
Program Product

GC28·6884·Q

IBM FORTRAN Program
Products for OS and the
CMS Compo'nent of VM/370
General Information

Program Nos: 5734-F01
5734-F02
5734-F03
5734-LM1
5734-LM3
5734-CP3
5734-F05

This publication provides general information about the
functions, capabilities, and system requirements of the
following program products:

• Code and Go FORTRAN Processor

• FORTRAN IV (G1) Processor

• FORTRAN IV (H Extended) Processor

• FORTRAN IV Library (Mod I)

• FORTRAN IV Library (Mod II)

• TSO FORTRAN Prompter

• FORTRAN Interactive Debug

These products, with the exception of the TSO
Prompter, operate under both OS and the CMS
component of VM/370.

This publication is intended as an aid to evaluation and
planning and is not meant for the terminal user or
appl ications programmer.

PREFACE

This publication, directed to data processing system planners and analysts, is intended
as an aid in evaluating and planning for the use of large-system FORTRAN program
products available for OS and VM/370-CMS. Included are discussions of the Code and
Go FORTRAN, FORTRAN IV (Gl), and FORTRAN IV (H Extended) processors, the
FORTRAN IV (Mod I) and FORTRAN IV (Mod II) libraries, and the TSO FORTRAN
Prompter and FORTRAN Interactive Debug.

To assist the reader in using this publication, its organization is outlined below:

• Introduction: This section describes, in broad terms, the interrelationships of the
program products available to the user, and provides comparative information
about them. It informs the reader of the function of each product and of the
applications each is best suited for.

• Language Summary: This section summarizes the IBM FORTRAN IV language
as implemented by the program product processors. Intended primarily to
introduce the language to users unfamiliar with IBM FORTRAN IV, the section
contains tables of statement usage, math functions, and language features that
represent IBM extensions to ANS FORTRAN.

• Program Product Processors: Using the Introduction as background material, this
section provides a more detailed description of the capabilities of the Code and
Go, FORTRAN IV (G 1), and H Extended processors.

• Libraries: This section, closely related to the section on processors, concentrates
on the facilities made available to the user via the Mod I and Mod II libraries.

• Application Development Support Products: This section contains information
on the TSO FORTRAN Prompter and on FORTRAN Interactive Debug. A
table summarizing the subcommands that can be used with FORTRAN Interactive
Debug is included.

• Reference Material: This section describes the publications currently available to
support the installation and use of the FORTRAN program products.

FIRST EDITION (J uly 1972)

Changes are periodically made to the information herein; any such changes will be reported in
subsequent revisions.

Requests for copies of IBM publications should be made to your IBM representative or to the
IBM branch office serving your locality.

Address comments (Concerning the contents of this publication to IBM Corporation, Programming
Publications, 1271 Avenue of the Americas, New York, New York 10020.

© Copyright International BUsiness Machines Corporation 1972

I

Introduction .

Language Summary
FORTRAN Language Elements
FORTRAN Statements.
Mathematical Function Subprograms.
Service Subroutines.
IBM FORTRAN IV Features Not In ANS FORTRAN.
Language Capabilities . .

List-Directed Input/Output ...
FORTRAN IV (H Extended) Language Features

Extended Precision. . . .
Asynchronous Input/Output .
Automatic Function Selection .
EXTERNAL Statement Extension

Code and Go Free-Form Input Format .

Program Product Processors .
Code and Go FORTRAN .

System Requirements and Considerations
FORTRAN IV (Gl)

System Requirements and Considerations
FOR TRAN IV (H Extended) . .

System Requirements and Considerations

FORTRAN IV Library (Mod I) and FORTRAN IV Library (Mod II) .
ASCII Data Sets .
Conversion Routines

Storage Requirements .

Application Development Support Products .
TSO FORTRAN Prompter for FORTRAN IV (Gl)

Storage Requirements .
FOR TRAN Interactive Debug .

System Requirements and Considerations

Reference Material .
Publications Selection Guide .

Index

TABLES

Table 1. FORTRAN Language Elements
Table 2. FORTRAN Statements.
Table 3. Mathematical Function Subprograms.

'Table 4. Service Subroutines.
Table 5. Main Storage Requirements
Table 6. FORTRAN IV Library (Mod I) and (Mod II) Storage Increases
Table 7. FORTRAN Interactive Debug (TESTFORT) Sub commands •
Table 8. Publications Selection Guide .

CONTENTS

5

8
9

10
14
15
16
17
17
19
19
19
20
20
21

22
22
23
24
25
2S
25

27
27
27
28

29
29
29
29
30

33
38

41

9
10
14
IS
24
28
31
39

I

INTRODUCTION

IBM offers a wide range of FORTRAN program products for OS and the CMS component
of VM/370 that provide comprehensive support to meet the needs of all FORTRAN
users, from the most experienced system analyst to engineers, mathematicians, and
others who may not be full-time, professional programmers. These program products
are:

• Three language processors designed to meet the varying needs of compilation
speed and execution performance: the Code and Go FORTRAN processor;
the FORTRAN IV (G 1) processor; and the FORTRAN IV (H Extended)
processor.

• Two libraries: FORTRAN IV (Mod I) and FORTRAN IV (Mod II).

• Two application development support facilities created to simplify the,
programmer's activities in a time-sharing environment: The TSO FORTRAN
Prompter for the Gl processor and FORTRAN Interactive Debug for the Code
and Go and G 1 processors.

FORTRAN Interactive Debug, the most recent addition to the FORTRAN
support, gives the terminal user powerful new tools for program checkout. Through
the use of simple commands, he can dynamically monitor and control the execution of
his program in terms that are meaningful to him (Le., the symbols, labels, and line
numbers of his source program). Because the user is in an interactive mode, and can
decide his next action based on the results of preceding ones, he can quickly isolate
the area of his program that is giving trouble. Because he can also adjust the value of
variables during execution, he can very often check out his ~~fix" at the same time.
He then returns to the edit mode of his system (TSO or CMS) to make permanent
corrections to his program.

See the section "FORTRAN Interactive Debug" for a discussion of the scope of
debugging capabilities available with this product.

As' for the processors themselves, all three can be invoked under OS -- either as
background (batch) processors or as foreground processors under TSO -- and under
CMS.! The FORTRAN language supported by the processors encompasses and is
compatible with the American National Standard FORTRAN language. The processors
also provide support for IBM extensions to the language.

Code and Go FORTRAN, as a time-sharing tool, has been designed to meet the
specific needs of two types of users: (1) the problem solving programmer, who writes,
debugs, and executes relatively short programs at the terminal, and (2) the production
programmer who debugs components of a large program on-line before running the
program through a production-oriented processor, such as FORTRAN IV (H Extended).
Thus, design emphasis hl;ls been placed on rapid compilation-execution turnaround and
on ease of use. Code and Go supports free-form input format -- which considerably

! Throughout this publication, the term foreground is used to refer both to the !SO time-sharing
foreground and to real-time jobs submitted under CMS; the term background IS used to refer
both to the TSO background and to batch jobs submitted under CMS.

5

reduces the programmer's concern with terminal-typing tasks, such as tab settings and
margin stops -- and includes options for obtaining short- or long-form diagnostic
messages. Support is also provided for FORTRAN Interactive Debug and for the use
of list-directed input/output, which frees the programmer from haVing to code FORMAT
statements.

FORTRAN IV (Gl), an extended version of FORTRAN IV (G), offers the added
capabilities of directing error diagnostics and/or compiler output to a terminal and of
using list-directed input/output. Additionally, the processor supports FORTRAN Inter­
activ(~ Debug.

Under OS, the usability of Gl is enhanced by the TSO FORTRAN Prompter, a
TSO command processor that sets up the command procedure to invoke the compiler.
The foreground prompter function, available separately for G 1, is built into the Code
and Go processor for TSO use.

Code and Go and Glare supported by the FORTRAN IV Library (Mod I),
which provides mathematical, service, and input/output routines (including, for OS,
support of ASCII data sets) needed by the processors. Additionally, the Mod I
library and the processors incorporate the same data conversion routines, which round
real c:onstants and real data items on input rather than truncate them (as was the case
with the predecessor FORTRAN library and the FORTRAN IV (G) compiler). This
provides finer resolution and greater accuracy of results.

FORTRAN IV (H Extended), besides providing extended language capability
for Gomputational power, is a true production compiler, utilizing advanced
optimization technology to produce efficient object code. The H Extended
compiler is designed primarily for background use, although it can, like any program,
be invoked for execution in the foreground.

The extended language capabilities of FORTRAN IV (H Extended) include:

• Support for extended precision arithmetic via REAL*16 and COMPLEX*32 data
types or via use of a compiler option.

• Support for asynchronous input/output for overlapping reading and writing of
unformatted sequential data with processing, thus offering significant execution­
time performance· improvements for programs involving transmission of large
unformatted arrays.

• Automatic function selection to simplify references to built-in and library
functions.

