

GC20-1790-0

An Introduction to
Structured Programming
in FORTRAN

This text, intended for programmers, describes and
illustrates the use of structured programming. The
technique and its supporting practices are generally
described in one chapter. A second chapter illus­
trates the implementation of the technique in
FORTRAN and is followed by a chapter presenting
two sample programs. A knowledge of FORTRAN
is assumed.

Preface
This text describes and illustrates the use of structured programming, a
recently formalized programming style in which the structure of a program is
made as clear as possible. Intended for programmers, the publication consists
of three chapters:

1. An expository chapter describes the technique, its supporting practices,
and its use. General suggestions on getting started are also included.

2. A reference chapter illustrates the implementation of the technique in
FORTRAN. This chapter may be used as a starting point for establishing
an installation's own structured programming guidelines.

3. A third chapter contains two sample programs written according to the
techniques presented in the earlier chapters.

Familiarity with programming concepts is necessary for the expository chap­
ter, and knowledge of FORTRAN is needed for the reference and sample
program chapters.

Structured programming is also discussed in the following IBM publications:

Improved Programming Technologies - An Overview (GC20-1850),

Structured Programming (Independent Study Program) Textbook (SR20-7149),

Workbook (SR20-7150), An Introduction to Structured Programming in COBOL

(GC20-1776), An Introduction to Structured Programming in PL/I (GC20-1777).

First Edition (July 1977)

Requests for copies of IBM publications should be made to your IBM representative or to

the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this publication. If the form has
been removed, address comments concerning the contents of this publication to IBM

Corporation, Technical Publications/Systems, Dept. 824,1133 Westchester Avenue, White

Plains, New York 10604.

© Copyright International Business Machines Corporation 1977

Contents
Chapter t: An Overview of Structured Programming 1

Definitions 1
Potential Advantages 2
Relationship of Structured Programming to Other Improved Programming
Technologies .. 2
Structured Programming Theory .. 3

The Structure Theorem ... 3
Additional Control Logic Structures 8

The DOUNTIL Structure .. 8
The CASE Structure .. 8

Labels and GO TO Statements. .. 9
Segmentation ... 10
Indentation ... 11
Establishing Indentation Guidelines 12
Creating a Structured Program .. 12
Documentation .. 13
Efficiency Considerations .. 14
Getting Started in Structured Programming 15

Chapter 2: Implementing Structured Programming 17
Basic Control Logic Structures .. 17

Sequence ... 17
IFfHENELSE .. 17
DOWHILE ... 19

Additional Control Logic Structures 20
DOUNTIL ... 20
CASE ... 21

Program Organization .. 23
Indentation and Readability Guidelines 23
Names .. 24
Comments ... 24
Special Conditions ... 24

Chapter 3: Two Illustrative Programs .. 25
A Two-Level Control Total Program 25
Solving a System of Simultaneous Equations by the Gauss-Seidel Method 31

List of Illustrations
Figure 1.
Figure 2.
Figure 3.
Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.
Figure 10.

Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure IS.

Figure 16.

Figure 17a

Figure 17b

Figure 18.

Figure 19.

Figure 20.

Flowchart for the control logic structure sequence. 4
Two proper programs in sequence 4
Flowchart for the controllogic structure select io n 5
Flowchart for the control logic structure iteration, the
DOWHILE ... 5
An example of the combination of two control logic
structures, in which the function controlled by a DOWHILE
is an IFfHENELSE .. 6
An example of the combination of control logic structures
in which a sequence and an iteration are controlled by a
selection .. 6
Another example of the combination of control logic
structures .. 7
Flowchart for the control logic structure i tera tion, th e
DOUNTIL ... 8
Flowchart for the CASE control logic structure 9
Nested IF pseudocode statement, with and without
indentation .. 11
Flowchart for the IFfHENELSE 17
Flowchart for the DOWHILE 19
Flowchart for the DOUNTIL 20
Flowchart for the CASE control logic structure 22
Detailed design level HIPO diagram for a two-level control
total processing application 26
Pseudocode for a two-level control total processing
application ... 27
Flowchart for the mainline processing portion of a two-level
control total processing application 28
Flowchart for the record processing portion of a two-level
control total processing application 29
Structured program for a two-level control total processing
application ... 30
Illustrative output from the two-level control total program
of Figure 18 ... 31
Pseudocode for a solution of simultaneous equations by the
Gauss-Seidel method ... 33

Figure 21. Structured program to solve simultaneous equations by the
Gauss-Seidel method ... 37

Figure 22. System of simultaneous equations used to test the program of
Figure 21 .. 40

Figure 23. Output of the program of Figure 21 when run with sample
data corresponding to the system of simultaneous
equations shown in Figure 22 40

Chapter 1: An Overview of Structured Programming

Definitions

This chapter contains various items of background information about struc­
tured programming that should be useful. The topics include:

Definitions
A summary of the potential advantages of structured programming
The relationship of structured programming to other improved program­
ming technologies

A sketch of the theoretical foundation of structured programming
The basic control logic structures
Additional control logic structures
The GO TO question
Segmentation
Indentation
Documentation considerations
Efficiency considerations
Getting started in structured programming

After reading the material in this language-independent overview, the pro­
grammer will be ready to study the reference material in Chapter 2 to see how
structured programming can be implemented in FORTRAN, and to see some of
the ideas illustrated in the two sample programs in Chapter 3.

Structured programming is a style of programming in which the structure of a
program (that is, the interrelationship of its parts) is made as clear as possible
by using just three control logic structures:

1. Simple sequence of functions
2. Selection of functions (IFTHENELSE)
3. Loop control, or iteration

These three control logic structures can be combined to produce programs to
handle any information processing task. Statements controlled by the selec­
tion and loop structures are intended to make obvious the scope of influence
of the structure.

A structured program is composed of segments, which may range from a few
statements up to about a page of code. Each segment has just one entry and
one exit. Such a segment, assuming it has no infinite loops and no unreach­
able code, is called a proper program. When proper programs are combined
using the three basic control logic structures (sequence, selection, and itera­
tion), the result is also a proper program.

An important characteristic of a structured program is that it can be read in
sequence, from top to bottom, without a great deal of the skipping around
through the program that is typical of other programming styles. This feature
is important because full comprehension of what a function does is easier if all
the statements that influence its action are physically close by. Top-down
readability is one consequence of using only three control logic structures, and
of avoiding the GO TO statement except in very special circumstances, such

Potential Advantages

as the simulation of control logic structure in a programming language that
lacks it.

A program written according to these principles not only has a structure, it
clearly exhibits that structure.

A program written in this style tends to be much easier to understand than
programs written in other styles. Easier understandability facilitates code
checking, partly because structured programming concentrates on one of the
most error-prone factors in programming, the logic. As a result, the program
testing and debugging time may be reduced.

An easy-to-read program composed of well-defined segements tends to be
simpler, faster, and less expensive to maintain. These benefits derive in part
from the fact that since the program is to a significant extent its own docu­
mentation, the documentation is always up to date; this is seldom true with
conventional methods.

Structured programming offers these benefits, but it should not be thought of
as a panacea. Program development is still a demanding task requiring skill,
effort, and creativity.

Relationship of Structured Programming to Other Improved Programming Technologies

2

Structured programming is compatible with and supportive of other improved
programming technologies, although distinct from them. Other technologies
and the relationship of structured programming to them may be sketched
briefly.

