noted, this support conforms to the guidelines
in the SAA CUA Advanced Interface Design Reference.

The GUI support provided by the notebook control consists of:

• Notebook navigation techniques
• Tailoring notebook colors.

Chapter 19. Notebook Controls 19-15

Notebook Navigation Techniques
The notebook control supports the use of a pointing device and the keyboard for
displaying notebook pages and tabs, and for moving the selection cursor from the
notebook tabs to the application window and the other way around. The following
describes this support.

Note: If more than one notebook window is open, displaying a page or tab in one
notebook window has no effect on the pages or tabs displayed in any other
notebook window.

Pointing Device Support: A user can use a pointing device to display notebook
pages or tabs by selecting the notebook components described in the following list.
The SAA CUA Advanced Guide to User Interface Design defines mouse button 1 (the
select button) to be used for selecting these components. This definition also
applies to the same button on any other pointing device a user might have.

• Selecting tabs using a pointing device

A tab can be selected to bring a page that has a major or minor tab attribute to
the top of the notebook. The selection cursor, a dotted outline, is drawn inside
the tab's border to indicate the selected tab. In addition, the selected tab is
given the same background color as the notebook page area. The color of the
other tabs is specified in the BKM_SETNOTEBOOKCOLORS message. This
helps the user distinguish the selected tab from the other tabs if different colors
are used.

Since all the tabs are mutually exclusive, only one of them can be selected at a
time. Therefore, the only type of selection supported by the notebook control is
single selection. This selection type conforms to the guidelines in the SAA CUA
Advanced Interface Design Reference. Refer to that book for detailed
information about single selection.

If the user moves the pointing device to a place in the notebook page window
that can accept a cursor, such as an entry field, check box, or radio button, and
presses the select button, the selection cursor is removed from the tab it is on
and is displayed in the notebook page window. the selection cursor never can
be displayed both on a tab and in the notebook page window at the same time.

• Selecting page buttons using a pointing device

A forward or backward page button can be selected to display the next or
previous page, respectively, one at a time. The arrow pointing to the right is the
forward page button, and the arrow pointing to the left is the backward page
button. When the selection of a page button brings a page that has a major or
minor tab to the top of the notebook, the selection cursor is drawn inside that
tab's border. See Figure 19-3 on page 19-3 for an example of page buttons.

19-16 OS/2 Programming Guide-Volume II

• Selecting tab scroll buttons using a pointing device

A user can decrease the size of a notebook window so that some of the available
notebook tabs cannot be displayed. When this happens, the notebook control
automatically draws tab scroll buttons at the corners of the notebook side or
sides to notify the user that more tabs are available.

Tab scroll buttons have another purpose: to give the user the means to scroll
into view, one at a time, the tabs that are not displayed. The user does this by
selecting a forward or backward tab scroll button, which causes the next tab to
scroll into view, but does not change the location ofthe selection cursor. Once
the tab is in view, the user can display that tab's page by selecting the tab.

A maximum of four tab scroll buttons can be displayed: two for the major tab
side and two for the minor tab side. Figure 19-13 is an example of a notebook
with two of its tab scroll buttons displayed on the bottom left and bottom right
corners of the minor tab side.

Backwa.rd
Tab Scroll
Button

Forwa.rd
Tab Scroll
Button

Figure 19-13. Notebook with Tab Scroll Buttons Displayed

Chapter 19. Notebook Controls 19-17

In this example, only three minor tabs are displayed because the notebook is not
wide enough to display more. Here, the user can display a previous minor tab
by selecting the backward tab scroll button or a following minor by selecting the
forward tab scroll button.

When the first tab in the notebook is displayed, the backward tab scroll button is
deactivated. Unavailable-state emphasis is applied to it to show that no more
tabs can be scrolled into view by using the backward tab scroll button.
Unavailable-state emphasis is applied to the forward tab scroll button if the last
tab in the notebook is displayed.

Keyboard Support
A user can display notebook pages and tabs by using the following keyboard
selection techniques.

• Selecllng tabs using mnemonic selection

One keyboard method of displaying notebook pages is mnemonic selection.
Mnemonics are underlined characters in the text of a tab that cause the tab's
page to be selected. Coding a tilde(-) before a text character in the
BKM_SETTABTEXT message causes that character to be underlined and
activates it as a mnemonic-selection character.

A user performs mnemonic selection by pressing a character key that
corresponds to an underlined character. When this happens, the tab that
contains the underlined character is selected, and that tab's page is brought to
the top of the notebook.

Note: Mnemonic selection is not case sensitive, so the user can type the
underscored letter in either uppercase or lowercase.

• Selecting tabs using the keyboard

Another method of displaying a notebook page is to use the Enter key or the
spacebar to select a page with a major or minor tab. The selection cursor,
described earlier in this section, indicates that a tab can be selected by using
either of these keys. When selected, the tab's associated page is brought to the
top of the notebook, and the selected tab is given the same background color as
the notebook page area. The other tabs have their color specified in the
BKM_SETNOTEBOKKCOLORS message. This helps the user distinguish the
selected tab from the other tabs if different colors are used.

• Moving the selection cursor from tab to tab using the keyboard

The selection cursor can be moved from tab to tab by using the Up, Down, Left,
and Right Arrow keys. Pressing either the Up or Right Arrow key moves the
selection cursor up on a vertical row of tabs or to the right on a horizontal row of
tabs. Pressing the Down or Left Arrow keys moves the selection cursor down on
a vertical row of tabs or to the left on a horizontal row of tabs. The page
associated with the tab to which the selection cursor is moved is not brought to
the top of the notebook unless the user selects the tab.

If the selection cursor is located on a tab that is not in view, pressing one of
these keys moves the selection cursor and positions the tab the selection cursor
is moved to in the center of the row of tabs.

• Moving the selection cursor between tab positions and controls

Pressing the Tab key moves the selection cursor to the next tab position or
control. Pressing the Shift+ Tab key combination moves the selection cursor to
the previous tab position or control. Pressing Ctrl +Tab moves the selection
cursor to the next control.

19-18 OS/2 Programming Guide-Volume II

• Dlsplaylng tabs using the keyboard

When the tab scroll buttons are displayed, the Up, Down, Left, and Right Arrow
keys can be used to scroll tabs into view. For example, suppose the back pages
intersect at the bottom right corner and the selection cursor is on the last visible
tab on the right side of the notebook. In this case, pressing either the Down or
Right Arrow keys causes the next tab to scroll into view and moves the selection
cursor to that tab. The page associated with the tab the selection cursor is
moved to is not brought up to the top of the notebook unless the user selects the
tab.

• Turning notebook pages using the keyboard

The PgUp and PgDn keys can be used to display the previous or next page,
respectively, one page at a time. This is similar to using a pointing device's
select button to select the page buttons. The difference is that, unlike the select
button, the PgUp and PgDn keys are typematic, which means the notebook's
pages keep turning while these keys are pressed.

If the application's primary window has the focus, the PgUp and PgDn keys must
be used in combination with the Alt key. The application sends a message to the
notebook to turn to the previous or next page. The current top page is used as
the page from which to turn.

If the notebook window has the focus, the PgUp and PgDn keys can be used
alone or in combination with the Alt key.

• Switching the focus between the notebook window and the application's primary
window

The Alt+ Up Arrow key combination switches the focus from the application's
primary window to the notebook window. The Alt+ Down Arrow key combination
does the opposite, switching the focus from the notebook window to the
application's primary window.

If the selection cursor is not in view when the focus switches from the notebook
window to the application's primary window, it will not be in view if the focus
switches back to the notebook window. For example, the selection cursor may
be located on a tab that the user scrolls out of view by selecting a tab scroll
button. If the user then presses the Alt+ Down key combination, the selection
cursor appears in the application's primary window. If the user then presses the
Alt+ Up Arrow key combination, the selection cursor returns to its last
location-the tab that was not in view.

• Automatic scrolling to the first or last notebook page

The Home key can be used to bring the first page of the notebook to the top.
Conversely, the End key brings the last page to the top of the notebook.

These selection techniques conform to the descriptions in the SAA CUA Advanced
Guide to User Interface Design. Refer to that book for a complete description of the
keyboard interface model.

Tailoring Notebook Colors
The application can change the color of any part of the notebook. The colors of
some parts can be changed by specifying a presentation parameter attribute or
attributes in the WinSetPresParam function. Other colors can be changed by
specifying a notebook attribute or attributes in the BKM_SETNOTEBOOKCOLORS
message. The following sections define which parts of the notebook can have their
colors changed by each of these two methods.

Chapter 19. Notebook Controls 19-19

Changing Colors Using WinSetPresParam
The WinSetPresParam function is used to change the color of the notebook outline

and window background, the selection cursor, and the status line text. The following

list shows the mapping between the various notebook parts and their associated

presentation parameter attributes.

Notebook outline
PP _BORDERCOLOR or PP _BORDERCOLORINDEX. This color is set initially to

SYSCLR_WINDOWFRAME.

Notebook window background
PP _BACKGROUNDCOLOR or PP _BACKGROUNDCOLORINDEX. This color is

set initially to SYSCLR_FIELDBACKGROUND.

Selection cursor
PP _HILITEBACKGROUNDCOLOR or PP _HILITEBACKGROUNDCOLORINDEX.

This color is set initially to SYSCLR_HILITEBACKGROUND.

Status line text
PP _FOREGROUNDCOLOR or PP _FOREGROUNDCOLORINDEX. This color is

initially set to SYSCLR_WINDOWTEXT.

If a presentation parameter attribute is set, all parts of the notebook that are

mapped to this color are changed. Figure 19-14 shows how to change the color of

the notebook outline.

u.· .. s. Chlo. rhen = 4• ':
., , ,, , :,; , '

·r .. $ef n~mber
1 .ofJ?Yt~~ t(Jb~· .pass~d ..• trt .. *,/

/* .usColorI~x.for color index table */
/* ~alue~ · · · */
J* .~et.<:olor ind~x table value to be */
/*, assignea. . */

. . .

lit**'fa********~*****:****~***~***,*.*******,****************.*.·'i*************~/.
/*·Set the notepo9k outltne. ~olqr~ · · ::. .*.:/

l*.**:C*t**~*********'k'fa"'***."'**.****************************'**-*****:*****:*"'* r'.· ·
w;mseter~se51r~m(. · ·

· •. ,n~ngNo~~boo~,
; ; • Pl?. BORD ILOR . . . ;;;;;.. . ···::. •· •.. ;'· ,
f~s~ql~~IL .ri ~

Figure 19-14. Sample Code for Changing the Color of the Notebook Outline

Changing Colors Using BKM SETNOTEBOOKCOLORS
The BKM_SETNOTEBOOKCOLORS message is used to change the color of the

major tab background and text, the minor tab background and text, and the notebook

page background. The following list shows the mapping between the various

notebook parts and their associated notebook attributes.

Major tab background
BKA_BACKGROUNDMAJORCOLORINDEX or

BKA_BACKGROUNDMAJORCOLOR. This color is set initially to

SYSCLR_PAGEBACKGROUND. The currently selected major tab will have the

same background color as the page background.

19-20 OS/2 Programming Guide-Volume II

Major tab text
BKA_FOREGROUNDMAJORCOLORINDEX or
BKA_FOREGROUNDMAJORCOLOR. This color is set initially to
SYSCLR_ WINDOWTEXT.

Minor tab background
BKA_BACKGROUNDMINORCOLORINDEX or
BKA_BACKGROUNDMINORCOLOR. This color is set initially to
SYSCLR_PAGEBACKGROUND. The currently selected minor tab will have the
same background color as the page background.

MI nor tab text
BKA_FOREGROUNDMINORCOLORINDEX or
BKA_FOREGROUNDMINORCOLOR. This color is set initially to
SYSCLR_WINDOWTEXT.

Notebook page background
BKA_BACKGROUNDPAGECOLORINDEX or BKA_BACKGROUNDPAGECOLOR.
This color is set initially to SYSCLR_PAGEBACKGROUND.

If a notebook attribute is set, all parts of the notebook that are mapped to this color
are changed. Figure 19-15 shows how to change the color of the major tab
background.

Figure 19-15. Sample Code for Changing the Color of the Major Tab Background

Enhancing Notebook Control Performance and Effectiveness
This section provides the following information to enable you to fine-tune a notebook
control:

• How to dynamically resize and scroll
• How to paint and position tabs

Dynamic Resizing and Scrolling
The notebook control supports dynamic resizing by recalculating the size of the
notebook's parts when either the user or the application changes the size of any of
those parts. A BKN_NEWPAGESIZE notification code is sent from the notebook to
the application whenever the notebook's size changes.

The notebook handles the sizing and positioning of each application page window if
the BKA_AUTOPAGESIZE attribute is specified for the inserted notebook page.
Otherwise, the application must handle this when it receives the
BKN_NEWPAGESIZE notification code from the notebook.

If the size of the notebook window is decreased so that the page window is not large
enough to display all the information the page contains, the information in the page

Chapter 19. Notebook Controls 19-21

window is clipped. If scroll bars are desired to enable the clipped information to be

scrolled into view, they must be provided by the application.

Tab scroll buttons are automatically displayed if the size of the notebook is

decreased so that all the major or minor tabs cannot be displayed. For example, a

notebook has major tabs on the right side, but the height of the notebook does not

allow all the tabs to be displayed. In this case, tab scroll buttons are displayed on

the upper- and lower-right corners of the notebook. See Figure 19-13 on

page 19-17 for an example of tab scroll buttons.

Tab Painting and Positioning
The tab pages provide a method for organizing the information in a notebook so that

the user easily can see and navigate to that information. As described in "Notebook

Control Styles" on page 19-5, when a page is inserted with a major or minor tab

attribute, the notebook displays a tab for that page, based on the orientation of the

notebook. The contents of the tab can be painted either by the notebook control or

the application.

If the notebook control is to paint the tabs, the application must associate a text

string or bit map with the page whose tab is to be drawn. This is done by sending

the BKM_SETTABTEXT or BKS_SETTABBITMAP messages to the notebook control

for the specified page. If neither of these messages is sent for an inserted page with

a major or minor tab attribute, the application must draw the contents of the tab,

through ownerdraw. The application receives a WM_DRAWITEM message

whenever a tab page that has no text or bit map associated with it is to be drawn.

The application can either draw the tab contents or return FALSE, in which case the

notebook control fills the tab with the tab background color.

Positioning Tabs in Relation to the Top Tab:

There are seven page edges that define the back pages. The page attribute

(BKA_MAJOR or BKS_MINOR) and the topmost page determine how the tabs are

positioned. In most cases, the tabs must be drawn when their position changes.

For example, this can happen when a page with a tab attribute is brought to the top

of the notebook.

The new top major or minor tab will appear attached to the top page. The other tabs

will appear as described in the following list. This information is provided to help

you understand the relationship between the top tab and the other tabs so that you

can organize the information you put into a notebook appropriately. The application

has no control over tab positioning. See Figure 19-10 on page 19-13 for an

example.

19-22 OS/2 Programming Guide-Volume II

Summary

• When the top page is a major tab page:

Any major tabs prior to the top major tab are aligned on the last page of the
notebook.

Any major tabs after the top major tab are incrementally cascaded from the
topmost edge to the last page.

If the top major tab has minor tabs, no major tab is drawn on the page edge
that immediately follows the top tab page. Instead, any major tabs that follow
the top tab are incrementally cascaded beginning on the second page edge
down from the top tab. This is done to account for the minor tabs that are
positioned between the top major tab and the major tab that follows it on the
perpendicular notebook edge.

The minor tabs are all positioned on the third page edge from the top, thus
giving the appearance of being between the top major tab and the next major
tab.

• When the top page is a minor tab page:

Any minor tabs prior to the top minor tab are positioned on the third page
edge from the top of the notebook.

Any minor tabs after the top minor tab are incrementally cascaded up to the
third page edge from the top.

Following are the OS/2 structures, notification codes, notification messages, and
window messages used with the notebook control:

Table 19-2. Notebook Control Structures

Structure Name Description

BOOKTEXT Contains text strings for notebook status lines and
tabs.

DELETENOTIFY Contains information about the page being deleted
from a notebook.

PAGESELECTNOTIFY Contains information about the page being
selected in a notebook.

Table 19-3. Notebook Control Notification Codes

Code Name Description

BKN_HELP Indicates that the notebook control has received a
WM_HELP message.

BKN_NEWPAGESIZE Indicates that the dimensions of the notebook page
window have changed.

BKN_PAGEDELETED Indicates that a page has been deleted from the
notebook.

BKN_PAGESELECTED Indicates that a new page has been brought to the
top of the notebook.

Chapter 19. Notebook Controls 19-23

Table 19-4. Notebook Control Notification Messages

Message Description

WM_CONTROL Occurs when a control has a significant event to

notify to its owner.

WM_ CONTROLPOINTER Sent to the notebook control's owner window when

the pointing device pointer moves over the
notebook control window, enabling the owner to

set the pointing device pointer.

WM_DRAWITEM Sent to the owner of the notebook control each

time and item is to be drawn.

Table 19-5 (Page 1 of 2). Notebook Control Window Messages

Message

BKM_CALCPAGERECT

BKM_DELETEPAGE

BKM_INSERTPAGE

BKM_INVALIDATETABS

BKM_QUERYPAGECOUNT

BKM_QUERYPAGEDATA

BKM_QUERYPAGEID

BKM_QUERYPAGESTYLE

BKM_QUERYPAGEWINDOWHWND

BKM_QUERYSTATUSLINETEXT

BKM_QUERYTABBITMAP

BKM_ QUERYTABTEXT

BKM_SETDIMENSIONS

BKM_SETNOTEBOOKCOLORS

BKM_SETPAGEDATA

BKM_SETPAGEWINDOWHWND

19-24 OS/2 Programming Guide-Volume II

Description

Calculates a window rectangle from a
notebook rectangle or a notebook
rectangle from a window rectangle,
depending on the setting of the fPage
parameter.

Deletes the specified page or pages from
the notebook data I ist.

Inserts the specified page into the
notebook data list.

Repaints all the tabs in the notebook.

Queries the number of pages.

Queries the 4 bytes of
application-reserved storage associated

with the specified page.

Queries the page identifier for the
specified page.

Queries the style that was set when the
specified page was inserted.

Queries the notebook page window
handle associated with the specified
page.

Queries the status line text, text size, or
both, for the specified page.

Queries the bit-map handle associated
with the specified page.

Queries the text, text size, or both, for the

specified page.

Sets the height and width for the major
tabs, minor tabs, or page buttons.

Sets the colors for the major tab text and

background, minor tab text and
background, and notebook page
background.

Sets the 4 bytes of application-reserved
storage associated with the specific page.

Associates a notebook page window
handle with the specified notebook page.

Table 19-5 (Page 2 of 2). Notebook Control Window Messages

Message Description

BKM_SETSTATUSLINETEXT Associates a text string with the status
line on the specified page.

BKM_SETTABBITMAP Associates a bit-map handle with the
specified page.

BKM_SETTABTEXT Associates a text string with the specified
page.

BKM_TURNTOPAGE Brings the specified page to the top of the
notebook.

WM_ CHAR Occurs when the user presses a key.

WM_PRESPARAMCHANGED Occurs when a presentation parameter is
set or removed dynamically from a
window instance.

WM_SIZE Occurs when the size of the notebook
window changes.

Chapter 19. Notebook Controls 19-25

19-26 OS/2 Programming Guide-Volume II

Chapter 20. Slider Controls

A slider control (WC_SLIDER window class) is a visual component that enables a
user to set, display, or modify a value by moving the slider arm along the slider
shaft. This chapter explains how you can use slider controls in your PM
applications.

About Slider Controls

© Copyright IBM Corp. 1992

Figure 20-1 is an example of a slider used to set a decibel value.

Detent----­

Tick Mmk---

Decibel Range

Slider Arm

Figure 20-1. Sample Slider

--- Slider Buttons

The slider arm shows the value currently set by its position on the slider shaft. The
user selects slider values by changing the location of the slider arm.

A tick mark indicates an incremental value in a slider scale. A detent, similar to a
tick mark, also represents a value on the scale; however, a detent can be placed
anywhere along the slider scale, instead of only in specific increments, and can be
selected.

Typically, sliders are used to easily set values that have familiar increments, such
as feet, inches, degrees, decibels, and so forth. They also can be used for other
purposes when immediate feedback is required, such as to blend colors or show a
task's percentage of completion. For example, an application might let a user mix
and match color shades by moving a slider arm, or a read-only slider could show
how much of a task is complete by filling in the slider shaft as the task progresses.
These are just a few examples of the many ways in which sliders can be used.

The appearance of and user interaction for a slider is similar to that of a scroll bar.
However, these two controls are not interchangeable because each has a unique
purpose. A scroll bar scrolls information into view that is outside a window's work
area, while the slider is used to set, display, or modify that information, whether it is
in or out of the work area.

The slider can be customized to meet varying application requirements, while
providing a user interface component that can be used easily to develop products
that conform to the Common User Access (CUA) user interface guidelines. The
application can specify different scales, sizes, and orientations for its sliders, but
the underlying function of the control remains the same. For a complete description
of CUA sliders, refer to the SAA CUA Guide to User Interface Design and the SAA
CUA Advanced Interface Design Reference.

20-1

Creating a Slider
Before the slider is created, a temporary SLDCDATA data structure is allocated, and

variables are specified for the slider control window handle and slider style. The

SLDCDATA data structure is allocated so that the scale increments and spacing of

the slider can be specified. Refer to the OS/2 Programming Reference for more

information about the SLDCDATA data structure.

The slider style variable enables the application to specify style bits, SLS_* values,

that are used to customize the slider. Refer to the OS/2 Programming Reference for

the definitions of these values.

You create a slider by using the WC_SLIDER window class name in the ClassName

parameter of the WinCreateWindow function call. The handle of the slider control

window is returned in the slider window variable.

After the slider is created, but before it is made visible, the application can set other

slider control characteristics, such as:

• Size and placement of tick marks
• Text above one or more tick marks
• One or more detents
• Initial slider arm position.

The settings in the preceding list are just a few that an application can specify and

are the ones shown in the following sample code for creating a slider. Slider control

messages are used to specify these settings. A detailed description of the

messages is available in the OS/2 2.0 Programming Reference.

Figure 20-1 on page 20-1 shows how the slider created by the sample code in

Figure 20-2 would appear, except for the Decibel Range text string. The code that

inserts this static text string is separate from the code used to create a slider

window and, therefore, is not included here. The main components of the slider are

labeled.

:: ; ;; ;, ·'' :,~·.: , ,, . .«:; ~

:·}~@~~.•. »~~D~~·;;: .:\" Ei: .rt:·
::;CH~R····<;' .:~z.:T.i;~~r~xt~5~;
; ·. U$rtQR~ •. jdx;.:: . :·.· .. · ·.·
i'• .. •·~Wn1·, :::.~}'(JJC1~11~e:t; .•.••...•..•....•. ·
i:':ij; . ,'; ,:;<: M!~:lH~.~~~~,:X~~L;

Figure 20-2 (Part 1 of 3). Sample Code for Creating a Slider

20-2 05/2 Programming Guide-Volume II

/**/ /* Set the SLS_* style flags to the default values, plus slider */
/* buttons . rig hf. *I
/********************:**:*:*************~*********************************/

· ulSHderStyle = ~LS_HORIZONTAL I ·)*Slider is horizontal */
SLS--C.ENTER I /* Slid~r shaft centered in */

· /*·sliderwfndow *I
/*. ~OQ1e•position i~ left edge. of */
/* .slider ·... *I

StS:PRIMARYSCALEl [/'fr . Seale is'. displayed above * /
/~ slider shaft. · *I

SLS""'BUlTONSRIGHT; /* Sl.ider b{Jtfons at right end of */
·/* slider *I

/***.*::**~************:*************·*:****:*********************************I /* Create .the slider ~()~trol. window. ·The handle o:f. the window is * /
l* r~tt1rm~d:Jn hwndS.lideJ'! .. · ·· ;u·· .··· */
/*****.***********1'**.******************************.********************* l
hwndSHder = WinCreateWihdow{

. f}wndClient,
we. :suDER,
(PSZJN~~t,
ulsliderstyle,
{SHORT)l0~
{SHORTJ10,
{SHORT)l5G,
{SHORT)8e,
hwn.dCli ent.,
HWND.;.JOP,
-ID_SLIDER~
&sldcData,
{PVOIO)NULL};

···/~ ParentmwindC>w handle
/*. Slip~r window ... cl.ass ··name
/*No ~indow.text
/*. · Slfder; styles ··variable
/* . x. co~rdi.n(lte
/* Y•.• C()Ordin~~e
/* Wintlow·width
/* Window height·
/*~Owner~indow·h~ndle
/* Sibling window handle
/* Sl i aer control w.i ndow ID
/* Control·da~a structt1re
/*.Ne:> presentation.parameters

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/*.*******:**:~~*************************************~********************/
/* Set tick.marks :at several places op the slider shaft using the */
/* primary scale.. . . .·· */
/**.H******.*'*.*************.*** I
Wtn~endMsg(hwndSlider, ~ /* Slicler window handle .. */

SLM_S£1"TICKSIZE; /* Message;for setting tick mark size*/
f.1 Pf~Of.12:SHORT{
·: SMA_))ETALLTICKS, ... rAttribute for setting alltlck

/*marks fo the s(lmesize
/~ [)raw ti¢k .ma rkS. 6 pixels Hmg
/'!' R~s~r:ved .• value

*/
*l
*/
*/

Figure 20-2 (Part 2 of 3). Sample Code for Creating a Slider

Chapter 20. Slider Controls 20-3

Figure 20-2 (Part 3 of 3). Sample Code for Creating a Slider

20-4 OS/2 Programming Guide-Volume II

Retrieving Data for Selected Slider Values
To retrieve data represented by a slider value, specify a variable for the current
position of the slider arm. Then, use the SLM_QUERYSLIDERINFO message to
retrieve information about the current slider arm position in increment coordinates.
The code fragment in Figure 20-3 shows how to retrieve data for a selected slider
value.

Figure 20-3. Retrieving a Slider Value

Graphical User Interface Support for Sliders
This section describes the support the slider control provides for graphical user
interfaces (GUls). Except where noted, this support conforms to the guidelines in
the SAA CUA Advanced Interface Design Reference.

Since slider values all are mutually exclusive, only one of them can be selected at a
time. Therefore, the only type of selection supported by the slider control is single
selection.

Note: If more than one slider window is open, selecting values in one slider
window has no effect on the values selected in any other slider window. A
black square is drawn in the center of the slider arm to show which slider
control window has the focus.

An initial value is selected when the slider control first is displayed. If the
application does not provide the initial selection, using the SLM_SETSLIDERINFO
message to position the slider arm, the value at the home position is selected
automatically. The home position is the end of the slider that contains the lowest
value on the scale.

The slider control supports the use of pointing devices and the keyboard for
selecting values.

Chapter 20. Slider Controls 20-5

Pointing Device Support
A user can select slider values with a pointing device. On a mouse, the SAA CUA
Guide to User Interface Design defines button 1 (the select button) as the button for
selecting values, and button 2 (the drag button) for dragging the slider arm to a
value. These definitions also apply to the same buttons on any other pointing
device, such as a joystick.

The select button and drag button can be used in conjunction with the following
slider components to select slider values:

• Slider arm

Moving the pointer over the slider arm, then pressing and holding the select or
drag buttons while moving the pointer, causes the slider arm to move in the
direction the pointer is moving. When the button is released, the value closest to
the slider arm position becomes the selected value.

• Slider shaft

Clicking the select button when the pointer is over the slider shaft causes the
slider arm to move one increment in the direction of the pointer. Increments are
determined by the initial values passed for the primary scale specified
(SLS_PRIMARYSCALE1 or SLS_PRIMARYSCALE2) when the slider is created.

Clicking the drag button when the pointer is over the slider shaft causes the
slider arm to move to the pointer's location.

• Slider buttons

Clicking the select button when the pointer is over a slider button causes the
slider arm to move one increment in the direction the arrow on the slider button
is pointing.

Slider buttons are optional. If used, two slider buttons are available to the user.
The arrows on top of the slider buttons point to opposite ends of the slider. Both
slider buttons are positioned at the same end of the slider.

Slider buttons are enabled by specifying the appropriate SLS_* value when the
slider control window is created. For horizontal sliders, you can specify either
SLS_BUTTONSLEFT or SLS_BUTTONSRIGHT. For vertical sliders, you can
specify either SLS_BUTTONSBOTTOM or SLS_BUTTONSTOP. The default is no
slider buttons. If more than one of these style bits is specified, no slider buttons
are enabled.

• Detents

Keyboard Support

A detent is similar to a tick mark on a slider scale because it represents a value
on the scale. However, unlike a tick mark, a detent can be placed anywhere
along the slider scale instead of in specific increments.

A detent can be selected by moving the pointer over it and pressing the select
button on the pointing device. When this happens, the slider arm moves to the
position on the slider shaft indicated by the detent.

A user can select a value by using the navigation keys to move the slider arm to the
value or by typing a value in an entry field, if one is provided by the application, to
change the slider arm position. The following list describes these methods of
selecting slider values.

• Values can be selected using the Up, Down, Left, and Right Arrow keys to move
the slider arm one increment at a time. The Up and Down Arrow keys are

20-6 OS/2 Programming Guide-Volume II

Summary

enabled for vertical sliders, and the Right and left Arrow keys are enabled for
horizontal sliders. If no tick mark exists on the scale in the requested direction,
the slider arm does not move.

If an Arrow key is pressed in conjunction with the Shift key, the slider arm moves
to the next detent instead of the next tick mark. If no detent exists on the scale in
the requested direction, the slider arm does not move.

• The Home and End keys can be used to select the lowest and highest values,
respectively, in the scale. If the Ctrl key is pressed in combination with the
Home or End keys, the result is the same as pressing only the Home or End
keys.

• The application can provide an optional entry field for the slider control. The
entry field is a separate controi, but it can work in conjunction with the slider
control.

If the application provides an entry field for the slider control window, it must be
implemented as follows:

The user must be allowed to type a value into the entry field.

If the typed value is within the range of the slider scale, the slider arm moves
to that value as soon as the value is typed.

No other action, such as pressing the Enter key, is required.

These selection techniques conform to the descriptions in the SAA CUA Guide to
User Interface Design.

Following are tables that describe the OS/2 functions, structure, notification codes,
notification messages, and window messages used with the slider control.

Table 20-1. Slider Control Functions

Function Name Description

WinCreateWindow Creates a window.

WlnSendMsg Sends a message with identity Msgid to hwnd.

WinShowWlndow Sets the visibility state of a window.

Table 20-2. Slider Control Structure

Structure Name Description

SLDCDATA Slider control data structure.

Table 20-3 (Page 1 of 2). Slider Control Notification Codes

Code Name Description

SLN_CHANGE Sent when the slider arm position has
changed.

SLN_KlLLFOCUS Sent when the slider control is losing the
focus.

SLN_SETFOCUS Sent when the slider control is receiving
the focus.

Chapter 20. Slider Controls 20-7

Table 20-3 (Page 2 of 2). Slider Control Notification Codes

Code Name Description

SLN_SLIDERTRACK Sent when the slider arm is being
dragged, but it has not been released.

Table 20-4. Slider Control Notification Messages

Message Description

WM_CONTROL Occurs when the slider control has a significant
event to notify to its owner.

WM_CONTROLPOINTER Sent to the owner window of the slider control
when the pointing device pointer moves over the
slider control window, enabling the owner window
to set the pointer.

WM_DRAWITEM Sent to the owner of the slider control each time an
item is to be drawn.

Table 20-5. Slider Control Window Messages

Message Description

SLM_ADDDETENT Places a detent along the slider shaft at the
position specified on the primary scale.

SLM_QUERYDETENTPOS Queries for the current position of a detent.

SLM_QUERYSCALETEXT Queries for the text associated with a tick mark for
the primary scale and copies that text into a buffer.

SLM_ QUERYSLIDERINFO Queries the current position or dimensions of a
key component of the slider.

SLM_QUERYTICKPOS Queries for the current position of a tick mark for
the primary scale.

SLM_QUERYTICKSIZE Queries for the size of a tick mark for the primary
scale.

SLM_REMOVEDETENT Removes a previously specified detent.

SLM_SETSCALETEXT Sets text above a tick mark for the primary scale.

SLM_SETSLIDERINFO Sets the current position or dimensions of a key
component of the slider.

SLM_SETTICKSIZE Sets the size of a tick mark for the primary scale.

WM_CHAR Occurs when the user presses a key.

WM_PRESPARAMCHANGED Sent when a presentation parameter is set or
removed dynamically from a window instance.

WM_QUERYWINDOWPARAMS Occurs when an application queries the window
parameters.

WM_SETWINDOWPARAMS Occurs when an application sets or changes the
window parameters.

20-8 OS/2 Programming Guide-Volume II

Chapter 21. Value Set Controls

A value set control (WC_VALUESET window class), like a radio button, is a visual

component that enables a user to select one choice from a group of mutually

exclusive choices. However, unlike radio buttons, a value set can use graphic

images (bit maps or icons), as well as colors, text, and numbers, to represent the

items a user can select. This chapter presents the basics about value set controls
and tells you how to create and use them in PM applications.

About Value Sets

© Copyright IBM Corp. 1992

Even though text is supported, the purpose of a a value set control is to display

choices as graphic images for faster selection. The user can see the selections

instead of having to take time to read descriptions of the choices. Using graphic

images in a value set also lets you conserve space on the display screen. For

example, if you want to let a user choose from a variety of patterns, you can present

those patterns as value set choices, as shown in Figure 21-1, instead of providing a

list of radio buttons with a description of each pattern.

Pattern

: i = :::::::::
1

.... 1 .. 1· .. 1··1· .. 1··1···1··1·~ = : : : : : : : : :
L. J- 1~~~~~~~1 •• ·-:-:-:·-

....

Figure 21-1. Sample Value Set

If long strings of data are to be displayed as choices, radio buttons should be used.

However, for small sets of numeric or textual information, you can use either a

value set or radio buttons.

The value set is customizable to meet varying application requirements, while

providing a user interface component that can be used easily to develop products

that conform to the Common User Access (CUA) user interface guidelines. The
application can specify different types of items, sizes, and orientations for its value

sets, but the underlying function of the control remains the same. For a complete

description of CUA value sets, refer to the SAA CUA Guide to User Interface Design

and the SAA CUA Advanced Interface Design Reference.

21-1

Creating and Using Value Set Controls
This section provides information that will enable you to create and use a value set
control effectively.

Creating a Value Set
You create a value set by using the WC_VALUESET window class name in the
ClassName parameter of the WinCreateWindow function call.

Before the value set is created, a temporary VSCDATA data structure is allocated so
that the number of rows and columns of the value set can be specified. Refer to the
OS/2 2.0 Programming Reference for more information about the VSCDAT A data
structure.

Also, VS_* values are specified in the u/ValueSetStyle variable so that the value set
can be customized. Refer to the OS/2 2.0 Programming Reference for descriptions
of the value set control styles that can be specified. The sample code in Figure 21-2
shows the creation of a value set.

Figure 21-2 (Part 1 of 2). Sample Code for Creating a Value Set

21-2 OS/2 Programming Guide-Volume II

Figure 21-2 (Part 2 of 2). Sample Code for Creating a Value Set

Chapter 21. Value Set Controls 21-3

Retrieving Data for Selected Value Set Items
The next step is to be able to retrieve the data represented by a value set item. To
do this, variables are specified for combined row and column index values, item
attributes, and item information. Then the VM_QUERYSELECTEDITEM,
VM_QUERYITEMATTR, and VM_QUERYITEM messages are used to retrieve the
index values, attributes, and data. Refer to the descriptions of these messages in
the OS/2 2.0 Programming Reference for more information. The sample code in
Figure 21-3 shows how data for selected value set items is retrieved.

Figure 21-3. Sample Code for Retrieving Data for Value Set Items

Arranging Value Set Items
The application defines the arrangement of value set items; they can be arranged in
one or more rows, columns, or both. Items are placed from left to right in rows and
from top to bottom in columns. The application can change the number of rows and
columns at any time.

21-4 05/2 Programming Guide-Volume II

The number of items that can be displayed depends on the number of items that fit
into the spaces provided by the defined rows and columns. If the number of items
exceeds the number of spaces, the excess items are not displayed.

You can change the composition of a value set by specifying new items. The new
items either can be added to the value set or can replace existing items.

Graphical User Interface Support
This section describes the support the value set control provides for graphical user
interfaces (GUls). Except where noted, this support conforms to the guidelines in
the SAA CUA Advanced Interface Design Reference.

The GUI support provided by the value set control consists of:

• Navigating to and selecting value set items
• Dynamic resizing.

Navigating to and Selecting Value Set Items
Since all value set items are mutually exclusive, only one of them can be selected at
a time. Therefore, the only type of selection supported by the value set control is
single selection. This selection type conforms to the guidelines in the SAA CUA
Advanced Interface Design Reference. Refer to that book for detailed information
about single selection.

Note: If more than one value set window is open, navigating to and selecting items
in one value set window has no affect on the items displayed in any other
value set window.

An initial choice is selected when the value set control is first displayed. If the
application does not provide the initial selection by using the VM_SELECTITEM
message, the choice in row 1, column 1 is selected automatically.

The value set control supports the use of a pointing device, such as a mouse, and
the keyboard for navigating to and selecting items, except for items that are dimmed
on the screen. This dimming of items is called unavailable-state emphasis and
indicates that the items cannot be selected. However, the selection cursor, a dotted
outline that usually indicates that an item can be selected, can be moved to
unavailable items so that a user can press F1 to determine why they cannot be
selected. The following sections describe the pointing device and keyboard support
for the value set control.

Pointing Device Support
A user can use a pointing device to select value set items. The SAA CUA Guide to
User Interface Design defines mouse button 1, the select button, to be used for
selecting items. This definition also applies to the same button on any other
pointing device.

An item can be selected by moving the pointer of the pointing device to the item and
clicking the select button. When this happens, a black box is drawn around the item
to show that it has been selected. The black box is called selected-state emphasis.
In addition, the selection cursor is drawn inside the black box.

Chapter 21. Value Set Controls 21-5

Keyboard Support
The value set control supports automatic selection, which means that an available

item is selected when the selection cursor is moved to that item. The item is given

selected-state emphasis as soon as the selection cursor is moved to it. No further

action, such as pressing the spacebar, is required. The same black box and dotted

outline are used, for selected-state emphasis and the selection cursor respectively,

as when an item is selected with a pointing device.

A user can navigate to and select an item by using either the navigation keys or

mnemonic selection to move the selection cursor to the item, as described in the

following list:

• Items can be selected using the Up, Down, Left, and Right Arrow keys to move

the selection cursor from one item to another.

• The Home and End keys can be used to select the leftmost and rightmost items,

respectively, in the current row. If the Ctrl key is pressed in combination with

the Home or End key, the item in the top row and the leftmost column, or the

item in the bottom row and the rightmost column, respectively, is selected.

Note: The preceding description assumes that the current style of the value set

window is left-to-right. However, if the VS_RIGHTTOLEFT style bit is set,

the directions described for the Home, End, Ctrl +Home, and Ctrl +End

keys in the preceding paragraph are reversed.

• The PgUp key can be used to select the item in the top row that is directly above

the current position of the selection cursor. The PgDn key can be used to select

the item in the bottom row that is directly below the current position of the

selection cursor. If the space in the top or bottom row directly above or below

the current cursor position is blank, the cursor moves to the blank space.

• Another keyboard method of selecting items is mnemonic selection. A user

performs mnemonic selection by pressing a character key that corresponds to an

underlined character. Coding a tilde (-) before a text character in the item

causes that character to be underlined and activates it as a mnemonic selection

character. When this happens, the selection cursor is moved to the item that

contains the underlined character, and that item is selected.

These selection techniques conform to the descriptions in the SAA CUA Guide to

User Interface Design. Refer to the SAA CUA Guide to User Interface Design for a

complete description of the keyboard interface model.

Dynamic Resizing
The value set control supports dynamic resizing if the application sends the

WM_SIZE message to a value set window. This means that the value set control

automatically recalculates the size of the items when either the user or the

application changes the size of the value set window.

If the value set window's size is decreased so that the window is not large enough to

display all of the items the value set contains, the items are clipped. If scroll bars

are desired to allow the clipped information to be scrolled into view, they must be

provided by the application.

21-6 OS/2 Programming Guide-Volume II

Summary
The following tables describe the OS/2 structures, functions, notification codes,
notification messages, and window messages used with value set controls.

Table 21-1. Value Set Control Structures

Structure Name Description

VSCDATA Contains information about the value set control.

VSDRAGINFO Contains information about direct manipulation
actions that occur over the value set control.

VSDRAGINIT Contains information that is used to initialize a
direct manipulation action over the value set
control.

VS TEXT Contains value set text. Used only with the
VM_QUERYITEM message.

Table 21-2. Value Set Control Functions

Function Name Description

WlnCreateWindow Creates a new window.

WinSendMsg Sends a message to a window.

WinShowWindow Sets the visibility state of a window

Table 21-3. Value Set Control Notification Codes

Code Name Description

VN_DRAGLEAVE Sent when the value set receives a
DM_DRAGLEAVE message.

VN_DRAGOVER Sent when the value set receives a
DM_DRAGOVER message.

VN_DROP Sent when the value set receives a
DM_DROPHELP message.

VN_DROPHELP Sent when the value set receives a
DM_DROPHELP message.

VN_ENTER Sent when the user presses the Enter key while
the value set window has the focus, or when the
user double-clicks the select button while the
pointer is over an item in the value set.

VN_HELP Sent when the value set receives a WM_HELP
message.

VN_INITDRAG Sent when the drag button is pressed and the
pointer is moved while over the value set control.

VN_KILLFOCUS Sent when the value set loses the focus.

VN_SELECT Sent when an item in the value set is selected and
given selected-state emphasis.

VN_SETFOCUS Sent when the value set receives the focus.

Chapter 21. Value Set Controls 21-7

Table 21-4. Value Set Control Notification Messages

Message Description

WM_CONTROL Occurs when the value set control has a significant
event to notify to its owner.

WM_ CONTROLPOINTER Sent to the owner window of the value set control
when the pointing device pointer moves over the
value set control window, enabling the pointer to
be set.

WM_DRAWITEM Sent to the owner of the value set control each
time an item is to be drawn.

Table 21-5. Value Set Control Window Messages

Message

VM_QUERYITEM

VM_QUERYITEMATTR

VM_QUERYMETRICS

VM_ QUERYSELECTEDITEM

VM_SELECTITEM

VM_SETITEM

VM_SETITEMATTR

VM_SETMETRICS

WM_CHAR

WM_PRESPARAMCHANGED

WM_QUERYWINDOWPARAMS

WM_SETWINDOWPARAMS

21-8 OS/2 Programming Guide-Volume II

Description

Queries the contents of the item indicated
by the row and column values.

Queries the attributes of the item
indicated by the row and column values.

Queries the current size of each value set
item or the spacing between items.

Queries for the currently selected value
set item indicated by the row and column
values.

Selects the value set item indicated by
the row and column values.

Specifies the type of information that will
be contained by a value set item.

Sets the attributes of the item indicated
by the row and column values.

Sets the size of each item in the value set
control, the spacing between items, or
both.

Occurs when the user presses a key.

Sent when a presentation parameter is
set or removed dynamically from a
window instance.

Occurs when an application queries the
window parameters.

Occurs when an application sets or
changes the window parameters.

Chapter 22. Keyboard Accelerators

A keyboard accelerator (shortcut key to the user) is a keystroke that generates a
command message for an application. This chapter describes how to use keyboard
accelerators in your PM applications.

About Keyboard Accelerators
Using a keyboard accelerator has the same effect as choosing a menu item. While
menus provide an easy way to learn an application's command set, accelerators
provide quick access to those commands.

Without accelerators, a user might generate commands by pressing the Alt key to
access the menu bar, using the Arrow keys to select an item, then pressing the
Enter key to choose the item. In contrast, accelerators allow the user to generate
commands with a single keystroke. Figure 22-1 shows examples of accelerators.

Shortcut teys

Figure 22-1. Accelerators

Like menu items, accelerators can generate WM_COMMAND, WM_HELP, and
WM_SYSCOMMAND messages. Although, normally, accelerators are used to
generate existing commands as menu items, they also can send commands that
have no menu-item equivalent.

Accelerator Tables

© Copyright IBM Corp. 1992

An accelerator table contains an array of accelerators. Accelerator tables exist at
two levels within the operating system: a single accelerator table for the system
queue and individual accelerator tables for application windows. Accelerators in
the system queue apply to all applications-for example, the F1 key always
generates a WM_HELP message. Having accelerators for individual application
windows ensures that an application can define its own accelerators without
interfering with other applications. An accelerator for an application window can
override the accelerator in the system queue. An application can modify both its
own accelerator table and the system's accelerator table.

22-1

The application can set and query the accelerator table for a specific window or for

the entire system. For example, an application can query the system accelerator

table, copy it, modify the copied data structures; and then, use the modified copy to

set the system accelerator table. An application also can modify its window's

accelerator table at run time to respond more appropriately to the current

environment.

Note: An application that modifies any accelerator table other than its own should

maintain the original accelerator table; and, before terminating, restore that table.

Accelerator-Table Resources
You can use accelerators in an application by creating an accelerator-table

resource in a resource-definition file. Then, when the application creates a
standard frame window, the application can associate that window with the

resource.

As specified in a resource-definition file, an accelerator table consists of a list of

accelerator items, each defining the keystroke that triggers the accelerator, the

command the accelerator generates, and the accelerator's style. The style specifies

whether the keystroke is a virtual key, a character, or a scan code, and whether the

generated message is WM_COMMAND, WM_SYSCOMMAND, or WM_HELP;

WM_COMMAND is the default.

Accelerator-Table Handles
Applications that use accelerator tables refer to them with a 32-bit handle. An

application using this handle, by default, can make most API function calls for

accelerators without having to account for the internal structures that def1ne the

accelerator table. When an application needs to dynamically create or change an

accelerator table, it must use the ACCEL and ACCEL TABLE data structures.

Accelerator-Table Data Structures
An accelerator table consists of individual accelerator items. Each item in the table

is represented by an ACCEL structure that defines the accelerator's style, keystroke,

and command identifier. Typically, an application defines these aspects of an

accelerator in a resource-definition file, but the ACCEL structure also can be built in

memory at run time.

An accelerator table is represented by an ACCEL TABLE structure that specifies the

number of accelerator items in the table, the code page used for the keystrokes in

the accelerator items, and an array of ACCEL structures (one for each item in the

table). Applications that use ACCELTABLE structures directly must allocate

sufficient memory to hold all the items in the table.

Accelerator-Item Styles
An accelerator item has a style that determines what combination of keys produces

the accelerator and what command message is generated by the accelerator. An

application can specify the following accelerator-item styles in the fs field of the

ACCEL structure:

22-2 OS/2 Programming Guide-Volume II

Table 22-1. Accelerator-Item Styles

Style Description

AF_ALT Specifies that the user must hold down the Alt key while
pressing the accelerator key.

AF_CHAR Specifies that the keystroke is a character that is translated
using the code page for the accelerator table. (This is the
default style.)

AF_CONTROL Specifies that the user must hold down the Ctrl key while
pressing the accelerator key.

AF_HELP Specifies that the accelerator generates a WM_HELP message
instead of a WM_ COMMAND message.

AF_LONEKEY Specifies that the user need not press another key while the
accelerator key is down. Typically, this style is used with the Alt
key to specify that simply pressing and releasing that key
triggers the accelerator.

AF _SCANCODE Specifies that the keystroke is an untranslated scan code from
the keyboard.

AF_SHIFT Specifies that the user must hold down the Shift key when
pressing the accelerator key.

AF _SYSCOMMAND Specifies that the accelerator generates a WM_SYSCOMMAND
message instead of a WM_ COMMAND message.

VIRTUAL KEY Specifies that the keystroke is a virtual key-for example, the F1
function key.

Using Keyboard Accelerators
This section explains how to perform the following tasks:

• Create an accelerator-table resource.
• Include an accelerator table in a frame window.
• Modify an accelerator table.

Creating an Accelerator-Table Resource
The following code fragment shows a typical accelerator-table resource:

This accelerator table has four accelerator items. The first one is triggered when the
user presses Shift+Esc, which sends a WM_ COMMAND message (the default).

An accelerator table in a resource-definition file has an identifier
(ID_ACCEL_RESOURCE in the previous example). You can associate an
accelerator-table resource with a standard frame window by specifying the table's
resource identifier as the idResources parameter of the WinCreateStdWindow
function.

Chapter 22. Keyboard Accelerators 22-3

An application can load an accelerator table resource-definition file automatically

when creating a standard frame window, or it can load the resource independently

and associate it with a window or with the entire system.

Including an Accelerator Table in a Frame Window
You can add an accelerator table to a frame window either by using the

WinSetAccelTable function or by defining an accelerator-table resource (as shown

in the previous section) and creating a frame window with the FCF_ACCELTABLE

frame style. The second method is shown in the following code fragment:

Notice that if you set the f/Contro/Style parameter to the FCF _STANDARD flag, you

must define an accelerator-table resource, because FCF _STANDARD includes the

FCF _ACCEL TABLE flag.

If the window being created also has a menu, the menu resource and accelerator

resource must have the same resource identifier; this is because the
WinCreateStdWindow function has only one input parameter to specify the resource

identifiers for menus, accelerator tables, and icons. If an application creates an

accelerator table resource-definition file; then, opens a standard frame window (as

shown in the preceding example), the accelerator table is installed automatically in

the window's message queue, and keyboard events are translated during the

normal processing of events. The application simply responds to WM_COMMAND,

WM_SYSCOMMAND, and WM_HELP messages; it does not matter whether these

messages come from a menu or an accelerator.

An application also can add an accelerator table to a window by calling the

WinSetAccelTable function with an accelerator-table handle and a frame-window

handle. The application can call either the WinloadAccelTable function to retrieve

an accelerator table from a resource file or the WinCreateAccelTable function to

create an accelerator table from an accelerator-table data structure in memory.

Modifying an Accelerator Table
You can modify an accelerator table, for either your application windows or the

system, by doing the following:

1. Retrieve the handle of the accelerator table.

2. Use that handle to copy the accelerator-table data to an application-supplied

buffer.

22-4 OS/2 Programming Guide-Volume II

3. Change the data in the buffer.

4. Use the changed data to create a new accelerator table.

Then you can use the new accelerator-table handle to set the accelerator table, as
outlined in the following list:

1. Call WinQueryAccelTable to retrieve an accelerator-table handle.

2. Call WinCopyAccelTable with a NULL buffer handle to determine how many
bytes are in the table.

3. Allocate sufficient memory for the accelerator-table data.

4. Call WinCopyAccelTable, with a pointer to the allocated memory.

5. Modify the data in the buffer (assuming it has the form of an ACCEL TABLE
structure).

6. Call WinCreateAccelTable, passing a pointer to the buffer with the modified
accelerator-table data.

7. Call WinSetAccelTable with the handle returned by WinCreateAccelTable.

Chapter 22. Keyboard Accelerators 22-5

Summary
Following are the OS/2 functions, structures, and messages used with accelerator
tables:

Table 22-2. Accelerator-Table Functions

Function name Description

WinCopyAccelTable Used to get the accelerator table corresponding to
an accelerator-table handle, or to determine the
size of the accelerator-table data.

WlnCreateAccelTable Creates an accelerator table from the accelerator
definitions in memory.

WlnDestroyAccelTable Destroys an accelerator table.

WlnloadAccelTable Loads an accelerator table.

WinQueryAccelTable ,Queries the window or queue accelerator table.

WinSetAccelTable Sets the window-accelerator or queue-accelerator
table.

WinTranslateAccel Translates a WM_CHAR message.

Table 22-3. Accelerator-Table Structures

Structure name Description

ACCEL Accelerator structure.

ACCELTABLE Accelerator-table structure.

Table 22-4. Accelerator-Table Messages

Message Description

WM_QUERYACCELTABLE Returns the handle to a window's accelerator
table.

WM_SETACCEL TABLE Establishes the window accelerator table to be
used for translation when the window is active.

WM_ TRANSLATEACCEL Sent to the focus window when a WM_ CHAR
message occurs.

22-6 OS/2 Programming Guide-Volume II

Chapter 23. Dialog Windows

Dialog windows (also called dialog boxes) provide a high-level method for
applications to display and gather information. This chapter describes the creation
and use of dialog windows and message boxes in your PM applications.

Note: Dialog windows, dialog boxes, and message boxes all are secondary
windows to the user.

About Dialog Windows
A dialog window is a temporary window that contains one or more control windows
and, typically, is used to display messages to and gather input from the user. An
application usually destroys a dialog window immediately after using it.

OS/2 contains many functions and messages that help manage the control windows
that make up a dialog window, thus easing the burden of maintaining complex input
and output systems.

Modal and Modeless Dialog Windows

Dialog Items

© Copyright IBM Corp. 1992

Dialog windows can be modal or modeless. A modal dialog window requires that
the dialog window be dismissed before the user can activate other windows in the
same application. Generally, an application uses a modal dialog window to get
essential information from the user before proceeding with an operation. A
modeless dialog window allows the user to activate other windows in the same
application without dismissing the dialog window. Both modal and modeless dialog
windows allow the user to activate windows in another application before
responding to the dialog window.

Modal dialog windows are easier for an application to manage because they are
created, perform their task, and are closed, all with a single function call.

Modeless dialog windows require more attention from the application because they
exist until explicitly dismissed. Modeless dialog windows provide a more flexible
interface, however, by allowing the user to move to other windows in the application
before responding to the dialog window.

A dialog item is a child window of the dialog window, which usually is a window of
class WC_FRAME. The operating system provides many predefined window
classes, called control windows, that you can use as dialog items. Figure 23-1 on
page 23-2 is an example.

23-1

Dialog window

Controls ----------'

Figure 23-1. Dialog Window with Control Windows

Predefined control windows include static display boxes, text-entry fields, buttons,
and list boxes. You also can use customized window classes as dialog items.

Dialog items are windows and, thus, can be manipulated by all
window-management functions relating to size, position, and visibility. Dialog items
always are owned by the dialog frame window. Most predefined control-window
classes send notification messages to their owners when the user interacts with
their control windows. The dialog frame window receives these notification
messages and passes them to the application through the application-defined dialog
procedure.

Dialog-Item Groups
Items within a dialog window can be organized into dialog-item groups. When items
are arranged in a group, the user can move from one item to another in the same
group by using the direction keys. When the user presses a direction key, the focus
will not shift to items in other groups within the dialog window.

Arranging items in groups is useful for radio buttons and check boxes. Although
some control types also can be displayed this way, entry-field controls cannot; they
process direction keys themselves, as do MLE, value-set, container, slider, and
notebook controls.

The first item in a dialog-item group has the WS_GROUP window style. All
subsequent items in the dialog template are considered part of that group until
another item is given the WS_GROUP style, which begins a new group.

The WS_TABSTOP style often is used along with the WS_GROUP style.
WS_TABSTOP marks the items that can receive the focus when the user presses the
Tab key. Each time the user presses the Tab key, the focus moves to the next item
that has the WS_TABSTOP style. Generally, the WS_GROUP and WS_TABSTOP
styles are defined together for the first item of each group in the dialog template.
This makes it possible for a user to press the Tab key to move among groups of
items and to use the direction keys to move among items in a group.

The WS_TABSTOP style should not be used for radio buttons because the system
automatically maintains a tab stop on any selected item in a radio-button group;
therefore, when the Tab key is pressed in a group of radio buttons, the focus
remains on the currently selected item.

23-2 OS/2 Programming Guide-Volume II

Message Boxes

The WS_GROUP and WS_TABSTOP styles are also useful for preventing the user
from moving to a particular button when using the keyboard. For example, if the
dialog window has OK and Cancel push buttons, they should be in the same group,
with the OK push button as the first item in the group. The user can press Tab to
select the OK push button but not the Cancel push button. To move to the Cancel
button using the keyboard, the user first must press the Tab key to move to the OK
push button, and then press a direction key to move the focus to the Cancel push
button.

Message boxes are dialog windows predefined by the system and used as a simple
interface for applications, without the necessity of creating dialog-template
resources or dialog procedures. An application can call the WinMessageBox
function and specify the type of message box and message text. The system
displays the message and waits for the user to dismiss the message box by
selecting a button in the message box. The system then returns a result code to the
application, indicating which button the user selected.

Message boxes are best for short notification messages that require a simple
acknowledgment or choice by the user. Applications do not specify a dialog
procedure for message boxes so they cannot readily change the action of a
message box. However, there is no need to do so, since there are many predefined
message-box styles. Figure 23-2 shows a sample message box.

Icon

Tit.IA

Message box

Figure 23-2. Example of a Message Box

Message boxes are always modal-either application-modal or system-modal.
Application-modal (the default style) means that the user cannot activate another
window in the current application before responding to the message box but can
switch to another application before responding. System-modal means that the user
cannot activate another window in any application before responding to the
message box. A system-modal message box should be used only to display urgent
error messages (running out of memory, for example).

Chapter 23. Dialog Windows 23-3

Dialog Data Structures
Each item in a dialog window is described by a DLGTITEM data structure. This
structure is rarely accessed directly by an application, since system functions
handle most of the manipulation of dialog items. Applications that create dialog
items that are not defined as part of a dialog-template resource must create
dialog-window-item structures in memory.

A dialog window can have many items, so applications can use another structure,
DLGTEMPLATE, to define the items. This structure consists of header information,
followed by an array of dialog-window items. Applications that create dialog
windows without using dialog resources must create a dialog template in memory,
and, then, call the WinCreateDlg function.

Dialog Resources
Most applications define dialog templates in resource files rather than constructing
template data structures in memory at run time. The dialog resource file defines the
size and style of the dialog-window frame and specifies each dialog item.

The dimensions and position of each dialog item are specified in dialog coordinates,
which are based on the size of the system font. A horizontal unit is one-fourth the
average width of the characters in the system font; a vertical unit is one-eighth the
average height of the characters in the system font. The origin of the dialog
template is the lower-left corner of the dialog window. The operating system
provides the WinMapDlgPoints function for converting dialog coordinates into
window coordinates.

Using Message Boxes and Dialog Windows
The simplest dialog window is the message box. Most message boxes present
simple messages and offer the user one, two, or three responses (represented by
buttons). A message box is easy to use and is appropriate when an application
requires a clearly defined response to a static message. However, message boxes
lack flexibility in size and placement on the screen and are limited in the choices
they offer the user. Applications that require more control over size, position, and
content should use regular dialog windows instead of message boxes.

Creating a Message Box
There are three parts to a message box: the icon, the message, and buttons.
Applications specify the icons and buttons by using message-box style constants.
Message text is specified by a null-terminated string.

To create a message box, the application calls the WinMessageBox function, which
displays the message box and processes user input until the user selects a button in
the message box. The WinMessageBox return value indicates which button the user
selected.

The following code fragment illustrates how to create a message box with a default
Yes button, a No button, and a question-mark (?) icon. This example assumes that
you have defined a string resource with the MY_MESSAGESTR_ID identifier in the
resource file.

23-4 OS/2 Programming Guide-Volume II

The WinMessageBox function returns predefined values indicating which button has
been selected. These values are listed in the Presentation Manager Programming
Reference.

Notice that strings for message boxes should be defined as string resources to
facilitate program translation for other countries. However, there is danger in using
string resources in message boxes that are called in low-memory situations; loading
a string resource in such situations could result in severe memory problems and
cause an application to fail. One way to prevent this problem is to preload the string
resource and make it nondiscardable so it will be available when the message box
must be displayed.

Creating a System-Modal Message Box
There are two levels of modality for system-modal message boxes-soft modal and
hard modal. A soft-modal message box does not allow keystrokes or mouse input to
reach any other window but does allow other messages, such as deactivation and
timer messages, to reach other windows. A hard-modal message box does not
allow any messages to reach other windows. A hard-model message box is
appropriate for serious system warnings.

To create a hard-modal message box, combine the MB_ICONHAND style with the
MB_SYSTEMMODAL style. To create a soft-modal message box, use the
MB_SYSTEMMODAL style with any style other than MB_ICONHAND. The
MB_SYSTEMMODAL icon always is in memory and is available even in low-memory
situations.

Using a Dialog Window
When using a dialog window, an application must load the dialog window, process
user input, and destroy the dialog window when the user finishes the task. The
process for handling a dialog window varies, depending on whether the dialog
window is modal or modeless.

Chapter 23. Dialog Windows 23-5

Creating a Dialog Template
The following source-code fragment creates a dialog template. Notice that the

WS_GROUP and WS_TABSTOP style designations are given for the first item in each

group.

Creating a Modal Dialog Window
The easiest way to use a modal dialog window is to define a dialog template in the

resource file (as in the preceding section), and then, call the WinDlgBox function,

specifying the dialog-window resource identifier and a pointer to the dialog

procedure. WinDlgBox loads the dialog-window resource, displays the dialog

window, and handles all user input until the user dismisses the dialog window. The

dialog procedure receives messages when the dialog window is created

(WM_INITDLG) and other messages each time the user interacts with a dialog item

(enters text in entry ffelds or selects a button, for example).

You must specify both the parent and owner windows when loading a dialog window

using the WinDlgBox function. Generally, the parent window will be

HWND_DESKTOP and the owner will be a client window in your application.

Dialog windows typically contain buttons that send WM_COMMAND messages when

selected by the user. WM_COMMAND messages passed to the WinDefDlgProc

function result in the WinDismissDlg function's being called, with the window

identifier of the source button as the return code (from WinDismissDlg). Dialog

windows with either OK or Cancel as their only button can ignore WM_ COMMAND

messages, allowing them to be passed to WinDefDlgProc. WinDefDlgProc calls

23-6 05/2 Programming Guide-Volume II

WinDismissDlg to dismiss the dialog window and returns the DID_OK or
DID_CANCEL code.

Passing WM_COMMAND messages to WinDefDlgProc means that all button presses
in the dialog window dismiss the dialog window. If you want certain buttons to
initiate operations without closing the dialog window, or if you want to perform some
processing without closing the dialog window, handle the WM_ COMMAND
messages in the dialog procedure.

If you handle WM_COMMAND messages in the dialog procedure, you must call
WinDismissDlg to dismiss the dialog window. Your dialog procedure passes the
DID_ OK code to WinDismissDlg if the user selects the OK button or the DID_ CANCEL
code if the user selects the Cancel button.

When you call WinDismissDlg or pass the WM_COMMAND message to
WinDefDlgProc, the dialog window is dismissed, and the WinDlgBox function returns
the value passed to WinDismissDlg. This return value identifies the button selected.

An alternative to using WinDlgBox is to call the individual functions that duplicate its
functionality, as shown in the following code fragment:

· .. ·:s~N~· ::ll~~d~l9·;
··tttONG QlResul.t.;j

After calling the WinProcessDlg function, your dialog procedure must call
WinDismissDlg to dismiss the dialog window. Although the dialog window is
dismissed (hidden), it still exists. You must call the WinDestroyWindow function to
destroy a dialog window if it was loaded using the WinloadDlg function. WinDlgBox
automatically destroys a dialog window before returning.

If you want to manipulate individual items in a dialog window, or add a menu after
loading the dialog window (but before calling WinProcessDlg), it is better to make
individual calls rather than call WinDlgBox. Individual calls also are useful for
querying individual dialog items-to determine the contents of an entry-field control
after a dialog window is closed but before it is destroyed, for example. Destroying a
dialog window also destroys any dialog-item control windows that are child
windows of the dialog window.

Creating a Modeless Dialog Window
To use a modeless dialog window in an application, create a dialog template in the
resource file, just as for a modal dialog window. Modeless dialog windows share
the screen equally with other frame windows. It is a good idea to give modeless
dialog windows a title bar so they can be moved around the screen. The following
Resource Compiler source-code fragment shows a dialog template for a dialog
window with a title bar, system menu, and minimize button.

Chapter 23. Dialog Windows 23-7

The application loads the dialog resource from the resource file using the
WinloadDlg function, receiving in return a window handle to the dialog window.
The application treats the dialog window as if it were an ordinary window.
Messages for the dialog window are dispatched through the event loop the
application uses for its other windows. , In fact, an application can have a modeless •

dialog window as its only window. • Mow?

The resource for a modeless dialog window is like the resource used for a modal
dialog window. The difference between modal and modeless dialog windows is the
way applications handle input to each. For a modal dialog, the WinDlgBox and
WinProcessDlg functions handle all user input to the dialog window, preventing
access to other windows in the application. For a modeless dialog window, the
application does not call these functions, relying instead on a normal message loop
to dispatch messages to the dialog procedure.

The primary difference between a modeless dialog window and a standard frame
window with child control windows is that, for a modeless dialog window, an
application can define child windows for the dialog window in a dialog template,
automating the process of creating the window and its child windows. The same
effect can be achieved by creating a standard frame window, but then, the child
control windows must be created individually.

It is important that an application keep track of all open modeless dialog windows so
that it can destroy all open windows before terminating.