As a compilation-time option. the user may specify automatic preCision increase,
allowing for conversion of floating-point calculations from single to double and double
to extended precision.

FORTRAN IV (H Extended) is supported by the FORTRAN IV Library
(Mod II), which, in addition to specifically providing routines required by the processor,
encompasses all o(the functions of the Mod I library; thus, an installation equipped
with the Mod II library does not need the Mod I library to support Code and Go or
Gl.

6

I

Selection of FORTRAN processor support to meet an installation's needs is
dependent upon the characteristics of the installation's workload. In many instances,
maximum effectiveness is achieved with a processor "pair" -- one used for short,
one-shot problems and for program checkout, such as Code and Go, and one for
object-code optimization for production jobs, such as H Extended. An installation may
further require the greater computational power offered by the H Extended compiler.

The FORTRAN program products are supported by a full complement of user
publications. A complete description of the supporting publications and a guide to
publications' selection for a particular installation's needs are given in the section,
"Reference Material." ,

A detailed deSCription of the facilities provided by TSO and the system require­
ments for it can be found in the publication TSO Guide, Order No. GC28-6690.
For CMS, this information is contained in the publication IBM Virtual Machine
Facility/370: Planning and System Generation Guide, Order No. GC20-1801.

7

LANGUAGE SUMMARY

The language levels supported by Code and Go FORTRAN and FORTRAN IV (Gl)
are idlentical and include the Debug facility. 1 The language level supported by
FORTRAN IV (H Extended), with the exception of the Debug facility, is a superset of
the Code and Go, and Gl levels. For a complete description of the IBM FORTRAN IV
language, see the publication IBAf System/360 and System/370 FORTRAN IV
Language, Order No. GC28-6SlS.

This section summarizes the IBM FORTRAN IV language implemented by tne
program product processors. In addition, FORTRAN-supplied mathematical function
subprograms as well as service subprograms available to the programmer are listed.
Language syntax is not shown, only statement usage. Table 1 describes the language
elements supported; Table 2 summarizes the statements that are available; Table 3
shows. mathematical function subprograms; Table 4 lists service subroutines. A listing
of IBM FORTRAN IV features not in ANS FORTRAN is also provided.

Discussions of list-directed input/output, of free-form input format, and of the
language features unique to FORTRAN IV (H Extended) are also included. (For users
familiar with the predecessor FORTRAN G and H processors, these are the major new
language capabilities not available with those processors.)

Language Compatibility

The source language supported by all three processors encompasses and is compatible
with the American National Standard (ANS) FORTRAN language (X3.9-1966).

All valid source programs that compiled under the OS FORTRAN IV (E), (G),
and (H) processors can be compiled under Code and Go, G 1, and, exclusive of the
Debug facility, H Extended. Note that the improved accuracy of data conversion may
yield different, more accurate numerical results.

Code and Go programs in standard format are interchangeable with Gl programs
(a sift utility is available to convert Code and Go free-form input format code into
standard format) and, exclusive of the Debug facility, Code and Go or Gl programs
can be compiled with H Extended. (Of course, H Extended programs using language
features unique to that processor can not be compiled under G 1 or Code and Go.)

Object modules compiled by any of the three processors can be combined into an
executable program, which can also include object modules compiled by FORTRAN IV
E, G, or H. The user should be aware, however, that for execution of these combined
modules, the'Mod I or Mod II libraries may be required. As an example, to execute
a program consisting of G 1 modules combined with H Extended modules containing
asynchronous input/output statements, the Mod II library is required.

8

1 This refers to the compilation-time Debug facility of Code and Go, and Gl, and should not be
confused with FORTRAN Interactive Debug, which is also discussed in this book.

I

FORTRAN LANGUAGE ELEMENTS

Table 1. FORTRAN Language Elements

Constants

Symbolic
Names

Variables

Arrays

Operators
and
Expressions

The following constants are supported:

• Numerical: integer, real, and complex numbers

Integer constants have a maximum magnitude of 23
1 - 1.

Real constants have a magnitude range of from 0 or 16 - 65

(approximately 10-78) through 16 63 (approximately 10 75).

Depending upon associated length specifications, precision is
assured for at least 7 or 16 significant digits - with extended
precision, for approximately 34 significant digits.

Complex constants are an ordered pair of real constants.
Magnitude range and precision are the same as for real constants.

• Logical: a constant that specifies the logical value true or false.

• Literal: a character string of from 1 to 255 characters long.

• Hexadecimal: a value, of from 2 to 32 hexadecimal digits, used
for data initialization.

The maximum length of a symbolic name is six characters.

Variables are supported for representation of numerical and logical data.

Arrays, which are identified by symbolic names, may have up to seven
dimensions.

Arithmetic, logical, and relational expressions are supported. Operators
permitted in these expressions are shown below:

• Arithmetic: + - * / **
• Logical: .NOT. .AND. .OR.

• Relational: .GT .. GE .. LT .. LE .. EQ .. NE.

9

FORTRAN STATEMENTS

Table 2 lists FORTRAN statements and their functions. Processor names are
shown across the last three column headings. An X in a column indicates that a
statement is implemented for that processor; a dash (-) indicates that it is not.

Table 2 FORTRAN Statements (Part 1 of 4)

Code
Statement Function &Go Gl

ASSIGN Associates a statement number with X X
a symbolic label in an assigned GOTO
statement.

assignment Assigns an arithmetic or logical X X
expression to either a variable or
array element.

AT (debug facility) Identifies the beginning of a debug X X
packet and indicates the point in the
program where debugging is to begin.

BACKSPACE Causes a data set to backspace one X X
record.

BLOCK DATA Marks the beginning of a BLOCK X X
DATA subprogram.

CALL Calls a SUBROUTINE subprogram. X X

CONTINUE Primarily used in a DO loop to X X
assign an end-of-range label to the
loop.

DATA Defines initial values of variables, X X
array elements, and arrays.

DEBUG (debug facility) Sets conditions for operation of the X X
debug facility and designates
applicable debugging operations.

DEHNE FILE Describes the characteristics of a data X X
set to be used during direct-access
operation.

DIMENSION Provides information necessary for X X
the system to allocate storage for
arrays.

DISP'LA Y (debug facility) Displays data in NAMELIST output X X
format.

DO Initializes a DO loop - the repeated
execution of a specified number of

X X

statements following the DO statement.

DOUBLE PRECISION Specifies that the variables named be of X X
type double precision.

END Defines the end of a main program X X
or subprogram.

ENTRY Establishes supplementary entry X X
points for subprograms.

EQUIV ALENCE Controls the allocation of data X X
storage within a single program unit.

10

H
I

Ext

X

X

-

X

X

X

X

X

-

X

X

-

X

X

X

X

X

Table 2. FORTRAN Statements (Part 2 of 4)

Code H
Statement Function & Go Gl Ext

explicit Declares the type of a particular X X X
variable or array by its name,
rather than its initial character.

EXTERNAL Passes subprogram names as X X X
arguments to other subprograms.
For H Extended, the user may
declare names of FORTRAN
library functions or subroutines to
be the names of user-supplied
functions or subroutines.

FIND Causes the next required input record X X X
to be found while the current record
is being processed, thus increasing
object program execution speed (used
with 'direct-access READ).

FORMAT Specifies the structure of FORTRAN X X X
records and the form of the data
fields within the reocrds (used with
sequential or direct access READ or
WRITE).

FUNCTION Marks the beginning of a FUNCTION X X X
subprogram.

GENERIC Allows the use of a single generic name - - X
in requesting a FORTRAN-supplied
function that has several names
depending on argument type.

GO TO (assigned) Specifies transfer of control based on a X X X
statement number specified in an
ASSIGN statement.

GO TO (computed) Specifies conditional transfer of control. X X X

GO TO (unconditional) Specifies unconditional transfer of X X X
control.

IF (arithmetic) Tests an arithmetic condition and
transfers control based on results

X X X

of test.

IF (logical) Tests a logical expression and X X X
transfers control on basis of its
being true or false.

IMPLICIT Specifies the type of all variables, X X X
arrays, and user-supplied functions
whose names begin with a particular
letter.

NAME LIST Declares a name to refer to a particular X X X
list of variables or array names (used
with sequential READ or WRITE).

PAUSE Interrupts program execution and, X X X
optionally, displays information to
the operator.

PRINT Specifies that a printed listing be X X X
produced.

PUNCH Specifies that a card deck be produced. X X X

11

Table 2. FORTRAN Statements (Part 3 of 4)

Statement

READ (asynchronous)

READ (direct-access)

READ (formatted)

READ (list-directed)

READ (unformatted)

READ (using NAME LIST)

RETURN

REW][ND

statement function
definition

STOP

SUBROUTINE

Function

gh-speed transmission of Provides hi
unformatte
data set to

d data from an external
an array in main storage.