Top-down program development involves writing and testing the highest level
segments of a program first, in contrast to the more common method in the
past, bottom-up development. This approach has the benefits of giving the
critical top segments the most testing, of giving earlier warning of problems
with the interfaces between segments, and of spreading the debugging and
testing over a greater part of the development cycle.

Structured programming and top-down program development both emphasize
the importance of segments that interact in precisely understood ways. Both
involve looking at a program as a hierarchy of segments that are related to
each other in a tree-like fashion.

Hierarchy plus Input-Process-Output (HlPO) is an approach to functional
specification and documentation of programs. Each function is designed
using a HIPO diagram, in which inputs and outputs are listed and the process­
ing that is to be carried out is specified. A visual table of contents diagram
points to the HIPO diagrams in the package and therefore shows the functions
and subfunctions to be carried out by the various parts of a program, and the
relationship between them. At the detailed design level, it also shows the
hierarchy of segments.

Structured programming, as the tenn is used in this publication, refers pri­
marily to the coding phase rather than the design phase of the program
development cycle. HIPO is one good way to approach the design task, and

one that is complementary to structured programming. For additional inform­
ation on HlPO, see HlPO - A Design Aid and Documentation Technique
(GC20-1851).

A structured walk-through is a review session in which the orginator of
program design material or code explains it to colleagues. The intent is to
detect errors and deviations from standards and to ensure understandability.
Errors are corrected after the walk-through as early in the process as possible,
when they are least expensive to correct.

Structured programming, with its emphasis on easy readability of programs,
increases the effectiveness of structured walk-throughs.

A development support library consists of a machine-readable library that
contains the current versions of all project programming data. It also consists
of external library binders that contain current listings of all library members
and archives consisting of recently superseded listings. Besides providing easy
accessibility of materials, this library helps assure that the latest versions of
programs are always used.

Structured programming, with its insistence on segmentation of programs, fits
in well with development support libraries, although such libraries are useful
with any style of programming.

The chief programmer team concept involves programming with teams of at
least three members: chief programmer, backup programmer, and program
librarian. The team may also include other programmers, nonprogramming
analysts, and end users. The chief programmer is responsible for the design
and coding of all programs produced by the team, either writing or personally
checking every piece of code. The program librarian maintains the develop­
ment support library.

Structured programming is well suited to chief programmer team methods,
since it facilitates one key element, that of code review by the chief
programmer.

Structured Programming Theory

The Structure Theorem

The structure theorem states that any proper program can be written using
only the control logic structures of sequence, selection (IFfHENELSE), and
iteration.

A proper program is defined as one that meets the following requirements:

1. It has exactly one entry point and exactly one exit point for program
control.

2. Paths from the entry to the exit lead through every part of the program;
therefore, the program has no infinite loops and no unreachable code.
This requirement is, not a restriction but simply a statement that the
structure theorem applies only to meaningful programs.

The three basic control logic structures are defined as follows:

3

4

Sequence is simply a formalization of the idea that unless otherwise stated,
program statements are executed in the order in which they appear in the
program. Although this is true of all commonly used programming languages,
the fact is not always realized that sequence is a control logic structure. In
flowchart terms, sequence is represented by one function after the other, as
shown in Figure 1. A and B are anything from single statements up to
complete subprograms; the concern is only with the abstract idea of a proper
program, regardless of its size and internal complexity. A and B must both
be proper programs in the sense just defined (one entry and one exit). The
combination of A followed by B is also a proper program, since it also has
one entry and one exit. This concept can be shown pictorially, as in Figure 2,
where the outer box indicates that the combination of A followed by B can
be treated as a single unit for control purposes.

Figure 1. Flowchart for the control logic structure sequence

.. A .. B po ..

Figure 2. Two proper programs in sequence

Selection is the choice between two actions based on a predicate; this struc­
ture is called IFfHENELSE. The usual flowchart notation for selection is
shown in Figure 3, where p is the predicate and A and B are the two
functions.

.. ...

A

T

F

B

Figure 3. Flowchart for the control logic structure selection

The iteration structure, used for repeated execution of code while a condition
is true (also called loop control), is the DOWHILE. In the flowchart in
Figure 4, p is the predicate and A is the controlled code.

A

T

F

Figure 4. Flowchart for the control logic structure iteration, the DOWHILE

A fundamental idea is that wherever a function box appears, any of the three
basic structures may be substituted, and the result is still a proper program.
For example, the function box in Figure 4 could be replaced with selection,
producing the flowchart of Figure S. The dotted lines show where another
structure has been substituted for a function. Or, one function in a selection
might be replaced with three functions in sequence, and the other replaced
with an iteration, producing the flowchart of Figure 6. Flowcharts of arbi­
trary complexity can be built up in this way. Figure 7 shows a flowchart with
several control logic structures, drawn this time in top-to-bottom fashion.
Other examples appear in Chapter 3.

The ability to substitute control logic structures for functions and still have a
proper program is basic to structured programming. This process may also be
called the nesting of structures.

5

r- -- ------ ---- --,

I I
I x I
I T I
I I
I I
I

F

I
y

I I
L ----------- -J T

Figure 5. An example of the combination of two control logic structures, in which the function controlled by a DOWHILE is an

IFfHENELSE

T

F

I-

I
I
L

r­
I
I
I

R

-- -- -- -- -- -- -- - --, r------_

s T

z

T

I
I

...J

L ___________J

Figure 6. An example of the combmation of control logic structures in which a sequence and an iteration are controlled by a

selection

6

..)

A

F T

B

F

T
D c,

E

Figure 7. Another example of the combination of control logic structures

7

Additional Control Logic Structures

The DOUNTIL Structure

The CASE Structure

8

Although all programs can be written using only the three basic structures, the
use of a few others is sometimes helpful.

The basic iteration structure is the DOWHILE, but a closely related structure,
DOUNTIL, is sometimes used, depending on the procedure that is to be
expressed and on the availability of appropriate language features. The
flowchart is shown in Figure 8.

F

T
A

Figure 8. Flowchart for the control logic structure iteration, the DO UNTIL

The difference between the DOWHILE and DOUNTIL structures is that with
the DOWHILE the predicate is tested before executing the function; if the
predicate is false, the function is not executed. With the DO UNTIL, the
predicate is tested after executing the function; thus, the function is always
executed at least once, no matter whether the predicate is true or false.

It is sometimes helpful - from both readability and efficiency standpoints - to
have some way to express a multiway branch, commonly referred to as the
CASE structure. For example, if it is necessary to execute appropriate rou­
tines based on a two-digit decimal code, it certainly is possible to write 100 IF
statements, or a compound statement including many IF's, but common sense
suggests that there is no reason to adhere so rigidly to the three basic
structures.

The CASE structure uses the value of a variable to determine which of several
routines is to be executed. The flowchart is shown in Figure 9. Observe that
DOUNTIL and CASE are both proper programs.

Efficiency and convenience dictate reasonable use of language elements that
may carry out logic functions in ways slightly different from those of the three
basic structures. FORTRAN examples include the use of the DO statement and
the logical IF statement.

J

•
•
•

Figure 9. Flowchart for the CASE control logic structure

Labels and GO TO Statements

Structured programming has occasionally been referred to as "GO To-less
programming". Although well structured programs have few if any GO TO
statements, assuming an appropriate programming language, the absence of
GO TO's can be misinterpreted, and this issue should be put in context.