Initializing a Dialog Window
Generally, an application defines a dialog template in its resource file and loads the
dialog window by calling the WinloadDlg function or the WinDlgBox function (which
calts WinloadDlg). The dialog window is created as an invisible window unless the
window style WS_ VISIBLE is specified in the dialog template. A WM_INITDLG
message is sent to the dialog procedure before WinloadDlg returns. As each
control defined in the template is created, the dialog procedure might receive
various control notifications before the function returns. WinloadDlg returns a
handle to the dialog window immediately after creating a dialog window.

In general, it is a good idea to define a dialog window as invisible, since this allows
for optimization. For example, an experienced user might type ahead rapidly,
anticipating the processing of a dialog-window command. In such a case, there is
no need to display the dialog window, because the user has finished the interaction
before the window can be displayed. This is how the WinProcessDlg function
works-it does not display a dialog window while there still are WM_CHAR
messages in the input queue; it lets these messages to be processed first.

23-8 OS/2 Programming Guide-Volume II

As control windows in a dialog window are created from the template, strings in the
template are processed by the WinSubstituteStrings function. Any
WM_SUBSTITUTESTRING messages are sent to the dialog procedure before
WinloadDlg returns.

When child windows of a dialog window are created, WinSubstituteStrings is used
so child windows can make substitutions in their window text. If any child-window
text string contains the percent sign(%) substitution character, the length of the text
string is limited to 256 characters after it is returned from the substitution.

Adding a Menu in a Dialog Window
To create a menu bar and menus in a dialog window, an application first must load
the dialog window to get a handle to the dialog-frame window. The dialog-frame
window can be associated with a menu resource by calling the WinloadMenu
function. This function requires arguments that specify the menu identifier and the
handle of the parent window for the menu. Finally, the dialog-frame window must
incorporate the menu by sending a WM_UPDATEFRAME message to the dialog
window. The following code fragment illustrates these operations:

Applications can create menus in both modal and modeless dialog windows. The
preceding code fragment can be used for either type of dialog window. For a modal
dialog window, your application must call the WinProcessDlg function to handle user
input until the dialog window is dismissed. For a modeless dialog window, your
application must call the WinShowWindow function to display the dialog window,
enabling the message loop to direct messages to the dialog window.

Creating a Dialog Procedure
The main difference between a dialog procedure and a window procedure is that a
dialog procedure does not receive WM_CREATE messages. Instead, a dialog
procedure receives WM_INITDLG messages, which are sent after a dialog window is
created but before it is displayed. WM_INITDLG can do the same type of
initialization tasks that WM_CREATE handles.

For example, if a dialog window contains a list box, use WM_INITDLG to fill the list
box with items. Also use this procedure to enable or disable buttons in a dialog
window, depending on your application.

You also can call the WinSetDlgltemText or WinSetDlgltemShort functions during
dialog initialization, to set up text items that reflect the current conditions in your
application.

Chapter 23. Dialog Windows 23-9

Another typical task for the WM_INITDLG message handler is centering a dialog

window on the screen or within its owner window. The following code fragment

illustrates how to center a dialog window on the screen using WM_INITDLG:

The dialog procedure receives notification messages from each control-window

item in a dialog window whenever a user clicks an item or enters text in an entry

field. Most dialog procedureswait for the user to select one or more dialog-window

buttons to signal being finished with the dialog window. When the dialog procedure

receives one of these messages, it calls the WinDismissDlg function, as shown in

the following code fragment. The second argument to WinDismissDlg is the value

returned by the WinDlgBox or WinProcessDlg functions. Generally, these functions

return the identifier of the button that was pressed.

23-10 OS/2 Programming Guide-Volume II

Other dialog-window items send notification messages specific to the type of control
window. Make your dialog procedure respond to notification messages from each
dialog item. Pass any messages that a dialog procedure does not handle to the
WinDefDlgProc function for default processing. The default dialog procedure is the
same as the default frame-window procedure.

The WM_ COMMAND message from the OK button indicates that the user has
selected the OK button and is finished with the dialog window. If the dialog window
has other controls, such as entry fields or check boxes, have your dialog procedure
query the contents or state of each control upon receipt of a message from the OK
button. Before dismissing a dialog window, have your dialog procedure collect
input from each dialog-window control before closing the dialog window.

Manipulating Dialog Items
Dialog items are control windows and, as such, can be manipulated using standard
window-management function calls. The window handle is obtained for each dialog
item by calling the WinWindowFromlD function and passing the window handle for
the dialog window and the window identifier for the dialog item as defined in the
dialog template. Include the following Resource Compiler source-code fragment in
your dialog template:

Chapter 23. Dialog Windows 23-11

Summary

Based on this code fragment, your application will receive the button-item handle by

initiating the following call to WinWindowFromlD:

Applications often change the contents, enabled state, or position of dialog items at

run time. For example, in a dialog window that contains a list box of file names and

an Open button, the Open button should be disabled until the user selects a file from

the list. To do this, define the button as disabled in the dialog resource so that it is

disabled when the dialog window first is displayed. At run time, the dialog

procedure receives a notification message from the list box when the user selects a

file. At that time, the dialog procedure should call the WinEnableWindow function to

enable the Open button.

Applications also can change the text in static dialog items and buttons by calling

the WinSetWindowText function and using the window handle of a particular dialog

item.

Following are the OS/2 functions, structures, and messages used with dialog

windows.

Table 23-1 (Page 1 of 2). Dialog Functions

Function name Description

WlnAlarm Generates an audible alarm.

WlnCreateDlg Creates a dialog window.

WlnDefDlgProc Invokes the default dialog procedure.

WlnDestroyWlndow Destroys a window and its child windows.

WlnDlsmlssDlg Hides the modeless dialog window, or destroys the
modal dialog window, and causes the
WinProcessDlg or WinDlgBox calls to return.

WlnDlgBox Loads and processes a modal dialog window and
returns the result value established by the
WinDismissDlg call.

WinEnumDlgltem Returns the window handle of a dialog item within
a dialog window.

WlnGetDlgMsg Obtains a message from the application's queue
associated with the specified dialog.

WlnloadDlg Creates a dialog window from the dialog template
Dlgid in Resource.

WinMapDlgPoints Maps points from dialog coordinates to window
coordinates or from window coordinates to dialog
coordinates.

WinMessageBox Creates, displays, and operates a message box
window.

Win Process Dig Dispatches messages while a modal dialog
window is displayed.

23-12 OS/2 Programming Guide-Volume II

Table 23-1 (Page 2 of 2). Dialog Functions

Function name

WlnQueryDlgltemShort

WinQueryDlgltemText

WinQueryDlgltemTextLength

WinSendDlgltemMsg

WinSetDlgltemShort

WlnSetDlgltemText

WinSubstituteStrings

Table 23-2. Dialog Structures

Structure name

DLGTEMPLATE

DLGITEM

Table 23-3. Dialog Messages

Message

WM_CHAR

WM_INITDLG

WM_QUERYDLGCODE

WM_SUBSTITUTESTRING

Description

Converts the text of a dialog item into an integer
value.

Queries a text string in a dialog item.

Queries the length of the text string in a dialog
item.

Sends a message to the dialog item defined by
item in the dialog window specified by Dig.

Converts an integer value into the text of a dialog
item.

Sets a text string in a dialog item.

Performs a substitution process on a text string,
replacing specific marker characters with text
supplied by the application.

Description

Dialog-template structure.

Dialog-item structure.

Description

Sent when a user presses a key.

Occurs when a dialog box is being created

Sent by the dialog manager to identify the type of
control, to determine what kinds of messages the
control understands, and to determine whether an
input message may be processed by the dialog
manager or passed down to the control.

Sent from the WinSubstituteStrings call.

Chapter 23. Dialog Windows 23-13

23-14 OS/2 Programming Guide-Volume II

Chapter 24. Font Dialog Controls

Font dialog controls provide basic functions that give users the ability to display and
select from a list of:

• Font family names installed on the system
• Available styles for each font
• Available sizes for each font
• Emphasis styles available for each font.

Users can view their selections, using a sample character string in a preview area,
and interact with a modal or modeless font dialog. This chapter explains how font
dialog controls can be extended to meet the requirements of PM applications.

About the Font Dialog Control
In the font dialog control, family face is defined as the name of the typeface.
Figure 24-1 is an example of a font dialog.

Figure 24-1. Font Dialog

Courier, Times New Roman, and Helvetica are examples of commonly used family
faces. Type styles include normal, bold, italic, and bold italic. Size is the point size,
or vertical measurement, of the type. Font emphasis styles include outline,
underline, and strikeout.

Creating a Font Dialog
To present a font dialog to users, your application must do the following:

1. Allocate storage for a FONTDLG structure and set all fields to NULL.

2. Initialize the fields in the FONTDLG structure.

The application must:

a. Set the cbSlze field to the size of the structure.

b. Set either the hpsScreen or the hpsPrlnter presentation space field, or both.
You must have a valid presentation space from which to query fonts.

© Copyright IBM Corp. 1992 24-1

c. Pass the pointer to a buffer in which to return the family name selected
(pszFamllyname) and the size of the buffer (usFamllyBufLen). If the
application requires a default font, pass the family name of the font in this
buffer.

The application can choose to set the following:

a. An application-specific title. Pass the pointer to a null-terminated string in
the pszTltle field.

b. An application-specific preview string. Pass the pointer to a null-terminated
string in the pszPrevlew field.

c. Application-specific available font sizes for outline fonts. Pass the pointer to
a null-terminated string containing point sizes, separated by spaces in the
pszPtSizeLlst field.

d. A custom dialog procedure to provide application-specific function. Pass the
pointer to a window procedure in the pfnDlgProc field.

e. Set the appropriate FNTS_* flags in the fl field to customize the dialog style.
See the description of this field for the FONTDLG structure in the OS/2 2.0
Programming Reference for a list of the flags you can specify.

f. Set the FNTF _NOVIEWPRINTERFONTS or FNTF _NOVIEWSCREENFONTS flags
to customize the dialog style when working with printer fonts in the flFlags
field. These filter flags should be initialized only when both the hpsScreen
and the hpsPrlnter presentation space fields are non-NULL.

g. Pass the initial position of the dialog in the x and y fields.

3. Initialize the FONTDLG structure with any values that users should see when
they invoke the dialog for the first time. For example, you can:

a. Pass the characteristics of the default font in the usWeight, usWldth, flType,
and sNomlnalPolntSlze fields.

b. Pass any display options of the default font in the flStyle field.

c. Pass the color options for displaying the font sample in the clrFore and
clrBack fields.

4. Invoke the font dialog. Call the WinFontDlg function and pass the dialog's parent
window handle, owner window handle, and a pointer to the initialized FONTDLG
structure.

5. Check the return value from the WinFontDlg function. If it is successful, the
selected font can be used by the application. The information returned in the
fAttrs field of the FONTDLG structure is used.

Graphical User Interface Support for the Font Dialog
Name Field: The Name field is a drop-down list that displays a font family name.
When the font dialog is invoked, the value displayed in this field is either an
application-supplied family name or the default system font.

When users select a family name from the drop-down list, the Name field display is
refreshed with the selected family name. The preview area is updated to show the
sample character string in the selected family face, using the font style, size, and
emphasis currently in effect.

24-2 OS/2 Programming Guide-Volume II

Style Field: The Style field is a drop-down list that displays a font style. When the

font dialog is invoked, the value displayed in this field is either an

application-specified font style or the system default.

When users select a font style from the drop-down list, the Style field display is

refreshed with the selected style name. The preview area is updated to show the

sample character string in the selected font style, using the family name, size, and

emphasis currently in effect.

Size Field: The Size field is a drop-down combination box that displays available

font sizes. Users can display and select from a list of available sizes for a font, or

they can type a font size directly into the entry field.

When users select a font size from the drop-down list, the Size field display is

refreshed with the selected size. The preview area is updated to show the character

string in the selected font size, using the family name, font style, and emphasis

currently in effect.

The font sizes included in the drop-down list are dependent on the character

definition of the font. For image or raster fonts, all available sizes are listed. For

outline fonts, the default sizes are 8, 10, 12, 14, 18, and 24 points. If required, the

application can specify the available sizes for outline fonts.

When users type a font size in the entry field, the preview area is updated

immediately. The Size field will accept a fixed point number, .such as 24.25, with up

to four places saved after the decimal.

Emphasis Group Box: The Emphasis group box is a multiple-selection field that

contains a list of emphasis styles (Outline, Underline, Strikeout) available for each

font.

When users select an emphasis style, the preview area is updated immediately.

The Outline selection is not available for image fonts.

Preview Area: The Preview area enables users to view their font family, style, size

and emphasis selections as they make them. It contains a sample character string

that is defined by the application. The default character string is abcdABCD. The

Preview area displays font sizes as large as 48 points. As the size of the font

increases, the sample displayed is clipped by the borders of the area.

Filter Check Box: The Fiiter check box enables users to limit the font family name

drop-down list to select from fonts that are displayable only, printable only, or a

merged list. The initial setting of the Filter check box is specified by the application.

Standard Push button and Default Action: The dialog can be dismissed with either

the OK or Cancel push buttons.

Customizing the Font Dialog
You can create a font dialog by customizing the font dialog control, using the

minimum set of standard controls and adding any controls of your own design.

Specify a standard control by including a control of the same class, ID, and style as

in the font dialog. The minimum set of controls required for the font dialog are:

DID _NAME, DID_ STYLE, DID _DISPLAY _FILTER, DID _PRINTER_FIL TER, DID_ SIZE,

DID_SAMPLE, DID_OUTLINE, DID_UNDERSCORE, DID_STRIKEOUT,

DID_OK_BUTTON, DID_CANCEL_BUTTON.

Chapter 24. Font Dialog Controls 24-3

Summary

Even if your dialog does not use all of the required controls, you must include them.
You can make the unused controls invisible so that your application users are not
confused.

The following tables describe the OS/2 structures, messages, functions, and controls
in the standard font dialog:

Table 24-1. Font Dialog Structures

Structure Name Description

FONTDLG Font-dialog structure.

STYLE CHANGE Style-change structure returned by the FNTM_STYLECHANGED message.

Table 24-2. Font Dialog Messages

Message Name Description

FNTM_FACENAMECHANGED Notifies the subclassing application whenever the font family name is
changed by the user.

FNTM_FIL TERLIST Sent whenever the font dialog is preparing to add a font family name, font
style type, or point size entry to the combination box fields that contain these
parameters.

FNTM_POINTSIZECHANGED Notifies subclassing applications when the point size of the font is changed by
the user.

FNTM_STYLECHANGED Notifies subclassing applications when the user changes any of the attributes
in the STYLECHANGE structure.

FNTM_UPDATEPREVIEW Notifies subclassing applications before the preview window is updated.

Table 24-3. Font Dialog Functions

Function Name Description

WinDefFontDlgProc The default dialog procedure for the font dialog.

WinFontDlg Allows the user to select a font.

Table 24-4 (Page 1 of 3). Standard Font Dialog Controls

Control Name ID Class/Style Remarks

DID_ OK_BUTTON DID_OK WC_BUTTON, Button control. Used as
BS_PUSHBUTTONI an OK push button.
BS_DEFAUL Tl
WS_GROUPI
WS_TABSTOPI
WS_VISIBLE

DID_ CANCEL_BUTTON DID_CANCEL WC_BUTTON, Button control. Used as a
BS_PUSHBUTTONI Cancel push button.
WS_VISIBLE

24-4 OS/2 Programming Guide-Volume II

Table 24-4 (Page 2 of 3). Standard Font Dialog Controls

Control Name ID Class/Style Remarks

DID _FONT _DIALOG 300 DIALOG, Dialog control ID.
FS_NOBYTEALIGNI
FS_DLGBORDERI
FS_BORDERI
WS_CLIPSIBLINGSI
WS_SAVEBITS,
FCF _SYSMENUI
FCF _ TITLEBAR

DID_NAME 301 WC_ COMBOBOX, Combination box control.
CBS_DROPDOWNLISTI Used to display and select
WS_TABSTOPI font family names.
WS_VISIBLE

DID_STYLE 302 WC_COMBOBOX, Combination box control.
CBS_DROPDOWNLISTI Used to display and select
WS_TABSTOPI font style names.
WS_VISIBLE

DID _DISPLAY _FILTER 303 WC_BUTTON, Button control. Used to
BS_AUTOCHECKBOXI filter the Font Name field.
WS_TABSTOPI
WS_GROUPI
WS_VISIBLE

DID _PRINTER_FIL TER 304 WC_BUTTON, Button control. Used to
BS_AUTOCHECKBOXI filter the Font Name field.
WS_TABSTOPI
WS_VISIBLE

DID_SIZE 305 WC_COMBOBOX Combination box control.
CBS_DROPDOWNI Used to display, select,
WS_ TABSTOPI and enter the type size of
WS_VISIBLE the selected font.

DID_SAMPLE 306 WC_STATIC, Static text control. Used
SS_TEXTI to display the preview
DT_CENTERI string in the selected font.
DT_VCENTERI
WS_GROUPI
WS_VISIBLE

DID_ OUTLINE 307 WC_BUTTON, Check box control. Used
BS _AUTOCHECKBOXI to select the outline
WS_ TABSTOPI emphasis of the selected
WS_VISIBLE font.

DID_UNDERSCORE 308 WC_BUTTON, Check box control. Used
BS_AUTOCHECKBOXI to select the underscore
WS_VISIBLE emphasis of the selected

font.

DID _STRIKEOUT 309 WC_BUTTON, Check box control. Used
BS_AUTOCHECKBOXI to select strikeout
WS_VISIBLE emphasis of the selected

font.

DID_HELP _BUTTON 310 WC_BUTTON, Button control. Used to
BS_PUSHBUTTONI request help from the
BS_HELPI application.
BS_NOPOINTERFOCUSI
WS_VISIBLE

Chapter 24. Font Dialog Controls 24-5

Table 24-4 (Page 3 of 3). Standard Font Dialog Controls

Control Name ID Class/Style Remarks

DID_APPL Y _BUTTON 311 WC_BUTTON, Button control provided by
BS_PUSHBUTTONI the application. Used as
WS_VISIBLE an Apply push button in

modeless applications.

DID _RESET _BUTTON 312 WC_BUTTON, Button control provided by
BS_PUSHBUTTONI the application. Used as a
WS_VISIBLE Reset push button.

DID _NAME_PREFIX 313 WC_STATIC, Static text control. Label
SS_TEXTI for the font Famlly Name
DT_LEFTI field.
DT_TOPI
WS_GROUPI
WS_VISIBLE

DID _STYLE_PREFIX 314 WC_STATIC, Static text control. Label
SS_TEXTI for the font Style Name
DT_LEFTI field.
DT_TOPI
WS_GROUPI
WS_VISIBLE

DID_SIZE_PREFIX 315 WC_STATIC, Static text control. Label
SS_TEXTI for the font Type Size
DT_LEFTI field.
DT_TOPI
WS_GROUPI
WS_VISIBLE

DID_SAMPLE_GROUPBOX 316 WC_STATIC, Group box around a
SS_GROUPBOXI sample field.
WS_GROUPI
WS_VISIBLE

DID_EMPHASIS_GROUPBOX 317 WC_STATIC, Group box around the
SS_GROUPBOXI emphasis check boxes.
WS_GROUPI
WS_VISIBLE

24·6 OS/2 Programming Guide-Volume II

Chapter 25. File Dialog Controls

File dialog controls provide basic functions that enable users to do the following:

• Display and select from a list of drives, directories, and files.
• Enter a file name directly.
• Filter the file names before they are displayed.
• Display active network connections.
• Specify .TYPE EA extended attributes.
• Interact with a single-selection or multiple-selection file dialog.
• Interact with a modal or modeless file dialog.

These basic functions can be extended to meet the requirements of PM applications.

About File Dialogs

© Copyright IBM Corp. 1992

The file dialog control enables you to implement Open or SaveAs dialogs. The
following figures illustrate these two dialogs.

Figure 25-1. Open Dialog

25-1

Figure 25-2. SaveAs Dialog

Creating a File Dialog
To present a file dialog to users, your application must do the following:

1. Allocate storage for a FILEDLG ;tructure and set all fields to NULL.
2. Initialize the fields in the FILEDLG structure.

The application must do the following:

a. Set the cbSlze field to the size of the structure.

b. Set the fl field to indicate the type of dialog. You must set the
FDS_OPEN_DIALOG or FDS_SAVEAS_DIALOG flags.

The application can set the following:

a. An application-specific title. Pass the pointer to a null-terminated string in

the pszTltle field.

b. Application-specific text for the OK push button. Pass the pointer to a

null-terminated string in the pszOKBuHon field.

c. Specify a custom dialog procedure to provide application-specific function.

Pass the pointer to a window procedure in the pfnDlgProc field.

d. Set other FDS_* flags in the fl field to customize the dialog style. See the

description of this field for the FILEDLG structure in the OS/2 2.0

Programming Reference for a list of the flags you can specify.

e. Pass the initial position of the dialog in the x and y fields.

3. Initialize the FILEDLG structure with any values that users should see when they

invoke the dialog for the first time. For example, you can:

a. Pass the name of the first drive from which file information will be displayed

in the pszlDrlve field.

b. If you want to limit user selections, pass a list of drives from which the user

can choose in the papszlDriveLlst field. Otherwise, the system defaults to

showing all available drives.

25-2 OS/2 Programming Guide-Volume II

c. Pass the name of an extended-attribute filter to be used to filter file
information in the pszlType field.

d. Pass a list of extended attributes in the papszlTypelist field. By selecting
from this list, users can filter file information.

e. Pass the name of the initial file to be used by the dialog in the szFullFile field.
This can be a file name or a string filter, such as *.•.dat, to filter the initial file
information. This field can be fully qualified to select the initial drive and
directory.

4. Invoke the file dialog. Call the WinFileDlg 1function and pass the dialog's owner
window handle and a pointer to the initialized FILEDLG structure.

5. Check the return value from the WinFileDlg function. If TRUE is returned, the
application can create the file dialog (either Open or SaveAs) by using the file
name or file names returned from the dialog.

Creating an Open Dialog
When the Open dialog is invoked, the fields in the dialog box are updated with the
fields passed in the FILEDLG structure. The values passed in the szFullFile field of
the structure are displayed in the Fiie Name field, the Directory list box, and the
Drive field. The value passed in the pszlType field is displayed in the Type field.

Creating a SaveAs Dialog
The SaveAs dialog is identical to the Open dialog with these exceptions:

• By default, the file names in the file list box are grayed and cannot be selected,
although the list box can be scrolled.

• When the user clicks on the OK push button or presses the Enter key, the file
name in the File Name field is passed to the application, and the application
saves, rather than opens, the file.

• The titles of the file name, filter, and dialog are SaveAs rather than Open.

The File Dialog User Interface

File Name Field
The File Name field is a single-line entry (SLE) field used to display the name of a
file that was selected from the file list box or entered directly by the user. As the
user types, the file or files matching the user entry are scrolled into view in the file
list box. The first file name that most closely matches the file name typed by the
user is placed at the top of the list box. When the user types a character that causes
a mismatch, the file at the top of the list is displayed.

When the user presses the Enter key, the dialog returns the selected file name to
the application. The application then initiates the default action of opening the file.
When a file name is not valid, such as when the file does not exist, the application
displays an error message.

The File Name field displays the currently selected file name or the current string
filter. When a filter is specified in the szFullFlle field of the FILEDLG structure, the
string filte·r is displayed without the path information. The string filter remains in the
field until a file is selected or the user types over the data in the field.

When a file name is not specified, the Fiie Name field is blank.

Chapter 25. File Dialog Controls 25-3

File List Box
The File list box is a single- or multiple-selection list box that is scrollable both

horizontally and vertically. It contains all the files that meet the filter criteria, sorted

by name.

When the file dialog is a single-selection dialog, the selected file name is placed in

the File Name field. When the file dialog is a multiple-selection dialog, the topmost

selected file name is placed in the Fiie Name field. When the user double cUcks on

a file name, the dialog exits and returns the selected file or files to the application

for opening.

Directory List Box
The Directory list box is a single-selection list box that is scrollable both horizontally

and vertically.

The Directory list box displays the path in the szFullFlle field of the FILEDLG

structure as a list of each parent subdirectory. Any subdirectories of the selected

directory also are displayed. Each directory level is indented to show the path, and

the current working directory level is indicated by an arrow. The top entry is always

the root directory, with the drive specification preceding it. When the szFullFlle field

is null, the current path of the current drive is displayed. The user selects a new

subdirectory by double-clicking on the subdirectory name. This action updates the

Directory list box.

Drive Field
The Drive field contains a drop-down list of the logical drives. This field cannot be

edited by the user.

The Drive field displays the value passed in the papszlDriveList field of the FILEDLG

structure. If the application does not specify a drive list, all drives currently

available on the system are displayed. When the drop-down list is displayed, the

current drive is highlighted. When the user selects a drive, the display is refreshed.

When either the user-specified drive or the default drive has a volume label, the

volume label is displayed also.

Users can access networked files by associating logical disks with remote servers,

or they can enter the name and ID of the server in the File Name field. When the

server name entered is not found in the Drive drop-down list, it is added to the list

and displayed in the Drive field.

Type Field
The Type field contains a drop-down list of extended-attribute filters.

The Type field displays the value passed in the pszlType field of the FILEDLG

structure. The current setting is highlighted when the drop-down list is displayed.

When a type filter is not specified by the application, <A 11 Fil es> is displayed and

no extended-attribute type filtering is used with the initial display.

All files affected by the string filter and the extended-attribute type filter criteria are

displayed, based on how the filters are to be used .. The default is that all file names

meeting the intersection of the two filters are shown. When users change the value

in the Type field, the File list box is updated to display a list of files that meet the

new type filter criteria. Files that meet both the string filter and extended-attribute

type filter are displayed.

25-4 OS/2 Programming Guide-Volume II

Standard Button and Default Action
The OK push button initiates the default action.

When a subdirectory is selected, the Fiie Name field is empty. When the user clicks
on the OK push button or presses the Enter key, the subdirectory is opened and the
displayed values in the File list box and the Directory list box are refreshed.

When a file name is selected, selection of subdirectories is cancelled and the Fiie
Name field is updated with the name of the selected file. When the user clicks on
the OK push button or presses the Enter key, the file displayed in the File Name field
is returned to the application for opening.

Customizing the File Dialog

Summary

You can customize the File Dialog control by using the minimum set of standard
controls and adding any of your own design. Specify a standard control by including
the control name, ID, and style in the dialog.

The following tables describe the OS/2 structure, messages, functions, and
minimum set of standard controls in the file dialog control:

Table 25-1. File Dialog Structure

Structure Name Description

FILEDLG File-dialog structure.

Table 25-2. File Dialog Messages

Message Description

FDM_ERROR Sent before the file dialog displays a message notifying the user of an error.

FDM_FILTER Sent before a file that meets the current filter criteria is added to the File list box.

FDM_VALIDATE Sent when the user selects a file and presses the Enter key or clicks on the OK
push button, or when the user double-clicks on a file name in the File list box.

Table 25-3. File Dialog Functions

Function Name Description

WinDefFlleDlgProc The default dialog procedure for the file dialog.

WinFlleDlg Creates and displays the file dialog and returns the user's selection or selections.

WinFreeFlleDlgLlst Frees the storage allocated by the file dialog when the FDS_MUL TIPLESEL dialog
flag is set.

Chapter 25. File Dialog Controls 25-5

Table 25-4 (Page 1 of 2). File Dialog Minimum Set of Standard Controls

Control Name ID Class/Style Remarks

DID_OK_PB DID_OK WC_BUTTON, Button control.
BS_PUSHBUTTONI Used as an OK push button.
BS_DEFAUL Tl
WS_GROUPI
WS_TABSTOPI
WS_VISIBLE

DID _CANCEL_PB DID_CANCEL WC_BUTTON, Button control.
BS_PUSHBUTTONI Used as a Cancel push button.
WS_VISIBLE

DID_FILE_DIALOG 256 DIALOG, Dialog control ID.
FS_NOBYTEALIGNI
FS_DLGBORDERI
WS_CLIPSIBLINGSI
WS_SAVEBITS,
FCF _SYSMENUI
FCF _TITLEBARI
FCF _DLGBORDER

DID_FILENAME_TXT 257 WC_STATIC, Static text control.
SS_TEXTI Label for the Fiie Name field.
DT_LEFTI
DT_TOPI
WS_GROUPI
WS_VISIBLE

DID_FILENAME_ED 258 WC_ENTRYFIELD, Static entry field.
ES_AUTOSCROLLBARI Fully-qualified file name entry
ES_LEFTI field for parsing or selecting.
ES_MARGINI
WS_TABSTOPI
WS_VISIBLE

DID_DRIVE_TXT 259 WC_STATIC, Static text control.
SS_TEXTI Label for the Drive field.
DT_LEFTI
DT_TOPI
WS_GROUPI
WS_VISIBLE

DID_DRIVE_CB 260 wc_COMBOBOX, Combination box control.
CBS_DROPDOWNLISTI Used to display and select
WS_ TABSTOPI drive names.
WS_VISIBLE

DID_FILTER_TXT 261 WC_STATIC, Static text control.
SS_TEXTI Label for the Type field.
DT_LEFTI
DT_TOPI
WS_GROUPI
WS_VISIBLE

DID_FILTER_CB 262 WC_COMBOBOX, Combination box control.
CBS_DROPDOWNLISTI Used to display and select
WS_ TABSTOPI extended-attribute type filters.
ws_VISIBLE

25-6 OS/2 Programming Guide-Volume II

Table 25-4 (Page 2 of 2). File Dialog Minimum Set of Standard Controls

Control Name ID Class/Style Remarks

DID _DIRECTORY_ TXT 263 WC_STATIC, Static text control.
SS_TEXTI Label for the Directory list box.
DT_LEFTI
DT_TOPI
WS_GROUPI
WS_VISIBLE

DID _DIRECTORY _LB 264 WC_LISTBOX, List box control.
LS_OWNERDRAWI Used to display and select the
LS_HORZSCROLLI directories on the system.
WS_ TABSTOPI
WS_VISIBLE

DID_FILES_TXT 265 WC_STATIC, Static text control.
SS_TEXTI Label for the Files list box.
DT_LEFTI
DT_TOPI
ws_GROUPI
WS_VISIBLE

DID_FILES_LB 266 WC_LISTBOX, List box control.
LS _HORZSCROLLI Used to display and
WS_ TABSTOPI select the files in a directory.
WS_VISIBLE

DID_HELP _PB 267 WC_BUTTON, Button control.
BS_PUSHBUTTON I Used to request help from
BS_HELPI the application.
BS_NOPOINTERFOCUSI
WS_VISIBLE

DID_APPLY_PB 268 WC_BUTTON, Button control.
BS_PUSHBUTTON I Used to apply selection
WS_VISIBLE for a modeless dialog.

Chapter 25. File Dialog Controls 25-7

25-8 OS/2 Programming Guide-Volume II

Chapter 26. Mouse Pointers and Icons

A mouse pointer is a special bit map the operating system uses to show a user the
current location of the mouse on the screen. When the user moves the mouse, the
mouse pointer moves on the screen. Mouse pointers also are used to draw icons on
the screen, such as graphics in message boxes and icons that represent minimized
windows on the desktop. This chapter describes how to create and use mouse
pointers and icons in your PM applications.

About Mouse Pointers and Icons
Mouse pointers and icons are made up of bit maps that the operating system uses to
paint images of the pointers or icons on the screen. A monochrome bit map is a
series of bytes. Each bit corresponds to a single pel in the image. (The bit map
representing the display typically has four bits for each pel.)

A mouse pointer or icon bit map always is twice as tall as it is wide. The top half of
the bit map is an AND mask, in which the bits are combined, using the AND
operator, with the screen bits where the pointer is being drawn. The lower half of
the bit map is an XOR mask, in which the bits are combined, using the XOR
operator, with the destination screen bits.

The combination of the AND and XOR masks results in four possible colors in the bit
map. The pels of an icon or pointer can be black, white, transparent (the screen
color beneath the pel), or inverted (inverting the screen color beneath the pel).
Figure 26-1 shows the relationship of the bit values in the AND and XOR masks:

lnv~rted

Figure 26-1. Bit Values in the AND and XOR Masks

Mouse-Pointer Hot Spot

© Copyright IBM Corp. 1992

Each mouse pointer has its own hot spot, which is the point that represents the
exact location of the mouse pointer. This location is defined as an x and y offset
from the lower-left corner of the mouse-pointer bit map.

26-1

Arrow pointer I-Beam pointer

Figure 26-2. Mouse Pointers

For the arrow-shaped pointer, the hot spot is at the tip of the arrow. For the I-beam
pointer, the hot spot is at the middle of the vertical line.

Predefined Mouse Pointers
Before an application can use a mouse pointer, it first must receive a handle to the
pointer. Most applications load mouse pointers from the system or from their own
resource file. The operating system maintains many predefined mouse pointers that
an application can use by calling the WinQuerySysPointer function. System mouse
pointers include all the standard mouse-pointer shapes and message-box icons.
The following predefined mouse pointers are available:

Table 26-1 (Page 1 of 2). Predefined Mouse Pointers

Mouse Pointer Description

SPTR_APPICON Square icon; used to represent a minimized
application window.

SPTR_ARROW Arrow that points to the upper-left corner of the
screen.

SPTR_ICONERROR Icon containing an exclamation point; used in a
warning message box.

SPTR_ICONINFORMATION Octagon-shaped icon containing the image of a
human hand; used in a warning message box.

SPTR_ICONQUESTION Icon containing a question mark; used in a query
message box.

SPTR_ICONWARNING Icon containing an asterisk; used in a warning
message box.

SPTR_MOVE Four-headed arrow; used when dragging an object
or window around the screen.

SPTR_SIZE Small box within a box; used when resizing a
window by dragging.

SPTR_SIZENS Two-headed arrow that points up and down (north
and south); used when sizing a window.

SPTR_SIZENESW Two-headed diagonal arrow that points to the
upper-right (northeast) and lower-left (southwest)
window borders; used when sizing a window.

26-2 OS/2 Programming Guide-Volume II

Table 26-1 (Page 2 of 2). Predefined Mouse Pointers

Mouse Pointer Description

SPTR_SIZENWSE Two-headed diagonal arrow that points to the
upper-left (northwest) and lower-right (southeast)
window borders; used when sizing a window.

SPTR_SIZEWE Two-headed arrow that points left and right (west
to east); used when sizing a window.

SPTR_TEXT Text-insertion and selection pointer, often called
the I-beam pointer.

SPTR_WAIT Hourglass; used to indicate that a time-consuming
operation is in progress.

The operating system contains a second set of predefined mouse pointers that are

used as icons in PM applications. An application can use one of these icons by

supplying one of the following constants in the WinQuerySysPointer function.

Before terminating, however, the application must use the WinDestroyPointer

function to explicitly destroy the mouse pointer.

Table 26-2. Presentation Manager Mouse Pointers

Icon Description

SPTR_FILE Represents a file (in the shape of a single sheet of paper).

SPTR_FOLDER Represents a file folder.

SPTR_ILLEGAL Circular icon containing a slash; represents an illegal operation.

SPTR_MUL TFILE Represents multiple files.

SPTR_PROGRAM Represents an executable file.

Applications can use mouse-pointer resources to draw icons. The WinDrawPointer

function draws a specified mouse pointer in a specified presentation space. Many

of the predefined system mouse pointers are standard icons displayed in message

boxes.

In addition to using the predefined pointer shapes, an application also can use

pointers that have been defined in a resource file. Once the pointer or icon has

been created (by Icon Editor or a similar application), the application includes it in

the resource file, using the P()INTER statement, a resource identifier, and a file

name for the Icon Editor data. After including the mouse-pointer resource, the

application can use the pointer or icon by calling the WinLoadPointer function,

specifying the resource identifier and module handle. Typically, the resource is in

the executable file of the application, so the application simply can specify NULL for

the module handle to indicate the current application resource file.

An application can create mouse pointers at run time by constructing a bit map for

the pointer and calling the WinCreatePointer function. This function, if successful,

returns the new pointer handle, which the application then can use to set or draw

the pointer. The bit map must be twice as tall as it is wide, with the first half

defining the AND mask and the second half defining the XOR mask. The application

also must specify the hot spot when creating the mouse pointer.

Chapter 26. Mouse Pointers and Icons 26-3

System Bit Maps
In addition to using the mouse pointers and icons defined by the system,
applications can use standard system bit maps by calling the WinGetSysBitmap
function. This function returns a bit map handle that is passed to the
WinDrawBitmap function or to one of the Gpi bit-map functions. The system uses
standard bit maps to draw portions of control windows, such as the system menu,
minimize/maximize box, and scroll-bar arrows. The following standard system bit
maps are available:

Table 26-3 (Page 1 of 2). Standard System Bit Maps

Bit Map

SBMP _BTNCORNERS

SBMP _CHECKBOXES

SBMP _CHILDSYSMENU

SBMP _CHILDSYSMENUDEP

SBMP _COMBODOWN

SBMP _MAXBUTTON

SBMP_MENUATTACHED

SBMP_MENUCHECK

SBMP _MINBUTTON

SBMP _OLD_CHILDSYSMENU

SBMP_OLD_MAXBUTTON

SBMP _OLD_MINBUTTON

SBMP_OLD_RESTOREBUTTON

SBMP _OLD_SBDNARROW

SBMP _OLD_SBLFARROW

SBMP _OLD_SBRGARROW

SBMP _OLD_SBUPARROW

26-4 OS/2 Programming Guide-Volume II

Description

Specifies the bit map for push button corners.

Specifies the bit map for the check-box or
radio-button check mark.

Specifies the bit map for the smaller version of the
system-menu bit map; used in child windows.

Same as SBMP _CHILDSYSMENU but indicates that
the system menu is selected.

Specifies the bit map for the downward pointing
arrow in a drop-down combination box.

Specifies the bit map for the maximize button.

Specifies the bit map for the symbol used to
indicate that a menu item has an attached,
hierarchical menu.

Specifies the bit map for the menu check mark.

Specifies the bit map for the minimize button.

Same as SBM_CHILDSYSMENU. (For compatibility
with previous versions of the OS/2 operating
system.)

Same as SBM_MAXBUTTON. (For compatibility
with previous versions of the OS/2 operating
system.)

Same as SBM_MINBUTTON. (For compatibility
with previous versions of the OS/2 operating
system.)

Same as SBM_RESTOREBUTTON. (For
compatibility with previous versions of the OS/2
operating system.)

Same as SBM_SBDNARROW. (For compatibility
with previous versions of the OS/2 operating
system.)

Same as SBM_SBLFARROW. (For compatibility
with previous versions of the OS/2 operating
system.)

Same as SBM_SBRGARROW. (For compatibility
with previous versions of the OS/2 operating
system.)

Same as SBM_SBUPARROW. (For compatibility
with previous versions of the OS/2 operating
system.)

Table 26-3 (Page 2 of 2). Standard System Bit Maps

Bit Map Description

SBMP _PROGRAM Specifies the bit map for the symbol that File
Manager uses to indicate that a file is an
executable program.

SBMP_RESTOREBUTTON Specifies the bit map for the restore button.

SBMP_RESTOREBUTTONDEP Same as SBMP _RESTOREBUTTON but indicates
that the restore button is pressed.

SBMP _SBDNARROW Specifies the bit map for the scroll-bar down
arrow.

SBMP _SBDNARROWDEP Same as SBMP _SBDNARROW but indicates that
the scroll-bar down arrow is pressed.

SBMP _SBDNARROWDIS Same as SBMP _SBDNARROW but indicates that
the scroll-bar down arrow is disabled.

SBMP _SBLFARROW Specifies the bit map for the scroll-bar left arrow.

SBMP _SBLFARROWDEP Same as SBMP _SBLFARROW but indicates that
the scroll-bar left arrow is pressed.

SBMP _SBMFARROWDIS Same as SBMP _SBLFARROW but indicates that
the scroll-bar left arrow is disabled.

SBMP _SBRGARROW Specifies the bit map for the scroll-bar right arrow.

SBMP_SBRGARROWDEP Same as SBMP _SBRGARROW but indicates that
the scroll-bar right arrow is pressed.

SBMP _SBRGARROWDIS Same as SBMP _SBRGARROW but indicates that
the scroll-bar right arrow is disabled.

SBMP _SBUPARROW Specifies the bit map for the scroll-bar up arrow.

SBMP _SBUPARROWDEP Same as SBMP _SBUPARROW but indicates that
the scroll-bar up arrow is pressed.

SBMP _SBUPARROWDIS Same as SBMP _SBUPARROW but indicates that
the scroll-bar up arrow is disabled.

SBMP _SIZEBOX Specifies the bit map for the symbol that indicates
an area of a window in which the user can click to
resize the window.

SBMP _SYSMENU Specifies the bit map for the system menu.

SBMP _ TREEMINUS Specifies the bit map for the symbol that File
Manager uses to indicate an empty entry in the
directory tree.

SBMP _ TREEPLUS Specifies the bit map for the symbol that File
Manager uses to indicate that an entry in the
directory tree contains more files.

Using Mouse Pointers and Icons
This section explains how to perform the following tasks:

• Save the current mouse pointer.
• Change the mouse pointer.
• Restore the original mouse pointer.

Chapter 26. Mouse Pointers and Icons 26-5

Changing the Mouse Pointer

Summary

Once you create or load a mouse pointer, you can change its shape by calling the

WinSetPointer function. Following are three typical situations in which an

application changes the shape of the mouse pointer:

• When an application receives a WM_MOUSEMOVE message, there is an

opportunity to change the mouse pointer based on its location in the window. If

you want the standard arrow pointer, pass this message on to the

WinDefWindowProc function.

• When an application is about to start a time-consuming process during which it

will not accept user input, the application displays the system-wait mouse

pointer (SPTR_WAIT). Upon finishing the process, the application resets the

mouse pointer to its former shape.

The following code fragment shows how to save the current mouse pointer, set

the hourglass pointer, and restore the original mouse pointer. Notice that the

hourglass pointer also is saved in a global variable so that the application can

return it when responding to a WM_MOUSEMOVE message during a
time-consuming process.

• When an application needs to indicate its current operational mode, it changes

the pointer shape. For example, a paint program with a palette of drawing tools

should change the pointer shape to indicate which drawing tool is in use

currently.

Following are the OS/2 functions and structure used with mouse pointers, icons, and

bit maps.

Table 26-4 (Page 1 of 2). Pointer and Bit Map Functions

Function name Description

WinCreatePolnter Creates a pointer from a bit map.

26-6 OS/2 Programming Guide-Volume II

Table 26-4 (Page 2 of 2). Pointer and Bit Map Functions

Function name Description

WlnCreatePolnterlndlrect Creates a colored pointer or icon from a bit map.

WlnDestroyPolnter Destroys a pointer or an icon.

WlnDrawBltmaps Draws a bit map using the current image colors
and mixes.

WlnDrawPolnter Draws a pointer.

WlnGetSysBltmap Returns a handle to one of the standard bit maps
provided by the system.

WlnloadPolnter Loads a pointer from a resource file into the
system.

WlnQueryPolnter Returns the pointer handle for DeskTop.

WlnQueryPolnterlnfo Returns pointer information.

WlnQueryPolnterPos Returns the pointer position.

WlnQuerySysPolnter Returns the handle of the system pointer.

WinSetPointer Sets the handle of the Desktop pointer.

WlnSetPointerPos Sets the pointer position.

WlnShowPolnter Adjusts the pointer display level to show or hide a
pointer.

Table 26-5. Pointer Structure

Structure Description

POINTER INFO Pointer information structure.

Chapter 26. Mouse Pointers and Icons 26-7

26-8 OS/2 Programming Guide-Volume II

Chapter 27. Cursors

About Cursors

A cursor is a rectangle that can be shown at any location in a window, indicating
where the user's next interaction with items on the screen will happen. This chapter
describes how to create and use cursors in your PM applications.

Only one cursor appears on the screen at a time-either marking the text-insertion
point (a text cursor) or indicating which items the user can interact with from the
keyboard (a selection cursor). For example, when an entry field has the keyboard
focus, it displays a blinking vertical bar to show the text-insertion point; however,
when a button has the keyboard focus, the cursor appears as a halftone rectangle
the size of the button. The operating system draws and blinks the cursor, freeing
the application from handling these details. Notice that the cursor has no direct
relationship with the mouse pointer.

Cursor Creation and Destruction

© Copyright IBM Corp. 1992

The system can use only one cursor at a time, so windows must create and destroy
cursors as each windows gains and loses the keyboard focus. If an application
attempts to use more than one cursor at a time, the results can be unpredictable
and might affect other applications.

An application creates a cursor by calling WinCreateCursor. Generally, this is done
when a window gains the keyboard focus. The application specifies the window in
which to display the cursor, whether it be the desktop window, an application
window, or a control window. An application destroys a cursor by calling
WinDestroyCursor- when the specified window loses the keyboard focus for
example.

Position and Size
An application can set the position (in window coordinates) of an existing cursor by
calling WinCreateCursor, specifying the CURSOR_SETPOS flag. The cursor width is
usually 0 (nominal border width is used) for text-insertion cursors. This is
preferable to a value of 1, since such a fine width is almost invisible on a
high-resolution monitor. The cursor width also can be related to the window
size-for example, when a button control uses a dotted-line cursor around the button
text to indicate focus. To change the cursor size, the application must destroy the
current cursor and create a new one of the desired size.

Other Cursor Characteristics
An application uses the WinCreateCursor function to specify information about the
cursor rectangle and the clipping rectangle. WinCreateCursor specifies whether the
cursor rectangle should be filled, framed, blinking, or halftone. In addition, the
function specifies the clipping rectangle, in window coordinates, that controls the
cursor clipping region. Probably the most efficient strategy is for the application to
specify NULL, which causes the rectangle to clip the cursor to the window rectangle.

27-1

Cursor Visibility

Using Cursors

An application can use the WinShowCursor function to show or hide a cursor. The
operating system maintains a show level for the cursor: when the cursor is visible,
the its show level is zero; each time the cursor is hidden, its show level is
incremented; each time the cursor is shown, its show level is decremented. The
show:hide relationship is 1:1, so the show level cannot drop below zero. When first
creating a cursor, an application should show the cursor because the application
creates the cursor with a show level of 1.

The operating system automatically hides the cursor when the application calls
WinBeginPaint; it shows the cursor when the application calls WinEndPaint.
Therefore, there is no conflict with the cursor during WM_PAINT processing.

This section explains how to perform the following tasks:

• Create and destroy a cursor.
• Respond to a WM_SETFOCUS message.

Creating and Destroying a Cursor
The following code fragment shows how an application should respond to a
WM_SETFOCUS message when using a cursor in a particular window:

Figure 27-1. Response to a WM_SETFOCUS message

27-2 05/2 Programming Guide-Volume II

Summary
Following are the OS/2 functions and structure used with cursors:

Table 27-1. Cursor Functions

Function name Description

WinCreateCursor Used to create, set the size of, and move the cursor around the
screen.

WinDestroyCursor Destroys the current cursor if it belongs to the specified window.

WlnQueryCursorlnfo Obtains information about any current cursor.

WinShowCursor Shows or hides the cursor associated with a specified window.

Table 27-2. Cursor Structure

Structure name Description

CURSORINFO Cursor information structure.

Chapter 27. Cursors 27-3

27-4 OS/2 Programming Guide-Volume II

Chapter 28. Painting and Drawing

This chapter describes presentation spaces, device contexts, and window regions,
explaining how a PM application uses them for painting and drawing in windows.

About Painting and Drawing
An application typically maintains an internal representation of the data that it is
manipulating. The information displayed in a screen, window, or printed copy is a
visual representation of some portion of that data. This chapter introduces the
concepts and strategies necessary to make your PM application function smoothly
and cooperatively in the OS/2 display environment.

Presentation Spaces and Device Contexts

© Copyright IBM Corp. 1992

A presentation space is a data structure, maintained by the operating system, that
describes the drawing environment for an application. An application can create
and hold several presentation spaces, each describing a different drawing
environment. All drawing in a PM application must be directed to a presentation
space.1

Normally each presentation space is associated with a device context that describes
the physical device where graphics commands are displayed. The device context
translates graphics commands made to the presentation space into commands that
enable the physical device to display information. Typical device contexts are the
screen, printers and plotters, and off-screen memory bit maps.

28-1

Figure 28-1 shows how graphics commands from an application go through a
presentation space, to a device context, and then to the physical device.

Application
Graphics

Presentation
Space

GpiAssociate 1

Window
Device
Context

GpiAssociate 2
1--------- (null device

context handle)

GpiAssociate 3

Printer
Device
Context

Figure 28-1. Application's Flow of Graphics Commands

28-2 OS/2 Programming Guide-Volume II

By creating presentation spaces and associating them with particular device
contexts, an application can control where its graphics output appears. Typically, a
presentation space and device context isolate the application from the physical
details of displaying graphics, so the same graphics commands can be used for
many types of displays. This virtualization of output can reduce the amount of
display code an application must include to support multiple output devices.

This chapter describes how an application sets up its presentation spaces and
device contexts before drawing, and how to use window-drawing functions. Refer to
the OS/2 2.0 Programming Guide, Volume Ill-Graphics Programming Interface tor
the graphics functions available to PM applications.

Window Regions
A window and its associated presentation space have three regions that control
where drawing takes place in the window. These regions ensure that the
application does not draw outside the boundaries of the window or intrude into the
space of an overlapping window.

Table 28-1. Window Regions

Region

Update Region

Clip Region

Visible Region

Description

This region represents the area of the window that needs to be
redrawn. This region changes when overlapping windows
change their z-order or when an application explicitly adds an
area to the update region to force a window to be painted.

This region and the visible region determine where drawing
takes place. Applications can change the clip region to limit
drawing to a particular portion of a window. Typically, a
presentation space is created with a clip region equal to NULL,
which makes this region equivalent to the update region.

This region and the clip region determine where drawing takes
place. The system changes the visible region to represent the
portion of a window that is visible. Typically, the visible region
is used to mask out overlapping windows. When an application
calls the WinBeginPaint function in response to a WM_PAINT
message, the system sets the visible region to the intersection of
the visible region and the update region to produce a new visible
region. Applications cannot change the visible region directly.

Chapter 28. Painting and Drawing 28-3

Whenever drawing occurs in a window's presentation space, the output is clipped to

the intersection of the visible region and clip region. Figure 28-2 shows how the

intersection of the visible region and the clip region of a window that is behind

another window prevents the drawing in the back window from intruding into the

front window. The clip region includes the overlapped part of the back window, but

the visible region excludes that portion of the back window. The system maintains

the visible region to protect other windows on the screen; the application maintains

the clip region to specify the portion of the window in which it draws. Together,

these two regions provide safe and controllable clipping.

J. J.J. D
~ . -

Visible Region Clip Region

Figure 28-2. Clip Region and Visible Region of a Window's Presentation Space

To further control drawing, both the system and the application manipulate the

update region. For example, if the windows shown in Figure 28-2 switch positions

front to back, several changes occur in the regions of both windows. The system

adds the lower-right corner of the new front window to that window's visible region.

The system also adds that corner area to the window's update region.

Window Styles for Painting
Most of the styles relating to window drawing can be set either for the window class /

(CS;_ prefix) br for an individual window (WS_ prefix). ;The styles described in this

section control how the system manipulates the window's regions and how the

window is notified when it must be painted or redrawn.

28-4 05/2 Programming Guide-Volume II

ws _ CLIPCHILDREN, cs_ CLIPCH ILDREN
All the windows with this style are excluded from their parent's visible region. This
style protects windows but increases the amount of time necessary to calculate the
parent's visible region. This style normally is not necessary, because if the parent
and child windows overlap and both are invalidated, the parent window is drawn
before the child window. If the child window is invalidated independently from its
parent window, only the child window is redrawn. If the update region of the parent
window does not intersect the child window, drawing the parent window does not
disturb the child window.

ws _ CLIPSIBLINGS, CS_ CLIPSIBLINGS
Windows with this style are excluded from the visible region of sibling windows.
This style protects windows with the same parent from being drawn accidentally, but
increases the amount of time necessary to calculate the visible region. This style is
appropriate for sibling windows that overlap.

WS_PARENTCLIP, CS_PARENTCLIP
The visible region for a window with this style is the same as the visible region of
the parent window. This style simplifies the calculation of the visible region but is
potentially hazardous, because the parent window's visible region usually is larger
than the child window. Windows with this style should not draw outside their
boundaries.

ws_SAVEBITS, CS_SAVEBITS
The system saves the bits beneath a window with this style when the window is
displayed. When the window moves or is hidden, the system simply restores the
uncovered bits. This operation can consume a great deal of memory; it is
recommended only for transient windows such as menus and dialog boxes-not for
main application windows. This style also is inappropriate for windows that are
updated dynamically, such as clocks.

ws_SYNCPAINT, CS_SYNCPAINT
Windows that have these styles receive WM_PAINT messages as soon as their
update regions contain something; they are updated immediately (synchronously).

CS SIZEREDRAW
A window with this class style receives a WM_PAINT message; the window is
completely invalidated whenever it is resized, even if it is made smaller. (Typically,
only the uncovered area of a window is invalidated when a window is resized.) This
class style is useful when an application scales graphics to fill the current window.

Chapter 28. Painting and Drawing 28-5

Strategies for Painting and Drawing
A PM application shares the screen with other windows and applications; therefore,
painting and drawing must not interfere with those other applications and windows.
When you follow these strategies, your application can coexist with other
applications and still take full advantage of the graphics capabilities of the operating
system.

Drawing in a Window
Ideally, all drawing in a window occurs as a result of an application's processing a
WM_PAINT message. Applications maintain an internal representation of what must
be displayed in the window, such as text or a linked list of graphics objects, and use
the WM_PAINT message as a cue to display a visual representation of that data in
the window.

To route all display output through the WM_PAINT message, an application must not /
draw on the screen at the time its data changes. l1nste·ad, it must update the internal
r9f'iesentation of the data and call the w·in:lnvaJidateRect or WinlnvalidateRegion r
fl!J1Rctions to invalidate the portion of the window that must 19e.redrawn. $ometimes
it is much more efficient to draw directly in a window without relying on the
WM_PAINT message-for example, when drawing and redrawing an object for a
user who is using the mouse to drag or size the object.

If a window tlEiStl'l~ \f\IS_S·VNCPAH~JTfor CS_SYNCPAINT style, invalidating a portion
of the window causes a ~~~p~·11Hif message to be sent to the window immediately. /
Essentially, sending a message is like making a function call; the actions
corresponding to the WM_PAINT message are carried out before the call that
caused the invalidation returns-that is to say, the painting is synchronous.

If the window ~oes nofhave the WS_SVNCPAINTpr CS_SYNCPAINT style,
invalidating a portion of the window causes the invalidated region to be added to the
window's update region. The MexUim.e:the ·a;ppHcation calls the WinGetMsg or w·

WinPeekMs.g functionsi the application ls s'lit a WM_PAl1NT message. If there are :
ma.m}tmess:'1§es in the queue, the paintio.g occurs after the lmvalidation-that ls1 the
p~inli:nlfi.~ aylic~hronous. IA WM_PAINT message is not posted to the queue in this.
case, so all invalidation operations since the last WM_PAINT message are
consolidated into a single WM_PAINT message the next time the application has no
messages in the queue.

There are ~dvantages to both synchronous and asynchronous painting. lYll'lctows
that have simple painting functions should be painted synchronously./ Most of the
system-defined control windows, such as buttons and frame controls, are painted
synchronously because they can be painted quickly without interfering with the
responsiveness of the program. Windows that require more time-consuming
painting operations should be painted asynchronously so that the painting can be
initiated only when there are no other pending messages that might otherwise be
blocked while waiting for the window to be painted. Also, a window that uses an
incremental approach to invalidating small portions of itself usually should allow
those operations to consolidate into a single asynchronous WM_PAINT message,
rather than a series of synchronous WM_PAINT messages.

28-6 OS/2 Programming Guide-Volume II

If necessary, an application can call the WinUpdateWindow function to cause an
asynchronous window to update itself without going through the event loop.
WinUpdateWindow sends a WM_PAINT message directly to the window if the
window's update region is not empty.

The WM_PAINT Message
A window receives a WM_PAINT message whenever its update region is not NULL.
A window procedure respom:ls to a WM_PAtNT message by calling the

1

WinBegin,Paint function, drawing to fill in the update areas, then calling the /
WinEl'ldP~int function. ;

The WinBeginPaint function returns a handle to a presentation space that is
associated with the device context for the window and that has a visible region
equal to the intersection of the window's update region and its visible region. This
means that only those portions of the window that need to be redrawn are drawn.
Attempts to draw outside this region are clipped and do not appear on the screen.

If the application maintains its own presentation space for the window, it can pass
the handle of that presentation space to WinBeginPaint, which modifies the visible
region of the presentation space and passes the presentation-space handle back to
the caller. If the application does not have its own presentation space, it can pass a
NULL presentation-space handle and the system will return a cached-micro
presentation space for the window. In either case, the application can use the
presentation space to draw in the window.

The WinBeginPaint function takes a pointer to a RECTL structure, filling in this
structure with the coordinates of the rectangle that encloses the area to be updated.
The application can use this rectangle to optimize drawing, by drawing only those
portions of the window that intersect with the rectangle. If an application passes a
NULL pointer for the rectangle argument, the application draws the entire window
and relies on the clipping mechanism to filter out the unneeded areas.

After the WinBeginPaint function sets the update region of a window to NULL, the
application does the necessary drawing to fill the update areas. If an application
handles a WM_PAINT message and does not call WinBeginPaint, or otherwise
empty the update region, the application continues to receive WM_PAINT messages
as long as the update region is not empty.

After the application finishes drawing, it calls the WinEndPaint function to restore
the presentation space to its former state. When a cached-micro presentation space
is returned by WinBeginPaint, the presentation space is returned to the system for
reuse. If the application supplies its own presentation space to WinBeginPaint, the
presentation space is restored to its previous state.

Drawing the Minimized View
When an application creates a standard frame window, it has the option of
specifying an icon that the system uses to represent the application in its minimized
state. Typically, if an icon is supplied, the system draws it in the minimized window
and labels it with the name of the window. If the application does not specify the
FS_ICON style for the window, the window receives a WM_PAINT message when it
is minimized. The code in the window procedure that handles the WM_PAINT
message can determine whether the frame window currently is minimized and draw
accordingly. Notice that because the WS_MINIMIZED style is relevant only for the
frame window, and not for the client window, the window procedure checks the
frame window rather than the client window.

Chapter 28. Painting and Drawing 28-7

The following code fragment shows how to draw a window in both the minimized
and normal states:

Drawing Without the WM_PAINT Message
An application can draw in a window's presentation space without having received a
WM_PAINT message. As long as there is a presentation space for the window, an
application can draw into the presentation space and avoid intruding into other
windows or the desktop. Applications that draw without using the WM_PAINT
message typically call the WinGetPS function to obtain a cached-micro presentatiofji
S,Jl&C ... e,.fQr the wind.ow and call the WinReJeas,ePS function when they have finishedl
dt~~I~.9·)An application also can use any of the other types of presentation spaces
described in the following sections.

28-8 OS/2 Programming Guide-Volume II

Three Types of Presentation Spaces
All drawing must take place within a presentation space.

' \ .
\

\
'

Figure 28-3. Presentation Space versus Window

The operating system provides three types of presentation spaces for drawing:
normal, micro, a-nd cached-micro presentation spaces. 1

The normal presentation space provides the most functionality, allowing access to
all the graphics functions of the operating system and enabling the application to
draw to all device types. The normal presentation space is more difficult to use than
the other two kinds of presentation spaces and it uses more memory. It is created
by using the GpiCreatePS function and is destroyed by using the GpiDestroyPS
function.

The micro presentation space allows access to only a subset of the operating
system graphics functions, but it uses less memory and is faster than a normal
presentation space. The micro presentation space also enables the application to
draw to all device types. It is created by using the GpiCreatePS function and
destroyed by using the GpiDestroyPS function.

Chapter 28. Painting and Drawing 28-9

The cached-micro presentation space provides the least functionality of the three
kinds of presentation spaces, but it is the most efficient and easiest to use. The
cached-micro presentation space draws only to the screen. It is created and
destroyed by using either the WinBeginPaint and WinEndPaint functions or the
WinGetPS and WinReleasePS functions.

The following sections describe each of the types of presentation spaces, in detail,
and suggest strategies for using each type in an application. All three kinds of
presentation spaces can be used in a single application. Some windows, especially
if they never will be printed, are best served by cached-micro presentation spaces.
Other windows might require the more flexible services of micro or normal
presentation spaces.

Normal Presentation Spaces
The normal presentation space supports the full power of the operating system
graphics, including retained graphics. The primary advantages of a normal
presentation space over the other two presentation-space types are its support of all
graphics functions and its ability to be associated with many kinds of device
contexts.

A normal presentation space can be associated with many different device contexts.
Typically, this means that an application creates a normal presentation space and
associates it with a window device context for screen display. When the user asks
to print, the application associates the same presentation space with a printer
device context. Later, the application can reassociate the presentation space with
the window device context. A presentation space can be associated with only one
device context at a time, but the normal presentation space enables the application
to change the device context whenever necessary.

28-10 OS/2 Programming Guide-Volume II

Figure 28-4 shows how an application typically routes graphics through one normal
presentation space into another device context:

Application
Normal
Presentation Space

Device Context
for Printer

~--············---··------,------------
Device Context
for Display

Presentation
Driver

Figure 28-4. Normal Presentation Space

Presentation
Driver

When creating a normal presentation space, an application can associate it with a
device context or defer the association to a later time. The GpiAssociate function
associates a device context with a normal presentation space after the presentation
space has been created. An application typically associates the normal
presentation space with a device context when calling the GpiCreatePS function
and, later, associates the presentation space with a different device context by
calling GpiAssociate. To obtain a device context for a window, call the
WinOpenWindowDC function. To obtain a device context for a device other than the
screen, call the DevOpenDC function.

An application typically creates a normal presentation space during initialization
and uses it unmtermination. Each time the application receives a WM_PAINT tJ
message, it passes the handle of the normal presentation space as an argument to
WinBeg:inPa[nt; this prevents the system from returning a cached-micro presentation
S-J>'&ce. <jThe system modifies the visible region of the supplied normal presentation
space and returns the presentation space to the application. This method enables
the application to use the same presentation space for all the drawing in a specified
window.

Chapter 28. Painting and Drawing 28-11

Normal presentation spaces created using GpiCreatePS must be destroyed by
calling GpiDestroyPS before the application terminates. Do not call WinReleasePS
to release a presentation space obtained using GpiCreatePS. Before terminating,
applications also must use DevCloseDC to close any device contexts opened using
DevOpenDC. No action is necessary for device contexts obtained using
WinOpenWindowDC, because the system automatically closes these device contexts
when destroying the associated windows.

Micro Presentation Spaces
The primary advantage of a micro presentation space over a cached-micro
presentation space is that it can be used for printing as well as painting in a
window. An application that uses a micro presentation space must explicitly
associate it with a device context. This makes the micro presentation space useful
for painting to a printer, a plotter, or an off-screen memory bit map.

A micro presentation space does not support the full set of OS/2 graphics functions.
Unlike a normal presentation space, a micro presentation space does not support
retained graphics.

An application that must display graphics or text in a window and print to a printer
or plotter typically maintains two presentation spaces: one for the window and one
for the printing device. Figure 28-5 shows how an application's graphics output
can be routed through separate presentation spaces to produce a screen display
and printed copy.

Micro
Presentation Space

Device Context
for Printer

Presentation
Driver

Application

Figure 28-5. Micro Presentation Space

28-12 OS/2 Programming Guide-Volume II

Micro
Presentation Space

Device Context
for Display

Presentation
Driver

An application creates a micro presentation space by calling the GpiCreatePS
function. A device context must be supplied at the time the micro presentation
space is created. An application typically creates a device context and then a
presentation space. The following code fragment demonstrates this by obtaining a
device context for a window and associating it with a new micro presentation space:

To create a micro presentation space for a device other than the screen, replace the
call to the WinOpenWindowDC function with a call to the DevOpenDC function, which
obtains a device context for a device other than the screen. Then the device context
that is obtained by this call can be used as an argument to GpiCreatePS.

An application typically creates a micro presentation space during initialization and
uses it until termination. Each time the application receives a WM_PAINT message,
it should pass the handle of the micro presentation space as an argument to the
WinBeginPaint function; this prevents the system from returning a cached-micro
presentation space. The system modifies the visible region of the supplied micro
presentation space and returns the presentation space to the application. This
method enables the application to use the same presentation space for all drawing
in a specified window.

Micro presentation spaces created by using GpiCreatePS should be destroyed by
calling GpiDestroyPS before the application terminates. Do not call the
WinReleasePS function to release a presentation space obtained by using
GpiCreatePS. Before terminating, applications must use the DevCloseDC function
to close any device contexts opened using the DevOpenDC function. No action is
necessary for device contexts obtained using WinOpenWindowDC, because the
system automatically closes these device contexts when destroying the associated
windows.