Transfers d
device into

ata from a direct-access
main storage.

ata sequentially from a Retrieves d
data set in
statt:ment s

accordance with FORMAT
pecifications.

ata sequentially in the order Retrieves d
specified in
used in the

the program, and the format
data.

sequential order a single
d record from a data

Retrieves in
unformatte
set (used w ith unformatted WRITE).

ata sequentially from Retrieves d
a data set a
variables or
NAMELIST
WRITE usi

ccording to lists of
arrays declared in a
statement (used with

ng NAMELlST).

ntrol to calling program.

bsequent READ or WRITE Causes a su
statement t
data into th

o read data from or write
e first record of a data set.

erations to be performed Specifies op
whe:never th e definition is referred to.

Terminates
optionally,
digits to th

program execution and,
displays up to five decimal
e operator.

Marks the be
subprogram

ginning of a SUBROUTINE

ecording of program flow by TRACE OFF (debug facility) Stops the r
statement n umber.

oIding of program flow by TRACE ON (debug facility) InHiates rec
statement n umber.

receiving area and makes it
r reference, or makes a

WAIT Redefines a
available fo
transmitting
(used with
WRITE stat

area available for redefmition
asynchronous READ and
ements).

h·-speed transmission of WRITE (asynchronous) Provides big
unformatte
storage to an

d data from an array in main
external data set.

WRITE (direct-access)

WRITE (formatted)

ata from main storage to a Transfers d
dir(:ct~acces s device.

sequentially into a data set
ce with FORMAT statement
ns.

Writes data
in accordan
specificatio

~----.----------------~~

12

Code H
&GO Gl Ext

- - X

I
X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X -

X X -

- - X

- - X

X X X

X X X

Table 2. FORTRAN Statements (Part 4 of 4)

Code H
Statement Function &GO Gl Ext

WRITE (list-directed) Writes data sequentially into a data X X X
set in the order and from the
locations that the user specifies.

WRITE (unformatted) Writes in a sequential order a single X X X
unformatted record into a data set
(used with unformatted READ).

WRITE (using NAMELIST) Writes data from lists of variables or X X X
arrays declared in a NAME LIST
statement (used with READ using
NAMELIST).

13

MATIHEMATICAL FUNCTION SUBPROGRAMS

Table 3 lists mathematical function subprograms and their entry names. Entry names
starting with the letter D (except for DBLE and DIM) indicate double precision;
starting with Q, extended precision (H Extended only); starting with C (except for
CMPLX, CONJG, COS, COSH, COTAN), complex functions. Entry names starting
with CD indicate complex double precision; starting with CQ, complex extended
precision (H Extended only).

Table 3. Mathematical Function Subprograms

Gener
Funct

al
ion

al
ommon

Natur
and c
logari lthm

ExpOl lential

Squar Ie

ne Arc si
and all' c cosine

Arc b mgent

Sine~

cosint
md
~

Abso1
value

Error

Maxir
minin

TrUll(

ute

function

num and
1Um values

:ation

n real part Obtai
of a (
argun

:OMPLEX
lent

n imaginary Obtai
part 0

COMP
argum

fa
LEX
ent

on Preci!a
increa se

ss two REAL Expre
argum
comp

ents in
lex form

n conjugate of Obtai
a COM PLEX argument

14

Entry
Name

--
LOG,ALOG,DLOG,QLOG,CLOG,CDLOG,CQLOG,

LOG 1 O,ALOG I O,D LOG 1 O,QLOG 1O

EXP,DEXP ,QEXP,CEXP,CDEXP,CQEXP

'-r---

SORT,DSQRT,QSQRT ,CSQR T,CDSQR T ,CQSQRT

ASIN,ARSIN,DARSIN,QARSIN,ACOS,ARCOS,
DARCOS,QARCOS

ATAN,DATAN,QATAN2

SIN,DSIN,QSIN,COS,DCOS,QCOS

--
IABS,ABS,DABS,QABS,CABS,CDABS,CQABS

ERF ,DERF ,QERF

MAX,MAXO,AMAXO,MAXI ,AMAXI ,DMAXI ,QMAXI,
MIN ,MINO,AMINO,MINI ,AMINI ,DMINI ,QMINI

AINT,DINT,QINT,INT,IDINT,IQINT

REAL,DREAL,QREAL

'-_.
IMAG,AIMAG,DIMAG,QIMAG

DBLE,QEXT,QEXTD

'-
_.

CMPLX,DCMPLX,QCMPLX

'-

CONJG,DCONJG,QCONJG

,-,_.

I

SERVICE SUBROUTINES

Table 4. Service Subroutines

Name Purpose

DUMP Dump selected portions of storage on the output
data set and terminate execution.

PDUMP Dump selected portions of storage on the output
data set and continue execution.

DVCHK Test for divide check exception.

OVERFL Test for exponent overflow or underflow.

EXIT Terminate execution.

SLITE Alter status of sense lights.

SLITET Test and record status of sense lights
(After the test, the sense light that was
tested is turned off.).

15

IBIVI FORTRAN IV FEATURES NOT IN ANS FORTRAN

Asynchronous input/output statements (H Extended only)
Direct access input/output statements
Dummy arguments enclosed in slashes
ENTRY
ERR and END parameters in a READ
EXTERNAL statement extension for user-supplied subprograms (H Extended only)
Function name in explicit specification statements
Generalized subscripts
GENERIC statement (H Extended only)
Hexadecimal constant
IMPLICIT
Initiial data values in explicit specification statements
Length of variables and arrays as part of type specifications
Length specification in FUNCTION statement
List-directed input/output statements
Literal as actual argument in function reference
Literal enclosed in apostrophes
Mixed-mode expressions
More than three dimensions in an array
Multiple exponentiation without parentheses to indicate order of computation
NAMELIST
Ob}ect-time dimensions transmitted in COMMON
PAUSE 'message'
PRINT b, list
PUN CH b, list
READ b, list
RETURN i
T and Z format codes, and extensions to G format code

COMPLEX*16 { INTEGER*2 data types
LOGICAL*l f
COMPLEX*32 } data types (H Extended only)
REAL*16

16

I

LANGUAGE CAPABILITIES

The following section describes list-directed input/output, free-form input format, and
the language features unique to the FORTRAN IV (H Extended) processor. (For
users familiar with the predecessor FORTRAN IV G and H processors, these are the
major new language capabilities not available with those processors.)

List-Directed Input/Output

list-directed input/output, supported by the Code and Go, G I, and H Extended
processors, Simplifies data entry and output by freeing the user from having to code
FORMAT statements. Use of list-directed input/output requires an installation to
have either of the program product FORTRAN IV libraries, Mod I or Mod II.

list-directed processing of READ, WRITE, PUNCH, or PRINT statements is
specified by replacing the FORMAT statement label with an asterisk. No FORMAT
statement is used. Data to be read at execution of a statement may be entered
without regard to column boundaries. Individual data items may not be split between
cards or lines, except for complex items and literals in quotation marks. Additional
information on list-directed input and output is provided below:

Input

Input entries are separated by blanks or commas, with successive commas indicating
values to be omitted. The input list may be cut short with a slash. For example, the
statement

10 READ (5,*) (A(I),I=I,5)

will read data from the device associated with data set reference number 5 (which may
refer to the user's terminal or any other FORTRAN-supported I/O device.) If that
number refers to a terminal, the user is prompted for input with a question mark
(unless prompting has been suppressed). In addition, if -- as in the example -- the
statement is labeled, the statement label is printed out following the question mark.
Prompt and reply for the required input might look like:

? 00010
5.,33.44,5.E-9,2. 6.

A blank serves as the delimiter between the last two entries. Alternatively, the user may
enter each value on a separate line or card (if the READ statement is not directed to
the terminal). If the user wishes to retain the current values of the last two
elements in array A, he may simply type in:

5.,33.44,5.E-9/

17

The user may set k items to the same value by entering k* value, as for NAMELIST
input. For example, the elements of array A can be set to the value 56.3 by the input
line:

5*56.3

Integer, real, complex, literal, and logical constants may be entered as input for list­
directed READ statements.

Output

The list-directed WRITE statement

WRITE(6,*)X,L,N

will write out the current values of X,L, and N on the device defined by data set
reference number 6 (which may refer to the user's terminal or any other FORTRAN
supported input/output device). Real and complex numbers are written using E
exponents only. Integer and logical values are also written as output. For example,
the output line might be:

3.1E + 11 T 205

List-directed WRITE or PRINT statements will not produce output in the form of
literal constants.

Advantages of List-Directed Input/Output

The advantages of list-directed over conventional, formatted input/output in terms of
time and effort saved can best be seen by example. In the following example -- first
shown for formatted I/O and then repeated using list-directed I/O -- a READ statement
is used to read a record containing constants of various types into main storage. When
the READ is executed, the value 1.2 is read into each of the first 10 elements of
ARRAY; text is read into the locations HEADl and HEAD2 (for formatted I/O,
locations HEAD 1 and HEAD 2 are initialized as a result of the REAL*8 specification
statement); a complex value is read into location A; a double precision number is
read into location 8; and the logical value false is placed into location P.