A well structured program gains an important part of its easy readability from
the fact that it can be read in sequence, without skipping around from one
part of the program to another. This characteristic is a consequence of the
use of only the standard control logic structures (GO TO is not a standard
control logic structure). This sequential readability, or "top-down" readabili­
ty, is beneficial because the human mind is limited as to how much detail it
can encompass at once. The function of a statement can be grasped far more
easily if it can be understood in terms of just a few other statements, all of
which are physically close by. GO TO statements generally defeat this pur­
pose; in extreme cases they can make a program essentially incomprehensible.

9

Segmentation

lO

The elimination of GO TO's has sometimes been misunderstood as the goal of
structured programming. Although good reasons exist for not wanting to use
th6m, no extra effort is required to avoid them; they just never occur when
the standard control logic structures are used. Naturally, if the chosen pro­
gramming language lacks essential control logic structures, they have to be
simulated, and GO TO's are necessary; however, their use can be carefully
controlled.

In certain exceptional, situations the use of GO TO's may improve readability
as compared to other ways of expressing a procedure. Such examples, howev­
er, do not usually occur in everyday programming. The impact of deviations
from installation guidelines, such as using GO TO's in other than prescribed
ways, should be given careful consideration before such deviations are permit­
ted.

Easy program readability requires that the programmer should not have to
turn a lot of pages to understand how something works. A practical rule is
that a segment should not exceed a page of code, about SO lines. In
FORTRAN terms a segment can be a main program, a FUNCTION, or a
SUBROUTINE. (The term segment as used here has nothing to do with the
different meanings of the term in connection with the functions of operating
systems or data base management systems.)

Segmentation, however, is more than just breaking a program into page-size
pieces. Three features that characterize good program segmentation can be
identified:

1. The segmentation should reflect the division of the program into pieces
that relate to each other in a hierarchy, that is, a tree structure. This
organization, which may be displayed with a HIPO hierarchy chart, makes
it simpler to understand how the segments relate to each other. Further­
more, the segments at the top of the hierarchy should contain high-level
control functions, whereas the segments at the bottom should contain
detailed functions.

2. A well-designed segment carries out functions that are closely related to
each other. The programmer can more easily understand it and be sure
that it does what it is meant to do. Also, when changes have to be made,
either during original programming or in maintenance, there is less
chance of disturbing portions of the program that do not change.

3. A well-designed segment communicates with other segments only in
carefully controlled ways. Some proponents of structured programming
urge that segments always consist of subroutines and that the only com­
munication between them be through parameter lists, thus reducing the
chance that segments will interact in unintended and undesirable ways.

Indentation

The use of indentation is important because consistent indentation enhances
readability, so that the finished program exhibits in a pictorial way the rela­
tionships among statements. A central idea is that all the statements con­
trolled by a control logic structure should be indented by a consistent amount,
to show the scope of control of the structure. Indentation can be a major
benefit, as shown in Figure 10 by the skeleton programs in pseudocode.
(Pseudocode is an informal means of expressing logic.) Both programs do the
same processing, but the second is far easier to understand and, therefore, to
verify for correctness.

IF P IF P

THEN THEN

B = A + B B = A + B

IF Q IF Q

THEN THEN

C = 12 C = 12

ELSE ELSE

C = 36 C = 36

ENDIF ENDIF

IF R IF R

THEN THEN

Y = X + Y y = X + Y

ELSE ELSE

Z = X + Z Z X + Z

ENDIF ENDIF

ELSE ELSE

A = A + B A = A + B

ENDIF ENDIF

Figure 10. Nested IF pseudocode statement, with and without indentation

11

Establishing Indentation Guidelines

Guidelines for indentation in FORTRAN programs are suggested in Chapter 2.
Note, however, that these are only guidelines; each installation will need to
establish local conventions. Variation from the suggested guidelines is not
important as long as the installation conventions are followed consistently.
For example, it is not of fundamental importance whether the statements
controlled by an IF are indented four spaces, or three, or two. Arguments can
be made for each, but no way is absolutely right. Within anyone installation,
however, some set of rules should be followed or the value of indentation will
be lost.

Creating a Structured Program

12

Structured programming, as the term is used in this publication, refers to the
coding portion of the total program development cycle. It may help to sketch
the cycle, indicating how structured programming relates to each phase.

The program development process can begin when, in response to a statement
of requirements, a specification is developed that states the objectives of the
application. The next step is initial design, during which each major function
is identified and then subdivided into lower level functions. HIPO diagrams
are a design aid and documentation tool at this stage. It is important in initial
design not to become enmeshed in low-level details; the strategy is to manage
complexity by attacking the problem one level of detail at a time.

Program design should not be expected to proceed in a straight-line fashion.
The HIPO hierarchy chart may have to be drawn several times, as the expect­
ed segment size or the implications of logic flow become clearer. The basic
idea is to begin with a top-level attack, with little detail, and then fill in the
successive levels, refining original plans as necessary until the design is.

Once the initial design is complete, programmers refine the design to add the
details necessary for the coding process. In detailed program design, addi­
tional HIPO diagrams are created to specify further detail about each process.
If flowcharts are used to express logic flow, they should include only the basic
structures. Another technique used in the detailed design phase is pseudo­
code, an informal means of expressing logic. Although HIPO diagrams can
reduce the need for other documentation of logic flow, flowcharts and pseu­
docode can be used with HIPO diagrams.

In pseudocode the basic control logic structures and indentation are used in a
carefully controlled way, but the programmer has discretion over everything
else: elements of programming languages may be used, or mathematical
notation if it is appropriate to the application, and so on. Pseudocode is
similar to a programming language, but it is not compilable and is not bound
by formal syntactical rules. Pseudocode is used to depict detailed logic while
avoiding the distractions of the details of programming language require­
ments; it is easier to modify than programming language statements. When
detailed program design is finished, the translation from pseudocode to the
chosen programming language is straightforward, since the most difficult part
(the logic) is finished. Examples of pseudocode appear in the illustrations in
Chapter 3.

L

Documentation

L

In the coding stage of program development, the techniques that have be­
come identified with structured programming, as the term is used here, come
into greatest prominence. Program statements implementing control logic
structures are used, and they are indented to show the scope of influence of
the structures; thus, the details of code are clearly related to the structure of
the design. For ease of understanding, no structure is allowed to extend over
a page boundary. The objective is to use meaningful variable and subprogram
names, perhaps following conventions that suggest the functions of the data
and procedures. Program segments are proper programs (one entry, one exit)
and can be read in sequence from top to bottom.

It is becoming increasingly common for completed code to be checked by
another programmer, either in a structured walk-through or in some other
kind of code-reading process. During test, program errors are located, and a
verification is made that the program performs according to specifications.
With structured programs this stage may tend to take less time than before
because errors can be located and corrected more rapidly in the more reada­
ble structured code.

Finally, the program has to be maintained over the period of its use. Specifi­
cations change, equipment configurations are modified, and coding errors are
discovered; these may require program modifications. Over the life of a
major program, maintenance often requires more effort than the original
program development.

Structured programming facilitates program maintenance for much the same
reason that it facilitates program testing: the program is easier to understand.
Whether the original programmer or a different maintenance programmer is
involved, changes are easier to make and are less likely to cause undesired
effects elsewhere in the program.