Cached-Micro Presentation Spaces
The cached-micro presentation space provides the simplest and most efficient
drawing environment. It can be used only for drawing on the screen, typically in the
context of a window. It is most appropriate for application tasks that require simple
window-drawing functions that will not be printed. Cached-micro presentation
spaces do not support retained graphics.

After an application draws to a cached-micro presentation space, the drawing
commands are routed through an implied device context to the current display. The
application does not require information about the actual device context, because
the device context is assumed to be the display. This process makes cached-micro
presentation spaces easy for applications to use.

Chapter 28. Painting and Drawing 28-13

The following code fragment illustrates this process:

or

There are two common strategies for using cached-micro presentation spaces in an
application. The simplest strategy i,s to can the WinBegi·nPaint function during the "/
WM_.:PAINT message, use the resulting cached-mic.ro presentation space to draw in
the winC!:low, then return the presentation space to the system by calling the ·
WlrlfindeainUtmc.tiori. By using this method, the application interacts with the
presentation space only when drawing in the presentation space. This method is
most appropriate for simple drawing. A disadvantage of this method is that the
application must set up any special attributes for the presentation space, such as
line color and font, each time a new presentation space is obtained.

A second strategy is for the application to allocate a cached-micro presentation
space during initialization, by calling the WinGetPS function and saving the resulting
presentation-space handle in a static variable. Then the application can set
attributes in the presentation space that exist for the life of the program. The
presentation-space handle can be used as an argument to the WinBeginPaint
function each time the window gets a WM_PAINT message; the system modifies the
visible region and returns the presentation space to the application with its
attributes intact. This strategy is appropriate for applications that need to customize
their window-drawing attributes.

A presentation space that is obtained by calling the WinGetPS function must be
released by calling WinReleasePS when the application has finished using it,
typically during program termination. A presentation space that is obtained by
calling WinBeginPaint must be released by calling WinEndPaint, typically as the last
part of processing a WM_PAINT message.

28-14 OS/2 Programming Guide-Volume II

Summary
Following are the OS/2 functions used with presentation spaces, device contexts,
and window regions.

Table 28-2. Presentation Space, Device Context, and Window Region Functions

Function Name Description

DevCloseDC Closes a device context.

DevOpenDC Opens a device context.

GpiAssociale Associates a graphics presentation space with, or
disassociates it from, a device context.

GplCrealePs Creates a presentation space

GplDestroyPS Destroys a presentation space.

WinBeginPaint Obtains a presentation space whose associated
update region is set to draw in a specified window.

WinEnableWlndowUpdale Sets the visibility state for subsequent drawing.

WinEndPainl Indicates that the redrawing of a window is
complete.

WinExcludeUpdateRegion Subtracts the update region of a window from the
clipping region of a presentation space.

WlnGetClipPS Obtains a clipped cache presentation space.

WinGetPS Gets a cache presentation space.

WinGetScreenPS Returns a presentation space that can be used for
drawing anywhere on the screen.

WinlnvalldateRecl Adds a rectangle to a window's update region.

WinLockVisRegions Locks or unlocks the visible regions or all the
windows

WinLockWindowUpdate Disables or enables output to a window and its
descendants.

WinOpenWindowDC Opens a device context for a window.

WinQueryUpdateRect Returns the rectangle that bounds the update
region of a specified window.

WinQueryUpdateRegion Obtains an update region of a window.

WinQueryWindowDC Returns the device context for a given window.

WlnReleasePS Releases a cache presentation space obtained
using the WinGetPS or WinGetScreenPS calls.

WlnValldateRect Subtracts a rectangle from the update region of an
asynchronous paint window, marking that part of
the window as visually valid.

WlnValidateRegion Subtract a a region from the update region of an
asynchronous paint window, marking that part of
the widow as visually valid.

WinWindowFromDC Returns the handle of the window corresponding to
a particular device context.

Chapter 28. Painting and Drawing 28-15

28-16 OS/2 Programming Guide-Volume II

Chapter 29. Drawing in Windows

This chapter describes, at a high level, the functions specifically intended for
drawing in PM windows. For information on the complete set of drawing functions,
see the OS/2 2.0 Programming Guide, Volume //I-Graphics Programming Interface.

About Window-Drawing Functions

Points

Rectangles

©Copyright IBM Corp. 1992

The functionality of the PM window-drawing functions overlaps that of similar Gpi
drawing functions in OS/2 These window-drawing functions are less general than
the Gpi functions and are somewhat easier to use, but they also offer fewer
capabilities than the complete set of Gpi functions. Programmers requiring
optimum functionality should use the Gpi functions.

All drawing in a window takes place in the context of the window's coordinate
system. Locations of points in the window are described by POINTL structures,
which contain an x and a y coordinate for the point. The lower-left corner of a
window always has the coordinates (0,0).

The WinMapWindowPoints function converts the coordinates of points from one
window-coordinate space to those of another window-coordinate space. If one of
the specified windows is HWND_DESKTOP, the function uses screen coordinates.
This function is useful for converting window coordinates to screen coordinates or
the other way around.

Locations of window rectangles are described by RECTL structures, which contain
the coordinates of two points that define the lower-left and upper-right corners of the
rectangle. An empty rectangle is one that has no area: either its right coordinate is
less than or equal to its left coordinate, or its top coordinate is less than or equal to
its bottom coordinate.

There are two types of rectangles in OS/2: inclusive-inclusive and
inclusive-exclusive. In inclusive-exclusive rectangles the lower-left coordinate of
the rectangle is included within the rectangle area, while the upper-right coordinate
is excluded from the rectangle area. In an inclusive-inclusive rectangle, both the
lower-left and upper-right coordinates are included in the rectangle. Figure 29-1
shows both types of rectangles:

Inclusive - Inclusive

(x,y)

Figure 29-1. Types of Rectangles

Inclusive - Exclusive

~--------• (x,y)

29-1

In general, graphics operations involving device coordinates (such as regions, bit
maps and bit blits, and window management) use inclusive-exclusive rectangles.
All other graphics operations, such as Gpi functions that define paths, use
inclusive-inclusive rectangles.

Using Window-Drawing Functions
This section explains how to use drawing functions to fill (paint) a rectangle with
color, scroll the contents of a window, draw bit maps and text, and determine the
di mansions of a rectangle.

Working with Points and Rectangles
The operating system includes functions for manipulating rectangles, many of which
change the rectangle coordinates. Other functions draw in a presentation space,
using a rectangle to position the drawing operation.

The rest of the rectangle functions are mathematical and do not draw. They are
used to manipulate and combine rectangles to produce new rectangles that you then
can use in drawing operations.

Determining the Dimensions of a Rectangle
You can calculate the dimensions of an inclusive-exclusive rectangle as follows:

You can calculate the dimensions of an inclusive-inclusive rectangle as follows:

Filling a Rectangle
The WinFillRect function fills (paints) a rectangle with a specified color. For
example, to fill an entire window with blue in response to a WM_PAINT message,
you could use the following code fragment, which is taken from a window
procedure:

29-2 OS/2 Programming Guide-Volume II

A more efficient way of painting a client window is to pass a rectangle to the
WinBeginPaint function. The rectangle is set to the coordinates of the rectangle that
encloses the update region of the window. Drawing in this rectangle updates the
window, which can make drawing faster if only a small portion of the window needs
to be painted. This method is shown in the following code fragment. Notice that
WinFillRect uses the presentation space and a rectangle defined in window
coordinates to guide the paint operation.

You could draw the entire window during the WM_PAINT m.essage, but the graphics
output would be clipped to the update region.

The default method of indicating that a particular portion of a window has been
selected is using the WinlnvertRect function to invert the rectangle's bits.

Scrolling the Contents of a Window
An application typically responds to a click in a scroll bar by scrolling the contents
of the window. This operation has three parts. First, the application changes its
internal data-representation state to show what portion of the image must now be in
the window. Next, the application moves the current image in the window. Finally,
the application draws in the area that has been uncovered by the scrolling
operation.

For example, a simple text editor might display a small portion of several pages of
text in a window. When the user clicks the Down arrow of the vertical scroll bar, the
application moves all the text up one line and displays the next line at the bottom of
the window.

This clicking also causes a message to be sent to the client window of the frame
window that owns the scroll bar. The application responds to this message by
changing its internal data-representation state to show which line of text is topmost
in the window, scrolling the text in the window up one line, and drawing the new line
at the bottom of the window. There normally is no need to completely redraw the
entire window, because the scrolled portion of the image remains valid.

You can use the WinScrollWindow function to scroll the contents of your application
windows. WinScrollWindow scrolls a specified rectangular area of the window by a
specified x and y offset (in window coordinates). If you set the SW_INVALIDATERGN
flag for this function, the areas you uncover by scrolling are added to the window's
update region automatically, causing a WM_PAINT message for the areas to be sent
to the window.

For example, as used in the simple text editor described previously, the following
call scrolls the text up one line (assuming that the iVScrolllnc parameter specifies
the height of the current font) and adds the uncovered area at the bottom of the
window to the update region:

Chapter 29. Drawing in Windows 29-3

When the uncovered area is added to the window's update region, a WM_PAINT
message is sent to the window. Upon receiving the message, the window draws the
line of text at the bottom of the window. If the window has the WS_SYNCPAINT
style, the WM_PAINT message is sent to the window before WinScrollWindow
returns.

To optimize scrolling speed for repeated scrolling operations, you can omit the
SW_INVALIDATERGN flag from the call to WinScrollWindow, which prevents the
function from adding the invalid region (uncovered by the scroll) to the window's
update region. If you omit the SW_INVALIDATERGN flag, you must pass a region or
rectangle to WinScrollWindow. The rectangle or region will contain the area that
must be updated after scrolling.

Drawing a Bit Map

Drawing Text

The WinDrawBitmap function draws a bit map, identified by a bit map handle, in a
specified rectangle. This function enables you to reduce or enlarge the bit map from
the source rectangle to the destination rectangle. WinDrawBitmap also can draw in
several different copy modes, including using the OR operator to combine source
and destination pels.

There are many ways to draw text in a window in an OS/2 application. The simplest
way is to use the WinDrawText function, which draws a single line of text in a
specified rectangle, using a variety of alignment methods.

WinDrawText allows you to set a flag so that the function does not draw any text;
instead, the function returns the number of characters in the string that will fit in the
specified rectangle. For a section of running text, an application can alternate
between computation and calls to WinDrawText to draw successive lines of text.
When performing this kind of repetitive operation, you can set the DT_WORDBREAK
flag in the WinDrawText function to put line breaks on word boundaries rather than
between arbitrary characters.

29-4 OS/2 Programming Guide-Volume II

Summary
Following are the OS/2 functions and structures used for drawing in windows.

Table 29-1. Window-Drawing Functions

Function Name Description

WlnCalcFrameRect Calculates a client rectangle from a frame
rectangle or a frame rectangle from a client
rectangle.

WinCopyRect Copies a rectangle from prc/Src to pre/Dest.

WinDrawBitmap Draws a bit map using the current image colors
and mixes.

Win Draw Border Draws the borders and interior of a rectangle.

WlnDrawText Draws a single line of formatted text into a
specified rectangle.

WlnEqualRect Compares two rectangles for equality.

WinFlllRect Draws a filled rectangular area.

WlnlnflateRect Expands a rectangle.

WinlntersectRect Calculates the intersection of the two source
rectangles and returns the result in the destination
rectangle.

WinlnvalidateRect Adds a rectangle to a window's update region.

WinlnvertRect Inverts a rectangular area.

WinlsRectEmpty Determines whether a rectangle is empty.

WinMakeRect Converts points to graphics points.

WinMapWindowPoints Maps points from dialog coordinates to window
coordinates or from window coordinates to dialog
coordinates.

WinOffsetRect Offsets a rectangle.

WinPtlnRect Queries whether a point lies within a rectangle.

WinQueryUpdateRect Returns the rectangle that bounds the update
region of a specified window.

WinQueryWindowRect Returns a window rectangle.

WinScrollWindow Scrolls the contents of a window rectangle.

WinSetRect Sets rectangle coordinates.

WinSetRectEmpty Sets a rectangle empty.

WinShowTrackRect Hides or shows the tracking rectangle.

WinSubtractRect Subtracts one rectangle from another.

WinTrackRect Draws a tracking rectangle.

WinUnionRect Calculates a rectangle that bounds the two source
rectangles.

WinValidateRect Subtracts a rectangle from the update region of an
asynchronous paint window, marking that part of
the window as visually valid.

Chapter 29. Drawing in Windows 29-5

Table 29-2. Window-Drawing Structures

Structure Name Description

POI NTL Point structure (long integer).

RECTL Rectangle structure.

29-6 OS/2 Programming Guide-Volume II

Chapter 30. Hooks

About Hooks

Hook Lists

A hook is a point in a system-defined function where an application can supply
additional code that the system processes as though it were part of the function.
This chapter describes how to use hooks in your PM applications.

Many operating system functions provide points where an application can hook in
its own code to enhance or override the default processing of the function. OS/2
contains many types of hooks, and the system maintains a separate hook list for
each type.

A hook list contains the addresses of the functions that the system calls while
processing a hook. An application can take advantage of a particular type of hook
by defining a hook function and using the WinSetHook function to enter the address
of the function in the corresponding hook list. The application uses one of the
following constants in the WinSetHook function to specify the hook type:

Table 30-1. Hook Types

Type Description

HK_CODEPAGECHANGED Enables applications to determine when the code
page changes.

HK_FINDWORD Enables applications to control where the
WinDrawText function places line breaks.

HK_HELP Monitors the WM_HELP message.

HK_ INPUT Monitors messages in the specified message
queue.

HK_JOURNALPLAYBACK Enables applications to insert messages into the
system message queue.

HK_JOURNALRECORD Allows applications to record mouse and keyboard
input messages.

HK_MSGFILTER Monitors input events during system modal loops.

HK_SENDMSG Monitors messages sent by using the WinSendMsg
function.

While executing a function that contains a hook, the system checks for any function
addresses in the hook list that correspond to the type of hook. If an address is
found, the system tries to locate and execute the function.

Message-Monitoring Hooks

© Copyright IBM Corp. 1992

Most hooks enable an application to monitor some aspect of the message stream.
For example, the input hook enables an application to monitor all messages posted
to a particular message queue.

A hook function can be associated with the system message queue, so that it
monitors messages for all applications, or with the message queue of an individual
thread, so that it monitors messages for that thread only.

30-1

Hook Functions

Hook functions associated with the system message queue can be called in the
context of any application. You must define system-queue hook functions in
separate dynamic link library (DLL) modules, because it is not possible to call
application-module procedures from other applications.

Hook functions associated with the message queue of a thread are called only in the
context of that thread. This kind of hook function typically is a locally-defined
function.

The function addresses in the hook lists associated with most message-monitoring
hooks are linked to form chains. The system passes a message to each hook
function referenced in the list, one after the other. Each function can modify the
message or stop its progress through the chain, preventing it from reaching the next
hook or destination window. The system calls chained hook functions in
last-installed, first-called order.

Each type of hook passes a characteristic set of arguments to the functions
referenced in the corresponding hook list. For an application to use a particular
hook, it must define a function that processes those arguments and enter the
address of the function in the hook list. This section describes the types of hooks
available in OS/2 and the requirements of the functions that process each hook type.

Input Hook
The input hook enables an application to monitor the system message queue or an
application message queue. The system calls an input-hook function whenever the
WinGetMsg or WinPeekMsg function is about to return a message. Typically, an
application uses the input hook to monitor mouse and keyboard input and other
messages posted to a queue.

The syntax for an input-hook function is as follows:

The pQmsg parameter is a far pointer to a QMSG structure that contains information
about the message.

The fs parameter of the lnputHook function can contain the following flags from the
WinPeekMsg function, indicating whether or not the message is removed from the
queue:

If an input-hook function returns TRUE, the system does not pass the message to the
rest of the hook chain or to the application. If the function returns FALSE, the
system passes the message to the next hook in the chain, or to the application if no
other hooks exist.

30·2 OS/2 Programming Guide-Volume II

An input-hook function can modify a message by changing the contents of the QMSG
structure, then return FALSE to pass the modified message to the rest of the chain.
The following problems can occur when a hook modifies a message:

• If the caller uses the WinPeekMsg or WinGetMsg function with a message filter
range (msgFilterFirst through msgFilterLast), the message is checked before the
hook functions are called, not after. If the input-hook function modifies the msg
field of the QMSG structure, the caller can receive messages that are not in the
range of the message filter of the caller.

• If the input-hook function changes a WM_ CHAR message from one character into
another-for example, if the function modifies all Tab messages into F6
messages-an application that depends on the key state is unable to interpret the
result. (When the Tab key is translated into the F6 key, the application receives
the F6 keystroke and enters a process loop, waiting for the F6 key to be
released; the application calls the WinGetKeyState function with the
HWND_DESKTOP and VK_F6 arguments).

Send-Message Hook
The send-message hook enables an application to monitor messages that the
system does not post to a queue. The system calls a send-message hook function
while processing the WinSendMsg function, before delivering the message to the
recipient window. By installing an input-hook function and a send-message hook
function, an application can monitor all window messages effectively.

The syntax for a send-message hook function is as follows:

The psmh parameter is a far pointer to an SMHSTRUCT structure that contains
information about the message.

The flnterTask parameter is TRUE if the message is sent between two threads, or
FALSE if the message is sent within a thread.

A send-message hook function does not return a value, and the next function in the
chain always is called. The function can modify values in the SMHSTRUCT structure
before returning.

Message-Filter Hook
The message-filter hook allows an application to provide input filtering (such as
monitoring hot keys) during system-modal loops. The system calls a message-filter
hook function while tracking the window size and movement, displaying a modal
dialog window or message box, tracking a scroll-bar, and during
window-enumeration operations.

The syntax of a message-filter hook function is as follows:

Chapter 30. Hooks 30-3

The msgf parameter has the following three values:

Table 30-2. Message Filter Hook Parameter Values

Value Meaning

MSGF _DIALOGBOX Message originated while processing a modal dialog window or
a message box.

MSGF _MESSAGEBOX Message originated while processing a message box.

MSGF_TRACK Message originated while tracking a control (such as a scroll
bar).

The pQmsg parameter of the MsgFilterHook function is a pointer to a QMSG
structure containing information about the message.

If a message-filter hook function returns TRUE, the system does not pass the
message to the rest of the hook chain or to the application. If the function returns
FALSE, the system passes the message to the next hook function in the chain, or to
the application if no other functions exist.

This hook enables applications to perform message filtering during modal loops that
is equivalent to the typical filtering for the main message loop. For example,
applications often examine a new message in the main event loop between the time
they retrieve the message from the queue and the time they dispatch it, performing
special processing as appropriate. An application usually cannot do this sort of
filtering during a modal loop, since the system executes the loop created by the
WinGetMsg and WinDispatchMsg functions. If an application installs a
message-filter hook function, the system calls the function between WinGetMsg and
WinDispatchMsg in the modal processing loop.

An application also can call the message-filter hook function directly by calling the
WinCallMsgFilter function. With this function, the application can use the same code
it uses in the main message loop to filter messages during modal loops. To do so,
the application encapsulates the filtering operations in a message-filter hook
function and calls WinCallMsgFilter between the calls to the WinGetMsg and
WinDispatchMsg functions, as shown in the following code fragment:

The last argument of the WinCallMsgFilter function is passed to the hook function;
the application can enter any value. The hook function can use that value to
determine from where the function was called by defining a constant such as
MSGF _MAINLOOP.

Journal-Record Hook
The journal-record hook allows an application to monitor the system message
queue and record input events. Typically, an application uses this hook to record a
sequence of mouse and keyboard events that it can play back later by using the
journal-playback hook. A journal-record hook function can be associated only with
the system message queue.

30-4 05/2 Programming Guide-Volume II

The syntax for a journal-record hook function is as follows:

The pQmsg parameter is a pointer to a QMSG structure containing information
about the message. The system calls the journal-record hook function after
processing the raw input enough to create valid WM_CHAR or mouse messages and
after setting the window-handle field of the QMSG structure.

A journal-record hook function does not return a value, and the system always calls
the next function in the chain. Typically, a journal-record hook function saves the
input events to a disk file, to be played back later. The hwnd field of the QMSG
structure is not important and is ignored when the message is read back.

The following messages are passed to the journal-record hook:

WM_CHAR
WM_BUTTONlDOWN
WM_BUTTONlUP
WM_BUTTON2DOWN
WM_BUTTON2UP
WM_BUTTON3DOWN
WM_BUTTON3UP
WM_MOUSEMOVE

The positions stored in the mouse messages are in screen coordinates. The system
does not combine mouse clicks into double clicks before calling the hook, since
there is no guarantee that both clicks will be in the same window when they are
read back.

The system passes a WM_JOURNALNOTIFY message to the journal-record hook
function whenever an application calls the WinGetPhysKeyState or
WinQueryQueueStatus function. This message is necessary because the system
message queue is only one message deep while a playback hook is active. For
example, the user might press the A, 8, and C keys while in record mode. While the
application is processing the A character message, the B key might be down;
WinGetPhysKeyState returns this information. However, during playback mode, the
system knows only that it currently is processing the A key.

Journal-Playback Hook
The journal-playback hook enables an application to insert messages into the
system message queue. Typically, an application uses this hook to play back a
series of mouse and keyboard events that were recorded earlier using the
journal-record hook. A journal-playback hook function can be associated only with
the system message queue.

Regular mouse and keyboard input is disabled as long as a journal-playback hook is
installed. It is important to notice that, since mouse and keyboard input are
disabled, this hook easily can hang the system.

Chapter 30. Hooks 30-5

The syntax for a journal-playback hook function is as follows:

The pQmsg parameter is a pointer to a QMSG structure that the journal-playback
hook function fills in with the message to be played back. If the fSkip parameter is
FALSE, the function should fill in the QMSG structure with the current recorded
message. The function returns the same message each time it is called, until fSkip

is TRUE. The same message is returned many times if an application is examining
the queue but not removing the message. If fSkip is TRUE, the function should
advance to the next message without filling in the QMSG structure, since the pQmsg

parameter is NULL when fSkip is TRUE.

The journal-playback hook returns a ULONG time-out value that tells the system
how many milliseconds to wait before processing the current message from the
playback hook. This enables the hook to control the timing of the events it plays
back.

The time field of the QMSG structure is filled in with the current time before the
playback hook is called. The hook should use the time stored in this field, instead of
the system clock to set up delays between events.

Help Hook
The help hook allows an application to include online help. The system calls a
help-hook function during the default processing of the WM_HELP message. Help
processing is done in two stages: creating the WM_HELP message and calling the
help hook. The WM_HELP message can come from the following sources:

• From a WM_ CHAR message, after translation by an ACCEL structure with the
AF _HELP style. The default system accelerator table translates the F1 key into a
help message. The WM_HELP message is posted to the current focus window,
which can be a menu, a button, a frame, or your client window.

• From a menu-bar selection, when the MIS_HELP style is specified for the
menu-bar item. The WM_HELP message is posted to the current focus window.

• From a dialog-window pushbutton, when the BS_HELP style is specified for the
pushbutton. The WM_HELP message is posted to the owner window of the
button, which normally is the dialog window.

• From a message box, when the MB_HELP style is specified for the message box.
The WM_HELP message is posted to the message box.

The WM_HELP message is posted to the current focus window. The default
processing in the WinDefWindowProc function is to pass the message up to the
parent window. If the message reaches the client window, it can be processed
there. If the message reaches a frame window, the default frame-window procedure
calls the help hook. The help hook also is called if a WM_HELP message is
generated while the application is in menu mode-that is, while a selection is being
made from a menu.

30-6 OS/2 Programming Guide-Volume II

The syntax for a help-hook function is as follows:

If a help-hook function returns TRUE, the system does not call the next help-hook
function in the chain. If the function returns FALSE, the system calls the next
help-hook function in the chain. The arguments passed to the function provide
contextual information, such as the screen coordinates of the focus window and
whether the message originated in a message box or a menu.

The WM_HELP message often goes to a frame window instead of to the client
window. The frame window processes a WM_HELP message as follows:

• If the window with the focus is the FID_CLIENT window, the frame window
passes the WM_HELP message to the FID_CLIENT window.

• If the parent of the window with the focus is the FID_CLIENT frame-control
window, the frame window calls the help hook, specifying the following:

• If the parent of the focus window is not an FID_CLIENT window (it could be the
frame window or a second-level dialog window), the frame window calls the help
hook, specifying the following:

An application receives the WM_HELP message in its dialog-window procedure.
The application can ignore the message, in which case the frame-window action
occurs as described, or the application can handle the WM_HELP message directly.

Menu windows receive a WM_HELP message when the user presses the Help
accelerator key (F1 by default) while a menu is displayed. Menu windows process
WM_HELP messages by calling the help hook, specifying the following:

Chapter 30. Hooks 30-7

A help-hook function should respond by displaying information about the selected
menu item.

The WinDefWindowProc function processes WM_HELP messages by passing the
message to the parent window. Typically, the message moves up the parent chain
until it arrives at a frame window.

Find-Word Hook
The find-word hook allows an application to control where the WinDrawText function
breaks a character string that is too wide for the drawing rectangle. The system
calls this hook from within the WinDrawText function, if the DT_WORDBREAK flag is
set. Typically, this hook is used in applications that use double-byte character sets
to avoid awkward line breaks.

The syntax for a find-word hook function is as follows:

The usCodePage parameter contains the code page identifier of the string to be
formatted; the pszText parameter contains a pointer to the actual string.

The cb parameter contains a value specifying the number of bytes in the string.
This value is O if the string is null terminated.

The ich parameter contains the index of the character in the string that intersects
the right edge of the drawing rectangle.

A find-word hook function uses these four parameters to determine the word that
contains the intersecting character. It then fills the remaining three parameters,
pichStart, pichEnd, and pichNext, with the indexes of the starting character of the
word, ending character of the word, and starting character of the next word in the
string.

If the find-word hook function returns TRUE, WinDrawText draws the string only up
to, but not including, the specified word. If the function returns FALSE, WinDrawText
formats the string in the default manner.

30-8 OS/2 Programming Guide-Volume II

Using Hooks

Codepage-Changed Hook
The codepage-changed hook notifies an application when the code page associated
with the specified message queue has been changed. The system calls a
codepage-changed hook function after setting the new code page. Typically, the
codepage-changed hook is used in applications that support multiple languages.

The syntax for a codepage-changed hook function is as follows:

The hmq parameter receives the handle of the message queue that is changing its
codepage. The usOldCodepage is the codepage identifier of the previous code
page; usNewCodepage is the identifier of the new code page.

A codepage-changed hook function does not return a value, and the system always
calls the next function in the chain.

This section explains how to perform the following tasks:

• Install and release hook functions.
• Monitor messages in a message queue.
• Monitor messages sent between windows.
• Record and play back input events.
• Specify line breaks for the WinDrawText function.

Installing and Releasing Hook Functions
You can install hook functions by calling WinSetHook, specifying the type of hook
that calls the function-whether the function is to be associated with the system
message queue or with the queue of a particular thread-and a pointer to a function
entry point. The following code fragment shows how to install a hook function in the
message queue of a thread:

Chapter 30. Hooks 30-9

Summary

Place hook functions associated with the system message queue in a dynamic link
library (DLL) separate from the application that installs the hook function. The
installing application needs the handle of the DLL module before it can install the
hook function. The DosloadModule function, given the name of the DLL, returns the
handle of the DLL module. Once you have the handle, you can call
DosQueryProcAddr to obtain the address of the hook function. Finally, use the
WinSetHook function to install the hook function address in the appropriate hook list.
WinSetHook passes the module handle, a pointer to the hook-function entry point,
and NULL for the message-queue argument, indicating that the hook function should
be associated with the system queue.

You can release a hook function (that is, remove its address from the hook list) by
calling the WinReleaseHook function with the same arguments that you used when
installing the hook function. Release all hook functions before the application
terminates, even though the system automatically releases them if the application·
does not.

A system hook can be released by using the WinReleaseHook function, but the DLL
module containing the hook function is not freed because system-hook functions are
called in the process context of every PM application in the system, causing an
implicit call to DosloadModule for all those processes. Since a call to the
DosFreeModule function cannot be made for another process, there is no way to
free the DLL modules. (However, since the hook function is no longer called, the
DLL segments of the module may be discarded or swapped.

An alternative method for installing a system-queue hook function is to provide an
installation function in the DLL along with the hook function. With this method, the
installing application does not need the handle of the DLL module. By linking with
the DLL, the application gains access to the installation function. The installation
function can supply the DLL module handle and other details in the call to the
WinSetHook function. The DLL also can contain a function that releases the
system-queue hook function. The application can call this hook-releasing function
when it terminates.

Following are the OS/2 functions and structures used with hook controls.

Table 30-3. Hook Functions

Function name Description

WlnCallMsgFllter Calls a message-filter hook.

WinReleaseHook Releases an application hook from a hook chain.

WlnSetHook Installs an application procedure in a specified hook chain.

Table 30-4. Hook Functions

Structure name Description

QMSG Message structure.

SMHSTRUCT Send-message-hook structure.

30-10 OS/2 Programming Guide-Volume II

Chapter 31. Clipboards

The clipboard is a small amount of system-managed random-access memory (RAM)
for user-driven data exchange. This is in contrast with dynamic data exchange
(DOE), which is application driven. While the clipboard only stores pointers to data,
its associated set of functions can be used in applications to move and exchange
data. This chapter describes how to use the clipboard in PM applications.

About the Clipboard

©Copyright IBM Corp. 1992

The clipboard enables the user to move data in a single application or exchange
data among applications. Typically, a user selects data in the application using the
mouse or keyboard, then initiates a cut, copy, or paste operation on that selection.
Figure 31-1 is an example of copying data from one application, and Figure 31-2
illustrates pasting that same data in another application by way of the clipboard.

.§earch... Ctrl+S
frlnt. ..
ftookmark ... Ctrl+B

~cw window Ctrl+N

/• DosAcknowledgeSignalException
•--------i indicates that a process wants to receive
11--------1 further signals. •/

C!!PY

~opytofile

~ppend to file

Ctrl+lns

Ctrl+F
Ctrl+A

F3

#define INCL_DOSEXCEPTIONS
#include <os2.h>

ULONG ulSignalNumber; E~it
--=-------ULONG ulrc; /•Return Code•/

ulrc • DosAcknowledgeSignalException(
ulSignalNumber);

f'!evious 1.§.earch 11frlnt11 !ndex 11Con!ents11ftack11 forward I

D D

...J

Figure 31-1. A Copy Operation Between Applications Using the Clipboard

Figure 31-2. A Paste Operation Between Applications Using the Clipboard

31-1

Descriptions of these operations are in the following table:

Table 31-1. Operations on Clipboard Data

Operation Description

Cut Deletes the selected data from the application and copies it to
the clipboard. Any previous contents of the clipboard are
destroyed.

Copy Copies the selected data to the clipboard. The selection remains
unchanged. Previous contents of the clipboard are destroyed.

Paste Deletes the selected data from the application and replaces it
with the contents of the clipboard. The contents of the clipboard
are not changed.

An application should not perform any clipboard operations unless the user initiates
them explicitly. Other OS/2 features, such as pipes, queues, shared memory, and
especially ODE should be used when data exchange is needed without user
involvement. For example, an application that continuously passes remotely
collected data to a data-analysis application must not use the clipboard. Such an
application, instead, should use the other interprocess data-communication
capabilities of the operating system.

The data on the clipboard is maintained in memory only. Clipboard data is lost
when the computer is turned off.

Shared Memory and the Clipboard
An application must store, in shared memory, text data that is destined for the
clipboard. To do so, the application calls the DosAllocSharedMem function with the
OBJ_GIVEABLE attribute to allocate a shared memory object, and then copies the
text data to the object. The application passes the clipboard a pointer, which the
clipboard uses to access the shared memory object. Clipboard functions use the
CFl_POINTER flag to indicate text data stored in a shared memory object.

To pass a bit map or metafile to the clipboard, an application passes the clipboard a
bit map or metafile handle. The clipboard functions make the bit map or metafile
shareable. The CFl_HANDLE flag is used in clipboard functions to indicate bit map
or metafile data.

After closing the clipboard, an application no longer can access the data it passed to
the clipboard. Likewise, when an application requests data from the clipboard, it
receives a pointer or handle that is good only until the application closes the
clipboard. Typically, the application either uses the data immediately before closing
the clipboard, or it copies the data to local memory for future use, then closes the
clipboard.

Clipboard Operations
An application uses the clipboard when cutting, copying, or pasting data. Typically,
an application places data on the clipboard for cut and copy operations and
removes data from the clipboard for paste operations. The following paragraphs
describe all these clipboard operations.

31-2 OS/2 Programming Guide-Volume II

Cut and Copy Operations
To put data on the clipboard, an application first calls the WinOpenClipbrd function
to verify that other applications are not trying to retrieve or set clipboard data. The
WinOpenClipbrd function does not return if another thread has the clipboard open; it
waits until either the clipboard is free or there is a message in the message queue
of the calling thread. In practice, the WinOpenClipbrd function waits until the
clipboard is available or until the calling application responds to a message. If the
clipboard cannot be opened before a message arrives, the application receives the
message, and the WinOpenClipbrd function continues to try to open the clipboard.
The WinOpenClipbrd function does not return until the clipboard is open. However,
the application continues to receive messages.

Once an application successfully opens the clipboard, it must remove any
previously stored data on the clipboard by calling the WinEmptyClipbrd function. If
the clipboard is not cleared, writing an existing format on the clipboard replaces the
old data in that format with the new data. Old data in other formats remains on the
clipboard.

After emptying the clipboard, an application should write its data to the clipboard in
as many standard formats as possible. For each format, the application passes the
data to the clipboard by calling the WinSetClipbrdData function, specifying each data
format. The clipboard is not cleared when a new format is written to it; all new data
formats coexist on the clipboard until it is cleared by the next clipboard user.

If an application passes NULL as the u/Data parameter of the WinSetClipbrdData
function, applications must render the data on request.

Finally, when an application finishes writing the clipboard data, it must release the
clipboard by calling the WinCloseClipbrd function so that other applications can use
the clipboard.

Paste Operation
To retrieve data from the clipboard, an application first must call the
WinOpenClipbrd function to verify that no other applications are trying to retrieve or
set the clipboard data.

Once an application successfully opens the clipboard, it calls the
WinQueryClipbrdData function, specifying a preferred format. If that format is not
available (indicated by a NULL return from the WinQueryClipbrdData function) the
application should continue to call WinQueryClipbrdData for other possible formats
until it either receives the data or runs out of format choices.

If the clipboard contains one of the requested formats, the WinQueryClipbrdData
function returns a 32-bit integer, the meaning of which depends on the particular
format. For text data, the return value is a pointer to a shareable memory object
containing the text. For bit map data, the return value is a bit map handle. For
metafile data, the return value is a metafile handle.

It is important that an application use the WinCloseClipbrd function to close the
clipboard as soon as possible so that other applications can access it.

Chapter 31. Clipboards 31-3

Standard Clipboard-Data Formats
The clipboard can accept data in three standard formats: text, bit map, and metafile.

Applications can either use these formats or create their own private formats.

All PM applications can access the clipboard, so applications can copy to the

clipboard the same selection of data in many different formats. For example, a word

processor that supports multiple fonts might write the same selection of text to the

clipboard in three different formats: straight text, rich text, and metafile. Then,

another application (pasting from the clipboard) could choose the appropriate

format.

Applications can use the following constants to specify the standard clipboard-data

formats:

Table 31-2. Clipboard Data Formats

Format Description

CF_BITMAP Specifies that the data in the clipboard is a bit map.

CF _DSPBITMAP Specifies that the data in the clipboard is a bit map
representation of a private-data format. The clipboard viewer
use.s this format to display a private format.

CF _DSPMETAFILE Specifies that the data in the clipboard is a metafile
representation of a private-data format. The clipboard viewer
uses this format to display a private format.

CF_DSPTEXT Specifies that the data in the clipboard is a text representation of
a private-data format. The clipboard viewer uses this format to
display .a private format.

CF _METAFILE Specifies that the data in the clipboard is a metafile.

CF_TEXT Specifies that the data in the clipboard is an array of text
characters. These characters can include newline characters to
indicate line breaks. The NULL character indicates the end of the
text data.

Private Clipboard-Data Formats
Applications that use the clipboard to move data within the documents of the

application can use private clipboard-data formats when standard formats are

insufficient for representing clipboard data. For example, a word processor might

have a rich-text format that contains font and style information in addition to the

usual text characters. Clearly, if the word processor uses the clipboard to support

cut, copy, and paste operations for moving data in its documents, a standard text

format will be inadequate.

In such case, the word processor should write at least two formats to the clipboard

for each cut or copy operation: a standard text format representing the text of the

current selection and a private rich-text format representing the true state of the

selection. If the word processor performs a paste operation by using clipboard data,

it can use the rich-text format to retain all formatting. If another application

requests the same data, it can use the standard-text format if it does not recognize

the private format. Also, the word processor should be able to render data in

CF _BITMAP and CF _METAFILE formats for painting and drawing applications.

31-4 OS/2 Programming Guide-Volume II

Format Identification Number
Each private format must have a unique identification number. To obtain an
identification number, the application registers the name of the private format in the
system atom table. The system assigns a unique identification number for the
format name. Other applications having access to the format name can query the
system atom table for the format identification number.

An application can interpret its own private formats and request them from the
clipboard for cutting and pasting its own data. Other applications that know the
private-format identification number also can interpret the formatted data.

Display Formats
OS/2 provides three standard display formats for applications that use private
formats: CF _DSPTEXT, CF _DSPBITMAP, and CF _DSPMETAFILE. These formats
correspond to the standard text, bit map, and metafile formats, with the exception
that they are intended for use only by the clipboard viewer. An application that uses
a private format should write one of the DSP formats that approximates the
appearance of the private data so that the clipboard viewer can display the data
regardless of the format. For example, a word processor using the rich-text format
also would write a CF _DSPBITMAP formatted picture of the selected text that
contains all the type fonts and styles.

Notice that you can choose delayed rendering for DSP formats because there might
not always be a clipboard viewer active on the screen. With delayed rendering, an
application actually does not render the format unless it is requested to do so.

Delayed Rendering
An application can pass NULL as the u/Data parameter of the WinSetClipbrdData
function instead of a pointer or a handle. This indicates that the data is rendered
only when another application requests it from the clipboard. This is useful if an
application supports several clipboard formats that are time-consuming to render.
With delayed rendering, an application can send NULL handles for each clipboard
format that it supports and render individual formats only when the format actually
is requested from the clipboard. An application can either write data for standard
formats or choose delayed rendering for more complex formats.

When an application uses delayed rendering for one or more of its clipboard
formats, it must become the clipboard owner. As long as the application is the
clipboard owner, it receives a WM_RENDERFMT message whenever a request is
received by the clipboard for a format using delayed rendering. When the
application receives such a message, it renders the data and passes the pointer or
handle to the clipboard by calling the WinSetClipbrdData function. The rules for
shared-memory access for rendered data are the same as those for standard
clipboard data. This simply is a delayed execution of the operation that occurs if the
data does not have delayed rendering.

The clipboard owner, with one or more delayed-rendering formats on the clipboard,
receives a WM_RENDERALLFMTS message just before the clipboard-owner
application terminates. This ensures that the application renders all of its data
before terminating.

Chapter 31. Clipboards 31-5

Clipboard Viewer
A window can become a clipboard viewer and display the current contents of the
clipboard. The clipboard viewer is informed whenever the clipboard contents
change. Typically, the clipboard viewer is a window that can draw the standard
clipboard formats. The clipboard viewer is a convenience for the user; it does not
have any effect on the data-transaction functions of the clipboard.

To create a clipboard viewer, an application calls WinSetClipbrdViewer, specifying
the window in which the clipboard data will be displayed. Usually this is the client
window of an application. There can be only one clipboard viewer at any time in the
system, so setting a clipboard viewer replaces any previous clipboard viewer. The
WinQueryClipbrdViewer function receives the handle to the current clipboard viewer
so that the application can reset it when finished with the clipboard viewer.

Once a window becomes the clipboard viewer, it receives WM_DRAWCLIPBOARD
messages whenever the contents of the clipboard change. The window should
respond to these messages by drawing the contents of the clipboard.

The clipboard viewer displays all the standard formats and should process
CFl_OWNERDISPLAY items by sending the appropriate message to the clipboard
owner.

The clipboard viewer cannot display private-format data. For this reason, an
application that writes private-format data to the clipboard also must write the data
in one of the three standard-display formats: CF_DSPTEXT, CF_DSPBITMAP, or
CF _DSPMETAFILE.

If a standard format is not provided in addition to the private formats, the clipboard
owner must draw the clipboard data in the clipboard-viewer window. An application
uses the CFl_OWNERDRAW flag to identify clipboard data that the clipboard owner
draws. When the clipboard viewer encounters data with the CFl_OWNERDRAW flag
set, it sends WM_PAINTCLIPBOARD messages to the clipboard owner whenever the
data must be drawn, scrolled, or sized.

The clipboard viewer determines the attributes of a particular clipboard format by
calling the WinQueryClipbrdFmtlnfo function. The identity of the current owner is
found by calling the WinQueryClipbrdOwner function.

Clipboard Owner
The clipboard owner is any application window connected to the clipboard data.
Following are situations in which an application would call WinSetClipbrdOwner to
become the clipboard owner:

• The application calling WinSetClipbrdData passes a NULL pointer or handle to
the clipboard, indicating that the application renders the data in a particular
format on request. As a result, the system sends rendering requests to the
current clipboard owner.

• The application calling WinSetClipbrdData passes data with the
CFl_OWNERFREE attribute, indicating that the application frees memory for data
when the clipboard is emptied. As a result, the system sends ow.ner-free
requests to the current clipboard owner.

• The application calling WinSetClipbrdData passes data with the
CFl_OWNERDISPLAY attribute, indicating that the owner application draws the
data in the clipboard viewer. As a result, the clipboard viewer sends
drawing-related requests to the current clipboard owner.

31-6 OS/2 Programming Guide-Volume II

The window specified in the call to the WinSetClipbrdOwner function responds to the
following messages:

Table 31-3. Messages Handled by Clipboard Owner

Message Description

WM_RENDERFMT Sent by the system to the clipboard owner when a
particular format with delayed rendering must be
rendered. The receiver must render the data in the
specified format and pass it to the clipboard by
calling the WinSetClipbrdData function.

WM_RENDERALLFMTS Sent by the system to the clipboard owner just
before the owner application terminates. The
receiver must render the clipboard data in all
formats on the clipboard with delayed rendering. It
must pass the data for each format to the clipboard
by calling the WinSetClipbrdData function.

WM_DESTROYCLIPBOARD Sent by the system to the clipboard owner when
the clipboard is cleared by another application
calling the WinEmptyClipbrd function. The receiver
must free the memory occupied by any clipboard
formats using the CFl_ OWNERFREE attribute.

WM_SIZECLIPBOARD Sent by the clipboard viewer to the clipboard
owner when the clipboard contains the data handle
with the CFl_OWNERDISPLAY attribute and when
the clipboard-viewer changes size. When the
clipboard viewer is being destroyed or reduced to
an icon, this message is sent with the coordinates
of the opposite corners set to (0,0), which permits
the owner to free its display resources.

WM_ VSCROLLCLIPBOARD Sent by the clipboard viewer to the clipboard
owner when the clipboard contains data with the
CFl_OWNERDISPLAY attribute and when an event
occurs in the clipboard-viewer scroll bars. The
receiver must respond to this message by
scrolling the image, invalidating the appropriate
area of the clipboard viewer, and updating the
slider position.

WM_HSCROLLCLIPBOARD Sent by the clipboard viewer to the clipboard
owner when the clipboard contains data with the
CFl_OWNERDISPLAY attribute and when an event
occurs in the scroll bars of the clipboard viewer.
The receiver must respond to this message by
scrolling the image, invalidating the appropriate
area of the clipboard viewer, and updating the
slider position.

WM_PAINTCLIPBOARD Sent by the clipboard viewer to the clipboard
owner when the clipboard contains data with the
CFl_OWNERDISPLAY attribute and when the
clipboard-viewer client area needs repainting. The
receiver must respond to this message by painting
the requested format (by calling WinGetPS for the
window handle of the clipboard viewer).

Chapter 31. Clipboards 31-7

An application automatically loses ownership of the clipboard when the clipboard

data is cleared by the WinEmptyClipbrd function. Ownership is necessary only

when data is present on the clipboard. Typically, an application loses ownership

when another application places data on the clipboard.

Using the Clipboard
You can use the clipboard functions to perform the following tasks:

• Put data on the clipboard.
• Retrieve data from the clipboard.
• View data on the clipboard.

Putting Data on the Clipboard
The following code fragment shows how an application places text data on the

clipboard, how it opens the clipboard, copies the text to a shared memory object,

empties the clipboard, and passes the pointer to the clipboard:

31-8 OS/2 Programming Guide-Volume II

Retrieving Data from the Clipboard
The following code fragment shows how to open the clipboard, retrieve data in the
requested format, copy the data to local memory, and close the clipboard:

Chapter 31. Clipboards 31-9

Viewing Data on the Clipboard
The following code fragment shows how a sample clipboard viewer responds to the
WM_DRAWCLIPBOARD message, drawing text and bit map data in its window.
Notice that the code uses the data retrieved from the clipboard before closing the
clipboard. An alternative strategy is to copy the data and then close the clipboard.
In any case, the original data from the clipboard cannot be used after the clipboard
is closed.

31-10 OS/2 Programming Guide-Volume II

Chapter 31. Clipboards 31-11

Summary
Following are the OS/2 functions and messages used with the clipboard:

Table 31-4. Clipboard Functions

Function name Description

WlnCloseCllpbrd Closes the clipboard, enabling other applications
to open it by calling WinOpenClipbrd.

WlnEmptyCllpbrd Empties the clipboard~ removing and freeing all
handles to data that is in the clipboard.

WinEnumCllpbrdFmts Enumerates the list of clipboard data formats
available in the clipboard.

WinOpenCllpbrd Opens the clipboard.

WlnQueryCllpbrdData Obtains a handle to the current clipboard data with
a specified format.

WlnQueryCllpbrdFmtlnfo Determines whether a particuiar format of data is
present in the clipboard; and, if so, provides
information about that format.

WlnQueryCllpbrdOwner Obtains any current clipboard owner window.

WlnQueryCllpbrdVlewer Obtains any current clipboard viewer window.

WlnSetCllpbrdData Puts data into the clipboard.

WinSetClipbrdOwner Sets the current clipboard owner window.

WlnSetCllpbrdVlewer Sets the current clipboard viewer window to a
specified window.

Table 31-5. Clipboard Messages

Message Description

WM_DESTROYCLIPBOARD Sent to the clipboard owner when the clipboard is
emptied through a call to WinEmptyClipbrd.

WM_DRAWCLIPBOARD Sent to the clipboard viewer window whenever the
contents of the clipboard change, that is, as a
result of the WinCloseClipbrd call following a call
to WinSetClipbrdData.

WM_HSCROLLCLIPBOARD Sent to the clipboard owner window when the
clipboard contains a data handle for the
CFI_ OWNERDISPLA Y format.

WM_PAINTCLIPBOARD Sent when the clipboard contains a data handle
with the CFl_OWNERDISPLAY information flag set.

WM_RENDERALLFMTS Sent to the application that owns the clipboard
while the application is being destroyed.

WM_RENDERFMT A request to the clipboard owner to render the
data of the format specified in usfmt.

WM_SIZECLIPBOARD Sent when the clipboard contains a data handle for
the CFl_OWNERDISPLAY format, and the clipboard
application window has changed size.

WM_ VSCROLLCLIPBOARD Sent to the clipboard owner window when the
clipboard contains a data handle for the
CFl_ OWNERDISPLA Y format.

31-12 OS/2 Programming Guide-Volume II

"' Chapter 32. Dynamic Data Exchange

The Dynamic Data Exchange (ODE) protocol uses messages to communicate
between applications that share data, and uses shared memory as the means of
exchanging data between applications. Applications can use ODE for one-time data
transfers and for ongoing exchanges in which the applications send updates to one
another as new data becomes available. This chapter explains how to use DOE in
PM applications.

About Dynamic Data Exchange
DOE is different from the clipboard data-transfer component that also is part of this
operating system. One difference is that, almost always, the clipboard is used as a
one-time response to a specific action by the user, such as choosing Paste from a
menu. ODE, on the other hand, is often initiated by a user, but typically continues
without the user's further involvement.

Client and Server Interaction

© Copyright IBM Corp. 1992

DOE transactions always take place between a client application and a server
application. The client initiates the exchange by requesting data from the server.
The server responds by providing the requested data to the client. A server can
have many clients simultaneously; and a client can request data from multiple
servers.

An application can be both a client and a server at the same time. For example, one
application could receive data from another application as a client, and then act as a
server by passing the data to yet another application. The important distinction
between a client and a server is that only the client initiates DDE transactions.

A ODE transaction actually takes place between two windows, one for each of the
participating applications. Applications open a window for each conversation in
which they engage. (Notice that these windows are not necessarily visible.) A
window is identifled by its handle. The window belonging to the server application
is the server window; the window belonging to the client application is the client
window. Figure 32-1 illustrates how a link is established.

Establishing a Link
DOE Client DOE Server

WinDDEPostMsg (WM_DDE_ADVISE) case WM_DDE_ADVISE:
.

case WM_DDE_ACK:_ WinDDEPostMsg (WM_DDE_ACK) - .
.

-+
(WM_DDE_DATA) case WM_DDE_DATA: ..._ WinDDEPostMsg --

J

Figure 32-1. Linking a DDE Client with a DDE Server

32-1

Sample DDE System
There are many potential uses of ODE in real-time data acquisition applications.

This section presents an example of one such use: a ODE-based, real-time system

for tracking portfolios. Two hypothetical PM applications cooperate in this example.

One application, named the collector, is a specialized interface that draws data from

an online data service. The other application is a spreadsheet. Both applications

use the DOE protocol.

The sample spreadsheet has the following layout:

A B c D

1 Stock Shares Price Extension

2 BTRX 1000 148 148000

3 HLOW 2000 26 52000

4 WRLD 200 24 4800

5 ZMXI 2000 93 186000

6 390800

Without ODE, this spreadsheet could be updated by using the clipboard to copy

numbers, manually, from the screen display of the collector application to the

spreadsheet. This would require screen sharing or switching between applications,

and also would require that the user pay close attention to the price data, and

undertake the data exchange personally.

With DDE, this system could be much more automatic, providing the spreadsheet

wiih ihe curreni vaiues ior rnuitipie data items, without iiiterveiitkm by the use;.

DOE would enable the user to set up an exchange between the two applications that

would keep the spreadsheet up to date whenever a change occurred in the value of

specified stocks. Once this connection was established, the cell values in the

spreadsheet always would reflect the most current data available from the collector.

This system would facilitate the timely analysis of realtime data.

The usefulness of the ODE protocol is not restricted to specialized realtime

data-acquisition applications. Productivity software, in general, can benefit

significantly from the protocol. For example, suppose a monthly report is prepared

using a graphics-and-text word processor, and that the report includes graphs

generated in a separate business-graphics package. Without DOE, someone must

manually copy and paste each month's new graphs into each month's report. With

DOE, the word processor could establish a permanent link to the charting
application so that any changes made to the charting document would be reflected

in the word-processing document, either automatically or by request.

Detailed DDE Example
I

For a detailed view of the workings of the ODE protocol, here is an example that

describes the collector and spreadsheet interaction and illustrates the forwarding of

stock quotes from the collector application to the spreadsheet. For simplicity, this

example is limited to the exchange of quotes for a single stock, BTRX.

32-2 OS/2 Programming Guide-Volume II

The collector DOE server application is started first. Typically, applications
designed to operate as dedicated ODE servers have a user interface for
initialization, then run as icons at the bottom of the Presentation Manager screen.
As part of the initialization process, the collector DOE server application performs
the necessary tasks (such as entering passwords and testing) to ensure that it can
provide data to clients.

The spreadsheet is started next, and the stock-portfolio document is loaded. At this
time, the spreadsheet calls the WinOdelnitiate function, which sends a
WM_ODE_INITIATE message to all top-level frame windows, that is, frame windows
that have HWND_DESKTOP as their parent. The WM_DDE_INITIATE message is a
request to initiate an exchange with an application on a specified topic-in this case,
NYSE. An application can accept this message by responding with a positive
WM_ODE_INITIATEACK message, or can decline it by passing the message on to
the WinOefWindowProc function. If no application accepts the request, the
spreadsheet assigns an error value to the external reference and its DOE activity
concludes.

If the collector application acknowledges the request, the spreadsheet can use the
newly established exchange to request the collector application to provide
continuous updates on a specified data item. To make this request, the spreadsheet
posts a WM_DDE_AOVISE message to the collector application (actually, to a
window within the collector application that is acting as the message recipient for
DOE messages), indicating that updates must be sent every time there is a new
value available for the data item, BTRX, and that the updates should be in a
particular format-for example, DOEFMT _TEXT.

Upon receiving this message, the collector application records the request in its
database and posts a WM_DDE_ACK message to the spreadsheet. From then on,
the collector application posts a WM_DOE_DATA message to the window in the
spreadsheet that initiated the exchange whenever it receives a new BTRX stock
quote from the server. Each of these messages carries a pointer to a
shared-memory object that contains the data, rendered in the requested format.
Whenever the spreadsheet receives such. a message, it retrieves the data from the
referenced memory object and uses the data to update the value of the cell
containing the external reference.

The periodic updates continue until the spreadsheet document is closed. At that
point, the spreadsheet application posts a WM_DOE_UNADVISE message to the
collector application, indicating that further updating is unnecessary. Upon receipt
of this message, the collector application removes the corresponding data request
from its database and posts a positive WM_DOE_ACK message back to the
spreadsheet.

Finally, unless the spreadsheet initiates other data exchanges under this same
topic, it posts a WM_DDE_TERMINATE message to the collector application,
indicating the end of the DOE transaction. The collector application responds with a
WM_DDE_TERMINATE message.

Applications, Topics, and Items
DOE uses the three-level hierarchy-application, topic, and item- to uniquely
identify a unit of data. An application is the name of the server from which the data
is desired. A topic is a logical data context. For applications that operate on
file-based documents, topics usually are file names; for other applications, they are
other application-specific strings. An item is a data object that can be passed in a
DOE transaction. For example, an item might be a single integer, a string, several

Chapter 32. Dynamic Data Exchange 32-3

paragraphs of text, or a bit map. Using the collector and spreadsheet model
described earlier, the application name is collector, the topic name is NYSE, and the
item name is BTRX.

The System Topic
The system topic provides a context for information that may be of general interest
to any partners in a DOE transaction. Applications are encouraged to support the
system topic at all times. The string used for the system topic is defined in the PM
header files as SZDDESYS_ TOPIC.

DOE applications should request an exchange on the system topic with a NULL
application name when they start up, to find out what kinds of information other
DOE-capable programs can provide.

The system topic must support the following items as well as any other items the
application uses:

Table 32-1. DDE System Topics

Item Description

SZDDESYS_ITEM_FORMATS A list of DOE format numbers that the
server can render.

SZDDESYS_ITEM_HELP A text description of the server's DOE
services.

SZDDESYS_ITEM_PROTOCOLS A list of protocol names the server
supports. A protocol is a set of DOE
execute commands, each having a
standard meaning.

SZDDESYS_ITEM_RESTART A string that a client can pass to
DosExecPgm to invoke a server that is
not running.

SZDDESYS_ITEM_RTNMSG Supporting detail for the most recently
issued WM_DDE_ACK message. (This is
useful when more than 8 bits of
application-specific return code are
required.)

SZDDESYS_ITEM_SECURITY A security-sensitive server application.
Any client can initiate a conversation with
a security-sensitive server, but the server
responds only to the Security topic.
Typically, the server requires a password
from the client before any further data
exchange can take place.

SZDDESYS_ITEM_STATUS An indication of the current status of the
server.

SZDDESYS_ITEM_SYSITEMS A list of the items supported under the
system topic by this server.

SZDDESYS_ITEM_ TOPICS A list of the topics currently supported by
the application. (This can vary from
moment to moment).

Individual elements of lists should be delimited by tabs (the DDEFMT _TEXT format).

32-4 OS/2 Programming Guide-Volume II

DDE Initiation
A client application initiates a ODE conversation by calling the WinDdelnitiate
function, specifying the server application-name string and the topic-name string.
WinDdelnitiate fills a DDEINIT structure with the specified strings, then sends a
WM_DDE_INITIATE message to all frame windows that have HWND _DESKTOP as
their parent. The message contains the handle of the client application and a
pointer to the DDEINIT structure. The DDEINIT structure has the following form:

Because the message is sent rather than posted, WinDdelnitiate requires all the
recipients of the message to respond to the message before returning control to the
client application. Figure 32-2 illustrates the initial flow of a DOE conversation.

ODE Client Top-level frame

WinDdelnitiate ()

Top-level frame

Top-level frame

case WMXDDE-INITIATE:

WinDDERESPOND ()

Figure 32-2. Initiating a DDE Conversation

Any potential server must contain a server window. A server window is a top-level
frame window that has been subclassed to retrieve and process WM_DDE_INITIATE
messages. For detailed information about window classes, see Chapter 3, "Window
Classes" on page 3-1. When a server window retrieves WM_DDE_INITIATE, it
examines the application-name and topic-name strings in the DDEINIT structure. If
the application-name string matches, and the server supports the requested topic,
the server acknowledges the client's request.

Either the application-name or topic-name string can be null. If the
application-name string is null, all servers check the topic-name string. Each server
that supports the topic sends a separate acknowledgment to the client. If the
topic-name string is null, the server sends an acknowledgment for each supported
topic. Using null strings, a client can obtain the names of all the active servers in
the system or the names of all the topics a server supports.

Chapter 32. Dynamic Data Exchange 32-5

The following code fragment shows how servers respond to WM_DDE_INITIATE
messages:

A server acknowledges its support of a specific topic by calling the WinDdeRespond
function, specifying the handle of its server window, its application name, and the
name of the supported topic. WinDdeRespond fills a DDEINIT structure with the
specified strings, then sends a WM_DDE_INITIATEACK message to the client. The
message contains the handle of the server window and a pointer to the DDEINIT
structure. The client examines the topic-name string in the DDEINIT structure and
decides whether to begin a transaction on the topic.

It is legitimate for two applications that agree on some unspecified protocol and that
exchange window handles by some means, to use ODE messages on those window
handles without going through an initiate sequence.

An application typically does not need to fill in a DDEINIT structure; the
WinDdelnitiate and WinDdeRespond functions automatically fill the structure.
However, applications must extract the application name and topic name from the
DDEINIT structure when receiving a WM_DDE_INITIATE or WM_DDE_INITIATEACK
message.

Shared-Memory Object
After the client initiates a conversation, the client interacts with the server by
issuing transactions. A transaction is a client's request that the server perform a
particular action.

To issue a transaction, the client allocates a shared-memory object, writes data
about its request to the object, then calls the WinDdePostMsg function to post a
transaction message to the server. The transaction message contains the
client-window handle and a pointer to the shared-memory object. When the server
receives the message, it uses the pointer to access the shared-memory object.

The server responds by allocating a shared-memory object, writing its response to
the object, then calling WinDdePostMsg to post a response message to the client.
The response message contains the server-window handle and a pointer to the
shared-memory object.

A DDESTRUCT structure occupies the first part of the memory object. Next comes
the item-name string, followed by the actual data being exchanged. The offset fields
of the DDESTRUCT structure must be set to point to the name string and the
beginning of the data. The cbData field also must be set to indicate the number of
bytes of data.

32-6 OS/2 Programming Guide-Volume II

The sender of a ODE transaction message must allocate a shared-memory object
using the DosAllocSharedMem function, then call the DosGiveSharedMem function
to share the object with the receiving application. To share an object, the sender
must know the process identifier of the recipient. The process identifier can be
obtained by calling the WinQueryWindowProcess function for the recipient's window
handle.

The sender should not try to access the object after sending it to the recipient in a
DOE message. After posting a transaction message, the WinOdePostMsg function
automatically frees the shared-memory object from the sender' virtual address
space. An application need not call DosFreeMem for this purpose. However, the
recipient should call DosFreeMem when it is finished using the object.

Transaction Status Flags
DOE client and server applications can specify status flags in the DOESTRUCT
structure. These flags are constant values that applications use to control various
aspects of a DOE transaction. They can be combined in the fsStatus word of the
DOESTRUCT structure by using the OR operator. Following is a list of the DOE
status flags:

Table 32-2. DOE Status Flags

Flag Description

DDE_FACK Indicates a positive acknowledgment.

DDE_FACKREQ Requests an acknowledgment from the receiving application.

DDE_FAPPSTATUS Indicates that the upper 8 bits of the status word are used for
application-specific data.

DDE_FBUSY Indicates that the application received a request but cannot
respond because it is busy filling an earlier request.

DDE_FNODATA Indicates that no data is to be transferred in response to the
WM_DDE_ADVISE message.

DDE_FRESERVED Reserved; must be 0.

DDE_FRESPONSE Indicates a response to a WM_DDE_REQUEST message.

DDE_NOTPROCESSED Indicates that the message received is not supported.

Transaction and Response Messages
DOE applications use the WinDdePostMsg function to communicate during
data-exchange transactions. A client application posts transaction messages to a
server. The server application responds by posting acknowledgment messages to
the client.

Transaction and acknowledgment messages have the same structure. The first
message parameter contains the handle of the sending window; the second contains
a pointer to the shared-memory object that contains message information.

The DOE protocol defines five transaction types: advise, unadvise, request, poke, /
and execute. !These transactions are permitted only within an exchange begun by
using the WM_ODE_INITIATE message. Each transaction type has a corresponding
message that a client uses to initiate the transaction with a server. These messages
include WM_DOE_ADVISE, WM_DDE_UNAOVISE, WM_DDE_REQUEST,
WM_DDE_POKE, and WM_ODE_EXECUTE.

Chapter 32. Dynamic Data Exchange 32-7

A server acknowledges a transaction message by posting a WM_DDE_ACK
message to the client. The client must examine the status field of the DDESTRUCT
structure to determine whether the response is positive or negative.

A server application posts a WM_DDE_DATA message to the client to indicate that
requested data is available. If the status bit of the DDESTRUCT structure has the
DDE_FACKREQ flag set, the client must acknowledge receipt of the data by sending
a WM_DDE_ACK message to the server.

The fifth parameter of the WinDdePostMsg function is a flag used to specify whether
to try to post a message again if the first attempt failed because the destination
queue was full. If the retry flag is set, WinDdePostMsg posts the message at
1-second intervals until the message is posted successfully.

The following sections explain the five basic types of ODE transactions and the
messages involved with each.

Request and Poke Transactions
A client application can use the DOE protocol to obtain a data item from a server
(WM_DDE_REQUEST) or to submit a data item to a server (WM_DDE_POKE).

The client posts a WM_DDE_REQUEST message to the server, specifying an item
and format by allocating a shared-memory object, filling in a DDESTRUCT structure,
and passing the structure to the WinDdePostMsg function.

If the server is unable to satisfy the request, it sends the client a negative
WM_DDE_ACK message. If the server can satisfy the request, it renders the item in
the requested format, includes it with a DDESTRUCT structure in a shared-memory
object, and posts a WM_DDE_DATA message to the client.

Upon receiving a WM_DDE_DATA message, the client processes the data item. At
the beginning of the shared-memory object, the DDESTRUCT structure contains a
status word indicating whether the sender requested an acknowledgment message.
If the DDE_FACKREQ bit of the status word is set, the client must send the server a
positive WM_DDE_ACK message.

Upon receiving a negative WM_DDE_ACK message, the client can ask for the same
item again, specifying a different ODE format. Typically, a client first asks for the
most complex format it can support, then steps down, if necessary, through
progressively simpler formats, until it finds one the server can provide.

Advise and Unadvise Transactions
A client application can use ODE to establish a link to an item in a server
application. When such a link is established, the server sends periodic updates
about the linked item to the client (typically, whenever the data associated with the
item in the server application has changed). A permanent data stream is
established between the two applications and remains in place until it is explicitly
disconnected.

The client sends the server a WM_DDE_ADVISE message to set up the data link.
The advise message contains a shared-memory pointer containing a DDESTRUCT
structure with the item name, format information, and status information.

If the server has access to the requested item and can render it in the desired
format, the server records the new link, then sends the client a positive
WM_DDE_ACK message. Until the client issues a WM_DDE_UNADVISE message,

32-8 OS/2 Programming Guide-Volume II

the server sends data messages to the client every time a change occurs in the
source data associated with the item in the server application.

If the server is unable to satisfy the request, it sends the client a negative
WM_DDE_ACK message.

When a link is established with the DDE_FNODATA status bit cleared, the client is
sent the data each time the data changes. In such cases, the server renders the
new version of the item in the previously specified format and posts a
WM_DDE_DATA message to the client.

