Laboad

Installed
-User
Program

SH20-6168-1

Pascal/VS
Language Reference Manual

Program Number: 5796-PNQ

Pascal/VS is a Pascal compiler operating in MVS and
VM/CMS. Originally designed as a high level program-
ming language to teach computer programming by

N. Wirth (circa 1968), Pascal has emerged as an
influential and well accepted user language in today’s
data processing environment. Pascal provides the user
with the ability to produce very reliable code by perfor-
ming many error detection checks automatically.

The compiler adheres to the currently proposed ISO
standard and includes many important extensions.

The language extensions include: separate compilation,
dynamic character strings and extended 1/O capabilities.
The implementation features include: fast compilation,
optimization and a symbolic terminal oriented debugger
that allows the user to debug a program quickly and
efficiently.

This manual describes the implementation of the lan-
guage by this compiler, and is intended as a reference
guide for the Pascal programmer.

PROGRAM SERVICES ’

Central Service will be provided until otherwise notified. Users will be given a minimum of six months
notice prior to the discontinuance of Central Service,

During the Central Service period. IBM through the program sponsor(s) will, without additional charge,
respond to an error in the current unaltered release of the program by issuing known error correction
information to the customer reporting the problem and/or issuing corrected code or notice of avail-

ability of corrected code. tHowever, IBM does not guarantee service results or represent or warrant that
all errors will be corrected.

Any on-site program service or assistance will be provided at a charge.

WARRANTY

EACH LICENSED PROGRAM IS DISTRIBUTED ON AN ‘AS IS’ BASIS WITHOUT WARRANTY
OF ANY KIND EITHER EXPRESS OR IMPLIED.

Central Service Location: I1BM Corporation
555 Bailey Avenue
P.0. Box 50020
San Jose, CA 95150
Attention: J. David Pickens
Telephone: (408) 4634394
Tieline: 8-543-4394

IBM Corporation

DPD, Western Region

3424 Wilshire Boulevard

Los Angeles, CA 90010
Attention: Mr. Keith J. Warltier
Telephone: (213) 7364645
Tieline: 8-285-4645

Second Edition (April 1981)

This is the second edition of SH20-6162, a publication that applies to release 2.0
of the Pascal/VS Compiler (IUP Program Number 5796-PNQ).

References in this publication to I1BM products, programs, or services do not imply that
1BM intends to make these available outside the United States.

Publications are not stocked at the address given below; requests for copies of IBM
publications should be made to your IBM represcntative or to the IBM branch office
serving your locality.

A form for readers’ comments has been pravided at the back of this publication. If
this form has been removed, address comments to: The Central Service Location.
1BM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1980, 1981

PREFACE

k This document is the reference manual to the Pascal/VS programming language. The
Pascal/VS Programmer's Guide, SH20-6162, i1s also available from IBM to help write
programs in Pascal/VsS.

It is assumed that you are already familiar with Pascal and programming in a high
level programming language. There are many text books available on Pascal; the fol-
lowing list of books was taken from the Pascal User's Group Pascal News, December
1978 NUMBER 13 and September 1979 NUMBER 15. You may wish to check later editions of
Pascal News and your library for more recent books.

U The Design of Well-Structured and Correct Programs by S. Alagic and M.A. Arbib,
Springer-Verlag, New York, 1978, 292 pp.

. ° Microcomputer Problem Solving by K.L. Bowles, Springer-Verlag, New York, 1977,
563 pp.

o A Structured Programming Approach to Data by D. Coleman, MacMillan Press Ltd,
Lonc~n, 1978, 222 pp.

° A Primer on Pascal by R.W. Conway, D. Gries and E.C. Zimmerman, Winthrop Pub-
lishers Inc., Cambridge Mass., 1976, 433 pp.

U PASCAL: An Introduction to Methodical Programming by W. Findlay and D. Watt,
Computer Science Press, 1978, 306 pp.; UK Edition by Pitman International Text,
1978.

° Programming in PASCAL by Peter Grogono, Addison-Wesley, Reading Mass., 1978,
357pp.

o Pascal Users Manual and Report by K. Jensen and N. Wirth, Springer-Verlag, New
York, 1978, 170 pp.

o Structured Programming and Problem-Solving with Pascal by R.B. Kieburtz,
‘ Prentice-Hall Inc., 1978, 365 pp.

. Programming via Pascal by J.S. Rohl and Barrett, Cambridge University Press.

° An Introduction to Programming and Problem-Solving with Pascal by G.M.
Schneider, S.W. Weingart and D.M. Perlman, Wiley & Sons Inc., New York, 394 pp.

. Introduction to Pascal by C.A.G. Webster, Heyden, 1976, 129 pp.

. Introduction to Pascal by J. Welsh and J. Elder, Prentice-Hall Inc., Englewood
Cliffs, 220 pp.

. A Practical Introduction to Pascal by I.P. Wilson and A.M. Addyman,
Springer-Verlag New York, 1978, 145pp; MacMillan, London, 1978.

. Systematic Programming: An Introduction by N. Wirth, Prentice-Hall Inc.,
Englewood Cliffs, 1973 169 pp.

° Algorithms + Data Structures = Programs by N. Wirth, Prentice-Hall Inc.,
Englewood Cliffs, 1976 366 pp.

This reference manual considers IS0O/TC 97/S5C 5 N595 as the Pascal Standard although
N565 is a proposed standard and subject to further modification.

STRUCTURE OF THIS MANUAL

This manual is divided into the following major topics
Chapter 1 is a summary of the language.
Chapter 2 is a description of the basic units (lexical) of Pascal/Vs.
L Chapters 3 through 9 are a top-down presentation of the language.

Chapter 10 describes the I/0 procedures and functions.

Preface iii

Chapter 11 describes the predefined procedures and functions.
Chapter 12 describes the compiler directives.

Appendices provide supplemental information about Pascal/Vs.

PASCAL/VS SYNTAX DIAGRAMS

The syntax of Pascal/V5S will be described with the aid of syntax diagrams. These
diagrams are essentially 'road maps'; by traversing the diagram in the direction of
the arrows you can identify every possible legal Pascal/VS program.

Within the syntax diagram, the names of other diagrams are printed in lower case and
surrounded by braces ('{}'). When you traverse the name of another diagram you can
consider it a subroutine call (or more precisely a 'subdiagram call'). The names of
reserved words are always in lower case. Special symbols (i.e. semicolons, commas,
operators etc) appear as they appear in a Pascal/V$S program.

The diagram traversal starts at the upper left and completes with the arrow on the
right. Every horizontal line has an arrowhead to show the direction of the trav-
ersal on that line. The direction of traversal on the vertical lines can be deduced
by looking at the horizontal lines to which it connects. Dashed lines (i.e. '"—-——=-")
indicate constructs which are unique to Pascal/V5S and are not found in standard
Pascal.

Identifiers may be classified according to how they are declared. For the sake of
clarity, a reference in the syntax diagram for {id} is further specified with a one
or two word description indicating how the identifier was declared. The form of the
reference is '{id:description}'. For example {id:type}l references an identifier
declared as a type; {id:function} references an identifier declared as a function
name.

REVISION CODES

The convention used in this document is that all changes in the current version from
the previous edition are flagged with a vertical bar in the left margin.

Extensions to Pascal are marked with a plus sign in the margin.

iv Pascal/VS Reference Manual

JI

TNL SN20-4446 (31 December 81) to SH20-6168-1

SUMMARY OF AMENDMENTS

RELEASE 2.1

The following is a list of the functional changes that were made to Pascals/VS for
Release 2.1.

A procedure (or function) at any nesting level may now be passed as a routine
parameter. The previous restriction which required such procedures to be at the
outermost nesting level of a module has been removed.

Two new options may be applied to files when they are opened: UCASE and NOCC.
Rules have been relaxed in passing fields of packed records by var to a routine.

The "STACK"™ and "HEAP"™ run time options have been added to control the amount at
which the stack and heap are extended when an overflow occurs.

The syntax of a "structured constant” which contains non-simple constituents has
been simplified.

RELEASE 2.0

The following is a list of the functional changes that were made to Pascal/VS for
Release 2.0.

Pascal/VS now supports single precision floating point (32 bit) as well as dou-
ble precision floating point (64 bit).

Files may be opened for updating with the UPDATE procedure.
Files may be opened for terminal input (TERMIN) and terminal output (TERMOUT) so

that I/0 may take place directly to the user's terminal without going through
the DDNAME interface.

The MAIN directive permits you to define a procedure that may be invoked from a
non-Pascal environment. A procedure that uses this directive is not reentrant.

The REENTRANT directive permits you to define a procedure that may be invoked

from a non-Pascal environment. A procedure that uses this directive is reen-
trant.

A new predefined type, STRINGPTR, has been added that permits you to allocate
strings with the NEW procedure whose maximum size is not defined until the invo-
cation of NEW.

A new parameter passing mechanism is provided that allows strings to be passed
into a procedure or function without requiring you tn specify the maximum si:ze
of the string on the formal parameter.

The maximum size of a string has been increased to 32767 characters.

The Pascal/VS compiler is now fully reentrant.

Code produced from the compiler will be reentrant if static storage is not modi-
fied.

Pascal/VS programs may contain source lines up to 100 characters in length.
Files may be accessed based on relative record number (random access).

Run time errors may be intercepted by the user's program.

Run time diagnostics have been improved.

Pascal/VS will flag extensions when the option "LANGLVL(STD)" is used.

Summary of Amendments v

TNL SN204446 (31 December 81) to SH20-6168-1

vi

A mechanism has been providad so that Pascal/VS routines may ba called from oth-
er languages.

All record formats acceptable to QSAM are now supported by the Pascal/VS I/0
facilities.

A procedure or function may now be exited by means of the goto statement.
You may now declare an array variable where each element of the array is a file.
You may define a file to be a field of a record structure.

Files may now be allocated in the heap (as a dynamic variable) and accessed via a
pointer.

You may now define a subrange of INTEGER which is allocated to 3 bytes of
storage. Control over signed or unsigned values is determined by the subrange.

Variables may be declared in the outermost scope of a SEGMENT. These variables
are defined to overlay the variables in the outermost scope of the main program.

The PDSIN procedure opens a member of a library file (partitioned dataset) for
input.

The PDSOUT procedure opens a member of a library file (partitioned dataset) for
output.

A procedure or function that is declared as EXTERNAL may have its body defined
later on in the same module. Such a routine becomes an entry point.

The CPAGE percent(%) statement conditionally does a page eject if less than a
speci fied number of lines remain on the current listing page.

The MAXLENGTH function returns the maximum length that a string variable can
assume.

The %CHECK TRUNCATE option enables (or disables} the checking for truncation of
strings.

The PASCALVYS exec for invoking the compiler under CMS has been modified so that
the specification of the operands allows greater flexability.

New compiler options have been added, namely: LINECOUNT, PXREF, PAGEWIDTH, and
LANGLVL.

The catalogued procedures for invoking Pascal/VS in 0S Batch have been simpli-
fied.

The format of the output listing has been modified so that longer source lines
may be accomodated.

Multiple debugger commands may be entered on single line by using a semicolon
(;) as a separator.

The format of the Pascal File Control Block has been modified.
Support is now provided for ANSI and machine control characters on output files.

Execution of a Pascal/VS program will terminate after a user determined number
of non—-fatal run time errors.

The debugger now supports breakpoints at the end of a procedure or function.

The Trace mode in the debugger provides information on when procedures are being
exited.

The TRACE procedure now permits you to specify the file on which the traceback
is to be written.

The Equate command of the debugger has been enhanced.

The debugger will print "uninitialized"™ when displaying a variable that has not
been assigned.

Pascals/VS Reference Manual

+ + +

gt

v

v

Ul DD PLDDED W NN

Vi ouiuiuuiui~ueocouIiuInnuUIUTLPAPHLLLLLLLLINN L O NOUMPDLWNEO [~] NOUMTRDRULNEO o ft o a2 b 2 b b b b S = S S S b b e e e O

Introduction to Pascal/vs . e e
Pascal Language Summary
Syntax .- .
Modules .
Declarations
Data-Types

Parameters

Statements

Expressions

Operands .

. Special Symbols

.10 Identifiers .

The Not Operator .
.12 Multiplying Operators
.13 Adding Operators .
.14 Relational Operators
.15 Reserved Words

.16 Predefined Constants
.17 Predefined Types .
.18 Predefined Variables
.19 Predefined Functions
.20 Predefined Procedures
.21 % Include Statements

VOONOUVNTPDULN -

b et b (b b b o b (b b b b 2 2 et o s e b b
. . . . e
p—
—

The Base Vocabulary . . . « « « &
Identifiers . .
Lexical Scope of Identlflers
Reserved Words

Special Symbols

Comments .

Constants

Structured Constants

structure of a Module

Pascal/vs Declarations .« e e s
The Label Declaration

The Const Declaration

The Type Declaration

The Var Declaration

The Static Declaration

The Defs/Ref Declaration

The Value Declaration

Types . . » o o o » o ®

A Hote about Strlngs

Type Compatibility . .
Implicit Type Conversxon

Same Types .

Compatible Types .

Assignment Compat1ble Types

The Enumerated Scalar .- .

The Subrange Scalar

Predefined Scalar Types

The Type INTEGER

The Type CHAR

The Type BOOLEAN

The Type REAL .

The Type SHORTREAL

Array Type .

Array Subscrlptlng

Record Type .

Naming of a F1e1d

Fixed Part

Variant Part

Packed Records

NNNN
J-\ul‘\)l-

N
WOMNHTHTWOMNH
1]

\l\l\l\l\l o Ui
PR)
1]

The Set Type

The File Type .

0 Predefined Structure Types
.10.1 The Type STRING .

0ffset oualuﬁcat{on of Flelds.

CONTENTS

OV NNNOTUNUTDWULWANN F2 -

-
-0

el el el =
O~NOUNTL N

.
L]
.
.
L]
.
N N
= o

.
.
.
.
.
.

NNONNNNNN

VWOONOUTPDLNW

.
.

. .

. .
.

.

VUL DLPLPLPPLPPUHANENNHAUNNHUHUNW
HHOPOAOUIMISALANNFHOWRGOAUVANNN - - =

Contents vii

The Type ALFA e 54
The Type ALPHA e e e e e e e e e e e e e e e e . .

The Type TEXT e e e e e e e e e e e e e e e e e e . e e e .

The Pointer Type 57

=
ooo
-&‘UJN

The Type STRINGPTR . e e e e e e e e
Storage, Packing, and Al\gnment e e e e e e .

WA= o .

Routinas e o o o o s o o s s s o s s s o s e s s s s e s e s s e e 61
Routine Declaratlon e 62
Routine Parameters . . e 62

oo UL,
) P

2.1 Pass by Value Parameters e e e e e e e e e e e e . . 62
.2.2 Pass by Var Parameters e e e e e e e e e . . 62
.2.3 Pass by Const Parameters e e e e e e e e e e e e . 62
.2.% Formal Routine Parameters e e e e e e e e e e e . 62
.2.5 Conformant String Parameters e e e e e e e . . e . .. 62
6 Routine Composition e e e e e e e e e e e e e e 63
.3.1 Internal Routines e e e e e e e e e e e e e e 63
.3.2 FORWARD Routines e e e e e e e e e e e e e e e 63
.3.3 EXTERNAL Routines e e e e e e e e e e e e e e e e . . e 63
.3.4 FORTRAN Routines e e e e e e e e e e e e e e e e e e . 64
.3.5 MAIN Procedures e . . 64
3.6 REENTRANT Procedures e e e e e e e e e e e e e e e e . 64
3.7 Examples of Routines e e e e e e e e e e e e e e e e e . 65

Function Results .. 65
Predefined Procedures and Functlons et e e e e e e e e e e e e e e e e e 65

variables T Y
Array Referencing e 67
Field Referencing e 68
Pointer Referencing e 68
File Referencing e 68

EXPrESSTIONG &+ & o o o o o o o o 5 o o o s o o s o o s o o s o6 o s o oo 0. 1
Operators . . e 74
Constant Expressnons e 76
Boolean Expressions e 77
Logical Expressions C e 78
Function Call e 79
Scalar Conversions e 80
Set Constructor e 81

Statemants .« . © o o o o s o s o o o s s o s s e s s s s s s s s e e s s« 83
The Assert Statement e 84
The Assignment Statement e 85
The Case Statement e 86
The Compound Statement e 88
The Continue Statement e 89
The Empty Statement e e e e e e e e e e e e .

RO NOUVNPUNHO NOUIPRUWUNHO SDWNHO VSRR ROUWOGOOOAN—HO HEEUIUILD

The Return Statement 98
The While Statement e 99

. The For Statement e e e e e e e e e e e e e e e e e . . . 91
. The Goto Statement e e e e e e e e e e e e 93
. The If Statement e e e e e e e e e e e e e e e .-- . 94
. The Leave Statement e e e e e e e e e e e e e e e e e e e . e e e 95
. The Procedure Call e e e e e e e e e e e e e e e e e . . .- . 96
. The Repeat Statement e e e e 97

The With Statement e N

bt et et et et et et pt pb e b b OO DO OOV OO OOV OOOOVOG 0000 NN oo

0

1

2

3

4

5
0.0 I/0 FAaCilities & & ¢ ¢ o v o o ¢« o o o o o o o o o o s o o s =« o o o « & « o 103
0.1 RESET Procedure e e e e e e e e e e O
0.2 REMRITE Procedure e e e e e e e e e e . e A
0.3 TERMIN Procedure 104
0.4 TERMOUT Procedure PO, ¢
0.5 PDSIN Procedure e e e e e e e e e e e e e e e e e . . e e . . . 105
0.6 PDSOUT Procedure . . 106
0.7 UPDATE Procedure 106
0.8 CLOSE Procedure e e e e e e e e e e e e e e 107
0.9 GET Procedure 107
0.10 PUT Procedure e e e e e e e e e e e . . e e . 108
0.11 SEEK Procedure . 108
0.12 EOF Function . e e e e e e e e e e e e e e e e e e 109
10.13 READ and READLN (TEXT F1les) e e e e e e e e e e e e 109
10.14 READ (Non-TEXT Files) e e e e e e e e e e e e e . . . 111
10.15 WRITE and WRITELN (TEXT F11es) e e e e e e e e e e 112
10.16 WRITE (Non-TEXT Files) .. e e e e e e e e e e e . . 114

viii Pascal/VS Reference Manual

+ 4+ + ++

+ +

+

b+t —+

+ +

+ 4+ + +

h—

10.17 EOLN function
10.18 PAGE Procedure
10.19 COLS Function

[
[
.

[~

Execution Library Facilities
Memory Management Routines . .

.1 MARK Procedure

2 RELEASE Procedure
3 NEW Procedure .
4 DISPOSE Procedure
ata Movement Routines
1 PACK Procedure

2 UNPACK Procedure
ata Access Routines

1 LOWEST Function

2 HIGHEST Function
3 LBOUND Function

4 HBOUND Function

5 SIZEOF Function
onversion Routines

1 ORD Function

2 CHR Function

3 Scalar Conversion
.4 FLOAT Function
5
6
7
a
1
2
3
4
5
6
7
8
9
1
1

—
—
—

S S L el T e e N e o e el e el e T e ST e e e e S e e

—
—
[T S T Y . e O ey N a el L el el al al al al A a l e N el kT Ll el S R R

[« IE

P—a
—
. O

—
—

C

TRUNC Function
ROUND Function
STR Function .
thematical Routines
MIN Function
MAX Function
PPED Function
SUCC Function
ODD Function
ABS Function
SIN Function
C0S Function .
ARCTAN Function
0 EXP Function
1 LN Function
.12 SQRT Function
.13 SQR Function
.14 RANDOM Function
STRING Routines .
.1 LENGTH Function .
2 MAXLENGTH Function
3 SUBSTR Function
4 DELETE Function
5 TRIM Function
.6 LTRIM Function
7
8
9
1

M

—
—

—
—

COMPRESS Function
INDEX Function
TOKEN Procedure
0 READSTR .
.11 HRITESTR
General Routines
.1 TRACE Procedure
.2 HALT Procedure .
System Interface Routines

—
[y

—
—

[
« . P T R S T S Y e & e e 8 s e s e e e e e o e e s e e e o . « e e e

Co 0o 00 O ~N~ (e e Wo We We We We Je Yo e N e) oo Ea S R R I NN NWWN NN =

e o e e e s e e e e e L S e e e e b s Ys e e e .

1 DATETIME Procedure

11.8.2 CLOCK Function

11.8.3 PARMS Function

11.8.4 RETCODE Procedure
12.0 The % Feature
12.1 The %INCLUDE Statement
12.2 The %CHECK Statement
12.3 The %PRINT Statement
12.4 The %LIST Statement
12.5 The %PAGE Statement
12.6 The %CPAGE Statement
12.7 The ZTITLE Statement
12.8 The %SKIP Statement
APPENDIXES e« o o o o o ® s o o o 8 s s o s e s s s s e e e s s s s s e e e s s s e

Contents

115
115
116

117
118
118
118
119
120
121
121
121
122
122
122
123
123
124
125
125
125
126
126
127
127
128
129
129
129
130
130
131
131
132
132
133
133
134
134
135
135
136
136
136
137
137
138
138
139
139
140
140
161
162
142
1642
143
143
143
164
1644

145
146
146
146
146
146
146
146
146

147

ix

++ +

X

The Space Type .« s s .
The Space Declaration
Space Referencing

Standard Identifiers in Pascalsvs

syntax Diagrams e e e .
Index to syntax Diagrams

Glossary e e s s e s s

Pascals/VS Reference Manual

149
149
149
151
153
165
167

169

"The language Pascal was designed by
Professor Niklaus Wirth to satisfy two
principal aims:

U to make available a language suit-
able for teaching programming as a
systematic discipline based on cer-
tain fundamental concepts clearly
and naturally reflected by the lan-
guage.

U to define a language whose implemen-
tations could be both reliable and
efficient on then available comput-
ers."

(Pascal Draft Proposal IS0/TC 97/SC 5
N595, January, 1981)

Pascals/VS is an extension to standard
Pascal. The purpose of extending Pascal
is to facilitate application program-
ming requirements. Among the extensions
are such features as separately compil-
able external routines, internal and
external static data, and varying length
character strings.

Pascal is of interest as a high level
programming language for the following
reasons:

1.1 PASCAL LANGUAGE SUMMARY

1,0 INTRODUCTION TO PASCAL/VS

It provides constructs for defining
data structures in a clear manner.

It is suitable for applying struc-
tured programming techniques.

The language is relatively
machine-independent.

Its syntax and semantics allow
extensive error diagnostics during
compilation.

A program written in the language
can have extensive execution time
checks.

Its semantics allow efficient
object code to be generated.

Its syntax allows relatively easy
compilation.

The language is relatively well
known and is growing in popularity.

This section of the manual is meant to be a capsule summary of Pascal/VS. It should

serve as a brief outline to the language.

of this document.

1.1.1 syntax

The details are explained in the remainder

The syntax is described with an example-like format that summarizes the important
features of the item. The following rules are the conventions used.

cee indicates that the item preceding this symbol may be repeated an
arbitrary number of times.

L1 encloses items which are optional.

[1 denote the standard square brackets of Pascal.

item-comma-list indicates that the item may be repeated, separating each occurrence

with a comma.

digit-list refers to a sequence of one or more digits ("0".."9"),

binary-digits refers to a sequence of one or more binary digits ("0" or "1").

hex-digits refers to a sequence of one or more hexadecimal digits ("0".."9" or
"A" . .U'F") .

id refers to an identifier.

label refers to either an identifier or an integer numbér in the range
0..9999,

directive refers to any one of: FORWARD, EXTERNAL, FORTRAN, MAIN, or
REENTRANT.

Introduction to Pascals/V$s 1

field-list

1.1.2 Modules

program

SEGMENT

refers to the list of fields that compose the body of a record data
type.

is a self-contained and independently executable unit of code.

program id [(id-comma-list)] ;
declaration...
compound-statement

is a shell in which procedures and functions may be separately com-
piled.

SEGMENT id ;
declaration...