In summary, program development consists of requirements specification,
initial design, detailed design, coding, test, and maintenance. The most
difficult task is design, which properly should receive the most attention and
effort, since errors are least costly to correct at this stage.

How much documentation of a program's logic is needed in addition to the
program itself? In the past the argument has sometimes been made that the
logic of a program should be documented with a complete set of flowcharts.
This contention may need to be reevaluated for structured programs, which
display their own logic better than conventional programs.

To reduce the need for documentation of logic, the code should follow certain
guidelines of good programming practice that for many years have been
characteristic of the best programmers. Data and subroutine names should be
as indicative as possible of the functions of the data items and program
elements. Tricky coding should always be avoided.

13

Efficiency Considerations

14

When these and other commonsense principles have been followed and the
program has been written according to the principles of structured program­
mipg (only a few control logic structures, use of indentation, and top-down
readability), there will be little need for documentation of the logic flowchart
type. (The need for documentation of function provided by HIPO hierarchy
charts and HIPO diagrams, and traditional documentation such as data layout
charts, data preparation instructions, etc., is not affected by structured
programming.)

Programmers are sometimes concerned that structured programming techni­
ques may result in object programs that run slowly or that create problems in
a virtual storage system. There is nothing inherent in the structured program­
ming approach that leads to inefficiencies; the use of a restricted set of
control logic structures and of segmentation does not automatically carry any
time or space penalty.

Although no systematic study of many users has been made, some users have
reported that usually no performance penalties result from structured pro­
gramming techniques. If problems occur, they should be seen in the context
of the full range of considerations that determine the effectiveness of a data
processing operation. For instance, the ability to create programs on time
may be much more important than a small object program speed penalty.
Also, an apparently highly efficient program that is very difficult to maintain
may not be really efficient in terms of total cost. Finally, efficiency always
relates to a specific environment of compilers, hardware, and user code.

If object program speed does become a problem, however, the following
approaches may be considered.

Identify those portions of the program that are most heavily used; various
analysis programs may be helpful in doing so, for example, by providing
counts of statement executions. A rather small part of the program will
usually be found to have a large influence on speed. Concentrate on those
few segments. It may be necessary to recode procedures to inline code, or to
"unwind" short, heavily used loops. Consider the possibility of avoiding
certain data conversions or language features that may adversely affect
performance. Since usually only a small part of the program needs to be
modified, this modification will ordinarily not take a great deal of effort.

If excessive paging in a virtual storage system is a problem, the basic solution
is to place procedures that are used together in the same virtual storage page.
Again, analysis programs can help. Structured programming can actually be a
benefit in this kind of tuning, since heavy use of subroutines is encouraged.
Of course the scope of the data references must be considered; extensive use
of COMMON storage is generally considered inadvisable. Furthermore,
performance problems can seldom be predicted in advance, no matter what
coding techniques are used. Because of the ease of maintaining (changing)
structured programs, the likelihood is that performance problems can be more
easily corrected.

J

J

Getting Started in Structured Programming

One way to evaluate structured programming in an installation follows:

• Management authorizes the use of structured programming in a project.
The first structured programming project should be neither trivial nor
extremely difficult, but rather one of nomlal size and level of difficulty. At
least two programmers should be assigned to the project so that they can
check each other's code.

• Programmers assigned to the project familiarize themselves with the
subject. Some installations have implemented structured programming on
their own; others have found that attending a class was necessary.

• A set of guidelines for the initial effort is established. The guidelines in
Chapter 2 on FORTRAN implementation can be used; many installations
will prefer to establish their own. The guidelines for the first project
should avoid extending the permissible control logic structures; uncont­
rolled extensions can easily destroy the value of structured programming.
Some programmers find it helpful to summarize the guidelines in the form
of a checklist or a simple illustrative program.

• After the HIPO diagrams and visual table of contents are created, pseudo­
code or flowcharts can be used for detailed logic, if appropriate. The code
is then written and the program tested.

The evaluation process can be repeated and the guidelines modified until the
programmers have sufficient experience with structured programming. At this
time structured programming guidelines can be incorporated into the
installation's standards.

15

L

Chapter 2: Implementing Structured Programming Using FORTRAN

Once the principles of structured programming are understood, writing
structured programs in FORTRAN is a matter of habitually following a few
simple rules. In FORTRAN the control logic structures other than sequence
must be implemented using logical IF and GO TO statements; this can be done
in a disciplined way, retaining most of the advantages of structured program­
ming.

Basic Control Logic Structures

Sequence

IFfHENELSE

Sequencing is implemented in FORTRAN simply by writing statements in
succession.

The IFTHENELSE structure tests a logical expression to determine which of
two function blocks will be executed.

The flowchart of the IFTHENELSE structure is shown in Figure 11.

statement-'

T

F

statement-2

Figure 11. Flowchart for the IFTHENELSE

The pseudocode of the IFTHENELSE is:

IF condition-p

THEN

statement-l

ELSE

statement-2

ENDIF

17

18

The IFTHENELSE control logic structure can be implemented in FORTRAN in
the following form:

IF (.NOT. (p» go to XXX

statement-l

statement-n

GO TO YYY

XXX CONTINUE

statement-2

statement-q

YYY CONTINUE

xxx and YYY are statement labels assigned by the programmer.

It is permissible to reverse the logic of the condition and drop the .NOT. if
doing so improves understandability, as it often will. The CONTINUE is
aligned with the IF; in the case of a nested IF, the CONTINUE will not be
column 7. The statements controlled by the structure are indented three
spaces.

DOWHILE

When no ELSE path is to be executed, this statement can be written in the
form:

IF (.NOT. (p)) GO TO XXX

staternent-l

staternent-n

XXX CONTINUE

XXX is a statement label assigned by the programmer.

The DOWHILE structure tests a predicate and executes a function as long as
the predicate is true. The flowchart is shown in Figure 12.

function

T

F

Figme 12. Flowchart for the DOWHILE

The pseudocode for the DOWHILE is:

DOWHILE P

function

ENDDO

19

A DOWHILE can be implemented in FORTRAN in the following form:

XXX IF (.NOT. (p)) GO TO YYY

statement-l

statement-2

statement-n

GO TO XXX

YYY CONTINUE

The xxx and YYY labels are assigned by the programmer.

Additional Control Logic Structures

DOUNTIL

20

The DOUNTIL structure executes a function and then tests a predicate to
determine whether to repeat it again. The flowchart is shown in Figure 13.

F

function
T

Figure 13. Flowchart for the DOUNTIL

The pseudocode for the DO UNTIL is:

DOUNTIL P

function

ENDDO

J

J

J

CASE

A DOUNTIL can be written in FORTRAN in the following form:

XXX CONTINUE

statement-l

statement-2

statement-n

IF (. NOT. (c» GO TO XXX

xxx is a statement label assigned by the programmer.

The CASE structure selects one of a set of functions for execution, based on
the basis of the value of a variable. The flowchart notation is shown in Figure
14. This construct can be coded in FORTRAN using the computed GO TO
statement, as follows:

GO TO (a, b, c, . . . n), kk

a CONTINUE

statement-al

statement-a2

statement-an

GO TO P

b CONTINUE

statement-bl

statement-b2

21

22

staternent-bn

GO TO P

n CONTINUE

staternent-nl

staternent-n2

staternent-nn

P CONTINUE

a

b

c

• • •

n

Figure 14. Flowchart for the CASE control logic structure

Program Organization

A structured FORTRAN program consists of a main program and usually a
number of subprograms. The free use of subroutines to implement the
division of a program into segments is encouraged. The linkage overhead is
not burdensome in most modern compilers, and the advantages of good
modularization are significant.