When the client receives a WM_DDE_DATA message, it extracts data from the
shared-memory object by using the DDESTRUCT structure at the beginning of the
object. If the DDE_FACKREQ status bit in the status word of the DDESTRUCT
structure is set, the client must post a positive WM_DDE_ACK message to the
server.

When a link is established with the DDE_FNODATA status flag set, a notification, not
the data itself, is posted to the client each time the data changes. In this case, the
server does not render the new version of the item when the source data changes,
but simply posts a WM_DDE_DATA message with 0 bytes of data and the
DDE_FNODATA status flag set.

The client can request the latest version of the data by performing a regular
one-time WM_DDE_REQUEST transaction, or it can simply ignore the data-change
notice from the server. In either case, if the DDE_FACKREQ status bit is set, the
client should send a positive WM_DDE_ACK message to the server.

When a client sends a WM_DDE_ADVISE message on a topic/item pair that is
already engaged in an advise loop but has a different format specified, the server
interprets this as a request to add an advise loop with the given format requested.
Therefore, several advise loops can exist for a given topic/item pair. If a server
does not support this extent of advise loops, it rejects the advise request.

Correspondingly, when a server receives a WM_DDE_UNADVISE message, the
server must compare the format field with the current format of the advise loop.
Only if the specified format is O (wildcard) or matches an active advise loop does the
server stop the advise loop and return a positive acknowledgment.

To terminate a specific item link, the client posts a WM_DDE_UNADVISE message to
the server. The server ensures that the client currently has a link to the specified
item in this exchange. If the link exists, the server sends a positive WM_DDE_ACK
message to the client and no longer sends updates on the item in this exchange. If
the server has no such link, it sends a negative WM_DDE_ACK message.

To terminate all links for a particular exchange, the client application posts a
WM_DDE_UNADVISE message with a null item name to the server. The server
ensures that the exchange has at least one link currently established. If so, the
server posts a positive WM_DDE_ACK message to the client, and no longer sends
any updates in the exchange. If the server has no links in the exchange, it posts a
negative WM_DDE_ACK message.

Chapter 32. Dynamic Data Exchange 32-9

Execute Transaction
A PM application can use the ODE protocol to cause a command or series of
commands to be executed in another application. Such remote executions are
performed by the WM_DDE_EXECUTE transaction.

To execute a remote command, the client application posts to the server a
WM_DDE_EXECUTE message containing a pointer to a shared-memory object that
contains a DDESTRUCT structure and a command string.

The server attempts to execute the specified string according to some agreed-upon
protocol. If successful, the server posts a positive WM_DDE_ACK message to the
client; if unsuccessful, a negative WM_DDE_ACK message is posted.

DDE Termination
At any time, either the client or the server may terminate an exchange by issuing a
WM_DDE_TERMINATE message. Similarly, both the client application and server
application must be able to receive a WM_DDE_TERMINATE message at any time.

An application must end its exchanges before terminating. The application posts a
WM_DDE_TERMINATE message with a NULL shared-memory pointer. A
WM_DDE_TERMINATE message stops all transactions for a given exchange.

The WM_DDE_TERMINATE message means that the sender will send no further
messages in that exchange and that the recipient can destroy its DOE window. The
recipient always must send a WM_DDE_TERMINATE message promptly in response;
it is not permissible to send a negative, busy, or positive WM_DDE_ACK message
instead.

If the sender of the original termination request receives any other message before
the WM_DDE_TERMINATE message arrives from the recipient of the request, no
response should be sent to this other message. The sender of the other message
might have destroyed the window to which the response would be sent.

Unique Data Formats
Whenever an application exchanges data by using the DOE protocol, it must specify
the format of the data in the usFormat field of the DDESTRUCT structure. The
system-defined standard format for exchanging text data is DDEFMT _TEXT.
Applications also can use the following constant names to specify the format of data
to be exchanged.

Table 32-3 (Page 1 of 2). DDE Data Formats

Format Description

SZFMT_BITMAP Specifies that the data is a bit map.

SZFMT_CPTEXT Specifies text whose format is defined by a
CPTEXT structure. Applications can use this format
to pass multiple-language strings without changing
the conversation context.

SZFMT_DIF Specifies that the data is in Data Image Format
(DIF).

SZFMT_DSPBITMAP Specifies that the data is a bit-map representation
of a private data format.

SZFMT_DSPMETAFILE Specifies that the data is a metafile representation
of a private data format.

32-10 OS/2 Programming Guide-Volume II

Table 32-3 (Page 2 of 2). ODE Data Formats

Format Description

SZFMT _DSPMETAFILEPICT Specifies that the data is a metafile picture
representation of a private data format.

SZFMT _DSPTEXT Specifies that the data is a text representation of a
private data format.

SZFMT_LINK Specifies that the data is in link-file format.

SZFMT_METAFILE Specifies that the data is a metafile.

SZFMT _METAFILEPICT Specifies that the data is a metafile picture defined
by an MFP structure.

SZFMT_OEMTEXT Specifies that the data is in OEM Text format.

SZFMT_PALETIE Specifies that the data is in palette format.

SZFMT_SYLK Specifies that the data is in Synchronous Link
format.

SZFMT_TEXT Specifies that the data is an array of text
characters. These characters can include newline
characters to indicate linebreaks. The NULL
character indicates the end of the text data.

SZFMT_TIFF Specifies that the data is in Tag Image File Format
(TIFF).

Applications can define their own data formats. Each nonstandard DOE format must

have a unique identification number. The application must register the name of the

format in the system atom table, receiving an identification number for that format

name. Other applications that have the name of the format also can query the

system atom table for the format's identification number. This method ensures that

all applications use the same atom to identify a format. For information on how to

register a nonstandard DOE format with the system atom table, see Chapter 35,

"Atom Tables" on page 35-1.

Synchronization Rules
A window processing DOE requests from another window must process them strictly

in the order in which the requests were received.

A window does not need to apply this first-in first-out (FIFO) rule between requests

from different windows-that is, it may provide asynchronous support for multiple

processes. For example, a window might have the following requests in its queue:

1. Request message from window x
2. Request message from window y
3. Request message from window x.

The window must process request message 1 before request message 3, but it does

not have to process request message 2 before request message 3. If y has a lower

priority than x, the window follows the order 1, 3, 2.

If a server is unable to proce~s an incoming request because it is waiting for an

external process, it must post a busy WM_DDE_ACK message to the client, to

prevent deadlock. A busy WM_DDE_ACK message also can be sent if the server is

unable to process an incoming request quickly.

Chapter 32. Dynamic Data Exchange 32-11

Language-Sensitive ODE Applications
DOE applications written for the international market must be able to exchange data
in several different languages. The CONVCONTEXT structure, along with the
WinDdelnitiate2 and WinDdeRespond2 functions, provide this support.

A language-sensitive ODE application defines the context of a conversation by filling
a CONVCONTEXT structure with the appropriate country code and codepage
identifiers. The CONVCONTEXT structure also contains a context flag. If this flag is
set to DDECTXT_CASESENSITIVE, applications must compare strings in a
case-sensitive manner.

Language-sensitive DOE applications use the WinDdelnitiate2 and WinDdeRespond2
functions to establish a DOE conversation. These functions pass the same
arguments as their counterparts, WinDdelnitiate and WinDdeRespond. The
difference is that WinDdelnitiate2 and WinDdeRespond2 also pass a pointer to a
CONVCONTEXT structure.

Using Dynamic Data Exchange
This section explains how to perform the following tasks:

• Create a shared-memory object for ODE.
• Send positive acknowledgment messages.
• Send negative acknowledgment messages.
• Perform a one-time data transfer.
• Establish a permanent data link.
• Execute commands in a remote application.
• Terminate a ODE conversation.

Creating a Shared-Memory Object for DOE
The following code fragment shows a function that creates a shared-memory object
for a ODE transaction. The function parameters include the destination window for
the ODE message, item name for the transaction, status word, format of the data,
actual data to be transferred (if any), and the length of the data. The object
allocated by this function must be big enough to hold the DDESTRUCT structure,
item name, and the actual data to be transferred. The function returns a pointer
(PDDESTRUCT) to a shared-memory object that is ready to post as part of a DOE
message.

32-12 OS/2 Programming Guide-Volume II

This function is used in many examples in the following sections to demonstrate the

creation of DOE shared-memory objects. You might want to define a similar

function in your own programs as well.

Chapter 32. Dynamic Data· Exchange 32-13

Sending a Positive Acknowledgment
You can send a positive acknowledgment by posting a WM_DDE_ACK message with
the DDE_FACK and DDE_FRESPONSE flags set in the status word of the DDEINIT
structure. The following code fragment is an example of a positive acknowledgment
message:

Sending a Negative Acknowledgment
You can send a negative acknowledgment by posting a WM_DDE_ACK message
with the DDE_NOTPROCESSED flag set in the status word of the DDEINIT structure.
The following code fragment is an example of a negative acknowledgment message:

If an application is busy when it receives a ODE message, it can post a
WM_DDE_ACK message with the DDE_FBUSY flag set.

32-14 OS/2 Programming Guide-Volume II

Performing a One-Time Data Transfer
A client application posts a WM_DDE_REQUEST or WM_DDE_POKE message to
perform a one-time data transfer with a server application. The item-name portion
of the shared-memory object passed with the message contains the name of the
desired item. When the client posts a WM_DDE_POKE message, the data portion of
the object contains the data being sent to the server.

The following code fragment is an example of a request transaction:

If the server can satisfy the request, it renders the item in the requested format and
includes it1 with a DDESTRUCT structure, in a shared-memory object and posts a
WM_DDE_DATA message to the client, as shown in the following code fragment:

Chapter 32. Dynamic Data Exchange 32-15

Establishing a Permanent Data Link
The client posts a WM_DDE_ADVISE message to the server to set up a permanent
data link. The advise message contains a shared-memory pointer containing a
DDESTRUCT structure with the item name, format information, and status
information, as shown in the following code fragment:

.. H)INQ:.h\'!nd~e);ve:r,ihwndPl·i.ent.;· .. ·•
PDDESTRUCJ.; p~~eStruct;

.;; .,' ·-~2;=~·· ,

;··:: '/*''.···fl~·nctle·· ·o.t:s.
/'* ·ija~dle o.f.d

.·.· l~ •. ·t-1,~~~ge.. . ":.,·:t . *I
".·r/s~a:t;~d.;m~ory.potnter */
. /*. R•~t'Y. */

-'·'/.:-,·~·= ,'

, ;-/·:.v.,'._:' ,,

When a link is established with the DDE_FNODATA status flag set, a notification, not
the data itself, is posted to the client each time the data changes. In this case, the
server does not render the new version of the item when the source data changes,
but simply posts a WM_DDE_DATA message with 0 bytes of data and the
DDE_FNODATA status flag set, as shown in the following code fragment:

HWNDhwndServer.hwndC1ient:
PDDESTRUCT .·• pcf~.e$truct;

pddeStruct · = MakeDDEObject (hwnd¢1 tent,; I~ ... ·Handh~:•iof .:e:li ent
11BTRX11

.. /*-···ltem .·name
•.. //~ ~tatus. flags
· .. ::/~ p,atafonnat

··.'.·;·.i'!r.·No·data ..
· Z*. · Data .length

32-16 OS/2 Programming Guide-Volume II

The client terminates a data link by posting a WM_DDE_UNADVISE message to the
server, as shown in the following code fragment:

Executing Commands in a Remote Application
To execute a remote command, the client application posts to the server a
WM_DDE_EXECUTE message containing a pointer to a shared-memory object that
contains a DDESTRUCT structure and a command string, as shown in the following
code fragment:

Chapter 32. Dynamic Data Exchange 32-17

Terminating a DOE Conversation

Summary

At any time, either the client or the server may terminate a DOE conversation by

posting a WM_DDE_TERMINATE message, as shown in the following code fragment.

The following tables describe the functions, structures and messages associated

with the ODE protocol.

Table 32-4. Window Procedure Syntax

Function Name Description

WlnDdelnltlate Issued by a client application to one or more other applications,

to request initiation of a dynamic data exchange conversation

with a national language conversation context.

WinDdelnitiate2 Passes the same arguments as WinDdelnitiate, but also passes

a pointer to a CONVCONVERT structure.

WlnDdePostMsg Issued by an application to post a message to another

application with which it is carrying out a dynamic data

exchange conversation with a national language conversation.

WinDdeRespond Issued by a server application to indicate that it can support a

dynamic data exchange conversation on a particular topic with a

national language conversation context.

WinDdeRespond2 Passes the same arguments as WinDdeRespond, but also

passes a pointer to a CONVCONVERT structure.

Table 32-5. DDE Structures

Structure Name Description

CONY CONTEXT Dynamic data exchange conversation context

structure.

DDEINIT Dynamic data exchange initiation structure.

DDESTRUCT Dynamic data exchange control structure.

32-18 05/2 Programming Guid~Volume II

Table 32-6. DDE Messages

Message Description

WM_DDE_ACK Notifies an application of the receipt and
processing of a WM_DDE_EXECUTE,
WM_DDE_DATA, WM_DDE_UNADVISE, or
WM_DDE_POKE message, and in some cases, a
WM_DDE_REQUEST message.

WM_DDE_ADVISE Requests the receiving application to supply an
update for a data item whenever it changes.

WM_DDE_DATA Notifies a client application of the availability of
data.

WM_DDE_EXECUTE Posts a string to a server application to be
processed as a series of commands.

WM_DDE_INITIATE Sent by an application to one or more other
applications to request initiation of a conversation.

WM_DDE_INITIATEACK Sent by a server application in response to a
WM_DDE_INITIATE message, for each topic that
the server application wishes to support.

WM_DDE_POKE Requests an application to accept an unsolicited
data item.

WM_DDE_REQUEST Posted from client to server, to request that the
server provide a data item to the client.

WM_DDE_TERMINATE Posted by either application participating in a ODE
conversation to terminate that conversation.

WM_DDE_UNADVISE Posted by a client application to a server
application to indicate that the specified item
should be updated no longer.

Chapter 32. Dynamic Data Exchange 32-19

32-20 OS/2 Programming Guide-Volume II

Chapter 33. Direct Manipulation

Direct manipulation is the act of moving graphical representations (OS/2 icons, for

example) around the screen using a pointing device, such as a mouse. This chapter

explains how to use direct manipulation in PM applications.

About Direct Manipulation

© Copyright IBM Corp. 1992

The direct manipulation protocol enables the user to visually drag an object in a

window and drop it on another object in a window. Dragging is moving an object as

though it were attached to the pointer; it is performed by holding down the select

button and moving the pointer. Dropping is fixing the position of the dragged object

by releasing the select button on the pointer. This causes interaction (data

exchange) between the window from which the object was dragged and the window

containing the object being dropped on.

Ionia
Temperature

O)(ygen
Consumption

Figure 33-1. Dragging Data to a Printer

Living Quarters _/i.~rmual
Construction/ R airitall

~

The window containing the dragged object is referred to as the source. The window

containing the object that was dropped on is referred to as the target. The source

and target can be the same window, different windows within the same application,

or windows belonging to different applications. The dragged object can be the only

visible object in the source window, or it can be one of many objects. The target

object can be the only visible object in the target window, or it can be one of many

objects. A source or target window that contains multiple objects is referred to as a

container window.

33-1

The data exchange that occurs between the source and target after a direct
manipulation operation enables applications in the system that support the protocol
to integrate easily, while providing a simple user interface.

Using Direct Manipulation in an Application
The application's responsibilities during a direct manipulation operation vary,
depending on whether the application's window procedure is acting as the source or
the target of the operation.

Writing a Source Application
The source is responsible for starting a direct manipulation operation. Startup can
be accomplished only with a pointing device, such as a mouse. The operation starts
when the application detects that a select button has been pressed and the pointing
device has moved. Dragging continues until terminated, usually when the button is
released.

Although the direct manipulation protocol lets the application use any button for
dragging, it is recommended that the system-defined direct manipulation button
(drag button) be used for direct manipulation operations.

"Two-Object Drag" on page 33-12 shows the sequence of API functions and the
message flow for a typical direct manipulation operation. The flow illustrates a
two-object drag-from Application 1 to Application 3-dragging over Application 2.

The direct manipulation operation was started by the source window procedure after
the user selected the object (or objects) to be manipulated and the source received
a WM_BEGINDRAG message.

The source has the following responsibilities in preparing for the actual drag of the
object or objects across the screen:

• Allocate and initialize the DRAGINFO structure that will convey the necessary
information about each object to the target.

• Initialize a set of DRAGIMAGE structures that describe the image to be displayed
during the drag operation.

• Make the type of each object being directly manipulated known to the system.

• Make the rendering mechanism and format for each object known to the system.
For detailed information, see "Standard Rendering Mechanisms" on page 33-18.

• Make the suggested name of the object at the target known to the system.

• Make the name of the container or folder containing the source object known to
the system.

• Make the name of the object at the source known to the system.

• Make the true type of each object being directly manipulated known to the
system.

• Make the native rendering mechanism and format for each object known to the
system.

To prepare for the drag operation, the source must invoke DrgAllocDraginfo to
allocate memory for the DRAGINFO structure. DrgAllocDraginfo initializes the
DRAGINFO structure as follows:

33-2 OS/2 Programming Guide-Volume II

cbDraglnfo

cbDragltem

usOperatlon

xDrop and yDrop

eel Item

The size, in bytes, of the entire DRAGINFO structure,
including the DRAGITEM array.

The size, in bytes, of each DRAGITEM structure.

Initialized to DO_DEFAULT.

Initialized to the current mouse-pointer location, in desktop
coordinates.

Initialized to the count of objects being dragged, as specified
in DrgAllocDraginfo.

The source then completes the initialization of each DRAGITEM structure, as
appropriate, for each of the objects to be dragged. This is accomplished by using
the DrgSetDragitem function, or by obtaining a pointer to each DRAGITEM structure
with DrgQueryDragitemPtr, and initializing it directly.

The first step the source takes to initialize the DRAGITEM structure is to create the
appropriate drag string handles. String handles must be created for:

• Object type or types
• Supported rendering mechanisms and formats for the object
• Suggested name of the object at the target
• Name of the container holding the object (whether a container or folder)
• Name of the object at the source when the source allows the target to carry out

the operation for the object.

Then the balance of the DRAGINFO structure for that object can be initialized as
appropriate.

Type: To directly manipulate an object, both the source and the target must know
the object type and understand that type. The hstrType field in the DRAGITEM
structure conveys this information for each object being dragged. The type is
represented by a string handle. The target should check to see if it understands the
type prior to allowing the user to drop the object.

Several DTYP _*constants are defined as notational conveniences for common types
of data. An application can extend these types by defining its own character strings,
then creating string handles for them using the DrgAddStrHandle function.

True Type: The true type of an object is the type that most accurately describes the
object. For example, the input to a C compiler could have the type Plain Text
(DRT_TEXT), but would be more accurately described as C Code (DRT_C). C Code
would be the true type of this object.

Multiple types can be conveyed by using a comma to separate strings, as follows:

The true type should appear first in the list of types, so the type string for the
example object would be "C Code, Plain Text."

Rendering Mechanism and Format: The rendering mechanism and format is a
string handle. The string takes the form:

Chapter 33. Direct Manipulation 33-3

where elem is an ordered pair in the form:
11<mechanism,format> 11

or a cross product in the form:

"(mechanism{,mechanism ••• }) X (format{,format ••• }) 11

Multiple cross products are permitted in a single rendering mechanism and format
string handle, as are combinations of ordered pairs and cross products. When
cross-product notation is used, the rendering mechanism is the left operand. When
ordered-pair notation is used, the rendering mechanism is the left element in the
ordered pair.

The rendering mechanism represents the way in which you want to exchange the
data, for example dynamic data exchange (DDE). The rendering format identifies
the actual format of the data, for example, text. To exchange data, both the source
and target must know how to communicate with each other through the rendering
mechanism and understand the particular format of the data. The target should
verify that it understands the rendering mechanism and format before allowing the
user to drop the object or objects. The rendering mechanism and format are passed
as a string handle in the DRAGITEM structure. The string handle must be created
using the DrgAddStrHandle function.

Several constants are defined for common rendering mechanisms and formats. An
application can extend these by defining its own "<mechanism.format>" strings
and creating string handles for these using the DrgAddStrHandle function.

For example, if an application understands and can generate an LU 6.2 data stream,
it can define its own rendering format, "DRF _LU62," and use it in direct
manipulation operations. If an application wishes to use its own rendering
mechanisms or formats to communicate with other applications, it should publish
the protocol for the mechanisms, the format of the data streams, or both.

Native Rendering Mechanism and Format: The native rendering mechanism and
format of the object is the mechanism that most naturally conveys the data and its
current format. For example, the native rendering mechanism and format for:

• AC source file might be < DRM_OS2FILE,CF _OEMTEXT>

• A spreadsheet file might be <DRM_OS2FILE,CF _SYLK>

In some direct-manipulation operations, it might be possible for the target to carry
out the necessary action on the source object without the source's participation.
However, this would be possible only when the target understands both the true
type and the native rendering mechanism and format of the object. Even when the
target is not performing the necessary action on the source object, it is still
important to know the native rendering mechanism and format. In determining the
rendering mechanism and format to be used in the data exchange after the drop, the
target might select the native format, since, generally, performance is better when
the native rendering mechanism and format is used.

The native rendering mechanism and format is conveyed to the target by making it
the first ordered pair, or the first ordered pair to result from a cross product, in the
list of rendering mechanisms and formats passed in the DRAGINFO structure.

33-4 OS/2 Programming Guide-Volume II

Suggested Name at Target: When dragging an object, for example a file, from one
container to another, it is important to know the name the object should have at the
target. This may or may not be the same name it had at the source. This name
enables the target to check if another object with the same name already exists at
the target and to take the appropriate action. For example, a target container might
not allow the user to drop the object, or objects, if an object by that same name
exists at the target.

Container Name: Sometimes it is necessary for a target container to be aware of
the name of the source container. This name could carry some location information.
For example, the default operation when dragging objects between containers is a
Move. However, in the case of file folders on different drives, this default would be
changed to a Copy operation. Thus, a file folder would fill this field with the drive
and path information for the file. For example, (A:\SUBOIR1\SUBOIR2\). A database
container, on the other hand, might fill this field with the fully qualified OS/2 file
name of the database.

Source Name: In some direct-manipulation operations, it is possible for the target
to perform the necessary action on the source object without the source's
participation. If the source allows this, the target name should be filled in with the
name of the source object. For example, a file folder would put the name of the
source file into this field, such as (autoexec.bat). A database manager, on the other
hand, might fill this field with some location information so the target could find a
particular record or field within the database.

Dragging the Objects
Once initialization is complete, the source invokes the DrgDrag function to
accomplish the direct manipulation operation. As the pointer moves around the
screen, the system sends a DM_DRAGOVER message. The target window receiving
the DM_DRAGOVER message responds with DOR_DROP if it understands the type
and rendering formats of the objects being dragged, as well as the operation being
performed. When a potential target cannot allow the objects to be dropped at this
location in its window, it should respond with DOR_NODROP or DOR_NODROPOP.
When a potential target cannot allow the objects to be dropped anywhere in its
window, it should respond with DOR_NEVERDROP. This last case prevents multiple
DM_DRAGOVER messages from being sent unnecessarily to a window when the
pointer moves again or when the user presses another augmentation key.

To determine the proper reply to a DM_DRAGOVER message, the target gets
information about the direct manipulation operation by using the DrgAccessDraginfo
function. The DM_DRAGOVER message contains a pointer to the DRAGINFO
structure. The target can access this structure with the DrgAccessDraginfo call,
thus making all information about the direct manipulation operation available to the
target window.

If the target responds to the DM_DRAGOVER message with DOR_NODROP, the
system changes the image displayed to indicate that a drop is not allowed. When
the user moves the pointer, or presses or releases an augmentation key, the system
sends another DM_DRAGOVER message.

If a DM_DRAGOVER message receives a reply of DOR_NODROPOP, the system
changes the displayed image to indicate that a drop is prohibited until the user
moves the pointer outside the current target window or presses another
augmentation key. When either of these events occurs, DrgDrag sends another
DM_DRAGOVER message. If the user presses another augmentation key but has

Chapter 33. Direct Manipulation 33-5

not moved the pointer, a DM_DRAGOVER message is sent to the same window,
giving it an opportunity to accept the drop for the new operation.

If DOR_NEVERDROP is returned from the DM_DRAGOVER message, further
DM_DRAGOVER messages are not sent to the target until the pointer is moved
outside of and back into the target window. A no-drop image will be displayed.

Application-Defined Drag Operations
This protocol defines a method for integrating two unrelated applications through
direct manipulation. At times it may be useful for an application to define its own
drag operation to facilitate functions between two windows in the same application,
or between closely related applications. For example, an application implementing
a keyboard remapping function may want to provide a method of redefining keys
with direct manipulation. This application could define an operation whereby
dragging one key to another exchanges the definitions of the two keys. The protocol
provides the extendability to enable this kind of function.

Completing a Direct Manipulation Operation
The user can end a direct manipulation operation in one of three ways:

• Pressing the Esc key to cancel the operation
• Releasing the drag button when the pointer is over a target that cannot accept

the drop.

This action is equivalent to pressing the Esc key. When the pointer is over a
target that can accept the drop, the target is informed of the drop, and the source
is given the window handle of the target.

• Pressing the F1 key to request help.

A DM_DROPHELP message is posted to the target. This enables the target to
provide the user with assistance regarding:
- What would happen if the user dropped the object or objects on that target
- Why the target cannot accept a particular drop.

The source sees this termination of the direct manipulation operation as a
cancelation.

When the user drops the objects, a a DM_DROP message is sent to the target,
providing it with the information necessary to process the objects that were
dropped. The target application uses the information provided to exchange data
with the source. The protocol to be used depends on the rendering mechanism
specified for each object. It is the responsibility of the target to establish the
appropriate conversation or conversations. It is the responsibility of the source to
cooperate in the establishment of the necessary conversation or conversations to
achieve the actual data exchange. After completing the direct manipulation
operation, including the post-drop conversation with the source, the target uses
DrgDeleteStrHandle or DrgDeleteDraginfoStrHandles to delete the string handles in
the DRAGINFO structure, and DrgFreeDraginfo to release the storage.

DRAGDROP Sample Program
A sample program, DRAGDROP, is provided with the Toolkit to demonstrate the use
of the direct manipulation protocol. DRAGDROP is a simple directory-navigation
application. Two copies of this sample must be running to drag an object from one
window to another.

When you start DRAGDROP, the contents of the root directory on drive C: are
displayed in a list. Directories are displayed with a leading"/" character.

33-6 OS/2 Programming Guide-Volume II

You can navigate downward in the directory tree by double clicking on a directory

displayed in the list. You also can navigate downward by selecting Fiie on the

action bar, then Open •••• from the File pull-down menu. This dialog also can be used

to navigate upward in the directory or to select another drive.

To move or copy files or directories from one directory window to another, use the

select button (button 1 on your pointing device) to select one or more files or

directories in the source application. Then press and hold the drag button (button

2), and drag the objects to the target application. Release the drag button when the

pointer is over your intended target. The selected files will be moved or copied

from the source directory to the target directory; the contents of the windows are

updated automatically. The default operation is a Move, but you can change this to

a Copy by pressing the Ctrl key along with the drag button.

Summary of Functions Used by the Source
The following table summarizes the functions a source would use in direct

manipulation:

Table 33-1. Summary of Functions Used by the Source

Function Name Description

DrgAddStrHandle Creates a handle for an input string.

DrgAllocDraglnfo Allocates a DRAGINFO structure in shared

memory.

DrgAllocDragTransfer Allocates a specified number of DRAGTRANSFER

structures from a single segment.

DrgDrag Handles movement of the source-specified pointer

around the screen. Provides visible feedback to

the user.

DrgFreeDraginfo Deallocates the memory associated with a

DRAGINFO structure.

DrgSetDragltem Initializes each object element in a DRAGINFO

structure.

Writing a Target Application
The target in a direct manipulation operation is responsible for determining whether

a particular set of objects can be dropped on it, and aids in providing the user with

visible cues regarding the operation. A target is informed of the operation through

messages sent to it as the pointer, provided by the source, is dragged across the

screen.

When a set of objects is dropped on the target, the target is responsible for

establishing the appropriate conversation or conversations with the source to

accomplish the data transfer. The type of conversation for each object will be based

on the rendering mechanism and format of the object being dropped.

Messages Sent to a Target Application
The following messages are sent to each window whose boundaries are crossed as

the user drags the object or objects around the screen.

Chapter 33. Direct Manipulation 33-7

DM_DRAGOVER

DM_DRAGLEAVE

DM_DROP

DM_DROPHELP

Sent to the window under the pointer as the pointer is
dragged across it. A single DM_DRAGOVER message is sent
each time the pointer moves and each time a key is pressed
or released, and it contains a pointer to the DRAGINFO
structure. The target can access this structure with the
DrgAccessDraginfo function.

Sent whenever the DM_DRAGOVER message is sent to a
window, and the pointer is moved outside the bounds of that
window. If the target or an object in the window had been
emphasized as a target, it should be de-emphasized.

Notes:

1. Container windows monitor the position of the pointer on
DM_DRAGOVER messages and simulate the
DM_DRAGLEAVE message when the pointer moves on or
off a contained object.

2. A DM_DRAGLEAVE message is not sent if the user drops
the objects being dragged within the window. Therefore,
when DM_DROP is received, the application
de-emphasizes any target that was emphasized as a valid
target.

Sent to the target to provide it with the information necessary
to establish a conversation for data exchange with the
source. The target should immediately remove any target
emphasis. The data transfers must not be done before
responding to the DM_DROP message.

Posted to a target to indicate that the user requested help for
the drag operation while over that target.

Responding to Messages and Providing Visible Feedback
The DM_DRAGOVER message is sent to a target whenever the user drags the
pointer into the window. To assess whether a drop can be accepted, the target must
use the DrgAccessDraginfo function to get access to the DRAGINFO structure. It
then determines whether a drop can be accepted for each object. Several factors
are involved in making this determination, including the following:

• Both the source and target must support at least one common rendering
mechanism and format.

• The target must understand at least one of the data types for the object.

Following are the four possible responses available to the target:

DOR_DROP

DOR_NODROP

33-8 OS/2 Programming Guide-Volume II

The target should send DOR_DROP in response to the
DM_DRAGOVER message if the objects being dragged are
acceptable. The drop will not occur unless DOR_DROP is
returned.

The target should send DOR_NODROP if the objects being
dragged are acceptable, and the current operation is
supported by the target; but the objects cannot be dropped
in the current location in the target window. For example, a
list box might return DOR_NODROP if it contains objects
that can be dropped on, but the pointer is over an object
that cannot be dropped on.

DOR_NODROPOP

DOR_NEVERDROP

If the target response is DOR_NODROP, the
DM_DRAGOVER message will continue to be sent to it
when:

• The pointer is moved.
• A keyboard ·key is pressed.
• The pointer is moved out of and back into the window.

The target should send DOR_NODROPOP if it can accept
the objects being dragged, but does not support the current
operation. This response implies that the drop may be
valid if the drag operation changes.

Once the target has sent DOR_NODROPOP, no further
DM_DRAGOVER messages will be sent to it until:

• A keyboard key is pressed.
• The pointer is moved out of and back into the window.

The target should use this response when it never will
accept the objects being dragged. Once the target has
responded with DOR_NEVERDROP to a DM_DRAGOVER
message, no further DM_DRAGOVER messages will be sent
to that target until the pointer is moved out of and back into
the target window.

If a reply other than DOR_DROP is received from a target, the augmentation
emphasis is automatically changed to indicate that no drop is allowed. This gives
the user a visible cue that a drop cannot occur. The emphasis will revert to drop
allowed when a DOR_DROP reply is received from some target.

Providing Customized Images
The target can provide a customized pointer to be displayed while it is the target of
the drop by calling DrgSetDragPointer before responding to the DM_DRAGOVER
message. It also can provide a customized image (icon, bit map, and so .forth) to be
displayed while it is the target by calling DrgSetDraglmage. This capability may be
used by a target to provide additional visible feedback to the user. The pointer will
revert to the default when it is moved to a new target.

Providing Target Emphasis
The target should provide target emphasis so the user knows exactly where the
drop will occur or, if the drop is not allowed, the boundaries of the region where the
drop is not allowed.

If the user drags the pointer outside the target window, resulting in a new target, a
DM_DRAGLEAVE message is sent to the former target. The receiver of a
DM_DRAGLEAVE message should use it to de-emphasize the target, thus providing
the user with visible feedback that this is no longer the target.

A container window should emphasize a target object by drawing a thin black
rectangle around it. The application should use DrgGetPS and DrgReleasePS to
obtain the presentation space in which to draw target emphasis.

Chapter 33. Direct Manipulation 33-9

Keyboard Augmentation
A direct manipulation operation begins in a default state, which means that when
the user drops the object or objects on a target, the target is informed that it should
perform its default operation. It is the target's responsibility to define its default
operation. For a container window, the default should be a Move operation, if it is
supported. The default for a device, such as a printer, should be a Copy operation.

As the user drags the object or objects, the default operation can be overridden by
pressing and holding one of the following augmentation keys:

Ctr I

Shift

Ctrl +Shift

Changes the operation to a Copy.

Changes the operation to a Move.

Changes the operation to a Link.

The last key pressed and held at the time of the drop determines the operation to be
performed. The target can determine the defined augmentation key that was
pressed at the time of the drop by inspecting the usOperatlon field of the DRAGINFO
structure.

A target can define additional augmentation keys for its own use. In this case,
usOperatlon would indicate that the operation is unknown, and the target needs to
use the WinGetKeyState function to determine the actual augmentation key that was
used.

Operation Emphasis: As the user presses augmentation keys, the pointer currently
being displayed is modified to provide the user with a visible cue as to the type of
operation being performed.

Summary of Functions Used by the Target
The following table summarizes the functions a target would use in direct
manipulation:

Table 33-2 (Page 1 of 2). Summary of Functions Used by the Target

Function Name Description

DrgAcceplDroppedFlles Handles the file direct manipulation protocol for a
given window.

DrgAccessDraglnfo Provides access to the shared segment containing
the DRAGINFO structure.

DrgDeleleDraglnfoStrHandles Does a DrgDeleteStrHandle for all string handles
in a DRAGINFO structure.

DrgDeleteStrHandle Disassociates a string from the handle that was
assigned to it by DrgAddStrHandle.

DrgDragFlles Begins a direct manipulation operation for one or
more files.

DrgFreeDraglnfo Releases the memory associated with a
DRAGINFO structure. This function should be
called when the target no longer needs the
DRAGINFO structure or has previously called
DrgAccessDraginfo, or a drop has occurred.

DrgFreeDragTransfer Frees the storage associated with a
DRAGTRANSFER structure.

33-10 OS/2 Programming Guide-Volume II

Table 33-2 (Page 2 of 2). Summary of Functions Used by the Target

Function Name Description

DrgGetPS Unlocks the screen and returns a handle to a
cached presentation space that the target can use
to provide target emphasis.

DrgPostTransferMsg Posts a message to the other application involved
in the direct manipulation.

DrgPushDraglnfo Gives a process access to a DRAGINFO structure.

DrgQueryDragltem Copies a given object in a DRAGINFO structure.

DrgQueryDragltemCount Returns the number of objects involved in a drag
operation.

DrgQueryDragltemPtr Returns a pointer to a given DRAGITEM structure.

DrgQueryNatlveRMF Returns the ordered pair representing the native
rendering mechanism and format for an object.

DrgQueryNativeRMFLen Returns the length of the string representing the
native rendering mechanism and format of an
object, excluding the null terminating byte.

DrgQueryStrName Returns the contents of a string associated with a
given string handle that was created by
DrgAddStrHandle.

DrgQueryStrNameLen Returns the length of the string associated with a
given string handle that was created by
DrgAddStrHandle.

DrgQueryTrueType Returns the string representing the true type of an
object being dragged.

DrgQueryTrueTypeLen Returns the length of the string representing the
true type of an object being dragged, excluding the
null terminating byte.

DrgReleasePS Releases the cache presentation space obtained
using the DrgGetPS function.

DrgSendTransferMsg Sends a message to the other application involved
in the direct manipulation.

DrgSetDraglmage Enables a target to provide a customized image to
be dragged.

DrgSetDragPolnter Enables a target to provide a customized image
while it is the target of a drop.

DrgVerlfyNatlveRMF Verifies that the native rendering mechanism and
format for an object being dragged is one of a set
of application-supplied rendering mechanisms and
formats.

DrgVerifyRMF Verifies that an application-specified rendering
mechanism and format is valid for an object being
dragged.

DrgVerlfyTrueType Verifies that an application-specified type is the
true type of the object being dragged.

DrgVerifyType Verifies that an application-specified type is valid
for an object being dragged.

DrgVerifyTypeSet Returns the intersection between the contents of
the string represented by the type string handle
and an application-supplied type string.

Chapter 33. Direct Manipulation 33-11

Two-Object Drag
The following diagram represents the sequence of API functions and message flows
for a typical direct manipulation operation. The flow shows a two-object drag from
App1 to App3, dragging over App2. For this example, assume that App1 is
implementing the Button 2 drag model.

Two-Object Drag

Appl App2

{user select)

{user select)

WM_BEGINDRAG

DrgAllocDraginfo

DrgAddStrHandle

DrgAddStrHandle

DrgSetDragitem

DrgSetDragitem

DrgDrag

DM_DRAGOVER

33-12 OS/2 Programming Guide-Volume II

DrgAccessDraginfo

DrgSetDragimage {optional)
{verify that drop
can be accepted)

{target emphasis on)
DrgFreeDraginfo

DOR_DROP

DM_DRAGLEAVE

{target emphasis off)

App3

Two-Object Drag (continued)

Appl App2

(WM_ENDDRAG)

{DrgDrag returns)

DrgFreeDraginfo

DM_DRAGOVER

DOR_DROP

DM_DROP

App3

DrgAccessDraginfo

DrgSetDragimage (optional)

(target emphasis on)

(target emphasis off)

(perform operation)

DrgDeleteDraginfoStrHandles

DrgFreeDraginfo

Chapter 33. Direct Manipulation 33-13

Application Interaction after a Drop
This portion of the document addresses aspects of a direct manipulation operation
that need to be considered after a drop has occurred. See "Conversation after the
Drop" on page 33-17 for an example.

Conversation Initiation
Direct manipulation offers various ways for both a source and target application to
exchange data. To accomplish the exchange, a separate conversation must be
established to transfer each data object from the source to the target. It is the
responsibility of the target to inform the source about the rendering mechanism it
wants to use and the format in which the data is to be exchanged. The target can
establish the conversations to run in parallel, or it can initiate the conversations in a
serial fashion. The following sections explain how each conversation is established.

Considerations when Establishing a Conversation
A source application may be able to exchange data with a target through several
mechanisms, such as:

• Dynamic Data Exchange (ODE)
• OS/2 File
• Print.

Additionally, the source application might be able to render the data in various
formats. For example, a spreadsheet application might be able to render its
contents in a spreadsheet or text format. The ability of the source application to
render the data in some format might, itself, depend on the exchange mechanism
used. The rendering mechanisms and formats that a source application can
support, for each object dropped, are provided to the target through the hstrRMF
field in the DRAGITEM structure.

The first ordered pair in the set of rendering mechanisms and formats that the
source application supports is the object's native rendering mechanism and format.
This is the mechanism that most naturally conveys the data, either where it is now,
or where it can be put most easily. The format conveys all information about the
data. For example, a spreadsheet cell has a location in a row and column of a
spreadsheet. Rendering the spreadsheet cell in a simple text format would cause
this information to be lost, so a more appropriate format should be chosen for its
native rendering format.

The target application also may be able to exchange data with the source through
several different combinations of mechanism and format. It is the responsibility of
the target to obtain the data from the source in the format that they both support and
that provides the highest level of information about the data.

While making this determination, the target must consider the exchange capabilities
offered by the mechanism. For example, an OS/2 File exchange mechanism can
provide only a snapshot of the data at the time the direct manipulation operation
occurred. An exchange using DOE, on the other hand, offers the target an
opportunity to remain informed about changes to the data.

33-14 OS/2 Programming Guide-Volume II

Determining Whether Data Can be Exchanged
During the drag portion of a drag-and-drop operation, the target must determine if it
can exchange or receive data from the source for each object involved in the
operation. The object must meet the following minimum requirements to exchange
data:

• The source and target must share knowledge of at least one common type for the
object. The target can make this determination by using the DrgVerifyTypeSet or
DrgVerifyType function.

• The source and target must share at least one common rendering mechanism
and format for that type object. The target can make this determination by using
the DrgVerifyRMF function.

When these conditions are met, a target can let the object be dropped.

Determining How To Exchange the Data
The target determines which rendering mechanism and format to use in the
following manner:

1. Uses the native rendering mechanism and format whenever possible.

This rendering conveys ALL information about the data. A target can determine
if it supports the native rendering mechanism and format through the use of the
following functions:

• DrgVerifyNativeRMF
• DrgQueryNativeRMFLen
• DrgQueryNativeRMF

Regardless of whether the native rendering mechanism and format supported by
the source can be used, the target can elect to exchange the data in a rendering
mechanism and format that conveys less information about the object.

2. Uses the next best rendering mechanism and format.

This is especially good for a Copy operation, because the user does not lose
data about the object as occurs when the object is moved.

The target can determine the next best rendering mechanism and format to use
through repeated calls to the DrgVerifyRMF function. The calls are made
starting with the most desirable rendering mechanism and format pair and
progressing to the least desirable pair. Once a pair that the source supports has
been found, the target can exchange the data.

Performance Considerations
When context information about an object will be lost because of using a
less-desirable rendering mechanism and format, the target can elect to pick a
common mechanism and format that will achieve the best performance. This is
done the same way the next best rendering mechanism and format is selected,
proceeding from the best-performing rendering to the worst.

Using Direct Manipulation Data Transfer in an Application
Some standard rendering mechanisms are already defined but this system lets the
set of rendering mechanisms be expanded, allowing for:

• Additional standard rendering mechanisms to be defined in the future
• Application definition of private or nonstandard rendering mechanisms.

Chapter 33. Direct Manipulation 33-15

An application can elect to support some, all, or none of the standard rendering
mechanisms defined by the system. Applications that do not support any of the
standard rendering mechanisms are not precluded from using direct manipulation.
However, support of the standard rendering mechanisms and formats increases the
chances of a successful data transfer between applications.

An application that supports a particular rendering mechanism, whether or not it is
a rendering mechanism defined by the system, must follow a specific set of
guidelines defined by that rendering mechanism, including conversation-initiation
procedures and naming conventions. The guidelines for the current system-defined
rendering mechanisms are described in the following sections.

Regardless of the rendering mechanism used, it may be necessary to prepare the
source for the rendering of the object. Such an action is necessary when a window
needs to be created by the source in order to handle the conversation. This is done
by sending a DM_RENDERPREPARE message to the hwndSource window in the
DRAGINFO structure. This message need be sent only when the DC_PREPARE flag
is on in the fsControl field of the DRAGITEM structure. When the source receives
this message, it performs any necessary preparation for the rendering and fills in
the hwndltem field in the DRAGITEM structure, allowing the target to establish
conversation with that window.

33-16 OS/2 Programming Guide-Volume II

Conversation after the Drop
The following diagram represents the sequence of message flows for a typical direct
manipulation data-transfer operation. The flow describes a single-object move from
source to target. The user dropped on white space in the target container.

For this example, assume that the rendering mechanism selected is DRM_OS2FILE
and that the source does not initially provide the target with the source item's file
name. Also assume that the source and target items exist on different drives.

Source

DM_RENDER

Verify the rendering mechanism
and format

DrgAddStrHandle
(hstrSourceName)

Dos Copy

DrgFreeDragtransfer

DosDelete

DrgFreeDraginfo

DM_RENDER(reply)

DM_RENDERCOMPLETE

DM_ENDCONVERSATION

Target

DrgAllocDragtransfer

DrgSendTransferMsg

DrgFreeDragtransfer

DrgDeleteStrHandle

DrgFreeDraginfo

Chapter 33. Direct Manipulation 33-17

Standard Rendering Mechanisms
The following sections describe the standard rendering mechanisms used by
various containers and applications for direct manipulation.

OS/2 File Rendering Mechanism
This rendering mechanism can be used by various containers, including file folders
and trash cans. These containers allow objects to be dragged and dropped on white
space in the container to accomplish a Move or Copy operation. They also can
allow objects in the same or another container to be dragged and dropped on
objects within the container to accomplish an operation.

Mechanism Name: The string for this rendering mechanism is DRM_OS2FILE.

Messages: The following messages are used by the DRM_OS2FILE:

• OM RENDER

This message is sent by a target to a source to request a rendering for an object.
When this message is received, the source determines if it understands the
rendering mechanism and format selected by the target for the object. It also
confirms that it allows the operation selected by the user for that object. The
source must respond to this message before proceeding with the rendering
operation.

• DM_RENDERCOMPLETE

This message is posted by a source to a target to notify the target that the
rendering operation has been completed by the source, either successfully or
unsuccessfully. The source can elect to let the target retry a successful or an
unsuccessful operation. In this case, it should return to its state at the time of
the drop for that object and indicate, in the message, that a retry is allowed.

Support for this message by a source is optional. If this message is not
supported, then:

The source must convey all necessary information to the target order to allow
it to handle the rendering operation.

It must always indicate that native rendering is allowed when replying to a
DM_RENDER message.

• DM_ENDCONVERSATION

This message is sent by a target to a source to notify the source that the
rendering operation is complete and that the conversation is terminated. When
this message is received, the entire drop operation for the object is complete.
The source can now release any resources it had allocated to the drop and
rendering operations. When the reply is received, the target can release the
resources it had allocated to the operation.

Native Rendering by the Target: If the target understands the native rendering
mechanism and format of the object, it may be possible to render the object without
any involvement on the part of the source, provided the source has given the target
sufficient information to do so. In order for the rendering to be performed by the
target, the source must fill in, at a minimum, the hstrContalnerName and
hstrSourceName fields. This hstrContalnerName field represents the subdirectory
that the file indicated by hstrSourceName is in. For the target to do the rendering on
its own, the true type of the object must be DTYP _ OS2FILE. When these conditions
are met, the target may proceed with the operation. When the operation is

33-18 OS/2 Programming Guide-Volume II

complete, the target must send a DM_ENDCONVERSATION message to the window
indicated by hwndltem in the DRAGITEM structure.

Preventing a Target from Rendering an Item: A source can prevent a target from
doing the rendering operation on its own by not providing the source name for the
object. This may be a necessary action for sources that implement some type of
security, or that may not allow particular operations to be performed for an object
move. When a source takes this course, it must fill in the hstrSourceName in the
DRAGITEM structure before replying to a DM_RENDER message. The target will
delete the hstrSourceName string handle prior to freeing the DRAGINFO structure,
just as it would if the information had been passed to it at the time of the drop.

Requesting the Source to Render the Item: Whenever the conditions for a target to
do the rendering operation without source participation are not met, the target must
request the source to carry out the rendering by posting a DM_RENDER message to
the source. Of course, the target can do this even if it is able to carry out the
rendering mechanism on its own.

Allocating and Freeing a DRAGTRANSFER Structure: The data in a drag transfer
message is carried in a DRAGTRANSFER structure. DRAGTRANSFER structures
are allocated when the target calls DrgAllocDragtransfer.

When the conversation or conversations are completed, both the source and the
target must call DrgFreeDragtransfer to free the shared memory. The target should
do it immediately after sending a DM_ENDCONVERSATION message. The source
should do it immediately after sending a DM_RENDERCOMPLETE message.

Operation Specifics: Regardless of the operation being performed, the target must
fill in the hstrRenderToName field in the DRAGTRANSFER structure before sending
a DM_RENDER message. This is the fully qualified drive, path, and file name of the
file that will contain the data when the rendering operation is complete. When the
source has completed the operation, it must post a DM_RENDERCOMPLETE
message to the target. The target then must complete the direct manipulation
operation for that object by posting a DM_ENDCONVERSATION message to the
source. Once the conversations for all of the objects involved in the drop are
complete, the target can delete the string handles and free the DRAGINFO structure.

Non-Native Mechanism Actions: The target may select the DRM_OS2FILE
rendering mechanism when it is not the native rendering mechanism for an object,
as long as the source supports it. In this case, the target must always request that
the source carry out the rendering operation as described above. The source
should render the data in the requested format to the file specifie~d by the
hstrRenderToName field. If the requested operation is a Move, the source should
take whatever action is necessary to remove its knowledge of the object as long as
no information regarding the object was lost in the transfer.

Naming Conventions: The naming conventions for this rendering mechanism
follow:

• hstrContainerName

Contains the fully qualified drive and path name for the source file.

Examples are:

C:\
C:\MYSUBDIR\
A:\SUBDIR1\SUBOIR2\
\\NETWORK\SHARED\SUBDIRA\SUBOIRB\

Chapter 33. Direct Manipulation 33-19

• hstrSourceName

Contains the name of the source file or subdirectory, for example:

MYSOURCE.C
MYSOURCE.H
MYSOURCE IS A LONG FILE NAME
SUBDIR3

• hstrRenderToName

Contains the fully qualified file or subdirectory name that is to be used at the
target, for example:

C:\MYSUBDIR\MYSOURCE.C
\\NETWORK\SHARED\SUBDIRA\SUBDIRB\MYSOURCE.H
C:\SUBDIR1\SUBDIR2\SUBDIR3

Types: Any type that is allowed as a . TYPE extended attribute is allowed in the
hstrType field of the DRAGITEM structure. The type for a file may be obtained using
the DosQFilelnfo function, and set by using the DosSetFilelnfo function.

Print Rendering Mechanism
A common object that might be provided by a container is a printer. This object
would allow objects to be dragged and dropped on it to accomplish a print
operation.

Mechanism Name: The string for this rendering mechanism is DRM_PRINT.

Messages: To support this rendering mechanism, a source must be able to receive
and process a DM_PRINT message. The target will post this message to the source.
When the message is received, the source prints the current view of the object
identified in the message to the printer queue, which is also identified in the
message.

Native Mechanism Actions: There are no native mechanism actions for this
rendering mechanism, because the act of printing an object is considered a
transform from the native rendering mechanism to the print mechanism.

Naming Conventions: None.

Dynamic Data Exchange (ODE) Rendering Mechanism
This rendering mechanism can be used by various containers and applications. The
containers allow objects to be dragged and dropped on white space in the container
to accomplish a Move or Copy operation. They also can allow objects in the same
or another container to be dragged and dropped on objects within the container to
accomplish some operation.

Mechanism Name: The string for this rendering mechanism is DRM_DDE.

Messages: To support this rendering mechanism, a source must be able to receive
and process the following messages:

• WM_DDE_REQUEST

This message is posted by the target to the window indicated by the hwndltem
field in the DRAGITEM structure to request information regarding the object.
Note that WM_DDE_INITIATE is not required because the target already has the
handle of the window it wants to converse with. This message is sent for all
Move and Copy operations.

33-20 OS/2 Programming Guide-Volume II

• WM_DDE_ADVISE

This message is posted by the target to the window indicated by the hwndltem
field in the DRAGITEM structure order to maintain a hot link to the object.

• WM_DDE_UNADVISE

This message is posted by the target to the window indicated by the hwndltem
field in the DRAGITEM structure to terminate a hot link to the object.

• WM_DDE_TERMINATE

This message is posted by the target to the window indicated by the hwndltem
field in the DRAGITEM structure to terminate a conversation.

To support this rendering mechanism, a target must be able to receive and process
the following messages:

• WM_DDE_DATA

This message is posted to the target by the source to deliver the requested
information regarding the object.

• WM_DDE_ACK

This message is posted to the target by the source to acknowledge a
WM_DDE_ADVISE or WM_DDE_UNADVISE message.

• WM_DDE_ TERMINATE

This message is posted to the target by the source to end a conversation.

Native Mechanism Actions: Prior to establishing a ODE conversation, the target
should determine the source-supported formats in which it wants to have the object
rendered. It should register this format in the system atom table, and use the
resulting atom in the usformat field of the DDESTRUCT used in the conversation.

The target should establish the DOE conversation by posting a WM_DDE_REQUEST
message to the window indicated by the hwndltem field in the DRAGITEM structure.
The target acts as the client, and the source acts as the server in the conversation.

Operation Specifics: The following actions should be taken by the source,
depending on the operation being performed:

Copy Send the data to the target.

Move Remove knowledge of the object after receiving confirmation that the
target has successfully completed its portion of the rendering operation.

Non-Native Mechanism Actions: The target and source proceed in the same way,
regardless of whether ODE was the native rendering mechanism or an alternate
rendering mechanism.

Naming Conventions: The naming conventions for the DRM_DDE rendering
mechanism follow:

• hstrSourceName

Contains the object name to be used in the DOE conversation.

• hstrRMF

The format portion of the list of ordered pairs in the format <DRM_DDE,format>
identifies the formats supported by the source for the object. The non-standard

Chapter 33. Direct Manipulation 33-21

ODE formats that these formats map to must be registered in the system atom
table by both the source and the target.

Types: Any type that is allowed as a . TYPE extended attribute is allowed in the
hstrType field of the DRAGITEM structure.

Application Extensions to the Direct Manipulation Data Transfer Protocol
An application can choose to define a new rendering mechanism. However, if an
application intends to provide renderings from this extended rendering mechanism
to existing rendering mechanisms, it should publish enough information so that
other application developers can use the new mechanism. An application must
address several distinct areas of definition. These areas are described below, in
general, and also are addressed under the definition for the system mechanisms.

Rendering Mechanism Name
The string name of the rendering mechanism should be defined by the application.
This string name will be specified in the mechanism/format pair of the DRAGITEM
structure.

Native Mechanism Actions
When both a source and target application store the data in the same native
mechanism, a transform is not required. Instead, the native Move and Copy actions
for that mechanism could be performed by the target. An application must
completely define the proper procedure for performing that action. In the case of
files, the native Move action is defined as a DosMove or DosCopy/DosDelete. The
native Copy action is DosCopy. An application need not support all of the basic
actions; it can choose to define additional native mechanism actions, indicated by
the DO_UNKNOWN action in the DRAGINFO structure.

Naming Conventions
An application that is defining a new mechanism must completely specify the
naming conventions for objects rendered in that mechanism. This information
typically includes both the name of the data and preceding information describing
the exact location of the data. Any special rules concerning uppercase and
lowercase or character sets to be used in naming also must be specified. The
semantics for using these mechanism names, as well as an algorithm for deriving
location information, also must be defined.

An application that is defining a new rendering mechanism must completely define
the set of messages that a target and source application must support, and specify
the appropriate action to be taken for each message. The message IDs (above
WM_ USER) for the messages must be published.

Performance Considerations
If an application provides or defines transforms from the newly defined mechanism
to existing mechanisms, performance information about the transform between
mechanisms should be provided. This will aid the application developer in choosing
the appropriate transform when it encounters an application that transforms from an
unknown native mechanism to several different known mechanisms.

33-22 OS/2 Programming Guide-Volume II

Summary
The following tables describe the structures and messages used in direct
manipulation:

Table 33-3. Direct Manipulation Structures

Structure name Description

DRAGIMAGE Dragged-image structure.

DRAGINFO Drag-information structure.

DRAGITEM Drag-object structure.

DRAGTRANSFER Drag-conversation structure.

Table 33-4 (Page 1 of 2). Direct Manipulation (Drag) Messages

Message

DM_DRAGERROR

DM_DRAGFILECOMPLETE

DM_DRAGLEAVE

DM_DRAGOVER

DM_DRAGOVERNOTIFY

DM_DROP

DM_DROPHELP

DM_EMPHASIZETARGET

DM_ENDCONVERSATION

DM_FILERENDERED

DM_PRINT

DM_RENDER

DM_RENDERCOMPLETE

DM_RENDERFILE

Description

Sent to the caller of DrgDragFiles or
DrgAcceptDroppedFiles when an error occurs
during a move or copy operation.

Sent when a direct manipulation operation on a file
is complete.

Sent to a window that is being dragged over when
one of the following occurs:

• The object is dragged outside the boundaries of
the window.

• The drag operation is terminated while the
object is over the window.

Lets the window under the pointer determine
whether the object currently being dragged can be
dropped.

Sent to the source of a drag immediately after a
DM_DRAGOVER message is sent to a target
window.

Sent to the target when the dragged object is
dropped.

Requests help for the current drag operation.

Sent to the caller of DrgAcceptDroppedFiles to tell
it to either apply or remove target emphasis from
itself.

The target used this message to notify a source
that a drag operation is complete.

Sent to the window handling the drag conversation
for the caller of DrgDragFiles.

Sent to a source to request it to print the current
view of an object.

Used to request a source to provide a rendering of
an object in a specified rendering mechanism and
format.

Posted by a source to a target window.

Sent to the caller of DrgDragFiles to tell it to
render a file.

Chapter 33. Direct Manipulation 33-23

Table 33-4 (Page 2 of 2). Direct Manipulation (Drag) Messages

Message Description

DM_RENDERPREPARE Tells a source to prepare for the rendering of an
object.

33-24 OS/2 Programming Guide-Volume II

Chapter 34. Window Timers

A window timer enables an application to post timer messages at specified

intervals. This chapter describes how to use window timers in PM applications.

About Window Timers

© Copyright IBM Corp. 1992

A window timer causes the system to post WM_ TIMER messages to a message

queue at specified time intervals called timeout values. A timeout value is
expressed in milliseconds.

An application starts the timer for a given window, specifying the timeout value.

The system counts down approximately that number of milliseconds and posts a

WM_ TIMER message to the message queue for the corresponding window. The

system repeats the countdown-post cycle continuously until the application stops the

timer.

The timeout value can be any value in the range from O through 65535. However,

the operating system cannot guarantee that all values are accurate. The actual

timeout depends on how often the application retrieves messages from the queue

and the system clock rate. In many computers, the operating system clock ticks

about every 50 milliseconds, but this can vary widely from computer to computer. In

general, a timer message cannot be posted more frequently than every system

clock tick. To make the system post a timer message as often as possible, an

application can set the timeout value to 0.

An application starts a timer by using the WinStartTimer function. If a window

handle is given, the timer is created for that window. In such case, the

WinDispatchMsg function dispatches the WM_ TIMER message to the given window

when the message is retrieved from the message queue. If a NULL window handle

is given, it is up to the application to check the message queue for WM_TIMER
messages and dispatch them to the appropriate window.

A new timer starts counting down as soon as it is created. An application can reset

or change a timer's timeout value in subsequent calls to the WinStartTimer function.

To stop a timer, an application can use the WinStopTimer function.

The system contains a limited number of timers that must be shared among all PM

applications; each application should use as few timers as possible. An application

can determine how many timers currently are available by checking the CV_TIMERS

system value.

Every timer has a unique timer identifier. An application can request that a timer be

created with a particular identifier or have the system choose a unique value. When

a WM_ TIMER message is received, the timer identifier is contained in the first

message parameter. Timer identifiers enable an application to determine the

source of the WM_ TIMER message.

34-1

Three timer identifiers are reserved by and for the system and cannot be used by
applications; these system timer identifiers and their symbolic constants are shown
in the following table:

Table 34-1. System Timers

Value Meaning

TID_CURSOR Identifies the timer that controls cursor blinking. Its timeout
value is stored in the os2.ini file under the CursorBlinkRate
keyname in the PM_ ControlPanel section.

TID_FLASHWINDOW Identifies the window-flashing timer.

TID_SCROLL Identifies the scroll-bar repetition timer that controls scroll-bar
response when the mouse button or a key is held down. Its
timeout value is specified by the system value
SV _ SCROLLRATE.

WM_TIMER messages, like WM_PAINT and semaphore messages, are not actually
posted to a message queue. Instead, when the time elapses, the system sets a
record in the queue indicating which timer message was posted. The system builds
the WM_ TIMER message when the application retrieves the message from the
queue.

Although a timer message may be in the queue, if there are any messages with
higher priority in the queue, the application retrieves those messages first. If the
time elapses again before the message is retrieved, the system does not create a
separate record for this timer, meaning that the application should not depend on
the timer messages being processed at precise intervals. To check the accuracy of
the message, an application can retrieve the actual system time by using the
WinGetCurrentTime function. Comparing the actual time with the time of the
previous timer message is useful in determining what action to take for the timer.

Using Window Timers
There are two methods of using window timers. In the first method, you start the
timer by using the WinStartTimer function, supplying the window handle and timer
identifier. The function associates the timer with the specified window. The
following code fragment starts two timers: the first timer is set for every half second
(500 milliseconds); the second, for every two seconds (2000 milliseconds).

34-2 OS/2 Programming Guide-Volume II

Once these timers are started, the WinDispatchMsg function dispatches WM_TIMER

messages to the appropriate window. To process these messages, add a

WM_ TIMER case to the window procedure for the given window. By checking the

first parameter of the WM_ TIMER message, you can identify a particular timer, then

carry out the actions related to it. The following code fragment shows how to

process WM_ TIMER messages:

In the second method of using a timer, you specify NULL as the hwnd parameter of

the WinStartTimer call. The system starts a timer that has no associated window

and assigns an arbitrary timer identifier. The following code fragment starts two

window timers using this method:

These timers have no associated window, so the application must check the

message queue for WM_ TIMER messages and dispatch them to the appropriate

window procedure. The following code fragment shows a message loop that

handles the window timers:

You can use the WinStopTimer function at any time to stop a timer. The following

code fragment demonstrates how to stop a timer:

Chapter 34. Window Timers 34-3

Summary
Following are the OS/2 functions and the message used with window timers:

Table 34-2. Window Timer Functions

Function Name Description

WlnGetCurrentTlme Returns the current time.

WlnStartTlmer Starts a timer.

WlnStopTlmer Stops a timer.

Table 34-3. Window Timer Message

Message Description

WM_ TIMER Posted when a timer times out.

34-4 OS/2 Programming Guide-Volume II

Chapter 35. Atom Tables

Atom tables enable applications to generate unique identifiers and manage strings.
This chapter describes how to use atom tables in PM applications.

About Atom Tables
An atom table is an operating system mechanism that an application uses to obtain
identifiers that are unique, system-wide, and to manage strings efficiently. An
application places a string, called an atom name, in an atom table and receives a
32-bit integer value, called an atom, that the application can use to access that
string.

System Atom Table
The system atom table is available to all applications. When an application places a
string in the system atom table, any application that has the atom name can obtain
the atom by querying the system atom table.

An application that defines messages, clipboard-data formats, or dynamic data
exchange (DOE) data formats that are intended for use among applications must
place the names of the messages or formats in the system atom table. So doing
avoids possible conflicts with messages or formats defined by the system or other
applications, and makes the atoms for the messages or formats available to other
applications. Applications should use names that are not likely to be used by other
applications for other purposes.

Some PM functions enable applications to use atoms in parameters that normally
take pointers to strings. For example, the WinRegisterClass function takes a pointer
to a string for its pszClassName parameter. WinRegisterClass places the class
name string in the system atom table. Afterward, an application can query the
system atom table to obtain the atom, then use the atom as the pszClientClass
parameter of the WinCreateStdWindow function. This process can save space in the
data segment of applications that create many windows of the same private class.

Private Atom Tables

© Copyright IBM Corp. 1992

An application can use a private atom table to efficiently manage a large number of
strings that are used only within the application. The strings in a private atom table,
and the resulting atoms, are available only to the application that created the table.

An application that must use the same string in a number of data structures can
save data-segment space by using a private atom table. Rather than copying the
string into each data structure, the application can place the string in the atom table
and use the resultant atom in the data structures. In this way, a string that appears
only once in the data segment still can be used many times in the application.

Applications also can use private atom tables to save time when searching for a
particular string. To perform a search, an application must place the search string
in the atom table only once, then compare the resultant atom with the atoms in the
relevant data structures. This usually is faster than doing string comparisons.

35-1

Atom-Table Handle

Atom Types

Every atom table has a unique handle. An application must obtain the handle
before performing any atom operations. To obtain the handle of the system atom
table, an application must use the WinQuerySystemAtomTable function. To create a
private atom table and obtain its handle, an application must use the
WinCreateAtomTable function. The atom-table handle returned by either of these
calls must be used for all other atom functions.

An application that no longer needs its private atom table should call the
WinDestroyAtomTable function to destroy the table and free the memory that the
system allocated for the table.

Applications can use two types of atoms: string and integer.

String Atoms
Applications pass null-terminated strings to atom tables and receive string atoms
(32-bit integers) in return. String atoms have the following properties:

• The maximum number of string atoms allowed is 16K. The values of string
atoms are from OxCOOO through OxFFFF.

• The maximum amount of data that an atom table can store is 64K. This includes
the control data that the operating system uses to manage the atom table (32
bytes for the table plus 6 bytes for each string atom).

• The maximum length of an atom name is 255 characters. A zero-length string is
not a valid atom name.

• Case is significant when searching for an atom name in an atom table, and the
entire string must match. No substring matching is performed.

• A usage count is associated with each atom name. The count is incremented
each time the atom name is added to the table and decremented each time the
atom name is deleted from the table. This allows different users of the same
string atom to avoid destroying each other's atom names. When the usage count
for an atom name equals zero, the system removes the atom and atom name
from the table.