1.1.3 Dpeclarations

label

const

type

var

def

ref

static

value

is used to declare a label in a program, procedure or function.

label
label-comma-list ;

declares an identifier that becomes synonymous with a compile time
computable value.

const
id = constant-expression ;
I id = constant-expression ; 1..

declares an identifier which is a user-definad data type.

type
id = data-type ;
I id = data-type ; 1...

declares a local variablae.

var
id-comma-list : data-type ;
I id-comma-list : data-type ; 1...

declares a variable which is defined in onae module and may be refer-
enced in other modules.

def
id-comma-list : data-type ;
I id-comma-list : data-type ; 1...

declares a variable which is defined in another module.

ref
id-comma-list : data-type ;
I id-comma-list : data-type ; 1

declares a variable which persists for the entire execution of the
program.

static
id-comma-list : data-type ;
I id-comma-list : data-type ; 1...

assigns a value to a def or static variable at compile time.
value

variable
I variable

constant-assignment-statement ;
constant-assignment-statement ; J...

2 Pascals/VS Refarence Manual

procedure defines a unit of a module which may be invoked as a statement.

procedure id [(parameter [; parameterl...) 1 ;
directive ;
or
procedure id [(parameter [; parameterl]...) 1 ;
declaration...
compound-statement ;

function defines a unit of a module which may be invoked and returns a value.

function id [(parameter [; parameterl...) 1 : id ;
directive ;

or
function id L (parameter [; parameterl...) 1 : id ;

declaration... -
compound-statement ;

1.1.4 Data-Types

id is an identifier that was previously declared as a type.
enumeration is a list of constants of a user-defined scalar data type.
(id-comma-list)
subrange is a continuous range of a scalar type.
I packed] constant .. constant-expression
array is a data structure composed of a list of homogeneous elements.
L packed 1 array [data-type] of data-type
record is a data structure composed of a list of heterogeneous fields.
[packed 1 record
[id-comma-list : data-type ; 1...
[case [id :1 id of
constant-comma-list : (field-list) ;
[constant-comma-list : (field-list) ; J... 1
end
set is a collection of zero or more scalar values.
I packed] set of data-type
file is a sequence of data to be read or written by a Pascal program.
file of data-type
pointer is a reference to a variable that is created by the programmer.

? id

1.1.5 Parameters

value designates a pass-by-value parameter.
id-comma-list : id
var designates a pass-by-reference (read/write) parameter.

var id-comma-list : id
const designates a pass—-by-reference (read-only) parameter.

const id-comma-list : id

Introduction to Pascal/V$s

procedure is the mechanism whereby a procedure may be passed to the called
procedure (function) and executed from there.
procedure id [(parameter [; parameterl...) 1 ;

function is the mechanism whereby a function may be passed to the called pro-
cedure (function) and executed from there.

function id [(parameter [; parameterl...) 1 : id ;

1.1.6 statements

Every statement may be preceded with one label:

[label:] statement

assert tests a condition that should be true and if not causes a runtime
error to be produced.

assert bool-expression

assignment assigns a value to a variable.
variable := expression
case causes any one of a list of statements to be executed based upon the

value of an expression.

case expression of
L constant-comma-list : statement ; 1...
[othernise
statement [; statement 1... 1

end
compound is a series of statements enclosed within begin/end brackets.
begin
statement [; statement 1...
end
continue resumes execution of the next iteration of the innermost loop. The
termination condition is tested to determine if the loop should con-
tinue.
continue
emrpty contains no executable code.
for is a loop statement that modifies a control variable for each ijiter-
ation of the loop.
for variable := expression to expression do
statement
or
for variable := expression doknto expression do
statement
goto changes the flow of your program.
goto label
if causes one of two statements to be executed based on the evaluation

of an expression.

if bool-expression then
statement

I else
statement 1

leave terminates the execution of the innermost loop. Execution resumes
as if the loop termination condition were true.

4 Pascal/VS Reference Manual =

J

call

repeat

return

while

With

leave

invokes a procedure. At the conclusion of the procedure, execution
continues at the next statement.

id L (expression-comma-list) 1

is a loop statement with the termination test occurring at the end
of the loop.

repeat
statement [; statement 1...
until bool-expression

terminates the executing procedure (function) and returns control
to the caller.

return

is a loop statement with the termination test occurring at the
beginning of the loop.

Khile bool-expression do
statement

permits complicated references to fields within a record to be
treated as simple variables within a a statement.

With variable-comma-list do
statement

1.1.7 Expressions

An expression

is composed of operands combined with operators. The operatars have

the following precedence:

1.1.8 Operands

variable

constant

not operator (highest)
multiplying operators

adding operators

relational operators (lowest)

represents a unit of storage which may be referenced and altered.

simple variable: id

array: variable [expression 1]
field: variable . id

pointer: variable a

represents a literal value.

INTEGER digit-list
' hex~-digits 'X
' binary-digits 'B

REAL digit-list . digit-list [E+/- digit-list]
' hex-digits 'XR
BOOLEAN FALSE/TRUE
CHAR EBCDIC character in single quotes
string EBCDIC characters in single quotes
' hex-digits 'XC
array id (expression [: expressionl
I , expression [: expression] 1...
record id (expression [, expressionl...)

set-constructor refers to an operand that describes the values of a set.

[expression [.. expression 1
I , expression [.. expression 1 1... 1

Introduction to PascalsV$s 5

function-call

parenthesized-expression is used to override the normal precedence of operators.

refers to the invocation of a function.

id [(expression-comma-list)} 1

(expression)

1.1.9 special symhols

symbol

meaning

20 2O — 1 N X |+

o

VVAAIL

e

or

or
or
or
or

KNS mdrass M) =

N X

Moo M~

<> or -t

~ K e

addition and set union operator

subtraction and set difference operator

multiplication and set intersection operator

division operator, REAL results only

BOOLEAN not, one's complement on INTEGER

or set complement

BOOLEAN or, logical or on INTEGER

BOOLEAN and, logical and on INTEGER

BOOLEAN xor operator, logical xor on INTEGER
and set exclusive union

equality operator

less than operator

less than or equal operator

greater than or equal operator

greater than operator

not equal operator

right logical shift on INTEGER

left logical shift on INTEGER

catenation operator

assignment symbol

period to end a module

field separator in a record

comma, used as a list separator

colon, used to specify a definition

semicolon, used as a statement separator

subrange notation

quote, used to begin and end string constants

pointer symbol

left parenthesis

right parenthesis

left square bracket

right square bracket

comment left brace (standard)

comment right brace (standard)

comment left brace (alternate form)

comment right brace (alternate form)

1.1.10 Identifiers

Identifiers are composed of the letters "a" through "z", the digits "0" through "9"
and the special characters "_" and "$". An identifier must begin with a letter or
"$Y and must be unique in the first 16 positions. There is no distinction between

the an upper case letter and its lower case equivalent.

6 Pascal/VS Reference Manual

J

1.1.11

The Not Operator

operator operation operands result

- (not) boolean not BOOLEAN BOOLEAN

- (not) logical one's INTEGER INTEGER

complement
- (not) complement set of T set of T
1.1.12 Multiplying Operators

operator operation operands result

* multiplication INTEGER INTEGER
SHORTREAL SHORTREAL
REAL REAL
mixed REAL

/ real division INTEGER REAL
SHORTREAL SHORTREAL
REAL REAL

. mixed REAL

div integer division INTEGER INTEGER

mod modulo INTEGER INTEGER

& (and) boolean and BOOLEAN BOOLEAN

& (and) logical and INTEGER INTEGER

* set intersection set of t set of t

|} string catenation STRING STRING

<< logical left shift| INTEGER INTEGER

>> logical right INTEGER INTEGER

shift
1.1.13 Adding Ovparators

operator operation operands result

+ addition INTEGER INTEGER
SHORTREAL SHORTREAL
REAL REAL
mixed REAL

+ set union sot of t sat of t

- subtraction INTEGER INTEGER
SHORTREAL SHORTREAL
REAL REAL
mixed REAL

- set difference set of t set of t

| Cor) boolean or BOOLEAN BOOLEAN

| (om) logical or INTEGER INTEGER

&& (xor) boolean xor BOOLEAN BOOLEAN

&& (xor) logical xor INTEGER INTEGER

&& (xor) exclusive union set of t sat of t

Introduction to Pascal/Vvs

7

1.1.14 PRelational Operators

operator operation operands result
= compare equal any set, scalar, pointer BOOLEAN
or string
<> (-=) not equal any set, scalar, pointer BOOLEAN
or string
< less than scalar type or string BOOLEAN
<= compare < or = scalar type or string BOOLEAN
<= subset set of t BOOLEAN
> compare greater scalar type or string BOOLEAN
>= compare > or = scalar type or string BOOLEAN
>= superset set of t BOOLEAN
in set membership t and set of t BOOLEAN
1.1,15 Reserved lords
and end of space
array file or . static
assert for otheruise then
begin function packed to
case goto procedure type
const 1f procgram until
continue in ranga value
dof label record var
div leave ref while
do rod rereat With
douwnto nil return xor
else not set
1.1.16 Predefined Constants
ALFALEN length of type ALFA, value i1s 8
ALPHALEN length of type ALPHA, value is 16
FALSE constant of type BOOLEAN, FALSE < TRUE
MAXINT maximum value of type INTEGER: 2147483647
MININT minimum value of type INTEGER: -2147483648
TRUE constant of type BOOLEAN, TRUE > FALSE

1.1.17 pPredefined Types

ALFA
ALPHA
BOOLEAN
CHAR
INTEGER
REAL

8 Pascals/VS Reference Manual

packed array[1..ALFALEN] of CHAR

packed arrayl 1..ALPHALEN] of CHAR

data type composed of the values FALSE and TRUE

character data type

integer data type

floating point represented in a 64 bit value

SHORTREAL
STRINGPTR

TEXT

floating point represented in a 32 bit value

is a predefined type that points to a STRING whose maximum length is

determined when the STRING is allocated with NEW
file of CHAR

1.1.18 Predefined Variables

INPUT
OUTPUT

default input file
default output file

1.1.19 predefined Functions

The following symbols represent parameters in the descriptions
of the predefined functions and procedures.

ABS(X)
ARCTAN(Xx)
CHR(N)
CLOCK
COLS(f)
COMPRESS(s)
Cos(x)

DELETE(s,nl,n2)

EOF(f)
EOLN(¥)
EXP(x)
FLOAT(n)
HBOUND(AL,nl)
HIGHEST (%)
INDEX{sl,s2)
LBOUND(al,nl)
LENGTH(S)
LN(x)
LOWEST(X)
LTRIM(S)
MAXI(XI,x)...)
MAXLENGTH(s)

= an array variable

a file variable

a positive integer expression
pointer valued variable

a string expression

a variable

any arthimetic expression

X<UNT 3 -ho
i annn

computes the absolute value "x"

returns the arctangent of "x"

returns the EBCDIC character whose ordinal value is "n"
returns the number of micro-seconds of axecution
returns current column of file "f"

replaces multiple blanks in "s" with one blank

returns the cosine of "x"

returns "s" with characters "nl" through "n2" removed
tests file "f" for end-of-file condition

tests file "f" for end-of-line condition

computes the base of the natural log (e) raised to to the power "x"
converts "n" to a floating point value

determines the upper bound of array "a"

determines the maximum value the type of a scalar "x"
returns the location, if present, of "s2" in "sl"
determines the lower bound of array "a"

determines the current length of string "s"

returns the natural logarithm of the "x"

determines the minimum value the type of a scalar "x"
returns "s"™ with leading blanks removed

determines the maximum value of a list of scalar expressions

determines the maximum length of string "s"

Introduction to Pascal/Vs

MIN(x[,x1...)

opD(n)
ORD(Xx)
PARMS
PRED(x)
RANDOM(nN)
ROUND(X)
SIN(x)
SIZEOF(x)
SQRT(X)
SQRI(x)
STR(a)

SUBSTRI(s,nl,n2)

sUCC(x)
TRIM(s)
TRUNC(x)

1.1.20

determines the minimum value of a 1list of scalar expressions
returns TRUE if integer "n" is odd

converts a scalar value "x" to an integer

returns the system dependent invocation parameters

obtains the predecessor of scalar expression "x"

returns a pseudo-random number, "n"™ is the seed value or zero
converts a floating point value to an integer value by rounding
returns the sine of "x"

determines the memory size of a variable or type

returns the square root of "x"™

returns the square of "x"

converts array of characters "a" to a string

returns the substring of "s" from "nl" to "n2"

obtains the successor of scalar "x"

returns "s" with trailing blanks removed

converts floating point expression "x" to an integer by truncating

Predefined Procedures

CLOSE(f)

DATETIME(al,a2)

DISPOSE(p)
GET(f)
HALT

HARK (p)

NEW(p,[,x]...)

PACK(al, x,a2)
PAGEIL(f)]
PDSIN(f,s)

PDSOUT(f,s)

PUT ()

closes a file

returns the current date in "al™ and time of day in "az2"
deallocates a dynamic variable

advances file pointer to the next element of input file "f"
halts the programs execution

creates a new heap, "p" designates the heap

allocates a dynamic variable from the most recent heap
copies array "al" starting at index "n" to packed array "a2"
skips to the top of the next page

opens file "f" for input, "s" designates the open options which must
specify the member name

opens file "f" for output, "s" designates the open options which
must specify the member name

advances the file pointer to the next element of output file "f"

READ(If,lvI,v]...) reads data from file "f" into variable "v"

READLN(If,]1vI,v]...) reads variable "v" and then skips to end-of-line of TEXT file

"f"

READSTR(S,VvI,v]...) reads data from string "s" into variable "v"

RELEASE(p)

RESET(fIl,s])

10 Pascal/VS Reference Manual _ _

destroys one or
destroyed

more heaps, "p" designates the last heap to be

opens file "f" for input, "s" designates the optional open options

RETCODE(n)
REWRITE(fL,s])
SEEK(f,n)

TERMIN(f[,s])

TERMOUT(fL,s1)

TOKEN(S,V)
TRACE(f)
UNPACK(al,a2,n)
UPDATE(fIL,sl])

TNL SN20-4446 (31 December 81) to SH20-6168-1

sets the system return code

opens file "f" for output, "s" designates the optional open options
modi fies the current position of file "f' so that next GET (or PUT)
reads (or writes) record number "n", where record 1 is the first
record of the file

opens file "f"for input from the users terminal, "s" designates the
optional open options

opens file "f"for output from the users terminal, "s" designates the
optional open options

extracts tokens from string "s" updating starting position "v"
writes the procedure and function invocation history to file "f"
copies packed array "al" to array "a2" beginning at index "n"

opens file "f" for update, a PUT immediately following a GET of a

record of the file replaces that record, "s" designates the optional
open options

WRITE(Lf,Ix[,x]...) writes the value of "x" to file "f"

WRITELN(Lf,IxI[,Xx]...) writes the value of "x" and then writes an end-of-line to TEXT

file "f"

WRITESTR(S,xI,XxJ...) writes the value of "x" to string "s"

1.1.21 % Include Statuments

%CHECK
%CPAGE n

%INCLUDE
%LIST ON/OFF
%MARGINS n m

%PAGE

%PRINT ON/OFF
%SKIP n
%TITLE

enables or disables execution time checking features.

skips to the next page if less than "n" lines remain on the current
page

includes source code from a library.
enables or disables the pseudo-assembler listing.

resets the left margin of the source program to "n" and the right
margin to "m",

forces the source listing to start on a new page.
enables or disables the source listing.
inserts "n" blank lines into the source listing.

specifies a title for the listing.

Introduction to Pascal/V$s 11

2.0 THE BASE VOCABULARY

C

2.1 IDENTIFIERS

Syntax:
id:
>
>{digit}——>
—>{letter} >(1etter}——————>}———>
t--->{underscorel}--> w
<
where:
(letter} is 'A'y 'B'y . e 'Z')'a'y'b') PRI 'Z' or '$'
{digit} is "0, '1', ..., '9"'
underscore is '_"'
Identifiers are names given to vari- external routines. You must make sure
ables, data types, procedures, func-— that identifiers used as external names
tions, named constants and modules. are unique in the first 8 characters.
‘ correct: incorrect:
I 5K
K9 NEW JERSEY 2.2 LEXICAL SCOPE OF IDENTIFIERS
New_York
AMOUNTS

The area of the module where a partic-
Valid and Invalid Identifiers ular identifier can be referenced is
called the lexical scope of the identi-
fier (or simply scope).

In general, scopes are dependent on the

Pascal/VS permits identifiers of up to structure of routine declarations.
16 characters in length. You may use Since routines may be nested within oth-
longer names but Pascals/V$S will ignore er routines, a lexical level is associ-
the portion of the name longer than 16 ated with each routine. In addition,
characters. You must assure identifiers record definitions define a lexical
are unique within the first 16 scope for the fields of the record.
positions. Within a lexical level, each identifier
can be defined only once. A program
There is no distinction between lower module is at level 0, routines defined
and upper case letters within an identi- within the module are at level 1; in
fier name. For example, the names general, a routine defined in level i
"ALPHA', 'alpha', and "Alpha' are equiv- would be at level (i+l). The following
alent. diagram illustrates a nesting
structure.

There is an implementation restrictions
on the naming of external variables and

The Base Vocabulary 13

program M (level 0)

propedure A (level 1)

procedure B (level 2)

type
record
R1:...
R2:...
end;

function ¢
(lavel 3)

procedure D (level 2)

function X (level 1)

procedure Y (level 2)

procedure Z (level 2)

The scope of an identifier is the entire
routine (or module) in which it was
declared; this includes all routines
defined within the routine. The follow-
ing table references the preceding dia-
gram.

14 Pascals/VS Reference Manual

identifiers

declared in: are accessible in:

Module M
procedure A
procedure B
type R
function C
procedure D
function X
procedure Y
procedure Z

»D,X,Y,2Z

N XoOww>»3X

If an identifier is declared in a rou-
tine which is nested in the scope of
another identifier with the same name,
then the new identifier will be the one
recognized when its name appears in the
routine. The first identifier becomes
inaccessible in the routine. In other
words, the identifier declared at the
inner most level is the one accessible.

The scope of a field identifier defined
within a record definition is limited to
the record itself. The scope of a
record may be accessed by either field
referencing (see "Field Referencing"™ on
page 68) or with the with-statement (see
"The With Statement™ on page 100).

The Pascal/Vs compiler effectively
inserts a prelude of declarations at the
beginning of every module it compiles.
These declarations consist of the prede-
fined types, constants, and routines.
The scope of the prelude encompasses the
entire module. You may re-declare any
identifier that is predefined if vyou
would like to use the name for another
purpose.

2.3 RESERVED WORDS

Reserved Words
and end of + space
array file or + static
+ assert for otheruise then
begin function packed to
case goto proccdure type
const if program until
+ continue in range + value
+ def label record var
div + leave ref while
do mrod repeat with
dounto nil return + xor
else not set
note: those words marked by '"+' are not reserved in standard Pascal

PascalsVs reserves the identifiers
shown above for expressing the syntax of
the language. These reserved words may
never be declared by vyou. Reserved
words must be separated from other
reserved words and identifiers by a spe-

cial symbol, a comment,

blank.

or at least one

A lower case letter is treated as equiv-
the corresponding upper case
letter in a reserved word.

alent to

The Base Vocabulary

15

+ + +

2.% SPECIAL SYMBOLS

Special Symbols

symbol meaning

+ addition and set union operator
subtraction and set difference operator

* multiplication and set intersection operator

/ division operator, REAL result only

- BOOLEAN not, one's complement on INTEGER or set complement
| BOOLEAN or, logical or on INTEGER

& BOOLEAN and, logical and on INTEGER

&8 BOOLEAN xor operator, logical xor on INTEGER

and set exclusive union

equality operator

< less than operator

<= less than or equal operator

>= greater than or equal operator
> ogreater than operator

<> or == not equal operator

>> right logical shift on INTEGER
<< left logical shift on INTEGER

[catenation operator

t= assignment symbol

period to end a module

. field separator in a record

» comma, used as a list separator

colon, used to specify a definition

H semicolon, used as a statement separator
subrange notation

quote, used to begin and end string constants

o~ -
.

or —> pointer symbol
(left parenthesis
) right parenthesis
[or (. left square bracket
]l or) right square bracket
{ or (% comment left brace (standard)
} or %) comment right brace (standard)
/% comment left brace (alternate form)
¥/ comment right brace (alternate form)

Symbol Reserved Word
Special symbols used by Pascal/VS are ~ not
listed above. Several special symbols | or
may also be written as a reserved word. & and
These symbols are shown in the following &8 xor

table.

16 Pascal/VS Reference Manual

2.5 COMMENTS

Pascal/Vs supports two forms of
comments: '{ ... }' and '"/¥%...%/'. The
curved braces are the standard comment
symbol in Pascal. The symbols '(%' and
'¥)'" are considered by the compiler to
identical to left and right braces. The
form of comment using '/%¥' and '"%/' is
considered to be distinct from the form
using braces.

When the compiler encounters the symbol
'{', it will bypass all characters,
including end-of-line, until the symbol
'} is encountered. Likewise, all
characters following v/ will be
bypassed until the symbol "¥/' is detec-
ted. As a result, either form may be
used to enclose the other; for example
7%, .. {...}...% is one comment. One use
of these two forms of comments is to use

one for ordinary comments and use the
other to block out temporary sections of
code: a "/¥...¥/' comment could be used
to indicate a temporary piece of code,
or perhaps debugging statements.

A comment may be placed anywhere in a
module where a blank would be
acceptable.

/%
if A = 10 then { this statement is
for program
debugging }
WRITE('A IS EQUAL TO TEN'");
X/

Example of a nested Comment

The Base Vocabulary 17

+ + + +

+

2.6 CONSTANTS

Syntax:
unsigned-integer:
>{digit} I >
[L |
—==> ' ———7——- >{binary digit}---7--~ > 'B ~-->
i Too2tbinary digit)—-- T
beee> ¥ e >{h -digit}-—~—7--- > W o—mmm - >4
Too22thexzdigiti——7 X
real-number:
—_—T-=> ' ———7-—- >{hex-digit}--—1--- > "R === >
eI thextdigiti—— T 1
———Tf——>(digit}———r——————o ———T———>(digit) { >
< <
<
<
> E l. >(digit} | >
—> + —)J <
> - >
unsigned-number:
>{unsigned-integer} > >
__--ql::::>(r‘eal-number)-———-———-—>-r
string:
> ! > ! >
| L (char‘acter~)<——-—--| l
Leee> —--I-—->(hex-digit}---I-—-> '™XC -=-=——- >4
(_________________
unsigned-constant:
—>{unsigned-number} >
——>{string} >
——>{id:constant} >
——> nil >
constant:
———T———>(unsigned-constant} - T >
> + > - >
>t >J {unsigned—-number}
where:
{binary-digit} is "0 or "1°,
{digit} is "0' through '9"';
{hex-digit} is '0" through '9"' and 'A' through 'F';
{character} is any EBCDIC character.

Constants can be divided into several
categories according to the predefined
type to which they belong. An unsigned
number will conform to either a REAL or

an INTEGER. Strings will conform to the
type STRING or packed arrayl(l..n]l of
CHAR. In addition, if the string is one

character in length, it will conform to

the type CHAR.

18 Pascals/VS Reference Manual

is to be used within a
string, then the quote must be written
twica. Lower case and upper cise let-
ters are distinct within string con-
stants. String literals are not
permitted to extend past the end of line
of a source line. Longer strings can be
formed by catenating shorter strings.

If a single quote

T O e ok o o 2 o b I

Nil is of a special type which will con-
form to any pointer type. It represents
a unique pointer value which is not a
valid address.

The constants TRUE and FALSE are prede-

fined in the language and are of the
standard type BOOLEAN.

Integer hexadecimal constants are
enclosed in quotes and suffixed with an
X' or 'x'. Integer binary constants
are enclosaed in quotes and suffixed with
a "B or 'h'.

Hexadecimal constants may be used in any
context where an integer constant is
appropriate. If you do not specify 8
hexadecimal digits (i.e. 4 bytes), Pas-
cals/VS assumes that the digits not sup-

plied are =zeros on the left. For
example, "F'x is the value 15.
Floating point hexadecimal constants

are enclosed in quotes and suffixed with
an '"XR' or 'xr'. Such constants may be
used in any context where a real con-

stant is appropriate. If you do not
specify 16 hexadecimal digits (i.e. 8
bytes), Pascal/VS assumes that the dig-

its not supplied are zeros on the right.
For example, '4110'xr is the same as
'411000000000000"xr.

String

hexadecimal constants are
enclosed in quotes and suffixed with an
'XC' or 'xe'. Such constants may be
used in any context where a string con-

stant 1s appropriate. There must be an

+ 4+ + +

++ A+ A+ ++

TNL SN20-4446 (31 December 81) to SH20-6168-1

even number of digits within a hexadeci-
mal string constant; that is, you must
speci fy each character fully that is to
be in the string.

The symbol 'E' or 'e' when used in a
real-number expresses 'ten to the power
of'.