No segment - main program or subprogram - should exceed one page of
code, since longer programs are more difficult to understand.

Communication between segments should be solely through SUBROUTINE or
FUNCTION parameter lists, rather than through COMMON storage, since
excessive use of COMMON creates interconnections between segments in a
way that hampers easy program maintenance.

With minimum use of COMMON, it is less likely that a change in one segment
will have an unexpected and harmful effect on some other segment.

Indentation and Readability Guidelines

No standardization of indentation and readability conventions has developed
so far, and there seems to be little pressure for it as long as consistent stan­
dards are followed within anyone organization. The key idea in devising
these guidelines is the production of programs in which the visual layout of
the program elements aids the reader in understanding program relationships
and functioning. Some suggested ways of accomplishing this goal follow:

• Comment lines can be used freely to group statements having related
functions.

• Statements are much easier to locate and to change if no more than one
statement is written on a line.

• Placing all FORMAT statements together at the beginning of the program
rather than interspersing them throughout the program aids the visual
indication of program relationships.

• The scope of control of the simulated control logic structures is made
clearer if the CONTINUE is aligned with the IF and the statements con­
trolled by the structures are indented by some consistent amount. The
suggested guideline is three columns, but the number is not critical as long
as consistency is maintained within anyone organization.

• Similarly FORTRAN IF and DO statements can be indented three spaces
with the starting position of the beginning statement determined by the
location of the previous statements.

• Permitting a CONTINUE only as the object of a GO TO.

The sample programs in Chapter 3 illustrate many of these guidelines.

23

Names

Comments

Special Conditions

24

In devising names for data, considerable care should be exercised to make
them as helpful as possible to the reader in understanding the function of the
data elements. In spite of the FORTRAN limitation of six-character names,
meaningful names can usually be chosen; for example, RESID is a better name
for "residual" than R13XQ.

Experience has shown that well structured FORTRAN programs can be largely
self-documenting, assuming the use of descriptive variable names. Since
FORTRAN names are necessarily so short, however, it is often helpful to place
a block of comments at the beginning of a segment to define the meanings of
the variable names. Many programmers also recommend an initial section of
comments briefly stating the function of the program.

Most programming environments allow for specified unusual conditions to
interrupt the normal flow of processing and activate exception-handling
routines. Common examples are end-of-file conditions and arithmetic over­
flow. Whether the structure theorem applies to programs containing such
elements depends on whether they violate the one-entry, one-exit principle
and thus fail to be proper programs. Certain types of interrupts always break
the normal flow; others mayor may not, depending on how the program is
written.

The only FORTRAN feature in this category is the END = option in the READ

statement, for specifying the action to be taken when the input end of file is
detected. If only a few simple operations or none remain to be carried out
when the end of file is found, it may be acceptable to transfer to a closing
section of the program with the END =. In other cases, however, it may be
preferable to set a flag so that DOWHILE or DOUNTIL logic can be used to
complete processing. Setting such a flag involves the use of GO TO state­
ments, which is unavoidable given the FORTRAN syntax, since the END = is
essentially a GO TO. Both methods are illustrated in the sample programs in
Chapter 3.

Chapter 3: Two Illustrative Programs

The best way to get a quick idea of any programming technique is to see
examples of programs that employ it. In that spirit, two illustrative programs
are presented that have been written following the principles discussed earlier.
The IBM FORTRAN IV (GI) Compiler (S734-F02) Release 2.0 was used to
compile the examples in this chapter. The programs were executed under
OS!VS2 Release 3.7 (MVS) and the TSO-3270 Structured Programming Facility
(SPF) (S740-XT2). The programs were executed under VM/370 Version 2
LevelO.

The first program involves a very common and fairly simple operation in
commercial data processing. Even if the reader's primary interest is in mathe­
matical and engineering uses of computers, the program provides a good
introduction to the use of structured programming in FORTRAN. The second
program, for solving simultaneous equations, is more representative of the
way FORTRAN is commonly used and is somewhat more complex in that it
involves a main program and three subroutines.

A Two-Level Control Total Program

One of the most common data processing operations is the preparation of a
summary report providing totals broken down by several levels of control, as
well as a final total. A two-level control total report illustrates the basic ideas
and can easily be extended to any number of levels. In this example it is
assumed that the only report needed is the summary; extension of the pro­
gram to include other processing and the printing of a detail line for each
input record would involve no conceptual difficulties.

For concreteness, it is assumed that the major control is a sales district and
that the minor control is a salesman number. Each record contains a district
number, a salesman number, and a dollar amount. The transaction file has
already been sorted into sequence on salesman within the district. To keep
things simple, the printing of headings and the counting of lines on the pages
are omitted.

Figure IS is a HIPO diagram for this processing. A pseudocode representation
is shown in Figure 16. Notice how the logic is clearly exhibited by the use of
indentation with the basic control structures of sequence, selection, and loop
control. The DOWHILE is used for the loop control with the controlled code
shown inline. The same logic is shown in flowchart form in Figures 17a and
17b. Working either from the pseudocode or the flowchart, the FORTRAN
program in Figure 18 is not difficult to prepare.

Note the use of blank comment lines, lines containing nothing but a c in
column 1, to group statements having related purposes for easy readability.
All FORMAT statements have been placed together at the beginning of the
program. The alternative approach of placing them immediately after the
statements that reference them is less preferable since it would diminish the
value of indentation in providing a visual indication of program relationships.

The program fairly directly implements the pseudocode in setting a flag when
the end of file is detected. Under FORTRAN syntax for the READ statement,
this cannot be done without GO TO's since the END = feature is, itself,

25

essentially a GO TO. The CONTINUE statement is not actually required here,
but the use of a CONTINUE as the only allowable object of a GO TO or DO
statement is recommended by many programmers as enhancing program
maintainability.

This program was run with a small sample of test data, producing the output
shown in Figure 19. The program is quite rudimentary, since it does not
include printing of headings, counting of lines, checking for sequence or other
errors in the data, or any processing of the records other than the accumula­
tion of totals. All of these operations can be included readily while still
following structured programming concepts.

Author: ____________ System/Program ____ _ -----_______ Date ____ Pdqc 1..- of 1

Diagram 10: 1.0

Input

I REPORT· FILE

SALES·FILE

SALESMAN

DISTRICT

SALES·
DOLLARS

I

Name: PREPARE·SALES·REPO=R~T,--_______ D.,enp""" -----::.=========-==-~J
from
operating Sysi.