Integer Atoms
Integer atoms differ from string atoms as follows:

• Integer atoms are values from Ox0001 through OxBFFF. The values of integer
atoms and string atoms do not overlap, so the two types of atoms can be
intermixed.

• The string representation of an integer atom is ddddd, where ddddd are decimal
digits. Leading zeros are ignored.

• There is no usage count nor storage overhead associated with an integer atom.

35-2 OS/2 Programming Guide-Volume II

The operating system uses integer atoms to detect whether the same window class
name is being defined more than once. The system defines the predefined window
class names using integer atoms as constants. When an application registers a
window class, the system enters the specified class name in the system atom table.
The system then compares the resultant atom with the predefined window-class
constants and with the atoms representing the application-defined class names
registered earlier. To be able to do this comparison, the system must express the
preregistered class names as atoms. By defining the class names as integer atoms,
the system ensures that the atoms do not conflict with the string atoms it generates
for application-defined class names.

Atom Creation and Usage Count
An application creates an atom by calling the WinAddAtom function, passing an
atom-table handle and a pointer to a string. The system searches the specified
atom table for the string. If the string already resides in the atom table, the system
increments the usage count for the string and returns the corresponding atom to the
application. Repeated calls to add the same atom string return the same atom. If
the atom string does not exist in the table when WinAddAtom is called, the string is
added to the table, its usage count is set to 1, and a new atom is returned.

An application can retrieve the usage count associated with a given atom using the
WinQueryAtomUsage function. By obtaining the usage count, an application can
detect whether other applications, or other threads within the application, are using
the same atom.

An application calls the WinDeleteAtom function when it no longer needs to use an
atom. WinDeleteAtom reduces the usage count of the corresponding atom by 1.
When the usage count reaches zero, the system deletes the atom name from the
table.

Atom-Table Queries
An application can find out if a particular string is already in an atom table by using
the WinFindAtom function. WinFindAtom searches the atom table for the specified
string and, if the string is there, returns the corresponding atom.

There are two functions that an application can use to retrieve a string from an atom
table, provided that the application has the atom corresponding to the desired
string. The first, WinQueryAtomlength, returns the length of the string
corresponding to the atom. This allows the application to create a buffer of the
appropriate size for the string. An application uses the WinQueryAtomName
function to retrieve the string and copy it to the buffer.

Chapter 35. Atom Tables 35-3

Atom String Formats
The second parameter to the WinAddAtom and WinFindAtom functions,
pszAtomName, is a pointer to zero-terminated string. An application can specify
this pointer in one of the following four ways:

Table 35-1. Atom String Formats

Format Description

"!",atom Points to a string in which the atom is passed indirectly, as a
value.

#ddddd Points to an integer atom specified as a decimal string.

long word: Passes an atom directly. The atom is in the low word of the
FFFF(low word) pszAtomName parameter. The operating system uses this

format to add predefined window classes to the system atom
table.

string atom name The pointer is to a string atom name. Applications typically use
this format to add an atom string to an atom table and receive an
atom in return.

The "!",atom and long word: FFFF(low word) formats are useful when incrementing
the usage count of an existing atom for which the original atom string is not known.
For example, the system clipboard manager uses the long word: FFFF(low word)
format to increment the usage count of each clipboard-format atom when that format
is placed on the clipboard. By using this format, the atom is not destroyed even if
the original user of the atom deletes the it, because the usage count still shows that
the clipboard is using the atom.

Using Atom Tables
This section explains how to create unique window-message atoms, dynamic data
exchange (ODE) formats and a clipboard format.

Creating Unique Window-Message Atoms
You must create atoms for your application-defined window messages if other
applications are likely to recognize those messages. For example, your application
might communicate with another application by using an agreed-upon message that
is not defined by the system. Both applications must use the same string identifier
for the shared message type-for example, OUR_LINK_MESSAGE. Each time the
applications run, they add this string to the system atom table and receive an atom
in return. Both applications register the same string in the system atom table, so
they both receive the same atom. Then, this atom can be used to identify the
message without conflicting with other system-wide message identifiers.

A consequence of using atoms to identify a window message is that the message
cannot be decoded as a C-language case statement, as is usually done, because the
value of the atom cannot be known until run time. Instead, you must add a default
case that checks the value of the message against the value of the atoms you have
registered.

35-4 OS/2 Programming Guide-Volume II

The following code fragment shows how to add an application-defined message
string to the system atom table, then use the resultant atom to broadcast and
receive the message.

Creating DOE Formats and a Unique Clipboard Format
Applications that define their own clipboard or ODE formats must register those
formats in the system atom table to avoid conflicting with the predefined formats
and any formats used by other applications.

Chapter 35. Atom Tables 35-5

The following code fragment registers a custom format:

35-6 OS/2 Programming Guide-Volume II

Summary
The following OS/2 functions are associated with atom tables:

Table 35-2. Atom Table Functions

Function Name Description

WinAddAtom Adds an atom to an atom table.

WinCreateAtomTable Creates an empty atom table of the specified size.

WinDeleteAtom Deletes an atom from an atom table.

WlnDestroyAtomTable Destroys an atom table.

WinFindAtom Find an atom in the atom table.

WlnQueryAtomLength Queries the length of an atom represented by the
specified atom.

WlnQueryAtomUsage Returns the number of times an atom has been
used.

WlnQuerySystemAtomTable Returns the handle of the system atom table.

Chapter 35. Atom Tables 35-7

35-8 OS/2 Programming Guide-Volume II

Chapter 36. Initialization Files

Initialization files enable an application to store and retrieve information that the
application uses when it starts up. This chapter describes how to use the OS/2 2.0
Profile Manager to create, manage, and use the system's initialization files. The
following topics are related to this chapter:

• Fi I e system
• Presentation Manager interface applications.

About Initialization Files
An initialization file is a convenient place to store information between sessions.
Profile Manager enables applications to create their own initialization files and to
access the OS/2 initialization files, os2.ini and os2sys.ini. Just as the system uses
the os2.ini and os2sys.ini files to store configuration information for system startup,
an application can create an initialization file that stores information it uses to
initialize windows and data.

The system initialization files contain sections and settings used by the PM
applications (such as Desktop Manager, Control Panel, and Print Manager).
Although applications can read settings from the initialization files, only rarely does
an application need to change a setting. OS/2 initialization files are binary; the user
cannot view or edit them directly.

An initialization file consists of one or more sections; each section contains one or
more settings, or keys. Each key consists of two parts: a name and a value. Both
section names and key names are null-terminated strings. The value assigned to a
key can be a null-terminated string, a null-terminated string representing a signed
integer, or individual bytes of data. i

Once an initialization file is created, an application can rename, copy, move, or
delete that file just as it does any other file. Although an application also could read
directly to or write directly to the initialization file, the application should always use
Profile Manager functions to access the contents of the file. Both character-based
OS/2 applications and PM applications can use Profile Manager functions. Before
calling Profile Manager, a thread must initialize an anchor block by using the
Winlnitialize function.

Using Initialization Files

© Copyright IBM Corp. 1992

This section explains how to use Profile Manager functions to perform the following
tasks:

• Create, open, and close initialization files.
• Read and write settings.
• Identify the initialization files.

36-1

Creating, Opening, and Closing Initialization Files
You can create an initialization file or open an existing initialization file by using the
PrfOpenProfile function. The function requires a handle to an anchor block and a
pointer to the name of an initialization file. If the file does not exist in the given
path, the function automatically creates an initialization file.

The following code fragment creates an initialization file named pmtools.ini in the
current directory:

If the PrfOpenProfile function is successful, it returns a handle to the initialization
file. Otherwise, it returns NULL, and the file is not created. Once you have an
initialization-file handle, you can create new sections and settings in the file.

To close an initialization file, you use the PrfCloseProfile function.

Reading and Writing Settings
An application can store strings, integers, and binary data in an initialization file and
retrieve them. To read from or write to an initialization file, your application must
provide a section name and a key name that specify which setting to read or
change. If the section or key name you specify in a writing operation does not exist
in the file, it is added to the file and assigned the given value.

The following code fragment creates a section named "MyApp" and a key named
"MainWindowColor" in a previously opened initialization file, and assigns the value
of the RGB structure to the new setting:

To read a setting, your application can retrieve the size of the setting and then read
the setting into an appropriate buffer by using the PrfQueryProfileSize and
PrfQueryProfileData functions, as shown in the following example. This example
reads the setting "MainWindowColor" from the "MyApp" section only if the size of
the data is equal to the size of the RGB structure.

36-2 OS/2 Programming Guide-Volume II

An application can also read strings by using the PrfQueryProfileString function,

write strings by using the PrfWriteProfileString function, and read integers (stored

as strings) by using the PrfQueryProfilelnt function.

Identifying the OS/2 Initialization Files
Your application can retrieve the names of the system initialization files by using the

PrfQueryProfile function. Although the OS/2 initialization files are usually named

os2.ini and os2sys.ini, you can use other files when starting the system.

The following example retrieves the names of the initialization files and copies their

names to the strings szUserName and szSysName. Once you know the names of

the OS/2 initialization files, you can use them to open the files and read settings.

You can change the OS/2 initialization files to files of your choice by using the

PrfReset function. This function requires the names of two initialization files and

uses them as replacements for the os2.ini and os2sys.ini files. The system is then

reset by using the settings in the new files.

Chapter 36. Initialization Files 36-3

Summary
Following are the OS/2 2.0 functions used with initialization files:

Table 36-1. Initialization File Functions

Function name Description

PrfCloseProflle Indicates that a profile is no longer available for
use.

PrfOpenProflle Indicates that a file is available for use as a profile

PrfQueryProflle Returns a description of the current user and
system profiles.

PrfQueryProflleData Returns a string of binary data from the specified
profile.

PrfQueryProfilelnt Returns an integer value from the specified profile.

PrfQueryProfileSlze Obtains the size, in bytes, of the value of a
specified key for a specified application in the
profile.

PrfQueryProflleStrlng Retrieves a string from the specified profile.

PrfReset Defines which files are to be used as the user and
system profiles.

PrfWrlteProflleData Writes a string of binary data into the specified
profile.

PrfWriteProfileString Writes a string of character data into the specified
profile.

36·4 OS/2 Programming Guide-Volume II

Appendix A. Comparison of 1989 and 1991 CUA User Interface
Guidelines

Section CUA Guidelines - 1989 CUA Guidelines - 1991

Accelerator Accelerator term used. Terminology change - called a
Shortcut key.

Action bar Action bar term used. Terminology change - called a
Menu bar.

Used if more than one action is Used if more than six actions are
available. available, or when any of the

predefined menu bar actions are
available.

Action message Stop-sign symbol always used. Question mark or stop-sign symbol
may be used.

Audible feedback Beep recommended. Recommend using available audio
capabilities as feedback.

Column heading Alignment of columns and Alignment of columns and
headings not addressed. headings are defined based on

length.
Use of separators not addressed.

Recommend separators between
columns and headings.

Required headings not addressed.
Column headings not required if
there is only one column.

Combination box Default choices not addressed. Recommend displaying a default
choice.

Container Addressed at a direction level A new control. An object used to
only. hold other objects.

Contents of menus May contain action, routing, or May contain action or routing
settings (properties) choices. choices. Encourages using a

notebook control for settings
choices.

Short menus and Full menus: Not Short Menus and Full Menus - the
addressed. contents and techniques are

defined.

Contextual help Contextual help for Defined for direct-manipulation
direct-manipulation tasks not tasks.
addressed.

Delete folder Not addressed. A container used to remove
objects from the operating
environment.

Dialog box Dialog boxes used to continue Secondary windows used to
users requests (movable, but not continue users requests.
sizable). Recommend they are movable and

sizable.

Terminology change - dialog box
term no longer used.

© Copyright IBM Corp. 1992 A-1

Section CUA Guldellnes - 1989 CUA Guidelines - 1991

Direct manipulation Direct manipulation discussed Direct manipulation discussed as
briefly. , a pervasive technique.

Recommendation to provide direct
manipulation for all objects.

Direct manipulation of split bar not Manipulation button drags split
addressed bar.

Do-not pointer Not addressed. Defines do-not pointer for use
during direct-manipulation
operations.

Drop-down combination box Order and number of choices not Recommend placing choices in
addressed. numeric, alphabetic, or

chronological order and display at
least six choices in a box.

Drop-down list Order and number of choices not Recommend placing choices in
addressed. numeric, alphabetic, or

chronological order and display at
least six choices in a box.

Edit menu Redo: Not addressed. Redo choice used to reverse the
effect of an undo action.

Create: Not addressed. Create choice used to create a
new object or a reflection of the
current object using the clipboard.

Find: Not addressed.
Find choice allows a user to
search for an object or a part of an
object.

Field prompts Left-align field prompts only. Allow left-aligned or right-aligned
field prompts.

Field prompts followed by colons Field prompts followed by colons
shown in many examples. no longer suggested or used in

examples.

Fiie menu Fiie: Name used for first menu File - used for application-
choice on the menu bar. oriented windows; "class name"

used for first menu choice of
object-oriented windows.

Open as: Not addressed. Opens another view of the object
in another window.

Print: Allows a window for more Print: Allows a window for more
information information, and allows a

cascaded menu for printer
selection

Exit (optional)
Not used; performed by close
action of system menu in
associated primary window.

Folder Not addressed. System-provided container used to
group objects.

A-2 05/2 Programming Guide-Volume II

Section CUA Guidelines -1989 CUA Guldellnes -1991

Group box Capitalization rules not addressed. Capitalize first letter only {some
exceptions described).

Not addressed. Recommend using only when
white space or group headings
would be insufficient.

Help menu Help menu choices displayed with Help menu choices are not

ellipses. displayed with ellipses.

Help for help choice Terminology change - Using help.
Position change in the Help menu.

Extended help choice
Terminology change - General
help

Keys help
Removed from Help menu, now
accessed from the help index.

Not addressed.
Recommend describing settings
for buttons on pointing device in
keys help.

Help Index choice
Position change in Help menu.

About choice - leads to a logo
window. Terminology change - Product

information choice leads to a
product-information window.

Hide Not addressed. A choice that removes a window
and all associated windows from
the workplace.

Hourglass pointer Hourglass pointer term used. Recommend displaying wait
pointer over parts of a window.

Terminology change - called a
wait pointer.

Two wait pointer visuals are
available.

Information area Not addressed. Information area defined as part of
a window where information
appears about the object or choice
that the cursor is on. Information
about the normal completion of a
process can also appear in the
information area.

Information message Used for normal processing Used when additional information

situations when there are no about a completed process is

additional actions available. available and no progress
indicator is displayed, or when a
process cannot complete and
there are no additional actions
available.

In-use emphasis Not addressed. In-use emphasis defined for
opened objects.

Appendix A. Comparison of 1989 and 1991 CUA User Interface Guidelines A-3

Section CUA Guidelines - 1989 CUA Guidelines -1991

Keyboard Accelerator keys Terminology change - Shortcut
keys

No guidance given about user If changed by users, changes
changes. reflected in menus and help.

Case sensitivity not addressed. Allow either upper or lowercase
characters.

Use of preferred modifiers not Recommend using the Alt key
addressed. element of shortcut key

assignments to only provide
access to mnemonics and to
provide access to
operating-environment-provided
shortcut keys.

Message box Special type of dialog box used for Secondary windows used for
messages (modal and sizable) messages. Recommend they are

modeless and sizable.

Terminology change - message
box term no longer used.

Messages Application name used for window Object name - action used in
title. window title.

Messages are application modal Recommend to allow a user to
and nonsizable. continue interacting with parts of

an object while message
displayed and size messages.

Controls in messages not Recommend providing interactive
addressed. controls in messages.

Not addressed. Describes displaying message
symbol on icon if window is not
open.

Modal and modeless Modeless dialogs used only for Modeless windows encouraged for
repeat actions. all windows.

Mouse Using mouse to create a reflection Ctrl +Shift+ Manipulation button
not addressed. assigned to create reflection

operation.

Effect of move and copy operations Move and copy operations effect
on pointer visuals not addressed. on pointer visuals defined.

Multiple document interface Used to view many objects or Multiple windows used to view
multiple views of same object. All many objects or multiple views of
windows contained within one the same object. Multiple
window and share a menu bar. document interface only

addressed in the context of
migration. Also see the Windows
menu.

Notebook Not addressed. New control. Recommended for
displaying settings and some
types of objects.

A-4 OS/2 Programming Guide-Volume II

Section CUA Guidelines -1989 CUA Guidelines - 1991

Options menu Contains product-specific choices Used primarily in application-

related to the application. oriented windows. Encourages
using a notebook control for these
types of choices.

Pop-up menu Not defined Pop-up menus defined to display
actions for indicated object.
Shift+ F10 and chording selection
and manipulation buttons display
pop-up menu of indicated object.

Progress indicator Display a progress indicator for Display a progress indicator for

complex tasks. tasks that take more than 5
seconds.

Not addressed.
Display a progress indicator in
action window where process is
requested.

Only a Stop push button is defined
for controlling the process. Stop, Pause, and Resume push

buttons defined for controlling the
process. Close push button not
allowed for stopping the process.

Title not addressed.

Use the word "progress" in the

Help not addressed. window title.

Removing the progress indicator Recommend providing Help.

not addressed.
Product removes the progress
indicator if no special completion
information needed; otherwise the
user removes the progress
indicator.

Pull-down menu Recommended at least two Not addressed.
choices in a pull-down menu.

Appendix A. Comparison of 1989 and 1991 CUA User Interface Guidelines A-5

Section CUA Guidelines - 1989 CUA Guldellnes - 1991

Push button Changing contents of a push Use two push buttons, do not
button not addressed. change content of same push

button.

Normal position is in lower area of Place push buttons that affect an
window. entire window horizontally at the

bottom of the window, justified
from the left edge. If a push button
is associated with a component,
place it near the component.

Push buttons not allowed in Push buttons allowed in windows
windows with menu bars. with menu bars.

Position of push buttons when Push buttons remain in same
sizing or scrolling not addressed. relative position when sizing or

scrolling.
Default push button required for

each window containing push Default push button recommended
buttons. for each window containing push

buttons.
Pause, Resume, Close, and
Continue: not addressed. Recommended usage described

for Pause, Resume, Close, and
Continue.

Radio button None choice not addressed. Recommend None choice if a user
can choose not to select any of a
set of choices.

Reflection Not addressed. An object represented by more
than one icon.

Restore of minimized windows Restore returns to middle size. Restore returns to previous size
and position.

Scroll bar Slider box - part of the scroll bar Terminology change - scroll box.
used to scroll.

Scroll increment General descriptions given, text Recommendations included for
examples provided. icons, graphics, and text.

Secondary window Term used only to refer to Terminology change-definition
movable, sizable windows expanded to include all windows
dependent on another primary dependent on another primary
window. window {independent of whether

they are movable or sizable).

May not be minimized May be minimized when used to
display views of objects.

Selected emphasis Referred to as selected emphasis Terminology change -
selected-state emphasis.

Use inverse color for selected For all objects show by changing
emphasis on text. the foreground and background

colors.

A-6 OS/2 Programming Guide-Volume II

Section CUA Guldellnes - 1989 CUA Guldellnes - 1991

Selected menu Functions were available in the New menu-bar choice used for
Fiie menu for list handlers. actions on selected objects within

the window.

Open as choice - Not addressed. Choice used to display another
view of an object in a window.

Separators Not addressed. White space recommended except
in menus.

Single-line entry field Specific rules for visible length not When the length of data is
addressed. predictable, such as time or date,

the field should be entirely visible.

Slider Not addressed. New control to represent a
quantity and its relationship to a
range of possible values.

Usage of scroll bar for numeric Slider control used.
values not addressed.

Source emphasis and target Not defined Defines source emphasis and
emphasis target emphasis for

direct-manipulation operations.

Spin button Not defined. Order of choices is based on type
of data.

Split window Allows only one vertical and one Allows multiple vertical and
horizontal split. horizontal splits.

Status area Not addressed. Status area defined as part of a
window where information
appears about the state of an
object or the state of a particular
view of an object.

System menu Close choice does not address Close choice recommends saving
saving window status information. window state, such as its position,

size, and associated messages.

Close choice only addressed for Result of Close choice defined
dialog boxes. depending on window content.

Title bar mini-icon Introduced in the workplace Referred to as the small icon in
environment and referred to as the the title bar.
Title bar mini-icon.

Not addressed. Defines use of target emphasis
during direct-manipulation
operations.

Tool palette Briefly described Content and usage described.

Appendix A. Comparison of 1989 and 1991 CUA User Interface Guidelines A-7

Section CUA Guidelines - 1989 CUA Guidelines - 1991

View menu Names of views addressed in the Names of views are listed at the
View menu. top of the View menu.

All: Used to see the entire Include: Used to see the entire
contents. contents or part of the contents.

Some: Used to see part of the Include: Used to see the entire
contents. contents or part of the contents.

By: Used to sort the contents. Terminology change-Sort.

Refresh: Not addressed. Refresh -+ On/Ott used to al low a
user to control updates to the
window contents.

Refresh now: Not addressed. Refresh now: Used to update the
window contents immediately.

Warning message Yes and No push buttons allowed. Recommend using Continue push
buttons and action push buttons.

Window menu Used for MDI windows. Terminology change - Windows
menu used to access and manage
related windows.

Window title "Application name - OS/2 file Added window title rules for
name" object-oriented windows

Work area Not addressed. A container used to group objects
by task.

A-8 OS/2 Programming Guide-Volume II

Appendix B. Documenting the CUA User Interface in Products

The following information is provided to help you document your product's user
interface and associated information. The following table contains both technical
and user terms. The user terms are defined and suggestions are given on how to
explain the technical concepts to users.

General Terminology Guidelines
The terminology used in your product should be suited to the task domain of the
product's users. For example, if the primary users of a product are programmers,
use terms programmers are familiar with and understand; similarly, if the primary
users are members of the medical community or the insurance community, use
terms those users will expect and understand.

If your product has a particular implementation of a concept that you want to include
in the definition, you may append that information to the end of the definition.
Precede the appended information with a phrase such as: In myoroduct, ••••

Predefined user-interface terminology (terms that appear in the table in bold text)
must be used for all users. Synonyms for these terms are not allowed.

How to Use This Table

© Copyright tBM Corp. 1992

Use the terms and their definitions in your product documentation just as they
appear in the following table. Some of the terms that appear as choices on the user
interface can either be action or routing choices. If they are used by your product as
routing choices, append either an ellipsis or a right-pointing arrow to the term as
appropriate.

Some of the technical terms in this table do not have equivalent user terms. To help
you explain to users the concepts represented by thes.e technical terms, suggestions
are given in the right-hand column of the table. The documentation suggestions
appear in italic text to distinguish them from term definitions.

Other technical terms in the table have equivalent user terms; for example, look at
the term "action message" in the table. In the right-hand column, you are referred
to "message" for the definition; "message" is the user equivalent of "action
message."

Note: Predefined capitalization rules have been applied to the user-interface
terminology in the following table. Terms in bold text appear in
CUA-conforming user interfaces as choices in menus, labels on push buttons,
and labels associated with icons.

B-1

Table B-1 (Page 1 of 14). Technical Terms with Equivalent User Terms and User
Definitions

Technical Term User Term User Definition or Documentation
Suggestion

action action An action performs a task on an object.
A user requests actions by selecting a
choice from a menu, interacting with
buttons in a window, or by manipulating
objects directly.

action message See message.

active window active window The window that can receive input from
the keyboard. It is distinguishable by the
unique color of its title bar and window
border.

Apply Apply A push button that carries out the
selected choices In a window without
closing the window.

audible feedback Use "beep" or describe the sound.

automatic A selection technique in which moving
selection the keyboard cursor automatically

changes the current selection. A user
does not have to identify a choice or
object to select it, selection occurs
automatically as the cursor moves
among the choices or objects.

border border A visual indication of the boundaries of a
window.

button button (1) A mechanism on a pointing device,
such as a mouse, used to request or
initiate an action or a process. (2) A
graphical device that identifies a choice.
(3) A graphical mechanism that, when
selected, performs a visible action. For
example, when a user clicks on a list
button, a list of choices appears.

Cancel Cancel A push button that removes a window
without applying any changes made in
that window.

cascaded menu cascaded menu A menu that appears from, and contains
choices related to, a cascading choice in
another menu.

cascading choice cascading choice A choice on a menu that, when selected,
presents another menu with additional
related choices.

check box check box A square box with associated text that
represents a choice. When a user
selects the choice, the check box is filled
to indicate that the choice is selected.
The user can clear the check box by
selecting the choice again, thereby
deselecting the choice.

B-2 OS/2 Programming Guide-Volume II

Table B-1 (Page 2 of 14). Technical.Terms with Equivalent User Terms and User
Definitions

Technical Term User Term User Definition or Documentation
Suggestion

check mark check mark A character (J) that indicates that a
choice is active.

choice choice Graphics or text that a user can select to
modify or manipulate an object. Choices
appear in menus, on push buttons, and in
fields as in, for example, a field of radio
buttons.

chord chord To press more than one button on a
pointing device while the pointer is within
the limits that the user has specified for
the operating environment.

Clear Clear A choice that removes a selected object
and leaves the visible space that it
occupied.

click click To press and release a button on a
pointing device without moving the
pointer off of the object or choice.

clipboard clipboard An area of storage provided by the
system to hold data temporarily.

Close Close A choice that removes a window and all
of the windows associated with it from
the workplace. For example, if a user is
performs a task in a window and a
message appears, or the user asks for
help, both the message and the help
windows disappear when the user closes
the original window.

combination box Refer to the list of objects or choices that
a user can access by selecting the list
button, and the entry field into which a
user can type directly.

container container A visual user-interface component whose
specific purpose is to hold objects.

contextual help contextual help Help information about the specific
choice or object that the cursor is on.
The help is contextual because it
provides information about the item in its
current context.

control Name the control if it is a user term;
otherwise describe it, its various parts, or
tell the user how to interact with it.

Copy Copy A choice that places a copy of a selected
object onto the clipboard.

Create Create An action choice that produces a new
object, similar to a selected object, and
places it on the clipboard.

Appendix B. Documenting the CUA User Interface in Products B-3

Table B-1 (Page 3 of 14). Technical Terms with Equivalent User Terms and User
Definitions

Technical Term User Term User Definition or Documentation
Suggestion

current-setting A mark, such as a checkmark, an "X" in
indicator a check box, or a filled circle in a radio

button, that indicates that a choice is
currently selected.

current state The state of an object or choice, active or
inactive, that allows it to be selected or
directly manipulated.

cursor cursor A visible indication of the position where
user interaction with the keyboard will
appear. The keyboard cursors are the
selection cursor and the text cursor.

Cut Cut A choice that moves a selected object
and places it onto the clipboard. The
space it occupied is usually filled by the
remaining object or objects in the
window.

data transfer The movement of data from one object to
another by way of the clipboard or by
direct manipulation

Delete Delete A choice that removes a selected object.
The space it occupied is usually filled by
the remaining object or objects in the
window.

delete folder delete folder A folder that holds objects and that will
remove the objects it holds from a user's
system. A delete folder could delete
objects immediately, or it could allow the
user to specify when the objects are to be
deleted.

Deselect all Deselect all A choice that cancels the selection of all
of the objects that have been selected in
that window.

default action Explain to the user that when some
action is taken, such as pressing the
Enter key, the default action (describe the
emphasis that identifies it) will be
performed.

descriptive text Text used in addition to a field prompt to
give more information about a field.

detent A point on a slider that represents an
exact value to which a user can move the
slider arm.

dialog dialog The interaction between a user and a
computer.

dimmed Reduced contrast that indicates that a
choice or object cannot be selected or
directly manipulated.

B-4 OS/2 Programming Guide-Volume II

Table B-1 (Page 4 of 14). Technical Terms with Equivalent User Terms and User
Definitions

Technical Term User Term User Definition or Documentation
Suggestion

direct direct manipulation Techniques that a user employs to work
manipulation with objects directly, through a pointing

device, or through the objects' context
menus.

directory directory A container of files and other directories.

double-click double-click To press and release a button on a
pointing device twice while a pointer is
within the limits that the user has
specified for the operating environment.

drag drag To use a pointing device to move an
object. For example, a user can drag a
window border to make it larger.

drag and drop drag and drop To directly manipulate an object by
moving it and placing it somewhere else
using a pointing device.

drop-down Tell the user how to interact with it; refer
combination box to the entry field and the list button.

drop-down list Tell the user how to interact with it; refer
to the list of items that are shown when
the user clicks on the list button.

Edit Edit A choice on a menu bar that provides
access to other choices that enable a
user to modify data.

emphasis emphasis Highlighting, color change, or other
visible indication of the condition of an
object or choice and the effect of that
condition on a user's ability to interact
with that object or choice. Emphasis can
also give a user additional information
about the state of an object or choice.

Note: Describe to the user what the
emphasis indicates. For example, that
selected-state emphasis shows that a
choice or object is selected.

entry field entry field An area into which a user types or places
text. Its boundaries are usually
indicated.

extended A type of selection usually used for the
selection selection of a single object. A user can

extend selection to more than one object,
if required.

field field An identifiable area in a window.
Examples of fields are: an entry field,
into which a user can type or place text,
and a field of radio button choices, from
which a user can select one choice.

field prompt field prompt Text that identifies a field, such as an
entry field or a field of check boxes.

Appendix B. Documenting the CUA User Interface in Products B-5

Table B-1 (Page 5 of 14). Technical Terms with Equivalent User Terms and User
Definitions

Technical Term User Term User Definition or Documentation
Suggestion

Fiie Fiie A choice on a menu bar that provides
access to other choices that enable a
user to work with the object in the
window as a whole.

Find Find A choice or push button that initiates a
search for an object or within an object
displayed in that window. A user can
specify the criteria to be used for the
search.

first-letter A navigation and selection technique in
navigation which users select a choice in a list by

typing the first character of the choice
they want to select

folder folder A container used to organize objects.

Full menus Full menus A choice that a user selects to see all of
the choices available in menus.

General help General help A choice that gives a user a brief
overview of each action or task, or both,
that a user can perform within a window.

group heading group heading A heading that identifies a set of related
fields.

Help Help A choice that gives a user access to
helpful information about objects,
choices, tasks, and products. A Help
choice can appear on a menu bar or as a
push button.

Help index Help index A choice on the Help menu that presents
an alphabetic listing of help topics for an
object or a product.

Hide Hide A choice that removes a window and all
associated windows from the workplace.

I-beam pointer I-beam pointer A pointer that indicates that the pointer is
over an area that can be edited, for
example, an entry field.

icon icon A graphical representation of an object,
consisting of an image, image
background, and a label.

inactive window inactive window A window that is not receiving keyboard
input. It can be distinguished from an
active window by the difference in its title
bar and border colors.

Include Include A choice that presents a window in which
a user can specify a reduced or
expanded set of objects, so that only the
objects included in the reduced or
expanded set are displayed.

B-6 OS/2 Programming Guide-Volume II

Table B-1 (Page 6 of 14). Technical Terms with Equivalent User Terms and User

Definitions

Technical Term User Term User Definition or Documentation
Suggestion

information area information area A specific part of a window in which
information about the object or choice
that the cursor is on is displayed. The
information area can also contain a
message about the completion of a
process.

information See message.

message

initial value Information that appears in an entry field
when that entry field is first displayed

input focus The position, Indicated on the screen,
where a user's interaction with the
keyboard will appear.

in-use emphasis See emphasis.

Keys help Keys help A choice that presents a listing of all the
key assignments for an object or a
product.

list box A control that contains a list of objects or
settings choices that a user can select
from.

list button list button A button labeled with an underlined
down-arrow that presents a list of valid
objects or choices that can be selected
for that field.

manipulation manipulation button The button on a pointing device a user

button presses to directly manipulate an object,
for example mouse button 2 is the default
manipulation button on a two-button
mouse.

marquee box The rectangle that appears during a
selection technique in which a user
selects objects by drawing a box around
them with a pointing device.

marquee A technique that a user employs to select

selection objects by using a pointing device to
draw a box around them.

Maximize Maximize A choice that enlarges a window to its
largest possible size.

maximize button maximize button A button in the rightmost part of a title
bar that a user clicks on to enlarge the
window to its largest possible size.

menu menu A list of choices that can be applied to an
object. A menu can contain choices that
are not available for selection in certain
contexts. Those choices are indicated by
reduced contrast.

Appendix B. Documenting the CUA User Interface in Products B-7

Table B-1 (Page 7 of 14). Technical Terms with Equivalent User Terms and User
Definitions

Technical Term User Term User Definition or Documentation
Suggestion

menu bar menu bar The area near the top of a window, below
the title bar and above the rest of the
window, that contains choices that
provide access to other menus.

menu-bar choice menu-bar choice A graphical or textual item on a menu
bar, which provides access to menus that
contain choices that can be applied to an
object.

menu button menu button The button on a pointing device that a
user presses to view a pop-up menu
associated with an object, for example
mouse button 3 is the default menu
button on a three-button mouse.

menu choice menu choice A graphical or textual item on a menu. A
user selects a menu choice to work with
an object in some way.

message message Information not requested by a user but
displayed by a product in response to an
unexpected event or when something
undesirable could occur.

Minimize Minimize A choice that reduces a window to its
smallest possible size and removes all of
the windows associated with that window
from the screen.

minimize button minimize button A button, located next to the rightmost
button in a title bar, that reduces the
window to its smallest possible size and
removes all the windows associated with
that window from the screen.

mnemonic A selection technique; refer to the
"underlined character" or the "character
in parentheses" that a user can type to
move the cursor to a choice or to select
the choice that the cursor is on.

mouse mouse A commonly used pointing device,
containing one or more buttons, with
which a user can interact with a product
or the operating environment.

mouse button mouse button A mechanism on a mouse pointing device
used to select objects or choices, initiate
actions, or directly manipulate objects.
that a user presses to interact with a
computer system. The button makes a
"clicking" sound when pressed and
released.

Move Move A choice that moves a window to a
different location on the work area.

multiple-line entry field See entry field.
entry field

8-8 OS/2 Programming Guide-Volume II

Table B-1 (Page 8 of 14). Technical Terms with Equivalent User Terms and User
Definitions

Technical Term User Term User Definition or Documentation
Suggestion

New New A choice that creates another object from
an existing object. The new object will
appear in the existing window.

notebook notebook A graphical representation that
resembles a spiral-bound notebook that
contains pages separated into sections
by tabbed divider-pages. A user can turn
the pages of a notebook to move from
one section ·to another.

object object An item that a user can manipulate as a
single unit to perform a task. An object
can appear as text, an icon, or both.

Off Off A choice that appears in the cascaded
menu from the Refresh choice. It sets the
refresh function to off.

OK OK A push button that accepts the
information in a window and closes it. If
the window contains changed
information, those changes are applied
before the window is closed.

On On A choice that appears in a cascaded
menu from the Refresh choice. It
immediately refreshes the view in a
window.

Open Open A choice that leads to a window in which
users can select the object they want to
open.

Open as Open as A cascading choice that leads to a
cascaded menu which contains choices
that a user can select to determine how
an object is presented.

Options Options A choice on a menu bar that provides
access to other choices that enable a
user to customize a product or
application.

palette palette A set of mutually exclusive, typically
graphical, choices.

pane pane One of the separate areas in a split
window.

Paste Paste A choice that places the contents of the
clipboard at the current cursor position.

pointer pointer A symbol, usually in the shape of an
arrow, that a user can move with a
pointing device. Users place the pointer
over objects they want to work with.

pointing device pointing device A device, such as a mouse, trackball, or
joystick, used to move a pointer on the
screen.

Appendix B. Documenting the CUA User Interface in Products 8-9

Table B-1 (Page 9 of 14). Technical Terms with Equivalent User Terms and User
Definitions

Technical Term User Term User Definition or Documentation
Suggestion

point selection point selection A selection technique in which a user
selects or deselects an item by clicking
the selection button on a mouse while the
pointer is positioned over an object or
choice.

pop-up menu pop-up menu A menu that, when requested, appears
next to the object it is associated with.

primary window See window.

Print Print A choice that prepares and schedules an
object to be printed on a designated
printer.

Product Product Information A choice that displays a window that
Information contains information about an application

or product, such as its copyright notice, a
logo, or both.

progress progress indicator Visual user-interface components that
indicator inform a user about the status of a

computer process.

pull-down menu See menu.

push button push button A button, labeled with text, graphics, or
both, that represents an action that will
be initiated when a user selects it.

radio button radio button A circle with text beside it. Radio buttons
are combined to show a user a fixed set
of choices from which the user can select
one. The circle becomes partially filled
when a choice is selected.

random-point A selection technique in which a user
selection presses a mouse button and holds it

down while moving the pointer so that the
pointer travels to a different location on
the screen. Everything the pointer
touches while the button is held down is
selected. Random-point selection ends
when the mouse button is released.

range selection A technique in which a user selects
multiple objects in a range by identifying
a beginning and end corner. When the
second corner is identified, all objects
within the specified range are selected.

range-swipe A selection technique in which a user
selection moves a pointer across a range of

objects. Each object becomes selected
as the pointer touches it.

B-10 OS/2 Programming Guide-Volume II

Table B-1 (Page 10 of 14). Technical Terms with Equivalent User Terms and User
Definitions

Technical Term User Term User Definition or Documentation
Suggestion

Redo Redo A choice that reverses the effect of the
most recently performed undo operation
on an object, returning the object to the
state it was in before the undo operation
was performed.

reflection An object that is represented by more
than one icon.

Refresh Refresh A cascading choice that gives a user
access to other choices (On and Off) that
control whether changes made to
underlying data in a window are
displayed immediately, not displayed at
all, or displayed at a later time.

Refresh now Refresh now A choice that shows changes made to
underlying data in a window immediately.

Reset Reset A push button that returns an object to
the condition it was in when it was last
opened, or to the condition it was in
before the most recent changes were
applied to it.

Restore Restore A choice that returns a window to the
size it was and the position it was in
before the user minimized or maximized
the window.

restore button restore button A button that appears in the rightmost
corner of the title bar after a window has
been maximized. When the restore
button Is selected, the window returns to
the size it was before it was maximized.

Retry Retry A push button that, when selected,
attempts to complete an interrupted
process.

Save Save A choice that stores an object onto a
storage device, such as a disk or
diskette.

Save as Save as A choice that creates a new object from
an existing object and leaves the existing
object as it was.

screen screen The physical surface of a display device
upon which information is shown to
users.

scrollable entry An entry field that can be scrolled.
field

scroll bar scroll bar A window component that shows a user
that more information is available in a
particular direction and can be scrolled
into view. Scroll bars can be either
horizontal or vertical.

Appendix B. Documenting the CUA User Interface in Products B-11

Table B-1 (Page 11 of 14). Technical Terms with Equivalent User Terms and User
Definitions

Technical Term User Term User Definition or Documentation
Suggestion

scroll box scroll box The part of a scroll bar that indicates the
position of the visible information relative
to the total amount of information
available in a window. A user clicks on a
scroll box with a pointing device and
manipulates it to see information that is
not currently visible.

scrolling A fixed amount of information that can be
increment scrolled with a single scrolling action.

secondary See window.
window

select select To explicitly identify one or more objects
to which a subsequent choice will apply.

Select all Select all A choice that causes all of the objects in
a window to be selected.

Selected Selected A choice in the menu bar that provides
access to choices that apply to the
selected objects in the current view.
Products can change the name of the
choice to match the types of objects that
appear in the current view, for example if
a view contains only document objects, a
product might name this choice
Documents.

selected-state See emphasis.
emphasis

selection selection The process of explicitly identifying one
or more objects to which a subsequent
choice wi 11 apply.

selection button selection button The button on a pointing device that a
user presses to select an object, for
example mouse button 1 is the select
button on a two-button mouse.

selection cursor selection cursor A keyboard cursor, in the shape of a
dotted outline box, that moves as users
indicate the choice they want to interact
with.

Settings Settings A choice that sets characteristics of
objects or displays identifying
characteristics of objects.

shortcut key shortcut key A key or combination of keys assigned to
a menu choice that initiates that choice,
even if the associated menu is not
currently displayed.

Short menus Short menus A choice that reduces the number of
choices that appear in menus.

single-line entry See entry field.
field

B-12 OS/2 Programming Guide-Volume II

Table B-1 (Page 12 of 14). Technical Terms with Equivalent User Terms and User
Definitions

Technical Term User Term User Definition or Documentation
Suggestion

Size Size An action choice that allows a user to
change the size of a window.

slider slider A visual component of a user interface
that represents a quantity and its
relationship to the range of possible
values for that quantity. A user can also
change the value of the quantity.

slider arm slider arm The visual indicator in the slider that a
user can move to change the numerical
value.

slider button slider button A button on a slider that a user clicks on
to move the slider arm one increment in
a particular direction, as indicated by the
directional arrow on the button.

slider shaft The part of the slider on which the slider
arm moves.

Sort Sort A choice that arranges the objects in a
view into a specified order.

source emphasis See emphasis.

spin button spin button A component used to display, in
sequence, a ring of related but mutually
exclusive choices. A user can accept the
value displayed in the entry field or can
type a valid choice into the entry field.

split box split box A box in the scroll bar of a window that a
user can interact with to split a window
into separate panes.

Split Spllt A choice that divides a window into more
than one pane. Also, a choice used to
change the size of each pane.

status area status area A part of a window where information
appears that shows the state of an object
or the state of a particular view of an
object.

system menu system menu A menu that appears from the system
menu symbol in the leftmost part of a title
bar. It contains choices that affect the
window or the view it contains.

system-menu system-menu A symbol (shaped like a spacebar) in the
symbol symbol leftmost corner of a title bar that gives a

user access to choices that affect the
window or the view it contains.

tabbed tabbed divider-page A graphical representation of a tabbed
divider-page page in a notebook. Tabbed

divider-pages separate sections of the
notebook.

Appendix B. Documenting the CUA User Interface in Products B-13

Table B-1 (Page 13 of 14). Technical Terms with Equivalent User Terms and User
Definitions

Technical Term User Term User Definition or Documentation
Suggestion

table table An object, such as a spreadsheet, that is
organized in a grid of rows and columns.
Each intersection is called a cell and can
contain objects, such as text or graphics,
or both.

target emphasis See emphasis.

text cursor text cursor A symbol displayed in text that shows a
user where typed input will appear.

title bar title bar The area at the top of each window that
contains the system menu symbol, a
small icon, a window title, and the
maximize, minimize, and restore buttons.

tool palette tool palette A palette whose choices represent tools.
When a user selects a choice from the
tool palette and moves the pointer into
the window, the pointer changes to the
shape of the selected choice and the
pointing device performs the operation
indicated by the pointer. For example, a
user might select a "pencil" choice from
the tool palette to make a drawing in the
window.

Tutorial Tutorial A choice that gives a user access to
online educational information.

unavailable-state See emphasis.
emphasis

Undo Undo A choice that reverses the effect of the
most recently performed operation on an
object, returning the object to the state it
was in before the operation was
performed.

Using help Using help A choice on the Help menu that gives a
user information about how the help
function works.

value set A set of mutually exclusive, graphical or
textual choices.

View View A choice on a menu bar that provides
access to other choices that enable a
user to choose how an object is
presented, how much information is
presented, what order it is presented in,
and other choices related to the way an
object is presented.

visible cue Describe the visual cue and tell the user
what it indicates.

8-14 OS/2 Programming Guide-Volume II

Table B-1 (Page 14 of 14). Technical Terms with Equivalent User Terms and User
Definitions

Technical Term User Term User Definition or Documentation
Suggestion

wait pointer A pointer that indicates that the computer
is performing a process and that the user
cannot interact with the part of the
underlying window that the wait pointer is
positioned over.

window window An area with visible boundaries that
presents a view of an object or with
which a user conducts a dialog with a
computer system.

Windows Windows A choice on a menu bar that provides
access to other choices with which users
can manage all of the open windows on
their system that are associated with the
product.

Window list Window list A choice that presents a list of all of the
open windows associated with the
window from which the Window Hsi
choice was selected.

window title window title The area on a title bar that contains a
short description of the contents of the
window.

work area work area A container used to group windows and
objects to perform a task. Users can
modify sample work areas to suit their
own needs.

workplace workplace A container that fills the entire screen
and holds al I of the objects that make up
the user interface.

Appendix B. Documenting the CUA User Interface in Products B-15

B-16 05/2 Programming Guide-Volume II

Appendix C. List of Approved Deviations from CUA User Interface
Guidelines

Table C-1 (Page 1 of 5). CUA-Approved Deviations and Guidelines

Deviation Fundamental Compliance Guideline

TUTORIAL - Keyboard support Provide access to all functions of an object using
is not provided for the user to equivalent (although not necessarily identical)
access the push buttons. keyboard and pointing-device techniques.

TUTORIAL - Tab key moves the Tab key moves the cursor to the next field.
cursor within the value set field.

TUTORIAL - Emphasis is not Provide a visual cue (Le.dark border) to indicate
shown on the default push which push button in a window performs the
button. default action for that window.

TUTORIAL - Exit push button Use predefined label for each predefined choice.
performs the Close function.

EDIT FONT action window - Pressing the Enter key or double clicking the
Pressing Enter does not cause selection button while the pointer is on an object or
the default action to begin. choice performs the default action or choice.

NOTEBOOK - The cursor is not Display a cursor to indicate the current position of
visible on the notebook page the keyboard-input focus.
when the keyboard is used to
move the focus from a tab to the
page.

NOTEBOOK - Up arrow key Alt+ Up arrow moves the cursor from a notebook
moves the cursor from the page to a notebook tab or page push button.
notebook page to a notebook
tab.

DESKTOP - Keyboard support Provide access to all functions of an object using
is not provided for the user to equivalent (although not necessarily identical)
reposition objects on the keyboard and pointing device techniques.
Desktop.

DESKTOP - Shift+ F10 displays If pop-up menus are provided, enable a user to
the Desktop pop-up menu display the pop-up menu using the keyboard by
instead of the pop-up menu for pressing Shift+ F10 when the cursor is on the
the object on which the cursor is object.
positioned.

DESKTOP - Pop-up menu Alt+ Up arrow, followed by Shift+ F10, displays the
cannot be obtained via the Desktop pop-up menu.
keyboard while objects are
selected on the Desktop.

SYSTEM ERROR message does Provide a system menu for each window.
not have a system menu.

SHREDDER - Mnemonic is Assign R as the mnemonic for the Refresh choice.
missing from the Refresh choice
in the pop-up menu.

COPY, MOVE, and CREATE Ctrl +Tab key moves the cursor to the next control
SHADOW windows - Tab key when the cursor is in a notebook.
moves the cursor from a
notebook page to the next
control.

© Copyright IBM Corp. 1992 C-1

Table C-1 (Page 2 of 5). CUA-Approved Deviations and Guidelines

Deviation Fundamental Compliance Guldellne

Alt+ Tab key switches between Alt+ Esc is the assigned key combination to switch
unassociated windows. from a window to an unassociated primary

window.

GLOSSARY LIST window - Assign a unique mnemonic to each textual
Mnemonic is missing from the push-button choice that does not have a specific
Search push button. keyboard access mechanism, such as Esc for the

Cancel push button or F1 for the Help push button,
unless no meaningful unique mnemonic can be
found.

GLOSSARY LIST window - Push Push buttons that affect the entire window should
buttons are not left-justified. be placed horizontally, at the bottom of the

window, left-justified.

GLOSSARY SETTINGS window Assign a unique mnemonic to each textual push
- Mnemonic is missing from the button choice that does not have a specific
Undo push button. keyboard access mechanism, such as Esc for the

Cancel push button or F1 for the Help push button,
unless no meaningful unique mnemonic can be
found.

GLOSSARY SETTINGS window The Tab key moves the cursor to the next field.
- On the Properties page, the
Tab key moves the cursor within
the push-button field.

MASTER INDEX SETTINGS Assign a unique mnemonic to each textual push
window - On the Properties button choice that does not have a specific
page, the mnemonic is missing keyboard access mechanism, such as Esc for the
from the Undo push button. Cancel push button or F1 for the Help push button,

unless no meaningful unique mnemonic can be
found.

DIALOG EDITOR - The Help Do not display unavailable-state emphasis on
menu choice and all the choices routing choices that lead to pull-down menus or
on the pull-down menu are cascaded menus. If a choice is never available to
displayed with unavailable-state a particular user, do not display it in a menu, and
emphasis. do not save space for it in a menu.

FONT EDITOR - The Help menu Do not display unavailable-state emphasis on
choice and all the choices on the routing choices that lead to pull-down menus or
pull-down menu are displayed cascaded menus. If a choice is never available to
with unavailable-state a particular user, do not display it in a menu, and
emphasis. do not save space for it in a menu.

FORMAT - In the Progress Provide a predefined mnemonic for each
window, the mnemonic is predefined choice. Assign S as the mnemonic for
missing from the Stop push the Stop push button.
button.

FORMAT- In Progress window, Provide a push button that enables the user to
the Close push button is close the progress indicator window without
missing. affecting the process.

MOUSE SETTINGS - Arrow key Arrow keys move the cursor in the direction of the
moves the cursor between the arrow shown on each arrow key.
radio button field and the
checkbox field.

SYSTEM SETTINGS - Tab key The Tab key moves the cursor to the next field.
moves the cursor within the
checkbox field.

C-2 OS/2 Programming Guide-Volume II

Table C-1 (Page 3 of 5). CUA-Approved Deviations and Guidelines

Deviation Fundamental Compliance Guideline

MENU SETTINGS window - Assign O and the mnemonic for the OK push
Incorrect terminology and no button. Use the predefined label OK instead of Ok
mnemonic for the predefined for the predefined choice.
push button are used.

POP-UP MENU for an open If the Close choice is provided, place it on the
window - The Close choice is system menu only or on both the system menu and
presented in the first-level menu a push button in the window.
and in the cascaded menu for
the Window choice.

POP-UP MENU for an open Assign C as the mnemonic for the Close choice.
window - Mnemonic is missing
from the Close choice in the
first-level menu.

CLIPBOARD VIEWER - Tab key Tab key moves the cursor to the next field.
moves the cursor within the
push button field (for example,
in the "Render format" window).

CLIPBOARD VIEWER - Do not display unavailable-state emphasis on
Unavailable-state emphasis is routing choices that lead to pull-down menus or
shown on the menu bar choices cascaded menus.
(for example, the Display menu).

CLIPBOARD VIEWER - Exit Use the predefined label for each predefined
must be removed from the Fiie choice.
menu.

CLIPBOARD VIEWER - In the If a choice is never available to a particular user,
Field menu, the Import and do not display the choice instead of displaying it
Export choices are never with unavailable-state emphasis.
available, yet they are displayed
with unavailable-state
emphasis.

System configuration window - Push buttons that affect the entire window must be
Push buttons are not placed horizontally, at the bottom of the window,
left-justified. left-justified.

OS/2 SETUP and INSTALLATION Assign 0 as the mnemonic for the OK push button.
- In the warning message, the
mnemonic is missing from the
OK push button.

FONT PALETTE-Target Display target emphasis during a direct
emphasis is not displayed manipulation operation when the hot spot of the
during a direct manipulation pointer is over an object that supports direct
operation. manipulation.

FONT PALETTE - Tab key Tab key moves the cursor to the next field.
moves the cursor within a push
button field.

MASTER INDEX - Tab key Alt+ Up arrow moves the cursor from a notebook
moves the cursor from a page to a notebook tab or page push button.
notebook page to the notebook
tab.

Appendix C. List of Approved Deviations from CUA User Interface Guidelines C-3

Table C-1 (Page 4 of 5). CUA-Approved Deviations and Guidelines

Deviation Fundamental Compliance Guldellne

DOS SETTINGS - Mnemonics Assign a unique mnemonic to each textual push
are assigned to Help and Cancel button choice that does not have a specific
push buttons. keyboard access mechanism, such as Esc for the

Cancel push button or F1 for the Help push button,
unless no unique mnemonic can be found.

DEVICE DRIVE INSTALL - Exit Use predefined label for each predefined choice.
push button performs Close
function.

ICON EDITOR - Change Edit Use predefined label for each predefined choice.
push button to Open and remove When a push button is used as a routing choice,
ellipsis (...). use an ellipsis following the choice text.

CASCADE MENUS - Selecting a When a user selects a cascading choice, display
cascading choice for a the cascaded menu associated with that choice.
conditional cascaded menu does
not display the cascaded menu
associated with that choice.

ICON/WINDOW TITLE - Direct Direct editing is initiated by point selection. The
editing of icon and window title point selection function is assigned to a single
is initiated by clicking mouse click of mouse button 1 (selection button).
button 1 while holding down the
Alt key.

DIRECT MANIPULATION - Direct manipulation is assigned to mouse button 2
Window sizing and movement is for a two-button mouse.
performed using mouse button 1
(selection button).

DIRECT MANIPULATION - Ctrl +Manipulation button causes Create when
Pre$sing mouse button 2 while create-on-drag is on.
the pointer Is on a template
icon, then moving the mouse
while holding down the mouse
button, performs a
Create-on-drag.

DIRECT MANIPULATION - Place source object at target position.
Objects do not consistently drop
where a user releases mouse
button 2.

SCROLL BARS - Scroll bars are If information in the window is extendable, but is
displayed only when information not currently scrollable, display the scroll bar with
is not fully visible. unavailable-state emphasis.

MENU BARS - No menu bars If a menu bar is not provided in a window
are provided on any object displaying a view of an object, place all action and
container windows, which also routing choices on push buttons in that window,
lack push buttons. except for those choices that appear on the system

menu.

SYSTEM MENU - Object and Provide a system menu for each window.
system menu functions are on
one pull-down on OS/2 object
container windows.

C-4 OS/2 Programming Guide-Volume II

Table C-1 (Page 5 of 5). CUA-Approved Deviations and Guidelines

Deviation Fundamental Compliance Guideline

POP-UP MENU DISPLAY - If pop-up menus are provided, enable a user to
Pressing mouse button 2 while a display the pop-up menu using a 2-button mouse,
pointer is over an object chording the mouse selection and manipulation
displays a pop-up menu for that buttons when the pointer is over the object.
object.

POP-UP MENU - Open choice Use the predefined label for each predefined
performs the Open as function. choice.

POP-UP MENU - A selected Do not change the state of a window or object
object becomes deselected when a pop-up menu is displayed. For example, do
when the pop-up menu is not change the selection state of any object.
canceled.

CLIPBOARD - Objects cannot Provide access to the clipboard for all objects that
be cut and pasted on the support data transfer.
Workplace.

VIEWS - User cannot change Provide a View choice on the menu bar of each
the view in an object window. window that provides a menu bar when more than
All views are nested under one view is available for an object or any of the
Open, and the user must open following choices are provided: Sort, Include,
another window onto the object Refresh, or Refresh now.
to look at an alternative view.

REVERSI - Exit in the Game Use the predefined label for each predefined
pull-down performs the function choice.
assigned to Close.

Appendix C. List of Approved Deviations from CUA User Interface Guidelines C-5

C-6 OS/2 Programming Guide-Volume II

Index

A
ACCEL 22-2
ACCEL structure 22-6, 30-6
accelerator tables, description 22-1
accelerator-item styles 22-2
accelerator-table entries 5-6
accelerators

data structures 22-2
examples 22-1
including table in frame window 22-4
item styles 22-2
items 22-2
keyboard 11-7
menu 11-7
modifying table 22-4
structures 22-6
summary 22-6
table entries 5-6
table functions 22-6
table handles 22-2
tables 22-1
using WinLoadAccelTable 22-4
using WinSetAccelTable 22-4

ACCEL TABLE 22-2
ACCEL TABLE structure 22-6
accessing

DRAGINFO structure 33-8
message queue 2-2
networked files 25-4
system menu 11-11
window resources 1-18

acknowledging support of specific topic 32-6
activating

a window 1-7
mnemonic selection character 19-18
windows 5-1

activation, window 5-7
active application, description 5-1
active window

becoming system-modal window 1-9
button clicks 5-7
description 1-1, 1-7
destruction 1-20
location 1-7
setting 5-1
transferring active state 1-20
transferring focus 1-20
user interaction 1-7
using 1-1

adding
accelerator-table resources to executable file 6-5
icon resources to executable file 6-5
item in list box 9-3

© Copyright IBM Corp. 1992

adding (continued)
menu in dialog window 23-9
menu items 11-12
menu to dialog window 11-10

advanced topics, container control 18-28
advanced topics, notebook control 19-21
advise transaction type 32-7
AF_ALT 22-3
AF_ CHAR 22-3
AF_ CONTROL 22-3
AF_ HELP 22-3
AF _LONEKEY 22-3
AF _SCANCODE 22-3
AF _SHIFT 22-3
AF _SYSCOMMAND 22-3
AF_ VIRTUALKEY 22-3
allocating

DRAGINFO structure 33-2
memory for container columns 18-5
memory for container records 18-4
memory for container records when using

MINIRECORDCORE 18-35
shared-memory object 32-6

allocating memory for container records, code 18-4
altering dragging action 17-3
ancestor, description 1-4
application

-defined messages 2-6
accessing initialization files 36-1
accessing message queue 2-2
allocating memory for container records 18-4
as client and server 32-1
button states 8-8
button styles 8-3
bypassing FIFO order of message queue 2-5
capturing mouse input 5-7
changing appearance of control window 7-3
control windows 7-1
creating 1-6
creating a file dialog 25-2
creating a list with LS_OWNERDRAW 9-5
creating a normal presentation space 28-11
creating and associating page windows 19-10
creating and using message queue 2-2
creating control windows 7-1
creating frame windows 6-2, 6-3
creating initialization file 36-1
creating nonstandard frame windows 6-10
custom dialog procedure 24-2
customizing notebook to meet needs 19-1
customizing public window classes 3-5
customizing window styles 3-3
cutting and pasting 12-6
DOE definition 32-3

X-1

application (continued)
default window procedure 4-2
deleting notebook pages 19-15
determining message queue size 2-3
direct manipulation responsibilities 33-2
directory-navigation 33-6
examining message queue 2-11
extensions 33-22
frame-window class data 6-8
freeing allocated memory 18-21
handling mouse and keyboard input messages 2-3
information displayed 19-10
input filtering 30-3
inserting messages into system message

queue 30-5
interaction after a drop 33-14
invalidating pages 19-10
loading and displaying dialog box 9-3
main window 6-1
maintaining presentation spaces 28-12
message queue 2-2
message-identifier values 2-7
mouse and keyboard input 5-1
mouse button clicks 5-7
obtaining button handles 8-8
optimizing container memory usage 18-35
page windows, working with 19-8
performing actions on initialization files 36-1
posting and sending messages 2-5
posting messages to message queue 2-1
posting or sending messages to all windows 2-6
private window classes 3-1
providing information to user with notebook 19-3
providing initial slider value 20-5
public window class data 3-5
public window classes 3-3
registering window classes 3-1
retrieving entry-field text 12-8
sending BKM_SETPAGEWINDOWHWND 19-10
sending BKM_SETSTATUSLINETEXT 19-9
sharing message resources 2-1
specific text for the OK push button 25-2
specifying absolute-position index 9-3
specifying accelerator-item styles 22-2
specifying deltas for large amounts of data 18-31
speeding up insertion of items in a list 9-4
subclassing a window procedure 4-2
system message queue 5-1
terminating message loop 2-5
types 1-6
using a container 18-17
using a message loop 2-3
using accelerators 22-2
using buttons in a client window 8-10
using client window 6-2
using control windows 7-2
using direct manipulation 33-2
using direct manipulation data transfer 33-15

X-2 OS/2 Programming Guide-Volume II

application (continued)
using hooks 30-1
using list box in dialog window 9-3
using list boxes 9-1
using menus 11-1
using messages and message queues 2-1
using semaphore messages 2-8
using sliders 20-1
window classes 3-1
window data size for window class 3-3
window procedure for window class 3-3
writing a source 33-2

application interaction 33-14
application window

creating 1-6
description 1-6

application-defined drag operations 33-6
application-defined messages, how to use 2-6
application-specific available font sizes 24-2
arranging

frame controls 6-1 O
value set items 21-4

assigning timer identifier 34-3
associating

application page windows 19-10
device context with presentation space 28-13
journal-playback hook with system message

queue 30-5
text string with status line 19-9
window class with window procedure 4-4
window handle with inserted page 19-10
windows with message queue 2-2

atom creation and usage count 35-3
atom name, description 35-1
atom string formats 35-4
atom types 35-2
atom-table queries 35-3
atom, description 35-1
attributes

BKA_ALL 19-15
BKA_AUTOPAGESIZE 19-21
BKA_FIRST 19-9
BKA_LAST 19-9
BKA_MAJOR 19-4, 19-8
BKA_MINOR 19-4, 19-8
BKA_NEXT 19-9
BKA_PREV 19-9
BKA_SINGLE 19-15
BKA_STATUSTEXTON 19-9
BKA_TAB 19-15
CA_DRAWBITMAP 18-6
CA_DRAWICON 18-6
CA_MIXEDTARGETEMPH 18-26
CA_ORDEREDTARGETEMPH 18-26
CA_ TITLEREADONL Y 18-31
CFA_FIREADONL Y 18-31
CFA_FITITLEREADONLY 18-31
CFl_OWNERDISPLAY 31-6

attributes (continued)
CFl_OWNERFREE 31-6
CMA_DELTA 18-31
CMA_END 18-18
CMA_FIRST 18-18
CMA_FREE 18-21
CRA_FIL TEAED 18-34
CRA_RECORDREADONL Y 18-31
CV_DETAIL 18-14
CV_ICON 18-6
CV_NAME 18-7
CV_ TEXT 18-9
CV_TEXT& I CV_FLOW 18-10
CV_TREE 18-10
extended 33-20
keyboard focus 5-2
mapping presentation parameter 19-20
menu-item 11-4
passing list of extended 25-3
setting and querying menu-item 11-12

augmentation emphasis, placing 33-9
augmentation keys, using 33-10
augmentation, keyboard 33-10
automatic selection 21-5

B
back pages, default notebook 19-3
basics

container control 18-2
slider control 20-1
value set control 21-2

binding placement, notebook control 19-4
bit maps

clipboard format 31-4
drawing 29-4
enlarging 29-4
monochrome 26-1
mouse pointer 5-6
mouse pointers 26-1
reducing 29-4
SBMP _BTNCORNERS 26-4
SBMP _CHECKBOXES 26-4
SBMP _ CHILDSYSMENU 26-4
SBMP _ CHILDSYSMENUDEP 26-4
SBMP _COMBODOWN 26-4
SBMP _MAXBUTTON 26-4
SBMP _MENUA TT ACHED 26-4
SBMP _MENUCHECK 26-4
SBMP _MINBUTTON 26-4
SBMP _OLD_ CHILDSYSMENU 26-4
SBMP _OLD_MAXBUTTON 26-4
SBMP _OLD_MINBUTTON 26-4
SBMP _OLD_RESTOREBUTTON 26-4
SBMP _OLD_SBDNARROW 26-4
SBMP _OLD_SBLFARROW 26-4
SBMP _OLD_SBRGARROW 26-4
SBMP _OLD_SBUPARROW 26-4

bit maps (continued)
SBMP _PROGRAM 26-4
SBMP _RESTOREBUTTON 26-4
SBMP _RESTOREBUTTONDEP 26-4
SBMP _SBDNARROW 26-4
SBMP _SBDNARROWDEP 26-4
SBMP _SBDNARROWDIS 26-4
SBMP _SBLFARROW 26-4
SBMP _SBLFARROWDEP 26-4
SBMP _SBLFARROWDIS 26-4
SBMP _SBRGARROW 26-4
SBMP _SBRGARROWDEP 26-4
SBMP _SBRGARROWDIS 26-4
SBMP _SBUPARROWDEP 26-4
SBMP _SBUPARROWDIS 26-4
SBMP _SIZEBOX 26-4
SBMP _SYSMENU 26-4
SBMP _TREEMINUS 26-4
SBMP _ TREEPLUS 26-4
system 26-4

bit-map/text pairs 18-6
BKA_ALL 19-15
BKA_FIRST 19-9
BKA_LAST 19-9
BKA_MAJOR 19-4
BKA_MINOR 19-4
BKA_NEWPAGESIZE 19-21
BKA_NEXT 19-9
BKA_PREV 19-9
BKA_SINGLE 19-15
BKA_STATUSTEXTON 19-9
BKA_TAB 19-15
BKM_ messages 2-7
BKM_INSERTPAGE 19-4, 19-8
BKM_QUERYPAGEID 19-15
BKM_SETDIMENSIONS 19-3
BKM_SETNOTEBOOKCOLORS 19-20
BKM_SETPAGEWINDOWHWND 19-10
BKM_SETSTATUSLINETEXT 19-9
BKM_SETTABTEXT 19-18
BKN_NEWPAGESIZE 19-21
BKN_PAGESELECTED 19-10
BKS_BACKPAGESBR 19-3
BKS_MAJORTABBOTTOM 19-6
BKS_MAJORTABRIGHT 19-4
BKS_SQUARETABS 19-5
BKS_STATUSTEXTLEFT 19-3
BM_ messages 2-7
BM_CLICK 8-1, 8-5, 8-11
BM_ QUERYCHECK 8-5, 8-11
BM_QUERYCHECKINDEX 8-5, 8-11
BM_QUERYHILITE 8-5, 8-11
BM_ SETCHECK 8-5, 8-11
BM_SETDEFAULT 8-5, 8-11
BM_SETHILITE 8-5, 8-11
BN_CLICKED 8-7
BN_DBLCLICKED 8-7