Formatted Input/Output

RE}\L* 8 HEADI/ I HEADING 1/ I HEAD2/ I FOOTING I / I B
REl\D (5 I 10) (ARRAY (I) 11=1 I 10) I A, B I P
10 FORMAT(10F2.1,E8.2 / E6.2,D8.3,L5)

The data associated with these statements follow:

Card Column or Typing Position

20 28 34 42 47

121212121212121212122.17E+153.14EOO.125D-3FALSE

18

I

List-Directed Input/Output

REAL*8 HEADl,HEAD2,B
READ (S, *) (ARRAY (I) ,1=1,10) , HEADl, HEAD2 ,A, B, P

The data associated with these statements follow:

10* 1.2 "HEADING I I FOOTING I (2 .17E+lS, 3. 14EO)
0.12SD-3 .FALSE.

As is obvious, the programmer saves an appreciable amount of coding time by using
list-directed I/O for this single read operation. Consider, then, the time that is saved
by using list-directed I/O for an entire program. Note, too, that with list-directed
I/O the programmer's concern with data layout and specific card-column positions is
eliminated, as, of course, are all errors associated with this tedious process.

FORTRAN IV (H Extended) Language Features

This section describes the language extensions uniquely available with FORTRAN IV
(H Extended).

Extended Precision

Todays scientists, mathematicians, and engineers are increasingly concerned with prob­
lems whose solutions demand greater accuracy than in the past. These demands are
met by the extended-precision capability, which provides mathematical results in 112
significant bits -- the equivalent of 33 to 34 decimal digits. The processor recognizes
and can process two new lengths for existing data· types: REAL * 16 and
COMPLEX*32.

As a consequence, program results previously limited by insufficient precision
can now be improved using the new data lengths, and migration difficulties caused by
precision are eliminated.

For real and complex data items, the maximum number of storage locations that
are allocated per data item is twice the previous maximum. Also, the FORTRAN­
supplied functions required to support the extended-orecision data types are provided,
with two exceptions. Extended precision equivalents of the GAMMA and ALGAMA
functions are not included.

For information related to extended precision, see the discussion of automatic
precision increase under the heading "FORTRAN IV (H Extended)" in the section
"Program Product Processors."

Asynchronous I npu t/Output

A high-speed asynchronous input/output capability is provided, by which unformatted
sequential data is transmitted between external data sets (residing on tape, disk,
drum, or data cell) and arrays in main storage; while such transmission is taking place,
other program statements may be executed. Because of the method of data transfer
implemented, as well as the ability to maximize the extent of I/O overlap with
computation, significant performance improvement is achieved for programs involving
transmission of large unformatted arrays. Performance improvements vary according
to program type. Maximum improvement is''ihown, for both elapsed time and CPU

19

time, for programs using large unformatted arrays for input/output.

The FORTRAN IV language for H Extended includes special forms of READ
and WRITE statements for initiating a transmission, and a WAIT statement for
completing the transmission cycle. (Note that under CMS, programs using asynchronous
input/output statements can be compiled, but not executed. Execution must take
place under os. Through the facilities of VM/370, the user can readily compile under
CMS a.nd then switch to OS for execution.)

Automatic Function Selection

The automatic function selection facility provides a concise set of generic names
(usually the names of the single··precision form of the function) for built-in library
functions; these names can be used in place of the larger set of specific (data-type
dependent) function names. Automatic function selection is requested bi the
specification statement, GENERIC. The user's task of referring to built-in and library
functions is thus simplified because the same name can always be used for a function,
even though the type of the function and the type of its arguments may vary with
each use. Without automatic function selection, different names would h .. ve to be
coded l depending upon the type of the function and its arguments.

An example of illustrating the advantages of GENERIC follows:

Without GENERIC

REAL * 8 C,D
REAL*16 E,F
COMPLEX*8 P,R
COMPLEX*16 S,T
COMPLEX* 32 U, V

C=DCOS(D)
E=QCOS(F)
P=CCOS (R)
S=CDCOS(T)
U=CQCOS(V)

With GENERIC

GENEP.IC
REAL * 8 C,D
REAL*16 E,F
COMPLEX*8 P,R
COMPLEX*16 S,T
COMPLEX*32 U,V

C=COS(D)
E=COS(F)
P=COS (R)
S=COS(T)
U=COS(V)

When not using GENERIC, the programmer must refer back to his specification
statements to determine the type and the length of the variables in his program -­
information he needs to speci(y the appropriate function name.

When GENERIC is used, the need to refer back to speCification statements is
eliminated. The programmer simply specifies the function name, and the appropriate
form of the function is automatically called during compilation.

EXTERNAL Statement Extension

An ex.tension to the EXTERNAL statement enables the user to "detach" the names of
FORTRAN library subprograms. Detachment of a subprogram name causes that name

20

I

to be no longer associated with the FORTRAN-supplied library sUbprogram; instead,
it is considered to be the name of a user-supplied subprogram. The extension
consists of the special character "&" prefixed to the subprogram name when it
appears in the EXTERNAL statement. The extension enables the user to supply his
own subprograms in place of identically named FORTRAN library subprograms, with
the assurance that the compiler will interpret all subprogram references correctly.

Code and Go Free-Form Input Format

Code al}d Go FORTRAN will accept source input in either of two forms: {l) standard
fixed-form (80-character) FORTRAN input records (see the publication IBM System/360
and System/370: FORTRAN IV Language; or (2) variable- or fixed-length records
prepared in free-form input format (sometimes called free-form source), which frees
the user from all card column restrictions in writing his FORTRAN source program.

With free-form source, the user begins a statement in any typing position or
card column and indicates continuation by ending his line with a hyphen. Contrasted
with conventional source coding, the advantages are many -- especially for the terminal
user. Typing is made quicker and easier because there is no need to be concerned
with setting tabs or, under OS, with setting a margin stop at column 72, since free­
form statements, under OS, may extend beyond column 72.

As an example, the standard-form statement:

Typing position or card column:

1 67
C SAMPLE TEXT

10 0=10.5
GO TO 56

150 A=B+C*(D+E**F+
IG+H-2. * (G+P))

C=3

can be written in free-form as the following:

'Typing position or card column:

1 67
"SAMPLE TEXT
10 0=10.5
GO TO 56
150 A=B+C* (O+E**F+­
G+H-2* (G+P»
C=3.

In general, the rules for free-form coding are similar to those for conventianal coding.
Some minor differences do exist though. For example, note that a double quotation
mark C') replaces a C to indicate a comment card (an asterisk may also be used).
For a full discussion of free-form input format rules, see the User's Guide appropriate
to your system.

A sift utility supplied with Code and Go provides for two-way conversion
between free-form and standard-form source statements under OS, and for one-way
conversion from free-form to standard-form under CMS. Standard-form records can be
submitted to other compilers for processing. The sift utility can be invoked by the TSO
or CMS CONVERT command ot can be run in a batch mode.

21

PROGRAM PRODUCT PROCESSORS

The following sections describe the principal features of the Code and Go, G 1, and
H Exte:nded processors.

CODE AND GO FORTRAN

Code and Go FORTRAN is a compile-and-go processor that compiles at a fast rate and
then invokes the system loader (either OS or CMS) to link to library subprograms
and ini.tiate execution. Performance is one of the two major considerations in the
design of Code and Go. The other, particularly for the foreground user, is its ease of
use.

First, Code and Go accepts source statements in free-form input format,
simplifying program entry from the terminal.

Second, Code and Go, when operating under TSO or CMS, incorporates a time­
sharing command processing function. Since Code and Go is also able to invoke the
loader after compilation has completed successfully, a single command can effect the
complete compilation-execution cycle, including allocation of required data sets.

This simplicity of use makes Code and Go particularly suitable for the problem­
solver, since it reduces his concern with system functions to a minimum. Similarly,
the production programmer who is using Code and Go in the foreground for debugging
can concentrate his attention on his source program without the effort of setting up a
command procedure. Moreover, he can use free-form source even if he intends to
compile later under a compiler that does not accept it, since Code and Go also includes
a sift utility that will convert his source statements to standard form.

][n the foregroul'ld, easy and rapid debugging of a Code and Go program is made
possible bv a combination of quick compilation and the debugging aids provided by
~ompiler diagnostics and FORTRAN Interactive Debug. 1 When no compilation errors
are found, the compiler -- in conjunction with the loader -- automatically starts exe­
cution of the compiled code. (Under CMS, the user can request that execution be
delayed.)

For both foreground and background, Code and Go provides two levels of
diagnostic messages: one aimed for the experienced programmer; the other for those
who are not full-time programmers and will need additional assistance for error
correction. Diagnostics for the experienced programmer are short and concise, e.g.,
INVALID LOG CONSTANT. Those for the less experienced are more tutorial -- as an
example, the more tutorial form of INVALID LOG CONSTANT is LOGICAL
CONSTANTS CAN ONLY BE TRUE. OR .F ALSE.