~

Process Output

1. Open files & read lst record

2. I nitialize district fields ---------"""T-----..... _/~ ~~;:~~':"
1-----------1

...., DISTRICT·
3. Perform until the district changes or there is <,_---.------r......., ~ TOTAL

no more data: L""":'':'':'':-=-__ .J

a. Initialize the salesman's field ~ I PREVIOUS.
T ·1 -?1 SALESMAN

b. Accumulate the salesman', totll until the ../

salesman changes ~_"'-_S;.;A;.;L.;.;ES;;;;M_A_N_. --I TOTAL

c. Read the SALES FILE I~~ ~

d. When the salesman changes print total Ii ~ 1__ r,~=====::=l
add to district total ~ I I

• REPORT·FILE

4. :~:n the district chang&s or there is no more • .A_--L.------' -:~>I

<..
DISTRICT·TOTAL

I. Print district total

b. Accumulate fiMI total

r I FINAL.TOTAL
5. When there is no more dati print final totll < _--...... ------.---I...-----...J

:::!-I

REPORT·FILE

til ::;"rlting L-______________________________ ~J ~ ~stem L-_________________ -J

6. Close the files

Figure 15. Detailed design level mPO diagram for a two-level control total processing application

26

BEGIN SALES REPORT
READ SALESMAN, DISTRICT NUMBER, DOLLARS
ZERO FINAL TOTAL
SET END OF DATA FLAG OFF
DO WHILE NOT END OF DATA

ZERO DISTRICT TOTAL
MOVE DISTRICT NUMBER TO PREVIOUS DISTRICT
DO WHILE DISTRICT = PREVIOUS DISTRICT

AND Nor END OF DATA
ZERO SALESMAN TOTAL
MOVE SALESMAN TO PREVIOUS SALESMAN
DO WHILE DISTRICT = PREVIOUS DISTRICT

AND SALESMAN = PREVIOUS SALESMAN
AND NOT END OF DATA

ADD SALES DOLLARS TO SALESMAN TOTAL
READ SALESMAN, DISTRICT NUMBER, DOLLARS

IF END OF DATA

ENDDO

SET END OF DATA FLAG ON
ENDIF

WRITE PREVIOUS SALESMAN, SALESMAN TOTAL
ADD SALESMAN TOTAL TO DISTRICT TOTAL

ENDDO
WRITE PREVIOUS DISTRICT, DISTRICT TOTAL
ADD DISTRICT TCYrAL TO FINAL TOTAL

ENDDO
WRITE FINAL TCYrAL

END SALES REPORT

Figure 16. Pseudocode for a two-level control total processing application

27

28

Open
tiles

Read
SALES·FILE

Zero
FINAL·TOTAL

Print
FINAL·TOTAL

Close
tiles

T

Add
DISTRICT TOTAL
to
FINAL·TOTAL

Print
DISTRIC.T
TOTAL

SAlES·TOTAl

Process
salesman
totals

Move
DISTRICT to
Previous·
DISTRICT

Zero
DISTRICT
TOTAL

Figure 17&. Flowchart for the mainline processing portion of
& two-level control total processing application

J

J

Add
S·TOTAL to

D·TOTAL

Print
S-TOTAL

SALESMAN=P-SALESMAN

< and >-T ________________ -,

DISTRICT=P-DISTRICT

Move
SALESMAN
to
P·SALESMAN

Zero
S·TOTAL

Abbreviations

Add
S·DOLLARS
to
SALESMAN·
TOTAL

Read
SALES-FILE

S·TOTAL = SALESMAN·TOTAL
D·TOTAL = DISTRICT ·TOTAL
P·SALESMAN = PREVIOUS·SALESMAN
S-DOLLARS = SALES-DOLLARS
P·DISTRICT = PREVIOUS·DISTRICT
SALES-TOTAL=

SALESMAN-TOTAL -PROCESSI NG

Figure 17b. Flowchart for the record processsing portion of a two-level control total processing application

29

C A PROGRAM TO PRODUCE
C

A TWO-LEVEL SALES REPORT

C VARIAB LE NAMES
C
C
C
C
C
C
C
C
C
C
C

DIST
PDIST
SLSMN
PSLSMN
DATAFG
DISTOT
SLSTOT
FINTOT
DOLLRS

DISTRICT NUMBER
PREVIOUS DIST.RICT
SALESMAN
PREVIOUS SALESMAN
FLAG TO INDICATE THAT
DISTR ICT TOTAL
SALESMAN TarAL
FINAL TOTAL
SALES DOLLARS

END OF DATA HAS BEEN REACHED

C INPUT IS IN ASCENDING SEQUENCE ON SALESMAN WITHIN DISTRICT
C

C

C

INTEGER DIST, PDIST, SLSMN, PSLSMN
REAL DIS'roT, SLSTOT, FINTOT, DOLLRS

10 FORMAT (IS, 13, F7.2)
20 FORMAT (lX, 15, F12.2)
30 FORMAT (lX, 17X, 13, F12.2)
40 FORMAT (lX, 32X, F12.2)

READ (5, 10) SLSMN, DIST, DOLLRS
FINTOT = 0.0
DATAFG = 1

1001 CONTI NUE
IF (DATAFG .NE. 1) GO TO 1007

DISTar = 0.0
PDIST = DIST

1002 CONTINUE
IF (DIST .NE. PDIST .OR. DATAFG .NE. 1) GO TO 1006

SLSTor = 0.0
PSLSMN = SLSMN

1003 CONTINUE
IF (DIST .NE. PDIST

1 .OR. SLSMN .NE. PSLSMN
2 ~CR. DATAFG .NE. 1) GO TO 1005

SLSTOI' = SLSTOI' + OOLLRS
READ (5, 10, END = 1004) SLSMN, DIST, DOLLRS
GO TO 1003

1004 CONTINUE
DATAFG = 0
GO TO 1003

1005 CONTINUE
WRITE (6, 20) PSLSMN, SLSTOT
DISTal' = DISTCT + SLSTOT
GO TO 1002

1006 CONTINUE
WRITE (6, 30) PDIST, DISTOT
FINTaI' = FINTar + DISTor
GO TO 1001

1007 CONTI NUE
WRITE (6, 40) FINTOT
STCP
END

Figure 18. Structured program for a two-level control total processing application

30

J

41 203.37
52 110.00
69 134.65

1 448.02
18 207.69
32 185.60

2 393.29
36 194.15
39 121. 40
50 51.80

3 367.35
1208.66

Figure 19. lliustrative output from the two-level control total program of Figure 18

Solving a System of Simultaneous Equations by the Gauss-Seidel Method

This example is for the benefit of readers more concerned with technical
applications. It assumes some familiarity with simultaneous linear algebraic
equations and with their iterative solution by the Gauss-Seidel method.

As many as 80 equations in 80 unknowns are to be permitted; the actual size
N, which may be smaller than 80, is read from the first data card. This card
also specifies MAXIT, the maximum number of iterations to be permitted, the
converg~ce criterion EPSLON, and the largest absolute value permitted of an
element in the system array, BIGGST. The array is initialized to zero, so that
only the nonzero elements need be read; row and column numbers are
checked for validity as the data cards are read. All data values are checked
and errors reported, but the solution is not attempted if any errors are found.

Not all systems of simultaneous equations can be solved by the Gauss-Seidel
method. After the coefficients and constant terms have been read, a check is
made to determine that the main diagonal element in each row is larger in
absolute value than the sum of the absolute values of the other coefficients in
the row. If not, the error is reported and the solution is not attempted.

The actual solution proceeds in a succession of sweeps. Starting with all zeros
for the unknowns, new values for all unknowns are computed in one sweep.
A variable named RESID holds the largest difference between the old and new
values of unknowns. When this residual is found to be less than the conver­
gence criterion, the system has been solved. If convergence cannot be
achieved in the specified maximum number of iterations, the nonconvergence
is reported.