Index X-3

BN_PAINT 8-3, 8-7
boundaries, window 33-7
bounding rectangle, button 8-8
broadcasting

messages 2-12
broadcasting a message, code 2-12
BS_AUTOCHECKBOX 8-3
BS_AUTORADIOBUTTON 8-3
BS_AUT03STATE 8-3
BS_CHECKBOX 3-4, 8-3
BS_DEFAULT 8-3
BS_HELP 8-3, 8-7, 30-6
BS_NOBORDER 8-3
BS_NOCURSORSELECT 8-3
BS_NOPOINTERFOCUS 8-3
BS_PUSHBUTTON 3-3, 3-4, 8-3, 8-7
BS_RADIOBUTTON 8-3
BS_SYSCOMMAND 8-3, 8-7
BS_USERBUTTON 8-3, 8-7
BS_3STATE 8-3
button clicks 5-7
button controls

BM_ messages 2-7
button styles 8-3
check boxes 8-2
creating in client window 8-1
custom 8-8
default behavior 8-5
description 8-1
notification code for messages 8-7
notification messages 8-7
push buttons 8-1
radio buttons 8-2
selecting a button 8-7
states 8-8
summary of functions 8-11
summary of messages 8-11
summary of structures 8-11
text, retrieving 8-8
types of buttons 8-1
using 8-8
using buttons in a client window 8-10
window class (WC_BUTTON) 8-5

button identifiers
ID_RADI01 8-9

button styles
BS_AUTOCHECKBOX 8-3
BS_AUTORADIOBUTTON 8-3
BS_AUT03STATE 8-3
BS_CHECKBOX 8-3
BS_DEFAUL T 8-3
BS_HELP 8-3, 8-7
BS_NOBORDER 8-3
BS_NOCURSORSELECT 8-3
BS_NOPOINTERFOCUS 8-3
BS_PUSHBUTTON 8-3, 8-7
BS_RADIOBUTTON 8-3
BS_SYSCOMMAND 8-3, 8-7

X-4 OS/2 Programming Guide-Volume II

button styles (continued)
BS_USERBUTTON 8-3, 8-7
BS_3STATE 8-3
DEFPUSHBUTTON 8-9
DID_OK 8-9
states 8-8
table 8-3

button styles, description 8-3
button-down message 5-7
button-up message 5-7
buttons

c

bounding rectangles 8-8
custom 8-8
maximize 6-2
minimize 6-2
using in client window 8-10

cached-micro presentation space
description 28-10
strategies 28-14
using 28-13
using, code 28-14

calculating dimensions of rectangles 29-2
capture window 5-7
capturing mouse Input 5-7
CA_DRAWBITMAP attribute 18-6
CA_DRAWICON attribute 18-6
CA_MIXEDTARGETEMPH attribute 18-26
CA_ORDEREDTARGETEMPH attribute 18-26
CA_ TITLEREADONL Y attribute 18-31
cb parameter 30-8
cbCopy parameter 13-7
cbDraginfo 33-3
cbDragitem 33-3
CBM_ messages 2-7
CBM_HILITE 10-3
CBM_ISLISTSHOWING 10-3
CBM_SHOWLIST 10-3
CBN_EFCHANGE 10-3
CBN_EFSCROLL 10-3
CBN_ENTER 10-3
CBN_LBSCROLL 10-3
CBN_LBSELECT 10-3
CBN_MEMERROR 10-3
CBN_SHOWLIST 10-3
cbSize field 24-1, 25-2
CBS_DROPDOWN 10-1
CBS_DROPDOWNLIST 10-1
CBS_SIMPLE 10-1
CCS_AUTOPOSITION 18-6
COATE 18-36
cditem 33-3
CFA_FIREADONLY attribute 18-31
CFA_FITITLEREADONLY attribute 18-31
CFl_HANDLE flag 31-2

CFl_OWNERDISPLAY 31-6
CFl_OWNERDISPLAY attribute 31-6
CFl_OWNERFREE attribute 31-6
CFl_POINTER flag 31-2
CF _BITMAP 31-4
CF_DSPBITMAP 31-4
CF_DSPMETAFILE 31-4
CF_ DSPTEXT 31-4
CF _METAFILE 31-4
CF_TEXT 31-4
changing

active windows 1-9
color of notebook major tab background 19-20
color of notebook major tab text 19-21
color of notebook minor tab background 19-21
color of notebook minor tab text 19-21
color of notebook outline 19-20
color of notebook page background 19-21
color of notebook selection cursor 19-20
color of notebook window background 19-20
colors using BKM_SETNOTEBOOKCOLORS 19-20
colors using WinSetPresParam 19-20
container view 18-17
control window appearance 7-3
default size of entry field 12-7
input focus 1-8
menu attributes, styles, and contents 11-3
mouse pointer 26-6
notebook colors 19-19
numbers of rows and columns 21-4
page button size, notebook 19-3
parent window 1-4, 1-22
size of a window 1-26
slider arm location on slider shaft 20-1
tab dimensions 19-5
window size and position 1-14, 1-16
z-order 1-5, 1-27

character codes 5-5
CHAR1FROMMP 5-9
CHAR3FROMMP 5-5
CHAR4FROMMP 5-5
check boxes

description 8-1, 8-2
uses of 8-2

checking
accuracy of timer message 34-2
for key-up or key-down event, code 5-9
queue for WM_ CHAR messages, code 2-11

child items, description 18-10
child window

clipping 1-4
description 1-3
destroying 1-20
finding 1-23
keyboard focus 1-9
main 1-3
retrieving handles 1-24

choosing
value set control 21-1

class data, examining 3-5
class data, frame-window 6-8
class data, window 3-5
class name, description 3-1
class name, private window class 3-1
class styles table, private window classes 3-2
class styles, description 3-2
class styles, private window classes 3-2
class styles, window, cs_

CS_MOVENOTIFY 1-16
CS_SIZEREDRAW 1-27
predetermining 1-13

classes, window
creating 1-11
rules of ownership 1-2

CLASSINFO data structure 3-5, 3-6
ClassName parameter 18-3
clearing the clipboard 31-3
client and server interaction, DOE 32-1
client window

creating 6-2
creating entry field 12-7
description 1-7, 6-2
including static control 16-5
using buttons 8-10
window procedure 1-7

clipboard
CF _DSPBITMAP 31-4
CF _DSPMETAFILE 31-4
CF _DSPTEXT 31-4
CF_METAFILE 31-4
CF_ TEXT 31-4
clearing 31-3
comparison with DOE 32-1
copying, cutting, and pasting data, example 31-1
CR_BITMAP 31-4
cut and copy operations 31-3
data formats, table 31-4
delayed rendering 31-5
description 31-1
display formats 31-5
format identification number 31-5
formats 31-4
metafile format 31-4
operations on data 31-2
owner 31-5, 31-6
passing bit map or metafile 31-2
paste operation 31-3
private data formats 31-4
putting data on 31-8
releasing 31-3
retrieving data from 31-9
rich text format 31-4
shared memory 31-2
standard data formats 31-4
straight text format 31-4

Index X-5

clipboard (continued)
summary of functions 31-12
summary of messages 31-12
ulData parameter 31-5
using 31-8
viewer 31-6
viewing data on 31-10

clipping area
window, description 1-4
WS_CLIPCHILDREN 1-4
WS_CLIPSIBLINGS 1-4

closing initialization file 36-2
CMA_DELTA attribute 18-31
CMA_END attribute 18-18
CMA_FIRST attribute 18-18
CMA_FREE attribute 18-21
CM_ messages 2-7
CM_ALLOCDETAILFIELDINFO 18-5, 18-38
CM_ALLOCRECORD 18-4, 18-38
CM_ARRANGE 18-6, 18-38
CM_CLOSEEDIT 18-38
CM_ COLLAPSETREE 18-38
CM_ERASERECORD 18-38
CM_EXPANDTREE 18-38
CM_FILTER 18-38
CM_FREEDETAILFIELDINFO 18-38
CM_FREERECORD 18-38
CM_HORZSCROLLSPLITWINDOW 18-38
CM_INSERTDET AILFIELDINFO 18-38
CM_INSERTRECORD 18-17, 18-38
CM_INVALIDATEDETAILFIELDINFO 18-38
CM_INVALIDATERECORD 18-18, 18-38
CM_OPENEDIT 18-38
CM_PAINTBACKGROUND 18-38
CM_QUERYCNRINFO 18-30, 18-38
CM_ QUERYDET AILFIELDINFO 18-38
CM_QUERYDRAGIMAGE 18-38
CM_QUERYRECORD 18-38
CM_QUERYRECORDEMPHASIS 18-38
CM_QUERYRECORDFROMRECT 18-38
CM_ QUERYRECORDINFO 18-38
CM_QUERYRECORDRECT 18-38
CM_QUERYVIEWPORTRECT 18-38
CM_REMOVEDETAILFIELDINFO 18-38
CM_REMOVERECORD 18-21, 18-38
CM_SCROLLWINDOW 18-38
CM_SEARCHSTRING 18-38
CM_SETCNRINFO 18-3, 18-30, 18-38
CM_SETRECORDEMPHASIS 18-38
CM_SORTRECORD 18-38
CNRDRAGINFO 18-36
CNRDRAGINIT 18-36
CNRDRAWITEMINFO 18-36
CNREDITDATA 18-36
CNRINFO 18-36
CNRINFO structure 18-3, 18-6, 18-14
CN_BEGINEDIT 18-37

X~& OS/2 Programming Guide-Volume II

CN_COLLAPSETREE 18-37
CN_CONTEXTMENU 18-37
CN_DRAGAFTER 18-37
CN_DRAGLEAVE 18-37
CN_DRAGOVER 18-37
CN_DROP 18-37
CN_DROPHELP 18-37
CN_EMPHASIS 18-37
CN_ENDEDIT 18-37
CN_ENTER 18-37
CN_EXPANDTREE 18-37
CN_HELP 18-37
CN_INITDRAG 18-37
CN_KILLFOCUS 18-37
CN_QUERYDELTA 18-37
CN_REALLOCPSZ 18-37
CN_SCROLL 18-37
CN_SETFOCUS 18-37
codepage-changed hook 30-9
collapsed bit maps, tree icon view 18-12
combination box

CBM_ messages 2-7
controls 10-1
creating 10-3
messages 10-3
styles 10-1
summary 10-3
using 10-3

combination-box controls
CBM_HILITE 10-3
CBM_ISLISTSHOWING 10-3
CBM_SHOWLIST 10-3
CBN_EFCHANGE 10-3
CBN_EFSCROLL 10-3
CBN_ENTER 10-3
CBN_LBSCROLL 10-3
CBN_LBSELECT 10-3
CBN_MEMERROR 10-3
CBN_SHOWLIST 10-3
CBS_DROPDOWN 10-1
CBS_DROPDOWNLIST 10-1
CBS_SIMPLE 10-1
description 10-1
entry-field comparison 10-1
list-box comparison 10-1
notification codes 10-3

combining window styles 1-13
COMBOX statement 10-3
command codes, scroll bar

example 14-3
SB_ENDSCROLL 14-4
SB_LINEDOWN 14-4
SB_LINELEFT 14-4
SB_LINERIGHT 14-4
SB_LINEUP 14-4
SB_PAGEDOWN 14-4
SB_PAGELEFT 14-4
SB_PAGERIGHT 14-4

command codes, scroll bar (continued)
SB_PAGEUP 14-4
SB_SLIDERPOSITION 14-4
SB_SLIDERTRACK 14-4

command items, menu 11-3
commands

application's flow of graphics 28-2
common rendering mechanism and format 33-8
completing a rendering operation 33-18
components

destroying spin button 15-2
notebook control 19-1
slider 20-6
slider control 20-1
spin button control 15-1
spin button master 15-1
spin button servant 15-1
user interface, notebook 19-1
value set control 21-1

composite window
creating 6-1
description 1-6, 6-1

considerations for establishing a conversation 33-14
constants

common rendering mechanisms and formats 33-4
DTYP _* 33-3
FID_HORZSCROLL 14-3
FID_VERTSCROLL 14-3
frame-control flag 6-3
HK_CODEPAGECHANGED 30-1
HK_FINDWORD 30-1
HK_HELP 30-1
HK_INPUT 30-1
HK_JOURNALPLAYBACK 30-1
HK_JOURNALRECORD 30-1
HK_MSGFIL TEA 30-1
HK_SENDMSG 30-1
HWND_BOTTOM 1-14, 1-27
HWND_DESKTOP 1-14
HWND_OBJECT 1-14
HWND_TOP 1-14, 1-27
MSGF _MAINLOOP 30-4
notational conveniences 33-3
aws_ 1-22
specifying message category 2-7
substituting for window handles 1-14
SWP _MAXIMIZE 1-28
SWP _MINIMIZE 1-28
SWP _MOVE 1-25
SWP _NOADJUST 1-16
SWP _RESTORE 1-28
SWP _SIZE 1-26
SWP _ZORDER 1-27
symbolic 2-7
WM_BUTTONCLICKFIRST 2-9
WM_BUTTONCLICKLAST 2-9
WM_DDE_FIRST 2-9
WM_DDE_LAST 2-9

constants (continued)
WM_MOUSEFIRST 2-9
WM_MOUSELAST 2-9

constructing message result, code 2-13
contained object, moving on or off 33-8
container control

advanced topics 18-28
allocating memory for container columns 18-5
allocating memory for container records 18-35
basics 18-2
CM_ messages 2-7
creating a container 18-3
CV_DETAIL attribute 18-14
CV_ICON attribute 18-6
CV _NAME attribute 18-7
CV_TEXT attribute 18-9
CV_TREE 18-10
default view 18-6
details view 18-14
details view with container title, 18-33
details view with split bar example 18-16
direct editing of text in a container 18-31
displaying collapsed and expanded icon/bit

map 18-13
dynamic scrolling 18-23
extended selection 18-23
filtering container items 18-34
first-letter selection 18-23
flowed name view 18-8
flowed text view 18-10
flowing container items 18-8
freeing memory associated with records 18-21
functions 18-1
GUI support, description 18-22
icon view 18-6
icon view with items arranged or automatically

positioned 18-7
icon view with items positioned at coordinates 18-6
in-use emphasis 18-26
inserting container records 18-17
inserting records in a container, code 18-19
marquee selection 18-23
messages table 18-36
multiple selection 18-23
name view 18-7
non-flowed name view 18-8
non-flowed text view with container title, 18-33
notification codes table 18-36
optimizing container memory usage 18-35
positioning container items 18-28
providing emphasis 18-25
purpose 18-1
range swipe selection 18-23
removing container records 18-21
removing records from a container, code 18-21
scrollable workspace areas 18-28
scrolling 18-22
selected-state emphasis 18-25

Index X-7

container control (continued)
selecting container items 18-23
selection mechanisms 18-23
selection techniques 18-23
selection types 18-23
setting focus 18-22
single selection 18-23
specifying container titles 18-32
specifying deltas for large amounts of data 18-31
specifying fonts and colors 18-34
specifying space between container items 18-27
split bar support for details view 18-15
structures table 18-36
support for GUI 18-22
swipe selection 18-23
target emphasis 18-26
text view 18-9
touch swipe selection 18-23
tree icon view and tree text view 18-12
tree name view 18-13
tree view 18-10
tree view showing root level, parent, child

example 18-11
TREEITEMDESC data structure 18-14
types of views 18-5
understanding container items 18-4
understanding container views 18-5
using a container 18-17
using direct manipulation 18-27
workspace 18-28
workspace and work area origins 18-30

container items, filtering 18-34
container items, understanding 18-4
container name 33-5
container of source object, making known to

system 33-2
container window, default move operation 33-10
container window, defined 33-1
container window, emphasizing a target object 33-9
container window, monitoring pointer 33-8
containers for dragging and dropping 33-18
control window

changing appearance 7-3
classes 1-7
classes, table 7-1
contents

buttons 1-7
combination boxes 1-7
entry fields 1-7
list boxes 1-7
menus 1-7
scroll bars 1-7
static text 1-7
title bars 1-7

creating 7-1
creating custom 7-3
description 1-7, 7-1
in dialog windows 7-1

X-8 OS/2 Programming Guide-Volume II

control window (continued)
messages generated by 7-5
messages received by 7-5
multiple-line entry field 13-1
ownerdraw style 7-3
ownership 7-2
painting 7-2
predefined 7-1
scroll-bar 14-1
title-bar 17-2
uses 7-1
using 7-2
using in non-dialog window 7-3

controls
button 8-1
combination box 10-1
container basics 18-2
container functions 18-1
DID_APPLY_BUTTON 24-4
DID_APPLY_PB 25-5
DID_CANCEL_BUTTON 24-4
DID_CANCEL_PB 25-5
DID_DIRECTORY_TXT 25-5
DID_DISPLAY_FILTER 24-4
DID_DRIVE_CB 25-5
DID_DRIVE_TXT 25-5
DID_EMPHASIS_GROUPBOX 24-4
DID_FILENAME_ED 25-5
DID_FILENAME_TXT 25-5
DID_FILES_LB 25-5
DID_FILES_TXT 25-5
DID_FILE_DIALOG 25-5
DID_FILTER_CB 25-5
DID_FILTER_TXT 25-5
DID _FONT _DIALOG 24-4
DID_HELP_BUTTON 24-4
DID_HELP _PB 25-5
DID_NAME 24-4
DID_NAME_PREFIX 24-4
DID_OK_BUTTON 24-4
DID_OK_PB 25-5
DID_ OUTLINE 24-4
DID_PRINTER_FILTER 24-4
DID_RESET_BUTTON 24-4
DID_SAMPLE 24-4
DID_SAMPLE_GROUPBOX 24-4
DID_SIZE 24-4
DID _SIZE _PREFIX 24-4
DID_STRIKEOUT 24-4
DID_STYLE 24-4
DID_ STYLE _PREFIX 24-4
DID_ UNDERSCORE 24-4
entry field 12-1
font dialog 24-1
frame 6-2
list box 9-1
multiple-line entry field 13-1
notebook 19-1

controls (continued)
pointing device support, slider 20-6
scroll-bar 14-1
slider 20-1
slider basics 20-1
specifying 25-5
static 16-1
styles, frame 6-3
title-bar 17-1
value set 21-1

conversation
initial flow, DOE 32-5
initiating DOE 32-5

conversation after drop 33-17
conversation-initiation procedures 33-16
conversation, DOE 33-21
conversation, establishing for data exchange 33-8
conversation, initiating 33-14
conversation, terminating 33-21
coordinates, window

default 1-15
parent window 1-10

copy and paste operations, entry field 12-6
copy operation, default for device 33-10
copy-paste operation using clipboard 31-1
CRA_FIL TEAED attribute 18-34
CRA_RECORDREADONL Y attribute 18-31
CREATESTRUC structure 1-32
creating

a slider 20-2
a value set 21-2
a value set, example 21-2
accelerator-table resource 22-3
application page windows 19-10
application windows 1-6
client window 6-2
clipboard viewer 31-6
combination box 10-3
composite window 6-1
container 18-3
control windows 1-7
cursors 27-1
custom control window 7-3
custom menu item 11-15
DOE formats and unique clipboard format 35-5
desktop window 1-2
desktop-object window 1-2, 1-5
dialog procedure 23-9
dialog template 7-1, 23-5
entry field in client window 12-7
entry field in dialog window 12-6
file dialog 25-2
font dialog 24-1
frame windows 6-2, 6-3
initialization 36-1
invisible windows 1-19
list box window 9-2
main window 1-6, 6-12

creating (continued)
message box 23-4
message parameters 2-13
message queue 2-2
message queue and message loop 2-10
message queues 1-9
micro presentation spaces 28-12
MLE field control 13-1, 13-6
modal dialog window 23-6
modeless dialog window 23-7
new list 9-3
nonstandard frame windows 6-10
normal presentation space 28-11
notebook 19-1
object window 1-5, 1-22
Open dialog 25-3
owner-drawn list item 9-5
pop-up menu 11-2, 11-10
sample code for a slider 20-2
SaveAs dialog 25-3
scroll bars 14-1
setting in initialization file, code 36-2
string handles 33-3
system-modal message box 23-5
timer identifier 34-1
top-level frame window 1-20
unique window-message atoms 35-4
window classes 1-11
windows 1-9, 1-20

creating and associating an &apw., sample
code 19-10

creating and associating application page
windows 19-10

cross products, multiple 33-4
cross-product notation 33-4
CS_CLIPCHILDREN 3-2, 28-4
CS_CLIPSIBLINGS 3-2, 28-5
CS_FRAME 3-2
CS_HITTEST 3-2, 5-6
CS_MOVENOTIFY 1-16, 3-2
CS_PARENTCLIP 3-2
CS_PARETNCLIP 28-5
CS _PUBLIC 3-5
CS_SAVEBITS 3-2, 28-5
CS_SIZEREDRAW 1-27, 3-2, 28-5
CS_SYNCPAINT 3-2, 28-5
CTIME 18-36
Ctrl key, using 33-10
Ctrl+Shift, using 33-10
cursor position, setting by MLM_SETSEL 13-3
CURSORINFO 27-3
cursors

characteristics 27-1
creating 27-1
description 27-1
functions 27-3
hiding 27-2
keyboard focus 27-1

Index X-9

cursors (continued)
setting position and size 27-1
show level 27-2
specifying display window 27-1
visibility 27-2

cursor, selection 21-5
custom buttons 8-8
custom control windows, ways to create 7-3
customized image, providing 33-9
customizing

a value set 21-2
buttons 8-8
dialog procedure 25-2
dialog style 24-2, 25-2
file dialog 25-5
font dialog 24-3
menu items 11-15
public window classes 3-5
sliders 20-1
window styles 3-3

cut and copy operations 31-3
cut, copy, and paste operations 13-5
CV _DETAIL attribute 18-14
CV _ICON attribute 18-6
CV _NAME attribute 18-7
CV_TEXT attribute 18-9
CV_TIMERS system value 34-1
CV_TREE attribute 18-10

D
data exchange 33-4, 33-8
data structures

ACCEL 22-2
ACCEL TABLE 22-2
allocating temporary for sliders 20-2
CLASSINFO 3-5
CNRINFO 18-14
dialog 23-4
FIELDINFO 18-14
MINIRECORDCORE 18-4
MQINFO 2-3
QMSG 2-2
querying window 1-22
RECORDCORE 18-4, 18-6
RECORDINSERT 18-17
SLDCDATA 20-2
TREEITEMDESC 18-14
VSCDATA 21-2
window 1-16
window, table 1-29

data transfer 33-15
data types, window

HWND 1-14
data-transfer operation 33-17
database container 33-5
database manager, direct manipulation 33-5

X-10 OS/2 Programming Guide-Volume II

data, retrieving for value set items 21-4
DOE

See dynamic data exchange (DOE)
ODE formats and unique clipboard format,

creating 35-5
DDEFMT_TEXT. 32-3
DDEINIT structure 32-5, 32-6, 32-8
DDESTRUCT 32-10
DDESTRUCT structure 32-6, 32-8
DDE_FACK 32-7
DDE_FACKREQ 32-7
DDE_FACKREQ flag 32-8
DDE_FAPPSTATUS 32-7
DDE_FBUSY 32-7
DDE_FNODATA 32-7
DDE_FRESERVED 32-7
DDE_FRESPONSE 32-7
DDE_NOTPROCESSED 32-7
default behavior, frame window 6-10
default button behavior 8-5
default entry-field behavior 12-3
default operation, performing 33-10
default state, direct manipulation 33-10
default style and placement of major and minor tabs

example 19-4
default window procedure 4-2
defining

character strings 33-3
default operation 33-10
deltas for large amounts of data 18-31
dialog resource 9-3
dialog-window buttons 8-9
menu items in a resource file 11-8
menu resource 11-2
menus 11-1
new rendering mechanism 33-22

DEFPUSHBUTTON 8-9
delayed rendering, clipboard 31-5
deleting

characters, MLE 13-3
item in list box 9-3
menu items 11-12
notebook pages 19-15
string handles 33-6, 33-19

deleting a notebook page, sample code 19-15
descendant, description 1-4
description, clipboard viewer 31-6
designing

window procedure 4-3
desktop window

creating 1-2
description 1-2
top-level window 1-3

desktop-object window
creating 1-2
descendant object window 1-5
description 1-2

destroying
a window 1-4, 1-19
child windows 1-20
cursors 27-1
descendant windows 1-20
message queue 2-2
spin button component window 15-2
system-modal window 1-9
window 1-29

destroy, definition 1-3
details view with container title 18-33
details view, description 18-14
detent, slider 20-1
determining

active status of frame window 5-8
dimensions of a rectangle 29-2
scroll-bar range and position 14-2

determining keyboard focus, code 2-13
DevCloseDC 28-13, 28-15
device context

associating with presentation space, code 28-13
description 28-1
obtaining 28-13
summary of functions 28-15

device, default copy operation 33-10
DevOpenDC 28-13, 28-15
dialog items 23-1
dialog template, description 7-1
dialog window

adding menu 11-10, 23-9
BS_HELP 30-6
creating 6-3
creating dialog procedure 23-9
creating entry field 12-6
creati.ng modal 23-6
creating modeless 23-7
data structures 23-4
description 1-6, 23~1
dialog items 23-1
including control windows 7-1
including static controls 16-4
initializing 23-8
list box figure 9-1
loading and displaying 9-3
manipulating dialog items 23-11
message boxes 23-3
modal 23-1
modeless 23-1
resources 23-4
summary of dialog functions 23-12
summary of dialog messages 23-12
summary of structures 23-12
using 23-4, 23-5
using button controls 8-8
using control windows 7-2
using list box 9-3

dialog-item groups 23-2

dialogs
creating 25-2
creating file 25-2
creating Open 25-3
example of Open 25-1
example of SaveAs 25-2
multiple-selection 25-4
SaveAs 25-3
single-selection 25-4

DID_APPL Y _BUTTON 24-4
DID_APPLY_PB 25-5
DID_CANCEL_BUTTON 24-4
DID_CANCEL_PB 25-5
DID_DIRECTORY_TXT 25-5
DID_DISPLAY_FILTER 24-4
DID_DRIVE_CB 25-5
DID _DRIVE_ TXT 25-5
DID_EMPHASIS_GROUPBOX 24-4
DID_FILENAME_ED 25-5
DID _FILENAME_ TXT 25-5
DID_FILES_LB 25-5
DID_FILES_TXT 25-5
DID _FILE_DIALOG 25-5
DID_FILTER_CB 25-5
DID_FILTER_TXT 25-5
DID_FONT_DIALOG 24~4

DID_HELP_BUTTON 24-4
DID_HELP_PB 25-5
DID_NAME 24-4
DID_NAME_PREFIX 24-4
DID_OK 8-9
DID_ OK_BUTTON 24-4
DID_OK_PB 25-5
DID_OUTLINE 24-4
DID_PRINTER_FILTER 24-4
DID _RESET _BUTTON 24-4
DID_SAMPLE 24-4
DID_SAMPLE_GROUPBOX 24-4
DID_SIZE 24-4
DID_SIZE_PREFIX 24-4
DID_STRIKEOUT 24-4
DID_STYLE 24-4
DID_STYLE_PREFIX 24-4
DID_ UNDERSCORE 24-4
direct editing of text in a container 18-31
direct manipulation

application extensions to data transfer
protocol 33-22

application interaction after a drop 33-14
application-defined drag operations 33-6
completing a rendering 33-18
completing an operation 33-6
considerations for conversation 33-14
constants for common rendering mechanisms and

formats 33-4
container name 33-5
container window 33-1
containers with objects to drag or drop on 33-18

Index X-11

direct manipulation (continued)
conversation after drop 33-17
creating string handles 33-3
database container 33-5
description 33-1
determining how to exchange data 33-15
DM_DRAGOVER message 33-5
DM_DROP message 33-6
DM_DROPHELP message 33-6
DOR_DROP message 33-5
DOR_NEVERDROP message 33-5
DOR_NODROP message 33-5
DOR_NODROPOP message 33-5
DRAGDROP sample program 33-6
dragging an object 33-1, 33-5
DRAGIMAGE structure 33-2
DRAGINFO structure 33-2
DRAGITEM structure 33-19
DrgAccessDraginfo message 33-5
DrgAllocDraginfo structure 33-2
DrgDeleteDraginfoStrHandles 33-6
DrgDeleteStrHandle 33-6
DrgDrop function 33-5
DrgFreeDraginfo structure 33-6
DrgSetDragitem function 33-3
drive and path information 33-5
dropping an object 33-1, 33-6
dynamic data exchange 33-20
extended attributes 33-20
file folder 33-5
file name of the database 33-5
functions used by the target 33-10
help for the drag 33-8
hot link 33-21
hrsType field 33-3
hstrSourceName field 33-18
hstr/ContainerName 33-18
hwndltem 33-19
initiating conversation 33-14
keyboard remapping 33-6
knowing name of target object 33-2
knowing type of object 33-2
making rendering mechanism and format

known 33-2
making source object container known 33-2
making source object folder known 33-2
mechanisms for exchanging data 33-14
message flows 33-17
methods of completing an operation 33-6
mouse button designations 18-24
multiple cross products . 33-4
name at target 33-5
naming conventions 33-19, 33-22
native mechanism actions 33-21
native rendering by the target 33-18
native rendering mechanism and format 33-4
non-native mechanism actions 33-19
object true type 33-3

X-12 OS/2 Programming Guide-Volume II

direct manipulation (continued)
operation emphasis 33-10
ordered pairs 33-4
OS/2 File rendering mechanism 33-18
performance considerations 33-15, 33-22
pointer movement 33-5
post-drop conversation 33-6
preparing for the drag 33-2
print mechanism 33-20
Print rendering mechanism 33-20
redefining keys 33-6
rendering formats 33-4
single-object move 33-17
source container name 33-5
source window 33-1
source-supported formats 33-21
summary of drag messages 33-23
summary of functions used by the source 33-7
summary of structures 33-23
target container name 33-5
target emphasis 18-26
target window 33-1
terminating conversation 33-21
two-object drag 33-2, 33-12
using 18-27
using data transfer in an application 33-15
using drag-button release to cancel 33-6
using Esc key to cancel 33-6
using F1 to cancel operation 33-6
using in an application 33-2
windows containing multiple objects 33-1
WM_BEGINDRAG message 33-2
writing a source application 33-2

directory list box 25-4
directory-navigation 33-6
disabled window

description 1-9
enabling 1-9
using WinEnableWindow 1-9
WS_DISBLED 1-13

disabling
system-modal window 1-9
to prevent input 1-9
windows 1-9

dispatching WM_TIMER messages 34-3
display formats, clipboard 31-5
displaying

collapsed and expanded icon/bit map 18-13
filter criteria 25-4
individual pages of a notebook 19-3
information on inserted pages 19-10
list boxes 9-1
notebook pages and tabs 19-16
notebook page, methods of 19-18
pages using a pointing device 19-16
tabs using a pointing device 19-17
text on status line, notebook 19-9
types of data, table 18-4

displaying (continued)
values 25-3
values in file list box 25-5

DLGITEM 23-13
DLGTEMPLATE 23-13
DM_DRAGERROR 33-23
DM_DRAGFILECOMPLETE 33-23
DM_DRAGLEAVE 33-8, 33-9, 33-23
DM_DRAGOVER 33-5, 33-8, 33-23
DM_DRAGOVERNOTIFY 33-23
DM_DROP 33-6, 33-8, 33-23
DM_DROPHELP 33-6, 33-8, 33-23
DM_EMPHASIZETARGET 33-23
DM_ENDCONVERSATION 33-18, 33-19, 33-23
DM_FILERENDERED 33-23
DM_PRINT 33-20, 33-23
DM_RENDER 33-18, 33-23
DM_RENDERCOMPLETE 33-18, 33-23
DM_RENDERFILE 33-23
DM_RENDERPREPARE 33-16, 33-23
DOR_DROP 33-5, 33-8
DOR_NEVERDROP 33-5, 33-9
DOR_NODROP 33-5, 33-8
DOR_NODROPOP 33-5, 33-9
DosAllocSharedMem 31-2, 32-6
DosFreeMem 32-7
DosFreeModule 30-1 O
DosGiveSharedMem 32-6
DosloadModule 30-1 O
DosQFilelnfo 33-20
DosQueryProcAddr 30-1 O
DosSetFilelnfo 33-20
DOWN key 14-5
DO _DEFAULT 33-3
drag operations, application-defined 33-6
drag string handles 33-3
drag transfer 33-19
drag-and-drop operation 33-15
DRAGDROP sample program 33-6
dragging

altering action 17-3
an object 33-1
description 33-1
help for the operation 33-8
preparing for 33-2
two objects 33-12
two-object 33-2

DRAGIMAGE 33-23
DRAGIMAGE structure 33-2
DRAGINFO 33-23
DRAGINFO structure 33-2, 33-5, 33-6
DRAGITEM 33-23
DRAGITEM structure 33-14, 33-16, 33-19
DRAGTRANSFER 33-23
DRAGTRANSFER structure 33-19
drawing

a bit map 29-4
in windows 29-1

drawing (continued)
minimized view 28-7
strategies 28-6
text 29-4

DrgAcceptDroppedFi les 33-10
DrgAccessDraginfo 33-5, 33-8, 33-10
DrgAddStrHandle 33-3, 33-7
DrgAllocDraginfo 33-2, 33-7
DrgAllocDragTransfer 33-7, 33-19
DrgDeleteDraginfoStrHandles 33-6, 33-1 O
DrgDeleteStrHandle 33-6, 33-10
DrgDrag 33-5, 33-7
DrgDragFiles 33-10
DrgFreeDraginfo 33-6, 33-7, 33-10
DrgFreeDragTransfer 33-10, 33-19
DrgGetPS 33-9, 33-10
DrgPostTransferMsg 33-10
DrgPushDraginfo 33-10
DrgQueryDragitem 33-10
DrgQueryDragitemCount 33-10
DrgQueryDragitemPtr 33-3, 33-10
DrgQueryNativeRMF 33-10, 33-15
DrgQueryNativeRMFLen 33-10, 33-15
DrgQueryStrName 33-10
DrgQueryStrNameLen 33-10
DrgQueryTrueType 33-10
DrgQueryTrueTypeLen 33-1 O
DrgReleasePS 33-9, 33-10
DrgSendTransferMsg 33-10
DrgSetDraglmage 33-10
DrgSetDragitem 33-3, 33-7
DrgSetDragPointer 33-1 O
DrgVerifyNativeRMF 33-10, 33-15
DrgVerifyRMF 33-10, 33-15
DrgVerifyTrueType 33-10
DrgVerifyType 33-10, 33-15
DrgVerifyTypeSet 33-10, 33-15
drive and path information 33-5
DRM_DDE 33-20
DRM_OS2FILE 33-18
DRM_PRINT 33-20
dropping

an object 33-1
description 33-1
object on list box 33-8
objects 33-6

DRT_C 33-3
ORT_ TEXT 33-3
DTYP _ * constants 33-3
DT _ WORDBREAK 29-4, 30-8
dynamic data exchange (DOE)

advise transaction type 32-7
applications, topics, and items 32-3
client and server interaction 32-1
comparison with clipboard data transfer 32-1
conversation 33-21
description of transactions 32-1
detailed example 32-2

Index X-13

dynamic data exchange (ODE) (continued)
direct manipulation 33-20
establishing a link between client and server,

example 32-1
execute transaction type 32-7
initiation 32-5
messages 2-7
poke transaction type 32-7
protocol 32-1
rendering format 33-4
rendering mechanism 33-20
request transaction type 32-7
sample system 32-2
shared-memory object 32-6
status flags table 32-7
system topic 32-4
SZFMT_BITMAP 32-10
SZFMT _ CPTEXT 32-10
SZFMT_DIF 32-10
SZFMT_DSPBITMAP 32-10
SZFMT_DSPMETAFILE 32-10
SZFMT _DSPTEXT 32-10
SZFMT_LINK 32-10
SZFMT_METAFILE 32-10
SZFMT_METAFILEPICT 32-10
SZFMT_OEMTEXT 32-10
SZFMT _PALETTE 32-10
SZFMT_SYLK 32-10
SZFMT_TEXT 32-10
SZFMT_TIFF 32-10
termination 32-10
tracking portfolios 32-2
transaction and response messages 32-7
transaction messages 32-7
transaction status flags 32-7
unadvise transaction type 32-7
unique data formats 32-10
uses 32-1
using to exchange data 33-14
workings of DOE protocol 32-2

dynamic resizing 21-6
dynamic resizing and scrolling, notebook

control 19-21

E
editing

MLE text 13-3
text in a container, direct 18-31

emphasis styles, selecting 24-3
emphasis, types of 18-25
EM_ messages 2-7
EM_CLEAR 12-3, 12-5, 12-10
EM_COPY 12-3, 12-6, 12-10
EM_CUT 12-3, 12-6, 12-10
EM_PASTE 12-3, 12-6, 12-10
EM_QUERYCHANGED 12-3, 12-5, 12-10

X-14 OS/2 Programming Guide-Volume II

EM_QUERYFIRSTCHAR 12-3, 12-10
EM_QUERYREADONLY 12-3, 12-10
EM_QUERYSEL 12-3, 12-10
EM_READONL Y 12-5
EM_SETFIRSTCHAR 12-3, 12-10
EM_SETINSERTMOOE 12-3, 12-10
EM_SETREAOONLY 12-3, 12-10
EM_SETSEL 12-3, 12-10
EM_SETTEXTLIMIT 12-3, 12-10
enabled and disabled windows 1-9
enabling

disabled windows 1-9
using WinlsWindowEnabled function 1-9
windows 1-9
word-wrapping 13-4

ending a direct manipulation operation 33-6
entry field

changing default size 12-7
controls 12-1
creating in client window 12-7
creating in dialog window 12-6
default behavior 12-3
inserting text 12-5
notification codes 12-2
owner 12-2
retrieving text 12-8
styles 12-1
summary 12-10
text editing 12-5
text retrieval 12-6

entry-field controls
copy and paste operations 12-6
description 12-1
EM_ messages 2-7
EM_QUERYSEL 12-5
EM_SETSEL message 12-5
functions 12-10
messages 12-10
messages generated by 12-1 O
messages received by 12-10
setting flags 12-8
structures 12-10
summary 12-10
using 12-6

entry-field styles
ES_ANY 12-1
ES_AUTOSCROLL 12-1
ES_AUTOSIZE 12-1
ES AUTOTAB 12-1
ES_CENTER 12-1
ES_DBCS 12-1
ES_LEFT 12-1
ES_MARGIN 12-1
ES_MIXED 12-1
ES_READONLY 12-1
ES_RIGHT 12-1
ES_SBCS 12-1
ES_UNREADABLE 12-1

ENTRYFDATA structure 12-7, 12-10
ENTRYFIELD statement 12-1
enumerating

windows 1-25
EN_CHANGE 12-2
EN_INSERTMODETOGGLE 12-2
EN_KILLFOCUS 12-2
EN_MEMERROR 12-2
EN_OVERFLOW 12-2
EN_SCROLL 12-2
EN_ SETFOCUS 12-2
Esc key, using to cancel direct manipulation

operation 33-6
establishing

conversation between source and target 33-14
conversation for data exchange 33-8

ES_ANY 12-1
ES _AUTOSCROLL 12-1
ES_AUTOSIZE 12-1
ES_AUTOTAB 12-1
ES_CENTER 12-1
ES_DBCS 12-1
ES_LEFT 12-1
ES_MARGIN 12-1
ES_MIXED 12-1
ES_READONLY 12-1
ES_RIGHT 12-1
ES_SBCS 12-1
ES_UNREADABLE 12-1
events

input, mouse and keyboard 5-1
key-down 5-5
key-up 5-5
repeat-count 5-5

examining
message queue 2-11
public window class data 3-5
structure members 1-22

examples
accelerators 22-1
allocating memory for container records 18-4
application's flow of graphics commands 28-2
changing a container view, code 18-17
changing the parent window 1-22
changing the size of a window 1-26
changing the z-order of a window 1-27
check boxes in a dialog box 8-2, 8-3
clipboard bit map format 31-4
clipboard metafile format 31-4
clipboard text format 31-4
code for changing color of major tab

background 19-21
code for changing color of notebook outline 19-20
code for flagging a text change 12-8
conversation after drop 33-17
copying, cutting, and pasting data 31-1
creating a container, sample code 18-3
creating a frame window with

FCF _ACCEL TABLE 22-4

examples (continued)
creating a message queue 1-20
creating a top-level frame window 1-20
creating a value set 21-2
creating an accelerator-table resource 22-3
creating an initialization file, sample code 36-2
creating an object window 1-22
creating entry field in client window 12-7
creating entry field with text limit 12-7
creation of a notebook 19-1
default notebook style 19-3
default style and placement of major and minor

tabs 19-4
defining entry field in dialog window 12-6
defining list box in dialog template 9-3
destroying a window 1-29
detailed ODE 32-2
details view 18-15
details view with container title 18-33
details view with split bar 18-16
determining active status of frame window,

code 5-8
determining scroll bar range 14-2
dialog-window procedure 9-3
drawing in a window 28-6
enumerating top-level windows 1-25
establishing a link between client and server,

DOE 32-1
exchanging the z-order of windows 1-27
extracting a scan code 5-11
finding the parent window 1-23
finding the topmost child window 1-23
flowed name view 18-8
flowed text view 18-1 O
frame and client windows using

WinCreateWindow 6-13
frame window 6-1
fully qualified drive and path name for source

file 33-19
getting handle to owner or child window 1-24
getting the window identifier 1-22
handling virtual-key codes 5-10
how to create a standard window using

WinCreateStdWindow 6-13
how to create a typical main window 6-12
how to retrieve handle of title-bar control 6-15
icon view with items arranged or automatically

positioned 18-7
icon view with items positioned at coordinates 18-6
initial flow of ODE conversation 32-5
input message processing loop 2-4
inserting items in a list 9-4
inserting records in a container 18-19
list box in dialog box 9-1
list box selection processes, code 9-6
main() function for a simple application 1-20
maximizing a frame window 1-28
menu item structure 11-5

Index X-15

examples (continued)
menus 11-1
message box 23-4
micro presentation space 28-12
moving a window 1-25
moving and sizing a window 1-26
name of source file or subdirectory 33-20
non-flowed name view 18-8
non-flowed text view 18-9
non-flowed text view with container title 18-33
normal presentation space 28-11
notebook 19-1
notebook with tab scroll buttons displayed 19-17
Open dialog 25-1
OWNERITEM structure, code 9-5
push buttons 8-1
radio buttons in a dialog box 8-2
registering a window class 1-20
removing records from a container 18-21
resource definition 7-4
response to a WM_SETFOCUS Message 27-2
retrieving names of initialization files 36-3
sample code for changing notebook style 19-7
sample code for creating a slider 20-2
sample code for deleting a notebook page 19-15
sample code for inserting notebook page 19-9
sample DOE system 32-2
SaveAs dialog 25-2
scroll bars in a window 14-1
scrollable area of the workspace 18-28
setting a decibel value in a slider 20-1
setting the owner window 1-24
sizing the list-box window 9-2
spin button 15-1
standard window scroll bar and command

codes 14-3
structure of a typical window procedure 4-3
title bar in a standard frame window 17-1
tree icon view 18-12
tree name view 18-14
tree text view 18-12
tree view showing root level, parent, child

items 18-11
two-object drag 33-12
using buttons in a client window 8-10
value set 21-1
window procedure arguments 4-2
workspace bounds 18-30

exchanging
data 33-8
data between source and target 33-14
data, determining how to 33-15
data, example 32-2

execute transaction type 32-7
executing

transaction, ODE 32-10
expanded bit maps, tree icon view 18-12

X-16 OS/2 Programming Guide-Volume II

exporting
MLE text 13-7

extended attribute, types 33-20
extracting focus flag 2-13
extracting focus-change flag 2-13

F
f Active parameter 5-2
family face, font dialog control 24-1
family name, selecting 24-2
fAttrs 24-2
FCF _ACCEL TABLE 6-4, 22-4
FCF_ICON 6-4
FCF _MAXBUTTON 6-2
FCF _MENU 6-4
FCF _MINBUTTON 6-2
FCF _MINMAX 6-2
FCF _NOBYTEALIGN 1-16
FCF _SHELLPOSITION 1-14, 6-4
FCF _SIZEBORDER 6-2
FCF _STANDARD 6-4, 6-12
FDM_ERROR 25-5
FDM_FIL TER 25-5
FDM_VALIDATE 25-5
FDS_ OPEN_DIALOG 25-2
FDS_SAVEAS_DIALOG 25-2
FF _ACTIVE 6-8
FF _DLGDISMISSED 6-8
FF _FLASHHILITE 6-8
FF _FLASHWINDOW 6-8
FF _NOACTIVATESWP 6-8
FF_ OWNERDISABLE 6-8
FF _OWNERHIDDEN 6-8
FF _SELECTED 6-8
FID_CLIENT 6-3, 6-9
FID_CLIENT window 30-7
FID_HORZSCROLL 6-3, 6-9, 14-3
FID_MENU 6-3, 6-9, 11-1
FID_MINMAX 6-3
FID_SYSMENU 6-3, 6-9
FID _ TITLEBAR 6-3, 6-9
FID_VERTSCROLL 6-3, 6-9, 14-3
FIELDINFO 18-36
FIELDINFO data structure 18-14
FIELDINFO structure 18-5
FIELDINFOINSERT 18-36
fields

cbSize 24-1, 25-2
clrBack, passing color options 24-2
clrFore, passing color options 24-2
Drive 25-4
fAttrs 24-2
file name 25-3
fl 24-2, 25-2
flStyle,. passing display options 24-2
hpsPrinter 24-1, 24-2
hpsScreen 24-1, 24-2

fields (continued)
hstrContainerName 33-18
hstrRenderToName 33-19, 33-20

hstrSourceName 33-18
papszlDrivelist 25-4
papszlType 25-3
pfnDlgProc 24-2, 25-2
pszlDrive, displaying drive name 25-2

pszlType 25-3
pszOKButton 25-2
pszPreview 24-2
pszPtSizelist 24-2
pszTitle 24-2, 25-2
setting flags 25-2
sNominalPointSize 24-2
szFullFile 25-3
Type 25-4
us Format 32-10
usWeight 24-2
usWidth 24-2
x, passing initial dialog position 25-2

y, passing initial dialog position 25-2

fifth parameter, WinDdePostMsg 32-8

file dialog control
accessing networked files 25-4
basic functions 25-1
creating 25-2
creating Open 25-3
creating SaveAS 25-3
customizing 25-5
description 25-1
directory list box 25-4
displaying filter criteria 25-4
displaying values 25-3
file I ist box 25-4
initial file to be used in dialog 25-3

initializing FILEDLG structure 25-2

minimum set of standard controls 25-5

multiple-selection list box 25-4

Open dialog 25-1
papszlDrivelist field 25-4
passing list of extended attributes 25-3

passing name of drive 25-2
pszlType field 25-4
SaveAs dialog 25-1
selecting a drive 25-4
single-selection list box 25-4
specifying a custom dialog procedure 25-2

type field 25-4
user interface 25-3
using a single-line entry field 25-3

file list box 25-4
file name field 25-3
FILEDLG 25-5
FILEDLG structure 25-2, 25-3
files

dialog resource 23-4
os2.ini 3-5

filling a rectangle 29-2
filter check box, font dialog 24-3

filter flags, initializing 24-2
filtering

container items 18-34
file information 25-3
messages 2-9

find-word hook 30-8
finding

parent, child, or owner window 1-23

Fl_ACTIVATEOK 6-8
Fl_FRAME 6-8
Fl_NOMOVEWITHOWNER 6-8

fl field 25-2
flags

CFl_HANDLE 31-2
CFl_OWNERDISPLAY 31-6
CFl_POINTER 31-2
CURSOR_ SETPOS flag 27-1
DDE_FACK 32-7
DDE_FACKREQ 32-7, 32-8
DT _ WORDBREAK 29-4, 30-8
FAPPSTATUS 32-7
FBUSY 32-7
FCF _ACCEL TABLE 6-4
FCF _ICON 6-4
FCF _MENU 6-4
FCF _SHELLPOSITION 6-4
FCF _STANDARD 6-4, 6-12
FDS_ OPEN_ DIALOG 25-2
FDS_SAVEAS_DIALOG 25-2
FF&US.ACTIVE 6-8
FF_DLGDISMISSED 6-8
FF _FLASHHILITE 6-8
FF _FLASHWINDOW 6-8
FF _NOACTIVATESWP 6-8
FF_ OWNERDISABLE 6-8
FF _OWNERHIDDEN 6-8
FF _SELECTED 6-8
Fl_ACTIVATEOK 6-8
Fl_FRAME 6-8
Fl_NOMOVEWITHOWNER 6-8

flFlags 24-2
FNODATA 32-7
FNTF _NOVIEWPRINTERFONTS 24-2

FNTF _NOVIEWSCREENFONTS 24-2

FNTS_* 24-2
frame-control 6-3
FRESERVE 32-7
FRESPONSE 32-7
KC_ALT 5-4, 5-9
KC_CHAR 5-4, 5-9
KC_ COMPOSITE 5-4
KC_CTRL 5-4
KC_DEADKEY 5-4
KC_INVALIDCHAR 5-4.
KC_INVALIDCOMP 5-4
KC_KEYUP 5-4

Index X-17

flags (continued)
KC_LONEKEY 5-4
KC _PREVDOWN 5-4
KC_SCANCODE 5-4
KC_SHIFT 5-4
KC_TOGGLE 5-4
KC_VIRTUALKEY 5-4
keyboard character 5-4
message 5-4
MLFSEARCH_CASESENSITIVE 13-10
MLFSEARCH_CHANGEALL 13-10
MLFSEARCH_SELECTMATCH 13-10
NOTPROCESSED 32-7
PM_NOREMOVE 30-2
PM_REMOVE 30-2
PU_HCONSTRAIN 11-2
PU_MOUSEBUTTON 11-3
PU_POSITIONONITEM 11-2
PU_SELECTITEM 11-3
PU_VCONSTRAIN 11-2
setting, font dialog 24-2
SW_INVALIDATERGN 29-3
transaction status 32-7
using in entry fields 12-8

flFlags 24-2
flowed name view, description 18-8
flowed text view, description 18-10
flowing container items, description 18-8
flType 24-2
FNTF _NOVIEWPRINTERFONTS 24-2
FNTF _NOVIEWSCREENFONTS 24-2
FNTM_FACENAMECHANGED 24-4
FNTM_FIL TERLIST 24-4
FNTM_POINTSIZECHANGED 24-4
FNTM_STYLECHANGED 24-4
FNTM_UPDATEPREVIEW 24-4
focus

keyboard 1-9, 1-20, 5-2, 5-7
losing 1-9
setting container control 18-22
static control keyboard 16-1

focus window
as the active window 1-8
FID_CLIENT 30-7

focus window message responses to keys 14-5
focus-change and activation messages 5-11
folder for source object, making known to system 33-2
font dialog basic functions, list of 24-1
font dialog control

basic functions 24-1
cbSize field 24-1
creating 24-1
customizing 24-3
f Attrs field 24-2
filter check box 24-3
flFlags field 24-2
graphical user interface support 24-2
hpsPrinter field 24-1

X-18 05/2 Programming Guide-Volume JI

font dialog control (continued)
hpsScreen field 24-1
invoking dialog first time 24-2
making controls invisible 24-3
minimum set of standard controls 24-3
names of typefaces 24-1
pfnDlgProc field 24-2
preview area 24-3
pszFamilyname 24-2
pszPreview field 24-2
pszPtSizelist field 24-2
pszTitle field 24-2
selecting emphasis styles 24-3
selecting family name 24-2
selecting font size 24-3
selecting font style 24-3
setting flags in fl field 24-2
sNominalPointSize 24-2
standard font dialog controls table 24-4
structures table 24-4
usFamilyBuflen 24-2
usWeight field 24-2
usWidth field 24-2

font dialog controls, summary 25-5
font dialog functions, summary 25-5
font dialog structure, summary 25-5
font sizes, application-specific 24-2
font size, selecting 24-3
font style, selecting 24-3
FONTDLG 24-4
fonts and colors, specifying 18-34
format identification number, clipboard 31-5
format rectangle, MLE field 13-4
formatting

text 13-4
forwarding messages 2-1
frame controls, description 6-2
frame window

adding an accelerator table 22-4
class data 6-8
client window 6-2
controls 6-2
controls and styles 6-3
creating 6-2
creating composite window 6-1
creating dialog window 6-3
creating main window 6-12
creation 6-3
data 6-8
default behavior 6-10
description 1-6, 6-1
description of operation 6-9
determining active status 5-8
drawing minimized view 28-7
example 6-1
flags and styles that require resources 6-4
frame-control identifiers 6-3
FS_ NOMOVEWITHOWNER 1-5

frame window (continued)
hiding or minimizing 1-5
including an accelerator table 22-4

including title bar 17-2
maximizing 1-28
message box 1-7
minimizing 1-28
moving 1-5
nonstandard 6-10
operation 6-9
ownership properties 1-5
resources 6-4
restoring 1-5, 1-28
retrieving a frame handle 6-15
state flags 6-8
styles 6-4
summary of functions, structure, messages 6-15

title-bar functions 17-1
types of 6-3
using 6-12
using FCF _ACCEL TABLE 22-4
WC _FRAME class 6-1

frame-control identifiers, description 6-3

frame-creation flags, FCF _
FCF _NOBYTEALIGN 1-16
FCF _SHELLPOSITION 1-14
specifying 6-4

frame-window items, additional 6-2
FRAMECDATA structure 6-5, 6-15
freeing

DLL module 30-10
memory associated with records 18-21

fs parameter 30-2
fsControl 33-16
fSkip parameter 30-6
FsStatus 32-7
FS_ACCELTABLE 6-4
FS_BORDER 3-3
FS_ICON 6-4
FS_MENU 6-4
FS_NOMOVEWITHOWNER 1-5
FS_STANDARD 6-4
fully qualified drive and path name, source file 33-19

functions
accelerator-table 22-6
button control 8-11
calling 1-9
container control 18-1
cursor 27-3
DevCloseDC 28-13, 28-15
DevOpenDC 28-13, 28-15
DosAllocSharedMem 31-2, 32-6
DosFreeMem 32-7
DosFreeModule 30-10
DosGiveSharedMem 32-6
DosLoadModule 30-10
DosQFilelnfo 33-20
DosQueryProcAddr 30-10

functions (continued)
DosSetFilelnfo 33-20
DrgAcceptDroppedFiles 33-1 O
DrgAccessDraginfo 33-5, 33-8
DrgAcessDraginfo 33-10
DrgAddStrHandle 33-3, 33-7
DrgAllocOraglnfo 33-7
DrgAllocDragTransfer 33-7, 33-19

DrgDeleteDraginfoStrHandles 33-1 o
DrgDeleteStrHandle 33-10
DrgDrag 33-7
DrgDragFiles 33-10
DrgDrop 33-5
DrgFreeDraginfo 33-7, 33-10
DrgFreeDragTransfer 33-10, 33-19

DrgGetPS 33-9, 33-10
DrgPostTransferMsg 33-10
DrgPushDraginfo 33-10
DrgQueryDragitem 33-10
DrgQueryDragitemCount 33-10
DrgQueryDragitemPtr 33-10
DrgQueryNativeRMF 33-10
DrgQueryNativeRMFLen 33-10
DrgQueryStrName 33-10
DrgQueryStrNamelen 33-10
DrgQueryTrueType 33-10
DrgQueryTrueTypelen 33-10
DrgReleasePS 33-9, 33-10
DrgSendTransferMsg 33-10
DrgSetDraglmage 33-9, 33-10
DrgSetDragitem 33-3, 33-7
DrgSetDragPointer 33-9, 33-10
DrgVerifyNativeRMF 33-10
DrgVerifyRMF 33-10, 33-15
DrgVerifyTrueType 33-10
DrgVerifyType 33-10, 33-15
DrgVerifyTypeSet 33-10, 33-15
entry field control 12-10
ENTRYFDATA 12-10
file dialog control 25-1
font dialog control 24-1
for working with points and rectangles 29-2

GpiAssociate 1-20, 28-11, 28-15
GpiCreatePS 28-9, 28-15
GpiDestroyPS 1-20, 28-9
help-hook, syntax 30-7
hooks 30-2
hook, summary 30-10
initialization file summary 36-4
lnputHook 30-2
journal-playback hook 30-5
journal-record hook 30-4
MsgFilterHook 30-4
notebook 19-1
pointer and bit map 26-6
PrfCloseProfile 36-2, 36-4
PrfOpenProfile 36-2, 36-4
PrfQueryProfile 36-4

Index X-19

functions (continued)
PrfQueryProfileData 36-2, 36-4
PrfQueryProfilelnt 36-4
PrfQueryProfileSize 36-2, 36-4
PrfQueryProfileString 36-3, 36-4
PrfReset 36-4
PrfWrlteProflleData 36-4
PrfWriteProfileString 36-3, 36-4
slider control summary 20-7
sumary of dialog 23-12
summary of atom table 35-7
summary of device context 28-15
summary of presentation space 28-15
summary of static-control 16-6
summary of title-bar 17-4
summary of window regions 28-15
summary of window-drawing 29-5
syntax for input-hook, code 30-2
title-bar 17-1
used l;>y the direct manipulation source 33-7
used by the target 33-1 O
using Profile Manager 36-1
using window-drawing 29-2
using WinloadAccelTable 22-4
WinAddAtom 35-7
WinAlarm 23-12
WinBeginEnumWindows 1-25, 1-29
WinBeginPaint 27-2, 28-7, 28-10, 28-15
WinBroadcastMsg 2-12, 2-14
WinCalcFrameRect 6-10, 6-15, 29-5
WinCallMsgFilter 2-14, 30-4, 30-10
WinCheckMenultem 11-17
WinCloseClipbrd 31-3, 31-12
WinCopyAccelTable 22-6
WinCopyRect 29-5
WinCreateAccelTable 22-4, 22-6
WinCreateAtomTable 35-2, 35-7
WinCreateCursor 27-1, 27-3
WinCreateDlg 1-11, 6-3, 23-12
WinCreateFrameControls 1-11, 6-1 O
WinCreateMenu 1-11, 11-2, 11-17
WinCreateMsgQueue 1-9, 2-2, 2-10, 2-14, 3-1
WinCreatePointer 26-6
WinCreatePointerlndirect 26-6
WinCreateStdWindow 1-11, 1-29, 6-2, 6-4, 6-12, 7-1,

17-4, 35-1
WinCreateWindow 1-9, 1-19, 1-22, 1-29, 3-1, 3-3,

6-3, 6-13, 7-1, 7-3, 8-1, 8-11, 9-2, 12-1, 13-4, 13-6,
14-3, 15-1, 18-3, 19-1, 20-2, 20-7, 21-2, 21-7

WinDdelnitiate 32-3, 32-5, 32-6
WinDdePostMsg 32-6, 32-7, 32-8
WinDdeRespond 32-6
WinDefDlgProc 2-14, 4-3, 4-6, 5-3, 23-12
WinDefFileDlgProc 25-5
WinOefFontDJg 24-4
WinDefFontDlgProc 24-4
WinDefWindowProc 2-5, 2-14, 3-5, 4-2, 4-6, 5-3, 5-6,

5-7, 30-6, 32-3

X-20 OS/2 Programming Guide-Volume II

functions (continued)
WinDeleteAtom 35-7
WinDeletelboxltem 9-8
WinDesktopCursor 27-1
WinDestroyAccelTable 22-6
WinDestroyAtomTable 35-2, 35-7
WinDestroyCursor 27-3
WinDestroyMsgQueue 2-14
WinDestroyPointer 26-6
WinDestroyWindow 1-19, 1-29, 15-2, 23-12
WinDismissDlg 23-12
WinDispatchMsg 2-4, 2-10, 2-14, 5-7, 30-4, 34-1,

34-3
WinDlgBox 1-11, 23-12
window procedure 1-10, 4-6
window-creation 1-11
window-drawing 29-1
WinDrawBitmap 29-4, 29-5
WinDrawBitmaps 26-6
WinDrawBorder 29-5
WinDrawPointer 26-6
WinDrawText 29-4, 29-5, 30-8
WinEmptyClipbrd 31-3, 31-7, 31-12
WinEnableMenultem 11-17
WinEnablePhyslnput 5-11
WinEnableWindow 1-9, 14-5
WinEnableWindowUpdate 28-15
WinEndEnumWindows 1-25, 1-29
WinEndPaint 27-2, 28-7, 28-10, 28-15
WinEnumClipbrdFmts 31-12
WinEnumDlgltem 23-12
WinEqualRect 29-5
WinExcludeUpdateRegion 28-15
WinFileDlg 25-3, 25-5
WinFillRect 29-2, 29-5
WinFindAtom 35-7
WinFlashWindow 17-4
WinFocusChange 5-11
WinFontDlg 24-2
WinFreeFileDlglist 25-5
WinGetClipPS 28-15
WinGetCurrentTime 34-2, 34-4
WinGetDlgMsg 2-14, 23-12
WinGetKeyState 5-11, 33-10
WinGetMaxPosition 1-15
WinGetMinPosition 1-29
WinGetMsg 2-2, 2-4, 2-8, 2-10, 2-14, 30-2, 30-4
WinGetNextWindow 1-25, 1-29
WinGetPhysKeyState 30-5
WinGetPS 1-20, 28-8, 28-15
WinGetScreenPS 28-15
WinGetSysBitmap 26-6
WinlnflateRect 29-5
Winlnitialize 1-9, 3-1, 36-1
WinlnSendMsg 2-6, 2-14
Winlnsertlboxltem 9-8
WinlntersectRect 29-5
WinlnvalidateRect 28-15, 29-5

functions (continued)
WinlnvalidateRegion 28-15
WinlnvertRect 29-3
WinlsChild 1-29
WinlsMenultemChecked 11-17
WinlsMenultemEnabled 11-17
WinlsMenultemValid 11-17
WinlsPhyslnputEnabled 5-11
WinlsRectEmpty 29-5
WinlsWindowEnabled 1-9
WinlsWindowShowing 1-19, 1-29
WinlsWindowVisible 1-19, 1-29
WinloadAccelTable 22-6
WinloadDld 23-12
WinloadDlg 1-11, 6-3
WinloadMenu 1-11, 11-2, 11-17
WinloadPointer 26-6
WinlockVisRegions 28-15
WinlockWindowUpdate 28-15
WinMakeRect 29-5
WinMapDlgPoints 23-12
WinMapWindowPoints 29-1, 29-5
WinMessageBox 1-11, 23-12
WinMultWindowFromlDs 1-29
WinOffsetRect 29-5
WinOpenClipbrd 31-3, 31-12
WinOpenWindowDC 28-11, 28-15
WinPeekMsg 2-2, 2-11, 2-14, 30-2
WinPopupMenu 11-2, 11-17
WinPostMsg 2-5, 2-12, 2-14
WinProcessDlg 23-12
WinPtlnRect 29-5
WinQuery AccelTable 22-6
WinQueryActiveWindow 1-29, 5-2, 5-8
WinQueryAtomlength 35-7
WinQueryAtomUsage 35-7
WinQueryCapture 5-11
WinQueryClasslnfo 3-5, 3-6
WinQueryClassName 3-5, 3-6
WinQueryClipbrdData 31-3, 31-12
WinQueryClipbrdFmtlnfo 31-6, 31-12
WinQueryClipbrdOwner 31-6, 31-12
WinQueryClipbrdViewer 31-6, 31-12
WinQueryCursor 27-3
WinQueryCursorlnfo 27-3
WinQueryDesktopWindow 1-29
WinQueryDlgltemlength 23-12
Win.QueryDlgltemShort 12-10, 23-12
WinQueryDlgltemText 23-12
WinQueryFocus 1-8, 1-29, 5-11
WinQuerylboxCount 9-8
WinQuerylboxltemText 9-8
WinQuerylboxltemTextlength 9-8
WinQuerylboxSelectedltem 9-8
WinQueryMsgPos 2-14
WinQueryObjectwindow 1-29
WinQueryPointer 26-6
WinQueryPointerlnfo 26-6

functions (continued)
WinQueryPointerPos 26-6
WinQueryQueuelnfo 2-3, 2-14
WinQueryQueueStatus 2-3, 2-11, 2-14, 30-5
WinQuerySysModalWindow 1-29
WinQuerySysPointer 16-6, 26-6
WinQuerySystemAtomTable 35-2, 35-7
WinQueryUpdateRect 28-15, 29-5
WinQueryUpdateRegion 28-15
WinQueryWindow 1-23, 1-29, 6-15
WinQueryWindowDC 28-15
WinQueryWindowPos 1-26, 1-29
WinQueryWindowProcess 32-6
WinQueryWindowPtr 1-29
WinQueryWindowRect 1-15, 1-29, 8-8, 29-5
WinQueryWindowText 8-8, 8-11, 12-10
WinQueryWindowTextlength 12-10
WinQueryWindowULong 1-22, 1-29, 3-3
WinQueryWindowUShort 1-17, 1-22, 1-29, 3-3, 6-8
WinRegister 35-1
WinRegisterClass 3-1, 3-3, 3-5, 3-6, 4-4, 4-6
WinRegisterUserMsg 2-14
WinReleaseHook 30-10
WinReleasePS 1-20, 28-8, 28-12, 28-15
WinRequestMutexSem 1-29
WinScrollWindow 29-3
WinSendDlgltemMsg 2-14, 4-1, 23-12
WinSendMsg 2-5, 2-12, 2-14, 20-7, 21-7, 30-3
WinSetAccelTable 22-4, 22-6
WinSetActiveWindow 1-29, 5-2, 5-7
WinSetCapture 5-7, 5-11
WinSetClassMsglnterest 2-14
WinSetClipbrdData 31-3, 31-5, 31-6, 31-12
WinSetClipbrdOwner 31-6, 31-12
WinSetClipbrdViewer 31-6, 31-12
WinSetDlgltemShort 12-5, 12-10, 23-12
WinSetDlgltemText 23-12
WinSetfocus 1-29, 5-2, 5-7, 5-11, 18-22
WinSetHook 30-1, 30-9, 30-10
WinSetKeyboardStateTable 5-11
WinSetlboxltemText 9-8
WinSetMenultemText 11-17
WinSetMsglnterest 2-14
WinSetMsgMode 2-14
WinSetMultWindowPos 1-26, 1-29
WinSetOwner 1-24, 1-29
WinSetParent 1-4, 1-22, 1-29
WinSetPointer 26-6
WinSetPointerPos 26-6
WinSetPresParam 19-19
WinSetRect 29-5
WinSetRectEmpty 29-5
WinSetSysModalWindow 1-9, 1-29
WinSetWindowBits 1-29
WinSetWindowPos 1-16, 1-26, 1-27, 1-29, 6-4, 8-10,