1 See the section "Application Development Support Products" for information on FORTRAN
Interactive Debug.

22

I

If the user has access to the FORTRAN IV Library (Mod I), he can reduce and
simplify his source coding and data entry requirements by using list-directed input/
output statements, described previously in the section "Language Review" under the
heading "List-Directed Input/Output."

Under OS, Code and Go foreground programs compiled without error go into
execution automatically; in the background, a compile-only option is provided.
Additionally for background or batch jobs, users can:

• Obtain source listings and object module decks

• Invoke the linkage editor rather than the loader prior to execution

• Indicate the maximum number of lines per page for a source listing.

Under CMS, in both foreground and background, Code and Go operates as in the
OS background; users can:

• Obtain source listings and object module decks

• Request compilation only

• Indicate the maximum number of lines per page for a source listing

In summary, as a foreground tool, Code and Go is specifically designed for users
who place a premium on quick compilation and execution, on simplicity of use, and on
easy and rapid debugging.

System Requirements and Considerations

Operation of Code and Go requires the minimum area of contiguous main storage
shown in Table 5. T.he floating-point instruction set is required and, for OS foreground
processing, the Loader. (The Loader is also required if use is to be made of the
immediate-execution option in the background.) Under OS, the processor can h~lndle
most program units consisting of 230 or fewer statements in the minimum region.
(For compilation with the RUN subcommand of the TSO EDIT command, optimal
performance is obtained for compilations of approximately 50 standard-form or 100
free-form statements.) Code and Go can handle larger source programs in larger areas;
for each additional 10K bytes of main storage provided, about 75 additional statements
can be processed.

Execution of the Code and Go processor under OS must be performed with a
system that has been generated with a SUPRVSOR macro-instruction that (1) specifies
the IDENTIFY function as an option and (2) specifies the WAIT operand as MULTIPLE.

Operation of Code and Go under TSO requires the minimum TSO configuration.
See the publication TSO Guide, Order No. GC28-6608, for details. Operation under
CMS reqUires the minimum CMS configuration. See the publication IBM Virtual
Machine Facility/370: Planning and System Generation Guide, Order No. GC20-1801.

23

Table 5. Main Storage Requirements

For OS Background For OS (TSO) Foreground 1

or With EDIT ~ With EDIT Not
CMS Virtual Storage Without Resident in Resident in

EDIT Link Pack Area Link Pack Area

FORTRAN IV (Gl) 90K 11 OK 138K 150K

Code and Go
FORTRAN
CompHer 88K 112K 140K 152K

Sift Utility 8K 22K 3 - -

1 These region requirements assume that the TMP and the service routines GETLlNE, PUTLlNE,
and PUTGET are resident in the TSO Time Sharing Link Pack Area.

2 Refers to the 12K "main line" of EDIT, consisting of control, service, and special access method
routines.

3 Fits in minimum TSO region.

FORTRAN IV (G1)

The FORTRAN IV (Gl) processor was developed for installations that do not reqauire
the extremely fast compile-to-execute time of the Code and Go processor. Its object
code is more efficient than that of the Code and Go processor, particularly with
regard to DO loops, thus making it more suitable for "production" programs -- ones
that will be executed frequently.

In proViding the ability to produce object listings and storage maps, FORTRAN
IV (Gl) complements Code and Go in the TSO foreground. In addition,
FORTRAN IV (Gl) can produce source listings and can store object modules in both
foreground and batch operation, under OS and CMS. Like Code and Go, the G 1
processor supports the use of list-directed input/output and of FORTRAN Interactive
Debug.

The processor provides a terse form of output, comprising error messages and
compiler statistics, suitable for terminal display. This output is normally suppressed
when the compiler is operating in batch mode. Source and object listings and
storage maps may be directed to the terminal (when compiling in the foreground) or to
any other output device.

Use of FORTRAN IV GI under TSO is simplified by the TSO FORTRAN
Prompter; 1 the processor, as previously noted, also supports the use of the
FORTRAN Interactive Debug program product (see the section "Application
Development Support Products").

1 Whl~n using Gl under CMS, the command processing functions of the Prompter are not required;
they have been built into the processor itself.

24

System Requirements and Considerations

Operation of FORTRAN IV (Gl) requires the minimum area of contiguous main
storage shown in Table 5. The floating-point instruction set is required. In a minimum
area, the processor can handle most program units consisting of 400 or fewer
statements; larger units can be handled in larger areas.

Operation of FORTRAN IV (Gl) under TSO requires the minimum TSO config"
uration. See the publication TSO Guide, Order No. GC28-6698, for details.
Operation under CMS requires the minimum CMS configuration. See the publication
IBM Virtual Machine Facility/370: Planning and System Generation Guide, Order No.
GC20-1801.

FORTRAN IV (H EXTENDED)

FORTRAN IV (H Extended), a true production compiler, utilizes advanced optimization
technology to produce efficient object code.

Compilation-time options are available to optimize execution speed. In the
process, object module size is often reduced. The user can select optimization
facilities at several levels. These will improve object code by -- to cite a few examples _ ..
increasing the program's efficiency in its handling of nested DO loops and subSCripts,
and in its use of registers and branch instructions.

In addition to the greater computational power provided by language extensions
for extended precision, asynchronous input/output, automatic function selection,
and EXTERNAL statement usage, the H Extended processor offers an automatic pre­
cision increase facility. This facility, specified at compilation-time, provides an
automatic procedure for converting all single-precision floating-point variables,
constants, and functions to double precision and/or double-precision floating-point
variables, constants, and functions to extended preciSion.

The automatic precision increase facility is an aid in the conversion of programs
written for other computers whose preCision is greater than that afforded bv the
System/360 32 bit word size. The facility helps to solve the loss-of-precision problems
that occur when such programs are run on System/360 Without it, the system/360
user experiencing loss of precision has to convert his programs to double precision
manually, a process that is complex, time-consuming, and prone to error.

Also, automatic precision increase can be used for programs in which double ..
precision calculations are inadequate to meet the user's preciSion requirements. Such
programs can be converted automatically to extended preCision.

The automatic preCision increase facility shOUld be considered as a tool for
precision conversion; use of the facility does not assure that every FORTRAN
source progam will be executed correctly in the higher precision.

System Requirements and Considerations

FORTRAN IV (H Extended) operates under CMS and on all machines supported by
OS that have at least 256K bytes of amin storage. The floating-point instruction
set is required, as is the FORTRAN IV (Mod II) library. For machines with extended

2S

precision capabilities, the extended floating-point feature is required for optimum
performance. Under OS, sufficient devices to support the SYSIN, SYSPRINT, SYSLIN,
SYSPUNCH, SYSUT1, and SYSUT2 data sets are required.

FORTRAN IV (H Extended) requires a minimum of 160K bytes of main
storage under OS; for CMS, 450K of virtual storage is required. Approximately 200 to
300 source statements can be compiled when this amount of storage is available to
the compiler. Up to 160 tracks on an IBM 2311 Disk Storage Unit may be required
for secondary storage.

Storage requirements can be affected by the use of extended-precision variables,
constants, and calculations in the source program or by use of the automatic precision
increase facility.

Calculations for extended-precision variables require approximately four times
the number of instructions that would be required for the same calculations on single- .
precision or double-precision variables. On machines requiring use of the extended­
precision simulator, additional storage will be needed for the simulator. Automatic
precision increase involves promotion of data from one type to another (for example,
single: precision to double precision); it can also involve padding of variables. For
the promotion operation, data storage is doubled for each variable that is promoted.
For the padding operation, data storage is doubled for each variable that is padded.
There is an additional increase in storage requirements when double-precision data
is promoted to extended precision, because the compiler must generate a greater
number of instructions for extended-precision calculations, as noted above.

26

FORTRAN IV LIBRARY (MOD I) AND FORTRAN IV LIBRARY (MOD II)

The FORTRAN IV Library (Mod I) interfaces with the Code and Go processor and
the G1 processor to (1) direct PAUSE and STOP statement messages to the terminal,
(2) provide the routines necessary for use of list-directed input/output, and (3)
permit, for OS, the use of tape data sets written in the American National Standard
Code for Information Interchange (also referred to as ASCII).

FORTRAN IV OS processors other than Gland Code and Go,
(excluding H Extended, which requires the Mod II library) can use the routines of the
Mod I library, taking advantage of the data conversion routines and, for OS but not
CMS, ASCII support. Use of the list-directed input/output function requires specific
list-directed I/O support from the compiler.

Conversly, Code and Go or G 1 users not requiring list-directed I/O or
ASCII support can use' the predecessor FORTRAN IV library.

The FORTRAN IV Library (Mod II), which provides specific support of the
mathematical, service, and input/output routines needed by the H Extended processor,
also encompasses all of the FORTRAN IV Library (Mod I) support. Consequently,
an installation equipped with the Mod II library need not have the Mod I library to
support Code and Go or G 1.