If all data values are acceptable, if the system is suitable for solution by the
Gauss-Seidel method, and if the solution converges, the values of the N

unknowns are printed as the solution.

31

32

Figure 20 shows pseudocode for the method of solution that is to be used.
Observe how the logic of the solution is displayed, without distracting details.
For example, the precise form of switch-setting is left to be detailed in the
program. Likewise, in the procedure for reading the data, the line "IF data
card invalid" appears. Although this line conveys the meaning clearly, it does
not specify exactly what tests are to be made; those details can be found in
the program specifications and in the program. Note, too, that a summation
sign denotes this commonly used mathematical function, which in the pro­
gram becomes a simple DO loop. If it were necessary to keep the pseudocode
in machine-readable form, as is sometimes the practice, the Greek symbols
would naturally have been represented in some transliteration, or the loop
could be shown in detail.

This program is shown in Figure 21. The mainline logic, according to which
the various tests are made to determine at each stage what further actions are
possible, is made clear by the use of meaningful data names, simple
IFTHENELSE logic, and consistent indentation. Observe the use of ordinary
FORTRAN DO statements in a situation where their use is natural and easy to
understand, and where some compilers may produce more efficient object
code than if a DOWHILE or DOUNTIL were used.

The subroutine READAT (for "read data") obtains the data and tests the
validity of each element separately. The choice of how much testing to do is a
design decision that is taken for granted here; if further tests, such as the
reasonableness of the value N, were desired, they could be incorporated
easily.

The subroutine VALDAT (for "validate system") is called into play if it is
determined that the individual elements are acceptable. This function could,
of course, have been made part of READAT, which might then have been
named something like REDVAL, or READAT could have called this subroutine.
The form chosen was picked because it gives the clearest picture of the logic
at the top level.

The actual solution of the system, if it is found to be potentially solvable, is
done with the subroutine named SOLVER. Observe the use of the DOUNTIL

control logic structure to get one unconditional execution of the controlled
code before testing the condition. Notice the use of two FORTRAN DO

statements for heavily used loops in familiar matrix operations for which the
DO statement is well suited. Notice the use of a FORTRAN logical IF state­
ment where only one statement is to be controlled and the operation is in a
heavily used inner loop. Finally, note the use of the built-in function AMAXI
to establish whether the newly computed difference between the old and new
values of an unknown is greater than the previous value of RESID; this could
also have been done with an IF statement.

After the program is tried with various erroneous data to check the error­
detection handling, it is tested with the system shown in Figure 22. Usinga
convergence criterion (IPSLON) of 0.01, the method finds the solution shown
in Figure 23.

J

J

Open files

Initialize bad data switch off

Clear arrays

Read data

IF no errors in data

THEN

Validate system

IF system is valid

THEN

Attempt to solve system

IF solution converges

THEN

Print results

ELSE

Print 'did not converge'

E~DIF

ELSE

Print 'cannot solve this sytem by Gauss-Seidel'

ENDIF

ELSE

Print 'bad data'

ENDIF

Close files

Figure 20. Pseudocode for a solution of simultaneous equations by the Gauss-Seidel method (1 of 4)

33

Read data:

Get N, maximum iterations, epsilon, biggest

More data switch = yes

Dm'lHILE more data remains

Get a card

IF more data remains

THEN

IF data card invalid

THEN

Print data values and error message

Set bad data switch on

ELSE

Store element in array

ENDIF

ENDIF

ENDDO

Figure 20. Pseudocode for a solution of simultaneous equations by the Gauss·Seidel method (2 of 4)

34

Validate system:

DO I = 1 to N

WHILE no bad rows have been found

SUM = ~-.t ·1 a. ·1 1rJ 1J

I F I a i j I < SUM

THEN

Set bad row switch on

ENDIF

ENDDO

Figure 20. Pseudocode for a solution of simultaneous equations by the Gauss-Seidel method (3 of 4)

35

Solve system:

Iterations = 1

DOUNTIL iterations> max iterations or residual < epsilon

Residual = 0

DO I = 1 to N

Sum = I
ifj

a. x.
1J J

Temporary = (a. +1 - Sum) la ..
1,n 11

Residual = max(residual, abs(temporary - x.))
1

x. = temporary
1

ENDDO

Add 1 to iterations

If iterations> maximum permitted

THEN

Set no-converge switch on

ENDIF

ENDDO

Figure 20. Pseudocode for a solution of simultaneous equations by the Gauss-Seidel method (4 of 4)

36

C A PROGRAM TO SOLVE UP TO 80 SIMULTANEOUS EQUATIONS
C BY THE GAUSS-SEIDEL METHOD
C
C
C

C

C

10
20
30
40

1001
1002

C

1003

1004

1005

1006

FORTRAN VERSION

INTEGER I, J, N, MAXIT, BAI:DAT, VALID, CNVRGE
REAL A(80, 81), X(80), EPSLON, EIGGST

FORMAT
FORl-'JAT
FORMAT
FORttAT

(lX, 12, lPE14.6)
('0', 'DID NCT CONVERGE IN ',14, 'ITERATIONS')
("O ", I CANNar SOLVE THIS SYSTEM BY GAUSS- SFIDEL')
(, 0 ", • BAD DATA -- JOE ABORTED')

DO 1002 I = 1, 80
xn) = 0.0
DO 1001 J = 1, 81

An, J) = 0.0
CONTINUE

CONTINUE

BADDAT = 0
CALL READAT CA, N, MAXIT, EPSLON, EIGGST, BADDAT)
IF (BADDAT .NE. 0) GO TO 1007

VALID = 1
CALL VALDAT CA, N, VALID)
IF (VALID .NE. 1) GO TO 1005

CNVRGE = 1
CALL SOLVER (A, X, N, EPSLON, MAXIT, CNVRGE)
IF (CNVRGE .NE. 1) GO TO 1003

WRITE (6, 10) (1, XCI), I = 1, N)
GO TO 1004

CONTINUE
WRITE (6, 20) MAXIT

CONTINUE
GO TO 1006

CONTINUE
WRITE (6, 30)

CONTINUE;
GO TO 1008

1007 CONTI NUE
WRITE (6, 40)

1008 CONTINUE
STOP
END

Figure 21. Structured program to solve simultaneous equations by the Gauss-Seidel method (1 of 3)

37

C

C

C

SUBROUTINE READAT (A, N, MAXIT, EPSLON, BIGGST, BADDAT)
INTEGER I, J, N, NPLUS1, MAXIT, BADDAT
REAL A(80, 81), EPSLON, BIGGST, TEMP

(212, 2Fl0.0)
(212, Fl0.0)

10 FORMAT
20 FORMAT
30 FORMAT

1
(lX, 'ERROR IN CARD WITH I = "
12, " VALUE = " lPE14.6)

READ (5, 10) N, MAXI'l, EPSLON, BIGGST
NPLUSl = N + 1

1001 CONTINUE
READ (5, 20, END = 1004) I, J. TEMP
IF ((I .GE. 1)

1 • AND. (I .LE .. N)