Pascal/VS permits constant expressions
in places where the Pascal standard only

permits constants. Constant expres-
sions are evaluated and replaced by a
single result at compile time. Seg

"Constant Expressions" on page 76 for a
description of constant expressions.

constant matches standard type
0 INTEGER
-500 INTEGER
1.0 REAL
314159E-5 REAL
0ED REAL
1.0E10 REAL
TRUE BOOLEAN
"FF'X INTEGER
TAY CHAR
"ABC! STRING
'C1C2C2"xc STRING
"4E800000FFFFFFFFYxr REAL
'abc! STRING
e STRING
rer vy CHAR
v CHAR
L STRING
'Thats''s all ' STRING

Examples of Constants

The Base Vocabulary 19

O R W PR PR R R R R S AR R T I O T O b TR SRR T N S S o o i i g o

PO 2 2 I T I 3

TNL SN20-4446 (31 December 81) to SH20-6168-1

2.7 STRUCTURED CONSTANTS

Syntax:

structured-constant:

-——I—-->{record—structure}———I --- >
-—-->{array-structurel}--->

record-structure:

-—-->{id:type}--—-> (——->]
[$ooTToTIiIIIIIIIT .
--1--1-—>{constant-expr}--v--> {repetition}--y—-7--71—-->) -————————- >
T sk ST
| temmmmemm e >
B e et y Cmmmm e 4
repetition:
-~-->{constant-expr}--------- - --------------—\—\—"\—\-"—"—--"—\——— - >

note: must evaluate to positive integer.

Structured constants are
which are of a

constants
structured type. The is used to specify records.
the type identifier which i1s used in its
definition. These constants may be used

in constant declarations, value decla- order declared.

| The second kind of structured constant
+ Record con-~-
type of the constant is determined by + stants are specified by a list of con-
+ stant expressions where each expression
defines one field of the record in the
You may omit a field of

rations or in executable statements.

There are two kinds of structured con-
stants: one is used for arrays and the
second is used to specify records.

Array constants are specified by a list
of constant expressions where each
expression defines one element of the
array. See "Constant Expressions™ on
page 76 for a description
of constant expressions. You may omit
an element of the array within the list
in which case the value of that element
is not defined. Elements may be omitted
at the end of the array in which case
the value of those elements are also not
defined. You may follow the constant
expression With a colon and a repetition
expression; this is used to specify that
the first constant expression is to be
repeated.

+ + +

the record within the list by specifying
nothing between two commas, in which
case the value of that field is not
defined.

Values within the list may correspond to
fields of a redord's varient part. In
order for the compiler to know which
variant 1is being referenced, the tag
field value must be specified immediate-
ly prior to those values which are to be
assigned to the variant fields. (See the
examples below.) The tag field must be
specified even if it does not exist as a
field. (This occurs when only a tag type
is specified.)?

The type identifier that begins a struc-
tured constant may be omitted if the
structured constant is imbedded within
another structured constant. This sim-
plifies the syntax for structured con-
stants which are multidimensional

1 If the tag field is a "refer-back™ type (see "Variant Part" on page 45) then
it will need to be specified twice in the list: once to be assigned a value,
and again to identify the variant being referenced.

20 Pascal’/VS Reference Manual

<

+H+ A+t

+ 4+ + + o+

+ + + +

+ + +

TNL SN20-4446 (31 December 81) to SH20-6168-1

arrays or records with structured
fields.
type
COMPLEX = record
RE,IM: REAL
end;
VECTOR = arrayll..7] of INTEGER;
CARRAY = arravio0..9] of COMPLEX;
TETRA = arrayll..3,1..2,1..41
of INTEGER;
const
{ Structured Constants }
THREEFOUR = COMPLEX(3.0,4.0);
VECTOR_1 = VECTOR(7,0:5,1);
VECTOR_2 = VECTOR(2,3,,4);
ZEROTETRA =
TETRA(
C (0:6):2),
((0:4),(0:4)),
(¢ (0,0,0,0),¢0,0,0,0)));

{the following two declarations
are equivalent

VECTOR_3 = CARRAY(
COMPLEX(1.0,0.0),
COMPLEX(1.0,1.0):8,
COMPLEX(0.0,1.0));

VECTOR_4 = CARRAY(

(1.6,0.0),
(1.0,1.0):8,
(0.0,1.0));

Examples of Structured Constants

type
FORM = (FCHAR,FINTEGER,FREAL,
FSTRING);
KONST =
record
SIZE: INTEGER;
case F: FORM of
FCHAR: (C: CHAR);
FINTEGER: (I: INTEGER);
FREAL: (R: REAL);
FSTRING: (
case BOOLEAN of
TRUE: (
LEN: packed 0..32767;
A ALPHA);
FALSE:(S: STRING(16));
end
const
A = KONST(1,FCHAR,"A");
PI = KONST(8,FREAL,3.14159);
BLANK =

KONST(1,FSTRING.FALSE,"' ');
STARS =
KONST(4, FSTRING, TRUE, &, "%%%X');

Structured constants with
variant record fields

The Base Vocabulary 20.1

TNL SN20-4446 (31 December 81) to SH20-6168-1

20,2 Pascals/Vs Reference Manual

+ o+t r—++ + 4+ +++

PR

3.0 STRUCTURE OF A MODULE

Syntax:
module:
(o3 (eomant-modula) -] ”
program-module:
—> program >{id} |_ > L<_>“,d1 >) J >~‘
________________________________ >
< ; <
<
————>{dec1aration}———>J
—>{compound-statement} > . >
declaration:
—T—>{label-dcl}——>
——>{constant-dcl} >
——>{type-dcl}—>1
>{var-decl}——>
r-=->{def-dcl}--------- >4
r--—->{static-dcl}------ >
t-—-->{value-dcl}-—------ >4
>{routine-dcl} >
segment-module:
-—-> SEGMENT --->{id}---> ; -——>]
P ===
F——->{constant-dcl}---->
F-~~>{type-dcl}-—-—-—---—- >
F--=->{var-dcl}---——--——- >
H-—->{def-dcl}--—~-~--- >
F-—->{static-dcl}--——--- >
F--->{value-dcl}------- >
F--->{routine-dcl}----- >
b e > e e >
A module is an independently compilable The program 1is the module which gains
unit of code. There are two tvpes of initial control when the compiled pro-

modules in Pascals/VS: the program module
and the segment module.

gram is invoked from the system loader.
It is effectively a procedure that the
loader invokes. The body of & program

Structure of a Module 21

P N s

module is identical to the body of a
procedure.

A segment module may be compiled as a
unit independent of the program module.
It consists of routines that are to be
linked into the final program prior to

The optional identifier list following
the program identifier is not used by
Pascal/Vs. The identifiers will be
jgnored.

A program is formed by linking a program
module with segment modules (if any) and

execution. Data is passed to routines with the Pascal/VS execution library and
through parameters and external vari- libraries that you may supply.
ables. Segments are useful in breaking
up large Pascal/VS programs into smaller + Pascal/VS allows declarations to be giv-
units. + en in any order. This is an extension
+ to Pascal and is provided primarily to
The global automatic variables of the + permit source that is INCLUDEd during
program module may be accessed in a seg- + compilation to be independent of any
ment module. See "The Var Declaration™ + ordering already established in the mod-
on page 26 for an explanation. + ule. The standard ordering for
+ declarations is shown in the diagram for
The identifier following the reserved + declarations. (For a description of the
word "program" must be a unique external + INCLUDE facility see "The ZINCLUDE
name. The identifier following the word + Statement"™ on page 146.)
"SEGMENT" may be the same as one of the
EXTERNAL routines in the segment or may Every identifier must be predefined or
ba a unique external name. Thus, a declared by vyou before it is wused.
function called SIN could be in a seg- There is one exception to this rule: a
ment called SIN. An external name is an definition of a pointer may refer to an
identifier for a program, segment, def identifier before it is declared. The
or ref variable, EXTERNAL routine, MAIN identifier must be declared later or a
procedure or a REENTRANT procedure. compile-time' diagnostic will be
produced.
Pascal/VS program
modules r
[
program—module segment-modules

execution-library

program EXAMPLE;
var
I : INTEGER;
hegin
for I:=0 to 1000 do
if I mod 7 = 0 then
WRITELNC I:5,
' IS DIVISIBLE BY SEVEN')
end.

Example of a Program Module

SEGMENT COSINE;
function COSINE
(X : REAL) : REAL; EXTERNAL;

function COSINE;
var S: REAL;
begin

S := SIN(X);

COSINE := SQRT(1.0 - S5%S)
end;

Example of a Segment Module

22 Pascal/VS Reference Manual

Pascal/VS provides you with 10 types of
declarations:

* label
U const
U type
. var

.1 THE LABEL DECLARATION

o+

%.0 PASCAL/VS DECLARATIONS

def

ref
static
value
procedure

function

Syntax:

label-dcl:

—> label >{label} >
|:< , < I

label :

>{unsigned-integer}
[S idymmmomn 2220 >

Note: the values of the unsigned integer must be in the subrange 0..9999.

A label declaration is used to declare
labels which will appear in the routine
and will be referenced by a goto state-
ment within the routine. All labels
defined within a routine must be
declared in a label declaration within
the routine.

A label ~ay be either an unsigned inte-
ger or an identifier. If the value is
an unsigned integer it must be in the
range 0 to 9999.

Error_exit;

A Label Declaration

Pascals/VS Declarations

23

6.2 THE CONST DECLARATION

Syntax:

constant-dcl:

+ —> const ———I———>{id}———> = —>{constant-expr}
<

A constant declaration allows vyou to
+ assign identifiers that are to be used
+ as synonyms for constant expressions.
The type of a constant identifier is
determined by the type of the expression
in the declaration.

264 Pascal/VS Reference Manual

const
BLANK
BLANKS
FIFTY
A
B
C_SQUARED
ORD_OF_A
PI
MASK
ALFALEN
ALPHALEN
LETTERS
MAXREAL

L O O T T O IO F O N VI E AT

L ';

L ';

50;

FIFTY;

FIFTY ¥ 10/(3+2);

A¥A + B¥B;

ORD('A');
3.14159265358;
"8000'X | '0400'X;

8;

16;

['A'..'Z",'a'..'2"]
"7FFFFEFFFFFFFFFF'xr;

Constant Declarations

4.3 THE TYPE DECLARATION

L Syntax:

type-decl:

—> type [>{id} > = >{typel > >
<

A type declaration allows you to define
a data type and associate a name to that

type. Once declared, such a name may be type
used in the same way as a predefined
type name. { all of the following types }
{ are predefined in Pascals/Vs }
INTEGER = MININT..MAXINT;
BOOLEAN = (FALSE,TRUE);
ALFA = packed arrayll1..ALFALEN]
of CHAR;
ALPHA = packed arrayll..ALPHALEN]
of CHAR;
TEXT = file of CHAR;

Type Declarations

Pascals’/V¥S Declarations 25

4.4 THE VAR DECLARATION

Syntax:
var—-dcl:
—> var l » >{id} T > >{typel} > >
<
The var declaration is used to declare The global automatic variables of the

automatic variables. Automatic vari-
ables are allocated when the routine is
invoked, and are de-allocated when the
corresponding return is made. If the
routine is invoked a second time, before
an initial invocation completes (a
recursive call), the local automatic
variables will be allocated again in a
stack-like manner. The variables allo-
cated for the first invocation become
inaccessible until the recursive call
completes.

Commas are used in the declaration to
separate two or more identifiers that
are being declared of the same type.
This is a shorthand notation for two
separate declarations.

var
I : INTEGER;
SYSIN : TEXT;
X,
Y,
z : REAL;
CARD :
record
RANK = 1..13;
3UIT (SPADE,HEART,DIAMOND,CLUB)
end;

Example of a Var Declaration

Variables which are to be accessed
across modules should be declared as def
variables (see "The Def/Ref
Declaration® on page 28), but if
reentrancy is required, then a mechanism
is required that does not rely on static
storage.

1 That is,
nesting level of the main program.
2 That is»

no way of checking the integrity.

26 Pascals/VS Referance Manual

those variables declared with the var construct

unpredictable errors can occur when the variables declared
segment do not match those in the associated main program.

main program! may be accessed from a
segment module. The storage for auto-
matic variables declared in the outer-
most level of a segment are mapped
directly on top of the main program
global variables. Therefore, to access
the main program globals, a segment mod-
ule must have an identical copy of the
main program’'s variable declarations.
This mechanism is not as safe? and as
convenient as using def variables.

If the variables of the main program are
to be accessable across modules then the
ZINCLUDE facility should be used so that
identical copies of the variable's dec-
larations can be included in all
modules. (See "The XINCLUDE Statement”
on page 146).

program MAIN;

var
I : INTEGER;
X5
Y * REAL;
INTEGER;

J :
. {remainder of program module}

SEGMENT SEG;

var

1 : INTEGER;

X,

Y ¢ REAL;

J : INTEGER;

e {remainder of segment modulel

Example of a Var Declarations
Shared between Programs and Segments

in the outermost

in a
The compiler has

t++++++rr++rtrrrr bttt bbbt d b+

.5 THE STATIC DECLARATION

TNL SN20-4446 (31 December 81) to SH20-6168-1

Syntax:

static—-dcl:

---> static ---7--- i A A >+ ===>{typa}---> ; —-—p--—-=—————————- >
[]
L ———— e o J

The static declaration is used to + Static variables may be initialized at
declare static variables. The variables + compile-time by the use of a valua dec-
declared in this way are allocated prior + laration.
to program execution and exist for the +
life of the program's execution. Programs which modify static variables
are not reentrant.
Static variables can be referenced
according to the lexical scoping rules. +
Two static variables in different scopes +
are different variables even though they + static
have the same name. + SYSPRINT TEXT;
+ X,Y: REAL;
Data in static variables that are local +
to a routine will be preserved over sep- + Example of a Static Declaration
arate invocations of the routine. Such +
a routine called recursively will access +

the same instance of each static vari-

able.

Pascal/VS Declarations 27

PP ITTRT U RR T I I r r I IV i I U I T R TR R T o T I I A S S i i

TNL SN20-4446 (31 December 81) to SH20-6168-1

.6 THE DEF/REF DECLARATION

Syntax:
def-decl:
------ > def ----p-—-7---7--=>{id}-=-7-==> : --->{type}---> ; —=-y-----——-=>
I-—-) ref ——->I { | Do , S T
P d

The defs/ref declarations are used to

declare external variables. External
variables are allocated prior to exe-
cution and can be accessed from more

than one module. All identifiers that
are to be used as external names must be
unique in the first eight characters.

If an external variable with a partic-
ular name is declared in several
modules, a single common storage
location will be associated with each
such variable. An external variable
must be declared with identical types in
each module; the programmer is responsi-
ble for assuring that the types are the
same.

The def declaration specifies that the
program loader is responsible for gener-
ating the common storage for the vari-
able. The ref declaration specifies
that storage for the variable is defined
in another module (or in the runtime
environment). Ref declared variables
will remain unresolved until the encom-
passing module is compiled and linked
with a module in which the variable is
declared as a def variable or defined in
a non-Pascal CSECT or in an assembly
language COM. The expected use of ref
variables is to access external data
declared in non-Pascal/VS programs such
as those written in assembly language.

A def or ref variable may be declared
local to a routine; the same scope rules
apply as for any other declared identi-
fier. However, if the name of the vari-
able is declared in another scope (even
in another module) as a def or ref vari-
able, both occurrences of the variable
will reference the same storage.

In the following example, the variable X
in procedures A, B, and C references the

28 Pascal/VS Reference Manual

+H+ 4+ ++++ 4+

PR T R R T o I T F 3 3 O

same storage; however, the variables X
declared in segment P and procedure D
each refer to storage that is separate
from the external variable X.

Def variables may be initialized at com-
pile-time by the use of a value declara-
tion.

Programs which modify def, ref, or stat-
ic variables are not reentrant.

SEGMENT M;

procedure A;
def X: REAL;
begin

{ same as X in B }
end;
procedure B;

def X: REAL;
begin

{ same as X in A }

end; .

SEGMENT P;
static X: REAL;{ local to P }
procedure C;

ref X: REAL;

. in A,B}
begin

{ same as X
end;

procedure D;
var X: REAL;
begin

{ local to D }
end; .

Examples of Def and Ref Declarations

T NIRRT PR PRI PR PR PR PR PR B PR O A R . Tk T Tk o o o ko o T SO IR R SR R R I S R I SO I I I I N

TNL SN20-4446 (31 December 81) to SH20-6168-1

4.7 THE VALUE DECLARATION

Syntax:

value-dcl:

value-assignment:

--->{variable}---> := -—-I——->{constant-expression}————I ------------------- >
--->{structured-constant}--->

note: If the variable contains subscripts, the subscripts are limited
to constant expressions.

The value declaration is used to specify + If a def variable is initialized with a
an initial value for static and def var- + value declaration in one module, you may
1ables. The declaration is composed of + not use a value declaration on that var-
a list of value-assighment statements + iable in another module. The compiler
separated by semicolons. The assignment + will not check this violation, however a
statements in a value declaration are of + diagnostic will be generated when you
the same form as the assignment state- + combine the modules into a single load
ments in the body of a routine except + module by the system lonader.
that all subscripts and expressions must +
be able to be evaluated at compile time. +
+ type
CUBE = arrayll..10,1..10,1..101
of REAL;
type
COMPLEX = record + static
RE,IM: REAL + BLOCK : CUBE:
and; +
VECTOR = arrayll..7] of INTEGER; + { the following assignments will }
+ { take place at compile time }
static + value
C: COMPLEX; + BLOCK i =
V: VECTOR; | CUBEC ¢ (0.0:10):10 J:10)
Vi: VECTOR; +
+ Example of Intializing
def + a 3 Dimensicnal Array
I : INTEGER; +
Q : arrayll..10]1 of COMPLEX; +

{ the following assignments will }
{ take place at compile time }
value

C = COMPLEX(3.0,4.0);

v = VECTOR(1,0:5,7);

Vi = VECTOR(,,,4);

vi2] = 2;

VI3] = 3I%G-1;

I = 0;

QI1].RE := 3.1415926 7 2;

QL11.IM := 1.6416;

Example of a Value Declaration

Pascal/VS Declarations 29

4
4
4

5.0 TYPES

Syntax:

type?

— >{id:typel >4
>{enumerated-scalar-typel >-
>{subrange-scalar-typel >-
>{array-typel >
>{record-typel >
>{set-typel >
>{file-typel >
>{pointer-typel > >

A data tvpe determines the kind of val-
ues that a wvariable of that type can
assume. Pascal/VS allows you to define
new data types with the tvpe
declaration. The data type mechanism is
a very important part of PascalsVs.
With it vou can describe your data with
great clarity.

There are several mechanisms that can be
used to define a type; each mechanism
allows the new data type to have certain
properties. All data types can be clas-
sified as either scalar, pointer, or
structured.

You define the data type of a variable
when the variable is declared. A previ-
ous type declaration allows an identifi-
er to be associated with that type. Such
an identifier can be used wherever a
tvype definition 1s needed: in a variable
declaration (var, static, def, or ref),
as a parameter, in a procedure or func-
tion, in a field declaration within a
record definition, or in another type
declaration.

5.1 A NOTE ABOUT STRINGS

Standard Pascal defines the term
"string" as a variable or constant which
has an associated type of
"packed arrayll..n] of CHAR™, where n is
a positive integer constant.

Pascal/Vs supports varying length

strings; that 1i1s, strings which have
lengths that vary at execution time. A

variable may be declared as a varying
length string with the predefined tvpe

gTRING (see "The Type STRING" on page
1).

Throughout this manual the term "string”
shall refer to an object of the prede-
fined type STRING.

5.2 TYPE COMPATIBILITY

Pascal/VS supports strong typing of
data. The strong typing permits
Pascals/VS to check the validity of many
operations at compile time; this helps
to produce reliable programs at exe-
cution time. Strong typing puts strict
rules on what data types are censidered
to be the same. These rules, called
tvype compatibility, requires vou to

carefully declare data.

5.2.1 1Implicit Type Conversion

In general, Pascal/VS does not perform
implicit type conversions on data. The
only implicit conversions that
Pascal/VS permits are:

1. An INTEGER will be converted to a
REAL (SHORTREAL) when one operand of
a binary operation is an INTEGER and
the other is a REAL (SHORTREAL).

2. An INTEGER will be converted to a
REAL (SHORTREAL) when assigning an
INTEGER to a REAL (SHORTREAL) vari-
able.

3. An INTEGER will be converted to a

REAL if it is used in a floating
point divide operation ('/").

Types 31

PR I T I T T T A

4. An INTEGER will be converted to a
REAL (SHORTREAL) if it is passed by
value or passed by const to a param-
eter requiring a REAL (SHORTREAL)
value.

5. A SHORTREAL will be converted to a
REAL when one operand of a binary
operation is a SHORTREAL and the
other is a REAL.

6. A SHORTREAL will be converted to a
REAL when assigning a SHORTREAL to a
REAL variable.

7. A SHORTREAL will be converted to a
REAL if it is passed by value or
passed by const to a parameter
requiring a REAL value.

8. A string will be converted to a
'packed arrayll..n] of CHAR' on
assignment. The string will be pad-
ded with blanks on the right if it
is shorter than the array to which
it is being assigned. Truncation
Wwill raise a runtime error if check-
ing is enabled.

9. A string being passed by value or
passed by const to a formal parame-
ter that requires a
'‘packed arraylil..n] of CHAR' will
be converted. The string will be
padded with blanks on the right if
it is shorter than the array to
which it is being passed. Trun-
cation will raise a runtime error if
checking is enabled.

5.2.2 Same Types

Two variables are said to be of the same
tvpe if the declaration of the
variables:

. refer to the same type identifier;

. or, refer to different type identi-
fiers which have been defined as
equivalent by a type definition of
the form:

type T1 = T2

32 Pascal/VS Reference Manual

+ + +

5.2.3 Compatible Types

Operations can be performed between two
values that are of compatible tvpes.
Two types are said to be compatible if:

° the types are the same;

. one type is a subrange of the other
or they are both subranges of the
same type;

° both types are strings;

° one value is a string literal and

the other is a 'packed arrayll..nl
of CHAR';
° one value is a string literal of one

character and the other is a CHAR;

° they are set types with compatible
base types;

. or, they are both
'packed arrayll..n] of CHAR' with
the same number of elements.

Furthermore, any object which is of a

set type 1is compatible with the empty

set. And, any object which is a pointer
type is compatible with the value nil.

5.2.% Assignment Compatible Types

A value may be assigned to a variable if
the types are assignment compatible. An
expression E is said to be assignment
compatible with variable V if:

. the types are same type and neither
isa file type;

. V is of type REAL and E is compat-
ible with type INTEGER;

° V is a compatible subrange of E and
the value to be assignhed is within
the allowable subrange of V;

° V and E have compatible set types
and all members of E are permissible
members of V; or,

. V is a 'packed arrayli..n] of CHAR'
and E is a string.

type

‘ X = array{ 1..10] of
INTEGER;
DAYS = (MON, TUES, WED, THURS,
FRI, SAT, SUN);
WEEKDAY = MON .. FRI;
var
A : arrayl 1..10] of
INTEGER;
B : arrayl 1..10] of
INTEGER;
C,
D : arrayl 1..10] of
CHAR;
E : X;
F : X;
W1: DAYS;
W2: WEEKDAY

is compatible
with

1 Wl, W2
2 W2, Wl

EETMOO® >
m

Examples of Compatibility

Types 33

5.3 THE ENUMERATED SCALAR

Syntax:

enumerated-scalar—-type:

—> (———I___>(id} >
<— <

4

An enumerated scalar is formed by list-
ing each value that is permitted for a
variable of this type. Each value is an
identifier which is treated as a
self-defining constant. This allows a
meaningful name to be associated with
each value of a variable of the type.

type
DAYS = (MON, TUES, WED, THURS,
FRI, SAT, SUN);
MONTHS = (JAN, FEB, MAR, AFR,
MAY, JUN, JUL, AUG,
SEP, OCT, NOV, DEC);
var
SHAPE (TRIANGLE, RECTANGLE,
SQUARE, CIRCLE);
REC : record
SUIT: (SPADE, HEART,
DIAMOND, CLUB);
WEEK: DAYS
end;
MONTH MONTHS;

Enumerated Scalars

An enumerated scalar type definition
declares the identifiers in the enumer-
ation list as constants of the scalar

34 Pascal’/VS Reference Manual

type being defined. The lexical scope
of the newly defined constants is the
same as that of any other identifier
declared explicitly at the same lexical
level.