ASCII Data Sets

For OS, the Mod I and Mod II libraries accept as input and can create as output
magnetic tapes written in ASCII code. Only tapes read or written by list-directed
input/output statements or under format control at execution time are acceptable.
ASCII tape data sets that are unlabeled or that have standard ASCII labels are
processed for F, U, or D type records.

Conversion Routines

The input/output conversion routines in the Mod I and Mod II libraries produce more
accurate results than the routines of the OS FORTRAN IV library they replace.
This improvement is achieved by use of an algorithm that rounds values instead of
truncates, on input, and that maintains more accuracy in intermediate values while
performing the conversion. A REAL*4 or REAL*8 number that is written and then
read will produce the same internal representation that existed prior to the write and
read. This is called an onto mapping for an out/in conversion.

The same input conversion routines are contained in the three program product
processors to ensure compatibility.

27

STORAGE REOUIREMENTS

Table 6 lists the increase in storage requirements for the Mod I and Mod II libraries
ov(~r the predecessor, OS FORTRAN IV library.

Table 6. FORTRAN IV Library (Mod I) and (Mod II) Storage Increases

Storage Increase

Function Mod I Mod II

Secondary Storage 18K bytes 1 22K bytes 1

Primary Storage 2

28

Base
List-directed I/O
Extended-precision

conversion
Asynchronous I/O
Subprograms

900 bytes
2600 bytes
-

--

52 tracks on an IBM 2311 for Mod I; 73 tracks for Mod II.

2100 bytes
2600 bytes

700 bytes

5000 bytes 3

4

2 Total primary storage increase for the Mod I library is the sum of the base increase, the
increase for list-directed I/O, and the length of each subprogram called by the main program;
for Mod II, it is the sum of the base increase, increases for list-directed I/O, extended
precision, and asynchronous I/O (as applicable), and the length of each subprogram called by
the main program.

3 Base storage increase only. Add 8 bytes for each FORTRAN logical unit assigned to the
system; add 250 bytes for each unit processing asynchronous I/O requests.

4 Extended-precision mathematical subprograms require 3.5 to 6 times the main storage of the
corresponding double-precision subprograms.

APPLICATION DEVELOPMENT SUPPORT PRODUCTS

The TSO FORTRAN Prompter, offered for use with the Gl processor, and FORTRAN
Interactive Debug, which can be used with Code and Go and with G 1, are described in
this section. Both products are designed to assist the time-sharing user in developing
his program from his terminal with a maximum of ease.

TSO FORTRAN PROMPTER FOR FORTRAN IV (G1)

The TSO FORTRAN Prompter provides the most convenient means of invoking the
FORTRAN IV (Gl) processor in the TSO foreground. 1 When the prompter has been
added to a TSO installation, FORTRAN IV (Gl) may be invoked by the TSO FORT
command or by the TSO RUN command. Operands of the FORT command allow
the specification of various compiler options: whether or not a listing is to be pro­
duced; the contents of the listing, and where it is to be printed or stored; whether or
not an object module is to be produced; and whether or not diagnostic messages are
to be sent to the terminal. All operands, except the input data set name, can default
to standard values. (When the RUN command is used, parameters for the processor
may not be specified; the prompter will supply default values for these parameters.)

FORTRAN IV (Gl), the terminal user, and TSO interact through the TSO
FORTRAN Prompter. The prompter reads and interprets the FORT or RUN command
parameter string used to invoke it, prompts the terminal user for any information
that has been omitted or incorrectly entered, allocates required data sets, and passes
parameters to the G 1 processor. Thus, the prompter provides the terminal user with
a conversational means of setting up the proper parameter lists and data sets that are
to be used by the proce~sor.

Storage Requirements

The prompter is transient in the FORTRAN IV (G 1) region and is overlayed by the
compiler. Hence, the storage requirements are satisfied by any region capable of
running the compiler via the TSO CALL command.

FORTRAN INTERACTIVE DEBUG

FORTRAN Interactive Debug, which operates under both TSO and CMS, allows the
programmer to debug both Code and Go and G 1 programs from his terminal through the
use of simple conversational subcommands and system responses. The use of FO~T~N
Interactive Debug requires compilation, with the specification of TEST as a compilatIOn

option.

1 When using Gl under CMS, the command processing functions of the Prompter are not required;
they have been built into the CMS interface module.

29

When a program is compiled with the TEST option, an object program containing
all ne1cessary linkages to the debugging routines is produced and stored. (Code and Go
programs compiled with TEST are not automatically loaded and executed the wav
ordinary TSO Code and Go programs are.) After compiling with the TEST option,
the programmer invokes Interactive Debug by issuing a TESTFORT command.
TESTFORT provides parameters for calling private user libraries during execution and
naming a print data set for debugging output.

Once within TESTFORT, the programmer has access to TEST FORT subcommands.
Using the subcommands, and referring to program data by line numbers, statement
labels, and symbolic FORTRAN names (instead of internal sequence numbers, internal
registers, or machine code), the programmer has complete control over the execution
of his program. He can start a.nd stop execution, establish breakpoints, display and
alter values of variables, control the logical flow of his program, monitor Ule frequency
of execution of program statements, monitor logical and arithmetic conditions,
dynamically trace and monitor execution, and control error conditions. Once his
program is debugged, the programmer returns to EDIT mode to make the necessary
permanent program corrections. Table 7 lists TESTFORT subcommands and their
facili ties.

Any Code and Go FORTRAN or FORTRAN Gl program that will run under
EDIT can be debugged with FORTRAN Interactive Debug, except for programs
containing Debug facility statements (i.e., compilation-time Debug packet statements).
Once these statements are removed, however, these programs can also be debugged
using FORTRAN Interactive Debug.

System Requirements and Considerations

FORTRAN Interactive Debug operates with Code and Go and Gl under TSO or CMS.
Interactive Debug requires the FORTRAN IV library (Mod I) or (Mod II) with the
Extended Error Handling feature. The latest release of the Code and Go or G 1
processor available at Interactive Debug release time will be required. For installations
using the TSO FORTRAN Prompter, the latest release of the prompter will also be
required.

For operation under TSO, Interactive Debug requires the minimum TSO con­
figuration and a minimum region size of 142K bytes.

30

Table 7. FORTRAN Interactive Debug (TESTFORT) Subcommands (Part 1 of 2)

Subcommand Function
Name

AT The AT subcommand sets breakpoints in the FORTRAN
program and allows the programmer to assume control at the
breakpoint or to supply a list of subcommands for execution
at the breakpoint.

END The END subcommand discontinues testing and returns the
user to command mode.

ERROR The ERROR subcommand allows the user to dynamically
control the extended error handling facility from the
terminal.

FIXUP The FIXUP subcommand lets the user specify his own
corrective action when execution errors occur, and resumes
program execution after performing the fixup.

GO The GO subcommand resumes execution of the FORTRAN
program after it has stopped for a breakpoint, an attel}tion
interruption, or an execution error. Execution may be resumed
at any point in the executing program unit.

HALT The HALT subcommand allows the user to get control of his
program if conditions specified with an IF subcommand are
true.

HELP The HELP subcommand provides information about the
function, syntax, and operands of any of the TESTFORT
subcommands.

IF The IF subcommand allows the user to define an arithmetic
! or logical condition, and performs a user-specified operation

(by subcommand) if the condition is true.

LIST The LIST subcommand allows the user to display values of
any program variables at the terminal or on a print data set.
The display can be produced in 'a variety of output formats.

LISTBRKS The LISTBRKS subcommand provides a list of all breakpoints
set in a program, and a list of all WHEN condition monitoring
(active and inactive) that is defined for the program.

LISTFREQ The LISTFREQ subcommand produces a listing of the
frequency of execution of any statement in the program, or a
listing of any statements that have not been executed at all.

NEXT The NEXT subcommand sets a temporary breakpoint at the
next FORTRAN statement that is to be executed.

OFF The OFF subcommand removes breakpoints that have been
set with an AT subcommand.

OFFWN The OFFWN subcommand turns off condition monitoring that
has been activated by a WHEN subcommand.

PURGE The PURGE subcommand is used in an attention interruption
to suppress listing of printed output from a single executing
subcommand without aborting any other subcommands that
may be pending.

QUALIFY The QUALIFY subcommand is used to refer subcommands to
program units other than the program unit in execution when
the subcommand is given.

31

Table 7. FORTRAN Interactive Debug (TESTFORT) Subcommands (Part 2 of 2)

Subcommand
Name

RUN

SET

SOURCE

TRACE

WHEN

WHERE

32

Function

The RUN subcommand removes all program breakpoints and
resumes execution of the program at a point specified by the
user. Execution is completed without further testing.

The SET subcommand allows the user to change the value of
any variable in his program.

The SOURCE subcommand produces a listing of any of the
FORTRAN source code at the terminal.

The TRACE subcommand allows the user to trace transfers of
control within his program by line number; he can trace either
(1) subroutine entries and exits, or (2) transfers of control by
statement and line number.

The WHEN subcommand is used to set up monitoring of any
arithmetic or logical condition, or to reinitiate monitoring of a
previously defined condition.