2 .AND. (J aGE .. 1)
3 .AND. (J .. LF. NPLUSl)
4 .. AND. (ABS (TEMP) .LT. BIGGST) }

WRITE (6. 30)
BADDAT = 1
GO TO 1003

1002 CONTINUE
A(I, J) = TEMP

1003 CONTINUE
GO TO

1004 CONTINUE
RETURN
END

1001

I, J, TEMP

12, " J = ,

GO TO 1002

Figure 21. Structured program to solve simultaneous equations by the Gauss-Seidel method (2 of 3)

38

J

C

C

SUBROUTINE VALDAT (A, N, VALID)
INTEGER I, J, N, VALID
REAL A(SO, 81), SUM

1=1
1001 CONI'I NUE

IF (VALID .NE. 1 oOR. I .GT. N) GO TO 1003
SUM = 0.0
DO 1002 J = 1, N

IF (I .NE. J) SUM = SUM + ABS(A(I, J»
1002 CONTINUE

IF (ABS(A(I, I» .LT. SUM) VALID = 0
I = I + 1
GO TO 1001

1003 CONTI NUE
RETURN
END
SUEROUTINE SOLVER (A, X, N, EPSLON, MAXIT, CNVRGE)
INTEGER I, J, N, ITERS, MAXIT, CNVRGE, NPLUSl
REAL A(SO, Sl), X(SO), SUM, T~lP, RESID

NPLUSl = N + 1
ITERS = 1

1001 CONTINUE
RESID = 0.0
DO 1003 I = 1, N

SUt-'l = 0.0
DO 1002 J = 1, N

IF (I .NE. J) SUM = SUM + A(I, J) * X(J)
1002 CONTINUE

'ID~P = (A(I, NPLUS1) - SUM) / AU, I)
RESID = A~~Xl (RESle, ABS(X(I) - TEMP»
xn) = TENP

1003 CONTINUE
ITERS = ITERS + 1

IF (RESID .GE. EPSLON .AND. ITERS .LE. MAXIT) GO TO 1001
IF (ITERS .GT. MAXIT) CNVRGE = 0
RETURN
END

Figure 21. Structured program to solve simultaneous equations by the Gauss-Seidel method (3 of 3)

39

12.063 xl + 1. 018 x 2 - 4.200 x3 + 0.110 x 4 = 3.013

1. 934 x 2 + 1.011 x3 - 0.500 x 4 = 1.165

-0.110 xl + 0.901 x2 + 6.914 x3 + 0.100 x4 18.429

-1.952 Xl + 2.139 x3 + 5.000 x 4 -15.500

Figure 22. System of simultaneous equations used to test the program of Figure 21

1 1. 493188EHlO
2 -1.947272E+00
3 2.997915E+00
4 -3.799566E+OO

Figure 23. Output of the program of Figure 21 when run with sample data corresponding to the system of simultaneous
equations shown in Figure 22

40

J

...; E
c

E.E
Q. en ':; :c
0"
Q)"Cij

Cl Q)
C en

.;:; 0
o Q)
en Q.

= ca ca
E'O

Q)

'0 E
~ E
ca ::3 E Cl
o
;~
ca

..c 0 , '~.~
~~ "Vi

.0 C o Q)
.... en
Q. Q)

~ ~
::3 ~
~ ~
C Q.
ca Q)

~ :3
Q) Q)

a.~
ca Q)

U5~

Q)
o
Z

An Introduction to Structured Programming in FORTRAN

Installation Management Manual

GC20·1790-0

This form may be used to communicate your views about this publication. They will be sent to the
author's department for whatever review and action, if any, is deemed appropriate. Comments may be
written in your own language; use of English is not required.

READER'S
COMMENT
FORM

IBM shall have the nonexclusive right, in its discretion, to use and distribute all submitted information,
in any form, for any and all purposes, without obligation of any kind to the submitter. Your interest
is appreciated.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.
Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name and mailing address:

What is your occupation? ___________________________ _

Number of latest Newsletter associated with this publication: _____________ _

thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address
in the Edition Notice on the back of the title page.)

GC20-1790-0

Reader's Comment Form

Fold and tape

Fold and tape

==-= =®
---~ ---- - ------ - - -----------_____ 'f_

Please 00 Not Staple

Business Reply Mail

No postage stamp necessary if mailed in the U.S.A.

Postage will be paid by:

I nternational Business Machines Corporation
Department 825
1133 Westchester Avenue
White Plains, New York 10604

Please Do Not Staple

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

Fold and tape

First Class
Permit 40
Armonk
New York

Fold and tape

I
(')

s.
g
."
0
a:
):>
0'
OJ

'" r
3'
~

:;-

J (I)
Q)

Qj" o·
::J

~
Q)

::J
Q)

'" co
3
co
::J
~
Q)

::J
C
~

l>
:::J

::J,
8.
c
() o·
:::J
0
(/)
q
c
() c a
'1l
(3
'Q
Q)

3
2.
:::J

'" :::J

."
0
::0
-i
::0
l> z

~
:::J a
:::J

c
en
}>

Cl
()
N
<?
-.J
(0

<?
0

J

~ E
CIl <5
E
a. II>

'5 E
0"
CIlCij
Cl CIl
C II>

of £
~ ~
'iii ~
E -c

CIl

] E
ctJ E
E 5,
o ...
.... CIl
::J .r::.
ctJ

.r::. 0

.-::: ~
; ;: 0

i E'~
'-' ~ 'v;

.0 C o CIl
... II>

a. CIl
CIl ...
II> ::J
::J II>
ctJ II>

U e
C a.
ctJ CIl
U II>
II> ::J
CIl CIl
C. :a
~~
U>Q..

CIl
o

Z

An Introduction to Structured Programming in FORTRAN

I nstaliation Management Manual

GC20-1790-0

This form may be used to communicate your views about this publication. They will be sent to the
author's department for whatever review and action, if any, is deemed appropriate. Comments may be
written in your own language; use of English is not required.

READER'S
COMMENT
FORM

IBM shall have the nonexclusive right, in its discretion, to use and distribute all submitted information,
in any form, for any and all purposes, without obligation of any kind to the submitter. Your interest
is appreciated.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of pUblications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.
Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name and mailing address:

What is your occupation? ___________________________ _

Number of latest Newsletter associated with this pUblication: _____________ _

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address
in the Edition Notice on the back of the title page.)

GC20-1790-0

Reader's Comment Form

Fold and tape

Fold and tape

==-= =® - - -------- -. ----- - - ---
---~----- -,,-

Please Do Not Staple

Business Reply Mail

No postage stamp necessary if mailed in the U.S.A.

Postage will be paid by:

International Business Machines Corporation
Department 825
1133 Westchester Avenue
White Plains, New York 10604

Please Do Not Staple

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue. White Plains. N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant. Route 9. North Tarrytown. N.Y .• U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue. White Plains. N.Y .. U.S.A. 10601

Fold and tape

First Class
Permit 40
Armonk
New York

Fold and tape

I
(')

s.
~

" 0
c:
»
0'
::J

'" r
:;'
<D

:;
S
iii' ... J
o·
::J

s::
'" ::J

'" '" (D

3
(D

::J ...
s::
'" ::J
C
E!.

»
::J

::J ...
8.
c
C'l ... o·
::J ...
0
Ul
q
c
C'l ...
!:;
(D

0.
-0
(3

'" iil
3
2.
::J

'" 5'
'T1
0
::D
-I
::D »
Z

~
J

5' ... a
::J

c
in »
Gl
()
I>J
c;:>
-.,j
co
c;:>
0