These constants are ordered such that
the first value is less than the second,
the second less than the third and so
forth. In the first example, MON < TUES
< WED < < SUN. There is no value
less than the first or greater than the
last.

The following predefined functions
operate on expressions of a scalar type
(see the indicated section for more

details):
Function Page

ORD 125
MAX 129
MIN 129
PRED 130
SuccC 130
LOWEST 122
HIGHEST 122

Notes:

1. Two enumerated scalar type defi-

nitions must not have any elements
of the same name in the same lexical
scope.

2. The standard type BOOLEAN is defined
as (FALSE, TRUE).

C

5.4 THE SUBRANGE SCALAR

TNL SN20-4446 (31 December 81) to SH20-6168-1

Syntax:

subrange-scalar-type:

—;--> packed --->7
R R

>{constant}—>

.. —>{constant-expr} >

L---> range ~-->{constant-expr}--->

~~=>{constant-expr}--->4

The subrange type is a subset of consec-
utive values of a previously defined
scalar type. Any operation which is
permissible on a scalar type is also
permissible on any subrange of it.

A subrange is defined by specifying the
minimum and maximum values that will be
permitted for data declared with that
type. For subranges that are packed,
Pascal/VS will assign the smallest num-
ber of bytes required to represent a
value of that type.

If the reserved word range is used in
the subrange definition, then both the
minimum and maximum values may be any
expression that can be computed at com-
pile time. If the range prefix is not
employed then the minimum value of the
range must be a simple constant.

The following predefined functions
operate on expressions of a scalar type
(see the indicated section for more
details):

Function Page
ORD 126
MAX 130
MIN 130
PRED 131
sUccC 131
LOWEST 123
HIGHEST 123
Notes:

1. A subrange of the standard type REAL
is not permitted.

2. The number of values in a subrange
of type CHAR is determined by the
collating sequence of the EBCDIC
character set.

3. The lower bound of a subrange defi-
nition that is not prefixed with

'range' must be a simple constant
instead of a generalized constant
expression.

consat
SIZE = 1000;
type
DAYS = (SU, MO, TU, WE,
TH, FR, SA);
MONTHS = (JAN, FEB, MAR, APR,
MAY, JUN, JUL, AUG,
SEP, OCT, NOV, DEC);
UPPER_CASE = 'A' .. 'Z2';
ONE_HUNDRED = 0 .. 99;
CODES = ranae
CHR(0)..CHR(255);
INDEX = packed 1 SIZE+1;
var
WORK_DAY : MO .. FR;
SUMMER ¢ JUN .. AUG;
SMALLINT packed 0..255;
YEAR : 1900 .. 2000;

Subrange Scalars

The following example illustrates that
two subrange types may be defined over
the same base type. Operations are per-
mitted between these two variables
because they have the same base type.

var
NEG : MININT .. -1;
POS 1 MAXINIT;

Subranges with the Same Base Type

Types 35

+

++++++++

CNL SN20-4446 (31 December 81) to SH20-6168-1

5.5 PREDEFINED SCALAR TYPES

5.5.1 The Type INTEGER

The following table describes the oper-

ations and predefined functions

that type INTEGER.

INTEGER
operation form description
+ unary returns the unchanged result of the operand
+ binary forms the sum of the operands
~ unary negates the operand
- binary forms the difference of the operands
* binary forms the product of the operands
/ binary converts the operands to REAL and produces
the REAL quotient
div binary forms the integer quotient of the operands
mod binary forms the integer modulus of the operands
(same as remainder if the arguments are positive)
= binary compares for equality
<> or == binary compares for inequality
< binary compares for less than
<= binary compares for less than or equal to
>= binary compares for greater than or equal to
> binary compares for greater than
- unary returns one's complement on the operand
| binary returns 'logical or' on the operands
& binary returns 'logical and' on the operands
&& binary returns 'logical xor' on the operands
<< binary returns the left operand value shifted
left by the right operand value
>> binary returns the left operand value shifted
right by the right operand value
CHR(x) function returns a CHAR whose EBCDIC representation is x
PRED(x) function raturns x-1
SUCC(x) function returns x+1
0DD(x) function returns TRUE if x is odd and FALSE otherwise
ABS(x) function returns the absolute value of x
SQR(x) function returns the square of x
FLOAT(x) function returns a REAL whose value is x
MIN() function returns the minimum value of two or more operands
MAX() function returns the maximum value of two or more operands
LOWEST (x) function returns MININT or the minimum value of the range
if x is a subrange of INTEGER
HIGHEST(x)| function returns MAXINT or the maximum value of the range
if x is a subrange of INTEGER
SIZEOF(x) function returns the number of bytes required for a value
of the type of x, which is always 1, 2, 3, or &

The type INTEGER is
pre-defined type in Pascal/Vs.

type represents the subset of whole num-

bers as defined below:

ty

where MININT

is a
constant whose value

pe
INTEGER = MININT..MAXINT;

provided a

predefined INTEGER

36 Pascal/VS Reference Manual

s a whose value is 2147483647. That is,

This predefined type INTEGER represents 32
bit values in 2's complement notation.

Type definitions representing integer

subranges may be prefixed with

reserved word "packed". ' For variables
declared with such a type, Pascal/Vs
will assign the smallest number of bytes
is —2147483648 and required to represent a value of that
MAXINT is a predefined INTEGER constant type. The following table defines the

apply to values which are the standard

number of bytes required for different
ranges of integers. For ranges other
than those listed, use the first range

that encloses the desired range. Given
a type definition T as:
typa T = packed i..3j;
Range of Size in{Alignment
i .3 bytes
0..255 1 BYTE
-128..127 1 BYTE
-32768..32767 2 HALFWORD
0..65535 2 HALFWORD
-8388608..8388607 3 BYTE
0..16777215 3 BYTE
otherwise 4 FULLWORD

TNL SN20-4446 (31 December 81) to SH20-6168-1

Notes:

1. The operations of div and mod are
defined as:

A div B TRUNCCA/B), B<>0
A mod B = A-BX(A div B), A>=0,B>0
A mod B = B-abs(A) mod B, A<0,B>0

B=0 when doing a div operation or
B<=0 when doing a mod operation
is defined as an error and will
cause a runtime error message to
be produced.
2. The following operators perform
logical operations:

<< shift left logical
>> shift right logical
- 1's complement

| logical inclusive or
& logical and

&& logical exclusive or

The operands are treated as unsigned
strings of binary digits. See "Logical
Expressions" on page 78 for more details
on logical expressions.

Types 37

[NL SN20-4446 (31 December 81) to SH20-6168-1

5.5.2 The Type CHAR

The following table describes the oper-

ations and predefined functions that
apply to the standard type CHAR.
CHAR
operation form description
= binary compares for equality
<> or == binary compares for inequality
< binary compares for left less than right
<= binary compares for left less than or equal to right
>= binary compares for left greater than or equal to right
> binary compares for left greater than right
ORD(x) function converts operand to an INTEGER based on ordering
sequence of underlying character set.
PRED(x) function returns the preceding character
in collating sequence
SUCC(x) function returns the succeeding character
in collating sequence
STR(x) function converts the operand to a STRING
MINC) function returns the minimum value of two or more operands
MAX() function returns the maximum value of two or more operands
LOWEST(x) function returns the minimum value of the range of the
character x
HIGHEST(x)| function returns the maximum value of the range of the
character x
SIZEOF(x) function returns the number of bytes required for a value
of the type of a CHAR, which is always 1
CHAR is a scalar type that consists of variable C to the EBCDIC code for the
all of the values of the EBCDIC charac- letter A.
ter set. Variables of this type occupy
one byte of memory and will be aligned var C: CHAR;
on a byte boundary. begin
A single-character string constant will C := '"A';
be regarded as a CHAR constant i1f the v
context so dictates. For example, the end

assignhment

statemaent

shown

below sets

38 Pascal/V5 Reference Manual

J

P

5.5.3__The Type BOOLEAN

The following table describes the oper-

TNL SN20-4446 (31 December 81) to SH20-6168-1

ations and predefined functions that
apply to the standard type BOOLEAN.
BOOLEAN
oparation form dascription
- unary returns TRUE if the operand is FALSE,
otherwise it returns FALSE
& binary returns TRUE if both operands are TRUE
| binary returns TRUE if either operand is TRUE
&& binary returns TRUE if either, but not both operands are TRUE
= binary compares for equality
<> or -= binary compares for inequality
< binary compares for left less than right
<= binary compares for left less than or equal to right
>= binary compares for left greater than or equal to right
> binary compares for left greater than right
ORD(x)> function returns 0 if x is FALSE and 1 if x is TRUE
MIN() function returns TRUE if all operands are TRUE
MAX() function returns FALSE if all operands are FALSE
LOWEST (x) function returns the FALSE by definition
HIGHEST(x)| function returns the TRUE by definition
SIZEOF(x) function returns the number of bytes required for a value
of the type of a BOOLEAN, which is always 1
Binary Operations on BOOLEAN
FALSE FALSE FALSE TRUE TRUE FALSE TRUE TRUE Name
= TRUE FALSE FALSE TRUE Equivalence
<> FALSE TRUE TRUE FALSE Exclusive Or
< FALSE TRUE FALSE FALSE
<= TRUE TRUE FALSE TRUE Implication
>= TRUE FALSE TRUE TRUE
> FALSE FALSE TRUE FALSE
& FALSE FALSE FALSE TRUE And
I FALSE TRUE TRUE TRUE Inclusive Or
&& FALSE TRUE TRUE FALSE Exclusive 0Or

The type BOOLEAN is defined as a scalar
whose values are FALSE and TRUE as
though declared with the following type
declaration:

type
BOOLEAN=(FALSE, TRUE);

Variables of this type will occupy one
byte of memory and will aligned on a
byte boundary. The relational operators

form valid boolean functions as shown in
the table of binary operations.

Pascal/VS will optimize the evaluation
of BOOLEAN expressions involving '&?
(and) and '|' (or) such that the right
operand expression will not be evaluated
if the result of the operation can be
determined by evaluating the left oper-
and. For more details see "Boolean
Expressions"™ on page 77.

Types 39

TNL SN20-4446 (31 December 81) to SH20-6168-1

+ + + +

S.5.4 The Type REAL

The following table describes the oper-

at

ions and predefined functions that
apply to the standard type REAL.
REAL
operation form description
+ unary returns the value of the operand
+ binary forms the sum of the operands
- unary negates the operand
- binary forms the difference of the operands
* binary forms the product of the operands
/ binary forms the REAL quotient of the operands
= binary compares for equality
<> or -= binary compares for inequality
< binary compares for left less than right
<= binary compares for left less than or equal to right
>= binary compares for left greater than or equal to right
> binary compares for left greater than right
TRUNC(x) function returns the operand value truncated to an INTEGER
ROUND(x) function returns the operand velue rounded to an INTEGER
ABS{x) function returns the absolute value of the operand
SIN(x) function returns the trigonometric sine of x (in radians)
CO0S(x) function returns the trigonometric cosine of x (in radians)
ARCTAN(X) function returns (in radians) the arc tangent of x
LN(x) function returns the natural logarithm of x
EXP(x) function returns natural log base raised to the x power
SQRT(x) function returns square root of x
SQR(x) function returns the square of x
MINC) function returns the minimum value of the operands
MAX() function returns the maximum value of the operands
SIZEOF(x) function returns the number of bytes required for a value

of the type of a REAL,

which 1s always 8

The type REAL represents floating point

data.

120%

eight bytes

Variables of this type will occu-

of memo~y and will be

aligned on a double mord boundary.

RE

40

AL arithmetic
precision floating point.
Type Conversion"™ on page 31.

15 done

Pascal/VS Reference Manual

All

using double
See "Implicit

The type REAL has restrictions that oth-
You may
not take a subrange of REAL nor index an
The predefined functions
HIGHEST and LOWEST are

er scalar types do not have.

array by REAL.
sUcCc, PRED, ORD,
not defined for type REAL.

5.5.5 The Type SHORTREAL

The following table describes the oper-
ations and predefined functions that
apply to the standard type SHORTREAL.

SHORTREAL
operation form description
+ unary returns the value of the operand
+ binary forms the sum of the operands
- unary negates the operand
- binary forms the difference of the operands
b3 binary forms the product of the operands
/ binary forms the SHORTREAL quotient of the operands
= binary compares for equality
<> or == binary compares for inequality
< binary compares for left less than right
<= binary compares for left less than or equal to right
>= binary compares for left greater than or equal to right
> binary compares for left greater than right
TRUNC(x) function returns the operand value truncated to an INTEGER
ROUND(x) function returns the operand value rounded to an INTEGER
ABS(x) function returns the absolute value of the operand
SIN(x) function returns the trigonometric sine of x (in radians)
C0S(x) function returns the trigonometric cosine of x (in radians)
ARCTAN(x) function returns (in radians) the arc tangent of x
LN(x) function returns the natural logarithm of x
EXP(x) function returns natural log base raised to the x pouwer
SQRT(x) function returns square root of x
SQR(x) function returns the square of x
MIN() function returns the minimum value of the operands
MAX() function returns the maximum value of the operands
SIZEOF(x) function returns the number of bytes required for a value
of the type of a SHORTREAL, which is always %

The type SHORTREAL represents floating
point data. Variables of this type will
occupy four bytes of memory and will be

aligned on a word boundary. All
SHORTREAL arithmetic is done using sin-
gle precision floating point

instructions.

Operations between data of type REAL and
SHORTREAL will be performed using double
precision floating point instructions.
The SHORTREAL operand will be implicitly
converted to a value of type REAL. A
SHORTREAL may be passed as an operand to

a function or procedure that expects its

parameter to be of type REAL i1f the
parameter passing mechanism for that
parameter is value or const. See "Im-

plicit Type Conversion™ on page 31.

The type SHORTREAL has restrictions that
other scalar types do not have. You may
not take a subrange of SHORTREAL nor
index an array by SHORTREAL. The prede-
fined functions SUCC, PRED, ORD, HIGHEST
and LOWEST are not defined for type
SHORTREAL.

Types 41

5.6 THE ARRAY TYPE

Syntax:

array—-type:

> packed —

H<
———> array [———T———>{index-type}————T———>] of —>{type} —8>
< , <
index-type:
———>{enumerated~scalar-type}———>1
—t+—>{id:scalar-typel} 7 >
——>{subrange-scalar-type} >

The array type defines a list of homoge-
neous elements; each element is paired
with one value of the index. An element
of the array is selected by a subscript.
The number of elements in the array is
the number of values potentially
assumable by the index. Each element of
the array is of the same type, which is
called the element type of the array.
Entire arrays may be assigned if they
are of the same type.

Pascals/VS uses square brackets, 'l' and
']', in the declaration of arrays.
Because these symbols are not directly
available on many I/0 devices, the sym-
bols '(.' and '.)' may be used as an
equivalent to square brackets.

Pascals/VS will align each element of the
array, if necessary, to make each ele-
ment fall on an appropriate boundary. A
packed array will not observe the bound-
ary reauirements of its elements. Ele-
ments of packed arrays may not be passed
as var parameters to routines.

An array which is defined with more than
onhe index is said to be a
multi-dimensional array. A
multi-dimensional array is exactly
equivalent to an array of arrays. In
short, an array definition of the form

arrayli,j,... Jof T
is an abbreviated form of
arraylil of
arraylil of
cee T
where i and j are scalar type defi-
nitions. Thus, the first and second

type declarations in the example below
are alternatives to the same structure.

42 Pascal/VS Reference Manual

type

MATRIX = arrayl 1..10, 1..10] of
REAL;

MATRIX0 = arrayl 1..10] of
arrayl 1..10 1 of
REAL;
ABLE = array[(BOOLEAN] of INTEGER;
COLOR (RED, YELLOW, BLUE);

INTENSITY packed array[COLOR]
of REAL;

ALFA = packed arrayl 1..ALFALEN] of
CHAR;

Examples of Array Declarations

There are two procedures available for
conversion between a packed array and a
similar but unpacked array. The prede-
fined procedures PACK (see "“PACK Proce-
dure”™ on page 121) and UNPACK (see
"UNPACK Procedure" on page 121) are pro-
vided for this purpose.

5.6.1 Array Subscripting

Array subscripting is performed by plac-
ing an expression in square brackets
following an array variable. The
expression must be of a type that is
compatible with the index type and eval-
uate to one of the values of the index.
See "Compatible Types" on page 32 The
index may be any scalar type except
REAL.

J

var

M : MATRIX;
‘ HUE : INTENSITY;
begin

{ assign ten element array }
M[1] t= ML2]1;

{ assign one element of a two }
{ dimensional array two ways 1}

M[1,1] := 3.14159;
M[11[11] := 3.14159;
{ this is a reddish orange }
HUECLRED] 2= 0.7
HUECLYELLOW] = 0.3
HUELBLUE] = 0.0;

end

Examples of Array Indexing

Tvpes 43

5.7 THE RECORD TYPE

Syntax:
record-tvpe:
> record —>{field-list}—> end >
1———> packed ———>J
field-list:
>{fixed-part} l > 3 >{variant-part} >T > >
| >J - .1
fixed-part:
[>{field} T > >{typel} >
| < , < J
S S >
< ;3 <
variant-part:
. [TTTTITTTIIOCTIOS 8
—> case >{field} > @ >{id: typel > of >
| > l
<
>{range}———T———> (———T———>{field-list} >) >
< » <).]
< ; <
field:
—>{id} [_] >
-==> (--->{constant-expr}--->) --->
range:
—>{constant-expr} [] >
—-—-> --=->{constant-exprl}--->
A record is a data structure which is used as names is the record type itself.
composed of heterogeneous components; That 1is, every field name within a

each element may be of a di fferent type.
Components of a record are called
fields.

5.7.1 Naming of a Field

A field is referred to by the name of
the field. The scope of the identifiers

44 Pascal/VS Reference Manual

+ 4+ +++

record must be unique, even if that name
appears in a variant part.

A field of a record need not be named;
that is, the field identifier may be
missing. In such a case, the field only
serves as padding; it can not be refer-
enced.

+ 4+ +++ o+

typa
REC = record
A,
B : INTEGER;
¢ CHAR;
C : CHAR
end;

{unnamed}

DATE = record
DAY
MONTH
YEAR
end;

1..31;
1..12;
1900..2100

PERSON = record
LAST_NAME,
FIRST_NAME
MIDDLE_INITIAL
AGE
EMPLOYED
end;

ALFA;
CHAR;
0..99;
BOOLEAN

Simple Record Decla-ations

5.7.2 Fixed Part

The fixed part of a record
of fields that exist
that is declared to be of that record
type. The fixed part, if present, is
always before the variant part.

is a series
in every variable

5.7.3 Vvariant Part

The variant part of a record permits the
defining of an alternative structure to
the record. The record structure adopts
one of the variants at a time.

The variant part of a record
with the casa@ symbol.
tifier may follow. This field is a sca-
lar value that indicates which variant
is intended to be active.

is denoted
A tag field iden-

The tag field is a field in the fixed
part of the record. When the tag field
is followed by a type identifier, then
the tag field defines a new field within
the record.

If the type identifier is missing, then
the tag field name must be one which was
previously defined within the record.
This allows you to place the tag field
anywhere in the fixed part of the
record.

A variant part of a record need not have
a tag field at all. In this case, only a
type identifier is specified in the case

TNL SN20-4446 (31 December 81) to SH20-6168-1

construct. You still refer to the vari-
ant fields by their names but it is your
responsibility to keep track of which
variant is 'active' (i.e. contains valid
data) during execution.

In short, tag fields may be defined in
the following ways:

. "case I INTEGER Of" results in I
being a tag field of type INTEGER.

. "casa@ INTEGER of"” means no tag field
is present, the variants are denoted
by integer values in the variant
declaration.

. vease I: of" means that I is the tag
field and it must have been declared
in the fixed part, the type of I is
as given in the field definition of

illustrate the
complete record

The following examples
three tag fields in
definitions.

type

SHAPE = (TRIANGLE,

SQUARE,
COORDINATES =

RECTANGLE,
CIRCLE);

{ fixed part: }
record
X, Y
AREA
case S

REAL;
REAL;
SHAPE of
{ variant part: }
TRIANGLE:
(SIDE
BASE

REAL;
REAL);

RECTANGLE:
(SIDEA,SIDEB

SQUARE:
(EDGE

CIRCLE:
(RADIUS
end;

REAL);

REAL)Y;

REAL)

A Record With a Variant Part

The record defined as COORDINATES in the
example above contains a variant part.
The tag field is S, its type is SHAPE,
and its value (whether TRIANGLE, RECTAN-
GLE, SQUARE, or CIRCLE) indicates which
variant is in effect. The fields SIDE,
SIDEA, EDGE, and RADIUS would all occupy
the same offset within the record. The
following diagram illustrates how the
record would look in storage.

Types 45

TNL SN20-4446 (31 December 81) to SH20-6168-1

+++H+++ A+

fixed part:

AREA

tag field: S

variant part:

SIDE SIDEA EDGE

RADIUS

BASE SIDEB

Each column in the variant represents
one alternative for the variant.

If you preferred the tag field to be the
first field instead of the fourth, vyou
could define it as follows:

COORDINATES =
record
X,Y REAL:;
AREA REAL;

case SHAPE of
{ variant part: }

TRIANGLE:

(SIDE REAL;

BASE REAL)Y;
RECTANGLE:

(SIDEA,SIDEB REAL);
SQUARE:

(EDGE REAL);
CIRCLE:

(RADIUS REAL)

end;

Record Variant with No Tag Field

COORDINATES =
record
S * SHAPE;
X,Y ¢ REAL;
AREA REAL;

case S : of
{ variant part: }

TRIANGLE:

(SIDE REAL;

BASE REAL);
RECTANGLE:

(SIDEA,SIDEB REAL)D;
SQUARE:

(EDGE REAL)Y;
CIRCLE:

(RADIUS REAL)

end;

Record with Back Reference
Tag Field

If you preferred the tag field to be
absent altogether you could define the
record as follows:

46 Pascal/VS Reference Manual

B T SR Tk o ok T it S S T S S A S S S

5.7.4%4 Packed Records
The fields in a record are normally
assigned offsets sequentially, padding

where necessary for boundary alignment.
In packed records, however, no such pad-
ding 1is done. This may save storage
within the record, but may deagrade per-
formance of the program. Fields of
packed records may not be passed as var
parameters to a routine.

5.7.5 0Offset Qualification of Fields

Pascal/VS provides you a method of forc-
ing the fields of a record to begin at a
specified byte offset in the record. A
field name may be followzd by a integer
constant expression enclosed in paren-
theses which represents the byte offset
within the record that the field is to
represent. All fields so specified must
be in consecutive order according to
offsets. If the offset is not
specified, the field will be assigned
the next offset that is required for
boundary alignment. If an offset spec-
ification attempts to assign an
incorrect boundary for a field and the
record is not packed, a compile time
error Will be raised.

As an example of offsat qualified fields
Wwithin a record, considar a large con-
trol block of 100 bytes, in which four
fields at various offsets need to be
referenced.