16-6
WinSetWindowPtr 1-29
WinSetWindowText 7-2, 8-8, 8-11, 12-5, 12-10, 16-6,

17-4

Index X-21

functions (continued)'
WinSetWindowULong 1-13, 1-29, 3-3
WinSetWindowUShort 1-17, 1-29, 3-3
WinShowCursor 27-2, 27-3
WinShowPointer 26-6
WinShowTractRect 29-5
WinShowWlndow 1-13, 1-28, 1-29, 7-2, 20-7, 21-7
WinStartApp 1-29
WinStartTimer 34-1, 34-2, 34-3, 34-4
WinStopTimer 34-1, 34-4
WinSubclassWindow 1-17, 4-2, 4-4, 4-6
WinSubstituteStrings 23-12
WinSubtractRect 29-5
WinTerminate 1-29
WlnTerminateApp 1-29
WinTrackRect 29-5
WinTranslateAccel 2-14, 22-6
WinUnionRect 29-5
WinValidateRect 28-15, 29-5
WinValidateRegion 28-15
WinWaitEventSem 1-29
WinWaitMsg 2-14
WinWaltMuxWaitSem 1-29
WinWindowFromDC 28-15
WinWindowFromlD 1-24, 1-29, 6-3, 6-15, 8-8, 8-9,

8-10, 11-1, 16-6, 17-4
WinWindowFromPoint 1-25, 1-29
WM_CHAR 5-3

F1 key, to reques.t help on canceling direct
manipulation 33-6

G
general window messages 2-7
getting

window identifier 1-22
GpiAssociate 1-20, 28-11, 28-15
GpiCreatePS 28-9, 28-15
GpiDestroyPS 1-20, 28-9
graphical user interface {GUI)

container control support 18-22
keyboard support for displaying notebooks 19-18
notebook navigation techniques 19-16
scrolling 18-22
support 21-5
support for sliders 20-5
support for the font dialog 24-2
support from notebook control 19-15

GUI
See graphical user interface {GUI}

H
handles

accelerator-table 22-2
button 8-8
deleting string 33-6
drag string 33-3

X-22 OS/2 Programming Guide-Volume II

handles (continued)
DrgAddStrHandle function 33-3
in messages 2-1
invalidating 1-19
retrieving frame 6-15
retrieving scroll-bar 14-8
specifying 1-27
static control 16-1
string, types of 33-3

handling a scan code 5-11
handting input messages 2-3
handling multiple selections, list box 9-4
handling virtual-key codes 5-10
help for the drag operation, direct manipulation 33-8
help hook 30-6
helpitem 11-4
hiding

a frame window 1-5
a window 1-19, 1-28
cursors 27-2
submenus 11-1

HK_CODEPAGECHANGED 30-1
HK_FINDWORD 30-1
HK_HELP 30-1
HK_INPUT 30-1
HK_JOURNALPLAYBACK 30-1
HK_JOURNALRECORD 30-1
HK_MSGFILTER 30-1
HK_SENDMSG 30-1
HMQ structure 2-15
home position, slider 20-5
hooks

codepage-changed 30-9
description 30-1
find-word 30-8
functions 30-2
function, summary 30-10
help 30-6
HK_CODEPAGECHANGED 30-1
HK_FINDWORD 30-1
HK_HELP 30-1
HK_INPUT 30-1
HK_JOURNALPLAYBACK 30-1
HK_JOURNALRECORD 30-1
HK_MSGFILTER 30-1
HK_SENDMSG 30-1
input 30-2
installing and releasing 30-9
journal-playback 30-5
journal-record 30-4
list 30-1
message-filter 30-3
message-monitoring 30-1
MsgFi lterHook 30-4
parameter values, message-filter 30-4
receiving WM_HELP 30-7
releasing a system hook 30;.10
send-message 30-3

hooks (continued)
summary of structures 30-10
syntax for send-message function 30-3
types of 30-1
using 30-9
WM_BUTTON1 DOWN 30-5
WM_BUTTON1 UP 30-5
WM_BUTTON2DOWN 30-5
WM_BUTTON2UP 30-5
WM_BUTTON3DOWN 30-5
WM_BUTTON3UP 30-5
WM_CHAR 30-3, 30-5
WM_MOUSEMOVE 30-5

hot link 33-21
hot spot, description 5-6
hot spot, mouse-pointer 5-6, 26-1
hpsPrinter 24-1
hpsPrinter presentation space field 24-2
hpsScreen 24-1
hpsScreen presentation space field 24-2
hrsType field 33-3
hstrContainerName 33-18
hstrRenderToName 33-19, 33-20
hstrRMF field 33-14
hstrSourceName 33-18
HSVWP structure 6-15
HT_ERROR 5-6
HT_NORMAL 5-6
hwnd parameter 34-3
HWNDFROMMP macro 2-13
hwndltem 33-16, 33-19
hwndSource window 33-16
hwnd, window-procedure argument 4-2
HWND_BOTTOM 1-14, 1-27
HWND_DESKTOP 1-14, 29-1, 32-3, 32-5
HWND_OBJECT 1-14
HWND_TOP 1-14, 1-27

I
ich parameter 30-8
icon view, description 18-6
icons

and mouse pointers 26-1
customized 33-9
specifying 28-7

icon/text pairs 18-6
identifying

frame controls and client window 6-3
OS/2 initialization files 36-3

ID_RADI01 8-9
importance of back pages, notebook control 19-4
importing

MLE text 13-7
in-use emphasis 18-25
including

accelerator table in a frame· window 22-4
menu bar in a standard window 11-9

including (continued)
pop-up menu in application 11-2
static control in dialog window 16-4
title bar in frame window 17-2

information required, private window classes 3-1
initialization files

closing 36-2
copying 36-1
creating 36-1
deleting 36-1
description 36-1
identifying 36-3
keys values 36-1
managing 36-1
moving 36-1
opening and closing 36-2
PrfQueryProfile String 36-3
PrfWriteProfileString function 36-3
reading setting 36-2
sections 36-1
summary of functions used 36-4
using 36-1
using PrfOpenProfile function 36-2
using Profile Manager 36-1
using Profile Manager functions 36-1
writing setting 36-2

initializing
anchor block 36-1
conversation 33-14
default action with OK push button 25-5
dialog window 23-8
DRAGIMAGE structure 33-2
DRAGINFO structure 33-2
DRAGITEM structure 33-3
FILEDLG structure 25-2
filter flags 24-2
FONTDLG structure 24-1
values for users 24-2
windows and data 36-1

initiation, ODE 32-5
input

accelerator-table entries 5-6
button clicks 5-7
capturing mouse input 5-7
character codes 5-5
checking for key-up or key-down event 5-9
description 5-1
determining active status of frame window,

code 5-8
determining active status of window 5-8
event 5-1
handling a scan code 5-11
handling virtual-key codes 5-10
key-down events 5-5
key-up events 5-5
keyboard character flags table 5-4
message flags 5-4
mouse messages 5-6

Index X-23

input (continued)
mouse movement 5-7
receiving and processing 5-1
repeat-count events 5-5
responding to a character message, code 5-9
scan codes 5-6
summary of functions and messages 5-11
system message queue 5-1
using mouse and keyboard 5-8
virtual-key codes 5-5
window activation 5-1

input event, description 5-1
input focus

changing 1-8
Wi nQueryFocus 1-8

input hooks 30-2
lnputHook 30-2
inserting

container records 18-17
items in a list 9-4
notebook pages 19-8
pages in a notebook 19-4
page, sample code 19-9
text in MLE field 13-3

installing
hook functions 30-9

integer atoms, description 35-2
interacting

with active window 1-1
invalidating application page window 19-10
invoking

dialog first time 24-2, 25-2
file dialog 25-3
font dialog 24-2
Open dialog 25-3

items.
definition 32-3

iVScrolllnc 29-3

J
journal-playback hook 30-5
journal-record hook 30-4

K
KC_ALT 5-4, 5-9
KC_ CHAR 5-4, 5-9
KC_COMPOSITE 5-4
KC_CTRL 5-4
KC_DEADKEY 5-4
KC_INVALIDCHAR 5-4
KC_INVALIDCOMP 5-4
KC_KEYUP 5-4
KC_LONEKEY 5-4
KC _PREVDOWN 5-4
KC_SCANCODE 5-4

X-24 OS/2 Programming Guide-Volume II

KC_SHIFT 5-4
KC _TOGGLE 5-4
KC_ VIRTUALKEY 5-4
key-down events 5-5
key-up events 5-5
keyboard

accelerator summary 22-6
accelerators 11-7, 22-1
and scroll bars 14-5
augmentation 33-1 O
character flags 5-4
focus 1-9, 5-2, 5-7
focus, static control 16-1
input 5-1
keystroke menu access 11-6
messages 5-3
mnemonic selection 19-18
remapping 33-6
selecting pages 19-18
summary of input functions and messages 5-11
support of notebooks for GUls 19-18
using accelerators 22-1

keyboard accelerators, description 22-1
keyboard focus, description 5-2
keyboard navigation 18-2~

keystroke menu access 11-6

L
LEFT key 14-5
limiting user selections 25-2
list box

adding and deleting items 9-3
controls 9-1
creating a window 9-2
displaying 9-1
features 9-1
in dialog box, figure 9-1
LS_NOADJUSTPOS style 9-3
owner window 9-1
querying current selection 9-4
responding to user selection 9-4
responses to keys 14-5
using 9-1
using in dialog window 9-3

list box controls
contents of OWNERITEM structure 9-5
creating owner-drawn list item 9-5
description 9-1
handling multiple selections 9-4
highlighting list items 9-6
inserting items in a list 9-4
LM_ messages 2-7
LM_QUERYSELECTION message 9-4
messages generated by list box to owner 9-9
messages handled by WC_LISTBOX class 9-7
messages received by 9-9
selection processes, code 9-6

list box controls (continued)
summary 9-8
using 9-1
WM_CONTROL 9-9
WM_DRAWITEM 9-9
WM_MEASUREITEM 9-9

list box, dropping on 33-8
list item position index table 9-3
list of flags, file dialog 25-2
LIT_END 9-3
LIT_SORTASCENDING 9-3
LIT _SORTDESCENDING 9-3
LM_ messages 2-7
LM_DELETEALL 9-7
LM_DELETEITEM 9-3, 9-7
LM_INSERTITEM 2-12, 9-3, 9-7
LM_QUERYITEMCOUNT 9-7
LM_QUERYITEMHANDLER 9-7
LM_QUERYITEMTEXT 9-7
LM_QUERYITEMTEXTLENGTH 9-7
LM_QUERYSELECTION 9-4, 9-7
LM_QUERYTOPINDEX 9-7
LM_SEARCHSTRING 9-7
LM_SELECTITEM 9-7
LM_SETITEMHANDLE 9-7
LM_SETITEMHEIGHT 9-7
LM_SETITEMTEXT 9-7
LM_SETTOPINDEX 9-7
LN_ENTER 9-4
LN_ENTER notification code 9-3
loading resources for a frame window, code 6-5
LS_EXTENDEDSEL 9-4
LS_MUL TIPLESEL 9-4
LS_OWNERDRAW 9-5

M
macros, using message 2-13
main window

common parentage 1-3
creating 6-12
description 1-2, 1-6

main window, description 6-1
major tabs, placing in notebook 19-4
making choices with graphics 21-1
making controls invisible, font dialog 24-3
managing

frame windows 1-6
ownership 1-20
parent-child relationships 1-20
shared resources 2-1

managing window ownership and relationships 1-20
manipulating

dialog items 23-11
maximized window

description 1-18
restoring size and position 1-18
WS_MAXIMIZED 1-13, 1-18

maximizing
a frame window 1-28
message queue size 2-3
window 1-18

MB_HELP 30-6
memory

allocating for container records 18-35
freeing 18-21
optimizing container usage 18-35

menu- and dialog-input messages 2-7
menu-item attributes 11-4
menu-item structure 11-5 ,
menu-item styles, description 11-4
MENUITEM structure 11-17
menus

accelerators 11-7
access 11-6
accessing system menu 11-11
adding and deleting menu items 11-12
adding to dialog window 11-10, 23-9
changing attributes, styles, and contents 11-3
changing dynamically 11-1
communicating with 11-1
creating 11-1
creating custom menu items 11-15
creating pop-up 11-10
defining 11-1
defining menu items in a resource file 11-8
description 1-7, 11-1
generating WM_SYSCOMMAND messages 11-3
help item 11-4
including menu bar in standard window 11-9
inserting and deleting menu items 11-3
menu-item attributes 11-4
menu-item structure 11-5
menu-item styles 11-4
messages generated by 11-18
messages received by 11-17
MM_ messages 2-7
mnemonics 11-6
owner 11-1
owner hierarchy 11-1
pop-up 11-1, 11-2
positioning 11-2
pull-down 11-1
receiving WM_HELP 30-7
responding to user menu choice 11-11
setting and querying menu-item attributes 11-12
summary of functions 11-17
summary of messages 11-17
summary of structures 11-17
types 11-1
types of menu items 11-3
using PU_MOUSEBUTTON 11-3

message boxes
constants 23-4
creating 23-4
creating system-modal 23-5

Index X-25

message boxes (continued)
description 1-7, 23-3
MB_HELP style 30-6
part 23-4
uses of 1-7
using 23-4

Message Categories table 2-7
message filtering 2-9
message filtering, description 2-9
message flows, direct manipulation 33-17
message handling

combining messages in message queue 2-3
message loop 2-4
modifying message loop 2-5
mouse and keyboard input 2-3
terminating message loop 2-5
using a message loop 2-3

message identifier 2-1, 2-7
message loop processing messages with NULL window

handles, code 2-11
message loops, description 2-3
message loop, using 2-3
message parameters 2-2
message queue and message loop, sample code 2-10
message queues

accessing 2-2
associating window with 2-2
broadcasting a message 2-12
bypassing FIFO order 2-5
capturing mouse input 5-7
creating 1-9, 2-2
creating and using 2-1
default size 2-6
description 2-1
destroying 2-2
examining 2-11
example 1-20
input message processing loop flow 2-4
inserting messages 30-5
journal-record hook 30-4
keyboard messages 5-3
message filtering 2-9
message priorities 2-8
message status 2-3
message-monitoring hooks 30-1
minimizing size 2-3
mouse and keyboard input 5-1
MQINFO data structure 2-3
owning 2-3
posting messages 2-1
posting messages to a window 2-12
purpose of QMSG data structure 2-2
reasons for examining 2-11
sending message to a window 2-12
serving all windows in thread 2-2
sizing 2-3
status 2-3
summary of functions 2-14

X-26 OS/2 Programming Guide-Volume II

message queues (continued)
summary of structures 2-15
terminating message loop 2-5
what happens when full 2-6

message to add an item to a I ist, code 2-12
message-monitoring hooks 30-1
messages

ALLOCRECORD 18-38
application event 1-8
application sending 1-8
application-defined 2-6
BKM_ 2-7
BKM_INSERTPAGE 19-4, 19-8
BKM_QUERYPAGEID 19-15
BKM_SETDIMENSIONS 19-3, 19-5
BKM_ SETNOTEBOOKCOLORS 19-20
BKM_SETPAGEWINDOWHWND 19-10
BKM_SETSTATUSLINETEXT 19-9
BKM_SETIABTEXT 19-18
BM_ 2-7
BM_CLICK 8-1, 8-5, 8-11
BM_QUERYCHECK 8-5, 8-11
BM_QUERYCHECKINDEX 8-5, 8-11
BM_QUERYHILITE 8-5, 8-11
BM_SETCHECK 8-5, 8-11
BM_SETDEFAULT 8-5, 8-11
BM_SETHILITE 8-5, 8-11
broadcasting 2-12
button control 8-11
button control notification 8-7
button control notification codes 8-7
button-down 5-7
button-up 5-7
CBM_ 2-7
CBM_HILITE 10-3
CBM_ISLISTSHOWING 10-3
CBM_SHOWLIST 10-3
CM_ 2-7
CM_ALLOCDETAILFIELDINFO 18-5, 18-38
CM_ALLOCRECORD 18-4
CM_ARRANGE 18-6, 18-38
CM_CLOSEEDIT 18-38
CM_COLLAPSETREE 18-38
CM_ERASERECORD 18-38
CM_EXPANDTREE 18-38
CM_FIL TER 18-38
CM_FREEDETAILFIELDINFO 18-38
CM_FREERECORD 18-38
CM_HORZSCROLLSPLITWINDOW 18-38
CM_INSERTDETAILFIELDINFO 18-38
CM_INSERTRECORD 18-17, 18-38
CM_INVALIDATEDETAILFIELDINFO 18-38
CM_INVALIDATERECORD 18-18, 18-38
CM_OPENEDIT 18-38
CM_PAINTBACKGROUND 18-38
CM_QUERYCNRINFO 18-30, 18-38
CM_QUERYDETAILFIELDINFO 18-38
CM_QUERYDRAGIMAGE 18-38

messages (continued)
CM_QUERYRECORD 18-38
CM_QUERYRECORDFROMRECT 18-38
CM_QUERYRECORDINFO 18-38
CM_QUERYRECORDMEPHASIS 18-38
CM_QUERYRECORDRECT 18-38
CM_QUERYVIEWPORTRECT 18-38
CM_REMOVEDETAILFIELDINFO 18-38
CM_REMOVERECORD 18-21, 18-38
CM_SCROLLWINDOW 18-38
CM_SEARCHSTRING 18-38
CM_SETCNRINFO 18-3, 18-17, 18-30, 18-38
CM_SETRECORDEMPHASIS 18-38
CM_SORTRECORD 18-38
creating and using 2-1
creating queue and loop 2-10
default processing 2-5
default window-procedure 4-6
description 2-1
DM_DRAGERROR 33-23
DM_DRAGFILECOMPLETE 33-23
DM_DRAGLEAVE 33-8, 33-9, 33-23
DM_DRAGOVER 33-5, 33-8, 33-23
DM_DRAGOVERNOTIFY 33-23
DM_DROP 33-6, 33-8, 33-23
DM_DROPHELP 33-6, 33-8, 33-23
DM_EMPHASIZET ARGET 33-23
DM_ENDCONVERSATION 33-18, 33-19, 33-23
DM_FILERENDERED 33-23
DM_PRINT 33-20, 33-23
DM_RENDER 33-18, 33-23
DM_RENDERCOMPLETE 33-18, 33-23
DM_RENDERFILE 33-23
DM_RENDERPREPARE 33-16, 33-23
DOR_DROP 33-5, 33-8
DOR_NEVERDROP 33-5, 33-9
DOR_NODROP 33-5, 33-8
DOR_NODROPOP 33-5, 33-9
drag transfer 33-19
drawing without WM_PAINT 28-8
dynamic data exchange 2-7
EM_ 2-7
EM_ADJUSTWINDOWPOS 12-3
EM_BUTTON1DBLCLK 12-3
EM_BUTTON1DOWN 12-3
EM_BUTTON1UP 12-3
EM_BUTTON2DOWN 12-3
EM_BUTTON3DOWN 12-3
EM_CLEAR 12-3, 12-5, 12-10
EM_COPY 12-3, 12-10
EM_CUT 12-3, 12-10
EM_PASTE 12-3, 12-6, 12-10
EM_QUERYCHANGED 12-3, 12-5, 12-10
EM_QUERYFIRSTCHAR 12-3, 12-10
EM_QUERYREADONLY 12-3, 12-10
EM_QUERYSEL 12-3, 12-5, 12-10
EM_READONLY 12-5
EM_SETFIRSTCHAR 12-3, 12-10

messages (continued)
EM_SETINSERTMODE 12-3, 12-5, 12-10
EM_SETREADONLY 12-3, 12-10
EM_SETSEL 12-3, 12-5, 12-10
EM_SETTEXTLIMIT 12-3, 12-10
ensuring cooperative use of the system 1-9
entry field 12-3
entry field control 12-10
FDM_ERROR 25-5
FDM_FIL TEA 25-5
FDM_VALIDATE 25-5
filtering 2-9
flags 5-4
FNTM_FACENAMECHANGED 24-4
FNTM_FILTERLIST 24-4
FNTM_POINTSIZECHANGED 24-4
FNTM_STYLECHANGED 24-4
FNTM_UPDATEPREVIEW 24-4
forwarding 2-1
from user input 1-8
generated by a button control to its owner 8-12
generated by a control window, table 7-5
generated by list box to owner 9-9
generating WM_SYSCOMMAND 11-3
handled by clipboard owner, table 31-7
handled by WC_LISTBOX 9-7
HSCROLLCLIPBOARD 31-12
identifying receiver 1-8
inserting into system message queue 30-5
keyboard 5-3
LM_ 2-7
LM_DELETEALL 9-7
LM_DELETEITEM 9-3, 9-7
LM_INSERTITEM 2-12, 9-3, 9-7
LM_QUERYITEMCOUNT 9-7
LM_QUERYITEMHANDLER 9-7
LM_QUERYITEMTEXT 9-7
LM_QUERYITEMTEXTLENGTH 9-7
LM_QUERYSELECTION 9-4, 9•7
LM_QUERYTOPINDEX 9-7
LM_SEARCHSTRING 9-7
LM_SELECTITEM 9-7
menu- and dialog-input 2-7
message identifier 2-1
message loops 2-3
message parameters 2-2
message parameter, description 2-2
MLM_ 2-7
MLM_CHARFROMLINE 13-11
MLM_CLEAR 13-3, 13-5, 13-11
MLM_COPY 13-5, 13-11
MLM_CUT 13-5, 13-11
MLM_DELETE 13-3, 13-11
MLM_DISABLEREFRESH 13-5, 13-11
MLM_ENABLEREFRESH 13-5, 13-11
MLM_EXPORT 13-5, 13-9, 13-11
MLM_FORMAT 13-11
MLM_IMPORT 13-5, 13-7, 13-11

Index X-27

messages (continued)
MLM_INSERT 13-3, 13-11
MLM_LINEFROMCHAR 13-11
MLM_PASTE 13-5, 13-11
MLM_QUERYBACKCOLOR 13-4
MLM_QUERYCHANGED 13-2, 13-11
MLM_QUERYFIRSTCHAR 13-2, 13-11
MLM_QUERYFONT 13-4, 13-11
MLM_ QUERYFORMATLINELENGTH 13-5, 13-11
MLM_QUERYFORMATRECT 13-4, 13-11
MLM_QUERYFORMATTEXTLENGTH 13-5, 13-11
MLM_QUERYIMPORTEXPORT 13-11
MLM_ QUERYLINECOUNT 13-11
MLM_QUERYLINELENGTH 13-11
MLM_QUERYREADONLY 13-4, 13-11
MLM_QUERYSEL 13-3, 13-11
MLM_QUERYSELTEXT 13-5, 13-11
MLM_QUERYTABSTOP 13-4, 13-11
MLM_QUERYTEXTCOLOR 13-4, 13-11
MLM_QUERYTEXTLENGTH 13-11
MLM_QUERYTEXTLIMIT 13-11
MLM_QUERYUNDO 13-3, 13-11
MLM_QUERYWRAP 13-11
MLM_RESETUNDO 13-3, 13-11
MLM_SEARCH 13-6, 13-10, 13-11
MLM_SETBACKCOLOR 13-4, 13-11
MLM_SETCHANGED 13-2, 13-11
MLM_SETFIRSTCHAR 13-2, 13-11
MLM_SETFONT 13-4, 13-11
MLM_SETFORMATRECT 13-4, 13-11
MLM_SETIMPORTEXPORT 13-5, 13-7, 13-11
MLM_SETREADONLY 13-4, 13-11
MLM_SETSEL 13-3, 13-11
MLM_SETTABSTOP 13-4, 13-11
MLM_SETTEXTCOLOR 13-4, 13-11
MLM_SETTEXTLIMIT 13-11
MLM_SETWRAP 13-4, 13-11
MLM_UNDO 13-3, 13-11
MM_ 2-7
MM_DELETEITEM 11-17
MM_DISMISSMENU 11-17
MM_ENDMENUMODE 11-17
MM_INSERTITEM 11-5, 11-17
MM_ISITEMVALID 11-17
MM_ITEMIDFROMPOSITION 11-17
MM_ITEMPOSITIONFROMID 11-17
MM_QUERYITEM 11-4, 11-17
MM_QUERYITEMATTR 11-17
MM_QUERYITEMCOUNT 11-17
MM_QUERYITEMRECT 11-17
MM_QUERYITEMTEXT 11-17
MM_QUERYITEMTEXTLENGTH 11-17
MM_QUERYSELITEMID 11-17
MM_REMOVEITEM 11-17
MM_SELECTITEM 11-17
MM_SETITEM 11-4, 11-17
MM_SETITEMATTR 11-17
MM_SETITEMHANDLE 11-17

X-28 OS/2 Programming Guide-Volume II

messages (continued)
MM_SETITEMTEXT 11-4
MM_STARTMENUMODE 11-17
mouse 5-6
mouse and keyboard-input 2-7
mouse and keyboard, handling 2-3
mouse/keyboard activation 5-11
operating system sending 1-8
PAINTCLIPBOARD 31-12
parameters 4-1
posting and sending 2-5
posting to a window 2-12
posting to all windows in system 2-6
posting to message queue 2-1
priorities 2-8
processed by title-bar control 17-2
processed by WC_BUTTON 8-5
purpose of 2-1
QUERYCONVERTPOS 9-9
QUERYWINDOWPARAMS 9-9
received by a button control, table 8-11
received by a control window, table 7-5
received by a list box 9-9
RENDERALLFMTS 31-12
RENDERFMT 31-12
responding to 33-8
responding to character 5-9
responding to WM_SETFOCUS 27-2
SBM_ 2-7
SBM_QUERYPOS 14-3, 14-10
SBM_QUERYRANGE 14-10
SBM_SETPOS 14-3, 14-10
SBM_SETSCROLLBAR 14-2, 14-10
SBM_SETTHUMBSIZE 14-10
scrol 1-bar notification 14-3
semaphore 2-6
semaphore, names of 2-8
sending DM_DRAGOVER to a target 33-8
sending to a window 2-12
sending to all windows in system 2-6
sending to another application 1-9
sent from a menu 11-17
sent from a scroll bar to its owner window 14-10
sent to a menu 11-17
sent to a scroll bar 14-10
SETITEMHANDLE 9-7
SETITEMHEIGHT 9-7
SETITEMTEXT 9-7
SETTOPINDEX 9-7
SIZECLIPBOARD 31-12
slider control 20-2
slider control summary 20-7
SLM_ 2-7
SLM_ADDDETENT 20-8
SLM_ QUERYDETENTPOS 20-8
SLM_QUERYSCALETEXT 20-8
SLM_ QUERYSLIDERINFO 20-5, 20-8
SLM_QUERYTICKPOS 20-8

messages (continued)
SLM_QUERYTICKSIZE 20-8
SLM_REMOVEDETENT 20-8
SLM_SETSCALETEXT 20-8
SLM_SETSLIDERINFO 20-5, 20-8
SLM_SETTICKSIZE 20-8
SM_ 2-7
SM_QUERYHANDLE 16-1, 16-3, 16-6
SM_SETHANDLE 16-1, 16-3, 16-6
sources of events 1-8
SPBM_OVERRIDESELLIMITS 15-4
SPBM_QUERYLIMITS 15-4
SPBM_QUERYVALUE 15-4
SPBM_SETARRAY 15-4
SPBM_ SETCURRENTV ALUE 15-4
SPBM_SETLIMITS 15-4
SPBM_SETMASTER 15-4
SPBM_SETTEXTLIMIT 15-4
SPBM_SPINDOWN 15-4
SPBM_SPINUP 15-4
spin button control 15-4
static-control 16-6
summary of clipboard 31-12
summary of dialog 23-12
summary of functions 2-14
summary of structures 2-15
summary of title-bar 17-4
system-defined 2-6
system-defined, description 2-7
TBM_ 2-7
TBM_QUERYHILITE 17-2
TBM_SETHILITE 17-2
transaction and response 32-7
types 2-6
update regions 2-3
used with combination boxes 10-3
using 1-8, 2-9
VM OUERYITEM 21-4, 21-8
VM_QUERYITEMATTR 21-4, 21-8
VM_QUERYMETRICS 21-8
VM_QUERYSELECTEDITEM 21-4
VM_QURYSELECTEDITEM 21-8
VM_SELECTITEM 21-5, 21-8
VM_SETITEM 21-8
VM_SETITEMATTR 21-8
VM_SETMETRICS 21-8
VSCROLLCLIPBOARD 31-12
window handles 2-1
window message 2-2
window ownership 1-2
window procedure, table 4-6
window-creation 1-11
window-creation and -management 2-7
window, general 2-7
WinPeekMsg 2-9
WM_ 2-7
WM_ACTIVATE 1-7, 1-22, 1-31, 5-2, 5-8, 5-11, 6-10,

6-15

messages (continued)
WM_ADJUSTWINDOWPOS 1-16, 1-31, 7-5, 9-7,

11-18, 16-3
WM_BEGINDRAG 33-2
WM_BUTTON1DBLCLK 4-6, 5-12, 6-10, 8-5
WM_BUTTON1DOWN 4-6, 5-7, 5-12, 6-10, 6-15, 8-5,

11-18, 17-2, 30-5
WM_BUTTON1UP 4-6, 5-12, 6-10, 6-15, 8-5, 30-5
WM_BUTTON2DBLCLK 4-6, 5-12
WM_BUTTON2DOWN 4-6, 5-12, 6-10, 6-15, 9-7,

11-18, 30-5
WM_BUTTON2UP 4-6, 5-12, 30-5
WM_BUTTON3DBLCLK 4-6, 5-12
WM_BUTTON3DOWN 4-6, 5-12, 6-10, 6-15, 11-18,

30-5
WM_BUTTON3UP 5-12, 30-5
WM_BUTTON!DBLCLK 17-2
WM_CALCFRAMERECT 1-31
WM_CALCVALIDRECTS 1-31, 4-6, 6-10, 6-15
WM_CHAR 4-6, 5-2, 5-6, 5-9, 5-12, 8-5, 9-7, 12-10,

20-8, 21-8, 23-13, 30-3, 30-5
WM_CLOSE 1-16, 1-31, 4-6, 6-10, 6-15
WM_COMMAND 5-6, 5-12, 7-5, 8-1, 8-7, 8-9, 8-10,

8-12, 10-3, 11-3, 11-18
WM_CONTROL 7-2, 8-1, 8-7, 8-9, 8-10, 8-12, 9-3,

9-9, 12-2, 12-10
WM_CONTROLPOINTER 4-6, 7-5, 8-12, 11-18
WM_CREATE 1-11, 1-31, 4-2, 4-3, 6-10, 6-15, 8-5,

9-7, 11-18, 12-3, 17-2
WM_DDE_ACK 32-3, 32-8, 33-21
WM_DDE_ADVISE 32-3, 32-7, 33-21
WM_DDE_DATA 32-3, 32-8, 33-21
WM_DDE_EXECUTE 32-7
WM_DDE_INITIATE 4-6, 32-3, 32-5, 32-7, 33-20
WM_DDE_INITIATEACK 4-6, 32-3, 32-6
WM_DDE_POKE 32-7
WM_DDE_REQUEST 32-7, 33-20
WM_DDE_TERMINATE 32-3, 33-21
WM_DDE_UNADVISE 32-3, 32-7, 33-21
WM_DESTROY 1-20, 1-31, 6-10, 6-15, 8-5, 9-7,

11-18, 12-3, 16-3, 17-2
WM_DESTROYCLIPBOARD 31-7, 31-12
WM_DRAWCLIPBOARD 31-6, 31-10, 31-12
WM_DRAWITEM 9-5, 9-9, 11-18
WM_ENABLE 1-24, 1-31, 6-10, 6-15, 8-5, 8-12, 9-7,

11-18, 12-3, 16-3
WM_ERASEBACKGROUND 6-10, 6-15
WM_FLASHWINDOW 6-15
WM_FOCUSCHAIN 6-15
WM_FOCUSCHANGE 2-13, 4-6; 5-11, 11-18
WM_FORMATFRAME 6-10, 6-15
WM_HELP 4-6, 7-5, 8-12, 11-3, 11-18, 30-6
WM_HITTEST 4-6, 5-6, 5-12, 6-10, 6-15, 16-3, 17-2
WM_HSCROLL 14-3, 14-10
WM_HSCROLLCLIPBOARD 31-7
WM_INITDLG 4-3, 9-3, 23-13
WM_INITMENU 11-18
WM_JOURNALNOTIFY 30-5

Index X-29

messages (continued)
WM_MATCHMNEMONIC 8-5, 8-12, 16-3, 16-6
WM_MEASUREITEM 9-5, 9-9, 11-18
WM_MENUEND 11-18
WM_MENUSELECT 4-6, 11-18
WM_MINMAXFRAME 6-10, 6-15
WM_MOUSEMOVE 2-3, 4-6, 5-6, 5-7, 5-12, 6-10,

6-15, 8-5, 9-7, 11-18, 12-3, 16-3, 30-5
WM_MOVE 1-16, 1-31
WM_NEXTMENU 6-15
WM_PAINT 1-26, 1-31, 2-3, 4-3, 4-6, 6-10, 6-15, 8-5,

9-7, 12-3, 16-3, 17-2, 28-7, 29-2
WM_PAINTCLIPBOARD 31-6, 31-7
WM_PRESPARAMCHANGED 18-38, 20-8, 21-8
WM_QUERYCONVERTPOS 4-6, 8-12, 11-18, 14-10
WM_QUERYDLGCODE 7-5, 8-5, 12-3, 16-3, 17-2
WM_QUERYFOCUSCHAIN 4-6, 5-11, 11-18
WM_QUERYFRAMECTLCOUNT 4-6, 6-15
WM_QUERYFRAMEINFO 6-15
WM_QUERYICON 6-15
WM_QUERYTRACKINFO 6-10, 6-15
WM_QUERYWINDOWPARAMS 1-31, 4-6, 8-5, 8-12,

12-3, 12-10, 14-10, 16-3, 16-6, 17-2, 20-8, 21-8
WM_QUIT 2-5, 2-12
WM_RENDERALLFMTS 31-5, 31-7
WM_RENDERFMT 31-5, 31-7
WM_SCROLL 9-7
WM_SEM1 2-8
WM_SEM2 2-8
WM_SEM3 2-8
WM_SEM4 2-8
WM_SETACCELTABLE 6-15
WM_SETBORDERSIZE 6-15
WM_SETFOCUS 1-8, 5-2, 5-11, 8-5, 9-7, 11-18, 12-3,

16-1, 16-3
WM_SETICON 6-15
WM_SETSELECTION 5-2, 5-11, 12-3
WM_SETWINDOWPARAMS 1-31, 8-5, 8-12, 12-3,

12-10, 14-10, 16-3, 16-6, 17-2, 20-8, 21-8
WM_SHOW 1-16, 1-31, 6-10, 6-15
WM_SIZE 1-16, 1-31, 6-10, 8-10, 14-3, 21-6
WM_SIZECLIPBOARD 6-15, 31-7
WM_SUBSTITUTESTRING 23-13
WM_SYSCOMMAND 1-16, 5-6, 6-10, 6-15, 7-5, 8-12,

11-18
WM_SYSVALUECHANGED 2-12
WM_TIMER 4-6, 9-7, 12-3, 34-1, 34-3
WM_TRACKFRAME 6-15
WM_TRANSLATEACCEL 4-6, 6-15
WM_UPDATEFRAME 6-10, 6-15
WM_USER 4-2
WM_VSCROLL 14-3, 14-10
WM_ VSCROLLCLIPBOARD 31-7
WM_WINDOWPOSCHANGED 1-31, 6-15, 17-2
WS_CALCVALIDRECTS 1-27
WS_DESTROY 1-4

messages and message queues, description 2-1

X-30 OS/2 Programming Guide-Volume II

metafile format, clipboard 31-4
methods of selecting list items 9-3
micro presentation space

advantages 28-12
creating 28-12
description 28-9
example 28-12
modifying the visible region 28-13

minimize and maximize buttons, description 6-2
minimized window

description 1-18
icon 1-18
restoring size and position 1-18
WS_MINIMIZED 1-13, 1-18

minimizing
a frame window 1-28
message queue size 2-3
window 1-18

MINIRECORDCORE 18-4, 18-36
MIS_BITMAP 11-4
MIS_BUTTONSEPARATOR 11-4
MIS_HELP 11-4
MIS_TEXT 11-4
MLE

See multiple-line entry (MLE) fields
MLECTLDATA structure 13-11
MLEMARGSTRUCT structure 13-11
M LE OVERFLOW structure 13-11
MLESEARCHDATA structure 13-11
MLE_SEARCHDATA structure 13-6, 13-10
MLFIE_CFTEXT 13-5
MLFIE_NOTRANS · 13-5
MLFIE_WINFMT 13-5
MLFSEARCH_CASESENSITIVE flag 13-10
MLFSEARCH_CHANGEALL 13-10
MLFSEARCH_CHANGEALL option 13-6
MLFSEARCH_SELECTMATCH 13-10
MLFSEARCH_SELECTMATCH option 13-6
MLM_ messages 2-7
MLM_CHARFROMLINE 13-11
MLM_CLEAR 13-3, 13-5, 13-11
MLM_COPY 13-5, 13-11
MLM_CUT 13-5, 13-11
MLM_DELETE 13-3, 13-11
MLM_DISABLEREFRESH 13-5, 13-11
MLM_ENABLEREFRESH 13-5, 13-11
MLM_EXPORT 13-5, 13-9, 13-11
MLM_FORMAT 13-11
MLM_IMPORT 13-5, 13-7, 13-11
MLM_INSERT 13-3, 13-11
MLM_LINEFROMCHAR 13-11
MLM_MLM_QUERYFORMATTEXTLENGTH 13-11
MLM_PASTE 13-5, 13-11
MLM_QUERYBACKCOLOR 13-4, 13-11
MLM_QUERYCHANGED 13-2, 13-11
MLM_QUERYFIRSTCHAR 13-2, 13-11
MLM_QUERYFONT 13-4, 13-11

MLM_QUERYFORMATLINELENGTH 13-5, 13-11
MLM_QUERYFORMATRECT 13-4, 13-11
MLM_QUERYFORMATTEXTLENGTH 13-5
MLM_QUERYIMPORTEXPORT 13-11
MLM_QUERYLINECOUNT 13-11
MLM_QUERYLINELENGTH 13-11
MLM_QUERYREADONLY 13-4, 13-11
MLM_QUERYSEL 13-3, 13-11
MLM_QUERYSELTEXT 13-5, 13-11
MLM_QUERYTABSTOP 13-4, 13-11
MLM_QUERYTEXTCOLOR 13-4, 13-11
MLM_QUERYTEXTLENGTH 13-11
MLM_QUERYTEXTLIMIT 13-11
MLM_QUERYUNDO 13-3, 13-11
MLM_QUERYWRAP 13-11
MLM_RESETUNDO 13-3, 13-11
MLM_SEARCH 13-6, 13-10, 13-11
MLM_SETBACKCOLOR 13-4, 13-11
MLM_SETCHANGED 13-2, 13-11
MLM_SETFIRSTCHAR 13-2, 13-11
M LM _ SETFONT 13-4, 13-11
MLM_SETFORMATRECT 13-4, 13-11
MLM_SETIMPORTEXPORT 13-5, 13-7, 13-11
M LM _ SETREADONL Y 13-4, 13-11
MLM_SETSEL 13-3, 13-11
MLM_SETTABSTOP 13-4, 13-11
MLM_SETTEXTCOLOR 13-4, 13-11
MLM_SETTEXTLIMIT 13-11
M LM _ SETWRAP 13-4, 13-11
MLM_UNDO 13-3, 13-11
MLN_CHANGE 13-2
MLN_CLPBDFAIL 13:-2
MLN_HSCROLL 13-2
MLN_KILLFOCUS 13-2
MLN_MARGIN 13-2
MLN_MEMERROR 13-2
MLN_OVERFLOW 13-2
MLN_PIXHORZOVERFLOW 13-2
MLN_PIXVERTOVERFLOW 13-2
MLN_SEARCHPAUSE 13-2
MLN_SETFOCUS 13-2
MLN_TEXTOVERFLOW 13-2
MLN_UNDOOVERFLOW 13-2
MLN_VSCROLL 13-2
MLS_BORDER 13-1, 13-7
MLS_HSCROLL 13-1
MLS_IGNORETAB 13-1
MLS_READONL Y 13-1, 13-4
MLS_VSCROLL 13-1
MLS_WORDWRAP 13-1, 13-4
MM_ messages 2-7
MM_DELETEITEM 11-17
MM_DISMISSMENU 11-17
MM_ENDMENUMODE 11-17
MM_INSERTITEM 11-17
MM_ISITEMVALID 11-17
MM_ITEMIDFROMPOSITION 11-17

MM_ITEMPOSITIONFROMID 11-17
MM_QUERYITEM 11-4, 11-17
MM_QUERYITEMATTR 11-17
MM_QUERYITEMCOUNT 11-17
MM_QUERYITEMRECT 11-17
MM_QUERYITEMTEXT 11-17
MM_ QUERYITEMTEXTLENGTH 11-17
MM_QUERYSELITEMID 11-17
MM_REMOVEITEM 11-17
MM_SELECTITEM 11-17
MM_SETITEM 11-4, 11-17
MM_SETITEMATTR 11-17
MM_SETITEMHANDLE 11-17
MM_SETITEMTEXT 11-4
MM_STARTMENUMODE 11-17
mnemonic keystroke, using 11-6
mnemonic selection 21-6
mnemonics, menu 11-6
modal dialog windows 23-1
modeless dialog windows 23-1
modifying

accelerator table 22-4
message loop 2-5
visible region of micro presentation space 28-13

monitoring pointer, container window 33-8
mouse and keyboard-input messages 2-7
mouse input, capturing 5-7
mouse messages 5-6
mouse movement 5-7
mouse pointers

and icons 26-1
changing 26-6
description 26-1
hot spot 26-1
predefined 26-2
predefined, table 26-2
Presentation Manager 26-3
SPTR_APPICCON 26-2
SPTR_ARROW 26-2
SPTR_FILE 26-3
SPTR_FOLDER 26-3
SPTR_ICONERROR 26-2
SPTR_ICONINFORMATION 26-2
SPTR_ICONQUESTION 26-2
SPTR_ICONWARNING 26-2
SPTR_ILLEGAL 26-3
SPTR_MOVE 26-2
SPTR_MUL TFILE 26-3
SPTR_PROGRAM 26-3
SPTR _SIZE 26-2
SPTR_SIZENESW 26-2
SPTR_SIZENS 26-2
SPTR_SIZENWSE 26-2
SPTR_SIZEWE 26-2
SPTR_ TEXT 26-2
SPTR_WAIT 26-2

move operation, default for container window 33-10

Index X-31

moving
a window 1-25
multiple windows 1-26
on or off contained object 33-8

MPARAM data type 4-1
MPFROMSHORT macro, using 2-13
mp1 parameter value 5-4
mp1 ,mp2, window-procedure argument 4-2
mp2 parameter value 5-4
MQINFO structure 2-15
MRESUL T data type 4-2
MsgFilterHook 30-4
MSGF _DIALOG BOX 30-4
MSGF _MAINLOOP 30-4
MSGF _MESSAGEBOX 30-4
MSGF _TRACK 30-4
msg, window-procedure argument 4-2
multiple-line entry (MLE) field controls

creating 13-6
cut, copy, and paste operations 13-5
description 13-1
importing and exporting MLE text 13-7
MLM_ messages 2-7
notification codes 13-1
purpose 13-1
search and replace operations 13-6
searching text 13-10
summary of messages generated by 13-11
summary of messages received by 13-11
summary of structures 13-11
text import and export operations 13-5
using 13-6

multiple-line entry (MLE) fields
MLS_BORDER 13-1
MLS_HSCROLL 13-1
MLS_IGNORETAB 13-1
MLS_READONLY 13-1
MLS_VSCROLL 13-1
notification codes 13-2
styles 13-1
text editing 13-3
text formatting 13-4

MYSOURCE.C 33-20
MYSOURCE.H 33-20

N
name at target 33-5
name of target object, making known to system 33-2
name view, description 18-7
naming conventions, direct manipulation 33-22
native

copy action 33-22
rendering 33-18
rendering by the target 33-18
rendering mechanism and format 33-2, 33-4, 33-14

navigating
value set items 21-5

X-32 OS/2 Programming Guide-Volume II

navigation techniques 21-6
non-dialog window, using control window in 7-3
non-flowed name view, description 18-8
non-flowed text view with container title 18-33
non-native mechanism 33-19
nonstandard frame windows 6-10
normal presentation space

advantages 28-10
creating 28-11
description 28-9

notational conveniences 33-3
notebook

appearance 19-2
associating window handle with inserted

page 19-10
back pages 19-3
binding placement 19-4
changing color of major tab background 19-20
changing color of major tab text 19-21
changing color of minor tab background 19-21
changing color of minor tab text 19-21
changing color of notebook page background 19-21
changing color of outline 19-20
changing color of selection cursor 19-20
changing color of window background 19-20
changing page button size 19-3
creating 19-1
customizing 19-1
defining sections 19-8
deleting pages 19-15
displaying text on status line 19-9
example with tab scroll buttons displayed 19-17
importance of back pages 19-4
inserting pages 19-4, 19-8
major tab placement 19-4
minor tab placement 19-4
mnemonic selection of pages 19-18
page buttons 19-3
page buttons, unavailable-state emphasis 19-3
sample code for changing color of major tab

background 19-21
sample code for changing style 19-7
sample code for inserting page 19-9
selecting a page with Enter or spacebar 19-18
selecting pages for display 19-3
shape of tabs 19-5
specifying major tabs 19-4
specifying minor tabs 19-4
status line 19-3, 19-9
understanding default style 19-2
using BKM_QUERYPAGEID 19-15
using pointing device to display pages 19-16
window style settings table 19-6

notebook controls
advanced topics 19-21
BKM_ messages 2-7
BKM_INSERTPAGE 19-8
BKS_MAJORTABBOTTOM 19-6

notebook controls (continued)
BKS_MAJORTABRIGHT 19-4
BKS_STATUSTEXTLEFT 19-3
changing colors using

BKM_SETNOTEBOOKCOLORS 19-20
deleting pages 19-15
description 19-1
dynamic resizing and scrolling 19-21
enhancing performance 19-21
graphical user interface (GUI), support for 19-15
invalidating application window 19-10
notebook. navigation techniques 19-16
notification messages table 19-23
organizing data 19-1
purpose 19-1
sample code for changing color of notebook

outline 19-20
structures table 19-23
styles 19-5
summary 19-23
tailoring colors 19-19
using page buttons 19-16
using tab scroll buttons 19-17
window messages table 19-23

notification codes
BN_CLICKED 8-7
BN_DBLCLICKED 8-7
BN_PAINT 8-3, 8-7
button control messages 8-7
CN_BEGINEDIT 18-37
CN_COLLAPSETREE 18-37
CN_CONTEXTMENU 18-37
CN_DRAGAFTER 18-37
CN_DRAGLEAVE 18-37
CN_DRAGOVER 18-37
CN_DROP 18-37
CN_DROPHELP 18-37
CN_EMPHASIS 18-37
CN_ENDEDIT 18-37
CN_ENTER 18-37
CN_EXPANDTREE 18-37
CN_HELP 18-37
CN_INITDRAG 18-37
CN_KILLFOCUS 18-37
CN_QUERYDELTA 18-37
CN_REALLOCPSZ 18-37
CN_SCROLL 18-37
CN_ SETFOCUS 18-37
EN_CHANGE 12-2
EN_INSERTMODETOGGLE 12-2
EN_KILLFOUS 12-2
EN_MEMERROR 12-2
EN_OVERFLOW 12-2
EN_SCROLL 12-2
EN_SETFOCUS 12-2
SLN_CHANGE 20-7
SLN_KILLFOCUS 20-7
SLN_SETFOCUS 20-7

notification codes (continued)
SLN_SLIDERTRACK 20-7
SPBN_CHANGE 15-4
SPBN_DOWNARROW 15-4
SPBN_ENDSPIN 15-4
SPBN_KILLFOCUS 15-4
SPBN_SETFOCUS 15-4
SPBN_UPARROW 15-4
VN_DRAGLEAVE 21-7
VN_DRAGOVER 21-7
VN_DROP 21-7
VN_DROPHELP 21-7
VN_ENTER 21-7
VN_HELP 21-7
VN_INITDRAG 21-7
VN_KILLFOCUS 21-7
VN_SELECT 21-7
VN_SETFOCUS 21-7

notification codes, combination box 10-3
notification codes, MLE 13-1
notification code, BKN_PAGESELECTED 19-10
notification messages

WM_CONTROL 15-4, 18-38, 20-8, 21-8
WM_CONTROLPOINTER 18-38, 20-8, 21-8
WM_DRAWITEM 18-38, 20-8, 21-8

notification messages, keys
DOWN 14-5
LEFT 14-5
PGDN 14-5
PGUP 14-5
RIGHT 14-5
UP 14-5

notification messages, scroll-bar 14-3
Notification of Entry-Field Events table 12-2
NOTIFYDELTA 18-36
NOTIFYRECORDEMPHASIS 18-36
NOTIFYRECORDENTER 18-36
NOTIFYSCROLL 18-36

0
object window

changing parent window 1-6
creating 1-5, 1-22
description 1-5
displaying 1-6
relationship rules 1-6
sending and receiving messages 1-5
sharing databases 1-5
WS_ VISIBLE style 1-6

obtaining
device context 28-11
device context with DevOpenDC 28-13
identifier of object window 1-22

Open dialog 25-1
operation emphasis, direct manipulation 33-10
operations

cut and copy 31-3

Index X-33

operations (continued)
cut, copy, and paste 13-5
delayed rendering 31-5
MLE text import and export 13-5
paste 31-3
search and replace 13-6

operations on clipboard data 31-2
operation, frame window 6-9
optimizing container memory usage 18-35
ordered pairs 33-4
ordered-pair notation 33-4
os2sys.ini 36-3
os2.ini 3-5, 36-3
OWNERBACKGROUND 18-36
ownerdraw, description 7-3
OWNERITEM structure 9-5, 9-8, 11-17
owner, clipboard 31-6
owning windows

p

communicating using messages 1-2
defining rules 1-2
description 1-2
finding 1-23
independent of relationships 1-5
purpose of 1-5
retrieving handles 1-24
rules 1-2
setting 1-24

page buttons 19-17
page buttons, notebook 19-3
painting

control windows 7-2
description, window 28-1
icons on the screen 26-1
strategies 28-6
tabs 19-22

painting a window 1-10
painting and drawing windows 28-1
painting tabs, notebook control 19-22
papszlDriveList field 25-4
papszlType field 25-3
parameter values

mp1 5-4
mp2 5-4
MSGF _DIALOGBOX 30-4
MSGF _MESSAGEBOX 30-4
MSGF _TRACK 30-4

parameters
cb 30-8
cbCopy 13-7
ClassName 18-3
ClassName, notebook control 19-1
creating and interpreting message 2-13
fActive 5-2
fSkip 30-6
hwnd 34-3

X-34 OS/2 Programming Guide-Volume II

parameters (continued)
ich 30-8
mapping attributes 19-20
message 2-2, 4-1
pichEnd 30-8
pichNext 30-8
pichStart 30-8
plOffset 13-7
pQmsg 30-6
pszClientClass 35-1
pszText 30-8
ulData 31-3, 31-5
usCodePage 30-8
usHit 5-6
using WC_LISTBOX 9-2

parent items, description 18-10
parent window

changing 1-4, 1-22
description 1-3, 1-10
exceptions 1-3
finding 1-23
positioning child windows 1-3
retrieving handles 1-24
setting 1-3
using WinSetParent 1-22
WS_PARENTCLIP 1-13

parent-child relationships
appearance of windows 1-2
descendant windows 1-4
description 1-2
result of window destruction 1-2
rules 1-2

passing
bit map or metafile to clipboard 31-2
color options 24-2
display options 24-2
initial position of dialog 25-2
I ist of extended attributes 25-3
name of extended-attribute filter 25-3
the family name 24-2
window messages 2-2

paste operations 31-3
performance considerations 33-15
performance considerations, direct

manipulation 33-22
pfnDlgProc field 24-2, 25-2
PGDN key 14-5
PGUP key 14-5
pichEnd parameter 30-8
pichNext parameter 30-8
pichStart 30-8
plOffset parameter 13-7
PM_NOREMOVE 30-2
PM_REMOVE 30-2
pointer movement 33-5
POINTERINFO 26-7
pointing device support, notebook control 19-16

POINTL structure 29-1, 29-5
poke transaction type 32-7
pop-up menu, description 11-2
positioning

container items 18-28
menus 11-2
top-level window 1-3
windows 1-15

post-drop conversation 33-6
posting

message to menu owner 11-1
messages 2-5
messages to a window 2-12
messages to all windows in system 2-6
WM_HELP messages 11-4

post, definition 2-1
pQmsg parameter 30-2, 30-6
predefined mouse pointers 26-2
preparing

for a drag '33-2
Presentation Manager interface

clearing system-modal window 1-9
displaying application page window 19-10
frame windows 6-1
initializing application windows 1-9
introduction to windows 1-1
main() function for a simple application 1-20
mouse pointers 26-3
window activation 5-1

presentation spaces
associating with device context, code 28-13
cached-micro 28-10
clip region and visible region 28-4
description 28-1
drawing without WM_PAiNT 28-8
micro 28-9
normal 28-9
releasing 28-12
summary of functions 28-15
types of 28-9
using cached-micro 28-13

presentation space, container window 33-9
preventing target rendering 33-19
preview area, font dialog 24-3
PrfCloseProfile 36-2, 36-4
PrfOpenProfile 36-2, 36-4
PrfQueryProfile 36-4
PrfQueryProfileData 36-2, 36-4
PrfQueryProfilelnt 36-4
PrfQueryProfileSize 36-2, 36-4
PrfQueryProfileString 36-3, 36-4
PrfReset 36-4
PrfWriteProfileData 36-4
PrfWriteProfileString 36-3, 36-4
Print rendering mechanism 33-20
printer fonts 24-2
private atom tables 35-1

private clipboard-data formats 31-4
private window classes, creating 1-13
private window classes, description 3-1, 6-2
procedure

creating dialog 23-9
processing

WM_ TIMER, sample code 34-3
Profile Manager, using 36-1
protecting global data and shared resources 3-3
providing

customized images 33-9
emphasis 18-25
pointers, container records 18-17
target emphasis 33-9
visible feedback 33-9

providi-ng visible feedback 33-8
pszClientClass 35-1
pszFamilyname 24-2
pszlType field 25-3, 25-4
pszOKButton field 25-2
pszPreview 24-2
pszPtSizelist 24-2
pszText parameter 30-8
pszTitle field 24-2, 25-2
public window class availability 3-3
public window classes, creating 1-11
public window classes, description 3-3
push buttons 8-1
push buttons in a dialog box, example 8-1
push buttons, uses of 8-1
push button, description 8-1
putting data on the clipboard 31-8
PU_HCONSTRAIN 11-2
PU_MOUSEBUTTON 11-3
PU _POSITIONONITEM 11-2
PU_SELECTITEM 11-3
PU_ VCONSTRAIN 11-2

Q
QMSG data structure, description and uses 2-2
QMSG structure 2-15, 5-7, 30-2, 30-10
querying

for current selection 9-4
menu-item attributes 11-12
window data 1-22

QUERYRECFROMRECT 18-36
queue message, description 2-2
QWS_ constant, query window data structure 1-22

R
radio buttons 8-1
radio buttons in a dialog box, example 8-2
radio buttons, uses of 8-2
radio button, description 8-2
range and position, scroll-bar 14-2

Index X-35

reading
setting in initialization file 36-2
setting in initialization file, code 36-2
settings 36-2

receiving
WM_HELP, menu 30-7

RECORDCORE 18-4, 18-36
RECORDINSERT 18-36
RECORDINSERT data structure 18-17
rectangles, inclusive-exclusive 29-2
rectangles, inclusive-inclusive 29-2
rectangles, types of 29-1
RECTL structure 28-7, 29-1, 29-5
redefining keys 33-6
redrawing windows

invalidating entire windows 1-26
invalidating parts 1-26
sending WM_CALCVALIDRECTS 1-27
using CS_SIZEREDRAW 1-27
using WM_PAINT 1-26

refreshing values in the directory list box 25-5
registering

private window classes 3-1, 3-6
private window classes, required information 3-1
window classes 3-1 ·

registering a window class name, code 3-6
relationships

window
owning a window 1-2
parent-child 1-2

releasing
clipboard 31-3
drag button to cancel direct manipulation

operation 33-6
hook functions 30-9
presentation space 28-12
resources 33-18

releasing the storage, direct manipulation 33-6
removing

container records 18-21
target emphasis 33-8

rendering
delayed 31-5
format, direct manipulation 33-4
individual formats 31-5
mechanism 33-15
mechanism and format 33-3, 33-14
mechanism and format, making known to

system 33-2
native, allowed 33-18
operation 33-18
preventing target 33-19
request for 33-18

repeat-count events 5-5
replacing
request transaction type 32-7
requesting

render for a object 33-18

X-36 OS/2 Programming Guide-Volume II

requesting (continued)
source to render 33-19

resizing, dynamic 21-6
resources

accelerator-table 22-2
accessing window 1-18
creating accelerator-table 22-3
dialog 23-4
flags requiring 6-4
frame window 6-4
identifiers 1-17
RT_ACCELTABLE 1-17
RT_BITMAP 1-17
RT_DIALOG 1-17
RT_FONT 1-17
RT_FONTDIR 1-17
RT_MENU 1-17
RT_MESSAGE 1-17
RT_POINTER 1-17
RT_RCDATA 1-17
RT_STRING 1-17
styles requiring 6-4

responding
to a character message, code 5-9
to user menu choice 11-11

response to DM_DRAGOVER message 33-8
restoring

a frame window 1-5, 1-28
normal input to windows 1-9
SWP _RESTORE flag 1-18

retained graphics, support 28-10
retrieving

anchor point and cursor position 13-3
button-window handle 8-9
data for value set items 21-4
data from initialization files 36-2
data from the clipboard 31-9
data represented by slider 20-5
entry field text 12-6
frame handle 6-15
message queue current status 2-3
names of initialization files 36-3
original window procedure 3-5
scroll-bar handles 14-8
text from entry field 12-8
window handles 1-24
window size 1-15

rich text format, clipboard 31-4
RIGHT key 14-5
RT _ACCEL TABLE 1-17
RT_BITMAP 1-17
RT_DIALOG 1-17
RT_FONT 1-17
RT_FONTDIR 1-17
RT_MENU 1-17
RT_MESSAGE 1-17
RT_POINTER 1-17

RT_RCDATA 1-17
RT_STRING 1-17

s
sample code

adding an item to a list message 2-12
allocating memory for container records 18-4
assigning timer identifier 34-3
associating device context with presentation

space 28-13
associating window procedure with window

class 4-4
broadcasting a message 2-12
calculating dimensions of rectangles 29-2
changing a container view 18-17
check the queue for WM_ CHAR messages 2-11
checking for key-up or key-down event 5-9
constructing message result 2-13
creating a container 18-3
creating a spin button 15-2
creating a standard window 6-13
creating a typical main window 6-12
creating an accelerator-table resource 22-3
creating an MLE field control using

WinCreateWindow 13-6
creating an MLE field using an MLE statement 13-6
creating and associating an application page

window 19-10
creating entry field in client window 12-7
creating entry field with text limit 12-7
creating frame window with

FCF _ACCELTABLE 22-4
creating initialization file 36-2
creating message queue and message loop 2-10
creating setting in initialization file 36-2
defining dialog-window buttons 8-9
defining entry field in dialog window 12-6
defining list box in dialog template 9-3
determining active status of frame window 5-8
determining keyboard focus 2-13
drawing window in minimized and normal

states 28-8
drawing with WinFillRect 29-3
exporting text from an MLE field, then storing 13-9
extracting a scan code 5-11
filling an entire window, WM_PAINT 29-2
flagging text change in entry field 12-8
for creating a value set 21-2
for retrieving data for value set items 21-4
frame and client window using

WinCreateWindow 6-13
handling virtual-key codes 5-10
how servers respond to WM_DDE_INITIATE 32-6
how to add message string to system atom

table 35-5
how to register the window class name 3-6
inserting items in a list 9-4

sample code (continued)
installing hook function in thread message

queue 30-9
list box selection processes 9-6
Loading and Setting Up Resources for a Frame

Window 6-5
message loop processing messages with NULL

handles 2-11
messages filtering 30-4
obtaining a device context 28-13
OWNERITEM structure 9-5
post the WM_QUIT message 2-12
processing WM_TIMER messages 34-3
putting data on the clipboard 31-8
reading setting in initialization file 36-2
reading text from a file to a buffer, then

importing 13-7
registering a custom format 35-5
resource definition 7-4
responding to character message 5-9
retrieving data from the clipboard 31-9
retrieving handle of title-bar control 6-15
retrieving names of initialization files 36-3
sending a message to a window 2-12
sizing the list-box to client window 9-2
starting two timers 34-2, 34-3
stopping a window timer 34-3
structure of a typical window procedure 4-3
subclassing a window 4-5
syntax for codepage-changed hook function 30-9
syntax for find-word hook function 30-8
syntax for help-hook function 30-7
syntax for input-hook function 30-2
syntax for journal-playback hook function 30-5
syntax for journal-record hook function 30-4
syntax for send-message hook function 30-3
syntax of message-tilter hook 30-3
using buttons in a client window 8-10
using cached-micro presentation spaces 28-14
using list-box ID in dialog template 9-3
viewing data on the clipboard 31-10

sample value set 21-1
SaveAs dialog 25-1
SBCDATA 14-10
SBCDATA structure 14-2
SBMP _BTNCORNERS 26-4
SBMP _ CHECKBOXES 26-4
SBMP CHILDSYSMENU 26-4
SBMP =CHILDSYSMENUDEP 26-4
SBMP _COMBODOWN 26-4
SBMP _MAXBUTTON 26-4
SBMP _MENUA TT ACHED 26-4
SBMP _MENUCHECK 26-4
SBMP _MINBUTTON 26-4
SBMP _OLD_CHILDSYSMENU 26-4
SBMP _OLD _MAXBUTTON 26-4
SBMP _OLD_MINBUTTON 26-4