The WHERE subcommand informs the programmer of the line
number of the next statement to be executed. Optionally,
it can provide a traceback of all program transfers that led to
his current statement.

REFERENCE MATERIAL

The Code and Go FORTRAN Processor, the FORTRAN IV (Gl) Processor, the
FOR TRAN IV (H Extended) Processor, the FORTRAN IV Library (Mod I), the
FORTRAN IV Library (Mod II), the TSO FORTRAN Prompter, and FORTRAN
Interactive Debug are supported by the publications described below.

Many of these publications pertain to more than one of the products, since most
users will be using them in some combination. In these cases, the function being
described is identified with the product or product combination that implements it (e.g.,
list-directed I/O requires the Mod I library and one of the processors). so that if a user
does not have the product(s) available to him, he is steered around the function.

To determine which publications are needed for a given product or combination of
products, consult Table 8, following the descriptions.

An installation using TSO or CMS will have additional information needs that are
provided through other publications not described here. A description of the available
TSO and CMS literature will be found in IBM System/360 and System/370
Bibliography, GA22-6822.

IBM SYSTEM/360 and SYSTEM/370
FORTRAN IV LANGUAGE
GC28-6515

This publication provides complete reference information for the full FORTRAN IV
language supported by the Code and Go FORTRAN, FORTRAN IV (Gl), and
FOR TRAN N (H Extended) processors. This language encompasses the American
National Standard FORTRAN, with IBM extensions such as the Debug facility, list­
directed input/output, etc.

The publication also includes information on use of the mathematical and service sub­
programs provided in the FORTRAN library.

Readers of this publication are assumed to have some prior knowledge of program­
ming techniques and of the FORTRAN language. Users new to FORTRAN can use
the set of programmed instruction texts, FORTRAN IV for IBM System/360, Order
Numbers SR29-0080 through SR29-0087, as an introduction to the language.

OS
FORTRAN IV MATHEMATICAL AND SER VICE SUBPROGRAMS
GC28-6818

This publication proVides comprehensive information about the mathematical and
service subprograms in the FORTRAN IV Library of which the Mod I and Mod II
libraries are extensions.

33

This book includes mathematical subprogram performance data, argument ranges and
accuracy data, the effect of argument error on the accuracy of results, and the math­
ematical algorithms used in the implementation.

For many users, the information in the FORTRAN IV language manual cited above
will be sufficient for the use of these sUbprograms. This publication, which has a
math~:matical orientation, is intended for users who require specific, detailed informa­
tion about the mathematical algorithm implemented, the effect of argument error, etc.

OS
FORTRAN IV MATHEMATICAL AND SERVICE
SUBPROGRAMS SUPPLEMENT FOR MOD I AND MOD II LIBRARIES
SC28·6864

This publication, a supplement to the Mathematical and Service Subprograms manual
(GC28-6818), contains performance data, argument information, and implementation
algorithms for the extended precision mathematical subprograms contained in the
Mod n library, as well as storage estimates for modules containing imput/output, error
handling, and data conversion routines.

The mathematical orientation of this publIcation b similar to that of the Mathemati­
cal and Service Subprograms manual, and for many users the information in the
FORTRAN IV language manual (GC28-6515) will be sufficient for use of the sub­
programs.

OS (1"SO)
CODE AND GO FORTRAN PROCESSOR
TERA1INAL USER'S GUIDE
SC28··6842

This publication is for the user who is using the Code and Go FORTRAN processor in
the TSO foreground. The reader of this manual is assumed to know the FORTRAN
IV language (as described in the language manual cited above) but is not required to
have any prior knowledge of TSO or any other time-sharing experience.

This publication is designed to both instruct the new user and serve as a reference
for the experienced user of Code and Go. In addition to information about the pro­
cessor itself, this guide is a primary source of information for that subset of the TSO
command language that is directly supported by or directly relevant to the use of Code
and Go, including source program creation and editing (using line numbers), syntax
checking, and compilation and execution. It also describes the use of the terminal I/O
facilities available through the FORTRAN IV Library (Mod I).

This publication assumes that the installation has established a TSO log-on procedure
for the Code and Go user and has advised him of the procedure's name and its limits;
the minimum requirements for this procedure are given in the Code and Go installation
refere:nce material publication, described later.

For the user whose scope of work is limited to Code and Go foreground pro­
cessing, no other TSO publications are required. (An exception to this would be the
TSO publication that describes the supported TSO terminals for installations that do
not provide their own terminal usage instrUctions.) Note that this publication does not
cover Code and Go use in the background or batch environment; this information is
provided in the Code and Go and G 1 Progammer's Guide, described later.

34

OS
FORTRAN IV (H EXTENDED) PROGRAMMER'S GUIDE
SC28-6852

This publication is directed to the applications programmer using the FORTRAN IV
(H Extended) Compiler. A knowledge of the FORTRAN IV language is assumed, but
the reader is not required to have had any prior experience with OS.

In addition to containing information about the use of the FORTRAN IV
(H Extended) Compiler, the FORTRAN IV Library (Mod II), and special features such
as automatic precision increase, this publication is a primary source of information for
tnat subset of the OS job control language directly relevant for the compilation, link­
editing or loading, and execution of a FORTRAN program.

For most users of tne FORTRAN IV (H Extended) compiler, this publication and
the FORTRAN IV language manual (GC28-6515) are the only publications normally
required. Users who require specific detailed information about the mathematical
and service subprograms provided in the Mod II library should, additionally, consult
the Mathematical and Service Subprogram manual (GC28-6818), and its Mod II supple­
ment (SC28-6864).

OS
CODE AN.D GO AND FOR TRAN IV (G 1) PROGRAMMER'S GUIDE
SC28-6853

This publication is for the FORTRAN applications programmer who is usiIlg either the
Code and Go FORTRAN processor or the FORTRAN IV (Gl) processor in con­
junction with the FORTRAN IV Library (Mod I), in the OS background or batch
environment. The reader of this publication is assumed to know the FORTRAN IV
language (as described in the language manual cited earlier) but is not required to have
any prior knowledge of OS.

In addition to information about the two processors and the library, this manual is
a primary source of information for that subset of the OS Job Control Language and
the OS Linkage Editor statements that is directly supporte4 by or directly relevant to
the use of either Code and Go or G 1, including compilation, linkage editing or loading,
and execution.

For those users whose scope of work is limited to Code and Go or G 1 processing
in the OS background or batch environment, no other OS publications are required.
Note that this publication doesn't cover Code and Go or Gl use in the TSO foreground;
this information is provided in the appropriate terminal user's guides.

Users who wish to submit Code and Go or Gl jobs through the TSO foreground
(Le., via the TSO SUBMIT command) should use this publication in conjunction with
the background command information in the two TSO publications, Terminal User's
Guide, Order Number GC28-6763, and Command Language Reference, Order Number
GC28-6732.

35

os (1'SO)
TERlvJINAL USER'S SUPPLEMENT FOR FORTRAN IV (GJ) PROCESSOR
AND TSO FORTRAN PROMPTER
SC28-6855

This publication supplements the two TSO publications, Terminal User's Guide, Order
Number GC28-6763, and Comrnand Language Reference, Order Number GC28-6732
and provides the terminal user with specific information on how to use the TSO
FORTRAN Prompter and the FORTRAN IV (G 1) processor in the TSO foreground.
For installations not equipped with the TSO FORTRAN Prompter, this publication
describes the TSO commands necessary to invoke the G 1 processor directly. It also
describes the terminal I/O facilities available through the FORTRAN IV Library
(Mod I).

Fo:r information on using the TSO command language and editing facilities, the
linkage editor or loader, etc., the user should have available the two TSO publications.

This publication assumes that the installation has established a TSO log-on pro­
cedure for the Gl user and has advised him of the procedure's name and its limits;
the minimum requirements for this procedure are given in the Gland Prompter instal­
lation reference material manual described below.

Note that this manual doesn't cover G 1 use in the background or batch environments;
this information is provided in the Code and Go and G 1 Programmer's Guide,
described above.

FORTRAN INTERACTIVE DEBUG FOR OS (TSO)
CODE AND GO FORTRAN
FORTRAN GJ
TERAfINAL USER'S GUIDE
SC28-6885

This publication contains all the information necessary to debug a Code and Go or
FORTRAN IV (Gl) program using FORTRAN Interactive Debug under TSO. The
TESTFORT command and its subcommands are explained in detail, and numerous
examples are provided throughout the text.

This publication is intended to be used in conjunction with either the Code and Go
Terminal User's Guide (SC28-6842) or the Terminal User's Supplement for Gl
(SC28-6855), as appropriate. Both these publications are described above.

CMS
TERMINAL USER'S SUPPLElllENT FOR CODE AND GO FORTRAN
FORTRAN IV (GJ), AND FORTRAN IV (H EXTENDED) PROCESSORS

This pU,blication will supplement the CMS command language user's guide and
associated publications to provide specific information on how to use the program
product processors in a CMS environment. (The exact title and order number of this
Supplement will be announced. with the availability of CMS.)