9

++ 4+ 4+ +++

R O R R R

byte

displacement information
0 field A (integer)
36 field B (8 chars)
890 field €C (4 flags)
92 field D (integer)

The control block might be represented
in Pascal/V$ as follows:

type
FLAGS = set of
(F1,F2,F3,F%);
PADDING = packed arrayll..4] of
CHAR;
CB = packed record
A t INTEGER;
BC(36) : ALFA;
C(80) : FLAGS;
D(92) : INTEGER;
: PADDING
end;
var
BLOCK : CB;
A Record with Offset Qualified
Fields

Types

4

+ + +

5.8 THE SET TYPE

Syntax:
set-type:
> set of —>{base-scalar-typel >

L———> packed ———>-|

base-scalar—type:
———>(enumerated—scalar—type}———>1

——>{id:scalar-typel}] >
L—>{subrange-scalar-typel >

A variable whose type is a set may con-
tain any combination of values taken

from the base scalar type. A value is type
either in the set or it is not in. CHARS = set of CHAR;
DAYSOFMON = packed saet of 1..31;
Note: Pascal/VS sets can be used in many DAYSOFWEEK = set of MONDAY..FRIDAY;
of the same ways as bit strings (which FLAGS = sat of
often tend to be machine dependent). (A,B,C,D,E,F,G,H);
Each bit corresponds to one element of
the base type and is set to a binary one Set Declarations
when that element is a member of the
set. For example, a set operation such
as intersection (the operator is '%') is
the same as taking the 'boolean and' of The following table describes the oper-
two bit strings. ations that apply to the variables of a
set type.
Set Operators
operation form description

- unary returns the complement of the operand

= binary compares for equality

<> or -= binary compares for inequality

<= binary returns TRUE if first operand is subset of

second operand
>= binary returns TRUE if first operand is superset of
second operand
in binary TRUE if first operand (a scalar) is a member in

the set represented by the second operand

+ binary forms the union of two sets

* binary forms the intersection of two sets

- binary forms the difference between two sets

&& binary forms an 'exclusive' union of two sets

SIZEOF(x) function returns the number of bytes required for a value

of the type of x

Set union produces a set which contains both operands. The in operator tests
2ll of the elements which are members of for membership of a scalar within a set;
the two operands. Set intersection if the scalar is not a permissible value
produces the set that contains only the of the set and checking is enabled, then
elements common to both sets. Set dif- a runtime diagnostic will result.
ference produces the set which includes
all elements from the left operand The storage and alignment required for a
except those elements which are members set variable is dependent on the scalar
of the right operand. Set exclusive type on which the set is based. The
union produces the set which contains amount of storage required for a packed
all elements from the +two operands set will be the minimum number of bytes
except the elements which are common to | needed so that every member of the set

48 Pascal/VS Reference Manual

may be assigned to a unique bit. Given

a set definition:
type S = set of BASE;

where BASE is a scalar type which is
not a subrange

the ordinal value of the last member M
which can be contained on the set is:

M := ORD(HIGHEST(BASE))

The following table indicates the map-
ping of a set variable as a function of
M.

Range of Size in Alignment
Bytes
0 <= M <=7 1 BYTE
8 <= M <= 15 2 HALFWORD
16 <= M <= 23 3 BYTE
24 <= M <= 31 % FULLWORD
32 <= M <= 255|(M+7) BYTE
div 8

Unpacked sets based upon integer (or
subranges of integers) will occupy 32
bytes. The maximum value of a member of
a set of integer may not exceed 255.

The storage is the same for all unpacked
sets of subranges of a base scalar type.
The following illustrates this point.

Given:
type

T = set of t;

S = set of s;
Where:

t is @ subrange of s.

The types T and S have identical storage
mappings.

Types %9

5.9 THE FILE TYPE

Syntax:

file-type:

—> file of —>{typel

All input and output in Pascals/VS use
the file type. A file is a structure
consisting of a sequence of components
where each component is of the same
type. Variables of this type reference
the components with pointers called file

pointers. A file pointer could be
thought of as a pointer into an

input/output buffer.

The association of a file variable to an
actual file of the system is implementa-
tion dependent and will not be described
in this manual. Refer to the Program-
mer's Guide for this information.

type
TEXT = file of CHAR;
LINE = file of
packed arrayl[l..80] of
CHAR;
PFILE = file of
record

NAME: packed
arrayll..25] of
CHAR;
PERSON_NO:INTEGER;
DATE_EMPLOYED:DATE;
5EEKLY_SALARY : INTEGER
end;

File Declarations

You access the file through predefined

procedures and functions (see "I/O0

Facilities™ on page 103). They are:

° GET (see "GET Procedure™ on page
107)

o PUT (see ™PUT Procedure™ on page
108)

o EOF (see "EOF Function™ on page 109)

o EOLN (see YEOLN function"™ on page
115)
50 Pascal/VS Reference Manual

B

° RESET (see "RESET Procedure™ on page

103)

° REWRITE (see "REWRITE Procedure"™ on
page 104)

o READ (see "READ and READLN (TEXT

Files)™ on page 109)

° WRITE (see "WRITE and WRITELN (TEXT
Files)™ on page 112)

. TERMIN (see "TERMIN Procedure™ on
page 104)

. TERMOUT (see "TERMOUT Procedure™ on
page 105)

o PDSIN (see "PDSIN Procedure"™ on page
105)

. PDSOUT (see "PDSOUT Procedure™ on
page 106)

o UPDATE (see "UPDATE Procedure" on
page 106)

o SEEK (see "SEEK Procedure"™ on page
108)

o COLS (see "COLS Function™ on page
116)

o PAGE (see "PAGE Procedure" on page
115)

° CLOSE (see "CLOSE Procedure™ on page
107)

OUTPUT and INPUT are predefined TEXT
files. Pascals/VS enforces the following
restrictions on the file type:

1. A file may be passed by var opr
passed by const, but never by value
to a procedure or function.

2. A file may not be contained within a
file.

C

PR AR TR T I T 0k o Tk T I I S S T R S I T

+H+ A+ +

+ +

5.10 PREDEFINED STRUCTURE TYPES

5.10.1 The Type STRING

TNL SN20-4446 (31 December 81) to SH20-6168-1

Syntax:

string-type:

The type STRING is defined as a
'packed arrayll..nl of CHAR' whose
length varies at execution time up to a
compile time specified maximum. The
length of the array is obtained during
execution by the LENGTH function (see
"LENGTH Function" on page 137). The
length is managed implicitly by the
operators and functions which apply to
STRINGs. The maximum length of the
array 1is obtained during execution by
the MAXLENGTH function (see "MAXLENGTH
Function" on page 137). The length of a
STRING variable is determined when the
variable is assigned. By definition,
string constants belong to the type
STRING.

A STRING variable may be subscripted
with an integer expression to reference
individual characters. A subscript of 1
Wwill reference the first character. The
subscript value must not be less than 1
nor exceed the string's length.

The constant expression which follows
the STRING qualifier in the type defi-
nition is the maximum length that the
string may obtain and must be in the
range of ‘1 .. 32767°'.

Any variable of a STRING type is compat-
ible with any other variable of a STRING
type; that is, the maximum length field
of a type definition has no bearing in
type compatibility tests.

Implicit conversion is performed when
assigning a STRING to a variable whose
type is ‘'packed arrayll..nl of CHAR'.
All other conversion must be done
explicitly.

O RN R RTE T T T T S T S S U S S T T T T S T

+ + +

Tha assignment of one string to another
may cause a run time error if the actual
length of the source string i1s greater
then the maximum length of the target.
Pascal/VS will never truncate implicit-
ly.

function GETCHAR(

const S STRING;
IDX INTEGER) CHAR;

begin

{ Subscripted string variable }

GETCHAR := S[LIDX]
end;

var

S1: STRING(10);

S2: STRING(5);
C: CHAR;;

begin
S1 : *MESSAGE:

= v H
C := GETCHAR(S1,4);
{ C assigned 'S' }

52 := 'FIVE';

C := GETCHAR(S2,2);

{ C assigned 'I"' }
end;

Usage of STRING Variables

The following table describes the oper-
ations and predefined functions that
apply to the variables of type STRING.

Types 51

TNL SN20-4446 (31 December 81) to SH20-6168-1

FUNFU T T U VI T T S TR R U U R U R S S S S G S S TR T s i S R TR S R e I

P R R O T I S e e

STRING
operation form description
= binary compares for equalityX
<> or -= binary compares for inedquality¥
< binary compares for left less than right+x
<= binary compares for left less than or equal to right+x
>= binary compares for left greater than or equal to right+x
> binary compares for left greater than right+x
|| binary catenates the operands
LENGTH function returns the length of the STRING
(see "LENGTH Function"™ on page 137).
MAXLENGTH function returns the declared length of a STRING
(see "MAXLENGTH Function" on page 137).
LBOUND function returns the value 1, STRINGS always have a lower
bound of one (see "LBOUND Function" on page 124).
HBOUND function returns the declared maximum number of elements of
the string (see "HBOUND Function' on page 124).
SUBSTR function returns a specified portion of a STRING
(see "SUBSTR Function” on page 138).
DELETE function returns a STRING with a portion removed
(see "DELETE Function™ on page 138).
TRIM function returns a STRING with trailing blanks removed
(see "TRIM Function™ on page 139).
LTRIM function returns a STRING with leading blanks removed
(see "LTRIM Function"™ on page 139).
COMPRESS function returns a STRING with multiple blanks removed
(see "COMPRESS Function” on page 140).
INDEX function locates a STRING in another STRING
(see "INDEX Function" on page 140).
SIZEOF(x) function returns the number of bytes required for a value
of the type of x
READSTR procedure| converts a STRING to values by assigning variables
(see "READSTRY on page 142).
WRITESTR procedure| produces a STRING by converting the internal
values of a list of expressions
(see "WRITESTR™ on page 142).
¥ If two STRINGs being compared are of different lengths, the
shorter is assumed to be padded with blanks on the right
until the lengths match.
+ Relative magnitude of two strings is based upon the collating
sequence of EBCDIC.

STRING Conversions with Relational Operators

RIGHT OPERAND

OZPrAmMTUVO —Tmr

packed
relational arrayll..n] of
operations CHAR CHAR STRING
CHAR allowed not permitted use STR 'on
the CHAR
packed not permitted okay if the use STR on
arrayll..n] of types are the array
CHAR compatible
STRING use STR on use STR on allowed

the CHAR

the array

52

Pascals/VS Reference Manual

P T Rk K O I U S S SV e e

STRING Conversions on Assignment

T

FROM
packed
arrayll..nl of
assignment CHAR CHAR STRING
CHAR allowed not permitted use string

packed

arrayll..n] of

CHAR

STRING

not permitted

use STR to
convert CHAR
to a STRING

okay if the
types are
compatible

use STR to
convert array
to a STRING

indexing to
obtain char

okay, STRING is
converted. If
truncation is
required, then

an error results.

allowed

Types

53

PR R

O R N .

5.10.2 The Type ALFA

The standard type ALFA is defined as: + Any 'packed arrayll..nl] of CHAR?',
+ including ALFA, may be converted to type
const + STRING by the predefined function STR.
ALFALEN = 8; + The following table describes the oper-
+ ations and predefined functions that
type + apply to the variables of the predefined
ALFA = packed + type ALFA,.
arrayll..ALFALEN] of
CHAR;
ALFA
operation form description
= binary compares for equality
<> or == binary compares for inequality
< binary compares for left less than right
<= binary compares for left less than or equal to right
>= binary compares for left greater than or equal to right
> binary compares for left greater than right
STR(x) function converts the ALFA to a STRING
SIZEOF(x) function returns the number of bytes required for a value
of the type of an ALFA, which is always 8

54

Pascal/VS Reference Manual

J

+++ A+

PO T K T I A S

5.10.3 The Type ALPHA

The standard type ALPHA is defined as: + Any *packed arrayll..n] of CHAR?',
+ including ALPHA, may be converted to
const + type STRING by the predefined function
ALPHALEN = 16; + STR. The following table describes the
+ operations and predefined functions
type + that apply to the variables of the pre-
ALPHA = packed + defined type ALPHA.
arrayl[1..ALPHALEN] of
CHAR;
ALPHA
operation form description
= binary compares for equality
<> or == binary compares for inequality
< binary compares for left less than right
<= binary compares for left less than or equal to right
>= binary compares for left greater than or equal to right
> binary compares for left greater than right
STR(x) function converts the ALPHA to a STRING
SIZEOF(x) function returns the number of bytes required for a value
of the type of an ALPHA, which is always 16

Types 55

5.10.4 The Type TEXT

The standard type TEXT is defined as:

type

TEXT = file of CHAR;

In addition to the predefined procedures
to do input and output, Pascal/V$S
defines several procedures which oper-

ate only on files of type TEXT. These
procedures perform character to
internal representation (EBCDIC) con-

versions and gives you some control over
output field lengths. The predefined
routines that may be used on TEXT files
are:

° GET ("GET Procedure™ on page 107)

U] PUT ("PUT Procedure" on page 108)

o EOF ("EOF Function" on page 109)

* EOLN ("EOLN function"” on page 115)

U RESET ("RESET Procedure™ on page
103)

° REWRITE ("REWRITE Procedure"™ on
page 104)

° READ ("READ and READLN (TEXT Files)"

on page 109)

READLN ("READ and
Files)" on page 109)

READLN (TEXT

56 Pascal/VS Reference Manual

++++

° WRITE ("WRITE and WRITELN (TEXT
Files)™ on page 112)
] WRITELN ("WRITE and WRITELN (TEXT

Files)" on page 112)
° PAGE ("PAGE Procedure" on page 115)

° CLOSE ("CLOSE Procedure"
107>

on page

° COLS ("™COLS Function™ on page 116)

° PDSIN ("PDSIN Procedure" on page
105)

° PDSOUT ("PDSOUT Procedure™ on page
106)

° TERMIN ("TERMIN Procedure™ on page
104)

° TERMOUT ("TERMOUT Procedure"™ on
page 105)

° UPDATE ("UPDATE Procedure" on page

106)

Pascal/VS predefines two TEXT variables
named OUTPUT and INPUT. You may use
these files without declaring them in
your program.

C

T

5.11 THE POINTER TYPE

Syntax:

pointer-type:

—> 3 —>{id:typel

Pascal/VS allows variables to be created
during program execution under vyour
explicit control. These variables,
which are called dynamic variables, are
generated by the predefined procedure
NEW. NEW creates a new variable of the
appropriate type and assigns its address
to the argument of NEW. You must
explicitly deallocate a dynamic vari-
able; the predefined procedures DISPOSE
and RELEASE are provided for this pur-
pose.

Dynamic variables are created in an area
of storage called a heap. A new heap is
created with the MARK predefined proce-
dure; a heap 1i1s released with the
RELEASE predefined procedure. A initial
heap is allocated by Pascals/Vs. All
variables that were allocated in a heap
are deallocated when the heap is
released. An attempt to use a dynamic
variable that has been deallocated (ei-
ther via DISPOSE or RELEASE) is an
error.

Pascal/VS pointers are constrained to
point to a particular type. This means
that on declaration of a pointer, vou
must specify the type of the dynamic
variable that will be generated by NEW
or referenced.

Pascal/VS defines the named constant nil
as the value of a pointer which does not
point to any dynamic variable (empty
pointer). Nil 1is type compatible to
every pointer type.

The only operators that can be applied
to variables of pointer type are the

test for equality and inequality. The
predefined function ORD may be applied
to a pointer variable; the result of the
function is an integer value which is
equal to the address of the dynamic var-
iable referenced by the pointer. There
is no function in Pascal/VS to convert
an integer into a pointer.

type
PTR = @& ELEMENT;
ELEMENT = record

PARENT PTR;

CHILD : PTR;

SIBLING: PTR
end;

A Pointer Declaration

This example illustrates a data types
that can be used to build a tree. WWith
this structure the parent node contains
a pointer to the eldest child, the
eldest points to the next sibling who
points to the next, and so forth.

In the above example type ELEMENT was
used before it was declared. Referenc-
ing an identifier prior to its declara-
tion 1i1s generally not permitted in
Pascal/Vs. However, a type identifier
which is used as the base type to a
pointer declaration i1s an exception to
this rule.

Types 57

5.12 THE TYPE STRINGPTR

Variables of type STRING have two
lengths associated with them:

° The current length which defines the
number of characters in the string
at any instant in time.

L The maximum length which defines the
storage required for the string.

The predefined type STRINGPTR defines a
pointer to a string which has no "maxi-
mum length"™ associated with it until
execution time. The procedure NEW is
used to allocate storage for this type
of pointer; an integer expression is
passed to the procedure that specifies
the maximum length of the allocated
string. See "NEW Procedure™ on page
119.

58 Pascal/VS Reference Manual

var
P : STRINGPTR;
Q 2 STRINGPTR;
I : 0..32767;
begin
I :=59;

NEW(P, (I+1) div 2);

WRITELNC MAXLENGTH(P));
{writes '30" to output 1}

NEW(Q,5);

Qa = '1234567890°';
{causes a truncation }
{error at execution

end

Using the Predefined type STRINGPTR

5.13 STORAGE, PACKING, AND ALIGNMENT

For each variable declared with a par-
ticular type, Pascal/VS allocates a spe-
cific amount of storage on a specific
alignment boundary. The Programmer's
Guide describes implementation
requirements and defaults.

Pascal/VS provides the packed record
feature in which all boundary alignment

is suppressed. Fields of a packed
record are allocated on the next byte,
ignoring alignment requirements.

Packed data occupies less space and is
more compact but may increase the exe-
cution time of the program. Moreover, a
field of a packed record or an element
of a packed array may not be passed by
read/write reference (var) to a routine.

Tvpes 59

R s

ROUTINES

Syntax:

routine-dcl:

>{procedure-heading}
___I:::>{function—heading}

r< ; <

——>{directivel} >

<

>{d¢at’:lar‘ation}———>-I

——> {compound-statement}—> ;

procedure-heading:

function-heading:

directive:

—> procedure —>{id}—>{formal-parameters} >

—> function —>{id}—>{formal-parameters}—>

: —>{iditype}—mMM™™ >

—71—> FORWARD
L——=>

L——=>

-—==> REENTRANT

formal-parameters:

EXTERNAL —=-==—————momoommeee
FORTRAN —=———=——=-—mmmmmm oo
F===> MAIN ——-———————mmmmmmmmo o

> (>{formall} >
T-< ;3 < |

formal:

{id}
, <

> var

—=--> const --> Le—

>d

> >{id:typel >

——> {procedure-heading}

——> {function—-headingl}

There are two categories of routines:

procedures and functions. Procedures
should be thought of as adding new
statements to the language. These new
statements effectively increase the

language to a superset language contain-

ing statements tailored to your
specialized needs. Functions should
also be thought of as increasing the

flexibility of the language: functions
add to vyour ability to express data
transformation in expressions.

Routines can return data to the caller
by altering the var parameters or by
assigning to variables that are common
to both the invoker and the invoked rou-
tine. In addition, functions also

Routines 61

return a value to the invoker

return from the function.

upon

6.1 ROUTINE DECLARATION

Routines must be declared prior to their
use. The routine declaration consists
of the routine heading, declarations and
one compound statement.

The heading defines the name of the rou-
tine and binds the formal parameters to
the routine. The heading of a function
declaration also binds the function name
to the type of value returned by the
function. Formal parameters specify
data that is to be passed to the routine
when it is invoked. The declarations
are described in chapter 4. The com-
pound statement will be executed when
the routine is invoked.

6.2 ROUTINE PARAMETERS

Formal parameters are bound to the rou-
tine when the routine is defined. The
formal parameters define what kind of
data may be passed to the routine when
it is invoked. These parameters also
specify how the data will be passed.

When the routine is invoked, a parameter
list is built. At the point of invoca-
tion the parameters are called the actu-—
al parameters.

Pascal/V$ permits parameters to be

passed in following ways:

° pass by value

° pass by read/urite reference (var)

U] pass by read only reference (const)

° pass by conformant string (var or
const)

° formal routine parameter

6.2.1 Pass by vValue pParameters

Pass by value parameters can be thought
of as local variables that are initial-
ized by the caller. The called routine
may change the value of this kind of

parameter but the change is never
reflected back to the caller. Any
expression, variable or constant (ex-—
cept of file type) may be passed with

this mechanism.

62 Pascal/VS Reference Manual

PR IR T T S S S S R i T 2k i 2k 2 i T i i s &

6.2.2 Pass by Var Parameters

Pass by Var (variable) is also called
pass by reference. Parameters that are
passed by var reflect modifications to
the parameters back to the caller.
Therefore you may use this parameter
type as both an input and output parame-
ter. The use of the var symbol in a
parameter indicates that the parameter
is to be passed by read/write reference.

Only variables may be passed by this
mechanism; expressions and constants
may not. Also, fields of a packed

record or elements of a packed array may
not be passed as var parameters.

6.2.3 P3ss by Const Parameters

Parameters passed by const may not be
altered by the called routine. Also you
should not modify the actual parameter
value while the call to the routine has
not yet completed. If you attempt to
alter the actual parameter while it is
being passed by const, the result is not
defined. This method could be called
pass by read only reference. The param-
eters appear to be constants from the
called routine's point of vieuw. Any
expression, variable or constant may be
passed by const (fields of a packed
record and elements of a packed array
may also be passed). The use of the
"const” reserved word in a parameter
indicates that the parameter is to be
passed by this mechanism. With parame-
ters which are structures (such as
strings), passing by const is usually
more efficient than passing by value.

6.2.% Formal Routine Parameters

A procedure or function may be passed to
a routine as a formal parameter. Within
the called routine the formal parameter
may be used as if it were a procedure or
function.

6.2.5 conformant string Parameters

It is often desirable to call a proce-
dure or function and pass in a string
whose declared length does not match
that of the formal parameter. The
conformant string parameter is used for
this purpose.

The conformant string parameter is a
pass by tonst or pass by var parameter
with a type specified as STRING without
a length aqualifier. Strings of any
declared length will conform to such a
parameter. You can use the MAXLENGTH

C

+H++++++

o

parameter. You can use the MAXLENGTH
function to obtain the declared length.
See "MAXLENGTH Function" on page 137.

procedure TRANSLATE
(var S : STRING;
const TABLE: STRING);
var
I : 0..32767;
J t 1..0RD(HIGHEST(CHAR))+1;
begin
for I := 1 to LENGTH(S) do
begin
J = ORD(SLII+1;
if J > LENGTH(TABLE) then
S[IY := ' !
else
S[I1 := TABLELJI;
end;
end;

Example of a Conformant Strings

6.3 ROUTINE COMPOSITION

There are six kinds of routines:

° internal
. FORWARD

° EXTERNAL
° FORTRAN

. REENTRANT
° MAIN

The directive used to identify each kind

of declaration is shown in upper case
above.

Note:

. A routine must be declared before it

can be referenced. This allows the
compiler to assure the validity of a
call by checking paramater compat-
ibility.

6.3.1 1Internal Routines

An internal routine may be invoked only
from within the lexical scope that con-
tains the routine definition.

6.3.2 FORWARD Routines

A routine declared FORWARD is the means
by which you can declare the routine

TNL SN20-4446 (31 December 81) to SH20-6168-1

heading before declaring the declara-
tions and compound statement. The rou-
tine heading is declared followed by the
symbol 'FORWARD'. This allows you to
have a call to a routine prior to defin-
ing the routine's body. If two routines
are to be mutually recursive and are at
the same nesting level, one of the rou-
tines must be declared FORWARD.

To declare the body of the FORWARD rou-

tine, vyou declare the routine leaving
off the formal parameter definition.

6.3.3 EXTERNAL Routines

An EXTERNAL routine
function that can be invoked from out-
side of its lexical scope (such as,
another module). The EXTERNAL directive
is used to specify the heading of such a

is a procedure or

routine. While many modules may call an
EXTERNAL routine, only one module will
actually contain the body of the
routine. The formal parameters defined

in the EXTERNAL routine declaration must
match those in the module where the rou-
tine is defined. An EXTERNAL routine
declaration may refer to a Pascal/V$s
routine which is located later in the
same module or located in another module
or it may refer to code produced by oth-
er means (such as assembler code).

The following example illustrates two
modules (a program module and a segment
module) that share a single EXTERNAL
routine. Both modules may invoke the
routine but only one contains the defi-
nition of the routine.

program TEST;
function SQUARE(X
EXTERNAL;
begin
WRITELNC
end .

REAL) REAL;

SQUARE(44));

SEGMENT S;
function SQUARE(X
EXTERNAL;
function SQUARE:;
begin
SQUARE := X ¥ X
end;

REAL) REAL;

Example of an EXTERNAL Function

The body of an EXTERNAL routine may only
be defined in the outermost nesting lev-
el of a module; that is, it must not be

+ nested within another routine.

Routines 63

TNL SN20-4446 (31 December 81) to SH20-6168-1

B T T Ik I T T T T S R e e S T o o o o ol ot B T S R S SR SR SR SNE SN S B i ol

6.3.4 FORTRAN Routines
A FORTRAN routine is similiar to an
EXTERNAL routine in that it specifies a

routine that is defined outside the mod-

ule being compiled. In addition, it
specifies that the routine is a FORTRAN
subprogram and therefore the con-—

ventions of FORTRAN are to be used. A
FORTRAN routine is never defined within
a Pascal/VS module. If you pass a
literal constant to a FORTRAN subprogram
by CONST, then you must assure that the
FORTRAN subprogram does not alter the
contents of parameter. In order to meet

the requirements of FORTRAN you must

obey the following restrictions:

. All parameters may be only var or
const parameters.

U If the routine is a function, it may
only return a scalar result (this
includes REAL and SHORTREAL).

. Routines may not be passed.