Index X-37

SBMP _OLD _RESTOREBUTTON 26-4
SBMP _OLD_SBDNARROW 26-4
SBMP _OLD_SBLFARROW 26-4
SBMP _OLD_SBRGARROW 26-4
SBMP _OLD_SBUPARROW 26-4
SBMP _PROGRAM 26-4
SBMP _RESTOREBUTTON 26-4
SBMP _RESTOREBUTTONDEP 26-4
SBMP _SBDNARROW 26-4
SBMP _SBDNARROWDEP 26-4
SBMP _SBDNARROWDIS 26-4
SBMP _SBLFARROW 26-4
SBMP _SBLFARROWDEP 26-4
SBMP _SBLFARROWDIS 26-4
SBMP _SBRGARROW 26-4
SBMP _SBRGARROWDEP 26-4
SBMP _SBRGARROWDIS 26-4
SBMP _SBUPARROW 26-4
SBMP _SBUPARROWDIS 26-4
SBMP _SIZEBOX 26-4
SBMP _SYSMENU 26-4
SBMP _ TREEMINUS 26-4
SBMP _TREEPLUS 26-4
SBM_ messages 2-7
SBM_QUERYPOS 14-3, 14-10
SBM_QUERYRANGE 14-10

SBM_SETPOS 14-10
SBM_SETPOS 14-3
SBM_SETSCROLLBAR 14-2, 14-10
SBM_SETTHUMBSIZE 14-10
SBS_AUTOTRACK 14-2
SBS_HORZ 14-2
SBS_THUMBSIZE 14-2
SBS_VERT 14-2
SB_ENDSCROLL 14-4
SB_LINEDOWN 14-4
SB_LINELEFT 14-4
SB_LINERIGHT 14-4
SB_LINEUP 14-4
SB_PAGEDOWN 14-4
SB_PAGELEFT 14-4
SB_PAGERIGHT 14-4
SB_PAGEUP 14-4
SB_SLIDERPOSITION 14-4
SB_SLIDERTRACK 14-4
scan codes 5-6
screen position, description 1-10
scroll bar

and the keyboard 14-5
creation 14-1
determining range, example 14-2
example 14-1
notification messages 14-3
range and position 14-2
range and position, using 14-9
retrieving handles 14-8
standard window and command codes 14-3
styles 14-2

X-38 OS/2 Programming Guide-Volume II

scroll bar (continued)
SYSCLR_SCROLLBAR 14-5
using 14-6

scrol 1-bar controls
description 14-1
SBM_ messages 2-7
SBS_AUTOTRACK 14-2
SBS_HORZ 14-2
SBS_THUMBSIZE 14-2
SBS_VERT 14-2

scrolling
contents of a window 29-3
dynamic 18-23
in container control 18-22
workspace areas 18-28

SC_CLOSE 1-16
SC_MAXIMIZE 1-16
SC_MINIMIZE 1-16
SC_MOVE 1-16
SC_RESTORE 1-16
SC_SIZE 1-16
SC_, system commands 1-16
search and replace.operations. 13-6
searching

MLE text 13-10
SEARCHSTRING 18-36
selected state, radio button 8-2
selected-state emphasis 18-25, 21-5
selecting

button 8-1, 8-7
container items 18-23
drive 25-4
emphasis styles 24-3
family name 24-2
font size 24-3
font style 24-3
initial drive and directory 25-3
items in a list 9-3
list items, methods 9-3
multiple items at a time 9-4
pages for display 19-3
pages using the keyboard 19-18
pages with tabs 19-18
slider values 20-5
spin button values 15-1
tabs in a notebook 19-16
value set control 21-1
value set items 21-5
values using detents 20-6
values using slider arm 20-6
values using slider buttons 20-6
values using slider shaft 20-6

selection cursor 21-5
selection mechanisms, container control 18-24
selection techniques 21-6
selection techniques, slider value 20-6
selection types 21-5

selection, definition, MLE 13-3
semaphore messages 2-6
semaphore messages, description 2-8
send-message hooks 30-3
sending

message to a window 2-12
messages 2-1, 2-5
messages to all windows in system 2-6
messages to another application 1-9
messages to the application 1-8
messages to windows 1-8
operating system messages 1-8

set window position structure 1-16
setting

active window 5-1
colors and fonts 13-4
container control focus 18-22
cursor position 13-3
decibel value in a slider, example 20-1
FDS_* 25-2
flags; font dialog 24-2
keyboard focus 5-2
line length, MLE field 13-4
menu-item attributes 11-12
notebook default 19-1
owner window 1-24
position and size of a cursor 27-1
reading and writing 36-2
size of a window 1-26

shared memory
allocating 32-6
clipboard 31-2
freeing 33-19
in ODE 32-1
issuing transactions 32-6
object 32-6
rules for access 31-5

sharing
memory, clipboard 31-2
memory, DOE object 32-6

Shift key, using 33-10
SHORT1FROMMP 4-1, 5-5
SHORT1FROMMP macro 2-13
SHORT2FROMMP 5-5
SHORT2FROMMP macro 2-13
showing

a window 1-28
sibling window

clipping 1-4
description 1-3, 1-10
parentage 1-3
top-level 1-3
WS_CLIPSIBLINGS 1-13

single selection, notebook control 19-16
single selection, slider 20-5
single selection, value set item 21-5
single-line entry (SLE) fields

spin field 15-1

single-line entry (SLE) fields (continued)
using in file dialogs 25-3

single-object move, direct manipulation 33-17
single-selection directory list box 25-4
sizing

a window 1-25
multiple windows 1-26

sizing border, description 6-2
SLDCDATA 20-7
SLE

See single-line entry (SLE) fields
slider

and the CUA user interface 20-1
arm 20-6
buttons 20-6
control basics 20-1
control summary 20-7
controls 20-1
creating 20-2
customizing 20-1
detents 20-6
graphical user interface support for 20-5
home position 20-5
initial value 20-5
keyboard support 20-6
navigation techniques 20-6
pointing device support 20-6
retrieving represented data 20-5
sample code for creating 20-2
selecting values 20-5
selection techniques 20-6
setting a decibel value 20-1
shaft 20-6
specifying variables 20-2
style variable 20-2
using 20-1
values 20-1
which control window has focus 20-5

slider arm 20-1
slider controls 20-1

messages 20-2
SLM_ messages 2-7

slider shaft 20-1
SLM_ messages 2-7
SLM_ADDDETENT 20-8
SLM_QUERYDETENTPOS 20-8
SLM_QUERYSCALETEXT 20-8
SLM_QUERYSLIDERINFO 20-5, 20-8
SLM_QUERYTICKPOS 20-8
SLM_QUERYTICKSIZE 20-8
SLM_REMOVEDETENT 20-8
SLM_SETSCALETEXT 20-8
SLM_SETSLIDERINFO 20-5, 20-8
SLM_SETTICKSIZE 20-8
SLN_CHANGE 20-7
SLN_KILLFOCUS 20-7
SLN_SETFOCUS 20-7

Index X-39

SLN_SLIDERTRACK 20-7
SLS_PRIMARYSCALE1 20-6
SLS_PRIMARYSCALE2 20-6
SLS_* values 20-2
SMHSTRUCT structure 30-3, 30-10
SM_ messages 2-7
SM_QUERYHANDLE 16-1, 16-3, 16-6
SM_SETHANDLE 16-1, 16-3, 16-6
sNominalPointSize 24-2
source application, writing 33-2
source container name 33-5
source file, fully qualified drive and path name 33-19
source name, direct manipulation 33-5
source-supported formats 33-21
source, direct manipulation 33-1
SPBM_OVERRIDESETLIMITS 15-4
SPBM_QUERYLIMITS 15-4
SPBM_QUERYVALUE 15-4
SPBM_SETARRAY 15-4
SPBM_SETCURRENTVALUE 15-4
SPBM_SETLIMITS 15-4
SPBM_SETMASTER 15-4
SPBM_SETTEXTLIMIT 15-4
SPBM_SPINDOWN 15-4
SPBM_SPINUP 15-4
SPBN_CHANGE 15-4
SPBN_DOWNARROW 15-4
SPBN_ENDSPIN 15-4
SPBN_KILLFOCUS 15-4
SPBN_SETFOCUS 15-4
SPBN_UPARROW 15-4
specifying

absolute-position index 9-3
accelerator-item styles 22-2
capture window 5-7
container titles 18-32
cursor position 12-5
CURSOR_SETPOS flag 27-1
custom dialog procedure 25-2
deltas for large amounts of data 18-31
FCF_ 6-4
fonts and colors 18-34
HWND_BOTTOM constant 1-27
HWND_TOP constant 1-27
major tabs 19-4
maximum number of messages in message

queue 2-3
message category 2-7
message data and location 2-2
minor tabs, notebook control 19-4
notebook colors, sizes, orientations 19-1
rows and columns 21-2
space between container items 18-27
standard controls 25-5
style bits 20-2
variables for slider control 20-2
window handle 1-27
word wrapping 13-4

X-40 OS/2 Programming Guide-Volume II

specifying (continued)
z-order position 6-9

spin button controls
input parameter to WinDestroyWindow 15-2
master component 15-1
messages 15-4
purpose of 15-1
scrolling a list of values 15-3
servant components 15-1
user interaction 15-3
viewing values in a spin field 15-3

spin buttons
control 15-1
control styles 15-4
description 15-1
multi-field 15-1
selecting several values 15-1
single-line entry field 15-1
style flags 15-1
WinCreateWindow 15-1

split bar support for details view 18-15
SPTR_APPICON 26-2
SPTR_ARROW 26-2
SPTR_FILE 26-3
SPTR_FOLDER 26-3
SPTR_ICONERROR 26-2
SPTR_ICONINFORMATION 26-2
SPTR_ICONQUESTION 26-2
SPTR_ICONWARNING 26-2
SPTR_ILLEGAL 26-3
SPTR_MOVE 26-2
SPTR_MUL TFILE 26-3
SPTR_PROGRAM 26-3
SPTR _SIZE 26-2
SPTR_SIZENESW 26-2
SPTR_SIZENS 26-2
SPTR_ SIZENWSE 26-2
SPTR_SIZEWE 26-2
SPTR_ TEXT 26-2
SPTR _WAIT 26-2
SS_BITMAP 16-1, 16-2
SS_BKGNDFRAME 16-2
SS_BKGNDRECT 16-2
SS_FGNDFRAME 16-2
SS_FGNDRECT 16-2
SS_GROUPBOX 16-2
SS_HALFTONEFRAME 16-2
SS_HALFTONERECT 16-2
SS_ICON 16-1, 16-2
SS_SYSICON 16-2
SS_ TEXT 16-2
standard clipboard-data formats 31-4
standard controls, font dialog minimum set 24-3
standard controls, minimum set for file dialog 25-5
Standard Font Dialog Controls table 24-4
standard rendering mechanisms 33-18
standard window styles 1-13

standard window styles, operating system 1-13
starting

direct manipulation operation 33-2
two timers, sample code 34-2, 34-3

static control styles
SS_BITMAP 16-2
SS_BKGNDFRAME 16-2
SS_BKGNDRECT 16-2
SS_FGNDRECT 16-2
SS_GROUPBOX 16-2
SS_HALFTONEFRAME 16-2
SS_HALFTONERECT 16-2
SS_ICON 16-2
SS_SYSICON 16-2
SS_ TEXT 16-2

static controls
default performance 16-3
description 16-1
handle 16-1
including in client window 16-5
including in dialog window 16-4
keyboard focus 16-1
SM_ messages 2-7
styles 16-2
summary of functions 16-6
summary of messages 16-6
using 16-4

status line, notebook 19-3, 19-9
stopping a timer, sample code 34-3
straight text format, clipboard 31-4
string atoms, description 35-2
string filter 25-3
structures

ACCEL 22-2, 22-6, 30-6
ACCEL TABLE 22-2, 22-6
button control 8-11
COATE 18-36
CLASSINFO 3-6
CNRDRAGINFO 18-36
CNRDRAGINIT 18-36
CNRDRAWITEMINFO 18-36
CNREDITDATA 18-36
CNRINFO 18-3, 18-6, 18-36
copying current information to SWP 1-26
CREATESTRUC 1-32
CTIME 18-36
CURSORINFO 27-3
DDEINIT 32-5, 32-6, 32-8
DDESTRUCT 32-6, 32-8, 32-10
DLGITEM 23-13
DLGTEMPLATE 23-13
DRAGIMAGE 33-2, 33-23
DRAGINFO 33-2, 33-5, 33-23
DRAGITEM 33-19, 33-23
DRAGTRANSFER 33-19, 33-23
DrgAllocDraginfo 33-2
DrgFreeDraginfo 33-6
entry field control 12-1 O

structures (continued)
ENTRYFDATA 12-7
FIELDINFO 18-5, 18-36
FIELDINFOINSERT 18-36
FILEDLG 25-2, 25-3, 25-5
FONTDLG 24-1, 24-4
FRAMECDATA 6-5, 6-15
HMQ 2-15
hook, summary 30-10
HSVWP 6-15
initializing DRAGITEM 33-3
initializing FILEDLG 25-2
list box 9-8
menu-item 11-5
MENUITEM 11-5, 11-17
messages and message queues, summary 2-15

MINIRECORDCORE 18-36
MLECTLDATA 13-11
MLEMARGSTRUCT 13-11
MLEOVERFLOW 13-11
MLESEARCHDATA 13-11
MLE_SEARCHDATA 13-6, 13-10
MQINFO 2-15
NOTIFYDEL TA 18-36
NOTIFYRECORDEMPHASIS 18-36
NOTIFYRECORDENTER 18-36
NOTIFYSCROLL 18-36
OWNERBACKGROUND 18-36
OWNERITEM 9-5, 9-8, 11-17
pointer 26-6
POINTERINFO 26-7
POINTL 29-1, 29-5
QMSG 2-2, 2-15, 5-7, 30-2, 30-10
QUERYRECFROMRECT 18-36
RECORDCORE 18-6, 18-36
RECORDINSERT 18-36
RECTL 28-7, 29-1, 29-5
SBCDATA 14-2
SEARCHSTRING 18-36
simple Presentation Manager application 1-20

SLDCDATA 20-7
SMHSTRUCT 30-3, 30-10
STYLECHANGE 24-4
summary of dialog 23-12
summary of title-bar 17-4
summary of window-drawing 29-5
SWP 17-5
to specify windows to be moved or changed 1-26

TRACKINFO 17-5
TREEITEMDESC 18-14, 18-36
USERBUTTON 8-8, 8-11
USHORT 8-11
using DrgQueryDragitemPtr 33-3
value set control 21-7
VSCDATA 21-7
VSDRAGINFO 21-7
VSDRAGINIT 21-7
VSTEXT 21-7

Index X-41

structures (continued)
window class 3-6
window procedure 4-1
WNDPARAMS 1-32

style bits
BKS_BACKPAGESBR 19-3
BKS_MAJORTABBOTTOM 19-6
BKS_MAJORTABRIGHT 19-4
BKS_SQUARETABS 19-5
BKS_ STATUSTEXTLEFT 19-3
CCS_AUTOPOSITION 18-6
most important 19-5
specifying more than one 19-5
WS_GROUP 8-8

STYLECHANGE 24-4
styles

FS_ACCELTABLE 6-4
FS_ICON 6-4
FS_MENU 6-4
FS_STANDARD 6-4
MLS_ 13-7
MLS_BORDER 13-1
MLS_HSCROLL 13-1
MLS_IGNORETAB 13-1
MLS_READONLY 13-1, 13-4
MLS_VSCROLL 13-1
MLS_WORDWRAP 13-4
multiple-line entry field 13-1
window
WS_CLIPCHILDREN 1-13
WS_CLIPSIBLINGS 1-13
WS_DISABLED 1-13
WS_GROUP 1-13, 13-7
WS_MAXIMIZED 1-13
WS_MINIMIZED 1-13
WS_PARENTCLIP 1-13
WS_SAVEBITS 1-13
WS_SYNCPAINT 1-13
WS_TABSTOP 1-13, 13-7
WS_VISIBLE 1-13

styles, notebook control 19-5
styles, private window classes 3-2
styles, scroll-bar 14-2
subclassed window

WinSubclassWindow 1-17
subclassing

existing control window 7-3
procedure 7-3

subclassing a window 4-4
subclassing a window procedure, description 4-2
submenu items 11-3
summary

atom table functions 35-7
button control functions 8-11
button control messages 8-11
button control structures 8-11
clipboard functions 31-12
clipboard messages 31-12

X-42 OS/2 Programming Guide-Volume II

summary (continued)
container control messages 18-36
container control notification codes 18-36
container control structures 18-36
cursor functions 27-3
cursor structure 27-3
default window-procedure messages 4-6
dialog functions 23-12
dialog messages 23-12
dialog structures 23-12
direct manipulation functions used by source 33-7
direct manipulation structures 33-23
direct manipulation (drag) messages 33-23
entry-field control 12-10
focus-change and activation messages 5-11
font dialog controls 25-5
font dialog functions 25-5
font dialog messages 25-5
font dialog structure 25-5
font dialog structures table 24-4
frame window functions, structure, messages 6-15
Functions Used by the Target 33-10
functions used with device contexts 28-15
functions used with initialization files 36-4
functions used with presentation spaces 28-15
functions used with window regions 28-15
hook functions 30-10
hook structures 30-10
keyboard accelerator 22-6
menu functions 11-17
menu structures 11-17
messages and message queues, functions 2-14
messages and message queues, structures 2-15
messages generated by a menu 11-18
messages generated by an entry field 12-10
messages received by a control window 7-5
messages received by a menu 11-17
messages received by an entry field 12-10
messages sent from a scroll bar to owner

window 14-10
messages sent to a menu 11-17
messages sent to a scroll bar 14-10
messages used with combination-box controls 10-3
MLE messages 13-11
MLE structures 13-11
mouse and keyboard input 5-11
mouse and keyboard input functions 5-11
mouse and keyboard input messages 5-11
notebook control 19-23
pointer and bit map functions 26-6
scroll-bar structure 14-10
slider control 20-7
spin button control styles 15-4
static-control functions 16-6
static-control messages 16-6
title-bar functions 17-4
title-bar messages 17-4
title-bar structures 17-4

summary (continued)
value set control functions 21-7
value set control notification codes 21-7
value set control notification messages 21-7
value set control structures 21-7
value set control window messages 21-7
window class functions 3-6
window class structure 3-6
window data structures 1-29
window functions 1-29
window messages 1-29
window procedures 4-6
window timer functions 34-4
window-drawing functions 29-5
window-drawing structures 29-5
window-procedure functions 4-6

support
common rendering mechanism and format 33-8
for sliders, keyboard 20-6
graphical user interface 21-5
mouse 21-5
pointing device 19-16, 21-5
pointing device, slider 20-6
specific topic 32-6
split bar for details view 18-15

SV_SCROLLRATE system value 34-2
SWP 17-5
SWP_MAXIMIZE 1-28
SWP _MINIMIZE 1-28
SWP _MOVE 1-25
SWP _RESTORE 1-28
SWP _RESTORE flag 1-18
SWP _SIZE 1-26
SWP _ZORDER 1-27
SW_INVALIDATERGN 29-3
syntax for codepage-changed hook function,

code 30-9
syntax for find-word hook function, code 30-8
syntax for help-hook function 30-7
syntax for journal-playback hook function, code 30-5
syntax for journal-record hook function 30-4
syntax for send-message hook function, code 30-3
syntax of message-filter hook, code 30-3
SYSCLR_SCROLLBAR 14-5
system atom table 35-1
system bit maps 26-4
system commands, SC_

generating 1-16
SC_ 1-16
SC_CLOSE 1-16
SC_MAXIMIZE 1-16
SC_MINIMIZE 1-16
SC_MOVE 1-16
SC_RESTORE 1-16
SC_SIZE 1-16
table 1-16
WM,;,,.CLOSE 1-16
WM_SYSCOMMAND 1-16

system menu
description 11-3

system message queue 5-1
system timers table 34-2
system topic, DOE 32-4
system-defined messages 2-6
system-defined messages, uses of 2-7
system-defined public window classes 3-3
system-defined rendering mechanisms 33-16
system-defined window classes, description 3-3
system-modal window

controlling input 1-9
description 1-9
designating 1-9
explicitly clearing 1-9
setting and clearing 1-9
using WinSetSysModalWindow 1-9
when to use 1-9

SZDDESYS_ITEM_FORMATS 32-4
SZDDESYS_ITEM_HELP 32-4
SZDDESYS_ITEM_PROTOCOLS 32-4
SZDDESYS_ITEM_RESTART 32~4

SZDDESYS_ITEM_RTNMSG 32-4
SZDDESYS_ITEM_SECURITY 32-4
SZDDESYS_ITEM_STATUS 32-4
SZDDESYS_ITEM_SYSITEMS 32-4
SZDDESYS_ITEM_TOPICS 32-4
SZDDESYS_ TOPIC 32-4
SZFMT _BITMAP 32-10
SZFMT _ CPTEXT 32-10
SZFMT_DIF 32-10
SZFMT_DSPBITMAP 32-10
SZFMT_DSPMETAFILE 32-10
SZFMT_DSPTEXT 32-10
SZFMT_LINK 32-10
SZFMT_METAFILE 32-10
SZFMT _METAFILEPICT 32-10
SZFMT_OEMTEXT 32-10
SZFMT _PALETTE 32-10
SZFMT _SYLK 32-10
SZFMT _TEXT 32-10
SZFMT_TIFF 32-10
szFullfile field 25-3

T
tab placement, notebook control 19-4
tab scroll buttons, using 19-17
table

accelerator 22~ 1
accelerator-item styles 22-2
accelerator-table functions 22-6
accelerator-table messages 22-6
accelerator-table structures 22-6
atom string formats 35-4
button styles 8-3
class styles 3-2
clipboard data formats 31-4

Index X-43

table (continued)
combination-box notification codes 10-3
combination-box styles 10-1
container control messages 18-36
container control notification codes 18-36
container control structures 18-36
control window classes 7-1
cursor functions 27-3
cursor structure 27-3
DOE status flags 32-7
DOE system topics 32-4
default messages and window-procedure

responses 6-10
default window procedure messages 4-6
entry-field functions 12-10
entry-field messages 12-10
entry-field structures 12-10
entry-field styles 12-1
flags and styles that require resources 6-4
font dialog structures 24-4
frame window state flags 6-8
frame windows, summary 6-15
frame-control identifiers 6-3
Functions Used by the Target During Direct

Manipulation 33-10
handles 22-2
hook types 30-1
initialization file summary 36-4
keyboard character flags 5-4
keystroke menu access 11-6
list item position index 9-3
list-box structure 9-8
message categories 2-7
message filter hook parameter values 30-4
message priorities 2-8
messages generated by a button control to its

owner 8-12
messages generated by a control window 7-5
messages generated by a menu 11-18
messages generated by an entry field 12-10
messages generated by list box to owner 9-9
messages handled by clipboard owner 31-7
messages handled by WC_ENTRYFIELD 12-3
messages handled by WC_LISTBOX 9-7
messages handled by WC_STATIC Class 16-3
messages processed by title-bar control 17-2
messages processed by WC_BUTTON 8-5
messages received by a button control 8-11
messages received by a control window 7-5
messages received by a list box 9-9
messages received by a menu 11-17
messages received by an entry field 12-10
minimum set of standard file dialog controls 25-5
modifying accelerator 22-4
mouse/keyboard activation messages 5-11
mouse/keyboard functions 5-11
multiple-line entry field control notification

codes 13-1

X-44 OS/2 Programming Guide-Volume II

table (continued)
multiple-line entry field notification codes 13-2
multiple-line entry field styles 13-1
multiple-line entry text format 13-5
notebook control notification messages 19-23
notebook control structures 19-23
notebook control window messages 19-23
notebook window style settings 19-6
notification of entry-field events 12-2
operations on clipboard data . 31-2
OS/2 Operating System Standard Window

Styles 1-13
pointer and bit map functions 26-6
pointer structure 26-6
predefined mouse pointers 26-2
Presentation Manager mouse pointers 26-3
Presentation Manager-Defined Resource

Types 1-17
scroll-bar command codes 14-3
scroll-bar messages 14-10
scroll-bar notification messages 14-3
scroll-bar structure 14-10
slider control summary 20-7
spin button control styles 15-4
spin button messages 15-4
standard font dialog controls 24-4
standard system bit maps 26-4
static control styles 16-2
static-control functions 16-6
static-control messages 16-6
summary of clipboard functions 31-12
summary of clipboard messages 31-12
summary of dialog functions 23-12
summary of dialog messages 23-12
summary of dialog structures 23-12
summary of direct manipulation structures 33-23
summary of direct manipulation {drag)

messages 33-23
summary of font dialog controls 25-5
summary of font dialog functions 25-5
summary of font dialog structures 25-5
Summary of Functions used by the Source 33-7
summary of hook functions 30-10
summary of hook structures 30-10
summary of messages generated by MLE

controls 13-11
summary of messages received by MLE

controls 13-11
summary of structures 13-11
summary of title-bar functions 17-4
summary of title-bar messages 17-4
summary of title-bar structures 17-4
summary of window timer functions 34-4
summary of window-procedure functions 4-6
system atom 35-1
System Commands 1-16
system timers 34-2
types of container views for types of data 18-4

table (continued)
using ACCEL 22-2
using ACCEL TABLE 22-2
value set control functions 21-7
value set control messages 21-7
value set control notification codes 21-7
value set control structures 21-7
views of a container's contents 18-5
window class structure 3-6
Window Classes 1-12, 3-3
window data structure 1-29
window functions 1-29
window messages 1-29
window procedure arguments 4-2
window procedure functions 4-6
window procedure message 4-6

window procedure syntax 4-6
window regions 28-3
window-creation functions 1-29

tailoring
notebook colors 19-19 ,

target
assessing drop acceptance 33-8
container 33-17
container name 33-5
de-emphasizing 33-9
direct manipulation 33-1
DOR_ DROP response 33-8
DOR_NEVERDROP response 33-9
DOR_NODROP response 33-8
DOR_NODROPOP response 33-9
emphasis 33-8
emphasis, container control 18-26
emphasis, providing 33-9
establishing conversation with source 33-14
functions used in direct manipulation 33-10
object 33-9
possible responses to DM_DRAGOVER 33-8
presentation space 33-9
preventing rendering 33-19
understanding native rendering mechanism and

format 33-18
understanding object data types 33-8

target emphasis 18-25
TBM_ messages 2-7
TBM_QUERYHILITE 17-2
TBM_SETHILITE 17-2
techniques, navigation 21-6
techniques, selection 21-6
terminating

DOE 32-10
text editing, entry field 12-5
text format, clipboard 31-4
text import and export operations, MLE 13-5
text retrieval, entry field 12-6
text view, description 18-9
text, drawing 29-4

threads
associating windows with message queue 2-2
message queue serving 2-2

three-state check boxes 8-1
three-state check boxes, description 8-3
three-state check boxes, uses of 8-3
tick mark, slider 20-1
TID_CURSOR 34-2
TID_FLASHWINDOW 34-2
TID_SCROLL 34-2
timeout values, description 34-1
timer identifier, creating 34-1
title bar in a standard frame window 17-1
title-bar controls

default behavior 17-2
description 17-1
functions in standard frame window 17-1
summary of functions 17-4
summary of messages 17-4
summary of structures 17-4
TBM_ messages 2-7

title-bars
including in frame window 17-2

top-level window
creating 1-20
creation example 1-20
enumerating 1-25
positioning 1-3

top-level window, description 1-2
topics

acknowledging support 32-6
definition 32-3
system 32-4
SZDDESYS _ITEM _FORMATS 32-4
SZDDESYS _ITEM _HELP 32-4
SZDDESYS _ITEM _PROTOCOLS 32-4
SZDDESYS _ITEM _RESTART 32-4
SZDDESYS_ITEM_RTNMSG 32-4
SZDDESYS _ITEM _SECURITY 32-4
SZDDESYS_ITEM_STATUS 32-4
SZDDESYS _ITEM_ SYSITEMS 32-4
SZDDESYS _ITEM_ TOPICS 32-4

TRACKINFO 17-5
tracking portfolios 32-2
transaction and response messages, ODE 32-7
transaction status flags 32-7
transaction, definition 32-6
transaction, issuing 32-6
tree icon view and tree text view, description 18-12

tree name, description 18-13
tree view, description 18-10
TREEITEMDESC 18-36
TREEITEMDESC structure 18-14
true type 33-18
true type, object 33-3
two-object drag 33-2, 33-12
Type field 25-4

Index X-45

type filter criteria, file dialog 25-4
type of object, making known to system 33-2
fypefaces, common types 24-1
typefaces, names of 24-1
types of atoms 35-2
types of rectangles 29-1
types, extended attribute 33-20

u
ulData parameter 31-3, 31-5
ulValueSetStyle 21-2
unadvise transaction type 32-7
unavailable-state emphasis 21-5
unavailable-state emphasis, notebook control 19-3
understanding

container items 18-4
container views 18-5
default notebook style 19-2

unique data formats 32-10
unselected state, radio button 8-2
UP key 14-5
update regions, description 2-3
update regions, system-combined 2-3
updating a list 9-4
usCodePage 30-8
user interface support, graphical 21-5
user interface, file dialog 25..,3
user-driven data exchange 31-1
USERBUTTON structure 8-8, 8-11
usFamilyBuflen 24-2
usFormat field 32-10
usHit parameter 5-6
USHORT structure 8-11
using

a container 18-17
accelerators in an application 22-2
atom tables 35-4
augmentation keys 33-10
BKA_FIRST 19-9
BKA_LAST 19-9
BKA_MAJOR 19-8
BKA_MINOR 19-8
BKA_NEXT 19-9
BKA_PREV 19-9
BKA_STATUSTEXTON 19-9
BKM_SETSTATUSLINETEXT 19-9
button controls 8-8
buttons in a client window 8-10
combination boxes 10-3
control windows 7-2
Ctr I key 33-1 O
Ctrl +Shift 33-10
cursors 27-1
data transfer in an application 33-15
detents 20-6
dial.og windows 23-4, 23-5
direct manipulation 18..;27

X-46 OS/2 Programming Guide-Volume II

using (continued)
direct manipulation in an application 33-2
drag button to cancel direct manipulation

operation 33-6
entry field controls 12-6
Esc key to cancel direct manipulation

operation 33-6
FCF _STANDARD 6-12
frame windows 6-12
F1 to cancel direct manipulation operation 33-6
hooks 30-9
initialization files 36-1
keyboard accelerators 22-1
list boxes 9-1
message boxes 23-4
message macros 2-13
messages 1-8, 2-1, 2-9
mnemonic keystroke 11-6
mouse and keyboard 5-8
multiple-line entry field controls 13-6
page buttons 19-16, 19-17
pointing device to display pages 19-16
pointing device to display tabs 19-17
private clipboard-data formats 31-4
PU_MOUSEBUTTON to display menu 11-3
scroll bars 14-6
scroll-bar range and position 14-9
Shift key 33-10
slider arm 20..;6
slider buttons 20-6
slider shaft 20-6
sliders 20-1
static controls 16-4
tab scrol I buttons 19-17
the clipboard 31-8
value set controls 21-1
WC_VALUESET 21-2
WinCreateWindow 6-13
window classes 3-5
window handle 2-1
window procedures 4-2
window timers 34-1
window timers, methods of 34-2
window-drawing functions 29-2
windows 1-20
WinWindowFromlD 1-24
workspace coordinates 18-6

using windows
handles 1-14
system-modal 1-9

usOperation 33-3
usOperation field 33-10
usWeight field 24-2
usWidth field 24-2

v
value set

arranging items 21-4
coding example 21-2
creating 21-2
navigating to items 21-5
purpose 21-1
retrieving data for items 21-4
selection types 21-5
supporting a pointing device 21-5
types of selection 21-5

value set control
and the CUA user interface 21-1
basics 21-2
dynamic resizing 21-6
graphical user interface support 21-5
keyboard support 21-5
making choices with graphics 21-1
navigation techniques 21-6
notification code table 21-7
pointing device support 21-5
selected-state emphasis 21-5
selecting value set items 21-5
selection techniques 21-6
single selection 21-5
summary of functions 21-7
summary of notification codes 21-7
summary of notification messages 21-7
summary of structures 21-7
summary of window messages 21-7
unavailable-state emphasis 21-5
using 21-1
VM_ messages 2-7

value set sample code 21-2
value set window

dynamic resizing 21-6
navigating to 21-5
selecting 21-5
VM_SELECTITEM 21-5

values, selecting slider 20-5
variables

ulCnrStyles 18-3
ulNotebookStyles 19-1
ulValueSetStyle 21-2

viewer description, clipboard 31-6
viewing

data on the clipboard 31-10
views

changing container 18-17
details 18-14
details, description 18-4
flowed name 18-8
flowed text 18-10
icon 18-6
icon, description 18-4
name 18-7
name, description 18-4

views (continued)
non-flowed name 18-8
split bar support for details 18-15
text 18-9
text, description 18-4
tree 18-10
tree icon and tree text 18-12
tree name 18-13
tree, description 18-4
types of container 18-4

virtual-key codes 5-5
visibility

window 1-19, 1-28
WS_VISIBLE 1-13

visible cue 33-7
visible cue, given to user 33-9
visible feedback, providing 33-8, 33-9
VK_F6 arguments 30-3
VM_ messages 2-7
VM QUERYITEM 21-4, 21-8
VM=QUERYITEMATTR 21-4, 21-8
VM_QUERYMETRICS 21-8
VM_QUERYSELECTEDITEM 21-4, 21-8
VM_SELECTITEM 21-8
VM_SETITEM 21-8
VM_SETITEMATTR 21-8
VM_SETMETRICS 21-8
VN_DRAGLEAVE 21-7
VN_DRAGOVER 21-7
VN_DROP 21-7
VN_DROPHELP 21-7
VN_ENTER 21-7
VN_HELP 21-7
VN_INITDRAG 21-7
VN_KILLFOCUS 21-7
VN_SELECT 21-7
VN_SETFOCUS 21-7
VOID data type 4-1
VSCDATA 21-7
VSCDATA data structure 21-2
VSDRAGINFO 21-7
VSDRAGINIT 21-7
VSTEXT 21-7

w
WC_BUTTON 1-12, 3-3, 7-1, 8-1, 8-5
WC COMBOBOX 7-1
WC-CONTAINER 1-12, 3-3, 7-1, 18-1, 18-3
WC=ENTRYFIELD 1-12, 3-3, 7-1, 12-1
WC ENTRYFIELD, messages 12-3
WC=FRAME 1-2, 1-5, 4-1, 6-1
WC_LISTBOX 1-12, 3-3, 7-1
WC MENU 1-12, 3-3, 7-1
WC-NOTEBOOK 1-12, 3-3, 7-1, 19-1
WC=SCROLLBAR 1-5, 1-12, 3-3, 7-1
WC_SLIDER 1-12, 3-3, 7-1, 20-1

Index X-47

WC_SPINBUTTON 1-12, 3-3, 7-1, 15-1
WC_STATIC 1-12, 3-3, 7-1
WC_TITLEBAR 1-5, 1-12, 3-3, 7-1
WC_VALUESET 1-12, 3-3, 7-1, 21-1, 21-2
we_, window classes 1-12, 3-3
WinAddAtom 35-7
WinAlarm 23-12
WinBeginEnumWindows 1-25, 1-29
WinBeginPaint 27-2, 28-7, 28-10, 28-15
WinBroadcastMsg 2-12, 2-14
WinCalcFrameRect 6-10, 6-15, 29-5
WinCallMsgFilter 2-14, 30-4, 30-10
WinCheckMenultem 11-17
WinCloseClipbrd 31-3, 31-12
WinCopyAccelTable 22-6
WinCopyRect 29-5
WinCreateAccelTable 22-4, 22-6
WinCreateAtomTable 35-2, 35-7
WinCreateCursor 27-1, 27-3
WinCreateDlg 1-11, 6-3, 23-12
WinCreateFrameControls 1-11, 6-10
WinCreateMenu 1-11, 11-2, 11-17
WinCreateMsgQueue 1-9, 2-2, 2-10, 2-14, 3-1
WinCreatePointer 26-6
WinCreatePointerlndirect 26-6
WinCreateStdWindow 1-11, 1-29, 6-2, 6-3, 6-4, 6-12,

7-1, 17-4, 35-1
WinCreateWindow 1-9, 1-11, 1-29, 3-1, 3-3, 6-3, 6-13,

7-1, 7-3, 8-1, 8-11, 12-1, 13-4, 13-6, 14-3, 18-3, 19-1,
20-2, 20-7, 21-2, 21-7

WinDdelnitiate 32-3, 32-5, 32-6
WinDdePostMsg 32-6, 32-7, 32-8
WinDdeRespond 32-6
WinDefDlgProc 2-14, 4-3, 4-6, 5-3, 23-12
WinDefFileDlgProc 25-5
WinDefFontDlgProc 24-4
WinDefWindowProc 2-5, 2-14, 3-5, 4-2, 4-3, 4-6, 5-3,

5-6, 5-7, 30-6, 32-3
WinDeleteAtom 35-7
WinDeletelboxltem 9-8
WinDesktopCursor 27-1
WinDestroyAccelTable 22-6
WinDestroyAtomTable 35-2, 35-7
WinDestroyCursor 27-3
WinDestroyMsgQueue 2-2, 2-14
WinDestroyPointer 26-6
WinDestroyWindow 1-19, 1-29, 15-2, 23-12
WinDismissDlg 23-12
WinDispatchMsg 2-4, 2-10, 2-14, 5-7, 30-4, 34-1, 34-3
WinDlgBox 1-11, 23-12
window

application
uses of 1-6

classes
description 1-10
preregistered public 1-5
recognizing ownership 1-5
registering example 1-20

X-48 OS/2 Programming Guide-Volume II

window (continued)
client

uses of 1-7
window procedure 1-7

composite
description 1-6

control
classes 1-7
description 1-7

coordinates
repositioning 1-15

creation
functions 1-11
information 1-16
messages 1-11
object 1-22
top-level frame 1-20
using WinCreateMsgQueue 1-9
using WinCreateWindow 1-9
using Winlnitialize 1-9
window data structure 1-16

desktop
creating 1-2

desktop-object
creating 1-2
description 1-2

destruction
using WM_DESTROY 1-4

dialog
description 1-6
uses of 1-6

frame
managing 1-6
message box 1-7

handles
retrieving 1-24

main
creating 1-6

messages and message queues
creating 1-9

naming
object

creating 1-22
ownership

rules 1-2
parent

WS_PARENTCLIP 1-13
position

adjusting 1-11
procedures

description 1-10
painting window data 1-7

relationships
owning a window 1-2
parent-child 1-2

sibling
WS_CLIPSIBLINGS 1-13

size
adjusting 1-11

window (continued)
size (continued)

changing 1-26
specifying 1-15

visibility
using WS_VISIBLE style 1-19
WS_VISIBLE 1-13

window activation 5-7
window activation, description 5-1
window boundaries 33-7
window classes 1-10

associating with window procedure 4-4
class data 3-5
ClassName parameter 19-1
creating 1-11
CS_CLIPCHILDREN 3-2
CS_CLIPSIBLINGS 3-2
CS_FRAME 3-2
CS_HITTEST 3-2
CS_MOVENOTIFY 3-2
CS_PARENTCLIP 3-2
CS_SAVEBITS 3-2
CS_SIZEREDRAW 3-2
CS_SYNCPAINT 3-2
custom window styles 3-3
customizing public 3-5
description 3-1
frame, data 6-8
messages handled by WC_LISTBOX 9-7
painting data 1-7
preregistered 3-1
private 1-13
public 1-11, 3-3
registering 1-13, 3-1
registering private 3-1
relationship to window procedures 4-1
structure 3-6
structure table 3-6
subclassing a window 4-4
summary of functions 3-6
system-defined (public) 3-3
table 1-12, 3-3
table of control 7-1
types of 1-11
types of support provided 3-3
using 3-5
we_ 1-12, 3-3
WC_BUTTON 1-12, 3-3, 7-1, 8-1
WC_COMBOBOX 7-1, 10-3
WC_CONTAINER 1-12, 3-3, 7-1, 18-1, 18-3
WC_ENTRYFIELD 12-1, 12-7
WC_FRAME 1-2, 1-5, 1-12, 3-3, 4-1, 6-1, 6-3, 7-1
WC_LISTBOX 1-12, 3-3, 7-1, 9-2
WC_MENU 1-12, 3-3, 7-1, 11-1
WC_NOTEBOOK 1-12, 3-3, 7-1, 19-1
WC_SCROLLBAR 1-5, 1-12, 3-3, 7-1
WC_SLIDER 1-12, 3-3, 7-1, 20-1
WC_SPINBUTTON 1-12, 3-3, 7-1, 15-1

window classes (continued)
WC_STATIC 1-12, 3-3, 7-1
WC_TITLEBAR 1-5, 1-12, 3-3, 7-1
WC_VALUESET 1-12, 3-3, 7-1, 21-1
window data size 3-3
window procedure 2-5, 3-3

window clipping area 1-4
window coordinates 1-15
window data

painting 1-7
window data structure 1-16

window data size, window class 3-3
window data structure

adding storage 1-17
dynamically allocating memory 1-17
extending available members 1-17
handles 1-17
members 1-16
pointers 1-17
VSCDATA 21-2
window size and position 1-17

window data, querying 1-22
window destruction

active window 1-20
application 1-19
dialog 1-19
main 1-19
releasing presentation space 1-20
releasing resources 1-20
saving data 1-20
using WinDestroyWindow 1-19
WM_DESTROY 1-20

window drawing
application's flow of graphics commands 28-2
clip region and visible region of presentation

space 28-4
coordinates 29-1
determining dimensions of rectangles 29-2
device contexts 28-1
drawing a bit map 29-4
drawing text 29-4
example 28-6
filling a rectangle 29-2
in minimized and normal states, code 28-8
in presentation spaces 29-2
inclusive-exclusive 29-1
inclusive-inclusive 29-1
methods of drawing text 29-4
minimized view 28-7
painting and drawing 28-1
painting and drawing, description 28-1
points 29-1
presentation spaces 28-1
rectangles 29-1
scrolling contents of a window 29-3
strategies for using cached-micro presentation

spaces 28-14
summary of functions 29-5

Index X-49

window drawing (continued)
summary of structures 29-5
types of presentation spaces 28-9
using cached-micro presentation spaces 28-13
using functions 29-2
window regions 28-3
window styles for painting 28-4
without WM_PAINT 28-8
WM_PAINT 28-7
working with points and rectangles 29-2

window handles
specifying NULL 1-14
substituting constants 1-14
using 1-14

window handle, desc,ription 2-1
window input and output

directing input data 1-7
displaying output 1-7
types of output 1-7

window message, description and uses 2-2
window ownership 1-2

descendancy and destruction 1-5
establishing an independent relationship 1-5
rules for 1-5
setting the owner window 1-5

window painting 1-10
window procedure 1-7, 1-10
window procedures

arguments, example 4-2
associating with window class 4-4
associating with window class, code 4-4
comparison to dialog procedures 4-1
default 4-2
default messages 4-6
default processing 2-5
description 1-7, 2-5, 3-3, 4-1
designing 4-3
message parameters 4-1
message processing 2-5
protecting shared resources 3-3
relationship to window classes 4-1
retrieving original 3-5
structure 4-1
structure of a typical window procedure 4-3
subclassing 4-2
subclassing a window 4-4
subclassing a window, code 4-5
summary 4-6
summary of functions 4-6
syntax table 4-6
using 4-2
using WinlnSendMsg 2-6
window class 3-3

window regions
clip 28-3
clip region and visible region of presentation

space 28-4
description 28-3

X-50 05/2 Programming Guide-Volume II

window regions (continued)
summary of functions 28-15
update 28-3
visible 28-3

window relationships 1-2
window resources

description 1-17
predefined Presentation Manager 1-17
sharing 1-17
types 1-17

window size and position
adjusting 1-15
changing 1-14
expressing 1-14
improving drawing performance 1-15
messages 1-16
redrawing windows 1-16
restoring 1-18
retrieving 1-15
retrieving size 1-15
specifying 1-14
specifying size 1-15
system commands 1-16
using system commands 1-16
using the WM_SYSCOMMAND message 1-16
using WinQueryWindowRect 1-15
window data structure 1-17
WinGetMaxPosition 1-15
WinQueryWindowRect 1-15
WinSetWindowPos 1-16, 1-17
WM_ADJUSTWINDOWPOS 1-16
WM_MOVE 1-16
WM_SHOW 1-16
WM_SIZE 1-16

window size, description 1-10
window styles

AF _HELP 30-6
BS_CHECKBOX 3-4
BS_HELP 30-6
BS_PUSHBUTTON 3-3, 3-4
class-determined 1-13
combining 1-13
CS_CLIPCHILDREN 28-4
CS_CLIPSIBLINGS 28-5
CS_HITTEST 5-6
CS_PARENTCLIP 28-5
CS_PUBLIC 3-5
CS_SAVEBITS 28-5
CS_SIZEREDRAW 1-27, 28-5
CS_SYNCPAINT 28-5
custom 3-3
description 1-10, 3-3
FCF _MAXBUTTON 6-2
FCF _MINBUTTON 6-2
FCF _MINMAX 6-2
FCF _NOBYTEALIGN 1-16
FCF _SIZEBORDER 6-2
for painting 28-4

window styles (continued)
frame 6-3
frame window 6-4
FS_ACCELTABLE 6-4
FS_BORDER 3-3
FS_ICON 6-4
FS_MENU 6-4
FS_NOMOVEWITHOWNER 1-5
FS_STANDARD 6-4
LS_NOADJUSTPOS 9-3
LS_ OWNERDRAW 9-5
MIS_HELP 30-6
predefined 1-13
SS _BITMAP 16-1
SS_ICON 16-1
standard 1-13
table 1-13
WS&usSYNCPAINT 3-3
ws_ 1-13
WS_CLIPCHILDREN 1-4, 1-13, 28-4

WS_CLIPSIBLINGS 1-4, 1-13, 28-5
WS_DISABLED 1-9, 1-13
WS_GROUP 1-13, 10-3
WS_MAXIMIZED 1-13, 1-18
WS_MINIMIZED 1-13, 1-18
WS_PARENTCLIP 1-13, 28-5
WS_SAVEBITS 1-13, 28-5
WS_SYNCPAINT 1-10, 1-13, 28-5
WS_TABSTOP 1-13, 10-3
WS_VISIBLE 1-13, 1-15, 1-19, 1-28, 3-3, 10-3, 15-1

window timers
CV_TIMERS 34-1
description 34-1
dispatching WM_TIMER messages 34-3

stopping a timer 34-3
summary of functions 34-4
SV _SCROLLRATE 34-2
TID_CURSOR 34-2
TID_FLASHWINDOW 34-2
TID_SCROLL 34-2
timeout values 34-1
using 34-1, 34-2

window visibility 1-19, 1-28
window-creation and -management messages 2-7

window-creation functions
WinCreateDlg 1-11
WinCreateFrameControls 1-11
WinCreateMenu 1-11
WinCreateStdWindow 1-11
WinCreateWindow 1-11, 1-19, 1-22
WinDlgBox 1-11
WinloadDlg 1-11
WinloadMenu 1-11
WinMessageBox 1-11

window-creation messages
WM_CREATE 1-11

window-drawing functions 29-1

window-message atoms, creating 35-4

windows
description 1-1
dialog 23-1
disabled

WS_DISABLED 1-13
hiding
introduction to 1-1
maximized

WS_MAXIMIZED 1-13
minimized

WS_MINIMIZED 1-13
redrawing 1-26

using adjusted values 1-16
standard

classes 1-13
styles 1-13

subclassed
types of

application 1-6
client 1-7
composite 1-6
container 33-1
control 1-7
desktop 1-2
desktop-object 1-2
dialog 1-6
frame 1-6
main 1-6
source 33-1
target 33-1

using
managing ownership and relationships 1-20

WinCreateMsgQueue 1-9
WinCreateWindow 1-9

WinDrawBitmap 29-4, 29-5
WinDrawBitmaps 26-6
WinDrawBorder 29-5
WinDrawPointer 26-6
WinDrawText 29-4, 29-5, 30-8
WinEmptyClipbrd 31-3, 31-7, 31-12
WinEnableMenultem 11-17
WinEnablePhyslnput 5-11
WinEnableWindow 1-9, 14-5
WinEnableWindowUpdate 28-15
WinEndEnumWindows 1-25, 1-29
WinEndPaint 27-2, 28-7, 28-10, 28-15

WinEnumClipbrdFmts 31-12
WinEnumDlgltem 23-12
WinEqualRect 29-5
WinExcludeUpdateRegion 28-1.5
WinFileDlg 25-5
WinFileDlg function 25-3
WinFillRect 29-2, 29-5
WinFindAtom 35-7
WinFlashWindow 17-4
WinFocusChange 5-11

Index X-51

WinFontDlg 24-2, 24-4
WinFreeFileDlglist 25-5
WinGetClipPS 28-15
WinGetCurrentTime 34-2, 34-4
WinGetDlgMsg 2-14, 23-12
WinGetKeyState 5-11, 33-10
WinGetMinPosltlon 1-29
WinGetMsg 2-2, 2-4, 2-8, 2-10, 2-14, 30-2, 30-4
WinGetNextWindow 1-25, 1-29
WinGetPhysKeyState 30-5
WinGetPS 1-20, 28-8, 28-15
WinGetScreenPS 28-15
WinGetSysBitmap 26-6
WinlnflateRect 29-5
Winlnitlalize 1-9, 3-1
WinlnSendMsg 2-6, 2-14
Winlnsertlboxltem 9-8
WinlntersectRect 29-5
WinlnvalidateRect 28-15, 29-5
WinlnvalidateRegion 28-15
WinlnvertRect 29-3
WinlsChild 1-29
WinlsMenultemChecked 11-17
WinlsMenultemEnabled 11-17
WinlsMenultemValid 11-17
WinlsPhyslnputEnabled 5-11
WinlsRectEmpty 29-5
WinlsWindowEnabled 1-9
WinlsWindowShowing 1-19, 1-29
WinlsWindowVisible 1-19, 1-29
WinloadAccelTable 22-4, 22-6
WinloadDlg 1-11, 6-3, 23-12
WinLoadMenu 1-11, 11-2, 11-17
WinloadPointer 26-6
WinlockVisRegions 28-15
Wi nLockWindowUpdate 28-15
WinMakeRect 29-5
WinMapDlgPoints 23-12
WlnMapWindowPolnts 29-1, 29-5
WinMessageBox 1-11, 23-12
WinMultWindowFromlDs 1-29
WinOffsetRect 29-5
WinOpenClipbrd 31-3, 31-12
WinOpenWindowDC 28-11, 28-15
WinPeekMsg 2-2, 2-9, 2-11, 2-14, 30-2
WinPopupMenu 11-2, 11-17
WlnPostMsg 2-5, 2-12, 2-14
WinPostQueueMsg 2-14
WinProcessDlg 23-12
WinPtlnRect 29-5
WinQuery AccelTable 22-6
WinQueryActiveWindow 1-29, 5-2, 5-8
WinQueryAtomlength 35-7
WinQueryAtomUsage 35-7
WinQueryCapture 5-11
WinQueryClasslnfo 3-5, 3-6
WinQueryClassName 3-5, 3-6

X-52 OS/2 Programming Guide-Volume II

WinQueryClipbrdData 31-3, 31-12
WinQueryClipbrdFmtlnfo 31-6, 31-12
WinQueryClipbrdOwner 31-6, 31-12
WinQueryClipbrdViewer 31-6, 31-12
WinQueryCursor 27-3
WinQueryCursorlnfo 27-3
WinQueryDesktopWlndow 1-29
WinQueryDlgltemLength 23-12
WinQueryDlgltemShort 12-10, 23-12
WinQueryDlgltemText 23-12
WinQueryFocus 1-29, 5-11
WinQueryLboxCount 9-8
WinQueryLboxltemText 9-8
WinQueryLboxltemTextlength 9-8
WinQueryLboxSelectedltem 9-8
WinQueryMsgPos 2-14
WinQueryObjectWindow 1-29
WinQueryPointer 26-6
WinQueryPointerlnfo 26-6
WinQueryPointerPos 26-6
WinQueryQueuelnfo 2-3, 2-14
WinQueryQueueStatus 2-3, 2-11, 2-14, 30-5
WlnQuerySysModalWindow 1-29
WinQuerySysPointer 16-6, 26-6
WinQuerySystemAtomTable 35-2, 35-7
WinQueryUpdateRect 28-15, 29-5
WinQueryUpdateRegion 28-15
WinQueryWindow 1-23, 1-29, 6-15
WinQueryWindowDC 28-15
WinQueryWindowPos 1-26, 1-29
WlnQueryWlndowProcess 32-6
WinQueryWindowPtr 1-29
WinQueryWindowRect 1-29, 8-8, 29-5
WinQueryWindowText 8-8, 8-11, 12-10
WinQueryWindowTextlength 12-10
WinQueryWindowULong 1-22, 1-29, 3-3
WinQueryWindowUShort 1-17, 1-22, 1-29, 3-3, 6-8
WinRegisterClass 3-1, 3-3, 3-5, 3-6, 4-4, 4-6, 35-1
WlnReglsterUserMsg 2-14
WinReleaseHook 30-10
WinReleasePS 1-20, 28-8, 28-15
WinRequestMutexSem 1-29
WinScrollWindow 29-3
WinSendDlgltemMsg 2-14, 4-1, 23-12
WinSendMsg 2-5, 2-12, 2-14, 20-7, 21-7, 30-3
WinSetAccelTable 22-6
WinSetActiveWindow 1-29, 5-2, 5-7
WinSetCapture 5-7, 5-11
WinSetClassMsglnterest 2-14
WinSetClipbrdData 31-3, 31-5, 31-6, 31-12
WinSetClipbrdOwner 31-6, 31-12
WinSetClipbrdViewer 31-6, 31-12
WinSetDlgltemShort 12-5, 12-10, 23-12
WinSetDlgltemText 23-12
WlnSetFocus 1-29, 5-2, 5-7, 5-11, 18-22
WinSetHook 30-1, 30-9, 30-10
WinSetKeyboardStateTable 5-11

WinSetlboxltemText 9-8
WinSetMenultemText 11-17
WinSetMsglnterest 2-14
WinSetMsgMode 2-14
WinSetMultWindowPos 1-26, 1-29
WinSetOwner 1-24, 1-29
WinSetParent 1-4, 1-29
WinSetPointer 26-6
WinSetPointerPos 26-6
WinSetPresParam 19-19
WinSetRect 29-5
WinSetRectEmpty 29-5
WinSetSysModalWindow 1-9, 1-29
WinSetWindowBits 1-29
WinSetWindowPos 1-16, 1-25, 1-26, 1-27, 1-29, 6-4,

8-10, 16-6
WinSetWindowPtr 1-29
WinSetWindowText 7-2, 8-8, 8-11, 12-5, 12-10, 16-6,

17-4
WinSetWindowULong 1-13, 1-29, 3-3
WinSetWindowUShort 1-17, 1-29, 3-3
WinShow Cursor 27-2
WinShowCursor 27-3
WinShowPointer 26-6
WinShowTrackRect 29-5
WinShowWindow 1-13, 1-28, 1-29, 7-2, 20-7, 21-7

WinStartApp 1-29
WinStartTimer 34-1, 34-2, 34-3, 34-4
WinStopTimer 34-1, 34-4
WinSubclassWindow 1-17, 4-2, 4-4, 4-6
WinSubstituteStrings 23-12
WinSubtractRect 29-5
WinTerminate 1-29
WinTerminateApp 1-29
WinTrackRect 29-5
WinTranslateAccel 2-14, 22-6
WinUnionRect 29-5
WinValidateRect 28-15, 29-5
WinValidateRegion 28-15
WinWaitEventSem 1-29
WinWaitMsg 2-14
WinWaitMuxWaitSem 1-29
WinWindowFromDC 28-15
WinWindowFromlD 1-24, 1-29, 6-3, 6-15, 8-8, 8-11,

16-6, 17-4
WinWindowFromPoint 1-25, 1-29
WM_ messages 2-7
WM_ACTIVATE 1-7, 1-22, 1-31, 5-2, 5-8, 5-11, 6-10,

6-15
WM_ADJUSTWINDOWPOS 1-11, 1-16, 1-31, 7-5, 9-7,

11-18, 12-3, 16-3
WM_BEGINDRAG 33-2
WM_BUTTONCLICKFIRST 2-9
WM_BUTTONCLICKLAST 2-9
WM_BUTTON1DBLBLK 6-10
WM_BUTTON1DBLCLK 4-6, 5-12, 8-5, 12-3, 17-2
WM_BUTTON1DOWN 4-6, 5-7, 5-12, 6-10, 6-15, 8-5,

11-18, 12-3, 17-2, 30-5

WM_BUTTON1UP 4-6, 5-12, 6-10, 6-15, 8-5, 12-3, 30-5

WM_BUTTON2DBLCLK 4-6, 5-12
WM_BUTTON2DOWN 4-6, 5-12, 6-10, 6-15, 9-7, 11-18,

12-3, 30-5
WM_BUTTON2UP 4-6, 5-12, 30-5
WM_BUTTON3DBLCLK 4-6, 5-12
WM_BUTTON3DOWN 4-6, 5-12, 6-10, 6-15, 9-7, 11-18,

12-3, 30-5
WM_BUTTON3UP 5-12, 30-5
WM_CALCFRAMERECT 1-31
WM_CALCVALIDRECTS 1-27, 1-31, 4-6, 6-10, 6-15

WM_CHAR 4-6, 5-2, 5-3, 5-6, 5-9, 5-12, 8-5, 9-7, 12-10,

20-8, 21-8, 23-13, 30-3, 30-5
WM_CHAR, checking for 2-11
WM_CLOSE 1-16, 1-31, 4-6, 6-10, 6-15
WM_COMMAND 5-6, 5-12, 7-5, 8-1, 8-7, 8-9, 8-10, 8-12,

11-3, 11-18
WM_CONTROL 7-2, 8-1, 8-7, 8-9, 8-10, 8-12, 12-10,

15-4, 18-38, 20-8, 21-8
WM_CONTROLPOINTER 4-6, 7-5, 8-12, 11-18, 18-38,

20-8, 21-8
WM_CONTROL, list box 9-9
WM_CREATE 1-11, 1-31, 4-2, 4-3, 6-10, 6-15, 8-5, 9-7,

11-18, 12-3, 16-3, 17-2
WM_DDE_ACK 32-3, 32-8, 33-21
WM_DDE_ADVISE 32-3, 32-7, 33-21
WM_DDE_DATA 32-3, 32-8, 33-21
WM_DDE_EXECUTE 32-7
WM_DDE_FIRST 2-9
WM_DDE_INITIATE 4-6, 32-3, 32-5, 32-7, 33-20
WM_DDE_INITIATEACK 4-6, 32-3, 32-6
WM_DDE_LAST 2-9
WM_DDE_POKE 32-7
WM_DDE_REQUEST 32-7, 33-20
WM_DDE_TERMINATE 32-3, 33-21
WM_DDE_UNADVISE 32-3, 32-7, 33-21
WM_DESTROY 1-4, 1-20, 1-31, 6-10, 6-15, 8-5, 9-7,

11-18, 12-3, 16-3, 17-2
WM_DESTROYCLIPBOARD 31-7, 31-12
WM_DRAWCLIPBOARD 31-6, 31-10, 31-12
WM_DRAWITEM 9-5, 11-18, 18-38, 20-8, 21-8

WM_DRAWITEM, list box 9-9
WM_ENABLE 1-24, 1-31, 6-10, 6-15, 8-5, 8-12, 9-7,

11-18, 12-3, 16-3
WM_ERASEBACKGROUND 6-10, 6-15
WM_FLASHWINDOW 6-15
WM_FOCUSCHAIN 6-15
WM_FOCUSCHANGE 2-13, 4-6, 5-11, 11-18
WM_FORMATFRAME 6-10, 6-15
WM_HELP 4-6, 7-5, 8-12, 11-3, 11-18, 30-6
WM_HITTEST 4-6, 5-6, 5-12, 6-10, 6-15, 16-3, 17-2
WM_HSCROLL 14-3, 14-10
WM_HSCROLLCLIPBOARD 31-7, 31-12
WM_INITDLG 4-3, 23-13
WM_INITMENU 11-18
WM_JOURNALNOTIFY 30-5
WM_MATCHMNEMONIC 8-5, 8-12, 16-3, 16-6

Index X-53

WM_MEASUREITEM 9-5, 11-18
WM_MEASUREITEM, list box 9-9
WM_MENUEND 11-18
WM_MENUSELECT 4-6, 11-18
WM_MINMAXFRAME 6-10, 6-15
WM_MOUSEFIRST 2-9
WM_MOUSELAST 2-9
WM_MOUSEMOVE 2-3, 4-6, 5-6, 5-7, 5-12, 6-10, 6-15,

8-5, 9-7, 11-18, 12-3, 16-3, 30-5
WM_MOVE 1-16, 1-31
WM_NEXTMENU 6-15
WM_PAINT 1-26, 1-31, 2-3, 4-3, 4-6, 6-10, 6-15, 8-5, 9-7,

11-18, 12-3, 16-3, 17-2, 27-2, 28-7, 28-8, 29-2
WM_PAINTCLIPBOARD 31-6, 31-7, 31-12
WM_PRESPARAMCHANGED 18-38, 20-8, 21-8
WM_QUERYACCELTABLE 22-6
WM_QUERYCONVERTPOS 4-6, 8-12, 9-9, 11-18, 14-10,

16-6
WM_QUERYDLGCODE 7-5, 8-5, 12-3, 16-3, 17-2, 23-13
WM_QUERYFOCUSCHAIN 4-6, 5-11, 11-18
WM_QUERYFRAMECTLCOUNT 4-6, 6-15
WM_QUERYFRAMEINFO 6-15
WM_QUERYICON 6-15
WM_QUERYTRACKINFO 6-10, 6-15
WM_QUERYWINDOWPARAMS 1-31, 4-6, 8-5, 8-12, 9-9,

12-3, 12-10, 14-10, 16-3, 16-6, 17-2, 20-8, 21-8
WM_QUIT 2-5, 2-12
WM_RENDERALLFMTS 31-5, 31-7, 31-12
WM_RENDERFMT 31-5, 31-7, 31-12
WM_SCROLL 9-7
WM_SEM1 2-8
WM_SEM2 2-8
WM_SEM3 2-8
WM_SEM4 2-8
WM_SETACCELTABLE 6-15, 22~6
WM_SETBORDERSIZE 6-15
WM_SETFOCUS 1-8, 5-2, 5-11, 8-5, 9-7, 11-18, 12-3,

16-1, 16-3
WM_SETICON 6-15
WM_SETSELECTION 5-2, 5-11, 12-3
WM_SETWINDOWPARAMS 1-31, 8-5, 8-12, 12-3, 12-10,

14-10, 16-3, 16-6, 17-2, 20-8, 21-8
WM_SHOW 1-16, 1-31, 6-10, 6-15
WM_SIZE 1-16, 1-31, 6-10, 8-10, 14-3, 21-6
WM_SIZECLIPBOARD 6-15, 31-7, 31-12
WM_SUBSTITUTESTRING 23-13
WM_SYSCOMMAND 1-16, 5-6, 6-10, 6-15, 7-5, 8-12,

11-18
WM_SYSVALUECHANGED 2-12
WM_TIMER 4-6, 9-7, 12-3, 34-1
WM_TRACKFRAME 6-15
WM_TRANSLATEACCEL 4-6, 6-15, 22-6
WM_UPDATEFRAME 6-10, 6-15
WM_USER 4-2
WM_VSCROLL 14-3, 14-10
WM_VSCROLLCLIPBOARD 31-7, 31-12
WM_WINDOWPOSCHANGED 1-31, 6-15, 17-2

X-54 OS/2 Programming Guide-Volume II

WNDPARAMS 1-32
WNDPARAMS structure 1-32
word-wrapping, MLE field 13-4
working

with notebooks 19-8
with points and rectangles 29-2

workspace and work area origins 18-30
workspace bounds illustration 18;-30
workspace coordinates 18-6
writing

settings 36-2
source application 33-2
target application 33-7

WS_CLIPCHILDREN 1-13, 28-4
WS_CLIPSIBLINGS 1-13, 28-5
WS_DISABLED 1-9, 1-13
WS_GROUP 1-13, 8-8, 8-9, 13-7
WS_MAXIMIZED 1-13, 1-18
WS_MINIMIZED 1-13, 1-18
WS_PARENTCLIP 1-13, 28-5
WS_SAVEBITS 1-13, 28-5
WS_SYNCPAINT 1-10, 1-13, 3-3, 28-5
WS_TABSTOP 1-13, 13-7
WS_VISIBLE 1-6, 1-13, 1-19, 1-28, 3-3, 15-1
ws_, window styles 1-13

x
x and y fields, file dialog control 25-2
xDrop 33-3

y
yDrop 33-3

z
z-order

changing 1-5, 1-27
description 1-3
position, description 1-10
position, specifying 6-9
specifying position 6-9
window 1-3

Special Characters
*.•.dat string filter 25-3

®IBM, OS/2 and Operating System/2 are
registered trademarks of .
International Business Machines Corporation

----------- ----- - -- - ---- - - ------- ------·@

©IBM Corp. 1992

International Business
Machines Corporation

Printed in the
United States of America
All Rights Reserved

10G6494

Sl0G-6494-00

11111111111111111111
Pl0G6494