36

OS
FORTRAN IV (GJ) PROCESSOR AND TSO FORTRAN PROMPTER
INSTALLATION REFERENCE MATERIAL
SC28-6856

OS
FORTRAN IV LIBRARY (MOD I)
INSTALLATION REFERENCE MATERIAL
SC28-6858

OS
CODE AND GO FORTRAN PROCESSOR
INSTALLATION REFERENCE MATERIAL
SC28-6859

OS
FORTRAN IV (H EXTENDED) COMPILER AND LIBRARY
(MOD /I) INSTALLATION REFERENCE MATERIAL
SC28-6861

OS (TSO)
FORTRAN INTERACTIVE DEBUG
INSTALLATION REFERENCE MATERIAL
SC28-6886

These publications provide the installation with information on how to install and use
the program products indicated in the titles. Included are program installation pro­
cedures (with system generation dependencies), log-on procedure requirements for TSO
foreground use, storage estimates, system programmer considerations, and diagnostic
messages.

These publications are essentially supplemental, in that they assume the availability
at the installation of other OS system publicativns pertaining to the installation and
use of OS itself (e.g., System Generation, System Programmer's Guide, etc.).

OS
FORTRAN IV (H EXTENDED) COMPILER AND LIBRARY
(MOD /I) MESSAGES
SC28-6865

This publication contains the text of all diagnostic messages that may be produced by
the FORTRAN IV (H Extended) compiler and FORTRAN IV Library (Mod II)
during compilation and execution of a FORTRAN program. Also included is a detailed
explanation of each message and suggested corrective action.

37

OS
FORTRAN IV (H EXTENDED) COMPILER
PROGRAM LOGIC
LY28-6403

OS
FORTRAN IV LIBRARY (MOD II)
PROGRAM LOGIC
LY28-6409

OS
CODE AND GO FORTRAN PROCESSOR
PROGRAM LOGIC
LY28-6846

OS
FORTRAN IV (GJ) PROCESSOR
PROGRAM LOGIC
LY2.8-6856

OS
FORTRAN IV LIBRARY (MOD I)
PROGRAM LOGIC
LY28-6408

OS (TSO)
TSO FORTRAN PROMPTER
PROGRAM LOGIC
LY2.8-6410

These publications describe the internal structure, method of operation, and implemen­
tation of the program products in the titles. They are meant to be used in conjunction
with the program listing for purposes of program maintenance.

Program logic manuals are not necessary for the installation and use of the product;
they are provided for use by program maintenance personnel. Program logic manuals
are available to licensees only.

PUBLICATIONS SELECTION GUIDE

Table .8 lists the publications described in the preceding text, indicating the intended
audience of each and the product to which each applies. In the table, publication
titles have been abbreviated; full titles and order numbers are given in the preceding
descriptions.

38

~
ALL TERMINAL USERS BACKGROUND

LANGUAGE (BATCH) INSTALLATION MAINTENANCE

PRODUCT USERS TSO CMS USERS PERSONNEL PERSONNEL

Code and Go Code and Go Code and Go Code and Go Logic
FORTRAN Terminal User's Guide Installation Reference

Code and Go and Material

Terminal User's
Gl Programmer's

FORTRAN IV
FORTRAN IV

Gl and TSO Prompter
Supplement for

Guide (See Note 1) Gland TSO Prompter FORTRAN IV (G 1)
(G1) Supplement Installation Reference Logic Language (See Note 2) Code and Go, G 1 Material

and H Extended

FORTRAN IV (DH Extended . H Extended and Library H Extended Logic

(H Extended) Programmer's Guide (Mod II) Installation
- (DHExtended Reference Material

Messages

TSO Prompter Gland TSO Prompter Gland TSO Prompter Prompter Logic
- Supplement -- - Installation Reference

(See Note 2) Material

FORTRAN Interactive Debug
Interactive - Interactive Debug Terminal User's Guide - Installation Reference -

Debug Material

FORTRAN IV Library (Mod I) Library (Mod I) Logic

Library (Mod n Installation Reference
Material

(See Note 3) (See Note 4)
FORTRAN IV H Extended and Library Library (Mod II) Logic
Library (Mod II) (Mod II) Installation

Reference Material

1. Users who are going to submit jobs for background processing through the TSO foreground should have other terminal user's publications available for
use in conjunction with this pUblication (see description).

2. This publication assumes the avaihibility of other terminal user publications (see description).

3. Although not essential for writing FORTRAN programs or for using the facilities of the FORTRAN libraries, the following publications are available
for users who require comprehensive horary subprogram information: OS FORTRAN IV Mathematical and Service Subprograms, Order No. GC28-6818,
and OS FORTRAN IV Mathematical and Service Subprogram Supplement for Mod I and Mod II Libraries, Order No. SC28-6864 (see descriptions).

I

4. I/O and error handling facilities for the libraries are described in the user's guides for the program product processors.

American National Standard FORTRAN 8
ANSFORTRAN 8
arrays 9,19
ASCII data sets 27
asynchronous input/output

description 19-20
limitation on executing under CMS 20

automatic function selection 20
automatic precision increase 2S

CMS, publication requirements for 7,33
Code and Go FORTRAN processor

description of 22-23
free-form input format

converting records to standard format from 21
examples of 21
use of sift utility 21

Interactive Debug, use of 29-32
list-directed input/outupt, use of 17-19
system requirements 23-24
use of sift utility with 21

compatibility, language 8
compiler diagnostics 22
compilers

Code and Go (see Code and Go FORTRAN processor)
G1 (see FORTRAN IV (Gl) processor)
H Extended (see FORTRAN IV (H Extended) processor)

COMPLEX*32 data type 19
constants 9
conversion of floating-point calculations 25
conversion routines 27

Debug Facility, compilation-time 8
Debug, FORTRAN Interactive

design highlights 29-30
subcommands 31-32
TESTFORT command 30

examples
automatic function selection 20
free-form input format 21
GENERIC statement 20
list-directed input/output 18-19

expressions 9
extended precision 19
EXTERNAL statement 20-21

floating-point conversion 25
FOR TRAN Interactive Debug

design highlights 29-30
subcommands 31-32
TESTFORT command 30

FORTRAN statements, description of 10-13
FORTRAN IV (G1) processor

description 24
list-directed input/output, use of 17-19
system requirements 24,25

FOR TRAN IV (H Extended) processor
description 2S
language features 19-21
system requirements 25-26

INDEX

FORTRAN IV language
elements 9
IBM features not in ANS FORTRAN 16
mathematical function subprograms 14
service su brou tines 1 S
statements 10-13

FORTRAN IV library (Mod I)
description 27
storage requirements 28

FORTRAN IV library (Mod II)
description 27
storage requirements 28

free-form input format
description 21
example of 21

free-form source
description 21
example of 21

function subprograms, mathematical 14

GENERIC statement
description 20
example of 20

G 1 processor
description 24
list-directed input/output, use of 17-19
system requirements 24,25

H Extended processor
description 2S
language features 19-21
system requirements 25-26

input/output
asynchronous 19-20
free-form 21

Interactive Debug, FORTRAN
design highlights 29-30
Subcommands 31-32

language compatibility 8
language elements 9
language features

Cod'e and Go 17,21
G1 17
HExtended 17,19-21

library, FORTRAN IV
mathematical function subprograms 14
Mod I 27-28
Mod II 27-28
service subroutines 15

linkage editor 23
list-directed input/output

advantages 18-19
examples of use 18-19
explanation of use 17-19
limitation in display of literal constants 18
statements 17

mathematical function subprograms 14

41

names., symbolic 9

object module decks 24
operators 9

precisiton increase 25
processor selection criteria 7
processors

Code and Go (see Code and Go FORTRAN processor)
Gl (see FORTRAN IV (Gl) processor)
H Extended (see FORTRAN IV (H Extended) processor)

Prompter, TSO FORTRAN
description 29
storage requirements 29

publications
descriptions of 33
sekction guide to 38,39

REAL*16 data type 19
requir{~ments, system

42

Code and Go processor 23·24
FORTRAN Interactive Debug 30
G 1 processor 24,25
H Extended processor 25·26
library (Mod I) 28
library (Mod II) 28
TSO FORTRAN Prompter 29

service subroutines 15
sift utility 21,24
simulator, extended precision 26
source listings 24
subprograms, mathematical function 14
subroutines, service 15
statements, FORTRAN 10-13
sub commands, Interactive Debug 31-32
symbolic names 9
system requirements

Code and Go processor 23-24
FOR TRAN Interactive Debug 30
Gl processor 24,25
H Extended processor 25-26
library (Mod I) 28
library (Mod II) 28
TSO FORTRAN Prompter 29

TESTFORT
command 30
sub commands 31-32

TSO, pUblication requirements for 7,33
TSO FORTRAN Prompter

deSCription 29
storage requirements 29

variables 9

WAIT 20