. Multi-dimensional arrays are not
remapped to conform to FORTRAN
indexing, that is, an element of an

in Pascal will be ele-
in FORTRAN.

array Aln,ml
ment A(m,n)

6.3.5 MAIN Procedures

The MAIN directive is used to identify a
Pascal procedure that may be invoked as
if it were a main program. It is some-
times desirable to invoke a Pascal/VS$s
procedure from a non-Pascal routine, for
example FORTRAN or assembler language.
In this case it is necessary for certain
initializing operations to be performed
prior to actually executing the Pascal
procedure. The MAIN directive specifies
that these actions are to be performed.

There are several restrictions on the
use of the MAIN directive.

. only procedures may have the MAIN
directive;

6% Pascal/VS Refaeraencae Manual

U U R PR U RIS TU T A T N . T Tk T T I I I VI S e S S R A A R N

is declared to be
its body located in

U a procedure that
MAIN must have
the same module;

. the execution of a MAIN procedure
will not be reentrant;

. the MAIN directive
applied to procedures
most nesting level.

may only be
in the outer-

Consult Pascal/VS Programmer's Guide,
order number SH20-6162 for further
details on using MAIN.

6.3.6 REENTRANT Procedures

The REENTRANT directive is used to iden-
tify a Pascal procedure that may be
invoked as if it were a main program
like a MAIN procedure. In addition,
invocations of these procedures will be
reentrant.

In order to achieve this addition fea-

ture, some help is required from you.
The Ffirst parameter of a procedure
defined with the REENTRANT directive
must be an INTEGER passed by var. Prior
to the very first call from a
non-Pascal/VS program you must initial-
ize this variable to =zero (0). On

subsequent calls you must pass the same
variable back unaltered (Pascal/VS sets
the variable on the first call and needs
that value on the subsequent
invocations). You need not call the
same procedure each time, you may call
different procedures - just continue to
pass this variable on each call.

Guide,
further

Consult Pascal/VS Programmer's
order number SH20-6162 for
details on using REENTRANT.

Note: All Pascals/VS internal procedures
and functions are reentrant. The REEN-

TRANT directive is used to specify a
procedure that is both reentrant and
invokable from outside the Pascal/VS

execution environment.

C

6.3.7 Examples of Routines

static
C: CHAR;

function GETCHAR:CHAR;
EXTERNAL;

procedure EXPR(var VAL: INTEGER);
EXTERNAL;

procedure FACTOR(var VAL: INTEGER);
EXTERNAL;
procedure FACTOR;
begin
C := GETCHAR;
if C = *(' then

begin
C := GETCHAR;
EXPR(VAL)

end

else
end;)
procedure EXPR {var VAL: INTEGER};
begin
FACTOR(VAL);
end; o

Examples of Routine Declarations

function CHARFOUND
(const S5: STRING;
C: CHAR): BOOLEAN;
var I: 1..255;
begin
for T := 1 to LENGTH(S) do
if S[I] = C then
begin
CHARFOUND := TRUE;
return
end;
CHARFOUND := FALSE;
end;

Example of Const Parameter

6.4 FUNCTION RESULTS

A value i1s returned from a function by
assigning the value to the name of the
function prior to leaving the function.
This value is inserted within the

expression at the point of the call.
The value must be assignment conformable
to the type of the function.

If the function name is used on the
right side of an assignment, it will be
interpreted as a recursive call.

function FACTORIAL
(X: INTEGER): INTEGER;

begin
if X <= 1 then
FACTORIAL =1
else

FACTORIAL := X % FACTORIAL(X-1)
end;

Example of Recursive Function

Standard Pascal permits a function to
return only a scalar value. Pascal/VS
provides for a function to return any
type except a file. This means that you
can write a PascalsVS function that
returns a record structure as its result
(such as you might wish to do for imple-
menting a complex arithmetic library).
A function may also return a string,
however you must specify the maximum
length of the string to be returned.

type
COMPLEX = record
R,I : REAL
end

function CADD
(const A,B : COMPLEX) : COMPLEX:;
var
C : COMPL
begin
C.R := A.
C.I = A.
CADD := C
end;

X;

E
R + B.R;
I + B.I;

Example of a Function Returning a Record

6.5 PREDEFINED PROCEDURES AND FUNC~
TIONS

Pascal/VS predefines a number of proce-
dures and functions that you may find
valuable. Details of the predefined
procedures and functions are given in
section titled "I/0 Facilities" on page
103.

Routines 65

+ 4+ +

TNL SN20-4446 (31 December 81) to SH20-6168-1

7.0 VARIABLES

Syntax:

variable:

notes:
—>{i d}—>~|
<
> [[>{expr} >] > subscripted variable
< ’
—> —>{id:field} > field reference
> 3 > pointer reference
>
Pascal/VS divides variables into five
classes depending on how they are
declared: var
LINEL,
o automatic (var variables) LINE2 packed
arrayl 1..80] of
° dynamic (pointer-qualified vari- CHAR;
ables)
° static (static variables) { assién all 80 characters }
{ of the array

. external (def/ref variables) LINE1 := LINEZ;
U parameter (declared on a routine Using Variables in their entirety

declaration)

A variable may be referenced in several
ways depending on the variable's type.
You may always refer to the entire vari-
able by specifying its name. You may
refer to a component of a structured
variable by using the syntax shown in
the syntax diagram.

If you simply specify the name of the
variable, then you are referring to the

entire variable. If that variable is
declared as an array, then vyou are
referring to the entire array. You may

assign an entire array. Similarly, you
may also deal with record and set vari-
ables as units.

7.1 SUBSCRIPTED VARIABLE

An element of an array is selected by
placing an indexing expression enclosed
within square brackets, after the name
of the array. The indexing expression
must be of the same type as declared on
the corresponding array index defi-
nition.

A multi-dimensional array may be refer-
enced as an array of arrays. For exam-
ple, let variable A be declared as
follows:

A: array [a..b,c..d]l of T
As explained in "The Array Type" on page
42, this declaration is exactly equiv-
alent to:

A: array [a..b] of
array [c..dl of T

Variables 67

TNL SN20-4446 (31 December 81) to SH20-6168-1

A reference of the form A[I] would be a
variable of type:

array [c..dl of T

and would represent a single row 1in
array A. A reference of the form
A[II[J] would be a variable of type T
and would represent the Jth element of
the Ith row of array A. This latter
reference would customarily be abbrevi-
ated as

AlI,J]

Any array reference with two or more
subscript indicies can be abbreviated by
writing the subscripts in a comma sepa-
rated list. That is, A[Il[J]l... could
be written as A[I,J,...].

If the "4ZCHECK SUBSCRIPT' option is ena-
bled, the index expression will be
checked at execution time to make sure
its value does not lie outside of the
subscript range of the array. An exe-
cution time error diagnostic will occur
if the value lies outside of the pre-
scribed range. (For a description of
the CHECK feature see "The %XCHECK State-
ment" on page 148.)

A variable of type STRING may be sub-
scripted with an integer expression to
reference individual characters. The
value of the subscript must not be less
than 1 or greater than the length of the
string. String subscripts are checked
at run time 1f %CHECK SUBSCRIPT is ena-
bled.

Al12]

ALTI]

AL I+J]

DECKL CARD—FIFTY 1

MATRIXL ROWLIJI, COLUMNLJ] 1]

Subscripted Variables

7.2 FIELD REFERENCING

A field of a record is selected by fol-
lowing the record variable by a period
and by the name of the field to be ref-
erenced.

68 Pascal/V¥S Reference Manual

var
PERSON:
record
FIRST_NAME,
LAST_NAME: STRING(15);
end;
DATE:
record
DAY: 1..31;
MONTH: 1..12;
YEAR: 1900..2000
end;
DECK:
arrayll..52] of
record
CARD: 1..13;
SUIT:
(SPADE, HEART,
DIAMOND, CLUB)
end;
PERSON.LAST_NAME := 'SMITH';

DATE.YEAR := 1978;
DECKL I 1.CARD := 2;
DECKL I J.SUIT := SPADE;

Field Referencing Examples

7.3 POINTER REFERENCING

A dynamic variable is created by the
predefined procedure NEW or by an imple-
mentation provided routine which
assigns an address to a pointer
variable. You may refer either to the
pointer or to the dynamic variable; ref-
erencing the dynamic variable requires
using the pointer notation.

For example
var P : 2 R;

P refers to the pointer
Pa refers to the dynamic variable

If the "ZCHECK POINTER' option is ena-
bled, any attempt to reference a pointer
that has not been assigned the address
of an allocated variable will result in
an execution time error diagnostic.
(For a description of the CHECK feature
see "The XCHECK Statement” on page 148.)

If the '%CHECK POINTER' option is ena-
bled, any attempt to reference a file
pointer which has no value will result
in an execution time error diagnostic.
(For a description of the CHECK feature
see "The %ZCHECK Statement"™ on page 146.)

var
INPUT ¢ TEXT;
QUTPUT T TEXT;
LINE1 : array [1

{ scan off blanks

{ from a file of CHAR

GETC(INPUT);

While INPUTY = ' ' do
GETCINPUT);

..80] of CHAR;

[y

{ transfer a line to the }

{ OUTPUT file
for I := 1 to 80 do
begin

QUTPUTa := LINE1[I];

PUT(OUTPUT)
end;

File Referencing Examples

Variables

69

+ + +

8.0 EXPRESSIONS

Syntax:

constant-expr:
expr:

—>{simple-expression} T >

> = >{simple-expression}—>
——> <> —>
> <
—> <= —>
—> > —>
—> >
—> in —>
simple-expression:
>{term} >
—> + ——-—)il —> + —>
> - —> — - —>
F=—==> && -->
—> | —
<
term:
——>{factor} >
> % >
> 7/ >
——> div >
—> mod —>
L——=> >> -—__>j
L= => <& —=—==>
e > || ————>
> & >4
L<
factor:

— > {function-calll >
——>{variable} >
——>{set-constructor} >W
—> (—>{expr} >) >4
r--->{structured-constant}-------- - - - - - - - -——v--—---—-————-——- >-

——> not —>{factor} >
——>{unsigned-constant} >
Pascal/VS expressions are similar in - the not operator (highest)

function and form to expressions found
in other high level programming lan-
guages. Expressions permit you to com-
bine data according to specific
computational rules. The type of compu-
tation to be performed is directed by
operators which are grouped into four
classes according to precedence:

- the multiplying operators
- the adding operators
- the relational operators (lowest)

An expression is evaluated by performing
the operators of highest precedence
first, operators of the next precedence
second and so forth. Operators of equal
precedence are performed in a left to
right order. If an operator has an
operand which is a parenthesized sub-

Expressions 71

expression, the
evaluated
operator.

sub-expression is
prior to applying the

The operands of an expression may be
evaluated in either order; that is, you
should not expect the left operand of
dyadic operator to be evaluated before
the right operand. If either operand
changes a global variable through a
function call, and if the other operand

72 Pascal’/VS Reference Manual

uses that value, then the value used is
not specified to be the updated value.
The only exception is in boolean expres-
sions involving the logical operations
of 'and' (&) and 'or' (|); for these
operations the right operand will not be
evaluated if the result can be deter-
mined from the left operand. See
"Boolean Expressions" on page 77.

TNL SN20-4446 (31 December 81) to SH20-6168-1

Examples of Expressions

Assume the followi

ng declarations:

const
ACME = 'acme';
typea
COLOR = (RED, YELLOW, BLUE);
SHADE = set of COLOR;
DAYS = (SUN, MON, TUES, WED, THUR, FRI, SAT);
MONTHS = (JAN, FEB, MAR, APR, MAY, JUN,
JUL, AUG, SEP, OCT, NOV, DEC);
var
A_COLOR COLOR;
A_SET SHADE;
BOOL : BOOLEAN;
MON : MONTHS
I,
J INTEGER;
factors:
I variable
15 unsigned constant
(I%8+J) parenthetical expression
[RED 1 set of one element
[1] empty set
ODD(IxJ) function call
not BOOL complement expression
COLORC 1) scalar type converter
ACME constant reference
terms:
I factor
I x J multiplication
I div J integer division
ACME || " TRUCKING' catenation
A_SET % [RED 1 set intersection
I & "FFOO0'X logical and on integers
BOOL & ODD(I) boolean and
simple expression:
I *x J term
I+ addition
I | '80000000°'X logical or on integers
A_SET + [BLUE 1 set union
-1 unary minus on an integer

expression:

I +J
RED = A_COLOR
RED 1n A_SET

simple expression
relational operations
test for set inclusion

Expressions

73

TNL SN20-4446 (31 December 81) to SH20-6168-1

+ 4+ + + +

+ + +

8.1 OPERATORS
Multiplying Operators
operator operation operands result
* multiplication INTEGER INTEGER
REAL REAL
REAL, INTEGER REAL
SHORTREAL SHORTREAL
SHORTREAL, INTEGER SHORTREAL
SHORTREAL, REAL REAL
/ real division INTEGER REAL
REAL REAL
REAL, INTEGER REAL
SHORTREAL SHCRTREAL
SHORTREAL, INTEGER SHORTREAL
SHORTREAL, REAL REAL
div integer division INTEGER INTEGER
mod modulo INTEGER INTEGER
& (and) boolean and BOOLEAN BOOLEAN
& (and) logical and INTEGER INTEGER
* set intersection set of t set of t
bl string catenation STRING STRING
<< logical left shift |INTEGER INTEGER
>> logical right shift|INTEGER INTEGER
Adding Operators
operator operation operands result
+ addition INTEGER, INTEGER INTEGER
REAL, REAL REAL
REAL, INTEGER REAL
SHORTREAL, SHORTREAL SHORTREAL
SHORTREAL, INTEGER SHORTREAL
SHORTREAL, REAL REAL
- subtraction INTEGER, INTEGER INTEGER
REAL, REAL REAL
REAL, INTEGER REAL
SHORTREAL, SHORTREAL SHORTREAL
SHORTREAL, INTEGER SHORTREAL
SHORTREAL, REAL REAL
- set difference set of t set of t
| (o) boolean or BOOLEAN BOOLEAN
| C(or) logical or INTEGER INTEGER
+ set union set of t sat of t
&& (xor) exclusive or INTEGER INTEGER
&& (xor) *exclusive' union set of t st of t

74 Pascal/VS Reference Manual

TNL SN20-4446 (31 December 81) to SH20-6168-1

The Not Operator

operator operation operand result
- (not) boolean not BOOLEAN BOOLEAN
- (not) logical one's INTEGER INTEGER
complement
- (hot) set complement set of T sat of T
Relational Operators
operator operation operands result
= compare equal any set, scalar type, BOOLEAN
pointer or string
<> (==) compare not equal any set, scalar typo, BOOLEAN
pointer or string
< compare less than scalar type or string BOOLEAN
<= compare < or = scalar type, string BOOLEAN
<= subsat set of t BOOLEAN
> compare greater scalar type, string BOOLEAN
>= compare > or = scalar type, string BOOLEAN
>= superset set of t BOOLEAN
in set membership t and set of t BOOLEAN

Expraessions

75

TNL SN20-4446 (31 December 81) to SH20-6168-1

++++++++ A+

+ 4+ ++ ++

8.2 CONSTANT EXPRESSIONS

Constant expressions are expressions
which can be evaluated by the compiler
and replaced with a result at compile
time. By its nature, a constant expres-
sion may not contain a reference to a
variable or to a user-defined function.
Constant expressions may appear inh con-
stant declarations.

The following predefined functions are
permitted in constant expressions:

Function Page
ABS 132
CHR 126
HIGHEST 123
LENGTH 137
LOWEST 123
MAX 130
MAXLENGTH 137
MIN 130
0oDD 132
ORD 126
PRED 131
scalar conversion

functions 127
SIZEOF 125
sSucCce 131

76 Pascal/VS Reference Manual

++++ A+

constant

expression type
ORDC('A") INTEGER
SUCC(CHR('FO0'X)) CHAR
256 div 2 INTEGER

"TOKEN'"| |STRCCHR(0)) STRING
'8000'X | '0001'X INTEGER
['o"..'9'1] set of CHAR
32768%2~1 INTEGER

Examples of Constant Expressions

8.3 BOOLEAN EXPRESSIONS

You should recognize that Pascal assigns
the operations of "&" (and) and "|" a
higher precedence than the relational
operators. This means that the expres-
sion:

A<B & C<D
Wwill be evaluated as

(A < (B&C)) < D

Thus, it is advisable to use parenthesis
when writing expressions of this sort.

Pascal/VS will optimize the evaluation
of BOOLEAN expressions involving '&'
(and) and '|' (or) such that the right
operand of the expression wWill not be
evaluated if the result of the operation
can be determined by evaluating the left
operand. For example, given that A, B,
and C are boolean expressions and X is a
boolean variable, the evaluation of

X:=AorBorcC
would be performed as

if A then
X := TRUE
else
if B then
X := TRUE
else
X = C

The evaluation of
X := Aand B and C
would be performed as
if -A then
X = FALSE
else
if -B then
X = FALSE

X :=C

The evaluation of the expression will
always be left to right.

The following example demonstrates log-
ic which depends on the conditional
evaluation of the right operand of the
rand™ operator.

typa
RECPTR = QREC;
REC = record
NAME: ALPHA;
NEXT: RECPTR;
end;

var
P : RECPTR;
LNAME ALPHA;
begin

while (P<>nil) and
d (Pa.NAME <> LNAME)
o

P t= PY.NEXT;
ena; '

Example of a BOOLEAN Expression
that Depends on Order of Evaluation

Notes:

° If you use a function in the right
operand of a boolean expression,
then you must be aware that the
function may not be evaluated. Fur-
ther, you should note that relying
on side-effects from functions is
considered a bad programming prac-
tice.

° Not all Pascal compilers support
this interpretation of BOOLEAN
expressions. If you Wwish to assure
portability between Pascal/VS and
other Pascal implementations vyou
should write the compound tests in a
form that uses nested
if-statements.

Expressions 77

S 2 A O

8.% LOGICAL EXPRESSIONS

Many of the integer operators provided
in Pascals/V5 perform logical operations
on their operands; that is, the operands
are treated as unsigned strings of bina~
ry digits instead of signed arithmetic
quantities. For example, if the integer
value of -1 was used as an operand of a
logical operation, it would be viewed as
a string of binary digits with a
hexadecimal value of '"FFFFFFFF'X.

The logical operations are defined to
apply to 32 bit values. Such an opera-
tion on a subrange of an INTEGER could
yvield a result outside the subrange.

The following operators perform logical
operations on integer operands:

. '%&' (and) performs a bit-wise and of
two integers.

o '*|'* (or) performs a bit-wise inclu-
sive Or.
U] '8’ (xor?) performs a bit-wise

exclusive Or,

e e

'-' (not) performs a one's comple-

ment of an integer.

'<<' shifts the left operand value
left by the amount indicated in the
right operand. Zeroes are shifted in
from the right.

'>>' shifts the left operand value
right by the amount indicated in the

right operand. Zeroes are shifted in
from the left.

257 & 'FF'X vyields 1

2 1 4| 8 yields 14

4 << 2 vields 16

-4 << 1 vields -8

8 >> 1 yvields 4

-8 >> 1 viaelds '7FFFFFFC'X
'FFFF'X >> 3 yields Y1FFF'X

-1 & '"FF'X yvields 'FE'X

-0 yields -1

'FF'X &% 8 vields 'F7'X

Examples of Logical Operations

78 Pascal/VS Reference Manual __ .

8.5 FUNCTION CALL

Syntax:

function-call:

actual—-parameters:

—>{id:function}—>{actual-parameters}

A function returns a value to the
invoker. A call to a function passes
the actual parameters to the correspon-
ding formal parameters. Each actual
parameter must be of a type that is
conformable to the corresponding formal
parameter. You may not pass a field of
a packed record as a var parameter. You
also may not pass an element of a packed
array as a var parameter.

The parenthesis list may be dropped if
the function requires no parameters.
However, 1f vou wish to draw attention
to a function call that has no parame-
ters and make it appear different from a
variable reference, you can follow the
function name with an empty set of
parenthesis.

var A,B,C: INTEGER;

function SUM

(A,B: INTEGER): INTEGER;

begin
SUM := A+B
end;
begin
C iz SUMCA,B) % 2
end;

Function Example

Expressions

79

R R E E T R R T

8.6 SCALAR CONVERSIONS

Pascal/VS predefines the function ORD
that converts any scalar value into an
integer. The scalar conversion func-
tions convert an integer into a speci-
fied scalar type. An integer expression
is converted to another scalar type by
enclosing the expression within paren-
theses and prefixing it with the type
identifier of the scalar type. If the
operand is not in the range 0 ..
ORD(HIGHEST(scalar type)), then a sub-
range error will result. The conversion
is performed in such a way as to be the
inverse of the ORD function. See
"Scalar Conversion"™ on page 126.

The definition of any type identifier

that specifies a scalar type (enumerated
scalars or subranges) forms a scalar

30 PascalsVS Reference Manual

U U A G R R

conversion function. By definition, the
expression CHAR(x) 1is equivalent to
CHR(x); INTEGER(Xx) is equivalent to x;
and ORD(type(x)) is equivalent to x.

WEEK =
(SUN,MON, TUE,WED, THU, FRI,SAT);

ar
DAY: WEEK;

{The following assigns SAT to DAY}
DAY := WEEK(6);

Scalar Conversion Functions

J

8.7 SET CONSTRUCTOR

Syntax:

set-contructor:

> [>{expr} >] >
[L——-> .. —>{expr} >-I
< , <
>
A set constructor is used to compute a
value of a set type within an
expression. type
DAYS = set of
The set constructor is list of comma (SUN,MON, TUES,WED, THU, FRI,SAT);
separated expressions or expression CHARSET= set of CHAR;
pairs within square brackets. An

expression pair designates that all val-
ues from the first expression through
the last expression are to be included
in the resulting set; the evaluation of
the first expression must produce a val-
ue less than or equal to the value
computed by the second expression. Each
expression must be of the same type;
this type becomes the base scalar type
of the set. If the set specifies INTE-
GER valued expressions, then there is an
implementation restriction of 256 ele-
ments permitted in the set.

var
WORKDAYS,
WEEKEND: DAYS
CHARSET;

NONLETTERS:

WORKDAYS :
WEEKEND

[MON..FRI];
~ WORKDAYS;

NONLETTERS

- ['a'..'2",'A"..'2"'];

| Set Constructor

Expressions

81

9.0 STATEMENTS

Syntax:
statement:
————:?—->{1abe1)———> P>
+ r—--->{assert-statement}--------- - -----—- - >
——>{assignment-statement} >
——>{case-statement} >
——> {compound-statement} >4
+ r-—=>{continue-statement}---------------——- - >-
—> {empty-statement} >J
——>{for-statement} >4
—> {goto-statement} >
—>{if-statement} >4
+ -—--->{leave-statement}----——--------m o >
——>{procedure-call} >
—>{repeat-statement} >
+ r-—->{return-statement}---------+---—-—e - >
fF—>{while-statement} >
—>{with-statement} > >
Statements are your directions to per- those found in most high level program- |
form specific operations based on the ming languages.
data. The statements are similar to

Statements 83

+H+++rtrtrr bbbt r Attt

9.1 THE ASSERY STATEMENT

Syntax:

assert-statement:

-=-> assert --->{expr}--------------m—me e e

The assert-statement is used to check
for a specific condition and signal a
runtime error if the condition is not
met. The condition is specified by the
expression which must evaluate to a
BOOLEAN value. If the condition is not
TRUE then the error is raised. The com-
piler may remove the statement from the
program if it can be determined that the
assertion is always true.

84 Pascals/VS Reference Manual

R R

Example:
assert A >= B

The Assert Statement

C

9.2 THE ASSIGNMENT STATEMENT

Syntax:

assignment-statement:

————[:::>{variable} > = >{expri} >
>{id=function}———>J

The assignment-statement is used to

assign a value to a variable. This

statement is composed of a reference to Example:

a variable followed by the assignment

symbol (':='), followed by an expression type

which when evaluated is the new value.
The variable must be conformable to the
expression. The rules for expression
conformability are given in "Type Com-
patibility" on page 31.

You may make array assignments (assign
one array to another array) or record
assignments (assign one record to anoth-
er). When doing this, the entire array
or record is assigned.

A result is returned from a function by
assigning the result to the function
name prior to leaving the function. See
"Function Results" on page 65

Pascals/V5 will not permit the assignment
of a value to a pass by const parameter.

CARD = record

SUIT : (SPADE,

HEART,
DIAMOND,
CLUB);
RANK : 1..13
end;
var
X, Y, Z * REAL;
LETTERS,
DIGITS,

LETTER_OR_DIGIT
set of CHAR;

I, J, K : INTEGER;

DECK : arrayl 1..52
CARD;

X 1= Y®Z;
LETTERS

DIGITS
LETTER_OR_DIGIT
DECKL I 1.SUIT
DECKL J 1

[YA' .. '2' 1; \
L 'or .. "9' 3; |
LETTERS + DIGITS; !
HEART; !
DECKL K I; !

Assignment Statements [

Statements 85

o+

9.3 THE CASE STATEMENT

Syntax:
case-statement:
—> case —>{expr}—> of ——>-|
-<
>(range}———T———> ¢ —>{statement}—>
| [< , <
< ; <
L<
T, <
r---> otherwise ---1--- >{statement}--—7--- >
T ists ement =~ 777>
gy M M ML Jd
> end
The case-statement provides you with a
multiple branch based upon the evalu-
ation of an expression. This statement Example:
consists of an expression called the
selector and a list of statements. The type
selector must be of scalar type (except SHAPE = (TRIANGLE, RECTANGLE,
tyvpe REAL). Each statement is prefixed SQUARE, CIRCLE);
with one or more ranges of the same type COORDINATES =
as the selector; each range is separated record
by a comma. Each range designates one X,Y : REAL;
or more values called case labels. AREA : REAL;
case S : SHAPE of
Pascal/VS evaluates the expression and TRIANGLE:
executes the statement whose case label (SIDE REAL;
equals the value of the expression. If BASE REAL);
no case label equals the value of the RECTANGLE:
expression, then the otherwise state- (SIDEA,SIDEB REAL);
ment is executed if it is present; if SQUARE:
there i1s no otherwise statement and the (EDGE REAL);
4CHECK CASE option is on, then a runtime CIRCLE:
error Will result. If the checking is (RADIUS REAL)
not enabled the results will not be pre- end;
dictable. var
COORD COORDINATES;
The range values of a case-statement may R
be written in any order. However, you with COORD do
may not designate the same case label on case S of
more than one statement. TRIANGLE:
AREA := 0.5 ¥ SIDE » BASE;
RECTANGLE:
AREA := SIDEA »* SIDEB;
SQUARE:
AREA := SQR(EDGE);
CIRCLE:
AREA := 3.14159 % SQR(RADIUS)
end;

The Case Statement

86 Pascal/VS Reference Manual

C

Example:

type
RANK = (ACE, TWO,
FIVE, SIX,
NINE, TEN,
KING);
SUIT =
CARD = record
R 2 RANK;
S SUIT
end;
var

POINTS : INTEGER;
A_CARD : CARD;

case A_CARD.R
ACE:
POINTS
TWO..TEN:
POINTS
otheruise
POINTS
end;

The Case Statement with otherwise

of
11;

THREE, FOUR,
SEVEN, EIGHT,
JACK, QUEEN,

(SPADE,HEART,DIAMOND,CLUB);

ORD(A_CARD.R)+1

10

Statements

87

9.4 THE COMPOUND STATEMENT

Syntax:

compound-statement:

—> hegin >{statement}———T———> end
[< ; <

The compound-statement serves to brack-
et a series of statements that are to be
executed sequentijially. The reserved
words "begin” and "end"” delimit the
statement. Semicolons are used to sepa-
rate each statement in the list of
statements.

88 Pascal/VS Reference Manual

Example:

if A > B then
begin { swap A and B }
TEMP := A;
A
B
end

’

B;
TEMP

Compound Statement

Rk ks ks

9.5 THE CONTINUE STATEMENT

TNL SN20-4446 (31 December 81) to SH20-6168-1

Syntax:

continue-statement:

---> continue --------—------——— e

The continue statement causes a jump to
the loop-continuation portion of the
inner-most enclosing for, wWwhile, or
repeat statement. In other words, it is
a goto to the end of the loop.

The following examples illustrate how
the continue statement functions in each
of the loop constructs.
while expr do begin
continue
(iééntinue jumps to hereX)
end

for i := exprl to expr2 do
begin

continue

(¥continue jumps to here¥)}
end

repeat

continue

(¥continue jumps to herex)}
until expr;

Statements

89

TNL SN20-4446 (31 December 81) to SH20-6168-1

9.6 THE EMPTY STATEMENT

Syntax:

empty-statement:

>
The empty-statement is used as a place outer nested if-statement (see page 94)
holder and has no effect on the exe- by using an empty-statement.
cution of the program. This statement
is often useful when you wish to place a if_bl then
label in the program but do not want it 1f b2 then
attached to another statement (such as, sl
at the end of a compound-statement). else
The empty-statement is also useful to { empty-statement 1}
avoid the ambiguity that arises in nest- else
ed if-statements. You may force a 52

single else-clause to be paired with the

90 Pascal/VS Referenca Manual

9.7 THE FOR STATEMENT

Syntax:

for-statement:

—> for —>{id}—> := —>{expr}

> to
L3 dounto —>l

>{expr}—>

[>

>{statement} >

The for-statement repeatedly executes a
statement while the control variable is
assigned a series of values. The value
of the control variable is incremented

(to) or decremented (dounto) for each
iteration of the loop. The increment
(decrement) is computed by the SUCC

(PRED) function. That is, the control
variable is changed to the succeeding
(preceding) value of the type of the
control variable.

The for-statement initializes the con-
trol variable to the first expression.
Prior to each execution of the component
statement,; the control variable is com-
pared less than or equal to (to), or
greater than or equal to (downto) the
second expression. Pascal/VS computes
the value of the second expression at
the beginning of the for-statement and
uses the result for the duration of the
statement. Thus the ending value
expression is computed once and can not
be changed during the for—-statement.

The control variable must be an automat-
ic variable which is declared in the
immediately enclosing routine. Also, it
may not be subscripted, field qualified
or referenced through a pointer. The
type of the control variable must be a
scalar type.

The executed statement must not alter
the control variable. If the control
variable is altered within the loop, the
resultant loop execution is not predict-
able. The value of the control variable
after the for-statement is executed is
undefined (you should not expect the
control variable to contain any partic-
ular value).

Given the following statement
for I := exprl t0 expr2 do stmt
where I is an automatic scalar variable;

exprl and expr2 are scalar expressions
which are type-compatible with I; and

is any arbitrary statement. The
statement 1i1s func-

'stmt'
following compound
tionally equivalent:

begin
TEMPL := exprl;
TEMP2 := expr?;
if TEMP1 <= TEMP2 then
begin
I := TEMPL;
repeat
stmt;
if I = TEMP2 then
leave;
I = SUCC(I)
until FALSE; {foreverl}
end
end

where 'TEMPl1l' and 'TEMP2' are compiler
generated temporary variables.

And given the following statement

for I := exprl douwnto expr2 do stmt
where I is an automatic scalar variable;
exprl and expr2 are scalar expressions
which are type-compatible with I; and
'stmt' is any arbitrary statement. The
following compound statement 1is func-
tionally equivalent:

begin
TEMPl := exprl;
TEMP2 := expr2;
if TEMP1 >= TEMP2 then
begin
I := TEMPL;
repeat
stmt;
if I = TEMP2 then
leave;
I := PRED(I)
until FALSE; {foreverl}
end
end

|
where 'TEMP1l' and 'TEMP2' are compiler
generated temporary variables.

Statements 91

Examples:

{ find the maximum INTEGER in
{ an array of INTEGERs
MAX := Al1l];
LARGEST := 1;
for I := 2 to SIZE_OF_A do
if ALI] < MAX then
begin
LARGEST := I;
MAX := A[I]
end

{ matrix multiplication: C<-AXB

for I := 1 to N do
for J:= 1 to N do
begin
X = 0.0;
for K := 1 to N do
X 2= A[I,K] % B
CclI,J] := X
end

[K,J1 + X;

Sl

}

{ sum the hours worked this week }

SUM := 0;
for DAY := MON to FRI do

SUM := SUM + TIMECARDIL DAY]

The For Statement

92 Pascal/V5S Referenca Manual

C

9.8 THE GOTO STATEMENT

Syntax:

goto-statement:

> goto —>{labell

The goto-statement changes the flow of
control within the program.

Examples:

goto 10
goto ERROR_EXIT

The Goto Statement

The label must be declared within the

routine

that contains the

goto~-statement.

The following restrictions apply to the
use of the goto statement:

You may not branch into a compound
statement from a goto-statement
which is not contained within the
statement.

You may not branch into the then-
clause or the else-clause from a
goto-statement that is outside the
if-statement. Further, you may not
branch between the then-clause and
the else-clause.

You may not branch into a case-al-
ternative from outside the
case-statement or between case-al-
ternative statements in the same
case-statement.

You may not branch into a for,
repeat, or while loop from a goto
statement that is not contained
within the loop.

branch into a
from

a
outside of the

You may not
with-statement
goto-statement
with-statement.

For a goto-statement that specifies
a label that is defined in an outer
routine, the target label may not be
defined within a compound statement

or loop.

The following example illustrates legal
and illegal goto-statements.

procedure GOTO_EXAMPLE;

label
L1, L2, L3, L4

procedure INNER;

begin
goto L4%; { permitted }
goto L3; { not permitted }
end;
begin
goto L3; { not permitted }
begin
L3:
goto L4; { permitted }
goto L3; { permitted }
end;
L4:if expr then
L1: goto L2 { not permitted }
else
L2: goto L1 { not permitted }
end;

Goto Target Restrictions

Statements

93

9.9 THE IF STATEMENT

Syntax:

if-statement:

—> if —>{expr}—> then —>{statement}

|-——> else ——>{5tatement}——>J

The if-statement allows you to specify
that one of two statements is to be exe-
cuted depending on the evaluation of a
boolean expression. The if-statement is
composed of an expression and a then-
clause and an optional else-clause.
Each clause contains one statement.

The expression must evaluate +to a
BOOLEAN value. If the result of the
expression is TRUE, then the statement
in the then-clause is executed. If the
expression evaluates to FALSE and there
is an else-clause, then the statement in
the else-clause is executed; if there is
no else-clause, control passes to the
next statement.

Example:

if A <= B then
A = (A+1.0)/2.0

if ODD(I) then
J:=J+l

else
J:=y divze2 +1

The If Statement

Nesting of an if-statement within an
if-statement could be interpreted with
two different meanings if only one
statement had an else-clause. The fol-
lowing example illustrates the condi-
tion that produces the ambiguity.
PascalsV$ always assumes the first
interpretation. That is, the
else-clauses are paired with the inner-
most if-statement.

94 Pascals/V$S Reference Manual

The following line could be
interpreted two ways.

if bl then if b2 then stmtl else stmt2

Interpretation 1
(assumed by Pascal/Vs)

if bl then
begin
if b2 then
stmtl
else
stmt2
end

Interpretation 2
(incorrect interpretation)

if bl then
begin
1f b2 then
stmtl
end
else
stmt2

If the second interpretation is desired
you could code it as shown or you could
take advantage of the empty-statement.

if bl then
if b2 then
stmtl
else
{ empty statement 1}
else
stmt2

T S T S T A s

TNL SN20-4446 (31 December 81) to SH20-6168-1

9.10 THE LEAVE STATEMENT

Syntax:

leave-statement:

-==> leave —---- s s e e e e >

The leave statement causes an immediate, +
unconditional exit from the inner-most +
enclosing for, wWhile or rep2at loop. + Example:
For example, the following two code seg- +
ments are functionally equivalent: + P:=FIRST;
. + wWhile P<>nil do
while expr do + if PA.NAME = 'JOE SMITH' then
hegin + leave
. e + else
leave + P:=Pa.NEXT:;
end; + { P either points to the desired }
+ { data or is nil }
Khile expr do +
begin + The Leave Statement
e +
goto lab; +
end; +
lab: ;

Statements

95

TNL SN20-4446 (31 December 81) to SH20-6168-1

9.11 THE PROCEDURE CALL

Syntax:

procedure~-call:

—>{id:procedurel} T)
> ([>{exprl} T >) >
< y <
The procedure-statement causes the
invocation of a procedure. When a pro-
cedure is invoked, the actual parameters
are substituted for the corresponding Example:

formal parameters. The actual parame-
ters must be conformable to the formal
parameters. The rules for expression
conformability are given in "Type Com-
patibility" on page 31.

Parameters which are passed by
read/write reference (var) may only be
variables, never expressions or con-
stants. Also, fields of a packed record
may hot be passed by var. Parameters
passed by value or read-only reference
(const) may be any expression.

A procedure invocation that requires no

parameters does not use the list of
operands.

96 Pascal/VS Reference Manual

TRANSPOSECAN_ARRAY,
NUM=0F_ROWS,
NUM-0F_COLUMNS);

MATRIX_ADD(A_ARRAY,
B_ARRAY,
C_ARRAY,
NTM);

XYZ(I+J, KxL)

Procedure Invocations

9.12 THE REPEAY STATEMENT

Syntax:

repeat-statement:

—> repeat —L—>{5tatement)—[—> until —> (exprl}
£ s < P

The statements contained batween the
statement delimiters repeat and until
are executed until the control expres-
sion evaluates to TRUE. The control
expression must evaluate to type
BOOLEAN. Because the termination test
is at the end of the loop, the body of
the loop is always executed at least
once. The structure of the
repeat-statement allows it to act like a
compound statement in that it encloses a
list of statements.

Example:
= I mod J;
I := U3
J 1= K
until J = 0
The Repeat Statement

Statements

97

B o R

9.13 THE RETURN STATEMENT

Syntax:

return-statement:

--=-> raturn

The return-statement permits an exit
from a procedure or function. This
statement is effectively a goto to an

imaginary label after the last statement
within the routine being executed. If
the %CHECK FUNCTION option is enabled,

98 Pascal/VS Reference Manual

+ 4+ +++

Pascal/V¥S will insure that a function
has been assigned a value prior to the
return from the function. If a value
has not been assigned, a runtime error
will occur.

9.14 THE WHILE STATEMENT

(Syntax:

while-statement:

> while —>{expr}—> do —>{statementl} >

The while-statement allows you to speci-
fy a statement that is to be executed
while a control expression evaluates to Examplea:
TRUE. The control expression must eval-
uate to type BOOLEAN. The expression is { Compute the decimal size of N 1}
evaluated prior to each execution of the { assuma N >= 1 }
statement. I := 03
J = 1;
while N > 10 do
begin
I :
J
N
end
{ I is the power of ten of the 1}
{ original N %
}

I+ 1;
J ¥ 10;
N div 10

{J is ten to the I power
{1 <= N<x=9

The While Statement

Statements 99

9.15 THE WITH STATEMENT

Syntax:

with-statement:

—> With >{var'ab1e}——~T——->
[< : <

do —>{statement} >

The with-statement is used to simplify
references to a record variable by elim-
inating an addressing description on
every reference to a field. The
with-statement makes the fields of a
record available as if the fields were
variables within the nested statement.

The with-statement effectively computes
the address of a record variable upon
executing the statement. Any modifica-
tion to a variable which changes the
address computation will not be
reflected in the pre-computed address
during the execution of the with state-
ment. The following example illustrates
this point.

var A : arrayl 1..10] of
record
FIELD : INTEGER
end;
I:=1;
with AL I 1 do
begin
K := FIELD; {K:=A[1l.FIELD)}
I := 2;
K := FIELD; {K:=A[1].FIELD}
end;

The Address of A is Computed
on Entry to the Statement

The comma notation of a with-statement
is an abbreviation of nested
with-statements. The names wWwithin a
with-statement are scoped such that the
last with statement will take
precedence. A local variable with the
same name as a field of a record becomes

100 Pascal/V$S Reference Manual

unavailable in a with statement that
specifies the record.

Example:
type
EMPLOYEE =
record
NAME ¢ STRING(20);
MAN_NO 0..999999;
SALARY INTEGER;
ID_NO 0..999999
end;
var
FATHER : @& EMPLOYEE:;
With FATHER2 do
begin
NAME = YSMITH';
MAN_NOD := 666666;
SALARY := WEEKLY_SALARY;
ID_NO := MAN_NO
end

is equivalent to:

begin
FATHERQ®.NAME := 'SMITH';
FATHERQ.MAN_NO := 666666;
FATHERQ.SALARY := WEEKLY_SALARY;
EATHERa.ID_NO := FATHERQ.MAN_NO
en

Note: The variable FATHER is of type
pointer to EMPLOYEE, thus the pointer
notation must be used to specify the
record pointed to by the pointer.

The With Statement

Example:

C

V : record
V2 : INTEGER;
Vi : record A : REAL end;

A : INTEGER
end;
A : CHAR;
with v,v1 do
begin
v2 = 1; {v.v2 :=1 }
A =1.06; {Vv.v1i.A := 1.0)
V.A =1 {v.a :=1 }
{ CHAR A is not }
{ available herel}
end;
A = 'AY; { CHAR A is now }
{ available }

With Statements Can Hide a Variable

Statements 101

Input and output are done using the file
data structure. The Pascal’/V5 Program-
mer's Guide provides more detail on how
to use the I/70 facilities in a specific
operating system. Pascal/V5 provides
predefined routines which operate on
variables of a file type. The routines

are:

i RESET

i REWRITE
° READ

° WRITE

i GET

° PUT

. EOF

° CLOSE

. UPDATE
. TERMIN

° TERMOUT
. PDSIN

. PDSOUT

. SEEK

To facilitate input and output oper-
ations that reaquire conversion to and
from a character representation, the
predefined file type TEXT is provided.
The type TEXT is predefined as a file of
CHAR. Each GET and PUT transfers one
CHAR of information. There are addi-
tional predefined routines that may be
executed on variables of type TEXT that
perform the required conversions.

] READLN
. WRITELN
. EOLN

. PAGE

. coLsS

10.0 I/0 FACILITIES

10.1 RESET PROCEDURE

Open a File for Input

Definition:

procedure RESET(
F : filetype;
const S STRING);

Where:
F is a variable of a file type

S is an optional string value that
specifies options

RESET positions the file pointer to the
beginning of the file and prepares the
file to be used for input. After you
invoke RESET the file pointer is point-
ing to the first data element of the
file. If the file is associated with a
terminal, the terminal user would be
prompted for data when the RESET is exe-

cuted. This procedure can be thought of
as:

1. Closing the file (if open).

2. Reuwinding the file.

3. Opening the file for input.

4. Getting the first component of the

file.

The string parameter is used to specify
any special file dependent options to be
used in opening the file. Consult the
Pascal/VS Programmer's Guide, order
number SH20-6162 which describes the
options that are available.

I/70 Facilities 103

10.2 REWRITE PROCEDURE

Open a File for Output

10.3 TERMIN PROCEDURE

Open a File for Input from the Terminal

Definition:

procedure REWRITE(
F : filetype;

const S STRING);

Where:

F is a variable of a file type
S is an optional string value that
spacifies options

Definition:

procedure TERMIN(
F : TEXT;

const S STRING);

Where:

F is a variable of type TEXT
S is an optional string value that
specifies options

REWRITE positions the file pointer to
the beginning of the file and prepares
the file to be used for output. This
procedure can be thought of as:

1. Closing the file (if open).
2. Rewinding the file.
3. Opening the file for output.

The string parameter is used to specify
any special file dependent options to be
used in opening the file. Consult the
Pascal/V$s Programmer's Guide, order
number SH20-6162 which describes the
options that are available.

104 Pascal/VS Reference Manual

TERMIN opens the designated file for
input from the users terminal. The
string parameter is used to specify any
special file dependent options to be
used in opening the file. Consult the
Pascal/V$S Programmer's Guide, order

number SH20-6162 which describes the
options that are available and operating
system dependencies on this procedure.

J

10.4 TERMOUT PROCEDURE

Open a File for Output from tha Terminal

Definition:
procedure TERMOUT(
F + TEXT;
const S STRING);
Where:

F is a variable of type TEXT
S is an optional string value that
specifies options

TERMOUT opens the designated file for
output to the users terminal. The
string parameter is used to specify any
special file dependent options to be
used in opening the file. Consult the
Pascals/VS_Programmer's Guide, order
number SH20-6162 which describes the
options that are available and operating
system dependencies on this procedure.

10. PDSIN PROCEDU

Open a File for Input from a PDS

Definition:

procedure PDSIN(
F : filetype;

const S STRING);

Where:

F is a variable of a file type
S is a string value that specifies
options

PDSIN opens a member in a library (par-
titioned) file for input.

The string parameter is used to specify
any special file dependent options to be
used in opening the file. Consult the
Pascal/VS Programmer's Guide, order
number SH20-6162 which describes the
options that ara available.

I/0 Facilities 105

10.6 PDSOUT PROCEDURE

Open a File for Output to a PDS

10.7 UPDATE PROCEDURE

Open a File for Input and Output

Definition:

procedure PDSOUT(
F : filetype;

const S STRING);

Where:

F is a variable of a file type,
S is a string value that specifies
options.

Definition:

procedure UPDATE(
F : filetype;
const S : STRING);

Where:
F is a variable of a file type,

S is a string value that specifies
options.

PDSOUT opens a member in a library (par-
titioned) file for output.

The string parameter is used to specify
any special file dependent options to be
used in opening the file. Consult the
Pascal/VS$S Programmer's Guide, order
number SH20-6162 which describes the
options that are available.

106 Pascals/V5 Reference Manual

UPDATE opens a file for both input and
output (updating). A PUT operation
replaces a file component obtained from
a preceding GET operation. The eoexe-
cution of UPDATE causes an implicit GET
of the first file component (as in

RESET). The following program fragment
illustrates the use of UPDATE.
var .
FILEVAR file of record

CNT : INTEGER;
ena;)

UPDATECFILEVAR); <{open and get }
While not EQOF(FILEVAR) do
begin
FILEVARQ.CNT := FILEVARQ.CNT+1;
PUT(FILEVAR); {update last elem}
SET(FILEVAR); {get next elem }
ena;

The string parameter is used to specify
any special file dependent options to bhe
used in opening the file. Consult the
Pascal/V$s Programmer's Guide, order
number SH20-6162 which describes the
options that are available.

+
+
+
+
+

A+

+
+
+

10.8 CLOSE PROCEDURE

Close a File

Definition:

procedure CLOSE(
filetype):

Where:

F s a variable of a file type

CLOSE closes a file; all processing to
the file is completed. You must open
the file prior to using it again.

10.9 GET PROCEDURE

Position a File to Next Element

Definition:
procedure GET(F filetype J;
Where:

F is a variable of a file type.

GET positions the file pointer of a file

(previously opened for input) to the
next component in the file. For
example, if the file is defined as an

array of 80 characters, then each GET
returns the next 80 character record. A
GET invocation on a file of type TEXT
returns a single character.

I70 Facilities 107

10.10 PUT PROCEDURE

Position a File to Next Element

10.11 SEEK PROCEDURE

Position a File to a Specified Element

Definition:

procedure PUT(F filetype J;

Where:

F is a variable of a file type.

PUT releases the current component of
the file variable by effectively writing
the component to the associated physical
file. A call to PUT with a file of type
TEXT transfers a single character. The
file must have been previously opened
for output.

108 Pascal/V5 Reference Manual

Definition:

procedure SEEK(
F : filetype;
N : INTEGER);

Where:
F is a variable of a file type,

N is an component number of
the file.

SEEK specifies the number of the next
file component to be operated on by a
GET or PUT operation. File components
are origined at 1. The SEEK procedure
is not supported for TEXT files. The
file specified in the SEEK procedure
must have been opened by RESET, REWRITE
or UPDATE. For more infomation, consult
the Pascal/V¥S Programmer's Guide, order
number SH20-6162.

J

10.12 EOF FUNCTION

Test File for End Of File

Definition:
function EOF(F:filetype) :BOOLEAN;
function EOF:BOOLEAN;

Where:

F is a variable of a file type.

EOF is a BOOLEAN valued function which
returns TRUE if the end-of-file cond-
ition is true for the file. This condi-
tion occurs in an input file when an
attempt is made to read past the last
record element of the file. If the file
is open for output, this function always
returns TRUE.

If the file variable F is omitted, then
the function assumes the predefined file
INPUT.

Example:

{ The following will read all of 1}
{ the records from File SYSIN }
{ and write then out to SYSOUT }

type FREC =
record
A,B :

end;

INTEGER

var
SYSIN,
SYSOUT: file of FREC:;
begin
RESET(SYSIN);
REWRITE(SYSOUT);
while not EOF(SYSIN) do
begin
SYSOUTa := SYSINa;
PUT(SYSOUT);
GET(SYSIN)
end;
end;

10.13 READ AND READLN (TEXT FYLES)

Read Data from TEXT File

Definition:

procedure READ(
f : TEXT;
v : see below);

procedure READLN(
f : TEXT;
v * see below);

Where:

f is an optional text file
that is to be used for input.
v is one or more variables,
each must be one of the
following types:
- INTEGER (or subrange)

- CHAR (or subrange)
- REAL

- SHORTREAL

- STRING

packed array of CHAR

The READ procedure reads character data
from the TEXT file f. READ converts
character data to conform to the type of
the operand. The file parameter is
optional; the default file is INPUT.

READLN positions the file at the begin-
ning of the next line. You may use more
than one variable on each call by sepa-
rating each with a comma. The effect is
the same as multiple calls to READ.

READ(f,v1,v2)
is equivalent to:

begin
READ(f,v1);
READ(f,v2)
end

and
READLN(f,vl,v2,v3)
is equivalent to:
begin
READ(f,v1);
READ(f,v2);
READ(f,v3);

READLN(S);
end

Multiple Variables on READ or READLN

_ I/0 Facilities 109

PR A A N N N A

Reading INTEGER Data

INTEGER data from a TEXT file is read by
scanning off leading blanks, accepting
an optional sign and converting all
characters up to the first non-numeric
character or end-of-line.

Reading CHAR Data

A variable of type CHAR is assigned the
next character in the file.

Reading STRING Data

Characters are read into a STRING vari-
able until the variable has reached its
maximum length or until the end of the
line is reached.

Reading REAL (SHORTREAL) Data

REAL (SHORTREAL) data is read by scan-
ning off leading blanks, accepting an
optional sign and converting all charac-
ters up to the first non-numeric charac-

ter not conforming to the syntax of a
REAL number.

Reading packed array of CHAR Data

If the variable is declared as a
'‘packed arrayl(l..n] of CHAR', charac-
ters are stored into each element of the
array. This is equivalent to a loop
ranging from the lower bound of the
array to the upper bound, performing a
read operation for each element. If the
end-of-line condition should become
true before the variable is filled, the
rest of the variable is filled with
blanks.

Consult the Programmer's Guide for more
details on the use of READ and READLN.

110 Pascal/VS Reference Manual

var
I,J: INTEGER;
S: STRING(100);
CH: CHAR;
CC: packed arrayl1l..10] of CHAR;
F: TEXT;

READLN(F,I,J,CH,CC,S);

assume the data is:

36 24 ABCDEFGHIHKLMNOPQRSTUVWXYZ

the variables would be assigned:

I 36

J 24

cH L

cC 'ABCDEFGHIJ'

S 'KLMNOPQRSTUVWXYZ'

LENGTH(S) 16
The READ Procedure

Reading Variables with a Length

You may optionally qualify a variable of
READ with a field length expression:

READ(f,v:n)

where "v" is the variable being read and
"M 1s the field length expression.

This expression denotes the number of
characters in the input line to be proc-
essed for that variable. If the number
of characters indicated by the field
length is exhausted during a read opera-
tion, then the reading operation will
stop so that a subseguent read will
begin at the first character following
the field. If the reading completes
prior to processing all characters of
the field then the rest of the field is
skipped.

J

var
I,J: INTEGER;
S: STRING(100);
CH: CHAR;
CC: packed arrayll..10] of CHAR;
F: TEXT;

READLN(F,I:64,J:10,CH:J,CC,S);

assume the data is:

36 24 ABCDEFGHIKLMNOPQRSTUVWXYZ

the variables would be assigned:

I 36

J 4

CH I

cC *NOPQRSTUVW'
S 'Xyz*

LENGTH(S) 3
The READ Procedure with Lengths

10.14 READ (NON-TEXT FILES)

Read Data from Non-TEXT Files

Definition:

procedure READ(
f : file of t;
v ¢ t);

Where:
f is an arbitrary file variable.
v is a variable whose type matches
the file component type of f

Each call to READ will read one file
element from file 'f' and assign it to
variable 'v'., If the file is not open,
the READ procedure will open it prior to
assigning to the argument.

READ(f,v) is functionally equivalent to
the following compound statement:

begin v := fa; GET(f) end

For more details consult the Program-
mer's Guide.

I/0 Facilities 111

10.15 WRITE AND WRITELN (TEXT FILES)

Write Data to Flle

Definition:

procedure WRITE(
f ¢ TEXT;
e ' see below);

procedure WRITELN(
f : TEXT;
e ! sea below);

Where:
f is an optional TEXT file
variable.
e is an expression of one of the
following types:
- INTEGER (or subrange)
CHAR (or subrange)
REAL
SHORTREAL
BOOLEAN
STRING
- packed arrayll..n] of CHAR
Pascal’/VS accepts a special para-
meter format which is only
allowed in the WRITE routine
for TEXT files.
See the following description.

The WRITE procedure writes character
data to the TEXT file specified by f.
The data is obtained by converting the
expression e into an external form. The
file parameter is optional; if not spec-
ified, the default file QUTPUT is used.

WRITELN positions the file to the begin-
ning of the next line. MWRITELN is only
applicable to TEXT files. You may use
more than one expression on each call by
separating each with a comma. The
effect is the same as multiple calls to
WRITE.

112 Pascals/VS Reference Manual

WRITE(f,el,e2)
is equivalent to:

begin
WRITE(f,el);
WRITE(f,e2)
end

and
WRITELN(f,el,e2,e3)
is equivalent to:

begin
WRITE(f,el);
WRITE(f,e2);
WRITE(f,e3);
WRITELNC(F);
end

Multiple Expressions on WRITE

Pascal/VS supports a specialized form
for specifying actual parameters on
WRITE and WRITELN to TEXT files. This
provides a means by which you can speci-
fy the length of the resulting output.
Each expression in the WRITE procedure
call may be represented in one of threa
forms:

2. e ¢ lenl
3. e : lenl : len2

The expression e may be of any of the
tvpes outlined above and represents the
data to be placed on the file. The data
is converted to a character represen-
tation from the internal form. The
expressions lenl and len2 must evaluate
to an INTEGER value.

The expression lenl supplies the length
of the field into which the data is
written. The data is placed in the
field justified to the right edge of the
field. If lenl specifies a negative
value, the data is justified to the left
within a field whose length is
ABS(lenl).

The len2 expression (form 3) may be
specified only if @ is an expression of
type REAL.

If lenl is unspecified (form 1) then a
default value is used according to the
table below.

C

+ 4+ + +

type of default value
expression e of leni

INTEGER 12

REAL 20 (E notation)
SHORTREAL 20

CHAR 1

BOCLEAN 10

STRING LENGTH(expression)

array of CHAR length of array

Default Field Width on WRITE

Writing INTEGER Data

The expression lenl represents the mini-
mum width of the field in which the
integer is to be placed. The value is
converted to character format and placed
in a field of the specified length. If
the field is shorter than the size
required to represent the value, the
length of the field will be extended.

Examples:

Call: Result:
WRITE(1234:6) ' 1234
WRITE(12364:-6) '1234 !
WRITE(1234:1) '1234"
WRITE(1234) ' 1234"
WRITE(1234:-3) '1234"

Writing CHAR Data

The value of lenl is used to indicate
the width of the field in which the
character is to be placed. If lenl is
not specified, a field width of 1 is

assumed. If lenl is greater than 1 then
the character will be padded on the left

with blanks; if lenl is negative, then
the character will be padded on the
right.
Example:
call: Result:
WRITE('a':6) ' a'
WRITE('a':-6) 'a '

Writing REAL Data

REAL expressions may be printed with any
one of the three operand formats. If

++++++ +

+ + +

TNL SN20-4446 (31 December 81) to SH20-6168-1

lenl is not specified (form 1), the
result will be in scientific notation in
a 20 character field.

If lenl is specified and len2 is not
(form 2), the result will be in scien-
tific notation but the number of charac-
ters in the field will be the value of

lenl.
If both lenl and len2 are specified
(form 3), the data will be written in

fixed point notation in a field with
length lenl; len2 specifies the number
of digits that will appear to the right
of the decimal point. The REAL expres-
sion is always rounded to the last digit
to be printed.

If lenl is not large enough to fully
represent the number, it will be
extended appropriately.
Examples:

Call: Result:

WRITE(3.14159:10)
' 3.142E+00"

WRITE(3.14159)
' 3.1415900000000E+00"

WRITE(3.14159:10:4)
' 3.1416°"

Writing BOOLEAN Data

The expression lenl is used to indicate
the width of the field in which the boo-
lean is to be placed. If the width is
less than 6, then either a 'T' or 'F!
will be printed. Otherwise, 'TRUE' or
'"FALSE' will be sent to the file. Tha
data is placed in the field and justi-
fied according to the previously stated
rules.

Examples:

Call: Result:
WRITE(TRUE:10) ' TRUE®
WRITE(TRUE:-10) 'TRUE '
WRITE(FALSE:2) ' F?

Writing STRING Data

The second expression is used to indi-
cate the width of the field in which the

string is to be placed. The data is
placed in the field and justified
according to the previously stated
rules.

I/0 Facilities 113

TNL SN20-4446 (31 December 81) to SH20-6168-1

Examples:

Call: Result:
WRITE('abecd':6) ' abcd'
WRITE('abcd':-6) ‘'abecd '

WRITE('abcd':2) 'ab'

WRITE("abcd") 'abcd'

Writing Packed Array of CHAR Data

The second expression is used to indi-
cate the width of the field in which the
array 1is to be placed. The data 1s

placed in the field and Jjustified
according to the previously stated
rules.
Examples:
var

A : packed

arrayl 1..4]1 of CHAR;

A := ‘abed';

Call: Result:
WRITE(A:6) ' abcd’
WRITECA:-6) 'abed '
WRITECA:2) 'ab'
WRITECA) 'abcd'

114 Pascal’/VS Reference Manual

10.16 WRITE (NON-TEXT FILES)

Write Data to Non—-TEXT Files

Definition:

procedure WRITE(
f : file of t;
e : t);

Where:
f is an arbitrary file variable.
e is an expression whose type
matches the file component
type of f

Each call to WRITE will write the value
of expression e to file "f'.

WRITE(f,e) 1is functionally equivalent
to the following compound statement:
begin fa 1= e; PUTC(f) end

For more details consult the Program-
mer's Guide.

10.17 EOLN FUNCTION

Test a File for End of Line

Definition:
function EOLN(f: TEXT):BOOLEAN;
function EOLN:BOOLEAN;

Where:
f is a TEXT file set to
input.

The EOLN function returns a BOOLEAN
result of TRUE if TEXT file f is posi-
tioned to an end-of-line character;
otherwise, it returns FALSE.

If EOLN(Ff) is true, then fd has the val-
ue of a blank. That is, when EOLN s
TRUE the file is positioned to a blank.
This character is not in the file but
will appear as if it were. In many
applications the extra blank will not
affect the result; in those instances
where the physical lavout of the data is
significant vou must be sensitive to the
EOLN condition.

If the file variable F is omitted, then
the function assumes the predefined file
INPUT.

10.18 PAGE PROCEDURE

Force Skip to Next Page

Definition:
procedure PAGE(var f: TEXT);
Where:

f is a TEXT file set to
output.

This procedure causes a skip to the top
of the next page when the text-file is
printed. The file parameter is optional
and defaults to the standard file vari-
able OUTPUT.

I/0 Facilities 11!

T

N .

10.19 COLS FUNCTION

Determina Current Column

Definition:

function COLS(
var f: TEXT) : INTEGER:;

Where:

f is p TEXT fila sat to
output.

116 Pascal’/VS Reference Manual

R R

This function returns the current column
numbar (position of the next character
to be written) on the output file desig-
nated by the file variable. You may
force the output to a specific column
with the fellowing code:

if TAB > COLS(F) then
WRITE(F,"' ':TAB-COLS(F));

Thae file name is never dafaulted on the
COLS procedura.

+ + + +

+ + + +

Y L .

4+

The runtime library consists of those

routines that are predefined in
Pascals/VS. In addition to the routines
described in this chapter, Pascal’/V$s

provides routines with which to do input
and output. Consult the I/0 chapter for
a description of those routines. The
predefined procedures and functions
are:

® ABS Function

° ARCTAN Function

o CHR Function

® CLOCK Function

® COMPRESS Function

o C0S Function

* DATETIME Procedure

° DELETE Function

o DISPOSE Procedure

° EXP Function

* FLOAT Function

° INDEX Function

o HALT Procedure

o HBOUND Function

* HIGHEST Function

* LBOUND Function

* LENGTH Function

° LN Function

* LOWEST Function

* LTRIM Function

® MARK Procedure

° MAX Function

+ + +

S + +

+

+ 4+ + +

+ + + +

TNL SN20-4446 (31 December 81) to SH20-6168-1

11.0

EXECUTION LIBRARY FACILITIES

MAXLENGTH Function
MIN Function

NEW Procedure

0DD Function

ORD Function

PACK Procedure
PARMS Function
PRED Function
RANDOM Function
READSTR Procedure
RELEASE Procedure
RETCODE Procedure
ROUND Function
Scalar Conversion
SIN Function
SIZEOF Function
SQR Function

SQRT Function

STR Function
SUBSTR Function
SUCC Function
TRUNC Function
TRIM Function
TOKEN Function
TRACE Procedure
UNPACK Procedure
WRITESTR Procedure

Execution Library Facilities

117

TNL SN20-4446 (31 December 81) to SH20-6168-1

+ 4+ + o+

O O O

11.1 MEMORY MANAGEMENT ROUTINES

These routines provide means by which you can control the allocation of dynamic var-

iables.
11.1.1 MARK Procedure + 11.1.2 RELEASE Procedure
+
+
Mark Heap + Release Heap
+
Definition: + Definition:
+
procedure MARK(+ procedure RELEASE(
var P pointer); + var P pointer);
+
Where: + Where:
+
P is a pointer to any type + P is a pointer to any type.
+
+
+

The MARK procedure allocates a new area
of memory from where dynamic variables

are to be allocated. Such an area is
called a heap.. The predefined proce-
dure NEW allocates a dynamic variable

from the most recently created heap.
The predefined procedure DISPOSE
de-allocates a dynamic variable from the
heap.

RELEASE 1is the complementary procedure
which destroys a heap. Heaps are cre-
gted and destroyed in a stack-like fash-
jon.

MARK does not allocate dynamic
variables. The pointer variable passed
as parameter P is set to the address of
the associated heap control block; thus,
the returned pointer must not be used as
the base of a dynamic variable.

when the heap is freed.
unpredictable results.

118 Pascal/VS Reference Manual

RELEASE frees one or more heaps that
were previously allocated by calls to
MARK. (See the description of MARK for
a definition of "heap".) The parameter
of RELEASE must contain the address
returned by a previous call to MARK; it
is through this parameter that the heap
is identified.

RELEASE frees all heaps that were allo-
cated since the corresponding MARK uas
executed. Thus, heaps are created and
destroyed in a stack-like manner.

When a heap is freed, all of the dynamic
variables which were allocated from the
heap are also freed. As a result,
RELEASE is a means for disposing of many
dynamic variables at one time.*

RELEASE sets its parameter variable (P)
to nil.

Pointers which reference dynamic variables of a heap are no longer defined
Subsequent uses of such pointer values may cause

9

-

P A I b T S T

type
MARKP = QINTEGER;
LINKP = QJLINK;

LINK = record
NAME: STRING(30);
NEXT: LINKP
end;
var
P ¢ MARKP;
1,
2,
Q3 : LINKP;
begin

MARK(P) ;
NEN(QL);
NEW(Q2) ;
NEW(Q3);

{ Frees Ql, Q2 and Q3 }
RELEASEC(P);

en&;.

Example of MARK and RELEASE

TNL SN20-4446 (31 December 81) to SH20-6168-1/
|

Execution Library Facilities 118.

TNL SN20-4446 (31 December 81) to SH20-6168-1

1182 Pascal/VS Reference Manual

11.1.3 NEW Procedure

Allocate Dynamic Variable

Definition:

form 1:
procedure NEW(

var P pointer J;
form 2:
procedure NEW(

var P1 pointer;

1,t2... : scalar);

form 3:
procedure NEW(

var SP STRINGPTR;

LEN ¢ INTEGER;

Where:

P 1is a pointer to any type
except a dynamic array.

Pl is a pointer to a record
type with variants

SP is a STRINGPTR

t1,t2... are scalar constants
representing tag fields

LEN is an integer valued expression

The NEW procedure allocates a dynamic
variable from the most recent heap and
sets the pointer to point to the vari-
able.

form 1

The first form of procedure NEW allo-
cataes the amount of storage that is nec-
essary to represent a value of the type
to which the pointer refers. If the
type of the dynamic variable is a record
with a8 variant part, the space allocated
is the amount required for the record
when the largest variant is active.

type
LINKP = QLINK;
LINK = record
NAME: STRING(30);
NEXT: LINKP
end;
var
P,
HEAD : LINKP;

begin
NEW(P);
Wwith Pa do
begin
NAME
NEXT

end;
HEAD := P;

HEAD;

end;

Example of using Simple Form
of Procedure NEW

form 2

The second form is used to allocate a
variant record when it is known which
variant (and sub-variants) will be
active, in which case the amount of
storage allocated will be no larger than
necessary to contain the variant speci-
fied. The scalar constants are tag
field values. The first one indicates a
particular variant in the record which
will be active; subsequent tags indicate
active sub-variants, sub-sub-variants,
and so on.

Note: This procedure does not set tag
fields. The tag list only serves to
indicate the amount of storage required;
it 1s the programmer's responsibility to
set the tag fields after the record is
allocated.

Execution Library Facilities 119

type
AGE = 0..100;
RECP = QREC;

REC =
record
NAME: STRING(30);
case HQW_OLD: AGE of
0..18:
(FATHER: RECP);
19..100:
(case MARRIED: BOOLEAN of
TRUE: (SPOUSE: RECP);
FALSE: ()
)
end;
var
P ¢ RECP;
begin

NEW(P,18);
with P2 do begin
NAME := "J. B. SMITH, JR?
HOW_OLD := 18;
NEW(FATHER, 54, TRUE);
with FATHER3 do begin
NAME := 'J. B. SMITH';
HOW_OLD := 54;
MARRIED := TRUE;
NEW(SPOUSE, 50, TRUE);

end {with fatherd);
end {with pa};

end;

Using NEW for Allocating
Records with Variants

form 3

The third form is used to allocate a
string whose maximum length is known
only during program execution. The
amount of storage to be available for
the string is defined by the required
second parameter. See "The Type
STRINGPTR™ on page 58.

120 Pascal/VS Reference Manual

11.1.4 DISPOSE Procedure

De-allocate Dynamic Variable

Definition:
procedure DISPOSE(

var P pointer);
Where:

P is any pointer type.

DISPOSE returns storage for a dynamic
variable. You may de-allocate a dynamic
variable from any heap. This procedure
only returns the storage referred to by
the pointer and does not return any
storage which the dynamic variable ref-
erences. That is, if the dynamic
variable is part of a linked list, you
must explicitly DISPOSE of every element
of the list. DISPOSE sets the pointer
to nil. If you have other pointers
which reference the same DISPOSEd dyna-
mic variablae, then it is your
responsibility not to use these pointers
because the dynamic variable which they
represented is no longer allocated.

C

11.2 DATA MOVEMENY ROUTINES

These routines provide vou with convenient ways to handle large amounts of data

movement efficiently.

11.2.1 PACK Procedure

Copy Unpacked Array to Packed Array

Definition:

procedure PACK(
const SOURCE : array-typa;
INDEX : index_of_source;
var TARGET pack_array_type)

Where:

SOURCE is an array.

INDEX is an expression which is
compatible with the index
of SOURCE.

TARGET is a variable of type packed
array.

This procedure fills the target array
with elements from the source array
starting with the index I where the tar-
get array is packed. The types of the
elements of the two arrays must be iden-
tical. This procedure operates as:

Given:
A : arraylm..nl of T;
Z : packed arraylfu..v] of T;

Call:
PACKCA, I, 2);

Opﬁration=
HE= -
for j := LBOUND(Z) to HBOUND(Z) do
begin
2031 := ALk];
k := SUCC(k)
end;

Where:
j and k are temporary variables.

It is an error if the number of elements
in Z is greater than the number of ele-
ments in A starting with the I1th element
to the end of the array.

11.2.2 UNPACK Procedure

Copy Packed Array to Unpacked Array

Definition:

procedure UNPACK(
var SOURCE : pack_array_type;
const TARGET array-type;
INDEX : index_of_target);

Where:

SOURCE is a packed array.

TARGET is a variable of type array.

INDEX 1is an expression uwhich is
compatible with the index
of TARGET.

This procedure fills the target array
with elements from the source array
where the source array is packed. The
type of the elements of the two arrays
must be identical. This procedure oper-
ates as:

Given:
A : arraylm..nl of T;
Z : packed arraylu..v] of T;

Call:
UNPACK(Z, A, I);

Operation:
HEE
for j_:= LBOUND(Z) to HBOUND(Z) do
begin
Alk] == 2[351];
k = SUCC(k)
end;

Where:
jJ and k are temporary variables.

It is an error if the number of elements
in Z is greater than the number of ele-
ments in A starting with the I1th element
to the end of the array.

Execution Library Facilities 121

++ ++ 4+

T R e

B S R R N oA

11.3 DATA ACCESS ROUTINES

These routines provide you a means to
values.

11.3.1 LOWEST Function

Lowest Value of a Scalar

Definition:

function LOWEST(
S ! scalar-type)
scalar;

Where:

S is an identifier that has been
declared as a scalar type, or
a variable which is of a scalar

type.

This function returns the lowest value
that is in the scalar type. The operand
may be either a type identifier or a
variable. If the operand is a type
identifier, the value of the function is
the lowest value that a variable of that
tvpe may be assigned. If the operand is
a variable, the value of the function is
the lowest value that the variable may
be assigned.

If the argument S refers to a
record-type which has a variant part,
and if no tag values are specified, then
the storage required for the record with
the largest variant will be returned.

Example:
type
DAYS = (SUN, MON, TUES, WED,
THU, FRI, SAT);
SMALL =0 .. 31;
var
I ¢ INTEGER;
J : 0 255;
LOWEST (DAYS) is SUN
LOWEST(BOOLEAN) is FALSE
LOWEST(SMALL) is 0
LOWESTC(I) is MININT
LOWESTC(J) is 0
The LOWEST Function
Pascals/VS Reference Manual

122

+ 4+ + 4+ +

b+

bttt bbb+

inquire about compile and run time bounds and

11.3.2 HIGHEST Function

Highest Value of a Scalar

Definition:

function HIGHEST(

S ¢ scalar-type)
scalar;
Where:
S is an identifier that has been

declared as a scalar type, or
a variable which is of a scalar
type.

This function returns the highest value

that is in the scalar type. The operand
may be either a type identifier or a
variable. If the operand is a type

identifier, the value of the function is
the highest value that a variable of

that type may be assigned. If the oper-
and is a variable, the value of the
function is the highest value that the

variable may be assigned.

Example:
type
DAYS = (SUN, MON, TUES, WED,
THU, FRI, SAT);
SMALL = 0 .. 31;
var
1 : INTEGER;
J : 0 .. 255;
HIGHEST(DAYS) is SAT

HIGHEST(BOOLEAN) is TRUE
HIGHEST(SMALL) is 31
HIGHEST(I) is MAXINT
HIGHEST(J) is 255

The HIGHEST Function

J

+ o+

TR T T T R R I I R SR A

JP T E E R R R R K o e i R

11.3.3 LBOUND Function

Lower Bound of Array

+ 4+ ++

11.3.4 HBOUND Function

Upper Bound of Array

Definition:

function LBOUND(

v : arraytype;
I : integer-const)
: scalar;

function LBOUND(
T ¢ type-identifier;
I ¢ integer-const)
: scalar;

Where:

V is a variable which is declared
as an array type.

T is an type identifier declared
as an array.

I is an positive integer valued
constant expression and is
optional.

Definition:

function HBOUND(
v ! arraytype;
I ! integer-const)
: scalar;

function HBOUND(
T ! type-identifier;
I ! integer-const)
: scalar;
Where:

V is a variable which is declared

as an array type.

T is an type identifier declared
as an array.

I is an positive integer-valued

constant expression and is
optional.

The LBOUND function returns the lower
bound of an index to an array. The
array may be specified in two ways:

L an identifier which was declared as
an array type via the type
construct;

° a variable which
type.

is of an array

The value returned is of the same type
as the type of the index. The second
parameter defines the dimension of the
array for which the lower bound is
returned. It is assumed to be "1" if it
is not specified.

R

The HBOUND function returns the upper
bound of an index to an array. The
array may be specified in two ways:

. an identifier which was declared as
an array type via the type
construct;

. a var<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>